
Introductory Mathematics

for the Life Sciences





Introductory
Mathematics

for the Life Sciences

David Phoenix

Department of Applied Biology
University of Central Lancashire

Preston, UK



UK Taylor & Francis Ltd., 1 Gunpowder Square, London EC4A 3DE.
USA Taylor & Francis Inc., 1900 Frost Road, Suite 101, Bristol, PA 19007.

This edition published in the Taylor & Francis e-Library, 2005.

“To purchase your own copy of this or any of Taylor & Francis or Routledge’s
collection of thousands of eBooks please go to www.eBookstore.tandf.co.uk.”

Copyright © David Phoenix 1997

All rights reserved. No part of this publication may be reproduced stored in a
retrieval system, or transmitted, in any form or by any means, electronic,
electrostatic, magnetic tape, mechanical, photocopying, recording or otherwise,
without the prior permission of the copyright owner.

British Library Cataloguing in Publication Data

A catalogue record for this book is available from the British Library

ISBN 0-203-48303-0 Master e-book ISBN

ISBN 0-203-79127-4 (Adobe eReader Format)
ISBN 0-7484-0428-7 (Print Edition)

Library of Congress Cataloging Publication Data are available

Cover design by Jim Wilkie



General Preface to the Series xi
Preface xiii

1 Numbers 1
1.1 Introduction 1
1.2 Real numbers 1
1.3 Modulus 3
1.4 Functions with multiple operations 4
1.5 Commutative and associative laws of addition

and multiplication 5
Summary 7
End of unit questions 8

2 Fractions, Percentages and Ratios 9
2.1 Introduction 9
2.2 Fractions—rational and irrational numbers 9
2.3 Factorisation and equivalent fractions 11
2.4 Addition and subtraction of fractions 14
2.5 Multiplication of fractions 15
2.6 Division of fractions 15
2.7 Percentages 16
2.8 Ratios 19
Summary 21
End of unit questions 22

3 Basic Algebra and Measurement 25
3.1 Introduction 25
3.2 Measurement 25
3.3 Algebraic notation 28

3.3.1 Addition 29
3.3.2 Subtraction 29
3.3.3 Multiplication 30
3.3.4 Division 30
3.3.5 Brackets 30

3.4 Substitution 31
3.5 Factorising simple formulae 32
3.6 Algebraic fractions 33

Contents



6 CONTENTS

3.6.1 Multiplication and division of algebraic
fractions 34

3.6.2 Addition and subtraction of algebraic
fractions 34

3.7 Transposing formulae 35
3.8 Inequalities 38

3.8.1 Intervals 39
3.9 Applications in biological science 40

3.9.1 Equilibrium constants—an example of
algebraic fraction 41

Summary 42
End of unit questions 43

4 Powers and Scientific Notation 47
4.1 Introduction 47
4.2 Powers 47
4.3 Multiplication and division using powers 51
4.4 Powers of powers 53
4.5 Fractional indices 53
4.6 Indices and biology 54
Summary 56
End of unit questions 57

5 Concentration and Accuracy 59
5.1 Introduction 59
5.2 Concentration, volume and amount 59

5.2.1 Percentage weight/volume 60
5.2.2 Percentage volume/volume 60
5.2.3 Percentage weight/weight 61
5.2.4 Moles and molarity 63

5.3 Accuracy: significant figures and decimal places 66
5.3.1 Significant figures 66
5.3.2 Decimal places 68
5.3.3 Accuracy 69

Summary 71
End of unit questions 71

6 Tables, Charts and Graphs 73
6.1 Introduction 73
6.2 Raw data and frequency tables 73

6.2.1 Table preparation 74
6.2.2 Frequency tables 78

6.3 Charts, diagrams and plots 81
6.3.1 Pictograms 81
6.3.2 Pie charts 82



CONTENTS 7

6.3.3 Bar charts 83
6.3.4 Dot plots 85
6.3.5 Histograms 88
6.3.6 Scatter graphs 89

6.4 Plots linking three variables 96
6.4.1 Three-dimensional plots 96
6.4.2 Triangular charts 97
6.4.3 Nomograms 100

Summary 103
End of unit questions 103

7 Linear Functions 107
7.1 Introduction 107
7.2 Functions 107

7.2.1 Inverse functions 109
7.2.2 Monotone functions 111

7.3 Special linear equations 113
7.4 General linear equations 115

7.4.1 Determining the equation of a straight line 117
7.5 Solving linear equations 119
7.6 Biological applications 120

7.6.1 The Beer-Lambert law—an example of a
special linear equation 120

7.6.2 The Lineweaver—Burk plot 122
Summary 126
End of unit questions 126

8 Power Functions 129
8.1 Introduction 129
8.2 Power functions 129
8.3 Polynomials 131
8.4 Solving quadratic equations 132

8.4.1 Solving by factorisation 132
8.4.2 Solving by using a formula 134

8.5 Applications in life sciences 135
8.5.1 Quadratics as a tool to calculate pH 136
8.5.2 Quadratic equations and rates 137

Summary 137
End of unit questions 138

9 Exponential Functions 141
9.1 Introduction 141
9.2 Sequences 141

9.2.1 Geometric sequences 142
9.2.2 Arithmetic mean 143



8 CONTENTS

9.3 Exponential functions 144
9.4 Solving exponential equations 147
9.5 Applications in biology 148

9.5.1 Exponential growth 148
9.5.2 Exponential decay 151
9.5.3 Geometric series 153

Summary 155
End of unit questions 155

10 Logarithmic Functions 157
10.1 Introduction 157
10.2 Defining logarithms 157

10.2.1 Logarithms to the base ten (log10) 159
10.2.2 Logarithms to the base two (log2) 160
10.2.3 Natural logarithms (loge) 160

10.3 Rules for manipulating logarithmic expressions 161
10.3.1 Law for the addition of logarithms 161
10.3.2 Law for the subtraction of logarithms 162
10.3.3 Law for logarithms of power terms 163

10.4 Using logarithms to transform data 164
10.4.1 Logarithmic transformation of exponential

functions 165
10.4.2 Logarithmic transformation of power

functions 166
10.5 Semi-logarithmic plots 166

10.5.1 Exponential functions 167
10.6 Double-logarithmic plots 170

10.6.1 The Hill plot and allosteric enzymes 171
10.7 Logarithms and biology 173
Summary 176
End of unit questions 177

11 Introduction to Statistics 179
11.1 Introduction 179
11.2 Sampling 179
11.3 Normal distribution 181
11.4 Means, medians and modes 183

11.4.1 The arithmetic mean 184
11.4.2 The median and quartiles 188
11.4.3 The mode 190
11.4.4 Representing the data with a box plot 190
11.4.5 Mean, median or mode? 191

11.5 Measuring variability 193
11.5.1 Variance 193
11.5.2 Standard deviation 196



CONTENTS 9

11.6 Sampling distribution of the mean 198
11.6.1 Standard error of the mean 199

11.7 Confidence levels and the t-distribution 200
Summary 202
End of unit questions 203

Appendix: Solutions to Problems 205
Worked examples 205
End of unit questions 214

Index 227





The curriculum for higher education now presents most
degree programmes as a collection of discrete packages or
modules. The modules stand alone but, as a set, comprise a
general programme of study. Usually around half of the
modules taken by the undergraduate are compulsory and
count as a core curriculum for the final degree. The
arrangement has the advantage of flexibility. The range of
options over and above the core curriculum allows the
student to choose the best programme for his or her future.

Usually, the subject of the core curriculum, for example
biochemistry, has a general textbook that covers the material
at length. Smaller specialist volumes deal in depth with
particular topics, for example photosynthesis or muscle
contraction. The optional subjects in a modular system,
however, are too many for the student to buy the general
textbook for each and the small in-depth titles generally do
not cover sufficient material. The new series Modules in Life
Sciences provides a selection of texts which can be used at
the undergraduate level for subjects optional to the main
programme of study. Each volume aims to cover the material
at a depth suitable to the year of undergraduate study with
an amount appropriate to a module, usually around one-
quarter of the undergraduate year. The life sciences was
chosen as the general subject area since it is here, more than
most, that individual topics proliferate. For example, a
student of biochemistry may take optional modules in
physiology, microbiology, medical pathology and even
mathematics.

Suggestions for new modules and comments on the
present volume will always be welcomed and should be
addressed to the series editor.

John Wrigglesworth, Series Editor
King’s College, London

General Preface to the
Series





Students are entering A-level and undergraduate life science
courses with only GCSE mathematics. Many students do not
possess a thorough understanding of the basic mathematical
principles which are required in these courses and those
that do understand the mathematics often have difficulty
applying the principles to biological problems. These
deficiencies are difficult to correct and can involve the need
for intensive tutorial-based courses, but with increasing
student numbers and decreasing staff time the support for
material which lies ‘outside’ the standard life science
curriculum is limited. This leads to many students
struggling with basic concepts, such as concentration, and if
courses include areas with a strong mathematical
orientation such as kinetics, energetics or even pH
calculations students tend to gain little, since their time is
spent struggling with the mathematics; thus they often miss
the biological importance of the material.

This book has been written after discussion with
undergraduates to find out the areas with which they want
help. It is intended to introduce essential mathematical
ideas from first principles but without the use of
mathematical proofs. In the body of each chapter are worked
examples so that readers can apply the mathematics and
develop their confidence. At the end of each chapter are a
number of questions taken from biology and these allow
students to try to apply the mathematics they have learnt.
The emphasis is on essential mathematics, i.e. that which
students will need at some time in most courses and some of
which will be applied on a daily basis. Once the
mathematics has been learnt, students need to apply it. It is
useful to perform the following steps when facing a
numerical problem:

(a) look at the problem and write down all the information
that you have;

(b) write down what it is you want to know;

(c) work out what information is actually required and
what is superfluous;

Preface
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(d) establish the link between what is wanted and what is
known;

(c) apply the mathematics and find the answer!

David Phoenix
Department of Applied Biology

University of Central Lancashire
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1.1 Introduction

Scientists must be able to take quantitative measurements
and look for correlations within their experimental data. A
scientist should therefore be able to manipulate numbers
and have an appreciation of their relevance. The objectives
of this chapter are:

(a) to introduce real numbers;

(b) to develop rules for the manipulation of numbers.

1.2 Real numbers

Real numbers may be represented by their position on a
number line (Figure 1.1). All the numbers which lie on this
line are termed real numbers and the set is represented by
the symbol �. Whole numbers (integers) are represented by
the symbol � and can be sub-grouped into positive (�+) or
negative (�–) integers.

Negative numbers are written to the left of zero. The
further a number is to the right, the bigger it is, so for

1 Numbers

On the number line,
the further the number
is to the right the
bigger it is

Figure 1.1

� represents the group of all numerical values which can be
represented on the number line (i.e. the real numbers)
� represents the set of intergers {…-3, -2, -1, 0, 1, 2, 3,…}
�+ represents the set of positive integers, sometimes called natural
numbers (�) {1, 2, 3, 4,…}
�- represents the negative integers {-1, -2, -3, -4,…}
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example -2 is greater than -5. Addition therefore indicates
that you move to the right, since the number is getting
bigger; subtraction indicates that you move to the left.

It is obviously important that you are able to manipulate
both positive and negative numbers. It is useful to remember
that if you are adding a negative number to a positive number
you can treat this as a subtraction, as shown in Example 1.1.

Example 1.1

It may help to remember the number line. In Example 1.1
you start at position minus two (-2) and plus three (+3) tells
you to move to the right three places, which takes you to
position one on the number line. In Example 1.2 you start at
position minus four and move one place to the left, thus
giving the answer minus five.

Example 1.2

When dealing with negative numbers, the only rule that must
be remembered is that if you subtract a negative number it
becomes positive. This can be seen in Example 1.3.

Example 1.3

A similar rule applies when multiplying or dividing; if both
numbers have the same sign the answer is positive, if their
signs are different the answer is negative. This is illustrated
in Box 1.1 and Example 1.4(a)–(c).

Example 1.4

If you subtract a
negative number it
becomes positive

Multiplying or dividing
numbers of the same
sign gives a positive
answer
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If you have more than two terms in the calculation, then to
apply the sign rules in Box 1.1 you need to break the
calculation down into parts as shown in Example 1.5.

Example 1.5

Worked examples 1.1

Evaluate:
(i)  (ii)  (iii)  (iv) 
(v)  (vi)  (vii) .

1.3 Modulus

On some occasions it may be the size of the value that is
important, rather than its sign. For example, suppose you
are measuring the height of a seedling in centimetres. The
exact height is 4.7 cm and you take two measurements
which are recorded in Table 1.1 along with the error.

With the first reading you have under-estimated the height
by 0.2 cm but the second reading is too large by 0.2 cm. The
error in both cases is of the same size or magnitude; it is
only the direction that is different, i.e. one is an under-
estimate and the other an over-estimate. In this case it may
be worthwhile considering the absolute values. The
absolute value takes into account the magnitude or size of

Box 1.1 Sign rules for multiplication and division.

(positive) × (positive) = positive (positive) ÷ (positive) = positive
(positive) × (negative) = negative (positive) ÷ (negative) = negative
(negative) × (positive) = negative (negative) ÷ (positive) = negative
(negative) × (negative) = positive (negative) ÷ (negative) = positive

Table 1.1
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the change but it does not take into account the direction of
the change. It is denoted by two straight lines (i.e. |-2|=2)
and is usually called the modulus. In the example given
above you can say that the absolute error in both
measurements is 0.2 cm.

Worked examples 1.2

Evaluate:
(i)  (ii)  (iii) 
(iv) 

1.4 Functions with multiple operations

You often have to deal with functions which contain more
than one mathematical operation and it is important to
know in what order to perform these operations. In general,
if an expression contains brackets you always evaluate
whatever is in the brackets first, then you perform
multiplication and division and finally addition and
subtraction (Box 1.2).
 
Box 1.2 Priority of operations.

1 Brackets
2 Multiplication and division
3 Addition and subtraction

If there is more than one set of brackets you start on the
inside and work outwards.

Example 1.6

It is essential that these rules are applied since failure to do
so will greatly influence the outcome of the calculation, as
can be seen in the following examples.

Example 1.7

Modulus measures the
absolute value without
the sign
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Example 1.8

Note that in Example 1.8 the expressions can be rewritten to
emphasise their difference:

In general, although the list of priorities tells you which
operation to perform first, it is always best to use brackets to
clarify what is required.

Example 1.9

In Example 1.9 the brackets are not needed but their
presence can help prevent confusion and this decreases the
chance of error.

Worked examples 1.3

Evaluate:
(i)  (ii)  (iii) 
(iv)  (v) 

1.5 Commutative and associative laws of addition
and multiplication

The commutative law (Box 1.3) states that:

The order in which two numbers are added or multiplied
may be interchanged.

Box 1.3 Commutative laws.

If this law holds then the order in which we add or multiply
two numbers does not matter since the order can be
interchanged. Examples 1.10 and 1.11 show this to be true.
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Example 1.10

Example 1.11

This law can be expanded to give the associative law. The
associative law states:

If more than two numbers are added or multiplied it does
not matter in which order they are added or multiplied.

Box 1.4 Laws of association

If, therefore, an expression contains only multiplication or
only addition, the order in which the operations are
performed is irrelevant. If you have been asked to evaluate
this type of expression you can rearrange the calculation so
that it can be performed in the easiest way possible, as
shown in Example 1.12.

Example 1.12

Both methods in Example 1.12 give the same answer but for
most people the first route would be the easier one to follow.
These rules also apply to subtraction and division, since
these are simply inverses (i.e. the opposite) of multiplication
and addition (Box 1.5).
 
Box 1.5 Laws of association.
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A consequence of the equations shown in Box 1.5 can be
seen in Example 1.13. If the expression contains a mixture
of multiplication and division, the operations can be
separated and the order interchanged in the same way as in
Example 1.12.

Example 1.13

The same applies to addition and subtraction, as is
illustrated in Example 1.14.

Example 1.14

Worked examples 1.4

Evaluate:

(i)  (ii)  (iii) 

calculation inside the brackets first,
followed by multiplication and division and
finally addition and subtraction. Since
multiplication obeys the law of association,
calculations containing only multiplication
can be performed in any order and should be
evaluated by the simplest route possible.
The same rule applies to functions
containing only addition.

Summary

Real numbers are values which can be
represented by a point on the number line
and the set of real numbers is described by
the symbol �. Integers are a sub-group of �
and can be represented by the symbol �.
Integers may be positive or negative but in
some cases it is the magnitude of the value
that is required and not its sign, and this is
denoted by the modulus.
When performing calculations with multiple
operations you always perform the

The order in which you
perform multiplication
and division does not
matter if these are the
only operations present

The order in which you
perform additions and
subtractions does not
matter if these are the
only operations present
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End of unit questions

1. Calculate the following:
(a) 20×18.5×5
(b) 0.6×12.5×5×8
(c) 32×5÷8

2. Evaluate the following:
(a) 4–7
(b) -3-(-2)
(c) 9+23-47-2

3. If a×b=ab define the following:
(a) a×-b
(b) a×-b×-c
(c) -c×-b

4. Calculate the following:
(a) (6-2)÷4+7
(b) 22×7÷11+6-3
(c) (((24-14)-5×6)-5)+25-40÷8

5. In an experiment on CO2 evolution students were
required to estimate the surface area of a leaf. The actual
area was 16.3 cm2. The students’ estimates were 10, 16,
19 and 23 cm2. Calculate the error and the absolute error
in each case.

6. Ostwald’s Dilution Law can be used to find the
ionisation constant for weak electrolytes such as
propionic acid.
(a) Evaluate the calculation:

(b) Rewrite the calculation in one line, using brackets
where necessary.

7. A Warburg manometer flask can be used to measure
pressure changes when a gas is produced or used. For
example, the uptake of oxygen by a bacterial suspension
can be measured as the bacteria respire. Before this can
be done the manometer constant for oxygen needs to be
calculated for the experiment.

(a) Calculate the constant from the above equation.

(b) Rewrite the expression on a single line using
brackets to help clarify the operations.
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2.1 Introduction

Science rarely produces answers in the form of integer values
so students must be able to break numbers down into parts or
fractions and to have an appreciation of what a fraction
represents. In addition you should be able to perform
numerical operations with fractions such as addition,
subtraction, multiplication and division. Fractions can be
represented by decimals, and students should be able to
interconvert decimals and fractions when the need arises. If
work is being performed in which various compounds are
combined (for example, a number of solutions could be mixed
to provide the correct environment for a biological assay),
then you should realise what fraction of the whole each
component represents and be able to express this in the form
of ratios and percentages. Since a variety of experimental data
can be expressed as a percentage, it is important that fractions,
ratios and percentages can be interconverted. The objectives
of this chapter are as follows:

(a) to develop confidence in handling fractions, percentages
and ratios;

(b) to develop an appreciation of their relationship to data;

(c) to be able to interconvert the three forms of expression.

2.2 Fractions—rational and irrational
numbers

Fractions are represented in the form:

p and q are integers. q is called the denominator and p is
termed the numerator. p is usually less than q so that the
numerical value is less than one. This is called a proper
fraction and an example is given (Example 2.1).

2 Fractions, Percentages and
Ratios
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Example 2.1

Any value which can be obtained by dividing two integers
in this manner is called a rational number and is
represented by the symbol �. All integers are therefore
rational numbers, as shown in Example 2.2; but some values
cannot be represented in the form p/q, for example the
values of pi (π) and √2, and these are termed irrational
numbers.

Example 2.2

If the value of the fraction is greater than one, as in Example
2.2, then it is termed an improper fraction (Example 2.3).

Example 2.3

 is therefore an improper fraction but it can also be
expressed as the mixed fraction . A mixed fraction
contains an integer value plus a proper fraction.

It is worth noting that:

The reason why q cannot equal zero is that division by zero
is not defined. Since the denominator never equals zero,
rational numbers are usually represented by the following
expression:

This is summarised in Box 2.1

Box 2.1

(i)  represents a rational number
(ii) If p is less than q then it is a proper fraction

(iii) If p is greater than q then it is an improper fraction

(iv)  but q can never equal zero.

Division by zero is not
possible
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2.3 Factorisation and equivalent fractions

There are many cases in which you need to factorise an
expression, i.e. write it as a product. In Example 2.4 the
numbers nine and six have been factorised. It can be seen
that both numbers can be written as a product which
contains the factor three. Three is therefore said to be a
common factor with respect to six and nine. Fractions can
be simplified if both the numerator and the denominator
have a common factor, and the factorisation method shown
in this section can be used to find any common factors.

Example 2.4

This method uses prime numbers, i.e. numbers which are
divisible only by themselves and one {2, 3, 5, 7 etc.}. In
example 2.4 the integer nine has been written as a product of
two prime numbers and is said to have been prime-
factorised. To prime-factorise a number, try dividing it by
the prime number two, and if the number is not divisible by
this amount, try the next prime number in the series—
three—and so on. For example, fifty is divisible by two but
the other factor formed (twenty-five) is not a prime number;
hence we need to repeat the process, as seen in Example 2.5.

Example 2.5

You are now at the stage where all the numbers in the
expression are prime numbers so when 50 has been prime-
factorised it is represented as {2×5×5}.

A second instance is given in Example 2.6.

Example 2.6

In this case neither two nor three divides into thirty-five, so the
first prime number of use is five. Since seven is also a prime
number, thirty-five has now been prime-factorised. Once you
have a list of the prime factors of a number, you can find all its
factors, i.e. all the values by which it can be divided. This set
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simply includes one, the number itself, the prime factors and
all the possible multiples of the prime factors. This method of
prime factorisation is used in Example 2.7

Example 2.7

Factors of 18 are therefore {1 and 18} plus the prime factors
{2 and 3} plus multiples of the prime factors:

Hence all the factors of 18 are {1, 2, 3, 6, 9, 18}

The ability to use prime factorisation is especially useful
when dealing with fractions. Example 2.8 shows how prime
factorisation can be used to simplify large unwieldy fractions.

Example 2.8

so

employing the law of association

Both the numerator and denominator contain the common
factors two and three; hence these factors can be cancelled:

You can confirm that the above is true since:

Since  and  are numerically equivalent they are called
equivalent fractions.  cannot be simplified further since
there are no more factors common to the numerator and
denominator.  is therefore said to be in its simplest form.

It is worth mentioning that multiplying both the
numerator and denominator by the same constant always
gives an equivalent fraction (Example 2.9).

Common factors in the
denominator and
numerator can be
cancelled
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Example 2.9

In Example 2.9 both numerator and denominator were
multiplied by the same constant. This is not the same as
multiplying the whole fraction by a constant, which would
only increase the size of either the top or the bottom of the
fraction and change the value, as is shown in Example 2.10.

Example 2.10

Multiplication of the numerator and denominator by a
constant should not be confused with the addition of a
constant, because even if you add the same constant to the
top and bottom of a fraction the numerical value changes.
This is illustrated in Example 2.11 and the results are
summarised in Box 2.2.

Example 2.11

Box 2.2

Worked examples 2.1

Simplify the following where possible:

(i)  (ii)  (iii)  (iv) 
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2.4 Addition and subtraction of fractions

For addition and subtraction of fractions you will need to
find the lowest common multiple of two numbers, i.e. the
smallest value into which both numbers will divide. In this
case prime factorisation (Section 2.3) can be used to help.
The method for finding the lowest common multiple is
shown in Example 2.12 for twenty and eighteen.

Example 2.12

Two and five occur most often in the prime factorisation of
twenty, which has as its factors two twos and one five. Three
occurs most often in the factorisation of eighteen. There are
no other factors present apart from these three. Let the
lowest common multiple therefore contain two twos and one
five from twenty, and two threes from eighteen.

Hence 180 is the smallest number that is divisible by both
twenty and eighteen.

Worked examples 2.2

Find the lowest common multiple of:
(i) 14 and 24 (ii) 18 and 33 (iii) 27, 18 and 54
(iv) 24, 18 and 33

If the operation of addition or subtraction is to be
performed, then all fractions must have the same
denominator, so the first step is to find the lowest common
multiple for the denominators.

Example 2.13

Prime factorisation of the denominators gives:

The lowest common multiple is therefore
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To convert  into a fraction with a denominator of twenty-
four, the denominator must be multiplied by four; hence the
numerator must also be multiplied by four (Box 2.2).
 

 
The same procedure can be applied to :

 

 
The fractions can then be added:

The same procedure is applied in the case of subtraction, as
in Example 2.14.

Example 2.14

2.5 Multiplication of fractions

This operation can be performed simply by multiplying the
denominators and the numerators (Example 2.15).

Example 2.15

It is worth noting that in this example the calculation could
have been simplified since the numerator and denominator
contain a common factor of two which can cancel.

2.6 Division of fractions

If you wish to divide one fraction by another, simply invert
the dividing fraction and multiply them.



16 INTRODUCTORY MATHEMATICS FOR THE LIFE SCIENCES

Example 2.16

Example 2.17

Worked examples 2.3

Evaluate:
(i)  (ii)  (iii)  (iv)  (v) 

(vi)  (vii) .

2.7 Percentages

A percentage represents a fraction of 100, i.e. a fraction with
a denominator of 100. To convert a fraction to a percentage
all you need to do is multiply it by 100. If the fraction is
represented by a decimal, the same rule applies.

Example 2.18

 of a solution is used—what percentage of the total is this?

To calculate a percentage, the first step is therefore to
represent the value you require as a fraction or decimal.

To convert a fraction or
decimal to a
percentage, multiply it
by 100
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Example 2.19

A DNA fragment of 35 kilobases is digested by an exo-
nuclease. The enzyme degrades seven kilobases. What
percentage of the DNA is degraded?

7 out of 35 kilobases are degraded, i.e. , so the
percentage is:

Note that in Example 2.19 the fraction  can be represented
by the equivalent fraction  since both the denominator and
numerator have the common factor 7. Using this equivalent
fraction would have simplified the calculation:

Suppose instead that you wish to find a percentage of a
given amount, for example 15% of 70. In this case convert
the percentage to a fraction or a decimal and multiply it by
the amount concerned.

Example 2.20

What is 15% of 70?

You must be careful when dealing with percentages since
the percentage refers to a fraction of a given quantity, and if
the size of this quantity changes so does the percentage
value. This is best illustrated by using an example.

Suppose you treat a tray of 200 plants with a weedkiller
and 60% die. You treat the remaining plants with a second
dose of weed killer and 25% of those remaining die. What
percentage has been killed? It is tempting to say
60%+25%=85% so 85% have been killed, but this is
incorrect.
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The first treatment kills 60% of the plants:

Since 200-120=80, this means 80 plants remain alive.
After the first dose of weedkiller 80 plants remain and

25% of these are killed by the second dose:

so in total (120+20)=140 plants have been killed out of the
original 200 and as a fraction this is represented by  or the
equivalent fraction . This can be converted to a percentage
using the method shown in Example 2.18:

As can be seen, when a value is changing in increments (i.e.
stages) you cannot simply add or subtract the percentage
changes to get the overall percentage change. In the above
example the first dose killed 60% and the second 25% of the
remainder but in total 70% of the plants were killed, not 85%

The effect of incremental changes in terms of percentages
is further illustrated in Example 2.21.

Example 2.21

A tree measures 5.3 m and over a year its height increases
by 10%.

(a) What is the new height?

(b) At the end of the year the tree is topped to decrease its
height by 10%. What is the height now?

Notice that a 10% increase followed by a 10% decrease does
not return you to the starting point. The tree height can be
thought of as a variable, h, that is increasing as the tree grows.
In Example 2.21 the calculation gives th of h in part (a) and
in part (b), but because the second calculation used a larger
value for h we get a bigger number when looking at th of the

If a value is changing in
increments, you cannot
simply add or subtract
the percentage changes
to get the overall
percentage change
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total. This illustrates the point that if a value is increased by a
set percentage, and then this new value is decreased by the
same percentage, you do not return to your starting value since
you are looking at fractions of a varying total.

Worked examples 2.4

(a)  of a sample was used. What percentage remains?

(b) Express the following as percentages of a total:
(i)  (ii)  (iii)  (iv)  (v) 

(c) Evaluate the following:
(i) 20% of 80 (ii) 35% of 22 (iii) 83% of 16
(iv) 12% of 93.

2.8 Ratios

Ratios provide a means of expressing proportions or
fractions. For example, you may make up a solution of three
parts methanol to one part chloroform. This mixture is often
used for extracting lipids from biological membranes. In
total you have four parts, three of which are methanol and
one of which is chloroform. Both chloroform and methanol
are liquids so the final volume is  methanol and 
chloroform. This ratio can be written as:

methanol: chloroform in the ratio 3:1

When written in this way the sum of the values gives the
total number of parts, with each individual number
representing the fraction of the total that is assigned to the
corresponding component. If you wanted 100ml of
methanol: chloroform in the ratio 3:1 you would therefore
add ( ×100=75) ml methanol to ( ×100=25) ml
chloroform.

To calculate the ratio, take the smallest number and
divide all the amounts by this value (Example 2.22).

Example 2.22

Given: 10 g of A; 5 g of B; 15 g of C
so the ratio of A:B:C is : :  or A:B:C in the ratio 2:1:3

It is usual to try to give ratios in integer values, although
fractions can be used. It may be that your smallest quantity
will not divide into the other values. In this case you can use
prime factorisation to try to find the highest common factor
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for the numbers concerned or, if the quantities cannot be
simplified, express the ratio with the original values.

The highest common factor is the biggest number that
will divide exactly into all the numbers of interest, and can
be obtained by multiplying together the prime factors which
are common to the numbers concerned.

Example 2.23

Prime factors common to both 28 and 210={2, 3, 7}
The highest common factor=2×3×7=42.

Example 2.24

Given: 8g of A; 24g of B; 6g of C.
These all have the highest common factor 2
The ratio A:B:C is : :  or 4:12:3.

Example 2.25

Given: 11g of A; 2g of B; 13g of C
This ratio cannot be simplified:
Therefore the ratio A:B:C is 11:2:13.

Ratios are often used in biology to describe dilutions, and
some students are unclear about how to deal with these. For
example, you may be asked to prepare a 1 in 2 (written as
1:2) dilution. In this instance the instruction is saying ‘Take
one part of solution and add two parts of whatever you are
diluting it with.’ For example, if you have 1 ml of protein in
phosphate buffer, to make a 1:2 dilution you would take 1
ml of protein solution and add 2 ml of phosphate buffer.
Notice, therefore, that your final volume is now 3 ml, i.e. the
volume has increased three-fold so the solution has been
diluted three-fold. This highlights the fact that if the
dilution is expressed in parts or as a ratio, this tells you
what size of fractions to combine, but if it is expressed in
terms of a dilution factor this tells you how many-fold the
final volume must be increased.
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To add or subtract fractions, the
denominators must be made equal. This can
be achieved by finding the lowest common
multiple of the denominators involved. For
multiplication the denominators are
multiplied together, as are the numerators,
to give the resultant fraction. Division
proceeds in the same way as multiplication
but the dividing fraction must first be
inverted.
Percentages are simply fractions of 100; but
it must be remembered that if a value
changes in increments and these changes
are measured as percentages, then you
cannot simply add the percentage changes
together to find the overall percentage
change. Fractions of a whole can be
represented in the form of a ratio which,
where possible, should be represented in its
simplest form by division by the highest
common factor.

Summary

Rational numbers are a sub-set of real
numbers denoted by the symbol � and
represented in the form:

where p and q are integers. If a number
cannot be represented in the above form it
is said to be an irrational number. Fractions
are represented by p/q and if p is less than q
this is termed a proper fraction; but if the
reverse is true it is an improper fraction and
can be represented in a mixed form. If the
denominator and numerator have a
common factor, this can be found by using
prime factorisation and the common factors
can cancel to give an equivalent fraction.
Equivalent fractions are always formed if
both the numerator and denominator are
multiplied by the same constant, but this is
not true if a constant is added to both the
numerator and the denominator, or if the
fraction as a whole is multiplied by a
constant.

Worked examples 2.5

(a) A, B, C and D are all liquids. You require a mixture with a
final volume of 100 ml using the following compounds in
the ratios given. What volumes of each are required?

(i) A:B:C in a ratio of 1:2:2

(ii) A:B in a ratio of 1:1

(iii) A:B:C:D in a ratio of 1:4:3:2

(iv) B:C:D in a ratio of 2:1:3

(b) I have the following amounts of A, B and C. Express these
amounts in the simplest ratio possible.

(i) 30g of A, 5g of B, 25g of C

(ii) 0.5g of A, 1.5g of B

(iii) 13g of A, 6g of B, 3g of C

(iv) 15g of A, 6g of B, 12g of C

(c) There is 2 ml of stock solution. How much water would
be added to give:

(i) a 1:2 dilution;

(ii) a two-fold dilution?
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End of unit questions

1. Evaluate the following:

(a)  (b)  (c)  (d) 

2. What percentage of the whole do A, B and C form if
combined in the following ratios?

(a) A:B:C in the ratio 2:5:1

(b) A:B:C in the ratio 3:7:14

3. A sapling is 1.3m tall. In one week it grows by 8% and
the second week its height increases by a further 3%.

(a) What is the height after two weeks?

(b) What is the percentage increase after two weeks?

4. A farmer uses 70% of his land for agricultural
purposes. With this 70% he grows corn: wheat: barley
in a ratio of 3:1:5.

