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Preface by Series Editor

Mathematics education is established worldwide as a major area of study, with
numerous dedicated journals and conferences serving national and international
communities of scholars. Research in mathematics education is becoming more
theoretically orientated. Vigorous new perspectives are pervading it from
disciplines as diverse as psychology, philosophy, sociology, anthropology,
feminism, semiotics and literary criticism. The series Studies in Mathematics
Education consists of research contributions to the field based on disciplined
perspectives which link theory with practice. It is founded on the philosophy
that theory is the practitioner’s most powerful tool in understanding and changing
practice. Whether the practice is mathematics teaching, teacher education, or
educational research, the series will offer new perspectives to assist in clarifying
and posing problems and stimulating debate. The series Studies in Mathematics
Education will encourage the development and dissemination of theoretical
perspectives in mathematics education as well as their critical scrutiny. It aims
to have a major impact on the theoretical development of mathematics education
as a field of study in the 1990s.

The first book in this series was The Philosophy of Mathematics Education
by Paul Ernest, which can be said to have lived up to the above description. The
next volume to be published will be Mathematics, Education and Philosophy:
An International Perspective, an edited collection containing chapters by Valerie
Walkerdine, Dick Tahta, Brian Rotman, Sal Restivo, Thomas Tymoczko, Ernst
von Glasersfeld, Reuben Hersh, Philip J.Davis, Ubiratan D’Ambrosio, David
Pimm, John Mason, Paul Ernest, Leslie P.Steffe, Michael Otte, Stephen I.Brown,
Anna Sfard, George Gheverghese Joseph, Paul Dowling, Stephen Lerman, and
others. Exciting and powerful future volumes for the series by Barbara Jaworski,
Ernst von Glasersfeld, Jeffrey Evans and Paul Dowling are in preparation, and
will be published or be in press by the end of the year.

The present volume is the second in the series. In it Anna Sierpinska tackles
what might truthfully be described as the central problem in mathematics
education: understanding in mathematics. Her inquiry draws together strands
from mathematics, philosophy, logic, linguistics, the psychology of mathematics
education, and especially welcome to an English-speaking audience, continental
European research. She considers the contributions of the social and cultural
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contexts to understanding, and draws upon a wide range of scholars of current
interest, including Foucault and Vygotsky. The outcome is an important insight
into both understanding and mathematics, valuable both for the teacher and
the mathematician. All in all, an important and appropriate contribution to
the series.

Paul Ernest
University of Exeter

February 1994
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Introduction

My concern with the question of understanding has its sources in the practical
problems of teaching mathematics and such basic and naive questions as: how
to teach so that students understand? Why, in spite of all my efforts of good
explanation they do not understand and make all these nonsensical errors? What
exactly don’t they understand? What do they understand and how?

My first approach to these questions was empirical: observations of students
while discussing mathematical problems, trying to make sense of them,
communicating their understanding to others. The problems given to the students
were such that, to solve them, the students had, in fact, to construct a new (for
them) mathematical concept. The difficulties they encountered, the tentative
understandings of a still very unclear situation were often quite close to those
experienced by mathematicians in the past. Students’ difficulties thus acquired
a more universal meaning and significance, depending not so much on their
lack of mathematical experience, or abilities, or idiosyncrasies of their still
immature thought, but on the nature of the mathematical concept itself, and on
the culture in the frame of which it developed.

This is where Bachelard’s concept of epistemological obstacle turned out to
be very useful. Students’ thinking appeared to suffer from certain ‘epistemological
obstacles’ that had to be overcome if a new concept was to be developed. These
‘epistemological obstacles’—ways of understanding based on some unconscious,
culturally acquired schemes of thought and unquestioned beliefs about the nature
of mathematics and fundamental categories such as number, space, cause, chance,
infinity,…inadequate with respect to the present day theory—marked the
development of the concept in history, and remained somehow ‘implicated’, to
use Bohm’s term, in its meaning.

It is then on these obstacles that research concentrated: a ‘hunt’ for
epistemological obstacles started at the same time as an effort of precisation,
of a better explication of the term was undertaken. The question was posed:
on what grounds do we claim that a student’s thinking suffers of an
epistemological obstacle? Is an epistemological obstacle an error, a
misunderstanding, or just a certain way of knowing that works in some
restricted domain but proves inadequate when the domain is transcended? Or
is it an attitude of the mind that allows to take opinions for facts, a few cases
for evidence of general laws,…?
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The term of epistemological obstacle was invented by the French physicist
and philosopher Gaston Bachelard. He used this notion for the purposes of his
polemics with positivism in science. Scientists, he said, do not function in the
way prescribed by the neopositivists. Nature is not ‘given’ to us—our minds are
never virgin in front of reality. Whatever we say we see or observe is biased by
what we already know, think, believe, or wish to see. Some of these thoughts,
beliefs and knowledge can function as an obstacle to our understanding of the
phenomena. Our generalizations can be biased by our tendency to found all
knowledge on a few all-explanatory laws or principles like ‘all bodies fall’ or
light propagates in straight lines’, or on all-explanatory metaphors like ‘air is a
sponge’.

But mathematics is not a natural science. It is not about the phenomena of
the real world, it is not about observation and induction. Mathematical induction
is not a method for making generalizations. None of the examples of
epistemological obstacles that Bachelard gave could apply to mathematics, as
Bachelard said himself.

Still, mathematics educators had the feeling that it does make sense to speak
about epistemological obstacles in mathematics: every day, they were facing
something that seemed to function as an epistemological obstacle in their
students’ thinking. What they were missing was a theoretical foundation. The
transfer from natural sciences to mathematics required some adaptation, and
some philosophical reflection on the nature of mathematics. This turned their
attention to the works of Lakatos, whose view of mathematics as a quasi-
empirical science was vividly exemplified in his reconstruction of the history
of the formula of Euler for polyhedrons. This history appears as a ‘race through
epistemological obstacles’—a sequence of refuted wrong or only limited beliefs
about what this or that mathematical object should be, what properties it can
have, etc.

This view of mathematics required a rethinking of the teaching and of the
judgment of the students’ understanding. It relativized their errors. Some of
their errors were caused by ways of thinking quite legitimate within a certain
frame of mind, a certain context of problems and certain beliefs about what
is truth in mathematics. It became clear that at least some of the students’
ways of understanding deserve more respect and attention, and that instead
of trying to replace the students’ ‘wrong’ knowledge by the ‘correct’ one, the
teacher’s effort should be invested into negotiations of meanings with the
students, invention of special challenging problems in which a student would
experience a mental conflict that would bring to his or her awareness that
his or her way of understanding is probably not the only possible one, that it
is not universal.

At this point the research programme shifted to the problems of design of
teaching situations—‘didactical engineering’ as the French call it—that would
provide favourable conditions for the students to overcome their
epistemological obstacles and thus understand the mathematical contents better
and deeper.
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I started to almost identify understanding with overcoming obstacles. But
then a doubt was born: is all understanding like this? Everyday experience of
teaching and introspection suggested a negative answer.

Once again, I was at the beginning of my way. The importunate question:
‘what is understanding?’ popped up once more.

This time it had to be addressed directly. The first move was to consult
philosophers and psychologists. Gestalt psychology provided some interesting
ideas—especially that of equilibrium or harmony of the ‘field of consciousness’
which seemed to be the aimed at state of mind in understanding. Piaget’s
theory of equilibration of cognitive structures developed this metaphor to
speak about more complex intellectual processes and not just visual
perception. Vygotski’s theory of concept development was quite interesting,
too. The process appeared as an evolution of those operations of the mind
that seemed to play an essential role in understanding: first, generalizations
of things, joined later by isolation of features of things and discrimination
between them, all topped, at the age of adolescence, by more advanced
generalizations and syntheses leading to the formation of systemic thinking
and concepts.

Search for hints in the classical philosophical literature (Locke’s and Leibniz’s
Essays on Human Understanding) was somewhat disappointing. Works in
philosophical hermeneutics were, on the other hand, quite illuminating in some
ways, although they were concerned mainly with understanding the written or
spoken discourse, rather literary than mathematical. Gadamer’s and Heidegger’s
discussions of the ‘hermeneutic circle’ evoked the idea of epistemological obstacles
and their unavoidability in any effort of understanding. Ricœur’s description of
the process of understanding a text as a dialectic of successive guesses and
validation of guesses quite clearly made the distinction between the roles of
understanding and explaining at the same time as it revealed their inseparability
and complementarity in interpretive processes.

Dewey’s reflections on understanding were very appealing to an educator—
Dewey often referred to the teaching practice and to observations of a growing
child. But his definition of understanding as ‘grasping the meaning’ brought
forth the need to clarify the notion of meaning. Now, semantics is a huge
field. The logical semantical views on meaning originated from the works of
Frege and Church were hard to swallow—formal logical views on meaning
are unacceptable for those whose main concern is a living and developing
child. The epistemological and pragmatic perspectives have to be taken,
necessarily.

From this point of view, Husserl’s theory of the intentionality of meaning
was much better: the meaning of a sign is that to which I direct myself (in
thought) in an act of understanding. This definition, however, did not solve the
problem: while Dewey defined understanding by meaning, Husserl defined
meaning by understanding. We find ourselves bound in a vicious circle.

A way out of the impasse seemed to be provided by Ajdukiewicz’s ‘Pragmatic
logic’, where understanding was defined independently of meaning using the
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category of object as a primitive notion and the notion of meaning was introduced
through the relation of ‘understanding in the same way’.

Ajdukiewicz’s definition was very clear and simple; his notion of meaning—
very natural. I finally had the impression of having understood what
understanding is all about.

But this was not the end of my problems. Ajdukiewicz’s definition was
restricted to understanding expressions; meaning was the meaning of an
expression. Understanding in mathematics is not confined to understanding
expressions. Of course, terms, symbols, formulas, theorems can all be regarded
as expressions. But even if we count texts as expressions, is a proof a text? Is a
theory a text? And what about understanding concepts? For Ajdukiewicz, a
concept was simply the meaning of a name. But my deep conviction was that
understanding a concept does not start with understanding its name. So there
was work to be done still.

In the chapters that follow I present some results of this work. It is an approach
to understanding in mathematics, influenced by Ajdukiewicz’s definition, and
guided by the aim of finding some mental tools to answer questions like: ‘What
does it mean to understand such and such notion in mathematics?’

In the context of the teaching and learning of mathematics any question
about the students’ understanding is at once a question about the level of
understanding: understanding is at once evaluated. This is why many existing
models of understanding in mathematics consist in a hierarchy of levels, steps
or stages. However, it is quite clear that any evaluation of an understanding
must be relative. Therefore, what is proposed in the present book is to
methodologically separate the questions of understanding and ‘good’
understanding in building up a model and to admit, as fundamental, the notion
of act of understanding. An act of understanding is not defined in terms of its
impact on cognition; it is not, a priori, judged as valuable or worthless.
Axiological issues come into the scene when whole processes of understanding
are taken into account. Processes of understanding are seen as lattices of acts of
understanding linked by various reasonings (explanations, validations) and a
(relatively) ‘good’ understanding of a given mathematical situation (concept,
theory, problem) is said to be achieved if the process of understanding contained
a certain number of especially significant acts, namely acts of overcoming
obstacles specific to that mathematical situation.

The notion of the act of understanding is central in the whole conception of
the book. Thus, the second chapter: ‘Components and conditions of an act of
understanding’ occupies much more space than any of the others. The first chapter
plays the role of an introduction to it: it inquires into the various senses and uses
of the word ‘understanding’ in ordinary language, discusses the notion of meaning
and relations between the notions of understanding and meaning. It displays
the rich background of issues which underlie the question of what is an act of
understanding that is considered in the second chapter.

Chapter 3 looks at whole processes of understanding, and the roles therein,
of explanations and validations, examples, previous knowledge, figurative speech
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(metaphors and metonymies), activity (both practical and intellectual). The
question of evaluation of understanding is dealt with in Chapter 4. One of the
problems raised here is concerned with the relativity of any such evaluation.
Two important determinants of this relativity, namely the developmental stage
of the understanding subject and the culture, i.e., the system of norms, ways of
thinking and communicating, as well as what is considered as scientific knowledge
by both the understanding subject and the person who evaluates the
understanding, are the object of Chapter 5. It is shown, among others, how the
psychogenetic development of understanding is influenced by the implicit
functioning of a culture.

The view presented in the book is just one of the many possible ways of
looking at understanding in mathematics, biased by my own experiences with
mathematics, as a learner—a student of Andrzej Mostowski, Karol Borsuk and
Wanda Szmielew; as a teacher; as a researcher both in mathematics and
mathematics education, and an enthusiastic reader of Ajdukiewicz’s articles and
books. Understanding is a very complex issue, both philosophically and
practically. But it is also a challenging and fascinating one and sometimes we
just cannot resist the temptation of writing about it, although it is clear from the
beginning that whatever we say understanding is, it is not because ‘whatever we
say is words, and what we mean to say is not words’.

This book is not primarily concerned with the word ‘understanding’ or the
concept of understanding, although it might seem so. It is meant to contribute
to a better understanding of how real people understand mathematics in real
life, not of the ‘human understanding’ of mathematics. It is not a philosophical
treatise. In mathematics education we are trying to understand and communicate
on, among others, the problems related to students’ understanding. For this we
need some clarity on what we are talking and communicating about. This is
why, from time to time, we need to make a stop in our usual more or less
practical activities and think about the language we are using, about the meanings
of such common words as ‘understanding’ or ‘meaning’. This book has been
such a stop in my own activities, too long, I am sure, and whether it was at all
worthy of making—let the reader judge.
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Chapter 1

Understanding and Meaning

We are in a class of the fourth grade. The teacher is dictating: ‘A circle is
the position of the points in a plane which are at the same distance from
an interior point called the centre.’ The good pupil writes this phrase in his
copy-book and the bad pupil draws faces, but neither of them understands.
Then the teacher takes the chalk and draws a circle on the board. ‘Ah’,
think the pupils, ‘why didn’t he say at once, a circle is a round, and we
should have understood.’ (Poincaré, 1952)

Understanding

The Word ‘Understanding’ in Ordinary Language

The word ‘understanding’ is used in very many forms and expressions in informal
speech. We say that a person ‘understands’ something, we speak of a person’s
‘understanding’ of something, and of the various ‘understandings’ people may
have. We also speak of ‘mutual understanding’, of understanding somebody’s
utterance or somebody’s writing, of understanding a word, an expression, a
concept, a phenomenon. We qualify understanding as ‘good’, ‘deep’, ‘poor’,
‘complex’, ‘significant’, ‘full’, ‘incomplete’, ‘intuitive’, or ‘wrong’. We sometimes
speak of ‘some’ understanding to say that this understanding is not yet very
elaborate.

It is often claimed that the word ‘to understand’ is highly ambiguous
(Kotarbinski, 1961, p. 128). Indeed, it is certainly not the same mental and
emotional experience to understand the phenomenon of sunset and to understand
a poetic description of a sunset. It is not the same to understand the sun as a
bright sphere that travels across the sky from dawn to twilight and to understand
the sun as the star around which gravitate the Earth and other planets of our
planetary system. In this case we speak of two ‘ways of understanding’ or two
different ‘understandings’ of one and the same thing.

‘Understanding’ can be thought of as an actual or a potential mental
experience, as Kotarbinski pointed out (ibidem). For example, when we say
that a person, who knows his or her multiplication tables, understands the
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thought that ‘7 times 9 is 63’, we may mean that the person actually, at this
moment, thinks of ‘7 times 9’ and ‘63’ and considers them as equal, or that he
or she is capable of so doing at any time, having reflected upon it already in
the past.

There are, then, actual mental experiences, which we might call ‘acts of
understanding’ and there is ‘an understanding’ which is a potential to experience
an act of understanding when necessary. ‘Understandings’ thus seem more to
belong to the sphere of knowing: they are the ‘resources’ for knowing.

An act of understanding is an experience that occurs at some point in time
and is quickly over. But, especially in education, we also speak of understanding
as a cognitive activity that takes place over longer periods of time—then we
sometimes use the term of ‘process of understanding’ in which ‘acts of
understanding’ mark the significant steps while the acquired ‘understandings’
constitute props for further development.

Understanding…What?

Acts of understanding, understandings, processes of understanding can all differ
by that which is understood: an expression of language, a diagram, a concept, a
theorem, a theory, a judgment, somebody’s thought, a phenomenon, a situation,
a problem…

In the context of mathematics, we often speak of understanding
‘mathematical concepts’ in general or of understanding specific mathematical
concepts such as number, quantity, volume, function, limit of a sequence, linear
independence of vectors etc. However, other things are mentioned as objects
of understanding as well.

Let us consider, as an example of a text concerned with cognition in the
mathematical field, the 1991 article of James G.Greeno, and find the various
uses the author is making of the word ‘understanding’ and its derived forms. Let
us start with the question: what appears there as ‘objects of understanding’?

In the first instance of the use of the word ‘understanding’ in the article, it is
associated with ‘patterns’: ‘understanding subtle patterns’. Later the author
mentions understanding of ‘concepts, notations and procedures’, ‘equivalences’
(e.g., of 42 and 6•7, 2/3 and 4/6, y=6–3x and x/2+y/6=1, etc.), ‘relations among
numbers and quantities’, ‘how mathematics is related to situations involving
physical objects, quantities of money and other concrete things’, ‘problems and
situations’, ‘language’, ‘language of mathematics’, ‘instructions’, ‘the linear
structure of positive integers’, ‘relations between places in the environment that
are represented by the symbols on the map’, ‘meanings [of procedures for
manipulating notations]’, ‘reasonings’, ‘one’s physical position in an
environment’, ‘concepts and principles’, ‘linguistic representations of concepts’,
‘theoretical entities and processes’, ‘the difference between an object and the
thought about that object’, ‘the sequence of numerals’, ‘mathematical concepts’,
‘a phrase’, ‘mathematical questions’, ‘metamathematical views’.
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Confusion Between the Thing I Want to Understand and That on
Which I Base My Understanding

If I say ‘I understand the pattern’ (of a class of problems, for example) I may
mean that the object of my understanding is really the pattern, or I may mean
that I intend to understand the class of problems and the perception of some
common pattern in these problems constitutes my understanding of it—the
pattern founds my understanding of the class of problems. In the former case, I
reflect on the pattern itself, which I have previously identified as common to
certain problems. I may say I understand the pattern when, for example, I have
constructed a model of this pattern, identified the basic elements of it. Then I
may be able to formulate problems that follow this pattern and not only to
recognize among some given problems those that satisfy the pattern.

Let us take, for example, the following problem: Luc has $1.45 more than
Michel. Luc doubles his amount of money and Michel increases his by $3.50.
Now Luc has $0.40 less than Michel. What were the initial amounts of Luc and
Michel?

Understanding the problem as having a certain pattern may consist in
perceiving a similarity between this and other problems done in class. This may
allow the use of an analogous procedure to solve the problem. Understanding
the pattern itself would probably involve a generalization of the problem,
introduction of variables in place of all the givens and unknowns: four unknown
states A, B, C, D are related by given relations r, s, t, u between A and B, B and
C, C and D, D and A, respectively; to find A and B. Such understanding could
be supported by a representation of the pattern in form of a diagram, like the
one shown in Figure 1.

A pattern of solution would then easily be seen: given are the relations:
A=r(B)=B+1.45; D=u(A)=2*A; C=s(B)=B+3.50; D=t(C)= C-0.40, whence
D=u(A)=t(C), and thus u(r(B))=t(s(B)) which can be solved as an equation in a
single unknown: 2*(B+1.45)=(B+3.50)-0.40 (Bednarz et al., 1992).

A similar ambiguity may occur with respect to ‘understanding a concept’. If
the concept is thought of as a certain ready made, existing theoretical ‘object’

Figure 1: The pattern of the problem of Luc and Michel
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out there, named, defined or described in some way, related to other concepts
and interpreted in various situations etc., then understanding it would consist in
analyzing this definition or this description, recognizing these relations and these
interpretations. The ready made concept would then constitute the object of
understanding, i.e., that which is being understood.

But the phrase ‘to understand the concept C’ can be interpreted also in such a
way that something is being understood on the basis of this very concept: something
is being brought together as representing a concept, it is generalized and synthesized
into that concept C. The concept would then be only formed in the act or process
of understanding a situation. Such are the acts of ‘thematization’ Piaget speaks
about; for example, the thematization of the use of geometric transformations
into a concept that is fundamental for geometry, allowing the classification of its
various domains as ‘theories of invariants’ of transformation groups.

In the former case the understanding would consist in finding out what ‘stands
under’ the given concept C. In the latter, some situations would be ‘taken
together’—‘une situation serait com-prise’ in form of a concept.

Thus, when it is said in ordinary language that a certain person has understood
something, an X, it may mean that X is indeed the object of his or her
understanding, or that he or she has understood something else of which X is
seen as forming the ‘essence’ or the most important feature: he or she has
understood something else ‘on the basis’ of X. The use of the expression ‘he or
she has understood X’ in the vernacular may be confusing in this respect. When
discussing the notion of ‘act of understanding’ in the next chapter the distinction
between the object of understanding and the basis of understanding is very
much stressed. It seems important to be aware of the difference between ‘what
is to be understood’ and ‘on what basis something has to be understood’ or
‘how do we want something to be understood’ in, for example, designing a
teaching sequence.

In his article, Greeno used the expression: ‘to understand the meaning (of
X)’. The definite article ‘the’ suggests that X has a well determined meaning and
what is there to understand is this pre-existing meaning. But in understanding
we very often only just construct a meaning of X; then this meaning is a basis of
our understanding of X. Dewey considered expressions ‘to understand’ and ‘to
grasp the meaning’ as synonymous (Dewey, 1971, p. 137). He was thus explaining
‘understanding’ by ‘meaning’. We shall take an alternative point of view and,
following Ajdukiewicz, we shall explain ‘meaning’ by ‘understanding’. A meaning
of X will be, for us, a certain ‘way of understanding’ X, an abstraction from the
occasional features of an act of understanding and retainment of only certain
characteristics of it.

What Our Understanding Consists of? Different Ways of Understanding

Things can be understood in various ways and the understanding may consist
of a variety of things. Mathematical examples of different ways of understanding
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are easily available from research on students difficulties in understanding
mathematical notions. Here are some common students’ understandings of the
limit of function at a point, as described by Williams (1991):
 

A limit describes how a function moves as x moves toward a certain
point.
A limit is a number past which a function cannot go.
A limit is a number or point the function gets close to but never reaches.

 
In all three cases the understanding consists in identifying a certain characteristic
property of the object of understanding (the concept of limit, of function, or just
the term ‘limit of function at a point’).

Understanding may consist of a variety of other things as well. If the object
of understanding is a phenomenon then its understanding may consist in finding
an explanation of why the phenomenon occurs. One can also understand a
practical action by being aware of why this action produces an expected result.
There can be many kinds of explanations and therefore different ways of
understanding. A person may feel she understands an action because she knows
how to perform it successfully. A phenomenon can be understood by recognizing
its main components and the relations between them. An understanding of a
thunderstorm may consist of an explanation by the laws of physics (electrical
discharges, laws of propagation of acoustic and light waves, etc.) or in an
identification of a thunderstorm’s normal course, effects (rain, thunder and
lightning, and the delay between them), states of the atmosphere before and
after the storm etc.

Quite a lot of understanding is related to this question ‘why’ and consists
in finding the ‘premisses’, ‘reasons’ or a ‘cause’ for something. Kotarbinski
uses the following example: ‘Jan understood why the selling of the property
was a mistake.’ He interprets it as follows: ‘this means that, through some
kind of reasoning Jan has come to the conclusion that the selling of the
property was a mistake for such and such reason.’ Thus an act of
understanding can be a result of some reasoning—reasoning may lead to
understanding something.

For some authors, ‘understanding’ is synonymous to ‘understanding why’.
It is in this sense that Piaget uses this word in his book on Success and
understanding (1978). He speaks of understanding a practical action (e.g.,
building a house of cards or putting a set of dominoes in a row so that pushing
the first one would make all the others fall down); in this context, to understand
an action means to understand why it works (leads to success) or why it does
not work. In fact, Piaget is very demanding with respect to understanding.
‘Understanding how’ to make something, how to perform a practical action,
what to do to attain a certain result, is not understanding at all. Understanding,
for him, belongs to the realm of reason: it must be based on conceptualizations
and such connections between these conceptualizations that are implicative
and not causal. Understanding focuses neither on the goals that the action is
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expected to attain, nor on the means that can be used to reach them; it goes
beyond the information given and aims at the ‘determination of the reasons
without which successes remain mere facts without signification’ (ibidem, p.
222). Earlier in the book, in the introduction to the final conclusions, Piaget
uses the terms of ‘notional comprehension’ and ‘explicative and implicative
processes of comprehension’ (ibidem, p. 213). Piaget does not speak of any
understanding but specifically of an understanding based on such
conceptualizations that allow to explain why a certain action has been
successful and to imply why certain possible actions would be or would not be
successful. For us here, ‘understanding’ will not a priori mean such ‘notional’
or ‘reasoned’ understanding. We shall not impose other norms on an act of
understanding except such as we subjectively feel necessary for a mental
experience to be called this name.

What an understanding of other peoples’ behaviour and products of this
behaviour, for example, live speech or written texts, consists of, has been a
long-standing problem in hermeneutics and philosophy. For some philosophers
(like Dilthey), understanding in this context meant empathy—feeling and
thinking as the author feels and thinks. Others, (like Ricœur, 1976), proposed
that a text, or any discourse for that matter, distances itself from the author,
acquires a meaning of its own and the reader has to reconstruct this meaning
for himself.

What ‘Stands Under’ Understanding?

Several pieces of information are needed to make a statement about an act of
understanding less ambiguous. One should know what is the ‘object of
understanding’, i.e., what is being understood; and on what basis is this object
being understood (a reason?, an explanation?, a know-how? empathy?), as well
as what are the operations of the mind that are involved in the act of
understanding.

In asking a person whose intention it is to understand something what does
his or her understanding of this something consist of, the expected reply is
normally a description of that on which his or her understanding is based and of
the operation of mind he or she has been using to make the link between this
basis and the object of his or her understanding (for example, the person has
identified the reasons of a certain action).

There seems to be a large variety of theoretical views on what can actually
constitute a basis for understanding. Understanding expressions was
traditionally regarded as based on either images or imagined feelings, situations,
etc. or conceptual representations (Ajdukiewicz, 1974). Jerome S.Bruner (1973)
based understanding of concepts on three kinds of mental representations:
those that could be mediated through actions (enactive representations), those
that could be mediated through pictures (iconic representations) and those
that could be mediated through symbols or language (symbolic representations).
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Cognitive scientists preferred to think that understanding of any kind of
discourse consists in retrieval from memory of mental ‘frames’, ‘scripts’, or
‘schemas’ which function very much like procedures in a software (Minsky,
1975; Davis, 1984).

A style of speaking (or maybe even thinking) that has gained some
popularity in the past few years is embedded in the ‘environmental’ or
‘ecological’ metaphor. Concepts, it is said, cannot be thought of in isolation
from whole domains of concepts, facts and procedures in which they have
their meaning and which constitute, so to say, their ‘natural environment’.
Therefore, it is impossible to speak of understanding of a concept without
speaking at the same time of the understanding and knowledge of its
environment—its conceptual domain. Coming to know a conceptual domain
thus resembles ‘knowing one’s way around in an environment…and knowing
how to use its resources as well as being able to find and use those resources
for understanding and reasoning. Knowing includes interaction with the
environment in its own terms—exploring the territory, appreciating its scenery
and understanding how its various components interact’ (Greeno, ibidem,
p. 175).

In physical environments, understanding and reasoning is based on building
the so-called ‘mental models’ of the reality and simulating the behaviour of real
objects in them, imagining situations, just as they might happen in reality and
not constructing representations, symbolic or iconic or other and manipulating
them according to some more or less formal rules. Greeno claims that the activity
of knowing, understanding and reasoning in abstract conceptual environments
is analogous to that in physical environments such as a town, a kitchen or a
wood workshop. Abstract concepts are treated as real objects that can be
combined and decomposed; it is simulation of operations on these objects that
is performed rather than formal manipulation according to laws and rules. It is
a very poor understanding, Greeno says, if a person, asked to calculate mentally
‘25•48’ represents to himself or herself the paper and pencil algorithm and tries
to do it in his or her head. A better understanding occurs if the person treats 25
and 48 as objects that can be ‘combined’ and ‘decomposed’: 48 is 40 and 8 and
40 is 4 times 10; 25 times 4 is 100; 100 times 10 is 1000; now, 25 times 8 (which
is 4•2) is 2 times 100, 200. So the result is 1200.

Sometimes the objects in the model can be particular graphic representations
or diagrams; when we think about functions, for example, we often replace
functions by their graphs which can then be translated, reflected, added, etc., in
our minds.

‘Thought experiment’ is an older term that denotes a kind of mental modelling.
A thought experiment simulates some physical activity, allows the making of
inferences and the understanding of how certain things are related without
actually performing this activity.

Greeno uses the term ‘affordance’ borrowed from Gibson (1986) to name
the role that various objects and relations in mental models play in reasoning,
and implicitly also, in understanding. In a situation of understanding, an
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affordance is something that comes in handy as a basis for understanding. Greeno
gives a nice example of perception of an affordance in a geometrical situation
(which, by the way, could also be used as evidence of the role that the Gestalt
‘insights’—sudden re-organizations of our field of consciousness—play in
understanding).
 

A young friend of mine was working on a problem assigned in her
geometry course to prove that the lines that connect the midpoints of
adjacent sides of a parallelogram form another parallelogram. A hint
had been given to draw the diagonal of the parallelogram and she
recognized that if she could prove that each midpoint connector is
parallel to the diagonal, they are parallel to each other. Her initial efforts
to get that proof were unsuccessful. I suggested focusing on the triangle
formed by the diagonal and the two sides of the parallelogram and
covered one half of the figure with my hand. My friend then saw a
different pattern, recognized that the line connected midpoints of the
sides of the triangle and remembered the theorem that this line is parallel
to the base. The example illustrates perception of a feature of the
situation that would not be an affordance unless the person knew the
pattern of inference involving midpoints of sides of a triangle and that
requires a particular attentional focus for it to be perceived and used.
(Greeno, ibidem)

 
An affordance here in this situation is the configuration satisfying the assumptions
of a certain well-known theorem about the line that connects the mid-points of
the sides of a triangle. The situation which is first understood as one quadrangle
in another quadrangle is then understood as two diagrams for this theorem:
two triangles with connected midpoints of sides.

Notations, or symbolic representations, are another example of things that
‘provide affordances’ for mathematical thinking, understanding, and reasoning.
They have played an important part in the historical development of mathematics:
Viète’s algebraic notation, Descartes coordinates, Leibniz’s notation of derivatives
and integrals are some well-known examples of how the development of
representations can give rise to whole new branches of mathematics and new
ways of thinking in mathematics. Leibniz is known for his strong belief in the
power of good notation. He dreamt of reducing all scientific knowledge to a
kind of formal calculus. Such a calculus would enable scientists to solve any
problem, any controversy, in an unambiguous way. This dream turned out to be
unrealistic but Leibniz’s notation for derivatives and integrals remained efficient
and handy, suggestive of properties of the operations themselves; it really ‘opened
the way to discoveries’ and ‘facilitated the work of the mind’ (Juszkiewicz, 1976,
p. 274). For Leibniz a symbol should not be chosen arbitrarily; it should be a
small story about the thing symbolized, it should ‘represent the deepest nature
of the thing’ (ibidem). Then the symbol can be an affordance for the understanding
of the thing.
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Synonyms of Understanding

Besides speaking of understanding explicitly we sometimes use more round-
about ways of expressing ourselves. For example, ‘it makes sense to me’ could
be replaced without much change of meaning by ‘I understand it’. ‘Successful
communication’ between two parties is very much the same as mutual
understanding between them.

‘I interpret this as meaning this or that’—‘I understand this as….’ Of course,
the meanings are not exactly the same, there are subtle differences. ‘Interpretation’
is both understanding and validation of understanding—a slight shift from the
traditional attitude in hermeneutics which made a strong separation between
the sciences of understanding and the sciences of explaining. ‘Successful
communication’ can assume more than ‘mutual understanding’ which may
remain on the level of empathy. Communication means that some information
has been exchanged and one can expect actions that will be undertaken
accordingly by the communicating parties.

‘Seeing’ in English seems to be the same as ‘understanding’: what do we
mean when, in a conversation, we say ‘I see’? We probably refer to some kind of
internal ‘seeing’ of what the other person has in mind.

Understanding is also implicit in expressions containing ‘seeing as…’ or
‘recognizing something as….’ These expressions give account of a certain way
of understanding; they can describe what kind of concept a person has of
something. Greeno reports that ‘seeing-as’ has become a scientific term related
to Hanson’s theory of patterns of discovery (Hanson, 1961). Hanson gives the
following examples: ‘One can see the sun as a disk that travels across the sky.
One can also see the sun as a very large, very distant body that is visible part of
the time because the planet we are on constantly rotates’ (Greeno, ibidem, p.
182). But earlier than that, ‘seeing-as’ was raised to the level of a concept and a
philosophical problem in Wittgenstein’s Philosophical Investigations. One of
the questions posed by Wittgenstein was that of the distinction between seeing
and seeing-as or seeing an aspect. The latter is closer to interpreting and
imagining.
 

Do I really see something different each time, or do I only interpret
what I see in a different way? I am inclined to say the former. But
Why?—To interpret is to think, to do something; seeing is a state.

Now it is easy to recognize cases in which we are interpreting. When
we interpret we form hypotheses, which may prove false.—‘I am seeing
this figure as a…’ can be verified as little as (or in the same sense as) ‘I
am seeing bright red’. So there is a similarity in the use of ‘seeing’ in the
two contexts. Only do not think you knew in advance what the ‘state
of seeing’ means here! Let the use teach you the meaning…

The concept of an aspect is akin to the concept of image. In other
words: the concept ‘I am now seeing it as…’ is akin to ‘I am now
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having this image’… One can use imagining in the course of proving
something. Seeing an aspect and imagining are subject to the will.
There is such an order as ‘Imagine this’, and also: ‘Now see this
figure like this’; but not: ‘Now see this leaf green’. (Wittgenstein,
1958, p. 213e)

 
Ricœur evokes Wittgenstein’s distinction in relation to the role that metaphors
play in understanding: contrary to what can be thought, figures of speech are
not there to give a ‘picture’ of something but to draw attention to some important
aspect: ‘to figure is always to see as, but not always to see or to make visible’
(Ricœur, 1977, p. 61).

This distinction between ‘seeing’ and ‘seeing as’ is important in mathematics
whose very nature does not allow for ‘seeing’ its objects, but always to ‘see
them as’. Let me quote the somewhat bitter words of Poincaré:
 

What is understanding? Has the word the same meaning for
everybody? …[Some] will always ask themselves what use it is…. Under
each word they wish to put a sensible image; the definition must call
up this image, and at each stage of the demonstration they must see it
being transformed and evolved. On this condition only will they
understand and retain what they have understood. These often deceive
themselves: they do not listen to reasoning, they look at the figures;
they imagine that they have understood when they have only seen.
(Poincaré, 1952, pp. 118–9)

 
‘Conceptual representation’ in mathematics education is used in a sense that is
closer to ‘seeing as’ than to ‘seeing’. But also the term ‘conception’ is used which
has a somewhat different meaning. While a conceptual representation is defined
as expressible totally in words, a ‘conception’ may be very intuitive, partly visual
and not necessarily logically consistent or complete. A person who has a
‘conception’ of, for example, the mathematical concept of limit, ‘has some notion’
of it, has ‘some understanding’ of it not necessarily on the most elaborate level.
Williams, for example (ibidem), distinguishes ‘having a conception of limit’ from
‘having a model of limit’, which has to be closer to the mathematical meaning
of limit. Williams requires, for a person to have a ‘model’ of limit, that he or she
be able to distinguish, to some degree, true statements from false statements
about limits; that he or she be able to make inferences about the concept; that
he or she ‘have some sense’ of what constitutes truth in mathematical analysis;
that statements and assertions ‘have meaning’ to the person and that this meaning
does not diverge too far from ‘the accepted mathematical meaning’.

To ‘have some sense’ of something, for this something to ‘have meaning’ for
a person, are again expressions that refer to understanding. To ‘have a sense’ of
something is yet another expression. Greeno’s ‘number sense’ is a certain way
of understanding numbers and quantities, but also of reasoning with them, of
coming to know them.
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‘Grasping the meaning’ is used as another synonym—we already mentioned
it by quoting Dewey. In understanding, something is ‘caught’, something
almost palpable—the meaning (indeed, Husserl, for example, considered
meaning as an object—an ideal object, but an object all the same).
Colloquially we express the same idea in asking our partner in conversation:
‘Got it?’ as if we were throwing something at him or her and he or she was
supposed to catch it as a ball.

Adjectives Associated with Understanding

To say that a person ‘understands’ something is, as we have seen, a highly
ambiguous expression. In order to make themselves more clear people use all
kinds of adjectives. If we take again the text of Greeno, we find the following
qualifications of ‘understanding’: ‘holistic and configural’ understanding is
opposed to ‘rule-based procedures’; a ‘cultural understanding’ is specific to, and
shared in, a culture; ‘conceptual’ understanding (close to ‘seeing as’); ‘spatial’
understanding (for example, the understanding of numbers based on relative
sizes of things, position of numbers on the number line, etc.).

Let us talk a little about ‘cultural understanding’. An ethnic community may
develop certain ways of understanding or interpreting words, facts, situations,
or phenomena that may differ from understandings common in other cultures.
The works of anthropologists as well as sociologists of science have brought to
our awareness how different, contrary to what Kant might have thought, the
intuitions of time and space of people living in different cultures are. Professional
communities also develop their own ‘standards’ or ‘ideals’ of understanding, or
‘cognitive norms’.

The view on learning (and teaching) the notion of number that Greeno presents
in his paper is grounded in the more general framework of the so-called ‘situated
cognition’. As understanding is involved in cognition, one can probably also
speak of ‘situated understanding’.
 

The basic form of situated cognition is an interaction of an agent within
a situation, with the agent participating along with objects and other
people to co-constitute activity. The agent’s connection with the situation
includes direct local interaction with objects and other people in the
immediate vicinity as well as knowing where he or she is in relation
with more remote features of the environment… We construct mental
models that provide us with situations in which we can interact with
mental objects that represent objects, properties and relations and that
behave in ways that simulate the objects, properties and relations that
our models represent… The concepts and principles that a person
understands, in this sense, are embedded in the kinds of objects that he
or she includes in mental models and in the ways in which those objects
behave, including how they combine and separate to form other objects
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and how they are interrelated by proximity and path connections in the
conceptual domain. (Greeno, ibidem, p. 200)

 
‘Situated understanding’ would therefore be an understanding that is ‘concrete’
and ‘contextual’ in the sense that it is grounded in simulated actions on objects,
embedded in certain ‘situations’ rather than in formal inferences from general
and abstract statements, even though these ‘objects’ may be of very abstract
nature like, for example, functions or function spaces, and the ‘situation’—a
highly elaborate research problem of functional analysis.

In speaking about understanding in communication between people, Greeno
uses adjectives such as ‘shared’ and ‘mutual’ understanding. Such ‘shared’ or
‘mutual’ understanding is ‘reached’ through discussions and ‘negotiation of
meaning’ of terms used in the discussion. In order for such understanding to be
established, participants must ‘refer’ to the same kinds of objects in the mental
models they build of the discussed situation. If the situation is mathematical
and the objects are abstract objects then one (and sometimes the only) way to
decide whether the two people are approximately thinking about the same thing
is to use some representations of these objects: symbols, diagrams, graphs and
maybe more formal definitions.

In educational practice evaluative qualifications of understanding are frequent.
For example, Greeno speaks of ‘adequate’ understanding of mathematical
notation which he opposes to ‘mindless manipulation of symbols’. For him, an
understanding is ‘adequate’ if operations on symbols are projections of mental
operations on objects in a mental model.

There are also other adjectives that Greeno uses with understanding, such as:
‘significant implicit understanding of many concepts and principles’ and ‘intuitive
understanding of quantitative relations of comparison, change and combination’.
‘Implicit’ and ‘intuitive’ understanding seems to be opposed to ‘more articulate
and more complex understanding’.

Activities of the Mind That Accompany or Complement Understanding

Greeno often enumerates ‘understanding’ along with ‘reasoning’; also ‘knowing’,
‘perceiving’, ‘using’, ‘solving’, ‘speaking’, ‘insights’ and ‘beliefs’ can be found in
the proximity. Exactly how reasoning and understanding can be complementary
is not discussed in the paper of Greeno—this is not the kind of question he asks
himself.

We sometimes speak of ‘understanding a reasoning’. So a reasoning can
be understood. Can an understanding be ‘reasoned’? Or must it? In some
languages (for example, in Polish) the word ‘understanding’ (rozumienie) is
derived from ‘reason’ (rozum). In these languages understanding is or should
always be somehow ‘reasoned’. However, this ethymological sense is very
much lost now, and, even in Polish, expressions like ‘intuitive understanding’
are commonly used.
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There are many questions concerning the notion of understanding, of which
the relation between understanding and reasoning is but one. We shall examine
it more thoroughly in later chapters. Now let us give some attention to the
relations between understanding and meaning.

Meaning

Few concepts have caused as much trouble in philosophy as the concept of
meaning. There is a long history of attempts to encapsulate it into theories from
which it always seemed to be able to slip away. The reason for this may lie in the
unavoidable self-referential character of any theory that would pretend to speak
of meaning in a more general way: any definition of meaning has meaning itself,
so it refers to itself as well. Rarely, therefore, was meaning considered in its full
generality; different philosophers have occupied themselves with meanings of
different things, and they focused their attention on different aspects of meaning.

They were probably right in doing so, for, as Austin says (1961, p. 23) while
a question like ‘what is the meaning of the word “irrational number”’ is a sensible
one, a question like ‘what is the meaning of a word’, or, worse even, ‘what is
meaning’ is nonsense. Austin caricatures the effects of our drive to asking such
‘nonsensical questions’ in the following humourous way:
 

To show up this pseudo-question, let us take a parallel case… Suppose
that I ask ‘What is the point of doing so-and-so?’ For example, I ask
Old Father William ‘What is the point of standing on one’s head?’ He
replies in the way we know. Then I follow this up with ‘What is the
point of balancing an eel on the end of one’s nose?’ And he explains.
Now suppose I ask my third question ‘What is the point of doing
anything—not anything in particular, but just anything?’ Old Father
William would no doubt kick me downstairs without the option. But
lesser men, raising the same question and finding no answer, would
very likely commit suicide or join the Church. (Luckily, in the case of
‘What is the meaning of a word?’ the effects are less serious, amounting
only to the writing of books). (Austin, ibidem, p. 27)

 
In my case, the effects of asking myself the question ‘What is the meaning of
anything?’ were of this less serious kind. I wrote the pages below.

What Has Meaning?

There are a few ‘grammatical’ questions that one can ask about any predicate
like ‘has meaning’. The first is ‘what is it that has meaning’? To this, the most
natural answer seems to be ‘the sign’. If anything has meaning, it is a sign. Or, a
sign is what has meaning. This makes the concept of sign very comprehensive. If
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we think it is right to say not that a concept is a meaning (of a name) but that a
concept has meaning then we agree with Charles Sanders Peirce that even
concepts are signs (Peirce, 1984, p. 439). For Peirce, who, as Ogden and Richards
(1946) say, has accomplished the most elaborate and determined account of
signs and their meaning—a sign is a representation: it represents or replaces
something for someone (‘A sign is an object which stands for another in some
mind’, Peirce, 1986, p. 66). In this sense a sign is a triadic relation: a representation
is a mediation between two elements by a third one. Ogden and Richards were
inspired by this idea when they proposed their famous ‘triangle of meaning’
(ibidem, p. 11), used, in mathematics education, by, among others, Steinbring
(e.g., 1993) as a basis for the study of how the mathematical meanings are
constructed in the reality of mathematics classes.

The notion of the meaning of sign has been studied in general, but sometimes
attention focused on the meaning of some specific kinds of signs: phenomena
(things, persons, features, events, that can refer to something, mean something,
express something, evoke feelings, induce actions, etc.), objects in a situation
(an object acquires meaning by being an affordance in a problem situation),
parts of a whole (the meaning of an element lies in the function it plays in the
structure of a whole), names, expressions, sentences, questions, utterances,
language as a system, as well as thoughts and propositions.

Where Is Meaning to Be Found?

Another ‘grammatical’ question about meaning is ‘where is meaning to be found’?
Philosophers differ in their views on this matter: is the meaning of a sign in the
head of the person for whom the sign represents something (a ‘picture’ in the
mind, a ‘mental accompaniment’ of an expression), or is it in the object
represented—in its distinctive features (the connotation of a name given to this
object)? Or is the meaning in the sign? Peirce: the meaning is in the sign.

The latter, ‘antipsychologistic’ stand was taken by Peirce, and this was still
quite revolutionary in his time. For Peirce all knowledge is mediated by signs,
and cognition is a system of contents, not of subjective mental experiences. The
crucial idea here is that the meaning of a sign is determined by the place of this
sign in a whole system of signs. The meaning of a sign can only be interpreted
by another sign, its ‘interpretant’.
 

[a sign] has an Object and an Interpretant, the latter being that which
the Sign produces in the Quasi-mind, that is the Interpreter, by
determining the latter to a feeling, to an exertion, or to a Sign, which
determination is the Interpretant. But it remains to point out that there
are usually two Objects, and more than two Interpretants. Namely, we
have to distinguish the Immediate Object, which is the object as the
sign himself represents it, and whose Being is thus dependent upon the
Representation of it in the sign, from the Dynamical Object, which is
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the Reality which by some means contrives to determine the Sign to its
Representation. In regard to the Interpretant we have equally to
distinguish in the first place the Immediate Interpretant, which is the
interpretant as it is revealed in the right understanding of the Sign itself,
and is ordinarily called the ‘meaning’ of the Sign; while, in the second
place, we have to take note of the Dynamical Interpretant, which is the
actual effect which the Sign, as a Sign, really determines. (Peirce, 1906)

 
For Peirce, a sign has an inner possibility of being interpreted before anyone
actually interprets it—this he names the Immediate Interpretant of the sign,
and says that this is what is ordinarily called the meaning of the sign. The
Dynamical Interpretant refers to actual individual acts of interpretation. Peirce
distinguished also the Final Interpretant, that to which all actual interpretations
converge.

Peirce viewed language as one system of signs among others; his perspective
on meaning was very broad. Verbal languages are built on symbolic systems,
but there are other kinds of signs besides symbols. Peirce spoke of indices, icons
and symbols, and many intermediate kinds of signs (Peirce, 1955, pp. 98–119).
In indices the relation between the mark (signans) and that which it signifies
(signatum) consists of their actual existential contingency. For example, high
temperature and flushed complexion are signs of an illness—they indicate an
infection. Marks of animals on the snow indicate their recent passing. The relation
between signans and signatum that accounts for icons is that of resemblance:
for example the picture of a car resembles the actual car it depicts. In symbols,
there is no factual contingency nor resemblance between signans and signatum,
there is only an ‘imputed quality’ which links the two component sides of the
sign. In this sense, for example, the graph of a function represents the function
in a symbolic, not iconic, way. Peirce, however, saw more iconic aspects in
mathematical inscriptions than we would generally admit. For example,
concerning algebraic expressions, he said:
 

When in algebra, we write equations under one another in a regular
array, especially when we put resembling letters for corresponding
coefficients, the array is an icon. Here is an example:

 
This is an icon in that it makes quantities look alike which are in
analoguous relations to the problem (Peirce, 1955, p. 107).

 
Let us note that Peirce is not saying that the system of equations with which he
is illustrating his point is an icon. He only says that it is an icon in some respects.
In general, a sign is never just an icon, or just a symbol, or just an index; all
three aspects coexist and this is true also of mathematical expressions.
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The Meaning Is in the Language As a System
The notion of meaning has most often been looked at in the context of language
or languages only. Some philosophers looked at language as a system and
either studied the formalized languages constructed in logic and mathematics,
or attempted to build idealized models of ordinary languages. Others conceived
of language as an activity, a view more common in psychology than in
philosophy.

