
A Passion for
Mathematics
A Passion for
Mathematics

Numbers, Puzzles, Madness, Religion, 
and the Quest for Reality

CLIFFORD A. PICKOVER

John Wiley & Sons, Inc.





A Passion for
Mathematics
A Passion for
Mathematics



The Alien IQ Test

Black Holes: A Traveler’s Guide 

Calculus and Pizza

Chaos and Fractals

Chaos in Wonderland

Computers, Pattern, Chaos, and Beauty 

Computers and the Imagination 

Cryptorunes: Codes and Secret Writing

Dreaming the Future

Egg Drop Soup

Future Health

Fractal Horizons: The Future Use of Fractals 

Frontiers of Scientific Visualization

The Girl Who Gave Birth to Rabbits

Keys to Infinity

Liquid Earth

The Lobotomy Club

The Loom of God

The Mathematics of Oz

Mazes for the Mind: Computers and the Unexpected 

Mind-Bending Visual Puzzles (calendars and card sets)

The Paradox of God and the Science of Omniscience

The Pattern Book: Fractals, Art, and Nature

The Science of Aliens

Sex, Drugs, Einstein, and Elves

Spider Legs (with Piers Anthony)

Spiral Symmetry (with Istvan Hargittai)

Strange Brains and Genius

Sushi Never Sleeps

The Stars of Heaven

Surfing through Hyperspace

Time: A Traveler’s Guide

Visions of the Future

Visualizing Biological Information

Wonders of Numbers

The Zen of Magic Squares, Circles, and Stars

Works by Clifford A. Pickover



A Passion for
Mathematics
A Passion for
Mathematics

Numbers, Puzzles, Madness, Religion, 
and the Quest for Reality

CLIFFORD A. PICKOVER

John Wiley & Sons, Inc.



Copyright © 2005 by Clifford A. Pickover. All rights reserved

Published by John Wiley & Sons, Inc., Hoboken, New Jersey
Published simultaneously in Canada

Illustration credits: pages 91, 116, 137, 140, 142, 149, 150, 151, 157, 158, 159, 160, 162, 164, 167, 168,
169, 179, 199, 214, 215, 224, 225, 230, 274, 302, 336, 338, 341, 343, 345, and 348 by Brian C. Mans-
field; 113, 114, 115, 145, 146, 332, 333, and 334 by Sam Loyd; 139 courtesy of Peter Hamburger and
Edit Hepp; 141 by Stewart Raphael, Audrey Raphael, and Richard King; 155 by Patrick Grimm and Paul
St. Denis; 165 and 166 from Magic Squares and Cubes by W. S. Andrews; 177 and 352 by Henry Ernest
Dudeney; 200 by Bruce Patterson; 204 by Bruce Rawles; 206 by Jürgen Schmidhuber; 253 by Abram
Hindle; 254, 255, 256, and 257 by Chris Coyne; 258 and 259 by Jock Cooper; 260 by Linda Bucklin; 261
by Sally Hunter; 262 and 263 by Jos Leys; 264 by Robert A. Johnston; and 266 by Cory and Catska Ench.

Design and composition by Navta Associates, Inc.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or
by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as permit-
ted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior written
permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the
Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-
8600, or on the web at www.copyright.com. Requests to the Publisher for permission should be addressed
to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201)
748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: While the publisher and the author have used their best efforts
in preparing this book, they make no representations or warranties with respect to the accuracy or com-
pleteness of the contents of this book and specifically disclaim any implied warranties of merchantability
or fitness for a particular purpose. No warranty may be created or extended by sales representatives or
written sales materials. The advice and strategies contained herein may not be suitable for your situation.
You should consult with a professional where appropriate. Neither the publisher nor the author shall be
liable for any loss of profit or any other commercial damages, including but not limited to special, inci-
dental, consequential, or other damages.

For general information about our other products and services, please contact our Customer Care Depart-
ment within the United States at (800) 762-2974, outside the United States at (317) 572-3993 or fax 
(317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may
not be available in electronic books. For more information about Wiley products, visit our web site at
www.wiley.com.

Library of Congress Cataloging-in-Publication Data:

Pickover, Clifford A.
A passion for mathematics : numbers, puzzles, madness, religion, and the quest for reality

/ Clifford A. Pickover.
p. cm.

Includes bibliographical references and index.
ISBN-13 978-0-471-69098-6 (paper)
ISBN-10 0-471-69098-8 (paper)
1. Mathematics.  I. Title

QA39.3.P53 2005
510—dc22 2004060622

Printed in the United States of America

10  9  8  7  6  5  4  3  2  1



Ramanujan said that he received his formulas from

God. This book is dedicated to all those who find

Ramanujan’s π formulas beautiful to look at:

(where Poch(n) refers to the Pochhammer notation

described in chapter 2)

1
8

1103 26390 2 1 4 1

99 324 2 3
0π

=
+ − −

+
=

∞

∑
( )( )!!( )!!

( !)

n n n

nn n
n

5 5

2 3

11 1 4

125

0

1

2

1

6

5

6

3
0

1

π =
+ ( ) ( ) ( ) 




















=

∞

−

∑

( )

( )

( !)

( ) ( ) ( )
n

n

n

Poch n Poch n Poch n

n

n





“Truly the gods have not from the beginning

revealed all things to mortals, but by long seeking, 

mortals make progress in discovery.”

—Xenophanes of Colophon (c. 500 B.C.)

“Every blade of grass has its angel

that bends over it and whispers, ‘grow, grow.’”

—Talmudic commentary Midrash 

Bereishis Rabbah, 10:6
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“An equation means nothing to me unless it expresses a thought of God.”

—Srinivasa Ramanujan (1887–1920)

The Ramanujan Code

“An intelligent observer seeing mathematicians at work might conclude that they are
devotees of exotic sects, pursuers of esoteric keys to the universe.”

—Philip Davis and Reuben Hersh, The Mathematical Experience, 1981

Readers of my popular mathematics books already know how I feel about

numbers. Numbers are portals to other universes. Numbers help us

glimpse a greater universe that’s normally shielded from our small brains,

which have not evolved enough to fully comprehend the mathematical

fabric of the universe. Higher mathematical discussions are a little like

poetry. The Danish physicist Niels Bohr felt similarly about physics when

he said, “We must be clear that, when it comes to atoms, language can be

used only as in poetry.”

When I think about the vast ocean of numbers that humans have

scooped from the shoreless sea of reality, I get a little shiver. I hope you’ll

shiver, too, as you glimpse numbers that range from integers, fractions,

and radicals to stranger beasts like transcendental numbers, transfinite

numbers, hyperreal numbers, surreal numbers, “nimbers,” quaternions,

biquaternions, sedenions, and octonions. Of course, we have a hard time

thinking of such queer entities, but from time to time, God places in our

midst visionaries who function like the biblical prophets, those individuals

1
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who touched a universe inches away that most of us can barely perceive.

Srinivasa Ramanujan was such a prophet. He plucked mathematical

ideas from the ether, out of his dreams. Ramanujan was one of India’s

greatest mathematical geniuses, and he believed that the gods gave him

insights. These came in a flash. He could read the codes in the mathemati-

cal matrix in the same way that Neo, the lead character in the movie The

Matrix, could access mathematical symbols that formed the infrastructure

of reality as they cascaded about him. I don’t know if God is a cryptogra-

pher, but codes are all around us waiting to be deciphered. Some may take

a thousand years for us to understand. Some may always be shrouded in

mystery.

In The Matrix Reloaded, the wise Architect tells Neo that his life is “the

sum of a remainder of an unbalanced equation inherent in the program-

ming of the matrix.” Similarly, the great Swiss architect Le Corbusier

(1887–1965) thought that gods played with numbers in a matrix beyond 

our ordinary reality: 

The chamois making a gigantic leap from rock to rock and alighting, 

with its full weight, on hooves supported by an ankle two centimeters in

diameter: that is challenge and that is mathematics. The mathematical 

phenomenon always develops out of simple arithmetic, so useful in every-

day life, out of numbers, those weapons of the gods: the gods are there,

behind the wall, at play with numbers. (Le Corbusier, The Modulor, 1968)

A century ago, Ramanujan was The Matrix’s Neo in our own reality. 

As a boy, Ramanujan was slow to learn to speak. He seemed to spend all of

his time scribbling strange symbols on his slate board or writing equations

in his personal notebooks. Later in life, while working in the Accounts

Department of the Port Trust Office at Madras, he mailed some of his

equations to the renowned British mathematician G. H. Hardy. Hardy

immediately tossed these equations into the garbage—but later retrieved

them for a second look. Of the formulas, Hardy said that he had “never

seen anything in the least like them before,” and that some had completely

“defeated” him. He quickly realized that the equations “could only be writ-

ten down by a mathematician of the highest class.” Hardy wrote in

Ramanujan: Twelve Lectures that the formulas “must be true because, if

they were not true, no one would have had the imagination to invent them.” 

Indeed, Ramanujan often stated a result that had come from some 

sense of intuition out of the unconscious realm. He said that an Indian
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goddess inspired him in his dreams. Not all of his formulas were perfect,

but the avalanche of actual gems that he plucked from the mine of reality

continues to boggle our modern minds. Ramanujan said that only in math-

ematics could one have a concrete realization of God. 

Blood Dreams and God’s Mathematicians

Repeatedly, [Western mathematicians] have been reduced to inchoate expressions of
wonder and awe in the face of Ramanujan’s powers—have stumbled about, groping for
words, in trying to convey the mystery of Ramanujan.”

—Robert Kanigel, The Man Who Knew Infinity, 1991

According to Ramanujan, the gods left drops of vivid blood in his dreams.

After he saw the blood, scrolls containing complicated mathematics

unfolded before him. When Ramanujan awakened in the morning, he

scribbled only a fraction of what the gods had revealed to him.

In The Man Who Knew Infinity, Robert Kanigel suggests that the 

ease with which Ramanujan’s spirituality and mathematics intertwined

signified a “peculiar flexibility of mind, a special receptivity to loose 

conceptual linkages and tenuous associations. . . . ” Indeed, Ramanujan’s

openness to mystical visions suggested “a mind endowed with slippery,

flexible, and elastic notions of cause and effect that left him receptive to

what those equipped with purely logical gifts could not see.”

Before we leave Ramanujan, I should point out that many other mathe-

maticians, such as Carl Friedrich Gauss, James Hopwood Jeans, Georg

Cantor, Blaise Pascal, and John Littlewood, believed that inspiration had a

divine aspect. Gauss said that he once proved a theorem “not by dint of

painful effort but so to speak by the grace of God.” For these reasons, I

have included a number of brief pointers to religious mathematicians in

chapter 1. I hope these examples dispel the notion that mathematics and

religion are totally separate realms of human endeavor.

Our mathematical description of the universe forever grows, but our

brains and language skills remain entrenched. New kinds of mathematics

are being discovered or created all the time, but we need fresh ways to

think and to understand. For example, in the last few years, mathematical

proofs have been offered for famous problems in the history of mathemat-

ics, but the arguments have been far too long and complicated for experts
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to be certain they are correct. The mathematician Thomas Hales had to

wait five years before expert reviewers of his geometry paper—submitted

to the journal Annals of Mathematics—finally decided that they could find

no errors and that the journal should publish Hale’s proof, but only with a

disclaimer saying they were not certain it was right! Moreover, mathe-

maticians such as Keith Devlin have admitted (in the May 25, 2004, New

York Times) that “the story of mathematics has reached a stage of such

abstraction that many of its frontier problems cannot even be understood

by the experts.” There is absolutely no hope of explaining these concepts

to a popular audience. We can construct theories and do computations, but

we may not be sufficiently smart to comprehend, explain, or communicate

these ideas.

A physics analogy is relevant here. When Werner Heisenberg worried

that human beings might never truly understand atoms, Bohr was a bit

more optimistic. He replied, “I think we may yet be able to do so, but in

the process we may have to learn what the word understanding really

means.” Today, we use computers to help us reason beyond the limita-

tions of our own intuition. In fact, experiments with computers are lead-

ing mathematicians to discoveries and insights never dreamed of before

the ubiquity of these devices. Computers and computer graphics allow

mathematicians to discover results long before they can prove them for-

mally, thus opening entirely new fields of mathematics. Even simple

computer tools, such as spreadsheets, give modern mathematicians power

that Heisenberg, Einstein, and Newton would have lusted after. As just

one example, in the late 1990s, computer programs designed by David

Bailey and Helaman Ferguson helped to produce new formulas that

related pi to log 5 and two other constants. As Erica Klarreich reports in

the April 24, 2004, edition of Science News, once the computer had 

produced the formula, proving that it was correct was extremely easy.

Often, simply knowing the answer is the largest hurdle to overcome when

formulating a proof. 

The Mathematical Smorgasbord

As the island of knowledge grows, the surface that makes contact with mystery expands.
When major theories are overturned, what we thought was certain knowledge gives way,
and knowledge touches upon mystery differently. This newly uncovered mystery may be
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humbling and unsettling, but it is the cost of truth. Creative scientists, philosophers, and
poets thrive at this shoreline.

—W. Mark Richardson, “A Skeptic’s Sense of Wonder,” Science, 1998

Despite all of my mystical talk about mathematics and the divine, mathe-

matics is obviously practical. Mathematics has affected virtually every

field of scientific endeavor and plays an invaluable role in fields ranging

from science to sociology, from modeling ecological disasters and the

spread of diseases to understanding the architecture of our brains. Thus,

the fun and quirky facts, questions, anecdotes, equations, and puzzles in

this book are metaphors for an amazing range of mathematical applica-

tions and notations. In fact, this book is a smorgasbord of puzzles, fac-

toids, trivia, quotations, and serious problems to consider. You can pick

and choose from the various delicacies as you explore the platter that’s set

before you. The problems vary in scope, so you are free to browse quickly

among concepts ranging from Champernowne’s number to the Göbel

number, a number so big that it makes a trillion pale in comparison. Some

of the puzzles are arranged randomly to enhance the sense of adventure

and surprise. My brain is a runaway train, and these puzzles and factoids

are the chunks of cerebrum scattered on the tracks.

Occasionally, some of the puzzles in this book will seem simple or 

frivolous; for example, Why does a circle have 360 degrees? Or, Is zero 

an even number? Or, What’s the hardest license plate to remember? Or,

Could Jesus calculate 30 × 24? However, these are questions that fans

often pose to me, and I love some of these “quirkies” the best. I agree

with the Austrian physicist Paul Ehrenfest, who said, “Ask questions.

Don’t be afraid to appear stupid. The stupid questions are usually the best

and hardest to answer. They force the speaker to think about the basic

problem.”

In contrast to the “quirkies,” some of the puzzles I pose in this book are

so insanely difficult or require such an exhaustive search that only a com-

puter hacker could hope to answer them, such as my problem “Triangle of

the Gods” (see page 61).

These are questions with which I have challenged my geeky colleagues,

and on which they have labored for hours and sometimes days. I think

you’ll enjoy seeing the results. Don’t be scared if you have no chance in

hell of solving them. Just enjoy the fact that intense people will often

respond to my odd challenges with apparent glee. Most of the problems in
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the book are somewhere in-between the extremes of simplicity and impos-

sibility and can be solved with a pencil and paper. Chapter 3 contains

most of the problems that teachers can enjoy with students.

I will also tease you with fancy formulas, like those decorating the

book from Ramanujan. Sometimes my goal is simply to delight you with

wonderful-looking equations to ponder. Occasionally, a concept is

repeated, just to see if you’ve learned your lesson and recognize a similar

problem in a new guise. The different ways of getting to the same solution

or concept reveal things that a single approach misses.

I’ve been in love with recreational mathematics for many years because

of its educational value. Contemplating even simple problems stretches

the imagination. The usefulness of mathematics allows us to build space-

ships and investigate the geometry of our universe. Numbers will be our

first means of communication with intelligent alien races.

Ancient peoples, like the Greeks, also had a deep fascination with num-

bers. Could it be that in difficult times numbers were the only constant

thing in an ever-shifting world? To the Pythagoreans, an ancient Greek

sect, numbers were tangible, immutable, comfortable, eternal—more 

reliable than friends, less threatening than Zeus.

Explanation of Symbols

Non-Euclidean calculus and quantum physics are enough to stretch any brain, and 
when one mixes them with folklore, and tries to trace a strange background of 
multidimensional reality behind the ghoulish hints of the Gothic tales and the wild 
whispers of the chimney-corner, one can hardly expect to be wholly free from mental
tension.

—H. P. Lovecraft, “Dreams in the Witch House,” 1933

I use the following symbols to differentiate classes of entries in this book:

signifies a thought-provoking quotation.

signifies a mathematical definition that may come in handy through-

out the book.

signifies a mathematical factoid to stimulate your imagination.
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signifies a problem to be solved. Answers are provided at the back of

the book.

These different classes of entries should cause even the most right-

brained readers to fall in love with mathematics. Some of the zanier prob-

lems will entertain people at all levels of mathematical sophistication. As

I said, don’t worry if you cannot solve many of the puzzles in the book.

Some of them still challenge seasoned mathematicians.

One common characteristic of mathematicians is an obsession with

completeness—an urge to go back to first principles to explain their

works. As a result, readers must often wade through pages of background

before getting to the essential ingredients. To avoid this, each problem in

my book is short, at most only a few paragraphs in length. One advantage

of this format is that you can jump right in to experiment or ponder and

have fun, without having to sort through a lot of verbiage. The book is not

intended for mathematicians looking for formal mathematical explana-

tions. Of course, this approach has some disadvantages. In just a para-

graph or two, I can’t go into any depth on a subject. You won’t find much

historical context or many extended discussions. In the interest of brevity,

even the answer section may require readers to research or ponder a par-

ticular puzzle further to truly understand it. 

To some extent, the choice of topics for inclusion in this book is arbi-

trary, although these topics give a nice introduction to some classic and

original problems in number theory, algebra, geometry, probability, infin-

ity, and so forth. These are also problems that I have personally enjoyed

and are representative of a wider class of problems of interest to mathe-

maticians today. Grab a pencil. Do not fear. Some of the topics in the

book may appear to be curiosities, with little practical application or pur-

pose. However, I have found these experiments to be useful and educa-

tional, as have the many students, educators, and scientists who have

written to me. Throughout history, experiments, ideas, and conclusions

that originate in the play of the mind have found striking and unexpected

practical applications.

A few puzzles come from Sam Loyd, the famous nineteenth-century

American puzzlemaster. Loyd (1841–1911) invented thousands of popular

puzzles, which his son collected in a book titled Cyclopedia of Puzzles.

I hope you enjoy the classics presented here.
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Cultivating Perpetual Mystery

“Pure mathematics is religion.”

—Friedrich von Hardenberg, circa 1801

A wonderful panoply of relationships in nature can be expressed using

integer numbers and their ratios. Simple numerical patterns describe spiral

floret formations in sunflowers, scales on pinecones, branching patterns

on trees, and the periodic life cycles of insect populations. Mathematical

theories have predicted phenomena that were not confirmed until years

later. Maxwell’s equations, for example, predicted radio waves. Einstein’s

field equations suggested that gravity would bend light and that the uni-

verse is expanding. The physicist Paul Dirac once noted that the abstract

mathematics we study now gives us a glimpse of physics in the future. In

fact, his equations predicted the existence of antimatter, which was subse-

quently discovered. Similarly, the mathematician Nikolai Lobachevsky

said that “there is no branch of mathematics, however abstract, which may

not someday be applied to the phenomena of the real world.”

A famous incident involving Murray Gell-Mann and his colleagues

demonstrates the predictive power of mathematics and symmetry regard-

ing the existence of a subatomic particle known as the Omega-minus.

Gell-Mann had drawn a symmetric, geometric pattern in which each posi-

tion in the pattern, except for one empty spot, contained a known particle.

Gell-Mann put his finger on the spot and said with almost mystical

insight, “There is a particle.” His insight was correct, and experimentalists

later found an actual particle corresponding to the empty spot.

One of my favorite quotations describing the mystical side of science

comes from Richard Power’s The Gold Bug Variations: “Science is not

about control. It is about cultivating a perpetual condition of wonder in

the face of something that forever grows one step richer and subtler than

our latest theory about it. It is about reverence, not mastery.”

Today, mathematics has permeated every field of scientific endeavor

and plays an invaluable role in biology, physics, chemistry, economics,

sociology, and engineering. Math can be used to help explain the structure

of a rainbow, teach us how to make money in the stock market, guide a

spacecraft, make weather forecasts, predict population growth, design

buildings, quantify happiness, and analyze the spread of AIDS.
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Mathematics has caused a revolution. It has shaped our thoughts. It has

shaped the way we think.

Mathematics has changed the way we look at the world.

This introduction is dedicated to anyone who can decode the following

secret message.

.. / - .... .. -. -.- / - .... .- - / ...- . .-. -.-- /
..-. . .-- / --- ..-. / -.-- --- ..- / .-- .. .-.. .-.. /

-... --- - .... . .-. / - --- /
-.. . -.-. --- -.. . /

- .... .. ... /
... . -.-. .-. . - /

-- . ... ... .- --. . .-.-.-

“I am the thought you are now thinking.”

—Douglas Hofstadter, Metamagical Themas, 1985
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Numbers, 
History, Society, 

and People

11

IN WHICH WE ENCOUNTER RELIGIOUS MATHEMATICIANS, MAD MATHEMATICIANS,

famous mathematicians, mathematical savants, quirky questions, fun

trivia, brief biographies, mathematical gods, historical oddities, numbers and

society, gossip, the history of mathematical notation, the genesis of numbers,
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Mathematics is the hammer that shatters 

the ice of our unconscious.





Ancient counting. Let’s

start the book with a ques-

tion. What is the earliest evi-

dence we have of humans

counting? If this question is

too difficult, can you guess

whether the evidence is

before or after 10,000 B.C.—

and what the evidence might

be? (See Answer 1.1.)

Mathematics and beauty.
I’ve collected mathematical

quotations since my teenage

years. Here’s a favorite:

“Mathematics, rightly

viewed, possesses not only

truth, but supreme beauty—

a beauty cold and austere,

like that of sculpture”

(Bertrand Russell, Mysticism

and Logic, 1918).

The symbols of mathe-
matics. Mathematical notation

shapes humanity’s ability to

efficiently contemplate math-

ematics. Here’s a cool factoid

for you: The symbols + and

–, referring to addition and

subtraction, first appeared in

1456 in an unpublished man-

uscript by the mathematician

Johann Regiomontanus

(a.k.a. Johann Müller). The

plus symbol, as an abbrevia-

tion for the Latin et (and),

was found earlier in a manu-

script dated 1417; however,

the downward stroke was not

quite vertical.

Mathematics and reality.
Do humans invent mathemat-

ics or discover mathematics?

(See Answer 1.2.)

Math beyond humanity. 
“We now know that there

exist true propositions 

which we can never formally

prove. What about proposi-

tions whose proofs require 

arguments beyond our 

capabilities? What about

propositions whose proofs

require millions of pages? 

Or a million, million 

pages? Are there proofs 

that are possible, but beyond

us?” (Calvin Clawson, 

Mathematical Mysteries).

The multiplication symbol.
In 1631, the multiplication

symbol × was introduced by

the English mathematician

William Oughtred

(1574–1660) in his book

Keys to Mathematics, pub-

lished in London. Inciden-

tally, this Anglican minister

is also famous for having

invented the slide rule, 

which was used by genera-

tions of scientists and 

mathematicians. The slide

rule’s doom in the mid-

1970s, due to the pervasive

influx of inexpensive pocket

calculators, was rapid and

unexpected.
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Mathematics and the universe. Here is a deep thought to start

our mathematical journey. Do you think humanity’s long-term

fascination with mathematics has arisen because the universe

is constructed from a mathematical fabric? We’ll approach 

this question later in the chapter. For now, you may enjoy

knowing that in 1623, Galileo Galilei echoed this belief in a

mathematical universe by stating his credo: “Nature’s great

book is written in mathematical symbols.” Plato’s doctrine was

that God is a geometer, and Sir James Jeans believed that God

experimented with arithmetic. Isaac Newton supposed that the

planets were originally thrown into orbit by God, but even

after God decreed the law of gravitation, the planets required

continual adjustments to their orbits.



Math and madness. Many

mathematicians throughout

history have had a trace of

madness or have been eccen-

tric. Here’s a relevant quota-

tion on the subject by the

British mathematician 

John Edensor Littlewood

(1885–1977), who suffered

from depression for most of

his life: “Mathematics is a

dangerous profession; an

appreciable proportion of us

goes mad.”

Mathematics and murder.
What triple murderer was

also a brilliant French mathe-

matician who did his finest

work while confined to a 

hospital for the criminally

insane? (See Answer 1.3.)

Creativity and madness.
“There is a theory that 

creativity arises when indi-

viduals are out of sync with

their environment. To put it

simply, people who fit in 

with their communities have

insufficient motivation to risk

their psyches in creating

something truly new, while

those who are out of sync 

are driven by the constant

need to prove their worth.

They have less to lose and

more to gain” (Gary Taubes,

“Beyond the Soapsuds Uni-

verse,” 1977).

Pascal’s mystery. “There

is a God-shaped vacuum in

every heart” (Blaise Pascal,

Pensées, 1670).
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Mathematicians and religion. Over the years, many of my

readers have assumed that famous mathematicians are not reli-

gious. In actuality, a number of important mathematicians

were quite religious. As an interesting exercise, I conducted an

Internet survey in which I asked respondents to name impor-

tant mathematicians who were also religious. Isaac Newton

and Blaise Pascal were the most commonly cited religious

mathematicians.

In many ways, the mathematical quest to understand infin-

ity parallels mystical attempts to understand God. Both reli-

gion and mathematics struggle to express relationships

between humans, the universe, and infinity. Both have arcane

symbols and rituals, as well as impenetrable language. Both

exercise the deep recesses of our minds and stimulate our

imagination. Mathematicians, like priests, seek “ideal,”

immutable, nonmaterial truths and then often venture to apply

these truths in the real world. Are mathematics and religion

the most powerful evidence of the inventive genius of the

human race? In “Reason and Faith, Eternally Bound” (Decem-

ber 20, 2003, New York Times, B7), Edward Rothstein notes

that faith was the inspiration for Newton and Kepler, as well

as for numerous scientific and mathematical triumphs. “The

conviction that there is an order to things, that the mind can

comprehend that order and that this order is not infinitely mal-

leable, those scientific beliefs may include elements of faith.”

In his Critique of Pure Reason, Immanuel Kant describes

how “the light dove, cleaving the air in her free flight and feel-

ing its resistance against her wings, might imagine that its

flight would be freer still in empty space.” But if we were to

remove the air, the bird would plummet. Is faith—or a cosmic

sense of mystery—like the air that allows some seekers to

soar? Whatever mathematical or scientific advances humans

make, we will always continue to swim in a sea of mystery.



Leaving mathematics and
approaching God. What famous

French mathematician and

teenage prodigy finally

decided that religion was

more to his liking and joined

his sister in her convent,

where he gave up mathemat-

ics and social life? (See

Answer 1.4.)

Ramanujan’s gods. As

mentioned in this book’s

introduction, the mathemati-

cian Srinivasa Ramanujan

(1887–1920) was an ardent

follower of several Hindu

deities. After receiving

visions from these gods in the

form of blood droplets,

Ramanujan saw scrolls that

contained very complicated

mathematics. When he woke

from his dreams, he set down

on paper only a fraction of

what the gods showed him.

Throughout history, cre-

ative geniuses have been open

to dreams as a source of

inspiration. Paul McCartney

said that the melody for the

famous Beatles’ song “Yester-

day,” one of the most popular

songs ever written, came to

him in a dream. Apparently,

the tune seemed so beautiful

and haunting that for a while

he was not certain it was 

original. The Danish physicist

Niels Bohr conceived the

model of an atom from a

dream. Elias Howe received

in a dream the image of the

kind of needle design

required for a lock-stitch

sewing machine. René

Descartes was able to

advance his geometrical

methods after flashes of

insight that came in dreams.

The dreams of Dmitry

Mendeleyev, Friedrich

August Kekulé, and Otto

Loewi inspired scientific

breakthroughs. It is not an

exaggeration to suggest that

many scientific and mathe-

matical advances arose from

the stuff of dreams.

Numbers, History, Society, and People 15

Blaise Pascal (1623–1662), a Frenchman, was a geometer, a

probabilist, a physicist, a philosopher, and a combinatorist. He

was also deeply spiritual and a leader of the Jansenist sect, a

Calvinistic quasi-Protestant group within the Catholic Church.

He believed that it made sense to become a Christian. If the

person dies, and there is no God, the person loses nothing. If

there is a God, then the person has gained heaven, while skep-

tics lose everything in hell.

Legend has it that Pascal in his early childhood sought to

prove the existence of God. Because Pascal could not simply

command God to show Himself, he tried to prove the exis-

tence of a devil so that he could then infer the existence of

God. He drew a pentagram on the ground, but the exercise

scared him, and he ran away. Pascal said that this experience

made him certain of God’s existence.

One evening in 1654, he had a two-hour mystical vision that

he called a “night of fire,” in which he experienced fire and “the

God of Abraham, Isaac, and Jacob . . . and of Jesus Christ.”

Pascal recorded his vision in his work “Memorial.” A scrap of

paper containing the “Memorial” was found in the lining of his

coat after his death, for he carried this reminder about with him

always. The three lines of “Memorial” are

Complete submission to Jesus Christ and to my director.

Eternally in joy for a day’s exercise on the earth.

May I not forget your words. Amen.



Transcendence. “Much of

the history of science, like

the history of religion, is a

history of struggles driven by

power and money. And yet,

this is not the whole story.

Genuine saints occasionally

play an important role, both

in religion and science. For

many scientists, the reward

for being a scientist is not the

power and the money but the

chance of catching a glimpse

of the transcendent beauty of

nature” (Freeman Dyson, in

the introduction to Nature’s

Imagination).

The value of eccentricity.
“That so few now dare to be

eccentric, marks the chief

danger of our time” (John

Stuart Mill, nineteenth-

century English philosopher).

Counting and the mind. I

quickly toss a number of mar-

bles onto a pillow. You may

stare at them for an instant to

determine how many marbles

are on the pillow. Obviously,

if I were to toss just two mar-

bles, you could easily deter-

mine that two marbles sit on

the pillow. What is the largest

number of marbles you can

quantify, at a glance, without

having to individually count

them? (See Answer 1.5.)

Circles. Why are there 360

degrees in a circle? (See

Answer 1.6.)

The mystery of Ramanujan.
After years of working

through Ramanujan’s note-

books, the mathematician

Bruce Berndt said, “I still

don’t understand it all. I may

be able to prove it, but I don’t

know where it comes from

and where it fits into the rest

of mathematics. The enigma

of Ramanujan’s creative

process is still covered by a

curtain that has barely been

drawn” (Robert Kanigel, The

Man Who Knew Infinity,

1991).

Calculating π. Which

nineteenth-century British

boarding school supervisor

spent a significant portion of

his life calculating π to 707

places and died a happy man,

despite a sad error that was

later found in his calcula-

tions? (See Answer 1.8.)

The special number 7. In

ancient days, the number 7

was thought of as just another

way to signify “many.” Even

in recent times, there have

been tribes that used no num-

bers higher than 7.

In the 1880s, the German

ethnologist Karl von Steinen

described how certain South

American Indian tribes had

very few words for numbers.

As a test, he repeatedly asked

them to count ten grains of

corn. They counted “slowly
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The world’s most forgettable license plate? Today, mathematics

affects society in the funniest of ways. I once read an article

about someone who claimed to have devised the most forget-

table license plate, but the article did not divulge the secret

sequence. What is the most forgettable license plate? Is it a

random sequence of eight letters and numbers—for example,

6AZL4QO9 (the maximum allowed in New York)? Or perhaps

a set of visually confusing numbers or letters—for example,

MWNNMWWM? Or maybe a binary number like 01001100.

What do you think? What would a mathematician think? (See

Answer 1.7.)



but correctly to six, but when

it came to the seventh grain

and the eighth, they grew

tense and uneasy, at first

yawning and complaining of a

headache, then finally avoided

the question altogether or sim-

ply walked off.” Perhaps seven

means “many” in such com-

mon phrases as “seven seas”

and “seven deadly sins.”

(These interesting facts come

from Adrian Room, The Guin-

ness Book of Numbers, 1989.)

Carl Friedrich Gauss
(1777–1855), a German, was

a mathematician, an

astronomer, and a physicist

with a wide range of contri-

butions. Like Ramanujan,

after Gauss proved a theorem,

he sometimes said that the

insight did not come from

“painful effort but, so to

speak, by the grace of God.”

He also once wrote, “There

are problems to whose solu-

tion I would attach an infi-

nitely greater importance

than to those of mathematics,

for example, touching ethics,

or our relation to God, or

concerning our destiny and

our future; but their solution

lies wholly beyond us and

completely outside the

province of science.”

Genius and eccentricity.
“The amount of eccentricity

in a society has been propor-

tional to the amount of

genius, material vigor and

moral courage which it con-

tains” (John Stuart Mill, On

Liberty, 1869).

Mathematics and God. “The

Christians know that the math-

ematical principles, according

to which the corporeal world

was to be created, are co-

eternal with God. Geometry

has supplied God with the

models for the creation of the

world. Within the image of

God it has passed into man,

and was certainly not received

within through the eyes”

(Johannes Kepler, The

Harmony of the World, 1619).

James Hopwood Jeans
(1877–1946) was an applied

mathematician, a physicist,

and an astronomer. He some-

times likened God to a math-

ematician and wrote in The

Mysterious Universe (1930),

“From the intrinsic evidence

of his creation, the Great

Architect of the Universe

now begins to appear as a

pure mathematician.” He has

also written, “Physics tries to

discover the pattern of events

which controls the phenom-

ena we observe. But we can

never know what this pattern

means or how it originates;

and even if some superior

intelligence were to tell us,

we should find the explana-

tion unintelligible” (Physics

and Philosophy, 1942).
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Isaac Newton (1642–1727), an Englishman, was a mathe-

matician, a physicist, an astronomer, a coinventor of calculus,

and famous for his law of gravitation. He was also the author

of many books on biblical subjects, especially prophecy.

Perhaps less well known is the fact that Newton was a cre-

ationist who wanted to be known as much for his theological

writings as for his scientific and mathematical texts. Newton

believed in a Christian unity, as opposed to a trinity. He devel-

oped calculus as a means of describing motion, and perhaps

for understanding the nature of God through a clearer under-

standing of nature and reality. He respected the Bible and

accepted its account of Creation.



George Boole (1815–1864),

an Englishman, was a logi-

cian and an algebraist. Like

Ramanujan and other mysti-

cal mathematicians, Boole

had “mystical” experiences.

David Noble, in his book The

Religion of Technology,

notes, “The thought flashed

upon him suddenly as he was

walking across a field that his

ambition in life was to

explain the logic of human

thought and to delve analyti-

cally into the spiritual

aspects of man’s nature

[through] the expression of

logical relations in symbolic

or algebraic form. . . . It is

impossible to separate

Boole’s religious beliefs 

from his mathematics.”

Boole often spoke of his

almost photographic mem-

ory, describing it as “an

arrangement of the mind for

every fact and idea, which I

can find at once, as if it were

in a well-ordered set of 

drawers.”

Boole died at age forty-

nine, after his wife mistak-

enly thought that tossing

buckets of water on him and

his bed would cure his flu.

Today, Boolean algebra has

found wide applications in

the design of computers.

The value of puzzles. “It is a

wholesome plan, in thinking

about logic, to stock the mind

with as many puzzles as pos-

sible, since these serve much

the same purpose as is served

by experiments in physical

science” (Bertrand Russell,

Mind, 1905).

A mathematical nomad.
What legendary mathemati-

cian, and one of the most 

prolific mathematicians in

history, was so devoted to

math that he lived as a nomad

with no home and no job?

Sexual contact revolted him;

even an accidental touch by

anyone made him feel uncom-

fortable. (See Answer 1.9.)

Marin Mersenne (1588–

1648) was another mathe-

matician who was deeply 

religious. Mersenne, a

Frenchman, was a theologian,

a philosopher, a number theo-

rist, a priest, and a monk. He

argued that God’s majesty

would not be diminished had
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Leonhard Euler (1707–1783) was a prolific Swiss mathe-

matician and the son of a vicar. Legends tell of Leonhard

Euler’s distress at being unable to mathematically prove the

existence of God. Many mathematicians of his time consid-

ered mathematics a tool to decipher God’s design and codes.

Although he was a devout Christian all his life, he could not

find the enthusiasm for the study of theology, compared to that

of mathematics. He was completely blind for the last seven-

teen years of his life, during which time he produced roughly

half of his total output.

Euler is responsible for our common, modern-day use of

many famous mathematical notations—for example, f(x) for a

function, e for the base of natural logs, i for the square root of

–1, π for pi, Σ for summation. He tested Pierre de Fermat’s

conjecture that numbers of the form 2n + 1 were always prime

if n is a power of 2. Euler verified this for n = 1, 2, 4, 8, and

16, and showed that the next case 232 + 1 = 4,294,967,297 =

641 × 6,700,417, and so is not prime.



He created just one world,

instead of many, because the

one world would be infinite

in every part. His first publi-

cations were theological 

studies against atheism and

skepticism.

Mersenne was fascinated

by prime numbers (numbers

like 7 that were divisible only

by themselves and 1), and he

tried to find a formula that he

could use to find all primes.

Although he did not find such

a formula, his work on

“Mersenne numbers” of the

form 2p – 1, where p is a

prime number, continues to

interest us today. Mersenne

numbers are the easiest type

of number to prove prime, so

they are usually the largest

primes of which humanity is

aware.

Mersenne himself found

several prime numbers of the

form 2p – 1, but he underesti-

mated the future of comput-

ing power by stating that all

eternity would not be suffi-

cient to decide if a 15- or 

20-digit number were prime.

Unfortunately, the prime

number values for p that

make 2p – 1 a prime number

seem to form no regular

sequence. For example, the

Mersenne number is prime

when p = 2, 3, 5, 7, 13, 17,

19, . . . Notice that when p

is equal to the prime number

11, M
11

= 2,047, which is 

not prime because 2,047 = 

23 × 89.

The fortieth Mersenne

prime was discovered in

2003, and it contained

6,320,430 digits! In particu-

lar, the Michigan State Uni-

versity graduate student

Michael Shafer discovered

that 220,996,011 – 1 is prime.

The number is so large that it

would require about fifteen

hundred pages to write on

paper using an ordinary font.

Shafer, age twenty-six,

helped find the number as a

volunteer on a project called

the Great Internet Mersenne

Prime Search. Tens of thou-

sands of people volunteer the

use of their personal comput-

ers in a worldwide project

that harnesses the power of

hundreds of thousands of

computers, in effect creating

a supercomputer capable of

performing trillions of calcu-

lations per second. Shafer

used an ordinary Dell com-

puter in his office for nine-

teen days. What would

Mersenne have thought of

this large beast?

In 2005, the German eye

surgeon Martin Nowak, also

part of the Great Internet

Mersenne Prime Search, dis-

covered the forty-second

Mersenne prime number,

225,964,951 – 1, which has over

seven million digits. Nowak’s

2.4-GHz Pentium-4 computer

spent roughly fifty days ana-

lyzing the number before

reporting the find. The Elec-

tronic Frontier Foundation, a

U.S. Internet campaign

group, has promised to give

$100,000 to whoever finds

the first ten-million-digit

prime number.

Numbers, History, Society, and People 19

Mirror phobia. What brilliant, handsome mathematician so

hated mirrors that he covered them wherever he went? (See

Answer 1.10.)

What is a mathematician? “A mathematician is a blind man

in a dark room looking for a black cat which isn’t there”

(Charles Darwin).

Animal math. Can animals count? (See Answer 1.11.)



Mathematics and God.
“Before creation, God did

just pure mathematics. Then

He thought it would be a

pleasant change to do some

applied” (John Edensor Lit-

tlewood, A Mathematician’s

Miscellany, 1953).

The division symbol. The

division symbol ÷ first

appeared in print in Johann

Heinrich Rahn’s Teutsche

Algebra (1659).

Donald Knuth (1938–) is a

computer scientist and a

mathematician. He is also a

fine example of a mathemati-

cian who is interested in reli-

gion. For example, he has

been an active Lutheran and a

Sunday school teacher. His

attractive book titled 3:16

consists entirely of commen-

tary on chapter 3, verse 16, of

each of the books in the

Bible. Knuth also includes

calligraphic renderings of the

verses. Knuth himself has

said, “It’s tragic that scientific

advances have caused many

people to imagine that they

know it all, and that God is

irrelevant or nonexistent. The

fact is that everything we

learn reveals more things that

we do not understand. . . .

Reverence for God comes

naturally if we are honest

about how little we know.”

Mathematics and sex. “A

well-known mathematician

once told me that the great

thing about liking both math

and sex was that he could do

either one while thinking

about the other” (Steven E.

Landsburg, in a 1993 post to

the newsgroup sci.math).

Mystery mathematician.
Around A.D. 500, the Greek

philosopher Metrodorus gave

us the following puzzle that

describes the life of a famous

mathematician:

A certain man’s boyhood

lasted 1⁄6 of his life; he

married after 1⁄ 7 more; his

beard grew after 1⁄12 more,

and his son was born 5

years later; the son lived to

half his father’s final age,

and the father died 4 years

after the son.

Tell me the mystery man’s

name or his age at death. (See

Answer 1.12.)

Mathematician starves.
What famous mathematician

deliberately starved himself

to death in 1978? (Hint: He

was perhaps the most brilliant

logician since Aristotle.) 

(See Answer 1.13.)

Understanding brilliance.
“Maybe the brilliance of the

brilliant can be understood

only by the nearly brilliant”

(Anthony Smith, The Mind,

1984).
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Brain limitation. “Our brains have evolved to get us out of

the rain, find where the berries are, and keep us from getting

killed. Our brains did not evolve to help us grasp really 

large numbers or to look at things in a hundred thousand

dimensions” (Ronald Graham, a prior director of Information

Sciences Research at AT&T Research, quoted in Paul 

Hoffman’s “The Man Who Loves Only Numbers,” Atlantic

Monthly, 1987).



Georg Friedrich Bernhard
Riemann (1826–1866) was a

German mathematician who

made important contributions

to geometry, number theory,

topology, mathematical

physics, and the theory of

complex variables. He also

attempted to write a mathe-

matical proof of the truth of

the Book of Genesis, was a

student of theology and bibli-

cal Hebrew, and was the son

of a Lutheran minister.

The Riemann hypothesis,

published by Riemann in

1859, deals with the zeros of

a very wiggly function, and

the hypothesis still resists

modern mathematicians’

attempts to prove it. Chapter

3 describes the hypothesis

further.

A dislike for mathematics.
“I’m sorry to say that the

subject I most disliked was

mathematics. I have thought

about it. I think the reason

was that mathematics leaves

no room for argument. If you

made a mistake, that was all

there was to it” (Malcolm X,

The Autobiography of Mal-

colm X, 1965).

Mathematics and humanity.
“Anyone who cannot cope

with mathematics is not 

fully human. At best he is a

tolerable subhuman who has

learned to wear shoes, bathe,

and not make messes in the

house” (Robert A. Heinlein,

Time Enough for Love,

1973).
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Calculating prodigy has plastic brain. Rüdiger Gamm is shock-

ing the world with his calculating powers and is changing the

way we think about the human brain. He did poorly at mathe-

matics in school but is now a world-famous human calculator,

able to access regions of his brain that are off limits to most of

us. He is not autistic but has been able to train his brain to per-

form lightning calculations. For example, he can calculate 53

to the ninth power in his head. He can divide prime numbers

and calculate the answer to 60 decimal points and more. He

can calculate fifth roots.

Amazing calculating powers such as these were previously

thought to be possible only by “autistic savants.” (Autistic

savants often have severe developmental disabilities but, at the

same time, have special skills and an incredible memory.)

Gamm’s talent has attracted the curiosity of European

researchers, who have imaged his brain with PET scans while

he performed math problems. These breathtaking studies

reveal that Gamm is now able to use areas of his brain that

ordinary humans can use for other purposes. In particular, he

can make use of the areas of his brain that are normally

responsible for long-term memory, in order to perform his

rapid calculations. Scientists hypothesize that Gamm tem-

porarily uses these areas to “hold” digits in so-called “working

memory,” the brain’s temporary holding area. Gamm is essen-

tially doing what computers do when they extend their capa-

bilities by using swap space on the hard drive to increase their

capabilities. Scientists are not sure how Gamm acquired this

ability, considering that he became interested in mathematical

calculation only when he was in his twenties. (You can learn

more in Steve Silberman’s “The Keys to Genius,” Wired, no.

11.12, December 2003.)



Kurt Gödel (1906–1978) is

an example of a mathematical

genius obsessed with God

and the afterlife. As discussed

in Answer 1.13 about the

mathematician who starved

himself to death, Gödel was 

a logician, a mathematician,

and a philosopher who was

famous for having shown 

that in any axiomatic system

for mathematics, there are

propositions that cannot be

proved or disproved within

the axioms of the system.

Gödel thought it was

possible to show the logical

necessity for life after death

and the existence of God. 

In four long letters to his

mother, Gödel gave reasons

for believing in a next 

world.

Math and madness.
“Cantor’s work, though bril-

liant, seemed to move in half-

steps. The closer he came to

the answers he sought, the

further away they seemed.

Eventually, it drove him mad,

as it had mathematicians

before him” (Amir D. Aczel,

The Mystery of the Aleph:

Mathematics, the Kabbalah,

and the Search for Infinity,

2000).

Mathematician murdered.
Why was the first woman

mathematician murdered?

(See Answer 1.14.)

Going to the movies. What

was the largest number ever

used in the title of an Ameri-

can movie? Name the movie!

(See Answer 1.15.) What is

the largest number less than 

a billion ever used in a 

major, full-length movie title?

(Hint: The song was popular

in the late 1920s and the 

early 1930s.) (See Answer

1.16.)
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Gottfried Wilhelm von Leibniz (1646–1716), a German, was

an analyst, a combinatorist, a logician, and the coinventor of

calculus who also passionately argued for the existence of

God. According to Leibniz, God chooses to actualize this

world out of an infinite number of possible worlds. In other

words, limited only by contradiction, God first conceives of

every possible world, and then God simply chooses which of

them to create.

Leibniz is also famous for the principle of “preestablished

harmony,” which states that God constructed the universe in

such a way that corresponding mental and physical events

occur simultaneously. His “monad theory” states that the uni-

verse consists of an infinite number of substances called mon-

ads, each of which has its own individual identity but is an

expression of the whole universe from a particular unique

viewpoint.

Greater-than symbol. The greater-than and less-than 

symbols (> and <) were introduced by the British mathemati-

cian Thomas Harriot in his Artis Analyticae Praxis, published

in 1631.

Greater-than or equal-to symbol. The symbol ≥ (greater than

or equal to) was first introduced by the French scientist Pierre

Bouguer in 1734.



Math and madness. Many

mathematicians were

depressed and religious at the

same time. Which famous

mathematician invented the

concept of “transfinite num-

bers” (essentially, different

“levels” of infinity), believed

that God revealed mathemati-

cal ideas to him, and was a

frequent guest of sanitari-

ums? (See Answer 1.17.)

Mathematics and diapering.
“A human being should be

able to change a diaper, 

plan an invasion, butcher a

hog, conn a ship, design a

building, write a sonnet, bal-

ance accounts, build a wall,

set a bone, comfort the dying,

take orders, give orders,

cooperate, act alone, solve

equations, analyze a new

problem, pitch manure, pro-

gram a computer, cook a

tasty meal, fight efficiently,

die gallantly. Specialization 

is for insects” (Robert A.

Heinlein, Time Enough for

Love, 1973).

Mathematicians and God.
“Mathematicians, astrono-

mers, and physicists are often

religious, even mystical; biol-

ogists much less often; econ-

omists and psychologists

very seldom indeed. It is as

their subject matter comes

nearer to man himself that

their antireligious bias hard-

ens” (C. S. Lewis, The Grand

Miracle: And Other Selected

Essays on Theology and

Ethics from God in the Dock,

1983).

The Number Pope. As I

write this book, I realize that

a thousand years ago, the last

Pope-mathematician died.

Gerbert of Aurillac (c. 946–

1003) was fascinated by

mathematics and was elected

to be Pope Sylvester II in

999. His advanced knowledge

of mathematics convinced

some of his enemies that he

was an evil magician.

In Reims, he transformed

the floor of the cathedral into

a giant abacus. That must

have been a sight to see! The

“Number Pope” was also

important because he adopted

Arabic numerals (1, 2, 3, 4, 

5, 6, 7, 8, 9) as a replacement

for Roman numerals. He 

contributed to the invention

of the pendulum clock,

invented devices that tracked

planetary orbits, and wrote on

geometry. When he realized

that he lacked knowledge of

formal logic, he studied

under German logicians. He

said, “The just man lives by

faith; but it is good that he

should combine science with

his faith.”
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Hardy’s six wishes. In the 1920s, the British mathematician

G. H. Hardy wrote a postcard to his friend, listing six New

Year’s wishes:

1. prove the Riemann hypothesis

2. score well at the end of an important game of cricket

3. find an argument for the nonexistence of God that con-

vinces the general public

4. be the first man at the top of Mount Everest

5. be the first president of the USSR, Great Britain, and 

Germany

6. murder Mussolini

(The London Mathematical Society Newsletter, 1994)



Tinkertoy computer. In the

early 1980s, the computer

geniuses Danny Hillis, Brian

Silverman, and friends built 

a Tinkertoy computer that

played tic-tac-toe. The device

was made from 10,000

Tinkertoy pieces.

Fantasy meeting of
Pythagoras, Cantor, and Gödel.
I often fantasize about the

outcome of placing mathe-

maticians from different eras

in the same room. For exam-

ple, I would be intrigued to

gather Pythagoras, Cantor,

and Gödel in a small room

with a single blackboard to

debate their various ideas on

mathematics and God. What

profound knowledge might

we gain if we had the power

to bring together great

thinkers of various ages for a

conference on mathematics?

Would a roundtable discus-

sion with Pythagoras, Cantor,

and Gödel produce less inter-

esting ideas than one with

Newton and Einstein?

Could ancient mathemati-

cians contribute any useful

ideas to modern mathemati-

cians? Would a meeting of

time-traveling mathematicians

offer more to humanity than a

meeting of other scientists—

for example, biologists or

sociologists? These are all fas-

cinating questions to which I

don’t yet have answers.

Mathematicians as God’s
messengers. “Cantor felt a

duty to keep on, in the face 

of adversity, to bring the

insights he had been given as

God’s messenger to mathe-

maticians everywhere”

(Joseph Dauben, Georg

Cantor, 1990).

Power notation. In 1637,

the philosopher René

Descartes was the first person

to use the superscript notation

for raising numbers and vari-

ables to powers—for exam-

ple, as in x2.

Numerical religion. What

ancient mathematician 

established a numerical reli-

gion whose main tenets

included the transmigration

of souls and the sinfulness of

eating beans? (See Answer

1.18.)
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Charles Babbage (1792–1871), an Englishman, was an ana-

lyst, a statistician, and an inventor who was also interested in

religious miracles. He once wrote, “Miracles are not a breach

of established laws, but . . . indicate the existence of far higher

laws.” Babbage argued that miracles could occur in a mecha-

nistic world. Just as Babbage could program strange behavior

on his calculating machines, God could program similar irreg-

ularities in nature. While investigating biblical miracles, he

assumed that the chance of a man rising from the dead is one

in 1012.

Babbage is famous for conceiving an enormous hand-

cranked mechanical calculator, an early progenitor of our

modern computers. Babbage thought the device would be

most useful in producing mathematical tables, but he worried

about mistakes that would be made by humans who tran-

scribed the results from its thirty-one metal output wheels.

Today, we realize that Babbage was a hundred years ahead of

his time and that the politics and the technology of his era

were inadequate for his lofty dreams.



Modern mathematical 
murderer. Which modern

mathematician murdered and

maimed the most people from

a distance? (See Answer

1.19.)

The ∞ symbol. Most high

school students are familiar

with the mathematical sym-

bol for infinity (∞). Do you

think this symbol was used a

hundred years ago? Who first

used this odd symbol? (See

Answer 1.20.)

Mathematics of tic-tac-toe.
In how many ways can you

place Xs and Os on a stan-

dard tic-tac-toe board? (See

Answer 1.21.)

The square root symbol. The

Austrian mathematician

Christoff Rudolff was the first

to use the square root symbol

√   in print; it was published

in 1525 in Die Coss.

Mathematics and poetry. “It

is impossible to be a mathe-

matician without being a poet

in soul” (Sofia Kovalevskaya,

quoted in Agnesi to Zeno by

Sanderson Smith, 1996).

Mathematics and God. “God

exists since mathematics is

consistent, and the devil

exists since we cannot prove

the consistency” (Morris

Kline, Mathematical Thought

from Ancient to Modern

Times, 1990).

Lunatic scribbles and 
mathematics. “If a lunatic

scribbles a jumble of mathe-

matical symbols it does not

follow that the writing means

anything merely because 

to the inexpert eye it is 

indistinguishable from higher

mathematics” (Eric Temple

Bell, quoted in J. R. New-

man’s The World of Mathe-

matics, 1956).

God’s perspective. “When

mathematicians think about

algorithms, it is usually from

the God’s-eye perspective.

They are interested in prov-

ing, for instance, that there is

some algorithm with some

interesting property, or that

there is no such algorithm,

and in order to prove such

things you needn’t actually

locate the algorithm you are

talking about . . . ” (Daniel

Dennett, Darwin’s Dangerous

Idea: Evolution and the

Meaning of Life, 1996).
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Chickens and tic-tac-toe. The mathematics of tic-tac-toe

have been discussed for decades, but can a chicken actually

learn to play well? In 2001, an Atlantic City casino offered its

patrons a tic-tac-toe “chicken challenge” and offered cash

prizes of up to $10,000. The chicken gets the first entry, usu-

ally by pecking at X or O on a video display inside a special

henhouse set up in the casino’s main concourse. Gamblers

standing outside the booth then get to make the next move by

pressing buttons on a separate panel. There is no prize for a

tie. A typical game lasts for about a minute, and the chicken

seems to be trained to peck at an X or an O, depending on the

human’s moves.

Supposedly, the tic-tac-toe-playing chickens work in shifts

of one to two hours to avoid stressing the animals. Various

animal-rights advocates have protested the use of chickens in

tic-tac-toe games. Can a chicken actually learn to play tic-tac-

toe? (See Answer 1.22.)



Erdös contemplates death.
Once, while pondering his

own death, the mathematician

Paul Erdös (1913–1996)

remarked, “My mother said,

‘Even you, Paul, can be in

only one place at one time.’

Maybe soon I will be relieved

of this disadvantage. Maybe,

once I’ve left, I’ll be able to

be in many places at the same

time. Maybe then I’ll be able

to collaborate with

Archimedes and Euclid.”

Mathematics and the infinite.
“Mathematics is the only infi-

nite human activity. It is con-

ceivable that humanity could

eventually learn everything in

physics or biology. But

humanity certainly won’t ever

be able to find out everything

in mathematics, because the

subject is infinite. Numbers

themselves are infinite” (Paul

Erdös, quoted in Paul Hoff-

man’s The Man Who Loved

Only Numbers, 1998).

First female doctorate. Who

was the first woman to

receive a doctorate in mathe-

matics, and in what century

do you think she received it?

(See Answer 1.23.)

Creativity and madness.
“Creativity and genius feed

off mental turmoil. The

ancient Greeks, for instance,

believed in divine forms of

madness that inspired mor-

tals’ extraordinary creative

acts” (Bruce Bower, Science

News, 1995).

Science, Einstein, and God.
“The scientist’s religious feel-

ing takes the form of a rap-

turous amazement at the

harmony of natural law,

which reveals an intelligence

of such superiority that, com-

pared with it, all the system-

atic thinking and acting of

human beings is an utterly

insignificant reflection. This

feeling is the guiding princi-

ple of his life and work. . . . 

It is beyond question closely

akin to that which has pos-

sessed the religious geniuses

of all ages” (Albert Einstein,

Mein Weltbild, 1934).
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Math in the movies. In the movie A Beautiful Mind, Russell

Crowe scrolls the following formulas on the blackboard in his

MIT class:

V = {F : �3 – X → �3smooth

W = {F = ∇g}

dim(V/W) = ?

Movie directors were told by advisers that this set of formulas

was subtle enough to be out of reach for most undergraduates,

but accessible enough so that Jennifer Connelly’s character

might be able to dream up a possible solution.

Mathematics and homosexuality. Which brilliant mathemati-

cian was forced to become a human guinea pig and was 

subjected to drug experiments to reverse his homosexuality?

(Hint: He was a 1950s computer theorist whose mandatory

drug therapy made him impotent and caused his breasts 

to enlarge. He also helped to break the codes of the German

Engima code machines during World War II.) (See Answer

1.24.)



Einstein’s God. “It was, of

course, a lie what you read

about my religious convic-

tions, a lie which is being

systematically repeated. I do

not believe in a personal God

and I have never denied this

but have expressed it clearly.

If something is in me which

can be called religious then it

is the unbounded admiration

for the structure of the world

so far as our science can

reveal it” (Albert Einstein,

personal letter to an atheist,

1954).

Mathematician cooks.
What eighteenth-century

French mathematician

cooked himself to death?

(See Answer 1.25.)

Women and math. Despite

horrible prejudice in earlier

times, several women have

fought against the establish-

ment and persevered in 

mathematics. Emmy Amalie

Noether (1882–1935) was

described by Albert Einstein

as “the most significant cre-

ative mathematical genius

thus far produced since the

higher education of women

began.” She is best known for

her contributions to abstract

algebra and, in particular, for

her study of “chain condi-

tions on ideals of rings.” In

1933, her mathematical

achievements counted for

nothing when the Nazis

caused her dismissal from the

University of Göttingen

because she was Jewish.

Science and religion. “A

contemporary has said, not

unjustly, that in this material-

istic age of ours the serious

scientific workers are the only

profoundly religious people”

(Albert Einstein, New York

Times Magazine, 1930).

Mathematics and money.
What effect would doubling

the salary of every mathemat-

ics teacher have on education

and the world at large? (See

Answer 1.26.)

A famous female mathe-
matician. Sophie Germain

(1776–1831) made major

contributions to number 

theory, acoustics, and elastic-

ity. At age thirteen, Sophie

read an account of the death

of Archimedes at the hands 

of a Roman soldier. She was

so moved by this story that

she decided to become a

mathematician. Sadly, her

parents felt that her interest in

mathematics was inappropri-

ate, so at night she secretly

studied the works of Isaac

Newton and the mathemati-

cian Leonhard Euler.
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A famous female mathematician. Maria Agnesi (1718–1799)

is one of the most famous female mathematicians of the last

few centuries and is noted for her work in differential calcu-

lus. When she was seven years old, she mastered the Latin, the

Greek, and the Hebrew languages, and at age nine she pub-

lished a Latin discourse defending higher education for

women. As an adult, her clearly written textbooks condensed

the diverse research writings and methods of a number of

mathematicians. They also contained many of her own origi-

nal contributions to the field, including a discussion of the

cubic curve that is now known as the “Witch of Agnesi.” How-

ever, after the death of her father, she stopped doing scientific

work altogether and devoted the last forty-seven years of her

life to caring for sick and dying women.



Mathematician pretends.
What important eleventh-

century mathematician pre-

tended he was insane so that

he would not be put to death?

(Hint: He was born in Iraq

and made contributions to

mathematical optics.) (See

Answer 1.28.)

Mathematical greatness.
“Each generation has its few

great mathematicians, and

mathematics would not even

notice the absence of the oth-

ers. They are useful as teach-

ers, and their research harms

no one, but it is of no impor-

tance at all. A mathematician

is great or he is nothing”

(Alfred Adler, “Reflections:

Mathematics and Creativity,”

The New Yorker, 1972).

Mathematics, mind, 
universe. “If we wish to 

understand the nature of the

Universe we have an inner

hidden advantage: we are

ourselves little portions of the

universe and so carry the

answer within us” (Jacques

Boivin, The Single Heart

Field Theory, 1981).

Christianity and mathe-
matics. “The good Christian

should beware of mathemati-

cians, and all those who make

empty prophesies. The dan-

ger already exists that the

mathematicians have made a

covenant with the devil to

darken the spirit and to con-

fine man in the bonds of

Hell” (St. Augustine, De

Genesi Ad Litteram, Book II,

c. 400).

Mathematician believes 
in angels. What famous 

English mathematician had

not the slightest interest in

sex and was also a biblical

fundamentalist, believing in

the reality of angels, demons,

and Satan? (Hint: According

to most scholars, he is the

most influential scientist 

and mathematician to have

ever lived.) (See Answer

1.29.)

History’s most prolific math-
ematician. Who was the most

prolific mathematician in his-

tory? (If you are unable to

answer this, can you guess in

what century he lived?) 

(See Answer 1.30.)
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Mad mom tortures mathematician daughter. What brilliant,

famous, and beautiful woman mathematician died in incredi-

ble pain because her mother withdrew all pain medication?

(Hint: The woman is recognized for her contributions to com-

puter programming. The mother wanted her daughter to die

painfully so that her daughter’s soul would be cleansed.) 

(See Answer 1.27.)

Mathematics and relationships. “‘No one really understood

music unless he was a scientist,’ her father had declared, and

not just a scientist, either, oh, no, only the real ones, the theo-

reticians, whose language is mathematics. She had not under-

stood mathematics until he had explained to her that it was the

symbolic language of relationships. ‘And relationships,’ he

had told her, ‘contained the essential meaning of life’” (Pearl

S. Buck, The Goddess Abides, 1972).



Suicidal mathematician.
What mathematician

accepted a duel, knowing that

he would die? (Hint: He spent

the night before the duel

feverishly writing down his

mathematical ideas, which

have since had a great impact

on mathematics.) (See

Answer 1.31.)

Marry a mathematician?
Would you rather marry the

best mathematician in the

world or the best chess

player? (See Answer 1.32.)

Mathematics and truth. “We

who are heirs to three recent

centuries of scientific devel-

opment can hardly imagine a

state of mind in which many

mathematical objects were

regarded as symbols of spiri-

tual Truth” (Philip Davis and

Reuben Hersh, The Mathe-

matical Experience, 1981).

Mathematics and lust. “I

tell them that if they will

occupy themselves with the

study of mathematics they

will find in it the best remedy

against the lusts of the flesh”

(Thomas Mann, The Magic

Mountain, 1924).

Newton’s magic. “Had

Newton not been steeped in

alchemical and other magical

learning, he would never have

proposed forces of attraction

and repulsion between bodies

as the major feature of his

physical system” (John

Henry, “Newton, Matter, and

Magic,” in John Fauvel’s Let

Newton Be!, 1988).

Earliest known symbols.
The Egyptian Rhind Papyrus

(c. 1650 B.C.) contains the

earliest known symbols for

mathematical operations.

“Plus” is denoted by a pair of

legs walking toward the num-

ber to be added.

Mathematics and the divine.
“Mathematical inquiry lifts

the human mind into closer

proximity with the divine than

is attainable through any other

medium” (Hermann Weyl,

quoted in Philip Davis and

Reuben Hersh, The Mathe-

matical Experience, 1981).

π and the law. In 1896, an

Indiana physician promoted a

legislative bill that made π
equal to 3.2, exactly. The

Indiana House of Representa-

tives approved the bill unani-

mously, 67 to 0. The Senate,

however, deferred debate

about the bill “until a later

date.”

The mathematical life. “The

mathematical life of a mathe-

matician is short. Work rarely

improves after the age of

twenty-five or thirty. If little

has been accomplished by
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Mathematical corpse. You come home and see a corpse 

on your foyer floor. Would you be more frightened if (1)

scrawled on the floor is the Pythagorean theorem: a2 + b2 = c2,

or (2) scrawled on the floor is the following complicated 

formula:

(See Answer 1.33.)
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then, little will ever be

accomplished” (Alfred Adler,

“Mathematics and Creativ-

ity,” The New Yorker, 1972).

The genesis of x 0 = 1.
Ibn Yahya al-Maghribi 

Al-Samawal in 1175 was 

the first to publish

x0 = 1

In other words, he realized

and published the idea that

any number raised to the

power of 0 is 1. Al-Samawal’s

book was titled The Dazzling.

His father was a Jewish

scholar of religion and 

literature from Baghdad.

Euler’s one-step proof of
God’s existence. In mathemati-

cal books too numerous to

mention, we have heard the

story of the mathematician

Leonhard Euler’s encounter

with the French encyclopedist

Denis Diderot. Diderot was a

devout atheist, and he chal-

lenged the religious Euler to

mathematically prove the

existence of God. Euler

replied, “Sir (a + bn)/n = x;

hence, God exists. Please

reply!”

Supposedly, Euler said this

in a public debate in St.

Petersburg and embarrassed

the freethinking Diderot with

this simple algebraic proof of

God’s existence. Diderot was

shocked and fled. Was Euler

deliberately demonstrating

how lame these kinds of

arguments can be?

Today we know that there

is little evidence that the

encounter ever took place.

Dirk J. Struik, in his book A

Concise History of Mathe-

matics, third revised edition

(New York: Dover, 1967, p.

129), says that Diderot was

mathematically well versed

and wouldn’t have been

shocked by the formula.

Moreover, Euler wasn’t 

the type of person to make

such a zany comment. While

people of the time did seek

simple mathematical proofs

of God, the “Euler versus

Diderot” story was probably

fabricated by the English

mathematician De Morgan

(1806–1871).

30 A Passion for Mathematics

Blind date. You are single and going on a blind date. The

date knocks on your door and is extremely attractive. How-

ever, you note that the person has the following formulas 

tattooed on the right arm:

From this little information, do you think you would enjoy the

evening with this person? (See Answer 1.34.)

Fundamental Anagram of Calculus. Probably most of you have

never heard of Newton’s “Fundamental Anagram of Calculus”:

6accdae13eff7i3l9n4o4qrr4s8t12ux

Can you think of any possible reason Newton would want to

code aspects of his calculus discoveries? (See Answer 1.35.)
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Science and religion.
“I have always thought it

curious that, while most 

scientists claim to eschew

religion, it actually dominates

their thoughts more than it

does the clergy” (Fred Hoyle,

astrophysicist, “The Uni-

verse: Past and Present

Reflections,” Annual Review

of Astronomy and Astro-

physics, 1982).

Parallel universes and math-
ematics. In theory, it is possi-

ble to list or “enumerate” all

rational numbers. How has

this mathematical fact helped

certain cosmologists to

“prove” that there is an infi-

nite number of universes

alongside our own? (As you

will learn in the next chapter,

“rational numbers” are num-

bers like 1⁄ 2, which can be

expressed as fractions.) (See

Answer 1.36.)

The mysterious 00.
Students are taught that any

number to the zero power is

1, and zero to any power is 0.

But serious mathematicians

often consider 00 undefined.

If you try to make a graph of

xy, you’ll see it has a disconti-

nuity at the point (0,0). The

discussion of the value of 00

is very old, and controversy

raged throughout the nine-

teenth century.

One-page proof of God’s
existence. Which famous Ger-

man mathematician “proved”

God’s existence in a proof

that fit on just one page of

paper? (See Answer 1.37.)

Greek numerals. Did

you know that the ancient

Greeks had two systems of

numerals? The earlier of

these was based on the 

initial letters of the names 

of numbers: the number 5

was indicated by the letter 

pi; 10 by the letter delta; 

100 by the antique form of

the letter H; 1,000 by the 

letter chi; and 10,000 by the

letter mu.
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π savants. In 1844, Johann Dase (a.k.a., Zacharias Dahse)

computed π to 200 decimal places in less than two months. He

was said to be a calculating prodigy (or an “idiot savant”),

hired for the task by the Hamburg Academy of Sciences on

Gauss’s recommendation. To compute

π = 3.14159  26535 89793 23846 26433 83279 

50288 41971 69399 37510 58209 74944 59230 

78164 06286 20899 86280 34825 34211 70679 

82148 08651 32823 06647 09384 46095 50582 

23172 53594 08128 48111 74502 84102 70193 

85211 05559 64462 29489 54930 38196

Dase supposedly used π /4 = arctan(1/2) + arctan(1/5) + 

arctan(1/8) . . . with a series expansion for each arctangent.

Dase ran the arctangent job in his brain for nearly sixty days.

Not everyone believes the legend of Dase. For example,

Arthur C. Clarke recently wrote to me that he simply doesn’t

believe the story of Dase calculating pi to 200 places in his

head. Clarke says, “Even though I’ve seen fairly well authenti-

cated reports of other incredible feats of mental calculation, I

think this is totally beyond credibility.”

I would be interested in hearing from readers who can con-

firm or deny this story.



Our mathematical percep-
tions. “The three of you stare

at the school of fish and watch

them move in synchrony,

despite their lack of eyes. The

resulting patterns are hyp-

notic, like the reflections from

a hundred pieces of broken

glass. You imagine that the

senses place a filter on how

much humans can perceive of

the mathematical fabric of the

universe. If the universe is a

mathematical carpet, then all

creatures are looking at it

through imperfect glasses.

How might humanity perfect

those glasses? Through drugs,

surgery, or electrical stimula-

tion of the brain? Probably

our best chance is through the

use of computers” (Cliff Pick-

over, The Loom of God,

1997).

Pierre de Fermat. In the

early 1600s, Pierre de Fer-

mat, a French lawyer, made

brilliant discoveries in num-

ber theory. Although he was

an “amateur” mathematician,

he created mathematical

challenges such as “Fermat’s

Last Theorem,” which was

not solved until 1994. Fer-

mat’s Last Theorem states

that xn + yn = zn has no

nonzero integer solutions for

x, y, and z when n > 2.

Fermat was no ordinary

lawyer indeed. He is consid-

ered, along with Blaise 

Pascal, a founder of 

probability theory. As the

coinventor of analytic 

geometry, he is considered,

along with René Descartes,

one of the first modern math-

ematicians.

Ancient number notation lets
humans “think big.” The earliest

forms of number notation,

which used straight lines for

grouping 1s, were inconven-

ient when dealing with large

numbers. By 3400 B.C. in

Egypt, and 3000 B.C. in

Mesopotamia, a special sym-

bol was adopted for the num-

ber 10. The addition of this

second number symbol made

it possible to express the

number 11 with 2 symbols

instead of 11, and the number

99 with 18 symbols instead

of 99.

Caterpillar vehicle. Many

mathematicians were creative

inventors, although not all of

their inventions were practi-

cal. For example, Polish-born

Josef Hoëné-Wronski

(1778–1853), an analyst, a

philosopher, a combinatorial-

ist, and a physicist, developed

a fantastical design for 

caterpillar-like vehicles that

he intended to replace rail-

road transportation. He also

attempted to build a perpetual

motion machine and to build

a machine to predict the

future (which he called the

prognometre).
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The Beal reward. In the mid-1990s, the Texas banker

Andrew Beal posed a perplexing mathematical problem and

offered $5,000 for the solution of this problem. In particular,

Beal was curious about the equation Ax + By = C z. The six 

letters represent integers, with x, y, and z greater than 2. 

(Fermat’s Last Theorem involves the special case in which 

the exponents x, y, and z are the same.) Oddly enough, Beal

noticed that for any solution of this general equation he could

find, A, B, and C have a common factor. For example, in the

equation 36 + 183 = 38, the numbers 3, 18, and 3 all have the

factor 3. Using computers at his bank, Beal checked equations

with exponents up to 100 but could not discover a solution

that didn’t involve a common factor.



Progress in mathematics.
“In most sciences, one gener-

ation tears down what another

has built and what one has

established another undoes. 

In mathematics alone, each

generation adds a new story

to the old structure” (Her-

mann Hankel, 1839–1873,

who contributed to the theory

of functions, complex num-

bers, and the history of math-

ematics, quoted in Desmond

MacHale, Comic Sections,

1993).

Hilbert’s problems. In 1900,

the mathematician David

Hilbert submitted twenty-

three important mathematical

problems to be targeted for

solution in the twentieth cen-

tury. These twenty-three

problems extend over all

fields of mathematics.

Because of Hilbert’s prestige,

mathematicians spent a great

deal of time tackling the

problems, and many of the

problems have been solved.

Some, however, have been

solved only very recently, and

still others continue to daunt

us. Hilbert’s twenty-three

wonderful problems were

designed to lead to the fur-

thering of various disciplines

in mathematics.

God’s math book. “God has

a transfinite book with all the

theorems and their best

proofs. You don’t really have

to believe in God as long as

you believe in the book”

(Paul Erdös, quoted in Bruce

Schechter, My Brain Is Open:

The Mathematical Journeys

of Paul Erdös, 1998).

Song lyrics. What is the

largest number ever used in

the lyrics to a popular song?

(See Answer 1.38.)
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The magnificent Erdös. It is commonly agreed that Paul

Erdös is the second-most prolific mathematician of all times,

being surpassed only by Leonhard Euler, the great eigh-

teenth-century mathematician whose name is spoken with

awe in mathematical circles. In addition to Erdös’s roughly

1,500 published papers, many are yet to be published after

his death. Erdös was still publishing a paper a week 

in his seventies. Erdös undoubtedly had the greatest number

of coauthors (around 500) among mathematicians of all

times.

In 2004, an eBay auction offered buyers an opportunity to

link their names, through five degrees of separation, with Paul

Erdös. In particular, the mathematician William Tozier pre-

sented bidders with the chance to collaborate on a research

paper. Tozier was linked to Erdös through a string of coau-

thors. In particular, he had collaborated with someone who

had collaborated with someone who had collaborated with

someone who had collaborated with Paul Erdös. A mathemati-

cian who has published a paper with Erdös has an Erdös num-

ber of 1. A mathematician who has published a paper with

someone who has published a paper with Erdös has an Erdös

number of 2, and so on. Tozier has an Erdös number of 4,

quite a respectable ranking in the mathematical community.

This means that the person working with Tozier would have an

Erdös number of 5. During the auction, Tozier heard from

more than a hundred would-be researchers. (For more infor-

mation, see Erica Klarreich, “Theorems for Sale: An Online

Auctioneer Offers Math Amateurs a Backdoor to Prestige,”

Science News 165, no. 24 (2004): 376–77.)



Rope and lotus symbols.
The Egyptian hieroglyphic

system evolved special sym-

bols (resembling ropes, lotus

plants, etc.) for the numbers

10, 100, 1,000, and 10,000.

Strange math title. I love

collecting math papers with

strange titles. These papers

are published in serious math

journals. For example, in

1992, A. Granville published

an article with the strange

title “Zaphod Beeblebrox’s

Brain and the Fifty-Ninth

Row of Pascal’s Triangle,” in

the prestigious The American

Mathematical Monthly (vol.

99, no. 4 [April]: 318–31).

Urantia religion and num-
bers. In the modern-day Uran-

tia religion, numbers have an

almost divine quality.

According to the sect, head-

quartered in Chicago, we live

on the 606th planet in a sys-

tem called Satania, which

includes 619 flawed but

evolving worlds. Urantia’s

grand universe number is

5,342,482,337,666. Urantians

believe that human minds are

created at birth, but the soul

does not develop until about

age six. They also believe

that when we die, our souls

survive. Incidentally, Jesus

Christ is number 611,121

among more than 700,000

Creator Sons.

Mathematics and God.
“Philosophers and great

religious thinkers of the last

century saw evidence of God

in the symmetries and

harmonies around them—

in the beautiful equations of

classical physics that describe

such phenomena as electric-

ity and magnetism. I don’t

see the simple patterns under-

lying nature’s complexity 

as evidence of God. I believe

that is God. To behold 

[mathematical curves], spin-

ning to their own music, is a

wondrous, spiritual event”

(Paul Rapp, in Kathleen

McAuliffe, “Get Smart:

Controlling Chaos,” Omni

[1989]).

The discovery of calculus.
The English mathematician

Isaac Newton (1642–1727)

and the German mathemati-

cian Gottfried Wilhelm Leib-

niz (1646–1716) are

generally credited with the

invention of calculus, but var-

ious earlier mathematicians

explored the concept of rates

and limits, starting with the

ancient Egyptians, who
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A calculating prodigy and 365,365,365,365,365,365. When

he was ten years old, the calculating prodigy Truman Henry

Safford (1836–1901) of Royalton, Vermont, was once asked to

square, in his head, the number 365,365,365,365,365,365. His

church leader reports, “He flew around the room like a top,

pulled his pantaloons over the tops of his boots, bit his hands,

rolled his eyes in their sockets, sometimes smiling and talking,

and then seeming to be in agony, until in not more than a

minute said he, 133,491,850,208,566,925,016,658,299,941,

583,225!”

Incidentally, I had first mentioned this large number in my

book Wonders of Numbers and had misprinted one of the dig-

its. Bobby Jacobs, a ten-year-old math whiz from Virginia,

wrote to me with the corrected version that you see here. He

was the only person to have discovered my earlier typographi-

cal error.



developed rules for calculat-

ing the volume of pyramids

and approximating the areas

of circles.

In the 1600s, both Newton

and Leibniz puzzled over

problems of tangents, rates of

change, minima, maxima,

and infinitesimals (unimagin-

ably tiny quantities that are

almost but not quite zero).

Both men understood that

differentiation (finding tan-

gents to curves) and integra-

tion (finding areas under

curves) are inverse processes.

Newton’s discovery

(1665–1666) started with his

interest in infinite sums; how-

ever, he was slow to publish

his findings. Leibniz pub-

lished his discovery of differ-

ential calculus in 1684 and of

integral calculus in 1686. He

said, “It is unworthy of excel-

lent men, to lose hours like

slaves in the labor of calcula-

tion. . . . My new calculus . . .

offers truth by a kind of

analysis and without any

effort of imagination.” New-

ton was outraged. Debates

raged for many years on how

to divide the credit for the

discovery of calculus, and, as

a result, progress in calculus

was delayed.

The notations of calculus.
Today we use Leibniz’s sym-

bols in calculus, such as
df__
dx for

the derivative and the ∫ sym-

bol for integration. (This inte-

gral symbol was actually a

long letter S for summa, the

Latin word for “sum.”) The

mathematician Joseph Louis

Lagrange (1736–1813) was

the first person to use the

notation f ′(x) for the first

derivative and f ″(x) for the

second derivative. In 1696,

Guillaume François de

L’Hôpital, a French mathe-

matician, published the first

textbook on calculus.

Jews, π, the movie. The

1998 cult movie titled π stars

a mathematical genius who is

fascinated by numbers and

their role in the cosmos, the

stock market, and Jewish

mysticism. According to the

movie, what is God’s num-

ber? (See Answer 1.39.)

Mathematics and romance.
What romantic comedy has

the most complicated mathe-

matics ever portrayed in a

movie? (See Answer 1.40.)

Greek death. Why did 

the ancient Greeks and 

other cultures believe 8 to 

be a symbol of death? (See

Answer 1.41.)
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Newton’s giants. “If I have seen further than others, it is by

standing upon the shoulders of giants” (Isaac Newton, per-

sonal letter to Robert Hooker, 1675 [see next quotation]).

Abelson’s giants. “If I have not seen as far as others, it is

because giants were standing on my shoulders” (Hal Abelson,

MIT professor).

Mathematical marvel. “Even stranger things have happened;

and perhaps the strangest of all is the marvel that mathematics

should be possible to a race akin to the apes” (Eric T. Bell, The

Development of Mathematics, 1945).



The mechanical Pascaline.
One example of an early

computing machine is Blaise

Pascal’s wheel computer

called a Pascaline. In 1644,

this French philosopher and

mathematician built a calcu-

lating machine to help his

father compute business

accounts. Pascal was twenty

years old at the time. The

machine used a series of

spinning numbered wheels to

add large numbers.

The wonderful Pascaline

was about the size of a shoe-

box. About fifty models were

made.

The Matrix. What number

is on Agent Smith’s license

plate in the movie The Matrix

Reloaded? Why? (See

Answer 1.42.)

At the movies. What

famous book and movie title

contains a number that is

greater than 18,000 and less

then 38,000? (See Answer

1.43.)

The mathematical life.
“The mathematician lives

long and lives young; the

wings of the soul do not 

early drop off, nor do its

pores become clogged with

the earthly particles blown

from the dusty highways of

vulgar life” (James Joseph

Sylvester, 1814–1897, a 

professor of mathematics 

at Johns Hopkins University,

1869 address to the British

Mathematical Association).

Mathematical progress.
“More significant mathemati-

cal work has been done in 

the latter half of this century

than in all previous centuries 

combined” (John Casti, Five

Golden Rules, 1997).
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Simultaneity in science. The simultaneous discovery of cal-

culus by Newton and Leibniz makes me wonder why so many

discoveries in science were made at the same time by people

working independently. For example, Charles Darwin

(1809–1882) and Alfred Wallace (1823–1913) both independ-

ently developed the theory of evolution. In fact, in 1858, Dar-

win announced his theory in a paper presented at the same

time as a paper by Wallace, a naturalist who had also devel-

oped the theory of natural selection.

As another example of simultaneity, the mathematicians

János Bolyai (1802–1860) and Nikolai Lobachevsky

(1793–1856) developed hyperbolic geometry independently

and at the same time (both perhaps stimulated indirectly by

Carl Friedrich Gauss). Most likely, such simultaneous discov-

eries have occurred because the time was “ripe” for such dis-

coveries, given humanity’s accumulated knowledge at the time

the discoveries were made. On the other hand, mystics have

suggested that there is a deeper meaning to such coincidences.

The Austrian biologist Paul Kammerer (1880–1926) wrote,

“We thus arrive at the image of a world-mosaic or cosmic

kaleidoscope, which, in spite of constant shufflings and

rearrangements, also takes care of bringing like and like

together.” He compared events in our world to the tops of

ocean waves that seem isolated and unrelated. According to

his controversial theory, we notice the tops of the waves, but

beneath the surface there may be some kind of synchronistic

mechanism that mysteriously connects events in our world and

causes them to cluster.



First mathematician. What

is the name of the first human

who was identified as having

made a contribution to math-

ematics? (See Answer 1.44.)

Game show. Why was the

1950’s TV game show called

The $64,000 Question? Why

not a rounder number like

$50,000? (See Answer 1.45.)

God and the infinite. “Such

as say that things infinite are

past God’s knowledge may

just as well leap headlong

into this pit of impiety, and

say that God knows not all

numbers. . . . What madman

would say so? . . . What are

we mean wretches that dare

presume to limit His knowl-

edge?” (St. Augustine, 

The City of God, A.D. 412).

Who was Pythagoras? 
You can tell from some of the

following factoids that I

love trivia that relates to the

famous ancient Greek mathe-

matician Pythagoras. His

ideas continue to thrive after

three millennia of mathemati-

cal science. The philosopher

Bertrand Russell once wrote

that Pythagoras was intellec-

tually one of the most impor-

tant men who ever lived, both

when he was wise and when

he was unwise. Pythagoras

was the most puzzling mathe-

matician of history because 

he founded a numerical reli-

gion whose main tenets were

the transmigration of souls

and the sinfulness of eating

beans, along with a host of

other odd rules and regula-

tions. To the Pythagoreans,

mathematics was an ecstatic

revelation.

The Pythagoreans, like

modern day fractalists, were

akin to musicians. They cre-

ated pattern and beauty as

they discovered mathematical

truths. Mathematical and the-

ological blending began with

Pythagoras and eventually

affected all religious philoso-

phy in Greece, played a role 

in religion of the Middle

Ages, and extended to Kant 

in modern times. Bertrand

Russell felt that if it were 

not for Pythagoras, theolo-

gians would not have sought

logical proofs of God and

immortality.

If you want to read more

about Pythagoras, see my

book The Loom of God and

Peter Gorman’s Pythagoras:

A Life.
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Mathematical scope. “Mathematics is not a book confined

within a cover and bound between brazen clasps, whose con-

tents it needs only patience to ransack; it is not a mine, whose

treasures may take long to reduce into possession, but which

fill only a limited number of veins and lodes; it is not a soil,

whose fertility can be exhausted by the yield of successive

harvests; it is not a continent or an ocean, whose area can be

mapped out and its contour defined: it is limitless as that space

which it finds too narrow for its aspirations; its possibilities

are as infinite as the worlds which are forever crowding in and

multiplying upon the astronomer’s gaze; it is as incapable of

being restricted within assigned boundaries or being reduced

to definitions of permanent validity, as the consciousness, the

life, which seems to slumber in each monad, in every atom of

matter, in each leaf and bud and cell, and is forever ready to

burst forth into new forms of vegetable and animal existence”

(James Joseph Sylvester, The Collected Mathematical Papers

of James Joseph Sylvester, Volume III, address on Commemo-

ration Day at Johns Hopkins University, February 22, 1877).



The secret life of numbers.
To Pythagoras and his follow-

ers, numbers were like gods,

pure and free from material

change. The worship of num-

bers 1 through 10 was a kind

of polytheism for the

Pythagoreans.

Pythagoreans believed that

numbers were alive, inde-

pendent of humans, but with a

telepathic form of conscious-

ness. Humans could relin-

quish their three-dimensional

lives and telepathize with

these number beings by using

various forms of meditation.

Meditation upon numbers

was communing with the

gods, gods who desired noth-

ing from humans but their

sincere admiration and con-

templation. Meditation upon

numbers was a form of prayer

that did not ask any favors

from the gods.

These kinds of thoughts

are not foreign to modern

mathematicians, who often

debate whether mathematics

is a creation of the human

mind or is out there in the

universe, independent of

human thought. Opinions

vary. A few mathematicians

believe that mathematics is a

form of human logic that is

not necessarily valid in all

parts of the universe.

Shades of ghosts. Pythago-

ras believed that even rocks

possess a psychic existence.

Mountains rose from the

earth because of growing

pains of the earth, and

Pythagoras told his followers

that earthquakes were caused

by the shades of ghosts of the

dead, which created distur-

bances beneath the earth.

Pythagorean sacrifice.
Although some historians

report that Pythagoras joy-

fully sacrificed a hecatomb of

oxen (a hundred animals)

when he discovered his

famous theorem about the

right-angled triangle, this

would have been scandalously

un-Pythagorean and is proba-

bly not true. Pythagoras

refused to sacrifice animals.

Instead, the Pythagoreans

believed in the theurgic 

construction of agalmata—

statues of gods consisting of

herbs, incense, and metals to

attract the cosmic forces.
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Anamnesis and the number 216. Was the ancient Greek math-

ematician Pythagoras once a plant? This is a seemingly bizarre

question, but Pythagoras claimed that he had been both a plant

and an animal in his past lives, and, like Saint Francis, he

preached to animals. Pythagoras and his followers believed in

anamnesis, the recollection of one’s previous incarnations.

During Pythagoras’s time, most philosophers believed that

only men could be happy. Pythagoras, on the other hand,

believed in the happiness of plants, animals, and women.

In various ancient Greek writings, we are told the exact

number of years between each of Pythagoras’s incarnations:

216. Interestingly, Pythagoreans considered 216 to be a mysti-

cal number, because it is 6 cubed (6 × 6 × 6). Six was also

considered a “circular number” because its powers always

ended in 6. The fetus was considered to have been formed

after 216 days.

The number 216 continues to pop up in the most unlikely of

places in theological literature. In an obscure passage from

The Republic (viii, 546 B–D), Plato notes that 216 = 63. It is

also associated with auspicious signs on the Buddha’s footprint.



Pythagoras and aliens.
UFOs and extraterrestrial

life are hot topics today. But

who would believe that these

same ideas enthralled the

Pythagoreans a few millen-

nia ago? In fact, Pythagore-

ans believed that all the

planets in the solar system

are inhabited, and humans

dwelling on Earth were less

advanced than these other

inhabitants were. (The idea

of advanced extraterrestrial

neighbors curiously has 

continued, for some, to this

day.) According to later

Pythagoreans, as one travels

farther from Earth, the

beings on other planets and

in other solar systems

become less flawed.

Pythagoras went as far as

to suggest that disembodied

intelligences existed in the

universe. These mind-

creatures had very tenuous

physical bodies. Many of

Pythagoras’s followers

believed that Pythagoras 

himself had once been a

superior being who inhabited

the Moon or the Sun.

Gods and sets. “The null

set is also a set; the absence

of a god is also a god” (A.

Moreira).

Matrix prayers. Some of

you will be interested in

Underwood Dudley’s 

Mathematical Cranks

(Washington, D.C.: Mathe-

matical Association of 

America, 1992). The book

contains musings of slightly

mad mathematicians. My

favorite chapter is on the

topic of “Matrix Prayers,”

designed by a priest of the

Church of England. The

priest regularly prayed to

God in mathematical terms

using matrices, and he taught

the children in his church to

pray and think of God in

matrices. Mathematical

Cranks goes into great detail

regarding “revelation matri-

ces,” “Polite Request Opera-

tors,” and the like. The priest

finally derives a beautiful

prayer that he succinctly

writes as

P < R{S} → {U}, r > 0

He says, “This prayer should

be sufficiently concise to be

acceptable to Christ, yet

every single Christian inhabi-

tant of Northern Ireland has

been separately included.”

The chapter concludes with

information regarding the

geometry of heaven.

Secret mathematician.
Who really was the famous

and secretive French mathe-

matician “N. Bourbaki”? 

(See Answer 1.47.)

How much? How much

mathematics can we know?

(See Answer 1.48.)
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Famous epitaphs. Replace x and y with the names of two

famous mathematicians in these two puzzles. In Puzzle 1, the

following couplet of Alexander Pope is the engraved epitaph

on the mystery person’s sarcophagus in Westminster Abbey, in

London:

Nature and Nature’s laws lay hid in the night;

God said, “Let x be” and all was light.

—Alexander Pope (1688–1744)

In Puzzle 2, the epitaph “S = klnW ” is engraved on y’s tomb-

stone. Who are x and y? (See Answer 1.46.)



Factorial symbol. In 1808

Christian Kramp (1760–

1826) introduced the “!” as

the factorial symbol as a con-

venience to the printer.

Nobel Prize. Why is there

no Nobel Prize for mathemat-

ics? (See Answer 1.49.)

Roman numerals. Why

don’t we use Roman numerals

anymore? (See Answer 1.50.)

Insights and analysis.
“Einstein’s fundamental

insights of space/matter 

relations came out of philo-

sophical musings about the

nature of the universe, not

from rational analysis of

observational data—the 

logical analysis, prediction,

and testing coming only 

after the formation of the 

creative hypotheses” 

(R. H. Davis, The Skeptical

Inquirer, 1995).

Einstein on mathematics 
and reality. “At this point an

enigma presents itself which

in all ages has agitated

inquiring minds. How can it

be that mathematics, being

after all a product of human

thought which is independent

of experience, is so admirably

appropriate to the objects of

reality? Is human reason,

then, without experience,

merely by taking thought,

able to fathom the properties

of real things? In my opinion

the answer to this question is

briefly this: As far as the laws

of mathematics refer to real-

ity, they are not certain; and

as far as they are certain, they

do not refer to reality”

(Albert Einstein’s address to

the Prussian Academy of 

Science in Berlin, 1921).

Ramanujan’s tongue. In the

spring of 2003, the Aurora

Theater Company of Berke-

ley performed Ira Hauptman’s

play Partition, which focuses

on the collaboration of the

mathematicians Ramanujan

and Hardy. In the play, Nama-

giri, Ramanujan’s personal

deity and inspiration in real

life, is seen literally writing

equations on Ramanujan’s

tongue with her finger.
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Mathematics and reality. From string theory to quantum the-

ory, the deeper one goes in the study of physics, the closer one

gets to pure mathematics. Mathematics is the fabric of reality.

Some might even say that mathematics “runs” reality in the

same way that Microsoft’s Windows runs your computer and

shapes your interactions with the vast network beyond.

Schrödinger’s wave equation—which describes basic reality

and events in terms of wave functions and probabilities—is

the evanescent substrate on which we all exist:

Freeman Dyson, in the introduction to Nature’s Imagination,

speaks highly of this formula: “Sometimes the understanding

of a whole field of science is suddenly advanced by the dis-

covery of a single basic equation. Thus it happened that the

Schrödinger equation in 1926 and the Dirac equation in 1927

brought a miraculous order into the previously mysterious

processes of atomic physics. Bewildering complexities of

chemistry and physics were reduced to two lines of algebraic

symbols.”
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Mathematics and reality.
“My complete answer to the

late 19th century question

‘what is electrodynamics

trying to tell us’ would sim-

ply be this: Fields in empty

space have physical reality;

the medium that supports

them does not. Having thus

removed the mystery from

electrodynamics, let me

immediately do the same for

quantum mechanics:

Correlations have physical

reality; that which they corre-

late does not” (N. David

Mermin, “What Is Quantum

Mechanics Trying to Tell

Us?” American Journal of

Physics 66, [1998]: 753–67).

More mathematics and 
reality. “[Much of frontier

mathematics] confounds even

mathematicians and physi-

cists, as they use math to cal-

culate the inconceivable,

undetectable, nonexistent and

impossible. So what does it

mean when mainstream

explanations of our physical

reality are based on stuff that

even scientists cannot com-

prehend? When nonscientists

read about the strings and

branes of the latest physics

theories, or the Riemann

surfaces and Galois fields 

of higher mathematics, 

how close are we to a real

understanding?” (Susan

Kruglinski, “When Even

Mathematicians Don’t

Understand the Math,” New

York Times, May 25, 2004).

Dyson on the infinite reser-
voir of mathematics. “Gödel

proved that the world of pure

mathematics is inexhaustible;

no finite set of axioms and

rules of inference can ever

encompass the whole of

mathematics; given any finite

set of axioms, we can find

meaningful mathematical

questions which the axioms

leave unanswered. I hope that

an analogous situation exists

in the physical world. If my

view of the future is correct,

it means that the world of

physics and astronomy is also

inexhaustible; no matter how

far we go into the future,

there will always be new

things happening, new infor-

mation coming in, new

worlds to explore, a con-

stantly expanding domain of

life, consciousness, and

memory” (Freeman Dyson,

“Time without End: Physics

and Biology in an Open Uni-

verse,” Reviews of Modern

Physics, 1979).

More mathematics and 
reality. “It is difficult to

explain what math is, let

alone what it says. Math may

be seen as the vigorous struc-

ture supporting the physical

world or as a human idea in

development. [Dr. John Casti

says that] ‘the criteria that

mathematicians use for what

constitutes good versus bad

mathematics is much more

close to that of a poet or a

sculptor or a musician than it

is to a chemist’” (Susan

Kruglinski, “When Even

Mathematicians Don’t

Understand the Math,” New

York Times, May 25, 2004).
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Creativity and travel. “One way of goosing the brain is

traveling, particularly internationally. It helps shake up

perspective and offers new experiences. Interviews with 40

MacArthur ‘genius’ award winners found 10 lived overseas

permanently or temporarily, three traveled at least a few

months each year, and at least two have a ‘horror of a home’”

(Sharon McDonnell, “Innovation Electrified,” American Way).



Ramanujan redux. How

would mathematics have been

advanced if Ramanujan had

developed in a more nurtur-

ing early environment?

Although he would have been

a better-trained mathemati-

cian, would he have become

such a unique thinker? Could

he have discovered so many

wonderful formulas if he 

had been taught the rules of

mathematics early on and

pushed to publish his results

with rigorous proofs? Perhaps

his relative isolation and

poverty enhanced the great-

ness of his mathematical

thought. For Ramanujan,

equations were not just the

means for proofs or calcula-

tions. The beauty of the equa-

tion was of paramount value

for Ramanujan.

The secret life of formulas.
“We cannot help but think

that mathematical formulae

have a life of their own, that

they know more than their

discoverers do and that they

return more to us than we

have invested in them” 

(Heinrich Hertz, German

physicist, quoted in Eric 

Bell, Men of Mathematics,

1937).

Mathematical universe.
Why does the universe seem

to operate according to

mathematical laws? (See

Answer 1.51.)

A universe of blind mathe-
maticians. Sighted mathemati-

cians generally work by

studying vast assemblages of

numbers and symbols scrib-

bled on paper. It would seem

extremely difficult to do

mathematics without being

able to see, and to be forced

to keep the information “all

in one’s head.” Can a great

mathematician be totally

blind? (See Answer 1.52.)

Einstein on comprehensibil-
ity and reality. “The very fact

that the totality of our sense

experiences is such that by

means of thinking . . . it can

be put in order, this fact is

one which leaves us in awe,

but which we shall never

understand. One may say ‘the

eternal mystery of the world

is its comprehensibility.’ It is

one of the great realizations

of Immanuel Kant that this

setting up of a real external

world would be senseless

without this comprehensi-

bility” (Albert Einstein,

“Physics and Reality,” 1936).

Wigner on mathematics and
reality. “The miracle of appro-

priateness of the language of

mathematics for the formula-

tion of the laws of physics is

a wonderful gift which we

neither understand nor

deserve. We should be grate-

ful for it, and hope that it will

remain valid for future

research, and that it will

extend, for better or for

worse, to our pleasure even

though perhaps also to our

bafflement, to wide branches

of learning” (Eugene Wigner,

“The Unreasonable Effective-

ness of Mathematics,” 1960).
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The Fractal Murders. In 2002, Mark Cohen, a lawyer and a

judge, published The Fractal Murders, a novel in which three

mathematicians, all of whom are experts in fractals, have died.

Two were murdered. The third was an apparent suicide. In the

novel, the math professor Jayne Smyers hires a private eye,

Pepper Keane, to look into the three deaths, which seem to be

related only because each victim was researching fractals.



Close to reality. We’ve

talked quite a bit about math-

ematics and reality. Who do

you think is in more direct

contact with reality, a mathe-

matician or a physicist? What

do famous twentieth-century

mathematicians say on this

subject? (See Answer 1.53.)