(a) What percentage of his land is dedicated to each of
these crops?

(b) If his farm is 200 acres, what area is used for each?

5. A patient is given a chemotherapeutic drug. Over a one-
day period 40% is secreted and 28% of that remaining is
metabolised. What percentage actually remains?
Express these values as a ratio of secreted: metabolised:
remaining.

6. In thin-layer chromatography a mobile phase moves up
a thin layer of silica on a glass plate. The components in
the sample are drawn up the plate by the mobile phase
and the distance moved depends on each component’s
relative affinity for the mobile and solid phases. You
wish to make 250 ml of mobile phase containing
chloroform, methanol and water in the ratio of 65:35:4.
How much of each must be combined to produce the
250 ml?

7. DNA is composed of four nucleotides, each of which
contains a phosphate group. The nucleotides can
therefore be purchased containing radioactive
phosphate to allow you to produce radioactive
oligonucleotides which can be detected on film. The
activity of the radionucleotide is measured in
becquerels (Bq) and can be determined in a scintillation
counter. It is known that every 14.3 days half the sample
will decay, thus becoming non-radioactive. Your sample
initially contains 11 226 Bq of material. After 14.3 days
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this has halved to 5613 Bq. After a further 14.3 days the
activity has halved again to give 2806.5 Bq.

(a) How long does it take the sample to decay to 6.25%
of its original activity?

(b) What percentage of the sample has decayed after
114.4 days? How much is left in Bq?

8. Absolute error was defined in Section 1.3. This is often
represented as a percentage of the total, in which case it
is termed relative error. The relative error is obtained by
dividing the modulus of the error by the true value
being measured and converting the fraction to a
percentage. A bacterial cell is known to measure 3 µm.
In a practical exam a group of students try to measure
the length of the bacterium using a graticule. The
students’ answers had relative errors of (i) 3%, (ii) 10%,
(iii) 8%, (iv) 15% and (v) 1%. What measurements did
they record?

9. Proteins are composed of amino acids. The peptide
hormone, insulin (bovine) contains a range of amino
acids, some of which are shown below as a percentage of
the total amino acid content. The measurements were
made from 0.5 g of sample. Complete the table.

10. Fatty acid composition can be analysed using gas
chromatography. During the preparation of the sample,
material can be lost, so an internal standard is added of
known concentration. This standard is usually a fatty
acid which is not found within the sample. The amount
of fatty acid is recorded as a peak and the area under the
peak is proportional to the amount of fatty acid present.
Since you know the concentration of your standard you
can compare the unknown peaks with the standard in
the form of a ratio and calculate the concentration of the
unknown values. For example, a standard is 20 µM and
the corresponding peak has area 2 cm2. A palmitic acid
peak in the same sample has area 1 cm2. The
concentration of palmitic acid is therefore half that of
the standard, i.e. 10 µM.
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For a 15 µM internal standard the following data were
obtained:

ratio of standard: myristic acid: palmitic acid: oleic
acid=7:3:8:12

What are the concentrations of the three fatty acids in the
sample?
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3.1 Introduction

Scientists spend much time interpreting data and trying to
find the relationship between various factors. When a
relationship is discovered it may be expressed in a ‘general
form’ which can be used by other workers. This general form
of the relationship may represent quantities by symbols or
letters. For example, t is often used to represent time. The
manipulation of symbols is termed algebra, and algebraic
expressions are simply equations containing letters or a
mixture of letters and numbers.

It is important that any algebraic terms are defined not only
with respect to the quantity they represent but also with
respect to the standard against which they are being
measured, e.g. ‘t represents time (seconds)’. In this section we
will consider the importance of units. It is essential that when
numerical values are used they are assigned the correct unit.
Many students perform calculations but then neglect to
express the answer in the correct form. Without the correct
units answers are useless, since other investigators do not
know what has been measured. You should therefore
understand the meaning of the units being used and be able to
express your answers correctly in terms of these units.

The objectives of this chapter are:
 
(a) to introduce the importance and concept of units;

(b) to introduce algebraic notation;

(c) to provide examples of algebraic manipulation;

(d) to provide experience of transposing (i.e. rearranging)
formulae.

(e) to introduce inequalities

3.2 Measurement

The magnitude or size of any quantity can only be measured
in relation to a given standard. For example, temperature

3 Basic Algebra and
Measurement
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can be measured using the Celsius scale. On this scale 0°C is
defined as the temperature of ice in equilibrium with water
under standard pressure. 100°C is defined as the
temperature of water in equilibrium with steam under
standard pressure. When you measure the temperature in
degrees Celsius you are recording the temperature relative to
these points. It can be seen that you must therefore report
not only the value recorded for the temperature but the units
of measurement, since the units tell other workers against
what standard reference point the quantity is being
measured; without them the quantity is meaningless. The
quantities most often used in life sciences measure
dimensions (length, area, volume), mass, time and
temperature. Each of these factors has a range of units
associated with it: for example, temperature has been
described in terms of the Celsius scale but can also be
measured in Kelvin units or degrees Fahrenheit. All three
scales are completely different since they measure the
quantity (temperature) relative to different standards.

Example 3.1

Within science the Système International d’ Unités or SI
system has been adopted. This is an internationally agreed
form of measure which assigns basic or primary units to the
seven physical quantities listed in Box 3.1.

Box 3.1 SI base units.

Quantity SI unit Symbol
Length metre m
Mass kilogram kg
Time second s
Electric current ampere A
Thermodynamic temperature kelvin K
Luminous intensity candela cd
Amount of substance mole mol

These invariant primary units are used to define a variety of
derived units. Commonly occurring derived units within
the life sciences are listed in Box 3.2.
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Box 3.2 SI derived units.

Quantity SI unit Symbol Definition
Energy joule J m2 kgs-2

Force newton N m kgs-2

Pressure pascal Pa m-1 kgs-2

Power watt W m2 kgs-3

Electric charge coulomb C As
Electric potential

difference volt V m2 kgs-3 A-1

Electric resistance ohm � m2 kgs-3 A-2

Illumination lux lx m-2 cd sr
Frequency hertz Hz s-1

It is worth noting from Box 3.2 that when units are named
after people they are written in full with lower-case letters,
but when represented by a symbol this tends to be a capital
letter (Example 3.2).

Example 3.2

Whenever you are using units the number should be
separated from the unit by a space, the unit should be
singular and there is no full stop after the unit (Example 3.3).

Example 3.3

3 metres is written as 3m, not 3m or 3ms

When two or more units are combined to form a derived unit
a space is left between each unit, but there is never a space
between a prefix (Chapter 4) and the symbol to which it
applies. Example 3.4 demonstrates this.

Example 3.4

metres per second is given by ms-1

1 millisecond (the prefix milli indicates one-
thousandth)=1ms

Notice in Example 3.4 that ‘per’ means divide and is
represented by a negative superscript. For example,
acceleration in metres per second squared is ms-2. This is
covered in more detail in Chapter 4 but the convention should
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be noted and whenever possible workers should adhere to
this notation rather than using a slash (Example 3.5).

Example 3.5

metres per second=ms-1 rather than m/s

This convention is preferred because many texts use a
solidus (slash) to separate a symbol from its units, for
example if time in seconds is represented by the letter t,
then graphs and tables could contain the heading t/s to
indicate that the units are seconds.

The following key rules should be followed when using
units:
 
(a) All quantities should be represented by a number and a

unit. The choice of units must be consistent so that in
any piece of work you use the same units throughout for
any given quantity. Whilst SI units should be used
wherever possible, sometimes this is not feasible; for
example if you are measuring CO2 evolution from a
plant over a 24-hour period it would be better to use
hours rather than seconds.

(b) Only quantities which have the same units can be added
or subtracted so for example, you can not subtract a
mass (kg) from time (s).

(c) There are two instances where units are not used: the
first is in the case of ratios (Section 2.8), but only when
the ratio is composed of two quantities with the same
units. In this case the units cancel (Example 3.6).

Example 3.6

The second case is that of logarithms, which is covered in
Chapter 7.

3.3 Algebraic notation

As referred to in the Introduction, algebraic notation refers
to the practice of using a letter to represent a quantity.
Although certain quantities are associated with given
symbols, it is up to the users to choose whatever letter or
symbol they want to represent a quantity. The important
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point is that the symbol is fully defined and that where
appropriate the definition includes units.

Example 3.7

t=time (seconds) or t/s

l=length (metres) or l/m

It is important that once a symbol is defined it is used
consistently to represent the same quantity throughout that
piece of work. It should be noted that changes in case can
also be used to differentiate between quantities so for
example, t would not be considered the same as T.

A symbol can be used to represent a quantity that varies
such as the example of time given above, and it is then said
to represent a variable. If the symbol represents a fixed
value, then this is termed a constant. As well as using the
character set associated with the English alphabet it is
common practice to use Greek letters. For example, the
symbol for pi (π) is usually used to represent a constant
which is approximated by . The rules of addition,
subtraction, multiplication and division that were discussed
in Chapter 1 also apply to algebraic expressions. This means
that the priority of operations (Box 1.2) remains the same
and the commutative and associative laws (Boxes 1.3 and
1.4) can be applied.

3.3.1 Addition

This is usually referred to as a sum, so Example 3.8 refers to
the sum of a and b, where a and b represent two undefined
quantities.

Example 3.8

3.3.2 Subtraction

This may be referred to as a difference, so Example 3.9
represents the difference of a and b.

Example 3.9

Since a and b represent two different quantities, they are
represented by different symbols, and with both addition
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and subtraction the expressions cannot be simplified any
further because you cannot add or subtract different
quantities. If the expression contained the same quantities,
then the sum or the difference can actually be evaluated.

Example 3.10

Example 3.11

3.3.3 Multiplication

This is termed a product and can be written in several
different ways (a×b=ab=a.b). The product of a and b is
shown in Example 3.12.

Example 3.12

3.3.4 Division

The use of division provides an algebraic fraction which can
be treated in the same way as the fractions covered in
Chapter 2. The top line is termed the numerator and the
bottom line is the denominator. The term quotient is used to
describe division, so in Example 3.13 a/b is the quotient of a
and b.

Example 3.13

3.3.5 Brackets

You may find that the algebraic expression contains
brackets; to simplify the expression it may be necessary to
removethem. Whatever quantity or symbol is found adjacent
to the left-hand side of the brackets must multiply the
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contents of the brackets and this includes the addition or
subtraction sign. It is necessary at this stage to apply the
rules for negative numbers in Box 1.1. Observe the two
expressions in Examples 3.14 and 3.15. These expressions
are completely different, yet with Example 3.14 many
students fail to multiply by the negative sign when they
remove the brackets, thus incorrectly giving a-b+c.

Example 3.14

Example 3.15

Worked examples 3.1

Simplify the following where possible:
(i)  (ii)  (iii) 

(iv)  (v) .

3.4 Substitution

Substitution is the process by which symbols within an
algebraic expression are replaced by numerical values. If
you have performed any algebraic manipulation it is often
useful to substitute the symbols for simple numbers to
ensure that the manipulated expression still gives the same
answer as the original expression. This could be done for
Example 3.14 as shown in Example 3.16.

Example 3.16

After manipulating an
algebraic expression,
use substitution to
check the answer
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By using substitution it would appear that the removal of
the brackets has not affected the expression, so the
manipulation is correct.

3.5 Factorising simple formulae

As discussed in Chapter 2, factorising involves expressing a
number in terms of a product. In Example 2.4, nine is
expressed in terms of its factor three {9=3×3}. If an algebraic
expression has more then one term but the terms contain a
common factor, then the common factor can be removed
(Example 3.17).

Example 3.17

Notice that anything placed alongside the bracket in this way
must multiply everything in the brackets (Example 3.18).

Example 3.18

Common factors could include symbols as well as numbers,
as can be seen in Example 3.19.

Example 3.19

It is useful to be able to find the largest number which will
divide all the factors you are interested in. You can use
prime factorisation to help find the highest common factor
of two or more numbers (Section 2.8). If you know the
highest common factor, then sometimes this can be used to
simplify equations using the distributive law. This states
that:

instead of multiplying two numbers by a common factor,
you can add the numbers and then multiply the sum by
the common factor (Box 3.3)
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Box 3.3

The distributive law can be used to simplify a range of
operations, especially where the same calculation is repeated
a number of times. For example, consider converting degrees
Fahrenheit to degrees Celsius. To convert to Celsius the
following calculation must be performed, where F represents
the reading in Fahrenheit:

If you have many readings to convert this is a laborious task
and due to the number of operations it can be prone to error.
This is simplified in Example 3.20

Example 3.20

Worked examples 3.2

Where possible find the highest common factor of:
(i) 18 and 96 (ii) 9, 35 and 27 (iii) 44, 220 and 66
(iv) 90 and 126 (v) 54 and 135.

3.6 Algebraic fractions

An algebraic fraction is a fraction in which either the
numerator or denominator (or both) contains an algebraic
expression. These fractions can be simplified by cancelling
common factors in the same way as numerical fractions can
be simplified (Example 3.21).



34 INTRODUCTORY MATHEMATICS FOR THE LIFE SCIENCES

Example 3.21

3.6.1 Multiplication and division of algebraic
fractions

Multiplication and division follow the same rules as
numerical fractions. With multiplication, simply multiply
the numerators and multiply the denominators (Example
3.22).

Example 3.22

In the case of division, the dividing fraction should be
inverted and then the numerators are multiplied and the
denominators are multiplied (Example 3.23).

Example 3.23

The use of algebraic fractions often occurs when dealing
with proportions and is very common when calculating
dilutions and concentrations.

3.6.2 Addition and subtraction of algebraic fractions

Addition and subtraction require all the fractions concerned
to have the same denominator and the operation proceeds as
described in Chapter 2 for numerical fractions. The easiest
way to give all the fractions a common denominator is to
multiply the denominators together, remembering that if
you multiply the bottom of the fraction by a given factor
then you must also multiply the top by the same amount to
obtain an equivalent fraction (Box 2.2). The process is
illustrated in Example 3.24.
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Example 3.24

Evaluate the following:

Worked examples 3.3

Simplify the following:

(i)  (ii)  (iii)  (iv) 

(v)  (vi)  (vii) 

3.7 Transposing formulae

Transposing formulae simply involves rearranging the
symbols. In Example 3.25 the symbol x is said to be the
subject of the equation since it appears alone on one side of
the equality.

Example 3.25

If you are rearranging an equation there is only one key rule
to apply. Whatever you do to one side of the equation, you
do to the other. For example if the equation in example 3.25
is transposed to make y the subject, then the following
operations need to be performed:

(a) subtract a from both sides:
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(b) divide both sides by two:

(c) it is usual to write the subject on the left, so reverse the
equation:

Notice in the above example that if one quantity is divided
by two, then all the quantities present must be divided by
two, otherwise one side of the equation would change. This
is emphasised in Example 3.26, where the equation is
transposed, by two different strategies, to make y the subject.

Example 3.26
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At times the value of interest may be enclosed in brackets, in
which case the brackets need to be removed. This is
illustrated in Example 3.27, where the formula is transposed
to make x the subject. Again two methods are shown.

Example 3.27

With some equations it is not quite so easy to alter the
subject, since it might occur more than once or be part of a
product. In this instance the first step involves isolating the
factor of interest (Example 3.28).

Example 3.28

(a) Make y the subject:
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In Example 3.28 it is relatively simple to obtain y on its own
since we can remove x from the product xy, by dividing by
x. If it was decided to make x the subject this would be a
little more difficult since we must isolate x. This can be
done by factorisation since x is a common factor of both x
and xy, as seen in Example 3.29.

Example 3.29

Make x the subject:

Worked examples 3.4

In the following cases transpose the formulae to make x the
subject:

(i)  (ii)  (iii) 

(iv) 

3.8 Inequalities

So far we have dealt with simple equalities such as

This can be read as 2x is numerically equal to four. There are
occasions in life sciences when you may want to express the
relationship between factors in the form of an equation but
it may be that the left- and right-hand sides of the equation
are not so clearly defined. This can lead to an inequality
which uses the symbols listed in Box 3.4
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Box 3.4

a>b a is strictly greater than b
a<b a is strictly less than b
a≥b a is greater than or equal to b
a≤b a is less than or equal to b
 

Inequalities can be solved in the same way as equalities by
using the principle that whatever you do to one side of the
expression, you do the same to the other.

Example 3.30

The solution to the inequality in Example 3.30 is therefore
that x must be less than four. There is one key rule that must
be remembered when dealing with inequalities: if you
multiply or divide by a negative number, the direction of the
inequality changes. This is illustrated in Example 3.31.

Example 3.31

A possible problem can arise when the equality contains
power terms since this can lead to more than one solution.
This is discussed in Chapter 8.

3.8.1 Intervals

Inequalities can be used to express intervals. There are three
types of interval, which are described below.

3.8.1.1 Closed intervals

A closed interval is one for which the end points are
included in the interval. It is represented by square brackets.

If an inequality is
divided or multiplied
by a negative number,
the sign of the
inequality must be
reversed
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Example 3.32

The interval from two to six inclusive of two and six is given
by: [2, 6]
x � [2, 6] means x is a member of the interval [2, 6]
so 2≤x≤6

3.8.1.2 Open intervals.

In this case the end points are stated but are not included in
the interval. This can be recorded using round brackets or
reversed square brackets (Example 3.33).

Example 3.33

The interval from two to six excluding these values is given
by (2, 6) or]2, 6[and

x � (2, 6) means 2<x<6

In Example 3.33, x is said to be strictly greater than two and
strictly less than six.

3.8.1.3 Semi-open intervals

These can also be called semi-closed intervals, depending
on your viewpoint. In this case one of the end points is
included in the interval and the other is excluded
(Example 3.34).

Example 3.34

The interval from but excluding two, up to and including
six, is given by: (2, 6] and

x � (2, 6] means 2<x≤6

Worked examples 3.5

(a) Use inequalities to describe the following intervals:
(i) [-1, 3) (ii) (6, 11) (iii) (0, 8] (iv) [4, 5]

(b) Solve the following inequalities for x:
(i) x-3>2 (ii) 6-x>4 (iii) 7+x≥6

3.9 Applications in biological science

Throughout science, examples of algebra and the need for
algebraic manipulation can be seen. In this section a simple
example of algebraic manipulation is included to highlight
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its importance, but further examples will be found in the
following chapters and among the end of unit questions.
Most standard textbooks will also contain examples of
relationships which have been described algebraically.

3.9.1 Equilibrium constants—an example of
an algebraic fraction

A simple single substrate reaction can be represented as
follows:

where A is the substrate, P is the product and k1 is a rate
constant. This of course becomes more complex if there is
more than one substrate or product:

Unfortunately most of the reactions which occur within the
cell do not simply continue in this way. Many reactions in
nature are reversible and so, rather than proceed to
completion, the reaction reaches equilibrium:

where k-1 is the rate constant for the reverse reaction. At this
point the net rate of reaction is zero because the rate of the
forward reaction is equal to that of the reverse reaction, i.e.
the product is being used at the same rate as it is being
formed. The position of the equilibrium is described by the
equilibrium constant Keq which is defined as:

where square brackets [ ] represent concentrations in moles
per litre.

Worked examples 3.6

(i) The forward rate of reaction (vf) in the above example is
given by:

Rearrange the following equation to find the rate of the
reverse reaction vr. (Note that at equilibrium vf=vr.)
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(ii) The units of the rate constants depend on the rate
equation. In the equation for vf above, the rate measures the
number of moles of product formed per minute (i.e. mol
litre-1 min-1). The concentrations of A and B are measured
in moles per litre (i.e. mol litre-1). Transpose the formulae
above to make k1 the subject. Insert the units into the
equation and by cancelling common factors find the units
of k1.

Whatever operation is performed on one
side of the equation must also be performed
on the other side to ensure that the equality
remains. After manipulating any algebraic
expression it is useful to substitute integer
values into the original equation and the
new equation to ensure that both give the
same answer and that the manipulation has
not altered the expression.
Relationships can also be expressed using
inequalities, which can be manipulated in
the same way as equalities, but if the
expression is multiplied or divided by a
negative number, then the sign of the
inequality is reversed. A variable x can be
defined as belonging to a given interval
using inequalities. If this interval includes
the end points it is said to be closed and is
denoted by square brackets. If it does not
include the end points it is said to be an
open interval and this is denoted by round
brackets. If one end point is included, the
interval is semi-closed or semi-open. The
potential intervals are listed below

Summary

Algebra involves the use of symbols and
letters to express relationships in a general
form. If the letter refers to a value that can
change it is termed a variable; if it is fixed it
is termed a constant. It is important that any
symbols used in algebra are clearly defined
in terms of the quantity they represent and
the standard against which they are
measured. It is therefore necessary to always
state the units. The units should be chosen
from the Système International d’Unités base
units and derived units listed in Boxes 3.1
and 3.2. Manipulation of algebraic symbols
obeys the same rules as numerical
manipulation, so the commutative and
associative laws can be applied. Algebraic
expressions can be simplified by combining
like terms or by removing common factors
with the application of the distributive law:

ab+ac=a(b+c)

If an equation needs transposing to alter the
subject, then the transposition should be
performed in steps in order to isolate the
new subject on one side of the equality.

Box 3.5

× �[a, b] a≤×≤b
× �(a, b) a<×<b
× �[a, b) a≤×<b
× �(a, b] a<×≤b
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End of unit questions

1. (a) In Section 3.9.1 equilibrium was discussed. It is
known that:

for the reaction described by the equation:

vr measures the number of moles of product
converted to substrate per minute (i.e. mol litre-1

min-1) The concentration of P is measured in moles
per litre (i.e. mol litre-1). Transpose the formulae
above to make k-1 the subject. Insert the units into
the equation and by cancelling common factors find
the units of k-1.

(b) Can you directly compare the value for k-1 in
question 1 (a) with the value of k-1 for the reaction in
Section 3.9.1 where A+B↔P+Q? Explain your
answer. (Hint: derive the units in both cases.)

2. A reaction follows Michaelis-Menten kinetics and can
be described by the equation given below; 0.0001mol
litre-1 of substrate are converted to product with an
initial velocity (v) of 0.000 006mol litre-1 min-1. The Km

for the reaction is 0.000 25mol litre-1. [S] denotes
substrate concentration in mol litre-1.What is the
maximum velocity (Vmax) this reaction could reach
under these conditions?

3. The molecular weight of a macromolecule such as a
protein can be determined by looking at its
sedimentation properties—the principle being that if
you compare molecules of similar density (e.g. two
proteins), then the higher the molecular weight the
faster the molecule will sediment. The relationship is
described by the Svedberg equation:

where R=the gas constant
(83 140 000erg mol-1 degree-1)

T=the temperature (K)
D=the diffusion coefficient (cm2 s-1)
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v=the specific volume of the macromolecule
(m3 kg-1)

ρ=the density of the solvent (kg m-3)
s=the sedimentation coefficient (s)

At 20°C human serum albumin has a diffusion
coefficient of 0.0000006cm2 s-1 and a sedimentation
coefficient of 4.6×10-13 s. The density of water at this
temperature is 0.998kg m-3. What is the molecular
weight of albumin, assuming a specific volume of
0.74m3 kg-1? (Note you can assume 0°C to be equal to
273 K.)

4. Oxygen uptake can be measured using a Warburg
manometer flask. Gas exchange causes a change in the
pressure in the manometer which is recorded as
movement in the position of the manometer fluid. The
greater the distance moved, the greater the pressure
change. It is intended to measure oxygen uptake by
bacteria. The distance moved by the fluid is multiplied
by the manometer constant for oxygen to give the
oxygen uptake. The constant must first be calculated
using the equation:

where Vg is the volume of available gas space in mm3

T is the temperature in Kelvin
Vf is the volume of fluid in the manometer flask
in mm3

α is the absorption coefficient of the gas in the
liquid content of the manometer at temperature T
P0 is the normal atmospheric pressure expressed
in mm of manometer fluid (=10 000mm
manometer fluid)

A manometer flask (23cm3 volume) contains 3cm3 of
bacterial suspension at 37°C. The uptake of oxygen is to
be monitored. The absorption coefficient for oxygen at
37°C is 0.024.

(a) Evaluate the manometer constant for oxygen in this
system.

(b) The manometer constant for nitrogen is 1.767 at
37°C. Transpose the equation to make α the subject
and find the absorption coefficient for nitrogen in
this system.

5. Rats were fed on a diet depleted in vitamin B and their
weights were measured and compared with controls.
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The rats were placed in the following groups, with
weights:

(i) up to but not including 30g;

(ii) from 30g up to but not including 35g;

(iii) 35g up to but not including 40g; or

(iv) greater than or equal to 40g.

If the weight is denoted by w (g):

(a) Define the above intervals using inequalities; and

(b) Write down the intervals for groups (ii) to (iii) using
bracket notation.

6. The number of visits made by bees to various plants was
recorded over a one-hour period. The observations were
grouped as follows: no visits; ten or more visits; or visits
in the intervals [1, 5) and [5, 10). Express these using
inequalities.

7. An inhibitor that competes with the substrate for the
enzyme’s active site is called a competitive inhibitor.
The velocity of a reaction in the presence of such an
inhibitor is described by the following equation:

where vi is the initial velocity in the presence of the
inhibitor, [S] is the substrate concentration and [I] the
inhibitor concentration (both in mol litre-1), Vmax is the
maximum velocity that can be reached, and Km and Ki

can be thought of as binding constants for the substrate
and inhibitor respectively.

An initial velocity of 0.000 0014mol litre-1 min-1 is
observed for a system where the Km is 0.000 047mol
litre-1. The Vmax value was 0.000022mol litre-1 min-1. The
amount of substrate present was 0.000 2mol litre-1 and
the amount of inhibitor 0.000 4mol litre-1. Transpose the
equation to make Ki the subject, and find Ki.
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4.1 Introduction

One problem faced in the life sciences is that of the large
range of values required. For example, a scientist measuring
the size of bacteria may be working at the level of 0.000 001
m yet if the same scientist were to measure the number of
bacteria in 1 ml of culture(s) he may well find numbers in
the region of 1 000 000 or more. Writing very large or very
small numbers in full is tedious and time-consuming, and
can lead to errors. Numbers therefore tend to be written
using scientific notation, but to understand this form of
expression it is necessary to be familiar with powers. The
objectives of this chapter are:
 
(a) to introduce powers and develop confidence in their

use;

(b) to develop an appreciation of power rules and their
function;

(c) to show how scientific notation can be used to express a
range of numerical values.

4.2 Powers

Within the life sciences there are many instances where a
number needs to be multiplied by itself several times. For
example, you may be growing bacteria on nutrient agar
plates. If you grow the bacteria overnight in liquid culture
you will have a dense bacterial suspension which contains
millions of bacterial cells. Although all these cells should be
the same, some may be different due to contamination or
mutation, so for experimental work you may want to pick
just one bacterial cell and its offspring.

Some of the culture may therefore be spread on an agar
plate to allow the growth of single cells, but if the culture is
too dense, even a small volume will contain many bacteria
and so the plate will be completely covered with growth. If
the culture is diluted and then the same volume is plated

4 Powers and Scientific
Notation
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out, there are fewer bacterial cells on the plate and those
present tend to be isolated. If left, these isolated bacteria
will grow and multiply to give rise to small colonies which
can be selected and which are known to contain bacteria
that have all come from the same parent. The problem is
how to obtain just the right number of bacterial colonies. If
the culture is too dilute you get nothing, yet if it is too
concentrated the colonies will merge together due to the
large number of bacteria present. Microbiologists tend to
take the overnight culture and repeatedly dilute it by a
factor of ten. These dilutions are then plated: and some of
them will give rise to plates with the correct number of
colonies. This technique is termed a serial dilution and is
commonly used in science (Table 4.1).
 
Table 4.1

Each of the dilutions increases by a factor of ten. The
dilution factors can be written using power notation
(Example 4.1).

Example 4.1

In this example 10 is termed the base and this is the factor
which is being multiplied. The superscript ‘2’ is termed the
index or exponent and this tells you the number of times the
base multiples itself. The full expression is termed a power,
so in Example 4.1 we have ten to the exponent two. Here we
have used base 10, but any base can be used. For example,
let the letter a represent any integer, then

Your calculator will have a key labelled xy and this can be
used to quickly evaluate numbers which involve powers. To
evaluate 34 type

This should give the answer 81. In the serial dilution of
bacteria we used a dilution factor of ten, but in some cases
this may dilute the sample too quickly. Suppose you prepare
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a drug which you want to test for toxicity against tumour
cells in tissue culture. The toxicity level could be measured
in tissue culture by adding increasing amounts of drug until
a given percentage of the cells are dead. In the first
experiment you dilute the drug repeatedly by a factor of ten.
The toxicity level required is found between the 103 and 104

dilutions. Once you know what range of drug is required,
you may want to decrease the dilution factor to make the
toxicity assay more sensitive; for example, you could use
doubling dilutions.

Example 4.2

A series of solutions are prepared, each of which is 2×more
concentrated than the last. The starting solution contains
3.29 g ml-1. What is the concentration of the seventh
solution?

The concentration of solution 7 is therefore:

If we return to the example with base 10, it can be seen that
decreasing the exponent by a factor of one causes the
power term to be divided by the base. This is shown in
Example 4.3.

Example 4.3

Each time we divide by the base the exponent decreases by
one, so eventually we have the situation in Example 4.4.

Example 4.4

 

So

It is worth noting from Example 4.4 that anything with an
exponent of one is simply itself. This process can be taken a
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stage further since we can continue dividing by the base and
decreasing the exponent by one, as shown in Example 4.5.

Example 4.5

 

Any base with index zero is taken to be one; this is
sometimes used to simplify equations. Suppose you
continue in this manner—you would end up with negative
exponents, as shown in Example 4.6.

Example 4.6

It can be seen that with negative exponents the negative sign
is taken to mean ‘divide’. That is to say, you are no longer
multiplying by the base but you are dividing by the power
term, as shown below

It should be understood that an index only refers to the base
to which it is attached, so for example

It is worth mentioning that if you try to use negative bases
you need to apply the rules for negative numbers given in
Section 1.1 (Example 4.7).

Example 4.7

So, in general, the rules given in Box 4.1 apply.

Box 4.1 Negative bases.

If m is odd (-a)m=-(a)m

If m is even (-a)m=-(a)m

 

So

A negative index means
‘divide’
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The use of power notation is summarised in Box 4.2.
 
Box 4.2 Power notation.
 

 
Worked examples 4.1

Evaluate:

(i) 53 (ii) 2-5 (iii) (-5)2 (iv) (-2)5 (v) (1.147)9

(vi) (-5.73)5.

4.3 Multiplication and division using powers

Consider the calculation shown in Example 4.8.

Example 4.8

It can be seen in this example that if two power terms with
the same base are being multiplied, then to obtain the
answer you simply need to add the exponents. This leads to
the general rule shown in Box 4.3. There is a similar rule for
division which is shown in Example 4.9.

Example 4.9

In general, if two powers with the same base are being
divided, then you simply subtract the exponents. This is
summarised in Box 4.3. It is worth remembering that a
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negative index means ‘divide’, so Example 4.9 could be re-
written using negative indices as in Example 4.10.

Example 4.10

Box 4.3 Power rules: multiplication and division

These rules give us another way of looking at the effect of
negative indices, since:

These rules can be used as a powerful tool for simplifying
calculations, as can be seen in Example 4.11.

Example 4.11

Worked examples 4.2

(a) Evaluate:

(i) 22×22 (ii) 33×3-3 (iii) 22×24÷2-3×2-4

(iv) 32÷35 (v) 10611÷1068

(b) Simplify:

(i) 62×69 (ii) z4 z-3 z2 (iii) cc4 c-9 c4

(iv) a2×a-3÷a4 (v) c÷c-4×c2×1.
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4.4 Powers of powers

You will sometimes find yourself dealing with powers of
powers, as shown in Example 4.12. There is also a rule to
help you deal with this situation.

Example 4.12

When dealing with powers of powers the general rule is
simply to multiply them as shown in Example 4.13 and in
Box 4.4.

Example 4.13

Box 4.4 Power rules: powers.
 

 

Worked examples 4.3

(a) Evaluate: (i) (22)2 (ii) (23)-3 (iii) (4-5)-2

(b) Simplify: (i) (a12)3 (ii) (e4)-2 (iii) (e-3)-2.

4.5 Fractional indices

You may think that fractional powers are uncommon, but
they are widely used within science. For example, you will
often see the exponent  but what does this actually mean? If
you try a few values on the calculator you will find that

Indeed  or the nth root of a. The most common
fractional exponent is probably that of the square root and
this is the example you are most likely to have to deal with.

Fractional indices
represent roots
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Fractions obey all the rules described so far; some of these
rules are demonstrated in Example 4.14.

Example 4.14

 
4.6 Indices and biology
Why are indices so important in life sciences? The simple
answer is that biologists are required to use very large and
very small numbers; for example, in a practical class you
may need one millionth of a litre, i.e. 0.000001 litre, or you
may be estimating the number of cells in a millilitre of tissue
culture media and find the answer is in excess of ten
thousand. It can quickly become tedious to write out very
large or very small numbers; perhaps you have experienced
this when answering the end of unit questions in Chapter 3.
With power notation we can abbreviate numbers and make
mathematical manipulation simpler by applying the power
rules you have just covered. Example 4.15 illustrates how
powers are used to simplify large numbers.