Frege adhered to the former view: he regarded language as a symbolic system.
In fact the model language for him was that of pure mathematics from which he
excluded even geometry. His attitude led him to reduce the world of reference to
but two elements: the logical values of Truth and Falsity. Meaning could thus be
assigned only to sentences, not to words standing alone; the sense of a sentence
laid in the conditions under which it could be considered as true. Mathematics
was thereby brought down to logic (Dummett, 1991). Logical empiricism
radicalized Frege’s views by identifying meaning-fulness with verifiability, and
meaning with a method of verification: what decides about the meaning of an
expression is the existence of criteria that allow to decide whether simple sentences
that contain it are true or false. For example, the word ‘red’ is meaningful in
English, but the word ‘ked’ is not, because we are not in possession of a method
that would allow us to decide, in appropriate conditions, whether ‘ked’ can be
applied to a given object or not (Ajdukiewicz, 1946).

Ajdukiewicz proposed a theory of meaning in the 1930s (e.g., 1934) which
he abandoned later due to its limitations: it applied only to the so-called ‘closed
and connected languages’, and did not explain the link between meaning and
reference. Meaning in this theory was an attribute of a language as a whole—it
was a global approach to meaning. The notion of meaning was based on that of
‘directives of meaning’ of a language, of which Ajdukiewicz distinguished three
kinds: axiomatic, deductive and empirical. The axiomatic directives give a set
of sentences that have to be accepted as true in the given language; the deductive
directives give rules that allow the acceptance of certain sentences as true on the
basis of other sentences accepted as true; empirical directives determine which
sentences can be accepted as true on the basis of which empirical data. Thus a
language was fully defined by a class of signs and a ‘matrix’ of directives of
meanings formed of these signs and empirical data. Having such a notion of
language, Ajdukiewicz was able to define when two expressions have the same
meaning. He distinguished two cases: synonymity, when the two expressions
belong to the same language, and translation, when the expressions belong to
different languages. For example, an expression E is said to have the same
meaning in language L as an expression E’ in language L’ if there exists a
‘translation’ R, or an isomorphism of the ‘matrices’ of the languages L and L’,
according to which E and E’ correspond to each other: E’=R(E). The relation of
‘having the same meaning’ is an equivalence relation; its classes of abstraction
were called ‘meanings’.

Within this perspective, it was irrelevant what two languages were speaking
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about; they could be translated one into another provided their matrices were
isomorphic. But matrices described only the abstract structure of the languages,
ignoring what their expressions could be referring to. One can very well invent
two languages, one speaking about the heat and sand of the African desert, and
the other about the cold and snow in the North of Canada, but such that their
matrices are perfectly isomorphic; then a sentence about a snowstorm would
have the same meaning as a sentence about a sandstorm.

While retaining the general idea of defining meaning by abstraction on the
basis of an equivalence relation, in his later works Ajdukiewicz took a much less
formal approach to language, and managed also to take into account the
denotation of expressions. However, philosophers continued attempts to
construct the notion of meaning in idealized models of ordinary languages. One
result of these efforts is the so-called theory of interpretation which relativizes
the notions of extension and intension of an expression to the context of its use
in a ‘possible world’, developed, among others, by Kripke, Montague, and Scott
in the 1960s.
 
The Meaning Is in the Language As a Social Practice
Wittgenstein was close to such ‘global’ and logical views on language in his
Tractatus, but his later works (The Blue and the Brown Books, and Philosophical
Investigations) reflect a completely different view. While in the Tractatus,
language appeared as a uniform system, a logical picture of reality, in
Philosophical Investigations, Wittgenstein claims that there is no one language
but rather a multitude of languages that can be recognized as such by a kind of
‘family resemblance’. The methodology that he proposed to study the different
languages used by people was that of ‘language games’: models of different uses
of language for different purposes and with different means. Language is thus
viewed more as an activity, a social practice, where meanings of phrases are
characterized by the use that is made of them, not by the associated mental
pictures and not by sets of distinctive features of objects denoted by these
expressions (Wittgenstein, The Blue Book, p. 65). The question ‘What do you
mean?’ is, Wittgenstein says, just another way of asking ‘How do you use this
expression?’. He would speak of the ‘grammar of an expression’ as of the rules
that govern the use of it. Some sentences are grammatical, some are not: in
learning to distinguish this, we learn the meanings of words in a language. For
example, a question ‘Has this room a length?’ is ungrammatical; in answering
such a question we would say, shrugging our shoulders: ‘Of course it has!’ and
this, Wittgenstein remarks, would not be an answer to a question, but a
grammatical statement. On the other hand, a question like ‘Is this room 15 feet
long?’ is a sensible question—the word ‘length’ would be used in it according to
its grammar.

Wittgenstein was against looking at language as a calculus proceeding
according to strict rules (The Blue Book, p. 25). It is only in mathematics, he
would say, that the meaning of terms can be given by a set of defining criteria.
In the practice of ordinary life and language we recognize things and give them
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names on the basis of ‘symptoms’ rather than definitions. For example, we say
‘this man has tonsillitis’ because we observed that he has an inflamed throat,
which is a usual symptom of tonsillitis; if we said it because we checked his
blood and discovered the bacillus of angina in it, we would have based our
diagnosis on the defining criterion of tonsillitis. In this case, the defining criterion
exists, but there are many other cases where such criterion does not exist. Consider
such expressions as ‘expecting someone to come’ or ‘pain’.
 

In practice, if you were asked which phenomenon is the defining criterion
and which is a symptom, you would in most cases be unable to answer
this question except by making an arbitrary decision ad hoc… For
remember that in general we don’t use language according to strict
rules—it hasn’t been taught us by means of strict rules, either. We (the
philosophers), in our discussions constantly compare language with a
calculus proceeding according to strict rules. This is a very one-sided
way of looking at language. In practice we rarely use language as such
calculus. For not only we do not think of the rules of usage—of
definitions, etc.—while using language, but when asked to give such
rules, in most cases we aren’t able to do so. We are unable clearly to
circumscribe the concepts we use; not because we don’t know their real
definitions, but because there is no real ‘definition’ to them. When we
talk of language as a symbolism used in exact calculus, that which is in
our mind can be found in sciences and mathematics. Our ordinary use
of language conforms to the standard of exactness only in rare cases
(ibidem, p. 25).

 
Joining Frege in his contempt of the formalist position which denied all meaning
to mathematical signs, Wittgenstein agreed that there must be something that
gives life to the ‘complexes of dashes’ on paper. He suggested that this something
that gives life to a sign—usually called its meaning—must be its use (ibidem, p.
4). It cannot be a picture in the mind, for a picture in the mind is just another
sign, and a sign added to a sign cannot make the sign more alive. Suppose we
replace the picture in the mind by a painted picture: ‘why should the written
sign plus a painted image be more alive if the written sign alone was dead?—In
fact, as soon as you think of replacing the mental image by, say, a painted one,
and as soon as the image loses its occult character, it ceases to impart any life to
the sentence at all (ibidem, p. 5).’

The reason, however, why mathematics educationists seem to be so much
attracted by Wittgenstein’s later view of language and meaning is not that they
have forgotten that in mathematics most terms have their precise definition but
rather that they have in mind the language as practised in the mathematics
classroom which is not the more or less formalized language of mathematics
found in textbooks or research papers.

The language of the mathematics classroom is a very complex structure.
The context in which students learn mathematics is a multidimensional one,
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where the meanings are determined not only by words written in a book or
uttered by the teacher. The meaning of a problem, for example, depends on
the roles that the students and the teacher assign themselves in the given
situation. It will be different, if the problem was posed by one or more students,
than if the problem was assigned by the teacher. The meaning will also depend
on the intention of the teacher: whether the problem is meant to introduce the
students to a new topic and different approaches are allowed; or whether it is
meant to check the students’ ability to apply a certain method, and the students
have to give proof of their knowledge. Each of these situations determine a
different ‘didactical contract’. The proof, which, for a research mathematician
is a means for ascertaining the truth of a theorem, can turn, in a specific kind
of didactical contract, into an activity of ‘showing a proof, as students often
put it, namely showing that one has mastered a technique. Balacheff (1986)
remarks that
 

most of the time the pupil does not act as a theoretician but as a practical
man. His job is to give a solution to the problem the teacher has given
to him, a solution that will be acceptable in the classroom situation. In
such a context the most important thing is to be effective. The problem
of a practical man is to be efficient, not to be rigorous. It is to produce
a solution, not to produce knowledge. (Balacheff, 1986)

 
The social situation of institutionalized learning changes the meanings of
mathematical terms. It brings the language of the classroom closer to ordinary
language, but not in an unambiguous way. We have to deal with so many different
languages in the classroom: the language of mathematical formulas, and the
language we talk about them, the language in which we evaluate the students’
performance and the language of logical values. The student utters a false
statement, and the teacher says: ‘wrong’, as if he or she were the judge, and the
student committed a mischief. Lacombe draws our attention to this shift of
meaning whereby mathematics becomes a kind of law rather than discursive
knowledge (1984). In the context of jurisdiction, even the most neutral
mathematical terms can acquire unintended emotive meanings. These emotive
meanings can be a source of anxiety for some sensitive students.

Both the mathematical language and the ordinary language are subject to
certain rules of sense and rationality but these rules can be different in each
case. The mathematical language relies on definition, deduction, tertium non
datur and modus ponens, while the ordinary language is governed by use,
context, implicature and presupposition (see Bar-Hillel, 1971; Grice, 1981).
These registers interfere in many subtle ways in a mathematics classroom,
and, indeed, the first thing a child has to learn at school is to move within the
fuzzy boundaries, to recognize signals that warn it which register is being used
at a given moment. These signals are not anything conventionally and explicitly
laid out, they are not transparent, although it may seem so to the teacher.
They are to be found in the tone of the voice, in an expression (like ‘now’
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uttered loudly), in other things. Too many mistakes in the identification of
such signals are another source of anxiety, uncertainty, loss of self-confidence,
and, eventually—‘school failure’.

Ordinary words mean something different in mathematics. Yet, especially in
the elementary school, they are used inadvertently by teachers as if there was
nothing to explain. Children have to guess by themselves that a big number is
not a number that is written with huge marks on paper, and a low number is not
one written at the bottom of the page. The horizontal and vertical refer not to
directions in the surrounding space but to the direction of the sheet of paper. A
vulgar fraction has nothing to do with swearing, volume can refer to the amount
of liquid one can pour into a container, and not to the ‘knob on the television
set’. ‘Make’ as in ‘to make a cake’ means something different than ‘make’ in
‘two times two makes four’, etc. (Durkin and Shire, 1991, p. 74).

Aside from the social-contextual, emotive and sometimes the vernacular
meanings, mathematical terms have their so-called descriptive meaning (Ogden
and Richards, ibidem). At some level of education, this meaning starts to be
given explicitly by definition. But even then, the meanings are not learned this
way. Students will notice the subtle assumptions of the definition only by entering
the practices of speaking, using the term, asking questions, solving problems.
Sometimes, the uses of a term may carry meanings not intended by the modern
definition: these meanings are preserved through the process of metaphorization
that terms normally undergo as they are transferred from the vernacular into
the scientific language, and interfere in the grasp of the intended meanings
(Skarga, 1989).

Wittgenstein says: ‘Essence is expressed by grammar’ (Philosophical
Investigations, Part I. 371), and ‘Grammar tells what kind of object anything
is’ (ibidem, 1.373). This seems to be true not only of the ordinary language
but of the mathematical language as well. Knowing the definition of a term
without knowing its grammar will not be very helpful in understanding it. For
the grammar of a word establishes the category it belongs to: whether it is a
set, or a subset of a larger set, or an element of a set, whether it is a mapping,
or a property, what are the objects with respect to which it is relativized, etc.
For example, in linear algebra, we say that a subspace is contained in the
vector space, and not that it belongs to it, which indicates that a subspace is a
subset of vectors and not just one single vector. When we ask for a kernel, we
must specify of which linear mapping it is a kernel of: kernel is always a
kernel of a mapping. We can legitimately ask for the kernel of a linear mapping
or a linear operator; we cannot ask for a kernel of a vector space. We can ask
for the kernel of a matrix, but matrix would have to be regarded as representing
a linear mapping. More literally, one should ask for the nullspace of the matrix
which is the same as the solution space of the homogeneous system of equations
AX=0, where A is the matrix in question. Linear independence of a set of
vectors is the correct form, not linear independence of vectors, although it is
often used this way, for reasons of simplicity. We often observe students using
mathematical terms and phrases in an ungrammatical way. We say then that
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this student ‘has not understood’ the theory: we state a problem of
understanding.

Another example: how is the meaning of the term function expressed by its
use? What are the questions we can ask about a function? What are the questions
we can ask about a set of functions? How can a function be? Or, what adjectives
can we use with the noun ‘function’? (Defined/non-defined, defined in a point/
in an interval/everywhere; increasing, decreasing, invertible, continuous in a
point/in an interval; smooth; differentiable in a point/in an interval; integrable…,
etc.). What can a function have? (Zeros, values, a derivative, a limit in a point/
in infinity; etc.). What can be done with functions? (Plot, calculate the values in
points…, calculate a derivative, an integral, combine functions, take sequences,
series of functions, etc.). How do we verify that a function is…(continuous,
differentiable…in a point; increasing in an interval…)? What can functions be
used for? (Representing relations between variable magnitudes, modelling,
predicting, interpolating, approximating,…).

In mathematics, terms have their definitions which are usually very general,
but they also have their primary meanings and secondary meanings, which specify
which examples are more ‘typical’ than others. This part of the meaning cannot
be grasped from just the definition, one must study the use of the term. For
example, a sequence is a function, but a sequence will not be a typical example
of a function. The definition of a rectangle does not specify the ratio between
the width and the length, but a rectangle with this ratio very small or very large
will not be a typical example of a rectangle.

The ambiguities that occur within the mathematical register are lifted not
by reference to definitions but by the context, like in ordinary language. For
example, a polynomial can be a vector—sequence of numbers almost all equal
zero, or a function: this depends on whether we speak of a vector space of
polynomials or about the characteristic polynomial of a linear operator, or the
vector space of continuous functions on a closed interval. Multiplication is
used in multiplication of two numbers, scalar multiplication of a number by a
matrix, multiplication of polynomials as vectors, or as functions, etc. The
multiplication sign is sometimes written down explicitly, sometimes not. When
there is no sign between two symbols, it does not mean, however, that there is
an implicit sign of multiplication there (for example, dx does not mean d
times x, but how would one know the meaning of this symbol without being
socialized into its traditional use?)
 
The Ecological and Functional Approaches: The Meaning Is in the Environment
While many psychologists locate the meaning in the ‘head’ of the cognizing
subject, some tend to stress the role of the environment, both physical and social.
The well-known adage of those working in the so-called Gibsonian tradition is:
‘Ask not what’s inside your head, ask what your head is inside of’ (Mace, 1977).
Greeno, referred to in the previous section, was inspired by this perspective.
Besides the role of direct perception of the physical environment in cognitive
development, and the ability of the nervous system to ‘tune itself to objectively
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existing coherent information structures’ (Neisser, 1991), interpersonal perception
is stressed as well. This view can be traced back to the works of Vygotski, and,
later, Bruner, who postulated that language is acquired by the child in a process
whose crucial moments are those of ‘joint attention’ of the adult and the child
while they are engaged in a shared activity.

Young children, Neisser writes, learn names of objects not as proper names
but at once as categories. The object whose name is learned is perceived as an
affordance for action in a certain class of situations. In a further stage the name
itself becomes an affordance in situations of communication: it is understood as
a symbol which can successfully stand for an object.
 

It appears, then, that the acquisition of the first vocabulary depends on
the child’s (and the parent’s) ability to coordinate interpersonal
perception and object perception effectively. It is in episodes of joint
attention that the child comes to distinguish spoken words from other
human noises—to treat them, correctly, as signifying intentional states.
The parent is using the word as a symbol for the object and the child
knows it…

To become aware of the symbolic function of the word is to perceive,
simultaneously, both the object itself and the speaker’s inferential intent.
What is involved is not perception in Gibson’s sense, but it’s perception
all the same…

What does the child know when he or she mastered a simple noun?
‘Cup’ is not a proper name of a single object; it refers to a whole
taxonomic category. What defines that category from the child’s point
of view? …It has gradually become clear that the so-called ‘classical
theory’ which treats a category as a set of objects defined by the
presence of certain distinctive features, is deeply flawed. It does not
do justice to either the perceptual or the intellectual aspects of
categorization. On the perceptual side, categories such as cup are
indicated more by an object’s overall appearance and its affordances
for action than by any set of specific features. For this reason some
members of a given category are invariably more central and
‘prototypical’ than others. On the intellectual side, assigning an object
to a category—especially a natural kind, such as tree or dog—implies
much more than just the presence of a few defining attributes; it
typically involves a rich web of beliefs about an extended domain of
experience. (Neisser, 1991)

Relations Between Understanding and Meaning

Philosophers differ also in the way they relate the notions of understanding and
meaning: some explain understanding by meaning, others explain meaning by
understanding. All agree that understanding is a mental experience: 7
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understanding is always ‘in the head’. While the meaning is public, at least for
some authors, understanding remains private. The confrontation of
understandings through social interactions and communications are only steps
in a personal process of understanding; they can give an impulse for a change in
understanding, but whether the change will be introduced or not remains a
individual problem.

In order to be consistent in making the link between meaning and
understanding, one should admit that the object of understanding is the same
as the object of meaning: it is the sign, broadly understood. When we speak of
‘understanding a concept’, or ‘understanding a thought’, then either we think,
with Peirce, that concepts and thoughts are signs, or we make a distinction
between epistemological objects such as concepts or thoughts and semiotic
objects such as signs and we regard these expressions as ‘un abus de langage’:
We intend to say that a concept or a thought are the basis of our understanding,
and what we aim at understanding are signs that represent these thoughts or
concepts for us.

When understanding is explained through meaning it is usually by saying
that understanding is the grasp of meaning (or sense). For some philosophers
belonging to this trend understanding has the same goal as cognition: to know
the truth. This was certainly the case for neo-positivists. Was this also the case
of Frege? If understanding a sentence is knowing the conditions of its truth, do
we also have to know whether these conditions are fulfilled? There has been a
suggestion to extend the Frege-style approach to meaning in such a way that
understanding be distinct from cognition (Danto, 1969). Suppose truth is
considered as but one class of ‘positive semantic values’, and sentences but one
class of ‘semantic vehicles’, while the ‘descriptive meaning’ of a semantic vehicle
is a rule that specifies the conditions under which this semantic vehicle bears a
positive semantic value. For example, we can assume that a concept has a positive
semantic value if it is instantiated; a name when it has a bearer, a picture when
it has an original that it truly depicts, a sentence when the conditions of its being
true are specified. Thus a sentence has the same descriptive meaning whether it
is true or false, and one can normally understand a sentence S without knowing
that S. Hence, ‘understanding does not entail knowledge, as meaning does not
entail truth’ (ibidem).

The distinction between reason and intellect or cognition based on logic and
empirical observation, which originates in the works of Kant, has been very
much discussed in relation to the criticism of neo-positivism. On the surface,
this seems to be a purely academic discussion, but it is easy to imagine the
detrimental consequences in education of an attitude that reduces all
understanding to knowledge. Let us recall the wise words of Hannah Arendt,
who said that if people lost their drive to ask the undecidable questions about
sense, they would also lose their ability to ask the decidable questions on which
all civilization is based (Arendt, 1978). Do we want the teaching of mathematics
reduced to just the logical questions of whether a given proposition is true or
false? Students have to be able to distinguish the questions about truth and
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proof from questions about reason and sense of mathematical theories, but the
latter questions must be considered as part and parcel of mathematics education,
and not rejected as ‘metaphysical’.

This more pragmatic attitude is less likely to be forgotten in an approach that
attempts to explain meaning by understanding rather than vice versa. This has
been the option chosen by Ajdukiewicz in his Pragmatic Logic, where the meaning
of an expression was defined, by abstraction, as a certain way of understanding
it, a class of ‘understandings’. In this approach, the conditions of ‘correctness’
of an understanding are not set a priori Some understanding is necessary for
anything to start to have meaning; ‘good understanding’, as we shall precise it
in the following chapters, is an achievement which requires a long process
involving acts of tentative understanding, reasonings, corrections, shifts of
attention, etc.

Ajdukiewicz chose four criteria to decide whether or not two people
understand an expression in the same way, or attach the same meaning to it:
1. they apply the expression to the same objects; 2. they use the same method
of deciding whether or not the expression applies to a given object; 3. they
see the expression as being used in the same grammatical mode, i.e.,
affirmative, interrogative, or imperative; 4. they attribute the same kind of
emotive aspect to the expression (neutral, positive, negative) (Ajdukiewicz,
1974, pp. 10–12).

Explaining meaning by understanding is also characteristic of philosophical
hermeneutics, where understanding is an interpretation of that to which the
thought is being directed in an intentional act. Such an understanding does not
have to be full, it can even be false, but it always consists in some kind of
ordering, and inclusion into a network of already established ‘horizons of sense’.
Understanding discloses a meaning: it is a movement from what the text says to
what the text is speaking about (Heidegger, 1962; Ricœur, 1976; Skarga, 1989).
The direction of the process of understanding is to some degree determined by
what, for example, Foucault (1966) refers to as ‘épistémè’, and Skarga as the
‘rules of sense’ and ‘rules of rationality’, that characterize a given historical
epoch or culture.

Meaning, Significance, and the Objectivity of Meaning

The word ‘meaning’ is sometimes used in the sense of ‘significance’, as when we
say that ‘this has no meaning for me’ or when we speak about the historical
meaning of a political event or the meaning of a piece of art. In these uses it
means importance or value. For Thomas (1991), works of art such as painting
or music have ‘significance’ rather than ‘meaning’—if ‘meaning’ means reference
and connotation: ‘both pictures and music seem able to refer without attaching
any meaning [connotation] to the reference; both suggest significance’. Neither
need they ‘convey a message’. Beethoven’s 9th doesn’t ‘mean that…’.

For Hirsch Jr. (1967) the ‘significance’ of, for example, an intellectual or
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other work is a kind of ‘response’ to this work. This work may have some
meaning, but this is not the same as its significance. He explains his understanding
of the difference between significance and meaning on the example of an author’s
rejection of a previous work:
 

…there cannot be the slightest doubt that the author’s later response to
his work was quite different from his original response. Instead of
seeming beautiful, profound or brilliant, the work seemed misguided,
trivial, and false, and its meaning was no longer one that the author
wished to convey.

However, these examples do not show that the meaning of the work
has changed, but precisely the opposite. If the work’s meaning had
changed (instead of the author himself and his attitudes) then the author
would not have needed to repudiate his meaning and could have spared
himself the discomfort of a public recantation. No doubt the significance
of the work to the author had changed a great deal, but its meaning
had not changed at all. This is the crux of the matter in all the cases of
authorial mutability with which I am familiar. It is not the meaning of
the text which changes, but its significance to the author. Meaning is
that which is represented by a text; it is what the author meant by his
use of particular sign sequences; it is what the signs represent.
Significance, on the other hand, names a relationship between that
meaning and a person, or a conception, or a situation, or indeed anything
imaginable… Significance always implies a relationship, and one
constant, unchanging pole of that relationship is what the text means.
(Hirsch, ibidem, pp. 7–8)

 
By saying that the meaning has not changed at all, Hirsch seems to be assuming
that a text has a meaning which belongs to the text, and that the meaning of a
text does not change from one epoch to another or from one reader to another,
contrary to the historicist or psychologistic views. What changes is the
significance. In fact, Hirsch makes quite a point of it in his book and argues very
strongly that a text must be understood in its own terms if it has to be understood
at all. Of course, the meaning of the text is not ‘given’ to us, we must construe
it, but we do not construe it by imposing on the words and sentences of this text
the categories of our own idiosyncratic ways of thinking, or of the present day
culture, language and thought. Hirsch compares such a situation to trying to
understand a Greek text by reading it as if it were in English, not in Greek: this
way we would simply understand nothing, he says, because Greek words mean
nothing in English. We must learn Greek first, and we must guess or learn the
necessary knowledge before or while we are trying to understand a text for
which this knowledge is a prerequisite.
 

The skeptical historicist infers too much from the fact that the present
day’s experiences, categories and modes of thought are not the same as
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those of the past. He concludes that we can only understand a text in
our own terms, but this is a contradictory statement since verbal meaning
has to be construed in its own terms if it is to be construed at all. Of
course, the convention systems under which a text was composed may
not in fact be those which we assume when we construe the text but
this has no bearing on the theoretical issue, since no one denies that
misunderstanding is not only possible but sometimes, perhaps,
unavoidable. The skeptical historicist goes further than that. He argues—
to return to our previous analogy—that a natural speaker of English
has to understand a Greek text in English rather than in Greek. He
converts the plausible idea that the mastery of unfamiliar meanings is
arduous and uncertain into the idea that we always have to impose our
own alien conventions and associations. But this is simply not true. If
we do not construe a text in what we rightly or wrongly assume to be
its own terms then we do not construe it at all. We do not understand
anything that we could subsequently recast in our own terms. (ibidem,
p. 133f)

 
‘Understanding is silent’, says Hirsch, ‘interpretation extremely garrulous’
(ibidem). Understanding is silent because it consists in reading the text in its
own terms. Interpretation is garrulous because it is a translation into the readers’
own terms.

Understanding the text in its own terms does not mean that in reading we are
trying to empathize with the author and to see what he or she ‘wanted to say’ by
it. Once written, the meaning of the text objectivizes itself. This problem of
‘objectivity of meaning’ is one of the main themes of reflection in Ricœur’s
theory of interpretation (1981).

The ‘problem of objectivity of meaning’ is also important in mathematics
education. It was especially important for those who adhered to the
‘constructivist’ psychology of learning and tried to promote ‘constructivistic
styles’ of teaching mathematics. One question that always arose, when they
were trying to bring their theories to practice, was: what happens if the
meanings that the child construes in his or her own activity of resolving all
kinds of problem situations are not compatible with the mathematical meanings
shared by the community of mathematicians and teachers and that are aimed
at in the curricula? What should the teacher do? The message that Hirsch and
Ricoeur seem to be conveying is that what the child is construing in his or her
effort to learn mathematics is not his or her own mathematics but the
mathematics that is in the shared ways of doing it and speaking about it, in
the problems, methods, theories.

Questions such as those are difficult to resolve not only in theory but also
in the practice of communication of knowledge. It is possible that they will
remain difficult and unresolved for ever. Maybe all we can do is to become
more aware of them.
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Chapter 2

Components and Conditions of an
Act of Understanding

It is time to penetrate further, and to see what happens in the very soul of
a mathematician… For a fortnight I had been attempting to prove that
there could not be any function analogous to what I have since called
Fuchsian functions. I was at that time very ignorant. Every day I sat down
at my table and spent an hour or two trying a great number of combinations,
and I arrived at no result. One night I took some black coffee, contrary to
my custom, and was unable to sleep. A host of ideas kept surging in my
head; I could almost feel them jostling one another, until two of them
coalesced, so to speak, to form a stable combination. When morning came,
I had established the existence of one class of Fuchsian functions, those
that are derived from the hypergeometric series. I had only to verify the
results, which only took a few hours. (Poincaré, 1952)

 
In this chapter, we shall be focusing on the act of understanding, on its nature,
its components and the mental operations involved in it. We shall pose the
question of the internal (psychological) and external (mainly sociological)
conditions of an act of understanding. Processes of understanding will occupy
us in the next chapter.

We pay all this attention to the act of understanding because it seems that in
teaching it is the acts that are the main concern of both teachers and students.
We want to make the students acquire certain ways of understanding, certain
‘understandings’, certain knowledge, of course, but we cannot do this other
than by helping them to experience acts of understanding. Moreover, especially
today, in the rapidly changing technological post-industrial world the student
can never consider himself or herself fully educated. He or she must first of all
learn how to learn, how to be prepared for the continuous struggle of
understanding, of changing his or her ways of understanding. Therefore an
awareness of what an act of understanding may consist of, a reflection about it
may be more helpful to the future teacher than all the knowledge he or she
might have about the expected, the valued (by today’s but maybe not by
tomorrow’s society) ways of understanding certain particular things and topics
in mathematics.



Understanding in Mathematics

28

In the following discussion, a certain way of looking at an act of understanding
will be proposed. This is, however, (may I remind the reader) only a certain way
of looking at understanding, and not a description pretending to be ‘complete’
or ‘faithful’ in spite of the occasional use of positive assertions such as
‘understanding is this or that’. What comes after the ‘is’ should be taken as a
hypothesis.

What Could Be an Act of Understanding?

My starting point will be a concise definition proposed by Ajdukiewicz (1974).
Albeit aware of the various senses in which the word ‘to understand’ is used in
the vernacular, he chose to mean by understanding an act of mentally relating
the object of understanding to another object.

Ajdukiewicz applied his definition to understanding expressions only. To
understand an expression was intentionally to make a link in thought between
this expression and something else, another ‘object’. This ‘object’, for
Ajdukiewicz, could be a mental representation: an image or a concept (in the
psychological sense).

Here is how Ajdukiewicz introduces his definition:
 

The rustle of leaves, the singing of birds, the noise of a passing motorcar
we hear. The expressions of language of which we have command we
not only hear, but also understand. It is not easy to explain in what
the understanding of an expression consists… It is very often said
that a person understood a given word when the hearing of that word
intertwined in his mind with a thought about an object other than the
word in question. For instance, a person who knows Latin thinks
about the Earth on hearing the word ‘terra’; he thinks that the Earth
is round on hearing the statement ‘terra est rotunda’. But it is not
always required that the hearing of a word should in a person’s mind
intertwine with a thought about an object other than the word in
question when it is said that the person understood that word. It will
be said, for instance, that we understand the word ‘whether’, as it
occurs, e.g., in ‘I do not know whether he will be here’, even though
on hearing that word we do not direct our thought toward an object
other than the word in question. We would also say, perhaps, that a
soldier understood an order if he did what he was told to, even if the
order was formulated in a language which he does not understand in
the first of the meanings mentioned above.

As can be seen from these explanations, the word ‘understand’ is
used in different senses. Without going here into any detailed analysis
of these various meanings of the word ‘understand’ we shall bear in
mind, in the discussion that follows, the first meaning of that word,
namely that a person understands an expression if on hearing it he
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directs his thoughts to an object other than the word in question.
(Ajdukiewicz, 1974, p. 7)

 
I should like to extend this definition beyond just understanding expressions
on the basis of a mental representation. I would replace ‘expression’ by ‘object’,
and admit that any other ‘object’ can be used as that towards which our thought
is being directed in an act of understanding. The first object I would call ‘object
of understanding’, and the second ‘basis of understanding’. For example, my
object of understanding can be a mathematical word problem, and in the act
of understanding I may recognize the problem as following a certain well-
known pattern. This pattern would be the basis of my understanding of this
problem.

Ajdukiewicz’s definition is interesting because it identifies the main
components of the act of understanding. There is, of course, the ‘understanding
subject’ (P)—the person who understands. There is that what P intends to
understand—‘the object of understanding’ (X). There is what P’s thought is
being directed to (intended) in the act of understanding: ‘the basis of
understanding’ (Y). And there is the operation of the mind that links the object
of understanding with its basis.

The Notion of Object; Mathematical Objects

In generalizing Ajdukiewicz’s definition this way there is, of course, the
question of what does the term ‘object’ mean here. In the last chapter, we
mentioned that, in order to have a unified theory of understanding and
meaning, it is reasonable to assume that the object of understanding is a
‘sign’, sign being something that represents something for someone. But how
do we define ‘sign’? If we do it this way: ‘whatever is understood (or
interpreted) by someone in a certain way, functions as a sign for this someone’,
then the notion of sign is explained by the notion of understanding; we fall
into the error of petitio principii. It seems to be safer to leave the term ‘object’
in the definition of act of understanding as an undefined or primitive term,
without replacing it by ‘sign’. We can only attempt to explicate what we
mean by ‘mathematical objects’, as we are interested by understanding in
the mathematical field.

Questions related to the notion of object are sometimes discussed within
the community of mathematics educators. The subjective point of view where
one rather speaks of ‘conceptual entities’ or of a person’s object of
understanding is debated against the more ‘realistic’ position which poses
ontological postulates. The article of Greeno, referred to in the previous chapter,
pleaded in favour of the existence of mathematical objects, whose reality in
the world of the mind was compared to that of wood workshop tools in the
physical world. On the other hand, Yves Chevallard, the philosophizing
didactician, proposed to consider something as an object if it is an object for
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at least one person: if there is a person who has a relation, an attitude (un
rapport) to it (1992).

My own position is neither platonic realistic nor idealistic; it is closer to
that professed by Popper: brought into being by our definitions, mathematical
objects are creations of the human mind. But, embedded in a system of logical
necessities and consequences of their relations with other mathematical
objects, they may have properties that can be hard to discover, or difficult to
prove or disprove. The number of still unsolved problems in mathematics
testifies for that.

For a student in mathematics who comes to learn what has already been
invented and discovered, mathematical objects have an undeniable reality—it is
only sometimes very difficult to enter this reality. They don’t think they have the
right to create anything—everything is already there, brought into being by
God or godlike mathematicians, like the mythological Pythagoras, and Euclid,
or more modern but nonetheless legendary Gauss and Lebesgue. Even in the
simple situation in a linear algebra class of defining a linear operator T on, say,
R3, by its values on a basis {e1, e2, e3} some students find it difficult to accept that
they have all this freedom to put whatever they want for T(e1), T(e2), T(e3).
They believe these values should follow from some assigned formula. But once
they have accepted the initial freedom of definition of values on the basic vectors,
there comes a second shock: now the images of all other vectors in the space are
completely determined—by the initial assumption that T is linear. Of course, we
did not have to assume that, but once we did, we are constrained to abide by
this assumption.

Mathematics thus appears as a dialectic game between freedom and
restrictions, invention and discovery: between the liberty of initial choices and
the confinement within the laws of a deliberately chosen system, between the
free creation of objects and the struggle of understanding their properties and
significance.

In the history of philosophy we have had such strongly anti-platonic positions
as that of J.S.Mill who did not consider definitions of mathematical concepts as
referring to some objects in any sense. Objects must have some real existence,
and what mathematical definitions postulate does not exist even in our minds.
A mathematical point has no dimensions, a mathematical line has no width and
is of infinite length. But nobody can imagine a point with no dimensions and
nobody can imagine an infinite line with no width.
 

The points, lines, circles and squares which any one has in his mind,
are (I apprehend) simply copies of the points, lines, circles and squares
which he has known in his experience. Our idea of a point, I apprehend
to be simply our idea of the minimum visibile, the smallest portion of
surface which we can see. A line, as defined by geometers, is wholly
unconceivable. We can reason about a line as if it had no breadth;
because we have a power, which is the foundation of all the control
we can exercise over the operations of our minds; the power, when a
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perception is present to our senses, or a conception to our intellects,
of attending to a part only of that perception or conception, instead
of the whole. But we cannot conceive a line without breadth: we can
form no mental picture of such a line: all the lines which we have in
our minds are lines possessing breadth… Since, then, neither in nature,
nor in the human mind, do there exist any objects exactly
corresponding to the definitions of geometry, while yet that science
cannot be supposed to be conversant about non-entities; nothing
remains, but to consider geometry as conversant about such lines,
angles, and figures, as really exist; and the definitions, as they are
called, must be regarded as some of our first and most obvious
generalizations concerning those natural objects. (Mill, 1843)

 
It is of course curious that Mill did not count mathematical concepts as belonging
to the category of ‘relations’ and instead argued very strongly that they do not
belong to the category of ‘bodies’ (for Mill there were four categories of objects:
sensations, souls, bodies, and relations). Indeed, mathematical concepts can be
thought of as derived from generalizations and idealizations of relations between
bodies rather than of bodies themselves: they belong to the ‘transfigural’ or
even ‘trans-operational’ level, to speak in terms of Piaget and Garcia (1989).
Straight lines do not have width because width is completely irrelevant for co-
linearity. It is co-linearity that matters for the concept of straight line and this is
a relation between at least three things whose dimensions are irrelevant. If, in
passing by two sticks placed vertically we suddenly see only one, then we know
we are on the line determined by these two sticks and this can be an important
information for the sailor who is about to enter his boat into a harbour and
wants to avoid shallow waters (de Lange, 1984).

Kotarbinski refers to the German logician W.Wundt who distinguished a
slightly different set of categories of objects: things, features, states, relations.
Kotarbinski himself takes a strongly materialistic point of view and does not
admit of features as objects. In fact, features are even more abstract than relations:
they can be thought of as classes of abstraction of relations. Whiteness, for
example, he says is a feature of snow; ‘whiteness’ being a noun in this sentence,
it looks as if there were an object such as whiteness. But this is only an illusion—
whiteness does not exist independently from things that are white; these things
are objects, but not their feature of being white.

It is possible that whiteness needs some medium to appear; that it is some
form of energy and there is no reason why it should not be awarded existence
just as any other form of energy whether we are able to perceive it through our
senses or not. Let me propose here a more liberal point of view: whiteness can
be regarded as an object because we can isolate it as an object of our thinking,
of our understanding. In this sense mathematical abstract concepts can be objects
for us. Real functions defined on the closed interval [0,1] can be objects. Their
whole set can be an object. Geometrical transformations can be objects; these
objects can form groups, which are again objects, this time of group theory.
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Even the general concept of function can be an object if someone is able to
consider it this way. Also judgments (theorems, conjectures, etc.), reasonings
(proofs, explanations) can be regarded as objects.

However, we must be aware that, especially in mathematics, objects are
being often only constructed in acts of understanding. Abstract concepts and
relations cannot be communicated in an ostensive way. Therefore, what, a
posteriori, is identified by the understanding person as his or her ‘object of
understanding’, might not have been very clear from the beginning; the
‘contour’ of this object need not be clear in the first acts of understanding it. It
can be vague and blurred. The person may not be able to say what it is that he
or she intends to understand. It is only understanding that may lead to some
clarification and identification of this object. But still it seems that without a
feeling of there being ‘something’ to understand it is difficult to speak about
any act of understanding to have occurred at all.

When Do We Consider We Have Understood? Constraints Regarding
the Basis of Understanding

In Ajdukiewicz’s definition it looks as if absolutely any object (from the
range of representations, for Ajdukiewicz) could be the basis of
understanding. But do we, in our intention of understanding make no choice
between the possible objects Y to which we link our object of understanding
X? Or do we guide ourselves by some criteria? When do we feel we have
understood?
 
Order and Harmony
Order and harmony in our thoughts, the feeling that ‘it fits’ is probably the
most obvious criterion. We know this feeling by introspection: the common act
of recognizing something consists in classifying it, putting it orderly among other
similar objects, by naming it, for example, when we come across an inscription
like ‘y=2x+3’ and say to ourselves ‘Oh! a linear function’.

Even the most primitive acts of understanding require this feeling of order.
For example, our undergraduate students’ understanding of a mathematical
notion may be based on mere memory that they have already heard that name
or seen that theorem or formula. But, this memory cannot be isolated: the object
is remembered within a certain context. The student remembers at least in what
course he or she has heard or seen it.

Order and harmony in our ‘field of consciousness’ was very important in
Gestalt psychology: tendency to equilibrium in the field of consciousness is this
field’s basic feature. This idea reappears in Piaget’s theory of equilibration of
cognitive structures (1975a). Assimilation and accommodation are two
operations of the mind that ensure the equilibrium of these structures.

Also in hermeneutics, interpretation or ‘extraction of the sense’ of a text or
utterance consists in introducing an order:
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Sense is always a result of an ordering, whether this is an ordering of
words in a sentence, or an ordering of actions or phenomena. If we
cannot see this order we feel a lack of sense… Since sense is…closely
related to understanding, then something has a sense if it was already
somehow understood, but understanding itself is never just a innocent
looking at something. From the very start it is rooted in the world,
filled with memories, included in a multitude of horizons of sense.
Hence,…there can be no sense in what appears as unrelated,
inconsistent with respect to these horizons. For something to acquire
sense, it must become embedded into this tissue of already constructed
senses, or, having torn it apart, it must rebuild it anew. Using the
Wittgensteinian expression, we can say that a word has some sense
[for us] if it enters into a [language] game that is already known. An
utterance has a sense if its message can be included into a game of
other messages in such a way that we can say that it obeys the same
rules. (Skarga, 1989, p. 167)

 
Understanding on the Basis of a Unifying Thought
The criterion of ‘finding a unifying principle’, a relation that ‘founds’ what we
want to understand does not apply, perhaps, to all acts of understanding.
However, when it comes to understanding abstract concepts, theorems, theories,
it certainly starts to play an important role.

This idea of understanding as ‘taking together’, conceiving of something as a
unity is quite important for Leibniz (New Essays on Human Understanding):
understanding does not mean just forming ‘aggregates of things’; the crucial
question is what founds the aggregate as a whole.
 

Philalethes: The ‘composition’ of simple ideas to make complex ones is
another operation of our mind. This may be taken to cover the faculty
of enlarging ideas by putting together several of the same kind, as in
forming a dozen out of several units.

Theophilus: This unity of the idea of an aggregate is a very genuine
one: but fundamentally we have to admit that this unity that collections
have is merely a respect or relation, whose foundation lies in what is
the case within each of the individual substances taken alone. So the
only perfect unity that these ‘entities by aggregation’ have is a mental
one, and consequently their very being is also in a way mental, or
phenomenal, like that of a rainbow…

Theophilus: It may be that ‘dozen’ and ‘score’ are merely relations
and exist only with respect to the understanding. The units are separate
and the understanding takes them together, however scattered they
may be. However, although relations are at the work of the
understanding, they are not baseless and unreal. The primordial
understanding is the source of things; and the very reality of all things
other than simple substances consists only in there being a foundation
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for the perceptions or phenomena of simple substances. (Leibniz, 1765,
BK II, Ch. xii)

 
The French word comprendre, ‘to understand’, has its roots in exactly this
idea of ‘taking together’ as a unity. So there must be something that founds
this unity, and the perception of this something is exactly what our
understanding consists of. Isn’t this what happens, in fact, when, for example,
we understand the phenomenon of rainbow on the basis of the principle of
dispersion of sunlight by refraction and reflection in drops of rain water? Or,
when numbers are understood as constructions based on the ideas of quotient
structure and equivalence relations. Integers are obtained as equivalence classes
of a relation between pairs of natural numbers: (a, b)~(c, d) ⇔ a+d=b+c. Then,
for example, the class [1, 2]={(1, 2), (2, 3), (3, 4),…} can be denoted by ‘-1’.
Likewise, rationals are obtained as equivalence classes of an analogous relation
between pairs of integer numbers: (a, b)~(c, d) ⇔ ad=bc. It was Cauchy’s
dream to think of reals as classes of abstraction of a relation between sequences
of rationals. This idea, however, suffered of a petitio principii and had to be
amended (Boyer, 1968, p. 606).
 
Reduction to Something Simpler or More Fundamental? Systemic Understanding
(from Without the Object of Understanding) and Experiential Understanding
(from Within)
Scientific understanding has often been characterized as one that reduces
complexity, unifies, simplifies, bases everything on a few general laws. This
‘reductionist’ view of scientific understanding has not satisfied all philosophers.
Maslow, for example, has introduced the concept of ‘suchness understanding’
to contrast it with the reductionist understanding that he said belongs rather to
the category of ‘lawful explanation’ (Maslow, 1966). The ‘suchness
understanding’ (of a situation, for example) refers to experiencing this situation
‘as such’, in all its richness and variety of aspects. ‘Suchness’ refers to experiencing
a situation from within, without trying to classify it, without looking at its
‘system properties’. ‘Suchness understanding’ in science refers to ‘comprehensive
experience, in which the only scientific requirement is to accept what exists
(ibidem, p. 79). The experienced suchness is completely alien to any kind of
definition and especially the ‘rigorous’ definition, because any definition is
abstraction and generalization and these do not apply to ‘suchness’: ‘An
experience of redness or of pain is its own definition, i.e., its own felt quality or
suchness. It is what it is. It is itself
 

So ultimately is any process of classifying, that is always a reference
to something, beyond the suchness of an experience. Indeed, this holds
true for any abstracting process whatsoever, which by definition is a
cutting into the suchness of an experience, taking part of it and
throwing the rest away. In contrast the fullest savouring of an
experience discards nothing but takes it all in. So for the concepts
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‘law’ and ‘order’—these, too, are system properties, as are also
‘prediction’ and ‘control’. Any ‘reduction’ is a happening within a
theoretical system. (Maslow, ibidem, p. 81)

 
The question arises however: is it at all possible to experience the above described
‘suchness understanding’? Are we at all able to isolate a situation (pain, redness,
continuity of a function) and experience (savour) it from within without
conceiving of it as a system already? Can we isolate it without ‘throwing away’
what does not belong to this situation? And even if we were able to live the
suchness of an experience—would we then feel as if we had understood it?
Don’t we a priori expect that understanding selects and introduces order—and
Maslow assumes that suchness contradicts order?

Fortunately, Maslow acknowledges that ‘suchness’ and ‘abstraction’ are
complementary rather than contradictory and ‘cannot be split apart without
damage’ (p. 87). Choosing one at the expense of the other can only generate
either ‘a crippled reduction to the concrete’ or ‘a crippled reduction to the
abstract’. The main point of Maslow is that the ‘reductionist’ view of
understanding, which is integrative and driven towards simplification, does not
give full account of human understandings (even in the domain of science),
many of which are just ‘experiential’, remaining within the object of
understanding, not going beyond it, abstracting and classifying.
 

This is the kind of understanding that the sculptor has of clay or stone,
that the carpenter has of wood, that a mother has of her baby, that a
swimmer has of water, or that a husband and wife have of each other.
And this is the kind of understanding that is ultimately impossible for
the nonsculptor, the noncarpenter, the nonmother, the nonswimmer, or
the nonmarried, no matter what other resources of knowledge may be
available. (Maslow, ibidem, p. 89)

 
May I add: This is the kind of understanding that a mathematician has of
mathematics and that is ultimately impossible for the nonmathematician?
 
Understanding and Reaching the Essence of Things; Phenomenalism and
Essentialism
Very often we have the feeling that we have not ‘really’ understood something
unless we have reached to ‘the essence’ of this something. This happens when
the motivation of our intention of understanding is guided by a question of
the type: ‘What is…?’. We want to grasp what makes the object exactly what
it is: ‘the essence of an object is that without which it would not be what it
is’—this is how the ‘essence’ of things was traditionally understood
(Kotarbinski, 1961, p. 46).

The notion of essence has been the object of many controversies among
philosophers past and contemporary. Very important in the philosophy of
Aristotle and the scholastic philosophy of Middle Ages, its significance was
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undermined by the scientific and matter-of-fact attitudes of the seventeenth-
century scientists and philosophers of nature (Kotarbinski, ibidem, p. 488). Facts
and phenomena, observation and experience was what all scientific knowledge
had to rely on exclusively; the questions about the ‘internal deep essence’ of
things, were ridiculed as irrelevant and even senseless. This positivistic attitude
reached its apogee in the 1930s, in the works of Schlick and Carnap.

In the frame of this attitude one can sensibly ask for the essence of a general
name but not for the ‘essence of things’: the essence of a word is nothing more
and nothing less than what can be logically inferred from its definition.
 

The watchword [of the positivistic attitude] was: observe the facts that
can be reached by observation, do not enter into vain speculations
concerning the unobservable interior of objects; state regularities of co-
existence and succession of phenomena; on these regularities base your
predictions, and on the predictions—your technology; take all enquiry
into the nature of reality and essence of things to be worthless and even
senseless enterprises. For Mill, the essence of man was simply ‘the set of
characteristic features co-noted by the name “man”’. (Kotarbinski,
ibidem, p. 486)

 
But it is very difficult to resign from inquiring into the nature and essence of
things. We somehow expect more of scientific understanding than of scientific
explanation. This dilemma between our scientific and methodological conscience
on the one hand and beliefs about there being a reality that with pain and effort
it will be possible to discover on the other, is very well rendered by Werner
Heisenberg in his book Der Teil und das Ganze (1969). Heisenberg found it
difficult to put up with the notion of time as ‘that what the clock shows’ and felt
dissatisfied with his understanding of relativity theory. He said that while having
understood the mathematical apparatus of the theory, he still had problems
with understanding why the moving observer understands by the word ‘time’
something else than the fixed observer: he understood the theory with his head
but not yet with his heart: ‘ich habe die Theorie mit dem Kopf, aber noch nicht
mit dem Herzen verstanden’ (ibidem, p. 48). He could not resign from his naive
notion of time which one has whether one wants it or not and which is a useful
tool of our thinking:
 

If we now claim that this notion of time must be changed, then we do
not know any more whether our language and thinking can remain
useful tools of orientation. I do not want to refer here to Kant who
described space and time as a priori forms of intuition thereby
bestowing upon these fundamental forms a claim to absolute, as it
was admitted in the earlier Physics. I should only wish to stress that
speech and thinking will become uncertain if we change such
fundamental notions, and uncertainty cannot be matched with
understanding. (Heisenberg, 1969, p. 48)
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Of course, it is possible to suspend one’s scruples about whether or not a
given theory ‘really’ tells us anything about the object it theorizes upon or
models. It is also possible to accept that the meanings of the terms in a
theory are different from the meanings that we have attached to these same
words up till now. After all, the decision whether, in our understanding, we
have or have not reached the ‘essence’ of the matters upon which we reflect,
is our personal decision, based on feelings rather than on some rational
arguments. The positivists were satisfied with their understanding; Heisenberg
obviously was not.

