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E(X) the expected value of X,

which is ¹

Var(X) the variance of X,

which is ¾ 2
X

Z =
X ¡ ¹
¾

the standardised variable

P(.......) the probability

of ........ occurring

» is distributed as

¼ is approximately equal to

x the sample mean

s 2n the sample variance

s 2n¡1 the unbiassed estimate of ¾2

¹X the mean of random

variable X

¾X the standard deviation

of random variable X

DU(n) the discrete uniform

distribution

B(n, p) the binomial distribution

B(1, p) the Bernoulli distribution

Hyp(n, M , N ) the hypergeometric

distribution

Geo(p) the geometric distribution

NB(r, p) the negative binomial

distribution

Po(m) the Poisson distribution

U(a, b) the continuous uniform

distribution

Exp(¸) the exponential distribution

N(¹, ¾2) the normal distributionbp the random variable

of sample proportions

X the random variable

of sample means

T the random variable

of the t-distribution

º the number of degrees

of freedom

H0 the null hypothesis

H1 the alternative hypothesis

Â 2
calc the chi-squared statistic

SYMBOLS AND NOTATION f .......... g the set of all elements ..........

2 is an element of

=2 is not an element of

fx j ....... the set of all x such that ......

N the set of all natural numbers

Z the set of integers

Q the set of rational numbers

R the set of real numbers

C the set of all complex
numbers

Z + the set of positive integers

P the set of all prime numbers

U the universal set

; or f g the empty (null) set

µ is a subset of

½ is a proper subset of

P (A) the power of set A

A \B the intersection of sets

A and B
A [B the union of sets A and B

) implies that

)Á does not imply that

A0 the complement of the set A

n(A) the number of elements
in the set A

A nB the difference of sets

A and B

A¢B the symmetric difference

of sets A and B

A£B the Cartesian product of

sets A and B

R a relation of ordered pairs

xRy x is related to y

x ´ y(modn) x is equivalent to y, modulo n

Z n the set of residue classes,
modulo n

£n multiplication, modulo n

2Z the set of even integers

f : A! B

f : x 7! y f is a function under which
x is mapped to y

f(x) the image of x under
the function f

f¡1 the inverse function of
the function f

f
A

B

is a function under which
each element of set has
an image in set
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f ± g or f(g(x)) the composite function of f and g

jxj the modulus or absolute value of x

[ a , b ] the closed interval, a 6 x 6 b

] a, b [ the open interval a < x < b

un the nth term of a sequence or series

fung the sequence with nth term un
Sn the sum of the first n terms of a sequence

S1 the sum to infinity of a series
nX
i=1

ui u1 + u2 + u3 + :::::+ un

nQ
i=1

ui u1 £ u2 £ u3 £ :::::£ un
lim
x!a

f(x) the limit of f(x) as x tends to a

lim
x!a+

f(x) the limit of f(x) as x tends to a from the positive side of a

maxfa, bg the maximum value of a or b
1X
n=0

cn x
n the power series whose terms have form cn x

n

a j b a divides b, or a is a factor of b

a jÁ b a does not divide b, or a is a not a factor of b

gcd(a, b) the greatest common divisor of a and b

lcm(a, b) the least common multiple of a and b
»= is isomorphic to

G is the complement of G

A matrix A

An matrix A to the power of n

A(G) the adjacency matrix of G

A(x, y) the point A in the plane with Cartesian coordinates x and y

[AB] the line segment with end points A and B

AB the length of [AB]

(AB) the line containing points A and BbA the angle at A

[CAB or ]CAB the angle between [CA] and [AB]

¢ABC the triangle whose vertices are A, B and C

or the area of triangle ABC

k is parallel to

kÁ is not parallel to

? is perpendicular to

AB.CD length AB £ length CD

PT2 PT £ PT

Power MC the power of point M relative to circle C¡!
AB the vector from A to B
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Statistics and probability

88

Contents: A

B

C

D

E

F

Expectation algebra

Cumulative distribution functions
(for discrete and continuous
variables)

Distribution of the sample mean
and the Central Limit Theorem

Confidence intervals for means and
proportions

Significance and hypothesis testing
and errors

The Chi-squared distribution, the
“goodness of fit” test, the test for
the independence of two variables.

Before beginning any work on this option, it is recommended that a careful revision of
the core requirements for statistics and probability is made.

This is identified by “ ” as expressed in the syl-
labus guide on pages 26–29 of IBO document on the Diploma Programme Mathe-
matics HL for the first examination 2006.

Throughout this booklet, there will be many references to the core requirements,
taken from “Mathematics for the International Student Mathematics HL (Core)” Paul
Urban et al, published by Haese and Harris, especially chapters 18, 19, and 30. This
will be referred to as “from the text”.

Topic 6 – Core: Statistics and Probability

HL Topic
(Further Mathematics SL Topic 2)
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10 STATISTICS AND PROBABILITY (Topic 8)

Recall that if a random variable X has mean ¹ then ¹ is known as the expected value of X,

or simply E(X).

¹ = E(X) =

( P
xP (x), for discrete XR
xf(x) dx, for continuous X

From section 30E.1 of the text (Investigation 1) we noticed that

E(aX + b) = aE(X) + b

Proof: (discrete case only) E(aX + b) =
P

(ax+ b)P (x)

=
P

[axP (x) + bP (x)]

= a
P
xP (x) + b

P
P (x)

= aE(X) + b(1) fas
P
P (x) = 1g

= aE(X) + b

A random variable X, has variance ¾2, also known as Var(X)

where ¾2 = Var(X) = E((X ¡ ¹)2)

Notice that for discrete X ² Var(X) =
P
(x¡ ¹)2p(x)

² Var(X) =
P
x2p(x)¡ ¹2

² Var(X) = E(X2)¡ fE(X)g2

Again, from Investigation 1 of Section 30E.1, Var(aX + b) = a2 Var(X)

Proof: (discrete case only)

Var(aX + b) = E((aX + b)2)¡ fE(aX + b)g2
= E

¡
a2X2 + 2abX + b2

¢¡ faE(X) + bg2
= a2 E(X2) + 2ab E(X) + b2 ¡ a2 fE(X)g2 ¡ 2ab E(X)¡ b2
= a2E(X2)¡ a2 fE(X)g2
= a2[E(X2)¡ fE(X)g2]
= a2Var (X)

The standardised variable Z is defined as Z =
X ¡ ¹

¾
and has mean 0 and variance 1.

EXPECTATION ALGEBRAA
E( )X X, THE EXPECTED VALUE OF

Var( )X X� , THE VARIANCE OF

THE STANDARDISED VARIABLE, Z

If a random variable is normally distributed with mean and variance we write
N , , where reads .

X ¹ ¾
X ¹ ¾

2

» »( )2 is distributed as
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STATISTICS AND PROBABILITY (Topic 8) 11

Proof: The mean of Z is E(Z)

= E
¡
1
¾
X ¡ ¹

¾

¢
= 1

¾
E(X)¡ ¹

¾

= 1
¾
¹¡ ¹

¾

= 0

and Var(Z)

= Var
¡
1
¾
X ¡ ¹

¾

¢
=
¡
1
¾

¢2
Var(X)

= 1
¾2
£ ¾2

= 1

This now gives us a formal basis on which we can standardise a normal variable, as described

in the Core text.

Suppose the scores in a Mathematics exam are distributed normally with unknown

mean ¹ and standard deviation of 25:5. If only the top 10% of students receive an

A, and the cut-off score for an A is any mark greater than 85%, find the mean, ¹,

of this distribution.

P(X > 85) = 0:1 fas 10% = 0:1g
) P(X 6 85) = 0:9

) P

µ
X ¡ ¹
25:5

6
85¡ ¹
25:5

¶
= 0:9

) P

µ
Z 6

85¡ ¹
25:5

¶
= 0:9

)
85¡ ¹
25:5

= invNorm (0:9)

) ¹ = 85¡ 25:5 £ invNorm(0:9)

) ¹ ¼ 52:3

For two independent random variables X1 and X2 (not necessarily from the same

population)

² E(a1X1 § a2X2) = a1E(X1)§ a2E(X2)

² Var(a1X1 § a2X2) = a 2

1
Var(X1) + a 2

2
Var(X2)

The proof of these results is beyond the scope of this course.

The generalisation of the above is:

For n independent random variables; X1, X2, X3, X4, ...... Xn

² E(a1X1§a2X2§::::§anXn)=a1E(X1)§a2E(X2)§ ::::§anE(Xn)

² Var(a1X1§a2X2§::::§anXn )=a 2

1
Var(X1)+a

2

2
Var(X2)+ ::::+a

2

n Var(Xn)

Example 1

Note: These generalised results can be proved using the Principle of Mathematical
Induction assuming that the case is true.n = 2

IBHL_OPT
cyan black

0 5 2
5

7
5

5
0

9
5

1
0
0

0 5 2
5

7
5

9
5

1
0
0

5
0

Y:\HAESE\IBHL_OPT\IBHLOPT_08\011IBO08.CDR Wednesday, 17 August 2005 2:32:51 PM PETERDELL



12 STATISTICS AND PROBABILITY (Topic 8)

Proof: (by the Principle of Mathematical Induction)

(Firstly for the mean)

(1) When n = 2, the result is true (assumed).

(2) If Pk is true, then

E(a1X1 § a2X2 § ::::::§ akXk) = a1E(X1)§ a2E(X2)§ ::::::§ akE(Xk)::::::(¤)
) E(a1X1 § a2X2 § ::::::§ akXk § ak+1Xk+1)

= E([a1X1 § a2X2 § ::::::§ akXk]§ ak+1Xk+1)
= E([a1X1 § a2X2 § ::::::§ akXk])§ E(ak+1Xk+1) fcase n = 2g
= a1E(X1)§ a2E(X2)§ ::::::§ akE(Xk)§ ak+1E(Xk+1) fusing (¤)g

Thus Pk+1 is true whenever Pk is true and P (2) is true.

(For the variance)

(1) When n = 2, the result is true (given).

(2) If Pk is true, then

Var(a1X1 § a2X2 § ::::::§ akXk)

= a 21 Var(X1) + a 22 Var(X2) + ...... + a 2k Var(Xk) ...... (¤)
Now Var(a1X1 § a2X2 § ::::::§ akXk § ak+1Xk+1)

= Var([a1X1 § a2X2 § ::::::§ akXk]§ ak+1Xk+1) fcase n = 2g
= Var[a1X1 § a2X2 § ::::::§ akXk] + Var(ak+1Xk+1)

= a 21 Var(X1) + a 22 Var(X2) +::::::+ a 2k Var(Xk) + a 2k+1Var(Xk+1) fusing ¤g
Thus Pk+1 is true whenever Pk is true and P2 is true.

) Pn is true fPrinciple of Math. Inductiong
Note: Any linear combination of independent normal random variables is itself a normal

random variable.

For example, if X1, X2 and X3 are independent normal random variables (RV)

then 2X1 + 3X2 ¡ 4X3 is a normal random variable.

E(2X1 + 3X2 ¡ 4X3) = 2E(X1) + 3E(X2)¡ 4E(X3) and

Var(2X1 + 3X2 ¡ 4X3) = 4Var(X1) + 9Var(X2) + 16Var(X3)

We are concerned with the sum of their weights

and consider Y = X1 +X2 +X3 +X4 +X5 +X6 findependent RV’sg
Now E(Y ) = E(X1) + E(X2) + ::::::+ E(X6)

= 71:5 + 71:5 + ::::::+ 71:5

= 6£ 71:5 = 429 kg

The weights of male employees in a bank are normally distributed with a mean
kg and standard deviation kg. The bank has an elevator with a

maximum recommended load of kg for safety reasons. Six male employees enter
the elevator. Calculate the probability that their combined weight exceeds the
maximum recommended load.

¹ : ¾ :

p

= 71 5 = 7 3
444

Example 2

) Pn is true for all n 2 Z +, n > 2:
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STATISTICS AND PROBABILITY (Topic 8) 13

and Var(Y )

= Var(X1) + Var(X2) + ...... + Var(X6)

= 7:32 + 7:32 + ::::::+ 7:32

= 6£ 7:32

= 319:74

) Y is normally distributed with mean 429 kg and variance 319:74 kg2

i.e., Y » N(429, 319:74) ¾2 = 319:74

Now P(Y > 444) = normalcdf(444, E99, 429,
p

319:74)

¼ 0:201

So, there is a 20:1% chance that their combined weight will exceed 444 kg.

For Example 2, do a suitable calculation to recommend the maximum number of

males to use the elevator, given that there should be no more than a 0:1% chance

of the total weight exceeding 444 kg.

From Example 2, six men is too many as there is a 20:1% chance of overload.

Now we try n = 5 E(Y )

= 5£ 71:5

= 357:5 kg

Var(Y )

= 5£ 7:32

¼ 266:45 kg2

Now Y » N(357:5, 266:45) i.e., ¾2 = 266:45

and P(Y > 444) = normalcdf(444, E99, 357:5,
p

266:45)

¼ 5:83£ 10¡8

So, for n = 5 there is much less than a 0:1% chance of the total weight exceed-

ing 444 kg. Hence, we should recommend for safety reasons that a maximum of 5
men use the elevator at the same time.

Example 3

Example 4

Given three independent samples X1 = 2X, X2 = 4¡ 3X, and X3 = 4X + 1,

taken from a random distribution X with mean 11 and standard deviation 2, find

the mean and standard deviation of the random variable (X1 +X2 +X3).

mean

= E(X1 +X2 +X3)

= E(X1) + E(X2) + E(X3)

= 2E(X) + 4 ¡ 3E(X) + 4E(X) + 1

= 3E(X) + 5

= 3(11) + 5

= 38

variance

= Var(X1 +X2 +X3)

= Var(X1) + Var(X2) + Var(X3)

= 4Var(X) + 9Var(X) + 16Var(X)

= 29Var(X)
= 29£ 22

= 116

) mean is 38 and standard deviation is
p

116 ¼ 10:8.
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14 STATISTICS AND PROBABILITY (Topic 8)

A cereal manufacturer produces packets of cereal in two sizes, small (S) and

economy (E). The amount in each packet is distributed normally and independently

as follows:

Mean (g) Variance (g2)

Small 315 4

Economy 950 25

a A packet of each size is selected at random. Find the probability that the econ-

omy packet contains less than three times the amount of the small packet.

b One economy and three small packets are selected at random.

Find the probability that the amount in the economy packet is less than the total

amount in the three small packets.

S » N(315, 4) and E » N(950, 25).

a To find the probability that the economy packet contains less than three times

the amount in a small packet we need to calculate P(e < 3s)
i.e., P(e¡ 3s < 0)

Now E(E ¡ 3S)

= E(E)¡ 3 E(S)

= 950¡ 3£ (315)

= 5

) E ¡ 3S » N(5, 61)

and Var(E ¡ 3S)

= Var(E) + 9 Var(S)

= 25 + 9£ 4

= 61

and P(e¡ 3s < 0) ¼ 0:261 fcalculatorg

b This time we need to calculate P(e < s1 + s2 + s3)

i.e., P(e¡ (s1 + s2 + s3) < 0)

Now E(E ¡ (S1 + S2 + S3))

= E(E)¡ 3 E(S)

= 950¡ 3£ 315

= 5

and Var(E ¡ (S1 + S2 + S3))

= Var(E) + Var(S1) + Var(S2) + Var(S3)

= 25 + 12

= 37

) E ¡ (S1 + S2 + S3) » N(5, 37)

and P(e¡ (s1 + s2 + s3)) ¼ 0:206 fcalculatorg

Example 5
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STATISTICS AND PROBABILITY (Topic 8) 15

fassuming independenceg

fassuming independenceg

UNBIASED ESTIMATORS OF MEAN AND VARIANCE FOR
A POPULATION

¹ ¾2

Often ¹ and ¾ for a population are unknown and we may wish to use a representative sample

to estimate ¹ and ¾. We observed in section 18F of the text that:

Note: x is an unbiased estimate of ¹ if E(X) = ¹.

Proof: (that x is an unbiased estimate of ¹)

E(X) = E

µ
X1 +X2 +X3 + :::::+Xn

n

¶
= E

¡
1
n

(X1 +X2 +X3 + ::::::+Xn)
¢

= 1
n

E(X1 +X2 +X3 + ::::::+Xn)

= 1
n

(¹+ ¹+ ¹+ ::::::+ ¹) fn of themg
= 1

n
£ n¹

= ¹ ) x is an unbiased estimate of ¹.

Notice also that Var
¡
X
¢

=
¡
1
n
X1 + 1

n
X2 + ::::::+ 1

n
Xn
¢

= 1
n2

Var(X1) + 1
n2

Var(X2) + ::::::+ 1
n2

Var(Xn)

= 1
n2

(¾2 + ¾2 + ::::::+ ¾2) fn of themg
= 1

2 £ n¾2

Note: s 2n¡1 is an unbiased estimate of ¾2.

To prove this we need to show that E(s 2n¡1) = ¾2.

Proof: sn
2 =

1

n

nP
i=1

(Xi ¡X)2 =
1

n

·
nP
i=1

X 2
i ¡ nX

2
¸

=
1

n

nP
i=1

X 2
i ¡X

2

) E(sn
2) =

1

n
E

µ
nP
i=1

Xi
2

¶
¡ E(X

2
)

=
1

n

nP
i=1

E(Xi
2)¡ E(X)2

=
1

n

·
nP
i=1

(Var(Xi) + fE(Xi)g2
¸
¡
h
Var(X) +

©
E(X)

ª2i
fusing Var(Y ) = E(Y 2)¡ fE(Y )g2g

=
1

n

·
nP
i=1

(¾2 + ¹2)

¸
¡
·
¾2

n
+ ¹2

¸

² x, the sample mean, gives us an unbiased estimate of ¹

² s 2n¡1 =
n

n¡ 1
s 2n , where s 2n is the sample’s variance and n is the sample size,

gives us an unbiased estimate of the population’s variance ¾2.

)

n

Var
¡
X
¢
=
¾2

n
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16 STATISTICS AND PROBABILITY (Topic 8)

=
1

n

¡
n¾2 + n¹2

¢¡ ¾2
n
¡ ¹2

= ¾2 + ¹2 ¡ ¾
2

n
¡ ¹2

= ¾2
µ

1¡ 1

n

¶
or ¾2

µ
n¡ 1

n

¶
But s 2n¡1 =

n

n¡ 1
s 2n and so E

¡
s 2n¡1

¢
=

n

n¡ 1
E(s 2) = ¾2

i.e., s2n¡1 is an unbiased estimate of ¾2.

The following example may be useful for designing a portfolio item.

In a gambling game you bet on the outcomes of two spinners. These outcomes are

called X and Y and the probability distributions for each spinner are tabled below:

x ¡3 ¡2 3 5

P(X = x) 0:25 0:25 0:25 0:25

y ¡3 2 5

P(Y = y) 0:5 0:3 0:2

a Briefly explain why these are well-defined probability distributions.

b Find the mean and standard deviation of each random variable.

c Suppose it costs $1 to get a spinner spun and you receive the dollar value of the

outcome. For example, if the result is 3 you win $3 but if the result is ¡3 you

need to pay an extra $3. In which game are you likely to achieve a better result?

On average, do you expect to win, lose or break even? Use b to justify your

answer.

d Comment on the differences in standard deviation.

e The players get bored with these two simple games and ask if they can play a $1
game using the sum of the scores obtained on each of the spinners. Complete a

table like the one given below to show the probability distribution of X + Y . A

grid may help you do this.

X + Y ¡6 ¡5 .......... 10

P(X + y) 0:125

Note: If you score a 10, you receive $10 after paying out $1.

Effectively you win $9.

f Calculate the mean and standard deviation of U if U = X + Y .

g Are you likely to win, lose or draw in the new game? Use f to justify your

answer.

a As
P
P (x) = 1 in each distribution, each is a well-defined probability

distribution.

Example 6

n
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STATISTICS AND PROBABILITY (Topic 8) 17

b E(X) =
P
xP (x)

= ¡3(0:25)¡ 2(0:25) + 3(0:25) + 5(0:25)

) ¹x = 0:75

Var(X) = E(X2)¡ fE(X)g2
= 9(0:25) + 4(0:25) + 9(0:25) + 25(0:25)¡ 0:752

= 47£ 0:25¡ 0:752

= 11:1875 and so ¾
X
¼ 3:34

E(Y ) =
P
yP (y)

= ¡3(0:5) + 2(0:3) + 5(0:2)

) ¹Y = 0:1

Var(Y ) = E(Y 2)¡ fE(Y )g2
= 9(0:5) + 4(0:3) + 25(0:2)¡ 0:12

= 10:69 and so ¾
Y
¼ 3:27

c

d As ¾X > ¾Y we expect a greater variation in the results of game X.

e P (¡6) = 0:25£ 0:5 = 0:125

P (¡5) = 0:25£ 0:5 = 0:125

P (¡1) = 0:25£ 0:3 = 0:075

P (0) = 0:25£ 0:5 + 0:25£ 0:3 = 0:200

P (2) = 0:25£ 0:5 + 0:25£ 0:2 = 0:175

P (3) = 0:25£ 0:2 = 0:050

P (5) = 0:25£ 0:3 = 0:075

P (7) = 0:25£ 0:3 = 0:075

P (8) = 0:25£ 0:2 = 0:050

P (10) = 0:25£ 0:2 = 0:050

X + Y ¡6 ¡5 ¡1 0 2 3 5 7 8 10
P

P (X +Y ) 0:125 0:125 0:075 0:200 0:175 0:050 0:075 0:075 0:050 0:050 1:000

f If U = X + Y
E(U) = ¡6(0:125)¡ 5(0:125)¡ 1(0:075) + 0 + 2(0:175) + 3(0:050) + 5(0:075)

+ 7(0:075) + 8(0:050) + 10(0:050)
) ¹

U
= 0:85

Var(U) = 36(0:125) + 25(0:125) + 1(0:075) + 4(0:175) + 9(0:050) + 25(0:075)

+ 49(0:075) + 64(0:050) + 100(0:050)¡ (0:85)2

= 21:8775

) ¾
U

=
p

21:8775 ¼ 4:68

g With the new game the expected loss is $0:15 per game. f$0:85¡ $1g

With , the expected win is $ per game. However, it costs $ to play so
overall there is an expected loss of $ per game.

With , $ $ $ , so there is an expected loss of $ per

X :
:

Y : : :

0 75 1
0 25

0 10 1 = 0 90 0 90¡ ¡ game.

�� �� � �

( )	
� ����.

( )	 ��


�.3

( )	 ��


�.2

Y

X

����

����

��

����

		

��

��





		

��

�	�	

��

( )	
��. ( )	
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18 STATISTICS AND PROBABILITY (Topic 8)

1 Given two independent random variables X and Y whose

means and standard deviations are given in the table:
mean s.d.

X 3:8 0:323

Y 5:7 1:02
a find the mean and standard deviation of 3X ¡ 2Y

b find the P(3X ¡ 2Y > 3), given that X and Y are

distributed normally. You need to know that any linear combination of independent

normal random variables is also normal.

2 X and Y are independent normal random variables with X » N(¡10, 1) and

Y » (25, 25). Find:

a the mean and standard deviation of the random variable U = 3X + 2Y:

b

3 The marks in an IB Mathematics HL exam are distributed normally with mean ¹ and

standard deviation ¾. If the cut off score for a 7 is a mark of 80%, and 10% of students

get a 7, and the cut off score for a 6 is a mark of 65% and 30% of students get a 6 or

7, find the mean and standard deviation of the marks in this exam.

4 In a lift, the maximum recommended load is 440 kg. The weights of men are distributed

normally with mean 61 kg and standard deviation of 11 kg. The weights of children are

also normally distributed with mean 48 kg and standard deviation of 4 kg.

Find the probability that the lift containing 4 men and 3 children will be unsafe. What

assumption have you made in your calculation?

5 A coffee machine dispenses white coffee made up of black coffee distributed normally

with mean 120 mL and standard deviation 7 mL, and milk distributed normally with

mean 28 mL and standard deviation 4:5 mL.

Each cup is marked to a level of 135:5 mL, and if this is not attained then the customer

will receive a cup of white coffee free of charge.

Determine whether or not the proprietor should adjust the settings on her machine if she

wishes to give away no more than 1% in “free coffees”.

6 A drinks manufacturer independently produces bottles of drink in two sizes, small (S)

and large (L). The amount in each bottle is distributed normally as follows:

S » N(280 mL, 4 mL2) and L » N(575 mL, 16 mL2)

a When a bottle of each size is selected at random, find the probability that the large

bottle contains less than two times the amount in the small bottle.

b One large and two small bottles are selected at random. Find the probability that

the amount in the large bottle is less than the total amount in the two small bottles.

7 Chocolate bars are produced independently in two sizes, small (S) and large (L). The

amount in each bar is distributed normally as follows:

S » N(21, 5) and L » N(90, 15)

a One of each type of bar is selected at random. Find the probability that the large

bar contains more than five times the amount in the small bar.

b One large and five small bars are selected at random. Find the probability that the

amount in the large bar is more than the total amount in the five small bars.

EXERCISE 8A

P( ).U < 0
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STATISTICS AND PROBABILITY (Topic 8) 19

We will examine cumulative distribution functions (cdf) for both discrete random variables

(drv) and continuous random variables (crv).

Definition: The cumulative distribution function (cdf) of a random variable X is the

probability that X takes a value less than or equal to x,

i.e., F (x) = P(X 6 x).

Recall that a random variable is ² discrete if you can count the outcomes

² continuous if you can measure the outcomes.

A discrete random variable X has a probability mass function given by px = P(X = x)
where x is one of the possible outcomes.

A probability mass function of a discrete random variable must be well-defined,

i.e.,

nX
i=1

pi = 1 and 0 6 pi 6 1 for i = 1, 2, 3, ....., n.

The cumulative distribution function (cdf) of a discrete random variable X is the

probability that X takes a value less than or equal to x,

i.e., F (x) = P(X 6 x) =
P
y6x

P(X = y)

For example, consider

² tossing one coin, where X is the number of ‘heads’ resulting

X = 0 or 1 and F (0) = P(X 6 0) = P(X = 0) = 1
2

F (1) = P(X 6 1) = P(X = 0 or 1) = 1

² tossing two coins, where X is the number of ‘heads’ resulting

X = 0, 1 or 2 and F (0) = P(X 6 0) = P(X = 0) = 1
4

F (1) = P(X 6 1) = P(X = 0 or 1) = 3
4

F (2) = P(X 6 2) = P(X = 0, 1 or 2) = 1

CUMULATIVE DISTRIBUTION FUNCTIONSB

Classify the following as a discrete or continuous random variable:

a the outcomes when you roll an unbiased die

b the heights of students studying the final year of high school

c the outcomes from the two spinners in Example 6.

a discrete as you can count them

b continuous as you measure them

c discrete as you can count them

Example 7

DISCRETE RANDOM VARIABLES
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20 STATISTICS AND PROBABILITY (Topic 8)

For example, when rolling a fair (unbiased) die the sample space is f1, 2, 3, 4, 5, 6g and

px = 1
6 for all x.

The name ‘uniform’ comes from the fact that px values do not change as x changes.

If we are interested in getting a result smaller than 5, we are concerned with the cdf and in

this case P(X < 5) = P(X 6 4) = F (4) = 4£ 1
6 = 2

3

Note: The outcomes do not have to be 1, 2, 3, 4, ......, n.

This is illustrated in Example 6 where the random variable X had four possible outcomes

¡3, ¡2, 3 and 5.

The binomial distribution was observed in Section 30F of the Core HL text.

For the binomial distribution, the probability mass function is

P(X = x) =
¡
n
x

¢
px(1¡ p)n¡x where n is the number of independent trials,

x is the number of successes in n trials,

p is the probability of success in one trial.

The cdf is F (x) = P(X 6 x) =
xP
r=0

¡
n
r

¢
pr(1¡ p)n¡r.

We write X » B(n, p) to indicate that X is distributed binomially. Note that a binomial

distribution occurs in sampling with replacement.

A Bernoulli distribution is a binomial distribution where only one trial is conducted,

i.e., n = 1.
P(X = x) = px(1¡ p)1¡x, where x = 0 or 1

The cdf is F (x) = P(X 6 x) =
xP
r=0

pr(1¡ p)1¡r, where x = 0 or 1:

Hence, a binomial distribution consists of n independent Bernoulli trials.

Note: If x = 0, F (0) = P(x 6 0) = p0(1¡ p)1 = 1¡ p
If x = 1, F (1) = P(x 6 1) = P(X = 0 or X = 1) = 1¡ p+ p1(1¡ p)0

= 1¡ p+ p

= 1
Discuss what this means.

We write X » B(1, p) to indicate that X is Bernoulli distributed.

TYPES OF DISCRETE RANDOM VARIABLES

DISCRETE UNIFORM

For a random variable, the probability mass function takes the same
value for all outcomes .

discrete uniform

x

If is a discrete uniform random variable with distinct outcomes, , , , , ....., , we
write DU .
X n n

X n
1 2 3 4

( )»

BINOMIAL

BERNOULLI
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STATISTICS AND PROBABILITY (Topic 8) 21

Uniform, Binomial, Bernoulli Distribution Refer to Core Text Exercise 19H, pages 515-516.

1 The discrete random variable X is such that P(X = x) = k, for X = 5, 10, 15, 20,

25, 30. Find:

a the probability distribution of x b ¹, the expected value of X

c P(X < ¹) d ¾, the standard deviation of X.

2 Given the random variable X such that X » B(7, p) and P(X = 4) = 0:097 24,

find P (X = 2) where p < 0:5:

3 In parts of the USA the probability that it will rain on any given day in August is 0:35.

Calculate the probability that in a given week in August in that part of the USA, it will

rain on:

a exactly 3 days b at least 3 days

c at most 3 days d exactly 3 days in succession.

State any assumptions made in your calculations.

4 A box contains a very large number of red and blue pens. The probability that a pen is

blue is 0:8. How many pens would you need to select to be more than 90% certain of

picking at least one red pen? State any assumptions made in your calculations.

5 A satellite relies on solar cells for its operation and will be powered provided at least

one of its cells is working. Solar cells operate independently of each other, and the

probability that an individual cell operates within one year is 0:3.

a For a satellite with 15 solar cells, find the probability that all 15 cells fail within

one year.

b For a satellite with 15 solar cells, find the probability that the satellite is still

operating at the end of one year.

c For the satellite with n solar cells, find the probability that it is still operating at

the end of one year. Hence, find the smallest number of cells required so that the

probability of the satellite still operating at the end of one year is at least 0:98.

6 Seventy percent (70%) of the mail to ETECH Couriers is addressed to the Accounts

Department.

a In a batch of 20 letters, what is the probability that there will be at least 11 letters

to the Accounts Department?

b On average 70 letters arrive each day. What is the mean and standard deviation of

the number of letters to the Accounts Department?

7 The table shown gives information

about the destination and type of

parcels handled by ETECH Couriers.

Destination Priority Standard

Local 40% 70% 30%

Country 20% 45% 55%

Interstate 25% 70% 30%

International 15% 40% 60%

a What is the probability that a par-

cel is being sent interstate given

that it is priority paid?

(Hint: Use Bayes theorem: refer HL Core text, page 528)

b

EXERCISE 8B.1

If two standard parcels are selected, what is the probability that only one will be
leaving the state (i.e., Interstate or International)?
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22 STATISTICS AND PROBABILITY (Topic 8)

Note: The table on page 31 can be used in the following question.

8 At a school fete fundraiser, an unbiased spinning wheel has numbers 1 to 50 inclusive.

a What is the mean expected score obtained on this wheel during the day?

b What is the standard deviation of the scores obtained during the day?

c What is the probability of getting a multiple of 7 in one spin of the wheel?

If the wheel is spun 500 times during the day:

d What is the likelihood of getting a multiple of 7 more than 15% of the time?

Given that 20 people play each time the wheel is spun, and when a multiple of 7 comes

up $5 is paid to players, but when it does not the players must pay $1:

e How much would the wheel be expected to make or lose for the school if it was

spun 500 times?

f What are the chances the school would lose if the wheel was spun 500 times?

If we are sampling without replacement then we have a hypergeometric distribution.

Finding the probability mass function involves the use of combinations to count possible

outcomes. Probability questions of this nature were in the Core HL text.

A class of IB students contains 10 females and 9 males. A student committee of

three is to be randomly chosen. If X is the number of females on the committee,

find: a P(X = 0) b P(X = 1) c P(X = 2) d P(X = 3)

The total number of unrestricted committees =
¡
19
3

¢
or C

19

3

fas there are 19 students to choose from and we want any 3 of themg
a The number of committees consisting of

0 females and 3 males is
¡
10
0

¢ ¡
9
3

¢ ) P(X = 0) =

¡
10
0

¢ ¡
9
3

¢¡
19
3

¢
b Likewise, P(X = 1) =

¡
10
1

¢ ¡
9
2

¢¡
19
3

¢
c P(X = 2) =

¡
10
2

¢ ¡
9
1

¢¡
19
3

¢ d P(X = 3) =

¡
10
3

¢ ¡
9
0

¢¡
19
3

¢
From Example 8, notice that

we can write all four possible

results in the form
P(X = x) =

¡
10
x

¢ ³
9

3¡x

´
¡
19
3

¢ where x = 0, 1, 2 or 3.

This is the probability mass function for this example.

In general:

HYPERGEOMETRIC

Example 8

If we have a population of size consisting of two types with size and
respectively, and we take a sample of size , then for the random
variable consisting of how many of we want to include in the sample, the

has probability mass function

N M N M
n

X M

¡
without replacement

hypergeometric distribution
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P(X = x) =

³
M
x

´³
N¡M
n¡x

´
³
N
n

´ where x = 0, 1, 2, 3, ....., Min (n, M )

The cdf is F (x) = P(X 6 x) =
xP
r=0

³
M
x

´³
N¡M
n¡x

´
³
N
n

´ for x 6 n, M .

We write X » Hyp(n, M , N) to show that X is hypergeometrically distributed.

Consider the following:

A sports magazine gives away photographs of famous football players. 15 photographs are

randomly placed in every 100 magazines.

Consider X, the number of magazines you purchase before you get a photograph.

P(X = 1) = P(the first magazine contains a photo) = 0:15

P(X = 2) = P(the second magazine contains a photo) = 0:85£ 0:15

P(X = 3) = P(the third magazine contains a photo) = (0:85)2 £ 0:15

So, P(X = 4) = (0:85)3 £ 0:15, P(X = 5) = (0:85)4 £ 0:15, etc.

This is an example of a geometric distribution.

If X is the number of trials needed to get a successful outcome, then X is a geometric

discrete random variable and has probability mass function

P(X = x) = p(1¡ p)x¡1 where x = 1, 2, 3, 4, ......

The cdf is F (x) = P(X 6 x) =
xX
r=1

p(1¡ p)r¡1 for r = 1, 2, 3, 4, ......

We write X » Geo(p) to show that X is a geometric discrete random variable.

In a spinning wheel game with numbers 1 to 50 on the wheel, you win if you

get a multiple of 7. Assuming the game is fair, find the probability that you win:

a after exactly four games b if you need at most four games

c after no more than three games d after more than three games.

If X is the number of games played until you win

then X » Geo(p) where p = 7
50 = 0:14 and 1¡ p = 0:86

a P(X = 4)

= p(1¡ p)3
= 0:14£ (0:86)3

¼ 0:0890

b P(need at most four games)

= P(X 6 4)

= p+ p(1¡ p) + p(1¡ p)2 + p(1¡ p)3
= p

£
1 + (1¡ p) + (1¡ p)2 + (1¡ p)3¤

= 0:14
£
1 + 0:86 + 0:862 + 0:863

¤
¼ 0:453

GEOMETRIC

Example 9
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24 STATISTICS AND PROBABILITY (Topic 8)

Note: P(X 6 4) = P(win in one of the first four games)

= 1 ¡ P(does not win in first four games)

= 1¡ (1¡ p)4
= 1¡ (0:86)4 which ¼ 0:453

gives us an alternative method of calculation.

c P(wins after no more than three games)

= P(X 6 3)

= 1 ¡ P(does not win in one of the first three games)

= 1¡ (1¡ p)3
= 1¡ 0:863

¼ 0:364

d P(wins after more than 3 games) = P(X > 3)
= 1 ¡ P(X 6 3)
¼ 1¡ 0:364 ffrom cg
¼ 0:636

Note: ² In 9 we observed that if X » ) thenGeo(p

P(X 6 x) =
xX
r=1

p(1¡ p)r¡1 = 1¡ (1¡ p)x:

Can you prove this result algebraically?

Hint: P(X 6 x) =
xX
r=1

p(1¡ p)r¡1 = p
xX
r=1

(1¡ p)r¡1

and

xX
r=1

(1¡ p)r¡1 is a geometric series.

² The modal score (the score with the highest probability of occurring) for a

geometric random variable is always x = 1. Can you explain why?

Show that if X » Geo(p) then

1X
i=1

P(X = i) = 1.

1X
i=1

P(X = i) = P(X = 1) + P(X = 2) + P(X = 3) + ......

= p(1¡ p)0 + p(1¡ p)1 + p(1¡ p)2 + ::::::

= p
£
1 + (1¡ p) + (1¡ p)2 + (1¡ p)3 + ::::::

¤
= p

µ
1

1¡ (1¡ p)
¶

as we have an infinite GS with u1 = 1
and r = 1¡ p where 0 < r < 1

= p

µ
1

p

¶
= 1

Example

Example 10
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STATISTICS AND PROBABILITY (Topic 8) 25

Note: If r = 1, the negative binomial distribution reduces to the geometric distribution.

In grand slam tennis, the player who wins a match is the first player to win 3 sets.

Suppose that P(Federer beats Safin in one set) = 0:72. Find the probability that

when Federer plays Safin in the grand slam event:

a Federer wins the match in three sets

b Federer wins the match in four sets

c Federer wins the match in five sets

d Safin wins the match.

Let X be the number of sets played until Federer wins.

a P(X = 3)

= (0:72)3

¼ 0:373

b P(X = 4)

= P(SFFF or FSFF or FFSF)

= 3£ 0:723 £ 0:281 ¼ 0:314

c P(X = 5)

= P(SSFFF or SFSFF or SFFSF or FSSFF or FSFSF or FFSSF)

= 6£ 0:723 £ 0:282

¼ 0:176

d P(Safin wins the match)

= 1 ¡ P(Federer wins the match)

= 1 ¡ £0:723 + 3£ 0:723 £ 0:28 + 6£ 0:723 £ 0:282
¤

¼ 0:138

Examining b from the above Example 11, we notice that

P(X = 4) = P(Federer wins 2 of the first 3 and wins the 4th) =
¡
3
2

¢
(0:72)2(0:28)1| {z }£0:72

binomial
Generalising,

P(X = x) = P(r ¡ 1 successes in x¡ 1 independent trials and success in the last trial)

=
³
x¡1
r¡1

´
pr¡1(1¡ p)x¡r £ p

=
³
x¡1
r¡1

´
pr(1¡ p)x¡r

So:

NEGATIVE BINOMIAL (PASCAL’S DISTRIBUTION)

If is the number of Bernoulli trials required for successes then has a
distribution.

X r X negative

binomial

Example 11

P(X = x) =
³
x¡1
r¡1

´
pr(1¡ p)x¡r, r > 1, x > r:

In repeated independent Bernoulli trials, where is the probability of success in
one of them, let denote the number of trials needed to gain successes.

has a with probability mass function

p
X r

X negative binomial distribution
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26 STATISTICS AND PROBABILITY (Topic 8)

The cdf is F (x) = P(X 6 x) =
xX
y=r

³
y¡1
r¡1

´
pr(1¡ p)y¡r where 1 6 r 6 y 6 x.

Note: We write NB( , ) for being a Negative Binomial random variable, where
is the number of independent Bernoulli trials needed to achieve successes and is
the probability of getting a success in one trial.

X r p X x
r p

»

Geometric and Negative Binomial distributions. The table on page 31 can be used in the

following questions, where appropriate.

1 X is a discrete random variable where X » Geo(0:25). Calculate:

a P(X = 4) b P(X > 3) c P(X 6 2) d E(X)

Comment on your answer to part d.

2 Given that X » Geo(0:33), find:

a the mode of X b the mean of X c the standard deviation of X.

3 In a game of ten-pin bowling, Xu has a 29% chance of getting a strike with every bowl

he attempts. (A strike is obtained by knocking down all ten pins).

a Find the probability of Xu getting a strike after exactly 4 bowls.

b Find (nearest integer) the average number of bowls required for Xu to get a strike.

c Find the probability that Xu will take 7 bowls to secure 3 strikes.

d What is the average number of bowls Xu will take to get 3 strikes?

4 X » Geo(p) and the probability that the first success is obtained on the 3rd attempt is

0:023 987. If p > 0:5, find p(X > 3).

5 A dart player has a 5% chance of getting a bullseye with any dart thrown at the board.

What is the expected number of throws for this dart player to get a bullseye?

6 In any game of squash Paul has a 65% chance of beating Eva. To win a match in squash,

a player must win three games.

a Find the probability that Eva beats Paul by 3 games to 1.

b Find the probability that Eva beats Paul in a match of squash. State the nature of

the distribution used in this example.

7 At a luxury ski resort in Switzerland, the probability that snow will fall on any given

day in the snow season is 0:15.

a If the snow season begins on November 1st, find the probability that the first snow

will fall on November 15.

b Given that no snow fell during November, a tourist decides to wait no longer to

book a holiday. The tourist decides to book for the earliest date for which the

probability that snow will have fallen on or before that date is greater than 0:85.

Find the exact date of the booking.

8 In a board game for four players, each player must roll two fair dice in turn to get a

difference of “no more than 3” before they can begin to play.

a Find the probability of getting a difference of “no more than 3” when rolling two

unbiased dice.

EXERCISE 8B.2
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STATISTICS AND PROBABILITY (Topic 8) 27

b Find the probability that player 1 is the first to begin playing on his second roll,

given that player 1 rolls the dice first.

c On average how many rolls of the dice will it take each player to begin playing?

d Find the average number of rolls of the dice it will take all 4 players to begin

playing, giving your answer to the nearest integer.

The Poisson distribution was observed in Section 30H of the Core text.

It has probability mass function P(X = x) =
mxe¡m

x!
where x = 0, 1, 2, 3, 4, ......

and m is the mean and variance of the Poisson random variable

i.e., E(X) = Var(X) = m and the cdf is F (x) = P(X 6 x) =
xX
r=0

mxe¡m

x!
.

Note:

² For the Poisson distribution, the mean always equals the variance.

² We write X » P0(m) to indicate that X is the random variable for the Poisson

distribution, with mean and variance m.

² The conditions for a distribution to be Poisson are:

1 The average number of occurrences (¹) is constant for each interval (i.e., it should

be equally likely that the event occurs in one specific interval as in any other).

2 The probability of more than one occurrence in a given interval is very small (i.e.,

the typical number of occurrences in a given interval should be much less than is

theoretically possible (say about 10%)).

3 The number of occurrences in disjoint intervals are independent of each other.

Let X be the number of patients that arrive at a hospital emergency room. Patients

arrive at random and the average number of patients per hour is constant.

a Explain why X is a random variable of a Poisson distribution.

b Suppose we know that 3 Var(X) = [E(X)]
2 ¡ 4.

i Find the mean of X. ii Find P(X 6 4).

c If Y is another random variable with a Poisson distribution, independent of X
such that Var(Y ) = 3, show that X + Y is also a Poisson variable and

hence find P(X + Y < 5):

d Let U be the random variable defined by U = X ¡ Y .

i Find the mean and variance of U .

a X is a Poisson random variable as the average number of patients arriving at

random per hour is constant (assuming it is also constant per any time period).

POISSON

Example 12

ii Comment on the distribution of U .
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28 STATISTICS AND PROBABILITY (Topic 8)

b i Since E(X) = Var(X) = m, then 3m = m2 ¡ 4

) m2 ¡ 3m¡ 4 = 0

) (m¡ 4)(m+ 1) = 0

) m = 4 or ¡1

But m > 0, so m = 4

ii P(X 6 4) = poissoncdf (4, 4) ¼ 0:629

c E(X + Y )

= E(X)+ E(Y )

= 4 + 3 fE(Y ) = Var(Y ) = 3g
= 7

Var(X + Y )

= Var(X) + Var(Y )

= 4 + 3
= 7

Since the mean and variance of X + Y are equal, X + Y is also Poisson

and X + Y » P0(7)
P(X + Y < 5) = P(X + Y 6 4)

= poissoncdf(7, 4)

¼ 0:173
d i E(U)

= E(X ¡ Y )

= E(X)¡ E(Y )

= 4¡ 3

= 1

Var(U)

= Var(X ¡ Y )

= Var(X) + Var(Y )

= 4 + 3

= 7

ii As E(U) 6= Var(U) then X ¡ Y cannot be Poisson.

Hypergeometric and Poisson distributions. (Core Text Exercise 30H pages 747-8.)

The table on page 31 can be used in the following questions, where appropriate.

1 X is a discrete random variable such that X » Hyp(5, 5, 12). Find:

a P(X = 3) b P(X = 5) c P(X 6 2) d E(X) e Var(X)

2 X is a discrete random variable such that X » Po(¹) and

P(X = 2) = P(X = 0) + 2P(X = 1).

a Find the value of ¹. b Hence, evaluate P(1 6 X 6 5).

3 A box containing two dozen batteries is known to have five defective batteries included

in it. If four batteries are randomly selected from the box, find the probability that:

a exactly two of the batteries will be defective

b none of the batteries is defective.

4 It is known that chains used in industry have faults at the average rate of 1 per every

kilometre of chain. In a particular manufacturing process they regularly use chains of

length 50 metres. Find the probability that there will be:

a no faults in the 50 metre length of chain

b at most two faults in the 50 metre length of chain.

It is considered ‘safe’ if there is at least a 99:5% chance there will be no more than 1
fault in 50 m of chain. c Is this chain ‘safe’?

EXERCISE 8B.3
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STATISTICS AND PROBABILITY (Topic 8) 29

5 A large aeroplane has 250 passenger seats. The airline has found from years of business

that on average 3:75% of travellers who have bought tickets do not arrive for any given

flight. The airline sells 255 tickets for this large aeroplane on a particular flight. Let X
be the number of ticket holders who do not arrive for the flight.

a State the distribution of X.

b Calculate the probability that more than 250 ticket holders will arrive for the flight.

c Calculate the probability that there will be empty seats on this flight.

d Calculate the:

i mean ii variance of X:

iii Hence use a suitable approximation forX to calculate the probability that more

than 250 ticket holders will arrive for the flight.

iv Use a suitable approximation for X to calculate the probability there will be

empty seats on this flight.

e Use your answers to determine whether the approximation was a good one.

6 The cook at a school needs to buy five dozen eggs for a school camp. The eggs are sold

by the dozen. Being experienced the cook checks for rotten eggs. He selects two eggs

simultaneously from the dozen pack and if they are not rotten he purchases the dozen

eggs.

Given that there is one rotten egg on average in each carton of one dozen eggs, find:

a the probability he will accept a given carton of 1 dozen eggs

b the probability that he will purchase the first five cartons he inspects

c on average, how many cartons the cook will inspect if he is to purchase exactly five

cartons of eggs (answer to nearest integer).

7 A receptionist in a High School receives on average five internal calls per 20 minutes

and ten external calls per half hour.

a Calculate the probability that the receptionist will receive exactly three calls in five

minutes.

b How many calls will the receptionist receive on average every five minutes (answer

to nearest integer)?

c Find the probability that the receptionist receives more than five calls in:

i 5 minutes ii 7 minutes.

8 One percent of all of a certain type of tennis ball produced is faulty. Tennis balls are

sold in cartons of eight. Let X be a random variable which gives the number of faulty

tennis balls in each carton.

a State the distribution of X and give its probability mass function, with correct

domain.

Organisers of a local tennis tournament purchase these balls. They sample 2 balls from

each carton and if they are both not faulty, they purchase the carton.

b Find the proportion of all cartons that would be rejected by the purchasers. How

many of 1000 cartons would the buyers expect to reject?

Hint:
•

Draw a probability distribution table for X.

•
Calculate a probability distribution for rejecting a carton for each of

the values of X.
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30 STATISTICS AND PROBABILITY (Topic 8)

Recall that to calculate the mean and variance of a discrete random variable we use:

² the mean E(X) = ¹ =
P
xipi

² the variance Var(X) = ¾2 =
P
(xi ¡ ¹)2pi

i.e., Var(X) = E(X2)¡ fE(X)g2 or
P
x2i pi ¡ ¹2

Using these basic results we can establish the mean and variance of the special discrete

distributions we discussed earlier.

Given that 12 + 22 + 32 + ::::::+ n2 =
n(n+ 1)(2n+ 1)

6
for all n in Z+,

and that X » DU(n) show that E(X) =
n+ 1

2
and Var(X) =

n2 ¡ 1

12
.

E(X) =
P
xipi

= 1
¡
1
n

¢
+ 2

¡
1
n

¢
+ 3

¡
1
n

¢
+ ::::::+ n

¡
1
n

¢
= 1

n
(1 + 2 + 3 + 4 + ::::::+ n) where 1 + 2 + 3 + ::::::+ n is an

arithmetic series with u1 = 1 and d = 1
= 1

n

£
n
2 (2u1 + (n¡ 1)d)

¤
= 1

2 [2 + (n¡ 1)]

=
n+ 1

2

Var(X) =
P
x2i pi ¡ ¹2

= 12
¡
1
n

¢
+ 22

¡
1
n

¢
+ 32

¡
1
n

¢
+ ::::::+ n2

¡
1
n

¢¡µn+ 1

2

¶2
= 1

n

¡
12 + 22 + 32 + ::::::+ n2

¢¡ (n+ 1)

4

2

= 1
n

·
n(n+ 1)(2n+ 1)

6

¸
¡ (n+ 1)2

4

=
(n+ 1)(2n+ 1)

6
¡ (n+ 1)2

4

= (n+ 1)

·
2n+ 1

6
¡ n+ 1

4

¸
= (n+ 1)

·
4n+ 2

12
¡ 3n+ 3

12

¸
= (n+ 1)

·
n¡ 1

12

¸
=
n2 ¡ 1

12

THE MEAN AND VARIANCE OF DISCRETE RANDOM VARIABLES

Example 13
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STATISTICS AND PROBABILITY (Topic 8) 31

For the uniform distribution in Example 13 the sample space U = f1, 2, 3, 4, ......, ng.
However, the n distinct outcomes of a uniform distribution do not have to equal the set U .

Probability mass
function

Bernoulli X » B(1, p)
px(1¡ p)1¡x
x = 0, 1

p p(1¡ p)

Binomial X » B(n, p)

¡
n
x

¢
px(1¡ p)x

for x = 0, 1, ....., n
np np(1¡ p)

Hyper-

geometric

X » Hyp(n, M , N )

³
M
x

´³
N¡M
n¡x

´
³
N
n

´
for x = 0, 1, ....., n

np

where

p = M
N

np (1¡ p)
³
N¡n
N¡1

´

Poisson X » P0(m)
mxe¡m

x!

for x = 0, 1, ....

m m

Geometric X » Geo(p)
pqx¡1

for x = 1, 2, .....

1

p

q

p2

Negative

binomial

(Pascal’s)

X » NB(r, p)

³
x¡1
r¡1

´
prqx¡r

for x = r, r + 1, ....

r

p

rq

p2

Discrete

uniform
X » DU(n)

1

n

for x = 1, ...., n

n+ 1

2

n2 ¡ 1

12

While each of these values for the mean and variance can be found using the rules for

calculating mean and variance given above, the formal treatment of proofs of means and

variances are excluded from the syllabus.

However, just as in Example 12, it is possible to derive these values. In the case of the

Binomial distribution, using the result that

DISCRETE DISTRIBUTIONS

Distribution Notation Mean Variance

Reminder:

The available for tests and examinations contains
the table shown below:

Mathematics HL information booklet
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32 STATISTICS AND PROBABILITY (Topic 8)

r
¡
n
r

¢
= n

³
n¡1
r¡1

´
is most useful in attempting to establish the required result.

Proving the results formally may be useful as part of a portfolio piece of work.

Prove that x
¡
n
x

¢
= n

³
n¡1
x¡1

´
.

Hence prove that for a Binomial random variable, the mean is equal to np.

Proof: LHS = x
¡
n
x

¢
= x£ n!

(n¡ x)!x!

=
n!

(n¡ x)!(x¡ 1)!

) LHS = RHS as required

RHS = n
³
n¡1
x¡1

´
= n£ (n¡ 1)!

(n¡ x)!(x¡ 1)!

=
n!

(n¡ x)!(x¡ 1)!

Now if X » B(n, p),

P(x) =
¡
n
x

¢
pxqn¡x where q = 1¡ p

) ¹ =
nX
x=0

xP(x)

=
nX
x=0

x
¡
n
x

¢
pxqn¡x fas P(x) =

¡
n
x

¢
pxqn¡xg

=
nX
x=1

x
¡
n
x

¢
pxqn¡x fas when x = 0, the term is 0g

=
nX
x=1

n
³
n¡1
x¡1

´
pxqn¡x fusing the above resultg

= np
nX
x=1

³
n¡1
x¡1

´
px¡1qn¡x

= np
n¡1X
r=0

¡
n¡1
r

¢
prqn¡(r+1) freplacing x¡ 1 by rg

= np
n¡1X
r=0

¡
n¡1
r

¢
prq(n¡1)¡r

= np(p+ q)n¡1

= np£ 1

= np

Example 14
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Sheep are transported by road to the city on big trucks taking 500 sheep at a time.

On average, on arrival 0:8% of the sheep have to be removed because of illness.

a Describe the nature of the random variable X, which indicates the number of

ill sheep on arrival.

b State the mean and variance of this random variable.

c Find the probability that on a truck with 500 sheep, exactly three are ill on

arrival.

d Find the probability that on a truck with 500 sheep, at least four are ill on

arrival.

e By inspection of your answer to b, comment as to what type of random

variable X may approximate.

f Repeat c and d above with the approximation from e and hence verify the

validity of the approximation.

a X is a binomial random variable and X » B(500, 0:008)

b ¹ = np = 500£ 0:008 = 4 ¾2 = npq = 4£ 0:992 ¼ 3:97

c P(X = 3) =
¡
500
3

¢
(0:008)3(0:992)497

or binompdf(500, 0:008, 3)

¼ 0:196

d P(at least 4 are ill)

= P(X > 4)

= 1 ¡ P(X 6 3)

= 1 ¡ binomcdf(500, 0:008, 3)

¼ 0:567

e ¹ ¼ ¾2 from b, which suggests we may approximate X as Poisson

i.e., X is approximately distributed as P0(4):

f P(X = 3)

= poissonpdf(4, 3)

¼ 0:195 X

P(X > 4)

= 1 ¡ P(X 6 3)

= 1¡ poissoncdf(4, 3)

¼ 0:567 X

These results are

excellent approximations

to c and d.

Note: The results in f verify that:

“When n is large (n > 50) and p is small (p < 0:1) the binomial distribution can be

approximated using a Poisson distribution with the same mean”.

Where appropriate in the following exercises, clearly state the type of discrete distribution

used as well as answering the question.

1 On average an office confectionary dispenser breaks down six times during the working

week (Monday to Saturday with each day including the same number of working hours).

Which of the following is most likely to occur?

A The machine breaks down three times a week.

B The machine breaks down once on Saturday.

C The machine breaks down less than seventeen times in 4 weeks.

Example 15

EXERCISE 8B.4
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34 STATISTICS AND PROBABILITY (Topic 8)

2 A spinning wheel has the numbers 1 to 50 inclusive on it. Assuming that the wheel is

unbiased, find the mean and standard deviation of all the possible scores when the wheel

is spun.

3 In a World Series contest between the Redsox and the Yankees, the first team to win

four games is declared world champion. Recent evidence suggests that the Redsox have

a 53% chance of beating the Yankees in any game. Find the probability that:

a the Yankees will beat the Redsox in exactly five games

b the Yankees will beat the Redsox in exactly seven games

c the Redsox will be declared world champions.

d How many games on average would it take the Redsox to win four games against

the Yankees.

4 During the busiest period on the internet, you have a 62% chance of getting through to

an important website. If you do not get through, you simply keep trying until you do

make contact. Let X be the number of times you have to try, to get through.

a Stating any necessary assumptions, identify the nature of the random variable X.

b Find P(X > 3):

c Find the mean and standard deviation of the random variable X.

5 In a hand of poker from a well shuffled pack, you are dealt five cards at random.

a Describe the distribution of X, where X is the number of aces you are dealt in a

hand of poker.

b Find the probability of being dealt exactly two aces in a hand of poker.

c During the poker evening, you are dealt a total of 30 hands from a well shuffled

pack.

i Describe the distribution of Y , where Y is the number of times you have been

dealt 2 aces in a hand of poker.

ii Find P(Y > 5):
iii How many times would you expect to have been dealt two aces during the

night?

iv How many aces would you expect to be dealt in a hand of poker?

6 It costs you $15 to enter a game where you have to randomly select a marble from ten

differently marked marbles in a barrel. The marbles are marked 10 cents, 20 cents, 30
cents, 40 cents, 50 cents, 60 cents, 70 cents, $15, $30 and $100, and you receive the

marked amount in return for playing the game.

a Define a random variable X which is the outcome of selecting a marble from the

barrel.

b Find E(X) and Var(X).

c Briefly explain why you cannot use the rules given for DU(n) to find the answers

to b above.

d The people who run the game expect to make a profit but want to encourage people

to play by not charging too much.

i Find to the nearest 10 cents the smallest amount they need to charge to still

expect to make a profit.

ii Find the expected return to the organisers if they charge $16 a game and a total

of 1000 games are played in one day.

Comment on your result!
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7 A person raising funds for cancer research telephones people at random asking for a

donation, knowing he has a 1 in 8 chance of being successful.

a Describe the random variable X that indicates the number of calls made before a

success is obtained.

b State one assumption made in your answer to a above.

c Find the average number of calls required for success, and the standard deviation

of the number of calls for success.

d Find the probability that it takes less than five calls to obtain success.

8 The probability that I dial a wrong number is 0:005 when I make a telephone call. In a

typical week I will make 75 telephone calls.

a Describe the distribution of the random variable T that indicates the number of

times I dial a wrong number in a week.

b In a given week, find the probability that:

i I dial no wrong numbers i.e., P(T = 0)
ii I dial more than two wrong numbers.

iii Find E(T ) and Var(T ). Comment on your results!

c Now assuming T is a Poisson distribution with the same mean as found above,

again find the probability in a given week that:
i I dial no wrong numbers

ii I dial more than two wrong numbers. What does this result verify?

A continuous random variable X has a probability density function (pdf) given byf(x)
where ² f(x) > 0 for all x 2 the domain of f

²
Z b

a

f(x) dx = 1 if the domain is [a, b]

Note: ² x can take any real value on the domain of f

² the domain of f could be ] ¡1, 1 [

Refer to Section 30I of the Core text to revise the definition of a pdf and the methods used

to find the mode, median, mean, variance and standard deviation of a continuous random

variable X.

As probabilities are calculated by finding an appropriate area under a pdf, we define

F (X) = P(X 6 x) =
R x
a
f(t) dt

where f(x) is the probability density function (pdf) with domain [a, b].

Note: Sometimes this area can be found using simple methods, for example, the area of

a rectangle or triangle.

CONTINUOUS RANDOM VARIABLES

THE CUMULATIVE DISTRIBUTION FUNCTION ( )cdf�

the ( ascumulative distribution function cdf)
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36 STATISTICS AND PROBABILITY (Topic 8)

Note: We could have used the area of a triangle formula instead of integrating.

Recall that (Core Section 30I) the method for calculating the mean and variance of a contin-

uous random variable is:

² E(X) = ¹ =
R
x f(x) dx for the mean

² Var(X) = ¾2 =
R
(x¡ ¹)2 f(x) dx

or Var(X) = E(X ¡ ¹)2 or E(X2)¡ ¹2 or
R
x2 f(x)dx¡ ¹2

We write X » U(a, b) to indicate that X is a

continuous uniform random variable with a pdf

given by f(x) =
1

b¡ a , a 6 x 6 b

This pdf is a horizontal line segment above the x-axis on [a, b].

So, in general, a continuous uniform random variable has a pdf given by f(x) = k where

k is a positive constant.

The continuous random variable X has pdf f(x) = kx, 0 6 x 6 6.

Find: a k

b the tenth percentile of the random variable X.

a as
R 6
0
f(x) dx = 1R 6
0
kx dx = 1

) k

·
x2

2

¸6
0

= 1

) k(18¡ 0) = 1

) k = 1
18

b We need to find a such that P(X < a) = 0:10

) 1
2 £ a£

a

18
= 0:1

) a2 = 3:6

) a ¼ 1:90 fas a > 0g
i.e., the 10th percentile ¼ 1:90

a �

� �( )x kx
y

x

Example 16

THE MEAN AND VARIANCE OF A CONTINUOUS RANDOM VARIABLE

TYPES OF CONTINUOUS RANDOM VARIABLES

CONTINUOUS UNIFORM

a b

ab
xf

�
�

1)(

ab �

1

y

x
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STATISTICS AND PROBABILITY (Topic 8) 37

Prove that the pdf of a continuous uniform random variable X defined on the

interval [a, b] is given by f(x) =
1

b¡ a , a 6 x 6 b.

As X is a continuous uniform random variable, it has a pdf given by f(x) = k,

where k is constant on the interval [a, b].

For a pdf,
R b
a
k dx = 1 ) [kx]ba = 1

) kb¡ ka = 1

) k(b¡ a) = 1

k =
1

b¡ a

So, f(x) =
1

b¡ a on [a, b].

If X is a continuous uniform random variable, i.e., X » U(a, b), show that:

a ¹ =
a+ b

2
b variance (¾2) =

(b¡ a)2
12

As X » U(a, b), its pdf is f(x) =
1

b¡ a , a 6 x 6 b:

a ¹ = E(x)

=

Z b

a

x

b¡ a dx

=
1

b¡ a
·
x2

2

¸b
a

=

b2

2
¡ a

2

2
b¡ a

=
b2 ¡ a2
2(b¡ a)

=
(b+ a)(b¡ a)

2(b¡ a)

=
a+ b

2

b ¾2 = Var(X) = E(X2)¡ ¹2

=

Z b

a

x2

b¡ a dx ¡
µ
a+ b

2

¶2
=

1

b¡ a
·
x3

3

¸b
a

¡
µ
a+ b

2

¶2

=

b3

3
¡ a

3

3
b¡ a ¡

µ
a+ b

2

¶2
=
b3 ¡ a3
3(b¡ a) ¡

µ
a+ b

2

¶2
=

(b¡ a)(b2 + ab+ a2)

3(b¡ a) ¡ a
2 + 2ab+ b2

4

=
4b2 + 4ab+ 4a2

12
¡ 3a2 + 6ab+ 3b2

12

=
b2 ¡ 2ab+ a2

12

=
(a¡ b)2

12

Example 17

Example 18
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1
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38 STATISTICS AND PROBABILITY (Topic 8)

The error in seconds made by an amateur timekeeper at an athletics meeting may be

modelled by the random variable X, with probability density function

f(x) =

½
0:5 ¡0:5 6 x 6 1:5
0 otherwise

Find the probability that:

a an error is positive b the magnitude of an error exceeds 0:5 seconds

c the magnitude of an error is less than 1:2 seconds

f(x) = 0:5 on ¡0:5 6 x 6 1:5

a P(X > 0)

= P(0 < X < 1:5)

=
1:5

2
= 0:75

b P(magnitude > 0:5)

= P(jXj > 0:5)

= P(X > 0:5 or X < ¡0:5)

= P(X > 0:5)

= 1
2

= 0:5

c P(magnitude < 1:2) = P(jXj < 1:2)

= P(¡1:2 < X < 1:2)

= P(¡0:5 < X < 1:2)

=
1:2¡ (¡0:5)

2
= 0:85

Note: These values

are given by areas of

rectangles.

We write X » Exp(¸) to indicate that X is a continuous exponential random

variable with pdf given by f(x) = ¸e¡¸x for x > 0.

Note: ² ¸ must be positive since f(x) > 0 for all x and e¡¸x > 0 for all x.

² f(x) is decreasing for all x > 0 as f 0(x) = ¸e¡¸x(¡¸) = ¡¸2e¡¸x
where ¸2 and e¡¸x are positive for all x > 0, i.e., f 0(x) is negative for all x.

²
Z 1

0

¸e¡¸t dt must equal 1 fas f(x) is a pdfg

) lim
x!1

Z x

0

¸e¡¸t dt = 1

² The mean ¹ = E(X) and Var(X) =
1

¸2
.

² A typical continuous exponential

pdf is shown alongside.

Notice that f(x) ! 0 (from above)

as x!1.

Example 19

EXPONENTIAL

y
�

x

xexf ����)(

=
1

¸

IBHL_OPT
cyan black

0 5 2
5

7
5

5
0

9
5

1
0
0

0 5 2
5

7
5

9
5

1
0
0

5
0



STATISTICS AND PROBABILITY (Topic 8) 39

The proofs of these results for the mean and variance are not required for exam purposes and

will be given in the Mathematics HL Information Booklet.

It is interesting to note that the cdf of a continuous exponential random variable,

F (x) = P(X 6 x) =
R x
0
¸e¡¸t dt is a function which increases at a decreasing rate.

Hence, most of the area under the graph occurs for relatively small values of x.

The continuous random variable X has probability density function f(x) = 2e¡2x,

x > 0:

a Show that f(x) is a well-defined pdf.

b Find E(X).

c Find Var(X).

d Find the median and modal values of X.

a f(x) is a well-defined pdf if
R1
0
f(x) dx = 1

Now
R1
0
f(x) dx =

R1
0

2e¡2x dx

=

·
2e¡2x

¡2

¸1
0

=
£¡e¡2x¤1

0

= ¡e¡1 ¡ (¡1)

= 1¡ 0

= 1

As X is a continuous exponential random variable

b E(X) =
1

¸
= 1

2 c Var(X) =
1

¸2
= 1

4

d If the median is m, we need to find m such thatRm
0

2e¡2x dx = 0:5 )

h
( 1
¡2) 2e¡2x

im
0

= 0:5

)
£¡e¡2x¤m

0
= 0:5

) ¡e¡2m ¡ (¡1) = 0:5

) e¡2m = 0:5

) e2m = 2 freciprocalsg
) 2m = ln2

) m = 1
2 ln 2 ¼ 0:347

The mode occurs at the maximum

value of f(x),

) mode = 0.

y
�

x

Example 20
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40 STATISTICS AND PROBABILITY (Topic 8)

Notice that if we are given the cdf of a continuous random variable then we can find its pdf

using the Fundamental theorem of calculus. In particular:

If the cdf is F (x) =
R x
a
f(t)dt then its pdf is given by f(x) = F 0(x).

Given a random variable with cdf F (x) =
R x
0
¸e¡¸t dt, find its pdf.

f(x) = F 0(x) =
d

dx

Z x

0

¸e¡¸t dt, x > 0

=
d

dx

·
¸e¡¸t

¡¸
¸x
0

=
d

dx

£¡e¡¸t¤x
0

=
d

dx

¡¡e¡¸x ¡ (¡1)
¢

= ¡e¡¸x(¡¸) + 0

) f(x) = ¸e¡¸x, x > 0

Find the 80th percentile of the random variable X with pdf f(x) = ¸e¡¸x,

x > 0, giving your answer in terms of ¸: If ¸ > 4, find possible values

for the 80th percentile. Comment on your answer.

We want to find a such that
R a
0
¸e¡¸t dt = 0:80

) ¸
R a
0
e¡¸t dt = 0:8

) ¸

·
e¡¸t

¡¸
¸a
0

= 0:8

) ¡ £e¡¸a ¡ e0¤ = 0:8

) e¡¸a ¡ 1 = ¡0:8

) e¡¸a = 0:2

and reciprocating gives e¸a = 5

) ¸a = ln 5 and so a =
ln 5

¸
) 80th percentile is

ln 5

¸

If ¸ > 4,
1

¸
<

1

4
) 80th percentile <

ln 5

4
¼ 0:402

i.e., for ¸ > 4, 80% of the scores

are less than 0:402

i.e., most of the area lies in [0, 0:402]

which is a very small interval compared

with [ 0, 1 [.

y
�

x0.402

80%

Example 21

Example 22
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STATISTICS AND PROBABILITY (Topic 8) 41

NORMAL

We write X » N(¹, ¾2) to indicate that X is a continuous normal random variable

with pdf given by

f(x) =
1

¾
p

2¼
e¡

1
2 (

x¡¹

¾ )2 for ]¡1, 1[:

Note: ² The mean of the normal distribution is ¹ and the variance is ¾2.

² In section 30J of the Core

text, the properties of the

normal distribution are dis-

cussed. Recall that the

normal curve is bell-shaped

with the percentages within

its portions as shown:

² Z =
X ¡ ¹
¾

is the standard normal random variable and Z » N(0, 1)

This transformation is useful when determining an unknown mean or standard

deviation. Also conversion to Z-scores is very important for the understanding

of the theory behind confidence intervals and hypothesis testing which are

dealt with later in this topic.

Given a random variable X » N(¹, ¾2),

find its mean and standard deviation given

that area A = 0:115 06 and area B = 0:135 66

P(X < 13) = 0:115 06

) P

µ
X ¡ ¹
¾

<
13¡ ¹
¾

¶
= 0:115 06

) P

µ
Z <

13¡ ¹
¾

¶
= 0:115 06

)
13¡ ¹
¾

= invNorm(0:115 06)

) ¹¡ 1:2¾ = 13 ..... (1)

and P(X > 36) = 0:135 66

) P(X < 36) = 0:864 34

) P

µ
Z <

36¡ ¹
¾

¶
= 0:864 34

)
36¡ ¹
¾

= invNorm(0:864 34)

) ¹+ 1:1¾ = 36 ..... (2)

Equating ¾s,
¹¡ 13

1:2
=

36¡ ¹
1:1

which when solved gives ¹ = 25

and in (1) 25¡ 1:2¾ = 13

) 1:2¾ = 12

) ¾ = 10

The Mathematics HL Information Booklet available for teachers and students during the course

and in the examinations from 2006 contains the following table.

34.13% 34.13%

13.59% 13.59%

2.15%0.13% 0.13%2.15%

���� ���� ��� ��� ���������

Example 23

�
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42 STATISTICS AND PROBABILITY (Topic 8)

Generally we are asked to find probabilities over

some interval like [0, 30] when the random

variable X is continuous. How then do we find

P(X = 5), say?

If P(X = 5) needs to be found where X has been rounded to the nearest integer, then

P(X = 5) = P(4:5 6 X < 5:5) as X is continuous.

So,

If X » B(n, p), then for large n,

X » N(np, npq) approximately, where q = 1¡ p.

What does large n mean?

A useful rule to follow is: If np > 5 and nq > 5 then we can be reasonable confident

that the binomial distribution is approximately normal. The teaching notes of the syllabus use

the common but more conservative rule for the application of this approximation: np > 10
and n(1¡ p) > 10:

CONTINUOUS DISTRIBUTIONS

Distribution Notation
Probability

density function
Mean

Uniform X » U(a, b)
1

b¡ a , a 6 x 6 b
a+ b

2

(b¡ a)2
12

Exponential X » Exp(¸) ¸e¡¸x, x > 0
1

¸

1

¸2

Normal X » N(¹, ¾2)
1

¾
p

2¼
e¡

1
2 (

x¡¹

¾ )
2

¹ ¾2

Variance

FINDING FOR A CONTINUOUS RANDOM VARIABLEP( )X a=

�

P( ) P( ) if we are interested in the probability
that takes an integer value.
X a a : X < a :
X
= = 0 5 + 0 5¡ 6

Given a random variable X » N(7:2, 28), find P(X = 10).

P(X = 10) = P(9:5 6 X < 10:5)

= normalcdf(9:5, 10:5, 7:2,
p

28)

¼ 0:0655

Example 24

THE NORMAL APPROXIMATION TO THE BINOMIAL DISTRIBUTION

The probability is , if we consider areas.0
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This can be observed by drawing

histograms for binomial distributions

for different values of n and p.

When n and p satisfy the above, the

histogram begins to approximate a

bell-shaped curve, like the pdf of a

normal distribution. The greater the

values of np and nq, the better the

approximation becomes.

Consider the random variable X » B(15, 0:4). Find

a E(X) and Var(X)

b i P(X 6 7) ii P(3 6 X 6 12).

c By approximating X with a normal distribution, find

i P(X 6 7) ii P(3 6 X 6 12).

Compare your answers with b.

d Now using the normal approximation, find

i P(X < 7:5) ii P(2:5 6 X < 12:5).

Again, compare your answers with b. Which is the better approximation?

Can you explain why?

a E(X) = ¹ = np

) E(X) = 15£ 0:4

= 6

Var(X) = ¾2 = npq

) Var(X) = 6£ 0:6

= 3:6
b i P(X 6 7)

= binomcdf(15, 0:4, 7)

¼ 0:787

ii P(3 6 x 6 12)

= P(X 6 12) ¡ P(X 6 2)

= binomcdf(15, 0:4, 12)

¡ binomcdf(15, 0:4, 2)

¼ 0:973

c Using a normal approximation, X is approximately distributed as N(6, 3:6)

i P(X 6 7)

= normalcdf(¡E99, 7, 6,
p

3:6)

¼ 0:701

ii P(3 6 X 6 12)

= normalcdf(3, 12, 6,
p

3:6)

¼ 0:942

These answers are not really close to those in b and this is not surprising as

np = 6 and n(1¡ p) = 9 which under the conditions np > 10 and

n(1¡ p) > 10 are not large enough.

d Using a normal approximation,

i P(X < 7:5)

= normalcdf(¡E99, 7:5, 6,
p

3:6)

¼ 0:785

ii P(2:5 6 X < 12:5)

= normalcdf(2:5, 12:5, 6,
p

3:6)

¼ 0:967

These results are very close to the actual values.

We say there has been a correction for continuity and this is sensible because

the binomial distribution is discrete and the normal distribution is continuous.

continuous normal random

distribution

binomial distribution

with large .n

Example 25
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44 STATISTICS AND PROBABILITY (Topic 8)

Note: ² If we want to find P(X = 7) for a discrete distribution, we can use the

continuous normal distribution since:

P(X = 7) ¼ P(6:5 6 X < 7:5)

X discrete X continuous

² Also, X 6 7 means X < 7:5 and X > 7 means X > 6:5.

X discrete X continuous X discrete X continuous

Where appropriate in the following exercise, clearly state the type of discrete or continuous

distribution used as well as answering the question.

1 The continuous random variable T has a

probability density function given by f(t) =

(
1
2¼ ¡¼ 6 t 6 ¼
0 otherwise

:

Find the mean and standard deviation of T .

2 The Australian football Grand Final is held annually on the last Saturday in September.

With approximately 100 000 in attendance each year, ticket sales are heavily in demand

upon release. Let X be the random variable which gives the time (in hours) taken for a

successful purchase of a Grand Final ticket after their release.

a Give reasons why X could best be modelled by a continuous exponential random

variable.

b If the median value ofX is 10 hours, find the value of ¸ in the pdf for an exponential

random variable.

c Hence, find the probability of a Grand Final ticket being purchased after 3 or more

days.

d Find the average time before a Grand Final ticket is purchased.

3 Find the mean and standard deviation of a normal random variable X, given that

P(X > 13) = 0:4529 and P(X > 28) = 0:1573

4 A continuous probability density function

is described as follows:

f(x) =

8<:
0, x < 0

6¡ 18x, 0 6 x 6 k

0, x > k
Find: a the value of k

b the mean and standard deviation of the distribution.

5 It is known that 41% of a population support the Environment Party. A random sample

of 180 people are selected from the population. If X is the random variable giving the

number who support the Environment Party in this sample:

a i State the distribution of X. ii Find E(X) and Var(X).

iii Find P(X > 58).

b State a suitable approximation for the random variable X and use it to recalculate

part a iii . Comment on your answer.

6 Trainee typists make on average 2:5 mistakes per page when typing a document. If the

mistakes on any one page are made independently of any other page, and if X represents

EXERCISE 8B.5
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STATISTICS AND PROBABILITY (Topic 8) 45

the number of mistakes made on one page and Y represents the number of mistakes

made in a 52-page document:

a State the distributions of X and Y .

b Find the probability that Rana, a trainee typist, will make more than 2 mistakes on

a randomly chosen page.

c Find the probability that Rana will make more than 104 mistakes in a 52-page

document.

d State E(X), Var(X), E(Y ) and Var(Y ).

e Now assume that X and Y can be approximated by normal random variables with

the same means and variances as found above. Use the normal approximations to

redo b and c above. Comment on your answers.

7 The continuous random variable X has a pdf f(x) = 2
5 for 1 6 x 6 k. Find:

a the value of k, and state the distribution of X

b P(1:7 6 x 6 3:2)

c E(X) and Var(X).

8 The continuous random variable X is uniformly distributed over the interval a < x < b.
The 30th percentile is 3 and the 90th percentile is 12. Find:

a the values of a and b b the pdf of X

c P(5 < X < 9) d the cdf of X.

9 a If the random variable T » N(7, 36), find P(jT ¡ 6j < 2:3) :

b Four random observations of T are made. Find the probability that exactly 2 of the

observations will lie in the interval jT ¡ 6j < 2:3 .

10 Show that the mean and variance of the continuous exponential random variable defined

by f(x) = ¸e¡¸x, x > 0, are 1
¸

and 1
¸2

respectively.

Note: This question is not required for exam purposes but may be useful for part of a

portfolio piece of work as it incorporates work from the core. Using integration

by parts may prove helpful.

11 Find the mean and standard deviation of the continuous random variable that is uniformly

distributed over the interval:

a 0 to 1 b 2 to 6

c 0 to a d from m to n where m < n.

A principal application of statistics is to make inferences about a population based on obser-

vations from a sufficiently large sample from the population. As the sample is used to make

generalisations about the whole population it is essential to employ correct sampling methods

when selecting the sample.

INFERENCES

DISTRIBUTIONS OF THE SAMPLE MEANC
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46 STATISTICS AND PROBABILITY (Topic 8)

Reminders:

² The mean of a set of data is its arithmetic average, i.e., the sum of all the data values

divided by the number of them. The mean is a measure of the distribution’s centre.

If finding the mean of a sample, x is used, whereas ¹ is used for a population mean.

² The standard deviation of a set of data measures the deviation between the data

values and the mean. It is a measure of the variability or spread of the distribution.

When finding the standard deviation of a sample, s is used, whereas ¾ is used for a

population standard deviation.

In order to establish correct inferences about a population from a sample, we use random

sampling where each individual in the population is equally likely to be chosen.

There are three sampling methods used to select samples. These are:

² systematic sampling ² stratified random sampling ² cluster sampling.

A parameter or a statistic could be the mean, a percentage, the range, the standard deviation,

etc.

When we calculate a sample statistic which we want to use to estimate the population param-

eter, we do not expect it to be exactly equal to the population parameter. As a result, some

measure of reliability needs to be given and this is generally in the form of a confidence

interval. To obtain such an interval, we need to know how the sample statistic is distributed.

The distribution of a sampling statistic is called its sampling distribution.

Consider tossing a coin where x = 0 corresponds to ‘0 head’

and x = 1 corresponds to ‘1 head’.

The probability distribution for the random variable X is:

Now suppose we are interested in the sampling mean, x, for the possible samples when

tossing a coin twice (n = 2), i.e., the mean result for two tosses.

PARAMETERS AND STATISTICS

A parameter is a numerical characteristic of a population.

A statistic is a numerical characteristic of a sample.

P

S

opulation

ample

arameter

tatistic

	 �

Qw_

P x( )

x

RANDOM SAMPLING

SAMPLING DISTRIBUTIONS

Possible samples x

T , T is 0, 0 0

T , H is 0, 1 1
2

H, T is 1, 0 1
2

H, H is 1, 1 1

Note: P (x) is the probability of particular valuea

of x occurring.

The sampling distribution of x is:

x 0 1
2 1

Frequency 1 2 1

P (x) 1
4

2
4

1
4

And the graph is:

	

Qr_

Qw_

�Qw_

P x( )–

x–
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STATISTICS AND PROBABILITY (Topic 8) 47

Once again we observe that the sampling distribution for this small value of n has a basic

bell shape.

In this section we will be mainly interested in the sampling distribution of the sample mean.

1 A square spinner is used to generate the digits 1, 2, 3 and 4
at random. A sample of two digits is generated.

a List the possible samples of two digits (n = 2).

b For each possible sample, calculate the sample mean x.

c Construct a table which summarises the sampling distribution of x and the proba-

bilities associated with it.

Now consider a spinner with possible outcomes x = 1, 2 or 3 and when it is spun 3 times
i.e., n = 3.

x Possible samples x Possible samples x Possible samples x

f1, 1, 1g 1 f1, 3, 2g 2 f2, 2, 3g 7
3 f3, 2, 1g 2

f1, 1, 2g 4
3 f1, 3, 3g 7

3 f2, 3, 1g 2 f3, 2, 2g 7
3

f1, 1, 3g 5
3 f2, 1, 1g 4

3 f2, 3, 2g 7
3 f3, 2, 3g 8

3

f1, 2, 1g 4
3 f2, 1, 2g 5

3 f2, 3, 3g 8
3 f3, 3, 1g 7

3

f1, 2, 2g 5
3 f2, 1, 3g 2 f3, 1, 1g 5

3 f3, 3, 2g 8
3

f1, 2, 3g 2 f2, 2, 1g 5
3 f3, 1, 2g 2 f3, 3, 3g 3

f1, 3, 1g 5
3 f2, 2, 2g 2 f3, 1, 3g 7

3

Possible samples

Now suppose we are interested in the sampling mean, x, for the possible samples when

tossing a coin three times (n = 3), i.e., the mean result for three tosses.

Possible samples x Possible samples x

T , T , T is 0, 0, 0 0 H, H, T is 1, 1, 0 2
3

T , T , H is 0, 0, 1 1
3 H, T , H is 1, 0, 1 2

3

T , H , T is 0, 1, 0 1
3 T , H, H is 0, 1, 1 2

3

H , T , T is 1, 0, 0 1
3 H, H, H is 1, 1, 1 1

The sampling distribution of x for this case is

even closer to the shape of a normal distribution.

of x is:

x 0 1
3

2
3 1

Frequency 1 3 3 1

P (x) 1
8

3
8

3
8

1
8

And the graph is:

The sampling distribution

	

Qw_

�

P x( )–

x–
eQ_ eW_

The sampling distribution of x is:

x 1 4
3

5
3 2 7

3
8
3 3

Frequency 1 3 6 7 6 3 1

P (x) 1
27

3
27

6
27

7
27

6
27

3
27

1
27

P x( )–

x–

1 Re_

wG_u_

Te_ 2 Ue_ Ie_ 3

EXERCISE 8C.1

1 2

4 3
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48 STATISTICS AND PROBABILITY (Topic 8)

d Draw a sampling distribution histogram to display the information.

2 Repeat question 1 c and d, but this time consider samples of three digits, i.e., n = 3.

3 A random variable X has two possible values (2 and 3), with equal chance of each

occurring.

a List all possible samples when n = 4, and for each possible sample find the sample

mean x.

b Write down in table form the sampling distribution of x, complete with probabilities.

4 Two ordinary dice are rolled. The mean x of every possible set of results is calculated.

Find the sampling distribution of x.

The statistics calculated from a sample should provide an accurate picture of the population.

If the sample is large enough then the errors should be small.

One of the characteristics of a ‘good’ sample is that it is just large enough so that its mean

is a reliable indication of the mean of the population. Likewise, proportions in the sample

should reasonably match proportions within the population.

Whenever sample data is collected, differences in sample characteristics, for example, means

and proportions, do occur. These differences are called errors.

Errors which may be due to faults in the sampling process are systematic errors, resulting in

bias. However, errors which may be due to natural variability are random errors, sometimes

called statistical errors.

Systematic errors are often due to poor sample design, or are errors made when measurements

are taken.

In the following investigation we examine how well actual samples represent a population.

A close look at how samples differ from each other helps us better understand the sampling

error due to natural variation (random error).

ERRORS IN SAMPLING

INVESTIGATION 1 A COMPUTER BASED RANDOM SAMPLER

We will examine how the random process causes variations in:

² the raw data which makes up different samples

² the frequency counts of specific outcome proportions

² a measure of the centre (mean)

² a measure of spread (standard deviation).

The simulation is spreadsheet based.

1

2 At the bottom of the screen click on samples . Notice that the starting sample size is

In this investigation we will examine samples from a symmetrical
distribution as well as one that is skewed.

What to do:

Click on the icon given alongside. The given distribution (in column A) consists of
data values. The five-number summary is given and the data has been tabulated.

Record the five-number summary and the frequency table given.
487
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PACKAGE
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STATISTICS AND PROBABILITY (Topic 8) 49

10 and the number of random samples is 30. Change the number of random samples

to 200.

3 Click on find samples and when this is complete click on find sample means .

4 Click on analyse . Then:

a record the population mean (¹) and standard deviation (¾) for the population

b record the mean of sample means and standard deviation of the sample means.

c Examine the associated histogram.

5 Click on samples again and change the sample size to 20. Repeat steps 3 and 4 to

gather information about the random samples of size 20.

6 Repeat with samples of size 30, 40 and 50. Comment on the variability.

7 What do you observe about the mean of sample means in each case and the population

mean ¹?

10 Now click on the icon for data from a skewed distribu-
tion. Complete an analysis of this data by repeating the
above procedure and recording all results.

STATISTICS
PACKAGE

8 Is the standard deviation of the sample means equal to the standard

deviation (¾) for the population?

9

Determine the model which links s¹x and the sample size, n.

If we let the standard deviation of the sample means be represented

by s¹x, then from a summary of your results, copy and complete a

table like the one given.

n s 2¹x
10

20

30

40

50
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50 STATISTICS AND PROBABILITY (Topic 8)

From the investigation, you should have discovered that:

² the samples consist of randomly selected members of the population

² there is great variability in samples and their means

² in larger samples there is less variability, i.e., smaller values of sx
² there is greater accuracy in reflecting the population means if we take larger samples

² the mean of sample means approximates the population mean, i.e., meanx ¼ ¹
² the standard deviation of the sample means, sx ¼ ¾p

n
, n is the size of each sample

² the distribution of sample means x, for non-normally distributed populations is

approximately normally distributed for large values of n. The larger the value of n
the better the approximation.

As sample size n increases:

s
X

decreases as s
X

= ¾p
n

and mean
X

= ¹ always.

Remember with the Central Limit Theorem we are looking at the distributions of the sample

means X, not at the distribution of individual scores.

From the conclusions of the previous investigation we state the Central Limit Theorem

(CLT). This theorem is based on the distribution of the sample mean and relates this distri-

bution to the population mean.

The Central Limit Theorem

If we take samples from a non-normal populationX with mean ¹ and variance ¾2, then

providing the sample is large enough, the sample mean X is approximately normal and

X » N
³
¹, ¾

2

n

´
: The larger the value of n, the better the approximation will be.

Note: ² Many texts provide a “rule of thumb” of n > 30 (for n large enough).

² If X is a random variable of a normal distribution to begin with, the size of n is

not important, i.e., X » N
³
¹, ¾

2

n

´
for all values of n.

² The syllabus states that “Distributions that do not satisfy the Central Limit

Theorem” are excluded, making the rule of thumb above virtually redundant.

It also states that the “Proof of the Central Limit Theorem” is not required.

² The distribution of the sample means has a reducing standard deviation as n
increases, but the mean x is constant and equal to the population mean ¹.

THE CENTRAL LIMIT THEOREM

X
s

X
s

X
s

���
X

� �
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STATISTICS AND PROBABILITY (Topic 8) 51

Consider rolling a die where the random variable X is the number of dots on a face.

a Tabulate the probability distribution of x. Graph the distribution.

b Find the mean and standard deviation of the distribution.

c Many hundreds of random samples of size 36 are taken. Find:

i the mean of the sampling distribution of the sample mean (meanx)

ii sx, the standard deviation of the sampling distribution of the sample mean.

d Comment on the shape of the distribution of x:

a The probability distribution of X
which is uniform is:

xi 1 2 3 4 5 6

pi
1
6

1
6

1
6

1
6

1
6

1
6

b ¹ =
P
pixi = 1

6 (1) + 1
6 (2) + 1

6(3) + ::::::+ 1
6(6) = 3:5

¾2 =
P
x2i pi ¡ ¹2

= 1(16) + 4(16) + 9(16) + 16(16 ) + 25(16 ) + 36(16) ¡ (3:5)2

= 2:916 666::::

) ¾ ¼ 1:708

c i meanx = ¹ = 3:5 ii sx =
¾p
36
¼ 1:708

6
¼ 0:285 fCL theoremg

d Since n is large, at 36, we can apply the Central Limit theorem.

So, the distribution of x would very closely resemble the normal curve.

Why is the distribution of the sample mean X approximately normal for large n even if the

distribution of the random variableX is not normal? (A formal proof for this is not required.)

Consider this:

If we take independent random samples of size n, the sample mean for any given sample of

size n will be either “larger”, or “smaller than or equal to” the true population mean.

We have a binomial distribution, i.e., 2 outcomes: x is larger than ¹, i.e., x > ¹

or x is smaller than or equal to ¹, i.e., x 6 ¹.

Whether or not we finish with x > ¹ or x 6 ¹ obviously depends on the sample that

has been selected. The weighted values of the scores selected in the sample compared to

the value of ¹ will determine whether x > ¹ or x 6 ¹. Irrespective, this is a binomial

distribution as we are taking n independent samples, and we have already seen in section B

that a binomial distribution approximates a normal distribution for large n.

The sampling error is an estimate of the margin by which the sample mean might differ

from the population mean.

Example 26

� � � � � �

p�i

xi

yQ_

THE SAMPLING ERROR
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52 STATISTICS AND PROBABILITY (Topic 8)

s
X

is used to represent the sampling error (or standard error) of the mean

and s
X

=
¾p
n

. Note: mean
X

= ¹.

In summary, there are two factors which help us to decide if a sample provides useful and

accurate information. These are:

² The sample size.

If the sample size is too small, the statistics obtained from it may be unreliable.

A sufficiently large sample should reflect the same mean as the population it

comes from.

² The sample error.

The sampling error indicates that for a large population, a large sample may be

unnecessary. For example, the reliability of the statistics obtained from a sample

of size 1000 can be almost as good as those obtained from a sample of size

4000. The additional data may provide only slightly more reliable statistics.

1 Random samples of size 36 are selected from a population with mean 64 and standard

deviation 10.

a the mean b the standard deviation.

2 Random samples of size n are selected from a population where the standard deviation

is 24.

a

b

c

d

e

3 The IQ measurements of a population have mean 100 and a standard deviation of 15.

Many hundreds of random samples of size 36 are taken from the population and a relative

frequency histogram of the sample means is formed.

a What would we expect the mean of the samples to be?

b What would we expect the standard deviation of the samples to be?

c What would we expect the shape of the histogram to look like?

4 If a coin is tossed, the random variable X could be ‘the number of heads which appear’.

So, X = 0 or 1 and the probability function for x is: xi 0 1

pi
1
2

1
2

a Find the ¹ and ¾ for the X-distribution.

b Now consider the sampling distribution of X.

List the 16 possible samples of size n = 4 and construct a probability function table.

c For the sampling distribution of means in b, find i mean
X

ii s
X

d Check that mean
X

= ¹ (from a) and s
X

=
¾p
n

(from a).

EXERCISE 8C.2

For the sampling distribution of the sample means, find:

Write s
X

in terms of n.

Find s
X

when i n = 4 ii 16 iii 64.

How large must a sample be for the sampling error to equal 4?

Graph s
X

against n.

Discuss s
X

as n increases in value. Explain the significance of this result.
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a less than 40 b greater than 45 c between 37 and 47?

By the CLT, X » N

µ
43,

³
8p
16

2́
¶

i.e., X » N(43, 22)

a P(X < 40)

= normalcdf(¡E99, 40, 43, 2)

¼ 0:0668

b P(X > 45)

= normalcdf(45, E99, 43, 2)

¼ 0:159

c P(37 < X < 47)

= normalcdf(37, 47, 43, 2)

¼ 0:976

The contents of soft drink cans is distributed with mean 378 mL and

standard deviation 7:2 mL. Find the likelihood that:

a an individual can contains less than 375 mL

b a box of 36 cans has average contents less than 375 mL.

In this example, we must see the difference between the scores for individual cans

and scores for the means of samples of size 36. X represents an individual score,

X represents sample mean scores. X » N(378, 7:22) and X » N(378,
7:22

36
)

a P(X < 375)

= normalcdf(¡E99, 375, 378, 7:2)

¼ 0:338

b P(X < 375)

= normalcdf(¡E99, 375, 378, 7:2p
36

)

¼ 0:006 21

Example 27

4340

43 45

43 47��

Example 28

378375

0.338
Distribution of

individual scores

The age of business men in Sweden is distributed with mean and standard
deviation . If business men are randomly selected from the population, what is
the probability that the sample mean of these measurements is:

43
8 16

So, there is a chance (approxi-
mately) of getting a box of with
average contents less than mL
compared with a chance of an
individual can having contents less
than mL.

0 6%
36
375

33 9%

375

:

:

378���

0.00621

Distribution of
sample means
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54 STATISTICS AND PROBABILITY (Topic 8)

In the following example we revisit Example 2, but this time employ the Central Limit

Theorem.

In the following example, we justify why the mean and standard deviation of X are ¹ and
¾p
n

respectively.

Consider all random samples of size n taken from a population described by the

random variable X with mean ¹ and variance ¾2. Now consider the distribution

of the means of these samples, described by X. Show that E
¡
X
¢

= ¹ and

Var(X) = ¾2

n
.

Suppose X has independent scores X1, X2, X3, X4, ......, Xn

) E(X) = E
¡
1
n

(X1 +X2 +X3 +X4 + ::::::+Xn)
¢

= 1
n

(E(X1) + E(X2) + E(X3) + ::::::+ E(Xn))

= 1
n
(¹+ ¹+ ¹+ ::::::+ ¹) fn of themg

= 1
n
£ n¹

= ¹

and Var(X) = Var
¡
1
n
(X1 +X2 +X3 + ::::::+Xn)

¢
= 1

n2
(Var(X1) + Var(X2) + Var(X3) + ..:... + Var(Xn))

= 1
n2

¡
¾2 + ¾2 + ¾2 + ::::::+ ¾2

¢ fn of themg
= 1

n2
£ n¾

= ¾2

n

X » N(71:5, 7:32).

By the CLT, X » N
³
71:5, 7:3

2

6

´
fas samples of size 6, n = 6g

p = P
¡
X > 444

6

¢
= normalcdf

³
444
6 , E99, 71:5, 7:3p

6

´
+ 0:201, which is the same answer as in Example 2.

The weights of male employees in a bank are normally distributed with a mean
kg and standard deviation kg. The bank has an elevator with a

maximum recommended load of kg for safety reasons. Six male employees enter
the elevator. Calculate the probability that their combined weight exceeds the maxi-
mum recommended load.

¹ : ¾ :

p

= 71 5 = 7 3
444

Example 29

Example 30
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This justifies why the mean and standard error of X are ¹ and ¾p
n

respectively.

A population is known to have a standard deviation of 8 but has an unknown mean.

In order to estimate the mean ¹, a random sample of 60 is taken. Find the probability

that the estimate is in error by less than 2.

As n = 60, the CLT applies.

As the error is either X ¡ ¹ or ¹¡X, we need to find P
¡¯̄
X ¡ ¹¯̄ < 2

¢
Now P

¡¯̄
X ¡ ¹¯̄ < 2

¢
= P

¡¡2 < X ¡ ¹ < 2
¢

= P

Ã
¡2
¾p
n

<
X ¡ ¹

¾p
n

<
2
¾p
n

!
fsetting up Z =

X ¡ ¹
¾p
n

g

= P

Ã
¡2
8p
60

< Z <
2
8p
60

!

= P
³
¡
p
60
4 < Z <

p
60
4

´
= normalcdf

³
¡
p
60
4 ,

p
60
4

´
¼ 0:947

Example 31

INVESTIGATION 2 CHOCBLOCKS

1 What are the meanx and sx values for this situation?

2 Printed on each packet is the nett weight of contents. This is 425 grams. What is the

manufacturer claiming about the mean weight of each bar?

Chocblock produce mini chocolate bars which vary little in

weight. The machine used to make them produces bars

whose weight is normally distributed with mean

grams and standard deviation grams. bars

are then placed in packet for sale. Hundreds of thousands of

packets are produced each year

a

a

.

18 25: :2 3 3� �

What to do:

3 What percentage of their packets will be rejected because they fail to meet the 425
gram claim?

4 An additional bar is added to each packet with the nett weight claim retained at 425
grams.

a What is the minimum acceptable claim now?

b What are the meanx and sx now?

c What percentage of these packets would we expect to reject?
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5 The values of homes in a wealthy suburb of a small city are skewed high with a mean

of $320 000 and a standard deviation of $80 000. A sample of 25 homes was taken and

the mean of the sample was found to be $343 000.

a Find the probability that a random sample of 25 homes in this suburb has a mean

of at least $343 000, using the Central Limit Theorem.

b Comment on the reliability of your answer to part a.

6 An elevator has a maximum recommended load of 650 kg. What is the maximum

recommended number of adult males that might be allowed to use the elevator at any

one time, if the weights of adult males are distributed normally with a mean of 73:5
kg and standard deviation of 8:24 kg, and if you want to be at least 99:5% certain that

the total weight does not exceed the maximum recommended load. Hint: Start with

n = 9.

7 Suppose the duration of human pregnancies can be modelled by a normal distribution

with mean 267 days and a standard deviation of 15 days.

a What percentage of pregnancies should be overdue between 1 and 2 weeks? (Over-

due means any time lasting more than 267 days.)

b At least how many days should the longest 20% of all pregnancies last (i.e., what

is the 80th percentile for pregancy times)?

c A certain obstretician is providing prenatal care for 64 pregnant women. Describe

the sampling distribution for the sample mean of all random samples of size 64 (X).

Specify the model, mean and standard deviation for the distribution of the random

variable X.

d What is the probability that the mean duration of the obstretician’s patients’ preg-

nancies will be premature by at least one week?

e If the duration of these pregnancies no longer follows a normal model, but is skewed

to the left, does that change the answers to parts a to d above?

8 Ayrshire cows average 49 units of milk per day with a standard deviation of 5:87 units,

whereas Jersey cows average 44:8 units of milk each day with a standard deviation of

5:12 units. If milk production for each of these breeds can be modelled by a normal

distribution:

a What is the probability that a randomly selected Ayrshire will average more than

50 units of milk daily?

b What is the probability that a randomly selected Jersey will give more milk than a

randomly selected Ayrshire cow?

c A dairy farmer has 25 Jerseys. What is the probability that the average production

for this small herd exceeds 46 units per day?

d A neighbouring farmer has 15 Ayshires. What is the probability that her herd

averages at least 4 units more than the average for the Jersey herd?

We are frequently presented by the media with estimates of population proportions, often in

the form of percentages.

EXERCISE 8C.2 (Continued)

THE PROPORTION OF SUCCESSES IN A LARGE SAMPLE
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For example: ² if an election was held tomorrow, 52% of the population would vote Labor

² 17% of the African population tested positive to HIV

² 73% of company executives say they will not employ smokers.

