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Preface

The two fields of Geometric Modeling and Algebraic Geometry, though closely re-
lated, are traditionally represented by two almost disjoint scientific communities.
Both fields deal with objects defined by algebraic equations, but the objects are
studied in different ways. While algebraic geometry has developed impressive re-
sults for understanding the theoretical nature of these objects, geometric modeling
focuses on practical applications of virtual shapes defined by algebraic equations.
Recently, however, interaction between the two fields has stimulated new research.
For instance, algorithms for solving intersection problems have benefited from con-
tributions from the algebraic side.

The workshop series on Algebraic Geometry and Geometric Modeling (Vilnius
20021, Nice 20042) and on Computational Methods for Algebraic Spline Surfaces
(Kefermarkt 20033, Oslo 2005) have provided a forum for the interaction between
the two fields. The present volume presents revised papers which have grown out of
the 2005 Oslo workshop, which was aligned with the final review of the European
project GAIA II, entitled Intersection algorithms for geometry based IT-applications
using approximate algebraic methods (IST 2001-35512)4.

It consists of 12 chapters, which are organized in 3 parts. The first part describes
the aims and the results of the GAIA II project. Part 2 consists of 5 chapters covering
results about special algebraic surfaces, such as Steiner surfaces, surfaces with many
real singularities, monoid hypersurfaces, canal surfaces, and tensor-product surfaces
of bidegree (1,2). The third part describes various algorithms for geometric comput-
ing. This includes chapters on parameterization, computation and analysis of ridges
and umbilical points, surface-surface intersections, topology analysis and approxi-
mate implicitization.
1 R. Goldman and R. Krasauskas, Topics in Algebraic Geometry and Geometric Modeling,

Contemporary Mathematics, American Mathematical Society 2003.
2 M. Elkadi, B. Mourrain and R. Piene, Algebraic Geometry and Geometric Modeling,

Springer 2006.
3 T. Dokken and B. Jüttler, Computational Methods for Algebraic Spline Surfaces, Springer

2005.
4 http://www.sintef.no/IST GAIA
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The European project GAIA II entitled Intersection algorithms for geometry
based IT-applications using approximate algebraic methods (IST 2001-35512) in-
volved six academic and industrial partners from five countries. The project aimed at
combining knowledge from Computer Aided Geometric Design, classical algebraic
geometry and real symbolic computation in order to improve intersection algorithms
for Computer Aided Design systems. The project has has produced more than 50
scientific publications and several software toolkits, which are now partly available
under the GNU GPL license.

We invited the coordinator of the project, Tor Dokken, to present a survey de-
scribing the background, the methods, the results and the achievements of the GAIA
project. His summary is the first part of this volume.
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The GAIA Project on Intersection and Implicitization

Tor Dokken

SINTEF ICT, Department of Mathematics
tor.dokken@sintef.no

Summary. In the GAIA-project we have combined knowledge from Computer Aided Geo-
metric Design (CAGD), classical algebraic geometry and real symbolic computing to improve
intersection algorithms for Computer Aided Design (CAD) systems. The focus has been on:

• Singular and near singular intersections of surfaces, where the surfaces are parallel or near
parallel along segments of the intersection curves.

• Self-intersection of surfaces to facilitate trimming of self-intersecting surfaces.

The project has published more than 50 papers. Software toolkits from the project are available
for downloading under the GNU GPL license.

1.1 Introduction

In the GAIA project we have combined knowledge from Computer Aided Geomet-
ric Design (CAGD), classical algebraic geometry and real symbolic computing to
improve intersection algorithms for CAD-type systems. The calculation of the inter-
section between curves or surfaces can seem mathematically simple. This is true for
the intersection of e.g. two straight lines when they intersect transversally and closed
expressions for finding the intersection are used. However, if floating point arithmetic
is used, care has to be taken to properly handle situations when the lines are parallel
or near parallel. The intersection of two bi-cubic parametric surfaces can be reduced
to finding the real zero set of a polynomial equation f(s, t) = 0 of bi-degree (54,54),
which by itself is a challenging problem. In industrial systems floating point arith-
metic is used, thus introducing rounding errors. In CAD system there are tolerances
defining when two points are to be regarded as the same point. This has also to be
taken into consideration in CAD-related intersection algorithms. The consequence
of low quality intersection algorithms in CAD-systems is low quality CAD-models.
Low quality CAD-models impose high costs on the product creation processes in
industry.

The objectives of the GAIA project were related both to the scientific and tech-
nological aspects:
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• To establish the theoretical foundation for a new generation of methods for inter-
section and self-intersection calculation of 3D CAD-type sculptured surfaces by
introducing approximate algebraic methods and qualitative geometric descrip-
tions.

• To demonstrate through software prototypes the feasibility of the approach.
• To investigate other uses of the approximate algebraic methods developed for

extending functionality in modeling and interrogation of 3D geometries.
• To demonstrate that cooperation between mathematical domains such as approxi-

mation theory, classical algebraic geometry and computer aided geometric design
is an important part of improving mathematical based technology on computers.

• To interact with CAD systems developers to improve both friendly use and ro-
bustness of future CAD systems.

To address these objectives the project activities have been structured in four
main work areas, where each partner has had one or two work areas as their main
focus:

• Classification, where we have used the tools and knowledge of classical alge-
braic geometry to better understand singularities, see Section 1.5.

• Implicitization, where we have looked into resultants and approximate impliciti-
zation to better find exact and approximate implicit representations of parametric
surfaces, see Section 1.6.

• Intersection, where we have looked into algebraic intersection methods, com-
bined numeric and algebraic intersection algorithms, and combined recursive and
approximate implicit intersection methods, see Section 1.7.

• Applications, where we have searched for other problem domains where the ap-
proach of approximate implicitization can be used for better solving challenging
problems related to systems of polynomial equations, see Section 1.8.

In addition to the topics above we will in this paper also address:

• Project background and partners in Section 1.2.
• Why CAD-type intersection is still a challenge in industry in Section 1.3.
• The algorithmic challenges of CAD type intersections in Section 1.4.
• The potential impact of the GAIA project in section 1.9.

The list of references at the end of this paper is a bibliography of papers related to the
GAIA-project published by the project partners during and after the GAIA-project.

1.2 Project background and facts

The Ph.D. dissertation Aspects of Intersection Algorithms [16] from 1997 established
close dialogue between the Department of Applied Mathematics at SINTEF ICT in
Oslo, and the algebraic geometry group in the Department of Mathematics, Uni-
versity of Oslo. Gradually the idea of establishing a closer cooperation with other
European groups matured, and the algebraic geometry group at the University of Nice
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Sophia Antipolis in France was contacted. An application for an IST FET Open As-
sessment project was made also including the CAD-company think3. The proposal
was successful, and in October 2000 the project IST 1999-290010 – GAIA – Applica-
tion of approximate algebraic geometry in industrial computer aided geometry was
started.

The final review of the assessment project in October 2001 was successful, and
the project consortium was invited to propose a full FET-Open Project. Also this
proposal was successful, and July 1st 2002 the project IST-2001-35512 – GAIA II –
Intersection algorithms for geometry based IT-applications using approximate alge-
braic methods started. The full project ended on September 30th 2005. The budgets
of the phases of project have been:

• GAIA assessment phase: Budget: 175 000 EURO, with financial contribution
from the European Union of 100 000 EURO.

• GAIA II project phase: Budget: 2 300 000 EURO, with financial contribution
from the European Union of 1 500 000 EURO.

Among the project partners we find one CAD-company, one industrial research
institute, and four university groups:

• SINTEF ICT, Department of Applied Mathematics, Norway, has been the
project coordinator, and focused on work within approximate implicitization,
recursive intersection algorithms and recursive self-intersection algorithms. For
more information on SINTEF see: http://www.sintef.no/math/.

• think3 SPA, Italy and France, is a CAD-system developer, and had as their
main role to supply industrial level examples of challenging CAD-intersection
and self-intersections, to integrate developed intersection algorithms into a pro-
totype version of their system thinkdesign, and finally to test and assess the pro-
totype algorithms developed in the project. For more information on think3 see:
http://www.think3.com/.

• University of Nice Sophia Antipolis (UNSA), France, developed in close co-
operation with INRIA exact intersection algorithms and a triangulation based
reference method for surface intersection and self-intersection. For more infor-
mation on UNSA and INRIA see: http://www-sop.inria.fr/galaad/.

• University of Cantabria, Spain, worked on combined numeric and exact inter-
section algorithms. For more information see: http://www.unican.es/.

• Johannes Kepler University, Austria, focused on new approaches to approxi-
mate implicitization and testing of approximate implicitization algorithms. For
more information on this partner see: http://www.ag.jku.at/.

• University of Oslo, Norway, has focused on classification of algebraic curves
and surfaces and their singularities. For more information on the University of
Oslo see: http://www.cma.uio.no/.

Based on state-of-the-art reports, research reports and software prototypes we
have tried to establish a common mathematical understanding of different approaches
and tools. As the project partners come from an axis spanning from fairly theoretical
classical algebraic geometry to computer aided geometric design and CAD-system
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developers, a major focus has been on bridging the language and knowledge gaps
between the different mathematical groups involved. All groups have had to invest
time into better understanding the traditional approaches of the other groups.

1.3 Why are CAD-type intersections still a problem for industry?

1.3.1 CAD technology evolution hampered by standardization

In the Workshop on Mathematical Foundations of CAD (Mathematical Sciences Re-
search Institute, Berkeley, CA. June 4-5, 1999) the consensus was that: The single
greatest cause of poor reliability of CAD systems is lack of topologically consistent
surface intersection algorithms. Tom Peters, Computer Science and Engineering,
The University of Connecticut, estimated the cost to be $1 Billion/year. For more in-
formation consult SIAM News, Volume 32, Number 5, June 1999, Closing the Gap
Between CAD Model and Downstream Application, http://www.siam.org/siamnews/
06-99/cadmodel.htm. Too low quality of CAD-intersection forces the industry to re-
sort to expensive workarounds and redesigns to develop new products.

CAD-systems play a central role in most producing industries. The investment in
CAD-model representation of current industrial products is enormous. CAD-models
are important in all stages of the product life-cycle, some products have a short life-
time, while other products are expected to last at least for one decade. Consequently
backward compatibility of CAD-systems with respect to functionality and the abil-
ity to handle “old” CAD-models is extremely important to the industry. Transfer of
CAD-models between systems from different CAD-system vendors is essential to
support a flexible product creation value chain. In the late 1980s the development of
the STEP standard (ISO 10303) Product Data Representation and Exchange started
with the aim to support backward compatibility of CAD-models and CAD-model ex-
change. STEP is now an important component in all CAD-systems and has been an
important component in the globalization of design and production. However, STEP
standardized the geometry processing technology of the 1980s, and the problems
associated with that generation of technology. Due to the CAD-model legacy (the
huge bulk of existing CAD-models) upgraded CAD-technology has to handle exist-
ing models to protect the resources already invested in CAD-models. Consequently
the CAD-customers and CAD-vendors are conservative, and new technology has to
be backward compliant. Improved intersection algorithms have thus to be compliant
with STEP representation of geometry and the traditional approach to CAD coming
from the late 1980s. For research within CAD-type intersection algorithms to be of
interest to producing industries and CAD-vendors backward compatibility and the
legacy of existing CAD-models have not to be forgotten.

1.4 Challenges of CAD-type intersections

If the faces of a CAD-represented volume are all planar, then it is fairly straight-
forward to represent the curves describing the edges with minimal rounding error.
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However, if the faces are sculptured surfaces, e.g., bicubic NURBS - NonUniform
Rational B-splines, the edges will in general be free form space curves with no sim-
ple closed mathematical description. As the tradition (and standard) within CAD is
to represent such curves as NURBS curves, approximation of edge geometry with
NURBS curves is necessary. For more information on the challenges of CAD-type
intersections consult [54].

When designing within a CAD-system, point equality tolerances are defined that
determine when two points should be regarded as the same. A typical value for such
tolerances is 10−3mm, however, some systems use tolerances as small as 10−6mm.
The smaller this tolerance is, the higher the quality of the CAD-model will be. Ap-
proximating the edge geometry with e.g., cubic spline interpolation that has fourth
order convergence using a tolerance of 10−6 instead 10−3 will typically increase the
amount of data necessary for representing the edge approximation by a factor be-
tween 5 and 6. Often the spatial extent of the CAD-models is around 1 meter. Using
an approximation tolerance of 10−3mm is thus an error of 10−6 relative to the spatial
extent of the model.

The intersection functionality of a CAD-system must be able to recognise the
topology of a model in the system. This implies that intersections between two faces
that are limited by the same edge must be found. The complexity of finding an inter-
section depends on relative behaviour of the surfaces intersected along the intersec-
tion curve:

• Transversal intersections are intersection curves where the normals of the two
surfaces intersected are well separated along the intersection curve. It is fairly
simple to identify and localise the branches of the intersection when we only
have transversal intersection.

• Singular and near singular intersections take place when the normals of the
two surfaces intersected are parallel or near parallel in single points or along in-
tervals of an intersection curve. In these cases the identification of the intersection
branches is a major challenge.

Figures 1.1 and 1.2 respectively show transversal and near-singular intersection
situations. In Figure 1.1 there is one unique intersection curve. The two surfaces in
Figure 1.2 do not really intersect, there is a distance of 10−7 between the surfaces,
but they are expected to be regarded as intersecting. To be able to find this curve,
the point equality tolerance of the CAD-system must be considered. The intersection
problem then becomes: Given two sculptured surface f(u, v) and g(s, t), find all
points where |f(u, v)− g(s, t)| < ε where ε is the point equality tolerance.

1.4.1 The algebraic complexity of intersections

The simplest example of an intersection of two curves in IR2 is the intersection of
two straight lines. Let two straight lines be given:

• A straight line represented as a parametric curve
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Fig. 1.1. Transversal intersection between two sculptured surfaces

Fig. 1.2. Tangential intersection between two surfaces

p(t) = P0 + tT0, t ∈ IR,

with P0 a point on the line and T0 the tangent direction of the line.
• A straight line represented as an implicit equation

q(x, y) = ((x, y)−P1) ·N1 = 0, (x, y) ∈ IR2,

with P1 a point on the line, and N1 the normal of the line.
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Combining the parametric and implicit representation the intersection is de-
scribed by q(p(t)) = 0, a linear equation in the variable t. Using exact arithmetic it
is easy to classify the solution as:

• An empty set, if the lines are parallel.
• The whole line, if the lines coincide.
• One point, if lines are non-parallel.

Next we look at the intersection of two rational parametric curves of degree n
and d, respectively. From algebraic geometry it is known that a rational parametric
curve of degree d is contained in an implicit parametric curve of total degree d, see
[27].

• The first curve is described as a rational parametric curve

p(t) =
pntn + pd−1t

n−1 + . . . + p0

hntn + hn−1tn−1 + . . . + h0
.

• The second curve is described as an implicit curve of total degree d

q(x, y) =
d∑

i=0

d−i∑
j=0

ci,jx
iyj = 0.

By combining the parametric and implicit representations, the intersection is de-
scribed by q(p(t)) = 0. This is a degree n × d equation in the variable t. As even
the general quintic equation cannot be solved algebraically, a closed expression for
the zeros of q(p(t)) can in general only be given for n× d ≤ 4. Thus, in general, the
intersection of two rational cubic curves cannot be found as a closed expression. In
CAD-systems we are not interested in the whole infinite curve, but only a bounded
portion of the curve. So approaches and representations that can help us to limit the
extent of the curves and the number of possible intersections will be advantageous.

We now turn to intersections of two surfaces. Let p(s, t) be a rational tensor
product surface of bi-degree (n1, n2),

p(s, t) =

n1∑
i=0

n2∑
j=0

pi,js
itj

n1∑
i=0

n2∑
j=0

hi,jsitj

.

From algebraic geometry it is known that the implicit representation of p(s, t) has
total algebraic degree d = 2n1n2. The number of monomials in a polynomial of total
degree d in 3 variables is

(
d+3
3

)
= (d+1)(d+2)(d+3)

6 . So a bicubic rational surface has
an implicit equation of total degree 18. This has 1330 monomials with corresponding
coefficients.

Using this fact we can look at the complexity of the intersection of two rational
bicubic surfaces p1(u, v) and p2(s, t). Assume that we know the implicit equation
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q2(x, y, z) = 0 of p2(s, t). Combining the parametric description of p1(u, v) and
the implicit representation q2(x, y, z) = 0 of p2(s, t), we get q2(p1(u, v)) = 0. This
is a tensor product polynomial of bi-degree (54, 54). The intersection of two bicubic
patches is converted to finding the zero of

q2(p1(u, v)) =
54∑

i=0

54∑
j=0

ci,ju
ivj = 0.

This polynomial has 55 × 55 = 3025 monomials with corresponding coefficients,
describing an algebraic curve of total degree 108. This illustrates that the intersection
of seemingly simple surfaces can results in a very complex intersection topology. As
in the case of curves, the surfaces we consider in CAGD are bounded, and we are
interested in the solution only in a limited interval (u, v) ∈ [a, b]× [c, d].

1.5 Extend the use of algebraic geometry within CAD

The work within the GAIA project related to algebraic geometry and CAD has ad-
dressed three main topics:

• Resultants are one of the traditional methods for exact implicitization of rational
parametric curves and surfaces. GAIA has produced some new results within this
classical research area.

• Singularities in algebraic curves and surfaces are for understanding their geom-
etry and topology.

• Classification is an old tradition in the field of Algebraic Geometry. It is a natural
starting point when trying to understand the geometry of algebraic objects.

Papers on CAGD and algebraic methods from the project are [8, 9, 32, 33, 34, 35,
41, 42, 44, 48, 49, 57].

1.5.1 Resultants

The objective has been to develop tools for constructing, manipulating and exploit-
ing implicit representations for parametric curves and surfaces based on resultant
computations. The work in GAIA has been divided into three parts:

• A survey in four parts addressing:
1. A resultant approach to detecting intersecting curves in P 3.
2. Implicitizing rational hypersurfaces using approximation complexes.
3. Using projection operators in Computer Aided Design.
4. The method of moving surfaces for the implicitization of rational parametric

surface in P 3.
• A report addressing sparse/toric resultant, results when the number of monomials

is small compared to the number of possible monomials for polynomial of the
degree in question.



1 The GAIA Project 13

• Development of prototypes of tools for constructing, manipulating and exploiting
implicit representations for parametric curves and surfaces based on resultant
computations.

One paper from the project addressing resultants is [7].

1.5.2 Singularities

Understanding the singularities of algebraic curves and surfaces is important for un-
derstanding the geometry of these curves and surfaces. A difficult problem in CAGD
is the handling of self-intersections, and the theory of singularities of algebraic va-
rieties is potentially a tool for handling this problem. In the GAIA project special
emphasis has been put on detecting and locating singularities appearing on parame-
terized and implicitly given curves and surfaces of low degree.

• The presence of singularities affects the geometry of complex and real projective
hypersurfaces and of their complements. We have illustrated the general princi-
ples and the main results by many explicit examples involving curves and sur-
faces.

• We have classified and analyzed the singularities of a surface patch given by a
parameterization in order to proceed to an early detection. We distinguish alge-
braically defined surface patches and procedural surfaces given by evaluation of
a program. Also we distinguish between singularities which can be detected by a
local analysis of the parameterization and those which require a global analysis,
and are more difficult to achieve.

• The detection of singularities is a critical ingredient of many geometrical prob-
lems, in particular in intersection operations. Once these critical points are
located, one can for instance safely use numerical methods to follow curve
branches. Detecting a singularity in a domain may also help in combining several
types of methods.

A paper addressing singularities from the project is [48].

1.5.3 Classification

To use algebraic curves and surfaces in CAGD one needs to know about their
shape: topology, singularities, self-intersections, etc. Most of this kind of classifica-
tion theory is performed for algebraic curves and surfaces defined over the complex
numbers, i.e., one considers complex (instead of only real) solutions to polynomial
equations in two or three variables (or in three or four homogeneous variables, if
the curves and surfaces are considered in projective space). Complete classification
results exist only for low degree varieties (implicit curves and surfaces) and mostly
only in the complex case. A simple example, the classification of conic sections, il-
lustrates well that the classification over the real numbers is much more complicated
than over the complex numbers.
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We have collected known results about such classifications, especially concern-
ing results for real curves and surfaces of low degree. Of particular interest in CAGD
are parameterizable (i.e. so-called rational) curves and surfaces, and we have made
explicit studies of various such objects. These objects, or patches of these objects, are
potential candidates for approximate implicitization problems. For example, when
the rough shape of a patch to be approximated is known, one can choose from a
“catalogue” what kind of parameterized patch that is suitable - this eliminates many
unknowns in the process of finding an equation for the approximating object and
will therefore speed up the application. In addition to the survey of known results,
particular objects that have been studied are:

• monoid curves and surfaces, especially quartic monoid surfaces
• tangent developables
• triangle and tensor surfaces of low degree of low (bi)degrees

Papers from the project addressing classification are [41, 42].

1.6 Exact and approximate implicitization

In CAD-type algorithms, combining parametric and algebraic representation of sur-
faces is in many algorithms advantageous. However, for surfaces of algebraic degree
higher than two this is in general a very challenging task. E.g., a rational bi-cubic
surface has algebraic degree 18. All rational surfaces have an algebraic representa-
tion. However, for surfaces of total degree higher than 3, not all algebraic surfaces
will have a rational parametric representation. In the project we have the following
two main approaches for change of representation.

1.6.1 Exact implicitization of rational parametric surfaces

General resultant techniques, but also specialized methods have been reviewed or
developed in the GAIA II project to address the implicitization process:

• Projective, as well as anisotropic, resultants when the polynomials f0, . . . , f3

have no base points.
• Residual resultants when the polynomials have base points which are known and

have special properties.
• Determinants of the so-called approximation complexes which give an implicit

equation of the image of the polynomials as soon as the base points are locally
defined by at most two equations.

Papers from the project addressing topics of exact implicitization are [6, 23, 24, 27,
47].
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Approach Comment Addressed in GAIA II
Triangulation Will both miss branches and pro-

duce false branches
See section 1.7.1 on the Reference
Method

Lattice
evaluation

Will miss branches Used in many CAD-systems.
Not addressed in GAIA II

Recursive Guarantees topology within speci-
fied tolerances

See section 1.7.2 addressing the com-
bination of recursion and approximate
implicitization

Exact Guarantees topology however will
not always work

The AXEL library see Section 1.7.3

Combined
exact &
numeric

Guarantees topology however will
not always work, faster than the ex-
act methods

Uses Sturm Harbicht sequences for
topology of algebraic curves, see Sec-
tion 1.7.4

Table 1.1. Different CAD-intersection methods and their properties.

1.6.2 Approximate implicitization of rational parametric surfaces

Two main approaches have been pursued in the project.

• Approximate implicitization by factorization is a numerically stable method
that reformulates implicitization to finding the smaller singular values of a ma-
trix of real numbers. See one of [17, 21] for an introduction. The approach can
be used as an exact implicitization method if the proper degree is chosen for the
unknown implicit and exact arithmetic is used. The approach has high conver-
gence rates and is numerical stable. Strategies for selecting solutions with a de-
sired gradient behavior are supplied, either for encouraging vanishing gradients
or avoiding vanishing gradients. The approach works both for rational paramet-
ric curves and surfaces, and for procedural surfaces. Experiments with piecewise
algebraic curves and surfaces have produced implicit curves and surfaces that
have more vanishing gradients than is desirable. We have experienced that esti-
mating gradients will improve this situation. We have established a connection
between the original approach to approximate implicitization, and a numerical
integration based method that can also be used for procedural surfaces, and a
sampling/interpolation based approach [22].

• Approximate implicitization by point sampling and normal estimates is con-
structive in nature as it estimates gradients of the implicit representation to ensure
that gradients do not vanish when not desired [1, 2, 3, 11, 13, 36, 37, 38, 40, 50,
51, 52]. The approach produce good implicit curves and surfaces and the problem
of vanish gradients in not desired regions is minimal. The method works well for
approximation by piecewise implicit curves and surfaces.

The work within GAIA has illustrated the feasibility of approximate implicitiza-
tion, established both new methods on approximate implicitization with respect to
theory and practical use of approximate implicitization. It has also been important to
compare the different approaches to approximate implicitization [59].
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1.7 Intersection algorithms

In the GAIA II project phase the work on the reference method, see 1.7.1, continued
from the assessment phase was completed. Further a completely new recursive in-
tersection code has been developed addressing industrial CAD-type problems. Two
more research oriented intersection codes have been developed: A pure symbolic
code and a combined symbolic numeric code. See Table 1.1 for a short overview.

1.7.1 The reference method

The reference method is based on intersecting triangulations that approximate sur-
faces. This can be used for getting a fast impression of the possible existence of
intersection or self-intersections. However, as the approach is sampling based, there
is no guarantee that all intersections are found, the triangulations intersected can
easily produce an incorrect topology of the intersection in near singular and singular
cases, and even false intersection branches might be found. The development of the
reference method has been important to allow think3 to develop the new user inter-
faces, and experiment with these before the software from the combined recursive
and approximate implicit intersection code was available in its first versions.

1.7.2 Combined recursive and approximate implicitization intersection
method

The combined recursive and approximate implicitization intersection was an ex-
tremely ambitious implementation task, the challenges of the implementation and
approach is discussed in [20]. The ambition has been to address the very complex
singular and near singular intersections. The aim was also Open Source distribution.
Consequently a completely new intersection kernel had to be developed to ensure
that we do not have any copyright problems. A major challenge with respect to self-
intersections is the complexity of cusp curves intersecting self-intersection curves.
The traditional approaches for recursive subdivision based intersection algorithms
do not work properly in these cases. Thus when starting to test the code we entered
unknown territory. By the end of GAIA II we could demonstrate that the approach
works, but the stability of the toolkit was not at an industrial level. However, stabi-
lization work on the code has continued after the GAIA II project.

Recursive intersection codes traditionally use Sinha’s theorem that states that for
a closed intersection loop to exist in the intersection of two surfaces then the nor-
mal fields of the surfaces have to overlap inside the loop. Consequently if there is
no overlap of the normal fields of two surfaces they can not intersect in a closed
loop. However, in singular intersections normal fields will overlap. In near singular
intersections even deep levels of subdivision often do not separate the normal fields.
In the GAIA II program code we have used approximate implicitization for sepa-
rating the spatial extent of the surfaces, and for analyzing the possibilities of closed
intersection loops by combining an approximate implicitization of one surface with
the parametric representation of the other surface. This is a very efficient tool when
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NURBS surfaces approximating low degree algebraic surfaces are intersected. Such
approximating NURBS surfaces are frequently bi-cubic and are thus much more
challenging to intersect that the algebraic surfaces they approximate. Approximate
implicitization is used to find the approximate algebraic degree of the surfaces, and
consequently simplifies the intersection problem significantly.

The high-level reference documentation of the software has already been pro-
duced in doxygen and is available on the web. Other papers on numeric intersection
algorithms from the project are [5, 14, 54, 55, 56].

1.7.3 Algebraic methods

The problems encountered in CAGD are sometimes reminiscent of 19th century
problems. At that time, realizing the difficulties one had working in affine instead of
projective space, and over the real numbers instead of the complex numbers one soon
shifted the theoretical work towards projective geometry over the complex numbers.
In fact, it is still in this situation that the modern intersection theory from algebraic
geometry works best:

• Bisection through a Multidimensional Sturm Theorem. A variant of the clas-
sical Sturm sequence is presented for computing the number of real solutions of
a polynomial system of equations inside a prescribed box. The advantage of this
technique is based on the possibility of being used to derive bisection algorithms
towards the isolation of the searched real solutions.

• Algorithms for exact intersection. Algorithms using Sturm–Habicht based
methods have been implemented and are available at Axel - Algebraic Software
Components for gEometric modeLing.

Papers on exact intersection methods from the project are [15, 30].

1.7.4 Combined algebraic numeric methods

The approach for the combined methods is to combine the rational parametric de-
scription of one surface p1(s, t), with the algebraic representation of the other sur-
face q2(x, y, z) = 0. Thus the problem is converted to a problem of finding the
topology of an algebraic curve q2(p1(s, t)) = 0 in the parameterization of the first
surface:

• A limited number of critical points. The approach is based on finding critical
point, points where either∇f(s, t) = 0 or ∂f(s, t)/∂s = 0. For any value in the
first parameter direction of f(s, t) there will be a limited number of such critical
points. There is also a finite number of rotations of f(s, t) that will have more
than one critical point. f(s, t) is rotated to ensure that for a given value there will
be only one critical point.

• Projection to first parameter direction. The problem is project to a polynomial
in the first parameter variable of f(s, t) by computing the discriminant R(s)
of f(s, t) with respect to t, and finding the real root of R(s), α1, . . . , αr.. The
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Sturm-Habicht sequences here supply an exact number of real roots in the inter-
val of interest.

• Finding values in the second parameter direction.Then for each αi i =
1, . . . , r we compute the real roots of f(αi, t), βi,j , j = 1, . . . , si,. For every
αi and βi,j compute the number of half branches to the right and left of the point
(αi, βi,j).

• Reconstruction of topology of the algebraic curve. From the above information
the topology of the algebraic curve in the domain of interest can be constructed.

Papers on this approach in the project are [4, 10, 28, 29, 31].
To ensure the approach to work the root computation has to use extended preci-

sion to ensure that we reproduce the number of roots predicted by the Sturm-Habicht
sequences. The algorithms have been developed using symbolic packages.

1.8 New applications of the approach of approximate
implicitization

A number of different applications of approximated implicitization are addressed in
the subsections following.

1.8.1 Closest point foot point calculations

Inspired by approximate implicitization this problem has been addressed by mod-
eling moving surfaces normal to the surface and intersecting in constant parameter
lines [57]. The set up of the problems follows the ideas of approximate impliciti-
zation; singular value decomposition is used to find the coefficients of the moving
surfaces. By inserting the coordinates of a point into such a moving surface a poly-
nomial equation in one variable results. The zeros of this identify constant parameter
lines with a foot point. Further a theory addressing the algebraic and parametric de-
gree of the moving surface is established.

1.8.2 Constraint solving

Multiple constraints described by parametric curves, surfaces or hypersurfaces over
a domain used for optimization can be modeled using approximate implicitization as
a piecewise algebraic curve, or surface, or hypersurface. Thus a very compact way
of modeling constraints has been identified.

1.8.3 Robotics

Within robotics we have identified a number of uses. We have experimented with
checking for self-intersection of robot tracks. CAD-surfaces used in robot planning
can check for self-intersections by the GAIA tools. The control of advanced robots
can be expressed as systems of polynomial equations. To solve such equations the



1 The GAIA Project 19

approaches of GAIA II for finding intersection and self-intersection e.g. using recur-
sive subdivision and the Bernstein basis are natural extensions of the GAIA work.
However, except for the exact methods developed, not much of the code generated
in GAIA II can be directly used.

1.8.4 Micro and nano technology

We followed the suggestion by the reviewers at the second review (June 2004) to
look at micro and nano technology and go to the DATE 2005 exhibition in Munich.
Before this exhibition we tried to understand what the actual needs within nano and
micro technology were. This proved to be a big challenge. Within SINTEF we both
have a micro/nano technology laboratory and people doing ASIC design. First ad-
dressing those running the laboratory we realized that the laboratory was oriented to-
wards production processes and could not answer our questions. Approaching ACIS
designers was more successful. With the current level of circuit miniaturization, the
actual geometry of the circuits due to etching starts to be more important. In the fine
detail corners are not sharp, they are round. Thus to take the actual geometry of the
circuits into consideration for simulation seems to be critical in micro and nano tech-
nology. During our presentation at the University boot of DATE we established two
areas where the GAIA II approach can be used:

• Solution of systems of equations describing the properties of integrated circuits.
• Description of the detailed shape of circuits using piecewise algebraic surfaces.

However, within micro and nano technology there are already groups of math-
ematicians. To be able to address this area we have to establish a common meeting
place, such as a series of workshops may be as a strategic support action in the 7th
framework program.

1.9 Potential impact of the GAIA project

The development of mathematics for CAD has been stagnating since the standard-
ization of CAD-representation in the start of the 1990s, and as the mathematicians
addressing CAD-challenges got fewer. The CAD-vendors have merged to a handful
of dominant world wide CAD-systems. As large user groups do not need handling
of complex surface geometries, the problems of industries in need of improvements
or improved algorithms have been given low priority by the vendors.

1.9.1 Bottleneck before GAIA II: Only rudimentary self-intersection
algorithms

Advance shaped products are to a large extent built by structures of sculptured sur-
faces. The designers like smooth transitions, and love the shape behavior close to
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Fig. 1.3. Example from the partner think3 of self-intersection detection and repair integrated
into thinkdesign.

surface singularities. However, such shapes often challenge the CAD-systems math-
ematical basis, especially with respect to surfaces intersecting in a singular or near
singular way and surface self-intersections.

Only rudimentary self-intersection software existed in CAD-systems before
GAIA II, e.g., rough test to determine that a surface did not contain any self-
intersection. However, no code existed for general self-intersections and finding their
topology and geometry.

1.9.2 After GAIA II: Possible to find the topology and geometric description
of self-intersections

The GAIA II project prototypes have demonstrated that it is possible to handle
singular and near singular intersections, as well as determine the topology of self-
intersections in surfaces, see Figure 1.3. However, the prototypes also demonstrate
that we are far from the ultimate perfect solution. For the GAIA II results to get
a direct impact on the worldwide CAD-industry, the vendors have to feel that they
loose market shares if the technology of GAIA is not integrated to their product. For
the GAIA II results to have a significant industrial impact CAD-vendors have to in-
troduce self-intersection algorithms and improved intersection algorithms into their
systems. A more indirect impact on the market can be done by suppling plug-ins to
major CAD-systems.

The cooperation between CAGD and Algebraic geometry has opened a new re-
search domain in between CAGD and Algebraic geometry, and shown that many
challenges within computer based geometry processing remains.

1.9.3 Future outlook: Acceleration of self-intersection algorithms by graphics
cards and multi-core algorithms

Moore’s law (from 1965) is a rule of thumb in the computer industry about the growth
of computing power over time. Attributed to Gordon E. Moore the co-founder of
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Intel, it states that the growth of computing power follows an empirical exponential
law. Moore originally proposed a 12 month doubling and, later, a 24 month period.

Until recently the evolution of the frequency of the CPU has had a close relation
to a doubling every 12, 18 or 24 month. However, in the last years multi-core CPUs
have been introduced. As long as the growth in computational power was related to
the CPU-frequency, old sequential program codes could easily profit from the growth
in computational power. However, with multi-core CPUs the code has to be prepared
for multi-core CPUs to benefit from the performance. Consequently, the era when
old sequential program codes automatically benefit from Moore’s law is coming to
an end. In the coming years reimplementation of algorithms will be necessary to
benefit significantly from Moores law.

The GAIA II results have shown significantly improvements in CAD-function-
ality, but we have also experienced that the 2005 level single-core CPUs are too slow
for efficient industrial use of the results. However, with the ongoing activity within
SINTEF on GPU-acceleration of intersection algorithms and the use of multi-core
CPUs will make accessible sufficient low cost computational resources for industrial
use of the GAIA II results. SINTEF has already started on this work [5] as stated
above, and has addressed IPR-protection by patenting.

The ideas of GAIA II should be combined with GPU-acceleration and multi-core
CPUs. There are indications that visualization and simulation will be central in FP7.
If this is the case GAIA II and the SINTEF GPU-activity can be viewed as preproject
for proposals within FP7.

1.9.4 Future outlook: More use of algebraic representations in CAD

Although we have not found as much results in traditional real algebraic geometry
as expected to be used within CAD, the work on approximate implicitization and ap-
proximate parameterization has opened a bridge between parametric and algebraic
representation that earlier did not exist. We also expect that more efficient visualiza-
tion techniques will be available for algebraic surfaces in the years coming. When
this is in place we expect a much wider use of algebraic geometry both in CAD and
in applications within petroleum and health.

1.9.5 Use of the GAIA II results by other researchers in the area

With the broad range of papers published by GAIA II project partners, most of the
research done within GAIA II is already available to other researchers in the area.
The reference list following contains papers related to the GAIA II project published
by the partners form the start of the GAIA assessment project until the publication
of this book.

Much of the most important software of GAIA II is already available or will be
available for download on the Internet as Open Source (GNU GPL License):

• AXEL library is available at http://www-sop.inria.fr/galaad/.
• Approximate implicitization is available at http://www.sintef.no/math/.
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• The combined approximate implicit and recursive intersection toolkit is planned
to be available second half of 2006 from http://www.sintef.no/math/.

Thus most of the results interesting to researchers will be available, and can be
a starting point for further research. As also software tools are/will be available re-
searchers can start directly from the GAIA II algorithms implemented and avoid
re-implementing the algorithms of GAIA II before their research starts.
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three-dimensional algebraic curves. In Computational methods for algebraic spline sur-
faces, pages 27–43. Springer, Berlin, 2005.
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The second part of this book contains chapters which describe results concerning
special algebraic surfaces. Most surfaces used in geometric modeling are algebraic
surfaces of low degree, and their geometric nature, in particular their singularities,
can be analyzed using tools from real algebraic geometry. Here we collect several
results in this direction, which are organized in five chapters.

Aries, Briand and Bruchou analyze some covariants related to Steiner surfaces,
which are the generic case of a quadratically parameterizable quartic surface, fre-
quently used in geometric modeling. More precisely, they exhibit a collection of
covariants associated to projective quadratic parameterizations of surfaces with re-
spect to the actions of linear reparameterizations and linear transformations of the
target space. Along with the covariants, the authors provide simple geometric inter-
pretations. The results are then used to generate explicit equations and inequalities
defining the orbits of projective quadratic parameterizations of quartic surfaces.

The next chapter, authored by Breske, Labs and van Straten, is devoted to real
line arrangements and surfaces with many real nodes. It is shown that Chmutov’s
construction for surfaces with many singularities can be modified so as to give sur-
faces with only real singularities. The results show that all known lower bounds for
the number of nodes can be attained with only real singularities. The paper con-
cludes with an application of the theory of real line arrangements which shows that
the arrangements used by the authors are asymptotically the best possible ones for
the purpose of constructing surfaces with many nodes. This proves a special case of
a conjecture of Chmutov.

Johansen, Løberg and Piene study properties of monoid hypersurfaces – irre-
ducible hypersurfaces of degree d with a singular point of multiplicity d − 1. Since
such surfaces admit a rational parameterization, they are of potential interest in com-
puter aided geometric design. The main results include a description of the possible
real forms of the singularities on a monoid surface other than the (d− 1)-uple point.
The results are applied to the classification of singularities on quartic monoid sur-
faces, complementing earlier work on the subject.

The chapter by Krasauskas and Zube discusses canal surfaces which are gener-
ated as the envelopes of quadratic families of spheres. These surfaces generalize the
class of Dupin cyclides, but they are more flexible as blending surfaces between nat-
ural quadrics. The authors provide a classification from the point of view of Laguerre
geometry and study rational parameterizations of minimal degree, Bézier represen-
tations, and implicit equations.

Finally Lê and Galligo present the classification of surfaces of bidegree (1,2)
over the fields of complex and real numbers. In particular, the authors study patches
of such surfaces, and they show how to detect and describe the loci in the parameter
domain – a [0, 1] × [0, 1] box – that map to selfintersections and singular points on
the surface.
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Summary. A Steiner surface is the generic case of a quadratically parameterizable quartic
surface used in geometric modeling. This paper studies quadratic parameterizations of sur-
faces under the angle of Classical Invariant Theory. Precisely, it exhibits a collection of co-
variants associated to projective quadratic parameterizations of surfaces, under the actions of
linear reparameterization and linear transformations of the target space. Each of these covari-
ants comes with a simple geometric interpretation.

As an application, some of these covariants are used to produce explicit equations and
inequalities defining the orbits of projective quadratic parameterizations of quartic surfaces.

2.1 Introduction

This paper deals with quadratically parameterizable quartic surfaces of R3, that is
surfaces of degree 4 admitting a parameterization of the form:

R2 −→ R3

(x1, x2) �−→
(

F1(x1,x2)
F0(x1,x2)

, F2(x1,x2)
F0(x1,x2)

, F3(x1,x2)
F0(x1,x2)

) (2.1)

where the Fi are polynomial functions of degree at most 2. For generic Fi’s, the
parameterized surface obtained is called a Steiner surface, see section 2.2 for the
precise definition.

Our general motivation for the study of Steiner surfaces is the following. Two
of us (Franck Aries and Claude Bruchou) are interested in mathematical modeling
of vegetation canopies (see [9] for more details). The detailed description of the ar-
chitecture of vegetation canopies is critical for the modeling of many agricultural
processes: the photosynthesis, the propagation of diseases from one organ to another
or the radiative transfer. These processes involve a big amount of computations on
geometric objects associated to each plant organ. Each geometric object can be ap-
proximated by a set of plane triangles, or more complex patches like bicubic. As
underlined in several papers of geometric modeling ([2, 7, 15]), Steiner patches are
a possibly good compromise between triangles, which need to be very many for a
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good accuracy, and the eighteen degree surfaces associated to the bicubic parameter-
ization, which raise problems of complexity. Unfortunately, one may meet singular,
or close to singular parameterizations, that make computations unreliable. Thus one
needs to know as much as possible about the geometry of the space of quadratic
parameterizations.

The study of quadratic parameterizations is eased by considering, instead of the
affine setting, the projective setting. This means considering the projective quadratic
parameterizations of surfaces, that is the quadratic rational maps from the real pro-
jective plane RP

2 to the real projective space RP
3. These maps are those of the form:

Ω ⊂ RP
2 −→ RP

3

(x0 : x1 : x2) �−→ (f0 : f1 : f2 : f3) .
(2.2)

where the fi are quadratic forms in x0, x1, x2 and Ω is a non–empty Zariski open
subset of RP

2.
The main topic of the present paper is the Invariant Theory of projective quadratic

parameterizations under linear changes of coordinates of RP
2 and RP

3. Precisely, we
provide a collection of covariants with simple geometric interpretation.

Let us give a motivating problem: the discrimination between the different kinds
of quadratic parameterizations of quartic surfaces. Let us make this precise. Con-
sider a quadratic map as in (2.2). Its image in RP

3 is not, in general, Zariski–closed.
Consider its Zariski closure, it is an algebraic surface of degree at most 4. Let U
be the set of those maps for which it is a quartic, i.e. it has degree exactly 4. Two
elements of U are considered equivalent if one is obtained from the other by a linear
reparameterization (linear change of coordinates in the domain RP

2) and a projective
transformation of the ambient space (linear change of coordinates in the codomain
RP

3). Then, as it is shown in [7] and [8], there are finitely many equivalence classes
in U . The problem is to discriminate between these equivalence classes. Algorith-
mic solutions to this problem have been given in [2] and [7]. Our paper proposes a
new solution. It consists simply in providing polynomial equations and inequalities
defining the equivalence classes3. The equivalence classes are actually orbits under
the action of some group. Thus it is natural to look for the equations and inequali-
ties among the objects provided by Classical Invariant Theory: the covariants. Then,
the aforementioned problem of discrimination between orbits of parameterizations
is solved as an application, by picking in our toolbox of covariants the most adapted
ones.

The sequel of the paper is organized as follows: Section 2.2 recalls known facts
about the classification of quadratic parameterizations of surfaces; Section 2.3 pro-
vides preliminaries on Classical Invariant Theory; Section 2.4 presents some geo-
metrical features of Steiner surfaces, that will be helpful to present our collection of
covariants; these covariants are introduced in Section 2.5; the last section, Section
3 Here is an example where the methods of [2] and [7] are not directly applicable: suppose

we are given a family of parameterizations, depending on a parameter t. Then, by mere
specialization of the general equations and inequalities defining the classes, we are able to
determine which values of t give a parameterization in a given equivalence class.
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2.6, presents the application of these covariants to the discrimination of classes of
parameterizations.

2.2 Orbits of quadratic parameterizations of quartics

A quadratic rational map from RP2 to RP3 is determined by a homogeneous
quadratic map f from R3 to R4, that can be presented as a family of four real ternary
quadratic forms:

f = (f0(x0, x1, x2), f1(x0, x1, x2), f2(x0, x1, x2), f3(x0, x1, x2)) . (2.3)

Denote with F the space of all the quadruples of real ternary quadratic forms. Then,
more precisely, quadratic rational maps from RP

2 to RP
3 can be identified with

the elements of F considered modulo scalar multiplication, i.e. the projective space
P(F). For f ∈ F , we will denote with [f ] the corresponding element of P(F).

Now the group GL(3, R) acts naturally on R3 (and RP
2), and thus on F (and

P(F)). The action on F is as follows: for θ ∈ GL(3, R),

θ(f) = f ◦ θ−1. (2.4)

The induced action on P(F) corresponds to linear reparameterizations. There is also
a natural action of the group GL(4, R) on R4 (and RP

3), and thus on F (and P(F)):
for ρ ∈ GL(4, R),

ρ(f) = ρ ◦ f. (2.5)

We have thus an action of GL(3, R)×GL(4, R) on F (and P(F)). In the sequel, we
will denote this group with G.

In P(F), the subset U of those projective parameterizations with the property that
the Zariski closure of their image4 is a surface of degree 4 exactly, is invariant under
G. It is also a Zariski dense open set. As said in the introduction, the decomposition
of U into orbits is known5; see [2, 7] and [8]. There are only six orbits. Table 2.1
provides the list of the orbits, with a representative for each.

Let us say a word about the connection between this problem and the analogous
problem in the complex setting. Denote with FC the complexification of F : that
is the space of families of four complex quadratic forms. Then P(FC) represents
the space of quadratic rational maps from the complex projective plane, CP

2 to the
complex projective three–dimensional space, CP

3. Let UC be the subset of those
parameterizations whose image is a quartic surface. Then U is the trace of UC on
P(F). This means that U = UC ∩ P(F).

Let GC = GL(3, C)×GL(4, C). This group acts naturally onFC and P(FC), and
also on UC. The classification of the orbits of P(F) under G is obtained by refining
the classification of P(FC) into orbits under GC (see [1] for a modern reference about

4 We consider the set–theoretical image, and rule out the cases when the Zariski closure of
the image is a double quadric (case 7 in Proposition 5 of [2]) or a plane counted four times.

5 The determination of the orbits outside U is a different problem. See the references in [7].
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Orbit Representative
Ii

(
2 x1x2 : 2 x0x2 : 2 x0x1 : x0

2 + x1
2 + x2

2

)
Iii

(
2 x1x2 : 2 x0x2 : 2 x0x1 : x0

2 − x2
1 + x2

2

)
Iiii

(
x0

2 + x2
1 : x2

1 + x2
2 : x0x2 : x1x2

)
IIi

(
x0

2 − x2
1 : x0x1 : x1x2 : x2

2

)
IIii

(
x0x2 − x1x2 : x0

2 : x2
1 : x2

2

)
III

(
x0

2 : x0x2 − x2
1 : x1x2 : x2

2

)
Table 2.1. Orbits of quadratic parameterizations of quartic surfaces.

this classification in the complex setting). Precisely: if O is an orbit in P(FC) under
GC, then its trace (intersection with P(F)) is a union of orbits under G. For instance,
UC decomposes in three orbits: IC, IIC and IIIC, and their respective traces on U are
Ii ∪ Iii ∪ Iiii, IIi ∪ IIii, and III.

It happens that there is one dense orbit in P(FC): that is Orbit IC. Then a complex
Steiner surface is just the image in CP

3 of a parameterization in this orbit6. It is
always a Zariski closed quartic surface. By extension, the name “Steiner surface” is
sometimes used for the set of its real points7; that is a real quartic surface, Zariski
closure of the image of a parameterization in Orbit Ii, Iii or Iiii.

2.3 Preliminaries on classical invariant theory

The objects we will introduce in Section 2.5 are polynomial covariants for the action
of G on F . We wish now to recall the general definition (we point out [11] and [12]
as modern references for Classical Invariant Theory).

Let G be a group (we will apply what follows for G = G), and let W be some
finite-dimensional G–module, that is: a vector space on which G acts linearly (we
will have W = F). Let V be another finite-dimensional G–module. A polynomial
covariant8 of W of type V is a polynomial map C from W to V , equivariant with
respect to G. This means that:

C(g(w)) = g(C(w)) ∀w ∈W, ∀g ∈ G. (2.6)

This includes the (relative) invariants, which are the polynomial functions I on W
such that for all g ∈ G, there exists some scalar c(g) such that:

I(g(w)) = c(g) · I(w) ∀w ∈W. (2.7)

6 One could, following some sources in the literature, refer to surfaces in Orbits IIC and
IIIC as “degenerate” Steiner surfaces, but we will use the term Steiner surface only for the
non–degenerate case, i.e. only for the elements of Orbit IC.

7 Nevertheless Steiner’s Roman surface properly said corresponds to the Zariski closure of
the image of a parameterization in Orbit Ii; see [7].

8 This is the modern meaning for covariant, which includes the classical notions of covari-
ants, contravariants and mixed concomitants.
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For G = G acting on W = F , a polynomial covariant for the action of G on F
is a polynomial map from F to some G–module such that

C(ρ ◦ f ◦ θ−1) = (ρ, θ) (C(f)) (2.8)

for all θ ∈ GL(3, R) and all ρ ∈ GL(4, R).
Note that the zero set of any covariant is a G–invariant set, that is a union of

orbits.
We finish this section with some remarks. The covariants for F under G are

essentially the same as those of FC under GC: the former are obtained by complex-
ification of the latter9. From a classical theorem of Invariant Theory (see [12]), we
know that the homogeneous covariants separate the orbits of P (FC) under GC: this
means that for any two orbits O1 and O2, there exists some homogeneous covariant
vanishing on O1 and not on O2, or vice–versa. On the contrary, there is no guaran-
tee in advance that we can separate the orbits of P(F) under G using equations and
inequalities involving only the covariants. We will be able to do it in Section 2.6 by
using some derived objects.

2.4 Some elements of the geometry of the Steiner surface

To each of the covariants we will introduce is attached a simple geometric object
associated to the quadratic parameterizations of the complex Steiner surface. This is,
actually, what will guide us in the construction of the covariants.

We now introduce the main features of the Steiner surface (they can be found
in [14], parag. 554a). For f ∈ F , denote with S(f) the associated complex Steiner
surface, that is the image of CP

2 under [f ]. Then:

• It is a quartic (its implicit equation has degree 4).
• Its singular locus is the union of three lines, that are double lines. They are con-

current: their intersection is the unique triple point of the Steiner surface.
• The intersection of S(f) with a tangent plane is a quartic curve that either de-

composes as the union of two conics intersecting at four points, or as a double
conic. The latter situation happens only for four tangent planes, that Salmon calls
tropes. In the former situation, one of the four intersection points is the point of
tangency; the three remaining points are the intersections of the plane with each
of three double lines.

• Each trope is tangent to the Steiner surface along a conic, called a torsal conic10.
There are thus four torsal conics.

• There is a unique quadric going through the four torsal conics. Let us call it the
Associated Quadric.

• The dual (or “reciprocal”) surface to S(f) (the surface of (CP
3)∗ that is the

Zariski closure of the set of all tangent planes to S(f)) is a cubic surface, known
as the Cayley Cubic Surface (see [14]).

9 For such issues of field of definition, see [11].
10 This is called a parabolic conic in [7].
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Also of interest are some facts connected to the quadratic parameterization [f ] (rather
than to the Steiner surface S(f) itself):

• It is defined on the whole CP
2.

• The direct image of each line of CP
2 is a conic on S(f).

• The preimage of each conic drawn on S(f) is a straight line of CP2. As a conse-
quence, the preimage of any tangent plane is a pair of lines. The lines are distinct,
unless the plane is a trope.

• The four lines obtained as preimages of the four tropes (equivalently: of the tor-
sal conics; yet equivalently: of the Associated Quadric) form a non–degenerate
quadrilateral.

• The preimage of each of the singular lines of S(f) is a straight line of CP
2.

The 3 lines obtained this way are non concurrent: they form a (non–degenerate)
triangle, that we call the Exceptional Triangle.

• The preimage of the triple point is the union of the vertices of the Exceptional
Triangle.

• The parameterization is faithful (i.e. generically injective). Precisely, it is injec-
tive on the complement of the Exceptional Triangle in CP

2.

2.5 A collection of covariants

2.5.1 Preliminaries

This section presents the new contribution of the paper: a collection of homogeneous
covariants for the action of G on F , with a simple geometric interpretation for each
of them.