There are also some attempts at coming to terms with phenomenalism,
accepting its merits while not completely rejecting the questions for reaching
beyond the observable. Such is, for example, the position of Kotarbinski
(ibidem, p. 489) and also of Cackowski, who, in his account of ‘scientific
understanding’, refers himself to Feynman’s metaphor of the world as a huge
chess game.
 

The phenomenon is for the scientists a real and objective event or process
and the task of scientific cognition consists in the discovery of the
regularities of these processes and the laws of interaction between events.
To come to know these laws and rules—means to understand the world
of things. This is how R.Feynman understands the ‘scientific
understanding’ of the world:

‘What do we mean by “understanding” something? We can
imagine that this complicated array of moving things which
constitutes “the world” is something like a great chess game being
played by the gods, and we are observers of the game. We do not
know what the rules of the game are; all we are allowed to do is to
watch the playing. Of course, if we watch long enough, we may
eventually catch on to a few of the rules. The rules of the game are
what we mean by fundamental physics. Even if we knew every rule,
however, we might not be able to understand why a particular move
is made in the game, merely because it is too complicated and our
minds are limited… Actually, we do not have all the rules now…
Aside from not knowing all the rules, what we really can explain in
terms of those rules is very limited, because almost all situations are
so enormously complicated that we cannot follow the plays of the
game using the rules, much less tell what is going to happen next.
We must, therefore, limit ourselves to the more basic question of the
rules of the game. If we know the rules, we consider that we
“understand” the world’. (Feynman, 1965, p. 2–1)

The scientist is not always able to explain a law; this does not mean
however that he never asks the question ‘why?’ This question is asked
and often an answer is found. For example, the discovery of intra-atomic
structures allowed to explain the ‘rules of the game’ on the atomic level
(the rules of the inter-atomic connections, the rules of the atomic bonds);



Understanding in Mathematics

38

the subquantum level (quarks) may facilitate the explanation of intra-
atomic structures, etc. Science investigates the rules on different
structural levels of the world, one of which serves as premisses for the
explanation (‘understanding’) of the rules on other levels. Because of
these multilevel structures the phenomenalistic attitude of the
contemporary science becomes more complicated and may even be
doubted. It is however beyond doubt that the contemporary science
has developed very much thanks to this phenomenalistic attitude,
understood as an protest against the metaphysical essentialism that
directed the scientists’ attention to absolutely objectless ‘essences’,
‘beings’, ‘substances’. (Cackowski, 1987, p. 169)

 
For many mathematicians and physicists, the possibility of mathematizing a
part of reality is that which they organize around their understanding of this
reality. They feel they have understood something if they succeeded in building
a mathematical model of it (Pollak, 1968). Also genetic psychology stressed the
role of mathematizing in understanding (Piaget and Garcia, 1989, p. 4).
According to Piaget, it requires logico-mathematical structures to but constitute
the object of understanding. Mathematization is present in understanding from
the very beginning. If we relied only on our senses we would be unable to preserve
certain sensations and attribute permanence to other sets of them—this
permanence ensures that we constitute them into objects and are able to store
them in memory, analyze them, decompose and recombine.

In the controversy between phenomenalism and essentialism mathematics
often played the role of a mediator. Starting from Galileo, grasping a physical
phenomenon in mathematical terms was a warranty that the scientific
investigation will not be reduced to mere recording of facts, making no distinction
between the essential and the irrelevant details. But mathematics, too, has had
something similar to the controversy between phenomenalism and essentialism
which concerned mainly physicists and philosophers. I refer here to the frictions
between formalism and…platonism or neoplatonism, maybe?

A ‘formal’ understanding of a mathematical notion consists in understanding
its name on the basis of its definition—a certain statement which has a definite
logical structure and definite logical links with other statements (theorems and
definitions). A definition in this sense is what is observable in a concept—it is its
phenomenon. Such an understanding may not be felt as satisfactory. An analysis
of just the definition does not answer the questions about how the concept is
crucial or marginal for the theory and its applications, what was its role in the
development of the theory, what were the problems that the concept helped to
solve or understand better. An awareness of all this may seem important for
understanding the concept.

Of course, it is very difficult to speak about the ‘essence’ of a mathematical
notion, although the temptation is great, especially for mathematics
educators. From time to time an aspect of a mathematical notion is brought
up as being important for its understanding and it is proposed that it be
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stressed in teaching. Functions, for example, were viewed mostly as particular
relations in the period of the so-called ‘new math’ reform in Europe; later,
with the trend towards bringing mathematics closer to life, functions were
presented as models of relationships between variable magnitudes. A more
both multi-faceted and general perspective is offered in seeing functions as,
on the one hand, a certain process (when we speak of transformations of
elements of one set into elements of another set and when we are actually
doing these transformations, by hand or with the help of a computer), and,
on the other, a certain object (when we consider functional spaces, for
example). The concept of function has many aspects and grasping as many
of them as possible in teaching should probably be aimed at. The problem is,
however, that when we use ordinary language to say something about a
function, we necessarily focus the listener’s attention on one possible
understanding of functions. This means that ‘whatever we say a function is,
it isn’t’—to paraphrase Korzybski’s words
 

Whatever we say a thing is, it isn’t because whatever we say is words
and what we mean to say is generally not words. (Korzybski, 1950,
quoted and commented by Bohm and Peat, 1987, p. 8)

Components of an Act of Understanding

In this section we shall discuss, in more detail, the basic components of an act of
understanding, namely: the understanding subject, the object of understanding,
the basis of understanding, and the operation of the mind that links the object
of understanding with its basis.

The Understanding Subject: Who Understands

When we speak generally of the act of understanding as a psychological and
actual event, then we think of it as occurring in an individual person at a given
time. In this case the understanding subject is the psychological subject: a student
in our laboratory, or in our class, or, simply, you or me.

But when we speak of how the understanding of a certain mathematical
notion developed in history, and mention certain acts of understanding that
occurred in a past epoch, then this notion of psychological subject is no longer
adequate. Of course, it happens that a mathematician gives account of a personal
experience (like Poincaré did in the motto to this chapter). But, most of the time
it appears that a new way of understanding is shared by mathematicians at a
given time with nobody in particular being responsible for its invention. The
new way of understanding is ‘in the air’, somehow.

Lubomirski, a Polish philosopher who studied the problem of
generalization in mathematics (1983), was very much concerned with this
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notion of subject. The perspective on generalization taken in his book was
not that of a logician but that of an epistemologist. He studied generalization
in its diachronic dimension and therefore he had to deal with ‘the generalizing
subject’—he who generalizes—and not only with generalizations as results
of the mental work of this generalizing subject. Lubomirski’s question was
how to understand this category when one wants to speak about
generalization as a certain cognitive procedure that leads from one
mathematical situation to another.

Lubomirski proposes, without pretending to offer a final solution to his
problem, to adopt the Piagetian notion of sujet épistémique (Beth and Piaget,
1961, p. 328–9) of which, he says, the notions of psychological subject and the
so-called social consciousness are certain deformed concretizations. It is in the
operational structures of the epistemic subject that are encoded the ‘natural
logic’ of mathematical thinking and, in the historical perspective, the
‘mathematically founded objectivity of coming into being of mathematics’, as
Cavaillès (1962) would say. It is the epistemic subject that takes on the
responsibility of the fact that, in various historical epochs, there existed some
commonly shared beliefs that nobody has really individually articulated.

In our work, we cannot completely dispense with the idea of the
psychological subject when we speak about the actual understandings of
mathematics in actual students. After all, in a mathematics class, a teacher
has to do not with sujets épistémiques but with very concrete people (some
of whom may, of course, grow to be Gausses). But, on the other hand, if we
want to speak about understanding of some mathematical topic in normative
terms, this notion of sujet épistémique comes in handy. To be exact, it is not
the way ‘a certain concrete Gauss’ has developed his understanding between
one work and another that will give us some guidance as to what acts of
understanding have to be experienced or what epistemological obstacles have
to be overcome in today’s students. We have to know how a notion has
developed over large periods of time, and in what conditions (questions,
problems, paradoxes) were the great breakthroughs in this development
brought about. This, and not historical facts about exactly who did what
and when, can be instructive in designing our teaching and facilitating
understanding processes in our students.

The Object of Understanding

In introducing the notions of Gestalt psychology, it is often pointed out that one
important difference between the Gestaltist and the classical ‘introspective’
psychology points of view on consciousness is that in the classical psychology
consciousness was a stream of objectless sensations or impressions, whereas in
the Gestalt psychology, consciousness was always a consciousness of something.

In Locke’s ‘Essay’, understanding ‘has ideas’, and it ‘gets’ or ‘derives’ these
ideas from sensations or reflections on operations of our minds. Sensations and
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reflections are regarded as ‘sources’ of ideas. We cannot say that what Locke
means is that understanding consists in getting ideas ‘of sensations or reflections,
which then would be the objects of understanding; rather, ideas are gotten ‘from’
these two ‘sources’. It is not clear, then, what the object of understanding is, and
whether it makes sense to speak about such a thing. Understanding, for Locke,
was primarily the source of knowledge; an activity of the mind that produced
knowledge. This knowledge must have been, for an empiricist, knowledge about
the world. We might presume then, that it is the world (whatever this means)
that was the object of understanding for Locke.

It is possible that a more accurate description of the classical psychological
position would be not to say that psychologists occupied themselves with
‘objectless’ sensations, impressions, etc., but rather that this object was not
specified: the object was ‘the world’, or ‘reality’. Of course, a vague object
functions as if there were no object at all.

Such a vagueness of object of understanding can still be observed sometimes
in works of mathematics educators, even though a great step had been taken
from the time when the discipline of mathematics education was a mere
branch of the general discipline of education. The general discipline of
education spoke about understanding in general, whatever the object to be
understood, and formulated principles of teaching any subject. It has become
clear at some point that teaching methods must be content-specific, because
very clearly learning is content-specific. Our minds do not function in the
same way whether we study mathematics or the history of literature.
However, this ‘content-specificity’ is often applied to mathematics as a whole,
or to some domains of mathematics, like ‘algebra’, for example. ‘Algebra’ is
a very imprecise term. It means one thing for a scholar working in the field
of group representations theory, another for a high-school teacher, and still
another for a historian who studies the development of algebraic thought
from Diophante to Viète. But even in the context of high-school algebra,
when a teacher says: ‘My students don’t understand algebra’, it is not clear
what exactly it is that they do not understand: the symbolic system, and the
often tacit conventions that come along with it, the notion of equation as
representing a certain condition on the variables, the notion of variable as
opposed to that of unknown, the notion of parameter as opposed to that of
the variable…?

It would seem that one important aim of the didactical analysis of a subject
of teaching is to clarify what it is that we want our students to understand when
they study mathematics, and what exactly it is that they don’t understand. We
want our students to experience a certain number of acts of understanding in
their studious lives. Each such act has an object which the student has to notice,
identify as an object of his or her understanding for any conscious thinking on it
to start at all.

The problem of objects of understanding is linked as much with the
contents of teaching as with the goals of this teaching. It is not the same
whether, in the frame of school ‘algebra’, we set ourselves the goal to teach
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the students a technique of solving equations or to have them acquainted
with various approaches to solving problems, one of which is solution of
equations; or whether we want the students to solve problems or to solve
them ‘by algebra’.

Also, one must not forget that school is an institution into which many
children are forced and not chosen by their free will. Therefore, one has to be
very careful when speaking about objects of understanding in the frame of
institutionalized learning. From teacher to student, the object of understanding
can easily change its identity. What is, for the teacher, an ‘algebraic method of
solving problems’ may become, for the student, a mechanical procedure, a
school activity that is done to comply with the requirements of the teacher
and the school institution. It may have nothing to do with ‘methodology’ and
certainly nothing with answering interesting questions. The student’s activity
does not always have a cognitive character; very often it is a strategic activity
aiming at going through the school and graduating with as little intellectual
investment as possible.

In the following section, we discuss some of the possible objects of
understanding in mathematics.
 
Understanding Concepts
The object of understanding in Ajdukiewicz’s ‘Pragmatic logic’ is always an
expression of language. It may be an isolated word, or it may be someone’s
utterance, but it is always composed of words. Now, when speaking of
understanding in mathematics, we are concerned not so much with
understanding words as with understanding concepts, relations between
concepts (sometimes stated in forms of theorems), problems, arguments
(proofs), methods, theories, mathematical symbolism, mathematical
representations such as diagrams, graphs etc.

But what is a concept? According to Ajdukiewicz a concept (in the logical
sense, not in the psychological sense of a mental experience—a kind of mental
representation) is just the meaning of a name (a meaning, I should say, as a
name can have several meanings, and therefore there may be several different
concepts related to a given name). The question now is: can understanding of a
concept be reduced to the understanding of its name?

A process of understanding a concept may start well before its name is
known or invented. Let us consider an example from an experiment, in which
two students were constructing for themselves a notion of limit (Sierpinska,
1985b).

Example: understanding the concept of limit
Two 16-year-old students have been ‘shown’, without the use of words, what

is the tangent to a curve in a point, by using a ruler fixed in a point (T) on a
curve and sliding while another point of intersection with the curve was moving
towards T until it identified with T (Figure 2). Then the position of the ruler was
marked, and it was declared by the experimenter that this position is the position
of the tangent to the curve in the point T. A certain way of understanding what
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is the tangent to a curve in a point was thus vaguely suggested. Until now the
students would deal with the tangent to a circle only, understood as a straight
line having only one common point with the circle.

The students were then asked to communicate this notion, in writing, without
using drawings, to a couple of other students, in a way that would allow them
to find tangents to given curves in given points.

The task was difficult: the students had to create a language to describe
something that, intuitively, seemed very easy and simple. They had to analyze a
situation given in a synthetic, visual way. Here is a sample of their conversation,
in which they attempt to define the procedure of finding the tangent (students
are labelled U1 and U2).
 

U1: To find such a line means to come so closer and closer and so that…
U2: Exactly. So that…what?
U1: It’s like drawing lines through consecutive points.

 
In a second stage of the same experiment, the students had to develop this new
notion of tangent so that they would be able to compute the formula of the
tangent to the curve y=sin x at x=0. The students first repeated the manipulation
with a ruler sliding on the sine curve and observed that the point 0 is ‘a
breakthrough point’: as the secant line moves with the intersection point moving
from (π,0) through (0,0) and further to (-π,0) its angular coefficient first increases
and then decreases. They called the value at zero ‘the limit point’. Passing to
numerical calculations, the students estimated the angular coefficients of the
secant in the positions of the intersection point P given by x=32, 16, 8, 4 degrees

Figure 2: Demonstration: the tangent to a curve at point T
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(the students were thinking in degrees, and only later switched to radians).
Without even dividing sin x by x to obtain the angular coefficient of the secant,
the students conjectured:
 

U2: Here the difference slowly becomes smaller and smaller…
U1: Yes, it does.
U2: It gets smaller and smaller, until…
U1: (whispers)…until it becomes one, in the end.
U2: Yes (firmly). It will tend to one.

 
The language of the students is full of comparisons and metaphors. ‘Tends to
one’ is an expression metaphorically describing the behaviour of the sequence;
it is not a mathematical term yet in their language.

The students have experienced an act of understanding: the object of their
understanding was the behaviour of a sequence of positions of a secant OP to
the curve y=sin x. They understood it on the basis of a conjecture that, ‘in the
end’ it ‘becomes’ the line y=x, or that it ‘tends’ to such a position. This act of
understanding brings them closer to understanding the concepts of tangent and
limit: it can be considered as a step in the process of understanding the concept

Figure 3: Calculating the tangent to y=sinx at x=0
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of tangent to a curve as the limit of a variable secant, or, more generally, as a
step in the process of understanding the concept of limit. [End of example]

Of course, ‘the concept of limit’ is un abus de langage, because there are
many concepts behind the mathematical term ‘limit’. It depends on whether we
think of the limit of function, in general, or of the limit of a sequence, and
whether the sequence is numerical or not; and there are, of course, many degrees
of generality of this concept. For example we can define the ‘limit of a numerical
sequence’ in terms of absolute values or in terms of neighbourhoods. The two
definitions do not define the same concept; they are logically but not
epistemologically equivalent. The second is already one step further into
generalization.

If, however we sometimes do speak of ‘the concept of limit’ in mathematics,
we refer to the general idea of something to which some variable thing can be
brought as close as we wish. And, in teaching, it is often this way of
understanding, this ‘general idea of limit’, that we wish that our students grasp
in the first place. We wish them to discover this idea by themselves, in a way,
before being given the name of ‘limit’ (which has meanings in the vernacular
that conflict with the mathematical meaning: Cornu, 1981, 1983). But, of course,
we plan that, in further learning, they will become more conscious of the
mathematical term of ‘limit’ and develop more precise mathematical meanings
of it, the numerical, the topological, limits of sequences, limits of functions of a
continuous variable, etc.
 
Understanding Problems
Very often, in mathematics, we have to understand ‘the problem’. This, again,
is an ambiguous term. The ‘problem’ may be a simple school problem, and its
understanding may consist in identifying what is given, what is to be found,
and maybe what category of problems does the problem belong to. Here, the
problem is given; the aim is to solve it. But sometimes, the aim is to identify
the problem: the teacher is saying something, formulating some definitions
and facts on the blackboard, proving some theorems; the student has to
understand what the questions are that these definitions, facts and proofs are
answering. For example, in studying linear algebra at the university level and
learning to find all the possible Jordan Canonical Forms related to given
characteristic and minimum polynomials, the students must understand what
questions have yielded this knowledge, why the canonical forms are at all
necessary or useful. For the mathematician who ‘works on a problem’,
understanding it better may result in its reformulation, in the discrimination
between the essential and the superfluous assumptions, its generalization, or
discovery of an important analogy.
 
Understanding Mathematical Formalism
Understanding a particular symbolic inscription may be included into the category
of understanding an expression. Understanding a formalism, however, may
involve deep conceptualizations.
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Example: the formalism of linear algebra
For a student of linear algebra, the notion of linear independence of vectors

acquires meaning in the context of bases of vector spaces. It is linked with the
property of ‘minimality’ of generating sets. Now, to go from this natural idea to
the formal defining property of a linearly independent set of vectors, i.e., to
saying that the set {v1, v2,…, vn} is linearly independent whenever a1v1+…+anvn=0
yields ai=0 for i=1,…, n, is by no means a straight-forward and easy task. A
whole chain of acts of understanding is involved in it.

First, one must identify the linear combination as an operation that
produces a vector space out of a given set of generators. This act is a
specification of a more general idea of generating structures out of a given
set of elements by combining them along some allowed rules of combination.
This idea can be developed rather early through experiences with various
construction toys like LEGO, for example. In vector spaces, the allowed
combinations of elements are linear combinations, and the elements (the
‘blocks’) are called ‘vectors’.

Suppose that, with a certain set of vectors, a vector space was generated.
Then the question must arise: did we really need all these vectors? Were they all
indispensable? Couldn’t one or more of them be obtained from others? This is
easy to see if one vector is a multiple of another; much less so if a vector is a
non-trivial combination of others. Algebra has developed a whole range of
techniques for the purpose of answering this question. To understand how these
techniques relate to the notion of ‘one vector is a non-trivial linear combination
of others’ or linear dependence of vectors is not at all easy.

A serious obstacle to understanding the formal theory is to conceive of the
linear independence as a relation between two vectors rather than as a property
of a set of vectors. For example, students would say that the set {(1,1,0), (0,0,1),
(1,1,1)} is not ‘completely’ dependent because the first two vectors do not
depend on each other. There is an important epistemological threshold here
that marks the passing from the school algebra where concrete expressions
are manipulated to the algebra that is normally taught at the university: the
algebra of structures whose fundamental objects are sets furnished with
properties.

The confusion of students with linear independence can be huge. Following
is an example that shows what happens when one wants to make sense of the
formal definition on the basis of the ‘vector-to-vector’ conception of the relation
of independence. This is the case of an undergraduate student, who, asked to
complete the phrase: ‘…is linearly independent’ said, in a first movement: ‘a
linear combination of a span of vectors’, thinking maybe, at this point, of the
inscription ‘a1v1+…+anvn=0’ that appears in the formal definition of linear
independence. This was not a result of a purely perceptual association, however.
Believing that linear independence is about one vector being independent of
another vector, the student was looking, in the definition, for this one vector
that would be independent of other vectors. He thought that it might be the
linear combination ‘a1v1+…+anvn’. When he learned that linear independence is
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a property of a set of vectors, he felt that there is some sort of contradiction
there, because, in the definition, this set of vectors seems to be written as one
vector—this linear combination! Here is how he recounts his experience in an
interview by the end of his second linear algebra course:
 

…I remember last semester that’s the problem I had, exactly…
Understanding linear independence… This was really a stupid question,
but it was before the last exam, and I asked them what exactly linear
independence meant because I always thought of it as one vector
associated with another vector, and now it’s a set of vectors being
associated. So…but then again it’s that set of vectors being written as
one vector, you know? So you would say it’s quite a contradiction …I
can’t understand like which vector is linearly independent of each,
like is it the vectors… Like I know that if all your a’s are equal to zero
then all these vectors have to be linearly independent. But then to
understand exactly why…how it works and why it works, it took a
while, you know…

 
The concept of linear independence involves many difficulties of logical
character. One difficulty is concerned with conditional statements in general.
Students tend to focus on either the premise or the conclusion, usually adding
a general quantifier. For example, one student claimed in a discussion over her
erroneous proof that ‘linearly independent vectors are always zero’ thus
explaining why she substituted 0 for a linear combination of these vectors:
‘a1v1+…+anvn’. She could have read the definition as: ‘for any coefficients
‘a1,…an, a1v1+…+anvn=0’, disregarding the conditional character of the
statement completely. Another difficulty is related to the negation of
propositions. Linear independence is, logically, a negation of linear dependence
and one could say that, well, once linear dependence is understood, the
understanding of linear independence should be quite straightforward. But
the logical rules of negation do pose a serious problem to many students.
Moreover, the acceptance of a definition that is obtained by negating a
statement depends on the acceptance of the law of excluded third (tertium
non datur). However, this law of classical logic is not obvious and may not be
accepted by all students. Those who search for truth rather than for consistency
do not readily accept the formal aspects of mathematics. Another difficulty is
the synthesis of a definition thus obtained by a long chain of translations from
an initial ‘natural’ condition to a symbolically expressed statement. Yet another,
a semantic detachment from the initial context of bases in order to be able to
consider the property of linear independence as a subject of study in its own
right. [End of example]
 
Understanding Texts
A text (as a whole) can be an object of understanding. Understanding
mathematical texts has been identified as a didactical problem by Krygowska
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(1969). One of the most striking examples she gives is that of a student who was
asked to read and explain how she understands a definition of homothety she
has never seen before. The girl starts to read: ‘Homothety is…’, suddenly
interrupts and exclaims: ‘I don’t understand, I don’t know what “homothety”
means!’. This shows quite clearly that understanding mathematical texts requires
a certain awareness of the structure of such texts, of the place of definitions,
how they are formulated, what are they composed of (distinction between
definiendum and definiens), etc. Krygowska claims that there are techniques or
behaviours that help in understanding mathematical texts and that these have
to be explicitly taught and trained in our mathematics classes and not left to the
students’ own ingenuity.

Mathematical texts and mathematical formalism have their specificities that
make their understanding a somewhat different experience than reading, for
example, literary texts. While, in reading any text, the interplay between the
grasp of the text as a whole and the analysis of the details plays a fundamental
role, reading of mathematical texts involves much more of some kind of a
‘forward-backward’ movement. Especially the more formal mathematical
expressions and phrases have to be understood more like two-dimensional
diagrams than a linear piece of writing. We can see this on the example of the
tiny text which defines the notion of a linearly independent set of vectors, already
discussed in the previous section:
 

 
This text can read as: ‘the only way to write the zero vector as a linear
combination of the vectors v sub i is to put all the coefficients equal to zero’, or
‘a linear combination of linearly independent vectors is zero very rarely; only if
all the coefficients are zero’. This interpretation was possible by, first, looking at
the text as a whole and noticing the necessity of the condition that is on the
right hand side of the sign of implication: in reading, this is rendered by saying:
‘the only way…’ Then one looks back at the left-hand side of the implication
and sees it as a decomposition of the zero vector into a linear combination of
the vectors v. And now one looks at the right side of the implication and, first,
gets a grasp of the whole, noticing that it refers to the coefficients, then reads
‘for i=1,…, n’, saying ‘all coefficients’, and ends with reading ‘ai=0’, again going
back from what was written next to what was written first.

Presently, research into the understanding of mathematical texts is given proper
attention in mathematics education (Bauersfeld and Zawadowski, 1987; Laborde,
1990; Gagatsis, 1985; Pimm, 1988, 1990, 1992).

The Basis of Understanding

For Ajdukiewicz, an act of understanding an expression is always based on a
mental ‘representation’. He considered two kinds of such representations: ‘mental
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images’ and ‘concepts’ (in the psychological, not logical sense). It seems that we
found our understanding on various other things, as well. For example, on
thoughts that are judgments or convictions or just thoughts that things are so
and so; let us call this kind of basis of understanding ‘thoughts that [so and so]’,
after Kotarbinski.

There are also other kinds of representations besides mental images and
concepts. Psychological research finds some evidence to the effect that our
understanding can be based on our ability to do something: on a ‘procedural’
representation. Such is very often our understanding of numbers and
operations on them. We feel we understand because we are able to perform,
to count and compute. We have mentioned ‘suchness’ or ‘experiential’
understanding which is based on some kind of holistic, non-conceptualized
grasp of a situation.

In the following we look in more detail at some of the possible categories of
bases of understanding.
 
Representations As Bases of Understanding
Ajdukiewicz defines representations as instantaneous mental experiences of an
individual: ‘definite experiences at a given moment in a given person’s mind’. In
an act of understanding based on a representation of the object that is being
understood, the subject does not take any position toward this object and does
not evaluate or judge it. The object of understanding is only being matched with
some mental image and/or description. If, for example, the object of
understanding is the word ‘game’, someone who is not a specialist in game
theory may direct his or her thoughts onto memories of games such as soccer,
hockey, tennis, bridge, poker, chess, or solitaire or may categorize the notion of
game as an activity meant for entertainment in which something is at stake and
in which there are winners and losers.

Ajdukiewicz distinguishes only two kinds of representations: mental images
and conceptual representations (or concepts in the psychological—not logical—
sense). The notion of ‘mental image’ encompasses not only visual but also other
sensory experiences, auditory, olfactory or kinesthetic. Mental images may also
be based on memories of feelings, like pain, or sadness, or joy. A conceptual
representation consists of a definition or description of some kind and is, as
such, essentially verbal. Such is, for example, the understanding of the word
‘square’ as a rectangle with perpendicular diagonals.

This categorization of mental representations is very simple, and certainly
does not do justice to all the discussions and controversies over this concept in
modern psychology (Clements, 1981 and 1982). We shall not enter into the
details of these discussions here. Let us only remark, however, that, in reality,
representations rarely appear under one of these ‘pure’ forms.

As Wittgenstein remarked (1958), in ordinary language we are applying a
name to an object not on the ground that it satisfies the conditions of the
definition of this name but because it has some kind of family resemblance to
objects that we have heard called this name. Following this idea, Hofstadter
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(1985, p. 547f) has shown how attempts to precisely define a colloquial
expression can lead to absurdity. The expression he was analyzing was ‘the
First Lady’ as an example of a name of a role in society. Each definition
formulated on the basis of known examples of a ‘First Lady’ seems to provoke
the apparition of other existing or possible examples that contradict the
definition.
 

…something terrible is happening to the concept as it gets more and
more flexible [i.e., when its definition becomes more and more general].
Something crucial is gradually getting buried, namely the notion that
‘wife of the president’ is the most natural meaning, at least for Americans
in this day and age. If you were told only the general definition, a gigantic
paragraph in legalese, full of subordinate clauses, parenthetical remarks,
and strings of ‘or”s—the end product of these bizarre cases—you would
be perfectly justified in concluding that Sam Pfeffenhauser, the former
father-in-law of the corner drugstore’s temporary manager, is as good
an example of a First Lady concept as Nancy Reagan. (Hofstadter,
1985, pp. 548–9)

 
In mathematics, an understanding on the basis of ‘family resemblance’ is very
often not sufficient. ‘Natural meanings’ do not matter that much and this ‘terrible
thing’ is happening all the time. This is not to say that, in mathematics, the
definition, in a way, precedes the concept. Important concepts have long histories
before a definition is formulated. But, whatever trouble mathematicians may
have in finding a definition that would suit everybody’s needs and the existing
examples, once they have agreed upon a definition, it is binding, and one has to
accept all its logical consequences. Let us just recall the history of the concept of
function in the nineteenth century. Before Dirichlet and Bolzano, functions were
those well behaved relationships that could be represented by almost everywhere
smooth curves. After the general definition was introduced allowing absolutely
any well-defined relationship between two variables to be a function,
mathematicians started to come up with examples of functions that were real
monsters to most of their colleagues. At the turn of the century, Poincaré wrote:
‘Formerly, when a new function was invented, it was in view of some practical
end. To-day they are invented on purpose to show our ancestors’ reasonings at
fault, and we shall never get anything more than that out of them’ (Poincaré,
1952, p. 125). In spite of all this turmoil, the ‘natural meanings’ of the ancestors
were not to be brought back to mathematics.

Students of mathematics normally go through a whole series of such ‘terrible
things’ that put their representations and reasonings at fault. Let us take again
the definition of linear independence. One can, in principle, survive for a while
on an understanding of linear independence as a relation between two vectors,
maybe visualized geometrically in terms of ‘not lying on the same line’. But
when it comes to the notion of dimension and to understanding why the
dimension of the zero vector space is 0, then one has to refer only to the definition
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to show to oneself that the set composed of only the zero vector {θ} is linearly
dependent and that, consequently, the zero space does not have a basis. At this
point, one simply cannot do without a strictly conceptual representation of linear
independence.

Another category of representations seems to impose itself as one studies
understanding of mathematics in younger children. Very often they behave as
if their understanding was in their fingers rather than in their minds. In their
acts of understanding, the intention of understanding seems to be directed
towards an immediate action. It is based on some kind of ‘feeling’ of an activity
which has to be performed here and now. For example, many high-school
students just ‘know what to do’ with an equation: when encountering an
equation, for example, √(x-1)=-5 they would sit down and try to ‘extract the
root’ by whatever means they can think of. But they may not be able to tell
what they are doing, why they are doing it, what is an equation, what is a
solution of an equation, and whether it makes sense, in this particular case, to
square, subtract, and do all these things they were doing. The kind of
representation they have of equations is neither a pure mental image (based
on motion, for example), nor is it purely conceptual. We might use the name
of ‘procedural’, a word already used in a similar sense by several authors
(Herscovics and Bergeron, 1989) or ‘operational’ (Sfard, 1991, 1992) or
‘process conceptions’ (Breidenbach et al., 1992). They are representations based
on some kind of schemas of actions, procedures. There must be a conceptual
component in them—these procedures serve to manipulate abstract objects,
symbols and they are sufficiently general to be applied in a variety of cases.
Without the conceptual component they would not become procedures. We
may only say that the conceptual component is stronger or weaker.

If the conceptual component is weaker then in an act of understanding our
thought is directed to an activity that we cannot express otherwise than by
showing how to perform it. If it is stronger then the subject has at least a partially
verbalized schema of the activity. A boundary case could be that of one of my
linear algebra undergraduate students who defined linear independence of a set
of vectors by describing what he would do to check whether a particular set of
vectors is linearly independent: ‘For the polynomials to be linearly independent
they must be expressed as a linear combination then the components are equated.
Results are put into a matrix, the matrix is reduced to echelon form. If after
being reduced the matrix has all non-zero rows then the polynomials are said to
be linearly independent over K.’ Or the case of the legendary 12-year-old who
thought he understood the formula for the area of the rectangle because ‘he got
all his answers right’. He probably had a schema for calculating the areas that
he could verbalize at least in the form: ‘you just take the length and the width
and multiply’ (Skemp, 1978).

The category of such ‘procedural’ representations connects to the Brunerian
category of ‘enactive representations’ (Bruner, 1973). For Bruner, a representation
is ‘a set of rules in terms of which one conserves one’s encounters with events’
(ibidem, p. 316). Hence, it is a way of keeping ‘ideas’ in memory. A representation



Understanding in Mathematics

52

needs a medium to express itself, and Bruner mentions three kinds of such media:
the enactive, the iconic, and the symbolic. These media are then the key according
to which Bruner classifies representations—a classification, let us note, that is
remindful of Peirce’s typology of signs: indices, icons, symbols.
 

A representation of the world or of some segment of one’s experience
has several interesting features. For one thing, it is in some medium.
We may represent some events by the actions they require, by some
form of picture, or in words or other symbols. There are many sub-
varieties within each of these three media—the enactive, the iconic,
or the symbolic…[Hence] there are three kinds of representational
systems that are operative during the growth of human intellect and
whose interaction is central to growth. All of them are amenable to
specification in fairly precise terms, all can be shown to be affected
and shaped by linkage with tool or instrumental systems, all of them
are within important limits affected by cultural conditioning and by
man’s evolution. They are, as already indicated, enactive
representation, iconic representation, and symbolic representation—
knowing something through doing it, through a picture or image of
it, and through some such symbolic means as language. With respect
to a particular knot, we learn the act of tying it; when we know the
knot, we know it by some habitual act we have mastered and can
repeat. The habit by which the knot is organised is serially organized,
governed by some schema that holds its successive segments together,
and is in some important sense related to other habitual acts that
facilitate or interfere with its learning and execution. What is crucial
is that the representation is expressed in the medium of action with
many features constrained by the nature of action, for example, its
sequential and irreversible nature. An image of the knot carried in
your mind or on a page is not the same thing as the knot being tied,
although the image can provide a schema around which action can be
sequentially organised. An image is a selective, simultaneous, and often
highly stylized analogue of an event experienced. Yet it is not arbitrary
in its manner of referring to events as is a word. You can recognize an
image of something, once having seen the something in question. You
cannot recognize the appropriate word by knowing only the event it
signifies. Linguistic signification is, in the main, arbitrary and depends
upon the mastery of a symbolic code. A linguistic description, therefore,
involves knowing not only the referents of words, but the rules for
forming and transforming utterances. These rules, like the rules of
image formation and habitual action, are distinctive to the medium of
language. (Bruner, 1973)

 
It is clear that this description of representations allows for a wider range of
mental experiences than the categorization of Ajdukiewicz, who did not take
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into account the enactive representations, and in whose conceptual
representations only words were allowed.

It is interesting to note, as Bruner suggests, that many acts of understanding
may consist not in representing oneself the object of understanding, but in
translating from one representation to another, the object of understanding
already being some kind of representation in our mind. This may especially be
the case in mathematics, whose abstract objects cannot be communicated
otherwise than through some form of representation. In the example above of
the linear algebra student defining the notion of linear independence, what
the boy was doing was translating exactly his enactive-iconic representation
of linear independence into a symbolic one (rather faithfully for the time being,
to be true).

In his already mentioned work concerning generalization in mathematics,
Lubomirski considers what he calls ‘mathematical situations’. Generalization is a
cognitive procedure that leads the cognizing subject from one mathematical
situation to another. This ‘mathematical situation’ as described by Lubomirski,
seems to be a certain representation of the problem at hand, but this representation
is neither purely enactive or iconic, nor purely symbolic, and it is rather complex,
because it contains ‘all those elements of mathematical knowledge…that are present
at the moment in the subject’s consciousness and on which depends the subject’s
decision about what cognitive activity to undertake and in which way to realize
it’ (ibidem, p. 5). It is possible that a research mathematician works simultaneously
with complex systems of representations being flexible enough to go from one set
of representational rules to another.
 
‘Mental Models’
Greeno, whose article was extensively quoted in the previous chapter, claims
that our knowing, understanding and reasoning are grounded in ‘mental models’
rather than ‘representations’. He presents his view on ‘knowing in conceptual
environments’ as an alternative to the information-processing framework of
cognitive science which, he claims, bases knowing on the existence in the human
mind of ‘representations’:
 

In the current information-processing framework of cognitive science,
knowledge is a set of representations that are stored in the mind,
including symbols that represent concepts, properties, and relations as
well as representations of procedures for manipulating symbolic
expressions. Learning a domain, in this information-processing
framework, is the construction of cognitive structures and procedures
that represent the concepts, principles and rules of inference of the
domain. (Greeno, ibidem, p. 174)

 
This is maybe a slightly oversimplified account of the information-processing
view on learning. Information processing in the newest computer
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environments is certainly not a linear manipulation of built-in procedures
the access to which is available only through the strict commands of a formal
language. Hyper-languages and multimedia environments, developed in the
field of educational technology, work in a way that is very close to what
Greeno describes with the help of his ‘living in a physical environment’ and
‘mental models’ metaphor.
 

In the environmental view knowing a set of concepts is not equivalent
to having representations of the concepts but rather involves abilities
to find and use the concepts in constructive processes of reasoning.
Representations of concepts and procedures can play an important role
in reasoning, as maps and instructions can help in finding and using
resources in a physical environment. The person’s knowledge, however,
is in his or her ability to find and use the resources, not in having mental
versions of maps and instructions as the basis for all reasonings as action.
(Greeno, ibidem, p. 175)

 
Greeno’s view of our intellectual lives is very much focused on ‘survival’ and
‘consumption’, slightly less on ‘production’, and of course, very little on just
thinking for the sake of thinking itself. This may be an adequate image of
knowing but certainly not of thinking in general. For example, even if the
notion of infinity—actual infinity—can be thought of as a ‘resource’ for
something, a convenient idealization for solving some of the mathematical
theoretical questions—why should we think of it in such a pragmatic way?
Isn’t understanding just for understanding, reasoning just for reasoning,
knowing just for knowing, and not for doing something with this knowledge
(like finding and proving a new theorem, publishing a paper, adding it to the
CV, obtaining a research grant etc.), something specifically human? Ian
Hacking (1975) quotes, in that respect, Aristotle, saying that a man ‘who
will not reason about anything is no better than a vegetable’ (Metaphysics,
1006a), in an interesting argument with Wittgenstein’s view on the necessity
of proofs. The necessity of proofs lies in the human need of proving and not
in the formal need of assessing the truth of theorems. Let me quote this
passage here:
 

Wittgenstein, in his unfinished ‘Remarks on the Foundations of
Mathematics’ was…drawing attention to the undetermined character
of mathematical concepts. He went so far as to suggest that a
mathematical theorem did not have the marks of necessity until it was
proven. But he thought that once the proof was pointed out to us, we
would not fail to accept it, except on pain of being called stupid or
irrational. That which makes us accept proofs is not our training in
mathematical skills and concepts but is a precondition for those skills
and concepts, and lies in human nature. It is innate. To be human is to
be able to prove a little. (Hacking, ibidem, p. 69)



Components and Conditions of an Act of Understanding

55

The ‘concreteness’ of mental models, their being filled with various ‘objects’
that are being moved around, combined and decomposed, and that, in the course
of working with them, become very familiar, is certainly appealing to our
understanding and is helpful. However, they may have the tendency to acquire,
in our minds, the status of the ‘whole truth’ about the conceptual domain we
are exploring with their help: they actually start to be the whole world. And
thus they become obstacles to further exploration. It may even be so that the
more we make a mental model function and the better it works, the bigger the
obstacle we thus create for ourselves.

For example, the mental model of the domain of numbers and quantities—
the ‘number sense’—that Greeno proposes to be developed in school-children,
is the knowledge of the logistics rather than of arithmetics, the knowledge
of the artisan rather than the knowledge of the architect. In this model,
numbers are objects very much like wooden blocks of various lengths, and
operations are almost physical operations on these blocks. This is all right if
the domain of numbers is restricted to positive rational numbers and addition
or even subtraction of integers; problems arise with the multiplication of
integers whose rules it is difficult to explain without reference to the integers
as a structure that extends the structure of natural numbers in a way that
preserves the properties of operations in it. It may be difficult, for both the
students and the teacher, to get rid, at this point, of the importunate spatial
understanding of numbers as blocks. But…maybe, in this pragmatic world,
it does not make sense to teach all children multiplication in the ring of
integers, after all?

 
‘Apperception’ As a Basis of Understanding
On the highest levels of abstract thinking, understanding may be based on what
the psychologists of the Würzburg School called ‘apperceptions’. It is
‘apperception’, they say, that allows us to understand sentences like ‘Thinking is
so unusually difficult that many prefer to draw conclusions’ (cited in Luria,
1981, p. 21).

The first thing that we identify in this sentence is the opposition that is
made there between ‘thinking’ and ‘drawing conclusions’: drawing
conclusions (in a formal or automatic way) appears as an escape from
thinking. We would have thus isolated the logical structure of the sentence,
maybe on the basis of such cues as ‘so difficult…that’. Our understanding is
based here on a certain logical pattern. We recognize this pattern because
we have some experience with understanding and using sentences like:
‘Climbing a mountain is so difficult that many prefer to use a chair-lift’.
Usually we pass very quickly over this phase of understanding and go on to
wondering why this statement about thinking and drawing conclusions should
be true. We may start to ask ourselves questions like: Why should thinking
be more difficult than drawing conclusions? Isn’t thinking always based on
drawing conclusions? etc.
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‘Thoughts That [So and So]’ As Bases of Understanding
Understanding on the basis of some ‘thought that…’ seems to be quite important
in scientific thinking. This is the category to which belong acts of understanding
that answer our questions about the reasons why things are as they are, why a
statement should be true or false, or what results (of experiment, computation,
research) can one expect, etc.

A ‘thought that [so and so]’ need not express a person’s conviction or opinion.
It may be just a statement one has remembered. For example, in understanding
‘√2 is an irrational number’ on the basis of a thought that ‘√2 cannot be
represented as a ratio of two integer numbers’, the thought can, but need not be,
a conviction. A person may be convinced of the truth of this thought on the
ground of its proof which he or she has understood. Or the person may just
repeat, in mind, an argument he or she has memorized. The proof can be
understood on the basis of the thought that all its steps seem logically correct.
Or, it can be understood on the basis of a thought that synthesises the so-called
‘idea of the proof (nervus probandi) and emphasizes all the essential hypotheses.
Or, its understanding may consist in perceiving the historical significance of the
theorem. In the context of historical considerations, what often comes to mind
is that the statement ‘√2 is an irrational number’ is an arithmetical counterpart
of the geometrical discovery of the Pythagoreans that the diagonal of a square is
not commensurable with its side.

Mental Operations Involved in Understanding

It seems that there are four basic mental operations involved in understanding:
identification, discrimination, generalization and synthesis (Sierpinska, 1990b).
 
Identification
We are speaking here of identification in the sense of discovery or recognition.
When I say, for example, that I have identified the object of my understanding,
I mean, first, that I have ‘discovered’ or ‘unveiled’ it, that is, isolated, singled out
from the ‘background of my field of consciousness’ in which it was, so to say,
hidden, and, second, that I have recognized it as something that I intend to
understand.

In so identifying an object I am introducing a certain order or hierarchy into
what I am presently considering: some things become more important than other
things. If there already was a certain hierarchy in my field of consciousness, it
can be completely reversed in a new act of identification.

In isolating an object and recognizing it I may or may not be naming it.
For example, in perceiving a car crashed against a tree I may or may not
think to myself ‘Aha, a car crash’. But in any case I would have classified it
somehow, put it into a folder, with memories of other crashes I would have
seen or experienced. For example, I may say to myself: I have seen something
like that before. In this case I identify an object with another object. Instead
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of giving an object a name I may also be describing it somehow, for example
with the help of a metaphor or marking it with the help of a metonymy. If
the object is new, this figure of speech can be the root of a name later given
to the object. This is how many names in everyday language have come into
being.

When I identify an object, I classify it, putting it together with other objects—
even if these objects are objects I know nothing about except that I intend to
study them.

Classifying is not the same as categorizing. An object included into a class is
not a ‘particular case’ of this class. It is just an element of it. In categorizing, a
class of objects is included into another class of objects—the latter is then a
generalization of the former. For example, an event (like a particular car crash
on the road) can be classified; a phenomenon (of car crashes on icy roads in
winter) can be categorized (as a particular case of car accidents).

Identification is the main operation involved in acts of understanding called
einsicht by Gestalt psychologists: acts that consist in a re-organization of the
field of consciousness so that some objects that, so far, have been in the
background, are now perceived as the ‘figure’. Let us have an example of such
einsicht in mathematics (Sierpinska, 1992c).

Example: identification of the crucial part of a geometric figure in a proof
Suppose students have to prove the following fact in geometry (Egret and

Duval, 1989):
 

If O, B, C are non-colinear points in the plane, I is the middle of BC, D
is such that DOBI is a parallelogram and M is the middle of DI then M
is the middle of OC. (see Figure 4.I)

 
At the beginning of solving this problem, the diagram is probably understood as
in Figure 4–II. Only DOBI is identified as a parallelogram. The solution requires
that the DOIC part of the diagram be noticed and identified as a parallelogram,
as well (Figure 4–III). [End of example]
 
Discrimination
Discrimination between two objects is an identification of two objects as different
objects. For example, understanding the concept of equation requires a
discrimination between the equation as being a condition on some free variables
and the equality as a statement which can be either true or false.

The meaning of ‘identification’ and ‘discrimination’ is close to what Locke
calls ‘agreement and disagreement (between ideas)’.
 

Another faculty we may take notice of in our minds is that of discerning
and distinguishing between the several ideas it has. It is not enough to
have a confused perception of something in general…. How much the
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imperfection of accurately discriminating ideas from one another lies
either in the dullness or faults of the organs of sense; or want of acuteness,
exercise, or attention in the understanding; or hastiness and precipitancy,
natural to some tempers, I will not here examine: it suffices to take
notice, that this is one of the operations that the mind may reflect on
and observe in itself. (Locke, 1690, BK II, Ch. xi)

 
There can be several degrees of discrimination as there can be several degrees of
identification. One is mere perception that two objects are two and not one. Of
some such discriminations even ‘brutes’ are capable, says Locke. Another degree
is that when two objects are compared with one another with respect to certain
sensible circumstances, contingent to the objects themselves. A still higher degree
is when two general ideas are compared from the point of view of abstract
relations.
 

The comparing them with one another, in respect of extent, degrees,
time, place, or any other circumstances, is another operation of the
mind about its ideas and that is upon which depends all that large tribe
of ideas comprehended under ‘relation’…[The comparing] seems to me
to be the prerogative of human understanding… Beasts compare not
their ideas further than some sensible circumstances annexed to the
objects themselves. The other power of comparing, which may be
observed in men, belonging to general ideas, and useful only to abstract
reasonings, we may probably conjecture beasts have not. (ibidem, BK
II, Ch. xi, sec. 4)

 
Generalization
Generalization is understood here as that operation of the mind in which a
given situation (which is the object of understanding) is thought of as a particular
case of another situation. The term ‘situation’ is used here in a broad sense,
from a class of objects (material or mental) to a class of events (phenomena) to
problems, theorems or statements and theories.

Figure 4: Identification of the crucial part of a geometric figure in a proof
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For example, we may have a mathematical situation related with the
Pythagorean theorem. At first, it can be restricted to just the picture of squares
built on the sides of a right angled triangle and to the uses of the formula
a2+b2=c2 in various computational exercises. If, at some point, this situation is
perceived as a particular case of a situation where the figures built on the sides
of a right angled triangle are any similar figures, then we can speak of
generalization.

At first sight it would seem that identification and discrimination are
operations more fundamental than the operation of generalization which, one
would say, belongs already to more sophisticated functions of the theorizing
thought. In fact, it is difficult to put a hierarchy on these operations.
Generalization can be defined as an ‘identification of one situation as a particular
case of another situation’, but this would only mean that we take the notion of
identification as more fundamental than the notion of generalization which is
derived from it, and not that the operation of identification is genetically more
primitive or earlier, and generalization can only be developed on its basis. There
are many levels of all these operations and they probably develop interactively,
the development of one forcing the development of other. We shall see it in more
detail through Vygotski’s theory of development of concepts in Chapter 5. There
are also many forms of generalization, and a fairly comprehensive overview
and analysis of them can be found in Dörfler, 1991.