Example 4.15

Instead of writing 200 litre I could therefore write 2×102

litre, i.e. (2×100) litres. Here 102 is termed the multiplier;
multipliers can be combined using power rules as shown in
Example 4.16.

Example 4.16

 

When using power terms to base ten the multiplier tells you
where to put the decimal place. Positive powers move the
decimal point to the right because the number is getting
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bigger. Negative powers move it to the left because you are
dividing, so the number gets smaller. Example 4.17
demonstrates this.

Example 4.17

102 means move the decimal place 2 places to the right:

10-2 means move the decimal place 2 places to the left.

Writing numbers with multipliers is very important within
science. We often express numbers using scientific
notation, which means expressing numbers by using
multipliers with base ten. It is usual to place the decimal
point after the first digit. The multiplier then tells you how
many places to move the decimal point to the left or right
(see Example 4.18).

Example 4.18
3200=3.2×103

12783=1.2783×104

0.00045=4.5×10-4

 
You will probably also see the term ‘order of magnitude’
associated with powers to base ten. If any values vary by a
factor of ten they are said to be one order of magnitude apart.
Variation by a factor of 1000 (i.e. 103 or 10-3) would be
interpreted as three orders of magnitude apart.

Because we use multipliers so often, some commonly
used multipliers have been given names and symbols. Those
which are commonly found are listed in Box 4.5.
 

In the case of
multipliers to the base
ten, the index indicates
where to move the
decimal point

Box 4.5 Commonly used multipliers
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You will have already used a number of these prefixes and
symbols, e.g. when dealing with mass (Example 4.19).

Example 4.19

Within practical classes you will regularly use milligrams
(mg), millilitres (ml) and microlitres (µl).

Worked examples 4.4

(a) Express the following using scientific notation:
(i) 239 (ii) 0.0036 (iii) 200×0.000003 (iv) 9.73
(v) 1792×0.0001792

(b) A solution is prepared and 10 µl are removed for an
assay.
(i) How many litres is this?

(ii) How many millilitres is it?

Express your answers in scientific notation.

(c) The 10 µl sample from question (b) had its volume
increased 10000-fold.
(i) Express the multiplication factor in scientific

notation.
(ii) What is the new volume?

(iii) By what order of magnitude has the volume
increased?

Summary

A power expression is composed of
two parts, the base and the exponent.
The exponent is represented by a
superscript at the side of the base. A
positive exponent represents the
number of times the base should be
multiplied by itself, so for example 104

would mean base ten multiplied by
itself four times, i.e. 10000. A negative
exponent means you divide by this
number, so 10-4 would be  or
0.0001. Any base to the power one is
itself, and any base to the power zero
is one. Exponents can also

exist as fractions, where the fraction
refers to the root. This is summarised
below.
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End of unit questions

1. The circumference of the Earth is about 4.0×104 km and
that of a bacterial cell is about 3µm. How many orders of
magnitude larger is the Earth compared with the
bacterium?

2. The effect of toxicity on mammalian cells can be
measured by growing the cells on a plate and measuring
their size after a given time interval. This is termed a
clonogenic assay. Assume that the cells are spherical
then their volume is given by:

 

where r is the radius of the cell (m) and π is a constant
(π=3.1416).

(a) If a typical cell is 4µm in diameter, what is its
volume in metres cubed? Express your answer using
scientific notation.

(b) Inclusion of the anticancer drug doxorubicin in the
medium decreased the growth by 35%. If growth
refers to the cell volume, what is the diameter of a
typical cell after treatment?

3. It is estimated that plants produce 9.0×1012 kg of
molecular oxygen each year. If 32g of oxygen contains
6.02×1023 molecules of the gas, how many molecules of
oxygen are produced per year?

4. With any quadruped, the further the front legs are from
the rear legs the more the torso can sag. The level of
sagging will depend on the effect of gravity and thus the
height or thickness of the torso. It is known from physics
that there is a limit on the length (l) to height (h) ratio as

The base can be any number, but in
calculations involving powers with the
same base power rules can be used to
simplify the  expression. The three rules
are summarised  below:

(a) am×an=a(m+n)

(b) am÷an=a(m-n)

(c) (am)n=amn

If the base being used is ten, then when
multiplying a number by a power the

exponent shows how many places to
move he decimal place to the right
(positive exponent) or left (negative
exponent). When used in this way
power expressions are termed
multipliers, and these are used to
express numbers in scientific notation.
Commonly used multipliers can be
incorporated into the names of the units
by representing the multiplier by one of
the symbols listed in Box 4.5.
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given by 1: h2/3. For example, a young Indian elephant is
153cm long and of height 135cm. h2/3 is therefore 26.3,
giving the ratio 153:26.3 or 5.8:1. The limit for the ratio
appears to be around 7:1. Confirm that this holds in the
case of a dachshund of length 35cm and height 12cm.
(Adapted from E.Batschelet (1979) An Introduction to
Mathematics for Life Scientists, Springer-Verlag, New
York.)

5. In question 4 the term h2/3 was used. Use power rules to
show that:

6. In photosynthetic bacteria, chemical energy is produced
by the absorption of light. The pigment which absorbs
the light energy is p870 and it uses this energy to enter
an excited, highly reactive state where an electron can
be passed to a neighbouring molecule. In
Rhodopseudomonas sphaeroides the electron passes
from p870 to bacteriochlorophyll in approximately 1ps
and then onto bacteriopheophytin in 4ps. It then passes
to ubiquinone in 2×10-10 s. How long does the whole
process take?

7. A bacterial cell can transcribe DNA to RNA at
approximately 50 nucleotides per second. Escherichia
coli makes on average 1 in 105 mistakes during the
transcription process but in a mutant which is unable to
correct mistakes the error increases to 1 in 102 bases. A
protein-coding region is being transcribed and contains
1.062×103 bases.

(a) How long does it take to transcribe this region?

(b) In the mutant bacteria how many mistakes can be
expected?

(c) Assuming that in the wild-type strain a single
mistake is made after 105 bases have been
transcribed, then how many times would you have
to transcribe the gene before expecting one mistake?

8. The ionisation constant for water (Kw) is 1×10-14 and is
given by:

If a solution contains 5×10-10 mol litre-1 of hydrogen ions,
what is the concentration of hydroxyl ions?
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5.1 Introduction

Concentration and accuracy are areas which seem to cause
difficulty to many students, yet these are probably the most
commonly used concepts in the laboratory. To be able to
cope with this form of calculation, students need to apply
their knowledge of ratios, proportions and percentages from
Chapter 2 as well as their understanding of power notation
from Chapter 4. Since many students are uncomfortable
with concentrations and because these concepts are crucial
in many scientific fields, this chapter will cover this area in
some detail. The aims of the chapter are:
 
(a) to ensure students are aware of the differences between

volumes, amounts and concentrations;

(b) to ensure that students are aware of the most common
methods of measuring concentration and to introduce
molarity;

(c) to introduce the concept of significant figures.

5.2 Concentration, volume and amount

During laboratory work you will have to prepare a number
of solutions. If you were told to make 1 ml of salt solution,
could you do it? What if the instructions tell you to make a
2g solution? In both of the examples it is clear that you are
not given enough information. To make a solution you need
to know:
 
(a) How much material (solute) is needed.

(b) How much liquid (solvent) you want the material
dissolved in.

 
This can be summarised using a simple equation showing
the relationship between concentration, volume and the
amount or quantity of material present (Box 5.1).

5 Concentration and
Accuracy

A solution is defined in
terms of the amount of
solute and the amount
of solvent
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Box 5.1
 

 
 
Although concentration is defined in this way, it can be
measured against various standards depending on how the
quantity and volume are measured. The most commonly
used means of measuring concentration are discussed in
this section.

5.1.1 Percentage weight/volume

To obtain a 1g in a 100ml salt solution, 1g of salt would be
dissolved in a final volume of 100ml. If solutions are made
up in this way concentration can be represented by a
percentage, since a percentage gives a fraction of 100. Here
the percentage is obtained from a given weight (x in g) in a
given volume (100ml) so this is termed percentage weight/
volume, or % (w/v), and is defined in Box 5.2. Two solutions
are described in this way in Example 5.1.
 
Box 5.2
 

% (w/v)=weight in grams of solute per 100ml of solution

 
 

Example 5.1

1g (100ml)-1=1% (w/v) solution

10g (100ml)-1=10% (w/v) solution

In some texts you may see concentration measured in
milligrams per cent (mg%). This is very similar to
percentage weight/volume but is defined as the weight of
solute in milligrams per 100ml of solution. This is more
commonly found in clinical texts since many measurements
such as those of blood sugar and drug concentrations
involve small amounts of solute.

5.2.2 Percentage volume/volume

Some chemicals, e.g. methanol, are not usually solid and
although you could weigh out an amount in grams it would



CONCENTRATION AND ACCURACY 61

be easier to measure out the amount wanted by volume. In
this case you could take 1ml and add 99ml of water, so that
the methanol forms one-hundredth of the total volume (see
Example 5.2). The solution can therefore also be measured
as a percentage, but in this case it would be by volume not
by weight, so this method gives a percentage volume/
volume solution. This is defined in Box 5.3.
 
Box 5.3
 

% (v/v)=volume in millilitres of solute per 100ml of solution

 

Example 5.2

1ml methanol plus 99ml water=1% (v/v) solution
 

5.2.3 Percentage weight/weight

If you mix two compounds of known weight you can have a
percentage weight/weight solution. For example, the inner
membrane of the bacterium Escherichia coli contains 75%
(w/w) of the phospholipid phosphatidylethanolamine. This
means that in every 100g of membrane lipid isolated, 75g
will be phosphatidylethanolamine. You may see some
solutions listed as % (w/w), as in Example 5.3; this is
especially popular with acids. A percentage weight/weight
solution is defined in Box 5.4.
 
Box 5.4
 

% (w/w)=the weight in grams of solute per 100g of solution

 
 
Example 5.3
 

15g of salt plus 85g of water=15% (w/w) solution
 
Notice the importance of defining what you mean by ‘per
cent’ when using percentage as a unit of measure. 1ml of
water has a weight of approximately 1g; therefore a 15% (w/
w) solution will contain 15g of solute in approximately
85ml of water (total 100g), but a 15% (w/v) solution would
contain 15g of solute made up to 100ml. If the solute is
denser than water it will occupy less than 15ml; hence more
than 85 ml of water will have to be added to make up the
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100ml % (w/v) solution. The % (w/v) solution will therefore
contain more water than that of the % (w/w) solution. Since
both contain the same quantity of solute (15g) the % (w/v)
solution must therefore be more dilute than % (w/ w)
solution.

It is very important that volume, quantity of solute and
concentration are kept separate and not confused. Many
students seem especially prone to confusing the quantity of
solute and the concentration.

Example 5.4

100ml of a 10% (w/v) solution of sodium chloride is
prepared. Assume that the salt is evenly distributed
throughout the solution. 50ml of the solution is removed for
an experiment. What is the amount of salt present, in
grams? What is the concentration of the 50ml sample that is
removed?

(a) You have taken half the sample and if the salt is
evenly mixed you have therefore taken half the salt. The
original solution contained 10g so you now have 5g.

(b) The concentration is 5g(50ml)-1=10g(100ml)-1 =10%
(w/v), so the concentration has not changed.

To calculate the amount of material in a volume removed
from a stock solution it is necessary to use proportions. This
is covered in more detail in Chapter 7, but Example 5.5
demonstrates the method.

Example 5.5

In 100ml of water there are 3g of salt. How much is in
20ml? There is 3g in 100ml so we have a concentration of
(3/100) g ml-1.

In 20ml there is x g and so the concentration is (×/20)g ml-

If the solution is homogeneous (i.e. evenly mixed) then the
concentration in the 100ml is exactly the same as the
concentration in the 20ml, i.e.
 

 

1 
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When working out proportions in this way it is important
that the fractions on both sides of the equation have the
same units. In Example 5.5 we have:

Worked examples 5.1

(a) What are the following concentrations in % (w/v)?

(i) 5g of glucose in a final volume of 50ml

(ii) 5g of glucose in a final volume of 75ml

(iii) 7.5g of glucose in a final volume of 50ml

(iv) 7.5g of glucose in a final volume of 75ml

(b) Assume that in question (a) you have added 48ml of
water (i.e. the glucose has a volume of 2ml). 1ml of
water weighs approximately 1g, so what is the % (w/w)
concentration of the solution?

 

5.2.4 Moles and molarity

Maltose is formed by linking two molecules of glucose.
Therefore a molecule of maltose has approximately twice
the weight of a glucose molecule. If you are given a 30% (w/
v) solution of each, would they both contain the same
number of molecules? The answer is obviously no, since
maltose is twice the weight of glucose: 30g of maltose will
contain 50% fewer molecules than 30g of glucose.

This should have identified the problem of defining
concentration solely in terms of weight. It can be seen that if
you make a solution by weight alone, then the concentration
of atoms or molecules in a given volume is different for
different compounds! Since it is these molecules which are
required for reaction, a measure of concentration really wants
to show not just how much material is present but how many
molecules are present. To overcome this problem we work
with molar concentrations, where a mole (mol) is defined as:

1 mol=6.02×1023 molecules

Hence we say 1 mol of carbon contains 6.02×1023 carbon
atoms. This is a quantity and so can be represented in grams.
The weight of 1 mole is equivalent to the molecular weight
of the molecule in grams (Example 5.6).

Molarity gives a
measure of the
concentration of
molecules present
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Example 5.6

Carbon-12 (12C) has a molecular weight of 12
 

1 mol=12g and 12g=6.02×1023 carbon atoms
 
The number of moles can therefore be calculated from the
equation shown in Box 5.5.
 
Box 5.5

It should be clear that you do not have a 1mol solution in
the same way that you could not have a 1g solution—you
need a volume. Thus we define molarity as shown in Box
5.6, and a 1 molar (1M) solution contains 1mol of solute per
litre:

1M=1 molar

=1mol litre-1

 
Box 5.6

The quantity, moles, and the concentration, molarity, are
linked by the equation shown in Box 5.7.
 

Box 5.7
 

 

Whilst this equation can be used, it is recommended that
students are also able perform calculations on moles and
molarity from first principles. As a check to make sure that
the answer is reasonable, remember that if the amount of
material increases or the volume decreases then the
concentration has increased. If both the quantity of material
and the volume alter in the same proportion then the
concentration stays the same (Example 5.7).
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Example 5.7

 

Worked examples 5.2

(i) How much sodium chloride is needed to make 1 litre
of a 20mM solution?   

Mol.wt of sodium chloride=58.5.   

(ii) The experiment requires 2.3ml of 20mM sodium
chloride so I will make 5ml, not 1 litre. How much
sodium chloride is now required?

(iii) What weight of sodium chloride contains 1µmol?

 
If a concentration is given in % (w/v) and the molecular
weight of the material is known, then it is relatively easy to
convert to molarity, as shown in Example 5.8.

Example 5.8

A 3% (w/v) citric acid solution is prepared. The molecular
weight of citric acid is 192.

The number of moles present in 

Hence the solution has a concentration of approximately
0.16M.

To perform a similar calculation but starting with a solution whose
concentration is in % (w/w), the density of the material needs to be
known. The conversion between % (w/w) and molarity is often
required when measuring out acids. For example, suppose you
want 500ml of a 0.1M solution of hydrochloric acid but the acid has
been bought as a 27% (w/w) solution.

Rearranging the equation from Box 5.6, we require:

The molecular weight of hydrochloric acid is 36.5, so we
require:
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The stock acid is 27% (w/w), i.e. 100g would contain 27g of
acid. To obtain 1.83g of acid we would therefore need:

6.78g could be weighed out but if the density is known (i.e.
the weight per unit volume) this can be converted to a
volume. If the density of the hydrochloric acid is given as
1.15g ml-1,

 

To prepare 500ml of a 0.1M solution it is therefore necessary
to take 5.89ml of the 27% (w/w) stock and add 494.11ml of
water.

As a final point it is worth noting that in some areas, for
example in physical chemistry, concentrations are
sometimes given in terms of molality (m), not molarity (M).
Molality is defined as the number of moles of solute in 1000
g of solvent.

5.3 Accuracy: significant figures and decimal
places

If you perform a calculation or take an experimental reading
you need to decide what level of accuracy you wish to use.
The accuracy is represented by the number of significant
figures to which you express the number concerned.

5.3.1 Significant figures

If you are asked to express 459 to two significant figures,
then only the first two digits can be displayed; all the rest of
the digits must be represented by zeros. In this example,
since 459 is closer to 460 than to 450, it is logical to round
459 up and say that to two significant figures it equals 460.
To express a value in significant figures you therefore look
at the last significant figure and decide whether to leave it as
it is or increase it by a value of one. In general, if the number
after the last significant figure is greater than five, i.e. {6, 7,
8, 9}, than you round up. If the value is less than five, i.e. {1,
2, 3, 4}, then you leave the last significant figure as it is and
the number is said to be rounded down. This ensures that

so
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you introduce the minimum amount of error possible when
Founding numbers off. This is shown in Examples 5.9–11.

Example 5.9

19 732 to three significant figures:
The number at position four is less than 5 so we leave the
last significant figure as it is. The answer is therefore 19 700.

In Example 5.9 we have therefore ‘lost’ 32 units, but if we
had rounded up we would have added an extra 68 units. Of
the two methods, rounding down therefore gives us a value
closer to the original number.

Example 5.10

7849 to two significant figures:
The number at position three is less than 5, i.e. 7849 is 7800
to two significant figures since it is closer to this value than
to 7900.

Example 5.11

379 to two significant figures:
The number at position three is greater than 5 so we round
up and 379 becomes 380 to two significant figures.

Consider the case where the number after the last significant
figure is five. Here you introduce the same error whether
you round up or round down (Example 5.12).

Example 5.12

375 to two significant figures:
Rounding up to 380 means adding 5 units. Rounding down
to 370 means removing 5 units.

In general most people round up in this instance, so 375
would be written as 280 to 2 significant figures. If you are
dealing with a large number of values this can increase the
level of error you are incorporating into the calculation. It is
better to use the rule that if the last significant figure is odd,
i.e. {1, 3, 5, 7, 9}, then it should be rounded up when the next
figure is a five, but if the last significant figure is even it
should be rounded down (Example 5.13).



68 INTRODUCTORY MATHEMATICS FOR THE LIFE SCIENCES

Example 5.13
 
(a) 375 to two significant figures:

The number at position three is 5 so you could round up
or down. The last significant figure (7) is odd, so round
up. 375 becomes 380 to two significant figures

(b) 365 to two significant figures:
The number at position three is 5 so you could round up
or down. The last significant figure is even, so round
down. 365 becomes 360 to two significant figures.

 
If this odd/even rule is applied you should find that your
final answer is more accurate, as shown in Example 5.14:
the use of the odd/even rule means the sum of the three
numbers is 5 units bigger after rounding, compared with a
15-unit increase if all of the numbers are rounded up.

Example 5.14

Rounding the figures on the left-hand side to two significant
figures:

5.3.2 Decimal places

The above examples are all integer values, i.e. whole
numbers. Most examples that occur in science contain a
fraction and so can be represented by a decimal. In this case
you may be told to write your answer to a given number of
decimal places. Again, you must decide whether to round
the value up or down, but now you only count digits to the
right of the decimal point, as shown in Example 5.15.

Example 5.15

Express 2.342 to two decimal places.
The third digit after the decimal point is the value 2, which
is less than 5. 2.342 is therefore 2.34 to two decimal places.

It is important to note that significant figures and decimal
places are not the same, and should not be confused. With
significant figures we only consider the first non-zero values
but with decimal places we count all digits to the right of the

For decimal places,
count all the figures to
the right of the decimal
point, including zeros
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decimal point. This difference is highlighted in Example
5.16.

Example 5.16

(a) Express 0.0457 to two significant figures.
We count only non-zero values so the first figure we
count is 4, the second figure is 5, and the third 7. The
value at position three is greater than 5; hence to two
significant figures, 0.0457 is 0.046.

(b) Express 0.0457 to two decimal places.
The first digit to the right of the decimal point is 0 and
the second and third are 4 and 5 respectively. The value
at position three is 5, so we round up and 0.0457
becomes 0.05 to two decimal places.

Values can be expressed in terms of significant figures and
decimal places, but when discussing accuracy you should
always use significant figures.

Worked examples 5.3

(a) Represent the following to three significant figures:  
23.347 893 (ii) 128 904 (iii) 0.003 429  (iv) 267 491.954

(b) Represent the following to three decimal places:
45.096 53 (ii) 0.464 782 (iii) 0.000 89  (iv) 1 289.632

5.3.3 Accuracy

The level of accuracy shown will depend on two factors.
 
(1) What level of accuracy is required?

(2) What level of accuracy is possible?

5.3.3.1 The level of accuracy that is required

For example, it is thought that a new drug affects weight
gain in humans, so study groups are given varying amounts
of the drug and their weight is measured with time. At the
start, the weight of one human male is recorded as 75kg, yet
in reality his weight may be 74.536 527kg. If there really is
an effect we would expect to see a reasonable increase in
weight. If the weight change is less than 1kg, then the
change would be very small compared with the overall body
weight. This small change could be due to a range of factors

(i)

(i)
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and may well be a background fluctuation. For the weight
change to be meaningful it would therefore have to be
greater than 1kg, so we do not need to be more accurate.

In a second example, suppose you are to weigh out 0.001g
of a chemical. If you choose a 50g beaker, then you will
require scales that measure quite large quantities. The weight
of chemical needed is very small compared with the weight
of the beaker and so would be almost impossible to measure
accurately. You would in this case require a lightweight paper
container to allow you to measure this small quantity of
material accurately on a set of sensitive scales. It is therefore
always necessary to consider what you are measuring and to
ensure that the percentage change is measurable.

5.3.3.2 The level of accuracy that is possible?

Consider an experiment where we cannot be any more
accurate because the scales we are using will not give a
more accurate reading. More accurate scales may be costly,
and taking the measurements may become difficult with
very accurate scales because of fluctuations in the reading.

5.3.3.3 Accuracy in calculations

Levels of obesity can be graded using the obesity index,
which is calculated from:

Suppose the individual mentioned in Section 5.3.3.1 is
measured and is 1.72m tall, then the index would be
calculated as:

Although the calculation is correct, the answer is far too
accurate. Your least accurate measurement is the weight,
which is measured to two significant figures, so you cannot
give the answer to more than two significant figures.
Therefore the obesity index=25kgm-2. The only exception to
this rule is if you take the mean of more than ten data
values, in which case it can be given to one significant figure
more than the least accurate value (Chapter 11). If you need
to perform a calculation, always use the values you have in
their most accurate form. For example, we did not say that
the height in the above calculation was 1.7m; we gave it in
the most accurate form we could, i.e. 1.72m. Only at the end
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of the calculation would you present the answer to the
accuracy of your least accurate value.

Worked example 5.4

Evaluate the following, assuming that the values represent
experimental data:
(i) 12.354×3.23 (ii) 5+4.35×2.3
(iii) 3.00×2.34÷4.001.

End of unit questions

1. A growth medium for Escherichia coli contains the
components listed in Table 5.1.

 
Table 5.1

(a) What are these concentrations in % (w/v)?

(b) The molecular weights of the above compounds are:
glucose=180, potassium dihydrogenphosphate=136,
magnesium sulphate=120 and citric acid=192. Calculate
the molar concentration of each.

Summary

Concentration refers to an amount in a
given volume and can be measured
against a number of standards.
Concentrations may be given as
percentage weight/volume or
percentage volume/volume. This is
often seen in laboratory manuals when
solutions need to be made, since it tells
you how much to material to measure
out per 100ml. Another common
percent measure is that of percentage
weight/weight, which is often used to
record the concentration of acids.

The problem with all of the above
measurements is that they tell you what
quantity of material is present but not
its molecular concentration. To express
concentration in terms of the number of
molecules present, molarity should be
used. Whenever a numerical result is
expressed, the number of significant
figures given should not exceed the
number of significant figures in the
least accurate measurement involved in
the calculation.
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2. How much material would you have to weigh out to
prepare 30ml of tryptone soya broth with the
composition described in Table 5.2.

Table 5.2

3. A 25% (w/w) stock of hydrochloric acid has been
purchased (specific gravity 1.15g ml-1). The molecular
weight of hydrochloric acid is 36.5. What volume of the
stock is required to make 3 litres of 0.5M acid?

4. 23.48g of the buffer N-2-hydroxyethylpiperazine-N’-2-
ethanesulphonic acid (HEPES) is weighed out and made
up to 180ml.

(a) What is the concentration in % (w/v)?

(b) If the molecular weight is 238.31, what is the
molarity?

5. 34ml of the amino acid histidine has been prepared as a
0.4M stock solution. An assay requires 100ml of
reaction mixture containing 0.05% (w/v) histidine. The
molecular weight of histidine is 155.2. Can this stock
solution be used and if so, how much would you need to
make up the 100ml of solution required?

6. (a) How many grams of sodium hydroxide would be
required to make 300ml of a 0.03M solution?
(Molecular weight of sodium hydroxide=40.)

(b) What is this as a % (w/v) solution?

7. There is a 5M stock solution of nitric acid. How many
millilitres would be required to make 1500ml of a 5mM
solution?

8. The density of ethanol is 0.79g ml-1 and its molecular
weight is 46. How many moles are present in 100ml?

9. The amino acid glycine has a molecular weight of 75.07 and
1mg has been dissolved in 1 ml to form a stock solution.

(a) What is the molarity?

(b) My reaction mixture requires a final concentration of
10µM glycine in 10ml of buffer. How much stock
solution needs to be made up to 10ml?
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6.1 Introduction

One of the functions of a scientist is to gather and interpret
data. Furthermore, the interpretation must be presented to
other scientists and the data need to support any
conclusions made. During the course of an experiment the
data are often tabulated. A good scientist will record all the
data as they are obtained, showing the correct units and
enough detail of the protocol, so that the experiment can be
repeated by another worker. In this section we will look at
the tabulation of data and frequency tables.

Tabulating data may not be the best way to record them
for interpretation or presentation. Data presented in the form
of a chart or graph are usually clearer than in a table, since
trends may be more apparent. The choice of the correct chart
or graph will make an argument clearer but at the same time
an inappropriate choice will detract from the argument. The
aims of this chapter are:
 
(a) to introduce frequency tables and the principles behind

table construction;

(b) to introduce a range of diagrams and charts to aid data
presentation;

(c) to introduce the idea of using figures to show the
relationship between two variables.

6.2 Raw data and frequency tables

Data will fall into one of two classes. They measure an
outcome either in fixed amounts or over a continuous range.
For example, you transform a bacterium with a plasmid (a
small extrachromosomal piece of DNA) which carries an
antibiotic resistance. To find which bacterial cells have
taken up the plasmid you spread the bacteria on an agar
plate containing the antibiotic marker so that only those
cells with the plasmid can survive. Each plasmid-containing
bacterium will give rise to a colony which can be seen by

6 Tables, Charts and Graphs
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eye. These colonies can be counted to give a measure of the
efficiency of the transformation. Each time the experiment
is repeated, a different number of colonies will be seen but
this number will always be an integer value. You may have
eight, twenty or even a hundred colonies but you could not
have half values. Since the results are measured in fixed
amounts, these are termed discrete data.

In some cases the data can take any value over a range; for
example, the height of a house plant called Saintpaulia
ionantha (African violet) ranges up to 10cm. The height
could take any value over this range and hence the height
measurement would be an example of a continuous data
measurement. Both discrete and continuous data can be
tabulated.

6.2.1 Table preparation

A clear way to present data in a laboratory book is by the use
of tables. The table should contain clearly labelled columns,
each of which should show units where appropriate. An
example is given in Table 6.1 for the case of a protein assay.
Five identical samples were assayed for the presence of
protein using the Bradford method, in which a blue dye
interacts with the protein and the amount of colour is
measured using a spectrophotometer.

Notice that the units of protein concentration are clearly
given and separated from the text by a solidus, as described
in Chapter 3. The solidus does not mean ‘per’. In some texts
the units are placed in brackets. The column heading would
then read:

Protein concentration (mg ml-1)

As we will see later in this chapter, displaying data
graphically allows the audience to observe general trends,
but sometimes it is desirable to display the actual data. In
this case tables are ideal since they allow quantitative
features to be observed. A clear table will allow obvious
patterns to be discerned but usually the trends will have to

Tables allow
quantitative features to
be displayed

Table 6.1 Data from a Bradford assay

Source: Data from class work at University of Central Lancashire.
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be described in the text. There are some simple rules which,
if followed, make tables easier to interpret.
 
1. The table needs to be able to convey information:

therefore, keep it simple. If there are many data,
consider whether it would be better to split them and
have more than one table.

2. You should be clear about what you intend to show in
the table. Once the table’s purpose has been determined,
the main data headings should be arranged horizontally
so that the data being compared are arranged in
columns. It has been shown that people find it easier to
compare columns of data rather than rows. Example 6.1
shows the same data arranged in different ways in
Tables 6.2 and 6.3.

Example 6.1

The route by which a drug is administered can affect its
toxicity. The toxicity of three agents against mice is recorded
below. Toxicity is measured in terms of the LD50, i.e. the
amount of agent required to kill 50% of the population.   

Table 6.2

It would appear that the function of this table is to compare
the toxicity of the drugs when they are applied via different
routes, i.e. we want to show how the toxicity of pentobarbital,
for example, varies when it is taken by the four routes listed.
We are not comparing the three drugs. The data should
therefore have been arranged as shown in Table 6.3.

Table 6.3

3. All tables should have a comprehensive explanatory
title. Columns and rows should be clearly labelled and,
where appropriate, units should be shown. There
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should also be a clear indication of the source of the
data. Taking these points into consideration, Table 6.3
needs to be modified to the form shown in Table 6.4.   

Table 6.4 Table to show how toxicity varies with the route of drug
administrator

4. Notice that in Table 6.4 there was a lot of information
regarding the toxicity data. The columns could have
been headed:   

‘Pentobarbital LD50/mg kg-1 based on mouse toxicity data.’   

This is obviously far too lengthy and would detract from
the table so extra detail regarding the species was placed
in a footnote. Footnotes are commonly used and can
include information regarding changes, omissions,
approximations, experimental detail and any other
factors which are felt to be essential.

5. The data should be recorded as accurately as possible
(Chapter 5). However, if the table is to form part of a report
it is recommended that entries are limited to two or three
significant figures since the greater the number of digits
present, the more difficult it is for the reader to digest the
information. We can use this to modify Table 6.4. Notice
that in Table 6.5 a note on the accuracy has been included
in the footnote. The clarity would be even greater if only
two significant figures were used; but it should be
remembered that rounding figures in this way loses
accuracy, and one of the functions of tables is to make a
quantitative presentation of the data.

6. The use of lines and different text styles can help make
tables more striking, and at the same time even easier to
follow. If the table contains a number of columns with
common headings then clarity can be further increased
by the use of a single heading. For example in Table 6.5
there are three columns listing toxicity data so the table
can be transformed as shown in Table 6.6.

Source: The data have been based on values from T.A.Loomis
(1968) Essentials of Toxicology, Philadelphia: Lea and Febiger.
*Mouse toxicity data.
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7. Although not possible in the case of Table 6.6, it is also
useful if the columns of data can be arranged in order of
size, since this makes it easier to observe trends. In
addition percentages and ratios can at times be used to
clarify points within the table. For example, suppose
that the point of interest was how the route of drug
administration affects pentobarbital toxicity, then we
may be better arranging the data as in Table 6.7. Notice
though that by only including relative toxicities some
information has been lost since the original data points
have not been shown.

Table 6.5 Table to show how toxicity varies with the route of drug
administration

Source: The data has been based on values from T.A.Loomis (1968),
Essentials of Toxicology, Philadelphia: Lea and Febiger.
*Mouse toxicity data displayed to three significant figures.

Table 6.6 Table to show how toxicity varies with the route of drug
administration

Source: The data has been based on values from T.A.Loomis (1968),
Essentials of Toxicology, Philadelphia: Lea and Febiger.
*Mouse toxicity data displayed to three significant figures.

Table 6.7 Table to show how the toxicity of pentobarbital varies with the
route of administration

Source: Relative toxicities are based on data from T.A.Loomis
(1968), Essentials of Toxicology, Philadelphia: Lea and Febiger.
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6.2.2 Frequency tables

Tables can be useful for recording the frequency with which
a given result occurs. For example, swabs were taken from
30 surgical wound infections and tested for the presence of a
range of bacteria. The occurrence of bacteria in the wounds
is recorded in Example 6.2 using a tally chart (Table 6.8).
This is simply a table which contains a tally. Each time an
observation is made, a single stroke is entered by that result
in the table.

Example 6.2

Table 6.8 Frequency with which the listed bacteria were found to have
colonised infected surgical wounds

Source: Data are fictitious but based on known examples of wound
colonisation.

Notice that tally marks are grouped in sets of five to make it
easier to add up the number of times a result has occurred.
The fifth occurrence in each set of five marks is recorded by
placing a line diagonally through the other four tally marks
as shown in Table 6.8. The number of occurrences is termed
the frequency and it is usual to prepare a frequency table for
this type of data. Frequency tables list the frequency of
occurrence for each possible result. The table is said to show
the frequency distribution; an example is given in Table 6.9.