Let us start with some notations. Denote the canonical basis of C3 with λ0, λ1,
λ2 and its dual basis with x0, x1, x2. Denote also the canonical basis of C4 with α0,
α1, α2, α3 and its dual basis with y0, y1, y2, y3. Given two complex vector spaces W
and V , denote with Poln(W,V ) the space of homogeneous polynomial maps from
W to V of degree n. Denote also Poln(W ) the space of polynomial homogeneous
functions of degree n over W . Otherwise stated,

Poln(W ) = Poln(W, C). (2.9)

For f = (f0, f1, f2, f3) ∈ F , denote the coefficients of fi with aij and bij , as
follows:

fi = ai0 x2
0 + ai1 x2

1 + ai2 x2
2 + 2 bi0 x1 x2 + 2 bi1 x0 x2 + 2 bi2 x0 x1. (2.10)

Each of the homogeneous covariants we will present, considered up to a scalar,
represents some geometric object associated to the parameterization [f ], according
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to its type (its space of values11). Note that the definition of this geometric object
will be valid only in the case when [f ] parameterizes a Steiner surface.

We will meet covariants of the following types:

• Type Poln(C4): such a covariant C associates to [f ] a surface in CP
3 (the zero

locus of C(f)).
• Type Poln(C3): such a covariant associates to [f ] a curve in CP

2.
• Type Poln((C4)∗): such a covariant associates to [f ] a surface in (CP

3)∗. If this
surface is decomposable, that is a union of hyperplanes of (CP

3)∗, then it also
represents a finite collection of points in CP

3 (the points corresponding to the
hyperplanes by duality).

• Type Poln((C3)∗): such a covariant associates to [f ] a curve in (CP
2)∗. If this

curve is decomposable, then it also represents a finite collection of points in CP
2.

• Type some space of functions Poln(W,V ) between spaces W , V among C3, C4

and their duals. Then the covariant associates to [f ] some family of curves or
surfaces in P(V )∗ parameterized by P(W ).

• Type C: such a homogeneous covariant is just an invariant for the group
SL(3, C)× SL(4, C). We will see that there is essentially only one invariant.

The geometric objects attached to some of the covariants we will present will be
clear from their construction; for the rest, they can be found merely by evaluating the
covariant on the representative of Orbit IC:(

2x1x2 : 2x0x2 : 2x0x1 : x0
2 + x1

2 + x2
2

)
. (2.11)

Table 2.2 recapitulates the list of covariants that will be now presented individu-
ally. The reader will find Maple procedures implementing the formulas that follow
on the web page:
http://emmanuel.jean.briand.free.fr/publications/steiner/

2.5.2 Derivation of the covariants

Here we suppose that [f ] is in IC, that is its image S(f) in CP
3 is a complex Steiner

surface.
For each covariant we indicate its type, and its degree with respect to the coeffi-

cients of the fi’s.

Tangent plane at the image of a point.

Given a generic point [x] in the parameter space CP
2, we can consider the tangent

plane to the Steiner surface S(f) at its image by [f ]. It has equation Φ1(f)(x) = 0,
where
11 Strictly speaking, the type should mention also the action of G on this space. In all the

cases we will meet, this action is a canonical action of G on the space, or its product by
some powers of the determinants of θ ∈ GL(3, R) and ρ ∈ GL(4, R). These powers are
easily determined from the degree of the covariant.
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Symbol Name Degree Type
Invariants C

∆ Discriminant 24 C

Families of objects
Φ1 Tangent plane at the image of a point 3 Pol3(C

3, (C4)∗)
Φ2 Linear plane spanned by the image of a line 3 Pol3((C

3)∗, (C4)∗)
Φ3 Correspondence line–line 4 Pol2((C

3)∗, (C3)∗)
Φ6 Preimage of a point on S(f) 10 Pol2(C

4, C3)

Associated surfaces in CP3 Poln(C4)

Φ4 Implicit Equation 12 n = 4
Φ5 Associated Quadric 6 n = 2
Φ9 Union of the Tropes 12 n = 4
Φ10 Trihedron defined by the Double Lines 21 n = 3
Φ12 Polar Plane Π of the Associated Quadric and the

Triple Point
15 n = 1

Associated surfaces in (CP3)∗ Poln((C4)∗)
Φ7 Dual surface 3 n = 3
Φ8 Triple Point 9 n = 1

Associated curves in CP2 Poln(C3)

Φ11 Exceptional Triangle 12 n = 3
Φ13 Conic preimage of Π 16 n = 2
Φ15 Quadrilateral preimage of the torsal conics 8 n = 4

Associated surfaces of (CP2)∗ Poln((C3)∗)
Φ14 Dual conic to the preimage of Π 8 n = 2

Table 2.2. List of the covariants presented in the paper.

Φ1 =
1
8

∣∣∣∣∣∣∣∣
∂0f0 ∂1f0 ∂2f0 y0

∂0f1 ∂1f1 ∂2f1 y1

∂0f2 ∂1f2 ∂2f2 y2

∂0f3 ∂1f3 ∂2f3 y3

∣∣∣∣∣∣∣∣ . (2.12)

Here ∂i stands for ∂
dxi

.
This covariant Φ1 has degree 3 and type Pol3(C

3, (C4)∗). The geometric object
associated to Φ1(f) is a parameterization of the dual surface to S(f).

Plane spanned by the image of a line.

Consider a generic line L in CP
2, given by an equation

λ(x) = λ0x0 + λ1x1 + λ2x2 = 0. (2.13)

Its image under f is a conic in CP
3, spanning a plane, that is an element of (CP

3)∗.
This plane is always a tangent plane to S(f). It admits Φ2(f)(λ) = 0 as an equation,
with
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Φ2 =
1
2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a00 a01 a02 2 b00 2 b01 2 b02 y0

a10 a11 a12 2 b10 2 b11 2 b12 y1

a20 a21 a22 2 b20 2 b21 2 b22 y2

a30 a31 a32 2 b30 2 b31 2 b32 y3

λ0 0 0 0 λ2 λ1 0
0 λ1 0 λ2 0 λ0 0
0 0 λ2 λ1 λ0 0 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
. (2.14)

Note that the lines of the matrix in the determinant correspond to the equations:

fi(x) = yi, i = 0, 1, 2, 3,
xjλ(x) = 0, j = 0, 1, 2,

(2.15)

seen as linear in x2
0, x0x1, . . .

This function Φ2 is a covariant of degree 3 of type Pol3((C
3)∗, (C4)∗). The geo-

metric object associated to Φ2(f) is a (non–proper) parameterization of the the dual
surface to S(f).

Line whose image spans the same plane.

As already mentioned, any section of S(f) by some of its tangent planes is a union
of two conics. The preimage of each is a straight line in CP

2.
Thus we have the following construction: take a generic line L drawn in CP

2,
consider its image in CP

3, this is a conic spanning a tangent plane. The preimage of
this plane is made of the original line L, plus another one, L′. The map L �→ L′ is
given by a covariant Φ3 of type Pol2((C

3)∗, (C3)∗). This covariant is defined by the
formula

Φ3 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a00 a01 a02 2 b00 2 b01 2 b02 0
a10 a11 a12 2 b10 2 b11 2 b12 0
a20 a21 a22 2 b20 2 b21 2 b22 0
a30 a31 a32 2 b30 2 b31 2 b32 0
λ0 0 0 0 λ2 λ1 x0

0 λ1 0 λ2 0 λ0 x1

0 0 λ2 λ1 λ0 0 x2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
. (2.16)

It has degree 4.

Implicit equation.

The implicit equation of S(f) can be obtained as follows. Consider Φ1(f) as a cubic
polynomial in x:

Φ1 = 
300(y)x3
0 + 
030(y)x3

1 + 
003(y)x3
2 + 3 
210(y)x2

0x1 + 3 
201(y)x2
0x2

+3 
120(y)x2
1x0 + 3 
021(y)x2

1x2 + 3 
102(y)x2
2x0 + 3 
012(y)x2

2x1

+ 6
111(y)x0x1x2.
(2.17)

Here the coefficients 
ijk are linear forms in y, depending polynomially on f . Set
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Φ4 = 63

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a00 a01 a02 b00 b01 b02 y0

a10 a11 a12 b10 b11 b12 y1

a20 a21 a22 b20 b21 b22 y2

a30 a31 a32 b30 b31 b32 y3


300 
120 
102 
111 
201 
210 0

210 
030 
012 
021 
111 
120 0

201 
021 
003 
012 
102 
111 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
. (2.18)

Then Φ4(f) is an implicit equation of S(f). And Φ4 is also a covariant. it has degree
12 and type Pol4(C

4). The attached geometric object is its zero locus, that is merely
the surface itself.

This covariant has another property: it vanishes if and only if the parameterization
admits a base point (this means that the fi’s have a common zero in CP

2; thus it is
revealed to be a resultant).

Formula (2.18) has been proposed in [3]. See [4, 6, 10], for formulas close to this
one, and proofs.

Associated Quadric.

One produces a new covariant by the following contraction (see [11]) of Φ1 and Φ2:

Φ5 =
1
6

∑
i,j,k

∂3Φ1

dxi dxj dxk

∂3Φ2

dλi dλj dλk
. (2.19)

It has degree 6 and type Pol2(C
4). One finds (by evaluation on the representative of

the dense orbit) that Φ5(f) = 0 is an equation for the Associated Quadric.

Preimage of a point of the Steiner surface.

The map [f ] from CP
2 to CP

3 induced by f is birational onto its image S(f): its
inverse is induced by the rational map [Φ6(f)] : CP

3 → CP
2 where

Φ6 = 63

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a00 a01 a02 b00 b01 b02 0
a10 a11 a12 b10 b11 b12 0
a20 a21 a22 b20 b21 b22 0
a30 a31 a32 b30 b31 b32 0

300 
120 
102 
111 
201 
210 λ0


210 
030 
012 
021 
111 
120 λ1


201 
021 
003 
012 
102 
111 λ2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
. (2.20)

This is a covariant of degree 10 and type Pol2(C
4, C3).

The dual surface.

Consider the quadratic form α0f0 + · · ·+ α3f3 and take its discriminant (that is the
determinant of its matrix):
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Φ7 = Disc (α0f0 + α1f1 + α2f2 + α3f3) . (2.21)

The object obtained this way, Φ7, is a covariant. It has degree 3 and type Pol3((C
4)∗).

The zero locus of Φ7(f) is the dual surface to S(f).

Triple point.

A covariant of degree 9 and type C4 ∼= Pol1((C
4)∗) is produced by contraction of

Φ7 and Φ5:

Φ8 =
∑
i,j

∂2Φ5

dyi dyj

∂2Φ7

dαi dαj
. (2.22)

Write
Φ8(f) = τ0α0 + τ1α1 + τ2α2 + τ3α3. (2.23)

Then the associated geometric object is a point (τ0 : τ1 : τ2 : τ3) of CP
3. One checks

that this is exactly the triple point of S(f).

Discriminant.

By evaluating Φ5(f), the equation of the Associated Quadric, at Φ8(f), the Triple
Point, one gets a scalar:

∆(f) = Φ5(f)(Φ8(f)). (2.24)

This object ∆ is a homogeneous covariant of degree 24 and type C. Otherwise stated,
this is a homogeneous invariant for SL(3, C) × SL(4, C). One checks by direct
computation that it is irreducible. From this and the existence of a dense orbit, it is
not difficult to deduce that ∆ is essentially the only invariant. This means that ∆
generates the algebra of the invariants under SL(3, C)× SL(4, C).

Union of the tropes.

Set
Φ9 = Φ4 + Φ2

5. (2.25)

This is a covariant of degree 12 and type Pol4(C
4), and thus Φ9(f) represents some

quartic surface in CP
3. One checks that this surface is the union of the four tropes.

Trihedron of the double lines.

Remember the classical notion of polar: given an hypersurface of degree d > 1
given by an equation F (z0, . . . , zr) = 0 and a point (Z0 : · · · : Zr), the polar of
the hypersurface and the point is the hypersurface of degree d − 1 defined by the
equation ∑

i

Zi
∂F

dzi
= 0. (2.26)
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Then the polar of S(f) and the triple point τ(f) has equation ϕ5(f) = 0, where

Φ10 =
3∑

i=0

τi(f)
∂Φ4

dyi
. (2.27)

(The τi’s are defined in Equation (2.23).) This way we get a covariant of degree 21
with type Pol3(C

4). One checks that its zero locus in CP
3 is a union of three planes:

they are the faces of the trihedron drawn by the singular lines of S(f).

Exceptional Triangle.

Consider the discriminant of Φ3, quadratic form on (C3)∗:

Φ11 =
1
8

∣∣∣∣∣∣∣∣
∂2Φ3
dλ2

0

∂2Φ3
dλ0λ1

∂2Φ3
dλ0λ2

∂2Φ3
dλ0λ1

∂2Φ3
dλ2

1

∂2Φ3
dλ1λ2

∂2Φ3
dλ0λ2

∂2Φ3
dλ1λ2

∂2Φ3
dλ2

2

∣∣∣∣∣∣∣∣ . (2.28)

This is a covariant of degree 12 and type Pol3(C
3). The zero locus of Φ11(f) in CP

2

is the Exceptional Triangle12.

Polar plane Π of the Associated Quadric and the Triple Point.

The polar surface of the Associated Quadric and the Triple Point is a plane, call it
Π . It has equation Φ12(f) = 0, where

Φ12 =
3∑

i=0

τi
∂Φ5

dyi
. (2.29)

This is a covariant of degree 15 and type (C4)∗ = Pol1(C
4).

Conic, preimage of Π .

By merely substituting yi with fi(x) in Φ12, one finds a new covariant Φ13:

Φ13(f)(x) = Φ12(f)(f(x)). (2.30)

The covariant Φ13 has degree 16 and type Pol2(C
3). Naturally, Φ13(f) = 0 is the

equation of the conic that is the preimage by [f ] of the section of S(f) by Π(f).

12 The equation obtained this way is of smaller degree than the one obtained by simply sub-
stituting the yi’s with the fi’s in Φ10. Actually, this latter is proportional to the square of
Φ11.
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Dual conic to the preimage of Π .

In [13], parag. 377 is shown a covariant Ψ(q1, q2, λ) of forms on C3 (q1 and q2

quadratic, λ linear), whose vanishing is a necessary and sufficient condition for the
traces of the conics of equations q1(x) = 0 and q2(x) = 0 on the line of equation
λ(x) = 0 to be a harmonic system of points.

Set
Φ14 =

∑
i,j

∂Φ5

dyidyj
Ψ(fi, fj , λ) (2.31)

where
λ(x) = λ0x0 + λ1x1 + λ2x2.

Then Φ14 is a covariant of degree 8 and type Pol2((C
3)∗). One checks that Φ14(f) =

0 is an equation for the conic of (CP
2)∗ dual to the conic of equation Φ13(f) = 0 of

CP
2. Note that the equation we find this way has lower degree than the one obtained

by computing the comatrix of the matrix of Φ13(f) (that would have degree 32).

Quadrilateral, preimage of the four torsal conics.

The union of the four torsal conics is also the intersection between the Associated
Quadric (defined by Φ5(f) = 0) and the Steiner surface. Thus, its preimage is also
the preimage of the quadric.

Substitute yi with fi in Φ5, this gives a new covariant Φ15 of degree 8 and type
Pol4(C

3):
Φ15(f)(x) = Φ5(f)(f(x)). (2.32)

The zero locus of Φ15(f) in CP
2 is the quadrilateral, preimage of the union of the

torsal conics.

2.6 Application: Equations and inequalities defining the types
of Steiner surfaces

We want to recognize the orbits in U , that is the orbits of parameterizations of quartic
surfaces (from those of surfaces of smaller degree), and next to discriminate between
these orbits.

We consider the first task. After [2] (Proposition 2 and Proposition 5), there are
three cases to rule out. The first case is when the parameterization [f ] admits a base
point (i.e. the fi’s have a common zero in CP2). The second case corresponds to the
orbit of the parameterization

(x2
0 : x2

1 : x2
2 : x1x2). (2.33)

The Zariski closure of its image is a quadric. The third case is the case when the
Zariski closure of the image of the parametrization is a plane. A necessary and suffi-
cient condition for being in the first case is the identical vanishing of Φ4(f), which
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translates into a system of polynomial equations of degree 12 in the coefficients of f .
The second case is isolated by remarking (by mere evaluation on the representative)
that Φ11 vanishes identically on the orbit of (2.33), and not on the six orbits of para-
meterizations giving true quartics. This gives another system of equations of degree
12. The third case is detected by the vanishing of the maximal minors of the 4 × 6
matrix of the coefficients of the fi’s. This is a system of equations of degree 4.

Now we evaluate the covariants of our collection on the representatives of the
six orbits in U , and find that Φ14 makes possible the discrimination. Let us explain
how: Φ14(f) is a quadratic form on R3. Let M(f) be its matrix. Then the inertia of
Φ14(f) is the following ordered pair: (number of positive eigenvalues of M , number
of negative eigenvalues of M(f)). The covariance property of Φ14 can be stated as
follows: (

Φ14(ρ ◦ f ◦ θ−1)
)
(λ) = det(θ)−6 det(ρ)2 (Φ14(f)) (λ ◦ θ−1)

Because the powers of the determinants involved in the formulas are even, the inertia
of Φ14(f) takes only one value on each orbit of F under G. As a consequence, it
defines a function on U . Table 2.3 shows its values.

Orbit of [f ] inertia of Φ14(f) equations and inequalities
Ii (0, 3) A3 > 0 ∧ A2 > 0 ∧ A1 > 0
Iii (2, 1) A3 > 0 ∧ (A2 ≤ 0 ∨ A1 ≤ 0)
Iiii (1, 2) A3 < 0
IIi (1, 1) A3 = 0 ∧ A2 < 0
IIii (0, 2) A3 = 0 ∧ A2 > 0
III (0, 1) A3 = A2 = 0

Table 2.3. Discrimination between the orbits.

It is already an interesting result that the inertia of one quadratic form attached
to f is enough to discriminate between the six orbits in U .

Now, we want to go further and define the orbits by equations and inequalities.
For this we introduce the characteristic polynomial of M(f):

det(t · I −M(f)) = t3 + A1(f) t2 + A2(f)t + A3(f). (2.34)

Any condition on the inertia can be translated into equations and inequalities involv-
ing the coefficients of Ai(f). The formulas obtained are presented in the last column
of Table 2.3. They are obtained trivially, except those for discriminating between
inertias (2, 1) and (0, 3), that makes use of Descartes’ law of signs [5].

Note that A3(f) is a non–trivial invariant of degree 24. Thus it should be pro-
portional to ∆. One finds (by evaluation on the representative of Orbit Ii) that the
coefficient of proportionality is positive. Thus in the sign conditions above, we are
allowed to substitute A3 with ∆.
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Conclusion

In this paper, we have produced a collection of covariants for quadratic parameteri-
zations of surfaces. We were guided by the geometry of the Steiner surface. In future
work, we wish to tackle the problem in a more systematic way: exploiting methods
from Invariant Theory, we will try to produce systems of generators for the covari-
ants; or at least to describe all the covariants of low degree.
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Summary. A long standing question is if the maximum number µ(d) of nodes on a surface
of degree d in P3(�) can be achieved by a surface defined over the reals which has only
real singularities. The currently best known asymptotic lower bound, µ(d) � 5

12
d3, is pro-

vided by Chmutov’s construction from 1992 which gives surfaces whose nodes have non-real
coordinates.

Using explicit constructions of certain real line arrangements we show that
Chmutov’s construction can be adapted to give only real singularities. All currently best known
constructions which exceed Chmutov’s lower bound (i.e., for d = 3, 4, . . . , 8, 10, 12) can also
be realized with only real singularities. Thus, our result shows that, up to now, all known lower
bounds for µ(d) can be attained with only real singularities.

We conclude with an application of the theory of real line arrangements which shows
that our arrangements are aymptotically the best possible ones for the purpose of constructing
surfaces with many nodes. This proves a special case of a conjecture of Chmutov.

3.1 Introduction

A node (or A1 singularity) in �3 is a singular point which can be written in the
form x2 + y2 + z2 = 0 in some local coordinates. We denote by µ(d) the maximum
possible number of nodes on a surface in P3(�). The question of determining µ(d)
has a long and rich history. Currently, µ(d) is only known for d = 1, 2, . . . , 6 (see
[1, 12] for sextics and [15] for a recent improvement for septics).

In this paper, we consider the relationship between µ(d) and the maximum pos-
sible number of real nodes on a surface in P3(�) which we denote by µ�(d). Obvi-
ously, µ�(d) ≤ µ(d), but do we even have µ�(d) = µ(d)? In other words: Can the
maximum number of nodes be achieved with real surfaces with real singularities?

The previous question arises naturally because all results in low degree d ≤ 12
suggest that it could be true (see [1, 8, 9, 15, 19] and table 3.1). But the best known
asymptotic lower bound, µ(d) � 5

12d3, follows from Chmutov’s construction [5]
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which yields only singularities with non-real coordinates. In this paper, we show that
his construction can be adapted to give surfaces with only real singularities (see table
3.1). In the real case we can distinguish between two types of nodes, conical nodes
(x2+y2−z2 = 0) and solitary points (x2+y2+z2 = 0): Our construction produces
only conical nodes.

Notice that in general there are no better real upper bounds for µ�(d) known
than the well-known complex ones of Miyaoka [17] and Varchenko [20]. But in
some cases, for solitary points there exist better bounds via the relation to the zeroth

Betti number. E.g., it has been shown by Nikulin that a K3 surface cannot have more
than 10 solitary points (although it can have 16 conical nodes). For quartic surfaces
in P3 this result is probably due to R.W.H.T. Hudson (see [7] for an overview on
related results).

We show an upper bound of ≈ 5
6d2 for the maximum number of real critical

points on two levels of real simple line arrangements consisting of d lines; here, sim-
ple means that no three lines meet in a common point. In [6], Chmutov conjectured
this to be the maximum number for all complex plane curves of degree d. He also
noticed [5] that such a bound directly implies an upper bound for the number of real
nodes of certain surfaces. Our upper bound shows that our examples are asymptoti-
cally the best possible real line arrangements for this purpose.

d 1 2 3 4 5 6 7 8 9 10 11 12 13 d

µ(d), µ�(d) ≤ 0 1 4 16 31 65 104 174 246 360 480 645 832 4
9
d(d − 1)2

µ(d), µ�(d) ≥ 0 1 4 16 31 65 99 168 216 345 425 600 732 ≈ 5
12

d3

Table 3.1. The currently known bounds for the maximum number µ(d) (resp. µ�(d)) of nodes
on a surface of degree d in P3(�) (resp. P3(�)) are equal. The bold numbers indicate in which
cases our result improves the previously known lower bound for µ�(d).

3.2 Variants of Chmutov’s Surfaces with Many Real Nodes

Let Td(z) ∈ �[z] be the Tchebychev polynomial of degree d with critical values −1
and +1 (see fig. 3.2). This can either be defined recursively by T0(z) := 1, T1(z) :=
z, Td(z) := 2·z·Td−1(z) − Td−2(z) for d ≥ 2, or implicitly by Td(cos(z)) =
cos(dz). Chmutov [5] uses them together with the so-called folding polynomials
FA2

d (x, y) ∈ �[x, y] associated to the root-system A2 to construct surfaces

ChmA2
d (x, y, z) := FA2

d (x, y) +
1
2
(Td(z) + 1)

with many nodes. These folding polynomials are defined as follows:
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F A2
d (x, y) := 2 + det

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x 1 0 · · · · · · · · · 0

2y x
. . .

. . .
...

3 y
. . .

. . .
. . .

...
0 1

. . .
. . .

. . .
. . .

......
. . .

. . .
. . .

. . .
. . . 0...

. . .
. . .

. . .
. . . 1

0 · · · · · · 0 1 y x

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
+ det

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

y 1 0 · · · · · · · · · 0

2x y
. . .

. . .
...

3 x
. . .

. . .
. . .

...
0 1

. . .
. . .

. . .
. . .

......
. . .

. . .
. . .

. . .
. . . 0...

. . .
. . .

. . .
. . . 1

0 · · · · · · 0 1 x y

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

(3.1)

The FA2
d (x, y) have critical points with only three different critical values: 0,−1,

and 8. Thus, the surface ChmA2
d (x, y, z) is singular exactly at those points at which

the critical values of FA2
d (x, y) and 1

2 (Td(z) + 1) sum up to zero (i.e., either both
are 0 or the first is −1 and the second is +1).

Notice that the plane curve defined by FA2
d (x, y) consists in fact of d lines. But

these are not real lines and the critical points of this folding polynomial also have
non-real coordinates. It is natural to ask whether there is a real line arrangement
which leads to the same number of critical points. The term folding polynomials was
introduced in [21] (here we use a slightly different definition). In his article, Withers
also described many of their properties, but it was Chmutov [5] who noticed that
FA2

d (x, y) has only few different critical values. In [3], the first author computed the
critical points of the other folding polynomials. Among these, there are the following
examples which are the real line arrangements we have been looking for (see [3, p.
87–89]):

We define the real folding polynomial FA2
�,d(x, y) ∈ �[x, y] associated to the

root system A2 as (see also fig. 3.2)

FA2
�,d(x, y) := FA2

d (x + iy, x− iy), (3.2)

where i is the imaginary number. It is easy to see that the FA2
�,d(x, y) have indeed

real coefficients. The numbers of critical points are the same as those of FA2
d (x, y);

but now they have real coordinates as the following lemma shows:

Lemma 1. The real folding polynomial FA2
�,d(x, y) associated to the root system A2

has
(
d
2

)
real critical points with critical value 0 and

1
3
d2 − d if d ≡ 0 mod 3,

1
3
d2 − d +

2
3

otherwise (3.3)

real critical points with critical value −1. The other critical points also have real
coordinates and have critical value 8.

Proof. We proceed similar to the case discussed in [5], see [3, p. 87–95] for details.
To calculate the critical points of the real folding polynomial FA2

�,d, we use the map
h1 : �2 → �

2, defined by

(u, v) �→
(

cos(2π(u + v)) + cos(2πu) + cos(2πv)
sin(2π(u + v))− sin(2πu)− sin(2πv)

)
.
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This is in fact just the real and imaginary part of the first component of the general-
ized cosine h considered by Withers [21] and Chmutov [5]. It is easy to see that h1

is a coordinate change if u− v > 0, u + 2v > 0, and 2u + v < 1. It transforms the
polynomial FA2

�,d into the function GA2
d : �2 → �

2, defined by

GA2
d (u, v) := FA2

�,d(h
1(u, v)) = 2 cos(2πdu)+2 cos(2πdv)+2 cos(2πd(u+v))+2.

The calculation of the critical points of GA2
d is exactly the same as the one performed

in [5]. As the function GA2
d has (d − 1)2 distinct real critical points in the region

defined by u− v > 0, u + 2v > 0, and 2u + v < 1, the images of these points under
the map h1 are all the critical points of the real folding polynomial FA2

�,d of degree d.
In contrast to [5], we get real critical points because h1 is a map from�2 into itself.

None of the other root systems yield more critical points on two levels. But as
mentioned in [16], the real folding polynomials associated to the root system B2 give
hypersurfaces in Pn, n ≥ 5, which improve the previously known lower bounds for
the maximum number of nodes in higher dimensions slightly (see [16]; [3] gives a
detailed discussion of all these folding polynomials and their critical points).

Fig. 3.1. For degree d = 9 we show the Tchebychev polynomial T9(z), the real folding
polynomial F A2

�,9(x, y) associated to the root system A2, and the surface ChmA2
�,9(x, y, z).

The bounded regions in which F A2
�,9(x, y) takes negative values are marked in black.

The lemma immediately gives the following variant of Chmutov’s nodal surfaces:

Theorem 2. Let d ∈ N. The real projective surface of degree d defined by

ChmA2
�,d(x, y, z) := FA2

�,d(x, y) +
1
2
(Td(z) + 1) ∈ �[x, y, z] (3.4)

has the following number of real nodes:
1
12

(
5d3 − 13d2 + 12d

)
if d ≡ 0 mod 6,

1
12

(
5d3 − 13d2 + 16d− 8

)
if d ≡ 2, 4 mod 6,

1
12

(
5d3 − 14d2 + 13d− 4

)
if d ≡ 1, 5 mod 6,

1
12

(
5d3 − 14d2 + 9d

)
if d ≡ 3 mod 6.

(3.5)
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These numbers are the same as the numbers of complex nodes of Chmutov’s
surfaces ChmA2

d (x, y, z). To our knowledge, the result gives new lower bounds for
the maximum number µ�(d) of real singularities on a surface of degree d in P3(�)
for d = 9, 11 and d ≥ 13, see table 3.1. Notice that all best known lower bounds for
µ�(d) are attained by surfaces with only conical nodes which is not astonishing in
view of the upper bounds for solitary points mentioned in the introduction.

3.3 On Two-Colorings of Real Simple Line Arrangements

The real folding polynomials FA2
�,d(x, y) used in the previous section are in fact real

simple (straight) line arrangements in �2, i.e., lines no three of which meet in a
point. Such arrangements can be 2-colored in a natural way (see fig. 3.2): We label
in black those regions (cells) of �2 \ {FA2

�,d(x, y) = 0} in which FA2
�,d(x, y) takes

negative values, the others in white. The bounded black regions in fig. 3.2 contain
exactly one critical point with critical value −1 each.

Harborth has shown in [11] that the maximum number Mb(d) of black cells in
such real simple line arrangements of d lines satisfies:

Mb(d) ≤
{

1
3d2 + 1

3d, d odd,
1
3d2 + 1

6d, d even.
(3.6)

d of these cells are unbounded. This is a purely combinatorial result which is strongly
related to the problem of determining the maximum number of triangles in such
arrangements which has a long and rich history (see [10]). Notice that this bound is
better than the one obtained by Kharlamov using Hodge theory [13]. It is known that
the bound (3.6) is exact for infinitely many values of d. The real folding polynomials
FA2
�,d(x, y) almost achieve this bound. Moreover, our arrangements have the very

special property that all critical points with a negative (resp. positive) critical value
have the same critical value −1 (resp. +8).

To translate the upper bound on the number of black cells into an upper bound
on critical points we use the following lemma:

Lemma 3 (see Lemme 10, 11 in [18]). Let f be a real simple line arrangement
consisting of d ≥ 3 lines. Then f has exactly

(
d−1
2

)
bounded open cells each of

which contains exactly one critical point. Moreover, all the critical points of f are
non-degenerate. No unbounded open cell contains a critical point.

It is easy to prove the lemma, e.g. by counting the number of bounded cells and by
observing that each such cell contains at least one critical point. Comparing this with
the number (d−1)2−

(
d
2

)
=
(
d−1
2

)
of all critical points with non-zero critical values

gives the result. Now we can show that our real line arrangements are asymptotically
the best possible ones for constructing surfaces with many singularities:

Theorem 4. The maximum number of critical points with the same non-zero real
critical value 0 �= v ∈ � of a real simple line arrangement is bounded by Mb(d)−d,
where d is the number of lines. In particular, the maximum number of critical points
on two levels of such an arrangement does not exceed

(
d
2

)
+ Mb(d)− d ≈ 5

6d2.
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Proof. By the preceding lemma, the number of critical points with non-zero critical
value equals the number of bounded cells of the real simple line arrangement. The
upper bound (3.6) for the maximum number Mb(d) of black cells of a real simple
line arrangement now gives the result, because the line arrangement has exactly

(
d
2

)
critical points with critical value 0.

Chmutov showed a much more general result ([4], see [6] for the case of non-
degenerate critical points): For a plane curve of degree d the maximum number
of critical points on two levels does not exceed ≈ 7

8d2. In [6], he conjectured
≈ 5

6d2 to be the actual maximum which is attained by the complex line arrange-
ments FA2

d (x, y) he used for his construction (and also by the real line arrangement
FA2
�,d(x, y)). Thus, our theorem 4 is the verification of Chmutov’s conjecture in the

particular case of real simple line arrangements. As Chmutov remarked in [5], such
an upper bound immediately implies an upper bound on the maximum number of
nodes on a surface in separated variables:

Corollary 5. A surface of the form p(x, y) + q(z) = 0 cannot have more than
≈ 1

2d2·12d + 1
3d2·12d = 5

12d3 nodes if p(x, y) is a real simple line arrangement.
This number is attained by the surfaces ChmA2

�,d(x, y, z) defined in theorem 2.

3.4 Concluding Remarks

Comparing our bound from corollary 5 to the upper bound ≈ 5
12d3 on the zeroth

Betti number (see e.g., [2] or [7]) one is tempted to ask if it is possible to deform
our singular surfaces to get examples with many real connected components. But
our surfaces ChmA2

�,d(x, y, z) only contain A−
1 singularities which locally look like

a cone (x2 + y2− z2 = 0). When removing the singularities from the zero-set of the
surface every connected component contains at least three of the singularities. Thus,
the zeroth Betti number of a small deformation of our surfaces are not larger than
≈ 5

3·12d3 which is far below the number≈ 13
36d3 resulting from Bihan’s construction

[2].
Conversely, we may ask if it is always possible to move the lines of a simple real

line arrangement in such a way that all critical points which have a critical value of
the same sign can be chosen to have the same critical value. If this were true then it
would be possible to improve our lower bound for the maximum number µ�(d) of
real nodes on a real surface of degree d slightly because it is known that the upper
bounds for the maximum number Mb(d) of black cells are in fact exact for infinitely
many d. E.g., in the already cited article [11], Harborth gave an explicit arrangement
of 13 straight lines which has 1

3 ·132 + 1
3 ·13 − 13 = 47 bounded black regions.

When regarding this arrangement as a polynomial of degree d = 13 it has exactly
one critical point with a negative critical value within each of the black regions. If all
these negative critical values can be chosen to be the same then such a polynomial
will lead to a surface with

(
13
2

)
·� 13−1

2 �+ 47·� 13−1
2 � = 750 > 732 nodes. Similarly,

such a surface of degree 9 would have 228 > 216 nodes. In the case of degree 7 the
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construction would only yield 96 nodes which is less than the number 99 found in
[15].

Notice that it is not clear that line arrangements are the best plane curves for
our purpose, and we may ask: Is it possible to exceed the number of critical points
on two levels of the line arrangements FA2

�,d(x, y) using irreducible curves of higher
degrees? Either in the real or in the complex case? This is not true for the real folding
polynomials. E.g., those associated to the root system B2 consist of many ellipses
and yield surfaces with fewer singularities (see [3]).
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Summary. A monoid hypersurface is an irreducible hypersurface of degree d which has a
singular point of multiplicity d− 1. Any monoid hypersurface admits a rational parameteriza-
tion , hence is of potential interest in computer aided geometric design . We study properties
of monoids in general and of monoid surfaces in particular. The main results include a de-
scription of the possible real forms of the singularities on a monoid surface other than the
(d − 1)-uple point. These results are applied to the classification of singularities on quartic
monoid surfaces , complementing earlier work on the subject.

4.1 Introduction

A monoid hypersurface is an (affine or projective) irreducible algebraic hypersurface
which has a singularity of multiplicity one less than the degree of the hypersurface.
The presence of such a singular point forces the hypersurface to be rational: there
is a rational parameterization given by (the inverse of) the linear projection of the
hypersurface from the singular point.

The existence of an explicit rational parameterization makes such hypersurfaces
potentially interesting objects in computer aided design. Moreover, since the “space”
of monoids of a given degree is much smaller than the space of all hypersurfaces
of that degree, one can hope to use monoids efficiently in (approximate or exact)
implicitization problems. These were the reasons for considering monoids in the
paper [17]. In [12] monoid curves are used to approximate other curves that are close
to a monoid curve, and in [13] the same is done for monoid surfaces. In both articles
the error of such approximations are analyzed – for each approximation, a bound on
the distance from the monoid to the original curve or surface can be computed.

In this article we shall study properties of monoid hypersurfaces and the classi-
fication of monoid surfaces with respect to their singularities. Section 4.2 explores
properties of monoid hypersurfaces in arbritrary dimension and over an arbitrary base
field. Section 4.3 contains results on monoid surfaces, both over arbritrary fields and
over �. The last section deals with the classification of monoid surfaces of degree
four. Real and complex quartic monoid surfaces were first studied by Rohn [15], who
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gave a fairly complete description of all possible cases. He also remarked [15, p. 56]
that some of his results on quartic monoids hold for monoids of arbitrary degree; in
particular, we believe he was aware of many of the results in Section 4.3. Takahashi,
Watanabe, and Higuchi [19] classify complex quartic monoid surfaces, but do not
refer to Rohn. (They cite Jessop [7]; Jessop, however, only treats quartic surfaces
with double points and refers to Rohn for the monoid case.) Here we aim at giving
a short description of the possible singularities that can occur on quartic monoids,
with special emphasis on the real case.

4.2 Basic properties

Let k be a field, let k̄ denote its algebraic closure and Pn := Pn
k̄

the projective n-
space over k̄. Furthermore we define the set of k-rational points Pn(k) as the set of
points that admit representatives (a0 : · · · : an) with each ai ∈ k.

For any homogeneous polynomial F ∈ k̄[x0, . . . , xn] of degree d and point p =
(p0 : p1 : · · · : pn) ∈ Pn we can define the multiplicity of Z(F ) at p. We know that
pr �= 0 for some r, so we can assume p0 = 1 and write

F =
d∑

i=0

xd−i
0 fi(x1 − p1x0, x2 − p2x0, . . . , xn − pnx0)

where fi is homogeneous of degree i. Then the multiplicity of Z(F ) at p is defined
to be the smallest i such that fi �= 0.

Let F ∈ k̄[x0, . . . , xn] be of degree d ≥ 3. We say that the hypersurface X =
Z(F ) ⊂ Pn is a monoid hypersurface if X is irreducible and has a singular point of
multiplicity d− 1.

In this article we shall only consider monoids X = Z(F ) where the singular
point is k-rational. Modulo a projective transformation of Pn over k we may – and
shall – therefore assume that the singular point is the point O = (1 : 0 : · · · : 0).

Hence, we shall from now on assume that X = Z(F ), and

F = x0fd−1 + fd,

where fi ∈ k[x1, . . . , xn] ⊂ k[x0, . . . , xn] is homogeneous of degree i and fd−1 �=
0. Since F is irreducible, fd is not identically 0, and fd−1 and fd have no common
(non-constant) factors.

The natural rational parameterization of the monoid X = Z(F ) is the map

θF : Pn−1 → Pn

given by
θF (a) = (fd(a) : −fd−1(a)a1 : . . . : −fd−1(a)an),

for a = (a1 : · · · : an) such that fd−1(a) �= 0 or fd(a) �= 0.
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The set of lines through O form a Pn−1. For every a = (a1 : · · · : an) ∈ Pn−1,
the line

La := {(s : ta1 : . . . : tan)|(s : t) ∈ P1} (4.1)

intersects X = Z(F ) with multiplicity at least d − 1 in O. If fd−1(a) �= 0 or
fd(a) �= 0, then the line La also intersects X in the point

θF (a) = (fd(a) : −fd−1(a)a1 : . . . : −fd−1(a)an).

Hence the natural parameterization is the “inverse” of the projection of X from the
point O. Note that θF maps Z(fd−1) \ Z(fd) to O. The points where the parameter-
ization map is not defined are called base points, and these points are precisely the
common zeros of fd−1 and fd. Each such point b corresponds to the line Lb con-
tained in the monoid hypersurface. Additionally, every line of type Lb contained in
the monoid hypersurface corresponds to a base point.

Note that Z(fd−1) ⊂ Pn−1 is the projective tangent cone to X at O, and that
Z(fd) is the intersection of X with the hyperplane “at infinity” Z(x0).

Assume P ∈ X is another singular point on the monoid X . Then the line L
through P and O has intersection multiplicity at least d − 1 + 2 = d + 1 with X .
Hence, according to Bezout’s theorem, L must be contained in X , so that this is only
possible if dimX ≥ 2.

By taking the partial derivatives of F we can characterize the singular points of
X in terms of fd and fd−1:

Lemma 1. Let ∇ = ( ∂
∂x1

, . . . , ∂
∂xn

) be the gradient operator.

(i) A point P = (p0 : p1 : · · · : pn) ∈ Pn is singular on Z(F ) if and only if
fd−1(p1, . . . , pn) = 0 and p0∇fd−1(p1, . . . , pn) +∇fd(p1, . . . , pn) = 0.

(ii) All singular points of Z(F ) are on lines La where a is a base point.
(iii) Both Z(fd−1) and Z(fd) are singular in a point a ∈ Pn−1 if and only if all

points on La are singular on X .
(iv) If not all points on La are singular, then at most one point other than O on La

is singular.

Proof. (i) follows directly from taking the derivatives of F = x0fd−1 + fd, and (ii)
follows from (i) and the fact that F (P ) = 0 for any singular point P . Furthermore, a
point (s : ta1 : . . . : tan) on La is, by (i), singular if and only if

s∇fd−1(ta) +∇fd(ta) = td−1(s∇fd−1(a) + t∇fd(a)) = 0.

This holds for all (s : t) ∈ P1 if and only if ∇fd−1(a) = ∇fd(a) = 0. This proves
(iii). If either ∇fd−1(a) or ∇fd−1(a) are nonzero, the equation above has at most
one solution (s0 : t0) ∈ P1 in addition to t = 0, and (iv) follows.

Note that it is possible to construct monoids where F ∈ k[x0, . . . , xn], but where
no points of multiplicity d− 1 are k-rational. In that case there must be (at least) two
such points, and the line connecting these will be of multiplicity d− 2. Furthermore,
the natural parameterization will typically not induce a parameterization of the k-
rational points from Pn−1(k).
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4.3 Monoid surfaces

In the case of a monoid surface, the parameterization has a finite number of base
points. From Lemma 1 (ii) we know that all singularities of the monoid other than
O, are on lines La corresponding to these points. In what follows we will develop the
theory for singularities on monoid surfaces — most of these results were probably
known to Rohn [15, p. 56].

We start by giving a precise definition of what we shall mean by a monoid sur-
face.

Definition 2. For an integer d ≥ 3 and a field k of characteristic 0 the polynomials
fd−1 ∈ k[x1, x2, x3]d−1 and fd ∈ k[x1, x2, x3]d define a normalized non-degenerate
monoid surface Z(F ) ⊂ P3, where F = x0fd−1 + fd ∈ k[x0, x1, x2, x3] if the
following hold:

(i) fd−1, fd �= 0
(ii) gcd(fd−1, fd) = 1
(iii) The curves Z(fd−1) ⊂ P2 and Z(fd) ⊂ P2 have no common singular point.

The curves Z(fd−1) ⊂ P2 and Z(fd) ⊂ P2 are called respectively the tangent cone
and the intersection with infinity.

Unless otherwise stated, a surface that satisfies the conditions of Definition 2
shall be referred to simply as a monoid surface.

Since we have finitely many base points b and each line Lb contains at most
one singular point in addition to O, monoid surfaces will have only finitely many
singularities, so all singularities will be isolated. (Note that Rohn included surfaces
with nonisolated singularities in his study [15].) We will show that the singularities
other than O can be classified by local intersection numbers.

Definition 3. Let f, g ∈ k[x1, x2, x3] be nonzero and homogeneous. Assume p =
(p1 : p2 : p3) ∈ Z(f, g) ⊂ P2, and define the local intersection number

Ip(f, g) = lg
k̄[x1, x2, x3]mp

(f, g)
,

where k̄ is the algebraic closure of k, mp = (p2x1−p1x2, p3x1−p1x3, p3x2−p2x3)
is the homogeneous ideal of p, and lg denotes the length of the local ring as a module
over itself.

Note that Ip(f, g) ≥ 1 if and only if f(p) = g(p) = 0. When Ip(f, g) = 1 we say
that f and g intersect transversally at p. The terminology is justified by the following
lemma:

Lemma 4. Let f, g ∈ k[x1, x2, x3] be nonzero and homogeneous and p ∈ Z(f, g).
Then the following are equivalent:

(i) Ip(f, g) > 1
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(ii) f is singular at p, g is singular at p, or ∇f(p) and ∇g(p) are nonzero and
parallel.

(iii) s∇f(p) + t∇g(p) = 0 for some (s, t) �= (0, 0)

Proof. (ii) is equivalent to (iii) by a simple case study: f is singular at p if and
only if (iii) holds for (s, t) = (1, 0), g is singular at p if and only if (iii) holds for
(s, t) = (0, 1), and ∇f(p) and ∇g(p) are nonzero and parallel if and only if (iii)
holds for some s, t �= 0.

We can assume that p = (0 : 0 : 1), so Ip(f, g) = lg S where

S =
k̄[x1, x2, x3](x1,x2)

(f, g)
.

Furthermore, let d = deg f , e = deg g and write

f =
d∑

i=1

fix
d−i
3 and g =

e∑
i=1

gix
e−i
3

where fi, gi are homogeneous of degree i.
If f is singular at p, then f1 = 0. Choose 
 = ax1 + bx2 such that 
 is not a

multiple of g1. Then 
 will be a nonzero non-invertible element of S, so the length
of S is greater than 1.

We have ∇f(p) = (∇f1(p), 0) and ∇g(p) = (∇g1(p), 0). If they are parallel,
choose 
 = ax0 + bx1 such that 
 is not a multiple of f1 (or g1), and argue as above.

Finally assume that f and g intersect transversally at p. We may assume that
f1 = x1 and g1 = x2. Then (f, g) = (x1, x2) as ideals in the local ring
k̄[x1, x2, x3](x1,x2). This means that S is isomorphic to the field k̄(x3). The length
of any field is 1, so Ip(f, g) = lg S = 1.

Now we can say which are the lines Lb, with b ∈ Z(fd−1, fd), that contain a
singularity other than O:

Lemma 5. Let fd−1 and fd be as in Definition 2. The line Lb contains a singular
point other than O if and only if Z(fd−1) is nonsingular at b and the intersection
multiplicity Ib(fd−1, fd) > 1.

Proof. Let b = (b1 : b2 : b3) and assume that (b0 : b1 : b2 : b3) is a singu-
lar point of Z(F ). Then, by Lemma 1, fd−1(b1, b2, b3) = fd(b1, b2, b3) = 0 and
b0∇fd−1(b1, b2, b3) + ∇fd(b1, b2, b3) = 0, which implies Ib(fd−1, fd) > 1. Fur-
thermore, if fd−1 is singular at b, then the gradient ∇fd−1(b1, b2, b3) = 0, so fd,
too, is singular at b, contrary to our assumptions.

Now assume that Z(fd−1) is nonsingular at b = (b1 : b2 : b3) and the intersection
multiplicity Ib(fd−1, fd) > 1. The second assumption implies fd−1(b1, b2, b3) =
fd(b1, b2, b3) = 0 and s∇fd−1(b1, b2, b3) = t∇fd(b1, b2, b3) for some (s, t) �=
(0, 0). Since Z(fd−1) is nonsingular at b, we know that ∇fd−1(b1, b2, b3) �= 0, so
t �= 0. Now (−s/t : b1 : b2 : b3) �= (1 : 0 : 0 : 0) is a singular point of Z(F ) on the
line Lb.
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Recall that an An singularity is a singularity with normal form x2
1 + x2

2 + xn+1
3 ,

see [3, p. 184].

Proposition 6. Let fd−1 and fd be as in Definition 2, and assume P = (p0 : p1 :
p2 : p3) �= (1 : 0 : 0 : 0) is a singular point of Z(F ) with I(p1:p2:p3)(fd−1, fd) = m.
Then P is an Am−1 singularity.

Proof. We may assume that P = (0 : 0 : 0 : 1) and write the local equation

g := F (x0, x1, x2, 1) = x0fd−1(x1, x2, 1) + fd(x1, x2, 1) =
d∑

i=2

gi (4.2)

with gi ∈ k̄[x0, x1, x2] homogeneous of degree i. Since Z(fd−1) is nonsingular at
0 := (0 : 0 : 1), we can assume that the linear term of fd−1(x1, x2, 1) is equal to
x1. The quadratic term g2 of g is then g2 = x0x1 + ax2

1 + bx1x2 + cx2
2 for some

a, b, c ∈ k. The Hessian matrix of g evaluated at P is

H(g)(0, 0, 0) = H(g2)(0, 0, 0) =

⎛⎝0 1 0
1 2a b
0 b 2c

⎞⎠
which has corank 0 when c �= 0 and corank 1 when c = 0. By [3, p. 188], P is an A1

singularity when c �= 0 and an An singularity for some n when c = 0.
The index n of the singularity is equal to the Milnor number

µ = dimk̄

k̄[x0, x1, x2](x0,x1,x2)

Jg
= dimk̄

k̄[x0, x1, x2](x0,x1,x2)(
∂g
∂x0

, ∂g
∂x1

, ∂g
∂x2

) .

We need to show that µ = I0(fd−1, fd) − 1. From the definition of the intersection
multiplicity, it is not hard to see that

I0(fd−1, fd) = dimk̄

k̄[x1, x2](x1,x2)

(fd−1(x1, x2, 1), fd(x1, x2, 1))
.

The singularity at p is isolated, so the Milnor number is finite. Furthermore, since
gcd(fd−1, fd) = 1, the intersection multiplicity is finite. Therefore both dimensions
can be calculated in the completion rings. For the rest of the proof we view fd−1

and fd as elements of the power series rings k̄[[x1, x2]] ⊂ k̄[[x0, x1, x2]], and all
calculations are done in these rings.

Since Z(fd−1) is smooth at O, we can write

fd−1(x1, x2, 1) = (x1 − ϕ(x2)) u(x1, x2)

for some power series ϕ(x2) and invertible power series u(x1, x2). To simplify no-
tation we write u = u(x1, x2) ∈ k̄[[x1, x2]].

The Jacobian ideal Jg is generated by the three partial derivatives:



4 Monoid Hypersurfaces 61

∂g

∂x0
= (x1 − ϕ(x2)) u

∂g

∂x1
= x0

(
u + (x1 − ϕ(x2))

∂u

∂x1

)
+

∂fd

∂x1
(x1, x2)

∂g

∂x2
= x0

(
−ϕ′(x2)u + (x1 − ϕ(x2))

∂u

∂x2

)
+

∂fd

∂x2
(x1, x2)

By using the fact that x1 − ϕ(x2) ∈
(

∂g
∂x0

)
we can write Jg without the symbols

∂u
∂x1

and ∂u
∂x2

:

Jg =
(
x1 − ϕ(x2), x0u + ∂fd

∂x1
(x1, x2),−x0uϕ′(x2) + ∂fd

∂x2
(x1, x2)

)
To make the following calculations clear, define the polynomials hi by writing

fd(x1, x2, 1) =
∑d

i=0 xi
1hi(x2). Now

Jg =
(
x1 − ϕ(x2), x0u +

∑d
i=1 ixi−1

1 hi(x2),−x0uϕ′(x2) +
∑d

i=0 xi
1h

′
i(x2)

)
,

so
k̄[[x0, x1, x2]]

Jg
=

k̄[[x2]]
(A(x2))

where

A(x2) = ϕ′(x2)
(∑d

i=1 iϕ(x2)i−1hi(x2)
)

+
(∑d

i=0 ϕ(x2)ih′
i(x2)

)
.

For the intersection multiplicity we have

k̄[[x1, x2]](
fd−1(x1, x2, 1), fd(x1, x2, 1)

) =
k̄[[x1, x2]](

x1 − ϕ(x2),
∑d

i=0 xi
1hi(x2)

) =
k̄[[x2]](
B(x2)

)
where B(x2) =

∑d
i=0 ϕ(x2)ihi(x2). Observing that B′(x2) = A(x2) gives the

result µ = I0(fd−1, fd)− 1.

Corollary 7. A monoid surface of degree d can have at most 1
2d(d− 1) singularities

in addition to O. If this number of singularities is obtained, then all of them will be
of type A1.

Proof. The sum of all local intersection numbers Ia(fd−1, fd) is given by Bézout’s
theorem: ∑

a∈Z(fd−1,fd)

Ia(fd−1, fd) = d(d− 1).

The line La will contain a singularity other than O only if Ia(fd−1, fd) ≥ 2, giving a
maximum of 1

2d(d−1) singularities in addition to O. Also, if this number is obtained,
all local intersection numbers must be exactly 2, so all singularities other than O will
be of type A1.
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Both Proposition 6 and Corollary 7 were known to Rohn, who stated these results
only in the case d = 4, but said they could be generalized to arbitrary d [15, p. 60].

For the rest of the section we will assume k = �. It turns out that we can find
a real normal form for the singularities other than O. The complex singularities of
type An come in several real types, with normal forms x2

1 ± x2
2 ± xn+1

3 . Varying the
± gives two types for n = 1 and n even, and three types for n ≥ 3 odd. The real
type with normal form x2

1 − x2
2 + xn+1

3 is called an A−
n singularity, or of type A−,

and is what we find on real monoids:

Proposition 8. On a real monoid, all singularities other than O are of type A−.