To help with estimating a population proportion p, we need to consider taking a random

sample and looking at the distribution of the random variable bp that represents the distribution

of all the possible sample proportions of samples of size n.

Consider the election example.

To estimate the proportion of voters who intend to vote for the “Do Good” party, a random

sample of 3500 voters was taken and 1820 indicated they would vote “Do Good”.

The sample proportion of “Do Good” voters is denoted bp = 1820
3500 = 0:52.

The question arises:

“How is bp distributed and what is the mean ¹bp and standard deviation sbp of

the bp distribution?”

To answer part of this question, we will examine a sample proportion in greater detail.

Firstly, we see that bp =
X

n
where

8<: bp = the sample proportion

X = number of successes in the sample

n = sample size.

The random variable X which stands for the number of successes in the sample (the number

who vote “Do Good” in our example) has a binomial distribution,

i.e., X » B(n, p). (We assume samples are made with replacement.)

Now bp » N
³
p,
pq

n

´
where q = 1¡ p and n is large.

Proof: E(bp) = E
¡
1
n
X
¢

= 1
n

E(X) = 1
n
£ np = p fas X is B(n, p)g

and Var(bp) = Var
¡
1
n
X
¢

=
¡
1
n

¢2
Var (X) = 1

n2
£ npq =

pq

n

So, by the Central Limit Theorem, as n is large, bp » N
³
p,
pq

n

´
:

Ms Claire Buford gained 43% of the votes in the local Council elections.

a Find the probability that a poll of 150 randomly selected voters would show

over 50% in favour of Ms Buford.

b Find the corresponding probability if the sample consisted of 750 randomly

selected voters.

c A sample of 100 voters was taken and 62% of these voted for Ms Burford.

Find the probability of this occurring and comment on the result.

Example 32
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a The population proportion p = 0:43, so q = 0:57.

Also, we are given that n = 150.

Now bp » N
¡
0:43, 0:43£0:57150

¢
) P(bp > 0:5) = normalcdf

³
0:5, 1, 0:43,

q
0:43£0:57

150

´
¼ 0:0417 (the standard error ¼ 0:0404)

Note: A more accurate answer can be obtained using a continuity correction

but the teachers notes from the syllabus indicate that this is not required in

examinations. However the continuity correction can make a large difference

to the answer.

More accurately, P(bp > 0:5) = P
¡bp > 0:5 + 1

2

¡
1
150

¢¢
¼ P(bp > 0:503 33)

¼ normalcdf
³
0:503 33, 1, 0:43,

q
0:43£0:57

150

´
¼ 0:0348

b bp » N
¡
0:43, 0:43£0:57750

¢
) P(bp > 0:5) = normalcdf

³
0:5, 1, 0:43,

q
0:43£0:57

750

´
¼ 0:000 054 0

Note: Using the continuity correction P(bp > 0:5) = 0:000 0463

c bp » N
¡
0:43, 0:43£0:57100

¢
P(bp > 0:62) = normalcdf

³
0:62, 1, 0:43,

q
0:43£0:57

100

´
¼ 0:000 062 1

This is so unlikely that we would doubt the truth of Ms Burford only getting

43% of the vote.

Using the continuity correction, P(bp > 0:62) = P(bp > 0:62¡ 1
200 )

¼ 0:000 0932

1 A random sample of size n = 5 is selected from a normal population which has a mean

¹ of 40 and standard deviation ¾ of 4. Find the following probabilities:

a P(X < 42) b P(X > 39) c P(38 < X < 43)

2 During a one week period in Sydney the average price of an orange was 42:8 cents with

standard deviation 8:7 cents. Find the probability that the average price per orange from

a case of 60 oranges is less than 45 cents.

3 The average energy content of a fruit bar is 1067 kJ with standard deviation 61:7 kJ.

Find the probability that the average energy content of a sample of 30 fruit bars is more

than 1050 kJ/bar.

EXERCISE 8C.3
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4 The average sodium content of a box of cheese rings is 1183 mg with standard deviation

88:6 mg. Find the probability that the average sodium content per box for a sample of

50 boxes lies between 1150 mg and 1200 mg.

5 Genuine customers at a clothing store are in the shop for an average time of 18 minutes

with standard deviation 5:3 minutes. What is the probability that in a sample of 37
customers the average stay in the shop is between 17 and 20 minutes?

6

a an individual can contains less than 375 mL

b a slab of two dozen cans has an average less than 375 mL per can.

7 Returning to the fruit bar problem of question 3, find the probability that:

a

b a carton of 50 fruit bars has average energy content in excess of 1060 kJ.

8 A concerned union person wishes to estimate the hourly wage of shop assistants in

Adelaide. He decides to randomly survey 300 shop assistants to calculate the sample

mean. Assuming that the standard deviation is $1:27, find the probability that the estimate

of the population mean is in error by 10 cents or more.

9 An egg manufacturer claims that eggs delivered to a supermarket are known to contain

no more than 4% that are broken. On a given busy day, 1000 eggs are delivered to this

supermarket and 7% are broken. What is the probability that this could happen? Briefly

comment on the manufacturer’s claim.

10 Two sevenths of households in a country town are known to own computers. Find the

probability that of a random sample of 100 households, no more than 29 households own

a computer.

11 Eighty five percent of the plum trees grown in a particular area produce more than 700
plums.

a State the sampling distribution for the proportion of plum trees that produce more

than 700 plums in this area where the sample is of size n.

b State the conditions under which the sampling distribution can be approximated by

the normal distribution.

c In a random sample of 200 plum trees selected, find the probability that:

i less than 75% ii between 75% and 87% produce more than 700 plums.

d In a random sample of 500 plum trees, 350 were found to produce more than 700
plums.

i What is the likelihood of 350 or fewer trees producing more than 700 plums?

ii Comment, giving two reasons why this sample is possible.

12 A regular pentagon has sectors numbered 1, 1, 2, 3, 4. Find the probability that, when

the pentagon is spun 400 times, the result of a 1 occurs:

a more than 150 times b at least 150 times c less than 175 times.

The average contents of a can of beer is mL, even though it says mL on a can.
The statistician at the brewery says that the standard deviation is steady at mL.
Assuming the contents of a can are normally distributed, find the probability that:

382 375
16 2:

an individual fruit bar contains at least kJ of energy, if energy content is
normally distributed

1060
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60 STATISTICS AND PROBABILITY (Topic 8)

13 A tyre company in Moscow claims that at least 90% of the tyres they sell will last at

least 30 000 km. To test this, a consumer protection service sampled 250 tyres and found

that 200 of the tyres did not last for at least 30 000 km.

a State the distribution of the sample proportions with any assumptions made.

b Find the proportion of samples of 250 tyres that would have no more than 200 tyres

lasting at least 30 000 km.

c Comment on this result.

Trying to find a population parameter such as the mean weekly salary of Austrian adults (over

18) would be an extremely difficult task but the Central Limit Theorem allows us to use our

sample means to estimate quantities like this.

By the CLT we can assume that approximately 95%
of the sample means would lie within 2 standard

errors of the population mean.

E(X) = ¹, Var (X) = ¾p
n

The diagram shows the distribution of sample means,

X.

A statement like:

“We are 95% confident that the mean weekly salary is between 637 euros and 691 euros.”

clearly indicates that the mean most likely lies in an interval between 637 euros and 691 euros.

The level of confidence is 95%, i.e., the probability that the interval contains the parameter

¹ is 0:95 .

A confidence interval estimate of a parameter (in this case, the population mean, ¹)

is an interval of values between two limits together with a percentage indicating our

confidence that the parameter lies in the interval.

The Central Limit Theorem is used as a basis for finding all confidence intervals.

By the Central Limit Theorem, the sample mean, X, is normally distributed with mean ¹ and

standard deviation ¾p
n
:

The corresponding standard normal random variable is Z =
X ¡ ¹

¾p
n

and Z » N(0, 1).

For a 95% confidence level we need to find

a for which P(¡a < Z < a) = 0:95 .... (¤)
Because of the symmetry of the graph of the

normal distribution, the statement reduces to

P(Z < ¡a) = 0:025 or P(Z < a) = 0:975

From a graphics calculator (or a table of standard normal probabilities) we find that a ¼ 1:96

CONFIDENCE INTERVALS FOR

MEANS AND PROPORTIONS
D

�a a

0.95

0.0250.025

0

�

x1

x1

x3

x3

x2

x2

95.4%

X
�2

X
�2

X
�2

X
�2

X
�2

X
�2

X
�2

X
�2
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STATISTICS AND PROBABILITY (Topic 8) 61

Therefore, in ¤ P(¡1:96 < Z < 1:96) = 0:95 or P
³¡1:96 <

x¡ ¹
¾p
n

< 1:96´
= 0:95

which means
x¡ ¹
¾p
n

< 1:96 and
x¡ ¹
¾p
n

> ¡1:96

) x¡ ¹ < 1:96 ¾p
n

and x¡ ¹ > ¡1:96 ¾p
n

) ¹ > x¡ 1:96 ¾p
n

and ¹ < x+ 1:96 ¾p
n

So, we see that x¡ 1:96 ¾p
n
< ¹ < x+ 1:96 ¾p

n
:

This interval gives a 95% confidence interval for the population mean ¹ for any given sample

of size n and population standard deviation ¾.

Note: The exact centre of the confidence interval is the value of x for the sample taken.

So, the 95% confidence interval for ¹ is from x¡ 1:96 ¾p
n

to x+ 1:96 ¾p
n
:

x–

n

�
96.1

n

�
96.1

x–

n

�
96.1� x–

n

�
96.1�

lower limit upper limit

The 90% confidence interval for ¹

This time P(Z < ¡a) = 0:05 or

P(Z < a) = 0:95

and from tables or calculator a + 1:645

and as a is the coefficient of ¾p
n

, in

the following confidence interval,

In summary,
Confidence level a Confidence interval

90% 1:645 x¡ 1:645 ¾p
n
< ¹ < x+ 1:645 ¾p

n

95% 1:960 x¡ 1:960 ¾p
n
< ¹ < x+ 1:960 ¾p

n

98% 2:326 x¡ 2:326 ¾p
n
< ¹ < x+ 2:326 ¾p

n

99% 2:576 x¡ 2:576 ¾p
n
< ¹ < x+ 2:576 ¾p

n

OTHER CONFIDENCE INTERVALS FOR ¹

�a a

0.90

0.050.05

0

the 90% confidence interval for ¹ is x¡ 1:645 ¾p
n
< ¹ < x+ 1:645 ¾p

n
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62 STATISTICS AND PROBABILITY (Topic 8)

The values of a are determined by a graphics calculator or tables.

The confidence level is the amount of confidence we place in ¹ being within the calculated

confidence interval.

The width of a confidence interval is 2£ a£ ¾p
n

where a is the level of confidence in

the table above.

The sample mean is the centre of the confidence interval.

A drug company produces tablets with mass that is normally distributed with a

standard deviation of 0:038 mg. A random sample of ten tablets was found to have

an average (mean) mass of 4:87 mg. Calculate a 95% CI for the mean mass of

these tablets based on this sample.

Even though n is relatively small, the fact that the mass is normally distributed

means that X » N
³
4:87, 0:038p

10

´
) a 95% CI for mean mass, ¹, is

4:87¡ 1:96£ 0:038p
10
< ¹ < 4:87 + 1:96£ 0:038p

10

i.e., 4:846 < ¹ < 4:894

) we are 95% confident that the population mean lies in the interval

4:85 < ¹ < 4:89:

Note: Consider samples of different size but all with mean 10 and standard deviation 2.

The 95% confidence interval is 10¡ 1:960£ 2p
n

< ¹ < 10 +
1:960£ 2p

n
.

For various values of n we have:

n Confidence interval

20 9:123 < ¹ < 10:877

50 9:446 < ¹ < 10:554

100 9:608 < ¹ < 10:392

200 9:723 < ¹ < 10:277

INVESTIGATION 3 CONFIDENCE LEVELS AND INTERVALS

To a

a

( ,

, )

obtain greater understanding of confidence intervals and levels

click on the icon to visit random sampler demonstration which cal-

culates confidence intervals at various levels of your choice

or and counts the intervals which include the population mean.

90%
95% 98% 99%

We see that increasing the sample size produces confidence intervals of shorter width.

DEMO

9 9.5 10 10.5 11

��10

n = 20
n = 50
n = 100
n = 200

Example 33
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STATISTICS AND PROBABILITY (Topic 8) 63

A sample of 60 yabbies was taken from a dam. The

sample mean weight of the yabbies was 84:6 grams

and the standard deviation of the population was

16:8 grams.

Find for the yabbie population:

a the 95% confidence interval for the population

mean

b the 99% confidence interval for the population

mean.

We are given the sample mean X = 84:6 and standard deviation ¾ = 16:8.

a The 95% confidence interval is: x¡ 1:960 ¾p
n
< ¹ < x+ 1:960 ¾p

n

i.e., 84:6¡ 1:960£16:8p
60

< ¹ < 84:6 + 1:960£16:8p
60

) 80:349 < ¹ < 88:851

So, we are 95% confident that the population mean weight of the yabbies lies

between 80:3 grams and 88:9 grams.

b The 99% confidence interval is: x¡ 2:576 ¾p
n
< ¹ < x+ 2:576 ¾p

n

i.e., 84:6¡ 2:576£16:8p
60

< ¹ < 84:6 + 2:576£16:8p
60

) 79:01 < ¹ < 90:19

So, we are 99% confident that the population mean weight of the yabbies lies

between 79:0 grams and 90:2 grams.

Example 34

Confidence intervals can be obtained directly from your graphics calculator.

Often we do not know the population variance ¾2. So, we use an unbiased estimate of ¾2 to

estimate it. In fact we use s 2n¡1 to estimate ¾2.

However in doing this, the assumption that the random variable X is distributed normally is

now not quite correct, especially for relatively small samples.

We know that with known ¾2, Z =
X ¡ ¹

¾p
n

» N(0, 1)

So, what is the distribution of
X ¡ ¹
sn¡1p
n

if ¾2 is unknown?

The answer is, the random variable T =
X ¡ ¹
sn¡1p
n

is a t-distribution, sometimes called

TI

C

CONFIDENCE INTERVALS FOR WHEN IS UNKNOWN¹ ¾2

“students” -distribution (named after William Gosset who wrote under a pseudonym of
“student”).

t
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In general, º = n¡ 1, so for a sample of size 8, º = 7.

The graphs illustrated are those of t(2), t(10) and Z i.e., N(0, 1).

t� �- DISTRIBUTIONS

All t-distributions are symmetrical about

the origin. They are just like standardised

normal bell-shaped curves, but fatter. Each

curve has a single parameter º (pronounced

“new”) which is a positive integer. º is

known as the number of degrees of freedom

of the distribution.

If random variable T has 7 degrees of freedom we write T » t(7).

In general, º = n¡ 1, so for a sample of size 8, º = 7.

The graphs illustrated are those of t(2), t(10) and Z i.e., N(0, 1).

standard normal curve
N ,( )	
��

v��	

v��

0

In general, as º increases, the curves begin to look more and more like the standardised

normal Z-curve.

For samples of size n where ¾ is unknown, it can be shown that T =
X ¡ ¹
sn¡1p
n

follows a

t-distribution with n¡ 1 degrees of freedom, i.e., T » t(n¡ 1):

The fat content (in grams) of 30 randomly selected pies at the local bakery was

determined and recorded as:

15:1 14:8 13:7 15:6 15:1 16:1 16:6 17:4 16:1 13:9 17:5 15:7 16:2 16:6 15:1
12:9 17:4 16:5 13:2 14:0 17:2 17:3 16:1 16:5 16:7 16:8 17:2 17:6 17:3 14:7

Determine a 98% confidence interval for the average fat content of all pies made.

Entering the data into a calculator using the list and statistical functions, we

obtain x ¼ 15:9 and sn¡1 ¼ 1:365

¾ is unknown and T =
X ¡ ¹
sn¡1p
n

is t(29)

Using a graphics calculator, a 98% CI for ¹ is 15:28 < ¹ < 16:51.

Note: As n = 30, i.e., n is sufficiently large, the normal CI is acceptable

i.e., 15:9¡ 2:326 ¾p
n
< ¹ < 15:9 + 2:326 ¾p

n

i.e., 15:9¡ 2:326£ 1:365p
30
< ¹ < 15:9 + 2:326£ 1:365p

30

i.e., 15:32 < ¹ < 16:48

Example 35

TI

C

So, using either distribution, we are confident that lies between
and .

98%
15 3 16 5

¹
: :
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When designing an experiment in which we wish to estimate the population mean, the size

of the sample is an important consideration.

Finding the sample size is a problem that can be solved using the confidence interval.

Let us revisit Example 35 on the fat content of pies.

The question arises: ‘How large should a sample be if we wish to be 98% confident that

the sample mean will differ from the population mean by less than

0:3 grams if we know the population standard deviation ¾ = 1:365,

i.e., ¡0:3 < ¹¡ x < 0:3?’

Now the 98% confidence interval for ¹ is:

x¡ 2:326 ¾p
n
< ¹ < x+ 2:326 ¾p

n

i.e., ¡2:326 ¾p
n
< ¹¡ x < 2:326 ¾p

n

So, we need to find n when 2:326 ¾p
n

= 0:3

i.e.,
p
n =

2:326¾

0:3
=

2:326£ 1:365

0:3
¼ 10:583

) n ¼ 112

So, a sample of 112 should be taken.

A random sample of eight independent observations of a normal random variable

gave
P
x = 72:8 and

P
x2 = 837:49 . Calculate:

a an unbiased estimate of the population mean

b an unbiased estimate of the population standard deviation

c a 90% confidence interval for the population mean.

a x =

P
x

n
=

72:8

8
= 9:1 and so 9:1 is an unbiased estimate of ¹.

b s 2n =

P
x2

n
¡ x2 =

837:49

8
¡ 9:12 ¼ 21:876

The unbiased estimate of ¾2 is s 2n¡1 =
n

n¡ 1
s 2n =

8

7
£ 21:876 ¼ 25:00

) the unbiased estimate of ¾ ¼ 5:00

c Using a graphics calculator, we input x = 9:1 and sn¡1 = 5:00
to get the 90% confidence interval for ¹.

This is 5:75 < ¹ < 12:45 fusing the t-distributiong

Example 36

TI

C

DETERMINING HOW LARGE A SAMPLE SHOULD BE

IBHL_OPT
cyan black

0 5 2
5

7
5

5
0

9
5

1
0
0

0 5 2
5

7
5

9
5

1
0
0

5
0



66 STATISTICS AND PROBABILITY (Topic 8)

Recall that the sample proportions of successes bp is distributed normally,

i.e., for large n, bp » N(p,
pq

n
).

The distribution of bp is called the sampling distribution of proportions.

As proportions from samples are distributed normally for large n, we can find confidence

intervals for proportions in exactly the same way we have done for the population mean.

The value of bp is an unbiased estimate of p, the true population proportion, and bq = 1¡ bp
is an unbiased estimate of q.

Hence, if we are attempting to find a 95% CI for the unknown proportion of a population,

we take a sufficiently large sample (the rule suggested in the teaching notes is np > 10,

n(1¡ p) > 10 or nq > 10).

Using previous arguments:

The large sample 95% confidence interval for p is

bp¡ 1:96

rbp bq
n
< p < bp+ 1:96

rbp bq
n

where bq = 1¡ bp.
For a 90% confidence interval, we replace 1:96 by 1:645.

For a 98% confidence interval, we replace 1:96 by 2:326.

For a 99% confidence interval, we replace 1:96 by 2:576.

Revisit the yabbies from the dam problem of Example 34. We now wish to find the

sample size needed to be 95% confident that the sample mean differs from the

population mean by less than 5 grams. What sample size should be taken?

From the previous sample of 60, ¾ = 16:8 was used.

The 95% confidence interval for ¹ is:

x¡ 1:960 ¾p
n
< ¹ < x+ 1:960 ¾p

n

i.e., ¡1:96 ¾p
n
< ¹¡ x < 1:96 ¾p

n

Now, we need to find n such that 1:96
¾p
n

= 5

i.e.,
1:96£ 16:8p

n
= 5

) n =

µ
1:96£ 16:8

5

¶2
¼ 43:37

So, a sample of 44 should be used.

Example 37

Note: To ensure that

no mistakes are made

it is good practice to

use the final value of n
and see what confidence

interval this gives for

the sample mean.

CONFIDENCE INTERVALS FOR PROPORTIONS
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A random sample of 200 residents from Munich showed that 53 supported the

Bayern Munich football team.

Find the sample proportion of Bayern Munich supporters.

Find a 95% CI for the proportion of residents of Munich who support Bayern

Munich.

Interpret your answer to b.

The sample proportion of Bayern Munich supporters is bp = 53
200 = 0:265:

Thus we estimate that 26:5% of the residents of Munich support Bayern

Munich.

Note: This estimate is called a point estimate as distinct from an interval

estimate (confidence interval).

The 95% CI for p is bp¡ 1:96

rbp bq
n
< p < bp+ 1:96

rbp bq
n

i.e., 0:265¡ 1:96
q

0:265£0:735
200 < p < 0:265 + 1:96

q
0:265£0:735

200

) 0:203 83 < p < 0:326 16

a

b

c

a

b

c So, we expect p to lie between 0:204 and 0:326 with 95% confidence, or we

are 95% confident that the actual proportion of Bayern Munich supporters

throughout Munich lies between 20:4% and 32:6%.

Random samples of households are used to estimate the proportion of them who own

at least one dog. Jason sampled 300 households and found that 123 had at least one

dog. Kelly sampled 600 households and found that 252 had at least one dog.

a Find a 95% confidence interval for each sample.

b Illustrate the limits on a number line. c Comment on the limits.

a Jason’s sampling: bp = 123
300 = 0:41

and so his 95% confidence interval for the population proportion p is

bp¡ 1:96

rbp bq
n
< p < bp+ 1:96

rbp bq
n

i.e., 0:41¡ 1:96
q

0:41£0:59
300 < p < 0:41 + 1:96

q
0:41£0:59

300

) 0:3543 < p < 0:4657

Kelly’s sampling: bp = 252
600 = 0:42

and so her 95% confidence interval for the population proportion p is

i.e., 0:42¡ 1:96
q

0:42£0:58
600 < p < 0:42 + 1:96

q
0:42£0:58

600

) 0:3805 < p < 0:4595

Example 38

Example 39
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Assessing a claim with a confidence interval is now possible, but we must be very careful in

stating any conclusions.

For example, consider tossing a coin 1000 times to see if it is ‘fair’.

Fair coins have P(heads) = p = 1
2 , and q = 1¡ p = 1

2 = P(tails)

If 536 heads result, the 95% confidence interval for p is

0:536¡ 1:96
q

0:536£0:464
1000 < p < 0:536 + 1:96

q
0:536£0:464

1000 i.e., 0:505 < p < 0:567

Thus we are 95% confident that the true value of p lies betwen 0:505 and 0:567. We might

say “there is strong evidence that the coin is biased towards heads”, but must not say “this

proves that the coin is biased” because a very rare event could have occurred, i.e., there is

less than 5% chance that we would get 536 heads if we tossed a fair coin 1000 times.

The significant departure from 0:5 may be due to chance (albeit very small) alone.

The manufacturer of Perfect Strike matches claimed that 80% of their match boxes

contained 50 or more matches. To check this claim a consumer randomly chose

250 boxes and counted the contents. The consumer found that 183 boxes contained

50 or more matches.

a Find a 98% confidence interval for the proportion of match boxes in the popu-

lation which contain 50 or more matches.

b Does the consumer’s data support the manufacturer’s claim?

a The estimate of the proportion is bp = 183
250 = 0:732 and a 98% confidence

interval for p is

0:732¡ 2:326
q

0:732£0:268
250 < p < 0:732 + 2:326

q
0:732£0:268

250

) 0:667 < p < 0:797

b We are 98% confident that the true proportion lies between 66:7% and 79:7%
based on our sample. The manufacturer’s claim lies outside the interval.

So, there is strong evidence that the manufacturer’s claim is false.

b

c Kelly’s larger sample produced a narrower interval. Jason estimates the actual
proportion to lie between and with confidence, whereas
Kelly estimates the actual proportion to lie between and , also with

confidence.

35 4% 46 6% 95%
38 1% 46 0%

95%

: :
: :

0.3 0.4 0.5

Jason’s interval

Kelly’s interval

ASSESSING CLAIMS USING A CONFIDENCE INTERVAL

Example 40
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Since 95% confidence limits for the population proportion p are bp§ 1:96

rbp bq
n

,

we could say that the sampling error = §1:96
rbp bq
n

with 95% confidence.

In a case where bp is not known bp bq has a maximum value of 1
4 which occurs when bp

and bq are both 1
2 . [Consider f(x) = x(1¡ x) where 0 6 x 6 1.]

) if bp is unknown,

the maximum sampling error for 95% confidence = §1:96

r¡
1
2

¢ ¡
1
2

¢
n

= §1:96
µ

1

2
p
n

¶

We can use the sampling error formula at whatever level of confidence we require to determine

the sample size we should use in sampling for proportions.

A researcher wishes to estimate, with a probability of 0:95, the proportion to

within 3% of mosquitos which carry a virus. How large must the sample be?

We notice that bp is unknown and the sampling error is to be at most 3% = 0:03.

So, 1:96

µ
1

2
p
n

¶
= 0:03 ) 2

p
n =

1:96

0:03

)
p
n = 32:666 6::::

Therefore the sample size, n ¼ 1067.

SAMPLING ERROR FOR PROPORTIONS

the sampling error = §1:96

µ
1

2
p

2000

¶
+ §0:022 i.e., §2:2%

For financial reasons, a newspaper decides they will survey only voters to
ask their voting intentions at the next elections. What accuracy could they expect from
the survey with confidence?

2000

95%

So, if they sample voters the results should be accurate within with
confidence.

2000 2 2% 95%:

Example 41

CHOOSING THE SAMPLE SIZE

Example 42
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70 STATISTICS AND PROBABILITY (Topic 8)

In each of the following examples, state whether you are using a standard normal (Z-

distribution), a t-distribution, the distribution for a sampling proportion (bp) or the binomial

distribution.

1 The mean ¹, of a population is unknown, but its standard deviation is 10. In order to

estimate ¹ a random sample of size n = 35 was selected. The mean of the sample was

found to be 28:9.

a Find a 95% confidence interval for ¹. b Find a 99% confidence interval for ¹.

c In changing the confidence level from 95% to 99%, how does the width of the

confidence interval change?

2 The choice of the confidence level to be used is made by an experimenter. Why do

experimenters not always choose to use confidence intervals of at least 99%?

3 A random sample of n is selected from a population with known standard deviation 11.

The sample mean is 81:6.

a Find a 95% confidence interval for ¹ if: i n = 36 ii n = 100.

b In changing n from 36 to 100, how does the width of the confidence interval change?

4 If the P% confidence interval for ¹ is x¡ a
³
¾p
n

´
< ¹ < x+ a

³
¾p
n

´
then

for P = 95, a = 1:960: Find a if P is: a 99 b 80 c 85 d 96.

Hint: Use the Z-distribution tables.

5 A random sample of size n = 50 is selected from a population with standard deviation

¾ and the sample mean is 38:7, or a graphics calculator with a diagram.

a Find a 95% confidence interval for the mean ¹ if: i ¾ = 6 ii ¾ = 15.

b What effect does changing ¾ from 6 to 15 have on the width of the confidence

interval?

6 Neville kept records of the time that he had to wait to receive telephone support for his

accounting software. During a six month period he made 167 calls and the mean waiting

time was 8:7 minutes. The shortest waiting time was 2:6 minutes and the longest was

15:1 minutes.

a Estimate ¾ using ¾ ¼ range ¥ 6.

b Find a 98% confidence interval for estimating the mean waiting time for all telephone

customer calls for support.

c Use the normal distribution to briefly explain why the formula in a for an estimate

of ¾ is a reasonable one.

7 A breakfast cereal manufacturer uses a machine to deliver the cereal into plastic packets

which then go into cardboard boxes. The quality controller randomly samples 75 packets

and obtains a sample mean of 513:8 grams with sample standard deviation 14:9 grams.

Construct a 99% confidence interval in which the true population mean should lie.

8 A sample of 42 patients from a drug rehabilitation program showed a mean length of

stay on the program of 38:2 days with a standard deviation of 4:7 days. Estimate with

a 90% confidence interval the average length of stay for all patients on the program.

EXERCISE 8D
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9 A researcher wishes to estimate the mean weight of

adult crayfish in Indonesian waters. From previous

records she knows that adult crayfish vary in weight

between 625 grams and 2128 grams.

a Estimate the standard deviation using the range

of weights given.

b How large must a sample be so that she is 95%
confident that the sample mean differs from the population mean by less than 70
grams, that is,

¯̄
X ¡ ¹¯̄ < 70? State any assumptions made.

10

11 A sample of 48 patients from an alcohol rehabilitation program showed participation time

on the program had a population variance of 22:09 days2. How many patients would

have to be sampled to be 99% confident that the sample mean number of days on the

program differs from the population mean by less than 1:8 days?

12 When 2839 Russians were randomly sampled, 1051 said they feared living close to

overhead electricity power lines because of possible ‘increased cancer risk’. Use the

results of this survey to estimate with a 95% confidence interval the proportion of all

Russians with this fear.

13 In a game of chance, one player suspected the coin being used was unfair. To test this

he tossed the coin 500 times and observed 281 heads and 219 tails as the only outcomes.

Estimate with a 99% confidence interval the probability of getting a head when tossing

this coin. Comment on your answer.

14 A random sample of 2587 Irish adults were asked if they are better off now than they

were ten years ago. 1822 said that they were not.

a What proportion of the sample said that they were not better off now?

b Estimate with a 99% confidence interval the proportion of all Irish adults who claim

not to be better off now.

c In a town of 5629 adults in Ireland how many would you expect to be better off

now? State a weakness in your answer.

15 What is the large sample 80% confidence interval for estimating a population proportion,

p, for a sample of size n with proportion bp?

16 The manufacturer of Chocfruits claims that 90% of the one kilogram boxes have apricot

centres in more than half of the Chocfruits. To check this claim a consumer purchased at

random 80 boxes and found the percentage of each box with apricot centres. She found

that 70 of the boxes had apricot centres in more than half of the Chocfruits.

a What proportion of the sample of boxes had more than half of the Chocfruits with

apricot centres?

b Estimate with a 95% confidence interval the proportion of all boxes produced by

the manufacturer which have more than half of the Chocfruits with apricot centres.

c Does the consumer’s data support the manufacturer’s claim?

A porridge manufacturer knows that the population variance , of the contents weight
of each packet produced is grams . How many packets must be sampled to be

confident that the sample mean differs from the population mean by less than
grams?

¾
:

2

2 217 8
98%
3
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72 STATISTICS AND PROBABILITY (Topic 8)

17 Growhair is the latest product of a pharmaceutical

company. The company claims that their tests show

that 43% of users of the product showed significant

hair gain after a period of four months.

To test the claim Consumer Affairs randomly sam-

pled 187 users and found that 68 of them did show

significant hair gain. At a 95% confidence level,

does the sample support the company’s claim?

18 Publishers Karras Pty Ltd decide to survey 1500 of their readers to ask their opinion

on the new format and layout of their fortnightly magazine. What accuracy would you

expect from the survey with:

a 95% confidence b 99% confidence?

19 A poll on voting intentions for the upcoming state election is to be carried out at a 95%
confidence level. Find the sampling error when the sample size is:

a 500 b 1000 c 2000 d 4000

20 A scientist wishes to estimate the proportion of abnormally large peas in a new hybrid

crop. He wishes to be accurate to 2% with a probability of 0:95.

a How large should the sample be?

b If the probability is raised to 0:99, how large would the sample now have to be?

21 When 2750 voters were asked whether the income tax rates were too high, 2106 said

‘yes’.

a If the poll was at a 90% confidence level, determine the poll’s margin for error

(sampling error).

b How many voters need to be surveyed to have the same margin of error as in a but

with an increased confidence level of 95%?

22 After the latest frost 189 apples were randomly picked and 43 were found to be not fit

for sale.

a What is the sampling error in this case (with 95% confidence)?

b How large a sample would need to be taken to estimate the proportion of unsaleable

apples to within 3% with 95% confidence?

23 In some countries laws are made to prevent anglers from catching fish smaller than a

given length. In a random sample of 300 fish caught in a certain region, 27 were smaller

than the legal limit.

a Estimate the proportion of fish caught below the legal limit in that region.

b Find a 98% confidence interval that contains the proportion of fish caught below

the legal limit.

c Explain why this interval estimate is approximate and briefly explain what this

interval estimate means.

d What size sample would you take to estimate the proportion to be within 2% with

98% confidence?
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24 In 1995, for a random sample of 75 German residents interviewed, 43 voted in favour

of the introduction of the new European currency.

a Calculate a 95% confidence interval for the population proportion of German resi-

dents in favour of the new European currency.

b How many German residents would you need to sample if you were to be provided

with an interval of width 0:05 with 95% confidence?

c Give two reasons why the calculation in b is an estimate.

d In 1995, for another random sample of 200 German residents, a 95% CI for the

population proportion in favour of the Euro was approx. ]0:441, 0:579[. How many

of the 200 voted in favour of the Euro?

Visitors to the West Coast of the South Island of New

Zealand are often bitten by sandflies.

A new product to repel sandflies has the statement

“will repel sandflies for an average protection time

of more than six hours” printed on its label. The

current most popular brands offer “protection for 6
hours”.

The government tourist department wishes to preserve

the tourist trade. Anxious also to provide the best

sandfly protection possible, they decide to test the

manufacturer’s claim. How can they test the claim?

There are many circumstances where a test of a claim is appropriate. We do this by testing

hypotheses.

A statistical hypothesis is a statement about a population parameter. The parameter

could be a population mean or a proportion.

When testing a hypothesis we:

² formulate a hypothesis involving a parameter

² sample the population to get information about the parameter

² check whether the sample supports the hypothesis.

In this section of work we will test hypotheses concerning either the mean ¹, or a population

proportion p.

A hypothesis test is like the converse of a confidence interval.

Remember that a 95% confidence interval for the mean ¹ based on our sample ¹x was

¹x¡ 1:960 ¾p
n
< ¹ < ¹x+ 1:960 ¾p

n

This means that ¹x¡ 1:960 ¾p
n
< ¹ and ¹ < ¹x+ 1:960 ¾p

n

) ¡¹¡ 1:960 ¾p
n
< ¡¹x and ¡¹x < ¡¹+ 1:960 ¾p

n

SIGNIFICANCE AND HYPOTHESIS TESTINGE

HYPOTHESIS TESTS AND CONFIDENCE INTERVALS
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74 STATISTICS AND PROBABILITY (Topic 8)

) ¹+ 1:960 ¾p
n
> ¹x and ¹x > ¹¡ 1:960 ¾p

n

) ¹¡ 1:960 ¾p
n
< ¹x < ¹+ 1:960 ¾p

n

This is effectively a confidence interval for ¹x based on ¹.

As a result, in hypothesis testing, we are setting

¹ and then seeing if our sample mean ¹x suggests

that ¹ is a reasonable mean, i.e., ¹x falls within

an acceptable probability range of ¹.

On our diagram, a sample mean of ¹x1 is not un-

likely if ¹ was the true mean.

However a sample mean of ¹x2 is indicating that

¹ is less likely to be the true mean.

Note: The graphs drawn above represent the distribution of the sample means which have

mean ¹ and standard deviation ¾p
n

(by the Central Limit Theorem).

When a statement is made about a product it is usually tested statistically. Because statisticians

are conservative, their usual approach is to claim that the statement about the product is not

correct. The statistician makes the claim that statistics will show no differences. That claim

is called the null hypothesis (called H0).

The alternative hypothesis (called H1) is that the statistical evidence is sufficient to accept

the claim.

So, we consider two hypotheses:

² a null hypothesis (H0), which is a statement of no difference (or no change) and

is assumed to be true until sufficient evidence is provided so that it is rejected

² an alternative hypothesis (H1), which is a statement that there is a difference or

change which has to be established. Supporting evidence is necessary if it is to be

accepted.

In the case of the sandfly repellent,

H0 is: ¹ = 6 fthe new product has the same effectiveness as the othersg
H1 is: ¹ > 6 fthe new product is superior to the othersg

We then gather a random sample from the population in order to test the null hypothesis. If

the test shows that H0 should be rejected, then its alternative H1 should be accepted.

If H0 is that: ¹ = ¹0 the alternative hypothesis H1 could be

² ¹ > ¹0 (one-sided)

² ¹ < ¹0 (one-sided)

² ¹ 6= ¹0 (two-sided, as ¹ 6= ¹0 could mean ¹ > ¹0 or ¹ < ¹0).

Consider the sandfly repellent situation again.

�

�x2 x1

HYPOTHESES ABOUT MEANS

ONE-SIDED AND TWO-SIDED ALTERNATIVE HYPOTHESES
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² In the case where the manufacturer of a new brand wants evidence that the new

product is superior in lasting time the hypotheses would be

H0 is: ¹ = 6 fthe new product has the same effectiveness as the old onesg
H1 is: ¹ > 6 fthe new product lasts longer than the old onesg.

² In the case where a competitor wants evidence that the new product has

inferior lasting time the hypothesis would be

H0 is: ¹ = 6 fthe new product has the same effectiveness as the old onesg
H1 is: ¹ < 6 fthe new product lasts less than the old onesg.

² In the case where an unbiased third party wants to show that the new product

differs from the old ones but is not concerned whether the lasting time is more

or less, the hypothesis would be

H0 is: ¹ = 6 fthe new product has the same effectiveness as the old onesg
H1 is: ¹ 6= 6 fthe new product has different effectiveness from the old onesg.

Note: The null hypothesis H0 always states a specific value of ¹.

There are two types of error in decision making:

² Falsely rejecting H0, i.e., rejecting a true null hypothesis.

This is called a Type I error.

² Falsely accepting H0, i.e., accepting a false null hypothesis.

This is called a Type II error.

An example of a Type I error is rejecting, because it is highly improbable, the event that you

get 10 heads in 10 tosses of a fair coin when that event, though improbable, can occur.

An example of a Type II error is when you accept the hypothesis that you have a fair coin

because you had the event of getting 7 heads in 10 tosses, which can easily happen with a

fair coin due to chance, when in fact the coin may actually be biased towards getting a head.

More about this later!

1 What is meant by the following:

a a Type I error b a Type II error

c the null hypothesis d the alternative hypothesis?

2 a An experimenter wishes to test H0: ¹ = 20 against H1: ¹ > 20.

i If the mean is actually 20 and the experimenter concludes that the mean exceeds

20, what type of error has been made?

ii If the population mean is actually 21:8, what type of error has been committed

if the experimenter concludes that the mean is 20?

b A researcher wishes to test H0: ¹ = 40 against H1: ¹ 6= 40. What type

of error has been made if she concludes that:

i the mean is 40 when it is in fact 38:1
ii the mean is not 40 when it actually is 40?

ERROR TYPES

EXERCISE 8E.1
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76 STATISTICS AND PROBABILITY (Topic 8)

3 In trials where juries are used “a person is presumed innocent until proven guilty”, so

the null hypothesis would be H0: the person on trial is innocent.

a What would be the alternative hypothesis H1?

b If an innocent person is judged guilty, what type of error has been committed?

c If a guilty person is judged as innocent, what type of error has been committed?

4 A researcher conducts experiments to determine the effectiveness of two anti-dandruff

shampoos X and Y. He tests the hypotheses:

H0: X and Y have the same effectiveness H1: X is more effective than Y.

What decision would cause a a type I error b a type II error?

5 Globe Industries make torch globes. Current globes have a mean life of 80 hours. Globe

Industries are considering mass production of a new globe they think will last longer.

a If the manufacturer wants to show that the new globe lasts longer, what set of

hypotheses should be considered?

b If the new globe costs less to make, and Globe Industries will adopt it unless it

has an inferior lifespan to the old type, what set of hypotheses would they now

consider?

6 The top underwater speed of submarines produced

at the dockyards is 26:3 knots. They modify the

design to reduce drag and believe that the max-

imum speed will now be considerably increased.

What set of hypotheses should they consider to

test whether or not the new design has produced a

faster submarine?

Here we are concerned with testing the validity of a null hypothesis about the mean of one

sample.

The probability value calculated from the sample casts little or serious doubt over the validity

of the null hypothesis.

A small probability value would suggest that the outcome observed is a freak occurrence or

the assumption of validity is misplaced. In this case we would consider rejecting H0.

A large probability value would suggest that the outcome can be considered to be what could

be expected to occur by chance. In this case we would not reject H0.

Note: We only reject or not reject (accept) H0.

The null hypothesis is a statement of no effect, and so the null hypothesis is usually set up

to say, for example, that ‘there is no effect occurring in experimental set up’ or ‘the company

involved is correct, i.e., the claim they make is true’.

Usually an experiment is set up to show the effect.

HYPOTHESIS TESTING FOR THE MEAN OF ONE SAMPLE

CONSTRUCTING THE NULL AND ALTERNATIVE HYPOTHESES ( AND )H H0 1
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For example: ² the new drug is better than the old one

² the new fertiliser results in better yield

² the company’s claim is wrong.

Hence, H1 would say ² the new drug is better

² the yield is better

² the company’s claim is correct.

and H0 would say no effect is occurring.

It is often easier to construct H1, first, then H0.

Some further examples:

² A drug company claims the pain-killers it makes last for at least 3 hours. A sample of

30 tablets tried on subjects returned a mean effective time of 2:8 hours and standard

deviation of 0:15 hours. Does the sample data indicate that the claim is too high?

H0: ¹ = 3
H1: ¹ < 3 (a one-tailed (left) test)

² A farmer knew his average yield of a certain grain while using a fertiliser was 600 kg

per hectare. He changed the fertiliser believing his average yield would increase.

H0: ¹ = 600
H1: ¹ > 600 (a one-tailed (right) test)

² The average house price in a suburb in 2004 was known to be $235 000. A

sample was taken in 2005 to see whether or not the average price had changed.

H0: ¹ = 235000
H1: ¹ 6= 235000 (a two-tailed test)

For the first two examples, the probability calculation will be based on the appropriate one

tail of the normal distribution (due to the structure of the problem), while the third, where

there is no idea of whether the change will be up or down, will require a probability value

that includes both left and right tails.

The test statistic is a value derived from the sampling process and is calculated from the

sample taken.

The null distribution is the distribution used to determine the probability and depends on the

problem. It may be: ² the Z-distribution (if ¾2 is known) or

² the t-distribution (if ¾2 is unknown)

For a sampling proportion problem where n is large, we use the Z-distribution to approximate

the binomial.

For example, in the house price problem above,

if 200 house prices were sampled in 2005 and the mean x was found to be $215 000 with the

unbiased estimate of the standard deviation sn¡1 = $30 000 the test statistic would be:

t =
x¡ ¹
sn¡1p
n

=
215000¡ 235 000

30 000p
200

¼ ¡9:43 with 199 degrees of freedom.

THE TEST STATISTIC, NULL DISTRIBUTION, -VALUE AND THE DECISIONp
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The p-value is the probability of this occurrence or something more extreme based on the

assumption that H0 is valid. It is the p-value that allows us to make a decision on the

rejection or otherwise of H0.

In this case p-value = P(t > 9:43) + P(t 6 ¡9:43) fincludes 2-tailsg
¼ 1 £ 10¡14

For this tiny probability we would think that either we are extremely unlucky or that our

assumption of H0 being valid is not correct. That is, we are saying that it is extremely

unlikely to obtain a sample like this if H0 is correct. Do not forget that this is still possible,

whilst being extremely unlikely. In hypothesis testing of this kind there are no certainties

(absolutes).

The cut off depends on the level of significance chosen and is usually 0:05 (a 5% level of

significance or 95% confidence level).

So if the p-value < 0:05 then enough doubt is cast on the validity of H0.

The level of significance is the threshold below which we reject H0. It may be 5% or 1%,

whichever is sensible.

The level of significance provides us with a strict rule for rejecting or accepting H0. A level

of significance of 5% means that the probability of making a Type I error is 0:05. Hence

there is a 5% chance of rejecting H0 when it is indeed true.

For the housing price example, our decision is to reject H0, which means sufficient evidence

exists to suggest that ¹ 6= 235 000. In fact since the sample mean was less than the previously

known mean we may suggest (at the 0:05 level) that the mean is less than before. Most likely

a statistician would pursue this further.

Sometimes in hypothesis testing, we refer to the critical values for the distribution. These

refer to the cut-off values of the distribution about which the decisions are made. For example,

if we have a Z-distribution and a 2-tailed test with a 5% level of significance, the critical

values are z¤ ¼ §1:96. This is illustrated in the diagram below:

The shaded area which equals 0:025 in each part,

adding to 0:05, is referred to as the critical region

(rejection region).

The values §1:96 are the critical values for a

2-tailed test. If the Z-score from the sample falls

within the shaded areas, we would reject the null

hypothesis.

If it falls in between §1:96, we accept H0.

In the housing problem, the critical t-values are t¤ ¼ §1:972.

Check this on your calculator.

Hence, we reject H0 because the test statistic ¼ ¡9:43 which is lower than ¡1:972:

0.025

0

0.025

�1.96 96.1* �z

f gfrom Casio graphics calculator, ( , ,DIST tcd)t

¼ 1.11£ 10¡17 f gfrom TI- graphics calculator83or

The difference between the two models is probably
due to the use of different calculation methods.
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Click on the icon to obtain instructions for TI and Casio calculators.

Be aware that your calculator may use different notation to that used in IB.

For example, with Casio, sn¡1 is x¾n¡1 and with TI sn¡1 is sx.

Do not forget that s 2n¡1 is the unbiased estimate of ¾2.

Summary:

There are effectively 7 steps in reporting on a hypothesis test.

These are:

Step 1: State the null and alternative hypotheses. (Specify whether it is a 1- or 2-tailed

test.)

Step 2: State the type of distribution under H0.

Step 3: Calculate the test statistic from the sample evidence.

Step 4: State the decision rule based on the significance level.

Step 5: Find the p-value using your graphics calculator or find the critical values and

region.

Step 6: Make your decision i.e., reject or not reject H0 based on the significance

level.

Step 7: Write a brief statement/conclusion giving your decision some contextual meaning.

For the housing price problem, the steps are:

1 Hypotheses: H0: ¹ = 235000 H1: ¹ 6= 235000 (2-tailed test)

2 Null distribution: t-distribution with º = 199 (as ¾2 is unknown).

3 Test Statistic: t =
x¡ ¹
sn¡1p
n

=
215000¡ 235000

30 000p
200

¼ ¡9:43

with 199 degrees of freedom

4 Decision Rule: Reject H0 if p-value is less than 0:05 .

5 p-value: p-value = P(t > 9:43)+ P(t 6 ¡9:43) ¼ 1.11£ 10¡17

6 Decision: As the p-value is less than 0:05, then we reject H0.

7 Conclusion: Hence, sufficient evidence exists to suggest that ¹ 6= 235 000,

in fact since the sample mean was less than the previously known

mean we suggest (at the 0:05 level) that the mean is smaller

than before.

Check these values on your graphics calculator.

You can do 2 checks: ² a direct test or

² by calculating a probability using the test statistic.

USING A GRAPHICS CALCULATOR

TI

C
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Fabtread manufacture motorcycle tyres. Under normal test conditions the average

stopping time for motor cycles travelling at 60 km/h is 3:12 seconds. The production

team have recently designed and manufactured a new tyre tread. Under the normal

test conditions they took 41 stopping time measurements and found that the mean

time was 3:03 seconds with standard deviation 0:27 seconds.

Is there sufficient evidence, at a 1% level, to support the team’s belief that they

have improved the stopping time?

1. Hypotheses: H0: ¹ = 3:12

H1: ¹ < 3:12 (1-tailed test)

2. Null distribution: t-distribution (¾ is unknown, s 2n = 0:272) with º = 40

3. Test s 2n¡1 =
n

n¡ 1
£ s 2n =

41

40
£ 0:272 ¼ 0:07472

) sn¡1 ¼ 0:27335

and t =
3:03¡ 3:12

0:27335p
41

¼ ¡2:108

4. Decision Rule: Reject H0 if the p-value is less than 0:01

5. p-value: p-value = P(t 6 ¡2:108) ¼ 0:02066 (graphics calculator)

6. Decision: As the p-value is greater than 0:01, then we do not reject H0.

1. Hypotheses: H0: ¹ = 55

H1: ¹ > 55 (1-tailed test)

2. Null distribution: Z-distribution (¾ is known, ¾ = 4:2)

3. Test Statistic: Z =
56:2¡ 55

4:2p
60

¼ 2:213

4. Decision Rule: Reject H0 if p-value is less than 0:05

5. p-value: p-value = P(Z > 2:213) ¼ 0:0134

6. Decision: As the p-value is less than 0:05, then we reject H0.

7. Conclusion: Hence, sufficient evidence exists to accept H1
i.e., mean weight exceeds 55 grams. So, on this evidence

the buyer should purchase the catch.

A buyer of prawns (for a restaurant chain) goes to a seafood wholesaler and inspects
a large catch of over prawns. She has instructions to buy the catch if the
mean weight exceeds grams per prawn. A random sample of prawns is taken
and weighed. The mean weight is grams with standard deviation grams. Is
there sufficient evidence at a level to reject the catch?

50 000
55 60

56 2 4 2
5%

: :

Example 43

Example 44

Statistic:
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STATISTICS AND PROBABILITY (Topic 8) 81

7. Conclusion: Hence, insufficient evidence exists to accept H1 i.e., at a 1%
level of significance, there is not an improvement in stopping

time due to the new tread pattern.

In this last example, we may be guilty of making a Type II error (accepting H0 when it is

false). In this case because we want a stricter level of significance (1%), we increase the

possibility of making a Type II error. This is true in general!

Note:

² of H0 (We can use the p-value or the critical value to do this).

When we reject H0, we do so because chance alone cannot plausibly explain the

observed disagreement between x and ¹0. (Here, ¹0 is the value for ¹ under H0.)
It could nevertheless be true that H0 is correct (we then make a Type I error). The

strength of evidence against H0 is given by the p-value.

² of H0

When we accept H0, we do so because the observed disagreement between x and ¹0
can plausibly be explained by chance. It may be that H0 is not true (we then make a

Type II error). There is no notion of evidence in favour of H0. Acceptance of H0 is

simply the failure to obtain sufficient evidence to reject H0.

² At a 5% significance level, we would rejectH0 above and possibly be guilty of making

a Type I error with probability 0:05 or 5%. The probability of making the Type II error

above is unknown, but we would expect it to be greater or at least different from 0:05.

The significance level and the probability of making a Type I error are the same. It is

important to be aware of the asymmetry between acceptance and rejection. (Refer to

Example 46 which follows.)

The hypothesis testing approach is to accept H0 unless we find sufficient evidence

to cause us to reject it. Accepting H0 is not the same thing as rejecting H1 and

vice-versa. Rejecting H0 is a “stronger” conclusion than accepting.

² p-values: The broad interpretation of the p-value is as a measure of the strength of

evidence against H0. The smaller the p-value, the stronger the evidence against H0.

A common mistake is to suppose that the p-value is the probability that H0 is correct.

The proper interpretation is that the p-value is the probability that x and ¹0 would

disagree to at least the extent actually observed if H0 were true.

Recall that for large n, the sampling distribution of a proportion bp =
x

n
is approximately

normal with mean ¹bp = p and standard deviation ¾bp =

r
p q

n
:

As a consequence:

For testing the null hypothesis H0 that p = p0, the test statistic is

Z =
bp¡ p0r
p0 q0
n

when n > 30, np0 > 5, nq0 > 5

Rejection

Acceptance

SIGNIFICANCE TESTING FOR THE PROPORTION OF ONE LARGE
SAMPLE
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82 STATISTICS AND PROBABILITY (Topic 8)

The rejection region is:

For H1: p > p0,

we reject H0 if z¤ > z®

For H1: p < p0,

we reject H0 if z¤ < ¡z®

For H1: p 6= p0,

we reject H0 if z¤ < ¡z®
2

or z¤ > z®
2

z�

�z�

2
�z�

2
�z

1. Hypotheses: H0: p = 0:25
H1: p > 0:25 (1-tailed test)

2. Null distribution: bp-distribution, with bp = 848
3187 ¼ 0:2661 (store on gdc)

3. Test Statistic: Z =
0:2661¡ 0:25q

0:25£ 0:75
3187

¼ 2:097 (store on gdc)

4. Decision Rule: Reject H0 if p-value is less than 0:01

5. p-value:

6. Decision: We could argue 2 ways:

• As the p-value is greater than 0:01, or

• as the test statistic does not lie in the rejection

region, then we do not reject H0 in either case.

7. Conclusion: Hence, insufficient evidence exists to accept H1
i.e., at the 1% level of significance, the mix does not

contain more than 25% of peanuts.

A supplier of superior mixed nuts claims that only of the nuts are peanuts. A
consumer does not believe the claim and in a sample of nuts finds that
were peanuts. Does the consumer’s evidence support his belief that the mix has more
than peanuts? [Test at a level of significance of ]

25%
3187 848

25% 0 01:

Example 45

p Z : :

:

-value P from the gdc
without the continuity correction

or with

continuity correction.

= ( 2 097) 0 017 996

0 018024

> + �

�

0.01

RR of Ho

0 2.326
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A nutrition expert found that 43% of Southern Vale children ate insufficient fruit

each day (at least three pieces). To check whether this figure was the same for

Northern Vale children, a university research group sampled 625 Northern Vale

children and found that 308 ate insufficient fruit each day. What conclusion can

be made at a 0:05 level of significance?

1. Hypotheses: H0: p = 0:43
H1: p 6= 0:43 (2-tailed test)

2. Null distribution: bp-distribution, with bp = 308
625 ¼ 0:4928 (store on gdc)

3. Test Statistic: Z =
0:4928¡ 0:43q

0:43£ 0:57
625

¼ 3:171 (store on gdc)

4. Decision Rule: Reject H0 if p-value is less than 0:05

5. p-value: p-value = P(Z 6 ¡3:171) + P(Z > 3:171) ¼ 0:00152

6 Decision: We could argue 2 ways:

• As the p-value is less than 0:05, or

• as the test statistic does lie in the rejection region,

then we do reject H0 in either case.

7. Conclusion: Hence, there is sufficient evidence at the 0:05 level to

conclude that the proportion of Northern Vales children’s

fruit consumption each day differs from that of the Southern

Vales children. In fact, the sample proportion of 0:4928
suggests that the percentage figure may be higher. This may

lead to another hypothesis test.

In Example 46 above, a 95% CI for the true population proportion of children from the

Northern Vales who ate insufficient fruit is:

0:4928¡ 1:96
q

0:43£0:57
625 < p < 0:4928 + 1:96

q
0:43£0:57

625

i.e., 0:454 < p < 0:532

This is consistent with the fact that when we reject H0 in a 2-tailed test at the 5% level of

significance, then we will be 95% confident that the assumed proportion p = 0:43, under

H0, will not be contained in the 95% CI for the true population proportion p.

Example 46

0.025

1.960

RR of Ho

0.025

�1.96

RR of Ho

from the gdc with and
without the continuity
correction
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84 STATISTICS AND PROBABILITY (Topic 8)

Hypothesis Tests and Confidence Intervals

Consider the test of H0: ¹ = ¹0.

We will accept H0 at the 5% level of significance if jZj = jx¡ ¹0j
¾p
n

< 1:96.

Now consider the 95% CI for ¹, ] x¡ 1:96 ¾p
n

, x+ 1:96 ¾p
n

[

If the value ¹0 lies within the 95% CI then jx¡ ¹j < 1:96 ¾p
n

) jZj < 1:96:

Similarly, if ¹0 is not within the 95% CI then jZj > 1:96

Hence, the test of H0: ¹ = ¹0 with 5% level of significance is equivalent to the rule:

Note: This is not always true for 1-tailed tests. For example, see Example 48 which

follows. Why is it not always true for 1-tailed tests?

(An illustration of the asymmetry of acceptance and rejection of H0.)

A random variable X representing the number of successes can be modelled by

a binomial distribution with parameters n = 250 and p, whose value is unknown.

A significance test is performed, based on a sample value of x0, to test the

hypothesis p = 0:6, against the alternative, the null hypothesis p > 0:6.

The probability of making a Type I error is 0:05.

a Find the critical region for x0.

b Find the probability of making a Type II error in the case when in actual fact

p = 0:675:

a Given X » B(250, p) and H0: p = 0:6, H1: p > 0:6:

If H0 is true, then p = 0:6, so X » B(250, 0:6):

Thus np = 150 and npq = 60 and np, nq > 10:

Hence, we can approximate X by:

X » N(150, 60) and we have

a 5% significance level.

Using a 1-tailed test at 5% level,

and a Z-distribution, the critical

value is z = 1:645.

) since we are considering values in the upper tail,

x0 ¡ 0:5¡ 150p
60

> 1:645 (with continuity correction)

or
x0 ¡ 150p

60
> 1:645 (without continuity correction)

) x0 > 1:645
p

60 + 150:5, i.e., x0 > 163:2 (with continuity correction) or

x0 > 162:7 (without continuity correction).

Example 47

shaded area = 0.05

164150

Accept H0 if and only if ¹0 lies within the 95% CI for ¹ ( tailed tests only).2-
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STATISTICS AND PROBABILITY (Topic 8) 85

Since x is an integer, the critical (rejection) region is x > 164 or x > 163.

(with cc) (without cc)

Checking:
164¡ 0:5¡ 150p

60
¼ 1:74 > 1:645

and
163¡ 0:5¡ 150p

60
¼ 1:61 < 1:645 (with continuity correction)

b If p = 0:675, we have H0: p = 0:6, H1: p > 0:6

From a the critical region is X > 164,

so H0 is accepted when X < 164:

P(Type II error)

= P(H0 is accepted when H1 is true)

= P(X < 164 when p = 0:675)

When p = 0:675, X » N(168:75, 54:843 75) (np, nq > 10 is still true)

So P(X < 164) = P(X < 163:5) ¼ 0:239 or 23:9% (with cc)

(much larger than 5% for a Type I error).

Note: If H1 was p = 0:7 then P(Type II error) ¼ 0:056 (just > 5%)

In Example 47, you could check that the probability of a type II error increases if we require

a stricter significance level, for example, 0:01, i.e., a smaller type I error.

168.75163.5

shaded area
�	����

actual distribution

(An example of paired samples (matched pairs) using a single

sample technique.)

Prior to the 2004 Olympic Games an institute of sport took 20 fit athletes and over

a one month period gave them a special diet and exercise program. This program

was to try to improve their sprint times over 100 m. Below is their “best” time

before and after the program. The athletes have been recorded as the letters A to

T and times are in seconds.

Has the program significantly improved the athletes’ performance? Conduct a

hypothesis test at the 5% level of significance.

Let U = X1 ¡X2 where X1 represents the time before and X2 represents

the time after the program.

1. Null hypotheses: H0: ¹ = 0 (i.e., times have not improved)

H1: ¹ > 0 (1-tailed test as testing to see if times

have improved)

Athlete A B C D E F G H I J

Before 10:3 10:5 10:6 10:4 10:8 11:1 9:9 10:6 10:6 10:8
After 10:2 10:3 10:8 10:1 10:8 9:7 9:9 10:6 10:4 10:6

Athlete K L M N O P Q R S T

Before 11:2 11:4 10:9 10:7 10:7 10:9 11:0 10:3 10:5 10:6
After 10:8 11:2 11:0 10:5 10:7 11:0 11:1 10:5 10:3 10:2

Example 48
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2. Null distribution: t-distribution (¾2 is unknown)

u =

P
(ui)

20
=

3:1

20
= 0:155, sn¡1 ¼ 0:344 085

3. Test Statistic: t =
u¡ ¹
sn¡1p
n

=
0:155¡ 0

0:0769
¼ 2:014 56 (store on gdc)

4. Decision Rule: Reject H0 if p-value is less than 0:05

5. p-value: p-value = P(t > 2:014 56) ¼ 0:02916 from the gdc

6. Decision: We could argue 2 ways:

• As the p-value is less than 0:05, or

•

7. Conclusion:

1 For the following hypotheses find the rejection region for the test statistic for n > 30
and ® = 0:05:

a H0: ¹ = 40 b H0: ¹ = 50 c H0: ¹ = 60

H1: ¹ > 40 H1: ¹ < 50 H1: ¹ 6= 60

2 Repeat question 1 but for ® = 0:01:

3 An experimenter believes that a population which has a standard deviation of 12:9, has

a mean ¹ that is greater than 80. To test this, a random sample of 200 measurements

was made. The sample mean was 83:1 and the test significance level ® = 0:01.

a Write down the null and alternative hypotheses.

b State the null distribution. c Find the value of the test statistic.

d Find the rejection region and illustrate it. e State the conclusion for the test.

4 A liquor chain claimed that the mean price of a bottle of wine had fallen from what

it was 12 months previously. Records showed that 12 months ago the mean price was

$13:45 a 750 mL bottle. In total, a random sample of prices of 389 different bottles of

wine was taken from several of its stores. (Each store in the chain has the same price for

each particular product.) The mean price was $13:30 with a standard deviation of $0:25.

Is there sufficient evidence at a 2% level to reject the claim? In your answer state:

a the null and alternative hypotheses b the null distribution

c the test statistic d the p-value

e your conclusion.

EXERCISE 8E.2

Note: In Example 48 above, we have rejected the null hypothesis, yet the 95% CI for ¹
does contain the value of ¹ = 0. This is because we have a 1-tailed test.

Check that the 95% CI for ¹ is ] ¡0:0257, 0:336 [. Look at the 90% CI to see

that ¹ = 0 does not belong as we have a 1-tailed test.

as the test statistic lies outside the rejection
region ( , from tables) then we reject .

t :
t > : H

¤¼ 2 01456
1 729

�

0

Hence, there is sufficient evidence at the level to
conclude that the sprint times of the athletes have improved
after the implementation of the program.

0 05:
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5 a A random sample of n = 237 gave 123 successes.

Test at a significance level of 5% (® = 0:05) the hypothesis H0: p = 0:5
H1: p > 0:5

b A random sample of n = 382 gave 295 successes. Test at a significance level of

1% (® = 0:01) the hypothesis H0: p = 0:8
H1: p 6= 0:8

6 A coin is tossed 400 times and falls heads on 182 occasions. Do these results provide

sufficient evidence that the coin is biased? (An unbiased coin has equal chance of falling

‘heads’ or ‘tails’.) Test at a 5% level of significance.

7 The theoretical chance of rolling a sum of seven with a pair of unbiased dice is 1
6 .

At a casino one player rolled a pair of dice 231 times and a sum of seven appeared 57
times. Management suspected that the player had switched to ‘loaded’ dice.

Test at a 1% level H0: p = 1
6 against H1: p > 1

6 .

8

9 A supermarket decides to buy a large quantity of apples if it is sure that less than 5%
of them have skin blemishes. The survey randomly inspects 389 apples and finds skin

blemishes on 16 of them. Is there sufficient evidence at an ® level of 0:02 to suggest to

the purchasing officer to proceed with the purchase?

10 The management of a golf club claimed that the mean

income of its members was in excess of $95 000.

Therefore its members could afford to pay increased

annual subscriptions. To show that this claim was

invalid the members sought the help of a statistician.

The statistician was to examine the current tax records

of a random sample of members fairly and test the

claim of the club’s management at a 0:02 significance

level. The statistician found, from his random sample

of 113 club members, that the average income was

$96 318 with standard deviation $14 268.

a Find an unbiased estimate of the population standard deviation.

b State the null and alternative hypotheses when testing this claim.

c State the null distribution.

d Find the test statistic.

e Find the p-value when testing the null hypothesis.

f Find the critical region for rejection of the null hypothesis and sketch it.

g State whether or not there is sufficient evidence to reject management’s claim.

h Would the statistician be committing a Type I or Type II error if his assertion was

incorrect?

i

A motor boat dealer claimed that at least 85% of its customers would recommend his

boats to a friend. A student who doubted this claim decided to check the claim and

surveyed 57 of the dealer’s customers who were easily identified with stickers on their

boats. The student found that 45 did in fact recommend the dealership. Do these results

support the dealers claim (at a 1% level)?

Find a 99% CI interval for the mean income of members and comment on your

result. Why do we check with a 99% CI?
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11 While peaches are being canned, 250 mg of

preservative is supposed to be added by a dis-

pensing device. To check the machine, the quality

controller obtains 60 random samples of dispensed

preservative and finds that the mean preservative

added was 242:6 mg with sample standard devia-

tion 7:3 mg, i.e., sn = 7:3:

a At a 5% level, is there sufficient evidence

that the machine is not dispensing a mean of

250 mg? Set out your solution in full giving

either a p-value or a critical value and state

your decision.

b Use a confidence interval to verify your answer.

12 A mathematics coaching school claims to significantly increase students’ test results over

a period of several coaching sessions. To test their claim a teacher tested 12 students

prior to receiving coaching and recorded their results. The students were not given the

answers or their results. At the conclusion of the coaching the teacher then administered

the same test as before to check on the improvement. The paired results were:

Student A B C D E F G H I J K L

Before coaching 15 17 25 11 28 20 23 34 27 14 26 26

After coaching 20 16 25 18 28 19 26 37 31 13 27 20

Conduct a suitable hypothesis test to see if the mathematics coaching school claim was

true.

13 A machine packs sugar into 1 kg bags. A random sample of eight filled bags was

taken and the masses of the bags measured to the nearest gram. Their masses in grams

were: 1001, 998, 999, 1002, 1001, 1003, 1002, 1002. It is suspected that the machine

overfills the bags. Perform a test at the 1% level, to determine whether the machine needs

maintenance. It is known that the masses of the bags of sugar are normally distributed

with a variance 2:25 g.

14 A machine is used to fill bottles with water. The bottles are to be filled to a volume of

500 mL. Ten random measurements of the volume give a mean of 499 mL with a standard

deviation of 1:2 mL. Assuming that the volumes of water are normally distributed, test

at the 1% level whether there is a significant difference from the expected value.

Have you ever tried to randomly generate the ten digits 0, 1, 2, 3, ....., 9?

This is easy to do on your calculator. For example, on a Casio the instructions are:

Go to MENU ! RUN ! OPTN ! F6(continue) ! F4(NUM) ! F2(Int) !
EXIT ! F3(PROB) ! they type 10F4(RAN#)

The question is: “Are these numbers really generated at random?”

THE CHI-SQUARED DISTRIBUTIONF
THE ‘GOODNESS OF FIT’ TEST FOR ANY DISTRIBUTION
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With the techniques we have already seen, we are in a position to test whether or not our

random number generator is indeed really a generator of numbers at random.

To begin with, if the numbers are randomly generated, if we generated say 100 different

digits, we would expect to get on average the same frequency for each of the digits. That is,

we would expect to get on average 10 “0’s”, 10 “1’s”, 10 “2’s”, etc. In other words we

are suggesting that the outcomes can be modelled by a discrete uniform distribution. If X is

the RV representing the digit generated, then

X » DU(10) where x = 0, 1, 2, ....., 9,

and the probability mass function is P(X = x) = 1
10 .

I took a sample of 100 digits from my gdc using the above instructions for random generation

and obtained the following results:

Score (x) 0 1 2 3 4 5 6 7 8 9

Observed frequency (fo) 10 17 13 7 15 3 8 12 6 9

Expected frequency (fe) 10 10 10 10 10 10 10 10 10 10

The null hypothesis is that the digits are generated at random and that the distribution of

outcomes can be modelled by a discrete uniform distribution.

H0: X » DU(10) and H1: X is not from a discrete uniform distribution,

i.e., the digits are not generated at random.

To test this hypothesis, we calculate what is known as the Â2 (chi-squared) statistic.

This is Â2calc =
X (fo ¡ fe)2

fe
where fo is an observed frequency

and fe is an expected frequency.

Note: All possible values of Â2 are positive. Can you explain why?

In the above example,

Â2calc =
(10¡ 10)2

10
+

(17¡ 10)2

10
+

(13¡ 10)2

10
+ ::::::+

(9¡ 10)2

10

We now use what is called “a Â2 goodness-of-fit test”. The chi-squared statistic Â2calc can be

approximated by a Â2 (chi-squared) distribution subject to certain conditions.

The Â2 distribution depends

on one parameter, the num-

ber of degrees of freedom º
(new), (similar to the student t-
distribution considered earlier).

Refer to the diagram.

When º = 1 or 2, the distribution is J-shaped. When º > 2, it is positively skewed. The

larger the value of º, the more symmetric the distribution becomes and when º is very large,

THE (CHI-SQUARED)
DISTRIBUTION

Â2

���

���

���

���

���

���	

�( )x

x
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the distribution is approximately normal.

The number of degrees of freedom º, is obtained by calculating the number of classes minus

the number of restrictions,

i.e., º = number of classes (n) ¡ number of restrictions (k)

In the above test for random generation, º = n¡ k = 10¡ 1 = 9.

The restriction is explained by the fact that
P
fe =

P
fo. This should always be true.

Why?

The Â2 test is conducted as a 1-tail (upper) test.

When performing the test, we need to know whether the test statistic Â2calc lies in the upper

tail or critical (rejection) region in which case we would reject H0, or in the main area of

the Â2 distribution.

The boundary value of the critical region is called the critical value and its value depends on

the level of significance chosen (5% or 1% or whatever). This is consistent with hypothesis

testing covered in section E.

In the diagram, the critical (rejection)

region is the shaded area at the 5%
significance level. We say ® = 0:05,

the critical value is x® and when

º = 3, x® ¼ 7:814.

Hence, in a Â2 test with º = 3, if Â2calc > 7:814, then we would reject H0.

So now let us test the problem about random generation introduced above. Below is a typical

solution to the problem.

�( )x

x

chi-squared distribution d. o. f. �
�

xa

shaded area �
	�	�

For the random number data, test at a 5% level if the data is indeed random.

1. H0: the data is from a uniform distribution

H1: the data is not from a uniform distribution

2. Null distribution: Â2-distribution with º = 9 (1-tailed)

3. Test Statistic: Â2calc =
X (fo ¡ fe)2

fe
¼ 16:6 ffrom graphics calcg

4. Decision Rule: Reject H0 if p-value is less than 0:05.

5. p-value: p-value = P(Â2(9) > 16:6) ¼ 0:0554 fgraphics calcg
6. Decision: As the p-value is greater than 0:05, then we do not

reject H0.

7. Conclusion: Hence, insufficient evidence exists to suggest that the

calculator does not randomly generate digits from 0 to 9
(at the 0:05 level).

Example 49

TI

C

Hypotheses:
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STATISTICS AND PROBABILITY (Topic 8) 91

It is claimed that the following data set has been selected from a uniform distribution.

Test this assertion at a 5% level.

Score 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29

Frequency 12 18 6 10 4

The sum of the frequencies is 50, so if the claim is true we would expect 50
5 = 10

as the frequency for each group.

i.e., Score 5 - 9 10 - 14 15 - 19 20 - 24 25 - 29

fo 12 18 6 10 4

fe 10 10 10 10 10

Hypotheses: H0: the data is from a uniform distribution

H1: the data is not from a uniform distribution

Null distribution: Â2 distribution with º = 4

Test Statistic: Â2calc =
X (fo ¡ fe)2

fe
= 12 fusing the lists of the gcalc.g

Decision Rule: Reject H0 if p-value is less than 0:05

p-value: p-value = P(Â2 > 12) ¼ 0:0174 ffrom the gcalc.g
Decision: As the p-value is less than 0:05, then we reject H0.

Conclusion: Hence, sufficient evidence exists to suggest that the data did

not come from a uniform distribution.

The Â2-‘goodness of fit’ test is often used to test if data comes from

² a normal distribution ² a Poisson distribution ² a binomial distribution

² a uniform distribution ² or any other given distribution.

Example 50

Score 6 3 4 5 6 > 7 total

frequ. 6 9 10 7 4 36

First we need to prepare a table of observed and expected frequencies.

P(X 6 3) = poissoncdf(5, 3) ¼ 0:2650

P(X = 4) = poissonpdf(5, 4) ¼ 0:1755

P(X = 5) = poissonpdf(5, 5) ¼ 0:1755

P(X = 6) = poissonpdf(5, 6) ¼ 0:1462

P(X > 7) = 1¡P(X 6 6)
= 1 ¡ poissoncdf(5, 6) ¼ 0:2378

and 36£ 0:2650 ¼ 9:54

and 36£ 0:1755 ¼ 6:32

and 36£ 0:1755 ¼ 6:32

and 36£ 0:1462 ¼ 5:26

and 36£ 0:2378 ¼ 8:56

It is claimed that the following data
comes from a Poisson distribution with
mean . Test this claim at a level of
significance.

5 0 01:

Example 51
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92 STATISTICS AND PROBABILITY (Topic 8)

Score 6 3 4 5 6 > 7

fo 6 9 10 7 4

fe 9:54 6:32 6:32 5:26 8:56

Note: If any of the expected frequencies are smaller than 5, we need to collapse

that row and combine it with an adjacent row.

The reason for this is that if the expected frequency is < 5 it can distort

the Â2calc value. This is because dividing by small values makes the

fraction unnecessarily large and so Â2calc would be unnecessarily large.

º = 4 as we have one restriction i.e.,
P
fe = 36.

Hypotheses: Ho: the data is from a Poisson distribution of mean 5
H1: the data is not from a Poisson distribution of mean 5

Null distribution: Â2 distribution with º = 4

Test Statistic: Â2calc =
X (fo ¡ fe)2

fe
¼ 7:60 (using the lists of the gcalc.)

Decision Rule: Reject Ho if p-value is less than 0:01 (1% level of signif.)

p-value p-value = P(Â2calc > 7:60) ¼ 0:107 (from graphics calculator)

Decision: As the p-value is > 0:01, then we do not reject (accept) Ho.

Conclusion: Hence, insufficient evidence exists to suggest that the data did

not come from a Poisson distribution with mean 5.

The following data shows the number of children born to 150 Indian women in a

5-year period in the 19th Century. Test at a 5% level of significance, whether the

data is binomial with parameters n = 5 and p = 0:5.

Number of children 0 1 2 3 4 5

Number of women 4 19 41 52 26 8

First we need to prepare a table of observed and expected frequencies.

P(X = 0) = bimompdf(5, 0:5, 0) ¼ 0:03125

P(X = 1) = bimompdf(5, 0:5, 1) ¼ 0:15625

P(X = 2) = bimompdf(5, 0:5, 2) ¼ 0:3125

P(X = 3) = bimompdf(5, 0:5, 3) ¼ 0:3125

P(X = 4) = bimompdf(5, 0:5, 4) ¼ 0:15625

P(X = 5) = bimompdf(5, 0:5, 5) ¼ 0:03125

and 150£ 0:03125 ¼ 4:7

and 150£ 0:15625 ¼ 23:4

and 150£ 0:3125 ¼ 46:9

and 150£ 0:3125 ¼ 46:9

and 150£ 0:15625 ¼ 23:4

and 150£ 0:03125 ¼ 4:7

Number of children 0 1 2 3 4 5

fo 4 19 41 52 26 8

fe 4:7 23:4 46:9 46:9 23:4 4:7

Example 52

these two are < �
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Number of children 0 or 1 2 3 4 or 5
P

fo 23 41 52 34 150

fe 28:1 46:9 46:9 28:1 150

Hypotheses: Ho: the data is from a Binomial distribution of n = 5,

p = 0:5, i.e., X » B(5, 0:5)

H1: the data is not distributed like this

Null distribution: Â2 distribution with º = 3

Test Statistic: Â2calc =
P (fo ¡ fe)2

fe
¼ 3:46 (using the lists of the gcalc.)

Decision Rule: Reject Ho if p-value is less than 0:05 (5% level of signif.)

p-value: p-value = P(Â2calc > 3:46) ¼ 0:326 (from the gcalc.)

Decision: As the p-value is greater than 0:05, then we do not reject

(accept) Ho.

Conclusion: Hence, insufficient evidence exists to suggest that the data did

not come from a Binomial distribution with n = 5 and

p = 0:5:

Consider the Indian women/children data, but this time test if X » B(5, p) where

p is unspecified.

In order to do this, first we need to estimate p.

Notice that x =

P
fxP
f

=
4(0) + 19(1) + 41(2) + 52(3) + 26(4) + 8(5)

150

) x =
401

150
¼ 2:673

But, for a binomial distribution ¹ = np

) p =
¹

n
is estimated by

x

n
¼ 2:673

5
¼ 0:5346

P(X = 0) = bimompdf(5, 0:5346, 0) ¼ 0:021 83

P(X = 1) = bimompdf(5, 0:5346, 1) ¼ 0:125 40

P(X = 2) = bimompdf(5, 0:5346, 2) ¼ 0:288 10

P(X = 3) = bimompdf(5, 0:5346, 3) ¼ 0:330 93

P(X = 4) = bimompdf(5, 0:5346, 4) ¼ 0:190 07

P(X = 5) = bimompdf(5, 0:5346, 5) ¼ 0:043 67

and 150£ 0:021 83 ¼ 3:3

and 150£ 0:125 40 ¼ 18:8

and 150£ 0:288 10 ¼ 43:2

and 150£ 0:330 93 ¼ 49:6

and 150£ 0:190 07 ¼ 28:5

and 150£ 0:043 67 ¼ 6:6

Example 53

Combining so no fe is < 5 we get
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94 STATISTICS AND PROBABILITY (Topic 8)

Hence the table is:

Number of children 0 or 1 2 3 4 5
P

fo 23 41 52 26 8 150

fe 22:1 43:2 49:6 28:5 6:6 150

Hypotheses: Ho: the data is from a Binomial distribution of n = 5, p,
i.e., X » B(5, p)

H1: the data is not distributed like this

Null distribution: Â2 distribution with º = 3 as the number of restrictions = 2
(These are,

P
fe = 150 and we had to estimate p.)

Test Statistic: Â2calc =
P (fo ¡ fe)2

fe
¼ 0:806 fgraphics calculatorg

Decision Rule: Reject Ho if p-value is less than 0:05 (5% level of signif.)

p-value: p value = P(Â2calc > 0:806) ¼ 0:848 fgraphics calculatorg
Decision: As the p-value is greater than 0:05, then we do not reject

(accept) Ho.

Conclusion: Hence, insufficient evidence exists to suggest that the data did

not come from a Binomial distribution.

If n is the number of classes involved (do not forget the need to collapse classes if fe < 5)

then

Distribution º

Uniform n¡ 1

Poisson ² if m is known n¡ 1
² if m is unknown and it is estimated

from observed frequencies by x = m n¡ 2

Binomial ² if n and p are known n¡ 1
² if p is unknown and estimated from

observed frequencies by x = np n¡ 2

Normal ² if ¹ and ¾2 are known n¡ 1
² if ¹ and ¾2 are unknown and estimated

from observed frequencies by x and sn¡1 n¡ 3

Remember the fundamental rule:

Number of degrees of freedom = number of classes ¡ number of restrictions

i.e., º = n¡ k:

MORE ON NUMBER OF DEGREES OF FREEDOM
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STATISTICS AND PROBABILITY (Topic 8) 95

‘GOODNESS OF FIT’ FOR CONTINUOUS RANDOM VARIABLES

Vol. (X) in mL 266-< 272 272-< 274 274-< 276 276<-278 278-< 280 280-< 286

Obs. bottles (fo) 1 16 26 19 20 18

Use a Â2 test at a 5% level of significance to determine whether or not the normal

distribution is an adequate model for the data.

First we find unbiased estimates of ¹ and ¾ from the given data.

Mid-interval (x) 269 273 275 277 279 283

Frequency 1 16 26 19 20 18
P

= 100

From a calculator x = 277:24 and sn¡1 ¼ 3:4027 X » N(277:24, 3:40272)

Expected frequency calculations:

P(X < 272)£ 100 = normalcdf(¡E99, 272, 277:24, 3:4027) £ 100 ¼ 6:18

P(272 6 X < 274)£ 100 ¼ 10:87

A drink bottle manufacturer sells bottled drinks with a nominal volume of mL.

Aconsumer affairs employee measured bottles and obtained the following frequency
distribution:

275

100

Example 54

P(274 6 X < 276)£ 100 ¼ 18:73

P(276 6 X < 278)£ 100 ¼ 23:06

P(278 6 X < 280)£ 100 ¼ 20:30 and P(X > 280)£ 100 ¼ 20:86

Tabling these values:

Volume (mL) < 272 272-274 274-276 276-278 278-280 > 280

fo 1 16 26 19 20 18

fe 6:18 10:87 18:73 23:06 20:30 20:86

Hypotheses: Ho: the data is from a normal distribution

i.e., X » N(277:24, 3:40272)

H1: the data is not distributed like this

Null distribution: Â2 distribution with º = 6¡ 3 = 3P
fe = 100 and we had to estimate ¹ and ¾

Test Statistic: Â2calc =
P (fo ¡ fe)2

fe
¼ 10:696 (using lists of the gcalc.)

Decision Rule: Reject Ho if p-value is less than 0:05 (5% level of signif.)

p-value: p value = P(Â2calc > 10:696 ¼ 0:0135 (from the gcalc.)

Decision: As the p-value is less than 0:05, then we do reject Ho.

Conclusion: Hence, sufficient evidence exists to suggest that the data did not

come from a normal distribution. The normal distribution does

not provide an adequate model of the data at a 5% level.
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96 STATISTICS AND PROBABILITY (Topic 8)

The continuous random variable Y has a pdf f(y) = 0:5e¡0:5y, for y > 0.

A biologist in Taiwan believes that the lifetime of certain volatile microbes can

be modelled by this random variable Y measured in minutes.

The biologist carried out an experiment on the lifetime of 50 microbes and

recorded her results, given in the table below:

Lifetime (Y ) in minutes 6 1 1-3 3-5 5-7 7-9 > 9

Observed no. of microbes (f0) 15 16 10 5 3 1

a Find the expected frequencies in each of the intervals.

b At the 5% significance level, test whether the biologist’s assumption is correct.

a To find the expected frequencies under the null hypothesis, we need to

firstly find the probabilities and multiply by 50. The probabilities are

calculated by finding areas using definite integrals.

P(0 6 Y 6 1) = 50
R 1
0

0:5e¡0:5y dy ¼ 19:67

P(1 < Y 6 3) = 50
R 3
1

0:5e¡0:5y dy ¼ 19:17

P(3 < Y 6 5) = 50
R 5
3

0:5e¡0:5y dy ¼ 7:05

P(5 < Y 6 7) = 50
R 7
5

0:5e¡0:5y dy ¼ 2:59

Likewise P(7 < Y 6 9) ¼ 0:95 and P(Y > 9) ¼ 0:57

We form a table:

Lifetime (Y ) in minutes 6 1 1-3 3-5 5-7 7-9 > 9

Observed no. of microbes (f0) 15 16 10 5 3 1

Expected no. of microbes (fe) 19:67 19:17 7:05 2:59 0:95 0:57

b The expected number for Y > 5 is ¼ 2:59 + 0:95 + 0:57 ¼ 4:11 which is

< 5. So, we combine further: for Y > 3, expected number is

¼ 4:11 + 7:05 ¼ 11:16 and we have Y 6 1 1-3 > 3

f0 15 16 19

fc 19:67 7:05 11:16

Hypotheses: Ho: the data is modelled by the continuous random

variable Y defined above

H1: the data is not distributed like this

Null distribution: Â2 distribution with º = 3¡ 1 = 2

Â2calc =
P (fo ¡ fe)2

fe
¼ 7:149 flists of the gcalc.g)

Decision Rule: Reject Ho if p-value is less than 0:05 f5% level of signif.g
p-value: p-value = P(Â2calc > 7:149) ¼ 0:0280 ffrom the gcalc.g
Decision: As the p-value is smaller than 0:05, then we reject Ho.

Example 55

Test Statistic:
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STATISTICS AND PROBABILITY (Topic 8) 97

Conclusion: Hence, insufficient evidence exists to suggest that the data did not

come from a continuous exponential distribution given.

At a 5% level of significance, we can say this distribution does

provide an adequate model of the data.

The Â2 test for the independence of two variables is used when data is given within a two

variable contingency table.

The two variables could be

² ‘preferred president’ independent of ‘race’

² ‘preferred political party’ independent of ‘socio-economic status’

² ‘degree of hypertension (high blood pressure)’ independent of ‘amount of smoking’.

Consider the following example.

200 Hungarian males over the age of forty had their blood pressure taken and were categorised

as having either severe, mild or no hypertension. Also noted was the amount of smoking they

undertook - it was categorised as none, moderate and heavy (hence categorical data). The

data collected is summarised in the table below. It is wondered if hypertension and amount

of smoking are independent (at the 0:05 level of significance).

Amount of smoking

Degree of hypertension None Moderate Heavy Total

severe 10 14 20 44

mild 20 18 31 69

none 40 22 25 87

Total 70 54 76 200

Note: This situation has º = 4 degrees of freedom calculated in a contingency table by:

º = (r ¡ 1)(c¡ 1), where r = the number of rows

c = the number of columns

We need to determine the expected cell values based on the assumption that the variables

are independent (null hypothesis). To do this, calculate the row and column totals and the

overall total.

Amount of smoking

Degree of hypertension None Moderate Heavy Total

severe 10 14 20 44

mild 20 18 31 69

none 40 22 25 87

Total 70 54 76 200

THE TEST FOR THE INDEPENDENCE OF TWO VARIABLESÂ2
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98 STATISTICS AND PROBABILITY (Topic 8)

Table of expected values:

Amount of smoking

Degree of hypertension None Moderate Heavy Total

severe 15:40 11:88 16:72 44

mild 24:15 18:63 26:22 69

none 30:45 23:49 33:06 87

Total 70 54 76 200

this is
70£ 44

200
this is

54£ 87

200
this is

76£ 69

200

Reason: E(severe hypertension and non smoking) = np = 200£ 70
200 £ 44

200 = 70£44
200

We now find

Â2calc =
P (fo ¡ fe)2

fe
=

(10¡ 15:4)2

15:4
+

(14¡ 11:88)2

11:88
+ ::::::+

(25¡ 33:6)2

33:6
¼ 9:576

These calculations are labori-

ous and a graphics calculator

provides a significant short cut.

We enter the original contin-

gency as a matrix and finally

obtain a screen dump such as

this.

Finally, the solution is:

1 Null hypotheses: Ho: degree of hypertension and amount of smoking are

statistically independent

H1: degree of hypertension and amount of smoking are

statistically dependent

2 Null distribution: Â2 distribution with º = (3¡ 1)(3¡ 1) = 4

3 Test Statistic: Â2calc =
P (fo ¡ fe)2

fe
¼ 9:5758 ftest facility of the gcalc.g

4 Decision Rule: Reject Ho if p-value is less than 0:05

5 p-value: p-value = P(Â2 > 9:5758) ¼ 0:048 212 fgraphics calculatorg
6 Decision: As the p-value is less than 0:05, then we reject Ho.

7 Conclusion: Hence, sufficient evidence exists to suggest that degree of

hypertension and amount of smoking are statistically dependent.

If each of the variables under consideration has two levels, then Yate’s continuity correction

should be employed. However, this is no longer required in the syllabus so we can assume

either we won’t be tested on “Two by Two contingency tables” or we simply proceed as

normal.

TI

C

click on the

appropriate icon

for instructions

TWO BY TWO CONTINGENCY TABLES
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1 In “Series A” football played in Italy, the Juven-

tus club claims its professionalism means that its

results are independent of the weather. During

the season, they had the following results recorded

from 50 games played:

Use a Â2 test at both the 1% and 5% significance

levels, to test the claim that the results of Juventus

are independent of the weather.

Weather

Result Good Bad Total

Win 12 4 16

Draw 8 4 11

Lose 8 14 23

Total 28 22 50

A manager of a large life insurance company had been receiving complaints from
sales managers because the company was hiring non-university qualified sales
people. The sales managers suggested that the performance of the non-graduates was
not as good as those who had university qualifications. sales staff, graduates
and non-graduates were sampled and their performance rated as either
satisfactory or unsatisfactory.

The data is summarised
alongside. Does the data
support the sales managers’
assertion?

900 300
600

Performance Graduate Non-graduate Total

Satisfactory 172 311 483

Unsatisfactory 128 289 417

Total 300 600 900

Null hypotheses: Ho: Qualification and performance are statistically independent

H1: Qualification and performance are statistically dependent

Null distribution: Â2 distribution with º = 1

Test Statistic: Â2calc =
P (fo ¡ fe)2

fe
¼ 2:43

fusing test facility of gcalc.g

Decision Rule: Reject Ho if p-value is less than 0:05

p-value:

Decision: As the p-value is greater than 0:05, then we do not reject Ho.

Conclusion: Hence, insufficient evidence exists to suggest that qualification and
performance are statistically dependent. So we accept the hypothesis
that “Qualification and performance are statistically independent”.

Example 56

EXERCISE 8F

Note: The graphics calculator does not use Yate’s continuity correction.

You must do this by hand by calculating
X (j fo ¡ fe j ¡ 1

2)
2

fe
.

An example of a “Two by Two contingency tables” is provided below.

with the Yates continuity correction

we get Â2calc ¼ 2:22, but this is an exclusion in the syllabus.

p-value = P(Â2 > 2:43) ¼ 0:119 (from the graphics calculator)

(with the Yates cc the p-value ¼ 0:137)
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2 The Medical Association of Tai-

wan claims people who receive

flu immunisation are less likely

to suffer from colds in winter

than those who do not have flu

immunisation injections.

No flu
immunisation

injections

Flu
immunisation

injections
Total

No colds 30 51 81

Colds 61 58 119

Total 91 109 200
A random sample of 200 people

was taken and the results recorded in the table given. Is the claim justified? Test at the

5% level of significance.

3 At the commencement of a school year, the Educational Authorities informed the princi-

pal that a “lack of attention to giving homework to students” by teachers was becoming

a problem. The Authorities had figures that 58% of students thought this was a prob-

lem, 38% thought it was not a problem, and the rest were undecided. So, the Principal

surveyed 200 students and found 97 thought this was a problem, 12 were undecided and

the rest thought it was not a problem.

Use a “Goodness of fit” test at a 1% and 5% level of significance, to see if the Princi-

pal’s survey results matched those of the Educational Authorities. Discuss, including a

discussion of the types of possible errors, which level is the best for this problem.

4 The number of accidents reported to

the local police station over a period

of 52 weeks are recorded in the table:

Number of accidents 0 1 2 3

Number of weeks 26 11 10 5

a Use the data set above to find the

mean number of accidents per week.

b Test at the 5% level of significance whether or not a Poisson distribution would

adequately model this data set.

5 The results obtained by 400 stu-

dents in Mathematics and English

are displayed in the table below,

but one entry was illegible due to

spilled coffee over it.

Pass English Fail English

Pass Mathematics 198 92

Fail Mathematics 57

a Complete the missing entry.

b Test at the 5% level of significance whether the performances in each subject are

related.

6 Six coins are thrown simultaneously 275 times and

the results are recorded in the table alongside:

Because a tail appeared at least once on every occa-

sion, an observer concluded that exactly one of the

coins must have had two tails whilst the other five

coins were fair. In testing this assertion:

No. of tails Frequency

1 13

2 47

3 91

4 85

5 31

6 8
a clearly state the null and alternative hypotheses

b test this assertion at the 5% level of significance.
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7 A coin was tossed until a head appeared and the

number of tosses required was recorded. This

was repeated in all 100 times and the results were

recorded in the given table:

Number of
tosses required

Frequency

1 46

2 20

3 12

4 8

5 5

6 3

7 4

8 2

a State the null distribution you would use to

test if the coin is fair.

b By calculating an appropriate Â2 statistic, test

at a 5% significance level, whether or not the

null distribution gives a good fit to this data.

8
Tobacco

Alcohol None 1-15 16 or more

None 105 7 11

0:30 - 3:00 58 5 13

3:10 - 30:00 84 37 42

more than 30 57 16 17
Perform a suitable test at a 5% level of

significance to determine whether or not

alcohol consumption and tobacco usage are

related to each other.

9 The random variableX has a probability

density function (pdf) f(x) given by: f(x) =

½
e¡ kex, 0 6 x 6 1

0, otherwise

a Show that k = 1.

b A battery producer believes that this pdf models

the lifetime in years of the batteries he produces.

To test his assertion he conducted an experiment

by determining the lifetime of 50 of his batteries.

The results are displayed in the table alongside:

Perform a suitable test at the 5% significance level

to determine whether or not the random variable

defined above does adequately model his data.

Lifetime
in years

Number
of batteries

0 - 0:2 18

0:2 - 0:4 11

0:4 - 0:6 10

0:6 - 0:8 6

0:8 - 1 5

1 A soft drink manufacturer produces small

and large bottles of drink. The volumes of

both sizes of drink are distributed normally

with means and standard deviations given in

the table alongside.

mean (mL) s.d. (mL)

small drink 338 3

large drink 1010 12

a Find the probability that one large bottle selected at random has a volume greater

than the combined volume of three smaller bottles selected at random.

b Find the probability that one large bottle selected at random has a volume three

times larger than that of one smaller bottle selected at random.

In a study to determine whether alcohol
consumption and tobacco usage may be
related, a survey of people was conducted.
The table alongside details the results of
the survey.
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102 STATISTICS AND PROBABILITY (Topic 8)

2 X = x ¡3 ¡1 1 3 5

P(X = x) c c c c c

Find the:

a value of c b mean of X

c probability that X is greater than the mean d variance of X, i.e., Var (X):

3 A student waits for a bus to take him to school. He knows that 35% of all the buses that

pass his stop can take him to school. The others go elsewhere.

a If he catches the first bus that can take him to school, find:

i the probability that it will take at most 4 buses for him to get a correct one

ii the average number of buses it will take for him to get a correct one.

b If he catches the third bus that could take him to school, find:

i the probability that it will take 7 buses to get him to school

ii the average number of buses it will take for him to get to school

iii the probability that it will take no more than 5 buses to get him to school.

4 Patients arrive at random to visit the local doctor at a rate of 14 per hour during visiting

hours. Find the probability that:

a exactly five patients arrive to visit the doctor between 9:00 am and 9:45 am

b there will be fewer than seven patients arriving between 10:00 am and 10:30 am.

5 At the local supermarket, you can buy biros in packets of 12. On average, there are three

faulty biros per packet. If you select two biros without replacement:

a describe the random variable F that indicates the number of faulty biros

b draw a probability distribution table for F .

c You decide that if two of the pens are faulty you will not buy the packet. If none

of the pens is faulty you will buy the packet. If one of the pens is faulty, you will

select another pen and if that is faulty, you will not buy the packet.

i Find the probability that you will buy the packet.

ii Find the probability you will buy the packet if you select two biros with

replacement.

6 The weekly demand for petrol in thousands of kilolitres at a local service station is a

continuous random variable with probability density function:

f(x) =

½
ax3 + bx2, 0 6 x 6 1

0 elsewhere

a If the mean weekly demand is 700 kilolitres, determine the values of a and b.

b Suppose the service station has a storage capacity of 950 kilolitres. Find the prob-

ability that the service station will run out of petrol in any given week.

7 Twelve percent of families in a certain wealthy district are known to never use the

Internet. A random sample of 300 families is checked. Find the probability that the

proportion of families that never use the internet is:

a less than 11% b more than 14% c between 11% and 14%.

The probability distribution for the
random variable is given in the table
shown:

X
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8 To work out the credit limit of a prospective credit card holder a company gives points

based on factors such as employment, income, home and car ownership and general

credit history. A statistician working for the company randomly samples 40 applicants

and determines the point total for each. These are:

214 211 213 213 215 212 212 212 210 211 211 211 212 213
214 213 211 212 214 214 214 213 215 214 211 210 211 216
211 212 212 210 211 210 210 212 213 213 213 212

a Determine the sample mean, x, and standard deviation sn.

b Determine a 95% confidence interval that the company would use to estimate the

mean point score for the population of applicants.

9 225 randomly selected elite sports people were asked the question: “Should all elite

athletes be tested for the HIV virus?” and 93% said “Yes”.

a Estimate with a 95% confidence interval the percentage of all elite athletes who

would say yes.

b Interpret your answer to a.

10 A die was rolled 420 times. A ‘six’ resulted on 86 occasions.

a Determine a 95% confidence interval to estimate

the probability of rolling a ‘six’ with this die.

b Interpret your answer to a.

11 Quickchick grow chickens to sell to a supermarket chain. However, the buyers be-

lieve that the chickens are supplied underweight. As a consequence they consider the

hypotheses:
H0: Quickchick is not supplying underweight chickens

H1: Quickchick is supplying underweight chickens.

What conclusion would result in: a a type I error b a type II error?

12 Red and blue biros are sold in packets of six. Each

biro is either red or blue. The manufacturer claims that

the number of red biros in a packet can be modelled

by a binomial distribution. He collects 100 packets at

random and obtains the following information.

Number of
red biros

Number of
packets

0 1

1 3

2 9

3 17

4 31

5 28

6 11

a Calculate the average (mean) number of red biros

per packet.

b Hence, estimate the probability that a randomly

chosen biro is red.

c By calculating an appropriate Â2 statistic, test at

a 10% significance level whether or not the bin-

omial distribution gives a good fit to this data.

13 In an effort to study the level of intelligence of students entering into a University, a

psychologist collected data from 2000 students given an entrance test. The psychologist

wished to determine whether the 2000 test scores came from a normal distribution with

mean 100 and variance 100 which had been the pattern over the past 50 years. The

psychologist prepared the following table but was unable to complete it through serious

illness. The expected frequencies have been rounded to the nearest integer.
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104 STATISTICS AND PROBABILITY (Topic 8)

Score
Observed

frequencies
Expected

frequencies
Score

Observed
frequencies

Expected
frequencies

6 75 10 3 100:5-110:5 725

70:5¡ 80:5 45 48 110:5-120:5 250 253

80:5¡ 90:5 287 120:5-130:5 40 38

90:5¡ 100:5 641 > 130:5 2 2

a Copy and complete the table, clearly explaining how you obtained your answers.

b Test the hypothesis at the 5% level of significance.

14 A group of 10 students was given a revision course before their final IB examination.

So that it could be seen if there was an improvement as a result of the revision course

the students took a test at the beginning and at the end of the course. These marks were

recorded in the table below.

Student A B C D E F G H I J

Pre-test 12 13 11 14 10 16 14 13 13 12

Post test 11 14 16 13 12 18 15 14 15 11

a State why it would not be appropriate to work with the difference between the

means of these two sets of scores. Hence determine a 90% confidence interval for

the mean difference of the examination scores. Explain the meaning of your answer.

b It was hoped that by doing the revision course the students’ scores would improve.

Perform an appropriate test at the 5% level of significance to determine whether

this was the case.

1 X = x ¡5 ¡1 3 6

P(X = x) 0:3 0:2 0:2

a What is the probability of getting a 6 on counter X?

b What is the expected return per game for gamblers playing this game, if the score

is the return paid to the gambler?

c Explain why organisers should charge $1 to play this game rather than 50 cents.

Y = y ¡3 2 5

P(Y = y) 0:5 0:3 0:2

d What is the expected return to gamblers for playing this game Y ?

e What is the expected return for gamblers wishing to play both games simultaneously?

f

A similar game involves randomly choosing coun-
ters with probability distribution given in the table
alongside.

Y

How much would you expect the school to make if gamblers played games X and

Y 500 times each, and the combined game of X and Y 1000 times if they charge

$1 for any game played?