It may be that you are interested in how often a result was
obtained, compared with all the observations recorded. This is
termed the relative frequency and is obtained by dividing the
frequency of occurrence by the total number of occurrences.
Table 6.10 shows the relative frequency distribution for

Table 6.9 Frequency with which the listed bacteria were found to have
colonised infected surgical wounds

Source: Data are fictitious but based on known examples of wound
colonisation.
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Example 6.2. Notice that at the bottom of the columns we
record the total number of occurrences. In addition we can
multiply the relative frequency by 100 to give it as a
percentage of the total (Chapter 2).

Table 6.10 Frequency with which the listed bacteria were found to have
colonised infected surgical wounds

Suppose you were recording a continuous variable or had
taken a large number of readings. It becomes cumbersome to
use a frequency table of the kind shown in Table 6.10, and
the data can be represented more clearly in a table which
contains ranges or groups. These groups are termed classes
and the table is said to show a grouped frequency
distribution. This form of table allows data to be shown in a
concise and clear manner but you need to realise that some
information is lost since you no longer know the exact
values of the results.

Example 6.3

The weight of 30 babies was recorded at birth in kilograms.
The results are recorded in Table 6.11.

Grouping data leads to
the loss of information

Source: Data are fictitious but based on known examples of wound
colonisation.

Table 6.11 Birth weight of babies born in the UK after 38–42 weeks’
gestation

Source: Data are fictitious but based on the weight distribution of
newborn babies as given in the centile charts supplied by the
Health Education Authority (1995). Reproduced with kind
permission from the Health Education Authority.
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The values which show the range for each class are
termed the class limits. In the first row of Table 6.11 the
lower class limit is given by 2.5kg and the upper class limit
by 2.9kg. Notice, though, that although the first class ends at
2.9kg, the second class does not start until 3.0kg. The first
class must therefore range from 2.45kg up to but not
including 2.95kg. The second class starts at 2.95kg and
ranges up to but not including 3.45kg. These values are
termed the class boundaries and are obtained by adding the
upper class limit of one group to the lower class limit of the
next group and dividing by two.

Example 6.4

The boundary between the first and second classes (Table
6.11) was therefore obtained as follows:

(2.9+3.0)÷2=2.95kg

The class width is given by finding the difference between
the upper and lower boundaries.

Example 6.5

In Table 6.11 all the classes have the same class width, for
example:

2.95–2.45=0.5kg

Notice from Example 6.5 that, using the class boundaries,
the class width is found to be 0.5kg, not 0.4kg as would
appear from the class limits.

Since we no longer know the exact values for the data
points if an estimate is needed, the class midpoint should
be used. This is obtained by taking half the class width
and adding it to the lower class boundary, as shown in
Example 6.6.

Example 6.6

From Table 6.11,

Class width=0.5kg
Lower class boundary for first class=2.45kg
Class midpoint=2.45+(0.5/2)=2.70kg

 
The class midpoints are used in Chapter 11 to find
arithmetic means from grouped frequency tables.
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The final point to note is that in some cases the table may
record the cumulative frequency. This is simply obtained by
adding each successive frequency and it acts as a running
total, showing how many values have been obtained as you
move from the top to the bottom row of the table. The final
value in the cumulative frequency column should equal the
sum of all the frequencies (Table 6.12).

Table 6.12 Birth weight of babies born in the UK after 38–42 weeks’
gestation

Source: Data are fictitious but based on the weight distribution of
newborn babies as given in the centile charts supplied by the
Health Education Authority (1995). Reproduced with kind
permission from the Health Education Authority.

The cumulative frequency is useful because at a glance it
allows you to see the number of occurrence up to and
including any classes of interest. For example, we know
from Table 6.12 that 22 of the babies had a weight up to but
not including 3.95kg.

6.3 Charts, diagrams and plots

Unless it is essential that you present all the data values for
quantitative analysis, then data are often better presented in
the form of a figure. Figures are more visual than tables and
can attract and hold the readers’ attention more easily. The
higher visual impact can highlight patterns, making trends
more obvious. The main disadvantage of figures is that you
lose accuracy since it is usually impossible to read the exact
value of the data point from the figure. The choice of figure
will depend on what you are trying to show and the nature of
your data. Some commonly used methods of displaying data
are described below, but in all cases the figure should include
a clear title and a note regarding the source of the data.

6.3.1 Pictograms

Pictograms simply involve displaying data by using a
symbol to represent the quantity measured. The number of

Displaying data in the
form of figures means
some detail is lost
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symbols drawn therefore represents the amount of material
in that category. This is a simple means of presentation and
its main advantages are that it can be eye-catching and
simple trends can be observed rapidly.

Example 6.7

The standardised mortality rates (SMRs) for coronary heart
disease (CHD) represent the number of deaths due to CHD
per 100 000 of the population. Some data are given in Table
6.13. relating to male mortality in the period 1986–1988.

Table 6.13 SMRs for CHD

Source: Adapted from Ashwell (1993), Diet and Heart Disease. The
British Nutrition Foundation. Reproduced with kind permission
from The British Nutrition Foundation.

The data can be represented as the pictogram in Figure 6.1.

Figure 6.1

Pictograms can include fractions of a symbol, so in this
example 62.5 deaths per 100 000 of the population would
have been represented by two and a half hearts.

6.3.2 Pie charts

A pie chart is used to show relative frequencies, i.e. it
represents parts of a whole. It is drawn as a circle which
represents the 100% value and it is divided into sections,
each of which represents a given category. The size of each
section depends on what percentage of the whole that
category represents. A circle contains 360°, so to find the
angle for each slice of the circle you multiply the relative
frequency by 360.

Pie charts are used to
display relative
frequencies
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In Table 6.10 we calculated the relative frequencies of
occurrence for four bacteria in surgical wound infections.
The relative frequency for the Proteus spp. was 0.15, so the
angle subtended at the vertex of this ‘piece of pie’ would be
0.15×360=54° (Figure 6.2).

Bar charts are ideal for
displaying discrete data
sets

Figure 6.2

Figure 6.3
Bacterial species found in infected surgical wounds.

Source: Data are fictitious but
based on known colonisers of
infected wounds.

6.3.3 Bar charts

The frequency with which a result occurs can be
represented by drawing a rectangular box or bar. The height
of the bar corresponds to the frequency of occurrence, but all
the widths should be the same to avoid confusion. This form
of chart is ideal for displaying discrete data sets and the bars
are separated from each other by spaces. The vertical and
horizontal lines which define the dimensions of the bar
chart are termed axes. The axis used to measure bar height

Repeating this for the three remaining bacteria we obtain
Figure 6.3.
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will have a clearly labelled scale but the other one simply
contains labels denoting the data sets. This is illustrated in
Figure 6.4, using the data from Table 6.6.

Source: The data are based
on values from T.A.Loomis
(1968), Essentials of
Toxicology. Philadelphia: Lea
and Febiger. The route of
administration was either oral
(1); subcutaneous (2);
intramuscular (3); or
intravenous (4).

*Mouse toxicity data
represented as LD50/mg kg-1.

Figure 6.4
Effect of administration route on the toxicity
of pentobarbital.

Notice that each bar is clearly labelled but since the labels
are quite long, details are placed in the figure legend. It is
vital that axes are clearly labelled and units are given where
appropriate. If labels or units are missing, the chart is
meaningless. The bars in Figure 6.4 can also be drawn
horizontally as shown in Figure 6.5. Both methods of
displaying bar charts are accepted, although the most
common method is that shown in Figure 6.4.

Figure 6.5
Effect of administration route on the toxicity of
pentobarbital.

Source: The data are based
on values from T.A.Loomis
(1968), Essentials of
Toxicology. Philadelphia:
Lea and Febiger. The route of
administration was either
oral (1); subcutaneous (2);
intramuscular (3); or
intravenous (4).

*Mouse toxicity data
represented as LD50/mg kg-1.
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The key point to remember is that all the bars in bar
charts have the same width and the frequency of occurrence
is given by the length of the bars. Bar charts can be useful for
allowing comparison of data sets, and sets of data can be
grouped and distinguished by colour or shading. For
example, the toxicity data for all three drugs shown in Table
6.6 can be compared (Figure 6.6).

The length of the bar is
proportional to the
magnitude of the data

Figure 6.6
Effect of administration route on toxicity.

Source: The data are based on values from T.A.Loomis (1968), Essentials of Toxicology.
Philadelphia: Lea and Febiger. The route of administration was either oral (1); subcutaneous (2);
intramuscular (3); or intravenous (4). *Mouse toxicity data represented as LD50/mg kg-1.

Modern graphics packages will allow the bars to be
represented in either the standard form shown in Figure 6.6
or a three-dimensional form. Bars can even be shown next to
each other or arranged behind each other. When using these
features, you should remember that it is no use producing a
great-looking chart if the trends are no longer easy to
observe. When presenting data the most useful rule is to
keep things simple: show the trend or relationship as clearly
and concisely as possible.

6.3.4 Dot plots

In the bar charts shown in Figures 6.4–6.6, much
information was lost with respect to the data values
themselves. The simplest method to prevent data loss and to
display as much information as possible is to use a dot plot.
It is comparable with a bar graph in that discrete data points
or classes are listed along one axis, but instead of drawing a
rectangle to represent the frequency, the actual data points
themselves are listed. This is shown in Example 6.9.
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Example 6.9

A range of acridines were tested for their antibacterial effect
against Staphylococcus aureus and Escherichia coli. The
data are given in Table 6.14 with respect to the minimum
concentration required to kill the cells (minimum lethal
concentration, MLC).

Table 6.14 Toxicity tests against E. coli and S. aureus

Source: Project work at University of Central Lancashire.

The dot plot (Figure 6.7) clearly indicates that, overall, E.
coli seems more resistant to the action of the acridines. It
can be seen that this plot preserves the data values and it has
the advantage that any points which do not seem
representative of the sample can be identified and
investigated. These non-representative points are termed
outliers (Chapter 11). Dot plots can be very useful for

Dot plots show the
distribution of the data
points and identify any
outliers

Figure 6.7
Dot plot showing acridine toxicity.
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observing the data distribution, but if there are many data
points they can be tedious to prepare.

One major advantage with dot plots is that they can be
used effectively to link sets of observations.

Example 6.10

The acridines listed in Table 6.14 can absorb light and when
they do so they produce a highly toxic chemical called a free
radical. The effect of illumination on acridine toxicity was
therefore observed and the data for E coli are shown in Table
6.15, and compared to dark toxicity by linking the dots for
each acridine on the dot plot in Figure 6.8.

Table 6.15 Light activation of acridines

Source: Project work at University of Central Lancashire.

Figure 6.8
Dot plot of effect of light activation on acridine toxicity.
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6.3.5 Histograms

 
A histogram is similar to a bar chart but the two should not
be confused. A bar chart is ideal for representing discrete
data since each bar represents one value. A histogram is
useful for representing continuous or grouped data. Because
the data are continuous, it is the area of the rectangle which
relates to the frequency, not its height. Class widths are
represented by the width of the rectangle. If all the class
widths are the same, then the widths of the bars are the same
so the frequency is proportional to the height as with the bar
chart. When the rectangles are being drawn, the widths must
correspond to the class boundaries and not to the class
limits. The birth weights shown in Table 6.12 are illustrated
in Figure 6.9 using a histogram.

Histograms are useful
for displaying
continuous or grouped
data

The widths of the
rectangles correspond to
the class boundaries

The area of the rectangle
is proportional to the
magnitude of the data
value

Notice that the histogram covers a continuous weight
range from 2.45 to 4.45kg with the different classes being
shown by the rectangles with different kinds of shading.
Suppose that the birth weights had been measured in classes
of varying widths, as in Table 6.16.

Since the frequency is proportional to the area, this
would give rise to the histogram shown in Figure 6.10 with
the two outside bars twice the width of the inner bars. I have
tried to highlight this by shading alternate bars.

The 3.95–4.95kg class (4) and the 2.95–3.45kg class (2)
have frequencies of occurrence of 8 and 7 respectively. This
frequency can be seen to be reflected by area but not by the
height.

Figure 6.9
Frequency distribution for birth weight.

Source: Data are fictitious but based on the weight distribution of
newborn babies as given in the centile charts supplied by the
Health Education Authority (1995). Reproduced with kind
permission from the Health Education Authority.
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Table 6.16 Birth weight of babies born in the UK after 38–42 weeks’
gestation

Source: Data are fictitious but based on the weight distribution of
newborn babies as given in the centile charts supplied by the
Health Education Authority (1995). Reproduced with kind
permission from the Health Education Authority.

Figure 6.10
Birth weight distribution.

The classes represent 1.95–2.95kg (1), 2.95–3.45kg
(2), 3.45–3.95kg (3) and 3.95–4.95kg (4). Reproduced
with kind permission from the Health Education
Authority.

6.3.6 Scatter graphs

A scatter graph is a graphical way of representing what is
termed a function. It shows the relationship between two
variables x and y. The horizontal axis runs from left to
right and is termed the x-axis or abscissa. The vertical axis
runs from the bottom of the page to the top and is termed
the y-axis or ordinate. These two axes intercept at the
origin and the area which they describe is termed the x-y
plane or the Cartesian plane. When a scatter graph is
being plotted, the x variable; should always be the
independent variable; this is usually the element you are
controlling in the experiment and it does not depend on
the other variable. The y variable is the dependent
variable, i.e. it depends on the value of x and it is usually
the variable you are measuring. For example, you are
measuring the amount of product produced by an enzyme
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catalysed reaction with respect to time. You take
measurements at 1, 2, 5 and 10 minutes. The independent
variable is time, since time does not depend on the
amount of product obtained. This is what you are
controlling, and it forms the x-axis. The amount of
product formed is dependent on time; it is therefore the
dependent variable and this is what you are measuring.
This forms the y-axis. To be able to use the graph, both
axes must have a clearly marked scale. The origin is taken
to be represented by x=0 and y=0. Positive x values are
written to the right of the y-axis and negative values to the
left. Similarly, positive y values are written above the x-
axis and negative below it. Each point in the plane is
represented by an x coordinate and a y coordinate. These
are usually represented by writing them in brackets as an
ordered pair (x, y). The information in the last paragraph
is summarised in Figure 6.11.

A scatter graph displays
the function linking the
dependent and
independent variables

Many computer packages can accurately place a range of
symbols in the plane to allow you to distinguish between
different points; but if you are drawing the graph by hand,
the points represented by the (x, y) coordinates should be
marked on the plane using a sharp pencil by placing a cross
at the correct position. The centre of the cross represents the
point. The use of dots, circles etc. can make it hard to

Figure 6.11
The Cartesian plane showing (2, 1), (-3, -3) and (-4, 4).
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distinguish exactly which point the symbol represents. If the
points lie on a straight line you can use a ruler to draw a line
of best fit. This involves balancing the points so that there is
an equal number on both sides of the line. The sum of the
distances from each of the points above the line to the line
should equal the sum of the distances from each of the
points below the line to the line. Statistical packages will do
this for you using, for example, linear regression. If the
points do not fall on a straight line they should be fitted with
a smooth curve. You should not simply join up the points
one at a time since it is likely that some of the measurements
are inaccurate or incorrect; by using a line of best fit you are
‘averaging out’ this error. An example of a line of best fit,
done by eye, is given in Figure 6.12.

Example 6.11

Known concentrations of protein were assayed using the
Bradford assay. This assay involves adding a dye to the
protein solution. The dye interacts with the protein and the
solution becomes blue. The more coloured the solution, the
more protein is present. The level of colour can be detected
by measuring the absorption of light at the appropriate
wavelength.

Avoid extrapolation
since the relationship
between the variables
may change after the
last plotted point

Notice that in Figure 6.12 the line ends at the last point so it
does not continue past the value given by the last piece of
data. Extending the line without data is termed
extrapolation and should be avoided since you have no
experimental evidence to show that the relationship
between the absorption and the protein concentration
continues in a straight line past that last point. At higher
concentrations the protein might aggregate and therefore
precipitate, so the graph could start to curve. Calibration
curves are widely used in life sciences: known quantities are
measured to give a standard curve, and this is used to
determine an unknown.

Table 6.17 Bradford assay

Source: Based on student data obtained at the University of Central
Lancashire.
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Suppose, for example, the calibration curve in Figure
6.12 had been prepared using serum protein from blood. A
sample of blood has been taken from a patient and the blood
serum protein measured using the Bradford assay. The
absorption was found to be 0.54 absorption units at 595nm.
If you find this value on the y-axis of the plot, then read
across to the calibration curve and drop down to the x-axis,
this gives you the concentration of protein in your unknown
sample. This is illustrated in Figure 6.13 where the
unknown is found to be approximately 90µg ml-1.

Figure 6.12
Calibration curve.

Figure 6.13
Calibration curve for serum protein.
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The final point to note is one regarding practicality. The
graphs should be large enough so that they are clear to
read. The scales should be chosen so that the points are
easy to plot and so that readers can easily understand
them. On some occasions you may not require the scale to
start at zero. For example, it can be seen in Figure 6.14 that
the origin is still at (0, 0) but the zig-zag line on the x-axis
indicates that the scale is not linear before the value 10, i.e.
the distance from zero to ten has been condensed. The
graph would then be plotted as normal; the point (11, 2) is
shown.

Figure 6.14

6.3.6.1 Intercepts and gradients

Line graphs can be characterised in a number of ways, but
two parameters of importance are the intercept and the
gradient. The point at which the line crosses the axis is
termed the intercept. In Figure 6.15 the line crosses the y-
axis at the point where y=c and this is said to be the y
intercept. The slope of the line is termed the gradient and is
given by the equation

where there are two points (x0, y0) and (x1, y1) such that
x0<x1.

The change in x and y is often denoted by capital delta
(∆), and many textbooks will simply say:

gradient=∆y/∆x

This is illustrated in Figure 6.15.
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Gradients are often called rates, since they give the rate
of change. This is especially true if the plot shows a
variable y changing over time. If comparing two graphs you
should not be influenced by the apparent steepness of the
slope, since this depends on the scales chosen. The
gradient will remain fixed, irrespective of scale. Compare
the two graphs shown in Figure 6.16 (a) and (b). The
second graph looks as though the rate is much faster
because the lines are steeper but both (a) and (b) have the
same gradients; in fact they show the same data but plotted
on different scales.

6.3.6.2 Gradients of curves

If the graph contains a curve, then the gradient obviously
changes as you move along the curve. Consider the graph in
Figure 6.17.

As you move from -5 to zero on the x-axis the graph
slopes downwards and the slope changes. For example,
between -5 and -4 the slope is very steep but between -1 and
0 it is much more gradual. As you move from 0 to 5 on the x-
axis the slope changes direction. To find the gradient of a
curve, the best method is to find the equation and use
calculus to determine the slope, but this is beyond the scope
of this text. A quick alternative which allows you to find the
gradient at any given point is to draw a straight line which
just touches the curve at the point of interest and which

Do not judge the rate on
the visual appearance of
the slope since this
depends on the scale—
calculate the gradient

Figure 6.15
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seems to follow the slope of the curve at this point (Figure
6.17). This line is termed a tangent. The gradient of the
tangent can be taken to approximate the gradient of the

Figure 6.16

Figure 6.17
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curve at the point where the tangent and curve meet. It
should be realised, though, that fitting a tangent to the curve
by eye is subjective and therefore prone to some degree of
error.

6.4 Plots linking three variables

There are occasions when you may have three variables that
you want to consider. In the example above we used two
axes to represent two variables, so in this case a method is
needed which allows a three-dimensional system to be
recorded. The main problem is therefore representing the
data in the form of a diagram since diagrams are obviously
two-dimensional. Some methods which attempt to
represent three variables in a clear and concise manner are
described below.

6.4.1 Three-dimensional plots

In this case a three-dimensional plot is made where each
point has three Cartesian components (x, y, z). This method
involves trying to represent the three variables by drawing
three axes, x, y and z. Figure 6.18. shows point P plotted on
a three-dimensional plot.

Notice that in this case if you plot three points they lie in
a plane rather than a line, so they would be connected by a

Figure 6.18
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surface. These plots can be hard to decipher and even harder
to draw.

6.4.2 Triangular charts

This is a simple method of representing three variables, but
it only uses a two-dimensional plot rather than attempting
to represent a three-dimensional plot as in Section 6.4.1. A
triangular plot will only function if the three variables are
linked in such a way that when added they always give the
same constant:

x+y+z=h

where x, y and z are variables and h is a constant. This is
ideal if you are studying three components which together
make up the whole, since each factor can be represented as a
percentage of the total, i.e.

x+y+z=h=100%

A triangular plot involves drawing an equilateral triangle,
i.e. a triangle in which all three sides are the same length
and the angles subtended are 60° (Figure 6.19).

Figure 6.19

The height of the triangle is set to the value of the
constant h as defined above. If x, y and z are expressed as a
percentage of the total, then h will be equal to 100%. The
triangular plot uses the fact that for any point P within the
equilateral triangle the sum of the perpendicular distances
between P and the sides of the triangle is equal to the height
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of the triangle. If each side of the triangle is given a scale of
0–100, to allow the representation of the variables we can
plot (x, y, z) as percentages (Figure 6.20).

Figure 6.20

In Figure 6.20 A is recorded as 35% so the 35% mark on
scale A is noted, and the line A=35 is represented by the
broken line. Notice that the A- and B-axes are acting like the
x- and y-axes on a scatter graph, so representing A=35 by a
broken line is the same as drawing the line x=2 on a scatter
graph (Figure 6.21).

Figure 6.21
Plot showing x=2 in the x–y plane.

In Figure 6.21 the line x=2 crosses the x-axis at 2 and runs
parallel to the y-axis (i.e. x=0). On a triangular chart (Figure
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6.20) the same principles apply but in this case the axes are
at 60° rather than at right angles. For example, the line at
A=35 crosses the A-axis and runs parallel to the B-axis (i.e.
A=0). Similarly the line at B=15 crosses the B-axis at 15 and
runs parallel to the C-axis (i.e. B=0). The point where all the
lines meet in Figure 6.22 is unique and represents the three
values A=35, B=15 and C=50, i.e. (A, B, C)=(35, 15, 50).

Figure 6.22

This plot can prove very useful for identifying relationships
between variables, as illustrated by Example 6.12.

Example 6.12

Three bacteria were grown in a mixed culture and treated with
a range of potential antibacterials. Each bacterial population
was recorded (Table 6.18) in terms of its contribution to the
total bacterial population after drug treatment.

Table 6.18 Effects of drug treatment on a mixed culture

Source: Theoretical data based on MLCs observed at University of
Central Lancashire.
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It can be seen from Figure 6.23. that one of the compounds
seems to almost totally prevent the growth of E. coli and B.
cereus in comparison with Ps. aeruginosa. Remember,
though, that these are relative values; all three bacteria have
probably suffered growth inhibition, but this plot shows the
effect of the agent on each strain relative to the other strains.

6.4.3 Nomograms

If you go for a walk, you could map your route on a piece of
paper by recording where you have been. Now suppose your
walk was in a mountainous region. On the paper you may
have travelled from a point (x1, y1) to a point (x2, y2) and
covered 1km, but during this move you may have climbed
up the face of a mountain! Your height at any given time is
dependent on your position which is described in a
Cartesian plane by the (x, y) coordinate, thus giving three
variables. If you buy a map, you need to know details of the
height of the surrounding countryside but you do not want a
three-dimensional drawing since this may not be easy to
read and would be expensive to produce. The answer is to
use contour lines. Lines representing all the points of a fixed
height are joined to give contours, so you find your position
using the x- and y-axes and then you look at the nearest
contour line to determine your height above sea level. A
map of this form is a nomogram, since it shows the
relationship between three variables in a single plane. For
example, consider the arithmetic mean of two variables, A
and B:

mean=(A+B)/2

Figure 6.23
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Since A and B are variables we can plot them on a Cartesian
plane. The equation for the mean forms a straight line
linking these two variables; a family of parallel lines can be
plotted on the Cartesian plane. This has been done for
integer values up to 4 in one quadrant of Figure 6.24.

If you find a point (x, y) (where in this case x and y are
both integers), it will lie on a line representing the mean.
The value given beside or on this line is therefore the mean
of the (x, y) coordinates. More generally, if three variables
are related and the relationship is known, two variables can
be plotted on the x, y-plane as above, with the third being
represented by lines on the plane. If you know any two of
the three variables, you can therefore find the third. For
example, x=0, the mean=2 so y must be 4 since this is the
only point all three lines meet on the nomogram in Figure
6.24. You may find that some textbooks call this type of
chart a Cartesian chart or concurrency nomogram.

These charts can often be replaced by alignment
nomograms, which in their simplest form are simply three
vertical lines. Each line has a scale and represents one of
the three variables. If you have values for two of the
variables, you can join up these points and where it
intercepts the third line you have the value of the third
variable (Figure 6.25).

One of the most common uses I have found for this is in
experimental procedures which involve centrifugation.
Centrifugation involves spinning your sample in a circle, at

Figure 6.24

Adapted from E.Batschelet (1979) An Introduction to
Mathematics for Life Scientists, New York: Springer-Verlag.
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speed, so that the centrifugal force causes particles within
your sample to pellet. Whether a molecule pellets will
depend on its size and the size of the centrifugal force
pulling it down. For example, to isolate a cytoplasmic
protein from a cell, the cell can be broken open and
centrifugation can be used to spin down the heavy cellular
debris, leaving the cytoplasmic protein in solution. The
protein can then be isolated from the cytoplasmic solution
using an appropriate technique.

In scientific papers centrifugation speeds should be given
in terms of the number of times the centrifugal force exceeds
gravity. This is the relative centrifugal force (RCF) measured
in g. The size of this force will depend on the radius of the

Figure 6.25
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rotor which contains your sample and the spin speed in
revolutions per minute. Hence the three variables, force (g),
rotor radius (mm) and spin speed (rpm) are related; this
relationship is given by the equation:

If you know the radius of the rotor and the centrifugal force
required, you can find the spin speed using this equation;
but this can be tiresome if it has to be repeated regularly, so
an alignment nomogram is often available in the laboratory
(Figure 6.25).

A line has been drawn on it to show that a spin of 2500
rpm in a rotor of radius 75mm would produce a centrifugal
force of approximately 600g.

Summary

Data can be presented in the form of tables
or figures, but the key rule is to keep the
presentation simple so that the trend or
observation is clear to the reader. If
necessary, the data can be split into two or
more groups and represented as a
combination of charts and tables. In all cases
the data should be given a title to explain
what is being shown, with variables and
units clearly labelled. The source of the data
should be indicated and, where text could
clutter the presentation, information can be
placed in the figure legend or in footnotes.

Figures can be eye-catching, and visual
trends are absorbed faster and more easily
from them than by studying the raw data;
but in preparing a figure some of the
information will be lost, since the actual
values for the data points are not quoted.
No matter how accurately figures are
drawn, data are hard to obtain directly from
them with any degree of accuracy. Tables
preserve the data but will often need text to
point out the trends and guide the reader
through the main points.

End of unit questions

1. Protein structures are mainly made up of three
secondary structures—the alpha-helix, beta-sheet and
turn. Amino acids exhibit preferences for these
structures and the conformational parameters give an
indication of the preference. The conformational
parameters observed for some amino acids in an
asparagine-X dipeptide are given in Table 6.19.

(a) Calculate the relative preference of lysine for the
three structures and prepare a triangular chart.

(b) Use a bar chart to compare the preference of lysine
for the three structures.
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(c) Use a bar chart to compare the probability of finding
the amino acids listed in either a beta-sheet or an
alpha-helix.

2. The level of protein found within a cell depends on the
careful balance between synthesis and degradation.
Differences in degradation rates within the cell can
therefore have important implications for the regulation
of enzyme levels. Those proteins that are rapidly
degraded will quickly be removed from the system if
synthesis falls and this could be a mechanism of
controlling cellular processes. Some of the most rapidly
degraded enzymes in the liver have been found to play
key roles in metabolic control. The data in Table 6.20
were obtained with respect to degradation of some rat
liver proteins. The half-life is the time taken for half the
protein to be degraded.

Table 6.20

Table 6.19

(a) Sketch the data above as either a histogram or a bar
chart.

(b) What made you choose the histogram/bar chart in
section (a)?

3. The forced expiratory volume (FEV1) is used as a
diagnostic measure for asthmatic patients. Thirty males
were tested and their FEV1 was represented as a
percentage of that expected for a healthy individual.
The data are given in Table 6.21.

(a) Prepare a histogram to display the data.
(b) What are the class boundaries you used in (a)?
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4. Scientists were interested in the tail length of the snake
Lampropeltis polyzona as a function of the snake’s total
length. The length of the tail and the total length were
measured (Table 6.22). Decide how you would represent
these data in a report and use your method of choice to
represent the data. Describe in words the relationship
between the two variables given.

Table 6.21

Source: Medical Statistics—a Commonsense Approach, 1993, M.J.
Campbell and D.Machin. © John Wiley & Sons (1993). Reprinted by
permission of John Wiley & Sons, Ltd.

Table 6.22

Source: Adapted from E.Batschelet (1979), Introduction to
Mathematics. Berlin: Springer Verlag.

5. The membrane lipid was isolated from the Escherichia coli
inner membrane. It was found to consist of 75% (w/w)
phosphatidylethanolamine, 20% (w/w) phosphatidylglycerol
and 5% (w/w) cardiolipin. Use a pie chart to represent the
membrane composition.
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7.1 Introduction

The aim of many scientific experiments is to try and find the
relationship between unknowns. If a variable x is found to
be related to a variable y, then it may be possible to describe
this relationship mathematically. The rule that would
convert x into y is termed a function:

The simplest form of relationship between two quantities
is linear. Linear relationships are found throughout
science and have many applications. The objectives of
this chapter are:
 
(a) to introduce the concept of a function;

(b) to introduce proportionality and linear equations;

(c) to show how linear equations can be represented by
straight-line graphs.

7.2 Functions

A function is a mathematical rule which defines the process
by which an input is converted to an output.

Let the input be denoted by the letter x. If the we want to
double the size of x, the process could be defined by the
function as in Example 7.1.

Example 7.1

The function would normally be defined mathematically; so
if the function was denoted by the letter f, Example 7.1
could be written as:

 

7 Linear Functions
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This reads: ‘The function f is such that an input x is
converted to the output 2x’. This is often abbreviated further
as shown in Example 7.2, where f(x) indicates that function
f acts on the input x.

Example 7.2

f(x)=2x

so for x=3

f(3)=2×3=6

Notice that the input is a variable and the output is also a
variable. If we define the output as variable y, then the
function f(x) can be written as:

y=2x

This equation describes the function in Example 7.2; x is
said to be an independent variable since its value is
freely chosen, and y is the dependent variable since the
value of y depends on which value of x was used as the
input. Remember from Chapter 3 that with algebraic
notation the letters are not important so long as they are
fully defined; the same applies to functions, f(x) could
have written as:

h(t)=2t

This would read: ‘Function h acts on input t to produce
output 2t’.

Notice that in the above example each value of input
produces exactly one output, as shown in Example 7.3.

Example 7.3

h(6)=12

It is essential when defining a function that the statement in
Box 7.1 is met.
 
Box 7.1

A function is a mathematical rule which produces a single output, y, for each
input, x.

 

To define a function we need to know what the function
does, but we also need to know what group of inputs it will
act on. The group of all possible inputs is termed the
domain. Since each input will be mapped onto a single
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output, this will produce a set of outputs that are linked to
the inputs by the function. The set of outputs is called the
range. To fully define a function you need to state:
 
(a) A set of numbers which will act as the domain. If a

domain is not given it is taken to be the set of all real
numbers (Section 1.2).

(b) The set of numbers which form the range.

(c) The rule which allows each member of the domain to be
associated with a single member of the range.

Sometimes a function uses different rules for different
intervals, as shown in Example 7.4.

Example 7.4

Worked examples 7.1

(a) f(x)=2x2-5 such that -5<x<5

Evaluate f(4), f(0), f(-3), f(5).

(b) Write the following in the form of a function:

(i) three times the input minus two and the result is
divided by six

(ii) the input is squared, multiplied by five and then
subtracted from eight.

 

7.2.1 Inverse functions

Suppose there is a function f(x) which is defined so that it
converts the input x to the output y. A second function is
found which takes the output y from f(x) and converts it
back to x. This second function is called the inverse of f(x).

 

If the inverse is given by h(y), it is important to realise that
its domain is the range of f(x) since it is accepting as input
all the output from f(x). Since the inverse is producing the
original x values as its output, the range of h(y) is the same
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as the domain of f(x). This is important because the inverse
must be able to convert all the outputs from f(x) back to their
original form. Although the input variable can be denoted
by any letter it is usual to use x. The inverse of f(x) is often
defined as f-1(x), where the superscript -1 indicates that this
is the inverse of f(x).
 
Box 7.2

Let f(x) have a domain denoted by A and a range denoted by B; then its
inverse function f-1(x) would have domain B and range A.

 

The statement in Box 7.2 is illustrated by Example 7.5.

Example 7.5

Let f(x)=2x with {0�x�5}
This can be shown on a graph by plotting some values for (x,
y) where y is the output, i.e.
 

y=f(x) so y=2x (see Table 7.1)
 
It can be seen from plotting a few points that the range of
f(x) would be {0�x�10}.