All four operations are important in any process of understanding. But, in
understanding mathematics, generalization has a particular role to play. Isn’t
mathematics, above all, an art of generalization, ‘l’art de donner le même nom
à des choses différentes’, as Poincaré used to say? In learning mathematics the
child is expected to make a particular effort of generalization: from early
childhood experiences with numbers of things, to numbers as such, to unknowns,
to variables, relations between variables, functions, relations between
functions,… Any variable is a general term, designating an arbitrary element of
a given domain. All algebra is nothing but the study of the generality of our
assertions and an attempt towards even more generality.

It is also worthy of noting that the operation of generalization must act on
some object: we generalize something—a concept, a problem, a mathematical
situation. It is therefore necessary to have identified this something as an object.
In guiding our students towards a generalization, very often we forget that the
object to generalize may not yet be an object for them. Do they only know what
they are supposed to generalize? It might be worthwhile to check whether this
object is within their intellectual grasp at that point.

This is not always done. For example, in our linear algebra undergraduate
courses, students are led from one generalization to another at a pace that
rarely takes into account the normal human possibilities of understanding.
The canonical forms of linear operators are introduced before the students
have had the time to identify the subtle relationships between linear operators
and their matrices, and between the latter and their minimum polynomials.
And even if they know something about these relationships they may still not
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have identified the problématique that is resolved by the canonical forms of
linear operators. Very often, the canonical forms come in when, for the students,
all the previous material is nothing but a set of techniques of solving simple
problems of computation or verification. In this situation, the Jordan canonical
form, instead of appearing as a major generalization and synthesis, a central
theorem of a theory, just joins the existing set of techniques. It becomes reduced,
in the students’ minds, to a combinatoric procedure of filling in a matrix with
the ‘Jordan blocks’.
 
Synthesis
‘Synthesis’ means for us here: the search for a common link, a unifying principle,
a similitude between several generalizations and their grasp as a whole (a certain
system) on this basis. For example, after having followed, step by step, a
mathematical proof, suddenly we grasp the so-called idea of the proof. The
proof becomes a whole, it is no more just a set of isolated logical moves from
one statement to another. Czezowski claims that it is also such synthesis that
allows one to find a proof.
 

Proving can be successful only when we are able to grasp the fundamental
idea of the proof, called nervus probandi thanks to which the proof
becomes a coherent system, a well connected whole…[For example]
the nerve of the proof…of the De Morgan law [¬(p&q) ⇔ ¬p v ¬q] is
the thought that both the conjunction and the alternative are expressible
by implication, and therefore the implication constitutes a kind of link
between them which allows us to use the hypothetical syllogism.
(Czezowski, 1959, p. 147)

 
This is an example of a ‘local’ synthesis in mathematics. But one can also speak
of more global syntheses, of grasping, as wholes, vast domains of mathematical
knowledge. It is such syntheses that have paved the way to unifications that
mathematics has known in the nineteenth and twentieth centuries. These
unifications were based on such fundamental organizing ideas as function,
mapping, invariant of a mapping, equivalence relation, algebraic structure,
quotient structure, category, etc. The so-called abstract algebra, linear algebra,
group theory, category theory, etc., are, one can say, by-products of these efforts
of synthesis.

It is mainly this kind of synthesis that occupy the mind of Daval and
Guilbaud (1945), when they speak of generalization and synthesis as the
driving forces of the development of modern mathematical thought. This is
also the position of Bachelard. He claims that questions and hypotheses are
at the root of any scientific activity and that ‘toute hypothèse est synthèse’
(1975, pp. 10–11).

Bachelard (1970) put forward the idea that modern scientific thought is
characterized by a certain specific type of hypotheses. These hypotheses are not
derived from inductive generalizations of observations of reality or from
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knowledge given—this kind of view would be based on a kind of positive attitude
to reality, observation, experience, and knowledge of our predecessors. The most
striking feature of the modern scientific thinking, says Bachelard, is its polemic
character: the favourite question seems to be: ‘why not?’ which leads to ‘polemic
generalizations’ (like the non-Euclidean geometries and non-commutative
algebras). However, such an activity would be very futile, indeed, if the thought
stopped there. But it doesn’t. These generalizations are, in fact, only symptoms
of overcoming certain beliefs or points of view which bring about a genuinely
new knowledge in form of momentous syntheses such as the idea of Felix Klein
of ‘geometries of transformation invariants’ or the so-called abstract algebra.
One should not forget the monumental venture of the Bourbaki group, whose
aim was to unify mathematics and reduce the number of its fundamental notions
and constructions.

However, this last undertaking can make us suspicious with respect to the
value of such unifications: the books of Bourbaki are particularly hard to read;
they appear to make understanding more difficult. It seems that there is some
limit to the reduction of the number of basic notions, with the help of which
others are defined. The smaller the number of such notions, the longer must be
the chain of reasonings that explain the relations between notions dependent on
these. And the understanding of such relations demand that these reasonings be
grasped as a whole.

The idea of understanding in mathematics based on a reduction to a small
number of fundamental and very general organizing notions such as set,
relation, equivalence relation, group, function was the guiding principle in the
so-called ‘new math’ school reforms in the years 1960–70. It was a shock to
all the proponents of the new curricula that not only the children did not
understand mathematics better, but their understanding got worse than
anything seen so far. It is true that there were many mistakes in the realization
of the new programmes, too literal interpretation of certain suggestions, going
up to formalization with things that were supposed to be taught in a
propaedeutical way, and the like. But the biggest mistake was made in the
interpretation of the role of synthesis in understanding: like generalization, a
synthesis must be made by the understanding subject himself or herself, not by
the teacher. Synthesis as an act of understanding is an act on one’s own
knowledge. To unify, reduce, generalize and synthesize, there must be something
in one’s mind that one can unify, reduce, generalize and synthesize. In the
reformed programmes the children were expected to synthesize empty sets of
knowledge.

One last remark is probably due: we have not included the activity of
abstraction as an operation ‘involved in an act of understanding’. This may
appear as curious—abstraction is seen as belonging to the very nature of
mathematical activity. The reason for this omission is that abstraction does not
constitute an act of understanding in itself. It is just the act of detaching certain
features from an object. But abstraction is not lost in understanding: in fact,
abstraction is involved in all and each of the four operations and each of them is
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somehow involved in abstraction. For example, for the features to be detached,
they have to be identified through acts of discriminating between what is
important and what can be neglected from some point of view. Also
generalizations and syntheses, in creating new abstract objects, necessarily imply
abstraction.

Psychological Conditions of an Act of Understanding

The question here is about internal, mental and psychic conditions. It is difficult
to say what are the sufficient conditions for an act of understanding to occur,
but some necessary conditions seem to be quite obvious.

Attention and Intention

Attention well seems to be a necessary condition of understanding: without
attention, without having noticed that there is something to understand, there
can be no act of understanding.

Locke says,
 

Men…come to be furnished with fewer or more simple ideas from without,
according as the objects they converse with afford greater or less variety;
and from the operations of their minds within, according as they more or
less reflect on them. For, though he that contemplates the operations of
his mind, cannot but have plain and clear ideas of them; yet, unless he
turn his thoughts that way, and considers them attentively, he will no
more have clear and distinct ideas of all the operations of his mind, and
all that may be observed therein, than he will have all the particular ideas
of any landscape, or of the parts and motions of a clock, who will not
turn his eyes to it, and with attention heed all the parts of it. The picture,
or the clock may be so placed, that they may come in his way every day;
but yet he will have but a confused idea of all the parts they are made up
of, till he applies himself with attention, to consider them each in particular.
(J.Locke, 1690, BK I Ch. i)

 
The mind has to be voluntarily directed towards an object in order to derive an
idea of it. It needs awareness of the operations of one’s own mind to form ideas
of them and start relating them to each other.

In mathematics education, the question of the place of attention in
understanding is a very important one. It has been demonstrated by Mason
(1982, 1989) how, indeed, understanding of mathematics requires a series of
‘delicate shifts of attention’. Mason and Davis (1990) have studied the role of
‘noticing’ for understanding. For it is not obvious, for a person not yet familiar
with a mathematical domain, what to look at, what to attend to. The thought
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wanders about, sometimes attaching importance to irrelevant details of a
symbolic representation. It is very difficult for the teacher to communicate what
should be attended to: mathematics deals mainly with relations and these, in
general, cannot be pointed to with a finger. What can be pointed to are ‘shadows’
of things, not the things themselves. Thus, the very object of understanding in
mathematics is very hard to communicate. It is difficult to make the students
identify this object and maintain an interest in it.

So far we have been speaking of ‘attention’ in the sense of ‘attending to’
something: voluntarily thinking of a thing. This links attention with consciousness
or awareness. On the other hand, everybody knows stories about ‘sudden
illuminations’, unexpected acts of understanding something of which a person
was not thinking of at all at the moment (Hadamard, 1945). Would these stories
undermine the thesis of the necessity of attention for an act of understanding to
occur?

It does not seem likely. Poincaré, whose biggest discoveries in the field of
Fuchsian functions occurred to him while sleeping or taking part in social events,
firmly claims that these ‘illuminations’ would never have occurred to him had
he not fully consciously attended to his mathematical problems in the time
preceding these events, however not directly in time.
 

There is another remark to be made regarding the conditions of this
unconscious work, which is, that it is not possible, or in any case not
fruitful, unless it is first preceded and then followed by a period of
conscious work. These sudden inspirations are never produced (and
this is sufficiently proved already by the examples I have quoted) except
after some days of voluntary efforts which appeared absolutely fruitless,
in which one thought one has accomplished nothing, and seemed to be
on a totally wrong track. These efforts, however, were not as barren as
one thought; they set the unconscious machine in motion, and without
them it would not have worked at all, and would not have produced
anything. (Poincaré, 1952, p. 56)

 
We can speak of conscious work in the sense of purposefully and voluntarily
attending to a mathematical problem which is the object of our understanding
at that time. This is what Poincaré had in mind. But there is also another kind of
consciousness—‘a meta-consciousness’—through which we attend not to the
problem itself but to our own ways of understanding it, our going about solving
it, etc. How exactly this kind of attention can help in understanding, controlling
one’s problem solving strategies, etc. is also an important problem in mathematics
education (Schoenfeld, 1987).

Attention implies that there is an intention to understand—an orientation
towards understanding, grasping the meaning. It seems that without the
intention of understanding there can be no act of understanding. On the other
hand, is the intention of understanding a sufficient condition for us to say that
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there has been an act of understanding? It sometimes happens that we very
strongly intend to understand something but have trouble in getting the
meaning—we feel a blank in our minds—nothing appears where normally the
‘basis of understanding’ popped up so easily. For example, someone gives us a
number (e.g., a street number, like ‘sixty-nine hundred Boulevard Décarie’)
over the phone—in a foreign language—and we can repeat the words but we
don’t visualize the number as written. Even if we speak this language, we may
still count in our mother tongue and feel uncomfortable with names of numbers
pronounced in this foreign language. If the information that is being thus
given to us on the phone is important, our intention to understand may be
very strong indeed. I would be inclined to saying that there has been an act of
understanding in such an extreme case: it consisted in identifying the object to
be understood.

Question

Not all acts of understanding are preceded by a question. We understand the
familiar parts of our mother tongue without questioning ourselves on their
possible meanings. But it seems that any act of understanding that brings about
a substantial change in what we know, or think, or believe is preceded by a
question.

A sensible and interesting question seems to be absolutely necessary in
maintaining both the attention that allows us to notice that there is something
to understand, and the tension that is required in conducting long reasonings
that only can promise the reward in understanding. And only those objects
about which we do not know something, about which, therefore, we have a
question, are meaningful for us and can become objects of our understanding.

The routine acts of understanding which are not preceded by a conscious
‘big’ question are called ‘ap-prehensions’ by Dewey, in contrast to
‘comprehensions’ which require more reflection. In fact, Dewey speaks about
the complementary functions of both ‘unquestioned understandings’ and those
preceded by a question in the processes of knowing. He says,
 

All judgment, all reflective inference, presupposes some lack of
understanding, a partial absence of meaning. We reflect in order that
we may get hold of the full and adequate significance of what happens.
Nevertheless something must be already understood, the mind must be
in possession of some meaning that it has mastered, or else thinking is
impossible… An increase of the store of meanings makes us conscious
of new problems, while only through translation of the new perplexities
into what is already familiar and plain do we understand or solve these
problems. This is the constant spiral movement of knowledge. (Dewey,
ibidem, pp. 139–40)

 



Components and Conditions of an Act of Understanding

65

In the Piagetian theory of equilibration the two complementary mechanisms of
assimilation and accommodation seem to be analogous to those that are involved
in acts of ‘ap-prehension’ and ‘com-prehension’, respectively. The mechanism
of accommodation is triggered by a mental conflict—an event caused by the
discrepancy between information coming from the environment and the existing
mental structures. And a conflict is a step towards a question, it predicts a
question, prepares the ground for it.

In scientific understanding, the role of questions is deemed fundamental.
Bachelard says,
 

For a scientific mind, all knowledge is an answer to a question. If there
hasn’t been a question, there cannot be scientific knowledge. Nothing
can be taken for granted. Nothing is given. Everything has to be
constructed. (Bachelard, 1983, p. 14)

Social Conditions of an Act of Understanding

For a teacher and a more pragmatically minded mathematics educator, the
practical conditions of understanding, various ‘aids’ to understanding, factors
that may help a student to understand mathematics, are more important than
speculations about the psychological conditions of an act of understanding to
occur. It is obvious that the student must attend to his or her object of
understanding, and that he or she must be motivated by some interesting and
meaningful question. It is less obvious for the teacher what to do, what activities
to design, in order to draw the students’ attention, to motivate them, engage
into the activity of understanding. This is a serious problem and much of
mathematics educational research is devoted to it.

However, any solution to this problem must take into account the fact that, in a
mathematics classroom, understanding takes place in a social environment that has
many different components or dimensions. French didactique has attempted at
covering the complexity of this environment in the so-called ‘théorie des situations’
(Brousseau, 1986, 1989). Any activity that we design for our students will be altered
by the fact that we ‘assign’ it to them, and they will expect to be evaluated on it. The
understanding that students will develop will depend on the kind of ‘didactical
contract’ that will establish itself between the teacher and the students in the given
classroom situation. We mentioned this problem earlier in Chapter 1.

Being aware of the mechanisms of didactical contract we can play on some
of the variables involved in the institutionalized teaching and construct didactical
contracts in which students would be more likely to experience acts of
understanding closer to those lived through by mathematicians in their work.
Experiments by Legrand (1988), and others, for example, Lampert (1988) have
shown that this is not impossible.

Brousseau’s theory of didactical situations proposes a certain categorization
of these situations. One of them is the ‘situation of communication’, in which



Understanding in Mathematics

66

students communicate among themselves, thus verbalizing their mathematical
experiences. They also communicate with the teacher, revealing their own
understanding of the problem situation; then the teacher enters into a kind of
‘negotiation’ of meanings with the students which activity sometimes materializes
in an ‘institutionalization’ of the commonly developed knowledge. Unfortunately,
this kind of two-way communication is still rather rare in our mathematics
classes, and certainly very rare in undergraduate university lecture-rooms. A
more familiar situation is that of the teacher who tries to ‘communicate’
mathematical knowledge to his or her students using all kinds of means and
methods of which the verbal language is but one. Diagrams, graphs, tables, and
other graphical representations are commonly used and, moreover, believed to
have a transparency that researches have shown to be an illusion (e.g., Janvier,
1978). Manipulatives, blocks, pies, and other concrete materials have raised
many discussions as well.

Language remains the main means of communication in the mathematics
classroom. But, as we mentioned in the first chapter, referring to Wittgenstein,
there is no one language but many languages which define meanings of
expressions through different uses that is made of them. ‘Language’ in the
mathematics classroom is an incredibly complex notion. There is the language
of mathematical symbols and formulas—but the language of the teacher in
the classroom is not just based on mathematical symbols; more often than not
it is a mixture of the everyday spoken language, didactical jargon and technical
mathematical terms. Each of these ‘languages’ has its own conventions, and
these conventions may not be compatible with each other. This is deemed as
an important source of students’ difficulties in understanding (e.g., Maier,
1986, 1992). Teachers use figurative speech to explain mathematical concepts.
Not always successfully. They also use ‘body language’ like gestures (e.g.,
large hugging gestures for brackets or sets), noises of various kinds (like bangs),
and other ways of capturing attention like highlighting, underlining etc. (Pimm,
1992). It would be interesting to know how these influence students’
understanding.

Let us mention below some researches that have been done with respect to
the role that various forms, means and styles of communication in the
mathematics classroom play in enhancing students’ understanding.

The Role of Communicative Activities in Understanding

It is commonly believed that communicative activities enhance understanding
in students. Students seem to understand better if they work in groups, participate
in discussions where they have to verbalize their understandings, where their
understandings are confronted with other students’ understandings and where,
in defending their own points of view, they have to engage in validations and
justifications that make them see better whether or not their understandings are
consistent or ‘make sense’. In psychology, the value of cooperation with peers
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(as opposed to asymmetric interactions with adults) was raised by Piaget, and
developed by others (Piaget, 1958; Perret-Clermont, 1980). On the other hand,
Vygotski and Luria stressed very much the interaction of a child with adults and
how appropriate instructional interventions can indeed enhance the development
of the child’s spontaneous concepts.

In mathematics education this contention is not taken for granted. There
are research projects that test the assumption and confront it with the practice
of teaching. Researchers probe the value of classroom discussions and debates
(e.g., Pirie and Schwarzenberger, 1988; Bartolini-Bussi, 1990, 1992; Legrand,
1988; Krummheuer, 1991; Richards, 1991; Lampert, 1988), small group
discussions (Civil, 1992; Yackel, 1987; Curcio and Artzt, 1992) and other
communicative activities such as writing reports on solving a problem (Morgan,
1991, 1992) or writing journals in the mathematics classroom (Hoffman and
Powell, 1989; Oaks and Rose, 1992; Borasi and Rose, 1989; Sterret, 1990;
Connolly and Vilardi, 1989). This research brought disillusionment to many
of the first hopes and expectations. It is now quite clear that neither discussion
or writing will automatically lead to better understanding, that there are many
kinds of discussion and writing and many kinds of using this writing of which
some give better prognosis about improvement of understanding than others.
Researchers now speak of categories such as ‘mathematical discussion’ (Pirie
and Schwarzenberger, ibidem), and ‘effective discussion’ (Civil, ibidem;
Bartolini-Bussi, 1990). One may write a journal entry as a ‘participant’ or as
a ‘spectator’: one may be using language instrumentally or one may be
reflecting, in writing, on the meaning and significance of one’s activities (Britton
et al., 1975). One may be writing an autobiographical note in one’s journal,
or build up a narrative, or produce explanations, or just make notes (Oaks
and Rose, ibidem). It is also stressed that writing journal entries about
mathematics classes or problem-solving will not in itself enhance understanding;
journals must become objects of comment and discussion—some kind of peer
reviewing is proposed—the author must receive feedback on what he or she
has written (Hoffman and Powell, ibidem).

Many researchers focus on communication as it normally happens in the
classroom (and is not designed by a researcher) and reflect on the value for
understanding of its different modes, means, and styles. Some seek the reasons
why very often communication in the classroom fails and try to discover patterns
or even rites of communication which in fact have only the appearance of
communication while, in fact, no communication of ideas, no learning and no
understanding (on the conceptual level at least), occurs at all. What happens in
the traditional classroom is often a kind of ‘routine questioning’ in which the
teacher expects the students to produce not so much some coherent solutions
but only words associated with what the teacher is saying, these words making
the teacher believe that the students have understood and the lesson can be
continued. The well-known ‘funnel pattern’ consists in narrowing the questions
so that the students can only answer what the teacher expects them to answer
(Bauersfeld, 1983). The Socratic style questioning has similar effects; the outside
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observer has the impression that the student has understood; it may also be the
teacher’s illusion. (However, a kind of ‘neo-Socratic method’ has lately been
developed by Loska (1992) that preserves the main idea of maieutic but leaves
the students with a right to choose their own paths of reasoning and to make
mistakes). There are other patterns of teacher-students verbal interaction that
also give this illusion (e.g., Voigt, 1985; Steinbring, 1993). Atweh and Cooper
(1992) describe how, in fact, students are able to avoid learning or understanding
and resist teaching by engaging into the ‘meaningless rituals’ of classroom
interactions.

Styles of Classroom Communication

There are different styles of classroom communication between the teacher and
the student. One important distinction made of late is that between the so-
called ‘behaviouristic’ and the ‘constructivistic’ styles of teaching. The first is
authoritarian and leaves little room for the students’ free and creative activity:
the student is supposed to reproduce knowledge rather than construct it himself
or herself. The teacher believes that he or she can ‘transmit’ knowledge by ‘telling’
the student what he or she has to know and how to understand. The
constructivistic style is more symmetric in nature; the teacher will allow the
students to develop their own understandings of a new problem situation and
will negotiate meanings with the students rather than impose meanings on them.
It is generally believed that the constructivistic style leads to better understanding
and learning than the ‘behaviouristic style’ (Cestari, 1983; Perret-Clermont, 1990)
but there is an on-going discussion on the actual possibility of maintaining the
former style in the practice of everyday institutionalized teaching, and on the
details of this style in teaching concrete subject matter. It is generally felt that
some things in mathematics just have to be ‘told’ the students; there is no way of
making the students reconstruct some more advanced concepts in mathematics.
The discussions and negotiations of meaning can only be done on the meta-
level, i.e., on the level of possible solutions, different approaches to a given
mathematical question (Dorier, 1991).

What Understanding Is Not

Thus far, in our efforts to understand understanding we have been mainly
investigating into the operation of identification: we were trying to say what
understanding is. Now the time has come to use our abilities of discernment: we
shall attempt to say what understanding is not.

It has already been mentioned in Chapter 1 that sometimes understanding is
confused (or deliberately merged) with knowing, and argued that this is perhaps
not a desirable thing to do in education. Unfortunately, institutionalized education
is framed to develop students’ knowledge rather than thinking. This is a heritage
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of a long-standing tradition. Thinking, contemplation and understanding for
their own sake have not been very highly valued by the modern ‘enlightened’
times that are concerned mainly with ‘results’ and ‘progress of knowledge’. Any
domain of human mental activity had to be organized in the way sciences were:
science was the model. The ideal of Hegel’s philosophy was to raise philosophy
to the rank of science. Are the values of the post-modern era likely to reach our
educational systems soon?

Understanding has also to be distinguished from invention or discovery.
While any invention assumes understanding, the latter does not necessarily
imply the former: there are many straightforward, routine acts of understanding
by which we live, make sense of our environment, communicate with others
about everyday matters. Only exceptional acts of understanding feel as real
discoveries, and these are normally preceded by considerable intellectual effort.
Of course, we would expect our students to experience such creative acts of
understanding in their learning; otherwise it would be hard to say they learned
anything genuinely new. This is probably what Piaget had in mind when he
wrote,
 

The basic principle of active methods will have to draw its inspiration
from the history of science and may be expressed as follows: to
understand is to discover, or to reconstruct by rediscovery, and such
conditions must be complied with if in the future individuals are to be
formed who are capable of production and creativity and not simply
repetition. (Piaget, 1975b, p. 20)

 
Another thing that an act of understanding is not is the activity of reasoning
and even less the chain of inferences that lead from the premisses to the
conclusion. But a reasoning taken as an accomplished whole can play the role
of a basis of understanding. In fact, acts of understanding and reasonings can be
seen as complementing each other in processes of understanding: this is a view
that will be proposed in the next chapter.

There has been a view, held by the so-called ‘neo-positivists’, and more precisely
by philosophers of science related to the deductive-nomological methodology
of explanation, that understanding is nothing more than an ability to predict.
According to this methodology, the explanandum (the sentence describing the
phenomenon to be explained) is a logical consequence of the explanans, which
is composed of two kinds of premisses: 1. the class of individual true statements
about the specific initial conditions; and, 2. the class of statements representing
general laws (and thus also true) (Hempel and Oppenheim, 1948, pp. 567–79).
The important thing, in this philosophy, was to explain the phenomena; an
understanding of a phenomenon was achieved if the explanation of it allowed
to predict its future occurrences:
 

The [D-N] argument shows that, given the particular circumstances
and laws in question, the occurrence of the phenomenon was to be
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expected; and it is in this sense that the explanation enables us to
understand why the phenomenon occurred. (ibidem)

 
This position was criticized even by methodologists of the same circle. For
example Friedman (1988) argued that,
 

Understanding and rational expectation are quite distinct notions. To
have the grounds for rationally expecting some phenomenon is not the
same as to understand it. I think that this contention is conclusively
established by the well known examples of prediction via so-called
‘indicator laws’—the barometer and the storm, Koplick spots and
measles, etc. In these examples, one is able to predict some phenomenon
on the basis of laws and initial conditions, but one has not enhanced
one’s understanding of why the phenomenon occurred. To the best of
my knowledge, Hempel himself accepts these counter-examples, and,
because of them, would concede today that the D-N model provides at
best necessary conditions for the explanation of particular events.
(Friedman, 1988, p. 190)

 
It is possible to be able to predict future events on the basis of a model which
can reflect a complete misunderstanding of the underlying phenomena—such
was the case of Ptolemy’s astronomy, for example.

By saying that ‘understanding is nothing but an ability to predict’, we imply
that what we mean by ‘understanding’ is a certain way of knowing. This is not
the approach to understanding that is being proposed here. Not only do we
discriminate between understanding and knowing, but we also refrain from
assuming right from the beginning that understanding is some kind of ‘good
understanding’. We do not a priori evaluate understanding.

Among the many views on understanding, there is one which identifies an
act of understanding with the retrieval of a ‘frame’ or ‘script’ from memory,
sometimes called the ‘computer metaphor approach’ (Minsky, 1975; Schank
and Abelson, 1977; Davis, 1984). In the domain of psychology of
mathematical behaviour in school-children the concept of frame was used to
explain some of the common mathematics students’ errors. It was regarded
as a useful language to think about understanding (or rather
misunderstanding). Some researchers have further developed it to allow for
an explanation of why a student retrieves a wrong frame in a particular
situation (Malle, 1990).

There are several deceiving aspects of his approach. One is that it represents
the functioning of the human mind as mechanical, automatical: a ‘cue triggers
the retrieval of a certain frame from memory’ which is then set to function by an
input of data. It also reduces the human mind to a logical system, and for a
logical system it is not important what is being spoken about, only whether it is
grammatically correct or true (in the sense of logical consequence). In particular,
mathematics could find itself thus reduced to logic, which is certainly not a view
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that it would be worthwhile conveying to students. Moreover, in the computer
metaphor approach, and cognitive science in general, it is assumed that thinking
is always taking place in some language. This brings us to the well-known
controversy about whether language and thought are separable or inseparable.
Plato, in ‘Sophist’ wrote that ‘thought and sentence is one and the same thing.
Only the talk of the soul with itself—this is what we call thought’. Merleau-
Ponty (1973) would say that thought cannot exist without the world, outside
the sphere of language and communication: it would fall into unconsciousness
the very moment it would come into being. But many philosophers contend that
there is more to thought than what can be expressed in any language. Bergson
said that ‘the most living thought becomes frigid in the formula that expresses
it. The word turns against the idea. The letter kills the spirit (1975, p. 141)’.
There is the well-known testimony of Einstein (Penrose, 1990, p. 548ff). In
discussing the matter Penrose says,
 

I had noticed, on occasion, that if I had been concentrating hard for
some while on mathematics and someone would engage me suddenly
in conversation, then I would find myself almost unable to speak for
several seconds. This is not to say that I do not sometimes think in
words, it is just that I find words almost useless for mathematical
thinking. Other kinds of thinking, perhaps such as philosophizing, seem
to be much better suited to verbal expression. Perhaps this is why so
many philosophers seem to be of opinion that language is essential for
intelligent or conscious thought! (Penrose, 1990, p. 549)

 
Of course, one could deny the name of ‘thought’ to the mental experiences that
are not expressed or expressible in a verbal form, but it is also possible to assume
that such non-verbal things as dynamic diagrammatic representations of algebraic
expressions that are being transformed or the consciousness of one’s own actions
are also thoughts. The consciousness of a mental activity is indispensable for a
further more conceptual reflection and thematization of one’s mental operations;
isn’t this the mechanism through which we come to understand and create
mathematics? Can we provide a non-human cognitive system with such a
consciousness and ability to reflect on its own activity? Can we say that such a
system is capable not only of knowing certain things but also of understanding
what it is doing?

These are very difficult questions, and the answers, if any, depend on what
is meant by ‘understanding’ or ‘knowing’ as well as on what is meant by
‘computer’. The fast developments of technology nowadays suggest that we
be very careful in expressing opinions in these matters. It even may be that
these questions are of a philosophical rather than scientific nature, and cannot
be decided on the grounds of experiment. This is the message that, willingly or
unwillingly, Penrose is conveying in his book on ‘computers, minds, and the
laws of physics’.
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Chapter 3

Processes of Understanding

What is understanding? Has the word the same meaning for everybody?
Does understanding the demonstration of a theorem consist in examining
each of the syllogisms of which it is composed in succession, and being
convinced that it is correct and conforms to the rules of the game? In the
same way, does understanding a definition consist simply in recognizing
that the meaning of all the terms employed is already known, and being
convinced that it involves no contradiction? (Henri Poincaré, 1952).

 
In this chapter we shall concern ourselves with the process of understanding
and the roles played in it of various reasonings, examples, previous knowledge
and experience, figurative speech, and, last but not least, activity, practical and
intellectual.

The Process of Understanding

Processes of understanding can be regarded as lattices of acts of understanding
linked by reasonings. If A and B are acts of understanding, then we may admit
that A≤B (A precedes B) if there has been a reasoning R, in some way induced or
inspired by A, that led, on its turn, to the act of understanding B.

For example, let a certain process of understanding start with an identification
of an object X as an object worthy of study. Several kinds of questions can arise:
like: what is X?; or what is the use of X?; or what can one do with (about, for,
etc) X? etc. Let A be the act of understanding based on some (guessed) answer
to this question. What then follows is a search for some validation of this guess.
The validation is based on a reasoning R. For example, if the question was:
what is X? and the guess was: X is Z, then R may consist in proving that X is Z
or in verifying whether X is Z. In this case, the result of R is an act of
understanding B based on a thought that X is Z, or that X is certainly not Z, or
that X is Z under the condition that C, etc. Thus the guess A leads to an
understanding B about which there is already more conviction thanks to some
reasoning R.

In one process of understanding the relation≤establishes a partial order. The
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unity of a process of understanding is determined by the close relationship of
the objects of understanding of the acts of which it is composed.

If, in one process of understanding, two acts A and B are not linked by a
reasoning, there always is a third act C such that A and B are linked with C:
either both A and B were obtained through reasonings inspired by C, or A and
B inspired reasonings that led to C. Thus, acts of understanding and reasonings
in one process of understanding constitute quite a dense network (in the ordinary
sense of the words).

While, in one process of understanding, the objects of understanding are
closely linked to each other, there can be a large variety of bases of understanding.
One may even say that a process of understanding something consists of a series
of transformations of some initial basis of understanding.

In the following section we try to clarify a little the differences between the
various kinds of reasonings involved in a process of understanding.

Reasonings

Ajdukiewicz (1985) counts as reasoning all inference and deduction as well as
‘processes of solving mental problems and questions carried out with the use of
inference and/or deduction’. Simple reasonings (i.e., those that make use of only
one process of inference or deduction) break up into ‘spontaneous’ reasonings
and ‘problem-directed’ reasonings (ibidem, p. 224); the latter, in their turn can
be divided into classes depending on the kind of problem they are directed by:
proving (when the problem is ‘to prove that A’), verifying (when the problem is
‘to decide whether or not A’) and explaining (when the problem is ‘to complete’
[a certain sentence], and a possible answer is not given in the wording of the
problem; it usually starts with a ‘why?’).
 

Ajdukiewicz understands inference as
a thought process through which, on the basis of a more or less positive
acceptance of premisses, we are led to an acceptance of a conclusion
that remained so far unaccepted or accepted less positively by us, and
we accept the conclusion to a degree that does not exceed the degree
with which we accept the premisses. (Ajdukiewicz, 1985, p. 106)

 
Deduction is a process similar to inference with, however, a few important
differences. First, in the process of inference, the most important thing is the
‘acceptance’ of something: the goal is to increase the certainty or diminish the
doubt. Certainty claims are not so important in deduction. Deduction is more
formal; it is explicit and it is based on explicitly admitted rules. Inference leads
from accepted premisses to conclusions that, thereby, become more probable
(even if this probability is only subjective). Deduction leads from (hypothetically)
admitted reasons to consequences, that are implied by the reasons according to
some well defined rules on the basis of some set of statements admitted as true.
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Let us see, as an example, how deduction and inference are involved in a
reasoning such as the reductio ad absurdum. Suppose that we have to prove to
prove a statement p. What we do is the following: we hypothetically assume
the statement ¬p and deduce from it a statement q. For the trick to work, q
must be false. Our claim that q is false is a result of an inference: we infer that
q is false from some accepted premisses: definitions, proved theorems etc.
Now our accepted premisses are: q is false, the implication ¬p ⇒ q is true.
From these we infer that ¬p is false (on the basis of the tautology: if q is false
then the statement ¬p ⇒ q is true if and only if ¬p is false). This inference has
increased our certainty that ¬p is false. This now becomes our accepted premise
from which we infer (by the law of tertium non datur which we also accept)
that p must be true.

The difference between inference and deduction is maybe best grasped in the
opposition between the processes of proving and explaining. Ajdukiewicz (1974,
p. 223) classifies proving as an inferential reasoning and explaining as a deductive
reasoning.
 

The foregoing remarks point to a close relationship between proving
and explaining. Both when proving a theorem and when explaining a
state of things we answer to one and the same ‘why?’ question. Hence
it may be expected that the explanation procedure follows a course
which resembles that of the procedure of proving, with the proviso that
in the case of an explanation that which is to be explained is known in
advance and does not require any substantiation, whereas in the case of
proving what is to be proved is not yet known and the proof is to
substantiate that.

Let us consider an example to see that it is really so. Suppose a person
knows that (a) any physical body which is generically lighter than water
does not sink in water but floats on it, (b) ice is generically lighter than
water. Now we present to that person the following syllogism:

(a) Any physical body which is generically lighter than water floats
on it.

(b) Ice is generically lighter than water. Hence:
(c) Ice floats on water.

This syllogism may be said both to be, for the person concerned, an
explanation of the state of things described in the conclusion, and a
proof of the conclusion. But it may be an explanation, for the person
concerned, of the state of things described in (c) only if that person
knew in advance that state of things to be true, i.e., only if he accepted
the statement (c) even before deducing it from statements (a) and (b).
On the other hand, this syllogism may be called a proof of statement
(c), for the person concerned, only if that person came to accept the
statement (c) only by inferring it from statements (a) and (b), and did
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not know beforehand whether (c) is true. (Ajdukiewicz, 1974, pp.
442–3)

 
An explanation of a state of affairs X is therefore a solution of the problem
that can be worded as ‘why [X] ?’. The answer to this question has the form
of ‘[X] because [Y]’. When I explain a certain fact by referring to some
reason of the sentence that states this fact, then I do not at this point only
infer this fact from this reason—this fact is known to me independently from
this reason. However, I carry out a mental operation which is similar to the
operation of inference; namely, in explaining [X] by [Y], I derive the sentence
stating [X] from the sentence stating [Y], I perceive the relation of implication
between the second and the first, but I do not use this relation to base my
conviction about [X] on [Y], because I am convinced about [X] independently
from [Y].

Thus, deduction does not serve as a basis for our more positive acceptance of
the derived statement. In an explanation of a consequence X on the basis of a
reason Y, Y implies X but X is not inferred from Y.

It is worthy of notice that what is explained is a certain state of things (a
fact, a phenomenon), and what is derived is a statement. For example, in
physics, the phenomenon of rain storm is being explained. The phenomenon
need not be inferred from electrical laws; its existence and its normal course
are well known by observation. The question is why it happens and why it
happens as it happens.

In fact, an explanation of some state of affairs aims at founding its
understanding on a different basis (more conceptual, usually). In the above
example of rain storm, a first understanding is probably based on a visual and
auditory representation of a rain storm. A second, after an explanation, can be
based on a thought that a rain storm is caused by an accumulation of electrically
charged clouds.

Proving aims at increasing the degree of firmness with which we accept
something as a basis of our understanding.

An act of understanding does not belong to reasonings because neither of its
elements contains inference or derivation. It can only be based on a result of a
reasoning, taken as a whole, as one single synthesized argument.

Explanation and Understanding

The Role of Explanation in Understanding Mathematics

In distinguishing between proving and explaining, Ajdukiewicz says that what
is proved is a statement, and what is explained is a state of things. Therefore,
if we wish to speak about explanation in mathematics in Ajdukiewicz’s style,
we should make it clear what are, for us, these ‘states of things’ in mathematics.
In empirical sciences, a ‘state of things’ is what is ‘ascertained beyond all
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doubt’, by observation, experiment. In mathematics, it can be an existing
mathematical theory, and anything that is proved or admitted without proof
within this theory.

The quest for an explanation in mathematics cannot be a quest for proof,
but it may be an attempt to find a rationale of a choice of axioms, definitions,
methods of construction of a theory. A rationale does not reduce to logical
premisses. An explanation in mathematics can reach for historical,
philosophical, pragmatic arguments. In explaining something in mathematics,
we speak about mathematics: our discourse becomes more metamathematical
than mathematical.

This is what the logical positivistic stand endeavoured to abolish: all informal
discourse should be eliminated from mathematics; mathematicians should join
efforts to completely formalize all branches of mathematics. Meaning should be
reduced to the truth value: FALSE (0) or TRUE (1). In the practice of
mathematical research (or any scientific research for that matter), this
philosophical stand is difficult to maintain; it is overcome by the drive to find
‘reasons’ and ‘causes’ of things, facts, theorems.
 

The most important of [the basic instruments of knowledge] is
certainly the search for ‘reasons’, which justify the abstractions and
generalizations. Logical positivism has tried from its origin to get
rid of this factor and to reduce science to a simple description of
phenomena. This was A.Comte’s idea. But in reality, every scientific
mind, while not always admitting it, asks questions like that. It has
often been noted that excellent physicists, while vigorously professing
a positivist credo in the prefaces to their writings, contradict this
faith in the body of their work by pursuing a bona fide analysis of
‘causes’. As one example of this invincible tendency to search for
‘reasons’, we might cite the evolution of the contemporary
mathematical logic. Limiting itself to a purely descriptive language,
algebraic logic had long adhered to a purely extensional perspective,
hence the ‘truth tables’, which, in actuality, remain so far removed
from any ‘truth’ that they have led to the truly scandalous paradoxical
situation that p ⇒ q can be true when there is no actual relation of
truth between p and q.

At present we are witnessing the birth of a movement whose aims
are to exclude all relations that are not logically necessary as well as
significant so that each implication is based on a reason (cf. Anderson
and Benlap’s logic of entailment). Mathematicians, ever since Cournot,
have distinguished between demonstrations which simply verify a
theorem and those which, in addition, provide the reasons. (Piaget and
Garcia, 1989, pp. 271–2)

 
Indeed, understanding a theorem on the basis of acceptance of the logical
soundness of its proof is not the same as its understanding both on the basis of



Processes of Understanding

77

the proof and its ‘reasons’. For example, what kind of understanding of the
statement that √2 is an irrational number can be derived from its proof by
reductio ad absurdum? The proof is based on the definition of the irrational
number as a number that cannot be represented by a ratio of two integers, and
on the property of unique factorization of integers. This does not explain why
the fact is so significant. But, if we know how it is related to the discovery of
incommensurable line segments by the Pythagoreans, then we can better
understand what role it has played in the development of mathematics. Moreover,
the proof by itself does not show how incommensurability is related to
irrationality; neither does it tell us why the decimal expansion of √2 should be
infinite and non-periodical, which is another characterization of irrational
numbers. Answers to such questions belong to the explanation of the theorem
and go beyond just the proof of it.

Proofs may call for an explanation, as well. Such an explanation can highlight
the so called ‘idea’, or ‘this indefinable something that makes the unity of the
proof (Poincaré, 1970, pp. 29–34).

Explanation of an abstract mathematical theory may consist in a construction
of its model, in which the variables, rules and axioms of the theory are interpreted
and acquire meaning. The model becomes a certain ‘reality’, ruled by its own
‘laws’. In explaining a theory, we deduce its rules, axioms, definitions, and
theorems from the ‘laws’ of the model.

Scientific and Didactic Explanations

The aim of an explanation is to found the understanding on a new basis.
Explanations could be classified along the kinds of requirements that are put on
this new basis. Explanations which aim at a more conceptual basis of
understanding are mostly met in science and this is why we may call them
‘scientific’. Explanations which aim at a more familiar basis of understanding
(an image or just some previous knowledge and experience) are frequent in
teaching, so let us call them ‘didactic’.

Scientific explanation is thus opposed to didactic explanation. Far from
reducing new knowledge to familiar knowledge, it very often aims at showing
how non-obvious certain unquestioned things are. For example, in teaching, the
continuity (i.e., the completeness) of the ordered set of real numbers is sometimes
explained by reference to the intuitive feeling of ‘continuity in the smallest parts’
of the straight line, which is used to represent this set. Richard Dedekind (1963)
was not very happy with this kind of explanation.
 

The way in which the irrational numbers are usually introduced is based
directly upon the conception of extensive magnitudes—which itself is
nowhere carefully defined—and explains numbers as the result of
measuring such a magnitude by another of the same kind. [Dedekind’s
note: The apparent advantage of the generality of this definition of
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number disappears as soon as we consider complex numbers. According
to my view, on the other hand, the notion of ratio between two numbers
of the same kind can be clearly developed only after the introduction of
irrational numbers]. Instead of this I demand that arithmetic shall be
developed out of itself…. Just as negative and fractional rational numbers
are formed by a new creation, and as the laws of operating with these
numbers must and can be reduced to the laws of operating with positive
integers, so we must endeavor completely to define irrational numbers
by means of the rational numbers alone…. By vague remarks upon the
unbroken connection in the smallest parts obviously nothing is gained;
the problem is to indicate a precise characteristic of continuity that can
serve as a basis for valid deductions (Dedekind, 1963).

 
The definition of continuity of real numbers in terms of cuts, proposed by
Dedekind, is by no means something ‘familiar’. The most surprising thing is the
very need to formulate it. For, at first sight, it seems to state an obvious fact. An
understanding of this need comes together with an awareness of the non-
obviousness of continuity: an awareness of the existence of number domains
which are not complete, and of the essentiality of assumptions about the
completeness of domain in theorems so intuitively clear as the theorem stating
that increasing and bounded sequences are convergent. Thus, in this case,
understanding demands not so much a reduction to a more familiar knowledge,
as a derivation of a more elaborate knowledge.

Students’ Own Mathematical Explanations; an Example

Didactic explanations are used not only by teachers; they can also be used by
students themselves. Also the learner can seek explanations that would make
the basis of his or her understanding more familiar. The example that follows
evokes such a situation. It also shows how proofs and explanations are inter-
woven in a process of understanding.

Example: the recurring decimals
A group of 17-year-old humanities students were shown, on examples, how

to convert periodic decimal expansions of numbers into ordinary fractions
(Sierpinska, 1987).
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The students were accepting the argument for expansions like the one above
(0.989898…, 0.121121…, etc.) but refused to accept that 0.999…=1 even though
it was obtained in an analogous way.

At first the students refused both the reasoning and the conclusion, but later,
their attitudes started to differentiate. One student, Ewa, began to accept the
proof as mathematically valid, and the conclusion as mathematically correct,
but refused to accept it as true ‘in reality’.
 

Ewa: Arithmetically or algebraically, this is OK, but in reality… This
will be close to one but it will not be equal one. There will be such
a tiny difference, very tiny, but a difference all the same… It’s like
that asymptote to a hyperbola: they never meet… The difference
gets smaller and smaller, but it never becomes null… It reminds
me of the upper and lower bounds we were doing last year,
remember?

 
In justifying her opinion Ewa relies on an image of a hyperbola and on
reference to an analogy: hyperbola is to its asymptote as 0.9999…is to one.
Ewa first identifies a similarity between the relation of the hyperbola to its
asymptote and the relation of the number 0.999…to the number 1. The
similarity is based on the common feature of ‘approaching something’ (Ewa
understands the number 0.999…as being constructed and not as already
constructed: rather as a sequence than as its limit). Then Ewa extends the
similarity onto other features of the behaviour of the hyperbola with respect
to its asymptote: they never meet. From this she deduces that also the number
0.999…cannot meet the number 1. This is her explanation of what she accepts
as a fact: 0.999…≠1.

The only student in this group who finally accepted the equality 0.999…=1
was Tom. Here is the moment when he changes his mind:
 

Tom: Because, no matter how many nines we have here, it will never
be equal one.

Teacher: You accepted the argument in case of other numbers. Why not
here?

Tom: I don’t trust these mathematical proofs. They are just tricks.
 
There is hesitation in his voice, already. He attempts some modification of the
result so that it will be acceptable.
 

Tom: Maybe we can say that this zero nine nine is a number the closest
to one? Because there is no number closer to one than that…. This
cannot be equal one unless…unless…unless we assume that this
goes to the very infinity… Then it can equal one… Because these
differences get smaller and smaller, without limit.
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Several phases can be distinguished in this short process of understanding:
 

1 the rejection of the equality 0.999…=1 is temporarily suspended and
the equality becomes subject to verification;

2 proof of the equality:
(a) an act of understanding of the equality based on the

identification of a crucial assumption: the number of nines is
infinite;

(b) inference: ‘then it can equal one’
3 acceptance of the equality 0.999…=1
4 explanation:

(a) act of understanding based on an identification of the main
reason: ‘Because these differences get smaller and smaller etc’.

 
(Here Tom stops and the explanation remains incomplete: the step of derivation
is not made.)

Instead of pursuing this course of explanation (for example, by assuming the
difference e=1–0.999…and showing that, because 0.999…>0.9 implies e<0.1,
etc. e must be a positive real number smaller than any positive real number,
which yields e=0 in the standard analysis) Tom reaches for analogies and
metaphors to convince his peers. This decision can be explained either by his
explicit mistrust in ‘mathematical proofs’ or by the constraints of the social
situation. Namely, by accepting the equality, Tom found himself in opposition
to the rest of the group. Now, what these students need is not an explanation
(because they do not believe in the equality) but a proof. So it is a proof that
Tom will be looking for. Tom’s strategy seems to be the following: Ewa refuted
the equality on the basis of an analogy with the hyperbola approaching its
asymptote: this was her explanation of the inequality in which she believes.
Tom sets to prove that this explanation is not valid because, in fact, the hyperbola
ultimately, ‘in the end’ meets the asymptote. He says: ‘If two lines are not parallel
then they must intersect. Even if the deviation is minimal, just as here, these
lines must intersect somewhere… Imagine two people running on these lines…’.
[End of example]

Examples of Teachers’ Didactical Explanations

In the following I discuss several types of explanation: explanations with the
help of an example, explanations with the help of a model, with the help of a
visualization, and other means. An example of a lesson in which the teacher
uses various means of didactic explanations is given in the third subsection.
 
Didactical Explanation of a Definition or Theorem With the Help of an Example
This kind of didactical explanation can be regarded as an element of an
explanation of a theory with the help of a model. In the elementary linear
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algebra, for example, theorems formulated generally for arbitrary vector spaces
over arbitrary fields, are explained by taking a space Rn for some concrete n,
say n=2 or 3. Sometimes a geometrical model of Rn (a cartesian plane or space)
is referred to. Then the theorem is not proved to hold in the model but either
its thesis is shown to hold in some concrete case, or the theorem is applied in
a concrete case.

Although such a procedure is worthless as a proof, it has some value as an
explanation (after all students have no reason to disbelieve the author of the
textbook or the teacher, so they do not need a proof to convince themselves of
the veracity of the theorem). One aim of such an explanation is to analyze the
theorem: to see what values can be assigned to the various variables in its
statement, what the thesis means in a concrete case, briefly—to see what the
theorem is about. In the case of theorems as complicated as, for example, the
Jordan Canonical Form theorem, it is hard to imagine how their mere formulation
can be understood without first trying to see how they work in a concrete
situation.
 