2 A coin is biased so that when it is tossed, the probability of obtaining tails is 3
5 . The

coin is tossed 1000 times and X is the number of tails obtained. Find:

a the mean of X b the standard deviation of X.

At a school fete, gamblers bet on the outcome of
numbered counters dollars chosen at random,
with probability distribution given in the table.

X

REVIEW SET 8B
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3 Pierre runs a game at a fair, where each player is guaranteed to win 10 Euros. Players

pay a certain amount each time they throw an unbiased die and must keep throwing until

a ‘6’ occurs. When a ‘6’ occurs Pierre gives the player 10 Euros. On average Pierre

wishes to make a profit of 2 Euros per game. How much does he charge per throw?

Note: A game concludes when the 10 Euros are paid to the player.

4

a Describe the distribution of X.

b Write down the formula for calculating P(X = x) for x = 0, ......, 10.

c What is the probability that the buyer will purchase a batch of 100 fish from the

fisherman on any day?

5 It is known that the proportion of times a journalist makes no errors per page is q.

a State the distribution of the random variable X that defines the number of errors

made per page by that journalist.

b Find the probablity, in terms of q, that the journalist makes per page:

i no errors ii one error iii more than one error.

c The journalist gets a bonus of $10 for no errors per page, $1 for just one error per

page, but gets fined $8 for more than one error per page.

i Draw a probability distribution table for the random variable Y , which describes

the returns for the journalist for making different numbers of errors.

ii Find E(Y ) in terms of q.
iii Find the smallest value of q to three decimal places, 0 6 q 6 1, such that the

journalist will receive an overall bonus.

6 In the Japanese J-League, it is known that 75% of all the footballers in the history of the

game prefer to kick with their right leg.

a In a random sample of 20 footballers from the J-League, find the probability that:

i exactly 14 players prefer to kick with their right leg

ii no more than five prefer to kick with their left leg.

b In a random sample of 1050 players from the J-League find the probability that:

i exactly 70% of players prefer to kick with their right leg

ii no more than 25% prefer to kick with their left leg.

Hint: For b use a suitable approximation for the random variable

X = the number of footballers who prefer to kick with their right leg.

Otto Hemmer Fishing Industries purchases
fish of a certain type from fishermen in
batches of . On average it is known that

of a batch of fish have length less
than cm.

100
13 100

50

The buyers of fish for Otto Hemmer Indus-
tries are instructed to randomly sample of
the batch from a certain fisherman and only
purchase the entire batch of if the random
sample has at most two fish with length less
than cm. Let denote the number of fish
with length less than cm in this sample.

10

100

50
50

X
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7 To estimate the mean number of hours lost

during a year due to sickness, a sample of

375 people will be used. Last year the stan-

dard deviation for the number of hours lost

was 67 and we will use this as the standard

deviation this year. What is the probability

that the estimate is in error by more than ten

hours?

8 The Transport Authority of Mars conducted

a survey on motor vehicle accident deaths.

They found that 56 out of 173 drivers tested

positive for high levels of drugs or alcohol in

their blood.

Estimate with a 90% confidence interval the

true percentage of driver deaths on Mars

where drivers have high levels of alcohol or

drugs in their blood.

9 Battery manufacturers want to estimate the proportion of defective batteries produced by

a machine in the workshop. A random sample of 400 batteries is tested and 32 are found

to be defective.

a Find a point estimate for the proportion of defective batteries produced by that

machine.

b Find a 95% interval estimate (CI) for the proportion of defective batteries produced

by that machine.

c If you conducted 150 such tests, how many of the 150 would you expect to contain

the population proportion of defective items produced by that machine?

10 During the last Century, sci-

entists exploring the nature

of genetics recorded the fol-

lowing data relating to pea

breeding:

Round and Wrinkled and Round and Wrinkled and

Yellow Yellow Green Green

306 109 92 49

According to the scientific theory of the day, the expected numbers are in the ratio

9 : 3 : 3 : 1. Test at the 5% level of significance whether or not the scientific theory

has been contradicted.

11 The table below summarises the incidence of tumours in 120 patients.

Construct a suitable test at the

1% level of significance to see

if there is any association be-

tween the type of tumour and

the location of the tumour.

Type of tumour

Benign Malignant Other

Location Lung 21 13 2

of Breast 20 7 2

tumour Other 18 27 10
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12 A drink manufacturer produces soft drink for sale with each bottle having contents

advertised at 375 kL. It is known that the machines producing these drinks are set so

that the average volume per bottle produced is 376 mL with a standard devation of 1:84
mL. Given that the volumes of bottles are distributed normally, find:

a the probability that an individual bottle randomly selected has a volume less than

373 mL

b the probability that a randomly selected pack of a dozen bottles has an average

volume less than the advertised amount.

Interpret these answers.

Government regulations are set to ensure that companies meet their advertising claims.

If not, they will incur very heavy fines. The rules set for this company are either:

I A randomly selected bottle is allowed no less than 373 mL. or

II A randomly selected pack of 12 bottles must have an average volume no

less than the advertised amount.

c Explain clearly by which method the company would prefer to be tested by the

Government authority.

Suppose the company chose method II above. It wants less than 0:1% chance of being

fined by the Government Authority.

d Find, to the nearest mL, what the setting should be for the average volume of each

bottle that the machines produce.

13 The random variable X has a normal distribution with mean ¹ and a randomly selected

sample of size 15 is taken on X such that

15X
i=1

(xi ¡ x)2 = 230.

a Find the sample variance for this sample.

b Find an unbiased estimate of the population variance of the random variable X.

A confidence interval (not the 95% confidence interval) for ¹ taken from this sample is

] 124:94, 129:05 [.

c Find a 95% confidence interval for ¹ taken from this sample.

d Determine the confidence level for the confidence interval ] 124:94, 129:05 [.

14 A school claims to be able to teach anglers how to fish better and catch more fish. In

order to test this hypothesis, the school recorded the number of fish caught by a random

sample of nine anglers at a local jetty in a given time period before they started the

course. After the fishing course was completed they recorded the number of fish caught

by the same nine anglers at the same jetty in exactly the same time period. The results

were:
Angler A B C D E F G H I

No. fish caught before 24 23 22 30 41 30 33 18 15

after 36 32 40 27 32 34 33 28 19

a Test at the 5% level whether the fishing school’s claim is indeed correct. State the

type of error you can make.

b Find the 90% confidence interval for the mean difference of the two sets of scores

and interpret the meaning of your answer.
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Sets

Ordered pairs

Functions

Binary operations

Groups

Further groups

Sets, relations and groups

99

Contents:

This topic explores the fundamental nature of algebraic structures and the
relationships between them.

Included is an extension of the work covered in the text, on relations and
functions, a formal study of sets and an introduction to group theory.
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HL Topic
(Further Mathematics SL Topic 3)
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A set is a well defined collection of objects. The objects in a set are called

the elements or members of the set.

For example, if a set A contains the vowels in the English alphabet, then we write

A = fa, e, i, o, ug.

If x is an element of a set A, then we write x 2 A. The symbol ‘2’ means ‘is

an element of’. If x is not a member of A, we write x =2 A.

In the above example, e 2 A but q =2 A.

A set is called a finite set if it contains a finite number of elements;

otherwise it is termed an infinite set.

The number of distinct elements in a set A is denoted n(A). This is sometimes written as

jAj. Cantor called this the power of a set or its cardinal number.

Where n(A) is small, it is usually easy to list all the elements in the set individually. However,

an alternative notation can be used to describe sets without listing each element. The ‘set-

builder’ notation fx j x has some specified propertyg is read as ‘the set containing all

elements, x, such that x has that property’.

For example, fx j x is an IB student enrolled in Mathematics HLg describes all IB students

studying HL mathematics.

SETSA
INTRODUCTION AND DEFINITION

NUMBER SETS
The following infinite sets of numbers will already be familiar:

N , the set of natural numbers f0, 1, 2, .....g (Note that 0 is omitted in some

definitions.)

Z , the set of integers f0, §1, §2, .....g
Q , the set of rational numbers fx j x =

p

q
, p, q 2 Z , q 6= 0g

R , the set of real numbers

C , the set of complex numbers fz j z = a+ ib, a, b 2 R g
Z +, Q +, and R + denote the positive elements of Z , Q , and R respectively.

For example, Z + = f1, 2, 3, .....g.

Note that the set of real numbers is difficult to describe, but is considered to be well defined

nevertheless. We know a number is real if it can be located on a number line.

Although many ideas relating to set theory had been an essential part of the growth of mathe-
matics, it was not until ( - ) that it was developed as a formal theory.Georg Cantor 1845 1918

There is no doubt about what determines membership of this set of vowels. However, the
collection of best actors in the world would not be considered well defined, so this
collection is not a set.

10
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State whether each of the following is true:

a 3 =2 Q b
p

9 2 Z c ¼ 2 Q
d ¡6:9 2 Z e 3:213 2 Q f

p¡11 2 R

a False, as 3 can be written as 3
1 and is therefore a rational number.

b True, as
p

9 = 3.

c False, as ¼ is an irrational number.

d False, as ¡6:9 = ¡6 9
10 , which is not an integer.

e True, as 3:213 = 3213999 = 3 71
333 = 1070

333 which makes it rational.

f False, as
p¡11 is an imaginary number. It belongs to C but not to R .

Two sets are equal if and only if they contain the same elements. The order of elements in

a set is not important.

For example, the set fa, b, cg is the same set as fb, c, ag. The set fa, b, b, cg is

also equal to the previous two because repetitions of elements are ignored.

The empty or null set is defined as the set containing no elements, and is denoted ? or fg.
In any particular situation, the set containing all elements under consideration is called the

universal set, U . In statistics this would be the population, and in probability it corresponds

to the sample space.

State whether the following pairs of sets are equal:

a f3, 5, 7g, f5, 7, 3g b f2, 2, 3, 5g, f2, 3, 5g
c fvowels in the English alphabetg, fa, e, i, o, ug
d fprime numbers between 24 and 28 inclusiveg, fprime numbers between 32

and 36 inclusiveg
e fintegers between ¡3 and 7 inclusiveg, fnatural numbers between ¡3 and 7

inclusiveg

a The order of the elements in a set does not matter, so the sets are equal.

b Repetition can be ignored, so the sets are equal.

c Both sets describe the same letters, so they are equal.

d Both sets are empty, so they are equal.

e The first set is f¡3, ¡2, ¡1, 0, 1, 2, 3, 4, 5, 6, 7g while the second is

f0, 1, 2, 3, 4, 5, 6, 7g. ) they are not equal.

Example 1

EQUALITY OF SETS

EMPTY AND UNIVERSAL SETS

Example 2

111SETS, RELATIONS AND GROUPS (Topic 9)
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1 List the elements of the following sets and state the number of elements in each set:

a fa, b, cg b fx j x is a prime number less than teng
c fx j x 2 Z , d fx j x 2 R , x2 = ¡9g
e f3, 4, f3g, f4gg f f?g

2 State whether the following sets are finite or infinite:

a fx j x 2 Z , 0 < x < 100g b fx j x 2 Q , 0 < x < 100g
3 Which of the following pairs of sets are equal?

a f1, 2, 3, 3g and f1, 2, 3g
b f1, m, ng and fm, 1, ng
c fx j x 2 Z , x2 = 4g and fx j x 2 R , jxj = 2g
d fprime numbers of the form 2n, n 2 N , n > 1g and fnegative numbers > 3g
e fx j x 2 R , g and fx j x 2 R , g

The empty set ? is a subset of every set, and every set is a subset of itself,

i.e., for any set A: ? µ A and A µ A.

This latter property is called the reflexive property for set inclusion.

If a subset B of A is such that B 6= A, then B is said to be a proper subset of A. This is

denoted: B ½ A.

Note also that for any set A, A µ U .

The subsets of the set fa, bg are ?, fag, fbg, fa, bg.

The Venn diagram alongside illustrates B µ A .

A proof of this is as follows:

EXERCISE 9A.1

SUBSETS

U

A

B

If set only contains elements which are also found in set , then is a of .
Alternatively, we can say that is a subset of if, for all , .

is a subset of is denoted: .

B A B A
B A x B x A

B A B A

subset

2 2
µ

The set of subsets of a set is called the , . The number of subsets of a
set with elements is .

power set P A
n

�( )
2

A
n

112 SETS, RELATIONS AND GROUPS (Topic 9)

Venn diagrams can be used for illustrating sets. The
interior of a rectangle usually indicates the universal
set , and interiors of circles are used for other sets. In
illustrations of large numbers of sets, other closed
figures may be used.

U

For every subset of , there will be two possibilities for each element : it will
either be in the subset or it will not. Thus, for all elements there will be different
selections, and the number of subsets of is .

A x A
n

A

2
2

2

n

n

x 2 [3; 8[

x 2 ]2; 5[ x 2 [2; 5]
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Two sets A and B are equal if and only if A µ B and B µ A.

One way to show two sets are equal is to show that:

² if x 2 A then x 2 B (this establishes that A µ B), and

² if y 2 B then y 2 A (this establishes that B µ A).

1 Find the power set P (A) for each of the following sets:

a fp, qg b f1, 2, 3g c f0g
2 For each of the following sets, state whether A µ B is true or false:

a A = fvowels in the English alphabetg, B = fletters in the word ‘sequoia’g
b A = f0g, B = ?
c A = f3, 5, 9g, B = fprime numbersg
d A = fx j a, b 2 Z , x = a+ b

p
2g, B = firrational numbersg

3 Prove using mathematical induction that n(P (A)) = 2n(A).

The set consisting of the elements common to both

set A and set B is called the intersection of the two

sets, written A \B.

A \ B = fx j x 2 A and x 2 Bg
The region shaded in the Venn diagram illustrates

A \B.

Find P (A) if A = fp, q, rg.

There will be 23 = 8 elements of P (A)

P (A) = f?, fpg, fqg, frg, fp, qg, fp, rg, fq, rg, fp, q, rgg

Example 3

EXERCISE 9A.2

ALGEBRA OF SETS

INTERSECTION

Find A \B if:

a A = f1, 2, 3, 4, 5, 6g and B = f3, 5, 7, 9g
b A = f1, 2, 3, 4, 5, 6g and B = f0, 7, 9g

a A \ B = f3, 5g b A \B = ?

Example 4

U

A B

113SETS, RELATIONS AND GROUPS (Topic 9)
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Note that in logic and mathematics, unless other-

wise specified the word “or” is taken in its inclusive

sense, i.e., it includes the “both” case.

A [ B = fx j x 2 A or x 2 Bg
The shaded region illustrates A [B:

Find A [B if:

a A = fa, b, c, d, eg, B = fa, e, i, o, ug
b A = ?, B = f1, 2, 3g
c A = feven integersg, B = fodd integersg
d A = fprime numbersg, B = N

a A [B = fa, b, c, d, e, i, o, ug
b A [B = f1, 2, 3g c A [B = Z d A [B = N

Note:

² A \B µ A [B
² If A [B = A \B, then A = B

² A [B = A if and only if B µ A
² A \B = A if and only if A µ B
² A \A = A (Idempotent Law)

² A [A = A (Idempotent Law)

² A \? = ? (Identity Law)

² A [? = A (Identity Law)

² A [ U = U (Identity Law)

² A \ U = A (Identity Law)

When we have proofs involving an equivalence statement

“if and only if” or iff or ,, we need to perform the proof both ways.

() ) start by assuming statement A and prove that statement B is true, and

(( ) assume statement B and prove that statement A is true.

For example, if we want to prove that if a and b are positive, a > b , a2 > b2,

we prove this as follows:

() ) if a > b

) a¡ b > 0

) (a¡ b)(a+ b) > 0 fas a, b > 0g
) a2 ¡ b2 > 0

) a2 > b2

(( ) if a2 > b2

) a2 ¡ b2 > 0

) (a¡ b)(a+ b) > 0

) a¡ b > 0 fas a+ b > 0g
) a > b

UNION

U

A B

Example 5

LAWS OF INTERSECTION AND UNION

The set consisting of all the elements that are found in either is called the of
the two sets, written .

A B
A B

or union

[

So, if we are to prove that statement is true if and only if statement is true, then
we have to do this both ways:

A B
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If A \B = ?, we say that A and B

are disjoint. A and B contain no com-

mon elements.

If A \B = ? and A [B = U
we say that A and B partition U .

The complement of A, written A0, contains all elements of U which are not in A.

This is sometimes called the absolute complement.

The shaded region in the diagram represents A0:

Note: A \A0 = ? and A [A0 = U

Prove that A [B = A if and only if B µ A.

() ) Suppose A [B = A.

If B = ? then we know B µ A
If B 6= ?, then let x 2 B

) x 2 A [B
) x 2 A

i.e., if x 2 B then x 2 A ) B µ A.

(( ) Now let B µ A and suppose A [B 6= A

A µ A [B ffrom the definition of a subsetg
But A [B 6= A so A [B * A
) there is an element x 2 A [B such that x =2 A
Now if x 2 A [B and x =2 A, then x 2 B
But this means B * A, which is a contradiction.

Hence A [B = A.

Therefore A [B = A if and only if B µ A.

Example 6

DISJOINT SETS

U

A B

COMPLEMENT

U
A

A

BU
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For all sets A and B, prove that A [ (B \ C) = (A [B) \ (A [ C)

() ) Let x 2 A [ (B \ C). Then x 2 A or x 2 B \ C
If x 2 A, then x 2 A [B and x 2 A [ C
) x 2 (A [B) \ (A [ C)

If x 2 B \ C, then x 2 B and x 2 C.

) x 2 A [B and x 2 A [ C
) x 2 (A [B) \ (A [ C)

This establishes that A [ (B \ C) µ (A [B) \ (A [ C) ..... (1)

(( ) Now let x 2 (A [B) \ (A [ C)

Then x 2 A [B and x 2 A [ C
If x 2 A, then x 2 A [ (B \ C)

If x =2 A, then x 2 B and x 2 C
) x 2 B \ C ) x 2 A [ (B \ C)

This establishes that (A [B) \ (A [ C) µ A [ (B \ C) ..... (2)

Together, (1) and (2) give: A [ (B \ C) = (A [B) \ (A [ C)

EXERCISE 9A.3

Example 7

1 A = f1, 3, 5, 7g, B = f0, 1, 2, 3, 4g, C = f6, 7, 8g, U = fn j n 2 N , n 6 9g
Find each of the following:

a A [B b A \ C c B \ C d A \ (B [ C)

e (A \B) [ (A \C) f B0 g (A [B)0 h A0 \B0
2 Assuming A and B are non-empty sets, draw separate Venn diagrams to illustrate the

following cases:

a A \B = ? b A [B = A c A \B0 = A d A [B = ?
e A \B0 = ? f A [B = A \B g A [B = A \B0

3 a Prove that n(A [B) = n(A) + n(B)¡ n(A \B)

b In a class of 30 students, 16 play tennis and 15 play basketball. There are 6 students

who play neither of these games. How many play both tennis and basketball?

4 Prove the transitive property of set inclusion, i.e., if A µ B and B µ C, then A µ C.

Both union of sets and intersection of sets are associative operations. Union of sets is also

said to be distributive over intersection and intersection is distributive over union,

i.e., ² (A [B) [ C = A [ (B [ C) and (A \B) \ C = A \ (B \ C)

² A [ (B \ C) = (A [B) \ (A [ C) and A \ (B [ C) = (A \B) [ (A \ C)

These laws can be easily shown with Venn Diagrams. A formal proof for the first of the

distributive laws is as follows:

ASSOCIATIVE AND DISTRIBUTIVE PROPERTIES
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Two important laws in set algebra are known as De Morgan’s Laws. These are:

(A [B)0 = A0 \B0 and (A \B)0 = A0 [B0

De Morgan’s laws can also be verified using Venn diagrams.

A summary of the laws of the algebra of sets is given below:

Idempotent Laws: A [A = A A \A = A

Associative Laws: (A [B) [ C = A [ (B [ C) (A \B) \ C = A \ (B \ C)

Commutative Laws: A [B = B [A A \B = B \A
Distributive Laws:

A [ (B \ C) = (A [B) \ (A [ C) A \ (B [ C) = (A \B) [ (A \ C)

Identity Laws: A [? = A A [ U = U A \ U = A A \? = ?

Complement Laws: A [A0 = U (A0)0 = A A \A0 = ? U 0 = ?, ?0 = U

De Morgan’s Laws: (A [B)0 = A0 \B0 (A \B)0 = A0 [B0

The difference between two sets A and B, sometimes called the relative complement, is

defined to be

AnB = fx j x 2 A and x =2 Bg
AnB consists of all those elements which are found in A but not in B, so

AnB = A \B0

DE MORGAN’S LAWS

Prove that (A [B)0 = A0 \B0

() ) If x 2 (A [B)0, then x =2 (A [B)

) x =2 A and x =2 B
i.e., x 2 A0 and x 2 B0
) x 2 A0 \B0

This establishes that (A [B)0 µ A0 \B0 ..... (1)

(( ) If x 2 A0 \B0, then x 2 A0 and x 2 B
) x =2 A and x =2 B
) x =2 A [B
) x 2 (A [B)0

This establishes that A0 \B0 µ (A [B)0 ..... (2)

Together, (1) and (2) give: (A [B)0 = A0 \B0

Example 8

DIFFERENCE

0
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The region is shaded in the Venn diagram:

Set difference is not a commutative operation,

so in general,

AnB 6= BnA.

The symmetric difference is defined by A¢B = (AnB) [ (BnA)

The symmetric difference of sets A and B is the

set made up of all the elements which are in A
or B but not both. This is illustrated in the Venn

diagram:

Note that: ² A¢B = B¢A Commutative property

² A¢(B¢C) = (A¢B)¢C Associative property

² A¢? = A ² A¢A = ? ² A¢A0 = U

U

A B

Find i AnB and ii BnA if:

a A = f1, 2, 3g, B = f4, 5g
b A = fa, b, c, dg, B = fb, d, e, fg
c A = f1, 2, 3, 4, 5g, B = f2, 4g

a i AnB = f1, 2, 3g = A ii BnA = f4, 5g = B

b i AnB = fa, cg ii BnA = fe, fg
c i AnB = f1, 3, 5g ii BnA = ?

Example 9

SYMMETRIC DIFFERENCE

U

A B

Find A¢B for:

a A = f1, 2, 3g, B = f4, 5g
b A = fa, b, c, dg, B = fb, d, e, fg
c A = f1, 2, 3, 4, 5g, B = f2, 4g

a A¢B = f1, 2, 3, 4, 5g b A¢B = fa, c, e, fg
c A¢B = f1, 3, 5g

Example 10
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letters in the

[ P )

A¢B

1 If P = fo, n, u, ag, M = fc, n, a, eg and the universal set is U =
word “conjugate”, find:

a P [M b P \M c P 0

d P 0 [M 0 e (P \M)0 f P \ (M

2 In each of the Venn diagrams below, shade the region corresponding to:

i A [B ii A \B iii AnB iv

a b c

3 In the Venn diagram shown, shade the region

corresponding to:

a A [B0 b A0 \B
c (A [B)0 d (A0 \B0)0
e (A [B) n (A \B) f A \ (B [A0)

4 Find i SnT ii TnS if:

a S = f1, 2, 3, 4g, T = f1, 3g b S = R , T = Q
c S = f0, 1, 2, 3g, T = f2, 3, 4, 5g d S = f2, 3, 4g, T = f0, 1, 5g

5 Find A¢B if:

a A = fa, b, c, d, eg, B = fa, eg b A = f1, 2, 3, 4g, B = f3, 4, 5g
c A = f2, 4, 6g, B = f1, 3, 5g d A = f9, 11, 13g, B = ?

6 Prove that A¢B = A [B if and only if A \B = ?.

7 Prove:

a (A [B) \ (A0 [B) = B b A \ (BnC) = (A \B) n (A \ C)

DEFINITION

We are familiar with the concept of an ordered pair, from locating points in the Cartesian

plane. However, an ordered pair need not have numbers as elements.

An ordered pair (a, b) is defined to contain two components or coordinates:

a first component a and a second component b.

Two ordered pairs are equal if and only if their corresponding components are equal.

i.e., (a, b) ´ (c, d) if and only if a = c and b = d

Thus (a, b) ´ (b, a) if and only if a = b.

EXERCISE 9A.4

A B

U
A B

U
A

B

U

A B

U

ORDERED PAIRSB
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1 Find i A£B ii B £A if:

a A = f1, 2g and B = f3, 4, 5g b A = fag and B = fa, bg
c A = f1, 2, 3g and B = ?

2 Graph A£B on the Cartesian plane if:

a A = f¡2, 0, 2g, B = f¡1, 0, 1g
b A = fx j 2 6 x < 5, x 2 R g, B = fx j ¡1 6 x < 4, x 2 R g

3 Prove that A£ (B [ C) = (A£B) [ (A£ C).

Prove that A£ (B \C) = (A£B) \ (A£ C)

i.e., the Cartesian product is distributive over set intersection.

() ) Let (x, y) 2 A£ (B \ C)

) x 2 A and y 2 B \ C
) x 2 A, y 2 B and y 2 C
) (x, y) 2 A£B and (x, y) 2 A£C
) (x, y) 2 (A£B) \ (A£ C)

) A£ (B \ C) µ (A£B) \ (A£C) ...... (1)

(( ) Let (x, y) 2 (A£B) \ (A£C)

) (x, y) 2 A£B and (x, y) 2 A£C
) x 2 A, y 2 B and y 2 C
) x 2 A and y 2 B \ C
) (x, y) 2 A£ (B \ C)

) (A£B) \ (A£C) µ A£ (B \C) ...... (2)

Hence, from (1) and (2), A£ (B \ C) = (A£B) \ (A£C)

Example 11

EXERCISE 9B.1

120 SETS, RELATIONS AND GROUPS (Topic 9)

Given two sets A and B, the set which contains all the ordered pairs ( a; b) such that a 2 A
and b 2 B is called the Cartesian product of A and B, written A£B.

A£B = f(a, b) j a 2 A, b 2 Bg
Thus, f1, 2, 3g £ f5, 6g = f(1, 5), (1, 6), (2, 5), (2, 6), (3, 5), (3, 6)g.
The Cartesian plane is R £ R , sometimes written R 2.

In general, commutativity does not hold, i.e., A £ B 6= B £ A. The exceptions are when

A = B, or when either A or B is the empty set, in which case A£B and B£A both equal

the empty set.

The number of elements in A £ B is found by multiplying the number of elements in each

of A and B:
n(A£B) = n(A)£ n(B)

CARTESIAN PRODUCT
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A relation is any set of ordered pairs.

Any subset of the Cartesian product of two sets A and B is a relation.

If R is a relation and (x, y) 2 R, then we sometimes write xRy.

xRy reads ‘x is related to y’.

If R µ A£B, then R is said to be “a relation from A to B”.

If R = X £ Y , then X is called the domain of R and Y is called the range.

The domain consists of all possible first components of the ordered pairs of the relation.

The range contains all possible second components.

If R is a relation from A to B then the domain of R is a subset of A and the range of R is

a subset of B.

If R µ A£A, we say that R is “a relation in A”.

The following are examples of relations:

R = f(1, 3), (2, 4), (3, 1), (3, 4)g is a relation in N

R = f(1, 2:5), (2, 3:7), (4, 2), (3, 7:3)g is a relation from N to Q

R = f(x, y) j x2 + y2 = 9, x, y 2 R g is a relation in R

R = f(x, (y, z)) j y2 + z2 = x2, x, y, z 2 Z g is a relation from R to R 2

A relation R in a set S is said to be reflexive if, for all a 2 S, aRa.

R is a reflexive relation on the set f1, 2, 3, 4g if and only if f(1, 1), (2, 2), (3, 3), (4, 4)g µ R

Which of the following relations are reflexive?

a The relation R in a set of school students where xRy if and only if x and

y attend the same school.

b The relation in children in a family, “is the brother of”.

c The relation R in Z where xRy if and only if x 6 y.

d The relation R in f1, 2, 3g where R = f(1, 1), (1, 2), (3, 2), (3, 3)g.
e The relation R in R where xRy if and only if x = y.

a Reflexive since a student always goes to the same school as him or herself.

b Not reflexive since you are not your own brother, especially if you are a girl.

c Reflexive as x 6 x for all x 2 Z . d Not reflexive as (2, 2) =2 R.

e Reflexive by definition.

RELATIONS

INTRODUCTION

REFLEXIVE RELATIONS

Example 12
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A relation R in a set S is said to be symmetric if, for all a, b 2 S, aRb implies bRa.

Which of the following are symmetric relations?

a A relation R in f1, 2, 3, 4g where R = f(1, 2), (2, 1), (3, 3), (4, 2), (2, 4)g
b The relation in a set of people, “is the sibling of”.

c The relation in a set of people, “is the brother of”.

d The relation in Z where xRy if and only if x 6 y.

e The relation in R where xRy if and only if x = y.

a Symmetric b Symmetric. In a set of people, not every person will have a

sibling. All that is required here is that if a is the brother or

sister of b then b will be the brother or sister of a.

c Not symmetric. For example, Paul may be the brother of Anne, but Anne is

not the brother of Paul.

d Not symmetric. For example, 3 6 7 but 7 3 e Symmetric.

Note that when a relation is not symmetric, we describe it as non-symmetric or just not

symmetric. The term anti-symmetric is reserved for a special set of non-symmetric relations;

in an anti-symmetric relation if xRy then it is never true that yRx unless x = y.

f(1, 2), (2, 1), (3, 2), (2, 3)g is symmetric

f(1, 2), (2, 1), (3, 2)g is non-symmetric but not anti-symmetric

f(1, 2), (2, 3), (3, 3)g is anti-symmetric

A relation R in a set S is transitive if, for all a, b, c 2 S, aRc whenever aRb and bRc.

If (a, b) and (b, c) are both elements of R, then so must (a, c). Establishing this can be

a time consuming process in many instances. It is often useful to make list of all possibilities

and check each one.

Which of the following relations are transitive?

a The relation R on f1, 2, 3, 4g where R = f(1, 1), (1, 2), (2, 3), (1, 3)g
b The relation in a set of buildings, “is older than”.

c The relation in a set of people, “is the father of”.

d The relation R in Z where xRy if and only if x 6 y.

e The relation in R where xRy if and only if x = y.

a Transitive; e.g., from (1, 2) and (2, 3), (1, 3) must be in R, which is true.

b Transitive; if building a is older than building b, and building b is older

than building c, then a is older than c.

SYMMETRIC RELATIONS

Example 13

TRANSITIVE RELATIONS

Example 14

So, a relation is symmetric if, for all ( , ) , ( , ) .R a b R b a R2 2
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c Not transitive; if a fathers b and b fathers c, then a is the grandfather of c,
not the father.

d Transitive; if a 6 b and b 6 c, then a 6 c.

e Transitive; if a = b and b = c, then a = c.

In the above examples, the relation of equality was seen to be reflexive, symmetric and

transitive. This will lead us to consider a special class of relations in the next section.

1 State the domain and range of each of the following relations:

a f(0, 5), (1, 3), (2, 2)g b f(x, y) j x2 + y2 = 9, x 2 Z g
c f(x, y) j y = sinx, x 2 R g

2 A = f2, 3, 4, 5g and B = f5, 6, 7, 8g. Write R as a set of ordered pairs if:

a xRy , x is a factor of y b xRy , y = x+ 3

c xRy , y > 2x

3 Determine whether each of the following relations is:

i reflexive ii symmetric iii transitive

a xRy if y is the brother of x b xRy if y is older than x

c xRy if x and y live in the same country

d xRy if x and y have the same mother

4 Let R be a relation on N defined by xRy where x and y are co-prime (share no

common factors except 1). Determine whether R is:

a reflexive b symmetric c transitive

5 Let R be a relation in a family of sets. Determine whether R is

i reflexive ii symmetric iii transitive

for the cases: a ARB , A and B are disjoint b ARB , A µ B
c ARB , n(A) = n(B)

A relation in a set S which is reflexive, symmetric and transitive is said to be an

equivalence relation in S.

Equality and congruence are obvious examples of equivalence relations.

If we graphed a relation on the Cartesian plane, then the following would apply:

If R is reflexive, all possible points on the line y = x must be included.

For example, if S = f¡2, ¡1, 0, 1g then (¡2, ¡2), (¡1, ¡1), (0, 0),

and (1, 1) must all appear on the graph.

If R is symmetric then the graph must be symmetric about the line y = x.

EXERCISE 9B.2

EQUIVALENCE RELATIONS

Definition:
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If A = f1, 2, 3g, examples of relations on A are: R1 = f(1, 3), (2, 1), (1, 1)g
R2 = f(1, 2)g
R3 = f g

R3 is the empty set. A relation R in a set is a set of ordered pairs, so any subset of a set

of ordered pairs will be a relation. This includes the empty set which is referred to as the

empty relation.

For the empty relation in a non-empty set S, the following are both true statements:

for all a, b 2 S, if aRb then bRa

for all a, b, c 2 S, if aRb and bRc then aRc

They are conditional statements and do not require that any element of S is related to any

other.

Because there are no a, b 2 S such that aRb, the empty relation is symmetric and transitive

by default.

However, if S is non-empty and a 2 S, then if aRa, then R must be a non-empty rela-

tion, ) the empty relation is not reflexive.

Hence the empty relation on a non-empty set is symmetric and transitive but is not reflexive.

A consequence of the reflexive requirement is that the empty relation on a non-empty set is

not an equivalence relation. Further, as aRa for all a 2 S, the domain of an equiva-

lence relation in S is S.

The empty relation is not the only instance of a relation which is symmetric and transitive

but not reflexive.

e.g., the relation R in A = fa, b, c, dg where

R = f(a, a), (a, b), (b, a), (b, b), (a, c), (c, a), (c, c), (c, b), (b, c)g

If a set S is separated into subsets which are disjoint and such that their union is S, then we

say S has been partitioned. An equivalence relation on S partitions S into sets which are

called equivalence classes.

Examples:

1 Define the relation R on Z by

aRb, a and b have the same remainder on division by 2, where a, b 2 Z
This relation partitions Z into two equivalence classes; the set of odd integers and the

set of even integers.

2 Let P be the set of polygons.

Define the relation R on P by

aRb, a and b have the same number of sides, where a, b 2 P .

R partitions P into an infinite number of equivalence classes; the set of triangles, the

set of quadrilaterals, the set of pentagons, etc.

THE EMPTY RELATION

EQUIVALENCE CLASSES
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Let A = f1, 2, 3, 4g and define a relation R by: xRy , x+ y is even.

a Show that R is an equivalence relation. b Find the equivalence classes.

a Reflexive: x+ x = 2x
But 2x is even for all x 2 A xRx for all x 2 A

Symmetric: If xRy then x+ y is even.

Now x+ y = y + x for all x, y 2 A
) y + x is also even ) yRx also

i.e., if xRy, then yRx

Transitive: Suppose xRy and yRz
Then x+ y is even and y + z is even.

i.e., x+ y = 2m and y + z = 2n where m, n 2 Z
) x+ y + y + z = 2m+ 2n
) x+ 2y + z = 2m+ 2n
) x+ z = 2m+ 2n¡ 2y
) x+ z = 2(m+ n¡ y)

But as m, n, y 2 Z m+ n¡ y 2 Z also

) x+ z is even i.e., if xRy and yRz then xRz

Example 15

Theorem 1: An equivalence relation R on a set S partitions S into disjoint subsets.

Proof: As every element a 2 S is such that aRa (reflexive property of equivalence

relations), every element must appear in the set of ordered pairs in R, and thus

must appear in an equivalence class.

Hence the union of equivalence classes must be S.

Next, we prove by contradiction that the equivalence classes are disjoint:

Suppose not all sets are pairwise disjoint, so there is at least one pair of sets

which is not disjoint.

We let A and B be two such sets, where a 2 A and b 2 B.

Let c 2 A \B. Then a 2 A and c 2 A so aRc,
and c 2 B and b 2 B so cRb.

By transitivity, aRb, so a and b belong to the same equivalence class.

But if aRb where b is any element in B, then b 2 A
) every element of B is an element of A, and so B µ A ..... (1)

In a similar manner, we can argue that A µ B ..... (2)

and (1) and (2) give A = B

This is a contradiction. Therefore, if there is more than one equivalence class,

the equivalence classes are pair-wise disjoint and the union of them is S.

Hence the set of equivalence classes is a partition of S.

The number of equivalence classes may range from one (in the case R = S£S) to n(S) in

the case where each equivalence class contains only one element.

so,

A B6= ,
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b Now R = f(1, 1), (1, 3), (3, 3), (3, 1), (2, 2), (2, 4), (4, 4), (4, 2)g
Notice that the first four ordered pairs contain only the elements 1 and 3
from A, and the remaining four ordered pairs contain 2 and 4.

So, there are two equivalence classes: f1, 3g and f2, 4g.
R can be graphed on the Cartesian

plane:

Notice that every possible point of

A£A on the line y = x is plotted;

this is a consequence of the reflexive

property. The symmetry property

guarantees symmetry in the line

y = x for all other points. 1 2 3 4 5

1

2

3

4

5 y

x

Similar triangles

Let S be the set of all triangles. Define the relation R such that if x, y 2 S,

then xRy if and only if x is similar to y.

Show that R is an equivalence relation and describe the equivalence classes.

Reflexive: A triangle is similar to itself since, for

any triangle ABC,
AB

AB
=

BC

BC
=

AC

AC
.

Therefore xRx for all x 2 S.

Symmetric: If x is similar to y, then its corresponding angles are equal.

) y is also similar to x.

Hence for all x, y 2 S, if xRy then yRx.

Transitive: Given triangles x, y and z 2 S, if x is similar to y, then the corre-

sponding angles of x and y are equal. Also, if y is similar to z, the

corresponding angles of y and z are equal. Therefore, the correspond-

ing angles of x and z must also be equal, and so x is similar to z.

) for all x, y, z 2 S, if xRy and yRz then xRz.

Hence R is an equivalence relation on S. The equivalence classes would be sets

of triangles, each set containing all triangles which are similar to each other.

Notice in this instance that there are infinitely many equivalence classes, each with

an infinite number of members.

Example 16

Regular polygons

Let S be the set of regular polygons where R is the relation defined by xRy
if x is similar to y.

Show that R is an equivalence relation and describe the equivalence classes.

Reflexive: Each regular polygon is similar to itself, so xRx for all x 2 S.

Example 17
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Symmetric: Two regular polygons are similar if they have the same number of

sides. Therefore, if xRy then yRx for all x, y 2 S.

Transitive: If xRy and yRz, then the number of sides of x and y are equal

and the number of sides of y and z are equal.

) the number of sides of x and z are equal,

i.e., for all x, y, z 2 S, if xRy and yRz then xRz.

Hence R is an equivalence relation on S. The equivalence classes

would be S3, S4, S5, ..., where Sn is the set of all regular

n-sided polygons.

For example, S3 is the set of equilateral triangles while S4 is the

set of squares. It is easy to see in this example that these sets are

pair-wise disjoint, and that every regular polygon will be in one

of these sets,

i.e., S3 [ S4 [ S5 [ :::: = S, so fSng partitions S.

Consider the relation R on R , where for all x, y 2 R , xRy if x > y.

Show that R is not an equivalence relation.

Clearly, the relation is not reflexive as 5 is not greater than itself.

Symmetry is also ruled out since, for example, 7 > 2 but 2 is not greater than 7.

Transitivity applies since, if x > y and y > z, then x > z.

Changing R such that xRy if x > y would make R reflexive since x > x
for all x 2 R. However, symmetry would still not apply.

The integers f0, 3, 6, 9, ....g give remainder 0 on division by 3.

The integers f1, 4, 7, 10, ....g give remainder 1 on division by 3.

The integers f2, 5, 8, 11, ....g give remainder 2 on division by 3.

These sets of integers are the residue classes 3. Together they make up the set of

integers Z +.

4 and 7 have remainder 1 when divided by 3.

We say that 4 and 7 are congruent modulo 3, and 4 ´ 7 (mod3).

Also, 4¡ 7 = 3, which is a multiple of 3.

In general:

If we take any integer and divide it by any n 2 Z +, the possible remainders are the integers

0, 1, 2, 3, ...., n¡ 1.

We could place in one set all those integers which give remainder 0 on division by n, in

another set all those integers with remainder 1, in another those with remainder 2 and so on.

All the sets would be different, and every integer would be in only one set for a given n.

Example 18

RESIDUE CLASSES

modulo
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The sets are called the residue classes, modulo n. Because the sets are pair-wise disjoint and

their union is Z , they partition Z .

For example, consider the relation on Z : xRy if and only if y ¡ x is divisible by 5.

This is the same as saying that xRy is the residue class of modulo 5 with remainder 0.

If x and y have the same remainder on division by an integer n, then we say that

x is congruent to y modulo n and write:

x ´ y (mod n) if and only if x¡ y is a multiple of n.

For example, 19 ´ 40 (mod 7) as 19 and 40 both have remainder 5 when divided by 7.

Alternatively, 19¡ 40 = ¡21 which is a multiple of 7.

Show that the relation xRy if and only if y ¡ x is divisible by 5 is an

equivalence relation, and describe the equivalence classes.

Reflexive: x¡ x = 0 and as 0 is a multiple of 5, xRx
) R is reflexive.

Symmetric: If xRy, then y ¡ x = 5m where m 2 Z
) x¡ y = ¡5m = 5(¡m)

Now ¡m 2 Z , so x¡ y is divisible by 5
) yRx, and so R is symmetric.

Transitive: Suppose xRy and yRz.

Then x and y have the same remainder on division by 5,

so y ¡ x = 5m for some m 2 Z ,

and y and z have the same remainder on division by 5,

so z ¡ y = 5n for some n 2 Z .

) z ¡ x = (z ¡ y) + (y ¡ x)
) z ¡ x = 5n+ 5m

) z ¡ x = 5(n+m) where (n+m) 2 Z
) xRz, so R is transitive.

As R is reflexive, symmetric and transitive, it is an equivalence relation.

Equivalence classes:

If a 2 Z then the other elements of the equivalence class to which a belongs

will be a§ 5, a§ 10, a§ 15 etc.

There will be 5 such classes:

f.... ¡10, ¡5, 0, 5, 10, .... i.e., all integers which are divisible by 5g
f.... ¡9, ¡4, 1, 6, 11, .... i.e., all integers which leave remainder 1 on division by 5g
f.... ¡8, ¡3, 2, 7, 12, .... i.e., all integers which leave remainder 2 on division by 5g
f.... ¡7, ¡2, 3, 8, 13, .... i.e., all integers which leave remainder 3 on division by 5g
f.... ¡6, ¡1, 4, 9, 14, .... i.e., all integers which leave remainder 4 on division by 5g

Example 19
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From the example above:

It can easily be seen that every integer belongs to one and only one of these sets.

The sets are therefore pair-wise disjoint and their union is Z .

The set of these residue classes is called Z 5 and is written

f[0], [1], [2], [3], [4]g or just f0, 1, 2, 3, 4g.

In general, Z n = f0, 1, 2, ..., n¡ 2, n¡ 1g

R is a relation on R £ R such that for (a, b), (x, y) 2 Z £ Z ,

if and only if x+ 5y = a+ 5b.

a Show that R is an equivalence relation.

b Describe how R partitions R £ R and state the equivalence classes.

a Reflexive: Letting a = x and b = y,

x+ 5y = x+ 5y which is true for all (x, y) 2 Z £ Z
) R is reflexive.

Symmetric: If then x+ 5y = a+ 5b

) a+ 5b = x+ 5y

) for all (a, b), (x, y) 2 Z £ Z
) R is symmetric.

Transitive:

) x+ 5y = a+ 5b

and c+ 5d = x+ 5y

) c+ 5d = a+ 5b

) for all (a, b), (c, d) 2 Z £ Z
) R is transitive.

As R is reflexive, symmetric and transitive, it is an equivalence relation.

b For any (a, b) 2 Z £ Z , we know that x+ 2y = a+ 5b

i.e., a+ 5b is an integer c 2 Z
) the relation R partitions R £ R into an infinite number of equivalence

classes, each equivalence class containing the different points (a, b) that result

in a+ 5b being a particular value.

For example,

f(0, 0), (5, ¡1), (10, ¡2), ....g form the equivalence class corresponding

to a+ 5b = 0,

f(1, 0), (6, ¡1), (11, ¡2), ....g form the equivalence class corresponding

to a+ 5b = 1,

etc.

Example 20

( , ) ( , )a b R x y

Suppose ( , ) ( , ) and ( , ) ( , )a b R x y x y R c d

( , ) ( , )a b R x y

( , ) ( , )x y R a b

( , ) ( , )a b R c d
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1 If a ´ b (mod n) and c ´ d (mod n), prove that:

a a+ c ´ b+ d (mod n) b ac ´ bd (mod n)

2 Find the smallest positive integer x that is a solution of the congruence ax ´ 1 (mod 11)
for each of the values a = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10.

3 R is a relation in a family of lines such that xRy , x and y have the same gradient.

a Show that R is an equivalence relation. b Describe the equivalence classes.

4 Determine whether the relation R on f1, 2, 3, 4g where

R = f(1, 1), (1, 2), (2, 2), (2, 3), (3, 3), (3, 4), (4, 4), (4, 3)g is:

a reflexive b symmetric c transitive.

5 If A = fa, b, cg, find relations in A which are:

a reflexive but neither symmetric nor transitive

b symmetric but neither reflexive nor transitive

c transitive but neither reflexive nor symmetric

d reflexive and symmetric but not transitive

e reflexive and transitive but not symmetric

f symmetric and transitive but not reflexive.

6 S = f1, 2, 3, 4g and R is an equivalence relation on S:

If (1, 2), (2, 3), (4, 4) 2 R, what other ordered pairs must be in R?

7 Show that R is an equivalence relation in N if xRy , x¡ y is divisible by 7.

8 Determine whether the relation R on N is an equivalence relation if:

xRy , x2 ´ y2 (mod 3)

9 R is a relation on Z £ Z such that for (a, b), (x, y) 2 Z £ Z ,

if and only if x = a.

a Show that R is an equivalence relation.

b Describe how R partitions Z £ Z and state the equivalence classes.

10 R is a relation on R £ R n f(0, 0)g such that for (a, b), (x, y) 2 R £ R n f(0, 0)g,
if and only if ay = bx.

a Show that R is an equivalence relation.

b Describe how R partitions R £ R n f(0, 0)g and state the equivalence classes.

11 R is a relation on R £ R such that for (a, b), (x, y) 2 R £ R ,

if and only if y ¡ b = 3x¡ 3a.

a Show that R is an equivalence relation.

b Describe how R partitions R £ R and state the equivalence classes.

EXERCISE 9B.3

( , ) ( , )a b R x y

( , ) ( , )a b R x y

( , ) ( , )a b R x y
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FUNCTIONSC

Determine whether the relation from

A = f1, 2, 3, 4g to B = f1, 2, 3, 4g
illustrated in the diagram is a function.

This is not a function as 1 in A is mapped to two elements, 1 and 2, in B:

1

2

3

4A B

1

2

3

4

Example 21

Determine whether the relation in N , f(1, 3), (2, 5), (2, 3), (3, 7)g is a function.

This is not a function as 2 is mapped to two different elements.

Example 22

Is the relation in R defined by f(x, y) j y > xg a function?

No, as each element in the domain is mapped to an infinite number of elements

in the range.

Example 23

The diagram below illustrates a relation from

A = f1, 2, 3, 4g to B = f1, 2, 3, 4g.
a Is the relation a function?

b State the domain, co-domain and range.

a As each element of A is mapped to just one element of B, the relation is a

function.

b The domain of the function is f1, 2, 3, 4g, the co-domain is also f1, 2, 3, 4g,
and the range is f1, 2, 3g.

1

2

3

4A B

1

2

3

4

Example 24

A relation f from set A to set B, is said to be a function from A to B if, for each x 2 A,

there is only one element y 2 B such that (x, y) 2 f .

Functions are sometimes referred to as mappings. A is the domain of the function and B
the codomain. The range of f will be a subset of B.

INTRODUCTION AND DEFINITION

Rather than write , or , the standard notation used is or .( ) = ( ) :x y f xfy y f x f x y2 7!

Some of the work in this section expands the work covered in of the Core HL text.Chapter 1
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Determine whether the relation R from A = f1, 2, 3, 4g to B = f1, 2, 3, 4g
where R = f(1, 4), (2, 4), (3, 4), (4, 1)g is a function.

This is a function as, for each different first component of the ordered pairs, there is

only one possible second component.

Determine whether the relation f : R ! R where f(x) = 2x2 ¡ 3 is a function.

This is a function as for each value of x there is only one value of 2x2 ¡ 3.

Example 25

Example 26

Prove that the function f : Z + ! Z + where f(x) = x2 is an injection.

x1 and x2 where x1 6= x2.

) f(x1) = f(x2) ) x 21 = x 22
) x1 = x2 fas x1, x2 2 Z +g

This is a contradiction, so f is an injection.

To show this, suppose there is an element in the range which corresponds to two
distinct elements in the domain, i.e.,

Is the illustrated function from

A = f1, 2, 3g to B = f1, 2, 3, 4g
an injection?

This is an injection since each element in the range can result from only one element
in the domain,

i.e., no two elements in the domain are mapped to the same element in the range.

1

2

3

A B

1

2

3

4

Example 27

Example 28

132 SETS, RELATIONS AND GROUPS (Topic 9)

A test for functions which can be graphed in the Cartesian plane is the vertical line test.

Any vertical line will never cross the graph of a function more than once.

If a function f is such that each element in the range corresponds to only one element in

the domain, then f is said to be one-to-one or an injection. To show that a function is an

injection, it is sufficient to prove that f(x1) = f(x2) implies x1 = x2.

Alternatively, if f is differentiable then showing that either f 0(x) > 0 or f 0(x) < 0 for all x,

will prove that f is an injection.
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If any horizontal line crosses a function graphed on the Cartesian plane at most once, the

function is an injection.

For a function f from A to B, f is said to be onto or a surjection if the range of f is B.

Every element in B will be the image of an element in A, so the co-domain is the same as

the range.

A function which is both an injection and a surjection, i.e., one-to-one and onto, is said to

be a bijection.

SURJECTIONS

Determine whether the function from

A = f1, 2, 3, 4g to B = f1, 2, 3g
illustrated below is a surjection.

This is a surjection as every element of B corresponds to some element of A.

1

2

3

4A B

1

2

3

Example 29

Is the function f : R ! R + [ f0g where f(x) = x2 a surjection?

f is a surjection because every non-negative real number is the square of a

real number.

Example 30

Is the function f : Z + ! Z + where f(x) = 2x a surjection.

If we take any positive integer and double it, we get an even positive integer.

) no elements of Z + will map onto the odd positive integers.

) not all elements in the co-domain correspond to elements in the domain.

) f is not a surjection.

Example 31

BIJECTIONS

Is the function from

A = f1, 2, 3, 4g to B = f1, 2, 3, 4g
illustrated in the diagram below a

bijection?

The function is a bijection because each element of the domain maps to only one

element in the range (one-to-one), and each element in the co-domain corresponds

to an element in the range (onto).

1

2

3

4A B

1

2

3

4

Example 32
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If f is a function from A to B and g is a function from B to C, we can define a function from

a subset of A to C by g(f(x)) or g ± f

Suppose f maps f1, 2, 3, 4g to f5, 6, 7g and g maps f5, 6, 7g to f8, 9g
where f = f(1, 6), (2, 6), (3, 5), (4, 7)g and g = f(5, 8), (6, 9), (7, 8)g.
Find: a g ± f b f ± g
a g ± f = f(1, 9), (2, 9), (3, 8), (4, 8)g
b f ± g

Let f : R ! R and g: R ! R where f(x) = x+ 2 and g(x) = x3.

Find: a (g ± f) (x) b (f ± g) (x)

a (g ± f)(x) = g(f(x)) = g(x+ 2) = (x+ 2)3

b (f ± g)(x) = f(g(x)) = f(x3) = x3 + 2

Is the function f : R ! R where f(x) = x3 a bijection?

Every real number has a unique cube which is a real number, so f is an injection,

and every real number is the cube of a unique real number, so f is a surjection.

) f is a bijection.

Example 33

Is the function f : R ! R where f(x) = x2 a bijection?

This function is not an injection since several elements of the domain can map

onto the same element of the range, e.g., f(¡2) = f(2) = 4. Also, no negative

real number is the square of a real number, so the range is not the same as the

co-domain. ) the function is also not a surjection. f is not a bijection.

Example 34

Is the function f : R + ! R + where f(x) = x2 a bijection?

This is an injection as each element of the range is the square of only one element

in the domain. It is also a surjection as each real positive number is the square of

a real positive number. ) f is a bijection.

Example 35

COMPOSITION OF FUNCTIONS

Example 36

Example 37

134 SETS, RELATIONS AND GROUPS (Topic 9)

provided contains the .the domain of range ofg f

is not defined because the does not contain the .domain of range off g

IBHL_OPT
cyan black

0 5 2
5

7
5

5
0

9
5

1
0
0

0 5 2
5

7
5

9
5

1
0
0

5
0

Y:\HAESE\IBHL_OPT\IBHLOPT_09\134IBO09.CDR Monday, 15 August 2005 12:41:35 PM PETERDELL



If f is a bijection from A to B such that f : x 7! y, then it is possible to define a function

such that y is mapped to x. This function is called the inverse of f , denoted f¡1.

If the order of the components of each of the ordered pairs of f is reversed, the resulting

function is f¡1. Note that the inverse of a bijection will also be a bijection.

Find the inverse of the function from A = f1, 2, 3, 4g to B = f1, 2, 3, 4g
where f = f(1, 3), (2, 2), (3, 4), (4, 1)g

f¡1 = f(3, 1), (2, 2), (4, 3), (1, 4)g

1 State whether each of the following relations from f1, 2, 3, 4, 5g to f1, 2, 3, 4, 5g
is a function, and if so, determine whether it is an injection:

a f(1, 2), (2, 4), (3, 5), (1, 3), (4, 1), (5, 2)g
b f(1, 5), (2, 4), (3, 5), (4, 5), (5, 3)g
c f(1, 3), (2, 4), (3, 5), (4, 2), (5, 1)g

2 State whether each of the following relations is a function, and if so, determine whether

it is: i an injection ii a surjection iii a bijection.

a The relation R from f0, 1, 2g to f1, 2g where R = f(0, 1), (1, 2), (2, 2)g
b The relation R from f0, 1, 2g to f1, 2g where R = f(0, 1), (1, 1), (2, 1)g
c The relationR from f0, 1, 2g to f1, 2g where R = f(0, 1), (1, 1), (1, 2), (2, 2)g
d The relation from Z to Z + defined by f(x, y) j y = x2 + 1g
e The relation from R 2 to R defined by (x, y)Rz if and only if z = x2 + y2.

f The relation from Z £ Z to Z £ Z where (a, b)R(x, y) if and only if y = a
and x = b.

INVERSE FUNCTIONS

Example 38

Find the inverse of f : R ! R if f(x) = 2x3 + 1

So, x = 2y3 + 1

Making y the subject of the equation 2y3 = x¡ 1 and so y3 =
x¡ 1

2

) y = 3

r
x¡ 1

2
, i.e., f¡1(x) = 3

r
x¡ 1

2

First, we note that is both an injection and a subjection, so is a bijection and has
an inverse. Next, we put . We interchange and , which has the effect
of reversing the order of the components of each ordered pair of the function.

f f
y x x y= 2 + 13

Example 39

EXERCISE 9C
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3 For each of the following functions, state giving reasons whether it is injective, surjective

or both:

a f : R ! R , f(x) = 2x¡ 1

b f : R ! Z , f(x) = [x], where [x] means “the greatest integer less than

or equal to x”
c f : Z ! Z + [ f0g, f(x) = jxj
d f : Q + ! Q +, f(x) = x2

e f :
£
0, ¼2

¤! [0; 1], f(x) = sinx

f f : Z + ! Z +, f(x) = 2x

4 A = f0, 1, 2, 3g, f and g are functions mapping A to A where

f = f(0, 1), (1, 2), (2, 0), (3, 3)g and g = f(0, 2), (1, 3), (2, 0), (3, 1)g.
a Find each of the following:

i (f ± g)(1) ii (g ± f)(1) iii (f ± g)(3) iv (g ± f)(3)

b Find:

i f¡1 ii g¡1 iii (g ± f)¡1 iv (f¡1 ± g¡1)
5 f and g are functions in R + such that: f(x) = ln (x+ 1) and g(x) = x2.

Find each of the following:

a (g ± f) (x) b (f ± g) (x) c f¡1(x)

d (g ± f)¡1 (x) e
¡
f¡1 ± g¡1¢ (x)

6 Prove that if A µ B then f(A) µ f(B).

Given a non-empty set S, a binary operation on S is a rule for combining any two elements

a, b 2 S to give a unique result c, where c is not necessarily 2 S.

Many binary operations are familiar from operations on number. Addition, subtraction, mul-

tiplication and division are examples of binary operations.

For example, given the set of integers Z , the binary operation of addition with 3 and 5 gives

8, and we write 3 + 5 = 8.

An example of subtraction on the set of natural numbers N is 5 ¡ 7 = ¡2. Note that, in

this latter case, the result does not belong to the set N . If this happens for any particular

binary operation on a set, we say the set is not closed under that operation.

Z is closed under subtraction because the result of subtracting any integer from another integer

is always an integer.

Note that some definitions of a binary operation include closure as a property.

The definition used here does not and so closure must not be assumed.

Less familiar binary operations between two elements in a set are often defined by a symbol

such as ¤.

BINARY OPERATIONSD
INTRODUCTION
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Let a binary operation ¤ on Z be defined by a ¤ b = a+ 2b¡ 3

Find: a 3 ¤ 5 b 3 ¤ 0 c 0 ¤ 3 d ¡5 ¤ 0

a 3 ¤ 5 = 3 + 2£ 5¡ 3

= 10

b 3 ¤ 0 = 3 + 2£ 0¡ 3

= 0

c 0 ¤ 3 = 0 + 2£ 3¡ 3

= 3

d ¡5 ¤ 0 = ¡5 + 2£ 0¡ 3

= ¡8

CLOSURE

A set S is said to be closed under the binary operation ¤ if a ¤ b 2 S for all a, b 2 S.

A closed binary operation on a set S is a function with domain A£A and co-domain A.

Which of the following binary operations are closed on Z ?

a a ¤ b =
a+ b

a2
b a ¤ b = 2a+b c a ¤ b = a+ b¡ 3ab

a Consider a = 2 and b = 3. Then 2 ¤ 3 =
2 + 3

4
= 5

4 =2 Z

) the binary operation in not closed.

b Consider a = ¡2 and b = 0. Then ¡2 ¤ 0 = 2¡2+0 = 1
4 =2 Z

) the binary operation is not closed.

c As a and b are in Z , their sum a+ b and product ab are also in Z .

) a+ b¡ 3ab is also in Z
) a ¤ b 2 Z
) the binary operation is closed.

Consider the following example of repeated use of the binary operation multiplication on Z :

3£ (2£ 5) = 3£ 10
= 30

and (3£ 2)£ 5 = 6£ 5
= 30

Notice that the order of grouping the terms makes no difference. This is true for multiplication

of all real numbers. We say that multiplication is associative on R .

More generally:

A binary operation ¤ on a set S is said to be associative if,

a ¤ (b ¤ c) = (a ¤ b) ¤ c for all a, b, c 2 S.

Example 40

Example 41

ASSOCIATIVE LAW

137SETS, RELATIONS AND GROUPS (Topic 9)

IBHL_OPT
cyan black

0 5 2
5

7
5

5
0

9
5

1
0
0

0 5 2
5

7
5

9
5

1
0
0

5
0



If a binary operation is associative on a set, the associativity will also apply to the operation

on any subset of that set. However, not all properties of an operation on a set are transferable

to a subset in this way.

For example,

8¡ (3¡ 5) 6= (8¡ 3)¡ 5 and 12¥ (6¥ 2) 6= (12¥ 6)¥ 2, so subtraction and division

are not associative operations on R .

Determine whether the binary operations on R defined below are associative.

a a ¤ b = 2a+ 3b b a ¤ b = a+ b+ ab

a (a ¤ b) ¤ c = (2a+ 3b) ¤ c
= 2(2a+ 3b) + 3c

= 4a+ 6b+ 3c

a ¤ (b ¤ c) = a ¤ (2b+ 3c)

= 2a+ 3(2b+ 3c)

= 2a+ 6b+ 9c

6= (a ¤ b) ¤ c
Therefore ¤ is not associative.

b (a ¤ b) ¤ c = (a+ b+ ab) ¤ c
= (a+ b+ ab) + c+ (a+ b+ ab)c

= a+ b+ ab+ c+ ac+ bc+ abc

a ¤ (b ¤ c) = a ¤ (b+ c+ bc)

= a+ (b+ c+ bc) + a(b+ c+ bc)

= a+ b+ c+ bc+ ab+ ac+ abc

= (a ¤ b) ¤ c Therefore ¤ is associative.

Although multiplication and addition of real numbers are binary operations, we usually write

such statements as 3 + 6 + 17 or 2 £ 5 £ 7 without any need for grouping the terms

into pairs.

This is true in general for associative functions, and if ¤ is associative then there is no

ambiguity if we write a ¤ b ¤ c rather than (a ¤ b) ¤ c or a ¤ (b ¤ c).
We will also follow the convention of writing a ¤ a ¤ a ¤ ::: ¤ a| {z }

n times

as an,

so be careful not to assume that this operation is normal multiplication of real numbers.

The familiar index laws still apply for associative functions.

For example, am ¤ an = a ¤ a ¤ a ¤ ::: ¤ a| {z }
m times

¤ a ¤ a ¤ a ¤ ::: ¤ a| {z }
n times| {z }

= am+n.

m+ n times

As (am)n is the repeated operation of am, n times, it can be shown that (am)n = amn .

A binary operation ¤ on a set S is said to be commutative if a ¤ b = b ¤ a for all a, b 2 S.

Example 42

COMMUTATIVE LAW
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If ¤ is both associative and commutative then we

can include the following rule as an index law:
(ab)n = anbn

If ¤ is both associative

and commutative on a

set S, show that

(ab)2 = a2b2:

(ab)2 = (a ¤ b) ¤ (a ¤ b)
= a ¤ (b ¤ a) ¤ b fAssociative lawg
= a ¤ (a ¤ b) ¤ b fCommutative lawg
= (a ¤ a) ¤ (b ¤ b) fAssociative lawg
= a2b2

Determine whether the following operations on R are commutative:

a a ¤ b = 2a+ b b a ¤ b = 3a+b

a 3 ¤ 2 = 2£ 3 + 2 = 8 and 2 ¤ 3 = 2£ 2 + 3 = 7 6= 3 ¤ 2

) the operation is not commutative.

b b ¤ a = 3b+a

= 3a+b faddition on R is a commutative operationg
= a ¤ b

) the operation is commutative.

, over as a c = ac a, , c .

¤ and ± are binary operations on R defined by a ¤ b = a+ 2b and a ± b = 2ab.

a Is ¤ distributive over ± ? b Is ± distributive over ¤ ?

a a ¤ (b ± c) = a ¤ (2bc)
= a+ 4bc

and (a ¤ b) ± (a ¤ c) = (a+ 2b) ± (a+ 2c)
= 2(a+ 2b)(a+ 2c)
= 2a2 + 4ac+ 4ab+ 8bc
6= a ¤ (b ± c)

Therefore ¤ is not distributive over ±.
b a ± (b ¤ c) = a ± (b+ 2c)

= 2a(b+ 2c)
= 2ab+ 4ac

and (a ± b) ¤ (a ± c) = (2ab) ¤ (2ac)
= 2ab+ 4ac
= a ± (b ¤ c)

Therefore ± is distributive over ¤.

Example 43

Example 44

DISTRIBUTIVE LAW

Example 45

Multiplication and addition are commutative operations on R , whereas subtraction and division

are not. As we found in Section 14G of the Core HL text, multiplication of square matrices

of the same order is an example a binary operation which is associative but not commutative.

In R multiplication is distributive addition (b+ ) ab+ for all b 2 R

Given two binary operations and on a set , is said to be over
if for all , , .

¤ ± ¤ ±
¤ ± ¤ ± ¤ 2

S
a b c a b a c a b c S

distributive

( ) = ( ) ( )
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For a binary operation ¤ on a set S, if there exists an element e 2 S such that

e ¤ x = x ¤ e = x for all x 2 S, then e is said to be the identity element for ¤ on S.

Using index notation, we can define x0 = e.

The identity element for addition on R is the number 0.

Subtraction on R does not have an identity element because, although a ¡ 0 = a for all

a 2 R , it is not generally the case that 0¡ a = a.

The identity for multiplication on R is 1, but there is no identity for division.

If a binary operation on S is commutative, then it is sufficient to check that just one of

e ¤ a = a or a ¤ e = a to establish that there is an identity element.

Theorem 2: An identity element for a binary operation on a set is unique.

Proof: (by contradiction)

Assume that a binary operation ¤ on a set S has more than one identity element.

Let e and f be two such identity elements where e 6= f .

) for all x 2 S, e ¤ x = x ¤ e = x ..... (1) and f ¤ x = x ¤ f = x ..... (2).

But as f 2 S, we can replace x by f in (1), so e ¤ f = f ¤ e = f .

Similarly as e 2 S, we can replace x by e in (2), so f ¤ e = e ¤ f = e.

) e = f , which contradicts the original assumption.

) if it exists, the identity element is unique.

Determine whether an identity element exists in R for each of the following

operations: a a ¤ b = 3ab b a ¤ b = 3a+ b

a Suppose b is an identity element for the binary operation ¤.
Then a ¤ b = a so 3ab = a

) 3ab¡ a = 0

) a(3b¡ 1) = 0

) a ¤ b = a is satisfied by b = 1
3 for all a 2 R .

We must now either show that ¤ is commutative or that b ¤ a = a
for all a 2 R and b = 1

3 .

Here we do the latter: b ¤ a = 1
3 ¤ a = 3(13)a = a

) an identity element exists and equals 1
3 .

b Suppose b is an identity element for the binary operation ¤.
Then a ¤ b = a

so 3a+ b = a

) b = ¡2a

An identity element does not exist since it would not be unique.

IDENTITY

Example 46
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The inverse for addition on R is ¡a since a+ (¡a) = (¡a) + a = 0 for all a 2 R .

No inverse exists for addition on Z +.

No inverse exists for multiplication on R as no there is no a 2 R such that a¤0 = 0¤a = 1.

However, for R = f0g, each element a 2 Z has a multiplicative inverse
1

a
.

Theorem 3: If an associative binary operation on a set has an inverse, it is unique

for each element.

Proof: (by contradiction)

Let ¤ be a binary operation on a set S with identity element e.

Suppose that an element a 2 S has more than one inverse, and let

two of these inverses be x and y where x 6= y.

Then x ¤ a = a ¤ x = e ..... (1) and y ¤ a = a ¤ y = e ..... (2)

Using (1), (x ¤ a) ¤ y = e ¤ y
) x ¤ (a ¤ y) = y fAssociative Lawg

) x ¤ e = y ffrom (2)g
) x = y

This contradicts the original assumption, so the inverse element must be unique.

The contra-positive of this theorem can be useful, i.e., if the inverse is not unique then

associativity does not hold. However, note that the uniqueness of an inverse does not ensure

that associativity holds.

Let ¤ be a binary operation defined on R by a ¤ b = a+ 2b:
Determine whether:

a ¤ is associative b ¤ is commutative c an identity exists in R .

a a ¤ (b ¤ c) = a ¤ (b+ 2c)

= a+ 2(b+ 2c)

= a+ 2b+ 4c

and (a ¤ b) ¤ c = (a+ 2b) ¤ c
= a+ 2b+ 2c

6= a ¤ (b ¤ c)
Therefore, ¤ is not associative.

b a ¤ b = a+ 2b, whereas b ¤ a = b+ 2a

6= a ¤ b Therefore ¤ is not commutative.

c Suppose b is an identity for ¤.
Then a ¤ b = a, so a+ 2b = a ) b = 0

But 0 ¤ a = 2a which 6= 0, ) there is no identity element.

INVERSE

Example 47

Given a binary operation ¤ on a set S with an identity element e 2 S, an inverse

x¡1 2 S exists for the set if and only if x¡1 ¤ x = x ¤ x¡1 = e for all x 2 S.element
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Let ¤ be a binary operation defined on R by a ¤ b = a2 + b2. Determine whether:

a ¤ is associative b ¤ is commutative c an identity exists in R .

a a ¤ (b ¤ c) = a ¤ (b2 + c2)

= a2 +
¡
b2 + c2

¢2
= a2 + b4 + 2b2c2 + c4

(a ¤ b) ¤ c = (a2 + b2) ¤ c
=
¡
a2 + b2

¢2
+ c2

= a4 + 2a2b2 + b4 + c2

6= a ¤ (b ¤ c)
Therefore ¤ is not associative.

b a ¤ b = a2 + b2

= b2 + a2

= b ¤ a Therefore ¤ is commutative.

c Suppose b is an identity for ¤.
Then a ¤ b = a, so a2 + b2 = a

) b2 = a¡ a2
) b = §pa¡ a2

i.e., the value of b depends on a

) there is no unique identity element.

a Explain why the set operations union and intersection are binary operations.

b For union of sets: i is there an identity element

ii does each set have an inverse?

c For intersection of sets: i is there an identity element

ii does each set have an inverse?

a Union and intersection are both binary operations as they have unique results.

b i Now if B µ A, A [B = B [A = A.

However, B = ? is the only set which is a subset of any set A.

) for the union of two sets, the identity element is the empty set ?.

ii Now for a set S, an inverse element x¡1 2 S exists for the set if and

only if x¡1 ¤ x = x ¤ x¡1 = e for all x 2 S.

But A [B = ? if and only if A and B are the empty set.

) each set does not have an inverse under union of sets.

c i Now if A µ B, then A \B = A.

However, B = U is the only set for which any A is a subset.

) the identity for set intersection is U , the universal set.

ii Now A \B = U only when A = B = U .

) each set does not have an inverse under set intersection.

Example 48

Example 49
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Let a binary operation on S = f0, 1, 2, 3g be defined by a ¤ b = a2 + ab.

a Construct the Cayley table for ¤. b Is the operation closed on S?

c Is the operation commutative?

a The Cayley table is: ¤ 0 1 2 3
0 0 0 0 0
1 1 2 3 4
2 4 6 8 10
3 9 12 15 18

b From the table, it is clear that f0, 1, 2, 3g is not closed.

For example, 3 ¤ 2 = 15 =2 S.

c The lack of symmetry about the leading diagonal indicates that ¤ is not

commutative. For example, 3 ¤ 2 = 15 and 2 ¤ 3 = 10 6= 3 ¤ 2

Cayley tables do not help determine whether an operation is associative. This can sometimes

be a tedious process.

CAYLEY TABLES

Example 50

EXERCISE 9D

It can be useful to set out all the possible results of a binary

operation on a finite set in an operation table often referred to

as a Cayley table, named after Arthur Cayley (1821 - 1895).

For a binary operation ¤ on a finite set

S, the Cayley table is a square array.

Each element of S appears once to the

left of a row and once heading a col-

umn. The result a ¤ b is entered at the

intersection of the row corresponding to

a and the column corresponding to b.

* b

a a * b

1 Define two binary operations in Q by a ¤ b = a¡ b+ 1 and a} b = ab¡ a.

a Find:

i 3 ¤ 4 ii 4 ¤ 3 iii (¡2)} 3 iv 6} 0

v 0} 7 vi 4 ¤ ((¡5)} 2) vii (4 ¤ (¡5))} 2

b Solve for x:

i 4 ¤ x = 7 ii x} 3 = ¡2

2 Determine whether closure applies to each of the following sets under multiplication:

a fa+ bi j a, b 2 Q , b 6= 0g
b fa+ bi j a, b 2 Q , a 6= 0g
c fa+ bi j a, b 2 Q , a and b not both equal to zerog
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3 State whether each of the following sets is closed under the operation given:

a The set of even positive integers f2, 4, 6, ......g under addition

b The set of even positive integers f2, 4, 6, ......g under multiplication

c The set of odd positive integers f1, 3, 5, ......g under addition

d The set of odd positive integers f1, 3, 5, ......g under multiplication

e Q , the set of rational numbers, under addition

f Q , the set of rational numbers, under multiplication.

4 Construct a Cayley table for multiplication modulo 5 on f1, 2, 3, 4g.
Use the table to solve the following for x:

a 2x = 1 b 4x = 3 c 3x = 4 d 4x+ 3 = 4

5

a Show that Q n f1g is closed under }.

b Prove that } is associative in Q n f1g.
c Find an identity element or show that one does not exist.

d Does each element have an inverse?

6 Where one exists, state the identity element for each of the following:

a R under addition b Z under multiplication

c R under ¤ where a ¤ b = a d R under ¤ where a ¤ b = 3ab

e R under ¤ where a ¤ b = 2a+ ab+ 2b

7

a Q under addition b Q under multiplication

c Z + under multiplication d R under ¤ where a ¤ b = 2ab

8 A binary operation ¤ is defined on the set R2 by (a, b) ¤ (c, d) = (ac¡ bd, ad+ bc).

a Is ¤ associative? b Is there an identity element in S? If so, state it.

c Does each element have an inverse?

d Is ¤ commutative?

9 Each of the following Cayley tables describes a different closed binary operation in

S = fa, b, cg. For each:

i find an identity element if it exists

ii find an inverse for each element if one exists

iii state whether the operation is commutative

iv state whether the operation is associative.

a ¤ a b c
a a b c
b b c a
c c a b

b ¤ a b c
a a a a
b a b c
c a c b

c ¤ a b c
a a c b
b c b a
c b a c

d ¤ a b c
a c a b
b a b c
c b c c

e ¤ a b c
a b c a
b a b c
c c a b

Let } be a binary operation in Q n f1g such that a} b = a¡ ab+ b.

For each of the following, determine whether each element has an inverse in the stated
set. Whenever it can be found, state the inverse.
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A set with one or more operations defined on it is called an algebraic structure.

Within the set of algebraic structures there is an hierarchy of types.

For example:

An algebraic structure with one operation defined is referred to as a groupoid.

If the associative law is obeyed, the groupoid qualifies as a semigroup.

A semigroup with an identity element is known as a monoid.

In some of these monoids, each element will have an inverse and this leads us to groups.

A non-empty set G on which a binary operation ¤ is defined is said to be a group, written

fG, ¤g, if each of the following four axioms hold:

² G is closed under ¤
i.e., for all a, b 2 G, a ¤ b 2 G

² ¤ is associative on G

i.e., for all a, b, c 2 G, (a ¤ b) ¤ c = a ¤ (b ¤ c)
² ¤ has an identity element in G

i.e., there exists a unique e 2 G such that a ¤ e = e ¤ a = a for all a 2 G
² Each element of G has an inverse under ¤

i.e., for each a 2 G, there exists an a¡1 2 G such that a¡1 ¤ a = a ¤ a¡1 = e

A group fG, ¤g will sometimes be referred to just as G.

The group axioms lead to the following cancellation laws. As commutativity is not a group

axiom, it is necessary to consider both left and right cancellation laws.

Theorem 4: Given a group fG, ¤g, the following apply for all a, b, c 2 G:

Left cancellation law If a ¤ b = a ¤ c then b = c.

Right cancellation law If b ¤ a = c ¤ a then b = c.

Proof: (of right cancellation law)

b ¤ a = c ¤ a
) (b ¤ a) ¤ a¡1 = (c ¤ a) ¤ a¡1 fwhere a¡1 2 G is the inverse of ag
) b ¤ ¡a ¤ a¡1¢ = c ¤ ¡a ¤ a¡1¢ fAssociative Lawg

) b ¤ e = c ¤ e fwhere e 2 G is the identityg
) b = c

A similar proof establishes the left cancellation law.

GROUPSE
INTRODUCTION

CANCELLATION LAWS
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While commutativity is not one of the group axioms, a special set of groups, called Abelian

groups, has this property. It is named after the Norwegian mathematician Niels Henrik Abel

(1802-1829).

A group fG, ¤g is Abelian if a ¤ b = b ¤ a for all a, b 2 G.

Cayley tables for groups have the property of being latin squares, as described in the following

theorem:

Theorem 5: If fG, ¤g is a group then each element of G will appear exactly once

in every row and every column of its Cayley Table.

Proof:

Let a, p 2 G.

As fG, ¤g is a group, a¡1 2 G where a¡1 is the inverse of a

) a¡1 ¤ p 2 G and p ¤ a¡1 2 G for all a, p. fClosureg
Now a ¤ (a¡1 ¤ p) = (a ¤ a¡1) ¤ p fAssociativeg

= e ¤ p fe is the identity elementg
= p

Therefore for any p and a it is always possible to find

an element x = a¡1 ¤ p of G such that a ¤ x = p.

Hence p must be on the row corresponding to a. This

means that every element must appear on every row.

Similarly, we can show that an element y = p ¤ a¡1
of G can be found such that y ¤ a = p, so p will

appear in every column.

Now we need to show that the elements appear only once in each row and column.

Now for finite groups, we could note that there are only n spaces to fill in each row

and column, so if each element must appear at least once, then it can appear only once.

However more generally, suppose that x1 and and x2 are such that a ¤ x1 = p
and a ¤ x2 = p. Then a ¤ x1 = a ¤ x2, and so x1 = x2. fleft cancellation lawg
We can argue similarly for each column.

Hence p must appear exactly once in every row and column.

ABELIAN GROUPS

CAYLEY TABLES FOR GROUPS

ORDER

pa *1�

pa

*

The , is the number of elements in , i.e, or .

The of a group , is the smallest positive integer for which
, where is the identity element of the group.

An has infinite order.

A has finite order. Every element of a finite group has finite order.

In any group, the order of the identity element is .

order of a group

order of an element

infinite group

finite group

f ¤g j j
f ¤g

G G n G G

a G m
a e e

( )

=

1

m

146 SETS, RELATIONS AND GROUPS (Topic 9)

IBHL_OPT
cyan black

0 5 2
5

7
5

5
0

9
5

1
0
0

0 5 2
5

7
5

9
5

1
0
0

5
0

Y:\HAESE\IBHL_OPT\IBHLOPT_09\146IBO09.CDR Monday, 15 August 2005 12:42:47 PM PETERDELL



In general, we may assume the closure of the set of real numbers R and the set of integers Z
under the operations +, ¡ and £. R n f0g is closed under ¥.

This leads to a more general result:

Prove that if n is not prime, Zn n f0g does not form a group under £n.

Proof: If n is composite then n = pq where p, q 2 Z + and 1 < p, q < n

Thus p, q 2 Z nand p£n q = nmodn = 0

But 0 =2 Z n n f0g
) Z n n f0g is not closed under £n
) Z n n f0g does not form a group under £n

Show that the set of bijections under composition of functions forms a group.

Closure: If f : A 7! B and g : B 7! C, then g ± f : A 7! C.

The composition of two bijections is a bijection, therefore closure

applies.

Associative: The composition of functions is associative.

Proof: (h ± g) ± f = (h ± g)(f(x))

= h(g(f(x))

= h((g ± f)(x))

= h ± (g ± f)

Hence the composition of bijections is also associative.

Identity: The function e : x 7! x is a bijection.

For all functions f , e ± f = f ± e = f ) there is an

identity in the set of bijections under composition of functions.

The Cayley table for Z4 n f0g under £4 is: £4 1 2 3
1 1 2 3
2 2 0 2
3 3 2 1

Z4 n f0g is not closed under £4 as 2£4 2 = 0 and 0 =2 Z4 n f0g.
It therefore does not form a group.

Show that , i.e., , , does not form a group under multiplication
modulo , sometimes written .

Z�4
4

n f g f g
£

0 1 2 3
4

Example 51

Example 52

Example 53
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Inverse: Every bijection f has an inverse f¡1 such that

f ± f¡1 = f¡1 ± f = e.

Therefore the set of bijections forms a group under the operation composition of

functions. Note that in general f ± g 6= g ± f , so the group is not Abelian.

Show that the set R with the binary operation + is an Abelian group.

Closure: When two real numbers are added, the result is always a real

number. Therefore R is closed under addition.

Associative: For all a, b, c 2 R , a+ (b+ c) = (a+ b) + c.
Therefore + is an associative operation on R .

Identity: There exists an element 0 2 R such that for all a 2 R ,

a+ 0 = 0 + a = a.

Therefore there is an identity element in R for +.

Inverse: If a 2 R , then ¡a 2 R and a+ (¡a) = (¡a) + a = 0.

Therefore each element of R has an inverse in R .

Therefore, fR , +g is a group, and is an example of an infinite group.

Because addition is a commutative operation in R , i.e., a+ b = b+ a for all a,

b 2 R , fR , +g is an Abelian group.

If a binary operation on a set S is associative or commutative, it can always be assumed that

these properties will be true for the same operation on any subset of S.

a Show that Z 4, i.e., f0, 1, 2, 3g under the operation of + modulo 4
(sometimes written +4) is a group.

b Is the group Abelian?

c State the order of each element of the group.

a A Cayley table will help to determine closure

and the existence of an identity and inverses.

+4 0 1 2 3
0 0 1 2 3
1 1 2 3 0
2 2 3 0 1
3 3 0 1 2

Closure: It can be seen from the table that for all a, b 2 Z 4, a+ b 2 Z 4.
Therefore, Z 4 is closed under + modulo 4.

Associative: Associativity follows from the associative property of Z under +.

Identity: From the table it can be seen that for all a 2 Z 4,

0 + a = a+ 0 = a.

Therefore since 0 2 Z 4, there is an identity element in Z 4 for +.

Example 54

Example 55
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Inverse: The identity appears once in every row and every column, so

each element of Z 4 has an inverse. Each of 0 and 2 is its own

inverse, while 1 and 3 are inverses of each other.

Therefore fZ 4, +g is a group.

b It can be seen from the symmetry of the table that a+ b = b+ a
for all a, b 2 Z 4. Therefore, fZ 4, +g is an Abelian group.

c 0 is the identity and has order 1.

1 has order 4. (1 + 1 + 1 + 1 = 0)

2 has order 2. (2 + 2 = 0)

3 has order 4. (3 + 3 + 3 + 3 = 0)

Determine, giving reasons, which of the following are groups:

1 a Q n f0g under multiplication.

b The set of odd integers under multiplication.

c f3n j n 2 Z g under multiplication.

d
n

1, ¡ 1
2 + i

p
3
2 , ¡ 1

2 ¡ i
p
3
2

o
under multiplication.

e f3n j n 2 Z g under addition.

f f3n j n 2 Z g under multiplication.

g C under addition.

h C under multiplication.

i fa+ bi j a, b 2 R , ja+ bij = 1g under multiplication.

j 2£ 2 matrices under matrix multiplication.

2 Show that ® = 1
2 +i

p
3
2 generates a group under multiplication. Construct the Cayley

table.

Definition: Two groups fG, ¤g and fH, ±g are isomorphic if:

² there is a bijection f : G 7! H

and ² f(a ¤ b) = f(a) ± f(b) for all a, b 2 G

We can sometimes use Cayley tables to help establish isomorphism. It requires that for every

p and q in G, then if f(p) = p0 2 H and f(q) = q0 2 H then the element in the p0

row and q0 column of the Cayley table of fH , 0g is f(p ¤ q) = (p ¤ q)0
i.e., p0 ± q0 = (p ¤ q)0

EXERCISE 9E.1

ISOMORPHISM

* ¢ ¢ ¢ q ¢ ¢ ¢
...

...

p ¢ ¢ ¢ p ¤ q ¢ ¢ ¢
...

...

± ¢ ¢ ¢ q0 ¢ ¢ ¢
...

...

p0 ¢ ¢ ¢ p0 ± q0 ¢ ¢ ¢
...

f(q) = q0

f(p) = p0

...f (p ¤ q) = (p ¤ q)0 = p0 ± q0
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For example:

The Cayley table for the set Z 5 n f0g,
i.e., f1, 2, 3, 4g under multiplication

modulo 5, i.e., £5, is shown as:

£5 1 2 3 4
1 1 2 3 4
2 2 4 1 3
3 3 1 4 2
4 4 3 2 1

A rearrangement of the Cayley

table for Z 5 n f0g yields:

£5 1 2 4 3
1 1 2 4 3
2 2 4 3 1
4 4 3 1 2
3 3 1 2 4

Now suppose we replace £5 by +4 and each

occurrence of 1 by 0, 2 by 1 and 4 by 2:

+4 0 1 2 3
0 0 1 2 3
1 1 2 3 0
2 2 3 0 1
3 3 0 1 2

It can be seen by comparison that this is the true Cayley table for fZ 4, +g,
i.e., the two groups have the same structure.

Matching Cayley tables is feasible only when the order of the group is small.

a Show that the set Z 5 n f0g, i.e., f1, 2, 3, 4g
under multiplication modulo 5, i.e., £5 is a group.

£5 1 2 3 4
1 1 2 3 4
2 2 4 1 3
3 3 1 4 2
4 4 3 2 1

b Is this group Abelian?

c Hence show that fZ 4, +4g and fZ 5 n f0g, £5g
are isomorphic.

a Closure: From the table a£5 b 2 Z 5 n f0g for all a, b 2 Z 5 n f0g.
Associative: This follows from the associativity of multiplication of integers.

Identity: The element 1 2 Z 5 n f0g is such that a£5 1 = 1£5 a = a.

Therefore 1 is the multiplicative identity element for Z 5 n f0g.
Inverse: 1£5 1 = 1 and 4£5 4 = 1, so each of 1 and 4 is its own inverse.

3£5 2 = 2£5 3 = 1. Therefore 2 and 3 are inverses of each other.

Thus for each element a 2 Z 5 n f0g there is an inverse

a¡1 2 Z 5 n f0g.
Therefore fZ 5 n f0g, £g forms a group.

b The symmetry of the table about the leading diagonal indicates that

a£ b = b£ a for all a, b 2 Z 5. Therefore the group is Abelian.

c The Cayley table for fZ 5=f0g, £5g is shown above.

We create a Cayley table for fZ 4, +4g. +4 0 1 2 3
0 0 1 2 3
1 1 2 3 0
2 2 3 0 1
3 3 0 1 2

Example 56

From the working previous to this
we know that on rearranging

the Cayley table for Z , the
two groups have the same structure.

Example

f f g £ g5 5= 0
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) there is a bijection f : Z 4 7! Z 5 n f0g where: f : 0 7! 1, 1 7! 2, 2 7! 4

and 3 7! 3 and the similarity of the Cayley tables shows that for all a, b 2 Z,

f(a+4 b) = f(a)£5 f(b).

Therefore, fZ 4, +4g and fZ 5 n f0g , £5g are isomorphic.

Prove that the group of integers Z under addition is isomorphic to the group of

even integers, 2Z , under addition.

Proof: Let f : Z ! 2Z be defined by f(x) = 2x

First, establish that f is a bijection.

Suppose f(a) = f(b), where a, b 2 Z
Then 2a = 2b ) a = b ) f is an injection .... (1).

Suppose q 2 2Z , then q = 2a for some a 2 Z
i.e., f(a) = q ) f is a surjection .... (2)

(1) and (2) ) f is a bijection

Now show that f(a+ b) = f(a) + f(b) for all a, b 2 Z
f(a+ b) = 2(a+ b) = 2a+ 2b = f(a) + f(b)

Therefore the two groups are isomorphic.

Determining isomorphism is not always easy, and it is therefore useful to know some properties

of isomorphism.

If any one of these does not apply in a particular instance then isomorphism can be ruled out.

Property 1: If fG, ¤g and fH, ±g are isomorphic then the identity of fG, ¤g is mapped

to the identity of fH , ±g.
Proof: Let e be the identity element of fG, ¤g and let f : G! H be

the bijection.

For all a, b 2 G, f(a ¤ b) = f(a) ± f(b)

Now e 2 G and a ¤ e = e ¤ a = a

) f(a ¤ e) = f(a) ± f(e) = f(a)

and f(e ¤ a) = f(e) ± f(a) = f(a)

) f(a) = f(a) ± f(e) = f(e) ± f(a)

) f(e) is the identity element of fH, ±g.
Property 2: If fG, ¤g and fH, ±g are isomorphic then the inverse of an element of

fG, ¤g is mapped to the inverse of the corresponding element in fH , ±g,
i.e., [f(a)]

¡1
= f(a¡1) for all a 2 G.

Example 57

PROPERTIES
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Proof: For all a, b 2 G, f(a ¤ b) = f(a) ± f(b)

Now a¡1 2 G and a ¤ a¡1 = a¡1 ¤ a = e, the identity of G

) f(a ¤ a¡1) = f(a) ± f(a¡1) = f(e)

and f(a¡1 ¤ a) = f(a¡1) ± f(a) = f(e)

) f(e) = f(a) ± f(a¡1) = f(a¡1) ± f(a)

) since f(e) is the identity of fH, ±g,
f(a¡1) is the inverse of f(a)

Property 3: If fG, ¤g and fH, ±g are isomorphic then for all a 2 G, a and f(a)

will have the same order.

Property 4: If fG, ¤g and fH, ±g are isomorphic, fG, ¤g is Abelian if and only

if fH, ±g is Abelian.

Two further properties will be developed later.

1

2 Show that the group f1, ¡1
2 + i

p
3
2 , ¡1

2 ¡ i
p
3
2 g under multiplication is isomorphic

to the group f1, 2, 4g, where 1, 2, 4 are residue classes mod 7 under multiplication.

3 Show that the group f0, 1, 2, 3, 4g under addition modulo 5 is isomorphic to the group

of the five fifth roots of unity under multiplication.

4 Prove that the group

½·
1 0
0 1

¸
,

·
0 1
1 0

¸
,

·
0 ¡1
¡1 0

¸
,

· ¡1 0
0 ¡1

¸¾
under matrix multiplication is isomorphic to the group f1, 3, 5, 7g under multiplication

modulo 8.

5 Prove that the multiplicative group of positive real numbers is isomorphic to the additive

group of real numbers. [Hint: Use f(x) = lnx.]

Consider the group fZ 7 n f0g, £7g where £7 is

multiplication modulo 7.

The Cayley table is shown alongside:

£7 1 2 3 4 5 6
1 1 2 3 4 5 6
2 2 4 6 1 3 5
3 3 6 2 5 1 4
4 4 1 5 2 6 3
5 5 3 1 6 4 2
6 6 5 4 3 2 1

Clearly, the identity element is 1.

We determine the order of the other elements of the

group:

21 = 2, 22 = 4, 23 = 1 so the element 2 has order 3

31 = 3, 32 = 2, 33 = 6, 34 = 4, 35 = 5, 36 = 1 so the element 3 has order 6

EXERCISE 9E.2

CYCLIC GROUPS

INTRODUCTION

6 Prove Property 3 above.
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41 = 4, 42 = 2, 43 = 1 so the element 4 has order 3

51 = 5, 52 = 4, 53 = 6, 54 = 2, 55 = 3, 56 = 1 so the element 5 has order 6

61 = 6 so the element 6 has order 2

Observe that the order of each element of the group is a factor of the order of the group. This

will be proved later for all finite groups.

Note also that the order of the elements 3 and 5 is 6, the same as the order of the group. Every

element of fZ 7 nf0g, £7g can be written as powers of 3 or 5. The group is therefore said

to be cyclic and 3 and 5 are called generators of the group.

, are not

Theorem 6: All cyclic groups are Abelian.

Proof: Let fG, ¤g be a cyclic group and let a 2 G be a generator of the group.

Let x, y 2 G.

As the group is cyclic, there exists p, q 2 Z such that x = ap and y = aq

(Remember that am = a ¤ a ¤ a ¤ ::: ¤ a ¤ a (written m times) and that
the associative property allows us to do this without ambiguity.)

) x ¤ y = ap ¤ aq
= ap+q

= aq+p faddition of integers is commutativeg
= aq ¤ ap
= y ¤ x Therefore all cyclic groups are Abelian.

A fifth property of isomorphism can now be added:

Property 5: If fG, ¤g and fH , ±g are isomorphic, fG, ¤g is cyclic if and only if fH, ±g
is cyclic.

Theorem 7: For all n 2 Z +, there is a cyclic group of order n.

Proof: The only group of order 1 must contain the identity e, and ffeg , ¤g is cyclic.

Let G = fa, a2, a3, ...... ang where n is the smallest positive integer for

which an = e.

THEOREMS

The cyclic nature of fZ 7nf0g, £ g7 can be seen

in a rearrangement of the Cayley table. We let

a = 3 and replace 2 by a2, 6 by a3, 4 by a4,
and 5 by a5.

For all n 2 Z +, fZ n, +g is a cyclic group.

1 3 2 6 4 5

1 a a2 a3 a4 a5

1 1 1 a a2 a3 a4 a5

3 a a a2 a3 a4 a5 1

2 a2 a2 a3 a4 a5 1 a

6 a3 a3 a4 a5 1 a a2

4 a4 a4 a5 1 a a2 a3

5 a5 a5 1 a a2 a3 a4

153SETS, RELATIONS AND GROUPS (Topic 9)
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For example, when n = 1, G = fag = feg; when n = 2, G = fa, a2g = fa, eg.
Closure: Let ap, aq 2 G where p, q 2 Z + and 1 6 p, q 6 n

Then ap ¤ aq = ap+q

Now either 2 6 p+ q 6 n in which case ap+q 2 G
or p+ q = n+ r where 1 6 r 6 n

) ap+q = an+r = an ¤ ar = e ¤ ar = ar

) as 1 6 r 6 n, ar 2 G, and so ap+q 2 G
Hence G is closed under ¤.

Associative: For all x, y, z 2 G, x ¤ (y ¤ z) = ap ¤ (aq ¤ ar)
= ap ¤ aq+r
= ap+q+r

= ap+q ¤ ar
= (ap ¤ aq) ¤ ar
= (x ¤ y) ¤ z

) ¤ is an associative operation on G.

Identity: an = e is the identity.

Inverse: Now ap ¤ aq = aq ¤ ap = ap+q

) ap+q = an = e when p+ q = n

i.e., when q = n¡ p
As 1 6 p 6 n; 0 6 n¡ p 6 n¡ 1 i.e., 0 6 q 6 n¡ 1

If q = 0, ap = e, which is its own inverse.

Otherwise, 1 6 q 6 n¡ 1 gives aq 2 G such that

ap ¤ aq = aq ¤ ap = ap+q = an = e

Hence each element has an inverse.

Therefore fG, ¤g is a group.

Theorem 8: For any n 2 Z +, all cyclic groups of order n are isomorphic to each other.

Proof: Let fG, ¤g and fH, ±g be cyclic groups of order m where

G = fa0, a, a2, ....., am¡1g and H = fx0, x, x2, ......, xm¡1g
There is a bijection f : G 7! H where f(ai) = xi for all 0 6 i 6 m¡ 1.

Let 0 6 p, q 6 m¡1, then f(ap ¤ aq) = f(ap+q) where 0 6 p+ q 6 2m¡ 2

) p+ q = r or p+ q = m+ r where 0 6 r 6 m¡ 1

) ap+q = ar or ap+q = am+r = am ¤ ar = a0 ¤ ar = ar

) ap+q = ar for all 0 6 p, q 6 m¡ 1

Similarly, xp+q = xr for all 0 6 p, q 6 m¡ 1

Now f(ap) = xp, f(aq) = xq and f(ar) = xr

) f(ap ¤ aq) = f(ap+q) = f(ar) = xr = xp+q = xp ± xq = f(ap) ± f(aq)

Hence fG, ¤g and fH, ±g are isomorphic.
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Cyclic groups can be infinite. An infinite group fG, ¤g is cyclic if there is an element g 2 G
such that for all x 2 G, x = gn where n 2 Z .

An example is f2Z , +g, the group consisting of the even integers under addition.

Now 0 = n£ 2 where n = 0.

For all positive elements 2n 2 2Z , n > 0: 2n = 2 + 2 + :::+ 2| {z } = n£ 2

n times

For all negative elements 2n 2 2Z , n < 0: 2n = (¡2) + (¡2) + :::+ (¡2)| {z }
¡n times (remembering n < 0)

= (¡n)£ (¡2)

= n£ 2

Hence every element can be written as n£ 2 where n 2 Z , and so 2 is the generator of this

group.

Using the familiar multiplicative notation for repetitions of an operation, a cyclic group of

infinite order will be of the form
©f....., g¡2, g¡1, e, g, g2, ......g, ¤ª.

1 Consider the group fG, £ng where G is the set containing the n ¡ 1 residue classes

modulo n excluding 0. Which members are generators of fG, £ng when:

a n = 3 b n = 5 c n = 7 d n = 11?

2 Show that

"
¡1
2 +

p
3
2 i 0

0 ¡1

#
is the generator of a cyclic group under matrix

multiplication.

fH, ¤g is a subgroup of fG, ¤g if: (1) H µ G
and (2) H forms a group under the operation ¤.

As G µ G, fG, ¤g is a subgroup of itself.

feg µ G and ffeg , ¤g is a group, so ffeg , ¤g is a subgroup of every group with the

same operation.

All groups with more than one element have at least two subgroups (ffeg , ¤g and themselves).
Any subgroups of a group apart from these two are called proper subgroups.

Theorem 9: Given a non-empty subset H of G, fH, ¤g is a subgroup of the group

fG, ¤g if a ¤ b¡1 2 H for all a, b 2 H.

INFINITE CYCLIC GROUPS

EXERCISE 9E.3

SUBGROUPS

INTRODUCTION

THEOREMS
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Proof: Now we know that for all b 2 H, there must exist a b¡1 2 G which is the

inverse of b, and that b ¤ b¡1 = e, the identity of G. If these things were not

true, then G would not be a group. We will show that in fact e 2 H and

b¡1 2 H in order for a ¤ b¡1 2 H to be true.

However, we need to prove the requirements for H to be a group are satisfied

in a different order from usual.

Identity: For all a, b 2 H , a ¤ b¡1 2 H .

Now b 2 H, so replacing a by b gives: b ¤ b¡1 2 H
) e 2 H
Hence there is an identity element in H.

Inverse: For all a, b 2 H , a ¤ b¡1 2 H .

Now e 2 H, so replacing a by e gives: e ¤ b¡1 2 H
) b¡1 2 H for all b 2 H
Hence each element has an inverse.

Closure: For all a, b 2 H , a ¤ b¡1 2 H .

Now if we let c = b¡1, then we know c 2 H and c¡1 = b

) since a ¤ c¡1 2 H for all c 2 H,

a ¤ b 2 H for all b 2 H ) H is closed under ¤.
Associative: The associativity of ¤ applies to all elements of G and it therefore

must apply to all elements of H, a subset of G.

Therefore, if H is a non-empty subset of G, to show that fH, ¤g is a subgroup

of fG, ¤g it is sufficient to show that a ¤ b¡1 2 H for all a, b 2 H.

Theorem 10: If fG, ¤g is a finite group and H is a non-empty subset of G, then fH, ¤g
is a subgroup of fG; ¤g if a ¤ b 2 H for all a, b 2 H.

Proof: Associative: The associativity of ¤ applies to all elements of G and it therefore

must apply to all elements of H , a subset of G.

Closure: The property a ¤ b 2 H for all a, b 2 H means fG, ¤g is

closed fby definitiong.
Identity: As fG, ¤g is a finite group, the order of any x 2 H is finite, m say,

where m 2 Z +.

) xm = e, but xm 2 H by closure, so e 2 H.

) the identity element is in H.