The superscript in f-1(x)
shows that this is an
inverse function—it is
not a power term

Table 7.1 Data for x and y such that y=2x

Figure 7.1 The function f(x)=2x.
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In this case we can define the inverse function f-1(x) where:

It can be shown that f-1(x) is the inverse of f(x) by inserting
the output of f(x) into f-1(x):

or more generally,

In general, to find an inverse function you need to follow
three steps:
 
(a) express the function f(x) in the form y=f(x);

(b) transpose the formula to make x the subject;

(c) interchange the symbols x and y.

Example 7.6

Find the inverse of f(x)=5x+3

Worked examples 7.2

Find the inverse of the following functions:

(i)  (ii)  (iii)  (iv) 

7.2.2 Monotone functions

Consider the following function:

We can plot some of the points (listed in Table 7.2), to get the
graph in Figure 7.2.

It can be seen that each value in the range of f(x) is shown
on the y-axis and this will form the domain of the inverse
(f-1(x)). Although each value in the domain of f(x) maps
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onto only one point in the range, there is a problem if you
try to reverse this process since each y value maps onto
two values on the x-axis. This is because f(x) maps two
values in its domain onto one point in the range, as shown
in Example 7.7.

Example 7.7

f(x) maps each x onto one output:

f(-2)=4

but more than one input gives the same output:

f(2)=f(-2)=4

The inverse of f(x) would therefore have to map one point in
its domain, given by the y-axis in Figure 7.2, onto two points
in the range. By definition, a function must map each point
in the domain onto only one point in the range so in this
case, since this is not possible, f(x) does not have an inverse
function.

If a function maps more than one element in the domain
to the same element in the range, an inverse cannot be
found. If, for example, a function maps three different x
values from the domain onto a point y in the range, how
can you determine which of the three x values to map y
back to? The easiest way to find out whether there is an
inverse function is to plot a graph as in Figure 7.2; but in
general if two points in the domain which we will call x1

Table 7.2 Data for x and y such that y=x2

Figure 7.2
Plot of the function f(x)=x2.

If more than one point
in the domain maps to
the same point in the
range, then the function
does not have an
inverse
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and x2 are such that x1>x2, then if for all cases f(x1)>f(x2),
the function is said to be monotonically increasing and
will have an inverse. The graph of y=2x in Figure 7.1
shows a monotonically increasing function. Similarly, if
for all cases of x1>x2 we have f(x1)<f(x2), this is a
monotonically decreasing function and will have an
inverse. Logarithmic and exponential functions are
monotone functions, as are linear functions. These
functions are discussed in the following chapters and all
possess inverses.

7.3 Special linear equations

In this situation the two quantities under investigation are
related and a fixed change in one quantity leads to a fixed
change in the other. For example, consider x and y as shown
in Example 7.8.

Example 7.8

y=2x

In this example, each time there is a set change in y there is a
set change in x, but in the case of y the magnitude of the
change is two-fold greater than that of x. The equation in
Example 7.8 can be rearranged so that x and y can be
represented as a proportion:

y/x=2

Any two quantities that can be represented as a proportion
such that:

y/x=a constant

are said to be proportional. The symbol of proportionality is
‘∝‘ and this indicates that the two sides of the equation are
not equal but that they are related and can be represented as
a proportion (Box 7.3).
 
Box 7.3

A∝B implies
A=kB where k is a constant

 

It can be seen from Box 7.3 that a proportionality can be
turned into an equality by the insertion of a constant. The
constant is termed the constant of proportionality. One of
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the simplest relationships possible can therefore be
described by the equation in Box 7.4, which is said to be a
special linear equation. If plotted on a graph in a Cartesian
plane as shown in Figure 7.3, this type of equation will
always produce a straight line that passes through the origin
and which has gradient m (Section 6.3.6.1). An example of a
special linear relationship is plotted in Figure 7.3; the data
are set out in Table 7.3.
 
Box 7.4

y=mx

Table 7.3 Data for x and y such that y=3x

Figure 7.3
Plot of x and y such that y=3x.

The graph is a straight line passing through the origin so y
is proportional to x, i.e.

 

If you choose any of the ordered pairs from Table 7.3, the
constant is found to be equal to 3.0. Suppose you start at a
point (x0, y0) and move to a point (x, y) where x>x0. The
gradient is given by the following equation:

Any two points that lie on the line in Figure 7.3 can be used
to find the gradient, as in Example 7.9.
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Example 7.9

(x0, y0)=(2, 6) and (x, y)=(5, 15)

Example 7.9 confirms that if you have two variables that are
related by a special linear equation, the constant of
proportionality is equal to the gradient.

7.4 General linear equations

Look at Figure 7.4.

The lower line can be represented by a special linear
equation as described above. The upper line represents
a linear relationship between x and y since it produces
a straight line, but the line does not pass through the
origin so the relationship is not described by the
special linear equation. The upper line crosses the y-
axis at (0, c) and so has y-intercept c. The upper and
lower lines are parallel, so their slopes are the same.
Both lines therefore have gradient m. Consider the
example shown in Figure 7.5, which is plotted from the
data in Table 7.4.

Taking any two points from Table 7.4, we find that the
ratio x/y is no longer constant (Example 7.10).

Figure 7.4
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Example 7.10

Consider

(-1, 1) and (3, 9): comparing the ratios x/y

So if the line does not pass through the origin, the variables
are no longer directly proportional since they cannot be
represented by:

Even so, if we consider the change in x and the change in y
we find:

So changes in rate are proportional. Any straight line can be
represented by the general linear equation of the form
shown in Box 7.5.
 
Box 7.5 General equation of a straight line.

 

This relationship is represented in Figure 7.4, where the
upper line is obtained by adding c to all the points in the
lower line. The lower line is described by the special linear

Table 7.4

Figure 7.5
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7.4.1 Determining the equation of a straight line

Many computer packages will plot the data, produce a line
of best fit by linear regression and supply the equation of the
line—but suppose you need to find the equation of the line
yourself. This can be calculated as follows.

7.4.1.1 By using two data points

Suppose the line passes through the points (0, 3) and (3, 9),
then the gradient is given by:

Figure 7.6
(a) Gradient=m

Intercept=-c
(b) Gradient=-m

Intercept=c

equation. The values of m and c can be positive, negative or
zero. On the graph m represents the gradient of the line and
c represents the point at which the line crosses the y-axis.
Figure 7.6 shows some straight-line graphs.
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The equation of a straight line is y=mx+c so if we substitute
for x, y, and m using the gradient from above and the values
from one of the readings:

using the ordered pair (3, 9):

So the equation of the line is given by: y=2x+3
Notice that this equation is based on only two readings,

so if there is any error in either of these readings it will not
accurately reflect the true relationship between x and y.

7.4.1.2 By using one data point and either the
intercept or the gradient

If you have the intercept and a data point, then the values
for x, y and c can be inserted into the equation and m can be
evaluated. Similarly, if there is a data point and the gradient,
the x, y and m values can be inserted into the equation for a
straight line and c can be evaluated (Example 7.11).

Example 7.11

You know that the point (7, 3) lies on the line and that m=4,
so:

Notice that again you are reliant on one data point, so any
error in the reading will affect the derivation of the
equation.

7.4.1.3 From a data set

If you have a range of data readings, any two could be used
to obtain the equation of the line linking them as described
in Section 7.4.1.1. Ideally the data set should be plotted and
a line of best fit placed through the data. This line should
generally have the same number of points above it and
below it since this acts to ‘average out’ any error in the
readings. The gradient can be measured and the y intercept
recorded. This will give the equation of the line.

A line of best fit will
average out the error in
the data
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Worked examples 7.3

Asuming two variables x and y are linked by a linear
relationship, find the equation of the line from the
following data.
 

(i) (0, 2) and (2, 5) fall on the line
(ii) The line has a y intercept 3 and includes the ordered

pair (4, 4).

7.5 Solving linear equations

You may find the general linear equation written as:

where a and b represent constants and x is a variable. To
solve this equation all the possible values for x must be
elucidated. In the case of a linear equation, the solution
simply requires transposition of the equation to make x the
subject (Example 7.12).

Example 7.12

This result can be confirmed by substituting for x in the
original equation:

 

If there is more than one term containing x, then simply
collect all the like terms together before transposing the
equation (Example 7.13).

Example 7.13

Worked examples 7.4

Solve the following for the unknown:
(i)  (ii)  (iii) 

(iv) 
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7.6 Biological applications

There are many situations in the life sciences that can be
described by a linear relationship but there are also many
nonlinear relationships which are transformed into a
straight-line form to aid analysis. We will consider an
example of each in this section.

7.6.1 Beer-Lambert law—an example of a special
linear equation

The Beer-Lambert law is a combination of the fundamental
principles of absorption spectroscopy. It is based on the
principle that certain compounds will absorb light of a
given wavelength and that the level of absorption is directly
proportional to concentration of material present. Consider
vitamin B2, which absorbs light at 260nm. Light can be
considered to consist of discrete particles called photons. If
each molecule of vitamin B2 can absorb one photon of light,
then the more molecules we have present the more light is
absorbed:

 

where A represents absorption at a set wavelength and c is
concentration in molar units. Usually the light is passed
through a cuvette of 1cm length, but if the light were passed
through 2cm of vitamin B2 solution then obviously it would
pass through more material and more light would be
absorbed. In fact,

where l is the path length in cm. This is often set to the value
of 1. In fact the Beer-Lambert law shows that

Since this is a proportionality, it is known that

where a is a constant, and this can be used to determine the
concentration of an unknown, given the absorption of a
known standard (Example 7.14).

Example 7.14

A 1cm path length is used and a 0.1mM solution of dye is
found to absorb 0.6 units of light at 595nm. A solution of
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unknown concentration absorbs 0.3 units of light at 595nm.
What is its concentration?

For the other sample we must have

Although proportionality can be used as in Example 7.14 it
is a poor method since it relies on the accuracy of your
initial reading. It would be better to take a number of
readings for samples of known concentration and to use
these data points to prepare a calibration curve, as
demonstrated in Example 7.15.

Example 7.15

Trypsin is an enzyme which degrades proteins. BAPA is a
chemical which can be used as an artificial substrate for this
enzyme since trypsin converts it to para-nitrophenol which
is yellow and absorbs light at 410nm. To determine how
much para-nitrophenol is produced under given conditions
a calibration curve is prepared by measuring the absorption
of known concentrations of nitrophenol. The data for the
curve are presented below.

Table 7.4 Data for a calibration curve for para-nitrophenol

Notice that in the chart in Figure 7.7 the line ends at the
last point so it does not continue past the value given by the
last piece of data. Extending the line without data is termed
extrapolation and should be avoided, since you have no
experimental evidence to show that the relationship
continues in a straight line past that last point. Calibration

Source: Data are fictitious.
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curves are widely used in life sciences: known quantities
are measured to give a standard curve, and this is used to
determine an unknown. For example, using Figure 7.7 an
absorption of 0.18 at 410nm gives the concentration of the
unknown as 54mM.

We have stated that A/cl=a where a is the constant of
proportionality, which in this case is termed the molar
extinction coefficient and is denoted by ε. This represents
the amount of light absorbed by a 1M solution of the
compound at a given wavelength. This allows for the fact
that the level of light absorption varies with wavelength and
compound. The Beer-Lambert Law is usually given as:

Worked examples 7.5

A solution absorbs 0.6 units of light at a given wavelength.
What would the absorption be if:

(i) The solution was diluted three-fold?

 (ii) The path length was increased two-fold?

(iii) The path length was inceased four-fold and the solution
was diluted four-fold?

7.6.2 The Lineweaver-Burk plot

A simple enzyme-catalysed reaction which converts
substrate (S) to product (P) can be modelled by the reaction:

where E represents the enzyme and ES the enzyme-substrate
complex. The rate of reaction can be measured as the change

Figure 7.7
Calibration curve for para-nitropheol.
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in product concentration with time, and if the rate of
reaction is plotted against substrate concentration a
hyperbolic curve is obtained. This is often termed the
Michaelis-Menten plot after the scientists who derived the
relationship between the substrate concentration and
velocity. An example is shown in Figure 7.8.

The plot in Figure 7.8 is of a hyperbolic curve and has the
equation:

where a and b are constants. Henri, Michaelis and Menten
discovered that by making some assumptions regarding
the reaction mechanism, the constant a could be taken to
be the maximum velocity that the reaction can obtain
under those conditions (Vmax). If the instantaneous or
initial velocities are measured, then there is little change
in substrate concentration and constant b is found to
represent the dissociation constant for ES, i.e. it gives a
measure of the rate at which ES converts back to E+S. The
Michaelis-Menten equation therefore states that under
certain conditions the rate of reaction changes in
response to substrate concentration according to the
equation:

Figure 7.8
Michaelis-Menten plot.
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where v is velocity in (mol litre-1 min-1), [S] is substrate
concentration (M), Ks is the dissociation constant (M) and
Vmax is the maximum velocity obtainable (mol litre-1 min-1).
Briggs and Haldane used a different approach to derive the
Michalis—Menten equation and with different assumptions
found a slightly different value for constant b. This
derivation took into account the breakdown of ES to product
as well as its dissociation to E+S. This is termed Km or the
Michaelis constant. Many books will simply state the
Michaelis-Menten equation as

This is a very useful equation. For example, most
enzymes within the cell work with substrate
concentrations that are approximately equal to their Km

value. If an enzyme is characterised and its Km is
determined, this can give some insight into cellular
concentrations of metabolites. Since Km is constant under
stated conditions, enzymes with the same function in
different tissues, organs and species can be compared
with respect to their Km to give information regarding cell
differentiation and evolution. The equation also has many
uses with respect to industry, where companies wanting
to maximise their efficiency may want to model a reaction
to find the ideal substrate concentration for the process
being developed.

Unfortunately Vmax can only be estimated from the above
equation, since a hyperbolic curve will tend to Vmax but will
never reach it under experimental conditions. In Figure
7.9(a) the plot appears to reach Vmax; but if that part of the
curve is enlarged, it is seen to be still approaching Vmax as
indicated in Figure 7.9(b).

To find Vmax it is necessary to transform the hyperbolic
plot into a straight-line form. There are a number of ways
in which this can be done. One of the most common
methods used is that developed by Lineweaver and Burk.
This involves rearranging the equation and taking
reciprocals:
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This equation now has the form y=mx+c where

The graph of 1/v against 1/[S] will therefore produce a
straight line and the y intercept is equal to 1/Vmax so Vmax can
be found. The gradient is Km/Vmax so, if Vmax is known, Km can
be found.

Worked examples 7.6

Multiplying both sides of the Lineweaver-Burk equation by
[S] gives rise to the Hanes-Woolf equation. This will also
provide a straight-line graph.

(a) What is the Hanes-Woolf equation?

(b) What would you plot?

(c) How would you determine Km and Vmax?

Figure 7.9
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End of unit questions

1. Five strains of bacteria are numbered one to five and are
exposed to a potential antibacterial. If the strain is
killed, the result is recorded as one. If the bacteria
survive, the result is recorded as zero. Could this be
considered to be a function?

2. The amount of light absorbed by a dye is directly
proportional to the concentration of dye present. The
process can be modelled using a special linear equation
and a 5mM solution absorbs 0.45 absorption units at
540nm.

(a) Assuming the data point is accurate, what would you
expect the equation of the calibration curve to be?

(b) Use the idea of proportionality to determine the
concentration of a dye solution that absorbs 0.2
units at 540nm.

(c) Could you use the data given to determine the
concentration of a solution that absorbs 0.78 units at
500nm?

Summary

There are many cases in life sciences
where two variables are linked by a linear
relationship. If plotted as a function f(x) on
the Cartesian plane, this will produce a
straight-line graph which is described by
the general linear equation:

where y and x are variables and m and c
are constants. The intercept on the y-axis is
denoted by c and the gradient of the line is
m where for two data points (x0, y0) and (x,
y), x>x0,

Many non-linear equations are converted
to a straight-line form to allow the data to
be analysed more easily. The example
given in this chapter is the conversion of a
hyperbolic curve to a straight line by taking
reciprocals but in Chapter 10 logarithms
are shown to be regularly used to convert

power functions and exponential
functions to straight-line forms.
If the data produce a straight line which
passes through the origin, then the y
intercept is zero and the equation
reduces to that of the special linear
equation:

Any variables that are linked by a
special linear function can be
represented as a proportion, so

If you have an ordered pair (x, y) with x  y,
the constant k can be determined and
this can be used to form ordered pairs
from values of x alone or y alone,
although this method relies on the
accuracy of the initial reading. Special
linear equations are very common in the
preparation of calibration curves.
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3. A 2% (w/v) solution of riboflavin (vitamin B2) absorbs
0.48 units of light at 444nm and a path length of 1cm.
Use this information to answer the following:

(a) What is the absorption of a 6% (w/v) solution at path
length 0.5cm?

(b) What is the concentration of a solution with
absorption 0.12 units at 450nm; path length 2cm?

(c) The molar extinction coefficient for riboflavin is
12200M-1 cm-1. What is the molar concentration of
the 2% (w/v) solution?

(d) Riboflavin has three peaks on its absorption spectra
(i.e. a plot of absorption with respect to the
wavelength of light). These are characterised in
Table 7.5. Assuming you could choose to measure
the concentration at any wavelength, which would
you choose?

Table 7.5

4. The following three data points have been obtained.
Without plotting them, confirm that they fall on a
straight line. What is the equation of the line? (1.0, 2.0),
(3.0, 3.0), (5.0, 4.0).

5. The data in Table 7.6 were obtained for an enzyme-
catalysed reaction.

(a) Estimate Km and Vmax by deriving the general linear
equation that fits the Lineweaver-Burk equation for
these data.

(b) Perform a Lineweaver-Burk plot to find Km and Vmax.
(c) Why is the graphical method considered to be more

accurate?

Table 7.6
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8 Power Functions

8.1 Introduction

Power functions were introduced in Chapter 4 where
multipliers were used in scientific notation, but powers
have many uses and are often found within the life sciences.
They are especially relevant in the study of dynamics and
rates; for example, the study of blood flow and its effect on
artificial hearts would require an in-depth understanding of
powers. In this chapter power functions will be discussed
and the algebra associated with them will be introduced.
Power terms can be combined to give more complex
equations called polynomials. Polynomials will be
introduced and their relevance to biology demonstrated.
The main objectives of this chapter are:
 
(a) to introduce power functions and polynomials;

(b) to provide experience of algebraic manipulation of
polynomials.

8.2 Power functions

Power functions are defined by the equation in Box 8.1.
 
Box 8.1 Definition of a power function.

y=axn

where a and n are constants and x and y are variables.

The equation can be seen to imply that y is proportional to
xn (Chapter 7). The behaviour of the function is
characterised by the constants a and n and is therefore
termed a two-parametric equation. Although it is
characterised by two parameters, the behaviour of a power
function is mainly governed by the size of the exponent, n.
A common use of power functions is the calculation of area
and volume. The area of a circle, for example, is given by the
equation:

The behaviour of a
power term is mainly
governed by the size of
the exponent
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where A is area (m2), r is the radius (m) and π represents a
constant which can be approximated by 22/7. In this power
function n=2, so this is called a second-degree function. The
volume of a sphere is given by:

where V represents the volume (m3). The equation for
volume is a power function of the third degree.

Because second-degree functions are very common, they
have their own name and are termed quadratic functions.
The graph of a simple quadratic function is shown in
Figure 8.1.

 
 

A graph of the special quadratic function (Box 8.2) is
termed a quadratic parabola and Figure 8.1 is an example of
a parabola.
 
Box 8.2 The special quadratic function.

y=ax2
where a is a constant and y and x are variables.

 

The parabola is symmetrical about the y-axis and it passes
through the origin.

Table 8.1 Data for the function f(x)=2x2

Figure 8.1
Plot of the function f(x)=2x2.
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8.3 Polynomials

A quadratic function such as  

y=ax2

can be written in the form of a general quadratic equation.
This is shown in Box 8.3.

Box 8.3 The general quadratic function.

 

 

The right-hand side of the equation in Box 8.3 is said to be a
second-order polynomial in x. The degree or order of the
polynomial is based on the highest power function and,
whilst quadratics are probably the most common form,
polynomials of the nth degree can also be found in biology.
The general quadratic function will produce a parabola in
the same way as the special quadratic function (y=ax2)
(Figure 8.1), but the addition of the linear term (bx+c) to the
power term means that the vertex no longer has to pass
through the origin.

Consider the parabola in Figure 8.1. This represents the
equation:

y=2x2  

Suppose we wish to move the plot by two units along the x-
axis (to the right) and one unit along the y-axis (down), i.e.
all the points (x, y) lying on the curve will move to (x+2, y-
1), so the vertex will move from (0, 0) to (2, -1). If we denote
the new points by (X, Y), then we have:

X=x+2

Y=y-1

To find the equation of this new parabola you need to
perform the following operations.
 
1. Make x and y the subject of the two equations derived

for X and Y:           
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2. Insert these values for x and y in the original equation:
y=2x2 becomes Y+1=2(X-2)2    

So the quadratic term has not changed, but the linear
term -8x+7 has been added. This new function is plotted
in Figure 8.2.

8.4 Solving quadratic equations
A quadratic function will contain the term:

y=ax2

It is possible to use a logarithmic transformation to convert
power functions into a straight-line form which has a
gradient n and a y intercept of log a. This is discussed in
Chapter 10, but in this chapter we shall look at algebraic
means of solving quadratics.

8.4.1 Solving by factorisation

A quadratic expression of the form:
 

  Table 8.2 Data obtained from f(x)=2x2-8x+7

Figure 8.2 Plot of f(x)=2x2-8x+7.
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can be solved algebraically if the equation can be expressed as

and if the left-hand side of this equation can be factorised.
There are two possible situations which can occur; these are
shown below.

8.4.1.1 If the coefficient of x2 is 1

Consider the expression:

It can be seen from the above example that the coefficient of
x is equal to (a+b) and the constant is equal to the product
ab. To factorise a general quadratic equation we therefore
need to find two numbers a and b that will add up to the
coefficient of x and whose product produces the constant
term. Example 8.1 illustrates the technique.

Example 8.1

Factorise x2+5x+6:

The factors of 6 are {1, 6}, {2, 3}, {-1, -6}, {-2, -3}, so only a=2
and b=3 will allow ab=6, a+b=5.

To solve the equation x2+5x+6=0 the first step is to
factorise it:

It therefore follows that for this to be true either (x+2)=0 or
(x+3)=0.

This quadratic therefore has two solutions, which are x=-
2 or x=-3.

8.4.1.2 If the coefficient of x2 is not 1

In this case the solution is a little more difficult to find and
requires some trial and error. The first step is to try to obtain
the quadratic term in its simplest form with the coefficient
of x2 equal to one. Examples 8.2 and 8.3 present two cases.

Example 8.2

The factor in brackets must equal zero for the equation to be
true. This is the same as Example 8.1, so x=-2 or -3.
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It is not always possible to modify the equation such that the
coefficient of x2 is one and this is illustrated in the following
example.

Example 8.3

Inside the brackets, the coefficient of x2 is two, so the
factorised form must be:

This multiplies out to

 

In this case we need to look at all the factors of the constant
term, c=3. These factors then need to be investigated by trial
and error to find which are the correct factors ab for the
expression shown above and which also satisfy the
condition a+2b=7.

Substituting these factors for a and b in the previous
expression a+2b which is the coefficient of x, the only
factors that fit the equation are {1, 3}. The quadratic can be
factorised as

and the two solutions are 

Worked examples 8.1

Solve the following:

 

8.4.2 Solving by using a formula
Some equations will not factorise and in that case the
method described in this section may be more appropriate.
In addition, it is often easier to use the formula method for
solving quadratics. A quadratic equation of the form:
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can be solved for x by inserting the values of the constants a,
b and c into the following equation:

Notice that the equation contains the ± symbol and this
gives rise to two possible solutions. One is obtained by using
the positive square root and the other by using the negative
square root. The square root term in the equation is called
the discriminant and is denoted by the letter D so:

D=b2–4ac

The discriminant distinguishes between three possible
outcomes:
 
(a) D<0: the square root is not a real number and so there

are no real solutions to the quadratic expression.

(b) D>0: then there are two solutions to the equation x1 and
x2 and these are termed the distinct real roots of the
equation.

(c) D=0: then both the solutions fall together, i.e. the
parabola just touches the x-axis with its vertex so x1=x2

and there is only one root, which is termed the repeated
root or equal root.

 

Worked examples 8.2

Solve the following equations:

 

8.5 Applications in life sciences
Power functions are often found within the life sciences.
They are usually involved in equations which describe rates
and are most commonly found as quadratic expressions.
One example of a higher polynomial is the Hill equation,
which is used to estimate the number of binding sites for an
allosteric enzyme. The Hill equation is discussed in Chapter
10 so will not be covered here.

The discriminant shows
whether the equation
has zero, one or two real
roots   
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8.5.1 Quadratics as a tool to calculate pH
A common use of quadratics is in the study of weak acids. In
Chapter 10 we will discuss acidity and pH. pH is simply a
measure of the hydrogen ion concentration within the
solution. An acid is a compound which releases protons; for
a strong acid it is easy to calculate the number of hydrogen
ions released, since the acid fully dissociates (Example 8.4).

Example 8.4

Hydrochloric acid is a strong acid and fully dissociates, so
0.1M acid produces 0.1M protons:

With a strong acid, you know the concentration of protons
released and so can calculate the pH. Now consider a weak
acid. Weak acids are so called because they do not fully
dissociate, so 0.1M acid does not produce 0.1M protons.
Instead, an equilibrium is set up where the rate at which the
acid dissociates is equal to the rate at which it is formed so
there is no net change in the acid concentration.

Example 8.5

Formic acid is a weak acid and does not fully dissociate so:

To calculate the pH the acid concentration (denoted by
square brackets, []) is needed but this is unknown so:

If the original acid concentration was 0.1M, then at
equilibrium the acid concentration is given by:

 

The amount of product and the amount of substrate are
linked by the equilibrium constant, which in this case is the
acid dissociation constant Ka, where

Given that the Ka for formic acid is 1.7×10-4M, we can
substitute the values in the equation:



POWER FUNCTIONS 137

This is now writen in the form of a quadratic and can be
solved using the equation given in Section 8.4.2, so
x=4.2mM.

It is worth noting that in this case, because the acid is
weak, x is very small compared with the amount of acid
present so the above calculation can be simplified by saying

It can be seen that in this case the simplification has not
affected the answer.

8.5.2 Quadratic equations and rates

There are numerous examples of quadratic equations being
used to model rates, such as, blood flow through blood
vessels or the diffusion rates of chemotherapeutic drugs into
tumours. As an example it has been shown that the rate of
photosynthesis in grass is related to temperature and the
nature of the relationship is described by the equation

where the independent variable x is temperature (°C) and y
is the rate of photosynthesis. This equation can be shown to
reach a maximum value at x=13.6 and at this temperature
the rate of photosynthesis is predicted to be 92% of its
maximum by this model.

Summary

Power functions have the form:
y=axn

where a and n are constants. Power
functions are described as being of the nth
degree; for example, if n=2 the expression
would be a power function of the second
degree. When n=2 the expression can be
called a quadratic function and gives rise to
a parabolic plot. If the expression contains
more than one power term it is called a

polynomial and the behaviour of this form of
expression is dependent on the size of the
index n. figure 8.3 shows schematically the
form of the Plot for second- and third-degree
functions and how the index can alter the
behaviour of the relationship. Power
functions, especially quadratic functions, are
widely used in biology and have special
relevance in the study of rates.
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End of unit questions

1. Where possible solve the following equations for x:

(a) 3x2+4x+2=0

(b) 2x2–5x+3=0

(c) 2x2+7x+3=0

2. Staphylococcus is a spherical bacterium. Assume it can
be modelled by a sphere and that during its life cycle its
radius (r) increases by 5%.

(a) By what percentage must its volume increase?

(b) Given that the surface area is S (cm2), where S=4πr2,
what is the percentage increase in the surface area?

(b) If the bacterium continues to grow, can you envisage
 a biological problem?

3. The equation describing the kinetics of a multi-site
enzyme-based reaction is termed the Hill equation:

Figure 8.3
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where n is the number of binding sites and, v (nmol litre-1

min-1) is the initial velocity measured at a given
substrate concentration [S] (mM). Vmax is the maximum
velocity which can be obtained under these conditions
and K′ is a constant. An enzyme is known to have two
binding sites and the constant K′ is 25µM2. Given that
the velocity measured at 1mM substrate was 5µmol litre-1

min-1, what is the maximum velocity this system can
attain under these conditions?

4. Water is itself able to ionise and the number of protons
produced is summarised by the special constant for
water, Kw:

If a strong acid is added to the system at a concentration
of 10-6 M, then the hydrogen ions present will be those
from the acid plus those from the water. The
contribution from the water is x M and from the acid 10-6

M. Substitute this into the expression for Kw and find x.

5. In a diploid cell, genetic characteristics involve two
alleles, for example Aa. Since one allele is obtained from
each parent this can give rise to three combinations of
genetic material: AA, Aa or aa. The frequency with
which these occur is described by the Hardy-Weinberg
equilibrium, which says that in a population the
frequency of AA, is p2, that of Aa is 2pq, and q2 for aa. p
and q are obtained as follows:

In a population, 58 individuals with the AA genotype
are noted, 37 with Aa and 5 with aa. Is this population at
the Hardy—Weinberg equilibrium?
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9.1 Introduction

In the life sciences many measurements that are recorded
relate to the growth of an organism or population. It is
obvious that living organisms do not change in regular steps,
i.e. the change is not modelled by a linear process. The rate
at which a population will expand is related to the size of
the population. The more parents there are, the more
children will be born, so as the population gets bigger the
growth rate increases. Growth patterns like these can be
described by using exponential functions and these will be
introduced in this chapter. First, the idea of numerical
sequences will be explored, differentiating between
arithmetic sequences, which change in regular steps, and
geometric sequences, where the size of the change depends
on the size of the value that is changing. The aims of the
chapter are:
 
(a) to introduce arithmetic and geometric sequences;

(b) to introduce exponential functions;

(c) to show the importance of geometric sequences and
exponentials in the life sciences.

9.2 Sequences

A numerical sequence refers to an ordered arrangement of
values. Suppose we select three consecutive numerical
values {1, 2, 3} and apply a function f(x) to each. If the
output of the function is arranged:
 

f(1), f(2), f(3)

 
this forms a sequence. Notice that to form the sequence the
variable y, where y=f(x), must be arranged in order after the
input of consecutive integer values.

9 Exponential Functions



9.2.1 Geometric sequences

Consider the division of a bacterial cell. Each cell divides to
give two daughter cells and for the Gram-negative bacterium
Escherichia coli the time taken for the population to double
in this way is approximately 20min. Assume that at time
zero we have one cell, therefore after one doubling time
(20min) we have two cells and after a further doubling time
each of these has divided to give four cells. This could be
modelled by the following function:

where t is the number of doubling times that have elapsed
and N is the number of cells. Using the function f(t)=2t and
arranging the outputs in order gives the following sequence:

1, 2, 4, 8, 16, 32…

In this example, the independent variable is an exponent;
there are many relationships within life sciences where this
occurs. The sequence generated from an exponential
function is said to be a geometric sequence. A geometric
sequence is therefore created by the output of a function f(x)
such that:

The general form of a geometric sequence would therefore
be:

t, ta, ta2, ta3, ta4…

If you take any two consecutive terms in a geometric
sequence you will find they always give the same ratio
(Examples 9.1 and 9.2).

Example 9.1

The value of a is therefore said to be the common ratio.

Example 9.2

Suppose you have a sequence where consecutive values are
linked by a common ratio, such as:
 

100, 140, 196

Any two consecutive
values in a geometric
sequence will give a
common ratio



This sequence was simply obtained by multiplying each of
the preceding values by 1.4. The ratio of any two
consecutive values is therefore 1.4:

140/100=1.4

The arithmetic mean (Chapter 11) of two numbers is given by:

Mean=(x1+x2)÷2

This is the value that lies on the number line halfway
between x1 and x2. For example, using the sequence in
Example 9.2, the arithmetic mean of 100 and 196 is given by
(100+196)÷2=148. This gives us the value that is equidistant
from both numbers. Yet in this case the sequence is
geometric, not linear, so it would be better if the mean was
nearer to 140 since this is the middle value in the sequence.
If a sequence contains numbers linked by a common ratio
you can use the geometric mean to find the value which
would occur between x1 and x2, rather than the arithmetic
mean given above. The geometric mean xg is given by:

This equation is used in Example 9.3.

Example 9.3

Using data from the sequence in Example 9.2,

Within any geometric sequence the geometric mean of the
values at positions n-1 and n+1 is always equal to the value
occurring at position n, i.e.

In Example 9.3 the geometric mean of the numbers at
positions one and three gave the value of the number at
position two.