All reality is mathematics.
“The Gedemondan chuckles.

‘We read probabilities. You

see, we see—perceive is a

better word—the math of the

Well of Souls. We feel the

energy flow, the ties and

bands, in each and every 

particle of matter and energy.

All reality is mathematics, all

existence—past, present, 

and future—is equations’”

(Jack Chalker, Quest for the

Well of Souls, 1985).

Pythagoras on mathematics
and reality. “All things are

numbers.”

Why learn mathematics?
It has been estimated that

much greater than 99.99 

percent of all Americans 

will never use the quadratic

formula or most of the other

algebraic or geometrical

relations they learn in school.

Why teach or learn mathe-

matics beyond the basic

operations of addition, 

subtraction, multiplication,

and division? (See Answer

1.54.)
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I N WHICH WE ENCOUNTER FASCINATING NUMBERS AND STRANGE NUMBER

sequences. We’ll explore transcendental numbers, octonions, surreal num-

bers, obstinate numbers, cyclic numbers, Vibonacci numbers, perfect numbers,

automorphic numbers, prime numbers, Wilson primes, palindromic primes,

Fibonacci primes, Sophie Germain primes, Baxter-Hickerson primes, star-

congruent primes, narcissistic numbers, amenable numbers, amicable 

numbers, p-adic numbers, large palindromes, factorions, hyperfactorials, 

primorials, palindions and hyperpalindions, exotic-looking formulas for π,

the Golay-Rudin-Shapiro sequence, the wonderful Pochhammer notation, and

famous and curious math constants (such as Liouville’s constant, the

Copeland-Erdös constant, Brun’s

constant, Champernowne’s number,

Euler’s gamma, Chaitin’s constant,

the Landau-Ramanujan constant,

Mills’s constant, the golden ratio,

Apéry’s constant, and constants even

more bizarre). 
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Numbers percolate like bubbles in the

ocean of mathematics.

The mathematician’s job is to transport

us to new seas, while deepening the

waters and lengthening horizons.





Pi. Who discovered pi

(π)? (See Answer 2.1.)

An avalanche of digits. How

do obsessed mathematicians

calculate π to trillions of dec-

imal digits? (See Answer

2.2.)

Evenness. Is 0 an even

number? (See Answer 2.3.)

Billion. In America, a

billion has 9 zeros

(1,000,000,000). In England,

a billion has 12 zeros

(1,000,000,000,000). Why?

(See Answer 2.4.)

Pick an integer, any integer.
If I asked you to select an

integer number at random

from all the integers, is this a

possible task? (Integers are

the numbers we’re mostly

familiar with and consist of

the natural numbers [0, 1, 

2, . . . ] and their negatives

[–1, –2, –3, . . .]). (See

Answer 2.5.)

Definition of a transfinite
number. We briefly mentioned

transfinite numbers in chapter

1 when discussing the Ger-

man mathematician Georg

Cantor. A transfinite number

is an infinite cardinal or ordi-

nal number. (A cardinal num-

ber is a whole number, an

integer, that is used to specify

how many elements there are

in a set. An ordinal number is

considered a place in the

ordered sequence of whole

numbers. For example, it is

used in counting as first, sec-

ond, third, fourth, etc., to nth

in a set of n elements.) The

smallest transfinite number is

called “aleph-nought,” writ-

ten as ℵ
0
, which counts the

number of integers. ℵ is the

first letter in the Hebrew

alphabet. If the number of

integers is infinite (with ℵ
0

members), are there yet

higher levels of infinity? It

turns out that even though

there are an infinite number

of integers, rational numbers

(numbers that can be
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Street-corner integers. David Chalmers, a professor of phi-

losophy and the director of the Center for Consciousness

Studies (www.u.arizona.edu/~chalmers/), once conducted an

experiment in which he stood on a busy street corner in

Oxford and asked passersby to “name a random number

between zero and infinity.” He wondered what this “random”

distribution would look like.

The results, sorted in order of most popular, were 3, 7, 5,

12, 1, 4, 10, 77, 2, 47, infinity, 15, 17, 20, 27, 18, 23, 26, 30,

42, and 99. The remaining random numbers were given by

only one person each: 6, 13, 14, 19, 21, 22, 25, thirteen more

2-digit numbers, twenty 3-digit numbers, twelve 4-digit num-

bers, one 5-digit number, one 6-digit number, four 7-digit

numbers, one 8-digit number, one non-integer (328.39), and

one huge number:

9.265 × 101010

Dr. Chalmers notes that “Of course, a uniform distribution

is a priori impossible so I couldn’t have expected that. Even a

logarithmic distribution is impossible (it has an infinite inte-

gral). Interestingly enough, this distribution, taken coarsely,

was quite close to logarithmic up to 1,000 or so. There were

roughly the same number of 2-digit responses as 1-digit

responses, and a few less 3-digit responses.”



expressed as fractions), and

irrational numbers (like 

√2 = 1.141421356 . . . ,

which cannot be expressed

as a fraction), the infinite

number of irrationals is in

some sense greater than the

infinite number of rationals

and integers. Similarly,

there are more real numbers

(which include rational and

irrational numbers) than

there are integers. To

denote this difference,

mathematicians refer to the

infinity of rationals or inte-

gers as ℵ
0

and the infinite

number of irrationals or

real numbers as C, which

stands for the cardinality 

of the real number “contin-

uum.” There is a simple

relationship between C and

ℵ
0
. It is C = 2ℵ0. In other

words, 2ℵ0 is denoted by C

and is also the cardinality

of the set of real numbers,

or the continuum, whence

the name. (The real numbers

are sometimes called the con-

tinuum.) Some of these cardi-

nalities are shown in figure

2.1. This figure is compli-

cated and will be referred to

throughout the chapter, as

you build your knowledge

and see passing references to

other kinds of numbers.

Mathematicians also think

about greater infinities, sym-

bolized by ℵ
1
, ℵ

2
, and so on.

For example, the set theory

symbol ℵ
1

stands for the

smallest infinite set larger

than ℵ
0
. The “continuum

hypothesis” states that C = ℵ
1

= 2ℵ0; however, the question

of whether C truly equals ℵ
1

is considered undecidable in

our present set theory. In

other words, great mathe-

maticians such as Kurt Gödel

proved that the hypothesis

was a consistent assumption

in one branch of mathemat-

ics. However, another mathe-

matician, Paul Cohen, proved

that it was also consistent to

assume that the continuum

hypothesis is false!

Interestingly, the number of

rational numbers is the same

as the number of integers. The
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Figure 2.1 The universe of numbers.



number of irrationals is the

same as the number of real

numbers. (Mathematicians

usually use the term cardinal-

ity when talking about the

“number” of infinite numbers.

For example, true mathemati-

cians would say that the cardi-

nality of the irrationals is

known as the continuum.) 

What do we do with the

paradox of the continuum

hypothesis? Cantor’s col-

league, Constantin Gutberlet,

believed that God could

resolve the problem of the

continuum hypothesis. How

many of the great mathemati-

cal paradoxes would melt

away if humanity had a

higher level of intelligence?

How many would remain

because they are somehow

part of the mathematical tap-

estry underpinning our uni-

verse? These are questions

not easily answered, at least

not by Homo sapiens. Our

minds have not sufficiently

evolved to comprehend all

the mysteries of “God” and

mathematics.

Definition of a Fibonacci
number. Fibonacci numbers—

1, 1, 2, 3, 5, 8, 13 . . . —are

named after the Italian mer-

chant Leonardo Fibonacci of

Pisa (c. 1200). Notice that

except for the first two num-

bers, every successive num-

ber in the sequence equals the

sum of the two previous.

These numbers appear in an

amazing number of places in

various mathematical disci-

plines, and I’ve scattered just

a few throughout this book.

Definition of a prime
number. A number larger than

1, such as 5 or 13, that is

divisible only by itself or 

by 1. The number 14 is not

prime because 14 = 7 × 2.

Primeness is a property of the

number itself. For example, 5

is prime whether it is written

as 5 or as the binary form

101 or in any other system of

numeration. The largest

known prime as of 2005 has

7,816,230 digits.

Definition of number theory.
Number theory—the study of

properties of the integers—is

an ancient discipline. Much

mysticism accompanied early

treatises; for example,

Pythagoreans based all events

in the universe on whole

numbers. Only a few hundred

years ago, courses in

numerology—the study of

the mystical and religious

properties of numbers—were

required by all college stu-

dents, and even today such

numbers as 13, 7, and 666

conjure up emotional reac-

tions in many people.

Today, integer arithmetic is

important in a wide spectrum

of human activities and has

repeatedly played a crucial

role in the evolution of the

natural sciences. For a

description of the use of

number theory in communi-

cations, computer science,

cryptography, physics, biol-

ogy, and art, see Manfred

Schroeder’s Number Theory

in Science and Communica-

tion. Primes and prime fac-

torization are especially

important in number theory.
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Fibonacci and 998999. Here’s a mathematical curiosity.

The fraction 1/998999 contains a number of obvious instances

of Fibonacci numbers, 1, 1, 2, 3, 5, 8 . . . , in which each suc-

cessive number is the sum of the previous two. I’ve underlined

the Fibonacci numbers to make them easy to find:

1/998999 = 0.000001001002003005008013021034055089 . . .



Integer God. “Is God a

mathematician? Certainly, the

world, the universe, and

nature can be reliably under-

stood using mathematics.

Nature is mathematics. The

arrangement of seeds in a

sunflower can be understood

using Fibonacci numbers.

Sunflower heads, like other

flowers, contain two families

of interlaced spirals—one

winding clockwise, the other

counter clockwise. The num-

bers of seeds and petals are

almost always Fibonacci

numbers” (Clifford Pickover,

The Loom of God, 1997).

Gears and prime numbers.
In gears whose purpose is to

reduce speed, it is often help-

ful to use wheels whose

numbers of teeth are prime

numbers, in order to reduce

uneven wear. On such gears,

the same gear teeth will 

mesh only at long intervals.

In old eggbeater hand drills,

prime numbers of teeth were

also used so that individual

pairs of teeth in the mating

gears did not revisit each

other as often as would be

the case for composite 

numbers.
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Numbers and number representations. In our daily lives 

today, most of us use a number system based on powers of

10, so that 1492, for example, means 1 × 103 + 4 × 102 + 9 ×
101 + 2 × 100, noting that 100 = 1. The popularity of a 

“base-10” system is due, in part, to the fact that humans are

accustomed to counting on their ten fingers. If we had six

fingers on each hand, we might use a base-12 number sys-

tem, in which the value 147 (base 10) would be written 103

(base 12) because 103 (base 12) = 1 × 122 + 0 × 121 + 3.

Humans have not always preferred a base-10 system. For

example, the Yuki Pomo of Northern California used a base-

8 system because they counted using the spaces between the

fingers. The Sumerians used a base-60 system, and this is

why we have 60 seconds in a minute and 60 minutes in an

hour. 

Some properties of numbers are independent of the num-

ber system in which they are represented. For example, 8, a

cube number, is adjacent to 9, a square number, regardless of

how we represent the values 8 and 9. As just discussed, the

value 5 is a prime, and 6 is a composite, regardless of the rep-

resentation. However, other properties of numbers depend on

the number system that is used in their representation. For

example, “a number is divisible by 9 if and only if the sum 

of its digits is divisible by 9” is true in base 10 but not neces-

sarily in other number systems. The number 353,535 is an

“undulating” or “oscillating” number when written in base

10. In base 12, it’s a very ordinary-looking 150,713. You can

tell from this book that I’m crazy about all kinds of number

properties. Therefore, in this chapter, you’ll see questions and

facts about numbers that are independent of their representa-

tion, as well as observations that assume a base-10 system.

Some of my colleagues, like Dr. Bob Ewell, care only about

properties of numbers independent of their representation. I

like observations that involve all kinds of properties. As you

read, see if you can determine which kind of property is being

discussed (number system independent or number system

dependent) and decide which flavor you like the best.



Prime proof. The first 

person known to have proved

that there are an infinite num-

ber of primes was Euclid

(third century B.C.).

Definition of a composite
number. A composite number

is a positive integer, greater

than 1, that is not prime. In

other words, a composite

number can be written as a

product of two or more inte-

gers, each larger than 1. For

example, 42 is composite

because 42 = 7 × 2 × 3. The

first few composite numbers

are 4, 6, 8, 9, 10, 12, 14, 15,

16, 18, . . .

Definition of set theory. Set

theory is a branch of mathe-

matics that involves sets and

membership. A set may be

considered any collection of

objects, called the members

(or elements) of the set. One

mathematical example is the

set of positive integers {1, 2,

3, 4, . . .}. There are a number

of different versions of set

theory, each with its rules and

axioms.
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Why care about integers? The brilliant mathematician Paul

Erdös was fascinated by number theory and the notion that he

could pose problems using integers that were often simple to

state but notoriously difficult to solve. Erdös believed that if

one can state a problem in mathematics that is unsolved and

more than 100 years old, it is a problem in number theory.

There is a harmony in the universe that can be expressed by

whole numbers. Numerical patterns describe the arrangement

of florets in a daisy, the reproduction of rabbits, the orbit of

the planets, the harmonies of music, and the relationships

between elements in the periodic table.

Leopold Kronecker (1823–1891), a German, was an alge-

braist and a number theorist who once said, “The integers

came from God and all else was man-made.” His implication

was that the primary source of all mathematics is the integers.

Since the time of Pythagoras, the role of integer ratios in

musical scales has been widely appreciated. More important,

integers have been crucial in the evolution of humanity’s sci-

entific understanding. For example, the English chemist John

Dalton (1766–1844) discovered that chemical compounds are

composed of fixed proportions of elements that correspond to

the ratios of small integers. This was very strong evidence for

the existence of atoms. In 1925, certain integer relations

between the wavelengths of spectral lines emitted by excited

atoms gave early clues to the structure of atoms. The near-

integer ratios of atomic weights were evidence that the atomic

nucleus is made up of an integer number of similar nucleons

(protons and neutrons). The deviations from integer ratios led

to the discovery of elemental isotopes (variants with nearly

identical chemical behavior but with different radioactive

properties). Small divergences in pure isotopes’ atomic

weights from exact integers confirmed Einstein’s famous

equation E = mc2 and also the possibility of atomic bombs.

Integers are everywhere in atomic physics.

Integer relations are fundamental strands in the mathemati-

cal weave—or, as the German mathematician Carl Friedrich

Gauss said, “Mathematics is the queen of sciences—and num-

ber theory is the queen of mathematics.”



Alien set theory. “Would

intelligent beings evolving 

on a planet or environment

less contiguous than our own

ever come up with set 

theory? If beings exist in

amorphous globules in a

dynamic flowing ecosystem

without the benefit of solid

matter, and never witness 

two identical objects or

actions, would such creatures

be familiar with the number

1?” (Todd Redden, personal

communication).

Drowning in pi digits. “The

digits of pi beyond the first

few decimal places are of no

practical or scientific value.

Four decimal places are suffi-

cient for the design of the

finest engines; ten decimal

places are sufficient to obtain

the circumference of the

earth within a fraction of an

inch if the earth were a

smooth sphere” (Petr Beck-

mann, A History of Pi, 1976).

The loom of God. “The

shape assumed by a delicate

spider web suspended from

fixed points, or the cross-

section of sails bellying in the

wind, is a catenary—a simple

curve defined by a simple

formula. Seashells, animal’s

horns, and the cochlea of the

ear are logarithmic spirals

which can be generated using

a mathematical constant

known as the golden ratio.

Mountains and the branching

patterns of blood vessels and

plants are fractals, a class of

shapes which exhibit similar

structures at different magni-

fications. Einstein’s E = mc2

defines the fundamental rela-

tionship between energy and

matter. And a few simple

constants—the gravitational

constant, Planck’s constant,

and the speed of light—

control the destiny of the 

universe. I do not know if
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Definition of Euler’s number e. The constant e is the base of

the natural logarithm. It is approximately equal to 

e = 2.71828 18284 59045 23536 02874 . . .

Along with π, e is the most important constant in mathematics

since it appears in countless mathematical contexts. Roughly 2

billion digits of e have been determined. 

Euler’s number can be defined as follows:

In other words, the number e can be defined as the sum of a

series in which the series terms are the reciprocals of the fac-

torial numbers: e = 1/0! + 1/1! + 1/2! +  . . . = 2.7182818284

590 . . . (Recall that for a positive integer n, n! is the product

of all the positive integers less than or equal to n. 0! is equal to

1.) Here’s another way to look at it. Euler’s number, e, is the

limit value of the expression (1 + 1/n) raised to the nth power,

when n increases indefinitely:

The symbol e was first used by the Swiss mathematician

Leonhard Euler (1707–1783). The symbol e also appeared in

his 1736 Mechanica, perhaps inspired by the word exponential.
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God is a mathematician, but

mathematics is the loom 

upon which God weaves the

fabric of the universe” 

(Clifford Pickover, The

Loom of God, 1997).

A cool pi formula. The fol-

lowing little-known formula

yields the correct decimal

digits of pi to an amazing 42

billion digits; however, it is

not a perfect formula for pi!

In other words, it’s only a

very high-precision approxi-

mation. The ≈ symbol signi-

fies an approximation

(Borwein and Borwein,

“Strange Series and High

Precision Fraud,” 1992).

Definition of transcendental
numbers. These numbers are

so exotic that they were 

only “discovered” 150 years

ago. They’re so rare in com-

mon usage that you may be

familiar with only one of

them, π. These numbers can-

not be expressed as the root

of any algebraic equation

with rational coefficients.

This means that π could

not exactly satisfy equations

of the type: x2 = 10 or 

9x4 – 240x2 + 1,492 = 0.

These are equations involving

simple integers with powers

of π. The numbers π and e

(Euler’s number) can be

expressed as an endless con-

tinued fraction or as the limit

of the sum of an infinite

series.

Proving that a number is

transcendental is no easy

task. Charles Hermite proved

that e was transcendental in

1873 and Ferdinand von Lin-

demann proved that π was

transcendental in 1882. In

1874, Cantor surprised most

mathematicians by demon-

strating that almost all real

numbers are transcendental.

Thus, if you could somehow

put all the numbers in a big

jar and pull one out, it would

be virtually certain to be

transcendental.

There are many more

transcendental numbers than

algebraic ones. In fact, if we

could imagine the number

line with just the algebraic

numbers represented and the

transcendental ones chopped

out, such a line would have

more holes than points. Yet

despite the fact that transcen-

dental numbers are “every-

where,” only a few are known

and named. There are lots of

stars in the sky, but how

many can you name? (See

figure 2.1.)

All transcendental num-

bers are irrational numbers.

However, a transcendental

number (unlike √2) is not 

the root of any polynomial

equation with integer

coefficients. 
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Definition of a rational number. A rational number can be

expressed as a ratio of two integers, where the denominator is

non-zero. Example: 1⁄3, 1⁄2, 4. If you multiply, add, subtract, 

or divide a rational by a rational, another rational number is

produced (see figure 2.1).

Definition of complex numbers. Complex numbers are an

extension of the real numbers; complex numbers contain a

number i, called the imaginary unit, with i = √–1 . Every com-

plex number can be represented in the form x + iy, where x

and y are real numbers.



Definition of an irrational
number. An irrational number

cannot be expressed as a ratio

of two integers. Examples: e,

π, and √2. The irrational

numbers are either algebraic

irrational numbers like √2

and other radicals or surds,

which are the roots of poly-

nomial equations with

rational coefficients (e.g., √2

is the root of a2 – 2 = 0), or

transcendental numbers like

e and π. The decimal digits of

irrational numbers go on and

on, with no period or repeti-

tion. Sometimes mathemati-

cians look for patterns in the

endless string of digits to

determine whether the

arrangement of digits is simi-

lar to what would be expected

of a completely random

sequence. Writing an irra-

tional number in decimal

form, like √2 = 1.414213 . . . ,

produces an endless sequence

of decimal digits, in particu-

lar, a nonperiodic nontermi-

nating decimal number (see

figure 2.1).

Definition of algebraic
numbers. Most of the ordinary

positive and negative num-

bers you know about are

algebraic numbers. More

specifically, these numbers

are real or complex numbers

that are solutions of poly-

nomial expressions having

rational coefficients. Here’s

an example. Consider the

polynomial ax3 + bx2 + cx + d.

If r is the root or the solution

ax3 + bx2 + cx + d = 0, 
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Number zoo. Figure 2.1 is a schematic illustration (or a

visual definition) of various kinds of numbers. Natural num-

bers are often called “whole numbers” or “positive integers,”

for example, 1, 2, 3, . . . Sometimes, 0 is also included in the

list of “natural” numbers (e.g., in books such as Bourbaki’s

Elements of Mathematics: Theory of Sets or Halmos’s Naive

Set Theory), and there seems to be no general agreement about

whether to include zero.

In figure 2.1, I have focused on scalar numbers at the

expense of complex numbers. Here I refer to “scalar” as a

quantity that can be described by a single number. Scalar quan-

tities have magnitude but not a direction. A complex number

has the form x + iy, where i is √–1 . If y is zero, the complex

number is real. If x is zero, the complex number is imaginary. 

Algebraic numbers and transcendental numbers can be

complex, as hinted at by the downward arrows piercing the

real number bubble and pointing to numbers like πi and

√–2 + 1. Of course, if I wanted to fully include complex num-

bers, I might also include hypercomplex numbers—for exam-

ple, higher-dimensional complex numbers like the quaternions

of the form w + xi + yj + zk, which have more than one imagi-

nary component. A quaternion with y = 0 and z = 0 is a simple

complex number. If x is also 0, the quaternion becomes a

scalar, that is, a vector with one element. Would intelligent

aliens on other worlds develop a similar scheme?

Several features of figure 2.1 are not perfectly accurate, due

to the difficulty of making bubble diagrams of this sort. For

example, my floating of the complex numbers outside of the

algebraic numbers is a simplification in order to make the dia-

gram easier to draw. For instance, √–2 + 2 is algebraic and

contains real and imaginary parts. Radicals are algebraic; thus

there are real radicals, imaginary radicals, and complex radi-

cals that are neither real nor imaginary but a mixture of both.



then r is an algebraic number.

As we said in the definition

of irrational numbers, the

irrational numbers are con-

sidered to be of two kinds,

the algebraic irrational 

numbers and transcendental

numbers (see figure 2.1).

Superthin dart. I randomly

toss a superthin dart at a

number line that represents

all numbers from 0 to 1.

Given what you have already

learned in this chapter, is the

dart more likely to land on an

algebraic number, such as

0.6, or a transcendental one,

such as π? If you feel that

transcendentals are more

likely, how much more

likely? (See Answer 2.6.)

Definition of hypercomplex
numbers. Hypercomplex num-

bers are higher-dimensional

extensions of the complex

numbers; they include such

numbers as quaternions, octo-

nions, and sedenions. Com-

plex numbers, such as 2 + 3i,

can be viewed as points in a

plane. Similarly, hypercom-

plex numbers can be viewed

as points in some higher-

dimensional Euclidean space

(4 dimensions for the quater-

nions, 8 for the octonions, 16

for the sedenions). 

Definition of quaternions. A

quaternion is an extension of

the complex plane, discov-

ered in 1843 by William

Hamilton while he was

attempting to define three-

dimensional multiplications.

Quaternions have since been

used to describe the dynamics

of motion in 3-space. The

space shuttle’s flight software

uses quaternions in its com-

putations for guidance, navi-

gation, and flight control for

reasons of compactness,

speed, and avoidance of sin-

gularities. (In mathematics, a

singularity is a point at which

a given mathematical object

is not defined or lacks some

useful property, such as dif-

ferentiability.)

Quaternions define a four-

dimensional space that con-

tains the complex plane. As

we mentioned, quaternions

can be represented in four

dimensions by Q = a
0

+ a
1
i +

a
2
j + a

3
k, where i, j, and k are

(like the imaginary number i)

unit vectors in three orthogo-

nal directions, and they are

perpendicular to the real axis.

To add or multiply two

quaternions, we treat them as

polynomials in i, j, and k but

use the following rules to

deal with products:

i2 = j2 = k2 = –1

ij = – ji = k

jk = – kj = i

ki = – ik = j

Quaternions and
quadrupeds. “It is as unfair to

call a vector a quaternion as

to call a man a quadruped”

(Oliver Heaviside, 1892,

quoted in Paul Nahin, Oliver

Heaviside, 1988).
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Transcendental mystery. We know that π, Euler’s number e,

and eπ are transcendental. However, today, we don’t know

whether πe, ππ, or ee are transcendental. Perhaps we will never

know.

Definition of a Hamiltonian integer. This is a linear combina-

tion of basis quaternions with integer coefficients.



Definition of a magic square.
Some of the problems in this

book relate to magic squares.

A magic square is a square

matrix drawn as a checker-

board that’s filled with num-

bers or letters in particular

arrangements. Mathemati-

cians are most interested in

arithmetic squares consisting

of N 2 boxes, called cells,

filled with integers that are all

different. Such an array of

numbers is called a magic

square if the sums of the

numbers in the horizontal

rows, the vertical columns,

and the main diagonals are 

all equal.

If the integers in a magic

square are the consecutive

numbers from 1 to N 2, the

square is said to be of the N th

order, and the magic number,

or the sum of each row, is a

constant symbolized as S:

(The magic number is 

sometimes referred to as the

magic sum or the magic 

constant.)

A few examples will help

to demystify these mathemat-

ical definitions. The simplest

magic square possible is one

of the third order, with 3 × 3

cells containing the integers 1

through 9, and with the magic

sum 15 along the three rows,

three columns, and two diag-

onals. In some sense, only

one unique arrangement of

digits, and its mirror image,

is possible for a third-order

square:

Here N = 3, because there are

3 rows and 3 columns, and

the magic sum S is 15

because the numbers in the

rows, the columns, and two

diagonals sum to 15. For

example, if you look at the

square on the left, you’ll see

that the sum of the numbers

in the first row is 4 + 9 + 2 =

15. The sum of the numbers

in the first column is 4 + 3 +

8 = 15. One of the diagonal

sums is 4 + 5 + 6 = 15, and 

so forth. We can also use 

the magic sum formula to

compute the magic sum: 

3(32 + 1)/2 = 15. Notice that

the mirror image is also a

magic square. By rotating 

the square four times by 90

degrees, you can produce

eight third-order magic

squares.

As far back as 1693, the

880 different fourth-order

magic squares were published

posthumously by the French

mathematician Bernard

Frénicle de Bessy (1602–

1675). Frénicle, one of the

leading magic square

researchers of all time, was

an eminent amateur mathe-

matician working in Paris

during the great period of

French mathematics in the

seventeenth century.

S
N N

=
+( )2 1

2
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4 9 2

3 5 7

8 1 6

Third-Order Magic Square

2 9 4

7 5 3

6 1 8

Mirror Image

Definition of a sedenion. A sedenion is a hypercomplex num-

ber constructed from sixteen basic elements. A sedenion may

be represented as an ordered pair of two octonions. The word

sedenion is derived from sexdecim, meaning “sixteen.”



Definition of an octonion.
An octonion is a hypercom-

plex number that can be 

written as a linear combina-

tion of eight basic elements.

An octonion may also be 

represented and written as 

an ordered pair of two 

4-dimensional quaternions. 

Definition of nimbers. 
Nimbers are ordinal numbers

that have been recently devel-

oped by John Conway and are

fascinating because of their

addition and multiplication

operations. Two equal nim-

bers always add to 0. If the

nimbers are different, and if

the larger of the two nimbers

is 1 or 2 or 4 or 8 or 16 or 

. . . , then you add them just

as you would add the corre-

sponding ordinary numbers.

Multiplication of nimbers 

is even more exotic, and 

you can learn more at the

Wikipedia online encyclope-

dia, en.wikipedia.org/wiki/

Nimber, or in John Conway’s

book On Numbers and

Games.

Definition of a biquaternion.
A biquaternion is a quater-

nion with complex coeffi-

cients.

On counting. “Waclaw

Sierpinski, the great Polish

mathematician, was very

interested in infinite num-

bers. The story, presumably

apocryphal, is that once

when he was traveling, he

was worried that he’d lost

one piece of his luggage. 

‘No dear!’ said his wife, 

‘All six pieces are here.’

‘That can’t be true,’ said 

Sierpinski. ‘I’ve counted

them several times: zero,

one, two, three, four, five’”

(John Conway and Richard

Guy, The Book of Numbers,

1996). As an aside, in 1944,

the Nazis burned Sierpinski’s

house, destroying his library

and personal letters. More

than half of the mathemati-

cians who lectured in

Poland’s academic schools

were killed, and Nazis

burned down the Warsaw

University Library, which

contained several thousand

volumes, magazines, and

mathematical books. Sierpin-

ski was the author of 724

papers and 50 books.
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Bombs on magic squares. I’ve dropped bombs on several of

the numbers in this magic square, where consecutive numbers

from 0 to 63 are used, and each row, each column, and two

main diagonals have the same sum. Can you replace the

bombs with the proper numbers? (See Answer 2.7.)

� � 2 60 11 53 9 �
� � 13 51 4 58 6 56

16 46 18 44 27 37 25 39

31 33 29 � � 42 22 40

52 10 54 � � 1 61 3

59 5 57 7 48 14 50 12

36 26 38 24 47 17 � �
� 21 41 23 32 30 � �



Integer satisfaction. “What

could be more beautiful than

a deep, satisfying relation

between whole numbers.

How high they rank, in the

realms of pure thought and

aesthetics, above their lesser

brethren: the real and com-

plex numbers . . . ” (Manfred

Schroeder, Number Theory in

Science and Communication,

1984).

Math anagrams. Apart

from the fact that they are

equal, ONE PLUS TWELVE and

TWO PLUS ELEVEN are ana-

grams of each other.

The paradox of pepperonis.
Perhaps you’ve heard this

sort of fallacy when you 

were a child. (A fallacy pro-

duces a wrong answer using

explanations that sometimes

appear to be very logical.)

Before you are six pepper-

onis, three on each of two

pizzas:

� � � � � �

A child will now try to prove

there are really seven pepper-

onis. Try this on friends. 

Start counting “1, 2, 3” on

the first pizza, and then 

pause and continue counting,

“4, 5, 6” on the second pizza.

Now count backward while

pointing to the second pizza,

“6, 5, 4.” You are now point-

ing to the first pepperoni in

the second pizza and have

said the word four. Next, you

say, “four, and three more on

the first pizza makes seven.” 

What is wrong with this

argument? How would chil-

dren of various ages respond?

(If you have access to a child,

please tell me how he or she

responded.) Sure, this is

crazy, but can you articulate

precisely what’s wrong with

the child’s argument? (See

Answer 2.9.)

Taxicab numbers. What do

British taxicabs have to do

with the number 1,729? 

Why is 1,729 such a special

and famous number in the

history of mathematics? (See

Answer 2.10.)

Transcendence. We know

that π (3.1415 . . .) and e

(2.7182 . . .) are the most

famous transcendental num-

bers. Is (π + e) transcenden-

tal? Is (π × e) transcendental?

(See Answer 2.11.)
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Liouville constant. In 1844, the French mathematician

Joseph Liouville (1809–1882) considered the following inter-

esting number

L = 0.110001000000000000000001000 . . .

known today as the Liouville constant. Can you guess its sig-

nificance or what rule he used to create it? (See Answer 2.8.)

Viete’s formula for π. The first person to uncover an infinite

product formula for pi was the French mathematician François

Viete (1540–1603). This remarkable gem involves just two

numbers—π and 2:

π = ⋅ ⋅
+

⋅
+ +

2
2

2

2

2 2

2

2 2 2

. . .



Special class of numbers.
This puzzle is for extreme

math lovers. The following

numbers represent a special

class of numbers that mathe-

maticians have studied for

years: 12, 18, 20, 24, 30, 36,

40, 42, 48, 54, 56, 60, 66, 70,

72, 78, 80, 84, 88, 90 . . .

These numbers are so unique

that mathematicians have a

special name for them. Can

you determine what mathe-

matical property these num-

bers have in common, aside

from the fact that the num-

bers in this limited list are 

all even numbers? (See

Answer 2.12.)

Goldbach conjecture. In

1742, the mathematician

Christian Goldbach conjec-

tured that every integer

greater than 5 can be written

as the sum of three primes,

like 21 = 11 + 7 + 3. As reex-

pressed by Euler, an equiva-

lent conjecture (called the

“strong” Goldbach conjec-

ture) asserts that all positive

even integers greater than 2

can be expressed as the sum

of two primes. (Note that 1 is

not considered a prime num-

ber.) The publishing giant

Faber and Faber offered a

$1,000,000 prize to anyone

who proved Goldbach’s con-

jecture between March 20,

2000, and March 20, 2002,

but the prize went unclaimed,

and the conjecture remains

open. In 2003, the conjecture

was verified up to 6 × 1016.

Fermat numbers. In 1650,

the French scholar and lawyer

Pierre de Fermat rashly

proposed that all numbers of

the form F
p

= 22p
+ 1 were

prime numbers. He knew that

this was true for the first five

such numbers corresponding

to p = 0 ,1 , 2, 3, 4. Alas,

Leonhard Euler in 1732

proved that the fifth number

was not prime. In fact, today,

many believe that all Fermat

numbers greater than F
4

are

composite.

Fermat numbers. In 2003,

Thomas Koshy proved that

every Fermat number (num-

bers of the form F
p

= 22p
+ 1)

ends in the digits 17, 37, 57,

or 97, where p > 1 (Journal of

Recreational Mathematics).

Champernowne’s number.
Here is a very famous num-

ber called Champernowne’s

number:

0.1234567891011121314 . . .

Do you see how it is created?

What makes it so interesting?

(See Answer 2.13.)

Calculating π. The first

computer calculation of π
occurred in 1947, yielding

2,037 decimal digits in 70

hours. Today we know π to

over a trillion digits.

π on a tombstone. The

fencing master Ludolph van

Ceulen (1540–1610) gave π
to 20 decimal digits in 1596.

Several digits of π were

engraved on his tombstone.

Cool Numbers 59

Wallis’s equation for π. In 1655, the English mathematician

John Wallis (1616–1703) devised this wonderful-looking infi-

nite product involving only rational numbers to calculate pi:

π

2

2

2 1 2 1

2 2

1 3

4 4

3 5

6 6

5 7

2

1

=
− +













=
⋅

⋅

⋅

⋅

⋅

⋅=

∞

∏
( )

( )( )
. . .

n

n nn



No train stops at π. “Pi is

not the solution to any equa-

tion built from a less-than-

infinite series of whole

numbers. If equations are

trains threading the landscape

of numbers, then no train

stops at pi.” (Richard Preston,

“The Mountains of Pi,” New

Yorker, 1992).

Chung-chih formula for π.
Astronomer Tsu Chung-chih

(430–501) gave the following

value of π, which is correct to

six decimal digits.

π =
355
113 = 3.141592 . . .

This value was not improved

upon in Europe until the six-

teenth century, more than a

thousand years later.

Self-location and π.
Humanity is aware of just a

few “self-locating” strings

within π. Defining the first

digit after the decimal point

as digit 1, Jeff Roulston has

found the following numbers

that can self-locate in the first

50 million decimal digits of

π; 1; 16,470; and 44,899. For

example, the digit 1 is found

in position 1 in 3.1415. The

string 16,470 starts in posi-

tion 16,470, and so forth.

Numerical axis of evil. The

Russian computer specialist

Timofei Shatrov has discov-

ered a relationship between

13, 666, and 911, the date of

the World Trade Center disas-

ter: 911 =13 + 666 + 2 ×
116. As you can see, 116 is

911, flipped upside down.

Exclusionary squares. I

have a particular penchant for

an unusual class of numbers

called “exclusionary

squares,” such as the very

special number 639,172. It

turns out that this is the

largest integer with distinct

digits whose square is made

up of digits not included 

in itself: 639,1722 =

408,540,845,584. Can you

find the only other six-digit

example? Do any exclusion-

ary cubes or exclusionary

numbers of higher orders

exist? (See Answer 2.16.)

The grand search for iso-
primes. Note that 11 is an iso-

prime, a prime number with

all digits the same. (A prime

number is divisible only by

itself and 1.) Do any other

isoprimes exist in base 10?

Similarly, 101 is an oscil-

lating bit prime (base 10). 

Do any others exist? For

example, 10,101 is not prime.

Neither is 1,010,101. (See

Answer 2.17.)
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Copeland-Erdös constant. Here’s a famous number that

caused quite a stir in 1945:

0.23571113171923 . . .

Can you determine how this number was constructed? (See

Answer 2.14.)

Thue constant. This number is called the Thue constant: 

0.110110111110110111110110110110110111110110 . . .

Can you figure out how it was generated or determine its

remarkable properties? (See Answer 2.15.)



Special augmented primes.
One of my favorite bizarre

number quests involves a spe-

cific kind of prime number

called a “special augmented

prime.” You can augment a

prime simply by placing a 1

before and after the number.

The augmented prime is “spe-

cial” if it yields an integer

when divided by the original

prime number. For example,

137 is such a number because

137 is prime and because

11371/137 yields an integer—

namely, 83. Are there other

such numbers? How rare are

special augmented primes?

(See Answer 2.18.)

Unreasonable effectiveness
of mathematics. “The enor-

mous usefulness of mathemat-

ics in natural sciences is

something bordering on the

mysterious, and there is no

rational explanation for it. It is

not at all natural that ‘laws of

nature’ exist, much less that

man is able to discover them.

The miracle of the appropri-

ateness of the language of

mathematics for the formula-

tion of the laws of physics is a

wonderful gift which we nei-

ther understand nor deserve”

(Eugene P. Wigner, “The

Unreasonable Effectiveness of

Mathematics in the Natural

Sciences,” 1960).

Body weights. What would

happen if everyone’s body

weight was quantized and

came in multiples of π
pounds? (See Answer 2.20.)

Jesus and negative numbers.
Would Jesus of Nazareth ever

have worked with a negative

number, like –3? (See Answer

2.21.)

Jesus notation. What kinds

of written numbers did Jesus

of Nazareth, or a comparable

figure of his era, use? Did

these people use numbers that

looked like the numbers we

use today? (See Answer 2.22.)

Jesus and multiplication.
Could Jesus of Nazareth

multiply two numbers? (See

Answer 2.23.)
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Triangle of the Gods. An angel descends to Earth and shows

you the following simple progression of numbers: 

1

12

123

1234

12345

123456

1234567

12345678

123456789

1234567890

12345678901

123456789012

1234567890123 . . .

The angel will let you enter the afterlife if you can determine

what is the smallest prime number of this kind. Can you do

so? (See Answer 2.19.)



The digits of π. Is it true

that I can find consecutive

digits, like 1, 2, 3, . . .

1,000,000, all neatly in a row

in the decimal digits of π?

(See Answer 2.24.)

Living in the π matrix. Is it

true that we all live forever,

coded in the endless digits of

π? (See Answer 2.25.)

Numbers and sign language.
In American sign language, a

person puts up one finger for

1, two fingers for 2, and so

forth. How would a deaf per-

son sign “100” without grow-

ing one hundred fingers? (See

Answer 2.26.)

Adding numbers. It would

be a tough job to add all the

numbers between 1 and

1,000. What formula would

you use to do this quickly?

(See Answer 2.27.)

The mystery of 0.33333.
We all know that 1⁄3 = 0.3333

. . . repeating. Multiplying

both sides of the equation by

3, we find that 1 = 0.9999 . . .

How can this be? (See

Answer 2.28.)

The grand Internet undulat-
ing obstinate number search. In

1848, Alphonse Armand

Charles Georges Marie, bet-

ter known as the “Prince de

Polignac,” conjectured that

every odd number is the sum

of a power of 2 and a prime.

(For example, 13 = 23 + 5.)

He claimed to have proved

this to be true for all numbers

up to three million, but de

Polignac probably would

have kicked himself if he had

known that he missed 127,

which leaves residuals of

125, 123, 119, 111, 95, and

63 (all composites—that is,

nonprimes) when the possible

powers of 2 are subtracted

from it. There are another 

16 of these odd numbers—

which my colleague Andy

Edwards calls obstinate

numbers—that are less than

1,000. There is an infinity of

obstinate numbers greater

than 1,000.

Most obstinate numbers

that we have discovered are

prime themselves. The first

composite obstinate number

is 905. What is the largest

obstinate number that 

humanity can compute? 

What is the smallest differ-

ence between adjacent 

obstinates?

Do any obstinates undu-

late? (Undulating numbers

are of the form ababababab 

. . . For example, 171,717 is

an undulating number, but 

it’s not obstinate.) (See

Answer 2.29.)

Mystery sequence. What is

the missing number in the

following sequence? No

numbers may repeat in this

sequence.

13, 24, 33, 40, 45, 48, ?

(See Answer 2.30.)
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Strange code. If ..--- + ....- equals -...., what does .----

+ ..--- equal? (See Answer 2.31.)

Mystery sequence. What number comes next?

1, 9, 17, 3, 11, 19, 5, 13, 21, 7, 15, ?

(See Answer 2.32.)



Time-travel integer. Pete

tells Penny, “I want to travel

back in time to a year that has

all even digits, like A.D. 246.”

Penny replies, “How about

the year 2000?” 

“No,” Pete says, “I want to

travel to a year before 2000.

Given this constraint, what’s

the most recent year that I can

travel to that has all even dig-

its, with each digit different? I

want a recent year so that I’ll

have a chance of enjoying

some modern amenities.”

(See Answer 2.35.)

Mystery sequence. What is

the next number in the

sequence?

1, 2, 9, 64, 625, ?

(See Answer 2.36.)

Ostracism. Which of these

numbers is the odd one out?

3 8 15 24 35 48 55 63

(See Answer 2.37.)

Natives and mathematics.
“In Samoa, when elementary

schools were first established,

the natives developed an

absolute craze for arithmeti-

cal calculations. They laid

aside their weapons and were

to be seen going about armed

with slate and pencil, setting

sums and problems to one

another and to European visi-

tors. The Honourable Freder-

ick Walpole declares that his

visit to the beautiful island

was positively embittered by

ceaseless multiplication and

division” (Robert Briffault

[1876–1948], quoted in John

Barrow’s Pi in the Sky, 1992).

a2 + b2 + 1? In 1996,

Daniel Schepler, a student at

Washington University, St.

Louis, Missouri, answered

the following cool question:

“For what pairs of integers a,

b does ab exactly divide a2 +

b2 + 1?” Schepler proved that

the solution pairs (a, b) are

always (F
2n + 1

, F
2n – 1

), where

F
n

is the nth Fibonacci num-

ber. (For further reading, see

Richard Guy and Richard

Nowakowski, “A Recurrence

of Fibonacci,” The American

Mathematical Monthly 103,

no. 10 [December 1996]:

854–69).

Mystery sequence. What

rule am I using to determine

the numbers in this sequence?

18, 20, 24, 30, 32, 38, 42, . . .

(See Answer 2.38.)

Mystery sequence. The

great trumpet player Dizzy

Lizzy plays a run of 767

notes, then a run of 294, then

one of 72, then one of 14.

How many notes does she

play next? (See Answer 2.39.)
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Mystery sequence. Replace the � with the correct num-

bers in this interesting sequence:

1, 8, 15, 3, �, 19, 9, 18, 10, �,

14, 7, 5, 4, �, 13, 0, 12, 16, �
(See Answer 2.33.)

Mystery sequence. What is the significance of the following

sequence?

2357, 1113, 1719, 2329, 3137, 4143

(See Answer 2.34.)



Mystery sequence. There is

a logical pattern to the fol-

lowing sequence of numbers.

What is the next number in

the sequence?

1, 5, 12, 22, 35, 51, 70, ?

(See Answer 2.41.)

Mystery sequence. You and

your friend are enjoying

desserts. Your friend, who is

eating apple pie with

whipped cream, asks you to

supply the missing number in

this very difficult sequence,

which he has written using

vanilla ice cream: 

1, 41, 592, 6535, ?

Can you determine the miss-

ing number? Your reward is

the cake or the pie of your

choice, which your friend

will deliver to you personally.

Hurry, the ice-cream numbers

are melting! (See Answer

2.42.)

Ostracism. Which product

does not belong in this list?

21 × 60 = 1,260

15 × 93 = 1,395

15 × 87 = 1,305

30 × 51 = 1,530

21 × 87 = 1,827

80 × 86 = 6,880 

(See Answer 2.43.)
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Cellular communication. Marvin is studying cells that live in

a warm sea on another planet. These cells emit puffs of tiny

bubbles when they communicate with each other. The bubbles

come in two colors: red and blue, which we can symbolize as

� and�.

Today, Marvin is trying to determine whether these cells

have any intelligence. The first cell emits a red bubble �, then

its neighbor emits a red, followed by a blue bubble ��. The

sequence of bubbles grows rapidly: 

�
��
����

��������
����������������

What rules are the cells using to determine bubble colors in

this growing sequence? (See Answer 2.40.)

Definition of an automorphic number. An automorphic number

is a number with a power (such as a square or a cube) that

ends in that number. For example, 6 is automorphic because 

62 = 36. Here’s another: 6252 = 390,625. The number

40,081,787,109,376 is a magnificent example, because

400817871093762 = 1606549657881340081787109376

Automorphic acumen. Here is a 100-digit automorphic num-

ber from Mr. R. A. Fairbairn of Toronto:

6,046,992,680,891,830,197,061,490,109,937,833,490,

419,136,188,999,442,576,576,769,103,890,995,893,

380,022,607,743,740,081,787,109,376

(The square of this number ends with the digits of this number.

The source for the Fairbairn number is Joseph S. Madachy’s

Madachy’s Mathematical Recreations [New York: Dover, 1979]).



The amazing 5. Can you

list four amazing mathemati-

cal facts about the number 5?

(See Answer 2.44.)

Mystery sequence. What is

the value of the missing digit

in this sequence?

6 2 5 5 4 5 6 3 ?

(I have never known anyone

who was able to solve this

puzzle.) (See Answer 2.45.)

Mystery sequence. Supply

the missing number in this

very difficult sequence:

2, 71, 828, ?

(See Answer 2.46.)

Definition of an untouchable
number. An untouchable num-

ber is a number that is never

the sum of the factors of any

other number. In particular,

an untouchable number is an

integer that is not the sum of

the proper divisors of any

other number. (A proper divi-

sor of a number is any divisor

of the number, except itself.

Example: the proper divisors

of 12 are 1, 2, 3, 4, and 6.)

The first few untouchables

are 2, 5, 52, 88, 96, 120, 124,

146, . . . Paul Erdös has

proved that there are infi-

nitely many untouchables. 

The Lego sequence. What

rule is used to generate the

Lego sequence?

1, 3, 7, 19, 53, 149, 419, . . .

(See Answer 2.49.)

Vampire numbers. Vampire

numbers are the products of

two progenitor numbers that

when multiplied survive,

scrambled together, in the

vampire number. Consider

one such case: 27 × 81 =

2,187. Another vampire num-

ber is 1,435, which is the

product of 35 and 41. Can

you find any others? (See

Answer 2.50.)

Jewel thief. A jewel thief

with long, spindly fingers has

a burlap bag containing 5 sets

of emeralds, 4 sets of dia-

monds, and 3 sets of rubies.

A “set” consists of a large, a

medium, and a small version

of each of these gems. The

electricity is out, and it is

dark. How many gems must

he withdraw from his bag to

be sure that he has a complete

set of one of the gems? How

many gems must he withdraw

to ensure that he has removed

all of the large gems? (See

Answer 2.51.)
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Mystery sequence. A violinist plays a seemingly random riff

of short and long notes over and over again, which can be rep-

resented as a string of 0s (long notes) and 1s (short notes):

01101010001010001010001000001010000010001010...

What rule is the violinist using to produce this sequence? (See

Answer 2.47.)

Mystery sequence. What rule is used to generate this very

difficult sequence?

3, 4, 5, 7, 11, 13, 17, 23, 29, 43, 47, 83, 131, 137, 359, 

431, 433, 449, 509, 569, 571, 2971, 4723, 5387, . . . 

(See Answer 2.48.)



Palinpoints of arithmetical
functions. Dr. Joseph Pe and

others have studied arithmeti-

cal functions having domain

and range that are sets of

integers. Let rev(n) denote

the digit reversal of the 

integer n; for example,

rev(123) = 321 and rev(–29)

= –92. The palinpoints

(“palindronomic points”) 

of an arithmetical function f

are arguments n at which f

commutes with rev(n), that is,

f(rev(n)) = rev(f(n)). Ignore

leading 0s.

For example, let f(n) = n2.

Because 3112 = 96,721 and

1132 = 12,769. And

f(rev(311)) = rev(f (311)), so

that 311 is a palinpoint of f.

Can you find any multidigit

palinpoints of f(n) =

Prime(n), that is, palinpoints

for prime numbers? (See

Answer 2.52.)

Dr. Brain’s Mystery
sequence. Dr. Brain asks you

to consider this number

sequence:

1, 3, 6, 10, 15, 21, . . .

What number comes next?

(See Answer 2.53.)

Poseidon’s sequence. Posei-

don, the Greek god of the

oceans, extended his pitch-

fork and drew on a seashell:

727, 98,72, 14, 4

He turned back to his

class. “Can anyone tell me

how the following sequence

arises?” Jessica instantly

stuck up her hand. “Sir, in

‘727, 98, 72, 14, 4,’ each 

term is the product of the 

digits of the previous one.”

“Jessica, you are amazing.

Now let me tell you about

727’s persistence. The per-

sistence of a number is the

number of steps (4 in our

example) before the number

collapses to a single digit.

Now, consider my mighty

difficult question: What is 

the smallest number with 

persistence 4? I will take 

you on a tour of all of the

Earth’s oceans if you can

solve this problem.” (See

Answer 2.54.)

66 A Passion for Mathematics

The amazing 1/89. Although not widely known, the decimal

expansion of 1/89 (0.01123 . . .) relates to the Fibonacci series

when certain digits are added together in a specific way.

Examine the following sequence of decimal fractions,

arranged so that the right-most digit of the nth Fibonacci 

number is in the n + 1th decimal place:

n

1 .01

2 .001

3 .0002

4 .00003

5 .000005

6 .0000008

7 .00000013

.0112359 . . .

Unbelievably, 

1/89 =

0.01123595505617977528089887640449438202247191 . . .

Fantastic! Why should this be so? Why on Earth is 89 so

special?



Mystery sequence. What

number comes next?

1; 8; 81; 1,024; ?

(See Answer 2.57.)

Very rare square pyramidal
numbers that are also square.
In the answer to the 69,696

question (see page 68), we

defined a square number as

an integer of the form y = x2.

Square numbers count the

number of balls in the follow-

ing figure: 1, 4, 9, 16, . . . :

� �� ��� ����

�� ��� ����

��� ����

����

Square pyramidal numbers

count the number of balls 

in a growing pyramid of balls

formed by square layers and

grow according to the

sequence 1, 5, 14, 30, . . . 

For years, people had won-

dered how many numbers

existed that were both square

and square pyramidal.

Finally, in 1918, G. N. 

Watson proved that only one

multidigit square pyramidal

number exists that is also

square: 4,900.
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Mystery sequence. Each day a zookeeper chooses several

additional animals for the zoo. Row 1 shows his choices for

day 1. Row 2 are his choices for day 2, and so forth. What 

rule is he using?

(See Answer 2.55.)

Constructions with 1, 2, and 3. Today, we will construct inte-

gers using just 1s, 2s, and 3s, and any number of +, –, and ×
signs. You are also allowed exponentiation, but you cannot

concatenate numbers to form multidigit numbers. As an exam-

ple, let’s first consider the problem where only the digit 1 is

allowed. The number 40 could be written: 

40 = (1 + 1 + 1 + 1 + 1) × (1 + 1 + 1 + 1) × (1 + 1)

If we let f(n) be the least number of digits that can be used 

to represent n, then we see that f (40) ≤ 11. A contest that

allows only 1s for forming small numbers turns out not to be

very interesting. However, once the digits 2 and 3 are also

allowed, the problem becomes fascinating. Here is an exam-

ple: 121 = (2(2 + 1) + 3)2 Here f(121) ≤ 5. Is this the best you

can do? 

Here is my challenge to you for this contest! Your goal is to

represent the numbers 40, 61, 263, and 500 with as few digits

as possible. (See Answer 2.56.)



Blue liquid. A mad scien-

tist gazes into a vial of blue

liquid. “This substance is still

a liquid at minus 40 degrees,”

he tells his assistant, Boris.

Boris replies, “Is that

Centigrade or Fahrenheit?”

With his dark eyes, the sci-

entist looks at Boris and says,

“It doesn’t matter.” Why did

the scientist say that? (See

Answer 2.58.)

Grasshopper sequences.
Consider the numbers gener-

ated by the following expres-

sions, where x is an integer,

and we start with x = 1.

x → 2x + 2

x → 6x + 6

These mappings generate two

branches of a “binary tree”

(figure 2.2).

Pretend that each generation

of children requires a day to

compute. For example, after

one day, we have 4 and 12 as

“children” of the “parent” 1.

The next day produces 10,

30, 26, and 78. All the num-

bers that have appeared so

far, when arranged in numeri-

cal order, are 1, 4, 10, 12, 26,

30, 78, . . . No number seems

to appear twice in a row—for

example, 1, 4, 10, 10, . . .

Does a number ever appear

twice? Maybe we don’t see a

repetition now, but would we

see one after thousands of

years? (See Answer 2.59.)

The loneliness of the 
factorions. Factorions are

numbers that are the sum of

the factorial values for each

of their digits. (For a positive

integer n, the product of all

the positive integers less than

or equal to n is called “n fac-

torial,” usually denoted as n!

For example, 3! = 3 × 2 × 1. )

The number 145 is a facto-

rion because it can be

expressed as

145 = 1! + 4! + 5!

How many others can you

find? (See Answer 2.60.)

69,696. What is special

about the number 69,696?

(See Answer 2.61.)

The beauty of 153. What’s

so special about the number

153? (See Answer 2.62.)
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Mystery consecutive integers. Consider the sequence of 

integers consisting of all square numbers and cube numbers,

starting at 4:

4, 8, 9, 16, 25, 27, 36, 49, 64, 81, 100, . . .

Notice how 8 and 9 are consecutive integers. Are there any

other consecutive numbers in this sequence? For years, mathe-

maticians and computer scientists have searched for other

examples, but, besides 8 and 9, no consecutive powers were

ever observed. (For further reading, see Paulo Ribenboim,

“Catalan’s Conjecture,” The American Mathematical Monthly

103, no. 7 [August–September 1996]: 529-32.) The conjecture

that 8 and 9 are the only such consecutive integers was finally

proved by Preda Mihailescu of the University of Paderborn in

Germany and published in “A Class Number Free Criterion

for Catalan’s Conjecture,” Journal of Number Theory 99, no. 2

(2003): 225–31.

Figure 2.2 Grasshopper
sequences.



Definition of a googol.
A “googol” (not to be con-

fused with the Internet search

engine Google) is a large

number equal to 10100 (1 fol-

lowed by 100 zeroes). The

word googol was coined by

the American mathematician

Edward Kasner (1878–1955)

in 1938. According to the

story, Kasner asked his

young nephew what name 

he would give to an incredi-

bly large number, and

“googol” was the nephew’s

response. An equivalent

name for googol is “ten 

dotrigintillion.”

Christians and 153. St.

Augustine, the famous Chris-

tian theologian, thought that

153 was a mystical number

and that 153 saints would rise

from the dead in the escha-

ton. St. Augustine was fasci-

nated by a New Testament

event (John 21:11) where the

Apostles caught 153 fish

from the Sea of Tiberias.

Seven disciples hauled in the

fish, using nets. St. Augustine

reasoned that these seven

were saints. Why, you ask?

Because there are seven gifts

from the Holy Ghost that

enable men to obey the Ten

Commandments, Augustine

thought that the disciples

must therefore be saints.

Moreover, 10 + 7 = 17, and if

we add together the numbers

1 through 17, we get a total

of 153. The hidden meaning

of all this is that 153 saints

will rise from the dead after

the world has come to an end.

The majesty of 153. My

favorite integer is 153. Why?

First, as we just mentioned,

153 = 13 + 53 + 33. But, 

more than that, 153 = 1! + 2!

+ 3! + 4! + 5!, where the “!”

symbols mean factorial.

Also, when the cubes of the

digits of any three-digit 

number that is a multiple

of 3 are added, and the digits

of the resulting number are

cubed and added, and the

process continued, the final

result is 153. For instance,

start with 369, and you get

the sequence 369, 972,

1,080, 513, 153. Want more

reasons? Because 153 is also

the 17th triangular number,

and I just told you why St.

Augustine thought that 17

was important. It’s the sum of

10 (for the Ten Command-

ments of the Old Testament)

and 7 (for the Gifts of the

Spirit in the New Testament).

Erdös equation. I know 

of only three different 

solutions to n! + 1 = m2,

where n and m are integers.

Can you find at least one of

these solutions? (See Answer

2.64.)
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Ten silver boxes. In each of ten shiny, silver boxes in Row 2

in the following diagram, write a one-digit number. The digit

in the first box indicates the total number of zeros in Row 2.

The box beneath “1” in Row 1 indicates the total number of 1s

in Row 2. The box marked “2” indicates the total number of 2s

in Row 2, and so on.

Is there a solution to this problem? Are there many solu-

tions to this problem? (See Answer 2.63.)

0 1 2 3 4 5 6 7 8 9 Row 1

Row 2



String theory and ancient
math. Ancient math can find

obscure applications cen-

turies later and can even

describe the very fabric of

reality. For example, in 1968,

Gabriele Veneziano, a

researcher at CERN (a Euro-

pean particle accelerator lab),

observed that many proper-

ties of the strong nuclear

force are perfectly described

by the Euler beta-function, an

obscure formula devised for

purely mathematical reasons

two hundred years earlier by

Leonhard Euler. In 1970,

three physicists, Nambu,

Nielsen, and Susskind, pub-

lished their theory behind the

beta-function; this eventually

led to modern string theory,

which says that all of the 

fundamental particles of 

the universe consist of tiny

strings of energy. 

Square numbers. Can you

tell me every positive integer

whose square contains the

same decimal digits as its

double? (See Answer 2.66.)

√2  is irrational. Can you

prove, in just a few simple

steps, that √2 is irrational?

Do this in such a way that a

high-school student could

understand it and agree with

you. (See Answer 2.67.)

Reversed numbers and
palindromes. If you select an

integer, reverse its digits, add

the two numbers together,

and continue to reverse and

add, the result often becomes

a palindrome—that is, the

number reads the same in

both directions (see the

example on page 71). With

some numbers, this happens

in a single step. For example, 

18 + 81 = 99, which is a

palindrome. Other numbers

may require more steps. For

example, 19 + 91 = 110. 

And 110 + 011 = 121. Of 

all the numbers under

10,000, only 249 fail to form

palindromes in 100 steps or

less.

In 1984, Gruenberg noted

that the smallest number 

that seems never to become

palindromic by this process

is 196. (It has been tested

through 50,000 steps.) I 

have tested the starting num-

ber 879 for 19,000 steps, 

producing a 7,841-digit 

number—with no palin-

drome resulting. Statistical

tests indicate an approxi-

mately equal percentage of

occurrence of digits 0

through 9 for this large num-

ber. Similarly, I have tested

1,997 for 8,000 steps, with

no palindrome occurring.
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Perrin sequence. Consider a simple sequence defined by

addition:

u(n + 3) = u(n) + u(n + 1).

We can “seed” the sequence with three terms: u(0) = 3, u(1) =

0, and u(2) = 2. Then, the first few terms are

Notice that it is easy to locate prime numbers n, because they

seem to occur whenever u(n) = n or is a multiple of n. How

can this be? Is this always true? If not, what is the first exam-

ple to the contrary? (See Answer 2.65.)

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

u(n) 3 0 2 3 2 5 5 7 10 12 17 22 29 39 51

n prime? p p p p p p



Fibonacci snakes. You go

to a neighborhood pet store

and buy a pair of small

snakes and breed them. The

pair produces one pair of

young after one year, and a

second pair after the second

year. Then they stop breed-

ing. Each new pair also pro-

duces two more pairs in the

same way, and then stops

breeding. How many new

pairs of snakes would you

have each year? (See Answer

2.68.)

Pascal’s triangle. One of

the most famous integer pat-

terns in the history of mathe-

matics is Pascal’s triangle.

Blaise Pascal was the first to

write a treatise about this pro-

gression in 1653, although

the pattern had been known

by Omar Khayyam as far

back as A.D. 1100. The first

seven rows of Pascal’s trian-

gle can be represented as

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1

1 6 15 20 15 6 1

Each number in the triangle

is the sum of the two num-

bers above it. The role that

Pascal’s triangle plays in

probability theory, in the

expansion of binomials of the

form (x + y)n, and in various

number theory applications

has been discussed in numer-

ous references. If similar

expansions are made for 

(x + y + z)n for successive

powers of n, Pascal’s Pyramid

can be generated.

Palindromes on parade.
Palindromic numbers are

positive integers that “read”

the same backward or for-

ward. For example, 12,321;

11; 261,162; and 454 are 

all palindromic numbers.

How many palindromic num-

bers are there that are less

than or equal to the integer

P? We call this quantity

W(P). For example, 

W(3) = 3, since 1, 2, and 3

are palindromes. (See 

Answer 2.69.)
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Catalan numbers. Catalan numbers are defined by the fol-

lowing rules. The first two Catalan numbers are 1, which we

can write as C(0) = 1 and C(1) = 1. The nth Catalan number is

defined as

Can you write a program to print the first twenty Catalan num-

bers? The first ten Catalan numbers are 1; 1; 2; 5; 14; 42; 132;

429; 1,430; and 4,862. The Catalan numbers answer the ques-

tion “In how many ways can a regular n-gon be divided into n-

2 triangles if different orientations are counted separately?”

The nth Catalan number can also be computed from

The nth Catalan number can be approximated by

C
n

n
n
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4

3 2π /

C
n

n n
n
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Alpha and omega. Dr.

Brain writes two unknown

integers, alpha and omega,

on a scrap of paper and

places the scrap in a black

box. Each integer is between

2 and 99 inclusive. Dr. Brain

tells his wife the product of

alpha and omega. She looks

at the product and says,

“Simply by looking at the

product, I can’t tell what

alpha and omega are.”

From this little informa-

tion, can we exclude any 

values for alpha and omega 

to make a more informed

guess at the possible values

of alpha and omega? (See

Answer 2.70.)

“A mathematician is a

machine for turning coffee

into theorems” (Paul Erdös,

quoted in Paul Hoffman, The

Man Who Loved Only Num-

bers, 1999).

Does pi contain pi? Pi is an

infinite string of digits and

contains an infinite number of

finite strings of digits. In fact,

it probably includes every

possible string of finite digits.

Does pi contain itself? (See

Answer 2.71.)

Word frequency. What is

your estimate of the relative

occurrences of the English

words one, two, three, four,

. . . , twenty on the Internet?

Do you think that the number

of occurrences smoothly

decreases, starting from one

to twenty? (See Answer 2.72.)

Bad luck. Why is the num-

ber 13 considered unlucky?

(See Answer 2.73.)

The height of irrationality.
A wise man once challenged,

“Show, by a simple example,

that an irrational number

raised to an irrational power

need not be irrational.” Can

you do it? (See Answer 2.74.)

A common fear. What is

paraskevidekatriaphobia?

(See Answer 2.75.)
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Too many 3s. One unusual paper in a prestigious chemical

journal reported that many products and quotients of funda-

mental constants have values very close to the number 3 

multiplied by a power of 10:

The author, J. E. Mills, claims that the high occurrence of 

values extremely close to the number 3 is “amazing.” (Do you

think it is amazing if the results depend on the units in which

the constants are expressed?) In the table, m
0

is the mass of an

electron, c is the speed of light, G is the gravitational constant,

and ε the electronic charge. (J. E. Mills, “Relations between

Fundamental Physical Constants,” Journal of Physical Chem-

istry 36 (1932): 1089–1107.)

Function Numerical Value

c 2.9976 × 1010

(ε/m
0
)1/2 2.9995 × 101

m
0
/(2πε)1/2 3.0009 × 109

√m0
2.9990 × 10–14

2πε 2.9971 × 10–9

3Gc/2 2.9967 × 103



Definition of an emirp. An

emirp is a prime number that

turns into another prime

number when the digits are

reversed. Emirp is prime

spelled backward. Example:

37 and 73. When you reverse

the digit of most primes, you

get a composite (43 becomes

34). Here are the first few

emirps: 13, 17, 31, 37, 71,

73, 79, 97, 107, 113. . . . 

The number 1,597 turns

out to be an emirp because

7,951 is also prime.

Definition of a perfect
number. A perfect number,

like 6, is the sum of its proper

divisors (6 = 3 × 2 × 1 = 3 +

2 + 1). The ancient mathe-

matician Nicomachus (A.D.

60–120) knew of the first

four: 6, 28, 496, and 8,128.

The next two are 33,550,336

and 8,589,869,056. All per-

fect numbers discovered thus

far are even.

Judaism and perfect num-
bers. The ancient Jews tried to

use numbers to prove to athe-

ists that the Old Testament

was part of God’s revelation.

The famous Jewish philoso-

pher and theologian Philo of

Alexandria (20 B.C.–A.D. 40)

justified the story of Genesis

by first validating the asser-

tion that God created the

world in six days. He claimed

that the six-day creation must

be correct because 6 was the

first perfect number (since 

6 is the sum of its divisors, 

6 = 1 + 2 + 3). The perfection

of the number 6 led to it

becoming the symbol of cre-

ation and reinforcing the

notion of God’s existence.

So important were perfect

numbers to the Jews in their

search for God that Rabbi

Josef ben Jehuda Ankin, in the

twelfth century, recommended

the study of perfect numbers

in his book Healing of Souls.

Why did the ancients have

such a fascination with num-

bers? Could it be that in diffi-

cult times, numbers were the

only constant thing in a

chaotic world?

Ten and the Jews. Ten

appears often in Judaism.

There are 10 commandments.

The Zohar, the central text of

the Kabbalah, says that the

world was created in 10

words, because in Genesis 1,

the phrase “And God spoke”

is repeated not less than 10

times. There are 10 genera-

tions between Adam and

Noah. There are 10 plagues in

Egypt. On 10 Tishri, the Jew-

ish Day of Atonement, the

confession of sins is repeated

10 times. On Rosh Hashanah,

the Jewish New Year, 10 bibli-

cal verses are read in groups

of 10.
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Apocalyptic Fibonacci numbers. The 3,184th Fibonacci num-

ber is apocalyptic, having 666 digits. For numerologist read-

ers, the apocalyptic number is

1167243740814955412334357645792141840689747174434394372363312

8273626208245238531296068232721031227888076824497987607345597

1975198631224699392309001139062569109651074019651076081705393

2060237984793918970003774751244713440254679507687069905503229

7133437094009365444241181520685790404104340056856808119437950

3001967669356633792347218656896136583990327918167352721163581

6503595776865522931027088272242471094763821154275682688200402

5850498611340877333322087361645911672649719869891579135588343

1385556958002121928147052087175206748936366171253380422058802

6552914033581456195146042794653576446729028117115407601267725

61572867155746070260678592297917904248853892358861771163



Christianity, Islam, and per-
fect numbers. Christians in the

twelfth century were fasci-

nated by the second perfect

number, 28. For example,

since the lunar cycle is 28

days, and because 28 is per-

fect, Albertus Magnus (A.D.

1200–1280), a philosopher

and a theologian, expressed

the idea that the mystical body

of Christ in the Eucharist

appears in 28 phases.

The perfect number 28 also

plays an important role in

Islam, because religious Mus-

lims connect the 28 letters of

the alphabet in which the

Koran is written with the 28

“lunar mansions.” For exam-

ple, the famous medieval

mathematician al-Biruni

(1048) suggested that this

connection proves the close

relation between the cosmos

and the word of God. Note

also that the Koran names 28

prophets before Mohammed.

Number 7. There is an

incredibly large number of

occurrences of 7 in all reli-

gions. In the Old Testament,

Lamech, the father of Noah

and the son of the famous

long-lived Methuselah, is

born 7 generations after

Adam. Lamech lives for 777

years. Another Lamech

should be avenged 77-fold

(Genesis 4:24). Zechariah, a

major biblical prophet, speaks

of the 7 eyes of the Lord. The

idea of 7 divine eyes occurs in

Sufism in connection with 7

important saints who are the

eyes of God. God is praised

by creatures with 70,000

heads, each of which has

70,000 faces. There are 7

points in the body upon which

mystics concentrate their spir-

itual power. Seven is impor-

tant for Kabbalists. In fact,

Trachtenberg, in his Jewish

Magic and Superstition, men-

tions the following cure for

tertian (malarial) fever: “Take

7 pickles from 7 palmtrees, 7

chips from 7 beams, 7 nails

from 7 bridges, 7 ashes from

7 ovens, 7 scoops of earth

from 7 door sockets, 7 pieces

of pitch from 7 ships, 7 hand-

fuls of cumin, and 7 hairs

from the beard of an old dog,

and tie them to the neck-hole

of the shirt with a white

twisted cord.”

The number 666 and soci-
ety. On July 10, 1991, Procter

& Gamble announced that it

was redesigning its moon-

and-stars company logo. The

company said that it elimi-

nated the curly hairs in the

man-in-the-moon’s beard that

to some looked like 6s. The

fall 1991 issue of the Skepti-

cal Inquirer notes that “the

number 666 is linked to Satan

in the Book of Revelation,
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Sequence of primes. Carlos Rivera (primepuzzles.net)

found the largest known sequence of primes p
1
, p

2
, p

3
, . . . p

k

such that p
i + 1

= 4p
i
2 + 1. The largest sequence has five mem-

bers, starting with the prime 197,072,563:

• 197072563 (9 digits) →

• 155350380349555877 (18) →

• 96534962699006707074223324580956517 (35) →

• 372759960931944651956837446824866359434277985

14276247679661962579085157 (71) →

• 555799953895939612959240524483318020406137373

267839747469429032642724875296960105588196351

239745906766330878232666339034124111494274823

0858597 (142)



and this helped fuel the false

rumors fostered by funda-

mentalists.” A federal judge

in Topeka, Kansas, has

approved settlements in the

last of a dozen lawsuits filed

by Procter & Gamble Co. to

halt rumors associating the

company with Satanism. 

More on 666. President

Ronald Reagan altered his

California address to avoid

the number 666. His name

becomes 666 if you count the

letters in his name. 

Even more on 666. Do you

find it interesting that when

you add up the Roman

numerals I = 1, V = 5, X =

10, L = 50, C = 100, and D =

500, you get 1 + 5 + 10 + 50

+ 100 + 500 = 666? 

Too much more on 666.
On May 1, 1991, the British

vehicle licensing office

stopped issuing license plates

bearing the number 666. The

winter 1992 issue of the

Skeptical Inquirer reports two

reasons given for the deci-

sion: cars with “666” plates

were involved in too many

accidents, and there were

“complaints from the public.” 

Continued fraction. Here’s a

nice-looking continued frac-

tion for you to ponder late at

night:

Here’s another:

Definition of coprime or rel-
atively prime. Number theorists

call two numbers A and B

that have no common factors

(except 1) “relatively prime”

or “coprime.” The probability

that two numbers selected at

random are coprime is 6/π 2.

Pi crops up in all areas of

mathematics.

Picasso on computers.
“Computers are useless. They

can only give you answers”

(Pablo Picasso). 
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The incredible π2/6. The value π2/6, denoted by λ, is every-

where in mathematics. For example, it appears in the sum of

the reciprocals of the squares of the positive integers:

The probability that a randomly chosen integer is square 

free (not divisible by a square) is 1/λ. The hypervolume of a 

4-dimensional hypersphere = 3λr4. The integral from 0 to

infinity of x/(ex – 1)dx is λ. We also have:

Yes, there are countless examples of π2/6 in the realm of 

mathematics. In fact, Clive Tooth is so excited about the 

fantastic occurrences of π2/6 in mathematics and beyond 

that he has devoted and dedicated a web page to this topic:

www.pisquaredoversix.force9.co.uk/.
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Calculating pi. In 1998,

seventeen-year-old Colin

Percival calculated the five

trillionth binary digit of pi.

His accomplishment is sig-

nificant not only because it

was a record-breaker, but

because, for the first time

ever, the calculations were

distributed among twenty-

five computers around the

world. In all, the project,

dubbed PiHex, took five

months of real time to com-

plete and one and a half years

of computer time. 

The temple of mathematics.
“Like many great temples of

some religions, mathematics

may be viewed only from the

outside by those uninitiated

into its mysteries. . . . Under-

standing [its] methods is

reserved for those who devote

years to the study of mathe-

matics” (Andrew Gleason,

“Evolution of an Active

Mathematical Theory,” Sci-

ence, 1964).

Amateurs and e. In 1998,

the self-taught inventor Har-

lan Brothers and the meteor-

ologist John Knox developed

an improved way of calculat-

ing a fundamental constant e

(often rounded to 2.718).

Studies of exponential

growth—from bacterial

colonies to interest rates—

rely on e, which can’t be

expressed as a fraction and

can only be approximated

using computers. Knox

demonstrated that amateurs

continue to make strides in

mathematics and can help to

find more accurate ways of

calculating fundamental

mathematical constants.

The vast application of π.
As an example of how far π
has drifted from its simple

geometrical interpretation,

consider the book A Budget

of Paradoxes, where Augus-

tus De Morgan explains an

equation to an insurance

salesman. The formula,

which gives the chances that

a particular group of people

would be alive after a certain

number of days, involves the

number π. The insurance

salesman interrupts and

exclaims, “My dear friend,

that must be a delusion. 

What can a circle have to do

with the number of people

alive at the end of a given

time?”

Even more recently, π has

turned up in equations that

describe subatomic particles,

light, and other quantities that

have no obvious connection

to circles. 
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Ramanujan’s most “beautiful” formula. Ramanujan’s formula,

as follows, draws a shocking connection between an infinite

series (at left) and a continued fraction (middle). It is wonder-

ful that both the series and the continued fraction can be

expressed through the famous numerical constants π and e,

and their sum mysteriously equals √πe/2 .
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The ubiquity of π. “Every

now and again one comes

across an astounding result

that closely relates two for-

eign objects which seem to

have nothing in common.

Who would suspect, for

example, that on the average,

the number of ways of

expressing a positive integer

n as a sum of two integral

squares, x2 + y 2 = n, is π”

(Ross Honsberger, Mathe-

matical Gems III, 1997).

Definition of Chaitin’s 
constant. Chaitin’s constant

(Ω) is an irrational number

that gives the probability that

a “Universal Turing Machine”

(for any set of instructions)

will halt. The digits in Ω are

random and cannot be com-

puted prior to the machine

halting. (A Turing Machine 

is a theoretical computing

machine that consists of an

infinitely long magnetic tape

on which instructions can be

written and erased, a single-

bit register of memory, and a

processor capable of carrying

out certain simple instruc-

tions. The machine keeps

processing instructions until

it reaches a particular state,

causing it to halt.) Chaitin’s

constant has implications for

the development of human

and natural languages and

gives insight into the ultimate

potential of machines. You

can learn more about this

constant here: “Chaitin’s

Constant,” en2.wikipedia.org/

wiki/Chaitin’s_constant and

“Chaitin’s Constant at Math-

world,” mathworld.wolfram.

com/ChaitinsConstant.html.

Even prime number. The

numeral 2 is the only even

prime number. In the words

of Richard Guy, this makes it

the “oddest prime of all.”

Notice that 2 + 2 = 2 × 2,

which gives it a unique 

arithmetic property among

the positive integers. 
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Definition of Euler’s gamma. Euler’s gamma (γ) has a numeri-

cal value of 0.5772157 . . . This number links the exponentials

and logs to number theory, and it is defined by the limit of 

(1 + 1/2 + 1/3 + . . . + 1/n – log n) as n approaches infinity.

The reach of γ is far and wide, playing roles in such diverse

areas as infinite series, products, probability, and definite 

integral representations.

Calculating γ has not attracted the same public interest as

calculating π, but γ has still inspired many ardent devotees.

While we presently know π to trillions of decimal places, only

several thousand places of γ are known. The evaluation of γ is

considerably more difficult than π. Here are the first few digits:

0.57721 56649 01532 86060 65120 90082 40243 

10421 59335 93992 35988 05767 23488 48677 

26777 66467 09369 47063 29174 67495 . . . 

Today, γ is often known as the Euler-Mascheroni constant;

however, the term Euler’s constant is also used because in

1781, Euler symbolized this constant by γ and calculated it to

sixteen digits. No one knows whether γ is rational, algebraic,

or transcendental. We do know that if γ is rational, its denomi-

nator is huge. I talk more about γ in chapter 3 when discussing

the harmonic series.

John Conway and Richard Guy write in The Book of Num-

bers, “Nobody has shown that γ cannot be rational. We’re pre-

pared to bet that it is transcendental, but we don’t expect to see

a proof during our lifetime.”



Poussin proof. In 1838,

Dirichlet proved that the aver-

age number of divisors of all

the numbers from 1 to n is

very close to ln n + 2γ – 1. In

1898, de la Vallee Poussin

proved that if a large number

n is divided by all the primes

up to n, then the average frac-

tion by which the quotient

falls short of the next whole

number is γ. For example, if

we divide 29 by 2, we get

14.5, which falls short of 15

by 0.5.

Beautiful equation. Here’s 

a beautiful and wondrous

expression involving a limit

that connects not only π and

e, but also radicals, factorials,

and infinite limits. Surely,

this little-known beauty

makes the gods weep for joy:

Ubiquitous 2. Powers of 2

appear more frequently in

mathematics and physics 

than do those of any other

number.

Cool equation. The follow-

ing equation is certainly eye-

catching. Notice that the

sums on each side of the “=”

sign total 365—the number

of days in a year.

102 + 112 + 122 = 132 + 142

Mathematics and passion.
“The union of the mathemati-

cian with the poet, fervor

with measure, passion with

correctness, this surely is the

ideal” (William James, 

Collected Essays, 1892).

lim
!

n

n

n

e n

n n→∞ ⋅
= 2π
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Calculating π. In 1996, the researchers David Bailey, Peter

Borwein, and Simon Plouffe found a novel formula to calcu-

late any digit of π without having to know any of the preced-

ing digits, an accomplishment that was assumed for centuries

to be impossible.

(This formula permits one to compute the nth binary or 

hexadecimal digit of π by means of a simple scheme that

requires very little memory and no multiple precision 

software.)

Large triangular numbers. We can construct arbitrarily large

triangular numbers by adding zeros to 55, such as in 55;

5,050; 500,500; and 50,005,000. These are all triangular!

Therefore, one large triangular number is

50000000000000000000000000000000 \

50000000000000000000000000000000

(The “\” indicates continuation of the number on the next

line.) We defined triangular numbers earlier, in the puzzle

titled “Dr. Brain’s mystery sequence.”
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Prime triangle. In the 

seventeenth century, mathe-

maticians showed that the 

following numbers are all

prime:

31

331

3331

33331

333331

3333331

33333331

At the time, some mathemati-

cians were tempted to assume

that all numbers of this form

were prime; however, the 

next number in the pattern—

333,333,331—turned out 

not to be prime because

333,333,331 = 17 ×
19, 607,843. 

73,939,133. Amazingly,

this is the largest number

known such that all of its dig-

its produce prime numbers as

they are stripped away from

the right! 

73939133

7393913

739391

73939

7393

739

73

7

Prime number theorem. In

the nineteenth century, it was

shown that the number of

primes less than or equal to n

approaches n/(ln n) as n gets

very large. This is often

called the prime number the-

orem and written as

A rough estimate for the nth

prime is n × ln n.

π ( )
ln

n
n

n
≈
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The Golay-Rudin-Shapiro sequence. This is a famous and

unusual number sequence in the history of mathematics. We

can examine the terms in the GRS sequence {a(n)}, which can

be defined recursively by the equations

a(2n) = a(n),

a(2n + 1) = (–1)na(n), n ≥ 0,

a(0) = 1

We know from past work completed in the 1990s that the solu-

tion to this recurrence may be expressed as

Thus, the GRS sequence is a sequence of ±1s. The first few

terms of the sequence, starting with n = 0, are 1, 1, 1, –1, 1, 1,

–1, 1, and the big question is, Does the number of +1s exceed

the number of –1s as we examine more terms? In other words,

as we add up more terms, do successive sums remain positive?

Mathematically, the question can be stated, Is s(n) > 0 for n ≥
0, where s(n) is defined as

The values of s(n) start out as 1, 2, 3, 2, 3, 4, 3, 4, 5, 6, 7, 6, 5,

4, 5, 4, . . . I’d be curious to hear from readers who have solved

this mystery. (For further reading, see John Brillhart and

Patrick Morton, “A Case Study in Mathematical Research: The

Golay-Rudin-Shapiro Sequence,” The American Mathematical

Monthly 103, no. 10 [December 1996]: 854–69.)
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Pi-prime. The number

31,415,926,535,897,932,384,

626,433,832,795,028,841

contains the first 38 decimal

digits of pi and is also a

prime number. Mark Ganson

has searched for other pi-

primes and has found no oth-

ers with more than 38 digits,

even after he scanned succes-

sive digits to create increas-

ingly large numbers up to the

first 3,000 digits of pi. 

God’s formula. This for-

mula is one of the most pro-

found and enigmatic formulas

known to humans:

1 + eiπ = 0

Some people believe that this

compact formula is surely

proof of a Creator. Others

have actually called 1 + eiπ

= 0 “God’s formula.” Edward

Kasner and James Newman,

in Mathematics and the Imag-

ination, note, “We can only

reproduce the equation and

not stop to inquire into its

implications. It appeals

equally to the mystic, the sci-

entist, the mathematician.”

This formula of Leonhard

Euler (1707–1783) unites the

five most important symbols

of mathematics: 1, 0, π, e, and

i (the square root of –1). This

union was regarded as a mys-

tic union, containing repre-

sentatives from each branch

of the mathematical tree:

arithmetic is represented by 0

and 1, algebra by the symbol

i, geometry by π, and analysis

by the transcendental number

e. The Harvard mathematician

Benjamin Pierce said about

the formula, “That is surely

true, it is absolutely paradoxi-

cal; we cannot understand it,

and we don’t know what it

means, but we have proved it,

and therefore we know it must

be the truth.”

Golden ratio. The golden

ratio, symbolized by φ,

appears with amazing fre-

quency in mathematics and

nature. I can explain the

proportion most easily by

dividing a line into two seg-

ments so that the ratio of the

whole segment to the longer

part is the same as the ratio of

the longer part to the shorter
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Undulating primes. Undulating prime numbers are primes

with oscillating digits. Here’s a nice one for you:

7 + 720 × (10049 – 1)/99 =

72727272727272727272727272727272727272727272727

272727272727272727

2727272727272727272727272727272727

Mark Ganson discovered the following 515-digit example in

2004:

92929292929292929292929292929292929292929292929292

92929292929292929292929292929292929292929292929292

92929292929292929292929292929292929292929292929292

92929292929292929292929292929292929292929292929292

92929292929292929292929292929292929292929292929292

92929292929292929292929292929292929292929292929292

92929292929292929292929292929292929292929292929292

92929292929292929292929292929292929292929292929292

92929292929292929292929292929292929292929292929292

92929292929292929292929292929292929292929292929292

929292929292929



part: AB/AC = AC/CB =

1.61803 . . . (See figure 2.3a).

If the lengths of the sides of a

rectangle are in the golden

ratio, then the rectangle is a

golden rectangle. It’s possible

to divide a golden rectangle

into a square and a golden

rectangle. Then we can cut

the smaller golden rectangle

into a smaller square and a

golden rectangle. We could

continue this process indefi-

nitely, producing smaller and

smaller golden rectangles.

If you draw a diagonal

from the top left of the origi-

nal rectangle to the bottom

right, and then from the bot-

tom left of the baby golden

rectangle to the top right, the

intersection point shows the

point to which all the baby

golden rectangles converge

(see figure 2.3b). And the

diagonals’ lengths are in

golden ratio to one another.

In honor of the various

“divine” properties attributed

to the golden ratio over the

centuries, I call the point to

which all the golden rectan-

gles converge “The Eye of

God.” We can keep magnify-

ing the figure but can never

get to the Eye using finite

magnifications.

The golden rectangle is the

only rectangle from which a

square can be cut so that the

remaining rectangle will

always be similar to the origi-

nal rectangle. If we connect

the vertices, we form a loga-

rithmic spiral that “envelops”

the Eye of God. Logarithmic

spirals are everywhere—

seashells, horns, the cochlea

of the ear—anywhere that

nature needs to fill space eco-

nomically and regularly. A

spiral is strong and uses a

minimum of materials. While

expanding, it alters its size

but never its shape.
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Mathematical cranks. According to Underwood Dudley’s

Mathematical Cranks, one eccentric mathematician put forth

this seemingly elementary equation that, alas, incorrectly

relates the golden ratio φ and π in a compact formula:

Another favorite but incorrect formula relates the value of pi

to various physical constants, such as the speed of light, c, and

Planck’s constant, h:

π λλ
λ= ⋅ −

E

mc
J e hc k T

1 2
1

2

5

/
( )/

6

5

2φ π=

Figure 2.3a Golden ratio.

Figure 2.3b Eye of God.



Golden ratio. The golden

ratio φ = (1 + √5 )/2 pops up

in the most unlikely of

places. In figure 2.4, the

radius of the large circle

divided by the diameter of

one of the small circles is the

golden ratio.

Approximation to e. Ed

Pegg Jr. derived the following

approximation for Euler’s

number:

Approximation for π. Bor-

wein, Borwein, and Bailey

once showed that

Cool formula for π. I like

this formula (Calvin Claw-

son, Mathematical Mysteries,

1996, p. 138):

Cool formula for π. I also

like this formula:

Physics and π. In quantum

physics, the Heisenberg

Uncertainty Principle

involves π. Heisenberg’s prin-

ciple states that one cannot

simultaneously know both the

position and the momentum

of a given object to arbitrary

precision. One can measure

the uncertainty in position ∆x

and the uncertainty of the

momentum ∆p and get

where h is Planck’s constant.
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Figure 2.4 Golden circles.

Cool formula for π. In 1666, Isaac Newton found π to 16

places using 22 terms of this series:

Regarding this queer formula, he wrote, “I am ashamed to tell

you to how many figures I carried these computations, having

no other business at the time.” 

Ramanujan π formula. Srinivasa Ramanujan (1887–1920)

proposed this formula for computing pi:

Ramanujan’s notebooks contain about 4,000 theorems, with

about two-thirds being new to mathematics. The other one-

third represented independent rediscoveries of other mathe-

maticians’ work (Robert Kanigel, The Man Who Knew Infinity,

1991, p. 203).
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Isaac Asimov and π. Isaac

Asimov once proposed the

mnemonic technique to

memorize a sentence in which

the number of letters in each

word in turn is equal to each

corresponding digit of pi,

3.1415 . . . : How I want a

drink, alcoholic, of course,

after the heavy lectures

involving quantum mechanics!

Cool formula for π. I love

this pretty-looking formula

for pi:

(From J. Sondow, “Problem

88,” Math Horizons [Septem-

ber 1997], pp. 32 and 34). 

Mathematics and God.
“One merit of mathematics

few will deny: it says more in

fewer words than any other

science. The formula, eiπ = –1

expressed a world of thought,

of truth, of poetry, and of the

religious spirit. ‘God eter-

nally geometrizes’” (David

Eugene Smith, in N. Rose,

Mathematical Maxims and

Minims, 1988.)

Euler and primes. Leonhard

Euler expressed a pleasing

and remarkable infinite prod-

uct formula that relates pi to

the nth prime number:

On the value of Euler’s 
number e : “Dead bodies lose

heat exponentially, and there-

fore e can be used in an

appropriate equation to deter-

mine how long individuals

have been dead” (Calvin

Clawson, Mathematical

Mysteries, 1996).
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Chudnovsky π formula. Near the end of the twentieth cen-

tury, the Chudnovsky brothers proposed this formula for com-

puting π:

Pi. Here is π to 1,000 decimal digits:

3.14159265358979323846264338327950288419716939937510582097494

4592307816406286208998628034825342117067982148086513282306647

0938446095505822317253594081284811174502841027019385211055596

4462294895493038196442881097566593344612847564823378678316527

1201909145648566923460348610454326648213393607260249141273724

5870066063155881748815209209628292540917153643678925903600113

3053054882046652138414695194151160943305727036575959195309218

6117381932611793105118548074462379962749567351885752724891227

9381830119491298336733624406566430860213949463952247371907021

7986094370277053921717629317675238467481846766940513200056812

7145263560827785771342757789609173637178721468440901224953430

1465495853710507922796892589235420199561121290219608640344181

5981362977477130996051870721134999999837297804995105973173281

6096318595024459455346908302642522308253344685035261931188171

0100031378387528865875332083814206171776691473035982534904287

5546873115956286388235378759375195778185778053217122680661300

19278766111959092164201989
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Cool π formula. James

Gregory (1638–1675) and

Gottfried Leibniz (1646–1716)

found this eye candy for pi:

Alas, this sum converges so

slowly that 300 terms are not

sufficient to calculate π cor-

rectly to two decimal places.

Rivera palindromic π:

Mathematical laws. “Num-

bers written on restaurant

bills within the confines of

restaurants do not follow the

same mathematical laws as

numbers written on any other

pieces of paper in any other

parts of the Universe. This

single statement took the

scientific world by storm. It

completely revolutionized it.

So many mathematical con-

ferences got held in such

good restaurants that many of

the finest minds of a genera-

tion died of obesity and heart

failure and the science of

math was put back by years”

(Douglas Adams [1952–

2001], Life, the Universe and

Everything, 1995).

π ≈
666

212

π = − + −( )4 1 1

3

1

5

1

7
. . .
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Cool π equation. Beginning with any positive integer n,

your job is to round it up to the nearest multiple of (n – 1),

then up to the nearest multiple of (n – 2), and so on, up to the

nearest multiple of 1. Let f (n) denote the result. Then the ratio

turns out to be, amazingly,

For example, f (10) = 34, because the procedure yields: 10 →
18 → 24 → 28 → 30 → 30 → 32 → 33 → 34. It’s possible to

prove that as n tends to infinity, the ratio n2/f (n) tends to π.

Note that π is the limit of many infinite sums and infinite

products. However, this is one of the most remarkable proce-

dures that I’ve ever seen. If we let g(n) = n2/f (n), then, for

example, g(22) = 22/7, a useful approximation. The most

accurate approximation with n < 10,000 is g(5,076) ~

3.141592357, which has the first six decimal places correct.

Figure 2.5 is a graph of g(n) versus n, with n in the range of 

0 to 200. A horizontal line is at y = π. Notice that g(n) does

exceed π occasionally.

lim
( )n

n

f n→∞
=

2

π

Figure 2.5 g(n) is a close approximation to π as n increases.
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Knowing π. “It can be of

no practical use to know that

π is irrational, but if we can

know, it surely would be

intolerable not to know” 

(E. C. Titchmarsh, in N.

Rose, Mathematical Maxims

and Minims, 1988).

Gosper equation. William

Gosper found this nice-

looking relationship:

Cool π equation. An

approximation for π, from

Schroeppel and Gosper’s

“Hakmem”:

Cool π equation. The

value of (π + 20)i is

extremely close to the 

integer –1. In particular, 

(π + 20)i ≈ –0.9999999992 –

0.0000388927i.

Mathematical microscope.
“If the entire Mandelbrot set

were placed on an ordinary

sheet of paper, the tiny sec-

tions of boundary we exam-

ine would not fill the width 

of a hydrogen atom. Physi-

cists think about such tiny

objects; only mathematicians

have microscopes fine

enough to actually observe

them” (John Ewing, “Can We
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Cool π formula. Leonhard Euler found this cute-looking

formula for π:

I presented this formula in a slightly different format a few

pages earlier when I talked about how the value π2/6 is every-

where in mathematics. Of this and related formulas for π,

Calvin Clawson writes in Mathematical Mysteries: “How can

this be? How can the sum of an infinite series be connected to

the ratio of the circumference of a circle to its diameter? This

demonstrates one of the most startling characteristics of math-

ematics—the interconnectedness of, seemingly, unrelated

ideas. . . . It is as if there existed some great landscape of

meta-mathematics, and we are only seeing the peaks of mathe-

matical mountains above the valley fog.” 

Could some intelligent aliens have such superior brains that

the fog is lifted from their eyes and all the interconnections

become apparent?

Cool π formula:

Cool Ramanujan π formula. Ramanujan discovered this 

gem for computing π—a method that involves two attractive-

looking double factorials.
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See the Mandelbrot Set?” 

The College Mathematics

Journal, 1995).

1/137. The fine-structure

constant in physics is a

dimensionless number that is

very nearly equal to 1/137. It

is also called the “electro-

magnetic coupling constant”

and measures the strength of

the electromagnetic force that

governs how electrically

charged elementary particles,

such as electrons, interact

with photons. The German

physicist Arnold Sommerfeld

introduced the quantity in

1916. Because the constant is

nearly equal to 1/137, some

mathematicians and mystics

have wondered whether it has

a more cosmic significance or

a mathematical significance

like other fundamental con-

stants, such as pi or e. The

physicist Arthur Eddington at

one time argued that the

number somehow related to

the number of electrons in the

universe—a theory that most

physicists did not accept. Just

this year, I even saw a paper

by a creative Russian

researcher that relates the fine

structure constant α to π and

the golden ratio φ:

At his “World of Physics”

Web site (scienceworld.

wolfram.com/physics/), Eric

W. Weisstein notes that the

fine structure constant contin-

ues to fascinate numerolo-

gists, who have claimed that

connections exist between α,

the Cheops pyramid, and

Stonehenge! Weisstein

includes such curious very

close approximations given

by

α–1 ≈ 44π – cos–1(e–1) =

137.03600 . . .

and

α–1 ≈ 96(e1/2 + 21/3)1/3 =

137.03599 . . .

α πφ20 1413 4310= ⋅ −
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Prime numbers and e. The mathematician Joseph Pe enjoys

trying to write e (2.7182 . . . ) as a concatenation of prime

numbers. Here is the beginning of his research:

2,

7,

1828182845904523536028747135266249775724709369995957496696762

7724076630353547594571382178525166427427466391932003059921817

4135966290435729003342952605956307381323286279434907632338298

8075319525101901157383418793070215408914993488416750924476146

0668082264800168477411853742345442437107539077744992069551702

7618386062613313845830007520449338265602976067371132007093287

0912744374704723069697720931014169283681902551510865746377211

1252389784425056953696770785449969967946864454905987931636889

2300987931277361782154249992295763514822082698951936680331825

2886939849646510582093923982948879332036250944311730123819706

841614039701983767932068328237646480429 (649 digits),

5,

3,

11,

. . . 

To find these numbers, Pe continues to scan by adding a digit

at a time until he finds a prime. For example, scanning “1719”

from left to right, we see first the prime, 17; then, continuing

with the leftover digits, we see the prime 19. 



Feynman and 1/137. “There

is a most profound and beauti-

ful question associated with

the observed coupling con-

stant, the amplitude for a real

electron to emit or absorb a

real photon. [A simple num-

ber 1/137] has been a mystery

ever since it was discovered

more than fifty years ago, and

all good theoretical physicists

put this number up on their

wall and worry about it.

Immediately you would like to

know where this number for a 

coupling comes from: is it

related to pi or perhaps to the

base of natural logarithms?

Nobody knows. It’s one of the

greatest damn mysteries of

physics: a magic number that

comes to us with no under-

standing by man. You might

say the ‘hand of God’ wrote

that number, and ‘we don’t

know how He pushed His

pencil.’ We know what kind of

a dance to do experimentally

to measure this number very

accurately, but we don’t know

what kind of dance to do on

the computer to make this

number come out, without

putting it in secretly!” (Rich-

ard Feynman, QED, 1988).

Cool π equation. Note that

eπ – π is almost an integer. It

equals 19.9990999 . . .
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Mandelbrot set and π. In 1991, David Boll discovered a

strange connection between π and the classic Mandelbrot set

(figure 2.6), which can be visualized as a bushy object that

describes the behavior of z = z2 + c, where z and c are

complex numbers.

Boll studied points lying on a vertical line through the 

point z = (–0.75, 0) and discovered that the number of itera-

tions needed for these points to escape a circle of radius 2

(centered at the origin) is related to π. In particular, consider

points z = –0.75 ± εi and the n iterations needed for orbits 

of these points to escape the circle. As ε goes to 0, nε
approaches π.

Figure 2.6 Mandelbrot set.



Prime contest. Researchers

sometimes hold zany but

curious contests in which

they search for prime num-

bers within the decimal digit

expansion of 1/137 =

0.007299270072992700 . . .

For example, the mathemati-

cian Jason Earls has discov-

ered that the following is

prime:

72992700729927007299270072992

70072992700729927007299270072

99270072992700729927007299270

07299270072992700729927007299

27007299270072992700729927007

29927007299270072992700729927

00729927007299270072992700729

92700729927007299270072992700

72992700729927007299270072992

70072992700729927007299270072

99270072992700729927007299270

07299270072992700729927007299

270072992700729927007

This number includes the first

371 digits of 1/137, with the

first two zeros omitted.

Hermann Schubert, Sirius,
microbes, and pi. In 1889, the

Hamburg mathematics profes-

sor Hermann Schubert

described how there is no

practical or scientific value to

knowing pi to more than a few

decimal places: “Conceive a

sphere constructed with the

earth at its center, and imag-

ine its surface to pass through

Sirius, which is 8.8 light years

distant from the earth [8.8

years × 186,000 miles per sec-

ond]. Then imagine this enor-

mous sphere to be so packed

with microbes that in every

cubic millimeter millions of

millions of these diminutive

animalcula are present. Now

conceive these microbes to be

unpacked and so distributed

singly along a straight line

that every two microbes are as

far distant from each other as

Sirius from us, 8.8 light years.