Inverse: Firstly, we note that e is its own inverse.

For all other x 2 H, xm = e where m 2 Z +, m > 2.

Now xm = x(m¡1)+1 = x1+(m¡1) where m¡ 1 2 Z +
) e = xm¡1 ¤ x = x ¤ xm¡1

i.e., x ¤ xm¡1 = xm¡1 ¤ x = e

) xm¡1 is the inverse of x.

Since we can do this for all x 2 H other than e, but we already know

that e has its own inverse, every element x 2 H has an inverse.

Therefore fH , ¤g is a group and since H µ G, fH, ¤g is a subgroup of fG, ¤g.
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A sixth property of isomorphism is

Property 6: If fG, ¤g and fH, ±g are isomorphic then any subgroup of fG, ¤g will be

isomorphic to some subgroup of fH, ±g.

Corollary For a finite group fG, ¤g of order n, if there is an element g 2 G with

order m where 2 6 m 6 n then the set H = fe, g, g2, ....., gm¡1g
forms a cyclic subgroup of fG, ¤g.

Proof: If p and q are integers such that 0 6 p, q 6 m¡ 1, then 0 6 p+ q 6 2m¡ 2.

) gp ¤ gq = gp+q

= gam+r where a = 0 or 1 and 0 6 r 6 m¡ 1

= gam ¤ gr
= (gm)a ¤ gr
= e ¤ gr
= gr which 2 H since 0 6 r 6 m¡ 1

Hence H is closed and hence forms a subgroup of fG, ¤g.
Since g is a cyclic generator for the group, H is a cyclic subgroup.

(Joseph Louis Lagrange, 1736-1813)

Theorem 11: (Lagrange) The order of a subgroup of a finite group fG, ¤g is a factor

of the order of fG, ¤g.

An important corollary of Lagrange’s theorem is the following:

Corollary The order of a finite group is divisible by the order of any element.

Proof: Let fG, ¤g be a finite group of order n.

If an element x 2 G has order n or 1, then the theorem is proved as njn and 1jn.

If x 2 G has order m where 2 6 m 6 n¡ 1, then from Theorem 10 corollary,

fx0, x, x2, x3, ...... xm¡1g is a subgroup of fG, ¤g. The order of this subgroup

is m.

By Lagrange’s theorem, the order of any subgroup of fG, ¤g must divide the

order of fG, ¤g, i.e., mjn.

Therefore the order of a finite group is divisible by the order of any element.

We can therefore conclude that if fG, ¤g is a finite group of order p where p is prime, then

it must be a cyclic group of order p and the order of each element can only be 1 or p. Only

the identity has order 1, so any other element must have order p.

Therefore, if a 2 fG, ¤g, then a, a2, a3, ......, ap 2 G where ap = e.

As there can only be p elements, a is a generator of the group and G =
©
a, a2, a3, ..., ap

ª
.

All groups of order 1 will be isomorphic to ffeg, ¤g.

THEOREM OF LAGRANGE

The proof of this theorem involves consideration of cosets and lies outside the scope of this
book.
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All groups of order 2 will have a Cayley table with the following pattern: ¤ e a
e e a
a a e

Note that a ¤ a = e and the group is cyclic.

We now use a Cayley table to construct a group of order 3. We know

that there will be three elements, one of which is the identity, e, so we

start with:

¤ e a b
e e a b
a a
b b

We know that each element must appear exactly once in every row and

every column. The entry in the shaded square can only be b or e, but if

we use e then b must be the entry in the square alongside, and the third

column would have two bs in it. The shaded square must therefore be b.

¤ e a b
e e a b
a a b
b b

No choice is left but to complete the second row and second column with

e and the final position with a: There can thus be only one pattern for a

group of order 3.

¤ e a b
e e a b
a a b e
b b e a

Notice that a2 = b, so the elements of the group are e, a, a2 and the group is clearly cyclic.

Notice also that b2 = a, so b is also a generator of the group. In a cyclic group of prime

order, each element apart from e must have order p, so each is a generator of the group.

1 a

b Is the group cyclic?

c List all the subgroups of the group.

2 a Prove that the set M =

½·
a b
c d

¸¯̄̄̄
a, b, c, d 2 C , ad¡ bc 6= 0

¾
with the

operation matrix multiplication is a group.

b Show that the following sets of matrices are subgroups of the group in a:

i

½·
a c
b d

¸
j a, b, c, d 2 R , ad¡ bc 6= 0

¾

ii

½·
a c
0 d

¸
j a, b, c 2 C , ad 6= 0

¾
3 Let S = f(x, y) j x, y 2 Z g Define the operation ¤ to be the composition of points

where (a, b) ¤ (c, d) = (a+ c, (¡1)cb+ d)

a Prove that S is a group with respect to the operation ¤.
b Is the group fS, ¤g Abelian?

c

i H1 = f(a, 0) j a 2 Z g ii H2 = f(0, b) j b 2 Z g

EXERCISE 9E.4

Show that the set , , , forms an Abelian group under the opera-
tion multiplication .

f g1 5 7 11 mod 12
mod 12

Do the following sets with the operation form subgroups of ?¤ G
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4 Let fG, ¤g be a group. Show that H = fx j x 2 G and x ¤ a = a ¤ xg is a subgroup

of G.

5 Let fG, ¤g be a group and let fH1, ¤g and fH2, ¤g be subgroups of fG, ¤g.
Prove that fH1 \H2, ¤g is a subgroup of fG, ¤g.

One of the groups of order 4 is the cyclic group whose Cayley

table is shown alongside.

¤ e a b c
e e a b c
a a b c e
b b c e a
c c e a b

Note that a2 = b ) a ¤ b = a ¤ a2 = a3 = c

and c2 = b ) c ¤ b = c ¤ c2 = c3 = a.

Hence a and c are generators of the group.

However, b2 = e, so b is of order 2 and is not a generator.

Care needs to be taken when using Cayley tables. Consider the

following variation of the above table:

¤ e a b c
e e a b c
a a e c b
b b c a e
c c b e a

Although different in appearance, this group is isomorphic to the

previous one. In this case b and c are the generators and the

bijection f : e 7! e, a 7! b, b 7! a, c 7! c maps one

table onto the other.

However, the group shown in this Cayley table is not isomor-

phic to the previous two:

¤ e a b c
e e a b c
a a e c b
b b c e a
c c b a e

Although it is Abelian like the previous two groups, notice that

a, b and c each have order 2, so this group is not cyclic. A group

with this structure is called the Klein four-group. All groups of

order four will be isomorphic to this one or to the cyclic group

of order 4.

As shown previously, if n is prime there is only one group to which all groups of order n are

isomorphic.

The number of types of isomorphic groups varies for values of n greater than 1 and not prime.

The table below shows the number of partitions (p) of the set of groups of order n.

n 4 6 8 9 10 12 14 15 16 18 20 21 22 24

p 2 2 5 2 2 5 2 1 14 5 5 2 2 15

In the above examples, it is important to check for associativity and this is left as an exercise.

Associativity is not always obvious from the Cayley table. Only one counter-example is

needed to show that an operation is not associative, but all possibilities need to be checked if

associativity is to be established.

FURTHER GROUPSF
GROUPS OF ORDER 4

GROUPS OF ORDER n
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Notice in this example that each element has a unique inverse. So, while associativity implies

that each inverse is unique, the converse does not apply.

If the Cayley table indicates the inverse is not unique, we can conclude that the operation is

not associative.

A permutation is a bijection from a non-empty set to itself.

For example, consider the mapping from S to S
where S = f1, 2, 3, 4g as shown in the

diagram:

The ordered pairs of the bijection are (1, 2), (2, 3), (3, 4), (4, 1) but the permutation is

commonly written in the following way:

pa =

µ
1 2 3 4
2 3 4 1

¶
The entries in the second row are the values to which the entries in the first row are mapped.

If S = f1, 2, 3, 4g, the number of possible such bijections will be 4! = 24. In one of these

24 possibilities, each element will be mapped to itself, giving the identity permutation on S:

e =

µ
1 2 3 4
1 2 3 4

¶

The following Cayley table is for the operation ¤ on the set S = fe, a, b, c, d, xg.
Show that:

a S is closed under ¤
b there is an identity element for ¤ in S

c each element of S has a unique inverse

d ¤ is not associative.

¤ e a b c d x
e e a b c d x
a a e c d x b
b b d e x c a
c c x a e b d
d d b x a e c
x x c d b a e

a For all a, b 2 S, a ¤ b 2 S. ) S is closed under ¤.
b For all y 2 S, e ¤ y = y ¤ e = y ) since e 2 S, the identity is e.

c For all y 2 S, y ¤ y = e, so each element has a unique inverse, itself.

d a ¤ (b ¤ c) = a ¤ x = b

(a ¤ b) ¤ c = c ¤ c = e 6= a ¤ (b ¤ c)
Thus ¤ is not an associative operation and S does not form a group under ¤.

Example 58

PERMUTATIONS

1

2

3

4

S S
1

2

3

4

IDENTITY
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Following the arrows through gives the resulting permutation pbpa =

µ
1 2 3 4
1 2 4 3

¶
pbpa could have been found by writing the combined permutation asµ

1 2 3 4
3 1 2 4

¶µ
1 2 3 4
2 3 4 1

¶

and following through as shown:

0@ 2

1

1A0@ 1

2

1A =

0@ 1

1

1A
Note that we work from right to left when combining permutations. This is consistent with

composition of functions:
(pbpa) (x) = pb (pa(x)) = pb ± pa(x)

However, not all texts follow this convention.

Composition of functions is in general not commutative, and this is usually true for combining

permutations. For example:

papb =

µ
1 2 3 4
2 3 4 1

¶µ
1 2 3 4
3 1 2 4

¶
=

µ
1 2 3 4
4 2 3 1

¶
6= pbpa

However, composition of functions is associative, so the process of combining permutations

can be used for more than two permutations. For example:

p4p3p2p1 =

0@ : 2 : :
: : :
: 3 : :

1A0@ : : : 4
: : :
: : : 2

1A0@ : 2 :
: :
: 4 :

1A0@ 1 : : :
: : :

2 : : :

1A
gives

µ
1 : : :
3 : : :

¶
etc.

COMBINING PERMUTATIONS

1

2

3

4

S

S
1

2

3

4

S
1

2

3

4

Let two permutations on S be pa =

µ
1 2 3 4
2 3 4 1

¶
and pb =

µ
1 2 3 4
3 1 2 4

¶
:

The composition of two permutations is variously called combining, multiplying or finding

the product.

Consider the composition of functions where pa is followed by pb as shown in the diagram:
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INVERSE

To find an inverse function, we need only to interchange the elements of the ordered pairs of

the bijection. To achieve this for a permutation we swap the rows then (usually) rearrange

the order of the columns so the elements in the first row are in ascending order.

For example,

µ
1 2 3 4
3 1 4 2

¶¡1
=

µ
1 2 3 4
2 4 1 3

¶
as

µ
1 2 3 4
3 1 4 2

¶µ
1 2 3 4
2 4 1 3

¶
=

µ
1 2 3 4
2 4 1 3

¶µ
1 2 3 4
3 1 4 2

¶
=

µ
1 2 3 4
1 2 3 4

¶
= e

1 Simplify the following compositions of permutations:

a

µ
1 2 3 4
1 4 2 3

¶µ
1 2 3 4
4 2 3 1

¶
b

µ
1 2 3 4
2 3 1 4

¶µ
1 2 3 4
4 3 1 2

¶
c

µ
1 2 3 4
2 1 4 3

¶µ
1 2 3 4
2 1 4 3

¶
d

µ
1 2 3 4
3 4 1 2

¶µ
1 2 3 4
2 3 1 4

¶µ
1 2 3 4
4 1 2 3

¶
2 Find:

a

µ
1 2 3 4
3 1 4 2

¶¡1
b

µ
1 2 3 4
2 1 4 3

¶¡1
c

·µ
1 2 3 4
3 4 2 1

¶µ
1 2 3 4
2 4 1 3

¶¸¡1
3 Prove that, for all permutations p, q on f1, 2, 3, 4g, (qp)¡1 = p¡1q¡1.

4 Find permutations p on f1, 2, 3, 4g such that:

a p

µ
1 2 3 4
3 1 2 4

¶
=

µ
1 2 3 4
2 4 1 3

¶
b p

µ
1 2 3 4
2 3 1 4

¶
=

µ
1 2 3 4
2 4 1 3

¶
5 For each of the following, construct a Cayley table and determine whether the set of

permutations is a group under composition of permutations.

a fA, B, C, Dg where A =

µ
1 2 3 4
1 2 3 4

¶
, B =

µ
1 2 3 4
2 3 4 1

¶
,

C =

µ
1 2 3 4
3 4 1 2

¶
, D =

µ
1 2 3 4
4 1 2 3

¶
b fA, B, C, Dg where A =

µ
1 2 3 4
1 2 3 4

¶
, B =

µ
1 2 3 4
2 1 4 3

¶
,

C =

µ
1 2 3 4
3 4 1 2

¶
, D =

µ
1 2 3 4
4 3 2 1

¶
Is either a or b a cyclic group?

6 Explain why the group consisting of all the permutations on f1, 2, 3, 4, 5g under

composition of permutations has no subgroups of order 7.

EXERCISE 9F.1
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Consider all possible permutations on S = f1, 2, 3g.
Show that these form a group under combination of permutations.

We know that there are 3! = 6 different permutations.

The identity, e =

µ
1 2 3
1 2 3

¶
and let ® =

µ
1 2 3
2 3 1

¶
®2 =

µ
1 2 3
2 3 1

¶µ
1 2 3
2 3 1

¶
=

µ
1 2 3
3 1 2

¶
which is another permutation,

and ®3 = e.

Let ¯ =

µ
1 2 3
1 3 2

¶
, so ¯2 = e. Let ° =

µ
1 2 3
3 2 1

¶
, so °2 = e.

Finally, let ± =

µ
1 2 3
2 1 3

¶
, so ±2 = e.

So, the six permutations on S are e, ®, ®2, ¯, ° and ±.

Call the set containing these permutations S3.

®¯ =

µ
1 2 3
2 3 1

¶µ
1 2 3
1 3 2

¶
=

µ
1 2 3
2 1 3

¶
= ±

®° =

µ
1 2 3
2 3 1

¶µ
1 2 3
3 2 1

¶
=

µ
1 2 3
1 3 2

¶
= ¯

®± =

µ
1 2 3
2 3 1

¶µ
1 2 3
2 1 3

¶
=

µ
1 2 3
3 2 1

¶
= °

Continuing in this way enables us to construct the Cayley table for combining

permutations on S:

¤ e ® ®2 ¯ ° ±

e e ® ®2 ¯ ° ±

® ® ®2 e ± ¯ °

®2 ®2 e ® ° ± ¯

¯ ¯ ° ± e ® ®2

° ° ± ¯ ®2 e ®

± ± ¯ ° ® ®2 e

Closure: From the Cayley table, it is clear

that for all a, b 2 S3, a ¤ b 2 S3.

Therefore S3 is closed under the

operation.

Associative Composition of functions is an

associative operation, so the

composition of permutations on

S is associative.

Identity From the table, e is such that a ¤ b = b ¤ a = e for all a 2 S3.
) since e 2 S, e is an identity element in S3 for ¤.

Inverse As the identity e appears once in every row and column in the table,

each element in S3 must have an inverse element under ¤. ® and ®2

are inverses of each other, and each other element is its own inverse.

Therefore, fS3, ¤g forms a group.

SYMMETRIC GROUP OF ORDER 3

Example 59
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This group is referred to as the symmetric group of order 3.

Notice that the order of a is 3 while ¯, ° and ± have order 2.

No element has order 6, so fS3, ¤g is not a cyclic group.

fS3, ¤g is therefore not isomorphic to fZ7 n f0g, £7g
The set of permutations on S = f1, 2, 3, ....., ng where n 2 Z + is called Sn.

fSn, ¤g where ¤ is composition of permutations is referred to as the symmetric group of

order n.

This group is often just written as Sn and consists of all possible bijections of a set with n
elements onto itself.

The equilateral triangle shown in the diagram has centroid O.

Lines l1, l2 and l3 contain the three medians of the triangle

through the vertices labelled 1, 2 and 3 respectively.

There are six transformations in the plane which map the

equilateral triangle onto itself.

These are the three rotations:

e an anti-(counter-)clockwise rotation through 00 about

O. This is the identity or “do nothing” transformation.

r an anti-clockwise rotation through 120o about O as

shown:

r2 an anti-clockwise rotation through 240o about O. This

is equivalent to two successive applications of r,
i.e., r ¤ r or r2.

Note that r3 = e is a rotation through 360o which maps

every point to itself.

and the three reflections:

x a reflection in the line l1 y a reflection in the line l2 z a reflection in the line l3.

As x, y and z are reflections, x2 = y2 = z2 = e

SYMMETRIES OF AN EQUILATERAL TRIANGLE (Dihedral group of order 3)

l1

l2 l3

1

2 3

O

l1

l2 l3

3

1 2

O

l1

l2 l3

2

3 1

O

l1

l2 l3

1

3 2

O

l1

l2 l3

3

2 1

O

l1

l2 l3

2

1 3

O
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Let D = fe, r, r2, x, y, zg
fD, ¤g forms a group where ¤ is taken to be the combination of transformations.

We can set up the Cayley table:

For example, r ¤ x is a reflection in l1 followed by

an anti-clockwise rotation through 120o. The result

is z:

Using a cut-out copy of the triangle may help with

recognition of geometric transformations.

¤ e r r2 x y z

e e r r2 x y z

r r r2 e z x y

r2 r2 e r y z x

x x y z e r r2

y y z x r2 e r

z z x y r r2 e

Closure: The Cayley table shows that a ¤ b 2 D for all a, b 2 D.

Therefore D is closed under ¤.
Associativity: Transformations in the plane can be considered as bijections on R 2.

Therefore, since composition of functions is associative, composition

of transformations is also associative.

Identity: It can be seen from the table that a ¤ e = e ¤ a = a for all a 2 D.

Therefore since e 2 D, there is an identity element for ¤ in D.

Inverse: As e appears once in every row and column, every element has a

unique inverse.

Therefore fD, ¤g forms a group.

This group is referred to as the dihedral group of order 3, fD3, ¤g or just D3.

Dn is the group consisting of all the symmetries of a regular n-sided polygon under symmetric

transformations in the plane.

You may notice a similarity between this group and the group fS3, ¤g. In fact, there is a

bijection between D3 and S3 as follows:

r $ ® r2 $ ®2 x$ ¯ y $ ° z $ ±.

Further, replacing each occurrence of r, r2, x, y, z in the Cayley table for fD3, ¤g with the

elements they map to gives the table for fS3, ¤g. fD, ¤g is therefore isomorphic to fS3, ¤g.
This will come as no surprise if we investigate the labelling of the vertices of the triangle.

Notice that under r, for example, 1 is mapped to 2, 2 is mapped to 3 and 3 is mapped to 1.

We could write this as

µ
1 2 3
2 3 1

¶
which is ®.

Under x, 1 is mapped to 1, 2 to 3 and 3 to 2. This can be written as

µ
1 2 3
1 3 2

¶
which is ¯.

If H =
©
e, r, r2

ª
, it is clear from the Cayley table that fH, ¤g is a subgroup of fD3, ¤g.

The sets fe, xg, fe, yg and fe, zg are also subgroups under ¤. These four groups are the

only proper subgroups of fD3, ¤g.
Although the symmetric group of order 3 is isomorphic to the dihedral group of order 3, this

isomorphism does not extend beyond n = 3.
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REVIEW SETS

For example, S4, the possible mappings from f1, 2, 3, 4g has order 24 while for a square

there are four rotational symmetries (including the identity) and four reflections, giving an

order of 8 for D4. Hence, a bijection cannot exist between the two sets.

1 Let ABCD be a square centred on O. Define T = fI, R1, R2, R3g where I, R1, R2,

R3, are anti-clockwise rotations about O through 0o, 90o, 180o and 270o respectively.

Construct a Cayley table where combining transformations is the operation.

Prove that T is a group under the operation and show that it is cyclic.

2 State the four symmetry operations of a rectangle and show that they form a group under

the operation combination of transformations.

Show that this group is isomorphic to the Klein four-group.

1 A = fa, b, c, d, e, fg, B = fc, e, g, hg Find:

a A [B b AnB c A¢B.

2 If A = f1, 2, 3g and B = f2, 4g, find A£B.

3 Prove (A \B)£ (C \D) = (A£ C) \ (B £D)

4 Prove (A nB)£ C = (A£ C) n (B £C)

5 Use Venn diagrams to illustrate the following distributive laws:

a A \ (B [ C) = (A \B) [ (A \ C)

b A [ (B \ C) = (A [B) \ (A [ C)

6 Find the power set P (A) if A = f1, 2, 3g.
Determine whether P (A) forms a group under: a \ b [

7 Determine whether the binary operation ¤ on R is associative where ¤ is defined as

a a ¤ b =
a+ b

a2
b a ¤ b = 2a+b c a ¤ b = a+ b¡ 3ab

8 Let R be a relation on Z such that xRy if and only if x¡ y is divisible by 6.

a Show that R is an equivalence relation.

b Describe the equivalence classes.

9 R is a relation on R £ R such that for (a, b), (x, y) 2 R £ R ,

(a, b)R(x, y) if and only if jxj+ jyj = jaj+ jbj
a Show that R is an equivalence relation.

b Describe how R partitions R £ R and state the equivalence classes.

EXERCISE 9F.2

REVIEW SET 9A
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10 R is a relation on (R n f0g)£ R + such that for (a, b), (x, y) 2 (R n f0g)£ R +
(a, b)R(x, y) if and only if bx2 = a2y.

a Show that R is an equivalence relation.

b Describe how R partitions (R n f0g)£ R + and state the equivalence classes.

11 Comment on the following argument:

Given a symmetric and transitive relation R on a set S then:

if xRy then yRx for all x, y 2 R (symmetry)

if xRy and yRx then xRx for all x, y 2 R (transitivity)

As xRx, R must be reflexive.

Therefore a symmetric and transitive relation on a set is always an equivalence relation.

12

Construct a Cayley table for this operation on the given set.

13

i Is the operation associative?

ii Is the operation commutative?

iii If possible, find the identity element.

iv If possible, find the inverse of a.

a a ± b =
1

ab
b a±b = (a+ 2) (b+ 3) c a ± b = a2b2

d a ± b =
a

b
e a ± b = a+ b+ 3ab f a ± b = ab+ a

14 Which of the following are bijections?

a f : R ! R , f(x) = x3 + 5 b f : R + ! R , f(x) = lnx

c f : Z ! Z , f(x) = 2x d f : R ! R , f(x) = 2x

e f : R ! [¡1, 1], f(x) = sinx

In the case of each bijection, state f¡1(x).

15 Let f =

µ
1 2 3 4
1 3 4 2

¶
and g =

µ
1 2 3 4
2 3 1 4

¶
a Find: i gf ii fg b Find: i f¡1 ii g¡1

b Find n if fn =

µ
1 2 3 4
1 2 3 4

¶
.

16 Let M be the set of 2£ 2 matrices of the form

·
1 a
0 1

¸
where a 2 Z .

Show that M forms an Abelian group under matrix multiplication.

17 Let S be the set of 2£ 2 matrices with determinant equal to 1.

Show that S forms a group under matrix multiplication.

An operation on , , , , , is a composition of two binary operations, nor-
mal addition ( ) and multiplication modulo such that .

¤ f g
£ ¤ £

0 1 2 3 4 5
+ 6 ( ) = ( + )6 6a b a a b

For each of the operations on real numbers, excluding :0
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18

19 Construct a Cayley table for fM1, M2, M3, M4g under matrix multiplication where

M1 =

·
1 0
0 1

¸
, M2 =

·
0 ¡1
1 0

¸
, M3 =

· ¡1 0
0 ¡1

¸
, M4 =

·
0 1
¡1 0

¸
and prove that it is a group.

20

a

8<:
24 1 k 0

0 1 0
0 0 2n

35 j k, n 2 R
9=; b

8<:
24 1 n 1

2n
2

0 1 n
0 0 1

35 j n 2 R
9=;

21 Show that ff1, f2, f3, f4g is a group under the composition of functions where

f1(x) = x, f2(x) = ¡x, f3(x) =
1

x
, f4(x) = ¡1

x
.

22 a Show that f1, 3, 5, 9, 11, 13g under multiplication modulo 14 is a group.

b State the order of each element of the group in a.

c Is the group in a cyclic?

23 Show that the matrices: I =

·
1 0
0 1

¸
, A =

·
0 1
¡1 0

¸
, B =

·
0 ¡1
1 0

¸
,

C =

· ¡1 0
0 ¡1

¸
, D =

·
i 0
0 ¡i

¸
, E =

· ¡i 0
0 i

¸
, F =

·
0 ¡i
¡i 0

¸
,

G =

·
0 i
i 0

¸
forms a group under matrix multiplication.

24 Show that the rational numbers of the form
2a+ 1

2b+ 1
where a, b 2 Z form a

group under multiplication.

25 The Cayley table for a set S = fI , A, B, C, Dg
under the operation ¤ is shown below. Determine,

with proof, which of the group axioms apply.

¤ I A B C D

I I A B C D

A A I D B C

B B C I D A

C C D A I B

D D B C A I

Prove that if a group , is such that is an odd prime number, there is only
one element which is its own inverse.

f ¤g j jG G

Show that each of the sets of matrices defined below forms a group under matrix
multiplication:

168 SETS, RELATIONS AND GROUPS (Topic 9)

26 fG, ¤g is a group with identity element e, and fG0, ±g is a group with identity element

e0. Let S = G£G0. Define the “product” of pairs of elements (a, a0), (b, b0) 2 S by

(a, a0) (b, b0) = (a ± b, a0 ¤ b0)
a Prove that S is a group under the “product” operation.

b Show that the following sets are groups under the “product” operation:

i S1 = f(g, e0)j g 2 Gg ii S2 = f(e, g0)j g0 2 G0g
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27 The set G = fa, b, c, :::g under the associative operation ¤ has unique solutions x,

y 2 G for the equations xa = b and ay = b: Prove that fG, ¤g is a group.

28 Prove that the following pairs of groups are isomorphic:

a f0, 1, 2, 3g under +4 and f1, 2, 3, 4g under £5
b the multiplicative group of non-zero complex numbers a+ bi and the multiplicative

group of matrices

·
a ¡b
b a

¸
where a2 + b2 6= 0.

29 Let fA, +mg be a group where A = f0, 1, 2, ...., (m¡ 1)g and let fB, +m2g be

a group where B =
©
0, 1, 2, ...., (m2 ¡ 1)

ª
.

Prove that G = f(a, b)j a 2 A, b 2 Bg is a non-Abelian group of order m3 under the

operation ¤ defined by (a, b) ¤ (x, y) = (a+ x, b+ y +mxb).

1 For the sets A = f0, 3, 6, 9, 12g, B = f1, 2, 3, 4, 5, 6g, C = f2, 4, 6, 8, 10g
and U = f0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13g. Find:

a A \ (B [C) b A¢ (BnC) c B0 [ C 0
d A [ (B¢C) e A0 \ (B0¢C0)

In each case, illustrate the set on a Venn diagram.

2 Prove (A \B)0 = A0 \B0 (De Morgan)

3 Find the power set P (A) if A = f1, 2g. Determine whether P (A) forms a group

under: a \ b [
4 A relation R in f0, 1, 2, 3, 4, 5g is such that xRy if and only if jx¡ yj < 3.

a Write R as a set of ordered pairs.

b Is R i reflexive ii symmetric ii transitive?

5 R is a relation on R £ R such that for (a, b), (x, y) 2 R £ R ,

(a, b)R(x, y) if and only if x2 + y2 = a2 + b2.

a Show that R is an equivalence relation.

b Describe how R partitions R £ R and state the equivalence classes.

6 R is a relation on Z £ Z such that for (a, b), (x, y) 2 Z £ Z ,

(a, b)R(x, y) if and only if y = b.

a Show that R is an equivalence relation.

b Describe how R partitions Z £ Z and state the equivalence classes.

REVIEW SET 9B
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7 Determine whether each of the following functions is i an injection ii a surjection

a f : R ! R , f(x) = 2x3 + 3x¡ 1 b f : Z ! Z +, f(x) = x2

c f : C ! R + [ f0g, f(x) = jxj d f : Z + ! R +, f(x) =
p
x
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8 A Cayley table for a binary operation ¤ is shown

alongside. Find:

a 3 ¤ 4

b 2 ¤ (1 ¤ 3)

c (2 ¤ 1) ¤ 3

£ 1 2 3 4

1 2 1 3 1

2 3 2 4 2

3 4 1 3 2

4 1 4 2 1

9 Construct a Cayley table for fA, B, C, Dg under matrix multiplication where

A =

·
1 0
0 1

¸
, B =

·
1 0
0 ¡1

¸
, C =

· ¡1 0
0 1

¸
and D =

· ¡1 0
0 ¡1

¸
.

Show that it is a group.

10 a Show that the set f1, 7, 9, 15g forms a group under multiplication modulo 16.

b State the order of each element of the group in a.

c Is the group in a cyclic?

11 Show that the set ff1, f2, f3, f4, f5, f6g is a group under composition of functions

where f1(x) = x, f2(x) =
1

1¡ x , f3(x) =
x¡ 1

x
, f4(x) =

1

x
, f5(x) = 1¡ x,

f6(x) =
x

x¡ 1
.

12 Let fA, +mg where A = f0, 1, 2, ...., (m¡ 1)g be a group.

Prove that fG, ¤g is a group where G = f(a, b, c) j a, b, c 2 Ag and ¤ is defined

by (a, b, c) ¤ (x, y, z) = (a+ x, b+ y, c+ z ¡ xb).

Is the group Abelian?

What is the order of the group?

13 The operation ¤ is defined by (a, b) ¤ (c, d) = (ac, bc+ d).

Is ¤ associative?

Is ¤ commutative?

Is there an identity element for ¤ in S?

Does each element have an inverse?

14 Construct the Cayley table for the set of matrices fI, A, Bg where I =

·
1 0
0 1

¸
,

A =

"
¡1
2

p
3
2

¡
p
3
2 ¡1

2

#
and B =

"
¡1
2 ¡

p
3
2p

3
2 ¡1

2

#
. Show that they from a group under

matrix multiplication.

a

b

c

a

b

c

d

S = f(a, b) j a, b 2 R g.

170 SETS, RELATIONS AND GROUPS (Topic 9)

15 Let fG, ¤g be a group and let fH1, ¤g and fH2, ¤g be subgroups of fG, ¤g.
Prove that fH1 \H2, ¤g is a subgroup of fG, ¤g.
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16 Solve each of the following for x:

a x3 ´ 6 (mod 7) b 17x ´ 29 (mod 37)

c x2 + x+ 3 ´ 0 (mod 5) d x2 + 2x+ 3 ´ 0 (mod 11)

17 Find the order of each of the following elements of S4:

a

µ
1 2 3 4
3 1 2 4

¶
b

µ
1 2 3 4
1 2 4 3

¶
c

µ
1 2 3 4
2 1 4 3

¶

18 fG, £g is a group where G = f1, ¡ 1, i, ¡ ig. S = f1, ¡ 1g and T = fi, ¡ 1g
are subsets of G.

Under multiplication, determine whether S or T is a subgroup of fG, £g.

19 Determine whether the following Cayley tables define groups.

a ¤ a b c d e
a a b c d e
b b c d e a
c c d e a b
d d e a b c
e e a b c d

b ¤ a b c d e
a a b c d e
b b e d a c
c c a b e d
d d c e b a
e e d a c b

20 Consider the group fG, +ng where G is the set containing the n residue classes modulo

n. Which members are generators of fG, +ng when:

a n = 3 b n = 5 c n = 6?

21 Let G = f(x, y) j x 2 Z , y 2 Q g and define the composition of points in the

following way: (a, b) ¤ (c, d) = (a+ c, 2cb+ d).

a Prove that G forms a group under ¤.
b Is fG, ¤g Abelian?

c Do the following sets with the operation ¤ form subgroups of G?

i H1 = f(a, 0) j a 2 Z g ii H2 = f(0, b) j b 2 Q g
d Is G a group with respect to the operation:

i ± defined by (a, b) ± (c, d) = (a+ c, 2¡cb+ d)

ii ¤ defined by (a, b) ¤ (c, d) = (a+ c, 2cb¡ d)?

22 Show that the set containing the following matrices forms a group under matrix multi-

plication:

I =

24 1 0 0
0 1 0
0 0 1

35, A =

24 1 0 0
0 0 1
0 1 0

35, B =

24 0 1 0
1 0 0
0 0 1

35, C =

24 0 1 0
0 0 1
1 0 0

35
D =

24 0 0 1
1 0 0
0 1 0

35 E =

24 0 0 1
0 1 0
1 0 0

35.
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23 The set S = fa, b, c, ....g under the binary operation ¤ satisfies the following:

• For each a, b 2 S, a ¤ b 2 S.

• For each a, b, c 2 S, (a ¤ b) ¤ c = a ¤ (b ¤ c).
• There is a unique element e 2 S such that e ¤ a = a for each a 2 S.

• For each a 2 S, there is a unique element a0 2 S such that a0 ¤ a = e.

Prove that fS, ¤g is a group.

24 Prove that a cyclic group of order m is isomorphic to the additive group of residue

classes modulo m.

25 Solve the following for x:

a 4x ´ 1 (mod 7) b x2 + x+ 1 ´ 0 (mod 7)

26 For each of the following operations on real numbers:

i Is the operation associative?

ii Is the operation commutative?

iii If possible, find the identity element.

iv If possible, find the inverse of a.

a a ¤ b = ab+ 2 b a ¤ b = (a+ 2) (b+ 2) c a ¤ b = 3 (a+ b)

d a ¤ b = ja+ bj e a ¤ b = ab f a ¤ b = ja¡ bj

27 A system of elements with binary operation ¤ is called a semigroup if and only if the

system is closed under the operation and ¤ is associative.

Show that the following are all semigroups and indicate which are also groups.

a ¤ 1 2
1 1 1
2 1 1

b ¤ 1 2
1 1 2
2 1 2

c ¤ 1 2
1 2 2
2 1 1

d ¤ 1 2
1 1 2
2 2 1

e ¤ 1 2 3
1 1 2 3
2 2 3 1
3 3 1 2

f ¤ 1 2 3
1 1 2 3
2 1 2 3
3 1 2 3

g ¤ 1 2 3
1 1 2 3
2 3 2 3
3 3 2 3

28 For each of the following sets:

i Construct the Cayley table under the given operation.

ii Prove that each set forms a group under the operation.

a f1, 2, 4, 5, 7, 8g under multiplication modulo 9

b f1, 5, 9, 13g under multiplication modulo 16

c f1, 9, 11, 19g under multiplication modulo 20

d f1, 3, 7, 9g under multiplication modulo 20

e f1, 9, 13, 17g under multiplication modulo 20

Are any pairs of the groups isomorphic?

29 Explain why a non-Abelian group must have at least six elements.
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1010HL Topic

Series and differential
equations

A

B

C

D

E

Some properties of functions

Sequences

Infinite series

Taylor and Maclaurin series

First order differential equations

Contents:

Before beginning any work in this option, it is recommended that you revise the
following areas of the syllabus: Sequences and Series, Differential and
Integral Calculus.

These areas are identified under ‘Topic 1 – Core: Algebra’ and ‘Topic 7 – Core:
Calculus’ as expressed in the syllabus guide on page 13, and pages 30-34 respectively
of the IBO document on the Diploma Programme Mathematics HL for the first
examination 2006.

Core HL

(Further Mathematics SL Topic 4)
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From the core Higher Level course you should be familiar with the following important

hierarchy of number sets:

Z + ½ Z ½ Q ½ R

where: Z + is the set of natural numbers, i.e., f1, 2, 3, ... g,
Z is the set of integers, i.e., f..., ¡2, ¡1, 0, 1, 2, ... g,
Q is the set of rational numbers,

i.e., numbers of the form
p

q
where p, q 2 Z , q 6= 0,

R is the set of real numbers comprising the rational numbers Q , and the irrational

numbers that cannot be expressed as ratios of integers.

In this option topic we will be principally concerned with the set R . Rigorous treatments of

the algebraic and set theoretic properties of R , such as the fact that R is a continuous set,

are available in a variety of calculus and analysis books. However, we will outline here only

those results of most immediate relevance to our work with limits, sequences and series.

Definition:

Let a 2 R , then the absolute value of a, denoted by jaj is defined by

jaj =
½

a if a > 0
¡a if a < 0

You should recognise this definition from the core part of the course. It has the following set

of consequences:

1 jaj > 0 for all a 2 R .

2 j ¡ aj = jaj for all a 2 R .

3 jabj = jajjbj for all a, b 2 R .

4 ¡jaj 6 a 6 jaj for all a 2 R .

5 If c > 0 then jaj 6 c if and only if ¡c 6 a 6 c.

SOME PROPERTIES OF FUNCTIONSA
THE ABSOLUTE VALUE FUNCTION

Proof of consequence

Suppose that jaj 6 c. Then as a 6 jaj and ¡a 6 jaj we have a 6 c and ¡a 6 c.
But ¡a 6 c is equivalent to ¡c 6 a, so we have ¡c 6 a 6 c.
Conversely, if ¡c 6 a 6 c, then we have both a 6 c and ¡c 6 a.

But ¡c 6 a is equivalent to ¡a 6 c.
Therefore jaj 6 c.

5:
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The Triangle Inequality states:

For any a, b 2 R , ja+ bj 6 jaj+ jbj :

Proof:

From consequence 4 we have ¡ jaj 6 a 6 jaj and ¡ jbj 6 b 6 jbj for all a, b 2 R .

Adding these inequalities gives ¡ (jaj+ jbj) 6 a+ b 6 jaj+ jbj
By consequence 5 this is equivalent to ja+ bj 6 jaj+ jbj.

Corollaries:

1 ja¡ bj 6 jaj+ jbj for all a, b 2 R .

2 jaj ¡ jbj 6 ja+ bj for all a, b 2 R .

3 jaj ¡ jbj 6 ja¡ bj for all a, b 2 R .

Proofs:

1 By the Triangle Inequality, we have ja+ cj 6 jaj+ jcj for all a, c 2 R .

) letting c = ¡b, we get ja¡ bj 6 jaj+ j¡bj = jaj+ jbj for all a, b 2 R .

2 jaj = j(a+ b) + (¡b)j
6 ja+ bj+ j¡bj for all a, b 2 R by the Triangle Inequality.

) jaj ¡ jbj 6 ja+ bj
3 jaj = j(a¡ b) + bj

6 ja¡ bj+ jbj for all a, b 2 R by the Triangle Inequality.

) jaj ¡ jbj 6 ja¡ bj

The set of real numbers can be considered as a line of infinite length:

The absolute value jaj of an element a can then be regarded as the distance from a to the

origin. More generally the distance between two numbers a and b 2 R can be given by

ja¡ bj.

THE TRIANGLE INEQUALITY

1 Prove that jaj > 0 for all a 2 R .

2 Prove that j¡aj = jaj for all a 2 R .

3 Prove that ja1 + a2 + :::+ anj 6 ja1j+ ja2j+ :::+ janj for any a1, a2, ......, an 2 R .

4 If a < x < b and a < y < b show that jx¡ yj < b ¡ a.

EXERCISE 10A.1

175SERIES AND DIFFERENTIAL EQUATIONS (Topic 10)
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Interpret this result geometrically.
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5 Prove that ja¡ bj 6 ja¡ cj+ jc¡ bj.

6 Prove that if jx¡ aj < a

2
for a > 0 then x >

a

2
.

7 If jx¡ aj < " and jy ¡ bj < " show that j(x+ y)¡ (a+ b)j < 2".

In the questions below, you are required to verify some key properties of the set of real

numbers that we will use in our subsequent work.

8 The Archimedean Property states that for each pair of positive real numbers a and b,
there is a natural number n such that na > b.

Use the Archimedean Property to prove that for each positive number " there is a natural

number n such that
1

n
< ".

9 Prove the Bernoulli Inequality by mathematical induction, i.e., that if x > ¡1 then

(1 + x)n > 1 + nx for all n 2 Z +.

10 The Well-Ordering Principle states that every non-empty subset of Z + has a least element.

Show that the Well-Ordering Principle does not apply to R +, the set of positive reals.

11 If r 6= 0 is rational and x is irrational, prove that r + x and rx are irrational.

Consider a function f(x) where the domain is a continuous subset of R . We consider the

behaviour of the function as x approaches particular values, including 1.

Definition of the Limit of a Function at a point x = a :

Suppose f(x) is a function defined on some domain D µ R which includes all values of

x near x = a (though not necessarily x = a itself). We say that l is the limit of f(x) as

x approaches a and write lim
x!a

f(x) = l if, for each " > 0, there exists ± > 0 such that

jf(x)¡ lj < " whenever 0 < jx¡ aj < ±.

THE LIMIT OF A FUNCTION AT A POINT

This means that the values of f(x) get closer and closer to the number l as x gets closer and

closer to a from either side of a.

If f (x) can be made as large as we please by taking x sufficiently close to a, then we say

lim
x!a

f(x) =1 (or ¡1 if f (x) becomes large and negative near a).

We can further refine the definition by distinguishing between a left-hand limit lim
x!a¡

f(x),

which is the value f (x) tends to as we approach x = a from the left, and a right-hand limit

lim
x!a+

f(x), which is the value f (x) tends to as we approach x = a from the right.

We then say that lim
x!a

f(x) exists and equals l if lim
x!a¡

f(x) = lim
x!a+

f(x) = l.

Notice that limits of functions are linked with the concepts of continuity and discontinuity.
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Find lim
x!5

(2x2 ¡ 3x+ 4).

lim
x!5

(2x2 ¡ 3x+ 4) = lim
x!5

(2x2) + lim
x!5

(¡3x) + lim
x!5

(4)

= 2 lim
x!5

x2 ¡ 3 lim
x!5

x+ lim
x!5

4

= 2£ 52 ¡ 3£ 5 + 4 = 39

Example 1

y

x

y x��( )
y

x
y x��( )

a

For example:

The function is continuous The function is discontinuous The function is discontinuous

for all x 2 R , so lim
x!a

f(x) at x = a. However, at x = a. However,

exists for all a 2 R . lim
x!a¡

f(x) = lim
x!a+

f(x) = l, lim
x!a¡

f(x) 6= lim
x!a+

f(x),

) lim
x!a

f(x) = l. ) lim
x!a

f(x) does not exist.

So in general, if we have a discontinuity or gap in a function f(x) at x = a and

lim
x!a¡

f(x) 6= lim
x!a+

f(x), then lim
x!a

f(x) does not exist.

It can be proved that if the limit of a function at a point exists then it is unique.

If lim
x!a

f(x) = l and lim
x!a

g(x) = m where jlj <1 and jmj <1 then:

1 lim
x!a

[cf(x)] = cl for any real constant c

2 lim
x!a

[f(x)§ g(x)] = l §m

3 lim
x!a

[f(x)g(x)] = lm

4 lim
x!a

·
f(x)

g(x)

¸
=
l

m
provided m 6= 0

5 lim
x!a

[f(x)n] = ln for all n 2 Z +

6 lim
x!a

h
n
p
f(x)

i
= n
p
l for all n 2 Z + provided l > 0

THEOREMS FOR LIMITS OF FUNCTIONS
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y

x

y x��( )
l

a
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ax

�
��

22

e.g.,
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We can use the TI-83 in Function mode to investigate limits such as lim
t!0

p
t2 + 9¡ 3

t2
:

However, even with the benefit of technology, getting a reasonable estimate of such limits

can be quite laborious, and the results obtained can often be perplexing.

In this particular case we can use the limit theorems to find the exact value of the limit, as

shown in the next example.

Find lim
x!1

µ
x¡ 1

x2 ¡ 1

¶
.

lim
x!1

µ
x¡ 1

x2 ¡ 1

¶
= lim

x!1

(x¡ 1)

(x¡ 1)(x+ 1)

= lim
x!1

1

(x+ 1)
as x 6= 1

= 1
2

Example 2

Find lim
t!0

p
t2 + 9¡ 3

t2
.

lim
t!0

p
t2 + 9¡ 3

t2
= lim

t!0

p
t2 + 9¡ 3

t2
£
p
t2 + 9 + 3p
t2 + 9 + 3

= lim
t!0

t2 + 9¡ 9

t2
¡p
t2 + 9 + 3

¢
= lim

t!0

t2

t2
¡p
t2 + 9 + 3

¢
= lim

t!0

1p
t2 + 9 + 3

fsince t 6= 0g

=
lim
t!0

1

lim
t!0

p
t2 + 9 + lim

t!0
3

Example 3
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But lim
t!0

p
t2 + 9 =

q
lim
t!0

(t2 + 9)

=
p

9 = 3.

) lim
t!0

p
t2 + 9¡ 3

t2
=

1

3 + 3
= 1

6 .

The theorems for limits of functions above do not help us to deal with indeterminate forms.

These include:

Type Description

0
0 lim

x!a

f(x)

g(x)
where lim

x!a
f(x) = 0 and lim

x!a
g(x) = 0

1
1 lim

x!a

f(x)

g(x)
where lim

x!a
f(x) = §1 and lim

x!a
g(x) = §1

0£1 lim
x!a

[f(x)g(x)] where lim
x!a

f(x) = 0 and lim
x!a

g(x) = §1

An example of an indeterminate form is lim
x!0

2x ¡ 1

x
. Notice that lim

x!0
(2x ¡ 1) = 0 and

lim
x!0

(x) = 0.

To address these types of limits, we use L’Hôpital’s Rule.

Suppose f(x) and g(x) are differentiable and g0(x) 6= 0 on an interval that contains a

point x = a.

If lim
x!a

f(x) = 0 and lim
x!a

g(x) = 0, or, if lim
x!a

f(x) = §1 and lim
x!a

g(x) = §1,

then lim
x!a

f(x)

g(x)
= lim
x!a

f 0(x)

g0(x)
provided the limit on the right exists.

Proof of a special case of L’Hôpital’s Rule:

The derivative of a function f(x) at a point x = a, denoted by f 0(a), is given by the

limit

f 0(a) = lim
h!0

f(a+ h)¡ f(a)

h
.

If we write x = a+ h then h = x¡ a,

so alternatively we may write f 0(a) = lim
x!a

f(x)¡ f(a)

x¡ a .

Using this alternative definition of the derivative, we can prove the special case of L’Hôpital’s

Rule in which f(a) = g(a) = 0, f 0(x) and g0(x) are continuous, and g0(a) 6= 0. Under

these conditions,

INDETERMINATE FORMS

L’HÔPITAL’S RULE
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lim
x!a

f(x)

g(x)
= lim
x!a

f(x)¡ f(a)

g(x)¡ g(a) fsince f(a) = g(a) = 0g

= lim
x!a

f(x)¡f(a)
x¡a

g(x)¡g(a)
x¡a

=
lim
x!a

f(x)¡f(a)
x¡a

lim
x!a

g(x)¡g(a)
x¡a

=
f 0(a)

g0(a)

=
lim
x!a

f 0(x)

lim
x!a

g0(x)

= lim
x!a

f 0(x)

g0(x)

Use L’Hôpital’s Rule to evaluate: a lim
x!0

2x ¡ 1

x
b lim

x!0

sinx

x
.

a lim
x!0

(2x ¡ 1) = 0 and lim
x!0

x = 0, so we can use L’Hôpital’s Rule.

) lim
x!0

2x ¡ 1

x
=

lim
x!0

d
dx

(2x ¡ 1)

lim
x!0

d
dx

(x)
fL’Hôpital’s Ruleg

=
lim
x!0

2x ln 2

lim
x!0

1

=
ln 2

1
= ln 2

b lim
x!0

sinx = 0 and lim
x!0

x = 0, so we can use L’Hôpital’s Rule.

) lim
x!0

sinx

x
=

lim
x!0

d
dx

(sinx)

lim
x!0

d
dx

(x)
fL’Hôpital’s Ruleg

=
lim
x!0

cosx

lim
x!0

1

=
1

1
= 1

Example 4

Use L’Hôpital’s Rule to evaluate:

a lim
x!1

lnx

x
b lim

x!1
ex

xn
where n 2 Z +.

a lim
x!1

lnx = 1 and lim
x!1

x =1, so we can use L’Hôpital’s Rule.

Example 5
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) lim
x!1

lnx

x
=

lim
x!1

d
dx

(lnx)

lim
x!1

d
dx

(x)
fL’Hôpital’s Ruleg

=
lim
x!1

¡
1
x

¢
lim
x!1

1

= 0
1 fsince lim

x!1

¡
1
x

¢
= 0g

= 0

b For all n 2 Z +, lim
x!1

ex =1 and lim
x!1

xn = 1,

so we can use L’Hôpital’s Rule.

) lim
x!1

ex

xn
= lim

x!1
ex

nxn¡1

= lim
x!1

ex

n(n¡ 1)xn¡2
...

= lim
x!1

ex

n!

=
1

n!
lim
x!1

ex = 1

Find lim
x!0+

ln(cos 3x)

ln(cos 2x)
.

lim
x!0+

ln(cos 3x) = 0 and lim
x!0+

ln(cos 2x) = 0, so we apply L’Hôpital’s Rule.

) lim
x!0+

ln(cos 3x)

ln(cos 2x)
= lim
x!0+

¡3 sin 3x
cos 3x

¡2 sin 2x
cos 2x

= lim
x!0+

µ
3 sin 3x cos 2x

2 sin 2x cos 3x

¶
=

µ
lim
x!0+

sin 3x

sin 2x

¶
£
µ

lim
x!0+

3 cos 2x

2 cos 3x

¶
=

µ
lim
x!0+

sin 3x

sin 2x

¶
£ 3

2

Now lim
x!0+

sin 3x = 0 and lim
x!0+

sin 2x = 0, so we use L’Hôpital’s Rule again.

) lim
x!0+

ln(cos 3x)

ln(cos 2x)
=

µ
lim
x!0+

3 cos 3x

2 cos 2x

¶
£ 3

2

= 3
2 £ 3

2 = 9
4

Example 6
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Evaluate lim
x!0+

x lnx.

Since lim
x!0+

x = 0 and lim
x!0+

lnx = ¡1, we have an indeterminate form of

the 0£1 type. We therefore apply L’Hôpital’s Rule, but we first need to convert

the limit to a quotient.

Now x lnx =
lnx¡
1
x

¢
) lim

x!0+
x lnx = lim

x!0+

µ
lnx
1
x

¶

= lim
x!0+

µ 1
x

¡ 1
x2

¶
fL’Hôpital’s Ruleg

= lim
x!0+

(¡x)

= 0

Example 7

Evaluate lim
x!¼

2
¡

(secx¡ tanx).

We first note that lim
x!¼

2
¡

secx =1 and lim
x!¼

2
¡

tanx = 1.

We therefore need to convert the difference secx¡ tanx into a quotient, then

apply L’Hôpital’s Rule.

Now secx¡ tanx =
1

cosx
¡ sinx

cosx

=
1¡ sinx

cosx

where lim
x!¼

2
¡

(1¡ sinx) = 0 and lim
x!¼

2
¡

cosx = 0.

) lim
x!¼

2
¡

(secx¡ tanx) = lim
x!¼

2
¡

µ
1¡ sinx

cosx

¶

= lim
x!¼

2
¡

µ¡ cosx

¡ sinx

¶
= 0

1 = 0

Example 8
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1 Find each limit without using L’Hôpital’s Rule:

a lim
x!1

x2 + 3x¡ 4

x¡ 1
b lim

x!0

sinx

ex
c lim

x!¼¡

sinx

1¡ cosx

d lim
x!2¡

lnxp
2 + x

e lim
x!0

sin 7x

4x
f lim

x!0
x cotx

2 Evaluate each limit using L’Hôpital’s Rule:

a lim
x!0

1¡ cosx

x2
b lim

x!0

ex ¡ 1¡ x
x2

c lim
x!1

µ
lnx

x¡ 1

¶

d lim
x!0

tan¡1 x

x
e lim

x!0

x2 + x

sin 2x
f lim

x!0+

sinxp
x

g lim
x!0

x+ sinx

x¡ sinx
h lim

x!0+
x2 lnx i lim

x!0+

µ
1

x
¡ 1

sinx

¶
j lim

x!0

ax ¡ bx
sinx

, a, b > 0

3 Try to use L’Hôpital’s Rule to find lim
x!¼

2
¡

tanx

secx
:

Evaluate the limit otherwise.

4 By finding lim
x!1

x ln

µ
1 +

1

x

¶
and writing

µ
1+

1

x

¶x
as ex ln(1+

1
x
),

prove that lim
x!1

µ
1 +

1

x

¶x
= e.

5 A function f : D ! R is said to be continuous at the point x0 in D provided that

whenever fxng is a sequence in D that converges to x0, the sequence ff(xn)g 2 f(D)

converges to f(x0).

Dirichlet’s function is given by f : R ! R where f(x) =

½
1 x 2 Q
0 x =2 Q .

Using the continuity definition above, prove that this function is discontinuous at all

points in R .

An improper integral is a definite integral that has:

² either or both limits infinite, e.g.,
R1
0
f(x) dx,

R1
¡1 f(x) dx, and/or

² an integrand that approaches infinity at one or more points in the range of integration.

For example,

Z 1

¡1

1

x
dx is an improper integral since

1

x
is infinite at x = 0.

EXERCISE 10A.2

IMPROPER INTEGRALS OF TYPE
R1
a
f(x)dx
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In this section we are only concerned with improper integrals of the form
R1
a
f(x) dx

where a is an integer, since these are the integrals we need for sequences and series later.

Definition:

The improper integral
R1
a
f(x)dx is said to be convergent if

R b
a
f(x) dx exists for

all b where a 6 b <1, and if
R1
a
f(x) dx = lim

b!1

R b
a
f(x) dx is finite.

Otherwise the improper integral is divergent.

Show that

Z 1

1

1

x
dx is divergent.

Z 1

1

1

x
dx = lim

b!1

Z b

1

1

x
dx

= lim
b!1

[lnx]b1

= lim
b!1

(ln b)

= 1 Hence

Z 1

1

1

x
dx is divergent.

Example 9

Investigate the convergence of

Z 1

1

1

xp
dx where p is a real constant.

Z 1

1

1

xp
dx = lim

b!1

Z b

1

1

xp
dx = lim

b!1

·
1

(1¡ p)xp¡1
¸b
1

=
1

1¡ p lim
b!1

"µ
1

x

¶p¡1#b
1

=
1

1¡ p lim
b!1

"µ
1

b

¶p¡1
¡1

#

If p > 1 then
1

1¡ p lim
b!1

"µ
1

b

¶p¡1
¡1

#
=

1

p¡ 1
, which is finite.

If p < 1 then lim
b!1

µ
1

b

¶p¡1
= 1

If p = 1 then we have the case presented in Example 9, which is divergent.

Hence

Z 1

1

1

xp
dx converges if p > 1 and diverges if p 6 1.

Example 10
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Suppose 0 6 f(x) 6 g(x) for all x > a. Then:

² if
R1
a
g(x) dx is convergent, then so is

R1
a
f(x) dx,

or, ² if
R1
a
f(x) dx is divergent, then so is

R1
a
g(x) dx.

Theorem:

If
R1
a
jf(x)j dx converges then

R1
a
f(x) dx converges.

Proof:

By definition, ¡ jf(x)j 6 f(x) 6 jf(x)j
) 0 6 f(x) + jf(x)j 6 2 jf(x)j
) 0 6

R1
a
f(x)+ jf(x)j dx 6 2

R1
a
jf(x)j dx

) by the Comparison Test, if
R1
a
jf(x)j dx is convergent then so is

R1
a
f(x)+jf(x)j dx.

Supposing
R1
a
jf(x)j dx = A <1 and

R1
a
f(x)+ jf(x)j dx = B <1,R1

a
f(x) dx = B ¡A <1

Hence
R1
a
f(x)dx is convergent.

THE COMPARISON TEST FOR IMPROPER INTEGRALS

Determine whether

Z 1

2

1p
x¡ 1

dx is convergent or divergent.

Now we know that
p
x¡ 1 6

p
x for all x > 2

)
1p
x¡ 1

>
1p
x

for all x > 2.

Now

Z 1

2

1

x
1
2

dx =

Z 1

1

1

x
1
2

dx¡
Z 2

1

1

x
1
2

dx,

where

Z 2

1

1

x
1
2

dx is finite, but from Example 10

Z 1

1

1

x
1
2

dx is divergent.

)

Z 1

2

1

x
1
2

dx is divergent, and so

Z 1

2

1p
x¡ 1

dx is divergent by the

Comparison Test.

Example 11
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When an improper integral is convergent, we may be able to evaluate it using a variety of

techniques. These include use of the limit rules, L’Hôpital’s Rule, integration by parts, and

integration by substitution.

Using integration by parts and the Comparison Test, prove that

Z 1

1

sinx

x
dx

is convergent.Z 1

1

sinx

x
dx = lim

b!1

Z b

1

sinx

x
dx

= lim
b!1

h
¡cosx

x

ib
1
¡ lim
b!1

Z b

1

cosx

x2
dx fintegrating by partsg

= lim
b!1

µ
¡cos b

b
+ cos 1

¶
¡
Z 1

1

cosx

x2
dx

= cos 1¡
Z 1

1

cosx

x2
dx

Now 0 6
¯̄̄cosx

x2

¯̄̄
6

1

x2
for all x > 1,

and we also know from Example 10 that

Z 1

1

1

x2
dx is convergent.

)

Z 1

1

¯̄̄cosx

x2

¯̄̄
dx is also convergent, and hence so is

Z 1

1

cosx

x2
dx.

Hence

Z 1

1

sinx

x
dx converges.

Example 12

Evaluate
R1
a
xe¡x dx.

R1
a
xe¡x dx = lim

b!1

R b
a
xe¡x dx

= lim
b!1

³
[¡xe¡x]ba ¡

R b
a
¡e¡x dx

´
fintegrating by partsg

= lim
b!1

³
¡be¡b + ae¡a ¡ [e¡x]

b

a

´
= lim
b!1

¡¡be¡b + ae¡a ¡ e¡b + e¡a
¢

= e¡a(a+ 1)+ lim
b!1

¡
e¡b (1¡ b)¢

= e¡a(a+ 1)+ lim
b!1

µ
1¡ b
eb

¶

Example 13

EVALUATING IMPROPER INTEGRALS
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Now lim
b!1

(1¡ b) = ¡1 and lim
b!1

eb = 1

)
R1
a
xe¡x dx = e¡a(a+ 1)+ lim

b!1
¡1

eb
fL’Hôpital’s Ruleg

= e¡a(a+ 1)

1 Use the Comparison Test for improper integrals to test for convergence:

a

Z 1

1

x

2x5 + 3x2 + 1
dx b

Z 1

2

x2 ¡ 1p
x7 + 1

dx

2 Determine whether

Z 1

1

sinx

x3
dx is convergent.

3 Test for convergence:

a

Z 1

1

x2 + 1

x4 + 1
dx b

Z 1

0

e¡x
2

dx

c

Z 1

1

lnx

x
dx d

Z 1

1

e¡x lnxdx

4 Prove that

Z 1

e

lnx

xp
dx is divergent for p 6 1.

5 a Evaluate the integral
R1
0
xne¡x dx for n = 0, 1, 2, 3.

b Predict the value of
R1
0
xne¡x dx when n is an arbitrary positive integer.

c Prove your prediction using mathematical induction.

6 Evaluate: a

Z 1

a

dx

x2 + a2
b

Z 1

1
¼

1

x2
sin

µ
1

x

¶
dx.

7 Evaluate

Z 1

a

dx

ex + e¡x
using the substitution u = ex.

8 Show that
R1
0
e¡x cosxdx is convergent.

9 Evaluate

Z 1

1

µ
1p
x
¡ 1p

x+ 3

¶
dx.

10 Find the area in the first quadrant under the curve y =
1

x2 + 6x+ 10
.

Consider
R1
a
f(x) dx where a is an integer.

Suppose we draw a graph of the function f (x) and label the value of the function at different

EXERCISE 10A.3

APPROXIMATION TO THE IMPROPER INTEGRAL
R1
a
f(x)dx
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integer values:

For each interval of length one along the x-axis, we can draw a rectangle of height equal to

the value of the function on one side of the rectangle.

For example, the rectangle from x = a to x = a+1 would have height f (a); the rectangle

from x = a+ 1 to x = a+ 2 would have height f (a+ 1), and so on.

The areas of the rectangles are, respectively, fa, fa+1, fa+2, ...... so the areas in fact form

a sequence.

The integral
R1
a
f(x) dx may be approximated by the sum of the rectangles,

Thus, the integral may be approximated by a series.

Now, let us be more particular about the side of the rectangle we choose for its height:

Suppose the function f(x) is decreasing for all x > a.

If we always take the height of each rectangle to be the value of the function at the left end

of the interval, the sum of the areas of the rectangles will be greater than the integral.

This is called the upper sum, and
R

Alternatively, if we use the value of the function at the right end of each interval, the sum of

the areas of the rectangles will be less than the integral.

y

x

�( )a � ��( )a

� ��( )a

� ��( )a

a a�� a�� a��

. . . . etc.

y x��( )

�
�

a
dxxf )(

y

x

�( )a � ��( )a
� ��( )a

� ��( )a

a a�� a�� a��

y x��( )

y

x

�( )a
� ��( )a

� ��( )a

� ��( )a

a a�� a�� a��

y x��( )

i.e.,
R1
a
f(x)dx ¼

1P
i=a

f(i)

1
a
f(x) dx <

1P
i=a

f(i).
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1 Write down a series which approximates:

a b
R1
4
e¡x dx

2 What integrals are approximated by these sums?

a
1P
i=0

1

i+ 2
b

1P
i=3

i+ 1

i2

3 For the function f(x) = e¡x
2

:

a show that f(x) is decreasing for all x > 0

b write upper and lower sums that approximate
R1
0
f(x) dx

c write an inequality that relates the sums in b to the integral.

Write down a series which approximates
R1
0
e¡x

2

dx.

R1
0
e¡x

2

dx is the integral of f(x) = e¡x
2

from 0 to 1.

)
R1
0
e¡x

2

dx ¼
1P
i=0

e¡i
2

Example 14

What integral is approximated by the sum
1P
i=2

1

i
?

Now
1

i
comes from the function f(x) =

1

x
, evaluated at x = i,

) since the summation is from 2 to 1, the integral is from 2 to 1 also.

Hence
1P
i=2

1

i
¼
Z 1

2

1

x
dx.

Example 15

EXERCISE 10A.4

This is called the lower sum, and
R1
a
f(x) dx >

1P
i=a

f(i+ 1).

Hence
1P
i=a

f(i+ 1) <
R1
a
f(x) dx <

1P
i=a

f(i).

In a similar way, for any function that is increasing for all x > a, we can choose upper and

lower sums such that
1P
i=a

f(i) <
R1
a
f(x)dx <

1P
i=a

f(i+ 1).
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4 For the function f(x) =
1

x2
:

a show that f(x) is decreasing for all x > 0

b write upper and lower sums that approximate

Z 1

1

1

x2
dx

c write an inequality that relates the sums in b to the integral.

5 For the function f(x) = ¡ 1

x2
:

a show that f(x) is increasing for all x > 0

b write upper and lower sums that approximate

Z 1

1

¡ 1

x2
dx

c write an inequality that relates the sums in b to the integral.

Definition:

A number sequence is a list of numbers in a definite order.

For example, the sequence fang where an =
n

n+ 1
denotes the infinite set of discrete points©
1
2 , 23 , 34 , 45 , ......

ª
.

We can plot n against an to give:

From the graph it appears that the terms of fang are approaching 1 as n becomes larger.

In fact, the difference 1 ¡ n

n+ 1
=

1

n+ 1
can be made as small as we like by taking n

sufficiently large.

We indicate this using a limit by writing lim
n!1

n

n+ 1
= 1. Note that this is actually the

limit of the sequence, which is similar but not quite the same as the limit of a function.

However, as for functions, lim
n!1

an = L means that the terms of fang can be made

arbitrarily close to L by taking n sufficiently large, but it does not necessarily mean that the

values of an ever actually reach L. For example,
n

n+ 1
never actually equals 1.

This definition formalises the limit of a sequence:

Definition:

A sequence fang has a limit L if for every " > 0 there exists a positive integer N such

that jan ¡ Lj < " for all n > N . The limit is denoted by lim
n!1

an = L.

SEQUENCESB

�
a n( )

n

�

An can be considered as a discrete function with domain and
range a subset of .

infinite number sequence Z
R

+
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If lim
n!1

an exists we say the sequence converges. Otherwise, we say it diverges.

Theorem:

If the limit of a sequence exists, it is unique.

Proof:

Suppose that a given sequence fang has a limit L and also a limit L0 where L 6= L0.

Then given any " > 0 there is a positive integer N1 such that jan ¡ Lj < "

2
for all

n > N1, and there is also a positive integerN2 such that jan ¡ L0j < "

2
for all n > N2.

If n > max(N1, N2) then jan ¡ Lj < "

2
and jan ¡ L0j < "

2
.

Consequently if n > max(N1, N2),

jL¡ L0j = jL¡ an + an ¡ L0j
6 jL¡ anj+ jan ¡ L0j by the Triangle Inequality

But jL¡ anj = jan ¡ Lj
) jL¡ L0j 6 jan ¡ Lj+ jan ¡ L0j

<
"

2
+
"

2
< ".

In this section, we use the formal definition of the limit of a sequence to prove limit results for

some particularly important sequences. Before we can do this, however, we consider briefly

the Archimedean Property.

Archimedes of Syracuse stated that for any two line segments, laying the shorter end-to-end

only a finite number of times will always suffice to create a segment exceeding the longer of

the two in length.

This means that:

Given any " > 0, there exists N 2 Z + such that N" > 1.

Result 1: For any real constant c, lim
n!1

c = c.

Proof: For any real constant c, jc¡ cj = 0.

) jc¡ cj < " for all " > 0.

Hence lim
n!1

c = c from the sequence limit definition.

LIMIT THEOREMS FOR SEQUENCES

But L 6= L0 and hence jL¡ L0j 6= 0.

Since jL¡ L0j is a fixed, non-zero number, this contradicts the conclusion that

jL¡ L0j < " for any arbitrary positive number ".

Hence L = L0, i.e., if the limit of a sequence exists then that limit is unique.
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Result 2: lim
n!1

µ
1

n

¶
= 0

Proof: From the Archimedean Property, given any " > 0 there exists N 2 Z + such

that
1

N
< ".

Now if n > N then

¯̄̄̄
1

n
¡ 0

¯̄̄̄
=

1

n
<

1

N
< ".

Hence lim
n!1

µ
1

n

¶
= 0 from the sequence limit definition.

Result 3: If p > 0 then lim
n!1

µ
1

np

¶
= 0.

Proof: Suppose " > 0 is given.

Then as "
1
p
> 0, by the Archimedean Property there exists an integer N

such that

)
1

Np
< "

So, if we suppose that n > N then

¯̄̄̄
1

np
¡ 0

¯̄̄̄
=

¯̄̄̄
1

np

¯̄̄̄
< " for all n > N .

Hence lim
n!1

µ
1

np

¶
= 0 for all p > 0 from the sequence limit definition.

Result 4: If 0 < jcj < 1, then the sequence fcng converges to 0.

Proof: Since 0 < jcj < 1,
1

jcj > 1 and we can let d =
1

jcj ¡ 1 such that d > 0

and jcj = 1

(1 + d)
.

By the Bernoulli Inequality (see Exercise 10A .1), as d > 0,

(1 + d)n > 1 + nd > 0 for all n 2 Z +.

) jcjn =
1

(1 + d)n
6

1

1 + nd
<

1

nd
for all n 2 Z +.

Given " > 0 then "d > 0 and by the Archimedean Property we can choose

an integer N such that N"d > 1, i.e.,
1

Nd
< ".

) jcn ¡ 0j = jcnj = jcjn < 1

nd
6

1

Nd
< " for all integers n > N .

Hence fcng converges to 0 from the sequence limit definition.

N"
1
p
> 1, i.e., "

1
p
>

1

N
.
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Suppose we have sequences of real numbers fang, fbng and fcng where an 6 bn 6 cn

for all n 2 Z . If lim
n!1

an = lim
n!1

cn = L <1 then lim
n!1

bn = L.

Proof:

As L = lim
n!1

an = lim
n!1

cn, given " > 0 there exists a natural number N such that

if n > N then jan ¡ Lj < " and jcn ¡ Lj < " for all n > N

) ¡" < an ¡ L < " and ¡" < cn ¡ L < " for all n > N .

Now an 6 bn 6 cn, so an ¡ L 6 bn ¡ L 6 cn ¡ L.

) ¡" < bn ¡ L < " for all n > N ,

i.e., jbn ¡ Lj < " for all n > N .

Hence

It should be clear that the Squeeze Theorem still holds if the condition an 6 bn 6 cn only

applies for every natural number from some point on, i.e., if there was an n0 2 Z + such that

an 6 bn 6 cn for all n > n0.

The finite number of sequence terms from n = 1 to n = n0 do not affect the ultimate

convergence (or divergence) of the sequence.

The following definition and consequent Lemma are crucial in establishing some basic alge-

braic properties for limits of sequences:

Definition:

A sequence of real numbers fang is said to be bounded if there exists a real number

M > 0 such that janj 6M for all n 2 Z +.

Lemma:

Every convergent sequence is bounded.

Proof:

Let fang be a well-defined sequence where lim
n!1

an = a.

Then if we let " = 1, by the definition of convergence we can select a natural number N

such that jan ¡ aj < 1 for all n > N .

But from Corollary 3 of the Triangle Inequality,

janj ¡ jaj 6 jan ¡ aj < 1 for all n > N .

Hence janj 6 1 + jaj for all n > N .

If we define M = maxf1 + jaj , ja1j , ...., jaN¡1jg then janj 6 M for all n 2 Z +
so long as the series is well defined.

) the sequence fang is bounded.

The Squeeze Theorem:

193SERIES AND DIFFERENTIAL EQUATIONS (Topic 10)

lim
n!1

bn = L.

IBHL_OPT
cyan black

0 5 2
5

7
5

5
0

9
5

1
0
0

0 5 2
5

7
5

9
5

1
0
0

5
0

R:\BOOKS\IB_books\IBHL_OPT\IBHLOPT_10\193IBO10.CDR Wednesday, 16 August 2006 10:26:46 AM PETERDELL



Suppose fang converges to a real number a and fbng converges to a real number b.

Then:

1 lim
n!1

(an + bn) = lim
n!1

an + lim
n!1

bn = a+ b.

2 The sequence fanbng converges and lim
n!1

(anbn) =
³

lim
n!1

an

´³
lim
n!1

bn

´
= ab.

3 If b 6= 0 then lim
n!1

µ
an
bn

¶
=

lim
n!1

an

lim
n!1

bn
=
a

b
.

These results can be extended to finite sums and products of limits using mathematical in-

duction.

Proof of

For n 2 Z +, we have anbn ¡ ab = anbn ¡ anb+ anb¡ ab
= an(bn ¡ b) + b(an ¡ a).

) by the Triangle Inequality,

janbn ¡ abj 6 jan(bn ¡ b)j+ jb(an ¡ a)j = janj jbn ¡ bj+ jbj jan ¡ aj
As fang and fbng are convergent sequences they are bounded,

Hence there exists M1, M2 > 0 such that janj 6M1 and jbnj 6M2 for all n 2 Z +.

If we let M = maxfM1, M2g, then janbn ¡ abj 6 M jbn ¡ bj +M jan ¡ aj for

all n 2 Z +.

For any given " > 0, since lim
n!1

an = a and lim
n!1

bn = b there exist positive inte-

gers N1, N2 such that jan ¡ aj < "

2M
for all n > N1 and jbn ¡ bj < "

2M
for

all n > N2.

Letting N = maxfN1,N2g, we find janbn ¡ abj 6 M
³ "

2M

´
+M

³ "

2M

´
= " for

all .

Hence lim
n!1

(anbn) = ab from the sequence limit definition.

We have applied the formal definition of the limit of a sequence to rigorously establish some

key results for sequences that can now be used to deal very efficiently with more general

sequence limit problems.

SOME ALGEBRA OF LIMITS THEOREMS

by the Lemma.

n > N

2:
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Example 16

If an =
¡
4
5

¢n
+

3

n
¡ 9 for all n 2 Z +, find lim

n!1
an.

By the generalised version of 1 of the Algebra of Limits Theorem,

lim
n!1

·¡
4
5

¢n
+

3

n
¡ 9

¸
= lim

n!1

¡
4
5

¢n
+ lim
n!1

3

n
+ lim
n!1

(¡9)

Since 0 < 4
5 < 1, lim

n!1

¡
4
5

¢n
= 0

Also, lim
n!1

µ
3

n

¶
= lim

n!1
3£ lim

n!1
1

n
= 0,

and lim
n!1

(¡9) = ¡9

) lim
n!1

·¡
4
5

¢n
+

3

n
¡ 9

¸
= 0 + 0¡ 9 = ¡9

Example 17

Let an =
2n2 + 4n¡ 3

n2 ¡ 4 lnn
for all n 2 Z +. Find lim

n!1
an.

We first note by dividing through by n2 that
2n2 + 4n¡ 3

n2 ¡ 4 lnn
=

2 +
4

n
¡ 3

n2

1¡ 4 lnn

n2

) lim
n!1

an =

lim
n!1

µ
2 +

4

n
¡ 3

n2

¶
lim
n!1

µ
1¡ 4 lnn

n2

¶
From result 2 of the limit theorems, lim

n!1
1

n2
= 0

) lim
n!1

µ
2 +

4

n
¡ 3

n2

¶
= lim

n!1
(2) + 4 lim

n!1

µ
1

n

¶
¡ 3 lim

n!1

µ
1

n2

¶
= 2

Now 0 < lnn < n for all n > 1

) 0 <
1 lnn

n2
<

1

n

) 0 <
4 lnn

n2
<

4

n

) by the Squeeze Theorem, lim
n!1

4 lnn

n2
= 0

) lim
n!1

an =
2

1¡ 0
= 2
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Note:

You can use the TI-83 to estimate the limit of a sequence like that above. Start by typing

the sequence rule for an into the graph editor. Go to and set up this editor

shown in the second screen below. Then go to and investigate with some suit-

large values for n.

1 Using the appropriate limit theorems, evaluate lim
n!1

an when it exists, if for all

n 2 Z +, an equals:

a
1

n+ n3
b ln(1 + n)¡ lnn

c
3n2 ¡ 5n

5n2 + 2n¡ 6
d

n(n+ 2)

n+ 1
¡ n3

n2 + 1

e
p
n+ 1¡pn f

µ
2n¡ 3

3n+ 7

¶4
2 Determine if the following sequences converge:

a

½
n!

(n+ 3)!

¾
b

½
1p

n2 + 1¡ n

¾
c

½p
n¡ 1p
n+ 1

¾

d

½
cos2 n

2n

¾
e

½
(¡1)n sin

µ
1

n

¶¾
f

3
p

2n5 ¡ n2 + 4

n2 + 1

If an =
sinn

n
for all n 2 Z +, prove that lim

n!1
an = 0.

We cannot apply the lim
n!1

µ
an
bn

¶
=
a

b
result as neither fsinng nor fng

are convergent sequences.

However, as ¡1 6 sinn 6 1 for all n 2 Z +,

¡ 1

n
6

sinn

n
6

1

n
for all n 2 Z +.

) using the Squeeze Theorem, lim
n!1

µ
sinn

n

¶
= 0.

Example 18

EXERCISE 10B.1

TBLSET

TABLE

Y=

as

ably
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3 Find lim
n!1

an where an =
1

n2
+

2

n2
+

3

n2
+ ::::::+

n

n2
.

4 If n 2 Z +, find: a lim
n!1

µ
1

1 + n

¶n
b lim

n!1

µ
2 +

1

n

¶n
5 Prove part a of the Algebra of Limits Theorems,

i.e., if fang converges to a real number a and fbng converges to a real number b,

then lim
n!1

(an + bn) = lim
n!1

an + lim
n!1

bn = a+ b.

6 Use the formal definition of a limit to prove that for n 2 Z +, lim
n!1

µ
3n+ 5

7n¡ 4

¶
= 3

7 :

7 If lim
n!1

an = a, lim
n!1

bn = b, and ® and ¯ are real constants,

use the Algebra of Limits Theorems to prove that lim
n!1

(®an + ¯bn) = ®a+ ¯b.

Hence prove that lim
n!1

(an ¡ bn) = a¡ b:

A sequence fang is monotonic (monotone) if an+1 > an or an+1 6 an for all n.

To show that a sequence is monotonic we show that either an+1 ¡ an > 0

or that an+1 ¡ an 6 0 for all n 2 Z +.

Alternatively, we can suppose an is represented by a continuous function a (x) such that

an = a(n) for all n 2 Z +. We then prove that for all x > 1, the gradient of a(x) is either

always positive or always negative.

A monotone sequence of real numbers is convergent if and only if it is bounded.

1 a Prove that the sequence with nth term un =
2n¡ 7

3n+ 2
is:

i monotonic increasing ii bounded.

b Determine whether the following sequences are monotonic and calculate their limits

if they exist:

i

½
n¡ 2

n+ 2

¾
ii

½
3n

1 + 3n

¾
iii

½
1

en ¡ e¡n
¾

c Prove that the series

½
1£ 3£ 5£ ::::::£ (2n¡ 1)

2nn!

¾
is convergent.

2 Let u1 =
p

2 and define the sequence fung recursively by un =
p

2 + un¡1.

Put the TI-83 into Sequence mode and input the recursive formula as shown:

The Monotone Convergence Theorem:

EXERCISE 10B.2
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Use to investigate the behaviour of fung. Replace the 2 with other integer

values and investigate.

3 The sequence fxng is defined by x1 = 0, xn =
p

4 + 3xn¡1. Using mathematical

induction, show that fxng is monotonic increasing and bounded. Hence find the exact

value of lim
n!1

xn.

Hint: Suppose lim
n!1

xn = L.

4 a Find the values of 1 +
1

1
, 1 +

1

1 + 1
1

, 1 +
1

1 +
1

1 + 1
1

b Give a recursive definition for the sequence above in terms of un.

c Show that fung is bounded but not monotonic.

d By supposing that lim
n!1

un = L <1, find the exact value of L.

5 a Expand

µ
1 +

1

n

¶n
, n 2 Z +, using the Binomial Theorem.

b Define feng by en =

µ
1 +

1

n

¶n
and show that en equals:

1+1+
1

2!

µ
1¡ 1

n

¶
+

1

3!

µ
1¡ 1

n

¶µ
1¡ 2

n

¶
+ ::::+

1

n!

µ
1¡ 1

n

¶
:::

µ
1¡ n¡ 1

n

¶
c Show that 2 6 en < en+1 for all n 2 Z + and

en < 1 + 1 +
1

2!
+

1

3!
+ ::::+

1

n!
< 1 + 1 +

1

2
+

1

22
+ ::::+

1

2n¡1

d Using c, show that feng is bounded and hence convergent.

e Given that lim
n!1

µ
1 +

1

n

¶n
= e ¼ 2:718, show that lim

n!1

µ
1¡ 1

n

¶n
= e¡1.

f Use e and the Squeeze Theorem to find lim
n!1

µ
n!

nn

¶
.

TABLE
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Let fu1, u2, u3, ......g be an infinite sequence.

We can form a new sequence S1, S2, S3, ...... i.e., fSng by letting

S1 = u1
S2 = u1 + u2

...

Sn = u1 + u2 + :::+ un =
nP
i=1

ui

where Sn, the sum of the first n terms of fung, is called the n

Each term of fSng is a series.

If lim
n!1

Sn =
1P
n=1

un = S exists, the infinite series is convergent.

Otherwise it is divergent.

It is often important to know when lim
n!1

Sn =
1P
n=1

un exists, and if so, what its value is.

In general it is not possible to get an explicit expression for Sn such as that in Example 19.

However, as we shall see, more difficult functions can often be expressed as simpler infinite

series. In fact, great mathematicians such as Euler and Newton did much of their seminal

work using infinite series representations of functions, though it was not until much later

that other mathematicians such as Cauchy and Lagrange rigorously established when such

representations were valid.

Since convergence of a series is in effect convergence of a sequence of partial sums, many

of the sequence results apply. For example:

Let fung be defined by un = rn¡1 where r 6= 0 2 R , n 2 Z +.

Find an expression for Sn, the nth partial sum of fung, which does not involve

a summation.

Sn =
nP
i=1

ui =
nP
i=1

ri¡1

= 1 + r + r2 + ::::::+ rn¡1

) rSn = r + r2 + :::::+ rn

) rSn ¡ Sn = rn ¡ 1

) Sn =
rn ¡ 1

r ¡ 1

Example 19

INFINITE SERIESC
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Theorem:

If
1P
n=1

an and
1P
n=1

bn are convergent series, then

²
1P
n=1

can = c
1P
n=1

an where c is a constant, and

²
1P
n=1

(an § bn) =
1P
n=1

an §
1P
n=1

bn are also both convergent.

However, because the form of the sequence of partial sums is generally too unwieldy to deal

with using our earlier methods, we need a special set of tests and conditions for determining

when the limits of these partial sums exist.

We start with a very useful result that can tell us something either about a series
1P
n=1

an or

its associated sequence of general terms fang:

Theorem:

If the series
1P
n=1

an is convergent then lim
n!1

an = 0.

Proof:

Let Sn = a1 + a2 + :::::+ an

) an = Sn ¡ Sn¡1
Now

1P
n=1

an is convergent, so fSng is convergent (by definition).

Letting lim
n!1

Sn = S, lim
n!1

Sn¡1 = S

) lim
n!1

an = lim
n!1

(Sn ¡ Sn¡1) = S ¡ S = 0

We shall show later that even though lim
n!1

1

n
= 0,

1P
n=1

1

n
diverges extremely slowly.

Therefore, the converse of the above theorem is not true.

However, we may establish the following Test for Divergence.

If lim
n!1

an does not exist or lim
n!1

an 6= 0, then the series
1P
n=1

an is divergent.

In some cases, we can use our previous work on sequences to determine if a given series is

divergent.

THE TEST FOR DIVERGENCE
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The Test for Divergence puts no sign restriction on each term of fang. However, all of the

following series tests only apply to series of positive terms.

Let fang be a positive series i.e., an > 0 for all n.

If there exists a convergent series
1P
n=1

bn such that an 6 bn,

then
1P
n=1

an is also convergent.

Conversely, if an > bn and
1P
n=1

bn diverges, then so does
1P
n=1

an.

Proof of the first part:

Let fAng and fBng be the sequences of partial sums associated with an and bn

respectively.

As an, bn > 0, fAng and fBng are monotonic increasing.

If lim
n!1

Bn = B then 0 6 An 6 Bn 6 B.

) An is also a bounded monotonic sequence and therefore converges by the Monotone

Convergence Theorem.

With a minor adjustment to the proof the result can be shown to hold if an > 0 for all n.

However, the difficulty with the Comparison Test is in finding a suitable
1P
n=1

bn.

An appropriate geometric series often tends to work. Indeed, convergent geometric series are

used in the proofs of some of the most general and important convergence tests.

THE COMPARISON TEST

Show that the series
1P
n=1

n2

5n2 + 4
diverges.

The nth term of the series is an =
n2

5n2 + 4
.

) lim
n!1

an = lim
n!1

n2

5n2 + 4

= lim
n!1

1

5 +
4

n2

= 1
5 6= 0

) the series diverges.

Example 20
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Now we cannot use the Comparison Test to test the series
1P
n=1

1

2n ¡ 1
for convergence.

However, the next test may be useful when the Comparison Test cannot be applied directly:

Suppose that
1P
n=1

an and
1P
n=1

bn are series with positive terms.

1 If lim
n!1

an
bn

= c > 0 then both series either converge or diverge together.

2 If lim
n!1

an
bn

= 0 and
1P
n=1

bn converges, then
1P
n=1

an converges.

3 If lim
n!1

an
bn

= 1 and
1P
n=1

bn diverges, then
1P
n=1

an diverges.

Proof of

Let 0 < " =
c

2
.

Since lim
n!1

an
bn

= c, using the definition of a limit, there exists N such that¯̄̄̄
an
bn
¡ c
¯̄̄̄
<
c

2
for all n > N

) ¡ c
2
<
an
bn
¡ c < c

2

)
c

2
<
an
bn
<

3c

2

) bn

³ c
2

´
< an <

µ
3c

2

¶
bn for all n > N

Test the series
1P
n=1

1

2n + 1
for convergence.

Now 2n is positive for all n, and 2n + 1 > 2n.

) 0 <
1

2n + 1
<

1

2n
=
¡
1
2

¢n
for all n 2 Z +.

But
1P
n=1

¡
1
2

¢n
is a convergent geometric series and therefore, by the Comparison

Test,
1P
n=1

1

2n + 1
converges.

Example 21

THE LIMIT COMPARISON TEST

1:
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Now if
1P
n=1

bn converges then so does
1P
n=1

µ
3c

2

¶
bn.

Hence by the Comparison Test,
1P
n=1

an also converges.

However, if
1P
n=1

bn diverges then so does
1P
n=1

³ c
2

´
bn.

Hence by the Comparison Test,
1P
n=1

an also diverges.

The Integral Test links the sum of a series to the integral of a positive function.

We remember from Section A that if a is an integer,
1P
i=a

f(i) ¼ R1
a
f(x) dx

In particular, when a = 1,
1P
i=1

f(i) ¼ R1
1
f(x) dx

Suppose that f is a continuous, positive decreasing function on [1, 1] and an = f(n).

1 If
R1
1
f(x) dx is convergent, then

1P
n=1

an is convergent.

2 If
R1
1
f(x) dx is divergent, then

1P
n=1

an is divergent.

Clearly this test is only of practical use if
R1
1
f(x) dx can be evaluated relatively easily.

Proof of

If f (x) is a positive decreasing function, then we can approximate the integral
R1
1
f(x) dx

using lower and upper sums. This process was discussed in Section A of the chapter, and

Test the series
1P
n=1

1

2n ¡ 1
for convergence or divergence.

We let an =
1

2n ¡ 1
and bn =

1

2n
.

Then lim
n!1

an
bn

= lim
n!1

2n

2n ¡ 1

= lim
n!1

1

1¡ ¡12¢n
= 1

So by 1 above, since
1P
n=1

1

2n
converges,

1P
n=1

1

2n ¡ 1
converges also.

Example 22

THE INTEGRAL TEST

1:
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is illustrated in the diagrams below.

From the diagram on the left, we find that the lower sum

a2 + a3 + :::::+ an + :::::: 6
R1
1
f(x) dx

)
1P
n=1

an 6 a1+
R1
1
f(x) dx

And from the diagram on the right, we find that the upper sum

a1 + a2 + :::::+ an + :::::: >
R1
1
f(x) dx

)
R1
1
f(x) dx 6

1P
n=1

an

Hence,
R1
1
f(x) dx 6

1P
n=1

an 6 a1 +
R1
1
f(x) dx

Therefore, if
R1
1
f(x) dx converges then

1P
n=1

an is bounded and increasing, and hence

convergent also.

Note:

We can use the TI-83 to help us estimate
R1
1
f(x) dx:

Go to then 9:fnInt(. Press enter and put in f(x) and a suitably large upper

integral limit as shown:

Test
1P
n=1

1

n2 + 1
for convergence.

f(x) =
1

x2 + 1
is continuous, positive and decreasing for x > 1.

) the conditions for the Integral Test are satisfied.

Example 23

1 2 3 n

ax
ac

an

y x��( )

1 2 3 n

ax

az

an

y x��( )
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Now
R1
1
f(x)dx =

Z 1

1

1

x2 + 1
dx

= lim
b!1

Z b

1

1

x2 + 1
dx

= lim
b!1

£
tan¡1 x

¤b
1

= lim
b!1

¡
tan¡1 b¡ ¼

4

¢
= ¼

2 ¡ ¼
4 = ¼

4

)
R1
1
f(x) dx is convergent and therefore, so is

1P
n=1

1

n2 + 1
.

The series
1P
n=1

1

np
is called the p-series, and can be used to rapidly test the convergence

of series of that form.

For example, the series
1P
n=1

1p
n

=
1P
n=1

1

n0:5
is divergent because it is the p-series with

p = 1
2 < 1.

For what values of p is the series
1P
n=1

1

np
convergent?

Now if p < 0 then lim
n!1

1

np
=1, and if p = 0 then lim

n!1
1

np
= 1.

In both of these cases, lim
n!1

1

np
6= 0, so by the Test for Divergence, the series

diverge.

But for p > 0, lim
n!1

1

np
= 0, and since the function f(x) =

1

xp
is continuous,

positive and decreasing on [1, 1], we can apply the Integral Test:Z 1

1

1

xp
dx =

·
1

1¡ px
1¡p
¸1
1

=
1

1¡ p lim
b!1

b1¡p ¡ 1

1¡ p

=

8<: 0¡ 1

1¡ p if p > 1

1 if 0 < p 6 1

) by the Integral Test, the series
1P
n=1

1

np
converges if p > 1

and diverges if p 6 1.

Example 24

205SERIES AND DIFFERENTIAL EQUATIONS (Topic 10)

IBHL_OPT
cyan black

0 5 2
5

7
5

5
0

9
5

1
0
0

0 5 2
5

7
5

9
5

1
0
0

5
0



y

xk k�� k�� k��

y x��( )

ak��

ak��

ak��

ak��

ak��

206 SERIES AND DIFFERENTIAL EQUATIONS (Topic 10)

Suppose we can use the Integral Test to show that
1P
n=1

an is convergent, where

an = f(n).

a Show that the error Rk in approximating
1P
n=1

an by a1 + a2 + ::::::+ ak

for some k 2 Z + satisfies
R1
k+1

f(x) dx < Rk <
R1
k
f(x) dx.

b Hence determine the number of terms necessary to approximate
1P
n=1

1

n3
correct to two decimal places.

a The error Rk = S ¡ Sk =
1P
n=1

an ¡
kP

n=1
an = ak+1 + ak+2 + ak+3 + ::::::

From the areas of lower rectangles

in the diagram below, we deduce

Rk = ak+1 + ak+2 + ak+3 + ¢ ¢ ¢ < R1
k
f(x) dx

Then, using the upper rectangles from x = k + 1 onwards, we deduce

Rk = ak+1 + ak+2 + ak+3 + ¢ ¢ ¢ > R1
k+1

f(x) dx

Hence
R1
k+1

f(x) dx < Rk <
R1
k
f(x) dx as required.

b For the sum
1P
n=1

1

n3
, we have f (x) =

1

x3
.

Hence Rk <

Z 1

k

1

x3
dx = lim

b!1

·
¡ 1

2x2

¸b
k

= lim
b!1

µ
¡ 1

2b2
+

1

2k2

¶
=

1

2k2

To approximate the sum correctly to two decimal places, we require

Rk < 0:005 = 1
200

) we need
1

2k2
< 1

200 ) k2 > 100 ) k > 10 fas k > 0g
Hence we require 11 terms to correctly approximate

1P
n=1

1

n3
to 2 d.p.

If we approximate
1P
n=1

an by the sum of its first k terms,

i.e.,
1P
n=1

an ¼ a1 + a2 + ::::::+ ak for some k 2 Z +, then

the error Rk in approximation satisfies
R1
k+1

f(x) dx < Rk <
R1
k
f(x) dx.

Example 25

In part a of Example 25 above, we proved the following result for approximating an infinite

series with a finite truncation. Note that this only applies when f is a continuous, positive,

decreasing function on (k, 1), i.e., to series for which we can apply the Integral Test.
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1 Determine whether the following series are convergent or divergent using the Comparison

Test or Test for Divergence.

a

1X
n=1

1

e2n
b

1X
n=1

n2

3(n+ 1)(n+ 2)

c

1X
n=1

3n + 2n

6n
d

1X
n=1

µ
1

n
¡ 1

n2

¶

2 Use the Limit Comparison Test with bn =
2p
n3

to show the series

1X
n=1

2n2 + 3np
5 + n7

is convergent.

3 Determine whether

1X
n=1

1

nn
and

1P
n=1

1

n!
are convergent using the Comparison Test.

4 Determine whether the following series converge or diverge using the Comparison Test

or Limit Comparison Test.

a

1X
n=1

1p
n(n+ 1)(n+ 2)

b

1X
n=2

1
3
p
n(n+ 1)(n¡ 1)

c

1X
n=1

sin2 n

n
p
n

d

1X
n=2

p
n

n¡ 1
e

1X
n=1

1 + 2n

1 + 3n
f

1X
n=2

1

lnn

5 Find all the values of x 2 [0, 2¼] for which the series
1P
n=0

2n jsinn xj converges.

6 Find c if
1P
n=2

(1 + c)¡n = 2.

7 Use the Integral Test to determine whether the following series converge:

a

1X
n=1

n

n2 + 1
b

1X
n=1

ne¡n
2

c

1X
n=1

lnn

n
d

1X
n=2

1

n lnn

8 Show that ¼
4 <

1P
n=1

1

n2 + 1
< 1

2 + ¼
4 .

9 Determine the values of p for which the series

1X
n=2

1

np lnn
converges.

10 a Estimate the error when

1X
n=1

1

5n2
is approximated by its first 12 terms.

b How many terms are necessary to approximate

1X
n=1

1

n4
correct to 6 decimal

places?

EXERCISE 10C.1
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11 Suppose
1P
n=1

an is convergent where an 6= 0. Prove that
1P
n=1

1

an
is divergent.

12 The nth partial sum of a series
1P
n=1

an is Sn =
n¡ 1

n+ 1
.

Find an and write
1P
n=1

an in expanded form.

13 The first few partial sums of the series
1P
n=1

n

(n+ 1)!

can be evaluated quickly and exactly using the TI-83:

Go to then OPS, 6:CumSum( and press En-

ter. Then , OPS then 5:Seq( and Enter. Then

use and 1:Frac to obtain the screen alongside.

a In a similar manner, find the partial sums S4,

S5 and conjecture a formula for Sn for the se-

ries
1P
n=1

n

(n+ 1)!
.

b Use mathematical induction to prove your conjecture.

c Show that the given infinite series is convergent and find its sum.

14 The harmonic series is defined by
1P
n=1

1

n
= 1 + 1

2 + 1
3 + 1

4 + ::::::

Consider the following sequence of partial sums for the harmonic series:

S1 = 1

S2 = 1 + 1
2

S4 = 1 + 1
2 +

¡
1
3 + 1

4

¢
> 1 + 1

2 +
¡
1
4 + 1

4

¢
= 1 + 2

2

S8 = 1 + 1
2 +

¡
1
3 + 1

4

¢
+
¡
1
5 + 1

6 + 1
7 + 1

8

¢
> 1 + 1

2 +
¡
1
4 + 1

4

¢
+
¡
1
8 + 1

8 + 1
8 + 1

8

¢
= 1 + 3

2

a Use the same method to find an inequality involving S16.

b Conjecture an inequality involving S2m , m 2 Z +. Prove your conjecture by

mathematical induction.

c Show that S2m !1 as m!1 and hence prove that fSng is divergent.

Consider the series

1X
n=1

µ
1

n
¡ 1

n+ 1

¶
.

We could separate it into the difference

1X
n=1

1

n
¡

1X
n=1

1

n+ 1
. However, since both

1X
n=1

1

n

2nd LIST

2nd LIST

MATH

TELESCOPING SERIES
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and
1P
n=1

1

n+ 1
are divergent, this tells us nothing about the convergence or divergence of

the whole series.

However,
1

n
¡ 1

n+ 1
=

1

n(n+ 1)
, and we can show

1X
n=1

1

n(n+ 1)
is convergent by

comparison with

1X
n=1

1

n2
. We therefore know that

1X
n=1

µ
1

n
¡ 1

n+ 1

¶
is in fact con-

vergent, but do not yet know what it converges to.

Now if we expand the first n terms of the series, we obtain:
nX
r=1

µ
1

r
¡ 1

r + 1

¶
= 1

1 ¡ 1
2 + 1

2 ¡ 1
3 + ::::::+

1

n¡ 1
¡ 1

n
+ ¡ 1

n+ 1

= 1¡ 1

n+ 1

)

1X
n=1

µ
1

n
¡ 1

n+ 1

¶
= lim

n!1

nX
r=1

µ
1

r
¡ 1

r + 1

¶

= lim
n!1

µ
1¡ 1

n+ 1

¶
= 1

This type of series is called a telescoping series because, like drawing in a telescope, the

intermediate sections disappear.

By the telescoping process, we can not only establish the convergence of the series, but also

the value of the limit.

If an is a rational function, we can often obtain a telescoping series for
1P
n=1

an by express-

ing an in terms of partial fractions. Using this method, we take the rational function and

rewrite it as the sum of several fractions with linear denominators.

Use partial fractions to express
n¡ 1

n (n+ 1)
as the sum of fractions with linear

denominators.

Example 26

PARTIAL FRACTIONS

1

n

f gas all terms cancel except the first and last
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Evaluate
1

1£ 3
+

1

3£ 5
+

1

5£ 7
+ :::: =

1X
n=1

1

(2n¡ 1)(2n+ 1)
.

Suppose
1

(2n¡ 1)(2n+ 1)
´ A

(2n¡ 1)
+

B

(2n+ 1)

´ A(2n+ 1) +B(2n¡ 1)

(2n¡ 1)(2n+ 1)

´ (2A+ 2B)n+ (A¡B)

(2n¡ 1)(2n+ 1)

Equating coefficients, 2A+ 2B = 0 and A¡B = 1

Solving these simultaneously, A = 1
2 and B = ¡1

2 .

So
1

(2n¡ 1)(2n+ 1)
´ 1

2

·
1

(2n¡ 1)
¡ 1

(2n+ 1)

¸

)

nX
r=1

1

(2r ¡ 1)(2r + 1)
= 1

2

£¡
1
1 ¡ 1

3

¢
+
¡
1
3 ¡ 1

5

¢
+ :::::

+

µ
1

2n¡ 3
¡ 1

2n¡ 1

¶
+

µ
1

2n¡ 1
¡ 1

2n+ 1

¶¸
= 1

2

·
1¡ 1

2n+ 1

¸
)

1X
n=1

1

(2n¡ 1)(2n+ 1)
= 1

2 lim
n!1

·
1¡ 1

2n+ 1

¸
= 1

2

Example 27

Suppose
n¡ 1

n (n+ 1)
´ A

n
+

B

n+ 1

´ A (n+ 1) +Bn

n (n+ 1)

´ (A+B)n+A

n (n+ 1)

Equating coefficients, A+B = 1 and A = ¡1.

) B = 2

and hence
n (n+ 1)

= ¡ 1

n
+

2

n+ 1

n¡ 1
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Thus far, we have only dealt with series with only positive terms.

An alternating series is one whose terms are alternately positive and negative.

e.g. 1¡ 1
2 + 1

4 ¡ 1
8 + 1

16 ¡ 1
32 + ::::::

If the alternating series
1P
n=1

(¡1)n¡1bn = b1 ¡ b2 + b3 ¡ :::: satisfies

0 6 bn+1 6 bn for all n 2 Z +, and if lim
n!1

bn = 0,

then the series is convergent.

Note: The theorem also applies if the first term is negative, since we could simply

consider the series without the first term.

Proof:

Now the (2n+ 2)th partial sum of the series is

S2n+2 = b1 ¡ b2 + ::::::¡ b2n + b2n+1 ¡ b2n+2,
where the bi are all non-negative and non-increasing.