9.2.2 Arithmetic mean

We briefly introduced the concept of an arithmetic mean in
Section 9.2.1 and this is discussed more fully in Chapter 11.
In the same way as a geometric series involves exponential
functions, arithmetic sequences involve linear functions but
in the latter case it is the difference between two
consecutive terms that is constant. An example of an
arithmetic sequence is given by the function:

The geometric mean of
two values finds the
number which would
lie between them in a
geometric sequence



so the sequence is:

In this case we do not have a constant ratio, but we do have
a constant difference since in all cases:

where a is termed the constant difference. To find what value
occurs in the sequence between values (n-1) and (n+1) you
would take the arithmetic mean, since the arithmetic mean of
the values at positions (n-1) and (n+1) always gives the value
of the factor at position n in an arithmetic sequence.

9.3 Exponential functions

An exponential expression contains a variable x in the form
ax where a is a constant. The constant a is termed the base
and x is the power or index. Be very careful not to confuse
exponential functions with power functions. With the
power function in Chapter 8 the variable was the base and
the exponent was formed by a constant (Box 9.1).
 
Box 9.1

Power function xa

Exponential function ax

 
On your calculator you will find ex. This is one of the most
commonly used exponential expressions in life sciences
since it describes many natural phenomena, such as
population growth and radioactive decay. The value of e to
four decimal places is 2.7183. Exponential expressions obey
the normal rules of algebra discussed in Chapter 3 and in
addition they obey the laws of indices described for powers
in Chapter 4, as demonstrated in Example 9.4.

Example 9.4

Worked examples 9.1.

(a) Simplify the following equations:

(i) e4x (ex/2+e-x) (ii) √e8x (iii) (ex+e7x)/e2x

(iv) ex-(e3x)2

(b) Calculate the following:

(i)e1.2 (ii)e-0.7 (iii)e0.2 (iv) 1/e3

For exponential
functions the exponent
is the independent
variable but for power
functions the exponent
is a constant



An exponential function is defined by the general equation:

y=tax

where x and y are variables and a and t are constants such
that a>0 and t>0. If t=1, then this simplifies to the special
case where:

y=ax

Exponential functions possess a number of interesting
properties.
 
(a) The function never becomes negative. As the value of x

decreases below zero the output from the exponential
function gets smaller and smaller. In other words, as x
becomes large and negative the function gradually
approaches zero. The function never actually reaches
zero and y=0 is termed an asymptote.

(b) If x is greater than zero, then as x increases ex increases
rapidly. This is termed exponential growth.

(c) Since x is an index, if x=0 then ex=1. A plot of this
function therefore always crosses the axis at y=1. A
plot for a limited range of x (Table 9.1) is shown in
Figure 9.1.   

Notice from Table 9.1 how rapidly the function ex

increases with increasing x. This is illustrated more
clearly on the plot in Figure 9.1.

For ex, as the index
becomes large and
positive the exponential
function rapidly
increases, showing
exponential growth

Table 9.1

Figure 9.1
Plot showing exponential growth (y=ex).   



This curve can be reflected in the line y=0 by considering
-ex as shown in Figure 9.2.
 

A function which is closely related to ex is:

y=e-x

As in the case of ex, the function e-x takes the value one when
x equals zero and the function never produces a negative
output. In this case, as x gets bigger e-x rapidly decreases
(Figure 9.3); this is termed exponential decay.

For e-x, as the index
becomes large and
positive the exponential
function rapidly
decreases, showing
exponential decay

Table 9.2

Figure 9.2
Plot showing y=-ex

Table 9.3

Figure 9.3
Plot showing exponential decay (y=e-x).



Notice that the data in Table 9.3. follow the same trend as in
the case of ex but that the trend is reversed.

9.4 Solving exponential equations
Exponential equations can be solved by transforming the
equation into a linear form using logarithms. This is covered
in Chapter 10. Here we will look at a graphical method for
solving equations involving exponential terms. For
example, consider the equation:

We can rearrange this to place an exponential term on each
side of the equation:

If y=e2x+2 and y=e-x/2 are plotted on the same x–y plane, then
where the lines cross the two expressions are equal so this
point is the solution to the equation. If the lines cross at
more then one point there is more than one solution. A
range of values have been calculated for the two expressions
and from the graph in Figure 9.4 the solution is
approximately x=-1.4.

Worked examples 9.2

Solve the following equations graphically:
(i) ex-2x=3 (ii) ex-6.7=0 (iii) ex-e-x=10

Table 9.4

Figure 9.4



9.5 Applications in biology

Many natural processes that increase or decrease do so
according to a geometric sequence, i.e. they follow an
exponential process. The use of exponentials is especially
common when modelling population growth or decline,
since all organisms will tend to increase or decrease at a rate
which is proportional to their numbers. Put simply: as the
numbers increase, the rate of growth (or decay) increases so
can be modelled using an exponential function.

9.5.1 Exponential growth.

Suppose you are interested in the growth of a living
organism. Growth can often be modelled as an exponential
process: If the height of the organism is h0 cm and after a
given time it grows to h1cm, then the new height is:

where δh represents a small change.
If this is an exponential process, the ratio of consecutive

terms is constant, i.e.

Each successive value can therefore be obtained by
multiplying the previous value by a constant:

After each growth period the organism has increased in size
by a factor of δh/h, so the percentage change would be:

Example 9.5

If the initial height of a tiger is 35.0 cm and after one year it
becomes 37.8cm, then assuming exponential growth what
would the height be after five years?

Let the original height h0=35.0cm and the height after
one year be h1=37.8cm. If exponential growth is assumed



the percentage increase each year will be constant and is
given by:

If growth had been given as a percentage, then the question
would have stated that the original height was 35 cm and in
one year increased by 8%. As a fraction 8%=8/100=0.08.
The new height can be represented as:

where y=0.08, i.e. the original height plus fraction y of that
height. This can be factorised (Chapter 3) to give:

If growth is geometric, then there must be a constant ratio
between each successive value in the sequence, i.e.

so each year the increase is obtained by multiplying the
preceding value by this ratio:

i.e. every year the height increases by a factor of y, so we
have the sequence:

 
or the geometric sequence:

The growth of the tiger can be therefore be modelled by the
function:

where h(t) is the height at time t and n is the number of time
units (in this case years). For the tiger:

This can be seen to be the equation of an exponential:



y=tax

where t and a are constants, x is the independent variable
and y is the dependent variable. After five years the tiger’s
height will therefore be:

9.5.1.1 Bacterial growth

Bacteria divide by binary fission, so each cell produces two
daughter cells. A bacterial population is characterised by a
doubling time which measures how long it takes for the
population to double, i.e. for the bacteria to divide. For
Escherichia coli the doubling time is approximately 20 min
but for Bacillus subtilis the doubling time is about 40 min.
Bacterial growth will be exponential since after each
doubling time the number of cells will increase by a factor of
two so that the ratio between consecutive numbers is two.
Suppose, therefore, that you have a population of N0 cells
and that this increases to a value of N(t) after time t (min). If
we follow the same argument as was given for increasing
height in Example 9.5, we have:

N(t)=N02
n

where n is the number of doubling times.

Example 9.6

Suppose we have one E. coli cell and one B. subtilis cell in a
culture medium. How many of each cell type will exist after
24 h?

We must first convert the time into generation or doubling
times, so:

The number of doubling times is therefore:

 

and

so using N(t)=N02
n with N0 assigned the value one we have:

and



It can be seen that the faster generation time for E. coli could
give it a competitive edge over B. subtilis since it is able to
colonise a nutrient-rich environment rapidly. In the above
example n represents time in terms of the number of
generations, but generation times vary between different
bacterial strains and are also affected by the growth
conditions. The equation for modelling bacterial growth
would therefore be better if it was refined to give:

In this case the exponent can be recorded in real time t (min)
and the factor α acts a growth constant. It effectively takes
into account the speed or rate of growth for the organism.
One doubling would be given by:

If the doubling time was 20 min you would have:

Hence α would be 0.05 min-1

9.5.2 Exponential decay

Exponential decay processes are also common within biology;
for example the loss of drug from a patient’s blood by a
combination of excretion, metabolism and sequestration into
other biological compartments can be modelled using
exponential decay. Loss of life due to an epidemic may lead to
an exponential decay since if the population is large the
infectious agent could be easily transmitted leading to high
mortality, but as the population decreases in size so transmission
decreases and the number of deaths decreases. In this section we
will look at radioactive decay, since many experiments in life
sciences use isotopes. The scientist can usually label small
quantities of a biomolecule with a radioactive isotope, thus
allowing it to be detected in a scintillation counter.

The unit of radioactive decay is the becquerel (Bq).

Example 9.7

One molecule of penicillin-binding protein 5 binds one
molecule of penicillin. The protein is purified and
incubated with 37 kBq of radioactively labelled penicillin
(14C-penicillin, at 35 MBq mmol-1). After separation of the
unbound penicillin by column chromatography, 10 kBq are
found bound to the protein. Assuming all the protein
present binds one molecule of penicillin per molecule
protein, how much protein do I have?



The specific activity of the isotope was 35×106 Bq mmol-1;
10×103 Bq are bound so I have:

or approximately 0.3 mmol.
14C is very stable, but suppose we use 32P instead. This has a
half-life of 14.3 days, i.e. it decays to half its original activity
in 14.3 days. If for some reason the experiment took four
days the specific activity of the sample would have
decreased and this would have to be considered.
Exponential decay is modelled by the equation:

where N(t) is the activity remaining at time t (days) and N0 is
the starting activity. � is a decay constant which is unique to
a given isotope. With bacterial growth we used growth
constant α to convert the time into the number of doubling
times, so α took growth rate into account. In this case the
decay constant considers how long it takes for the sample to
decay or break down. For example, we know that 32P takes
14.3 days to decay to half its original activity, so:

This can be solved using logarithms, as will be shown in
Chapter 10, or we can plot y=0.5 and y=2-x to find where
they intercept and thus discover x, where x=�. 14.3.

From Figure 9.5 the lines intercept when 0.5=2-x and at
this point x=1. To find � for 32P we have:

Table 9.5

Figure 9.5



or, more generally,

where �1/2 represents the half-life. This is therefore very
similar to the exponential growth of bacteria, where the
growth constant α represented 1/doubling time.

9.5.3 Geometric series

On occasions a life scientist will be performing an
experiment where the output is linked to the input by an
exponential function. In this case it is not always useful
simply to take readings at equal intervals and it may be
better to prepare your samples according to a geometric
series. For example, if you are testing a drug against a
population, be it cells or animals, the effect or response to
the drug will not be linear. If you start with a drug
concentration of 20 nM, then it would be better to increase
this concentration geometrically. Consider the plots in
Figures 9.6 and 9.7, where response is measured as the
percentage of cells killed (from data in Tables 9.6 and 9.7).

You can see that with five points the geometric series
covers the whole range of the response curve. In addition, at
the start, where the readings are small and prone to error, we
have more points so this will allow the curve to be plotted
more accurately. With the linear scale we would need three
more points to cover the full range of the curve

Table 9.6 Drug testing with a linear sequence of concentrations

Figure 9.6
Dose response curve with linear sequence of concentrations.



and between 0 and 100 nM we have only one point at 20
nM, compared with the 20 and 50 nM points in the
geometric series.

So it can be seen that there may be occasions, such as in
the case of toxicity testing, where using a geometric series to
calculate the drug concentrations to be tested would be
valuable.

There are occasions
where it is better to take
readings according to a
geometric sequence
rather than a linear
sequence

Figure 9.7
Dose response curve with geometric sequence of concentrations.

Table 9.7 Drug testing with a geometric series of concentrations

Figure 9.8



End of unit questions

1. If a bacterial culture contains N(t) bacteria at time t, then
the growth of the population can be modelled by the
equation:

where N0 is the number of bacteria at the start and n is
the number of generation times that have occurred. For
example, a Bacillus subtilis bacterium divides
approximately every 40 min and a culture was found to
contain 103 bacterial cells. How many cells are present
after 10 h?

2. A radio-isotope decays to a non-radioactive form and
the process follows an exponential decay curve. The
equation to describe this process is given by:

Where N(t) is the number of radioactive particles in the
sample at time t, and N0 is the amount in the starting
material and � is the decay constant and is unique to
each isotope.

(a) It is useful to know the half-life for an is otope, i.e.the
time taken for the amount of material to decrease by
50%. Rearrange the above equation and express t1/2

in terms of �.

(b) For 32P, t1/2 is 14.3 days. What is the value of �?

(c) p-Glycoprotein is a membrane transporter which is
thought to have a role in the onset of multi-drug

Summary

In biology many process increase or
decrease exponentially. This form of
plot tends to y=0 but never actually
reaches this line; hence y=0 is said to be
an asymptote. An exponential graph
will very rapidly increase (or decrease)
as the numerical value of the variable x
increases (Figure 9.8). Exponential
growth is described by the equation:

Y=tax

where x and y are variables and a and t
are constants such that a>0 and t>0. If
t=1, then this simplifies to the special
case where:

y=ax

Exponential decay would be described
by a closely related equation:

y=ta-x

These equations can be solved
graphically or by using a logarithmic
transformation as described in chapter
10. If two variables x and y hay an
exponential relationship, it may be
advantageous to examine values of y for
a geometric rather than a linear
sequence of x.



resistance during cancer chemotherapy. It undergoes
phosphorylation within the cell. In an experiment, p-
Glycoprotein is detected using radioactive 32P. When
purchased, the 32P for the labelling experiment had a
specific activity of 6735 B©q µM-1. The labelling
experiment was performed four days later and 2367
Bq of activity was incorporated,

(i) Allowing for decay, what was the specific
activity of the 32P?

(ii) If one molecule of 32P binds to one molecule of
p-Glycoprotein, what is the concentration of p-
Glycoprotein?

3. A population increases at an annual rate of 4% to
360 000 over a period often years. Assuming exponential
growth, what was the original size of the population?

4. A baby weighs 3.2kg and one month later it weighs 3.4.
kg. Assuming the weight increases according to a
geometric sequence, what would the weight be four
months after the first weighing?

5. The height of the baby in question 4 was also measured
and was found to be 42cm. The second measurement
was taken two months later and found to be 48 cm.

(a) Assuming that height increases according to an
exponential monthly growth rate, what was the
height one month after the first measurement?

(b) What would the height be six months after the first
measurement?

6. A drug is to be tested in tissue culture. It is expected that
the dose response will be described by an exponential
function. The first addition of drug gives a final
concentration of 5µM and the second addition gives
7.5µM. What would you choose as your next five drug
concentrations?

7. A drug is administered intravenously. The original
blood plasma concentration is C0 and the plasma
concentration at time t (min) is Cp. That fraction of the
drug which is eliminated per unit time is K (min-1). For
example, K=0.02 min-1 implies that 2% of the drug is
eliminated every minute. Elimination from the plasma
will be due to metabolism, secretion and uptake. The
concentration of drug at any given time is:

Cp=C0e
-Kt

The drug concentration decreases by 5.6% in 1h. Find K.
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10.1 Introduction

Logarithms (logs) are widely used within science, yet many
students view them with trepidation. They have a range of
functions and can be used to solve equations and linearise
exponential functions. The most common use you are likely
to encounter is to alter scales or to transform functions. In
this chapter logarithms will be introduced and some
examples of their use will be given. The objectives are:
 

(a) to introduce logarithms and develop confidence in
their use;

(b) to show the relationship between logarithms and
exponential functions;

(c) to discuss rules for manipulating logarithms;

(d) to show logarithmic transformations of power and
exponential functions;

(e) to introduce semi-logarithmic plots and log-log plots.

10.2 Defining logarithms

Exponents were introduced in Chapter 5 with respect to
power expressions. In Example 10.1 one thousand is
represented as a power expression. The base used is ten and
the exponent is three.

Example 10.1

1000=103

A logarithm (or log) is closely related to a power and can be
used to write Equation (10.1) in a different manner, as
shown in Example 10.2.

Example 10.2

log10 1000=3

10 Logarithmic Functions
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This can be read as: ‘The logarithm to the base ten of one
thousand is equal to three’. In the case of logs, the base is
represented by the subscript at the side of the log term.
Notice that the value of log101000 is equal to the exponent in
Example 10.1. This is because in both Examples 10.1 and
10.2 the base used is ten. Example 10.1 shows that one
thousand can be expressed as base ten to the power three.
Example 10.2 can be thought of as saying that if one
thousand were expressed to the base ten, then its exponent
would be three.

If a number is expressed to the base a then the log (to the
base a) of that number is simply the exponent in the power
term. Although this sounds complex, it is in fact relatively
straightforward, as shown in Box 10.1.
 

Box 10.1

This is illustrated in Example 10.3.

Example 10.3

 

Worked examples 10.1

Express the following values in the form of log10:

(i) 100 (ii) 107 (iii) 1 (iv) 102.3

Notice from Box 10.1 that if log10 y=x we must have a value
such that y=10x. From Chapter 5 it is known that x can be
positive or negative, but in all cases the value 10x is positive
and greater than zero (Chapter 9). This means that we can
never find the log of y if y is negative or equal to zero, since
we have said that y is to equal 10x and 10x is always greater
than zero (Box 10.2).
 
Box 10.2

If loga y=x then y=ax

Since ax>0, y>0
so loga y=x only if y=0

Logarithms only exist
for positive numbers
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It therefore follows that you cannot calculate the log of zero,
nor can you take logs of negative numbers. Each positive
number does have a logarithm and the original number is
termed the antilogarithm (Example 10.4).

Example 10.4

The logarithm to the base ten of 100 is equal to 2

i.e. log10 100=2

The antilogarithm to the base ten of 2 is equal to 100

i.e. antilog10 2=100

It can be seen in Example 10.4 that to find the antilog you
are forming a power term in which the number under
investigation becomes the exponent: to calculate antilog10 2
you simply find 102. On your calculator you will find the
‘log’ key usually also has the exponential ‘10x’ as a second
function. This is because they are inverses (Chapter 7). If
you take the log10 of a number and then raise your answer to
the base ten you get the original value back, as in Example
10.5.

Example 10.5

In the same way as power terms can have different bases,
logs can be calculated to different bases so long as the base is
greater than zero (Example 10.6).

Example 10.6

It is therefore necessary to specify the base you are working
in by writing it as a subscript, as shown above. In the life
sciences there are really only three bases that are commonly
used: ten, two and e.

10.2.1 Logarithms to the base ten (log10).

This base is widely used and will be found on a calculator as
log10. Logs to the base ten are also called common logs and
since they are the most widely used form of logarithm it is
often written as ‘log’ without the subscript. Any log without
a subscript is therefore assumed to be to the base ten.

Logarithms to the base a
form the inverse to
exponentials to the
base a
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10.2.2 Logarithms to the base two (log2)

This is not widely used, but may be applied in cases where a
quantity alters in jumps of two. For example, bacterial
growth occurs by binary fission (i.e. a cell splits into half to
give two offspring). This process can be described by
doubling times and modelled using log2.

10.1.3 Natural logarithms (loge)

Natural logs are calculated to the base e which can be
approximated by the number 2.718. They are also called
Napierian logs and are often written as ‘In’ rather than ‘loge’.
These logs are used to describe naturally occurring
exponential processes and are related to common logs as
shown in Box 10.3.
 
Box 10.3

 
 
Worked examples 10.2

Evaluate the following without the use of a calculator:

(i) log10 10 (ii) log2 8 (iii) log5 125 (iv) log4 16

Suppose that you find yourself in a position where you need
to calculate an unusual log, for example log to the base
seven. This is not present on the calculator and the easiest
way to find the answer is by using the equation given in Box
10.4. This is highlighted in Example 10.7.
 
Box 10.4

Example 10.7

Find log7 30.
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Notice that from Box 10.4 it is possible to show that loga a=1,
since

This agrees with what we have said previously since we
know that

10=101

and therefore log10 10=1 (Box 10.1)
The equation in Box 10.4 can also be used to highlight the

fact that loga 1 always equals zero.

The two rules described above can be very useful when
simplifying equations and are listed in Box 10.5.
 
Box 10.5

 

10.3 Rules for manipulating logarithmic
expressions

There are three laws for the manipulation of logs which hold
for any expression as long as all the logs being manipulated
have the same base.

10.3.1 Law for the addition of logarithms

This law simply shows that if you are adding the logs of two
numbers x and y and the logs have the same base, then the
sum is equal to the log of the product xy (Box 10.6). Example
10.8 shows two routes to the same answer.
 

Box 10.6
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Example 10.8

or

 
10.3.2 Law for the subtraction of logarithms

This law states that if you are subtracting the logs of two
numbers x and y and the logs have the same base, then the
subtraction is equal to the log of the quotient x/y (Box 10.7
and Example 10.9).

Box 10.7

 

Example 10.9

 

or

It is worth noting from this example that
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Box 10.8

 

10.3.3 Law for logarithms of power terms

This rule shows that multiplying the log of x by a value n is
the same as calculating the log of a power where x is the
base and n is the exponent (Box 10.9 and Example 10.10).
 
Box 10.9
 

 

Example 10.10

The rule shown in Box 10.9 can be used to simplify the log
of a root, since roots can be represented as fractional indices
(Chapter 5). This is ill ustrated in Example 10.11, and the
general equation is given in Box 10.10.

Example 10.11

For example, the square root often is given by: �10=101/2

Box 10.10

 

One occasion in which the formula in Box 10.10 may be
useful is when you need to calculate an unusual root, for
example . If you calculator has an x1/y button, you can
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enter this directly as ‘26x1/y5=’ but if you do not have this
function you can use logs as shown in Example 10.12.

Example 10.12

Worked examples 10.3
 
(a) Simplify the following:

(i) log102+log106 (ii) 3 log10 2–2 log10 4
(iii) 2 log10 a-log10 6

(b) If log10 6=0.78 and log10 2=0.30, calculate the following
without a calculator:
(i) log 26 (ii) log 12 (iii) log 36 (iii) log 3

10.4 Using logarithms to transform data

A log is the inverse function of an exponential, assuming
that the base is the same in both cases. This is shown
mathematically in Example 10.13.

Example 10.13

Logs can therefore be used to help solve exponential
equations such as Example 10.14.

Example 10.14

Logarithms can be used
to solve equations
containing indices
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The reverse is also true, since logs can be solved by the use
of exponentials (Example 10.15).

Example 10.15

Logarithms can also be used to transform both exponential
functions and power functions into straight-line forms
which can then be plotted.

10.4.1 Logarithmic transformation of exponential
functions

Many biological process are exponential, yet exponential
equations are not very user-friendly. In most situations it is
easier to transform the data into a straight-line form and use
the transformed equation to analyse the data.

An exponential function is defined by the general
equation:

where y and x are variables and a and t are constants. Using
log rules, this can undergo a logarithmic transformation to
give:

If we define a new variable Y where Y=log10 y and we create
two constants, A=log10 a and T=log10 t, then the above
equation can be expressed in the form:

which can be rearranged to give

This form of equation describes a linear function of the
form:

 

If Y (i.e. log10y) is plotted against x, then the gradient of the
line would be A (i.e. log10 a) and the intercept would be T
(i.e. log10 t) as described in Chapter 7. This form of plot is
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termed a semi-logarithmic plot and is discussed in
Section 10.5.

10.4.2 Logarithmic transformation of power
functions

Remember that a power function is not the same as an
exponential function. In the case of a power function the
exponent is a constant, whereas for an exponential function
the exponent is the variable x (Chapter 8). Consider the
function

where x and y are variables and a and n are constants. If x
and y are greater than zero, we can apply a logarithmic
transformation to give:

Forming new variables Y=log10 y and X=log10 x and the
constant A=log10a, we can substitute these into the above
equation to give:

which when rearranged gives the linear equation

Once again this is the equation of a straight line, and if X
(i.e. log10 x) is plotted against Y (i.e.log10 y) this will produce
a line with gradient n and the intercept A (i.e. log10 a). This
is termed a log–log or double-logarithmic plot and is
described in section 10.6.

10.5 Semi-logarithmic plots

When either the x- or y-axis of a plot is given a logarithmic
scale, the coordinate system is said to be semi-logarithmic.
If one of the variables spans a very large range, for example 1
to 10 000 it is hard to prepare a meaningful plot, but if this
scale is plotted logarithmicaly the range would be
condensed to give a scale from 0 to 4 since:

This form of plot is widely used within the life sciences. It is
especially common within toxicology, since when looking
at the response of a cell or an organism to a drug or toxic
agent a wide concentration range may be used, and it is the
log of the dose that is biologically important. This is
illustrated below. In Figure 10.1 the dose (in mM, for
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example) is plotted against the percentage response. This
could be the number of cells killed. It can be seen that there
is initially a rapid response which then appears to level out,
but it is hard to determine any detail because the scale
covers a wide range.

The same plot is shown in Figure 10.2, but with a log
scale for the dose. It can be seen that this gives a sigmoidal

curve and we can now observe the biologically relevant
detail. For example, there appears to be little or no toxicity
below four dose units; hence there maybe a threshold level
below which there is no observed effect (NOEL). NOEL is
important in toxicology for setting exposure limits. We can
also see over what range increasing dose causes increasing
response, so this is a much clearer and relevant way of
presenting toxicity data.

Notice that in Figure 10.1 a value is plotted for dose 0M.
We therefore have a problem since log 0 is undefined, yet if
you are studying the effect of a drug you must have a control
containing no drug, i.e. 0M. The logarithmic transformation
is what is biologically relevant, so you need to deal with this
x=0 value. The method chosen is usually to transform the
data using the equation

so that you can then plot X against y. This transformation
has been used to produce Figure 10.2.

10.5.1 Exponential functions

If two variables are related by an exponential function:

 

Figure 10.1 Source: Data are
fictitious with the dose
being measured in
arbitrary units and the
% response indicating
the percentage of the
sample population
killed by the agent.
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where y and x are variables and a and t are constants, using
log rules this can undergo a logarithmic transformation to
give a straight-line form:

where Y=log y, T=log t and A=log a.
A semi-logarithmic plot can therefore be obtained by

plotting log y against x. An example of this is given below.

10.5.1.1 The Arrhenius equation

To undergo a chemical reaction, molecules must overcome
an energy hill which is termed the activation energy (Ea). If
the reacting species come together and have energy equal to
or greater than Ea, they will react to form product. If they
come together but have less energy than Ea, they will remain
as substrates and separate. If you heat up the system, the
molecules in it gain energy so that more molecules have
enough energy to react and so the reaction proceeds at a
faster rate. The relationship between the reaction’s rate
constant (k) and the activation energy is given by the
Arrhenius equation:

This is an exponential function in which A is a constant for
a particular reaction, T is the temperature measured in
kelvin and R is the gas constant (8.314JK-1 mol-1). The
independent variable is therefore T (K), which the scientist
can control. The dependent variable is k, the rate constant
which of course depends on T and is the value which is
being measured at different temperatures. This equation can
therefore be transformed with logs as follows:

Source: Data are fictitious with
the dose being measured in
arbitrary units and the %
response indicating the
percentage of the sample
population killed by the agent.

Figure 10.2
Dose curve
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If ln k was plotted against 1/T the gradient would equal
-Ea/R and since R is constant we can therefore find Ea. Some
people do not like working with e; hence, instead of using
natural logarithms (ln) in the transformation, some books
will give the equation using log10 (see the end of unit
questions). The advantage to using natural logs is that they
have base e and here the exponential has base e:

Example 10.16

The simplest way to obtain Ea experimentally is to measure
the maximum velocity the reaction can obtain at each
temperature (Vmax/mM-1 min-1) and plot log(Vmax) against 1/T.
Some typical data are gathered in Table 10.1.

We can now plot 1/T against log(Vmax) on a normal piece
of graph paper as shown in Figure 10.3.

We have now plotted log(Vmax) on a linear scale. It is worth
mentioning, though, that semi-logarithmic graph paper can
be obtained, with a log scale incorporated into it so that you
could simply plot 1/T against Vmax with the Vmax values being
plotted on the log scale to give the logarithmic
transformation. This form of graph paper is useful since it
eliminates the need for taking logs of the data; but you have
to remember that in the first ‘block’ each line represents one
unit, in the second ten units, in the third a hundred units
and so on. It can therefore be difficult to plot the data
accurately. A graph in which Vmax is plotted on a log scale is
shown in Figure 10.4.

Table 10.1 Effect of temperature on enzyme activity

Source: Modified from data on the hydrolysis of lactose by β−
galactosidase, in Biochemical Calculations, 2nd edn, 1976,
I.H.Segal © John Wiley & Sons (1976). Reprinted by permission of
John Wiley & Sons Ltd.
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Care should be taken if using computer packages that the
correct plot has been prepared, i.e. that you have either
plotted log x on a linear scale, or x on a log scale, but not log
x on a log scale!

10.6 Double-logarithmic plots

Consider the equation:

If x and y are greater than zero we can apply a logarithmic
transformation to give:

We can substitute new variables Y=log y and X=log x and
the constant A=log a into the above equation to give the
general linear equation:

Figure 10.4
Arrhenius plot on a semi-log scale.

Figure 10.3
Arrhenius plot on a linear scale.
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If X (i.e. log x) is plotted against Y (i.e. log y), this will
produce a line with gradient n and the intercept A (i.e. log
a). This is termed a double-logarithmic or a log–log plot and,
as the name suggests, both the x and y variables are plotted
on log scales. There are two main ways in which this form of
graph is presented. The first method involves the use of
graph paper on which the vertical and horizontal lines are
arranged logarithmically. The values for variables x and y
can be placed directly on these scales. The problem with
this method is that the graph paper can lead to problems
with plotting data, especially where the lines are close
together. The alternative method for preparing a log–log plot
is to use graph paper with a linear scale. In this case all the x
and y values need to be converted to variables X and Y
where X=log x and Y=log y. An example of a log-log plot is
given in Section 10.6.1.

10.6.1. The Hill plot and allosteric enzymes

Suppose you have an enzyme which can bind more than
one substrate molecule. For example, suppose the enzyme
is built up from four subunits, each of which binds one
substrate. Let us further suppose that these four binding
sites interact co-operatively. What we mean by this is that
when one substrate binds it makes it easier for the next
substrate to bind, and so on. In this case the enzyme may
initially have a low affinity for the substrate so as we
increase the substrate concentration there is little activity
because interaction between the substrate and the enzyme
is limited. Eventually we have a high enough
concentration of substrate for a single molecule to bind to
the enzyme. This binding affects all the other sites, making
their affinity for the substrate increase. Because the
enzyme now has a higher affinity for the substrate, the next
molecule of substrate will quickly bind. This increases the
enzyme’s affinity for the substrate even further, so the next
molecule of substrate is picked up almost immediately. In
this way we have gone from little activity to high activity
very rapidly. This is described by the simple sequential
interaction model of allosterism, and allosteric enzymes of
this type are essential within the cell since they act as
switches in metabolism. In response to changes in
substrate concentration, they rapidly increase or decrease
activity turning metabolic pathways on and off. The
equation describing the kinetics of a multi-site enzyme-
based reaction is termed the Hill equation:
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where n is the number of binding sites, v is the initial
velocity measured at a given substrate concentration [S],
Vmax is the maximum velocity which can be obtained under
these conditions and K′ is a constant. The graph of this
function is sigmoidal, as shown in Figure 10.5.

The Hill equation is a power function, so it can be
converted into a straight-line form using logarithmic
transformations:

Figure 10.5
Effect of substrate on velocity for an allosteric enzyme.



LOGARITHMIC FUNCTIONS 173

So we have a straight-line equation with

The gradient of this line is n, the number of binding sites.
An example of this plot is given in the end of unit questions.

10.7 Logarithms and biology

Within biology we often use logs and they are a very
important tool. You will certainly meet them when you study
pH. pH is a measure of how acidic or basic a solution is:
 

pH 1–6 is acidic
pH 7 is neutral
pH 8–14 is basic

 
But what does this mean? By definition an acid is a
compound which can ‘give up’ hydrogen ions (protons) and
a base is something that can remove protons from solution.
For example, in the case where

 

HA is an acid since it gives up the proton, H+. Upon
dissociation HA produces A- and since A- can remove
protons from solution to form HA, it must be a base. Since
A- is formed from HA it is said to be the conjugate base of
HA. The more readily HA releases protons the stronger the
acid. For example, hydrochloric acid (HCl) is a strong acid
and can be assumed to ionise fully so that 0.1M acid
produces 0.1M protons:

Formic acid (HCOOH) is a weak acid and only some of the
acid molecules release their protons, so 0.1M acid will not
dissociate to produce 0.1M protons. A solution of 0.1M
formic acid therefore has a lower acidity than a 0.1M
solution of hydrochloric acid. When pH is measured it is
‘the number of hydrogen ions present’ which is being
recorded. So measuring the pH indicates how strong the
acid or base is.

Example 10.17

Suppose that you are measuring the acidity (proton
concentration) in five solutions and that the range of
hydrogen ion concentrations found covers the pH range 1–5.
The data are given in Table 10.2 and illustrated in Figure
10.6 and 10.7.
 



174 INTRODUCTORY MATHEMATICS FOR THE LIFE SCIENCES

You can see from Figure 10.6 that if acidity is measured
directly in terms of proton concentration it is impossible to
distinguish between the hydrogen ion concentrations, and
therefore the acidity, of samples 3, 4 and 5.

This is because in this example the hydrogen ion
concentration has changed by five orders of magnitude. The
scale in Figure 10.6 therefore covers too great a range to
allow the small values to be distinguished. Suppose we plot
the pH of the samples as in Figure 10.7. In this case acidity
is measured in terms of pH and you can clearly distinguish
between the acidities of all the samples.