Proof. Assume p = (0 : 0 : 1) is a singular point on Z(F ) and set g =
F (x0, x1, x2, 1) as in the proof of Proposition 6.

First note that u−1g = x0(x1 − ϕ(x2)) + fd(x1, x2)u−1 is an equation for the
singularity. We will now prove that u−1g is right equivalent to ±(x2

0− x2
1 + xn

2 ), for
some n, by constructing right equivalent functions u−1g =: g(0) ∼ g(1) ∼ g(2) ∼
g(3) ∼ ±(x2

0 − x2
1 + xn

2 ). Let

g(1)(x0, x1, x2) = g(0)(x0, x1 + ϕ(x2), x2)

= x0x1 + fd(x1 + ϕ(x2), x2)u−1(x1 + ϕ(x2), x2)
= x0x1 + ψ(x1, x2)

where ψ(x1, x2) ∈ �[[x1, x2]]. Write ψ(x1, x2) = x1ψ1(x1, x2) + ψ2(x2) and
define

g(2)(x0, x1, x2) = g(1)(x0 − ψ1(x1, x2), x1, x2) = x0x1 + ψ2(x2).

The power series ψ2(x2) can be written on the form

ψ2(x2) = sxn
2 (a0 + a1x2 + a2x

2
2 + . . . )

where s = ±1 and a0 > 0. We see that g(2) is right equivalent to g(3) = x0x1 + sxn
2

since

g(2)(x0, x1, x2) = g(3)

(
x0, x1, x2

n

√
a0 + a1x2 + a2x2

2 + . . .

)
.

Finally we see that

g(4)(x0, x1, x2) := g(3)(sx0 − sx1, x0 + x1, x2) = s(x2
0 − x2

1 + xn
2 )

proves that u−1g is right equivalent to s(x2
0 − x2

1 + xn
2 ) which is an equation for an

An−1 singularity with normal form x2
0 − x2

1 + xn
2 .

Note that for d = 3, the singularity at O can be an A+
1 singularity. This happens

for example when f2 = x2
0 + x2

1 + x2
2.
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For a real, monoid Corollary 7 implies that we can have at most 1
2d(d − 1) real

singularities in addition to O. We can show that the bound is sharp by a simple
construction:
Example. To construct a monoid with the maximal number of real singularities, it
is sufficient to construct two affine real curves in the xy-plane defined by equations
fd−1 and fd of degrees d−1 and d such that the curves intersect in d(d−1)/2 points
with multiplicity 2. Let m ∈ {d− 1, d} be odd and set

fm = ε−
m∏

i=1

(
x sin

(
2iπ

m

)
+ y cos

(
2iπ

m

)
+ 1

)
.

For ε > 0 sufficiently small there exist at least m+1
2 radii r > 0, one for each root

of the univariate polynomial fm|x=0, such that the circle x2 + y2 − r2 intersects
fm in m points with multiplicity 2. Let f2d−1−m be a product of such circles. Now
the homogenizations of fd−1 and fd define a monoid surface with 1 + 1

2d(d − 1)
singularities. See Figure 4.1.

Fig. 4.1. The curves fm for m = 3, 5 and corresponding circles

Proposition 6 and Bezout’s theorem imply that the maximal Milnor number of
a singularity other than O is d(d − 1) − 1. The following example shows that this
bound can be achieved on a real monoid:
Example. The surface X ⊂ P3 defined by F = x0(x1x

d−2
2 +xd−1

3 )+xd
1 has exactly

two singular points. The point (1 : 0 : 0 : 0) is a singularity of multiplicity d − 1
with Milnor number µ = (d2 − 3d + 1)(d − 2), while the point (0 : 0 : 1 : 0) is an
Ad(d−1)−1 singularity. A picture of this surface for d = 4 is shown in Figure 4.2.
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Fig. 4.2. The surface defined by F = x0(x1x
d−2
2 + xd−1

3 ) + xd
1 for d = 4.

4.4 Quartic monoid surfaces

Every cubic surface with isolated singularities is a monoid. Both smooth and singular
cubic surfaces have been studied extensively, most notably in [16], where real cubic
surfaces and their singularities were classified, and more recently in [18], [4], and
[8]. The site [9] contains additional pictures and references.

In this section we shall consider the case d = 4. The classification of real and
complex quartic monoid surfaces was started by Rohn [15]. (In addition to consid-
ering the singularities, Rohn studied the existence of lines not passing through the
triple point, and that of other special curves on the monoid.) In [19], Takahashi,
Watanabe, and Higuchi described the singularities of such complex surfaces. The
monoid singularity of a quartic monoid is minimally elliptic [21], and minimally el-
liptic singularities have the same complex topological type if and only if their dual
graphs are isomorphic [10]. In [10] all possible dual graphs for minimally elliptic
singularities are listed, along with example equations.

Using Arnold’s notation for the singularities, we use and extend the approach of
Takahashi, Watanabe, and Higuchi in [19].

Consider a quartic monoid surface, X = Z(F ), with F = x0f3+f4. The tangent
cone, Z(f3), can be of one of nine (complex) types, each needing a separate analysis.

For each type we fix f3, but any other tangent cone of the same type will be pro-
jectively equivalent (over the complex numbers) to this fixed f3. The nine different
types are:

1. Nodal irreducible curve, f3 = x1x2x3 + x3
2 + x3

3.
2. Cuspidal curve, f3 = x3

1 − x2
2x3.

3. Conic and a chord, f3 = x3(x1x2 + x2
3)

4. Conic and a tangent line, f3 = x3(x1x3 + x2
2).

5. Three general lines, f3 = x1x2x3.
6. Three lines meeting in a point, f3 = x3

2 − x2x
2
3
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7. A double line and another line, f3 = x2x
2
3

8. A triple line f3 = x3
3

9. A smooth curve, f3 = x3
1 + x3

2 + x3
3 + 3ax0x1x3 where a3 �= −1

To each quartic monoid we can associate, in addition to the type, several integer
invariants, all given as intersection numbers. From [19] we know that, for the types
1–3, 5, and 9, these invariants will determine the singularity type of O up to right
equivalence. In the other cases the singularity series, as defined by Arnol’d in [1] and
[2], is determined by the type of f3. We shall use, without proof, the results on the
singularity type of O due to [19]; however, we shall use the notations of [1] and [2].

We complete the classification begun in [19] by supplying a complete list of
the possible singularities occurring on a quartic monoid. In addition, we extend the
results to the case of real monoids. Our results are summarized in the following
theorem.

Theorem 9. On a quartic monoid surface, singularities other than the monoid point
can occur as given in Table 4.1. Moreover, all possibilities are realizable on real
quartic monoids with a real monoid point, and with the other singularities being real
and of type A−.

Proof. The invariants listed in the “Invariants and constraints” column are all non-
negative integers, and any set of integer values satisfying the equations represents
one possible set of invariants, as described above. Then, for each set of invariants,
(positive) intersection multiplicities, denoted mi, m′

i and m′′
i , will determine the

singularities other than O. The column “Other singularities” give these and the equa-
tions they must satisfy. Here we use the notation A0 for a line La on Z(F ) where O
is the only singular point.

The analyses of the nine cases share many similarities, and we have chosen not
to go into great detail when one aspect of a case differs little from the previous one.
We end the section with a discussion on the possible real forms of the tangent cone
and how this affects the classification of the real quartic monoids.

In all cases, we shall write

f4 = a1x
4
1 + a2x

3
1x2 + a3x

3
1x3 + a4x

2
1x

2
2 + a5x

2
1x2x3

+ a6x
2
1x

2
3 + a7x1x

3
2 + a8x1x

2
2x3 + a9x1x2x

2
3 + a10x1x

3
3

+ a11x
4
2 + a12x

3
2x3 + a13x

2
2x

2
3 + a14x2x

3
3 + a15x

4
3

and we shall investigate how the coefficients a1, . . . , a15 are related to the geometry
of the monoid.

Case 1. The tangent cone is a nodal irreducible curve, and we can assume

f3(x1, x2, x3) = x1x2x3 + x3
2 + x3

3.

The nodal curve is singular at (1 : 0 : 0). If f4(1, 0, 0) �= 0, then O is a T3,3,4

singularity [19]. We recall that (1 : 0 : 0) cannot be a singular point on Z(f4) as



66 P. H. Johansen et al.

Triple point Invariants and constraints Other singularities
1 T3,3,4 Ami−1,

∑
mi = 12

T3,3,3+m m = 2, . . . , 12 Ami−1,
∑

mi = 12 − m

2 Q10 Ami−1,
∑

mi = 12
T9+m m = 2, 3 Ami−1,

∑
mi = 12 − m

3 T3,4+r0,4+r1 r0 = max(j0, k0), r1 = max(j1, k1), Ami−1,
∑

mi = 4 − k0 − k1,
j0 > 0 ↔ k0 > 0, min(j0, k0) ≤ 1, Am′

i−1,
∑

m′
i = 8 − j0 − j1

j1 > 0 ↔ k1 > 0, min(j1, k1) ≤ 1

4 S series j0 ≤ 8, k0 ≤ 4, min(j0, k0) ≤ 2, Ami−1,
∑

mi = 4 − k0,
j0 > 0 ↔ k0 > 0, j1 > 0 ↔ k0 > 1 Am′

i−1,
∑

m′
i = 8 − j0

5 T4+jk,4+jl,4+jm m1 + l1 ≤ 4, k2 + m2 ≤ 4, Ami−1,
∑

mi = 4 − m1 − l1,
k3 + l3 ≤ 4, k2 > 0 ↔ k3 > 0, Am′

i−1,
∑

m′
i = 4 − k2− m2,

l1 > 0 ↔ l3 > 0, m1 > 0 ↔ m2 > 0, Am′′
i −1,

∑
m′′

i = 4 − k3 − l3
min(k2, k3) ≤ 1, min(l1, l3) ≤ 1,
min(m1, m2) ≤ 1, jk = max(k2, k3),
jl = max(l1, l3), jm = max(m1, m2)

6 U series j1 > 0 ↔ j2 > 0 ↔ j3 > 0, Ami−1,
∑

mi = 4 − j1,
at most one of j1, j2, j3 > 1, Am′

i−1,
∑

m′
i = 4 − j2,

j1, j2, j3 ≤ 4 Am′′
i −1,

∑
m′′

i = 4 − j3

7 V series j0 > 0 ↔ k0 > 0, min(j0, k0) ≤ 1, Ami−1,
∑

mi = 4 − j0,
j0 ≤ 4, k0 ≤ 4

8 V ′ series None
9 P8 = T3,3,3 Ami−1,

∑
mi = 12

Table 4.1. Possible configurations of singularities for each case

this would imply a singular line on the monoid, so we assume that either (1 : 0 :
0) �∈ Z(f4) or (1 : 0 : 0) is a smooth point on Z(f4). Let m denote the intersection
number I(1:0:0)(f3, f4). Since Z(f3) is singular at (1 : 0 : 0) we have m �= 1. From
[19] we know that O is a T3,3,3+m singularity for m = 2, . . . , 12. Note that some of
these complex singularities have two real forms, as illustrated in Figure 4.3.

Bézout’s theorem and Proposition 6 limit the possible configurations of singular-
ities on the monoid for each m. Let θ(s, t) = (−s3 − t3, s2t, st2). Then the tangent
cone Z(f3) is parameterized by θ as a map from P1 to P2. When we need to compute
the intersection numbers between the rational curve Z(f3) and the curve Z(f4), we
can do that by studying the roots of the polynomial f4(θ). Expanding the polynomial
gives

f4(θ)(s, t) = a1s
12 − a2s

11t + (−a3 + a4)s10t2 + (4a1 + a5 − a7)s9t3

+ (−3a2 + a6 − a8 + a11)s8t4 + (−3a3 + 2a4 − a9 + a12)s7t5

+ (6a1 + 2a5 − a7 − a10 + a13)s6t6

+ (−3a2 + 2a6 − a8 + a14)s5t7 + (−3a3 + a4 − a9 + a15)s4t8

+ (4a1 + a5 − a10)s3t9 + (−a2 + a6)s2t10 − a3st
11 + a1t

12.
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Fig. 4.3. The monoids Z(x3+y3+5xyz−z3(x+y)) and Z(x3+y3+5xyz−z3(x−y)) both
have a T3,3,5 singularity, but the singularities are not right equivalent over �. (The pictures
are generated by the program [5].)

This polynomial will have roots at (0 : 1) and (1 : 0) if and only if f4(1, 0, 0) =
a1 = 0. When a1 = 0 we may (by symmetry) assume a3 �= 0, so that (0 : 1) is a
simple root and (1 : 0) is a root of multiplicity m−1. Other roots of f4(θ) correspond
to intersections of Z(f3) and Z(f4) away from (1 : 0 : 0). The multiplicity mi of
each root is equal to the corresponding intersection multiplicity, giving rise to an
Ami−1 singularity if mi > 0, as described by Proposition 6, or a line La ⊂ Z(F )
with O as the only singular point if mi = 1.

The polynomial f4(θ) defines a linear map from the coefficient space k15 of f4

to the space of homogeneous polynomials of degree 12 in s and t. By elementary
linear algebra, we see that the image of this map is the set of polynomials of the form

b0s
12 + b1s

11t + b2s
10t2 + · · ·+ b12t

12

where b0 = b12. The kernel of the map corresponds to the set of polynomials of the
form 
f3 where 
 is a linear form. This means that f4(θ) ≡ 0 if and only if f3 is a
factor in f4, making Z(F ) reducible and not a monoid.

For every m = 0, 2, 3, 4, . . . , 12 we can select r parameter points

p1, . . . , pr ∈ P1 \ {(0 : 1), (1 : 0)}

and positive multiplicities m1, . . . , mr with m1 + · · · + mr = 12 − m and try to
describe the polynomials f4 such that f4(θ) has a root of multiplicity mi at pi for
each i = 1, . . . , r.

Still assuming a3 �= 0 whenever a1 = 0, any such choice of parameter points
p1, . . . , pr and multiplicities m1, . . . , mr corresponds to a polynomial q = b0s

12 +
b1s

11t + · · ·+ b12t
12 that is, up to a nonzero constant, uniquely determined.

Now, q is equal to f4(θ) for some f4 if and only if b0 = b12. If m ≥ 2, then q
contains a factor stm−1, so b0 = b12 = 0, giving q = f4(θ) for some f4. In fact,
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when m ≥ 2 any choice of p1, . . . , pr and m1, . . . , mr with m1 + · · · + mr =
12 −m corresponds to a four dimensional space of equations f4 that gives this set
of roots and multiplicities in f4(θ). If f ′

4 is one such f4, then any other is of the form
λf ′

4 + 
f3 for some constant λ �= 0 and linear form 
. All of these give monoids that
are projectively equivalent.

When m = 0, we write pi = (αi : βi) for i = 1, . . . , r. The condition b0 = b12

on the coefficients of q translates to

αm1
1 · · ·αmr

r = βm1
1 · · ·βmr

r . (4.3)

This means that any choice of parameter points (α1 : β1), . . . , (αr : βr) and mul-
tiplicities m1, . . . , mr with m1 + · · · + mr = 12 that satisfy condition (4.3) cor-
responds to a four dimensional family λf ′

4 + 
f3, giving a unique monoid up to
projective equivalence.

For example, we can have an A11 singularity only if f4(θ) is of the form
(αs − βt)12. Condition (4.3) implies that this can only happen for 12 parameter
points, all of the form (1 : ω), where ω12 = 1. Each such parameter point (1 : ω)
corresponds to a monoid uniquely determined up to projective equivalence. How-
ever, since there are six projective transformations of the plane that maps Z(f3) onto
itself, this correspondence is not one to one. If ω12

1 = ω12
2 = 1, then ω1 and ω2 will

correspond to projectively equivalent monoids if and only if ω3
1 = ω3

2 or ω3
1ω3

2 = 1.
This means that there are three different quartic monoids with one T3,3,4 singularity
and one A11 singularity. One corresponds to those ω where ω3 = 1, one to those ω
where ω3 = −1, and one to those ω where ω6 = −1. The first two of these have real
representatives, ω = ±1.

It easy to see that for any set of multiplicities m1 + · · ·+ mr = 12, we can find
real points p1, . . . , pr such that condition (4.3) is satisfied. This completely classifies
the possible configurations of singularities when f3 is an irreducible nodal curve.

Case 2. The tangent cone is a cuspidal curve, and we can assume f3(x1, x2, x3) =
x3

1 − x2
2x3. The cuspidal curve is singular at (0 : 0 : 1) and can be parameterized by

θ as a map from P1 to P2 where θ(s, t) = (s2t, s3, t3). The intersection numbers are
determined by the degree 12 polynomial f4(θ). As in the previous case, f4(θ) ≡ 0
if and only if f3 is a factor of f4, and we will assume this is not the case. The mul-
tiplicity m of the factor s in f4(θ) determines the type of singularity at O. If m = 0
(no factor s), then O is a Q10 singularity. If m = 2 or m = 3, then O is of type
Q9+m. If m > 3, then (0 : 0 : 1) is a singular point on Z(f4), so the monoid has a
singular line and is not considered in this article. Also, m = 1 is not possible, since
f4(θ(s, t)) = f4(s2t, s3, t3) cannot contain st11 as a factor.

For each m = 0, 2, 3 we can analyze the possible configurations of other sin-
gularities on the monoid. Similarly to the previous case, any choice of parameter
points p1, . . . , pr ∈ P1 \ {(0 : 1)} and positive multiplicities m1, . . . , mr with∑

mi = 12−m corresponds, up to a nonzero constant, to a unique degree 12 poly-
nomial q.

When m = 2 or m = 3, for any choice of parameter values and associated mul-
tiplicities, we can find a four dimensional family f4 = λf ′

4 + 
f3 with the prescribed
roots in f4(θ). As before, the family gives projectively equivalent monoids.
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When m = 0, one condition must be satisfied for q to be of the form f4(θ),
namely b11 = 0, where b11 is the coefficient of st11 in q.

For example, we can have an A11 singularity only if q is of the form (αs−βt)12.
The condition b11 = 0 implies that either q = λs12 or q = λt12. The first case gives
a surface with a singular line, while the other gives a monoid with an A11 singularity
(see Figure 4.2). The line from O to the A11 singularity corresponds to the inflection
point of Z(f3).

For any set of multiplicities m1, . . . , mr with m1+· · ·+mr = 12, it is not hard to
see that there exist real points p1, . . . , pr such that the condition b11 = 0 is satisfied.
It suffices to take pi = (αi : 1), with

∑
miαi = 0 (the condition corresponding to

b11 = 0). This completely classifies the possible configurations of singularities when
f3 is a cuspidal curve.

Case 3. The tangent cone is the product of a conic and a line that is not tangent
to the conic, and we can assume f3 = x3(x1x2 + x2

3). Then Z(f3) is singular at
(1 : 0 : 0) and (0 : 1 : 0), the intersections of the conic Z(x1x2 + x2

3) and the line
Z(x3). For each f4 we can associate four integers:

j0 := I(1:0:0)(x1x2 + x2
3, f4), k0 := I(1:0:0)(x3, f4),

j1 := I(0:1:0)(x1x2 + x2
3, f4), k1 := I(0:1:0)(x3, f4).

We see that k0 > 0 ⇔ f4(1 : 0 : 0) = 0 ⇔ j0 > 0, and that Z(f4) is singular
at (1 : 0 : 0) if and only if k0 and j0 both are bigger than one. These cases imply
a singular line on the monoid, and are not considered in this article. The same holds
for k1, j1 and the point (0 : 1 : 0).

Define ri = max(ji, ki) for i = 1, 2. Then, by [19], O will be a singularity of
type T3,4+r0,4+r1 if r0 ≤ r1, or of type T3,4+r1,4+r0 if r0 ≥ r1.

We can parameterize the line Z(x3) by θ1 where θ1(s, t) = (s, t, 0), and the conic
Z(x1x2 + x2

3) by θ2 where θ2(s, t) = (s2,−t2, st). Similarly to the previous cases,
roots of f4(θ1) correspond to intersections between Z(f4) and the line Z(x3), while
roots of f4(θ2) correspond to intersections between Z(f4) and the conic Z(x1x3 +
x2

3).
For any legal values of of j0, j1, k0 and k1, parameter points

(α1 : β1), . . . , (αmr
: βmr

) ∈ P1 \ {(0 : 1), (1 : 0)},

with multiplicities m1, . . . , mr such that m1+· · ·+mr = 4−k0−k1, and parameter
points

(α′
1 : β′

1), . . . , (α
′
m′

r
: β′

m′
r
) ∈ P1 \ {(0 : 1), (1 : 0)},

with multiplicities m′
1, . . . , m

′
r′ such that m′

1 + · · ·+ m′
r′ = 8− j0 − j1, we can fix

polynomials q1 and q2 such that

• q1 is nonzero, of degree 4, and has factors sk1 , tk0 and (βis − αit)mi for i =
1, . . . , r,

• q2 is nonzero, of degree 8, and has factors sj1 , tj0 and (β′
is − α′

it)
m′

i for i =
1, . . . , r′.
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Now q1 and q2 are determined up to multiplication by nonzero constants. Write q1 =
b0s

4 + · · ·+ b4t
4 and q2 = c0s

8 + · · ·+ c8t
8.

The classification of singularities on the monoid consists of describing the con-
ditions on the parameter points and nonzero constants λ1 and λ2 for the pair
(λ1q1, λ2q2) to be on the form (f4(θ1), f4(θ2)) for some f4.

Similarly to the previous cases, f4(θ1) ≡ 0 if and only if x3 is a factor in f4 and
f4(θ2) ≡ 0 if and only if x1x2 + x2

3 is a factor in f4. Since f3 = x3(x1x2 + x2
3),

both cases will make the monoid reducible, so we only consider λ1, λ2 �= 0.
We use linear algebra to study the relationship between the coefficients a1 . . . a15

of f4 and the polynomials q1 and q2. We find (λ1q1, λ2q2) to be of the form
(f4(θ1), f4(θ2)) if and only if λ1b0 = λ2c0 and λ1b4 = λ2c8. Furthermore, the
pair (λ1q1, λ2q2) will fix f4 modulo f3. Since f4 and λf4 correspond to projectively
equivalent monoids for any λ �= 0, it is the ratio λ1/λ2, and not λ1 and λ2, that is
important.

Recall that k0 > 0 ⇔ j0 > 0 and k1 > 0 ⇔ j1 > 0. If k0 > 0 and k1 > 0,
then b0 = c0 = b4 = c8 = 0, so for any λ1, λ2 �= 0 we have (λ1q1, λ2q2) =
(f4(θ1), f4(θ2)) for some f4. Varying λ1/λ2 will give a one-parameter family of
monoids for each choice of multiplicities and parameter points.

If k0 = 0 and k1 > 0, then b0 = c0 = 0. The condition λ1b4 = λ2c8 implies
λ1/λ2 = c8/b4. This means that any choice of multiplicities and parameter points
will give a unique monoid up to projective equivalence. The same goes for the case
where k0 > 0 and k1 = 0.

Finally, consider the case where k0 = k1 = 0. For (λ1q1, λ2q2) to be of the
form (f4(θ1), f4(θ2)) we must have λ1/λ2 = c8/b4 = c0/b0. This translates into a
condition on the parameter points, namely

(β′
1)

m′
1 · · · (β′

r′)
m′

r′

βm1
1 · · ·βmr

r
=

(α′
1)

m′
1 · · · (α′

r′)m′
r′

αm1
1 · · ·αmr

r
. (4.4)

In other words, if condition (4.4) holds, we have a unique monoid up to projective
equivalence.

It is easy to see that for any choice of multiplicities, it is possible to find real pa-
rameter points such that condition (4.4) is satisfied. This completes the classification
of possible singularities when the tangent cone is a conic plus a chordal line.

Case 4. The tangent cone is the product of a conic and a line tangent to the conic,
and we can assume f3 = x3(x1x3 + x2

2). Now Z(f3) is singular at (1 : 0 : 0). For
each f4 we can associate two integers

j0 := I(1:0:0)(x1x3 + x2
2, f4) and k0 := I(1:0:0)(x3, f4).

We have j0 > 0 ⇔ k0 > 0, j0 > 1 ⇔ k0 > 1. Furthermore, j0 and k0 are both
greater than 2 if and only if Z(f4) is singular at (1 : 0 : 0), a case we have excluded.
The singularity at O will be of the S series, from [1], [2].

We can parameterize the conic Z(x1x3 + x2
2) by θ2 and the line Z(x3) by θ1

where θ2(s, t) = (s2, st,−t2) and θ1(s, t) = (s, t, 0). As in the previous case, the
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monoid is reducible if and only if f4(θ1) ≡ 0 or f4(θ2) ≡ 0. Consider two nonzero
polynomials

q1 = b0s
4 + b1s

3t + b2s
2t2 + b3st

3 + b4t
4

q2 = c0s
8 + c1s

7t + · · ·+ c7st
7 + c8t

8.

Now (λ1q1, λ2q2) = (f4(θ1), f4(θ2)) for some f4 if and only if λ1b0 = λ2c0 and
λ1b1 = λ2c1. As before, only the cases where λ1, λ2 �= 0 are interesting. We see
that (λ1q1, λ2q2) = (f4(θ1), f4(θ2)) for some λ1, λ2 �= 0 if and only if the following
hold:

• b0 = 0 ↔ c0 = 0 and b1 = 0 ↔ c1 = 0
• b0c1 = b1c0.

The classification of other singularities (than O) is very similar to the previous
case. Roots of f4(θ1) and f4(θ2) away from (1 : 0) correspond to intersections of
Z(f3) and Z(f4) away from the singular point of Z(f3), and when one such inter-
section is multiple, there is a corresponding singularity on the monoid.

Now assume (λ1q1, λ2q2) = (f4(θ1), f4(θ2)) for some λ1, λ2 �= 0 and some
f4. If b0 �= 0 (equivalent to c0 �= 0) then j0 = k0 = 0 and λ1/λ2 = c0/b0.
If b0 = c0 = 0 and b1 �= 0 (equivalent to c1 �= 0), then j0 = k0 = 1, and
λ1/λ2 = c1/b1. If b0 = b1 = c0 = c1 = 0, then j0, k0 > 1 and any value of
λ1/λ2 will give (λ1q1, λ2q2) of the form (f4(θ1), f4(θ2)) for some f4. Thus we get
a one-dimensional family of monoids for this choice of q1 and q2.

Now consider the possible configurations of other singularities on the monoid.
Assume that j′0 ≤ 8 and k′

0 ≤ 4 are nonnegative integers such that j0 > 0 ↔
k0 > 0 and j0 > 1 ↔ k0 > 1. For any set of multiplicities m1, . . . , mr with
m1 + · · · + mr = 4 − k′

0 and m′
1, . . . , m

′
r′ with m′

1 + · · · + m′
r′ = 8 − j′0, there

exists a polynomial f4 with real coefficients such that f4(θ1) has real roots away
from (1 : 0) with multiplicities m1, . . . ,mr, and f4(θ2) has real roots away from
(1 : 0) with multiplicities m′

1, . . . , m
′
r′ . Furthermore, for this f4 we have k0 = k′

0

and j0 = j′0. Proposition 6 will give the singularities that occur in addition to O.
This completes the classification of the singularities on a quartic monoid (other

than O) when the tangent cone is a conic plus a tangent.
Case 5. The tangent cone is three general lines, and we assume f3 = x1x2x3.
For each f4 we associate six integers,

k2 := I(1:0:0)(f4, x2), l1 := I(0:1:0)(f4, x1), m1 := I(0:0:1)(f4, x1),
k3 := I(1:0:0)(f4, x3), l3 := I(0:1:0)(f4, x3), m2 := I(0:0:1)(f4, x2).

Now k2 > 0 ⇔ k3 > 0, l1 > 0 ⇔ l3 > 0, and m1 > 0 ⇔ m2 > 0. If both k2 and
k3 are greater than 1, then the monoid has a singular line, a case we have excluded.
The same goes for the pairs (l1, l3) and (m1,m2).

When the monoid does not have a singular line, we define jk = max(k2, k3),
jl = max(l1, l3) and jm = max(m1,m2). If jk ≤ jl ≤ jm, then [19] gives that O
is a T4+jk,4+jl,4+jm

singularity.
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The three lines Z(x1), Z(x2) and Z(x3) are parameterized by θ1, θ2 and θ3 where
θ1(s, t) = (0, s, t), θ2(s, t) = (s, 0, t) and θ3(s, t) = (s, t, 0). Roots of the polyno-
mial f4(θi) away from (1 : 0) and (0 : 1) correspond to intersections between Z(f4)
and Z(xi) away from the singular points of Z(f3).

As before, we are only interested in the cases where none of f4(θi) ≡ 0 for
i = 1, 2, 3, as this would make the monoid reducible.

For the study of other singularities on the monoid we consider nonzero polyno-
mials

q1 = b0s
4 + b1s

3t + b2s
2t2 + b3st

3 + b4t
4,

q2 = c0s
4 + c1s

3t + c2s
2t2 + c3st

3 + c4t
4,

q3 = d0s
4 + d1s

3t + d2s
2t2 + d3st

3 + d4t
4.

Linear algebra shows that (λ1q1, λ2q2, λ3q3) = (f4(θ1), f4(θ2), f4(θ3)) for some
f4 if and only if λ1b0 = λ3d4, λ1b4 = λ2c4, and λ2c0 = λ3d0. A simple analysis
shows the following: There exist λ1, λ2, λ3 �= 0 such that

(λ1q1, λ2q2, λ3q3) = (f4(θ1), f4(θ2), f4(θ3))

for some f4, and such that Z(f4) and Z(f3) have no common singular point if and
only if all of the following hold:

• b0 = 0 ↔ d4 = 0 and b0 = d4 = 0 → (b1 �= 0 or d3 �= 0),
• b4 = 0 ↔ c4 = 0 and b4 = c4 = 0 → (b3 �= 0 or c3 �= 0),
• c0 = 4 ↔ d0 = 0 and c0 = d0 = 0 → (c1 �= 0 or d1 �= 0),
• b0c4d0 = b4c0d4.

Similarly to the previous cases we can classify the possible configurations of
other singularities by varying the multiplicities of the roots of the polynomials q1, q2

and q3. Only the multiplicities of the roots (0 : 1) and (1 : 0) affect the first three
bullet points above. Then, for any set of multiplicities of the rest of the roots, we
can find q1, q2 and q3 such that the last bullet point is satisfied. This completes the
classification when Z(f3) is the product of three general lines.

Case 6. The tangent cone is three lines meeting in a point, and we can assume
that f3 = x3

2 − x2x
2
3. We write f3 = 
1
2
3 where 
1 = x2, 
2 = x2 − x3 and


3 = x2+x3, representing the three lines going through the singular point (1 : 0 : 0).
For each f4 we associate three integers j1, j2 and j3 defined as the intersection
numbers ji = I(1:0:0)(f4, 
i). We see that j1 = 0 ⇔ j2 = 0 ⇔ j3 = 0, and that
Z(f4) is singular at (1 : 0 : 0) if and only if two of the integers j1, j2, j3 are greater
then one. (Then all of them will be greater than one.) The singularity will be of the
U series [1], [2].

The three lines Z(
1), Z(
2) and Z(
3) can be parameterized by θ1, θ2, and θ3

where θ1(s, t) = (s, 0, t), θ2(s, t) = (s, t, t) and θ2(s, t) = (s, t,−t).
For the study of other singularities on the monoid we consider nonzero polyno-

mials
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q1 = b0s
4 + b1s

3t + b2s
2t2 + b3st

3 + b4t
4,

q2 = c0s
4 + c1s

3t + c2s
2t2 + c3st

3 + c4t
4,

q3 = d0s
4 + d1s

3t + d2s
2t2 + d3st

3 + d4t
4.

Linear algebra shows that (λ1q1, λ2q2, λ3q3) = (f4(θ1), f4(θ2), f4(θ3)) for some
f4 if and only if λ1b0 = λ2c4 = λ3d0, and 2λ1b1 = λ2c1 + λ3d1. There exist
λ1, λ2, λ3 �= 0 such that (λ1q1, λ2q2, λ3q3) = (f4(θ1), f4(θ2), f4(θ3)) for some f4

and such that Z(f4) and Z(f3) have no common singular point if and only if all of
the following hold:

• b0 = 0 ↔ c0 = 0 ↔ d0 = 0,
• if b0 = c0 = d0 = 0, then at least two of b1, c1, and d1 are different from zero,
• 2b1c0d0 = b0c1d0 + b0c0d1.

As in all the previous cases we can classify the possible configurations of other
singularities for all possible j1, j2, j3. As before, the first bullet point only affect the
multiplicity of the factor t in q1, q2 and q3. For any set of multiplicities for the rest
of the roots, we can find q1, q2, q3 with real roots of the given multiplicities such that
the last bullet point is satisfied. This completes the classification of the singularities
(other than O) when Z(f3) is three lines meeting in a point.

Case 7. The tangent cone is a double line plus a line, and we can assume
f3 = x2x

2
3. The tangent cone is singular along the line Z(x3). The line Z(x2) is para-

meterized by θ1 and the line Z(x3) is parameterized by θ2 where θ1(s, t) = (s, 0, t)
and θ2(s, t) = (s, t, 0). The monoid is reducible if and only if f4(θ1) or f4(θ2) is
identically zero, so we assume that neither is identically zero. For each f4 we asso-
ciate two integers, j0 := I(1:0:0)(f4, x2) and k0 := I(1:0:0)(f4, x3). Furthermore, we
write f4(θ2) as a product of linear factors

f4(θ2) = λsk0

r∏
i=0

(αis− t)mi .

Now the singularity at O will be of the V series and depends on j0, k0 and
m1, . . . , mr.

Other singularities on the monoid correspond to intersections of Z(f4) and the
line Z(x2) away from (1 : 0 : 0). Each such intersection corresponds to a root in the
polynomial f4(θ1) different from (1 : 0). Let j′0 ≤ 4 and k′

0 ≤ 4 be integers such that
j0 > 0 ↔ k0 > 0. Then, for any homogeneous polynomials q1, q2 in s, t of degree
4 such that s is a factor of multiplicity j′0 in q1 and of multiplicity k′

0 in q2, there is
a polynomial f4 and nonzero constants λ1 and λ2 such that k0 = k′

0, j0 = j′0 and
(λ1q1, λ2q2) = (f4(θ1), f4(θ2)). Furthermore, if q1 and q2 have real coefficients,
then f4 can be selected with real coefficients. This follows from an analysis similar
to case 5 and completes the classification of singularities when the tangent cone is a
product of a line and a double line.

Case 8. The tangent cone is a triple line, and we assume that f3 = x3
3. The line

Z(x3) is parameterized by θ where θ(s, t) = (s, t, 0). Assume that the polynomial
f4(θ) has r distinct roots with multiplicities m1, . . . , mr. (As before f4(θ) ≡ 0 if and
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only if the monoid is reducible.) Then the type of the singularity at O will be of the
V ′ series [3, p. 267]. The integers m1, . . . , mr are constant under right equivalence
over �. Note that one can construct examples of monoids that are right equivalent
over �, but not over� (see Figure 4.4).

Fig. 4.4. The monoids Z(z3 + xy3 + x3y) and Z(z3 + xy3 − x3y) are right equivalent over
� but not over�.

The tangent cone is singular everywhere, so there can be no other singularities
on the monoid.

Case 9. The tangent cone is a smooth cubic curve, and we write f3 = x3
1 + x3

2 +
x3

3 + 3ax1x2x3 where a3 �= −1. This is a one-parameter family of elliptic curves,
so we cannot use the parameterization technique of the other cases. The singularity
at O will be a P8 singularity (cf. [3, p. 185]), and other singularities correspond to
intersections between Z(f3) and Z(f4), as described by Proposition 6.

To classify the possible configurations of singularities on a monoid with a non-
singular (projective) tangent cone, we need to answer the following question: For
any positive integers m1, . . . , mr such that

∑r
i=1 mi = 12, does there, for some

a ∈ � \ {−1}, exist a polynomial f4 with real coefficients such that Z(f3, f4) =
{p1, . . . , pr} ∈ P2(�) and Ipi

(f3, f4) = mi for i = 1, . . . , r? Rohn [15, p. 63] says
that one can always find curves Z(f3), Z(f4) with this property. Here we shall show
that for any a ∈ � \ {−1} we can find a suitable f4.

In fact, in almost all cases f4 can be constructed as a product of linear and
quadratic terms in a simple way. The difficult cases are (m1,m2) = (11, 1),
(m1,m2,m3) = (8, 3, 1), and (m1,m2) = (5, 7). For example, the case where
(m1,m2,m3) = (3, 4, 5) can be constructed as follows: Let f4 = 
1
2


2
3 where 
1

and 
2 define tangent lines at inflection points p1 and p3 of Z(f3). Let 
3 define a line
that intersects Z(f3) once at p3 and twice at another point p2. Note that the points
p1, p2 and p3 can be found for any a ∈ � \ {−1}.
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The case (m1,m2) = (11, 1) is also possible for every a ∈ � \ {−1}. For any
point p on Z(f3) there exists an f4 such that Ip(f3, f4) ≥ 11. For all except a finite
number of points, we have equality [11], so the case (m1,m2) = (11, 1) is possible
for any a ∈ � \ {−1}. The case (m1,m2,m3) = (8, 3, 1) is similar, but we need to
let f4 be a product of the tangent at an inflection point with another cubic.

The case (m1,m2) = (5, 7) is harder. Let a = 0. Then we can construct a conic
C that intersects Z(f3) with multiplicity five in one point and multiplicity one in an
inflection point, and choosing Z(f4) as the union of C and twice the tangent line
through the inflection point will give the desired example. The same can be done
for a = −4/3. By using the computer algebra system SINGULAR [6] we can show
that these constructions can be continuously extended to any a ∈ � \ {−1}. This
completes the classification of singularities on a monoid when the tangent cone is
smooth.

In the Cases 3, 5, and 6, not all real equations of a given type can be transformed
to the chosen forms by a real transformation.

In Case 3 the conic may not intersect the line in two real points, but rather in two
complex conjugate points. Then we can assume f3 = x3(x1x3 + x2

1 + x2
2), and the

singular points are (1 : ±i : 0). For any real f4, we must have

I(1:i:0)(x1x3 + x2
1 + x2

2, f4) = I(1:−i:0)(x1x3 + x2
1 + x2

2, f4)

and
I(1:i:0)(x3, f4) = I(1:−i:0)(x3, f4),

so only the cases where j0 = j1 and k0 = k1 are possible. Apart from that, no other
restrictions apply.

In Case 5, two of the lines can be complex conjugate, and we assume f3 =
x3(x2

1 + x2
2). A configuration from the previous analysis is possible for real coeffi-

cients of f4 if and only if m1 = m2, k2 = l1, and k3 = l3. Furthermore, only the
singularities that correspond to the line Z(x3) will be real.

In Case 6, two of the lines can be complex conjugate, and then we may assume
f3 = x3

2 + x3
3. Now, if j3 denotes the intersection number of Z(f4) with the real line

Z(x2 + x3), precisely the cases where j1 = j2 are possible, and only intersections
with the line Z(x2 + x3) may contribute to real singularities.

This concludes the classification of real and complex singularities on real
monoids of degree 4.

Remark. In order to describe the various monoid singularities, Rohn [15] com-
putes the “class reduction” due to the presence of the singularity, in (almost) all
cases. (The class is the degree of the dual surface [14, p. 262].) The class reduction
is equal to the local intersection multiplicity of the surface with two general polar
surfaces. This intersection multiplicity is equal to the sum of the Milnor number and
the Milnor number of a general plane section through the singular point [20, Cor. 1.5,
p. 320]. It is not hard to see that a general plane section has either a D4 (Cases 1–6,
9), D5 (Case 7), or E6 (Case 8) singularity. Therefore one can retrieve the Milnor
number of each monoid singularity from Rohn’s work.
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Canal Surfaces Defined by Quadratic Families
of Spheres
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Summary. This paper is devoted to quadratic canal surfaces, i.e. surfaces that are envelopes
of quadratic families of spheres. They are generalizations of Dupin cyclides but are more
flexible as blending surfaces between natural quadrics . The classification of quadratic canal
surfaces is given from the point of view of Laguerre geometry. Their properties that are impor-
tant for geometric modeling are studied: rational parametrizations of minimal degree, Bézier
representations, and implicit equations.

5.1 Introduction

Natural quadrics, i.e. spheres, circular cylinders and circular cones, are perhaps the
most popular surfaces in geometric modeling. They can be characterized as en-
velopes of linear (or constant) families of spheres in space. An other exceptional
property of natural quadrics is that their offset surfaces are of the same type. Usually
Dupin cyclides are used as blending surfaces between natural quadrics. For example,
any two circular cones with a common inscribed sphere can be blended by a part of
Dupin cyclide bounded by two circles as it was shown by Pratt [9] (see Fig. 5.1). Cy-
clides are envelopes of special quadratic families of spheres, and they are offset stable
as well. Here we consider envelopes of most general quadratic families of spheres
and call them quadratic canal surfaces. The main motivation is the possibility to use
patches of these surfaces for blending of natural quadrics.

In Section 5.2 we briefly remaind elements of Laguerre geometry. Section 5.3
is devoted to the classification of conics in the Laguerre space. Cases when conics
define quadratic canal surfaces that can be tangent to natural cones along non-trivial
curves are determined. In Section 5.4 we find rational parametrizations of such canal
surfaces of minimal degree. Their Bézier representations and implicit equations are
considered in Sections 5.5 and 5.6. Conclusions and possible applications are dis-
cussed Section 5.7.
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Fig. 5.1. A Dupin cyclide used for blending circular cones.

5.2 Elements of Laguerre geometry

Here we briefly recall the elements of Laguerre Geometry (cf. [5, 8]). Consider the
space of all oriented spheres in R3 as a 4-dimensional affine space R4, where the first
three coordinates (x1, x2, x3) are the center point of a sphere and the last coordinate
x4 represents the radius of the sphere. The orientation is defined by the sign of x4:
the normals are pointing outwards if x4 > 0. We denote by R4

1 the affine space R4

equipped with a pseudo-euclidean (PE) metrics defined by the following PE scalar
product of vectors v, v′:

〈v, v′〉 = v1v
′
1 + v2v

′
2 + v3v

′
3 − v4v

′
4. (5.1)

Affine transformations of R4
1 that preserve this PE scalar product are called PE trans-

formations. It will be convenient to consider also the projective extension RP 4 of
RP 4

1 with additional coordinate x0. From this projective point of view PE transfor-
mations are exactly those projective transformations of RP 4 that preserve the ab-
solute quadric Ω: x0 = 0, x2

1 + x2
2 + x2

3 − x2
4. A geometric meaning of this metric

is a tangential distance between spheres in R3.
Affine subspaces A ⊂ R4

1 can be of three signature types sign A=(+, . . . ,+, σ),
where σ ∈ {+, 0,−}. For example, all lines in R4

1 with directional vectors v can be
classified into three types depending on the sign σ = sign〈v, v〉: (+)-lines, (0)-lines,
and (−)-lines (also called positive, isotropic, and negative lines, resp.). 2-Planes also
can have three types: (++)-, (+0)-, (+−)-planes.

For any smooth curve α ⊂ R4
1 with tangent (+)-lines almost everywhere, define

Env(α) as an envelope of the corresponding family of spheres in R3. We call such
envelopes also canal surfaces. Circular cylinder or circular cones (call them both
natural cones) are envelopes Env(L) of (+)-lines L and vice versa. Let Γ (a) denote
the hypersurface 〈x − a, x − a〉 = 0. Define Γ -hypersurface Γ (α) of a smooth
curve α in R4 as the envelope of the family of Γ (α(t)), for all t. Then Env(α) =
Γ (α) ∩ {x4 = 0} and any point x ∈ Γ (α) corresponds to a sphere that touches the
canal surface Env(α). Therefore, for any other curve β canal surfaces Env(α) and
Env(β) touch each other along some curve if and only if β(t) ∈ Γ (α) for all t in
some open interval. Here we exclud the trivial case when α and β are tangent in a
common point (hence the canal surfaces touch along a circle).
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Let C be a natural cone, and let L be the corresponding hyperbolic line in R4.
All the spheres in R3 tangent to C correspond to an isotropic hypersurface Γ (L) in
R4

1. Let v be a directional vector of L, and let p be a point on L. The equation of
Γ (L) can be calculated easily (see [2])

Γ (L) : 〈x− p, x− p〉〈v, v〉 − 〈x− p, v〉2 = 0. (5.2)

5.3 Conics in R4
1

Our goal is to study quadratic canal surfaces . Since they are defined as envelopes
of quadratic families of spheres, they are encoded by conics in R4

1. The well-known
examples are Dupin cyclides (see [5, 9]). The corresponding conics C are character-
ized as PE circles, i.e. infinite points of C are lying on Ω (may be a pair of complex
conjugated points or a double point). For example, all conics C contained in Γ (a),
a ∈ R4 are PE circles. Therefore, Env(C) is a Dupin cyclide [5, 8].

Fig. 5.2. Conics of type σ = (++) in canonical position.

Fig. 5.3. Conics of type σ = (+0) in canonical position.

Let us classify PE types of conics in R4
1 by:
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Fig. 5.4. Conics of type σ = (+−) in canonical position.

• an affine type T = E ,P,H: ellipse, parabola, or hyperbola;
• a signature σ = (++), (+0), (+−) of the spanned affine 2-plane;
• positions of infinite points of C with respect to Ω, e.g. a number n = #(C ∩Ω).

We denote the class T [n]
σ , where we skip [n] if n = 0, or change [n] to the list of

signatures α = (α1, α2) of asymptotic directions when it is necessary. In hyperbolic
case H sometimes it is necessary to distinguish conjugated hyperbolas having the
same asymptotes. We mark with a tilde H̃α

σ a case that is conjugated toHα
σ .

Theorem 1. All PE equivalence classes of irreducible conics (i.e. not a pair of lines)
with non-empty set of real points in R4

1 are listed in the following table, except three
conjugated cases with totally negative tangents H̃[2]

+−,H̃(0−)
+− , H̃(−−)

+− :

σ = ++ E [2]
++ E++ P++ H++

σ = +0 E+0 P [2]
+0 P+0

H̃+0 H+0 H[1]
+0

σ = +− E+− P(−)
+− P(+)

+− P(0)
+−

H(++)
+− H̃(++)

+− H(+0)
+− H̃(+0)

+−
H(0−)

+− H(−−)
+− H(+−)

+− H[2]
+−

Conics with different signatures σ from this table are illustrated in Fig. 5.2–
5.4. Arcs of curves with negative tangents are shown in grey. Points with isotropic
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tangents are marked by small circles. Isotropic directions and asymptotes are shown
by thin dashed and grey lines, respectively.

Proof. Without loss of generality we suppose that a 2-plane containing the given
conic passes through the origin and has the basis {e1, e2}, {e1, e3 + e4}, {e3, e4},
depending on the signature σ = (++), (+0), (+−), respectively. Also let the center
of the conic (or the vertex in parabolic case) be in the origin. Then in all cases there
exist linear PE transformations that have the following matrix form (when restricted
to these 2-planes with the fixed basis):(

cos ϕ ∓ sin ϕ
sin ϕ ± cos ϕ

)
,

(
1 0
ρ ±1

)
, ±

(
cosh θ ± sinh θ
sinh θ ± cosh θ

)
, ϕ, ρ, θ ∈ R. (5.3)

It is easy to recognize rotation, shear and boost (or hyperbolic rotation) transforma-
tions possibly composed with reflections.

Case σ = (++). E++, P++,H++ are usual Euclidean types of ellipse, parabola
and hyperbola that can be rotated to the canonical positions. Here we distinguish a
circle case E [2]

++, since it has two ‘circular points’ (0, 1,±i, 0, 0) lying on Ω.
Case σ = (+0). Only one direction is isotropic (shown as dashed vertical lines

in Fig. 5.3) and all others are positive. Any positive direction can be moved to any
other positive one using a shear transformation. Hence an axis of a parabola P+0 and
an asymptote of a hyperbolaH[1]

+0 can be moved to the horizontal position. Similarly
asymptotes of a hyperbola H+0 can be transformed to the symmetric position. The
conjugated hyperbola H̃+0 has a different PE type, since it has isotropic tangents.
An ellipse E+0 has a pair of points with isotropic tangents, and one can move line
connecting these points to the horizontal position.

Case σ = (+−). There are two fixed isotropic directions. Positive and negative
directions are in between. Using boost transformation one can move any positive
(resp. negative) direction to the horizontal (resp. vertical) direction. This allows to
transform all cases to the canonical ones shown in Fig. 5.4. For example, in the
case E+− we choose a vector connecting the origin with a point on the ellipse with
a biggest PE length, and transform it to a horizontal position using an appropriate
boost.

Corollary 2. Let L be a (+)-line, and C is a conic in R4. If the cone Env(L) touches
the quadratic canal surface nv(C) along a curve which is neither a line nor a circle
then C has one of the following types: E++, P++,H++, P [2]

+0,H+0,H(++)
+− ,H(+0)

+− .

Proof. Without loss of generality we identify L with the x1-axis. Then by Eq. (5.2)
Γ (L) has the equation x2

2 + x2
3 = x2

4. Consider a projection π : (x1, x2, x3, x4) �→
(0, x2, x3, x4) to the hyperplane {x1 = 0} ⊂ R4. The conic C is contained in
Γ (L) (since the touching curve is non circular), and its projection π(C) is a conic
in π(Γ (L)) (since the touching curve is not a line). On the other hand π(Γ (L)) =
Γ (L) ∩ {x1 = 0}, and all its infinite points are contained in the absolute quadric Ω.
Hence π(C) has infinite points on Ω, so it is one of three PE circles E [2]

++, P [2]
+0,H[2]

+−.
Note that Ω in the infinite hyperplane x0 = 0 has the same equation as a sphere,
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where x4 plays a role of x0. Let λ(C) be an infinite line of the 2-plane spanned by
the conic C. Different signatures of the 2-plane σ = (++), (+0), (+−) correspond
to different number of intersection points #(λ(C) ∩ Ω) = 0, 1, 2, respectively. The
proof now follows from the following simple observations:

(i) the projection π preserves affine type of conics;
(ii) the tangent line to the conic C in any point must be positive, since tangents to

π(C) are positive.

Indeed, according to (ii) all cases can be directly chosen from Fig. 2-4 with one
exception:H[1]

+0 cannot be included in the list, since λ(C) is tangent to Ω in the point
that already belongs to C. This means that π(C) should be a parabola P [2]

+0, that is
impossible according to (i).

5.4 Rational parametrizations

Any rational curve C ⊂ R4
1 with non-negative tangents defines a canal surface

Env(C) with a rational spine curve s(t) = (C1(t), C2(t), C3(t)) and a rational ra-
dius function r(t) = C4(t). It is known that there is a rational parametrization of
such canal surface in the form

M(t, u) = s(t) + r(t)N(t, u), (5.4)

where N(t, u) defines a rational Gaussian map to the unit sphere S. Let c(t) and
n(t, u) be a homogeneous form of C(t) and N(t, u), i.e. C(t) = (c1/c0, . . . , c4/c0)
and N = (n1/n0, n2/n0, n3/n0). In Laguerre geometry it is natural to consider
a slightly different variant of a Gaussian map with the image at infinity ñ =
(0, n1, n2, n3,−n0). Note that ñ(t, u) ∈ Ω.

Lemma 3. An isotropic hypersurface Γ (C) ⊂ R4
1 can be parametrized by 2-

parameter set of isotropic lines connecting c(t) with ñ(t, u) for all t, u ∈ RP 1.

Proof. Any of such lines can be parametrized v0c(t) + v1ñ(t, u) with homogeneous
coordinates (v0 : v1). The intersection with the hyperplane x4 = 0 gives the condi-
tion v0c4(t)− v1n0(t, u) = 0. Hence choosing v0 = n0(t, u) and v1 = c4(t) we get
the parametrization of the intersection Γ (C) ∩ {x4 = 0}:

n0(t, u)c(t) + c4(t)ñ(t, u) = (n0c0, n0c1 + c4n1, n0c2 + c4n2, n0c3 + c4n3, 0).

Switching to the cartesian coordinates in R3 we get exactly the parametrization of
the canal surface Env(C) (5.4).