Conceive the long line thus

fixed by all the microbes as

the diameter of a circle, and

imagine its circumference to

be calculated by multiplying

its diameter by π to 100 deci-

mal places. Then, in the case

of a circle of this enormous

magnitude even, the circum-

ference so calculated would

not vary from the real circum-

ference by a millionth part of

a millimeter. This example

will suffice to show that the

calculation of π to 100 or 500

decimal places is wholly

useless.”
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Prime test. Is it possible for a person of average intelli-

gence to determine whether this large number is prime or

composite (not prime) within 19 seconds?

5,230,096,303,003,196,309,630,967

(See Answer 2.76.)

Definition of an amenable number. An amenable number is an

integer that can be constructed from integers m
1
, m

2
, m

3
, . . . ,

m
k

by both multiplication and addition such that

Here are some examples:

2 + 2 = 2 × 2 = 4

1 + 1 + 2 + 4 = 1 × 1 × 2 × 4 = 8

For more information, see Harry Tamvakis, “Problem 10454,”

The American Mathematical Monthly 102 (1995): 463. 

m m
i i

i

k

i

k

=
==

∏∑
11



π3 and antennas. I have

stumbled upon a practical

example of the term π3 occur-

ring in physics. In particular,

π3 occurs in equations that

relate to gravitational wave

antennas and energy absorp-

tion rates, which have terms

that look like 

2π3ML3QG/3C 2λS

where M is the reduced mass,

L is the length, Q is the qual-

ity factor, G is Newton’s

gravitational constant, C

is the speed of light in a 

vacuum, λ is the wavelength,

and S is the length occupied

by a single plane quadrupole.

(See Melvin A. Lewis, 

“Gravitational Wave vs. 

Electromagnetic Wave 

Antennas,” June 1995 issue

of IEEE Antennas and 

Propagation Magazine.)

Can you find any other 

examples of π3 in physics 

or geometry?

Never prime? Does this

formula always produce a

number that is never prime:

a2 + b2 + c2 + d2? Variables a,

b, c, and d are different posi-

tive integers. (See Answer

2.77.)

Definition of a father prime.
According to the retired math

teacher Terry Trotter, a

“father” prime is a prime

number for which the sum of

the squares of its digits is also

a prime. The sum is therefore

the “child” prime. For exam-

ple, 23 is a “father” prime

because 22 + 32 = 4 + 9 = 13.

That is, 23 is the “father” of a

prime child, 13. Here is an

example of an “ancestral

line” of fathers and children:

191 → 83 → 3. Until

recently, the longest known

ancestral lines consisted of 5

generations, such as 1,499 →
179 → 131 → 11 → 2. My 

colleague Mark Ganson dis-

covered a series of related

ancestral lines consisting of 

6 generations each. The line

with the smallest starting

prime is 28,999,999,999 

→ 797 → 179 → 131 →
11 → 2.
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Definition of a cyclic number. A cyclic number, C, is an inte-

ger that—when multiplied by any number from 1 to the num-

ber of digits of C—always contains the same digits as C. Also,

these digits will appear in the same order but begin at a differ-

ent point. An example will clarify this. 142,857 is cyclic

because

1 × 142,857 = 142,857

2 × 142,857 = 285,714

3 × 142,857 = 428,571

4 × 142,857 = 571,428

5 × 142,857 = 714, 285

6 × 142,857 = 857,142

Here are two more cyclic numbers: 588,235,294,117,647 

and 52,631,578,947,368,421. Notice that these numbers can

be constructed from certain primes in the following way. For

example, 1/7 = 0.142857 . . . , 1/17 = 0.0588235294117647 

. . . , and 1/19 = 0.052631578947368421 . . . It has been

conjectured, but not yet proved, that an infinite number of

cyclic numbers exist.



Universe. “It is a mathe-

matical fact that the casting

of this pebble from my hand

alters the center of gravity of

the universe” (Thomas 

Carlyle [1795–1881], Sartor

Resartus III, 1831).

0.065988 . . . . I’m in

love with the constant

0.065988 . . . = e–e = (1/e)e.

It is the lowest value of the

function y = x(1/x). Moreover,

if you consider this beautiful

infinite power tower,

then 0.065988 . . . is the low-

est value of x for which the

function converges to a finite

value.

0.692200 . . . = (1/e) (1/e ).
This cool constant is the 

lowest point in the function 

y = xx.

1.202056 . . . is Apéry’s

constant. Please select three

positive integers at random.

The odds of them having no

common divisor are 1 in

1.202056 . . . 

1.506592 . . . is the area

of the famous fractal shape

known as the Mandelbrot 

set. Cyril Soler, a French

researcher at the Institut

National de Recherche en

Informatique et Automatique,

conjectures that the value is

precisely √6π – 1 – e, or

1.5065916514855 . . . (from

Robert P. Munafo’s “Mandel-

brot Set Glossary and Ency-

clopedia,” www.mrob.com/ 

pub/muency.html).

Asimov universe. “I believe

that scientific knowledge has

fractal properties, that no

matter how much we learn,

whatever is left, however

small it may seem, is just as

infinitely complex as the

whole was to start with. That,

I think, is the secret of the

Universe” (Isaac Asimov, I.

Asimov: A Memoir, 1994).

666 equation. 666 = 36 –

26 + 16.

Integer hoax. Is an

integer? Why would I ask

such a strange question? (See

Answer 2.78.)

Impressive π formula. π ≈
ln(6403203 + 744/√163 ,

which is correct to 30 digits

after the decimal point! 

Impressive π formula. (π4 +

π5) /(e6) ~ 1. (To be precise, it

equals 0.999999956 . . .)

e π 163

f x x x x x x

( )
...

=
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Coincidental constant. This number is pretty cool:

2.506184145588769256292940922377

84727177139605213321283014 . . .

It is the solution to xx = 10, and, as Robert Munafo says, it is

curious that this is close to √2π , which is 2.5066 . . .

Almost an integer. 621/2 × (127/1000) = 0.9999989999994

99999499999374 . . . (Angel Garcia, sci.math).

666 equation. 666 = 13 + 23 + 33 + 43 + 53 + 63 + 53 + 43 +

33 + 23 + 13.



Impressive π formula.
π ≈ (2143/22)1/4 =

3.14159265258264 . . .

(Reichenbacher, 1900).

Smallest cube. Note that

8,000 is the smallest cube

that can be expressed as the

sum of 4 consecutive cubes

(8,000 = 203 = 113 + 123 +

133 + 143).

Cubes. In 1939, L. E.

Dickson proved that all posi-

tive integers can be repre-

sented as the sum of at most

9 positive cubes. Interest-

ingly, only two numbers exist

that require all 9 cubes: 23

and 239 (L. E. Dickson, 

History of the Theory of

Numbers, Vol. 2: Diophantine

Analysis [New York: Chelsea,

1966]).

666 equation. Let φ(n) be

the number of integers smaller

than n and relatively prime to

n. Amazingly, we find that

φ(666) = 6·6·6.

(Number theorists call two

numbers A and B that have no

common factors “relatively

prime” or “coprime.”)

666 equation. The

number 666 is the sum of 

the squares of the first 7

primes: 22 + 32 + 52 + 72 +

112 + 132 + 172.

666 equation. Examine

the prime factors of 

666 = 2 × 3 × 3 × 37 and 

add their digits. You get 

18 = 6 + 6 + 6.
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Triangles and 666. As you can see in figure 2.7, 666 is a 

triangular number. Because it stands on a base of 36 marks, 

it is designated the 36th triangular number. (We defined trian-

gular numbers in the puzzle titled “Dr. Brain’s mystery

sequence.”)

Note that 36 is also triangular (the 8th triangular number).

The 666th triangular number contains only 2s and 1s and is

222,111.

Figure 2.7 A visual proof that 666 is a triangular number.



Tolstoy and the number 28.
The great Russian novelist

Leo Tolstoy believed 28 to be

a special number for him. 

He was born on August 28,

1828. His son Sergei was born

on June 28. When Tolstoy was

asked to choose poems for

one of his essays, he deliber-

ately chose poems from page

28 of different poetry books.

During Tolstoy’s youth, his

older brother Nikolai said

he’d written the secret of hap-

piness on a green stick and

hid it by a road in the Zakaz

forest. Tolstoy later asked to

be buried where the mystical

green stick was thought to

have been hidden.

Definition of primorial. Pri-

morials are the product of the

first N primes. For example,

210 is a primorial because

210 = 2 × 3 × 5 × 7. Here are

the first few primorials: 2; 6;

30; 210; 2,310; 30,030;

510,510; 9,699,690;

223,092,870; 6,469,693,230;

200,560,490,130;

7,420,738,134,810; and

304,250,263,527,210.

Cube square puzzle. Con-

sider an integer, N, and its

cube, C, and its square, S.

Together, C and S use all dig-

its from 0 to 9 once. What is

N? (See Answer 2.79.)

1,001 and primes. The

number 1,001 is a product of

three consecutive primes:

1,001 = 7 × 11 × 13.

An approximation for π.
3.14159267204 . . . = 

[e(φ + 6)]/5 – 1 is a close

approximation to π.

Palindromic triangular num-
ber. The 2,662nd triangular

number is 3,544,453, so both

the number and its index,

2,662, are palindromic.

Cube numbers. Consider

an integer, N, that is the

smallest cube number that 

is the sum of three cube 

numbers. What is N? (A cube

number is simply a number

created by cubing another.

For example, 125 is a cube

number because 125 = 53.)

(See Answer 2.80.)
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Digits of e and π. I wonder why we find such a weird corre-

spondence (the digits 314 and 926) in the following: 

23.140692632779269005 . . . = eπ

3.141592653589793238 . . . = π

Is this pure coincidence, or does it signify something much

deeper?

666 formula. Perhaps I’m obsessed with 666 equations, but

here is yet another:

666 = 6 + 6 + 6 + 63 + 63 + 63

Definition of hyperfactorial. Hyperfactorials are of the 

form 11 × 22 × 33 × 44 . . . The first few hyperfactorials 

are 1; 4; 108; 27,648; 86,400,000; 4,031,078,400,000;

331,976,639,877,120,000; and

55,696,437,941,726,556,979,200,000.



Definition of amicable num-
bers. Two numbers are con-

sidered friendly or amicable

to each other if the sums of

their proper divisors equal

each other. For example, 284

and 220 are amicable. To see

why, let’s list all the numbers

by which 220 is evenly divisi-

ble: 1, 2, 4, 5, 10, 11, 20, 22,

44, 55, and 110 all go into

220. Now add up all those

divisors: 1 + 2 + 4 + 5 + 10 +

11 + 20 + 22 + 44 + 55 =

284. Now let’s try the same

approach with 284. Its perfect

divisors are 1, 2, 4, 71, and

142. Now, add them up to get

220. Therefore 220 and 284

are amicable numbers. The

sums of their divisors are

equal to each other.

0s and 1s. Here are some

strange equivalences:

011 = 8

1110 = ?

0011 = 12

10001 = 13

00111 = 23

010000001 = 26

Can you determine what

logic I am using to equate

these numbers and then can

you solve the missing equiva-

lence? (See Answer 2.81.)

Cube mystery. These num-

bers are very special: 1, 8, 17,

18, 26, and 27. Can you

guess why? (Hint: The solu-

tion has to do with the cubes

of these numbers.) (See

Answer 2.82.)

Surreal world. “Just as the

real numbers fill in the gap

between the integers, the sur-

real numbers fill in the gaps

between Cantor’s ordinal

numbers” (John Conway and

Richard Guy, The Book of

Numbers, 1996).

Hard to say. “In John Con-

way’s surreal number system,

it’s possible to talk about

whether ω is odd or even, to

add 1 to infinity, to divide

infinity in half, to take its

square root or logarithm, and

so on. Equally accessible and

amenable to manipulation are

the infinitesimals—the num-

bers generated by the recipro-

cals of these infinities (for

example, 1/ω). What can you

do with such numbers? It’s

still hard to say because very

little research has been done

on them” (Ivars Peterson,

“Computing in a Surreal

Realm,” 1996).
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Brun’s constant and Barbra Streisand. Brun’s constant,

1.90216 . . . , is the number obtained by adding the reciprocals

of the odd twin primes

Twin primes are pairs of primes that differ by two. The first

twin primes are {3, 5}, {5, 7}, {11, 13,} and {17, 19}. It has

been conjectured that there are infinitely many twin primes.

No one knows for sure. 

The conjecture was even mentioned in the 1996 movie The

Mirror Has Two Faces, which starred Barbra Streisand. It is

fascinating that the series converges to a definite, finite num-

ber, even if there are an infinite number of twin primes. This

fact suggests the “scarcity” of twin primes relative to primes,

because the sum of the reciprocals of all prime numbers

diverges. We do not know very much about Brun’s constant.

For example, we don’t even know if it is rational, algebraic, or

transcendental.

1

3

1

5

1

5

1

7

1

11

1

13

1

17

1

19
+( ) + +( ) + +( ) + +( ) + . . .



Definition of surreal
numbers. Surreal numbers are

a superset of the real num-

bers, invented by John

Conway for the analysis of

games, although the name

was coined by Donald Knuth

in his popular novelette Sur-

real Numbers, perhaps one of

the few times that a major

mathematical discovery was

published first in a work of

fiction. Surreal numbers 

have all kinds of bizarre

properties.

Surreal numbers include

the real numbers plus much

more. Knuth explains in a

postscript that his aim was

not so much to teach Con-

way’s theory as 

to teach how one might go

about developing such a

theory. . . . Therefore, as

the two characters in this

book gradually explore and

build up Conway’s number

system, I have recorded

their false starts and frus-

trations as well as their

good ideas. I wanted to

give a reasonably faithful

portrayal of the important

principles, techniques, joys,

passions, and philosophy of

mathematics, so I wrote the

story as I was actually

doing the research myself.

Martin Gardner has writ-

ten in Mathematical Magic

Show,

Surreal numbers are an

astonishing feat of leg-

erdemain. An empty hat

rests on a table made of a

few axioms of standard set

theory. Conway waves two

simple rules in the air,

then reaches into almost

nothing and pulls out an

infinitely rich tapestry of

numbers that form a real

and closed field. Every

real number is surrounded

by a host of new numbers

that lie closer to it than

any other “real” value

does. The system is truly

“surreal.”

A surreal number is a pair

of sets {X
L
, X

R
} where

indices indicate the relative

position (left and right) of the

sets in the pair. Surreal num-

bers are fascinating because

they are built upon an

extremely small and simple

foundation. In fact, according

to Conway and Knuth, sur-

real numbers follow two

rules: (1) every number cor-

responds to two sets of previ-

ously created numbers, such

that no member of the left set

is greater than or equal to any

member of the right set; and

(2) one number is less than

or equal to another number

if, and only if, no member of

the first number’s left set is

greater than or equal to the

second number, and no mem-

ber of the second number’s

right set is less than or equal

to the first number.

Surreal numbers include

infinity and infinitesimals,

numbers smaller than any

imaginable real numbers. 

For more information, see

John Horton Conway and

Richard K. Guy, The Book of

Numbers (New York: Coper-

nicus/Springer, 1996). See

also Surreal Numbers: How

Two Ex-Students Turned On

to Pure Mathematics and

Found Total Happiness by

Donald E. Knuth (Reading,

Mass.: Addison-Wesley,

1974). “The Story of How

Surreal Numbers Came to 

Be Written” is told in 

Mathematical People by

Donald J. Albers and G. L. 

Alexanderson (Boston:

Birkhauser, 1985). John 

Conway’s presentation of 

the theory appears in On

Numbers and Games

(Natick, Mass.: A. K. Peters,

Ltd., 2001). 
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Definition of hyperreal num-
bers. Hyperreal numbers are

an extension of the real num-

bers that adds infinitely large,

as well as infinitesimal, num-

bers to the real numbers. By

“infinite numbers,” I mean

numbers whose absolute

value is greater than any posi-

tive real number. By “infini-

tesimal numbers,” I mean

numbers whose absolute

value is less than any positive

real number. For more infor-

mation, see “Hyperreal num-

ber,” en2.wikipedia.org/wiki/

Hyperreal_number.

Fibonacci formula. As we

explore larger and larger

Fibonacci numbers, F
n
, we

find that the ratio of a

Fibonacci number to the one

before approaches the golden

mean φ = 1.61803 . . . 

Fibonacci formula. We can

compute the nth Fibonacci

number, F
n
, directly from

where φ = 1.61803 . . . is 

the golden ratio and φ′ =

–0.618034 . . . is the negative

inverse of φ; in other words,

φ′ = –1/φ.

P-adic numbers. “Almost

your entire mathematical life

has been spent on the real

line and in real space working

with real numbers. Some

have dipped into complex

numbers, which are just the

real numbers after you throw

in i. Are these the only num-

bers that can be built from the

rationals? The answer is no.

There are entire parallel uni-

verses of numbers that are

totally unrelated to the real

and complex numbers. Wel-

come to the world of p-adic

analysis—where arithmetic

replaces the tape measure and

numbers take on a whole new

look” (Professor Edward

Burger, from a Web page

description of the Williams

College undergraduate mini-

course “Exploring p-adic

Numbers” [www.math.ksu.

edu/main/course_info/

courses/crs-des/burger.htm]

[p-adic numbers can be used

to help determine whether

some equations have solu-

tions in which the variables

are all integers.]).

F
n

n n

=
− ′φ φ( )

5

lim
n

n

n

F

F+∞
−

=
1

φ
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Fibonacci formula. The sum of the first n Fibonacci numbers

can be calculated from 

For example, consider the Fibonacci numbers: 1, 1, 2, 3, 5, 8,

13, . . . The sum of the first five terms is equal to 13 – 1 = 12.

We can use this handy formula to compute the sum of all

Fibonacci numbers up to any term. 

Fibonacci formula. The sum of the consecutive Fibonacci

numbers squared is

F F F F F F
i n n n

i

n

2
1
2

2
2 2

1

1

= + + = +
=

∑ . . .

F F F F F
i n n

i

n

= + + = −+
=

∑ 1 2 2

1

1. . .



Consecutive prime numbers.
The difference between con-

secutive prime numbers is

always even, except for two

particular prime numbers.

What are they? (See Answer

2.83.)

Composite number
sequence. If you were chal-

lenged to write down a

sequence of consecutive com-

posite numbers that is N

numbers long, you could

simply choose any N and

create your list as follows: 

(N + 1)! + 2, (N + 1)! + 3, 

(N + 1)! + 4, (N + 1)! + 5 

. . . , (N + 1)! + (N + 1). 

For example, try this for 

N = 4. The results are guaran-

teed to be composites.

Gaps between primes. In

the 1980s, the largest gap

between primes of which I

was aware was a run of 803

composite numbers that

exists between the primes

90,874,329,411,493 and

90,874,328,412,297 (J. Young

and A. Potler, “First Occur-

rence Prime Gaps,” Mathe-

matics of Computation 52

[1989]: 221–24). A little

later, Baugh and O’Hara 

discovered a prime gap of

length 4,247 following 

10314 – 1,929. (D. Baugh 

and F. O’Hara, “Large Prime

Gaps,” Journal of Recre-

ational Mathematics 24

[1992]: 186–87).

Wilson’s theorem: p is a

prime number if and only if

(p – 1)! + 1 is divisible by p.

Prime mysteries. “Mathe-

maticians have tried in vain

to this day to discover some

order in the sequence of

prime numbers, and we have

reason to believe that it is a

mystery into which the

human mind will never pene-

trate” (Leonhard Euler, in

George Simmons, Calculus

Gems, 1992).
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Strange radical formulas. Integers can be produced by

certain nested radicals; for example,

or

In general, you can impress your friends with an infinite num-

ber of these identities of the form

where m = K2 – K for m > 0. What do you think happens if m

= 0 and K = 1? (For more information, see Calvin Clawson’s

Mathematical Mysteries, p. 141.)

Square root of zero. Although the square root of zero is

zero, look at this amazingly odd beast in which we examine

the limit of the following nested radicals as n approaches

zero.

1
0

= + + + +
→

lim . . .
n

n n n n

K m m m m= + + + + . . .

6 30 30 30 30= + + + + . . .

2 2 2 2 2= + + + + . . .



Definition of a Wilson prime.
A prime number, p, is a Wil-

son prime when (p – 1)! + 1 is

evenly divisible by p2. Today,

humanity knows of only three

Wilson primes: 5, 13, and

563. It is conjectured that the

number of Wilson primes is

infinite. (For example, 5 is a

Wilson prime because 25

divides 4! + 1 = 25.)

A near isoprime. In 1991,

Harvey Dubner discovered 

a prime number with a total

of 6,400 digits that is com-

posed of all 9s except 

one 8. The precise value is

106400 – 106352 – 1.

Beautiful rules. “The math-

ematical rules of the universe

are visible to men in the form

of beauty” (John Michel).

Palindromic primes. The

smallest palindromic prime

containing all 10 digits is

1,023,456,987,896,543,201.

One of the largest known

palindromic primes was

discovered by Harvey Dubner,

a retired electrical engineer in

New Jersey. The number con-

sists of just 1s and 0s and has

30,803 digits. (Notice that

30,803 is also a palindrome.)

Exotic prime number genera-
tor. The following formula

yields only primes:

where β = 1.92878, and the

number of exponents to the

first 2 is equal to n. The

brackets indicate truncation

to an integer. For example,

for n = 2, we get the prime

number 13. Alas, because β is

only an approximation and

the precise value has not been

calculated, at some point this

formula fails humanity

(Calvin Clawson, Mathemati-

cal Mysteries, 1996).

g n( )
...= [ ]2 2 2 β
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Exotic prime probe. The function F( j) is fascinating because

it is equal to 1 when j is prime and 0 whenever j is a compos-

ite number:

The quantity in brackets is truncated to an integer; for exam-

ple, 4.5 would be truncated to 4, and 0.7 is truncated to 0.

Calvin Clawson remarks, “This is truly an amazing function.

How does it know when it’s dealing with a prime or a compos-

ite?” (Calvin Clawson, Mathematical Mysteries, 1996).

Exotic prime number generator. To calculate the nth prime

number, we may use the following formula:

where F( j) is defined in the previous factoid. Square brackets

indicate truncation of the number to an integer (Calvin Claw-

son, Mathematical Mysteries, 1996).
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On prime numbers: “There

are tetradic, pandigit, and

prime-factorial plus one

primes. And there are Cullen,

multifactorial, beastly palin-

drome, and antipalindrome

primes. Add to these the

strobogrammatic, subscript,

internal repdigit, and the

elliptic primes. In fact, a

whole new branch of mathe-

matics seems to be evolving

that deals specifically with

the attributes of the various

kinds of prime numbers. Yet

understanding primes is only

part of our quest to fully

understand the number

sequence and all of its

delightful peculiarities”

(Calvin Clawson, Mathemati-

cal Mysteries, 1996).

Definition of a Sophie Ger-
main prime. A prime number,

p, is a Sophie Germain prime

if you can double it, add 1,

and produce another prime.

One of the largest such

primes is 2,540,041,185 ×
2114729– 1 with 34,547 digits,

discovered in 2003 by David

Underbakke.

Euler’s prime formula. In

1772, Leonhard Euler discov-

ered that f (x) = x2 + x + 41

yields prime numbers for x =

0 through 39. Perhaps Euler

was very excited until he

tried x = 40, which, sadly,

yields a composite number.

Still, it appears to produce

primes at a high rate. For

example, values of x from 40

through 79 yield 33 primes.

It turns out that 2x2 – 199

is the second-degree polyno-

mial that yields the greatest

number of primes for the first

1,000 values of x, which pro-

duces 598 primes.

Definition of a Fibonacci
prime. A Fibonacci prime is a

Fibonacci number that is

prime. The 81,839th

Fibonacci number is prime. It

has 17,103 digits and is one

of the largest known prime

Fibonacci numbers.

On crazy numerical
coincidences. “The ratio of the

height of the Sears Building

in Chicago to the height of

the Woolworth Building in

New York is the same to four

significant digits (1.816 vs.

1816) as the ratio of the mass

of a proton to the mass of an

electron” (John Paulos, Innu-

meracy, 1988).

Four squares. In 1770,

Joseph-Louis Lagrange

showed that every positive

integer can be written as the

sum of four squares. For ex-

ample, we can write the num-

ber 31 as 22 + 32 + 32 + 32.
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Mills’s constant. The following formula yields only primes

for integers n:

1.30637788386308069046861449260260571

2916784585156713644368053759966434 . . .

The constant α is sometimes called the Mills’s constant. The

brackets indicate truncation to an integer—sometimes called

the “floor” operation. For example, for n = 3, we get the prime

number 1,361. Alas, because α is only an approximation and

the precise value has not been calculated, at some point this

formula breaks down (Calvin Clawson, Mathematical

Mysteries, 1996).

F n
n

( ) = 





=( )α α3
 where 



Definition of round numbers.
Round numbers are numbers

that, when factored, contain a

large number of primes. The

greater the number of prime

factors, the rounder the num-

ber. If you were to select a

number at random, you might

be surprised at just how rare

“very round numbers” are.

Although this definition is

rather vague, it is easy to 

rank numbers in order of

roundness; for example, from

least round to most round we

have

1,957 = 19 × 103

(2 factors)

1,958 = 2 × 11 × 89

(3 factors)

1,960 = 23 × 5 × 72

(6 factors)

362,880 = 27 × 34 × 5 × 7

(13 factors)

Ramanujan’s goddess.
Ramanujan credits his mathe-

matical discoveries to Nama-

giri of Namakkal, a Hindu

goddess who appeared in his

dreams. (Narasimha was the

male consort of the goddess

Namagiri and also helped

Ramanujan with his visions.)
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The smallest star-congruent prime containing all four prime
digits. The number 7,777,277,227,777,772,327,777,772,222,

332,222,772,333,533,327,723,555,532,772,352,532,772,355,

553,277,233,353,332,772,222,332,222,777,777,232,777,777,

227,727,777 is the smallest star-congruent prime containing

all four prime digits—and no other digits. This means that the

121-digit number can be arranged in the form of a six-pointed

star:

7

7  7

7  2  7

7  2  2  7

7  7  7  7  7  2  3  2  7  7  7  7  7

7  2  2  2  2  3  3  2  2  2  2  7

7  2  3  3  3  5  3  3  3  2  7

7  2  3  5  5  5  5  3  2  7

7  2  3  5  2  5  3  2  7

7  2  3  5  5  5  5  3  2  7

7  2  3  3  3  5  3  3  3  2  7

7  2  2  2  2  3  3  2  2  2  2  7

7  7  7  7  7  2  3  2  7  7  7  7  7

7  2  2  7

7  2  7

7  7

7

This curious number was discovered by the mathematician Dr.

Michael Hartley in 2003 and was featured at “Prime Pages’

Prime Curios!” managed by G. L. Honaker Jr. and Chris Cald-

well (primes.utm.edu/curios/page.php?curio_id=5284). Hart-

ley is an associate professor at the Malaysia campus of the

University of Nottingham. A “congruent prime” contains

“shapes” of identical digits nested about the center when

drawn in the form of squares, stars, hexagons, and so forth.

For example, 

7 7 7 

7 6 7 is a square-congruent prime of order 3. 

7 7 7 



Five factors for big num-
bers. The number of different

primes occurring in a number

may be denoted ω(n), which

is approximately ln(ln(n)).

Here, “ln” is the natural loga-

rithm. Calvin Clawson com-

ments in Mathematical

Mysteries, “If we consider the

numbers in the range of 1080,

which is the approximate

number of protons in the uni-

verse, we can determine that

most such numbers have

around five factors since

ln(ln1080) = 5.22.”

Ramanujan’s problem. Find

integer solutions to 

2N – 7 = X 2

This equation was searched

to about N = 1040, and

humanity has found only

Ramanujan’s original solu-

tions (N = 3, 4, 5, 7, 15). It

has recently been proved that

these are the only ones.

Ramanujan’s beauty.
“When we comprehend some

of Ramanujan’s equations, we

realize that he was a true

artist, expressing deep and

beautiful mathematical truth

in familiar symbols” (Calvin

Clawson, Mathematical

Mysteries, 1996).
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The smallest titanic hex-congruent prime. Dr. Michael Hartley

discovered this magnificent 1,027-digit prime number that can

be arranged in the form of nested hexagrams (see the “small-

est star-congruent prime containing all four prime digits” on

page 99 for a definition of a square-congruent prime). To con-

struct the original prime from this figure, simply concatenate

each row of the hexagonal figure (primes.utm.edu/curios/page.

php?number_id=2657).

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8 7 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

In the mid-1980s, Samuel Yates started to compile a list

known as the “Largest Known Primes” and coined the name

“titanic prime” for any prime with 1,000 or more decimal

digits.



Ramanujan synchronicity.

“It is not guaranteed that a

great mind will automatically

find the nurturing support

required for success. If

Ramanujan had not been a

Brahmin, or his mother had

not been as patient, or if

Hardy had ignored his letter,

then Ramanujan might have

slipped into obscurity, and his

wonderful notebooks and

equations would have been

lost forever” (Calvin Claw-

son, Mathematical Mysteries,

1996).

Math in bed. “It is amazing

to see the quantity of mathe-

matics that Ramanujan com-

municated to Hardy from

hospital beds in England!”

(Krishnaswami Alladi,

“Review of Ramanujan: Let-

ters and Commentary,” The

American Mathematical

Monthly 103, no. 8 [1996]:

708–11).

Ramanujan’s fractions.
Ramanujan excelled at pro-

ducing infinite fractions. Here

is an example.

1

1

1

1 2

2 3

3
4

4

e −
=

+
+

+
+ ...
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Definition of the Landau-Ramanujan constant. The Landau-

Ramanujan constant is 0.764223653 . . . Let N(x) denote the

number of positive integers not exceeding x that can be

expressed as a sum of two squares. Edmund Landau and

Ramanujan independently proved that

For example, M(8) = 5 because 1 = 02 + 12, 2 = 12 + 12, 4 = 02

+ 22, 5 = 12 + 22, and 8 = 22 + 22. Here, K is given by

The product is taken over all primes p congruent to 3 modulo

4. The convergence to the constant K, known as the Landau-

Ramanujan constant, is very slow. Here it is to a few more

digits, to impress your friends:

0.76422365358922066299069873125009232811

6790541393409514721686673749614641658732

8588384015050131312337219372691207925926

3418742064678084323063315434629380531

Many more digits of the Landau-Ramanujan constant have

been calculated by Philippe Flajolet at INRIA Paris (Institut

National de Recherche en Informatique et Automatique) and

Paul Zimmermann.

Ramanujan and π. Ramanujan enjoyed finding approxima-

tions to π. Here’s a nice one:

Hilbert sleeping. “If I were to awaken after having slept for a

thousand years, my first question would be: Has the Riemann

hypothesis been proven?” (David Hilbert, 1862–1943).

π ≈ 99

2206 2

2

 (correct to 8 places)
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Ethereal plane. “Because

it lies on a cool, ethereal

plane beyond the everyday

passions of human life, and

because it can be fully

grasped only through a lan-

guage in which most people

are unschooled, Ramanujan’s

work grants direct pleasure 

to only a few hundred pure

mathematicians around the

world, perhaps a few thou-

sand . . . ” (Robert Kanigel,

The Man Who Knew Infinity,

1991).

From Ramanujan.

and, more generally,

The foundation of math.
“If you disregard the very

simplest cases, there is in all

of mathematics not a single

infinite series whose sum 

has been rigorously deter-

mined. In other words, the

e

e

xx

x x

x

x

−

+
=

+
+

+
+

1

1 2
2

2

10
2

14

6

...

e

e

π
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π
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2

2

10
2

14

6
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Zebra numbers. In my book The Mathematics of Oz (2002),

I defined a class of irrational numbers that have remarkable

patterns in their strings of digits. Most of the usual irrational

numbers we think of, like √2 = 1.4142135623 . . . , seem to be

patternless. Zebra numbers are a class of irrational numbers

with patterns, and are so named because the zebra’s skin dis-

plays obvious patterns. Given the Zebra formula:

we find that the 50th Zebra is

2 72727 27272 72727 27272 72727 27272 72727 27272 72727

2727.272727 27272 72727 27272 72727 27272 72727 27272 72727 

26956 36363 63636 36363 63636 36363 63636 36363 63636 36363 

63636 36363 63636 36363 63636 36363 63636 36363 63636 36363 

45287 27272 72727 27272 72727 27272 72727 27272 72727 27272 

72727 27272 72727 27272 72727 27272 72727 27272 72727 27251 

44232 72727 27272 72727 27272 72727 27272 72727 27272 72727 

27272 72727 27272 72727 27272 72727 27272 72727 27272 69640

9556363636 36363 63636 36363 63636 36363 63636 36363 63636

3636363636 36363 63636 36363 63636 36363 63636 36358 62418

4680727272 72727 27272 72727 27272 72727 27272 72727 27272

7272727272 72727 27272 72727 27272 72727 27272 71855 15358

8991999999 99999 99999 99999 99999 99999 99999 99999 99999

9999999999 99999 99999 99999 99999 99999 99998 41025 13993 

62559 99999 99999 99999 99999 99999 99999 99999 99999 99999 

99999 99999 99999 99999 99999 99999 99999 99700 33238 87798 

42559 99999 99999 99999 99999 99999 99999 99999 99999 99999 

99999 99999 99999 99999 99999 99999 99999 42064 26183 07695 

61599 99999 99999 99999 99999 99999 99999 99999 99999 99999 

99999 99999 99999 99999 99999 99999 99885 75072 43302 7758 . . . 

My book explains these numbers in greater detail.

f ( ) / ( ) /50 9 121 100 112 44 50 12150= × + − × =

f n nn( ) / ( ) /= × + − =9 121 100 112 44 121



most important parts of 

mathematics stand without a

foundation” (Niels H. Abel,

in G. F. Simmons, Calculus

Gems, 1992).

Alien ships. Alien ships

descend on America. The

president shivers in fear. On

the first day, 3 ships come.

On the second day, 6 ships

come. Each day, the number

of ships increases as

3; 6; 18; 72; 144; 

432; 1,728; ?

Find the eighth number in

this sequence to determine

how many ships come on 

the last day. (See Answer

2.84.)

Trains with crystal balls. My

friend is superstitious and is

riding in a train with seven

cars. Below are the numbers

of crystal balls he places in

each car for good luck.

42, 63, 94, 135, 96, 157, ?

These numbers form a

sequence. How many crystal

balls are in the seventh car?

(See Answer 2.85.)
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An infinite product. From Ramanujan:

Here, the infinite product symbolized by ∏, steps through

every prime number; for example,

Prime glue. In 1737, Euler discovered the following rela-

tionship, which appears to glue together the prime numbers

and the sequence of natural numbers in a fascinating way:

For Euler, the variable s could be any real number! We can

rewrite this formula as

ξ(s) is called the zeta function. For values of s >1, the zeta

function converges to a limit. For s = 1, the zeta function is

just the harmonic series, which diverges.

From Ramanujan.

1

2

1

2

1

4

1

8
1 1 1 1 1= − − − − − ...

. . .

s s s s
−











 −











 −











 −













1

1

1

1

1

1

1

11

2

1

3

1

5

1

7

ξ ( ) . . .s
s s s s

= + + + + =
1

1

1

2

1

3

1

4

ξ ( )s
n s

p
p primesn s

= =
−==

∞

∏∑
1 1

1 1
1

2 1

2 1

3 1

3 1

5 1

5 1

7 1

7 1

5

2

2

2

2

2

2

2

2

2

+

−









 ⋅

+

−









 ⋅

+

−









 ⋅

+

−









 =. . .

p

pp

2

2

1

1

5

2

+

−









 =

∞

∏



Mr. Zanti’s ants. My friend,

Mr. Zanti, collects ants, which

he places in 7 ant farms. In

the first ant farm are only 6

ants. The next ant farm con-

tains 26 ants. What number 

of ants comes last in the fol-

lowing sequence?

6; 26; 106; 426; 1,706; 6,826; ?

(See Answer 2.86.)

Integer representation as
sums. An integer can be repre-

sented as the sum of the

squares of two rational num-

bers if, and only if, it can be

represented as the sum of the

squares of two integers. This

means, for example, that

there are no rational numbers,

r, s, such that r2 + s2 = 3.

Factorial. Stirling’s for-

mula can be used to approxi-

mate n factorial (n!):

It’s interesting that factorial

should be related so inti-

mately with π and e.

Prime king. The kings in a

deck of cards abscond with

all the cards that show prime

numbers on their faces. How

many cards does your deck

now contain? (See Answer

2.87.)

n n n e n! ( / )≈ 2π
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A delight from Ramanujan.

(Ramanujan; James R. Newman, The World of Mathematics,

Volume 1 [New York: Simon and Schuster, 1956], pp.

371–72).

Another delight from Ramanujan.

From Ramanujan.

Note that the term in parentheses can be reduced to √2 + φ – φ,

where φ is the golden ratio. 

From Ramanujan.

where γ = 0.5772157. . . is the Euler-Mascheroni constant.

From Ramanujan.
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Euler’s conjecture on powers.
Euler once conjectured that

an nth power cannot be

expressed as the sum of fewer

than n smaller nth powers.

Today we know that the sim-

plest known counter example

to Euler’s conjecture is

31,858,749,840,007,945,920,

321 = 422,4814 = 95,8004 +

217,5194 + 414,5604.

Pi deck. How many 

consecutive digits of pi

(3.1415 . . . ) can you display

with a deck of cards, using

the numbers on the cards and

starting at any point you like

in the digit string of pi? You

can omit the cards with no

numbers, like the jacks and

the aces. (See Answer 2.88.)

Mathematical profundity.
“In the company of friends,

writers can discuss their

books, economists the state

of the economy, lawyers their

latest cases, and businessmen

their latest acquisitions, but

mathematicians cannot dis-

cuss their mathematics at all.

And the more profound their

work, the less understandable

it is” (Alfred Adler, “Reflec-

tions: Mathematics and Cre-

ativity,” New Yorker, 1972).
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From Ramanujan.

From Ramanujan.

A formula that unites. Here’s a gem from Ramanujan relat-

ing π, a natural logarithm, and the golden ratio. (Can you find

the golden ratio?)

From Ramanujan.
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On the disorder of π. In

1997, the mathematicians

Steve Pincus and Rudolf

Kalman applied a statistical

method called “approximate

entropy” to assess the disor-

der of the digits in transcen-

dental numbers like π and

algebraic numbers like the

square root of 2. Pincus ini-

tially had a gut feel that the

digits in transcendental num-

bers were more disorderly

than in algebraic numbers,

but he was wrong. Although

π had the most irregular

sequence of digits, the 

square root of 2 was the

second-most disorderly digit

string tested. In order of 

randomness, Pincus and

Kalman found

π = 3.141592 . . .

√2 = 1.414235. . .

e = 2.718281 . . .

√3 = 1.732050. . . 

I do not know if more com-

prehensive entropy lists of

transcendental and algebraic

numbers continue to show

this mixing. For further read-

ing, see Charles Seife, “New

Test Sizes Up Randomness,”

Science 276, no. 5312 (April

25, 1997): 532.
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A prime connection. Here is an approximation from

Ramanujan that connects the constant e, logarithms, and

primes. As x approaches zero, we have

From Ramanujan.

where the subscript n refers to the Pochhammer notation that

is explained in the definition on page 107.

From Ramanujan.

where the subscript Poch(n) refers to the Pochhammer

notation.

Nested radicals. Ramanujan presented this nested radical in

The Indian Journal of Mathematics:
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The wonderful number 37.
The numbers 111, 222, 333,

444, 555, 666, 777, 888, and

999 are all evenly divisible by

37, leaving no remainder.

Vibonacci numbers. We’ve

already discussed Fibonacci

numbers, in which each term

(except for the first two) is

the sum of the two preceding

terms. We can produce the

sequence by F
n

= F
n – 2

+

F
n – 1

to yield 1, 1, 2, 3, 5, 8,

13, . . . The mathematician

Divakar Viswanath has stud-

ied the Vibonacci sequence—

a new variation on the

Fibonacci sequence, in

which, instead of always

adding two terms to produce

the next term, we either 

add or subtract, depending on

the flip of a coin at each stage

in the calculation. This can be

expressed as V
n

= V
n – 2

±

V
n – 1

, where we choose to 

add or subtract with equal

probability. 

An amazing degree of

order can be found in the

“randomized” sequences. 

In particular, the absolute

value of V
n

grows exponen-

tially as n increases, with a

growth rate controlled by a

newly discovered constant

called Viswanath’s constant,

C = 1.13198824 . . . (Divakar

Viswanath, “Random

Fibonacci Sequences and the

Number 1.13198824 . . . , ”

Mathematics of Computation

69 [2000]: 1131–55).

Large palindions and hyper-
palindions. As already dis-

cussed, a palindrome is a

natural number that does not

change when its digits are

reversed. Examples of palin-

dromes include 101; 33;

1,234,321; and 2. Palindions

are natural numbers that have

more palindromic divisors

than any smaller number. In

other words, if a natural num-

ber p is a palindion, then no

natural number n has as many

palindromic divisors as p

where 0 < n < p. In 2004,

Jason Earls discovered the

palindion 2,666,664, which

has 50 palindromic divisors.

It satisfies the definition of a

palindion because no smaller

numbers exist with so many

palindromic divisors. Its

palindromic divisors include

80,808; 333,333; and

888,888. Later in 2004, Mark
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Pochhammer notation defined. The Pochhammer symbol pro-

vides a way to simplify mathematical formulas and is used in

some of the notations for the Ramanujan formulas in this

book. In particular, 

(x)
n

or (x)
Poch(n)

= x × (x + 1) × (x + 2) × . . . × (x + n – 1)

Sometimes, the subscript n is written “Poch(n)” to visually

differentiate it from an ordinary subscript. Let’s try it with an

example that uses “5” as the Pochhammer subscript:

The subscript value effectively tells you how many terms to

include in the product. The Pochhammer symbol should have

higher priority than the exponent, so that the Pochhammer

symbol is applied first, and then the result is cubed. 
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Ganson discovered a few

larger palindions, including

134,666,532, which has 80

palindromic divisors. All

multidigit palindions that

have been discovered so far

are multiples of 6. (The rea-

son for this is currently a

mystery.)

Hyperpalindions are

palindions that themselves

are palindromic. The largest

known hyperpalindion is

2,772, with 16 palindromic

divisors: 1, 2, 3, 4, 6, 7, 9, 11,

22, 33, 44, 66, 77, 99, 252,

and 2,772.

11,410,337,850,553.
Arithmetic progressions are

number sequences in which

each term differs from the

preceding one by a constant.

For example, the sequence 5,

11, 17, 23, and 29 happens to

contain prime numbers in

which successive primes dif-

fer by 6. The longest known

arithmetic progression of

prime numbers contains just

22 terms. One 22-term 

progression starts at

11,410,337,850,553, and 

the difference between

successive terms is

4,609,098,694,200. In 2004,

Ben Green, of the University

of British Columbia, and 

Terence Tao, of the Univer-

sity of California, offered a

proof that demonstrates that

there are infinitely many

prime progressions of every

finite length (Erica Klarreich,

“Primal Progress: Pattern

Hunters Spy Order among

Prime Numbers,” Science

News 165, no. 17 [April 24,

2004]: 260–61).

Math scribblings. “After

Ramanujan’s death, Hardy

received the loose sheets of

paper on which Ramanujan

had scribbled mathematical

formulas in his dying

moments. Contained in these
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Palindromic primes. This list of palindromic primes was cre-

ated by G. L. Honaker Jr. in 1999:

2

30203

133020331

1713302033171

12171330203317121

151217133020331712151

1815121713302033171215181

16181512171330203317121518161

331618151217133020331712151816133

9333161815121713302033171215181613339

11933316181512171330203317121518161333911

The pyramid is unique, in that each palindromic prime is

related to the previous by appending two digits to the start and

the end of the previous palindromic prime. For further read-

ing, see “On-Line Encyclopedia of Integer Sequences,”

primes.utm.edu/curios/page.php?number_id=2393.



sheets were several deep 

formulas for the mock-theta

functions” (Krishnaswami

Alladi, “Review of Ramanu-

jan: Letters and Commen-

tary,” The American

Mathematical Monthly 103,

no. 8 [1996]: 708–11).

Legion’s number. In my

book The Mathematics of Oz,

I wondered whether humanity

could ever compute the first

ten digits of the number

666!666!, which I called

“Legion’s number of the sec-

ond kind.” (Legion’s number

of the first kind was a mere

666666.) The number 666!666!

is so large that it has roughly

101596 digits. The answer in

my previous book turned out

to be incorrect for various

technical reasons, and I

would like to update readers

with the correct number.

After reading about Legion’s

number in The Mathematics

of Oz, B. Ravikumar, of Cali-

fornia State University,

Sonoma, used various mathe-

matical tricks to determine

the first ten digits,

2765838869, using a personal

computer that ran for just two

minutes. In particular, he

used computational tricks

known as repeated squaring,

addition chains, and Karat-

suba’s algorithm (a fast 

algorithm for multiplying

integers). As part of this 

project, Ravikumar also

determined the exact number

of digits in 666!666!. Readers

may write to me for details of

his approach.

π-palindromic prime. The number 31,415,926,535,897,

932,384,626,433,833,462,648,323,979,853,562,951,413

is a palindromic prime formed from the reflected decimal

expansion of π. (G. L. Honaker Jr., primes.utm.edu/curios/

page.php?number_id=130). Carlos B. Rivera reports that the

next two larger π-palindromic primes have 301 and 921 

digits. Similarly, Jason Earls has discovered the following 

φ-palindromic prime, based on the first few digits of the

golden ratio, φ:

16180339887498948482045868343656381177203 0 

30277118365634386854028484989478893308161

Baxter-Hickerson prime numbers. Mathematicians of all

levels of sophistication continue to search for elusive Baxter-

Hickerson prime numbers. As background, in 1999, Lew

Baxter discovered that (2 × 105n – 104n + 2 × 103n + 102n +

10n + 1)/3 produces numbers whose cubes lack zeros. The first

few terms for n = 0, 1, 2, . . . are 2, 64037, 6634003367,

666334000333667, . . . Baxter-Hickerson prime numbers

occur for n = 0, 1, 7, 133, . . . yielding f(0) = 2, f(1) = 64037,

f(7) = 66666663333334000000033333336666667, . . . The

largest known Baxter-Hickerson prime number is 66666 . . .

66667 (665-digits) and was discovered by G. L. Honaker Jr.

For your interest, cubing f (7) produces a number that is

zero free and equal to 2962962518518629629624814815925

9259814814877777791111111777777881481489259259814

8148629629651851852962963.
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On prime numbers. If an

integer p is a prime number,

then for all integers j, dividing

both jp and j by p gives a

result with the same remain-

der. For example, if p = 7 

(a prime) and j = 9, dividing

97 by 7 gives a remainder of 2,

as does dividing 9 by 7. Any

integer p that fails this test is

not prime. For further reading,

see Ivars Peterson, “Prime

Pursuit,” Science News 162

(October 26, 2002): 266–67.

Rare sums. Only 31 num-

bers exist that cannot be

expressed as the sum of dis-

tinct squares. Only one prime

number exists that is equal to

the sum of the decimal digits

of its 7th power.
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Algebra, Percentages,
Weird Puzzles, and 

Marvelous Mathematical
Manipulations
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IN WHICH WE ENCOUNTER TREASURE CHESTS OF ZANY AND EDUCATIONAL MATH

problems that involve algebra, fractions, percentages, classic recreational

puzzles, and various types of mathematical manipulation. Some are based on

problems that are more than a thousand years old. Others are brand new. Get

ready to sharpen your pencils and stretch your brains!

Algebra, Percentages,
Weird Puzzles, and 

Marvelous Mathematical
Manipulations

Algebra is about constants and variables and

relationships between them. If numbers are 

soldiers, algebra sets the rules of engagement.

33





Free association. “Rarely

do I solve problems through a

rationally deductive process.

Instead I value a free associa-

tion of ideas, a jumble of

three or four ideas bouncing

around in my mind. As the

urge for resolution increases,

the bouncing around stops,

and I settle on just one idea

or strategy” (Heinz Pagels,

Dreams of Reason, 1988).

1⁄2 puzzle. What number

gives the same result when 

it is added to 1⁄2 as when it is

multiplied by 1⁄2? (See 

Answer 3.1.)

Math metaphysics. “Alge-

bra is the metaphysics of

arithmetic” (John Ray,

1627–1705).

Shrunken heads puzzle.
Gary and Joan collect lifelike

shrunken heads made of

leather. Gary said that if Joan

gave him two shrunken

heads, they would have an

equal number, but if Gary

gave Joan two of his, Joan

would have twice as many as

Gary. How many shrunken

heads did they each have?

(See Answer 3.2.)

Algebra, Percentages, Weird Puzzles, and Marvelous Mathematical Manipulations 113

Loyd’s Leaning Tower of Pisa. Sam Loyd, the famous 

nineteenth-century American puzzlemaster, proposed “The

Leaning Tower of Pisa” problem, illustrated in figure 3.1. If an

elastic ball is dropped from the Leaning Tower of Pisa at a

height of 179 feet from the ground, and on each rebound the

ball rises exactly one tenth of its previous height, what dis-

tance will it travel before it comes to rest? He gave a solution

but, alas, never said how he solved this. How would you solve

this? (See Answer 3.3.)

Figure 3.1 Sam Loyd’s Leaning Tower of Pisa.



A real mathematician.
“A person who can within 

a year solve x2 – 92y2 = 1 

is a mathematician” 

(Brahmagupta [598–670],

Brahmasphutasiddhanta

[The Opening of the

Universe], A.D. 628).

Chimpanzees and gorillas.
A chimpanzee, when asked

by a gorilla how old it was,

replied, “My age is now five

times yours, but three years

ago, it was seven times yours.

If you can tell me my age, I

will reward you by bringing

you a banana every day.”

How old is the chimpanzee?

(See Answer 3.4.)

RED + BLUE. Mr. Antón

Buol walks down the street

and sees a red-and-blue-

striped pole. “Great!” he

shouts, when he realizes that

RED + BLUE = BUOL

forms an “alphametic,” in

which each letter is replaced

by a digit. The same letter

always stands for the same

digit, and the same digit is

always represented by the

same letter. Can you solve 

the alphametic? (See Answer

3.5.)

New tools. “The great

advances in science usually

result from new tools rather

than new doctrines. Each

time we introduce a new tool,

it always leads to new and

unexpected discoveries,

because Nature’s imagination

is richer than ours” (Freeman

Dyson, in the introduction to

Nature’s Imagination, 1995).
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Loyd’s “teacher” puzzle. The teacher pictured in figure 3.2 is

explaining to his class the remarkable fact that 2 times 2 gives

the same answer as 2 plus 2. Although 2 is the only positive

number with this property, there are many pairs of different

numbers that can be substituted for a and b in the equations on

the right of the blackboard, namely,

a × b = y a + b = y

Can you find a value for a and b? For this puzzle, Sam

Loyd asks us to give different values for a and b. They may be

fractions, of course, but they must have a product that is

exactly equal to their sum. (See Answer 3.6.)

Figure 3.2 Sam Loyd’s classic a × b = y, a + b = y.



Worms and water. You go to

a bait store and buy 1,000

pounds of worms for your

fishing business. This particu-

lar species of worm is 99 

percent water. 

The worms dry slightly in

their hot, smelly enclosure,

and an hour later they are 95

percent water. How much do

the worms weigh now? (See

Answer 3.7.)

Fragile fractions. Is it pos-

sible to construct the fraction
1⁄2 by summing other frac-

tions of the form 1/x2? For

example, you can choose var-

ious denominators, as in: 1⁄32

+ 1⁄52 + 1⁄10
2 + . . . (but this is

not an answer!). The solution

must have a finite number of

terms, and no value of x can

exceed 100 or be repeated.

(See Answer 3.9.)

Square pizzas. Abraham

has a stack of square pizzas,

each with the numbers 1, 2,

3, and 10 at the corners, as

shown in figure 3.4.

Abraham tosses the pizzas

into a pile at random so that

they are rotated haphazardly

and create quite a mess. An

angel of the Lord comes to

Abraham and asks him if

there is a way to stack the

pizzas so that the numbers in
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Loyd’s mixed tea puzzle. According to Loyd, in Asia, the

blending of teas is such an exact science that combining dif-

ferent kinds of teas is done with utmost care (figure 3.3). In

order to illustrate the complications that arise in the science of

blending teas, he calls attention to a simple puzzle that is

based upon two tea blends only.

Mr. Han, the human mixer, has received two cases, each

cubical but of a different size. The larger cube is completely

full of black tea. The smaller cube is completely full of green

tea. Mr. Han has mixed together the contents and found that

the mixture exactly fills 22 cubical chests of equal size.

Assuming that the interior dimensions of all the boxes and the

chests can be expressed as exact decimals (i.e., numbers with

decimal parts that don’t repeat forever), can you determine the

proportion of green tea to black? (See Answer 3.8.)

Figure 3.3 Sam Loyd’s classic mixed teas puzzle.

Figure 3.4 Abraham’s 
square pizza.



a column through each corner

in the stack equal 67. In other

words, Abraham can use as

many pizzas as he likes, and

he is free to rotate them how-

ever he likes, if he can ensure

that each corner stack sums

to 67. Is this possible? (See

Answer 3.10.)

The problem of the rich
jeweler. Here’s a difficult prob-

lem I invented to test my

brainy colleagues. Your

friend, a jeweler in New York

City, walks with you to a

large room filled with three

kinds of valuable objects:

gems, cubical chunks of spe-

cial alloys, and bottles of rare

spices. There are four kinds

of gems: one pink, another

beige, a third yellow, and the

last green. Among the gems,

the number of pink gems is

equal to one-fourth plus one-

third the number of beige

gems plus the number of

green gems. The number of

beige gems is equal to one-

seventh plus one-third the

green gems plus half the

number of yellow gems. The

number of green gems is

equal to one-fifth plus one-

eleventh the pink plus the

beige gems. 

We are also gazing at four

colors of precious alloys.

Among the alloys, the num-

ber of pink alloys is equal to

one-half plus one-fifth of the

pink objects in the room plus

twice the number of yellow

alloys. The number of beige

alloys is equal to one-third

plus one-half the total of the

green alloys. The number of

green alloys is equal to one-

fifth the number of pink

alloys plus one-sixth the total

number of the yellow alloys,

and the number of yellow

alloys is equal to one-eighth

plus one-third the total of the

green objects in the room. 

There are four colors of

spice bottles. The number of

pink spice bottles is equal to

one-half the number of beige

objects in the room. The total

number of green and yellow

spice bottles is equal to the

total number of pink and

beige spice bottles. 

What is the least number

of precious objects that are in

the room? (See Answer 3.11.)
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A huge number? You have 99 constants labeled a
1

to a
99

.

Let a
1

= 1. The value of each successive constant a
n

is equal to

n raised to the value of the previous constant a
n – 1

. For exam-

ple, a
2

= 2a1 = 2 and a
3

= 3a2 = 9, and so forth. What is the

exact value of

(a
97

– a
1
) × (a

97
– a

2
) × (a

97
– a

3
) × ... × ... (a

97
– a

99
)?

(See Answer 3.12.)
Figure 3.5 A stack of 

square pizzas.
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Phoenix and ex. “Who has

not been amazed to learn that

the function y = ex, like a

phoenix rising again from its

own ashes, is its own deriva-

tive?” (Francois le Lionnais,

Great Currents of Mathemat-

ical Thought, 1962).

x 0? Can you show why 

x0 = 1? In other words, your

task is to informally demon-

strate why you think that 

any number raised to the

power of zero is 1. (See

Answer 3.13.)

Mathematics and romance.
“Mathematicians are like

lovers. Grant a mathematician

the least principle, and he

will draw from it a conse-

quence which you must also

grant him, and from this

consequence another”

(Bernard Le Bovier

Fontenelle, quoted in V. H.

Larney, Abstract Algebra: A

First Course, 1975).

The fraction of life. “A man

is like a fraction whose

numerator is what he is and

whose denominator is what

he thinks of himself. The

larger the denominator the

smaller the fraction” (Count

Lev Nikolgevich Tolstoy

[1828–1920], in Howard

Eves, Return to Mathematical

Circles, 1987). 

Tarantulas in bottles.
Tiffany places three opaque

bottles on the table before

you. One bottle contains a

dead tarantula. The other two

bottles contain live tarantulas.

Tiffany knows what is in each

bottle, but you do not. 

You can ask Tiffany one

yes-or-no question, but when

you do, you have to point to

one of the bottles. If you

point to a live tarantula, she

will tell the truth. If you point

to the dead tarantula, she will

randomly say “yes” or “no.”

Your mission is to find one of

the live tarantulas by asking a

single question. What ques-

tion should you ask? (See

Answer 3.16.)

Large ape. A large ape

enters your kitchen, along

with a zookeeper. The

zookeeper says to you, “I will

remove this ape from your

Winged robot. Danielle is eating ice cream with her father

and her friend Kate. Danielle tells Kate, “My grandfather is

exactly the same age as my father.” 

“No way!” says Kate. 

“It’s true!” Danielle says, bringing out a photo of her grand-

father and showing it to Kate. 

“You’re a liar,” Kate says. 

Suddenly, a winged robot descends and perches next to

them. “I assure you that Danielle is telling the truth.” 

Danielle nods. “Kate, you can have my ice cream if I’m

lying.” 

Could the robot be telling the truth? (See Answer 3.14.)

Fraction family. Which fraction is the odd one out?

(See Answer 3.15.)

17

74

29

98

35

152

42

162

87

372

74

372
,  ,  ,  ,  ,  



kitchen four days after two

days before the day before

tomorrow.” What day will

you be free of the ape? (See

Answer 3.17.)

Ψ substitution. What num-

ber should replace the Ψ?

5 8 7 5 4

2 7 3 5 1

6 5 8 4 5

1 7 2 2 Ψ

(See Answer 3.18.)

Angel number-guessing
game. An angel materializes

on your doorstep and speaks.

“I am thinking of two whole

numbers that represent the

number of apples and grapes

in the Garden of Eden. The

product of these numbers 

is 1,000 times larger than

their sum. What are the two

numbers?”

You frown. “Wait, that is

not enough information.”

The angel nods. “You are

right. There is more than one

solution, and you have 24

hours to give me any solu-

tion. If you are correct, you

will live the rest of your life

in bliss.” (See Answer 3.19.)

Starship journey. Captain

Kirk’s starship leaves Earth

for Mars. Captain Eck’s star-

ship leaves from Mars for

Earth. Their ships start at the

same time and travel at uni-

form speeds, but one is faster

than the other. After meeting

and passing, Kirk requires 17

hours and Eck requires 10

hours to complete the jour-

ney. Approximately what total

time did each starship require

for its interplanetary journey?

Assume stationary planets.

(See Answer 3.20.)

Journey. An old car starts

at a city in New Jersey and

travels at a speed of 21 miles

per hour toward New York.

After reaching New York, the

car returns, traveling over

exactly the same distance, at

only 3 miles per hour. What

is the car’s average speed over

the entire journey? (Assume

that the car turned around

instantly once it reached New

York.) (See Answer 3.22.)

Four intelligent gorillas.
Four intelligent gorillas in 

the forests of Africa are 

holding an election to deter-

mine who should be king of
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Missing numbers. Insert the consecutive numbers 1 through

11 in the 11 empty cells. Each number in the gray cells is the

sum of the adjacent empty cells (right, left, up and down) that

touch the gray cell.

(See Answer 3.21.)

13

33

19 19

10



the gorillas. At the recent

election, a total of 8,888 

votes were received for the

four candidate gorillas, the

winner beating its opponents

by 888, 88, and 8 votes,

respectively. How many votes

did the successful gorilla

receive? (See Answer 3.23.)

George Nobl: A true story.
In 2003, the math teacher

George Nobl often posed

math problems to passersby

in New York’s Time Square.

He laid out different math

problems on a table and

offered Snickers bars to

anyone who got them right.

Here is one of my favorite

Nobl problems.

Noah is a candy store

owner. He has 20 pounds of

cashews, costing $3.55 a

pound. And he has peanuts

that cost $2.50 a pound. How

many pounds of peanuts

would Noah have to mix with

all the cashews to get a mix-

ture that costs $3.20 per

pound? (See Answer 3.24.)

Human hands. Mike col-

lects lifelike models of

human hands. He wants to

put them on shelves in his

den. His first thought is to put

each one on a shelf, but when

he tries this, two hands have

to share one shelf. Next,

Mike tries to place the hands

on the shelves so that every

shelf contains two hands, but

when he tries this, one shelf

is left empty. How many

hands does Mike own? How

many shelves is he using?

(See Answer 3.25.)

Three arrays. I have filled

the following three arrays

with consecutive numbers

from 1 to 12. The sum of the

numbers in the first array is

24; in the second array, 34;

and the third array, 20. Fill in

the missing numbers. (See

Answer 3.27.)

Perfect cubes? Let n be

a positive integer. Can both 

n + 3 and n2 + 3 be perfect

cubes? (A perfect cube is a

number that is the cube of 

an integer, like 23 = 8 or 33

= 27.)

It would seem as if I gave

you too little information to

solve this, and that is why 

the problem is so fascinating.

How can you answer this

problem with such meager

information? (See Answer

3.28.)

Harmonic series. The har-

monic series

1 + 1/2 + 1/3 + 1/4 + . . . 

grows without bound, but so

slowly that it requires 12,367

terms to make the sum

greater than 10. 
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1 ?

? 11

8 ?

? 5

6 ?

? 3

Ages. I have five wonderful friends, one of whom is quite

young. The sum of all their ages is 109. If I add pairs of ages, I

get the following:

How old are my friends? (See Answer 3.26.)

Name Name Age Sum

Teja Danielle 16

Danielle Nick 32

Nick Pete 52

Pete Mark 72



Four pets. I have four

pets: an iguana, a cat, a bird,

and a large ape. Today, I

loaned all the pets to friends

who enjoy the company of

pets. The iguana is returned

every 6 days. The cat comes

home every 4 days. The bird

comes home every 3 days and

the ape every 7 days. The pets

are always returned at noon

and stay with me for an hour

during my lunch break so that

I can enjoy their company

before loaning them out

again. In how many days will

all my pets be together again

in my cozy home? (See

Answer 3.29.)

Aesthetic math. “Blindness

to the aesthetic element in

mathematics is widespread

and can account for a feeling

that mathematics is dry as

dust, as exciting as a tele-

phone book. . . . Contrari-

wise, appreciation of this

element makes the subject

live in a wonderful manner

and burn as no other creation

of the human mind seems to

do” (Philip J. Davis and

Reuben Hersh, The Mathe-

matical Experience, 1981).

Fractional swap. Swap two

numbers in the numerator

with two numbers in the

denominator to form a frac-

tion equaling 1⁄3.

(See Answer 3.30.)

Rational roots. Can you

find a number, n, such that n,

n – 7, and n + 7 all have

rational square roots? In 

other words, the square root

of each of these three num-

bers can be expressed as an

integer or a fraction. (See

Answer 3.31.)

Consecutive integers. In

1769, Leonhard Euler conjec-

tured that the following equa-

tion has no solution for

positive integers:

A4 + B4 + C4 = D4

However, 218 years later,

Noam Elkies and Roger Frye

found solutions like (A, B, 

C, D) = (95,800; 217,519;

414,560; 422,481). Note also

that 275 + 845 + 1105 + 1335

= 1445. Recall that in chapter

1, we discussed the equation

an + bn = c n, n > 2 as having

no positive integer solutions.

This statement is called 

Fermat’s Last Theorem. 

Donald Trumpet. Donald

Trumpet died, leaving a pecu-

liar will. His will states that

he will leave one million dol-

lars to be split between his

son William and his daughter

Hillary. Hillary, his favorite

1630

4542
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A super slow-growing series. The series

1/(3log3loglog3) + 1/(4log4loglog4) + . . . 

grows so slowly that it requires 1010100
terms to make the sum

greater than 10.

A very slow-growing series. The series

1/(2log2) + 1/(3log3) + 1/(4log4) + . . .

grows so slowly that it requires 104,300 terms to make the sum

greater than 10.



child, gets four times the

amount of William. If Hillary

takes less than 30 seconds 

to determine how much

William will get, the money

is distributed immediately;

otherwise, Hillary gets noth-

ing. Can you help her? 

What did William get? (See

Answer 3.32.)

Rubies and emeralds.
Three huge rubies and two

emeralds weigh 32 pounds.

Four rubies and three emer-

alds together weigh 44

pounds. Assume that the

three rubies have an identical

weight, as do the emeralds.

What is the weight of two

rubies and one emerald? 

(See Answer 3.33.)

Crow and eagle. A crow

and an eagle are gazing at

100 worms. The crow says,

“Because I am smaller than

you, you will get six times

the number of worms I will

get. If you tell me how many

worms you will get in this

fine deal, I will build a beau-

tiful nest for you. If you are

not that smart, I will get all

the worms.”

The eagle said, “It’s a

deal!” How many worms did

the eagle get? (Hint: You may

have to cut some of the

worms to be fair and accu-

rate.) (See Answer 3.34.)

Puzzle solving. “Mathemat-

ics began to seem too much

like puzzle solving. Physics is

puzzle solving, too, but of

puzzles created by nature, not

by the mind of man” (Maria

Goeppert Mayer, in Joan

Dash’s Maria Goeppert-

Mayer: A Life of One’s Own,

1973).

Four digits. Substitute four

different digits for A, B, C,

and D to make the following

mathematical expression cor-

rect. (AB is a two-digit num-

ber, and DAC is a three-digit

number. A, B, C, and D are

single-digit numbers.)

(AB + A) × C = DAC

(See Answer 3.36.)

Wizard’s card. A wizard in

a long white robe approaches

you with a single card that
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Number grid. The grid specifies 6 mathematical formulas, 3

horizontally and 3 vertically. (Recall that multiplication and

division are performed before addition and subtraction.) Fill in

the missing integer numbers.

(See Answer 3.35.)

÷ + = 6

× + ×

× + = 34

+ + –

× + = 24

= = =

59 11 3



has a 9 on one side and a 4 on

the other. When the wizard

tosses the card, it can land on

either side.

The wizard can toss the

card as often as you like, and

each time he tosses the card,

you add the number to the

running sum. For example, he

might toss a 9 and 4 and 4,

which gives us a score of 17.

What is the highest whole

number score that is impossi-

ble to obtain while playing

this strange game? (See

Answer 3.37.)

Insert symbols. Insert + 

or – between the numbers to

find the total.

8 7 6 5 4 3 2 1 = 88

(If you don’t place a symbol

between the numbers, they

merge to form a multidigit

number. For example, here is

one possibility that, alas,

turns out to be incorrect:

8,765 – 4,321 = 88.) (See

Answer 3.38.)

New Guinea sea turtle. My

New Guinea sea turtle is four

times older than I am. As it

ages, its shell will turn a

bright green. As I ponder its

beautiful color, I suddenly

realize that in 20 years, the

turtle will be only twice as

old as I will be then. How old

is my turtle, and how old am

I? (See Answer 3.40.)

Find A and B. What are A

and B in this mathematical

expression? (BA is a two-digit

number, and 176B is a four-

digit number.) 

BAA = 176B

(See Answer 3.41.)

Prosthetic ulnas. Suzy

Samson is a world-champion

weight lifter with arms

strengthened by prosthetic

ulnas shaped like helices.

Today, she is on a TV show,

demonstrating her mental and

physical strength. She gazes

at some barbells, and a ques-

tion forms in her mind. If she

weighs 120 pounds plus a

fourth of her own weight,

how much does she weigh?

(See Answer 3.42.)

Ladybugs. Teja has a num-

ber of ladybugs in a jar. The

number of ladybugs plus 10

grasshoppers is 2 less than 5

times the number of lady-

bugs.

In addition, Teja has ten

times the number of butter-

flies as she has grasshoppers.

If you wish, denote the num-

ber of ladybugs by L and

the number of grasshoppers

by G. How many ladybugs

does Teja have? (See Answer

3.43.)

122 A Passion for Mathematics

Missing numbers. The missing numbers in the following

grid are one-digit integers. The sums for each row and each

column, and one diagonal, are listed outside the 4-by-4 array.

How quickly can you find the missing numbers?

(See Answer 3.39.)

? 3 ? 6 16

4 ? 4 ? 17

? 0 ? 8 15

2 ? 5 ? 17

10 6 19 30 18



Nebula aliens. Aliens from

the Trifid Nebula descend to

New Jersey. The surface area

and the volume of their

spherical spaceship are both

four-digit integers times π,

expressed in units of feet.

Assume that the strange ship

contains only air, and its vol-

ume is (4/3) πr 3. What is the

radius r of the alien sphere?

If you solve this puzzle, the

aliens will give you their ship

so that you can explore the

universe. (See Answer 3.44.)

Martian females. In a Mar-

tian crater, three-sevenths of

the females are married to

one-half of the males. What

fraction of the crater’s Mar-

tians are married? (Assume

that no Martian is married to

more than one Martian.)

What is the least number of

Martians who could live in

the crater? (See Answer 3.45.)

Dimension X. You are

transported to a nearby

dimension where half of 6 is

4, not 3, as you expected.

What would a third of 12 be?

(See Answer 3.46.)

Wine and vinegar. Monica

walks along the New Jersey

Turnpike, carrying ten 3-cup

bottles of vinegar that are

one-quarter full. Her friend

William is carrying five 4-

cup bottles of red wine that

are one-quarter empty. How

much more liquid does

William carry than Monica?

(See Answer 3.47.)

Unholy experiment. There

are several humans and rab-

bits in a dirty cage (with no

other types of animal). Per-

haps they are trapped there

for some kind of unholy

experimentation.

All that we know is this:

there are 70 heads and 200

feet inside the cage. Do you

have the gut feeling that 

there are more rabbits than

humans? Exactly how many

humans are there, and how

many rabbits? (See Answer

3.48.)

Space race. America and

Russia are in an important

race from Earth to Saturn.

Both spaceships start at

Moscow and end at Saturn.

They start the race traveling

at the same speed and neither

of them speeds up or slows

down. The result is not a tie.

How is this possible? (See

Answer 3.49.)

Number journey. “Mathe-

matics is not a careful march

down a well-cleared highway,
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Hyperpower towers. Hyperpowers of the form 

x = g(z) = zzz

for real positive z comprise a fascinating reservoir for com-

puter study. You can define the sequence {z
n
} by z

1
= z,

z
n + 1

= z zn, n = 1, 2, 3, . . . You can repeat this mathematical

feedback loop over and over again. Whenever the sequence

{z(n)} converges, we write

You will find that the hyperpower tower diverges (gets

larger and larger) for starting values greater than e1/e. You’ll

also find some interesting surprises when the starting value is

less than e–e. Try it.

g z z n
n

( ) lim ( )=
→∞



but a journey into a strange

wilderness, where the explor-

ers often get lost. Rigor

should be a signal to the 

historian that the maps have

been made, and the real

explorers have gone else-

where” (W. S. Anglin, 

“Mathematics and History,”

The Mathematical Intelli-

gencer, 1992).

Odin sequence. The Norse

god Odin tells you to pick

any two-digit number. Multi-

ply by 3, and use Odin’s

mighty sword to sever the

number so that you retain the

last two digits of this result,

and multiply by 3 again.

Repeat the process. For

example, 13 becomes 39,

then 117, which we cleave to

17. Thus, starting with 13, we

produce 13 → 39 → 17 → 51

→ 53 → 59, . . . How many

steps does the starting num-

ber 13 take to return back to

13? Do such sequences

always return to their starting

numbers? If so, how many

steps are usually needed?

(See Answer 3.50.)

Fluid pool. Creatures from

a nearby dimension penetrate

our reality and want to fill a

large swimming pool with

their lime-scented nutritional

fluid. From Hose A pours a

green slime that would, by

itself, take 30 minutes to fill

the pool. From Hose B surges

a crimson slime that, by

itself, would take 20 minutes

to fill the pool. How long

would it take to fill the pool if

both hoses poured at the

same time? 

The police will arrive at

the scene in 15 minutes. If

the creatures can fill the pool

in under 15 minutes, they will

deposit their spores in the liq-

uid, multiply at fantastic

rates, and take over Earth.

Will the creatures succeed in

their plan for world con-

quest? (See Answer 3.52.)

Madagascar death snail.
Bill is racing his poisonous

Madagascar snail on a 

circular track that is 1 foot 

in circumference. The first

time around, the snail travels

at 30 feet per hour. How fast

must the snail go the second

time around to average 60

feet per hour for the two 

laps together? (See Answer

3.53.)
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Tanzanian zoo. Monica is visiting her zookeeper friend Bill

in the rain forests of Tanzania. Bill loves long-necked animals,

and his zoo is a strange one, for it consists of just two types of

animal: giraffes and ostriches. Monica gazes across the

wooded area. “How many animals do you have?” Bill replies,

“Among my animals, I have 22 heads and 80 legs in all. The

number of ostriches is less than half the number of giraffe

eyes minus 1. From this little information, can you tell me

how many giraffes and ostriches I have?” 

For the second problem, consider Bill’s other zoo in Kenya.

This zoo is filled only with long-necked birds. Monica is

strolling with Bill through the Kenya zoo. “How many birds

do you have altogether?” she asks.

“In my vast collection of birds, all but two of them are

geese, all but two of them are swans, and all but two of them

are ostriches. From my meager information, you should be

able to find the answer.” 

“Are you some kind of nut?”

“Not at all. Tell me the answer, and we’ll have a fine goose

for dinner.” (See Answer 3.51.)



Pulsating brain. Dr. Matrix

is a godlike being with a

brain so active that its glow-

ing pulsations can be seen

through his glassine skull. He

is also able to create minia-

ture universes. 

Dr. Matrix points to a

shiny glass jar filled with

black holes and glowing

stars, and nothing else. In

other words, there are only

two kinds of astronomical

objects to consider.

Dr. Matrix tells you that

the percentage of black holes

in his jar is more than 70 per-

cent but less than 75 percent.

Can there be as few as seven

astronomical objects in the

jar? (See Answer 3.54.)

Grotesque vessel for total
human harvest. My colleague

Ignis Fatuus Jaymz once

posed the following question

to my discussion group. The

year is 2030. Several alien

poachers, while flying

through space, discover Earth

on their way home from hunt-

ing. They have unused space

in their cargo hold. Starting

in New York City, the aliens

begin to examine all life on

Earth. After a cursory taste

test, they decide that they can

easily market humans as

exotic cuisine, so the aliens

set out to harvest all living

humanity from Earth.

Their standard process

involves dissolving the har-

vest through a process of

enzymatic deliquescence and

pumping the noxious exudate

into a single titanium spheri-

cal vessel. Their standard

spherical vessels come in

diameter sizes of 1, 2, 4, 8,

16, 32, and 64 kilometers.

Queequeg, their most 

senior hunter, instantly esti-

mates the correct size of 

vessel to use, as the others

begin setting up the rendering

pumps and vats. He assumes

that an average human weighs

about 75 kilograms (165

pounds). What size vessel did

Queequeg specify? (See

Answer 3.55.)

Alien robot insect. A tiny

disabled alien robot insect is

attempting to climb over the

edge of its spaceship, which

is 40 feet tall. The creature

starts at the base of the ship

wall and takes a day to crawl

8 feet upward. The insect

needs to recharge its fuel

cells and so rests.

A month later, the insect

awakens and realizes that it

has slipped down 4 feet 

while sleeping. It begins its

upward journey, and 8 feet

later it sleeps and falls down

by 4 feet. If this happens

every month, in about how

many months will the insect

reach the top of a 40-foot

wall of its craft? (See Answer

3.57.)
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Kama Sutra puzzle. In the Kama Sutra, an ancient Indian

sex guide, we find a man who is tired of having sex, pausing

and asking his lover:

Oh beautiful maiden with beaming eyes, tell me, since you

understand the method of inversion, what number multi-

plied by 3, then increased by three-quarters of the product,

then divided by 7, then diminished by one-third of the

result, then multiplied by itself, then diminished by 52,

whose square root is then extracted before 8 is added and

then divided by 10, gives the final result of 2?

This is apparently a kind of mathematical foreplay. Can you

solve the puzzle? (See Answer 3.56.)



Goa party. You are party-

ing in Goa, India—listening

to Goa trance music—and

suddenly see a group of Sikhs

riding a total of thirteen tricy-

cles and bicycles. You also

see thirty-five wheels. How

many tricycles do you see?

(See Answer 3.58.)

Gelatinous octopoid. Dr.

Eck is a gelatinous octopoid

living within a gas pocket ten

miles beneath the surface of

Planet Uranus. He spent one-

third of his life as a baby,

one-fifth as a youth, and one-

seventh as an active octopoid.

If Dr. Eck finally spent 10

centuries as an old octopoid,

then how many centuries did

he spend as an active

octopoid? (See Answer 3.59.)

Cloned Jefferson in Rome.
Thomas Jefferson has been

“resurrected” from the dead

by a cloning technology and

sent back in time to visit

ancient Rome. He comes

across a 0.3-by-0.3-mile-

square marble floor with

columns equally spaced along

the periphery of the floor. He

counts 15 columns along

each side of the wondrous

floor. Each column is the

same distance from neighbor-

ing columns. The columns at

each corner of the square

floor contain beautiful Doric

caps. How many columns did

the ancient Romans use?

How did you solve this? (See

Answer 3.60.)

Hamburgers in space. Brit-

ney Spiracle is a blonde pop

singer and a rocket hobbyist.

She wants to make the Guin-

ness Book of World Records

by being the first person to

launch a hamburger into the

air. A small, specially

designed rocket holds the

hamburger. Britney’s crazy

rocket has a complicated set

of rocket boosters. She

believes that the distance of

the hamburger in miles from

Earth can be represented as a

function of time in seconds:

f(t) = 3t2 + 4t3.

How fast is the hamburger

moving after it has traveled

100 seconds? Do you think

Britney can actually get her

hamburger to travel this long

and this fast? (See Answer

3.61.)
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Spores of death and madness. From my pocket, I withdraw a

small amber vial. Inside this vial are ten spores of an alien

bacterium. I open the vial and place the ten spores in the cen-

ter of a glass of milk. The bacteria multiply quickly. The bac-

teria emit a foul stench, but we need not worry about that for

now. This is, however, a dangerous experiment, because the

spores are said to cause wild hallucinations if inhaled.

By tomorrow at this time, there will be 2 million bacteria in

the milk. The milk can contain a total of 6 billion bacteria, and

our goal is to determine when the milk will contain this num-

ber of alien bacteria. 

To solve this problem, we need to know that exponential

growth makes use of the formula N(t) = N
0
e kt. If this formula

means nothing to you, skip to the answer. Exponential growth

is growth that increases at a rate proportional to the current

population. Or, to put it crudely: the more bacteria, the faster

the population grows. Or, more specifically: given twice the

number of bacteria, the population grows twice as fast. (See

Answer 3.62.)



Passionate math. “Con-

trary to popular belief, math-

ematics is a passionate

subject. Mathematicians are

driven by creative passions

that are difficult to describe,

but are no less forceful than

those that compel a musician

to compose or an artist to

paint. The mathematician, the

composer, the artist succumb

to the same foibles as any

human—love, hate, addic-

tions, revenge, jealousies,

desires for fame, and money”

(Theoni Pappas, Mathemati-

cal Scandals, 1997).

Alien slug. Dr. Oz is an

alien slug. “Isn’t it interest-

ing,” he said to his jumentous

wife, “that 6 years ago, I

would have been 10 years

older than you were 3 years

before I was half the age I 

am now.”

“Impressive that you

should say such a thing,” his

wife replied, with a slurping

sound. “As for me, 12 years

ago, I would have been 3

years older than you were 6

years before I was a third of

my present age.”

How old are Dr. Oz and

his lovely wife? (See Answer

3.64.)

Lucite pyramids. Dr. Eck

sets before you two Lucite

pyramids, one labeled alpha,

the other labeled omega.

Both pyramids contain a

number of beetles from the

Peruvian rain forests.

From alpha, Dr. Eck steals

a number of beetles equal to

one-third of the number of

beetles already in omega and

puts these beetles into omega.

Next, you retrieve the stolen

beetles from omega, a num-

ber equal to one-third of the

number remaining in alpha,

and return them to alpha.

Together, alpha and omega

now have 70 beetles. How

many beetles does each 

pyramid contain? (See

Answer 3.65.)

Doomsday occurs in Novem-
ber 2026. One day, while

combing through a trash pile

of old Science magazines,

I found a gem from the year

1960. The title is “Doomsday:

Friday, 13 November, A.D.

2026.” That’s quite a title for

a serious magazine! The

authors claimed that on 

this date, human population

will approach infinity—if it

grows as it has grown in the

last two millennia. The

researchers’ work contains

the following formula for

world population N as a func-

tion of time t:

N
t

=
×

−

1 79 10

2026 87

11

0 99

.

( . ) .
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An ancient problem of Mahavira. Mahavira (A.D. 800–

A.D. 870) (or Mahaviracharya, meaning Mahavira the Teacher)

lived in southern India. The only known book by Mahavira is

Ganita Sara Samgraha, dated A.D. 850. Here is one of his

problems. 

A young lady has a quarrel with her husband and damages

her necklace. One-third of the necklace’s pearls scatter

toward the lady. One-sixth fell on the bed. One-half of what

remained (and one-half of what remained thereafter and

again one-half of what remained thereafter) and so on,

counting six times in all, fell everywhere else. [Thus] 1,161

pearls were found to remain unscattered. How many pearls

did the girl originally have in total? (See Answer 3.63.)



where time is measured in

years A.D. Just plug in a year,

t, and you can calculate the

population for that year. The

researchers derive their

model using a combination of

empirical and theoretical rea-

soning that deals with fertil-

ity and mortality rates. The

surprise is that the formula

was so accurate. The formula

gave remarkably close figures

for human population between

the years 1750 and 1960. It

was even in agreement with

world population estimates

when Christ was born. 

There is just one problem.

In the year 2026 the U.S.

population is infinite. N goes

to infinity. Some religious

extremists have taken this to

mean that in 2026 Armaged-

don comes—Doomsday. We

all die.

Let me quote from their

paper where they describe a

parameter in their model

called t
0
: “For obvious rea-

sons, t
0

[A.D. 2026] shall be

called ‘doomsday,’ since it is

on that date, t = t
0
, that N

goes to infinity and that the

clever population annihilates

itself.”

The authors’ methods were

so good that if Charlemagne

had their initial equation, 

N = K/τk, and also several

estimates of the world popu-

lation available to him when

he lived, he could have pre-

dicted Doomsday accurately

within 300 years. Elizabeth I

of England could have pre-

dicted the critical date within

110 years, and Napoleon

within 30 years. Various tech-

nological revolutions in

human history show that food

hasn’t been a limiting factor

to human growth. The

Doomsday authors suggest

our “great-great-grandchildren

will not starve to death, they

will be squeezed to death.” 

If this little description has

attracted your interest, you

can consult the original paper

for all the details: H. von

Foerster, P. Mora, and L.

Amiot, “Doomsday: Friday,

13 November, A.D. 2026,” 

Science 132 (November

1960): 1291–95.

The following are contro-

versial responses to the von

Foerster paper:

• Robertson, J., V. Bond, and

E. Cronkite. “Doomsday

(Letter to the Editor),”

Science 133 (March 1961):

936–37.

• Hutton, W. “Doomsday

(Letter to the Editor),”

Science 133 (March 1961):

937–39.

• Howland, W. “Doomsday

(Letter to the Editor),”

Science 133 (March 1961):

939–40.

• Shinbrot, M. “Doomsday

(Letter to the Editor),”

Science 133 (March 1961):

940–41.

• von Foerster, H., P. Mora,

and L. Amiot. “Doomsday

(Letter to the Editor),”

Science 133 (March 1961):

941–52.

• Serrin, J. “Is ‘Doomsday’

on Target?” Science 189

(1975): 86–88.

Strange paper title. In

1988, Steven Strogatz pub-

lished “Love Affairs and Dif-

ferential Equations” in the

prestigious Mathematics

Magazine (61, no. 1: 35). 

The paper analyzes the time-

evolution of the love affair

between Romeo and Juliet.

Bakhshali manuscript: 
A true story. The famous

Bakhshali manuscript was

found in 1881, in a stone

enclosure in northwest India,

and it may date as far back 

as the third century. When it

was discovered, a large part

of the manuscript had been
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destroyed and only about 70

leaves of birch bark, of which

a few were only scraps, sur-

vived to the time of its dis-

covery. Here is one problem

from the manuscript:

Before you are a group of

twenty people comprising

men, women, and children.

They earn 20 coins

between them. Each man

earns 3 coins, each woman

1.5 coins, and each child

0.5 coin. How many men,

women, and children are

there?

(See Answer 3.66.)

Mathematics and truth.
“The higher arithmetic pres-

ents us with an inexhaustible

storehouse of interesting

truths—of truths, too, which

are not isolated, but stand in

the closest relation to one

another, and between which,

with each successive advance

of the science, we continually

discover new and wholly

unexpected points of contact.

A great part of the theories of

arithmetic derive an addi-

tional charm from the peculi-

arity that we easily arrive by

induction at important propo-

sitions, which have the stamp

of simplicity upon them, but

the demonstration of which

lies so deep as not to be dis-

covered until after many

fruitless efforts; and even

then it is obtained by some

tedious and artificial process,

while the simpler methods of

proof long remain hidden

from us” (Carl Friedrich

Gauss, 1849, quoted in Ivars

Peterson, “Waring Experi-

ments,” 2004).

Calculus of love. In 2004,

the psychologist John

Gottman and the mathemati-

cian James Murray, both of

the University of Washington,

created a set of equations that

accurately predicts whether a

marriage will end in divorce.

They have tested their equa-

tions on videotaped inter-

views made years earlier. In

particular, using their formu-

las, the researchers can exam-

ine just one interview and

almost always correctly pre-

dict whether couples will

divorce. One key input to the

formulas is the degree to

which one subject displays a

contemptuous facial expres-

sion as the partner speaks.

Happily, the researchers can

improve relationships by

studying their love formulas

to guide several days of ther-

apy. For further reading, see

Erica Klarreich, “The Calcu-

lus of Love,” Science News

165, no. 9 (February 28,

2004): 142.

Strange paper title. In

1983, Bruce Reznik pub-

lished “Continued Fractions

and an Annelidic PDE” in the
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Defying imagination with a small formula. If you were asked to

find the smallest rational number x (smallest in the sense of

smallest numerator and denominator) such that there exist

rational numbers y and z and

x2 – 157 = y2, x2 + 157 = z2

the numerator and the denominator would be so large as to

defy imagination. We know that a solution does exist, and you

may contact me for the details. However, no one has ever

found a rational number solution for this:

x2 – x – 193 = y2, x2 + 193 = z2



prestigious Mathematical

Intelligencer (5, no. 4:

61–63). The term annelidic

means “earthwormlike.” The

paper starts, “If you cut an

earthworm (annelid) in two,

each half will regenerate its

missing part and become a

new earthworm.”

Riemann hypothesis. Over

5,000 volunteers around the

world are working on the Rie-

mann hypothesis, using a dis-

tributed computer software

package at Zetagrid.Net to

search for the zeros of the

Riemann zeta function. 

The Riemann zeta function

is a very wiggly curve defined

for Re(s) > 1 by 

According to the Riemann

hypothesis, all nontrivial

zeros of the zeta function are

on the critical line 1/2 + it,

where t is a real number.

More than 300 billion zeros

have so far been studied using

the software at Zetagrid.Net.

The verification of Riemann’s

hypothesis (formulated in

1859) is considered to be one

of mathematics’ most chal-

lenging problems.

Abu’l Wafa. The Muslim

astronomer and mathemati-

cian Abu’l Wafa (940–998)

established this relation: sin

(a + b) = sin a cos b + cos a

sin b. Abu’l-Wafa was a dis-

tinguished researcher at the

caliph’s court in Baghdad.
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Harmonic series and Euler’s γ. We’ve previously mentioned

that the harmonic series grows very slowly. In fact, the follow-

ing “harmonic series” is divergent; that is, it approaches infin-

ity as n does.

For centuries, mathematicians mistakenly believed that the

harmonic series converges because each new term gets contin-

ually smaller. Nicole Orseme (1323–1382) finally proved that

it diverges. Interestingly, Leonhard Euler (1707–1783) discov-

ered a formula to approximate the value of the sum of a finite

number of its terms:

where ln m is the natural logarithm of the number of terms in

the series, and γ is Euler’s constant. The formula becomes

more accurate as m increases. Thus γ =

0.57721566 4901532860 6065120900 8240243104

2159335939 9235988057 6723488486 7726777664

6709369470 6329174674 9514631447 2498070824

8096050401 4486542836 2241739976 4492353625

3500333742 9373377376 7394279259 5258247094

9160087352 0394816567 . . . . 

In chapter 2, I mentioned how this constant is also known

as the Euler-Mascheroni constant or Euler’s gamma. Human-

ity knows more than a million digits of γ, but we don’t know

whether γ is a rational number (the ratio of two integers a /b).

Yet if it is rational, the denominator (b) must have more than

244,663 digits! 

1
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m
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Al-Battani. The Muslim

mathematician Al-Battani

(850–929) discovered and

promoted various trigono-

metric relationships and, as

far as we know, was the first

person on Earth to produce a

table of cotangents that corre-

sponded to every degree. His

family had been members 

of the Sabians, a religious

group of star worshippers

from Harran.

Luminescent being. A

luminescent being from

Alpha Centauri comes to

your home to test humanity’s

intelligence. If you answer

correctly, humanity may

become part of a large inter-

galactic federation. If you

answer incorrectly, the 

alien will shroud Earth in

perpetual darkness. Here’s 

the problem that the alien

writes on your front door, 

so that your neighbors may 

help.

1. Consider an integer N that

is greater than 1. 

2. Consider the integer M,

which is the square root 

of N.

3. Given that M is the sum 

of the digits in N, what 

is N?

(Hint: Only one value of N

can possibly satisfy these

properties.) (See Answer

3.67.)

Mathematical romance. One

romantic evening in front of a

warm fireplace, your sweet-

heart turns to you and says, 

“I will marry you if you can

solve my mathematical chal-

lenge. Consider a multidigit

integer N that is a power of 2.

Moreover, each digit of N is

also a power of 2. What is N?”

You think about it, but no

solutions pop into your head.

Your lover sighs, massages

the back of your neck, and

finally whispers, “If you do

not answer correctly, I will

seek a more intelligent mate.”

Can you satisfy your

potential spouse? (See

Answer 3.68.)
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Al-Khwarizmi and algebra. The word algebra comes from 

the title of Al-Khwarizmi’s book Kitab Al-Mukhasar fi Hisab

Al-jabr Wa’l Muqabala (The Book of Summary Concerning

Calculating by Transposition and Reduction). Al-Khwarizmi 

(c. 790–847) was an Arab mathematician, and his book used

no symbols but expressed mathematics as words. In fact, he

explained how to find solutions to quadratic equations of the

form ax2 + bx + c = 0, using only words, instead of writing out

the solutions by using symbolic notations as we would today: 

x =

Indefinitely divergent. The following series is “indefinitely

divergent” because it does not diverge, in the sense of being

unbounded, or converge to a limit.

S = 1 – 1 + 1 – 1 + 1 – 1 + . . .

We can group terms one way:

S = (1 –1) +(1 –1) + (1 –1) + . . .

or another:

S = 1 + (–1 + 1) + (–1 +1) . . .

to get seemingly different results, that is, 0 or 1, respectively.

[ ] / .− ± −b b ac a2 4 2



Variable notation. The

philosopher René Descartes

(1596–1650) established a

convention of using letters at

the end of the alphabet for

variables (like x, y, and z) and

letters at the beginning for

constants (like a, b, and c).

Example f (x) = ax + by + c.

We still use this convention

today.

Shopping mall puzzle. You

are in a large New Jersey

shopping mall. Over the

mall’s public address speaker

comes a message: 

“Consider an integer N

consisting of different digits.

Next consider M
i
—all the

two-digit numbers that can be

made by selecting two digits

from N. If I told you that the

sum of all M
i
equals N, what

is the smallest possible value

for N?”

All the shoppers stop dead

in their tracks. You look up

and shout, “We don’t under-

stand!”

The announcement contin-

ues, “Okay, here’s a hint. As

an example that does not

work, consider 215. If we

take every two-digit subset

and add, we get 21 + 25 + 12

+ 15 + 52 +51 = 176, which

does not equal 215. If you

can solve my problem, you

can have all of the items in

the mall that you can bring to

your car on a one-hour shop-

ping spree.”

The people in the mall roar

with delight, yet no one can

solve the problem. Can you?

(See Answer 3.71.)

Castles and strings. You

are in a damp castle with two

lengths of string and a book

of matches. If you touch the

flame to the end of one

string, the string will burn

for exactly 10 minutes. Simi-

larly, the shorter string will

burn for exactly 1 minute.

How do you measure 5 min-

utes and 30 seconds using

the matches and the strings?

Assume that the strings burn
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A single solution? According to The Inquisitive Problem

Solver, the only positive integer solution to 

A × B × C = C × D × E = E × F × G

is 8 × 1 × 9 = 9 × 2 × 4 = 4 × 6 × 3, if we assume that each

variable must be a single digit.

Harmonic series. Can you show that the harmonic series H

diverges, that is, it sums to infinity?

(See Answer 3.69.)

Harmonic series on a diet. Show that the harmonic series H,

which normally diverges, does not diverge if we remove all the

terms with at least one 9 digit in the denominator of the terms. 

(See Answer 3.70.)
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at the same rate all along

their lengths. (See Answer

3.72.)

Target practice. A tiny

green elf hands you a bow

and an arrow and points to a

square target hanging on an

ancient oak tree. “With four

shots, hit four different num-

bers on the target that total

100.” Can you do it? 

(See Answer 3.73.)

A nonlinear recurrence
yielding binary digits. Consider

the enigmatic properties of

the sequence 1, 2, 3, 4, 6, 9,

13, 19, 27, 38, 54, 77, . . .

defined by the recurrence 

u
1

= 1, u
n + 1

= [√2 u
n

+ 1⁄2],

n ≥ 1, where [x] denotes the 

floor of x, the largest integer

not larger than x. This for-

mula was discussed in the

June 1991 issue of Mathe-

matics Magazine (Stanley

Rabinowitz and Peter Gilbert, 

“A Nonlinear Recurrence

Yielding Binary Digits,” 64,

no. 3: 168–71). They note 

the unusual property that 

u
2n + 1

– 2u
2n – 1

is just the nth

digit in the binary expansion

of √2 .

Hobson gambit. My col-

league Nick Hobson blithely

tossed out this problem to my

discussion group: “If the sum

of three numbers is 1, the

sum of their squares is 15,

and the sum of their cubes is

3, what is the sum of their

fourth powers?” 

What is the answer, and,

more interestingly, how 

much time do you think it

would take someone to 

provide an answer? (See

Answer 3.74.)
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Magic light board. You are in an incense-filled psychedelic

shop in San Francisco. Black light posters adorn the walls.

Music from Jefferson Airplane pours from an old stereo.

Before you is a magic light board. Each cell in this board of

eight cells is one of eight colors: red, yellow, orange, green,

blue, indigo, violet, or tan. No color is repeated and all colors

are used. Using the clues given, can you determine the color

of each cell?

1. One column has a red cell over a blue cell. Another column

has an orange cell over a violet cell.

2. Number 8 is tan. Number 1 is not yellow.

3. Green is to the right of orange, and violet is to the right of

indigo.

4. Blue is on an odd number, and indigo is on an even number.

5. Blue is to the left of indigo, and both orange and green are

in sections with higher numbers than both red and yellow.

(See Answer 3.75.)

1 2 3 4

5 6 7 8

22 15 62 61

87 23 13 63

17 9 24 19

55 20 7 51



Aqueduct. You are trans-

ported back in time and to

another dimension and find

yourself on a thin stone path

on top of a Roman aqueduct

between Italy and Greece.

The aqueduct is guarded by a

Roman soldier whose orders

are to kill anyone trying to

leave Italy.

Anyone trying to come

into Italy from Greece will be

turned back. The Roman sol-

dier is on the Italian side of

the aqueduct inside a small

hut. Every 10 minutes he

comes out of the hut to check

the aqueduct path. Your mis-

sion is to escape from the

barbaric Romans and flee to

Greece. It takes 20 minutes to

cross the aqueduct. There is

no place to hide, and you

cannot go under the aque-

duct. How do you escape?

(See Answer 3.76.)

Students and math. “I

advise my students to listen

carefully the moment they

decide to take no more math-

ematics courses. They might

be able to hear the sound of

closing doors” (James

Caballero, “Everybody a

Mathematician?” CAIP

Quarterly 2 [Fall 1989]).
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IN WHICH WE EXPLORE TILES, PATTERNS, POSITION PROBLEMS, ARRAYS,

Venn diagrams, tic-tac-toe, other games played on boards, Königsberg

bridges, catenaries, Loyd’s and Dudeney’s puzzles, Sherck’s surface, magic

squares, lituuses, inside-out Mandelbrot sets, the Quadratrix of Hippias, hyper-

spheres, fractal geese, Pappus’s Arbelos, Escher patterns, Schmidhuber circles,

and chess knights.
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Geometry is about spatial relationships and 

glistening shapes that span dimensions. 

It’s the Silly Putty of mathematics.





Königsberg bridges. One of
my favorite branches of
mathematics deals with graph
theory, or the mathematics of
how objects are connected,
which might be diagrammed
as linkages of dots connected
by lines. One of the oldest
problems in graph theory
involves the seven famous
Königsberg bridges of Ger-
many (now part of Russia),
schematically illustrated in
figure 4.1.