We therefore find that S2n+1 = S2n + b2n+1

S2n+2 = S2n + b2n+1 + b2n+2

S2n+3 = S2n+1 + b2n+2 + b2n+3

= S2n+2 + b2n+3

Since b2n+1 > b2n+2 > b2n+3, we have S2n+1 > S2n+3 > S2n+2 > S2n.

Also, S2n+2 = (b1 ¡ b2) + (b3 ¡ b4) + (b5 ¡ ::::::¡ b2n) + (b2n+1 ¡ b2n+2).
Because the bi are non-increasing, each expression in brackets is > 0.

Hence Sn > 0 for any even n, and since S2n+1 > S2n+2, Sn > 0 for all n.

Finally, since S2n+1 6 b1, we conclude that

b1 > S2n+1 > S2n+3 > S2n+2 > S2n > 0.

Hence the even partial sums S2n and the odd partial sums S2n+1 are bounded. The S2n
are monotonically non-decreasing, while the odd sums S2n+1 are monotonically non-

increasing. Thus the even and odd series both converge.

We note that since S2n+1 ¡ S2n = b2n+1, the sums converge to the same limit if and

only if lim
n!1

bn = 0.

The convergence process is illustrated in the following diagram.

ALTERNATING SERIES

THE ALTERNATING SERIES TEST
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Note that if 0 6 bn+1 6 bn for all n 2 Z + but lim
n!1

bn 6= 0, then the series will

eventually oscillate between two points. These points are those to which the even partial

sums S2n and the odd partial sums S2n+1 converge, i.e., lim
n!1

S2n and lim
n!1

S2n+1.

Definition:

Suppose a convergent infinite series converges to a sum S.

The truncation error Rn involved in using the nth partial sum Sn as an estimate of the

sum S is defined by Rn = jS ¡ Snj.

If S =
1P
n=1

(¡1)
n¡1

bn is the sum of an alternating series satisfying

0 6 bn+1 6 bn for all n 2 Z + and lim
n!1

bn = 0

then Rn = jS ¡ Snj 6 bn+1.

Show that 1¡ 1
2 + 1

3 ¡ 1
4 + ::::: =

1P
n=1

(¡1)n¡1

n
converges.

This is an alternating series for which bn =
1

n
.

Since
1

n+ 1
<

1

n
, the series satisfies 0 < bn+1 < bn for all n 2 Z +.

Also lim
n!1

bn = lim
n!1

1

n
= 0

)
1P
n=1

(¡1)n¡1

n
converges by the Alternating Series Test

(even though we have already shown that
1P
n=1

1

n
is not convergent).

Example 28

The Alternating Series Estimation Theorem:

0
bz

0
b bz x�

0
b b bz x c� �

0

b b b bz x c v� � �

0

even partial sums odd partial sums

n
n

S
��

lim
bz

0

even partial sums odd partial sums

12lim �
��

n
n

S2lim
��

n
n

S

bz
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Proof:

S ¡ Sn =
1P
k=1

(¡1)
k¡1

bk ¡
nP
k=1

(¡1)
k¡1

bk

= (¡1)nbn+1 + (¡1)n+1bn+2 + :::::

= (¡1)n [(bn+1 ¡ bn+2) + (bn+3 ¡ bn+4) + :::::]

But since br+1 6 br for all r 2 Z +,

bn+r+1 6 bn+r for all r 2 Z +.

) bn+r > bn+r+1 for all r 2 Z +.

) (bn+1 ¡ bn+2) + (bn+3 ¡ bn+4) + ::::: > 0

i.e, Rn = jS ¡ Snj = (bn+1 ¡ bn+2) + (bn+3 ¡ bn+4) + :::::

Rearranging the brackets, we could alternatively write

Rn = bn+1 ¡ (bn+2 ¡ bn+3)¡ (bn+4 ¡ bn+5)¡ :::::
= bn+1 ¡ [(bn+2 ¡ bn+3) + (bn+4 ¡ bn+5) + :::::: ]

6 bn+1 since [(bn+2 ¡ bn+3) + (bn+4 ¡ bn+5) + :::::: ] > 0

Find the sum of
1P
n=1

(¡1)n¡1

n!
correct to 3 decimal places.

This is an alternating series for which bn =
1

n!

Now 0 <
1

(n+ 1)!
<

1

n!

) 0 < bn+1 < bn for all n 2 Z +

Also, 0 <
1

n!
<

1

n

) since lim
n!1

1

n
= 0 and lim

n!1
1

n!
= lim
n!1

bn = 0 by the Squeeze Theorem

) the series converges by the Alternating Series Test.

S = 1¡ 1
2 + 1

6 ¡ 1
24 + 1

120 ¡ 1
720 + 1

5040 + ::::::

Notice that b7 = 1
5040 <

1
2000 = 0:0005

and S6 = 1¡ 1
2 + 1

6 ¡ 1
24 + 1

120 ¡ 1
720 = 0:631 944

Now by the Estimation Theorem, jS ¡ S6j 6 b7.
) 0:631 944¡ 1

5040 6 S 6 0:631 944 + 1
5040

i.e., 0:6317456 6 S 6 0:6321424

) S + S6 = 0:632 (3 d.p.)

Example 29
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Given any series
1P
n=1

an we can consider the corresponding series

1P
n=1

janj = ja1j+ ja2j+ :::::

whose terms are the absolute values of the terms of the original series.

Clearly if an > 0 for all n, absolute convergence is the same as convergence.

A series such as
1P
n=1

(¡1)n¡1

n
which is convergent but not absolutely convergent, is called

conditionally convergent.

So what is important about absolute and conditional convergence?

For example, let S = 1¡ 1
2 + 1

3 ¡ 1
4 + 1

5 ¡ 1
6 + :::::: (1)

Then 1
2S = 1

2 ¡ 1
4 + 1

6 ¡ 1
8 + ::::::

or 1
2S = 0 + 1

2 + 0¡ 1
4 + 0 + 1

6 + 0¡ 1
8 + :::::: (2)

Adding (1) and (2) gives 3
2S = 1 + 0 + 1

3 ¡ 1
2 + 1

5 + 0::::::

i.e., 3
2S = 1 + 1

3 ¡ 1
2 + 1

5 + ::::::

Thus we get a rearrangement of the original series with a different sum! In fact, Riemann

showed that by taking groups of sufficiently large numbers of negative or positive terms, it

is possible to rearrange a conditionally convergent series so it adds up to any arbitrary real

value.

Theorem of Absolute Convergence:

If a series
1P
n=1

an is absolutely convergent then it is convergent.

Proof:

By definition of absolute value, ¡ janj 6 an 6 janj
) 0 6 an + janj 6 2 janj

Now if
1P
n=1

an is absolutely convergent then 2
1P
n=1

janj is convergent.

ABSOLUTE AND CONDITIONAL CONVERGENCE

214 SERIES AND DIFFERENTIAL EQUATIONS (Topic 10)

A series
1P
n=1

an is absolutely convergent if the series of absolute values
1P
n=1

janj is

convergent.

We are all familiar with the concept that a+ b = b+ a. Furthermore, if we have a finite

sum
NP
n=1

an, then we can also reorder the terms without affecting the sum. Infinite series

which are absolute convergent behave like finite series, so for these we can again reorder the

terms of the series without affecting the sum. However, the same is not true for conditionally

convergent series!
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) by the Comparison Test,
1P
n=1

(an + janj) is convergent.

But
1P
n=1

an =
1P
n=1

(an + janj)¡
1P
n=1

janj since the series is absolutely convergent.

) since
1P
n=1

(an + janj) and
1P
n=1

janj are both convergent,
1P
n=1

an is convergent.

The Ratio Test is very useful for determining whether a general series is absolutely convergent,

and hence convergent:

1 If lim
n!1

¯̄̄̄
an+1
an

¯̄̄̄
< 1, then

1P
n=1

an is absolutely convergent.

2 If lim
n!1

¯̄̄̄
an+1
an

¯̄̄̄
> 1, then

1P
n=1

an is divergent.

3 If lim
n!1

¯̄̄̄
an+1
an

¯̄̄̄
= 1, the Ratio Test is inconclusive.

Proof of

Let un = janj, with an 6= 0 for all n 2 Z +.

Suppose that lim
n!1

un+1
un

= L < 1, so given " > 0 there exists a positive integer N

such that

¯̄̄̄
un+1
un

¡ L
¯̄̄̄
< " for all n > N .

In particular, as L < 1 we can choose r such that L < r < 1 and let " = r¡L > 0.

Show that

1X
n=1

cosn

n2
is convergent.

Now

1X
n=1

cosn

n2
=

cos 1

12
+

cos 2

22
+ ::::: has terms with different signs, but is

not an alternating series.

However,
¯̄̄cosn

n2

¯̄̄
6

1

n2
for all n 2 R , and

1P
n=1

1

n2
is convergent.

) by the Comparison Test,

1X
n=1

¯̄̄cosn

n2

¯̄̄
is convergent, and by the Theorem

of Absolute Convergence, so is

1X
n=1

cosn

n2
.

Example 30

THE RATIO TEST

1:
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Now

¯̄̄̄
un+1
un

¡ L
¯̄̄̄
< "

)
un+1
un

¡ L < "

)
un+1
un

< "+ L

i.e.,
un+1
un

< r

) since n > N , uN+1 < ruN

uN+2 < ruN+1 < r
2uN

uN+3 < ruN+2 < r
3uN etc.

) uN+1 + uN+2 + uN+3 + ¢ ¢ ¢ < uN (r + r2 + r3 + ¢ ¢ ¢)
Since 0 < r < 1, r + r2 + r3 + :::::: is a convergent geometric series.

) by the Comparison Test, uN+1 + uN+2 + uN+3 + :::::: is also convergent.

) since u1 + u2 + u3 + ¢ ¢ ¢+ uN <1,
1P
n=1

un =
1P
n=1

janj is convergent.

1 Use telescoping series to find: a

1X
r=1

1

r(r + 2)
b

1X
r=1

1

r(r + 1)(r + 2)

Test an = (¡1)n
n3

3n
for absolute convergence.

Using the Ratio Test,

¯̄̄̄
an+1
an

¯̄̄̄
=

¯̄̄̄
¯̄̄ (n+ 1)3

3n+1

n3

3n

¯̄̄̄
¯̄̄

=
(n+ 1)3

3n+1
£ 3n

n3

= 1
3

µ
n+ 1

n

¶3
= 1

3

µ
1+

1

n

¶3
Now lim

n!1
1
3

µ
1+

1

n

¶3
= 1

3 < 1

)
1P
n=1

(¡1)n
n3

3n
is absolutely convergent.

Example 31
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2 The Fibonacci sequence is defined by the equations: f1 = 1

f2 = 1

fn = fn¡1 + fn¡2, n > 3

Prove: a
1

fn¡1fn+1
=

1

fn¡1fn
¡ 1

fnfn+1
b

1X
n=2

1

fn¡1fn+1
= 1

3 Find a simplified form for

nX
r=1

¡p
r + 1¡pr¢.

Hence prove that

1X
r=1

¡p
r + 1¡pr¢ diverges.

4 Evaluate
1P
n=1

h
sin
¡
1
n

¢¡ sin
³

1
n+1

´i
.

5 Find the values of x for which the series

1X
n=1

1

(x+ n)(x+ n¡ 1)
converges.

6 Show that
1P
n=1

1¡ n
n2

and
1P
n=1

1

n
¡

1P
n=1

1¡ n
n2

diverge, but

1P
n=1

1

n
¡

1P
n=1

n¡ 1

n2
converges.

7 Test these series for convergence or divergence:

a
1

ln 2
¡ 1

ln 3
+

1

ln 4
¡ 1

ln 5
+ ::::::: b

1X
n=1

(¡1)n¡1
p
n

n+ 4

c
1P
n=1

(¡1)n
nn

n!
d

1P
n=1

(¡1)n sin
¡
¼
n

¢
e

1P
n=2

(¡1)n¡1

3
p

lnn
f

1P
n=1

sin
¡
n¼
2

¢
n!

g
1P
n=0

(¡1)n

2nn!
h

1P
n=1

(¡1)n+1
n2

n3 + 1

8 Approximate the sum of each series to the indicated level of accuracy:

a

1X
n=1

(¡1)n+1

n!
(error < 0:01) b

1X
n=1

(¡1)n¡1

(2n¡ 1)!
(4 d.p.)

c

1X
n=0

(¡1)n

2nn!
(4 d.p.)
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Estimate the error in using the 10th partial sum to approximate the total sum.

10 Work through the following proof of the Alternating Series test:

a We first consider the even partial sums:

i Explain why S2 = b1 ¡ b2 > 0.

ii Show that S4 > S2. Hence prove that in general S2n > S2n¡2 and

0 6 S2 6 S4 6 ::::::: 6 S2n 6 ::::::

iii Show that S2n = b1 ¡ (b2 ¡ b3)¡ (b4 ¡ b5) ::::::: (b2n¡2 ¡ b2n)¡ b2n and

S2n 6 b1.

Hence prove that S2n is convergent. Let lim
n!1

S2n = S.

b Now for the odd partial sums:

i Show that S2n+1 = S2n + b2n+1.

ii Show that if lim
n!1

bn = 0 then lim
n!1

S2n+1 = S and hence lim
n!1

Sn = S.

11 Determine whether these series are absolutely convergent, conditionally convergent, or

divergent:

a

1X
n=1

(¡3)n

n!
b

1X
n=1

(¡1)
n 2n

n2 + 1

c

1X
n=1

(¡1)n
arctann

n3
d

1X
n=1

µ
1¡ 3n

3 + 4n

¶n

12 a Show that

1X
n=0

xn

n!
converges for all x 2 R .

b Deduce that lim
n!1

xn

n!
= 0 for all x 2 R .

13 Test these series for convergence or divergence:

a

1X
n=0

10n

n!
b

1X
n=1

1p
n(n+ 1)

c

1X
n=1

2n

8n¡ 5
d

1X
n=1

cos
¡
n
2

¢
n2 + 4n

e
1P
n=2

n3 + 1

n4 ¡ 1

14 Test the series
1P
n=1

1

n2
and

1P
n=1

1

n
for absolute convergence using the Ratio Test.

9 Find the first 10 partial sums of the series

1X
n=1

(¡1)n¡1

n3
using the TI-83 or otherwise.
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f

1X
n=0

n!

2£ 5£ 8£ ::::::£ (3n+ 2)
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An important application of the Ratio Test is determining convergence of Power Series. These

are series of the form
1P
n=0

cnx
n = c0 + c1x+ c2x

2 + ::::::

or more generally
1P
n=0

cn(x¡ a)n = c0 + c1(x¡ a) + c2(x¡ a)2 + ::::::

The convergence of a Power Series will usually depend on the value of x.

For example, consider the power series
1P
n=0

cnx
n where cn = 1 for all n. This is in fact

the geometric series 1 + x2 + x3 + x4 + ::::::, which converges for all jxj < 1.

POWER SERIES

For what values of x is
1P
n=1

(x¡ 3)n

n
convergent?

Let an =
(x¡ 3)n

n
, so

¯̄̄̄
an+1
an

¯̄̄̄
=

¯̄̄̄
(x¡ 3)n+1

n+ 1
£ n

(x¡ 3)n

¯̄̄̄

=

¯̄̄̄
(x¡ 3)n

n+ 1

¯̄̄̄

=

¯̄̄̄
(x¡ 3)

1 + 1
n

¯̄̄̄

) lim
n!1

¯̄̄̄
an+1
an

¯̄̄̄
= jx¡ 3j

By the Ratio Test,
1P
n=1

an is divergent if jx¡ 3j > 1, but is absolutely

convergent and hence convergent if jx¡ 3j < 1

) ¡1 < x¡ 3 < 1

) 2 < x < 4

For jx¡ 3j = 1, the Ratio Test is inconclusive, so we consider the x = 2

and x = 4 cases separately:

For x = 2,
1P
n=1

an =
1P
n=1

(¡1)n

n
, which is conditionally convergent by the

Alternating Series Test.

For x = 4,
1P
n=1

an =
1P
n=1

1

n
which is the p-series with p = 1 and hence is

divergent.

So,
1P
n=1

an converges for 2 6 x < 4.

Example 32
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i.e., x 2 ] 2, 4 [

2 6 x < 4, i.e., x 2 [ 2, 4 [ .
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Theorem:

If a power series
1P
n=0

anx
n is absolutely convergent when x = b (b 6= 0) then it is

convergent whenever 0 6 jxj < jbj.

Proof:

janxnj =
¯̄̄̄
anb

nxn

bn

¯̄̄̄
= janbnj £

¯̄̄³x
b

´n ¯̄̄
< janbnj since jxj < jbj

But
1P
n=0

janbnj is convergent, so by the Comparison Test,

1P
n=0

janxnj is also convergent.

)
1P
n=0

anx
n is absolutely convergent.

Theorem:

For a power series
1P
n=0

cn(x¡ a)n, there exist only three possibilities for convergence:

² the series converges only when x = a

² the series converges for all x 2 R
² there exists R 2 R + such that the series converges if jx¡ aj < R

and diverges if jx¡ aj > R.

Definition:

A power series has a radius of convergence R if R is the greatest number such that

the series converges for all jx¡ aj < R and diverges for all jx¡ aj > R.

The radius of convergence may be determined by the Ratio Test.

If the power series converges for all x 2 R we say that R = 1.

If it diverges, or converges only for the single point x = a we say that R = 0.

Definition:

The interval of convergence I is the set of all points for which the power series converges.

Most of the interval of convergence may be deduced from the radius of convergence. However,

we need to consider convergence for the cases jx¡ aj = R separately.
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Theorem:

Find the radius and interval of convergence for
1P
n=0

(¡3)nxnp
n+ 1

:

Let an =
(¡3)nxnp
n+ 1

, so

¯̄̄̄
an+1
an

¯̄̄̄
=

¯̄̄̄
(¡3)n+1xn+1p

n+ 2
£
p
n+ 1

(¡3)nxn

¯̄̄̄

= 3 jxj
r
n+ 1

n+ 2

= 3 jxj
s

1 + 1
n

1 + 2
n

) lim
n!1

¯̄̄̄
an+1
an

¯̄̄̄
= 3 jxj

) by the Ratio Test,
1P
n=0

an converges if 3 jxj < 1, i.e., jxj < 1
3 ,

and diverges if 3 jxj > 1, i.e., jxj > 1
3 .

) the radius of convergence R = 1
3 .

For the interval of convergence, we consider what happens when x = §1
3 .

If x = ¡1
3 ,

1P
n=0

an =
1X
n=0

(¡3)n
¡¡1

3

¢n
p
n+ 1

=
1X
n=0

1p
n+ 1

Letting r = n+ 1,

1P
n=0

an =
1P
r=1

1

r0:5
which diverges by the p-series test.

If x = 1
3 ,

1P
n=0

an =
1X
n=0

(¡3)n
¡
1
3

¢n
p
n+ 1

=
1X
n=0

(¡1)np
n+ 1

So, the interval of convergence of
1P
n=0

an is
¤¡1

3 ;
1
3

¤
.

Example 33

DIFFERENTIATION AND INTEGRATION OF POWER SERIES
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which converges by the Alternating Series Test.

A power series can be differentiated or integrated term by term over any interval lying

entirely within its interval of convergence.

If f(x) =
1X
n=0

an x
n then f 0(x) =

1X
n=1

nan x
n¡1 and

Z
f(x) dx =

1X
n=0

an
n+ 1

xn+1.
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1 Find the radius and interval of convergence of the following series:

a

1X
n=0

xn

n!
b

1X
n=1

n5nxn c

1X
n=0

3nxn

(n+ 1)2

d

1X
n=1

(¡1)nx2n¡1

(2n¡ 1)!
e

1X
n=2

(¡1)n
(2x+ 3)n

n lnn

2 Find the radius and interval of convergence of

1X
n=1

2£ 4£ 6£ ::::::£ (2n)xn

1£ 3£ 5£ ::::::£ (2n¡ 1)
.

3 A function f is defined by f(x) = 1 + 2x+ x2 + 2x3 + x4 + :::::::, so f is a power

series with c2n¡1 = 1 and c2n = 2 for all n 2 Z +.

Find the interval of convergence for the series and an explicit formula for f(x).

4 Suppose that the radius of convergence of a power series
1P
n=0

cnx
n is R.

What is the radius of convergence of the power series
1P
n=0

cnx
2n ?

5 Suppose the series
1P
n=0

cnx
n has radius of convergence 2 and

1P
n=0

dnx
n has radius

of convergence 3.

What can you say about the radius of convergence of the series
1P
n=0

(cn + dn)xn ?

Find

Z 0:1

0

1X
n=0

(¡3)nxnp
n+ 1

dx

From Example 33, the series

1X
n=0

(¡3)nxnp
n+ 1

has interval of convergence¤¡1
3 , 13

¤
.

) since [0; 0:1] lies entirely within the interval of convergence,

Z 0:1

0

1X
n=0

(¡3)nxnp
n+ 1

dx =
1X
n=0

µZ 0:1

0

(¡3)nxnp
n+ 1

dx

¶

=
1X
n=0

(¡3)np
n+ 1

·
xn+1

n+ 1

¸0:1
0

=
1X
n=0

(¡3)n(0:1)n+1

(n+ 1)
3
2

Example 34

EXERCISE 10C.3
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have the same radius of convergence but not the same interval of convergence.

7 Find
d

dx

1X
n=1

xn

n!
and

Z x

0

1X
n=0

tn

n!
dt. For what x values do these series

converge?

Now for each x 2 I, the limit
1P
n=0

cn(x¡a)n exists and is finite. The series may therefore

define a function with domain I, and we can write f(x) =
1P
n=0

cn(x¡ a)n.

Functions defined in this way may look awkward. However, as we have seen, power series

can be added, differentiated, and integrated, just like ordinary polynomials. Furthermore,

they are particularly useful because we can express many different functions as power series

expansions.

Suppose f(x) =
1P
n=0

cn(x¡a)n = c0+c1(x¡a)+c2(x¡a)2+:::::: where jx¡ aj < R.

We note that at x = a, f(a) = c0.

Since we can differentiate the power series on I we have

f 0(x) = c1 + 2c2(x¡ a) + 3c3(x¡ a)2 + :::::::

) when x = a, f 0(a) = c1

Differentiating again, we find f 00(x) = 2c2 + 6c3 (x¡ a) + ::::::

) when x = a, f 00(a) = 2c2 = 2! c2

Continuing inductively, we find f (n)(a) = n! cn

) cn =
f (n)(a)

n!
where 0! = 1 and f (0)(x) = f(x)

So, if f(x) =
1P
n=0

cn(x¡ a)n, jx¡ aj < R

then f(x) = f(a) +
f 0(a)

1!
(x¡ a) +

f 00(a)

2!
(x¡ a)2 +

f 000(a)

3!
(x¡ a)3::::::

This is known as the Taylor series expansion of f(x) about a.

TAYLOR AND MACLAURIN SERIESD

223SERIES AND DIFFERENTIAL EQUATIONS (Topic 10)

Let
1P
n=0

cn(x¡a)n be a power series with radius of convergence R > 0. If I is its interval

of convergence then, for example, I = R (when R = 1) or I = [a¡R; a+R]

(when R <1).

6 Show that the power series

1X
n=1

xn

n23n
and the series of derivatives

1X
n=1

nxn¡1

n23n
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The special case where a = 0 gives the expansion

f(x) = f(0) + xf 0(0) +
x2

2!
f 00(0) +

x3

3!
f 000(0) + :::::::

which is called the Maclaurin series expansion of f(x).

Important notes about Taylor series expansions:

² A function f (x) will only have a Taylor expansion if its derivatives of all orders

exist on I .

² If a function has a power series expansion about a, then it must be in the form

of a Taylor series.

Finally, we need to know when the Taylor series expansion is exactly equal to the function

f (x). Before we can discuss this, however, we need to consider truncations of the Taylor

Series.

Definition:

The nth degree Taylor polynomial approximation to f(x) about a is:

Tn(x) = f(a) + f 0(a)(x¡ a) + :::::::+
f (n)(a)

n!
(x¡ a)n

=
nP
k=0

(x¡ a)k
k!

f (k)(a)

Consider the function f(x) = ex. Then f (n)(x) = ex exists for all n and x 2 R .

The nth degree Taylor approximation to exabout 0 is:

Tn(x) = 1 +
x

1!
+
x2

2!
+ :::::::+

xn

n!

Graphs of f(x) = ex, T1(x) = 1 + x,

T2(x) = 1 + x+
x2

2!
, and

T5(x) = 1 + x+
x2

2!
+
x3

3!
+
x4

4!
+
x5

5!

are shown alongside:

It appears that as n increases, Tn(x) fits f(x) = ex better for an increasing subset of

I = R .

If we denote Rn(x : a) to be the error involved in using Tn(x) to approximate f(x)
about x = a on I , then f(x) = Tn(x) +Rn(x : a).

����������
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�

��

��

x

y
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���
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225SERIES AND DIFFERENTIAL EQUATIONS (Topic 10)

The graphs for the case of f(x) = ex expanded about x = 0 suggest that as n increases,

Rn(x : 0) decreases and Tn (x) becomes closer to f (x). This result is formalised in the

following theorem:

Taylor’s Theorem:

If f(x) has derivatives of all orders on I then:

² f(x) = Tn(x) +Rn(x) for all x 2 I

² f(x) =
1X
n=0

f (n)(a)(x¡ a)n
n!

if lim
n!1

Rn(x : a) = 0

where Rn(x : a) =
f (n+1)(c)(x¡ a)n+1

(n+ 1)!
, where c is a constant, c 2 ] a, x [,

or Rn(x : a) =
1

n!

Z x

a

f (n+1)(t)(x¡ t)n dt.

Prove that f(x) = ex is equal to its Maclaurin series expansion for all x 2 R .

As f(x) = ex is infinitely differentiable on R we have

ex = Tn(x) +Rn(x : 0) for all x 2 R .

We need to prove that lim
n!1

Rn(x : 0) = 0 for all x 2 R

where Rn(x : 0) =
ecxn+1

(n+ 1)!
, for any c 2 ] a, x [

Consider

1X
n=1

ecxn+1

(n+ 1)!
which has an =

ecxn+1

(n+ 1)!
.

Using the Ratio Test,

¯̄̄̄
an+1
an

¯̄̄̄
=

¯̄̄̄
ec+1xn+2

(n+ 2)!
£ (n+ 1)!

ecxn+1

¯̄̄̄
= e jxj 1

n+ 2

) lim
n!1

¯̄̄̄
an+1
an

¯̄̄̄
= 0

and so

1X
n=1

ecxn+1

(n+ 1)!
converges for all x 2 R .

) lim
n!1

ecxn+1

(n+ 1)!
= 0 for all x 2 R .

) lim
n!1

Rn(x : 0) = 0 for all x 2 R .

) by Taylor’s Theorem, ex =
1X
n=0

xn

n!
for all x 2 R .

Example 35
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Find the Maclaurin series expansion for f(x) = cosx, including its radius of

convergence. Hence find Maclaurin series expansions for f(x) = sinx and

f(x) = cosx ) f(0) = 1

f 0(x) = ¡ sinx ) f 0(0) = 0

f 00(x) = ¡ cosx ) f 00(0) = ¡1

f 000(x) = sinx ) f 000(0) = 0

f (4)(x) = cosx ) f (4)(0) = 1

) by Taylor’s Theorem,

f(x) = cosx

= f(0) +
f 0(0)

1!
x+

f 00(0)

2!
x2 +

f 000(0)

3!
x3 + ::::::+Rn(x : 0)

Since
¯̄̄R b
a
f(t) dt

¯̄̄
6
R b
a
jf(t)j dt for all f (x) defined on

jRn(x : 0)j 6 1

n!

R x
0

¯̄
(x¡ t)nf (n+1)(t)¯̄ dt

) jRn(x : 0)j 6 1

n!

R x
0
j(x¡ t)nj ¯̄f (n+1)(t)¯̄ dt

However,
¯̄
f (n+1)(t)

¯̄
= jcos tj or jsin tj for all n 2 Z +

)
¯̄
f (n+1)(t)

¯̄
6 1

) jRn(x : 0)j 6 1

n!

R x
0
j(x¡ t)nj £ 1 dt =

1

n!

R x
0
j(x¡ t)nj dt

=
1

n!

¯̄̄̄
¯
"
¡jx¡ tj

n+1

n+ 1

#x
0

¯̄̄̄
¯

=
jxjn+1

(n+ 1)!

Using the Ratio Test, we can show that

1X
n=0

jxjn+1
(n+ 1)!

converges for all x 2 R .

) lim
n!1

jxjn+1
(n+ 1)!

= 0 for all x 2 R .

) by the Squeeze Theorem, lim
n!1

jRn(x: 0)j = 0 for all x 2 R .

) f(x) = cosx =
1X
n=0

(¡1)
n
x2n

(2n)!
, and the radius of convergence is 1.

Example 36
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f(x) = cos (2x), including their radii of convergence.

] a, b [,

= 1¡ x
2

2!
+
x4

4!
¡ x

6

6!
+ ::::::+ (¡1)k

x2k

(2k)!
+Rn(x : 0), n 2 Z +

where Rn(x : 0) =
1

n!

R x
0
f (n+1)(t)(x¡ t)ndt and k =

½ n
2 if n is even
n¡1
2 if n is odd
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Now the Maclaurin series expansion of cosx is integrable on R ,

) sin t =
R x
0

cos t dt

=

Z x

0

1X
n=0

(¡1)
n
t2n

(2n)!
dt

=
1X
n=0

µZ x

0

(¡1)n t2n

(2n)!
dt

¶

=

" 1X
n=0

(¡1)n t2n+1

(2n+ 1)!

#x
0

=
1X
n=0

(¡1)n x2n+1

(2n+ 1)!
for all x 2 R

= x¡ x
3

3!
+
x5

5!
¡ x

7

7!
+ :::::: for all x 2 R

Also, since cosx =
1X
n=0

(¡1)n x2n

(2n)!
,

=
1X
n=0

(¡1)
n

(2x)2n

(2n)!
for all x 2 R .

1 Find the Maclaurin series expansion for f(x) = ln(1 + x) and its associated interval

of convergence. Show that lim
n!1

Rn(x : 0) = 0 for all x 2 I .

2 Find the Maclaurin series expansion for f(x) = (1 + x)p and the radius of conver-

gence that works for all p 2 R .

Hence find the Maclaurin series expansion for (1 + x2)¡1.

3 Find the Taylor series expansion about x = 2 for f(x) = lnx and its associated

radius of convergence.

4 Use substitution to find the Maclaurin series expansions for each of the functions below,

along with their associated intervals of convergence:

a b f(x) = e¡x
2

c

5 What is the maximum error possible in using the approximation sinx + x¡ x
3

3!
+
x5

5!
on the interval ¡0:3 6 x 6 0:3?

6 Use the Maclaurin series for sinx to compute sin 3o correct to 5 d.p.

7 Using the power series expansion of e¡x
2

, evaluate
R 1
0
e¡x

2

dx to 3 d.p.

8 Using the power series expansion of ex
2

, evaluate
R 1
0
ex

2

dx to 3 d.p.

EXERCISE 10D
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f(x) = x sinx f(x) = cos(x3)

cos (2x)
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9 Using the Maclaurin series expansion of (1 + x2)¡1, find the Maclaurin series ex-

pansion for arctanx.

10 Find the Maclaurin series expansion for f(x) = 2x and its associated interval of

convergence.

11 Using the Maclaurin series expansion for f (x) =
1

1 + x3
, estimate

Z 1
3

0

1

1 + x3
dx

to 4 d.p.

12 Obtain the power series representation of ln

µ
1 + x

1¡ x
¶

and use its first 3 terms to

estimate the value of ln 2.

13 Estimate the value of e¡1 to 6 d.p. using the Alternating Series Estimation Theorem.

14 Prove that 1 + x 6 ex for all x > 0. Hence show that if uk > 0 for all k,
nQ
k=1

(1 + uk) = (1 + u1)(1 + u2)::::::(1 + un) 6 eu1+u2+::::::+un

Deduce the behaviour of
nQ
k=1

(1 + uk) if
1P
n=1

uk converges.

15 In this question, use the following steps for Euler’s proof of
1P
n=1

1

n2
= ¼2

6 .

You may assume that sinx = x¡ x
3

3!
+
x5

5!
¡ x

7

7!
+ :::::: for all x 2 R .

a Find all the zeros of sinx and of
sinx

x
for x 2 R .

b Find the power series expansion for
sinx

x
and its interval of convergence.

c Find all the zeros of
³
1¡ x

¼

´³
1 +

x

¼

´³
1¡ x

2¼

´³
1 +

x

2¼

´
::::::

d Show that:¡
1¡ x

¼

¢ ¡
1 + x

¼

¢ ¡
1¡ x

2¼

¢ ¡
1 + x

2¼

¢
::::: =

³
1¡ x2

¼2

´³
1¡ x2

4¼2

´³
1¡ x2

9¼2

´
:::::

and comment on Euler’s claim that

1¡ x
2

3!
+
x4

5!
¡ x

6

7!
+ :::::: =

³
1¡ x2

¼2

´³
1¡ x2

4¼2

´³
1¡ x2

9¼2

´
:::::

e By equating the coefficients of x2 in this last equation, prove that:

1X
n=1

1

n2
=

1

12
+

1

22
+

1

32
+

1

42
+ :::::: =

¼2

6
:

f As

1X
n=1

1

n2
is absolutely convergent, we can write

228 SERIES AND DIFFERENTIAL EQUATIONS (Topic 10)
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1X
n=1

1

n2
=

1X
r=1

1

(2r)2| {z }+
1X
r=1

1

(2r ¡ 1)2| {z }
even n odd n

Use this last equation to find the exact values of
1P
n=1

1

(2n)2
and

1P
n=1

1

(2n¡ 1)2

Note: Euler was able to derive a way to sum all series of the form
1P
n=1

1

n2k
, k 2 Z +.

However, the exact value of
1P
n=1

1

n2k+1
, for any k 2 Z + is still an open question.

A differential equation is an equation which connects the derivative(s) of an unknown

function to the variables in which the function is defined which may include the function

itself.

Examples of differential equations are:

dy

dx
=
x2

y

dy

dx
= ¡0:075y3

d2y

dx2
¡ 3

dy

dx
+ 4y = 0

Such equations not only arise in pure mathematics, but are also used to model and solve

problems in physics, engineering and the other sciences.

For example:

A falling object A parachutist Object on a spring

d2y

dx2
= 9:8 m

dv

dt
= mg ¡ av2 m

d2y

dt2
= ¡ky

Current in an RL Circuit Water from a tank Dog pursuing cat

L
dI

dt
+RI = E

dH

dt
= ¡apH x

d2y

dx2
=

s
1 +

µ
dy

dx

¶2

FIRST ORDER DIFFERENTIAL EQUATIONSE

y

v m

E

R

L

curve of pursuit

( , )x y

x

y

H
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However, in this course we will only deal with differential equations of the form

f(x, y)
dy

dx
+ g(x, y) = 0

These are known as first order differential equations since there is only one derivative in the

equation, and it is a first derivative.

A function y(x) is said to be a solution of a differential equation if it satisfies the differential

equation for all values of x in the domain.

In the example, y = ce3x ¡ 1 is a called a general solution of the differential equation,

since it involves the unknown constant c.

If we are given initial conditions for the problem, i.e., a value of y or
dy

dx
for a specific

value of x, then we can evaluate c. This gives us a particular solution to the problem.

So, the solution curves for c = §1, §2, §3 graphed in Example 37 are all particular

solutions of
dy

dx
¡3y = 3. However, the initial conditions of the problem determine which

solution curve is the correct one.

Show that y = ce3x ¡ 1 is a solution of
dy

dx
¡ 3y = 3 for any

constant c. Sketch the solution curves for c = §1, §2, §3.

If y = ce3x ¡ 1

then
dy

dx
= 3ce3x

)
dy

dx
¡ 3y = 3ce3x ¡ 3

¡
ce3x ¡ 1

¢
= 3ce3x ¡ 3ce3x + 3

= 3, so the differential equation is satisfied for all x.

The solution curves for c = §1, §2, §3 are shown below:

Example 37

�����

�

��

��

x

y

y e���� �����x

y e���� �����x

y e��� �����x

y e���� �����x

y e����� �����x
y e����� �����x
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If we have a first order differential equation of the form

f(x, y)
dy

dx
+ g(x, y) = 0,

then
dy

dx
= ¡ g(x, y)

f(x, y)

i.e.,
dy

dx
= h(x, y)

We may therefore deduce the slope of the solution curves to the differential equation at any

point (x, y), and hence the equations of the tangents to the solution curves.

The set of tangents at all points (x, y) is called the slope field of the differential equation.

For example, the table below shows the values of
dy

dx
= x(y ¡ 1) for the integer grid

points x, y 2 [¡2, 2]. x

¡2 ¡1 0 1 2
¡2 6 3 0 ¡3 ¡6
¡1 4 2 0 ¡2 ¡4

y 0 2 1 0 ¡1 ¡2
1 0 0 0 0 0
2 ¡2 ¡1 0 1 2

Find a particular solution to
dy

dx
¡ 3y = 3 given y = 2 when x = 0.

From Example 37, we know that y = ce3x ¡ 1 is a general solution to the

differential equation.

Now if y = 2 when x = 0, then 2 = ce3£0 ¡ 1

) c = 3

) the particular solution is y = 3e3x ¡ 1

Example 38

SLOPE FIELDS

x

y

� �����

�

�

��

��

By representing these gradients as line segments at the
different ( , ) grid points, we obtain a of
the tangents to the solution curves as shown:

x y slope field
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The horizontal line in the figure is the solution curve corresponding to the initial condi-

tions y = 1 when x = 0. Although it is quite straightforward to obtain a few slope field

points by hand, a larger or more refined field is best obtained using technology. You can click

on the icon on your CD to run software for plotting slope fields. Alternatively, if may be

possible to download software for your graphics calculator.

Note that the display of some slope field packages may be unclear at points where
dy

dx
is

either zero or undefined.

For example, for
dy

dx
=

1¡ x2 ¡ y2
y ¡ x+ 2

,

² dy

dx
is discontinuous when y ¡ x+ 2 = 0, i.e., y = x¡ 2. We show this as a

distinctive line in the slope field below.

² dy

dx
is zero when 1¡ x2 ¡ y2 = 0,

i.e., x2 + y2 = 1.

circle in the slope field alongside.

Euler’s Method uses the same principle as slope fields to find a numerical approximation to

the solution of the differential equation
dy

dx
= f(x, y).

Since the slope
dy

dx
indicates the direction in which the solution curve goes at any point, we

reconstruct the graph of the solution as follows:

We start at a point (x0, y0) and move a small distance in the direction of the slope field to

find a new point (x1, y1). We then move a small distance in the direction of the slope field

at this new point, and so on.

Now the tangent to a curve approximates that curve at
and near the points of tangency. Therefore, by adding
more grid points or linking line segments, the slope field
can be used to graphically obtain approximate solution
curves of the differential equation:

x

y

� �����

�

�

��

��

x

y

�� �

��

�

We show this as a distinctive

EULER’S METHOD OF NUMERICAL INTEGRATION
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If we step h units to the right each time, then

x1 = x0 + h and y1 = y0 + hf(x0, y0)

and more generally,

xn+1 = xn + h and yn+1 = yn + h f(xn, yn).

Clearly, Euler’s Method only gives an approximate solution to an initial-value problem. How-

ever, by decreasing the step size h and hence increasing the number of course corrections,

we can usually improve the accuracy of the approximation.

1 Consider the differential equation
dy

dx
= 10y tanx. Draw the slope field using integer

2 Slope fields for two differential equations are plotted below for x, y 2 [¡3, 3].

Use the slope fields to graph the solution curves satisfying y(1) = 1.

a b

For the initial value problem
dy

dx
= x+ y, y(0) = 1, use Euler’s Method with

step size of 0:2 to find an approximate value for y(1).

Now xn+1 = xn + h and yn+1 = yn + h f(xn, yn)

) given f (x, y) =
dy

dx
= x+ y and step size h = 0:2,

xn+1 = xn + 0:2 and yn+1 = yn + 0:2(xn + yn)

Using the initial conditions,

x0 = 0 y0 = 1

x1 = 0 + 0:2 = 0:2 y1 = 1 + 0:2(0 + 1) = 1:2

x2 = 0:2 + 0:2 = 0:4 y2 = 1:2 + 0:2(0:2 + 1:2) = 1:48

x3 = 0:4 + 0:2 = 0:6 y3 = 1:48 + 0:2(0:4 + 1:48) = 1:856

x4 = 0:6 + 0:2 = 0:8 y4 = 1:856 + 0:2(0:6 + 1:856) = 2:3472

x5 = 0:8 + 0:2 = 1 y5 = 2:3472 + 0:2(0:8 + 2:3472) = 2:9766

So, y(1) + 2:98 to 2 d.p.

Example 39

EXERCISE 10E.1

x

y
�

�

��

��

x

y
�

�

��

��

( )x y� �,�

( )x y	 	,�
h

slope ,���� �( )x y	 	
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grid points for x and y between §2. Assume x is measured in degrees.
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3 Sketch the slope field for the differential equation
dy

dx
= x2 + y ¡ 1.

Hence sketch the solution curve satisfying y(0) = 1.

4 Sketch the slope field for the differential equation
dy

dx
=
¡1 + x2 + 4y2

y ¡ 5x+ 10
, indicating

points of discontinuity and equilibrium, i.e., where
dy

dx
is undefined or zero.

5 Use Euler’s Method with step size 0:2 to estimate y(1) for the initial value problem

dy

dx
= 1 + 2x¡ 3y, y(0) = 1.

6 Use Euler’s Method with step size 0:1 to estimate y(0:5) for the initial value problem

dy

dx
= sin(x+ y), y(0) = 0:5.

Differential equations which can be written in the form
dy

dx
=
f(x)

g(y)
are known as

Notice that if
dy

dx
=
f(x)

g(y)
then g(y)

dy

dx
= f(x).

If we integrate both sides of this equation with respect to x we getZ
g(y)

dy

dx
dx =

R
f(x) dx

But using the Chain Rule,
dy

dx
dx is just dy.

)
R
g(y) dy =

R
f(x) dx

and the problem of solving the differential equations then reduces to the problem of finding

two integrals.

Solve the initial value problem 2x
dy

dx
¡ 1 = y2, y(1) = 1.

2x
dy

dx
¡ 1 = y2

) 2x
dy

dx
= y2 + 1

)
1

y2 + 1

dy

dx
=

1

2x

Integrating both sides with respect to x gives

Example 40

SEPARABLE DIFFERENTIAL EQUATIONS

separable differential equations.

234 SERIES AND DIFFERENTIAL EQUATIONS (Topic 10)

Assume x and y are in radians.
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Find the general solution of the differential equation
dy

dx
=
x2y + y

x2 ¡ 1
.

dy

dx
=
x2y + y

x2 ¡ 1

=
y(x2 + 1)

x2 ¡ 1

)
1

y

dy

dx
=
x2 + 1

x2 ¡ 1

=
x2 ¡ 1 + 2

x2 ¡ 1

= 1 +
2

x2 ¡ 1

Using partial fractions, suppose

2

x2 ¡ 1
´ A

x¡ 1
+

B

x+ 1

´ A (x+ 1) +B (x¡ 1)

x2 ¡ 1

) 2 ´ (A+B)x+ (A¡B)

Equating coefficients,

A+B = 0 and A¡B = 2

Solving simultaneously,

A = 1 and B = ¡1

So,
1

y

dy

dx
= 1 +

1

x¡ 1
¡ 1

x+ 1

Integrating both sides with respect to x givesZ
1

y

dy

dx
dx =

Z
(1 +

1

x¡ 1
¡ 1

x+ 1
) dx

)

Z
1

y
dy = x+ ln jx¡ 1j ¡ ln jx+ 1j+ c

ln jyj = x+ ln

µ
A

¯̄̄̄
x¡ 1

x+ 1

¯̄̄̄¶
where lnA = c

) y = Aex
µ
x¡ 1

x+ 1

¶
is the general solution of the differential equation.

Example 41

Z
1

y2 + 1

dy

dx
dx =

Z
1

2x
dx

)

Z
1

y2 + 1
dy =

Z
1

2x
dx

) tan¡1 y = 1
2 ln jxj+ c

) y = tan
¡
1
2 ln jxj+ c¢

But y(1) = 1, so 1 = tan
¡
1
2 ln 1 + c

¢
i.e., 1 = tan c

) c = ¼
4

) the particular solution of the differential equation is y = tan
¡
ln
p
x+ ¼

4

¢
.
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The following examples show how separable variable differential equations can be constructed:

When an object travels through a resistive medium, the rate at which it loses

speed at any given instant is given by kv ms¡2, where v is the speed of the

body at that instant and k is a positive constant.

If the initial speed is u ms¡1, show by formulating and solving an appropriate

differential equation that the time taken for the body to decrease its speed to
1
2 u ms¡1 is 1

k
ln 2 seconds.

The rate of change of speed is given by
dv

dt
.

Our differential equation must reflect that the body loses speed, and is therefore

given by:
dv

dt
= ¡kv.

Separating the variables, the equation becomes:

1

v

dv

dt
= ¡k

Integrating both sides with respect to t givesZ
1

v
dv = ¡k R dt

) ln jvj = ¡kt+ c
) v = Ae¡kt

This is the general solution of the differential equation, so we can now make use

of the extra information given to find the value of the constant A.

Since the initial speed (at t = 0 ) is u, v = u = Ae¡k£0 = A.

So v = ue¡kt is the particular solution of the differential equation.

When v = 1
2u we have 1

2u = ue¡kt

) 1
2 = e¡kt

) ¡ ln 2 = ¡kt
) t =

1

k
ln 2 as required.

Example 42

The tangent at any point P on a curve in the first quadrant cuts the x-axis at Q.

Given that OP = PQ, where O is the origin, and that the point (1, 4) lies on the

curve, find the equation of the curve.

We start by sketching a general curve in the

first quadrant and include the information we

know. P is the general point on the curve with

coordinates (x, y).

Example 43

x

y

O A Q

P ,( )x y�
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As OP = OQ, triangle OPQ is isosceles.

Hence PA is the perpendicular bisector of OQ.

The coordinates of OA are (x, 0), so the

coordinates of OQ are (2x, 0).

As PQ is a tangent to the curve at P, the gradient

of the curve at P is the same as the gradient of PQ.

Hence
dy

dx
= ¡y

x

)
1

y

dy

dx
= ¡1

x

Integrating both sides with respect to x givesZ
1

y
dy = ¡

Z
1

x
dx

) ln jyj = ¡ ln jxj+ c
) ln jxj+ ln jyj = c

) ln jxyj = c

) xy = ec = k where k is a constant.

Since the curve passes through (1, 4), 1£ 4 = k

) the equation of the curve is xy = 4 or y =
4

x
, where x > 0.

Differential equations of the form
dy

dx
= f

³y
x

´
are known as homogeneous differential

equations.

They can be solved using the substitution y = vx where v is a function of x. The

substitution will always reduce the differential equation to a separable form as follows:

If y = vx where v is a function of x, then

dy

dx
=
dv

dx
x+ v fproduct ruleg

)
dv

dx
x+ v = f

³vx
x

´
= f (v)

)
dv

dx
=
f(v)¡ v

x

)
dv

dx
=

1

x
1

f(v)¡ v
which is of separable form.

x

y

O A Q

P ,( )x y�

x x

HOMOGENEOUS DIFFERENTIAL EQUATIONS
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dy

dx
+ P (x)y = Q(x).

Generally this type of equation is not separable.

However, suppose there is a function I(x), called an integrating factor, such that

a Use the substitution y = vx, where v is a function of x, to solve:

dy

dx
=
x+ 2y

x

b Find the particular solution if y = 3
2 when x = 3.

a Now if y = vx, using the product rule we get
dy

dx
= v + x

dv

dx
.

Comparing with the differential equation, we find

v + x
dv

dx
=
x+ 2vx

x

) v + x
dv

dx
= 1 + 2v

) x
dv

dx
= 1 + v

)
dv

dx
=

1 + v

x

Separating the variables and integrating, we findZ
1

v + 1
dv =

Z
1

x
dx

) ln jv + 1j = ln jxj+ c
) ln jv + 1j = ln jAxj where ln jAj = c

) v + 1 = Ax

But v =
y

x
, so

y

x
+ 1 = Ax

) y = Ax2 ¡ x
b Substituting y = 3

2 and x = 3 into the general solution, we find

3
2 = A£ 32 ¡ 3

) 9A = 9
2

) A = 1
2

) the particular solution is y = 1
2x

2 ¡ x.

Example 44

THE INTEGRATING FACTOR METHOD

238 SERIES AND DIFFERENTIAL EQUATIONS (Topic 10)

Suppose a first order differential equation is of the formlinear
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d

dx
(I(x)y) = I(x)

dy

dx
+ I(x)P (x) y ...... (¤)

= I(x)Q(x)

Then integrating both sides with respect to x would give

I(x) y =
R
I(x)Q(x) dx

i.e., y =
1

I(x)

R
I(x)Q(x)dx and we could hence find a solution for y.

Now if such an integrating factor exists, then from (¤),
I(x)

dy

dx
+ I 0(x) y = I(x)

dy

dx
+ I(x)P (x) y

) I 0(x) = I(x)P (x)

)
I 0(x)

I(x)
= P (x)

Integrating both sides with respect to x,Z
I 0(x)

I(x)
dx =

R
P (x)dx

ln jIj+ c =
R
P (x) dx

i.e., I(x) = Ae
R
P (x) dx

where A = e¡c and is conventionally set as 1.

Note that when we calculate the integration factor, we do not need a constant of integration.

This is because it becomes part of the constant A in front, which we can choose to be 1.

Solve the differential equation
dy

dx
+ 3x2y = 6x2.

The integrating factor is I(x) = e
R
3x2 dx = ex

3

Multiplying the differential equation through by ex
3

gives

ex
3 dy

dx
+ 3x2ex

3

y = 6x2ex
3

)
d

dx

³
yex

3
´

= 6x2ex
3

) yex
3

=
R

6x2ex
3

dx

) yex
3

= 2ex
3

+ c

) y = 2 + ce¡x
3

Example 45
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I(x) = e
R
P (x)dx .Thus the isintegrating factor
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1 Solve the following initial value problems:

a (2¡ x) dy
dx

= 1, y(4) = 3

b

ey(2x2 + 4x+ 1)
dy

dx
= (x+ 1)(ey + 3), y(0) = 2c

d
dy

dx
=
x2y + y

x2 ¡ 1
, y(0) = 3 e x

dy

dx
= cos2 y, y(e) = ¼

4

2 According to Newton’s law of cooling, the rate at which a body loses temperature at

time t is proportional to the amount by which the temperature T (t) of the body at that

instant exceeds the temperature R of its surroundings.

a Express this information as a differential equation in terms of t, T and R.

b If a container of hot liquid is placed in a room of temperature 18oC and cools from

82oC to 50oC in 6 minutes, show that it takes 12 minutes for the liquid to cool from

26oC to 20oC.

EXERCISE 10E.2

Example 46

240 SERIES AND DIFFERENTIAL EQUATIONS (Topic 10)

dy

dx
¡ 3x sec y = 0, y(1) = 0

Solve the initial value problem cosx
dy

dx
= y sinx+ sin (2x), y(0) = 1.

We can rewrite the differential equation as
dy

dx
¡ y sinx

cosx
=

cosx

)
dy

dx
+ (¡ tanx) y = 2 sinx

The differential equation is not separable, but is of a form such that we can

use an integrating factor.

The integrating factor is I(x) = e
R
¡ tanxdx

= eln(cosx) = cosx.

Multiplying the equation through by the integrating factor gives

cosx
dy

dx
+ (¡ cosx tanx) y = 2 sinx cosx

)
d

dx
(y cosx) = sin (2x)

) y cosx =
R

sin (2x) dx

= ¡ 1
2 cos (2x) + c

But when x = 0, y = 1

) 1 = ¡ 1
2 cos 0 + c and so c = 3

2

) the solution of the initial value problem is y cosx = 3
2 ¡ 1

2 cos (2x)

i.e., y =
3¡ cos (2x)

2 cosx

sin (2x)
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3 The tangent at any point P on a curve cuts the x-axis at the point Q.

Given that ]OPQ = 90o, where O is the origin, and that the point (1, 2) lies on the

curve, find the equation of the curve.

4 The tangent at any point P on a curve cuts the x-axis at A and the y-axis at B.

Given that AP : PB = 2 : 1 and that the curve passes through (1, 1), find the equation

of the curve.

5 A radioactive substance decays so that the rate of decrease of mass at any time t is

proportional to the mass m(t) present at that time.

a If the initial mass present ism0, set up and solve the appropriate differential equation

and hence obtain a formula for m(t).

b If the mass is reduced to 4
5 of its original value in 30 days, calculate the time

required for the mass to be reduced to half its original value.

6 Solve the homogeneous differential equations below using the substitution y = vx,

where v is a function of x.

a
dy

dx
=
x¡ y
x

b
dy

dx
=
x+ y

x¡ y c
dy

dx
=
y2 ¡ x2

2xy

10 Laplace transforms provide a useful link between improper integrals and differential

equations.

The Laplace transform of a function f(x) is defined as

F (s) = Lff(x)g =
R1
0
e¡sxf(x) dx

a

i Lfeaxg =
1

s¡ a , s > a ii Lfxg =
1

s2
, s > 0

iii Lfsinaxg =
a

s2 + a2
, s > 0

b Show that i Lff 0(x)g = sLff(x)g ¡ f(0)

ii Lff 00(x)g = s2Lff(x)g ¡ s f(0)¡ f 0(0)

241SERIES AND DIFFERENTIAL EQUATIONS (Topic 10)

Show that:

7 a Show that the substitution y = vx (where v is a function of x) will reduce all

inhomogeneous differential equations of the form
dy

dx
=
y

x
+ f

³y
x

´
g (x) to

separable form.

b Solve x
dy

dx
= y + e

y

x using this method.

8 Solve the differential equations below using the integrating factor method.

a
dy

dx
+ 4y = 12 b

dy

dx
¡ 3y = ex, y(1) = 2

c
dy

dx
+ y = x+ ex, y(1) = 1 d x

dy

dx
+ y = x cosx

9 Solve the differential equation (x+ 1)y + x
dy

dx
= x¡ x2.
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REVIEW SETS

c Consider the differential equation f 00(x) + f(x) = x, f(0) = 0, f 0(0) = 2.

Assuming that Lfg(x) + h(x)g = Lfg(x)g + Lfh(x)g, show that

Lff(x)g =
1

s2
+

1

s2 + 1
.

1 Prove that lim
x!1

lnx

x
= 0.

2 Find lim
x!0

ex sinx

x
.

3 Find the limits, if they exist, of the sequence fung as n tends to infinity if un equals:

a
8¡ 2n¡ 2n2

4 + 6n+ 7n2
b

(¡1)
n

(2n¡ 1)

n
c

0:9n

1 + 0:1n

d 3 + 1
n

+ n [1 + (¡1)n] e
p
n+ 5¡pn¡ 1 f

n2

3n+ 1
¡ 2n3

6n2 + 1

g
2n+ 13p

6n2 + 5n¡ 7
h n¡pn2 + n i (3n + 2n)

1
n

j arctann k
en

n!
l (¡1)

n
ne¡n

m
3£ 5£ 7£ :::£ (2n+ 1)

2£ 5£ 8£ :::£ (3n¡ 1)
n n

¡
2 cos

¡
1
n

¢¡ sin
¡
1
n

¢¡ 2
¢

1 Prove that the series
1

13 + 1
+

2

23 + 1
+

3

33 + 1
+

4

43 + 1
+

5

53 + 1
+:::::: converges.

2 Prove that the series x +
x2

2
+
x3

3
+
x4

4
+ :::::: is convergent for ¡1 < x < 1

and divergent for jxj > 1.

Determine the convergence or divergence of the series for x = §1.

3 Explain why the series
1P
r=1

3
1
r is not convergent.

4 Express
2

r (r + 1) (r + 2)
in partial fractions.

Use your result to show that

nX
r=1

1

r (r + 1) (r + 2)
= 1

4 ¡
1

2 (n+ 1) (n+ 2)
.

Hence show that the series u1+u2+u3+u4+:::::: where ur =
1

r (r + 1) (r + 2)
converges and find its sum to infinity.

REVIEW SET 10A

REVIEW SET 10B
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Hence find a possible solution function and check your answer.f x( )
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6 Determine the interval and radius of convergence of the series
1P (x¡ 3)n

n
3
2

.

7

8 Determine whether or not the series
1P
k=1

sin

µ
(k ¡ 1)¼

2k

¶
is convergent.

9 Use the Comparison Test to prove that the series
1P
r=1

1 + r

1 + r2
diverges.

10 Determine whether
1P
n=2

1

lnn2
is convergent or divergent.

11 If
1P
n=1

an is convergent where an > 0 for all n 2 Z +, prove that
1P
n=1

a2n and

1P
n=1

¡
an ¡ 1

n

¢2
are also convergent. Would these results follow if an 2 R ?

12 Find the set of real numbers for which the following series converges:

x+
x2

1¡ x +
x3

(1¡ x)2 + ::::::

13 a Show that the series Sn =
nP
k=3

(¡1)
k+1

ln (k ¡ 1)
converges as n!1.

b Find the maximum error involved in using S10 to estimate
1P
k=3

(¡1)
k+1

ln (k ¡ 1)
.

14 Determine if the series
1P
n=0

µ
n

n+ 5

¶n
convergence or diverges.

15 a Express
1

x (x+ 1)
in terms of partial fractions.

b Use the Integral Test to prove that the series
1P
n=1

1

n (n+ 1)
converges.

1 Find the Taylor series expansion of (x¡ 1)ex¡1 about x = 1 up to the term in x3.

2 Using an appropriate Maclaurin series, evaluate correct to three decimal places:

3 Prove that if Rn is the error term in approximating f (x) = ln (1 + x) for 0 6 x < 1

using the first n + 1 terms of its Maclaurin series, then

jRnj 6 1

n+ 1
for 0 6 x < 1.

REVIEW SET 10C

5 Prove that the series
1P
n=2

1

n (lnn)2
is convergent.

243SERIES AND DIFFERENTIAL EQUATIONS (Topic 10)

R 1
0

sin
¡
x2
¢
dx:

Test the series
1P
n=1

sin

µ
1

n

¶
for convergence.

n=1
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5 Let X be a random variable such that X » P0 (¸), where

P(X = x) =
e¡¸¸x

x!
for x = 0, 1, 2, ::::

Prove that
1P
x=0

P(X = x) = 1.

6 Find a simplified expression for 1¡ x+ x2 ¡ x3 + :::::: where ¡1 < x < 1.

Hence find a Power Series expansion for f (x) = ln (1 + x) for ¡1 < x < 1.

7 a Prove that e¡
nP
k=0

1

k!
=

ec

n+ 1
where 0 < c < 1.

b Using the fact that e < 3, show that for n > 3:

i
1

(n+ 1)!
6 e¡

nP
k=0

1

k!
<

3

(n+ 1)!
and hence

ii
1

n+ 1
6 n! e¡

nP
k=0

n!

k!
<

3

n+ 1
6

3

4

c Using b, prove by contradication that e is an irrational number.

1 Given that y = ax+ b is a solution of the differential equation
dy

dx
= 4x¡ 2y,

find the values of the constants a and b.

2 Obtain a first order differential equation by differentiating the given equation with

respect to x, then eliminating the arbitrary constant A using the original equation.

a y = x+
A

x
b y2 = A cosx

3 Draw the slope field using integer grid points for x and y between §4 for the differ-

ential equation
dy

dx
=
x

y
.

4 A curve passes through the point (1, 2) and satisfies the differential equation

dy

dx
= x¡ 2y.

Use Euler’s Method with step size 0:1 to estimate the value of y when x = 1:6.

5 Solve the differential equation
dy

dx
=

xy

x¡ 1
given that y = 2 when x = 2.

6 Find the general solution of the differential equation
dy

dx
= 2xy2 ¡ y2.

REVIEW SET 10D

4 Estimate e0:3 correct to three decimal places using the Taylor aproximation:

f (a+ x) = f (a) + xf 0 (a) + ::::::+
xn

n!
f (n) (a) +

xn+1

(n+ 1)!
f (n+1) (c)
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8 By finding a suitable integrating factor, solve
dy

dx
+

3y

x
= 8x4 given y = 0 when

x = 1.

9 A water tank of height 1 m has a square base of dimensions 2 m£2 m. The tank

is emptied by opening a tap at its base, and the water flows out at a rate that is

proportional to the square root of the depth of the water at any given time.

a If hm is the depth of the water and V is the volume of water remaining in the

tank after t minutes, write down a differential equation involving
dV

dt
and h.

b Explain why V = 4h m3 at time t. Hence write down a differential equation

involving
dh

dt
and h.

c Initially the tank is full, and then when the tap is opened, the water level drops

by 19 cm in 2 minutes. Find the time it takes for the tank to empty.

1 Match the slope fields A, B and C to the differential equations:

a
dy

dx
= y + 1 b

dy

dx
= x¡ y c

dy

dx
= x¡ y2

A B C

2 On the slope field for
dy

dx
= 2x¡ y2

a (0, 0) b (2, 3).

REVIEW SET 10E

7 Use the substitution y = vx where v is a function of x to solve the differential equation

x

y

2

2

��

��

x

y

2

2

��

��

x

y

2

2

��

��

shown, sketch the solution curves through

� ���

�

�

��

x

y
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xy
dy

dx
= 1 + x+ y2 given that y = 0 when x = 1.

IBHL_OPT
cyan black

0 5 2
5

7
5

5
0

9
5

1
0
0

0 5 2
5

7
5

9
5

1
0
0

5
0

Y:\HAESE\IBHL_OPT\IBHLOPT_10\245IBO10.CDR 04 August 2005 14:04:10 DAVID2



3

4 The tangent to a curve at the point P(x, y) cuts the

x-axis at (3x, 0) and the y-axis at (0, 3y2 ).

Given that x > 0, find the equation of the curve

which passes through the point (1, 5).

5 Find the equation of the curve through (2, 1) given that for any point (x, y) on the

curve, the y-intercept of the tangent to the curve is 3x2y3.

6 Solve using an integration factor:

a
dy

dx
¡ y

x
=
p
x given that y = 0 when x = 4

b
dy

dx
= cosx¡ y cotx given that y = 0 when x = ¼

2 .

7

a Find P as a function of time t years.

b Estimate the population in 20 years’ time.

c Is there a limiting population size? If so, what is it?

8

Light is emitted from O(0, 0).

a Explain why µ = 2®.

b

given by
dy

dx
= tan®.

c

d Find a general solution to the differential equation
dy

dx
=

p
x2 + y2 ¡ x

y
by

making the substitution r2 = x2 + y2.

e What is the nature of y = f (x)?

The inside surface of is a mirror.y f x= ( )

All rays that strike the surface of the mirror
are reflected so that they emerge parallel to
the axis of symmetry (the -axis).x

y

x

P ,( )x y�

(3 )x,�	

),	( �

�y
y x����( )

Explain why the slope of the tangent at
a general point P( , ) on the mirror isx y

�

�

P ,( )x y�

tangent

at P

y x����( )

y x�����( )

x

y
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Use the identity tan (2®) =
2 tan®

1¡ tan2 ®
to deduce that tan

The population P of an island is currently 154. The population growth in the foresee-

able future is given by
dP

dt
= 0:2P

µ
1¡ P

400

¶
for t > 0.

® =

p
x2 + y2 ¡ x

y
.

Use the substitution y = vx where v is a function of x to solve the differential equation

dy

dx
=
x

y
+
y

x
.
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Discrete mathematics

1111

Contents:

A

A.1

A.2

A.3

A.4

A.5

A.6

A.7

A.8

A.9

A.10

NUMBER THEORY
Number theory introduction

Order properties and axioms

Divisibility, primality and the

Division Algorithm

GCD, LCM and the Euclidean

Algorithm

The linear Diophantine

Equation

Prime numbers

Linear congruences

The Chinese Remainder

Theorem

Divisibility tests

Fermat’s Little Theorem

This Discrete Mathematics Option comprises two main parts: the first,

The second,

These two branches are different from most traditional mathematics courses at this
level, and as such, much of the material can be studied in isolation from the
remainder of the syllabus. It can therefore be undertaken at any time in the
two-year IB diploma programme.

The links between the two branches are in the areas of algorithmic processes and proof.
The reader should be aware of the different methods of proof that are commonly used:
induction, direct proof, proof by cases, by contrapositive and by contradiction.

Introductory
Number Theory, has its origins in antiquity with the work of Euclid and Diophantus, and
takes the theme of Diophantine Equations to the beginnings of modern Number Theory,
and Fermat’s Little Theorem. Introductory Graph Theory, is studied from its
invention, via the work of Euler, to the modern-day Travelling Salesman Problem.

Core HL

B

B.1

B.2

B.3

B.4

B.5

B.6

B.7

B.8

GRAPH THEORY
Preliminary results

involving graph theory

Terminology

Fundamental results

of Graph Theory

Journeys on graphs

and their implications

Planar graphs

Trees and algorithms

The Chinese Postman

problem

The Travelling

Salesman problem

HL Topic
(Further Mathematics SL Topic 5)
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Number theory is the study of the properties

Recall that the set of all integers is represented by Z and the set of all positive integers is

represented by Z +.

So, Z = f0, §1, §2, §3, §4, §5, .....g and Z + = f1, 2, 3, 4, 5, ......g

Some notation used in number theory is:

2 reads is in or is an element of or is a member of

) reads implies

, reads if and only if

a j b reads a divides b or a is a factor of b

gcd(a, b) reads the greatest common divisor of a and b
(the highest common factor of a and b)

lcm(a, b) reads the least common multiple of a and b

Whilst integers would seem to be the simplest of mathematical objects, their properties lead

to some very deep and satisfying mathematics.

Our study will involve:

² techniques of proof

² applications of algorithms (methods of mathematical reasoning)

² a development of the number system with modular arithmetic

² the “little theorem” of Fermat.

In this course we will address problems like the ones in the following exercise. How many

of them can you solve at this stage?

At this stage do not be disappointed if you cannot solve some of these problems.

1 The numbers of the form 2n¡1, n 2 Z +, n > 2 are thought to be prime numbers.

Is this conjecture true?

2 The numbers of the form 2p ¡ 1
conjecture true? P = f2, 3, 5, 7, 11, 13, 17, ......g

3 Find a list of:

a five consecutive non-prime numbers b six consecutive non-prime numbers

4 Prove that it is not possible to find integers x and y such that 6x+ 3y = 83.

5 Prove that a perfect square always has:

a an odd number of factors b an even number of prime factors

NUMBER THEORYA

A.1 NUMBER THEORY INTRODUCTION

EXERCISE 11A.1

where is prime, are thought to be prime. Is thisp

of integers.
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6 Without division, determine whether 14 975 028 526 824 is divisible by 36.

7 Show that the equation 2x+4y = 62 has an infinite number of integer value solutions.

Note: x = 1, y = 15 is one such solution.

8 Are there an infinite or finite number of prime numbers? Can you prove your assertion?

9 A rational number is a number which can be written in the form
p

q
where p and q

are integers and q 6= 0. Prove that
p

2 is not rational.

Hint: Start by assuming that
p

2 is rational. You may find 5b above useful.

10 Is 5041 a prime number?

Before doing so, we begin with the basics, which in this case is by listing the basic axioms

and rules for integers.

An axiom is a reasonably obvious result which cannot be established by proof and has to

be accepted as true.

Definition: a > b ) a¡ b > 0

a < b ) b¡ a > 0

These are particularly useful in

establishing order properties.

If a > 0 and b > 0 then a+ b > 0 and ab > 0.

These are: ² If a < b and b < c, then a < c (transitivity)

² If a < b, then a+ c < b+ c and a¡ c < b¡ c.
² If a < b and c > 0, then ac < bc.

² If a < b and c < 0, then ac > bc.

Each of these is easily proven using

A.2 ORDER PROPERTIES AND AXIOMS

ORDER AXIOM

ORDER PROPERTIES

Prove that if a < b and c < 0, then ac > bc.

As a < b then b¡ a > 0

As c < 0 then ¡c > 0

) ¡c(b¡ a) > 0 forder axiomg
) ¡bc+ ac > 0

) ac > bc

Example 1

In our work on number theory, the above questions will be addressed, solved and/or proven.

.

positivity, i.e, to show , prove .A B A B >� � �� �> ¡ 0
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² If a, b 2 Z , then a+ b, a¡ b and ab 2 Z .

² If a 2 Z , then there does not exist x 2 Z such that a < x < a+ 1
i.e., there is no integer between two successive integers.

² If a, b 2 Z and ab = 1 then either a = b = 1 or a = b = ¡1

² If a, b 2 Z then either a < b, a = b or a > b:

As well as these axioms we need a further principle on which many important results about

subsets of positive integers depend. This is called the Well Ordered Principle (WOP).

Definition:

A set S is well ordered , every non-empty subset of S contains a least element.

Clearly Z + itself contains a least element, namely 1.

The Well Ordered Principle takes this statement further by saying “Every non-empty subset

of Z +, whether finite or infinite, contains a least element as well.” So, why is this important?

This principle is vital for the set of positive integers (also called natural numbers) as it

can be used to show the validity of that most important mathematical technique of proof by

induction.

If the Well Ordered Principle were not true for Z + we would not be able to use the method

of proof by induction.

The Well Ordered Principle for Z + is:

every non-empty subset of Z + contains at least one element.

Recall that the Principle of Mathematical

If P (n) is a proposition defined for all n in Z + , then if

² P (1) is true and

² the truth of P (k) ) the truth of P (k + 1)
(called the inductive step or inductive hypothesis)

then P (n) is true for all n > 1,

Theorem 1: The proof by the Principle of Mathematical Induction is a valid method of

mathematical proof.

Proof: (by contradiction)

Suppose that the conclusion P (n) is not true for every n 2 Z +
) there exists at least one positive integer for which P (n) is false

) the set S, of positive integers for which P (n) is false is non-empty

) S has a least element, k say, where P (k) is false. fWOPg ...... (¤)
But P (1) is true ) k > 1 ) k ¡ 1 > 0 ) 0 < k ¡ 1 < k

AXIOMS FOR INTEGERS

THE WELL ORDERED PRINCIPLE FOR �Z+

.

n 2 Z +.

Induction PMI( ) (weak form) is:
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Now since k ¡ 1 < k then k ¡ 1 is not in S fas k is the least element of Sg.
This implies that P (k ¡ 1) is true ffrom ¤g.
But by the inductive hypothesis P (k ¡ 1) true ) P (k) true.

Hence P (k) is true which contradicts ¤. So, our supposition is false. QED

We see in the above proof that the WOP is necessary for Proof by Induction to be valid. It

is also sufficient. The two are in fact logically equivalent.

Mathematical induction is used in many number theoretic proofs, especially in divisibility

which is our major concern in this course.

Use the Principle of Mathematical Induction to prove that 10n+1 + 3£ 10n + 5
is divisible by 9 for all n 2 Z +:

Proof: (By the Principle of Mathematical Induction)

(1) If n = 1, 102 + 3£ 101 + 5 = 135 = 15£ 9 which is divisible by 9

) P(1) is true.

(2) If P(k) is true, then 10k+1 + 3£ 10k + 5 = 9A where A 2 Z ...... (*)

) 10[k+1]+1 + 3£ 10[k+1] + 5

= 10£ 10k+1 + 3£ 10£ 10k + 5

= 10(9A¡ 3£ 10k ¡ 5) + 30£ 10k + 5 fusing *g
= 90A¡ 30£ 10k ¡ 50 + 30£ 10k + 5

= 90A¡ 45

= 9(10A¡ 5) where 10A¡ 5 2 Z as A 2 Z
) 10[k+1]+1 + 3£ 10[k+1] + 5 is divisible by 9

Thus P (k + 1) is true whenever P (k) is true and P (1) is true.

) P (n) is true fP of MIg

Use the Principle of Mathematical Induction to prove that 5n > 8n2 ¡ 4n+ 1
for all n in Z +:

Proof: (By the Principle of Mathematical Induction)

(1) If n = 1, 51 > 8¡ 4 + 1 i.e., 5 > 5 is true. ) P(1) is true.

(2) If P(k) is true, then 5k > 8k2 ¡ 4k + 1 ......(1)

i.e., 5k ¡ 8k2 + 4k ¡ 1 > 0 ...... (*)

Now 5[k+1] ¡ 8[k + 1]2 + 4[k + 1]¡ 1

= 5£ 5k ¡ 8(k2 + 2k + 1) + 4k + 4¡ 1

= 5£ 5k ¡ 8k2 ¡ 16k ¡ 8 + 4k + 4¡ 1

= (5k ¡ 8k2 + 4k ¡ 1) + 4£ 5k ¡ 16k ¡ 4

Example 2

Example 3
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where 5k ¡ 8k2 + 4k ¡ 1 > 0 fusing *g
and 4£ 5k ¡ 16k ¡ 4 > 4(8k2 ¡ 4k + 1)¡ 16k ¡ 4 fusing (1)g

i.e., > 32k2 ¡ 32k

i.e., > 32k(k ¡ 1)

> 0 as k > 1

) 5[k+1] ¡ 8[k + 1]2 + 4[k + 1]¡ 1 > 0 fthe sum of two non-negativesg
) 5[k+1] > 8[k + 1]2 ¡ 4[k + 1] + 1

Thus P (k + 1) is true whenever P (k) is true and P (1) is true.

) P (n) is true.

1 Prove, using the Principle of Mathematical Induction, that:

a 3n > 7n for n > 3, n 2 Z +
b nn > n! for n > 2, n 2 Z +
c 3n < n! for n > 6, n 2 Z +

2 Prove, using the Principle of Mathematical Induction, that:

a n3 ¡ 4n is divisible by 3 for all n > 3, n 2 Z +
b 5n+1 + 2(3n) + 1 is divisible by 8 for all n 2 Z +
c 73 j 8n+2 + 92n+1 for all n 2 Z +

Note: a j b reads a divides b or a is a factor of b.

If a j b where a and b are integers then b = ka where k 2 Z .

3 The nth repunit is the integer consisting of n “1”s.

For example, the third repunit is the number 111.

a Prove that the nth repunit is
10n ¡ 1

9
for all n 2 Z +.

b Ali claimed that all repunits, other than the second, are composite (or non-prime).

Can you prove or disprove Ali’s claim?

c Ali then made a weaker statement. He claimed that if a repunit is prime, then it

must have a prime number of digits. Can you prove or disprove this claim?

d To strengthen the claim in c Ali said that all repunits with a prime number of digits

must themselves be prime. Can you prove or disprove this claim?

Strong induction is so called as the inductive hypothesis is far stronger than the first (weak)

form.

It states that: If P (1) is true and P (k) is true for all k 6 n ) P (n+ 1) is true,

then P (n) is true for all n 2 Z +.

EXERCISE 11A.2.1

STRONG INDUCTION (THE SECOND FORM OF MATHEMATICAL
INDUCTION)
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Note: P (k) is true for all k 6 n means that P (k) is true for all values below a certain

value, i.e., P(1), P(2), P(3), ...... P(k) are all true.

This form of inductive proof is logically equivalent to the weak form.

The proof of the Unique Prime Factorisation Theorem depends on it.

Another area of Mathematics where proof by Strong Induction is used is that of recurrence

relationships. These occur in the Fibonacci sequence of numbers.

This is 1, 1, 2, 3, 5, 8, 13, 21, 34, ......

The Fibonacci sequence can be defined as:

f1 = 1, f2 = 1 and fn+2 = fn+1 + fn for all n > 1.

This is a recurrence relationship as we specify the initial value(s) and then give a rule for

generating all future terms. This is usually a rule for finding the nth term for some of the

values of the first k terms, where 1 6 k 6 n¡ 1.

A sequence is defined recursively by an+1 =
a2n
an¡1

for all n > 2 with a1 = 1
and a2 = 2.

a Find a3, a4, a5 and a6.

b Hence, postulate a closed form solution for an.

c Prove your postulate true using Mathematical Induction.

a a3 =
a 22
a1

=
22

1
= 4

a4 =
a 23
a2

=
42

2
= 8

a5 =
a 24
a3

=
82

4
= 16

a6 =
a 25
a4

=
162

8
= 32

b As a1 = 1 = 20

a2 = 2 = 21

a3 = 4 = 22

a4 = 8 = 23

a5 = 16 = 24

a6 = 32 = 25

c P(n) is “if a1 = 1, a2 = 2 and an+1 =
a2n
an¡1

for all n > 2 then

an = 2n¡1”.

THE FIBONACCI SEQUENCE

Example 4

Leonardo of Pisa (Fibonacci) (c. - ) introduces the sequence to Europe along with
the Arabic notation for numerals in his book “ ”. It is posed as the rabbits
problem which you could source on the internet or in the library.

1180 1228
Liber Abaci�

we postulate that an = 2n¡1.

Note:

strong induction

Many results about the Fibonacci sequence can be proven or are still to be proved.
The magazine “The Fibonacci Quarterly” deals solely with newly discovered properties of
the sequence. A number of proofs require for proof. Many sites could be
visited including http://mathworld.wolfram.com/FibonacciNumber.html
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1 If a sequence is defined by a1 = 1, a2 = 2 and an+2 = an+1 + an, prove that

an 6
¡
5
3

¢n
for all n in Z +.

2 If b1 = b2 = 1 and bn = 2bn¡1 + bn¡2 for all n > 2, prove that bn is odd

for n 2 Z +.

The remaining questions all involve the Fibonacci sequence, fn.

3 Evaluate

nX
k=1

fk for n = 1, 2, 3, 4, 5, 6 and 7 and hence express

nX
k=1

fk in terms

of another Fibonacci number. Prove your postulate true by induction.

4 Prove that
¡
3
2

¢n¡2
< fn < 2n¡2 for all n 2 Z+, n > 3.

Note: This inequality enables us to bound the Fibonacci numbers and tells us some-

thing about the ‘exponential’ growth of the numbers.

Challenge: Prove that
³
1+
p
5

2

´n¡2
< fn which leads to a closed form for fn

(known as Binet’s formula). This is worth researching.

5 Rearranging fn+2 = fn+1+fn to fn = fn+2¡fn+1 enables us to prove question

3 directly. Show how this can be done.

6 Postulate and prove a result for

nX
k=1

f2k¡1 in terms of other Fibonacci numbers.

7 Postulate and prove a result for

nX
k=1

f2k in terms of other Fibonacci numbers by

expressing the result of this sum as a product of two factors, each of which can be

expressed in terms of a Fibonacci number.

8

EXERCISE 11A 2.2. (Strong Induction)

Proof: (By the Principle of Mathematical Induction)

(1) If n = 1, a1 = 21¡1 = 20 = 1 ) P(1) is true.

(2) Assume that an = 2n¡1 is true for all n 6 k
) ar = 2r¡1 for r = 1, 2, 3, 4, ......, k ...... (¤)
(We are now required to prove that ak+1 = 2k.)

Now ak+1 =
a2k
ak¡1

=
(2k¡1)2

2k¡2
=

22k¡2

2k¡2
= 2k, as required.

Thus P(1) is true and the assumed result for r = 1, 2, 3, 4, ......, k

) the same result for r = k + 1

then P (n) is true for all n 2 Z +.
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9 Postulate and prove a result for

nX
k=1

f2k in terms of other Fibonacci numbers.

10

11 Given the matrix F =

·
1 1
1 0

¸
, postulate and prove a result for Fn in terms of the

Fibonacci numbers.

Hence, by considering the determinants of F and Fn establish the result of question 8.

12

Although this course deals mainly with integers, it would be remiss not to look at a brief

extension to the set of irrationals. This allows us to further utilise the Well Ordered Principle.

The first number found to be irrational was probably
p

2. This is a classic of number theory.

See the ‘methods of proof’ document at the start of this book. The irrationality of
p

3 can

likewise be established using a simular technique.

However, the irrationality of
p

2,
p

3 etc can also be established using the Well Ordered

Principle and contradiction.

Use the WOP and contradiction to prove that
p

3 is irrational.

Suppose that
p

3 is rational. ) p
3 =

p

q
where p, q are in Z , q 6= 0

) p = q
p

3

We now consider the set S =
©
k
p

3: k, k
p

3 are in Z +
ª

By our supposition, S is a non-empty set of positive integers which by the WOP,

has a smallest member s, say, and has the form s = t
p

3 for some integer t.

Now s
p

3¡ s = s
p

3¡ tp3 = (s¡ t)p3

But s
p

3 = t
p

3
p

3 = 3t where s and t are integers.

) 3t¡ s = (s¡ t)p3 where s and t are integers.

) (s¡ t)p3 is an integer

which is positive as s¡ t = t
p

3¡ t = t(
p

3¡ 1) and
p

3 > 1

i.e., (s¡ t)p3 2 Z +:
However, s(

p
3¡ 1) < s as

p
3¡ 1 < 1.

But this contradicts the definition of s as the smallest element in S.

Hence, the supposition that
p

3 is rational is false.

THE EXISTENCE OF IRRATIONALS

Example 5

255DISCRETE MATHEMATICS (Topic 11)

Postulate and prove a result for

2n¡1X
k=1

( fk £ fk+1) in terms of the square of another

Fibonacci number.

Prove that fn £ fn¡1 = (fn)2 ¡ (fn¡1)
2 + (¡1)n, for all n > 2.

This can be used to show that consecutive Fibonacci numbers have a greatest common

divisor of 1. Can you see why?
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INVESTIGATION 1 HOW MANY PRIMES ARE THERE?

1 Use the Well Ordered Principle and contradication to show that
p

2 is irrational.

2 Use the Well Ordered Principle and contradication to show that
p

5 is irrational.

3 Where does the proof as in Example 5 fail, if trying to prove the irrationality of
p

4?

Divisibility and primality are intimately linked. So, if we are to consider the primes, then

we must also look at composite numbers (non-primes). This leads naturally to a discussion

on the divisibility properties of integers. In turn, we will find that these depend on the Well

Ordered Principle.

1 What is the negation (or opposite) of the statement:

of primes”?

This will be the statement we should try to contradict.

2 Surely a consequence of the negation would be that there is a largest prime P , say.

Now consider the number N = P ! + 1

a What is the size of N compared to that of P ?

b

3 Consider N = 19! + 1. Explain why
N

2
,
N

3
,
N

4
,
N

5
, ......,

N

19
are not integers.

4 Consider what happens if we divide N by any integer k which is 6 P , and so

consider the nature of N again.

5 You should now have reached the desired contradiction.

6 Now all you have to do is to write down the proof logically and in a form which

cannot be disputed.

The proof you obtained from the Investigation is a variant on Euclid’s proof of the infinitude

of primes.

Find Euclid’s proof and see how it varies from the one derived in the Investigation.

Primes and composites both have to be identified, and the search for them is not a trivial

undertaking. In order to gain the insight necessary to continue, we must look at the formal

rules governing divisibility and so we begin with some definitions and some properties.

EXERCISE 11A.2.3

A.3 DIVISIBILITY, PRIMALITY AND THE DIVISION ALGORITHM

What to do:

Do you think that there are infinitely many prime numbers or do you think
that they cease as we proceed through higher positive integers?

Anne claims that the primes are infinite in number.

Can you prove or disprove her claim?

“There are an infinite number

If we assume that there is a finite number of primes (and thus a largest one),
what does its size tell us about its nature (prime or composite)?
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Notation: d j n reads d divides n
or d is a divisor of n
or d is a factor of n
or n is a multiple of d

For example,

Definition: If d and n are integers, then d j n , there exists k 2 Z such that n = dk.

² n j n (every integer divides itself)

² d j n and n j m ) d j m (transitivity)

² d j n and d j m ) d j an+ bm for all a, b 2 Z (linearity)

² d j n ) ad j an (multiplicative)

² ad j an ) d j n if a 6= 0 (cancellation)

² 1 j n (1 divides every integer)

² n j 1 ) n = §1

² d j 0 for every d in Z

² If d and n are positive integers and d j n ) d 6 n.

The linearity property deserves special attention. It says that:

If d divides both n and m, then d divides all linear combinations of n and m.

So, if d j n and d j m then in particular d j n+m and d j n¡m.

This result is particularly useful.

ELEMENTARY DIVISIBILITY PROPERTIES

DIVISIBILITY PROPERTIES

Example 6

Prove that n j 1 ) n = §1.

n j 1 ) there exists k such that 1 = kn, k 2 Z
So, we have to solve kn = 1 where k and n are integers.

The only solutions are k = 1, n = 1 or k = ¡1, n = ¡1

) n = §1

Example 7

3 j 12 but 5 6 j 12

Prove the transitivity property: if d j n and n j m then d j m.

d j n ) there exists k1 such that n = k1d, k1 2 Z
n j m ) there exists k2 such that m = k2n, k2 2 Z
) m = k2n = k2(k1d) = k1k2d where k1k2 2 Z
) d j m
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1 Prove these properties of divisibility:

a d j n ) ad j an (a, d and n are all integers).

b d j n and d j m ) d j an+ bm for all integers a and b.

c If d and n are positive integers and d j n ) d 6 n.

2 Prove that if a 2 Z , then the only positive divisor of both consecutive integers a and

a+ 1 is 1.

3 Prove that there do not exist integers m and n such that:

a b

4 If a, b and c are in Z , prove that a j b and a j c ) a j b§ c.

Theorem 2: (The Division Algorithm)

For any two integers a and b with b > 0, there exists unique q and r in Z
such that a = bq + r where 0 6 r < b.

Note: In a = bq + r, q is the 6
a

b
and is called the quotient.

r is called the remainder, a is the dividend and b is the divisor.

For example, for integers 27 and 4, 27 = 6£ 4 + 3

27
4 = 634 and 6 is the greatest integer 6 27

4 .

Find the quotient and remainder for:

a a = 133, b = 21 b a = ¡50, b = 8 c a = 1781 293, b = 1481

a
a

b
= 6:333 :::::: ) q = 6 Now r = a¡ bq

) r = 133¡ 21£ 6

i.e., r = 7

b
a

b
= ¡6:25 ) q = ¡7 and r = a¡ bq

= ¡50¡ 8(¡7)

= 6

c
a

b
= 1202:76 ::::: ) q = 1202 and r = a¡ bq

= 1781 293¡ 1481£ 1202

= 1131

EXERCISE 11A.3.1

THE DIVISION ALGORITHM

Example 8

14m+ 20n = 101 14m+ 21n = 100

greatest integer such that q

The extends our notion of divisibility to the case where are
obtained and is a formal representation of that idea. It is stated below without proof.

Division Algorithm remainders
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The Division Algorithm also tells us that, if for example b = 5, then a = 5q + r where

0 6 r < 5, i.e., r = 0, 1, 2, 3 or 4 and there are no other possible values. These different

values of r split all integers into five disjoint sets with membership of a given set being

dependent solely on the value of the remainder on division by 5.

These sets have form 5k, 5k + 1, 5k + 2, 5k + 3, 5k + 4.

For example, 35 and 240 belong to the set 5k,

36 and 241 belong to the set 5k + 1, etc.

1 Show that: a 3 j 66 b 7 j 385 c 654 j 0
2 Find the quotient and remainder in the division process with divisor 17 and dividend:

a 100 b 289 c ¡44 d ¡100

3 What can be deduced about non-zero integers a and b if a 6 j b and b 6 j a?

4 Given a, b, c and d in Z where a, c 6= 0 show that a j b and c j d ) ac j bd:
5 Is it possible to find prime integers p, q and r such that p j qr but p 6 j q and p 6 j r?
6 When is it possible to find integers a, b and c such that a j bc but a 6 j b and a 6 j c?
7 Given p, q 2 Z +, and p j q prove that p 6 q.

8 Given p, q 2 Z , such that p j q, prove that pk j qk where k 2 Z .

9 Prove that if the product of k integers is odd, then all the individual integers are them-

selves odd.

10 a Prove that the square of an integer takes the form 3k or 3k+1 for some k 2 Z .

b Prove that the square of an integer is of the form 4q or n = 4q+1 for some q 2 Z .

c Deduce that 1 234 567 is not a perfect square.

Prove that if a 2 Z , then 3 j a , 3 j a2
(i.e., 3 j a and 3 j a2 are logically equivalent statements).

Proof: ()) If 3 j a, then a = 3q say, where q 2 Z
) a2 = 9q2

) a2 = 3(3q2) where 3q2 2 Z
) 3 j a2

(() We can more directly prove the contrapositive, i.e., instead of

showing 3 j a2 ) 3 j a, we need to show 3 6 j a ) 3 6 j a2
Now if 3 6 j a, then a = 3q + 1 or a = 3q + 2 (but not 3q)

) a2 = 9q2 + 6q + 1 or a2 = 9q2 + 12q + 4

) a2 = 3(3q2 + 2q) + 1 or a2 = 3(3q2 + 4q + 1) + 1

) 3 6 j a2 (as in each case a remainder of 1 occurs)

Hence as 3 6 j a ) 3 6 j a2, then 3 j a2 ) 3 j a.

EXERCISE 11A.3.2

Example 9

The division algorithm states that if results about divisibility by apply to “ ” then they
apply to all numbers of the set .

5 2
5 +2k
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1 Prove that: an integer a is divisible by 5 , 5 j a2.
2 Prove that: if a is an integer, 3 j a2 , 9 j a2.

3 a Prove that n = 2 ) (n+ 3)(n¡ 2) = 0 b Is the converse in a true?

4 There are many different ways of reading the statement p ) q.

These are: i “If p then q” ii “q if p” iii “p only if q”

iv “p is sufficient for q” v “q is necessary for p”

Using the above, which of the following are true and which are not?

a n = 2 only if n2 ¡ n¡ 2 = 0

b n = 2 is sufficient for n2 ¡ n¡ 2 = 0

c n = 2 is necessary for n2 ¡ n¡ 2 = 0

d a < b is sufficient for 4ab < (a+ b)2

e a < b is necessary and sufficient for 4ab < (a+ b)2

f a < b if and only if 4ab < (a+ b)2

g a < b is equivalent to 4ab < (a+ b)2

Note: p if and only if q is sometimes written p iff q.

5 a Prove that any integer of the form 8p+ 7 is also of the form 4q + 3.

b Demonstrate by using a counter example that the converse of a is not true.

6

a the cube of an integer takes either the form 9k or 9k § 1

b the fourth power of an integer takes the form 5k or 5k + 1

7 Prove that an integer of the form 3k2 ¡ 1 is never a perfect square. Consider the

contrapositive of this statement.

8 For n > 1, prove, by considering cases, that
n(n+ 1)(2n+ 1)

6
2 Z .

Find an alternative proof. (You may also recognise the formula.)

9

10 Prove, by using cases, that if an integer is both a perfect square and a perfect cube, then

it will take one of the two forms 7k or 7k + 1.

11 a For n > 1, prove that the integer 7n3 + 5n is even, by using the Division

Algorithm and considering cases.

b Similarly, prove that the integer n(7n2 + 5) is of the form 3k.

c Hence, prove that the integer n(7n2 + 5) is of the form 6k. Prove this result

12 Given a 2 Z , prove that 3 j a3 ¡ a.

13 a Show that the product of any two integers of the form 4k + 1 also has this form.

b Show that the product of any two integers of the form 4k + 3 has form 4p+ 1.

c What do these results tell you about the square of any odd number?

EXERCISE 11A.3.3
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Prove that no repunit, except , can be a perfect square. ( If necessary, see
question .)

1 Hint:

Exercise 11A.2.1 3

directly, by considering the six cases.

Prove that:

IBHL_OPT
cyan black

0 5 2
5

7
5

5
0

9
5

1
0
0

0 5 2
5

7
5

9
5

1
0
0

5
0

Y:\HAESE\IBHL_OPT\IBHLOPT_11\260IBO11.CDR Thursday, 21 July 2005 12:58:12 PM PETERDELL



14

15

16

17

Repeated use of the Division Algorithm, and the uniqueness of its representation of integers,

is the basis of our decimal number system.

We express numbers in the decimal system as a sum of powers of 10.

For example, 34 765 = 3£ 104 + 4£ 103 + 7£ 102 + 6£ 101 + 5£ 100

The coefficients of the powers of 10 come from the set f0, 1, 2, 3, 4, 5, 6, 7, 8, 9g and this

set is denoted as Z 10.

We use 10 as our base as it seems to suit us. However, we could just as easily use any other

integer as our base and that system of representing integers would be just as valid since the

Division Algorithm is valid for all positive integer divisors. The representation of the integers

so obtained is unique (in that base).

Integers written in base 2 and base 16 are very important in computer science.

Integers can be written in base 2 using powers of 2 and the digits 0 and 1 for its coefficients.

For example 101 1012 = 1£ 25 + 0£ 24 + 1£ 23 + 1£ 22 + 0£ 21 + 1£ 20

Convert: a (1 001 101)2 to a base 10 integer.

b the base 10 integer 347 to a base 2 integer.

a 1 001 1012 = 1£ 26 + 1£ 23 + 1£ 22 + 1£ 20

= 64 + 8 + 4 + 1

= 7710

b We are to write 347 in the form

ak2
k + ak¡12k¡1 + ak¡22k¡2 + ::::::+ a22

2 + a12
1 + a0

where 0 6 ai < 2 i.e., ai 2 Z 2 where Z .2 = f0, 1g
Let 347 = 2

¡
ak2

k¡1 + ak¡12k¡2 + ::::::+ a22 + a1
¢

+ a0
i.e., 347 = 2£ 173 + 1 then a0 = 1

Since ak2
k¡1 + ak¡12k¡2 + ::::::+ a22 + a1 2 Z and the representation

is unique then

173 = ak2
k¡1 + ak¡12k¡2 + ::::::+ a22 + a1

INTEGER REPRESENTATION IN VARIOUS BASES

OTHER BASES

Example 10

Using the result of the previous question, show that the fourth power of any odd integer

is of the form 16k + 1:

Prove by induction that the product of any three consecutive integers is divisible by 6.

Prove this result directly by the Division Algorithm.

Prove by induction that 5 j n5 ¡ n for all n 2 Z +. Prove this result using the

Division Algorithm.

Prove by induction that the sum of the cubes of any three consecutive integers is divisible

by 9. Prove this result using the Division Algorithm.
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This process can be used to convert any base 10 number to a number in another integer base.

Note: If a base number is not given, it is assumed to be base 10, i.e., 347 is (347)10.

1 Convert 1 001 111 101 from binary to decimal notation.

2 Convert 201 021 102 from ternary (base 3) to decimal notation.

3 Convert a 347 to base 3 b 1234 to base 8 c 5728 to base 7.

4 Convert 87 532 to base 5.

5 Convert 1 001 111 101 from binary to base 4. Note that you have already converted this

to base 10. Can you see a way of doing the conversion directly?

6 Convert 1 001 111 101 from binary to base 8.

7 a Convert 201 021 102 from ternary (base 3) to base 9.

b Convert 2 122 122 102 to base 9.

8 Detail a way of converting a given integer from base k to base k2.

9 Convert 56 352 743 from base 8 to binary.

10 Convert 313 123 012 from base 4 to binary.

11 Convert 6 326 452 378 from base 9 to ternary.

12 Detail a way of converting a given integer from base k2 to base k.

13 By repeated use of the division algorithm find the infinite decimal representation of the

rational number 5
7 .

(Hint: Suppose 5
7 = a1 £ 10¡1 + a2 £ 10¡2 + :::::: where the ai 2 Z 10.)

) 173 = 2(ak2
k¡2 + ak¡12k¡3 + ::::::+ a2) + a1

= 2£ 86 + 1 and so a1 = 1

and we continue this process to obtain 34710 = 101011 0112

i.e., 2 347 r
2 173 1 347 = 2£ 173 + 1
2 86 1 173 = 2£ 86 + 1
2 43 0 86 = 2£ 43 + 0
2 21 1 43 = 2£ 21 + 1
2 10 1 21 = 2£ 10 + 1
2 5 0 10 = 2£ 5 + 0
2 2 1 5 = 2£ 2 + 1

1 0 2 = 2£ 1 + 0 So, (347)10 = (101 011 011)2

In reality we can shorten the process using repeated division by and recorded the
remainders, in reverse.

2

EXERCISE 11A.3.4
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The greatest common divisor of 6 and 15 is 3 as 3 j 6 and 3 j 15 and no greater number

has this property of dividing into both 6 and 15. We write gcd(6, 15) = 3.

The greatest common divisor of integers a and b is written gcd(a, b)

(or simply (a, b) in some books).

Formal definition:

d = gcd(a, b) , (1) d j a and d j b
(2) if e j a and e j b then e j d

Examples: gcd(24, 36) = 12, gcd(12, 0) = 12, gcd(15, 28) = 1

a and b are relatively prime (or coprime) if gcd(a, b) = 1

Theorem 3: If d = gcd(a, b) then (1) gcd

µ
a

d
,
b

d

¶
= 1

(2) gcd(a, b) = gcd(a+ cb, b), a, b, c 2 Z

Proof: (1) If e 2 Z and e j a
d

and e j b
d

then there exist integers k and l

such that
a

d
= ke and

b

d
= le

) a = kde and b = lde

) a and b have de as a common divisor.

But d = gcd(a, b) ) de 6 d ) e = 1 ) gcd

µ
a

d
,
b

d

¶
= 1

(2) ()) Let e be a common divisor of a and b, i.e., e j a and e j b
) e j a+ cb (c 2 Z ) flinearity property of divisibilityg
) e is a common divisor of a and a+ cb.

(() If f is a common divisor of b and a+ cb

) f is a common divisor of b and (a+ cb)¡ cb
fagain using the linearity propertyg

) f is a common divisor of b and a.

Theorem 4:

The gcd(a, b) is the least positive integer that is a linear combination of a and b,

i.e., d = gcd(a, b) ) d = ma+ nb and if k = pa + qb then k > d:

RELATIVELY PRIME INTEGERS
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Note: In the above proof, we have simply shown that the sets of common divisors are the

same. Do you understand that this is all that is required for the proof to be valid?

A.4 GCD, LCM AND THE EUCLIDEAN ALGORITHM GREATEST
COMMON DIVISOR (GCD)
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Proof:

Let d be the least positive integer that is a linear combination of a and b.

First note that d exists since by the Well Ordered Principle, one of either 1(a) + 0(b) or

¡1(a) + 0(b) is positive, a 6= 0 and both of these are linear combinations of a and b.

We must now show that (1) d j a and d j b
(2) d = gcd(a, b)

(1) Writing d = ma+ nb and noting that a = dq + r with 0 6 r < d by the

Division Algorithm then r = a¡ dq = a¡ q(ma+ nb) = (1¡ qm)a¡ qnb
i.e., r is a linear combination of a and b.

But, we have defined d as the least positive linear combination of a and b and since

0 6 r < d, we can only conclude that r = 0.

Consequently a = dq and hence d j a.

By similar argument, we also conclude that d j b.
(2) By the linearity property, if e is any common factor of a and b then e j ma+ nb.

But d = ma+ nb, so e j d.

Consequently, by definition, d = gcd(a, b)

Note 1:

Note 2:

Which of the following have a solution in Z , and how many solutions are there?

a 24x+ 36y = 12 b 24x+ 36y = 18

a Since gcd(24, 36) = 12 then

12 = m(24) + n(36)

So, 24m+ 36n = 12 and by inspection m = ¡1, n = 1 is one solution

and m = 3, n = ¡4 is another.