Using this lemma one can easily find a rational parametrization of any PE trans-
form of the canal surface. It is enough to transform the curve c(t) and the Gaussian
map ñ(t, u) separately, and then intersect the resulting isotropic hypersurface with
the hyperplane x4 = 0. Hence it remains to find the Gaussian map in all canonical
cases of interest. Here we remind some definitions and results from [3].
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For a rational curve C(t) ⊂ R4
1 define its discriminant by the formula D(t) =

d2(t)(Ċ2
1 (t)+ Ċ2

2 (t)+ Ċ2
3 (t)− Ċ2

4 (t)), where d(t) is a common denominator of the
derivative vector Ċ(t). Let S be a unit sphere in RP 3. Define the parametrization PS

of S by two complex parameters u0 and u1

PS(u0, u1) =
(
u0ū0 + u1ū1, 2Re(u0ū1), 2Im(u0ū1), u0ū0 − u1ū1

)
. (5.5)

For any 2× 2-matrix X = (xij) with complex entries define the following extended
2× 4-matrix X̃ and its minors qij = qij(X̃):

X̃ =
(

x00 x01 x̄00 x̄01

x10 x11 x̄10 x̄11

)
, i.e. q01 = det X, q02 =

∣∣∣∣x00 x̄00

x10 x̄10

∣∣∣∣ , etc. (5.6)

Theorem 4. For any given curve C ⊂ R4
1 with D(t) ≥ 0 the Gaussian map of the

canal surface Env(C) has the form

n(t, u) = PS(x1∗(t)(1− u) + x2∗(t)u), (5.7)

where xi∗ are rows of the 2×2 complex polynomial matrix X(t) such that the minors
qij = qij(X̃(t)) (see (5.6)) satisfy the following condition

2Im(q12) : 2Re(q12) : Im(q13 − q02) : Im(q13 + q02) = Ċ1 : Ċ2 : Ċ3 : Ċ4. (5.8)

If n(t, u) has minimal degree in t then deg x0∗(t)+deg x1∗(t) = deg(d(t)Ċ(t)). All
such cases correspond to different factorizations of the discriminant D(t) = q01q̄01.

Proof. The proof follows directly from [3, Sec. 4]. In particular the condition (5.8)
follows from the following equation (cf. [3, Eq. (7)])

(q13,−q12,−q03, q02) = di(ṙ + ṡ3, ṡ1 − iṡ2, ṡ1 + iṡ2, ṙ − ṡ3).

Now we are ready to consider minimal parametrizations of six cases of quadratic
canal surfaces E++, P++, H++, H+0, H(++)

+− , H(+0)
+− . We skip parabolic Dupin cy-

clide case P [2]
+0, since it was already considered earlier ([1, 5, 8]).

Fig. 5.5. Quadratic canal surfaces of types E++, P++, H++.
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Example 5. The case E++ is defined by the ellipse c(t) = (1+t2, a(1−t2), 2bt, 0, 0),
a = p2 +q2, b = 2pq, p > q > 0. Then D(t) = (p2t2 +q2)(q2t2 +p2) has two pairs
of complex conjugated roots and can be factorized D(t) = f(t)f̄(t) in four different
ways corresponding to four complex matrices X(t)(

b(t2 − 1)− 2iat 0
0 1

)
,

(
1 0
0 b(t2 − 1) + 2iat

)
,(

pt− iq 0
0 qt + ip

)
,

(
qt− ip 0

0 pt + iq

)
,

such that det X(t) = f(t). One can check straightforward that the minors q01 satisfy
(5.8). Hence, the first two cases of X(t) define Gaussian maps n(t, u) (see (5.7)) of
bi-degree (4, 2) and the last two ones are biquadratic. Therefore, only the latter two
cases define two different parametrizations F (t, u) of Env(C) of bi-degree (4, 2)
(see (5.4)). One of such parametrizations is shown in Fig. 5.5(left). The other para-
metrization can be obtained by reflection in the plane x = 0.

Similar approach allows us to find all parametrizations of minimal degree for
other quadratic canal surfaces we are considering.

Example 6. The case P++ is defined by the curve c(t) = (1, 2a, at2, 0, 0), a > 0.
Then D(t) = a2(1 + t2), and there are two bi-degree (4, 2) parametrizations of
Env(C) (Fig. 5.5(middle)) defined by the following matrices:

X(t) =
(

a(t− i) 0
0 1

)
,

(
1 0
0 a(t + i)

)
.

Example 7. The caseH++: c(t) = (1−t2, a(1+t2), 2bt, 0, 0), a = p2−q2, b = 2pq,
p, q > 0. Then D(t) = (p2t2 + q2)(q2t2 + p2), and there are two bi-degree (4, 2)
parametrizations of Env(C) (Fig. 5.5(right)) defined by the following matrices:

X(t) =
(

pt + iq 0
0 qt + ip

)
,

(
qt− ip 0

0 pt− iq

)
.

Example 8. The case H(++)
+− : c(t) = (1 − t2, 0, 0, 2at, b(1 + t2)), a = p2 + q2,

b = 2pq, p, q > 0. Then D(t) = 1+2(1−2b2/a2)t2+t4, and there are four different
bi-degree (4, 2) parametrizations of Env(C) defined by the following matrices X(t):(

λ̄t− 1 t + λ
t− λ λ̄t + 1

)
,

(
λt− 1 t + λ̄
t− λ̄ λt + 1

)
,

(
i(λt− 1) λ̄t + 1
i(t− λ̄) t + λ

)
,

(
i(λ̄t− 1) λt + 1
i(t− λ) t + λ̄

)
,

where λ = −(q+ip)/(p+iq). In fact Env(C) is a hyperboloid of revolution (Fig. 5.6,
left and right), or its offsets if C is translated in the x4-axis direction (as shown in
Fig. 5.6(middle)).
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Fig. 5.6. Quadratic canal surfaces of type H(++)
+− .

Example 9. The case H+0: c(t) = (1 − t2, 2at, 0, b(1 + t2), b(1 + t2)), a > 0.
Then D(t) = 4a2b2(1 + t2)2, and there are two bi-degree (4, 2) parametrizations of
Env(C) (Fig. 5.7(left)) defined by the following matrices X(t):(

2ib(t + i) 0
2b a(t + i)

)
,

(
2ib(t− i) 0

2b a(t− i)

)
.

Example 10. The case H[1]
+−: c(t) = (1 − t2, 0, 0, 2at, a(1 + t)2/2). Then D(t) =

a2(3 + 2t + 3t2)(1 − t)2, and there are two bi-degree (3, 2) parametrizations of
Env(C) (Fig. 5.7(right)) defined by the following matrices X(t):( √

3a(t + µ) −ia(t− 1)
−i
√

3(t + µ) (t− 1)

)
,

( √
3a(t + µ̄) −ia(t− 1)

−i
√

3(t + µ̄) (t− 1)

)
, µ =

1 + 2
√

2i
3

.

Fig. 5.7. Quadratic canal surfaces of type H(++)
+0 and H[1]

+−.

5.5 Bézier representations

Consider the case E++ (see Fig. 5.5(left)) of canal surface generated by the ellipse
C: x2

1/a2 + x2
2/b2 = x2

0 on the 2-plane x3 = x4 = 0. In order to parameterize
Env(C) and its PE transforms we find a rational Bézier representation of Γ (C) first.
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We use homogeneous control points, denoting by e0, . . . , e4 the standard frame in
RP 4. Consider the usual parametrization of a half of C: c(t) =

∑2
i=0 piB

2
i (t) with

control points
(p0, p1, p2) = (e0 − be2, ae1, e0 + be2).

Define a biquadratic parametrization h(t, u) =
∑2

i=0

∑2
j=0 rijB

2
i (t)B2

j (u), where

(rij) =

⎛⎝ ab(e3 + e4) ae0 ab(−e3 + e4)
−b
√

a2 − b2(e3 + e4) (a2 − b2)e1 b
√

a2 − b2(−e3 + e4)
ab(e3 + e4) ae0 ab(−e3 + e4)

⎞⎠ . (5.9)

This parametrization is derived from Example 5: take the parametrization F (t, u) of
Γ (C) and intersect with the hyperplane x2 = 0.

Then another rational parametrization of Γ (C) can be defined by drawing lines
through the ellipse points c(t) and the hyperboloid points h(t, u). The parametriza-
tion of the intersection of Γ (C) with a hyperplane Π(x) = 0

f(t, u) = Π(h(t, u))c(t)−Π(c(t))h(t, u). (5.10)

Now it is easy to calculate Bézier control points of this parametrization of bi-degree
(4, 2). Indeed, just use conversion formulas from products B2

i (t)B2
j (t) to B4

i+j(t).
If we choose a hyperplane Π(x) = x4 − rx0 then the section is a pipe surface

shown in Fig. 5.5(left).

5.6 Implicit equations and double points

It will be convenient to use affine coordinates X = (x, y, z, r) = (x1/x0, . . . , x4/x0)
in R4

1. We start from the case E++ of ellipse. By the definition Γ (E) is the envelope
of the family of isotropic cones Γ (E(t)) = 〈X − E(t), X − E(t)〉, where E(t) =
(a(1− t2)/(1 + t2), 2bt/(1 + t2), 0, 0). The equation of the envelope is obtained by
elimination of parameter t from the system{

f1(X, t) = 〈X − E(t), X − E(t)〉 = 0,
f2(X, t) = 〈Ė(t), X − E(t)〉 = 0.

(5.11)

Here f1, f2 are rational functions in the variable t, i.e. f1 = g1(X, t)/p(t), f2 =
g2(X, t)/q(t). Let

F (X) = Res
(
g1(X, t), g2(X, t), t

)
(5.12)

be the resultant of two polynomials g1, g2 (here we assume that degree of poly-
nomials p, q are minimal). A priori F may be a reducible polynomial, i.e. F =
F1F2 · · ·Fn then one factor, assume F1, is the equation of Γ (E). After easy compu-
tation with MAPLE package we see that degree of F is 8.

For example, if a =
√

2 and b = 1 the equation of Γ (E) is
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F = ω4 +
(
6 + 2x2 − 4 y2

)
ω3 +

(
13− 28 y2 + 4x2 +

(
x2 + 2 y2

)2)
ω2

+ 6
(
x2 + 2− 4 y2

) (
−x2 + 1− 2 y2

)
ω

+
(
4− 12

(
x2 + 2 y2

)
− 3

(
x2 − 4 y2

) (
4 y2 + 5x2

))
− 4

(
x2 + 2 y2

)3
,

where ω = x2 + y2 + z2 − r2.
Moreover, F is an irreducible polynomial. Indeed, a plane curve Γ (E) ∩ {r =

const} ∩ {z = 0} is defined by an irreducible polynomial of degree 8 as it is an
offset of the ellipse E (see, e.g. [8]). Hence deg Γ (E) = 8 as well.

Theorem 11. Let E be an ellipse of type E++. Then the hypersurface Γ (E) is a real
3-dimensional variety of degree 8, and its set of finite real double points has four
parts E ∪H1 ∪H2 ∪Ω where:

E : x2/a2 + y2/b2 = 1, z = r = 0,
H1 : x2/(a2 − b2)− z2/b2 + r2/b2 = 1, y = 0,
H2 : −y2/(a2 − b2)− z2/a2 + r2/a2 = 1, x = 0,

H1 and H2 are hyperboloids of 1-sheet and 2-sheet, resp., (the only non-isotropic
lines on Γ (E) are two rulings of the hyperboloid H1), Ω is the absolute quadric.

Proof. It remains to determine double points. We start from the following geometric
description of Γ (E). The hypersurface Γ (E) consists of points in R4

1 that define
spheres tangent to the ellipse. All spheres touching in one point define an isotropic
line in R4

1. If two isotropic lines have a common point then this point is a double
point on Γ (E). Therefore, a common point of two isotropic lines corresponds to a
sphere that touches the ellipse E in two points. There are two families of circles on
the (x, y)-plane that touch the ellipse E in two points. One family consists of inside
circles with centers on the x-axis, another one of outside circles with centers on the
y-axis. A pencil of spheres that contains this circle goes through each of such circle,
i.e. spheres of the pencil are tangent to the ellipse E in two points. We notice that
these two families of spheres are defined by two equations y = 0 and x = 0 in
R4

1. Therefore, the equations of the hiperboloids H1 and H2 are obtained from the
equation F = 0 as the hyperplane sections.

Remark 12. For the ellipse E in Theorem 11 hypersurface Γ (E) has also other sin-
gularities (not only double points). Consider a projection of Γ (E) to the (x, y)-plane.
Singularities of the ellipse offsets define the evolute curve (see Fig. 5.8), which is an
envelope of normal lines to the ellipse E in the plane. Let a surface K ⊂ Γ (E) be
an envelope of all isotropic lines in Γ (E). Since the isotropic lines are projected to
normals, K is projected to the evolute, and all points of K are singular in Γ (E). The
well-known parametrization of the evolute enables us to parametrize K:

K(t, s) = ((b2 − a2) cos3 t,
(b2 + a2) sin3 t

a
, h(t)

1− s2

2s
, h(t)

1 + s2

2s
),

where h(t)2 = (b2 sin2(t) + a2 cos2(t))3/a2. Note that a general point on K be-
longs to a segment of an isotropic line on Γ (E) bounded by hyperplanes x = 0 and
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y = 0. This fact may be important for applications in order to avoid singular points
on canal surfaces.

Fig. 5.8. The ellipse, two components of its offset and an evolute of the ellipse.

In other cases different degrees and different number of singular parts can appear.
We will list only the most important information for blending applications: subsets
of double points that contain positive lines.

For the case P(0)
++ represented by the parabola C : {x2 − 4ay = 0, z = r = 0}

we calculate the following implicit equation of Γ (C) of degree 6:

F = ω3 − 2 v2ω2 −
(
18 ax2 − v3

)
vω − a

(
27 ax2 − 2 v3

)
x2,

where v = y − 2a, ω = x2 + y2 + z2 − r2. The double hyperbolic paraboloid H :
{x = 0, 4 y − 1 + 4 z2 − 4 r2 = 0} is obtained by intersecting with the hyperplane
x = 0.

The caseH++ is defined by the curve

C(t) = (a(1 + t2)/(2t), b(1− t2)/(2t), 0, 0).

Then, similarly to the case E++, deg Γ (C) = 8 and just one double hyperboloid of
1-sheet H : {y = 0, x2/(a2 + b2) + z2/b2 − r2/b2 = 1} is found.

The caseH(++)
+− is defined by the curve

C(t) = (0, 0, 2at/(1− t2), b(1 + t2)/(1− t2)).

Then deg Γ (C) = 8 and two double hyperboloids H1 : {z = 0, (x2 + y2)/a2 −
r2/(a2− b2) = 1} and H2 : {r = 0, (x2 + y2)/b2− z2/(a2− b2) = 1} contain four
families of positive lines. Note that H2 is a usual hyperboloid of revolution in R3.

The caseH+0 is defined by the hyperbola

C(t) = (2at/(1− t2), 0, b
(
1 + t2

)
/(1− t2), b

(
1 + t2

)
/(1− t2))}.
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We have deg Γ (C) = 8 and one double hyperboloid

{x = 0,
(
b2 − a2

)
z2 − 2 b2rz +

(
a2 + b2

)
r2 + a4 − a2y2 = 0}.

The case H[1]
+− corresponds to the hyperbola C(t) = (0, 0, 2at/(1 − t2), a(1 +

t)2/(1 − t2)), and deg Γ (C) = 6. Here the two families of lines are lying on the
hyperboloid {z = r, x2 + y2 − z2 = a2/2} which is not double. This is caused by
the following fact: natural projections from C to all of these lines are 1–1 but not 2–1
as in all previous cases, since one asymptote of C is isotropic.

5.7 Conclusions

Quadratic canal surfaces are natural generalizations of Dupin cyclides with the po-
tential applications in geometric modeling, since

• they have a relatively simple rational parametrization of bi-degree (3, 2) or (4, 2);
• their Bézier representation is invariant with respect to Laguerre transformations

(in particular, offsets have Bézier representations of the same bi-degree);
• their implicit degree is 6 or 8;
• they are tangent with families of circular cones and cylinders (also along non-

circular curves).

In Fig. 5.9 we see three blendings between natural quadrics . The first two use (4, 2)-
patches of a quadratic canal surface of type E++ for blending a cone and a cylinder.
The third uses the biangle patch of bi-degree (6, 2) of the same surface as fixed radius
rolling ball blend of two cylinders with a common inscribed sphere.

Fig. 5.9. Blendings with patches of canal surfaces of type E++.
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Laboratoire J-A. Dieudonné
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Summary. Patches of parametric real surfaces of low degrees are commonly used in Com-
puter Aided Geometric Design and Geometric Modeling. However the precise description of
the geometry of the whole real surface is generally difficult to master, and few complete clas-
sifications exist.

Here we study surfaces of bidegree (1,2). We present a classification and a geometric
study of parametric surfaces of bidegree (1,2) over the complex field and over the real field by
considering a dual scroll. We detect and describe (if it is not void) the trace of self-intersection
and singular locus in the system of coordinates attached to the control polygon of a patch (1,2)
in the box [0; 1] × [0; 1].

6.1 Introduction

We consider a polynomial mapping of bidegree (1,2):

Φ : P1 × P1 −→ P3

given by a matrix A = (aij), i = 1, . . . , 4, j = 1, . . . , 6 of maximal rank 4 such
that:

Φ = t(Φ1, Φ2, Φ3, Φ4) and Φ = A.t(tu2, tuv, tv2, su2, suv, sv2) (1)

where((t : s), (u : v)) are a system of coordinates of P1 × P1. The base field is
K = C or R. Then S = Im(Φ) ⊂ P3 is a parametric surface of bidegree (1,2) and
Φ is a parameterization of S.

Similarly, one defines surfaces of bidegree (m,n); patches of these surfaces are
often used in C.A.G.D and Solid Modeling especially for the bi-cubics m = n = 3.

Our aim is to classify the applications Φ of bidegree (1,2) while the base field is
R or C up to a change of projective coordinates in the source space P1 × P1 and in
the target space P3. In a previous article [13] we described the generic complex case
and the geometry of the corresponding surfaces. Then, the parameterization of Φ is
equivalent to a parameterization, we called “normal form” and denoted by NF (a, b):
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X = tu2, Y = (t− s)(u− v)2, Z = (t− as)(u− bv)2, T = sv2

where a and b are two complex parameters different from 0 and 1. Moreover, if
(a, b) �= (a′, b′) then NF (a, b) is not equivalent to NF (a′, b′). We say that (a, b) is
a couple of moduli for this classification.

In this article we study the real generic cases and the non generic cases. The
surfaces S defined by (1) are ruled surfaces which admit an implicit equation in P3

of degree at most 4. These surfaces were studied extensively in the 19th century by
great mathematicians: Cremona [7], Cayley [3], [4], Segre [28]; one finds a synthesis
of theirs results and extensions in the books of Salmon [25] and of Edge [12]. From
1930, the main stream of algebraic geometry concentrated on the study of varieties up
to birational equivalence and with more conceptual (and less effective) tools. How-
ever, applications in C.A.G.D and Solid Modeling showed the necessity of revisiting
of the geometry of parametrized curves and surfaces of small degrees and bidegrees.
An article of Coffman and al. [6] is a model of this kind of work: it revisited and
completed the classification of parameterized surfaces of total degree 2 (started by
Steiner in 1850). The ruled surfaces of implicit degree 4 are more complicated and
have more diversity. In the 19th century the focus was not on the classification of
parameterizations but rather on the geometric property and the calculation of cer-
tain invariants as well as on the obtaining of lists of implicit equations which are
dependent of many parameters. A presentation of these classification results over the
complex field related to rational (1,2)-Bézier surfaces with the description of the be-
haviour in presence of base-points, but without any description of the singularities,
was provided by W.L.F. Degen [9]. A more complete classification over the real field,
describing also the possible singularities was provided by S. Zube in [30] and [31].
Here we briefly review all these results, then we provide a new presentation based on
the study of the dual scroll and the consideration of the tangent planes to all conics
of the surface. We provide normal forms of the parameterizations and relate them to
geometric data of the surface. We also consider the problem of defining classifying
spaces which express the proximity with respect to deformations of these objects.
Our article is organized as following:

In section 2, we recall some results of the 19th century, we follow the syntax
given by Edge [12] in 1931, then we distinguish different types of parametric surfaces
and we concentrate on the surfaces of bidegree (1,2). In section 3, we present our
method of classification and introduce a scroll surface in the dual space which will be
used to find the moduli. This variety is different from those used by the geometricians
of 19th century but similar to the ones considered in [23]. In section 4, we recall
the results obtained in [13] for generic complex case and extend them to the real
setting. In section 5, we classify the intersections of a scroll (1,2) of P5 and a 3-
projective plane or equivalently to the intersections of two curves of bidegree (1,2)
in P1 × P1. Then we apply these results to the classification of parametric surfaces
(1,2). In section 6, we provide simple formulae to describe the critical points in the
system of coordinates attached to the control polygon of a patch (1,2). We detect and
describe the trace of the pre-images of the self-intersection and singular locus in the
box [0, 1]× [0, 1].
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6.2 Rational ruled surfaces

6.2.1 Ruled surfaces

Definition 1. A ruled surface in projective space is a surface formed by a “singly
infinite system” of straight lines. The lines are called the generators of the surface.

A normal ruled surface is a ruled surface which can not be obtained by projec-
tion from another ruled surface of the same degree in a space of higher dimension.

Proposition 2. A rational ruled surface of degree n spanning Pn+1 is normal in
Pn+1.

All rational ruled surfaces of degree n can be obtained as projections of these
normal surfaces.

Proof. See [12], pp 34-36.

Hence, a quartic rational ruled surface S in P3 can be obtained as projection of
a rational normal quartic ruled surface F in P5. The center of projection is a line L.
See also [9] for a classification of the relative positions of F and L, while in [30] the
projection is decomposed into a projection on P4 followed by a projection on P3 in
order to better describe the provided classification.

6.2.2 Directrices of a surface

We assume that F is not a cone (this case is simple).

Definition 3. A directrix curve of a ruled surface is a curve on the surface meeting
every generator in one point.

A minimum directrix is a directrix curve which is of minimum degree on the
surface.

Remark 4. The image of a directrix (respectively generator) of F by projection is a
directrix (respectively generator) of S. Moreover, the degree of a directrix of F is
the same as the one of its image.

Proposition 5. Let �n
2
� denote

n

2
if n is even and

n− 1
2

if n is odd. There are �n
2
�

projectively distinct types of rational normal ruled surfaces of degree n in Pn+1,
each one has a directrix of minimum degree m, where m = 1, 2, . . . , �n

2
�.

Proof. See [12], pp 38-39.

For n = 4 there are only two types, either with minimum directrix conics or with
minimum directrix lines.



96 T.-H. Lê and A. Galligo

6.2.3 Parametric surfaces of bidegree (1, 2)

Definition 6. Parametric surfaces of bi-degree (1,2) are images of maps

Φ : P1(C)× P1(C) −→ P3(C)
([t : s], [u : v]) �−→ [Φ1 : Φ2 : Φ3 : Φ4]

where Φ1, Φ2, Φ3, Φ4 are bihomogeneous polynomials in [t : s] and [u : v] of bide-
gree (1, 2).

The parametric surfaces of bidegree (1, 2) are rational ruled surfaces and have
implicit degree 4 if Φ1, Φ2, Φ3, Φ4 have no base points. These (1, 2) parametric sur-
faces S are images of the normal surfaces F having minimum directrix conics and
generated by (1, 1) correspondence between 2 directrix conics. Hence, S is gener-
ated by (1, 1) correspondence between two non degenerated conics, or between a
double line and a conic, or between two double lines (respectively when the center
of projection is in general position in regard to F , or it cuts a plane containing a
directrix conic of F or it cuts two planes containing two directrix conics of F .

The implicit equations for each case are given in [12], pp (62-69). These equa-
tions contain many parameters. We aim to consider normal forms for bidegree (1,2)
parameterizations with a minimum number of parameters in the complex and in the
real settings.

We denote by (X : Y : Z : T ) projective coordinates in P3 and by (X : Y : Z :
T : P : Q) projective coordinates in P5.

6.3 Dual scroll

We write the (1, 2) parametric surfaces S in the basis

{tu2, 2tuv, tv2, su2, 2suv, sv2},

(S) :

⎧⎪⎪⎨⎪⎪⎩
X = a1tu

2 + 2b1tuv + c1tv
2 + d1su

2 + 2e1suv + f1sv
2

Y = a2tu
2 + 2b2tuv + c2tv

2 + d2su
2 + 2e2suv + f2sv

2

Z = a3tu
2 + 2b3tuv + c3tv

2 + d3su
2 + 2e3suv + f3sv

2

T = a4tu
2 + 2b4tuv + c4tv

2 + d4su
2 + 2e4suv + f4sv

2

(6.1)

where ai, bi, ci, di, ei, fi ∈ C.

Notation:A is the 4×6 matrix of the coefficients ai, bi, ci, di, ei, fi. We can assume
that rank(A) = 4.

The considered surface S can be seen either as the total space of a family of
conics S = ∪tCt with t ∈ P1(C), or as the total space of a family of lines S = ∪uLu

with u ∈ P1(C).
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6.3.1 A 3-projective plane

Definition 7. We consider the map between dual spaces:

πA : (P3)∗ → (P5)∗

(α, β, γ, δ) �→ (A,C,E,B,D, F ) = (α, β, γ, δ)A

defined by tA. Its image is a 3-projective plane in (P5)∗ that we denote by ΠA.

By linear transformation, we can write the implicit equations of ΠA in (P5)∗ as
follows: {

A1X1 + B1X2 + C1X3 + D1X4 + E1X5 + F1X6 = 0
B2X2 + C2X3 + D2X4 + E2X5 + F2X6 = 0

where (X1 : X2 : X3 : X4 : X5 : X6) are projective coordinates of (P5)∗.

6.3.2 Tangent planes to all conics of the surface

We want to characterize the planes Π in P3 such that Π is tangent to any curve C(t:s)
of S or contains it.

The general equation of a plane Π in P3 is:

αX + βY + γZ + δT = 0 (α, β, γ, δ) ∈ C4 \ {0} (6.2)

Substituting in (6.2) the expressions of X,Y,Z, T given in (6.1), we obtain the equa-
tion of the intersection of Π and of a conic C(t:s):

Π ∩ C(t:s) : (At + Bs)u2 + 2(Ct + Ds)uv + (Et + Fs)v2 = 0.

where (A,C,E,B,D, F ) = πA(α, β, γ, δ) ∈ (P5)∗.

They are tangent (or Π contains C(t:s)) for all (t : s) ∈ P1 if and only if the
discriminant vanishes identically, i.e. (Ct+Ds)2− (At+Bs)(Et+Fs) = 0,∀(t :
s) ∈ P1. This is true if and only if the following conditions are satisfied:

C2 = AE , 2CD = AF + BE , D2 = BF.

From this, we obtain four simpler equations:

C2 = AE , D2 = BF , CD = AF = BE , (6.3)

(We note that the four equations above are related). We have:

(6.3) ⇔ rank
(

A C B D
C E D F

)
≤ 1. (6.4)

(6.4) defines a surface of (P5)∗, we denote by F(2, 2)∗ (which is a so-called rational
scroll. So we have the following proposition:
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Proposition 8. A plane Π defined by (α, β, γ, δ) in P3 is tangent to all conics of S
(or contains) it if and only if πA(α, β, γ, δ) ∈ F(2, 2)∗.

In the following section, we express F(2, 2)∗ as the dual scroll (in a geometric
sense that we will make precise) of the scroll F(2, 2) and construct related parametric
equations for F(2, 2)∗.

6.3.3 Parameterization of the dual scroll

Notations: We use affine coordinates t instead of (t : s), u instead of (u : v). We set
the following notation and parametric equations of the scroll F(2, 2) in P5 (it is the
normal ruled surface of bidegree (1,2)):

F(2, 2) :

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

X = tu2

Y = tu
Z = t
T = u2

P = u
Q = 1

F(2, 2) is a surface and not a hypersurface. However for each point of F(2, 2) we
want to construct a hyperplane naturally attached to that point (This process is some-
how similar to the construction of the osculating plane attached to a point of a space
curve). These hyperplanes will describe a projective variety that we call the “dual
scroll” in (P5)∗. This is not related to the usual but to a generalized notion of duality,
already studied in [23] and called “strict duality”.

Construction: We consider the affine chart Q = 1 where F(2, 2) becomes an affine
complete intersection, then its affine implicit equations are:⎧⎨⎩

X − TZ = 0
Y − ZP = 0
T − P 2 = 0

We denote by M the parameterization map of the scroll F(2, 2). To each point
M0 = M(t0, u0), ((t0, u0) �= (0, 0)) of the scroll, we associate generalized tangent
spaces of dimension 3 and 4 constructed from Lu0 and Ct0 (that are the generator
and the conic of the scroll passing through M0).

The parametric equations of the line Lu0 and of the conic Ct0 are:

Lu0 :

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
X = tu2

0

Y = tu0

Z = t
T = u2

0

P = u0

Ct0 :

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
X = t0u

2

Y = t0u
Z = t0
T = u2

P = u
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Therefore, we deduce implicit equations of plane Πt0 containing Ct0 :

Πt0 :

⎧⎨⎩
X − t0T = 0
Y − t0P = 0
Z − t0 = 0.

The intersection of Lu0 and Πt0 is just the point M0. We denote by G(t0, u0) the
affine space generated by Lu0 and Πt0 . Hence, G(t0, u0) has dimension 3. Implicit
projective equations of G(t0, u0) are:

G(t0, u0) :
{

X − t0T − u2
0Z + u2

0t0Q = 0
Y − u0Z − t0P + u0t0Q = 0.

We denote by E the set of 4-projective spaces containing G(t0, u0); such a hyperplane
is denoted by H(α, β, t0, u0) and have an equation of type:

α(X − t0T − u2
0Z + u2

0t0Q) + β(Y − u0Z − t0P + u0t0Q) = 0

where (α, β) ∈ C2 − {0}.

Each hyperplane H(α, β, t0, u0) cuts the scroll along a curve of degree 4 (because
the scroll has degree 4). As it already contains Ct0 and Lu0 , the intersection must
contain another line of the scroll, let us call it Lu′ . We aim to single out the hyper-
plane H(α, β, t0, u0) such that Lu0 ≡ Lu′ . By replacing the parametric expressions
of X,Y,Z, T, P,Q of F(2, 2) in the equation above, we obtain the equation of the
intersection of F(2, 2) and H(α, β, t0, u0) in the parameter space of the scroll:

(u− u0)(t− t0)(αu + αu0 + β) = 0

Therefore, u′ =
−(αu0 + β)

α
. (α must be different from 0, otherwise α = β = 0).

We get, u′ = u0 if and only if:
−(αu0+β)

α
= u0 ⇒ β =−2αu0. We can take α=1,

so we have: β = −2u0. In this case H(1,−2u0, t0, u0) (denoted by H(t0, u0)) cuts
F(2, 2) in Ct0 and twice in Lu0 . The equation of H(t0, u0) becomes:

X − 2u0Y + u2
0Z − t0T + 2u0t0P − u2

0t0Q = 0.

The coefficients are the coordinates (A1 : . . . : A6) of this hyperplane in (P5)∗ in
the following order: (

1 −2u0 u2
0 −t0 2u0t0 −u2

0t0
A1 A2 A3 A4 A5 A6

)
.

and satisfy the condition:

rank

⎛⎜⎝ A1
1
2
A2 A4

1
2
A5

1
2
A2 A3

1
2
A5 A6

⎞⎟⎠ = 1.
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This condition defines a scroll F(2, 2)∗ in (P5)∗ that we call the dual scroll of F(2, 2).
The parametric equations of the scroll F(2, 2)∗ in the dual space (P5)∗ were given
above.

6.3.4 Intersection of ΠA and F(2, 2)∗

By replacing the parametric equations of F(2, 2)∗ in the implicit equation of ΠA, we
see that ΠA ∩ F(2, 2)∗ is given by the intersection of two curves of bidegree (1,2) in
the parameter space P1 × P1:{

ϕ1(t, u) = A1 − 2B1u + C1u
2 −D1t + 2E1tu− F1u

2t = 0
ϕ2(t, u) = 2B2u + C2u

2 −D2t + 2E2tu− F2u
2t = 0.

We have two cases: either ϕ1(t, u) ∩ ϕ2(t, u) is finite (4 points) or infinite. We first
consider the generic cases, i.e. the intersection contains 4 distinct points (tk, uk),
k = 1, . . . , 4 and tk �= tj , uk �= uj if k �= j. This will give a classification of the
maps of bidegree (1,2) up to change of coordinates and a set of normal forms.

6.4 The generic case

We first recall the result for the generic complex case (see more details in the article
[13]).

6.4.1 The generic complex case

Generically, ϕ1(t, u) ∩ ϕ2(t, u) contains 4 distinct points; they correspond to 4 tan-
gent planes. They are tangent to all conics of S, along a special torsal line.

We can choose these 4 tangent planes in P3 to be the planes of coordinates (X =
0), (Y = 0), (Z = 0), (T = 0).

We proved in [13] that, after a suitable change of coordinates and change of pa-
rameters, the surface S admits the parametric representation:⎧⎪⎪⎨⎪⎪⎩

X = tu2

Y = (t− s)(u− v)2

Z = (t− as)(u− bv)2

T = sv2

This normal form depends on two moduli a and b. Moreover, the singular locus of
the surface is a twisted cubic and has parametric equations (c.f [13]): (t : s) �−→
(X : Y : Z : T )⎧⎪⎪⎨⎪⎪⎩

X = abt(bt− t− bs + as)2

Y = (a− 1)(as− bt)(bt2 − b2t2 + b2t + bats− bts− ats + as2 − bas2)
Z = a(a− 1)b(bs− t)(bt2 − t2 + bts + ats− bats− b2ts− bas2 + b2as2)
T = (at− bt− as + bas)2s
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Each singular point (X(t : s), Y (t : s), Z(t : s), T (t : s)) is the intersection of
two lines L(u1:v1) and L(u2:v2) which belong to the plane Π(t:s) containing the conic
C(t:s) and to the surface, i.e. Π(t:s) ∩ S = C(t:s) ∪ L(u1:v1) ∪ L(u2:v2), where (u1 :
v1) , (u2 : v2) are roots of the equation:

[(b−a)t+a(1−b)s]su2+2b(a−1)tsuv+(b−b2)t2v2+(b−a)btsv2 = 0. (6.5)

In the sequel, in order to simplify the readability, we shall often use affine coordinates
t instead of (t : s), u instead of (u : v) and so on.

6.4.2 The generic real case

Generically, the intersection of ϕ1(t, u) and ϕ2(t, u) is 4 distinct points:

(t1;u1), (t2;u2), (t3;u3), (t4;u4),

moreover all the ti (and all the ui) are two by two distinct. These four points corre-
spond to four special tangent planes.

We observe that as the equations ϕ1(t, u) and ϕ2(t, u) have degree 1 in t, if u is
real then t is also real; and if u1 , u2 are complex conjugate then the same holds for
t1 and t2. So we have 3 cases that we denote by type I, type II, type III: either 4 real
points, or 2 real points and 2 conjugate points or two couples of conjugate points.
For all types, as in the generic complex case, each singular point is intersection of
two lines Lu1 and Lu2 where u1, u2 are the roots of an equation of degree 2 whose
coefficients are real polynomials in t. So either u1, u2 are reals or conjugate complex.
Therefore Lu1 and Lu2 are two conjugate lines. Their intersection is always real.
Hence, the singularity of the complex surface is real and moreover is a twisted cubic.
However only segments of this real twisted cubic form the singular locus of the real
parametric surface.

The study of the first case (type I) is as in the generic complex case. We present
the two last cases.

a) Two real and two conjugate points: type II

Lemma 9. We assume that t1, t2, u1, u2 ∈ R et t3, t4, u3, u4 ∈ C and t3 = t̄4 and
u3 = ū4. Hence, it exists two real homographies: η1, η2 : P1(R)→P1(R) and two
values θ, θ

′ ∈ [0, π] such that:

η1(t1) = 0, η1(t2) = ∞, η1(t3) = eiθ, η1(t4) = e−iθ

η2(u1) = 0, η2(u2) =∞, η2(u3) = eiθ′
, η2(u4) = e−iθ′
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The proof is simple but tedious.
Therefore, by choosing 4 tangent planes as (X = 0), (Y = 0), (Z = 0), (T =

0) and by a similar demonstration as in the generic complex case, we obtain the
parametric complex representation of the surface:⎧⎪⎪⎨⎪⎪⎩

X = tu2

Y = (t− eiθs)(u− eiθ′
v)2

Z = (t− e−iθs)(u− e−iθ′
v)2

T = sv2

We write the surface equations in the affine chart s = v = T = 1 and take we have
that: ⎧⎨⎩

x = tu2

y = (t− cos θ − i sin θ)(u− cos θ′ − i sin θ′)2

z = (t− cos θ + i sin θ)(u− cos θ′ + i sin θ′)2

By dividing y and z by sin θ sin2 θ′ and denoting a = cotan θ, b = cotan θ, we
obtain the following system:⎧⎪⎪⎪⎨⎪⎪⎪⎩

x = tu2

y

sin θ sin2 θ′
= (

t

sin θ
− a− i)(

u

sin θ′
− b− i)2

z

sin θ sin2 θ′
= (

t

sin θ
− a + i)(

u

sin θ′
− b + i)2

By changing the parameters t′ =
t

sin θ
− a, u′ =

u

sin θ′
− b and by transformation

of coordinates (x′, y′, z′) =
1

sin θ sin2 θ′
(x, y, z) we obtain the surface equations as

follows: ⎧⎨⎩
x′ = (t′ + a)(u′ + b)2

y′ = (t′ − i)(u′ − i)2

z′ = (t′ + i)(u′ + i)2

Finally, we transform (x′′, y′′, z′′) = (x′,
y′ + z′

2
,
y′ − z′

−2i
). Therefore we proved the

following proposition:

Proposition 10. A normal form for the parametric equations of a surface of type II
is as follows:

(S) :

⎧⎨⎩
x = (t + a)(u + b)2

y = tu2 − t− 2u
z = 2tu + u2 − 1

with a = cotan θ, b = cotan θ′

A surface of type II has two real pinch points corresponding to (t1 = −b, u1 =
−b), (t2 = ∞, u2 =∞) and has two real torsal lines Lu1 and Lu2 .
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b) Two conjugate couples: type III

Lemma 11. We assume that (t1, u1) = (t2, u2) and (t3, u3) = (t4, u4). It exists two
real homographies η1, η2 : P1(R)→P1(R) and two values θ, θ

′ ∈ [0, π] such that:

η1(t1) = i, η1(t2) = −i, η1(t3) = eiθ, η1(t4) = e−iθ

η2(u1) = i, η2(u2) = −i, η2(u3) = eiθ′
, η2(u4) = e−iθ′

Therefore, by choosing the four special tangent planes as (X = 0), (Y =
0), (Z = 0), (T = 0) and by a similar demonstration as in the generic complex
case, we have the parametric complex representation of the surface in the affine chart
s = v = 1: ⎧⎪⎪⎨⎪⎪⎩

X = (t− i)(u− i)2

Y = (t + i)(u + i)2

Z = (t− eiθ)(u− eiθ′
)2

T = (t− e−iθ)(u− e−iθ′
)2

By similar transformation as in the case (a), we obtain the following proposition
(with two moduli θ and θ′):

Proposition 12. A surface of type III has a real parameterization as follows:

(S) :

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
X = tu2 − t− 2u
Y = 2tu + u2 − 1

Z = (
t

sin θ
− cotan θ)((

u

sin θ′
− cotan θ′)2 − 1)− 2(

u

sin θ′
− cotan θ′)

T = 2(
t

sin θ
− cotan θ)(

u

sin θ′
− cotan θ′) + (

u

sin θ′
− cotan θ′)2 − 1

6.5 Non generic cases

We now list the following particular cases arising in the intersection of two curves of
bidegree (1,2) whose equations are ϕ1(t, u) and ϕ2(t, u).

6.5.1 Their intersection is finite

Set ϕ1(t, u) ∩ ϕ2(t, u) = {(t1, u1), (t2, u2), (t3, u3), (t4, u4)}. We distinguish the
following cases:

a) 4 distinct points.
We have two cases: either (t1 = t2 and t3 �= t4) or (t1 = t2 and t3 = t4).

b) 2 distinct points and 1 double point (t3, u3) = (t4, u4).
We have 3 cases: either (t1 − t2)(t2 − t3)(t1 − t3) �= 0, or t1 = t2 or

t1 = t3(= t4).
c) 2 double points.
d) 1 triple point and 1 simple point.
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6.5.2 Their intersection is infinite

ϕ1(t, u) ∩ ϕ2(t, u) is infinite if and only if ϕ1(t, u), ϕ2(t, u) have a common factor,
denoted by g(t, u) and it is not constant. So we can write:{

ϕ1(t, u) = g(t, u)ψ1(t, u)
ϕ2(t, u) = g(t, u)ψ2(t, u)

We distinguish the following cases:
a) g(t, u) is of bidegree (1,0).
b) g(t, u) is of bidegree (1,1):

g(t, u) can be reduced.
g(t, u) cannot be reduced.

c) g(t, u) is of bidegree (0,2):
g(t, u) has a double root.
g(t, u) has two different roots.

d) g(t, u) is of bidegree (0,1).
The system {ψ1(t, u), ψ2(t, u)} has two different roots.
The system {ψ1(t, u), ψ2(t, u)} has a double root.

6.5.3 Parametric equations of the surface

We consider some particular cases and give the parametric equations of the surface
for each case. The remaining cases can be treated similarly.

Remark 13. We remind that the 3-projective plane ΠA is defined by the transpose
matrix of the matrix A of the parameterization of the surface. The equations of ΠA
can be written:

ΠA :
{

A1X1 + B1X2 + C1X3 + D1X4 + E1X5 + F1X6 = 0
A2X1 + B2X2 + C2X3 + D2X4 + E2X5 + F2X6 = 0

We set:
ϕ1 = (A1, B1, . . . , F1) ∈ C6\{0}
ϕ2 = (A2, B2, . . . , F2) ∈ C6\{0}.

Therefore,

ΠA = {X = t(X1, . . . , X6) ∈ C6\{0} | (ϕ1, X) = (ϕ2, X) = 0}.

We observe that the rows of A are images of the points (1 : 0 : . . . : 0), . . . (0 : . . . :
1) by tA so, they belong to ΠA. Hence kerA =< tϕ1,

tϕ2 >.

If rank A = 4, we can transform A to the echelon form:
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A =

⎛⎜⎜⎝
1 0 0 0 α1 β1

0 1 0 0 α2 β2

0 0 1 0 α3 β3

0 0 0 1 α4 β4

⎞⎟⎟⎠ .

Therefore kerA =< (α1 : α2 : α3 : α4 : −1 : 0), (β1 : β2 : β3 : β4 : 0 : −1) >.
Hence if we know the equations of ΠA, we can deduce the matrix A and reversely.

a) The case (5.1.a) and t1 = t2:

By change of parameters, we can choose these four points as (0, 0), (1, 1),
(0, b) and (∞,∞). Hence, the parametric equations of the surface can be written
as follows: ⎧⎪⎪⎨⎪⎪⎩

X = tu2

Y = (t− s)(u− v)2

Z = t(u− bv)2

T = sv2

We observe that it is a limit situation of the generic case, namely where a = 0.

b) The case (5.1.b) and (t1 − t2)(t2 − t3)(t1 − t3) �= 0:

We can choose 4 points as (0, 0), (1, 1), (∞,∞) where (1, 1) is double point.
Therefore, the parametric equations of the surface can be written as follows:⎧⎪⎪⎨⎪⎪⎩

X = tu2

Y = (t− s)(u− v)2

Z = atu2 + btuv + csu2 + dtv2 + esuv + fsv2

T = sv2

By linear transformation, in the affine chart s = v = 1, they are written:⎧⎨⎩
x = tu2

y = −2tu + t− u2 + 2u
z = btu + cu2 + dt

If b �= 0, we can take b = 1. From the surface equations above we deduce the
equation of 3-projective plane ΠA:⎧⎪⎨⎪⎩

dX2 −X3 + (d +
1
2
)X5 = 0

cX2 −X4 + (c− 1
2
)X5 = 0

(6.6)

By replacing the expressions of X2, X3, X4, X5 of F(2, 2)∗ in (6.6) we obtain the
equations of intersection of ΠA and F(2, 2)∗:{

−su(u + 2dv) + tu(2d + 1) = 0
−2csuv + tv(v + (2c− 1)u) = 0
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⇐⇒
{
−2csuv + tv(v + (2c− 1)u) = 0
uv[(2c− 1)u2 + (1− 2(d + c))uv + 2dv2] = 0

We have that, (t = s = 1); (u = v = 1) is a double root of the system above if

and only if c =
1
2

+ d, d �= 0. Therefore, the parametric equations of the surface is
as follows:

(S) :

⎧⎪⎨⎪⎩
x = tu2

y = (t− 1)(u− 1)2

z = (d +
1
2
)u2 + tu + dt

d �= 0

If b = 0, we obtain the parametric equations of the surface:

(S) :

⎧⎨⎩
x = tu2

y = (t− 1)(u− 1)2

z = u2 + t

c) The case (5.2.d) and the system {ψ1(t, u), ψ2(t, u)} have two different roots:

We can write:{
ϕ1(t, u) = g(t, u)ψ1(t, u) = g(t, u)(tA1(u) + A2(u))
ϕ2(t, u) = g(t, u)ψ2(t, u) = g(t, u)(tB1(u) + B2(u))

where A1(u) , A2(u) , B1(u) , B2(u) are polynomials of degree 1 in u.

We denote by u0 the root of g(t, u). We call (t1, u1) and (t2, u2) two roots of
ψ1(t, u) and ψ2(t, u). We have two cases: either u1, u2 �= u0 or one of them is equal
to u0.

Firstly, we consider the case where u1, u2 �= u0. By change of parameters, we
assume that u0 = 0 , (t1, u1) = (1, 1) , (t2, u2) = (0,∞). Hence, ϕ1(t, u) and
ϕ2(t, u) become: {

ϕ1(t, u) = u(tu− 1)
ϕ2(t, u) = u(t− 1)

We deduce the equations of ΠA:

ΠA :
{

X2 − 2X6 = 0
X2 + X5

By the remark (13) we obtain the parametric equations of the surfaces:

(S) :

⎧⎪⎪⎨⎪⎪⎩
X = tu2

Y = u2

Z = 2tu− 2u + 1
T = t
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Then, if u1 = u0 = 0, one can choose (t1, u1) = (1, 0) , (t2, u2) = (0,∞).
Similarly, we obtain the equations of the surface:

(S) :

⎧⎪⎪⎨⎪⎪⎩
X = tu2

Y = u2

Z = tu− u
T = t

6.6 Detection of the singularities of a patch

Self-intersection curves of a polynomial patch are often computed approximately
(see e.g. [8], [29], [20],...). Here we provide a symbolic method adapted to our
setting.

We write the parametric equations of the surface in the Bernstein’s basis

{tu2, t(1− u)2, (1− t)u2, (1− t)(1− u)2, 2tu(1− u), 2(1− t)u(1− u)}

and consider it in [0, 1] × [0, 1]. The surface depends on the 6 control points, by
changing coordinates we can choose these points to be: (0 : 0 : 0 : 1), (1 : 0 : 0 : 1),
(0 : 1 : 0 : 1), (0 : 0 : 1 : 1), (a : b : c : 1) and (d : e : f : 1). Therefore the surface
has a Bézier representation:⎧⎨⎩

x = t(1− u)2 + 2atu(1− u) + 2d(1− t)u(1− u)
y = (1− t)u2 + 2btu(1− u) + 2e(1− t)u(1− u)
z = (1− t)(1− u)2 + 2ctu(1− u) + 2f(1− t)u(1− u)

We used the software Maple for our computation. We denote by F the implicit equa-
tion of the surface, Fx, Fy , Fz the partial derivatives of F and we denote by Mx,
My , Mz polynomials in (t, u) obtained by replacing the parametric expressions of
x, y, z in Fx, Fy , Fz . As F is of degree 4, Mx, My , Mz are of projective bedegree
(3,6) but of affine bidegree (3,5) in (t, u). The implicit equation C(t, u) of the double
locus (also denoted by C(t, u)) in the parameter space of the surface is the gcd of
Mx, My and Mz . The curve C(t, u) is a curve of degree (2,2). We have:

Mx

C(t, u)
= ((e + f − c− b− 1)u2 + (2b− 2e + 1)u− b + e)t

+ (4ec− 4bf − 2c + 2b)u3 + (1 + 2c− f − 6ec + 6bf − 4b− e)u2

+ (2ec− 2bf − 1 + 2b + 2e)u− e

My

C(t, u)
= (c− f + a− d)(u− 1)2t+(4af − 2f − 4cd− 2a + 1)u3+(6cd− 6af

+ d− 3 + 5f + 4a)u2+(2af + 3− 4f − 2d− 2a− 2cd)u + d + f − 1
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Mz

C(t, u)
= ((e + a− 1− d− b)u2+(2b + 1− 2e)u− b + e)t+(4bd− 1 + 2e + 2a

− 4ea)u3+(d− 5e + 2− 2a + 6ea− 6bd)u2+(2bd + 4e− 2ea− 1)u−e.

By computation we check that the vector [
Mx

C(t, u)
,

My

C(t, u)
,

Mz

C(t, u)
] is equal to the

cross-product
∂Φ(t, u)

∂t
∧ ∂Φ(t, u)

∂u
.

We consider the points (t, u) for which
∂Φ(t, u)

∂t
∧ ∂Φ(t, u)

∂u
vanishes, i.e the

common roots of
Mx

C(t, u)
,

My

C(t, u)
,

Mz

C(t, u)
. More precisely, (t, u) is a root of the

system:

0 = (2af − e + 1 + 2ea− 2bf − f + b− c− 2bd− 2a + 2ec− 2cd)u3 (6.7)
+ (f − 2− 5ec + 5bd + 2c− 5ea + 5bf − af − 3b + 3a + 3e + cd)u2

+ (1− 3e− 4bf + 4ec− a− c− 4bd + 4ea + 3b)u+e+bd+bf−ec−ea−b

t =
((2a− 4af + 4cd + 2f − 1)u2−(2cd + 3f − 2af + 2a + d− 2)u+d+f−1

(a + c− d− f)(u− 1)

Generically, the system (6.7) has 4 roots (a root is (∞,∞). They are the critical
points of the parameterization and belong to the closure of the double locus C(t, u)
in the parameter space. We denote them by E1, E2, E3, E4.

For each t0 ∈ P1, we calculate the plane Πt0 containing the conic Ct0 of the
surface. The intersection Πt0 ∩S is determined by an equation (t− t0)g(t0, u) = 0,
where g(t0, u) is polynomial of bidegree (2,2) in (t0, u). If we consider it as poly-
nomial of degree 2 in u so g(t0, u) has two roots u1, u2. Hence Πt0 ∩ S =
Ct0 ∪ Lu1 ∪ Lu2 . The polynomial g(t0, u) has a double root in u if its discrimi-
nant with respect to u vanishes and generically it vanishes for 4 values of t0. For
each one of these values we have a corresponding value of u depending on t0 and
being a double root of g(t0, u), hence we obtain 4 corresponding values of u (c.f
[13]). Therefore the surface have 4 torsal lines corresponding to these four values
of u. By replacing each of these values in the equation C(t, u) we obtain 4 critical
points of the parameterization. They are actually the 4 points E1, E2, E3, E4. We
denote their images by Φ respectively by P1, P2, P3, P4.

Hence, in the general case, the singular locus of S consists in a twisted cubic C
(the closure of the image of the double locus C(t, u) of the parameterization) and
4 embedded points P1, P2, P3, P4 in C . Near P1 (or P2, P3, P4) the surface is de-
scribed by a continuous family of two lines Lu1 and Lu2 intersecting in a point P of
C . But when P ≡ P1 the lines coincide and we obtain a torsal line of the surface.

By the implicit function theorem, we can apply a local isomorphism of R3 at
Pi (i = 1, . . . , 4) which transform locally the curve C into a line (x1 = 0, y1 = 0)
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in the coordinates (x1, y1, z1). The local equation of the surface becomes x2
1− z1y

2
1 .

Hence, Pi is a pinch point also called a Whitney umbrella singularity in the real
setting. In our situation, the “rod of the umbrella” is curved, moreover the half line
is not visible in the real parametric surface.

Fig. 6.1. Whitney umbrella

We have the following proposition:

Proposition 14. 1) A non degenerate cubic curve of R3 does not admit an oval.
2) As a consequence, if the double locus in the parameter patch has an oval then

this oval contain two critical points (i.e pre-images of two pinch points).

Proof. 1) It is easy to prove.
2) We recall that the parameterization map Φ restricted to [0, 1]2 is continuous.