Considering that the full acidity range covers pH 1–14
(proton concentrations 0.1 M to 0.000 000 000 000 01M) it
should be obvious that if you were measuring the hydrogenion

Table 10.2 Variation of hydrogen ion concentration with pH

Figure 10.6
Plot of sample number against proton concentration.
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concentrations present, the scale would have to change by 14
orders of magnitude. In contrast, the pH scale varies by only
one order of magnitude. So how are pH values related to
hydrogen ion concentrations? If we write out the hydrogen
ion concentration in terms of powers of 10, we have

pH1=10-1 mol litre-1

pH3=10-3 mol litre-1

pH5=10-5 mol litre-1

 
Now it can be seen that we can quite easily deal with these
concentrations if we use logs (Example 10.17).

Example 10.17

It easier to use positive numbers rather than negative
numbers, so we define pH as given in Box 10.11.

Notice that in this case logarithms are being used to
condense a scale which covers many orders of magnitude.
This logarithmic transformation of the data is a common
means of condensing a scale and is especially relevant in
toxicity studies, where a drug may be tested against a cell
line over a wide concentration range. In this case, it is the

Figure 10.7
Plot of sample number against pH.
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log of the dose that has biological relevance. It is important
to realise that a pH scale is a log scale, so that if the pH
changes by one pH unit, the hydrogen ion concentration
actually alters by one order of magnitude. So, if in an
experiment the pH changes from pH 8 to pH 6, you change
the proton concentration 100-fold. This can have a vast
effect on the biological system you are studying.

Worked examples 10.4

(a) The following pH values were recorded. What
concentration of hydrogen ions was present?
(i) 5.0 (ii) 7.4 (iii) 10.2 (iv) 2.9

(b) What would be the pH for the following hydrogen ion
concentrations?
(i) 0.001M (ii) 1.1×10-10M (iii) 10-4M
(iv) 7.8×10-8M

Summary

Logarithms act as an inverse operation
for exponential functions and, although
they can have any base, they are often
found to the base ten or the base e. The
base e is especially relevant to
biological systems since it is used to
describe naturally occurring
exponential functions. These two forms
of log are related by the equation:

Logs to the base a can be calculated
using the equation:

It is worth remembering that loga a=1
and loga 1=0, since these can be used to
simplify equations. Equations containing
logs to the same base can be also
simplified using the following rules:

Logs can also be used to help calculate
unusual roots, since:

Logs have many applications in biology
and may be used to condense scales
which cover many orders of magnitude
such as in the case of pH, or they can be
used to convert power and exponential
functions into straight-line forms. The
exponential function:

Transforms to:

Hence a semi-logarithmic plot of log y
against x will give a straight line of
gradient log a and y intercept log t. If a
graph appears exponential it is
therefore worth trying to show the data
on a semi-log plot.
The power function:

transforms to:

Hence a log-log plot of log y against log
x will produce a gradient of n and a y
intercept of log a.



LOGARITHMIC FUNCTIONS 177

End of unit questions

1. Simplify the following equations.

(a) log x+5 log y (b) 2 log t–4 log t

(c) 0.5 log((9m)2) (d) log(a+b)+log(a-b)

2. Solve the following:

(a) log5x=3.7 (b) log(4m-3)=0.9

(c) ln x=1.8 (d) log 2x+3logx=2.2

3. The body must maintain its blood plasma pH at pH 7.4.
If this pH changes it can have severe effects on
metabolic reactions and the skeleton. A patient is
admitted to hospital with chronic kidney disease and
impaired renal acid excretion, and could have
developed chronic acidosis. If this is the case the blood
will be more acidic than pH 7.4.

(a) If the blood pH was normal, what should the
patient’s blood hydrogen ion concentration be in
mol litre-1?

(b) It is found that the blood plasma contains a
concentration of 6.3×10-8 M of hydrogen ions.

(i) Is the blood more acidic or more basic than it
should be?

(ii) What is the pH of the blood?
4. The Arrhenius equation (Section 10.5.1.1) is given by

where A is a constant for a particular reaction, T is the
temperature measured in kelvin and R is the gas
constant (8.314 JK-1mol-1). Ea is the activation energy
and k is the rate constant for that partcular reaction. This
can be transformed to a straight-line form by using a
logarithmic transformation. Transform the equation
using logs to the base 10.

5. The data in Table 10.3 were obtained for an enzyme-
catalysed reaction. Using the straight-line form of the
Hill equation, find the number of binding sites (n).

6. The level of ionisation of an acid and its conjugate base
is related to the pH of the system, and the relationship is
given by the Henderson—Hasselbach equation:

Most anaesthetics exist in two forms—a protonated,
charged form and an uncharged form. It is the uncharged
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form which is active since this can partition into
membranes.

An anaesthetic such as prilocaine has a pKa of 7.7. The
cell can be considered to be at about pH 7.4.

(a) What is the ratio of the charged form to the
uncharged form?

(b) If prilocaine entered the gastric tract where the
gastric juice is at pH 2, what would the new
distribution of base (B) to conjugate acid (BH+)?

(c) The effect of pH on the ionisation of the drug is an
important consideration since this affects uptake.
Would prilocaine be more or less effective at pH 2?

7. A drug is administered intravenously. The original
blood plasma concentration is C0 and the plasma
concentration at time t (min) is Cp. That fraction of the
drug which is eliminated per unit time is K (min-1). For
example, K=0.02 min-1 implies that 2% of the drug is
eliminated every minute. Elimination from the plasma
will be due to metabolism, secretion and uptake. The
concentration of drug at any given time is:

From the data in Table 10.4, find the following: C0, K and
the time taken for the drug to drop to C0/2.

Table 10.4

Table 10.3
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11.1 Introduction

Within the physical sciences there are many problems
which may have an exact answer, but in the life sciences
many of the questions asked may not have a fixed answer.
For example, how much does a three-week-old baby weigh?
If you go to a local maternity ward and weigh a few three-
week-old babies you will find that their weights vary, yet if,
for example, you produce baby clothes you need to have an
idea of how big a baby will be at the different stages of its
life. In this case it would be logical to weigh a number of
three-week-old babies and then use this data set to try and
estimate what the ‘average weight’ of a baby would be at this
age. The process of taking a few representative
measurements and then trying to assign parameters to the
whole group is termed statistics. There are a number of
questions which students should consider. For example,
what is meant by ‘representative data’ and how accurate is
the average with which you are trying to describe the whole
population? It is these and related questions that will be
considered in this chapter, the aims of which are:
 
(a) to introduce the normal distribution;

(b) to discuss means, modes and medians as average
measures of a population;

(c) to discuss sample variability and methods of measuring
it with variance, standard deviation and standard error
of the mean;

(d) to introduce the idea of confidence intervals and the t-
distribution.

11.2 Sampling

Let us return to the question posed in the Introduction: what
is the weight of a three-week-old baby? Obviously this will
vary, but we can determine an ‘average’ measure of weight
for three-week-old babies; the question is, what do we mean

11 Introduction to Statistics
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by average and how confident can we be that this will
represent the true weight of the next three-week-old baby we
meet? To answer these questions we need to understand
something about the range of data values that are possible
and the frequency with which any given weight occurs. This
is termed the distribution.

Before this distribution can be studied, however, the
original question involving the weight of three-week-old
babies needs to be clarified. For example, do male and
female babies have the same weight? Do babies from
different ethnic origins or from different countries have
comparable weights? What about breast-fed verses bottle-fed
babies? This perhaps highlights how important it is to
consider the question being asked, because in trying to find
an answer to it we will have to take some measurements,
and for these to be of use they must be representative of the
population in which we are interested. It may be that
questions such as these make us focus on the real problem;
for example, we may realise that what we are interested in is
actually three-week-old male babies, born in the UK. We
will assume that the other parameters can be ignored for the
purpose of this chapter.

It is obviously not possible to measure all the three-week-
old baby boys in the UK, so we will measure the weight of a
sample and use this to estimate the average weight of the
group or population. Rather than take all our measurements
at one hospital, it would be better to take ten measurements
from around the country to limit any regional variation.

Suppose all ten readings were exactly 5kg. In this case it
can probably be assumed that the weight of a three-week-old
British boy is 5kg. If the sample size is increased to 100 and
all the readings were still 5kg, then it is even more certain
that three-week-old boys are 5kg in weight. In other words,
the bigger the sample the more confident we would be that
our estimate was correct, since it is based on a bigger data
set. In reality, if we took ten readings they would be likely to
vary so we would have to calculate the average.

At this stage it is worth while looking at the data: if any
readings are very different from the rest, you should return
to them and check that they are correct. If so, then they must
remain; but there could be reasons for removing a data
point—for example, you may have made an error in taking
the reading in which case the measurement should be
repeated, or the object being measured may not be
representative of the sample in which you are interested.
When measuring three-week-old babies you find nine of the
ten readings are in the range of 3.5–5.5kg but one value is
recorded correctly as 0.6kg. On investigation it is found that
this baby was not carried to term but was born ten weeks

Ensure that you have
clearly defined the
investigation and that
the data are
representative of the
population

The larger the sample
size, the more
accurately the
population can be
modelled
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prematurely. Do you include this point? It is in the later
weeks of pregnancy that babies gain most weight, so the
0.6kg reading is not really representative of babies which are
term (usually taken to be 38–42 weeks). In this case it may
be better to clarify the question—What is the weight of
three-week-old male babies born in the UK after being taken
to term during pregnancy? A different reading can then be
taken to replace this non-representative value.

If we repeat the work and take another ten measurements,
we will probably get a different average. Both of these
estimates are correct and the bigger the sample the more
realistic they will be, but how sure are we that they
represent the whole population? To answer this question we
need to consider how variable the data are, to measure this
variability and to use this measure to inform us and other
workers how representative our estimate is.

11.3 Normal distribution

Ten male babies from around the UK were weighed at three
weeks and the frequency table was constructed (Table 11.1).

Table 11.1

Source: Based on centile charts provided by the Health Education
Authority (1993). Reproduced with kind permission from the
Health Education Authority.

This can be represented by the histogram shown in
Figure 11.1.

You can see that most of the readings are clustering
around a central value. If we were to increase the sample
size this would become even more apparent. For example,
suppose we take 100 measurements. In this case we will
decrease the interval in the frequency table so that we can
obtain a more accurate idea of the most common weight
(Table 11.2).

The data are illustrated in the histogram in Figure 11.2.  
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Figure 11.1

Table 11.2

Source: Based on centile charts provided by the Health Education
Authority (1993). Reproduced with kind permission from the Health
Education Authority.

Figure 11.2
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If we continued to increase the sample size and at the
same time we kept decreasing the weight interval, we
would end up with a smooth, bell-shaped curve as shown
in Figure 11.3.

This bell-shaped curve is typical of a normal distribution;
this form of distribution is obtained due to the natural
variability in the sample. This would be the usual
distribution used to approximate studies involving
measures of weight, length and other forms of continuous
measurement. The fact that data sets involving continuous
measurement will eventually form a normal distribution as
the sample size increases is known as the central limit
theorem. This is beyond the scope of this text but can be
found in most statistics books. The curve in Figure 11.3
shows the amount of variability present: the greater the
spread, the greater the variability. Data sets with this form of
distribution can be analysed by parametric tests. These tests
make assumptions about the data, based on the normal
distribution. Not all data sets are described by the normal
distribution and if plotted some data give differently shaped
curves instead of the bell-shaped curve Figure 11.3.
Analysis of these data sets must involve non-parametric
tests.

11.4 Means, medians and modes

If you have a data set and you want to describe the
population as a whole, you need to assign a number which
typifies the data. This kind of value is termed an average and

Figure 11.3
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exists in three main forms, those of the mean, median and
mode. These will each be described in turn. The median and
mean can also be used to gain insight into the symmetry of
the distribution. If the distribution is normal, it will be
symmetrical about the centre point: so if the graph was
folded in the middle, one half would lie on top of the other.

11.4.1 The arithmetic mean

The arithmetic mean, or mean, is obtained by taking the
sum of all the values and dividing it by the number of values
present. It is represented by the formula in Box 11.1:
 
Box 11.1 Equation of the mean.

 
The mean of a data set is usually represented by a letter with
a bar above it. The standard letter of choice is x, but the
letter may be defined with respect to the algebraic term you
are using. For example, the length of a dachshund is
denoted by the letter l (cm). Five dogs were measured and
the mean length could therefore be denoted by  The bar
above the letter denotes the mean. If a textbook is referring
to the true mean of the population, and not an
approximation calculated from a data set, the symbol µ is
used. The sample size is usually denoted by the letter n. In
textbooks you will often see the equation using a summation
sign, as shown in Box 11.2.
 
Box 11.2 Algebraic equation of the mean.

 

The equation in Box 11.2 can be read as the sum of all the
data points xi, where i ∈ {1, 2, 3,…, n} divided by the
number of data points, n.

If the data follows a normal distribution, the mean for the
population will be the value that occurs at the centre of the
curve. The main disadvantage with mean values is that they
are strongly influenced by outliers. Outliers are single
results which, if excluded from the calculation, would have
a significant effect on the result. As we discussed above, if a

The mean occurs at the
centre of a normal
distribution
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reading is erroneous or if it is known not to be
representative of the data set then it may be removed, but if
there is no obvious reason for the existence of the outlier
then it must remain. To remove such values simply because
they do not fit with what you expect should be frowned
upon, since the removal of such points is not only poor
science but is in fact fraudulent. The effect of outliers is
highlighted in Example 11.1.

Example 11.1

The weights of women in a class at a sixth-form college were
measured and the data in Table 11.3 were obtained. The
number of female students, n, was 11.

This is plotted in Figure 11.4; it can be seen that there is
what may be an outlier to the right of the histogram. This
was checked and found to be a valid reading. Therefore it
should not be removed.

Let us consider the actual values recorded in the above
example.

weights (kg)={54.2, 56.0, 58.1, 59.3, 60.2, 60.7, 61.0, 62.2,
63.0, 64.6, 70.1}

If we calculate the mean, we find the mean weight for the
group is 61.0kg; if the last point was removed, the average
would become 59.9kg. It can be seen that the outlier has
changed the mean by a considerable amount and this would
obviously become even more significant if the outlier was
further away from the main body of data or if the sample
size decreased. In fact, assuming that the women in the
group were of average height, the national mean would be
expected to be about 62kg and all of the weights measured
would be considered normal.

If the data are given in a frequency table (Chapter 8) as in
Example 11.1, then to calculate the mean you must multiply
each data point by its frequency of occurrence. This is
shown in Example 11.2.

Example 11.2

Nine herring were caught and the amount of vitamin D
present in each was calculated per 100g of herring. The
results are shown in Table 11.4 and plotted in Figure 11.5.
Find the mean.
 

The mean is strongly
influenced by outliers
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The frequency table shows all 12 samples and the sum of all
the values is obtained by summing the product of the
frequencies and the quantities:

This can be represented mathematically as in Box 11.3,
where fi represents the frequency of occurrence for the data
value xi. N is the number of classes or sets into which the
data have been placed.
 
Box 11.3 Sum of a data set recorded in a frequency table

 

Figure 11.4

Table 11.3
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To find the mean, we have to divide the sum by the number
of readings, which is simply the sum of the frequency
column in the table, i.e. , which in this case is 12. So to

find the mean from the frequency table, the equation in Box
11.4 is applied.
 
Box 11.4 Equation of mean if data set is recorded by frequency.

In Example 11.2 this is given by:

Figure 11.5

Table 11.4
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Notice that the final mean has been quoted to one significant
figure more than the original data. This seems to go against
the accurate representation of data (Section 5.3) since
usually the final result should only be quoted to the
accuracy of the least accurate piece of data. Means are an
exception to this rule. If a sample contains more than ten
data values and these values have a reasonably small
dispersion, the mean can be more accurate than a single
measurement, therefore leading to an increase in accuracy of
one significant figure.

Notice that Table 11.3 is a grouped frequency table and
therefore does not contain the actual readings. In that case
the data were recorded in ranges; to calculate the mean, the
mid-point of the range is multiplied by the frequency. For
example, the midpoint of the 54–55kg range is 54.5kg and
contains one data value giving (54.5×1). Since n=12 the
mean would be:

Using the true values the mean was calculated to be 61kg, so
it is noticeable that (as would be expected) some accuracy
has been lost by storing the data as ranges rather than as
accurate figures. Even so, grouped frequency tables are
useful if many data have to be stored.

11.4.2 The median and quartiles

The median is the central value in a list of ordered data
points. The first step to finding the median is to arrange the
data points in order of ascending or descending magnitude.
If there is an odd number of data points, the middle value is
the median. If there is an even number of points, then the
middle two data points should be averaged. The median is
also termed the middle quartile, since it is the midpoint and
an equal number of data values are found above and below
this central point. The median is obviously unaffected by
outliers but at the same time it makes no use of the actual
values represented by the data points. The upper and lower
quartiles are also often quoted. In the same way as the
median is calculated for the 50% mark, the lower quartile
corresponds to the 25% mark and the upper quartile
corresponds to the 75% mark. The interquartile range goes
from the lower to the upper quartile and so includes 50% of
the data values. When the data points are in order, the
median and quartiles can be found using the formula given
in Box 11.5.

If the data set contains
more than ten data
points, the mean can be
represented more
accurately than the data
values

The median divides the
data set with an equal
number of data points
above and below it

The median is
unaffected by outliers
but makes no use of the
actual data values
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Box 11.5

 

 

For data following a normal distribution, the median will
occur near the middle of the curve close to the mean.

The data points can simply be ordered in a line but it may
sometimes be useful to arrange them on a stem and leaf
diagram. This form of diagram is mainly of use if the data
points have only two significant figures that vary. The idea
is simply to form a ‘stem’ composed of the first of the
variable digits, and then the ‘leaves’ project out from the
stem. This is illustrated in Example 11.3.

Example 11.3

A study was performed to look at haemoglobin levels in the
blood of pre-menopausal women. Ten readings were taken
and are given in Table 11.5. Find the median and
interquartile ranges.

Table 11.5

Forming a stem and leaf diagram:

Stem Leaf
(first part) (second variable digit)
10 6
11 1, 8, 9
12 1, 3, 4
13 5
14 1, 2
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The stem and leaf diagram gives a quick way of ordering the
data points; furthermore, the leaf section of the diagram
acts like a bar chart in giving a visual indication of the
distribution. Using the equation from Box 11.5,

The median lies at (10+1)/2=5.5

so between data points five and six,

Lower quartile is

so it lies between data points two and three,

Since our data are only to one decimal place and only two
data points are being considered, this should be represented
as 11.5g(100ml)-1.

Upper quartile is (3×10+1)/4=31/4=7.75

so it lies between points seven and eight,

Using the above quartiles, we know that 50% of our data
points lie within the interquartile range, between 11.5 and
13.8g(100ml)-1. We also know that the middle value is
12.2g(100ml)-1.

11.4.3 The mode

This is the third commonly used measure of location and
distribution. The mode corresponds to the most frequently
occurring value. If the data are grouped, it is the group with
the highest frequency. Sometimes a data set can have more
than one mode; for example if there are two values which
occur with the same frequency and if these values have the
highest frequency of occurrence, then the data set has two
modes and is said to be bimodal. This term is often used to
describe graphs which have two peaks. The mode is not
often used in statistical analysis since it depends on the
accuracy of the data.

11.4.4 Representing the data with a box plot

A box-whisker plot is usually used to display large data sets.
A rectangular box is drawn, the ends of which represent the
upper and lower quartiles. A line is drawn in the box to
represent the mean. If the data set follows a normal

The mode is dependent
on the accuracy of the
data
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distribution the data will be symmetrical so the mean will
lie between the upper and lower quartiles in the middle of
the box. ‘Whiskers’ are drawn out of the box to record the
variability and these show the minimum and maximum
values found in the data set. Again, for a normal distribution
the whiskers would be of about the same length. An
example is given in Figure 11.6.

Figure 11.6
A box plot based on student test results.

11.4.5 Mean, median or mode?

As stated in Section 11.4.3, the mode is not widely used
since it is dependent on the accuracy of the measurements.
Both the mean and the median are used and both give useful
information regarding a data set. It is hard to say which of
these two measures is the more useful since they give
different perspectives on the data set. In general, though, if
the data follow a normal or symmetrical distribution, then
the mean is a better summary statistic. If the data contain
outliers or have a strongly skewed distribution, the median
may be useful since it is not affected by outliers or skewing.
A skewed distribution is one in which the right or left tail is
extended, as shown in Example 11.4.

Example 11.4

The number of caterpillars that were infesting a cabbage
patch was counted and the data are represented (Table 11.6



192 INTRODUCTORY MATHEMATICS FOR THE LIFE SCIENCES

and Figure 11.7) as the number of cabbages containing each
number of caterpillars from nought to five.

It can be seen that this distribution is not symmetrical
and cannot be described as a normal distribution. In this
case the mean is greater than the mode, so the graph is
said to be positively skewed. If the opposite were true
and the mode occurred on the far right of the histogram,
it would be negatively skewed. There are a number of
ways of telling whether a distribution is skewed.
Probably the best method is to prepare a histogram or a
box plot and look at the distribution. A second method is
to compare the distance between the mean and the lower
quartile with the distance between the mean and the
upper quartile. If the distribution is symmetrical these
two distances will be the same, but if it is skewed they
will not.

Worked examples 11.1

The protein contents were measured in nine common
cereals and are listed in g per 100g of material: {14.0, 10.2,
5.3, 11.0, 7.9, 7.4, 5.3, 9.0, 9.8}.

Figure 11.7

Table 11.6
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Find (i) the median, (ii) the mode and (iii) the mean for
the data set. Decide whether the data follow a normal or a
skewed distribution.

11.5 Measuring variability

The data set has been collected and the mean has been
calculated to give a value that is representative of the whole
population, but how representative of the population is the
mean? Suppose I take the weight of six adult Shih Tzu dogs
and at the same time a collegue weighs six different Shih
Tzu dogs. This provides two data sets:
 

Data set 1 (kg)={4.3, 5.6, 5.6, 5.8, 6.4, 7.1}
Data set 2 (kg)={5.2, 5.9, 6.0, 6.1, 6.6, 6.8}

So by using the above experiments we have two mean
values for the weight of an adult Shih Tzu. If the data sets
had been much bigger then the means would have been
closer, but in science there are usually limits on how much
data can be collected. In the above example we could
combine the two data sets to increase our sample size and
make the mean more accurate. This gives a mean of 6.0kg.
This highlights the fact that each time you collect data
values and take the mean it is likely to be different. The
bigger the data sets, the smaller the variation should be. So
how confident are we that the mean obtained from our data
set is a good estimate of the true mean of the population?
The accuracy obviously depends on the sample size and the
variability exhibited by the data points. The variability of
the data can be found by calculating the variance as
described in the following stages.

11.5.1 Variance

Once the mean has been calculated, it can be subtracted
from each individual value to see how far these values vary
from the mean. Since the mean is the central value for a
symmetrical distribution, some of these differences will be
positive and some negative. Furthermore, if you sum the
differences, this will equal zero:

 

If we take the modulus of each difference (Section 1.3) and
then sum them, this will give a measure of variability since

The accuracy with
which the sample mean
approximates the
population’s mean
depends on the sample
size and variability
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the bigger the sum, the greater the variability. This is called
the sum of the differences (Box 11.6).

Let us consider the Shih Tzu data from Section 11.5.
 
Box 11.6 Sum of the differences.

Data set 1:

Data set 2:

It can be seen from the above that the first data set has more
variability than the second and this agrees with what can be
seen by eye. The values in the first set are spread over a
greater range. This method can be improved by summing
the squares of the differences since this places more weight
on outliers that have distorted the mean. At the same time
the effects of small differences (less than one) are decreased.
This is termed the sum of the squared differences.
 
Box 11.7 Sum of the squared differences.

 

If we perform sum of squares analysis on the data sets:

Data set 1:
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Data set 2:

It can be seen that by using this method the difference in
variability between the two sets is emphasised. The
importance of this is perhaps emphasised still further if you
consider the two data sets in Example 11.5:

Example 11.5

(a) Mean=11, values=9, 13
Sum of differences=2+2=4
Sum of squares=4+4=8

(b) Mean=4, values=3, 3, 3, 5
Sum of differences=1+1+1+1=4
Sum of squares=4

The sum of differences was the same for both samples, yet
data set (a) contained much greater variability. This was
detected by the sum of the squared differences. Example
11.4 also raises another point. As yet, we have not
considered the size of the sample. This is taken into account
in the calculation of the variance.

If you have one data point, you have nothing with which
to compare it, so you have no idea what the variability of the
population is. If you have two data readings, then you have
one estimate of variability, the difference between the two
values. With three data points you have two estimates of
variability:
 

(Result2-Result1) and (Result3-Result1)

Notice that you do not include the value for (Result3-
Result2) since you already have an idea of how these vary
because you know how far each is from Result1. To
generalise, if you have n data points you have n–1
independent estimates of variability. Here n–1 is termed the
degree of freedom and is often seen quoted in statistical
tests. The variance is therefore measured by the formula in
Box 11.8.
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Box 11.8 Equation of variance.

 

Variance can be shown to be what statisticians call
unbiased, which means it is close to the real variance of the
population. The bigger the value, the greater the variation;
but notice that the units of the variance are the units of the
data values squared.

So for the Shih Tzu data we have:
Data set 1 has a sum of the squared differences of 4.4kg2,

so from Box 11.8:

Data set 2 has a sum of the squared differences of 1.6kg2, so
from Box 11.8:

If we return to Example 11.5, the effect of dividing by n-1 is
emphasised because of the difference in n:

(a) Mean=11, values=9, 13
Sum of differences=2+2=4
Sum of squares=4+4=8
Variance=8÷(2–1)=8÷1=8

(b) Mean=4, values=3, 3, 3, 5
Sum of differences=1+1+1+1=4
Sum of squares=4
Variance=4÷(4–1)=4÷3=1.3

11.5.2 Standard deviation

Variance gives a good measure of variability but in science
we often want to relate this variability to our mean or data
values. The units of the variance are squared because the
equation contains the sum of the squared differences.
Because the units are squared, the variance cannot be
compared directly with the original data. To overcome this
problem the square root can be taken (Box 11.9). This is
termed the standard deviation, and if taken from your data
can be represented by the symbol s. If you are referring to

The variance gives an
estimate of the
variability within the
population

Variance cannot be
compared directly with
the data set because of
differences in the units
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the true deviation, i.e. that seen for the population as a
whole, it tends to be denoted by σ.
 
Box 11.9 Equation of standard deviation.

Standard deviation=(variance)1/2

 
You will often see means quoted, plus or minus the standard
deviation. This is of relevance because the standard
deviation can be related to the normal distribution.
Statisticians can show that if the population has a normal
distribution, then 68% of the population will occur within
one standard deviation of the mean. Within two deviations
of the mean you will find approximately 95% of the
population and within three deviations 99% of the
population. This is shown in Figure 11.8.

The standard deviation
measures the variability
in the data

Figure 11.8

Returning to our Shih Tzu data:
Variance of data set 1=0.86kg2 so the standard deviation

Variance of data set 2=0.32kg2 so the standard deviation
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The mean for data set 2 is 6.1kg; hence from these data,
assuming a normal distribution, which is reasonable since
weight is a continuous measure, we expect that 68% of all
adult Shih Tzus will have weight 6.1±0.6kg and 99% of the
Shih Tzu population would have a weight of 6.1±1.7kg. To
calculate three times the standard deviation, we have gone
back to the more accurate form of the standard deviation
(0.57kg) and rounded to one decimal place after
multiplication (Section 5.4).

11.6 Sampling distribution of the mean

The variance and standard deviation give a measure of
variability for a data set that has a normal distribution;
for example, we know that within one deviation of the
mean we should find 68% of the population. But we saw
in Section 11.5 that each time we sample the population
we are likely to get a different mean. The bigger the
sample size, the smaller the variation between means—
but how confident are we that the mean we have
measured really represents the true mean of the
population? For example, suppose we have a population
of four data points and we take a sample of two readings
as shown in Example 11.6.

Example 11.6

Population={3, 4, 5, 6}
Possible samples={3, 4}, {3, 5}, {3, 6}, {4, 5}, {4, 6}, {5, 6}
Possible means={3.5, 4, 4.5, 4.5, 5, 5.5}

The frequency of occurrence for each mean is shown in the
histogram in Figure 11.9. Although this is a very small
sample it should be apparent that the distribution is
symmetrical.

If we could find all the possible means for a population
they would give a normal distribution, and since this
form of distribution is well characterised we can use
statistics to look at the expected dispersion of the mean.
This is similar to the way we looked at how the sample
varied by using the standard deviation. In the case of the
standard deviation we found that within two deviations
of the mean we should find 95% of all the data points.
What we now want is to find the mean and say how
confident we are, given the data set we have analysed,
that the true mean of the population lies between two
values. To do this we need to find the standard error of
the mean.

The distribution of the
mean is normal
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11.6.1 Standard error of the mean

The standard error of the mean (SEM), or standard error,
describes the uncertainty about the true value of the
population’s mean, given that the calculated mean will vary
between samples. It is simply obtained by dividing the
standard deviation by the square root of the sample size as
shown below in Box 11.10.

Box 11.10 The equation for the standard error.

SEM=(variance/n)1/2=standard deviation÷vn

The SEM therefore decreases as the sample gets bigger, i.e.
as the uncertainty decreases.

So for data set 1 of the Shih Tzu weights, we have
standard deviation=0.94kg, so

For data set 2 of the Shih Tzu weights we have standard
deviation=0.57kg, so

 

It can be seen that in the second data set, where we had less
variability, we are more confident that the calculated mean

Figure 11.9

The standard error of
the mean gives an
estimate of the expected
variability of the sample
mean
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represents the true mean since the SEM is smaller. We can
say that there is a 68% chance that the true mean is within
one SEM of the calculated mean.

The mean for the first Shih Tzu data set was 5.8kg so we
are 68% certain that the true mean for the population of
adult Shih Tzu weights is 5.8±SEM=5.8±0.38kg. To give a
range in which we are 95% certain to find the true mean, we
use the following equation:

Worked examples 11.2

The protein content was measured in nine common cereals.
The protein contents are listed in g per 100g of material:
{14.0, 10.2, 5.3, 11.0, 7.9, 7.4, 5.3, 9.0, 9.8}.

Find (i) the standard deviation for the data set and (ii) the
standard error of the mean.

11.7 Confidence levels and the t-distribution

Whenever a mean is calculated there should be an estimate
of variability with it, since to appreciate the mean fully we
need to know how confident we can be that the population’s
true mean lies close to this value. If the SEM is given, we
can estimate a confidence interval for the mean. We saw in
Section 11.6 that there is a 68% chance of finding the true
mean within one standard error of the mean. This range is
therefore called the 68% confidence interval. It is usual to
try to be a little more certain than this, so the 95%
confidence interval is usually calculated, i.e.:

This is a reasonable estimate, but throughout this chapter so
far we have assumed that the data set follows a normal
distribution. Even if the population has a normal
distribution, to ensure that the data representing this
population have the same distribution you need a large
number of values, at least 30 and preferably more. If the data
set contains only a few values, as in the case of Shih Tzu
weights where we only had six data points, then although
the population as a whole is normally distributed it is likely
that the data set does not have a normal distribution. For
example, look again at Figure 11.5. Although this was
treated as a normal distribution, it looks as though the data
are skewed.

If you have less than 30 data values it is usual to use a t-
distribution. This is designed so that as the number of data

For samples with less
than 30 data points the
t-distribution should
be used
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values decreases ‘t’ increases to take account of the
increasing uncertainty in your calculated mean. If you
multiply the SEM by the appropriate ‘t’ value for the sample
size, you can find the 95% confidence range as above. These
values are listed in Table 11.7. Notice that the ‘t’ value
chosen depends on the degree of freedom for your sample,
which corresponds to n–1.

Let us consider the first set of data for the Shih Tzu
weights. We calculated that the SEM was 0.38kg and the

Table 11.7

mean was 5.8kg. Since we have a small sample size we will
work out the 95% confidence interval using the t-
distribution. The sample size was six, so the sample has five
degrees of freedom. From the above table the ‘t’ value we
require to calculate the 95% interval is therefore 2.571.

95% confidence interval=5.8±(0.38×2.571)
=5.8±0.98kg

We are therefore 95% certain, based on this data set, that the
true mean of the population lies between 4.82kg and 6.78kg.

Worked examples 11.3

The protein content was measured in nine common cereals.
The protein contents are listed in g per 100g of material:
{14.0, 10.2, 5.3, 11.0, 7.9, 7.4, 5.3, 9.0, 9.8}.

Find the 95% confidence interval for the mean.
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Summary

Statistics involves trying to derive
parameters which describe a population
from a limited set of data points. These
data points are assumed to be
represenatative of the population. There
are three main averages used to describe
a population: the mean, the median and
the mode.
The mode represents the most frequently
occurring data point and is not widely used
since it depends on the accuracy of the data.
The median is the middle value in the data
set when the data points are arranged in
order. If the data set contains an even
number of values the median is obtained by
averaging the two centre values. There are
50% of the data points on either side of the
median; the lower quartile is the 25% mark
and the upper quartile the 75% mark (Box
11.11). The interquartile range runs between
the upper and lower quartiles and contains
50% of all the data points. The median is
not affected by outliers but does not use the
numerical value represented by the data
points.
The mean is a good statistical summary for
symmetrical data distributions and is
obtained by dividing the sum of the data
points by the number of data points.
The mean and median can give different
perspectives on a data set and both can be
useful. If the data set contains more than ten
points and is not too variable, the mean can
be quoted to one significant figure more than
the data values.
 