Didactical Explanation of a Theory With the Help of a Model
Let us discuss this kind of explanation with the example of the notion of integer
number.

Example: explanations of integer numbers
Ever since the arithmetic of integers has been introduced into teaching at

the elementary level, mathematics educators have had to cope with students’
difficulties. Perceiving the source of these difficulties in the abstract and formal
character of the structure (Z, +, •), educators have proposed several models
(number line models, annihilation models involving, for example, positive and
negative quasi-electrical charges, the model of arrows in a two dimensional
space). In these models negative numbers and operations on them were
interpreted in terms of more concrete manipulations of objects. It was expected
that through the use of such models students will have less trouble in the
correct application of rules of operations on integers (Freudenthal, 1983, pp.
432–60).

It was clear that an explanation of these rules through their derivation from
the axioms and the general idea that we want to have a set of numbers closed
not only under addition but also subtraction and that we want this set to be an
extension of natural numbers that would preserve all the properties of operations
in this smaller set (Freudenthal, 1973), is out of the question with respect to 12–
13-year-old children. Such an understanding of integers is possible only when
one possesses the concepts of number, variable and group and is capable of
thinking of whole sets of numbers as algebraic structures.

Thus, what can be done is to speak about concrete negative numbers, just
as, in fact, one speaks about concrete natural numbers, and assign some
meaning to them just as one assigns meaning to natural numbers in elementary
school (measure of an amount of things, codes of things, positions of things,
adding, taking away…). The problem is, however, that these meanings of
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numbers and operations cannot be preserved when extending the set of
numbers to contain the negative numbers as well. Adding in the set of integers
does not always result in augmenting the amount, and subtracting does not
mean that one ends up with something less. It is also not at all clear why, by
multiplying two negatives one should get something positive. Authors of the
models try to cope with these difficulties, either by proposing to introduce
whole numbers through a model that can be further extended to a model of
integers in a way that does not reinforce the idea that adding means
augmenting, for example (the number line model, e.g., Chilvers, 1985), or
by inventing such models of integers that allow to preserve the old meanings
of addition and subtraction as augmenting and diminishing (the annihilation
model, e.g., Battista, 1983).

Each of these models has features that explain nicely an aspect of integer
numbers (not all aspects). For example, the annihilation model implicitly
introduces the additive group of integers as the quotient structure obtained
from the semi-group of natural numbers by dividing it by the equivalence
relation: (a, b)~(c, d) Û a+d=b+c. The equivalence class of, say, the pair (1, 2)
can be denoted by -1, the equivalence class of the pair (2, 1) is denoted by 1,
and 1 and -1 are opposites because they add up to the equivalence class of (3,
3) which is the neutral element of the group, denoted by 0. In teaching, this
idea is translated into an enactive representation. Equivalence classes are
represented by sets of pairs of counters of two colours, or pairs of counters
with plus or minus signs on them. Counters of different colours or different
signs annihilate each other. Thus, children are taught to identify pairs such as,
for example:
 

(2 red, 0 yellow)~(3 red, 1 yellow)~(4 red, 2 yellow)~(5 red, 3
yellow) &c.

or:
(0 red, 2 yellow)~(1 red, 3 yellow)~(2 red, 4 yellow)~(3 red, 5
yellow) &c.

 
Adding equal numbers of counters of different colours does not change anything
([n,n] is the neutral element), so such pairs can be used to obtain sums and
differences of the newly obtained integer numbers. In this way, rules for adding
and subtracting integers are learned.

The annihilation models are particularly appealing for a mathematician
because they present a certain general procedure for extending a domain of
numbers by taking a quotient structure. How much, however, of this idea is
conveyed through manipulating counters to a 13-year-old child, is hard to know.
Certainly there is no awareness of an algebraic structure being thus built. The
understanding is based on some kind of procedural or enactive representation.
But this can be a good start, a foundation upon which a teacher can build a
more conceptual understanding later on.
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A certain conceptual maturity (which, according to Vygotski, is attained only
in adolescence) is necessary to grasp the rules of operations on integers as a
certain theoretical, mathematical necessity. In this respect it is interesting to
read the confessions of Stendhal (La vie de Henri Brulard) about the difficult
process of understanding the rule that ‘minus times minus is plus’ (Hefendehl-
Hebeker, 1991).

One of the obstacles in the historical development of the concept of
negative numbers was found to be ‘an attachment to a concrete viewpoint,
that is, an attempt…to assign to numbers and to operations on them a
“concrete sense”’ (ibidem; see also Pycior, 1984; Chevallard, 1985b). One
may wonder, therefore, whether it is not better to confine ourselves in teaching
negative numbers to 12–13-year-olds to reading the thermometer scale, and
leave the study of operations to a time when the students are able to make it
without assigning a ‘concrete sense’ to everything they encounter. Of course,
one can train the students to perform operations on integer numbers without
answering their questions about why they are defined as they are defined
(after all, in history, negative numbers were used in mathematical calculations
for a long time before they could be theoretically founded and explained).
Introducing integers with the help of the number line model or the annihilation
model does not answer the question why the rules for operations are defined
as they are defined. The only advantage is that the model provides the learner
with some concrete images linked with operations (moving to the right by n,
annihilating the charge +n with the charge -n) which may consolidate the
long-term memory of these rules.

The question is, however, why should we train the students in integer
operations at all? What for? As it is, for the time being, 12–13-year-old students
are both presented with a model (most often the number line model) and are
trained in computation on integers. The most amazing thing is that sometimes,
the model—whose aim is only to explain, to give meaning to the mathematical
notions being the proper objects of teaching—becomes an object of teaching in
itself and its knowledge is assessed on tests. Moreover, new symbolisms grow
over the model, which require their own rules to handle them. For example,
sometimes integers (concrete integers) are written with signs attached to them
in front in superscript: +2, -7. Sequences of additions and subtractions on integers
become speckled with crosses and lines up and down. This is exactly a case of a
‘didactic transposition’ (Chevallard, 1985a) that has gone too far: an alienation
of an instrument of didactic explanation. These ‘signed numbers’ can be
confusing, to say the least. Moreover, this symbolism may create an obstacle
when learning algebra, where a letter does not necessarily denote a positive
number, or a negative number. It is a variable that can assume any value. The
minus sign in front of a letter just means that its sign has to be changed: ‘-’
stands, in fact, for the unary operation of change of sign (like the +/- key in
calculators). The operation of subtraction becomes obsolete in algebra: we are
always adding, except that sometimes we are adding the opposite. [End of
example]
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Examples of Didactical Explanations During a Lesson on the Limit of a
Numerical Sequence
The lesson took place in a class of 17-year-old humanities students in Warsaw.
The theme of the lesson was: ‘The limit of an infinite sequence’ (Sierpinska,
1991).

Example: explanations of the definition of the limit of a sequence
In a first phase of the lesson the teacher introduces the notion of ‘epsilon

neighbourhood of a number’. In explaining this notion the teacher uses two
schemas of a didactical explanation:
 

1 the new notion is derived as a particular case of an already known
notion;

2 the definition of the new notion is derived from its model (in this case:
its geometrical model).

 
The teacher starts with an informal definition:
 

T: We start with the notion of the epsilon neighbourhood of some
number, say, number g. An epsilon neighbourhood of a number will
be the set of all real numbers that are contained in an interval around
this number…, an interval the length of which, on both sides, equals
exactly this epsilon.

 
Further the teacher reminds the students the notion of epsilon neighbourhood
of a point by referring to ‘drawing’ graphical representations of such
neighbourhoods:
 

T: Why ‘epsilon’? Imagine drawing neighbourhoods… We used to speak
about plane neighbourhoods, in geometry… We spoke about circular
neighbourhoods. We drew circular neighbourhoods of points, that
is, circles with some radiuses and centres in points whose
neighbourhoods we were considering.

 
The teacher aims at representing the notion of epsilon neighbourhood of number
as a special case of the notion of a circular neighbourhood of a point in the
cartesian plane. For this, however, one must conceive of straight line as being, in
a sense, a special case of the plane, which is possible if both the line and the
plane are considered to be special cases of the general notion of an n-dimensional
cartesian space. So, what is needed first, is a generalization: the notion of n-
dimensional space. This generalization is not done by the teacher in an explicit
way: she just calls the number line ‘a one-dimensional space’, in a kind of
metaphorical way:
 

T: What does such a neighbourhood reduce to in a one-dimensional
space? [T draws a straight line on the board]. This is the number g.
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[T marks the point g on the line]. We are considering the
neighbourhood with radius epsilon of this point. What does a whole
circle reduce to if the universe of my considerations is only this one-
dimensional space, this number line, and not the whole plane, hm?

S: [It reduces] to a line segment.
T: To an open line segment, yes.

 
The thought of the student who answered went into a slightly different direction
than the teacher intended: he generalizes to euclidean spaces and not to cartesian
spaces, and therefore, what he obtains is a line segment, and not an interval. So
now the teacher has to draw the student’s attention to numbers, and to suggest
that he conceives of the line as a number line:
 

T: OK And in terms of numbers, such a line segment illustrates…?
S: A set.
T: What set? What is the name of such a set?
S: A bounded sequence.
T: Pardon me? [impatiently] Come on, now, what does such an open

line segment illustrate on the number line?
S: An interval.
T: [with relief] An interval, of course! If the radius was epsilon, and I

drew the circle from the point that illustrates the number g here,
what are the numbers that are there, on the borders of this interval?
What values? Can this be established or not?

S: Plus.
T: Here…epsilon is positive, because it expresses the length of the radius,

so it is clear that it must be positive.
S: g+ε
T: g+ε. And here?
S: g-ε
T: g-ε. Perfect. And exactly such an interval will be called the epsilon

neighbourhood of the number g.
 
It can be seen from the above episode that what the students have to understand
primarily in a mathematics classroom is their teacher’s intentions.

In the next phase of the lesson the teacher dictates a definition of the limit of
a sequence:
 

T: A number g is called the limit of an infinite numerical sequence if
and only if for any positive number epsilon…there is a real number
k such that all terms of the sequence with indices greater than
k…belong to the epsilon neighbourhood of the number g.

 
The students are asked to write this definition ‘in terms of quantifiers’. Not
without difficulty, a formal definition eventually appears on the board.
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The teacher stresses the role of each element of the definition in turn and

formulates several informal definitions of the limit:
 

To be in the epsilon neighbourhood means to be a number such that its
distance from the number g is less than ε…. Here is what it means: starting
from an index that is already greater than k, all terms of the sequence
will fit into the epsilon neighbourhood of the number g… This means
that they will be so close to the number g that their distance from this
number will be less than the given epsilon…. Notice that the definition
starts with the words: for every epsilon. This means that epsilon can be
chosen as small as we please… No matter how small the neighbourhood
of the number g is, it will contain a lot…an infinite number of terms of
the sequence… Because k may turn out to be enormous. But even such a
k will cut off only the first terms of the sequence. Even if this is a million
of terms, those that have to squeeze into the neighbourhood constitute a
majority, there is an infinity of them…starting from a certain place all
terms of the sequence will squeeze into this neighbourhood.

 
The notion of limit is also visualized with the help of a certain standard graphical
representation (Figure 6). This visualization consists in drawing a two-coordinate
system, some ten isolated points arranged as if on the curve y=1+1/x, x>0. This
visualization is not a result of plotting a graph of a sequence the formula of
which would be given beforehand.

The teacher compares thus obtained representation to ‘a hyperbola that
converges to its asymptote’, and shows why 1 can be regarded as the limit of the
thus represented sequence:
 

T: Does this term fit into this chosen neighbourhood? No. This one?
Neither. This one? No, but never mind.

The 15th term will well fit into the neighbourhood. Say, I establish
k equal 14 and starting from the 15th term…so only 14 terms did
not fit into the neighbourhood. Someone might say, well, this is a big
neighbourhood, so one can see it from the last desk, and this is
supposed to work for every epsilon. So let us take a smaller epsilon,
as small as we please.

S: And yet there will be an infinite…
T: And yet there will be an infinite number of terms in this

neighbourhood. All of them—starting from a certain point.
 
In the last phase of the lesson the teacher shows, by examples, how to prove, by
definition, that a given sequence has a given limit. She also gives a kind of recipe
how to do such a proof.



Processes of Understanding

87

The examples were:

(1) an=1/n g=0
(2) an=(2n-1)/n g=2
(3) an=(n2+1)/3n2 g=1/3

The first problem is solved by the teacher with very weak participation from the
students. This solution is regarded as a model for solving this kind of problems.
The schema of solution is explained by the teacher:
 

You write in problem 2 that you have to check the truth of the
statement…only for an you substitute not 1/n anymore but this
expression, and for g not zero but 2. And then, under the modulus,
please reduce to the common denominator, and transform the inequality
in such a way that it determines the n. And then it will be very easy for
you to check whether the statement is true. Now, please, do your
calculations. [Silence. T walks around]…

I repeat it once more. When you check the truth of this statement,
then the equivalent fact that the given number is the limit of the sequence,
is also true. So you substitute the concrete an and g and transform the
inequality so that it determines the n. And then, it will be very easy to
evaluate the logical value of the statement. It is very similar to what we
have just done. Jack, work, stop talking.

 
Roughly speaking, there were three kinds of explanations of the notion of
limit during the lesson. In each kind, the reasons were formulated in a certain
model: the model of natural language, the model of geometrical representations,
the model of an action (of proving that a given sequence has a given limit).
The derivation consisted either in a formalization (formalization of a definition
of limit dictated in plain words), or in an interpretation of the formal definition
in the language of the model. The reasons of the formal definition thus appeared

Figure 5: A visual representation of a convergent sequence
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to be either the informal definition using plain words but essentially the same
as the formal one, or definitions using some more homely expressions and
vivid metaphors (like ‘squeezing’ of the terms of sequence into a neighbourhood:
this gives the idea that the epsilon is small), or the fact that converging sequences
behave like hyperbolas that come closer and closer to their asymptotes, or the
seemingly sensible activity of transforming the formal definition by plugging
in concrete values of certain variables and solving (for k) an inequality with
absolute value. These ‘reasons’ were meant by the teacher to become solid
bases of understanding of the formal definition of limit in the minds of the
students.

Now, even if the students have adopted as their own such bases of
understanding of the notion of limit (and the students’ erroneous answers and
silences don’t leave much hope even for that) the use of these bases for further
understanding of mathematical analysis is doubtful. At that point the students
have not as yet identified convergent sequences as a special class of sequences
among other sequences—and as an object worthy of study—because no
sequences other than convergent were considered during the lesson. Also, the
significance of the conditions of the definition was not founded on examples
of sequences for which the non-satisfaction of one of the conditions leads to
the statement of the non-convergence of the sequence. On the other hand, the
non-essentiality of the feature of the visual representation which presented a
sequence converging ‘uniformly’, and from only one side of the limit, was not
raised. Neither of the explanations attacks the common convictions or
representations that students may have with respect to the idea of a magnitude
approaching some value with time.

The heaviest reproach is, however, that the teacher’s explanations explained
nothing because explanations explain states of affairs and, for the students, the
definition of limit has certainly not yet become a state of affairs. Not only they
are not convinced about it, but they don’t even know what it is all about. [End
of example]

The Role of Example and the Medium in Which It Is
Presented for Understanding

Examples play a role in explanation: if what is to be explained is a general
statement, an example obtained by a specification of variables may be used as a
reason from which the statement is derived by induction. Thus an example may
become a basis for understanding this general statement.

It is a pedagogical adage that ‘we learn by examples’. Pedagogues, of course,
think of paradigmatic examples in this case. They think of instances that can
best explain a rule or a method, or a concept.

The learner is also looking for such paradigmatic examples as he or she is
learning something new. The problem is, however, that before you have a grasp
of the whole domain of knowledge you are learning, you are unable to tell a
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paradigmatic example from a non-paradigmatic one. So you make mistakes,
wrong choices, wrong generalizations (because, of course, you generalize from
your examples). Moreover, as the example is normally represented in some
medium (enactive, iconic or symbolic), you may mistake the features of the
representation for the features of the notion thus exemplified.

Below are some drastic examples of such situations in a couple of 16-year-
old students’ processes of understanding the notions of iteration of function and
attractive fixed point. Disregarding all definitions, the students based their
understanding on those of the first examples that they have found most strikingly
explanatory (Sierpinska, 1989).

Example: iteration of functions and the fixed point
The fixed point of a mapping was defined by the teacher as a point that does

not change under the mapping. Examples of the fixed points of an axial symmetry,
homothety, a linear function (given by a formula) were given. But then a graphical
representation (Figure 7) of the sequence of iteration of an R to R function was
shown (dynamically, on a computer screen) and it was said that the x-coordinate
of the intersection point of the graph of the function with the auxiliary line y=x
represents the fixed point of the function. Some students abbreviated this
definition to: ‘the intersection point is the fixed point’.

The last example used by the teacher (and investigator) in the introductory
session was the following:

Figure 6: Graphical representation of an iteration of a linear function
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The graphic representations of the iterations of this function (Figure 7) with
various initial points were dynamically represented on the computer screen.

When the teacher was introducing this example, one student exclaimed: ‘No,
here, there are two functions!’. This elicited explanations on the part of the
teacher that a function need not be given by a single formula in the whole
domain etc. This exclamation is, again, a symptom of understanding [the notion
of function, in this case] on the basis of examples rather than definitions.

Further, iteration sequences (i.e., x, f(x), ff(x), fff(x) etc.) of the function,
starting with x=1, x=0.8, and x=1.2 were studied both in the numerical and
graphical settings. The problem given to the students to solve immediately after
the introductory session was to find functions with a periodic iteration sequence
2, 3, 2, 3, 2,…having attractive fixed points in the interval (2,3). As one possible
solution was a piecewise linear function, one student was led to believe that the
notion of iteration of function is valid only for piecewise linear functions like
the one in the above example. He also believed for a moment that the fixed
point is the articulation point of the two linear parts. It was easy to make him
change his mind because the student was intelligent; the fact that he did think
so, shows nevertheless that understanding on the basis of examples is not just
the domain of the slow or less able students.

For all five students whose understanding was closely studied in the

Figure 7: Iteration of a piece wise linear function
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experiment, at the beginning, iteration of a function was just an activity of
drawing little line segments between the graph of the function and the auxiliary
line y=x. They did not know where to start from and were unable to reproduce
the teacher’s actions exactly because they hadn’t paid attention to the relation
between the iteration sequences and this activity of representing them graphically.
All they attended to was the image. They would explain to each other: ‘You
have an attractive point [they would omit ‘fixed’] if you get such a spiral little
line, or such stairs’.

This visual representation persisted for a long time in students’ understanding
of iteration, even though their understanding was becoming more and more
analytical. Iteration was understood by most of them as a kind of transformation
of a point of the graph of the function, so:

(x, f(x)) is transformed onto (f(x), ff(x)) which is transformed onto (ff(x),
fff(x)), etc.

Some students had not even identified the notion of fixed point as an object
per se, at least at the beginning. They would speak of ‘attractive’ and ‘repellent’
points. Each student passed through the period of conceiving of the fixed point
as the point of intersection of graphs of f and y=x. And again, this visual
representation would be retained in their already analytic concepts of fixed
point. For example, two students kept the name of fixed point for the
intersection, and the argument x such that f(x)=x was named ‘the x-coordinate
of the fixed point’. Even these students had trouble in isolating the notion of
fixed point from the context of iterations. They would say, at some moment,
that the fixed point is a point for which the sequence of iteration is constant.
[End of example]

It seems then that ‘learning by examples’ is a property of our minds that has
little in common with the pedagogical expectations expressed in the adage. An
example is always embedded in a rich situation that contains more elements,
data, information than just those directly related to the object exemplified. The
teacher cannot be sure that, from this sea, the students will fish only the bits
strictly relevant for the formation of the concept. It is hard, therefore, to
understand the teacher’s frustration, when, after having prepared the best of
examples, he or she finds that the students are still able to commit the most
unbelievable mistakes and errors. The method of paradigmatic examples is not
really a method of teaching. Rather, it is a way in which concepts are being
formed: the examples cannot be transmitted from the teacher’s mind to the
learner’s mind. The latter must construct or reconstruct examples that can be
regarded as paradigmatic in some more objective sense. The teacher can only
help the learner by organizing situations against which the consecutive tentative
forms of these examples can be tested, in which they can be revealed, and in
which a change can be discussed and negotiated, if necessary.

Examples are, in understanding abstract concepts, the indispensable prop
and the necessary obstacle. It is on the basis of examples that we make our first
guesses. When we start to probe our guesses, the fundamental role is slowly
taken over by the definitions.
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Figures of Speech in Understanding

We may start from the principle that we all take a natural pleasure in
learning easily; so since words stand for things, those words are most
pleasing that give us fresh knowledge. Now, strange words leave us in the
dark; and current words [with the things they stand for] we know already.
Accordingly, it is metaphor that is in the highest degree instructive and
pleasing. (Aristotle, 1932, p. 206)

Figures of Speech for Understanding and Figures of Speech for
Explaining

Books and articles that praise the role of figurative (and, in particular,
metaphorical) language in cognition are usually full of polemics with the
opponents of figurative speech in scientific communication. For example, Lakoff
and Johnson (1980), authors of the popular book Metaphors we live by, start by
quoting Thomas Hobbes the nominalist, for whom metaphors were like ignes
fatui, always ready to mislead the traveller at night, and John Locke who said
that metaphors serve ‘any design but that of naked truth’.

In fact there is no contradiction between the proponents and the opponents
of the metaphor. The two parties are only considering two different uses of
metaphor.

One is the spontaneous use of metaphor in a problem situation, where
something new (a new concept, a new relationship, a new method, a so far
unnoticed aspect) is being identified and no language is available yet to speak
about it. There is a search for words, names, comparisons in the intention to
understand—to ground the emerging ‘object’ in something. The knowledge about
the newly identified something is not ready yet. A metaphor always highlights
an aspect of a situation, and thus helps to identify something as something. We
observe this creative role of metaphor in the making of mathematical objects
both by students and mathematicians. One of the mathematicians interviewed
by Anna Sfard (1994) said: ‘To understand a new concept I must create a
metaphor. A personification. Or a spatial metaphor, Or a metaphor of structure….
There is, first and foremost, an element of personification in mathematical
concepts…. For example, yesterday, I thought about some coordinates. I told
myself: ‘this coordinate moves here and…it commands this one to do this and
that’ (Sfard, 1994).

Mathematical terms and expressions are indeed sometimes very powerful
metaphors. We tend to forget about their metaphorical origin and impact on
our understanding, as they already belong to the accepted lexicon. Pimm (1988)
draws our attention to this phenomenon:
 

To most people, the statement ‘the complex plane is a plane’ would
be a commonplace one… Yet this metaphoric naming and the above
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identification which underlies it has certain mathematical effects, as
can be seen by suggesting that ‘the complex line’ is an alternative
expression for the same set which stresses certain different features
and ignores others. Referring to C as ‘the complex plane’ highlights
the two-dimensional (ordered pair) representation of complex
numbers a+ib and encourages an approach to complex analysis by
means of two dimensional real analysis via ‘real and imaginary parts’.
The plane metaphor also encourages the seeing ‘a complex number
as a vector’…which offers an effective image for complex addition
and subtraction, but one less so for multiplication and division.
(Pimm, 1988)

 
The other use of metaphor is concerned with presentation or explanation of a
body of knowledge already in existence.

Simplifying things a little bit, one may say that, in the first case, the
metaphor serves understanding, and, in the second, that it serves explanation.
While explaining with the help of a metaphor may improve the understanding
of the person who explains (because of the above mentioned reasons), it
need not induce the intended understanding in the person to whom something
is being explained. This person may focus attention on the irrelevant parts
of the image provided by the metaphor or wish to see complete ‘isomorphism’
between the object and the metaphorical image and thus miss the point. (As,
for example, when taking too much to heart the metaphor of ‘complex plane’,
one might forget that complex numbers are primarily a field, and an
algebraically closed one).

Locke was very much against the use of figures of speech in communication.
He would say that they serve the purpose of covering the ignorance of the speaker
and confounding listeners rather than that of clarifying matters. Leibniz had a
more balanced view in this respect:
 

Philalethes: The way to prevent such confusion [caused by the polysemy
of words] is to ‘apply steadily the same name’ to a certain collection of
simple ideas ‘united in a determinate number and order… But this neither
accommodating men’s ease or vanity, or serving any design but that of
naked truth, which is not always the thing aimed at, such exactness, is
rather to be wished, than hoped for…the loose application of names, to
undetermined, variable, and [in blind thoughts—G.W.Leibniz] almost
no ideas, serves both to cover our ignorance, as well as to perplex and
confound others which counts as real learnedness and as a mark of
superiority in knowledge.

Theophilus: These language troubles also owe much to people’s
straining to be elegant and fine in their use of words. If it will help
them to express their thoughts in an attractive way they see no
objection to employing figures of speech in which words are diverted
slightly from their usual senses. The new sense may be narrower or
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wider than the usual one (this is called synecdoche); it may be a
transferred sense, where two things have had their names exchanged
because of some relation between the things, either a concomitance
(metonymy) or a similarity (metaphor); and then there is irony, which
replaces an expression by its opposite. This is what such changes are
called when they are noticed; but they are rarely noticed. Given this
indeterminacy in the use of language, a situation where we want some
kind of laws governing the signification of words…what is a judicious
person to do? If he is writing for ordinary readers, he will deprive
himself of the means for giving charm and emphasis to what he writes
if he abides strictly by fixed significations for the terms he uses. What
he must do—and this is enough—is to be careful not to let the variations
generate errors or fallacious reasoning. Thus ancients distinguished
the ‘exoteric’ or popular mode of exposition from the ‘esoteric’ one
which is suitable for those who are seriously concerned to discover
the truth; and that distinction is relevant here. If anyone wants to
write like a mathematician in metaphysics or moral philosophy there
is nothing to prevent him from rigorously doing so; some have
announced that they would do this, and have promised us
mathematical demonstrations outside mathematics, but it is extremely
seldom that anyone has succeeded. I believe that people are repelled
by the amount of trouble they would have to take for a tiny number
of readers: like the question of Persius, quis leget haec (‘Who will read
this?’) with its answer vel duo vel nemo (‘Either two people or no
one’) (Leibniz, 1765, BK II, Ch. xxix, sec. 12)

 
Bachelard criticized very much the use of familiar metaphors in scientific
explanations of the eighteenth-century physics. For him they functioned as
‘epistemological obstacles’ to the development of scientific thought by playing
the role of all-explanatory devices. Bachelard evokes the metaphor of ‘sponge’
which was supposed to explain both the properties of the air, and the properties
of the center in which electricity flows. ‘Obstacle verbal’ was Bachelard’s name
for the attitude of a scientist who satisfies himself with such explanations
(Bachelard, 1983).

Metonymies appear to be less controversial, maybe because they are less
consciously employed, less visible, and are most often used in oral
communication. Their importance in communication is paramount: they allow
for an economy in the use of words, if only the speaker and the listener are ‘in
tune’ on a subject. This is important in mathematical communication. The
metonymical use of mathematical symbols is well known: for example, the name
of a value of function, ‘f(x)’, for the function itself, the name of a representant
of a class of abstraction for the class of abstraction, e.g., 3/5 for {3/5, 6/10, 9/15,
etc.} (Bauersfeld and Zawadowski, ibidem). While a metaphor used by someone
can be a symptom of his or her act of identification of a new object, a metonymy
can be a symptom of an act of generalization: as when the metonymical shift of
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reference goes from a certain class of objects to a larger class of objects. We
shall see this on the example of the historical development of the concept of
function.

However, metonymies used by our students are not always signs of such acts
of generalization. On the contrary, they can be symptoms of certain restricted
ways of understanding, even obstacles to generalization. Here are two examples
of such a situation. The first comes from an experiment already mentioned
above, on iteration of functions (Sierpinska, 1989). The second is from a research
on undergraduate students’ difficulties with linear algebra (Sierpinska, 1992b).

Example: the value of a function at a point
A group of 16-year-old students had to solve the following problem: to find

functions (from R to R) that would have an attractive fixed point in the interval
(2,3) and a periodic trajectory 2, 3. This last condition means that, if f is the
function, then f(2)=3 and f(3)=2. In the students’ notes, instead of such
conventional inscriptions, the students wrote: ‘x(2)=3 x(3)=2’. Of course,
theoretically, the students might have denoted the unknown function by ‘x’.
However, their further behaviour suggested that ‘x’ stood for the argument of
function, as usual, and the inscription ‘x(2)=3’ was meant to say: ‘substitute 2
for x in the formula of the function; you should get 3’. The latter was the
expression they used for what is normally worded as: ‘the value of the function
in 2 is 3’. The inscription ‘x(2)=3’ simply better expressed their conception of
function as a ‘result of a calculation’. This conception of function is maybe a
little distant from the formal definition but it seems to be quite close to a more
‘constructivistic’ definition of function, as worded, for example, by Cauchy, in
his 1821 ‘Cours d’Analyse’:
 

We call functions of one or more variables such quantities that present
themselves, in calculations, as results of operations made on one or
more constant or variable quantities. (Cauchy, 1821 Cours d’Analyse
de l’Ecole Polytechnique, le Partie, Analyse Algébrique. De l’Imprimerie
Royale. 1821).

 
[End of example]

Example: metonymical use of variables in linear algebra
Metonymies are handy tools of direct communication, as we mentioned before.

Used in a written text addressed to someone who has not been there at the
moment of its creation, and is unaware of what the author might have been
focusing on while writing it, they sometimes look like nonsense, they feel like
jokes. One of my linear algebra students had this habit of writing his solutions
in such a metonymical way. He was using ad hoc notations, for the purposes of
the one problem he was solving at the time, regardless of all conventions. His
own conventions had very short life; he would switch from one to another within
one solution. He would use numbers as variables, but he would also use them as
codes. For example, ‘(5,5,5)’ would stand for an arbitrary vector whose all
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three coordinates are equal: here is what he wrote to show that the set of vectors
in the 3-dimensional real space whose all three coordinates are equal forms a
subspace of that space:

a=b=c IS A SUBSPACE
1° (0,0,0)
2° (5,5,5)

(5,5,5)
(10,10,10)

3° k(1,1,1)
k,k,k

Once he used the following inscription:

11 12 13
21 22 23

to denote an unknown 2×3 matrix: ‘12’ being the code of the entry in the first
row and second column. In explaining what is a symmetric matrix he wrote:

1 2 3
4 5 6
7 8 9

adding: ‘2 is the same as 4, 3 is the same as 7, 6 is the same as 8’.
Indeed, this metonymical style of writing in mathematics was not some kind of

deliberate excentricism on the part of this student. Rather, it was a result of an
obstacle that we might call ‘numerical reckoning’ (‘logistice numerosa’)—thus
alluding to a pre-Viète way of thinking about variables in algebra that is to be
distinguished from ‘reckoning by species’ (‘logistice speciosa’) developed by Viète
in his Introduction to the Analytic Art (Piaget and Garcia, 1989, p. 147). In
numerical reckoning, the basic element of thinking is the concrete, isolated number;
if it does not matter what number it is in a given situation, it can be denoted by a
letter or by a randomly chosen numeral, or any symbol for that matter. In the
reckoning by species, the basic elements of thinking are the species of numbers or
magnitudes, not their concrete representants. Numerical reckoning is satisfied
with showing a method on examples; it is not interested in the formulation of a
general theory, its goal is to efficiently solve certain concrete problems. Therefore
it does not need a system of notations that would be comprehensive, consistent
and generally applicable. Any ad hoc symbolic means would do to explain how to
solve a certain kind of question by example.[End of example]

Construction of a Metaphor As a Symptom of a Creative Act of
Understanding

There exists an opinion that the very possibility of learning something radically
new can be explained ‘only by assuming some operation which is very similar to
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metaphor (Petrie, 1979). ‘The metaphor’, says Petrie, ‘is one of the central tools
in overcoming the epistemological gap that exists between the old and the new
knowledge’. (The other tools he mentions are: analogies, models, ‘exemplars’,
i.e., exemplary paradigmatic solutions of problems). A radically new knowledge,
according to Petrie, is the kind of knowledge that cannot be attained just through
assimilation of new data into the existing mental structures and calls for an
accommodation of the latter.

Johnson (1980) agrees, in principle, with Petrie when he says,
 

metaphors generate novel structurings of our experience in a way not
fully anticipated by our available systems of concepts… The new
metaphor provides a basis for elaborating new concepts (or relations of
concepts), and its adequacy may be judged at least partially by how
well it ‘fits in with’ the concepts already articulated… Metaphors lead
us to experience the world in novel ways. By causing a reorganization
of our conceptual frameworks they institute new meaning. These
foundation acts of insight are tied to truth claims because they alter the
systems of fixed concepts with which we make truth claims… So
understood, metaphors may be seen as grounding the concepts that we
then use to speak determinately of as objects. The primary role of
metaphor is thus to establish those structures we later articulate by
means of fixed, determinate concepts (and systems of concepts).
(Johnson, 1980, p. 65)

 
Thus, by structuring, ordering our experience and making it ‘fit in with’ the
existing mental structures, a metaphor is a basis of understanding. An act of
understanding based on a new metaphor is a creative act of understanding insofar
as it ‘causes a reorganization of our conceptual frameworks’. Moreover, an act
of understanding based on a metaphor plays a crucial role in the development
of our thinking: it prepares the ground for the formation of a concept.

Sometimes the concept obtains a name that bears the traces of the metaphor
or metaphors that announced its coming into being. Our language is full of such
‘lexicalized’ or ‘conventional’ metaphors. This is also true for the mathematical
language. For example, expressions such as ‘convergent sequence’, ‘limit of a
function f(x) when x tends to a’ are remindful of the metaphors used by the
creators of Calculus and Analysis to describe the newly identified notions. Not
yet having explicited the concept of limit as a concept on its own right, Newton
used the term what today we call the derivative ‘the ultimate ratio of evanescent
increments’. He used to explain this notion with the help of the word ‘limit’,
used metaphorically, and the images of movement towards something, of
approaching something:
 

The ultimate ratios with which the quantities vanish are not, strictly so
speaking, the ratios of ultimate increments, but limits to which the ratios
of these ever decreasing quantities approach continually.
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Or, he would write,
 

Quantities, and the ratios of quantities, which in any finite time converge
continually to equality, and before the end of that time approach nearer
to each other than by any given difference, become ultimately equal.
(Newton, 1969)

 
All these words: ‘ultimate’, ‘converge’, ‘continually’, ‘approach’ provide our
minds with images on the basis of which we have the impression of understanding
what Newton is talking about.

Example: metaphors and metonymies in the historical genesis of the concept
of function

An interesting interplay between metaphors and metonymies can be found in
the historical development of the concept of function. Mathematicians,
astronomers and physicists occupied themselves with relationships between
variable magnitudes from times immemorial, but it is only by the nineteenth
century that the class of all such (well determined) relations was identified as a
definite mathematical object. Newton, whose ‘fluent quantities’ seem to be very
close to what today we would call continuous functions of time, never really
considered them in isolation from the rates of their changes, i.e., fluxions. Fluents
were the primitive functions of fluxions, which were, on their turn, the derivatives
of fluents (Juszkiewicz, 1976, p. 257).

‘Fluxio’ is the metaphor of the flowing waters of, for instance, a river. The
idea of the flow of time is based on its comparison to a river that flows. Newton
probably first used this image to describe how the time variable changes: it is
characterized by a ‘continuous flow’ with constant velocity—a steady ‘stream’.
Later, the name of ‘fluxion’ was extended to term the rates of change of all
kinds of quantities that, like time, are characterized by a continuous flow, and
the name of ‘time’ was given to all uniformly flowing quantities, i.e., such that
their fluxions can be represented as an unity.
 

I consider time as flowing or increasing by continual flux and other
quantities as increasing continually in time and from the fluxion of
time I give the name of fluxions to the velocities with which all other
quantities increase… I expose time by any quantity flowing uniformly
and represent its fluxion by an unity. (Newton, 1967, p. 17)

I shall, in what follows, have no regard to time, formally so
considered, but from quantities propounded which are of the same kind
shall suppose some one to increase with an equable flow: to this all the
others may be referred as though it were time, and so by analogy the
name of ‘time’ may not improperly be inferred upon it (ibidem, p. 73)

 
In the above, there are two metaphors followed by two metonymies. First, time
is metaphorically called a ‘fluent quantity’; this name is then metonymically
extended to denote any continually increasing quantity. On m the other hand,
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the velocity with which time is changing is metaphorically called ‘fluxion’, a
name which is then metonymically extended to denote the velocity of any
continually increasing quantity.

The terms of ‘fluent quantities’ and ‘fluxions’ were not adapted on the
continent (maybe because of their limited use: motion, its changes and rates of
change).

The term of ‘function’ was born in the geometrical context of analytic
investigation and description of curves. In his 1673 manuscript ‘Methodus
tangentium inversa, seu de functionibus’, Leibniz was concerned with two
mutually inverse problems: 1. for a curve, for which the relation between the
abscissas and the ordinates is given by an equation, to find its subtangent,
subnormal and other segments linked with a curve; 2. to find the relation between
the abscissa and the ordinate when a certain property of the subtangent,
subnormal, or some other segments linked with the curve is given. These segments
‘linked with the curve’ are called ‘lines fulfilling some function for the curve’
(Juszkiewicz, 1976, p. 159). Here, for the first time, the term ‘function’ appears
in a metaphorical use.

Twenty one years later, in 1694, in an article published by Le Journal des
Sçavans Leibniz used the term ‘functions’ to denote
 

all the line segments that are obtained by producing an infinity of
straight lines, corresponding to a fixed point and the points of the
curve, and they are: the abscissa AB or Aß, the ordinate BC or ßC,
the chord AC, the tangent CT or Cϑ, the normal CP or Cπ, the
subtangent BT or ßϑ, the subnormal BP or ßπ…and an infinity of
other, the construction of which is more complicated (Juszkiewicz,
1976, p. 159).

 
This is a sign of a metonymic abbreviation: lines fulfilling some ‘function’ for
the curve are, now, simply, ‘functions’. However, the sense in which the term
‘functions’ was used by Leibniz in this article, did not seem adequate: it diverted
the attention from what was most important in the analytical study of curves,
namely from the relations between ‘the line segments fulfilling some functions
for the curve’ and focused on these lines themselves. Thus, the point in the
discussion between Leibniz and his disciple Jean Bernoulli was not so much the
adequacy of the term ‘function’ but something much deeper: what is more
important in the study of curves, coordinates or relations between the coordinates,
objects or relations between objects. It became clear that the relations are exactly
what distinguishes one curve from the other, and that in classifying these relations
one obtains a classification of curves. Before that discovery, mathematicians
used the classification of Descartes: curves were divided into mechanical and
geometrical and the mechanical curves were excluded from mathematical study.
The new principle of classification allowed for the consideration of these curves,
as well (Leibniz called them ‘transcendental’, while the geometric curves of
Descartes were called ‘algebraic’).



Understanding in Mathematics

100

This shift of attention together with the conviction that only relations
expressible by analytic formulae are worthy of mathematical study had led
Bernoulli to the isolation of the concept of a ‘quantity in whatever manner
formed of indeterminates and constants’ which he denoted by ‘n’ (posito n esse
quantitatem quomodumque formatam ex indeterminatis et constantibus) (1694
in Acta Eruditorum see Cajori, 1929). The word ‘function’ did not appear in
this article. It turned up again three years later, in 1698, when, in a letter to
Leibniz, Bernoulli writes that he proposes to use the letters X and the Greek
letter x to denote the above mentioned quantities because then ‘it is at once
clear the function of what’ is X or x. In this context, the word ‘function’ is again
used metaphorically, in a way similar to that in which it was used for the first
time by Leibniz with respect to subtangents, subnormals etc. But now, the focus
is on the dependence of the object that fulfills the function on the objects for
which this function is fulfilled. For example, a person Y may fulfill the function
of chairman at a meeting of a body of people (just as the coordinates of the
points of a curve fulfill a function for the curve); but this function is a function
of this meeting of a group of people, i.e., this occupation or duty or purpose
depends on there being a meeting of a body of people; the function of chairman
is a function for a group of people. A function as duty or purpose is always a
function of and for something, depends on this something.

In further correspondence between Leibniz and Bernoulli, there occurs a
metonymical shift of reference and the word ‘function’ starts to be used as a
name of the analytic expression describing a relation of dependence of one
variable on other variables (and not as a name of the relation itself) (Juszkiewicz,
ibidem, p. 166).

The 1718 article of Jean Bernoulli, published in the Mémoires de l’Académie
des Sciences de Paris, contains an apparently official definition of the term
‘function’: a function of a variable quantity is a quantity in whatever manner
formed of this variable quantity and constants (Juszkiewicz, ibidem, p. 160).
This meaning of ‘function’ is, in principle, still preserved in Cauchy’s 1821
definition (quoted above).

Now, for the word ‘function’ to denote an arbitrary well-determined
correspondence between two variables as understood, for example, by Lejeune
Dirichlet in 1937 (‘if a variable y is so related to a variable x that whenever a
numerical value is assigned to x, there is a rule according to which a unique
value of y is determined, then y is said to be a function of the independent
variable x’, (Boyer, 1968, p. 600)), a backward shift of attention was necessary:
from the way of representing a relation to the relation itself; and—a
generalization: from relations expressible analytically to arbitrary relations.

Let me summarize below the ‘figurative history’ of the concept of function:
 

1673
Metaphor (giving a ‘new’ name to an ‘old’ object):
Object {abscissa, ordinate, subtangent, subnormal, etc.} → Name: ‘line
segments fulfilling a certain function for the curve’
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1694
Metonymy (shifting the use of a name to a different object):
Name: ‘function’ (as the role that abscissa, ordinate, etc. play for the curve)
® Object: {abscissa, ordinate, etc.}
—Shift of attention from objects to relations between objects.
—Conviction that only analytically expressible relations are worthy of
mathematical study.
—Identification of the concept of a quantity in whatever manner formed of
indeterminates and variables.
1698
Metaphor:
Object: a quantity (X) in whatever manner formed from indeterminates (x)
and constants ® Name: ‘the quantity X is a function of the variable x’.
1718–1821f
Bernoulli’s definition of ‘function of a variable quantity’:
Metonymy:
Name: ‘function’ [as a relation of dependence of one variable with respect
to another] ® Object: an analytic expression representing a relation between
variables.
Before 1837
Metonymy:
Name: ‘function’ [as an analytic expression] ® Object: the analytically
expressible relation between variable quantities.
1837
Metonymy:
Name: ‘function’ [as an analytically expressible relation of dependence
between variable quantities] ® Object: any well-defined correspondence
between variable quantities.

 
[End of example]

The Role of Activity in Understanding

Activity Versus Passiveness of the Mind in Understanding

It is almost tautological to say that understanding is an active rather than passive
experience if we want to speak of acts of understanding. An act of understanding
happens only in an attentive mind, who is willing to identify objects, to
discriminate between them, to perceive generality in the particular and the
particular in the general, to synthesize large domains of thought and experience.
Our minds are not being passively ‘imprinted with ideas of things without’.
Understanding does not ‘come into us to He there so orderly as to be found
upon occasion’ (Locke, 1960, BK II, ch. xi). It needs active construction to even
see what everybody seems to see in an effortless and natural way. It has been
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reported that persons blind from birth to whom the faculty of seeing has been
restored have great difficulty in discriminating even between a square and a
triangle.
 

One man having learned to name an egg, a potato, and a cube of sugar
when he saw them, could not do it when they were put in yellow light.
The lump of sugar was named when on the table but not when hung up
in the air with a thread. However, such people can gradually learn; if
sufficiently encouraged they may after some years develop a full visual
life and be able even to read. (Young, 1960, p. 63., quoted in Goldstein
and Goldstein, 1978, p. 17)

 
In their How we know? Martin and Inge Goldstein comment that,
 

seeing—the sense we think of as most directly putting us in touch with
facts—is learned rather than automatic. We see with our minds, not
with our eyes, and we are subject to whatever unconscious biases and
misconceptions are produced by the training that teaches us to see. We
are not arguing a case for disbelieving what we see. We have no choice,
really. However, being aware that perception is not passive observation
but rather a learned use of our intellectual faculties, however
unconsciously it is done, should alert us to the possibility that things
need not be what they seem, and that changes in our own thinking may
change what we see. (Goldstein and Goldstein, ibidem)

 
These last words bring us to the question of the influence of education and,
more generally, culture, on what we attend to, what, therefore, we understand,
and how we understand it. These questions will be dealt with in Chapter 5.

Acting Upon an Object in Order to Understand It

According to the psychologists representing the so-called ‘activity theory’,
understanding something requires acting upon it, transforming it, for example,
into a subjective representation. The understanding subject is the ‘agent’ whose
relation to the object is mediated by his own activity (Leont’ev, 1981; Davydov
and Radzikhovskii, 1985; Davydov; 1990; Bauersfeld, 1990). As a result of the
action of the agent on the object, a new object may come into being: the agent
would have produced something. In this approach to the role of activity in
understanding, the attention focuses on transformation and production of objects
(external or mental) as results of the activity of the understanding subject: it is
concerned with the changes of reality.

The definition of an act of understanding that was proposed in the previous
chapter might be seen as quite compatible with this view, if we consider that the
linking of the object of understanding with its basis is an activity that transforms
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the object. However, our definition is far from suggesting that an act of
understanding, a priori, has a voluntary aim to change something. In fact, a
better word to use would be ‘maps’, not ‘transforms’: in an act of understanding,
one object is mapped onto another. Neither would we say that, in an act of
understanding an object is being ‘produced’. Of course, some of our acts of
understanding do change (for us) the world we live in. We start to see the same
things in a completely different way. But normally, we don’t ‘plan’ it: we don’t
try to understand something in order to change it. We just try to understand.
Period.

On the other hand, when we speak not of understanding in general, but of
good or deep understanding, for example, in mathematics, then we think of the
possible activities that a student could engage in, indeed, what actions could he
or she perform on the object of understanding. We suggest that the student
transforms this object. For example, we suggest that a formal definition be
deformalized, that an informal statement be formalized, that a general statement
be specified, that an assumption be taken away from a theorem, to see if it
would still hold, etc. In fact, students tend to be very passive in their processes
of understanding, taking things as they are, solving problems as they are given,
often strictly following some model solution, never asking themselves questions
that are not already in the book. But mathematics has to be understood in an
active way because what we have physical access to are only symbols,
representations of various kind. It is necessary to scratch a little through them
to get to the concepts that are hidden behind.

But this is a different view on the function of the transformation of object in
understanding: we transform in order to better understand; an act of
understanding in itself is not meant to transform anything. Indeed, what happens
in a process of understanding, is that our object of understanding is not the
same from one act to another: however, we would not so much transform this
object as we would look at something different, a different aspect maybe, or we
would look from a different level. For example, we would reflect on our own
actions when dealing with our former object of understanding. In understanding
mathematics, whose generalizations form hierarchies such that what has been
an operation at one level becomes an object at a higher level, this kind of change
of object of understanding plays a crucial role.

In this we are closer to the approach of Piaget, for whom understanding is
built in a complex dialectic process between action and reflection upon action
or in a movement back and forth from an instrumental use of operations through
reflexive abstraction to a reflected abstraction for which the first abstraction
becomes an object of study.

The action can be a physical action on material objects or it can be a more
intellectual activity on symbols of abstract objects as it happens in mathematics
(e.g., when we apply a sequence of translations to a geometrical figure to check
whether it is congruent to another one, or when we solve a concrete system of
equations to find a set of points satisfying certain conditions). Let us consider
these two situations in turn.
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From a Physical Action to Understanding

The relation between successes in performing concrete physical actions and
understanding why these actions were successful was studied by Piaget in his
book Success and understanding (1978).

It may be worthwhile noting at this point that, although ‘understanding’
appears in the title of the above mentioned work, throughout the text Piaget
speaks of the relationships between ‘skill and knowledge’, ‘action and thought’,
‘doing and knowing’, ‘action and conceptualization’ (ibidem, pp. vii–viii),
‘practical success and notional comprehension’ (ibidem, p. 213) as if referring
to one and the same thing. This is somewhat disturbing, as, for us here,
‘knowledge’, ‘thought’, ‘understanding’, ‘conceptualization’ are far from being
synonymous. It also follows from the contexts in which the words
‘understanding’ or ‘comprehension’ are used that Piaget has high expectations
with regard to the ‘states of consciousness’ they refer to. Let us then keep in
mind that, for Piaget, understanding means conceptualization or conceptual
understanding, and understanding an action means ‘explicative’ and
‘implicative’ understanding, that is understanding that both explains why a
given action was successful and allows for implying whether a planned action
can or cannot be successful.