If the double locus in the parameter space has an oval O (hence a compact set) its
image by Φ is compact and is included in the singular locus C . As C is a twisted
cubic, it does not contain an oval, so the image of the oval must be a segment of curve
delimited by two points P1 and P2. The pre-image of P1 (respectively P2) consists
of only one point (a critical point of Φ) which belongs to O. Hence, P1 and P2 are
two of the pinch points of the surface.

0 1t

u

1

P1

P2

in R3

Φ

Φ
E1

E2
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Corollary 15. To detect an oval of the double locus in the box [0; 1] × [0; 1], it is
sufficient to calculate the critical points of the parameterization. This provides an
economy of calculation.

Example 16. a = 3, b = 5, c = 2, d = −4, e = 1, f = −2.

The surface is defined by the parameterization:⎧⎨⎩
x = t(1− u)2 + 6tu(1− u)− 8(1− t)u(1− u)
y = (1− t)u2 + 10tu(1− u) + 2(1− t)u(1− u)
z = (1− t)(1− u)2 + 4tu(1− u)− 4(1− t)u(1− u)

We have that:

C(t, u) = 4(234476t2u2 − 446468t2u− 215277tu2 + 42550u2 + 212531t2

+ 496138tu− 131320u− 281358t + 92806)

Mx

C(t, u)
= (−9u2 + 9u− 4)t− 86u2 + 35u− 1 + 54u3

My

C(t, u)
= (11 + 11u2 − 22u)t− 7 + 7u3 − 17u2 + 17u

Mz

C(t, u)
= (2u2 + 9u− 4)t− 85u3 + 125u2 − 43u− 1

Therefore the three affine critical points are the roots of the followed system:{
73u3 − 180u2 + 148u− 39 = 0

t =
146
11

u2 − 221
11

u +
85
11

The system above has only one root (t0 ≈ 0.72427400, u0 ≈ 0.5442518227) in the
box [0; 1]× [0; 1], i.e the surface has only one critical point E = (t0, u0) in the box
[0; 1]× [0; 1]. Therefore the surface has the pinch point P = Φ(E).

We calculate the points of C(t, u) on the borders, i.e. the intersections of C(t, u)
and of the lines (u = 0), (u = 1), (t = 0), (t = 1) in the parameter space. We
obtain 4 points: (t1 ≈ 0.7002714999, u1 = 0), (t2 ≈ 0.6235730217, u2 = 0),
(t3 = 1, u3 ≈ 0.4402786871), (t4 = 1, u4 ≈ 0.8820099327).

Now, we look for the points on C(t, u) in the box [0; 1]×[0; 1] that correspond to 4
points (ti, ui) , i = 1, . . . , 4 in order to detect the segment of C(t, u) corresponding to
the self-intersections of the surface. (Two points on C(t, u) are called corresponding
if their images by Φ are coincident on the singular locus of the surface. We also note
that two points in the parameter space satisfying this condition lie on C(t, u). We see
that a critical point does not have any corresponding point except itself). Hence, for
i = 1, . . . , 4, to find a point (t, u) ∈ [0; 1]2 corresponding to the point (ti, ui), we
resolve the system Φ(t, u) = Φ(ti, ui) in variables (t, u) in [0; 1]2. We obtain only
the point (t ≈ 0.6632643380, u ≈ 0.1700120872) which correspond to the point
(t4, u4). We denote these two points by B and A.
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Fig. 6.2. The double locus C(t, u) in the space of parameters.

P

M

Fig. 6.3. The surface S with (t = 0.6632643380..1, u = 0.1..0.9).

We have that the critical point E is on the segment (AB) of the curve C(t, u) and
Φ(A) = Φ(B) = M . The images of the segments (BE) and (AE) of C(t, u) by Φ
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are coincident. It is the self-intersection segment (MP ) of the surface in

[0.6632643380; 1]× [0.1; 0.9]

(it is the same in [0; 1] × [0; 1]). The others segments in the figure (2) are phan-
tom curves: they correspond to double points of the parameterization Φ(t1, u1) =
Φ(t2, u2) with (t1, u1) ∈ [0; 1]2 but (t2, u2) /∈ [0; 1]2.

6.7 Conclusion

In this paper, we completed the classification of parametric surfaces of bidegree (1,2)
over the complex field and over the real field. In a future work,we will also provide
some results for the inverse problem: given a candidate (e.g. a segment of a line
or of twisted cubic curve), we look for a patch (1,2) which includes this candidate
as a subset of its singular locus. For instance we will characterize the ruled surfaces
containing a twisted cubic curve and such that all generating lines cut twice the cubic
curve, which are indeed parametric surfaces of bidegree (1, 2).

Acknowledgements

We would like to thank Ragni Piene and the anonymous referees for their com-
ments and suggestions. We acknowledge the partial support of the European Projects
GAIA II (IST-2001-35512) and of the Network of Excellence Aim@Shape (IST NoE
506766).

References

1. L. Andersson, J. Peters, and N. Stewart, Self-intersection of composite curves and sur-
faces, Computer Aided Geometric Design, 15 (1998), pp. 507–527.
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In this part we collect six chapters which describe algorithms for geometric com-
puting with curves and surfaces.

Beck and Schicho discuss the parameterization of planar rational curves over
optimal field extensions, by exploiting the Newton polygon. Their method generates
a parameterization in a field extension of degree one or two.

Ridges and umbilics of surfaces are among the objects studied in classical dif-
ferential geometry, and they are of some interest for characterizing and analyzing
the shape of a surface. In the case of polynomial parametric surfaces, these special
curves are studied in the chapter by Cazals, Faugère, Pouget and Rouillier. In par-
ticular, the authors describe an algorithm which generates a certified approximation
of the ridges. In order to illustrate the efficiency, the authors report on experiments
where the algorithm is applied to Bézier surface patches.

Chau, Oberneder, Galligo and Jüttler report on several symbolic-numeric tech-
niques for analyzing and computing the intersections and self-intersections of biqua-
dratic tensor product Bézier surface patches. In particular, they explore how far one
can go by solely using techniques from symbolic computing, in order to avoid po-
tential robustness problems.

Cube decompositions by eigenvectors of quadratic multivariate splines are ana-
lyzed by Ivrissimtzis and Seidel. The results are related to subdivision algorithms,
such as the tensor extension of the Doo–Sabin subdivision scheme.

A subdivision method for analyzing the topology of implicitly defined curves in
two- and three-dimensional space are studied by Liang, Mourrain and Pavone. The
method produces a graph which is isotopic to the curve. The authors also report on
implementation aspects and on experiments with planar curves, such as ridge curves
or self intersection curves of parameterized surfaces, and on silhouette curves of
implicitly defined surfaces.

The final chapter of this volume, by Shalaby and Jüttler, describes techniques
for the approximate implicitization of space curves and of surfaces of revolution.
Both problems can be reduced to the planar situation. Special attention is paid to the
problem of unwanted branches and singular points in the region of interest.
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Summary. This paper describes an algorithm for rational parametrization of plane algebraic
curves of genus zero. It exploits the shape of the Newton polygon. The computed parametriza-
tion has coefficients in an optimal field extension, which is of degree one or two.

7.1 Introduction

Given a bivariate polynomial f ∈ K[x, y] over a perfect field K (in particular
any field of characteristic zero) we will describe a method to find a proper para-
metrization of the curve defined implicitly by f if it exists. That is we try to
find (X(t), Y (t)) ∈ L(t)2 with L | K an algebraic field extension such that
f(X(t), Y (t)) = 0 and (X(t), Y (t)) induces a birational map from the affine line
to the curve. One condition for the existence of such a parametrization is that f
is absolutely irreducible, i.e. cannot be factored over any algebraic field extension
of K. In case f is absolutely irreducible, existence can be decided by computing a
numerical invariant of the curve, namely its genus. This is the problem of finding
a rational parametrization, a well-studied subject in algebraic geometry. There are
already several algorithms, e.g. [10, 13, 14] and [18].

The complexity of the former algorithms is very sensitive with respect to the
total degree of f . If f is sparse then one can take advantage by exploiting the shape
of its Newton polygon (see remark 3). The algorithm described in [1] is the first to do
so. The main idea there is to adapt an algorithm in [14] for curves in the projective
plane to curves in a toric surface defined by the Newton polygon. In [1] and [14], the
computed parametrizations have coefficients in a field extension of possibly large
degree. On the other hand it is well-known that field extensions of degree at most
2 always suffice, and there are algorithms that compute parametrizations using an
optimal field extension, e.g. [15] and [18].

The original result in this paper is an adaptation of the method described in [18]
to the toric case. This gives a parametrization algorithm producing a parametrization
in an optimal field extension which exploits the shape of the Newton polygon. We
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tried to make the explanation of the necessary concepts and the description of the
algorithm as self-contained as possible.

Once and for all let K denote a perfect field, the field of definition, and K an alge-
braic closure of K. Further let f ∈ K[x, y] be an absolutely irreducible polynomial,
i.e. irreducible in K[x, y].

7.2 Toric geometry

In this section we introduce just as much of toric geometry as we need in this paper. A
good general introduction to toric geometry is [3]. We focus on the fact that smooth
toric surfaces are generalizations of the standard surfaces P2

K
and P1

K
× P1

K
.

7.2.1 The projective plane P2
K

The projective plane is the set of points (v̄ : x̄ : ȳ) subject to the equivalence relation
(v̄ : x̄ : ȳ) = (λv̄ : λx̄ : λȳ) for λ �= 0. It can be covered by 3 affine planes, which
are open subsets, depending on whether v̄ �= 0, x̄ �= 0 or ȳ �= 0. We can introduce
local coordinates on each of these open subsets:

(v̄ : x̄ : ȳ) =

⎧⎨⎩
(1 : x̄

v̄ : ȳ
v̄ ) =: (1 : u1 : v1) if v̄ �= 0

( v̄
x̄ : 1 : ȳ

x̄ ) =: (v2 : 1 : u2) if x̄ �= 0
( v̄

ȳ : x̄
ȳ : 1) =: (u3 : v3 : 1) if ȳ �= 0

If both sides are defined, i.e. on the intersection of open subsets, we see that

vi = u−1
i−1, ui = vi−1u

−1
i−1. (7.1)

Here we assumed for convenience that indices are cyclically arranged, i.e. u3 = u0

and v3 = v0.
The transformation rules for the local coordinates can also be described using a

lattice polygon: Draw an isosceles triangle with vertices in Z2 as in figure 7.1 left,
label the vertices cyclically from 1 to 3 and attach two minimal direction vectors ui

and vi to each vertex. Then we find the relations

vi = (−ui−1), ui = vi−1 + (−ui−1)

which correspond to (7.1) when passing from additive to multiplicative writing.

7.2.2 The ruled surface P1
K

× P1
K

The previous example is no coincidence. A similar analogy holds in case of the ruled
surface P1

K
× P1

K
(if a little care is taken when numbering affine charts).

P1
K
× P1

K
can be seen as the set of points (ū, v̄, x̄, ȳ) subject to the equivalence

relation (ū, v̄, x̄, ȳ) = (λū, µv̄, λx̄, µȳ) for λµ �= 0. It can be covered by 4 affine
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planes, which are open subsets, depending on whether ūv̄ �= 0, x̄v̄ �= 0, x̄ȳ �= 0 or
ūȳ �= 0. Again we introduce local coordinates:

(ū, v̄, x̄, ȳ) =

⎧⎪⎪⎨⎪⎪⎩
(1, 1, x̄

ū , ȳ
v̄ ) =: (1, 1, u1, v1) if ūv̄ �= 0

( ū
x̄ , 1, 1, ȳ

v̄ ) =: (v2, 1, 1, u2) if x̄v̄ �= 0
( ū

x̄ , v̄
ȳ , 1, 1) =: (u3, v3, 1, 1) if x̄ȳ �= 0

(1, v̄
ȳ , x̄

ū , 1) =: (1, u4, v4, 1) if ūȳ �= 0

Now changing from one coordinate system to the other we find

vi = u−1
i−1, ui = vi−1

and the coordinate change could be derived from a rectangle (see figure 7.1 right):

vi = (−ui−1), ui = vi−1

u1 v2

v3

v1

u3

u2

u1 v2

v3

u2

v4 u3

u4

v1

Z2 Z2

Fig. 7.1. Isosceles triangles and squares

7.2.3 Smooth toric surfaces

The preceding two examples give rise to a general construction.

Smooth polygons

Let Π ⊂ R2 be a convex lattice polygon, that is a convex polygon whose vertices
have integral coordinates. Label its vertices cyclically and attach two minimal direc-
tion vectors ui and vi to each vertex.

To proceed as in the examples, we would need that each pair (ui,vi) can be
expressed as a Z-linear combination using any other pair (uj ,vj). For this it is suf-
ficient that each of the pairs generates the entire integer lattice, i.e.

Zui + Zvi = Z2. (7.2)
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Fig. 7.2. General convex polygons

If the polygon has this shape we say it is smooth and an abstract smooth surface can
be constructed in pretty much the same way as above.

A general convex polygon will unfortunately not fulfill condition (7.2), see for
example Π1 in figure 7.2. Here the pair of vectors attached to the edge 5 does not
span the entire lattice. However the situation can be fixed, when we consider instead
the polygon Π2, which was generated from Π1 by “inserting” an additional edge.

To describe the following procedure precisely it is convenient to work with inner
normal vectors instead of edge direction vectors and introduce some further termi-
nology, see also figure 7.2 right. Let Π ⊂ R2 be the convex hull of a finite set of
lattice points in Z2.

For any pair of relatively prime integers a, b, let c(a, b) ∈ Z be the minimal value
of ar + bs, where (r, s) ∈ Π . Then Π is a finite intersection of say n support half
planes

hi := {(r, s) ∈ R2 | air + bis ≥ ci}

where the (ai, bi) are inward pointing normal vectors and ci := c(ai, bi). We assume
them to be cyclically arranged, i.e. ai−1bi − aibi−1 > 0 (setting a0 := an and
b0 := bn). We also give names to the edges and the vertices of intersection

ei := {(r, s) ∈ Π | air + bis = ci} and vi := ei ∩ ei−1.

Note that the set of half planes is not uniquely defined, there may be redundant half
planes where an edge meets Π in one vertex (in this case, some of the vertices vi will
coincide). Using the redundancy of this representation, we can enforce a condition
similar to (7.2), namely we may assume

ai−1bi − aibi−1 = 1 for 1 ≤ i ≤ n. (7.3)

This condition holds for example for the polygon in figure 7.2 right because an ad-
ditional normal vector was introduced at the vertex v5 = v6. If only two edges meet
in one vertex conditions (7.2) and (7.3) are easily shown to be the same. In the fol-
lowing we sketch an algorithm to ensure condition (7.3). This makes it more precise
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what “inserting an edge” meant for Π1 in figure 7.2. It basically corresponds to the
resolution of a toric surface, see e.g. [4].

The values det((ai−1, bi−1)T , (ai, bi)T ) = ai−1bi − aibi−1 are invariant under
unimodular transformations (i.e. linear transformations of the vectors by an integral
matrix with determinant 1). Assume that ai0−1bi0 − ai0bi0−1 > 1 for some i0. By
a suitable unimodular transformation we may assume (ai0 , bi0) = (0, 1). It follows
that ai0−1 > 1.

We insert a new index, for simplicity say i0 − 1
2 , set ai0− 1

2
:= 1 and determine

bi0− 1
2

by integer division s.t. 0 ≤ ai0−1bi0− 1
2
− bi0−1 < ai0−1. It follows

ai0− 1
2
bi0 − ai0bi0− 1

2
= 1 · 1− 0 · bi0− 1

2
= 1 and

ai0−1bi0− 1
2
− ai0− 1

2
bi0−1 = ai0−1bi0− 1

2
− 1 · bi0−1 < ai0−1

= ai0−1 · 1− 0 · bi0−1 = ai0−1bi0 − ai0bi0−1.

By inserting the additional support half plane with normal vector (ai0− 1
2
, bi0− 1

2
)

and support line through the vertex vi0 , we “substitute” the value ai0−1bi0−ai0bi0−1

by the smaller value ai0−1bi0− 1
2
− ai0− 1

2
bi0−1 and add ai0− 1

2
bi0 − ai0bi0− 1

2
= 1

to the list. All other values stay fixed. Repeating this process statement (7.3) can be
achieved.

Constructing the surface

Now we construct a surface following the examples of P2
K

and P1
K
×P1

K
. For 1 ≤ i ≤

n let Ui := A2
K

be copies of the affine plane with coordinates ui and vi. Again we
identify U0 and Un. We denote the coordinate axes by Li := {(ui, vi) ∈ Ui | ui =
0} and Ri := {(ui, vi) ∈ Ui | vi = 0} and define open embeddings of the algebraic
torus T := (K

∗
)2 where K

∗
= K \ {0}:

ψi : T → Ui : (x, y) �→ (ui, vi) = (xbiy−ai , x−bi−1yai−1)

The isomorphic image of ψi is Ui \ (Li ∪Ri) and there it has the inverse

Ui \ (Li ∪Ri) → T : (ui, vi) �→ (x, y) = (uai−1
i vai

i , u
bi−1
i vbi

i ).

For i, j ∈ {1, . . . , n}, i �= j we define open subsets

Ui,j :=

⎧⎨⎩
Ui \ Li if i ≡ j − 1 mod n,
Ui \Ri if i ≡ j + 1 mod n,
Ui \ (Li ∪Ri) = ψi(T ) else.

For 1 ≤ i ≤ n the following maps are mutually inverse and therefore isomorphisms:

ϕi−1,i : Ui−1,i → Ui,i−1 : (ui−1, vi−1) �→ (ui, vi) = (uai−2bi−aibi−2
i−1 vi−1, u

−1
i−1)

ϕi,i−1 : Ui,i−1 → Ui−1,i : (ui, vi) �→ (ui−1, vi−1) = (v−1
i , uiv

ai−2bi−aibi−2
i )

If i and j are non-neighboring indices we set
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Fig. 7.3. Construction of the toric surface S

ϕi,j := ψj ◦ ψ−1
i : Ui,j → Uj,i.

The above morphisms are compatible in the sense that ϕj,i = ϕ−1
i,j and for each k

we have ϕi,j(Ui,j ∩ Ui,k) = Uj,i ∩ Uj,k and ϕi,k = ϕj,k ◦ ϕi,j .
Now we can define an abstract surface S as a finite quotient S/ ≡ where S :=⋃̇

iUi is the disjoint union of affine planes. We identify points along the morphisms
ϕi,j , see figure 7.3. That is for i �= j a point (a, b) ∈ Ui and a point (c, d) ∈ Uj are
equivalent (a, b) ≡ (c, d) if (c, d) = ϕi,j(a, b) whenever this expression is defined.

This corresponds to the general gluing construction for schemes, see e.g. [9,
exercise II.2.12]. By abuse of notation we will from now on identify Ui and its image
in S. Then {Ui}1≤i≤n is an open cover.

It is not hard to see that Ei := Ri∪Li+1 is an irreducible curve on S and isomor-
phic to P1

K
. We call it an edge curve. The curves Ei−1 and Ei intersect transversally

in a point Vi ∈ Ui, corresponding to the origin (ui, vi) = (0, 0) of the corresponding
chart. For non-neighboring indices i and j the edge curves Ei and Ej are disjoint.
The complement of the union of all edge curves is the torus T , which is also the
intersection of all open sets Ui.

Comparing figures 7.2 and 7.3 suggests that there are certain correspondences
between a smooth polygon, here Π2, and the toric surface constructed from it. For
example there is a line P1

K
corresponding to each edge of the polygon and they inter-

sect accordingly. On the other hand the constructed surface is invariant with respect
to the scaling of the polygon and even the actual length of its edges. The only impor-
tant data is the set of normal vectors.

We briefly summarize important properties of the toric surface S:
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• S is smooth, in fact it is covered by affine planes. Hence we are locally working
with polynomials.

• S is a complete algebraic variety (see for example [3] or [5]).
• S contains the torus T = (K

∗
)2 as a dense open subset.

7.2.4 Completion of the curve

The parametrization problem for curves is a problem of birational geometry. To solve
it, we have to apply certain theorems of “global content”. Therefore we have to study
a complete model of our curve, that is a curve without any missing points.

The Newton polygon Π(f) ⊂ R2 is defined as the convex hull of all lattice points
(r, s) ∈ Supp(f) (i.e. all (r, s) ∈ Z2 s.t. xrys appears with a non-zero coefficient
in f ). An absolutely irreducible polynomial f ∈ K[x, y] defines an irreducible curve
in the affine plane A2

K
. If Π(f) is non-degenerate, i.e. has dimension 2, then f also

defines a curve on the torus T ⊂ A2
K

.
From now on we also fix the surface S which is constructed from Π(f) as in

the previous section. S contains the torus and hence we can define C to be the
Zariski closure of the curve defined by f on the torus. If the half planes used for
the construction of S are determined by the integers ai, bi, ci then C is defined by
the polynomials

fi(ui, vi) := u
−ci−1
i v−ci

i f(uai−1
i vai

i , u
bi−1
i vbi

i ) (7.4)

within the open subsets Ui ⊂ S. As a closed subset of a complete space, C is com-
plete itself.

For example if f is a dense polynomial with respect to total degree, meaning that
it contains all monomials up to a certain degree, then Π(f) is a triangle. If f is a
dense polynomial with respect to bidegree, then Π(f) is a rectangle. So in the first
case we would work inside P2

K
, in the second case inside P1

K
× P1

K
. In general the

surface is adapted to the Newton polygon, which is of course a much finer shape
parameter than any notion of degree.

We consider a polynomial to be sparse, if the shape of its Newton polygon differs
from an isosceles triangle. In this case our algorithm is more efficient than algorithms
relying on a projective embedding.

Throughout this article we will always implicitly assume that f is absolutely
irreducible and Π(f) is non-degenerate. For parametrizing in the other cases it is
easy to devise specialized algorithm, see also [1].

7.3 Divisors

In this section we introduce divisors and linear systems associated to them.
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7.3.1 General and K-rational divisors

Let X be a smooth, irreducible K-variety with field of definition K. By this we mean
that X is locally defined by equations with coefficients in K. Let K(X) denote the
function field of X . Then the Galois group Gal(K | K) acts on K(X). For any field
L s.t. K ⊂ L ⊂ K we define the restricted function field L(X) := {g ∈ K(X) |
σ(g) = g for all σ ∈ Gal(K | L)}.

Irreducible closed K-subvarieties of X of codimension 1 are also called prime
(Weil) divisors. A general divisor D is defined to be a finite formal sum D =∑

i niDi with ni ∈ Z and Di prime divisors. For curves one defines the degree
of the divisor as deg(D) =

∑
i ni. The set of divisors thus forms a free Abelian

group Div(X). An effective divisor is a non-negative linear combination of prime
divisors.

One associates to a nonzero rational function g ∈ K(X) its principal divisor
(g). Roughly speaking g has poles and zeroes with certain multiplicities on X along
subvarieties of codimension 1; then (g) is the divisor of zeroes minus the divisor of
poles (with multiplicities). We say that two divisors are equivalent if and only if their
difference is principal. For a more precise elaboration see [16, III.1.1].

Let D ∈ Div(X). The Galois group Gal(K | K) also acts on the divisors
Div(X). For any field extension L s.t. K ⊂ L ⊂ K we say that D is an L-rational
divisor if and only if it is invariant under the Galois group Gal(K | L). For example
if g ∈ L(X) then the principal divisor (g) is an L-rational divisor. From the defini-
tion it follows that also Gal(L | K) acts on the set of L-rational divisors if L | K is
itself Galois.

The linear system LX(D) of rational functions on X associated to a divisor D
is the K-vector space of rational functions g ∈ K(X) s.t. D + (g) is effective. K-
rational divisors are of particular interest because the corresponding linear systems
can be represented without introducing field extensions.

Lemma 1. Let X be a smooth, projective K-variety with field of definition K. If D is
a K-rational divisor then LX(D) has a basis in K(X) (or LX(D) = ∅).
Proof. Since X is projective the vector space LX(D) is finite-dimensional (or
empty, see [9, Theorem II.5.19]). Therefore we can assume without loss of generality
that 〈b1, . . . , bm〉K = LX(D) with bi ∈ L(X) for some Galois extension L | K. Set
V := 〈b1, . . . , bm〉L = L(X) ∩ LX(D).

Let σ ∈ Gal(L | K) and assume that g ∈ V , i.e. g ∈ L(X) and (g) ≥ −D. Then
(σg) = σ(g) ≥ −σD = −D, because D is K-rational. In other words σg ∈ V and
the Galois group Gal(L | K) acts semi-linearly on V . Let now V0 := {g ∈ V | σg =
g for all σ ∈ Gal(L | K)}.

Then by [12, Lemma 2.13.1] the canonical map V0⊗KL → V is an isomorphism.
Since V0 is fixed by Gal(L | K) we have V0 ⊂ K(X). Choose a basis of V0.

7.3.2 Divisors on toric surfaces

For surfaces, prime divisors correspond to irreducible closed curves on the surface.
If S is a toric surface as constructed in section 7.2 then it is locally isomorphic to
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A2
K

. In this case g ∈ K(S) can be written as a rational function in K(ui, vi) for all
local coordinates ui and vi. The zeroes and poles (and their multiplicities) can be
read easily from the (absolute) factorization of the reduced representation.

On a toric surface we have a set of distinguished prime divisors, namely the
edge curves Ei, also called the toric invariant prime divisors. They are clearly K-
rational. The linear systems of toric invariant divisors can easily be described by
support conditions.

Lemma 2. Let D =
∑

1≤i≤n−c̃iEi ∈ Div(S) and define the polygon Π :=⋂
1≤i≤n{(r, s) ∈ R2 | air + bis ≥ c̃i}. Then LS(D) = 〈xrys | (r, s) ∈ Π ∩ Z2〉K.

Proof. See [1, Corollary 8].

In particular LS(D) �= ∅ if and only if Π �= ∅ and the basis is obviously contained
in K(S).

Remark 3. In our algorithm we use spaces of polynomials as above that are supported
approximately on the Newton polygon of f . If we considered only the degree of
the defining equation, the linear systems from above would correspond to spaces of
polynomials supported approximately on an isosceles triangle containing the Newton
polygon. As mentioned before, we consider a polynomial to be sparse, if its Newton
polygon differs from such a triangle. Therefore for sparse polynomials these vector
spaces become smaller and our algorithm becomes more efficient.

7.3.3 Divisors on smooth curves

For a smooth curve C̃, prime divisors correspond to points on the curve. A rational
function g ∈ K(C̃) can be developed at any point P ∈ C̃ as a Laurent series with
respect to a local parameter.

More precisely let P ∈ C̃ be a point. Then the local ring at the point P is regular
and we can find an injective homomorphism O(C̃)P → K[[t]] to a power series
ring. This homomorphism induces a homomorphism ϕP : K(C̃) → K((t)). We
may assume that ϕP is primitive, i.e. img(ϕP ) �⊂ K((td)) for any d > 1. Then
νP : K(C̃) → Z : g �→ ordt(ϕP (h)) is a discrete valuation of the function field
K(C̃) over K with center P (see e.g. [19]).

Now if νP (g) > 0 then g has a zero at P with multiplicity νP (g), if νP (g) < 0
then g has a pole at P with multiplicity −νP (g).

7.3.4 Divisors on singular curves

If C is a complete, singular curve we may consider a resolution of singularities
π : C̃ → C. I.e. C̃ is a complete, smooth curve and π is a regular, birational map.
Such a resolution is known to exist and actually one can take the normalization of C
(see [16, II.5.1]).
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Up to isomorphism the resolution of a complete curve is unique (which follows
from [16, II.4.4, Cor. 2]). We can effectively deal with the divisors Div(C̃) by iden-
tifying prime divisors on C̃ with discrete valuations of K(C) over K (and K(C) is
isomorphic to K(C̃) because of birationality). We never have to construct the curve
C̃ explicitly.

Above we have seen how a point P ∈ C̃ induces a discrete valuation νP of
K(C). On the other hand let ν be such a discrete valuation. Since C̃ is complete
ν has a center Pν ∈ C̃. This way P �→ νP and ν �→ Pν constitute a one-one
correspondence between points of C̃ and discrete valuations of K(C).

Also C is complete and so we let Center(ν) denote the center of a valuation ν
in C. Note that with the above notation Center(ν) = π(Pν). For any subset M ⊂ C
we define VM to be the set of all discrete valuations ν of K(C) s.t. Center(ν) ∈ M .

7.4 Rational curves

It is well-known that a curve is parametrizable if and only if it has genus zero. In this
section we will show how to compute the genus in our setting. Afterwards we give
the general idea of a curve parametrization algorithm.

7.4.1 The genus of a curve

To each point Q ∈ C one can associate its delta invariant δQ. It is a measure of
singularity, which is defined as the length of the quotient of the integral closure of
the local ring by the local ring at Q (see [9, exercise IV.1.8]). For instance, if Q is an
ordinary singularity of multiplicity µ, i.e. a self-intersection point where µ branches
meet transversally, then δQ = µ(µ−1)

2 . In particular δQ = 0 for Q smooth.
If Π ⊂ R2 is a lattice polygon we denote by #(Π) := |Π ∩ Z2| the number of

lattice points in Π . We also write Π◦ for the polygon spanned by the interior points.
In the toric situation the genus can be computed as follows:

Theorem 4. The genus of C is equal to the number of interior lattice points of Π(f)
minus the sum of the delta invariants of all points on C:

genus(C) = #(Π(f)◦)−
∑
Q∈C

δQ

Proof. See [1, Proposition 9].

The sum actually ranges over the singular points of C only.

Remark 5. Assume that Π(f) is an isosceles triangle with vertices (0, 0), (n, 0) and
(0, n) and that all singularities of the curve are ordinary. Then the number of interior
points is equal to (n−1)(n−2)

2 and we recover the well-known genus formula for plain
curves.
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7.4.2 Parametrizing a curve

Now assume that C is an irreducible curve of genus(C) = 0 and π : C̃ → C

a resolution. Assume that D ∈ Div(C̃) is a divisor with d := deg(D) ≥ 1 and
{s0, . . . , sd} ⊂ LC̃(D) is a basis of the corresponding linear system. Using the
isomorphism K(C) ∼= K(C̃) we can define a birational map

C ��� Pd
K

: Q �→ [s0(Q) : · · · : sd(Q)]

which sends C to a rational normal curve C ′ ⊆ Pd
K

.
Now if D is a K-rational divisor then we can assume {s0, . . . , sd} ⊂ K(C) by

lemma 1. In other words the corresponding map and also its rational inverse do not
require any field extension. The best thing would thus be to find a K-rational divisor
of degree 1 because that would result immediately in a parametrization of C without
field extension. The existence of such a divisor however cannot be guaranteed and is
equivalent to the existence of a rational point on C.

On the other hand the existence of a K-rational anticanonical divisor is always
guaranteed and in the case of a rational curve it has degree 2 (see section 7.5). The
idea of the parametrization algorithms in [10] and [18] can therefore be explained as
follows: Compute the linear system associated to a K-rational anticanonical divisor.
This system defines a birational map from C to a conic C ′ ⊂ P2

K
(see 7.7.5 in the

example section). The parametrization of C ′ is an easy task once a point on C ′ is
known. The algebraic degree of the resulting parametrization obviously depends on
the degree of the field extension needed to define that point. Hence it is at most two
and the problem of parametrizing a rational curve using a minimal field extension is
reduced to the problem of finding a rational point on a conic if it exists. This task
is not straight forward. For example if K = Q we refer to [11] and [17]. In this
case rational points may also be found by the function RationalPoint of the
computer algebra system Magma [2].

7.5 An anticanoncial divisor

We are in the situation C̃
π→ C

ι→ S where C is an irreducible curve, embedded in
the smooth toric surface S, and C̃ is a resolution. Throughout this section we further
assume that genus(C̃) = genus(C) = 0.

7.5.1 Support divisors

For l, k ∈ Z/nZ we write [l, k] = {l, l + 1, . . . , k} ⊂ Z/nZ for the set of cyclically
consecutive indices between l and k. From now on I will always denote an “interval”,
i.e. I = [l, k] or I = ∅, and δI will be its characteristic function, i.e. δI(i) = 1 if
i ∈ I and δI(i) = 0 else. Set

DI :=
∑

i∈[1,n]

(−ci − 1 + δI(i))Ei ∈ Div(S).
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We call DI a support divisor because the corresponding linear system LS(DI)
on the surface can be described by simple support conditions. To this end let

ΠI :=
⋂

i∈[1,n]

{(r, s) | air + bis ≥ ci + 1− δI(i)}.

In other words ΠI is constructed as the convex hull of the lattice points in Π(f) with
edges ei removed for i �∈ I . In particular Π[1,n] = Π(f) and Π∅ = Π(f)◦. With
this notation we have LS(DI) = 〈xrys | (r, s) ∈ ΠI ∩ Z2〉K by lemma 2 (see also
the Ansatz polynomials in 7.7.3 in the example section).

Note that since C is not a component of DI the intersection divisor

D̃I := (π ◦ ι)∗(DI) ∈ Div(C̃)

is also well defined. This is sometimes called the pullback along π◦ι, see [16, III.1.2].
Further we can explicitly give its degree. The integer length of an edge of a lattice
polygon is the number of lattice points on that edge minus 1. Let dI denote the sum
over the integer lengths of the edges i of Π(f) for i ∈ I .

Lemma 6. We have deg(D̃I) = 2#(Π(f)◦) + dI − 2.

Proof. See [1, Lemma 12].

7.5.2 Twists of principal divisors and valuations

A part of the principal divisor (h) of a rational function h ∈ K(C) (or K(C̃) likewise)
is in a certain sense predetermined by the support. The following definitions are
meant to make this distinction precise.

Definition 7. Let h ∈ K(C) be a rational function. We define the twisted principal
divisor (h)I := (h) + D̃I ∈ Div(C̃). With this definition the divisor (h)I has local
equation hi,I = u

−ci−1−1+δI(i−1)
i v

−ci−1+δI(i)
i h in π−1(C ∩ Ui).

If h is given by an element of LS(DI), i.e. by a polynomial with support in ΠI , then
the local equations hi,I are given by polynomials in ui and vi. Therefore in this case
(h)I is an effective divisor on C̃.

Definition 8. Let ν be a valuation of K(C). We define the twist of the valuation ν by
νI(h) := ν(hi,I) for all rational functions h ∈ K(C) if Center(ν) ∈ C ∩ Ui and
hi,I as in the previous definition.

Taking into account the previous definition that means νI(h) = ν(h) if Center(ν) ∈
C ∩ T and νI(h) = ν(h) − ν

(
v

ci+1−δI(i)
i

)
if Center(ν) ∈ C ∩ Ei. Note that

C ∩ Ei ∩ Ej = ∅ for i �= j.
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7.5.3 Adjoint divisors and a canonical divisor

Now we want to define the adjoint order at a point P ∈ C̃ which is given by a
valuation νP of K(C). In sections 7.3.3 and 7.3.4 we have seen that giving νP is
the same as giving a (primitive) injective homomorphism ϕP : K(C) → K((t)).
Assume that Center(νP ) ∈ Ui. We define the adjoint order (see also [6, Remark
2.5] and 7.7.1 in the example section) as follows:

ανP
:= νP

(
∂f

∂vi

)
− ordt

(
dϕP (ui)

d t

)
It can be shown that this definition is indeed independent of the choice of ϕP and if
Q is a smooth point of C then ανP

= 0. Further the adjoint order at conjugate points
is the same, i.e. ανP

= ανσP
for σ ∈ Gal(K | K). So

Ã :=
∑

ν

ανPν ∈ Div(C̃)

where ν runs over all discrete valuations of K(C) is a well defined K-rational divisor.
It is actually given by the finite sum

∑
ν∈VSing(C)

ανPν .

Definition 9. With the above notation we define the shifted adjoint divisor

K̃I := D̃I − Ã.

Note that K̃I is the difference of two K-rational divisors and hence K-rational as
well. We know that deg(Ã) = 2

∑
Q∈C δQ (see for example [8, p. 1620]). Together

with lemma 6 and theorem 4 this implies:

Corollary 10. The degree of the divisor K̃I is deg(K̃I) = dI − 2.

We have C̃ ∼= P1
K

and so a divisor on C̃ is canonical if it has degree −2. In

particular K̃∅ is a canonical divisor. The importance of the divisors K̃I stems from
the following theorem:

Theorem 11. If I �= [1, n] and dI ≥ 2 then LC̃(K̃I) �= ∅ and we can compute a
basis in K(C).

Proof. See [1, Theorem 17].

Let us briefly recall the algorithm within the constructive proof. We start with the
K-vector space LS(DI) (for a basis of that space see lemma 2 above) and com-
pute the subspace V := {h ∈ LS(DI) | νI(h) ≥ αν for all ν ∈ VSing(C)}. Then
dimK(V ) = dI − 1. A priori V is a space of rational functions on the surface S, but
it can be considered a space of rational functions over C or C̃ as well. It turns out
that via this identification V ∼= LC̃(K̃I) as K-vector spaces. We will execute this
algorithm several times on an example in section 7.7. There it will also become clear
that a basis in K(C) can be computed.
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7.5.4 Inverting the canonical divisor

We want to compute a K-basis for LC̃(−K̃∅), the linear system associated to the
anticanonical divisor. Therefore choose l1, k1, l2, k2 ∈ Z/nZ s.t. l2 = k1 + 1,
[l1, k2] �= [1, n] and for each pair d[lj ,kj ] ≥ 2. By what was just said we can compute
elements 0 �= gj ∈ LC̃(K̃[lj ,kj ]). For every valuation ν we define the twisted orders
βj,ν := ν[lj ,kj ](gj). Now let S′ ⊂ C be the image of the support of the (effective) di-
visor (g1)[l1,k2] +(g2)[l1,k2]. This means the twisted orders are zero for all valuations
except those of VS′ . More precisely we have

(gj) = −D̃[lj ,kj ] + (gj)[lj ,kj ] = −D̃[lj ,kj ] +
∑

ν∈VS′

βj,νPν .

Since gj ∈ LC̃(K̃[lj ,kj ]) we further have the inequality βj,ν ≥ αν . We will show that
g1g2 is a good denominator for computing LC̃(−K̃∅) in the sense that the according
numerators are all elements of LC̃(K̃[l1,k2]), a space that can again be computed by
means of the above theorem (for an explicit computation see 7.7.4 in the example
section).

Theorem 12. With the choices from above define the subspace

V := {h ∈ LC̃(K̃[l1,k2]) | ν[l1,k2](h) ≥ β1,ν + β2,ν − αν∀ν ∈ VS′}.

Then LC̃(−K̃∅) → V : k �→ kg1g2 is an isomorphism of K-vector spaces.

Proof. Any rational function k can be written as k = h
g1g2

for some other rational

function h. Now k ∈ LC̃(−K̃∅) if and only if

0 ≤
(

h

g1g2

)
− K̃∅

= (h)− (g1)− (g2)− K̃∅

= (h) + (D̃[l1,k1] + D̃[l2,k2] − D̃∅) +
∑

ν∈VS′

(−β1,ν − β2,ν + αν)Pν

= (h) + D̃[l1,k2] +
∑

ν∈VS′

(−β1,ν − β2,ν + αν)Pν︸ ︷︷ ︸
H̃:=

if and only if h ∈ LC̃(H̃). But −β1,ν − β2,ν + αν ≤ −αν and therefore LC̃(H̃) ⊂
LC̃(K̃[l1,k2]). The exact calculation above shows that V = LC̃(H̃).

In particular dimK(V ) = dimK(LC̃(−K̃∅)) = 3 and if {b1, b2, b3} ⊂ V is a K-basis

then
{

b1
g1g2

, b2
g1g2

, b3
g1g2

}
is a K-basis of LC̃(−K̃∅). In an actual computation, we will

of course again start from LS(D[l1,k2]) and impose directly the vanishing conditions
of this theorem. When executing the algorithm in section 7.7 we will see that the
output basis will already be in K(C).
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7.6 The algorithm

We now summarize the resulting algorithm. For the input equation f ∈ K[x, y] of
our algorithm we require:

Condition (*): The Newton polygon Π(f) is non-degenerate and we can find
l1, k1, l2, k2 as in section 7.5.4.

Condition (*) is fulfilled if Π(f) is non-degenerate and all edges have length
≥ 2. If there is an edge with length = 1 then the algorithm of paper [1] can be used
to compute a rational parametrization without field extension, because in this case it
is easy to find a rational point on the orignal curve. Therefore (*) is not critical.

Some remarks to algorithm 1 are in order. The delta invariants δP can be com-
puted using Puiseux expansions or Hamburger-Noether expansions (in the case of
positive characteristic), see [6]. Implementations exist in Maple (characteristic zero
only) and in Singular [7]. These tools also provide a way to represent the valuations
ν by suitable homomorphisms into Laurent series rings.

7.7 Example

We want to parametrize the curve C ⊂ A2
Q

given implicitly by the equation

f = −27y2x3 − 4y3x + 13y2x2 + 8yx3 − 20y2x− 8yx2

+ 4y2 − 8yx + 4x2 + 8y + 8x + 4.

Hence the field of definition is Q. The Newton polygon Π(f) is depicted in figure
7.4. It has 6 vertices and 4 interior points. It can be represented as the intersection of
8 half planes which are governed by the following set of data:

v1 = (0, 0), (a1, b1) = (0, 1), c1 = 0,
v2 = (2, 0), (a2, b2) = (−1, 1), c2 = −2,

v3 = (3, 1), (a3, b3) = (−1, 0), c3 = −3,

v4 = (3, 2), (a4, b4) = (−1,−1), c4 = −5,

v5 = (3, 2), (a5, b5) = (−1,−2), c5 = −7,

v6 = (1, 3), (a6, b6) = (0,−1), c6 = −3,

v7 = (1, 3), (a7, b7) = (1,−1), c7 = −2,

v8 = (0, 2), (a8, b8) = (1, 0), c8 = 0

The half planes with normals (a4, b4) and (a6, b6) have been inserted in order to
fulfill equation (7.3). Hence the constructed toric surface is covered by 8 affine charts
S =

⋃
i∈[1,8] Ui. Using (7.4) we compute the equations in all the charts:
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Algorithm 1 Parametrize(f : K[x, y]) : L(t)2 ∪ {FAIL}
Require: a polynomial f ∈ K[x, y] irreducible as an element of K[x, y]

satisfying condition (*)
Ensure: a proper parametrization (X(t), Y (t)) ∈ L(t)2 s.t.

f(X(t), Y (t)) = 0 or FAIL if no such parametrization exists
(here L is an algebraic extension of K of least degree)

1: Compute Π(f) and determine the chart representation of the curve C embedded in the
toric surface S =

⋃
1≤i≤n Ui (see section 7.2.4);

2: δ := 0;
3: for P ∈ Sing(C) do
4: Compute the delta invariant δP ;
5: δ := δ + δP ;
6: end for
7: if #(Π(f)◦) − δ �= 0 then
8: return FAIL; {The genus is not zero, see theorem 4.}
9: end if

10: Find l1, k1, l2, k2 as in section 7.5.4;
11: Set S1 := LS(D[l1,k1]), S2 := LS(D[l2,k2]) and S3 := LS(D[l1,k2]) (see lemma 2);
12: Compute αν for every valuation ν ∈ VSing(C) (see section 7.5.3);
13: for ν ∈ VSing(C) do
14: Set S1 := {g ∈ S1 | ν[l1,k1](g) ≥ αν};
15: Set S2 := {g ∈ S2 | ν[l2,k2](g) ≥ αν};

{These steps compute LC̃(K̃[l1,k1]) and LC̃(K̃[l2,k2]) using theorem 11.}
16: end for
17: Choose elements 0 �= g1 ∈ S1 and 0 �= g2 ∈ S2, compute the intersection locus I ⊂ C

of the effective divisor (g1) + D[l1,k1] + (g2) + D[l2,k2] with the curve C and the values
βj,ν for ν ∈ VI (see section 7.5.3);

18: for ν ∈ VI do
19: Set S3 := {g ∈ S3 | ν[l1,k2](g) ≥ β1,ν + β2,ν + αν};
20: end for
21: Choose a basis {b1, b2, b3} ⊂ S3 ∩ K[x, y].
22: Compute the defining equation of the image C′ ⊂ A2

K
of the birational map ψ1 : (x, y) �→

( b1
b3

, b2
b3

) and compute its rational inverse ψ−1
1 .

23: Find a parametrization ψ2 of the conic C′ using a minimal degree field extension.
24: return ψ−1

1 ◦ ψ2;

f1 = −27v2
1u3

1 − 4v3
1u1 + 13v2

1u2
1 + 8v1u

3
1 − 20v2

1u1 − 8v1u
2
1

+ 4v2
1 − 8v1u1 + 4u2

1 + 8v1 + 8u1 + 4

f2 = −4v4
2u3

2 + 4v4
2u2

2 − 20v3
2u2

2 + 8v3
2u2 + 13v2

2u2
2 − 8v2

2u2

− 27v2u
2
2 + 4v2

2 − 8v2u2 + 8v2 + 8u2 + 4
f3 = . . .
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s

rv1 v2

v3

v4 = v5

v6 = v7

v8

Π(f)

Fig. 7.4. Newton polygon of example

7.7.1 Analysis of the singularities

The first chart U1 contains two singular points, Q1 with coordinates (u1, v1) =
(−1, 0) and Q2 with coordinates (u1, v1) = (0,−1). The point Q1 is also con-
tained in U2 and Q2 is contained in U8. These are already all singular points, so all
subsequent computations can be done in the first chart. For future reference we also
give the partial derivative by v1:

d f1

d v1
= −54v2

1u3
1 − 12v3

1u1 + 26v2
1u2

1 + 8v1u
3
1 − 40v2

1u1 − 8v1u
2
1

+ 8v2
1 − 8v1u1 + 8v1

According to the singularities we compute Puiseux expansions in u1 + 1 for Q1

and in u1 for Q2:

σ1(u1 + 1) = − 1
4 (u1 + 1) + γ1(u1 + 1)2 + (435

608γ1 − 51
2432 )(u1 + 1)3 . . .

σ2(u1) = −1− 5
2u1 + γ2u

2
1 + (21

4 γ2 + 195
16 )u3

1 . . .

Here γ1 and γ2 are elements of Q s.t. 1024γ2
1 + 516γ1 + 63 = 0 and 16γ2

2 + 24γ2−
45 = 0. From these expansions we get the following two monomorphisms from the
function field into a field of Laurent series:

ϕ1 : Q(Q[u1, v1]/f1) → Q((t)) :{
u1 + 1 �→ t

v1 �→ − 1
4 t + γ1t

2 + (435
608γ1 − 51

2432 )t3 . . .

ϕ2 : Q(Q[u1, v1]/f1) → Q((t)) :{
u1 �→ t

v1 + 1 �→ − 5
2 t + γ2t

2 + (21
4 γ2 + 195

16 )t3 . . .

These homomorphisms induce valuations νi := ordt ◦ϕi. Using these valuations we
are able to speak about a resolution π : C̃ → C without constructing it explicitly.
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For example ν1 and its conjugate with respect to the Galois extension Q(γ1) | Q

correspond to two points in the preimage π−1(Q1). We compute the adjoint orders
for these valuations (and their conjugates):

αν1 = ordt

(
ϕ1

(
d f1

d v1

))
− ordt

(
d ϕ1(u1)

d t

)
= ordt((129

4 + 128γ1)t2 + (− 3225
76 − 3200

19 γ1)t3 + . . . )− ordt(1)
= 2− 0 = 2

αν2 = ordt

(
ϕ2

(
d f1

d v1

))
− ordt

(
d ϕ2(u1)

d t

)
= ordt((6 + 8γ2)t2 + (39

2 + 26γ2)t3 + . . . )− ordt(1)
= 2− 0 = 2

7.7.2 Checking rationality

The number of interior points of Π(f) is equal to 4. Again from [8, p. 1620], we see
that δQ1 = δQ2 = 2. Hence genus(C) = 4− 2− 2 = 0 and C is parametrizable.

7.7.3 Computing two adjoints

s

r

s

r

s

r

Fig. 7.5. Bases for the linear systems LS(D[1,1]), LS(D[7,8]) and LS(D[7,1])

First we have to compute a denominator g1g2. We choose l1 = k1 = 1 and
l2 = 7, k2 = 8. We make an indetermined Ansatz for g1 ∈ LC̃(K̃[1,1]) and show its
local equation g1,1,[1,1] (compare figure 7.5):

g1 := c0x + c1xy + c2x
2y + c3xy2 + c4x

2y2

g1,1,[1,1] = c0 + c1v1 + c2u1v1 + c3v
2
1 + c4u1v

2
1

Requiring ν1(g1,1,[1,1]) ≥ αν1 and ν2(g1,1,[1,1]) ≥ αν2 yields the following con-
straints:
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0 = c0, 0 = 1
4c2 − 1

4c1,

0 = c0 − c1 + c3, 0 = −c2 − 5
2c1 + 5c3 + c4

Note that this step would in general yield linear constraints over a field extension, e.g.
over Q(γ1) or Q(γ2). They can always be written as a bigger number of constraints
over the ground field, here Q. This is the algorithmic side of the statement that the
divisor K̃[1,1] is Q-rational. Solving the system with respect to c3 and setting c3 = 1,
we get g1 = xy + x2y + xy2 − 3

2x2y2. We do the same again for g2 ∈ LC̃(K̃[7,8]):

g2 := c0y + c1xy + c2x
2y + c3y

2 + c4xy2 + c5x
2y2

g2,1,[7,8] = c0 + c1u1 + c2u
2
1 + c3v1 + c4u1v1 + c5u

2
1v1

Requiring ν1(g2,1,[7,8]) ≥ αν1 and ν2(g2,1,[7,8]) ≥ αν2 yields the following con-
straints:

0 = c0 − c1 + c2, 0 = 1
4c4 − 2c2 − 1

4c5 − 1
4c3 + c1,

0 = c0 − c3, 0 = −c4 − 5
2c3 + c1

Solving the system with respect to c3 and c4 and setting c3 = 2 and c4 = −1 (which
is a matter of choice), we get g2 = 2y + 4xy + 2x2y + 2y2 − xy2 − 3x2y2.

The system for computing g1 had got an 1-dimensional solution. This implies that
the divisor (g1)[1,1] is equal to Ã. Hence its support is exactly the preimage of the
singular locus. On the other hand we were left with essentially one degree of freedom
when computing g2 and therefore (g2)[7,8] > Ã. Indeed we find that the support of
g2 has an additional point corresponding to Q3 ∈ U1, namely (u1, v1) = (−1,−16).
Therefore we have to consider one more valuation ν3 centered at Q3 (which one
could get again from a Puiseux series solution at Q3). All this is reflected in the
twisted orders of g1 and g2:

β1,ν1 = ν1,[1,1](g1) = 2, β1,ν2 = ν2,[1,1](g1) = 2, β1,ν3 = ν3,[1,1](g1) = 0,
β2,ν1 = ν1,[7,8](g2) = 2, β2,ν1 = ν2,[7,8](g2) = 2, β2,ν3 = ν3,[7,8](g2) = 1

Since Q3 ∈ C is a smooth point, the adjoint order is αν3 = 0.

7.7.4 Linear system of an anticanonical divisor

Now we make an Ansatz for an element h ∈ LC̃(K̃[7,1]):

h := c1 + c2x + c3y + c4xy + c5x
2y + c6y

2 + c7xy2 + c8x
2y2

h1,[7,1] := c1 + c2u1 + c3v1 + c4u1v1 + c5u
2
1v1 + c6v

2
1 + c7u1v

2
1 + c8u

2
1v

2
1

Requiring ν1(h1,[7,1]) ≥ β1,ν1 + β2,ν1 −αν1 = 2, ν2(h1,[7,1]) ≥ β1,ν2 + β2,ν2 −
αν2 = 2 and ν3(h1,[7,1]) ≥ β1,ν3 + β2,ν3 − αν3 = 1 (i.e. h1,[7,1] also has to vanish
on Q3) yields the following constraints:
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0 = c1 − c2

0 = − 1
4c5 + 1

4c4 + c2 − 1
4c3

0 = c1 − c3 + c6

0 = c7 − c4 + c2 + 5c6 − 5
2c3

0 = c1 − c2 − 16c3 + 16c4 − 16c5 + 256c6 − 256c7 + 256c8

Solving the system with respect to c6, c7 and c8, we compute a basis of the vector
space V of theorem 12:

b1 = 4 + 4x + 5y − 7
2yx + 15

2 yx2 + y2

b2 = −4− 4x− 4y + 7yx− 5yx2 + y2x

b3 = 4 + 4x + 4y − 6yx + 6yx2 + y2x2

In other words
{

b1
g1g2

, b2
g1g2

, b3
g1g2

}
is a basis of LC̃(−K̃∅), the linear system of our

anticanonical divisor.