(Actually, there are infinitely many solutions of the form m = ¡1 + 3t,
n = 1¡ 2t where t 2 Z .)

However the theorem also states that there is no other number less than 12

that can be expressed in this way. And, Note 2 states that the only other

numbers expressible like this are the multiples of 12.

So, 24x+ 36y = 12 is solvable in Z

b 24x+ 36y = 18 is not solvable in Z
gcd(24, 36):

Example 11

A corollary of the above theorem is that the set of all possible linear
combinations of and is the set of multiples of . You should be able to prove
this since, if then can be expressed similarly. Complete the
proof and remember it.

�
a b d

d ma nb kd= +� � �

The above proof is an . It tells us that the , is a linear
combination of and . However, it does not tell us what the linear combination
is. That is the purpose of the Euclidean Algorithm which we will meet soon.

existence proof gcd( )a b
a b

for some integers and .m n
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1 Which of these equations has a solution in Z ? How many solutions are there?

a 24x+ 18y = 9 b 2x+ 3y = 67 c 57x+ 95y = 19

d 1035x+ 585y = 90 e 45x¡ 81y = 108

2 For the equations in 1, can you find a solution in Z by inspection?

3 For any equation in 1, can you determine the form of all the other (infinite) answers?

Note: Questions 2 and 3 are those addressed by the Euclidean Algorithm.

Using the linearity property and the previous theorem we can consider whether two integers

are relatively prime in an algebraic manner by noting:

Theorem 5:

For non-zero integers a and b,

a and b are relatively prime , there exist m, n in Z such that ma+ nb = 1.

Proof: ()) a and b relatively prime

) gcd(a, b) = 1

) there exist m, n in Z such that ma+ nb = 1 fTheorem 1g
(() As d = gcd(a, b)

) d j a and d j b
) d j ma+ nb fdivisibility propertyg
) d j 1
) d = 1

If a j c and b j c with gcd(a, b) = 1 then ab j c:
Proof:

As gcd(a, b) = 1, there exist integers m, n such that ma+ nb = 1

then mac+ nbc = c ...... (1)

Now a j c and b j c ) c = ka and c = lb, k, l 2 Z
) ma(lb) + nb(ka) c= ) ab(ml+ nk) = c ) ab j c

Note:

8 j 144 and 9 j 144 and gcd(8, 9) = 1.

Hence 8£ 9 j 144, i.e., 72 j 144.

However, the result is not true for divisors which are not relatively prime.

For example, 8 j 144 and 12 j 144 but 8£ 12 144:

The final result in this section, Euclid’s Lemma, is of great importance.

EXERCISE 11A.4.1

OTHER IMPORTANT RESULTS

Corollary to Theorem 5:

The corollary is important in a practical way since we know, for example,

6 j
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Euclid’s Lemma:

If a j bc and gcd(a, b) = 1, then a j c.
Proof: As gcd(a, b) = 1, there exist integers m, n such that ma+ nb = 1

) mac+ nbc = c

But a j bc ) bc = ka for some integer k.

Thus, mac+ n(ka) = c ) a(mc+ nk) = c ) a j c

Note: If the condition gcd(a, b) = 1 is not true, the Lemma fails.

For example, 12 j 9£ 8, but

1 Given a, b, c, d 2 Z , prove that:

a if a j b then a j bc b if a j b and a j c then a2 j bc
c if a j b and c j d then ac j bd d if a j b then an j bn.

Is the converse true?

2 Prove that for k 2 Z , one of k, k + 2, k + 4 is divisible by 3.

3 Determine the truth or otherwise of the statement:

if p j (q + r) then either p j q or p j r:
4 a Prove that:

i the product of any three consecutive integers is divisible by 3
ii the product of any three consecutive integers is divisible by 6
iii the product of any four consecutive integers is divisible by 4
iv the product of any four consecutive integers is divisible by 24.

b Is the product of any n consecutive integers divisible by n!?

5 Prove that 3 j k(k2 + 8) for all k 2 Z .

6 Heta claims that “the product of four consecutive integers is one less than a perfect

square”.

a Check Heta’s statement with three examples. This is verifying the statement.

b Prove or disprove Heta’s claim.

7 a Prove that for a 2 Z and n 2 Z +, gcd(a, a+ n) j n.

b Hence, prove that gcd(a, a+ 1) = 1.

8 Use the linearity property to show that:

a gcd(3k + 1, 13k + 4) = 1

b gcd(5k + 2, 7k + 3) = 1

9 a Given a, b 2 Z , not both zero, prove that gcd(4a ¡ 3b, 8a ¡ 5b) divides b but

not necessarily a.

b Hence, prove that gcd(4a+ 3, 8a+ 5) = 1.

10 Prove that:

a if gcd(a, b) = 1 and c j a, then gcd(c, b) = 1

EXERCISE 11A.4.2

12 6 j 9.
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b if gcd(a, b) = 1, then gcd(a2, b) = gcd(a, b2) = 1 and

hence prove that gcd(a2, b2) = 1.

11 a Prove, using the identity xk ¡ 1 = (x¡ 1)(xk¡1 + xk¡2 + xk¡3 + ::::::+ x+ 1),
and by considering repunits, that if d j n then (2d ¡ 1) j (2n ¡ 1).

b Establish that 235 ¡ 1 is divisible by both 31 and 127.

12 Show that for k 2 Z + then these pairs are relatively prime.

a 3k + 2 and 5k + 3 b 5k + 3 and 11k + 7

13 Given a, b 2 Z , and gcd(a, b) = 1, prove that gcd(a+ b, a¡ b) = 1 or 2.

The Euclidean Algorithm is the most efficient (and a rather ingenious) way of determining

the greatest common divisor of two integers. It, too, was detailed in Euclid’s Elements and

has been known in both East and West since antiquity. It is based on the division algorithm.

The following result is fundamental to all that follows and forms the basis in proof of the

Euclidean Algorithm.

Lemma:

If a = bq + r where a, b and q are integers, then gcd(a, b) = gcd(b, r).

Proof:

If we can show that the common divisors of a and b are the same as the common divisors of

b and r, we have shown gcd(a, b) = gcd(b, r).

If d j a and d j b ) d j (a¡ bq) flinearity propertyg
) d j r

Hence, any common divisor of a and b is also a common divisor of b and r.

Likewise, if d j b and d j r ) d j bq + r ) d j a.

Hence, any common divisor of b and r is also a common divisor of a and b.

Consequently, gcd(a, b) = gcd(b, r).

then from the above Lemma,

gcd(a, b) = gcd(r0, r1) = gcd(r1, r2) = :::::: = gcd(rn¡1, rn) = gcd(rn, 0) = rn

Hence the gcd(a, b) is the last non-zero remainder in the sequence of divisions.

THE EUCLIDEAN ALGORITHM

The Euclidean Algorithm is the repeated use of the above Lemma, with two given integers,

to find their greatest common divisor.

If a and b are positive integers with a > b and we let r0 = a and r1 = b in the recursive

formulae below, when we successively apply the division algorithm we obtain

r0 = r1q1 + r2, 0 < r2 < r1
r1 = r2q2 + r3, 0 < r3 < r2
r2 = r3q3 + r4, 0 < r4 < r3

...
rn¡2 = rn¡1qn¡1 + rn, 0 < rn < rn¡1
rn¡1 = rnqn + 0
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Note: The remainder must eventually be zero since the sequence of positive integer

remainders r0, r1, r2, r3, ...... is strictly decreasing.

The systematic method to find the greatest common divisor outlined above is known as the

Euclidean Algorithm. It is remarkable in that it does not depend on finding any of the

divisors of the two numbers in question, other than, of course, the greatest common divisor.

Find gcd(945, 2415) and then find r, s 2 Z such that

gcd(945, 2415) = 945r + 2415s:

Successive divisions give 2415 = 945(2) + 525

945 = 525(1) + 420

525 = 420(1) + 105

420 = 105(4) Hence gcd(945, 2415) = 105

We now work backwards, substituting the remainder at each stage

i.e., 105 = 525¡ 420

= 525¡ (945¡ 525)

= 525£ 2¡ 945

= (2415¡ 945(2))£ 2¡ 945

= 2415£ 2¡ 4£ 945¡ 945

= 2415£ 2¡ 5£ 945

) r = ¡5 and s = 2

Note: r and s are not unique. r = 41, s = ¡16 is another solution.

1 Find the gcd(a, b) and integers r and s such that the gcd = ra+ sb for:

b 12 378, 3054 c 3172, 793 d 1265, 805

e 55, 34 f fn+1, fn where fj is the jth Fibonacci number.

2 Find gcd(f4(n+1), f4n) for different values of n.

Prove that this result is true for all n 2 Z +.

3 Postulate and prove a similar result (to 2) for gcd(f5(n+1), f5n).

The multiples of 6 are 6, 12, 18, 24, 30, 36, 42, 48, 54, 60, 66, 72, ......

The multiples of 8 are 8, 16, 24, 32, 40, 48, 56, 64, ......

The common multiples of 6 and 8 are: 24, 48, 72, ......

So the least common multiple of 6 and 8 is 24.

Although it is not the only method of doing so, it also provides a method for expressing
, as a linear combination of and if this is desired.gcd( )a b a b

Example 12

EXERCISE 11A.4.3

LEAST COMMON MULTIPLE
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INVESTIGATION 2 CONNECTING GCD AND LCM

A stricter definition follows.

Definition:

The least common multiple (lcm) of integers a and b, denoted lcm(a, b) is the integer

m satisfying (1) a j m and b j m
(2) if a j c and b j c where c > 0, then m 6 c.

Note: For integers a, b, lcm(a, b) always exists and lcm(a, b) 6 jabj.

The purpose of this investigation is to find, if it exists, any relationship

between the gcd(a, b) and the lcm(a, b).

1 Find the gcd and lcm of:

a 70 and 120 b 37 and 60 c 108 and 168 d 450 and 325

2 Find the product of each of the pairs of numbers above.

3 Find the product of the gcd and lcm of each of the pairs of numbers above.

4 Postulate a result from the above.

Theorem 6:

For positive integers a and b, gcd(a, b)£ lcm(a, b) = ab:

Proof:

Let d = gcd(a, b) ) d j a and d j b
) a = dr and b = ds for r, s 2 Z + ...... (1)

Now consider m =
ab

d
.

We have to show that m = lcm(a, b).

) m =
(dr)b

d
and m =

a(ds)

d
i.e., m = br and m = as

) m is a positive common multiple of a and b.

Now let c be any integer positive multiple of a and b

) c = au and c = bv say, where u, v 2 Z +.

Since d = gcd(a, b), there exist x, y 2 Z such that d = ax+ by

)
c

m
=

c

ab

d

=
cd

ab
=
c(ax+ by)

ab
=
³c
b

´
x+

³ c
a

´
y

Hence
³ c
m

´
= vx+ uy i.e., c = (vx+ uy)m

) m j c ) m 6 c ) m = lcm(a, b)

What to do:
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Corollary:

For integers a and b, lcm(a, b) = ab , gcd(a, b) = 1

1 Find the gcd and lcm of:

a 143, 227 b 272, 1749 c 3054, 12 378 d 267, 1121

The following section relates the Euclidean algorithm to the study of the simplest of all Dio-

phantine equations, the linear Diophantine equation ax+ by = c.

The Pythagorean equation, or its generalisation to higher powers as in Fermat’s Last Theo-

rem, is perhaps the most famous of the Diophantine equations.

Linear Diophantine equations are always to be solved in the integers, (or sometimes the pos-

itive integers) and have the property that there are two variables (x and y) in the equation

and yet with only one equation they therefore have either an infinite number of solutions in

Z or none.

For example, the equation 3x + 6y = 18 has an infinite set of solutions in the integers,

whereas 2x+ 10y = 17 has none at all.

ax+ by = c has a solution , d j c where d = gcd(a, b)

Proof:

()) d = gcd(a, b), ) d j a and d j b
) a = dr and b = ds for integers r and s

Now if x = x0 and y = y0 is a solution of ax+ by = c then ax0 + by0 = c

) c = ax0 + by0 = drx0 + dsy0 = d(rx0 + sy0)

) d j c
(() If d j c then c = dt for some integer t ...... (1)

Now there exist x0, y0 2 Z such that d = ax0 + by0
flinearity divisibility propertyg

Multiplying by t gives dt = (ax0 + by0)t

) c = a(x0t) + b(y0t) ffrom (1)g
Hence ax+ by = c has x = tx0, y = ty0 as a particular solution.

Using the above, we can prove the following theorem which gives a method of solving linear

Diophantine equations.

EXERCISE 11A.4.4

A 5 THE LINEAR DIOPHANTINE EQUATION. ax by c+ =

CONDITION FOR SOLVABILITY OF ax by c+ =

One reason for the last equation having no solution is that the left hand side (LHS) is always
even and the right hand side (RHS) is odd.
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Theorem 7:

ax+ by = c has a solution , d j c where d = gcd(a, b):

If x0, y0 is any particular solution, all other solutions are of the form

x = x0 +
¡
b
d

¢
t, y = y0 ¡

¡
a
d

¢
t where t 2 Z .

Proof: (of the second part)

Suppose x0, y0 is a known solution of ax+ by = c.

If x0, y0 is another solution then ax0 + by0 = c = ax0 + by0

) a(x0 ¡ x0) = b(y0 ¡ y0) ......(1)

and this ) dr(x0 ¡ x0) = ds(y0 ¡ y0)
) r(x0 ¡ x0) = s(y0 ¡ y0)
) r j s(y0 ¡ y0) with gcd(r, s) = 1 ......(2)

Now Euclid’s Lemma states that if a j bc and gcd(a, b) = 1, then a j c.
So, from (2) r j y0 ¡ y0

) y0 ¡ y0 = rt say, t 2 Z
) y0 = y0 ¡ rt

and in (1) a(x0 ¡ x0) = b(¡rt)
) dr(x0 ¡ x0) = ds(¡rt)

) x0 ¡ x0 = ¡st
) x0 = x0 + st

i.e., x0 = x0 + st and y0 = y0 ¡ rt
i.e., x0 = x0 +

¡
b
d

¢
t and y0 = y0 ¡

¡
a
d

¢
t, t in Z

Note: Checking this solution:

ax+ by = a
¡
x0 +

¡
b
d

¢
t
¢

+ b
¡
y0 ¡

¡
a
d

¢
t
¢

= ax0 + abt
d

+ by0 ¡ abt
d

= ax0 + by0 = c X

Graphically, the theorem takes this form:

The equation ax + by = c is that of a straight

line and its graph has gradient ¡a
b

and since

gcd(a, b) j c, we know that there is an integer

solution (x0, y0) on this line.

The general solution is obtained by moving a

horizontal distance b
d

to the right (this is an

integer) and moving back onto the line. Using

the horizontal shift and the gradient of the line it

is easy to see that the vertical distance required

to regain the line is ¡a
d

, which is also an in-

teger.

Thus all such solutions are themselves integers.

y

x

d
b

d
a�yx ),( 00
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Solve 172x+ 20y = 100 in: a Z b Z +

a We first find gcd(172, 20) using the Euclidean Algorithm.

172 = 8(20) + 12

20 = 1(12) + 8

12 = 1(8) + 4

8 = 2(4) ) gcd(172, 20) = 4

Now 4 j 1000 ) a solution in integers exists.

We now need to write 4 as a linear combination of 172 and 20.

Working backwards: 4 = 12¡ 1(8)

= 12¡ (20¡ 1(12))

= 12¡ 20 + 12

= 2£ 12¡ 20

= 2(172¡ 8(20))¡ 20

= 2£ 172¡ 17£ 20

Multiplying by 250 gives 1000 = 500£ 172¡ 4250£ 20

) x0 = 500, y0 = ¡4250 is one solution.

All other solutions have form x = 500 +
¡
20
4

¢
t, y = ¡4250¡ ¡1724 ¢ t

i.e., x = 500 + 5t, y = ¡4250¡ 43t, t 2 Z
b If x and y are in Z + we need to solve

500 + 5t > 0 and ¡4250¡ 43t > 0

) 5t > ¡500 and 43t < ¡4250

i.e., t > ¡100 and t < ¡98:33...... ) t = ¡99

) x = 500 + 5(¡99) and y = ¡4250¡ 43(¡99)

i.e., x = 5, y = 7

So, there is one and only one solution in Z +. This is x = 5, y = 7:

Corollary:

If gcd(a, b) = 1 and if x0 = y0 is a solution of ax+ by = c then all solutions

are given by x = x0 + bt, y = y0 ¡ at, t 2 Z .

Linear Diophantine equations often are observed in word puzzles.

Following are two of these examples.

A cow is worth 10 pieces of gold, a pig is worth 5 pieces of gold and a hen is worth

1 piece of gold. 220 gold pieces are used to buy a total of 100 cows, pigs and hens.

How many of each animal is bought?

Example 13

Example 14

.
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Let the number of cows be c, the number of pigs be p and the number of hens be h.

) c+ p+ h = 100 fthe total number of all animalsg
and 10c+ 5p+ h = 220 fthe total number of gold piecesg
Subtracting these equations gives 9c+ 4p = 120 where gcd(9, 4) = 1.

By observation c0 = 0 and p0 = 30 is one solution

) c = 0 + 4t and p = 30¡ 9t is the general solution

i.e., c = 4t, p = 30¡ 9t, h = 100¡ p¡ c = 70 + 5t

But c, p and h are all positive

) 4t > 0,

) t > 0

30¡ 9t > 0,

t < 30
9

70 + 5t > 0

) t > ¡70
5

i.e., t = 1, 2 or 3

So, there are three possible solutions.

c = 4, p = 21, h = 75 or c = 8, p = 12, h = 80 or c = 12, p = 3, h = 85

1 Find, where possible, all x, y 2 Z such that:

a 6x+ 51y = 22 b 33x+ 14y = 115 c 14x+ 35y = 93

d 72x+ 56y = 40 e 138x+ 24y = 18 f 221x+ 35y = 11

2 Find all positive integer solutions of:

a 18x+ 5y = 48 b 54x+ 21y = 906 c 123x+ 360y = 99

d 158x¡ 57y = 11

3 Split 100 into two numbers where one of them is divisible by 7 and the other by 11.

4 There are a total of 20 men, women and children at a party.

Each man has 5 drinks, whereas each woman has 4 and each child has 2. They have 62
drinks in total. How many men, women and children are at the party?

5 I wish to buy 100 animals. Cats cost me $5 each, rabbits $1 each and fish 5 cents each.

I have $100 to spend and buy at least one of each animal.

If I spent all of my money on the purchase of these animals, how many of each kind of

animal did I buy?

6 The cities A and M are 450 km apart. Smith travels from A to M at a uniform speed

of 55 km/h and his friend Jones travels from M to A at a uniform speed of 60 km/h.

When they meet, they both look at their watches and exclaim: “It is exactly half past

the hour, and I started at half past!”. Where do they meet?

7 A person buys a total of 100 blocks of chocolate. The blocks are available in three sizes,

costing 35 cents each, 40 cents for three and 5 cents each. If the total cost is $10, how

many blocks of each size does the person buy?

EXERCISE 11A.5
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Definitions:

An integer p is a prime number (or prime) if p > 1 and if the only positive numbers

which divide p are 1 and p itself.

An integer greater than 1 that is not prime is said to be composite.

Note: 1 is neither prime nor composite.

Clearly, there are an infinite number of primes, but they appear in an undetermined manner.

Thus, it would be useful to discover an efficient way of determining whether or not a given

integer were prime. Unfortunately, there is no such way and this lack is the basis of the RSA

encryption system, by which so many of the international financial and security transactions

are protected. Put in such terms, the study of number theory becomes a highly important and

applicable area of study. The basis of the RSA encryption system would be a suitable topic

for an Extended Essay in Mathematics.

The primes are the building blocks of the integers and many seemingly basic questions about

them, such as how to find the next largest prime, are among the oldest unanswered questions

in mathematics.

Here are some fundamental results about primes that rely heavily on previous results:

Lemma 1: (Euclid’s Lemma for primes)

For integers a and b and prime p, if p j ab then either p j a or p j b.
Proof:

Lemma 2:

If p is a prime and p j a1a2a3::::::an for a1, a2, a3, ......, an 2 Z all > 2

then there exists i where 1 6 i 6 n such that p j ai.
For example, if p j 6£ 11£ 24 then p j 6 or p j 11 or p j 24.

A.6 PRIME NUMBERS

If p j a the proof is complete, so suppose p 6 j a. We must now show p j b:
Since gcd(a, p) = 1, there exist integers r and s such that ar + ps = 1.

) b = b£ 1 = b(ar + ps) = abr + bps

But as p j ab, ab = kp for some integer k

) b = kpr + bps = p(kr + bs) ) p j b

Proof: (By Induction)

(1) If n = 1, i.e., p j a1, P(1) is obviously true.

(2) If P(k) is true, then p j a1a2a3:::::ak ) p j ai where 1 6 i 6 k for some i.

Now if p j a1a2a3:::::akak+1 then p j (a1a2a3::::::ak)ak+1
) p j a1a2a3:::::::ak or p j ak+1 fusing Lemma 1g
) p j ai for some i in 1 6 i 6 k or p j ak+1
) p j ai for some i in 1 6 i 6 k + 1

Thus P(k + 1) is true whenever P(k) is true and P(1) is true

) P(n) is true fP of MIg
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Every positive integer greater than 1 is either prime or is expressible uniquely as a product

of primes.

Proof:

Existence

By the Well Ordered Principle, S has a smallest number, a say.

If the only factors of a are a and 1 then a is a prime which is a contradiction.

Hence a can be factored. So, a = a1a2 where 1 < a1 < a, 1 < a2 < a.

But, neither a1 nor a2 are in S since a is the smallest member of S.

Consequently, a1 and a2 can be factorised into primes.

a1 = p1p2p3::::::pr and a2 = q1q2q3::::::qs say.

) a = a1a2 = (p1p2p3::::::pr)(q1q2q3::::::qs) ) a =2 S
Uniqueness Suppose an integer n which is > 2 has two different factorisations

i.e., n = p1p2p3:::::ps = q1q2q3::::::qt where pi 6= qj for all i, j.

However, by Lemma 2, p1 j qj for some j.

) p1 = qj fas these are primesg
As this process can be continued for p2, p3, ...... ps this leads to a

contradiction.

So, the pis are a rearrangement of the qjs and so the prime factorisation is

unique.

Discuss the prime factorisation of 360, including how many factors 360 has.

2 360
2 180
2 90
3 45
3 15

5

) 180 = 23 £ 32 £ 51 and this factorisation is unique

apart from order of the factors.

The only prime factors of 180 are 2, 3 and 5.

Including 1 and 360, 360 has (3 + 1)(2 + 1)(1 + 1)
= 4£ 3£ 2
= 24 factors.

Check the last part of Example 15 by listing all 24 factors of 360 in a systematic way.

One such factor is 20 £ 30 £ 50, another is 22 £ 31 £ 50.

THE FUNDAMENTAL THEOREM OF ARITHMETIC

Example 15

Let be the set of positive integers which cannot be written as a product of
primes, and suppose is non-empty.

S
S

Now we prove what is arguably the crowning theorem of number theory “
”. It is a result that everyone knows and accepts without a lot of

questions, but without which we would have a rather different viewpoint of numbers.

The Fundamen-

tal Theorem of Arithmetic
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1 28 £ 34 £ 72 is a perfect square. It equals (24 £ 32 £ 7)2.

Prove that:

a all the powers in the prime-power factorisation of n 2 Z + are even , n is a

square

b given n 2 Z +, the number of factors of n is odd , n is a square.

2 Use the result of question 1 to prove that
p

2 is irrational.

(This is yet another way of establishing that
p

2 is irrational.)

Here is another version of the proof of the irrationality of
p

2.

Prove that
p

2 is irrational.

Proof: (By contradiction)

Suppose that
p

2 is rational. )
p

2 = p
q

where p, q 2 Z +, gcd(p, q) = 1

Since gcd(p, q) = 1, there exist r, s 2 Z + such that rp+ sq = 1

Hence,
p

2 =
p

2(rp+ sq) = (
p

2p)r + (
p

2q)s

) p
2 = (

p
2
p

2q)r + (
p

2
pp
2
)s fusing

p
2 = p

q
g

) p
2 = 2qr + ps

) p
2 is an integer fas p, q, r and s are in Z +g

clearly a contradiction.

Finally, we present a theorem that can be used to reduce the work in identifying whether a

given integer, n, is prime. In it we show that we need only attempt to divide n by all the

primes p 6
p
n. If none of these is a divisor, then n must itself be prime.

Theorem 8:

Proof:

Let n be a composite. Then n = ab with n > a > 1 and n > b > 1.

Suppose a >
p
n and b >

p
n. Then ab > n i.e., n > n, a contradiction.

) at least one of a or b must be 6 n.

Without loss of generality, suppose a 6
p
n.

Since a > 1, there exists a prime p such that p j a.

But a j n, ) p j n fp j a and a j n ) p j ng with p 6 a 6
p
n.

EXERCISE 11A.6.1

Example 16

If n is composite, then n has a prime divisor p 6
p
n:such that p
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1 Which are primes? a 143 b 221 c 199 d 223

2 Prove that 2 is the only even prime.

3 a Prove that if a, n 2 Z +, n > 2 and an ¡ 1 is prime then a = 2.

(Hint: Consider 1 + a+ a2 + ::::::+ an¡1 and its sum.)

b It is claimed that 2n ¡ 1 is always prime for n > 2. Is the claim true?

c It is claimed that 2n ¡ 1 is always composite for n > 2. Is the claim true?

(Hint: Consider n = kl and the hint in a.)

d If n is prime, is 2n ¡ 1 always prime? Explain.

4 Is the third repunit a prime? Is the fourth? Is the fifth?

5 Show that if p and q are primes and p j q, then p = q.

6 Find the prime factorisations of: a 9555 b 989 c 9999 d 111 111

7 Which positive integers have exactly:

a three positive divisors b four positive divisors?

8 a Find all prime numbers which divide 50!

b How many zeros are at the end of 50! when converted to an integer?

c Find all n 2 Z such that n! ends in exactly 74 zeros.

9 Given that p is prime, prove that:

a p j an ) pn j an b p j a2 ) p j a c p j an ) p j a
10 There are infinitely many primes. 2 is the only even prime.

a Explain why the form of odd primes can be 4n+ 1 or 4n+ 3:

b Prove that there are infinitely many primes of the form 4n+ 3.

Note: ²

² The repunits Rk are prime only if k is prime and then it is not necessarily so.

Thus far, the only prime repunits discovered are R2, R19, R23,R317, and R1031.

²

The largest 3-digit integer is 999 and
p

999 = 31:61:::::

and the largest prime factor less than this is 31.

What is the largest possible prime factor of a composite three digit
integer?

Example 17

EXERCISE 11A.6.2

There are also an infinite number of primes of the form , however the
proof of this result is beyond the scope of our work here. Perhaps it could be
investigated as an Extended Essay topic.

4 + 1n

Another famous type of primes are those of the form , which, as we have
seen, are prime only if is prime (and that this is no guarantee). Such primes
are called , after the contemporary of , and the search
for these continues to this day. They are linked to numbers like and which
are the first two “ ”. Again, this might be a fruitful area for
research for an Extended Essay.

2 1

6 28

n¡
n

Mersenne primes Fermat

perfect numbers
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²

The theory of congruences was developed by Gauss, whose saying that “Mathematics is the

queen of sciences and the theory of numbers is the queen of mathematics.” is much quoted.

It is one of the most useful tools in number theory and we shall use it to revisit Diophantine

equations and to extend our work to Fermat’s Little Theorem.

Definition:

Two integers a and b are congruent modulo m if they leave the same remainder

when divided by m.

We write a ´ b (modm).

For example 7 = 3£ 2 + 1 and 64 = 3£ 21 + 1 ) 64 ´ 7 (mod 3).

Notice that 64¡ 7 = 57 = 3£ 19 i.e., 3 j 64¡ 7.

Examples like the one above lead to an algebraic definition:

a ´ b (modm) , m j (a¡ b) or

a ´ b (modm) , there exists k 2 Z such that a = b+ km.

The last statement is the most useful.

Note: ² 37 ´ 2 (mod5) as 37¡ 2 = 35 is divisible by 5.

43 ´ 1 (mod7) as 43¡ 1 = 42 is divisible by 7.

a ´ 0 (mod7) ) a = 7m i.e., a is a multiple of 7.

² If 2x ´ 3 (mod5) then x 6= 1:5

In fact x = 4 is one solution and all others have the form

k 2 Z . We examine equations like this in a later section.

Note:

Congruences modulo m form an equivalence relation since they satisfy the three properties

reflexivity, symmetry and transitivity and thus they impose a partition on the set of integers.

The theory of equivalance relations will be covered in the abstract algebra module of the

course. They are stated below:

Reflexive: If a 2 Z then a ´ a (modm).

Symmetric: If a, b 2 Z with a ´ b (modm) then b ´ a (modm).

Transitive: If a, b, c 2 Z with a ´ b (modm) and b ´ c (modm) then

a ´ c (modm).

It is suggested that the reader prove these results.

The partition induced by the equivalence relation gives what is referred to as the congruence

classes modulo m or the residue classes modulo m.

A final type are those of the form ; these are the Fermat primes. ,
and are the first three, but finding others is difficult since they become large
rather quickly. Fermat believed that all such numbers were prime whenever

was prime. Clearly, with hindsight, he was mistaken.

2 = 3 5
17

2n+1 n

n

A.7 LINEAR CONGRUENCES
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INVESTIGATION 3 MODULAR ALGEBRA

Clearly, the form of the definition of congruences a ´ b (modm) , a = b+km links

nicely with the idea of the division algorithm, and using the division algorithm we can obtain

the result for the “complete system of residues modulo m”.

Consider the equation a = bm+r, where 0 6 r 6 m¡1, then clearly a ´ r (modm)

and we call r the least non-negative residue of amod (m).

Generalising this to all integers, we can state that all integers are congruent to one of the

possible values of r, namely, one of the set f0, 1, 2, 3, ...... (m¡ 1)g.
This set is called the complete system of residues modulo m.

Modular arithmetic deals with the manipulation of residues.

As a general rule, we try to reduce all integers to their least residue equivalent at all times.

This simplifies the arithmetic.

For example, 19 + 14 (mod8)

= 3 + 6 (mod8)

= 9 (mod8)

= 1 (mod8)

19¡ 14 (mod 8)

= 5 (mod 8)

19£ 14 (mod8)

= 3£ 6 (mod8)

= 18 (mod8)

= 2 (mod8)

There are no problems in dealing with addition, subtraction and multiplication (modm).

However, problems arise with division.

For example, consider 14 ´ 8 (mod6), a true statement

but 7 /́ 4 (mod6), dividing 14 and 8 by 2.

Solving equivalence equations is more difficult than we would have initially thought.

For example, can you solve these by inspection?

3x ´ 4 (mod7), 4x¡ 3 ´ 5 (mod6) or x2 ´ 3 (mod 6)

Is there a unique solution to each equation?

The following Investigation helps develop the techniques needed to solve such equations.

Recall that a ´ b (modm) ) m j (a¡ b) or a = b+ km for k 2 Z .

What to do: Prove the following results.

1 Rules for +, ¡ and £
Given a ´ b (modm) and c ´ d (modm) then:

a a+c ´ b+d (modm) b a¡c ´ b¡d (modm) c ka ´ kb (modm)

2 Condition for division (cancellation)

a If ka ´ kb (modm) and gcd(k, m) = 1, then a ´ b (modm).

b If ka ´ kb (modm) and gcd(k, m) = d, then a ´ b (mod m
d

).

3 If a ´ b (modm) then an ´ bn (modm) for all n 2 Z +.

(Note: The converse is not necessarily true.)

4 If f(x) is a polynomial with integer coefficients and a ´ b (modm), then

f(a) ´ f(b) (modm).

MODULAR ARITHMETIC
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If you have understood the implications of the investigation you should now be able to do

these.

1 Find the remainder when:

a 6522 is divided by 7 b 2100 + 3100 is divided by 5.

2 Find the last two digits of 20320.

3 Prove that an integer is divisible by 3 only if the sum of its digits is divisible by 3.

These questions are attempted by a trial and improvement method, in which experience plays

a part. Thus, the solution will seem rather neat on initial reading, but the method will become

apparent as your familiarity with the material grows.

² If a ´ b (modm) and c ´ d (modm) then

a§ c ´ b§ d (modm), ka ´ kb (modm), an ´ bn (modm).

² If ka ´ kb (modm), gcd(k, m) = d then a ´ b (mod m
d

).

² If f(x) is a polynomial with integer coefficients then

a ´ b (modm) ) f(a) ´ f(b) (modm).

SUMMARY OF RULES

Find the remainder when 6522 is divided by 7.

65 ´ 2 (mod7) fas 65¡ 2 = 63 = 9£ 7g
) 6522 ´ 222 (mod7)

´ (23)7 £ 2 (mod7)

´ 1£ 2 (mod7) fas 23 = 8 ´ 1g
´ 2 (mod7)

) 6522 leaves a remainder of 2 when divided by 7.

Example 18

Prove that 41 j 240 ¡ 1.

25 = 32 ´ ¡9 (mod41)

) 240 = (25)8 ´ (¡9)8 (mod41)

But (¡9)2 = 81 ´ ¡1 (mod 41)

) 240 ´ (¡1)4 (mod41)

i.e., 240 ´ 1 (mod41)

) 240 ¡ 1 ´ 0 (mod41) and so 41 j 240 ¡ 1.

Example 19
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1 Are the following pairs congruent (mod 7)?

a 1, 15 b ¡1, 8 c 2, 99 d ¡1, 699

2 For which positive integers m are these true?

a 29 ´ 7 (modm) b 100 ´ 1 (modm)

c 53 ´ 0 (modm) d 61 ´ 1 (modm)

3 Find:

a

50X
k=1

k! (mod 20) b

50X
k=1

k! (mod42)

c

100X
k=10

k! (mod12) d

30X
k=4

k! (mod10)

4 Find:

a 228 (mod7) b 1033 (mod 7) c 350 (mod7) d 4123 (mod7)

5 Find:

a 228 (mod37) b 365 (mod13) c 744 (mod11)

6 Prove that:

a 53103 + 10353 is divisible by 39 b 333111 + 111333 is divisible by 7

7 a Find:

i 510 (mod11) ii 312 (mod13) iii 218 (mod19) iv 716 (mod17)

Can you postulate a theorem from these results?

b What about i 411 (mod 12) ii 58 (mod9)?

Do these results agree with your postulate?

c Finally, does 134 (mod5) agree?

Find the remainder on dividing

50X
k=1

k! by 30.

This is equivalent to finding

50X
k=1

k! (mod 30)

We first note that 5! = 120 ´ 0 (mod 30)

) k! ´ 0 (mod 30) for all k > 5

)

50X
k=1

k! (mod30) ´ 1! + 2! + 3! + 4! (mod30)

i.e., ´ 1 + 2 + 6 + 24 (mod30)

´ 3 (mod 30)

) the remainder is 3.

Example 20

EXERCISE 11A.7.1
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8 a Find:

i 2! (mod3) ii 4! (mod5) iii 10! (mod 11) iv 6! (mod7)

Can you postulate a theorem from these results?

b What about i 3! (mod4) ii 5! (mod 6)?

Do these results agree with your postulate?

c Finally, does 12! (mod13) agree?

(The proof of this result is intimately linked with the ideas of group theory that

form a part of another option in the IB Higher Level Course.)

9 Prove that:

a b 13 j 3n+2 + 42n+1 c 27 j 5n+2 + 25n+1

10 Prove that the square of any even integer ´ 0 (mod 4) and the square of any odd

integer ´ 1 (mod4).

11 Prove that the square of any integer ´ 0 or 1 (mod 3).

12 Prove that the cube of any integer ´ 0 or 1 or 8 (mod 9).

13 Prove that the square of any odd integer ´ 1 (mod8). What about the squares of even

integers (mod8)?

14 Show that if a, b, c 2 Z +, such that a ´ b (mod c) then gcd(a, c) = gcd(b, c):
What does this restate?

15 Solve the congruences x2 ´ 1 (mod3) and x2 ´ 4 (mod 7).

Given that x2 ´ a2 (mod p) where x, a 2 Z and p is prime, can you deduce anything

about a relation between x and a?

16 Show that if n is an odd positive integer, then

Determine what happens if n is even.

17 By considering n having one of the forms n = 4m+ r for r = 0, 1, 2, 3

18 For which positive integers n is it true that

19 a Prove by induction that for n 2 Z +, 3n ´ 1 + 2n (mod4) and also that

4n ´ 1 + 3n (mod9).

b Is the similar result 5n ´ 1 + 4n (mod 16) also true? Generalise.

20 Prove that the eleventh Mersenne number 211 ¡ 1 is divisible by 23, and thus not

prime.

From the Investigation we saw that:

if a ´ b (modm) then ca ´ cb (modm), but the converse did not necessarily hold.

THE RULES FOR CANCELLATION IN CONGRUENCES
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7 j 52n + 3£ 25n¡2

nX
k=1

k ´ 0 (modn) :

determine

when it is true that

n¡1X
k=1

k3 ´ 0 (modn).

nX
k=1

k2 ´ 0 (modn)?
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We now prove the theorem observed.

Theorem 9:

If ca ´ cb (modm) and gcd(c, m) = d then a ´ b mod
¡

m
d

¢
.

Proof: ca ´ cb (modm) ) ca = cb+ km for some k 2 Z
But since gcd(c, m) = d, there exist relatively prime r and s such that

c = rd and m = sd

) rda = rdb+ ksd

) ra = rb+ ks

) r(a¡ b) = ks

) s j r(a¡ b) where r, s are relatively prime

) s j (a¡ b)
Thus a¡ b = ks = k

¡
m
d

¢
i.e., a ´ bmod

¡
m
d

¢
Consequences:

Simplify if possible: a 33 ´ 15 (mod 9) b ¡35 ´ 45 (mod 8)

a 33 ´ 15 (mod9)

i.e., 11£ 3 ´ 5£ 3 (mod9)

and gcd(3, 9) ´ 3

) 11 ´ 5 (mod 9
3 )

i.e., 11 ´ 5 (mod3)

b ¡35 ´ 45 (mod8)

i.e., ¡7£ 5 ´ 9£ 5 (mod8)

and gcd(5, 8) = 1

) ¡7 = 9 (mod8)

Note: ² ab ´ 0 (modn) may occur without a ´ 0 (modn) or b ´ 0 (modn).

² If ab ´ 0 (modn) and gcd(a, n) = 1, then b ´ 0 (modn)

using the first consequence above.

² If ab ´ 0 (mod p) ) a = 0 (mod p) or b ´ 0 (mod p)

using the second consequence above.

Linear congruences are equations of the form ax ´ b (modm).

In this section we develop the theory for the solution of these equations.

Suppose x = x0 is a solution of ax ´ b (modm), then ax0 ´ b (modm).

Example 21

LINEAR CONGRUENCES

² A common factor c in a congruence can be cancelled if c and the modulus m
are relatively prime.

i.e., if ca ´ cb (modm) and gcd(c, m) = 1, then a ´ b (modm).

² If ca ´ cb (mod p) and p 6 j c and p is prime then a ´ b (mod p).

For example, 4£ 3 = 0 (mod 12), but 4 =́ 0 (mod12) or 3 =́ 0 (mod12).

f gEuclid’s Lemma
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This is the case since , ,gcd( ) = 1c m
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So, ax0 = b+ y0m for some y0 2 Z .

Thus solving a linear congruence is identical to solving a linear Diophantine equation except

that there are not infinitely many solutions, as we have to work within the modulus.

Our goal is to obtain all incongruent solutions to ax ´ b (modm) as all congruent

solutions are considered to be the same.

For example, for the equation 4x ´ 8 (mod12)

x = 2, x = ¡10 and x = 14 are the same solution, whereas

x = 2, x = 5, x = 8 and x = 11 are different solutions.

So, 4x ´ 8 (mod12) ) x = 2, 5, 8 or 11.

A formal solution to this equation follows as a result of the next theorem.

Theorem 10:

ax ´ b (modm) has a solution , d j b where d = gcd(a, m) and the

equation has d mutually incongruent solutions modulo m.

Proof: ax ´ b (modm) is equivalent to solving ax¡my = b.

Hence d j b is the necessary and sufficient condition for a solution to exist.

Further, if x0, y0 is a solution then all solutions are

x = x0 +
¡
m
d

¢
t, y = y0 +

¡
a
d

¢
t, t 2 Z .

We now show that the infinite solutions are partitioned into d mutually incongruent

solutions due to the fact that we are now in modulo m.

If t = 0, 1, 2, 3, ......, (d¡ 1) we obtain

x = x0, x0 +
¡
m
d

¢
, x0 + 2

¡
m
d

¢
, x0 + 3

¡
m
d

¢
, ......, x0 + (d¡ 1)

¡
m
d

¢
...... (¤)

We now claim that these integers are incongruent modulo m and all other integers

are equivalent to some of them.

Suppose two of them are equal, i.e., x0 +
¡
m
d

¢
t1 ´ x0 +

¡
m
d

¢
t2 (modm)

where 0 6 t1 < t2 6 (d¡ 1)

) ¡
m
d

¢
t1 ´

¡
m
d

¢
t2 (modm) and since gcd

¡
m
d

, m
¢

= m
d

we can use the

cancellation law to get t1 ´ t2 (modm).

However, t1 ´ t2 (modm) ) d j t2 ¡ t1 which contradicts

0 6 t1 < t2 6 (d¡ 1) as t2 ¡ t1 6 (d¡ 1) < d.

Thus the integers in ¤ are mutually incongruent.

It remains to prove that any other solution x0 +
¡
m
d

¢
t is congruent (modm) to

one of the d integers in ¤. We do this by using the Division Algorithm.

Since t can be written as t = qd+ r where t is outside the set of least positive

integers, with 0 6 r 6 (d¡ 1) where r is one of the original incongruent

solutions,

then x0 +
¡
m
d

¢
t = x0 +

¡
m
d

¢
(qd+ r) = x0 +mq +

¡
m
d

¢
r

) x0 +
¡
m
d

¢
t ´ x0 +

¡
m
d

¢
r (modm)

with x0 +
¡
m
d

¢
r being one of the d selected solutions.

(See Diophantine equations’ work.)
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It follows that:

If x0 is any solution of ax ´ b (modm) and d = gcd(a, m), there are d
incongruent solutions,

x = x0, x0 +
¡
m
d

¢
, x0 + 2

¡
m
d

¢
, x0 + 3

¡
m
d

¢
, ......, x0 + (d¡ 1)

¡
m
d

¢
and in the special case where a and m are relatively prime:

If gcd(a, m) = 1 and ax ´ b (modm) we have a unique solution.

2 Determine whether the following statements are true:

a x ´ 4 (mod7) ) gcd(x, 7) = 1

b 12x ´ 15 (mod35) ) 4x ´ 5 (mod7)

c 12x ´ 15 (mod39) ) 4x ´ 5 (mod13)

d x ´ 7 (mod14) ) gcd(x, 14) = 7

e 5x ´ 5y (mod 19) ) x ´ y (mod 19)

EXERCISE 11A.7.2
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Solve: a 2x ´ 3 (mod5) b 12x ´ 24 (mod 54) c 9x ´ 15 (mod 24)

a 2x ´ 3 (mod5) has gcd(2, 5) = 1 ) we have a unique solution.

By inspection, x ´ 4 (mod5) fas 2£ 4 = 8 ´ 3 (mod5)g
b 12x ´ 24 (mod 54) has gcd(12, 54) = 6

So, there are exactly 6 non-congruent solutions.

) all solutions are x = 2 +
¡
54
6

¢
t = 2 + 9t where t = 0, 1, 2, 3, 4, 5

i.e., x ´ 2, 11, 20, 29, 38, 47 (mod54)

c 9x ´ 15 (mod 24) has gcd(9, 24) = 3 and 3 j 15

So, there are exactly 3 non-congruent solutions.

Now 3x ´ 5 (mod
¡
24
3

¢
) fas cancellation is possible hereg

) 3x ´ 5 (mod8)

By inspection, x ´ 7

) all solutions have form x = 7 + 8t (mod24)

) x ´ 7, 15 or 23 (mod24)

Example 22

2x ´ 4 (mod9)Cancelling by gives6

x ´ 2 (mod9))

and 6 j 24

1 Solve, if possible, the following linear congruences:

a 2x ´ 3 (mod7) b 8x ´ 5 (mod25) c 3x ´ 6(mod12)

d 9x ´ 144 (mod99) e 18x ´ 30 (mod40) f 3x ´ 2 (mod 7)

g 15x ´ 9 (mod27) h 56 ´ 14 (mod21)

IBHL_OPT
cyan black

0 5 2
5

7
5

5
0

9
5

1
0
0

0 5 2
5

7
5

9
5

1
0
0

5
0

Y:\HAESE\IBHL_OPT\IBHLOPT_11\285IBO11.CDR Thursday, 21 July 2005 1:29:20 PM PETERDELL



This is so called because there were many number puzzles of the following type posed in

China, though to be fair, similar puzzles were also found in old manuscripts on the Indian

subcontinent and in Greek manuscripts of the same era. They all deal with the simultaneous

solution of linear congruences in different moduli.

One such problem was due to Sun-Tsu and is:

Find a number which when divided by 3 leaves a remainder of 1 and when divided

by 5 leaves a remainder of 2 and when divided by 7 leaves a remainder of 3.

If we put this in congruence notation, we are being asked to find x such that x ´ 1 (mod3),

x ´ 2 (mod5) and x ´ 3 (mod7).

The general method of solution of such simultaneous congruences is termed The Chinese

Remainder Theorem, named in honour of the above problem and its Chinese heritage. But,

before we proceed to the theory, can you solve the above problem by trial and error?

If m1, m2, m3, ......, mr are pairwise relatively prime positive integers, then the

system of congruences

x ´ a1 (modm1), x ´ a2 (modm2), x ´ a3 (modm3), ......, x ´ ar (modmr)

has a unique solution modulo M = m1m2m3:::::mr.

This solution is x ´ a1M1x1 + a2M2x2 + ::::::+ arMrxr (modM )

where Mk =
M

mk

and xi is the solution of Mixi ´ 1 (modmi).

Proof:

Existence First we construct a simultaneous solution to the system.

Let Mk =
M

mk

= m1m2m3:::::mk¡1mk+1:::::mr.

Now since gcd(Mk, mk) = 1, by our theory of linear congruences it is

possible to solve all r linear congruences.

Observe that Mi ´ 0 (modmk) for i 6= k.

This is because mk jMi in these cases.

Hence a1M1x1 + a2M2x2 + ::::::+ arMrxr ´ akMkxk (modmk)

´ ak(1) (modmk)

´ ak (modmk)

A.8 THE CHINESE REMAINDER THEOREM

THE CHINESE REMAINDER THEOREM

Mkxk ´ 1 (modmk).The unique solution is given byxk

286 DISCRETE MATHEMATICS (Topic 11)

f 3x ´ y (mod8) ) 15x = 5y (mod 40)

g 10x ´ 10y (mod14) ) x ´ y (mod7)

h x ´ 41 (mod37) ) x (mod 41) = 37

i x ´ 37 (mod40) and 0 6 x < 40 ) x = 37

j There does not exist x 2 Z such that 15x ´ 11 (mod33).
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) X ´ a1M1x1 + a2M2x2 + ::::::+ arMrxr is a solution of

x ´ ak (modmk) for k = 1, 2, 3, ....., r

i.e., a solution exists.

Uniqueness Suppose X0 is any other integer which satisfies the system

) X = a1M1x1 + a2M2x2 + ::::::+ arMrxr ´ ak ´ X0 (modmk)

for all k = 1, 2, 3, 4, ......, r
) mk j X ¡X 0

and because the moduli are relatively prime

m1 j X ¡X 0, m2 j X ¡X 0, ......, mr j X ¡X 0

) m1m2m3::::::mk j X ¡X0

) M j X ¡X0

) X ´ X 0 (modM )

Solve Sun-Tsu’s problem

i.e., solve x ´ 1 (mod3), x ´ 2 (mod 5), x ´ 3 (mod7)

3, 5, 7 are pairwise relatively prime X

and M = 3£ 5£ 7 = 105 ) M1 = 105
3 = 35, M2 = 21 and M3 = 15

To find x1 we solve 35x1 ´ 1 (mod 3) i.e., x1 = 2 (mod3)

To find x2 we solve 21x2 ´ 1 (mod 5) i.e., x2 = 1 (mod5)

To find x3 we solve 15x3 ´ 1 (mod 7) i.e., x3 = 1 (mod7)

Hence, x ´ (1)(35)(2) + (2)(21)(1) + (3)(15)(1) (mod105)

) x ´ 157 (mod105)

) x ´ 52 (mod105)

So, there are infinitely many solutions x = 52 (the smallest)

x = 157, x = 209, x = 261, etc.

Check: 52 ´ 1 (mod 3) X 52 ´ 2 (mod5) X 52 ´ 3 (mod7) X

1 Solve the system: x ´ 4 (mod11), x ´ 3 (mod7).

2 Solve the system: x ´ 1 (mod5), x ´ 2 (mod 6), x ´ 3 (mod7).

3 Find a number which when divided by 3 leaves a remainder of 2, when divided by 5
leaves a remainder of 3 and when divided by 7 leaves a remainder of 2.

4 Solve these systems:

a x ´ 1 (mod2), x ´ 2 (mod3), x ´ 3 (mod5)

b x ´ 0 (mod2), x ´ 0 (mod3), x ´ 1 (mod5), x ´ 6 (mod7)

c x ´ 1 (mod3), x ´ 2 (mod5), x ´ 3 (mod7)

Example 23

EXERCISE 11A.8.1

287DISCRETE MATHEMATICS (Topic 11)

IBHL_OPT
cyan black

0 5 2
5

7
5

5
0

9
5

1
0
0

0 5 2
5

7
5

9
5

1
0
0

5
0



Solve Sun-Tsu’s problem without using the Chinese Remainder Theorem.

The first congruence is x ´ 1 (mod 3) ) x = 1 + 3t, t 2 Z
Substituting into the 2nd congruence, x ´ 2 (mod5) we get

1 + 3t ´ 2 (mod5)

) 3t ´ 1 (mod5)

) t ´ 2 (mod5)

) t ´ 2 + 5u, u 2 Z
Substituting into the 3rd congruence x ´ 3 (mod7) we get

1 + 3(2 + 5u) ´ 3 (mod 7)

) 7 + 15u ´ 3 (mod 7)

) 15u ´ ¡4 (mod 7)

) 15u ´ 3 (mod 7)

) u ´ 3 (mod 7)

) u ´ 3 + 7v

) x = 1 + 3t = 1 + 3(2 + 5u) = 7 + 15u = 7 + 15(3 + 7v)

So, x ´ 52 + 105v

i.e., x ´ 52 (mod105)

Some congruence equations can be solved by converting to two or more simpler equations.

The following example illustrates this procedure.

Solve 13x ´ 5 (mod276).

We notice that 276 = 3£ 4£ 23 where 3, 4 and 23 are relatively prime.

) we need to solve

13x ´ 5 (mod3)

or x ´ 2 (mod3)

13x ´ 5 (mod4)

x ´ 1 (mod4)

13x ´ 5 (mod23)

x ´ 11 (mod23)

Using the Chinese Remainder theorem

M = 3£ 4£ 23 = 276 ) M1 = 92, M2 = 69 and M3 = 12

To find x1 we solve 92x1 ´ 1 (mod 3) i.e., x1 ´ 2 (mod3)

To find x2 we solve 69x2 ´ 1 (mod 4) i.e., x2 ´ 1 (mod4)

To find x3 we solve 12x3 ´ 1 (mod 23) i.e., x3 ´ 2 (mod23)

Hence, x = (2)(92)(2) + (1)(69)(1) + (11)(12)(2) ´ 701 (mod 276)

´ 149 (mod 276)

Example 24

Example 25
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1 Solve these systems using the method shown in Example 24:

a x ´ 4 (mod11), x ´ 3 (mod 7)

b x ´ 1 (mod5), x ´ 2 (mod6), x ´ 3 (mod7)

c x ´ 0 (mod2), x ´ 0 (mod3), x ´ 1 (mod5), x ´ 6 (mod7)

(Each of these systems appeared in Exercise

11 Solve the system:

2x ´ 1 (mod5), 3x ´ 9 (mod 6), 4x ´ 1 (mod7), 5x ´ 9 (mod11).

2 Solve 17x ´ 3 (mod210) using the method shown in Example 25.

3 Which integers leave a remainder of 2 when divided by either 3 or 4?

4 Find an integer that leaves a remainder of 2 when divided by either 5 or 7 but is divisible

by 3.

5 Find an integer that leaves a remainder of 1 when divided by 3, a remainder of 3 when

divided by 5, but is divisible by 4.

6 Colin has a bag of sweets. If the sweets are removed from the bag 2, 3, 4, 5 and 6 at a

time, the respective remainders are 1, 2, 3, 4 and 5. However, when they are taken out

7 at a time no sweets are left in the bag. Find the smallest number of sweets that were

originally in the bag.

7

8 Solve the linear Diophantine equation 4x + 7y = 5 by considering the congruences

and

and y = 3 + 4s and finding the relationship between t and s.

9 Repeat 8 for a 11x+ 8y = 31 b 7x+ 5y = 13

10 Find the smallest integer n > 2 such that 2 j a, 3 j a + 1, 4 j a + 2, 5 j a + 3,

6 j a+ 4.

One application of congruences is determining when a large integer is divisible by a smaller

prime. In the following section we will look at the divisibility tests for the first 16 integers.

We will use the notation for the decimal representation for an integer a, as

A = an¡1an¡2an¡3::::::a1a0 = an¡110n¡1 + an¡210n¡2 + an¡310n¡3 + ::::::+ a1101 + a0

We all know the test for divisibility by 3 is:

“If the sum of its digits is divisible by 3, then so is the original number.”

EXERCISE 11A.8.2

A.9 DIVISIBILITY TESTS

11A.8.1 )

Seventeen robbers stole a bag of silver coins. They divided the coins into equal groups
of but were left over. A fight began over the remaining coins and one of the
robbers was killed. The coins were then redistributed but this time were left over.
Another fight broke out and another of the robbers died in the conflict. Luckily, another
equal redistribution of the coins was exact. What was the least number of coins stolen
by the robbers?

17 3
10

4 5 mod 7x ( )´ 7 5 mody ( 4)´ and showing they are equivalent to x t= 3 + 7
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We can prove the truth of such a divisibility test at this stage.

Here are the divisibility tests for divisibility by 2, 3, 5, 9 and 11.

If A is an integer then (1) 2 j A , a0 = 0, 2, 4, 6 or 8

(2) 5 j A , a0 = 0 or 5

(3) 3 j A , 3 j (an¡1 + an¡2 + an¡3 + ::::::+ a1 + a0)

(4) 9 j A , 9 j (an¡1 + an¡2 + an¡3 + ::::::+ a1 + a0)

(5) 11 j A , 11 j (a0 ¡ a1 + a2 ¡ a3 + ::::::)

Proof: Consider the polynomial f(x) = an¡1xn¡1 + an¡2xn¡2 + ::::::+ a2x
2 + a1x+ a0

(1) Since 10 ´ 0 (mod 2), then

f(10) ´ f(0) (mod2) fa ´ b (modm) ) f(a) = f(b) (modm)g
) A ´ a0 (mod 2)

) A is divisible by 2 if a0 is divisible by 2

) A is divisible by 2 if a0 = 0, 2, 4, 6, 8

(3) Since 10 ´ 1 (mod 3), then

f(10) ´ f(1) (mod3)

) A ´ an¡1 + an¡2 + ::::::+ a2 + a1 + a0 (mod 3)

) A is divisible by 3 , an¡1 + an¡2 + ::::::+ a2 + a1 + a0
is divisible by 3.

(5) Since 10 ´ ¡1 (mod11), then

f(10) ´ f(¡1) (mod 11)

) A ´ a0 ¡ a1 + a2 ¡ a3 + a4 ¡ :::::: (mod 11)

) A is divisible by 11 , a0 ¡ a1 + a2 ¡ a3 + a4 ¡ ::::::
is divisible by 11.

Proofs of (2) and (4) are left to the reader.

1 a = 187261 321 117 057

a Find a (modm) for m = 2, 3, 5, 9, 11.

b Hence, determine if a is divisible by 2, 3, 5, 9 or 11.

If not, find the value of the remainder of the division.

2 a Given A = an¡110n¡1 + an¡210n¡2 + ::::::+ a2102 + a110 + a0, prove that

i a (mod 10) = a0 ii a (mod100) = 10a1 + a0

iii a (mod 1000) = 100a2 + 10a1 + a0

b Hence, state divisibility tests for 10, 100, 1000.

c Determine a divisibility test for 4 and 8.

d Postulate a divisibility test for 16.

e Find the highest power of 2 that divides:

i 201 984 ii 89 375 744 iii 41 578 912 246

EXERCISE 11A.9.1
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3 a n (mod 10) = 0, 1, 2, 3, 4, ....., 9. What are the possible values of n2 (mod10)?

b Why are 5437, 364 428, 65 852 and 96 853 not perfect squares? You must use a.

4 Claudia claimed that

nX
r=1

r! for n > 2 is never a perfect square. Is she correct?

5 Determine the highest power of 2 that divides:

a 765 432 b 86 254 236 c 62 525 654 d 62 525 648

6 For what values of k are the repunits Rk divisible by:

a 3 b 9 c 11?

7 For each of the following binary numbers:

i What is the highest power of 2 that divides the number?

ii Is the number divisible by 3?

a 101 110 101 001 b 1 001 110 101 000 c 1 010 101 110 100 100

8 For each of the following ternary (base 3) numbers:

i What is the highest power of 3 that divides the number?

ii Is the integer divisible by 2?

iii Is the integer divisible by 4?

a 10 200 122 221 210 b 221 021 010 020 120 c 1 010 101 110 100 100

If A = `an¡1an¡2an¡3:::::a2a1a0’ is the decimal representation of positive integer A then

² 7 j A , 7 j `an¡1an¡2an¡3:::::a2a1’ ¡2a0

² 13 j A , 13 j `an¡1an¡2an¡3::::::a2a1’ ¡9a0

Repeated application is often necessary.

DIVISIBILITY BY 7 AND 13

Which of a 259 b 2481 is divisible by 7?

a 7 j 259 , 7 j 25¡ 2(9)

, 7 j 7
which is true, so 7 j 259

b 7 j 2481 , 7 j 248¡ 2(1)

, 7 j 246

, 7 j 24¡ 2(6)

, 7 j 12

Example 26

Is 12 987 divisible by 13?

13 j 12 987 , 13 j 1298¡ 9(7)

, 13 j 1235

, 13 j 123¡ 9(5)

, 13 j 78 which is true as 78 = 13£ 6

) 12 987 is divisible by 13

Example 27

which is not true, so 7 6 j 2481
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Proof: (of rule for divisibility by 7)

Let c = ‘an¡1an¡2an¡3 :::::: a2a1’ ) A = 10c+ a0

) ¡2A = ¡20c¡ 2a0

) ¡2A = c¡ 2a0 (mod7) fas ¡20 ´ 1 (mod7)g
Thus, 7 j A , 7 j ¡2A , 7 j c¡ 2a0

1 Is either of 6994 and 6993 divisible by 7?

2 Complete the proof for the divisibility test for 13.

3 Find a divisibility test for 7 when the number is written in base 8. Generalise this result

to base n.

4 Find a divisibility test for 9 when the number is written in base 8. Generalise this result

to base n.

5 a What is the divisibility test for i 25 ii 125?

b Find the highest power of 5 that divides:

i 112 250 ii 235 555 790 iii 48 126 953 125.

6 What is the divisibility test for: a 6 b 12 c 14 d 15?

7 Are these integers divisible by 11?

a 10 763 732 b 8 924 310 064 537 c 1 086 326 715

8 Are any of these integers divisible by either 3 or 9 or 11?

a 201 984 b c 41 578 912 246

d e f 48 126 953 125

9 Given the integer n2 ¡ n + 7, determine by considering different values of n, the

possible values of its last digit. Prove that these are the only possible values.

EXERCISE 11A.9.2

A.10 FERMAT’S LITTLE THEOREM

Fermat corresponded on number theory with (amongst others) Mersenne and Bernhard

Frénicle, and it was usually one or the other of these who coaxed from the rather secretive

Fermat some of his most closely held results. Frénicle is responsible for bringing the Little

Theorem to notice.

It states: “If p is a prime and a is any integer not divisible by p, then p divides ap¡1 ¡ 1.”

Fermat communicated this result in 1640, stating also, “I would send you the demonstration,

if I did not fear it being too long”, a comment somewhat reminiscent of his comment about

his Last Theorem.

Fermat’s unwillingness to provide proofs for his assertions was all too common. Sometimes

he had a proof, other times not.

Euler published the first proof of the Little Theorem in 1736, however Leibnitz (all too little

recognised for his contributions to Number Theory, due to his lack of desire to publish) left

an identical argument in a manuscript dated prior to 1683.
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For example, if a = 8 and p = 5, then 84 ´ 1 (mod5)

which is true as 84 ´ 4096.

Proof: Consider these multiples of a: a, 2a, 3a, 4a, ......, (p¡ 1)a

Suppose any two of them are congruent modulo p

i.e., ka ´ la (mod p) for 1 6 k < l 6 p¡ 1.

Since p is prime we can cancel ) k ´ l (mod p).

Thus none of the multiples is congruent modulo p to any other numbers on the

list, nor is it congruent to 0.

So, a, 2a, 3a, 4a, ....., (p¡ 1)a are all incongruent to each other modulo p
and so they must be congruent, in some order, to the system of least residues

1, 2, 3, 4, ....., (p¡ 1).

Thus, a(2a)(3a)(4a)::::::(p¡ 1)a ´ (1)(2)(3)(4)::::::(p¡ 1) (mod p)

(p¡ 1)! ´ (p¡ 1)! (mod p)

Verify Fermat’s Little Theorem for a = 3 and p = 5.

Method 1:

1 £ 3 ´ 3 (mod5), 2 £ 3 ´ 1 (mod5), 3 £ 3 ´ 4 (mod5), 3 £ 4 ´ 2 (mod5)

Multiplying these four congruences gives:

1 £ 3 £ 2 £ 3 £ 3 £ 3 £ 3 £ 4 ´ 3 £ 1 £ 4 £ 2 (mod5)

) 34 £ 4! ´ 4! (mod5)

) 34 ´ 1 (mod5)

Method 2:

34 = 81 ) 34 ´ 1 (mod5)

Corollary:

If p is a prime then ap ´ a (mod p) for any integer a.

Proof: If p j a, then a ´ 0 (mod p) and ap ´ 0p (mod p)

) ap ´ a (mod p)

THEOREM (FERMAT’S LITTLE THEOREM)

Example 28

If p is a prime and p 6 j a then ap¡1 ´ 1 (mod p).

Now since p 6 j (p¡ 1)!, p being prime, we can cancel by (p¡ 1)!

) ´ 1 (mod p)

If p 6 j a, then by Fermat’s Little Theorem

ap¡1 ´ 1 (mod p)

) aap¡1 ´ a (mod p)

i.e., ap ´ a (mod p)
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1 Find the value of:

a 5152 (mod 13) b 456 (mod7) c 8205 (mod17) d 395 (mod 13)

Fermat’s Little Theorem also allows us to solve linear congruences of the form

ax ´ b (mod p) where p is prime.

Notice that: if ax ´ b (mod p) then

) ap¡2 ax ´ ap¡2b (mod p)

) ap¡1x ´ ap¡2b (mod p)

) (1)x ´ ap¡2b (mod p) fas ap¡1 ´ a (mod p) FLTg
) x ´ ap¡2b (mod p)

So, x ´ ap¡2b (mod p) is the solution of ax ´ b (mod p) where p is prime.

1 Solve: a 3x ´ 5 (mod 7) b 8x ´ 3 (mod13)

c 7x ´ 2 (mod 11) d 4x ´ 3 (mod17)

A further use of Fermat’s Little Theorem is in determining whether an integer is not a prime.

The contrapositive of FLT “p prime ) ap ´ a (mod p) for any a” is:

If an 6́ a (modn) for any a 2 Z ) n is not prime.

Find the value of 3152 (mod11).

Since 11 is prime, and 310 ´ 1 (mod11)

then 3152 = (310)15 £ 32 ´ 115 £ 9 ´ 9 (mod 11)

i.e., 3152 (mod11) ´ 9

Example 29

EXERCISE 11A.10.1

Solve for x: 5x ´ 3 (mod 11)

5x ´ 3 (mod11) p = 11 is prime, a = 5, b = 3

) x ´ 59 £ 3 (mod 11)

) x ´ (52)4 £ 15 (mod11)

) x ´ 34 £ 4 (mod 11) 52 = 25 ´ 3 (mod11)

) x ´ 33 £ 12 (mod 11)

) x ´ 5£ 1 (mod11)

) x ´ 5 (mod11)

Example 30

EXERCISE 11A.10.2
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Note: The converse of Fermat’s Little Theorem is false,

i.e., if an¡1 ´ 1 (modn) then n need not be prime.

1 Use the method given in Example 31 to test whether:

a 117 is a prime b 63 is a prime

2 Test as in 1 whether 29 is a prime. What can you conclude from the result? Think

carefully.

3 Show directly that 310 ´ 1 (mod11).

4 Find the remainder of 13133 + 5 on division by 19.

5 Determine whether 11204 + 1 is exactly divisible by: a 13 b 17

6 Deduce by the Little Theorem that 17 j 1316n+2 + 1 for all n 2 Z +.

7 Deduce by the Little Theorem that 13 j 912n+4 ¡ 9 for all n 2 Z +.

8 Find the units digit of 7100 by the Little Theorem.

9 Let p be prime and gcd(a, p) = 1. Use the Little Theorem to verify that

x ´ ap¡2b (mod p) is a solution of the linear congruence ax ´ b (mod p).

Hence solve the congruences 2x ´ 1 (mod 31), 6x ´ 5 (mod11), 3x ´ 17 (mod29).

10 Solve the linear congruences: a 7x ´ 12 (mod 17) b 4x ´ 11 (mod19)

11 Use the Little Theorem to prove that, if p is an odd prime then:

a

p¡1X
k=1

kp¡1 ´ ¡1 (mod p) b

p¡1X
k=1

kp ´ 0 (mod p)

12 Use the Little Theorem to find the last digit of the base 7 expansion of 3100.

Test whether 123 is prime.
Example 31

EXERCISE 11A.10.3

We minimise computation by using a = 2.

Now 2123 = (27)17 £ 24 f27 = 128 is close to 123g
) 2123 ´ 51724 (mod 123) f27 = 128 ´ 5g
) 2123 ´ (53)55224 (mod 123) f53 = 125 is close to 123g
) 2123 ´ 255224 (mod 123) f53 = 125 ´ 2g
) 2123 ´ 52 £ 29 (mod 123)

) 2123 ´ 27 £ 22 £ 52 (mod 123)

) 2123 ´ 5£ 22 £ 52 (mod 123) fusing 27 ´ 5 againg
) 2123 ´ 53 £ 22 (mod 123)

) 2123 ´ 2£ 23 (mod 123) fusing 53 ´ 2 againg
) 2123 ´ 23 (mod 123)

and as 2123 =́ 2 (mod 123), 123 is not prime.
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The following problems provide a useful introduction to graph theory.

1 Can you draw the diagram on the right without taking

your pen from the paper and without drawing over

any line more than once?

If you cannot, what is the minimum number of pen

strokes that are required to draw the diagram?

2 Can you redraw the diagram on the right so that none

of the lines (redrawn as curves if necessary) joining

the points intersect?

3 Starting with point A, can you visit each of the dots

on the diagram alongside once and once only and get

back to your starting point?

4 a

Each oil well must be connected to every other, but not necessarily directly. Which

pipelines should be constructed to minimise the cost?

b Suppose the diagram above represents the walking trails in a national park. The

numbers on the edges represent the suggested walk time in hours for that trail. If

I want to walk from point A to point E in the shortest possible time, what route

should I take?

GRAPH THEORYB
B.1 PRELIMINARY PROBLEMS INVOLVING GRAPH THEORY

EXERCISE 11B.1

A

B C

D

E

F G

H

A

B

C

D

E

FG

H

J

K

4 5

5

3

1
5

2

6
8 7

9

3

2

3

6 11

3

5

3
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Suppose the diagram below represents an offshore oilfield. The dots represent the
oil wells and the lines joining them represent pipelines that could be constructed to
connect the wells. The number shown on each line is the cost (in millions of
dollars) of constructing that pipeline.
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If there is a maximum of one edge connecting any pair of vertices, then the graph is said to

be simple. Hence all of the diagrams in the previous section were simple graphs.

If there is more than one edge connecting any pair of vertices directly, then the graph is said

to be a multigraph.

Below are some more examples of simple graphs:

1 2 3 4

5 6 7

You should note the following features:

² Graph 1 has four vertices, since where the edges cross is not a vertex.

²

²

² Graph 3 is denoted C6, the circuit graph on 6 vertices.

²

² Graph 5 is both W3 and K4.

²

²

These are formal definitions of concepts you will meet in this section:

B.2 TERMINOLOGY

Graphs , , and are said to be , since each vertex is joined by an edge to
every other vertex on the graph.

1 2 5 complete

Graph is denoted , the complete graph on vertices. edges are
(meet) at each vertex, so each vertex is (joined) to four vertices. We say
that the in is four.

2 K

K

5

5

5 4 incident

adjacent

degree of each vertex

Graph is , the on vertices It consists of a circuit of vertices,
plus a in the centre which is connected to every other vertex.

4 W7 wheel graph

hub

7 6

Graph is known as the . It is an example of a graph which is not
complete, but in which all vertices have the same degree, in this case . We say that

the graph is of , or . Similarly, (graph ) is regular of de-
gree four.

6

2

Petersen Graph

regular degree 3 cubic

3
K5

Graphs and are in fact the same, just drawn differently. We say that they are

to each other. Graphs and are also isomorphic.

1 5
6 7

iso-

morphic
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Graph

Simple Graph

Multigraph A graph somewhere in which:

² more than one edge is incident on the same two vertices,

and/or

² a vertex is connected to itself by an edge (loop).

Degree of a Vertex The number of edges incident on that vertex.

Adjacent Vertices

Incident Arc/Vertex An arc which connects two adjacent vertices is said to be incident on

each vertex.

Order of a Graph The number of vertices in the graph.

Size of a Graph The number of edges in the graph.

Loop An edge that connects a vertex to itself in a multigraph.

Connected Graph A graph in which every vertex can be reached from every other vertex

by a sequence of edges.

Complete Graph A graph in which every vertex is adjacent to every other vertex.

Subgraph A graph made from a subset of the vertex set and a subset of the edge

set of another graph.

Regular Graph A graph in which every vertex has the same degree.

Graph Complement The graph whose vertex set is the same as the given graph, but whose

edge set is constructed by vertices adjacent if and only if they were

not adjacent in the given graph.

Planar Graph A graph which can be drawn on paper (shown on a plane) without

any edges needing to cross.

Bipartite Graph A graph whose vertices can be divided into two disjoint sets, with

two vertices of the same set never sharing an edge, i.e., with no two

vertices of the same set being adjacent.

Notation:

For the given graph G,

G is represented by G = fV , Eg where

V = fA, B, C, D, E, Fg is the vertex set and

E = fAD, AE, BD, BE, BF, CE, CFg is the edge set.

A

D
E

B
C

F
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A set of vertices joined by a set of curves or lines called edges.

A graph in which no vertex connects to itself and each pair of
vertices is joined by a maximum of one edge.

Vertices that are joined to each other by an edge.
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The graph shown opposite is a complete bi-

partite graph.

It has two disjoint vertex sets and each ele-

ment in the first vertex set is adjacent to every

vertex in the other vertex set.

This graph is denoted as K4;3, since there are

4 vertices in one set and 3 in the other.

Consider the graph G shown:

a Define the graph in terms of its vertices

and edges.

b Find the order and size of G.

c Comment on the nature of G:

d Find a graph which is isomorphic to G.

e Draw a subgraph of G:

a The graph is represented by G = fV , Eg where

V = fA, B, C, D, P, Q, Rg and

E = fAP, AQ, BQ, CP, CQ, CR, DQ, DRg
b G has order = 7 f7 verticesg and size = 8 f8 edgesg.
c

It is also connected since all of the vertices can be reached from all of the

others.

For example, A ! R by the edge sequence of length 3: AQ, QD, DR.

The degrees of the vertices A, B, C, D, P, Q, R are 2, 1, 3, 2, 2, 4, 2 respec-

tively. These are the numbers of edges incident on each vertex.

Since the degrees of all the vertices are not all the same, G is not regular.

However, G is bipartite with the two disjoint vertex sets V1 = fA, B, C, Dg
and V2 = fP, Q, Rg.

d G is also planar since it can be drawn

without any of the edges crossing, as

illustrated opposite.

This graph is isomorphic to that shown

in the question.

e A subgraph of G is shown opposite:

This subgraph is connected, but not all

subgraphs of G are connected.

Example 32

A B C D

P Q R

A B C D

P Q R

A B C D

P Q R

COMPLETE BIPARTITE GRAPHS

A B C D

P Q R

299DISCRETE MATHEMATICS (Topic 11)

G is because no vertex joins directly to itself and each pair of vertices
is joined by at most one edge.

simple
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1 For each graph write down: i its order ii its size iii the degrees of its vertices.

a b c

d e f

2 Which of the graphs in 1 are i simple ii connected iii complete?

3 Draw:

a i G = fV , Eg where V = fA, B, C, Dg and E = fAB, BC, CD, AD, BDg
ii G = fV , Eg where V = fP, Q, R, S, Tg and E = fPQ, PR, RS, PTg
iii G = fV , Eg where V = fW, X, Y, Zg and E = fXY, YZ, YZ, ZX, XXg
iv a graph with 5 vertices, each joined to every other vertex by a single edge

v a simple, connected graph with 4 vertices and 3 edges.

b Is there more than one possible answer to av?

c Which of the graphs in a are (1) simple (2) connected (3) complete?

4 What is the minimum number of edges a simple connected graph of order k can have?

5 What is the size of the complete graph of order p?

6 Using your answers to 4 and 5, show that a simple connected graph of order n and size

s satisfies the inequality 2n¡ 2 6 2s 6 n2 ¡ n.

7 By considering different graphs, establish a formula connecting the sum of the degrees

of a graph and its size. Can you prove your result?

8 A graph of order 7 has vertices with degrees 1, 2, 2, 3, 4, 5, 5.

How many edges does it have?

9 Without attempting to draw one, show that it is impossible to have a simple graph of

order six with degrees 1, 2, 3, 4, 4, 5.

10 Can a simple graph G be drawn with vertices of degrees a 2, 3, 4, 4, 5

b 1, 2, 3, 4, 4?

11 a Given the degrees of the vertices of a graph G, is it possible to determine its order

and size?

b Given the order and size of a graph G, is it possible to determine the degrees of its

vertices?

12 Wherever possible, draw simple graphs with:

a no odd vertices b no even vertices

c exactly one vertex which is odd d exactly one vertex which is even

e exactly 2 odd vertices f exactly 2 even vertices.

EXERCISE 11B.2

300 DISCRETE MATHEMATICS (Topic 11)
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13 If G is a graph of order p and size q, and is r-regular with p > r, express q in terms of

p and r.

14 Give an example of a graph which is:

a 0 regular and not complete b 1 regular and not complete

c 2 regular and not complete d 3 regular and not complete

15 Draw the following graphs: a W5 b K3;3 c K6.

16 How many edges have: a K10 b K5;3 c W8 d Kn e Km;n?

17 Give an example (if it exists) of:

a a bipartite graph that is regular of degree 3

b a complete graph that is a wheel

c a complete graph that is bipartite.

From Exercise 11B.2, you will possibly have discovered some general results of graphs. In

this secton we explore and prove some of these results.

The Handshaking Lemma:

Proof:

Each edge has two endpoints, and each endpoint contributes one to the degree of each

vertex.

Hence the sum of the degrees of the vertices in G is twice the number of edges of G,

i.e., it is twice the size of G.

Result:

Any graph G has an even number of vertices of odd degree. These are known as odd

vertices.

Proof: (by contradiction)

Suppose the graph has an odd number of odd vertices.

Adding the degrees of all of the (odd and even) vertices gives a total which is odd.

However, by the handshaking lemma, the sum of the degrees must be twice the size of the

graph, and hence even. This is a contradiction, so the initial supposition is false.

301DISCRETE MATHEMATICS (Topic 11)

For any graph , the sum of the degrees of the vertices in is twice the size of .G G G

B.3 FUNDAMENTAL RESULTS OF GRAPH THEORY

Before we can introduce the next result, we require a well-known principle of discrete math-

ematics, namely the pigeonhole principle of Dirichlet.

If we have n pigeons in m pigeonholes, then if n > m, there must be at least one hole

containing more than one pigeon.

This principle as stated sounds trivial, yet it can be used to establish some surprising results

that would be awkward to prove otherwise.

THE PIGEONHOLE PRINCIPLE
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1 Show that in any group of 13 people there will be 2 or more people who are born in the

same month.

2 Seven darts are thrown onto a circular dartboard of radius 10 cm. Assuming that all the

darts land on the dartboard, show that there are two darts which are at most 10 cm apart.

3 17 points are randomly placed in an equilateral triangle of side 10 cm. Show that at least

two of the points are at most 2:5 cm away from each other.

4 10 children attended a party and each child received at least one of 50 party prizes. Show

that there were at least two children who received the same number of prizes.

5 Show that if nine of the first twelve positive integers are selected at random, the selection

contains at least three pairs whose sum is 13.

Theorem:

In any simple, connected graphG, there are always at least two vertices of the same degree.

Proof:

Suppose that G has n vertices. Since it is both simple and connected, the minimum degree

of a vertex is 1 and maximum degree of a vertex is n¡ 1.

as there are n vertices with n¡ 1 possible degrees, by the pigeonhole principle, there

must be at least two vertices with the same degree.

EXERCISE 11B.3.1

Five points are placed anywhere in a square of side 2 m. Show that there must be

two points whose distance apart is less than 1:5 m.

Divide the square into four smaller squares of side 1 m.

By the Pigeonhole Principle, at least two of the five

points must go into the same small square. The furthest

distance apart between any two points in a square is

the diagonal, which has length
p

2 m.

Therefore, there will two points whose distance apart

is less than
p

2 m, and therefore less than 1:5 m.

Example 33

2 m

2 m

~`2 m

So,

302 DISCRETE MATHEMATICS (Topic 11)

Isomorphism is an important concept in many areas of mathematics. You may have met it in

other areas of the IB Higher Level Mathematics course, such as in Group Theory.

In Section 11B.2, we briefly introduced graph

isomorphism when we compared the wheel graph

W3 with the complete graph K4. We saw that

these graphs have seemingly different represen-

tations on paper, as illustrated below, but they are

in fact the same. Here they are again (and there

are many other representations): W3 K4

GRAPH ISOMORPHISM
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The concept of isomorphism allows us to know when two different graphs are, in fact, different

or whether they are simply different representations of the same isomorphic graph.

Definition:

For those who have done the Set Theory option, we may refine the definition as follows:

Two graphsG andH are said to be isomorphic if there is a bijection f : V (G) ! V (H)
such that two vertices u and v of G are adjacent if and only if f (u) and f (v) are adjacent

in H.

Notation: If G and H are isomorphic, we write: G »= H.

Consider the graphs below. Explain why no pair is isomorphic.

J has one less vertex than G and H, so it cannot be isomorphic to either of them.

Now both G and H have 6 vertices and 8 edges, and the degrees of their vertices

are both, in descending order: 4, 3, 3, 2, 2, 2.

However, the two odd vertices in G are adjacent, whereas this is not the case in H.

Hence adjacency of vertices is not preserved, and the pair is not

J

isomorphic.

Example 34

G H

Two graphs and are said to be if, for every vertex of , there exists a
unique corresponding vertex of (and vice versa) such that adjacency of all vertices is
preserved.

G H G
H

isomorphic

303DISCRETE MATHEMATICS (Topic 11)

Show that the following graphs are isomorphic.

The graphs have the same number of vertices, and the

vertices are all of the same degree (all degree 3 in this case).

We therefore attempt to redraw Ga so the graph looks the

same as the graph of Gb, while preserving the adjacency of

vertices.

Example 35

U V W

X Y Z

Ga � Gb �
L P

M

QN

R

U X

V

YW

Z
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Definition:

Isomorphism invariants are the properties of graphs that are preserved under an

isomorphism.

They provide a checklist when trying to determine whether two graphs are isomorphic. If

any of them fail, then the graphs in question are not isomorphic. However, even if the

invariants all hold for two graphs, the graphs are not guaranteed to be isomorphic. We say

that the isomorphism invariants are necessary conditions for isomorphism but that they are

not sufficient.

304 DISCRETE MATHEMATICS (Topic 11)

Check in the diagram alongside that every vertex is still adjacent to the same vertices

as in the question. Now, we can see the correpondence of vertices:

U$L, V$M, W$N, X$P, Y$Q, Z$R.

The graphs are therefore isomorphic.

Isomorphism invariants:

If two graphs, G and H are isomorphic, then:

1 The size of G is equal to the size of H.

2 The order of G is equal to the order of H .

3 The degrees of the vertices of G are exactly the degrees of the vertices of H.

4 The connectivity of G and H is preserved.

Proofs: (involve Set Theory)

1 The bijection f maps u ! f (u) and v ! f (v). If u and v are adjacent in G

then f (u) and f (v) are adjacent in H. Hence edge (u, v) is mapped onto edge

(f (u), f (v)). This occurs for all edges, and so the size is preserved.

2 For every vertex of G, there exists a unique corresponding vertex of H , and vice vera.

Hence the number of vertices (order) is preserved.

3 Suppose the degree of u is n, so there are n vertices adjacent to u. Since f preserves

adjacency, the n vertices adjacent to u are mapped to n vertices adjacent to f (u). Hence,

the degree of f (u) is n.

4 Now f preserves adjacency of vertices and thus edges. Therefore, since a connected

graph is made up of a set of adjacent edge sequences, connectivity is preserved.

There are other isomorphism invariants, which you will meet in the coming work. You are

advised to keep a list of these.

1 Will two graphs having the same number of vertices always be isomorphic? Justify your

answer.

2 Will two graphs having the same number of edges always be isomorphic? Justify your

answer.

3 Will two graphs having the same number of vertices of degree k for each k 2 Z always

be isomorphic? Justify your answer.

EXERCISE 11B.3.2
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4 Are the pairs of graphs below isomorphic? If so, label the vertices and write down the

isomorphism. If not, justify your answer.

a b

c d

e

305DISCRETE MATHEMATICS (Topic 11)

5 Are the following pairs of graphs isomorphic? Justify your answer.

a b

c d

e
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6 a Explain why the sum of the degrees of the vertices in any graph is always even.

b Deduce a result concerning the number of odd vertices in a graph.

c Show that in a group of nine people it is not possible for each to be friends with

exactly five others.

7 Prove that a simple graph with n > 1 vertices always has at least two vertices of the

same degree.

8 How many non-isomorphic connected simple graphs are there of:

a order 2 b order 3 c order 4?

9 How many non-isomorphic simple graphs are there of:

a order 2 b order 3 c order 4?

10 Prove the pigeonhole principle using proof by contradiction.

We have already seen how graphs can be represented as a list of vertices and edges. They can

also be represented as matrices. Matrix form is particularly important when using computers

to solve more complicated graph theory problems, for example, dealing with the airline route

map of a major airline.

ISOMORPHISM AND MATRICES

306 DISCRETE MATHEMATICS (Topic 11)

11 A simple graph isomorphic to its complement is said to be self-complementary.

a Find all self-complementary graphs with 4 and 5 vertices.

b Can you find a self-complementary graph with 3 vertices?

c Find a self-complementary graph with 8 vertices.

d Prove that if G is self-complementary, then G has either 4k or 4k + 1 vertices,

k 2 Z .

In this section we look at matrix representations of graphs and multigraphs, and how these

relate to the work we have done thus far.

Consider the graph G alongside:

G = fV , Eg
where V = fA, B, C, Dg

and E = fAB, BC, CD, DAg

G can also be represented as a matrix: To

From

A B C D
A 0 1 0 1
B 1 0 1 0
C 0 1 0 1
D 1 0 1 0

or

2664
0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0

3775

In general, we can represent a graphGwith n vertices as an n£n adjacency matrix A(G) in

which the i, jth entry is 1 if there is an edge between vi and vj , and 0 otherwise.

A

B

CD

Recall that vertices which are joined by edges are said to be . Hence the matrix is
called the ( ) of the graph.

adjacent

adjacency matrix A = aij
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For example: To

A(G) = From

v1 v2 v3 v4
v1 0 1 0 0
v2 1 0 1 1
v3 0 1 0 0
v4 0 1 0 0

=

2664
0 1 0 0
1 0 1 1
0 1 0 0
0 1 0 0

3775
As each 1 in row i corresponds to an edge incident to vertex vi,

the number of 1s in row i = the degree of vi.

Hence, the total number of 1s in the adjacency matrix is
nP
i=1

deg(vi), which is twice the

size of the graph.

1

a
2664

0 1 1 0
1 0 1 0
1 1 0 1
0 0 1 0

3775
b

266664
0 1 0 1 0
1 0 0 1 1
0 0 0 0 1
1 1 0 0 0
0 0 0 0 0

377775
c

24 1 1 1
1 1 1
1 1 1

35

2 Consider the adjacency matrix A =

2664
0 1 0 1
1 0 1 1
0 1 0 1
1 1 1 0

3775 .

EXERCISE 11B.3.3

vz

vx

vc
vv

G

307DISCRETE MATHEMATICS (Topic 11)

Note that adjacency matrices are always symmetric, since if is adjacent to then is adja-
cent to .

i j j
i

Draw the graph corresponding to A. Verify that the total number of 1s in the matrix

equals the sum of the degrees of the vertices.

3 Construct the graph for each adjacency matrix:

a
266664

0 1 1 0 1
1 0 1 1 1
1 1 0 1 0
0 1 1 0 0
1 1 0 0 0

377775
b

2664
0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

3775

4 Construct adjacency matrices for each graph:

a G1 b G2 c G3

Relabel the vertices of G3 above such that a! 1, b! 3, c! 5, d! 2, e! 4.

Are G2 and G3 isomorphic? Are all three graphs isomorphic?

1

2

34

5

1

2

34

5

a

b

dc

e

Which of these adjacency matrices cannot represent undirected graphs?
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INVESTIGATION 4 FURTHER USE OF THE ADJACENCY MATRIX

5 Are the following pairs of graphs isomorphic? Justify your answer.

a

A(G1) =

2664
0 1 1 1
1 0 1 1
1 1 0 0
1 1 0 0

3775
b

A(G2) =

2664
0 1 0 1
1 0 1 1
0 1 0 1
1 1 1 0

3775 A(G2) =

2664
0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

3775

1 Consider the graph alongside.

How many routes go from A to B via one

other point?

What about from A to C and A to D?

How many routes start and finish at A?

2 Write down the graph’s adjacency matrix A and

use it to evaluate A2.

3 Interpret your results in 1 in terms of the entries of A2.

What do the entries on the main diagonal of matrix A2 represent for the vertices of

What do you think the entries of A3 would represent?

What do you think the entries of A4......An would represent?

A

B

CD

the original graph?

G1

308 DISCRETE MATHEMATICS (Topic 11)

Theorem:

Let G be a graph with vertices v1, v2, ......, vn and adjacency matrix A. The number of

different paths of length n from vi to vj equals the (i, j)th entry of An.

Proof: (by induction on n)

For n = 1, the (i, j)th entry of A is the number of edges from vi to vj , and hence the

number of paths from vi to vj of length 1.

Assume that the (i, j)th entry of Ak is the number of paths of length k from vi to vj .

Since Ak+1 = AkA, the (i, j)th entry of Ak+1 is bi1a1j+bi2a2j+bi3a3j+::::+binanj ,

where the arj are entries in the jth column of A and the bis are entries in the ith row of

Ak and represent the number of paths of length k from vi to vs.

However, a path of length k + 1 from vi to vj is made up of a path of length k from vi
to some intermediary vertex vs, and an edge from vs to vj .

The number of such paths is the product of the number of paths of length k from vi to vs,
namely bis, and the number of edges from vs to vj , namely asj.

When these results are added for all possible intermediate vertices, the result is

bi1a1j + bi2a2j + bi3a3j + ::::+ binanj , the (i, j)th entry of Ak+1.
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1 Represent the following graphs by their adjacency matrices:

a K4 b C4 c W4 d K1;4 e K2;3

2 Find the form of the adjacency matrices of the following graphs:

a Kn b Cn c Wn d Km;n

3 Find the number of paths of length n between two different vertices in K4 if n is:

a 2 b 3 c 4 d 5

4 Find the number of paths of length n between two adjacent vertices in K3;3 if n is:

a 2 b 3 c 4 d 5

5 Find the number of paths of length n between two non-adjacent vertices in K3;3 if n is:

a 2 b 3 c 4 d 5

EXERCISE 11B.3.4

309DISCRETE MATHEMATICS (Topic 11)

6 a Write down the adjacency matrix A for K3. Write down also the matrices A2, A3

and A4.

b Postulate a formula for An.

7 What is the general form of the matrices A, A2, A3, ...... and An for Km, the complete

graph on m vertices?

8 a Write down the adjacency matrix A for K3;2. Write down also the matrices A2,

A3 and A4.

b Postulate a formula for Ak.

9 Repeat 8 for Km;n.

So, the matrix A for multigraph G is

2664
1 1 1 0
1 0 2 1
1 2 0 1
0 1 1 0

3775.

Note that we have put the entry a11 = 1. So, we consider the loop as only one edge (even

though we can traverse it in two different directions). This has implications for the result that

“the sum of a row’s entries is the degree of the vertex”. In particular:

How does the convention about loops affect results about the powers of the adjacency matrix?

Can you alter your previous results on simple graphs to take notice of loops?

ADJACENCY MATRICES FOR MULTIGRAPHS

A

B

D

C

Consider the multigraph alongside. We
can represent as an adjacency ma-
trix ( ) in which the , th entry is if
there are edges between and .

G
G n n

G i j k
k v v

£
A ( )

i j
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INVESTIGATION 5 THE BRIDGES OF KÖNIGSBERG

Now that we know what a graph is, we begin to consider various ways of moving from vertex

to vertex on a graph. For example, we may have to visit each vertex once and once only on

our journey, disallow retracing our steps, or take account the time it takes to traverse a given

set of edges.

B.4 JOURNEYS ON GRAPHS AND THEIR IMPLICATIONS

One of Euler’s most famous contribu-
tions to mathematics concerned the
town of Kaliningrad, or Königsberg as

it was then known. The town is situated
on the river Pregel in Germany, and has seven
bridges linking two islands and the north and south
banks of the river.

The question is: could a tour be made of the town,
returning to the original point, that crosses all of
the bridges once only? A simplified map of
Kaliningrad is shown alongside. Euler answered
this question - can you?

Apparently, such a circuit is not possible. However,
it would be possible if either one bridge was re-
moved or one was added. Which bridge would you
remove? Where on the diagram would you add a
bridge?

river

As we do this, we consider the work of two of the founding mathematicians of Graph Theory,
and , and introduce the two classic problems their work

eventually gave rise to.
Leonard Euler William Hamilton

310 DISCRETE MATHEMATICS (Topic 11)

The Bridges of Königsberg question is closely related to children’s puzzles in which a graph

can or cannot be drawn without the pen leaving the paper. If such a drawing can be made,

the graph is said to be traversable. Note that the start and end points need not be the same

vertex in this case.

Which of these are traversable?

TERMINOLOGY

A is a finite sequence of steps in which
every two consecutive vertices are adjacent. We begin our walk at the and
end it at the . Its is the number of steps or edges we walk along.

walk

initial vertex

final vertex length

V V V :::::: V V0 1 2 1! ! ! ! !n n¡
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For example, in the multigraph above,

X ! V !W ! Y ! Z ! X ! Y is a trail, and

V !W ! Y ! X and W ! X ! V ! Y ! Z are paths.

A path or trail is said to be closed if the initial and final vertices are the same.

A closed trail is called a circuit and a closed path is called a cycle.

For example, in the multigraph above,

V !W ! Y ! X ! Z ! Y ! V is a circuit and

V !W ! Y ! X ! V and W ! X ! Y !W are cycles.

Note that W ! X ! Y !W and X ! Y !W ! X and X !W ! Y ! X
all represent the same cycle, since they all contain the same set of edges.

V W Z

X

Y

In the multigraph alongside, a walk of length
might be .

In a walk, any vertex may be visited any number of
times and any edge may be used as often as one
wishes. Thus, a walk is a very general concept.

6
V W Y Z Z Y X! ! ! ! ! ! �� � � � � � � � � � �

A is a walk where . Vertices may be visited as often as
one wishes, but once an edge has been used it may not be used again.

A is a trail where (with the possible exception of the
end vertices).

trail

path

all of the edges are distinct

all of the vertices are distinct

An is a trail which uses every edge exactly once. If such a trail exists, the
graph is .

An is an Eulerian trail which starts and ends at the same graph vertex.

A connected graph is if it contains an .

A connected graph is if it contains an but not an
.

Eulerian Trail

traversable

Eulerian Circuit

Eulerian Eulerian circuit

semi-Eulerian Eulerian trail

Eulerian circuit

G

G

311DISCRETE MATHEMATICS (Topic 11)

The Königsberg bridges problem attempts to find an Eulerian circuit that visits each vertex

exactly once, rather like V !W ! Y ! X ! Z ! Y ! V in the multigraph above.

The symbolic representation of the Königsberg

bridges problem is shown opposite. Notice that

the degrees of the vertices are all odd. This is

why no Eulerian circuit is possible.

In fact, we can show that if a graph contains any

vertices of odd degree, it cannot be Eulerian:

Proof:

For a graph to contain an Eulerian circuit, each vertex must be entered by an edge and left

by another edge.

However, if there is an odd vertex, then at least one edge is unused from an odd vertex.

So, if there is an odd vertex, the graph cannot be Eulerian.
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Euler was also able to prove the converse of this statement as well. We are hence able to

determine the following results:

We can also formalise the definition of a connected graph as:

A graph is connected if and only if there is a path between all pairs of vertices.

Theorem:

A graph is bipartite if and only if each circuit in the graph is of even length.

Theorem:

A simple connected graph on n vertices with m edges satisfies n¡ 1 6 m 6 1
2n (n¡ 1)

Corollary:

Any simple graph with n vertices and more than 1
2 (n¡ 1)(n¡ 2) edges is connected.

1 Classify the following as Eulerian, traversable or neither:

a b c

EXERCISE 11B.4.1

312 DISCRETE MATHEMATICS (Topic 11)

A closed graph is Eulerian if and only if all of its vertices are even.

A closed graph is if and only if at most two of its vertices are odd.traversable

d e f

2 Give an example of a graph of order 7 which is:

a Eulerian b traversable c neither

3 Decide whether the following graphs are Eulerian, traversable or neither:

a K5 b K2;3 c Wn d Cm

4 For which values of:

a n is Kn Eulerian b m, n is Km;n Eulerian?

5 A simple graph G has five vertices, and each vertex has the same degree d.

a State the possible values of d.

b If G is connected, what are the possible values of d?

c If G is Eulerian, what are the possible values of d?
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6 The girth of a graph is defined as the length of its shortest cycle.

What are the girths of:

a K9 b K5;7 c the Petersen graph

7 Consider the Bonnigskerb

bridge problem opposite. Can

a circular walk be performed?

Would either the addition or

deletion of one bridge allow a

circular walk to be performed?

8 Show that it is possible to transform any connected graph G into an Eulerian graph by

the addition of edges.

9 How many continuous pen strokes are needed to

draw the diagram on the right, without repeating

any line?

How is this problem related to Eulerian graphs?

313DISCRETE MATHEMATICS (Topic 11)

10 Suppose you have a job as a road cleaner

and the diagram of the roads to be

cleaned is shown opposite.

Is it possible to begin at A, clean every

road exactly once, and return to A?

What about B?

Now suppose that you have to begin and end your sweeping duties at A, so you will

have to walk down some streets more than once. If the diagram is to scale and your

walking speed never varies, what is the most efficient way of completing your task?

11

12 Prove that any simple graph with n vertices and more than 1
2 (n¡ 1)(n¡ 2) edges is

connected. A diagram may be useful.

William Rowan Hamilton invented a game known as The Icosian Game. It was sold for $25
by Hamilton and was marketed as “Round the World”. It essentially required finding a closed

trail on the dodecahedron.

A picture of the game can be found at:

HAMILTONIAN GRAPHS

A B

http://www.puzzlemuseum.com/month/picm02/200207icosian.htm

Prove that a graph is bipartite if and only if each circuit in the graph is of even length.

?
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Given the diagram alongside, does a

Hamiltonian cycle exist?

Yes, there are several. e.g., 7 ! 6 ! 2 ! 1 ! 5 ! 4 ! 3 ! 7

Example 36

1

2 3

45

6 7

314 DISCRETE MATHEMATICS (Topic 11)

Notice in Example 36 that only seven edges of the graph are used to form the Hamiltonian

cycle. Remember that a Hamiltonian cycle visits all vertices of a graph exactly once, whereas

an Eulerian circuit uses every edge exactly once.

While we can clearly state the condition required for a graph to be Eulerian, i.e., that all

vertices have even degree, we cannot give a precise set of conditions for a graph to be Hamil-

tonian.

Note that while these are all conditions for the cycle,
they are not .

For example, in the graph alongside, all the vertices are degree ,
but it is Hamiltonian.

sufficient

necessary

2

² If G is a graph of order n where n > 2 and if each vertex has degree > 1
2n then

there exists a Hamiltonian cycle. (Dirac, 1952)

² If G is a simple graph of order n where n > 3 with at least 1
2(n¡ 1)(n¡ 2) + 2

edges, then there exists a Hamiltonian cycle.

² If G is a graph of order n where n > 3, and if degree (V) + degree (W) > n for all

non-adjacent vertices V and W, then there exists a Hamiltonian cycle. (Ore, 1960)

However, here are some important observations that have been made:

A diagram is a graph whose edges do not cross, which is
drawn to represent a -dimensional solid.

For example, a Schlegel diagram of the dodecahedron is shown
opposite. Is it possible, starting and finishing at the same vertex, to
follow the edges and visit every other vertex exactly once without
lifting the pen?

You are being asked to find a of the dodecagon.
There are, in fact, two solutions.

Schlegel

Hamiltonian cycle

3

Definition:

A graph is said to be Hamiltonian if there exists a closed path (cycle) that passes through

every vertex on the graph. The cycle is called a Hamiltonian cycle.

If a path exists that passes through every vertex on the graph exactly once and which is not

closed, then the graph is said to be semi-Hamiltonian. The path is called a Hamiltonian

path.
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1 State whether the graphs are Hamiltonian or semi-Hamiltonian.

a i K5 ii K2;3 iii W6

b i ii iii

iv v

2

3 Give examples of graphs which are:

a both Hamiltonian and Eulerian b Hamiltonian but not Eulerian

c Eulerian but not Hamiltonian d semi-Hamiltonian.