In Success and understanding Piaget was looking for the mechanisms by way
of which the ‘doing’ is transformed into the ‘knowing’, even though there is
admittedly a considerable time lag between the two. What he found is that this
transformation is done in three steps or stages: in the first, conceptualization
lags behind successful action; in the second, the two go hand in hand; in the
third, conceptualization overtakes action.

In the first stage, action has an autonomous and cognitive character; one
knows by doing. Hence a certain know-how is developed which is self-sufficient
for obtaining success within a certain range of activities. The high level of
practical skill at this stage contrasts with the low level of conceptualization
which concentrates on the external results of the action. For example, in Piaget’s
experiments, although the subjects were successful in constructing roofs (two
cards) or houses of four cards, in their explanations of why they succeeded,
they were not taking into account the role of inclinations, i.e., that the two
cards support each other in the roof structures or that one card props the
other in the figure T. Instead, when asked ‘How does it keep up?’, they would
say, for example, ‘Because it touches’, referring thereby to the result of their
action.

In the subsequent stages, conceptualization and action start to have
reciprocal effects on each other. The second stage is the period of transition,
where conceptualization and action go hand in hand with each other but are
undiscriminated by the subject. While conceptualization already supplies
action with its power of anticipation, this anticipation relates only to
immediate action—the conceptualization is immediately implemented in
action. Or we can say that the results of an action are always experimented
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in direct action; they are not inferred from assumed premisses as it will happen
in stage III.
 

…it is not because subjects at level IIA interpret the transmission of
movement by the passage of an impetus across the passive or mediating
[billiard] balls that they go on to organize their actions so as to tap this
impetus and to facilitate its circulation inside the balls (in the way that
an engineer familiar with the principles of electromagnetism constructs
instruments on the basis of Maxwell’s equations). What
conceptualization supplies to action is a reinforcement of its powers of
anticipation and the possibility, in a given situation, of devising a plan
for immediate implementation. In other words, its contribution is to
increase the power of co-ordination already immanent in action, and
this without the subject’s establishing the frontiers between his practice
(‘What must I do to succeed?’) and his conceptual system (‘Why do
things happen this way?’). Moreover, even in situations where the
problems are distinct and where the point is to understand rather than
to succeed, the subject who has become capable, thanks to his actions,
of structuring reality by operations, nevertheless remains unconscious
of his own cognitive structures for a long time: even if he applies them
for his personal use and even if he attributes them to objects and events
for the purpose of explaining them causally, he does not turn these
structures into themes of reflection until he reaches a much higher level
of abstraction. (Piaget, 1978, pp. 215–6)

 
The mental operations that are constructed in the process of reflexive
abstraction in stage II are not ‘representations’ of actions—they are still actions
because they produce new constructions—but they are ‘signifying’ actions and
not physical actions: the connections they rely on are of implicative and not
causal nature, i.e., they are connections between significations. This opens the
way to the conceptual understanding of the action which becomes a fact in
the third stage.

In the third stage conceptualization finally overtakes action. This phase
characterizes itself by the functioning of the ‘reflected abstraction’ for which
the product of the reflexive abstraction becomes itself the object of reflection
and conscious formulation. The subject focuses no more on the results of the
action but on its mechanisms; no more on the question: ‘What must I do to
succeed?’ but on the question ‘Why do things happen this way?’. Now, the
results of an action can be inferred from what the subject knows about its
mechanism; they need not be experimented in action. The subject can now
programme the whole action: action is guided by theory.

The question is, of course: how the search for reasons of the success of an
action can become autonomous to the point of dispensing with all actual
objects? (That it can—we know from the existence of, for example,
mathematics!). Piaget sees the answer to this question in, on the one hand, the
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necessary generalization that any explanation of the success normally requires,
and, on the other, the recursive character of the construction of operations
(ibidem, p. 222).

When, in stage III, understanding overpowers action, the subject’s attitude
towards the success changes: the immediate and concrete success doesn’t matter
that much anymore; the immediate result or goal of an action does not count.
Unlike action, understanding, in the sense of finding reasons, does not have a
‘result’. If understanding has a goal, it is that of (re)establishing an equilibrium.
In that, understanding is more like a free vector—it admits of a direction, but
not of an end point. But this direction can only be identified ex post factum,
Piaget claims, saying that this indeed resolves the age-old question of objectivity
of mathematics: whether it is ‘invented’ or ‘discovered’. The necessity of a new
and unforeseen construction can only be shown in retrospect by means of
deductive instruments developed at this new stage, not before or during their
elaboration. Thus,
 

mathematical creations are neither discoveries, because the entities thus
constructed did not exist beforehand, nor inventions because their
creator is not free to modify them at will—they are constructions with
the particular property of imposing themselves of necessity just as soon
as they are completed and closed on themselves, but never during their
elaboration. In respect of teleonomy they thus provide a typical example
of a direction without finalism, which is precisely the characteristic of
an equilibration, (ibidem, pp. 227–8)

From Instrument to Theme of Thought

By its reference to mathematics, the above quotation already makes a
transition to the question of relations between the more intellectual actions
on symbolic forms and understanding of these actions. This question is the
main subject of Piaget and Garcia’s book (1989). The three stages seem to
be present in both the psychogenesis of knowledge and the history of science:
Piaget labels them with prefixes ‘intra-’, ‘inter-’ and ‘trans-’ (for example:
the intrafigural, interfigural and transfigural stages in the development of
geometry; or the intraoperational, interoperational and transoperation stages
in the development of algebra). The first stage is interested only in particular
objects (e.g., geometrical figures or algebraic operations). The second looks
at relations between these particular objects. At this stage mental operations
reflecting these relations are constructed. The last stage ‘thematizes’ these
operations which have played only an instrumental role in the previous phase,
transforming them into objects of reflection. It is at this level that theories
come into being.

Examples abound in the history of mathematics of such thematizations or
shifts of attention from results of actions and effectiveness of techniques to the
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study of the ‘mechanisms’ of these actions and techniques. It is thanks to such
shifts that the general notions of function, group, category have been constructed.
It is the thematization of transformations in geometry that has led to what is
now well known as the ‘Erlangen Program’. Another example is provided by
the history of linear algebra between the nineteenth and the twentieth century,
the former having centered its efforts of techniques of solving systems of equations
and finding determinants, the latter developing a theory of linear operators in
which determinants are but a kind of invariants of matrix representations of
linear operators and a measure of existence of eigenvalues.

The main point of Piaget in both of the mentioned works is that no matter
how elaborate the ‘thematization’, it always has its roots in some more or less
concrete activity: any development starts with an action on objects, i.e., on
the ‘intra-’ level, goes through making connections between objects at the
‘inter-’ level, and, if it culminates with a perception of and reflection on a
whole structure at the ‘trans-’ level, it is only to consider it, at a further stage,
as a new ‘intra-’ level. None of these can be skipped, if a conceptual
understanding has to develop: shortcuts are possible in teaching, but not in
learning. And this is the ultimate advice that mathematics educators take from
Piaget when they pick up his idea of a dialectic process between the instrument
of action and object of reflection and develop in various forms and
argumentations (see ‘dialectique outil-objet’ of R.Douady (1986); ‘process-
object’ of E.Dubinsky (1992b), ‘operation-reification’ of A.Sfard (1992), etc.).
The necessity to make this point is urgent both with those teachers who allow
their students to reduce their learning to rote memorization of formulas and
the activity of ‘plugging-in’ numbers into them, as with those who, overly
concerned with ‘meaning’ and ‘understanding’, never let the students actually
instrumentally use certain mathematical methods and techniques for the
solution of some meaningful problems, but at once demand that they
conceptually understand why these methods and techniques work, i.e., they
want the students to understand the theory before they could even become
aware of the usefulness of its tools. The former never let their students get
onto the second and third levels or stages of knowing and thinking; the latter
point to their students the highest level while depriving them of the ladder
with which they would be able to climb there. As usual, the solution lies
somewhere in between.

The Question of Continuity of the Processes of
Understanding

In philosophy the question of continuity is posed with respect to human cognition
both in its psychogenesis and historical development. Such a question can also
be asked with respect to processes of understanding.

If continuity in time of a process of understanding means that small increases
in time always produce small changes in the ways of understanding, then
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processes of understanding are not continuous. Sudden ‘illuminations’ or sudden
changes in the way in which a situation is viewed, when aspects theretofore
unnoticed come to the foreground, are facts well documented in psychology
and in personal accounts of scientists. These are the moments of a radical change
in understanding.

But one can speak of a different kind of continuity, as it is done in philosophy,
in the sense that from one kind of cognition to another, or from one historical
epoch to another something is preserved, something remains essentially the same.
For example, for someone who believes that scientific knowledge is accumulated
through ages and nothing essential is rejected or refuted, the historical
development of knowledge will appear as a continuous process.

Piaget and Garcia, speaking of the psychogenesis of knowledge, and deriving
it from actions which are certainly different from thought, make an explicit
distinction between the ‘functional continuity’ or the stability of the regulatory
mechanisms of cognitive development and the ‘structural continuity’ or the
mathematical continuity in time of the results of these constructions. The results
can change in a leap fashion: ‘this change can include breaks, leaps, disequilibria,
and reequilibrations.’
 

We have tried throughout to provide support for the hypothesis,
formulated in the Introduction, that there exists a certain functional
continuity between the ‘natural’, prescientific and the scientific subject
(where the latter remains a ‘natural subject’ outside of her scientific
activity for as long as she does not defend a particular philosophical
epistemology). If such a functional continuity exists, we can conclude
that the two characteristics we attribute to all knowledge in the field
of sciences themselves are even more general than expected: the relative
absence of conscious knowledge of its own mechanism and the
continuously changing nature of the construction of knowledge. In
fact, as the epistemological analysis of scientific thinking finds itself
obliged to go back to its prerequisites, which are constituted by the
cognitive elaborations of prescientific levels, this recursive procedure
confronts us with increasingly unconscious structurings which are
increasingly dependent upon their prior history. (Piaget and Garcia,
ibidem, p. 266)

 
One can also speak of such ‘functional continuity’ or continuity of
mechanisms in processes of understanding, which, albeit distinct from
processes aiming at the acquisition of knowledge, cannot be separated from
them in that the two are complementary. At any level, a process of
understanding will necessarily imply the operations of identification,
discrimination, generalization and synthesis which will be linked by various
reasonings; however, these operations and reasonings will present various
degrees of sophistication at different levels, and the contents of the acts of
understanding will also vary considerably.
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All more recent analyses of the question of continuity in science, very
much discussed in polemics with neo-positivism, show that the question itself
is not well posed. Piaget and Garcia do this in the way described above after
having discussed in depth the differences in positions of Bachelard, Popper,
Kuhn, Feyerabend and Lakatos and defined their own stand with respect to
these authors. Let me mention only their reference to Bachelard, as his
epistemology plays a special role in the approach to understanding that is
presented in the present book. Bachelard takes the discontinualist stand and
stresses very strongly the qualitative differences between ‘common knowledge’
and scientific knowledge, considering the former, with its ‘familiar metaphors’
and ‘unquestioned opinions’ as creating obstacles to the latter. Also the
historic development of scientific knowledge characterizes itself by abrupt
breaks with previous findings and ways of thinking: the examples of ‘non-
theories’ such as the ‘non-Euclidean geometries’, the ‘non-Newtonian
mechanics’ etc., serve as a support for Bachelard’s thesis (Bachelard, 1970).
What changes from one phase to another of cognitive development is the
‘epistemic framework’. This framework is a product of both the cognitive
system and the socially accepted paradigm of science. Unquestioned and
partially unconscious, it becomes ‘an ideology which functions as an
epistemological obstacle that does not allow for any development outside
the accepted framework’ (ibidem). The rupture that is necessary to overcome
the obstacle, extend the framework and answer new scientific questions
accounts for the discontinualistic view of the history of science (or any
development of human cognition for that matter).

But again, this discontinuity is only in the products of the cognitive system;
the mechanisms of functioning of this system may remain fundamentally the
same.

Another explanation of the unnecessary controversy between continualism
and discontinualism is provided by Cackowski (1979). Considering the question
of continuity versus discontinuity between the extra-scientific cognition and
the scientific cognition, he presents a model of development of knowledge
that shows the illusions of the discontinualism. This model is based on two
points.

The first point is that (a) a complete formalization of scientific language is an
utopia, and therefore never can scientific knowledge be freed from the impact
of the ‘everyday thought’; (b) no matter how rigorous and axiomatic-deductive
our methods of validation are in a particular domain of sophisticated scientific
or theoretical thought, understanding (and, thereby, the search for reasons of
the choices of axioms, or of the important questions) ultimately relies on empiric-
inductive thinking (Piaget and Garcia, as well as Kuhn would add that
understanding relies also on the predominant world view, Weltanschauung or
ideology which have more in common with society and culture than with the
cognitive system itself; however, the social-cultural and the cognitive components
cannot be dissociated within a single epistemic framework); (c) the receptive-
constructive nature of human thought is capable of overcoming the following
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oppositions between the everyday and scientific thinking without necessarily
completely denying the role of the former in the coming into being of the latter:
objectivity—relativity, objectivity of structures—subjectivity of structures,
objectivity and interiorization of subjectivity—subjectivity and exteriorization
of subjectivity, realism—idealism, centripetal orientation of the ‘epistemological
vector’ (from thing to the mind)—centrifugal orientation of the vector (from
‘mind’ to objective embodiments of the mind which are the embodiments of
conceptual structures created by the mind), primordiality of description in relation
to explanation—primordiality of explanation in relation to description.

The second point starts with the assumption that the functioning of the human
thought is of an oscillating nature—between the empirical and the conceptual-
theoretical levels. If one looks only at one of these levels, there is an illusion of
discontinuity, where thought leaps to the other level. In fact, what happens is
that the gap on one level of thought is bridged by the thought of the other level:
 

…the illusions of discontinualism emerge from the fact that a certain
link in the development of the means of thought [e.g., language], methods
or the object of thought is by-passed. This must occur when one analyses
the process of the development of thought solely on the factographic
level (flat empiricism). We have already said that the factual processes
of thinking take place between the level of abstraction and the empiric-
objective level of the concrete. Examining the development of knowledge,
of cognition within the framework of either one of those two levels, we
shall not discover any continuity, because continuity realises itself along
a sine. When at one level of cognition there occurs a gap—there is
continuity at another level; thus, the gap is filled but at a different level.
This is the way in which we see the model of cognition, in which
discontinuity and continuity are dialectically linked… The real link which
precedes the emergence of abstract thought is to be found not at the
level of abstract thought, but at the level of observation, of a technical
or social-material experiment and activity. Also the real continuation
of abstract thought lies beyond the level of abstract thought and is to
be found in the sphere of an observational, experimental, technical or
material-social utilisation of an abstract thought. It is only through this
transition to the level of the concrete, live utilisation that abstract thought
confirms its informational contents, its existence. The situation is similar
with facts: they become real scientific facts insofar as they are
understood, while their understanding takes place through including
them into a theory. (Cackowski, 1979)

 
Cackowski concludes with some sad reflections on both the real practice in
contemporary science and the pedagogical practices. By refusing to ‘understand’
(which necessarily implies oscillating between different modes of thought) some
scientists in fact break with scientific thinking, either reducing their activity to a
thoughtless accumulation of facts or to an ‘equally thoughtless’ non-theoretical
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formalization. Teaching at the university level (but not only at this level) suffers
from the consequences of such attitudes, providing students with highly
sophisticated methodologies they don’t know what to do with because they
don’t know what are the questions that these powerful methodologies could
possibly answer. By ignoring the unity of cognition, says Cackowski, academic
teachers can create insurmountable obstacles to the development of the creative
scientific thought in general.

The postulate of unity of cognition should encompass both the dialectic of
the empiric-inductive and the theoretic-deductive knowledge and the dialectic
of the concepts used as instruments of action and as objects of thought, mentioned
at the end of the previous section.
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Chapter 4

Good Understanding

How is it that there are so many minds that are incapable of understanding
mathematics? Is there not something paradoxical in this? Here is a science
which appeals only to the fundamental principles of logic, to the principle
of contradiction, for instance, to what forms, so to speak, the skeleton of
our understanding, to what we could not be deprived of without ceasing
to think, and yet there are people who find it obscure, and actually they
are the majority. That they should be incapable of discovery we can
understand, but that they should fail to understand the demonstrations
expounded to them, that they should remain blind when they are shown a
light that seems to us to shine with a pure brilliance, it is this that is
altogether miraculous.

And yet one need have no great experience of examinations to know
that these blind people are by no means exceptional beings. We have here
a problem that is not easy of solution, but yet must engage the attention of
all who wish to devote themselves to education. (Henri Poincaré, 1952)

The Relativity of ‘Good Understanding’

When a mathematics teacher says ‘My students don’t understand [for example]
fractions’, this does not mean that these students have not experienced acts of
understanding related to fractions. It only means that they have not understood
them well by this teacher’s standards. The students may think they have
understood fractions in a way but, for the teacher, this way was not good enough.
Maybe it was incomplete or superficial, procedural or instrumental, restricted
to concrete examples, rather than general, relational or conceptual, reaching to
the very essence of the notion, etc.

If a mental experience of connecting an object X with an object Y is at all
considered by the understanding subject as an act of understanding the object
X, then, subjectively, the object of understanding has been well understood: Y
has to ‘fit in with’ X. If, on the other hand, Y is not considered as a sufficient
basis for understanding X then the subject would say: ‘I don’t understand X.’
(Note that the subject would say this also in the case when he or she cannot
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match any object Y with the object X that he or she intends to understand. But
this may mean also that the subject was trying various objects Y and none
seemed to fit.)

The situation changes dramatically if it is not the subject himself or herself
but someone else who looks at an understanding. Then we have to do with a
normative point of view, which is common especially in the teaching and learning
situations, at school, with its curricula, textbooks and examinations. Here, some
ways of understanding are higher valued than others.

Note that I am saying ‘normative’ and not ‘objective point of view’. Can we
speak of an objectively good or correct understanding of something?

Not in an absolute sense, maybe. But some evaluations can be more objective
than others. For example, if we speak of understanding a concept belonging to
a certain mathematical theory by a student who is aware that he or she is studying
a theory and not revelations about the nature of the world, and who is also
(hopefully) aware of the basic notions and assumptions of the theory, and the
student’s way of understanding this concept stands in contradiction with a result
of the theory, then we might rightly judge that this student’s understanding of
the concept is wrong. This judgment, albeit relative to the theory in question,
depends only on the logic of the theory and not on, for example, the mood or
the system of values of the judging person. This is why it is ‘objective’, even if
this objectivity is only local.

This does not mean that it would be easy to produce such an objective
judgment: how would one practically check that a person’s understanding is
not contradictory with any statement of the theory? There may be an infinity of
them. It is much simpler to prove that a student’s understanding is not perfect:
one contradiction would suffice. This is why the mathematics educational
literature is full of stories of students’ ‘errors’, ‘lack of understanding’,
‘misconceptions’, ‘misunderstandings’, etc. Accounts of good understanding are
rare, and those that exist are often poorly justified.

When it comes to understanding not a particular concept of a theory or a
particular method but the theory as a whole, when, for example, one asks the
question ‘what is the point of this theory?’, then the evaluation must be more
subjective. Here the problem is not so much with the meanings as with the
significance, and criteria of significance are not a matter of just the logic. The
judgment depends on one’s philosophical attitudes towards scientific
knowledge, views on the raison d’être of the theorizing thought, on the goals
of learning mathematics, on one’s theory of intellectual development, etc. The
judgment of a person’s way of understanding will be relative to cultural norms,
which are not justified by reference to some logical system but by an appeal to
traditional values.

Let me illustrate these problems of relativity with the story of a student having
trouble in understanding linear algebra (Sierpinska, 1992b). We shall see here
the clash between the subjective feeling of understanding or not understanding
and what is considered to be good understanding by teachers. There will be two
aspects of this clash: one in which the student does not feel he has understood,
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but his understanding may be considered as just fine by the teacher, and another,
where the student thinks he understood but his understanding is inconsistent
with the theory.

Example: Raf’s problems with understanding linear algebra
Raf (fictitious name) is an undergraduate student, a mathematics major

who has successfully completed his first-year courses. He passed the two
linear algebra courses with an A and a B but he does not think he understood
linear algebra well enough. In an interview a week after the final
examinations, he kept comparing Linear Algebra with Calculus which he
felt he understood a lot better. There were many reasons for which he thought
‘Linear’ was more difficult. One of them was that it was hard to see the
point of linear algebra, while, for ‘Cal’, it seemed to be quite obvious. Why
was everybody repeating that linear algebra is so important? He asked his
teachers about it and what he heard was often: ‘if you continue in
mathematics, you will see why it is so important.’ Some people added that
linear algebra is useful in many other domains of mathematics as well as in
applications. Raf himself said that ‘I can see that if you are using computers
and if you have to do, like, applied mathematics, then of course I can see
where it comes in handy.’ He also said that he finally is starting to understand
that linear algebra, ‘basically, it’s a new form…a new way of communicating
mathematics’. But he complained about not being told that by the teachers
right away, as well as about vectors and matrices, ‘how important they are
in all other fields, for example, in statistics,…’ However, he was not happy
with these explanations of the importance of linear algebra. The interesting
thing was that, when he was arguing for the importance of Calculus, he
wouldn’t use much stronger arguments—just the applicability of Calculus in
engineering. The arguments why Calculus was easier were more convincing:
‘In Cal you can visualize a lot more.’ In fact, the Calculus course was at a
much lower level of synthesis and abstraction than the Linear Algebra course.
The students’ tasks were mainly to calculate areas, volumes. They didn’t
have to ‘show proofs’, like in Linear Algebra. Therefore, there is something
else that Raf is not understanding about linear algebra, not just why it is so
important.

In the citation below ‘I’ stands for ‘interviewer’, ‘…’ mark the suspension of
voice; ‘{…}’ marks an omission of a part of the protocol.
 

Raf: …it’s maybe that in Cal you can visualize a lot more. But in linear…
It’s not that I don’t like linear, it’s that I don’t understand linear.
You know, I’ve like had two courses now and I passed them both
but it’s not something that I can say that I understand, you know, I
know how to do some problems, I know how to do inner product
space. I liked that part. But there are some of the problems… Until
now I still haven’t had that feeling where I completely understand
what linear algebra is all about… Like, I don’t see the point of it.
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{…} Everybody keeps saying that linear is so important, it’s so
important. I still haven’t seen that yet. I still don’t understand linear.
You know, I can see things. I could now understand more what a
vector space is. But last semester I was thinking what do they mean
by a vector space… What’s so different about that space than any
other space, you know?

I: And what’s so different about it?
Raf: Oh, it’s just the axioms that you have to use to remain in the vector

space… That’s what I have come down to realize. It’s just a different
way of dealing with vectors, in particular, and matrices, in different
axioms, eight of them, about addition and multiplication, whatever…
And if they follow these eight rules you are in a vector space. The
same about subspaces. They have to be closed under addition and
scalar multiplication and it’s in the subspace and that’s what I see of
it. But the general idea {…} why linear is so important… Maybe if
teachers explained to students right away what was the importance
of linear, you know, the underlying importance of it, maybe we would
have an easier understanding of it. Like always when we talk about it
we find linear is very abstract, you know. {…} Like, I understand vectors
{…} but what I don’t understand is their point… Like, I don’t
understand the importance of T-invariant subspaces because I don’t
understand them. I have a little understanding of that but it’s not very
strong. You know what I find is difficult {…} sometimes teachers {…}
would go to show us things that are not so difficult but just a little bit
too far from us….

 
The problem of Raf and many other students in his class was that, while they
were still at the inter-level of algebraic thinking (in Piaget and Garcia’s
terminology), the whole course was conceived in terms of the trans-level: it
contained strong synthesizing results such as the Cayley-Hamilton theorem, the
Primary Decomposition Theorem, the Jordan canonical form of linear operators
and matrices. The main objects of study were not operations on vectors in
particular vector spaces but operations on whole vector spaces, linear operators,
classes of vector spaces, classes of subspaces such as T-invariant subspaces,
relating the subspace with a linear operator on the space. In order to understand
what is the point of introducing these concepts, one must have a kind of bird’s
eye view on the whole problématique of linear algebra and one must be at the
trans-level of algebraic thinking.

Raf, and many other students, had a very hard time understanding the
concept of T-invariance. In the interview, when we spoke about it, Raf’s
understanding appeared as a real mess. Asked to explain what is a T-invariant
subspace, he said: ‘One that maps onto itself (1), which seems close (except
for ‘onto’ instead of ‘into’, and there is no mention of the operator). It turns
out, however, that he thinks not so much of subspaces as of vectors being
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invariant. A vector is invariant if its multiples remain in the subspace: ‘any
multiples of those vectors will be T-in variant, will still be in the subspace’ (2).
He also writes: ‘v � W, kv � W’ (3). This sounds as if all vectors in any subspace
would be T-in variant, as subspaces are closed under scalar multiplication,
anyway. It looks independent of the operator, also. The operator does play
some role, however, in Raf ‘s understanding of T-invariance. Asked to write
symbolically what he said in (1), he puts: ‘T(kv) =kT(v) � W’ (4). This now
looks as if any vector is T-invariant under any linear operator T. But maybe
Raf wanted to write rather something like ‘T(v) =kv’ which looks more like a
definition of an eigenvector. Indeed, Raf somehow associated T-invariance
with eigenvectors or vectors that are mapped onto multiples of themselves
(which is not so stupid, after all). He said, later, some time after I explained to
him that a vector that maps onto a multiple of itself is usually called eigenvector,
that he learned it that way from some book: ‘When I looked at it [T-invariance]
in another book, the way they were describing it, they were using eigenspace,
and the eigenvectors, and so that’s where I got these ideas… You know, always
k times v…when v is in W then kv is in W’. He repeats here the same kind of
expressions he already used in (3), and (2), but maybe he thinks of kv as being
the image of v under T.

While T-invariance is defined as a property of subspaces, Raf used to
think of it as a property of vectors, which can be a symptom of his being at
the inter-level of algebraic thinking and not yet at the trans-level. But, as he
said himself, he used to live under the assumption that he understood T-
invariance correctly.
 

Raf: {…} you think you understand and you ask and you are corrected and
it turns out that you understood it the wrong way. And I’d go around
under the assumption that I understood it the right way.
{…}

Raf: {…} the teacher doesn’t notice that the students are having a problem
because the students are not speaking up. It’s not a fault of either it’s
just… The concepts are sometimes… You are learning something, or
you are supposed to be learning something… I should say I… I learn
something but it turns out that I am learning it completely wrong. You
know? But it works!

I: For a while.
Raf: For a while and when you get to a problem, and this doesn’t work, and

then you have to go back. And in linear that seems to happen a lot
more ‘cause in Cal you know right away if what you are doing is wrong
or right.

 
It is true that in linear algebra courses, especially if they are done in the chalk-
and-talk style, with little conversation with students, the students’ understanding
is not probed enough. Most of the questions and problems are straightforward
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exercises (find the matrix representations, find eigenvalues, diagonalize, etc.) or
proofs. Neither put into question the students’ understanding. In exercises, they
can get a correct answer by blindly applying a method shown in a model solution.
The proofs do not probe the students’ knowledge, either, because many students
don’t even know how to start doing a proof, so they do not invest any previous
knowledge into such an exercise; therefore, when they read the proof written by
the textbook’s author or teacher—this proof does not contradict any of their
assumptions. [End of example]

Various Approaches to Research on Understanding in
Mathematics Education

In spite of all the theoretical problems that one may have in defining ‘good
understanding’ in mathematics, the question cannot be escaped: it is important,
both for the teachers and the students. It is so important that, in mathematics
education, ‘to understand’ often means ‘to understand well’, and in many theories
of understanding the focus is only on different levels of ‘goodness’ of
understanding, or kinds of understanding, some of which are better that other.
Some researchers endeavour to uncover the mechanisms of thought that lead to
good understanding; some elaborate on mental activities that enhance
understanding, etc.

Generally speaking, one could distinguish three main approaches to the
question of understanding in mathematics education. One of these approaches
focuses on developing teaching materials that would help the students to
understand better. Another concentrates on diagnosing the understanding in
students. A third one is interested in the more theoretical issue of building models
of understanding. Some of these models are more prescriptive (what are the
mental and other activities that have to be performed in order to understand);
other are rather descriptive (what is it that people do in order to understand; or
how people understand mathematics or particular mathematical topics). This
does not mean that any researcher would fit strictly into one of these categories
and not in another. Larger research projects normally envisage all three of these
preoccupations. It is only particular publications that might fit into a single
category.

In mathematics education there is quite a number of publications that explicitly
deal with understanding. Some of them are referred to in this book. I shall not
undertake the task of classifying them into the three approaches. Maybe I can
leave it to the reader. For example, where would you put ‘Children’s
understanding of mathematics: 11–16’ edited by K.Hart (1981)?

Let me refer to some Polish authors, less known to the non-Polish speaking
audience. For example, Z.Dyrszlag, who has worked on understanding quite
intensively in the 1970s, under the supervision of A.Z.Krygowska. He proposed,
in his 1972 paper, to assess a student’s level of understanding on the basis of
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well-chosen questions and problems that the student was able to answer and
solve. (Such was also the approach used in Hart’s book). In Dyrszlag’s further
papers (1978, 1984), there is a shift from just diagnosis to ‘control’, the latter
meaning not only evaluation but monitoring in the aim of improvement. Control
requires a vision of a certain ideal state and Dyrszlag went into some more
theoretical considerations, distinguishing, for example, between a descriptive
(static) understanding and an operative (dynamic) understanding. He also
proposed to determine a person’s understanding on the basis of a set of abilities.
These ‘abilities’ were not content specific: they were meant to be applicable to
processes of understanding in mathematics in general. However, it can be seen
that Dyrszlag had in mind the more advanced formal and rather pure than
applied mathematics. This attitude towards mathematics was characteristic of
Krygowska and her school. Dyrszlag enumerated altogether sixty-three abilities
grouped in twelve blocks that would account for a good understanding. Related,
for example, to understanding definitions, there are abilities such as: the ability
to find errors in an incorrectly formulated definition; to give examples and non-
examples of the defined concept; to produce counter-examples in order to prove
that an assumption is essential; to explore limit cases, to write a definition in
two different symbolic conventions, etc. With respect to solving problems
Dyrszlag speaks of the ability to ‘solve inverse problems’.

This ability seems particularly interesting. Concerned with the Piagetian idea
of invertibility of mental operations and the concrete operational stage, we
recommend that the primary-school child be taught addition of a number together
with subtraction of one as two mutually inverse operations. The same with
multiplication and division. But we somehow forget about this useful principle
when it comes to teaching mathematics at the university. For example, the
standard question in the linear algebra courses is: given a linear operator, find
its characteristic polynomial. Why not ask the question: given a polynomial,
find a linear operator for which this polynomial is the characteristic polynomial;
how many different (in what sense?) linear operators can you find? How many
non-similar matrices would have a given polynomial as their characteristic
polynomial? What if a minimum polynomial was also given? An investigation
into such questions has led some (the investigation was optional) of my
undergraduate linear algebra students to a better understanding of the canonical
forms of linear operators and matrices.

Another Polish didactician, M.Klakla, worked on mathematical
understanding within a similar framework, but he interested himself with
specific mathematical topics, for example, with understanding quantifiers in
mathematical logic (Klakla et al., 1992). The first step of the research consisted
in a detailed analysis of the teaching material both from the logical
mathematical and the didactical points of view. This analysis led to setting up
a list of ‘aspects of understanding logical quantifiers’. In a second step, test
questions were designed such that, to answer them, the student had to be
aware of each and all of these aspects. An analysis of the students’ responses
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allowed them to order the targeted aspects with respect to their difficulty (rate
of failure). In the case of quantifiers, it was found, among others, that the
most difficult thing seems to be concluding from false general statements to
existential statements and their negation, as well as from true existential
statements to general statements or their negation. Klakla’s approach is perhaps
a little less ‘pragmatic’ than that of Dyrszlag in the sense that it focuses rather
on the diagnosis than on monitoring students in a teaching process.

Models of Understanding

As we have seen, researchers have different goals in mind as they approach the
question of understanding in mathematics. Some of these goals are more
pragmatic (to improve understanding), some are more diagnostic (to describe
how students understand), some others are more explicitly theoretical or
methodological. But whatever the primary goal, some theory of understanding
is always in the background, whether explicitly laid out or not.

There are at least four kinds of such theories or models. One kind are those
that are centered on a hierarchy of levels of understanding. The Van Hiele
model of understanding in geometry belongs here (Van Hiele, 1958;
Freudenthal, 1973, p. 125; Hoffer, 1983; Guttiérez et al., 1991). There are
other examples, referring to other conceptual domains (Bergeron and
Herscovics, 1982, elaborate on levels of understanding functions; Herscovics
and Bergeron, 1989, propose a three-tiered model of early understanding of
natural numbers; Nantais and Herscovics, 1989, study the difficulties of early
multiplication; Peled, 1991, concerns himself with integers). There are general
models not referring to a particular mathematical concept, like, for example,
the Pirie and Kieren ‘recursive model of understanding’ (1989).

Other kinds of theories of understanding are those whose main idea is that of
an evolving ‘mental model’, ‘conceptual model’, ‘cognitive structure’, and the
like. Greeno does not explicitly speak of a ‘model of understanding’—he is
interested in cognition in general—but in his conception of knowing,
understanding (as well as reasoning) is based on mental models, so he would
fall into this category. Lesh et al. (1983) are speaking of ‘conceptual models’.
This idea was used and developed by other researchers as well (e.g., Arzarello,
1989). ‘Cognitive structure’ is, of course, a Piagetian term and several authors
do refer to him explicitly in constructing their models of understanding. For
example, Dubinsky and Le win (1986), propose what they call ‘genetic
decompositions’ of mathematical concepts to describe the development of
cognitive structures in relation with the learning of these concepts. These ‘genetic
decompositions’, for a particular mathematical concept, the authors say, ‘map
the way in which students empirically formulate their understandings for the
first time’, and they ‘generate an account of the arrangements of component
concepts and cognitive connections prerequisite to the acquisition of these
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concepts’. Dubinsky and Lewin are aware that their model does not reach to the
act of understanding itself, and,
 

seems only able to explicate all the prerequisite structures, both
necessary and sufficient, for the cognitive act to occur. It can provide
the readiness, but the act itself remains inaccessible and idiosyncratic,
dependent on the particular way in which a given subject notices and
organizes his/her experience. It would seem one never has direct access
to cognitive processes…but, at best, only to what an individual can
articulate or demonstrate at the moment of insight itself. Precisely
what occurs at that moment seems as inaccessible as it is essential.
(Dubinsky and Lewin, 1986)

 
A third kind of model views the process of understanding as a dialectic game
between two ways of grasping the object of understanding. The dialectic couple
can be composed of the concept considered as a tool in solving problems and
this same concept viewed as an object of study, analysis, theoretic development:
the dialectic of instrument and thematization. For example, R.K. Skemp’s
opposition between the instrumental and relational understanding, R.Douady’s
dialectique outil-objet, and A.Sfard’s operational versus structural understanding
in algebra seem to belong to this trend.

The fourth kind could be called the historico-empirical approach. Here,
attention revolves around obstacles to understanding encountered both in the
history of the development of mathematics and in today’s students.

The Historico-empirical Approach to Understanding in Mathematics

This approach is close to that taken by Piaget and Garcia in their Psychogenesis
and the history of science. However, there are some subtle differences which
stem from the different perspectives of epistemology and education. What is
relevant to epistemology are the ‘mechanisms of development’, stages, trends,
laws (such as the law of equilibration of cognitive structures, and the functioning
of reflexive and reflected abstraction). For Piaget and Garcia, the essential
problem is,
 

…how to characterize the important stages in the evolution of a concept
or a structure or even of the general perspective concerning a particular
discipline, irrespective of accelerations and regressions, the impact of
precursors or ‘epistemological gaps’… The central problem, in fact,
is…that of the existence of the stages themselves, and particularly that
of explaining their sequence, (ibidem, p. 7)

 
But, from the point of view of mathematics education, what is interesting are
exactly these ‘accelerations and regressions’ and ‘epistemological gaps’, as well
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as ‘epistemological obstacles’ and difficulties because it is assumed that to learn
is to overcome a difficulty. That an equilibrium has to be finally attained—this
is taken as a banality; the problem is that without first destabilizing the student’s
cognitive structures no process of equilibration will ever occur, i.e., no learning
of something radically new will ever occur. The construction of meaning seems
to be determined not by the stages—at least not only by the positive stages of a
move towards a change but also by the negative impact of various norms and
beliefs and ways of thinking that constitute obstacles to this change. It is thus
interesting, for a mathematics educator, that, in the early period of the history
of Calculus, mathematicians had some difficulty in discriminating between what
we now call the convergent and the divergent series and that Leibniz could
argue that the sum of the infinite series 1-1+1-1+…can be considered as 1/2. It
is also quite revealing that Cauchy thought that the limit of a convergent sequence
of continuous functions should be a continuous function, and that the concept
of uniform convergence was invented to amend the error. The study of the
contexts and mental frameworks in which such understandings appeared and
were overcome can help both in identifying today’s students’ difficulties, and in
finding ways of dealing with them.

Here we come across another difference between the epistemological and the
educational perspective. Epistemology may stop after having defined the ‘stages
and mechanisms of development’ or even after having identified the obstacles to
changes of modes of thinking. For a mathematics educator, this is only a starting
point. The central problem of education is not so much the description and
categorization of the processes of development of knowledge as the intervention
into these processes.

Also, at this hour and date, we are much less sure about such concepts as
‘development’ or ‘progress’ of knowledge. Epistemological obstacles are not
obstacles to the ‘right’ or ‘correct’ understanding; they are obstacles to some
change in the frame of mind. While we would accept to speak of levels of
complexity of thought, and certainly the trans-level involves more complexity
than the inter-level, we feel much more reluctant to judge a system of values
and categories of thought that go with the former as more ‘progressive’ than
the one that goes with the latter. We have to prepare our students for a lifetime
of changes, adjustments of ways of thinking and understanding: if there is
anything we have the obligation to prepare students for it is a readiness for a
constant revision of these.

The need of ‘reorganizations’, over which Piaget and Garcia pass rather
quickly in their work, is indeed one of the most serious problems of education.
In teaching we do not follow the students’ ‘natural development’ but rather
we precede it, trying, of course, as far as possible, to find ourselves within our
students’ ‘zones of proximal development’. But we cannot just tell the students
to ‘now reorganize’ their previous understandings, we cannot tell them what
to change and how to make shifts in focus or generality, because we would
have to do this in terms of a knowledge they have not acquired yet. So we
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must introduce the students into new problem situations and expect all kinds
of difficulties, misunderstandings and obstacles to emerge and it is our main
task as teachers to help the students in overcoming these, in becoming aware
of the differences; then the students will perhaps be able to make the necessary
reorganizations.

The use that educational research makes of historico-critical analyses, such
as those of Piaget and Garcia, is much more content-specific and much more
instrumental. For mathematics education, general developmental theories are
only a means to elaborate on and design the development of particular
mathematical concepts and processes. For epistemology, this hierarchy is reversed:
general theories are the very goal of its research and the study of particular
processes is but a means to attain this goal.

The fundamental assumption that underlies the historico-empirical approach
is not that of a parallelism in the contents between the historic and genetic
developments of scientific understanding. What is considered as responsible for
the similarities that we find between our students’ understandings and the
historical understandings, is not the supposed fact that the ‘philogenesis
recapitulates ontogenesis’ but, on the one hand, a certain commonality of
mechanisms of these developments (Piaget and Garcia, ibidem, p. 28), and, on
the other, the preservation, in linguistic tradition and the metaphorical use of
words, of the past senses (Skarga, 1989).

According to Piaget and Garcia, one of the mechanisms of knowledge
development is the ‘sequentially’ in its construction. ‘Sequentially’ means that
‘each stage is at once the result of possibilities opened up by the preceding
stage and a necessary condition for the following one (ibidem, p. 2). As every
next stage starts with a reorganization, at another level, of ways of
understanding constructed at the previous stage, the understandings of the
early stages become integrated into those of the highest levels. Therefore, the
meanings from the early stages are not lost, they are implicated in future
understandings, and thus, also, in their history. The second mechanism is one
that ‘leads from intra-object (object-analysis) to inter-object (analyzing relations
or transformations) to trans-object (building of structures) levels of analysis
(ibidem), which is common to both the individual and the historical
development.

Another source of the kinship between students’ understandings and those
encountered in the history of science and mathematics is found in the bifurcation
of ways in which words that have once played the role of fundamental
categories of thought change their meaning. One branch of this bifurcation
can be called ‘rationalization’ as when a word or expression becomes a scientific
term, included in a theory. Another branch can be called ‘metaphorization’:
the word acquires a metaphorical meaning or the value of a symbol and lives
in the vernacular (Skarga, ibidem, p. 135). For example, the notion of mass, in
physics, has passed from the ordinary meaning of something big or heavy
through the Newtonian meaning relating it to force and acceleration, through
the mass from relativity theory and to the mass from Dirac’s theory. Bachelard
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describes these stages as stages of rationality: the classical, the relativistic, the
dialectic (Bachelard, 1970). But, in the vernacular, we still refer to a body of
matter, a ‘shapeless mass’ or a ‘sticky mass’ of something, we also speak of a
‘mass of people’… The same could be said of such categories as number, infinity,
cause or chance and probability. Rationalization and metaphorizations are
processes that go in different directions. While rationalization breaks linguistic
traditions and ontologies that they carry, metaphorization preserves them in
ways that are not quite literal, but still bear some of the old emotions and
values. Skarga writes,
 

This leap into metaphor is not a break with experience, although it
could be a result of distanciation from the literal meanings thanks to
the verification of experience by scientific methods. It consists in a
fixation of very strong primary experiences, together with associations
that they awake, filled with emotions and values and a rich tissue of
imagery… There exist experiences so strong that time cannot destroy
them. They become sources of whole theories such as [for example],
the theory of elements, and when the theory is abandoned, they express
themselves in a network of metaphors, and it is exactly this network
that has the power of survival not as a remembrance long forgotten
and put aside but as a live word… Language is a real treasure-house of
thoughts and images of which we are the heirs… (Skarga, 1989, pp.
136–7)

‘Good Understanding’ in the Historico-empirical Approach: Significant
Acts of Understanding

Our definitions of an act and process of understanding did not, a priori, presume
external evaluation. An act or process of understanding had to be an act or
process of understanding for the understanding subject. In speaking of the
‘conditions of understanding’ we had in mind those conditions under which the
understanding subject is able to experience an act that feels like an act of
understanding. However, the more normative point of view cannot be avoided,
and we shall have to tackle the question of good understanding, even though we
know that any definition of good understanding must be relative to some set of
norms, whether philosophical or logical.

Considering a single act of understanding of an object X we can evaluate it
according to whether the basis of understanding Y is conforming to some
accepted or expected way of understanding the object X. We can use the criteria
of logical consistency within a theory, or criteria dictated by a certain system
of beliefs (about the nature of mathematics, for example, or about the goals of
learning mathematics). We can also evaluate it by reference to the subject’s
internal cognitive system and system of beliefs and use the criterion of internal
consistency.
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We can speak of the significance of an act of understanding, and not only of
the internal or external consistency of its basis. However, in this case we would
have to take into account not an isolated act of understanding, but this act as
involved in the network of a process of understanding. Also, we would have to
have an idea of what we aim at: a vision of an ‘ideal’ way of understanding of
the object in question. Then we could judge whether the subject is ‘going in the
right direction’, whether a given act of understanding brings him or her closer
to that Ideal’ vision.

With such a vision in mind, some acts can be considered as more significant
or important than others. But how do we judge that one act of understanding is
more significant than another? This is where the historical study comes in handy.
If we know what were the major breakthroughs in the history (or pre-history)
of a theory; what questions triggered sudden new developments; what were the
understandings that caused stagnation, then we are able to identify those acts of
understanding that are really important.

But in the evaluation of understanding, the developmental stage of the child
or student is an important factor. Although the early understandings are
implicated in the ‘grown-up’ understandings, they may not be transparent, and
the history of mathematics is the history of grown-up mathematics. Therefore,
historical analyses have to be done in interaction with empirical studies of how
mathematical concepts develop in children. Thus, an act of understanding can
be judged significant, if it marks a transfer to a different level of thinking, for
example, from the intra- to the inter- level, or from thinking in complexes to
conceptual thinking, if we wish to work within the framework of Vygotskian
psychology.

In general, we propose to judge as more important than any other those acts
of understanding that consist in overcoming an obstacle, whether developmental,
or epistemological—related to the mature scientific knowledge.

Let us take a simple example. When the notion of power zero is introduced
by decreeing that a0=1some students will simply add this information to the
mathematical rules they remember, without giving much thought to it. Others
will accept it as a useful convention allowing to preserve the continuity of the
exponential function y=ax. But yet other students will revolt against it by saying
that the very inscription a0 does not make sense, if taking to power n means to
multiply a by itself n-1 times. In this case we say that conceiving of power as
repeated multiplication is an obstacle to understanding the exponential
function.

It seems reasonable to admit that an understanding that is founded on a
question or on an identification of something we do not quite understand, is
superior to an understanding, unproblematic but banal and often merely
verbal of a0=1 as a convention and one more rule to remember. It goes deeper
into the meaning of this convention, it starts a search for its reasons. In fact,
it implies a revision of the notion of power—an overcoming of an obstacle;
it involves a construction and not just a memorization of the concept of real
power (ax, x in R).
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One doubt that comes up here is that judging understanding in terms of
epistemological obstacles makes this judgment even more relative, because,
one may say, an obstacle is always an obstacle to a change to a different way
of understanding or knowing, and how do we know that this new
understanding is better than the old one. However, we must note that
something (a belief, a scheme of thinking) functions as an obstacle often
only because either one is unaware of it, or because one does not question it,
treating it as a dogma. Overcoming an obstacle does not mean switching to
another system of beliefs or another persistent and believed universal scheme
of thinking but rather in changing the status of these things to ‘one possible
way of seeing things’, ‘one possible attitude’, or ‘a locally valid method of
approaching problems’ etc.

The Philosophy of Epistemological Obstacles

Why do we think that good understanding has to be achieved through
‘overcoming obstacles’? Why do processes of understanding have to be of such
dramatic nature? The reasons lie in our assumptions about both the intellectual
development of an individual and the historical development of knowledge.
The first assumption is that from one level of knowing and understanding to
another, there is a need of at once integration and reorganization. Cognition is
not an accumulative process. This is assumed to hold both for the psychogenesis
and the history of scientific knowledge. This psychological view is in harmony
with the philosophy of Bachelard, for whom, to ‘find the truth’, ‘intellectual
repentance’ is necessary:
 

Reflecting on a past of errors, the truth is found in a real intellectual
repentance. In fact, one knows always against some previous
knowledge, by destroying ill-built knowledge, by overcoming that
which, in the mind itself, is an obstacle to spiritualization. (Bachelard,
1983, p. 14)

 
Thus, new understanding can only partially be built on previously developed
ways of understanding. Hence, for example, at school, when we pass from whole
numbers to integers, or from arithmetic to algebra, we must leave room for the
‘intellectual repentance’—a reorganization of previous understandings. While
integers can be regarded as a generalization of natural numbers, we must keep
in mind that children’s understanding of the latter, as it develops in the first
school years, cannot serve as an immediate basis for this generalization. Pupils
do not grasp natural numbers as a whole, as a structure equipped with certain
operations and which is not closed under some of these operations. But it is only
such understanding that can be a basis for the generalization. Quantities of
something, amounts of apples and cakes, and operators that tell you how many
times you are taking such and such quantity—the usual understanding of numbers
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by kids that young—cannot serve as a basis for understanding the ring structure
of integers. And this is almost what is expected of them, if we think they will
find some meaning in the rule ‘minus times minus is plus’. Integers are already a
first step into algebra which, far from being ‘generalized arithmetic’, is a
methodology of mathematics. Arithmetic, from the point of view of algebra, is
already the theory of numbers.

Other assumptions of the philosophy of epistemological obstacles are related
to the positivistic illusions of the possibility to build scientific knowledge on the
basis of solely observation and logic in a way that is completely free from any
‘metaphysical’ considerations. In fact, the notion of epistemological obstacle
came into being in Bachelard’s polemics with neo-positivism or logical
empiricism.