7.7.5 Birational equivalence to a conic

The rational functions bi

g1g2
are the coordinates of a map from C to the projective

plane P2
Q

. We get the same map if we multiply all coordinates by their common
denominator g1g2:

C ��� P2
Q

:
(

x
y

)
�→

⎛⎝4 + 4x + 5y − 7
2yx + 15

2 yx2 + y2

−4− 4x− 4y + 7yx− 5yx2 + y2x
4 + 4x + 4y − 6yx + 6yx2 + y2x2

⎞⎠
Dividing by the last coordinate, we get a map to A2

Q
:

ψ1 : C ��� A2
Q

:
(

x
y

)
�→
(

8+8x+10y−7yx+15yx2+2y2

2(4+4x+4y−6yx+6yx2+y2x2)
−4−4x−4y+7yx−5yx2+y2x
4+4x+4y−6yx+6yx2+y2x2

)

The image of this map is a conic C ′ ⊂ A2
Q

. To avoid confusion, we use the
coordinates x′ and y′ in the image domain. We can compute the implicit equation
f ′ = 12x′y′ + y′2 + 9x′ of C ′ by eliminating the variables x and y using Gröbner
bases techniques. Then ψ1 is a birational morphism with inverse

ψ−1
1 : C ′ ��� C :

(
x′

y′

)
�→
(

(4y′+3)(4y′2+36y′+27)
y′(2y′+3)(34y′+27)

−(2y′+3)(14y′2+45y′+27)
4y′2(4y′+3)

)
.

In other words ψ−1
1 is a parametrization of C by the conic C ′.
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7.7.6 Parametrization of the conic

The conic C ′ can be parametrized easily (e.g. by stereographic projection) if one
point on it is known. In our case the origin is contained in C ′ and we compute the
following parametrization over Q using a pencil of lines through the origin:

ψ2 : A1
Q

��� C ′ : t �→
( −9

t2+12t−9t
t2+12t

)
Composing both maps finally yields a parametrization of the input curve:

ψ−1
1 ◦ ψ2 : A1

Q
��� C : t �→

( −(12+12t+t2)t
3(2+3t)(6+t)
−(6+9t+t2)(6+t)

12t

)
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Summary. Given a smooth surface, a blue (red) ridge is a curve such that at each of its point,
the maximum (minimum) principal curvature has an extremum along its curvature line. As
curves of extremal curvature, ridges are relevant in a number of applications including surface
segmentation, analysis, registration, matching. In spite of these interests, given a smooth sur-
face, no algorithm reporting a certified approximation of its ridges was known so far, even for
restricted classes of generic surfaces.

This paper partly fills this gap by developing the first algorithm for polynomial parametric
surfaces — a class of surfaces ubiquitous in CAGD. The algorithm consists of two stages.
First, a polynomial bivariate implicit characterization of ridges P = 0 is computed using an
implicitization theorem for ridges of a parametric surface. Second, the singular structure of
P = 0 is exploited, and the approximation problem is reduced to solving zero dimensional
systems using Rational Univariate Representations. An experimental section illustrates the
efficiency of the algorithm on Bézier patches.

8.1 Introduction

8.1.1 Ridges

Originating with the parabolic lines drawn by Felix Klein on the Apollo of Belvedere
[10], curves on surfaces have been a natural way to apprehend the aesthetics of
shapes [12]. Aside these artistic concerns, applications such as surface segmenta-
tion, analysis, registration or matching [11, 16] are concerned with the curves of
extremal curvature of a surface, which are its so-called ridges. (We note in passing
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that interestingly, (selected) ridges are also central in the analysis of Delaunay based
surface meshing algorithms [1].)

A comprehensive literature on ridges exists – see [11, 17, 18], and we just intro-
duce the basic notions so as to discuss our contributions. Consider a smooth embed-
ded surface whose principal curvatures are denoted k1 and k2 with k1 ≥ k2. Away
from umbilical points — where k1 = k2, principal directions of curvature are well
defined, and we denote them d1 and d2. In local coordinates, we denote 〈, 〉 the inner
product induced by the ambient Euclidean space, and the gradients of the principal
curvatures are denoted dk1 and dk2. Ridges can be defined as follows — see Fig. 8.1
for an illustration :

Definition 1. A non umbilical point is called

• a blue ridge point if the extremality coefficient b0 = 〈dk1, d1〉 vanishes, i.e.
b0 = 0.

• a red ridge point if the extremality coefficient b3 = 〈dk2, d2〉 vanishes, i.e. b3 =
0.

As the principal curvatures are not differentiable at umbilics, note that the extremality
coefficients are not defined at such points. Notice also the sign of the extremality
coefficients is not defined, as each principal direction can be oriented by two opposite
unit vectors. Apart from umbilics, special points on ridges are purple points – they
actually correspond to intersections between red and a blue ridges. The calculation
of ridges poses difficulties of three kinds.

Topological difficulties.

Ridges of a smooth surface feature self-intersections at umbilics — more precisely at
so-called 3-ridges umbilics — and purple points. From a topological viewpoint, re-
porting a certified approximation of ridges therefore requires reporting these singular
points.

Numerical difficulties.

As ridges are characterized by derivatives of principal curvatures, reporting them
requires evaluating third order differential quantities. Estimating such derivatives
depends upon the particular type of surface processed — implicitly defined, para-
meterized, discretized by a mesh, but is numerically a demanding task.

Orientation difficulties.

As observed above, the signs of the b0 and b3 depend upon the particular orientations
of the principal directions picked. But as a global coherent non vanishing orientation
of the principal directions cannot be found in the neighborhoods of umbilics, track-
ing the zero crossings of b0 and b3 faces a major difficulty. For the particular case of
surfaces represented by meshes, the so-called Acute rule can be used [4], but com-
puting meshes compliant with the requirements imposed by the acute rule is an open
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problem. For surfaces represented implicitly or parametrically, one can resort to the
Gaussian extremality Eg = b0b3, which eradicates the sign problems, but prevents
from reporting the red and blue ridges separately.

Fig. 8.1. Umbilics, ridges, and principal blue foliation on the ellipsoid for normals pointing
outward

8.1.2 Previous work

Given the previous difficulties, no algorithm reporting ridges in a certified fashion
had been developed until this work. Most contributions deal with sampled surfaces
known through a mesh, and a complete review of these contributions can be found
in [4]. In the following, we focus on contributions related to parametric surfaces.

Reporting umbilics. Umbilics of a surface are always traversed by ridges, so that
reporting ridges faithfully requires reporting umbilics. To do so, Morris [13] mini-
mizes the function k1 − k2, which vanishes exactly at umbilics. Meakawa et al. [15]
define a polynomial system whose roots are the umbilics. This system is solved with
the rounded interval arithmetic projected polyhedron method. This algorithm uses
specific properties of the Bernstein basis of polynomials and interval arithmetic. The
domain is recursively subdivided and a set of boxes containing the umbilics is output,
but neither existence nor uniqueness of an umbilic in a box is guaranteed.

Reporting ridges. The only method dedicated to parametric surfaces we are aware of
is that of Morris [13, 14]. The parametric domain is triangulated and zero crossings
are sought on edges. Local orientation of the principal directions are needed but only
provided with a heuristic. This enables to detect crossings assuming (i) there is at
most one such crossing on an edge (ii) the orientation of the principal directions is
correct. As this simple algorithm fails near umbilics, these points are located first
and crossings are found on a circle around the umbilic.

Equation of the ridge curve. Ridges can be characterized either as extrema of prin-
cipal curvatures along their curvature lines as in definition 1, or by analyzing the con-
tact between the surface and spheres [11]. For parametric surfaces, this later approach
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allows a global characterization of ridges [18, Chapter 11] as a 1 dimensional smooth
sub-manifold in a 7 dimensional space. But this characterization is not amenable to
algorithmic developments.

Shifting from this seven-dimensional space to the parametric space, the theory of
algebraic invariants has been used to derive the equation of the ridge curve as the zero
set of an invariant function [8]. The ensuing strategy consists of defining invariants
as functions of the fundamental forms and their derivatives. The equation of ridges
is given in this setting. If one further specializes this equation for a surface given by
a parameterization, the result matches, up to a constant factor, our implicit encoding
P = 0 [3]. The point of view of our approach is to work from the beginning on a
parametrized surface. The definition of ridges involves principal curvatures and prin-
cipal directions of curvature which are independent of the given parametrization, but
we explicit all these invariants wrt the parametrization and its derivatives. Hence, for
polynomial parametric surfaces, we end with a polynomial with integer coefficients
whose variables are the partial derivatives of the parametrization up to the third order.
This polynomial is the same for any other parametrization.

Reporting the topology of an algebraic curve. In the case of a polynomial paramet-
ric surface, we recast the problem of approximating ridges into the field of algebraic
geometry. We recall that the standard tool to compute a graph encoding the topology
of a 2-D or 3-D curve is the Cylindrical Algebraic Decomposition (CAD) [7, 9].

8.1.3 Contributions and paper overview

Let Φ(u, v) be a smooth parameterized surface over a domain D ⊂ R2. We wish to
report a certified approximation of its ridges, which subsumes a solution for all the
difficulties enumerated in section 8.1.1.

The first step in providing a certified approximation of the ridges of Φ consists
of computing an implicit equation P = 0 encoding these ridges. The derivation of
this equation is presented in the companion paper [3], which also contains a detailed
discussion of our implicit encoding of ridges wrt previous work.

The equation P = 0 being taken for granted, the contribution developed in this
paper is to exploit as far as possible the geometry of P encoded in P = 0, so as
to develop the first algorithm able to compute the ridges topology of a polynomial
parametric surface. Our algorithm avoids the main difficulties of CAD methods:
(i) singular and critical points are sequentially computed directly in 2D; (ii) no
generic assumption is required, i.e. several critical or singular points may have
the same horizontal projection; (iii) no computation with algebraic numbers is
involved. Because algorithms based on the Cylindrical Algebraic Decomposition are
not effective for our high degree curves such as P = 0, our algorithm is to the best
of our knowledge the only one able to certify properties of the curve P = 0.

The paper is organized as follows. The implicit equations for ridges and its singu-
larities are recalled in section 8.2. The algorithm to compute the topology of the ridge
curve is described in section 8.3. Section 8.4 provides illustrations on two Bézier sur-
faces.
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8.1.4 Notations

Ridges and umbilics.

At any non umbilical point of the surface, the maximal (minimal) principal curvature
is denoted k1 (k2), and its associated direction d1 (d2). Anything related to the max-
imal (minimal) curvature is qualified blue (red), for example we shall speak of the
blue curvature for k1 or the red direction for d2. Since we shall make precise state-
ments about ridges, it should be recalled that, according to definition 1, umbilics are
not ridge points.

Differential calculus.

For a bivariate function f(u, v), the partial derivatives are denoted with indices, for
example fuuv = ∂3f

∂2u∂v . The gradient of f is denoted f1 or df = (fu, fv). The
quadratic form induced by the second derivatives is denoted f2(u, v) = fuuu2 +
2fuvuv + fvvv2. The discriminant of this form is denoted δ(f2) = f2

uv − fuufvv .
The cubic form induced by the third derivatives in denoted f3(u, v) = fuuuu3 +
3fuuvu2v + 3fuvvuv2 + fvvvv3. The discriminant of this form is denoted δ(f3) =
4(fuuufuvv − f2

uuv)(fuuvfvvv − f2
uvv)− (fuuufvvv − fuuvfuvv)2.

Let f be a real bivariate polynomial and F the real algebraic curve defined by f .
A point (u, v) ∈ C2 is called

• a singular point of F if f(u, v) = 0, fu(u, v) = 0 and fv(u, v) = 0;
• a critical point of F if f(u, v) = 0, fu(u, v) = 0 and fv(u, v) �= 0 (such a point

has an horizontal tangent, we call it critical because if one fixes the v coordinate,
then the restricted function is critical wrt the u coordinate, this notion will be
useful in section 8.3);

• a regular point of F if f(u, v) = 0 and it is neither singular nor critical.

If the domain D of study is a subset of R2, one calls fiber a cross section of this
domain at a given ordinate or abscissa.

Misc.

The inner product of two vectors x, y is denoted 〈x, y 〉.

8.2 Relevant equations for ridges and its singularities

This section briefly recalls the equations defining the ridge curve and its singularities,
see [3]. Let Φ be the parameterization of class Ck for k ≥ 4. Denote I and II the
matrices of the first and second fundamental form of the surface in the basis (Φu, Φv)
of the tangent space. In order for normals and curvatures to be well defined, we
assume the surface is regular i.e. det(I) �= 0.
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The principal directions di and principal curvatures k1 ≥ k2 are the eigenvectors
and eigenvalues of the matrix W = I−1II . The following equation defines coeffi-
cients A,B,C and D as polynomials wrt the derivative of the parameterization Φ up
to the second order (

A B
C D

)
= W (det I)3/2. (8.1)

As a general rule, in the following calculations, we will be interested in deriving
quantities which are polynomials wrt the derivatives of the parameterization. These
calculations are based on quantities (principal curvatures and directions) which are
independent of a given parameterization, hence the derived formula are valid for any
parameterization.
Umbilics are characterized by the equation p2 = 0, with p2 = (k1 − k2)2(det I)3.
We then define two vector fields v1 and w1 orienting the principal direction field d1

v1 = (−2B,A−D −√p2)
w1 = (A−D +

√
p2, 2C).

Derivatives of the principal direction k1 wrt these two vector fields define a, a′, b, b′

by the equations:

a
√

p2 + b =
√

p2(det I)5/2〈 dk1, v1 〉 ; a′√p2 + b′ =
√

p2(det I)5/2〈 dk1, w1 〉.
(8.2)

The following definition is a technical tool to state the next theorem in a simple
way. The function Signridge introduced here will be used to classify ridge colors.
Essentially, this function describes all the possible sign configurations for ab and a′b′

at a ridge point.

Definition 2. The function Signridge takes the values

-1 if

{
ab < 0
a′b′ ≤ 0

or

{
ab ≤ 0
a′b′ < 0

,

+1 if

{
ab > 0
a′b′ ≥ 0

or

{
ab ≥ 0
a′b′ > 0

,

0 if ab = a′b′ = 0.

Theorem 3. The set of blue ridges union the set of red ridges union the set of umbilics
has equation P = 0 where P = (a2p2−b2)/B is a polynomial wrt A,B,C,D,det I
as well as their first derivatives and hence is a polynomial wrt the derivatives of the
parameterization up to the third order. For a point of this set P , one has:

• If p2 = 0, the point is an umbilic.
• If p2 �= 0 then:

– if Signridge = −1 then the point is a blue ridge point,
– if Signridge = +1 then the point is a red ridge point,
– if Signridge = 0 then the point is a purple point.
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In addition, the classification of an umbilic as 1-ridge or 3-ridges from P3 goes
as follows:

• If P3 is elliptic, that is the discriminant of P3 is positive (δ(P3) > 0), then the
umbilic is a 3-ridge umbilic and the 3 tangent lines to the ridges at the umbilic
are distinct.

• If P3 is hyperbolic (δ(P3) < 0) then the umbilic is a 1-ridge umbilic.

8.2.1 Polynomial surfaces

A fundamental class of surface used in Computer Aided Geometric Design con-
sists of polynomial surfaces like Bézier and splines. We first observe that if Φ is a
polynomial, all its derivatives are also polynomials. Thus in the polynomial case
the equation of ridges, which is a polynomial wrt to these derivatives, is alge-
braic. Hence the set of all ridges and umbilics is globally described by an algebraic
curve. Notice that the parameterization can be general, in which case Φ(u, v) =
(x(u, v), y(u, v), z(u, v)), or can be a height function Φ(u, v) = (u, v, z(u, v)).

As a corollary of Thm. 3, one can give upper bounds for the total degree of the
polynomial P wrt that of the parameterization. Distinguishing the cases where Φ is a
general parameterization or a height function (that is Φ(u, v) = (u, v, h(u, v))) with
h(u, v) and denoting d the total degree of Φ, P has total degree 33d−40 or 15d−22
for a height function.

In the more general case where the parameterization is given by rational fractions
of polynomials, P is a rational function of the surface parameters too. The denom-
inator of P codes the points where the surface is not defined and away from these
points, the numerator codes the ridges and umbilics.

8.3 Certified topological approximation

In this section, we circumvent the difficulties of the Cylindrical Algebraic Decom-
position (CAD) and develop a certified algorithm to compute the topology of P .
Consider a parameterized surface Φ(u, v), the parameterization being polynomial
with rational coefficients. Let P be the curve encoding the ridges of Φ(u, v). We aim
at studying P on the compact box domain D = [a, b]× [c, d].

Given a real algebraic curve, the standard way to approximate it consists of re-
sorting to the CAD. Running the CAD requires computing singular points and criti-
cal points of the curve — points with a horizontal tangent. Theoretically, these points
are defined by zero-dimensional systems. Practically, because of the high degree of
the polynomials involved, the calculations may not go through. Replacing the bot-
tlenecks of the CAD by a resolution method adapted to the singular structure of P ,
we develop an algorithm producing a graph G embedded in the domain D, which is
isotopic to the curve P of ridges in D. Key points are that:

1. no generic assumption is required, i.e. several critical or singular points may
have the same horizontal projection;

2. no computation with algebraic numbers is involved.
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8.3.1 Algebraic tools

Two algebraic methods are ubiquitously called by our algorithm: univariate root iso-
lation and rational univariate representation. We briefly present these tools and give
references for the interested reader.

Univariate root isolation. This tool enables to isolate roots of univariate poly-
nomials whose coefficients are rational numbers, by means of intervals with rational
bounds. The method uses the Descartes rule and is fully explained in [20].

Rational univariate representation [19]. The Rational Univariate Representa-
tion is, with the end-user point of view, the simplest way for representing symboli-
cally the roots of a zero-dimensional system without loosing information (multiplic-
ities or real roots) since one can get all the information on the roots of the system by
solving univariate polynomials.

Given a zero-dimensional system

I =< p1, . . . , ps >

where the pi ∈ Q[X1, . . . , Xn], a Rational Univariate Representation of V(I), has
the following shape:

ft(T ) = 0, X1 =
gt,X1(T )
gt,1(T )

, . . . , Xn =
gt,Xn

(T )
gt,1(T )

,

where ft, gt,1, gt,X1 , . . . , gt,Xn
∈ Q[T ] (T is a new variable). It is uniquely defined

w.r.t. a given polynomial t which separates V (I) (injective on V (I)), the polynomial
ft being necessarily the characteristic polynomial of mt in Q[X1, . . . , Xn]/I . The
RUR defines a one-to-one map between the roots of I and those of ft preserving the
multiplicities and the real roots:

V(I)(∩R) ≈ V(ft)(∩R)
α = (α1, . . . , αn) → t(α)

( gt,X1 (t(α))

gt,1(t(α)) , . . . ,
gt,Xn (t(α))
gt,1(t(α)) ) ← t(α)

The RUR also enables efficient evaluation of the sign of polynomials at the roots of
a system.

8.3.2 Assumptions on the ridge curve and study points

According to the structure of the singularities of the ridge curve recalled in section
8.2, the only assumption made is that the surface admits generic ridges in the sense
that real singularities of P satisfy the following conditions:

• Real singularities of P are of multiplicity at most 3.
• Real singularities of multiplicity 2 are called purple points. They satisfy the sys-

tem Sp = {a = b = a′ = b′ = 0, δ(P2) > 0, p2 �= 0}. In addition, this implies
that two real branches of P are passing through a purple point.
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• Real singularities of multiplicity 3 are called umbilics and they satisfy the system
Su = {p2 = 0} = {p2 = 0, P = 0, Pu = 0, Pv = 0}. In addition, if δ(P3)
denote the discriminant of the cubic of the third derivatives of P at an umbilic,
one has:
– if δ(P3) > 0, then the umbilic is called a 3-ridge umbilic and three real

branches of P are passing through the umbilic with three distinct tangents;
– if δ(P3) < 0, then the umbilic is called a 1-ridge umbilic and one real branch

of P is passing through the umbilic.

As we shall see in section 8.3.5, these conditions are checked during the processing
of the algorithm.

Given this structure of singular points, the algorithm successively isolate umbil-
ics, purple points and critical points. As a system defining one set of these points
also includes the points of the previous system, we use a localization method to sim-
plify the calculations. The points reported at each stage are characterized as roots of
a zero-dimensional system — a system with a finite number of complex solutions,
together with the number of half-branches of the curve connected to each point. In
addition, points on the border of the domain of study need a special care. This setting
leads to the definition of study points:

Definition 4. Study points are points in D which are

• real singularities of P , that is Ss = Su ∪ Sp , with Su = S1R ∪ S3R and
– S1R = {p2 = P = Pu = Pv = 0, δ(P3) < 0}
– S3R = {p2 = P = Pu = Pv = 0, δ(P3) > 0}
– Sp = {a = b = a′ = b′ = 0, δ(P2) > 0, p2 �= 0}

= {a = b = a′ = b′ = 0, δ(P2) > 0} \ Su

• real critical points of P in the v-direction (i.e. points with a horizontal tangent
which are not singularities of P) defined by the system
Sc = {P = Pu = 0, Pv �= 0};

• intersections of P with the left and right sides of the box D satisfying the system
Sb = {P (a, v) = 0, v ∈ [c, d]} ∪ {P (b, v) = 0, v ∈ [c, d]}. Such a point may
also be critical or singular.

8.3.3 Output specification

Definition 5. Let G be a graph whose vertices are points of D and edges are non-
intersecting straight line-segments between vertices. Let the topology on G be in-
duced by that of D. We say that G is a topological approximation of the ridge curve
P on the domain D if G is ambient isotopic to P ∩ D in D.

More formally, there exists a function F : D × [0, 1] −→ D such that:

• F is continuous;
• ∀t ∈ [0, 1], Ft = F (., t) is an homeomorphism of D onto itself;
• F0 = IdD and F1(P ∩ D) = G.
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Note that homeomorphic approximation is weaker and our algorithm actually
gives isotopy. In addition, our construction allows to identify singularities of P to
a subset of vertices of G while controlling the error on the geometric positions. We
can also color edges of G with the color of the ridge curve it is isotopic to. Once
this topological sketch is given, one can easily compute a more accurate geometrical
picture.

8.3.4 Method outline

Taking the square free part of P , we can assume P is square free. We can also assume
P has no part which is a horizontal segment — parallel to the u-axis. Otherwise this
means that a whole horizontal line is a component of P . In other words, the content
of P wrt u is a polynomial in v and we can study this factor separately and divide P
by this factor. Eventually, to get the whole topology of the curve, one has to merge
the components.

Our algorithms consists of the following five stages:

1. Isolating study points. Study point are isolated in 2D with rational univariate
representations (RUR). Study points within a common fiber are identified.

2. Regularization of the study boxes. We know the number of branches of the
curve going through each study point. The boxes of study points are reduced so
as to be able to define the number of branches coming from the bottom and from
the top.

3. Computing regular points in study fibers. In each fiber of a study point, the u-
coordinates of intersection points with P other than study points are computed.

4. Adding intermediate rational fibers. Add rational fibers between study points
fibers and isolate the u-coordinates of intersection points with P .

5. Performing connections. This information is enough to perform the connec-
tions. Consider the cylinder between two consecutive fibers, the number of
branches connected from above the lower fiber is the same than the number
of branches connected from below the higher fiber. Hence there is only one way
to perform connections with non-intersecting straight segments.

8.3.5 Step 1. Isolating study points

The method to identify these study points is to compute a RUR of the system defining
them. More precisely, we sequentially solve the following systems:

1. The system Su from which the sets S1R and S3R are distinguished by evaluating
the sign of δ(P3).

2. The system Sp for purple points.
3. The system Sc for critical points.
4. The system Sb for border points, that is intersections of P with the left and

right sides of the box D. Solving this system together with one of the previous
identifies border points which are also singular or critical.
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Selecting only points belonging to D reduces to adding inequalities to the sys-
tems and is well managed by the RUR. According to [19], solving such systems is
equivalent to solving zero-dimensional systems without inequalities when the num-
ber of inequations remains small compared to the number of variables. The RUR of
the study points provides a way to compute a box around each study point qi which is
a product of two intervals [u1

i ;u
2
i ]× [v1

i ; v2
i ]. The intervals can be as small as desired.

Until now, we only have separate information on the different systems. In order
to identify study points having the same v-coordinate, we need to cross this infor-
mation. First we compute isolation intervals for all the v-coordinates of all the study
points together, denote I this list of intervals. If two study points with the same v-
coordinate are solutions of two different systems, the gcd of polynomials enable to
identify them:

• Initialize the list I with all the isolation intervals of all the v-coordinates of the
different systems.

• Let A and B be the square free polynomials defining the v-coordinates of two
different systems, and IA, IB the lists of isolation intervals of their roots. Let
C = gcd(A,B) and IC the list of isolation intervals of its roots. One can refine
the elements of IC until they intersect only one element of IA and one element
of IB . Then replace these two intervals in I by the single interval which is the
intersection of the three intervals. Do the same for every pair of systems.

• I then contains intervals defining different real numbers in one-to-one corre-
spondence with the v-coordinates of the study points. It remains to refine these
intervals until they are all disjoint.

Second, we compare the intervals of I and those of the 2d boxes of the study
points. Let two study points qi and qj be represented by [u1

i ;u
2
i ] × [v1

i ; v2
i ] and

[u1
j ;u

2
j ]× [v1

j ; v2
j ] with [v1

i ; v2
i ] ∩ [v1

j ; v2
j ] �= ∅. One cannot, a priori, decide if these

two points have the same v-coordinate or if a refinement of the boxes will end with
disjoint v-intervals. On the other hand, with the list I , such a decision is straightfor-
ward. The boxes of the study points are refined until each [v1

i ; v2
i ] intersects only one

interval [w1
i ;w2

i ] of the list I . Then two study points intersecting the same interval
[w1

i ;w2
i ] are in the same fiber.

Finally, one can refine the u-coordinates of the study points with the same v coor-
dinate until they are represented with disjoint intervals since, thanks to localizations,
all the computed points are distinct.
Checking genericity conditions of section 8.3.2.

First, real singularities shall be the union of purple and umbilical points, this
reduces to compare the systems for singular points and for purple and umbilical
points. Second, showing that δ(P3) �= 0 for umbilics and δ(P2) > 0 for purple
points reduces to sign evaluation of polynomials at the roots of a system (see section
8.3.1).
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Fig. 8.3. Performing connections between the study point fiber αi and the intermediate fiber
δi

8.3.6 Step 2. Regularization of the study boxes

At this stage, we have computed isolating boxes of all study points {qi,j , i =
1 . . . s, j = 1 . . . mi} : the v-coordinates α1, . . . , αs are isolated by intervals [v1

i ; v2
i ],

i = 1 . . . s and the u-coordinates of the mi study points in each fiber αi are isolated
by intervals [u1

i,j ;u
2
i,j ], j = 1 . . . mi.

We know the number of branches of the curve passing through each study point :
it is 6 for a 3-ridge umbilic, 4 for a purple and 2 for others. We want to compute the
number branches coming from the bottom and from the top. We first reduce the box
until the number of intersections between the curve and the border of the box matches
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the known number of branches connected to the study point. Then the intersections
are obviously in one-to-one correspondence with the branches. Second, as in [21]
for example, we reduce the height of the box again if necessary so that intersections
only occur on the top or the bottom of the box.

Counting the number of intersections reduces to solve 4 univariate polynomials
with rational coefficients. Reducing a box means refining its representation with the
RUR.

8.3.7 Step 3. Computing regular points in study fibers

We now compute the regular points in each fiber P (u, αi) = 0. Computing the
regular points of each fiber is now equivalent to computing the roots of the poly-
nomials P (u, αi) outside the intervals representing the u-coordinates of the study
points (which contain all the multiple roots of P (u, αi)).

Denote [u1
i,j ;u

2
i,j ], j = 1..mi the intervals representing the u-coordinates of the

study points on the fiber of αi and [v1
i , v2

i ] an interval containing (strictly) αi and no
other αj , j �= i. Substituting v by any rational value q ∈ [v1

i , v2
i ] in P (u, v) gives a

univariate polynomial with rational coefficients P (u, q). We then isolate the (simple)
roots of this polynomial P (u, q) on the domain [a, b]\∪mi

j=1[u
1
i,j ;u

2
i,j ] : the algorithm

returns intervals [β1
i,j ;β

2
i,j ], j = 1 . . . li representing these roots.

To summarize the information up to this point : we have, along each fiber, a
collection of points si,j , i = 1 . . . s, j = 1, . . . , mi + li, which are either study
points or regular points of P . Each such point is isolated in a box i.e. a product of
intervals and comes with two integers (n+

i,j , n
−
i,j) denoting the number of branches

in D connected from above and from below.

8.3.8 Step 4. Adding intermediate rational fibers

Consider now an intermediate fiber, i.e. a fiber associated with v = δi i = 1 . . . s−1,
with δi a rational number in-between the intervals of isolation of two consecutive
values αi and αi+1. If the fibers v = c or v = d are not fibers of study points, then
they are added as fibers δ0 or δs.

Getting the structure of such fibers amounts to solving a univariate polynomial
with rational coefficients, which is done using the algorithm described in section
8.3.1. Thus, each such fiber also comes with a collection of points, isolated in boxes,
for which one knows that n+

i,j = n−
i,j = 1.

8.3.9 Step 5. Performing connections

We thus obtain a full and certified description of the fibers: all the intersection points
with P and their number of branches connected. We know, by construction, that the
branches of P between fibers have empty intersection. The number of branches con-
nected from above a fiber is the same than the number of branches connected from



154 F. Cazals et al.

below the next fiber. Hence there is only one way to perform connections with non-
intersecting straight segments. More precisely, vertices of the graph are the centers
of isolation boxes, and edges are line-segments joining them.

Notice that using the intermediate fibers v = δi is compulsory if one wishes to
get a graph G isotopic to P . If not, whenever two branches have common starting
points and endpoints, the embedding of the graph G obtained is not valid since two
arcs are identified.

The algorithm is illustrated on Fig. 8.3. In addition

• If a singular point box have width δ, then the distance between the singular point
and the vertex representing it is less than δ.

• One can compute the sign of the function Signridge (definition 2) for each reg-
ular point of each intermediate fiber. This defines the color of the ridge branch
it belongs to. Then one can assign to each edge of the graph the color of its end
point which is on an intermediate fiber.

8.4 Illustration

We provide the topology of ridges for two Bézier surfaces defined over the domain
D = [0, 1]× [0, 1].

The first surface has control points⎛⎜⎜⎜⎜⎝
[0, 0, 0] [1/4, 0, 0] [2/4, 0, 0] [3/4, 0, 0] [4/4, 0, 0]

[0, 1/4, 0] [1/4, 1/4, 1] [2/4, 1/4,−1] [3/4, 1/4,−1] [4/4, 1/4, 0]
[0, 2/4, 0] [1/4, 2/4,−1] [2/4, 2/4, 1] [3/4, 2/4, 1] [4/4, 2/4, 0]
[0, 3/4, 0] [1/4, 3/4, 1] [2/4, 3/4,−1] [3/4, 3/4, 1] [4/4, 3/4, 0]
[0, 4/4, 0] [1/4, 4/4, 0] [2/4, 4/4, 0] [3/4, 4/4, 0] [4/4, 4/4, 0]

⎞⎟⎟⎟⎟⎠
Alternatively, this surface can be expressed as the graph of the total degree 8 poly-
nomial h(u, v) for (u, v) ∈ [0, 1]2:

h(u, v) = 116u4v4 − 200u4v3 + 108u4v2 − 24u4v − 312u3v4 + 592u3v3 − 360u3v2

+80u3v+252u2v4−504u2v3+324u2v2−72u2v−56uv4+112uv3−72uv2+16uv.

The computation of the implicit curve has been performed using Maple 9.5 and re-
quires less than one minute (see [3]). It is a bivariate polynomial P (u, v) of total
degree 84, of degree 43 in u, degree 43 in v with 1907 terms and coefficients with
up to 53 digits. Figure 8.4 displays the topological approximation graph of the ridge
curve in the parametric domainD computed with the algorithm of section 8.3. There
are 19 critical points, 17 purple points and 8 umbilics, 3 of which are 3-ridge and 5
are 1-ridge.

We have computed the subsets Su, Sp and Sc by using the software FGB and
RS (http://fgbrs.lip6.fr). The RUR can be computed as shown in [19] or
alternatively, Gröbner basis can be computed first using [5] or [6]. We tested both
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methods and the computation time for the biggest system Sc does not exceed 10
minutes with a Pentium M 1.6 Ghz. The following table gives the main characteris-
tics of these systems:

System # of roots ∈ C # of roots ∈ R # of real roots ∈ D
Su 160 16 8
Sp 749 47 17
Sc 1432 44 19

In order to have more insight of the geometric meaning of the ridge curve, the
surface and its ridges are displayed on Fig. 8.5. This plot is computed without topo-
logical certification with the rs tci points function (from RS software, see also
[2]) from the polynomial P and then lifted on the surface.

Fig. 8.4. Bi-quartic Bèzier example : isotopic approximation of the ridge curve with study
points circled.

The second surface is a bi-quadratic Bézier surface
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Fig. 8.5. Plot of the bi-quartic Bèzier surface with ridges

Φ (u, v) = [2/3 v + 2/3 uv − 1/3 u2v + 1/3 v2 − 2/3 v2u + 1/3 u2v2,

1/2 u + 1/2 u2 + uv − u2v − 1/2 v2u + 1/2 u2v2,

1 + 3 v2 − u − 4 v + 5 uv + u2v − 7/2 v2u − 5/2 u2v2]

The ridge curve has total degree 56 and partial degrees 33 with 1078 terms and
coefficients with up to 15 digits. The computation of the biggest system of study
points Sc takes 4.5 minutes. On this example, study point boxes have to be refined
up to a size of less than 2−255 to compute the topology. The following table gives
the main characteristics of the study point systems:

System # of roots ∈ C # of real roots ∈ D
Su 70 1
Sp 293 6
Sc 695 5
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Figure 8.6 displays the topology of the ridges. In addition to study points, the
regular points of all fibers are displayed as small black dots.

Fig. 8.6. Bi-quadratic Bèzier example : isotopic approximation of the ridge curve with study
points.

8.5 Conclusion

For parametric algebraic surfaces, we developed an algorithm to report a topolog-
ically certified approximation of the ridges. This algorithm is computationally de-
manding in terms of algebra. It is in a sense complementary to the heuristic one
developed in a companion paper [4], which is working directly on a triangulation of
the surface, and provide a fast way to report non certified results.
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The method developed for the computation of the topology of the ridges can
be generalized for other algebraic curves. It gives an alternative to usual algo-
rithms based on the CAD provided one knows the geometry of curve branches at
singularities.
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Summary. We present three symbolic–numeric techniques for computing the intersection
and self–intersection curve(s) of two Bézier surface patches of bidegree (2,2). In particular,
we discuss algorithms, implementation, illustrative examples and provide a comparison of the
methods.

9.1 Introduction

The intersection of two surfaces is one of the fundamental operations in Computer
Aided Design (CAD) and solid modeling. Closely related to it, the elimination of
self–intersections (which may arise. e.g., from offsetting) is needed to maintain the
correctness of a CAD model. Tensor–product Bézier surface patches, which are para-
metric surfaces defined by vector–valued polynomials x : [0, 1]2 → �

3 of certain
bidegree (m,n), are extensively used to model surfaces in CAD and solid model-
ing. However, even for relatively small bidegrees m,n ≤ 3, the intersection and
self–intersection loci of such patches can be fairly complicated. Consequently, stan-
dard algorithms for surface–surface intersections [24, 28] generally do not take the
properties of special classes of such tensor–product surfaces into account.

In the case of two general surfaces, a brute–force approach to compute the inter-
section curve(s) consists in (step 1) approximating the surface by triangular meshes
and (step 2) intersecting the planar facets of these meshes. Clearly, in order to achieve
high accuracy, a very fine approximation with a mesh may be needed. Alternatively,
one may consider to choose another, more complicated representation, where the ba-
sic elements are capable of capturing more of the geometric features. For instance,
one may choose quadratic triangular patches or biquadratic tensor–product patches3.
Clearly, this approach would need robust intersection algorithms for the more com-
plicated basic elements.
3 In the same spirit, Reference [32] proposes to use triangular patches for efficient visualiza-

tion.
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In this paper we address the computation of the intersection curve of two sur-
face patches of bidegree (2,2), i.e., biquadratic tensor–product patches. Our aim is to
compute the intersection by using – as far as possible – symbolic techniques, in order
to avoid problems with numerical robustness.

We chose the tensor–product representation, since it is more common in CAD en-
vironment. Approximations of general tensor–product surfaces by biquadratic ones
can easily be generated by combining degree reduction techniques with subdivision.
The techniques presented in this paper can immediately be extended to the case of tri-
angular patches. Indeed, tringular patches can be seen as degenerate tensor–product
patches, where one edge collapses into a single point.

The remainder of the paper is organized as follows. After some preliminaries,
Sections 9.3 to 9.5 present three different techniques for computing the intersection
curves, which are based on resultants, on approximate implicitization (which was one
of the main research topics in the GAIA II project), and on intersections of parameter
lines, respectively. Section 9.6 discusses the computation of self–intersections. We
apply the three techniques to three representative examples and report the results in
Section 9.7. Finally, we conclude this paper.

9.2 Intersection and self–intersection curves

We consider the intersection curves of two biquadratic Bézier surfaces x(u, v) and
y(r, s), both with parameter domains [0, 1]2. They are assumed to be given by their
parametric representations with rational coefficients (control points). More precisely,
these representations have the form

x(u, v) =
2∑

i=0

2∑
j=0

ci,jBi(u)Bj(v) (9.1)

with certain rational control points ci,j ∈ Q3 and the quadratic Bernstein polynomi-
als Bj(t) =

(
2
i

)
ti(1− t)2−i (and similarly for the second patch y(r, s)).

The intersection curve is defined by the system of three non–linear equations

x(u, v) = y(r, s) (9.2)

which defines the intersection as a curve (in the generic case) in [0, 1]4. Similarly,
self intersections of one of the patches are characterized by

x(u, v) = x(ū, v̄). (9.3)

In this case, the set of solutions contains the 2–plane u = u∗, v = v∗ as a trivial
component.

While these equations could be solved by using numerical methods, we plan to
explore how far it is possible to compute the intersections by using symbolic compu-
tations, in order to avoid rounding errors and robustness problems.

The “generic” algorithm for computing the (self–) intersection curve(s), consists
of three steps:
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u

v

boundary points

turning points

Fig. 9.1. Intersection curves in one of the parameter domains.

1. Find at least one point on each component of the intersection,
2. trace the segments of the intersection curve, and
3. collect and convert the segments into a format that is suitable for further process-

ing (depending on the application).

We will focus on the first step, since the second step is a standard numerical prob-
lem, and step 3 depends on the specific background of the problem. Several parts of
the intersection curve may exist. Some possible types are shown in Fig. 9.1 in the
parameter domain of a Bézier surface x(u, v). Points with horizontal or vertical tan-
gent are called turning points, and intersections with the boundaries of the patches
generate boundary points. Note that also isolated points (where both surfaces touch
each other) may exist.

9.3 A resultant–based approach

In this section, we will use the resultant to compute the intersection locus between
x(u, v) and y(r, s). We consider the algebraic variety

C = {(u, v, r, s) | x(u, v) = y(r, s)} (9.4)

and we will suppose that C ∩ [0, 1]4 is a curve.

9.3.1 Resultant basics

Let f1, f2 and f3 be three polynomials in two variables with given monomial sup-
ports and N the number of terms of these 3 supports. For each i ∈ {1, 2, 3}we denote
by coeffs(fi) the sequence of the coefficients of fi. The resultant of f1, f2 and f3 is,
by definition, an irreducible polynomial R in N variables with the property, that

R(coeffs(f1), coeffs(f2), coeffs(f3)) = 0 (9.5)

if and only if these 3 polynomials have a common root in a specified domain D. For
a more precise description of resultants, see e.g. [2, 8, 9].
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In our application to surface–surface–intersections, the resultant can be used as
a projection operator. Indeed, if f1, f2 and f3 are the three components of x(u, v)−
y(r, s) which are considered as polynomials in the two variables r and s, then the
resultant of f1, f2 and f3 is a polynomial R(u, v) and it gives an implicit plane curve
which corresponds to the projection of C in the (u, v) parameters. More precisely, if
f1, f2 and f3 are generic, then the two sets{

(u, v) ∈ [0, 1]2 | R(u, v) = 0
}

(9.6)

and {
(u, v) ∈ [0, 1]2 | ∃(r, s) ∈ D : x(u, v) = y(r, s)

}
(9.7)

are identical. Several families of multivariate resultants have been studied and some
implementations are available, see [5, 22].

9.3.2 Application to the intersection problem

A strategy to describe the intersection between x(u, v) and y(r, s) consists in pro-
jecting C on a plane (by using the resultant). Many authors propose to project C on the
(u, v) (or (r, s)) plane and then the resulted plane curve is traced (see [16] and [20]
for the tracing method) and is lifted to the 3D space by the corresponding parame-
terization. Note that this method can give some unwanted components (the so called
“phantom components”) which are not in x([0, 1]2) ∩ y([0, 1]2). So, another step is
needed to cut off the extraneous branches. This last part can be done with a solver for
multivariate polynomial systems (see [25]) or an inversion of parameterization (see
[3]).

As an alternative to these existing approaches, we propose to project the set C
onto the (u, r) space. Note that, in the equations x(u, v) = y(r, s), the two variables
v and s are separated, so they can be eliminated via a simple resultant computation.
It turns out that such a resultant can be computed via the determinant of a Bezoutian
matrix (see [15]). First, consider the (3, 3) determinant:

b = det
(
x(u, v)− y(r, s),

x(u, v)− x(u, v1)
v − v1

,
y(r, s)− y(r, s1)

s− s1

)
. (9.8)

The determinant b is a polynomial and its monomial support with respect to (v, s)
is S = {1, v, s, vs} and similarly for (v1, s1), where S1 = {1, v1, s1, v1s1}. So, a
monomial of b is a product of an element of S and of an element of S1. Then, we
form the 4× 4 matrix whose entries are the coefficients of b indexed by the product
of the two sets S and S1. This matrix contains only the variables u and r and is called
the Bezoutian matrix. In our case, its determinant is a polynomial in (u, r) equal to
the desired resultant R(u, r) (deg(R)=24 and degu(R)=degr(R)=16) and it gives an
implicit curve which corresponds to the projection of C in the (u, r) space.

Then, we analyse the topology of this curve (see [17] and [30]) and we trace it
(see [16] and [20]). Finally, for each (u0, r0) ∈ [0, 1]2 such that R(u0, r0) = 0, we
can determine if there exists a pair (v0, s0) ∈ [0, 1]2 such that x(u0, v0) = y(r0, s0)



9 Intersecting Biquadratic Patches 165

(solve a polynomial system of three equations with two separated unknowns of bide-
gree (2,2)) and thus we can avoid the problem of the phantom components (see Fig.
9.2). We lift the obtained points in the 3D space to give the intersection locus. Note
that this method can also give the projection of C in the (v, s) space by the same kind
of computation.
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Fig. 9.2. Projection of C in the (u, r) space with (left) and without (right) phantom compo-
nents. This curve corresponds to the example of Figure 9.6, page 175.

9.4 Approximate implicitization by a quartic surface

In this section, we apply the technique of approximate implicitization to compute the
intersection of two biquadratic patches.

9.4.1 Approximate implicitization

The implicitization problem – which consists in finding an implicit equation (an al-
gebraic representation) for a given parameterized rational surface – can be adressed
by using several approaches, e.g., using resultants or Groebner bases [8, 9, 18]. How-
ever, the implicitization is very time consuming because of the degree of the implicit
equation: for a generic parameterized surface of bidegree (n1, n2), the implicit equa-
tion has degree 2n1n2. Also, all rational parametric curves and surfaces have an
algebraic representation, but the reverse is not true; the relationship between the para-
metric and the algebraic representations can be very complex (problem of “phantom
components”). Thus, we can try to find an algebraic approximation of a given pa-
rameterized surface for which the computation is more efficient and which contains
less phantom components.

Consider a polynomial parameterized surface x(u, v) with the domain [0, 1]2,
and let d be a positive integer (the degree of the approximate implicit equation) and
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ε ≥ 0 (the tolerance). Following [12], the approximate implicitization problem con-
sists in finding a non–zero polynomial P ∈ R[x, y, z] of degree d such that

∀(u, v) ∈ [0, 1]2, P (x(u, v) + α(u, v) g(u, v)) = 0 (9.9)

with |α(u, v)| ≤ ε and ||g(u, v)||2 = 1. Here, α is the error function and g is the
direction for error measurement, e.g., the unit normal direction of the surface patch.

9.4.2 Approximate implicitization of a biquadratic surface

The main question of the approximate implicitization problem is how to choose the
degree. A key ingredient for this choice seems to be the topology, especially if the ini-
tial surface has self–intersections. The use of degree 4 was suggested by Tor Dokken;
after several experiments he concluded that the algebraic surfaces of degree 4 pro-
vide sufficiently many degrees of freedom to approximate most cases encountered in
practice. In the case of a biquadratic surface, where the exact implicit equation has
degree 8, using degree 4 seems to be a reasonable trade-off.

We describe two methods for approximate implicitization by a quartic for a bi-
quadratic surface. The approximate implicit equation is

P (x, y, z) =
4∑

i=0

4−i∑
j=0

4−i−j∑
k=0

bijk xiyjzk (9.10)

with the unknown coefficients b = (b000, b100, . . . , b004) ∈ R35. Let β(u, v) be the
vector formed by the tensor–product Bernstein polynomials of bidegree (8,8).

Dokken’s method.

This method, which is described in more detail in [12], proceeds as follows:

1. Factorize P (x(u, v)) = (Db)T β(u, v) where D is a 81× 35 matrix.
2. Generate a singular values decomposition (SVD) of D.
3. Choose b as the vector corresponding to the smallest singular value of D.

Note that this method is general and does not use the fact that we have a biquadratic
surface. Hereafter, we use an adapted method based on the geometry of the surface
of bidegree (2,2). Also, the computation of the singular value decomposition needs
floating point numbers.

Geometric method using evaluation:

This approach consists in constructing some pertinent geometrical constraints to give
a linear system of equations (with the unknowns b000, b100, . . . , b004), and then solv-
ing the resulting system by a singular values decomposition. In our method, we char-
acterize some conics, especially the four border conics and two interior conics:
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Fig. 9.3. Characterization of a conic in a biquadratic patch by 9 points

C1 = x([0, 1]× {0}), C2 = x([0, 1]× {1})
C3 = x({0} × [0, 1]), C4 = x({1} × [0, 1])
C5 = x({ 1

2} × [0, 1]), C6 = x([0, 1]× {1
2})

(9.11)

Lemma 1. If the quartic surface {P = 0} contains 9 points of any of the 6 conics
Ci, then Ci ⊂ {P = 0}, see Fig. 9.3.

Proof. Ci is of degree 2 and P is of degree 4, so by Bézout’s theorem, if there are
more than 8 elements in Ci ∩ {P = 0}, then Ci ⊂ {P = 0}.

Using this geometric observation, we construct a linear system and solve it ap-
proximately via SVD; this leads to an algebraic approximation of x(u, v) by a degree
4 surface.

9.4.3 Application to the intersection problem

In order to compute the intersection curves, we apply the approximate implicitization
to one of the patches and compose it with the second one. This leads to an implicit
representation of the intersection curve in one of the parameter domains, which can
then be traced and analyzed using standard methods for planar algebraic curves.

These two approximate implicitization methods are very efficient and suitable
for general cases, but the results are not always satisfactory. When the given bi-
quadratic patch is simple (i.e. with a certain flatness and without singularity and
self–intersection) the approximation is very close to the initial surface. So, to use this
method for a general biquadratic surface, we combine it, if needed, with a subdivi-
sion method (Casteljau’s algorithm). The advantage is twofold, we exclude domains
without intersections (by using bounding boxes) and avoid some unwanted config-
urations with a curve of self-intersection (use Hohmeyer’s criterion [19]). For more
complicated singularities, the results are definitively not satisfactory.

Note that even if we have a good criterion in the subdivision step, we still may
have problems with phantom components (but in general fewer), so we have to cut
off the extraneous branches as in the resultant method. This has to be done carefully
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Fig. 9.4. Left: Representation of a parameter line as the intersection of a plane and a quadratic
cylinder. Right: Identifying the intervals with feasible values of s.

in order to not discard points which do not correspond to phantom components. As
another drawback – because of the various approximations – it is rather difficult to
obtain certified points on the intersection locus. The use of approximate implicitiza-
tion is clearly a numerical method, and it can give only approximate answers, even
in the case of exact input.

9.5 Tracing intersections of parameter lines

In order to be able to trace the (self–) intersection curve(s), we have to find at least
one point for each segment. We generate these points by intersecting the parameter
lines of the first Bézier surface with the second one (see also [19]).

9.5.1 Intersection of a parameter line

A parameter line of x(u, v) for a constant rational value u = u0 takes the form

p(v) = x(u0, v) = a0(u0) + a1(u0) v + a2(u0) v2

with certain rational coefficient vectors ai ∈ Q3. It is a quadratic Bézier curve, hence
we can represent it as the intersection of a plane and a quadratic cylinder, see Fig.
9.4, left. Since we are only interested in the intersection of these two surfaces in a
certain region, we introduce two additional bounding planes π1 and π2. In the par-
ticular case that the parameter line is a straight line, we represent it as an intersection
curve of two orthogonal planes.

In order to compute the intersection of the parameter line with the second surface
patch y(r, s), we use the following algorithm.

1. Describe the parameter line as the intersection of a plane and a cylinder.
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2. Intersect the plane with the second patch y(r, s) and compute the intersection I.
3. Restrict the intersection curve(s) I to the region of interest.
4. Intersect the cylinder with the restricted intersection curve(s).

The four steps of the algorithm will now be explained in some more detail.

Defining the plane, the cylinder and the two bounding planes.

The parameter line and its three control points are coplanar. For computing the nor-
mal vector n of the plane, we have to evaluate the cross product of two difference
vectors of the control points. The plane is given by the zero set of a linear polynomial

π(u0)(x, y, z) = e0(u0) + n1(u0)x + n2(u0) y + n3(u0) z. (9.12)

By extruding the parameter line in the direction of the normal vector of the plane,
we obtain the parametric form of the quadratic cylinder, which intersects the plane
orthogonally,

w(u0)(p, q) = x(u0, p) + q · n. (9.13)

The implicitation of the cylinder is slightly more complicated. There exist two pos-
sibilities: we can either use Sylvester resultants or the method of comparing coeffi-
cients. In both cases we will get an equation of the form

ζ(u0)(x, y, z) := a0(u0) + a1(u0)x + a2(u0) y + a3(u0) z

+ a4(u0)x y + a5(u0)x z + a6(u0) y z

+ a7(u0)x2 + a8(u0) y2 + a9(u0) z2 = 0. (9.14)

Now we have both the plane and the cylinder in their implicit representation. Note
that this is a semi-implicit representation in the sense of [6].

If the parameter line degenerates into a straight line, then we choose two planes
through it which intersect orthogonally. Note that we use exact rational arithmetic,
in order to avoid any robustness problems.

Finally, we create the two planes π1(x, y, z) and π2(x, y, z) which bound the
parameter line. For instance, one may choose the two normal planes of the parameter
line at its boundary points; this choice is always possible, provided that the curve
segment is not too long (which can be enforced by using subdivision). Alternatively
one may use the planes spanned by the boundary curves, but these planes may have
an additional intersection with the parameter line in the region of interest.

Intersection of the plane and the second patch y(r, s).

Substituting the second Bézier surface y(r, s) into the equation (9.12) of the plane
leads to a biquadratic equation in r and s. We can treat it as a quadratic polynomial
in r with coefficients depending on s.

π(y(r, s)) = a(s) r2 + b(s) r + c(s) = 0. (9.15)
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For each value of s, we obtain two solutions r1(s) and r2(s) of the form

r1,2(s) = − b(s)
2 a(s)

±
√

d(s) with d(s) =
b(s)2

4 a(s)2
− c(s)

a(s)
. (9.16)

These solutions parameterize the two branches of the intersection curve I in the rs–
parameter domain of the second patch. By solving several quadratic equations we
determine the intervals Si,j ⊂ [0, 1], where d(s) ≥ 0 and 0 ≤ ri(s) ≤ 1 holds; this
leads to a (list of) feasible domain(s) (i.e., intervals) for each branch of the intersec-
tion curve.