People in old Königsberg
loved to take walks along the
river and the island, and it
had become a Sunday tradi-
tion to take the walk of the
seven bridges. Over a few
centuries ago, people debated
whether it was possible to
take a journey across all

seven bridges without having
to cross any bridge more than
once.

In other words, could you
take a complete tour of the
town and return to the start-
ing point by crossing all of
the bridges just once? This
problem had plagued them
for years, because no one had
ever been able to devise such
a tour. No one knew for sure
until the Swiss mathemati-
cian Leonhard Euler in 1736
was able to prove absolutely
that this was impossible. 

Euler represented the
bridges by a graph in which
land areas are represented by
dots and bridges by lines.
Figure 4.2 shows a simplified
diagram of the Königsberg
bridges.

Euler showed that one
could traverse the graph by
going through every segment
just once only if the graph had
fewer than three vertices of
odd “valence.” The valence of
a vertex is the number of lines
that start or stop at the vertex.
For example, Point A in the
Königsberg graph has a
valence of 5, and Point B has
a valence of 3. Because all of
the vertices of the Königsberg
graph have odd valences, it is
not possible to traverse the
graph without going through a
line more than once.

You can verify this your-
self by trying to draw figure
4.2 with a pencil and not lift-
ing the pencil from the paper.
You cannot draw the Königs-
berg graph without repeating
a line.
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Figure 4.1 Königsberg bridges.

Figure 4.2 Simplified graph of
the Königsberg bridges.



Venn diagrams. The “Mart-
ian bodies” puzzle that fol-
lows shows the usefulness of
simple Venn diagrams for
practical problem solving.
John Venn (1834–1923), a
cleric in the Anglican Church,
devised a scheme for visualiz-
ing elements, sets, and logical
relationships. A Venn diagram
usually contains circular areas
representing groups of items
that share common proper-
ties. For instance, within the
universe of all real and leg-
endary creatures (the bound-
ing rectangle in figure 4.3),
Region H represents the
humans, Region W the
winged creatures, and Region
A the angels. A glance at the
diagram reveals that

• All angels are winged
creatures (Region A lies
entirely within Region W).

• No humans are winged
creatures (Regions H and
W are nonintersecting). 

• No humans are angels
(Regions H and A are non-
intersecting).

This is a depiction of a basic
rule of logic—namely, that
from the statements “all A is
W” and “no H is W,” it fol-
lows that “no H is A.” The
conclusion is evident when we
look at the diagram’s circles.

Venn struggled with gener-
alizing his diagrams for 
visualizing many sets with
intersecting areas. For exam-
ple, he got as far as four sets

by using ellipses (figure 4.4): 
Venn tried to ensure that his
diagrams would always be
“symmetrical figures . . . 
elegant in themselves.”

A century passed before
various means that satisfied
Venn’s “elegance” statement
were devised for larger num-
bers of sets. For example,
Branko Grünbaum, a mathe-
matician at the University 
of Washington, was the first
to show that there are rota-
tionally symmetric Venn 
diagrams made from five
congruent ellipses. 

Mathematicians gradually
realized that rotationally sym-
metric diagrams can be
drawn only with prime num-
bers of petals. Many different
symmetrical Venn diagrams
exist for five sets, including
the one shown in figure 4.5
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Figure 4.4 John Venn’s diagram
for four sets, using ellipses.

Figure 4.3 Venn diagram for real and legendary creatures, 
which include humans, winged creatures, and angels.



that was made by rotating an
ellipse. However, symmetri-
cal diagrams with seven
petals were so hard to find
that mathematicians initially
doubted their existence. 

In 2001, Dr. Peter Ham-
burger, of Indiana-Purdue
University in Fort Wayne,
constructed an example for
eleven petals. The diagram is
so complicated that it is diffi-

cult to appreciate without
using color. Figure 4.6 shows
Hamburger’s diagram after
removing the exterior of one
of the curves. The original
large and beautiful color
image was created by Edit
Hepp, following the methods
of Dr. Hamburger. You can
read more about these com-
plicated objects and artistic
renditions at Dr. Hamburger’s

Figure 4.6 Symmetric 11-Venn diagram, after removal of one of the curves, courtesy of 
Dr. Peter Hamburger of Indiana-Purdue University and Edit Hepp.

Figure 4.5 Branko Grünbaum’s
rotationally symmetric 

Venn diagram made from 
five congruent ellipses.
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Web site, www.ipfw.edu/
math/Hamburger/, and in
Barry Cipra, “Diagram 
Masters Cry ‘Venn-i, Vidi,
Vici’,” Science 299, no. 5607
(January 31, 2003): 651.

The mathematician
Anthony Edwards, of Cam-
bridge University, came up
with “cogwheel representa-
tions” for Venn diagrams. 
For example, figure 4.7 is
Edwards’s version of a Venn
diagram that shows intersec-
tions of five sets.

Edwards has extended his
representations to as many
intersecting sets as we may
wish to show. 

Edwards has written 
extensively on the subject,
including such books and
papers as Cogwheels of the

Mind (Baltimore, Md.: Johns
Hopkins University Press,
2004); “Venn Diagrams for
Many Sets,” Bulletin of the

International Statistical Insti-

tute, 47th Session, Paris,
1989 (contributed papers,
Book 1, 311–12); “Venn Dia-
grams for Many Sets,” New

Scientist (7 January 1989):
51–56; “Rotatable Venn 
Diagrams,” Mathematics

Review 2 (February 1992):
19–21; and “Seven-Set 
Venn Diagrams with Rota-
tional and Polar Symmetry,”

Combinatorics, Probability,

and Computing 7 (1998):
149–52. You can read more
about the Branko Grünbaum
work here: Branko Grün-

baum, “Venn Diagrams and
Independent Families of
Sets,” Mathematics Magazine

48 (January–February 1975):
12–23.
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Figure 4.7 Anthony Edwards’s “cogwheel representations” 
for displaying the intersections of five sets.

Martian bodies and Venn diagrams. A group of theologians
and scientists has discovered a humanoid race of creatures liv-
ing in a crevice on Mars. Nine hundred Martians were exam-
ined for pointed ears (a1), fangs (a2), and forehead horns (a3).
The number of Martians with the various characteristics can
be summarized as

How many Martians have none of these body characteristics?
(See Answer 4.1.)

Body Characterics Number of Martians

a1 600

a2 390

a3 400

a1 and a2 250

a2 and a3 150

a1 and a3 200

a1, a2, and a3 20



Geometry and beyond. “It
was formerly supposed that
Geometry was the study of
the nature of the space in
which we live, and accord-
ingly it was urged, by those
who held that what exists can
only be known empirically,
that Geometry should really
be regarded as belonging to
applied mathematics. But it
has gradually appeared, by

the increase of non-Euclidean
systems, that Geometry
throws no more light upon
the nature of space than arith-
metic throws upon the popu-
lation of the United States”
(Bertrand Russell, “Mathe-
matics and Metaphysicians,”
Mysticism and Logic and

Other Essays, 1918).

Star of David. Is it possible
to draw figure 4.9 without
lifting your pencil and with-
out repeating lines? (Recall
what we learned about graphs
and vertices in the section on
the Königsberg bridges.) (See
Answer 4.2.)

Mathematics as the uni-
verse’s language. “The universe
cannot be read until we have
learnt the language and
become familiar with the
characters in which it is writ-
ten. It is written in mathemat-
ical language, and the letters
are triangles, circles and
other geometrical figures,
without which means it is
humanly impossible to com-
prehend a single word”
(Galileo Galilei, Opere Il

Saggiatore, 1623).

Tic-tac-toe patents. I collect U.S. patents dealing with 
tic-tac-toe and Rubik’s Cube–like games. For example, 
in 1995, U.S. Patent 5,433,448 was issued for a three-
dimensional tic-tac-toe game (pictured in figure 4.8) that 
uses Velcro patches on the movable pieces. 

Figure 4.8 U.S. Patent 5,433,448: a three-dimensional 
tic-tac-toe game.

Figure 4.9 Draw the star without
lifting your pencil and without

repeating lines.
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Tic-tac-toe and The
Simpsons. In 1996, tic-tac-toe
was prominently featured on
the hit TV show The Simp-

sons. In an episode titled
“Much Apu about Nothing,”
Apu Nahasapeemapetilon,
the convenience store clerk,
describes how he wrote the
first computerized version of
tic-tac-toe for his doctoral
thesis, using several thousand
punch cards. It took Apu nine
years to complete his thesis.
Supposedly, only the top
players in the world could
beat his computer program,
which is ridiculous because
when played correctly, tic-
tac-toe is always a tie!

Mathematician as poet.
“A mathematician, like a
painter or poet, is a maker 
of patterns. If his patterns 
are more permanent than
theirs, it is because they are
made with ideas” (G. H.
Hardy, A Mathematician’s

Apology, 1941).

Catenary. Many hanging
shapes in nature (such as a
rope suspended at two points
and sagging in the middle)
follow a catenary curve
defined by (a/2)(e x/a + e–x/a).

Galileo once erroneously
believed that the curve of a
chain hanging under gravity
would be a parabola. The

curve is also called the 
alysoid or the chainette, and
its formula was discovered 
in 1691. 
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Mondrian puzzle. In this hypothetical meeting, the Dutch
painter Piet Mondrian is showing Albert Einstein the painter’s
latest work (figure 4.10). The painting is made up of 18 rec-
tangles, which are drawn identically in the schematic figure
for simplicity of presentation. All intersecting lines form right
angles with one another. The areas of several of the rectangles
are shown inside the rectangles. 

Mondrian wants to know the area of one rectangle in 
particular, denoted by the question mark. Einstein looks at the
painting, wondering whether it is possible to calculate the par-
ticular area, given the meager amount of information we have.
Can you help Einstein? (See Answer 4.3.)

Figure 4.10 Mondrian  puzzle.



Compact formula. Is there a
compact formula relating e,
π, i, and φ, the golden ratio?
(See Answer 4.4.)

Tic-tac-toe robot. In 1998,
researchers and students at
the University of Toronto cre-
ated a robot to play three-
dimensional (4 × 4 × 4)
tic-tac-toe with a human. The
robot used an arm powered
by three motors to achieve
three degrees of freedom 
(x direction, y direction, z

direction) in its movement.
An electromagnet was used
to pick up the playing pieces,
which were steel ball bear-
ings. According to students
Mark Ebden, Wilfred Lam,
and Ryan Lausman, the final
version of the tic-tac-toe
robot won approximately 80
percent of the time when it
went first, playing against a
second copy of itself.

Mathematicians and immor-
tality. “Archimedes will be
remembered when Aeschylus
is forgotten, because lan-
guages die and mathematical
ideas do not. ‘Immortality’
may be a silly word, but prob-
ably a mathematician has the
best chance of whatever it

may mean” (G. H. Hardy, A
Mathematician’s Apology,
1941).

Geometry and God.
“Geometry is unique and
eternal, and it shines in the
mind of God. The share of it
which has been granted to
man is one of the reasons
why he is the image of God”
(Johannes Kepler, “Conversa-
tion with the Sidereal Mes-
senger, ” 1610).

Remarkable formulas
involving 1. What is special
about these two remarkable
formulas that involve a single
digit? What numbers do you
think they represent? (See
Answer 4.5.)

1
1

1 1

1 1

1 1

+
+

+
+

...

1 1 1 1+ + + + ...
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Tic-Tac-Chec. Tic-Tac-Chec is played with four chess
pieces on a 4 × 4 board and is sold by Dream Green (Weirton,
West Virginia). Your goal is to get all four of your pieces in a
row (like tic-tac-toe). The board starts with no pieces, and
players alternate taking turns. During each turn, you place
one of your unused pieces on any empty square or move your
piece that’s already on the board. Pieces move as normal
chess pieces do, except that pawns reverse direction once they
reach the edge of the board. Pieces attack as normal chess
pieces do. Once a piece is taken, it is returned to its owner for
later placement.

� � �
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Goly. What is a golygon?
(See Answer 4.6.)

The false theorems of
Archimedes. Archimedes (287
B.C.–212 B.C.), the ancient
Greek geometer, is often
regarded as the greatest 
mathematician and scientist
of antiquity and one of the
three greatest mathematicians
to have walked on Earth—
together with Isaac Newton
and Carl Friedrich Gauss. But
did you know that he some-
times sent his colleagues
false theorems in order to
trap them when they fre-
quently stole his ideas?

In his book The Sand

Reckoner, Archimedes 
estimates that 8 × 1063

grains of sand would fill the
universe. We will discuss
Archimedes further in
chapter 5—specifically, his

famous “Cattle Problem,”
which involves tremendously
large numbers.

Special number. What is
special about the number 
φ = (1 + √5 )/2? (See Answer
4.7.)

Mathematics of toilet paper.
In 1990, Don Thatcher of
Leicester Polytechnic pub-
lished a paper titled “The
Length of a Roll of Toilet
Paper” in a scientific book 
on mathematical modeling
(Mathematical Modeling,
Oxford University Press). 
He asks, “Given a roll of
paper, find, without unwrap-
ping it, the total length of
paper on the roll.” 

He discusses the formulas
(n = r2 – r1)/t and l = π(r2

2 –

r1
2)/t, where n is the number

of turns, l is the total length
of paper, t is the thickness of
a sheet of paper, r1 is the dis-
tance from the center of the
roll to the cardboard tube
within the roll, and r2 is the
distance from the center of
the roll to the outer edge of
the toilet paper.

Mystery pattern. This
mathematical object in figure
4.11 is my favorite of all
shapes. What is it? Why is it
special? (See Answer 4.8.)
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Figure 4.11 Mystery pattern.

Science and chess. “Even if the rules of nature are finite,
like those of chess, might not science still prove to be an
infinitely rich, rewarding game?” (John Horgan, Scientific

American 6 [1992]). 

Math application. “There is no branch of mathematics, how-
ever abstract, which may not someday be applied to the phe-
nomena of the real world” (Nikolai Lobachevsky, quoted in N.
Rose, Maxims and Minims, 1988).



Knight-tac-toe. David
Howe invented a clever tic-
tac-toe-like game in the late
1990s that is played on a 5 ×
5 board. The goal is to either
checkmate the opponent’s
king or arrange one’s pieces
to form three in a row in the
center 3 × 3 area, as in the
game of tic-tac-toe. The nor-
mal rules of chess apply. 
For example, the king may
still not move into check. 
We believe that black has the
advantage, although by modi-
fying the starting positions,
the game may be made more
interesting.

Initial Board Setup for 
Knight-Tac-Toe

Three kinds of tori. A three-
dimensional torus (ordinarily
thought of as a doughnut
shape) actually comes in
three forms. If we let the
radius from the center of the
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Cut the crescent to make a cross. Here’s another favorite
from the nineteenth-century puzzlemaster Sam Loyd.
Astonishing as it may seem, it is possible to cut the crescent
moon shown here into as few as six pieces that can be fitted
together to make a perfect Greek cross (figure 4.12). The
shape of the symmetrical cross is shown in miniature on the
head of the goddess. In forming the cross, it is necessary that
one piece be turned over. (Notice that Loyd has put a straight
edge on the crescent at the top and the bottom of the figure
and that the two arcs of the crescent are arcs of a circle with
the same-sized circumference.) Can you create the cross?
(See Answer 4.9.)

Figure 4.12 Sam Loyd’s “Cross and Crescent” puzzle.
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hole to the center of the torus
“tube” be c and the radius of
the tube be a, we can enumer-
ate the three shapes. First, we
have the common ring torus

(shaped like a doughnut, in
which c > a), a horn torus (in
which the hole in the middle
has zero diameter, i.e., c = a),
and a spindle torus (where
the doughnut walls intersect,
and c < a). I would enjoy
hearing from those of you
who have eaten doughnut tori
in all three forms. 

This introduction to the
torus leads to the next
question.

Torus versus marmoset. A
rich person offers to give you
a free, spacious house in the
shape of either a large torus
or a large marmoset. Which
would you choose? Which do
you think most people would
choose? (Assume that both
homes have the same ample
living space and that the land
on which they stand is simi-
lar. Also assume that the sur-
face area of the torus, an
object defined in the previous

, is that for the usual ring
torus: S = 4π2ac.) (See
Answer 4.10.)

Music and math. “Music is
the pleasure the human mind
experiences from counting
without being aware that it is
counting” (Gottfried Leibniz,
quoted in Marcus du Sautoy,
The Music of the Primes,
2003).

Circle crossing. If three
circles with the same radii
pass through a common point
(see arrow), what interesting
observation can we make

about the other three inter-
section points? (See Answer
4.12.)
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Green cheese moon puzzle. In the 1800s, Sam Loyd asked,
“If the moon were made of green cheese, into how many
pieces could you divide it with five straight cuts of a knife?”
(figure 4.13). In other words, what is the maximum number of
pieces that you can cut a two-dimensional crescent, using
straight lines? (See Answer 4.11.)

Figure 4.13 Sam Loyd’s green cheese moon puzzle.

Figure 4.14 Circle crossing.



Cow pi. I believe that π3

appears very rarely in real
physics or geometry prob-
lems. (One notable exception
was discussed in chapter 2, in
which π3 appears in antenna
physics.) However, here’s a
nice example of π3 in a
practical geometry problem.
A circular column is 20 feet
in diameter. A cow is tied to a
point on the column wall. The
rope is 10π feet long. Assum-
ing that the ground is flat, 
the cow can cover an area
(250/3) π3. Could you deter-
mine how this solution was
derived? John Derbyshire dis-
cusses these kinds of prob-
lems at his “Dog on a Leash”
Web page, olimu.com/Notes/
DogOnLeash.htm.

Find the bugs! A devious
spy has planted bugging
devices in a secret govern-
ment facility composed of a
4-by-4 array of rooms. Here’s
a top view of the facility
showing the 16 little square
rooms. Your mission is to
determine the number of
bugs in each room, given the
following information. Two
of the rooms contain three
bugs each. Two of the rooms
contain two bugs each. Four
of the rooms contain one bug

Sam Loyd’s fifteen puzzle. Sam Loyd’s “fifteen puzzle” is the
equivalent of today’s sliding square puzzles that you may have
seen in novelty stores. These plastic puzzles have 15 squares
(tiles) and one vacant spot in a 4 × 4 frame or box. At startup,
the squares sequentially contain the numbers 1 through 13,
followed by 15, then 14. 

Loyd’s Fifteen Puzzle 
(Starting Position)

The idea is to “slide” the squares up, down, right, and left
to arrive at the sequence 1 through 15. In other words, the goal
is to rearrange the squares from a given starting arrangement
by sliding squares one at a time into the configuration shown
as follows. Loyd offered $1,000 for the correct solution. Can
you see a way to solve this?

Loyd’s Fifteen Puzzle 
(Ending Position)

(See Answer 4.13.) 

1 2 3 4

5 6 7 8

9 10 11 12

13 15 14

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15
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each. The remaining rooms
are bugless. Can you find the
number of bugs in each
room? The numbers at the
ends of each row and each
column and one diagonal
indicate the total number of
bugs in that row, that column,
and that diagonal.

(See Answer 4.14.)

Strange dimension. You are
in a strange dimension in
another galaxy, overseeing
the construction of a new
multidenominational town-
ship with sectors for the three
major local religions, whose
houses of worship and reli-
gions are symbolized by �,
�, and ↸. Each of these
religions is at war with the
others. To make it more diffi-
cult for terrorists to bomb or
shoot a laser through any one
religious class, and to mini-
mize religious conflicts, the

architect is to design the
township as a 3 × 3 matrix of
sectors, so that (when viewed
from above) each row and
each column contain only one
sector of a particular reli-

gious denomination. An 
aerial view of the religious
center looks like a tic-tac-toe
board, in which you are not
permitted to have two of the
same religion in any row or
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1

6

5 2 3 4 4

Tablet of Ezekiel. A tall, bearded man shows you three stone
tablets divided into square tiles of beautiful colors. The first
tablet is a 16 × 19 array:

The other two are 16 × 24 and 16 × 18 arrays. The man draws
a straight line on the rectangular tablets from one corner to
another. On which of the three tablets does the diagonal line
cross the most tiles? How could you solve this without draw-
ing lines on each tablet and counting crossed tiles? (See
Answer 4.15.)

Tablet of Ezekiel



column. Is this arrangement
possible? For a second prob-
lem, can you arrange the reli-
gions so that there are only
two of the same religion in
each row and each column?

The following is an
arrangement prior to your
attempt to minimize conflict:

A Dangerous Situation

(See Answer 4.16.)

Nursery school geometry.
My nursery school has sev-
eral unhappy children �. I
want to position happy chil-
dren☺ so that every sad
child has exactly one happy
child next to him or her from
a horizontally or vertically
adjacent cell. To keep the
room calm, two happy chil-
dren can never be adjacent
(not even diagonally). The
numbers at the ends of each
row and each column and one
diagonal indicate the number
of happy children in that row,
that column, or that diagonal.
Can you determine where the
happy children are?

Nursery School Geometry

(See Answer 4.18.)

Mathematical ballet.
“Math is a perfection in
expression, like ballet or a
shaolin class martial art” 
(V. Guruprasad, personal
communication).
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1 2 0 2 0 1 1

Ant mathematics. Aliens capture you and seat you in front
of a large terrarium containing colonies of red ants (R), black
ants (B), fire ants (F), and army ants (A), each species at one
corner of a square (figure 4.15).

Your captors ask you to create a tunnel out of plastic tubing
that links all four species of ants together. You must use as lit-
tle tubing as possible and still allow access from any colony to
any other. The aliens provide you with a little glue to help
stick pieces of tubes together, if necessary. What is the best
solution? (See Answer 4.17.)

Figure 4.15 Ant puzzle.

� � �
� � �
↸ ↸ ↸



Frodo’s magic squares.
Your small friend Frodo 
loves magic squares. He asks
you to exchange four of the
numbers in one array with
four of the numbers in the
other to form two magic
squares in which each row,
each column, and each 
diagonal have the same
sums.

How long does it take you to
fulfill Frodo’s ambitious
request?

(See Answer 4.19.)
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Lost in hyperspace. White cadaverous creatures from a par-
allel universe abduct you from your bedroom and place you in
a long narrow tube. Assume that you are executing an infinite
random walk within the tube; that is, you walk forever by
moving randomly one step forward or one step backward in
the tube (figure 4.16). Assume that the tube is infinitely long
and that you don’t get tired. What is the probability that the
random walk will eventually take you back to your starting
point? (See Answer 4.20.)

Heterosquares. Place the consecutive numbers 1 through 9,
one number in each cell, so that the rows, the columns, and the
main diagonals have different sums.

(See Answer 4.21.)

Figure 4.16 Lost in hyperspace.

16 3 2 13

5 10 11 8

9 6 20 3

4 10 14 22

15 18 1 14 1

11 24 7 7 12

17 5 13 21 9

23 6 19 2 15

4 12 25 8 16



Charged array. The
devious Doctor Brain has
designed a memory array
with 9 cells outlined in bold,
as follows. A third of the cells
have positive charges (+), a
third have negative charges
(–), and a third have no
charge (0). Your mission is to
decipher the secret arrange-
ment of charges. The symbols
at the ends of each row and
each column and one diago-
nal indicate the sign of the
charge for that row, that col-
umn, or that diagonal. Place a
“+” symbol, a “–” symbol, or
a “0” symbol in the appropri-
ate cells. (See Answer 4.22.)

Mathematical battle without
conflict. “The tantalizing and
compelling pursuit of mathe-
matical problems offers men-
tal absorption, peace of mind
amid endless challenges,
repose in activity, battle with-

out conflict, ‘refuge from the
goading urgency of contin-
gent happenings,’ and the sort
of beauty changeless moun-
tains present to senses tried

by the present-day kaleido-
scope of events” (Morris
Kline, Mathematics in West-

ern Culture, 1953). 

Geometry, Games, and Beyond 151

Bouncing off the Continuum. An alien ship is located at 
position S in figure 4.17. The aliens wish to travel to a glim-
mering violet wall in space called the Continuum, to refuel
their ship by using energy in the Continuum’s plasmoid wall,
and then travel back to a star called Aleph-Naught, denoted 
by A. They would like their trip to be as short a distance as
possible. To what point on the edge of the Continuum should
they travel? (See Answer 4.23.)

Figure 4.17 Bouncing off the Continuum.

? ? ? –

? ? ? –

? ? ? +

+ – 0 0



Alien heads. The following
large square contains 49 little
tiles and can be divided into a
set of quadrilaterals (squares
and rectangles) by drawing
thick lines along the tile
edges. I have already drawn
one such quadrilateral in the
upper left that “covers” 9 tiles.
Can you draw exactly 10 more
quadrilaterals, such that each
quadrilateral contains exactly
one alien head? Your 10 new
quadrilaterals must “cover”
the original bounding square
completely, leaving no small
tiles uncovered. (If useful to
you, a single cell may be con-
sidered a quadrilateral.) (See
Answer 4.24.) 

Relationship. One of the
gray cells should be white,
and one of the white cells
should be gray, in order to fit
a simple relationship. Which
cells should you change?
(See Answer 4.25.)
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Sticky faces. Cliff, Danielle, and Pete are dropping sticky
smiley faces on the following chart. Each face they drop gets
10, 13, and 17 points. The chart shows how many of each face
were dropped, but you don’t know how many of each face
each person dropped. You do know this: Danielle has 56
points. The number of Pete’s points is a two-digit number with
both digits the same. Pete has 3 more points than Cliff. What
can we say about the number of each type of face each person
dropped into the rows? 

(See Answer 4.26.)

10 points ☺ ☺ ☺ ☺
13 points ☺ ☺☺ ☺ ☺
17 points ☺☺☺ ☺☺ ☺

1 2 28 15

4 3 50 70

5 6 18 30

8 7 27 48



Bioterrorist puzzle. The
year is 2010, and a bioterror-
ist’s bacterium endangers the
planet. It is in this future
world that we have some
detective work to do. Romeo
is located at one number in
the following 5 × 5 square
array, which represents an
aerial view of plots of land.
Juliet is located at another
square. Romeo travels up,
down, right, or left (not diag-
onally) to reach Juliet. 

The numbers in the
squares represent numbers of
vaccine patches. Romeo
starts with the number of
vaccines that is indicated by
the number in his starting 
cell and adds all the vaccines
in a cell to his sack as he
traverses the array until he
lands on Juliet’s cell and
finally adds the number of
vaccines in her cell. Once he
adds the vaccines to his sack,
the square no longer contains
any vaccines. 

If Romeo brings Juliet too
many vaccines, her medical
office will not be able to pay
for them all. If he brings her
too few, she will not be able
to inoculate all of the people
in her office. Romeo now has
exactly 93 vaccines to give
Juliet. Romeo starts on a
square that is located imme-
diately to the left of Juliet’s
square. On what cells do
Romeo and Juliet initially sit?
Note that Juliet is stationary
as she waits for the 93 vac-
cines. (See Answer 4.27.)

Rope capture. You are
being held captive in Grand
Central Station, New York, by
five bearded drug dealers.

Next to you are two heroin-
laced ropes suspended from
the 100-foot ceiling. The two
ropes are 2 feet apart. You
have scissors in your pocket.
If you can hand most of the
rope to your captors, they
will set you free. Otherwise,
they will lock you in a coffin
filled with monosodium
glutamate and leave you 
to die. 

You think you can climb to
the top of the ceiling and cut
one of the ropes, but you
must climb down a rope until
you are close to the ground
before cutting it or you will
die slamming into the hard
floor. You think that there
must be a better plan. What is
your best strategy to get as

Magic square. To create this test, I started with a magic
square that has the same sums for the rows, the columns, and
two diagonals. In the following square, I’ve swapped a few
tiles. Can you generate the original square, given the addi-
tional condition that tiles with � or � shapes must be adja-
cent horizontally and point to each other? For example, under
this rule, 13��7 might go side by side, but 13�6� could
not. (See Answer 4.28.)

17� 6� �7 23 19

13� �10 15 11 �12

16 2 8 14 20

21 �24 9� 0 �3

22 18� �4 5 1�

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

21 22 23 24 25
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much rope as possible?
Assume that you have enough
tools so that you can secure
yourself to the rope while
cutting pieces off. (See
Answer 4.29.)

Talisman square. Fill in the
squares with consecutive
numbers 1 through 16 (one
number to a cell) so that the
difference between any one
number and its neighbor is
greater than some given con-
stant. A neighboring number
is defined as being in a cell
that’s horizontally, vertically,
or diagonally adjacent to the
current cell. 

(See Answer 4.30.)

Platonic solids. A Platonic
solid is a multifaceted 3-D
object (or polyhedron) whose
faces are all identical regular
polygons. A “regular poly-
gon” has sides of equal

length and angles of equal
degrees; two examples of 
regular polygons are the
square and the equilateral 
triangle.

A Platonic solid also has
the same number of faces

meeting at every vertex. The
best known example of a Pla-
tonic solid is the cube, whose
faces are six identical squares.
How many Platonic solids do
you think we will ever dis-
cover? (See Answer 4.32.)
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Circle madness. Draw Circle 1. Arrange six circles around
it of any size, labeled 2 through 7 in the diagram. As you cre-
ate your visual masterpiece, Circle 3 must touch 2, Circle 4
must touch 3, Circle 5 must touch 4, Circle 6 must touch 5,
and Circle 7 must touch 6. Circles 2 through 7 must all touch
the first circle. In this example, I happened to make Circle 7
enclose most of the others, but you can experiment with all
kinds of arrangements. What can we say is interesting about
the relationship between the circles’ points of intersection with
Circle 1? (See Answer 4.31.)

Figure 4.18 Circle madness.



Fractals and brains. “I won-
der whether fractal images
are not touching the very
structure of our brains. Is
there a clue in the infinitely
regressing character of such

images that illuminates our
perception of art? Could it be
that a fractal image is of such
extraordinary richness, that it
is bound to resonate with our
neuronal circuits and stimu-

late the pleasure I infer we 
all feel” (Professor Peter W.
Atkins, Lincoln College,
Oxford University, “Art as
Science,” The Daily Tele-

graph, 1990).
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Mystery pattern. What does figure 4.19 represent? (See Answer 4.33.)

Figure 4.19 Mystery pattern by Patrick Grim and Paul St. Denis.



Omega sphere. Dr. Brain
places you in front of a rap-
idly spinning sphere called an
omega sphere. The axis of
rotation rapidly changes as
the sphere rotates.

Dr. Brain approaches you
with a dart. “Throw the dart
at the sphere three times. If
your three points of impact
are all on the same half of the
sphere (hemisphere), I will
reward you with $25,000 and
let you leave immediately. If
your three points of impact
are not all on the same hemi-
sphere, I will remove a cubic
inch of your brain. If you
choose not to throw at the

sphere, I will unleash a
plague on the world that will
kill 10,000 people.” What is
your best strategy for rapid
escape from Dr. Brain’s puz-
zle palace? (See Answer
4.34.)

Twinkle, twinkle, little stars.
You look up at a cluster of
seven stars in the night sky.
Your astronomer friend tells
you that he believes that crea-
tures from the seven stars are
at war with one another. No
two distances between any
two pairs of stars are the
same.

All at once, creatures from
each star system launch a
devastating nuclear arsenal at
their nearest neighbor, and
they wait to see what hap-
pens. None of the star sys-
tems has a defense against
such awesome fury. Will all
seven races be annihilated, or
will at least one star system
escape injury? (See Answer
4.36.)

Mystery triangles. A giant
places an array of ice crystals
on the cold, snowy ground
(figure 4.20). He then hands
you a stick. “What is the
maximum number of trian-
gles without right angles that
you can draw in the grid?
None of the triangles can
intersect or share the same
vertices. Triangles may be
nested inside one another.
Each triangle must have its
vertices on the ice crystals.”
(See Answer 4.37.)
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Cutting the plane. Create two areas, both of exactly the
same size and shape, so that both areas contain equal numbers
of each symbol. 

(See Answer 4.35.) Figure 4.20 Mystery triangles.



Grid of Gebeleizis.
Gebeleizis, the ancient
Dacian god of lightning,
comes to you with a particu-

larly vexing problem. He asks
you to consider a grid of
infinitesimal dots spaced 
one millimeter apart in a 

gargantuan cube having an
edge that is equal to the
north-south length of Greece.
That’s a lot of dots!

For conceptual purposes,
you can think of the dots 
as having unit spacing, being
precisely placed at 1.00000 
. . . , 2.00000 . . . , 3.00000 
. . . , and so on. When
Gebeleizis uses the term
infinitesimal, he means to
imply that the dots are not
bulbous objects that cover a
range of locations in space.
They really are located
exactly at 1.00000 . . . ,
2.00000 . . . , and so forth,
and do not have a thickness
that would make them extend
to, for example, 1.010000 
. . . , 2.010000 . . . , and 
so on.

Now, pick a dot, any dot,
in this densely packed cube
of dots. After you have made
your selection, draw a
straight line through the dot
and extend it from that dot to
the edge of the cube in both
directions.

Gebeleizis asks, “What is
the probability that your line
will intersect another dot in
the fine grid of dots within
the cube the size of Greece?”
(See Answer 4.39.)
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Space station jam. You are living in the new space station
circling Earth when you find a painted metallic object floating
through space (figure 4.21). Upon closer inspection, you see
that the object is a collection of plates. Most of them are col-
ored yellow (Y), green (G), red (R), or blue (B), but one of the
plates is white (W). The collection was constructed according
to a certain logic and will function as a teleportation device if
you can solve a small mystery. 

If you select the correct color that should replace the white
plate, you and your crew will be transported to a wonderful
universe where you will be rewarded with eternal bliss and
will be able to solve humanity’s most pressing problems. Can
you work out which color should replace the missing (i.e.,
white) color? (See Answer 4.38.)

Figure 4.21 Space station jam.
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In an ancient tomb. You are exploring an
ancient Egyptian tomb in search of a group of
six mummies that supposedly have rested
there for several thousand years. After a few
minutes, you come upon a large triangular
room that contains the six mummies lying on
the cold, dusty floor. The room is covered
with hieroglyphic symbols (figure 4.22).
Because you are a world-renowned expert in
hieroglyphics, you quickly decipher their
meaning:

Three mummies are marked with three dif-
ferent symbols, and each of these three
mummies is touching the south wall of the
tomb. Three other mummies, marked with
the same three symbols, are positioned so
that one is touching the tomb walls that

meet at the north corner. Is it possible to
connect mummies bearing the same sym-
bols using lines that you draw on the floor?
The lines may not cross or touch the tomb
walls. (For example, you must try to draw a
line from the northmost mummy with the
hooklike symbol to the other mummy with
the hooklike symbol. You must also draw a
line from the mummy with the eye symbol
to the other mummy with the eye symbol,
etc.) Your lines may be curvy, but they can-
not touch or cross each other, nor can they
go “through” the mummies. If you can
solve this problem within five minutes, you
will be granted great powers, wealth, and a
long life.

(See Answer 4.40.)

Figure 4.22 In an ancient tomb.



Poor Pythagoras. Zeus
steps out of the chariot and
walks toward Pythagoras.
Spirals of scarlet, thin as
spider webs, float from 
Zeus’s hypnotic eyes.

Pythagoras shakes his
sword. “Don’t come any
closer. Last time you visited
me, you turned my wife into
stone.”

“Listen, Pythagoras. I have
a test for you. If you supply
the proper answer, I will
return your wife to normal.”

Zeus places a marble table
before Pythagoras. On the
table are two circular disks
that resemble Frisbees
(Figure 4.23).

Zeus motions to the table.
“We gods call them Omega
disks, and we use them to test
all intelligent mortals with
whom we come in contact. As
you see, one disk is red, the
other gold. Both disks are the
same size. The red disk is
stuck to the table. The gold
disk rotates around the red
disk, touching it without slipping. When the gold disk

has completed a turn around
the red one, how many turns
has it made around its own
axis?”

Pythagoras does not
answer, but he begins to
charge Zeus with his sword.
Can you help Pythagoras?

What is your answer? (a) 1
revolution, (b) 1.5 revolu-
tions, (c) 2 revolutions, (d)
2.5 revolutions, (e) 3 revolu-
tions, or (f ) not on the list.

What do you think is the
most common answer given
to this problem? (See Answer
4.41.)

Alien colonies. On planet Zarf in the Zeta Reticuli star sys-
tem live alien bacterial colonies that come in many colors.
Each bacterium is circular and touches at least one other bac-
terium to exchange nutrients. Figure 4.24 shows one example,
in which different colors are represented by the numbers –3,
–2, –1, 0, 1, and 2. 

Scientists on Earth have obtained a few specimens and are
trying to determine how each bacterium gets its color. Can
you determine the rules by which the bacterial colonies get
their colors? (See Answer 4.42.)

Figure 4.24 Alien colonies.

Figure 4.23 Poor Pythagoras.
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Ant planet. Lisa is all
alone in her bedroom, playing
with bugs. Her long blond
hair trails to her knees. She
laughs.

Lisa enjoys making maze-
like structures with leftover
wires from her electrical
experiment. If an object
touches the wire, it rings a
buzzer. Today, Lisa is 
experimenting with ants. 
She places ants in these struc-
tures, and, depending upon
where the insect is located, it
is possible or impossible to
escape without ringing the
buzzer.

The ant prison mazes are
of a peculiar type. Topologi-
cally speaking, they are 
Jordan curves, such as the
ones shown here, which are
merely circles that have been
twisted out of shape (figure
4.25). Recall that a circle
divides any flat surface into
two areas—inside and out-
side. Like a circle, Jordan
curves have an inside and an
outside, and to get from one
to the other, at least one line
(wire) must be crossed. 

Let’s return to the ant
story, in which Lisa is fanta-
sizing about intelligent ants.
One day, a “prisoner” ant
named Mr. Nadroj is able 
to accurately determine, 

simply by poking its head
over the wires and looking 
in one direction, whether or
not it is on the inside or the
outside of the maze. What’s
the quickest way that a crea-
ture can determine whether it

is inside or outside the 
Jordan prison? How can 
you easily tell if the ant in 
the drawing can escape with-
out actually trying to trace a
path to the outside? (See
Answer 4.43.)
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Figure 4.25 Ant planet.



Contact from Aldebaran. At
3:00 A.M. on August 15, the
Norwegian fashion model
Britney Bjørlykke was walk-
ing near her home in Oslo.
The air blew the spiral curls
of Britney’s blond hair out of
place just as she saw a sil-
very, disk-shaped craft in the
sky. The UFO swooped down
and a figure emerged.

“We are from Aldebaran, 
a star 60 light-years from
Earth,” the alien said. 
“We wish to assess your
intelligence.”

The alien gave Britney
instructions and then placed
her in a transparent spiral
tube one mile in length. The
diameter was so small that
she had to crawl through the
tube. She started at the center
of the spiral at 5 A.M. and
crawled until she reached the
outlet of the spiral at 5 P.M.
She traveled at varying
speeds, and every now and
then paused, rested, and ate
from meager food rations
strapped to her belt.

When she arrived at the
outlet of the spiral, she rested
and then began her journey
back into the spiral the next
day at 5 A.M., reaching the
center of the spiral at 5 P.M.

“You have completed your
mission,” the alien said.

Aesculapian mazes. Aesculapius, the Roman god of medi-
cine and health, devised the following problem for Romans so
that they could improve both their minds and their bodies. The
object is to travel from start to finish by taking three steps at a
time and then turning right or left. Only those locations con-
taining a vitamin pill (denoted by a dot) are valid points to
land on and make turns (figure 4.26). If you desire, you may
eat the pills along the way.

For example, when starting the maze, you land on the vita-
min marked “1,” and then must turn to the vitamin marked
either “3” or “2.” You are not allowed to retrace or go back
along your path during any part of your journey. How many
vitamins can you collect along your way? (See Answer 4.44.)

Figure 4.26 Aesculapian mazes.
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“Now answer a question.
What are the chances that
there is a location along the
spiral that you passed at
exactly the same time both
days?” (See Answer 4.45.)

Equation swirl. “Perhaps an
angel of the Lord surveyed an
endless sea of chaos, then
troubled it gently with his
finger. In this tiny and tempo-
rary swirl of equations, our
cosmos took shape” (Martin
Gardner, “Order and Sur-
prise,” 1950). 

Toilet paper and the infinite.
My favorite toilet paper
geometries are not the simple,
realistic Archimedean spiral
kinds, but rather the squashed
Archimedean variety. These
exotic nonlinear forms of toi-
let paper rolls are pleasing to
look at and can hold an amaz-
ing length of paper.

In particular, imagine a
roll of toilet paper defined by
the spiral r = a√θ , where a is
1 inch. Since the compression
is nonlinear, your theoretical
toilet paper can grow wildly
in length while being con-
strained to a small roll. For
example, it’s been estimated
that a mile of “imaginary”
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Detonation! It is midnight, a cold Saturday night in New
York City. A phone call comes to the precinct station inform-
ing the police that a mad bomber has planted an explosive
device in the center of Grand Central Station.

The police rush to the scene and discover an intricate deto-
nator that they must defuse. The detonator consists of a 6-by-6
wire mesh with white and black spheres containing two differ-
ent explosive chemicals (figure 4.27). In order to defuse the
bomb, the police must ever-so-carefully separate the white and
the black balls by cutting through the wires and making two
identically shaped cutouts—one containing the white spheres,
the other containing the black spheres.

Your job is more difficult, because you know that one 
of the spheres has slipped and is in the wrong position. You
must move it back to an adjacent grid position before cutting.

Tension mounts as the police bring out wire cutters. One
false cut, and the bomb goes off! It seems impossible!
Remember: the two cutouts must be identical in size and
shape. Can you help? (See Answer 4.46.)

Figure 4.27 Detonation!
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toilet paper of this form could
fit in a a√θ hypertoilet paper
roll less than 50 inches in
radius.

Fractal Ford froth. Imagine
a frothy milkshake with an
infinite number of bubbles,
schematically illustrated in
figure 4.28. As you stare into
the cosmological milkshake,
you notice bubbles of all
sizes, touching one another
but not interpenetrating. In
this hypothetical foam, the
bubbles become smaller and

smaller, always filling in the
cracks and the spaces
between larger ones. 

If you were to magnify the
foam, tiny bubbles would
always be interspersed with
larger ones, but the overall
structures would look the
same at different magnifica-
tions. In other words, the froth
would be called a fractal
because it displays “self-
similar” structures at different
size scales. Do you have any
guesses as to how this mathe-
matical structure, first dis-
cussed in 1938, was created?

The figure shows the little-
known Ford circles, named
after L. R. Ford, who pub-
lished on this topic in 1938.
Ford circles provide an infi-
nite treasure chest to explore,
and the circles are among the
most mind-numbing mathe-
matical constructs to contem-
plate. In fact, it turns out that
they describe the very fabric
of our rational number sys-
tem in an elegant way.

As a review, recall that
rational numbers are numbers
that can be expressed as frac-
tions. For example, 1⁄2, 1⁄3,

Figure 4.28 Fractal Ford froth.



and 2⁄3 are all rational num-
bers. As you might expect,
there is an infinite number of
such numbers.

What follows is a mathe-
matical recipe for creating a
Ford froth, which character-
izes the location of rational
numbers in our number sys-
tem. You can use a compass
and some graph paper to get
started. No complicated
mathematics is required for
your journey.

Let us begin by choosing
any two integers, h and k.
Draw a circle with a radius 
of 1/(2k)2 and centered at 
(h/k, 1/(2k)2). For example, if
you select h = 1 and k = 2,
you draw a circle centered at
(0.5, 0.125) and with a radius
of 0.125. Note that the larger
the denominator of the frac-
tion h/k, the smaller the
radius of its Ford circle.
Choose another two values
for h and k, and draw another
circle. Continue placing cir-
cles as many times as you
like. As your picture becomes
more dense, you’ll notice
something quite peculiar.
None of your circles will
intersect, although some will
be tangent to one another
(i.e., just kissing one
another). Even if we place
infinitely many Ford circles,

none will overlap, and each
will be tangential to the 
x-axis. We can get a visual
confirmation of this by mag-
nifying the froth. For much
more information on the Ford
froth, see my book Keys to

Infinity.

Infinitely exploding circles.
Draw a circle with a radius

equal to 1 inch. Next, circum-
scribe (i.e., surround) the cir-
cle with an equilateral
triangle. Next, circumscribe
the triangle with another cir-
cle. Then circumscribe this
second circle with a square.
Continue with a third circle,
circumscribing the square.
Circumscribe the circle with
a regular pentagon. Continue
this procedure indefinitely,
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Gear turns. Figure 4.29 shows a collection of intermeshed
gears. The numbers of teeth on certain gears are indicated by
the numbers within those circles. Does the gear marked “4” at
the upper left spin faster, slower, or at the same speed as the
gear marked “6” at the bottom right? (See Answer 4.47.)

Figure 4.29 Gear turns.



each time increasing the
number of sides of the regu-
lar polygon by one. Every
other shape used is a circle
that grows continually as it
encloses the assembly of its
predecessors (figure 4.30).

If you were to repeat this
process, always adding larger
circles at the rate of a circle a
minute, how long would it
take for the largest circle to
have a radius equal to the
radius of our universe, 1026

feet? (See Answer 4.48.)

Hexagonal challenge. Dr.
Brain walks with you in a for-
est and hands you a hexagonal
piece of wood and a chisel.
He wants you to cut a regular
hexagon into eight congruent
quadrilaterals (figure 4.31). In
other words, each four-sided

piece must be identical to the
others. Can this be done? (See
Answer 4.49.)

Robotic worm. A robotic
worm named T’Pol creeps
through cells (right, left, up,
and down), starting with A
and always repeating the pat-
tern ABCD, ABCD, ABCD,
ABCD as it crawls. The worm
starts its journey with an A on
a cell in the grid. Here are
hints that show the worm’s
values in two cells. In the B

Magic circles. In figure 4.32, fill in the missing numbers 
so that numbers add up to 205 for each circle. The consecu-
tive numbers 1 through 40 are used in the figure. (See 
Answer 4.50.)

Figure 4.32 Magic circles.

Figure 4.31 Hexagonal challenge.

Figure 4.30 Infinitely 
exploding circles.
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and the C cells shown, T’Pol
is moving upward. Can you
fill in the rest of the letters?
How did you go about 
solving this puzzle? (See
Answer 4.51.)

y = xsin(1/x ). At night, I
often dream of the function

The graph of this function for
|x| < 1 shows smaller, yet
more rapid, oscillations the
nearer it approaches zero.
The limit of this function as 
x approaches zero is zero
(figure 4.33). We can define a
very similar function ψ(x) as
follows:

Like a Koch curve, this curve
has infinitely many bumps,
decreasing in size, in a finite

region of space. Is ψ(x)
continuous? (See Answer
4.52.)

Continuity. I ask you to
draw a line on my hand, and
you draw a flowing curve
until I tell you to stop. Your
curve is continuous because
you never lifted the pen off
my hand as you drew the
curve. Now, I want you to
imagine a crazier curve. Can
a curve that has infinitely

many turns or corners in a
finite space still be continu-
ous, or must it “break up” or
become discontinuous due to

ψ

ψ
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Magic sphere. Figure 4.34 is a sphere containing the con-
secutive numbers 1 through 26, arranged in nine circles. Each
circle has eight numbers, and their magic sum is 108. Can you
fill in the missing numbers? (See Answer 4.53.)

Figure 4.34 Magic sphere.

B

C
Figure 4.33 y = xsin(1/x )



the infinity of turns? (See
Answer 4.54.)

Limits. When we want to
take the “limit” of a function,
this means we want to find
out the function’s behavior as
we approach a particular
value; for example, we might
want to know the value of the
function f(x) as x approaches
a number a.

Sometimes we can get a
good idea about the limit of a
function by examining its
graph. We can also compute
limits without graphing a
function. Consider the simple
parabola, y = x2. As x
approaches 0 from either the
positive or the negative direc-
tion, the values of the func-
tion f(x) approach the value
of 0. For something simple
like this, the limit of the func-
tion as x approaches some
number a is just a2. You just
insert a into the function for x.
We can write this as follows:

For

we find a solution of –3. 
Simply insert the value for 0
for x, and you find that the
limit is –3.

Simple insertion often
works if we don’t produce a
number that has 0 in a
denominator or a negative
number inside a square root.
But sometimes limits don’t
exist. For example, consider y
= 1/x2. As x approaches 0, y
approaches infinity, and we

usually say that “the limit
does not exist.”

Let us try a more compli-
cated example. Can you find
the limit of

(See Answer 4.55.)
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Space station scordatura. Four stars are located at the cor-
ners of a planar quadrilateral (figure 4.35). Musical creatures
from each star want to build a space station where they can
practice music. For convenience, the sum of the distances
from the station to their stars must be as small as possible.
Where should the creatures build the space station? (Assume
that the stars are static in space.) (See Answer 4.56.)

Figure 4.35 Space station scordatura.
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The Procyon maneuver. A
plantation owner is on a hunt-
ing trip south of Caracas,
Venezuela, when at 2:30 A.M.
he is paralyzed by a flash of
light. He is lifted to a cylin-
drical craft by aliens in dusty
silver suits and masks. In
order to assess his intellectual
prowess, they transport him
to an Earthlike planet circling
Procyon, a star that is 11
light-years from Earth.

In minutes, the plantation
owner is facing a large in-
ground funnel that has a cir-
cular opening 1,000 feet in
diameter (figure 4.36). The
walls of the funnel are quite
slippery, and if the plantation
owner attempts to enter the

funnel, he will slip down into
it. At the bottom of the funnel
is a sleep-inducing liquid that
will instantly put him to sleep
for 8 hours if he touches it.

As shown in figure 4.36,
there are two ankh-shaped
towers. One stands upon a
cylindrical platform in the
center of the funnel. The plat-
form’s top surface is at
ground level. The distance
from the platform’s top sur-
face to the liquid is 500 feet.
The other ankh tower is on
land, at the edge of the fun-
nel, as illustrated.

The aliens hand the planta-
tion owner two objects: a
rope 1,016.28 feet in length
and the skull of a chicken.

The aliens turn to him and
say, “If you are able to get to
the central tower and touch it,
we will give Earth the cure
for cancer. We will also give
Earthlings the ability to see in
the ultraviolet range, thereby
opening up a vast new arena
of sensory experience. If you
do not get to the tower, we
will leave you on this planet
after we have implanted a
tracking device in your nose.
Please note that with each
passing hour, we will
decrease the rope length by a
foot.”

How can the plantation
owner reach the central ankh
tower and touch it? (See
Answer 4.57.)
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Figure 4.36 The Procyon maneuver.

1,000 FEET



The meanness of mathe-
maticians. “I once asked Gre-
gory Chudnovsky if a certain
impression I had of mathe-
maticians was true, that they

spend immoderate amounts
of time declaring each other’s
works trivial. ‘It is true,’ he
admitted” (Richard Preston,
The New Yorker, 1992).

Spirals. The Fermat or
parabolic spiral in figure 
4.38 is pretty to ponder.
Pierre de Fermat studied this
form in 1636, and it can be
created using the polar equa-
tion r2 = a2θ. Fermat was
only twenty-five when he
studied this curve. Today,
researchers sometimes use
this form to model the
arrangement of seedheads 
in flowers.

Good notation. “A good
notation has a subtlety and
suggestiveness which, at
times, make it almost seem
like a live teacher” (Bertrand
Russell [1872–1970], in J. R.
Newman’s The World of

Mathematics, 1956).

Leaning tower of books. One day while walking through the
New York City Public Library, you notice a stack of dusty
books leaning over the edge of a table (figure 4.37). It seems
as if it is about to fall. A question comes immediately to mind:
Would it be possible to stagger a stack of many books so that
the top book would be far out into the room—say 10 or 20
feet? Or would such a stack fall under its own weight? You ask
several friends, and each gives a different answer. What is
your answer?

(See Answer 4.58.)

Figure 4.37 Leaning tower of books.

Figure 4.38 Fermat or 
parabolic spiral.
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Pappus’s Arbelos. I enjoy
contemplating the mysteries of
Pappus’s Arbelos (figure 4.39).
To create the figure, draw the
two largest circles in figure
4.39a that have a horizontal
line through their centers.
These two circles, pointed to
by arrows, create a crescent-
shaped region between them.
Next, place another circle with
its center on the line and tan-
gent to the two original cir-
cles. Continue to fill the
crescent area with tangent cir-
cles, as shown. This chain of
ever-diminishing circles is
called a Pappus chain, and the
arbelos is the unfilled region
outside the circles.

The first small circle,

which has its center on the
line, can be denoted C0 , the
next smaller circle is denoted
C1, and so on. Interestingly,
the vertical distances from 
all the small circles’ centers
in the crescent to the line 
segment equal 2nr

n
, where 

r is the radius of each of 
the circles, C

n
. Pappus’s

Arbelos seems to have been
known to the early Greek
mathematicians.

Figure 4.39b shows a Pap-
pus chain with more circles
filling the arbelos. Countless
elegant and mind-boggling
mathematical relations
describe the relationships
between all the circles in this
infinite structure.

Loxodrome. A loxodromic
sequence of tangent spheres
in n-space is an infinite
sequence of spheres having
the property that every n + 2
consecutive members are
mutually tangent (figure
4.40). H. S. M. Coxeter has
shown that points of contact
of consecutive pairs of
spheres lie on a curve known
as a loxodrome. If β is a con-
stant angle, while θ and φ are
the longitude and the latitude
of a point on the loxodrome,
the loxodrome’s equation
may be written x = sin φ
cos θ, y = sin φ sin θ, z =
cos φ, where θ = –tan β log
tan (φ /2).

Doing a little historical
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Figure 4.39a and b Pappus’s Arbelos.



research, you’ll find out that
the loxodrome curve was
actually first conceived by
Pedro Nunes around 1550.
Note that a loxodrome is a

curve on the surface of a
sphere that makes a constant
angle with the parallels of lat-
itude—for example, a course
with a constant compass

bearing. It is the spherical
analog of the logarithmic spi-
ral in the plane, which makes
a constant angle with concen-
tric circles.

On the supernatural exis-
tence of Borromean rings. Bor-
romean rings are three
mutually interlocked rings
named after the Italian
Renaissance family whose
members used these on their
coat of arms. Ballantine Beer
also uses this configuration in
its logo (figure 4.42). 

Notice that Borromean
rings have no two rings that
are linked, so if we cut any
one of the rings, all three
rings fall apart. Some histori-
ans speculate that the rings
represent the three families 
of Visconti, Sforza, and 
Borromeo, which formed a

Figure 4.40 Loxodromic sequence
of tangent spheres.

Mystery swirly curve. Figure 4.41 is a beautiful and famous
smoky-looking curve. Can you take a guess at its name or
what class of shapes it represents? (See Answer 4.59.)

Figure 4.41 Mystery swirly curve.
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tenuous union through inter-
marriages. 

Structures such as these
fall within a mathematical
discipline known as “knot
theory,” which is useful in
polymer and theoretical
physics. Mathematicians now
know that we cannot actually
construct a true set of Bor-
romean rings with flat circles,
and, in fact, you can see this
for yourself if you try to cre-
ate the interlocked rings out
of wire, which requires some
deformation or kinks in the
wires. The theorem stating
that Borromean rings are
impossible to construct with
flat circles is proved in Bernt
Lindström and Hans-Olov
Zetterström, “Borromean 
Circles Are Impossible,” The

American Mathematical

Monthly 98, no. 4 (1991):
340–41.

In 2004, UCLA chemists
created a breathtaking

beauty—a molecular counter-
part of interlocked Bor-
romean rings. Each molecule
of the molecular Borromean
ring compound was 2.5

nanometers across and con-
tained an inner chamber that
was a quarter of a cubic
nanometer in volume and was
lined by 12 oxygen atoms.
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Kissing circles. Figure 4.43 shows adjacent circles that are
packed so that they osculate (“kiss” or just touch). I find that
circle packing can provide a deep reservoir for striking
images. How do you think I created this figure? Do you have
even the slightest idea how to go about creating it yourself?
The “bubbles” can be explored with a magnifying glass to
yield details at increasingly tiny-sized scales. In fact, the
arrow points to an inset figure that is a magnification of a tiny
region of the froth in the larger figure. (See Answer 4.60.)

Figure 4.43 Osculatory circles.Figure 4.42 Borromean rings.



Researchers speculate that
molecular Borromean rings
could be used as highly
organized nanoclusters in a
materials setting, such as
spintronics, or in a biological
context, such as medical
imaging.

Thébault construction. In
1937, the French mathemati-
cian Victor Thébault
(1882–1960) discovered that
if you construct squares on
the sides of any parallelo-
gram, their centers form
another square when con-
nected (figure 4.44).

Schoenberg curve. “There
is a discernible pattern [to 
the Schoenberg space-filling
curve], albeit a very compli-

cated one. Attractive it is not.
It would appear that what
Arnold Schoenberg has done
to music, I. J. Schoenberg 
has done to Peano-curves”
(Hans Sagan, The American

Mathematical Monthly,
1986).

Heron’s problem. Heron
(c. A.D. 500) asked whether
we can find two rectangles,
with integral sides, such that
the area of the first is three
times the area of the second,
and the perimeter of the 
second is three times the
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Figure 4.44 Thébault
construction.

Withers’s attractor. William Douglas Withers of the U.S.
Naval Academy has described an interesting attractor for A(z)
= z2 – 2z*, where z is a complex number and z* is the complex
conjugate. (See the answer to the earlier entry in this chapter
titled “Mystery swirly curve” for more information on attrac-
tors.) The complex conjugate of a complex number is created
by changing the sign of the imaginary part. Thus, the conju-
gate of the complex number z = x + iy is z* = x – iy. Starting
with any initial value for z, you will finally be positioned
somewhere on a triangular-shaped object with vertices at (3,
–3/2 ± 3√3 /2) as you repeatedly apply Withers’s formula in a
mathematical feedback loop (figure 4.45). To implement this
feedback loop or recursion, your new z value becomes input to
the equation, and the mapping is repeated. For more informa-
tion on this curve, see W. D. Withers, “Folding Polynomials
and Their Dynamics,” The American Mathematical Monthly

95, no. 5 (1987): 399–407.

Figure 4.45 Withers’s attractor.



perimeter of the first. Can
you solve this? (See Answer
4.61.)

Scherk’s surface. Scherk’s
surface, discovered by Hein-
rich Ferdinand Scherk in
1835, has the following form:

where –2π < x < 2π and –2π
< y < 2π. Can you have your
computer draw this strange
minimal surface? Stewart
Dickson has actually created
a 3-D physical model of this
saddlelike surface, using a
process called stereolithogra-
phy, which employs a laser-
based tool and a
photosensitive liquid resin
that hardens as it forms the 
3-D object. 

Interestingly, Scherk’s sur-
face is a plausible model for
the structure of interacting
polymers that prefer to have
as little contact as possible.
Carlo H. Sequin has sculpted
these surfaces out of wood,
and you can use Google to
search for various renditions.
For further information, see
Stewart Dickson, “Minimal
Surfaces,” The Mathematica

Journal 1, no. 1 (1990): 38.
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The game of elegant ellipses. Many puzzles have been based
on the problem of drawing straight lines in such a way that
objects are segregated into separate regions on a plane. The
game of elegant ellipses can be played with coins or ellipses
that are thrown on a large piece of paper. In the example in
figure 4.46, can you draw four straight lines that will divide
the plane in such a way as to place each ellipse in a separate
region? (See Answer 4.62.)

Figure 4.46 The game of elegant ellipses.



Fractal caves. “Out of the
vast main aisle there opened
here and there smaller caves,
exactly, Sir Henry said, as
chapels open out of great

cathedrals. Some were large,
but one or two—and this is a
wonderful instance of how
Nature carries out her handi-
work by the same unvarying

laws, utterly irrespective of
size—were tiny. One little
nook, for instance, was no
larger than an unusually big
doll’s house, and yet it might
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Schoenberg curves. The Schoenberg space-
filling curve is one of the most intricate and
exotic of all space-filling curves discussed in
the world’s scientific literature. Space-filling

curves are interesting patterns that grow in
length without limit while they fill the region
in which they lie. The two most famous are
the Hilbert and the Sierpinski curves. A more
recent discovery is a self-similar curve, devel-
oped by Mandelbrot, which fits exactly inside
a Koch snowflake (see the April 1978 cover of
Scientific American).

The Schoenberg curve was invented in
1938 by I. J. Schoenberg and further devel-
oped in 1986 by Hans Sagan. It is certainly a
challenge for mathematicians, programmers,
and computer graphics specialists. Hans
Sagan speaks of the curve’s complexity: “To
draw a 5th order Schoenberg curve, with no
simple pattern to serve as guide, would tax
the manipulative skills of a seventeenth-
century mathematician, and the mere thought
of going beyond that boggles the mind.” Here
I give the recipe for creating these curves and
you can read more about the gory details in
Sagan’s paper. First, you must define a func-
tion p(t), which looks something like a
chunky sine wave:

p(t) = 0 for 0 ≤ t < 1/3

p(t) = 3t – 1 for 1/3 ≤ t < 2/3

p(t) = 1 for 2/3 ≤ t < 1

This curve continues to infinity in both 
the +t and –t directions. Also, p(–t) = p(t),
p(t + 2) = p(t). To create the Schoenberg 
monstrosity for different orders, connect each
vertex to its predecessor by a straight line,
using

The result is a complicated, chaotic assembly
of zigzags. Schoenberg’s curve has vertices
for t

n,m = n/3m, for m = 1, 2, 3, . . . , n = 0, 1,
2, . . , and 3m, where m is the “order” of the
curve. My book Computers and the Imagina-

tion shows a curve of order 4, and I believe
that the highest-order Schoenberg curve ever
to be plotted in a scientific journal is 7. 
You can read more about his curve in I. J.
Schoenberg, “The Peano-Curve of Lebesgue,”
Bulletin of the American Mathematics 

Society 44 (1938): 519. Additional informa-
tion can be found in H. Sagan, “Approximat-
ing Polygons for Lebesgue’s and Schoenberg’s
Space-Filling Curves,” The American Mathe-

matical Monthly 93, no. 5 (May 1986): 361.
For a general description of space-filling
curves, see F. Hill, Computer Graphics

(New York: Macmillan, 1990). 
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have been the model of the
whole place, for the water
dropped, the tiny icicles hung,
and the spar columns were
forming in just the same 
way” (Sir Henry Rider Hag-
gard, King Solomon’s Mines,
1885).

Dudeney’s circles. Here’s a
classic puzzle from British
puzzlemaster Henry Ernest
Dudeney (1857–1930).

Dudeney began his career at
age nine, when he started
composing puzzles that he
published in a local paper.
Later, he became angry when
the American puzzle guru
Sam Loyd published some of
Dudeney’s puzzles without
giving sufficient credit. Some
of Dudeney’s puzzles con-
tinue to be of interest to mod-
ern mathematicians. 

Here’s one favorite
Dudeney puzzle. Following

are 12 circles arranged to
form 6 identical squares
when perpendicular lines are
drawn between the circles.
Remove just 3 circles to leave
just 3 identical squares. You
might experiment with coins. 

� � � �
� � � �
� � � �

(See Answer 4.63.)
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Eschergrams.
I created figure 4.47
by randomly posi-
tioning a small
square tile that con-
tained 8 straight
lines. In particular,
the tile was placed in
random orientations
on a checkerboard to
create this composite
pattern. Can you
draw the original
tile? (See Answer
4.64.)

Figure 4.47 Eschergram.



Zenograms: Squashed
worlds. You can compress all
of mathematical space from
–∞ to +∞ into a viewable
cube that extends from –1 to
1. One way to do this makes
use of the hyperbolic tangent
function:

I call the resulting representa-
tion a Zenogram, after the
ancient philosopher who
studied various properties 
of infinity. My graphics
program, called Zenospace,
allows you to explore this
strange squashed world using
advanced computer graphics.
No matter how large your
numbers are, the tanh func-
tion can return only a maxi-
mum value of positive 1 or a
minimum value of –1. Thus,
any function, no matter how
spatially extended, becomes
viewable in the Zenogram. 

Here are some observa-
tions on this weird space. In
the Zenogram, diagonal par-
allel planes begin to curve,
and they meet at infinity (the
sides of the box). Paraboloids 
(z = xn + yn, n = 2) become
squashed in interesting ways
as they near the side of the
box. (What happens as you

increase n?) Spheres deform
in interesting ways as they
grow larger or are “pushed”
toward the side of the box.
My book Computers and the

Imagination shows a
Zenogram for a sphere as it 
is forced to a side wall of 
the Zenogram, at positive
infinity. What do you think

happens to the shape 
of a sphere centered at the
origin as its radius grows 
to infinity? I discuss this
novel method in my books
Computers and the 

Imagination and Mazes for

the Mind.

tanh x
e e
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x x

x x
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Dudeney’s house. A charitable individual built a house in
one corner of a square plot of ground and rented it to four 
persons. On the grounds were four cherry trees, and it was
necessary to divide the grounds so that each person might
have a tree and an equal portion of garden ground. Figure 
4.48 is a sketch of the plot. How is it to be divided? (See
Answer 4.65.)

Figure 4.48 Dudeney’s house.
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Dudeney’s 12 counters.
Place 12 counters in 6 rows
(straight lines with any 
orientation you like) so that
there are now 4 counters in
each row.

� � � � � �
� � � � � �

(See Answer 4.66.)

Dudeney’s cuts. How can
the board, marked as shown
in figure 4.49, be cut into four
identical pieces, so that each
piece contains three circles,
and no circle is cut. (See
Answer 4.67.)

Mathematical spirit. “The
mathematical spirit is a pri-
mordial human property that
reveals itself wherever human
beings live or material ves-
tiges of former life exist”

(Willi Hartner, in Annemarie
Schimmel’s The Mystery of

Numbers, 1993). 

e
1–e. You go on a television

game show where the host
gives contestants the answers,
and the contestants have to
come up with the questions.
Today, the host gives this
answer: 

What is the correct question?
(See Answer 4.68.)

Tunnel through a cube: 
A true story. In the 1600s, 
Prince Rupert of Bavaria
asked a fascinating and
famous geometrical question,
which incidentally won him 
a sum of money. What is the
largest wooden cube that 
can pass through a given 
cube with a side length of 1
inch? More precisely, what is
the size of the edge of the
largest tunnel (with a square
cross section) that can be
made through a cube without
breaking the cube? (See
Answer 4.70.)

e e
1
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Figure 4.49 Dudeney’s cuts.

Dudeney’s horseshoe. How can a horseshoe (figure 4.50) be
cut into six separate pieces with just two cuts? Your challenge
is to try to solve this in your head, without even using a pencil
and paper. (See Answer 4.69.)

Figure 4.50 Dudeney’s horseshoe.



Albrecht Dürer. The
Renaissance artist Albrecht
Dürer created this wonderful
4 × 4 magic square in 1514: 

Note that the two central
numbers in the bottom row
read “1514,” the year of its
construction. The rows, the
columns, and the main diago-
nals sum to 34. In addition,
34 is the sum of the numbers
of the corner squares (16 + 13
+ 4 + 1) and of the central 2 ×
2 square (10 + 11 + 6 + 7).

Magic squares. There are
275,305,224 different 5 × 5
magic squares in existence.
In 1973, Richard Schroeppel,
a mathematician and a com-
puter programer, used 100
hours of PDP-10 computer
time to arrive at this large
number.

For compactness, we can
divide this large number 
by 4 and give the total as
68,826,306, because, in 
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16 3 2 13

5 10 11 8

9 6 7 12

4 15 14 1

The mathematics of love. Mark and Bill are both in love with
a TV actress named Shannon who is sitting in a park (figure
4.51). Alas, sometimes the men compete with each other to
see who can meet her first, in order to engage in stimulating
conversation and flirtation. Bill, the faster runner of the two,
always runs at three times the speed of Mark.

Shannon now sits on a park bench exactly 200 feet directly
to the east of Mark. Bill is some distance directly north of
Mark’s position. 

At the same time, Mark and Bill race to Shannon and arrive
at the same moment. Mark and Bill are both fair, so they
decide to share their conversations with Shannon. Just how far
north of Mark was Bill at the start of their race to Shannon?
(See Answer 4.71.)

Figure 4.51 The mathematics of love.



addition to the eight variants
obtained by rotation and
reflection, four other variants
also preserve magical
properties:

• Exchange the left and the
right border columns, then
exchange the top and the
bottom border rows.

• Exchange Rows 1 and 2
and Rows 4 and 5. Then
exchange Columns 1 and 2
and Columns 4 and 5. 

As Martin Gardner has
pointed out in Time Travel

and Other Mathematical

Bewilderments, when these
two transformations are com-

bined with the two reflections
and the four rotations, the
result is 2 × 4 × 2 × 2 = 32
forms that can be called iso-
morphic (having essentially
the same structure). With this
definition of isomorphic, the
number of “unique” fifth-
order magic squares drops to
68,826,306.

Antimagic square. An
antimagic square is an N × N

array of numbers from 1 to
N 2 such that each row, each
column, and each main diag-
onal produces a different
sum, and the sums form a
consecutive series of integers.
Fill in the missing numbers to
complete this antimagic
square. (See Answer 4.72.)

Antimagic Square

Annihilation magic squares.
According to Ivan
Moscovich, the author of
Fiendishly Difficult Math
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Alphamagic square. According to Lee Sallows, an alpha-

magic square is a magic square for which the number of let-
ters in the word for each number generates another magic
square. For example, 

Alphamagic Square Resulting Square

where the magic square on the right corresponds to the num-
ber of letters in

Numbers Spelled Out

In other words, you can spell out the numbers in the first
magic square. Then count the letters in the words. The integers
make a second magic square. This second square contains the
consecutive digits from 3 to 11.

five twenty-two eighteen

twenty-eight fifteen two

twelve eight twenty-five

8 9

12 15

1 14

15 4

5 22 18

28 15 2

12 8 25

4 9 8

11 7 3

6 5 10



Puzzles, “annihilation magic
squares” are those in which
the rows, the columns, and
the two main diagonals sum
to zero. For these squares,
consecutive numbers from
–N/2 to N/2 are required, and
zero is excluded. Following is
an example with several num-
bers removed. Can you fill in
the missing numbers? (See
Answer 4.73.)

Annihilation Magic Square

Cramming humanity into
small spots. Let us consider
today’s world population and
give everyone a 3-by-3-foot
piece of ground on which to
stand. How large an area
would humanity cover?

Put your answer in terms
that are meant to delight us.
For example, could they all
squeeze onto an area the size
of Manhattan Island? (See
Answer 4.74.)

Chocolate cake computation.
You are walking down Fifth
Avenue in New York City and
enter a restaurant selling a
delicious “Triple Chocolate
Mousse Cake.” The cake con-
sists of chocolate chiffon lay-
ers, a rich chocolate mousse
filling, and a glaze of bitter-
sweet chocolate. Your mouth
begins to water!

For $10, you can buy a 
circular cake of diameter 8.5
or a square cake of side
length 7.5. Which is a better
buy? In general, is a circular
cake of diameter d always a
better buy than a square cake
with an edge of d – 1? (See
Answer 4.75.)
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1 –2 –3 4

Apocalyptic magic square. A rather beastly six-by-six magic
square was invented by the mysterious A. W. Johnson. No one
knows when this square was constructed, nor is there much
information about Johnson, except that he has occasionally
published in the Journal of Recreational Mathematics. All of
its entries are prime numbers, and each row, each column, and
each diagonal and broken diagonal sum to 666, the Number of
the Beast. (A “broken diagonal” is the diagonal produced by
wrapping from one side of the square to the other; for exam-
ple, the outlined numbers 131, 83, 199, 113, 13, 127 form a
broken diagonal.)

Apocalyptic Magic Square

3 107 5 131 109 311

7 331 193 11 83 41

103 53 71 89 151 199

113 61 97 197 167 31

367 13 173 59 17 37

73 101 127 179 139 47



Amateur findings. In the
1970s, Marjorie Rice, a San
Diego housewife and a
mother of five, was working
at her kitchen table when she
discovered numerous new
geometrical patterns that pro-
fessors had thought were
impossible. Rice had no
training beyond high school,

but by 1976 she had discov-
ered 58 special kinds of pen-
tagonal tiles that would tile a
plane, and most of the tiles
had been previously
unknown. Her most advanced
diploma was a 1939 high
school degree, for which she
had taken only one general
math course.

π-square. To create T. E.
Lobeck’s magic square,
which follows, start with a
conventional 5-by-5 magic
square and then substitute the
nth digit of π (3.14159 . . .)
for each number n in the
square. This means that a 
3 is substituted for a 1, a 1 
is substituted for a 2, a 4
substituted for a 3, and so on.
Amazingly, every column
sum duplicates some row
sum for the π-square. For
example, the top row sums to
24, as does the 4th column.
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Mirror magic square. If you reverse each of the entries in this
“mirror magic square,” you obtain another magic square. 

Mirror Magic Square

In both cases, the sums for the rows, the columns, and the
diagonals are 242:

Rorrim Magic Square

96 64 37 45

39 43 98 62

84 76 25 57

23 59 82 78

69 46 73 54

93 34 89 26

48 67 52 75

32 95 28 87

17 24 1 8 15

23 5 7 14 16

4 6 13 20 22

10 12 19 21 3

11 18 25 2 9

2 4 3 6 9

6 5 2 7 3

1 9 9 4 2

3 8 8 6 4

5 3 3 1 5

5 × 5 Magic Square

π-Square



69-square. In the follow-
ing magic square, notice 
how the digits 0, 1, 6, 8, 9,
when rotated 180 degrees,
become 6, 8, 9, 1, 0. This
magic square is still magic
when rotated 180 degrees.
However, if these digits are
simply turned upside down,
the 6 becomes a backward 9
and the 9 a backward 6. If
you turn the square upside
down, then reverse the 6s and
9s so that they read correctly,
you end up with different
numbers, but the square is
still magic! Notice that cor-
ners of any 2 × 2, 3 × 3, or 
4 × 4 squares, as well as
many other combinations,
also sum to 264. 

69-Square

Existence. “The external
world exists; the structure of
the world is ordered; we
know little about the nature
of the order, nothing at all
about why it should exist”

(Martin Gardner, “Order and
Surprise,” 1950, paraphrasing
Bertrand Russell).

Strange paper title. In
1980, Dr. Forest W. Simmons
published the unusual mathe-
matical title “When Homoge-
neous Continua Are
Hausdorff Circles (or Yes, 
We Hausdorff Bananas)” in
the prestigious Continua,

Decompositions, Manifolds

(Proceedings of Texas Topol-
ogy Symposium), University
of Texas Press. The figures
are reminiscent of bananas!

Prime number magic square.
The following “small-
constant” square at left has
the smallest possible magic
constant, 177, for an order-3
square composed only of
prime numbers. The number
1 is usually not considered a
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Upside-down magic squares. In the following pair of upside-
down magic square pairs, the numbers in either square will
form the other square by turning either square upside down. In
either case, the sum of the numbers in the first-place digits (9
+ 8 + 1 + 6) or the sum of the numbers in the second-place
digits (9 + 1 + 6 + 8) in each row, each column, each two-by-
two opposite short diagonal, or each main diagonal will be 24.
The sum of the numbers in each row, each column, each two-
by-two short diagonal, each main diagonal, the four corner
squares, the four center squares, and any four adjacent corner
squares equals 264.

Upside-Down of Right Square Upside-Down of Left Square

99 81 16 68

18 66 91 89

61 19 88 96

86 98 69 11

89 68 96 11

91 16 88 69

18 99 61 86

66 81 19 98

18 99 86 61

66 81 98 19

91 16 69 88

89 68 11 96



prime number; however, 
if 1 is allowed in a cell as a
prime, the only all-prime
order-3 magic square has a
constant of 111. 

Prime Number Magic Square

8811 magic square. The fol-
lowing magic square totals
19,998 in all directions in the
square as is, upside down, or
as reflected in a mirror. In
every case, any 2 × 2 sub-
square (e.g., one formed by
8,188; 1,111; 1,881; 8,818),
as well as the four corner
cells, totals 19,998.

8811 Magic Square

Strange paper title. In
1985, Tom Morley published
“A Simple Proof That the
World Is Three-Dimensional”
in the prestigious SIAM

Review 27: 69–71. The article

starts, “The title is, of course,
a fraud. We prove nothing of
the sort. Instead we show that
radially symmetric wave
propagation is possible only
in dimensions one and three.”
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Prime number magic square. This square has the smallest
possible magic constant, 3,117, for an order-3 square filled
with primes in an arithmetic sequence. (In an arithmetic
sequence, each term is equal to the sum of the preceding term
and a constant.) 

Prime Number Magic Square

Consecutive prime magic square. Harry Nelson was the first
person to produce the following 3 × 3 matrix containing only
consecutive primes (for which he won a $100 prize offered by
Martin Gardner). 

Consecutive Prime Magic Square

1669 199 1249

619 1039 1459

829 1879 409

1480028159 1480028153 1480028201

1480028213 1480028171 1480028129

1480028141 1480028189 1480028183

8811 8188 1111 1888

1118 1881 8818 8181

8888 8111 1188 1811

1181 1818 8881 8118

71 89 17

5 59 113

101 29 47



Chess knight exchange on a
tiny board. Barry Cipra and
John Conway have discovered
the fewest possible moves it
would take to exchange all
the positions of the chess
knights on this small chess
board. The knights move as
do traditional knights. The
goal is to exchange the black
knight at A with its white
partner at A, B with B, C with
C, and D with D. The fewest
possible moves for such an
exchange is 32.

Geometers of war. Mathe-
matics, especially trigonome-
try, was vital in war and
colonization during the
sixteenth-century age of
European expansion. Math
was needed to navigate on the
seas, to design fortifications,
and for artillery tables of tar-
geting cannons. The “Geome-
ters of War” helped to devise
instruments to measure the
size of shot, determine the
elevation of guns and mortars,
and calculate the range of fire.

Knight’s tour. Figure 4.52 is a representation of a knight’s
tour, in which a chess knight jumps once to every square on
the (8 × 8) chessboard in a complete tour. This is the earliest
recorded solution and was found by Abraham De Moivre
(1667–1754), the French mathematician who is better known
for his theorems about complex numbers. Note that in De
Moivre’s solution, the knight ends his tour on a square that is
not one move away from the starting square. The French math-
ematician Adrien-Marie Legendre (1752–1833) improved on
this and found a solution in which the first and the last squares
are a single move apart, so that the tour closes up on itself into
a single loop of 64 knight’s moves. Such a tour is said to be
reentrant. Not to be outdone, the Swiss mathematician Leon-
hard Euler (1707–1783) found a reentrant tour that visits two
halves of the board in turn. (The little squares show positions
where the knight transits from one half to the other.)

Figure 4.52 Knight’s tours.
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Knight’s tour on a cube.
Here is a knight’s tour over
the six surfaces of a cube,
each surface being a chess-
board (figure 4.53). A spider
moves as a chess knight and

jumps once to every square
on the (8 × 8) chessboards in
a complete tour. H. E.
Dudeney presented this in his
book Amusement in Mathe-

matics, and I believe that he

based the solution (in which
each face is toured in turn) on 
earlier work of the French
mathematician Alexandre-
Théophile Vandermonde
(1735–1796).
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Figure 4.53 Knight’s tour on a cube.

A very tired spider
completes a
knight’s tour
on a
cube.



Pythagorean triangle with
square sides. In 1643, the
French mathematician Pierre
de Fermat wrote a letter to his
colleague Mersenne asking
whether it were possible to
find a Pythagorean triangle 
(a right triangle) whose
hypotenuse and sums of its
legs were squares. In other
words, if the sides are labeled
X, Y, and Z, this requires

X + Y = a2; Z = b2;
X 2 + Y 2 = Z 2 = b 4

The smallest three numbers
satisfying these conditions
are quite large: 
X = 4,565,486,027,761, 
Y = 1,061,652,293,520, and 
Z = 4,687,298,610,289.

Euclid’s postulates. Euclid
(c. 330–275 B.C.) put forth
five famous postulates in
geometry:

1. Exactly one straight line
can be drawn between two
points.

2. Any straight line segment
can be extended indefi-
nitely in a straight line. 

3. Given any straight line
segment, a circle can be
drawn having the segment
as radius and one endpoint
as center. 

4. All right angles are
congruent. 

5. Through a given point out-
side a given straight line,
there passes only one line
parallel to the given line.
Such a line does not inter-
sect the given line. 

In 1823, János Bolyai and
Nikolai Lobachevsky realized
that self-consistent “non-
Euclidean geometries” could
be created in which the 
“parallel lines” could inter-

sect. More precisely, non-
Euclidean geometries can be
postulated using the first four
Euclidean postulates, plus,
instead of the fifth:

a. The postulate that more
than one line can be drawn
through a given point par-
allel to a given line (i.e.,
that every line has more
than one parallel).

b. The postulate that no such
lines can be drawn (i.e.,
there are no parallels).

Lituus and divination. The lituus is a cute-looking spiral that
represents the equation r 2 = a/θ (figure 4.54), and it was first
published by the English mathematician Rogert Cotes in 1722.
Poor Cotes (1682–1716) died at age thirty-four, having pub-
lished only two memoirs during his lifetime. He was
appointed professor at Cambridge at age twenty-four, but his
work was published only after his death. Note that the lituus
gets increasingly closer to the origin but never reaches it.

The lituus got its name from an ancient Roman trumpet
called the lituus. In art, the lituus spiral is a recurring shape
called the volute. The lituus was also the curved wand used by
the ancient Roman priesthood. Priests were called “augurs,”
who tried to predict the future, and the shape appears on
Roman coins.

Figure 4.54 The lituus.
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Helical curves. Consider
x = a sin (t), y = a cos (t), and
z = at/(2 πc), where a and c

are constants. Try a = 0.5, 
c = 5.0, and 0 < t < 10π. A
plot of this circular helix

curve resembles a wire spring.
To draw a conical helix, try 
x = az sin (t), y = az cos(t),
and z = t/(2πc), where a and c

are constants (figure 4.56).
Conical helices are used today
in certain kinds of antennas.

Mandelbrot magnification.
“In principle . . . [the Man-
delbrot set] could have been
discovered as soon as men
learned to count. But even if
they never grew tired, and
never made a mistake, all the
human beings who have ever
existed would not have suf-
ficed to do the elementary
arithmetic required to pro-
duce a Mandelbrot set of
quite modest magnification”
(Arthur C. Clarke, The Ghost

from the Grand Banks, 1990).
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Butterfly curves. Incredible beauty can be found in the vari-
ety of forms that inhabit the algebraic and the transcendental
curves on the plane. Many of these curves express beauty in
their symmetry, leaves and lobes, and asymptotic behavior.
Butterfly curves, developed by Temple Fay at the University of
Southern Mississippi, are one such class of beautiful, intricate
shapes (figure 4.55). These curves can be easily used for exper-
imentation, even on personal computers. The equation for the
butterfly curve can be expressed in polar coordinates by 

ρ = ecosθ – 2 cos 4θ + sin5 (θ/12)

This formula describes the trajectory of a point as it traces out
the butterfly’s body. In the formula, ρ is the radial distance of
the point to the origin.

Figure 4.55 Butterfly curves.

Figure 4.56 Conical helix.
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Lorenz attractor. In 1962, the MIT meteor-
ologist Edward Lorenz attempted to develop a
model of the weather. Lorenz simplified a
weather model until it consisted of only three
differential equations.

dx/dt = 10( y – x)

dy/dt = –xz + 28x – y

dz/dt = xy – (8/3)z

Time is t, and d/dt is the rate of change with
respect to time. If we plot the path that these
equations describe using a computer, the tra-
jectories seem to trace out a squashed pretzel
(figure 4.57). The surprising thing is that if
you start with two slightly different initial
points, for example, (0.6, 0.6, 0.6) and (0.6,
0.6, 0.6001), the resulting curves first appear
to coincide, but soon chaotic dynamics leads
to independent, widely divergent trajectories.
This is not to say that there is no pattern,
although the trajectories do cycle, apparently
at random, around the two lobes. In fact, the
squashed pretzel shape always results, no mat-
ter what starting point is used. This is the
behavior to which the system is attracted.

To create the Lorenz attractor, one needs to
solve the system of differential equations,
given previously. Several numerical tech-
niques can be used that come up with an
accurate value for x, y, and z as a function of
time. The most straightforward approach,
which I have used to get a rough idea about
the Lorenz attractor, simply replaces dx with
(xnew – x) and replaces dt by a time step,
called h. Other higher-accuracy approaches,
such as Runge Kutta methods, can be used
but only with a consequent increase in com-
puter time. To create a projection of this 3-D
figure in the x-y plane, simply plot (x, y) pairs
of points and omit the z value.

h = 0.01, npts = 4,000;

x, y, z = 0.6;

frac = 8/3;

do i = 1 to npts;

xnew = x + h*10*(y – x);

ynew = y + h*((–x*z) + 28*x – y);

znew = z + h*(x*y – frac*z);

x = xnew; y = ynew; z = znew;

MovePenTo(x, y);

end;

Figure 4.57 Lorenz attractor.



Build your own chaos
machine. One of the best non-
computer projects I know for
observing chaos involves
building a double pendu-
lum—a pendulum suspended
from another pendulum. The
motion of the double pendu-
lum is quite complicated. The
second arm of the pendulum
sometimes seems to dance
about under its own will,
occasionally executing grace-
ful pirouettes, while at other

times doing a wild tarantella.
You can make the double
pendulum from wood. At the
pivot points, you might try to
use ball bearings to ensure
low friction. (Ball bearings
can be obtained from hobby
shops or from discarded
motors and toys.)

Place a lead weight at the
bottom of the first pendulum
so that the pendulum will
swing for a longer time. (The
weight stores potential

energy when the pendulum is
lifted.) The second pendulum
arm can be about half the
length of the first. You can
place a bright red dot, or
even a light, on one end of
the second pendulum so that
your eye can better track its
motion. Note that your pen-
dulum will never trace the
same path twice, because you
can never precisely reposi-
tion it at the same starting
location, due to slight inaccu-
racies in knowing where the
starting point is. These small
initial differences in position
are magnified through time
until the pendulum’s motion
and position become unpre-
dictable. Can you predict
where the lower pendulum
will be after two or three
swings? Could the most 
powerful supercomputer in
the world predict the position
of the pendulum after 30 
seconds, even if the computer
were given the pendulum’s
precise equations of motion?
Unlike some of the strange
attractor patterns in this
book, your pendulum’s 
pattern will eventually come
to rest at a point due to 
friction.
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Fractal goose. In The Story of an African Farm, first
published in 1883, Olive Schreiner gives an early, poignant
description of the fractal geometry of nature: “A gander
drowns itself in our dam. We take it out, and open it on the
bank, and kneel looking at it. Above are the organs divided
by delicate tissues; below are the intestines artistically
curved in a spiral form, and each tier covered by a delicate
network of blood vessels standing out red against the faint
blue background. Each branch of the blood vessels is 
comprised of a trunk, bifurcating and rebifurcating into the
most delicate, hair-like threads, symmetrically arranged. 
We are struck with its singular beauty. And, moreover—and
here we drop from our kneeling into a sitting position—this
also we remark: of that same exact shape and outline is our
thorn-tree seen against the sky in midwinter; of that shape
also is delicate metallic tracery between our rocks; in that
exact path does our water flow when without a furrow we
lead it from the dam; so shaped are the antlers of the horned
beetle. How are these things related that such union should
exist between them all? Is it chance? Or, are they not all the
fine branches of one trunk, whose sap flows through us all?
That would explain it. We nod over the gander’s insides.”



Turning a universe inside-
out. Since its discovery
around 1980, the Mandelbrot
set has emerged as one of the
most scintillating stars in the
universe of popular mathe-
matics and computer art. 
Figure 4.58 shows inside-out
Mandelbrot sets produced by
the iterative process 
z → zp + (1 /µ) p, p = 2. 

For this figure, |Re (µ)| <
2, |Im(µ)| < 2. The conver-
gence to infinity occurs at 
the center of the figure.

Bounded orbits, which do not
explode, correspond to the
black surrounding regions.
Several contours (level sets)
are plotted for the first few
iterations. The contours indi-
cate the rate at which the iter-
ation explodes.

When most people talk
about the Mandelbrot set,
they often mean the area just
outside the set near its infi-
nitely complicated fractal
boundary. But there is also
action inside the set, as figure

4.59 shows. I used a method
called the “epsilon cross”
technique for revealing this
normally hidden internal
structure—Mandelbrot stalks
within the interior bounded
region of the Mandelbrot set.
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Figure 4.58 Inside-out 
Mandelbrot set.

Figure 4.59 Mandelbrot stalks.



The Quadratrix of Hippias.
Hippias of Elis, who came to
Athens in the second half of
the fifth century B.C., studied
the behavior of the interesting
formula 2r = πρ(sinθ) /θ
in polar coordinates. 
Here, and 
θ = arctan(y/x). After some
manipulation, we have 
y = xcot(πx/2a).

Amazingly, Hippias and
another Greek mathemati-
cian, Dinostratus (350 B.C.),
saw only the tip of the ice-
berg for this curve—they
knew only about the shape 
of the curve on the interval
–a < x < a. (The curve looks
like the top of a bald man’s
head on this interval.) Later,
in the seventeenth century,

the full behavior of this curve
became known. What amaz-
ing things happen to the
curve at higher and lower 
values of x? Try plotting the
curve yourself.

Within a sybaritic sphere.
“We sail within a vast sphere,
ever drifting in uncertainty,
driven from end to end”
(Blaise Pascal, Pensées,
1660).

Bears in hyperspace. The
polar bear is the largest land
carnivore alive in the world
today. Adult males weigh
from 400 to 600 kilograms
(880 to 1,320 pounds). Would
it be possible to cram a polar
bear into an 11-dimensional
sphere with a 6-inch radius?
(See Answer 4.76.)

Hypercube edges. The
number of edges of a cube of
dimension n is n times 2n – 1.
For example, the number 
of corners of a seven-
dimensional cube is 27 = 128,
and the number of edges is 
7 times 26 = 7 × 64 = 448.
Another interesting factoid:
two perpendicular planes in
4-space can meet at a point. 

ρ = +x y2 2
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Harborth configuration. How does one arrange identical
sticks in a way such that four sticks meet end to end, without
crossing each other, at every point in a geometrical figure on a
flat surface? In the diagram in figure 4.60, four sticks meet at
each vertex. This is the smallest arrangement known, but no
one knows whether it’s the smallest possible way to make a
figure with four sticks meeting at each point! 

Figure 4.60 Harborth configuration. (Pattern discovered by Heiko 
Harborth; diagram after Ivars Peterson, Islands of Truth. 

[New York: Freeman, 1990.])



Hyperspheres and higher
dimensions. The fourth dimen-
sion has fascinated me for a
long time, and higher dimen-
sional spheres, or hyper-
spheres, particularly delight
me. Consider some exciting
experiments you can conduct
using a pencil and paper or a
calculator. Just as a circle of
radius r can be defined by the
equation x2 + y2 = r2, and a
sphere can be defined by x2 +
y2 + z2 = r2, a hypersphere in
four dimensions can be
defined simply by adding a
4th term: x2 + y2 + z2 + w2 =
r2, where w is the 4th dimen-
sion! Here are formulas that
permit you to compute the
volume of a sphere of any
dimension, and you’ll find that
it’s relatively easy to imple-
ment this formula using a
computer or a hand calculator. 

The volume of a k-dimen-
sional sphere is 

for even dimensions k. The
exclamation point is the
mathematical symbol for fac-
torial. (Factorial is the prod-
uct of all the positive integers
from one to a given number.
For example, 5! = 1 × 2 × 3 ×
4 × 5 = 120.) The volume of a

6-dimensional sphere of
radius 1 is π3/3!, which is
roughly equal to 5.1. For odd
dimensions, the formula is
just a bit more intricate: 

where m = (k + 1)/2 . The for-
mulas are really not too diffi-

cult to use. In fact, with these
handy formulas, you can
compute the volume for a 
6-dimensional sphere just as
easily as for a 4-dimensional
one. For radius 2 and dimen-
sion 2, the previous equations
yield the value 12.56, which is
the area of a circle. A sphere
of radius 2 has a volume of
33.51. A 4-dimensional
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Hypersphere packing. I enjoy contemplating how hyper-
spheres might pack together—like pool balls in a rack or
oranges in a box. On a plane, no more than four circles can be
placed so that each circle touches all others, with every pair
touching at a different point. Figure 4.61 shows two examples
of four intersecting circles. In general, for n-space, the maxi-
mum number of mutually touching spheres is n + 2.

What is the largest number of circles that can touch a single

circle? (Assume that each circle has the same radius.) Also,
answer the question for spheres. (See Answer 4.77.)

Figure 4.61 In two dimensions, no more than four circles can be placed 
so that each circle touches all the others, with every pair touching at a 

different point. What happens in higher dimensions?



hypersphere of radius 2 has a
hypervolume of 78.95. Intu-
itively, one might think that
the volume should continue
to rise as the number of
dimensions increases. The
volume, or perhaps we should
use the term hypervolume,
does grow larger and larger
until it reaches a maximum—
at which point the radius 2
sphere is in the 24th dimen-
sion. At dimensions higher
than 24, the volume of this
sphere begins to decrease
gradually to 0, as the value
for the dimension increases.
An 80-dimensional sphere
has a volume of only 0.0001.
This apparent turnaround
point occurs at different
dimensions, depending on the
sphere’s radius, r. For all the
sphere radii I tested, the
sphere initially grows in vol-
ume and then begins to
decline. (Is this true for all
radii?) For example, for r = 1,
the maximum hypervolume
occurs in the 5th dimension.
For r = 1.1, the peak hyper-
volume occurs in the 7th
dimension. For r = 1.2, it
occurs in the 8th dimension.
(Incidentally, the hypersur-
face of a unit hypersphere
reaches a maximum in the
7th dimension and then
decreases toward zero as the

dimension increases.) If we
examine the equations for
volume more closely, we
notice that this funny behav-
ior shouldn’t surprise us too
much. The denominator con-
tains a factorial term that
grows much more quickly
than any power does, so we
get the curious result that an
infinite dimensional sphere
has no volume. Using the
equations for volume given
here, you’ll find that an 11-
dimensional sphere of radius
2 feet has a hypervolume of
333,763 feet11. Try plotting
the ratio of a k-dimensional
hypersphere’s volume to the
k-dimensional cube’s volume
that encloses the hypersphere.
Plot this as a function of k.

Fractal swords and drums.
In several of my books, such
as Sushi Never Sleeps, I
describe science-fiction war-
riors wielding swords with
jagged Koch snowflake edges
and tossing deadly Koch-
curve throwing stars. These
ideas are my own, but they
are inspired by research in
fractal drums. In 1991,
Bernard Sapoval and his col-
leagues at the École Polytech-
nique in Paris found that
fractally shaped drum heads
are very quiet when struck.
Instead of being round like an
ordinary drum head, these
heads resemble a jagged
snowflake. Sapoval cut his
fractal shape out of a piece of
metal and stretched a thin
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Hypercube diagonals. A cube has diagonals of two different
lengths, the shorter one lying on the square faces and the
longer one passing through the center of the cube. The length
of the longest diagonal of an n-dimensional cube of side
length m is m√n . This means that if I were to hand you a 3-
foot-long thigh bone and ask you to stuff it in a 9-dimensional
hypercube with edges 1 foot in length, the bone would just 
fit because √9 = 3. A dinosaur bone 10 feet long could fit
diagonally in a 100-dimensional cube with edges only 1 foot
in length. A mile-long toothpick could fit inside an n-cube
with edges the same length as those of an ordinary sugar 
cube, if n is large! On the other hand, a hypersphere behaves
somewhat differently. An n-sphere can never contain a tooth-
pick longer than twice its radius, no matter how large n
becomes.



membrane over it to make a
drum. When a drummer
bangs on an ordinary drum,
the vibration spreads out to
affect the entire drum head.
With fractal drums, some
vibrational modes are trapped
within a branch of the fractal
pattern. Faye Flam, in the
December 13th, 1991, issue
of Science (vol. 254, p. 1593),
notes, “If fractals are better
than other shapes at damping
vibrations, as Sapoval’s
results suggest, they might
also be more robust. And that
special sturdiness could
explain why in nature, the
rule is survival of the fractal.”
Fractal shapes often occur in
violent situations where pow-
erful, turbulent forces need to
be damped: the surf-pounded
coastline, the blood vessels of
the heart (a very violent
pump), and the wind- and
rain-buffeted mountain.

Hyperpyramids. A four-
dimensional analog of a
pyramid has a hypervolume
one-fourth the volume of its
three-dimensional base 
multiplied by its height in 
the fourth direction. An 
n-dimensional analog of a
pyramid has a hypervolume
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Knight’s move magic square. To create a knight’s move magic
square, a chess knight has to be jumped once to every square
on the (8 × 8) chessboard in a complete tour, while numbering
the squares in the order they are visited, so that the magic sum
is 260. The array of numbers must have the same sum in each
row, each column, and the two main diagonals. One possible
solution for the knight’s movement is shown here. Start at the
“1” at the bottom, jump to the “2,” and so forth.

Jaenisch’s Knight’s Square

Notice that the knight can finally jump from 64 back to 1, a
beautiful feature of this square. If the first and the last squares
traversed are connected by a move, the tour is said to be closed

(or reentrant); otherwise, it is open.
This magic square was created in 1862 by C. F. Jaenisch, 

in Applications de l’Analyse Mathématique au Jeu des Echecs.
Sadly, it is not a perfect magic square because one diagonal
sums to 264 and the other to 256. Therefore, the square is
sometimes referred to as semimagic. I can imagine poor 
C. F. weeping. . . . So close, yet so far! 

For centuries, the holy grail of magic squares was to find a
perfect knight’s move magic square, but, sadly, all have had
minor flaws. (It is possible to produce a knight’s move magic
square for larger boards, such as for a 16 × 16 board.)