We cannot do without ‘metaphysics’ in scientific understanding and this
means that epistemological obstacles are unavoidable. Our beliefs about the
nature of scientific knowledge, our world views, images that we hold and
that are imprinted in the language that we use, schemes of thinking—all
form the starting point for our dealing with scientific problems as much as
they bias our approaches and solutions. They are the necessary props as well
as obstacles to a ‘good understanding’. Their overcoming requires a rebuilding
of the fundamental understandings and this leads to philosophical
considerations. It always comes to that when scientists start to reflect on the
basic notions of their theories. This happens also in mathematics. Major
breakthroughs in mathematics are often accompanied by discussions, within
the community, about what does the result mean for mathematics as a whole,
for the certainty of the mathematical knowledge, for the admissible methods
of proof, etc. This is what happened with Gödel’s theorems, the four-colour
problem… In June 1993, Fermat’s Last Theorem was announced proved by
Andrew Wiles (June 23 in Cambridge, Wiles declared that he can prove
Taniyama conjecture for semistable elliptic curves over Q, which implies
Fermat’s theorem). What philosophical discussions and reflections will this
historic event give rise to? One interesting thing about this proof is that it is
a result of an incredibly collective effort. As Ken Ribet put it: ‘The method
of Wiles borrows results and techniques from lots and lots of people. To
mention a few: Mazur, Hida, Flach, Kolyvagin…’, and Wiles and Ribet
themselves. In December of the same year there was a rumour about there
apparently being a gap in the proof: mathematicians did not take Wiles’
announcement for granted, they started on a job of verifying it, probing it
from various points of view. Doesn’t this recent history tell the more general
public about how mathematics come into being, as well as about the
possibility of sharing an understanding of the most abstract ideas and being
able to communicate them?

Heidegger (1962) claimed that ‘the real movement of the sciences takes place
when their basic concepts undergo a more or less radical revision which is
transparent to itself:



Good Understanding

127

The level which a science has reached is determined by how far it is
capable of a crisis in its basic concepts… Among the various disciplines
everywhere today there are freshly awakened tendencies to put research
on new foundations. Mathematics, which is seemingly the most rigorous
and most firmly constructed of the sciences, has reached a crisis in its
‘foundations’. In the controversy between the formalists and the
intuitionists, the issue is one of obtaining and securing the primary way
of access to what are supposedly the objects of this science. (Heidegger,
1962, pp. 29–30)

 
For many practitioners of science, complying with the positivistic standards
would mean resigning from understanding at all, because understanding
requires harmony in thoughts and our thoughts are not divided into ‘scientific’
and ‘philosophical’. We, as understanding subjects, are indivisible wholes. We
have already referred to Heisenberg’s position in this respect, in relation to
essentialism. Let us come back to his illuminating comments about
understanding quantum theory. What he says is that all the difficulties with
understanding quantum theory appear exactly in the junction between
experimenting and measuring on the one hand, and the mathematical apparatus
on the other, and to overcome them ‘true philosophy must be practiced’
(Heisenberg, ibidem, p. 283).
 

Of course, I can agree with the requirement of the greatest possible
clarity in concepts; but the prohibition of reflection on more general
questions, on the grounds that there are no clear concepts there, does
not appeal to me at all; such limitations would make the understanding
of the quantum theory impossible… Physics consists not only in
experimenting and measuring on the one side and the mathematical
apparatus on the other, but in the place of their junction true philosophy
must be practiced… I suspect that all difficulties in understanding
quantum theory appear exactly in this place, usually passed over in
silence by the positivists; and passed over exactly because it is impossible
to use precise concepts there. The experimental physicist must speak
about his experiments, and in doing this he is de facto using notions of
classical physics, about which we know that they are not exactly adjusted
to nature. This is a fundamental dilemma and it cannot be simply
ignored… You know, of course, the poem of Schiller ‘The allegory of
Confucius’ and you know that I especially like the following words
there: ‘Only completeness leads to light and truth lives in the deeps’
(Nur die Fülle führt zur Klarheit, und im Abgrund wohnt die Wahrheit]
Completeness here is not only the completeness of experience but also
completeness of notions, various ways of thinking about our problem
and phenomena. It is only thanks to the fact that one can speak about
the peculiar relations between the formal laws of the quantum theory
by using a variety of notions, which then illuminate them from all sides
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while seeming contradictions are brought to our awareness, that it is
possible to bring about changes into the structures of our thinking,
which changes are the very condition of understanding quantum
mechanics… When speaking [about quantum theory] we are forced to
use images and allegories which express, in an imprecise way, what we
think. Sometimes we cannot avoid a contradiction, but, using images,
we are able to somehow come closer to the real state of things. We must
not, however, deny the existence of this state of things. (Heisenberg,
1969, pp. 283–5)

 
Epistemological obstacles are very likely to be found in sciences that raise
questions concerning reality, and, therefore, also questions about the nature of
being and our possibilities of knowing it, about which we have all sorts of
preconceived ideas. It would seem, a priori, that the abstract mathematical
knowledge is less prone to suffer these. That this is not exactly the case—we
shall see from the example that follows.

Epistemological Obstacles in Mathematics:
The Case of the Bolzano Theorem

Let us see, as an example, how epistemological obstacles have functioned in the
historical process of understanding the theorem of Bolzano. We base our analysis
on the historical study of Daval and Guilbaud (1945).

By the ‘Bolzano theorem’ we mean the following theorem: a function
continuous in the closed interval a£x£b passes from one value to another by all
the intermediate values, i.e., for any y such that f(a)<y<f(b) or f(a)>y>f(b) there
exists a number c between a and b such that f(c)=y. This theorem is also called
the Darboux property theorem.

For Daval and Guilbaud the most important mental operation in mathematics
was generalization. The way in which they present the history of Bolzano theorem
is meant to support this claim. I hope to show here how, in fact, all four
fundamental operations of understanding interact in this history, and how some
of the crucial acts of understanding in it consisted in overcoming an
epistemological obstacle.

From a Computational Technique to the Concept of Continuous
Function

According to Daval and Guilbaud, the Bolzano theorem had its sources in an
attempt to understand the technique of successive approximations used to
compute radicals of various degrees in view of its generalization to a method of
solving equations of the type f(x)=c.

The technique of finding a radical x=nÖc consisted in, first, guessing two
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natural numbers a and b such that an<c<bn and then continuing to find narrower
and narrower intervals including x:
 

 
Both sequences approached x but, most of the time, none of the approximations
was the number x.

The conviction that the number n√c exists, however, was based on a visual
representation of the solution of equations like xn=c. Both curves, y=xn and y=c
are ‘continuous’, have no gaps; therefore they must intersect in some point (x,y);
x is exactly the nth radical of c.

An attempt to generalize the technique to solving equations of the type f(x)=c,
where f is any function, must have posed the question of the conditions under
which the technique really works. In particular, the intuitive notion of ‘continuous’
function had to be scrutinized. In the nineteenth century, at the age of
‘arithmetization of analysis’, of systematization of concepts, the image of a ‘line
without gaps’ couldn’t be satisfactory any more. And, from the practical point
of view, this visual definition was of no help in studying the behaviour of
particular functions. Cauchy had had the idea to reject all the (superfluous)
visually based reasons for which mathematicians thought the technique worked,
and focused his attention on the technique itself.

He probably tried to imagine situations where the technique would lead to
false conclusions, i.e., situations in which the test on ak and bk would always
work but the root of the equation f(x)=c would not exist. In looking for the two
sequences of approximations a, a1, a2,…, and b, b1, b2,…we check the consecutive
terms by verifying whether c or f(x) is between f(ak) and f(bk). Well, it may
happen that we always get f(ak)<c<f(bk) and nevertheless x—the common limit
of a’s and b’s—is not the root of the equation f(x)=c. For example, take
 

 
and solve the equation: f(x)=3.

It is clear that the solution does not exist. However, if we formally apply the
technique of successive approximations, we may be led to the conclusion that
the root is 2. But, f(2)=4, and not 3.

If we think why things turned out so bad, we may notice that the crux of the
matter lies in the behaviour of the sequences f(ak) and f(bk). While ak and bk

were nicely converging to the same limit, the other two were not, and certainly
they were not converging to c, which is important if we want x—the common
limit of a’s and b’s—to satisfy the equation f(x)=c. For it may happen that the
equation has no solution even if the sequences f(ak) and f(bk) have a common
limit. This was then the idea of Cauchy: to take the strictly sufficient condition
for the technique to work, i.e., the condition that, if ak is a sequence of arguments
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of the function tending to an argument z, then the corresponding sequence of
values must converge to f(z)=c, and use this as a definition of ‘continuous
function’, ‘continuous functions’ being the name traditionally used relative to
functions for which the technique worked.

In deciding to define (and understand) continuity as he did, Cauchy had to
overcome the obstacle of thinking of functions as ‘lines’ and of continuity as a
being a global property of such lines. Now, functions are viewed as relationships
between independent and dependent variables and continuity of a function is
continuity in a point: continuity is defined locally.

Bolzano theorem describes situations in which the consecutive
approximations technique of solving equations of the type f(x)=c is sure to
work. It is a synthesis—a small theory of the technique—in which are condensed
the intention to generalize the technique to a broader range of functions, the
discrimination between situations in which the technique works and those in
which it does not work, the identification of the sufficient condition upon
which it works, the identification of an important notion of ‘functions
continuous in a point’ distinguished from the intuitive concept of visually
represented continuous lines.

Overcoming a Misinterpretation of the Bolzano Theorem

For a very long time after Cauchy announced his theorem, it was regarded as
an equivalence and not as just an implication. Darboux disclosed this error
but, according to Lebesgue, the faulty formulation was taught in Paris as late
as in 1903. There is nothing unexpected about this error, though, if we consider
all the obstacles that had to be overcome in order to understand the Bolzano
theorem.

As Daval and Guilbaud explain it, in the second half of the nineteenth century,
the understanding of continuous functions was based on a concept of ‘continuous
variable’. It was defined as a variable whose increment can be infinitely small.
The continuous function was defined as a function y=f(x) such that if x changes
continuously, so does y.

The reason why, from this definition, it was rapidly inferred that the function
y=f(x) is continuous if and only if, when x continuously passes from a to b in the
interval <a, b>, then y passes from f(a) to f(b) through all the intermediary
values, can be found in, basically, two ideas prevailing at that time. The first
was the belief that a finite continuous variable cannot pass from one value to
another without passing through all the intermediary values. This is all right if
this is how we think about independent real variables, or, as we say today,
intervals of real numbers.

A problem arises, however, when two variables enter into play and one depends
upon the other: when the variable y is a function of the variable x, then the
‘continuous variation’ of y is not exactly the same as the ‘continuous variation’
of x because the latter expression means that x is an element of an interval while
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the values of y may cover the most fantastic subsets of the real numbers, not
necessarily intervals.

The faulty ‘if and only if version’ of the Bolzano theorem was a result of
considering the expressions ‘x varies continuously’ ‘and x passes from a to b
through all the intermediary values’ as equivalent, and of the non discrimination
between the character of change of a single independent real variable and that
of couples of variables, one depending on the other.

A way out of this error is in becoming aware of and rejecting the above ways
of understanding. Restricting the definition of a continuous variable to only
what it explicitly says, namely: that it is a variable whose increment is arbitrarily
small, we obtain the following definition of a continuous function: the function
y=f(x) is continuous if, by varying the increase of x, the increase of y can be
made arbitrarily small—which is exactly what Cauchy wanted to say in his
definition of a function continuous in a point.

Further Generalizations: General Analysis

The manner of speaking about functions in terms of variables, common in the
nineteenth century, led to focusing attention on Variability’ and ways in which
y changes when x changes. The domains of variability of x and y remained in
the background. Their determination did not seem necessary to define a function.
The ‘rule’ or ‘formula’ of the function was sufficient and ‘naturally’ pointed to
the values which could be used for x and y.

The discrimination between ‘continuity’ as a global property of lines
representing functions and ‘continuity’ as a local property of functions brought
about an identification of two objects: the domain and the range of function.
This way, the function f is no more an attribution of particular numbers to
particular numbers, but becomes a mapping of the set Domf onto the set Imf.
The thinking about functions becomes more ‘global’ again. The domain of the
function may have certain properties and one may ask the question whether the
function preserves them or not.

The language used to speak about the arguments and values becomes more
static: from ‘variables’ to ‘sets’; on the other hand, the way of speaking about
the function becomes more dynamic; from ‘rule’ or ‘law’ to ‘mapping’.

Traditionally, it was thought that the set in which the variable x varies is
always somehow naturally given. Most often it was a subset of reals. This domain
was so natural that there was seemingly no point in speaking about its properties.
Properties always distinguish something from something else, but here there
was nothing to distinguish because real numbers were the whole world.

Now, the identification of the concepts of domain and range of function led
to the question: why just the real numbers? Functions, from being defined on
just real numbers, were generalized to functions or mappings defined on any
set. Functions started to be seen everywhere and the ‘functional thinking’ (Klein’s
funktionales Denken) indeed pervaded all mathematics.
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Before, variables and continuous functions were thought of in terms of ‘an
arbitrary increment of the variable’: in the Bolzano theorem the question was of
passing through all the intermediary values. Now, the generalizing movement
gave birth to notions such as the neighbourhood of a point, topological space,
condensation point, and generalizations of the notions of closeness, position
(situs), limit, which were conceived so far in terms of numbers. It is enough to
know, for any element of a given set, what it means to lie in its neighbourhood.
This defines the topology of the set and allows for evaluation of the mutual
position of the elements of the set without necessarily using the notion of number.

The property of continuity of a function can then be defined with the
use of the weaker notion of the condensation point and not with
convergence: the function f from A to Y, where Y is a topological space, is
continuous in a condensation point a of the set A if f(a) is a condensation
point of the set f(A).

In this new language the expression ‘to pass through all the intermediary
values’ must be replaced by an expression free from reference to order. Order,
the relation of ‘lying in between’, natural in the domain of real numbers may
not make sense in arbitrary topological spaces. According to Daval and Guilbaud,
the generalization of the Bolzano theorem to the statement that ‘continuous
functions preserve the property of connectedness of sets’ could consist in such a
generalization of the property ‘to pass through all the intermediate values’ that
made abstraction from order or movement on the number line and preserves
only the idea of ‘solidarity’ between the parts of the set.
 

It is exactly this solidarity between different parts of the set of values of
y that discloses the existence, in the proof of Cauchy, of the two sequences
f(an) and f(bn) that have common limit c. Let us say the same as Cauchy
but exclusively in terms of condensation points. When we had to prove
that c is necessarily among the values of y, the latter were divided in
two parts: the y’s that are greater than c and f(bn) are among them, and
the y’s that are lesser than c and f(an) are among them. But—and here is
the essential argument—this classification excludes one value, namely
f(L)=c (L is the common limit of an and bn). If we get rid of sequences
and their countable character, the proof goes as follows: for the division
of the set of all values of y into two (and only two) subsets to be complete,
it is necessary that the condensation point c belongs to either one or the
other of these categories. It is clear then that the essential feature of the
set of values of y is that it cannot be divided into two parts so that no
part contains none of the condensation points of the other. (Daval and
Guilbaud, 1945, pp. 126–7, my translation)

 
i.e., the set of values of y must be ‘connected’.

This is how connectedness as a property of sets is identified and, at the same
time, it is distinguished from continuity as a property of mappings: ‘a continuous
mapping preserves the connectedness of sets.’
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All this leads to a synthesis: a thought is born that, in the generalized geometry
the question of invariants of mappings is important. Now, the generalized Bolzano
theorem becomes a theorem of the theory of invariants of continuous mappings,
i.e., topology.

The Notion of Epistemological Obstacle as a Category of Thought in
Mathematics Education; Problems of Definition

The notion of epistemological obstacle, taken from Bachelard, made its
appearance in mathematics education (more precisely, in the French didactique
des mathématiques, thanks to Brousseau) around the year 1976, and very soon
started to function as a ‘category’. By ‘category’ I mean here, after Skarga
(ibidem), a notion which, albeit not necessary in the development of a scientific
domain, is sufficiently general and powerful to direct the thought and shape a
field of research around itself:
 

Human thought…tends to organize its problems around certain
notions that I call categories… These [categories] are not invariably
characteristic of our intellect and they have not a character of
universality or necessity, yet they have sufficient range to direct
thought. They have not a formal character, but usually a high degree
of generality, that allows them to be applied in various domains. Each
category is normally accompanied by other words and phrases, eagerly
used, fashionable, which often in the eyes of the authors are meant to
add to the scientificity, seriousness, modernity of their texts,… A
category fulfils a double role. On the one hand, it shapes the field of
theoretical research, remaining, however, in its center, and being the
object of analysis itself…. On the other, it is for this category that the
researcher reaches in trying to explain various questions… However,
the main function of a category is that it directs the thought. (Skarga,
1989, pp. 108–9)

 
This is exactly what happened with the notion of epistemological obstacle: it
started to ‘direct the thought’, a whole research programme started to develop
around it, while, at the same time, heated debates were taking place among the
theoreticians about the very nature of epistemological obstacles, the possible
definitions, the rationale of bringing it into the field of mathematical thought,
so different, after all, from the sciences of nature. This trend in mathematics
education is slowly dying out, there are other questions and new words that
occupy more central places, and the notion of epistemological obstacle has not
grown to have a definition that would receive a wider consensus. A
interdisciplinary conference that brought together psychologists, philosophers
of science, and mathematics and physics educators, organized by Nadine Bednarz
in Montréal in 1988 (Bednarz and Garnier, 1989), was partly meant to elucidate
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the notion of epistemological obstacle, but participants left with the feeling of
confusion greater than ever.

It is possible that the most characteristic feature of a category is that it is hard
to grasp with a definition, difficult to enclose within a rigid theory. A category
does not belong to the world of theories; if it functions the way it does—by
directing the thought—it is because it works somewhere between and above the
vernacular and the research field. It is better described by the use that was made
of it in research, what questions did it lead to, what explanations did it provide,
what kind of discourse has developed around it.

Bachelard himself never gave any definition of his obstacle épistémologique;
he only provided us with a series of examples of poignant differences between
physics in the eighteenth century and the contemporary physics and the hint
that this notion is useful in the ‘psychoanalysis of the scientific thought’. The
obstacles could be found in the human tendencies to hasty generalizations, or
to explaining everything with familiar metaphors, or universal laws such as
‘all bodies fall’, or, still, by looking for a substance responsible for a
phenomenon. Obstacles were there on the path of change from the ordinary
thinking to the scientific thinking, from one kind of rationality to another
kind of rationality.

For myself, the general lines of a theory of culture as described by E.T. Hall
seemed to provide an appropriate framework within which not to define but
somehow explicate the notion of epistemological obstacle, which seemed, first
of all, a cultural phenomenon. This will be described in more detail in the next
chapter. But there are other possible, and maybe even more adequate
frameworks. Certainly, Michel Foucault’s notion of épistémè and his
archaeology of knowledge (1973) provides a useful basis; it is even closer to
the historical-empirical methodology adopted by mathematics educationists
in that it looks at culture diachronically, and not synchronically (or spatially)
as Hall’s theory does. Moreover, it focuses more on the taken for granted and
unconscious of science—this is where epistemological obstacles are grounded—
and it looks at different epochs by comparing their unconscious layers:
epistemological obstacles reveal themselves in the differences. But Foucault
looks at this unconscious layer in a positive way, which, again, agrees, with
the philosophy of epistemological obstacles: these obstacles are, contrary to
the connotations that the word ‘obstacle’ can bring to mind, positive. They
are positive in the sense that they constituted the ground of the ‘epistemological
space’ that determined, in a way, the kind of scientific questions and ways of
approaching them, characteristic of a given epoch. In a foreword to the English
edition, Foucault writes,
 

On the one hand, the history of science traces the progress of discovery,
the formulation of problems, and the clash of controversy…it describes
the processes and products of the scientific consciousness. But, on the
other hand, it tries to restore what eluded that consciousness: the
influences that affected it, the implicit philosophies that were subjacent
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to it, the unformulated thematics, the unseen obstacles; it describes
the unconscious obstacles. This unconscious is always the negative of
science—that which resists it, deflects it, or disturbs it. What I would
like to do, however, is to reveal a positive unconscious of knowledge:
a level that eludes the consciousness of a scientist and yet is part of
the scientific discourse, instead of disputing its validity and seeking to
diminish its scientific nature. What was common to the natural history,
the economics, and the grammar of the Classical period was certainly
not present to the consciousness of the scientist;…but unknown to
themselves, the naturalists, economists, and grammarians employed
the same rules to define the objects of their own study, to form their
concepts, to build their theories. It is these rules of formation, which
were never formulated in their own right, but are to be found only in
widely differing theories, concepts, and objects of study, that I have
tried to reveal, by isolating, as their specific locus, a level that I have
called, somewhat arbitrarily perhaps, archaeological. (Foucault, 1973,
p. xi)

 
Foucault’s theory can also be viewed as better fitting with Bachelard’s notion
because both authors belong to the same philosophical tradition, while Hall’s
anglo-saxon, empiricist approach seems very different in spirit with the more
rationalistic or ‘Cartesian’ perspective of Bachelard. Indeed, Foucault himself
points to the difference between the two approaches, at the point when he
describes the changes of conceptual schemas between the sixteenth and the
seventeenth centuries.

The sixteenth century viewed language as the mirror of the world, the
seventeenth and eighteenth centuries regarded it as a representation. In the former
period of time the prevalent ways of understanding the world were based on the
identification of resemblances of the most diffuse and general sort. Language
belonged to nature: both language and nature were networks of signs. Knowledge
was the same as interpretation of texts. For example, a ‘naturalistic’ study of an
animal could be a ‘mixture of exact descriptions, reported citations, uncriticized
fables, non-differentiated remarks on anatomy, heraldry, habitat, mythological
values of the animal, its uses in medicine or magic’ (Foucault, 1973, p. 54).
Thus, ‘to know an animal or a plant or whatever in the world is to collect all the
thick layer of signs that could be deposed in them…’; ‘nature itself is a continuous
fabric of words and marks, tales and characters, discourse and forms… Nature
is, from top to bottom, written’ (ibidem). The seventeenth century brought a
criticism of this resemblance-based épistémè both in England and France, but
different perspectives were taken.
 

We already find a critique of resemblance in Bacon—an empirical critique
that concerns, not the relations of order and equality between things,
but the types of mind and the forms of illusion to which they might be
subject. We are dealing with a doctrine of quid pro quo. Bacon does not
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dissipate similitudes by means of evidence and its attendant rules. He
shows them, shimmering before our eyes, vanishing as one draws near,
then re-forming again a moment later, a little further off. They are idols.
The idols of the den and the idols of the theatre make us believe that
things resemble what we have learned and the theories we have formed
for ourselves… Only prudence on the part of the mind can dissipate
them, if it abjures its natural haste and levity in order to become
‘penetrating’ and ultimately perceive the differences inherent in nature.

The Cartesian critique of resemblance is of another type. It is no
longer sixteenth-century thought becoming troubled as it contemplates
itself and beginning to jettison its most familiar forms; it is Classical
thought excluding resemblance as the fundamental experience, and
primary form of knowledge, denouncing it as a confused mixture that
must be analysed in terms of identity, difference, measurement and order.
(Foucault, ibidem, pp. 51–2)

 
This is the same difference of perspectives that separates the anglo-saxon
analytic philosophy such as practised, for example, by Ryle and Austin, and
the French structural linguistics of Lévy-Strauss and Jakobson. The former
studies the use of language and claims that only the use can provide the
standards; the latter constructs models of the use and study their logical
implications. For Ryle, the aim of the analysis of language was ‘to move
conceptual roadblocks’. Austin did not believe in the ‘gospel of clarity’; he
would say that philosophy resolves one set of questions only to arrive at another
set of questions (Cranston, 1972). This can be called an ‘empiricist’ approach:
the studied reality is the use of language within a complex network of social
relations. The French approach was more ‘rationalistic’: it attempted to provide
a ‘logically satisfying explanation of the world’ (Cranston, ibidem). Language
was viewed as a system or structure governed by rules; social structure is a
theoretical model of relations between people. These structures and models
are the only reality that we are able to study.

Foucault, whose works such as The Order of Things or Madness and
civilization are usually classified as belonging to the French structuralist school,
has nevertheless been found as having bridged the gap between the English
linguistic empiricism and French structuralism in at least one point: in Foucault,
Man, the abstract construct, the ‘sujet épistémique’, becomes finally a man,
unique, individual, only forced to accept the binding rules and categories of the
épistémè he happens to find himself historically tied within under pain of
appearing as mad (Cranston, ibidem; Foucault, 1973, p. xiii). Indeed, there
could be even more to it than that: in points interesting for a mathematics
educationist there seems to be a kind of homomorphism between Hall’s ‘major
cultural triad’ and Foucault’s épistémè. We shall clarify this point in the next
chapter. One reason, however, why I have decided to remain by Hall’s theory, is
that, unlike Foucault, Hall looks at many different cultures, not just the culture
developed by the western civilization. This perspective raises the question of a
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relativity of epistemological obstacles that is not only diachronic but spreads
across the different coexisting cultural backgrounds that students bring today
to their classes in more and more countries. It is therefore more real, and more
realistic: many of us have to face the cultural relativity of epistemological obstacles
and deal with it in our daily work with students. Another reason is that the
method of historico-empirical studies that we propose ourselves to develop with
relation to understanding in mathematics is more empirical than rationalistic in
spirit: for us the reality is the students’ actual understanding, not models or
theories that we build about it.

To end this section, let us only mention that the notion of epistemological
obstacle, implicit under different names, forms and in different contexts and
philosophical settings can be found in many philosophers before and after
Bachelard. We have already recalled the Baconian ‘idols’. Husserl stressed the
discontinuity between the common or practical knowledge that remains
unquestioned, taken for granted, and the scientific attitude. At the turn of the
century, the awareness of social and cultural determinants of scientific knowledge
appeared in the works of Durkheim, Granet, Halbwachs, Scheeler and others.
Without reference to Bachelard, similar ideas appear in the works of Schütz,
Garfinkel, Cicourel. A Polish philosopher, Florian Znaniecki (1882–1958), in
his Social roles of scientists (in Polish), occupied himself with the sociology of
scientists and distinguished such historical types of roles they played as sages,
technicians, scholars, researchers, determining very different standards of what
is and what is not scientific and significant. Kuhn’s theory of scientific revolutions
shows how changing can be the scientific truth, how the fundamental categories
of thought and rules of rationality can vary from one paradigm to another. It is
needless to recall the role and works of Popper and Lakatos in this area. All
this—to mention but a few.
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Chapter 5

Developmental and Cultural
Constraints of Understanding

In analysis to-day there is no longer anything but whole numbers, or finite
or infinite systems of whole numbers, bound together by a network of
equalities and inequalities. Mathematics, as it has been said, has been
arithmetized.

But we must not imagine that the science of mathematics has attained
to absolute exactness without making any sacrifice. What it has gained in
exactness it has lost in objectivity. It is by withdrawing from reality that it
has acquired this perfect purity. We can now move freely over its whole
domain, which formerly bristled with obstacles. But these obstacles have
not disappeared; they have only been removed to the frontier, and will
have to be conquered again if we wish to cross the frontier and penetrate
into the realms of practice. (Henri Poincaré, 1952)

 
Understanding is both developmentally and culturally bound. What a person
understands and how he or she understands is not independent from his or her
developmental stage, from the language in which he or she communicates, from
the culture into which he or she has been socialized. His or her beliefs, his or her
‘cognitive norms’, his or her world view can all be sources of obstacles to
understanding the theoretical frameworks of contemporary scientific knowledge.
His or her conceptions cannot be more elaborate than his or her developmental
stage allows for, even if the level of his or her speech and technical skills have
already superseded this stage.

In the sequel, while trying to support this thesis, we shall be interested in
finding the developmental and cultural roots of epistemological obstacles. Two
theories turn out to be of help here: L.S.Vygotski’s theory of development of
concepts from early childhood to adolescence and E.T.Hall’s theory of culture
(Sierpinska, 1988; 1993). Vygotski’s experimental studies into the development
of concepts will guide us towards an idea of how the child’s first understandings
of mathematical notions constitute themselves into obstacles in the adolescent’s
thinking. Hall’s theory of culture will explain how epistemological obstacles
come into being, how they function in scientific communities and how they are
being transmitted through socialization and education.
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These two sources of obstacles: ‘development’ and Culture’ are closely
interrelated. We start by an explication of this relationship.

The Relationship Between Development and Culture

Development and Instruction

In considering the question of relationship between development and instruction,
or between spontaneous concepts that develop through physical and mental
maturation and informal socialization out of school, and scientific concepts
that are a product of culture and can only emerge in the process of instruction,
Vygotski claims that, while there is ‘a certain element of truth’ in the theory that
‘development must complete certain cycles or stages or bear certain fruits before
instruction is possible’ (Vygotski, 1987, p. 195), this theory does not contain the
whole truth. He even says that this one-sided dependence is of secondary
importance.
 

Instruction can give more to development than is present in its direct
results. Applied to one point in the child’s thought, it alters and
restructures many others… Instruction is not limited to trailing after
development or moving stride for stride along it. It can move ahead of
development, pushing it further and eliciting new formations. (Vygotski,
1987, p. 198)

 
But the relationship between development and instruction is not straight-forward;
it is very complex (ibidem, p. 201). Instruction does influence development, but
not in a direct way.
 

It would be a mistake to think that a pupil’s failure in arithmetic in a
given semester necessarily represents the progress in his internal
[developmental] semester. If we represent both the educational process
and the development of the mental functions that are directly involved
in that process as curves…we find that these curves never coincide.
Their relationship is extremely complex. We usually begin the teaching
of arithmetic with addition and end with division. There is an internal
sequence in the statement of all arithmetic knowledge and information.
From the developmental perspective, however, the various features and
components of this process may have an entirely different significance.
It may be that the first, second, third and fourth components of
arithmetic instruction are inconsequential for the development of
arithmetic thinking. Some fifth component may be decisive. At this point,
the developmental curve may rise sharply and begin to run ahead of the
instructional process. What is learned thereafter may be learned in an
entirely different way. Here there is a sudden shift in the role of
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instruction in development. The child has finally understood something,
finally learned something essential; a general principle has been clarified
in this ‘aha experience’. (Vygotski ibidem, p. 207)

 
And here Vygotski says something very important, indeed he gives a crucial
argument against both disregarding instruction in development as well as saying
that instruction should go hand in hand with development:
 

If the course of development coincided completely with that of
instruction, every point in the instructional process would have equal
significance for development…. [But] in both instruction and
development there are critical moments. These moments govern those
that precede it and those that follow it. These points of transition on
the two curves do not coincide but display complex interrelationships.
Indeed, as we said before, there could be no relationship between
instruction and development if the two curves were to fuse, (ibidem,
p. 207)

 
Instruction cannot always wait for the development to be fully accomplished;
often it must pull it. Teaching interventions must be wisely dosed, they must be
used at appropriate time and on the right level: they must be within what Vygotski
has called the ‘zone of proximal development’. This zone—the close domain of
the child’s potential development—has more significance, he says, for the
dynamics of intellectual development and for the success of instruction than
does the actual level of development (ibidem, p. 209).

This has important consequences: if the instruction does not intervene at the
right moment then some intellectual abilities may not have the chance to develop.
For example, if, at the time of the development of conceptual thinking (usually
around adolescence), the student is not given the opportunity and is not guided
to engage in more formal reasonings, deductions and inferences in which the
premisses or reasons are made explicit and whose rules are agreed upon, he or
she may never become able to develop the style and level of thinking that is
necessary to understand and construct mathematical proofs. At the age of 20 or
more, when the student comes to study mathematics at the university level, the
propitious developmental moment would have passed, and it may be too late
for the teaching intervention to have any effects.

Development As a Social Affair

Instruction, knowledge, scientific knowledge are cultural notions; they are always
embedded in a certain culture while creating and conveying a certain culture
themselves. According to Vygotski, development is a cultural affair.

Thus it is also a social affair. Social psychologists, W.Doise and G.Mugny
(1984) claim that ‘different cultural systems all indicate that systems of social
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interaction influence individual cognitive development while at the same time
social interactions in different cultures have common elements influencing the
initiation of cognitive development’. Indeed, statistical researches have shown a
relationship between the school failures of students and the socio-economic status
of their parents. Efforts to explain this state of affairs led some psychologists to
the conclusion that it is not the low degree of intelligence that is responsible for
the students’ failures but the psycho-social conditions in which these children
are tested (see, e.g., Vial et al., 1974, cited by Perret-Clermont, 1980): the very
situation of test is a social situation and a social relation between the experimenter
and the child which may not be interpreted in the same way by children from
different social classes (Perret-Clermont, ibidem, p. 4; Tort, 1974, pp. 266–7,
quoted by Perret-Clermont). The test may not measure the intellectual abilities
of the child but his or her social abilities to defend himself or herself in an
unfriendly and threatening situation.

The ‘Social Handicaps’ Influencing Mathematical Development

How the socio-economic backgrounds of students can affect their mathematical
development is an important problem in mathematics education. Research
findings show that not only this background has an impact on the students
spontaneous development, but often teachers adjust their attitudes and teaching
so that the condition of the students be perpetuated. Very often mathematics
teachers conceive of mathematics as a ‘crucial subject for reproducing existing
social values’ and modify curriculum material according to the social class and
gender of their pupils (Atweh and Cooper, 1992). It is hypothesized that the
socio-economic context of the school and its culture as well as the gender of the
students will determine to a large degree the teacher’s behaviour towards the
students, what and how he or she will teach as well as what the students will be
expected to learn and understand. Also the students’ view of their chances to
succeed in mathematics is biased by the place they think they occupy in the
society. This affects their participation. The phenomenon of resistance of students
to learning can be partially caused by such beliefs. In such case classes turn into
meaningless ‘rituals’ of activities that have nothing in common neither with
mathematics nor learning or are constantly interrupted by the ‘bad behaviour’
of students. Atweh and Cooper claim that the study of how students resist learning
might be crucial for designing intervention studies intending to increase the
participation and success of under-represented groups in mathematics.

These findings are supported by older psychological research into the
fundamental question whether psycho-sociological factors only interfere in an
explicit expression of cognitive abilities or if indeed they determine the course
of the development of cognitive processes in childhood (Perret-Clermont, ibidem,
p. 5). Psychologists were led to the conclusion that, since communication and
motivation play such an important role in the development of cognitive processes,
then it is not the social background in itself that hinders the intellectual
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development but a kind of ‘social handicap’. The development is retarded if, in
the social environment of the child, too little time is devoted to social and verbal
interactions and the degree of elaboration of these verbalizations is not very
high. It also depends on the home situation and parents’ aspirations with respect
to the child. For a normal intellectual development the child must feel the need
and motivation to communicate on higher and higher levels.

Cultural Values in Psychological and Educational Research;
‘Ethnomathematics’

The above reasoning implicitly admits that the culture of socially and
economically privileged classes is something better and higher valued than the
culture of the working class or poor people. The point is only how, by making
the knowledge of privileged classes accessible to the child, to create conditions
that will help him or her to make his or her way to this class. The laudable result
is when the child rejects his or her own culture and starts to think and speak like
the experimenter or the teacher. But research into the actual ways of knowing
and understanding of children who, to survive, have to work (as, for example,
the street candy vendors), has shown quite plainly that the intelligence of these
children is indeed very highly developed and their sense of numbers imposing
(Carraher et al., 1985; Saxe, 1990).

There is a whole movement in mathematics education now, called
‘ethnomathematics’ which studies mathematical thinking in different cultures
and proposes to ground the teaching of mathematics in schools in such problems
and contexts that are familiar and meaningful in the cultural environments of
students and to allow the students to use whatever means they like to approach
these problems.

Of course, there is the risk, then, that this will result in following too closely
the students’ spontaneous development, which can be disastrous for their
development indeed—this is at least what Vygotski seems to be saying.

My interest in Vygotski’s theory of conceptual development started during
my cooperation with Monika Viwegier (Sierpinska and Viwegier, 1989; 1992).
It resulted in a certain interpretation of this theory (Sierpinska, 1993) of which
I give an account below (with the permission of the publisher).

The Genesis of Understanding and the Developmental Roots of
Epistemological Obstacles

Introduction

The genesis of concepts in a child, according to Vygotski, is the genesis of his
or her intellectual operations such as generalization, identification of features
of objects, their comparison and differentiation, and synthesis of thoughts
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in the form of systems. The very same operations lie at the foundations of
understanding. This explains why I have been attracted by Vygotski’s theory
of the development of concepts. The various genetic forms of these operations,
discovered and described by Vygotski, seemed to provide, almost immediately,
the possible genetic forms of understanding. Moreover, the theory can be
used to explain some of the curious ways in which students understand
mathematical notions, and why, at certain stages of their construction of
these notions, they simply cannot understand in a different or more elaborate
or more abstract way.

Generalization of mathematical objects and situations, identification of certain
elements or features of these objects and situations as objects in themselves, or
as more important than others, discrimination between objects and features of
objects, synthesis of various judgments about objects and relations between
objects, are the elementary operations both in understanding, and concept
formation, and in thinking, in general. But, from a qualitative point of view,
these operations are by no means the same in a child and in an adult. From early
childhood through elementary school years through adolescence and adulthood,
the operation of generalization, for example, undergoes an evolution from simple
formation of chaotic aggregates of objects linked by various subjective and
affective relations, to connection of objects on the basis of their playing a role in
some common situation, to connection of objects linked by some common and
abstract feature.

The reason why a mathematics educator at any level of teaching may be
interested in this theory is that the general pattern of development of conceptual
thinking from early childhood to adolescence seems to be recapitulated each
time a student embarks on the project of understanding something new or to
construct a new concept. ‘Different genetic forms of thinking coexist’, Vygotski
says, and an adolescent or even an adult, when confronted with a new situation
or concept, often starts with an understanding which is at a very low level of
generalization and synthesis, with very vague discrimination between the relevant
and the irrelevant features.

Vygotski distinguishes several stages and two processes of development of
concepts in a child from early childhood till adolescence, where the changing
roles and levels of sophistication of the elementary intellectual operations are
clearly seen. The first of these processes starts very early: this is mainly the
process of the development of generalization. Identification and discrimination
are there too, of course, but, at the beginning, they operate only on the level of
material, concrete objects. This process is composed of two main stages: the
stage of ‘syncretic images’ and the stage of ‘complexes’, the latter falling into
five phases.

The second process starts later, in the last phase of the first (7–8 years of age).
This is where begins the development of identification of more and more abstract
features of objects and relations. Some features are distinguished from others as
more important. Hierarchies of features are built. This process starts later because
it requires an already well developed operation of generalization.



Understanding in Mathematics

144

When these two processes finally merge at the threshold of adolescence, the
child is in possession of ‘pre-concepts’ or ‘potential concepts’ and the ground is
set for the operation of synthesis necessary for the construction of concepts
which cannot exist otherwise but as elements of a system.

This section is composed of two main parts. The first presents the development
of the operations of generalization, discrimination, identification and synthesis
according to Vygotski. The second derives from it the genetic roots of
epistemological obstacles. The first is split into the discussion of three paths of
development: the development of generalization in children between the age of
2 and 7 or 8, the development of identification and discrimination in elementary-
school children; the development of synthesis in adolescents.

The Development of Generalization

Vygotski distinguishes two important steps in the development of the
operation of generalization in experimental conditions before the age of
adolescence: ‘syncretization’ and ‘complexization’, or formation of ‘syncretic
images’, and ‘complexes’ which are surrogates of concepts in the child’s
thinking. ‘Syncretization’ and ‘complexization’ differ by the kind of criteria
by which, implicitly, the child decides that an object belongs to the same
group of objects.

Syncretization uses loose criteria: objects are brought together in a random,
unsystematic way. The choice is made on the basis of various subjective
impressions of closeness or contiguity. In real life, a 2-year-old will generalize
objects on the basis of subjective, and very often affective, impressions. A shop,
for example, can be understood as something pleasant (it is a place where people
buy candy for kids); a dog as something terrible, if the child happened to be
bitten by one (Luria, 1981, p. 51).

The product of syncretization is a ‘chaotic heap’ of subjectively linked objects
(Vygotski, ibidem, p. 135). The subjectivity of relations on which the syncretic
image is built makes this kind of generalization very unstable, labile.

In ‘complexization’ subjective impressions of kinship between concrete objects
are replaced by connections that actually exist between objects. In spite, however,
of being built on more objective connections, a complex is not yet a concept.
The difference lies in the character of these connections.

In a concept, these connections are logically of the same type. Connections
that bring objects together in a complex, are more often than not logically
heterogeneous, factual, randomly discovered in direct experience. In fact, any
connection between an object and the model can be a sufficient reason for
including the former into the complex (Vygotski, p. 137).

If a name is given to a complex of objects, it does not function as a term
covering a certain range of objects (its referential meaning) and a certain set
of logically coherent criteria that allow for deciding whether a given object
may or may not be termed that way (its categorical meaning), as it happens in
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the case of scientific concepts (Luria, 1981, pp. 34–9). Rather, as Vygotski
metaphorically expresses it (ibidem, p. 164), the name functions as a family
name for a group of objects. Just as members of, say, the Pietrov family, enter
the group of family members on many different grounds (as, for example,
being the son of a Pietrov, or the wife or the mother of a Pietrov, etc.), elements
of a complex are there for just as many various reasons. For example, one
object can be taken because it is of the same colour as the model, another
because it is of the same shape, still another because it can be used together
with the model for some practical purpose in the same situation (for example,
a spoon will be added to a saucer), etc.

The metaphor of ‘family name’ has also been used by Wittgenstein (see Chapter
1) in his distinction between ordinary language and the more formal languages
of mathematics and sciences. What Wittgenstein seems to be saying is that
‘complexive thinking’ pervades the use of ordinary language. He also considered
it as being ‘all right’: ‘ordinary language is in order as it is.’ Unlike Russell, he
was not proposing, in his later works, to correct the propositions of ordinary
language but simply to understand it. Vygotski had a more Russellian ideal in
mind: for him, ‘concept’ meant ‘scientific concept’ furnished with a definition;
the goal of education is to bring children to a level where they would be able to
think in terms of scientific concepts.

One symptom of ‘complexive thinking’ is that, in the sorting out of objects,
there is a lack of a logically homogeneous set of criteria. Objects are put together
in classes on the basis of some resemblance which can differ from one class to
another. Foucault in The Order of Things reminds us that the way in which
people ordered their world in the sixteenth century in Europe was obviously
based on a kind of complexive rather than conceptual thinking: factual and
heterogeneous resemblances were the basis on which things were brought
together. There were many kinds of resemblances: contingency in space, various
analogies (e.g., the analogy of the human body to the earth, man’s flesh
resembling the soil, blood veins resembling rivers, etc.). Moreover, the
resemblance of one thing to another had always to be marked by some more
or less visible sign on one of the things, representing the other in some iconic
way. Walnuts were considered as good for headaches because the kernel of the
nut resembles human brain. There had to be some resemblance between the
illness and the remedy. Also words were regarded as signs that were not
arbitrary; they bore a resemblance to things that it was necessary to decipher
in order to understand.
 

Words offer themselves to men as things to be deciphered… Language
partakes in the world-wide dissemination of similitudes and signatures.
It must, therefore, be studied itself as a thing in nature. (Foucault, 1973,
p. 35)

 
This kind of thinking can also be detected in students’ first experiences with
algebra. They seem indeed to be looking at the strange algebraic aggregates of
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letters and numerals as hieroglyphs or magic ‘signs’ to decipher. Having no
logical or methodological tools, they look for sameness, associations with class
activities to put some order into this new world. Let us have an example of such
behaviour.

Example: complexive thinking about equations
The example originates from an interview conducted in 1992 by a Concordia

University in Montréal graduate student in mathematics education, Marino
Discepola. In the interview, a successful 15-year-old high-school student (‘Jane’)
was given a set of algebraic expressions and asked to sort them out according to
her own criteria. She formed the following groups:
 

 
Jane explained that she took together the expressions in (1) because ‘you are
showing here what y is going to equal to’. In group (2) ‘they are all equal zero’.
Group (3) are ‘formulas’; initially the group contained only the first three
expressions; after some hesitation, g=5/8h was added and Jane explained that
this is the formula for gravity. Group (4) was called ‘arithmetic’; she explained
her inclusion of ‘Cx+D=Ax+B’ by saying: ‘you don’t know what Cx is, so it
could be like 7+3=10 or 5+5. Four is equal to four and eight is equal to eight and
same thing here, same thing here and here.’ Group (5) was composed of items
she hadn’t noticed and thus did not include them anywhere before.

Asked to go over again her groupings and asked for the particular reasons of
including items like 2=3, and 3/4=2/3 together with other items in group (4) she
used the following arguments: ‘[2=3] Well, you have in problem…you have to
figure if there is something missing out of it and you have to figure out…because
we used to have problems like that where you have to figure out why maybe 2
is equal to 3’; ‘[3/4=2/3] Well, sometimes when solving for x…if this was 3x and
you want to find out for x…you do 4 times 2 over 3 times 3x which is 9x so 8
over 9…’; ‘[x+13=x] assuming the same principle as this where you don’t know
what x is, so it could be 1+13=14 just like 4=5-1.’ For the group (5) she said that
‘each x could be replaced by 5/8’.

Obviously Jane has not been using a single criterion to classify the whole set
of expressions. Rather, she went by various associations, on the basis, sometimes,
of the external appearance of the expressions (groups 1 and 2, mainly), and, at
other times, on the basis of association with a domain of class activities in which
the expressions appeared (solving for x, figuring out why there is a contradiction).
‘3/4=2/3’ is not a false statement—it is a part of an equation, it can be completed
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to be an equation. Anyway, the expressions are neither statements nor conditions
for her, they are not finished mathematical objects. They are tasks to perform,
computations to be done. Variables are not names of an arbitrary element of a
set; they are numbers awaiting an operation (note that an x on the left side of
the equation may be assigned a different value than the x on the right side of it).
[End of example]

One form of complexization is that of forming ‘chain-complexes’. Vygotski
used this term when referring to the behaviour of a child who, in an experimental
situation of adding objects or pictures of objects to a given model, focuses on
the last object added and is satisfied with any link between the new object and
this last one, disrespectful of any contradiction that may occur with regard to
the previously added objects. For example,
 

…the child may select several objects having corners or angles when a
yellow triangle is presented as a model. Then, at some point, a blue
object is selected and we find that the child subsequently begins to select
other blue objects that may be circles or semicircles. The child then
moves on to a new feature and begins to select more circular objects. In
the formation of the chained complex, we find these kinds of transitions
from one feature to another. (Vygotski, ibidem, p. 139)

 
Example: complexive thinking about equations (continued)

Symptoms of chain-complexization, mixed (as it often happens in reality)
with other forms of complexive thinking, could also be observed in Jane. Asked
to arrange the given set of expressions into fewer groups she formed four groups
of which the first was:
 

 
Let us speculate on how she could have been thinking: she first took x =5/8,

then y=5/8x because 5/8 is in both; y=2x and y=2P/x are added because the
previous was y equals something as well; then 2x=0 because 2 and x were in the
previous expressions; 2x-x also has a 2x in it; so does 2x-5=0; x+13 has similar
shape. When asked later why she put all these expressions together, she said:
‘supposing x=5/8 we could solve all these equations…by replacing x by 5/8.’
This could have been an after-thought. She might have thus transformed her
chain-complex into a complex by associations, where the core object would be
‘x=5/8’. Anyway, it is rather clear that Jane has not developed a concept of
equation yet. For her, ‘to solve an equation’ does not mean to find values that
satisfy the condition given in it, but to compute something, to produce a number,
by whatever means.

In the interview, Jane complained that the task she was given was difficult;
she said she ‘could not get started’. Here is an excerpt from the interview:
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Marino: Why is it harder?
Jane: Well, because…sometimes I don’t see the relation, what they

have in common.
M.: So it is much easier to see the differences?
J.: Yeah!
M.: So now you are looking for things that they have in common?
J.: Ha, ha.
M.: And which parts do you focus on?
J. Now I am going to focus on the whole equation.

 
Jane’s behaviour here is characteristic of the very first phase of conceptual
thinking, the phase of crisis and maturation, full of hesitation, and many returns
to the most primitive complexive thinking, but also with emerging self-
awareness, dissatisfaction with one’s own thinking, search for consistency.
[End of example]

Chain-complexization may carry very far away from the original model.
There is no focus on one single feature in building such a generalization.
Within a complex, an object preserves all its features; neither is distinguished
as the one that is essential for the complex. Even if there was a feature that
connected an object to a complex and made it similar to objects that were
already there, there is no reason whatsoever for the person who forms the
complex to make abstraction from other features that the object objectively
possesses.
 