By composing (9.16) with y we obtain the two branches k1(s) and k2(s) of the
intersection curve I,

k1,2(s) = y(r1,2(s), s) =
1

a(s)2
h(s)±

√
d(s)

a(s)
l(s) + d(s)m(s) (9.17)

where the components of h(s), l(s) and m(s) are polynomials of degree 6, 4, and 2,
respectively.

Restriction to the region of interest.

Since the region of interest is located between the planes π1(x, y, z) and π2(x, y, z),
the two inequalities

π1(x, y, z) ≥ 0 and π2(x, y, z) ≤ 0 (9.18)

have to be satisfied. By intersecting each bounding plane with the second Bézier
surface y(r, s) in a similar way as described for π(u0)(x, y, z), we obtain

kπ1(s) := π1(y(r(s), s)) ≥ 0 and kπ2(s) := π2(y(r(s), s)) ≤ 0 (9.19)

This leads to additional constraints for the feasible values of the parameter s. For
each branch of the intersection curve we create the (list of) feasible domain(s) and
store it. The bounds of the intervals can be computed by solving three systems of two
biquadratic equations or – equivalently – by solving a system of three polynomials
of degree 8, which are obtained after eliminating the parameter r. Here, we represent
the polynomials in Bernstein–Bézier form and use a Bézier–clipping–type technique
see [14, 25, 26, 28], applied to floating point numbers.

Example 2. For a parameter line u = u0 of two biquadratic Bézier surface patches
x(u, v) and y(r, s), Fig. 9.4, right, shows the rs–parameter domain of the second
patch. Only the first branch r1(s) of the intersection curve is present. The bounds 0 ≤
r ≤ 1 do not impose additional bounds on s in this case. However, the intersection
with the bounding planes π1 and π2 produces two additional curves, which have to
be intersected with the curve s = r1(s), leading to two bounds s0 and s1 of the
feasible domain.
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Intersection of the cylinder and the intersection curves.

We substitute the parametric representation of the intersection curve into the implicit
equation (9.14) of the cylinder and obtain

ζ(u0)(s) = p1(s) + p2(s)
√

d(s) + p3(s)
(√

d(s)
)2

+

+ p4(s)
(√

d(s)
)3

+ p5(s)
(√

d(s)
)4

= 0 (9.20)

where the polynomials pj(s) are of degree 12. In order to eliminate the square root,
we use the following trick. We split ζ(s, d(s)) = A−B, where A and B contain all
even and odd powers of

√
d, respectively. The equation A− B = 0 is then replaced

with A2 · d(s)− (B ·
√

d(s))2 = 0. This leads to a polynomial of degree 24 in one
variable. After factoring out the discriminant, we obtain a polynomial of degree 16 in
s. Note that this agrees with the theoretical number of intersections of a biquadratic
surface, which has algebraic order 8, with a quadratic curve.

Finally, we solve this polynomial within all the feasible intervals of s, which were
detected in the previous steps. Until this point we used symbolic computations. Now
– after generating the Bernstein–Bézier representation – we change to floating-point
numbers and use a Bézier–clipping–type method to find all roots within the feasible
domain(s). These roots correspond to intersection points of the parameter line of the
first patch with the second patch.

9.5.2 Global structure of the intersection curve

For each value u = u0, the parameter line x(u0, v) has a certain number of inter-
section points with the second patch. If u0 varies continuously, then the number of
intersection points may change only if

(1) one of the intersection points is at the boundary of one of the patches (boundary
points) or

(2) the parameter line of the first patch touches the second patch (turning points) .

The algorithm for analyzing the global structure of the intersection curve proceeds in
two steps: First we detect those values of u0 where the number of intersection points
changes, and order them. This leads to a sequence of critical u0– values,

0 = u
(0)
0 < u

(1)
0 < . . . < 1 = u

(K)
0 . (9.21)

In the second step, we analyze the intersection of the parameter lines u0 = (u(i)
0 +

u
(i+1)
0 )/2 with the second patch. Since the number of intersection points between

any two critical values remains constant, we can now either trace the segment us-
ing conventional techniques for tracing surface–surface intersections (see [20]) or
generate more points by analyzing more intersections with parameter lines.

In the remainder of this section we address the computation of the critical u0

values.
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Boundary points.

Such points correspond to intersections of the boundary parameter lines of one sur-
face with the other one. In order to compute them, we apply the algorithm for inter-
secting parameter lines with a biquadratic patch to the 2 ·4 boundary parameter lines
of the two surfaces.

Turning points.

We consider the turning points of x(u, v) in respect to u. Let yr and ys denote the
partial derivatives of y(r, s). Several possibilities for computing the turning points
exist.

1. The two surfaces x(u0, v) and y(r, s) intersect, x(u0, v) = y(r, s), and the
tangent vector of the parameter line lies in the tangent plane of the second patch,

xu · (yr × ys) = 0. (9.22)

These conditions lead to a system of four polynomial equations for four un-
knowns, which has to be solved for u.

2. By using the previous geometric result, we may eliminate the variable v, as fol-
lows. First, the plane spanned by the parameter line has to contain the point
y(r, s),

π(u0)(y(r, s)) = 0, (9.23)

which gives an equation of degree (6, 2, 2) in (u0, r, s). Second, the cylinder has
to contain the point,

ζ(u0)(y(r, s)) = 0, (9.24)

which leads to an equation of degree (16, 4, 4). Finally, the tangent vector of the
parameter line has to be contained in the tangent plane of the second patch. Since
the tangent of the parameter line is parallel to the cross product of the gradient of
the plane and the gradient of the cylinder, the third condition gives an equation
of degree (18, 5, 5),

det [yr, ys, ∇π(u0)(y(r, s))×∇ζ(u0)(y(r, s))] = 0. (9.25)

For solving either of these two systems of polynomial equations, we use again a
Bézier–clipping–type algorithm [14, 25, 28].

9.6 Self–intersections of biquadratic surface patches

In order to detect the self–intersection curves of any of the two patches, the methods
for surface–surface intersections have to be modified. The computation of the self–
intersection locus by using approximate implicitization is not discussed here, since
it was already treated in [31]. Instead we focus on the other two techniques.
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9.6.1 Resultant-based method

In the parameter domain [0, 1]4, the self–intersection curve of the first patch forms
the set{

(u1, v1, u2, v2) ∈ [0, 1]4 | (u1, v1) �= (u2, v2) and x(u1, v1) = x(u2, v2)
}

.
(9.26)

This locus is the real trace of a complex curve. We assume that it is either empty or of
dimension 0 or 1. We do not consider degenerate cases, such as a plane which is cov-
ered twice. In the examples presented below (see Section 9.7), the self–intersection
locus is a curve in R4.

We use the following change of coordinates to discard the unwanted trivial com-
ponent (u1, v1) = (u2, v2). Let (u2, v1) be a pair of parameters in [0, 1]2, (l, k) ∈ R2

and let u1 = u2 + l, v2 = v1 + lk. If we suppose that we have (u1, v1) �= (u2, v2),
then l �= 0. Hence x(u1, v1) = x(u2, v2) if and only if x(u2+l, v1) = x(u2, v1+lk).
We suppose now that (u2, v1, l, k) verifies this last relation.

Let T̃ (u2, v1, l, k) be the polynomial 1
l [x(u2 + l, v1)− x(u2, v2 + lk)], its de-

gree in (u2, v1, l, k) is (2, 2, 1, 2) and the monomial support with respect to (l, k)
contains only k2l, k, l and 1. We can decrease the degree by introducing

T (u2, v1,m, k) = mT̃ (u2, v1,
1
m

, k). (9.27)

Then in T (u2, v1,m, k), the monomial support in (m, k) consists only of 1,m, k2

and km. So, we can write T in a matrix form:

T (u2, v1,m, k) =

⎛⎝a1(u2, v1) b1(u2, v1) c1(u2, v1) d1(u2, v1)
a2(u2, v1) b2(u2, v1) c2(u2, v1) d2(u2, v1)
a3(u2, v1) b3(u2, v1) c3(u2, v1) d3(u2, v1)

⎞⎠
⎛⎜⎜⎝

1
m
k2

km

⎞⎟⎟⎠
(9.28)

By Cramer’s rule, we get

m =
D2

D1
, k2 =

D3

D1
, and km =

D4

D1
(9.29)

with

D1 =

∣∣∣∣∣∣
b1 c1 d1

b2 c2 d2

b3 c3 d3

∣∣∣∣∣∣ , D2 =

∣∣∣∣∣∣
−a1 c1 d1

−a2 c2 d2

−a3 c3 d3

∣∣∣∣∣∣ , D3 =

∣∣∣∣∣∣
b1 −a1 d1

b2 −a2 d2

b3 −a3 d3

∣∣∣∣∣∣ , D4 =

∣∣∣∣∣∣
b1 c1 −a1

b2 c2 −a2

b3 c3 −a3

∣∣∣∣∣∣ .
Let Q(u2, v1) be the polynomial Q = D2

4D1 −D2
2D3.

Lemma 3. The implicitly defined curve
{
(u2, v1) ∈ [0, 1]2 | Q(u2, v1) = 0

}
is the

projection of the self–intersection locus (given by the set (9.26) but in C4) into the
parameters domain (u2, v1) ∈ [0, 1]2.
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Fig. 9.5. A self–intersection of a surface with a cuspidal point

Proof. Q(u2, v1) = 0 is the only algebraic relation (of minimal degree) between u2

and v1 such that

∀(u2, v1) ∈ [0, 1]2, Q(u2, v1) = 0⇒ ∃(m, k) ∈ �2, T (u2, v1,m, k) = 0.

This lemma provides a method to compute the self–intersection locus, we just
have to trace the implicit curve Q(u2, v1) = 0 and for every point (u2, v1) on this
curve, we obtain by continuation the corresponding point (u1, v2) ∈ [0, 1]2 if it
exists (see the results on Fig. 9.9). So it suffices to characterize the bounds of these
segments of curves.

9.6.2 Parameter-line-based method

For computing the self–intersection curves, we use the same algorithm as described
in Section 9.5. We intersect the surface x(u0, v) with itself x(r, s). In this case, both
the “plane” equation (9.23) and the “cylinder” equation (9.24) contain the linear
factor (r−u0), which has to be factored out. The computation of turning points as in
section 9.5.2 leads us to two different types: the usual ones and cuspidal points (see
Fig. 9.5).

9.7 Examples

The three methods presented in this paper (using resultants, via approximate implici-
tization, and by analyzing the intersections with parameter lines) work well for most
standard situations usually encountered in practice. In this section, we present three
representative examples. Additional ones are available at [21].
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Fig. 9.6. First example. Left and center: Result of the resultant method after and before elimi-
nating phantom branches. Right: result of the approach using approximate implicitization.
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Fig. 9.7. First example. The intersection curves in the parameter domains of both surface
patches, generated by the parameter–line based technique. Boundary points and turning points
have been marked by grey circles.

9.7.1 First example

We consider two biquadratic surfaces with an open and a closed component of the
intersection curve. The two surfaces have the control points⎡⎢⎣
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5 , 6

7 , 4
7

) (
3
4 , 7

8 , 3
4

) (
7
8 , 7

9 , 5
8

)
⎤⎥⎦

︸ ︷︷ ︸
x(u,v)

and

⎡⎢⎣
(

2
7 , 1

7 , 2
5

) (
3
5 , 1

10 , 2
3

) (
1, 0, 4

5

)(
3
8 , 4

9 , 2
3

) (
1
3 , 1

2 , 1
) (

5
7 , 3

8 , 2
7

)(
1
5 , 6

7 , 3
7

) (
3
4 , 7

8 , 5
8

) (
7
8 , 4

7 , 1
2

)
⎤⎥⎦

︸ ︷︷ ︸
y(r,s)

.

By using the resultant method, a phantom component appears (see Fig. 9.6, center).
It can be cut off as described in Section 9.3.2 (see Fig. 9.6, left).

Similar to the resultant method, the approximate implicitization produces a phan-
tom component (see Fig. 9.6, right). However, when we cut it off, we obtain only very
few certified points on the intersection locus as described in section 9.4.3.

The parameter-line-based approach finds both parts of the intersection curve,
but no phantom components. One segment is closed and has two turning points with
respect to each parameter u, v, r and s. The other segment has two boundary points
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u = 0 and s = 1 and also possesses a turning point with respect to v and another one
with respect to r (see Fig. 9.7).

9.7.2 Second example

The control points of the two biquadratic surfaces⎡⎢⎣
(

501
775 , 388

775 , 588
775

) (
347
775 , 276

775 , 479
775

) (
309
775 , 604

775 , 498
775

)(
553
775 , 454

775 , 293
775

) (
336
775 , 382

775 , 469
775

) (
1, 426

775 , 137
775

)(
337
775 , 308

775 , 258
775

) (
517
775 , 0, 367

775

) (
533
775 , 492

775 , 564
775

)
⎤⎥⎦

︸ ︷︷ ︸
x(u,v)⎡⎢⎣

(
492
775 , 67

155 , 522
775

) (
543
775 , 322

775 , 117
775

) (
346
775 , 13

155 , 4
5

)(
113
155 , 392

775 , 58
155

) (
632
775 , 469

775 , 413
775

) (
307
775 , 514

775 , 564
775

)(
602
775 , 129

775 , 274
775

) (
669
775 , 692

775 , 53
155

) (
488
775 , 219

775 , 412
775

)
⎤⎥⎦

︸ ︷︷ ︸
y(r,s)

were generated by using a pseudo–random number generator.
The resultant–based technique leads to several phantom components (see Fig.

9.8, center), which can be cut off as described previously (see Fig. 9.8, left).
The combined use of subdivision and approximate implicitization produces even

more phantom components (see Fig. 9.8, right). This is due to the fact that the subdi-
vision generates more implicitly defined surfaces. Eventually we obtain sufficiently
many points to draw the correct intersection curves.

We also computed the self–intersection curve (see Fig. 9.9) with the help of the
method described in Section 9.6.1.

When using the parameter–line based approach, this example does not lead to
any difficulties. The intersection curve consists of three segments (see Fig. 9.10). The
first Bézier surface patch x(u, v) has one self–intersection curve, while the second
one y(r, s) intersects itself three times and has two cuspidal points.

9.7.3 Third example

The two biquadratic surface patches with the control points⎡⎢⎣
(
0, 1

7 , 4
5

) (
3
5 , 1

13 , 1
3

) (
1, 0, 4

5

)(
1
8 , 4

9 , 11
40

) (
1
3 , 34

65 , 3
4

) (
6
7 , 3

8 ,− 16
35

)(
1
5 , 6

7 , 4
5

) (
3
4 , 443

520 , 3
8

) (
7
8 , 1, 14

15

)
⎤⎥⎦

︸ ︷︷ ︸
x(u,v)

and

⎡⎢⎣
(
0, 1

7 , 1
5

) (
3
5 , 1

10 , 1
3

) (
1, 0, 1

5

)(
1
8 , 4

9 , 7
8

) (
1
3 , 1

2 , 3
4

) (
6
7 , 3

8 , 1
7

)(
1
5 , 6

7 , 1
5

) (
3
4 , 7

8 , 3
8

) (
7
8 , 1, 1

3

)
⎤⎥⎦

︸ ︷︷ ︸
y(r,s)

touch each other along a parameter line.
The resultant-based approach leads to an implicitly defined curve which de-

scribes the intersection. Due to the special situation, it contains the square of this
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Fig. 9.8. Second example: Left and center: result of the resultant method after and before
eliminating phantom branches. Right: result obtained by using approximate implicitization.

Fig. 9.9. Second example: Self intersections, computed with the method described in Section
9.6.1.

u

v x(u, v)

r

s y(r, s)

Fig. 9.10. Second example: Intersection (solid, black) and self–intersection (dashed, grey)
curves in the parameter domains of both surface patches, generated by the parameter–line
based technique. Boundary points and turning points have been marked by grey circles.
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equation. A direct tracing of the curve is difficult, since the use of a standard predic-
tor/corrector method is numerically unstable. However, one may factorize the equa-
tion, and apply the tracing to the individual factors without probems. This leads to
the curve shown in Fig. 9.11, left.

The technique of approximate implicitization is not well suited to deal with this
very specific situation: the approximation produces either an empty intersection or
two curves which are close to each other (see Fig. 9.11, right).

Fig. 9.11. Third example. Left: Result of the resultant method and of the parameter–line based
approach. Right: result of the use of approximate implicitization.

The parameter-line-based approach finds two boundary points and it produces
– for each value of u = u0 – the correct intersection point of the parameter line
with the other patch. The convergence of the Bézier clipping slows down to a linear
rate, due to the presence of a double root. Also, it is difficult to trace the intersection
curve by using a geometric predictor/corrector technique. Instead, we computed the
intersection points for many values of u0 and arrived at a result which is very similar
to Fig. 9.11, left.

9.8 Conclusion

We presented three different algorithms for computing the intersection and self–
intersection curves of two biquadratic Bézier surface patches. We implemented the
methods and applied them to many test cases. Three of them have been presented in
this paper.

The resultant–based technique was able to deal with all test cases. It may produce
additional ‘phantom’ branches, which have to be eliminated by carefully analyzing
the result of the elimination. As an advantage, one may – in the case of two surface
patches that touch each other – factorize the implicit equation of the intersection
curve, in order to obtain a stable representation, which can then be traced robustly.

After experimenting with approximate implicitization we arrived at the conclu-
sion that this method is not to be recommended for biquadratic patches. On the one
hand, it is not suited for avoiding problems with phantom branches. On the other
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hand, the use of an approximate technique introduces inaccuracies, which may cause
problems with singular and almost singular situations. We feel that this price for
using a lower degree implicit representation is too high.

The parameter–line based approach adds some geometric interpretations to the
process of eliminating variables from the problem. As an advantage, it is possible
to correctly establish the region(s) of interest. This avoids problems with unwanted
branches of the (self–) intersection curves. In the case of two touching surfaces,
using this approach becomes more expensive, since standard techniques for tracing
the intersection cannot be applied.
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6. L. Busé and A. Galligo, Using semi-implicit representation of algebraic surfaces, Pro-
ceedings of the SMI 2004 conference, IEEE Computer Society, pp. 342–345.

7. E.W. Chionh and R.N. Goldman, Using multivariate resultants to find the implicit equa-
tion of a rational surface, The Visual Computer 8 (1992), pp. 171–180.

8. D. Cox, J. Little and D. O’Shea, Ideals, Varieties and Algorithms, Springer-Verlag, New
York, 1992 and 1997.

9. D. Cox, J. Little and D. O’Shea, Using Algebraic Geometry, Springer-Verlag, New York,
1998.

10. C. D’Andrea, Macaulay style formulas for sparse resultants, Trans. Amer. Math. Soc.,
354(7) (2002), pp. 2595–2629.

11. T. Dokken, Aspects of Intersection Algorithms and Approximation, Thesis for the doctor
philosophias degree, University of Oslo, Norway 1997.

12. T. Dokken, Approximate implicitization, Mathematical Methods for Curves and Surfaces,
T. Lyche and L.L. Schumaker (eds.), Vanderbilt University Press, 2001, pp. 81–102.



180 S. Chau et al.

13. T. Dokken and J.B. Thomassen, Overview of Approximate Implicitization, Topics in Al-
gebraic Geometry and Geometric modeling, ed. Ron Goldman and Rimvydas Krasauskas,
AMS series on Contemporary Mathematics CONM 334, 2003, pp. 169–184.

14. G. Elber and M-S. Kim, Geometric Constraint Solver using Multivariate Rational Spline
Functions, The Sixth ACM/IEEE Symposium on Solid Modeling and Applications, 2001,
pp. 1–10.

15. M. Elkadi and B. Mourrain, Some applications of Bezoutians in Effective Algebraic
Geometry, Rapport de Recherche 3572, INRIA, Sophia Antipolis, 1998.

16. G. Farin, J. Hoschek and M-S. Kim, Handbook of Computer Aided Geometric Design,
Elsevier, 2002.
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Summary. A matrix is called G-circulant if its columns and rows are indexed by the elements
of a group G. When G is cyclic we obtain the usual circulant matrices, which appear in the
study of linear transformations of polygons. In this paper, we study linear transformations of
cubes and prisms using G-circulant matrices, where G is the direct product of cyclic groups.
As application, we study the evolution of a single cell of an n-dimensional grid under the
subdivision algorithm of the multivariate quadratic B-spline. Regarding the prism, we study
its evolution under a tensor extension of the Doo-Sabin subdivision scheme.

10.1 Introduction

Knot insertion, refinement and subdivision algorithms not only make splines a very
practical design tool but they also offer an insight into their mathematical properties.
In fact, such algorithms can even be seen as alternative definitions of the splines. The
latter has been proved a very fruitful approach leading to many generalizations, most
notably the subdivision surfaces, which generalize bivariate B-splines over polygonal
control meshes with arbitrary connectivity.

A subdivision surface is defined by an initial coarse polygonal mesh and a subdi-
vision rule which refines the mesh by adding new vertices and connecting them with
edges and faces creating a new denser mesh. Repetitive iterations of this process
yield in the limit a smooth surface, which depends on the initial coarse mesh and the
subdivision rule only.

Subdivision surfaces are studied locally, usually in the neighborhood of a vertex.
At each subdivision step the connectivity of the subdivision mesh becomes larger,
but, apart possibly from some initial steps, the local connectivity around the vertex
we study does not change. Instead, after a subdivision step the same local connectiv-
ity corresponds to a smaller neighborhood of the vertex.

After each subdivision step the positions of the new vertices are given as lin-
ear combinations of the old vertices, usually described in the form of a subdivision
matrix. The limit positions of the neighborhoods vertices are given by the limit of
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the mth power of the subdivision matrix, as m tends to infinity. That means that
the properties of the subdivision surface are related to the spectral properties of the
subdivision matrix.

The study of a subdivision surface through the study of the eigenstructure of
the subdivision matrix can be facilitated by exploiting patterns of the matrix arising
from the symmetries of the local connectivity. In the simplest example, the 1-ring
neighborhood of a triangle mesh vertex has rotational symmetry of order k, where k
is the valence of that vertex. This rotational symmetry is reflected in the rules of any
subdivision scheme with reasonable behavior, resulting in subdivision matrices with
circulant blocks.

Circulant matrices are simple patterned matrices with the property that each row
is the previous row cycled forward one step. Block-circulant matrices are a general-
ization of the circulant. They have the same cyclic pattern, but this time on matrix
blocks instead of single elements. An equivalent generalization is the circulant-block
matrix, which has circulant matrices as blocks. G-circulant matrices generalize the
circulant matrices into another direction. A matrix is called G-circulant if its columns
and rows are indexed by the elements of a group G. The simplest cases of G-circulant
matrices are those corresponding to abelian groups. As we will see below, such pat-
terned matrices arise in volume subdivision processes, reflecting the symmetries of
cubes and prisms.

10.1.1 Geometric decompositions to the eigenvectors of a patterned matrix

In this paper we study the geometric decompositions to the eigenvectors of patterned
matrices. By this we mean decompositions into geometric objects that are only scaled
by the patterned matrix. These geometric components can be seen as geometric
interpretations of the eigenvectors of the patterned matrix, with the real eigenvec-
tors corresponding to linear components and the complex eigenvectors giving planar
components. By embedding these components into a higher dimensional space, we
can use them to decompose higher dimensional objects, such as n-dimensional cubes
and prisms. When there is no room for ambiguity, we will refer to the components as
eigencomponents, or eigenvectors, or eigenpolygons, eigencubes and eigenprisms.

If a decomposition of a shape is given as

V0 + V1 + · · ·+ Vn−1 (10.1)

and λ0, λ1, . . . , λn−1 are the corresponding eigenvalues, then, after m consecutive
transformations by the matrix the shape is given by

λm
0 V0 + λm

1 V1 + · · ·+ λm
n−1Vn−1 (10.2)

We see that in the limit the shape is determined by the eigencomponents with the
largest eigenvalues.

The use of the eigenvalues and the eigenvectors of the subdivision matrix, in a
form similar to the one described by Eq. 10.2, is a standard tool in the study of sub-
division surfaces. We consider a set of independent and preferably real eigenvectors
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of the subdivision matrix, aiming at deriving the local analytic properties of the limit
surface. On the other hand, the focus of this paper is on the explicit decomposition of
the initial shape into simple geometric components corresponding to the eigenvectors
of the subdivision matrix. As we will discuss in section 10.2, such decompositions
can reveal interesting geometric properties of the limit shape which are difficult to
infer from its analytic properties.

One additional factor making the geometric decompositions of the shapes inter-
esting, is that they are not unique. First, the eigenvectors of the matrix usually have
high geometric multiplicity. Then, each eigenvector may be represented by more than
one component of the sum in Eq. 10.1. Indeed, as we will see in section 10.5, the use
of several copies of a geometric eigencomponent, placed in different positions in the
3d space, may lead to more intuitive decompositions of the initial shape.

10.1.2 Previous Work

The transformation of a polygon by joining the middles of adjacent edges to create
a new polygon is simple geometric problem where circulant matrices arise. It was
studied as early as 1878 by Darboux in [1]. Several generalizations of this problem
have been studied and the connection between such transformations and circulant
matrices is now well-understood [2, 3, 4, 5, 6]. Applications of this theory to the
study of subdivision surfaces have been proposed in [7, 8].

Regarding the G-circulant matrices, their spectral properties are usually studied
with the use of group characters. In this paper we keep the standard terminology
and notation of [9], even though we deal with finite abelian groups only, and thus
utilize a very small portion of the theory of group characters. Advanced results on
the relation between G-circulant matrices and graphs can be found in [10], while the
block-diagonalization of G-circulant matrices, where G is non-abelian, is studied in
[11].

10.1.3 Overview

As motivation for the study of higher dimensional objects, in section 10.2 we discuss
decompositions of polygons. In section 10.3 we briefly review the standard termi-
nology from character theory and the basic theorems that allow us to compute the
eigenvalues and eigenvectors of G-circulant matrices, where G is an abelian group.
In section 10.4 we study decompositions of n-dimensional cubes by eigenvectors
of subdivision matrices corresponding to multivariate quadratic splines. Finally, in
section 10.5 we study the decompositions of prisms by the eigenvectors of a sub-
division matrix corresponding to the tensor extension of the Doo-Sabin surface
subdivision scheme.

10.2 Circulant matrices and polygonal decompositions

A matrix is called circulant if each row is the previous row cycled forward one step
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c0 c1 c2 . . . cn−2 cn−1

cn−1 c0 c1 . . . cn−3 cn−2

. . .
c2 c3 c4 . . . c0 c1

c1 c2 c3 . . . cn−1 c0

⎞⎟⎟⎟⎟⎠ (10.3)

The columns of the Discrete Fourier Transform matrix

Fn =

⎛⎜⎜⎜⎜⎜⎝
1 1 1 . . . 1
1 ω ω2 . . . ωn−1

1 ω2 ω4 . . . ω2(n−1)

...
...

...
...

1 ωn−1 ω2(n−1) . . . ω

⎞⎟⎟⎟⎟⎟⎠ (10.4)

where ω = e
2πi
n , form a set of independent eigenvectors for every circulant n × n

matrix. That means that the eigenvectors of a circulant matrix depend only on its
dimension. We also notice that with one or two exceptions, depending on the parity
of n, the eigenvectors come in conjugate pairs.

We geometrically interpret these eigenvectors as planar polygons, under the con-
vention that by polygon we mean any n-tuple of points

(p0, p1, . . . , pn−1) (10.5)

thus, allowing multiple vertices and self-intersections. We will refer to the polygons
corresponding to the eigenvectors of a matrix as eigenpolygons. The vertices of an
eigenpolygon corresponding to a real eigenvector are collinear, while the vertices of
an eigenpolygon corresponding to a complex eigenvector are coplanar.

Fig. 10.1 shows a set of eigenpolygons corresponding to an eigenbasis for the
circulant matrices of dimension five and six. Notice that the choice of the eigenbasis
is not unique, not even if we define each eigenvector up to a scalar. Indeed, especially
in the circulant matrices appearing in subdivision applications, multiple eigenvalues
are very common, and the corresponding eigenspaces have dimension higher than
one. Here we chose the eigenbasis given by the columns of the Discrete Fourier
Transform matrix shown in Eq. 10.4.

Every polygon embedded in R2 can be written as a unique linear combination
of these eigenpolygons, because the corresponding complex vectors are linearly in-
dependent and form a basis of the space of n-dimensional complex vectors. The sit-
uation is more complicated with polygons embedded in R3. Such polygons are not
necessarily planar, that is, not all their vertices are necessarily coplanar. However, in
[2] it was shown that every polygon embedded in R3 can be written as a linear com-
bination of planar eigenpolygons embedded in R3, with the additional property that
any two conjugate eigenpolygons are coplanar. By writing such a decomposition,
which is not necessarily unique, in the form of Eq. 10.1, we get

z0C0 + z1C1 + · · ·+ zn−1Cn−1 (10.6)
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Fig. 10.1. Top: The eigenpentagons. Bottom: The eigenhexagons

where Ci are the planar polygons given by the columns of the Fourier matrix Fn,
embedded in R3 and zi are complex numbers. The complex multiplication ziCi is
understood in the plane of Ci, while the plus signs denote point addition in the 3d
space.

In a typical subdivision scheme, for example, Loop [12], Butterfly [13] or Doo-
Sabin [14], polygons corresponding faces or to 1-ring neighborhoods of vertices
evolve to the next subdivision step by a multiplication by a circulant matrix. Fig. 10.4
shows an example of one step of Doo-Sabin subdivision. Recall that the Doo-Sabin
subdivision scheme refines a polygonal mesh by inserting k new vertices for each
old face of order k and connecting them with faces as shown in Fig. 10.2. We can
see that there is a correspondence between the new faces and the old edges, vertices
and faces. The positions of the new vertices are linear combinations of the vertices
of the corresponding old face, with coefficients that only depend on the order of that
face. For example, from the quadrilateral P0P1P2P3 shown in Fig. 10.2 (right) we
compute a new quadrilateral P ′

0P
′
1P

′
2P

′
3 with the points P0, P1, P2, P3 given as lin-

ear combinations of the P ′
0, P

′
1, P

′
2, P

′
3. When we write this transformation in matrix

form we get a circulant matrix whose first row gives the linear combination corre-
sponding to P ′

0.

Fig. 10.2. Doo-Sabin subdivision.
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In all of the subdivision schemes we mentioned above, the eigenvalue of the con-
stant polygon C0 is equal to one, the eigenvalues of the two regular affine polygons
C1, Cn−1 are real, positive and equal, while all the other eigenvalues have smaller
norms. That is,

1 = λ0 > λ1 = λn−1 > |λi|, i = 2, 3, . . . , n− 2 (10.7)

As the constant eigenpolygon corresponds to the eigenvalue with the largest
norm, it follows from Eq. 10.2 that in the limit the polygon converges to a single
point, which is its barycenter. The eigenpolygons with the next two largest eigenval-
ues λ1, λn−1 will determine the limit shape of the polygon. To define this limit shape
explicitly, we first assume that the barycenter of the polygon is the origin, eliminat-
ing thus the first component of the sum in Eq. 10.2 and then we scale the polygon by
a factor of 1/λm

1 to counter the shrinkage effect. Eq. 10.2 becomes

(λ1/λ1)mz1C1 + (λ2/λ1)mz2C2 + · · ·+ (λn−1/λ1)mzn−1Cn−1 (10.8)

giving
A = z1C1 + zn−1Cn−1 (10.9)

as m → ∞. Thus, the limit shape is the sum of two coplanar regular polygons with
opposite orientations. In particular, A is the affine image of a regular polygon and
can be inscribed in an ellipse with semi-axes |z1|+|zn−1| and

∣∣|z1|−|zn−1|
∣∣, see [5].

If the eigenvalues λ1, λn−1 are complex, as it is the case with the simplest scheme
proposed in [15], then we can still study the limit of Eq. 10.8, but in this case it might
not exist. In the literature, the simplest schemes is analyzed by combining two steps
to obtain a binary refinement step with real eigenvalues.

The geometric interpretation of Eq. 10.9 is simple and insightful, justifying, in
our opinion, the choice of complex rather than real eigenvectors. For example, we
can immediately see that A degenerates into a line when one of the two semi-axes
of the ellipse has zero length, that is, when the two regular affine components have
equal norms. In this case the subdivision surface will have a singularity at the point
of convergence of the polygon. More interestingly, we can detect a second type of
singularity by noticing that A has the same orientation as the component with the
largest norm, cf. Fig. 10.3. In fact, this second type of singularity has higher dimen-
sion than the first in the space of planar polygons, even though such badly shaped
non-convex polygons rarely appear in practical applications.

Notice that the comparison between the orientation of A and its two components
is possible because they are all coplanar polygons. In fact, they are all on the tan-
gent plane at the point of convergence of the initial polygon. In the case of planar
meshes, we can also compare between the orientation of the mesh, its faces and their
eigencomponents. In [7] it was shown an example of a polygon, which was part of
a planar, consistently oriented mesh without self-intersections, and the larger affine
regular component had orientation opposite to the mesh. That means that the limit
shape of the polygon also had orientation opposite to the mesh, inverting the direc-
tion of the normal at that point of the plane. Of course, these types of singularities
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can also be studied with the use of a real eigenbasis. However, we believe that it
is much more difficult to detect and classify them without a geometrically intuitive
decomposition of the initial input.

Fig. 10.3. Polygons can be added as vectors. The orientation of each polygon is shown by the
arrow inside it. Notice that if the sum of two regular coplanar polygons does not degenerate,
then it has the same orientation as the component with the larger norm.

The polygonal decomposition we studied above corresponds to a small part of
the subdivision mesh, that is, a face or the 1-ring neighborhood of a vertex. To obtain
results related to higher order properties of the limit surface, we have to study de-
compositions of larger pieces of the subdivision mesh. The main technical difficulty
in constructing such decompositions is that the corresponding matrices are circulant
block rather than circulant. In [8], decompositions of larger areas of a subdivision
mesh are studied in the context of the Catmull-Clark scheme.

10.3 G-circulant matrices

A matrix is called G-circulant if each row is obtained from the first row by a per-
mutation by an element of a group G, and the rows and columns of the matrix are
indexed by the elements of G. If the group G = Zn is cyclic, then we obtain the
usual circulant matrices.

First we give some background theorems which allow the computation of the
eigenvalues and eigenvectors of a G-circulant matrix, where G is a finite abelian
group. Notice that the groups Zn

2 and Z2×Zn we are interested in, are finite abelian.

Proposition 1. Let G be a finite abelian group. Let the first row of the G-circulant
matrix S be (ag)g∈G. Then, the eigenvalues of S are given by

λχ =
∑
g∈G

χ(g)ag (10.10)
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and the eigenvectors (which depend only on G) are given by

vχ = (χ(g))g∈G (10.11)

where χ is an (irreducible) character of G.

The characters of a group are complex valued functions

χ : G → C (10.12)

If G is abelian, then there is an 1-1 correspondence between the characters and the
elements of G. From Proposition 1 we can easily compute the eigenvalues and eigen-
vectors of a G-circulant matrix, as long as we know the characters of G. Given that
every finite abelian group is the direct product of cyclic groups, the following two
propositions giving the characters of a cyclic group and the characters of a direct
product group suffice for our purposes.

Proposition 2. The characters of the cyclic group Zn are given by

χj : χj(k) = ωjk, ∀k ∈ Zn (10.13)

where j is an element of Zn and ω = e
2πi
n

Proposition 3. If a group G has a direct product structure, then its characters are
tensor products of the characters of its components.

10.3.1 G-circulant matrices and geometric transformations

G-circulant matrices can be used to study linear transformations of a mesh. We first
index the rows and the columns of the matrix by the vertices of the mesh. Similarly
to the case of circulant matrices and polygons in section 10.2, if the position of the
new vertex P ′

0 is computed by the first row of the matrix, and if P ′
0 is mapped on P ′

i

by a symmetry g of the mesh, we expect that the row giving P ′
i is the permutation of

the first row by g.
In a general setting, we assume that a group of symmetries G acts on the vertices

of a mesh in a way that every point is mapped on any other point by a unique ele-
ment of G. In other words we have a free transitive action. This is the case with the
n-dimensional cube and the prism, and the groups Zn

2 and Z2 × Zn, respectively.
Notice that the choice of the group G is not necessarily unique. For example, for the
quadrilateral we can either use the Z2

2 or the Z4, while for the hexahedron we can
use the Z3

2 or the Z2 × Z4. With either choice, the transformations and the matrices
are the same up to a labeling, but Proposition 1 yields different sets of eigenvectors
and thus, we obtain different geometric interpretations.
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10.4 Cube decompositions

To apply the above setup to the n-dimensional cube, we first need a correspondence
between its vertices and the elements of Zn

2 . This can be easily done by considering
the unit cube. Indeed, the coordinates of its vertices are n-tuples with entries 0’s and
1’s, giving the corresponding elements of Zn

2 , cf. Fig. 10.4. For referencing a specific
component of the n-tuple of g we use the characteristic functions δi, i = 1, 2, . . . , n

δi(g) = the ith value of the n-tuple of g (10.14)

We also define σ(g) as the number of 1’s in the n-tuple

σ(g) =
n∑

i=1

δi(g) (10.15)

Fig. 10.4. Labeling the vertices of a cube with the elements of Z3
2.

Table 10.1 shows the eigenvectors of the Zn
2 -circulant matrices for n = 2, 3,

normalized by a factor of (1/2n). A brief description of the relevant character com-
putations can be found in the Appendix. Notice that Proposition 1 gives an indexing
of the eigenvectors by the characters of G, which in turn gives an indexing by the ele-
ments of G. Also notice that the entries of all the eigenvectors are either 1 or -1. This
is a property that holds for arbitrary n. In fact, the eigenvectors of the Zn

2 -circulant
matrices are given by the columns of the familiar Walsh-Hadamard matrix Hn, see
[10].

Because the above eigenvectors are linearly independent and real they can imme-
diately be used for a geometric decomposition of an n-dimensional cube i.e., for the
decomposition of an 2n-tuple of n-dimensional points. To find the decomposition we
multiply the 2n-tuple (Pg), g ∈ G by the inverse of the eigenvector’s matrix. If the
transformed 2n-tuple is (P ′

g), g ∈ G, then the decomposition of the initial cube is∑
g∈G

P ′
gvg (10.16)

where vg is the row of the matrix corresponding to g.
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00 1 1 1 1
10 1 -1 1 -1
01 1 1 -1 -1
11 1 -1 -1 1

/4

000 1 1 1 1 1 1 1 1
100 1 -1 1 1 -1 -1 1 -1
010 1 1 -1 1 -1 1 -1 -1
001 1 1 1 -1 1 -1 -1 -1
110 1 -1 -1 1 1 -1 -1 1
101 1 -1 1 -1 -1 1 -1 1
011 1 1 -1 -1 -1 -1 1 1
111 1 -1 -1 -1 1 1 1 -1

/8

Table 10.1. The eigenvectors of Z2
2 and Z3

2 are the rows of the tables.

Similarly to the polygonal case, the point P ′
(0,...,0) is the barycenter of the cube

and we may assume it to be the origin. Then, there are n eigenvectors with σ(g) = 1,
e.g. 10 and 01 for n = 2 and 100, 010 and 001 for n = 3. The components of these
eigenvectors are equal to 1/2n at all vertices of one face, and −1/2n at all vertices
of the opposite face. Thus, a point P ′

g with σ(g) = 1 is at the barycenter of a face,
which means that the barycenter of the opposite face is at −P ′

g. Generally, there are(
n
k

)
elements of G with σ(g) = k.
Below we study in more detail the cases n = 2, 3.

The quadrilateral (n=2): Using the geometrically intuitive cyclic ordering of the
vertices instead of ordering them by the value of σ as above, let the initial quadri-
lateral be (P ′

00, P
′
10, P

′
11, P

′
01. The component (P ′

00, P
′
00, P

′
00, P

′
00 is its barycenter

and we may assume it is the origin. The next components, (P ′
10, P

′
10,−P ′

10,−P ′
10)

and (P ′
01,−P ′

01,−P ′
01, P

′
01) join the middles of opposite edges of the quad. If the

fourth component (P ′
11,−P ′

11, P
′
11,−P ′

11) is zero, then the quad is a parallelogram,
with (P ′

10,−P ′
10) and (−P ′

01, P
′
01) giving its two directions. The magnitude of the

fourth component can be thought as a measure of how far is the quad from being
a parallelogram. Notice that (P ′

11,−P ′
11) joins the middles of the diagonals of the

quad, while a quad is a parallelogram if and only if its diagonals bisect. A quad is
planar if and only if P ′

10, P ′
01 and P ′

11 are linearly dependent.
It is interesting to compare the decomposition of the quad given by G = Z2

2

with the one obtained with G = Z4, cf. Fig. 10.5. The difference in the two decom-
positions is the use of the eigenvectors (1, i,−1,−i) and (1,−i,−1, i) instead of
(1, 1,−1,−1) and (1,−1,−1, 1). The former, represent two squares with opposite
orientation and a linear combination of them is the affine image of a square, i.e., a
parallelogram [2].

The hexahedron (n=3): Similarly to the case n = 2, P000 is the barycenter of the
hexahedron while the three components with σ(g) = 1 give the three directions
of a parallelepiped. The hexahedron is a parallelepiped if and only if the four other
components are zero. The geometric interpretation of the first three of these four con-
ditions is recursively related to the two dimensional case. Indeed, a hexahedron has
twelve edges, which can be separated into three subsets of four edges with the same
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Fig. 10.5. The eigencomponents of a Z4-circulant matrix (top) and a Z2
2-circulant matrix

bottom.

direction, each one corresponding to an eigencomponent with σ(g) = 1, cf. Fig. 10.6
(left). If we want the corresponding eigencomponent to be zero, the middles of the
segments joining the middles of opposite edges should be the same. That means that
for each subset, the middles of the four edges should form a parallelogram.

The fourth condition says that the barycenter of the points with σ(g) = 0, 2
should be the same with the barycenter of the points with σ(g) = 1, 3, cf. Fig. 10.6
(right). This is similar to the n = 2 case, where a quadrilateral is a parallelogram if
a only if the points with σ(g) = 0, 2 and the points with σ(g) = 1 have the same
barycenter.

Fig. 10.6. Left: Four edges with the same direction are shown in bold. Right: The vertices
with σ(g) = 0, 2 (filled circles) and σ(g) = 1, 3 (empty circles).

From the above discussion it is intuitively clear that the existence of large compo-
nents with σ(g) = 2, 3 leads to hexahedra with convoluted shapes. Fig. 10.7 shows
the effect of adding a single non-zero component with σ(g) = 2, 3 to the unit cube.

10.4.1 Application: the multivariate quadratic spline

Up to now we studied general Zn
2 -circulant matrices without any reference to their

elements. In this section we study the Zn
2 -circulant matrix corresponding to the evo-

lution of one cell of an n-dimensional grid under the quadratic B-spline subdivision



192 I. Ivrissimtzis and H.-P. Seidel

Fig. 10.7. From left to right: (a) The unit cube. (b) P110 = (0.2, 0.0, 0.0). (c) P110 =
(0.2, 0.2, 0.0). (d) P110 = (0.0, 0.0, 0.2). (e) P111 = (0.2, 0.2, 0.2).

algorithm. The row of the matrix giving the new position of the vertex corresponding
to g is

ag =
3n−σ(g)

4n
(10.17)

For example, if n = 2 we get the matrix⎛⎜⎜⎝
9 3 3 1
3 9 1 3
3 1 9 3
1 3 3 9

⎞⎟⎟⎠ /16 (10.18)

We have

Proposition 4. The eigenvalue corresponding to the eigenvector vg of the subdivi-
sion matrix of the n-dimensional quadratic spline is 1

2σ(g) .

For a sketch of the proof, we notice by Eq. 10.10, 10.17 the eigenvalue corre-
sponding to the character χg is

λχg
=
∑
h∈G

χg(h)
3n−σ(h)

4n
(10.19)

giving,

λχg
=

(3 + 1)n−σ(g)(3− 1)σ(g)

4n
(10.20)

To see this, we expand the product (3+1)n−σ(g)(3−1)σ(g) and rearrange the factors
so that the terms (3-1) are placed at the positions where δ(g) = 0. Finally, from
Eq. 10.20 we get

λχg
=

1
2σ(g)

(10.21)

#$
In the limit, the cell converges to a single point, which is its barycenter. Assuming

that the barycenter is the origin, the limit shape is given by the eigencomponents of
the next eigenvalues, that is by the n components with eigenvalue 1/2. After scaling
the cell to counter the shrinkage effect we get
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Proposition 5. Under multivariate quadratic B-spline subdivision the limit shape
of a cell is the sum of the eigencomponents with σ(g) = 1. In particular, it is a
parallelogram for n = 2 and a parallelepiped for n = 3.

Similarly to the polygonal case, we can use the decomposition to find when sin-
gularities appear at the point of convergence of the initial cell. For example, in the
case n = 3, if two opposite faces of the initial hexahedron have the same barycen-
ter, then the parallelepiped given by the three eigenvectors with eigenvalue 1/2 will
collapse to a parallelogram. A different type of singularity appears when the orien-
tation of one of the limit shape parallelepipeds is not consistent with the rest of the
grid. However, it should be noted that even though we can study singularities at the
barycenters of the cells, the method can not be used to deduce any analytic properties
of the limit volume, because we study the evolution of one cell in isolation.

10.5 Prism decomposition

Next we study the decomposition of a prism by the eigenvectors of the Z2 × Zn-
circulant matrices. By Eq. 10.11 these eigenvectors are the rows of the matrix⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 . . . 1 1 1 1 . . . 1
1 ω ω2 . . . ωn−1 1 ω ω2 . . . ωn−1

1 ω2 ω4 . . . ω2n−2 1 ω2 ω4 . . . ω2n−2

. . . . . . . . . . . . . . . . . . . . . . . .
1 ωn−1 ωn−2 . . . ω 1 ωn−1 ωn−2 . . . ω
1 1 1 . . . 1 −1 −1 −1 . . . −1
1 ω ω2 . . . ωn−1 −1 −ω −ω2 . . . −ωn−1

. . . . . . . . . . . . . . . . . . . . . . . .
1 ωn−1 ωn−2 . . . ω −1 −ωn−1 −ωn−2 . . . −ω

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(10.22)

Fig. 10.8 shows the eigenvectors corresponding to the rows 1, n − 1, n + 1 and
2n− 1 (the enumeration of the rows starts from zero). Because the eigenvectors are
complex, these eigenprisms are planar. For that reason it is not straightforward to
find a formula similar to Eq. 10.16 where all the eigenvectors were real.

Fig. 10.8. The eigenprisms given by the rows 1, n − 1, n + 1, 2n − 1 of the matrix. Notice
that the multiplication of a polygonal face by -1 corresponds to a rotation by π.
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Instead, we build a construction based on the decompositions of non-planar poly-
gons proposed in [2]. Recall that every non-planar n-gon can be written in the form
shown in Eq. 10.6. These polygons generally lie on different planes but Cj and Cn−j

are always coplanar.
Let A,B be the two n-gonal faces of the prism and let their decompositions be

A = a0C0 + a1C1 + · · ·+ an−1Cn−1

B = b0C0 + b1C1 + · · ·+ bn−1Cn−1 (10.23)

Notice that the copies of Ci used in the decomposition of A and B generally lie
on different planes of the 3-dimensional space. By concatenating the two polygonal
decompositions we get a prism decomposition

[a0C0, b0C0] + [a1C1, b1C1] + · · ·+ [an−1Cn−1, bn−1Cn−1] (10.24)

For simplicity we only deal with the components C1, Cn−1, as all the other conjugate
pairs, as well as the single components C0 and Cn/2 (for n even) can be treated
similarly.

Let EA be the plane of the components a0C0, ak−1Ck−1 lie and let EB be the
plane of the components b0C0, bk−1Ck−1. Working first on the EA plane we write
the components [a1C1, 0] and [an−1Cn−1, 0] as a linear combination of the four
eigenprisms of Fig. 10.8, i.e. as

x1[C1, C1]+xn−1[Cn−1, Cn−1]+xn+1[C1,−C1]+x2n−1[Cn−1,−Cn−1] (10.25)

We get

x1C1 + xn+1C1 = a1C1

x1C1 − xn+1C1 = 0 · C1

xn−1Cn−1 + x2n−1Cn−1 = an−1Cn−1

xn−1Cn−1 + x2n−1Cn−1 = 0 · Cn−1 (10.26)

giving
x1 = xn+1 =

a1

2
xn−1 = x2n−1 =

an−1

2
(10.27)

Similarly, working with the components [0, b1C1] and [0, bn−1Cn−1] we get four
more eigenprisms, this time on the EB plane, with

x1 = xn+1 =
b1

2
xn−1 = x2n−1 =

bn−1

2
(10.28)

We notice that the obtained decomposition is quite heavy as we use eight eigenprisms
for just four polygonal components. However, the eigenvalue λ1 corresponding to the
[C1, C1] and [Cn−1, Cn−1] components is usually larger than the eigenvalue of the
[C1,−C1] and [Cn−1,−Cn−1] components. Thus, the limit shape of the prism will
be determined by fewer than eight components.

Indeed, this is the case with the eigenvalues corresponding to the tensor product
of the Doo-Sabin subdivision rule. Under this subdivision scheme, the limit shape
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of the prism is determined by five components corresponding to the second largest
eigenvalue λ1. These are the components [C1, C1] and [Cn−1, Cn−1]

These are the components [C1, C1] and [Cn−1, Cn−1] on the planes EA and EB ,
which are four in total, and the component corresponding to nth row of the matrix in
Eq. 10.22. The eigenvalue λn of this component should also be equal to λ1. Other-
wise, the ratio between the height of the prism and the diameter of its base will tend
to 0 or to∞, depending on whether λn is smaller or larger than or λ1.

Eq.(10.25) gives

[
(a1 + b1)C1 + (an−1 + bn−1)Cn−1

2
,
(a1 + b1)C1 + (an−1 + bn−1)Cn−1

2
]

(10.29)

where the use of the letter a or b in the coefficient also indicates the plane of the
component. We notice that A and B have the same limit shape. Moreover, the limit
shape of A,B is planar and thus, the limit shape of the prism is regular. Fig. 10.9
shows the evolution of a pentagonal prism under this subdivision scheme. An outline
for the explicit computations of A and B is shown in the Appendix.

10.6 Conclusion - Future Work

We studied decompositions of cubes and prisms by the eigenvectors of G-circulant
matrices. We concentrated on the geometric interpretations of these decompositions
and we studied the evolution of single cells under linear transformations. As an ap-
plication we obtained information about the singularities in quadratic n-dimensional
splines.

In the future we plan to extend our work to the study of evolutions of larger
configurations, instead of the single cells we are currently dealing with. Such a gen-
eralization will allow the study of singularities in higher degree splines and general
volume subdivision grids.

Fig. 10.9. The evolution of a pentagonal prism.
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10.7 Appendix

A. The eigenvectors of Zn
2

By Proposition 2 the two characters of Z2 are

χ0 : χ0(0) = 1, χ0(1) = 1 (10.30)

and
χ1 : χ1(0) = 1, χ1(1) = −1 (10.31)

By Proposition 3 the character χh corresponding to the element h of Zn
2 is given by

χh(g) :
n∏

i=1

eihg (10.32)

where eihg = −1 iff δi(h) = δi(g) = 1 and eihg = 1 otherwise.
Finally, we can use Proposition 1 to compute the eigenvectors of the Zn

2 -circulant
matrices.

B. Exact computation of the limit shape of the prism
To compute the exact limit shape of A,B we write the polygons a1

2 C1 +
an−1

2 Cn−1 and b1
2 C1 + bn−1

2 Cn−1 in parametric form. We notice that they are both
planar polygons inscribed on ellipses, thus their vertices lie on the curves

ca + rau cos θua + rav sin θva (10.33)

and
cb + rbu cos θub + rbv sin θvb (10.34)

respectively, where ca, cb are the centers of the ellipses, ua,va and ub,vb are
orthonormal vectors on EA, EB and θ = 2πj

k , j = 0, 1, . . . , k − 1.
Then Eq.(10.29) gives the limit shape as

(ca + cb) + cos θ(rauua + rbuub) + sin θ(ravva + rbvvb) (10.35)

which is again the equation of an ellipse.
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Summary. In this paper, we describe a subdivision method for handling algebraic implicit
curves in 2d and 3d. We use the representation of polynomials in the Bernstein basis asso-
ciated with a given box, to check if the topology of the curve is determined inside this box,
from its points on the border of the box. Subdivision solvers are used for computing these
points on the faces of the box, and segments joining these points are deduced to get a graph
isotopic to the curve. Using envelop of polynomials, we show how this method allow to handle
efficiently and accurately implicit curves with large coefficients. We report on implementation
aspects and experimentations on 2d curves such as ridge curves or self intersection curves of
parameterized surfaces, and on silhouette curves of implicit surfaces, showing the interesting
practical behavior of this approach.