46 55 44 19 58 9 22 7

43 18 47 56 21 6 59 10

54 45 20 41 12 57 8 23

17 42 53 48 5 24 11 60

52 3 32 13 40 61 34 25

31 16 49 4 33 28 37 62

2 51 14 29 64 39 26 35

15 30 1 50 27 36 63 38



1/n times the volume of its 
(n – 1)-dimensional base
multiplied by its height in 
the nth direction.

Seven-dimensional ice.
Recently, scientists and math-
ematicians have researched
the theoretical melting prop-
erties of ice in higher dimen-
sions. In particular, the
mathematicians Nassif
Ghoussoub and Changfeng
Gui, from the University of
British Columbia, have devel-
oped mathematical models
for how ice turns from solid
into liquid in the seventh
dimension and have proved
that if such ice exists, it likely
exhibits a different melting
behavior than ice in lower
dimensions. This dependence
on dimension, although not
very intuitive, often arises in
the field of partial differential
equations and minimal sur-
faces—recent results suggest
that geometry depends on the
underlying dimension in ways
that were not suspected in the
past. Other research suggests
that there is something about
eight-dimensional spaces that
makes physical phase transi-
tions inherently different
from seven-dimensional
spaces. If you want to read

more about what happens
when you lick a seven-
dimensional popsicle, see I.
Ekeland, “How to Melt If You
Must,” Nature 392, no. 6677
(April 16, 1998): 654–55.

On the existence of knight’s
tours. Does a knight’s tour 
on an 8 × 8 magic square
exist? On August 6, 2003,
after 61 days of computation,
this 150-year-old unsolved
problem was finally answered.
Günter Stertenbrink 
(Germany), Jean-Charles
Meyrignac (France), and
Hugues Mackay (a twenty-

one-year-old military police-
man in the Canadian Armed
Forces) performed an exhaus-
tive computer search of all
the possibilities and finally
demonstrated for the first
time that no 8 × 8 magic
knight’s tour is possible.
Meyrignac wrote the software
for the computation, and,
while doing the search, he
found 140 distinct semimagic
knight’s tours. In other words,
he found 140 “magic”
knight’s tours on the chess-
board, but none of these is
diagonally magic. 

The computer checking
program was executed as a
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Lattice growth. You and I are climbing Vinson Massif, the
highest mountain of Antarctica, when I turn and show you the
following diagram written in sepia ink on an ancient parch-
ment. How many rectangles and squares are in this diagram? 

Think about this for a minute, and then I’ll give you an answer
before you freeze. This is a simple lattice. There are the 4
small squares marked 1, 2, 3, and 4, plus 2 horizontal rectan-
gles containing 1 and 2, and 3 and 4, plus 2 vertical rectan-
gles, plus the 1 large surrounding border square. Altogether,
therefore, there are nine 4-sided overlapping areas. The lattice
number for a 2 × 2 lattice is therefore 9, or L(2) = 9.

Your challenge: What is L(3), L(4), L(5), and L(n)? (See
Answer 4.78.)

1 2

3 4



distributed project that oper-
ated for 61 days, 9 hours, and
36 minutes at an equivalent
2.25 Ghz (G. Stertenbrink,
“Computing Magic Knight
Tours,” magictour.free.fr/,
August 6, 2003).

In the garden of the knight.
Jean-Charles Meyrignac,
Mike Malak, and colleagues
have wondered about the
greatest number of knights
that can be placed on a chess
board so that each piece
attacks exactly one other
piece. Can you arrange 32
knights on a standard board
so that each attacks only one
other knight? (See Answer
4.79.)

In the garden of the knight.
Place 80 knights on a 13 × 13
chessboard so that each
attacks only four other
knights. (See Answer 4.80.)

Enigma. “It may well be
doubted whether human inge-
nuity can construct an
enigma of the kind which
human ingenuity may not, by
proper application, resolve”
(Edgar Allan Poe, “The Gold-
Bug,” 1843).
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Knight’s move magic square. The first person to attempt to
draw a knight’s move magic square was Leonhard Euler
(1707–1783), a Swiss mathematician and the most prolific
mathematician in history. Even when he was completely blind,
Euler made great contributions to modern analytic geometry,
trigonometry, calculus, and number theory. 

To traverse the square, start at the 1 in the upper left and leave
the square at the 64 at the right. Figure 4.62 shows the actual
path. Notice the nice symmetries in the path. The right side of
the figure is a mirror image of the left.

The numbers in adjacent 2 × 2 subsquares add up to 130.
Euler’s knight’s square
adds up to 260 in the
rows and the columns.
The four 4 × 4 sub-
squares are also magic
in their rows and
columns, which sum to
130. (The Euler knight’s
square is actually four
4th-order magic squares
put together.) Alas, like
the Jaenisch square, the
main diagonals do not
add to 260. 

1 48 31 50 33 16 63 18

30 51 46 3 62 19 14 35

47 2 49 32 15 34 17 64

52 29 4 45 20 61 36 13

5 44 25 56 9 40 21 60

28 53 8 41 24 57 12 37

43 6 55 26 39 10 59 22

54 27 42 7 58 23 38 11

Euler’s Knight’s Square

Figure 4.62 Knight’s path.



Johnson functions. In his
article “Approximating √n,”
which appeared in volume 19
of the journal Mathematical

Spectrum (issue no. 2, page
40), Simon Johnson suggests
that the iterative formula

applied to the rational num-
ber z, converges to n1/3. Later,
Irving, Richards, and Sowley
showed that this iteration
converges to n1/3 > if 0 < n ≤
23/2, but that if n > 23/2, it
converges only for certain

unusual initial values of z .
Can you devise a graphics
strategy to show these
unusual values?

Too many bishops. In this
special version of chess that I
invented, each player acquires
an additional bishop before
each turn. The bishop is
placed on a position deter-
mined by the opponent. The
game ends when a king is
captured, when a player can-
not move due to the mob of
bishops on the board, or when
a player cannot add a bishop

at the start of a turn because
all squares are occupied. For
clarification, here is how each
turn starts: (1) your new
bishop is placed on the board
at a position determined by
your opponent; (2) next, you
are free to move the new
bishop or any other of your
pieces as usual.

Polyhedral universe. Is the
universe more likely to be
shaped like a cube, a dodeca-
hedron, an icosahedron, an
octahedron, or a tetrahedron?
(See Answer 4.82.)

Golden pentagram. The
pentagram, or five-pointed
star, contains many ratios 
that are the golden ratio. In
figure 4.63, examples include
φ = AB/BC = CH/BC = IC/HI

= 2DE/EF = EG/2DE.

z I z
z n

z
→ =

+

+
( )

2 1
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In the garden of the knight. Here is the solution. What’s the
question? (See Answer 4.81.)

� � � � � �

� � � � � �

� � � � �

� � � �

� � �

� � �

� � � �

� � � � �

� � � � � �

� � � � � �

Figure 4.63 Golden pentagram.



Behold the hidden Stoma-
chion. In 2003, math histori-
ans discovered long-lost
information on the Stoma-
chion of Archimedes. In par-
ticular, an ancient parchment,
written over by monks nearly
a thousand years ago,
describes Archimedes’ Stom-

achion, a puzzle involving
combinatorics. Combina-
torics is a field of math that
deals with the number of
ways a given problem can 
be solved. The goal of the
Stomachion (pronounced sto-
MOCK-yon) is to determine
in how many ways the 14

pieces shown in figure 4.64
can be put together to make a
square. In 2003, four mathe-
maticians required six weeks
to determine that the number
is 17,152.

In the thirteenth century,
Christian monks ripped the
original manuscript apart,
washed it, and covered it with
religious text. Today, we can-
not see the Stomachion with
the naked eye, and ultraviolet
light and computer-imaging
techniques are needed to
reveal the hidden mathemati-
cal gem. Scholars are uncer-
tain whether Archimedes ever
correctly solved the problem.
(For further reading, see Gina
Kolata, “In Archimedes’
Puzzle, a New Eureka
Moment,” vol. CLIII, no.
52,697, New York Times,
December 14, 2003, p. 1.)
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Figure 4.64 The long-lost 
Stomachion of Archimedes.

Möbius mirror. In theory, if the universe had characteristics
similar to those of a Möbius strip, you could travel in space
and return as your mirror image. August Möbius discovered
the Möbius strip in 1840. You can create a Möbius strip by
twisting a strip of paper 180 degrees and then taping the ends
together. A Möbius strip has only one side. If that’s hard to
believe, build one and try to color one side red and the “other”
side green.

By way of analogy, if a Flatlander lived in a Möbius world,
he could be flipped easily by moving him along his universe
without ever taking him out of the plane of his existence. If a
Flatlander travels completely around the Möbius strip and
returns, he will find that all of his organs are reversed (figure
4.65). A second trip around the Möbius cosmos would
straighten him out again. 

Figure 4.65 Möbius cosmos.



Platonic patent. Platonic
solids (defined early in this
chapter) are a big business
these days, and U.S. patents
exist for Platonic toys. One
favorite example is U.S.

patent 4,676,507, “Puzzles
Forming Platonic Solids,”
issued to Bruce Patterson of
Egg, Switzerland. The patent
describes several 3-D puzzles
formed from identical pieces.

Figure 4.66 shows several
views of Patterson’s tetrahe-
dron puzzle from his patent.
Other figures in the patent
show similar puzzles for
other Platonic solids.
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Figure 4.66 Platonic patent.



Tank charge. You are a
tank, training in the Nevada
desert. In the diagram, you
can travel up, down, left, and
right through electric fields.
Only two of your many moves
may be a diagonal move. If
you travel through two minus
(–) signs in a row, your bat-
tery is drained and you are
stuck. If you travel through
two plus (+) signs in a row,
your battery overcharges and
explodes. How can you travel
from Start to End through
every cell once and survive?
(See Answer 4.83.)

The tritar—a guitar made
by genius mathematicians. In
January 2004, the media were
all abuzz about the tritar
(“TREE-tar,” sometimes
spelled “tritare”), a Y-shaped
guitar invented by two Cana-
dian number theorists,
Samuel Gaudet and Claude
Gauthier, both at the Univer-
sity of Moncton. Some say
that the tritar will revolution-
ize music.

In their research involving
infinite sums called p series,
the mathematicians invented
a series of “hyperimaginary”
numbers lying on a Y-shaped
number line, and these 
numbers were useful for 
creating a musical instrument
with Y-shaped strings. The 
tritar produces a range of

extremely novel and beautiful
sounds, from guitars to bells.
If one string is plucked, it
vibrates across all three of the
fretboards. As I write this, the
mathematicians have filed for
a patent and are taking the tri-
tar to trade shows, with hopes
of commercializing the
instrument. 

Sangaku geometry. During Japan’s period of isolation from
the West (1639–1854), a tradition known as sangaku, or
Japanese temple geometry, arose. Mathematicians, farmers,
samurai, women, and children solved difficult geometry prob-
lems and inscribed the solutions on tablets. These colorful
tablets were then hung under the roofs of temples. More than
800 tablets have survived, and many of them feature problems
that concern tangent circles. As one example, consider figure
4.67, a late sangaku tablet from 1873 created by an eleven-
year-old boy named Kinjiro Takasaka. Consider a fan, which
is one-third of a complete circle. Given the diameter d1 of the
circle pointed to by the arrow, what is the diameter d2 of the
circle with the question mark? I believe that the answer is
approximately 

d d2 1 3072 62 193≈ +( ) / .

Figure 4.67 A Japanese sangaku from 1873.

S + – + –
– + – – +
– + + + –
+ – + – +
E + – + –
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Molecular madness.
Scientists visiting planet Nec-
tar have discovered an amaz-
ing molecule with a fruity
aroma. They call the mole-
cule Nectarine. Each of the
atoms shown here in this
chemical diagram of Nec-
tarine is connected to at least
one other atom by one or
more bonds, which we can

draw as straight lines con-
necting the atoms (figure
4.68). The numbers in each
atom tell the number of
bonds that the atom makes to
other atoms. The molecule
has two double bonds and
one triple bond, and the
remaining bonds are single
bonds. Black regions repre-
sent solvent molecules

through which your bonds
may not pass. 

Can you solve the molecu-
lar structure by drawing the
missing bonds as straight
lines on this flat diagram?
Your bonds must not cross
one another or cross through
the atoms. Is there more than
one solution? (See Answer
4.84.)

Figure 4.68 Alien molecule confounds scientists.



Stained glass squares of
Constantine. How many
squares can you count in this
window? (See figure 4.70.) I
recently designed and created
this stained glass window in
gorgeous color, and my
brainy colleagues always give
different answers! Show this
to friends, as no two friends
will give you the same solu-
tion.  (See Answer 4.86.)

Math luxury. “The science
of calculation is indispensa-
ble as far as the extraction of
the square and cube roots:
Algebra as far as the quad-
ratic equation and the use of
logarithms are often of value
in ordinary cases: but all
beyond these is but a luxury;
a delicious luxury indeed; but
not to be indulged in by one
who is to have a profession to

Drinking numbers. For centuries, arrays of numbers have
been thought to confer magical powers. Consider the follow-
ing square from India that a woman may use when searching
for a husband. The numbers are drawn on a china plate with a
crayon and then washed off the plate with water that the
woman drinks:

Finding the Perfect Husband

Whenever possible, this number array should be written with 
a special ink known as Ashat Gandh. This is a mixture of 
several items, the most important of which is water from the
Ganges River. I would be interested in hearing from readers
who ascertain any significance in the use of these particular
numbers.

Clown with balls. A large intellectual dressed in a clown 
outfit approaches you with bright red pool (billiard) balls. 
His nickname is “Solenoid,” and he
has various springs, resistors, and
capacitors in his hair. 

Solenoid places the balls
inside an equilateral triangle
in preparation for playing
a game (figure 4.69).
Each ball has a radius
of 1 unit length.
What is the side
length of the
equilateral trian-
gle? (See
Answer 4.85.)

24,762 24,768 24,771 25,320

24,770 24,758 24,763 25,341

24,759 24,773 24,766 25,325

24,767 24,761 24,760 25,344

Figure 4.69 Ball puzzle.

Figure 4.70 Stained glass
squares of Constantine.
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follow for his subsistence”
(Thomas Jefferson, in J.
Robert Oppenheimer’s “The
Encouragement of Science,”
which appeared in Isabel

Gordon and Sophie Sorkin,
eds., The Armchair Science

Reader, 1959).

Chocolate puzzle. Dr. 
Brain is a master chef and 
has his own personal choco-
late bar problem for you. Your
goal is to divide the 8 × 8
gridded chocolate square 
into rectangles or squares,
such that each quadrilateral
contains a number made of
icing—and that number must
designate the number of
chocolate cells inside the
quadrilateral. For example,
I’ve drawn a rectangle 
around 4 cells that include
the 4, just to show you what a
“legal” quadrilateral could
look like. Can you draw all
the quadrilaterals so that one
icing number is in each
quadrilateral? What strategy
did you use? How long did it
take you to solve this? (See
Answer 4.87.)

204 A Passion for Mathematics

Pythagorean Lute assembly. In an answer earlier in this chap-
ter, we encountered the Lute of Pythagoras and all its golden
ratios. Recall that the golden ratio is φ = (1 + √5 )/2 = 1.61803
. . . Figure 4.71 shows an impressive assembly of multiple
lutes created by Bruce A. Rawles, who is interested in geome-
try, art, and nature. Rawles is the author of Sacred Geometry

Design Sourcebook, published by Elysian Publishing. You can
learn more about his work at “Sacred Geometry Home Page,”
www.intent.com/sg/.

Figure 4.71 Pythagorean Lute assembly by Bruce Rawles.
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Jerusalem crystal. You are digging in the
ancient soil of Jerusalem and discover a mys-
terious crystal with Hebrew letters (figure
4.72). Beginning at the a in the lower right,
you must discover a secret path that will lead
you to the a in the upper left. How many
solutions can you find, using the following
rules?

1. You may move up, down, right, or left
along each facet.

2. You may move only between adjacent
facets that share an edge; you may not

move between facets that touch only at
their corners.

3. Your entire path must follow this repeating
code: a, a, a, B, B, B, g, g, g, a, a, a, B,
B, B, g, g, g . . . , and so on, where the 
“B” stands for a blank facet with no letter.
That is, after moving through three a
facets, you must move through three blank
facets; after the three blank facets, you
must move through three g facets, and so
on, repeating the pattern. Good luck! 

(See Answer 4.88.)
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Figure 4.72
Jerusalem crystal.
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Schmidhuber circles. Figure 4.73 shows a
fantastic collection of Schmidhuber circles,
named after their discoverer, the German
mathematician Jürgen Schmidhuber. To create
this pattern, start by drawing a circle of arbi-
trary radius and center position. Randomly
select a point on the first circle and use it as
the center of a second circle with an equal
radius. The first two circles are defined as
“legal circles.” The rules for generating addi-
tional legal circles are as follows: 

• Rule 1. Wherever two legal circles of equal
radius touch or intersect, draw another
legal circle of equal radius with the inter-
section point as its center. 

• Rule 2. Within every legal circle with cen-
ter point p and radius r, draw another legal
circle whose center point is also p but
whose radius is r/2.

Figure 4.73 is the result of a recursive applica-
tion of these rules (www.idsia.ch/~juergen/). 

Figure 4.73 Schmidhuber circles, created by Jürgen Schmidhuber.



Squiggle map coloring.
If you draw a map on a plane
using a continuous line, with-
out taking your pencil off the
paper, and return to the start-
ing point, you need only two
colors to produce a map such
that any regions with a com-
mon boundary line have 
different colors (figure 4.74).
(In your coloring, two adja-
cent regions can share a
common vertex and have the
same color, but they can’t
share the same edge and have
the same color.)
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Figure 4.74 Squiggle map coloring.





Probability: 
Take Your 
Chances
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I N WHICH WE EXPLORE CASINOS, LOGIC, GUESSING, DECISIONS, COMBINATIONS,

permutations, competition, possibilities, games involving choice, mon-

keys typing Hamlet, Benford’s law, combinatorics, alien gambits, Rubik’s

Cubes, card shuffles, marble mazes, nontransitive dice, dangerous movements

of air molecules, the board game of the gods, and the tunnels of death and

despair.

Probability: 
Take Your 
Chances

Probability describes and quantifies uncertainty.

It’s the spinning roulette wheel in the casino of reality.
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Mathematical garments.
“The mathematician may be
compared to a designer of
garments who is utterly obliv-
ious of the creatures whom
his garments may fit. To be
sure, his art originated in the
necessity for clothing such
creatures, but this was long
ago; to this day a shape will
occasionally appear which
will fit into the garment as if
the garment had been made
for it. Then there is no end of
surprise and delight!” (Tobias
Dantzig, The Bequest of the

Greeks, 1969).

Monkeys typing Hamlet.
I put a single monkey in a
room, typing randomly on a
typewriter. What are the odds
that the monkey will sit down

and type out all of Shake-
speare’s Hamlet correctly?
(See Answer 5.2.)

Many monkeys typing
Hamlet. Let us assume for the
previous problem that each
day we double the number of
monkeys that are trying to
accomplish the task of typing
Hamlet. How do the odds of
at least one of the monkeys 
in the monkey collection
typing Hamlet correctly
change through time? (See
Answer 5.3.)

Tic-tac-toe probability. In
randomly played tic-tac-toe,
the probability that the first
mover wins is 737/1260 or
0.5849206.

Tic-tac-toe games. There
are 255,168 possible games
in tic-tac-toe, when you con-
sider all possible games that
end in 5, 6, 7, 8, and 9 moves.

The Book of Everything That
Can Be Known. Moses, along
with several angels,
approaches you. In his hand
is a massive book, leather
bound with gold trim, titled
The Book of Everything That

Can Be Known. The book is
10,000 pages long. On page
314 is the statement “The
universe is finite in spatial
extent,” and this statement is
nowhere else in the book. On
average, how many times
would you have to flip open
this book to be able to view
this fact? (See Answer 5.4.)

Benford’s bravura. Ben-
ford’s law, also called the first
digit law or the leading digit
phenomenon, asserts that in
numerous listings of num-
bers, the digit 1 tends to
occur in the leftmost position

with probability of roughly
30 percent, much greater than
the expected 11.1 percent
(i.e., one digit out of nine).
Benford’s law can be
observed, for instance, in
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Gambling. Your friend Donald Trumpet is a gambling 
man. He approaches you and your friend on a street corner
and wants to use a coin to determine which of you will get a
brand new car. He will flip a coin to decide. Unfortunately,
his coin is biased, which means it favors one side over the
other and does not have a 50-50 chance of landing heads or
tails. How can you instantly generate even odds from Don-
ald’s unfair coin? For example, if both of you know that
Donald’s coin is biased toward tails, how can you get the
equivalent of a fair coin with several tosses of Donald’s 
unfair coin? (See Answer 5.1.)



tables that list populations,
death rates, baseball statis-
tics, the areas of rivers or
lakes, and so forth. Explana-
tions for this phenomenon are
very recent.

Benford’s law is named for
the late Dr. Frank Benford, a
physicist at the General Elec-
tric Company. In 1938 he
noticed that pages of loga-
rithms that corresponded to
numbers starting with the
numeral 1 were dirtier and
more worn than other pages,
because the number 1
occurred as the first digit
about 30 percent more often
than any other did. In numer-
ous kinds of data, he deter-
mined that the probability of
any number n from 1 through
9 being the first digit is log10

(1 + 1/n). Even the Fibonacci
sequence—1, 1, 2, 3, 5, 8, 13 
. . . —follows Benford’s law.
Fibonacci numbers are far
more likely to start with “1”
than with any other digit. The
next most popular digit is 2,
and 9 is the least probable. It
appears that Benford’s law
applies to any data that fol-
lows a “power law.” For exam-
ple, large lakes are rare,
medium-sized lakes are more
common, and small lakes are
even more common. Simi-
larly, eleven Fibonacci num-

bers exist in the range 1–100,
but only one in the next three
ranges of 100 (101–200, 
201–300, 301–400).
Fibonacci numbers become
increasingly rare as we scan
higher ranges of size 100. 

Benford’s law has often
been used to detect fraud. For
example, Dr. Mark J. Nigrini,
an accounting consultant,
used the law to detect fraudu-
lent tax returns in which the
occurrence of digits did not
follow what would be
expected by Benford’s law.
See Theodore Hill, “The First
Digit Phenomenon,” Ameri-

can Scientist 86 (1998):
358–63; Malcolm W.
Browne, “Following Ben-
ford’s Law, or Looking Out
for No. 1,” New York Times,
August 4, 1998; L. C. Wash-

ington, “Benford’s Law for
Fibonacci and Lucas Num-
bers,” The Fibonacci Quar-

terly 19 (1981): 175–77; and
Ron Knott, “The Mathemati-
cal Magic of the Fibonacci
Numbers,” www.mcs.surrey.
ac.uk/Personal/R.Knott/
Fibonacci/fibmaths.
html#msds. (Dr. Knott was
formerly with the University
of Surrey and now operates
his own company for Internet
resource provision, with an
emphasis on mathematics and
teaching.)

Bookkeeper arrangements.
In how many different ways
can I arrange the letters in
BOOKKEEPER? (See Answer
5.5.)
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Subway odds. You are riding the New York City subway
when a huge, hulking, hairy man suddenly threatens you with
a knife. You tell him to wait and then hand him a pen and nine
slips of paper. “Write a different number on each paper,” you
say. “You can use any numbers, but don’t use any consecutive
numbers.”

Your assailant writes down nine numbers. He places the
slips of paper facedown so that you can’t see his numbers. You
boast, “I’ll start turning over the slips of paper at random, and
even though I don’t know what you wrote, I’ll stop turning on
the highest number. If I’m right, you set me free. If I’m
wrong, I give you all the money in my wallet.”

What is your strategy? (See Answer 5.6.)



Combinatorics defined.
Some of the problems in this
section deal with “combina-
torics”—the branch of mathe-
matics that is concerned 
with the selection and the
arrangement of objects. 
Combinatorics has a long his-
tory, and interest skyrocketed
in the seventeenth and eigh-
teenth centuries, when it was
used to estimate gambling
odds and assess the probabili-
ties of game outcomes. The
Italian scientist Galileo
Galilei (1564–1642) used
probability to study the out-
comes of dice rolls.

One important feature of
probability is the multiplica-

tion principle, which says
that if m different selections
can be made in succession,
and the first selection can be
made in n1 ways, the second
in n2 ways, the third in n3

ways, and so on, then the
total number of selections is
n1 × n2 × n3 × . . . n

m
. As an

example, consider a pizza
that can be with or without
cheese, can be small or large,
and can have pepperoni, pep-
pers, or anchovies. The total
number of pizza varieties is 
2 × 2 × 3 = 12, if no toppings
are mixed. (I’d choose the
small cheese pizza with
anchovies.)

Circular permutation
defined. A circular permuta-
tion is the number of different
ways you can arrange items in
a circle. A typical circular per-
mutation involves people sit-
ting around a table. As an
example, in how many ways
can 5 different people be
seated around a circular table?
If we asked the question for 5
people in a row, we have 5! =
120 different possible
arrangements. However,
around a circular table, the 5!
arrangements often produce
the same order. For example,
ABCDE is the same as
BCDEA in a circle. The rela-
tive positions of people have

not changed. In fact, ABCDE

can be rotated 5 times, and
still we have the same order.
Thus we must reduce the 5!
arrangements in a row by
dividing by 5 to get the num-
ber of arrangements in a cir-
cle, which is the same as
calculating (n – 1)! arrange-
ments, given n different
objects arranged in a circle.
For 5 people around a table,
there are 4! = 24 different
arrangements or permutations.

Permutations with some
identical elements. Up to now,
we have been discussing the
number of permutations of
objects that are different. If
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Permutations defined. Permutations are ordered arrange-
ments of elements. Order is important. For example, two per-
mutations of the same elements are considered different
permutations if they are in different orders. Thus, ABC has six
permutations: ABC, ACB, BAC, BCA, CAB, CBA. The number
of permutations for n elements is n factorial. In this case, 3! =
3 × 2 × 1 = 6.

Sometimes we may have a collection of objects from which
we take several members. For example, starting with A, B, C,
and D, we might ask how many permutations exist if we take
only two letters from the batch. We can list all 12 permuta-
tions: AB, AC, AD, BA, BD, BC, CA, CB, CD, and DA, DB,
and DC. More generally, if we take p elements from a set of 
n different elements and want to determine the number of per-
mutations, we use the handy formula 

n
P

p
= n!/(n – p)! In our

example, n = 4 and p = 2, so 4P2 = 4!/(4 – 2)! = 24/2 = 12.



we wish to determine the
number of permutations of
sets of objects that have some
identical elements, the num-
ber of permutations is
reduced. In particular, we can
compute the number of per-
mutations of n objects, q of
one type, r of another, s of
another, and so forth, using
this formula: n!/(q!r!s! . . . ).
For example, the number of
distinct permutations of the

letters in BALLOON is
7!/(1!1!2!2!1!) = 5,040/4 =
1,260.

Randomness and uncer-
tainty. “The popular image of
mathematics as a collection
of precise facts, linked
together by well-defined logi-
cal paths, is revealed to be
false. There is randomness
and hence uncertainty in

mathematics, just as there is
in physics” (Paul Davies, The

Mind of God, 1992).

Organ arrangements. A
stomach, a heart, a kidney, a
brain, and a spleen are lined
up in a neat row along a mad
scientist’s table. In how many
different ways can they be
arranged in the row? In how
many ways can all possible
sets of three organs from our
collection of five organs be
arranged? (See Answer 5.8.)

Mombasa order. An
archaeologist wishes to visit
Jerusalem, Damascus, Cairo,
Baghdad, Nairobi, Meru, and
Mombasa. Before he and his
wife leave for the trip, his
wife insists that they visit
Mombasa last. In how many
ways can their order of visits
vary? (See Answer 5.9.)

Diamond arrangements. A
movie star bearing a striking
resemblance to Shannen
Doherty has sixteen different-
sized diamonds to string on a
bracelet. In how many ways
can this be done? (See
Answer 5.10.)
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The ancient paths of Dr. Livingstone. Dr. Livingstone is travel-
ing from Town A through Town B to Town C in the deepest
heart of Africa (figure 5.1). In how many ways can he travel,
assuming that he does not travel a road more than once or
through a town more than once? In other words, he doesn’t
backtrack. (See Answer 5.7.)

Figure 5.1 The ancient paths of Dr. Livingstone.



Sushi combinatorics. Sally
is looking at a sushi menu. 
To make a single piece of
sushi, she can choose tuna,
squid, or shrimp, which can
be either in the form of a 
roll or sliced. In addition, the
piece may be either plain or
coated with red, black, white,
or green caviar. How many
different pieces of sushi can
Sally make? (See Answer
5.12.)

Rationality. “What if our
science rests on irrational
impulses that we cannot
measure? What if our mind is
a ruler that cannot measure
itself without always getting
the same answer?” (George
Zebrowski, “Is Science
Rational?” 1994).

Turnip permutations. You
are buying vegetables in a
local grocery store; you turn
to a fellow shopper and ask,
“How many different order-
ings or permutations can one
make for the letters in the
word TURNIP?” What should
the shopper’s response be?
(See Answer 5.13.)
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Marble maze. You drop a marble into the maze in figure 5.2,
and it is pulled down by gravity. At certain points, the marble
has a choice of taking one of two forks in the tunnel. These
choices are marked by dots. Assume that each time the marble
has a valid choice of tunnels, it is equally likely to choose
either route. You win a neural stimulator that gives you
ecstatic pleasure if you emerge at the tunnel marked “Win.”
What is the likelihood that you will win the prize? (See
Answer 5.11.)

Figure 5.2 Marble maze.



Mathematics and freedom.
“The essence of mathematics
resides in its freedom”
(Georg Cantor, “Über
Unendliche, Lineare 
Punktmannischfaltigkeiten,”
Mathematische Annalen,
1883 [in this paper, Cantor
extends the natural numbers
to infinite ordinal numbers]).

The Africa gambit. Throw 
a dart at a map of the world.
Assume that it lands ran-
domly on the map. What is
the chance that it lands on
Africa? (See Answer 5.14.)

Rubik’s Cube. An ordinary
Rubik’s Cube has 432,520,
032,274,489,856,000 differ-
ent positions. The four-
dimensional analog of a
Rubik’s Cube has 1,756,772,
880,709,135,843,168,526,079,
081,025,059,614,484,630,
149,557,651,477,156,021,
733,236,798,970,168,550,
600,274,887,650,082,354,
207,129,600,000,000,000,000
possible positions.

Sushi gambit. The danger-
ous Dr. Sushi places 5 pieces
of tuna sushi and 5 pieces of
octopus sushi in front of you.

You have two dishes. You are
about to place all of the
pieces of sushi on the two
dishes, distributing them
however you like. After that,
Dr. Sushi will choose one
dish at random and eat a
piece of sushi, chosen at ran-
dom, from the dish. How
should you distribute the
sushi to maximize the
chances that Dr. Sushi will
eat octopus sushi? (See
Answer 5.15.)

Cards of Minerva. Zeus and
Minerva are playing with
cards, each of which has one
black side and one white side.
Zeus has n + 1 cards, while
Minerva has only n cards.
Both players toss all of their
cards simultaneously and
randomly, and observe the
number of their cards that
come up black. What is the
probability that Zeus obtains
more black cards than Min-
erva? (See Answer 5.17.)
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Alien gambit. An alien slaps a strip containing three buttons
on your forehead. The buttons are labeled as follows:

� � �
The unit on your head contains a capsule of smelly, dangerous
green dye that will open in 10 minutes. The dye is permanent
and will color your face green for the rest of your life. You can
choose whichever sequence of buttons you like to prevent the
capsule’s opening. However, before you press, consider that
one of the buttons, if pressed, opens the capsule immedi-
ately—that’s bad. Another button seals the capsule forever—
that’s good. The remaining button stimulates the pleasure
center of your brain to such an extent that you don’t care
whether you turn green.

Are the chances greater that you will turn green today or
that you will not turn green today? If you answer correctly, the
alien will remove the capsule. You can’t remove the buttons,
but you can continue to press buttons to try to avoid turning
green. (See Answer 5.16.)



Card shuffles. It is
rumored that magicians who
are excellent with their hands
can shuffle a deck “perfectly”
so that the two halves of the
deck are exactly interleaved.
Is it possible to say how many
consecutive shuffles of this
type will restore a deck to its
original order? (See Answer
5.18.)

Piano probability. You are
blindfolded and asked to
select a piano key at random.
What note are you most
likely to play, out of the usual
white keys, C, D, E, F, G, A,
B, and the black keys, C#,
D#, F#, G#, A#? In other
words, if you’re asked to
select one of the 88 standard
piano keys at random, with
each key having an equal
probability of being chosen,
which step in the chromatic
scale A, A#, B, C, C#, D, D#,
E, F, F#, G, G# is your
selected key most likely to
represent? (See Answer 5.19.)

Martian shuffle. Consider a
deck of three cards, one pic-
turing Mars, another pictur-
ing the Martian moon of
Phobos, and a third picturing

the Martian moon of Deimos.
They are in the order of
Mars, Phobos, and Deimos.
You randomly shuffle the
deck. What are the chances
that you will have the original
order after you shuffle? (See
Answer 5.20.)

Air molecules. It is possi-
ble, although extremely
unlikely, for all of the air mol-
ecules in your room to sud-
denly go to one corner and
suffocate you, based simply
on random movements of the
molecules. To better under-
stand the chance of this, con-
sider the following. How
unlikely is it for just 10 mole-
cules in your room to jump
into a corner volume that is
10 percent the room’s vol-
ume? (See Answer 5.21.)

Hannibal’s organs. A crazy
man named Dr. Hannibal
motions to an opaque, forma-
lin-filled jar. “The jar con-
tains one organ, either a
kidney or a brain,” Hannibal
truthfully says. You watch as
Hannibal drops a brain into
the jar, shakes the jar, and
randomly withdraws an organ
that proves to be a brain. One
organ remains in the jar.
“What is now the chance of
removing a brain from the
jar?” (See Answer 5.23.)

Probability and truth. “It
has been pointed out already
that no knowledge of proba-
bilities, less in degree than
certainty, helps us to know
what conclusions are true,
and that there is no direct
relation between the truth of 
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Adventure. “He calmly rode on, leaving it to his horse’s dis-
cretion to go which way it pleased, firmly believing that in this
consisted the very essence of adventures” (Cervantes, Don

Quixote, 1605).

Chess moves. You are sitting with a brilliant robot, Roberta,
playing chess. You move first and have a choice of moves.
Roberta then responds by making a move. How many different
possible board configurations exist that consist of these first
two moves? (See Answer 5.22.)



a proposition and its proba-
bility. Probability begins and
ends with probability” (John
Maynard Keynes, “The

Application of Probability 
to Conduct,” in James New-
man, World of Mathematics,
1988).

Alien pyramid. An alien
hands you ten colored pyra-
mids numbered 11 through
20. The alien selects a pyra-
mid at random, and it hap-
pens to be Pyramid 13. The
alien takes a long breath. He
now randomly picks another
pyramid from the remaining
collection. Is this pyramid
more likely to be even than
odd? (See Answer 5.24.)

Rabbit math. Inside a cage
is a brown rabbit and a polka-
dot rabbit, and each rabbit
species generally produces
members that have an equal
chance of being male or
female. The rabbits listen to
classical music all day as they
enjoy their life of leisure.
Today, we learn that at least
one of the rabbits is male.
What is the probability that
both rabbits are male? (See
Answer 5.25.)

Card deck cuts. Danielle
opens a brand new deck of
playing cards containing 52
normal cards. She tells Craig,
“I am not a good card shuf-
fler. I will therefore cut the
deck at random depths, sev-
eral times, by taking a ran-
dom number of cards off the
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Walrus and Carpenter.

Carpenter: You would agree that the probability of picking 1
from the first 10 numbers is 1/10?

Walrus: Of course.

C: And that the probability of picking 1 from the first 100
numbers is 1/100.

W: Of course.

C: And that as you increase the number to be selected from,
the probability decreases to zero in the limit?

W: (after a pause) Yes, and this logic applies to any number. 

C: Would you also agree that the probability of picking 1 or 2
from the first 10 numbers is 2/10? That the probability of
picking one or another is the sum of the probabilities of
picking either?

W: (pause) Yes, I would.

C: And, therefore, that the probability of picking 1 or 2 from
the set of all integers is thus the sum of zero and zero—in
other words, zero?

W: That must be so.

C: And that furthermore, the probability of picking any of a
set of alternative integers from the set of all integers is
zero?

W: Of course. The probability of picking any one of the inte-
gers from the set of all integers is also zero.

C: So pick an integer and tell it to me.

The Walrus is struck dumb. 

(Graham Cleverley, personal communication, 2004).



top of the deck and placing
them under the remaining
deck. I want to be fair. Even
though my hand will get
tired, I will do this either ten
times, a hundred times, or a
thousand times to try to
ensure that the deck is rea-
sonably shuffled.”

How many times does
Craig want Danielle to cut 
the deck to ensure the great-
est randomization? (See
Answer 5.26.)

Russian American gambit. A
woman and a man are sitting
in metal chairs, facing one
another. One person is Amer-
ican and the other is Russian,
but we don’t know which is
which.

“I am an American,” the
woman says. 

“I am Russian,” the man
says.

A robot in the room tells
you, “At least one person is
lying.” Assume that the robot
is telling the truth. My ques-
tion: Which of the humans is
lying? (See Answer 5.27.)

Quantum kings and the
death of reality. Martin Gard-
ner, a master of mathematical
puzzles, once posed a variant

of the following scenario to
Marilyn vos Savant, who has
an I.Q. score of 228—the
highest ever recorded for an
adult. Here’s my variation:

Bill and Monica are play-
ing bridge, and they always
tell the truth. After a deal, a
third person asks Monica,
“Do you have a king in your
hand?”

She nods. At this point,
there is a certain probability
that her hand holds at least
one other king. Call this
probability P1.

After the next deal, the
third person again asks Mon-
ica, “Do you have a king of
spades?” Monica nods.
Again, there is a certain prob-
ability that Monica’s hand
holds at least one other king.
Call this probably P2. Which

probability, P1 or P2, is
greater? Or are they both the
same? (See Answer 5.29.)

AIDS tests. You work for a
computer company. Suppose
that about 2 percent of the
people in your company have
AIDS. A nurse named Julia
tests all of the people in your
company for AIDS, using a
test with the following char-
acteristics. The test is 98 per-
cent accurate, which we
define as follows. If the indi-
vidual has AIDS, the test will
be positive 98 percent of the
time, and if the person
doesn’t have AIDS, the test
will be negative 98 percent of
the time.

You are tested, and, sadly,
the test turns out positive.
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Car sequence. You go into Tony’s spacious garage, located
in an upper-class section of Perth Amboy, New Jersey. He has
10 cars, made in the years 1960, 1961, 1962, 1963, 1964,
1965, 1966, 1967, 1968, and 1969. 

�����������
The cars are arranged neatly in a row and in random date
order. What are the chances that the three cars nearest you
have dates in descending order? (Here is one example of 
dates being in descending order: 1968, 1966, 1965.) 
(See Answer 5.28.)



You lose your health insur-
ance. Would you conclude
from this that you are highly
likely to have AIDS? (See
Answer 5.30.)

Great discoveries. “Sixty
percent of new great discov-
eries were made by an out-
sider to the field within the
first year he was in the field”
(Raymond Damadian, the
inventor of the first human
body scan with magnetic res-
onance imaging, “Scanscam,”
New York Times Magazine,
2003).

Random chords. What is
the probability that a ran-
domly selected chord of a cir-
cle is shorter than the radius
of that circle? If you were a
gambling person, should you
bet that a randomly selected
chord is smaller than the cir-
cle’s radius? (A chord is a
line joining any two points on
the circle. To create the ran-

dom chord, select one point
on a circle by choosing a ran-
dom angle from the center
and draw a line from this
point to a second point on the
circle that you chose by
selecting another random
angle.) (See Answer 5.32.)

Bart’s dilemma. Nelson is a
mean, but very honest, bully.
He captures Bart and tells
him, “I will paint you red if
you speak the truth or will
shave your head if you lie.”
Obviously, Bart does not look
forward to either of these odi-
ous choices. Bart may speak
some words or remain silent.
What would you advise Bart
to do? (See Answer 5.33.)

Multilegged creatures.
Three robots named Mr.
Eighty, Mr. Ninety, and Mr.
Hundred are crawling in a
dark laboratory. One robot
has 80 legs; one robot has 90

legs; one robot has 100 legs.
The robots are usually quite
happy and enjoy the added
mobility the multiple legs
give them. Today, however,
they are jealous because 
they hear that their creator
might produce a robot with
1,000 legs.

“I think it is interesting,”
says Mr. Hundred, “that none
of us has the same number of
legs that our names would
suggest.”

“Who the heck cares?”
replies the robot with 90 legs.

How many legs does Mr.
Ninety have? Amazingly, it is
possible to determine the
answer, despite the little
information given. (See
Answer 5.34.)

Mathematical reality. “We
feel certain that the extrater-
restrial message is a mathe-
matical code of some kind.
Probably a number code.
Mathematics is the one lan-
guage we might conceivably
have in common with other
forms of intelligent life in the
universe. As I understand it,
there is no reality more inde-
pendent of our perception and
more true to itself than math-
ematical reality” (Don
DeLillo, Ratner’s Star, 1976).
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Woman in a black dress. A woman in a black dress
approaches you with three cards; each card is red on one side
and black on the other. The cards are randomly positioned.
She places the three cards on the table. What is the probabil-
ity that no two consecutive reds show? For her next puzzle,
she places n cards on the table. What is the probability that 
no two consecutive reds show? (See Answer 5.31.)



Three fishermen. Three
Portuguese fishermen have
three new buckets. One
bucket holds just flounder,
the other just mackerel, and
the third both flounder and
mackerel. The fishermen
label their three buckets
“flounder,” “mackerel,” and
“flounder and mackerel.”

Sadly, all three labels are
incorrect.

The buckets are closed.
How many fish does a fisher-
man have to look at to cor-
rectly label the buckets? (See
Answer 5.35.)

Mummy madness. An
Egyptologist is examining 
the mummies of an ancient
cat, a hyena, and a mouse. 
He turns to you. “You can’t
see the mummies clearly, 

but I tell you this: At least
one of the mummies is miss-
ing a tail. What is the proba-
bility that the cat is missing 
a tail?” 

You think about this for a
moment, staring at the
shrouded figures. The Egyp-
tologist says to you, “If you
guess correctly, I will reward
you by giving you the golden
staff of King Tut.” Can you
solve this? (See Answer
5.36.)

Heart attack. A surgeon in
a dimly lit operating room
removes five pulsating hearts
from five patients. She places
the hearts back in the bodies
at random. What are the
chances that only four hearts
are returned to their correct
bodies? (See Answer 5.37.)

Floating boat game. The
sun is shining on the Missis-
sippi River, and your three
friends are playing with 
paper boats. Once a person
puts a boat in the water, there
is a 50 percent chance that it
will float and a 50 percent
chance that it will immedi-
ately sink. Don, Melissa, and
Carl place their boats on the
river in succession. First, Don
puts his boat on the water.
Next, Melissa. Finally, Carl.
The winner will be the first to
float (i.e., not sink). What are
their respective chances of
winning? (Assume that the
game is over after Carl’s 
turn, and the game stops
when someone wins.) (See
Answer 5.39.) 

Clown’s dreams. A friendly
clown with purple hair places
two aquaria on your kitchen
table. One contains grape
juice, the other vinegar. Both
aquaria contain exactly the
same volume of liquid. The
clown takes a glass of vinegar
from the vinegar-filled aquar-
ium and mixes it into the
juice-containing aquarium,
then he takes a glass from the
juice aquarium and mixes it
with vinegar. Both aquaria
are now “contaminated.” If
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Sushi play. Pam and Nick each have ten pieces of sushi,
branded with numbers 1 through 10. 

���������� (Pam)

���������� (Nick)

Pam gives sushi piece 2 to Nick as a gift. Nick now has 11
pieces of sushi and withdraws a piece at random from his 
collection and places it in a bright red box. He turns to Pam. 
“I can only tell you this. The sushi piece in the box does not
have an odd number on it.” What are the chances that the 
sushi piece has a 2 on it? (See Answer 5.38.)



you can determine which
aquarium is more contami-
nated, the clown will leave
your home and stop asking
this silly question. Does the
vinegar now contain more
juice than the juice does vine-
gar, or the other way around?
(See Answer 5.40.) 

Lottery. Over the last ten
years, you play the same lot-
tery number and never win.
Would you have a better
chance of winning if you
played different numbers
instead of always playing the
same number? (See Answer
5.41.)

Fossil lock. You want to
send a valuable fossil to your
friend Homer. You have a
padded sphere that can be 
fitted with multiple locks to
lock the sphere’s door, and
you have several locks and
their corresponding keys.
However, Homer owns some
locks, but he does not have
any keys to your locks, and if
you send a key in an unlocked
sphere, the key could be
copied en route. How can you
send the fossil securely?
Assume that a key is required
to both lock and unlock a
lock. (See Answer 5.42.) 
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Nontransitive dice. Here is an impressive game to try on
your friends, based on a recent discovery made by the statisti-
cian Bradley Efron of Stanford University. Magic dice are dis-
played in figure 5.3 so that you can clearly see their six faces.
The dice demonstrate a probability that, at first, seems to defy
logic and can be used by the unscrupulous to make millions of
dollars.

Let’s assume that Bill and Monica are playing a game with
these dice. Bill asks Monica to select any one of the four dice.
Bill selects another. They throw the dice at the same time for a
predetermined number of times. On each toss, the person with
the highest number wins the throw. Bill can almost always
beat Monica in a game of ten throws. After each game, Mon-
ica is free to choose another die, and Bill then chooses a die.
Whichever die Monica selects, Bill always wins. How can that
be? (See Answer 5.43.) 

Figure 5.3 Nontransitive dice.



Sublime math. “There was
a blithe certainty that came
from first comprehending 
the full Einstein field equa-
tions, arabesques of Greek
letters clinging tenuously to
the page, a gossamer web.
They seemed insubstantial
when you first saw them, a
string of squiggles. Yet to 
follow the delicate tensors 
as they contracted, as the
superscripts paired with 
subscripts, collapsing mathe-
matically into concrete 
classical entities—potential;
mass; forces vectoring in a
curved geometry—that was a 
sublime experience. The iron

fist of the real, inside the 
velvet glove of airy mathe-
matics” (Gregory Benford,
Timescape, 1980).

Farmer McDonald’s moose.
Farmer McDonald’s male
moose brings him 100 pairs
of red gloves and 100 pairs of
blue gloves and accidentally
drops them into a stinking
sewer. “Darn!” McDonald
says. In complete darkness,
how many gloves must he
take from the sewer in 
order to be sure to get a pair
that match? (See Answer
5.45.)

Black versus red. Brad is
staring at two 1-dollar bills.
One is painted black on both
sides. The other is painted
black on one side and left
alone on the other. His 
friend Jennifer randomly
selects a bill and shows it to
Brad. He sees a black bill.
What’s the probability that
the other side is black? If
Brad were a gambler, should
he bet that the other side is
black? (See Answer 5.46.) 

The language of math.
“The Universe is a grand
book which cannot be read
until one first learns to com-
prehend the language and
become familiar with the
characters in which it is
composed. It is written in 
the language of mathematics”
(Galileo, Opere Il Saggiatore,
1623).

Brunhilde’s moose. Brun-
hilde throws a dart twice at
the word moose, which hangs
on her living room wall.
Assume that Brunhilde’s dart
always lands on some letter,
that each letter is equally
likely to be hit, and that 
having a dart on a letter
doesn’t affect whether the
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Tic-tac-toe. Despite the apparent simplicity of the game 
of tic-tac-toe, sometimes the best strategy from different 
configurations can be difficult to see. Many players will seek 
a draw against a weaker player, instead of playing to maximize
their chances of benefiting from a weak move. For example,
assume that you are X in the following unusual opening. 
What is your best move after O has moved into position 8?
(See Answer 5.44.)

1 X 3

4 5 6

7 O 9



next dart will land on the 
letter. What is the chance that
Brunhilde will hit the letter 
O followed by another O?
(See Answer 5.47.) 

Chimps and gibbons. Three
primates approach you. Their
names are Mr. Chimp Gib-
bon, Mr. Chimp Chimp, and
Ms. Gorilla Lemur. You are

blindfolded. One of the pri-
mates, chosen at random,
truthfully says, “My name is
Chimp,” but you don’t know
whether he is referring to his
first or last name. (Assume
that a primate is equally
likely to call out his first or
last name.) Are the odds 1⁄2,
1⁄3, or some other value that
the primate’s full name is
Chimp Gibbon? (See 
Answer 5.49.) 

Cars and monkeys. Andrea,
Barbara, and Claire are driv-
ing red sportscars with
leather seats. Each person is
driving the car of one friend
and has the pet monkey of
another. The woman who has
Claire’s monkey is driving
Barbara’s car. From this
amazingly scant information,
can we determine who is
driving Andrea’s car? (See
Answer 5.50.)

Guessing numbers. You are
with your friends Bill and
Julie, gazing at a large chunk
of petrified wood. “Earth is
roughly 5 billion years old,”
you say. “Julie, randomly
write down a year between 0
and 5 billion.” You turn to
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Board game of the gods. Consider the following simple, 
yet diabolic, board game, played by Aphrodite and Apollo 
in a magnificent palace on the heights of Mount Olympus 
(figure 5.4).

Players move from 1 to 2 to 3 to 4 to 5 and finally to 6. All
movements are on numbered squares only, and unnumbered
connecting ramps in the diagram are ignored. The toss of a
coin determines the movements on the board. A tail means
that one moves by advancing one square. A head means to
advance two squares. Play starts with the player’s piece on
square zero, prior to the first toss. On average, how many coin
tosses will it take for a player to win, that is, to reach or go
beyond the finishing 6 square? (See Answer 5.48.)

Figure 5.4 Board game of the gods.



Bill. “I bet that my guess of
Julie’s year will be closer to
the year than your guess.
You’ll have one guess, while I
have two, but to make up for
my slight advantage, not only
can you guess first, but I’ll
buy you pizza every day for
the next month if I lose. If I
win, you’ll buy me pizza.”

What strategy do you use
to win? Would you use the
same strategy if it meant that
you would lose or gain a
great deal of money? (See
Answer 5.51.)

Flying numbers. “Arith-
metic is where numbers fly
like pigeons in and out of
your head” (Carl Sandburg,
“Arithmetic,” 1993).

Martian identities. In a
large crater on Mars, each
Martian carries an identifica-
tion card. Each Martian’s
card is different and contains
just one letter and one 1-digit
number, including zero. How
many Martians at most live in
the crater? (Assume that the
Martian number system and
alphabet are the same as
ours.) (See Answer 5.52.)
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Robotic ants. A large robot ant named “Punisher” places
you in a central chamber in his ant colony, miles beneath Man-
hattan. Five tunnels radiate away from the chamber, which is
filled with eggs and larvae (figure 5.5). Four of the five tunnels
lead to deadly warrior ants. Only one leads upward to Fifth
Avenue and freedom. Punisher tells you to pick a tunnel. You
randomly pick Tunnel 1 to travel through. But wait! Punisher,
who knows where each tunnel leads, truthfully tells you that
Tunnel 5 terminates in a warrior ant. He gives you the oppor-
tunity to change your mind and choose a tunnel other than
Tunnel 1. You can assume that whenever Punisher takes pris-
oners, he always points to a tunnel that terminates in a warrior
ant. Should you forget your choice of Tunnel 1 and choose
another tunnel? (See Answer 5.53.)

Figure 5.5 Tunnels of madness.



Venusian insects. On beau-
tiful Venus, 85 percent of the
Venusians eat beetles, 80 
percent eat wasps, 42 percent
eat ants, 97 percent eat crabs,
and 96 percent eat oysters.
None of the Venusians eat all
five items, but they all eat four
of the five foods. What per-
centage of the Venusians eat
insects? (See Answer 5.54.)

Domain names. In one of
my novels, a character makes
money by buying every five-
letter Internet domain name,
like doggy.com or lions.com,
and then selling them to peo-
ple a year later. Just how
many five-letter domain
names are there? Will we run
out of domain names in the
future? (See Answer 5.55.)

The physics of reality. “I
think that modern physics has
definitely decided in favor of
Plato. In fact the smallest
units of matter are not physi-
cal objects in the ordinary
sense; they are forms and
ideas which can be expressed
unambiguously only in math-
ematical language” (Werner
Heisenberg, quoted in
“Physics for the Fatherland,”
1992).
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Where are the sea horses? Consider a strange aquarium with
five tanks connected by tubes (figure 5.6). You add thousands
of sea horses to Chamber A, indicated by the hand. Assume
that the sea horses are swimming randomly through the struc-
ture, like mindless molecules of gas filling a balloon. Also
assume that the sea horses are much smaller than those pic-
tured schematically in the diagram. Where do the most sea
horses reside after a long time? How would your answer
change if there were an additional tunnel connecting Chamber
C to D? (See Answer 5.56.)

Figure 5.6 Where are the sea horses?



Lotteries and superstition.
Bill and Monica are partici-
pating in a lottery in which
six numbers in the range of
13 to 16 are drawn at random.
(In other words, the numbers
drawn can be 13, 14, 15, and
16. ) You have to pick all six
numbers in the correct order
to win a large bag of extraor-
dinary blue sapphires from
Sri Lanka.

You hear thunder in the
distance. Monica gasps, 
“I’m superstitious and for 
the next year will avoid the
number 13.” Bill says, “If 
you do that, you’ll decrease
your chances of winning.
You’re eliminating lots of
potential choices.”

Is Bill right or wrong? 
Will Monica’s superstition
put her at a disadvantage?
Justify your answer. Assume
that after a number is drawn,
it is replaced and has a
chance of being drawn again.
In other words, each number
drawn can be 13, 14, 15, or
16. (See Answer 5.57.)

Robot jaws. You are trying
to open a robot’s mouth that
has two push buttons on the
upper lip. They can each tog-
gle between ten positions.
The proper positions will

open this top lock. A lock on
the bottom of the jaw has two
buttons of the same kind.
This second lock has its own
combination, which may or
may not be the same as the
top lock’s combination. You
need to get both combina-
tions right to open the mouth.
Assume that you will ran-
domly try positions.

What are the odds that you
will find the right combina-
tion on the first try to open
the mouth? (See Answer
5.59.)

Educated guessing. “Con-
sider a dramatic moment at
the casino in Monte Carlo on
August 18, 1913. A roulette
wheel, when spun, has an
equal chance of showing a
red or black number. On this
evening, black came up 26
times in a row. . . . A frantic
rush to bet on red enriched

the casino considerably”
(Samuel Kotz and Donna F.
Stroup, Educated Guessing,
1983).

Flies in a cube. I place
1,000 large flies in a cube
that is one mile on a side.
How would you attempt to
compute the average distance
traveled by the flies between
collisions with one another,
assuming that the flies fly
randomly? (Also assume 
that each fly can be modeled
as a sphere with a half-inch
diameter.) (See Answer 
5.60.)

Proportion. “There is no
excellent beauty that hath not
some strangeness in the pro-
portion” (Francis Bacon, Of

Beauty, c. 1601).
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Coin flips and the paranormal. Your friend approaches with a
coin. He flips it several times. We expect 50 percent heads and
50 percent tails. How many heads in a row would cause an
ordinary person to say, “This is a biased coin,” or that some-
thing was amiss? How many heads in a row would cause a
mathematician to say, “This is a biased coin”?

Do people who believe in the paranormal respond differ-
ently than skeptics do in experiments of this nature? (See
Answer 5.58.)



Boomerang madness. I toss
two boomerangs at the same
time toward twenty maple
trees. What’s the probability
of both boomerangs getting
caught in any one tree
together? (Assume that my
toss is random, that the
boomerangs are equally
likely to end up in any tree,
and that the boomerangs
always end up in some trees.)
(See Answer 5.61.)

Apes in a barrel. A man
places thirty apes in a large
barrel. Your ape is named
Tiffany. The apes are
released, one at a time, and
the last ape to emerge is the
winner. Thus, if Tiffany
emerges last, you win. What
are the chances of you win-
ning? (Assume that the apes
emerge in a random order.)
(See Answer 5.62.)

Napoleon and Churchill.
Napoleon and Churchill are
sitting in an underground
bunker, three miles south of
London. Today, they are toss-
ing a coin in the air. They are
betting the fate of the world
on a particular triplet that
might result from three suc-
cessive fair tosses of the coin.
Napoleon picks HHH and
Churchill picks THH. They
keep tossing coins until either
Napoleon’s or Churchill’s
triplet has appeared. The
triplets may appear in any
three consecutive tosses; for
example, the THH triplet
might start in position one,
two, or three in the long
sequence of attempts. The
winner is the player whose
triplet appears first. Whom do
you pick as the winner? (See
Answer 5.64.)

The mine of math. “Mathe-
matics may be likened to a
large rock whose interior
composition we wish to
examine. The older mathe-
maticians appear as persever-
ing stone cutters slowly
attempting to demolish the
rock from the outside with
hammer and chisel. The later
mathematicians resemble
expert miners who seek 
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Dark hallway and vapor men. You are traveling down a long
hallway. Strange scratching sounds come from beneath the
floor, and scarlet beetles climb the walls. Along the hallway
are ten shadowy men spaced roughly at equal lengths along
the hallway (figure 5.7).

Assume that each time you pass a man, he touches your hand.
Each times he touches your hand, you have a 50 percent
chance of being vaporized. 

The world is offered total peace and prosperity if you can
correctly guess which man will vaporize you as you walk
down the hallway. If you were a gambling person, which per-
son do you think will vaporize you? How many attempts
would you predict it would require for a person to walk from
one end of the hallway to the other without being vaporized
(assuming that the person is reconstituted each time so that he
or she can try again and again until safely making it to the
end)? (See Answer 5.63.)

Figure 5.7 Dark hallway and vapor men.



vulnerable veins, drill into
these strategic places, and
then blast the rock apart with
well placed internal charges”
(Howard Eves, Mathematical

Circles, 1969).

Triangles and spiders. You
are visiting a moon of Uranus,
where a spiderlike alien ran-
domly throws a meatball at a
wall on which is drawn a large
triangle with vertices at (0,0),
(0,4), and (5,0) (figure 5.8).
The meatball sticks to the 
triangular target. What is 
the probability that the 
x-coordinate of the meatball 
is less than the y-coordinate?
(See Answer 5.65.)

Stylometry. What is sty-
lometry, and who wrote The

Royal Book of Oz, the fif-
teenth book in the Oz series?
(See Answer 5.66.)

Factors. A wise man
wearing a long flowing robe
chooses 3 integers at random
from 1 to 10100. What is the
probability that no common
factor will divide them all? If
you can’t tell me this exactly,
what is your estimate? (A
divisor of a number is a
number that divides n—also
called a factor.) (See Answer
5.67.)

Mathematical existence.
“One cannot escape the feel-
ing that these mathematical
formulae have an independ-
ent existence and an intelli-
gence of their own, that they
are wiser than we are, wiser
even than their discoverers,
that we get more out of them
than we originally put in to
them” (Heinrich Hertz [com-
menting on Maxwell’s equa-
tions], quoted in Eric Bell,
Men of Mathematics, 1937).
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Figure 5.8 Triangles and spiders.

Card arrangements. The 52 cards in a playing card deck can
be arranged in 52! different ways, or 

8065817517094387857166063685640376
6975289505440883277824000000000000

or about 8.07 × 1067. This is much larger than the number of
atoms that make up Earth.

Alien Patterns. How many patterns of n creatures in a row
exist if every alien is next to at least one other alien? We are to
choose from an auditorium filled with aliens and humans. For
example, with four creatures, there are seven patterns:

����  ���� ����  
���� ���� ����  ����

In general, if P(n) is the number of patterns of n creatures,
then the ratio P(n + 1)/P(n) approaches 1.754877666247 
. . . , a solution to the equation x3 = 2x2 – x + 1 (in John Con-
way and Richard Guy, The Book of Numbers, 1996, p. 205).



Plato’s choice. Sitting
beneath the shade of the
Parthenon in ancient Greece
were five mortals and five
gods who found five emeralds
(figure 5.9). They soon began
to fight about who should get
the jewels. 

Zeus bellowed, “We’ll
arrange ourselves in a circle,
and count out individuals by
a fixed interval, and give an
emerald to an individual as he
leaves the circle.” Zeus
was clever and arranged
the circle so that by
counting a certain mor-
tal as “one,” he could
count out all the gods
first.

The arrangement of
gods and mortals is
shown in figure 5.9,
which follows a sequence:
M M M G G G M G G M.

The count starts with 
the mortal at the top and
continuously goes clock-
wise. Each individual
who is “counted out”
steps out of the circle,
gets an emerald, and is not
included in the count there-
after. For example, if the
interval of “decimation” is
5, the first three individuals to
get emeralds would be: god
5, mortal 10, and god 6. So
far, pretty good for the gods.

It turned out, to Zeus’s dis-
may, that the mortal at the top
who was counted as 1 was
none other than the all-wise
Plato.

“Wait!” Plato cried. “I
insist on my right to choose
the interval of decima-
tion.”

Plato’s astute choice
counted out all of the mortals
first. What interval will count
out the five gods first, and
what will count out the five
mortals first? (See Answer
5.68.)
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Figure 5.9 Plato’s choice.



Kravitz arrays. Sidney
Kravitz once asked in the
Journal of Recreational

Mathematics (31, no. 4

[2003]: 304): In how many
ways can we place the digits 1
to 9 into a 3-by-3 array so that
each digit is smaller than the

digit immediately to its right
and smaller than the digit
immediately below it? There
are 42 such arrangements.
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Big Numbers
and Infinity

233

I N WHICH WE EXPLORE VERY LARGE NUMBERS, THE EDGES OF COMPREHENSION,

infinity, the Funnel of Zeus, the infinite gift, the omega crystal, the Skewes

number, the Monster group, Göbel’s number, the awesome quattuordecillion,

the Erdös-Moser number, Archimedes’ famous “Cattle Problem,” classic para-

doxes, Gauss’s “measurable infinity,” and Knuth’s arrow notation.

Big Numbers 
and Infinity

Infinity is an endless train weaving 

its way through the landscape of 

reality. But who made the train 

tracks, and where is the conductor?

66





Infinity and God. “The
study of the infinite is much
more than a dry, academic
game. The intellectual pursuit
of the Absolute Infinite is a
form of the soul’s quest for
God. Whether or not the goal
is ever reached, an awareness
of the process brings enlight-
enment” (Rudy Rucker, Infin-

ity and the Mind, 1982). 

Counting. Assuming
that you count a number a 
second, how long would it
take you to count to a billion
(1,000,000,000)? (See
Answer 6.1.)

Large numbers. “Large
numbers have a distinct
appeal, a majesty if you will.
In a sense, they lie at the lim-

its of the human imagination,
which is why they have long
proved elusive, difficult to
define, and harder still to
manipulate. Modern comput-
ers now possess enough
memory and speed to handle
quite impressive figures. For
instance, it is possible to mul-
tiply together million-digit
numbers in a mere fraction of
a second. As a result we can
now characterize numbers
about which earlier mathe-
maticians could only dream”
(Richard E. Crandall, “The
Challenge of Large Num-
bers,” 1997).

Wonders. “He who won-
ders discovers that this in
itself is a wonder” (M. C.
Escher, The Graphic Work,
1992).

Disembodied intelligence.
“A formal manipulator in
mathematics often experi-
ences the discomforting feel-
ing that his pencil surpasses
him in intelligence” (Howard
W. Eves, Mathematical

Circles, 1969).

Large law. What is the
“law of truly large numbers”?
(See Answer 6.2.)

The ultrahex. The follow-
ing is an extremely large
number:

666666

Although humanity may
never be able to compute this
and write down all its digits,
what can we say, if anything,
about its last digit? (See
Answer 6.3.)

Life experiences. The math
fanatic Robert Munafo says
that 101018

is an estimate of
the number of possible life
experiences a person can
have, based on a sensory
bandwidth of 1010 bits per
second.
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Decillion. One decillion is 1 followed by 33 zeros:

1000000000000000000000000000000000

or 1033. It’s the largest power of 10 known to humans that can
be represented as the product of two numbers that themselves
contain no zero digits:

1033 = 233 × 533 =

(8,589,934,592) × (116,415,321,826,934,814,453,125)

I do not think that humanity will ever be able to find a larger
power of 10 that can be represented as the product of two
numbers that themselves contain no zero digits.



The wonderful quattuordecil-
lion. A few favorite number
names: 1021 is a sextillion; a
decillion is 1033; 1045 is a
quattuordecillion; 1060 is a
novemdecillion; and 1063 is a
vigintillion.

The ubiquitous 7. How
many numbers have a 7 in
them, if we consider all the
numbers between 1 and
googolplex? (See Answer
6.4.)

Knuth notation for ultra-big
numbers. In 1976, the mathe-
matician and computer scien-
tist Donald Knuth published
an amazing arrow notation to
represent huge numbers. Thus
3 ↑ 3 is simply 3 cubed or 33;
3 ↑↑ 3 means 3 ↑(3 ↑ 3)
or 333. The arrows always
“associate to the right,” so
that a ↑ b ↑ c ↑ d . . . means 
a ↑(b ↑(c ↑ d)). . . . Here’s
another example: 2 ↑ ↑ ↑ 3 =
2 ↑ ↑ 2 ↑ ↑ 2 = 2 ↑ ↑ 4 =
65,536. Using this logic for
making huge numbers com-
pact, do you think that 3 ↑ ↑ 4
represents a number that is
smaller than the number of
atoms in the visible universe?
(See Answer 6.5.)

The magnificent 7. As you
may have gleaned, I love the
number 7. Consider the fol-
lowing scenario. You are
alone on an infinite plane,
examining a list of integers 
in numerical order, starting 
at 1, 2, 3, 4, 5, 6, . . . and 

ending with some huge num-
ber like googolplex. You get
into a spaceship and journey
far away, then shoot a dart
randomly at the integer list.
What is the chance that you
will hit a number with a 7 in
it? (See Answer 6.6)
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Definition of googolplex. A “googolplex” is equal to 10googol

or 1010100; that is, 1 followed by a googol of zeroes. Like
googol, the term googolplex was coined by the mathematician
Edward Kasner in conversations with others.

The software engineer Frank Pilhofer has tried to put a
googolplex in perspective when he writes, “[Compared to a
googolplex], a googol is nothing special; the total number of
elementary particles in the known universe is about 1080. If
this space was packed solid with neutrons, so there was no
empty space anywhere, there would be about 10128 particles in
it. This is quite a lot more than a googol. But you simply can-
not express the kind of googolplex’s numerical dimension with
terms other than ‘10 to the power of something.’ . . . If one
takes a moderately large fraction of the mass of our Local
Group of galaxies, puts it into a black hole, and asks how
many states there are with a similar macroscopic appearance,
one would get a googolplex” (Frank Pilhofer, “Googolplex,”
www.fpx.de/fp/Fun/Googolplex/, with material from Don
Page, CIAR Cosmology Programme, Theoretical Physics
Institute, University of Alberta, 2002).

Big number. “I believe there are 

15,747,724,136,275,002,577,605,653,961,181,555,468,044,
717,914,527,116,709,366,231,425,076,185,631,031,296

protons in the universe and the same number of electrons” 
(Sir Arthur Eddington, The Philosophy of Physical Science,
1939).



Computers and big numbers.
What is the largest integer
number that a future com-
puter could in principle work
with or yield as a result of a
computation? (The numbers
are to be stored in binary for-
mat as a string of 0s and 1s.)
(See Answer 6.7.)

Eternity. “That’s the prob-
lem with eternity, there’s no
telling when it will end”
(Tom Stoppard, Rosencrantz

and Guildenstern Are Dead,
1967).

Three digits. The number
Θ = 999 is the largest number
that can be written using only
three digits. The number Θ
contains 369,693,100 digits.
If typed on paper, it would
require about 2,000 miles of
paper strip. Since the early
1900s, scientists have tried to
determine some of the digits
of this number. Fred Gruen-
berger recently calculated the
last 2,000 digits and the first
1,200 digits.

Counting every rational
number. Show that it is theo-
retically possible to count all
the rational numbers by

means of an infinite list,
whereas it is not possible to
count all the real numbers by
means of such a list. (See
Answer 6.8.)

Continuum hypothesis. As
we discussed in chapter 2, the
total number of possible inte-
gers or possible rational num-
bers corresponds to the
smallest level of infinity, usu-
ally denoted as ℵ0. The num-
ber of possible real numbers
is 2ℵ0, which is larger than
ℵ0. (See Cantor’s diagonal-
ization process in answer to
the previous factoid.) The

continuum hypothesis sug-
gests that there are no sets
intermediate in size between
ℵ0 and 2ℵ0. In other words,
the hypothesis states that
there is no set whose size is
strictly between that of the
integers and that of the real
numbers. We can map the
algebraic numbers onto the
naturals, and the cardinality
of the algebraic numbers will
be the same as for naturals.
Here are some cool rules
involving ℵ0:

ℵ0 = 1 + ℵ0

ℵ0 = ℵ0 + ℵ0

ℵ0 = ℵ0 × ℵ0
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Four digits. The German mathematician Carl Friedrich
Gauss (1777–1855) called 

“a measurable infinity.” The number has 10369693100 digits, a
number far larger than the number of atoms in the visible uni-
verse. If typed on paper, ℑ would require 10369693094 miles of
paper strip, according to Joseph Madachy. If the ink used in
printing ℑ was a one-atom-thick layer, there would not be
enough total matter in millions of our universes to print the
number. Shockingly, the last 10 digits of ℑ have been com-
puted. They are 1,045,865,289.

1597 problem. Consider the formula Is 
y ever an integer for any integer x greater than 0? (Hint: Don’t
bother to solve this unless you use a computer.) (See Answer
6.9.)

y x= +1597 12 .

ℑ = 99 99



Infinite awe. “Infinity com-
monly inspires feelings of
awe, futility, and fear” (Rudy
Rucker, Infinity and the

Mind, 1982).

Infinite points. The number
of points on a line, a plane, or
a 3-D space are all the same
and are equal to C = 2ℵ0.

Infinity and divinity.
“Cantor was careful to stress
that despite the actual infinite
nature of the universe, and
the reasonableness of his con-
jecture that corporeal and
aetherical monads were
related to each other as pow-
ers equivalent to transfinite
cardinals ℵ0 and ℵ1, this did
not mean that God necessar-
ily had to create worlds in
this way” (Joseph Dauben,
Georg Cantor, 1990).

Mathematics and God. As I
said in chapter 1, in many
ways, the mathematical quest
to understand infinity parallels
mystical attempts to under-
stand God. Of course, there are
also many differences between
mathematics and religion. For
example, while various reli-
gions differ in their beliefs,
there is remarkable agreement

among mathematicians. 
Philip Davis and Reuben

Hersh, in The Mathematical

Experience, suggest that “all
religions are equal because all
are incapable of verification
or justification.” Similarly,
certain valid branches of
mathematics seem to yield
contradictory or different
results, and it seems that there
is not always a “right” answer.
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Mathematical theology. Manifold—the only journal ever
published entirely on the subject of mathematical theology—
began as a publication created by several graduate students at
the University of Warwick in England. The journal started in
1968 and ran for twenty issues, until 1980. Tim Poston, a
researcher at the Institute of Systems Science at the National
University of Singapore, led me to several interesting articles
regarding God and mathematics that appeared in Manifold.
For example, in Manifold 6 (1970, pp. 48–49), Vox Fisher
published “Ontology Revisited,” a fascinating paper on a
mathematical proof of God’s existence. The paper starts, 

Theorem: The axiom of choice is equivalent to the existence
of a unique God (St. Anselm, Aquinas, and others). 

Proof: Partially order the set of subsets of the set of all
properties of objects by inclusion. This set has maximal ele-
ments. God is by definition (due to Anselm) a maximal ele-
ment set: 

God � God � {existence}, so God = God � {existence}
∴ God exists.

Uniqueness: If God and God′ are two gods, then God �
God′ � God (due to Aquinas), and ∴ God � God′ = God,
∴ God � God′ and similarly God′ � God, ∴ God = God′.

Given a set {Aα}α ∈R
of sets, let the unique God pick xα ∈

Aα for each α ∈ A. (He can do so by omnipotence.) Then 

as required.

{ }x A
R

R

α α α
α

∈
∈
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Feeding the spirit. “The
single most compelling rea-
son to explore the world of
mathematics is that it is beau-
tiful, and pondering its
intriguing ideas is great fun.
I’m constantly perplexed by
how many people do not
believe this, yet over 50,000
professional mathematicians
in America practice their
trade with enthusiasm and
fervor. . . . To study the deep
truths of number relation-
ships feeds the spirit as surely
as any of the other higher
human activities of art,
music, or literature” (Calvin
Clawson, Mathematical Mys-

teries, 1996).

Infinite surface. The Greek
God Zeus hands you a gallon
of red paint and asks how you
would completely paint an
infinite surface with this gal-
lon of paint. What would be
an excellent answer to win
Zeus’s admiration? What sur-
face would you choose? (Hint:
I am thinking of a shape that
resembles a horn or a funnel.)
(See Answer 6.10.)

I like infinity. “I like infin-
ity. I believe that infinity is
just another name for mother

nature. Nature provides infi-
nite possibilities all the time.
But because we have suffered
through this world of wars
and woes, we sometimes fail
to get this. We see the world
as a little stingy at times”
(Fred Wolf, Parallel Uni-

verses, 1990).

Infinity keyboard. Imagine
that an extremely agile
(supernatural) being alter-
nately presses the J key and
the H key on your PC key-
board. The being presses the
J key for 1⁄2 of a second, then
it presses the H key for 1⁄4 of a
second, then it presses the J
key for 1⁄8 second, the H key
for 1⁄16 of a second, and so on.
It turns out that this infinite
series (1⁄2 + 1⁄4 + 1⁄8 + . . . ) adds
up to 1. Therefore, at the end
of 1 second, the keys have
switched an infinite number
of times because 

1 second = 1⁄2 second + 1⁄4 sec-
ond + 1⁄8 second . . . 

Note that the being has
stopped typing after 1 sec-
ond. His eyes glow a bright
green. He is finished and
smiling.

What is the last letter that
was typed at the end of 1 sec-
ond? You seem to have all the
necessary information to
determine whether the last
letter is either a J or an H.
What is your answer? (See
Answer 6.11.)

Numerical evidence. It was
once conjectured that 313 ×
(x3 + y3) = z3 has no positive
integer solutions; however, it
was discovered that the
smallest counterexample has
numbers with more than
1,000 digits!
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Lengthening horizons. “The heavens call to you, and circle
about you, displaying to you their eternal splendors, and your
eye gazes only to earth” (Dante, Purgatorio, 1319).

Long journeys. “We live on a placid island of ignorance in
the midst of black seas of infinity, and it is not meant that we
should voyage far” (H. P. Lovecraft, The Call of Cthulhu,
1928).



The classic barber paradox.
Suppose there is a village
with only one barber. Every
day, this barber shaves all
men, and only these men,
who do not shave themselves.
But who shaves the barber? If
he does shave himself, then
he shouldn’t shave himself.
This is the paradox. 

The barber paradox, attrib-
uted to Bertrand Russell, is a
paradox with importance to
mathematical logic and set
theory. It is a paradox
because such a barber can
neither shave himself nor not
shave himself, yet at the same
time must shave himself if he
doesn’t.

Computers and the infinite.
High-speed computers have
allowed investigators to check
the validity of many mathe-
matical conjectures, and
much mathematical evidence
now involves unimaginably
large numbers. However,
numerical evidence should be
viewed with caution and is
sometimes inadequate. For
example, consider the fact
that

is positive for all values of x
≤ 1012 and probably far
beyond. Here, π(x) is the
number of prime numbers
less than or equal to x. This
massive amount of “numeri-
cal” evidence previously led
researchers astray; however, it
is now known that a sign
change does occur, but all
that is currently known is that
the first sign change occurs
below 1.65 × 101165.

Mathematics and sex.
“What is the origin of the
urge, the fascination that
drives physicists, mathemati-
cians, and presumably other
scientists as well? Psycho-
analysis suggests that it is
sexual curiosity. You start by
asking where little babies
come from, one thing leads to
another, and you find yourself
preparing nitroglycerine or
solving differential equations.
This explanation is somewhat

irritating, and therefore prob-
ably basically correct” (From
David Ruelle, Chance and

Chaos, 1993).

The infinite window. The
White Queen was admiring
her reflection in a window
that consisted of alternating
pink and green panes, stuck
together with no frames. No
matter how hard Alice peered,
she could see no end to the
window, not to the right, not
to the left, not upward. 

She remarked as much.
The Queen replied, “Yes,

isn’t it marvelous? Every
pane has another pane to its
right, to its left, and above it,
extending to infinity.”

Alice said, “It must really
be valuable. But is it not in
danger?”

The Queen said, “Valuable,
yes. But what danger do you
mean?”

1
2

/ ln ( )tdt x

x

−∫ π
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Number definition paradox. Let A be the set of all positive
integers that can be defined in under 100 words. Since there
are only finitely many of these, there must be a smallest posi-
tive integer n that does not belong to A. But haven’t I just
defined n in under 100 words? (Wording by Timothy Gowers.)

Large perfect number. In 2001, 4.27764198 × 108107891 =
213466916(213466917 – 1) was the largest known perfect number.



“Well,” said Alice, “sup-
pose some boys were playing
cricket and mishit the ball,
and it flew towards the
window?” 

“It would not matter,” said
the Queen, pointing to a par-
ticular pane. “Consider how
likely would the ball be to hit
this particular pane?”

“Not very,” said Alice. “In
fact, it wouldn’t be possible
at all. There are so many
other panes.”

“Very good,” said the
Queen. “And the same would
be true of all the panes,
would it not?”

Alice considered and said,
reluctantly, “I suppose so.”

“So,” said the Queen, “if it
couldn’t hit any of the panes,
then the magnificent structure
is in no danger.”

Alice nodded, threw a ball,
and destroyed the wonderful
structure.

(Graham Cleverley, personal
communication, 2004).

Strange paper title. In
1975, George Englebretsen
published “Sommers’ Proof
That Something Exists” in
the prestigious Notre Dame

Journal of Formal Logic (16:
298–300).

The Skewes number. S1 is
one of the largest numbers
that has occurred in a mathe-
matical proof:

S1 = 10101034

This number was given by
Skewes in 1933 and
decreased, in the 1980s, to

S1 = e e27/4 ≈ 8.185 × 10370

A related number, called the
“second Skewes number,” is
even larger:

S2 = 1010101000

The mathematician G. H.
Hardy called the Skewes
number “the largest number
which has ever served any
definite mathematical pur-
pose in mathematics.”

Infinity in a nutshell. “I
could be bounded in a nut-
shell and count myself a king
of infinite space” (Shake-
speare, Hamlet, 1603).

Universe game. G. H.
Hardy determined that if one
“played chess” with all the
particles in the universe
(which he estimated to be
1087), where a move meant
simply interchanging any two
particles, then the number of
possible games was roughly
equal to Skewes’s original
number:

101010000000000000000000000000000000000
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Göbel’s sequence is defined by with 
x0 = 1. The first few values of x

n
are 1, 2, 3, 5, 10, and 28. This

baby grows large very quickly. Mathematicians are still
exploring the various intriguing properties of this recursive
sequence. One thing we do know is that the first non-integer
value of x

n
occurs at x43, which is about equal to

x43 = 5.4093 × 10178485291567

This “Göbel number,” x43, is so large that humanity will never

be able to compute all of its digits. If this little bit of informa-
tion has intrigued you, you can learn more by reading R. K.
Guy, “A Recursion of Göbel,” in Unsolved Problems in

Number Theory, 2nd ed. (New York: Springer-Verlag, 1994),
pp. 214–15. 

x
n
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Mystery of patterns. “It
was all a pattern, as surely as
a spiderweb is a pattern, but 
a pattern does not imply a
purpose. Patterns exist 
everywhere, and purpose is 
at its safest when it is sponta-
neous and short lived” (Anne
Rice, The Witching Hour,
1993).

Kinky number. The author
Calvin Clawson, in his book
Mathematical Mysteries

(p. 37), reports that the num-
ber of kinks in the core of an
“embedded tower” is roughly

E = 10101010107

Twain math. “I had been to
school most of the time, and
could spell, and read, and
write just a little, and could
say the multiplication table
up to six times seven is
thirty-five, and I don’t reckon
I could ever get any further
than that if I was to live for-
ever. I don’t take no stock in
mathematics, anyway” (Huck
Finn, in Mark Twain, The

Adventures of Huckleberry

Finn, 1912).
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Infinite gift. You are visiting your neighbor down the street,
who bears a striking resemblance to the actress Julia Roberts.
It is your birthday, and she has a special gift for you. On her
couch is an attractive assembly of attached boxes with ever-
diminishing sides. The largest box is wrapped with a sparkling
red ribbon (figure 6.1).

The smallest boxes are so
tiny that you would need a
microscope to see them. The
sides of the boxes diminish in
an interesting sequence: 

She smiles as she touches
the largest box at the top of
her stack, which has an edge
that is 1 foot in length. The
next box has an edge length
of 1 over the square root of 2,
and the next box has an edge
length of 1 over the square
root of 3, and so forth. This
series diverges, or gets bigger
and bigger, which means that
your friend’s gift is a struc-
ture of infinite length! If you
wanted to paint the faces of
the gift, you would need an
infinite supply of paint.

Remarkably, even though
the length is infinite, the vol-
ume of the gift is finite! What
is the volume? (See Answer
6.12.)

1
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Figure 6.1 Infinite gift.



Mystery of infinity. “Infin-
ity is where things happen
that don’t” (S. Knight). 

Large number contest. Con-
struct the expression for the
largest number possible,
using only the following eight
symbols:

1 2 3 4 ( ) . –

Each digit can be used only
once. The “.” is a decimal
point. The “–” is a minus
sign. If you like, you can raise
numbers to powers of one
another. For example 3142 has
an amazing 63 digits! Can
you do better than this?

For the second part of the

contest, construct the expres-
sion for the largest number
possible, using only the fol-
lowing six symbols:

1 0 ( ) . –

Each digit can be used five
times, at most. (See Answer
6.13.)

Leviathan number. The first
six digits of the Leviathan
number� = (10666)! are
134,072. (The ! is the symbol
for factorial.) Alas, the num-
ber is so large that humanity
will never be able to compute
all the digits of the Leviathan
number. 

Eternity. “High up in the
North in the land called
Svithjod, there stands a rock.
It is a hundred miles high and
a hundred miles wide. Once
every thousand years a little
bird comes to the rock to
sharpen its beak. When the
rock has thus been worn
away, then a single day of
eternity will have gone by”
(Hendrik Willem Van Loon,
The Story of Mankind, 1922).

Distance. “I looked round
the trees. The thin net of real-
ity. These trees, this sun. I
was infinitely far from home.
The profoundest distances are
never geographical” (John
Fowles, The Magus, 1965).

Buddhist asankhyeya. One
of the highest numbers for
which there exists a name is
the Buddhist asankhyeya,
which is equal to 10140—
much bigger than a googol.
This number is mentioned in
Jainist writings of the first
century B.C. India’s ancient
writings often contain refer-
ences to large numbers with
names; however, it is some-
times difficult to assign 
a precise value to these
humongous numbers 
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Monster number. One of the largest individual numbers that
occurs naturally in a theorem is

8080 17424 79451 28758 86459 90496 
17107 57005 75436 80000 0000

This is the order of the so-called Monster simple group. An
example of a finite group is a collection of integers from 1 to
12 under the operation of “clock arithmetic,” so that, for
instance, 9 + 6 = 3. The concept sounds simple, but it gives
rise to a mathematical jungle. For decades, mathematicians
have tried to classify all of the finite groups. One of the
strangest groups discovered is the “monster group,” which has
over 1053 elements and a little-understood structure. Robert
Griess constructed this beast in 1982 as a group of rotations in
196,883-dimensional space. 



because of conflicting or
ambiguous uses.

Great aeon. According to
Bhikkhu Bodhi’s A Compre-

hensive Manual of Abhid-

hamma, Buddhist philosophy
identifies three kinds of
aeons—an interim aeon, an
incalculable aeon, and a great
aeon. An interim aeon

(antarakappa) is a period of
time required for the life span
of humans to rise from ten
years to the maximum of
many thousands of years, and
then fall back to ten years.
Twenty such interim aeons
equal a single incalculable

aeon (asankhyeyakappa), and
four incalculable aeons con-
stitute a single great aeon

(mahakappa). Buddha says
that the length of a great aeon

is longer than the time it
would take for a man to wear
away a mountain of solid
granite that is one yojana

(about 7 miles) high and wide
by stroking it once every 
hundred years with a silk
cloth.

In Daniel Boorstin’s The

Creators, Gautama reached
full enlightenment in the
course of three incalculable
aeons. In the first, he did not
know whether he would
become a Buddha. In the sec-
ond aeon, he knew it but did
not reveal it. In the third, he
declared it. One Buddhist
scholar has calculated the
length of one incalculable
aeon as 1 followed by 352
septillion kilometers of zeros,
with each zero being 0.001
mm in width. A septillion is
10 to the power of 24.

Finite and infinite. “There
was from the very beginning
no need for a struggle
between the finite and infi-
nite. The peace we are so
eagerly seeking has been
there all the time” (Daisetz
Teitaro Suzuki, Introduction

to Zen Buddhism, 1957). 

The game of Go. There are
approximately 4.63 × 10170

possible positions in the
Asian game of Go, which is
played with black and white
stones on a 19 × 19 board.
(M. Beeler, et al., Item 96, in
M. Beeler, R. W. Gosper, and
R. Schroeppel, “HAKMEM,”
Cambridge, Mass.: MIT Arti-
ficial Intelligence Laboratory,
Memo AIM-239, p. 35, Feb-
ruary 1972.) Opponents play
Go by alternately placing
stones on the board to sur-
round as much territory as
possible. For comparison,
there are about 1012 positions
in checkers.

A slave to limit. “The will
is infinite and the execution
confined. The desire is
boundless and the act a slave
to limit” (Shakespeare,
Troilus and Cressida, 1602).
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An infinity of worlds. “It is known that there is an infinite
number of worlds, simply because there is an infinite amount
of space for them to be in. However, not every one of them 
is inhabited. Therefore, there must be a finite number of
inhabited worlds. Any finite number divided by infinity is as
near to nothing as makes no odds, so the average population
of all planets in the Universe can be said to be zero. From 
this it follows that the population of the whole Universe is 
also zero, and that any people you may meet from time to 
time are merely the products of a deranged imagination”
(Douglas Adams, The Restaurant at the End of the Universe,
1982).



Archimedes’ “Cattle Prob-
lem.” The solution to the
restricted version of
Archimedes’ famous “Cattle
Problem” is 7.760271406
486818269530232833213 . . .
× 10202544. The problem can
be stated as follows: 

O stranger, compute the
number of cattle of the
Sun, who once upon a time
grazed on the fields of the
Thrinacian isle of Sicily,
divided into four herds of
different colors—one milk
white, another glossy
black, the third yellow, and
the fourth dappled. The
number of white bulls was
equal to (1⁄2 + 1⁄3) the num-
ber of black bulls plus the
total number of yellow
bulls. The number of black
bulls was (1⁄4 + 1⁄5) the
number of dappled bulls
plus the total number of
yellow bulls. The number
of spotted bulls was 
(1⁄6 + 1⁄7) the number of
white bulls, plus the total
number of yellow bulls.
The number of white cows
was (1⁄3 + 1⁄4) the total
number of the black herd.
The number of black cows
was (1⁄4 + 1⁄5) the total
number of the dappled
herd. The number of dap-

pled cows was (1⁄5 + 1⁄6) the
total number of the yellow
herd. The number of yel-
low cows was (1⁄6 + 1⁄7) the
total number of the white
herd.

If you can accurately
tell, O stranger, the total
number of cattle of the
Sun, including the number
of cows and bulls in each
color, you would not be
called unskilled or igno-
rant of numbers, but not
yet shalt thou be numbered
among the wise. But
understand also these con-
ditions: The white bulls
could graze together with
the black bulls in rows,
such that the number of
cattle in each row was
equal and that number was
equal to the total number
of rows, thus forming a
perfect square. And the
yellow bulls could graze
together with the dappled
bulls, with a single bull in
the first row, two in the
second row, and continu-
ing steadily to complete a
perfect triangle. If you are
able, o stranger, to find out
all these things and gather
them together in your
mind, giving all the rela-
tions, you shall depart
crowned with glory and

knowing that you have
been adjudged perfect in
this species of wisdom. 

If we attempt to solve the
first part of the problem, the
smallest solution for the total
number of cattle is
50,389,082. But if you add
the additional two constraints
contained in the second part,
the solution is much higher—
about 7.76 × 10202544. It took
until 1880 to find this approx-
imate answer. The actual
number was first calculated in
1965 by Williams, German,
and Zarnke, using an IBM
7040.

Walnuts and infinity. “We
are told that the shortest line
segment contains an infinity
of points. Then even the shell
of a walnut can embrace a
spatial infinity as imponder-
able as intergalactic space”
(William Poundstone,
Labyrinths of Reason, 1988).

Having fun. Graffiti in the
math department’s restroom:

I am happy because I know

ℵ0 + ℵ0 =ℵ0
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Watching Lila. “He
watched her for a long time
and she knew that he was
watching her and he knew
that she knew he was watch-
ing her, and he knew that she
knew that he knew; in a kind
of regression of images that
you get when two mirrors
face each other and the
images go on and on and on
in some kind of infinity”
(Robert Pirsig, Lila, 1991). 

Big number in fiction. The
largest known number
described in a work of fiction
is 2.74858523 . . . × 1080588 =
2267709. Douglas Adams, in
The Hitchhiker’s Guide to the

Galaxy, uses this number
when stating the odds against

his characters being rescued
by a passing spaceship.
According to Robert Munafo,
this number is mentioned in
the radio program version
and was changed to 2260199 for
the book.

Brain chimeras. “The
knowledge we have of 
mathematical truths is not
only certain, but real knowl-
edge; and not the bare empty
vision of vain, insignificant
chimeras of the brain” (John
Locke, An Essay Concerning

Human Understanding,
1690).

Erdös-Moser. The Erdös-

Moser number is huge, a real
treat, and sure to excite your

friends at your lunch table.
Paul Erdös conjectured that
there is no solution (other
than 11 + 21 = 31) to the 
following equation sum
involving integers:

Mathematicians still do not
know whether this conjecture
is true or not. All we know is
that there is no solution for 

m < 1.485 × 109321155

I call this value for m the
Erdös-Moser number, after
early researchers of this 
problem, although William
Butske and colleagues actu-
ally determined this number
in 1999.

You can learn more about
this large number here:
William Butske, Lynda M.
Jaje, and Daniel R. Mayernik,
“On the Equation Σ

p|N 1/p +
1/N = 1, Pseudoperfect 
Numbers, and Partially
Weighted Graphs,” Mathe-

matics of Computation 69
(2000): 407–20; and Leo
Moser, “On the Diophantine
Equation 1n + 2n + 3n + . . . + 
(m – 1)n = mn,” Scripta

Mathematica 19 (1953):
84–88.
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A special Rubik’s number:

101097362223624462291180422369532000000

= 54! / ((9!)6) ~ 1.0109 × 1038

According to Robert Munafo, this is the number of combina-
tions of the 3 × 3 × 3 Rubik’s Cube if you are allowed to take
the stickers off and replace them in places that are different
from their original locations.

Jainism. The number of years in the longest time period in
the Jainist religion is 1.0130653244 . . . × 10177 = 2588.



Tegmark number. Accord-
ing to the astrophysicist Max
Tegmark, the number of
meters you must travel to find
an exact copy of yourself,
assuming that the universe 
is homogeneous and infinite,
is 101029.

Chess. Are any of you
fans of chess? If so, 1.15 . . .
× 1042 = 64! / (32! × 8!2 × 2!4

× 24) is the number of possi-
ble chess positions, based on
a 1950 article by Shannon
(Claude Shannon, “Program-
ming a Computer for 
Playing Chess,” Philosophi-

cal Magazine 41 [1950]:
256–75). Theoretically 
speaking, you can arrange all
32 pieces in any position
whatsoever (giving 64!/32!).
However, this number is
reduced somewhat because
pawns of a given color are
equivalent (8! for each color).
Other interchanges also serve
to reduce this number. Note
that this number is only an
estimate because it does not
take into account the fact 
that a pawn cannot switch
columns or move past the
opposing pawn in its column
unless it captures that pawn.
Also, the number does not

take possible pawn promotion
into consideration.

G. H. Hardy has estimated
that the number of chess
games is much higher than the
number of chess positions: 

Λ = 101050

10500 environments.
“On the theoretical side, 
an outgrowth of inflationary
theory called eternal infla-
tion is demanding that the
world be a megaverse full of
pocket universes that have
bubbled up out of inflating
space like bubbles in an
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Superfactorial. In 1987, A. Berezin published “Super Super
Large Numbers” in the Journal of Recreational Math (19,
no. 2: 142–43). This paper discusses the mathematical and
philosophical implications of the “superfactorial” function
defined by the symbol $, where N$ = N!N!N! . . . The term N! is
repeated N! times. In other words, there are N! repetitions of
N! on the right-hand side. The number grows rather quickly.
The first two values are 1 and 4, but subsequently grow so 
rapidly that 3$ already has a very large number of digits. In
particular, the third term, 3 superfactorial, is

It has way too many digits to compute exactly.

Zeroless powers. According to Michael Beeler and William
Gosper, there is at least one zero in the decimal expression of
each power of 2 between 

286 = 77,371,252,455,336,267,181,195,264 and 230739014

Notice how 286 itself is zeroless. Their computer program was
stopped at 230739014. If digits of such powers were random,
1/10411816 is the approximate probability that the next number,
230739015, has no zeros. According to Schroeppel, a power of 2
can have arbitrarily many nonzero digits. 

3 3 6 103 6 103 3 3 3
6666

102 0691973765 1036305

$ ! ! ! ! ! !
.

= = =
×



uncorked bottle of Cham-
pagne. At the same time
string theory, our best hope
for a unified theory, is pro-
ducing a landscape of enor-
mous proportions. The best
estimates of theorists are that
10500 distinct kinds of envi-
ronments are possible”
(Leonard Susskind, “The
Landscape,” an interview
with John Brockman at
Edge.org, 2003).

Transionic ϑ. Transions are
transfinite numbers with
probabilistic values. For
example, if there is some
probability that space is
quantized as integer multi-
ples of a certain minimum
distance and that our uni-
verse is infinite, we may rep-
resent the cardinality of
points in such a universe as
ℵ0 ; however, if space is not
quantized and infinitely
divisible, the cardinality of
universal points might be
represented as C = 2ℵ0. As
my colleague Graham Clev-
erley notes, if we allocate a
95 percent probability to the
first hypothesis and a 5 per-
cent probability to the sec-
ond, then we obtain a
transionic cardinality for the
set of universal points. Thus,

the universe’s shimmering
transionic value can be
denoted

Note that the idea that
space, and even time, comes
in discrete lumps is not far-
fetched. Loop quantum grav-
ity predicts that space comes
in tiny fragments, the small-
est of which is about a cubic
Planck length, or 10–99 cubic
centimeter. Time flows in dis-
crete ticks of about a Planck
time, or 10–43 second.

Of course, the notion of
transions need not be con-
fined to probabilities in 
cosmology or quantum
mechanics but has general
application when probabili-
ties can be assigned to the
cardinality of a set or the ele-
ments that compose a set.

Dream of mathematics.
“Science in its everyday
practice is much closer to 
art than to philosophy. When
I look at Gödel’s proof of 
his undecidability theorem, I
do not see a philosophical
argument. The proof is a
soaring piece of architecture,
as unique and as lovely as a
Chartres cathedral. The 
proof destroyed Hilbert’s
dream of reducing all 
mathematics to a few 
equations, and replaced it
with a greater dream of
mathematics as an endlessly
growing realm of ideas”
(Freeman Dyson, in the
introduction to Nature’s

Imagination, 1995).
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The Paradox of Tristram Shandy. Bertrand Russell once for-
mulated a paradox in which Tristram Shandy requires a year to
write about the first day of his life and laments that at this rate,
material would accumulate faster than he could deal with it, so
that he could never come to an end of his biography. However,
Russell notes that if Shandy had lived forever and had not
wearied of his task, then no part of Shandy’s biography would
have remained unwritten because there is a one-to-one corre-
spondence between each year that Shandy writes in and each
day he writes about. Therefore, no matter what day of his life
you care to consider, there will eventually come a year in
which he will be able to write about it. There is no part of his
life that can never be written down. Nevertheless, Shandy gets
further and further behind in his task!



More mathematics and
reality. “Our brains evolved 
so that we could survive 
out there in the jungle. Why
in the world should a brain
develop for the purpose of
being at all good at grasping
the true underlying nature 
of reality?” (Brian Greene, 

in Susan Kruglinski’s “When
Even Mathematicians Don’t
Understand the Math,” New

York Times, May 25, 2004).

Bubbles in a black sea.
“Consider the true picture.
Think of myriads of tiny

bubbles, very sparsely scat-
tered, rising through a vast
black sea. We rule some of
the bubbles. Of the waters 
we know nothing . . . ” 
(Larry Niven and Jerry 
Pournelle, The Mote in God’s

Eye, 1974).
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IN WHICH WE EXPLORE ARTISTIC FORMS GENERATED FROM MATHEMATICS—

delicate fungi, twenty-second-century cityscapes, fractal necklaces and seed

pods, alien devices, and a rich panoply of patterns that exhibit a cascade of

detail with increasing magnifications.