No single feature abstracted from others plays a unique role. The
significance of the feature that is selected is essentially functional in
nature. It is an equal among equals, one feature among many others
that define the object. (Vygotski, ibidem, p. 141)

 
For Vygotski, this ‘equity’ of features is a strongly discriminating
characteristic of complexization with respect to the kind of generalization
that is at the basis of concept formation. The latter is founded on a hierarchy
of connections and a hierarchy of relations between features. It creates a
qualitatively new object which goes beyond just the union of its elements—
it is a system, and it is a system within other systems. On the other hand, the
complex is a conglomerate of its elements, and its relations with other
conglomerates are not relevant.
 

The complex is not a superordinate to its elements in the way the concept
is a superordinate to the concrete objects that are included within it.
The complex merges empirically with the concrete elements which
constitute it. This merging of the general and the particular, of the
complex and its element…constitutes the essential feature of complexive
thinking generally and of the chained complex in particular. (Vygotski,
ibidem, p. 140)
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It is possible to take a slightly different point of view on the fact that, in a
complex, the relations that connect the various elements can be of so many
various kinds, each taking into account different features. It is not so much that
the child takes all the features of an object on equal terms but rather that the
child is unstable in distinguishing the features of the object he or she is considering.
At one moment it can be, for example, the colour, at another, the shape. The
child may not be able to focus on one feature for a longer time.

At the level of complexes, and, a fortiori, syncretic images, processes of
understanding are very short. The object of understanding (i.e., that which is
being understood) changes all the time. In these conditions, the synthesis of a
concept on the basis of a couple of features that have been well identified and
distinguished from others in an interrelated chain of acts of understanding, cannot
be possible.

At some point in their pre-school life children come to form the so-called
‘diffuse complexes’ which allow them to transcend the world of their immediate
experience. This kind of generalization develops when the child goes beyond
just stating facts and starts to draw conclusions, make inferences. It often
strikes us how unexpected and original or ‘impossible’ the child’s conclusions
are ‘in domains of thinking that are not subordinated to practical verification’
(Vygotski, p. 141). We usually explain it by the children’s natural tendency to
mix up their dreams and fantasies with reality. The fact is that children base
their inferences on a very wide basis; they do not feel bound by any logical or
empirical constraints. Absolutely any connection between the premise and the
conclusion would do. This leads to very ‘diffuse’, expanding complexes
characterized by unexpected associations, strange leaps of thought. But,
however striking the originality of these boundless complexes might be, the
principle of their construction is the same as that which underlies the more
restricted concrete complexes: they rely on factual connections between
different objects. Taking an analogy with art, they resemble forms such as
‘collage’ in which various parts and pieces of ready-made real objects or pictures
of objects are assembled in an often unexpected fashion to form a certain
whole—an object of art.

Diffuse-complexes are not something specific just to the kindergarten children.
They were common in the sixteenth century épistémè as described by Foucault.
They may also occur in adolescents and adults today. Here is an example.

Example: diffuse-complexive thinking about the numerical continuum in
adolescents
The humanities students described in (Sierpinska, 1987) were a little bit lost

in such diffuse-complexization when they extended the problem of whether the
equality 0.999…=1 holds true or not to questions about the existence of the
smallest particle of matter, the limits of the universe, the limits of human
knowledge, to questions of truth and convention in science. Strictly speaking,
all these questions have nothing to do with the equality 0.999…= 1 regarded as
a simple, easy to prove fact of the theory of real numbers, a consequence of the
assumption that real numbers are an Archimedean domain. But, for these
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students, the concept of relative validity of a statement within a theory was not
yet something they would know and agree with. This concept was still to be
developed and the above mentioned ‘diffuse complex’ was one step towards
this goal, reached, finally, at the end of a three-week period of discussions and
serious thinking. [End of example]

Pseudo-conceptualization is a form of generalization that normally starts
developing in a child at the age of 3. Results of this activity of the mind resemble
concepts in that the objects they refer to are the same as those referred to by
concepts bearing the same name (i.e., the referential meanings of a pseudoconcept
and a concept with the same name are the same). This means that the child and
the adult would use the same name for the same objects. However, and this is
the major difference, the criteria they would use to decide whether a given object
belongs to the given name will be of completely different nature. While the child
would be guided by concrete factual features and connections, the adult, in
conceptualizing, will guide himself or herself by an abstract and logically coherent
set of criteria.

In experimental conditions,
 

the child forms a pseudoconcept when he selects objects to match a
model which are like those that would be selected and united with
one another on the basis of an abstracted concept. Thus this
generalization could arise on the basis of a concept. In fact, however,
it arises on the basis of the child’s complexive thinking. It is only in
terms of the final result that this complexive generalization corresponds
with a generalization constructed on the basis of a concept. (ibidem,
p. 142)

 
For example, given a triangle, the child will select all triangles from the
experimental material, just as an adult would probably do. But, in doing so, the
child makes up his or her decisions on the basis of the general appearance of the
concrete material pieces of plastic or wood and not on the basis of, for example,
the thought that the object given at the start is a model of the geometrical abstract
concept of triangle defined as a three sided polygon.

Vygotski claims that, at the kindergarten age, the pseudoconcept form of
generalization dominates over other forms of complexive thinking. The reason
for this overlapping of referential meaning in children and adults, according
to Vygotski, is that the child is not on his or her own in constructing the
referential meanings of words but is very strongly oriented by the stability
and consistency of meanings in the language of adults that communicate
with the child. The child is more or less left to his or her own devices in the
choice of the categorical meaning, i.e., the criteria upon which one decides
what object should be called what name: ‘as he moves along this
predetermined path the child thinks as he can on the given level of
development of his intellect… The adult cannot transmit their own mode of
thinking to the child’ (Vygotski, p. 115).
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Let me add here that, if the child uses a wrong word to name something he or
she is immediately corrected. And the child wants to be taught the names of
things; children do not rebel against being corrected. Parents know how
importunate children can be in asking for names of things and how they take
delight in repeating each new name and trying it on new objects, seeking the
approval of parents or other adults.

This readiness of the child to accept adults’ suggestions as to what and how
to generalize weakens significantly at the threshold of conceptual thinking. This
may be linked, as we shall see later, with the fact that conceptual thinking is
systemic in nature: concepts are systems that are parts of a system. Accepting to
change the meaning of one word often means that a whole system of meanings
has to be fundamentally reconstructed. This is costly from the point of view of
both the emotional and the intellectual investments.

It is the most striking behavioural difference between elementary-school
children and adolescents that the former are more open to what the adults tell
them about the meanings of words. Adolescents seem to have their own views
on what words should mean and are able to defend them with passion (Sierpinska,
1987, 1993; Sierpinska and Viwegier, 1989, 1992).

The reason for this difference of attitude may lie in that complexes and
concepts have completely different structures. In a complex, which is a
conglomerate of objects linked by various non-homogeneous, concrete and
factual connections, contradictions, inconsistencies are something normal. But
concepts are supposed to be consistent systems of relations and the discovery of
a contradiction is a disaster that must be repaired. Martha, a 14-year-old student
described in (Sierpinska and Viwegier, 1989, or Sierpinska, 1993) desperately
defended her conviction that a set cannot have more elements than its proper
subset: the set of all natural numbers couldn’t have ‘as many elements’ as the set
of all even numbers. For her, ‘to be a subset’ partly meant ‘to have less elements’
and she strived to preserve this concept which the newly introduced concept of
equipotence threatened to overthrow. But when she discovered a logical gap in
her arguments, this was a sufficient reason for her to give up and to accept her
defeat. She could not bear an inconsistency in her thoughts.

The Development of the Mental Operations of Identification and
Discrimination

Along with pseudoconceptualization, the child starts to develop the operations
of identification and discrimination on the level of features of objects and relations
between features of objects.

In constructing pseudoconcepts on the basis of maximum similarity between
features of objects, the child must sort out the features and identify some of
them as more important than other (in a given situation), because similarity
between objects can never be complete. It is in the phase of
pseudoconceptualization that
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…we encounter a situation, very interesting from the point of view of
psychology, that the child does not attach equal importance to all the
features of an object. The features that, for the child, are the most
similar to the object given as a model in the task, come into the focus
of the child’s attention and thus are, in a way, singled out, abstracted
from other features which, thereby, shift to the peripheries of attention.
It is here that the process of abstraction appears for the first time in
all its clarity. This abstraction is frequently poorly differentiated in
nature because it is a whole group of inadequately differentiated
features that is abstracted (often based only on a confused impression
of commonality) rather than sharply isolated features. Nonetheless,
the child’s integral perception has been overcome. Features have been
differentiated into two unequal groups… The concrete object with all
its features, in all its empirical completeness, no longer enters into the
complex; it is no longer included into the generalization. As it enters
the complex, it now leaves some of its features on the threshold. As a
result, it is impoverished. Those features that serve as a foundation
for its inclusion in the complex emerge in special relief in the child’s
thinking. (Vygotski, ibidem, p. 147)

 
Thus, at some point of his or her pre-school life, the child starts to identify
features of objects and to discriminate between the more and the less significant
in view of some generalization.

The same phenomenon may occur at an older age, when the child—a
student—builds up his or her understanding of abstract concepts. For example,
at some point in the process of understanding the topic of equations at the
high-school level, the student must identify the simultaneous occurrence of
variables and the equals sign as features characteristic of equations before he
or she starts to conceptually think of equations as equality conditions on
variables.

It is such identification of the ‘characteristic’ features of objects that further
leads to the development of the categorical meaning of words (connotations).

After the preliminary phase of identification, in the aim of generalization, of
whole groups of features, poorly discriminated from one another, there comes
the phase of building up generalizations on the basis of an identification of a
single common feature.

Generalizations thus constructed are called ‘potential concepts’. They are
still pseudoconcepts from the point of view of the kind of criteria that make up
their categorical meaning: the above mentioned ‘single common feature’ remains
concrete and factual. Very often this common feature is related to the function
of the object or its role in a particular situation. And thus, for example, a dog
would be that who guards the house, and an equation—something you solve
for x, a function—something you find the values of, put them in a table and
draw a graph.

In the phase of potential conceptualizations



Developmental and Cultural Constraints of Understanding

153

to define an object or meaning of word means for the child to say what
it does, or, more frequently, what can be done with it. When the issue is
the definition of abstract concepts, it is the active situation, the equivalent
of the child’s word meaning, that advances to the forefront. In a study
of thinking and speech, Messer gives a typical example of a definition
of an abstract concept that was elicited from one of his subjects who
was in the first year of instruction. The child said: ‘Intelligence is when
I am thirsty but do not drink from a dirty pond.’ This type of concrete
functional meaning is the sole mental foundation of the potential
concept. (Vygotski, ibidem, p. 159)

 
As, in generalizing, the child becomes more and more able of founding the thinking
on the same single feature, he or she goes beyond complexization and approaches
true conceptualization via the intermediary phase of ‘potential concepts’.

‘Potential concepts’ are called potential because they contain in themselves
the possibility of becoming fully fledged concepts, once the feature that lies at
their basis detaches itself from the concrete, the factual, the situational.

A remark that occurs to me at this point is that what the so-called ‘contextual’
or ‘situational’ mathematics movement in mathematics education proposes to
do is, in fact, to engage students in constructing pseudo-concepts and potential
concepts (or, rather, I should say, ‘pre-concepts’ because we are speaking of real
and not of experimental concepts), that is, in generalizations that are already
based on an identification of a single feature but are still very closely linked to
concrete situations. This is not a bad idea, altogether, if we admit that, in
constructing a new concept, the student has to pass through syncretization and
complexization and that pre-concepts is the necessary phase in the transition to
conceptual thinking.

Moreover, not much more than pre-concepts can be expected before the age
of adolescence. Students may not be able to focus their attention on the
definitional single and abstract feature of objects, taking them in all their actual
and situational richness. But, it is important to be aware that one cannot expect
that older students will develop conceptualizations spontaneously by themselves,
through some ‘necessary, natural law of evolution’. It is the teachers’ and adults’
role to provide the youth with challenging theoretical questions and problems
in and out of school setting to open the ‘gate to conceptual thinking’ for them
(Vygotski, ibidem, pp. 191, 212).

The Development of the Operation of Synthesis: Conceptual Thinking

The construction of a concept involves a substantial use of the operation of
abstraction of features and the synthesis of these features into a coherent whole.
One can speak of conceptual thinking when such abstract syntheses become the
fundamental form of thought with which the subject perceives and interprets
reality (ibidem, p. 159). The synthesis itself is a culmination of a series of
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identifications, discriminations and generalizations. The crucial role in this
operation is played by the ‘functional use of the word’.
 

The concept arises in the intellectual operation. It is not the play of
associations that leads at its construction. In a unique combination, all
the elementary intellectual functions participate in its formation. The
central feature of this operation is the functional use of word as a means
of voluntarily directing attention, as a means of abstracting and isolating
features, and as a means of the synthesizing and symbolizing these
features through the sign. (Vygotski, ibidem, p. 164)

 
The formation of a concept involves not only the synthesis that allowed to
isolate the necessary and sufficient criterion of its meaning; this synthesis must
also grasp the concept’s relations with other concepts, ideas, judgments. Concepts
do not exist in isolation. A concept is immediately embedded into a system of
ideas and judgments.
 

The concept actually does find its natural place in judgements and
conclusions, acting as a constituent of them. The child who responds
with the word ‘big’ when presented with the word ‘house’, or with the
phrase ‘apples hang from it’ when presented with the word ‘tree’ proves
that the concept exists only within a general structure of judgements,
that it exists only as an inseparable part of that structure. (ibidem, pp.
163–4)

 
Vygotski claims that having judgments, being able to formulate judgments
about objects precedes the ability to define concepts involved in these
judgments.

Adolescence does not automatically trigger conceptual thinking in children.
As in other areas of their mental and physical development, early adolescence is
a very stormy time of transition and change: ‘the period of crisis and maturation’
(ibidem, p. 160).

Several clashes characterize this beginning phase of conceptual thinking.
Among them is the discrepancy between the ability to ‘do things with’ a concept,
i.e., use it, make it work, and the ability to think and speak about it, in particular,
to define it in general terms.
 

In the concrete situation, the adolescent forms the concept and applies
it correctly. However, when it comes to the verbal definition of this
concept, the adolescent’s thinking encounters extreme difficulty. The
concept’s definition is significantly narrower than the concept as it is
actually used. This indicates that the concept arises as the result of
processes other than the logical processing of certain elements of
experience. Moreover, it comes into conscious awareness and acquires
a logical character at a comparatively late stage of its development…
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In our experiments we often observed a situation where the child or
adolescent correctly resolved the task involved in the formation of the
concept. However, in providing a definition of the concept he had
formed the same child sank to a more primitive level and began to
enumerate the concrete objects grasped by the concept in a particular
situation. Thus, the adolescent uses the word as a concept but defines
it as a complex. This type of oscillation between thinking in complexes
and thinking in concepts is characteristic of the transitional age.
(ibidem, p. 161)

 
Another difficulty experienced by adolescents is that of transfer of concept from
one concrete situation to another. However, this difficulty is quite quickly
overcome. A more serious problem is related to the transfer of a concept from
abstract definition to concrete situations (i.e., when it comes to its interpretations
and applications). But even that should normally be overcome by the end of the
transitional age.

Rather early, children are able to use words in their correct meanings; they
may not always be aware of their own thinking in making the choice of the
right word. They are not able to use a word ‘intentionally’.

Vygotski gives an example of 7–8-year-old children, who when asked to
explain what does the word ‘because’ mean in the sentence: ‘I am not going
to school tomorrow because I am ill’, would give answers like: ‘this means
that he is ill’, ‘this means he will not go to school’. Or, when asked to complete
the sentence ‘This man fell off his bike, because…’, they would answer: ‘he
fell off his bike because he fell and then he hurt himself’, ‘because he broke
his leg, his arm’.

For Vygotski, an awareness of one’s own thinking processes, a conscious and
intentional (and not just spontaneous or imitative) use of words is exactly that
which founds the conceptual thinking. Now, because awareness and intentional
use of one’s own thinking processes presupposes their generalization, and
generalization is nothing but a constitution of a hierarchy, then conceptual
thinking must be systemic. Indeed, for Vygotski, awareness of concepts and
their systemic character are synonymous (ibidem, p. 192).

One important consequence of this, and Vygotski stresses it very strongly, is
that the system of concepts cannot be given (transmitted) to the child from
outside. The systemic character of thought is synonymous with awareness and
awareness is always an awareness of one’s own thought. In order to be aware of
one’s own thoughts and thinking processes one must first have these thoughts
and experience these thinking processes.
 

…the system—and the conscious awareness that is associated with
it—is not brought into the domain of the child’s concepts from without;
it does not simply replace the child’s own mode of forming and using
concepts. Rather, the system itself presupposes a rich and mature form
of concept in the child. This form of concept is necessary so that it
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may become the object of conscious awareness and systematization.
(ibidem, p. 192)

 
The domain par excellence of systematization is the domain of scientific concepts
(ibidem, p. 212). This is why learning at school is so important. Scientific concepts
precede the spontaneous concepts in the development of the child, and in fact,
foster their development.

The Spiral Development of Real Concepts in a Child

The systemic character of generalizations is more visible in the real processes of
concept formation than in the experimental setting, where the child is usually
given the task of forming some artificial concept independently from his or her
previous knowledge and experience. A generalization is always built on some
previous generalizations. The development of generalizations resembles a spiral
and not a series of concentric circles (ibidem, p. 229).

In an example taken from research on the development of mathematical ideas
Vygotski shows how algebraic thinking develops upon the arithmetic thinking
and transcends it through generalization.
 

An analysis of the development of preschooler’s general representations
(which correspond to the experimental concepts that we call complexes)
indicated that general representations—as a higher stage in the
development of word meaning—emerge not from generalization of
isolated representations but from general perceptions. That is they
emerge from the generalizations that dominated the previous stage…
In our study of arithmetic and algebraic concepts we established an
analogous relationship between new generalizations and those that
precede them. Here, in studying the transition from the school child’s
preconcepts to the adolescent’s concepts, we were able to establish what
is in essence the same thing that we established in previous research on
the transition from generalized perception to general representations
(i.e., from syncretic images to complexes). (ibidem, p. 230)

 
Vygotski describes the preconcept of number as ‘an abstraction of number
from the object and a generalization of the quantitative features of the object’
(ibidem). The concept of number, on the other hand, is ‘an abstraction from
the number [of things] and a generalization of any relation between numbers’
(ibidem).

Thus, the concept is an abstraction and generalization of thoughts about
thoughts, while the preconcept is an abstraction and generalization of thoughts
about things. The concept is not an evolution of the pre-concept; it is a leap to
a new and higher level of thought; it is thinking about the thoughts of the
previous levels.
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Vygotski seems to be saying that the concept of number belongs to algebraic
thinking; arithmetic thinking is concerned with at most the preconcept of number.
Algebraic thinking is based on a generalization of one’s own arithmetical
operations and thoughts and is, therefore, characterized by free acting in and on
the arithmetical domain. In algebra, arithmetic expressions can be transformed,
combined according to the general laws of arithmetic operations and not just
calculated, ‘executed’ like in the frame of arithmetic thinking. Operations are
independent from the particular arithmetic expressions they are involved in.
2+3 for an arithmetically thinking school child is 5, period. 2+3 for the
algebraically thinking adolescent is a particular case of a+b, where a, b are any
real numbers. For the algebraically thinking adolescent arithmetical operations
are special cases of the more general algebraic notions.

As long as one works within a system without being aware of its laws, one is
tied up in it. Awareness brings about freedom and control over the system.
Once the system is seen as one of the possible systems, a way is open to new
systems, new generalizations and syntheses, new understanding.

The Psycho-genetic Roots of Epistemological Obstacles

In the experiment with the notion of equipotence involving children 10–12 and
14-year-olds (Sierpinska and Viwegier, 1992), it appeared less difficult for the
10-year-old Agnès to accept the equipotence of given infinite sets than for the
14-year-old Martha, who never accepted the equipotence unconditionally. Also,
Agnès was swift in grasping the main argument for the equipotence of natural
and even numbers while Martha argued very strongly against it and it took her
a long while to discover an inconsistency in her reasoning. But: she discovered
it! She was able to reflect on and judge her own thinking and was certainly more
aware of the difficulties inherent in the notion of equipotence, of its non-
intuitiveness.

While Agnès’ thinking was still very complexive in nature, Martha certainly
thought conceptually of infinity and subsets although her concepts were not
exactly those we know from studying Mengenlehre. For her, ‘infinity’ was
something ‘as large as we wish’ and therefore impossible to count, and a subset
was a part with less elements than the whole. These concepts, embedded in a
whole system of her other concepts and beliefs (also about the nature of
scientific knowledge) functioned as obstacles to her acceptance of the proposed
definition of ‘as many as’ and, even more so, to its logical consequences
(especially to the equipotence of natural and even numbers) and Martha was
aware of it.

Systemic thinking cannot bear inconsistencies and Martha struggled to remove
hers from her system, first, by trying to undermine the above mentioned
consequence of the definition of ‘as many as’. When she failed—and she admitted
it by discovering an inconsistency in her arguments—she proposed to reject the
definition itself. She would rather change the axioms of the theory than any of
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what she considered as fundamental truths or ‘basic statements’ (to use the term
of Popper and Lakatos, see Lakatos, 1978b). Informed that, in the mathematical
theory, ‘as many as’ is understood in very much the proposed way and the
equipotence of natural and even numbers is accepted as a theorem, she fell into
frustration and dramatically declared herself disappointed with mathematics.
In spite of this frustration or maybe exactly because of it we may say that, by
the end of the experiment, Martha’s understanding of mathematics was much
deeper than in any of the younger children.

We say that, in Martha, her concepts of infinity and subset functioned as
epistemological obstacles because, first of all, they were concepts (not complexes),
parts of a system of concepts, ways of thinking and beliefs and therefore they
could not be removed or changed without injuring the whole system. Second,
they belonged to the sphere of scientific thinking and its foundations; they were
linked with beliefs about what knowledge is and what makes it valid.

It seems that one cannot sensibly speak of epistemological obstacles in children
before they reach the age of conceptual thinking.

Things went easier with the younger children because they did not have to
overcome epistemological obstacles. The epistemological obstacles still remained
to be constructed.

And constructed they are in the child’s development and socialization,
gradually, on the basis of the child’s experiences with, first, the concrete sets
and concrete numbers of things, small numbers of things, and then, inferences
about large numbers and the inner invisible structure of things—thus transcending
the immediate experience and the possibilities of actual counting.

First generalizations are built on images of the concrete and the finite. No
wonder they resemble so much their archetypes. A point is a very tiny dot,
infinity is ‘so many that you cannot count’ etc. Concepts cannot be given to the
child, ready made, in the verbalized form or symbolic representation. The child
has to construct them as generalizations of his or her previous generalizations
and it is quite natural that the adolescent’s first concepts may bear little
resemblance to the fully fledged ones developed by generalizations made by
mathematicians in their adult, mature, and often genius lives. And thus they
become obstacles to understanding the theories.

In our experiment, younger children, too, experienced difficulties in
understanding why some of the given sets could be regarded as having ‘as
many elements one as the other’. But these difficulties were not a consequence
of an epistemological obstacle. If they could not understand the statement it
was not because it didn’t fit into what they already knew. They would not
bother about fitness or consistency. They just struggled for finding a way to
explain it to themselves, for finding a way to make it acceptable from their
own point of view. And, in the frame of complexive thinking, this meant
finding some concrete way of actually matching the elements of the two sets
together in pairs. It was not necessary, for these children, to actually perform
the matching. Not any more. They were much too far advanced in their
complexive thinking. It was enough to be able to imagine how this can be
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done, and to show it with a vague gesture. Arguments why the method of
pairing would work were not felt as necessary by the children in the case of
two lines. If argumentation appeared in the case of natural and even numbers
it is because the elements could not be represented on a sheet of paper in a
way that would show all their elements matched simultaneously. The problem
was much more abstract and it was not obvious that the method of matching
1 with 2, 2 with 4 etc., would indeed work. A verbal argument was necessary
and Agnès was able to find it: the sets are infinite and infinity is something
that never ends, so you never run short of these even numbers to match with
the natural numbers. The challenge of the situation was so big that it almost
pulled Agnès beyond her complexive thinking. Of course, the chances of her
staying there were probably minimal. It could be seen, however, that rational
and deductive argumentation, and good understanding of unboundedness
of the set of natural numbers were all within Agnès’ zone of proximal
development.

This is how, according to Vygotski, the child is able to transcend his or
her actual ways of thinking. The challenging questions posed by the adult
lead the child’s thinking beyond the forms he or she is using and sometimes
force it into forms that are much more elaborate. Concepts develop this
way, but, simultaneously, the seeds are thrown of future epistemological
obstacles. The obstacles grow on the soil of complexive, childish, thinking—
they have genetic roots. But the fertilizers (the challenges that make them
grow) come from the surrounding culture, from the implicit and explicit
ways in which the child is socialized and brought up at home, in the society,
in the school institution.

It is to the cultural roots of epistemological obstacles that we turn now.

The Cultural Roots of Epistemological Obstacles

What the child will ‘complexize’ and the adolescent ‘conceptualize’, or, to put it
differently, what each of them will attempt to understand and how will they
understand it depends not only on the particularities of the human brain and on
the constraints of the genetic development but also and foremost on the culture
into which the child is socialized. The language used in the child’s environment
may favour certain images rather than other. For example, certainly the
abundance of nouns in some languages and the way abstract constructs are
spoken about inspire a way of understanding that ‘reify’ the world, fills it up
with stable and fixed ‘things’ rather than with processes, dynamic changes and
different forms of energy constantly changing from one to another (Lakoff and
Johnson, ibidem). Atoms like little billiard balls, geometrical points like little
dots, arranged as beads in a necklace—these are the images conveyed to the
child by the way these concepts are spoken about.

An object of understanding must be noticed to become an object of
understanding. But what to notice, and what are the noticed things signs of
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—this is learned, acquired through the processes of socialization and education.
A mother will teach her child to eat with a spoon—to notice this object and
identify it as a tool for bringing the food to the mouth and not to throw it at
the dog. In a mathematics class, when teaching word-problem solving, the
teacher will point to information that is relevant from the mathematical point
of view, and discard that which is irrelevant. In a ‘buying and selling’ problem,
it is not relevant whether the apples bought were McIntosh or Golden Delicious,
or whether the buyer’s name was Yi-Ching or Eddy. What counts is the price
and the quantity of purchased goods. This teaching to attend to numbers only
is so successful that when asked the now legendary problem: ‘There are 5
goats and 7 sheep aboard a boat. How old is the captain?’ the students almost
unanimously respond: ‘35’.

In different cultures, different things are attended to. Numbers and counting
are important in certain cultures. Children are trained in memorizing the sequence
of numerals and a child who ‘can count up till 100’ at the age of 4 is praised by
everybody around. Some cultures have not found it worth-while to invent
numerals above a certain small number, and do not bother to think about numbers
as objects in themselves.

The child learns by imitating the behaviour of adults. He or she learns also
what the adults would wish him or her not to learn, in the hope that the child
will be a better and ‘revised’ version of themselves. Schemes of behaviours induce
schemes of thinking. The child acquires, without knowing it, certain schemes of
approaching problems and solving them.

Cultures determine their own epistemological obstacles—things that are so
obvious, so natural that nobody would think of questioning them [lest he or she
be branded a blasphemist!]. First, one would have to be aware of them being
obstacles indeed. And being aware of an obstacle can be very close to its
overcoming.

Anthropologists have tried to make us more aware of the implicit, the
unspoken, the ‘hidden dimension’ of our culture (Hall, 1969, 1976, 1981; Hook,
1969). They have tried to explain the difficulty of communication between
different ethnic groups. But there may be similar difficulties in communication
between the scientific community and the laymen, the teachers and the learners,
the scientific thinking and the everyday thinking.

The cultural dimension of mathematics learning is more and more taken
into account in mathematics educational research (Bishop, 1988, 1991;
Chevallard, 1990, 1992; Keitel et al., 1989; Mellin-Olsen, 1987; Vasco, 1986,
to name but a few). In a review of a book devoted to the relationship between
the cultural development and the development of arithmetical skills, strategies
and concepts in young street candy sellers in Brazil (Saxe, 1990), Alan Bishop
writes:
 

These are fascinating and challenging times in mathematics education,
as the influences from anthropology are forcing us to reshape our
constructs and our methodologies. Research like Lave’s is making us
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reexamine our problem solving research ideas to take full account of
the social situation in which the problem is framed. The ethnographic
research approach and its associated assumptions are becoming more
acceptable within our research community. Ethnomathematics is an
ever growing field with enormous implications for both curriculum
development and pedagogical practice in all countries. The developing
field of cultural psychology…is going to have a profound influence on
psychological theory and will also, in my view, have challenging
implications for all of us in mathematics education. (Bishop, 1991)

 
These words were written in 1991. One might get the impression that the
‘cultural’ trend in mathematics education is very recent. In fact, the cultural
dimension in the study of the teaching and learning processes in mathematics
appeared at least as far back as in the mid-1970s in the French and German
didactics of mathematics under the influence of sociologists of education such
as, for example, Basil Bernstein. Education started to be viewed as ‘transmission
of culture’, and a means for its ‘reproduction’ (e.g., Bernstein, 1971; also,
Marody, 1987). Guy Brousseau’s concepts of ‘contrat didactique’ and ‘situation
didactique’, Yves Chevallard’s ‘transposition didactique’, Heinrich Bauersfeld’s
studies of the invisible culture of the mathematics classroom—the discovery
of patterns and routines of the classroom communication—are all based on a
holistic view of institutionalized learning as part of a certain culture and a
culture itself.

What I personally have reached for in the anthropological thought are the
theoretical considerations of E.T.Hall (1981)—his ‘theory of culture’—which
appears to quite convincingly explain epistemological obstacles as a cultural
phenomenon.

The ‘Cultural Triad’

Hall describes culture as a ‘form of communication’ (Hall, ibidem, p. 49) or as
‘a learned and shared way of behaviour’ (p. 66). Teaching and learning are
crucial in a culture. Hall claims that ways of teaching determine, in a sense, all
other components of culture, and learning is an activity just as important for
survival as sleep, water and food.

He speaks of the ‘fundamental triad’: three levels of experiencing the world
by man, three ways of transmission of this experience to children, three types of
consciousness, three types of emotional relations to things: the ‘formal’, the
‘informal’, the ‘technical’.

The ‘formal’ level is the level of traditions, conventions, unquestioned opinions,
sanctioned customs and rites that do not call for justification. The transmission
of this level of culture is based on direct admonition, explicit correction of errors
without explanation (‘don’t say “I goed”, say “I went”’). Built up over
generations, the formal systems are normally very coherent. For people living in
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cultural communities, they play a role analogous to that which instinct has for
animals.

The informal level is the level of the often unarticulated schemes of behaviour
and thinking. Our knowledge of typing, or skiing, or biking belongs to this level
of culture if we do not happen to be instructors of these skills. This level of
culture is acquired through imitation, practice and participation in a culture,
and not by following a set of instructions. Very often neither the imitated nor
the imitating know that some teaching-learning process is taking place.

At the technical level, knowledge is explicitly formulated. This knowledge is
analytical, aimed to be logically coherent and rationally justified.
 

The process of teaching [at this level] has a planned, coherent form
…Knowledge belongs to the instructor. His skills are function of his
knowledge and analytical abilities. If he has clearly and conscientiously
analysed the material, his presence is not even necessary. He can write
it on paper or record on tape…[Like the formal education] the technical
education starts with errors and correction of errors, but a different
tone is used here and the student is being explained his error. (ibidem.,
pp. 82, 84–5)

 
In terms of the triad, Hall then defines culture, taken at any given point, as
‘made up of formal behavior patterns that constitute a core around which there
are certain informal adaptations. The core is also supported by a series of technical
props’ (ibidem, p. 91).

It is necessary to stress that the contents of the levels of culture are not something
stable and fixed once and for all; not only these contents change considerably
from one culture to another, they also change within one culture. Elements of the
formal level can be pushed into the implicit and informal. Sometimes an idea is
born within the technical sphere which contradicts the common beliefs of the
formal level and is being publicly rejected by those who consider themselves
responsible for the standards, whether scientific or moral or religious or other.
But with time, use and thoughtless repetition the idea may shift to the formal level
and become a new kind of belief. Indeed, ‘every really significant scientific idea is
born as a heresy and dies as a prejudice’ (Cackowski, 1992).

I promised, in Chapter 4, to show how one can establish a ‘homomorphism’
between Hall’s cultural triad and Foucault’s épistémè. Here is a suggestion:
Foucault’s épistémè can be regarded as related categories, rules of sense and rules
of rationality prevalent in a given epoch and culture (Skarga, op.cit.). These three
pillars seem to correspond to the three levels of culture: the formal, the informal
and the technical. Categories normally function without much justification,
directing the thought, determining the important questions; it is around them that
a whole world view is built up. When they start to be questioned, the society is
ready for a change. The rules of sense are usually not fully articulated and can be
unconscious, but they are what guides the way of making sense of events,
phenomena, texts; they order the world. We can say that they belong to Hall’s
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‘informal level’. The rules of rationality, in their turn, are more appropriately
placed on the ‘technical level’ of culture. Different epochs characterize rationality
in different ways, but explicitness, articulation of meanings, justification of
statements, generality are probably the common features. Differences appear in
the standards of this articulation, justification, generality.

In the sequel we shall use the language of Hall’s ‘triad’ to speak about the
cultural constraints of epistemological obstacles in mathematics.

The Mathematical Culture

Mathematics can be regarded as a developing system of culture and a sub-culture
of the overall culture in which it develops (Wilder, 1981).

Also in the mathematical culture three levels of experiencing mathematical
thoughts, three ways of transmission of this experience to others, three types of
consciousness, three types of emotional relations can be distinguished: ‘the
formal’, the ‘informal’, and the ‘technical’.

Let us assume that the ‘technical’ level of a mathematical culture is the level
of mathematical theories, of knowledge that is verbalized and justified in a way
that is widely accepted by the community of mathematicians. In the following,
the formal and the informal levels of culture will be discussed in more detail—
they are the hotbed of epistemological obstacles.

At the ‘formal’ level, our understanding is grounded in beliefs; at the ‘informal’
level—in schemes of action and thought; at the ‘technical’ level—in rationally
justified, explicit knowledge.

In a mathematical culture the fundamental role is played by the ‘informal’
level. This role is both positive and negative. The ‘informal’ level of a
mathematical culture is the level of tacit knowledge (Polanyi, 1964), of unspoken
ways of approaching and solving problems. This is also the level of canons of
rigour and implicit conventions about, for example, how to justify and present
a mathematical result. Today, for example, to write in a mathematical paper
that a certain theorem has exceptions would be exhilarating. But, as we already
mentioned, in the nineteenth century, it was perfectly acceptable for N.H.Abel
to write such a sentence with respect to the well-known Cauchy’s theorem that
the limit of a convergent sequence of continuous functions is a continuous
function (Lakatos, 1978a).

Example: culturally bound notions of rigour in mathematics
Another example of a historical difference in viewing mathematical rigour is

given by Kvasz (1990). It is related to the problem of convergence of power
series. At the time when the expansion of real functions in power series had
known its apogee, mathematicians did not find it necessary to prove the
convergence of the series. For example, in the expansion:
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the existence of the sine was guaranteed by its geometrical meaning. Series were
just a computational tool. If the tool works then the series must converge to sin
x. This was, as Kvasz calls it, a realistic approach to mathematical objects.
 

The realistic point of view is based on the belief in the existence of some
reality—geometrical, physical or other, which solves all questions of
existence. So the mathematician needs not to take care of them, and
not because he is not rigorous enough but because it does not make
sense. (Kvasz, 1990)

 
This realistic approach became untenable when complex functions started to be
studied. For example, the equation
 

 
cannot be regarded as a description of eix, otherwise well defined as an object.
Its existence can only be guaranteed by a proof of convergence of the series.
 

We came from the realistic to the nominalistic point of view. Here the
symbols refer to no reality. They are mere abbreviations for other
syntactical expressions. So the question of convergence becomes very
important. Only if the convergence of the series has been proved, we
have the right to use the symbol eix. (Kvasz, ibidem)

 
[End of example]

The ‘formal’ level of mathematical culture could be regarded as the level of
beliefs, convictions and attitudes towards mathematics, ideas about its nature,
relation to reality, etc. The belief in the absolute infallibility of mathematical
theories, the conviction that mathematics is rigorous, or, on the other hand,
the conviction that mathematical proofs rely on formal and conventional tricks,
and that, therefore, mathematics is completely useless from the point of view
of knowledge about the world and reality, are examples of elements of the
‘formal’ level.

Another element of this level is what is usually called the ‘mathematical
folklore’, i.e., what is ‘known’, what is so obvious, that nobody bothers to prove
it any more. In particular, the so called ‘cultural intuition’ belongs here (Wilder,
ibidem, p. 133). What Wilder calls ‘cultural intuition’ are the convictions
concerning the basic mathematical notions, which are taken for granted by
mathematicians in a given epoch. The existence of such ‘cultural intuition’ at
each moment of the development of mathematics has been formulated as a law
of this development (law 9) by Wilder. Here are some examples of such ‘cultural
intuitions’:
 

• the belief of the early Greek mathematical community in the
commensurability of all line segments;
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• the pre-Grassmann-Hamilton belief that all algebras and operations on
numbers must be commutative;

• the pre-Bolzano-Weierstrass intuition concerning real continuous
functions; in particular, that any such function can be non-differentiable
in at most a finite number of points;

• the conviction that the unit sphere cannot be decomposed into a finite
number of parts, from which two unit spheres could be composed (a
conviction refuted by Banach and Tarski in 1924, with the help of the
Axiom of Choice).

 
Let us remark that the way in which Wilder presents his examples of cultural
intuitions shows his own, rather platonistic, attitude towards the nature of
mathematics. Mathematical ideas seem to pre-exist, and the task of mathematics
is to discover them, give them names, find relations between them. First
experiences in a given domain allow to formulate certain guesses (or ‘intuitions’
in Wilder’s terminology) that can be refuted in the course of further research
into the nature of mathematical objects. But isn’t it rather that what we make
research into are the logical consequences of definitions and assumptions we
have deliberately chosen ourselves? We might have chosen a definition of function
that would not let in the plague of functions without derivatives. We might have
not accepted the Axiom of Choice into the foundations of mathematics. Didn’t
we have the Choice?

In a ‘formal’ or ‘technical’ way we can acquire certain knowledge about
mathematics, we can learn algorithms, some methods of proof (mathematical
induction, reductio ad absurdum, etc.), solving some ‘typical’ problems, ready
and written parts of a theory. We can be passive users of mathematics. But it is
only on the ‘informal’ level, by working with mathematicians, through
‘imitation and practice’ as Polya used to say, that we can learn to pose sensible
questions, put up hypotheses, propose generalizations, synthesize concepts,
explain and prove.

‘Informal’ knowledge and understanding is thus an indispensable support of
any creative thinking in mathematics. On the other hand, however, this same
knowledge and ways of understanding, as not fully conscious, and unquestioned,
and drawn from experience in concrete situations, can guide our thinking in
new situations in a way that will make the resolution impossible. Reiterating
attempts, we may unconsciously always apply the same schema of thought or
action, bewildered by the fact, that what has always worked so well suddenly
fails us completely. It is only an awareness of what was the ‘obstacle’ that allows
us to overcome the impasse and change our ways of understanding.

The Interplay Between the Three Levels of Mathematical Culture

The formal, the informal and the technical, albeit autonomous from the point
of view of their identity, are in constant mutual interaction. This feature of
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culture makes possible the cultural changes, the downfall of world views, the
rise of theories that bring about changes in our representations of the structure
of matter, of time and space, of number… This feature of culture makes
understanding possible.

On the one hand, the formal and the informal affect the technical; on the
other—the technical ‘creates very quickly its own formal system’ (Hall, ibidem,
p. 81). As Bachelard said:
 

Knowledge acquired through a scientific effort can decline itself: the
abstract and sincere question gets used, the concrete answer remains.
At this point the spiritual activity inverts and blocs itself. An
epistemological obstacle encrusts itself on the unquestioned knowledge.
Intellectual habits, once healthy and useful, can, at the long term, impede
the research. ‘Our mind—rightly says Mr Bergson—has an irresistible
tendency to consider as clearer the idea that serves it more often’.
(Bachelard, 1983, pp. 14–15)

 
What is considered as obvious and natural, what is unquestioned, will, in some
measure, determine what will be considered as problematic: what questions and
hypotheses will be posed and what will be the ways of attacking them.

On the other hand, the problems will determine the results that will be
obtained, i.e., what will be considered as the ‘justified body of scientific or
technical knowledge’.

The way in which the ‘technical sphere’ can affect the ‘formal’ sphere is
described by Hall as follows:
 

Science, whose nature is, as we think, technical, has developed a series
of formal systems that nobody puts into question. They are linked with
the methodology of scientific research, with the stress put on the
objectivism of members of the scientific community, on their loyalty to
their own work and the work of others. In fact, a part of what is being
called science, should be classified as a new formal system, which quickly
takes the place or replaces the older formal systems, concentrated around
popular beliefs and religions… The so-called social sciences or the
behavioral sciences are saturated with the ritualized procedure
transmitted by professors to those who will later transmit it to their
students. Rumour has it that a certain zealant of scientific sociology
has elaborated an index, with the help of which one can evaluate the
degree of ‘scientificity’ of a given publication. The scale is based on the
ratio main text—annotations, and on the number of statistical data in
the text. (Hall, 1981, p. 81)

 
Example: beliefs related to Hilbert’s programme of finitistic proofs

In the history of mathematics, the successes of formalization at the turn of
the century have encouraged Hilbert to formulate a programme full of optimistic
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belief in the possibility of carrying through finitistic proofs of consistency of the
fundamental mathematical theories. This belief had driven mathematicians’ and
logicians’ ‘technical’ activity for several decades and reached its culmination, in
1930, with Gödel’s proofs of the impossibility of proving the consistency of
arithmetics with the methods of arithmetic.

This result has caused confusion among philosophers of mathematics. The
myth of absolute infallibility of mathematics was seriously shaken.

Morris Kline (1980) writes,
 

The logicists, formalists and set theorists rely on axiomatic foundations.
In the first few decades of this century this type of foundation was
hailed as the choice basis on which to build mathematics. But Gödel’s
theorem that no one system of axioms embraces all of the truths that
belong to any one structure, and the Löwenheim-Skolem theorem shows
that each embraces more than was intended. Only the intuitionists can
be indifferent to the problems posed by the axiomatic approach.

To top all the disagreements and uncertainties about which foundation
is the best, the lack of proof of consistency still hangs over the heads of
all mathematicians like the sword of Damocles. No matter which
philosophy of mathematics one adopts, one proceeds at the risk of
arriving at a contradiction. (Kline, 1980, p. 310)

 
After Gödel some philosophers tried to find a way out of this feeling of
uncertainty. In fact, some of them proceeded to build their certainty on this
uncertainty. This is how the philosophy of Lakatos could be described, perhaps.
In the years 1960–70 Lakatos started to promote a philosophy of fallibilistic
mathematics: mathematics as a ‘quasi-empirical science’. According to Lakatos
(1978b), the basic logical flow in mathematics is not the transmission of truth
through the channels of deduction from axioms to theorems, but rather the
retransmission of falsity from the special statements (the so-called ‘basic
statements’) towards the axioms. In this approach, axioms are but ‘working
hypotheses’, and if it turns out, on the basis of the axioms, that one of the basic
statements does not hold, then one would rather change the axioms than reject
the statement.

The idea of mathematics presented by Lakatos in his Proofs and refutations,
is well rendered by Kline (ibidem) when he writes:
 

[mathematics] is a series of great intuitions carefully sifted, refined and
organised by the logic men are willing and able to apply at any time.
The more they attempt to refine the concepts and systematize the
deductive structure of mathematics, the more sophisticated are its
intuitions. But mathematics rests upon certain intuitions that may be
the product of what our sense organs, brains and the external world
are like. It is a human construction and any attempt to find an absolute
basis for it is probably doomed to failure.
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Mathematics grows through a series of great intuitive advances, which
are later established not in one step but a series of corrections of
oversights and errors until the proof reaches the level of accepted proof
for that time. No proof is final. New counterexamples undermine old
proofs. The proofs are then revised and mistakenly considered proven
for all time… Actually the mathematician does not rely upon rigorous
proof to the extent that is normally supposed. His creations have a
meaning for him that precedes any formalization, and this meaning
gives the creations an existence or reality ipso facto. The attempt to
determine precise metes and bounds of a result by deriving it from an
axiomatic structure may help in some ways but does not actually enhance
its status. (Kline, ibidem, p. 313)

 
Today’s mathematicians (when they care to bother about it) remain perplexed
between the awareness of lack of absolute proofs of consistency and the strong
feeling of the soundness of the mathematics they create. [End of example]

Another example of flow of elements of culture from the technical to the
formal level is supplied by the history of the so-called ‘principle of homogeneous
quantities’.

Example: the principle of homogeneity: an axiom turned norm of rigour
The Definition V, 3 of the ‘Elements’ says: ‘Ratio is a quantitative relation

between two homogeneous quantities’. This definition has led to the rule: it is
impossible to speak about the ratio of two non-homogeneous quantities. This
rule became a kind of unquestioned dogma, very difficult to overcome. One
symptom of this obstacle was the reluctance, in kinematics, to consider the ratio
of distance to time as an expression of velocity. As the historians Dedron and
Itard remarked: ‘It is perhaps of interest to note that in none of the work of
seventeenth century applied mathematicians, except perhaps in that of Wallis,
do we find the modern definition of velocity as the quotient of distance travelled
divided by time, or the limit of this quotient as the time interval tends to zero.
Even for Euler, in Letters to a German Princess, ‘Velocity is that well-known
property whereby one says that in a certain time a body travels a greater or less
distance in space’ (Dedron and Itard, 1973, p. 192).

Of course, the life of the principle of homogeneity would not be as long as it
was, were it not consistent with other elements of the formal level of mathematical
culture. The principle of homogeneity is closely related to the idea of
discrimination between the discrete and the continuous quantities, proposed in
the ‘Elements’. Numbers could only be coefficients in equations involving
magnitudes. They showed how many times a given quantity has to be taken.
Quantities were represented geometrically as line segments (lengths),
parallelograms (areas), parallelepipeds (volumes). It does not make sense to add
a length and a volume, and even less to divide a length into a volume. The
expression a/b where a and b are quantities, could not be replaced by a number—
result of division of the measure of a by the measure of b. A ratio carried in itself
the information about the quantities of the two magnitudes a and b, the
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information about what is being compared to what. In a/b regarded as a number
this information is lost. [End of example]

The flow of elements of culture from one level to another has a dialectic
character: something that, on the technical level, is an achievement that pushes
the research forward, may become, on the formal level, a dogma that nobody
dares to shake. On the informal level—it may imprint itself as a scheme of
thought, a habit so natural that it becomes a part of ourselves.

A progress on the technical level always requires a certain overcoming of our
intellectual habits and of what we have considered as infallible truths—the sacred
cows of our minds.

At the same time, deprived from our beliefs, convictions and schemes of
thought, we would be totally helpless in front of any intellectual task. Einstein
wrote: ‘…if the researcher went about his work without any preconceived
opinion, how should he be able at all to select out those facts from the immense
abundance of the most complex experience, and just those which are simple
enough to permit lawful connections to become evident’ (cited in Holton, 1978,
p. 99). Laws are not derived by induction from observation of particular facts.
Indeed, the very notion of ‘fact’ does not make much sense prior to theory.
However, these pre-suppositions are not taken at random—they are guided by
what is called the scientist’s ‘intuition’ which, in case of individuals such as
Einstein, means a global vision of the past and future developments of a domain.

The situation is not very different in mathematics. Mathematicians do incline
themselves under the logical necessities of their proofs and verifications and
sometimes unexpected or paradoxical results are obtained. But the very fact
that some results are considered paradoxical proves the existence, also in
mathematicians, of what Holton calls ‘thematic presuppositions’, i.e., ‘the un
verifiable, unfalsifiable and yet not arbitrary conceptions and hypotheses’.

 
NIHIL NOVI

 
The vision of ‘good’ understanding in mathematics presented in this book, full
of metaphors of struggle, ‘overcoming’ obstacles, ‘breaking’ with a scheme of
thought, etc., is nothing new. This is just another way of saying that ‘there is no
royal road to geometry’. However, this seems to be more true today than 2500
years ago. Haven’t we less and less royal roads on Earth anyway?
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