Box 11.11

 

If the data follow a symmetrical bell-
shaped curve the median, mode and
mean all occur in the middle, but if it is
skewed the values will be separated. The
skewing can be seen by comparing the
difference between the mean and the
upper quartile with the difference
between the mean and the lower quartile.
For a symmetrical distribution these will
be the same.
The variability of the data set can be
estimated by the variance. This is thought
to give a good approximation to the
variability of the population as it is
unbiased. To relate the variance to the data,
the square root must be taken and this
provides the standard deviation: 68% of all
the data points occur within plus or minus
one deviation from the mean, 95% occur
within two deviations and 99% within
three (Box 11.12).
 
Box 11.12

 

Standard deviation=�variance

 

Each time a population is sampled, a
different mean may be obtained. The means
for a population follow a normal
distribution; therefore the potential
variability in the mean, given the data set
from which it was derived, can be calculated
by finding the standard error of the mean,
SEM (Box 11.13). It is 68% certain that the
population’s true mean will lie within plus
or minus one SEM from the mean. 95%
confidence can be obtained using the
following equation:
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End of unit questions

 
1. The birth weight of 15 babies was recorded and the data

set is shown below in kg:

{3.9, 3.7, 4.0, 3.2, 3.7, 2.9, 4.4, 2.7, 3.0, 4.2, 4.2, 2.6, 3.8,
3.3, 3.7}

(a) Find the mean, median and mode.
(b) In what weight range would you expect to find 95%

of newborn babies?

2. The forced expiratory volume (FEV1) is a diagnostic
measure used in respiratory medicine to determine if a
patient is asthmatic. The FEV1 will vary with age so the
result is displayed as a percentage of the value you
would expect to obtain from a healthy individual. The
following values were obtained from men suffering
from pneumoconiosis:

{48, 70, 83, 54, 62, 94, 67, 74, 86, 102}

(a) Produce a box plot and decide if the data follow a
normal distribution.

(b) What is the mean for the above data? Give the 95%
confidence interval for your answer.

3. Monolayer tanks can be used to mimic a membrane
environment. A peptide or drug is placed in the tank
below a single layer of lipid. If the drug or peptide
inserts into the lipid it causes the pressure to increase
and this can be detected. Two peptides were tested to
see if they could insert into the lipid. The results are
given in Table 11.8.

(a) Calculate the mean pressure change for each
peptide.

(b) Give the 95% confidence interval for the means.
 

Box 11.13

95% confidence interval
=mean±(SEM×1.96)

If there are less than 30 data points, then
although the population being modelled
may have a normal distribution, the data
themselves are unlikely to have a normal
distribution because there are too few
values. In this case the t-distribution can be
used. To find the 95% confidence interval,
the SEM is multiplied by the correct ‘t’
value from Table 11.7 This value depends
on the number of data points in the sample.
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Table 11.8

Source: Adapted from M.J.Campbell and D.Machin (1993),
Medical Statistics, 2nd edn. New York: John Wiley.
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Worked examples

Chapter 1

Examples 1.1

(i) 2×-5=-10

(ii) -6×-3=18

(iii) 3-5=-2

(iv) -2-6=-8

(v) -3-(-4)=-3+4=1

(vi) -6÷-6=1

(vii) 6÷-2=-0.5

Examples 1.2

(i) -2-|-2|=-2-2=-4

(ii) |3-5|=|-2|=2

(iii) 1-4-|3|=1-4-3=-6

(iv) 3+|2-3|=3+|-1|=3+l=4

Examples 1.3

(i) 3-9÷3=3-3=0

(ii) 4×(2-3)=4×-1=-4

(iii) ((4+6)÷5+3)×3=(10÷5+3)×3
=(2+3)×3=5×3=15

(iv) 10×5+4×5=50+20=70

(v) ((15-5)+2×2)÷7=(10+2×2)÷7
=(10+4)÷7=14÷7=2

Examples 1.4

(i) 18×32÷9=18÷9×32=2×32=64

(ii) 55÷13×26=55×26÷13=55×2=110

(iii) (16+17)÷11÷6=33÷11÷6=3÷6=0.5

Appendix Solutions to Problems
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Chapter 2

Examples 2.1

(i)

(ii)

(iii)

(iv)

Examples 2.2

(i) 168 (ii) 198 (iii) 54 (iv) 792

Examples 2.3

(i) 1/3+7/8=8/24+21/24=29/24 or 1

(ii) 1/2-4/10=5/10-4/10=

(iii) 5/7-10/12=60/84-70/84=-10/84=-

(iv) 3/4×2/7= =

(v) 4/11×22/30=4/1×2/30=2/1×2/15=

(vi) 6/13÷1/2=6/13×2/1=

(vii) 2/3÷1/9=2/3×9/1=2/1×3/1=6/1=6

Examples 2.4

(a) 1– = . Therefore 3/10×100=30% remains

(b) (i) 75% (ii) 66.6% (iii) 50% (iv) 52.94% (v) 92.86%

(c) (i) 16 (ii) 7.7 (iii) 13.28 (iv) 11.16

Examples 2.5

(a) (i) A=20 ml, B=40 ml, C=40 ml

(ii) A=50ml, B=50ml

(iii) A=10ml, B=40ml, C=30ml, D=20ml

(iv) B=33.3ml, C=16.7ml, D=50ml

(b) (i) A:B:C in the ratio 6:1:5

(ii) A:B in the ratio 1:3

(iii) A:B:C in the ratio 13:6:3

(iv) A:B:C in the ratio 5:2:4

(c) (i) 4ml (ii) 2ml
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Chapter 3

Examples 3.1

(i) t-(2t+c)=t-2t-c=-t-c

(ii) p+c-p=c

(iii) xy+2x-y+4xy=5xy+2x-y

(iv) z+(t-c)=z+t-c

(v) -2(3-y)=-6+2y=2y-6

Examples 3.2

(i) Common factors are 2 and 3 so highest common factor
=2×3=6

(ii) There are no common factors

(iii) Common factors are 2 and 11 so highest common factor
=2×11=22

(iv) Common factors are 2, 3 and 3 so highest common
factor=2×3×3=18

(iv) Common factors are 3, 3 and 3 so highest common
factor=3×3×3=27

Examples 3.3

(i) 2ab÷(ab+3ab)=2ab÷ab(l+3)=2÷(1+3)
=2/4 or 

(ii) 3x÷(6-18x)=3x÷3(2-6x)=x÷(2-6x) or
x/(2–6x)

(iii) ab÷(ab+a)=ab÷a(b+1)=b÷(1+b) or b/(l+b)

(iv) 3a/6b×3b/a=3/6b×3b/1=3/2b×b/1
=3/2×1/1=3/2 or 1

(v) 3/2×t/7=3t/14

(vi)

    

(vii)     

Examples 3.4

(i) y=2/x so x=2/y
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(ii) y=7/(x-3) so y(x-3)=7 so x-3=7/y so
x=(7/y)+3

(iii) y=(x–6)-2 so y+2=x-6 so x=y+2+6 so
x=y+8

(iv) 2=3xy so y=2/(3x)

Examples 3.5

(a) (i) -1≤x<3 (ii) 6<x<11 (iii) 0<x≤8
(iv) 4≤x≤5

(b) (i) x-3>2 so x>5

(ii) 6-x>4 so -x>-2 so x<2

(iii) 7+x≥6 so x≥-1

Examples 3.6

(i) k1[A][B]=k-1[P][Q]; vf=k1[A][B] and vf=vr so
vr=[P][Q]

(ii) vf=k1[A][B] so k1= vf/([A][B])
=mol litre-1 min-1/(mol litre-1×mol litre-1)

=min-1/(mol litre-1)=mol-1litre min-1

Chapter 4

Examples 4.1

(i) 53=5×5×5=125

(ii) 2-5=1/(2×2×2×2×2)=1/32

(iii) (-5)2=25

(iv) (-2)5=-(25)=-32

(v) 1.11479=2.6572

(vi) (-5.73)5=-(5.73)5=-6176.9

Examples 4.2

(a) (i) Add indices to give 22+2=24=16

(ii) Add indices to give 23+(-3)=20=1

(iii) Combine indices to give

22+4-(-3)+(-4)=22+4+3–4=25=32

(iv) Subtract indices to give 32-5=3-3=1/27

(vi) Subtract indices to give 10611-8=1063=1191016

(b) (i) 611 (ii) z3 (iii) c0=1 (iv) a-5=1/a5 (v) c7
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Examples 4.3

(a) (i) 24=16 (ii) 2-9=1/29=1/512 (iii) 410=1048576

(b) (i) a36 (ii)e-8 (iii) e6

Examples 4.4

(a) (i) 2.39×102

(ii) 3.6×10-3

(iii) (2×102)×(3×10-6)=6×10-4

(iv) 9.73 or 9.73×100

(v) (1.792×103)×(1.792×10-4)=1.7922×10-1

=3.211×10-1=0.3211

(b) (i) 10×10-6 or 1×10-5 litres

(ii) 10×10-3 or 1×10-2 ml

(c) (i) 1×104

(ii) (10×10-6)×(1×104)=10×10-2

=1×10-1 litre=0.1 litre or 102 ml

(iii) Four

Chapter 5

Examples 5.1

(a) (i) 10% (w/v) (ii) 6.67% (w/v) (iii) 15% (w/v)

(iv) 10% (w/v)

(b) (i) 5(5+48)=9.4% (w/w)

Examples 5.2

(i) 20 mM=20×10-3 mol litre-1

1 mol=58.5 g so 20 mmol=58.5×(20×10-3)
=1.17 g so 20 mM=1.17 g litre-1

(ii) 1 litre of 20 mM requires 1.17 g, 5 ml of 20 mM requires
(5/1000)×1.17=5.85mg

(iii) 1 mol=58.5 g; 1 µmol=58.5 µg

Examples 5.3

(a) (i) 23.3 (ii) 129 000 (iii) 0.003 43 (iv) 267000

(b) (i) 45.096 (ii) 0.465 (iii) 0.001 (iv) 1289.632

Examples 5.4

(i) 12.354×3.23=39.90342=39.9 (3 significant figures)

(ii) 5+4.35×2.3=15.005=20 (1 significant figure)
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(iii) 3.00×2.34÷4.001=1.75456136=1.75 (3 significant
figures)

Chapter 7

Examples 7.1

(a) f(4)=2×42-5=27
f(0)=2×02-5=-5
f(-3)=2×(-3)2-5=13
f(5) lies outside the domain so is not defined for this
function.

(b) (i) f(x): (3x-2)÷6

(ii) f(x): 8-5x2

Examples 7.2

Examples 7.3

(i) Gradient=m=(5-2)÷(2-0)=3/2=1.5
Substituting into the equation of a straight line for the
ordered pair (0, 2),   
2=(1.5×0)+c so c=2.   
The equation is therefore y=1.5x+2

(ii) Substituting into the equation of a straight line:   
4=4m+3 so m=(4-3)÷4=0.25   
The equation is therefore y=0.25x+3 

Examples 7.3

(i) t-3=0 so t=3

(ii) 5a=2a+3 so 3a=3 and therefore a=1
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(iii) x+9=2 so x=-7

(iv) 2=1/(x-7) so 2(x-7)=1 so x=1/2+7=7.5

Examples 7.5

(i) Absorption is proportional to concentration; therefore
three-fold dilution would decrease absorption three-
fold to 0.2 units

(ii) Absorption is proportional to path length, so doubling
the path length doubles the absorption to 1.2 units

(iii) The increase in path length and decrease in concen-
tration cancel each other out so the absorption remains
at 0.6 units

Examples 7.6

(b) y=[S]/v and x=[S] so these values would be plotted.

(c) The gradient m=1/Vmax and so can give Vmax since
Vmax=1/m. The y intercept is Km/Vmax. Vmax is known
(Vmax=l/m) so Km can be found.

Chapter 8

Examples 8.1

(i) x2+5x-6=(x-1)(x+6) so x=1 or -6

(ii) -2x2-x+3=(2x+3)(-x+1) so x=1 or -1.5

(iii) x(1-x)=x(2x-1) so x-x2-2x2+x=0
-3x2+2x=0 so x(-3x+2)=0 so x=0 or x=2/3

Examples 8.2

(i) Using the formula with a=2, b=-6, c=4 we find the
discriminant=4 so there are two roots, x=2 or 1

(ii) Using the formula with a=1, b=4, c=-8 we find the
discriminant=48 so there are two roots, x=1.46 or
-5.46

(iii) Using the formula with a=2, b=-7, c=3 we find the
discriminant=25 so there are two roots, x=3 or 0.5
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Chapter 9

Examples 9.1

(a) (i) 4x+x/2=(9x)/2 and 4x+(-x)=3x so
e4x (ex/2+e-x)=e9x/2=e3x

(ii) 8x×1/2=4x so (e8x)1/2=e4x

(iii) x-2x=-x and 7x-2x=5x so
(ex+e7x)/e2x=e-x+e5x

(iv) ex-(e3x)2=ex-e6x

(b) (i) 3.32 (ii) 0.50 (iii) 1.22 (iv) 1/e3=e-3=0.05

Examples 9.2

(i) A graph of y=ex and y=2x+3 intercept at
approximately x=1.9 as shown in Figure A.1, so this
is the solution.

(ii) The graph of y=ex and y=6.7 intercept at
approximately x=1.9 so this is the solution.

(iii) The graphs of y=ex and y=e-x+10 intercept at
approximately x=2.32 so this is the solution.  

Chapter 10

Examples 10.1

(i) log10 100=log10 102=2

(ii) log10 107=7

(iii) log10 1=log10 100=0

(iv) log10 102.3=2.3

Figure A.1
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Examples 10.2

(i) log10 10=log10 101=1

(ii) log2 8=log2 23=3

(iii) log5 125=log5 53=3

(iv) log4 16=log4 42=2

Examples 10.3

(a) (i) log 2+log 6=log(2×6)=log 12

(ii) 3 log 2-2 log 4=log 23-log 42=log(8/16)=
log 0.5

(iii) 2 log a-log 6=log(a2/6)

(b) (i) log 26=6 log 2=6×0.3=1.8

(ii) log 12=log(2×6)=log 2+log 6=0.3+0.78=
1.08

(iii) log 36=log 62=2 log6=2×0.78=1.56

(iv) log 3=log(6/2)=log 6-log 2=0.78-0.3=0.48

Examples 10.4

(a) pH=-log10 [hydrogen ions concentration]

(i) pH5=10-5 M=10µM

(ii) pH 7.4=10-7.4 M=4.0×10-8 M=40 nM

(iii) pH 10.2=10-10.2 M=6.3×10-11 M=63 pM

(iv) pH2.9=10-2.9 M=1.26×10-3 M=1.26 mM

(b) Using the equation in question (a):

(i) pH=3 (ii) pH=9.96 (iii) pH=4 (iv) pH=7.1

Chapter 11

Examples 11.1

(i) If the data are arranged in order the median
=(n+1)/2=5
Data set={5.3, 5.3, 7.4, 7.9, 9.0, 9.8, 10.2, 11, 14}
The fifth data point is 9.0 g per 100 g of material so
this is the median.

(ii) Mode=5.3 g per 100 g of material

(iii) Mean=79.9/9=8.9 g per 100 g of material
The median and mean are very close; hence even
though the mode occurs at one end of the data set, this
would appear to have a normal rather than a skewed
distribution.
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Examples 11.2

(i) Standard deviation=2.79

(ii) Standard error of the mean=0.93

Examples 11.3

Using Table 11.7, for n-1=8,

End of unit questions

Chapter 1

1. (a) 20×18.5×5=20×5×18.5=100×18.5=1850

(b) 0.6×12.5×5×8=12.5×8×0.6×5
=100×0.6×5=60×5=300

(c) 32×5÷8=32÷8×5=4×5=20

2. (a) 4-7=-3

(b) -3-(-2)=-3+2=-1

(c) 9+23–47-2=-47-2+9+23
=-49+9+23=-40+23=-17

3. (a) a×-b=-ab

(b) a×-b×-c=abc

(c) -c×-b=cb

4. (a) (6-2)÷4+7=4÷4+7=1+7=8

(b) 22×7÷11+6–3=22÷11×7+6-3
=2×7+6-3=20-3=17

(c) (((24-14)-5×6)-5)+25-40÷8
=((10-5×6)-5)+25-40÷8
=((10-30)-5)+25-40÷8
=(-20-5)+25-40÷8
=-25+25-40÷8
=-25+25-5
=-5

5.

Estimate 10 16 19 23

Error -6.3 -0.3 2.7 6.7
Absolute error 6.3 0.3 2.7 6.7
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6. (a) 0.000014

(b) (0.037×0.037×0.01)÷(1-0.037)

7. (a) 1.7685

(b) (20 000×(273÷310)+3000×0.024)÷10 000

Chapter 2

1. (a) 1/2+5/7=7/14+10/14-17/14 or 1

(b) 2/6-1/4-4/12-3/12=

(c) 6/7×2/3=2/7×2/1=

(d) 1/9÷4/3=1/9×3/4=1/3×1/4=

2. (a) A=25%, B=62.5%, C=12.5%

(b) A=12.5%, B=29.2%, C=58.3%

3. (a) 1.446 m (b) 11.24%

4. (a) Corn=23.3%, wheat=7.78%, barley=38.89%

(b) Corn=46.67 acres, wheat =15.56 acres,
barley=77.78 acres

5. 40% secreted, so 0.28×60=16.8% metabolised, and
43.2% remains.
Secreted: metabolised: remaining gives a ratio of 40:
16.8:43.2.

6. Chloroform=156.25ml; methanol=84.14ml; water=
9.62ml

7. (a) Every 14.3 days the sample decreases by 50% so
we have the following:

Hence the sample decays to 6.25% in
14.3×4=42.9 days.

(b) Using the same principle as in section (a), 99.6%
has decayed so 11226×0.4/100=44.9Bq remain.

8. (i) 3.09 µm or 2.91 µm (ii) 3.3 µm or 2.7 µm

(iii) 3.24 µm or 2.76 µm (iv) 3.45 µm or 2.55 µm

(v) 3.03 µm or 2.97 µm
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9.

10. Myristic acid=6.43 µM; palmitic acid=17.14 µM;
oleic acid=25.71 µM

Chapter 3

1. (a) The units are min-1.

(b) The two rate constants cannot be compared since
the units are different.

2. Vmax=0.000 021 mol litre-1 min-1

3. Substituting into the equation gives 70253 Da.

4. (a) Substituting into the equation gives 1.769 (Note: Vg

and Vf are given in cm3 and the equation requires
mm3, where 1 cm3=1000 mm3; also Vg=23 cm3).

(b) α=0.019

5. (a) (i) w<30 (ii) 30≤w<35 (iii) 35≤w<40
(iv) w≥40

(b) Group (ii): [30, 35); Group (iii): [35, 40)

6. If x represents the number of visits in one hour:
no visits, x=0 [1, 5), 1≤x<5
ten or more visits, x≥10 [5, 10), 5≤x<10

7. Ki=0.000 006 5 mol litre-1

Chapter 4

1. 13 orders of magnitude

2. (a) Diameter=4×10-6 m, therefore
radius=2×10-6 m
Substituting into the equation:
volume=3.35×10-17 m3

(b) Volume decreases by 0.35×(3.35×10-17)
=1.17×10-17 so new volume is:
3.35×10-17–1.17×10-17=2.18×10-17 m3

Transposing the formula to make r the subject, we
get r=1.73×10-6 m or 1.73 µm so the diameter is
3.46 µm.
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3. (9×1012)÷(3.2×10-2)×(6.02×1023)=1.69×1038

4. 1:h2/3 is 35:5.24 or 6.68:1 so the ratio holds.

5. (h2)1/3=h(2×1/3)=h2/3

6. (1×10-12)+(4×10-12)+(2×10-10)=2.05×10-10 s.

7. (a) 50 nucleotides s-1 so 1.062×103 nucleotides take
1.062×103÷50=21.24 s

(b) One mistake every 100 bases so (1.062×103)
÷(1×102)=1.062×101 per mutant bacterium.

(c) One mistake in 105 bases, therefore (1×105)
÷(1.062×103)=94.16 so the gene would have to
be transcribed approximately 94 times to expect
one mistake.

8. (1×10-14)÷(5×10-10)=(1÷5)×(10-14÷10-10)
=2×10-5 mol litre-1

Chapter 5

1. (a) Glucose=0.4% (w/v), potassium dihydrogen-
phosphate=1% (w/v), magnesium sulphate=
0.2% (w/v), citric acid=0.2% (w/v)

(b) Glucose=4/180=0.022 M or 22 mM, potassium
dihydrogenphosphate=10/136=0.074 M=
74 mM, magnesium sulphate=0.2/120 M=
1.7 mM, citric acid=2/192 M=10.4 mM

2. Tryptone=1.7×(30/100)=1.7×0.3=0.51 g
Peptone=0.3×0.3=0.09 g or 90 mg
Glucose=0.25×0.3=0.075 g or 75 mg
Sodium chloride=0.5×0.3=0.15g

3. 3 litres of 0.5 M acid requires 3×0.5=1.5 mol of
material   
1 mol=36.5 g so 1.5 mol=54.75 g.   
The stock contains 25 g of acid in each 100 g of stock,
i.e each gram only contains 0.25 g of acid. We therefore
require: 54.75÷0.25=219 g of stock to get the required
amount of acid.
Density=mass/volume so 1.15g ml-1=219 g/volume
We therefore require 219÷1.15=190.4ml of acid.
This can be made up to 3 litres.

4. (a) 23.48 g in 180 ml, so there is 13.04 g in
100 ml=13.04% (w/v)

(b) (23.48÷238.31)×(180÷1000)=0.018 M or
18 mM
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5. 0.4 M=0.4×155.2=62.1 g litre-1 or 6.25 g per 100ml
=6.21% (w/v), so the stock can be used in diluted form.
The reaction requires (0.05/6.21)×100=0.008ml of stock
solution made up to 100ml.

6. (a) 1 M=40 g litre-1 so 0.03 M=0.03×40=12 g
litre-1=3.6g in 300ml

(b) 3.6g in 300ml=1.2 g in 100ml=1.2% (w/v)

7. To convert 5 M to 5 mM there needs to be a 1000-fold
dilution; therefore take 1.5 ml and make up the volume
to 1500ml.

8. Density=mass/volume so 0.79 g ml-1=mass/100 ml
so mass=0.79×100=79 g   
1 mol=46g so 79g=1.72 mol 

9 (a) 1 mg ml-1=1g litre-1 so
molarity=1/75.07=0.013 M=13 mM

(b) (10×10-6÷0.013)×10=0.0077 ml or 7.7 µl
need to be made up to 10ml.

Chapter 6

1. Relative preferences of lysine (Fig. A.2) are:
Helix=1.09/3.35=0.32
Sheet=0.42/3.35=0.13
Turn=1.84/3.35=0.55

2. (a) The bar chart (Fig. A.3) shows ornithine
decarboxylase (1), cytochrome c (2), aldolase (3),
tyrosine aminotransferase (4) and RNA
polymerase (5).

(b) A bar chart was chosen since the data describe
discrete data sets. Notice that three of the five
points cannot be distinguished therefore consider
using two graphs.

Figure A.2
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3. (a) The bar chart is shown in Figure A.4.

(b) The groups correspond to classes and show data
between class boundaries. For example, 1 would
represent 39.5 (?) to 60.5, 2 is 60.5 to 70.5 etc.

4. The two variables when plotted give a straight line
(Figure A.5). This is called a linear relationship and is
described in Chapter 7.

5. See Figure A.6.

Figure A.2
(b) Preference of lysine for three structures.     

Figure A.2
(c) Preference of three amino acids for
secondary structures.

Figure A.3
Comparison of degradation rates.
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Figure A.4

Figure A.5

Figure A.6
Phospholipid composition of the E. Coli inner membrane.
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Chapter 7

1. Yes, since the domain is {1, 2, 3, 4, 5} and the range is
{0, 1}. The function maps each member of the domain
onto one point in the range.

2. (a) The equation would be a special linear equation
of the form:
y=mx
Using the data given, m=0.45÷0.005=90
absorption units mol-1 litre-1

so y=90x

(b) y/x=90 so 0.2/x=90 so x=0.2/90=2.2 mM

(c) No. The level of absorption is dependent on the
wavelength and the information given is for
adsorption at 540 nm, not 500 nm.

3. (a) A ∝ c and A ∝ l, so a three-fold increase in
concentration gives a three-fold increase in
absorption but halving the path length halves the
absorption. The net effect is therefore a 1  -fold
increase in absorption: A=0.72.

(b) The path length is twice that used in the initial
experiment so the absorption is twice that
expected. An absorption of 0.06 unit would be
obtained with path length 1 cm. An absorption of
0.06 would correspond to a concentration of:
(0.06/0.48)×6–0.75% (w.v)

(c) A 1M solution would have an absorption equal to
the molar extinction coefficient so:
1 mol litre-1 has absorption 12200
The 2% (w/v) solutioin has absorption 0.48
So the concentration is: 0.48/12 200=38.3 µM
Alternatively,
A=εcl
so 0.48=12 200×c×1
c=0.48/12 200=38.3 µM

(d) If you could choose any wavelength, I would
choose 260 nm since this absorbs most strongly. In
practice this wavelength may lead to problems
because this lies in the UV range so it requires
special cuvettes. In addtion, DNA and proteins
will show some level of absorption in this range so
if the riboflavin has been isolated from a cell there
would be a lot of background in this region. The
best practical wavelength may well be 450 nm.



222 INTRODUCTORY MATHEMATICS FOR THE LIFE SCIENCES

4. For a straight line the gradient is constant. If any of
the three points are used the gradient is found to be
1/2. Since ∆y/∆x=1/2 in all cases, these lie on a line of
which the equation is:
y= x+1.5

5. (a) The Lineweaver-Burk equation has the form   
y=mx+c where y=1/v; x=1/[S];   
m=Km/Vmax; and c=Vmax. The Symbol v
represents the velocity (nmol litre-1 min-1), [S]
substrate concentration (M), Vmax maximum
velocity (nmol litre-1 min-1), and Km the Michaelis
constant. From Table 7.6.
Let x0=1/8×10-6=1.25×105 M-1 and
x1=1/1×10-5=1.00×105 M-1

Then (from Table 7.6) y0=1/13.8×10-9

=7.3×107 (nmol litre-1 min-1

and ya=1/17.0×10-9

=5.9×107 (nmol litre-1 min-1)-1   
m=∆y/∆x=560   
so, substituting for x0, y0 and m into y=mx+c,
c=3×106 (nmol litre-1 min-1)-1

so Vmax=1/c=3.3×10-7 Mmin-1 or
33 nMmin-1   
m=Km/Vmax so Km=560×(3.3×10-7)
=1.9×10-4=0.19 mM

(b) Figure A.7 shows the Lineweaver-Burk plot for
the data. The values for 1/[S] have been
multiplied by 10-4 for ease of plotting and are
measured in M. The 1/V values have been
multiplied by 10-7 and are measured in M min-1.
Vmax can be read off the y intercept and gives Vmax

as 80 nM min-1. -1/Km

can be read off the x intercept and gives Km as
0.04 mM.

Figure A.7
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(c) The plot is more accurate beause the line of best fit
is obtained from more than two data points so that
any error is averaged out.

Chapter 8

1. (a) 3x2+4+2 gives a discriminant less than zero so
this equation has no real roots

(b) Using a=2, b=-5 and c=3 the discriminant
implies two real and distinct roots. The
equation gives x=1.5 or 1.

(c) Using a=2, b=7 and c=3 the discriminant
implies two real and distinct roots. The
equation gives x=-0.5 or -3.

2. (a) The volume increases by 53=125%

(b) Surface area increases by 52=25%

(c) The bacterium transports nutrients across the
membrane and since the volume increases at a
greater rate than the surface area the point will
arrive where there can be no further expansion
because the cell cannot take up nutirients fast
enough to ensure its survival, i.e. you would
predict that growth will be limited by a
surface:volume ratio.

3. Rearranging the equation gives
Vmax=(v(K′+[S]n))÷[S]n

Vmax=(5×10-6)×((25×10-6)+(1×10-3)2)
÷(1×10-3)2=0.005 Mmin-1

so Vmax=5 mmol litre-1 min-1

4. Kw=[H+][OH-]
so 10-14=(x+10-6)×x
x2+10-6 x-10-14=0
Using the formula for a quadratic, x=5.1×10-5 M or
-5.1×10-7. The answer cannot be negative so the
concentration x=51 µM

5. Comparing the expected and observed number of each
genotype we get

It seems likely that the population is at equilibrium.
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Chapter 9

1. 10 h=600min so this is 600/40=15 doubling times
N(15)=103×215=3.38×106 cells

2. (a) Let the half-life=�   
N(�)=N0/2   
so N(�)/N0=0.5=e-��

ln 0.5=-�� so �=-ln 0.5/�=0.69/�

(b) �=0.69/14.3=0.048

(c) (i) N(t)=6735×e-(0.048×4)

=6735×0.824=5552BqµM-1

(ii) The specific activity is 5552 Bq µM-1 so 2367
Bq corresponds to
2367/5552 µM=0.43 µM

3. From Chapter 9 we know growth can be modelled
using the equation:

Here n=10, G(t)=360 000 and y=0.04      

so G0=360 000÷1.48=243 203

4. Growth rate is 0.2/3.2=0.0625 or 6.25% per month

5. (a) The value after one month is the geometric mean
of the value at zero and two months.

6. A geometric series would produce the best results. The
ratio between the first two measurements is 1.5. This
would be constant for a geometric sequence so the next
five values are:   

7.5×1.5=11.25 µM 11.25×1.5=16.87 µM     
16.87×1.5=25.31 µM 25.31×1.5=37.97 µM     
37.97×1.5=56.95 µM   

7. Let C0=1 unit, then a decrease of 5.6% gives
Cp=0.944
Cp/C0=e-Kt

ln 0.944=-K×60
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0.057/60=K=0.001 min-1

So 0.1% is eliminated each minute.

Chapter 10

1. (a) log x=5 log y=log(y5 x)

(b) 2 log t-4 log t=log t2/t4=log t-2

(c) 0.5 log((9m)2)=log((9m)2)0.5=log(9m)

(d) log(a+b)+log(a-b)=log((a+b)(a-b))
=log(a2-b2)

2. (a) log 5x=3.7 so 5x=103.7

x=103.7/5=1002.4

(b) log(4m-3)=0.9 so 4m-3=100.9

m=2.74

(c) ln x=1.8 so x=e1.8=6.05

(d) log 2x+3 log x=2.2
log(2x×x3)=2.2

2x4=102.2

x=(158÷2)1/4=2.98

3. (a) 10-7.4=3.9×10-8 or 39 nM

(b) (i) 6.3×10-8 M implies that there is twice the
concentration of hydrogen ions; therefore the
blood is more acidic than it should be.

(ii) pH=-log(6.3×108)=7.2

(c) Using the equation for pH the pH=7.2   

4.

so log K=-Ea/2.3R×1/T+log A

5. The Hill plot gives a straight line with gradient 2 so
there are two binding sites.

6. pH=pKa+log([B]/{BH+])

(a) Substituting the values for pH and pKa:
[B]/[BH+]=0.5 so [B]:[BH+]=1:2

(b) At pH 2 the ratio changes to [B]:[BH+]=1:
5×105

(c) The uncharged form (B) is the active form;
therefore in the gut at acidic pH there is very
little of the drug that is active.

7. A plot of ln Cp against t gives a straight line with the
gradient-K and y intercept of C0.
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Chapter 11

1. (a) Mode=3.7 kg
Median=3.7kg
Mean=3.49kg

(b) 95% confidence level using mean ±(SEM×1.96)
3.49 ± 0.28 kg or 3.77 to 3.21 kg

2.

(b) Mean=74%
95% confidence using t test with 9 degrees of
freedom gives:
mean ± (SEM×2.262)=74 ± (5.47×2.262)
95% confidence interval is:
74 ± 12.4 or 86.4 or 61.6%

3. (a) Peptide 1 mean=11.82 mNm-2

Peptide 2 mean=2.38 mNm-2

(b) Using the t distribution with 3 degrees of freedom
for peptide 1 the 95% confidence interval is given
by:
mean ± (SEM×3.183) i.e. 11.82 ± (0.35×3.183)
95% confidence interval is 11.82 ± 1.11 or 12.93
or 10.71 mNm-2.
Using the t distribution with 5 degrees of freedom
for peptide 2 the 95% confidence interval is given
by:
mean ± (SEM×2.571) i.e. 2.38 ± (0.13×2.571)
95% confidence interval is 2.38 ± 0.33 or 2.71 to
2.05 mNm-2.

Figure A.8 FEV1
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absolute error 4, 23
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Ostwalds dilution law 8
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SI units 26–7
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surface area 138
Svedberg equation 43

tables 74–81
tally chart 78
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three dimensional plots 96
transcription 58
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graphs of 89
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inhibition of 45
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maximum (Vmax) 43, 127, 138
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