Mathematics
and Beauty

Beauty is eternity gazing at itself in a mirror.

—Kahlil Gibran, , 1923The Prophet

77





The line between science,

mathematics, and art is a

fuzzy one; the three are fra-

ternal philosophies formal-

ized by ancient Greeks such

as Eratosthenes and Ictinus.

Computer graphics helps

reunite these philosophies by

providing convenient ways to

represent natural, mathemati-

cal, and artistic objects. In 

the short art gallery that fol-

lows, simple mathematical

formulas or sets of rules are

used to generate a surprising

variety of beautiful and

unpredictable patterns. 

Mathematicians and scien-

tists have begun to enjoy and

present bizarre mathematical

patterns in new ways—ways

motivated as much by a sense

of aesthetics as by the needs

of logic. Moreover, computer

graphics allows nonmathe-

maticians to experience a 

little of the delight that math-

ematicians take in their work

and to better appreciate the

complicated behavior of sim-

ple formulas. 

Most of the figures that

follow are fractals. Fractals

usually exhibit self-similarity,

which means that various

copies of an object can be

found in the original object at

smaller-sized scales. The

detail continues for many

magnifications like an end-

less nesting of Russian dolls.

Some of the shapes remind

me of intricate flowers, 

futuristic cityscapes, fractal

jewelry, or alien devices that

will forever remain beyond

our understanding. As Francis

Bacon said, “The job of the

artist is always to deepen the

mystery.” 
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Figure 7.1 Fractal object by Abram Hindle is formed from a simple set of
mathematical rules. (See chriscoyne.com/cfdg/ for details.)
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Figure 7.2 Pop-art flower produced by Chris Coyne using a simple set of mathematical rules.
Artists and computer programmers can create a magnificent landscape of new shapes and

forms using what Chris Coyne calls “context-free design grammar.” The grammar includes rules
for growth and various weighting factors. (See chriscoyne.com/cfdg/ for details.)
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Figure 7.3 Magnification of a region of the previous figure, highlighting a potentially 
endless cascade of detail. (See chriscoyne.com/cfdg/ for details.)
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Figure 7.4 Tendrilous, botanical artwork produced by Chris Coyne using a simple 
set of mathematical rules. (See chriscoyne.com/cfdg/ for details.)
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Figure 7.5 Magnification of a portion of the previous figure. Image processing methods were 
applied to create a slight three-dimensional effect. (See chriscoyne.com/cfdg/ for details.)
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Figure 7.6 Futurist fractal device and city by Jock Cooper, who writes, “I use mathematics 
to create objects that inspire the imagination. I want the viewer to wonder what the results 

represent—some alien piece of art, or technology from another dimension.”  
(See fractal-recursions.com for details.)
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Figure 7.7 Magnification of a region of figure 7.6. 
(See fractal-recursions.com for details.)
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Figure 7.8 Fractal collage by Linda Bucklin, an expert at using various fractal-generating and
image-processing tools to produce her works. She assembles her fractal collages using software
that includes Ultra Fractal, KPT FraxFlame, and Apophysis. Adobe Photoshop, Corel Photopaint,

and other tools are used to assemble the final work. (See lindabucklin.com for details.)
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Figure 7.9 “Infocity” by Sally Hunter, who writes, “As I created the object using mathematics and 
various software tools, I imagined an information storage device and contemplated the fractal nature of
information—the more you find out, the more questions you have.” (See sallyhunter.co.uk for details.)
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Figure 7.10 A Kleinian group image, a limit set generated by Möbius transformations of the form 
→ ( + )/( + ). More particularly, this fractal image by Jos Leys was generated with two Möbius

transformations and their inverse transformations. This iterative process will repeatedly displace an initial
point in the complex plane. The resultant set of points forms the limit set, represented graphically in 

this figure. No matter how often and in what order the displacements are repeated, the new points fall
somewhere on the figure’s curved shapes. Möbius transformations will transform circles to circles, and 

this property yields the spherelike objects in the image. (See josleys.com for details.)

dczzabz
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Figure 7.11 Magnification of a region of figure 7.10. (See josleys.com for details.)
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Figure 7.12 “Martian Missile Defense,” a fractal created by Roger A. Johnston using 
the Apophysis software tool. (See community.webshots.com/user/rajahh for details.)
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Figure 7.13 Halley map created by the author reveals the intricate behavior of a root-finding
method. The problem of finding zeros of a function by iterative methods occurs frequently in 
science and engineering. These approximation techniques start with a guess and successively

improve upon it with repetitions of similar steps. The resultant graphics give an indication 
of how well one of these iterative methods, Halley’s method, works—where it can be relied 

upon and where it behaves strangely. (See pickover.com for details.)
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Figure 7.14 Fractal “Seed Pods,” created by Cory and Catska Ench using an “iterated
functions system” that consists of affine transformations involving rotations, scalings

by a constant ratio, and translations. (See enchgallery.com for details.)



1. Numbers, History, Society, 
and People

1.1 Ancient counting. Among the oldest direct
evidence of human counting is a baboon’s
thigh bone marked with 29 notches. The bone
is 35,000 years old and was discovered in the
Lebombo Mountains of Africa.

To put this in perspective, the oldest fossils
of modern humans are nearly 150,000 years
old. The Lebombo bone resembles the calen-
dar sticks still used today by Bushmen clans
in Namibia.

1.2 Mathematics and reality. In my mind, we
don’t invent mathematics and numbers, but
rather we discover them. In chapter 2, when
we discuss exotic kinds of numbers like tran-
scendental numbers, I have the feeling that
they are out there in the realm of eternal
ideas. They have an independent existence
from us. These ideas are controversial, and
there are certainly other points of view. How-
ever, to me, mathematics and numbers tran-
scend us and our physical reality. The
statement “3 + 1 = 8” is either true or false.
It’s false. Was the statement false before the
discovery of integers? I believe it was. Num-
bers and mathematics exist whether humans

know about them or not. In Are Universes

Thicker Than Blackberries? Martin Gardner
stated this as, “If two dinosaurs joined two
other dinosaurs in a clearing, there would be
four there, even though no humans were
around to observe it, and the beasts were too
stupid to know it.” G. H. Hardy, in his famous
Apology, wrote, “I believe that mathematical
reality lies outside us, that our function is to
discover and observe it, and that the theorems
which we prove, and which we describe
grandiloquently as our ‘creations,’ are 
simply our notes of our observations.” The
nineteenth-century mathematician Leopold
Kronecker said, “God created the integers—
all else is human invention!”

I think that mathematics is a process of
discovery. Mathematicians are like archae-
ologists. The physicist Roger Penrose felt the
same way about fractal geometry. In his book
The Emperor’s New Mind, he says that frac-
tals (for example, intricate patterns such as
the Julia set or the Mandelbrot set) are out
there waiting to be found:

It would seem that the Mandelbrot set is
not just part of our minds, but it has a real-
ity of its own. . . . The computer is being
used in essentially the same way that an
experimental physicist uses a piece of
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experimental apparatus to explore the
structure of the physical world. The Man-
delbrot set is not an invention of the human
mind: it was a discovery. Like Mount
Everest, the Mandelbrot set is just there.

I think we are uncovering truths and ideas
independently of the computer or mathemati-
cal tools we’ve invented.

Penrose went a step further about fractals
in The Emperor’s New Mind: “When one sees
a mathematical truth, one’s consciousness
breaks through into this world of ideas. . . .
One may take the view that in such cases the
mathematicians have stumbled upon works 
of God.”

Anthony Tromba, the coauthor of Vector

Calculus, said in a July 2003 University of
California press release, “When you discover
mathematical structures that you believe cor-
respond to the world around you, you feel you
are seeing something mystical, something
profound. You are communicating with the
universe, seeing beautiful and deep structures
and patterns that no one without your training
can see. The mathematics is there, it’s leading
you, and you are discovering it” (www.ucsc.
edu/news_events/press_releases).

James Gleick, in Chaos: Making a New Sci-

ence, writes, “The Mandelbrot set . . . exists. It
existed before . . . Hubbard and Daudady
understood its mathematical essence, even
before Mandelbrot discovered it. It existed as
soon as science created a context—a frame-
work of complex numbers and a notion of iter-
ated functions. Then it waited to be unveiled.”

Other mathematicians disagree with my
philosophy and believe that mathematics is a
marvelous invention of the human mind. One

reviewer of my book The Zen of Magic

Squares used poetry as an analogy when
“objecting” to my philosophy. He wrote,

Did Shakespeare “discover” his sonnets?
Surely all finite sequences of English
words “exist,” and Shakespeare simply
chose a few that he liked. I think most peo-
ple would find the argument incorrect and
hold that Shakespeare created his sonnets.
In the same way, mathematicians create
their concepts, theorems, and proofs. Just
as not all sequences of words are sonnets,
not all grammatical sentences are theo-
rems. But theorems are human creations no
less than sonnets.

Similarly, the molecular neurobiologist
Jean-Pierre Changeux believes that mathe-
matics is invented: “For me [mathematical
axioms] are expressions of cognitive facilities,
which themselves are a function of certain
facilities connected with human language.”

Also, I should point out that the develop-
ment of “higher” math skills is not inevitable
as a culture matures or evolves. In fact, higher
math, unlike counting and adding, is
extremely rare. John Barrow, in Pi in the Sky:

Counting, Thinking, and Being, suggests,

Having a notion of quantity is a long 
way from the intricate abstract reasoning
that today goes by the name of mathemat-
ics. Thousands of years passed in the
ancient world with comparatively little
progress in mathematics. . . . It is not good
enough to possess the notion of quantity.
One must develop an efficient method of
recording numbers . . . more crucially still,
the adoption of a place value system with 
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a symbol for zero was a watershed. A good
notation permits an efficient extension to
the ideas of fractions and the operations 
of multiplication and division. . . . Again,
we find these discoveries are deep and 
difficult; almost no one made them 
(pp. 103–104).

My colleague Chuck G. comes down on
the side of mathematics as a creation, not a
discovery:

A block of stone contains every possible
statue that can be carved from it. When a
sculptor selects one of these statues, it’s
said to be an act of creativity. If mathemat-
ics already exists, then so do all possible
mathematics, including an infinity of incor-
rect, worthless, boring, irrelevant, useless,
ridiculous, and incomprehensible mathe-
matics. Shouldn’t the finding of worthwhile
mathematics be given the same considera-
tion as finding a work of art in a stone and
be called creative? If not, then isn’t every
human endeavor just blundering around
finding things?

My colleague Graham C. suggests that the
statement 3 + 1 = 8 is neither true nor false
until we define what we mean by it:

Is a + b = c true or false? Obviously neither.
It is only given meaning in context, and it is
a human mind that gives it context. Philoso-
pher Ludwig Wittgenstein (1889–1951)
would have said that you need to know the
rules of the game before you play it. And
someone has to define the rules. Aristotle
said that a statement had to be either true or
false. Much as I admire Aristotle, he was

wrong. A statement can be meaningless,
and therefore neither true nor false. 
(Popper, Carnap, or Ayer would have held
that the statement “God exists” is neither
true nor false.) I interpret Martin Gardner
to be saying that cardinality, not numbers,
existed without a conscious mind. That is, if
two dinosaurs joined two other dinosaurs in
a clearing, and two chickens joined two
other chickens in the same clearing, each
dinosaur would have been able to eat one
chicken. There was a one-to-one mapping.
So, I think cardinality existed and was dis-
covered. Numbers, on the other hand, were
invented as a method for describing and
manipulating cardinality. Cardinality is in
the real world, number in the mind. This is
why some tribes can get by with only a few
words for numbers. They observe the cardi-
nality, but cannot describe it accurately. In
fact, pigeons can observe the cardinality
but cannot describe it at all because they
haven’t invented number. As an analogy,
mass exists out there in the real world.
Before the rise of humans, the mass of the
Earth was much the same as it is now. How-
ever, we couldn’t measure it until someone
invented units of mass. Without units of
mass, we can tell if one thing is more mas-
sive than another, but we cannot, for
instance, say how much more massive.

Finally, my colleague Pete B. responds,
“The words ‘elephants have trunks’ do not
create elephants with swinging noses; like-
wise, the words ‘one plus one equals two’ do
not create the mathematical relationship.
However, in both instances, nature has created
what we use language to describe.”
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1.3 Mathematics and murder. André Bloch
(1893–1948). After a family meal, he mur-
dered his brother, his uncle, and his aunt. He
was confined for life in a psychiatric hospital,
where he wrote breakthrough papers on a
large range of topics: function theory, geome-
try, number theory, algebraic equations, and
kinematics. The Académie des Sciences
awarded him its distinguished Becquerel Prize
just before his death.

When asked why he’d committed the grue-
some murders, he replied, “There had been
mental illness in my family.” He saw it as his
duty to eliminate the madness.

1.4 Leaving mathematics and approaching God.
The French geometer Blaise Pascal
(1623–1662). Pascal and Pierre de Fermat
independently founded probability theory.
Pascal also invented the first calculating
machine, studied conic sections, and pro-
duced important theorems in projective 
geometry. His father, a mathematician, was
responsible for his education.

Pascal was not allowed to begin learning a
subject until his father thought he could easily
master it. As a result, the eleven-year-old boy
worked out for himself, in secret, the first
twenty-three propositions of Euclid. At six-
teen, he published essays on conics that
Descartes refused to believe were the handi-
work of a teenager.

In 1654, Blaise Pascal decided that religion
was more worthy of his intense dedication
than was mathematics. You can read more
about him later in this chapter.

1.5 Counting and the mind. Seven. In 1949, 
Kaufman, Lord, Reese, and Volkmann flashed

random patterns of dots on a screen. When
subjects looked at patterns containing up to
five or six dots, the subjects made no errors.
The performance on these small numbers of
dots was so different from the subjects’ per-
formance with more dots that the observation
methods were given special names. Below
seven, the subjects were said to subitize;
above seven, they were said to estimate. For
more information, see E. L. Kaufman, M. W.
Lord, T. W. Reese, and J. Volkmann, “The Dis-
crimination of Visual Number,” American

Journal of Psychology 62 (1949): 498–525.
Also see George Miller, “The Magical Num-
ber Seven, Plus or Minus Two: Some Limits
on Our Capacity for Processing Information,”
The Psychological Review 63 (1956): 81–97.

1.6 Circles. Sometime around 2400 B.C., the
ancient Sumerians noticed the apparent circular
track of the Sun’s annual path across the sky
and knew that it took about 360 days to com-
plete the journey. Thus, it was reasonable for
them to divide the circular path into 360
degrees to track the Sun’s daily movement. This
eventually led to our modern 360-degree circle.

I wonder whether modern scientists, with
their metric systems, have considered replac-
ing the ancient 360-degree circle with a 100-
degree circle. In some sense, 360 degrees may
be more useful than 100 degrees, simply
because 360 has so many factors that provide
a larger number of easily definable units: 2, 3,
4, 5, 6, 8, 9, 10, 12, 15, 18, 20, 24, 30, 36, 40,
45, 60, 72, 90, 120, and 180. Of course, for
real metric aficionados, there’s always the
grad, which is defined such that there are 100
grads in a right angle. Thus, 1 degree equals
100/90 grads, and 400 grads correspond to a
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complete revolution around the circle. In the
1800s, the grad unit was introduced in France,
where it is called the grade.

1.7 The world’s most forgettable license plate? 
My friend, the physicist Paul Moskowitz, just
bought a new car and chose a particularly dif-
ficult license plate to memorize, illustrated in
figure A1.1.

If a bank robber were attempting to gener-
ate a license for his car, he might consider
only numbers that are easily confused with
one another. For instance, an 8 can be mis-
taken for a 0 or a 3 at a distance, and some
people might confuse 2 and 5. If he can use
letters, this approach works even better
because other similar-looking symbols can 
be used, such as 0 and D, and 8 and B. Thus, 
a plate like 103BI8I1 may be hard to remem-
ber and to recognize. Also, any sequence of
letters that would be hard to pronounce would
be useful.

Some scientists I consulted suggested that
they would use the concept of Shannon
entropy for assessing disorder in a license
plate sequence, although I don’t think most
bank robbers would use this approach. Shan-
non entropy is beyond the scope of this book,
but it quantifies the ease with which we can

compress (or simply represent) a string of
characters. Shannon entropy is an important
measure that is used to evaluate structures and
patterns in our data. The lower the entropy,
the more structure that exists in the string.

Other colleagues suggested that anything
one could do to break the symmetry of the
digit string would help to make the plate less
memorizable. For example, a symmetrical
plate such as 11000011 would be too easy to
memorize.

My favorite mathematical friends have
approached the problem of selecting difficult-
to-remember plates by focusing on plates that 
consist of only 1s and 0s. Obviously, humans
are good at recognizing patterns in numbers.
Plates with 11111111 and 00000000 would
stand out. Likewise 10000000 and 00000001
would draw attention.

My brainy colleague Dr. Joseph Pe has
come up with a mathematical measure of the
memorability M(n) of a binary license plate.
General readers may wish to skip reading the
following mathematical exposition because it
involves some terms that may be unfamiliar.
For those brave souls who remain—consider a
number n. M(n) should be large if the infor-
mation I(n) conveyed by n is large; that is, the
greater the information, the greater the mem-
orableness. For example, “11111111” is more
memorable than “11010010,” and it contains
more information by our definition. (If you
think of 1s as heads and 0s as tails, it is harder
to get 8 heads in 8 tosses than 4 heads and 4
tails in 8 tosses.) So, if p(n) denotes the prob-
ability of getting the same number of heads
and number of tails as n, then, using the bino-
mial distribution, we find that p(11111111) ≤
p(11010010).
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Figure A1.1 The physicist Paul Moskowitz’s 
difficult-to-remember car license plate.



Joseph Pe asks us to consider that I(n) =
–log p(n), where p(n) is the probability of
obtaining a string with the same number 
of 0s and the same number of 1s as n. So
p(11111111) = 1/28, and p(11010010) =
C(8,4)(1/28). However, M(n) should be large 
if K(n) (the sum of the lengths of the 
substrings of n consisting of more than one
consecutive 0 or more than one consecutive 1)
is large. The idea is that a substring of consec-
utive 0s or 1s is easier to remember than a 
substring with mixed 0s and 1s. For example,
K(11110000) = 4 + 4 = 8, K(11010010) = 
2 + 2 = 4, and K(11111111) = 8. Let’s consider
the measure M(n) = I(n) + K(n) and run
through an actual computation. For example,
consider the probability of getting four 1s and
four 0s, which is p(11110000) = p(11010010).
This equals C(8,4) × 1/28 = 35/128. Also,
p(11111111) = 1/28 = 1/256. Hence,
M(11111111) = I(11111111) + K(11111111) =
–log(1/256) + 8 = 8 + log(256); M(11110000)
= I(11110000) + K(11110000) = –log(35/128)
+ 8 = 8 + log(128/35); M(11010010) =
I(11010010) + K(11010010) = –log(35/128) +
4 = 4 + log(128/35). Therefore, M(11111111)
> M(11110000) > M(11010010), which meets
the test of common sense.

To sum up, Joseph Pe proposes a final
measure, M(n) = I(n) + K(n). The problem
now reduces to minimizing this expression
over all length-8 binary strings, which can be
done by computer. I’d think the answer is not
unique.

My friend Daniel Dockery points out that a
binary plate is rather limiting as to the num-
ber of different possible plates. For example,
there are only 28 = 256 different possible
plates that have a mixture of two possible val-

ues. On the other hand, there are 100,000,000
possible 8-digit plates using any of the possi-
ble digits, and 2,821,109,907,456 possibilities
if we use A–Z and 0–9. With only 256
possibilities, it might be simple for law
enforcement to identify the exact plate and
car, particularly if other details like the make
and the model of the vehicle are available.
Dennis Gordon notes that a license plate con-
sisting of zeros and Os would be quite diffi-
cult to remember.

1.8 Calculating π. William Shanks (1812–
1882) spent a good part of his life calculating
the value of π to 707 decimal places. In fact,
this feat took Shanks over fifteen years—in
other words, he averaged only about one deci-
mal digit per week! He died a happy man,
thinking that he had left behind a major con-
tribution to mathematics. To compute π, he
had used the formula

π/4 = 4 tan–1(1⁄5) – tan–1(1⁄239).

Unfortunately for Shanks, in 1944 D. F. Fer-
guson calculated π and found that Shanks had
made an error in the 528th place, and the dig-
its thereafter were also incorrect.

1.9 A mathematical nomad. Paul Erdös
(1913–1996). During the last year of his life,
at age eighty-three, he continued to churn out
theorems and deliver lectures, defying con-
ventional wisdom that mathematics was a
young person’s sport. On this subject, Erdös
once said, “The first sign of senility is when a
man forgets his theorems. The second sign is
when he forgets to zip up. The third sign is
when he forgets to zip down.”

Paul Hoffman, the author of The Man Who
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Loved Only Numbers, notes that “Erdös
thought about more problems than any other
mathematician in history and could recite the
details of some 1,500 papers he had written.
Fortified by coffee, Erdös did mathematics 19
hours a day, and when friends urged him to
slow down, he always had the same response:
‘There’ll be plenty of time to rest in the
grave.’” Erdös traveled constantly and lived
out of a plastic bag, focusing totally on math-
ematics at the expense of companionship, sex,
and food.

Erdös made an early mark on mathematics
at age eighteen, when he discovered an ele-
gant proof of the theorem that for each integer
n greater than 1, there is always a prime num-
ber between n and double the number, 2n. For
example, the prime number 3 lies between 2
and 4.

1.10 Mirror phobia. The British mathematician
G. H. Hardy (1877–1947). He hated mirrors
to such an extent that he covered mirrors in
any hotel rooms that he entered. He also
intensely disliked having his photograph
taken and being touched by others.

Hardy’s Course of Pure Mathematics, pub-
lished in 1908, was one of the first rigorous
English treatises on numbers, functions, and
limits, and it transformed college mathemat-
ics education. He is most famous for his col-
laborations with the mathematicians
Littlewood and Ramanujan, and he con-
tributed much to the fields of Diophantine
analysis, summation of series, and the distri-
bution of primes.

Hardy believed that the most profound and
beautiful mathematics was actually the least
useful. In his view, mathematical usefulness

detracted from the beauty of mathematics.
Like many other great male mathemati-

cians, Hardy did not seem to be very inter-
ested in women. Calvin Clawson writes in
Mathematical Mysteries, “Whether Hardy,
himself, was a homosexual is not known, but
he had no meaningful relationships with
women during his life except with his mother,
and sister Gertrude.”

1.11 Animal math. The meaning of “counting” by
animals is a highly contentious issue among
animal behavior experts. However, it seems
clear that animals have some sense of number.
H. Kalmus, writing in Nature (“Animals as
Mathematicians,” 202 [June 20, 1964]: 1156),
notes that

There is now little doubt that some animals
such as squirrels or parrots can be trained
to count. . . . Counting faculties have been
reported in squirrels, rats, and for pollinat-
ing insects. Some of these animals and oth-
ers can distinguish numbers in otherwise
similar visual patterns, while others can be
trained to recognize and even to reproduce
sequences of acoustic signals. A few can
even be trained to tap out the numbers of
elements (dots) in a visual pattern. . . . The
lack of the spoken numeral and the written
symbol makes many people reluctant to
accept animals as mathematicians.

Rats have been shown to “count” by perform-
ing an activity the correct number of times in
exchange for a reward. Chimpanzees can press
numbers on a computer that match numbers of
bananas in a box. Tetsuro Matsuzawa, of the
Primate Research Institute at Kyoto University
in Japan, taught a chimpanzee to identify
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numbers from 1 to 6 by pressing the appropri-
ate key when she was shown a certain number
of objects on the computer screen.

Michael Beran, at Georgia State University,
trained chimps to use a computer screen and a
joystick. The screen flashed a numeral and
then a series of dots, and the chimps had to
match the two. One chimp learned numerals 1
to 7, while another managed to count to 6.
When the chimps were tested again after a gap
of three years, both chimps were able to match
numbers, but with double the error rate. For
more information, see “Chimps Remember
How to Play the Numbers Games for Years,”
New Scientist 180, no. 2421 (2003): 16.

1.12 Mystery mathematician. His name was
Diophantus, often known as the “father of
algebra,” who died at age 84 in the third cen-
tury A.D. The famous puzzle is said to be
Diophantus’s epitaph, and it commemorates
his work on algebra, including the study of
Diophantine equations. Most of the details 
of Diophantus’s life (including details that
may be fictitious) come from the Greek
Anthology, compiled by Metrodorus around
A.D. 500. This particular puzzle in Anthology

is said to have been written on Diophantus’s
tombstone. We can solve the problem as fol-
lows. Let x be the number of years he lived.
Thus we have,

(1/6)x + (1/12)x + (1/7)x + 5 + 
(1/2)x + 4 = x

which simplifies to

(25/28)x + 9 = x
(25/28)x – x = –9

–(3/28)x = –9
x = 84 years

We can visualize the great one’s life on the
number line in figure A1.2. Thus Diophantus
lived 84 years. His son’s age at death was
(1/2)x or 42 years old.

1.13 Mathematician starves. Kurt Gödel (1906–
1978), an eminent Austrian mathematician
and perhaps the most brilliant logician of this
century. The implications of his “incomplete-
ness theorem” are vast, not only applying to
mathematics, but also touching on areas such
as computer science, economics, and nature.
One of his closest friends was Albert Einstein
when Gödel was at Princeton.

When his wife, Adele, was not with him 
to coax him to eat—because she was in a 
hospital recovering from surgery—Gödel
stopped eating. He was paranoid and felt that
people were trying to poison him. On Decem-
ber 19, 1977, he was hospitalized but refused
food. He died on January 14, 1978. During
his life, he had also suffered from nervous
breakdowns and hypochondria.

Gödel is perhaps the most interesting
example of a mathematician studying cosmic
questions. Sometime in 1970, Gödel’s mathe-
matical proof of the existence of God began
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to circulate among his colleagues. The proof
was less than a page long and caused quite a
stir. You can see the proof later in this chapter.

Gödel’s academic credits were impressive.
For example, he was a respected mathemati-
cian and a member of the faculty of the Uni-
versity of Vienna starting in 1930. He also
was a member of the Institute of Advanced
Study in Princeton, New Jersey. He emigrated
to the United States in 1940.

Gödel is most famous for his theorem, pub-
lished in 1931, demonstrating that there must
be true formulas in mathematics and logic
that are neither provable nor disprovable, thus
making mathematics essentially incomplete.
Gödel’s theorem had quite a sobering effect
upon logicians and philosophers because it
implies that within any rigidly logical mathe-
matical system, there are propositions or
questions that cannot be proved or disproved
on the basis of axioms within that system,
and, therefore, it is possible for basic axioms
of arithmetic to give rise to contradictions.
The repercussions of this fact continue to be
felt and debated. Moreover, Gödel’s theorem
put an end to a centuries-long attempt to
establish axioms that would provide a rigor-
ous basis for all of mathematics.

Over the span of his life, Gödel kept
numerous notes on his mathematical ideas.
Some of his work is so complex that mathe-
maticians believe that many more decades
will be required to decipher all of it. The
author Hao Wang writes on this very subject
in his book Reflections on Kurt Gödel (1987):
“The impact of Gödel’s scientific ideas and
philosophical speculations has been increas-
ing, and the value of their potential implica-
tions may continue to increase. It may take

hundreds of years for the appearance of more
definite confirmations or refutations of some
of his larger conjectures.”

Gödel himself spoke of the need for a
physical organ in our bodies to handle
abstract theories. He also suggested that
philosophy will evolve into an exact theory
“within the next hundred years or even
sooner.” He even believed that humans will
eventually disprove propositions such as
“there is no mind separate from matter.”

1.14 Mathematician murdered. Hypatia of
Alexandria (A.D. 370–415) was martyred by
being torn into shreds by a Christian mob—
partly because she did not adhere to strict
Christian principles. She considered herself a
neo-Platonist, a pagan, and a follower of
Pythagorean ideas. Interestingly, Hypatia is
the first woman mathematician in the history
of humanity of whom we have reasonably
secure and detailed knowledge. She was said
to be physically attractive and determinedly
celibate. When asked why she was obsessed
with mathematics and would not marry, she
replied that she was wedded to the truth.

In one of her mathematical problems for
her students, she asked them for the integer
solution of the pair of simultaneous equations
x – y = a, x2 – y2 = (x – y) + b, where a and b

are known. Can you find any integer values
for x, y, a, and b that make both of these for-
mulas true?

The Christians were her strongest philo-
sophical rivals, and they officially discouraged
her teachings, which were Pythagorean in
nature, with a religious dimension. On a
warm March day in A.D. 414, a crowd of
Christian zealots seized her, stripped her, and
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proceeded to scrape her flesh from her bones
using sharp shells. They then cut up her body
and burned the pieces. Like many victims of
terrorism today, she may have been seized
merely because she was a famous person on
the other side of the religious divide. It was
not until after the Renaissance that another
woman, Maria Agnesi, made her name as a
famous mathematician.

1.15 Going to the movies. Billion Dollar Brain,
1967, starring Michael Caine as secret agent
Harry Palmer. An older movie that also
qualifies is The Billion Dollar Scandal, 1932,
in which three ex-cons become involved 
with a financier who plans to swindle the 
government.

1.16 Movie title. “Fifty Million Frenchmen
Can’t Be Wrong,” sung by Sophie Tucker and
performed with the Ted Lewis Band. The song
was recorded in 1927. Interestingly, the popu-
lation of Frenchmen was nowhere near 50
million in 1927!

Lesser known and shorter movies include
Genesis: Four Billion Years in the Making,
starring Paul Novros, 1999 (run time: 32 min-
utes). If one considers “infinity” a number,
another classic movie is Slave Girls from

Beyond Infinity, 2002, in which a pair of
bikini-clad babes escape from a prison in
outer space and land on a strange jungle
planet. Also, Matthew Broderick and Patricia
Arquette starred in the 2002 movie Infinity—a
true-life romantic drama based on the life 
of the famous A-bomb physicist Richard
Feynman.

1.17 Math and madness. Georg Cantor
(1845–1918), a German mathematician who

is best known as the creator of modern set
theory. He is recognized by mathematicians
for having extended set theory to the concept
of transfinite numbers, including the cardinal
and the ordinal number classes. Cardinal

numbers are used to describe how many
objects are in a collection, that is, elements in
a set. Ordinal numbers are used to find the
proper order in a set. A number in a street
address is an example of an ordinal number.
Whenever Cantor suffered from periods of
depression, he tended to turn away from
mathematics and toward philosophy.

To understand “transfinite numbers,” con-
sider a set that has a finite number of ele-
ments. For example, such a set may contain 8
turtles (elements). The number of elements in
this set is called a cardinal number and is
finite in this case. Cardinal numbers are num-
bers used to denote the size of a set. If the set
is infinite, the corresponding cardinal number
is called a transfinite (or infinite) cardinal
number. The first transfinite number is
denoted ℵ0. (Aleph, or ℵ, is the first letter of
the Hebrew alphabet.) For example, ℵ0 is the
cardinal number of the set of all integers.
Mathematicians deal with “higher” levels of
infinity, denoted by ℵ1, ℵ2, and so forth,
which will be clarified in chapter 2.

Cantor was also fascinating because of his
religious interests. Interestingly, the Jesuits
used his theories of transfinite numbers to
“prove” the existence of God and the Holy
Trinity. Although Cantor, who was also an
excellent theologian, distanced himself from
such “proofs,” he did equate his concept of
the Absolute Infinite with God. He once
wrote, “I entertain no doubts as to the truths
of the transfinites, which I recognized with
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God’s help and which, in their diversity, I
have studied for more than twenty years;
every year, and almost every day brings me
further in this science.” He frequently suffered
from bouts of depression, which forced him to
become hospitalized.

Cantor believed that God ensured the exis-
tence of these transfinite numbers. Cantor
regarded the transfinite numbers as leading
directly to the Absolute, to the one “true infin-
ity” that was incomprehensible within the
bounds of man’s understanding. Constantin
Gutberlet, one of Cantor’s contemporaries,
worried that Cantor’s work with mathematical
infinity challenged the unique, “absolute
infinity” of God’s existence. However, Cantor
assured Gutberlet that instead of diminishing
the extent of God’s dominion, the transfinite
numbers actually made it greater. After talk-
ing to Gutberlet, Cantor became even more
interested in the theological aspects of his
own theory on transfinite numbers.

Gutberlet subsequently made use of
Cantor’s ideas, including that God ensured 
the existence of Cantor’s transfinite numbers.
In addition, God ensured the ideal existence
of infinite decimals, the irrational numbers,
and the exact value of pi. Gutberlet also
believed that God was capable of resolving
various paradoxes that seem to arise in 
mathematics.

Cantor’s own religiosity grew as a result of
his contact with various Catholic theologians.
In 1884, Cantor wrote to the Swedish mathe-
matician Gösta Mittag-Leffler, explaining that
he was not the creator of his new work but
merely a reporter. God had provided the inspi-
ration, leaving Cantor responsible only for the
way in which his papers were written, for the

organization and style, but not for their con-
tent. Cantor claimed and believed in the
absolute truth of his “theories” because they
had been revealed to him. Thus, Cantor saw
himself as God’s messenger, and he desired to
use mathematics to serve the Christian faith.
Cantor said that he knew the transfinites were
real because “God had told me so,” and it
would have diminished God’s power had God
only created finite numbers.

1.18 Numerical religion. Pythagoras (569 B.C.–
475 B.C.). This Greek philosopher was respon-
sible for important developments in mathe-
matics, astronomy, and the theory of music.
He and his followers are attributed with 
discovering that the sum of the angles of a tri-
angle is equal to two right angles and deter-
mining that for a right-angled triangle, the
square of the hypotenuse is equal to the sum
of the squares of the other two sides. Pythago-
ras and his followers were vegetarians and
wore white clothes. They believed that num-
bers were divine ideas that created and main-
tained the universe. Studying arithmetic was
the way to perfection and led to an under-
standing of the divine plan for the universe.

1.19 Modern mathematical murderer. Theodore
Kaczynski (b. 1942) is certainly one of the
most murderous mathematicians. Ted 
Kaczynski, also known as the Unabomber,
was a mathematician who rose swiftly to 
academic heights even as he became an 
emotional cripple, a loner, and a murderer.
Kaczynski’s twenty-five-year self-imposed
exile in the Montana woods was particularly
appropriate for this man who had always been
alone.
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Before he had become a hermit, Kaczynski
wrote several notable papers on the mathe-
matical properties of functions in circles and
boundary functions. Although his IQ was
measured as 170, he exhibited many odd
characteristics: excessive (pathological) shy-
ness, a fascination with body sounds, a metro-
nomic habit of rocking, and frequent concerns
about germs, infections, and other health mat-
ters. His room at school stank of rotting food
and was piled high with trash.

After teaching for two years and publishing
mathematical papers that impressed his peers
and put him on a tenure track at one of the
nation’s most prestigious universities, he sud-
denly quit. He spent nearly half his life in the
woods, killed three strangers, and injured
twenty-two others using bombs sent in the
mail. Kaczynski’s killings grew from his
deluded attempts to fight against what he per-
ceived as the evils of technological progress.
He was finally arrested in 1996 at his remote
cabin in Montana. One of his math papers is
T. J. Kaczynski, “Boundary Functions for
Bounded Harmonic Functions,” Transactions

of the American Mathematics Society 137
(1969): 203–09.

1.20 The ∞ symbol. The English mathematician
John Wallis (1616–1703) introduced the
mathematical symbol for infinity (∞) in 1655
in his Arithmetica Infinitorum. I don’t think it
appeared very often in print again until Jakob
Bernoulli (1654–1705) published Ars Con-

jectandi (posthumous publication in 1713).

1.21 Mathematics of tic-tac-toe. As simple as 
the playing board is, players can place their
Xs and Os on the tic-tac-toe board in 9! =

362,880 ways. As James Curran notes at 
noveltytheory.com, we may arrive at this
number by observing that the first player (X)
has a choice of making 9 opening moves.
Next, the O player can move to any of 8
vacant cells. Hence, there could be 72 (9 × 8)
possible boards with one X and one O. On the
third move, the X player can choose any of
the 7 remaining spots, and then O has 6 cells
to choose from. If we continue this logic, we
find that there are 362,880 (9! or 9 × 8 × 7 × 6
× 5 × 4 × 3 × 2 × 1) different complete games.
In real life, there are fewer games, because
many real games finish in a few moves.

Although this is the number of different
move sequences for a “game” (not consider-
ing that a game could end before the board is
filled with symbols), it is not the number of
different patterns or configurations that the
board can exhibit. For example, note that
many different sequences of moves can give
rise to the same pattern of Xs and Os on a
board. Consider that there are 9 cells that can
exist in one of three states (X, O, or empty).
This implies that there can be only 19,683 (39

or 3 × 3 × 3 × 3 × 3 × 3 × 3 × 3 × 3) different
board configurations or images. This number
is reduced further by our noting that many of
these configurations will never be achieved in
normal tic-tac-toe play. For example, a board
filled with nine Os will never occur.

When we consider that various possible
games are either a reflection or a rotation of
others, there are 48 possible rational out-
comes of tic-tac-toe, all of them draws.

1.22 Chickens and tic-tac-toe. I can only guess
at how the chicken challenge works. If it’s 
like any of the tic-tac-toe-playing chicken
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machines in the past, the chicken does not
know how to play tic-tac-toe. The board is
placed in such a way that the human player
can’t really see where the chicken is pecking.
It’s true that the chicken pecks at the board
and gets some food as reward, but a computer
decides where the actual move is placed. The
player sees the chicken peck and an X or an O
light up on the board. The human beings are
so distracted that they never think about
where the chicken actually pecks.

1.23 First female doctorate. Sofia Kovalevskaya
(1850–1891). Kovalevskaya made valuable
contributions to the theory of differential
equations and was the first woman to receive
a doctorate in mathematics.

Like most other mathematical geniuses,
Sofia fell in love with mathematics at a very
young age. She wrote in her autobiography:
“The meaning of these concepts I naturally
could not yet grasp, but they acted on my
imagination, instilling in me a reverence for
mathematics as an exalted and mysterious sci-
ence which opens up to its initiates a new
world of wonders, inaccessible to ordinary
mortals.” When Sofia was eleven years old, the
walls of her bedroom were papered with the
mathematician Mikhail Ostrogradski’s lecture
notes on differential and integral analysis. In
1874 Kovalevskaya received her doctorate,
summa cum laude, from Göttingen University.
However, despite this doctorate and enthusias-
tic letters of recommendation from Weier-
strass, Kovalevskaya was unable to obtain an
academic position because she was a woman.

1.24 Mathematics and homosexuality. Alan Tur-
ing, a computer theorist, whose code-breaking

work helped to shorten World War II. For this
contribution, he was awarded the Order of the
British Empire. When he called the police to
investigate a burglary at his home, a homo-
phobic police officer suspected that Turing
was homosexual. Turing was forced to make a
decision. He could either go to jail for a year
or take experimental drug therapy. His death
two years after the therapy, in 1954, at age
forty-two, was a shock to his friends and fam-
ily. Turing was found in bed. The autopsy
indicated cyanide poisoning. Perhaps he had
committed suicide, but to this day we are not
certain.

1.25 Mathematician cooks. Jean Baptiste Fourier
(1768–1830) was a French mathematician and
a physicist who is best known for initiating 
the investigation of Fourier series—a repre-
sentation of a periodic function as a sum of
trigonometric functions. He is also famous for
explaining the propagation of heat. Perhaps
his interest in heat led him to believe that heat
was healthful. Toward the end of his life, he
covered his body with layers of clothing and
kept his room so hot that it was unbearable to
others. He left his home less and less. Accord-
ing to Theoni Pappas, the author of Mathemat-

ical Scandals, the heat may have exacerbated a
heart condition that led to his death.

1.26 Mathematics and money. I asked a number
of colleagues this question, thinking that
surely an increased salary for mathematics
teachers would improve mathematics educa-
tion. However, most of my colleagues said
that a disparity in income between mathemat-
ics teachers and teachers in other fields would
be harmful both to mathematics education
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and to education as a whole. Some worried
that this sudden surge in salary would cause
fewer teachers to be hired because either pri-
vate or public funds would have to pay for the
increase. In addition, many teachers outside
of mathematics would suddenly become
unhappy and would attempt to become
mathematics teachers, which would not actu-
ally improve mathematics education. Also,
this diaspora of teachers from other areas
would decrease quality in those fields.

Many respondents wondered where the
money would come from. If the amount of
money allocated to education was constant,
the money would have to come from other
education areas, which would be harmful.
Over time, however, the mathematical educa-
tional levels would rise, as new people chose
careers as mathematics teachers, due to the
higher salaries. Competition would increase,
and only the best candidates would be suc-
cessful in getting a position. Nonetheless,
shortages might occur in other areas, decreas-
ing educational quality overall.

Some colleagues said that increasing the
number of math teachers would be useful, but
they thought it would be more useful to show
the current math teachers how to teach math
to make it “twice as interesting and something
students consider worthwhile learning.” Oth-
ers suggested that the greatest improvements
would come from allowing math teachers to
teach advanced classes that are arbitrarily
small, yet still pay them for working. A com-
mon sentiment was expressed in one respon-
dent’s statement: “Calculus in my high school
was available with a class size of 25, but num-
ber theory would never fly with a class size of
5.” Some suggested that educational resources

were directed to the best- and poorest-
performing students, but the average student
was sometimes overlooked.

Another respondent said that the main
effect of doubling math teachers’ salaries
would be to “get all the non-math teachers
very angry.” He wrote, “A problem as impor-
tant as that of teachers’ salaries is student
motivation. Today, there is much less interest
in learning and understanding anything tech-
nical or rigorous than there has been in the
past. I see this in my own kid and also in the
decreasing number of students selecting tech-
nical majors in college and other ways. Does
it matter? I think so. What to do about it? I
don’t know. I think there’s a certain kind of
anti-intellectualism which is fostered by mass
media, by computer games, and by parents.
This is difficult to fix, even after you’ve con-
vinced the world that it’s worth fixing.”

Because my respondents painted such a
bleak picture with respect to increasing the
salary of math teachers, I would be interested
in hearing from those of you with opposing
views.

1.27 Mad mom tortures mathematician daughter.
Ada Lovelace, the daughter of Lord Byron 
(the poet) and the first computer programmer.
She analyzed and expanded upon Charles 
Babbage’s plans for difference and analytical
engines, and she explained how the machines
could tackle problems in astronomy and math-
ematics. While married to William King, she
fell in love with the mathematician John
Crosse and became obsessed with gambling.

During the last year of her life, Ada’s cervi-
cal cancer progressed slowly, and her mother
took charge of her care. When Ada confessed
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her affair with Crosse, her mother promptly
discarded all of Ada’s morphine and opium—
the only thing holding the horrific pain at
bay—so that Ada’s soul would be redeemed.
Ada’s last days were spent in agony, as her
mother watched but did nothing.

1.28 Mathematician pretends. Alhazen
(965–1039). Al-Hakim, the ruler of Egypt,
was angry with Alhazen when Alhazen made
gross errors in his ability to predict and con-
trol the Nile’s flooding. To save himself from
execution, Alhazen pretended to be insane and
was placed under house arrest. When he was
not feigning insanity, Alhazen made important
discoveries in optics, describing various
aspects of light reflection, magnification, and
the workings of the eye.

1.29 Mathematician believes in angels. Sir Isaac
Newton (1642–1727), a brilliant English
mathematician, a physicist, and an astronomer.
We discussed Newton earlier in this chapter.
He and Gottfried Leibniz invented calculus
independently. Isaac Newton was so 
influential that some extra background into 
his odd life may appeal to you. Newton’s
father died before his son was born on 
Christmas Day, 1642. In his early twenties,
Newton invented calculus, proved that white
light was a mixture of colors, explained the
rainbow, built the first reflecting telescope,
discovered the binomial theorem, introduced
polar coordinates, and showed that the force
causing apples to fall (gravity) is the same as
the force that drives planetary motions and 
produces tides.

Many of you probably don’t realize that
Newton was also a biblical fundamentalist,

believing in the reality of angels, demons, and
Satan. He believed in a literal interpretation of
Genesis and believed Earth to be only a few
thousand years old. In fact, Newton spent
much of his life trying to prove that the Old
Testament is accurate history.

One wonders how many more problems in
physics Newton would have solved if he had
spent less time on his biblical studies. Newton
appears not to have had the slightest interest
in sex; he never married and almost never
laughed (although he sometimes smiled). In
1675, Newton suffered a massive mental
breakdown, and some have conjectured that
throughout his life, he was a manic depressive
with alternating moods of melancholy and
happy activity. Today we would classify this
as bipolar disorder.

1.30 History’s most prolific mathematician. Leon-
hard Euler (1707–1783), whom we mentioned
before as also being a religious mathemati-
cian. He was the Swiss mathematician who,
when he was completely blind, made great
contributions to modern analytic geometry,
trigonometry, calculus, and number theory.
Euler published over 8,000 books and papers,
almost all in Latin, on every aspect of pure
and applied mathematics, physics, and astron-
omy. In analysis, he studied infinite series and
differential equations, introduced many new
functions (e.g., the gamma function and ellip-
tic integrals), and created the calculus of vari-
ations. His notations, such as e and π, are still
used today. In mechanics, he studied the
motion of rigid bodies in three dimensions,
the construction and the control of ships, and
celestial mechanics.

Leonhard Euler was so prolific that his
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papers were still being published for the first
time two centuries after his death. His col-
lected works have been printed bit by bit since
1910 and will eventually occupy more than
seventy-five large books.

1.31 Suicidal mathematician. Évariste Galois
(1811–1832) was famous for his contributions
to group theory and for formulating a method
of determining when a general equation could
be solved by radicals.

Although he obviously knew more than
enough mathematics to pass the Lycée’s
examinations, Galois’s solutions were often so
innovative that his university examiners failed
to appreciate them. Also, Galois would per-
form so many calculations in his head that he
did not bother to clearly outline his arguments
on paper. For these reasons, in addition to his
temper and rashness, he was denied admis-
sion to the Ecole Polytechnique.

When he was taunted into a duel, he
accepted, knowing he would die. The circum-
stances that led to Galois’s death have never
been fully explained. It has been variously
suggested that it resulted from a quarrel over
a woman, that he was challenged by royalists
who detested his republican views, or that an
agent provocateur of the police was involved.
In any case, when preparing for the end,
Galois spent the entire night feverishly writ-
ing his mathematical ideas and discoveries in
as complete a form as he could.

The next day, Galois was shot in the 
stomach. He lay helpless on the ground. There
was no physician to help him, and the victor
casually walked away, leaving Galois to
writhe in agony until he died. Not until 1846
had group theory advanced sufficiently that

his discoveries could be appreciated. His
legacy has greatly impacted twentieth-century
mathematics, and his mathematical reputation
rests on fewer than one hundred pages of
posthumously published work of original
genius.

1.32 Marry a mathematician? I asked dozens of
colleagues if they would rather marry the best
mathematician in the world or the best chess
player. Not a single person chose the chess
player.

Jon A. replied, “I choose the best mathemati-
cian. I would tire quickly of playing chess with
someone who can beat me in less than twenty
moves. I could probably have a lot more stimu-
lating conversation with a mathematician.”

David J. assumed that the best chess player
would have a very rigorous touring schedule,
leaving many nights where he could not be
with his wife. Thus, he preferred marrying the
mathematician. However, he wondered what it
would mean to be “the best mathematician in
the world.”

Edith R. says she’d prefer the mathemati-
cian. However, she says she’s met good chess
players and good mathematicians, and “both
species are often prone to soaring egos and
boring speech making. However, while
mathematicians are obsessive, they are gener-
ally open, at least occasionally, to conversa-
tions on other subjects. Chess nuts tend to be
single-minded.”

David P. said that there isn’t much to talk
about in chess except for move sequences and
historical games.

1.33 Mathematical corpse. I posed this question
to dozens of colleagues. A majority of friends

282 Answers



feared the corpse with the fancier equation
because they felt that it implied a genius mur-
derer on par with the infamous, brilliant Han-
nibal Lecter, portrayed by Anthony Hopkins
in the movie The Silence of the Lambs.

1.34 Blind date. I posed this question to bril-
liant mathematical colleagues. They all said
that they would not go on the date because
they recognized the tattoos as representing the
famous “casualty equation” that F. W. Lan-
chester created in 1914. In particular, the Lan-
chester equation describes enemy casualty
rates in war! R and B represent the numbers,
at the time t, of opposing Red and Blue
armies, and k

B
and k

R
are the killing rates of

the Blue and the Red armies. My friend Gra-
ham Cleverley responded, “The fact that the
blind date has these for tattoos suggests a
somewhat gloomy preoccupation.” He also
would not go on a date with a woman who
had these tattoos:

These are the Lotka-Volterra equations that
describe predator-prey relationships, such as
the number of foxes and hens as a function 
of time. A is the growth rate of prey; B is the
rate at which predators destroy prey; C is the
death rate of predators, and D is the rate at
which predators increase by consuming prey.
Graham considers this tattoo indicative of a
possible “fatal attraction.” Of course, it might

not be clear whether the prospective dating
partner saw herself as predator or as prey.

1.35 Fundamental Anagram of Calculus. Isaac
Newton and Gottfried Wilhelm Leibniz had a
feud over who really discovered calculus. One
incident from 1677 is particularly interesting
and relevant. At this time Newton was answer-
ing several of Leibniz’s questions about infi-
nite series. In his letter, Newton came close to
revealing his “fluxional method”—that is,
Newton’s own version of calculus. However,
instead of revealing the method, Newton con-
cealed it in the form of an anagram. Perhaps
Newton used the anagram because he didn’t
want Leibniz to scoop him and also because
Newton wanted a way to demonstrate that he
had actually known about calculus should he
have to prove this at a later date. Whatever the
reason, Newton was not ready to give a full
explanation. After Newton described his meth-
ods of tangents and finding maxima and min-
ima, he wrote to Leibniz:

The foundations of these operations are
evident enough, in fact; but because I can-
not proceed with the explanation of it now,
I have preferred to conceal it thus

6accdae13eff7i3l9n4o4qrr4s8t12ux

On this foundation I have also tried to sim-
plify the theories which concern the squar-
ing of curves, and I have arrived at certain
general theorems. (Richard Westfall, Never

at Rest [New York: Cambridge University
Press, 1980], 265. Also see www.seanet.
com/~ksbrown/kmath414.htm.)

The anagram expresses, in Newton’s
terminology and in Latin, the fundamental

dx

dt
Ax Bxy

dy

dt
Cy Dxy

= −

= − +
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theorem of calculus: “Data aequatione quot-

cunque fluentes quantitates involvente, flux-

iones invenire; et vice versa,” which means
“Given an equation involving any number of
fluent quantities to find the fluxions, and vice
versa.” (Fluxion was Newton’s term for
“derivative.”) The numbers in the anagram
count the number of letters in the sentence.
For example, “6a” corresponds to the 6 occur-
rences of the letter a in the sentence. There
are 13 occurrences of the letter e, and so
forth.

Interestingly, neither Leibniz nor Newton
had published papers on calculus at the time
this letter was exchanged, although both 
probably were well versed in the subject.
Thus, if Newton had avoided using the ana-
gram and had sent Leibniz an explicit state-
ment about his calculus, Newton might have
established his superior knowledge beyond
doubt. Instead, Newton’s secret anagrams
caused him to lose his possible claim to cal-
culus and led to heated arguments that
plagued his and Leibniz’s lives for years to
come.

1.36 Parallel universes and mathematics. This
question would be impossible to answer
unless you are familiar with the work of Max
Tegmark. For the moment, let’s talk about the
multiverse, God, and the physics of poly-

theism. In 1998, Max Tegmark, a physicist
formerly at the Institute for Advanced Study
at Princeton, New Jersey, used a mathemati-
cal argument to bolster his own theory of the
existence of multiple universes that “dance to
the tune of entirely different sets of equations
of physics.” The idea that there is a vast
“ensemble” of universes (a multiverse) is not

new—the idea occurs in the many-worlds
interpretation of quantum mechanics and the
branch of inflation theory, suggesting that 
our universe is just a tiny bubble in a tremen-
dously bigger universe. In Marcus Chown’s
“Anything Goes,” appearing in the June 1998
issue of New Scientist, Tegmark suggests that
there is actually greater simplicity (e.g., less
information) in the notion of a multiverse
than in an individual universe.

To illustrate this argument, Tegmark gives
the example of the rational numbers. A useful
definition of something’s complexity is the
length of a computer program that is needed
to generate it. Consider how difficult it could
be to generate an arbitrarily chosen number
between 0 and 1, the arbitrary number speci-
fied by an infinite number of digits. Express-
ing the number would require an infinitely
long computer program. On the other hand, if
you were told to write a program that pro-
duced all the rational numbers, the instruc-
tions would be easy:

K := 2;

while K > 1 do begin

if K mod 2 = 0 then

for J:= 1 to K – 1 do output 

(J,'/',K – J)

else for J:= K – 1 down to 1 do

output(J,'/',K – J)

K := K + 1;

end;

This produces all the rational numbers, start-
ing with 1/1, 2/1, 1/2, 1/3, 2/2, 3/1, 4/1, 3/2,
2/3, 1/4, . . . . (The mod statement in the pro-
gram lists the rationals in the order used by
Cantor to produce his proof of their countabil-
ity, which you will see in chapter 6.) This
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program would be easy to write, which means
that creating all possibilities may, in some
cases, be much simpler than creating one very
specific possibility. Tegmark extrapolates this
idea to suggest that the existence of infinitely
many universes γ1, γ2, γ3, . . . γ∞ is simpler,
less wasteful, and more likely than just a sin-
gle universe γ.

Could one extend Tegmark’s reasoning to
God and argue that the existence of infinitely
many gods, γ1, γ2, γ3, . . . γ∞, is more likely
than just a single God, γ? Obviously, this is a
controversial application of Tegmark’s theo-
ries and a wild stretch of the imagination, but
the Old Testament gives numerous examples
that may suggest the existence of multiple
gods, γ

n
, n > 1; for example, “Among the gods

there is none like you, O Lord; no deeds can
compare with yours” (Psalm 86:8); “I will
bring judgment on all the gods of Egypt”
(Exodus 12:12); or, “You shall have no other
gods before me” (Exodus 20:3).

The physicist Dan Platt points out that the
notion of a “multiverse” can be traced back to
the mathematician Gottfried Wilhelm Leibniz
(1646–1716), who explored one aspect of
theodicy—why is there evil in the world if
God is all-powerful and good? Leibniz sug-
gested that our universe, γ, was the best of all
possible universes, γ1, γ2, γ3, . . . γ∞, and the
evil in it was unfortunate—but at least our
universe exhibited the smallest amount of evil
one could hope for.

1.37 One-page proof of God’s existence. Some-
time in 1970, Kurt Gödel’s mathematical
proof of the existence of God began to circu-
late among his colleagues. The proof was less
than a page long and caused quite a stir:

Gödel’s Mathematical Proof 

of God’s Existence

Axiom 1. (Dichotomy) A property is posi-
tive if and only if its negation is
negative.

Axiom 2. (Closure) A property is positive
if it necessarily contains a posi-
tive property.

Theorem 1. A positive property is logically
consistent (i.e., possibly it has
some instance).

Definition. Something is Godlike if and 
only if it possesses all positive
properties.

Axiom 3. Being Godlike is a positive 
property.

Axiom 4. Being a positive property is
(logical, hence) necessary.

Definition. A property P is the essence of x
if and only if x has P and P is
necessarily minimal.

Theorem 2. If x is Godlike, then being God-
like is the essence of x.

Definition. NE(x): x necessarily exists if it
has an essential property.

Axiom 5. Being NE is Godlike.

Theorem 3. Necessarily there is some x such
that x is Godlike.

I obtained this proof from Hao Wang,
Reflections on Kurt Gödel (Cambridge, Mass.:
MIT Press, 1987), page 195. How shall we
judge such an abstract proof? How many
people on Earth can really understand it? Is
the proof a result of profound contemplation
or the raving of a lunatic? Recall that Gödel’s
academic credits were impressive. For
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example, he was a respected mathematician
and a member of the faculty of the University
of Vienna starting in 1930. He emigrated to
the United States in 1940 and became a mem-
ber of the Institute of Advanced Study in
Princeton, New Jersey.

1.38 Song lyrics. According to Robert Munafo,
the answer is 100 billion, a number mentioned
in “Message in a Bottle” by the Police. The
precise lyric is, “A hundred billion bottles
washed up on the shore.”

1.39 Jews, π, the movie. In the 1998 movie π,
the Hasidic Jews interested in Kabbalah are
searching for a sequence of 216 Hebrew let-
ters, or a 216-digit number equivalent. This
discovery may hold the key to unlocking
God’s true name, which was destroyed with
the Temple by the Romans.

The movie is notable in that it features a
mathematical genius named Max who is
obsessed with numbers. In fact, he rarely
leaves his apartment and sees numbers and
number patterns in everything around him.
When his computer displays the mystical 216-
digit number, it crashes and strangeness
ensues. Some believe that the number actually
makes the computer conscious. Max decides
that the 216-digit number is responsible for
his own ill health, and he drills a hole in his
own skull as a cure.

The computer guru Michael Egan points
out that the movie does not always display the
same 216 digits when referring to the mysti-
cal number, and sometimes it shows a 218-
digit number as the God number:

941432434315126593210548723
904868285129134748760276719
592346023858295830472501652
325259296925727655364363462
727184012012643147546329450
1278472648410756223478962672
8592858295347502772262646456
217613984829519475412398501

Why does the movie usually focus on 216
digits? Notice that if we multiply the digits 
in the number of the beast, we get: 6 × 6 ×
6 = 216. Also, Kabbalists suggest that a mys-
terious name for God exists that has 72 sylla-
ble, or parts, each composed of three Hebrew
letters. Thus, this name for God has 216 let-
ters. This name is composed by scrambling
letters in the words of Exodus 14:19–21, 
each of these verses having 72 letters. For
other possible reasons for using 216, see the
factoid Anamnesis and the number 216 in this
chapter.

1.40 Mathematics and romance. It’s My Turn

(1980) stars Jill Clayburgh, who plays a math-
ematics professor. In the opening scene, she
proves the famous “snake lemma” of homo-
logical algebra to an obnoxious graduate stu-
dent. You can learn more about the snake
lemma here: Mathworld, “SnakeLemma,”
mathworld.wolfram.com/SnakeLemma.html.

1.41 Greek death. According to Adrian Room’s
The Guinness Book of Numbers, if we multiply
1 through 8 by 8 and then add the resultant
digits until one digit remains, the 8 in the last
column gradually “dies” to 1. The Greeks and
other cultures considered this significant.
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1.42 The Matrix. “IS 5416.” In Isaiah 54:16, we
find: “Behold, I have created the smith that
bloweth the coals in the fire, and that bringeth
forth an instrument for his work; and I have
created the waster to destroy.” Agent Smith
was a destroyer and an adversary to The

Matrix’s main character, Neo.

1.43 At the movies. 20,000 Leagues under the

Sea, by Jules Verne (1870). In the movie, a
professor (played by Paul Lukas) seeks the
truth about a legendary sea monster in the
years just after the Civil War. Later the profes-
sor, his aide (Peter Lorre), and a harpoon
master (Kirk Douglas) discover that the mon-
ster is actually a submarine run by Captain
Nemo (James Mason).

Also, note that there was a popular movie,
The Beast from Twenty Thousand Fathoms

(1953), that depicts how an atom bomb awak-
ens a prehistoric monster. However, the title
for the short story version of Beast was
merely “The Foghorn.” In Ray Bradbury’s
“The Foghorn,” a sea monster mistakes a
foghorn for the mating cry of a female.

1.44 First mathematician. Thales of Miletus
(634–548 B.C.), who established a school of
mathematics and philosophy. He lived in
Miletus, Asia Minor (now Turkey).

1.45 Game show. The $64,000 Question has
its origin in the 1940 U.S. radio show Take

It or Leave It, which offered prizes ranging
from $1 to $64. The original colloquialism
was “the $64 question,” which signified an
“important” question. The phrase was so pop-
ular that the name of the radio show changed
to The $64 Question in 1950. The number 
64 is useful because it is a power of 2 and
thus fits well with games that involve dou-
bling of monetary awards, as in the sequence:
1, 2, 4, 16, 32, 64.

1.46 Famous epitaphs. The variable x is Isaac
Newton, and y is Ludwig Boltzmann. 
“S = klnW ” describes the entropy of a system. 
Of this equation, Adrian Cho writes in the
August 23, 2002, issue of Science (“A Fresh
Take on Disorder”): “No less important than
Einstein’s E = mc2, the equation provides 
the mathematical definition of entropy, a
measure of disorder that every physical 
system strives to maximize. The equation
serves as the cornerstone of ‘statistical
mechanics,’ and it has helped scientists deci-
pher phenomena ranging from the various
states of matter to the behavior of black holes
to the chemistry of life.”

1.47 Secret mathematician. A mathematician
named “N. Bourbaki” never existed. In the
1930s, a group of mostly French mathemati-
cians referred to themselves as “N. Bourbaki.”
Their primary goal was to write a very
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1 × 8 = 8 8 8

2 × 8 = 16 7 7

3 × 8 = 24 6 6

4 × 8 = 32 5 5

5 × 8 = 40 4 4

6 × 8 = 48 12 3

7 × 8 = 56 11 2

8 × 8 = 64 10 1



rigorous unified account of all mathematics,
and the group produced the following vol-
umes: I Set Theory, II Algebra, III Topology,
IV Functions of One Real Variable, V Topo-

logical Vector Spaces, VI Integration, and,
later, VII Commutative Algebra, and VIII Lie

Groups. Members of Bourbaki were very
secretive and had to resign by age fifty.

1.48 How much? Of course, there is no easy
answer to this question. In my book The

Loom of God, I note how difficult it would be
for a chimpanzee to understand the signifi-
cance of prime numbers, yet the chimpanzee’s
genetic makeup differs from ours by only a
few percentage points. These minuscule
genetic differences in turn produce differences
in our brains. Additional alterations of our
brains would admit a variety of profound 
concepts to which we are now totally closed.
What mathematics is lurking out there that 
we can never understand? How do our 
brains affect our ability to contemplate God?
What new aspects of reality could we absorb
with extra cerebrum tissue? And what exotic
formulas could swim within the additional
folds? Philosophers of the past have admitted
that the human mind is unable to find answers
to some of the most important questions, but
these same philosophers rarely thought that
our lack of knowledge was due to an organic
deficiency shielding our psyches from higher
knowledge.

If the Yucca moth, with only a few ganglia
for its brain, can recognize the geometry of
the yucca flower from birth, how much of our
mathematical capacity is hardwired into our
convolutions of cortex? Obviously, specific
higher mathematics is not inborn, because

acquired knowledge is not inherited, but our
mathematical capacity is a function of our
brain. There is an organic limit to our mathe-
matical depth.

How much mathematics can we know? 
The body of mathematics has generally
increased from ancient times, although this
has not always been true. Mathematicians in
Europe during the 1500s knew less than 
Grecian mathematicians did at the time of
Archimedes. However, since the 1500s,
humans have made tremendous excursions
along the vast tapestry of mathematics. Today
several hundred thousand mathematical theo-
rems are proved each year.

In the early 1900s, a great mathematician
was expected to comprehend the whole of
known mathematics. Mathematics was a shal-
low pool. Today the mathematical waters have
grown so deep that a great mathematician can
know only about 5 percent of the entire cor-
pus. What will the future of mathematics be
like, as specialized mathematicians know
more and more about less and less until they
know everything about nothing?

1.49 Nobel Prize. Nobel prizes were instituted
by the will of Alfred Nobel, a Swede who was
a chemist, an industrialist, and the inventor of
dynamite. Since 1901, prizes have been
awarded for achievements in Physics, Chem-
istry, Physiology or Medicine, Literature, and
Peace—but not mathematics. Legend says
that Nobel ignored mathematics because his
mistress or wife rejected him for Gösta 
Mittag-Leffler, a mathematician. However, 
little or no historical evidence exists for this
story. Rather, Nobel probably excluded math-
ematics simply because he did not consider it
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a “practical” science that had much impact on
society. Also, other prizes for mathematics
existed during Nobel’s life.

1.50 Roman numerals. In the Middle Ages,
most of Europe switched from Roman to
“Arabic numerals,” similar to those we use
today. This isn’t to say that Roman numerals
disappeared entirely in the Middle Ages.
Many accountants still used them because
addition and subtraction can sometimes be
easy with Roman numerals. For example, if
you want to subtract 15 from 67, in the Arabic
system you subtract 5 from 7, and 1 from 6.
But in the Roman system, you’d simply erase
an X and a V from LXVII to get LII. In many
instances, it’s subtraction by erasing.

However, Arabic numerals are superior 
to Roman numerals because Arabic numerals
have a “place” system, in which the value 
of a numeral is determined by its position. A
“1” can mean 1, 10, 100, or 1,000, depending
on its position in a numerical string. This is
one reason it’s so much easier to write 1998
than MCMXCVIII—1,000 (M) plus 100 less
than a 1,000 (CM) plus 10 less than a 100
(XC) plus 5 (V) plus 1 plus 1 plus 1 (III). 
Try doing arithmetic with this Roman mon-
strosity. Positional notation greatly simplifies
all forms of written numerical calculation,
and I suspect that many of our most abstract
theories in physics and math could not have
been contemplated if we still used Roman
numerals.

My guess is that during the Middle Ages,
the calculational demands of capitalism elimi-
nated any resistance to the “infidel symbol” of
zero and ensured that by the early seventeenth
century, Arabic numerals reigned supreme.

Even during Roman times, Roman numerals
were used more to record numbers, while
most calculations were done by using the aba-
cus and piling up stones.

Note that the number of characters in the
Roman numerals for 1, 2, 3, 4, 5, 6, 7, 8, 9,
10, . . . (or I, II, III, IV, V, VI, VII, VIII, IX, X,
. . .) is 1, 2, 3, 2, 1, 2, 3, 4, 2, 1, 2, 3, 4, . . . .
When this sequence is plotted for different
ranges—like the range 1 to 20, 1 to 200, and 1
to 2,000—a scale-invariant, fractal-like
stairstep pattern emerges.

1.51 Mathematical universe. First, let me give
some background to this question. Marilyn
vos Savant is listed in the Guinness Book of

World Records as having the highest IQ in the
world—an awe-inspiring 228. She is the
author of several delightful books and is the
wife of Robert Jarvik, M.D., the inventor of
the Jarvik 7 artificial heart. Her column in
Parade magazine is read by 70 million people
every week. One of her readers once asked
her, “Why does matter behave in a way that is
describable by mathematics?” She replied,
“The classical Greeks were convinced that
nature is mathematically designed, but judg-
ing from the burgeoning of mathematical
applications, I’m beginning to think simply
that mathematics can be invented to describe
anything, and matter is no exception.”

Marilyn vos Savant’s response is certainly
one with which many people would agree.
However, the fact that reality can be described
or approximated by simple mathematical
expressions suggests to me that nature 
has mathematics at its core. Formulas like

1 + eiπ = 0, and λ = h/mv

all boggle the mind with their compactness
E mc F ma= =2, ,

r r
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and profundity. E = mc2 is Einstein’s equation
relating energy and mass. is
Newton’s second law: force acting on a body
is proportional to its mass and its acceleration.
1 + eiπ = 0 is Euler’s formula relating three
fundamental mathematical terms: e, π, and i.
The last equation, λ = h/mv, is De Broglie’s
wave equation, indicating that matter has both
wave and particle characteristics. Here the
Greek letter lambda, λ, is the wavelength of
the wave-particle, and m is its mass. These
examples are not meant to suggest that all

phenomena, including subatomic phenomena,
are described by simple-looking formulas;
however, as scientists gain more fundamental
understanding, they hope to simplify many of
the more unwieldy formulas. I see no reason
why aliens will not discover the same truths.

I side with both Martin Gardner and Rudolf
Carnap, whom I interpret as saying, Nature is
almost always describable by simple formulas,
not because we have invented mathematics to
do so but because of some hidden mathemati-
cal aspect of nature itself. For example, Martin
Gardner writes in his classic 1950 essay
“Order and Surprise”:

If the cosmos were suddenly frozen, and 
all movement ceased, a survey of its struc-
ture would not reveal a random distribution
of parts. Simple geometrical patterns, for
example, would be found in profusion—
from the spirals of galaxies to the hexag-
onal shapes of snow crystals. Set the
clockwork going, and its parts move
rhythmically to laws that often can be
expressed by equations of surprising sim-
plicity. And there is no logical or a priori
reason why these things should be so.

Here Gardner suggests that simple mathe-
matics governs nature from the molecular 
to galactic scales. Rudolf Carnap, an impor-
tant twentieth-century philosopher of 
science, profoundly asserts, “It is indeed a
surprising and fortunate fact that nature can
be expressed by relatively low-order mathe-
matical functions.”

To best understand Carnap’s idea, consider
the first great question of physics: “How do
things move?” Imagine a universe called 
JUMBLE, where Kepler looks up into the heav-
ens and finds that most planetary orbits can-
not be approximated by ellipses but rather by
bizarre geometrical shapes that defy mathe-
matical description. Imagine Newton drop-
ping an apple whose path requires a 100-term
equation to describe. Luckily for us, we do
not live in JUMBLE. Newton’s apple is a sym-
bol of both nature and simple arithmetic from
which reality naturally evolves.

1.52 A universe of blind mathematicians. Count-
less examples exist of brilliant mathemati-
cians who are totally blind. When the blind
mathematician Bernard Morin (b. 1931) was
asked how he computed the sign of a compli-
cated calculation, he said he did so “by feel-
ing the weight of the thing, by pondering it.”
The blind English mathematician Nicholas
Saunderson (1682–1739) used abacuslike
devices to aid calculations. Some mathemati-
cians have even speculated that blindness
may aid in certain areas of mathematics,
where sight can prejudice or bias mathemati-
cians working in particular fields of geome-
try. Famous blind mathematicians also
include Lev Semenovich Pontryagin

r r
F ma=
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(1908–1988), Louis Antoine (1888–1971),
and the modern mathematicians Emmanuel
Giroux, Lawrence Baggett, Norberto 
Salinas, John Gardner (also a physicist), 
and Zachary J. Battles. Salinas and Gardner
have developed a new form of Braille that 
has eight dots instead of the usual six. The
two additional dots are reserved for 
providing a wealth of mathematical notation.
For further reading, see Allyn Jackson, “The
World of Blind Mathematicians,” Notices of

the AMS 49, no. 10 (November 2002):
1246–51.

1.53 Close to reality. As with any deep topic on
the edge of mathematics and philosophy,
opinions are divided on this subject. In order
to save space, I present my favorite opinion
and urge readers to consult essays such as
Martin Gardner’s “How Not to Talk about
Mathematics” (1981) for a range of view-
points. The British mathematician G. H.
Hardy speaks on this topic in A Mathemati-

cian’s Apology (1940):

There is probably less difference between
the positions of a mathematician and of a
physicist than is generally supposed, and
the most important seems to me to be this,
that the mathematician is in much more
direct contact with reality. This may seem a
paradox, since it is the physicist who deals
with the subject-matter usually described
as “real”; but a very little reflection is
enough to show that the physicist’s reality,
whatever it may be, has few or none of the
attributes which common sense ascribes
instinctively to reality. . . . A chair or a star

is not in the least like what it seems to be;
the more we think of it, the fuzzier its out-
lines become in the haze of sensations
which surrounds it; but “2” or “317” has
nothing to do with sensation, and its prop-
erties stand out the more clearly the more
closely we scrutinize it.

For Hardy, a chair may be a collection of
whirling electrons or an idea in the mind of
God. The job of the physicist is to try to cor-
relate the “incoherent body of crude facts
confronting him with some definite and
orderly scheme of abstract relations, the kind
of scheme which he can borrow only from
mathematics.” Hardy concludes that 317 is a
prime, not because we think so, or because
our minds are shaped in one way rather than
another, but because it is so.

The philosopher and the psychologist
William James, in his book The Meaning of

Truth, argues that truths of science and math-
ematics, not yet verified, are “sleeping truths.”
The quadrillionth decimal digit of pi, for
example, “sleeps” in “the world of geometri-
cal realities,” even though “no one may ever
try to compute it.”

Martin Gardner’s essays on mathematical
reality, which include “How Not to Talk about
Mathematics” and “Order and Surprise,” are
reprinted in Order and Surprise (Buffalo,
N.Y.: Prometheus Books, 1983).

1.54 Why learn mathematics? Of course, in
some technical fields like engineering, people
do make use of mathematics beyond what is
taught in fourth grade. But is this small
minority of people sufficient to require that
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all students learn algebra, geometry, and
related forms of higher-level math? A 2004
survey conducted by the Organization for
Economic Cooperation and Development
ranked the United States 28th out of 40 
countries in mathematics, for example, far
below Finland and South Korea. The survey
tested mostly practical skills like estimating
the size of Antarctica. But does America’s
poor showing really matter? After all, 
“America may lose math literacy surveys, 
but it dominates number-crunching in every
sphere from corporate profits to supercom-
puters to Nobel Prizes,” according to Donald
G. McNeil Jr., writing in “The Last Time 
You Used Algebra Was . . . ” (New York

Times, Week in Review, Section 4, Sunday,
December 12, 2004, p. 3). However, it’s
important to note that a third of the Ameri-
cans who won Nobel Prizes were born
abroad; thus, many American Nobel Prize
winners may have received early training 
outside America.

McNeil gives several possible reasons why
we should study math. One is that potential
employers and higher educational institutions
use mathematics as a “filter for the lazy or stu-
pid, as passing freshman physics is for premed
students.” Perhaps a better answer comes from
Miss Collins, McNeil’s daughter’s math
teacher: “Kids don’t study poetry just because
they’re going to grow up and be poets. It’s
about a habit of mind. Your mind doesn’t think
abstractly unless it’s asked to—and it needs to
be asked to from a relatively young age. The
rigor and logic that goes into math is a good
way for your brain to be trained.”

2. Cool Numbers

2.1 Pi. Symbolized by the Greek letter π, pi is
the ratio of a circle’s circumference to its
diameter and is approximately 3.14159 . . . We
don’t know who was the first to recognize that
a circumference of a circle was about 3 times
the diameter. Perhaps it was not long after this
that wheels were commonly used. Cecil
Adams, the author of The Straight Dope,
suggests that around 3500 B.C., a person may
have noticed that for every revolution of a
wheel, a cart moves forward about three times
the diameter of the wheel. An ancient Baby-
lonian tablet states that the ratio of the circum-
ference of a circle to the perimeter of an
inscribed hexagon is 1:0.96, implying a value
of pi of 3.125. The Greek mathematician
Archimedes (c. 250 B.C.) was the first to give
us a firm, mathematically rigorous range for pi
as lying between 223/71 and 22/7. The latter is
called the “Archimedean value” of pi, but this
approximation was in use long before his time.

William Jones (1675–1749) introduced the
symbol π in 1706, most likely after the Greek
word for periphery (περιϕερεια). Leonhard
Euler (1707–1783) used the symbol π in his
famous 1736 textbook Mechanica, and we’ve
used the symbol ever since.

Note that π is the most famous ratio in
mathematics, both on Earth and probably for
any advanced civilization in the universe. The
number π, like other fundamental constants of
mathematics such as e = 2.718 . . . , is a tran-
scendental number, a term defined later in this
chapter. The digits of π and e never end, nor
has anyone detected an orderly pattern in their
arrangement.
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2.2 An avalanche of digits. First, I’m not sure I
would consider the mathematicians and the
computer scientists obsessed, but they are
“driven.” Note that although π cannot be
expressed by a fraction, it can be expressed as
an infinite series of fractions. For example, in
1671, the mathematician Gottfried Leibniz
discovered that the series 1 – 1⁄3 + 1⁄5 – 1⁄7 + . . .
slowly converges to π/4. Today, mathemati-
cians use increasingly sophisticated series that
converge more quickly to π.

The speed with which a computer can com-
pute π is an interesting measure of a com-
puter’s computational ability. Today, we know
pi’s digits to over a trillion digits, due to fast
computers, better algorithms, and increased
understanding of how to mathematically
manipulate large numbers that are over a 
billion digits long.

2.3 Evenness. Yes. An even number leaves 
no remainder when divided by 2. So, 0/2 = 0
and has no remainder. Also, an integer n is
called “even” if there exists an integer m such
that n = 2m, and n is called “odd” if n + 1 is
even. Thus, 0 is even by this criterion as well.

2.4 Billion. Either way, a billion is big. If 
you started counting today, saying a number a
second, you wouldn’t reach a billion (Ameri-
can) until about 30 years later. Your friend in
England would have to count for 32,000
years!

The word billion originally meant a million
million, and in England and Germany it still
does, at least in common talk. The prefix “bi”
in billion implies two “million” written side
by side

1,000,000 (6 zeros) and 
1,000,000 (6 zeros)

1,000,000,000,000
(a British billion, 12 zeros)

Americans had a pressing need for a simple
word for a number with a mere 9 zeros and
simply took the word billion for this purpose.
I believe that the American meaning of a
billion has permeated most of the world these
days, especially in scientific and mathematical
literature.

The word billion is relatively recent; it was
not in common use until the sixteenth century.
One of the earliest uses in an American book
occurred by a man named Greenwood in
1729. Greenwood gave the billion as 1 with 9
zeros.

2.5 Pick an integer, any integer. Because there
are an infinite number of integers, this task
would seem to be impossible—only “small”
integers are accessible for selection. My col-
league James “Jaymz” Salter writes to me,
“Selection implies physical specification. The
ability to physically specify an integer N
diminishes as N approaches infinity. Certainly,
integers of “infinite” size are beyond specifi-
cation. So any integer specified would be nec-
essarily drawn from a pool of accessible
integers, and therefore biased towards smaller
integers.”

What do we mean when we say “selected at
random” in this question? Usually, random
numbers are required to be independent, so
that there are no correlations between succes-
sive numbers. If no other information is given,
the word random usually means “random with
a uniform distribution.”
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Does my initial question imply “physical
specification,” or can we mean some other
kind of random specification? Salter writes to
me, “‘Selection of a number’ requires at least
an infrastructure to represent the number by
some physical means, under some ‘system of
meaning’ (or counting convention) that is
absolutely dependent on the existence of
some physical substance, whether it is brain
cells, transistors, or beads.”

Regardless of all the ingenious shorthands
(e.g., superfactorial, discussed in chapter 6),
the ability to represent arbitrarily large num-
bers requires matter. It takes more matter to
represent or specify larger numbers (e.g., more
paper to write down long numbers, more brain
cells to imagine large numbers, more transis-
tors to hold more bits, etc.). Numbers that are
inconceivably large are unfairly disadvantaged
in the selection process.

Could we in fact hypothetically produce a
random integer by tossing a dart at the num-
ber line from 0 to 1 and then taking the recip-
rocal of whatever the dart lands on? The
answer would appear to be a resounding no
because the method is biased toward small
integers, even if the dart is thrown randomly
on the interval. Half the time, the dart would
hit a value between 0.5 and 1, and the recipro-
cal would be rounded to 1 if we are seeking to
produce an integer.

2.6 Superthin dart. As you learned in previous
paragraphs, your superthin dart would
“always” land on a transcendental number.
The infinity of transcendental numbers is so
much larger than the infinity of algebraic
numbers that your dart is virtually guaranteed
to land on a transcendental number.

2.7 Bombs on magic squares. Here is one solu-
tion, and I am aware that other solutions exist.

2.8 Liouville constant. Joseph Liouville showed
that his unusual number was transcendental,
thus making this number among the first to be
proved transcendental. Notice that the con-
stant has 1 in each decimal place, correspon-
ding to a factorial, and zeros elsewhere. This
means that the 1s occur in the 1st, 2nd, 6th,
24th, 120th, 720th, and so on, places, and
zeros are elsewhere. More generally, we can
write

where a ≤ a
k

≤ r. The numbers a
k

are integers. 
The resulting number is a Liouville number of
base r. If the values for a

k
are all 1, and r =

10, we get 1/10 + 1/101 × 2 + 1/101 × 2 × 3 + . . .
= 0.110001000000000000000001000 . . . .

Aside from his mathematical pursuits,
Liouville was interested in politics and was
elected to the French Constituting Assembly
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0 62 2 60 11 53 9 55

15 49 13 51 4 58 6 56

16 46 18 44 27 37 25 39

31 33 29 35 20 42 22 40

52 10 54 8 63 1 61 3

59 5 57 7 48 14 50 12

36 26 38 24 47 17 45 19

43 21 41 23 32 30 34 28



in 1848. After a later election defeat, Liou-
ville became depressed. His mathematical
ramblings were interspersed with poetical
quotes (much like this present book!).
Nonetheless, during the course of his life,
Liouville wrote over 400 mathematical
papers.

2.9 The paradox of pepperonis. The fallacy is
that when you count seven pepperonis, you
are mixing up addition and subtraction in the
middle of a counting process. This is the same
fallacy that occurs in much more complicated
classic problems of gentlemen paying for
hotel rooms. Also, by the twisted logic, you
could count backward, “6, 5, 4, 3, 2, 1” and
say that there is only one pepperoni in the set.

2.10 Taxicab numbers. The renowned British
mathematician G. H. Hardy (1877–1947) was
visiting Srinivasa Ramanujan (1887–1920),
the self-taught yet brilliant mathematician
from India whom we have already discussed.
Hardy mentioned that the number of the taxi-
cab that had brought him was 1729, which
Hardy thought was “rather a dull” number.
Ramanujan smiled and replied instantly, “No,
it is a very interesting number; it is the small-
est number expressible as a sum of two posi-
tive cubes in two different ways.”

Ramanujan was thinking of 1,729 = 13 +
123 and 1729 = 93 + 103. Ramanujan was so
quick with numbers that it was as if he were
intimately familiar with every number!
Indeed, numbers were his friends.

Today, we know that there exist an infinite
number of “taxicab numbers” with integer
solutions of the form i3 + j3 = k3 + l3. Several
modern mathematicians enjoy searching for

higher-order taxicab numbers, such as triple-
pair solutions to i3 + j3 = k3 + l3 = m3 + n3,
where all the numbers are integers.

In 1957, John Leech (1926–1992) discov-
ered the smallest number expressible as the
sum of two positive cubes in three different
ways: 87,539,319 = 1673 + 4363 = 2283 + 4233

= 2553 + 4143.

2.11 Transcendence. Mathematicians don’t
always know whether sums and products of
transcendental numbers are transcendental.
For example, all that mathematicians know
about (π + e) and (π × e) is that at least one of
these two numbers is transcendental, but tran-
scendence has not been proved for either
number on its own! All that we know with
certainty is that they both can’t be algebraic.

If one of these numbers is transcendental
and one is algebraic, we can’t say for sure
which is which. John dePillis and others 
prove some of our statements with the follow-
ing argument. Consider the roots of the 
polynomial

(1) z2 – az + c = 0, where a = π + e and
c = π × e

This is the same as saying

(2) (z – π) × (z – e) = 0

The roots of Polynomial (2) are z = π and
z = e. The first step of the argument is to real-
ize that polynomials with algebraic number
coefficients must have roots that are algebraic.
Let us assume for the moment that a and c in
Polynomial (1) are both algebraic (i.e., not
transcendental). We can show that this is
impossible because this implies that the roots
z = π and z = e must be algebraic. But we
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know that π and e are transcendental (not
algebraic). This contradiction means that at
least one of the coefficients (π + e) or (π × e)
is transcendental.

Note that eπ was proved to be transcenden-
tal in 1929 and 2√ 2 in 1930. I believe that no
one knows whether ππ is transcendental.

2.12 Special class of numbers. For many years,
mathematicians have studied this cool class of
numbers. Here’s how to understand them. If a
number is less than the sum of its proper divi-
sors, it is called abundant. (A positive proper
divisor is a positive divisor of a number n,
excluding n itself.) As an example, the proper
divisors of 12 are 1, 2, 3, 4, and 6. And these
proper divisors add up to 16. The number 12
is less than 16, so 12 is abundant. The first
few abundant numbers are 12, 18, 20, 24, 30,
36, . . . The first odd abundant number is 945.
(Its prime factorization is 945 = 33 × 5 × 7,
and the sum of its factors is 975.)

2.13 Champernowne’s number. If you concate-
nate positive integers, 1, 2, 3, 4, . . . , and lead
with a decimal point, you get Champer-
nowne’s number, 0.1234567891011121314 . . .
Like π, e, and Liouville’s number, Champer-
nowne’s number is transcendental.

Champernowne’s number continues to fas-
cinate me. It is a transcendental that we know
is “normal” in base 10, which means that any
finite pattern of numbers occurs with the fre-
quency expected for a completely random
sequence. In fact, David Champernowne
showed that not only will the digits 0 through
9 occur exactly with a 10 percent frequency in
the limit, but each possible block of two digits
will occur with 1 percent frequency in the

limit, each block of three digits will occur
with 0.1 percent frequency, and so on.

Some cryptographers have noted that
Champernowne’s number does not trigger
some of the traditional statistical indicators of
nonrandomness. In other words, simple com-
puter programs, which attempt to find regular-
ity in sequences, may not “see” the regularity
in Champernowne’s number. This deficit 
reinforces the notion that statisticians and
cryptographers must be very cautious when
declaring a sequence to be random or pattern-
less. It is not known whether the digit
sequences of π and e are normal.

2.14 Copeland-Erdös constant. The number
0.23571113171923 . . . is the famous
Copeland-Erdös constant, created by concate-
nating the prime numbers 2, 3, 5, 7, 11, . . . In
1945, Arthur Copeland and Paul Erdös proved
that this number is normal in base 10, which,
as we said for the Champernowne number,
means that any finite pattern of numbers
occurs with the frequency expected for a com-
pletely random sequence. See A. H. Copeland
and P. Erdös, “Note on Normal Numbers,”
Bulletin of the American Mathematics Society

52 (1946): 857–60.

2.15 Thue constant. The Thue constant is an
example of an irrational, transcendental num-
ber that is not normal. For this binary number,
the nth digit is 1 if n is not divisible by 3 and
is the complement of the (n/3)th bit if n is
divisible by 3. (In base 10, this number is
0.85909979685470310490357250 . . .) You
can also generate this constant by mapping 
0 → 111 and 1 → 110. To create the growing
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string of characters, simply start with 0, do
the substitutions, and watch the Thue constant
emerge:

0
111

110110110
110110111110110111110110111

. . .

2.16 Exclusionary squares. I learned about
exclusionary squares from my colleague Andy
Edwards. The other 6-digit example is
203,8792 = 41,566,646,641. Problems like
this seem to be best solved using brute-force
computer methods. If we do not require the
digits to be distinct, Ilan Mayer has found
several exclusionary cubes, such as 
6,3783 = 259,449,922,152 and 7,6583 =
449,103,134,312. If we do not require that all
the digits be unique, Jonathan Dushoff notes
that we can find exclusionary squares of any
length; for example, we can experiment with
strings of 3s, such as 3,333,3332 =
11,111,108,888,889. German Gonzales tells
me that he has found 168,569 exclusionary
numbers from 1 to 1,000,000 of various
orders. For example, here is an exclusionary
number of the 83rd order: 283 = 9, 671, 406,
556, 917, 033, 397, 649, 408.

2.17 The grand search for isoprimes. Here is a list
of other isoprimes (in base 10): 11; 111;
1,111,111,111,111,111,111; and 11,111,
111,111,111,111,111,111. In the world of fac-
toring and primality testing, 11 is also called a
repunit (repeated unit) prime. All repunit
primes in base 10 can only be composed of
1s. The next such number has 317 digits:

11,111,111,111,111,111,111,111,111,111,
111,111,111,111,111,111,111,111,111,111,
111,111,111,111,111,111,111,111,111,111,
111,111,111,111,111,111,111,111,111,111,
111,111,111,111,111,111,111,111,111,111,
111,111,111,111,111,111,111,111,111,111,
111,111,111,111,111,111,111,111,111,111,
111,111,111,111,111,111,111,111,111,111,
111,111,111,111,111,111,111,111,111,111,
111,111,111,111,111,111,111,111,111,111,

111,111,111,111,111,111

The next such number has 1,031 digits. After
that, the next two isoprimes that are believed
to be prime, but are not proven such, contain
49,081 digits and 86,453 digits. Chris Cald-
well has interesting Web sites on prime num-
bers for further exploring: primes.utm.edu/
and primes.utm.edu/glossary/page.php/
Repunit.html.

Do you think humanity will ever find 
larger isoprimes? Regarding the oscillating 
bit prime, in 1991, Harvey Dubner discovered
a prime number with a total of 5,114 digits
that is composed of only 1s and zeros. The
precise number is (105114 – 102612 + 9)/9.
Amazing. I do not know whether the 0s and
1s oscillate in any particular pattern in this
large number.

2.18 Special augmented primes. Colleagues have
determined that there is a general set of num-
bers of the form 90909 . . . 91 that sometimes
consists of special augmented primes (SAPs).
For example, one colleague discovered that
909090909090909091—when augmented by
1s to form 19090909090909090911—is a
factor of 1019 + 1. Other colleagues have
searched for SAPs of higher order. For
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example, 137 corresponds to a SAP of order 2
because 21372/137 = 156.

2.19 Triangle of the Gods. By computer search,
my colleague Daniel Dockery found the fol-
lowing smallest prime number of this kind in
Row 171:

123456789012345678901234567890

123456789012345678901234567890

123456789012345678901234567890

123456789012345678901234567890

123456789012345678901234567890

123456789012345678901

The largest known prime number of this kind
occurs in Row 567 and ends in the digit 7.
When you perform such searches, note that
you can immediately eliminate numbers end-
ing in the even digits and the number 5.

We can ask many questions. What percent-
age of prime numbers do you expect as we
scan more rows in the mysterious triangle? If
you could add one digit to the beginning of
each number in order to increase the number
of primes, what would it be? If you could add
one digit to the end of each number in order
to increase the number of primes, what would
it be?

2.20 Body weights. This means that if you
gained or lost weight, you would not change
weight smoothly, but your weight would jump
up or down by increments of 3.1415 . . .
pounds. The largest biological effect of this
strange quantization would be for the new-
born, where a 3-pound difference would have

the most profound and perhaps fatal effect. In
other words, if this quantization became com-
monplace, many newborns would die. Could a
premature infant weighing π pounds survive?
(Of course, I’m not implying that there is
something special about π in this question,
because a 3-pound quantization would have
similar effects.)

2.21 Jesus and negative numbers. No. The con-
cept of negative numbers started in the sev-
enth century. At this time, we first see
negative numbers used in bookkeeping in
India. The earliest documented evidence of
the European use of negative numbers occurs
in the Ars magna, published by the Italian
mathematician Girolamo Cardano in 1545. 
Al-Khwarizmi, who was born in Baghdad,
discovered the rules for algebra around A.D.
800. Obviously, there is quite a bit of surpris-
ingly simple mathematics that was not around
in Jesus’s time.

2.22 Jesus notation. Some scholars, such as
Daniel Dockery, have claimed that Jesus
spoke Aramaic, and we expect that Jesus used
the Aramaic/Hebrew number system, where
alphabetic characters also served as their
numbers. Because some of the apocryphal
and the pseudepigraphic infancy gospels tell
tales of Jesus having discussed the symbolism
of the Greek and related alphabets, one might
also argue that he could have written using the
Greek number system, which likewise used its
alphabet for numerical digits.

If one considers the text of the New Testa-
ment as definitive, reliable, or historical, 
all numbers that appear in passages with 
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references to Jesus in the four gospels are
written out in Greek (e.g., eis/mian [one],
duo/duos [two], treis/trisin [three], tessares
[four], hex [six], hepta [seven], okto [eight],
heptakis [seven times], ennea [nine], deka
[ten], eikosi pente [twenty-five], triakonta
[thirty], hekaton [one hundred], hebdomekon-
takis heptai [seventy times seven], dischilioi
[two thousand], pentakischilioi [five thou-
sand], etc.). Most numbers in the text of the
Bible tend to be written out, though there are a
few exceptions, such as the infamous 666 of
the Apocalypsis, written with the three Greek
letters chi, xi, and the antiquated sigma. In the
Greek numeral system, the letter chi has a
value of 600, xi 60, and the sigma/digamma a
value of 6, so that the three letters appearing
together as a number have the combined value
of 666.

2.23 Jesus and multiplication. Very likely. In
Matthew 18:22, we find, “legei auto ho Iesous

Ou lego soi eos heptakis all’ eos hebdomekon-

takis epta.” Or, in Jerome’s Vulgate, “dicit illi

Iesus non dico tibi usque septies sed usque

septuagies septies.” Today we translated this
as “Said Jesus: To you I say not ‘til seven
times,’ but ‘until seventy times seven.’”
Because both seven and seventy can have
symbolic meanings, the meaning may not be
literal, but, nevertheless, it is an example of
multiplication.

The Bible does not make it clear whether
Jesus or his listeners would have been able to
give the exact answer. Much earlier, in Leviti-
cus 25:8, we find “Seven weeks of years shall
you count—seven times seven years—so that
the seven cycles amount to forty-nine years.”
Therefore, we know these people could do at

least 7 × 7. However, we must not lose sight
of the possibility that the biblical translators
introduced the terms.

In addition, conversion between monetary
systems like Roman sesterces, Jewish shekels,
and Persian darii probably required notions of
multiplication and division. Jesus was proba-
bly aware of the concept of debts and interest
charged on debts.

Jesus would not have used a symbol for
zero, because neither the Hebrew, the Ara-
maic, nor the Greek number systems had a
character representing the number 0, as it was
not required by their nonpositional number
systems.

2.24 The digits of π. Certainly, if we assume
that modern mathematical conjectures are
correct. Pi contains an endless number of dig-
its with what mathematicians conjecture to be
a “normal” or “patternless” distribution. We
can even search for some of the first few con-
secutive runs, using computer searches that
are available on the Web. The string 123 is
found at position 1924, counting from the first
digit after the decimal point. The “3.” is not
counted. The string 1234 is found at position
13,807; 12345 is found at position 49,702;
and so forth. You can do further searches of
this kind at Dave Anderson’s π Web site:
www.angio.net/pi/piquery.

2.25 Living in the π matrix. I believe so,
although many people have debated me on
this subject. Recall that the digits of π (in any
base) not only go on forever but seem to
behave statistically like a sequence of uniform
random numbers. In short, if the digits of π
are normally distributed, somewhere inside
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the endless digits of π is a very close repre-
sentation for all of us—the atomic coordi-
nates of all our atoms, our genetic code, all
our thoughts, all our memories. Thus, all of us
are alive and, it is hoped, happy, in π. Pi
makes us live forever. We all lead virtual lives
in π. We are immortal.

You can read a large group discussion of
this topic, which I initiated at my Web site,
sprott.physics.wisc.edu/pickover/pimatrix.
html. At my Web site, I state my controversial
opinion: “This means that romance is never
dead. Somewhere you are running through
fields of wheat, holding hands with someone
you love, as the sun sets—all in the digits 
of pi.”

2.26 Numbers and sign language. The person
would sign a 1, followed by a C (made with
curved fingers in the shape of a C) to signify
the Roman numeral C, which stands for one
hundred.

2.27 Adding numbers. My hero, the mathemati-
cal prodigy Karl Friedrich Gauss (1777–
1855), the son of a bricklayer, discovered that
he could sum the numbers from 1 to n using
the formula n(n + 1)/2. Thus, if we want to
sum 1 to 1,000, we simply compute 1,000 ×
(1,001)/2 = 500,500.

Little Gauss demonstrated his approach at
age ten, when he quickly solved a problem
that had been assigned by a teacher to keep
the class busy. The teacher had asked the stu-
dents to find the sum of the first 100 integers,
and he was amazed that Gauss could add the
terms so quickly. In fact, the teacher assumed
that Gauss was wrong.

2.28 The mystery of 0.33333. The reason that
we find 1 = 0.9999 . . . is that it is true. There
are numerous mathematical ways to show this
that involve the sum of an infinite series, but
my favorite way doesn’t require too much
math. Consider that any two distinct (differ-
ent) real numbers must have another number
in-between them. However, there is no num-
ber between 1 and 0.9999 . . . Thus, 1 and
0.9999 . . . are not different numbers.

2.29 The grand Internet undulating obstinate num-
ber search. My friend Daniel Dockery has
computed the following obstinate number:

9999999999999999999999999999999
9999999999999999999999999999999
9999999999999999999999999999999
9999999999999999999999999999999

999999999999999999999999999
999999999999999999999999999

999999037

It leaves a composite residue for all 621
possible powers of 2 that can be subtracted
from it.

The smallest difference between adjacent
obstinates is 2; for example, 905 and 907 are
both obstinate by this definition and have a
difference of 2. Because obstinate numbers
must be odd, 2 is the smallest difference.

Do any obstinates undulate? Certainly.
Here are just a few: 6,161; 14,141; 39,393;
91,919; 1,313,131; 1,818,181; 7,070,707;
7,474,747; 7,676,767; 7,979,797; 59,595,959;
73,737,373; and so on.

How are obstinates distributed through the
numbers as we scan ever larger numbers?
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2.30 Mystery sequence. The missing number is
49. To create this sequence, I listed the num-
bers 1 through 13. Underneath this list, I
listed the numbers 13 through 1. Then, I just
multiplied the numbers in each column:

1 2 3 4 5 6 7 8 9 10 11 12 13
13 12 11 10 9 8 7 6 5 4 3 2 1
13 24 33 40 45 48 49 . . .