EXERCISE 11B.4.2

315DISCRETE MATHEMATICS (Topic 11)

Which of the graphs in satisfy any of the three observations above about Hamiltonian
graphs?

1

4 What are the conditions on m and n so that Km;n is Hamiltonian?

5 Prove Kn is Hamiltonian for all n > 2. How many Hamiltonian cycles does Kn have?

6 Show that the Groetsch graph shown alongside is

Hamiltonian.

7 Prove that if G is a bipartite graph with an odd

number of vertices, then G is not Hamiltonian.

a Deduce that the graph alongside is not

Hamiltonian.

b Show that if n is odd, it is not possible for

a knight to visit all of the squares on an

n£n chessboard exactly once and return to

its starting point.

8 Can you find a Hamiltonian cycle in the

Herschel graph alongside?
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9

Definition:

A graph G is planar if and only if there exists a graph H where G »= H such that H can

be drawn on a plane without any edges that cross over each other.

H is said to be an embedding of the graph in the plane, or a plane representation.

The issue of planarity is important for the class of three

dimensional solids known as polyhedra.

A polyhedron is a solid with flat or plane faces such as

the cuboid alongside.

This is a two-dimensional perspective representation of

a three-dimensional solid. It is also a graph. However,

is it a planar graph?

B.5 PLANAR GRAPHS

A B

C
D

E
F

GH

316 DISCRETE MATHEMATICS (Topic 11)

Find a solution to the Hamiltonian cycle for the dodecahedron.
Trace it out on its Schlegel diagram.

1 Convert the given polyhedra into planar graphs:

a b

c d

EXERCISE 11B.5.1

A B

CD

E F

GH

1

2 3 4

5

6

The answer is yes, since the Schlegel diagram opposite shows the
same structure as the cuboid, but with non-intersecting edges.

Note that the regions , , , , and (the infinite region) repre-
sent the faces of the cuboid.

Planar graphs can be represented by their vertices, edges and, unlike
non-planar graphs, their regions.

1 2 3 4 5 6

A

B

C

DE

A

B
C

D

A

B

C

D

E
F

A B

C

D

E

F

G

H I

J

KL
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INVESTIGATION 6 EULER’S FORMULA

2

3 Where possible, convert these into planar graphs:

a b c d

A famous problem based on planar graphs is that of
connecting each of the three houses shown to each of
the three services electricity, telephone and gas, with
no pipes or cables crossing.

Can the problem be solved? Could the problem be
solved if we drew the houses and services on the sur-
face of a cylinder or sphere?

You should find that any connection of all the services
to all three houses gives rise to a non-planar graph.

317DISCRETE MATHEMATICS (Topic 11)

If a planar graph is drawn on a piece

of paper, we say the plane is divided

into a number of regions, one of which

is infinite.

In this case there are:

5 vertices, 6 edges, 3 regions

Euler found a relationship which holds for any planar graph between its number of vertices,

v, edges, e, and regions, r.

1 By considering some examples of planar graphs, suggest Euler’s result.

Now, prove your result by induction, using the number of edges and the following

steps:

a Let your basic case be the graph K2 (although K1, the null graph, would do)

and verify your result.

b Now, add an edge to K2 in as many different ways as you can. Note how this

addition affects the number of vertices, and/or regions, but does not affect the

formula. This will be the inductive step.

c Perform the inductive step on an arbitrary graph of size k for which Euler’s

relation is assumed to hold. Hence complete your proof.

2 There is a similar relation for disconnected planar
graphs.

Let number of separate parts of the graph. In
the graph opposite, , , , and .

Modify the approach from to determine a rule for
this new situation. Prove your result by induction.

n
n v e r

=
= 3 = 8 = 6 = 2

1

region 1
region 2

region 3
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Euler’s Formula:

Consider again the “utilities” problem in Exercise 11B.5.1 question 2, which is equivalent to

asking whether K3;3 is planar. We can now use Euler’s formula to prove it is not, and hence

that the “utilities” problem is not possible.

318 DISCRETE MATHEMATICS (Topic 11)

Prove that K3;3 is not planar.

K3;3 has 6 vertices and 9 edges.

) supposing it is planar, by Euler’s formula it must have 5 regions.

Since K3;3 is bipartite, none of the regions in its plane representation are triangles.

) each region has at least 4 edges, so if we count the edges around all 5 regions,

we get at least 4£ 5 = 20.

However, we have counted every edge twice, since every edge is on the border of

two regions. Hence if K3;3 is planar, it must have at least 10 edges.

) since K3;3 has only 9 edges, it is not planar.

Example 37

1 Prove that K5 is not planar by following these steps:

a Find the number of vertices and edges in K5.

b Use Euler’s relation to find the number of regions if we assume that K5 is planar.

c

2 Prove that a graph in which triangular regions are permitted is planar if and only if

e 6 3v ¡ 6.

3 Prove that a bipartite graph can only be planar if e 6 2v ¡ 4.

Note: Consider the two inequalities e 6 2v¡ 4 and e 6 3v¡ 6 in 2 and 3. They state

that for a set number of vertices, there is an upper bound on edges before they have

to start crossing each other.

4 Verify by substitution into the inequalities established in 2 and 3 that K5 and K3;3 are

non-planar, but that K4 and K2;3 are planar.

5 Prove that if the shortest cycle in a graph is 5, 3e 6 5v ¡ 10. Hence deduce that the

Petersen graph is non-planar.

6 The girth g of a graph is the length of its shortest cycle. Establish a general inequality

involving e, v and g for planar graphs using a similar counting technique to the above

proofs.

7 Using the inequality e 6 3v ¡ 6, prove that in a planar graph there exists at least one

vertex of degree less than or equal to 5.

EXERCISE 11B.5.2

Find a minimum number of edges necessary to make this many regions, and hence
establish a contradiction.

A connected graph G is planar if and only if it satisfies Euler’s formula e+ 2 = r + v.
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319DISCRETE MATHEMATICS (Topic 11)

We now consider the class of connected graphs without cycles, known as trees. We extend

our work to include weighted graphs and consider three algorithms for them: Kruskal’s,

Prim’s, and Dijkstra’s.

Definition:

A tree is a connected, simple graph with no circuits or cycles. We say it is acyclic.

Some examples of trees are shown below:

In a sense, a tree is the simplest possible connected graph. Every connected simple graph has

a tree as a subgraph.

Definition:

A spanning tree is a connected subgraph with no cycles but which contains all the vertices

of the original graph.

Theorem:

A graph G is connected if and only if it possesses a spanning tree.

Proof:

() ) If G has a spanning tree T , then by definition, T is connected and contains all

the vertices in G.

) since G contains all the edges in T , G is also connected.

B.6 TREES AND ALGORITHMS

8 Use the formula in 7 to determine which complete graphs Kn are planar.

9 Draw a planar graph in which each vertex has degree 4.

10 Prove that all bipartite graphs of the form K2;n are planar.

11 For which values of s, t > 1 is the complete bipartite graph Ks;t non-planar?

12

The platonic solids are regular polyhedra whose faces are all the same

shape. They can all be drawn as planar graphs. Click on the icon to

obtain an investigation on platonic solids.

You can click on the second icon to obtain an investigation on soccer

balls, or on the third icon to obtain extension material on Homeomorphic

graphs and the Theorem of Kuratowski.

PLATONIC SOLIDS
INVESTIGATION

Prove that for a simple graph G with at least 11 vertices, G and its complementG cannot

both be planar.

Hint: Consider the total number of edges in both G and G and then use the inequality.

SOCCER BALLS
INVESTIGATION

HOMEOMORPHIC
GRAPHS
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(( ) Suppose G is connected. Then

either G is a tree, in which case it is its own spanning tree,

or G contains cycles. In this case, we can keep deleting edges of G without

deleting vertices until it is impossible to continue without disconnecting G. At

this time, we are left with a spanning tree of G.

Note that the spanning tree of a graph need
not be unique.

For example, one spanning tree of the tree
on the right is shown on the next page.

A

B

320 DISCRETE MATHEMATICS (Topic 11)

In the spanning tree:

The following properties of trees are all equivalent and may each used to establish if a given

graph is a tree.

1 T is a tree if and only if any two of its vertices are connected by exactly one path.

Proof:

( ) ) If T is a tree then it is connected. Hence there exists a simple path between

any two vertices.

However, suppose there is more than one simple path between two vertices.

Then either the two simple paths are disjoint, so we have a cycle,

or at some intervening vertex on the initially common simple path, the paths

become disjoint, and we also have a cycle.

) since T is acyclic, we have a contradiction, and there is a unique path

between any two vertices.

( ( ) If T is not a tree, then

either it is disconnected, in which case there are no paths between some vertices,

or it is cyclic, in which case there exist two simple paths between two vertices.

Hence if T is not a tree, not every two vertices of T are connected by exactly

one path.

2

Proof:

( ) ) If T is a tree, then by property 1, any edge is the unique path between the two

incident vertices. ) removing this edge disconnects the graph.

PROPERTIES OF TREES

A

B

�

�

�

�

�

There are vertices, so its order is .

There are edges, so its size is .

There is one path only from A to B.

If we delete any edge from the tree,
then the graph is disconnected.

If we add an edge without adding a
vertex, then the graph has a circuit.

16 16

15 15

T is a tree if and only if it is connected and the removal of any one edge results in
the graph becoming disconnected.
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( ( ) If T is not a tree, then

either T is already disconnected,

or T is connected and contains a cycle. If this is true, then we can remove at

least one edge without the graph becoming disconnected.

321DISCRETE MATHEMATICS (Topic 11)

3

Proof:

( ) ) If T is a tree of order n, then by definition it contains no cycles.

Now if T has order 2, then T is K2, which indeed has only 1 edge.

Now suppose that all trees with k vertices have k ¡ 1 edges.

Adding one vertex to the tree without the tree becoming disconnected requires

us to add another edge.

Hence we form a tree with k + 1 vertices and k edges.

) by induction, a tree of order n has n¡ 1 edges.

( ( ) Suppose G is a graph with n vertices, n¡ 1 edges and no cycles.

Since there are no cycles, there exists no more than one path between any two

vertices.

Now if G is disconnected, it is made up of k disconnected subgraphs (k > 1),

none of which cycle, i.e., it is made up of k disconnected trees.

But we already know that a tree with m vertices has m¡ 1 edges, so for k
disconnected trees with a total of n vertices, the total number of edges is n¡ k.

Hence k = 1, which is a contradiction.

) G must be connected, and since is contains no cycles, it is a tree.

4 If T has order n, then it is a tree if and only if it is connected and has n¡ 1 edges.

Proof:

( ) ) If T is a tree of order n, then by definition it contains no cycles.

Now if T has order 2, then T is K2, which indeed has only 1 edge.

Now suppose that all trees with k vertices have k ¡ 1 edges.

Adding one edge to the tree without making a cycle requires us to add another

vertex.

Hence we form a tree with k + 1 vertices and k edges.

) by induction, a tree of order n has n¡ 1 edges.

( ( ) Let G be a connected graph with n vertices, n¡ 1 edges.

If G is cyclic, then we can delete an edge from the graph to form a connected

subgraph of G with the same number of vertices as G. We can continue this

process r times (r > 0) until we obtain a tree T with n vertices and n¡ 1¡ r
edges.

However, we know that a tree with n vertices has n¡ 1 edges, so r = 0.

This is a contradiction, so G must be acyclic.

) since G is connected, it is a tree.

5

Proof:

If has order , then it is a tree if and only if it contains no cycles and has
edges.

T n
n ¡ 1

T is a tree if it contains no cycles, but the addition of any new edge creates exactly
one cycle.

If is a tree, then by definition it is connected and contains no cycles.

Now if we add an edge between two existing vertices A and B, then there are

T
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now exactly two paths from A to B. Hence there is now a single cycle which
starts and finishes at A, and travels in either direction via B. The cycle through
B is the same cycle since it contains the same set of edges.

Hence exactly one cycle is created.

322 DISCRETE MATHEMATICS (Topic 11)

1 Which of the graphs below are trees?

a b c d

2 Find all non-isomorphic trees of order 6.

3 Can a complete graph be a tree? Explain.

4 What is the sum of the degrees of the vertices of a tree of order n?

a A tree has two vertices of degree 4, one of degree 3 and one of degree 2. All others

have degree 1. How many vertices does it have? Draw it.

b A tree has two vertices of degree 5, three of degree 3, two of degree 2, and the

remainder have degree 1. How many vertices does it have? Draw it.

5 Which of these trees are isomorphic?

a b c

d e f

g h i

6 Show that there is a tree with six vertices of order 1 and one of each with degrees 2, 3
and 5.

7 Which complete bipartite graphs Km;n are trees ?

EXERCISE 11B.6.1
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323DISCRETE MATHEMATICS (Topic 11)

8 Show that for n > 2, any tree on n vertices has at least two vertices of degree one, i.e.,

end vertices.

There are two algorithms for finding a spanning tree on a graph in as efficient a way as

possible. These are the depth first search and the breadth first search. However, here we

will consider only the breadth first search algorithm:

From a given starting vector, we visit all adjacent vertices. Then for each of these vertices,

we visit all the adjacent vertices except those to which we have already been, and so on until

we have visited all vertices.

For example, for the graph alongside:

1 We choose a starting vertex, U. We label

vertex U with 0, since it is 0 steps from

itself.

2 We move to vertices adjacent to U, i.e., A

and B. We label these 1, because they are

both 1 step from U.

3 Next, we choose one of these two adjacent

vertices (we will choose B for no partic-

ular reason) and move to the unlabelled

vertices adjacent to B. These are D and E,

and we label them both 2 because they are

both two steps from U. We repeat this with

the unlabelled vertices adjacent to A, but

in this case there are none.

Note that by moving only to the unlabelled

vertices we ensure that we do not form a

circuit.

4 All unlabelled vertices adjacent to those

labelled with a 2 are labelled 3 etc. as

they are 3 steps from U and cannot be

reached in less than 3 steps. This process

is continued until all vertices have been

reached. We end up with the spanning

tree of the graph shown alongside.

Notes:

² This spanning tree is not unique, because we could choose a different start vertex, or

different orders in which to visit the adjacent vertices,

e.g., if we had chosen to consider A before B.

² Since a spanning tree exists if and only if the original graph is connected, this algorithm

can be used to test whether or not a graph is connected. If the graph is not connected,

we can never label all vertices.

² The BFS algorithm can tell you the minimum length (in terms of the number of edges

on the path) from the starting point to any other vertex on the graph.

THE BREADTH FIRST SEARCH

A

B

C

D

E

F

G

H

U J

A

B

C

D

E

F

G

H

U J0

1

1

2

2

U

A

B

C

D

E

F

G

H

J0

1

1 2

2

3

3

3

4

4
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324 DISCRETE MATHEMATICS (Topic 11)

1 Starting at A, find spanning trees for these graphs:

a b

2 How many different spanning trees are there for Cn (n > 3)? (Include isomorphisms.)

Extension:

3 Including isomorphisms, how many spanning trees do

a K2 b K3 c K4 d K5 e K6 have?

Hence postulate a formula for Kn.

Hint: Illustrate the different isomorphic forms the trees can take.

4 How many spanning trees do

a K1;1 b K2;2 c K3;3 d K4;4 have?

Include isomorphisms but assume the discrete sets of vertices are distinguishable.

Postulate a formula for Kn;n.

5 How many spanning trees does Km;n have?

Definition:

A weighted graph is one in which a numerical value (weight) is apportioned to each edge

of the graph.

An example of a weighted graph was considered in the road cleaner problem in Exercise

11B.4.1. In this problem, we considered an optimal route that depended on the length or

weight of each edge we travelled along.

We will consider two types of problems on weighted

graphs.

These correspond to the situations we considered in

the introductory exercise on Graph Theory, Exercise

11B.1 question 4. We considered two scenarios cor-

responding to the following weighted graph:

1 Suppose the diagram represents an offshore oil-

field. The dots represent the oil wells and the

lines joining them represent pipelines that could

be constructed to connect the wells.

The number shown on each edge is the cost (in millions of dollars) of constructing that

pipeline. Each oil well must be connected to every other, but not necessarily directly.

Which pipelines should be constructed to minimise the cost?

EXERCISE 11B.6.2

A

B

C

D

E

F
G

H

J

K

4 5

5

3

1

5

2

6
8 7

9

3

2

3

6

11

3

5

3

A C

DB

G

E F

H

A

WEIGHTED GRAPHS
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325DISCRETE MATHEMATICS (Topic 11)

This problem is concerned with finding the minimum weight spanning tree of the

graph. Note that since the graph is connected, it has to have at least one spanning tree.

There are two algorithms for finding the spanning tree of minimum weight: Kruskal’s

Algorithm and Prim’s Algorithm.

2 Suppose the diagram represents the walking trails in a national park. The numbers on the

edges represent the suggested walk time in hours for that trail. If I want to walk from

point A to point E in the shortest possible time, what route should I take?

This question does not ask for the minimum weight spanning tree, but rather for the

minimum connector (minimum weight path) between two given points. In this case we

need to use a different method, known as Dijkstra’s Algorithm.

In the exercise at the end of this section, we will solve these two problems by algorithmic

means. We will therefore demonstrate the three algorithms using a different graph.

The two different procedures for finding a minimum weight (or length) spanning tree are

Kruskal’s algorithm and Prim’s algorithm. These are both termed “greedy algorithms” because

we always take the best option at each stage regardless of the consequences.

In Kruskal’s algorithm, we grab edges one at a time, taking the edge of least weight at every

stage while ensuring that no cycles are being formed. For a graph of order n, the minimum

weight spanning tree is obtained after n¡ 1 successful choices of edge.

MINIMUM WEIGHT SPANNING TREES

KRUSKAL’S ALGORITHM

Use Kruskal’s algorithm to find the minimum length spanning tree of the graph

below.

Note that there are 7 vertices, so we require 6 edges. FG has shortest length.

A

B

C D

E

F

G

6 8

3
5

5

3

5

4

2

10

Example 38

Step 1: Start with the shortest edge. If there are several, choose one at random.

Step 2:

Step 3: Repeat until you have chosen n¡ 1 edges.Step 2

Choose the shortest edge remaining that does not complete a circuit with any of
those already chosen. If there is more than one possible choice, pick one at
random.

IBHL_OPT
cyan black

0 5 2
5

7
5

5
0

9
5

1
0
0

0 5 2
5

7
5

9
5

1
0
0

5
0

Y:\HAESE\IBHL_OPT\IBHLOPT_11\325IBO11.CDR 12 August 2005 14:27:59 DAVID2
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We summarise the algorithm as follows:

Edge Length Circuit Edge List Total Length

FG 2 No FG 2

DE 3 No FG, DE 5

AC 3 No FG, DE, AC 8

EG 4 No FG, DE, AC, EG 12

EF 5 Yes - reject FG, DE, AC, EG 8

CE 5 No FG, DE, AC, EG, CE 17

CD 5 Yes - reject FG, DE, AC, EG, CE 17

AB 6 No FG, DE, AC, EG, CE, AB 23

We have 6 edges, so we stop the algorithm.

The total minimum weight spanning tree has weight 23, and is shown below.

Note that in this case the minimum spanning tree is not unique. We could have

chosen CD instead of CE.

A

B

C D

E

F

G

6 8

3
5

5

3

5

4

2

10

PRIM’S ALGORITHM

Step 1: Choose any vertex to be the starting point of your tree, which we label T .

Step 2:

Step 3: Repeat Step 2 until T includes all vertices.

Add to the shortest edge of which one end is on and one the other is not.
If there are two or more such edges, choose one of them at random.

T T

In , we begin with a vertex and grab new vertices one at a time along
edges of minimum length. Choosing vertices in this manner means that a tree is constructed
at each stage, so checks for cycles are not necessary. This is one advantage over Kruskal’s
Algorithm. However, you must ensure that the next vertex chosen is adjacent to any one of
the previously chosen vertices, not solely the last one that was chosen. The algorithm works
because at each stage, we choose the least weight solution.

Prim’s Algorithm
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To

A B C D

A X 5 3 X

F
ro

m B 5 X 2 6

C 3 2 X 4

D X 6 4 X

Apply Prim’s algorithm to find the minimum spanning tree of the graph in

Example 38.

There are 7 vertices so we require 6 edges.

Let vertex C be the starting point.

Vertex Set Adjacent Vertices Edges Chosen Length Total Length

C A, D, E CA 3 3

C, A D, E, B CD 5 8

C, A, D B, E, G DE 3 11

C, A, D, E B, F, G EG 4 15

C, A, D, E, G B, F GF 2 17

C, A, D, E, G, F B AB 6 23

Just as in Example 38, we find the total minimum weight spanning tree has

weight 23.

However, in this case we have found a different minimum weight spanning tree:

Note that at stage 2, we chose edge CD, this was not necessarily the only choice.

We could equally well have have chosen CE.

Example 39

A

B

C D

E

F

G

6 8

3
5

5

3

5

4

2

10

A

B

C

D

5

3

6

4

2

For example:

In order to find a minimum spanning tree for large graphs, the only practical option is to use
a computer. We construct a for the graph in which each number
represents the weight of an edge between two vertices, and a cross indicates that vertices are
not adjacent. We can then apply a special form of the Prim algorithm.

cost adjacency matrix C

This graph has the cost
adjacency matrix shown
alongside:
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328 DISCRETE MATHEMATICS (Topic 11)

The rows are the vertices we are coming from and the columns are the vertices we are going

to.

Suppose we decide to start the spanning tree at B, so we search the

B row for the vertex which is closest. The shortest possible edge

is BC, so we add C to our list of vertices. In order to avoid circuits

forming, no further edges should end at B or C, so columns B and

C are deleted from the table, as shown alongside:

To

A D

A X X

F
ro

m B 5 6

C 3 4

D X X

We can now build onto the tree from either B or C. We therefore select the edge of minimum

length which is left in either the B or the C row. This is CA with length 3.

Deleting the A column, it is clear that the last link should be from CD, with length 4.

To

D

A X

F
ro

m B 6

C 4

D X

The resulting minimum weight

spanning tree is shown

alongside. Its weight is 9.

1 Solve Exercise 11B.1 question 4a using both the Kruskal and Prim algorithms.

2 Find the minimum weight spanning trees of the following graphs using both the Kruskal

and Prim algorithms.

b

EXERCISE 11B.6.3

a

A

B

C

D

3
4

2

A

T

7

5

2

6

1
4

4

43

5

3

2

1

2

3

2

5

4

1

A

B
C

D

E

F

GH

I

J

2

4
6

3

8

5
3

7

9

7
5

9
6

4 8

28
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3 The table represents a complete weighted graphK5. To

A B C D E

A X 10 8 7 10

B 10 X 5 4 9

F
ro

m

C 8 5 X 7 10

D 7 4 7 X 8

E 10 9 10 8 X

a How do we know it is a complete graph?

b Find a minimum spanning tree for the graph.

Use the matrix form of Prim’s algorithm.

c Draw the graph then use Kruskal’s

tree.

4 Find a minimum weight spanning tree

for the network represented by the table

opposite:

To

A B C D E F G

A X X 30 X X 50 45

B X X 70 35 40 X X

C 30 70 X 50 X X 20

F
ro

m

D X 35 50 X 10 X 15

E X 40 X 10 X 15 X

F 50 X X X 15 X 10

G 45 X 20 15 X 10 X

A

B C

D

EF

G

4

3

13

2

6

10

8

2
8

15

114

algorithm to find a minimum spanning

We can generally solve problems with small graphs such as this by inspection: the quickest

time is 18 days using either A ! B ! G ! F ! E ! D

or A ! F ! E ! D.

However, real life problems generally require much larger and more involved graphs that

can only be sensibly handled using computers. Finding optimum paths through such graphs

therefore requires an algorithm or set of rules that can be programmed into a computer.

Finding more efficient algorithms for this and other graph theory tasks is a very active area of

research, for they are used in areas as diverse as cancer research and electrical engineering.

In this course, we find the minimum weight path between two given vertices on a weighted

connected graph using Dijkstra’s algorithm.

It is important for this algorithm to work that all weights on the graph are non-negative. This

is generally physically realistic, since the cost, distance, or time, etc., of travelling along an

edge cannot be negative.

THE MINIMUM CONNECTOR PROBLEM

Consider the shipping lanes between seven
ports where the edge weights represent the
estimated time in days between ports, as
shown . The problem is to find
the quickest route from A to D.

alongside
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330 DISCRETE MATHEMATICS (Topic 11)

Step 1: Assign a value of 0 to the starting vertex. We draw a box around the vertex label

and the 0 to show the label is permanent.

Step 2: Consider all unboxed vertices adjacent to the latest boxed vertex. Label them

with the minimum weight from the starting vertex via the set of boxed vertices.

Step 3: Choose the least of all of the unboxed labels on the whole graph, and make it

permanent by boxing it.

Step 4: Repeat steps 2 and 3 until the destination vertex has been boxed, then backtrack

through the set of boxed vertices to find the shortest path through the graph.

In each stage we try to find the path of minimum weight from a given vertex to the starting

vertex. We can therefore discard previously found shortest paths as we proceed, until we have

obtained the path of minimum weight from the start to the finishing vertex.

We will now apply Dijkstra’s algorithm to the example on the previous page:

Begin by labelling A with 0 and drawing a

box around it. Label the adjacent vertices

B, G and F with the weights of the edges.

The weight of edge AB is least, so we

draw a box around B and its label.

Next we consider moving from B to all

adjacent vertices. These are C, which

has cumulative minimum weight 7, and

G, which has cumulative minimum weight

via B of 6. We therefore label C with 7 and

replace the 8 next to G with a 6. This indi-

cates that the minimum weight path from

A to G is via B, and its weight is 6. We

know it is the minimum because it is the

least of the unboxed labels on the graph.

Therefore, we put a box around the G and

the 6.

Now C is unboxed and adjacent to G, but

6 + 8 = 14 > 7. We therefore do not

update the label. We also label D with

21, E with 17, and F is labelled with 10.

Notice that the minimum path of weight

10 from A to F is obtained by either

A ! B ! G ! F or A ! F direct.

Of the new options, C is the least is there-

fore boxed.

DIJKSTRA’S ALGORITHM

A 0

B C

D

EF

G

8

4

3

13

2

6

10

8

2
8

15

114

4

10

A 0

B 4 C 7

D

EF 10

G
8
6

4

3

13

2

6

10

8

2
8

15

114

A 0

B C 7

D 21

E 17F 10

4

3

13

2

6

10

8

2
8

15

114

4

G
8
6
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We now consider all unboxed vertices ad-

jacent to C. We can update D from 21 to

20.

We choose the least of all of the unboxed

labels on the whole graph, and this is the

10 corresponding to F. F is therefore the

next vertex to be boxed.

We can now update E to 16, and box it

because it now has the lowest unboxed la-

bel.

Finally, we update D to 18, and we are

now sure that the lowest label is attached

to the final destination. The algorithm

stops, and its completed diagram is shown

opposite:

These are: A ! B ! G ! F ! E !
and A ! F ! E ! D.

Note two unusual features of this example that do not in occur in most problems:

•
All vertices were considered. In general, the algorithm stops as soon as the destination

vertex is boxed, irrespective of whether all other vertices have been considered. This is

because a vertex is only boxed when we are sure it has the minimum cumulative weight.

•
The minimum weight path from A to F was the same either via the intermediate vertices

B and G or directly along the incident edge. This does not in general occur, but if it

does, either path is equally valid.

1 Find the minimum connector from A to D for the networks below:

a b

D

EXERCISE 11B.6.4

A 0

B C 7

D 21

20

E 17F 10

4

3

13

2

6

10

8

2
8

15

114

4

G
8
6

A 0

B C 7

D 21

20

E 17 16F 10

4

3

13

2

6

10

8

2
8

15

114

4

G
8
6

A

B C

D

EF

G

4

6

13

5

6

11

8

2
8

14

114
A

B C

D

EF

G

6

9

3

10

4

4

9

2
5

9

53

To complete the route, we have to back-
track from D to A using the final boxed
labels. We have units (and no more)
to use, so we have to retrace steps back
through E and F. From F, we can either
return directly to A, or return via G and
B. We therefore have the two solutions,
each of weight , that were found by in-
spection.

18

18

A 0

B C 7

D 21

20

18

E 17 16F 10

4

3

13

2

6

10

8

2
8
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4

G
8
6

IBHL_OPT
cyan black

0 5 2
5

7
5

5
0

9
5

1
0
0

0 5 2
5

7
5

9
5

1
0
0

5
0

Y:\HAESE\IBHL_OPT\IBHLOPT_11\331IBO11.CDR 12 August 2005 14:33:14 DAVID2
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2 Find the shortest path from A to G on the graph below.

3 Solve Exercise 11B.1 question 4b using the Dijkstra algorithm.

4 Find the shortest path from A to G on the graph below.

B.7 THE CHINESE POSTMAN PROBLEM

A

B

C D

E

F

G

6

8

3
12

5 4

9

13

9

3

A

B

C

D

E

F
GH

J K
6

8

6

4

7

5

9

11

3

2

2

5

3

5

3

3

3

5

1

This problem was posed by Chinese mathematician
. It involves finding the minimum

weight Eulerian circuit of a weighted connected
graph, i.e., given a weighted connected graph, what is
the minimum weight closed walk that covers each
edge at least once?

Now if all the vertices of the graph have even
degrees, the graph is Eulerian and there exists an
Eulerian circuit that traverses every edge exactly
once. The Chinese Postman Problem is therefore
trivial in this case.

However, most graphs are not Eulerian and so some of the edges must be walked twice. The
task is to minimise the total weight of the edges we double up on.

For non-Eulerian graphs, vertices with odd degrees exist in pairs (consider the Hand-Shake
problem). We therefore need to walk twice over edges that are between pairs of odd vertices.
We work out how to do this most efficiently either by inspection or by using of Dijkstra’s
algorithm: the edges identified by Dijkstra are the ones that should be traversed twice.

Kwan Mei-Ko
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If there are more than two odd vertices, we need a counting procedure to identify the different

possible pairings of vertices, and then apply Dijkstra’s algorithm in each case to find the

minimum route.

Use Dijkstra’s algorithm to solve the

Chinese Postman Problem for the

weighted graph shown.

The graph is not Eulerian since the degrees of vertices B and F are odd.

We therefore need to walk twice between these vertices, and use Dijkstra’s

algorithm to do this in the most efficient way:

The most efficient way is therefore to traverse the route B!E!F twice.

Example 41

7

3

10

6 8

4 9 3

4

3

H

D

CBA

F

G

E

7

3

10

6 8

4 9 3

4

3

H 17

D 7

C 4B 0A 10

F 12

G

E 9

Solve the Chinese Postman Problem

for the weighted graph shown.

The graph is not Eulerian since the degrees of vertices A and D are odd.

We therefore need to walk twice between these vertices. We could do this by

walking along the paths:

A!B!C!D with weight 1 + 3 + 2 = 6
A!D with weight 2

A!E!D with weight 2 + 1 = 3

The most efficient way is therefore to traverse the edge AD twice.

The minimum weight closed walk that covers every edge at least once has weight

equal to the sum of the weights of the edges, plus 2, i.e., 11 + 2 = 13.

Example 40

A

B C

D

E

1

2

3

2

12
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1 A snowplough must clear snow by driving along

all of the roads shown in the graph, starting and

finishing at the garage A. All distances shown are

in km.

Explain why the shortest distance the snowplough

must travel is 24 km.

2 A network of paths connects four mountain tops

as shown in the figure alongside. A keen rambler

wishes to walk along all of the paths linking the

peaks.

a Explain why the rambler will have to repeat

some sections of the track. How many sec-

tions will have to be repeated?

b Considering all possible combinations of pairs, find the minimum distance that the

rambler must travel to cover every section of track, starting and finishing at A.

Suggest a possible route that achieves this minimum distance.

EXERCISE 11B.7

Solve the Chinese Postman Problem

for the weighted graph opposite.

The graph is not Eulerian since the degrees of vertices A, B, C and D are odd.

There are six possible pairings of the odd vertices, and they go together in the

following groups of two: AB and CD, AC and BD, AD and BC.

For every pair, we find the minimum weight connector between the vertices,

either by inspection or using Dijkstra’s algorithm. We can then choose the

combination of pairs with the overall minimum weight.

Minimum Weight Connector Combination’s Total

Pairing Path Weight Minimum Weight

AB

CD

A!B

C!E!D

8
5

13

AC

BD

A!E!C

B!E!D

7
7

14

AD

BC

A!E!D

B!E!C

6
8

14

Hence the most efficient way is to construct an Eulerian circuit which travel both

routes A!B and C!E!D twice each.

Example 42

A

D C

B

E
7

6

9

8

4 5

32

A
B

C F

G

H
I

1
1
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3
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2

1

2

A

B

C

6 km

9 km

7 km 5 km

4 km

12 kmD
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c

3

a some the roads will have to be swept

twice

b the shortest distance the roadsweeper

must travel is 63 units.

4

5 A carnival procession wishes to march down

each of the roads shown in the diagram given,

in which all lengths are shown in kilometres.

a List the three different ways in which

the four odd vertices in the diagram can

be paired.

b Find the shortest distance that the pro-

cession has to travel if they are to start

and finish at E.

6

The graph opposite shows the roads in

Postman Peter’s mailing route. If the Post

Office where Peter starts and finishes his

round is at A, how should Peter minimise

the distance he must walk?

The graph opposite is a schematic drawing

of an oil field in which the oil wells (the

vertices) are connected by pipelines (the

edges).

The cost of inspecting each edge (in tens

of thousands of dollars) by means of a

robotic device is displayed.

What is the least cost solution for com-

pleting the inspection, given that the robot

once on a pipeline must inspect all of it?

A

B

C

4 h
6 h

4 h 7 h

3 h

6 hD

A

B

C

D

E

F

G3

2

4 6

7

7
1

5

4
2

3

5

6

H

A

B

C

D

E

F

G

H

I

1

4

3

3

5

7

2
5

5

5

4

4

3

3

5

A B

CD

E
5.5

4.5

5

6

3.5

1.5 2

4.5

A

B

C D

E G

1.3

1.2

1.3

0.5

1.8

1.1

1.5

0.9

2.2

1.8

F

After some careful thought, the rambler
realises that because of the terrain, he
would be better off considering the time
required to walk the paths instead of the
distances. The map with the times for
each section of track is shown along-
side. If the rambler wants to minimise
the total time on route, what could his
strategy be?

Find a route by which the roadsweeper can
achieve this minimum.

A roadsweeper based at A must clean all of
the roads shown at least once. Explain why:
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Recall that a Hamiltonian cycle is a cycle in which we visit each vertex of a connected graph

exactly once. One of the great unsolved problems of pure mathemics is how to efficiently

find the least weight Hamiltonian cycle of a weighted complete graph. This is known as the

Travelling Salesman Problem (TSP).

There are two versions of the TSP, the classical version and the practical version.

In the classical TSP, we insist that each vertex must be visited exactly once.

However, in the practical version, we allow vertices to be used on more than one occasion.

We therefore are not exactly finding the least weight Hamiltonian cycle of the graph, but

something very similar. The problem is still very complex and inaccessible to algorithmic

solution.

For example, consider the graph on the left below. We can transform it into the graph on the

right, thus converting it to the classical TSP.

We can find all of the Hamiltonian cycles in the graph starting and finishing at A, and compare

their total weights. These are:

ABCDA: 35 + 38 + 21 + 12 = 106
ABDCA: 35 + 23 + 21 + 33 = 112
ACBDA: 33 + 38 + 23 + 12 = 106

ACDBA: 33 + 21 + 23 + 35 = 112
ADBCA: 12 + 23 + 38 + 33 = 106
ADCBA: 12 + 21 + 38 + 35 = 106

Note that the three cycles on the right are simply those on the left in reverse order, so we can

discard them as non-unique. We can see that the minimum solution to the TSP is 106 in this

case, and the maximum is 112.

B.8 THE TRAVELLING SALESMAN PROBLEM (TSP)

5

7

9

10

8

8

75

4 7

A

B

C

D

12

23

21

38

A

B

C

D

12

23

21

38

33

35

In graphs with a small number of vertices and edges such

as that alongside, it is possible to solve the TSP relatively

quickly. However, as the size and order of a graph increases,

the TSP rapidly becomes inefficient to solve even on a com-

puter. There are 1
2 (n¡ 1)! distinct Hamiltonian cycles on

Kn, so for large n we simply cannot test each one.

Evaluate 1
2 (n¡ 1)! for n = 20 and n = 40 to see why.

Imagine the number of cases for n = 100 !!

If the original graph itself is not Hamiltonian, it can be transformed to be so, and extended
further to be a complete graph by adding extra edges. We are therefore able to transform the
practical version of the TSP into the classical version by the addition of edges, provided the
graph that is used obeys the triangle inequality. We will therefore only consider the classical
version in this text.
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We now explore upper and lower bounds for what the minimum weight Hamiltonian cycle

might be; these give us an indication of whether a cycle is reasonably close to the mimimum

length and hence correct solution.

Examples:

1 In the example on the previous page, the minimum spanning tree is 56, so an upper

bound for the solution to the TSP is 112. Note that twice the length of the minimum

spanning tree must be greater than or equal to our largest solution, and in this rather

simple case it is equal. It is an efficient way of finding a maximum bound because

even if we cannot find the minimum spanning tree by inspection, we can use either

Prim or Kruskal.

2 We can use Prim or Kruskal to find the two mini-

mum spanning trees for the weighted graph based

on K5 shown opposite.

The minimum spanning trees have length 28, so

the upper bound for the TSP is 56.

If we consider the minimum spanning tree on the

right, the walk EACAEDBDE starts and finishes

at the same point, and visits every vertex. Al-

though we cannot use this route in the classical

problem, it will still serve as an upper bound for

it.

Therefore, although, this method of doubling the minimum spanning tree gives an

upper bound, it can be much greater than the optimum solution.

FINDING AN UPPER BOUND

A

B C

D

E

11

12

10

76

8

8 7

8 11

A

B C

D

E

11

12

10

76

8

8 7

8 11

Clearly, any solution to the problem is an upper bound for what the solution could be.
So, we could find any Hamiltonian cycle.

Twice the length of the minimum spanning tree is an upper bound to the practical TSP,
because it involves visiting each vertex then returning by the same path. It will thus serve as
an upper bound to the classical problem provided the triangle inequality holds for the graph.

A more appropriate upper bound would com-
plete a Hamiltonian cycle by simply adding the
edge BC to the minimum spanning tree. This
gives an upper bound of to the
problem.

�28 + 12 = 40� � �
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By inspection, the optimum solution to the TSP is A!E!B!D!C!A

which has length 39, which is barely less than the reduced upper bound. This

is therefore a better method of obtaining solutions that are closer to the optimum.

However, it cannot be modelled algorithmically.

The following method gives a lower bound to the TSP solution, but does not necessarily find

the solution itself:

Step 1: Delete a vertex, together with all incident edges, from the original graph.

Step 2: Find the minimum spanning tree for the remaining graph.

Step 3: Add to the length of the minimum spanning tree the lengths of the two shortest

deleted edges.

For example, consider the same graph as before,

shown opposite.

Suppose we delete vertex A and all its incident

edges. We then find the two minimum spanning

trees for the remaining subgraph. They are shown

below. Both have length 25.

Now, we add the lengths of the two shortest deleted edges. In this case they have lengths 6
and 7. We therefore obtain the lower bound 25 + 6 + 7 = 38.

Note that in this case it is not actually the solution to the TSP. It will only be the solution

to the TSP if there is a minimum length spanning tree with only two end vertices and if the

minimum lengths deleted are incident to these end vertices.

Notice also that if a different vertex is deleted, the lower bound will change. However, since

they are both valid lower bounds, we can take the largest one without fear that the solution

to the TSP is lower.

FINDING A LOWER BOUND
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REVIEW SETS

P Q

RS

32

55

43

86

65

84

P Q

RS

20

30

15

15

20

25

P Q

R

ST

12

7

8
7

9

10

13
9

11

12

1 a Find a minimum spanning tree for the graph

alongside based on K4. Hence find an upper

bound for the TSP.

b Use a shortcut to find a better upper bound.

c By deleting each vertex in turn, find a set of

lower bounds.

d Hence solve the TSP problem for this graph.

2 a Find two minimum spanning trees for the

graph alongside based on K4.

b Using one of these, find an upper bound for

the TSP.

c By deleting each vertex in turn, find a set of

lower bounds.

d Solve the TSP problem for this graph.

3 a Find a minimum spanning tree for the graph

alongside based on K5. Hence find an upper

bound for the TSP.

b Use a shortcut to find a better upper bound.

c

d Solve the TSP problem for this graph.

1 a Use the Euclidean algorithm to find the greatest divisor of 552 and 208.

b Hence or otherwise, find two integers m and n such that 552m¡ 208n = 8.

2 Using Euclid’s algorithm, find integers x and y such that 17x+ 31y = 1.

3

4 Prove that a£ b = gcd(a, b)£ lcm(a, b) for any positive integers a and b.

EXERCISE 11B.8

By deleting the vertices in turn, find a set of
lower bounds.

Suppose d = gcd(378, 168). Use Euclid’s algorithm to find d, and hence find one

pair of integers x and y such that d = 378x+ 168y.

5 Show that the modular equation 22x ´ 41 (mod17) has a unique solution. Find the

solution.

6 Find the smallest positive integer n such that n ´ 3 (mod19) and n ´ 2 (mod 11).

7 Solve: 14x+ 17 ´ 27 (mod6).

REVIEW SET 11A
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8 What is the units digit of 32007 ?

9 Suppose Nk is the kth repunit, so N1 = 1, N2 = 11, N3 = 111, etc.

If m, n 2 Z + are such that m < n and m jn , deduce that Nm jNn .

Hint: Note that Nm and Nn in expanded index form can be written as the sum of

geometric progressions.

10 Let a and b be integers such that gcd(a, b) = 1. Find the possible values of:

a gcd(a+ b, a¡ b) b gcd(2a+ b, a+ 2b).

11 If a, b 2 Z +, show that if 3
¯̄¡
a2 + b2

¢
then 3 ja and 3 jb , but if 5

¯̄¡
a2 + b2

¢
then 5 need not necessarily divide either a or b.

12 If a and b are relatively prime, show that for any c 2 Z +, gcd(a, bc) = gcd(a, c).

13 a Suppose we have a three-digit number of the form bba. If the sum of its digits is

divisible by 12, show that the number itself is divisible by 12.

b Suppose we have a three-digit number of the form bab. If the number itself and

the sum of its digits is divisible by k, show that the only possible values of k
less than 10 are 3 and 9.

c Show that if any three-digit number is divisible by k and the sum of its digits is

divisible by k, then the only possible values of k less than 10 are 3 and 9.

14 Solve: 57x ´ 20 (mod13).

15 a Given n 6´ 0 (mod5), show that n2 ´ §1 (mod5)
b Hence, prove that n5 + 5n3 + 4n is divisible by 5 for all n 2 Z +

1 Show that if
p

6 can be written in the form
p

6 =
a

b
where a, b 2 Z + are both

relatively prime, then a must be an even number.

Hence prove that
p

6 is irrational.

2 a Let n 2 Z +, n > 2, and let m = (n+ 1)! + 2. Show that m is even and that

3 j(m+ 1) .

b Let n 2 Z +, n > 3, and let m = (n+ 2)! + 2. Show that m is even and that

3 j(m+ 1) and 4 j(m+ 2) .

c Prove that there is a series of n consecutive numbers that are all composite.

3 Convert 7203842 (base 9) to base 3.

REVIEW SET 11B

4 Determine, with reasons, the number of incongruent solutions to the equation

165x ´ 105 (mod51). Find the solutions.

5 Determine a divisibility test for 36, stating why it works.

Is 14 975 028 526 645 824 divisible by 36?

6 Use the Chinese Remainder Theorem to solve 19x ´ 99 (mod 260).
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7 Prove that 3
¯̄¡
a3 + 5a

¢
for all a 2 Z +.

8 Given the recurrence relation Lk+2 = Lk+1 + Lk with L1 = 1 and L2 = 2,

a write down the first 10 terms of the sequence

b determine
nP
k=1

Lk for n = 1, 2, 3, 4, 5, and postulate a closed form solution

for
nP
k=1

Lk in terms of other Lj .

c Prove your result in b by induction.

9 Convert 144 (base 5) into: a binary b octal.

10 Prove that if n2 is divisible by 5 then so is n.

11 Prove or disprove that if n2 is divisible by 12, then so is n.

12 Prove that n2 ¡ 1 is either divisible by 4 or is of the form 4k + 3.

13 Is 435(47)¡ 48 divisible by 3?

14 Determine the truth or otherwise of the statement

a2 ´ b2(modn) ) a ´ b(modn):

If the statement is false find a counter example. Is the converse statement true?

Is the statement a2 ´ b2(modn) ) a ´ b(modn) true when n is a prime number?

Is there any conclusion that can be drawn about a and b (modn) given the statement

a2 ´ b2(modn)?

15 Given the statement ab ´ 0 (modn), what are the conditions on n that makes the

conclusion “either a = 0(modn) or b ´ 0(modn)” a true statement.

16 Prove that for all n 2 Z +, n5 ¡ 37n3 + 36n is divisible by 4.

1 For which values of m are the following graphs bipartite?

a Km b Cm c Wm

2 What are the numbers of edges and vertices in the following graphs?

a Km b Cm c Wm d Km, n

3

vertices and let m be the minimum degree of the vertices. Show that m 6
2e

v
6M .

REVIEW SET 11C

Let be a graph with vertices and edges. Let be the maximum degree of theG v e M

4 If the simple graph G has v vertices and e edges, how many edges does G have?

5 If G is a simple graph with 17 edges and its complement, G, has 11 edges, how many

vertices does G have?

6 Show that if G is a bipartite simple graph with v vertices and e edges then e 6
v2

4
.
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7 Represent the following graphs by their adjacency matrices:

a K4 b K1; 4 c K2, 3

8 Find a self-complementary graph with:

a 4 vertices b 5 vertices.

9 How many paths are there of length n between two different vertices in K4 for the

cases where n is

a 2 b 3 c 4?

10 How many paths are there of length n between two adjacent vertices in K3, 3 given

that n is

a 2 b 3 c 4?

11 For which values of m, n does Km, n have a Hamiltonian cycle?

12 Suppose that a connected planar simple graph with v vertices and e edges contains

no circuits of length 4 or less. Show e 6
5v ¡ 10

3
.

13 A connected planar graph has 8 vertices each of degree 3 (is 3-regular or cubic). How

many regions does it have?

14 How many regions does a 4-regular connected planar graph with 6 vertices have?

1 Which of the following graphs are bipartite?

A B C D E

2 If G is a simple graph with at least two vertices, prove that G has two or more vertices

of the same degree.

3 Classify the following graphs as

i Eulerian, transversable or neither

ii Hamiltonian, semi-Hamiltonian or neither:

a K5 b K2, 3 c d

4 A bipartite graph G has an odd number of vertices.

Prove that it cannot be Hamiltonian.

5 Given two graphs G and H such that G »= H , prove that the order of G equals

the order of H and that the size of G equals the size of H .

Show, by counterexample, that the converse of this statement is false.

REVIEW SET 11D
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6 Determine whether the graphs below are isomorphic.

A B C

7 a Find all non-isomorphic simple connected graphs of order four.

b Find all non-isomorphic simple graphs of order four.

8 Determine whether there exist simple graphs with 12 vertices and 28 edges in which

a the degree of each vertex is either 3 or 4

b the degree of each vertex is either 5 or 6:

9 Find the fewest vertices required to construct a simple connected graph with at least

500 edges.

10 Given that both a graph G and its complement G are trees, what is the order of G?

11 Given a simple cubic graph G is planar, find a relationship between the regions in G
and its order. Verify that K4 satisfies this relationship.

1 Use the breadth first search starting at O to find

a spanning tree for the graph alongside:

2 How many spanning trees does W3 have? Include all isomorphisms.

3 Find a minimum weight spanning

tree for the graph below using

Kruskal’s algorithm.

4 Use Prim’s algorithm to find a minimum

weight spanning tree for the graph

below:

5 Find the minimum connector from X to Y

in the graph alongside.

REVIEW SET 11E

P

Q
R

T

S

12

9

14

9

16
12

7

17

12

L

M

N

O

PQ

R
S

51
38

72

63
55

57

35

43
31

50

47

65

24
40

X
A

B

C
D

E

F
G

H

I Y

3

2

4

3

5

2

3

6

5

1

4

2

3

6
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6

7 A sewage network graphed alongside

needs to have all tunnels inspected. The

weights on the edges are their lengths in

metres.

a If there are entrances at each of the

nodes, where should the inspection

start and finish so that the minimum

distance is covered?

b State an inspection plan that covers

each tunnel only once.

c If the inspector must start and finish his inspection at A, which tunnel will be

covered twice for him to travel the minimum distance?

d What is the minimum distance that must be covered if the inspector starts and

finishes at A?

8 For the graph alongside, solve the Chinese

Postman Problem. Assume the postman

starts and finishes at O.

9 The following graphs represent Travelling Salesman Problems. In each case:

i find a minimum spanning tree for the graph and hence find an upper

bound for the TSP

ii improve the upper bound by using a shortcut

iii delete each vector in turn and hence find a lower bound

iv solve the TSP.

a b

A
B

25

18

16

19

21

32 10 38

13

9

12

29
30

32

51

18

7

5

41

15

20
24

16

10

19

18

A

B

C

D
E

126 146

74

95

133

147

110

11 10

15

13

12
10

12
14

16

O

A

B

CD

E

A

C

B

O

17

15

19

25

24

26

8

10

13
11

6

13

3

7

20
18

O
A

B

C

D

The network alongside shows the
connecting roads between towns A
and B. The weights on the edges
represent distances in kilometres.
Find the length of the shortest
path from A to B.
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346 APPENDIX - METHODS OF PROOF

Greek mathematicians more than 2000 years ago were the first to realise that progress in

mathematical thinking could be brought about by conscious formulation of the methods of

abstraction and proof.

From a few examples one might notice a certain common quality and formulate a general

idea. This is the process of abstration.

a b a2 b2

1 2 1 4
3 5 9 25
4 5 16 25
5 7 25 49
6 9 36 81

For example, by considering the given table of values one may

abstract:

“If a and b are real numbers then a < b implies that a2 < b2.”

However, on observing that ¡2 < 1, but (¡2)2 ¥ 12, one

might change the abstraction to:

“If a and b are positive real numbers then a < b implies a2 < b2.

Convinced that this abstraction is now correct one must now provide proof to remove any

possibility of scepticism. This is done by providing a logical argument which leaves no doubt

that the abstraction is indeed a truth. No flaws can be found in any step of the argument.

We have already examined in the Core HL text, proof by the principle of mathematical

induction. Other methods of proof include:

In a direct proof we start with a known truth and by a succession of correct deductions finish

with the required result.

Example 1: Prove that if a, b 2 R then a < b ) a <
a+ b

2

Proof: a < b ) a

2
<
b

2
fas we are dividing by 2 which is > 0g

) a

2
+
a

2
<
a

2
+
b

2
fadding

a

2
to both sidesg

) a <
a+ b

2

In proof by contradiction we deliberately assume the opposite to what we are trying to

prove true. Then, by a series of correct steps we show that this is impossible and hence our

assumption is false.

Consider Example 1 again: Proof (by contradiction):

For a < b, suppose that a >
a+ b

2

) 2a > 2

µ
a+ b

2

¶
fmultiplying both sides by 2g

) 2a > a+ b
) a > b fsubtracting a from both sidesg

which is false

DIRECT PROOF

PROOF BY CONTRADICTION (AN INDIRECT PROOF)
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Since the steps of the argument are correct, the supposition must be false and

the alternative, a <
a+ b

2
must be true.

Example 2: Prove that the solution of 3x = 8 is irrational.

Proof (by contradiction):

Suppose the solution of 3x = 8 is rational, i.e., x is rational.

) x =
p

q
where p, q 2 Z , q 6= 0

) 3
p

q = 8

)
³
3
p

q

´q
= 8q

) 3p = 8q

which is impossible as 3p is always odd and 8q is always even.

Thus, the assumption is false and its opposite, x is irrational, must be true.

Example 3: Prove that no positive integers x and y exist such that x2 ¡ y2 = 1.

Proof (by contradiction):

Suppose x, y 2 Z + exists such that x2 ¡ y2 = 1.

) (x+ y)(x¡ y) = 1

) x+ y = 1 and x¡ y = 1| {z } or x+ y = ¡1 and x¡ y = ¡1| {z }
case 1 case 2

) x = 1, y = 0 (from case 1) or x = ¡1, y = 0 (from case 2)

Both cases provide a contradiction of x > 1 and y > 1.

Thus, the supposition is false. Hence, the opposite is true.

i.e., positive integers x and y do not exist such that x2 ¡ y2 = 1.

Indirect proof often seems cleverly contrived, especially if no direct proof is forthcoming. It

is perhaps more natural to seek a direct proof of an abstraction, but we should not overlook

the alternative of an indirect proof such as proof by contradiction.

One must be careful not to make errors in algebra or reasoning. To illustrate the point,

examine carefully the following examples.

Example 2 (again)

Invalid argument: 3x = 8

) log 3x = log 8

) x log 3 = log 8

) x =
log 8

log 3
where both log 8 and log 3 are irrational.

) x is irrational.

The last step is not valid. The argument that an irrational divided by an irrational

is rational is not correct. For example,
p
2p
2

= 1.

ERRORS IN PROOF
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To disprove a statement we need supply only one counter-example.

Example 4: Prove without decimalisation that
p

3¡ 1 > 1p
2

.

Invalid argument:
p

3¡ 1 > 1p
2

) ¡p
3¡ 1

¢2
>
³
1p
2

´2
fboth sides are > 0, so we can square themg

) 4¡ 2
p

3 > 1
2

) 7
2 > 2

p
3

) 7 > 4
p

3

) 72 > 48 fsquaring againg
) 49 > 48

The error in this argument is that we are assuming that which we are trying to

prove, and concluding that 49 > 48, which requires no proof.

However, we could establish the truth
p

3¡ 1 > 1p
2

by either:

² reversing the steps of the above argument, or by

² using proof by contradiction (supposing
p

3¡ 1 6 1p
2

).

Example 5: Invalid proof that 0 = 1:

Suppose a = 1 ) a2 = a
) a2 ¡ 1 = a¡ 1
) (a+ 1)(a¡ 1) = a¡ 1
) a+ 1 = 1 .... ¤
) a = 0

So, 0 = 1

The invalid step in the argument is at ¤ where we divide both sides by a¡ 1.

As a = 1, a¡ 1 = 0. So, we are dividing by 0 which is illegal.

In Mathematics we build up, step-by-step, collections of important and useful results, each

depending on previously proven statements.

Here is a trivial example.

Conjecture: The recurring decimal 0:9 = 0:999 999 99 ::::::: is exactly equal to 1.

Proof (by contradiction):

Suppose 0:9 < 1

then 0:9 <
0:9 + 1

2
fWe proved earlier that a < b ) a <

a+ b

2
g

) 0:9 <
1:9

2

½
Ordinary division: 2 1:99999999::::::

0:99999999::::::

¾
) 0:9 < 0:9 clearly a contradiction

Therefore the supposition is false, and so 0:9 > 1 is true.

and of course, 0:9 > 1 is ridiculous. Thus 0:9 = 1

USING PREVIOUS RESULTS
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APPENDIX - METHODS OF PROOF 349

Some abstractions with two statements A and B involve equivalence.

A, B means A) B and B ) A

We say A is equivalent to B, or A is true if and only if B is true.

The phrase “if and only if” is often written as “iff”.

In order to prove an equivalence, we need to establish both of these implications,

i.e., prove that A) B and that B ) A.

Notice: x2 = 9 , x = 3 is a false statement.

x = 3 ) x2 = 9 is true

but x2 = 9 )= x = 3 fas x may be ¡3g

Example 6: Prove that (n+ 2)2 ¡ n2 is a multiple of 8 , n is odd.

Proof: ()) (n+ 2)2 ¡ n2 is a multiple of 8,

) n2 + 4n+ 4¡ n2 = 8A for some integer A

) 4n+ 4 = 8A

) n+ 1 = 2A

) n = 2A¡ 1

) n is odd.

(() n is odd,

) n = 2A¡ 1

) n+ 1 = 2A for some integer A

) 4n+ 4 = 8A

) (n2 + 4n+ 2)¡ n2 = 8A

) (n¡ 2)2 ¡ n2 is a multiple of 8.

In the above example the ()) argument is clearly reversible to give the (() argument.

However, this is not always evident or possible.

Example 7: Prove that for all x 2 Z +,

x is not divisible by 3 , x2 ¡ 1 is divisible by 3.

Proof: ()) x is not divisible by 3

) either x = 3k + 1 or x = 3k + 2 for some x 2 Z
) x2 ¡ 1 = 9k2 + 6k or 9k2 + 12k + 3

) x2 ¡ 1 is divisible by 3

(() x2 ¡ 1 is divisible by 3

) 3 j x2 ¡ 1

) 3 j (x+ 1)(x¡ 1)

) 3 j (x+ 1) or 3 j (x¡ 1) fas 3 is a prime numberg
) 3 jÁ x

i.e., x is not divisible by 3

EQUIVALENCE

IBHL_OPT
cyan black

0 5 2
5

7
5

5
0

9
5

1
0
0

0 5 2
5

7
5

9
5

1
0
0

5
0

Y:\HAESE\IBHL_OPT\IBHLOPT_AA\349IBOAA.CDR Monday, 15 August 2005 10:31:35 AM PETERDELL



350 APPENDIX - METHODS OF PROOF

To prove A) B, we could show that » B ) » A
i.e., not B ) not A

For example, the statement

“If it is Jon’s bicycle, then it is blue” is the same as

“If that bicycle is not blue, then it is not Jon’s”.

Example 8: Prove that, “for a, b 2 R, ab irrational ) either a or b is irrational.”

Proof (Using contrapositive):

If a and b are rational ) a =
p

q
and b =

r

s
where

p, q, r, s 2 Z , q 6= 0, r 6= 0

) ab =

µ
p

q

¶³r
s

´
=
pr

qs
where qs 6= 0

) ab is rational.

Thus ab irrational ) either a or b is irrational

Example 9: Prove that “If n is a positive integer of the form 3k + 2, k > 0, k 2 Z ,

then n is not a perfect square.”

Proof (Using contrapositive):

If n is a perfect square then

n has one of the forms (3a)2, (3a+ 1)2 or (3a+ 2)2

) n = 9a2, 9a2 + 6a+ 1, 9a2 + 12a+ 4

) n = 3(3a2), 3(3a2 + 2a) + 1 or 3(3a2 + 4a+ 1) + 1

) n has form 3k or 3k + 1 only, k 2 Z
) n does not have form 3k + 2

Note: Excellent Websites exist on different methods of proof.

Try searching for Proof by Contradiction

Proof by Contrapositive

if and only if proof

PROOF USING CONTRAPOSITIVE
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EXERCISE 8A

1 a ¹(3X ¡ 2Y ) = 0 and ¾(3X ¡ 2Y ) ¼ 2:26
b P(3X ¡ 2Y > 3) ¼ 0:0920

2 a E(U) = 20 and ¾(U) ¼ 10:4
b P(U < 0) ¼ 0:0277

3 ¹ ¼ 54:6 and ¾ ¼ 19:8
4 M » N(61, 112) and C » N(48, 42)

U =M1 +M2 +M3 +M4 + C1 + C2 + C3
U » N(338, 532)

P(U > 440) ¼ 0:0121 if unsafe

Assumption: The random variables M1, M2, M3, M4,
C1, C2 and C3 are independent.

5 C » N(120, 72) and M » N(28, 4:52)

U = C +M and U » (148, 69:25)

P(U < 135:5) ¼ 0:0665 which is > 1%.

So, machine should be adjusted.

6 a S » N(280, 4) and L » N(575, 16)

Want P(L < 2S) i.e., P(L¡ 2S < 0)
If U = L¡ 2S, U » N(15, 32)

P(L < 2S) ¼ 0:004 01
b Want P(L < S1 + S2) i.e., P(L¡ S1 ¡ S2 < 0)

If V = L¡ S1 ¡ S2, V » N(15, 24)

P(L < S1 + S2) ¼ 0:001 10
7 a Want P(L > 5S) i.e., P(L¡ 5S > 0)

If U = L¡ 5S, U » N(¡15, 140)

(L > 5S) ¼ 0:102
b Want P(L > S1 + S2 + S3 + S4 + S5)

i.e., P(L¡ S1 ¡ S2 ¡ S3 ¡ S4 ¡ S5 > 0)
If V = L¡ S1 ¡ S2 ¡ S3 ¡ S4 ¡ S5
then V » N(¡15, 40)
P(L > S1 + S2 + S3 + S4 + S5) ¼ 0:008 85

EXERCISE 8B.1

1 a X is distributed uniformly (discrete) and

P (X = x) = 1
6

, X » DU(6)

b ¹ = 17:5 c P(X < ¹) = 1
2 d ¾ ¼ 8:54

2 p ¼ 0:300 and P(X = 2) ¼ 0:318
3 X » B(7, 0:35) a 0:268 b 0:468 c 0:800

d 5(0:35)3(0:65)4 ¼ 0:0383
4 Due to the very large number of pens, X (the number of

reds selected) is approximately » B(n, 0:2)

As P(X > 1) = 0:9, n ¼ 10:3
) need to select 11 or more pens.

We are assuming independence of each outcome.

5 a X = number of cells failing in one year

X » B(15, 0:7) P(X = 15) ¼ 0:004 75
b ¼ 0:995
c P(operates) = 1¡ (0:7)n

Hence, we need to solve 1¡ (0:7)n > 0:98
n ¼ 10:97, so smallest number is 11

6 a X = number of letters addressed to AD

X » B(20, 0:7) P(X > 11) ¼ 0:952
b X » B(70, 0:7) ¹ = np = 49 letters

¾ =
p
npq ¼ 3:83

7 a P(P ) = 0:605 P(IS j P ) = 0:175
0:605

¼ 0:289

b For one parcel, P ((IS or IN) j S) ¼ 0:417 72
If X = number of standard parcels selected

X » B(2, 0:417 72) and P(X = 1) ¼ 0:486
Assumption: Independence.

8 X = score on the wheel X » DU(50)

From page 31 of text for a and b.

a ¹ =
n+ 1

2
= 25:5 b ¾ =

r
n2 ¡ 1
12

) ¾ ¼ 14:4
c 0:14

d Y = number of multiples of 7 obtained

Y » B(500, 0:14) 15% of 500 = 75

P(Y > 75) ¼ 0:237
e Y » B(500, 0:14) and E(Y ) = 70

Expect $1600

f Lose if 20[(500¡ Y )¡ 5Y ] < 0 i.e., Y > 83 13
and P(Y > 83 1

3
) ¼ 0:0435

EXERCISE 8B.2

1 X » Geo(0:25)

a ¼ 0:105 b ¼ 0:422 c 0:4375 d E(X) =
1

p
= 4

On average it takes 4 trials to achieve a success if
X » Geo(0:25):

2 a mode = 1 (for all geometric distributions)

b ¹ = E(X) = 1
0:33

¼ 3:03

c ¾2 =
q

p2
=

0:67

(0:33)2
¼ 6:1524 ) ¾ ¼ 2:48

3 X » Geo(0:29)

a P(X = 4) ¼ 0:104 b ¹ ¼ 3 (nearest integer)

c Y » NB(3, 0:29)

) P(Y = 7) =
¡
6
2

¢
(0:29)3(0:71)4 ¼ 0:0930

d ¹ =
r

p
=

3

0:29
¼ 10:3

i.e., 10 bowls (to the nearest integer)

4 X » Geo(p) and P(X = 3) = p(1¡ p)2
) p(1¡ p)2 = 0:023 987
) p ¼ 0:0253 or 0:830 fgcalcg
But p > 0:5, so p ¼ 0:830
P(X > 3) = 1¡ P (X 6 2) ¼ 0:0289

5 X » Geo(0:05) ¹ =
1

p
= 20

i.e., expected number of throws is 20.

6 X » NB(3, 0:35)

a P(X = 4) =
¡
3
2

¢
(0:35)3(0:65)1 ¼ 0:0836

b P(Eva beats Paul in a match)

= P(X = 3, 4, 5)

=
¡
4
2

¢
(0:35)3(0:65)2 +

¡
3
2

¢
(0:35)3(0:65)1

+
¡
2
2

¢
(0:35)3(0:65)0

¼ 0:235
7 X » Geo(0:15)

a P(1st snow on Nov 15)

= P(X = 15)

¼ 0:0154
b P(snow falls on or before n days)

= 1 ¡ P(snow does not fall in n days)

= 1¡ (0:85)n
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So we need to solve 1¡ (0:85)n > 0:85

i.e., (0:85)n < 0:15

) n >
log(0:15)

log(0:85)

flog(0:85) < 0g
) n > 11:67::::

So, we must book for Dec 12.

8 a Difference
table

P(difference is no more than 3) = 30
36
= 5

6

b X » Geo
¡
5
6

¢
P(player 1 is first to start on 2nd roll)

= P(X = 5)

¼ 0:000 643
c E(X) =

1

p
= 1

5
6

= 1:2 rolls

d 4£ 1:2 = 4:8 i.e., about 5 rolls.

EXERCISE 8B.3

1 X » Hyp(5, 5, 12)

a P(X = 3) =

¡
5
3

¢ ¡
12¡5
2

¢¡
12
5

¢ ¼ 0:265

b P(X = 5) =

¡
5
5

¢ ¡
7
0

¢¡
12
5

¢ ¼ 0:001 26
c P(X 6 2)

= P(X = 0, 1 or 2)

=

¡
5
0

¢ ¡
7
5

¢¡
12
5

¢ +

¡
5
1

¢ ¡
7
4

¢¡
12
5

¢ +

¡
5
2

¢ ¡
7
3

¢¡
12
5

¢ ¼ 0:689

d E(X) = n
M

N
= 5£ 5

12
¼ 2:08

e Var(X) = n
M

N

³
1¡ M

N

´³
N ¡ n
N ¡ 1

´
= 5£ 5

12

¡
1¡ 5

12

¢ ¡
12¡5
12¡1

¢
¼ 0:773

2 X » P0(¹)

a P(X = 2) = P(X = 0) + 2P(X = 1)

) m2e¡m

2!
=
e¡m

0!
+
2me¡m

1!
) m2 = 2 + 4m
) m2 ¡ 4m¡ 2 = 0

) m =
4§

p
16¡ 4(1)(¡2)
2

) m = 2§p6
But m > 0 ) m ¼ 4:45
i.e., ¹ ¼ 4:45

b P(1 6 X 6 5) = P(X 6 5) ¡ P(X = 0)

¼ 0:711 53¡ 0:011 68
¼ 0:700

3 X » Hyp(4, 5, 24)

a P(X = 2) ¼ 0:161 b P(X = 0) ¼ 0:365
4 X » P0(0:05) fas

50 m

1000 m
= 0:05g

a P(X = 0) ¼ 0:951
b P(X 6 2) ¼ 0:999 98 ¼ 1
c P(X 6 1) ¼ 0:9988 which is > 0:995

Yes, the chain is considered safe.

5 a X » B(255, 0:0375)

b P(X < 5) = P(X 6 4) ¼ 0:0362
i.e., a 3:62% chance of more passengers than seats.

c P(empty seats)

= P(X > 5)
= 1 ¡ P(X 6 5)
¼ 0:918
i.e., a 91:8% chance of having empty seats.

d i ¹(X) = np = 9:5625 ¼ 9:56
ii Var(X) = np(1¡ p) ¼ 9:20
iii As ¹(X) ¼ Var(X) we can approximate

by X » P0(9:5625) and
P(X < 5) = P(X 6 4) ¼ 0:0387

iv P(X > 5) = 1 ¡ P(X 6 5) ¼ 0:914
e The approximation is not too bad if accurate answers

are not important. This is an example of being able
to approximate a binomial RV by a Poisson RV where
n > 50 and p < 1.

6 X = number of rotten eggs X » Hyp(2, 1, 12)

a P(X = 0) = 5
6

b P(buys first 5 cartons) =
¡
5
6

¢5 ¼ 0:402
c E(X) = n

M

N
= 2£ 1

12
= 1

6

i.e., will reject 1 in 6 cartons.

Hence, on average, he will inspect 6 cartons to purchase
5 of them.

7 a X = number of internal calls
Y = number of external calls

X » P0(
5
4
) and Y » P0(

10
6
) ffor 5 ming

Total number of calls received = X + Y

E(X + Y ) = 5
4
+ 10

6
¼ 2:917

Var(X + Y ) = 5
4
+ 10

6
¼ 2:917

) X + Y » P0(2:917)
assuming X, Y are independent RVs
P(X + Y = 3) ¼ 0:224

b As E(X + Y ) ¼ 2:917, the receptionist can expect
3 calls each 5 minutes.

c i P(X + Y > 5) = 1 ¡ P(X + Y 6 5)
¼ 0:0758

ii 5 calls in 20 mins = 5
20
£ 7 calls in 7 min

= 7
4

calls in 7 min

10 calls in 30 min = 10
30 £ 7 calls in 7 min

= 7
3

calls in 7 min

E(X + Y ) = Var(X + Y ) = 7
4
+ 7

3

¼ 4:0833

) P(X + Y > 5) = 1 ¡ P(X + Y 6 5)
¼ 0:228

6 5 4 3 2 1 0
5 4 3 2 1 0 1
4 3 2 1 0 1 2
3 2 1 0 1 2 3
2 1 0 1 2 2 4
1 0 1 2 3 4 5
0 1 2 3 4 5 6
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8 X = number of faulty balls

a X » B(8, 0:01)

P(X = x) =
¡
8
x

¢
(0:01)x(0:99)8¡x

where x = 0, 1, 2, 3, ...., 8.

b P(X = 0) ¼ 0:922 745

P(X = 1) ¼ 0:074 565

P(X = 2) ¼ 0:002 636

P(X = 3) ¼ 0:000 053

P(X = 4 to 8) ¼ 0:000 001

Consider acceptance A

P(A j X = 0) = 1

P(A j X = 1) =

¡
1
0

¢ ¡
7
2

¢¡
8
2

¢ ¼ 0:75

P(A j X = 2) =

¡
2
0

¢ ¡
6
2

¢¡
8
2

¢ ¼ 0:5357

P(A j X = 3) =

¡
3
0

¢ ¡
5
2

¢¡
8
2

¢ ¼ 0:357 14

P(A j X = 4) =

¡
4
0

¢ ¡
4
2

¢¡
8
2

¢ ¼ 0:214 29

Now by Bayes’ Theorem

P(A) =

8X
x=0

P(A j X = x) P(X = x)

¼ 1£ 0:922 745 + 0:75£ 0:074 565
+ 0:5357£ 0:002 636 + ::::

¼ 0:9801

) P(reject) ¼ 0:0199 ¼ 2%
Hence, for each 1000 cartons the buyer would expect
to reject 20 of them.

EXERCISE 8B.4

1 A X » P0(6), P(X = 3) ¼ 0:0892
B X » P0(1), P(X = 1) ¼ 0:3679
C X » P0(24), P(X < 17) = P(X 6 16) ¼ 0:0563

So, B is most likely to occur.

2 X » DU(50) ¹(X) =
n+ 1

2
= 25:5

¾(X) =

r
n2 ¡ 1
12

¼ 14:4

3 X » NB(4, 0:47)

a P(X = 5) =
¡
4
3

¢
(0:47)4(0:53)1 ¼ 0:103

b P(X = 7) =
¡
6
3

¢
(0:47)4(0:53)3 ¼ 0:145

c P(Redsox win)

= 1 ¡ P[X = 4, 5, 6 or 7]

= 1¡
¡
3
3

¢
(0:47)4 ¡

¡
4
3

¢
(0:47)4(0:53)1

¡
¡
5
3

¢
(0:47)4(0:53)2 ¡

¡
6
3

¢
(0:47)4(0:53)3

¼ 0:565
d X » NB(4, 0:53)

E(X) =
r

p
= 4

0:53
¼ 7:55 games

This is the average number of games it would take the
Redsox to win without restriction, i.e., by playing as
many as they need. However, in a World Series, no
more than 7 games will be played (assuming no draws)
to decide the winner.

4 a Let X be the number of attempts needed. Assuming
attempts are independent and the probability of getting
through remains constant, X » Geo(0:62):

b P(X > 3) = 1 ¡ P(X 6 2) ¼ 0:1444

c ¹ =
1

p
¼ 1:61, ¾ =

r
1¡ p
p2

¼ 0:994

5 a X » Hyp(5, 4, 52) and X = 0, 1, 2, 3 or 4

b P(X = 2) =

¡
4
2

¢ ¡
48
3

¢¡
52
5

¢ ¼ 0:0399

c i Y » (30, 0:039 93)

ii P(Y > 5) = 1 ¡ P(Y 6 4) ¼ 0:006 27
iii E(Y ) = np ¼ 30£ 0:03993 ¼ 1:20

i.e., about once

iv E(X) = n
M

N
= 5£ 4

52 ¼ 0:385
6 a X = return from playing the game

= 10 cents, 20 cents, ...., $100

b E(X) =
P
xipi

= (¡14:9¡ 14:8¡ 14:7¡ 14:6¡ 14:5
¡14:4¡ 14:3 + 0 + 15 + 85)£ 1

10

= ¡0:22
Var(X) =

P
x2i pi ¡ (¡0:22)2 ¼ 894:2

c If X » DU(10), it assumes X has values
1, 2, 3, 4, ...., 10 which is not the case here.

d i For a game costing $15 the expected loss is 22 cents.
So, for a game costing

$14:90, the expected loss is 12 cents,
$14:80, the expected loss is 2 cents,

i.e., $14:80

ii For each game E(X) = ¡1:22 dollars
) for 1000 games, expected return
= $1:22£ 1000
= $1220

7 a X » Geo
¡
1
8

¢
b Assumptions:

² each call is made with 1
8

probability of success
² calls are independent of each other

c E(X) =
1

p
= 8 and ¾ =

r
1¡ p
p2

¼ 7:48
d P(X < 5) = P(X 6 4) ¼ 0:414

8 a T = dials wrong number in 75 calls
T » B(75, 0:005), T = 0, 1, 2, ...., 75

b i P(T = 0) ¼ 0:687
ii P(T > 2) = 1 ¡ P(T 6 2) ¼ 0:006 46
iii E(T ) = np = 0:375

Var(T ) = np(1¡ p) ¼ 0:373
The mean and variance are almost the same which
suggests that T can be approximated by a Poisson dis-
tribution.

c If T » P0(0:375) i P(T = 0) ¼ 0:687
ii P(T > 2) = 1 ¡ P(T 6 2) ¼ 0:006 65

Both results are very close to those from the binomial
distribution. This verifies the property that for large
n and small p, the binomial distribution can be ap-
proximated by the Poisson distribution with the same
mean,
i.e., X » P0(np):
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EXERCISE 8B.5

1 T » U(¡¼, ¼) ¹ =
a+ b

2
=
¡¼ + ¼
2

= 0

¾ =

r
(b¡ a)2
12

=

r
4¼2

12
= ¼p

3

2 a

b median = 10

)
R 10
0
¸e¡¸x dx = 0:5

) ¸

·
e¡¸x

¡¸

¸10
0

= 0:5

)
£
¡e¡¸x

¤10
0
= 0:5

) ¡e¡10¸ + 1 = 0:5

) e¡10¸ = 0:5 = 1
2

) e10¸ = 2

) 10¸ = ln 2

) ¸ = ln 2
10
¼ 0:0693

c P(Seat purchased after 3 days)

= P(X > 72)

= 1 ¡ P(X < 72)

= 1¡
R 72
0
¸e¡¸x dx

= 1¡ 0:069 31
R 72
0
e¡0:069 31x dx

¼ 0:006 80
i.e., only a 0:68% chance of getting a ticket after 3 or
more days.

d E(X) =
1

¸
¼ 14:4 hours

i.e., the average time it takes to buy a ticket is about
14:4 hours.

3 X » N(¹, ¾2)

P(X > 13) = 0:4529
) P(X 6 13) = 0:5471

) P

³
X ¡ ¹
¾

6
13¡ ¹
¾

´
= 0:5471

) P

³
Z 6

13¡ ¹
¾

´
= 0:5471

)
13¡ ¹
¾

= invNorm(0:5471)

P(X > 28) = 0:1573

) P(X 6 28) = 0:8427

) P

³
Z <

28¡ ¹
¾

´
= 0:8427

)
28¡ ¹
¾

= invNorm(0:8427)

) 13¡ ¹ ¼ 0:1183¾

) 28¡ ¹ ¼ 1:0056¾

Solving simultaneously ¹ ¼ 11:0 and ¾ ¼ 16:9

4 a
R k
0
(6¡ 18x) dx = 1 ) k = 1

3

b ¹ =
R k
0
x f(x) dx =

R 1
3

0
(6x¡ 18x2) dx

) ¹ = 1
9

and ¾2 =
R k
0
x2f(x) dx¡ ¹2

=
R 1

3

0
(6x2 ¡ 18x3)dx¡

¡
1
9

¢2
¼ 0:006 172 8::::

) ¹ = 1
9

, ¾ ¼ 0:0786
5 a X is a discrete RV. In fact

i X » B(180, 0:41)

ii E(X) = np = 73:8 and

Var(X) = np(1¡ p) ¼ 43:5
iii P(X > 58) = 1 ¡ P(X 6 57) ¼ 0:994

b As np and nq are both > 5, we can approximate to
the normal distribution, i.e., X » N(73:8, 43:5)

P(X > 58) fX discreteg
¼ P(X¤ > 57:5) fX continuousg
¼ 0:993

6 a X » P0(2:5), a discrete RV

Y = X1 +X2 + ::::+X50 where the Xi are assumed

to be independent.

) E(Y ) = 52 £ E(X) = 130

and Var(Y ) = Var(X1)£ 50 = 130 also.

So Y » P0(130)

b P(X > 2) = 1 ¡ P(X 6 2) ¼ 0:456
c P(Y > 104) = 1 ¡ P(Y 6 104) ¼ 0:989
d E(X) = Var(X) = 2:5 E(Y ) = Var(Y ) = 130

e Using normal approximations

X » N(2:5, 2:5) and Y » N(130, 130)

So, P(X > 2) ¼ P(X¤ > 2:5) = 0:500
and P(Y > 104) ¼ P(Y ¤ > 104:5) ¼ 0:987
The approximation for X is poor, but is very good for Y:
This is probably due to the fact that ¸ is not large enough
for the X distribution.

Note: If ¸ > 15 we can approximate X » P0(¸)

by X » N(¸, ¸).

This theory is not a syllabus requirement.

7 X is a uniform continuous RV.

a
R k
1

2
5
dx = 1 ) k = 3:5 So, X » U(1, 3:5):

b P(1:7 6 X 6 3:2) = 0:6

c E(X) = 2:25, Var(X) =
(b¡ a)2
12

¼ 0:521
8 a

Now (12¡ 3)k = 0:6

i.e., 9k = 0:6 = 3
5

) k = 1
15

(3¡ a) 1
15
= 0:3 and (b¡ 12) 1

15
= 0:1

) a = ¡1:5, b = 13:5

b pdf is f(x) = 1
15

, ¡1:5 6 x 6 13:5
c P(5 < X < 9) = 4

15

d F (x) =
R x

¡1:5 f(x) dx =
£
1
15
x
¤x
¡1:5

P

time ( )x

y k���

x

0.3

a 3

0.6 0.1

12 b

The best chance of getting a
ticket is as soon as possible
after release. As time goes
by it gets increasingly
difficult and very quickly
almost impossible. is a
continuous RV.

X
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) F (x) =

½
1
15
x+ 1

10
, ¡1:5 < x < 13:5

0, everywhere else

9 a P( jT ¡ 6j < 2:3) = P(¡2:3 < T ¡ 6 < 2:3)
= P(3:7 < T < 8:3)

¼ 0:2946 Ã p

b X » B(4, 9) where

X = number of times jT ¡ 6j < 2:3
P(X = 2) = binomialpdf(4, 0:2946, 2) ¼ 0:259

10 f(x) = ¸e¡¸x, x > 0

¹ = E(x) =
R1
0
x f(x) dx =

R1
0
¸xe¡¸x dx

We use integration by parts.

Let u = x v0 = ¸e¡¸x

) u0 = 1 v = ¡e¡¸x
) ¹ = [uv]10 ¡

R1
0
u0v dx

=
£
¡xe¡¸x

¤1
0
¡
R1
0
¡e¡¸x dx

= (0¡ 0) +
£
1
¡¸e

¡¸x¤1
0

= 0 + 1
¸

= 1
¸

, as required.

¾2 = E(X2)¡ fE(X)g2

=
R1
0
x2 f(x) dx¡ 1

¸2

=
R1
0
¸x2e¡¸x dx¡ 1

¸2

Integrating by parts again,

u = x2 v0 = ¸e¡¸x

u0 = 2x v = ¡e¡¸x
= [uv]10 ¡

R1
0
u0v dx¡ 1

¸2

=
£
¡x2e¡¸x

¤1
0
+
R1
0
2xe¡¸x dx¡ 1

¸2

= (0¡ 0) + 2
R1
0
xe¡¸x dx¡ 1

¸2

= 2
¡
1
¸2

¢
¡ 1

¸2

= 1
¸2

, as required.

11 f(x) = k, on a 6 x 6 b

a On 0 6 x 6 1, area = k £ 1 = 1 ) k = 1

¹ =
a+ b

2
= 1

2
, ¾ =

r
(b¡ a)2
12

= 1p
12

b On 2 6 x 6 6, area = k £ 4 = 1 ) k = 1
4

¹ = 2+6
2
= 4, ¾ =

r
42

12
= 4p

12

c On 0 6 x 6 a, area = ka = 1 ) k =
1

a

¹ =
0 + a

2
=
a

2
, ¾ =

r
a2

12
=

ap
12

d On m 6 x 6 n, area = k(n¡m) = 1
) k =

1

n¡m

¹ =
m+ n

2
, ¾ =

r
(n¡m)2

12
=
n¡mp
12

EXERCISE 8C.1

1 a, b Poss. sample x Poss. sample x

1, 1 1 3, 1 2
1, 2 1:5 3, 2 2:5
1, 3 2 3, 3 3
1, 4 2:5 3, 4 3:5
2, 1 1:5 4, 1 2:5
2, 2 2 4, 2 3
2, 3 2:5 4, 3 3:5
2, 4 3 4, 4 4

c x 1 1:5 2 2:5 3 3:5 4

Freq. 1 2 3 4 3 2 1

P (x) 1
16

2
16

3
16

4
16

3
16

2
16

1
16

d

2 c x 1 4
3

5
3

2 7
3

Freq. 1 3 6 10 12

P (x) 1
64

3
64

6
64

10
64

12
64

x 8
3

3 10
3

11
3

4

Freq. 12 10 6 3 1

P (x) 12
64

10
64

6
64

3
64

1
64

d

3 a Poss. sample x Poss. sample x

2, 2, 2, 2 2 3, 3, 2, 2 10
4

2, 2, 2, 3 9
4

3, 2, 3, 2 10
4

2, 2, 3, 2 9
4

3, 2, 2, 3 10
4

2, 3, 2, 2 9
4

2, 3, 3, 3 11
4

3, 2, 2, 2 9
4

3, 2, 3, 3 11
4

2, 2, 3, 3 10
4

3, 3, 2, 3 11
4

2, 3, 2, 3 10
4 3, 3, 3, 2 11

4

2, 3, 3, 2 10
4

3, 3, 3, 3 3

b
x 2 9

4
10
4

11
4

3

Freq. 1 4 6 4 1

P (x) 1
16

4
16

6
16

4
16

1
16

4 x 1 1:5 2 2:5 3 3:5

Freq. 1 2 3 4 5 6

P (x) 1
36

2
36

3
36

4
36

5
36

6
36

x 4 4:5 5 5:5 6

Freq. 5 4 3 2 1

P (x) 5
36

4
36

3
36

2
36

1
36

1 1.5 2 2.5 3 3.5 4

Sq_y_

Fq_y_

x

P x( )

x

P x( )

1 2 3 4

Hy_r_

Qy_Wr_
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EXERCISE 8C.2

1 ¹ = 64, ¾ = 10 a ¹
X
= 64, s

X
¼ 1:67

2 a ¾ = 24 s
X
=
24p
n

b i 12 ii 6 iii 3 c 36

d

As n gets larger, s
X

gets smaller and approaches 0.
Hence, for large n, n ! population size, and the sam-
pling error of the mean is effectively zero, i.e., when
the sample is the population x = ¹ without error.

3 a E(X) = 100 b s
X
= 2:5

c A normal distribution (as n is sufficiently large).

4 a ¹ = 1
2

, ¾ = 1
2

b HHHH HHHT HHTT TTTH TTTT
HHTH HTHT TTHT
HTHH HTTH THTT
THHH TTHH HTTT

THTH
THHT

Xi 0 1
4

2
4

3
4

1

pi
1
16

4
16

6
16

4
16

1
16

c i mean
X
= 1

2 ii s
X
= 1

4

d mean
X
= ¹, s

X
= 0:25

5 a From the CLT, X » N(320 000, 80 000
25

2
) for large n.

P(X > 343 000) ¼ 0:0753
b The answer may not be all that reliable as X is not normal.

Hence, we treat the answer with great caution. Note that
the result states that about 7:53% of all samples of size 25
will have an average value of at least $343 000.

6 W = weight of adult males W » N(73:5, 8:242)

If n = 9, W » N

³
73:5, 8:242

9

´
P(W 6 650

9
) ¼ 0:321 or 32:1%

If n = 8, W » N

³
73:5, 8:242

8

´
P (W 6 650

8
) ¼ 99:6% which is > 99:5%

So, 8 is the max. recommended no. of adult males.

Note: We do not have to have n large here as W is
already distributed normally.

7 X = duration of pregnancy (in days)

X » N(267, 152)

a P(274 < X < 281) ¼ 0:145 or 14:5%

b We need to solve P(X 6 a) = 0:8

a = invNorm(0:8, 267, 15) ¼ 279:6
i.e., longest 20% last 280 or more days.

c X » N(267, 152

64
) i.e., normal with mean 267 days

and sd of 15
8

days.

d P(X 6 260) ¼ 0:000 094 5 a very small chance.

e As X is now not normally distributed we cannot use an-
swers for a and b. As n > 30, answers c and d still give
good approximations.

8 A = units of milk from Ayrshire cows
J = units of milk from Jersey cows

A » N(49, 5:872), J » N(44:8, 5:12)2

a P(A > 50) ¼ 0:432
b Consider D = J ¡A
¹D = 44:8¡ 49 = ¡4:2 ¾2D = ¾2J + ¾

2
A = 60:67

assuming J and A are independent RVs

D » N(¡4:2, 60:67) and P(D > 0) ¼ 0:295
c J » N(44:8, 5:122

25
) P

¡
J > 46

¢
¼ 0:121

d J » N(44:8, 5:122

25
), A » N(49, 5:872

15
)

Let U = A¡ J
¹U = 49¡ 44:8 = 4:2 ¾2U = 5:872

15
+ 5:122

25
¼ 3:3457

assuming A and J are independent U » N(4:2, 3:3457)

P(U > 4) ¼ 0:544
EXERCISE 8C.3

1 X » N(40, 42

5
) a ¼ 0:868 b ¼ 0:712 c ¼ 0:821

2 X » N(42:8, 8:72

60
) fCL theoremg

P(X < 45) ¼ 0:975
3 X » N(1067, 61:72

30
) fCL theoremg

P(X > 1050) ¼ 0:934
4 X » N(1183, 88:62

50
) fCL theoremg

P(1150 < X < 1200) ¼ 0:908
5 X » N(18, 5:32

37
) fCL theoremg

P(17 < X < 20) ¼ 0:864
6 a X » N(382, 16:22) P(X < 375) ¼ 0:333

b X » N(382, 16:22

24
) fCL theoremg

P(X < 375) ¼ 0:0171
7 a X » N(1067, 61:72) P(X > 1060) ¼ 0:545

b X » N(1067, 61:72

50
) P(X > 1060) ¼ 0:789

8 X » N(¹, 1:272

300
) fCL theoremg

P
¡ ¯̄
X ¡ ¹

¯̄
> 0:1

¢
= 1 ¡ P

¡ ¯̄
X ¡ ¹

¯̄
< 0:1

¢
= 1 ¡ P(¡0:1 < X ¡ ¹ < 0:1)

= 1 ¡ P

Ã
¡0:1
1:27p
300

<
X ¡ ¹
1:27p
300

<
0:1
1:27p
300

!

= 1 ¡ P

Ã
¡0:1
1:27p
300

< Z <
0:1
1:27p
300

!

¼ 0:173
9 Claim is p = 0:04, n = 1000

As np, n(1¡ p) are both > 10 we can assumebp » N(0:04, 0:04£0:96
1000

)

P(bp > 0:07) ¼ 6:46£ 10¡7 with such a small

probability we reject the claim.

10 p = 2
7

, n = 100 np and nq are both > 10

) bp » N( 2
7

,
2
7
£ 5
7

100
) i.e., bp » N( 2

7
, 1
490
)

P(bp < 29
100
) ¼ 0:538

n

sx
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11 a p = 0:85 If n is largebp » N

³
0:85,

0:85£ 0:15
n

´
i.e., bp » N(0:85, 0:1275

n
)

b np > 10 and nq > 10

) 0:85n > 10 and 0:15n > 10

) n > 11:76 and n > 66:67

) n > 67

c i bp » N(0:85, 0:1275p
200

)

P(bp < 0:75) ¼ 0:000 037 4
ii P(0:75 < bp < 0:87) ¼ 0:786

d n = 500, bp = 350
500 = 0:7, p = 0:85

np and nq > 10 bp » N(0:85, 0:1275
500

)

i P(bp 6 0:7) ¼ 0 fgcalcg
ii Under the given conditions, there is virtually no

chance of this happening. This means either

(1) it was a freak occurrence, possible but extremely
unlikely or

(2) the population proportion was no longer 85%
(probably < 85%) or

(3) the sample was not taken from the area
mentioned.

12 bp » N

µ
2
5

,
2
5
£ 3

5

400

¶
i.e., N

¡
2
5

, 0:0006
¢

a P
¡bp > 150

400

¢
¼ 0:846 b P

¡bp > 150
400

¢
¼ 0:846

c P
¡bp < 175

400

¢
¼ 0:937

13 n = 250, claim is p = 0:9

np = 225, nq = 25 are both > 10

a bp » N

³
0:9,

0:9£ 0:1
250

´
i.e., bp » N(0:9, 0:000 36)

Assumptions:
² the approximation to normal is satisfactory
² the life of any tyre is independent of the life of any

other tyre when selected at random.

b P
¡bp 6 200

250

¢
¼ 6:82£ 10¡8 i.e., virtually 0

c Since this probability is so small there is doubt that the
manufacturer’s claim is correct.

EXERCISE 8D

1 a Z-distribution 25:6 < ¹ < 32:2 b 24:5 < ¹ < 33:3
c It becomes wider.

2 When increasing the level of certainty we increase the in-
terval width. We can estimate ¹ in a narrower interval but
with less certainty.

3 Z-distribution
a i 78:0 < ¹ < 85:2 ii 79:4 < ¹ < 83:8
b The width decreases as n increases.

4 Z-distribution a a ¼ 2:576 b a ¼ 1:282
c a ¼ 1:440 d a ¼ 2:054

5 Z-distribution
a i 37:0 < ¹ < 40:4 ii 34:5 < ¹ < 42:9
b As ¾ increases, the width increases.

6 Z-distribution a ¾ ¼ 2:083 b 8:33 < ¹ < 9:07

c For the normal distribution 99:7% of all scores lie within
3 sds of the mean. Hence ¾ ¼ range ¥ 6
(Note: Here we are not using an unbiased estimate of

the population standard deviation, sn¡1.)

7 t-distribution x = 513:8, n = 75, sn = 14:9

sn¡1 =
p

n
n¡1sn =

p
75
74
£ 14:9 ¼ 15:0

So 99% CI is 509:3 < ¹ < 518:4

8 t-distribution x = 38:2, n = 42, sn = 4:7

sn¡1 =
p

n
n¡1sn ¼ 4:757

90% CI is 37:0 < ¹ < 39:4

9 Z-distribution a ¾ ¼ range

6
¼ 250:5

b We need to look at P(
¯̄
X ¡ ¹

¯̄
< 70) = 0:95

) P(¡70 < X ¡ ¹ < 70) = 0:95

) P

Ã
¡70
250:5p

n

<
X ¡ ¹
250:5p

n

<
70
250:5p

n

!
= 0:95

) P(¡0:2794pn < Z < 0:2794pn) = 0:95

) P(Z < 0:2794
p
n) = 0:975

) 0:2794
p
n ¼ 1:960

) n ¼ 49:2

So, a sample size of about 50 will do.

Note: We have used a Z-distribution even though we
have approximated for ¾. We have not used an unbiased
estimate of ¾. Hence our estimate for n is rough. As we
do not know n, we cannot use the t-distribution.

10 Z-distribution, ¾ = 17:8

The 98% CI is x¡ 2:326 ¾p
n
< ¹ < x+ 2:326 ¾p

n

) j¹¡ xj < 2:326 ¾p
n

) 2:326 ¾p
n
< 3

) p
n >

2:326£ 17:8
3

) n > 190:46 ::::

) should sample 191 packets.

11 Z-distribution, ¾2 = 22:09

The 99% CI is x¡ 2:576 ¾p
n
< ¹ < x+ 2:576 ¾p

n

) j¹¡ xj < 2:576 ¾p
n

) 2:576£p22:09p
n

< 1:8

) p
n >

2:576£p22:09
1:8

) n > 45:24 ::::

) should sample at least 46.

12 Z-distribution (large n) bp = 1051
2839 ¼ 0:3702

95% CI is bp¡ 1:96rbp(1¡ bp)
2839

< p < bp+ 1:96rbp(1¡ bp)
2839

) 0:352 < p < 0:388

) 35:2% < p < 38:8%

13 Z-distribution (large n) bp = 281
500

, X = 281, n = 500

99% CI for p is

bp¡ 2:576rbp(1¡ bp)
500

< p < bp+ 2:576rbp(1¡ bp)
500

) 0:505 < p < 0:619

As the CI does not include p = 1
2

we argue that we are

99% confident that the coin is biased towards getting a head.
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14 a bp = 1822
2587

¼ 0:7043 ¼ 70:4%
b Z-distribution (large n)

99% CI for p is

bp¡ 2:576rbp(1¡ bp)
2587

< p < bp+ 2:576rbp(1¡ bp)
2587

i.e., 0:681 < p < 0:727
i.e., 68:1% < p < 72:7%

c Expect to get 1822
2587

£ 5629 ¼ 3965 to be worse off,

) 1664 to be better off.

Weaknesses:

² We are using an estimate of p based on a smaller
sample.

² We are using a ‘point’ estimate for p.
There are many values in the CI we could have used.

15 Z-distribution Large sample 80% CI for p is

bp¡ 1:282rbp(1¡ bp)
n

< p < bp+ 1:282rbp(1¡ bp)
n

16 a bp = 70
80
= 7

8
, X = 70, n = 80

Large n ) Z-distribution

b 95% CI for p is 0:803 < p < 0:945

c The 95% CI for p includes p = 90% = 0:9. Hence,
the evidence is not in contradiction of the manufac-
turer’s claim.

17 bp = 68
187

¼ 0:3636, X = 68, n = 187

A Z-distribution (as n is large)

A 95% CI for p is 0:295 < p < 0:433

i.e., 29:5% < p < 43:3%

As 40% is included in the 95% CI for p we do not reject
the claim at a 95% level.

18 n is large, ) Z-distribution

a Z® ¼ 1:960
Max. sampling error = §1:960

³
1

2
p
1500

´
¼ §0:0253
¼ §2:53%

b Z® ¼ 2:576
Max. sampling error = §2:576

³
1

2
p
1500

´
¼ §3:33%

19 Z-distribution as n is large. Z® ¼ 1:960
a Max. sampling error = §1:96( 1

2
p
500
) ¼ §4:38%

b §3:10% c §2:19% d §1:55%
Note: The sampling error decreases as the sample

size increases.

20 a Z-distribution bp unknown, n large

Z® ¼ 1:96 ) 1:96
³

1
2
p
n

´
¼ 2%

) p
n ¼ 1:96

2£ 0:02
) n ¼ 2401

i.e., a sample size should be 2401.

b If the probability is raised to 0:99 Z® ¼ 2:576
) p

n ¼ 2:576

2£ 0:02 ¼ 4147:36
) n ¼ 4147:36 i.e., a sample size of 4148

21 Z-distribution as n is large.bp = 2106
2750

¼ 0:7658, Z® ¼ 1:645

a SE ¼ §1:645£
rbp(1¡ bp)

n

¼ §1:645£
r
0:7658£ 0:2342

2750
¼ §1:33%

b 0:01328 ¼ 1:96

r
0:7658£ 0:2342

n

) n ¼
µ
1:962 £ 0:7658£ 0:2342

0:013282

¶
) n ¼ 3907 voters

22 Z-distribution, as n is large

a bp = 43
189

¼ 0:2275, Z® ¼ 1:96

SI ¼ §1:96
rbp(1¡ bp)

189
¼ §5:98

b Using bp ¼ 0:2275
1:96

r
(0:2275) (0:7725)

n
¼ 0:03

) n ¼ 1:962 £ 0:2275£ 0:7725
0:032

) n ¼ 750:1 i.e., a sample of 751

23 a bp = 27
300

= 0:09 is an unbiased (point) estimate of fish

caught with length below the legal limit.

b A 98% CI for p is

0:09¡ 2:326
rbp(1¡ bp)

300
< p < 0:09 + 2:326

rbp(1¡ bp)
300

i.e., 0:0516 < p < 0:1284

i.e., 5:16% < p < 12:84%

We are 98% confident that there are between 5:16% and
12:84% of all fish with length below the legal limit.

c This estimate is appropriate as

(1) we are approximating p by bp in its calculation

(2) as n is large (300) we are approximating a binomial
RV with a normal RV and are not using a continuity
correction.

d For a 98% CI, Z® ¼ 2:326

So, 2:326

r
(0:09)(0:91)

n
= 0:02 ) n ¼ 1108:1

i.e., we need to randomly sample about 1100 fish
in the region.

24 bp = 43
75 ¼ 0:5733, Z® ¼ 1:96

a 95% CI is 0:461 < p < 0:685 i.e., 46:1% < p < 68:

b We need n when 1:96

r
0:5733£ 0:4267

n
= 0:025

) n ¼ 1503:6
So, we need a sample of 1504 residents or about this
number.
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c ² We estimate the true p by bp:
² As n is large we have approximated the binomial RV

by a normal RV and not used a continuity correction.

d bp the estimate of p is the midpoint of the CI,

i.e., bp = 0:441 + 0:579

2
= 0:51

But bp = X

n
) 0:51 =

X

200
) X = 102

i.e., 102 voted in favour of the Euro.

EXERCISE 8E.1

1 a A Type I error involves rejecting a true null hypothesis.

b A Type II error involves accepting a false null hypothesis.

c The null hypothesis is a statement of no difference.

d The alternative hypothesis is a statement that there is a
difference.