11.1 Introduction

In this paper, we address the problem of computing the topology of 3D curves result-
ing from the intersection of two algebraic surfaces. Algebraic curves and surfaces
are compact representations of shapes, which can be complex and have numerous
advantages over parametric ones, such as easy determination of inside/outside of the
surface. This is particularly useful when we have to apply logical operations (union,
subtraction, etc.) between two solid objects, defined implicitly. In such problems,
computing the intersection of two surfaces is a critical operation, which has to be
performed efficiently and accurately. Implicit curves and surfaces have also disad-
vantages such as difficulty in performing graphical display, but the method that we
propose in this paper is step towards handling such problems, since it allows fast dis-
play of this implicitly 2d and 3d curves. On the other hand, dealing with parameter-
ized surfaces naturally leads to the computation of implicit curves. Let us mention in
particular, the computation of the intersection curve of two surfaces, self-intersection
curves, plane sections and ridge curves (which are defined implicitly on these para-
meterised surfaces, though they are usually approximated by parameterised curves).
Such problems reduce to the analysis of a curve defined by n− 1 polynomial equa-
tions, in a space of dimension n (here n = 2, 3, 4).
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One major obstacle for adopting implicit representations instead of parametric
representations concerns the piecewise linear approximation of such curves or sur-
faces for visualization purposes. A brute force approach would be an exhaustive
evaluation for approximating the zero level set, which is obviously very inefficient.
A typical alternative scenario is to adopt a divide-and-conquer approach. Larger un-
determined domains are broken down to smaller predictable domains in which the
topological feature and eventually, the curve/surface itself can be inferred efficiently.
An objective of this paper is to describe an efficient method, which allows us to cap-
ture the topology of an implicit curve, when this curve is smooth1, but also to localize
the singular points if they exist.

The problem of computing the topology of curves has been approach in different
ways. A first family of methods is based on a sweeping approach. For 2D planar al-
gebraic curves, such approach has been studied in [7] and [10]. It was later extended
by Gatellier et al. in [8] to the 3D spatial curves resulting from the intersection
of two algebraic surfaces. See also [2]. These methods use a conceptual sweeping
line/plane perpendicular to some projection axis, and detect the critical topological
events, such as tangents to the sweeping planes and singularities. The final output of
these methods are a graph of connected vertices complying to the topology of the
original curves. A notable problem of aforementioned approaches is that they relies
of the computation of sub-resultant sequences, which can be a bottleneck in many
examples with large degree and large coefficients (see Section 11.4.1).

Another family of methods are the subdivision based techniques, which uses a
simple criterion to remove domains which do not contain the roots. A crucial prob-
lem involved here is how to efficiently and reliably deduce the root information in
a given interval (or a bounding box). In these methods, instead of using monomial
representation, we represent the equations using Bernstein basis [6]. Among early at-
tempts, Sederberg [17] converted an algebraic curve in to piecewise triangular Bern-
stein basis. See also [13] combining symbolic and numeric techniques to compute
the topology of 2D curves. The approach of [11] for computing the curves of in-
tersection of two parameterised surfaces is also combining subdivision techniques
with regularity criterion, exploiting the properties of the intersection curve in the 2D
parameter domains.

The first problem of computing roots of univariate polynomials has been ana-
lyzed for instance in [15], where root information tests are by based on Descartes’
Law of Sign and its variant in the Bernstein basis. This approach has been extended
to the approximation of isolated roots of multivariate systems. In [18], the author
used tensor product version of Bernstein basis and integrated domain reduction tech-
niques to speed up the convergence and reduce the number of subdivisions. In [4],
the emphasis is put on the subdivision process, and stopping criterion based on the
normal cone to the surface patch. In [14], this approach has been improved by intro-
ducing pre-conditioning and univariate-solver steps. The complexity of the method
is also analyzed in terms of intrinsic differential invariants.
1 The tangent vector space exists at every points
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The application of subdivision methods for handling higher dimensional objects
is not so well developed. In [12] a method which subdivides up to some precision
level, and applies dual marching cube approach to connect points on the curve or
to mesh a surface is described. The variety is covered by boxes of a given size, and
the connectivity of these cells is used to deduce the piecewise linear approximation.
In [1], a subdivision approach exploiting the sign variation of the coefficients in the
Bernstein basis in order to certify the topology of the surface in a cell, is used for the
purpose of polygonalizing an implicit algebraic surface.

The work of this paper is in the spirit of this former approach. We apply a sub-
division approach also exploiting the properties of the Bernstein polynomial rep-
resentation. We describe a simple regularity test extending the criterion of [1] to
curves, which allows us to detect easily when the topology of the curve in a cell is
uniquely determined from its intersection with the border of the cell. This provides
an efficient test for stopping earlier the subdivision process and branching to path
following methods if we are interested in a good geometrical approximation of the
curve.

We address the same question as in [8], but with this new methods, we are able
to solve the following problems already identified in this paper:

• To achieve higher numerical stability by operating on Bernstein basis instead of
monomial basis;

• Through subdivision on three principle directions, i.e. x, y, z (or x, y, z), to iso-
late the domain containing the singularities from those containing regular curve
segments. This divide-and-conquer approach, in principle, should simplify the
graph building algorithm adopted in [8] where the whole domain has to be con-
sidered.

However, for the treatment of singular points, we have to introduced a threshold ε
to stop the subdivision. Contrarily to [8], we do not certify the topology at singular
points, but computed boxes of size ε, containing these singularities.

On the contrary, we show that our approach is able to handle implicit curves
with large equation (of total degree about 80 with coefficients of bit-size 200), which
resultant-based techniques are not able to treat.

This paper is organized as follows: in Section 11.2, we will review some of the
relevant concepts and theorem required by our proposed algorithm; Section 11.3 is
devoted to outlining our proposed algorithms and the details about how the essential
steps in our algorithm are handled. We will show the experiment results in Section
11.4 and conclude in Section 11.5 with the problems and possible improvements
over the currently proposed algorithm.

11.2 Fundamental ingredients

This section introduces the theoretical background of Bernstein polynomial represen-
tation and how it is related to the problem we want to solve. For a domain D ⊂ Rn,

we denote by
◦
D its interior, by D its closure. For a box D = [a0, b0] × [a1, b1] ×
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[a2, b2] ⊂ R3, its x-face (resp. y-face, z-face) are its faces normal to the direction x
(resp. y, z).

11.2.1 Univariate Bernstein basis

Given an arbitrary univariate polynomial function f(x) ∈ K, we can convert it into
the representation of Bernstein basis of degree d, which is defined by:

f(x) =
∑

i

biB
d
i (x), and (11.1)

Bd
i (x) =

(
d
i

)
xi(1− x)d−i (11.2)

where bi is usually referred as controlling coefficients. Such conversion is done
through a basis conversion [6]. The above formula can be generalized to an arbi-
trary interval [a, b] by a variable substitution x′ = (b − a)x + a. We denote by
Bi

d(x; a, b)
(
d
i

)
(x − a)i(b − x)d−i(b − a)−d the corresponding Bernstein basis on

[a, b].
There are several useful properties regarding Bernstein basis given as follows:

• Convex-Hull Properties: Since
∑

i Bi
d(x; a, b) ≡ 1 and ∀x ∈ [a, b], Bi

d(x; a, b) ≥
0 where i = 0, ..., d, the graph of f(x) = 0, which is given by (x, f(x)), should
always lie within the convex-hull defined by the control coefficients [5].

• Subdivision (de Casteljau): Given t0 ∈ [0, 1], f(x) can be represented piece-
wisely by:

f(x) =
d∑

i=0

b
(i)
0 Bi

d(x; a, c) =
d∑

i=0

b
(d−i)
i Bi

d(x; c, b), where (11.3)

b
(k)
i = (1− t0)b

(k−1)
i + t0b

(k−1)
i+1 and c = (1− t0)a + t0b. (11.4)

Another interesting property of this representation is related to Descartes’ Law
of signs. The definition of Descartes’ Law for a sequence of coefficients

bk = bi|i = 1, ..., k

is defined recursively:

V (bk+1) = V (bk) +
{

1, if bibi+1 < 0
0, else (11.5)

With this definition, we have:

Theorem 1. Given a polynomial f(x) =
∑n

i biB
d
i (x; a, b), the number N of real

roots of f on ]a, b[ is less than or equal to V (b), where b = (bi), i = 1, ..., n and
N ≡ V (b) mod 2.
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The theorem 1 enables a simple yet efficient test of the existence of real roots in
a given domain. This test is essential to our algorithm, as it serves as a key criterion
to classify whether a domain has certified topology, without actually computing the
curve. This allow the our algorithm to execute in reasonably short time, as demon-
strated in our experiments.

11.2.2 Generalization to the multivariate case

The univariate Bernstein basis representation can be generalized to multivariate ones.
Briefly speaking, we can rewrite the definition (Eq. (11.1)) in the form of tensor prod-
ucts. Suppose for x = (x0, ..., xn−1) ∈ Rn, f = (x) ∈ K[x] having the maximum
degree d = (d0, ..., dn−1) has the form:

f(x) =
d0∑

k0=0

...

dn∑
kn=0

bk1,...,kn
Bd0

k0
(x0)...Bd0

kn
(xn) (11.6)

For a polynomial of n variables, the coefficients can be viewed as a tensor of dimen-
sion n.

The de Casteljau subdivision for the multivariate case proceeds similarly to the
univariate one, since the subdivision can be done independently with regards to a
particular variable xi.

Based on these properties, a subdivision solver which can be seen as an improve-
ment of the Interval Projected Polyhedron algorithm in [18], is described in [14]. It
uses the following operations: The multivariate functions to be solved are enclosed
in-between two univariate functions, for each variable. For this purpose, the Bern-
stein control points of the functions are projected in each direction and the upper and
lower envelop are used to define these enveloping univariate polynomials. A lower
and upper approximation of the roots of these univariate polynomials are used to
reduce the domain. If the reduction is not sufficient, the domain is split. These reduc-
tion operations are improved by pre-conditioning steps. See [14] for more details.

11.3 Algorithmic ingredients

We consider the problem of computing the topology of the curve, denoted here-
after as C, resulting from the intersection of two known algebraic surfaces, namely,
f(x) = 0 and g(x) = 0 defined in R3, with f, g ∈ R[x, y, z]. Our discussion is
confined to the case where f and g has no common divisor other than 1, so that
their intersection has dimension of 1. We assume moreover that (f, g) is radical or
equivalently that the resultant of f(x, y, z), g(x, y, z) with respect to z after a generic
change of coordinates, is square free.
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11.3.1 Tangent vector field

The tangent vector on C serves as the key to our analysis of topology of the curve. It
serves as an important indicator of topological feature of C. While it is computation-
ally prohibitive to compute the tangent vector at each point on C, we can reach some
useful conclusion about the topology of the curve by looking into the tangent vector
field defined below:

t = tx(x)ex + ty(x)ey + tz(x) ez = %f ∧%g =

∣∣∣∣∣∣
ex ey ez

∂xf ∂yf ∂zf
∂xg ∂yg ∂zg

∣∣∣∣∣∣ (11.7)

where ex, ey and ez are the unit vectors along the principle axis x, y and z, respec-
tively; tx, ty and tz are functions of x = (x, y, z).

Singularities on the curve can be easily characterized, as t vanishes at those
points. In [8], the author also tried to localize the point having a tangent parallel
to a virtual sweeping plane. They are connected together with the singularities to
form the final topological graph. In order to do this, the whole curve is projected
onto some principle projection planes. However, the projected planar curve in many
cases has a very different topology as C. In our proposed algorithm, we exploit the
subdivision along all three principle axes simultaneously and the critical events are
either reduced to regular case (such as for tangents) or localized (such as for inter-
sections). The topology graph can be built without explicitly computing the exact
position of the singularities.

11.3.2 Regularity test

In this section, we are going now to describe how to detect boxes, for which the
topology of the curve can be determined. We will use the following notions:

Definition 2. We say that a curve C ∈ Rn is regular in a compact domain D ⊂ Rn,
if its topology is uniquely determined from its intersection with the boundary D.

The aim of the method is to give a simple criterion for the regularity of a curve in a
box.

To form the topological graph for this domain, we only need to compute the
intersections between the curve and the boundary of this domain, and there exists
a unique graph to link these intersections so that this graph complies to the true
topology of the original curve.

2D case:

For 2D planar algebraic curve C defined by a polynomial equation f(x, y) = 0,
and denoting the partial derivative of f w.r.t x by ∂xf , we have the following direct
property:
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Proposition 3. If ∂yf(x, y) �= 0 (resp. ∂xf(x, y) �= 0) in a domain D = [a0, b0] ×
[a1, b1] ⊂ R2, the curve C is regular on D.

Proof. Suppose that ∂yf(x, y) �= 0 in D. Then C is smooth, since its normal vector
is defined everywhere, and has no vertical tangents in D. By the implicit function

theorem, the connected components of C ∩
◦
D are the graph of functions of the form

y = ϕ(x). The closure of such a connected component is called hereafter a branch
of C in D. As ∂yf(x, y) �= 0 in D, for a given x ∈ [a0, b0] there is at most one

branch of C in D above x. Consequently, the connected components of C ∩
◦
D project

bijectively onto non-overlapping open intervals of [a0, b0].
Moreover, as there is no vertical tangent, each of these branches starts and ends

at a point on the border ∂D of D. Notice that two branches may share a starting or
ending point, when the curve is tangent (with even multiplicity) to ∂D.

Thus, computing the points of C∩∂D, repeating a point if its multiplicity is even,
sorting them by lexicographic order such that x > y ((x0, y0) > (x1, y1) if x0 > x1

or x0 = x1 and y0 > y1), we obtain a sequence of points p1, p2, . . . , p2 s−1, p2 s

such that the curve C in D is isotopic to the union of the non-intersecting segments
[p1, p2], . . . , [p2s−1, p2s]. In other words, the topology of C is uniquely determined
from its intersection points with ∂D and C is regular on D. �
If ∂yf �= 0 on D (resp. ∂xf �= 0), we will say that C is x-regular (resp. y-regular). A
sufficient condition for f to be x-regular (respectively y-regular) is that the Bernstein
coefficients of the first derivative of f against y (respectively x) maintains a constant
sign (see also [1]). By Descartes’ law, this statement implies that the sign variation
in this direction should be at most 1.

To put it in another way, by solely studying the sign variations of the tangential
gradient vector of the curve (represented in Bernstein basis), i.e. (∂yf(x),−∂xf(x)),
we are able to detect when the curve is regular on D and to determine uniquely the
topological graph.

3D case:

The 2D approach can be generalized to the 3D case where the tangential gradient
vector of the curve C defined by the intersection of two algebraic surfaces, namely
f(x, y, z) = 0 and g(x, y, z) = 0, is given by t = %(f) ∧ %(g) (see Eh. (11.7)).
Similar to the 2D case, we can represent each component of t in the Bernstein basis
for a given domain (in cube shape) D = [a0, b0]× [a1, b1]× [a2, b2]. The sign change
of the resulting Bernstein coefficients enables a simple regularity test with minimal
computation effort.

We describe a first and simple regularity criterion:

Proposition 4. The 3D spatial curve C defined by f = 0 and g = 0 is regular on D,
if

• tx(x) �= 0 on D, and
• ∂yh �= 0 (or ∂zh �= 0) on D, for h = f or h = g.
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Proof. Suppose that tx(x) �= 0 and ∂z(f) �= 0 on D. It implies that C is smooth in D.
Consider two branches of C in D and project them by πz onto a (x, y)-plane. Their
projection cannot intersect at an interior point. Otherwise, there would be two points
p1, p2 ∈ D, such that f(p1) = 0, f(p2) = 0 and πz(p1) = πz(p2), which implies
that ∂zf(p) vanishes for an intermediate point ∈]p1, p2[ in D. This is impossible by
hypothesis. Consequently, the branches of C project bijectively onto the branches of
πz(C). Their tangent vector is the projection (tx(x), ty(x)) of the tangent vector of
C. By proposition 3, πz(C) is regular, so that the topology of πz(C), and thus of C, is
uniquely determined by the intersection points of C with the border of D. �

A similar criterion applies by symmetry, exchanging the roles of the x, y, z co-
ordinates.

Let us give now a finer regularity criterion, which is computationally less expen-
sive:

Proposition 5. If C is smooth in D and if for all x0 ∈ R, the plane x = x0 plane has
at most one intersection point with the curve C in D, then C is regular on D.

Proof. Consider the projection πz(C) of the curve C in D along the z direction. Then
the components of C in D projects bijectively on the (y, z) plane. Otherwise, there
exist two points p0 and p1 lying on C such that πz(p0) = πz(p1) = (x0, y0), then
p0 and p1 belong to x = x0 which are functions of the form y = Φ(x). Otherwise,
there exist two points on πz(C) and (and on C∩D) with the same x-coordinate. Con-
sequently, for x ∈ [a0, b0] there is at most one branch of πz(C) in D above x, and

the connected components of C∩
◦
D project bijectively onto non-overlapping open

intervals of [a0, b0] as πz(C) does. We conclude as in the 2D case (proposition 3), by
sorting the points of C ∩∂D according to their x-coordinates, and by gathering them
by consecutive pairs corresponding to the starting and ending points of branches of
C ∩D. �

Proposition 6. The 3D spatial curve C defined by f = 0 and g = 0 is regular on D,
if

• tx(x) �= 0 on D, and
• ∂yh �= 0 on z-faces, and ∂zh �= 0 and its has the same sign on both y-faces of

D, for h = f or h = g.

Proof. Let us fix x0 ∈ [a0, b0] where D = [a0, b0] × [a1, b1] × [a2, b2], let U =
{x0} × [a1, b1] × [a2, b2] and let Φx0 : (x0, y, z) ∈ U �→ (f(x0, y, z), g(x0, y, z)).
We are going to prove that under our hypothesis, Φx0 is injective. The Jacobian
tx(x0, y, z) of Φx0 does not vanish on U , so that Φx0 is locally injective. We consider
the level-set f(x) = f0 for some f0 ∈ f(U). It cannot contain a closed loop in U ,
otherwise we would have (∂yf, ∂zf) = 0 (and thus tx = 0) in U ⊂ D. We deduce
that each connected component of f(x) = f0 in U intersects ∂U in two points.

Now suppose that Φx0 is not injective on U , so that we have two points p1, p2 ∈
U such that Φx0(p1) = Φx0(p2).
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If p1 and p2 are on the same connected component of the level set f(x) = f0

(where f0 = f(p1) = f(p2)) in U , then g reaches the same value at p1 and p2 on
this level set, so that by Role’s theorem, there exists a point p ∈ U in-between p1

and p2, such that Jac(Φx0)(p) = tx(p) = 0. By hypothesis, this is impossible.
Thus p1 and p2 belongs to two different connected components of f(x) = f0 in

U . Consequently the value f0 is reached at 4 distinct points of ∂U , which implies
that f has at least 4 extrema on ∂U .

Now note that up to a change of variable z = a2 − z, we can assume that
∂zf > 0 on both y = a1, y = b1 faces. Then if ∂yf < 0 on z = a2, we have
f(x0, a1, b2) > f(x0, a1, a2) > f(x0, b1, a2) and (a2, a3) is not a local extrema.
Otherwise ∂yf > 0 and (b1, a2) is not a local extrema. In both cases, we do not have
4 extrema, which proves that ϕx0 is injective and that the intersection of C with the
plane x = x0 in D is at most one point. So by proposition 5, we deduce that C is
regular in D. �

For more details on the injectivity properties, see [16]. Here also, a similar crite-
rion applies by symmetry, exchanging the roles of the x, y, z coordinates.

If one of these criteria applies with ti(x) �= 0 on D (for i = x, y, z), we will say
that C is i-regular on D.

From a practical point of view, the test that ti(x) �= 0 or ∂i(h) for i = x, y
or z, h = f or g, is replaced by the stronger condition that their coefficients on
the Bernstein basis of D have a constant sign, which is straightforward to check.
Similarly, such a property on the faces of D is also direct, since the coefficients of
a polynomial, with a minimal (resp. maximal) x-indices (resp. y-indices, z-indices)
are its Bernstein coefficients on the corresponding face.

In addition to these tests, we also test whether both surfaces penetrate the cell,
since a point on the curve must lie on both surfaces. This test could be done by
looking at the sign change of the Bernstein coefficients of the surfaces with regards
to that cell. If no sign change occurs, we can rule out the possibility that the cell
contains any portion of the curve C, hence terminate the subdivision early. In this
case, we will also say that the cell is regular.

The regularity criterion is sufficient for us to uniquely construct the topologi-
cal graph g of C within D. Without loss of generality, we suppose that the curve C
is x-regular in D. Hence, there is no singularity of C in D. Furthermore, this also
guarantees that there is no ‘turning-back’ of the curve tangent along x-direction, so
the mapping of C onto the x axis is injective. Intuitively, the mapped curve should
be a series of non-overlapping line segments, of which the ends correspond to the
intersections between the curve C and the cell, and such mapping is injective.

This property leads to a unique way to connect those intersection points, once
they are computed (see section 11.3.3), in order to obtain a graph representing the
topology of C. Here is how this graph is computed in practice: suppose C is i-regular
in the domain D, and that we have computed the set of intersection points V = {vj}
of the curve with the boundary of D. First, we sort the elements in V comparing
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vectors by their i-th coordinates. Assuming the sorted points vj are indexed by j =
0, 1, 2, ..., we form the edges vk,vk+1, for k = 0, 2, 4, ...

However, a special case has to be taken into account, that is when vj has a mul-
tiplicity mi > 1, for instance, when C is tangent to the bounding domain D at vi.
In this case, we can treat vj conceptually as a multiple point which plays the role of
mi points. In this way, we proceed the connecting process in the same manner as we
do for the general case. To determine the multiplicity of a point vj , we only have to
evaluate the derivatives of C at this point.

11.3.3 Hierarchical subdivision

We adopted a hierarchical octree to partition the R3 space, for several reasons:

• each cell of the octree is equivalent to a cube-shaped domain D; which stores
the coefficients of the polynomials in the Bernstein basis of the corresponding
domain.

• we can take cares of faces shared by cells, to minimize the number of calls to
solvers;

• the hierarchical structure of octree allows us to terminate (stop further subdivi-
sion) early when a cell is deemed regular or irrelevant.

We begin by setting a initial bounding domain D0 to a root cell. A cell is sub-
divided if the curve C defined in the correspondent domain fails the regularity test.
For each subdivision, we result in several smaller domains in form of sub-cells. For
each of them, we repeat the regularity test and, if necessary, further subdivides. The
subdivision of a cell will terminate either when the curve within is deemed regular,
or the size of the cell is beyond a predefined precision ε.

There are several techniques to save computation efforts. As the sub-cells share
certain faces with their parent cell, the earlier computed intersections on the parent
cell’s faces are inherited directly by the sub-cells. In addition, sub-cells split from the
same parent cell do share some faces as well. Once again, the shared faces should be
computed exactly once.

Once a new face is introduced in the octree decomposition, the bivariate solver
described in section 11.2.2, is called directly with the Bernstein coefficients of the
polynomials on this face. The points we found are shared by neighbor cells, con-
nected to this face in the octree.

11.3.4 Symbolic-numeric approach

Some geometric operations such as computing the self-intersection curve or the ridge
curve of a parameterized surface leads to the computation of implicit curves of high
degree with coefficients of large size. This is either due to projection techniques (see
[9]), or to their definition through composed operations (see [3]). In order to be able
to handle such curve, the main difficulty is to control the result, using approximate
computation, since exact computation though possible, would be prohibitive. We de-
scribe here the symbolic-numeric approach that we have developed for this purpose.
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We assume that the input equations are given with exact (large) rational (or inte-
ger) numbers (even if the input is given with floating point numbers, we will consider
it as an exact input). In order to compute the topology of C in a domain D, we convert
its representation in the Bernstein basis of D, using exact rational arithmetic.

Once this conversion is done, we normalize the equation, by dividing by the
coefficient of maximal norm. For each resulting rational coefficient c, we compute
the smallest interval [c, c] represented with floating point numbers and containing c.

Then, the subdivision process is performed, using interval arithmetic. The reg-
ularity criterion, which reduces to sign evaluations, is applied on these interval co-
efficients. We use the following convention: a interval is < 0 (resp. > 0) if all its
elements are < 0 (resp. > 0). If the interval contains 0, we say that its sign is inde-
terminate.

If the regularity test fails,

• either the sign of all the coefficients of the polynomial are indeterminate, and
we re-convert the exact polynomial to its representation on the corresponding
sub-domain and restart the approximation process.

• or we subdivide the domain, as in the usual case.

11.3.5 Outline of the algorithm

The proposed algorithm for 3D curves is outlined as follows:
We do not describe the algorithm for 2D curves, which is basically a specializa-

tion of this one.

11.4 Experiments

Our proposed algorithm is implemented as a part of SYNAPS (SYmbolic Numeric
APplicationS) library2. The experiments have been carried out on a 3.4GHz PC,
under Linux.

11.4.1 Planar curves of high degree with large coefficients

In this section, we report on the application of the 2d algorithm, in the case of large
integer coefficients. The first example is about ridge curve. Ridge curves correspond
to local extrema of curvature taken in the principal direction of the surface, after
some algebraic manipulations they can be obtained as implicit curve (see [3]). See
also [19] and [20] for other related approaches. In the example it corresponds to a
bicubic surface, the input polynomial is of total degree 84, of multidegree (43, 43)
with 1907 monomials. The coefficients are integers encoded on at most 65 bits. For
the precision ε = 10−3 which controls the singularity localization, it takes 30 sec-
onds. The topology is certified except in tiny boxes (which contains the singularity
2 http://www-sop.inria.fr/galaad/software/synaps/
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Computing the topology of the curve C:
INPUT: f(x) and g(x) polynomials ∈ Q[x, y, z], a tolerance ε and a list of bounding domain
D0 ← [a0, b0] × [a1, b1] × [a2, b2] (ai,bi ∈ R).

• Step 0: (initialization step) domain list D ← D0; vertex list V ← NIL; connectivity list
E ← NIL;

• Step 1: compute t ← �(f) ∧�(g) given by Eq. (11.7);
• Step 2: convert f , g and t into Bernstein basis representation;
• Step 3: while D is not empty, pick a D in D:

– Step 3.1: compute V the set of intersection points between the boundary of the domain
D and the curve C;

– Step 3.2: if the size of D is larger than ε:
· if the curve C within the domain D is regular (see section 11.3.2):

· sort and connect the points v ∈ V ; the connectivities are stored in E;
· else if the domain D is not regular:

· subdivide D and append the subdivided domains into the domain list D
– else if the size of D is not larger than ε:

· add the domain D as a ’box’ vertex into V ;
· this vertex is connected with all intersections v ∈ V of D; these connectivities

are also appended to E;
– Step 3.4: remove D from D and repeat Step 3;

OUTPUT: The graph represented by a set of vertices V , which are either 3D points or boxes
(with size less than ε) bounding the singularities, and a set of connections E that are repre-
senting the edges of the resulting graph.

points). Notice that a pure algebraic approach, exploiting the specificity of problem
and with a very efficient Gröbner engine takes about 10 minutes to certify the topol-
ogy (see [3]).

The second example is a projection of a self-intersection curve of bicubic patch,
computed by resultant techniques (see [9]). The input polynomial is of total degree
76, of multidegree (44, 44) with 1905 monomials. The coefficients are integers of at
most 288 bits. It takes 5 seconds, for this example with the same precision ε = 10−3.

11.4.2 Intersection curves of implicit surfaces

This set of examples are from [8]. The computational time accompanied is measured
up to milliseconds (see Fig. 11.2):

1) f(x) = 0.85934x2 +0.259387xy +0.880419y2 +0.524937xz− 0.484008yz +
0.510242z2 − 1
g(x) = 0.95309x2 + 0.303149xy + 0.510242y2 − 0.200075xz + 0.64647yz +
0.786669z2 − 1
time: 80 msec

2) f(x) = −0.125x2 − 0.0583493xy + 0.493569y2 + 0.966682xz − 1.5073yz −
0.368569z2 − 0.865971x− 0.433067y − 0.250095z
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(a) ridge curve (b) self-intersection curve

Fig. 11.1. Topological descriptions of high complexity curves

g(x) = x2 + y2 + z2 − 2
time: 20 msec

3) f(x) = 2x2 + y2 + z2 − 4
g(x) = x2 + 2xy + y2 − 2yz − 2z2 + 2zx
time: 30 msec

4) f(x) = x4 + y4 + 2x2y2 + 2x2 + 2y2 − x− y − z
g(x) = x4 + 2x2y2 + y4 + 3x2y − y3 + z2

time: 130 msec

(a) Example 1 (b) Example 2 (c) Example 3 (d) Example 4

Fig. 11.2. Topological descriptions of the intersection curve for 4 pairs of low-order algebraic
surfaces.
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11.4.3 Silhouette curves of implicit surfaces

The following samples are taken from http://www-sop.inria.fr/galaad/surfaces/. We
intersect the surface with its polar variety in one direction (here the x direction). In
other words, we intersect the surface with the surface defined by one of its first order
derivative (here ∂xf ), to extract its silhouette. The surfaces that we used are called
respectively Tetrahedral, Q3, Q1 and Barth Sextic (see Fig.11.3):

5) f(x) = x4+2x2y2+2x2z2+y4+2y2z2+z4+8xyz−10x2−10y2−10z2+25
g(x) = 4x3 + 4xy2 + 4xz2 + 8yz − 20x
time: 510 msec

6) f(x) = 5.229914547374508y2z2 +3.597883597883598x2y2 + y4 + z4−x4−
19.49816368932737xyz + 5.229914547374508x2 − 7.43880040039534y2

g(x) = −3.59788359788359z2+7.43880040039534z2x2−110.45982909yz2+
7.195767196x2y + 4y3 − 19.49816368932737xz − 14.87760080y
time: 330 msec

7) f(x) = x4+y4+z4−4x2−4y2z2−4y2−4z2x2−4z2−4x2y2+20.7846xyz+1
g(x) = 4x3 − 8x− 8xz2 − 8xy2 + 20.7846yz
time: 730 msec

8) f(x) = 67.77708776x2y2z2 − 27.41640789x4y2 − 27.41640789x2z4

+10.47213596x4z2−27.41640789y4z2+10.47213596y4x2+10.47213596y2z4

− 4.236067978x4 − 8.472135956x2y2 − 8.472135956x2z2 + 8.472135956x2

− 4.236067978y4 − 8.472135956y2z2 + 8.472135956y2 − 4.236067978z4

+ 8.472135956z2 − 4.236067978
g(x) = 135.5541755xy2z2 − 109.6656316x3y2 − 54.83281578xz4

+ 41.88854384x3z2 + 20.94427192y4x− 16.94427191x3 − 16.94427191xy2

− 16.94427191xz2 + 16.94427191x
time: 4010 msec

(a) Example 5 (b) Example 6 (c) Example 7 (d) Example 8

Fig. 11.3. Topological descriptions of the silhouette curves of algebraic surfaces.
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11.5 Discussion

The algorithm proposed in this paper offers a generic method for computing the
topological graph of spatial curves resulting from the intersection of two algebraic
surfaces. As demonstrated in the experiments, it is rather robust despite the increase
of the complexity of the curve.

The major weakness of this approach, however, is that certain apparently sim-
ply situation could result in a lot of subdivisions, such as the curve with parallel
structures which are very close to each other.

As specified, in this method, the singular points are only isolated into small boxes
of size ε, and we do not certify the connection of the branches at these points. An
additional work would be necessary, to certify the singularity type. We are currently
investigating on this problem.

Another weakness of this approach is the memory consumption (as the storage
requirement is approximately cubic to the depth of the subdivision). This problem
however, can be mitigated by a divide-and-conquer approach and pure programming
techniques.
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Approximate Implicitization of Space Curves
and of Surfaces of Revolution

Mohamed Shalaby and Bert Jüttler
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Summary. We present techniques for creating an approximate implicit representation of
space curves and of surfaces of revolution. In both cases, the proposed techniques reduce the
problem to that of implicitization of planar curves. For space curves, which are described as
the intersection of two implicitly defined surfaces, we show how to generate an approximately
orthogonalized implicit representation. In the case of surfaces of revolution, we address the
problem of avoiding unwanted branches and singular points in the region of interest.

12.1 Introduction

Traditionally, most CAD (Computer Aided Design) systems rely on piecewise ratio-
nal parametric representations, such as NURBS (Non–Uniform Rational B–Spline)
curves and surfaces. The parametric representation offers a number of advantages,
such as simple sampling techniques, which can be used for quickly generating an ap-
proximating triangulation for visualization. On the other hand, the use of implicitly
defined curves/surfaces also offers a number of advantages, e.g., for solving inter-
section problems, or for visualization via ray–tracing.

In order to exploit the potential benefits of using the implicit representation of
curves and surfaces, methods for conversion from parametric to implicit form (im-
plicitization) are needed. As an alternative to exact methods, such as resultants,
Gröbner bases, moving curves and surfaces, etc. [2, 4, 5, 8, 14], a number of ap-
proximate techniques have emerged [3, 7, 10, 11]. As demonstrated in the frame of
the European GAIA II project [6, 15, 17], these techniques are well suited to deal
with general free–form curve and surface data arising in an industrial environment.

On the other hand, CAD objects typically involve many special curves and sur-
faces, such as natural quadrics, sweep surfaces, surfaces of revolution, etc. While
implicit representations of simple surfaces are readily available, this paper studies
approximate approximation of two special objects, namely space curves and surfaces
of revolution. Space curves arise frequently in geometric modeling. An implicit rep-
resentation of a space curve is given by the intersection of two implicitly defined
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surfaces. A surface of revolution is created by rotating a 2D profile curve about an
axis in space. Rotation is one of the standard geometric operations defined in any
CAD/CAM interface.

This paper presents techniques for approximate implicitization of space curves
and of surfaces of revolution, which are based on the (approximate) implicitization of
planar curves. The proposed techniques are fully general in the sense that they can be
combined with any (exact or approximate) implicitization method for planar curves.
For creating the examples shown in this paper, we used a technique for simultaneous
approximation of points and associated normal vectors [10, 11, 16].

This paper is organized as follows. First we summarize the approximate implici-
tization method for planar curves. Section 12.3 presents techniques for approximate
implicitization of space curves, first as the intersection of two general cylinders, and
later as the intersection of two general surfaces which intersect approximately or-
thogonal. Representing the space curve by two ‘orthogonal’ surfaces provides a more
robust definition for the curve. Finally, in Section 12.4, two methods for approx-
imate implicitization of surfaces of revolution are presented. It is shown that – in
many cases – only approximate implicitization is capable of producing an implicit
representation that is free of unwanted branches and singularities.

12.2 Simultaneous approximation of points and normals

For the sake completeness, we give a short description of the approximate implic-
itization method presented in [10] (see also [11] for the case of surfaces). This
method is characterized by the simultaneous approximation of sampled point data
pi = (xi, yi), i ∈ I = {1, . . . , N}, and estimated unit normals ni at these points.
The method consists of three main steps:

• Step 1 – Preprocessing: If no other information is available (e.g., from a given
parametric or procedural description of the curve), then each unit normal vector
ni is estimated from the nearest neighbors of the point pi. A consistent orien-
tation of the normals is achieved by a region–growing–type process. If the data
have been sampled from a curve with singularities, then it may be necessary to
organize the data into several segments, see [16] for details.

• Step 2 – Fitting: We generate an approximate implicit representation of the form

f(x) =
∑
j∈J

cj ϕj(x) (12.1)

with certain coefficients cj ∈ R, finite index set J and suitable basis functions
ϕj . For instance, one may choose tensor–product B-splines with respect to suit-
able knot sequences, or Bernstein polynomials with respect to a triangle contain-
ing the data.
The coefficients of f are obtained as the minimum of∑

i∈I
f(pi)2 + w1||∇f(pi)− ni||2 + w2 T, (12.2)
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where w1 and w2 are positive weights satisfying 1 > w1 >> w2 > 0. The first
weight controls the influence of the estimated normal vectors ni to the resulting
curve. As observed in our experiments, increasing the weights w1 or w2 can be
used to ‘push away’ unwanted branches of the curve from the region of interest.
The tension term T in (12.2) is added in order to control the shape of the result-
ing curve. It pulls the approximating curve towards a simpler shape. A possible
quadratic tension term is

T =
∫∫
Ω

f2
xx + 2 f2

xy + f2
yy dx dy (12.3)

This choice of the tension term leads to a positive definite quadratic objective
function. Consequently, the coefficients cj are found by solving a system of linear
equations. In the case of tensor–product B-splines, this system is sparse.

• Step 3 – Iteration: One may iterate the second step, by replacing the normals
ni with the gradients ∇f(pi), and re–computing the result. One the one hand,
this may help to improve the result of the fitting. On the other hand, it can create
problems with unwanted branches. This is described in some detail in [10].

Example 1. We illustrate the behaviour of exact and approximate implicitization by
an example. Figure 12.1 shows the results (algebraic curves of order 4) of both meth-
ods (thin curves) for a segment of a rational planar curve of degree 4 (bold curves).
The approximate implicitization produces an exact implicitization, but with addi-
tional branches and even a singular point in the region of interest. Depending on
the choice of w1, the fitting method produces implicit approximations with differ-
ent level of accuracy. The weight w1 can be used to control unwanted branches and
singular points. In this example, w2 ≈ 0 has been chosen, and three iterations were
applied to improve the result.

Remark 2. As described in [11], the distance between a parametric curve p(t) and
its approximate implicitization can essentially be bounded by

max
t∈I

(f ◦ p)(t)/ min
x∈Ω

‖∇f(x)‖, (12.4)

where I and Ω are the domains of the parametric curve and its approximate implic-
tization, respectively. Upper resp. lower bounds on numerator and denominator can
be obtained by using the convex–hull property of B-spline and Bézier representa-
tions. At the same time, the lower bound on ‖∇f(x)‖ certifies the regularity of the
approximate implicitization within the region of interest. If the accuracy is insuffi-
cient or the regularity is violated, then one may (semi–automatically) adjust the input
parameters (number of sampled data, knots, degrees, and weights).
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exact w1 = 1.0 w1 = 0.0001

Fig. 12.1. Exact (left) vs. approximate (center and right) implicitization (thin curves) of a
given parametric curve (bold curves), see Example 1.

12.3 Approximate implicitization of space curves

After presenting some preliminaries, we discuss the approximate implicitization of
two space curves as the intersection of two generalized cylinders and as the intersec-
tion of algebraic surfaces which are approximately orthogonal to each other.

12.3.1 Preliminaries

For any function f : R3 → R, the zero contour (or zero level set) Z(f) is the set

Z(f) = {x | f(x) = 0} = f−1({0}) (12.5)

A space curve C can be defined as the intersection curve of two zero sets of functions
f and g,

C(f, g) = Z(f) ∩ Z(g). (12.6)

If both f and g can be chosen as polynomials, then C(f, g) is called an algebraic
curve. A point x ∈ C(f, g) is said to be a regular point of the space curve, if the
gradient vectors ∇f(x) and ∇g(x) are linearly independent. The tangent vector of
the space curve is then perpendicular to both gradient vectors.

The two zero contoursZ(f) and andZ(g) intersect orthogonally along the space
curve C(f, g), if

∇f(x) · ∇g(x) = 0 (12.7)

holds for all x ∈ C(f, g).
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Fig. 12.2. Two surfaces, their intersection curve and a level set of the function L, see Exam-
ple 3.

Representing the space curve by two surfaces which intersect orthogonally pro-
vides a more robust definition for the curve [1], since small perturbations of the
defining two surfaces have less impact on the space curve. It has several additional
advantages, e.g., for estimating the Euclidean distance of a point to the curve. As a
natural generalization of the so–called Sampson distance f(p)/||∇f(p)||, see [13],
this distance can be estimated as

L =

√
f2

‖∇f‖2 +
g2

‖∇g‖2 (12.8)

In the case of two surfaces which intersect each other orthogonally, L provides a good
local (i.e., in the vicinity of the intersection curve) approximation of the distance
field. In a different context, orthogonalization of implicits has also been used in [12].

Example 3. Fig. 12.2 visualizes this observation. Two surfaces, their intersection
curve and a level set of the function L are shown. In the case of two orthogonal
surfaces (right), the level set is more similar to a pipe surface than in the general
situation (left).

12.3.2 Intersection of generalized cylinders

A generalized cylinder is obtained by extruding a profile curve Z(f) along a straight
line. If the straight line is parallel to one of the coordinate axes, say the z–axis, then
the zero contour of any function of the form (x, y, z) → f(x, y) defines such a
generalized cylinder.

This simple observation leads to algorithm 2 which generates an approximate
implicit representation of a space curve. If step 2 uses an exact implicitization method
(instead of an approximate one), then the algorithm generates an exact implicitization
of the space curve.

Remark 4. Instead of the the xy and the xz plane, any two orthogonal planes can
be used. Clearly, one could try to choose them such that the projection becomes
as simple as possible. As an important condition, no chord of the curve should be
orthogonal to one of the two planes.
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Algorithm 2 Approximate implicitization by generalized cylinders

Input A parametric space curve C or a set of sampled points pi.
Output An implicit representation of the given space curve as the intersection of two gener-
alized cylinders.
1: Project the parametric space curve C (the points pi) orthogonally into two orthogonal

planes (e.g. xy-plane and xz-plane).
2: Apply an approximate implicitization method to the data in xy-plane and xz-plane. Let

the bivariate functions f(x, y) and g(x, z) define the implicit curves in xy-plane and xz-
plane respectively.

3: Define the two generalized cylinders by the polynomials f(x, y) and g(x, y) respectively.
4: Represent the curve C(x, y, z) as the intersection of the two generalized cylinders f(x, y)

and g(x, z).

Example 5. The left plot in Figure 12.4 (see page 222) shows a space curve (white)
which is represented as the intersection of two generalized cylinders Z(f) (black)
and Z(g) (grey), where f = f(x, y) and g = g(x, z).

12.3.3 Approximately orthogonal representation

Our method for generating an approximate implicitization by two approximately
orthogonal surfaces is based on the following simple observation.

Lemma 6. At all regular points x ∈ C(f, g), the gradients of the two functions

F (x) = ‖∇f(x)‖ g(x) + ‖∇g(x)‖ f(x) (12.9)
G(x) = ‖∇f(x)‖ g(x)− ‖∇g(x)‖ f(x) (12.10)

are orthogonal.

This observation can be verified by a direct computation.

Remark 7. This result cannot be used at points where the two original surfaces in-
tersect each other tangentially. In the case of two generalized cylinders produced by
Algorithm 2, this happens only if the curve C has a tangent which lies in a plane that
is perpendicular to both projection planes. One may easily choose the two projection
planes such that this is not the case.

Clearly, even if the function f and g are piecewise polynomials, neither F nor G
are piecewise polynomials in general. We propose to approximate them by piecewise
polynomials, as follows.

The functions ‖∇f‖ and ‖∇g‖ depend on x, y and x, z respectively. We would
like to approximate them by two piecewise polynomials f̄(x, y) and ḡ(x, z) in the
area of interest, which is the region near the zero contours of the functions f and g.
(See [9] for more information and references on surface fitting.) The two approxi-
mating functions are to minimize
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Fig. 12.3. Approximation of the scalar field ||∇f ||, see Example 8.

∫∫
Ω′

w(f) (f̄ − ‖∇f‖)2 dxdy and
∫∫
Ω′′

w(g) (ḡ − ‖∇g‖)2 dxdz (12.11)

where w is a suitable weight function. For instance, one may use

w(h) =
1

h2 + ε
, (12.12)

where ε > 0 is used in order to avoid division by zero.
Note that the objective functions depend quadratically on f̄ and ḡ. Consequently,

if these approximants are represented as a linear combination of certain basis func-
tions (such as tensor–product B-splines), similar to (12.1), then the minimizers of
(12.11) can be computed by solving symmetric positive definite systems of linear
equations. In the B-spline case, these systems are sparse. The coefficients of the
equations have to be evaluated by numerical integration, e.g., by Gaussian quadra-
tures.

Example 8. We consider the gradient field of f = 4x2 + 8y2 − 1 on [0, 1]× [0, 0.6]
and approximate the scalar field ||∇f || = 8

√
x2 + 4y2 by a quadratic polynomial.

For different values of ε we obtain different approximations. The white regions in
Fig. 12.3 show where the relative error is less than 2%. For smaller values of ε, this
region follows the elliptic arc Z(f), which is shown as a black line.

Algorithm 3 combines the previous algorithm with the approximation of the
norms of the gradients. The degree degx(F ) and degx(G) of the surfaces F and
G with respect to x equals max(degx(f̄) + degx(g), degx(ḡ) + degx(f)). The de-
gree with respect to y (and similarly for z) is max(degx(f), degx(f̄)). In order to
reduce the total degree, one may consider to choose the degree of the factors f̄ , ḡ as
small as possible. Alternatively, one may use (tensor–product) spline functions.

Example 9. We consider a given space curve and apply the two algorithms to it. Fig-
ure 12.4 shows the approximate implicitization by two generalized cylinders (left)
and by two approximately orthogonal algebraic surfaces (right). For the latter two
surfaces, the angle between the tangent planes along the intersection curves deviates
less then 2.5◦ from orthogonality.
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Algorithm 3 Approximate implicitization by approximately orthogonal surfaces
Input A parametric space curve C or a set of sampled points pi.
Output An approximate implicit representation as the intersection of two approximately or-
thogonal surfaces.
1: Run Steps 1, 2, 3 of Algorithm 2.
2: Approximate ‖∇f‖ and ‖∇g‖ by polynomials or piecewise polynomials f̄ and ḡ by

minimizing (12.11).
3: Introduce the two auxiliary function F and G as in (12.9) and (12.10), where the norms

of the gradients are replaced by their piecewise polynomial approximants.
4: Represent the given curve as the intersection of the two approximately orthogonal alge-

braic surfaces F , G.
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Fig. 12.4. Approximate implicitization of a space curve using Algorithm 2 (left, intersection
of two generalized cylinders) and 3 (right, intersection of two approximately orthogonal sur-
faces).

12.4 Approximate Implicitization of Surfaces of Revolution

A surface of revolution is obtained by rotating a profile curve q(v) about (e.g.) the
z–axis. We propose two techniques for generating an approximate implicit repre-
sentation by a piecewise polynomial. Both techniques reduce the problem to the
implicitization problem of a planar curve.

12.4.1 Implicitization via elimination

First we apply a method for approximate (or exact) implicitization to the profile curve
in the rz–plane, where the radius r denotes the distance to the z–axis. For example,
one may use the method which was described in Section 12.2. We obtain an implicit
representation of the form f(r, z) = 0, where f is a (piecewise) polynomial.

In order to obtain an implicit representation of the form g(x, y, z) = 0, one could
substitute r =

√
x2 + y2. However, the resulting scalar field
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Fig. 12.5. Approximate implicitization of a surface of revolution using elimination, see
Example 10. Left: profile curve, right: the surface.

(x, y, z) �→ f(
√

x2 + y2, z) (12.13)

is no longer given by a piecewise polynomial representation, due to the square root.
Instead, we eliminate r using a resultant,

g(x, y, z) = Resr(f(r, z), r2 − x2 − y2). (12.14)

The degree of g will be twice the degree of f . Clearly, the resultant can be evaluated
only if f is a polynomial. In the case of a piecewise polynomial (spline function),
this approach has to be applied to the polynomial segments.

Example 10. We apply the technique of Section 12.2 to the profile curve (black line)
shown in Figure 12.5 (left) and obtain an approximate implicitization by a bi–quartic
tensor–product polynomial (grey curve). After computing the resultant, this leads to
an approximate implicit representation of the the corresponding surface of revolution
(right). The function g is a tensor–product polynomial in x, y, z of degree (8,8,8).
Only even powers of x and y are present. Note that the approximate implicitization
produces two additional branches, which do not intersect the surface.

This method for approximate implicitization of surfaces of revolution has two
major drawbacks.

• First, in the case of a piecewise polynomial representation f(r, z) = 0 of the
profile curve, the resulting piecewise polynomial g will not necessarily inherit
the smoothness properties of f . E.g., if f is a C1 spline function, then g will not
necessarily be C1.

• Second, even if the approximate implicitization of the profile curve has no un-
wanted branches and singular points in the region of interest, these problems may
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be introduced by the eliminating r, see Example 11. Indeed, this elimination is
equivalent to computing the polynomial g from

g(x, y, z) = f(−
√

x2 + y2, z) · f(
√

x2 + y2, z). (12.15)

Note that this produces indead a polynomial, since only even powers of the square
root are present! The product (12.15) leads to a symmetrized version of the ap-
proximate implicitization of the profile curve. Consequently, additional branches
from the half–plane r < 0 may cause problems.

Example 11. Approximate implicitization of the profile curve (a cubic Bézier curve)
by a cubic polynomial using the method described in Section 12.2 produces an im-
plicit curve without additional branches and singular points, see Fig. 12.6, left. How-
ever, these problems are present after the elimination step (12.14), see Fig. 12.6,
right. The reason for this phenomenon can be seen from the global view (bottom row
in the picture): the elimination produces a symmetrized version of the approximate
implicitization. Note that methods for exact implicitization of the profile curve have
similar problems.

Remark 12. The first problem can be resolved by using Eq. (12.15) instead of
(12.14).

12.4.2 Implicitization via substitution

In order to avoid the problems of the first approach, we propose to implicitize the
profile curve q(v) in the rz-plane by the zero contour of a bivariate function f(r2, z).
The bivariate function f(r2, z) can be chosen from the space of all bivariate functions
with even power in r. We may use any basis (e.g., tensor–product B–splines) and
express the bivariate function f(r2, z) as

F (r2, z) =
∑
i∈I

ci ϕi(r2, z) (12.16)

with real coefficients ci, where I is a certain index set. The method for approximate
implicitization described in Section 12.2 is applied to this representation. The ap-
proximate implicit representation of the surface of revolution is then obtained by a
substitution,

g(x, y, z) = F (x2 + y2, z). (12.17)

The degree of g with respect to x and y is twice the degree of F with respect to r2,
while the degrees with respect to z are equal.

Example 13. We apply this approach to the profile curve of Example 11, using a
polynomial F of total degree 3. The implicit equation of the profile curve has degree
(6,3), and the approximate implicit equation of the surface of revolution has degree
(6,3,3). As shown in Fig. 12.7, we may achieve a similar accuracy in the region of
interest by using an approximate implicitization of the profile curve that is symmet-
ric with respect to the axis of revolution. Due to this symmetry, no problems with
unwanted branches and singular points are present.
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Fig. 12.6. The elimination of r may produce additional branches and singular points. Top row:
Region of interest [0, 2]2, Bottom row: global view. Left: Approximate implicitization Z(f)
of the profile curve in the rz–plane. Right: Intersection of the approximate implicitization
Z(g) with the xz–plane. The original profile curve is shown in grey.

Example 14. We consider the discretized profile curve shown in Fig. 12.8, left, and
apply the method of Section 12.2 to it. The function F is a bi–quadratic tensor–
product spline function whose domain is the union of the cells shown in the figure.
This leads to an approximate implicit representation of the profile curve (Fig. 12.8,
center) and of the surface (right) of degree 4(×4)× 2. In the surface case, the spline
function is defined with respect to ring–shaped cells, obtained by rotating the cells
shown in the left figure.

12.5 Conclusion

Several techniques for approximate implicitization of space curves and surfaces of
revolution have been presented. These techniques are based on algorithms for (exact
or approximate) implicitization of planar curves. In the case of space curves, a repre-
sentation of two approximately orthogonal surfaces can be obtained, which provides
several advantages, such as a geometrically robust definition of the curve and the
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Fig. 12.7. Approximate implicitization of a surface of revolution via substitution avoids poten-
tial problems with additional branches and unwanted singular points. Left: Region of interest,
right: global view. The original profile curve is shown in grey.
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Fig. 12.8. Approximate implicitization of a surface of revolution of degree 4 × 4 × 2, using a
biquadratic spline function F , see Example 14.

possibility to obtain a good approximation of the distance field to a space curve. As
shown in the case of surfaces of revolution, only approximate implicitization is able
to produce a representation which is free of unwanted branches and singular points
in the region of interest.
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proximate implicitization: Experiments using industrial data, in: Algebraic Geometry and
Geometric Modeling (Mourrain, B., Elkadi, M., Piene, R., eds.), Springer, in press.
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