You can also solve this another way, simply by
adding 11, 9, 7, and so forth. These numbers
represent the differences between consecutive
terms.

2.31 Strange code. ...--, obviously. Here, we
are using the Morse code, invented by Samuel
Morse (1791–1872), in which letters and
numbers are represented by dots and dashes:
(0, -----), (1, .----), (2, ..---), (3, ...--), 
(4, ....-), (5,.....), (6, -....), (7, --...), (8, ---..),
and (9, ----.).

2.32 Mystery sequence. 1. Starting with 1, I
continue to add 8. However, if my number
ever gets greater than 22, I then subtract 22,
and continue. I would be interested in hearing
from those of you who got a different answer,
using another kind of reasoning. One of my
colleagues arrived at an answer of 23 by
examining the differences between consecu-
tive terms, which follow the sequence +8, +8,
–14, +8, +8, –14 . . . It’s also easy to get 23 by
viewing the sequence as three interleaved
sequences with constant difference 2.

Of course, given a sequence of n arbitrary
numbers, it is always possible to justify any

other integer as the next number in the
sequence by writing a polynomial equation of
order n + 1. What I seek are very simple

recipes. I am also interested to see which
reader recipes are most common.

2.33 Mystery sequence. Write down all the
numbers from 0 to 19. Start at 1. Jump 7.
Repeat. When you get to 19, go back to the
start of the list. Once you land on a number in
your original list, it gets removed so that it is
not used again as you traverse the numbers.
You can imagine the list as numbers being
around the circumference of a circle as you go
round and round. Here is the sequence that is
produced as a result: 1, 8, 15, 3, 11, 19, 9, 18,
10, 2, 14, 7, 5, 4, 6, 13, 0, 12, 16, 17.

2.34 Mystery sequence. The sequence lists the
prime numbers (numbers divisible only by
themselves and 1), starting at 2 and then
lumping their digits into sets of 4:

2, 3, 5, 7, 11, 13, 17,
19, 23, 29, 31, 37, 41, 43

2.35 Time-travel integer. The most recent year
is 864. Alas, Pete won’t have too many ameni-
ties, but at least it is the most recent date with
these characteristics. One colleague told me
that this problem is too trivial to include in
this book. If you agree, try this on a young
student, and see how long it takes him or her
to arrive at an answer.

2.36 Mystery sequence. The next number is 
7,776. 10 = 1; 21 = 2; 32 = 9; 43 = 64; 54 =
625; 65 = 7,776.

2.37 Ostracism. Number 55. All the others are
1 less than a square number (4, 9, 16, 25, 36,
49, 64)—that is, a number produced by squar-
ing an integer. For example, 24 = 52 – 1.
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2.38 Mystery sequence. The sequence consists
of prime numbers, starting at 17, plus 1. Here
are the original prime numbers: 17, 19, 23,
29, 31, 37, 41, . . .

2.39 Mystery sequence. Lizzy plays 4 notes.
She is just multiplying the digits of each num-
ber to get the next.

2.40 Cellular communication. This is the Morse-
Thue sequence, which has dozens of fascinat-
ing properties. There are many ways to
generate the Morse-Thue sequence. One way
is to visualize this as a sequence of 0s and 1s.
Start with a zero and then repeatedly do the
following replacements: 0 → 01 and 1 → 10.
In other words, whenever you see a 0 in a row,
you replace it with a 01 in the next row.
Whenever you see a 1, you replace it with a
10. Starting with a single 0, we get the follow-
ing successive “generations”:

0
0 1

0 1 1 0
0 1 1 0 1 0 0 1

0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0

The next line should be

0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 
1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1

where the 0s are replaced by red and the 1s by
blue.

I’m in love with the Morse-Thue sequence.
Each generation can be formed by appending
its complement. For example, 0 1 1 0 1 0 0 1
is just 0 1 1 0 placed next to its complement,

1 0 0 1. There can never be more than 2 adja-
cent terms that are identical. For example,
we’ll never see a 111, no matter how large we
let the sequence grow. Hundreds of Web
pages are devoted to this subject.

2.41 Mystery sequence. The next number is 92.
These are pentagonal numbers. If balls are
piled so that each layer is a pentagon, then the
total number of balls in each successive pile
follows this sequence (figure A2.1). The gen-
eral formula for the nth number in the
sequence is (1/2) × n × (3n – 1). The first few
are 1, 5, 12, 22, 35, 51, 70, and 92. Curiously,
all numbers of such a type end in 0, 1, 2, 5, 6,
or 7. This problem can also be solved simply
by examining the differences between the
numbers (4, 7, 10, 13, 16, 19 . . .). So, the
next difference is 22, and 22 + 70 = 92.

2.42 Mystery sequence. The solution is
89,793. The ith term of the sequence is 
the next i digits of the number π (π =
3.14159265358979323846 . . .).
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2.43 Ostracism. This does not belong in the
list: 15 × 87 = 1,305. In all other products, the
digits on the left side of the equation also
appear on the right side. Another answer
might be 1,827, because this is the only prod-
uct that does not have 5 as a factor.

2.44 The amazing 5. The four facts are: 5 is the
hypotenuse of the smallest Pythagorean trian-

gle, a right-angled triangle with integral sides;
5 is the smallest automorphic number; 5 is
probably the only odd untouchable number;
and, there are 5 Platonic solids: the tetrahe-
dron, the cube, the octahedron, the dodecahe-
dron, and the icosahedron. (All the faces of a
Platonic solid must be congruent regular
polygons.)

2.45 Mystery sequence. The value of the miss-
ing digit is 7. The solution relates to the num-
ber of segments on a standard calculator
display that are required to represent the digits
starting with 0:

_ _ _ _ _ _ _ _
| | | _| _| |_| |_ |_ | |_| |_|
|_ | | |_ _| | _| |_| | |_| _|

2.46 Mystery sequence. The solution is 1828.
The ith term of the sequence is the next i
digits of the number e (e = 2.7182818284 
. . .). The number e, like π, is transcendental
and consists of a never-ending string of 
digits.

2.47 Mystery sequence. The violinist is simply
marking every prime number (numbers

divisible only by themselves and 1) with a
short note. So the second, the third, the fifth,
the seventh, (and so on) are short:

01101010001010001010001000001010000010001010 . . .

| | |  |       |  |      |   |       |          |   |         |       |   |

2 3 5  7     1113  17 19    23       29 31        37  41 43

2.48 Mystery sequence. This strange sequence
lists the indices of the prime Fibonacci num-
bers. For example, the third, the fourth, and the
fifth Fibonacci numbers (F3, F4, F5) are
primes. (The Fibonacci sequence is 1, 1, 2, 3,
5, 8, 13 . . . , where each number is the sum of
the previous two.)

2.49 The Lego sequence. Each element a(n) is
the number of stable towers that can be built
from n Lego blocks.

2.50 Vampire numbers. I discuss vampire num-
bers in detail in my book Wonders of Numbers.
Here are some other four-digit vampires:

21 × 60 = 1,260 15 × 93 = 1,395

30 × 51 = 1,530 21 × 87 = 1,827

80 × 86 = 6,880

In fact, there are many larger vampire num-
bers. Here’s a beauty for you:

1,234,554,321 × 9,162,361,086 =
11,311,432,469,283,552,606

2.51 Jewel thief. We have 15 emeralds, 12 dia-
monds, and 9 rubies altogether. This means
that the maximum number of gems that could
be out of the bag without having any matched
sets would be 2 of each set for each kind: 10
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emeralds, 8 diamonds, and 6 rubies. Thus,
withdrawing 25 gems would guarantee that
there is at least one matched set (small,
medium, and large) of one of the types of
gems.

Notice that if you are creative and suggest
that the thief can tell sizes by touch alone,
then the answer is 12, because he can tell by
touch which are the biggest!

Let us assume that he can’t tell size by
touch because he is wearing gloves. With
respect to the second question, the thief has
12 large gems altogether and 36 gems total.
The only way to guarantee that all the large
gems have been randomly selected and pulled
from the bag is to remove all 36 of the gems.
Any gem left in the bag at random could be a
large gem, so all must be removed.

Perhaps a more difficult question to ponder
is, What is the probability that the first 3
gems he withdraws from the bag will make a
complete set? We believe the answer to be
18/595, which is about equal to 0.03, very
slim odds. The first gem drawn must be some
size of some type. The probability of it being
an emerald is 15/36, a diamond is 12/36, and
a ruby is 9/36. If the first gem is an emerald,
the probability of the second gem also being
an emerald but of a different size is 10/35,
and of the third being an emerald of the 
third size is 5/34. So, the probability of get-
ting a set of emeralds is 15/36 × 10/35 × 5/34
= 25/1,428. Similarly, the probability of get-
ting a set of diamonds would be 12/36 × 8/35
× 4/34 = 16/1,785, and the probability of get-
ting a set of rubies would be 9/36 × 6/35 ×
3/34 = 9/2,380. Adding up these probabilities
together gives us 25/1,428 + 16/1,785 +
9/2,380 = 18/595.

2.52 Palinpoints of arithmetical functions. Here
is one example for n = 21: Prime(21) = 73,
Prime(12) = 37. Some people have used the
Mathematica software package to seach for
more examples. In 2003, Jens Kruse Ander-
sen found the largest known palinpoint of f(n)
= Prime(n): n = 8,114,118 with Prime(n) =
143,787,341. (For more information, see
Joseph Pe’s article on palinpoints in his 
Number Recreations Page at www.geocities.
com/windmill96/numrecreations.html. Also
see Carlos Rivera, “The Palinpoints,” www.
primepuzzles.net/puzzles/puzz_194.htm.)

2.53 Dr. Brain’s Mystery sequence. Number 28.
These are triangular numbers. They can be
formed by adding the series 1 + 2 + 3 + 4 + 5
. . . Here’s another way to visualize triangular
numbers:

* * * * *
* * * * * * * *

* * * * * * * * *
* * * * * * * *

* * * * *
1 3 6 10 15

2.54 Poseidon’s sequence. The number 77 is
the smallest number with persistence 4. In
particular, 77 creates the sequence 77, 49, 36,
18, 8. It turns out that 277777788888899 is
the smallest number with persistence 11.

2.55 Mystery sequence. From day to day, each
is replaced with an ape-duck combi-

nation, and each ape is replaced with a
single duck .
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2.56 Constructions with 1, 2, and 3. The follow-
ing answers use very few numbers to repre-
sent the target number. I do not actually know
whether these are answers with the fewest
possible digits.

(3 + 2) × 23 = 40

2(2 × 3) – 3 = 61

2(23) + (2 × 3) + 1 = 263

(2 + 2) × ((3 + 2)3) = 500

I would be happy to hear from readers regard-
ing their own solutions.

2.57 Mystery sequence. The number is 15,625.
The numbers go as 12, 23, 34, 45, 56, . . .

2.58 Blue liquid. Because –40 degrees Centi-
grade equals –40 degrees Fahrenheit.

2.59 Grasshopper sequences. Problems like
these both delight mathematicians and drive
them wild. We can even consider related
sequences. For example, the grasshopper
sequence (x → 2x + 2; x → 5x + 5) yields a
repeat after three generations. The grasshop-
per sequence (x → 2x + 2; x → x + 1) yields a
repeat after four generations. I have not yet
found a solution to the (x → 2x + 2; x → 6x +
6) problem or the related sequences: (x → 2x

+ 2; x → 4x + 4) or (x → 2x + 2; x → 7x + 7).
I go into greater detail regarding these
sequences in my books Computers and the

Imagination and Wonders of Numbers, and
similar kinds of problems are described in
Richard Guy’s “Don’t Try to Solve These
Problems!” in The American Mathematical

Monthly 90, no. 1 (January 1983): 35.

As this book goes to press, my colleague
Mark Ganson claims to have found a repeat in
(x → 2x + 2; x → 7x + 7) after 17 generations.
This 17th generation has 217 – 1 = 131,071
elements, with just one repeat in it! The
repeated value is 1,814,526.

2.60 The loneliness of the factorions. Two tiny
factorions are 1 = 1! and 2 = 2! The largest
known factorion is 40,585; it can be written
as 40,585 = 4! + 0! + 5! + 8! + 5! (The facto-
rion 40,585 was discovered in 1964 by R.
Dougherty using a computer search.) Various
proofs have been advanced indicating that
40,585 is the largest possible factorion, and
that humans will never be able to find a
greater factorion.

2.61 69,696. This is the largest undulating
square number known to humanity. A square
number is an integer of the form y = x2. For
example, 25 is a square number. And 69,696
is a square number because 69,696 = 2642.
Undulating numbers are of this form:
ababababab . . . For example, 171,717 and
28,282 are undulating numbers. Do you think
humanity (or aliens) will ever discover an
undulating square larger than 69,696?

2.62 The beauty of 153. The number 153 is a
member of the class of numbers that are the
sums of powers of their digits. In other words,
these are n-digit numbers that are equal to the
sum of the nth powers of their digits. For
example, 153 = 13 + 53 + 33. Variously called
narcissistic numbers, “numbers in love with
themselves,” Armstrong numbers, or perfect
digital variants, these kinds of numbers have
fascinated number theorists for decades.
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The English mathematician G. H. Hardy
(1877–1947) noted that “There are just four
numbers, after unity, which are the sums of
the cubes of their digits. . . . These are odd
facts, very suitable for puzzle columns and
likely to amuse amateurs, but there is nothing
in them which appeals to the mathematician.”

The largest narcissistic number discovered
to date is the incredible 39-digit number:

11513221901876399256509
5597973971522401

(Each digit is raised to the 39th power.) I
believe it is impossible to beat this world
record. What would Godfrey Hardy have
thought of this multidigit monstrosity?

The number of narcissistic numbers has
been proved finite. They can’t have more than
58 digits in our standard base-10 number
system. As one searches for larger and larger
narcissistic numbers in other number systems,
will they eventually run out in all number
systems?

2.63 Ten silver boxes. Here is the only possible
answer.

This problem is well known in the mathemati-
cal literature. A more advanced problem,
which I designed, continues this process to
generate a sequence in a recursive fashion. In
this variation, each row becomes a “starting
point” for the next. For example, start with the
usual 0 through 9 digits in Row 1:

Now use Row 2 as the starting point, and your
next task is to form Row 3, Row 4, and so on,
using the same rules. For example, a digit in
the first space of Row 3 would indicate how
many 6s there are in Row 3’s 10-digit number.
The second entry in Row 3 tells how many 2s
to expect in Row 3, and so forth. Can you find
a Row 3 or a Row 4?

2.64 Erdös equation. The solutions are 25 = 
4! + 1 = 52, 121 = 5! + 1 = 112, and 5041 = 
7! + 1 = 712. I do not know if there are any
others. The mathematician Paul Erdös long ago
conjectured that there are only three such num-
bers. Erdös offered a cash prize for a proof of
this. Currently, it is not known whether the par-
ticular equation m2 – 1 = n! has only finitely
many solutions. Various researchers have
searched for solutions with incredibly large
values for n and m, but so far none have been
found.

2.65 Perrin sequence. The sequence produced
by u(n + 3) = u(n) + u(n + 1) is called the
“Perrin sequence,” after the French mathe-
matician who wrote about this subject in 
L’Intermédiaire des Mathématiciens in 1899.
Another French mathematician, Edouard
Lucas, was the first to study this sequence in
1876. Both gentlemen were unable to find any
counterexamples to the notion that this
sequence always produced prime numbers.

Bill Adams and Dan Shanks, two American
mathematicians, rediscovered the sequence in
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the 1980s and quickly found the first coun-
terexample at n = 271,441, by computer.

You can learn more about the Perrin
sequence from these papers:

William Adams and Daniel Shanks,
“Strong Primality Tests That Are Not Suffi-
cient,” Mathematics of Computation 39, no.
159 (July 1982); G. C. Kurtz, Daniel Shanks,
and Hugh C. Williams, “Fast Primality Tests
for Numbers Less than 50 × 109,” Mathemat-

ics of Computation 46, no. 174 (April 1986);
Hugh C. Williams, Edouard Lucas and Pri-

mality Testing (Canadian Mathematical Soci-
ety Series of Monographs and Advanced
Texts, Vol. 22) (New York: Wiley, 1998).

2.66 Square numbers. The only such numbers
are 2 and 9. For example, 92 = 81 and 9 ×
2 = 18.

2.67 √2 is irrational. Let us assume for the
moment that √2 is rational—which is the
opposite of what we expect to prove. This
means we are saying that √2 can be expressed
as the ratio a/b, where a and b are integers
having no common factor.

Given that  √2 = a/b, we can square both
sides of the equation to get 2 = a2/b2, which
means that a2 = 2b2. Because any integer mul-
tiplied by 2 is an even number, a2 must be
even. In fact, a itself must be even because if
it were odd, a2 would also be odd.

Given our assumptions, we now know that
a is even, which means that a can be rewritten
as 2r, where ra is an integer having half the
value of a. Making substitutions, we have
(2r)2 = 2b2, or 4r 2 = 2b2, or b2 = 2r 2. This also
means that b is even, as we reasoned previ-
ously for a.

Wait just a second! If a and b are both
even, they have a common factor of 2. But we
previously defined a and b as having no com-
mon factor, so our original assumption that
√2 can be expressed as the ratio a/b (where 
a and b are integers having no common 
factor) is false. Thus, we have shown that √2
is irrational.

Here’s a simpler approach for showing the
irrationality of √2. Consider the aforemen-
tioned step, a2 = 2b2. Any factor in the prime
factorization of a2 (and, also, of b2) must have
an even power because of the square, so the
prime factor 2 appears an even number of
times in a2 (example: 82 = 16 = 24), but an
odd number of times in 2b2, implying that a2

is not equal to 2b2, a contradiction.

2.68 Fibonacci snakes. To answer this ques-
tion, write down the number of pairs in each
generation. First write the number 1 for the
single pair you bought from the pet shop. Next
write the number 1 for the pair they produced
after a year. The next year both pairs have
young, so the next number is 2. Continuing
this process, we have the sequence of numbers
1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233,
377, . . . This sequence of numbers is called
the “Fibonacci sequence,” after the wealthy
Italian merchant Leonardo Fibonacci of Pisa.
As we said in the definition of the Fibonacci
sequence, these numbers play important roles
in mathematics and nature. These numbers are
such that after the first two, every number in
the sequence equals the sum of the two previ-
ous numbers F

n
= F

n – 1 + F
n – 2.

2.69 Palindromes on parade. Following are the
number of 1-digit palindromes, the number of
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2-digit palindromes, and so on (the left-most
digit is not allowed to be zero).

Using this table, you can easily see that

W(10 n) = 2[10(n – 1) /2 – 1] + 9 × 10(n – 1) /2

for n odd

W(10 n) = 2[10 n/2 – 1] for n even

We can conjecture that

2.70 Alpha and omega. When Dr. Brain’s wife
says, “Simply by looking at the product, I
can’t tell what alpha and omega are,” what she
really means is that the product does not auto-
matically determine any set of two mystery
factors such as alpha and omega. This means
that omega and alpha cannot both be primes.
Why? If the mystery numbers were two primes
(5 and 11, for example), then Mrs. Brain
would know them at once on being given the
product (55). However, Mrs. Brain says that
she can’t tell what alpha and omega are.

We also know that none of the prime fac-
tors of either alpha or omega can be bigger

than 47. To see this, consider a case where
one of them is 53, a prime number. The small-
est number that this is a factor of is 53, the
next smallest is 106, and so on. Since we have
been told that both of our mystery numbers
are between 2 and 99 inclusive, 53 must be
one of the numbers. The other one must be
the product, divided by 53. Once Mrs. Brain
has figured out that 53 is a factor, she would
be able to determine the other number. Since
she couldn’t, there can’t be any prime factors
bigger than 47. (I learned about this kind of
problem from Professor Edsger W. Dijkstra of
the Netherlands, olimu.com/Notes/
ProductAndSum.htm.)

2.71 Does pi contain pi? No. Several of my
colleagues have noted that if pi contained pi,
at the point where the “contained pi” started,
pi would become a repeating decimal. Then pi
would not be irrational. Hence, pi cannot con-
tain pi. Is there any way that a number can
“contain itself ” other than it having a pattern
that repeats itself?

Here’s another way to look at it. If a number
contained itself starting after n digits, then the
first n digits would be the same as the second
n digits. Similarly, the second n digits of the
copy would be the same as the first n digits of
the copy, which means, since the second n dig-
its of the copy are the third n digits of the orig-
inal number, the third n digits of the original
number would be the same as the first n digits.
And so on, and so on, to infinity. The number
would be a repeating decimal of period n.

In the original question, I said that pi
“probably” includes every possible string of
finite digits because this assumes that the

lim
log ( )

log( )P

W P

P→∞
=

1

2
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Digit Form W(P)

1 digit a 9

2 digits aa 9

3 digits aba 9 × 10

4 digits abba 9 × 10

5 digits abcba 9 × 10 × 10

6 digits abccba 9 × 10 × 10



distribution of pi’s digits is normal. Currently,
this is only a conjecture with some good evi-
dence to back it up.

2.72 Word frequency. Here are the occurrences,
based on my searching with the Google search
engine in the year I wrote this book. The num-
ber of occurrences is in units of millions. Note
the spikes at ten, twelve, and twenty.

2.73 Bad luck. The traditional explanation is
that 13 people were at the Last Supper, which
heralded the death of Jesus. The traitor Judas
was said to be the 13th apostle. The “unluck-
iness of 13” started to spread through Euro-
pean culture in the Middle Ages. Today, many
buildings do not have a 13th floor—the num-
bering skips from 12 to 14. See the next entry
on paraskevidekatriaphobia.

2.74 The height of irrationality. Let .
If A is rational, it is the desired example. On
the other hand, if A is irrational, then consider

. By one of the standard exponent laws,
we have (xm)n = xmn. Hence

So, this is the desired example that an irra-
tional number raised to an irrational power
need not be irrational (James F. Hurley, Lit-

ton’s Problematical Recreations [New York,
N.Y.: Van Nostrand Reinhold, 1971]).

2.75 A common fear. The term paraskevideka-

triaphobia was coined by Dr. Donald Dossey
and refers to extreme fear of Friday the 13th.
Paraskevidekatriaphobia is related to
triskaidekaphobia, the fear of the number 13.
Interestingly, the number 13 was considered a
lucky number in ancient Egypt and China and
in the Mayan civilization. According to
Robert Todd Carroll, the author of The Skep-

tic’s Dictionary, 13 may have a bad reputation
because Loki, the Norse god of evil, started a
riot when he came to a banquet at Valhalla
attended by 12 gods. The ancient Hebrews
considered 13 unlucky because 13 was desig-
nated by the 13th Hebrew letter, which corre-
sponded to the word mem, meaning “death.”
Friday may be considered unlucky because
Jesus is thought to have been crucified on a
Friday, the Roman day for executions.

Researchers writing in the British Medical

Journal have compared the ratio of traffic vol-
ume to vehicular accidents on two different
days, Friday the 6th and Friday the 13th, over
a period of years. Surprisingly, they found
that the number of hospital admissions due to
accidents was significantly higher on Friday
the 13th than on “normal” Fridays. For more
information, see T. Scanlon, R. Luben, F.
Scanlon, and N. Singleton, “Is Friday the 13th
Bad for Your Health?” British Medical
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Number Occurrence Number Occurrence

one 571 seventeen 8

two 360 twelve 16

three 183 thirteen 6

four 163 fourteen 4

five 115 fifteen 9

six 90 sixteen 5

seven 73 seventeen 4

eight 42 eighteen 4

nine 30 nineteen 3

ten 80 twenty 24



Journal 307, no. 6919 (December 18–25,
1993): 1584–86.

According to Dr. Donald Dossey, as many
as 21 million people suffer from paraskev-
idekatriaphobia in the United States alone.

2.76 Prime test. Yes, but only if the person 
is lucky and decides to check to see if the 
big number is divisible by 3, which is one of
the easiest tests of divisibility. Because a
prime number can’t be divisible by 3, if we
should find that this number is, it will not be 
a prime.

A number is divisible by 3 if its digits sum
to a number that is divisible by 3. To see if our
number is divisible by 3, first strike out all
zeros and any other single digits that are
divisible by 3, which quickly takes us from
the original number

5,230,096,303,003,196,309,630,967

to

5217

These digits sum to 15, which is divisible by
3. Thus 5,230,096,303,003,196,309,630,967
cannot be a prime number.

2.77 Never prime? No. Here is a counter-
example: 12 + 22 + 52 + 72 = 79. However, 
as my colleague Nick Hobson notes, if we
have a × b = c × d (a, b, c, d > 0), it can be
shown that a2 + b2 + c2 + d2 is composite. In
fact, the result remains true if we replace the
exponent, 2, with any non-negative integer!
Examples:

24 = 3 × 8 = 4 × 6 →
32 + 42 + 62 + 82 = 5 × 25

25 = 1 × 25 = 5 × 5 →
12 + 52 + 52 + 252 = 676 = 2 × 338

26 = 1 × 26 = 2 × 13 →
12 + 22 + 132 + 262 = 850 = 2 × 425

60 = 5 × 12 = 6 × 10 → 55 + 65 + 105 + 125

= 359,733 = 3 × 119,911

2.78 Integer hoax. Martin Gardner flustered
readers in the April 1975 issue of Scientific

American by saying (in jest) that is an
integer, and various authors printed this “fact”
in their later books. However, this number is
only very “close” to being an integer. Its exact
value is

262537412640768743.
9999999999992500 . . .

This is sometimes called a Ramanujan num-
ber, although Ramanujan (1887–1920) did not
give this particular example. He did give other
impressive examples of almost integers, such
as .

2.79 Cube square puzzle. N is 69. So 692 =
4,761 and 693 = 328,509. I believe there may
be various observations that we can make to
make this problem easier to solve. For exam-
ple, it appears that N must be two digits,
because N (2 digits), S (4 digits), and C (6
digits) are the only possible numbers to make
this work. In turn, this means that N must be
greater than 31 and less than 100.

2.80 Cube numbers. N is 216 = 63 = 33 +43 +
53.

2.81 0s and 1s. The missing equivalence is
1110 = 10. I am simply replacing the 1s with

e π 58

e π 163
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their corresponding prime number and then
adding each prime number. Here are the first
few prime numbers: 2, 3, 5, 7, 11, 13, 17, 19,
23, 29, 31, 37, . . . So, for example, 01 = 3,
011 = 5 + 3 = 8, and 1,001 = 2 + 7 = 9.

2.82 Cube mystery. A number like 17 is one of
only 6 other numbers that are equal to the
sum of the digits of their cube. For example,
173 = 4,913, and 4 + 1 + 9 + 3 = 17.

2.83 Consecutive prime numbers. They are 2
and 3.

2.84 Alien ships. 3,456. To determine the 
number of ships in the sequence, start with 
3, then perform the following operations:
multiply by 2, multiply by 3, multiply by 4,
repeat . . .

2.85 Trains with crystal balls. There are 138
crystal balls in the last car. Start with 42.
After this, I simply added the digits together
to get the first digit or digits in the next num-
ber. I also incremented the last digit of the
number by 1 to obtain the last digits in the
next number. So, for example, 4 + 2 = 6,
which is the first digit of 63. The 3 is obtained
simply by incrementing the 2 in 42. Next, we
add 6 + 3 to get 9 and then append 4 as the
right-most digit, and so forth.

2.86 Mr. Zanti’s ants. The number in the last
sequence is 27,306. Start with n = 1. The gen-
erating formula is n ← 2(2n + 1). So, this
means that 1 becomes 6, 6 becomes 26, and
so forth.

2.87 Prime king. The deck now contains 32
cards, assuming a standard pack. Note that
cards like the jacks and the aces don’t show
numbers on their faces. The only cards 
missing are the kings, the 2s, the 3s, the 5s,
and the 7s.

2.88 Pi deck. Any shuffling of cards with
numbers will produce a digit string found
somewhere in the endless digits of pi. If we
wish, we can analyze this further. Since all
possible arrangements are found somewhere
in pi, it comes down to determining how
many unique arrangements (shufflings) are
possible. By removing the aces, the kings, the
queens, and the jacks, we are left with a deck
of 36 cards. There are 9 cards (2 through 10)
for each of the 4 suits (hearts, diamonds,
spades, and clubs). The number of unique
arrangements (ignoring suits) is (4 × 9)/249 =
140,810,154,080,474,667,338,550,000,000,
each of which produces a string of 40 digits
of pi, since the 10s each produce 2 digits: 1
and 0.

3. Algebra, Percentages, Weird 
Puzzles, and Marvelous 

Mathematical Manipulations

3.1 1⁄2 puzzle. The number –1.

3.2 Shrunken heads puzzle. Gary had 10
shrunken heads. Joan had 14 shrunken heads.

3.3 Loyd’s Leaning Tower of Pisa. In theory, the
ball travels 218.777 . . . feet or 218 feet, 9 and
1⁄3 inches. Here’s the reasoning that Loyd never
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gave. Let’s generalize the problem to an initial
drop of n feet. In Loyd’s case, n = 179. During
the initial drop, the ball falls n feet. Then it
goes back up n/10 feet, then falls n/10 again,
giving us 2(n/10) feet. To this distance, we
must add the next up/down distance, which is
2(n/100) feet. Thus, for each successive rising
and falling, we must add 2 × n/(10b), where b
is the number of times the ball has fallen.

In a moment, I’ll explain why the sum of
all the 2n(1/10b) distances converges to
2n(1/9), which is 39.777 . . . feet when n =
179 feet. For now, you can see that to get 
the total distance traveled, we add to this the
initial drop of 179 feet to arrive at 218.7777 
. . . feet.

Notice that the ball goes though an infinite
series of hops, each time adding to the dis-
tance traveled. Of course, this analysis omits
any frictional effects. Also, at some point, the
tiny bounces traveled become subatomic, and
quantum effects would be considered. Can you
imagine how much more difficult this would
be if the ball is strange and its successive
heights go as the Fibonacci sequence?

How do we know that n/10b converges to
1/9? Start by observing that the sum looks
like S = 1/10 + (1/10)2 + (1/10)3 . . . If r =
1/10, we get S = r + r2 + r3 . . . There exists a
simple formula for determining to what value
this kind of infinite sum converges, and we
can derive this formula.

Consider this sum of the form S = r + r2 +
r3 . . . where r < 1. Multiply both sides of the
equation by r to yield rS = r2 + r3 + r4 . . . .
The right-hand side of the equation is simply
S – r, so we get rS = S – r. Solving for S
allows us to determine that the sum of an 
infinite geometric series of this form is 

S = r/(1 – r) for r < 1. In our case, r = 1/10, so
S = 1/9.

3.4 Chimpanzees and gorillas. The chimpanzee
is 45 years old. The gorilla is 9 years old. Let
the age of the chimpanzee be C and the age of
the gorilla be G. We may solve this by solving
two equations in two unknowns:

C = 5G

C – 3 = 7(G – 3)

5G – 3 = 7G – 21

–2G = –18, G = 9

3.5 RED + BLUE. Here is one possible solu-
tion. Can you find others?

RED + BLUE = BUOL

123 + 4,562 = 4,685

My colleagues believe that there are 260
unique solutions for integer values greater
than zero.

3.6 Loyd’s “teacher” puzzle. Loyd tells us there
are infinite pairs of numbers that have the same
sum and product. If one number is a, the other
number can be found simply by dividing a by
a – 1. Here is why. Combine the two formulas
so that you have ab = a + b and solve for b.

ab = a + b

ab – b = a

b(a – 1) = a

b = a/(a – 1)

As one example, if a is 10, then b = 10/9.
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3.7 Worms and water. People are always amazed
at the answer: the 1,000 pounds of worms
now weigh a mere 200 pounds. We can solve
this using algebra. The solid part, S, of the
worms starts out as 1 percent of 1,000, or S =
10 pounds. After an hour, we know that the
same solid (S = 10 pounds) of wriggling
worms is now 5 percent of the worm weight
W. This means that S = 10 pounds = 0.05 × W

pounds, so W pounds = 10 / 0.05 pounds =
200 pounds. Your poor worms are probably
quite thirsty now.

3.8 Loyd’s mixed tea puzzle. To solve this prob-
lem, we can find two different integers (corre-
sponding to the different edge lengths of the
green and the black tea boxes) so that when
their cubes are added, the result can be evenly
divided by 22 and also have a cube root that is
an integer. This problem can thus be expressed
as a3 + b3 = 22c3, where a, b, and c are inte-
gers. In other words, we must find a number,
c, that is the sum of cubes of two numbers,
which if divided by 22 gives another number
that is the cube of a third number, which is the
length of the one side of the 22 combined
boxes of tea. By specifying terminating deci-
mals, we are ensuring that a, b, and c are not
irrational. This, in turn, allows us to restrict a,
b, and c to integers, or, if they aren’t integers,
we can multiply the equation by the cube of
the greatest common denominator. In addition,
by dividing out any common factors that a, b,
and c have, we can say there exists a “mini-
mal” solution such that a, b, and c are rela-
tively prime.

Loyd’s answer is that a cube 17.299 inches
on the side and a cube 25.469 inches on the
side have a combined volume of 21,697.

794418608 cubic inches, which is exactly
equal to the combined volume of 22 cubes,
each 9.954 inches on the side. Therefore, the
green and the black teas must have been
mixed in the proportion of 17,2993 to 25,4693.

My friend Mark Ganson used a computer
to solve this problem. He wrote to me,

One possible solution is where the smaller
green tea chest has a side length of 17,299
and the larger black tea chest has a side
length of 25,469. The 22 chests each have a
side length of 9,954. Thus, 172993/254693 ~
0.313348, the proportion of green tea to
black. I found the solution through a brute
force search. Initially, I created a list of the
first 40,000 perfect cubes and another list of
these same cubes × 22. Then I looped
through the first list of cubes, creating a
third list each time. This third list was the
sum of each cube and the nth cube in the
original list. Each time through the loop I
checked to see if the 2nd and 3rd list inter-
sected each other, which indicated when a
cube × 22 equaled the sum of 2 other cubes.

How did someone of Loyd’s time arrive at
an answer without a computer?

3.9 Fragile fractions. The solution is 1⁄2 = 1/22

+ 1/32 + 1/42 + 1/52 + 1/72 + 1/122 + 1/152 +
1/202 + 1/282 + 1/352. This is the only solution
of which I am aware for x < 100. It’s possible
to extend the problem to other fractions—
for example, 1/3 = (1/2)2 + (1/4)2 + (1/8)2 +
(1/24)2 + (1/28)2 + (1/30)2 + (1/40)2 + (1/56)2

+ (1/84)2. Can you find a set of fragile frac-
tions for 1/5?

My colleagues and I do not know whether
solutions exist for all of the first 100 rationals
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of the form 1/n (such as 1/2, 1/3, 1/4, . . . 1/98,
1/99, 1/100) up to n = 100, given the domain
of the first 100 rational squares of the form
1/n2 (such as 1/22, 1/32, 1/42, . . . 1/982, 1/992,
1/1002) up to n = 100. Perhaps the only way to
answer this question is through a brute force
search—by systematically testing the sums of
all subsets of those first 100 rational squares
until we find solutions for all of the targeted
values (1/1 through 1/100). This approach is
challenging because so many subsets exist, in
particular, 2100 – 1 = 1,267,650,600,228,229,
401,496,703,205,375 subsets. Even with a
computer that could perform 1 billion of these
subset sums per second, it would take 4 × 1013

years to check them all. However, this number
may be reduced substantially by using intelli-
gent searches.

3.10 Square pizzas. Abraham’s task is impossi-
ble. Let V be the sum of all the numbers in the
stacks of all corner vertices. Suppose that
Abraham is working with N different squares.
The sum of all the numbers at the vertices of
all the squares is N × (1 + 2 + 3 + 10) or 16N.
Can the sums of each vertex stack sum to 67?

Let M be the common sum of each vertex
stack. Then 4M = 16N, which leads to M =
4N. Note that 4N is always an even number.
No matter how many squares Abraham has,
the common sum in each stack would have 
to be an even number. Thus, there is no way
that Abraham can get each vertex stack to
sum to 67.

Another approach is to start with 67, which
implies that the sum of all pizza numbers is 
4 × 67 = 268. Since each square has a sum of
16 on its surface, 268/16 has to be an integer,
which is not possible.

3.11 The problem of the rich jeweler. The jeweler
has a total of 8,615,889 precious objects! 
My colleague David Jones was the first to be
able to solve this, and he has written a
detailed analysis at his Web site, www.
nightswimming.com/math/. To solve this
problem, he used the Microsoft Excel spread-
sheet program. Jones first notes that there are
three types of objects: alloys, gems, and
spices. Each type has four colors: beige,
green, pink, and yellow. Each item will be
referred to with two letters, the first by color
and the second by type. For example, pink
spices will be denoted by PS, beige alloys are
denoted by BA, and so on.

The second paragraph of the problem talks
exclusively about gems. We start by examin-
ing the gems, and we will deal with alloys and
spices later. An elementary interpretation of
the paragraph yields the following equations,
labeled A, B, and C.

A: PG = (1/4 + 1/3)BG + GG

B: BG = (1/7 + 1/3)GG + YG/2

C: GG = (1/5 + 1/11)(PG + BG)

Algebraic manipulation allows us to rewrite
these equations as

A: (7/12)BG + GG – PG = 0

B: –BG + (10/21)GG + (1/2)YG = 0

C: (16/55)BG – GG + (16/55)PG = 0

The alloys and spices equations are

J: PA = (1/2 + 1/5)(PA + PG + PS) + 2YA

K: BA = (1/3 + 1/2)GA

L: GA = (1/5)PA + (1/6)YA

M: YA = (1/8 + 1/3)(GA + GG + GS)
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P: PS = (1/2)(BA + BG + BS)

Q: GS + YS = BS + PS

Using linear algebra, David finds a minimum
solution:

This is quite a lot of precious objects! In addi-
tion, we may wonder how much space would
be required to store all of this wonderful mate-
rial. David says that the total number of gems
is 419,050; the total number of alloys is
7,227,209; and the total number of spices is
969,630. Sample gems and rocks often come
in 1⁄2-inch cubes, so we will assume that a 
gem or an alloy sample is 1⁄8 in.3 in volume.
Powder samples are often stored in test tubes
3⁄8 inch across and 2 inches tall, so we assume
9⁄32 in.3 for spices. This totals up to a net vol-
ume of just under 711 cubic feet. Assuming
that the walls are 8 feet high, as in most
houses, you would need a room with 89 square
feet of floor space just to store all of the
objects. Keep in mind that this does not count

whatever boxes or materials you use to store
the objects or the space you would need for a
human being to walk through to retrieve items.
I would think that a room the size of a normal
high school chemistry lab would be sufficient.

3.12 A huge number? At first glance, this looks
like a huge number. After all,

This number is unimaginably bigger than a
googol. However, one of the terms in the long
expression (a97 – a1) × (a97 – a2) × (a97 – a3) ×
. . . × (a97 – a98 ) × . . . (a97 – a99) is (a97 – a97),
and thus the answer is zero. I learned about
this sort of problem from William Pound-
stone’s How Would You Move Mount Fuji?

which is a collection of puzzles that the
Microsoft Corporation uses when interview-
ing job candidates.

3.13 x 0? Examine the powers of any number, 
say 4:

43 = 64

42 = 16

To get from 43 to 42, we divide 43 by 4. Next
consider

41 = 4

We divide by 42 by 4 to get 41. And finally we
divide 41 by 4 to get 40 = 1. This approach
works for any non-zero number.

3.14 Winged robot. Yes. Danielle’s father hap-
pens to be 52 years old, and her mother’s
father, her maternal grandfather, is 52 years
old.

a97
9697 95

321

=
...
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Color Type Variable Amount

Blue Gems BG 98,280

Green Gems GG 63,840

Pink Gems PG 121,170

Yellow Gems YG 135,760

Blue Alloys BA 871,035

Green Alloys GA 1,045,242

Pink Alloys PA 4,802,600

Yellow Alloys YA 508,332

Blue Spices BS 105

Green Spices GS 6

Pink Spices PS 484,710

Total 8,615,889



3.15 Fraction family. The odd one out is
74/372. For all other fractions, if we removed
numbers that appear in both the numerator
and the denominator, these fractions would
equal a fourth: 1/4, 2/8, 3/12, 4/16, 8/32.

3.16 Tarantulas in bottles. Point to the middle
bottle and say, “Does the bottle on the right
contain a live tarantula?” If the answer is “yes,”
then the bottle on the right contains a live
tarantula. If the answer is “no,” the bottle on
the left contains a live tarantula. Notice that if
you are pointing to a live tarantula, then
Tiffany is telling the truth, and if you are point-
ing to the dead tarantula, the answer doesn’t
matter anyway because you will pick one of
the other two, which are both live tarantulas.

3.17 Large ape. The day after tomorrow.

3.18 Ψ substitution. Number 1. Here’s why: 
58 × 13 = 754; 27 × 13 = 351; 65 × 13 = 845;
17 × 13 = 221.

3.19 Angel number-guessing game. We need to
search for numbers such that (a + b) × 1000 =
a × b. One such answer is 1,250 and 5,000.
There are twenty-five possible unique solu-
tions for positive integers. The largest number
of possible apples or grapes is 1,001,000.

One way to solve this is to solve for b:
(a + b) × 1,000 = a × b, or 1,000a + 1000b =
ab, or 1,000(a/b) + 1,000 = a, or a/b =
(a – 1,000)/1,000, or b = 1,000a/(a – 1,000).
Since we are interested in positive solutions,
this means that a > 1,000. We also know that
because a + b = b + a and a × b = b × a, half
of the solutions are found simply by switching
a and b.

If a = b, the original equation yields (a + a)
× 1,000 = a × a or 2,000a = a2 or a = 2,000
and b = 2,000. Here are all the (a, b) solu-
tions: (1,001,000; 1,001), (501,000; 1,002),
(251,000; 1,004), (201,000; 1,005), (126,000;
1,008), (101,000; 1,010), (63,500; 1,016),
(51,000; 1,020), (41,000; 1,025), (32,250;
1,032), (26,000; 1,040), (21,000; 1,050),
(16,625; 1,064), (13,500; 1,080), (11,000;
1,100), (9,000; 1,125), (7,250; 1,160), (6,000;
1,200), (5,000; 1,250), (4,125; 1,320), (3,500;
1,400), (3,000; 1,500), (2,600; 1,625), (2,250;
1,800), and (2,000; 2,000).

Another solution starts from (a – 1,000)
(b – 1,000) = 1,000,000. Then a – 1,000 takes
on all factors of 1,000,000 = 26 × 56, which
can easily be written out.

3.20 Starship journey. Kirk requires 30 hours.
Eck requires 23 hours. Let Kirk’s ship travel at
speed u, and Eck’s travel at speed v, in arbi-
trary units. Let the time of their meeting be t
hours. We know that distance is time × speed.
Thus, we have the following distances covered:

Kirk, before Kirk, after  
meeting: tu meeting: 17u

Eck, before Eck, after 
meeting: tv meeting: 10v

Note that the distance that Kirk travels before
meeting Eck is the same as the distance that
Eck travels after meeting Kirk. Thus, we 
then have tu = 10v and 17u = tv. We can
manipulate the formulas to solve for t. For
example, t = 10v/u and u = tv/17. Thus t =
170v/tv, which means t2 = 170, and t is
approximately equal to 13. Thus Kirk’s ship
requires 17 + 13 hours = 30 hours, and Eck
requires 10 + 13 = 23 hours.
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3.21 Missing numbers. Here is one solution.
Are there others?

We believe that there are 32 different solu-
tions for this problem. If we randomly scram-
bled the digits 1 through 11 to fill the white
cells, the probability of producing a correct
answer is 32/11! = 32/39,916,800, which sim-
plifies to 1/1,247,400—a roughly one in a
million shot.

3.22 Journey. Let the distance between the
city and New York be D miles. We know that
time equals distance divided by velocity. This
means that it takes D/21 hours to travel to
New York and D/3 hours to return. The total
time for the trip is D/21 + D/3 = 8D/21 hours
to travel 2D miles, or 4/21 hours to travel 1
mile. Therefore, the average speed is 21/4 or
5.25 miles an hour.

3.23 Four intelligent gorillas. The successful
gorilla received 2,468 votes. Let the winner
receive w votes. Then the other three candi-
dates received w – 888, w – 88, and w – 8
votes. So the total number of votes is 4w –
(888 + 88 + 8), which we know equals 8,888.
Hence, w = (8,888 + 888 + 88 + 8)/4 = 2,468.

3.24 George Nobl: A true story. He’d have to
mix 10 pounds of peanuts. Let x be the

pounds of peanuts Noah would have to mix
with all the cashews. The cost of the peanuts
is 2.50 × x. Thus, the total weight, w, of the
final mix is 20 + x. The equation to solve is
3.55 × 20 + 2.50 × x = 3.20 × (20 + x), or 71 +
2.5x = 64 + 3.2x, or 7x = 0.7x, or x = 10
pounds of peanuts (Reference: NPR radio,
“Math Teacher’s Mission: To Make Equations
Fun Sidewalk Instructor Fights Epidemic of
‘Math-aphobic’Americans,” www.npr.org/
programs/morning/features/2002/apr/math/).

3.25 Human hands. He owns 4 hands and uses
3 shelves. Let H represent the number of
hands and S the number of shelves. We know
that: H – 1 = S (all the hands except one had a
shelf), and H/2 = S – 1 (half the number of
hands filled all the shelves but 1). Solving for
H and S, we get 4 hands and 3 shelves.

3.26 Ages. Teja: 5; Danielle: 11; Nick: 21;
Pete: 31; Mark: 41.

3.27 Three arrays. Here is one solution. Can
you find others? (Obviously, the numbers
inside a particular array might be shuffled
around to produce a valid solution.) How fast
could you do this? There are 6 missing num-
bers, giving 6! = 720 permutations. I tried all
720 and found 8 that worked. All 8 are just
variations on the given solution. Each 2 × 2
grid can be arranged in 2 different ways, giv-
ing 2 × 2 × 2 = 8 ways to do this.
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13 8 9 10

5 6 33 11

4 19 7 19

3 2 10 1

1 2

10 11

8 9

12 5

6 4

7 3



3.28 Perfect cubes? No, they cannot be per-
fect cubes. First, consider that if integers A
and B are perfect cubes, then A × B must be a
perfect cube. Why? Let A = x × x × x, and 
B = y × y × y. Then we have A × B = x × x × x

× y × y × y, or, rearranging, (x × y) × (x × y) ×
(x × y) , which is a perfect cube.

So, we can multiply our starting numbers 
n + 3 and n2 + 3 to get (n + 3)(n2 + 3) = n3 +
3n2 + 3n + 9 = (n + 1)3 + 8. This means 
(n + 1)3 + 8 must be a perfect cube, and we
can see that (n + 1)3 is a perfect cube.

These two perfect cubes must differ by 8.
However, you can see that perfect cubes 
grow very rapidly: 1, 8, 27, 64, 125, . . . Thus,
there are no perfect cubes that differ by 8 
for positive n. Therefore, n + 3 and n2 + 3
cannot both be perfect cubes. (This puzzle
was inspired by Nick Hobson, www.qbyte.
org/puzzles/.)

3.29 Four pets. In 84 days; 84 is the lowest
common multiple of 6, 4, 3, and 7. The lowest
common multiple (LCM) of a group of num-
bers is the smallest number that is a multiple
of each number in the group. One way of
finding the LCM is to list the multiples of
each number, and then pick the smallest num-
ber that is common to all numbers in the
group. You can learn about other ways of find-
ing the LCM on the World Wide Web.

3.30 Fractional swap. 1,534/4,602 = 1/3. How
long did you take to solve this? What method
is the most efficient to use when solving prob-
lems of this kind? Do you think there is more
than one answer? Recently, I found four 
different answers: 1354/4062, 1534/4602,
0454/1362, and 0544/1632. However, the last

two solutions involve swapping 3 numbers, not
2. I tried all 8! permutations, which required
only 0.93 seconds of actual processing time.

3.31 Rational roots. When I posed this problem
to colleagues at the end of 2003, I was not
certain that anyone could solve it. However,
Graham Cleverley found a solution to this for
n = 113569/14400. This meets the criteria of
the problem because

n = 113569/14400 = 3372/1202

n – 7 = 12769/14400 = 1132/1202

n + 7 = 214369/14400 = 4632/1202

Other solutions are possible, but we think 
this is the smallest solution. Cleverley notes
that if you can find integer solutions for the
variables p, q, r, and s such that (p2 – 7q2)/2pq

= (r2 + 7s2)/2rs, then n is the left-hand (or
right-hand) side of the equation squared. The
previous solution occurs with p = 20, q = 3, 
r = 15, and s = 4.

Cleverley used a Microsoft Excel spread-
sheet and varied r and s until he found values
for which r4 + 42r2s2 + 49s4 is square, the
requisite condition for the previous equation
having integers p, q, r, s.

It is intriguing that today mathematicians
of all degrees of sophistication can solve
problems like this using spreadsheets. It took
Cleverley about an hour of programming and
experimenting to find a solution.

3.32 Donald Trumpet. William got $200,000.
($200,000 + $800,000 = $1,000,000.)

3.33 Rubies and emeralds. The combined
weight is 20 pounds. Let R = the weight of
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one ruby and E = the weight of one emerald.
We know that 3R + 2E = 32 and 4R + 3E =
44, which means that the weight of a single
ruby is 8 pounds, and the weight of a single
emerald is 4 pounds. So, 2R + E = 20 pounds.

Perhaps a more elegant solution is to note
that removing one ruby and one emerald 
(4R + 3E → 3R + 2E) reduces the weight by
12 pounds (44 to 32), so doing the same again
(3R + 2E → 2R + E) reduces by the same
amount, to 20 pounds. Using this logic, there
is no need to calculate the individual weight
of each stone.

3.34 Crow and eagle. The crow gets 14 and 2⁄7
worms (approximately 14.2857 worms). The
eagle gets 85 and 5⁄7 worms (85.7143 worms).

3.35 Number grid.

3.36 Four digits. Here is one solution: 
(23 + 2) × 5 = 125. Are there other solutions?
Recent studies suggest that 8 possible solu-
tions exist if we require that A, B, C, and D
are unique. These solutions are {A,B,C,D}

{8, 3, 2, 1}, {7, 9, 2, 1}, {2, 9, 4, 1}, {2, 3, 5,
1}, {6, 0, 4, 2}, {6, 7, 5, 3}, {9, 0, 5, 4}, and
{8, 9, 5, 4}.

3.37 Wizard’s card. Number 23. In puzzles of
this kind, if the two numbers have a common
divisor, then no numbers that are not a multi-
ple of that divisor can be obtained. Otherwise,
if one integer number is x and another is y,
then the largest impossible score is xy – x – y.
So, in our case, we have 9 × 4 – 9 – 4 = 23.

3.38 Insert symbols. This was the first solution
I came up with: 87 + 65 – 43 – 21 = 88. In
fact, there are at least 9 solutions, including
87 – 6 + 5 – 4 + 3 + 2 + 1, 87 + 6 – 5 + 4 – 
3 – 2 + 1, 8 + 7 + 65 + 4 + 3 + 2 – 1, 87 + 
6 – 5 – 4 + 3 + 2 – 1, 87 – 6 + 5 + 4 – 3 + 2 –
1, 87 + 6 + 5 – 4 – 3 – 2 – 1, 8 – 7 + 65 + 4 – 
3 + 21, 8 – 7 + 65 + 43 – 21, and 87 + 65 – 
43 – 21.

At least 45 different solutions exist, if we
were to allow the additional use of × and ÷. If
we wish to study a related problem, 8 7 6 5 4
3 2 1 = 1, we find only one solution using +
and – symbols: 8 – 76 + 5 + 43 + 21 = 1.

3.39 Missing numbers. Here is one solution.
Are there others?
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8 + 2 + 2 = 6

× + ×

7 × 4 + 6 = 34

+ + –

3 × 5 + 9 = 24

= = =

59 11 3

2 3 5 6 16

4 2 4 7 17

2 0 5 8 15

2 1 5 9 17

10 6 19 30 18



3.40 New Guinea sea turtle. I am 10 years old,
and my turtle is 40 years old. Here’s one way
to solve this. Let x = my age. Let 4x = the tur-
tle’s age. Then,

4x + 20 = 2(x + 20)

4x + 20 = 2x + 40

2x = 20

x = 10

3.41 Find A and B. The answer is 422 = 1,764.

3.42 Prosthetic ulnas. She weighs 160 pounds.
The equation is x = 120 + x/4.

3.43 Ladybugs. The relevant equation is L +
10 = 5L – 2. The answer is 3. You don’t have
to denote the number of grasshoppers by G.

3.44 Nebula aliens. The radius is 18 feet. The
area of a sphere is 4πr2 and the volume is
(4/3) πr3. According to our problem, this
means that both 4r2 and (4/3)r3 must be
between 1,000 and 9,999. From the area con-
dition, we get 50 > r > 15, and from the vol-
ume condition we get 20 > r > 9. Next, note
that (4/3)r3 can be an integer only if it is
divisible by 3. This means r = 18 feet. Is it
possible to determine the sphere’s radius if the
surface area and the volume are both five-
digit integers times π?

3.45 Martian females. In the crater, 3 females
and 3 males are married. Let’s refer to the
females as women and males as men, even if
they don’t quite look like us. The number of
married men and married women must be
equal. Thus, we have 3/7 W = 1⁄2M. Multiply

both sides of the equation by 14 to yield 
6W = 7M, and thus the least number is W = 7,
M = 6. This gives 13 Martians total, of which
6/13 of the crater’s inhabitants are married
(i.e., 3 wives of the 7 women and 3 husbands
of the 6 men). There are exactly 3 married
couples. For this problem, we assume that
marriages are between male and female Mar-
tians. If I do not ask for the least number,
there are an infinite number of solutions to
6W = 7M.

3.46 Dimension X. A third of 12 would be 51⁄3.
Assume that there is a strange factor that
causes 6⁄2 to be equal to 4 instead of 3. This fac-
tor is 1.3333 . . . or 1 and 1/3. Therefore, (12/3)
× 1.3333 . . . is 51⁄3. Of course, this is one of
those frustrating puzzles when more than one
answer is possible. For example, we might con-
sider the idea that 1 is added to each division
operation so that 12⁄3 = 5. Platonists may disap-
prove of this puzzle and say that the eternal
idea “6” is 6 in any dimension whatsoever.

If my wording bothered you, you can recast 
the question as the following when presenting 
it to friends. My calculator has been acting up
lately. For instance, every time I divide 6 by 2,
it gives the answer 4. What do you think it
would give if I divided 12 by 3? That stops all
of the philosophical arguments about what I
might mean by “is” in “half of 6 is 4” or
indeed “half,” because there is no reason that
in this nearby dimension, “half ” should mean
what you get if you divide by 2.

3.47 Wine and vinegar. Monica carries 10 × 3 ×
(1⁄4) = 7.5 cups. William carries 5 × 4 × (3⁄4) =
15 cups. Thus, William carries 15 – 7.5 = 7.5
cups more than Monica does.
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3.48 Unholy experiment. There are 40 humans
and 30 rabbits. Let h be the number of
humans, and let r be the number of rabbits.
Thus, we have two equations with two
unknowns.

r + h = 70

4r + 2h = 200

We can multiply the first equation by 2 and
subtract it from the second:

2r + 2h = 140

4r + 2h = 200

Thus, 2r = 60; r = 30; h = 40. Are there other
answers to this problem?

3.49 Space race. The Americans and the
Russians traveled different routes between 
the planets, and one route was shorter than 
the other. (You didn’t need much algebra for
this one!)

3.50 Odin sequence. Indeed, every starting
two-digit number in the Odin sequence
returns to itself eventually. Number 13
requires 20 steps to return; that is, the 21st
number is the same as the first. All other two-
digit starting numbers require 20 steps to
return, except for multiples of 5, which
behave differently and require fewer steps.

3.51 Tanzanian zoo. Question 1: Bill has 18
giraffes and 4 ostriches. Each animal has 2
hind legs, so 22 heads means 44 hind legs
total. The remaining 36 legs must be the front
legs of 18 giraffes. Therefore, 18 heads
belong to the giraffes, and the remaining 4
heads belong to the ostriches. Question 2:

Altogether, Bill has 3 birds in his “vast” col-
lection! Two of his birds are not geese, but 1
is. Two birds are not ostriches, but 1 is. Two
birds are not swans, but 1 is. This adds up to 3
birds, 1 of each type.

3.52 Fluid pool. It would take 12 minutes. The
creatures will rule Earth. This is a classic
problem that can be analyzed in a simple
manner. If only Hose A is open, the portion of
the pool filled by Hose A is T/30, where T is
time. (Notice how after T = 30 minutes, the
pool would be filled.) The portion of the pool
filled by Hose B is T/20. When both hoses are
open and the pool is completely filled, the
equation to solve is

T/30 + T/20 = 1

Multiply by 60 to get

2T + 3T = 60 or T = 12

This means that the creatures will fill the pool
in 12 minutes.

We can also think of many more compli-
cated variations. For example, Hose A would
fill the pool in 30 minutes by itself. Hose B
would fill the pool in 20 minutes by itself. The
creatures fill the pool in 3 minutes using Hose
A, Hose B, and Hose C simultaneously. 
How long would it take to fill the pool using
Hose C by itself?

Another question to ponder is what the
approximate color of the fluid would be.

3.53 Madagascar death snail. The snail can’t go
fast enough to average 60 feet per hour for
both times around, no matter how hard it tries.
Here’s why.

60 feet/hour = 1 foot/minute
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To average 60 feet per hour, the snail would
have to travel around the 1-foot track twice in

2 minutes. First, let us compute how much
time the snail has taken to travel one lap. At
30 feet/hour (or 1⁄2 foot a minute), the snail has
taken 2 minutes to complete the first lap,
because the track is 1 foot long.

As we said, if we want the snail to travel at
an average speed of 60 feet/hour (1 foot/
minute), this requires that the two laps be
completed in 2 minutes. If the snail needs
more than 2 minutes to travel the two laps, it
is traveling at a speed slower than 60 feet an
hour. However, the snail has already used up 2
minutes to do one complete lap. This means it
has used up all of its time. It can’t possibly
complete two laps in 2 minutes. This means
there is no way that it can achieve an average
speed of 60 feet/hour.

3.54 Pulsating brain. Yes. Let us assume that
there are x astronomical objects in the jar.
Then, the number b of black holes is more
than (70/100)x and less than (75/100)x. We
can rewrite this as

We can rewrite this as the following by multi-
plying by 100:

70x < 100b < 75x

or

14x < 20b <15x

We want to find the smallest integer x such
that 20b is in-between 14x or 15x, or, equiva-
lently, the smallest possible number x such
that the interval from 14x to 15x includes a

multiple of 20. How might we do this? First,
divide by 20b and recast into the form

(14x)/(20b) < 1 < (15x)/(20b)

Multiply the left inequality by 20/14: x/b <
20/14.

Multiply the right inequality by 20/15: 20/15 <
x/b.

Combine the two: 20/15 < x/b < 20/14.

20/15 < x/b < 20/14

or

4/3 < x/b < 10/7

Now, for positive fractions r/s in which r/s <
u/v, we also have r/s < (r + u)/(s + v) < u/v,
and so, x = 14, b = 10, or x = 7, b = 5 is one
solution.

3.55 Grotesque vessel for total human harvest.
The sphere to hold humanity is about 1.00
kilometer (0.6 miles) in diameter. Let us esti-
mate the answer in such a way that Queequeg
does not choose too small a vessel and end
with a mess pouring out the top. First, assume
that an average human weighs about 75 kg
(165 pounds). Next, assume that liquefied
homogenized human specific gravity is about
0.9 (all the air removed, but the higher density
of bones not quite offsetting the lower density
of fat). Assume that water weighs 1 kg/liter,
that the human population is 6.37 × 109, that
there are 1012 liters in a cubic kilometer, 
and that the diameter of a sphere is 2 × (3 ×
volume/4 × π)1/3. Given these assumptions,
the sphere to hold humanity is about 1.00
kilometer (0.6 miles) in diameter. Excellent
storage efficiency!
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3.56 Kama Sutra puzzle. Number 28. When the
man tells the woman how good she is with the
method of inversion, he is referring to the
idea of working a problem backward, so that
when, for example, a divide operation is
given, we actually multiply, and so forth.

To solve the Kama Sutra problem, we start
with the answer 2 and work backward. When
the problem says divide by 10, we multiply by
10. When we are told to add 8, we subtract 8.
When told to find the square root, we take the
square, and so forth. So we have [(2 × 10) –
8]2 + 52 = 196. Instead of “multiplying this
number by itself,” we take the square root,
which is 14. We proceed as follows:

3.57 Alien robot insect. In 9 months. The insect
appears to be traveling upward by 4 feet each
month. In 8 months, it will have traveled 32
feet from the base of the wall. However, on
the ninth month, it will travel upward 8 more
feet and reach the top of the wall before slip-
ping down.

3.58 Goa party. You see 9 tricycles and 4 bicy-
cles. As confirmation, note that 9 × 3 + 4 × 2
= 35 wheels. We can solve this in the follow-
ing manner. Let y = the number of bicycles
and x the number of tricycles. Then we solve
for x and y in the following:

x + y = 13 describes number of vehicles

2y + 3x = 35 describes number of wheels

x = number of trikes

y = number of bikes

We know that 3x + 2y = 35 and x + y = 13.
Thus, we can multiply x + y = 13 by 2 to yield
2x + 2y = 26. We subtract this from 2y + 3x =
35, yielding x = 9. This implies 9 tricycles and
4 bicycles.

3.59 Gelatinous octopoid. He was an active
octopoid for 4.41 centuries. The problem may
be solved by using the following equation: a/3
+ a/5 + a/7 + 10 = a, where a denotes Dr.
Eck’s age in centuries. The equation may be
solved as follows. Multiply each term by 105
to get

35a +21a +15a + 1,050 = 105a

71a + 1,050 = 105a

1,050 = 34a

a =1,050/34 = 30.88 centuries

Therefore, Dr. Eck’s life spent as an active
octopoid is = 30.88/7 = 4.41 centuries.

3.60 Cloned Jefferson in Rome. The magnifi-
cent floor has a column at each corner. Each
side has 13 columns, excluding the corner
columns. Thus, the total number of columns
used is 4 + (4 × 13) = 56. Notice that the 0.3
dimensions were not needed to solve this.
Here’s a diagram showing a smaller example
in which Jefferson counts 4 columns on a side:

* * * *

* *

* *

* * * *

3.61 Hamburgers in space. In elementary calcu-
lus class, we learn that the “derivative” of a

( )( / )( )( / )14 3 2 7 4 7
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distance function can be used to give us the
speed of a moving object. Given f(t) = 3t 2 +
4t 3, we can find the derivative f ′(t) = 6t +
12t 2. When t = 100, the derivative is 120,600.
This means that the hamburger is traveling at
120,600 miles per second. Of course, this is
outrageously fast, considering that the speed
of light is 186,000 miles per second in a vac-
uum! In real life, Britney’s hamburger (or
anything else she tried to accelerate to this
speed) would have been damaged long before
it reached this speed.

While on the topic of derivative, note that
the mathematics professor Hugo Rossi once
said, “In the fall of 1972 President Nixon
announced that the rate of increase of infla-
tion was decreasing. This was the first time a
sitting president used the third derivative to
advance his case for reelection” (Hugo Rossi,
“Mathematics Is an Edifice, Not a Toolbox,”
Notices of the AMS 43, no. 10 (October
1996): 1108).

3.62 Spores of death and madness. First, let’s
start with our exponential growth equation:
N(t) = N0e

kt. The current time is time t = 0,
and N0 is 10. So we have N(t) = 10ekt.

I’d like to first determine the value for k.
We know that tomorrow at this time, which
corresponds to 24 hours, the population will
be 2 million bacteria:

N(24) = 2,000,000 = 10ek(24)

or

200,000 = ek(24)

Let’s solve for k.

ln(200,000) = 24k

k = ln(200,000)/24 ≈ 0.508

Now that we have the value for k, we can sub-
stitute this value in our original equation.

N(t)=10e0.508t

This equation tells us the number of bacteria
in the milk at any time. When will the milk
have reached its maximum of 6 billion
bacteria?

As we think about this, the bacteria have
already started their rapid multiplication.
Notice that people around us are beginning to
gag from the stench, which resembles that
produced by a rotting water buffalo corpse, or
so I’m told. I have never actually encountered
a rotting water buffalo corpse.

We can quickly solve this problem by plug-
ging 6 billion into our equation.

6,000,000,000 = 10e0.508t

600,000,000 = e0.508t

ln(600,000,000) = 0.508t

t = ln(600,000,000)/0.508 or 39.7 hours

In 39.7 hours, there will be 6 billion bacteria
in the milk. I don’t want to be around here
then!

Note that in real life, bacteria won’t con-
tinue to grow exponentially, because they
need to eat and excrete. Growth tends to slow
when creatures are trying to subsist on their
own excreta.

3.63 An ancient problem of Mahavira. The girl
originally had 148,608 pearls on her necklace.
That’s a big necklace! Let’s reflect on the
problem: 1⁄6 fell on the bed; 1⁄3 scattered
toward her. This means that the remaining
pearls that are neither on the bed nor near her
are 1⁄2 of all the pearls. The remaining pearls
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are halved six times, so ((1/2)7)x = 1,161,
where x is the total number of pearls. Thus x
is 148,608. The Indian woman must have had
a huge necklace!

My colleague Jaymz provides another view
of the solution. We assume that the pearls on
the bed, the pearls that scattered toward the
lady, and those mysterious remaining scat-
tered pearls that factored with a sum of
diminishing fractions are all “scattered”
pearls. Assume that the 1,161 unscattered
pearls included all but the previous. Let T be
the total number of pearls, and let S be the
total number of scattered pearls. Thus, we
have

1. Number scattered toward lady = T/3

2. Number scattered on the bed = T/6

3. Number scattered up to this point = 
(T/3 + T/6)

4. Factor of “what remained” up to this point
= T – (T/3 + T/6)

5. Mysterious sum of diminishing fractions:
(1/2 + 1/22 + 1/23 + 1/24 + 1/25 + 1/26)

6. Total of scattered pearls:
S = (T/3 + T/6) + (T – T/3 – T/6)((1/2 +
1/22 + 1/23 + 1/24 + 1/25 + 1/26), which
reduces to S = T (1/3 + 1/6) + T (1 – 1/3 
– 1/6)[(32 + 16 + 8 + 4 + 2 + 1)/64], or 
S = T (1/2) + T (1/2)(63/64), or S =
T(64 + 63)/128, or S = T (127/128), which
provides us with a first equation. As for a
second equation, we have T – S = 1161.

Combining the two final equations, we obtain 
T (1 – 127/128) = 1,161, or T (1/128) = 1,161,
or T = 1,161 × 128 = 148,608 original pearls.
Quite a necklace, and worth quarreling over!

3.64 Alien slug. Dr. Oz is 20.44 years old and
his wife is 17.66. Let Dr. Oz’s age be x and
his wife’s age be y. Then

x – 6 = 10 + y – (x/2 + 3)

y – 12 = 3 + x – (2y/3 + 6)

The 2y/3 term comes from the fact that when
the wife was a third of her present age, this
occurred precisely (2/3)y years ago. These
equations reduce to

(1) 3x – 2y = 26

(2) 5y – 3x = 27

Adding these two equations gives

3y = 53

y = 17.66666

Placing y = 17.66666 into (2) gives us 3x =
61.33333 or x = 20.4444.

3.65 Lucite pyramids. Alpha has 40 beetles.
Omega has 30 beetles. Let alpha have x bee-
tles and omega have y beetles. The number
taken by omega is y/3, which leaves alpha
with x – y/3. Alpha retrieves the same number,
which is (x – y/3)/3, so we have

(1) y =70 – x

(2) y /3 = (x – y/3)/3

From (2), we have 4y = 3x (3). From (3) and
(1), we get x = 40 and y = 30.

3.66 Bakhshali manuscript: A true story. The
solution is 2 men, 5 women, and 13 children.
We can let the number of men, women, and
children be m, w, and c, respectively. Two for-
mulas describe our situation.
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m + w + c = 20 and 
3m +(3/2)w + (1/2)c = 20.

We may multiply the first equation by 3 and
subtract the second equation to yield

3 × [m + w + c = 20]

–[3m + (3/2)w + (1/2)c = 20]

= (3/2)w + (5/2)c = 40

So 3w = (80 – 5c). The quantity 80 – 5c must
be a multiple of 3 and of 5. Our choices are
15, 30, 45, 60, and 75. Therefore, c = 1, 4, 7,
10, or 13. We can attempt to list all possible
values of m, w, and c. The following is a table
of possible values of c, and the corresponding
values of m and w:

The only valid combination is c = 13, w = 5,
and m = 2.

3.67 Luminescent being. N is 81. (√81 = 9 = 8 +
1) If you experiment further, you’ll see that no
larger values of N could exist because the sum
of the digits, M, becomes much too small to
sum to N.

3.68 Mathematical romance. The answer is 128.
I do not know whether 128 is the only number
with these characteristics. My colleague
Joseph Pe used Mathematica to search for
additional solutions. He discovered that 128 is

the largest such number less than 245,000. As
the number of digits increases, it becomes
increasingly unlikely that a larger such num-
ber will be found, because the probability that
a random string of digits contains only 1, 2, 4,
and 8 very rapidly approaches 0 as the length
of the string increases.

3.69 Harmonic series. Although the divergence
of the harmonic series is not immediately
apparent, we can demonstrate this fact fairly
easily. Given the harmonic series

we can begin with the 1⁄2 term and group
terms—1, 2, 4, . . . terms at a time:

H = 1⁄1 + (1⁄2) + (1⁄3 + 1⁄4) + 
(1⁄5 + 1⁄6 + 1⁄7 + 1⁄8) + . . .

Next, replace each group in parentheses with
the smallest fraction in the group, to get

H > 1⁄1 + (1⁄2) + (1⁄4 + 1⁄4) + 
(1⁄8 + 1⁄8 + 1⁄8 + 1⁄8) + . . .

Adding the terms in parentheses, we get

H > 1⁄1 + 1⁄2 + 1⁄2 + 1⁄2 + . . .

Since we have an infinite number of 1⁄2s to be
added, the result will be infinite. Since this
smaller series diverges, the harmonic series
(whose terms are larger than the new terms)
must also diverge. Hence H is unbounded.

As I told you, the series diverges extremely
slowly: after the first thousand of the terms,
the partial sum is 7.485; after a million terms,
it is 14.357; for the first billion terms, it is
approximately 21; and for the first trillion
terms, it is approximately 28. My colleague
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Pete Barnes notes that to reach a partial sum
of 100, we would have to add up 1043 terms of
the harmonic series. A computer adding up
one million terms per second would take
about 1037 seconds to complete the job. Since
the age of the universe is only about 1017 sec-
onds, it would take quite a few universe life-
times. To get to 1,000, we must add together
over 10434 terms.

3.70 Harmonic series on a diet. Given

We can remove all terms with 9s in the
denominator and group as follows:

J = (1/1 + . . . + 1/8) + (1/10 + . . . + 
1/18 + 1/20 + . . . + 1/28 + . . . + 1/80 + . . . +
1/88) + (1/100 + . . . + 1/888) + . . .

In each set of parentheses, replace each term
with the greatest term in that set of parenthe-
ses. This increases the sum of each set of
brackets, and so J will be less than the sum of
new sets of brackets. We then show that this
greater sum is finite. Hence, by comparison, 
J is finite.

J < (1 + . . . + 1) + (1/10 + . . . + 1/10) + 
(1/100 + . . . + 1/100) + . . . 

J < 9(1) + 92(1/10) + 93(1/102) + . . .

J < 9[1 + 9/10 + (9/10)2 + . . .]

J < 9/(1 – 9/10)

J < 90

Hence the harmonic series with all the 9s
removed converges! This proof applies
equally for any missing digit.

You might think that the harmonic series
with only odd terms converges: 1⁄1 + 1⁄3 + 1⁄5 +
1⁄7 +. . . . After all, it grows much slower than
the standard harmonic series. Alas, the series
diverges.

3.71 Shopping mall puzzle. The smallest value
for N is 132 = 12 + 21 + 13 + 31 + 23 + 32.

3.72 Castles and strings. Light the 10-minute
string at both ends. The flames will die in 5
minutes. When this happens, light both ends
of the 1-minute string. This will burn in 30
seconds. Thus, the total time elapsed is 5 min-
utes and 30 seconds.

3.73 Target practice. Here is one solution: 17 +
13 + 19 + 51. Try this on friends. How long
did it take them to find an answer? Other solu-
tions include {22, 62, 9, 7}, {22, 20, 7, 51},
{15, 61, 17, 7}, {15, 23, 55, 7}, {15, 13, 63,
9}, {15, 13, 17, 55}, {61, 23, 9, 7}, {61, 13,
17, 9}, {61, 13, 19, 7}, {23, 13, 9, 55}, {23,
17, 9, 51}, {23, 19, 7, 51}, {13, 63, 17, 7},
{13, 17, 19, 51}, and {17, 9, 19, 55}.

3.74 Hobson gambit. The answer is 101 + 2/3.
Perhaps we can make an interesting point with
the Hobson gambit. Problems that would have
taken mathematical geniuses like Euler,
Gauss, and Newton a lifetime to solve are now
solvable in seconds by mathematical punks on
every street corner.

For this problem, we have

a + b + c = 1,

a2 + b2 + c2 = 15,

a3 + b3 + c3 = 3
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My colleague Mark Ganson used the follow-
ing Mathematica software steps to obtain a
solution:

Clear[a, b, c]

eqn = {

a + b + c == 1,

a^2 + b^2 + c^2 == 15,

a^3 + b^3 + c^3 == 3

}

NSolve[eqn, {a, b, c}, 200][[1]]

In the previous, the “200” indicates that the
equation is to be solved using 200 digits of
accuracy. We find

a = 0.89253182605396733441976900973253
1069243954902464648909768173967549575
2892670846352058496765784633125616195
5259812851620442770813756895354985532
8896282582210326719059230379147684158
4901206735270950 . . .

b = –2.6106243944700423379080253563497
1854917202730470562737969433824128117
4798088160245862497217001612441751133
8650243126844487876386497043442925863
2333273742400199884581511175234546061
409369936836225713 . . .

c = 2.71809256841607500348825634661718
7479928072402240978469926164273731599
5088210756106566475404231491291895143
1242618416824435993051213539074273099
4436454841791672126755881373197776455
60357869483516215 . . .

Once Mark had values for a, b, and c, he
obtained

a4 + b4 + c4 = 101.666666666 . . .

If anyone today can obtain answers to prob-
lems like these in seconds, a century from
now will ten-year-olds press buttons to solve
challenges like Fermat’s Last Theorem in
seconds? Even if solutions are easier to find,
each new computer-assisted discovery will
bring fresh, tougher questions. What could
legendary mathematicians like Euler, Newton,
and Pythagoras have accomplished with the
tools we have today?

3.75 Magic light board. Here is one solution.
Can you find others? How many others exist?

3.76 Aqueduct. This is based on a classic puz-
zle. When the soldier is in the hut, sneak onto
the aqueduct and walk toward Greece. After 9
minutes and 59 seconds, turn back and start
walking toward Italy. When the guard sees
you, he will assume you are coming from
Greece and will order you to go back.

4. Geometry, Games, 
and Beyond

4.1 Martian bodies and Venn diagrams. There are
90 Martians with none of these body charac-
teristics. One way to solve a problem of this
type is to use Venn diagrams with three circles
(figure A4.1). Circle A contains Martians with
pointed ears (a1 = 600). Circle B holds
Martians with fangs (a2 = 300). Circle C
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holds Martians with horns (a3 = 400). A Venn
diagram is usually drawn as a rectangle 
(which holds all the elements in a problem)
surrounding circles that depict subsets of ele-
ments. As we mentioned previously, these dia-
grams are named after the English logician
John Venn (1834–1923), who in 1880 popular-
ized their use.

The practical use of Venn diagrams will be
best understood by filling them with our Mar-
tians. In the top left figure in figure A4.1, we
note that 20 individuals have all three body
characteristics (a1, a2, a3). Proceeding to the
right in figure A4.1, we continue our analysis
by noting that 200 creatures have a1 and a3.
Of these creatures, 20 are already displayed in
the Venn diagram, and 180 remain. Note that
150 creatures have a2 and a3, and 20 of these
are already in the diagram, so 130 remain.
Also, 250 creatures have a1 and a2. Of these,
20 are displayed in the figure and 230 remain.
Now we must fill in the larger parts of each
circle. For example, to find the remaining part
of A, we know that a1 = 600, so 600 – 180 –

20 – 230 = 170. For B, we have 390 – 230 –
130 – 20 = 10. For C, we have 400 – 180 – 20
– 130 = 70.

Initially, I told you that we were examining
900 Martians. So to compute the number of
Martians not contained in the 3 circles, we
have 900 – 70 – 180 – 20 – 130 – 170 – 230 –
10 = 90. Thus, 90 Martians have neither
fangs, nor horns, nor pointed ears.

Now do you realize how useful Venn
diagrams can be?

4.2 Star of David. This is possible. As stated in
a previous , you can traverse a graph by
going through every segment just once only if
the graph has less than 3 vertices of odd
“valence.” For this graph, every vertex has an
even valence, so it is possible. If you haven’t
solved this, keep trying!

4.3 Mondrian puzzle. The mystery square has
an area of 9.384 in whatever units of area are
appropriate to the measurements. First, we
can ignore the two side rectangles of Areas 4
and 3. They don’t contribute to the solution. If
we label each of the rectangle’s horizontal
dimensions (a, b, c, d) and vertical dimen-
sions (e, f, g, h), we find that a × h = 10, c × h

= 13, b × g = 8, b × f = 7, a × e = 9, and d × e

= 12. The special unknown Mondrian square
has area cf.

Here’s what we know:

a × b × c × d × e × f × g × h =
ae × bf × ch × dg = 9 × 7 × 13 ×11

a × b × c × d × e × f × g × h =
ah × bg × cf × de = 10 × 8 × cf × 12

Thus, 9 × 7 × 13 × 11 = 10 × 8 × cf × 12,
which means cf = 9.384.
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4.4 Compact formula. Drum roll, please. . . .
One answer is eiπ + 2φ = √5. Isn’t that a
beauty?

4.5 Remarkable formulas involving 1. Both of
these formulas equal the golden ratio,
1.61803 . . . The second formula is called a
continued fraction and has numerous uses for
mathematicians and physicists. A general
expression uses the letter b to denote the num-
ber in each denominator:

Manfred Schroeder remarked, “Continued
fractions are one of the most delightful and
useful subjects of arithmetic, yet they have
been continually neglected by our educational
factions.” These typographical nightmares can
be more compactly written as [b0, b1, b2, . . .].
And the golden ratio can be represented as
[1,1,1,1, . . .]. We can also write this more
compactly as [1,1], where the bar indicates a
repetition of the number 1.

Even though transcendental numbers do
not have repeating numbers in their continued
fractions, their continued fractions often dis-
play patterns. It is mind-boggling that the irra-
tional number e (e = 2.718281828 . . .), unlike
π, can be represented as a continued fraction
with unusual regularity [2, 1, 2, 1, 1, 4, 1, 1,
6, 1, 1, 8, 1, . . .]; however, this initially con-
verges very slowly because of the many 1s. In
fact, the golden ratio, which contains infi-
nitely many 1s, is the most slowly converging
of all continued fractions. Schroeder notes, “It
is therefore said, somewhat irrationally, that

the golden section is the most irrational num-
ber.” The approximation of the continued
fraction to the golden ratio is also worse than
for any other number. Therefore, chaos
researchers often pick the golden ratio as a
parameter to make the behavior of simula-
tions as aperiodic as possible. For more infor-
mation, see Manfred Schroeder, Number

Theory in Science and Communication

(Berlin: Springer, 1986).

4.6 Goly. A golygon is a special kind of path
on a plane that has an equally spaced grid of
points. To create a golygon, start at one point,
and take a first step one unit to the north or
the south. The second step is two units to the
east or the west. The third is three units to the
north or the south. Continue until your path
closes on itself and reaches the starting point.
No crossing or backtracking is allowed.

Figure A4.2 is a typical golygon. The num-
ber of golygons of length 8n for the first few n
are 4, 112, 8432, 909288, . . . , which
approaches

for large values of n. Note the appearance of
the ever-present pi in a formula that appears
unrelated to a circle.

Golygons are more than just a geometric
curiosity. Golygons, formally known as serial
isogons of 90 degrees, have inspired countless
puzzles and problems for research. For further
reading, see L. Sallows, M. Gardner, R. K.
Guy, and D. Knuth, “Serial Isogons of 90
Degrees,” Mathematics Magazine 64 (1991):
315–24.
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4.7 Special number. This number, discussed in
chapter 2, is called the golden ratio and
equals 1.61803 . . . . It appears in the most
surprising places in nature, art, and mathe-
matics. A golden rectangle has a ratio of the
length of its sides equal to 1:φ. Some people
have reported that the golden rectangle is
among the most visually pleasing of all rec-
tangles, being neither too squat nor too thin:

Golden Rectangle

Because φ = (1 + √5)/2 (and φ2 = φ +1) , it has
some amazing properties: For example,

φ – 1 = 1/φ φΦ = –1

φ + Φ =1 φn + φn + 1 = φn + 2

where Φ = (1 – √5 ) / 2. Both φ and Φ are the
roots of x2 – x – 1 = 0. The occurrence of the
golden ratio in various areas of geometry
becomes evident in the next question.

4.8 Mystery pattern. The Lute of Pythagoras
(figure A4.3) is among mathematics’ most
beautiful recursive shapes and has many
remarkable properties. You may wish to spend
some time constructing this interesting shape
and thinking about its features.

Begin your construction by drawing an
isosceles triangle, such as you see marked
ABC in figure A4.3. Next, construct the ladder
steps marked ED, FG, and so on. There is a
trick you must follow to locate the ladder
steps: the length AC must equal AE, the length
DE must equal DG, and so on. Thus we have
AC = DC = AE, DE = DG = EF, and so on.
Next create the pentagonal, starlike figures by
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Figure A4.2 A typical golygon.

Figure A4.3 The Lute of Pythagoras.



joining the appropriate ladder points. A new
point, Z, is located so that CE = AD = AZ =
ZC. You can also recursively create star
shapes for as far as your eye can see. Note
that the initial isosceles triangle for the lute is
a “golden triangle,” that is, one where BC/AC

= AC/EC = φ, the golden ratio. Also, care
must be taken during construction to make
successive ladder length ratios equal, such as
CE/EG = EG/GI. Given this construction,
mathematicians have noted that the ratio of
successive sides of the ladder CE/EG =
EG/GI . . . is the golden ratio.

4.9 Cut the crescent to make a cross. Figure
A4.4 shows Loyd’s solution.

4.10 Torus versus marmoset. The torus home. I
surveyed several dozen individuals. A major-
ity preferred living in a torus. Most found the
shape more practical and aesthetically pleas-
ing than a marmoset. From a purely geometri-
cal standpoint, the marmoset would probably
have more surface area than a comparably
sized torus and therefore would be more

difficult to heat. By “surface area,” I mean the
area exposed to outside air. Body features
such as the ears, the head, the neck, and the
limbs increase the surface area of the mar-
moset relative to a smooth torus.

On the other hand, some respondents rea-
soned that a marmoset could be more novel
than a torus and thus could be used to make
money as a tourist attraction. Also, perhaps
the marmoset shape would keep the owner
more in touch with nature.

My colleague Marie S. writes,

I would choose a torus. I could have a
“covered” patio in the center where I could
exercise my dogs (and wouldn’t need a
fenced yard). If there were doorways in and
out of the center, I would have quick and
easy access to the different areas. Even
without that, I could have easy access to
the main living areas, access to kennel
areas that could be separated from the main
living areas, and access to a garage within
the torus.

The shape would be reasonably efficient
to heat and cool. A marmoset, on the other
hand, would be more expensive to heat and
cool because of the greater surface expo-
sure. If the marmoset were in a standing
position, it would have more than one
story—and the height would also increase
heating and cooling costs. If lying, it would
be more spread out and have more difficult
access to areas in the arms, legs, and head,
as well as costing more to heat and cool
because of the limited air circulation and
loss through the extremities.

Actually, a torus with a covered interior
atrium (with drainage) and both interior
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Figure A4.4 Sam Loyd’s “Cross and Crescent” 
puzzle.



and exterior access doors might be really
workable. The floor would be part way 
up the sides of the torus, and there would
be good storage space like a basement
underneath.

Depending on size, there could be a bal-
cony with “bedrooms” as a second story,
although I’d prefer everything on one level.

However, Nick H. writes, “I’d prefer the mar-
moset; the torus might roll away!”

4.11 Green cheese moon puzzle. Sam Loyd’s
answer is shown in figure A4.5. He says, “By
taking the best possible advantage of the cres-
cent form of the moon, 21 pieces of green
cheese can be cut for the hungry.” Martin
Gardner notes that for a crescent, the number
of pieces increases as the number of cuts n
increases: (n2 + 3n)/2 + 1. Try the same exper-
iment using a circle. How many pieces can
you cut a circular region into, using 4 straight
cuts? 5? How about a circle with a hole in the
middle?

The crescent answer gives an equation for
the maximum number of pieces that can be

produced with n cuts of a 2-D crescent region.
There are similar formulas for a 3-D dough-
nut and a sphere cut with n plane cuts. For a
doughnut (or a torus), the largest number of
pieces that can be produced with n cuts is 
(n3 + 3n2 + 8n)/6. Thus, a doughnut can be
sliced into 13 pieces by three simultaneous
plane cuts. For a sphere, the equation is 
(n3 + 5n) / 6 + 1.

4.12 Circle crossing. According to “Johnson’s
theorem,” named after the American mathe-
matician Roger Johnson (1890–1954), if three
circles with identical radii pass through a
common point, then their other three intersec-
tions lie on another circle with the same
radius (see figure A4.6).

4.13 Sam Loyd’s fifteen puzzle. The “14-15”
puzzle, or just the “fifteen puzzle,” illustrated
Loyd’s interest in practical jokes (figure
A4.7). Many people claimed to have solved
the puzzle, but none could duplicate their
achievement at collection time. Quite simply,
Loyd knew this because the puzzle was
impossible to solve. Mathematicians are
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Figure A4.5 Sam Loyd’s green cheese 
moon puzzle.

Figure A4.6 Circle crossing.



fascinated by the fact that for some initial
arrangements, this rearrangement is possible,
but for others, it is not.

This puzzle became an instant success,
much like the Rubik’s Cube 100 years later.
The only way to get from the standard starting
position to the finishing position is to physi-
cally lift the 15 and 14 tiles out of the frame
and then swap them, an illegal move. Can you
imagine how many hours people must have
spent attempting to solve this properly?

It’s fun to think about what initial arrange-
ments can lead to solutions. Here is the 
strategy. If the sliding square containing the
number i appears “before” (reading the
squares in the box from left to right and top to
bottom) n numbers that are less than i, then
call it an inversion of order n, and denote it n

i
.

Then define

where the sum need run only from 2 to 15,
rather than 1 to 15, since there are no num-
bers less than 1 (so n1 must equal 0). If γ is

even, the set of positions is possible to create;
otherwise, it is not. For example, in the fol-
lowing arrangement

n2 = 1 (2 precedes 1) and all other n
i
= 0, 

so γ = 1 and the puzzle cannot be solved. I
fondly recall as a boy giving a friend the pre-
vious arrangement to solve, never telling the
friend that it was impossible.

The famous Russian puzzlist Yakov Perel-
man (1882–1942) quoted the German mathe-
matician W. Arens regarding Loyd’s fifteen
puzzle:

In the late 1870s, the Fifteen Puzzle bobbed
up in the United States; it spread quickly,
and owing to the uncountable number of
devoted players it had conquered, it became
a plague. The same was observed on this
side of the ocean, in Europe. In offices and
shops bosses were horrified by their
employees being completely absorbed by
the game during office and class hours. In
Paris, the puzzle proliferated speedily from
the capital all over the provinces. A French
author of the day wrote, “There was hardly
one country cottage where this spider hadn’t
made its nest lying in wait for a victim to
flounder in its web (Yakov Perelman, Fun

with Maths and Physics [Moscow: Mir Pub-
lishers, 1988]).

γ ≡ =
==
∑∑n n

i i

ii 2

15

1

15

334 Answers

Figure A4.7 Sam Loyd’s fifteen puzzle.
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To learn more about this puzzle, see Eric
Weisstein, CRC Concise Encyclopedia of

Mathematics (New York: CRC Press, 1998).

4.14 Find the bugs! Here is one possible answer
showing the locations of the bugs. Fourteen
other solutions exist. Can you find any of the
other solutions?

Most of my colleagues used computer pro-
grams to solve this—including the “solver
feature” in Microsoft Excel. Others solved
similar puzzles by writing a program that puts
random integers into each cell until a viable
solution is found that meets all of the row and
the column sum requirements.

4.15 Tablet of Ezekiel. The diagonal line cuts
the most tiles in the 16 × 19 array. If you were
to draw large versions of these arrays and
carefully draw diagonals, you would soon
realize that a diagonal enters a new tile at the
beginning and each time it crosses a horizon-
tal or a vertical line. However, in situations
where the diagonal enters exactly at the cor-
ner of a tile, the diagonal crosses two lines but
enters only one tile. In other words, the diago-
nals of such tiles are on the main diagonal.

The number of tiles that a diagonal crosses
is therefore the length A of one side of a face
plus the length B of the other minus the great-

est common divisor (GCD) of the sides’
lengths: A + B – GCD(A,B). The greatest
common divisor of two integers is the largest
number that divides both integers. For exam-
ple, a 16 × 24 face would have 16 + 24 – 8 =
32 crossed tiles, since 8 is the greatest com-
mon divisor of 16 and 24.

Of the three tablets given, we have

4.16 Strange dimension. You can design a com-
puter program to solve this problem by repre-
senting the three religions as red, green, and
amber squares in a 3 × 3 checkerboard. The
program uses three squares of each color.
Have the computer randomly pick combina-
tions and display them as fast as it can, until a
solution is found. The rapidly changing ran-
dom checkerboard is fascinating to watch,
and there are quite a lot of different possible
arrangements. In fact, for a 3 × 3 checker-
board there are 1,680 distinct patterns. If it
took your computer 1 second to compute and
display each 3 × 3 random pattern, how long
would it take, on average, to solve the prob-
lem and display a winning solution? (There is
more than one winning solution.)

I believe there are twelve solutions for the
problem that asks us to find an arrangement
with no more than one type of church in any
row or any column. Here are two of these
twelve solutions:
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It can be proven that for any valid solution,
(1) one diagonal must contain the same reli-
gion in each of its cells, and (2) the other
diagonal must contain unique religions in
each of its cells.

For the second problem, here is one way to
arrange the religions so that there are only
two of the same religion in each row and each
column:

Two in Each Row and Each Column

Try these problems on a few friends. Many
people have difficulty visualizing the solution.
The “strange dimension” problem can be
thought of as a special problem in the remark-
ably rich mathematical area concerned with
Latin squares. Latin squares were first sys-
tematically developed by the Swiss mathe-
matician Leonhard Euler in 1779. He defined
a Latin square as a square matrix with N 2

entries of N different elements, none of them
occurring twice or more within any row or
any column of the matrix. The integer N is
called the order of the Latin square. Recently,
the subject of Latin squares has attracted the
serious attention of mathematicians, due to
their relevance to the study of combinatorics
and error-correcting codes.

4.17 Ant mathematics. Here is one solution with
intersections at 120 degrees (figure A4.8).

I believe this solution to be optimal, in the
sense that it uses the least amount of tubing.
Aside from using analytical approaches, my
colleagues have found it even easier to use
Mathematica to actually perform computer
simulations with tubes and ants to suggest this
answer. How would your answer change if we
used a pentagon-shaped ant farm with five
different ant colonies? Another variation is to
place three ant colonies at three corners of a
square, leaving one of the corners unoccu-
pied. Which tube configuration would use the
least amount of tubing?
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4.18 Nursery school geometry. Here is one 
solution. How many other solutions can you
find?

4.19 Frodo’s magic squares. Here is one
solution:

4.20 Lost in hyperspace. Mathematical
theoreticians tell us that the answer is one—
infinite likelihood of return for a one-dimen-
sional random walk. If you were placed at the
origin of a 2-space universe (a plane) and then
executed an infinite random walk by taking a
random step north, south, east, or west, the
probability that the random walk would even-
tually take you back to the origin is also
one—infinite likelihood.

Our three-dimensional world is special:
three-dimensional space is the first Euclidean
space in which it is possible for us to get hope-
lessly lost. While executing an infinite random
walk in a 3-space universe, you will eventually
come back to the origin with a 0.34 or 34
percent probability. In higher dimensions, the
chances of returning are even slimmer, about
1/(2n) for large dimensions n. The 1/(2n) prob-
ability is the same as the probability that you
would return to your starting point on your sec-
ond step. If you do not make it home in early
attempts, you are probably lost in space forever.

For those of you who enjoy more mathe-
matical rigor or staring at impressive-looking
formulas, the precise probability for returning
to your start point in a walk on a 3-D lattice is

where

Some of you may enjoy writing computer pro-
grams that simulate your walks in confined
hypervolumes and making comparisons of the

= 1 5163860592. ...

u
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probability of return. By “confined,” I mean
that the “walls” of the space are reflecting so
that when you touch them, you are reflected
back. Other kinds of confinement are possi-
ble. You can read more about higher dimen-
sional walks in Daniel Asimov, “There’s No
Space Like Home,” The Sciences 35, no. 5
(September–October 1995): 20–25.

4.21 Heterosquares. Here is one solution.

These kinds of squares are called het-
erosquares and were first considered with
enthusiasm in the early 1950s. Royal V.
Heath, an American magician and a puzzle
enthusiast, was the first to prove that a 2 × 2
heterosquare formed with the numbers 1, 2, 3,
and 4 is impossible.

Although this puzzle may seem difficult 
at first, and you might not be able to create a
heterosquare at all, I believe there to be
24,960 possible solutions out of 9! = 362,880
possible orderings. This means that the
probability of a random ordering being a
heterosquare is 24960/9! = 13/189 or roughly
6.9 percent.

4.22 Charged array. Here is one solution. I
believe there are a total of four solutions. Can
you find the others?

4.23 Bouncing off the Continuum. For clarity,
assume that the spaceship is located at point
S, symbolized by the black dot next to the
spaceship. Further assume that the star is
located at the black dot next to the drawing of
the star. Suppose that the aliens aim for some
point, P, on the edge of the Continuum (figure
A4.9). Reflect the aliens’ original position in
the edge of the Continuum. Then the distance
SPA equals S ′PA, and the latter will be a mini-
mum when S ′PA is a straight line. It follows
that P is the point such that SP and PA make
the same angle with the edge of the Contin-
uum. (Note that Heron of Alexandria [A.D. 75]
used a similar argument to conclude that
when light is reflected from a mirror, the
angles of incidence and reflection are equal.)

338 Answers

Figure A4.9 Bouncing off the Continuum.
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4.24. Alien heads. Here is one solution. Can
you find others?

4.25 Relationship. Switch the 48 and the 28
cell colors. White cells are divisible by 3 and
gray cells are not.

4.26 Sticky faces. One possibility is that
Danielle (D) has 56 points, Cliff (C) has 74
points, and Pete (P) has 77 points. We don’t
know anything about the ordering of the faces
in each row, but here is one possible solution
that shows the number of each person’s faces
in each row. Is this the only answer?

We believe there are three possible solutions
for how many of each player’s faces fell in
each row (ignoring the orderings), including
the one given here. Here are a few clues to
help you in your quest to find the other two
solutions. In every possible solution, Danielle

has at least two 3s, Cliff has at least one 10
and at least two 17s, and Pete has at least two
17s and at least one 13. It is not possible for
all three players to be represented in all three
rows. If all three players have at least one 17
each, then Cliff has all the 10s. If all three
players have at least one 13 each, Danielle has
no 17s. Can you find the other two solutions?

4.27 Bioterrorist puzzle. One solution is for
Romeo to start at Square 1 and Juliet to wait
at Square 2. Romeo makes the following
moves:

1-6-11-16-17-12-13-8-7-2

One way to solve this problem is to write a
computer program to search for possible
paths. Another solution is simply to experi-
ment yourself, using trial and error. I would
be fascinated to hear from readers who have
developed methods for finding solutions more
efficiently than using trial and error.

My colleagues found solutions by drawing
diagrams and placing coins on an arbitrary set
of squares that added up to 93. Once the coins
were placed, they explored potential solutions
by moving coins in pairs (one +1, one –1) so
that the total remained constant.

It would also be interesting to find the
shortest solution for this puzzle, assuming
that Romeo gets tired if he walks too far! One
might modify the original puzzle to force this
by giving Romeo a limited amount of fuel
with which to make his hops. We believe that
four solutions exist that require Romeo to
take just five steps.

4.28 Magic square. Here is one solution. Are
there others?
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4.29 Rope capture. This is based on a classic
problem. Tie the lower ends of the rope
together near the floor. Climb one rope to the
ceiling. Cut the other rope about a foot from
the ceiling and let the remainder fall. Tie a
loop in the 1-foot-long rope. Cut the remain-
ing rope and thread it through the loop.
Finally, hold both ends of the long rope and
lower yourself to the ground.

Note that because Grand Central Terminal
in New York City, the largest station in the
world, covers 48 acres on two levels with 67
tracks, it should be relatively easy for you to
hide from your captors once you are released.

4.30 Talisman square. Here is a solution.

These squares, known as Talisman squares,
were invented by Sidney Kravitz, a mathe-
matician from Dover, New Jersey. Here I

show an example of a talisman square in
which the difference between any number 
and its neighbor is greater than 1. The number
1, for example, has 3 neighbors (5, 9, and 11);
11 has eight neighbors (1, 5, 3, 13, 4, 5, 2,
and 9).

Talisman squares have only been studied
since the late 1970s, and no rules for con-
structing them are known.

4.31 Circle madness. In circle arrangements
constructed in the way I described, the lines
joining opposite points of contact cross at a
single point (see figure A4.10). This is some-
times referred to as the “seven circles theo-
rem” (C. J. A. Evelyn, G. B. Money-Coutts,
and J. A. Tyrrell, “The Seven Circles Theo-
rem,” §3.1 in The Seven Circles Theorem 

and Other New Theorems [London: Stacey
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Figure A4.10 Circle madness answer.
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International, 1974] 31–42; Stanley Ogilvy,
Tomorrow’s Math: Unsolved Problems for the

Amateur, 2nd edition [New York: Oxford 
University Press, 1972]; and David Wells, The

Penguin Dictionary of Curious and Interest-

ing Geometry ([Middlesex, England: Penguin
Books, 1991]).

4.32 Platonic solids. The ancient Greeks rec-
ognized and proved that there are only five
Platonic solids: the tetrahedron, the cube, the
octahedron, the dodecahedron, and the icosa-
hedron (see figure A4.11).

The following table shows each Platonic
solid’s name, the number of faces (F), the face
shape, the number of faces at each vertex
(NF), the number of vertices (V), the number
of edges (E), and the “dual”—that is, the
Platonic solid that can be inscribed inside by
connecting the midpoints of the faces.

Platonic Solids

The Platonic solids were known to the
ancient Greeks and were described by Plato in
his Timaeus, c. 350 B.C. Pythagoras of Samos,
the famous mathematician and mystic, lived
in the time of Buddha and Confucius, around
550 B.C., and probably knew about three of
the five regular polyhedra. Historians now
seem to agree that the cube, the tetrahedron,
and the dodecahedron were known to the
Greeks of this period.

4.33 Mystery pattern. Fractal tic-tac-toe by
Patrick Grim and Paul St. Denis. As we dis-
cussed in the puzzle “So many Xs and Os” in
chapter 1, the first player in tic-tac-toe,
labeled X, has a choice of one of nine squares
in which to place his or her mark. The oppos-
ing player O then has a choice of one of the
remaining eight squares. On X’s next turn,
again he or she has a choice of seven 
squares, and so forth. There are thus a total 
of 9! possible series of moves (9 factorial: 
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Figure A4.11 The five Platonic solids.
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9 × 8 × 7 × . . . × 1), giving us 9! possible tic-
tac-toe games. Some of these are wins for X,
some for O, and some draws (wins for neither
player).

In figure 4.19, the mathematicians Grim
and St. Denis offer an analytic presentation of
all possible tic-tac-toe games. Each cell in the
tic-tac-toe is divided into smaller boards to
show various possible choices. For more
information, see Paul St. Denis and Patrick
Grim, “Fractal Images of Formal Systems,”
The Journal of Philosophical Logic 26
(1997): 181–222. This piece also appears in
Patrick Grim, Gary Mar, and Paul St. Denis,
The Philosophical Computer (Cambridge,
Mass.: MIT Press, 1998). See also Paul St.
Denis and Patrick Grim, “Fractal Images of
Formal Systems,” www.sunysb.edu/
philosophy/fractal/2Tic.html.

4.34 Omega sphere. You should choose to toss
the darts at the sphere. For geometrical rea-
sons, your three impact points will always be
on the “same half of the sphere (hemi-
sphere).” Any two points on the sphere deter-
mine a great circle dividing the sphere into
two hemispheres. The third point will be in
one hemisphere or the other, unless you are so
unlucky as to have it land exactly on the great
circle. But that’s worth the gamble. And, in
any case, three points on a great circle are all
considered to be located in the same (closed)
hemisphere.

4.35 Cutting the plane. Here is one possible
solution. You can draw a line, so that all of the
symbols that fall in the gray squares are on
one side. Can you find other solutions?

4.36 Twinkle, twinkle, little stars. With seven star
systems, at least one will always survive.
There will be two star systems closer together
than any other star pair, and these must have
fired their missiles at each other. Continue
this line of reasoning, and you will see why at
least one star system must survive. What are
the maximum and the minimum number of
survivors for related problems, using differ-
ent numbers of stars? How are your answers
affected for two-dimensional, three-dimen-
sional, and four-dimensional arrangements of
stars?

4.37 Mystery triangles. Figure A4.13 is one
solution with nine triangles. Are there others?
Can you do better?

Try this problem with larger arrays of crys-
tals. Can you make any generalizations as to
how the maximum number of triangles
depends on the grid’s dimensions? If you have
access to computer graphics, extend your
results to three dimensions, using triangles or
tetrahedrons.
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4.38 Space station jam. The missing color is
green. Consider the various rectangles and
circles in this figure. Let’s call these “bound-
ing shapes.” The color relates to the number
of bounding shapes in which a plate is
enclosed. (Plates are not just circles and rec-
tangles but can have various hard-to-describe
forms.) Yellow regions are enclosed by only
one bounding shape. Green regions are
enclosed by two bounding shapes. Red
regions are enclosed by three. Blue regions
are enclosed by four.

4.39 Grid of Gebeleizis. Essentially, it is cer-
tain that all lines through your initially
selected dot will never meet another dot!
(This assumes that you choose the direction
of all the lines randomly. If, for example, the
direction of a line were chosen precisely par-
allel to one of the cube’s edges, then the prob-
ability of hitting another dot would be one.)

Georg Cantor (1845–1918) was interested in
this kind of problem. For example, on a quite
related topic, he showed that there is an infinity
of rational numbers (terminating or recurring

decimals like 0.666666 . . . , 0.5, and 0.272727
. . .) and an infinity of irrational numbers (non-
terminating, nonrepeating decimals like pi and
√2). As we have said, he conjectured that the
infinity of irrationals is greater than the infinity
of rationals. This gives a hint as to why we can
place infinitely many lines between the pre-
cisely placed grid of points.

For a line to intersect another point, the
slope of this line must be rational, because the
differences in the x, y, and z points are all inte-
gers. If we choose random lines, we must note
that there are many more lines that have irra-
tional slopes and do not intersect points in the
grid than those that do because of the infinite
number of points in space between the points
in the grid. Because there are infinitely more
ways of not hitting a point than of hitting one,
the odds of hitting a point are essentially zero.

4.40 In an ancient tomb. Figure A4.12 shows
one solution. Many of my genius friends have
told me that this puzzle was impossible to
solve. However, if my friends looked at the
puzzle a day later, they usually were able to
solve it on the second day.
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Figure A4.12 In an ancient tomb.

Figure A4.13 Mystery triangles.



4.41 Poor Pythagoras. The correct answer is c,
but most people say it is a. Experiment with
two quarters. I’ve heard rumors that a few
years ago, the people who designed the SAT
had the wrong answer to a similar problem.

4.42 Alien colonies. A bacterium’s color is
determined by the number and the size of the
bacteria it touches. Denote the “base” color of
a bacterium by “0.” This number is incre-
mented by 1 for each touching bacterium that
is larger than the base bacterium, and decre-
mented each time a smaller bacterium is
attached. The base color is not incremented or
decremented when a bacterium touches
another bacterium of the same size. For exam-
ple, a bacterium with 2 smaller touching bac-
teria is decremented by 2 and therefore has a
“color” of “–2.”

These structures are very beautiful when
drawn in color, where colors may be assigned
as follows: –3 and smaller numbers are 
yellow; –2 orange; –1 red; 0 black; 1 blue; 
2 green; 3 and larger numbers are violet. I
would be interested in hearing from readers
who have designed larger colorful colonies
using these rules.

4.43 Ant planet. Nadroj’s quick way to tell
whether he is inside or outside the Jordan
curves is to count the number of times an
imaginary line drawn from his body to the
outside world crosses a wire. If the straight
line crosses the curve an even number of
times, the ant is outside the maze; if an odd

number of times, the ant is inside.
Back in the real world, the French mathe-

matician Marie Ennemond Camille Jordan
(1838–1922) offered a proof of the same rules

for determining the inside and the outside of
these kinds of curves. (The proof was cor-
rected in 1905 by Oswald Veblen.) Jordan had
originally trained as an engineer.

4.44 Aesculapian mazes. Figure A4.14 shows
one solution. How many other solutions can
you find?

4.45 Contact from Aldebaran. The chances are
100 percent that there was a spot along the
spiral that Britney passed at exactly the same
time on both days. To understand this, visual-
ize Britney’s initial trip and return trip taking
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place at the same time. In other words, she
starts from the center at the same time her
“twin” starts from the spiral outlet. At some
point along the journey, they must meet as
they pass each other. That will be the place
and the time.

4.46 Detonation! Here is one solution (see fig-
ure A4.15). Can you find others?

4.47 Gear turns. The same speed—zero! The
collection of gears cannot turn at all. The
number of gears in the ring of gears in the
middle is an odd number. An even number of
gears is required for a ring of gears to spin
because every touching gear must rotate
clockwise, counterclockwise, clockwise,
counterclockwise, and so on.

4.48 Infinitely exploding circles. By continually
surrounding the shapes with circles, you
might have guessed that the radii should grow
larger and larger, becoming infinite as we
continue the process. With a simple computer
program, you can in fact show that the radius
of a circle is always larger than its predeces-
sor. (After all, the predecessor shapes are
enclosed by the most recently added circles.)
However, the assembly of nested polygons
and circles will never grow as large as the
universe, never grow as large as Earth, or
never grow as large as a basketball.

Although the circles initially grow very
quickly in size, the rate of growth gradually
slows down, and the radii of the resulting
circles approach a limiting value given by the
infinite product: R = 1/ [(cos π/3) × (cos π/4)
× (cos π/5) . . .] The limiting radius is:
8.7000366252081945 . . . .

4.49 Hexagonal challenge. Figure A4.19 shows
two solutions. Do others exist?

4.50 Magic circles. Figure A4.16 shows one
solution. These magic circles are about a cen-
tury old and are from W. S. Andrews, Magic

Squares and Cubes (New York: Dover, 1960),
the second edition of which was originally
printed in 1917.
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Figure A4.15 Detonation!

Figure A4.19 Hexagonal challenge.



4.51 Robotic worm. There seems to be more
than one answer; for example,

One way to solve the problem is to start by
inserting values that are forced. For example,
we know that a “C” is above the “B” given in
the original problem.

4.52 y = xsin(1/x ). Because sin x is every-
where continuous, and 1/x is continuous for 
x ≠ 0, it follows that the composite function
sin(1/x) is continuous for x ≠ 0. Therefore
ψ(x) is a simple mathematical function that 
is everywhere continuous, even though it 
has infinitely many oscillations in the neigh-
borhood of x = 0, where the size of the oscil-
lations becomes infinitely small. However,
unlike the fractal Koch curve, ψ(x) is differ-
entiable (i.e., smooth) for x ≠ 0, even though
the frequency near x = 0 approaches infinity
and the spacing between the maxima
approaches zero. Don’t you love mathemat-
ics? It really lets the soul soar.

4.53 Magic sphere. Figure A4.17 is one solu-
tion. Notice that pairs of numbers on each
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Figure A4.17 Magic sphere.

Figure A4.16 Magic circles.
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side of an imaginary diameter line sum to 27.
As in the previous question, these magic
spheres are about a century old and are from
W. S. Andrews, Magic Squares and Cubes.

4.54 Continuity. A curve can be continuous
even if it has points at which the derivative (or
the slope) is not defined. In fact, some of
these kinds of curves can be quite fascinating.

Curves can be continuous even if they have
points at which they are not “differentiable.”
(A function is differentiable at a point x if its
derivative exists at this point.) For example, y
= |x | is continuous everywhere—you can draw
it without lifting your pen—even though the
derivative is not defined at x = 0 where a sharp
corner exists. Figure A4.20 is a plot of y = |x |,
where the |x | denotes the absolute value of x.

Think of a seesaw and a long plank of wood
atop the pivot point of a seesaw. Further visu-
alize the seesaw teetering back and forth
because there is no single tangent to a corner
on which it balances. Similarly, a function is
not differentiable at a point in which the
derivative has no particular value.

I often think about curves as being differ-
entiable everywhere only if they are smooth
and have no sharp edges or jumps. On the
other hand, my favorite curve that is
nondifferentiable everywhere (because it is so
pointy!) is the Koch curve (figure A4.21).

The edge of a Koch curve looks a little like
a snowflake’s edge. You can construct a Koch
curve edge by continually replacing the center
third of every straight line segment with a 
V-shaped wedge. After numerous generations,
the length of the curve becomes so great that
you could not carefully trace the path in your
entire lifetime.

In 1904, the Swedish mathematician Helge
von Koch proposed this curve, and it is con-
sidered to be a fractal curve because it dis-
plays similar structures as you magnify the
crinkly edges. You can’t draw tangent lines at
any points, so the curve is nondifferentiable at
every point.

Generally speaking, a fractal is an object or
a pattern that exhibits similar structures at dif-
ferent-sized scales. Think of the leaves of a
fern, the branchings of blood vessels, or the
edges of a coastline. Sometimes, it’s a little
strange to imagine a fractal shape like the
Koch curve with infinitely many bumps
between bigger bumps, in a finite region in
space, and realize that it is still a continuous
curve.
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Figure A4.20 A graph of y = |x |.

Figure A4.21 How to create a Koch curve.



4.55 Limits. The answer is 1⁄4. Your friends
may tell you that when x is 2, the denominator
is zero, and thus the limit of this function
must be undefined. But this is not so. Don’t
give up so easily. The limit can exist for some
fractions with 0 denominators. First, try to
simplify the fraction:

It is true that the function (x – 2)/(x2 – 4) is
not defined at x = 2. It has a “hole” at this
point. At other points, the curve just looks
like 1/(x + 2). Remember, when you evaluate
a limit, you are only concerned about values
of a function near a particular point and not at

the actual point.

4.56 Space station scordatura. In figure A4.18,
the space station should be built at the inter-
section of lines AB and CD.

4.57 The Procyon maneuver. The plantation
owner ties the rope around the base of the
ankh tower on the edge of the funnel and then
carries the rope on a walk around the funnel’s
edge. As he completes half of his walk around
the circular aperture, the rope begins to wrap
around the central ankh on the cylindrical plat-
form, and when he reaches his starting point,
he ties the other end of the rope to the ankh on
the edge of the funnel. Having created a rope
bridge from ankh to ankh, he can pull himself
across. The chicken skull serves no purpose.

4.58 Leaning tower of books. The stack of
books will not fall if the following rule is met:
the center of mass of all the books above any
particular book must lie on a vertical axis that
cuts through that particular book. This must
be true for each book in the stack. For exam-
ple, the top book in a stack can be made to
clear the table if there are 5 books in the stack
(identical book sizes are assumed). For an
overhang of 10 books, you need 272,400,600
books. Although there is no limit as to how
far out one can “travel” with the book stack, a
great many books are required to do so. I dis-
cuss this classic physics problem further in
my book The Mathematics of Oz.

4.59 Mystery swirly curve. This is the famous
“Ikeda attractor.” A deep reservoir for striking
images is the dynamical system. Dynamical
systems are models comprising the rules that
describe the way some quantity undergoes a
change through time. For example, the motion
of planets about the sun can be modeled as a
dynamical system in which the planets move
according to Newton’s laws. Figure 4.41 shows
the behavior of mathematical expressions
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Figure A4.18 Space station scordatura.



called differential equations. Think of a differ-
ential equation as a machine that takes in val-
ues for all the variables at an initial time and
then generates the new values at some later
time. Just as one can track the path of a jet by
the smoke path it leaves behind, computer
graphics provides a way to follow paths of par-
ticles whose motion is determined by simple
differential equations. The practical side of
dynamical systems is that they can sometimes
be used to describe the behavior of real-world
things, such as planetary motion, fluid flow, the
diffusion of drugs, the behavior of inter-indus-
try relationships, and the vibration of airplane
wings. Often the resulting graphic patterns
resemble smoke, swirls, candle flames, and
windy mists.

The Ikeda attractor shown in figure 4.41 
is an example of a strange attractor. As back-
ground, predictable attractors represent the
behavior to which a system settles down or is
“attracted” (for example, a point or a looping
closed cycle). An example of a fixed point

attractor is a mass at the end of a spring, with
friction. It eventually arrives at an equilibrium
point and stops moving. A limit cycle is exem-
plified by a metronome. The metronome will
tick-tock back and forth, its motion always
periodic and regular. A “strange attractor” has
an irregular, unpredictable behavior. Its
behavior can still be graphed, but the graph is
much more complicated. With “tame” attrac-
tors, initially close points stay together as they
approach the attractor. With strange attractors,
initially adjacent points eventually follow
widely divergent trajectories. Like leaves in a
turbulent stream, it is impossible to predict
where the leaves will end up, given their ini-
tial positions.

Here is an outline of computer code that
will allow you to produce the Ikeda pattern, a
representation of a dynamical system. Simply
plot the position of variables j and k through
the iteration. The variables scale, xoff, and
yoff simply position and scale the image to fit
on the graphics screen.

c1 = 0.4, c2 = 0.9, c3 = 6.0, rho = 1.0;

for (i = 0, x = 0.1, y = 0.1; i <= 3000; i++)

[

temp = c1 – c3 / (1.0 + x * x + y * y);

sin_temp = sin(temp);

cos_temp = cos(temp);

xt = rho + c2 * (x * cos_temp - y *

sin_temp);

y = c2 * (x * sin_temp + y * cos_temp) ;

x = xt;

j = x * scale + xoff;

k = y * scale + yoff;

DrawDotAt (j,k)

]

The Ikeda attractor has been described in
greater detail in this article: K. Ikeda, “Multi-
ple-Valued Stationary State and Its Instability
of the Transmitted Light by a Ring Cavity
System,” Optical Communications 30, no. 2
(1979): 257–61.

4.60 Kissing circles. For years, I’ve been fasci-
nated by several simple recipes for graphi-
cally interesting structures that are based on
the osculatory packing of circles. The prob-
lem of covering a finite area with a given set
of circles has been popular in mathematics
journals. As background, the densest packing
of non-overlapping uniform circles is the
hexagonal lattice packing, where the ratio of
covered area to the total area (packing frac-
tion) is φ - π/√12 ≈ 0.9069. The limiting pack-
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ing fraction for the nested hexagonal packing
of circles, with k different circle sizes, is φ

k
=

1 – (1 – .09069)k. This applies to cases where
each of the uncovered areas, or interstices, is
also hexagonally packed by smaller circles.
For larger values of k, φ

k
approaches unity.

Other researchers have usually defined a
distribution of circles as osculatory if any
available area is always covered by the largest
possible circle. If the original area to be cov-
ered is a tricuspid area (figure A4.22), then the
first circle to be placed must be tangent to the
three original larger circles. This kind of pack-
ing is also often referred to as Apollonian

packing. In contrast to past work, my criterion
for osculatory packing is relaxed here: each
successively placed circle on the plane need
only be tangent to at least one previous circle
(“tangent-1 packing”). To generate figure 4.43,
I randomly place a circle center within the
available interstice. The circle then grows until
it becomes tangent to its closest neighbor. The
process is repeated several thousand times.

One easy way to simulate this on a com-
puter is to determine the distances d

i
from the

newly selected circle center to all other circles
i on the plane. Let δ

i
= d

i
– r

i
, where r

i
is the

radius of circle i. Min {δ
i
} is then the radius

of the new circle. Note that if there exists a

negative δ
i
, then the selected center is within

a circle on the plane. In this case, the circle
center is discarded, and a new attempt to place
a circle is made. Repeated magnification of
the figures reveals the self-similarity of the
figures; the figures are fractal and look the
same at various-sized scales.

4.61 Heron’s problem. Let u and v be the side
lengths of one rectangle and x and y be the
sides of the second rectangle. We know that

u + v = 3(x + y) (perimeter relationship)

xy = 3uv (area relationship)

How would you go about finding an integer
solution for x, y, u, and v? According to David
Wells, the author of The Penguin Book of

Curious and Interesting Puzzles (Puzzle 21),
Heron’s ancient solution was a 53 × 54 rectan-
gle and a 318 × 3 rectangle.

Today we know that there are many solu-
tions to this problem, and Internet debates 
and contests regarding the puzzle are 
currently maintained by Ken Duisenberg
(ken.duisenberg.com/potw/). In particular, 
see ken.duisenberg.com/potw/archive/
arch96/960820.html. Computer searches are
particularly effective in yielding numerous
solutions. Such searches can be restricted by
noting that u + v and xy are multiples of 3.
Large rectangle solutions include 15,012 ×
17,578,886,877 and 5,859,498,852 × 135,111.

4.62 The game of elegant ellipses. Figure A4.23
shows one solution. How did you go about
solving this? How much more difficult is this if
we add more ellipses and more dividing lines?
How would a computer solve this problem?
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Figure A4.22 Tricuspid interstice.



4.63 Dudeney’s circles. Here is one solution
that leaves behind 3 squares when perpendi-
cular lines are drawn between the circles.

� � � . . .
� � � �
. . . . . . . � �

4.64 Eschergrams. In several of my books,
I’ve discussed the use of computer graphics to
represent noisy data. One method I’ve
employed uses a pattern from the Dutch artist
M. C. Escher. To produce figure 4.41, simply
draw the generating tile (shown in figure
A4.24) with a random orientation, and place it
within the corner of a large square lattice.
Successive adjacent tiles are added to the lat-
tice for a particular row until it is filled, and a
new row is started.

A seamless plane-filling pattern is created,
no matter what tile orientation is used. I used
just two orientations of the tile to create this

figure. You can see that there are some dia-
mond-shaped objects in the pattern. As corre-
lations within the data become greater, the
number of diamonds decreases. A completely
random tiling contains the maximum number
of diamonds; in this case, “the diamond frac-
tion” is approximately 5 percent (the number
of diamonds in the pattern divided by the
number of tiles).

Try using this tile to represent genetic
sequence data symbolized by the four different
letters G, C, A, and T. Genetic sequences can
be represented by a collection of tiles with
four different orientations. For example, what
does the resulting tile pattern (an “Escher-
gram”) tell you about the patterns, and the
degree of randomness, within the first 1,000
bases of the AIDS virus? For more informa-
tion on Escher tiles, see D. Schattschneider,
Visions of Symmetry (Freeman: New York,
1990). For information on the use of tiles to
represent noisy data, see C. Pickover, “Pictur-
ing Randomness with Truchet Tiles,” Journal

of Recreational Math 21, no. 4 (1989):
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Figure A4.23 The game of elegant ellipses.

Figure A4.24 Eschergram.



256–59. Also, C. Pickover, “Mathematics and
Beauty: Several Short Classroom Experi-
ments,” American Math Society Notices 38,
no. 3 (March 1991): 191–95.

4.65 Dudeney’s house. Figure A4.26 is one
solution.

4.66 Dudeney’s 12 counters. Any two overlap-
ping triangles could be used to create a solu-
tion (figure A4.25).

4.67 Dudeney’s cuts. Figure A4.27 is one solu-
tion. Are there others?

4.68 e
1–e. Here is the question: For what value

of x is a maximum? Note that

Isn’t that great? The Swiss mathematician
Jacob Steiner (1746–1827) was one of the
first people to work on the e

1–e problem. Inter-
estingly, Euler proved that

y = x x x x x . . .

has a limit if x is between e
1–e = 0.065988 . . .

and = 1.444667861 . . .

4.69 Dudeney’s horseshoe. The hard part of this
problem is doing it in your head. It turns out
that you just have to make two straight lines
that intersect each other (figure A4.28).

e
e

e x
e x>

=

xx
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Figure A4.25 Dudeney’s 12 counters.

Figure A4.26 Dudeney’s house.

Figure A4.27 Dudeney’s cuts.



4.70 Tunnel through a cube: A true story. =
1.060660 . . . In other words, a cube with a
side length of 1.060660 . . . inches can pass
through a cube with a side of 1 inch.

In the late seventeenth century, Prince
Rupert, whose other titles were Count Pala-
tine of the Rhine and the Duke of Bavaria,
won a wager that a hole could be made in one
of two equal cubes large enough for the other
cube to slide through. I believe that the
1.060660 solution was not known until Pieter
Niuewland solved it more than a century after

Prince Rupert asked the question. For more
information, see D. J. E. Schrek, “Prince
Rupert’s Problem and Its Extension by Pieter
Nieuwland,” Scripta Mathematica 16 (1950):
73–80 and 16 (1950): 261–67.

4.71 The mathematics of love. Bill was 565.7 feet
north of Mark. Because Bill runs 3 times as
fast as Mark and because Mark and Bill arrive
at Shannon simultaneously, the distance from
Bill to Shannon must be 600 feet (speed ×

time = distance). We can now use the
Pythagorean theorem to compute the distance
from Mark to Bill.

A2 + B2 = C2

A2 + 2002 = 6002

A2 + 40,000 = 360,000

Now we need to solve for A. A2 = 320,000

A = 565.7 feet.

4.72 Antimagic square. Here is one solution.

Antimagic Square

4.73 Annihilation magic squares. Here is one
solution.

3 2
4
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Figure A4.28 Dudeney’s horseshoe.
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4.74 Cramming humanity into small spots. To
solve this problem, we can estimate the popu-
lation at 6.4 billion, which corresponds to
2,066 square miles of land. Thus, everyone
should be able to fit into any state’s land area
in the United States, except for Rhode Island
or Delaware. They would all fit onto the island
of Puerto Rico.

If we fashioned a cube and placed each
person on one of the inside or the outside
faces of the cube, the cube would be only 
13 miles wide. They could all fit into Alaska,
leaving 99.7 percent of the land unoccupied.

More precisely, let us assume that the num-
ber of people on earth (at the time of this
writing) is 6,366,780,666. The area allocated
per person is 9 square feet. The total area
required = 6,366,780,666 × 9 = 57,301,025,
994 square feet. Total area in square miles is
(57301025994)/(52802) = 2,055 square miles.
This many people could fit in Rhode Island
(1,545 square miles) if they sucked in their
guts and occupied 2.6-by-2.6-ft. plots.

My colleague Nick Hobson notes that if we
make use of the third dimension, 6.4 billion
people, each allocated a 6 ′ × 6′ × 6′ cube,
would fit into a cube with a side that’s just
over 2.1 miles. This would comfortably fit on
Manhattan Island, or it could be “dismantled”
to fit in the Grand Canyon.

4.75 Chocolate cake computation. The circular
cake is a better buy. The area A1 of the circu-
lar cake is (d/2)2 × π. The area A2 of the
square is (d – 1)2 = d 2 – 2 × d + 1. A1 = 56.74.
A2 = 56.25.

However, the circular cake is not always a 
better buy than the square. Notice that at
about d = 8.78942582838, the areas are 

equal: A1 = 60.67515473587 and A2 =
60.67515473587. If d grows larger than
8.789425, the square becomes a better buy.

The general solution for the special value
of d is

We obtain this by solving for (d/2)2 × π =
(d – 1)2 and finding the points where both
sides of the equation are the same.

π(d/2)2 = (d – 1)2

(πd 2)/4 = d 2 – 2d + 1

πd 2 = 4d 2 – 8d + 4

d 2(4 – π) – 8d + 4 = 0

By the quadratic formula, we get

d = [8 ± √(64 – 16(4 – π))]/2(4 – π)

= [8 ± 4√(4 – (4 – π))]/2(4 – π)

= [4 ± 2√(π)]/(4 – π)

= [4 ± 2 × 1.772453851]/0.858407

which yields

d ≈ 8.789426 or 0.530159

In theory, d values between these two 
bounds yield a circular cake with a bigger
area, and outside of them, the square area is
bigger. However, we exclude the solution 
d = 0.530159 because it yields a negative cake
area. The quantity d – 1 must be greater than
0 to be physically meaningful.

4.76 Bears in hyperspace. Yes, the polar bear
could be crammed into an 11-dimensional
sphere of radius 6 inches. To help you under-
stand this answer, consider the act of stuffing
rigid circular regions of a plane into a sphere.

d =
+

−

4 2

4

π

π
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If the circular disks are really two dimen-
sional, they have no thickness or volume.
Therefore, in theory, you could fit an infinite
number of these circles into a sphere—pro-
vided that the sphere’s radius is slightly bigger
than the circles’ radius. If the sphere’s radius
were smaller, even one circle could not fit
within the enclosed volume, since it would
poke out of the volume. Therefore, the volume 
of a polar bear could reside comfortably in an 
11-dimensional sphere with a 6-inch radius. In
fact, an infinite number of polar bear volumes
could fit in an 11-dimensional sphere. How-
ever, you could not physically stuff a polar
bear into the sphere because the bear has a
minimum length that will not permit it to fit.
Indeed, a polar bear volume equivalent could
be contained within the sphere, but to do so
would require the bear to be first put through a
meat grinder that produces pieces no larger
than the diameter of the sphere. It would help
if the polar bear could be folded or crumpled
in higher dimensions like a piece of paper.

4.77 Hypersphere packing. For circles, we know
that the answer is 6 (figure A4.29). For
spheres, the largest number is 12, but this fact
was not proved until 1874. In other words, the
largest number of unit spheres that can touch
another unit sphere is 12. For 4-D hyper-
spheres, the number is 24, and 196,560 
24-dimensional spheres can kiss a central 24-
dimensional sphere of the same radius. 
The number of equivalent hyperspheres in 
n dimensions that can touch an equivalent
hypersphere without any intersections is
sometimes called the Newton number or 
ligancy. Newton correctly believed that the
kissing number in three dimensions was 12.

4.78 Lattice growth. It turns out that these
lattice numbers grow very quickly, but you
might be surprised to realize just how 
quickly. The formula describing this growth 
is fairly simple for an n × n lattice: L (n) = 
n2 (n + 1)2/4 . The sequence goes 1, 9, 36,
100, 225, 441 . . .

Let’s jump up a dimension. Can you find 
a formula for the number of boxes for 3-D
lattices? Can you find a formula for the num-
ber of hyperboxes in hyperlattices of any
dimension?

Did you know that a small n = 2, 7-dimen-
sional lattice (2 × 2 × 2 × 2 × 2 × 2 × 2) has
over 1,000 hyperboxes? If we think of each
box as a container, an n = 9 hyperlattice in the
50th dimension can hold each electron, each
proton, and each neutron in the universe (each
particle in its own cage). Does this all boggle
your mind?
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Figure A4.29 In two dimensions, a circle can make
contact with six other circles of the same size. What

happens in higher dimensions?



4.79 In the garden of the knight. Here is the
solution (Ed Pegg Jr., “Math Puzzles,” 
www.mathpuzzle.com/29Jun2003.html).

4.80 In the garden of the knight. Here is the
solution from Jean-Charles Meyrignac, who
has done extensive computer analyses of 

these kinds of problems (Ed Pegg Jr., “Math
Puzzles,” www.mathpuzzle.com/29Jun2003.
html).

4.81 In the garden of the knight. The challenge
was to place 48 knights on a 10-by-10 chess
board so that each knight attacks two, and
only two, other knights. This is one of twenty
possible solutions from Jean-Charles
Meyrignac (Ed Pegg Jr., “Math Puzzles,”
www.mathpuzzle.com/29Jun2003.html).

4.82 Polyhedral universe. A dodecahedron.
According to Science magazine (Charles
Seife, “Polyhedral Model Gives the Universe
an Unexpected Twist,” 302 [October 10,
2003]: 209), a team of scientists from France
and the United States studied the measure-
ments from the Wilkinson Microwave
Anisotropy Probe (WMAP) satellite to reach

a surprising conclusion: the universe
might be finite and twelve-sided.
Although the hypothesis is being
challenged, its proponents say that it
matches the data. Also, opposite
faces of the dodecahedron corre-
spond in unusual ways to each other.
In fact, these faces are actually the
same face so that a spaceship flying
out of one side of the universe winds
up flying back into the other side.

To make a finite dodecahedral
space, one glues together opposite
faces of a slightly curved dodecahe-
dron—a soccer ball–like shape with
twelve pentagonal sides. Of course,
such gluing is difficult to imagine in
our ordinary 3-D space. See also
Erica Klarreich, “The Shape of
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Space,” Science News 164, no. 19 (November
8, 2003): 296–97.

In the spirit of full disclosure, I should 
note that scientists’ theories about the shape
of the universe change almost every month. 
In April 2004, Frank Steiner at the University
of Ulm in Germany suggested that the 
universe is shaped like a medieval horn—
a very long funnel. In Steiner’s model of the
universe, technically known as a Picard 
topology, the universe is infinitely long in 
the direction of the funnel’s spout, but so 
narrow that the universe has finite volume.

4.83 Tank charge. Here is one path. Can you
find others?

4.84 Molecular madness. Figure A4.30 shows
one solution. How many solutions exist?
When solving this puzzle, my colleagues
often start by searching for those atoms near
the periphery of the molecule that sometimes

have fewer bonding options than interior
atoms do. I notice that some friends seem to
solve this by pure intuition, in ways I don’t
fully understand. Others attempt to rigorously
analyze the possibilities and get “stuck” when
they encounter so many initial options.

4.85 Clown with balls. The side length is
11.464 . . . My colleague Mark Ganson dis-
cussed this puzzle of his at my discussion
group, and I like the puzzle for its simplicity
and because it can be solved in so many dif-
ferent ways. Here is one way. Consider a ball
at the bottom left-hand corner. Let the 
center of the ball be O, the tangent point at
the bottom T, and the left triangle corner C.
OC bisects the angle at C, so angle OCT is
30 degrees; OTC is 90 degrees; COT is 60
degrees; OT is 1, and TC is tan(60) or 1.732 
. . . Therefore, the length of one side of the 
triangle is 8 + 2 × TC = 11.464 . . .
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Figure A4.30 Alien molecule confounds scientists.



4.86 Stained glass squares of Constantine. There
are 16 squares, counting the black frame
around the window. I find that most people
who casually study the window find only
about 12 to 14 squares. How can our percep-
tual systems be so different? How many
squares did you find? Let’s see how well your
friends can do on this puzzle. If you are a
teacher, how many squares can your students
find? How does the number of perceived
squares depend on a person’s age, gender, 
occupation, emotional state, IQ, caffeine
level, and culture?

4.87 Chocolate puzzle. Here is the solution:

Most of my brainy friends at work solved this
in about 5 minutes. One way to approach the
problem is to simply eliminate possibilities.
For example, you can examine the 6 in the
bottom-left corner, which seems to have two
possible rectangles that can be associated with
it. However, we can eliminate the vertical 
1 × 6 rectangle by noting that this would not

permit a legal rectangle at the upper left of the
grid. The solution is unique.

4.88 Jerusalem crystal. Follow the black cir-
cles to see one possible path (figure A4.31).
How many other solutions exist?

5. Probability: Take Your Chances

5.1 Gambling. You can easily turn Donald’s
unfair coin into a fair one. Get ready to toss
the coin twice. Before doing so, you can
select heads followed by tails (HT), and Don-
ald can select tails followed by heads (TH). If
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both tosses give the same result, discard the
results, and toss the coin twice again. The first
time the coin lands either TH or HT, you can
determine who wins the bet!

If you don’t see why this is fair, let’s pre-
tend, for example, that the biased coin lands
tails 80 percent of the time. Even so, some-
times we will have TH or HT. There is no rea-
son that either of these will be favored over
the other, and, in fact, they should each occur
with equal frequency. Thus, by monitoring
“HT” versus “TH,” we can create an unbiased
selection process. If each toss is independent,
then the probabilities for each pair are

p(TT) = 80% × 80% = 64%

p(TH) = 80% × 20% = 16%

p(HT) = 20% × 80% = 16%

p(HH) = 20% × 20% = 4%

So, 32 percent of the time you have a result.
Otherwise, you toss the coin two more 
times.

5.2 Monkeys typing Hamlet. Typewriters have
about 44 keys. Hamlet has about 32,301
words or 176,522 characters, including
spaces. If a typewriter with 44 keys is used,
the odds of getting one character correct (the
first one, being “H” for Hamlet in the title) is
1 out of 44. Getting two characters correct
would clearly be less likely, and, in fact, the
probability would be (1/44) × (1/44). Getting
all 176,522 characters correct would be 1 out
of 44176,522. A computer keyboard has about
80 keys, giving us the lower odds of 1 out of
80176,522.

5.3 Many monkeys typing Hamlet. Each monkey
still individually has the same odds, 1 out of
44176,522, which we discussed in the answer to
the previous problem. But each day the proba-
bility that one of the monkeys will succeed
doubles, so that on day two the odds become
2 out of 44176,522, and on day three the odds
become 4 out of 44176,522, and so on, day by
day. On some future day, d, the number of
monkeys 2d will exceed 44176,522, and on that
day, the odds are very good (i.e., close to 1
out of 1) that one of those poor monkeys will
succeed. Of course, at this point the visible
universe would be flooded with monkeys, not
leaving much room for humanity to have fun.
(Naturally, I’ve made some assumptions in
this interpretation. Can you name a few?)

5.4 The Book of Everything That Can Be Known.
When a book is flipped open, it displays one
page on the left and another on the right. So,
if the statement is anywhere on the two dis-
played pages, we’ve found the statement. The

Book of Everything That Can Be Known is
10,000 pages long, so it has 5,000 different
openings. The chance of flipping the book
open to the fact “the universe is finite in spa-
tial extent” is therefore about 1 in 5,000. On
the average, you would need 5,000 random
flips to find this fact. There’s no guarantee,
however, that you will find it in thousands of
random flips. As William Poundstone notes
for a similar problem in his book How Would

You Move Mount Fuji? no matter how many
times you flip the pages, you can never be 100
percent sure of flipping so that a particular 2
pages are displayed.

In fact, the chances of flipping to the wrong
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2 pages on any given try is 4,999/5,000
because there are exactly 10,000 pages and
exactly 5,000 openings to flip to. The chances
that the first n flips will all fail to open to “the
universe is finite in spatial extent” is then
(4,999/5,000)n. The chance that you will flip
to the correct opening in n flips or less is 1 –
(4,999/5,000)n. Thus, the odds of flipping to
“the universe is finite in spatial extent” is
about 50 percent on the 3,470th flip. Half of
the time, you’ll hit “the universe is finite in
spatial extent” in 3,470 flips or less.

If we wish to be more precise about our
assertion that a 10,000-page book has 5,000
different openings, note that if you open a
book at the front, it has only one page on the
right. At the back, the book has one page on
the left. So, for example, we would find that a
4-page book has 3 ways of opening it. A
10,000-page book has 5,001 ways. So, more
precisely, the aforementioned probability is
1/5,001, not 1/5,000, and on average, you
would have to randomly flip the book open
5,001 times.

5.5 Bookkeeper arrangements. The solution is
10!/(2!2!3!) = 3,628,800/24 = 151,200. If you
didn’t get this, reread the previous entry.

5.6 Subway odds. Turn over any three slips of
paper. Next continue to turn papers until you
reach a number higher than the highest num-
ber on the first three slips of paper. This is the
number you stop on and show your captor. If
you are about to turn over all the papers, stop
at (and choose) the last one turned. This sys-
tem gives you maximum odds of escaping,
which are slightly better than one in three.

5.7 The ancient paths of Dr. Livingstone. There
are 6 ways to get from A to B and 4 ways to
get from B to C. Using the multiplication
principle in “ Combinatorics defined,” we
find 6 × 4 = 24 possible paths from A to C.

5.8 Organ arrangements. We have 5 organs. As
we learned, the organs have 5! = 5 × 4 × 3 ×
2 × 1 = 120 permutations. The number of per-
mutations of any 3 organs from the 5 is 5P3 =
5!/(5 – 3)! = 120/2 = 60 permutations. If you
didn’t get this answer, reread the previous
entries.

5.9 Mombasa order. Because the wife has 
chosen the last city, we are left with a permu-
tation of 6 cities, which is 6! = 720 different
ways they can order their visits.

5.10 Diamond arrangements. We find (n – 1)!
arrangements, given n different objects
arranged in a circle. Thus, the movie star has
an amazing 15! = 1,307,674,368,000 different
possible arrangements of the diamonds on the
bracelet. If diamonds were cheap, it would be
very easy to give a different arrangement of
the 16 diamonds to everyone on Earth and
still have many more arrangements left over.

5.11 Marble maze. One way to solve this maze
puzzle is to realize that at each marked inter-
section (or decision point), the marble has a
50-50 choice (or 1/2 chance) of going right or
left. There are three paths by which the mar-
ble can get to the winning exit (1-2-6-8, 1-2-
4-6-8, and 1-3-5-4-6-8). All we need to do is
multiply the 1/2 probabilities at each decision
point along each path to find the likelihood of
traveling a particular path. So for the three
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paths we have (1/2 × 1/2 × 1/2 × 1/2) + (1/2 ×
1/2 × 1/2 × 1/2 × 1/2) + (1/2 × 1/2 × 1/2 × 1/2
× 1/2 × 1/2). Thus, we find 1/16 + 1/32 + 1/64
which is about 0.11—only about an 11 per-
cent chance of winning!

Here’s a new one for you to ponder from
my colleague Derek Ross. Consider the fol-
lowing super-simple maze:

You can go any direction: north, east, south,
west. There are two one-way doors, indicated
by dotted lines. The arrow indicates the direc-
tion of the door. Dr. Brain has been getting
you drunk on wine. Next, he drops you at the
start gate of the tunnel. Since it is completely
dark, and you are mentally disoriented, you are
capable of making only random turns when-
ever you encounter a fork in the tunnel. The
problem is to find the probability that you will
eventually crawl out of the exit marked “Win.”

5.12 Sushi combinatorics. By the multiplication
principle we discussed in “ Combinatorics
defined,” we can make 3 × 2 × 5 = 30 different
kinds of sushi.

5.13 Turnip permutations. The word turnip has 6
letters. Thus, the letters have 6! = 6 × 5 × 4 ×
3 × 2 × 1 = 720 permutations.

5.14 The Africa gambit. My friend Nick Hobson
notes that the answer depends on the map pro-
jection that is used. The African mainland has
an area of about 11.6 million square miles,
out of about 197 million square miles for all
of Earth. So, throwing the dart at an equal-
area projection map, such as the “Eckert IV,”
will give a probability of about 11.6/197 = 5.9
percent, or 1/17.

The Eckert IV projection, presented by Max
Eckert in 1906, is a “pseudocylindrical equal-
area” projection. The central meridian and all
parallels are straight lines; other meridians are
equally spaced elliptical arcs. On the other
hand, the more familiar Mercator projection,
originally produced in the sixteenth century for
navigation purposes, stretches higher latitudes
east-west, and therefore, for example, exagger-
ates the size of North America and Europe. In
such maps, the probability of hitting Africa
would be much less than 5.9 percent.

5.15 Sushi gambit. Place 1 piece of octopus
sushi on one dish and the other 9 pieces of
sushi on the other dish. We can determine the
chances that Dr. Sushi will eat an octopus
sushi as follows. He will choose the dish con-
taining 1 octopus sushi with 50 percent proba-
bility. We must add to this the probability that
he will eat octopus sushi from the other dish.
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The other dish has 5 tuna and 4 octopus sushi,
so the chances of selecting an octopus from
this dish are 4/9. Thus, the probability that he
will eat octopus is 0.5 + 0.5 × 0.44 = 0.722 or
about 72 percent.

5.16 Alien gambit. Write all the possible
sequences of button presses in order to com-
pute the probabilities of your turning green.
For discussion, name the three buttons
“explode (E),” “disable (D),” and “happy
(H).” Here are the six different possible sce-
narios, with B1, B2, and B3 indicating the
effects of pressing Buttons 1, 2, and 3:

I calculate six different possible orders in
which you could press the three buttons. Of
these, there are three scenarios in which you
turn green and three in which you do not. This
would appear to suggest that you have a 50-50
chance of turning green. If you want to be more
realistic, the chances are probably greater that
you will turn green, because in Line 6 you
might be so happy that you don’t care whether
you turn green, and that means you may not
press any button again to disable the timer that
opens the capsule. That leaves 3 sure greens, 2
sure not greens, and 1 uncertain. Thus, you are
somewhat more likely to turn green.

5.17 Cards of Minerva. The probability that
Zeus obtains more blacks than Minerva is 1/2.
Either Zeus throws more blacks than Minerva,
or Zeus throws more whites than Minerva. By
symmetry, these two mutually exclusive pos-
sibilities occur with equal probability. There-
fore, the probability that Zeus obtains more
blacks than Minerva is 1 out of 2 (1/2). Are
you amazed that this probability seems to be
independent of the number of cards, n? You
can learn more about problems of this kind
from Richard Epstein, The Theory of Gam-

bling and Statistical Logic (New York: Acade-
mic Press, 1995).

An example may clarify. Suppose n = 1.
Minerva throws “no blacks” with probability
1/2 and one black with probability 1/2. Zeus
throws “no blacks” with probability 1/4, one
black with probability 1/2, and two blacks
with probability 1/4. We can illustrate this in a
table.

Examining the table, we can see that Zeus
throws more blacks (bold cells) half the time,
the same number 3/8 of the time, and fewer
1/8 of the time.

5.18 Card shuffles. Only eight consecutive per-
fect shuffles are required to restore a deck of
cards to its original order. Let us consider the
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B1 B2 B3 Outcome

1 E D H You turn green.

2 E H D You turn green.

3 D E H You stay flesh colored.

4 D H E You stay flesh colored.

5 H E D You turn green.

6 H D E You stay flesh colored. Minerva Throws

Zeus Throws
0 blacks 

(p = 1/2)

1 black 

(p = 1/2)

0 blacks (p = 1/4) 1/8 1/8

1 black (p = 1/2) 1/4 1/4

2 blacks (p = 1/4) 1/8 1/8



second card from the top of the deck. The
shuffles move it to the following sequence of
positions: 2, 3, 5, 9, 17, 22, 14, 27, and back to
2. This works for any card in the deck. For fur-
ther reading, see Robert Ehrlich, What If You

Could Unscramble an Egg? (New Brunswick,
N.J.: Rutgers University Press, 1996).

5.19 Piano probability. First, let us assume that
the keys have equal area so that, for example,
you wouldn’t be more likely to press a white
note than a black note. Then, the four most
equally likely notes are A, A#, B, and C, since
on a standard 88-key piano, there are 8 of
each of those notes, and 7 of all the others (12
notes in an octave; 8 of them occur 7 times,
the other four 8 times: 8 × 7 + 4 × 8 = 56 + 32
= 88). For example, there is an 8/88 or a 1/11
chance of striking an A key but only a 7/88
chance of striking a D key. Of all the black
keys, you are most likely to strike the A# key.

5.20 Martian shuffle. There are six possible
orders of the cards: MPD, MDP, PMD, PDM,
DMP, and DPM. Thus, one in six shufflings
will return your original order. With ten cards
in the deck, there would be 3,628,800 possi-
ble orderings. If you shuffled this deck as fast
as you could, without stopping for eating and
sleeping, it would still take you over a month
before you got your original deck back, based
on chance alone.

5.21 Air molecules. Consider one air molecule
in the room. For simplicity, let’s pretend that a
molecule can jump from its current position
to any position in the room. By chance alone,
it has a 10 percent or 1/10 probability of
being in a predefined corner room volume

that is 1/10 the volume of the room. If you
consider two molecules moving in the room,
the chance of both being in the corner is much
smaller, only (1/10) × (1/10) or 1 percent. Ten
molecules have a

chance of being in the corner. One hundred
molecules have a

chance of being in the corner, where a googol
is 1 with 100 zeros. It has been estimated that
we would have to wait 1080 times the age of
the universe for all 100 molecules to migrate
to the corner of the room by chance alone. In
What If You Could Unscramble an Egg?

Robert Ehrlich notes that there are 1027 air
molecules in a typical room. The probability
of all of them going to the corner at one
moment due to random motion is

The number is so tiny that it is about equal to
the odds of the Statue of Liberty jumping into
the air. (Robert Ehrlich, What If You Could

Unscramble an Egg? [New Brunswick, N.J.:
Rutgers University Press, 1996].) Of course,
this is just an approximation, because, in real
gases, molecules diffuse by randomly floating
through space, and future positions depend on
current positions.

5.22 Chess moves. There are 400 possible
board configurations. Each side has 8 pawns

1

1010 27

1

googol

1

10 000 000 000, , ,
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and 2 knights, each of which has 2 possible
moves, giving 20 potential moves for Player 1,
against the same for Player 2. Thus, there are
20 times 20, or 400 possible configurations.

5.23 Hannibal’s organs. The probability of
removing a brain is now quite high, much
higher than 50 percent. The chance is two out
of three (2/3) or 66.6 percent. Denote the brain
added to the jar as “Brain 2.” After you remove
the brain from the jar, there are three equally
likely states: Brain 1 in jar, Brain 2 outside of
jar; Brain 2 in jar, Brain 1 outside of jar; kid-
ney in jar, Brain 2 outside of jar. In two out of
three cases, a brain remains in the jar.

Let me clarify by adding my assumptions.
When Hannibal reaches into a jar containing a
brain and a kidney, assume that it is equally as
likely that he will withdraw a brain as it is that
he will withdraw a kidney. Also, it is equally
likely that the jar initially contains a brain or 
a kidney. (This exercise in “conditional
probability”—that is, the probability of
pulling a second brain, “conditioned by” or
“given” that the first pull was a brain—always
leads to much debate from readers. Write to
me if you need more information.)

5.24 Alien pyramid. Yes. Of the remaining 9
pyramids, there is a 5/9 = 55.55 percent
chance of selecting an even one and a 4/9 =
44.44 percent chance of selecting an odd one,
so this pyramid is more likely to be even than
odd.

5.25 Rabbit math. The probability is 1 out of 3
(1/3). There are three possible pairings of the
brown and polka-dot rabbit, given that at least
one of the rabbits is male:

Thus, the probability is 1 out of 3 (1/3) that
both rabbits are male.

5.26 Card deck cuts. This is a beautiful and
fun trick question. Try it on friends. Think
about it. This approach does not really 
shuffle the deck at all! The deck will not be
randomized.

My mathematician friends tell me that
technically speaking, one cut will create some
degree of randomization, but it’s not the kind
of randomization most players would want.
No further randomization will take place
regardless of how many additional cuts are
made, and in some special cases the minor
initial randomization will be lost if the shift-
ing of the cards in the pack reaches its origi-
nal position.

5.27 Russian American gambit. Both humans 
are liars! If the woman was lying, then there
might be two Russians. If the man was lying,
there might be two Americans. However, we
are told that one of the humans is a Russian
and one is an American, and the truthful robot
tells us that at least one of them is lying.
Therefore, both are lying.

5.28 Car sequence. The three cars nearest 
you can be in 3! = 6 different arrangements.
For example, if we represent the dates as
numbers 1 through 3, we have these 6
arrangements:

123, 132, 213, 231, 312, 321
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Polka-dot male female male



Of these arrangements, only one arrangement
will be in descending order. Thus, the chances
are 1 in 6.

5.29 Quantum kings and the death of reality.
Monica’s second hand—the one with the king
of spades—is more likely to have another
king. My colleague Mark Ganson reasons in
the following manner. Consider the similar
case of a deck of 4 cards—1, 2, 3, 4—dealt to
a hand that contains just 2 cards. The deck of
4 cards can be dealt into hands of 2 cards
each 6 different ways:

{1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4}

Now, let’s refer to Cards 1 and 2 as “small”
cards and Cards 3 and 4 as “large” cards. “Do
you have a small card?” is equivalent to, “Do
you have a king?” and, “Do you have a 1?” is
equivalent to, “Do you have the king of
spades?”

Notice that these hands all contain a small 
card:

{1, 2}, {1, 3}, {1, 4}, {2, 3},{2, 4}

These hands contain a 1:

{1, 2}, {1, 3}, {1, 4}

This is the only hand that contains both small
cards:

{1, 2}

The probability of having {1, 2} is 1 out of 3
(1/3) for hands containing the 1 card. The
probability of having {1, 2} is 1 out of 5 (1/5)
for hands containing a small card. Thus, if
you have the king of spades, you are more
likely to have at least one other king than if
you simply have a king.

Here’s another way to consider this

problem. Note that the probability of having
the king of spades is higher for hands that
contain more than one king than it is for
hands that have only one king. If you’ve got
only one king, it is probably not the king of
spades. But if you have three kings, it is more
probable than not that one of these kings will
be the king of spades.

5.30 AIDS tests. No. The chances are 50-50
that you don’t have AIDS—no better than the
flip of a coin! Suppose your company has
10,000 people. We assumed that 98 percent
(9,800 people) do not have AIDS, and 2 per-
cent (200 people) actually have AIDS.

Of the 9,800 uninfected people, 98 percent
of them (9,604 people) will test negative, and
196 will test positive. Of the 200 infected
people, 98 percent of them (196) will test pos-
itive, and 4 will test negative. Thus, we have:

196 tests are false positives

196 are true positives

The ratio of false positives to true positives 
is 1:1.

To better see why the chances are so poor
of you having AIDS, despite the positive AIDS
test, let’s consider a more extreme “theoreti-
cal” example of AIDS testing. Assume we
know that exactly one person out of Earth’s six
billion has AIDS, and we have a test that is 99
percent accurate. The test says you have AIDS.
Would you think it more likely that you’re that
one person out of six billion who has AIDS, or
is it more likely that you’re among the 1 per-
cent who got false positives?

5.31 Woman in a black dress. The probability is
5/23 = 5/8. The total number of possible
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sequences from n card tosses is 2n. Let f(n)
be the number of sequences of reds and
blacks, of length n, in which two consecutive
reds do not appear. The probability that no
two consecutive reds occur in n card tosses is
f(n)/2n.

Let’s explore the meaning of f(n). For one
card, f (1) = 2 because both choices (a red face
R or a black face B) do not show two consecu-
tive reds. For two cards, we have f(2) = 3
because three of the four possibilities do not
contain RR: RB, BR, and BB. With three
cards, we have RRR, BBB, RBR, RRB, BRR,
RBB, BBR, and BRB. Here f(n) = 5. If we
experiment a few more times, we find that
f(n) follows a sequence that many math nerds
will recognize: 2, 3, 5, 8, 13, and so on, which
is the Fibonacci sequence, where each term is
the sum of the previous two. Thus, it is possi-
ble to compute the probabilities of larger sets
of cards by dividing appropriate values of the
Fibonacci sequence by 2n.

5.32 Random chords. The probability is 1 out
of 3 (1/3). This answer applies only when you
use the definition of “random chord” that I
gave in the question. Other definitions will
give different answers. If you’re a computer
programmer, you can actually simulate this by
randomly selecting chords and determining
how many of them are shorter than the radius
of the circle. I did this for 100,000 trials and
found the ratio to be 0.33. Therefore, we can
say that 1/3 of all the possible chords of a cir-
cle are less than the radius. If you are a gam-
bling person, you should not bet that a
randomly selected chord is smaller than the
circle’s radius!

We can solve this by using some simple

geometric diagrams. Consider a circle cen-
tered at C. Choose a point on the circle, Q.
Construct chords PQ and QR such that they
are equal in length to the radius CQ. Just to
make it obvious, construct line segments CP,
CQ, and CR, forming two equilateral trian-
gles, CPQ and CQR. From geometry, we
know that these two adjacent triangles fill 120
degrees of the circle’s sweep, leaving 240
degrees of the circle remaining. Any random
point on the circle, X, will enjoy a 1/3 proba-
bility of falling within the 120 degrees and a
2/3 probability of falling without. Chord QX

then has a 1/3 probability of being shorter
than the radius. (The process of randomly
selecting chords on a circle to solve this prob-
lem leads to some famous paradoxes. As I
said, the term random chord is ambiguous
unless the exact procedure for producing it is
defined.)

5.33 Bart’s dilemma. Here is one clever solu-
tion. Bart should say, “You will shave my
head.”

5.34 Multilegged creatures. First, note that Mr.
Hundred cannot have 100 legs, so he must
have either 80 or 90 legs. Because the robot
with 90 legs replies to Mr. Hundred’s remark,
Mr. Hundred cannot have 90 legs. Therefore,
Mr. Hundred has 80 legs. Now consider Mr.
Ninety. He cannot have 90 legs because this
would match his name. Mr. Ninety has 100
legs.

5.35 Three fishermen. One fish is sufficient.
Look at one fish from the bucket labeled
“flounder and mackerel.” Say that it’s a
flounder. Because each bucket is labeled
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incorrectly, the bucket cannot be the “flounder
and mackerel” bucket; therefore, it must be
the flounder bucket. The bucket labeled
“mackerel” must contain mixed fish, and the
bucket labeled “flounder” must actually be the
mackerel bucket.

5.36 Mummy madness. The probability is 4/7.
There are seven possible pairings of the cat,
the hyena, and the mouse. Of these, 4 of the
cases present a cat with a missing tail. In 
the following table, M signifies that the mum-
my is missing a tail, and T signifies that 
it has a tail.

5.37 Heart attack. The chances are zero! If
four of the hearts are returned to their correct
bodies, then five of the hearts must also have
been returned to their correct bodies.

5.38 Sushi play. The chances are 1 out of 3
(1/3). Nick has these numbered sushi pieces:
1, 2, 2, 3, 4, 5, 6, 7, 8, 9, 10. Because you
know that the mystery sushi is not odd, we
have one of these in the box: 2, 2, 4, 6, 8, 10.
Thus, 2 of the 6 sushi pieces have the number
2 on them. This means the chances are 1 
out of 3 (1/3) that the sushi with a 2 is in 
the box.

5.39 Floating boat game. Don’s, Melissa’s, and
Carl’s odds of “winning” are 4 to 2 to 1.
Here’s why. Don has a 1 out of 2 (1/2) chance
of making his boat float on his turn. For

Melissa to win on her turn, Don must sink
and Melissa must win, which requires us to
multiply (1/2)(1/2) = 1/4. For Carl to win,
Don must lose, Melissa must lose, and Carl
must win, which has a chance of
(1/2)(1/2)(1/2) or 1/8.

5.40 Clown’s dreams. Believe it or not, both
aquaria are equally contaminated. The juice
contains exactly as much vinegar as the vine-
gar contains juice. Perhaps the best way to
visualize this is to put 6 purple balls in an
aquarium (to represent grape juice) and 6
white balls in another aquarium (to represent
vinegar). Let’s assume that your glass cup
holds 3 balls. You take 3 white balls and add
them to the aquarium containing 6 purple
balls. The grape aquarium now contains 6
purple balls and 3 white balls. Next “stir” the
balls in the grape aquarium. If you dip your
cup into the contaminated aquarium, on aver-
age your cup will contain 2 purple balls and 1
white ball. Add these to the vinegar aquarium.
Each aquarium will now have 4 of one ball
and 2 of the other.

Another explanation: If you moved 1 ounce
of grape juice to the vinegar aquarium, you
must have moved 1 ounce of vinegar to the
grape juice aquarium, because the total
amount of liquid in each has not changed.

5.41 Lottery. Because there is no connection
between one lottery number and the next 
one, you won’t do any better if you play 
different numbers instead of always playing
the same one.

5.42 Fossil lock. Put the fossil into the sphere,
secure it with one of your locks, and send the
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sphere to Homer. Homer should then attach
one of his own locks and return the sphere.
When you receive it again, remove your lock
and send it back. Now, Homer can unlock his
own lock and retrieve the fossil.

5.43 Nontransitive dice. Examine figure A5.2.
Proceeding clockwise around the circle, the
die with 6s and 2s beats the die with 5s and
1s, which in turn beats the die with 4s and 0s,
which beats the die with all 3s, which beats
the die with 6s and 2s. In particular, each die,
in order, is twice as likely to beat its partner.
For example, comparing the die with all 3s
and the die with 6s and 2s, we find that Bill
loses when Monica throws a 6 (which occurs
2/6 of the time), and he wins when she throws
a 2 (which occurs 4/6 of the time), so he is
twice as likely to beat her than she is to beat
him. Whichever die Monica selects, Bill
chooses the die at the tail of the arrow.

Companies like Grand Illusions manufacture
these and other nontransitive dice.

The toy collector Tim Rowett uses a set of
three nontransitive dice, each die having two
different numbers:

Die 1: 1, 4, 4, 4, 4, 4

Die 2: 3, 3, 3, 3, 3, 6

Die 3: 2, 2, 2, 5, 5, 5.

Here, Die 1 beats Die 2 in 25 out of 36 throws;
Die 2 beats Die 3 in 21 out of 36 throws, and
Die 3 beats Die 1 in 21 out of 36 throws.

You can read more about nontransitive dice
at many Web sites, including Ivars Peterson,
“Tricky Dice Revisited,” Science News Online

161, no. 16 (week of April 20, 2002); www.
sciencenews.org/20020420/mathtrek.asp; and
Grand Illusions, “Magic Dice, or Nontransi-
tive Dice,” www.grand-illusions.com/
magicdice.htm.

5.44 Tic-tac-toe. Many people whom I sur-
veyed next chose Cell 5 for X; however, other
moves would be better. For example, if you
were to play 4 or 6, this would give O three
losing moves out of a possible six. If O plays
to 5, 6, or 9, O loses (assuming that X plays
correctly). If O plays to 1, 3, or 7, then it
could go either way, but if both play correctly,
it’s a draw.

5.45 Farmer McDonald’s moose. He must
retrieve 201 gloves. If old McDonald was
having bad luck, he could conceivably take
out 100 red left-handed gloves and then 100
blue left-handed gloves. After these 200 
were removed from the sewer, the next one
would have to be either the right-hand or the
left-hand match.
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5.46 Black versus red. The probability that the
other side is black is 2 out of 3 (2/3), good
odds. To help solve this, draw all of the possi-
ble scenarios where Brad sees a black side of
the bill. For example, if you label the three
black sides B1, B2, and B3, then in 2 of the 3
cases in which Brad sees a black side, the
other side will also be black.

5.47 Brunhilde’s moose. The chances are 4 out
of 25 (4/25). The chance that she will hit an O
is 2/5. The chance that she will do this twice
in a row is (2/5) × (2/5) = 4/25 or 16 percent.

5.48 Board game of the gods. It would take
4.21875 coin tosses. We may create a table
that shows each possible winning situation
and the probability of getting it. For example,
one path to the solution is to hop 2, hop 2,
hop 2, which has a probability of 1/8 because
during each hop, we have a 1/2 probability of
hopping by 2. This represents the first entry in
the following table. Similarly, we can com-
pute the other probabilities for each path.

Notice that there is one length-3 solution,
with a probability of 1/8. There are nine
length-4 solutions, with odds of 1/16. There
are nine length-5 solutions, with a probability
of 1/32. There are two length-6 solutions, with
a probability of 1/64. The formula to combine
these various probabilities is

(1 × 3 × 1/8) + (9 × 4 × 1/16) + (9 × 5 × 1/32)
+ (2 × 6 × 1/64) = 135/32 = 4.21875

My friend Jon Anderson has performed 
computer simulations of this game and found
that they confirmed the solution that was
arrived at by analytical means. At my request,
he also performed simulations for games in
which the fifth chamber has a chute that
moves the player back to Chamber 1 when-
ever he lands on Chamber 5. In this more
complicated game, the average number of
tries needed to win rises from 4.21875 to 9.6,
based on both simulations and analytical 
considerations.

5.49 Chimps and gibbons. The odds are 1 out of
3 (1/3). We have three possibilities. The pri-
mate is Chimp Gibbon, and he called out his
first name. The primate is Chimp Chimp, and
he called out his first name. The primate is
Chimp Chimp, and he called out his last
name. All of these possibilities are equally
likely. In one out of the three possibilities is
the primate Chimp Gibbon.

Sometimes my readers argue with me over
problems of this kind that involve conditional
probabilities. Colleagues tell me that this may
be an interesting problem to which we can
apply Bayes’s theorem: the probability of a
hypothesis given a relevant event is the proba-
bility of the event given the hypothesis times
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222 1/8 11112 1/32

1122 1/16 11121 1/32

1212 1/16 11122 1/32

1221 1/16 11211 1/32

1222 1/16 11212 1/32

2112 1/16 12111 1/32

2121 1/16 12112 1/32

2122 1/16 21111 1/32

2211 1/16 21112 1/32

2212 1/16 111111 1/64

111112 1/64



the initial probability of the hypothesis
divided by the initial probability of the event.
This is usually written as P(H |E) = (P(H) ×
P(E|H))/P(E). In our case,

P(H ) = 1/3 (probability that the chimp’s 
last name is Gibbon)

P(E) = 3/6 = 1/2 (probability that one 
of the names is Chimp)

P(E |H) = 1/2 (probability that the chimp will
say “Chimp,” given his last name is Gibbon)

P(H |E) is therefore (1/3) × (1/2)/(1/2) = 1/3.

5.50 Cars and monkeys. Yes, we can make a
determination. The woman driving Barbara’s
car and with Claire’s monkey can’t be Barbara
or Claire; thus, she is Andrea. If Barbara is
driving Andrea’s car, Claire is driving her
own. But she is not, so Barbara is driving
Claire’s car, and Claire is driving Andrea’s.

5.51 Guessing numbers. Let us suppose that
Bill called out “3,500,002.” This means you
must guess the year before his number and the
year after his number—namely, 3,500,001 
and 3,500,003. It’s virtually certain that you
will win.

5.52 Martian identities. There are 520 Mar-
tians, at most. The first position of the card
could contain 1 of 26 letters. The second posi-
tion could contain 10 possible digits. 26 × 10
= 260. We must double this number for all the
cases in which the number appears first and
the letter appears last.

5.53 Robotic ants. Since Punisher always
points to a tunnel that terminates in a warrior

ant, the odds favor you if you switch to
another tunnel. Many of my colleagues did
not believe my answer, so they wrote a com-
puter simulation that proved me correct.
Alternatively, it may be helpful for you to
imagine that there are 1,000 tunnels, and Pun-
isher points to the 998 tunnels that terminate
in a warrior ant. Now would you switch your
choice of tunnels? (What assumptions are
being made in this puzzle?)

Let’s look at this from another perspective.
Assume that Tunnel 1 is the tunnel to free-
dom. Here are the possibilities before our
captor points to a sticky tunnel:

• You choose Tunnel 1. If you don’t switch,
you win.

• You choose Tunnel 2. If you don’t switch,
you lose.

• You choose Tunnel 3. If you don’t switch,
you lose.

• You choose Tunnel 4. If you don’t switch,
you lose.

• You choose Tunnel 5. If you don’t switch,
you lose.

Odds of winning: 1/5 = .2

Now let’s examine the possibilities after your
captor points to a sticky tunnel:

• You choose Tunnel 1. If you switch, you
lose.

• You choose Tunnel 2. If you switch, you
have 1/3 chance of winning.

• You choose Tunnel 3. If you switch, you
have 1/3 chance of winning.

• You choose Tunnel 4. If you switch, you
have 1/3 chance of winning.

• You choose Tunnel 5. If you switch, you
have 1/3 chance of winning.
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Odds of winning: 4/5 × 1/3 = 4/15 = 0.2666
. . .

This puzzle is very similar to the famous
Monty Hall problem that is discussed in great
detail in the literature. These kinds of prob-
lems are most relevant when you’re consider-
ing the best strategy to use if the “game” is
played repeatedly.

5.54 Venusian insects. One hundred percent of
them eat insects. The problem states that all
Venusians eat four of the five foods, so how
could a Venusian avoid the insects? Here’s
another way to look at it. Select a Venusian at
random. Either he eats beetles or he does not.
If he eats beetles, he is eating an insect. If he
doesn’t eat beetles, then he can choose from
the other four groups, which includes ants.
Therefore, he is still eating an insect.

5.55 Domain names. Consider that there are 38
possible characters, if you count the various
symbols on the keyboard in addition to the 26
letters. You just take the number of possible
characters and raise it to the number of char-
acters in the domain name, so there are 38 to
the third, or 54,872 three-character possibili-
ties; and 38 to the fourth, or 2,085,136 four-
character possibilities; and 385 = 79,235,168
five-character possibilities. Of course, many
of these are uninteresting and unpronounce-
able, like xnzy. The novel’s character creates
patented algorithms to determine names that
are pronounceable and initially buys only
those.

If you consider that domain names can be
many characters in length, we should not run
out of domain names soon. For example, there

are about 6.27 × 1015 ten-character domain
names and 3.94 × 1031 twenty-character
domain names. Please note that these numbers
are all approximations because the rules for
domain name generation have additional com-
plexities; for example, domain names cannot
begin or end with a hyphen. Also, I have not
considered the different domain name exten-
sions, such as .net, .org, .com, and so on.

5.56 Where are the sea horses? Chamber C. To
solve this problem theoretically, we assume
that the sea horses swim randomly. In this
sense, they behave like diffusing molecules in
a gas. Therefore, the number of sea horses in
each chamber is proportional to the volume of
the chamber. The nature of the interconnecting
tunnels should not matter if you give the dif-
fusing sea horses sufficient time to come to an
equilibrium state. In other words, Chamber C
in figure 5.6 will have the most sea horses
because it is the chamber with the largest vol-
ume. One assumption we make in this prob-
lem is that the large-area Chamber C, in this
schematic slice through the aquarium, also
represents a large volume if viewed in three
dimensions.

5.57 Lotteries and superstition. Bill is wrong.
Monica is just as likely to win as Bill is. In
fact, she would be just as likely to win if she
avoided 13, 14, and 15 and picked “16, 16,
16, 16, 16, 16.” Any set of six numbers is just
as likely to be picked as any other. The proba-
bility of winning is 1/46 in every case.

5.58 Coin flips and the paranormal. I did a 
small survey of colleagues. Most said that
they would begin to become suspicious after

Answers 371



about 5 heads in a row. Most colleagues felt
that a mathematician wouldn’t think that 
the coin was biased until about 15 heads in 
a row.

Of course, a coin may be biased and not
reveal its bias by always yielding a head. My
friend has a set of dice that are weighted to
roll 6s, but about 20 to 25 percent of the time,
they still roll a non-6. To detect bias, most
mathematicians probably wouldn’t look for a
consecutive number of heads but would rather
like to see a sample set.

Other colleagues noted that if the initial
results were somewhat random, and suddenly
a string of heads resulted—say, 8 heads in a
row—most people could accept that this
might happen by chance and would consider
that the coin was unbiased.

My friend Graham notes that if you just
had to call a single coin toss of a biased coin,
and the caller did not know that the bias
existed, the procedure of calling the toss
would still be fair. Consider the extreme case
of a double-headed penny. It always comes
down heads. However, if the caller takes a
random guess of heads or tails, he or she still
has a 50 percent chance of being correct. For
a single toss, a biased coin is as “fair” as an
unbiased one. It is similarly true that as long
as I guess randomly each time, my expected
proportion of correct guesses is still 50 per-
cent no matter how biased the coin is and no
matter how long the sequence.

In 2004, the mathematicians Persi Diaconis
and Susan Holmes discovered that it is impos-
sible to actually toss a coin into the air
“fairly,” because a coin is always more likely
to land on the same face it started out on. In
particular, their data indicate that a coin will

land the same way it started 51 percent of the
time, but a casual observer wouldn’t notice
this small bias. More alarming are the results
of spinning a penny on its edge, in which case
the penny will land on tails 80 percent of the
time because the head side has slightly more
mass. For further reading, see Erica Klarreich,
“Toss Out the Toss-Up,” Science News 165,
no. 9 (February 28, 2004): 131–32.

As for the paranormal implications, Susan
Blackmore, a researcher, uses the term sheep

to refer to unskeptical people who believe in
the paranormal. Blackmore has found that
when sheep are given a string of random
numbers, they overestimate the significance 
of ordinary repetitions in the sequence. Sheep
are also more prone to generally misjudge
probabilities. For example, if we flip a coin,
sheep tend to underestimate or overestimate
the odds of getting a head if a coin has gotten
five heads in a row, because sheep assume 
that the previous tosses influence the next
one. Finally, when sheep are asked to write
down a sequence of random digits, sheep are
more likely to avoid repeating digits than
chance would dictate (John Horgan, Rational

Mysticism [New York: Houghton Mifflin,
2003], p. 111).

5.59 Robot jaws. The top jaw has 100 possible
combinations. The bottom jaw has 100 possi-
ble combinations. The probability of opening
both locks on the first attempt is (1/100) ×
(1/100) = 1/10,000.

If it takes you, on average, an hour to get
the top combination right, how much time on
average would it take you to get both combi-
nations right on the first try?
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5.60 Flies in a cube. It’s possible to compute
this average distance (known to physicists as
the mean free path) by using the following
formula:

L = 1/(4π√2 ar2)

Here, L is the average distance traveled before
hitting another fly, a is the density of flies, and
r is the radius of a fly. From the equation, you
can see that as the radius of the fly increases
or the density of the spheres increases, the
distance traveled before hitting another fly (as
you might expect) decreases. In our case, a is
1,000 flies/cubic mile.

Given all these hints, what value do you get
for L? Does the answer you get seem reason-
able? Are you surprised by the answer, which
suggests that the average distance traveled
between collisions is way over 500,000 miles?

5.61 Boomerang madness. The probability is 1
out of 20. The first boomerang merely indi-
cates which tree the second boomerang must
get caught in. It doesn’t matter that they were
thrown at the same time. If you throw one of
them later, its odds of landing in any particu-
lar tree, and therefore the odds of hitting the
tree with the other boomerang, are 1/20. I sus-
pect that many people would falsely answer
1/400, the odds of both boomerangs landing
in a particular tree.

5.62 Apes in a barrel. One out of 30—the same
as if the puzzle were recast and you were to
win if Tiffany emerged third or at any point in
the sequence of apes leaving the barrel. It
would be very easy to overanalyze this. But if
you think about it, each ape has an equal
chance of emerging last.

5.63 Dark hallway and vapor men. It turns out
that an analysis of this problem is not too dif-
ficult. The chance of Man 1 vaporizing you is
50 percent. The probability of reaching the
second man and being vaporized is less.
Specifically, it is the probability that the first
man didn’t vaporize you times the probability
that the second man did vaporize you, 0.5 ×
0.5 = 25 percent. For the third man, we have
0.53 = 0.125. This also means that in a large-
enough sample, 1/2 of the people will be
vaporized by Man 1, 1/4 by Man 2, 1/8 by
Man 3, and so on. We can create a table that
shows the chances of reaching and being
vaporized by each man as you walk through
the hallway:

Your chances of reaching and being vaporized 
by the final man are slim indeed—only about
9/100ths of a percent. Therefore, most mathe-
maticians whom I asked said that because
they were limited to selecting one man, they
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Reaching and Being

Vaporized by Man

1 50

2 25

3 12.5

4 6.25

5 3.125

6 1.5625

7 0.78125

8 0.390625

9 0.1953125

10 0.09765625



would place their money on Man Number 1
as the fellow who will vaporize you. In other
words, individuals would be most likely to be
vaporized by this man.

How many attempts would it take to reach 
the end of the hallway without being vapor-
ized along the way? Note that the chances of
reaching each succeeding man are the same as
for reaching and being vaporized by the previ-
ous one. Thus, the chances of passing by all
the men safely are the same as reaching and
being vaporized by Man 10. Therefore, the
probability is 0.009765625; that is, 1,024
attempts would be required by a person, on
average, to reach the end of the hallway
safely.

My colleague J. Theodore Schuerzinger
notes that because 1/210 or (1/1,024) people
would make it all the way down the hallway
without being vaporized by any of the myste-
rious men, this means that 1,023 out of 1,024
people would be vaporized. He notes that by
using the formula (1023/1024)x = 1/2, we can
determine that out of the first x people to go
down the hallway, there is a 50 percent chance
that one person will make it down without
being vaporized. The solution x = 709.4
satisfies the equation. Thus, I would bet that a
person would make it all the way down on one
of the first 710 attempts. In other words, after
710 attempts, the chance of someone succeed-
ing exceeds 1/2.

5.64 Napoleon and Churchill. Churchill is much
more likely to win than Napoleon is. In other
words, THH is much more likely to appear
before HHH does.

Most people reason that each triplet is
equally likely, so that it is equally likely that

Napoleon and Churchill would win. However,
such is not the case. HHH appears before
THH only if the first three tosses come up
heads. Any other result will allow THH to
block HHH. Therefore, the probability that
HHH appears before THH is 1/8, which is the
probability that the first three tosses are HHH.
If you don’t see this, try writing down random
strings of Hs and Ts on paper, and this logic
will become apparent.

5.65 Triangles and spiders. To solve this prob-
lem, we must determine the area of the trian-
gular target for which the x coordinate is less
than the y coordinate and compare that area,
A1, to the area A2 of the triangle in which the x
coordinate is greater than the y coordinate.
The two regions are separated by the line OP

(y = x) (figure A5.3). Before we do any calcu-
lations, we can see that the meatball has less
than a 50-50 chance of having the x-coordi-
nate less than the y-coordinate, because the
area of the region is smaller.

Let’s calculate the area of the entire triangu-
lar target. Using the formula area = (1/2) ×
base × height, we find A = 1/2 × 5 × 4 = 10.
Next, we compute A1, the area of the smaller
internal triangle. One way to do this is to first
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calculate the equation of the hypotenuse of the
entire triangular target and then calculate the
coordinates of point P.

The big hypotenuse connects points (0,4)
and (5,0), so it has a slope of –4/5. The y-
intercept is 4, so the equation of the
hypotenuse line is y = (–4/5)x + 4. Point P
must satisfy both y = x and y = (–4/5)x + 4.
Solving for y and x, we find that P is at 
(2.22, 2.22).

Finally, we can compute the area of the
smaller internal triangle using the usual A =
(1/2) × b × h. Here we can visualize the base
resting on the y axis so that A1 = 1/2 × 4 ×
2.22 = 4.44. Recall that the area of the entire
triangle is 10. Of this, the area where the x
coordinate is less than the y coordinate is
4.44. So the probability that the meatball
lands on a point for which x < y = 4.44/10 or
44 percent.

5.66 Stylometry. Stylometry is the science of
measuring literary styles. In 2003, statistical
tests, artificial intelligence methods, and other
mathematical tools were used to determine
that the fifteenth book in the Oz series, The

Royal Book of Oz, was written by Ruth
Plumly Thompson and not by Frank L. Baum.
Jose Binongo, of the Collegiate School and
Virginia Commonwealth University in Rich-
mond, has verified the authorship by examin-
ing the 50 most frequently observed words in
various Oz texts and exploring projections of
a 50-dimensional space onto a plane.
Researchers speculate that authors have
certain habits ingrained in their neural path-
ways that favor particular word correlations.
For further information, see Jose Binongo,
“Who Wrote the 15th Book of Oz? An

Application of Multivariate Analysis to
Authorship Attribution,” Chance 16, no. 2
(2003): 9–18. Also see Erica Klarreich,
“Bookish Math,” Science News 164, no. 25
(December 20, 2003): 392–94.

5.67 Factors. As I alluded to in chapter 2, the
solution is 1/ξ(3), where

ξ(3) = 1/13 + 1/23 + 1/33 + 1/43 + . . . =
1.20205690315959428539973816
151144999076498629234049 . . .

ξ(3) is called Apery’s constant. It’s also the
value of the Riemann Zeta function for s = 3:

Incidentally, the values of the Zeta function
for s = 2n are known to be fractions of π2n.
For example, Euler proved that

5.68 Plato’s choice. The interval is 14 for the
gods, and 13 for the mortals. How would your
answer change if another god were inserted
after Plato?

The mathematical puzzle involves the con-
cept of decimation. Throughout history, the
lawful penalty for mutiny on a ship was to
execute one-tenth of the crew. First, the crew
members were forced to randomly line up in a
circle. It was then customary that the victims
be selected by counting every tenth person
from the circle, hence the term decimation.
Eventually, this term came to be applied to any
depletion of a group by any fixed interval—
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not just ten. (In real life, when we wish to dec-
imate a group of people, we don’t usually line
them up in a circle because repeatedly going
around the circle kills everyone.)

This problem in combinatorics is an exam-
ple of a class of problems that is sometimes
called Josephus problems: given a group of n
men arranged in a circle under the command
that every mth man will be executed going
around the circle until only one remains, find
the position P(n,m) in which you should stand
in order to be the last survivor. For further
reading, see W. W. R. Ball and H. S. M. Cox-
eter, Mathematical Recreations and Essays,
13th ed. (New York: Dover, 1987), pp. 32–36.

6. Big Numbers and Infinity

6.1 Counting. It would take 31 years and 251
days. In reality, it would take you longer
because larger numbers would take more than
a second to pronounce.

6.2 Large law. This “law” refers to coinci-
dences in everyday life. It essentially says that
many seemingly odd coincidences are likely to
happen with a large-enough sample. As Robert
Todd Carroll points out in The Skeptic’s Dictio-

nary, we might be amazed if a person wins the
lottery twice. However, the statisticians
Stephen Samuels and George McCabe of Pur-
due University calculated the odds of someone
winning the lottery twice to be about 1 in 30
for a four-month period—because players usu-
ally buy multiple tickets every week.

More than 17 million people on the planet
share your birthday. Carroll notes that at a
typical football game with 50,000 fans, most

fans are likely to share their birthdays with
about 135 others in attendance. In a random
selection of 23 people, there is a greater than
50 percent chance that at least 2 of them cele-
brate the same birthday.

Incidentally, in statistics and mathematics,
“the law of large numbers” has a different
meaning and refers to the rule that the average
of a large number of independent measure-
ments of a random quantity tends toward the
theoretical average of that quantity.

6.3 The ultrahex. Its last digit is a 6, because 6
raised to any power produces a result that
ends in a 6.

6.4 The ubiquitous 7. You could essentially say
that all numbers have a 7 in them. Why? As
the numbers get larger, they contain more dig-
its, increasing the probability that one of the
digits in them might be a 7. In fact, the proba-
bility that a 7 will not appear in a very long
number is vanishingly small. Moreover, you
can make a graph of the proportion of num-
bers with 7s in them as you scan larger and
larger numbers, and you will see it continu-
ously rise and approach 1. We can also make
a table showing the percentage of numbers
with at least one 7 digit for the first X num-
bers. Here is a table, showing the actual num-
ber of numbers with sevens:

X Percentage of Occurrence of 7

10 10

100 19

1,000 27

10,000 34

. . . rapidly approaching 100 percent
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A formula describes this growth: 10n – 9n,
where n is the power of 10. Thus 
(10n – 9n) /10n gives you the percentage.
According to the software package Mathe-
matica, the limit as n approaches ∞ is 1. 
Or, even without Mathematica, the formula
reduces to 1 – (9/10)n. The quantity (9/10)n

approaches zero as n grows.

6.5 Knuth notation for ultra-big numbers. No.
3 ↑ ↑ 4 = 3 ↑ 3 ↑ 3 ↑ 3 = 3 ↑ 3 ↑ 27 =
3 ↑ 7625597484987. This number is huge,
much larger than the number of atoms in the
visible universe. (It’s estimated that there are
1080 protons and the same number of elec-
trons in the visible universe.) You can surely
see that Knuth’s notation is a compact way of
representing large numbers.

One of the largest finite numbers ever con-
templated by a mathematician is Graham’s

number, named after the mathematician
Ronald L. Graham. As just the first step to
understanding Graham’s number, let x1 =
3 ↑ ↑ ↑ ↑ 3, which is unimaginably large!
Next, let x2 = 3 (x1 arrows) 3. In other words,
x2 has x1 arrows. We continue the process,
making the number of arrows equal to the
number at the previous step, until you are 63
steps from x1. The final value, beyond which
any God could contemplate, is Graham’s
number, which is used in an area of mathe-
matics called combinatorics and, more specifi-
cally, Ramsey theory.

6.6 The magnificent 7. The chance is 100 per-
cent. If I list all of the integers in numerical
order, there is essentially a 100 percent
chance of hitting a number with a 7, using a
dart tossed randomly at the list. You learned

from the last problem that as the numbers get
larger, they contain more digits, increasing the
probability that one of the digits in them
might be a 7. In fact, the probability that a 7
will not appear in a very long number in my
list is very low.

6.7 Computers and big numbers. The computer
that I am envisioning is one that is not an ide-
alized or theoretical model, but one limited by
known physical laws such as the speed of
light, electrical resistance, RC (resistor-capac-
itor) delay, atomic dimensions, the world sup-
ply of silicon, the finiteness of programs and
data, and other known phenomena. Can such
a machine work with numbers so huge that
they would require Donald Knuth’s arrow
notation to express them?

My colleague Dennis Gordon posed this
big-number question to my discussion group.
Most group members focused on the storage
needed to hold such a number (with all its
digits), which might depend on the amount of
matter in the universe. If we limit ourselves to
the visible universe, which contains about
1080 protons and the same number of elec-
trons, then perhaps this provides an upper
limit to the size of the binary number that we
could conceivably store. If a quantum com-
puter is to be considered, then all the matter in
the multiverse should be considered. In addi-
tion to storage for the number, we would also
need the computer itself, which would include
a storage writer to write the number, even if
we never wanted to read it. We would also
need the engineer to design it.

My colleague Bill Gavin echoes this view
when he notes that in order to determine the
largest number that could be handled by a
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computer, we need to first imagine the ulti-
mate computing machine, which would be the
entire universe transformed into a single God-
like computer. The largest number it could
handle would then be the largest number that
could be encoded in the universe itself. Mak-
ing a simplified assumption that each particle
may be encoded with one bit of information,
we can determine the largest possible number
that could be encoded in the universe by divid-
ing the total mass of the universe (which is a
constant) by the mass of the smallest particles
that the universe could be broken up into.

But what is the smallest possible particle?
We can get much smaller than a proton or an
electron. The mass of any particle can be
expressed as a function of its size and its
energy. For the smallest possible particle, we
assume the smallest possible size, a well-
defined unit in physics known as the Planck
length (very roughly 10–35 meters). The small-
est possible particle would also have the low-
est possible energy, which corresponds to the
longest possible wavelength. The longest pos-
sible wavelength would be the “radius” of the
universe itself, which is believed to be about
13 billion light years. With our smallest possi-
ble particle’s “radius” and wavelength thus
defined, its mass can be easily calculated. If
we assume that the total mass of the universe
is on the order of 1053 kg (the value favored
by most physicists), the largest number of bits
that could be encoded in the universe at its
current size turns out to be approximately
10120, which corresponds to a largest possible
integer of 210120. How does this value change
as the universe expands?

In 2004, Lawrence M. Krauss and Glenn D.
Starkman, of Case Western Reserve Univer-

sity, submitted “Universal Limits on Compu-
tation” to Physical Review Letters. They show
that the nature of the universe itself places
limits on computation because it is not possi-
ble to transmit or receive information beyond
the so-called global event-horizon in an accel-
erating, expanding universe. In particular,
they determined how far an observer could
travel in such a universe and still be able to
transmit energy back to Earth. Their calcula-
tions show that the total number of computer
bits that could be processed in the future
would be less than 1.35 × 10120. Their calcula-
tions also considered that the acceleration
causes space to emit a form of energy known
as de Sitter radiation, which would drain
energy from regions of the universe and thus
also diminish the computer resources that
could be used for computation.

My solution concentrates on the largest
number that can be stored, not worked with or
yielded. To actually “work with a number,” we
need at least one other number. We also need
space to hold intermediate work or at least the
answer. Thus, if we want to multiply two 10-
digit numbers (in any base), we need 20 digits
for the two numbers and another 20 for the
result. We also need some space for coding
the multiplication algorithm!

6.8 Counting every rational number. Georg
Cantor (1845–1918) boldly tamed the infinite
and showed that there are different degrees of
infinity. This subject had previously been left
to pure speculation and mysticism. The
rational numbers, for example, are countably

infinite, which means it is possible to enumer-
ate all of the rational numbers by means of an
infinite list. In contrast, the real numbers are
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uncountable because we cannot enumerate
them by means of an infinite list. A few exam-
ples will make this clear.

Cantor showed that it is possible, in theory,
to count all rational (fractional) numbers if
you arranged them in a pattern like this:

A B C D E F

1/1 2/1 3/1 4/1 5/1 6/1 . . .

1/2 2/2 3/2 4/2 5/2 . . . . . .

1/3 2/3 3/3 4/3 . . . . . . . . .

1/4 2/4 3/4 . . . . . . . . . . . .

1/5 2/5 . . . . . . . . . . . . . . .

1/6 . . . . . . . . . . . . . . . . . .

Here is Cantor’s method for listing all the
rational numbers. Start your list with 1/1 at
the top of column A. Next, go to 2/1 at the top
of B and list all fractions down and to the left:
2/1, 1/2. Next, go to the top of C and list
rational numbers along the diagonal: 3/1, 2/2,
1/3. As you continue this process, you can
check whether a number has been counted
already, such as when you get to 2/4, which is
the same as 1/2. You can eliminate repeats.
You can also reduce fractions to the lowest
terms; for example, 2/1 = 2. We can continue
this process to create a list of rational num-
bers (which includes the integers):

1, 2, 1/2, 3, 1/3, 4, 3/2, 2/3, 1/4, 5, . . .

Any positive rational number will be reached
sooner or later. On the other hand, Cantor
showed that for every given infinite sequence
of real numbers it is possible to construct a
real number that is not on that list. Conse-
quently, it is impossible to enumerate the real
numbers; they are uncountable and represent

a “greater” infinity than the infinity of rational
numbers. Here’s how he showed this.

Let’s try to make a list of all the positive
real numbers, just as we did for the positive
rational numbers. Such a list would include
numbers like pi, which can’t be expressed as a
fraction. For simplicity, let’s imagine a list of
all the real numbers between 0 and 1. The list
might, in no special order, look something
like this, each number with an infinite number
of digits:

N1 = 0.398471 . . .

N2 = 0.281910 . . .

N3 = 0.538567 . . .

N4 = 0.790193 . . .

. . .

Is it possible to find a real number that is not
on this infinite list? The answer is yes. To con-
struct this number, add one to each underlined
digit:

N1 = 0.388471 . . .

N2 = 0.281510 . . .

N3 = 0.538567 . . .

N4 = 0.740183 . . .

We continue with every digit and every num-
ber N to produce a new number: M = 0.4982 
. . . Notice that this mystery real number, M,
is different from N1 in the first digit, different
from N2 in the second digit, and so forth.
Where does M itself reside on the list of real
numbers? Nowhere! It differs from every
number on the list. Thus, it is not possible to
“enumerate” every real number, as it is for the
rational numbers. (Or, perhaps more accu-
rately, I should say that we have shown that
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the list of real numbers must have more ele-
ments than the set of integers does.) The exact
values for numbers in our N1, N2, N3 , . . . list
do not affect the basis of our argument.

I have simplified our discussion of Cantor’s
diagonal proof somewhat, and additional
complexities are discussed in “Cantor’s diago-
nal proof,” www.mathpages.com/home/
kmath371.htm.

6.9 1597 problem. Yes. The reason it would
take even your computer so long to find the
infinite number of solutions is the fact that the
smallest integer value for y is

y = 51971152775546309622426638537563
8449943026746249

for an x value of

x = 13004986088790772250309504643908
671520836229100

6.10 Infinite surface. There are many answers
to this question, but my favorite involves the
Funnel of Zeus, a hornlike object created by
revolving f(x) = 1/x for x ∈ of [1, ∞) about the
x axis. Figure A6.1 shows a cross-section of
the funnel, which can be created by revolving
the curves about the x axis. Standard calculus
methods can be used to demonstrate that the
Funnel of Zeus has finite volume but infinite
surface area!

In 777 Mathematical Conversation

Starters, John de Pillis explains that mathe-
matically speaking, pouring red paint into 
the Funnel of Zeus could fill the funnel and,
in so doing, you could paint the entire inside,
an infinite surface—even though you have a

finite number of paint molecules. This seem-
ing paradox can be partly resolved by remem-
bering that the Funnel of Zeus is actually a
mathematical construct, and our finite number
of paint molecules that “fills” the horn is an
approximation to the actual finite volume of
the horn.

For what values of a does f(x) = 1/xa pro-
duce a horn with finite volume and infinite
area? This is something for you to ponder as
you drift off to sleep tonight.

The Funnel of Zeus is sometimes called
Gabriel’s horn or Torricelli’s trumpet, after
Evangelista Torricelli (1608–1647), a mathe-
matics teacher who studied this object. He
was astounded by this object that seemed to
be an infinitely long solid with an infinite-area
surface and a finite volume. He thought it was
a paradox and, unfortunately, did not have the
tools of calculus to fully appreciate and
understand the object. Today, Torricelli is
remembered for the telescopic astronomy he
did with Galileo.
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6.11 Infinity keyboard. The concept of infinity
has challenged humans for centuries. For
example, Zeno (an Eleatic philosopher living
in the fifth century B.C.) posed a famous para-
dox that involved infinity. The paradox
seemed to imply that you can never leave the
room you are in. As Zeno reasoned, in order
to reach the door, you must first travel half the
distance there. Once you get to the halfway
point, you must still traverse the remaining
distance. You need to continue to half the
remaining distance. If you were to jump 1/2
the distance, then 1/4 the distance, then 1/8 of
the distance, and so on, would you reach the
door? Not in a finite number of jumps! In
fact, if you kept jumping forever at a rate of 1
jump per second until you were out the door,
you would jump forever. Mathematically, one
can represent this limit of an infinite sequence
of actions as the sum of the series (1/2 +1/4 +
1/8 + . . . ). The modern tendency is to resolve
Zeno’s paradox by insisting that the sum of
this infinite series 1/2 + 1/4 + 1/8 is equal to
1. Since each step is done in half as much
time, the actual time to complete the infinite
series is no different than the real time
required to leave the room.

As for typing the two H and J keys, the
answer is that the key value is indeterminate
or undefined. My friend Nick Hobson notes
that this is perhaps not too surprising when
you reflect on the fact that the keys have been
pressed an infinite number of times! Infinity is
neither even nor odd.

Nick agrees that the typing experiment
does end, since the sum to infinity of 1 + 1/2
+ 1/4 + . . . is well-defined and finite. “On the
other hand, the sum to infinity of 1 – 1 + 1 – 
1 + . . . is neither of these. It is a monstrosity

of which we cannot speak! It is this sum that
corresponds to the final key struck. The sum
is not well-defined; it is neither 1 nor 0 (nor is
it 1/2); therefore it is not possible to say that
the final key struck is either J or H.”

My friend Chuck says, “When using a real
keyboard, the final state of the keyboard is
obviously . . . broken.”

For an analogous situation, consider a
husky dog taking a walk in the snow. The dog
walks one mile north, instantly turns around
and walks half a mile south, instantly turns
around and walks a quarter of a mile north. 
. . . When the dog stops, we know it is 2/3
mile north of where it started, but we can’t say
which direction it is facing! According to
Nick Hobson, the dog’s final position is 
1 – 1/2 + 1/4 – 1/8 + . . . miles north of its
starting point—considering the direction
north as positive and south as negative. The
sum to infinity of a geometric series with ini-
tial term a and common ratio r is a/(1 – r) if
|r | < 1. (If |r | ≥ 1, the sum to infinity is not
defined.) Our dog series has a = 1 and 
r = –1/2. So its sum is 1/(1 + 1/2) = 2/3.

6.12 Infinite gift. The volumes of the cubes
that form the gift are part of this series:

For example, if our units of measurement are
feet, the first box would have a volume of one
cubic foot, and the next box would have a vol-
ume of about 0.35 cubic feet. This series con-
verges. The total volume of the gift is finite,
but the surface area is infinite! Of course, an
infinite object such as this cannot truly be

1
1

2 2

1

3 3

1

4 4

1
+ + + + + +. . . . . .

n n
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constructed because the boxes would eventu-
ally become smaller than an atom, but this 
is a wonderful example of a wide class of
mathematical objects the members of which
have finite volumes but infinite surface areas.
By summing the series on a computer, we 
find that the series converges to a value of
around 2.61.

6.13 Large number contest. Here is the answer
for the first part of the contest:

This number is roughly 3 raised to the nth

power, where n has about 6,990 digits. Recall
that a number raised to a negative power is
simply 1 over the number raised to the posi-
tive value of the power. To determine the
number of digits in a number, you simply take
the log of the number and add 1.

The number of cubic inches in the whole
volume of space comprising the observable
universe is almost negligible compared to 
this quantity.

I am not certain about the answer to the
second part of the contest. Here are some
attempts by friends who answered the ques-
tion that I posed in my discussion group:

. . .(. ) ( )(. )3 3 33 3 32 5 5 101 4 10000 6989− ×− −

= or
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which has + 1 digits (Jon Anderson)

= , which has + 1 digits (Bill Olsen)

, which has an amazing + 1 digits (Bill Olsen)10101010100000

. . . .

1 1 1 1 100000
− − − −

101010
100

10101010100

101010 1 100. −

10101010

1010101010



I’ve compiled the following list, which identifies much of the material I
used to research and write this book. It includes information culled from
books, journals, and Web sites. As many readers are aware, Internet Web
sites come and go. Sometimes they change addresses or completely dis-
appear. The Web site addresses listed here provided valuable background
information when this book was written. You can, of course, find numer-
ous other Web sites that relate to the mathematical curiosities by using
Web search tools, such as the ones provided at www.google.com.

If I have overlooked an interesting mathematical puzzle, person, refer-
ence, or factoid that you feel has never been fully appreciated, please let
me know about it. Visit my Web site, www.pickover.com, and send me an 
e-mail explaining the idea and how you feel it influenced the mathemati-
cal world.

Beeler, Michael, William Gosper, and Rich Schroeppel. HAKMEM. MIT
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Berndt, Bruce. Ramanujan’s Notebooks. 2 vols. New York: Springer,
1985.

Borwein, J., and P. Borwein. “Strange Series and High Precision Fraud.”
The American Mathematical Monthly 99, no. 7 (August–September
1992): 622–40.
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