2 a i a Type I error ii a Type II error

b i a Type II error ii a Type I error

3 a The alternative hypothesis (H1) would be that the person
on trial is guilty.

b a Type I error c a Type II error

4 a A Type I error would result if X and Y are determined
to have different effectiveness, when in fact they have the
same.

b A Type II error would result if X and Y are determined
to have the same effectiveness, when in fact they have
different effectiveness.

5 a H0: new globe has mean life 80 hours
H1: new globe has mean life > 80 hours

b H0: new globe has mean life 80 hours
H1: new globe has mean life < 80 hours

6 H0: new design has top speed of 26:3 knots
H1: new design has top speed > 26:3 knots

EXERCISE 8E.2

1 a z® > 1:645 b z® < ¡1:645
c z® < ¡1:96 or z® > 1:96

2 a z® > 2:326 b z® < ¡2:326
c z® < ¡2:576 or z® > 2:576

3 a H0: ¹ = 80 and H1: ¹ > 80
b Z-distribution with ¾ = 12:9
c z ¼ 3:398 d rejection region z > 2:326
e Reject H0 at a 1% level, accept ¹ > 80:

P(type I error) = 0:01

4 a H0: ¹ = $13:45 and H1: ¹ < $13:45

b t-distribution with sn¡1 =
p

388
387

£ $0:25

¼ 0:2503
c t ¼ ¡11:82 d p-value, P(t < ¡11:82) ¼ 0
e Reject H0 at a 2% level, i.e., accept the claim that the

mean price has fallen. P(type I error) = 0:02

5 a Z-distribution, bp = 123
237

¼ 0:5190 z = 0:5846

p-value ¼ 0:279, ) accept H0: p = 0:5

Could be making a type II error.

b Z-distribution, bp = 295
382

¼ 0:7723 z ¼ ¡1:356
p-value ¼ 0:1751, ) accept H0: p = 0:85

There is ¼ 17:5% chance of getting this sample result
if p = 0:8:

Could be making a Type II error.

6 Z-distribution, bp = 182
400

= 0:455

H0: p = 0:5 and H1: p 6= 0:5
p-value ¼ 0:071 86 which is > 0:05

So, accept H0:

There is insufficient evidence at a 5% level to reject the
hypothesis that the coin is unbiased. So, we accept that
the coin is unbiased. Here we could be making a Type II
error.

7 Z-distribution, with bp = 57
231

¼ 0:2468
H0: p = 1

6
and H1: p > 1

6

p-value ¼ 0:000 545 which is < 0:01

) we reject H0, p = 1
6

There is sufficient evidence at a 1% level to reject the hy-
pothesis that the dice are fair. So, we accept that the player
has switched to leaded dice.

Here, P(type I error) = 0:01

8 Z-distribution, bp = 45
57
¼ 0:7895

H0: p = 0:85 and H1: p < 0:85

p-value ¼ 0:1003 which is > 0:01

) we do not reject H0:

There is insufficient evidence at a 1% level to reject the
hypothesis that the dealer’s claim is valid. Hence we accept
the hypothesis that at least 85% of customers do recommend
his boats. There is a risk of making a type II error. (In this
question we could consider doing a 2-tailed test, i.e., test
H1: p 6= 0:85. Why?)

9 Z-distribution, bp = 16
389 ¼ 0:041 13

H0: p = 0:05 and H1: p < 0:05

p-value ¼ 0:2111 which is > 0:02

So, we do not reject H0.

There is insufficient evidence (at a 2% level) to reject the
hypothesis that 5% of the apples have skin blemishes.

We recommend that the purchaser does not buy them.

This conclusion risks a type II error.

10 a sn = $14 268, n = 113, sn¡1 ¼ $14 331:55
is an unbiased estimate of sn.

b H0: ¹ = $95 000 and H1: ¹ > $95 000

c A t-distribution with º = 112 d t ¼ 0:9776
e p-value ¼ 0:1652
f critical value is t0:02 ¼ 2:078
) critical region is t > 2:078

g As t ¼ 0:9776 is < 2:078 we have insufficient evidence
to reject H0.

So, we reject the claim that ¹ > $95 000

h If the assertion was incorrect, i.e., accepting H0 when H1

is correct, we are committing a type II error.

i The 99% CI for mean income is ] $92 785, $99 850 [
which confirms that there is not enough evidence to reject
H0 as this value, ¹ = 95 000 lies within the interval.

[Although ® = 0:02, we verify with a 99% CI as we

have a 1-tailed test here.]

	 ��	�
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11 a H0: ¹ = 250, H1: ¹ 6= 250 (2-tailed)

t-distribution as ¾2 is unknown, º = 59
sn = 7:3, so sn¡1 ¼ 7:362 (n = 60) t ¼ ¡7:786,

p-value = P(t 6 ¡7:786) + P(t > 7:786)

¼ 1:26£ 10¡10
and as p < 0:05, we reject H0:

P(type I error) = 0:05

There is sufficient evidence to reject H0:

This suggests that ¹ 6= 250. Since the sample mean
was < 250 mg we surmise that the true population
mean is smaller than 250 mg.

Note: The critical t-value is t0:975 ¼ 2 (º = 59).
Hence the critical region is t < ¡2, t > 2
And, as t¤ ¼ ¡7:786, we reject H0:

b As 95% CI for ¹ is 240:7 < ¹ < 244:5 which
confirms the above as we are 95% confident that the
true population mean is well below 250 mg.

Hence, we would reject H0 in a and argue again that
the mean is less than 250 mg.

12 Let X1 represent the test score before coaching,
X2 represent the test score after coaching

and let U = X2 ¡X1:

U -values are 5, ¡1, 0, 7, 0, ¡1, 3, 3, 4, ¡1, 1, ¡6
U ¼ 1:1667, sn¡1 ¼ 3:4597
H0: ¹ = 0 (i.e., test scores have not improved)
H1: ¹ > 0

t-distribution, º = 11 t¤ ¼ 1:168
We reject H0 if p-value < 0:05

p-value = P(t > 1:168) ¼ 0:1337
The decision:

either As p-value > 0:05, we do not reject H0:

or The rejection region is t0:05 > 1:796 and t¤

does not lie in it. So, we reject H0.

13 Z-distribution as ¾ is known (¾2 = 2:25).
x = 1001, ¾ = 1:5
H0: ¹ = 1000 grams, H1: ¹ > 1000 grams

z¤ ¼ 1:8856 p-value = P(z¤ > 1:8856) ¼ 0:029 67
The decision:

either As p-value > 0:01 we do not reject H0:

or As z0:01 ¼ 2:326, the critical region is z > 2:326:

z¤ lies outside this region, so we do not reject H0.

Conclusion:

There is insufficient evidence to support the overfilling
claim. This decision was made at a 1% level of signifi-
cance. However, we could be making a type II error.

14 H0: ¹ = 500 mL and H1: ¹ 6= 500 mL

t-distribution as ¾2 is unknown. t » T (9) sn = 1:2 mL
) sn¡1 ¼ 1:2649 is an unbiased estimate of ¾.

t¤ ¼ ¡2:500
p-value = P(t 6 ¡2:5 or t > 2:5) ¼ 0:0339
and so we do not reject H0 as p-value > 0:01

or critical t-value is t0:005 ¼ 3:250:
So the critical region is t < ¡3:250 or t > 3:250:

As t¤ ¼ ¡2:500 does not lie in the CR we do not reject H0.

Conclusion:

There is insufficient evidence to suggest that the sample
mean is significantly different from the expected value at
a 0:01 level. We risk making a type II error, i.e., accepting
H0 when it is false.

EXERCISE 8F

1 H0: the results are independent of weather.

The expected values (frequencies) matrix is"
12 (8:96) 14 (7:04)
8 (6:72) 4 (5:28)
8 (13:32) 14 (9:68)

#
Â2calc ¼ 6:341
with º = 2:

p-value ¼ 0:0420

Hence, at a 1% level, we accept Juventus’ results are
independent of weather as 0:0420 > 0:01:

At a 5% level, as 0:0420 < 0:05 we conclude that
Juventus’ results depend on the weather.

2 H0: results are independent of immunisation.

The EV(F) matrix ish
30 (36:9) 51 (44:1)
61 (54:1) 58 (64:9)

i
Â2calc ¼ 3:932
with º = 1

p-value ¼ 0:0474
So, at a 5% level we reject H0, i.e., people who receive
flu immunisation are less likely to suffer from colds.

P(type I error) = 0:05

Note: With Yates’ correction, Â2calc ¼ 3:4271 with
p-value ¼ 0:0641 and we would not reject H0.

3 f0 97 91 12

fe 116 76 8
Â2calc =

P (f0 ¡ fe)2
fe

¼ 8:0726

p-value = P[Â2 > 8:0726] ¼ 0:0177 with º = 2.

At a 1% level we do not reject H0,

i.e., the Principal’s results match those of the EA.

At a 5% level, we reject H0 as 0:0177 < 0:05,

i.e., the Principal’s results contradict the EA’s.

We could be making a type II error if ® = 0:01 and a
type I error if ® = 0:05 .

4 a x =

P
fxP
f
=
46

52
¼ 0:884 62

b 0 1 2 3 > 4

f0 26 11 10 5 0

fe 21:47 18:99 8:40 2:48 0:66| {z }
combine

f0 26 11 15

fe 21:47 18:99 11:54

Â2calc =
P (f0 ¡ fe)2

fe
¼ 5:355

with º = 3¡ 2 = 1, as the mean was estimated.

p-value = P
¡
Â2calc > 5:355

¢
¼ 0:0207 which is < 0:05

So, at a 5% level of significance we do not reject H0,
i.e., the Poisson model is not adequate for this data set.
We are risking making a type I error with probability 0:05:

5 a 400¡ 198¡ 92¡ 57 = 53 fail both

b H0: results in each subject are unrelated.

Matrix is

h
198 (185) 92 (105)
57 (70) 53 (40)

i
Â2calc ¼ 9:3471, º = 1, p-value ¼ 0:002 23

Hence, at a 5% level we reject H0,
i.e., performances in each subject are related.
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Note: With Yates’ continuity correction Â2calc ¼ 8:6486 and

p-value ¼ 0:003 27 we come to the same conclusion.

6 a H0: Of the six coins, five are fair and the other is a
double tailed coin.

H1: All six coins are fair.

Let X be the number of tails, then under H0

P(X = x) = C5x¡1(
1
2
)5 for x = 1, 2, 3, ...., 6

f0 13 47 91 85 31 8

fe 8:6 43:0 85:9 85:9 43:0 8:6

Â2calc ¼ 6:326, p-value ¼ 0:276, º = 6¡ 1 = 5
Hence, at a 5% level, we do not reject H0, i.e., the
observer’s conclusion that one of the coins has two
tails whilst the other five are fair is correct.

7 The null distribution is Geometric, i.e., if X is the number
of tosses needed to get a head, then X » Geo(0:5)

H0: the coin is fair H1: the coin is not fair

P(X = x) = (0:5)x where x = 1, 2, 3, ...., 8.

f0 46 20 12 8 5 3 4 2

fe 50 25 12:5 6:25 3:13 1:56 0:78 0:39| {z }
combine

f0 46 20 12 8 14

fe 50 25 12:5 6:25 6:25

Â2calc ¼ 11:44 º = 5¡ 1 = 4
p-value = P

¡
Â2calc > 11:44

¢
¼ 0:0220

Hence, for ® = 0:05, we reject H0. That is, the geometric
distribution does not adequately fit the data and we conclude
that the coin is not fair.

8 H0: alcohol consumption and tobacco usage are independent.

The matrix is

24 105 7 11
58 5 13
84 37 42
57 16 17

35
Â2calc ¼ 42:25, p-value ¼ 1:64£ 10¡7 º = 3£ 2 = 6
Hence, at a 5% level, we reject H0.

That is, alcohol consumption and tobacco usage are dependent.

P(type I error) = 0:05

9 a
R 1
0
(e¡ kex)dx = 1

) [ex¡ kex]10 = 1

) (e¡ ke)¡ (¡k) = 1

) e¡ ke+ k = 1

) k(1¡ e) = 1¡ e
) k = 1

b 50
R 0:2
0

(e¡ ex)dx ¼ 16:1

50
R 0:4
0:2

(e¡ ex)dx ¼ 13:7

50
R 0:6
0:4

(e¡ ex)dx ¼ 10:7

50
R 0:8
0:6

(e¡ ex)dx ¼ 7:0

50
R 1
0:8
(e¡ ex)dx ¼ 2:5

f0 18 11 10 6 5

fe 16:1 13:7 10:7 7:0 2:5| {z }
combine as 2:5 < 5

f0 18 11 10 11

fe 16:1 13:7 10:7 9:5

Â2calc ¼ 1:039, º = 4¡ 1 = 3
and p-value = P(Â2 > 1:039) ¼ 0:792
Hence, at a 5% level, we do not reject H0, i.e., H0 described
by the given pdf is an adequate model.

Hence, we accept that battery lifetime is modelled by the
continuous pdf given. We risk making a type II error here.

REVIEW SET 8A

1 S » N(338, 32) L » N(1010, 122)

a Let U = L¡ (S1 + S2 + S3) E(U) = ¡4,

Var(U) = 171 U » N(¡4, 171), P(U > 0) ¼ 0:380
b Let V = L¡ 3S E(V ) = ¡4, Var(V ) = 225

V » N(¡4, 225), P(V > 0) ¼ 0:395
2 a

P
pi = 1 ) 5c = 1 ) c = 1

5

b ¹(X) =
P
xipi = 1

c P(X > 1) = P(X = 3 or 5) = 2
5

d Var(X) =
P
x2i pi ¡ ¹2 = 45

¡
1
5

¢
¡ 12 = 8

3 a X » Geo(0:35) i P(X 6 4) ¼ 0:821
ii E(X) =

1

p
¼ 2:86 or 3 buses

b X » NB(3, 0:35)

i P(X = 7) =
¡
6
2

¢
(0:35)3(0:65)4 ¼ 0:115

ii E(X) =
r

p
= 3

0:35
¼ 8:57 i.e., approx. 9 buses

iii P(X 6 5)

= P(X = 3 or 4 or 5)

= (0:35)3 +
¡
3
2

¢
(0:35)3(0:65) +

¡
4
2

¢
(0:35)3(0:65)2

¼ 0:235
4 a X » P0(14£ 3

4 ) P(X = 5) ¼ 0:0293
b X » P0(14£ 1

2
) P(X < 7) = P(X 6 6) ¼ 0:450

5 a F » Hyp(2, 3, 12) and is discrete

b F = f 0 1 2

P(F = f) 0:545 0:409 0:045

c i P(buy packet) = 1 ¡ P(do not buy packet)

= 1 ¡ (0:045 + 0:409£ 2
10
)

¼ 0:873
ii F is now binomial

i.e., F » B(12, 1
4 ) and

P(buy packet)

= 1 ¡ P(do not buy packet)

= 1¡
©

P(F = 2) + P(F = 1)£ 2
10

ª
= 1¡

n¡
2
2

¢ ¡
1
4

¢2
+
¡
2
1

¢ ¡
1
4

¢1 ¡ 3
4

¢1 £ 2
10

o
¼ 0:863
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6 a
R 1
0
f(x) dx = 1 and

R 1
0
x f(x) dx = 0:7R 1

0
(ax3 + bx2) dx = 1 )

·
ax4

4
+
bx3

3

¸1
0

= 1

) a

4
+
b

3
= 1

) 3a+ 4b = 12 .... (1)

and
R 1
0
(ax4 + bx3) dx = 0:7

)
·
ax5

5
+
bx4

4

¸1
0

= 0:7

) a

5
+
b

4
= 7

10

) 4a+ 5b = 14 .... (2)

Solving (1) and (2) gives a = ¡4, b = 6

So, f(x) = 6x2 ¡ 4x3, 0 6 x 6 1

b P(X > 0:95) =
R 1
0:95

(6x2 ¡ 4x3) dx ¼ 0:0998
¼ 9:98%

So, there is about a 10% chance that the provider will
run out of petrol in any given week.

7 n = 300 which is large bp » N(p,
pq

n
)

) bp » N

³
0:12,

0:12£ 0:88
300

´
i.e., ¹ = 0:12, ¾ =

p
0:12£0:88

300
¼ 0:018 76

a P(bp < 0:11) ¼ 0:297 b P(bp > 0:14) ¼ 0:143
c P(0:11 < bp < 0:14) ¼ 0:560
Note: With cc these are a ¼ 0:267 b ¼ 0:124 c ¼ 0:507

8 a x = 212:275, sn ¼ 1:5164, sn¡1 ¼ 1:5357
b ¾2 is unknown, X » t(39)

95% CI for ¹ is 211:8 < ¹ < 212:8

9 a n = 225 is large, so we approximate

p by bp » N

³
0:93,

0:93£ 0:07
225

´
¹ = 0:93, ¾ ¼ 0:017 01
X = np = 225£ 0:93 ¼ 209
(gcalc) gives 89:5% < p < 96:2%

a direct calculation gives 89:7% < p < 96:3%

b We are 95% confident that between 89:5% and 96:2%
of all athletes believe that “all athletes should be tested
for HIV”.

10 n = 420,
X

n
=
86

420
¼ 0:2048

As n is large, bp » N

³
0:2048,

0:2048£ 0:7952
420

´
¹ ¼ 0:2048 and ¾ ¼ 0:0197
a A 95% CI for p is 0:166 < p < 0:243

b As P(getting a 6) = 1
6
= 0:1666 :::: for a ‘fair’ coin,

and 1
6

lies in the CI, there is no evidence to suggest that

the die is unfair.

Note: We can be 90% sure that the die is unfair as the

90% CI for p is 0:172 < p < 0:237 and 1
6

does not
lie in this CI.

11 a A type I error would result if it was determined that
Quickchick is supplying underweight chickens when
they are in fact not.

b A type II error would result if Quickchick is supplying
underweight chickens when it is determined that they
are not.

12 a x = 4:02

b For Binomial, x ¼ np ) p ¼ 4:02
6
¼ 0:670

c f0 1 3 9 17 31 28 11

fe 0:1 1:6 8:0 21:6 32:9 26:7 9:0

C60 (0:67)
0(0:33)6 £ 100

combining
gives

f0 13 17 31 28 11

fe 9:7 21:6 32:9 26:7 9:0

Â2calc ¼ 2:72 with º = 5¡ 1¡ 1 = 3
fwe had to estimate pg
p-value = P

¡
Â2 > 2:7198

¢
¼ 0:437

Hence, at a 10% level we do not reject H0,

i.e., the binomial distribution is an adequate model.

So, we support the claim.

13 Let X » N(100, 100)

P(80:5 < X < 90:5)£ 2000 ¼ 291

P(90:5 < X < 100:5)£ 2000 ¼ 698

P(100:5 < X < 110:5)£ 2000 ¼ 667

f0 10 45 287 641 725 250 40 2

fe 3 48 291 698 667 253 38 2| {z }
combine

| {z }
combine

f0 55 287 641 725 250 42

fe 51 291 698 667 253 40

Â2calc ¼ 10:202 with º = 6¡ 1 = 5
p-value = P(Â2calc > 10:202) ¼ 0:0697
Hence, we do not reject H0 at a 5% level, i.e., the normal
distribution is an adequate model if ¹ = 100, ¾ = 10:

14 a Observations are not independent as we have the same
group of students. So, the difference between means is
not appropriate.

Student Pre-test Post-test Difference (d)

A 12 11 ¡1
B 13 14 1
C 11 16 5
D 14 13 ¡1
E 10 12 2
F 16 18 2
G 14 15 1
H 13 14 1
I 13 15 2
J 12 11 ¡1P

d = 11

d =

P
d

n
= 11

10 = 1:1

s 2n =

P
d2

n
¡ d 2 = 43

10
¡ 1:12 ¼ 3:09

) unbiased estimate of ¾2 is s 2n¡1 =
n

n¡ 1s
2
n ¼ 3:4333 ::::
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So, the unbiased estimate of ¾ is sn¡1 ¼ 1:8529
As ¾2 was unknown we use a t-distribution d » t(9)
A 90% CI for d is 0:0259 < d < 2:1741

b H0: ¹d = 0, there is no improvement

H1: ¹d > 0, there is an improvement

We will perform a 1-tailed t-test at a 5% level with
9 df. d » t(9)
t ¼ 1:877 and p-value ¼ 0:0466 < 0:05

So, we reject H0.

REVIEW SET 8B

1 a P(X = 6) = 1¡ 0:3¡ 0:2¡ 0:2 = 0:3
b E(X) =

P
xipi = 0:7, i.e., 70 cents a game.

c If they charge 50 cents to play then on average they will
lose 20 cents a game. If they charge $1 to play then they
would expect to gain 30 cents a game.

d E(Y ) = 0:1, i.e., 10 cents a game.

e

X \ Y ¡8 ¡4 ¡3 0 1 3

P 0:15 0:10 0:09 0:16 0:06 0:15

X \ Y 4 5 8 11

P 0:04 0:06 0:13 0:06

E(X \ Y ) =P zipi = 0:8

i.e., 80 cents per game (on average)

f Expected return

= 500£ $0:30 + 500£ $0:90 + 1000£ $0:20 = $800

2 X » B(1000, 3
5
)

a ¹X = E(X) = np = 600

b Var(X) = npq = 600£ 2
5
= 240 ) ¾X ¼ 15:5

3 X » Geo
¡
1
6

¢
: Hence ¹ = 1

p
= 6

So, on average it takes players 6 rolls to win 10 Euros.
Pierre wants to profit 2 Euros per game. Hence he must
charge 12 Euros over 6 rolls, i.e., 2 Euros per roll.

4 a X » Hyp(10, 13, 100)

b P(X = x) =

¡
13
x

¢ ¡
87

10¡x
¢¡

100
10

¢ , (x = 0, 1, 2, 3, ...., 10)

c P(X 6 2) =

¡
13
0

¢ ¡
87
10

¢
+
¡
13
1

¢ ¡
87
9

¢
+
¡
13
2

¢ ¡
87
8

¢¡
100
10

¢
¼ 0:880

5 a X » P0(m) where m is the mean number of errors
per page.

b P(X = x) =
mxe¡m

x!
(x = 0, 1, 2, 3, ....)

i P(X = 0) = e¡m = q (ln q = ¡m)

ii P(X = 1) = me¡m = ¡q ln q

iii P(X > 1) = 1 ¡ P(X = 0) ¡ P(X = 1)

= 1¡ q + q ln q
c i Y = y 10 1 ¡8

P(Y = y) q ¡q ln q 1¡ q + q ln q

ii E(Y ) =
P
yipi

= 10q ¡ q ln q ¡ 8 + 8q ¡ 8q ln q
= 18q ¡ 9q ln q ¡ 8 dollars

iii We need to solve 18q ¡ 9q ln q ¡ 8 = 0
This is q ¼ 0:268

6 a X = number who prefer right leg kick

X » B(20, 0:75)

i P(X = 14) ¼ 0:169
ii P(X > 15) = 1 ¡ P(X 6 14) ¼ 0:617

b X » B(1050, 0:75)

As np > 10 and nq > 10 we can approximate

X by a normal variate ¹ = np = 787:5

¾ =
p
npq =

p
787:5£ 0:25 ¼ 14:03

i P(X = 0:7£ 1050)
= P(X = 735)

¼ P(734:5 < X¤ < 735:5)
¼ 0:000 0260

ii P(X > 0:75£ 1050)
= P(X > 787:5)

= 1 ¡ P(X 6 787)

¼ 0:514
7 X » N(¹, 672)

So X » N(¹, 672

375
) fCL Theoremg

P(
¯̄
X ¡ ¹

¯̄
> 10)

= 1 ¡ P(¡10 < X ¡ ¹ < 10)

= 1 ¡ P

Ã
¡10
67p
375

<
X ¡ ¹
67p
375

<
10
67p
375

!

= 1 ¡ P(¡2:890 < Z < 2:890)
¼ 0:003 85

8 As n = 173 is large, bp » N(p,
pq

n
)bp = 56

173
¼ 0:3237

So, a 90% CI for p is

bp¡ 1:645rbpbq
n
< p < bp+ 1:645rbpbq

n

i.e., 0:265 < p < 0:382

i.e., the true percentage of deaths on Mars where drivers
have high levels of alcohol/drugs is somewhere between
26:5% and 38:2% with 90% confidence.

9 X = 32, n = 400

a bp = 32
400

= 0:08 (or 8%)

b A 95% CI for p is

bp¡ 1:96rbpbq
n
< p < bp+ 1:96rbpbq

n

i.e., 0:0534 < p < 0:1066

c 95% of 150 = 142:5 or 143 such tests should contain p:

	 � 
 ��

�� � � 


�
 � 	 �

�

�

��

�� �� � � X
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10 n = 306 + 109 + 92 + 49 = 556

f0 306 109 92 49

fe 312:75 104:25 104:25 34:75

"
e.g., 9

16
£ 556

H0: numbers are in the ratio 9 : 3 : 3 : 1
H1: this is not true

Â2calc ¼ 7:6451 with º = 4¡ 1 = 3
p-value = P(Â2calc > 7:6451) ¼ 0:0539

which is > 0:05

Hence, there is not enough evidence to reject H0 at a 5%
level, i.e., we accept the scientific theory.

11 H0: location and type of tumour are independent
H1: they are not

Under H0 the matrix of observed frequencies (expected) is:"
21 (17:7) 13 (14:1) 2 (4:2)

20 (14:3) 7 (11:4) 2 (3:38)

18 (27:0) 27 (21:5) 10 (6:42)

#
We note that the third column has 2 values of fe < 5.
Hence we combine the 2nd and 3rd columns."
21 (17:7) 15 (18:3)

20 (14:3) 9 (14:8)

18 (27:0) 37 (27:9)

#
Â2calc ¼ 11:71 with º = 2 and a p-value ¼ 0:00287

Hence at a 1% level we reject H0 and conclude that there
is some dependence (association) between type and location
of the tumour. P(type I error) = 0:01

12 X = volume of a bottle in mL X » N(376, 1:842)

X = average volume of each sample of 12

X » N

³
376, 1:842

12

´
a P(X < 373) ¼ 0:0515

i.e., about 5:15% will have a volume less than 373 mL

b P(X < 375) ¼ 0:0299
i.e., about 3% of all packs of 12 will have an average
contents less than 375 mL

c From a and b there is a smaller chance of picking a
12-pack that does not meet the rules than that for an
individual bottle.

Hence, would prefer method II.

d Let X » N(¹, 1:842)

We want P(X < 375) = 0:01

) P

Ã
X ¡ ¹
1:84p
12

<
375¡ ¹
1:84p
12

!
= 0:01

i.e., P

Ã
Z <

375¡ ¹
1:84p
12

!
= 0:01

Thus
(375¡ ¹)p12

1:84
= invNorm(0:01)

i.e., 375¡ ¹ ¼ ¡1:235 67
) ¹ ¼ 376:23::::

So, need to set it at ¹ = 377 mL.

13 a s 2n =

nP
i=1

(xi ¡ x)2

n
= 230

15
¼ 15:33

b s 2n¡1 =
n

n¡ 1s
2
n ¼ 16:43 is an unbiased estimate

of ¾2

c The 95% CI for ¹ is 124:94 < ¹ < 129:05

and x for this sample is the midpoint of the CI.

) x =
124:94 + 129:05

2
= 126:995

As ¾2 is unknown (had to be estimated),

we have a t-distribution with º = 15¡ 1 = 14
i.e., t » T (14)
A 95% CI is 124:75 < ¹ < 129:24

d The CI is 124:94 < ¹ < 129:05 taken from the sample.

t¤ =
jx¡ ¹j
Sn¡1p

n

=
j126:995¡ 129:05j

p
16:43p
15

) t¤ ¼ 1:9636
P(t < 1:9636) ¼ 0:965 12

) confidence level ¼ 2£ 0:034 88 ¼ 0:07
i.e., a 7% CI

14 a Let D = X2 ¡X1 where
X2 = number of fish caught after course
X1 = number of fish caught before course

H0: ¹D = 0 and H1: ¹D > 0

(i.e., course has been effective)

D-values are: 12, 9, 18, ¡3, ¡9, 4, 0, 10, 4

d = 5 and sn¡1 ¼ 8:2614

Test statistic is t¤ =
d¡ ¹
sn¡1p

n

=
5¡ 0
8:2614p

9

i.e., t ¼ 1:816
p-value = P(t > 1:815 67) ¼ 0:0535
The decision:

² as p-value > 0:05 or

² as t¤ does not lie in the rejection region
(t > 1:860 from tables) then we do not reject
H0 and are subject to making a type II error
i.e., accepting H0 when it is in fact false.

Note: We do not have enough information to determine
the probability of making this type of error.

b A 90% confidence interval for the mean difference is

] d¡ t¤sn¡1p
n

, d+
t¤sn¡1p

n
[

i.e., ] 5¡ 1:860£ 8:261p
9

, 5 +
1:860£ 8:261p

9
[

i.e., ] ¡0:122, 10:122 [

Note: A gcalc gives ]¡ 0:121, 10:121[

As the null hypothesis value of ¹D = 0 is within the
CI, then at a 5% level, this is consistent with the
acceptance of H0.

������

0.03488
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EXERCISE 9A.1

1 a a, b, c Number of elements = 3:
b 2, 3, 5, 7 Number of elements = 4:
c 3, 4, 5, 6, 7 Number of elements = 5
d no elements exist, i.e., number of elements = 0

e 3, 4, f3g, f4g Number of elements = 4

f ? Number of elements = 1. This is the set containing
the symbol ?:
f?g is not the empty set. fg or ? is the empty set.

2 a As Z represents the set of all integers, the given set is
finite.

b infinite

3 a equal as repetitions are ignored
b equal (order of listing is not important)
c equal as the solutions to x2 = 4 are the same as the

solutions to jxj = 2:
d equal as both of these sets are empty sets

e not equal as the first set does not contain x = 2 and
x = 5:

EXERCISE 9A.2

1 a P (A) = f?, fpg, fqg, fp, qgg
b P (A) = f?, f1g, f2g, f3g, f1, 2g, f1, 3g, f2, 3g,

f1, 2, 3gg
c P (A) = f?, f0gg

2 a True, as the elements of A are also in B.

b False as 0 =2 B c False as 9 =2 B
d False as

p
2 2 A, but

p
2 =2 B.

EXERCISE 9A.3

1 a f0, 1, 2, 3, 4, 5, 7g b f7g c ? d f1, 3, 7g
e f1, 3, 7g f f5, 6, 7, 8, 9g g f6, 8, 9g
h f6, 8, 9g

2 a b

c d not possible

e f

g not possible

3 a Consider

where n(A [B) = a+ b+ c

n(A) = a+ b, etc.

c

7 play both

EXERCISE 9A.4

1 a fo, n, u, a, c, eg b fn, ag c fc, j, g, t, eg
d fc, o, j, u, g, t, eg e fc, o, j, u, g, t, eg
f fo, n, u, ag

2 a i ii

iii iv

b i ii

iii iv

c i ii

iii iv

3 a b

c d

e f

4 a i f2, 4g ii ? b i firrational numbersg ii ?
c i f0, 1g ii f4, 5g d i f2, 3, 4g ii f0, 1, 5g

A B

U

A

B

U

A

B

U

A
B

U

A

BU

A B

a b c

d

T B

9 7 8

6

A B A B

A B A B

A BA B

A BA B

A

B

A

B

A

B

A

B

A BA B

A B A B

A B A B
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5 a fb, c, dg b f1, 2, 5g c f1, 2, 3, 4, 5, 6g
d f9, 11, 13g

EXERCISE 9B.1

1 a i f(1, 3), (1, 4), (1, 5), (2, 3), (2, 4), (2, 5)g
ii f(3, 1), (3, 2), (4, 1), (4, 2), (5, 1), (5, 2)g

b i f(a, a), (a, b)g ii f(a, a), (b, a)g c i ? ii ?
2 a b

EXERCISE 9B.2

1 a domain = f0, 1, 2g range = f2, 3, 5g
b domain = f¡3, ¡2, ¡1, 0, 1, 2, 3g

range = f¡3, ¡2p2, ¡p5, 0,
p
5, 2

p
2, 3g

c domain = fx j x 2 R g
range = fy j y 2 R , ¡1 6 y 6 1g

2 a f(2, 6), (2, 8), (3, 6), (4, 8), (5, 5)g
b f(2, 5), (3, 6), (4, 7), (5, 8)g
c f(2, 5), (2, 6), (2, 7), (2, 8), (3, 7), (3, 8)g

3 a i not reflexive ii not symmetric iii transitive
b i not reflexive ii not symmetric iii transitive
c i reflexive ii symmetric iii transitive
d i reflexive ii symmetric iii transitive

4 a not reflexive b symmetric c not transitive

5 a i not reflexive ii symmetric iii not transitive
b i reflexive ii not symmetric iii transitive
c i reflexive ii symmetric iii transitive

EXERCISE 9B.3

1 a a ´ b (modn) ) a = b+ k1n for some k1 2 Z
Likewise

c ´ d (modn) ) c = d+ k2n for some k2 2 Z
So a+ c = b+ d+ (k1 + k2)n where k1 + k2 2 Z
Thus, a+ c ´ b+ d (modn)

b Likewise

2 a = 1, x = 1 a = 6, x = 2
a = 2, x = 6 a = 7, x = 8
a = 3, x = 4 a = 8, x = 7
a = 4, x = 3 a = 9, x = 5
a = 5, x = 9 a = 10, x = 10

3 b Every line in the plane will be in an equivalence class.
For any given line the equivalence class will consist of
all lines parallel to the given line.

4 a reflexive b not symmetric c not transitive

5 a f(a, a), (b, b), (c, c), (a, b), (b, c)g
b f(a, b), (b, a), (a, c), (c, a)g c f(a, b), (b, c), (a, c)g
d f(a, a), (b, b), (c, c), (b, c), (c, b), (a, c), (c, a)g
e f(a, a), (b, b), (c, c), (b, c), (c, a), (b, a)g
f f(a, a), (b, b)g
Note: There are other possibilities for each of the above.

6 (1, 1), (2, 2), (3, 3), (2, 1), (3, 2), (1, 3), (3, 1)

8 R is an equivalence relation.

9 b Each point in Z £ Z is related to all points above or
below it. The equivalence classes are sets of points lying
on vertical lines.

10 b Any point of R £ R n f(0, 0)g is related to all points on
the line passing through the point and the origin. Each
point is an element of exactly one equivalence class and
consists of all points (excluding (0, 0)) lying on the line
passing through O and the point.

11 b Any point of R £ R is related to all points on the line
through the point with gradient 3.
Each point is an element of exactly one equivalence class
containing all points which lie on the line through that
point, with gradient 3.

EXERCISE 9C

1 a not a function b a function, not an injection
c a function, an injection

2 a a function
i not an injection ii a surjection iii not a bijection

b a function i not an injection ii not a surjection
iii not a bijection

c not a function
d a function i not an injection ii not a surjection

iii not a bijection
e a function

i not an injection ii not a surjection iii a bijection

3 a both b surjection, but not an injection
c surjection, but not an injection d both e both
f injection, but not a surjection

4 a i 3 ii 0 iii 2 iv 1

b i f(0, 2), (1, 0), (2, 1), (3, 3)g
ii f(0, 2), (1, 3), (2, 0), (3, 1)g
iii f(0, 1), (1, 3), (2, 2), (3, 0)g
iv f(0, 1), (1, 3), (2, 2), (3, 0)g

5 a [ln(x+ 1)]2 b ln(x2 + 1) c ex ¡ 1 d e
p
x ¡ 1

e e
p
x ¡ 1

EXERCISE 9D

1 a i 0 ii 2 iii ¡4 iv ¡6 v 0 vi 10 vii 10
b i x = ¡2 ii x = ¡1

2 a not closed, e.g., 1 + i and 1 ¡ i are in the set, but

(1 + i)(1¡ i) = 2 is not in the set

b not closed, e.g., 2 + i and 1 + 2i are in the set, but

(2 + i)(1 + 2i) = 6i is not in the set

c closed

3 a closed b closed
c not closed, as for example 1 + 3 = 4 is not an element

of the set

d closed The product of any two positive odds is always
a positive odd. This is so as 2a¡ 1, 2b¡ 1 are odd if
a, b 2 Z +
and (2a¡ 1)(2b¡ 1) = 2(2ab¡ a¡ b) + 1 which is

odd as 2ab¡ b¡ b 2 Z .

e closed If
a

b
,
c

d
2 Q , a, b, c, d 2 Z , b 6= 0, d 6= 0,

then
a

b
+
c

d
=
ad+ bc

bd
2 Q , as bd 6= 0:

f closed If
a

b
,
c

d
2 Q , a, b, c, d 2 Z , b 6= 0, d 6= 0,

then

³
a

b

´³
c

d

´
=
ac

bd
2 Q , as bd 6= 0:

y

x�� �

�

��

y

x�

�

�

�
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4 £5 1 2 3 4

1 1 2 3 4

2 2 4 1 3

3 3 1 4 2

4 4 3 2 1

a x = 3

b x = 2

c x = 3

d x = 4

5 a If a, b 2 Q n f1g, then a and b are rationals. Since
a + b and ab are rationals fQ is closed under +, £g,
also a+ b¡ ab 2 Q as Q is closed under ¡:
So it remains to show that

a¡ ab+ b 6= 1 for a 6= 1, b 6= 1
Now a¡ 1 6= 0 and b¡ 1 6= 0

) (a¡ 1)(b¡ 1) 6= 0

) ab¡ a¡ b+ 1 6= 0

) a¡ ab+ b 6= 1

b Show (a} b)} c = a} (b} c) for all a, b, c 2 Q n f1g
c Suppose a} e = a for all a 2 Q n f1g
) a¡ ae+ e = a for all a 2 Q n f1g
) e(1¡ a) = 0 for all a 2 Q n f1g

) e = 0 as a 6= 1
Thus a} 0 = a Also 0} a = 0¡ 0 + a = a

Hence the identity is e = 0:

d Consider a}x = e

i.e., a¡ ax+ x = 0

then x(1¡ a) = ¡a and so x =
a

a¡ 1
Also x} a = a

a¡ 1 } a

=
a

a¡ 1 ¡
a2

a¡ 1 + a

=
a¡ a2
a¡ 1 + a

= ¡a
³
a¡ 1
a¡ 1

´
+ a

= ¡a+ a p.v. a 6= 1
= 0 as a 6= 1

Thus the inverse of a 2 Q n f1g is
a

a¡ 1 :

6 a 0 as a+ 0 = 0 + a = a for all a 2 R
b 1 as a(1) = (1)a = a for all a 2 Z
c Consider a ¤ e = e ¤ a = a

then e = a which is not unique and so e does not exist.

d Consider a ¤ e = e ¤ a = a
then 3ae = 3ea = a ) e = 1

3

So, 1
3

is the identity.

e Consider a ¤ e = e ¤ a = a
then 2a+ ae+ 2e = 2e+ ea+ 2a = a

) a+ ae+ 2e = 0

) e(a+ 2) = ¡a
) e =

¡a
a+ 2

which is not unique and
so e does not exist.

7 a The inverse of a 2 Q is ¡a 2 Q
) every element has an inverse in Q .

b 0 2 Q but 0 does not have an inverse under £.

c No, for example 2 does not have an inverse under £.

2£ x = 1 where x 2 Z + is impossible.

d Suppose a ¤ e = e ¤ a = a for all a 2 R
then 2ae = 2ea = a for all a 2 R

) e = 1
2

If a ¤ x = e, then 2ax = 1
2 ) x =

1

4a
So a = 0 does not have an inverse.

8 a Show that

[(a, b) ¤ (c, d)] ¤ (g, h) = (a, b) ¤ [(c, d) ¤ (g, h)]

b Suppose (a, b) ¤ (e, f ) = (a, b)

and deduce that e = 1

Hence, deduce that f = 0

Check that (1, 0) ¤ (a, b) = (a, b) also.

So, (1, 0) is the identity.

c (0, 0) has no inverse as

(a, b) ¤ (0, 0) = (1, 0)

) (0, 0) = (1, 0) a contradiction

d (a, b) ¤ (c, d) = (ac¡ bd, ad+ bc)

(c, d) ¤ (a, b) = (ca¡ db, cb+ da)

and since xy = yx, x+ y = y + x for reals,

¤ is commutative.

9 a i a is the identity

ii a has inverse a, b and c are inverses

iii ¤ is commutative (symmetry about the leading
diagonal)

iv We need to check all 27 possibilities of (x ¤ y) ¤ z
and x ¤ (y ¤ z) where x, y, z 2 fa, b, cg.

When this is done we find that ¤ is associative.

b i b is the identity

ii a has no inverse, b is its own inverse,
c is its own inverse

iii ¤ is commutative (symmetry about the leading
diagonal)

iv We need to check all 27 possibilities of (x ¤ y) ¤ z
and x ¤ (y ¤ z) where x, y, z 2 fa, b, cg.

When this is done we find that ¤ is associative.

c i no identity exists

ii without an identity no inverses are possible

iii ¤ is commutative (symmetry about leading diagonal)

iv Not associative as, for example,

(a ¤ b) ¤ c = c and

a ¤ (b ¤ c) = a

i.e., in general (x ¤ y) ¤ z 6= x ¤ (y ¤ z)
where x, y, z 2 fa, b, cg.

d i b is the identity

ii a and c are inverses, b is its own inverse

iii ¤ is commutative (symmetry about leading diagonal)

iv Not associative as, for example,

(a ¤ c) ¤ c = b ¤ c = c and

a ¤ (c ¤ c) = a ¤ c = b
i.e., (a ¤ c) ¤ c 6= a ¤ (c ¤ c)

e i no identity exists

ii without an identity no inverses can exist

iii ¤ is not commutative as there is no symmetry about
the leading diagonal)

iv Not associative as, for example,

(c ¤ b) ¤ a = a ¤ a = b and

c ¤ (b ¤ a) = c ¤ a = c
i.e., (c ¤ b) ¤ a 6= c ¤ (b ¤ a)
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EXERCISE 9E.1

1 a An Abelian group with identity 1.
b Not a group as each element does not have an inverse in

the set.
c An Abelian group with identity 30 = 1:
d An Abelian group with identity 1.
e An Abelian group with identity 0.
f Not a group as 0 2 S does not have a multiplicative

inverse.
g An Abelian group with identity 0 = 0 + 0i
h Not a group as 0 2 C and 0 does not have a multiplicative

inverse.
i An Abelian group with identity 1 = 1 + 0i:

j Not a group as for example

an inverse.

h
1 2
2 4

i
does not have

2 ® = 1
2
+ i

p
3
2

, ®2 = ¡1
2
+ i

p
3
2

, ®3 = ¡1,

®4 = ¡ 1
2
¡ i

p
3
2

, ®5 = 1
2
¡ i

p
3
2

, ®6 = 1

S = f1, ®, ®2, ®3, ®4, ®5g
The Cayley table is: £ 1 ® ®2 ®3 ®4 ®5

1 1 ® ®2 ®3 ®4 ®5

® ® ®2 ®3 ®4 ®5 1

®2 ®2 ®3 ®4 ®5 1 ®

®3 ®3 ®4 ®5 1 ® ®2

®4 ®4 ®5 1 ® ®2 ®3

®5 ®5 1 ® ®2 ®3 ®4
Is an Abelian group.

Closure: When two elements are multiplied the result
is also in S.

Associative: Multiplication of complex numbers is
associative.

Identity: ® and ®5 are inverses, ®2 and ®4 are inverses

1 and ®3 are their own inverses

Since £ for complex numbers is commutative, we have an
Abelian group.

EXERCISE 9E.2

1 f0, 1, 2g under +3

The identity is 0.
+3 0 1 2

0 0 1 2

1 1 2 0

2 2 0 1

f0, 1, 2g under ¡3 would also have identity 0.

Possible tables are ¡3 0 1 2

0 0 1 2

1 1 0 2

2 2 1 0

¡3 0 2 1

0 0 1 2

2 2 0 1

1 1 2 0

Neither of these tables have the same structure as the first
one. So, the groups are not isomorphic.

2 If ® = ¡ 1
2
+ i

p
3
2

, ®2 = ¡ 1
2
¡ i

p
3
2

, ®3 = 1

f1, ®, ®2g under £ f1, 2, 4g under £7
£ 1 ® ®2

1 1 ® ®2

® ® ®2 1

®2 ®2 1 ®

£7 1 2 4

1 1 2 4

2 2 4 1

4 4 1 2

So 1 $ 1
® $ 2
®2 $ 4

The tables are identical in structure

) groups are isomorphic.

3 f0, 1, 2, 3, 4g
under +5

+5 0 1 2 3 4

0 0 1 2 3 4

1 1 2 3 4 0

2 2 3 4 0 1

3 3 4 0 1 2

4 4 0 1 2 3

f1, ®, ®2, ®3, ®4g
under £ £ 1 ® ®2 ®3 ®4

1 1 ® ®2 ®3 ®4

® ® ®2 ®3 ®4 1

®2 ®2 ®3 ®4 1 ®

®3 ®3 ®4 1 ® ®2

®4 ®4 1 ® ®2 ®3

So, 0$ 1, 1$ ®, 2$ ®2, 3$ ®3, 4$ ®4

The tables have identical structure

) groups are isomorphic.

4 Letting the matrices be M1, M2, M3 and M4 respectively.

fM1, M2, M3, M4g
under £ is

£ M1 M2 M3 M4

M1 M1 M2 M3 M4

M2 M2 M1 M4 M3

M3 M3 M4 M1 M2

M4 M4 M3 M2 M1

f1, 3, 5, 7g
under £8 is

£8 1 3 5 7

1 1 3 5 7

3 3 1 7 5

5 5 7 1 3

7 7 5 3 1

M1 $ 1

M2 $ 3

M3 $ 5

M4 $ 7

The tables have identical structure

) the groups are isomorphic.

5 G = fR +, £g is a group and H = fR , +g is a group

² f : x j! lnx is a bijection

² f(ab) = ln(ab)

= ln a+ ln b

= f(a) + f(b) for all a, b 2 G
So, by definition, G and H are isomorphic.

EXERCISE 9E.3

1 a 2 b 2, 3 c 3, 5 d 2, 6, 7, 8

2 If ® = ¡ 1
2
+

p
3
2
i, ®2 = ¡ 1

2
¡

p
3
2
i, ®3 = 1h

® 0
0 ¡1

i2
=

·
®2 0
0 1

¸
and

h
® 0
0 ¡1

i3
=
h
1 0
0 1

i
So, G =

½h
1 0
0 1

i
,

h
® 0
0 ¡1

i
,

·
®2 0
0 1

¸¾
under

matrix multiplication
is a cyclic group.

£ M1 M2 M3

M1 M1 M2 M3

M2 M2 M3 M1

M3 M3 M1 M2
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EXERCISE 9E.4

1 b no
c f1g, f1, 5g, f1, 7g, f1, 11g, f1, 5, 7, 11g under £12

are subgroups

3 b no c i a subgroup ii a subgroup

EXERCISE 9F.1

1 a
³
1 2 3 4
3 4 2 1

´
b
³
1 2 3 4
4 1 2 3

´
c
³
1 2 3 4
1 2 3 4

´
d
³
1 2 3 4
2 4 1 3

´
2 a

³
1 2 3 4
2 4 1 3

´
b
³
1 2 3 4
2 1 4 3

´
c
³
1 2 3 4
2 4 3 1

´
4 a

p =
³
1 2 3 4
4 1 2 3

´
b

p =
³
1 2 3 4
1 2 4 3

´
5 a A B C D

A A B C D

B B C D A

C C D A B

D D A B C

closed, identity A,
inverse of A is A

of B is D
of C is C
of D is B

Is isomorphic to f0, 1, 2, 3g under +4:

+4 0 1 2 3

0 0 1 2 3

1 1 2 3 0

2 2 3 0 1

3 3 0 1 2

a known Abelian
group

fExample 55g
B1 = B, B2 = C, B3 = CB = D, B4 = DB = A

So, is a cyclic group.

b A B C D

A A B C D

B B A D C

C C D A B

D D C B A

is isomorphic to

£8 1 3 5 7

1 1 3 5 7

3 3 1 7 5

5 5 7 1 3

7 7 5 3 1
which is a group

So, is a group, but is not cyclic.

f1, 3, 5, 7g under £8 is easily checked to be non-cyclic.

EXERCISE 9F.2

2 ² Anti-clockwise rotation about the centre of the rectangle
through 0o:

² Likewise but through 180o:

² reflection in l1
² reflection in l2

REVIEW SET 9A

1 a fa, b, c, d, e, f , g, hg b fa, b, d, fg
c fa, b, d, f , g, hg

2 A £ B = f(1, 2), (1, 4), (2, 2), (2, 4), (3, 2), (3, 4)g
6 f?, f1g, f2g, f3g, f1, 2g, f1, 3g, f2, 3g, f1, 2, 3gg

a no b no

7 a No, e.g., (1 ¤ 2) ¤ 1 = 3 ¤ 1 = 4
9

whereas 1 ¤ (2 ¤ 1) = 1 ¤ 3
4
= 7

4

i.e., (1 ¤ 2) ¤ 1 6= 1 ¤ (2 ¤ 1)

b No, e.g., (0 ¤ 1) ¤ 2 = 2 ¤ 2 = 24
0 ¤ (1 ¤ 2) = 0 ¤ 8 = 28

i.e., (0 ¤ 1) ¤ 2 6= 0 ¤ (1 ¤ 2)
c Yes, (a ¤ b) ¤ c

= (a+ b¡ 3ab) ¤ c
= a+ b+ c¡ 3ab¡ 3(a+ b¡ 3ab)c
= a+ b+ c¡ 3ab¡ 3ac¡ 3bc+ 9abc .... (1)

and likewise show a ¤ (b ¤ c) is also equal to (1).

8 b Each integer belongs to exactly one equivalence class con-
taining all integers which have the same remainder on di-
vision by 6 as that integer. These are the six equivalence
classes [0], [1], [2], [3], [4] and [5]:

9 b Each point (a, b) is an element of an equivalence class
containing all points lying on a square, centre (0, 0) with
vertex at (jaj+ jbj, 0).

f(0, 0)g is an equivalence class with only 1 element.

10 b Each point (a, b) belongs to an equivalence class consist-

ing of all points on the parabola y =
b

a2
x, excluding

(0, 0) where
b

a2
> 0:

11 Not correct as this does not show that xRx for all x 2 S:
x may not be related to any other element in the set.

12 ¤ 0 1 2 3 4 5

0 0 0 0 0 0 0

1 1 2 3 4 5 0

2 4 0 2 4 0 2

3 3 0 3 0 3 0

4 4 2 0 4 2 0

5 1 0 5 4 3 2

13 a i no ii yes iii does not exist iv not possible
b i no ii no iii does not exist iv not possible
c i no ii yes iii does not exist iv not possible
d i no ii no iii does not exist iv not possible

e i yes ii yes iii 0 iv ¡ a

1 + 3a
, a 6= ¡ 1

3

f i no ii no iii does not exist iv not possible

14 a yes, f¡1(x) = 3
p
x¡ 5 b yes, f¡1(x) = ex

c no d yes, f¡1(x) = 1
2
x e no

15 a i
³
1 2 3 4
2 1 4 3

´
ii
³
1 2 3 4
3 4 1 2

´
b i

³
1 2 3 4
1 4 2 3

´
ii
³
1 2 3 4
3 1 2 4

´
c n = 3

16 Associativity holds as 2£2 matrix multiplication is associa-
tive.

Closure holds as the product of any 2£ 2 matrix is always
a 2£ 2 matrix.h
1 0
0 1

i
= I is the identity matrix, a = 0:

The inverse of

h
1 a
0 1

i
is

h
1 ¡a
0 1

i
for all a 2 Z .h

1 a
0 1

i h
1 b
0 1

i
=
h
1 a+ b
0 1

i
=
h
1 b
0 1

i h
1 a
0 1

i
for all a, b 2 Z .

) commutativity holds

Thus, M under matrix multiplication forms an Abelian
group.

lx
lz
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17 S =
nh

a b
c d

i ¯̄̄
a, b, c, d 2 R , ad¡ bc = 1

o
Associativity holds for 2£ 2 matrices under £.

The product of two such matrices is another matrix where

jABj = jAj jBj = 1£ 1 = 1:
) closure under £:
I =

h
1 0
0 1

i
has jIj = 1, is the identity under £:

If A =
h
a b
c d

i
, A¡1 =

h
d ¡b
¡c a

i
2 S is the

multiplication inverse as
¯̄
A¡1¯̄ = ad¡ bc = jAj = 1:

Thus S under matrix multiplication forms a group.

19 £ M1 M2 M3 M4

M1 M1 M2 M3 M4

M2 M2 M3 M4 M1

M3 M3 M4 M1 M2

M4 M4 M1 M2 M3

Show that this
table is isomorphic
to another known
group.

20 a Assoc. holds for multiplication of all 3£ 3 matrices.

As"
1 k 0
0 1 0
0 0 2n

#"
1 l 0
0 1 0
0 0 2m

#
=

"
1 l + k 0
0 1 0
0 0 2n+m

#
S is closed under matrix multiplication."
1 0 0
0 1 0
0 0 1

#
is the identity matrix and is in S

fk = 0, n = 0g"
1 ¡k 0
0 1 0
0 0 2¡n

#
is the multiplicative inverse of"

1 k 0
0 1 0
0 0 2n

#
and it lies in S:

So, fS, £g is a group.

b Associativity holds for all 3£ 3 matrix multiplication.

As

"
1 n 1

2
n2

0 1 n
0 0 1

#"
1 m 1

2
m2

0 1 m
0 0 1

#

=

"
1 m+ n 1

2
m2 +mn+ 1

2
n2

0 1 m+ n
0 0 1

#

=

"
1 m+ n 1

2
(m+ n)2

0 1 m+ n
0 0 1

#
S is closed under multiplication."
1 0 0
0 1 0
0 0 1

#
where n = 0 is the inverse matrix

24 1 ¡n 1
2
n2

0 1 ¡n
0 0 1

35 is the inverse of

24 1 n 1
2
n2

0 1 n
0 0 1

35
under matrix multiplication.

) fS, £g is a group.

21 ± f1 f2 f3 f4
f1 f1 f2 f3 f4
f2 f2 f1 f4 f3
f3 f3 f4 f1 f2
f4 f4 f3 f2 f1

Show that this
table is isomorphic
to another known
group.

22 b 1 has order 1, 3 has order 6, 5 has order 6,
9 has order 3, 11 has order 3, 13 has order 2

c yes

23 Produce a Cayley table and establish an isomorphism with
a known group.

24 Associativity holds for multiplication of rationals.³
2a1 + 1

2b1 + 1

´³
2a2 + 1

2b2 + 1

´
=
2(a1a2 + a1 + a2) + 1

2(b1b2 + b1 + b2) + 1

establishes closure (a1, b1, a2, b2 2 Z ).

1 =
2(0) + 1

2(0) + 1
is the multiplicative identity.

The inverse of
2a+ 1

2b+ 1
is

2b+ 1

2a+ 1
and

2b+ 1

2a+ 1
2 S:

) fS, £g is a group.

25 Associativity does not apply.

REVIEW SET 9B

1 a f3, 6g b f0, 1, 5, 6, 9, 12g
c f0, 1, 3, 5, 7, 8, 9, 10, 11, 12, 13g
d f0, 1, 3, 5, 6, 8, 9, 10, 12g e f1, 5, 8, 10g

a b

c d

e

3 f?, f1g, f2g, f1, 2gg a no b no

4 a f(0, 0), (1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (0, 1), (1, 0),

(0, 2), (2, 0), (1, 2), (2, 1), (1, 3), (3, 1), (2, 3), (3, 2),

(2, 4), (4, 2), (3, 5), (5, 3), (4, 5), (5, 4)g

U

A B

C

0

9
12 3 1

5
2 4

10 8

7

11
13

U

A B

C U

A B

C

U

A B

C U

A B

C

U

A B

C
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b i yes ii yes iii no

5 b Each point (a, b) belongs to an equivalence class con-

sisting of all points on the circle, centre (0, 0), radiusp
a2 + b2:

f(0, 0)g is an equivalence class containing one element.

6 b Each point (a, b) belong to an equivalence class con-
sisting of all points with integer coordinates lying in a
horizontal line passing through (a, b).

7 a i injection ii surjection
b i not an injection ii not a surjection
c i not an injection ii a surjection
d i injection ii not a surjection

8 a 2 b 4 c 3

9 £ A B C D

A A B C D

B B A D C

C C D A B

D D C B A

10 b 1 has order 1, 7 has order 2,
9 has order 2, 15 has order 2

c not cyclic

11 Cayley
table is

± f1 f2 f3 f4 f5 f6
f1 f1 f2 f3 f4 f5 f6
f2 f2 f1 f3 f4 f5
f3 f3
f4 f4 f5 f6 f1 f2 f3
f5 f5
f6 f6

12 b no c m3

13 a (a, b) ¤ (c, d) = (ac, bc+ d)

) [(a, b) ¤ (c, d)] ¤ (e, f )

= (ac, bc+ d) ¤ (e, f )

= (ace, bce+ de+ f )

and (a, b) ¤ [(c, d) ¤ (e, f )]

= (a, b) ¤ (ce, de+ f )

= (ace, bce+ de+ f )

) ¤ is associative

b (1, 2) ¤ (2, 3) = (2, 4 + 3) = (2, 7)

(2, 3) ¤ (1, 2) = (2, 3 + 2) = (2, 5)

) ¤ is not commutative

c If (a, b) ¤ (x, y) = (a, b) then

(ax, bx+ y) = (a, b)

) x = 1, y = 0

also (1, 0) ¤ (a, b) = (a, (0) a+ b) = (a, b)

) identity is (1, 0).

d Consider (a, b) ¤ (x, y) = (1, 0)

) (ax, bx+ y) = (1, 0)

) x =
1

a
,
b

a
+ y = 0

y = ¡ b
a

Suggesting that (
1

a
, ¡ b

a
), a 6= 0 is the inverse of

(a, b).

Check: (
1

a
, ¡ b

a
) ¤ (a, b) = (1, ¡b+ b) = (1, 0) X

14 £ I A B

I I A B

A A B I

B B I A

16 a x = 3, 5 or 6 b x = 30 c x = 1, 3 d x = 2, 7

17 a 3 b 2 c 2

18 fS, £g is a subgroup of G

19 a a group b not a group

20 a 1, 2 b 1, 2, 3, 4 c 1, 5

21 b no c i yes ii yes d i yes ii yes

25 a x = 2 b x = 2, 4

26 a i not associative ii commutative iii no identity
iv no inverses

b i associative ii commutative iii no identity
iv no inverses

c i not associative ii commutative iii no identity
iv no inverses

d i not associative ii commutative iii no identity
iv no inverses

e i not associative ii not commutative
iii no identity iv no inverses

f i not commutative ii commutative iii no identity
iv no inverses

27 Not groups: a, b, c, f, g Groups: d, e

28 a i £9 1 2 4 5 7 8

1 1 2 4 5 7 8

2 2 4 8 1 5 7

4 4 8 7 2 1 5

5 5 1 2 7 8 4

7 7 5 1 8 4 2

8 8 7 5 4 2 1

b i £16 1 5 9 13

1 1 5 9 13

5 5 9 13 1

9 9 13 1 5

13 13 1 5 9

c i £20 1 9 11 19

1 1 9 11 19

9 9 1 19 11

11 11 19 1 9

19 19 11 9 1

d i £20 1 3 7 9

1 1 3 7 9

3 3 9 1 7

7 7 1 9 3

9 9 7 3 1

e i £20 1 9 13 17

1 1 9 13 17

9 9 1 17 13

13 13 17 9 1

17 17 13 1 9

b, d and e are isomorphic.
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EXERCISE 10A.1

1 Use the definition jaj =
½

a if a > 0

¡a if a < 0

2 Same hint as in 1.

4 If a < x < b and a < y < b then ¡b < ¡y < ¡a
and so a¡ b < x¡ y < b¡ a

) ¡(b¡ a) < x¡ y < b¡ a
) jx¡ yj < b¡ a

If two points lie in a particular interval on a number line,
then the distance between them must be less than the width
of the interval.

5 ja¡ bj = j(a¡ c) + (c¡ b)j
6 ja¡ cj+ jc¡ bj ftriangle inequalityg

6 jx¡ aj < a

2
) ¡a

2
< x¡ a < a

2
fsince a > 0g

) a

2
< x <

3a

2
) x >

a

2
7 j(x+ y)¡ (a+ b)j

= j(x¡ a) + (y ¡ b)j
6 jx¡ aj+ jy ¡ bj ftriangle inequalityg
< "+ "
i.e., < 2"

8 Let b = 1 and a = ", then by the AP there exists n

such that n" > 1 ) 1

n
< ":

9 Use Proof by Mathematical Induction.

10 Consider A = ]0, 1[, a subset of R +.

Suppose ® is the least element of A.

Then as ® > 0, 0 <
®

2
< ® where

®

2
2 A.

We have a contradiction as ® was the least element of A.

11 Suppose r + x is rational.

) r + x =
a

b
, b 6= 0, a, b 2 Z

) x =
a

b
¡ r which 2 Q , a contradiction

Similarly, suppose rx =
c

d
, d 6= 0, c, d 2 Z

) x =
c

dr
, which 2 Q , a contradiction.

EXERCISE 10A.2

1 a 5 b 0 c 0 d 1
2
ln 2 e 7

4
f 1

2 a 1
2

b 1
2

c 1 d 1 e 1
2

f 0 g 1 h 0

i 0 j ln
¡
a
b

¢
3 lim

x!¼
2

¡

tanx

secx

= lim
x!¼

2

¡

sec2 x

secx tanx
fL’Hôpital’s Ruleg

= lim
x!¼

2

¡

secx

tanx

= lim
x!¼

2

¡

secx tanx

sec2 x
fL’Hôpital’s Ruleg

= lim
x!¼

2

¡

tanx

secx
which goes nowhere.

But,
tanx

secx
=
sinx

cosx
¥ 1

cosx
= sinx

) lim
x!¼

2

¡

tanx

secx
= lim

x!¼
2

¡

sinx = 1

4 x ln
³
1 +

1

x

´
= x ln

³
1 + x

x

´
=
ln(1 + x)¡ lnx

x¡1

) lim
x!1

x ln
³
1 +

1

x

´
= lim

x!1

1

1 + x
¡ 1

x

¡ 1

x2

fL’Hôpital’s Ruleg

= lim
x!1

¡1
x(1 + x)

¡ 1

x2

= lim
x!1

x

1 + x

= lim
x!1

1
1

fL’Hôpital’s Ruleg
= 1

Now

³
1 +

1

x

´x
= eln(1+

1
x
)x = ex ln(1+

1
x
)

) lim
x!1

³
1 +

1

x

´x
= lim

x!1
ex ln(1+

1
x ) = e1 = e

5 Let a 2 Q and fxng be a sequence of irrational numbers
that converges to a.

Since f(xn) = 0 for all n 2 Z +, lim
n!1

f(xn) = 0

which is 6= f(a) = 1.

So, f(x) is discontinuous at all rational points.

EXERCISE 10A.3

1 a For x > 1, show that 0 <
x

2x5 + 3x2 + 1
<

1

2x4

and

Z 1

1

1

2x4
dx = 1

6
:

As

Z 1

1

1

2x4
dx converges, so doesZ 1

1

1

2x5 + 3x2 + 1
dx:

b Converges

2

¯̄̄
sinx

x3

¯̄̄
6
1

x3
. Show that

Z 1

1

1

x3
dx converges.

Hence

Z 1

1

¯̄̄
sinx

x3

¯̄̄
dx and

Z 1

1

sinx

x3
dx converge.

3 a converges b converges c diverges d converges

4 Consider p = 1 first. Use integration by parts to show that
the integral diverges.

Consider p < 1. Use integration by parts to show thatZ 1

e

lnx

xp
dx =

·
1

p¡ 1 x
1¡p lnx

¸1
e

¡ 1

p¡ 1

Z 1

e

1

xp
dx

and hence show this diverges.
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5 a
R1
0
xne¡x dx =

8<:
1 if n = 0
1 if n = 1
2 if n = 2
6 if n = 3

b As 1 = 0!, 1 = 1!, 2 = 2!, 6 = 3!

we predict
R1
0
xne¡x dx = n!

6 a ¼
4a

b 2 7 ¼
2
¡ tan¡1(ea) 9 2 10 tan¡1

¡
1
3

¢
EXERCISE 10A.4

1 a

Z 1

0

1p
x+ 1

dx ¼
1X
i=0

1p
i+ 1

b

Z 1

4

e¡x dx ¼
1X
i=4

e¡i

2 a

1X
i=0

1

i+ 2
¼
Z 1

0

1

x+ 2
dx

b

1X
i=3

i+ 1

i2
¼
Z 1

3

x+ 1

x2
dx

3 a Show that f 0(x) < 0 for all x > 0:

b Upper sum =

1X
i=0

e¡i
2

Lower sum =

1X
i=0

e¡(i+1)
2

c

4 a Show that f 0(x) < 0 for all x > 0:

b Upper sum =

1X
i=1

1

i2
Lower sum =

1X
i=1

1

(i+ 1)2

c

5 a Show that f 0(x) > 0 for all x > 0:

b Upper sum =

1X
i=1

¡1
(i+ 1)2

Lower sum =

1X
i=1

¡1
i2

c

1X
i=1

¡1
i2
<

Z 1

1

¡1
x2
dx <

1X
i=1

¡1
(i+ 1)2

EXERCISE 10B.1

1 a 0 b 0 c 3
5

d 1 e 0 f 16
81

2 a converges to 0 b diverges to 1 c converges to 1
d converges to 0 e converges to 0 f converges to 0

3 Show that an =
n+ 1

2n
: Hence lim

n!1
an =

1
2
:

4 a As n > 0, 1 + n > 1 ) 0 <
1

n+ 1
< 1

So lim
n!1

³
1

n+ 1

´n
= 0

b As n > 0, 2 +
1

n
> 2 and

³
2 +

1

n

´n
> 2n

) lim
n!1

³
2 +

1

n

´n
> lim

n!1
2n =1

5 As lim
n!1

an = a and lim
n!1

bn = b,

for given " > 0, there exists N such that

jan ¡ aj < "

2
and jbn ¡ bj < "

2

for all n > N

But j(an + bn)¡ (a+ b)j
= j(an ¡ a) + (bn ¡ b)j
6 jan ¡ aj+ jbn ¡ bj
<
"

2
+
"

2
i.e., < " for all n > N

) lim
n!1

(an + bn) = a+ b

6 Show that

¯̄̄
3n+ 5

7n¡ 4 ¡
3
7

¯̄̄
<

1

jn¡ 1j

If
1

n¡ 1 < ", i.e., n >
1

"
+ 1

then

¯̄̄
3n+ 5

7n¡ 4 ¡
3
7

¯̄̄
< ":

So, for a given " > 0,

¯̄̄
3n+ 5

7n¡ 4 ¡
3
7

¯̄̄
< "

for all n > N >
1

"
+ 1:

7 lim
n!1

®an = ® lim
n!1

an = ®a

Likewise lim
n!1

¯bn = ¯b

) lim
n!1

(®an + ¯bn) = lim
n!1

®an + lim
n!1

¯bn

= ®a+ ¯b

Now set ® = 1 and ¯ = ¡1 and the result follows.

EXERCISE 10B.2

1 a i Show that un+1 ¡ un =
25

(3n+ 5)(3n+ 2)

> 0 for all n 2 Z +

ii As un is increasing its lower bound is u1 = ¡1:

Also un =
2n¡ 7
3n+ 2

=
2
3
(3n+ 2)¡ 8 1

3

3n+ 2

) un =
2
3
¡ 8 1

3

3n+ 2
< 2

3
for n 2 Z +

) ¡1 6 un < 2
3

) un is bounded

b i monotonic increasing, lim
n!1

an = 1

ii monotonic increasing, lim
n!1

an = 1

iii monotonic decreasing, lim
n!1

an = 0

c First, note that un > 0 for all n 2 Z +.

Since
un+1
un

=
2n+ 1

2n+ 2
< 1,

un is monotonic decreasing

u1 =
1
2

is therefore an upper bound

) since 0 < un <
1
2

, fung is convergent
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2 If we replace 2 with k, then you should find

lim
n!1

un =
1
2
+ 1

2

p
1 + 4k:

3 Show that fxng is monotonic increasing by using the Principle

of Mathematical Induction.

Also use induction to prove that xn 6 4 for all n 2 Z +
lim
n!1

xn = 4:

4 a 2, 1 1
2

, 1 2
3

b un = 1 +
1

un¡1
and u1 = 1

c From a, un is not monotonic.

Explain why 1 6 un 6 2 is true.

d L =

p
5 + 1

2

5 a (1+x)n = 1+
¡
n

1

¢
x+
¡
n

2

¢
x2+

¡
n

3

¢
x3+ ::::::+

¡
n

n

¢
xn

b Replace
¡
n

1

¢
by n,

¡
n

2

¢
by
n(n¡ 1)

2!
,¡

n

3

¢
by

n(n¡ 1)(n¡ 2)
3!

, ......,
¡
n

n

¢
by

n!

n!
:

c Show that e1 = 2 and that en > en¡1 for n > 1:

d Show that 2 6 en < 3 to establish that en is bounded
and hence convergent.

e lim
n!1

³
1 +

1

n

´n
= lim

n!1

³
n+ 1

n

´n
= e

So, lim
n!1

³
1¡ 1

n

´n
= lim

n!1

³
n¡ 1
n

´n
= lim

m!1

³
m

m+ 1

´m+1
freplacing n¡ 1 by mg

=
lim
m!1

³
m

m+ 1

´
lim
m!1

³
m+ 1

m

´m
=
1

e

f
n!

nn
=
³
n¡ 1
n

´³
n¡ 2
n

´³
n¡ 3
n

´
::::::

³
1

n

´
) n!

nn
6

³
n¡ 1
n

´n¡2 ³ 1
n

´
fsince n 2 Z +g

where lim
n!1

³
n¡ 1
n

´n¡2
= lim

n!1

·³
n¡ 1
n

´n
£
³
n¡ 1
n

´¡2¸
=
1

e
£ 1¡2

=
1

e

) 0 <
n!

nn
<
³
n¡ 1
n

´n¡2 ³ 1
n

´
! 1

e
£ 0

) lim
n!1

n!

nn
= 0 fSqueeze theoremg

EXERCISE 10C.1

1 a e > 2 ) e2n > 4n ) 0 <
1

e2n
<
¡
1
4

¢n
where

1X
n=1

¡
1
4

¢n
is a convergent GP

So,

1X
n=1

1

e2n
converges. fComparison testg

b Show
n2

3n2 + 9n+ 6
! 1

3
as n!1

So, by the Test for Divergence,

1X
n=1

n2

3n2 + 9n+ 6
diverges.

c 0 <
3n + 2n

6n
<
3n + 3n

6n
= 2

³
3n

6n

´
= 2

¡
1
2

¢n
and

1X
n=1

21¡n is a convergent GP.

So,

1X
n=1

3n + 2n

6n
converges. fComparison testg

d

1X
n=1

³
1

n
¡ 1

n2

´
=

1X
n=2

³
1

n
¡ 1

n2

´
fas the first term was 0g

Now
1

n
¡ 1

n2
=
n¡ 1
n2

>

1
2
n

n2
for n > 2

) 1

n
¡ 1

n2
>

1

2n
for all n > 2:

But

1X
n=2

1

2n
diverges as

1X
n=2

1

n
diverges

)
1X
n=1

³
1

n
¡ 1

n2

´
diverges. fComparison testg

2 Let an =
2n2 + 3np
5 + n7

and bn =
2p
n3

=
2

n
3
2

:

Show that
an
bn
! 1 as n!1:

As

1X
n=1

1

n
3
2

converges fp-series testg

)
1X
n=1

2

n
3
2

also converges

)
1X
n=1

2n2 + 3np
5 + n7

converges fLimit Comparison Testg
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3
1

nn
6
1

n2
for all n 2 Z +

where

1X
n=1

1

n2
converges fp-series testg

)
1X
n=1

1

nn
converges fComparison testg

Also
1

n!
=

1

n(n¡ 1)(n¡ 2)::::::(3)(2)(1)

) 1

n!
6

1

2n¡1
for all n 2 Z +

where

1X
n=1

1

2n¡1
is a convergent GP

)
1X
n=1

1

n!
converges fComparison testg

4 a
1p

n(n+ 1)(n+ 2)
<

1p
n3

=
1

n
3
2

where

1X
n=1

1

n
3
2

converges fp-series testg

)
1X
n=1

1p
n(n+ 1)(n+ 2)

converges

fComparison testg

b
1

3
p
n(n+ 1)(n¡ 1)

=
1

3
p
n3 ¡ n >

1
3
p
n3

) 1
3
p
n(n+ 1)(n¡ 1)

>
1

n

where

1X
n=1

1

n
diverges

)
1X
n=1

1
3
p
n(n+ 1)(n¡ 1)

also diverges

fComparison testg

c
sin2 n

n
p
n
6

1

n
3
2

where

1X
n=1

1

n
3
2

converges fp-series testg

)
1X
n=1

sin2 n

n
p
n

converges fComparison testg

d

p
n

n¡ 1 >
p
n

n
=

1

n
1
2

where

1X
n=2

1

n
1
2

diverges fp-series testg

)
1X
n=2

p
n

n¡ 1 also diverges

e
1 + 2n

1 + 3n
<
2n + 2n

3n

So,
1 + 2n

1 + 3n
< 2

¡
2
3

¢n
where 2

1X
n=1

¡
2
3

¢n
is a convergent GP

Hence

1X
n=1

1 + 2n

1 + 3n
converges fComparison testg

f As n > lnn for all n,
1

lnn
>
1

n
:

But

1X
n=1

1

n
diverges

so

1X
n=1

1

lnn
also diverges. fComparison testg

5

1X
n=0

2n jsinn xj =
1X
n=0

(2 jsinxj)n

and so is a GP which converges when

j2 sinxj < 1, i.e., when ¡ 1
2
< sinx < 1

2

) 0 < x < ¼
6

, 5¼
6
< x < 7¼

6
, 11¼

6
< x < 2¼

6

1X
n=2

³
1

1 + c

´n
is a GP

S1 =
u1
1¡ r )

³
1

1 + c

´2
1¡ 1

1 + c

= 2

which has solutions c =
¡1§p3

2
:

7 a Consider f(x) =
x

x2 + 1
for x > 1

f 0(x) =
1¡ x2
(x2 + 1)2

< 0 for x > 1

) f(x) is decreasing for all x > 1

Since x2 > 1, x2 + 1 > 2, and so f(x) is positive

for all x > 1:

Since f(x) is continuous, positive, and decreasing, the

Integral Test can be used.

Now
R1
1

x

x2 + 1
dx

= lim
t!1

½Z t

1

1
2

³
2x

x2 + 1

´
dx

¾
= lim

t!1

©
1
2
ln
¯̄
t2 + 1

¯̄
¡ 1

2
ln 2
ª

=1

So,

1X
n=1

n

n2 + 1
diverges fIntegral testg
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b Consider f(x) = xe¡x
2

where x > 1:

f(x) > 0 for all x > 1 and

f 0(x) = e¡x
2

(1¡ 2x2) < 0 for all x > 1:

Since f(x) is continuous, positive, and decreasing, the

Integral Test can be used.

Now
R1
1
xe¡x

2

dx

= lim
t!1

nR t
1
¡ 1
2e

¡x2(¡2x) dx
o

= lim
t!1

n
¡ 1
2
e¡t

2 ¡
¡
¡ 1
2
e¡1
¢o

= 1
2
e¡1 i.e., is convergent

)
1X
n=1

ne¡n
2

is convergent.

c Consider f(x) =
lnx

x
for x > 1

f(x) > 0 for all x > 1

f 0(x) =
1¡ lnx
x2

) f 0(x) < 0 when 1¡ lnx < 0
i.e., lnx > 1

i.e., x > e
i.e., for all x > 3

Hence f(x) is decreasing for all x > 3:

Since f(x) is continuous, positive, and decreasing, the

Integral Test can be used.R1
1

lnx

x
dx = lim

t!1

£
1
2
(lnx)2

¤t
1
=1

So,

1X
n=1

lnn

n
diverges.

d Consider f(x) =
1

x lnx

f(x) > 0 for all x > 2

f 0(x) =
¡(lnx+ 1)
(x lnx)2

) f 0(x) < 0 when lnx+ 1 > 0

i.e., lnx > ¡1
i.e., x > e¡1

i.e., x > 1

Hence f(x) is decreasing for all x > 2:

Since f(x) is continuous, positive, and decreasing, the

Integral Test can be used.Z 1

2

1

x lnx
dx = lim

t!1
[ln (lnx)]t2 =1

So,

1X
n=2

1

n lnn
diverges.

8 Let f(x) =
1

1 + x2
, so f(x) > 0 for all x > 1:

f 0(x) =
¡2x

(1 + x2)2
< 0 for all x > 1

) f(x) is decreasing for all x > 1

By the Integral test,Z 1

1

1

1 + x2
dx <

1X
n=1

1

n2 + 1
< a1 +

R1
1

1

1 + x2
dx

where a1 = f(1) =
1
2
:

Complete the argument.

9 If p = 1, we showed in 7d that

1X
n=2

1

n lnn
diverges.

If p < 1, then since n > 2, np lnn < n lnn:

So,
1

np lnn
>

1

n lnn

)
1X
n=2

1

np lnn
diverges if p < 1 fComparison testg

and so diverges for p 6 1:

For n > 3,
1

np lnn
<

1

np
:

Now

1X
n=2

1

np
converges for p > 1: fp-testg

So

1X
n=2

1

np lnn
converges for p > 1:

fComparison testg

10 a

Z 1

13

1

5x2
dx < R12 <

Z 1

12

1

5x2
dx

where

Z 1

13

1

5x2
dx = lim

t!1

h¡1
5x

i1
13

= 1
65

and

Z 1

12

1

5x2
dx = lim

t!1

h¡1
5x

i1
12

= 1
60

So, 1
65
< R12 <

1
60

b Rk <

Z 1

k

1

x4
dx

) Rk < lim
t!1

h ¡1
3x3

it
k

) Rk <
1

3k3

So, we require
1

3k3
< 5£ 10¡7

i.e., k3 > 666 666 2
3

) k > 87:358::::

) k > 88
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11

1X
n=1

an is convergent ) lim
n!1

an = 0

) lim
n!1

1

an
=1

)
1X
n=1

1

an
diverges fTest of Divergenceg

12 S1 = 0 so a1 = 0

Also, an = Sn ¡ Sn¡1
) an =

n¡ 1
n+ 1

¡ n¡ 2
n

=
2

n(n+ 1)
1X
n=1

an = lim
n!1

Sn = 1

13 a S1 =
1
2

, S2 =
5
6

, S3 =
23
24

, S4 =
119
120

, S5 =
719
720

Conjecture: Sn =
(n+ 1)!¡ 1
(n+ 1)!

= 1¡ 1

(n+ 1)!

c

1X
n=1

n

(n+ 1)!
= lim

n!1
Sn = 1

14 a S16 > 1 +
4
2

b S2m > 1 +
m

2

c lim
m!1

³
1 +

m

2

´
= 1

so lim
m!1

S2m = 1 fComparison testg

Now for every m 2 Z +, there exists n 2 Z +
such that 2m 6 n 6 2m+1

) S2m 6 Sn 6 S2m+1 + 1 and as S2m !1
then Sn !1 as n!1: fSqueezeg

EXERCISE 10C.2

1 a If
1

r(r + 2)
=
A

r
+

B

r + 2
show that A = 1

2
and

B = ¡ 1
2
:

)

nX
r=1

1

r(r + 2)
= 1

2

nX
r=1

³
1

r
¡ 1

r + 2

´
= 1

2

¡
1
1
¡ 1

3

+ 1
2
¡ 1

4

+ 1
3 ¡ 1

5

+ 1
4
¡ 1

6
...

+ 1
n¡2 ¡ 1

n

+ 1
n¡1 ¡ 1

n+1

+ 1
n
¡ 1

n+2

¢
= 1

2

¡
3
2
¡ 1

n+1
¡ 1

n+2

¢
)

1X
r=1

1

r(r + 2)
= 1

2
£ 3

2
= 3

4n
as n!1,

1

n+ 1
and

1

n+ 2
! 0

o

b If
1

r(r + 1)(r + 2)
=
A

r
+

B

r + 1
+

C

r + 2

show that A = 1
2

, B = ¡1, C = 1
2

Then show that
nX
r=1

1

r(r + 1)(r + 2)
= 1

4
¡ 1

2(n+ 1)
+

1

2(n+ 2)

Hence show

1X
r=1

1

r(r + 1)(r + 2)
= 1

4

2 a Start with RHS of equation and use the recurrence
relationship to simplify it to become equal to the LHS.

b Use a and then write down the series of differences.

After cancellation you should obtain a limit of
1

f1f2
which is 1.

3

nX
r=1

¡p
r + 1¡pr

¢
after cancellation becomes

p
n+ 1¡1

)
1X
r=1

¡p
r + 1¡pr

¢
= lim

n!1
(
p
n+ 1¡ 1)

= 1

4

1X
n=1

¡
sin
¡
1
n

¢
¡ sin

¡
1

n+1

¢¢
= sin 1¡ sin( 1

2
)

+ sin( 12 )¡ sin( 13 )
+ sin( 1

3
)¡ sin( 1

4
)

+ ......

= sin 1

5 If
1

(x+ n)(x+ n¡ 1) =
A

x+ n
+

B

x+ n¡ 1
show that A = ¡1 and B = 1:

Note that the expression is undefined whenever x = ¡n
or ¡n+ 1:
Then show that

1X
n=1

1

(x+ n)(x+ n¡ 1) =
1

x

which is valid provided x 6= 0:
So, the series converges if x 6= 0, ¡1, ¡2, ....

6

1X
n=1

1¡ n
n2

=

1X
n=1

1

n2
¡

1X
n=1

1

n

which diverges as

1X
n=1

1

n2
converges and

1X
n=1

1

n
diverges.

1X
n=1

1

n
¡

1X
n=1

1¡ n
n2

= 2

1X
n=1

1

n
¡

1X
n=1

1

n2

which diverges as

1X
n=1

1

n
diverges and

1X
n=1

1

n2
converges.

1X
n=1

1

n
¡

1X
n=1

n¡ 1
n2

=

1X
n=1

1

n2
which converges
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7 a This series is

1X
n=2

(¡1)n
lnn

If f(x) =
1

lnx
, f 0(x) =

¡1
x[lnx]2

< 0 for all x > 2

) f(x) is decreasing for all x > 2 and lim
n!1

1

lnn
= 0

So,

1X
n=2

(¡1)n
lnn

is a converging alternating series.

b Show lim
n!1

p
n

n+ 4
= 0

If f(x) =

p
x

x+ 4
then f 0(x) =

4¡ x
2
p
x(x+ 4)2

) f 0(x) < 0 for all x > 4

) f(x) is decreasing for x > 4

)
1X
n=1

(¡1)n+1pn
n+ 4

converges

c lim
n!1

n!

nn
= 0 ) lim

n!1

nn

n!
=1

So, by the Test
for Divergence

1X
n=1

(¡1)nnn
n!

diverges.

d lim
n!1

sin
³
¼

n

´
= 0

If f(x) = sin
³
¼

x

´
then f 0(x) = cos

³
¼

x

´
£ ¡¼
x2

) f 0(x) < 0 for all x > 2

) f(x) is decreasing for all x > 2

So,

1X
n=1

(¡1)n sin
³
¼

x

´
is a converging alternating series.

e lim
n!1

1

(lnn)
1
3

= 0

Let f(x) =
1

(lnx)
1
3

= [lnx]¡
1
3

) f 0(x) = ¡ 1
3
[lnx]¡

4
3 £ 1

x
=

¡1
3x[lnx]

4
3

) f 0(x) < 0 for all x > 2

) f(x) is decreasing for all x > 2

So,

1X
n=2

(¡1)n¡1
3
p
lnn

converges.

f

1X
n=1

sin
¡
n¼
2

¢
n!

=
1

1!
¡ 1

3!
+
1

5!
¡ 1

7!
+ ::::

=

1X
n=1

(¡1)n¡1
(2n¡ 1)! where lim

n!1

1

(2n¡ 1)! = 0

Now

½
1

(2n¡ 1)!

¾
is a decreasing sequence.

So, the series converges.

g lim
n!1

1

2nn!
= 0

and
1

2n+1(n+ 1)!
<

1

2nn!
for all n > 1

)

n
1

2nn!

o
is a decreasing sequence.

So, the series converges.

h lim
n!1

n2

n3 + 1
= 0

Let f(x) =
x2

x3 + 1
) f 0(x) =

x(2¡ x3)
(x3 + 1)2

For x > 2, f 0(x) < 0

Thus

½
n2

n3 + 1

¾
is decreasing for all n > 2:

Hence,

1X
n=1

(¡1)n+1 n2

n3 + 1
converges.

8 a S4 = 0:625 b 0:8415 c 0:6065

9 S1 = 1 S5 ¼ 0:904 412 S9 ¼ 0:902 116 5
S2 = 0:875 S6 ¼ 0:899 782 4 S10 ¼ 0:901 116 5
S3 ¼ 0:912 037 S7 ¼ 0:902 697 9
S4 ¼ 0:896 412 S8 ¼ 0:900 744 7

11 a
an+1
an

= ¡ 3

n+ 1

and so lim
n!1

¯̄̄
an+1
an

¯̄̄
= 0

Hence

1X
n=1

(¡3)n
n!

is absolutely convergent.

b
an+1
an

= ¡ 2(n2 + 1)

n2 + 2n+ 2
= ¡ 2 + 2

n2

1 + 2
n
+ 2

n2

and so lim
n!1

¯̄̄
an+1
an

¯̄̄
= 2

So,

1X
n=1

(¡1)n2n
n2 + 1

is divergent

c
arctann

n3
6

¼
2

n3
for all n > 1

Now

1X
n=1

1

n3
converges fp-series testg

) ¼
2

1X
n=1

1

n3
converges

)
1X
n=1

(¡1)n arctann
n3

is absolutely convergent.
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d

¯̄̄
1¡ 3n
3 + 4n

¯̄̄
=

¯̄̄
3n¡ 1
3 + 4n

¯̄̄
<
3n

4n
for all n > 1

)
¯̄̄
1¡ 3n
3 + 4n

¯̄̄
< 3

4
for all n > 1

Thus

¯̄̄
1¡ 3n
3 + 4n

¯̄̄n
<
¡
3
4

¢n
and

1X
n=1

¡
3
4

¢n
is a converging GP

By the Comparison test,

1X
n=1

³
1¡ 3n
3 + 4n

´n
is absolutely convergent.

12 a If an =
xn

n!
then

¯̄̄
an+1
an

¯̄̄
=
¯̄̄
x

n+ 1

¯̄̄
Since lim

n!1

¯̄̄
an+1
an

¯̄̄
= 0,

1X
n=1

xn

n!
converges for all x 2 R .

b By the converse of the Test for Divergence, as
1X
n=1

xn

n!
converges, lim

n!1

xn

n!
= 0

13 a By 12a,

1X
n=0

10n

n!
converges.

b For n > 1,
1p
n£ n >

1p
n(n+ 1)

>
1p

n(n+ 2) + 1

i.e.,
1

n
>

1p
n(n+ 1)

>
1

n+ 1

where

1X
n=1

1

n
and

1X
n=1

1

n+ 1
are divergent

)
1X
n=1

1p
n(n+ 1)

diverges fSqueezeg

c lim
n!1

2n

8n¡ 5 =
1
4

So,

1X
n=1

2n

8n¡ 5 diverges.

d

¯̄̄̄
¯ cos

¡
n
2

¢
n2 + 4n

¯̄̄̄
¯ 6 1

n2
for n > 1

where

1X
n=1

1

n2
converges

)
1X
n=1

cos
¡
n
2

¢
n2 + 4n

converges.

e
n3 + 1

n4 ¡ 1 >
n3 + 1

n4
for all n > 1

So
n3 + 1

n4 ¡ 1 >
1

n
+
1

n4

where

1X
n=1

1

n
diverges and

1X
n=1

1

n4
converges

)

1X
n=1

n3 + 1

n4 ¡ 1 diverges.

f

¯̄̄
an+1
an

¯̄̄
=

¯̄̄
n+ 1

3n+ 5

¯̄̄
which ! 1

3
as n!1

So,

1X
n=0

an absolutely converges fRatio testg

14 If an =
1

n2
,
an+1
an

=
n2

(n+ 1)2

So, lim
n!1

¯̄̄
an+1
an

¯̄̄
= 1 Inconclusive.

If an =
1

n
,
an+1
an

=
n

n+ 1

So, lim
n!1

¯̄̄
an+1
an

¯̄̄
= 1 Inconclusive.

EXERCISE 10C.3

1 a

¯̄̄
an+1
an

¯̄̄
=
¯̄̄
x

n+ 1

¯̄̄
) lim

n!1

¯̄̄
an+1
an

¯̄̄
= 0

So, radius of convergence is 1 and the interval of
convergence is R .

b

¯̄̄
an+1
an

¯̄̄
=
¯̄̄³
n+ 1

n

´
5x
¯̄̄
) lim

n!1

¯̄̄
an+1
an

¯̄̄
= j5xj

So,

1X
n=0

an is absolutely convergent if j5xj < 1,

i.e., ¡ 1
5
< x < 1

5

When x = 1
5

,

1X
n=1

an =

1X
n=1

n which diverges.

When x = ¡ 1
5

,

1X
n=1

an =

1X
n=1

(¡1)nn which diverges.

Hence the radius of convergence is 1
5

and the interval of

convergence is ]¡1
5

, 1
5
[ :

c

¯̄̄
an+1
an

¯̄̄
=

¯̄̄̄³
n+ 1

n+ 2

´2
3x

¯̄̄̄
) lim

n!1

¯̄̄
an+1
an

¯̄̄
= j3xj

So,

1X
n=0

an is absolutely convergent if j3xj < 1,

i.e., ¡ 1
3
< x < 1

3

When x = ¡ 1
3

,

1X
n=0

an =

1X
n=0

(¡1)n
(n+ 1)2

which

converges by the Alternating Series Test.

When x = 1
3

,

1X
n=0

an =

1X
n=0

1

(n+ 1)2
which

converges by comparison with

1X
n=1

1

n2
:

Hence, the radius of convergence is 1
3 and the interval

of convergence is [¡ 1
3

, 1
3
]:
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d

¯̄̄
an+1
an

¯̄̄
=

¯̄̄̄
x2

(2n+ 1)(2n)

¯̄̄̄
) lim

n!1

¯̄̄
an+1
an

¯̄̄
= 0

So, radius of convergence is 1, and the interval of
convergence is R .

e

¯̄̄
an+1
an

¯̄̄
=

¯̄̄̄
n lnn

(n+ 1) ln(n+ 1)
(2x+ 3)

¯̄̄̄
and lim

n!1

¯̄̄
an+1
an

¯̄̄
= j2x+ 3j

So,

1X
n=2

is absolutely convergent for j2x+ 3j < 1,

i.e., ¡1 < 2x+ 3 < 1 i.e., ¡2 < x < ¡1

When x = ¡1, we have

1X
n=2

(¡1)n
n lnn

Show that this is a converging alternating series.

When x = ¡2, we have

1X
n=2

1

n lnn
which is divergent

by the integral test.

So, the radius of convergence is 1
2

and the interval of

convergence is ¡2 < x 6 ¡1 i.e., ]¡2, ¡1] :

2 an =
(2)(4)(6) :::::: (2n)xn

(1)(3)(5) :::::: (2n¡ 1)

)

¯̄̄
an+1
an

¯̄̄
=
¯̄̄
2n+ 2

2n+ 1
x
¯̄̄
! jxj as n!1

So,

1X
n=1

an is abs. convgt. for jxj < 1 i.e., ¡1 < x < 1

When x = 1, an =
(2)(4)(6) :::::: (2n)

(1)(3)(5) :::::: (2n¡ 1) which is > 1

for all n 2 Z +:
So, lim

n!1
an 6= 0

Thus

1X
n=1

an and

1X
n=1

(¡1)nan diverge fTest of Div.g

The radius of convergence is 1.

The interval of convergence is ]¡1, 1[ :

3 f(x) = 1 + x2 + x4 + x6 + ::::::

+2x(1 + x2 + x4 + x6 + ::::::)

=
1

1¡ x2 + 2x
³

1

1¡ x2
´

for jj < 1

fsum of an infinite GPg
i.e., f(x) =

1 + 2x

1¡ x2 and the interval of conv. is ]¡1, 1[ :

4

1X
n=0

cnx
n converges provided jxj < R:

Letting x = y2,

1X
n=0

cny
2n converges

provided
¯̄
y2
¯̄
< R i.e., jyj < p

R:

) the radius of convergence of

1X
n=0

cnx
2n is

p
R:

5 If

1X
n=0

cnx
n and

1X
n=0

dnx
n are convergent

then

1X
n=0

cnx
n +

1X
n=0

dnx
n =

1X
n=0

(cn + dn)x
n:

Hence

1X
n=0

(cn + dn)x
n is convergent

only if

1X
n=0

cnx
n and

1X
n=0

dnx
n are convergent.

This occurs when jxj > 2, so the radius of conv. is 2:

6 For the first power series

lim
n!1

¯̄̄
an+1
an

¯̄̄
= lim

n!1

¯̄̄̄
n2

(n+ 1)2

¡
1
3

¢
x

¯̄̄̄
=
¯̄̄
x

3

¯̄̄
and is convergent for

¯̄̄
x

3

¯̄̄
< 1 i.e., jxj < 3

) its radius of convergence is 3.

At x = 3,

1X
n=1

an =

1X
n=1

1

n2
which is convergent

At x = ¡3,

1X
n=1

an =

1X
n=1

(¡1)n
n2

which converges
(absolutely)

) the interval of convergence is [¡3, 3]:

For the second power series

lim
n!1

¯̄̄
an+1
an

¯̄̄
= lim

n!1

¯̄̄
n

n+ 1

¡
1
3

¢
x

¯̄̄
=

¯̄̄
x

3

¯̄̄
and is convergent for jxj < 3
) its radius of convergence is also 3.

At x = 3,

1X
n=1

an =
1
3

1X
n=1

1

n
which diverges

At x = ¡3,

1X
n=1

an =
1
3

1X
n=1

(¡1)n¡1
n

which converges
(conditionally)

) its interval of convergence is [¡3, 3[:

7
d

dx

Ã
1X
n=1

xn

n!

!
=

1X
n=1

d

dx

³
xn

n!

´
=

1X
n=1

xn¡1

(n¡ 1)!
which converges for all x 2 R . fsee 1 agZ x

0

Ã
1X
n=0

tn

n!

!
dt =

1X
n=0

μZ x

0

tn

n!
dt

¶

=

1X
n=0

·
tn+1

(n+ 1)!

¸x
0

=

1X
n=0

xn+1

(n+ 1)!

which converges for all x 2 R fRatio Testg
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EXERCISE 10D

1 ln(1 + x)

= x¡ x2

2
+
x3

3
¡ x4

4
+ ::::::+ (¡1)n¡1 x

n

n
+Rn(x : 0)

Interval of convergence ]¡1, 1[ :

Rn(x: 0) = f (n+1)(c)
(x¡ 0)n+1
(n+ 1)!

=
(n¡ 1)!(¡1)n¡1

(1 + c)n
xn+1

(n+ 1)!

=
(¡1)n¡1

(1 + c)n(n+ 1)n
xn+1

! 0 for jxj < 1, c > 0

2 (1 + x)p

= 1 + px+
p(p¡ 1)
2!

x2 +
p(p¡ 1)(p¡ 2)

3!
x3 + ::::::

::::::+
p(p¡ 1)(p¡ 2)::::::(p¡ n+ 1)

n!
xn +Rn(x : 0)

Rn(x : 0)

=

·
p(p¡ 1)(p¡ 2)::::::(p¡ n)(1 + c)p¡n¡1

(n+ 1)!

¸
xn+1

= an¯̄̄
an+1
an

¯̄̄
=
¯̄̄
p¡ n¡ 1
n+ 2

¯̄̄ ¯̄̄
x

1 + c

¯̄̄
) lim

n!1

¯̄̄
an+1
an

¯̄̄
=
¯̄̄
x

1 + c

¯̄̄
For c > 0, lim

n!1

¯̄̄
an+1
an

¯̄̄
< 1 for jxj < 1

So, the radius of convergence is 1.

(1 + x2)¡1 is obtained by replacing x by x2 and p by ¡1.

Notice that the coefficient of xn when p = ¡1 is

(¡1)(¡2)(¡3)::::::(¡n)
n!

= (¡1)n

So, (1 + x2)¡1 = 1¡ x2 + x4 ¡ x6 + x8 ¡ ::::::
+(¡1)nx2n +Rn(x2 : 0)

3 If f(x) = lnx, f (n)(x) =
(¡1)n¡1(n¡ 1)!

xn

) f (n)(2) =
(¡1)n¡1(n¡ 1)!

2n

So, lnn

= f(2) +
f 0(2)(x¡ 2)

2!
+
f 00(2)(x¡ 2)2

3!
+ ::::::

::::::+
f (n)(2)(x¡ 2)n

n!
+Rn(x : 2)

= ln 2 +
1

2

(x¡ 2)
1!

¡ 1!

22
(x¡ 2)2
2!

+
2!

23
(x¡ 2)3
3!

¡ ::::::

= ln 2 + 1
2
(x¡ 2)1 ¡ 1

8
(x¡ 2)2 + 1

24
(x¡ 2)3 ¡ ::::::

...... +
(¡1)n¡1
n2n

(x¡ 2)n +Rn(x : 2)

lim
n!1

¯̄̄
an+1
an

¯̄̄
= lim

n!1

¯̄̄
n

n+ 1

³
x¡ 2
2

´¯̄̄
=

¯̄̄
x¡ 2
2

¯̄̄

and we have convergence for

¯̄̄
x¡ 2
2

¯̄̄
< 1 i.e., jx¡ 2j < 2

) radius of convergence is 2.

4 a sinx = x¡ x3

3!
+
x5

5!
¡ ::::+ (¡1)nx2n+1

(2n+ 1)!
+ ::::

and converges for all x 2 R

So, x sinx = x2 ¡ x4

3!
+
x6

5!
¡ ::::+ (¡1)n x2n+2

(2n+ 1)!
+ ::::

and converges for all x 2 R

b ex = 1 + x+
x2

2!
+
x3

3!
+
x4

4!
+ ::::+

xn

n!
+ ::::

and converges for all x 2 R

So, e¡x
2

= 1¡ x2 + x4

2!
¡ x6

3!
+ ::::+

(¡1)nx2n
n!

+ ::::

and converges for all x 2 R . fRatio testg

c cosx = 1¡ x2

2!
+
x4

4!
¡ x6

6!
+ ::::+

(¡1)nx2n
(2n)!

+ ::::

So, cos(x3)

= 1¡ x6

2!
+
x12

4!
¡ x18

6!
+ ::::+

(¡1)nx6n
(2n)!

+ ::::

which converges for all x 2 R as

lim
n!1

¯̄̄
an+1
an

¯̄̄
= lim

n!1

¯̄̄̄
x6n+6

(2n+ 2)!

(2n)!

x6n

¯̄̄̄
= lim

n!1

¯̄̄̄
x6

(2n+ 1)(2n+ 2)

¯̄̄̄
= 0

5 sinx = x¡ x3

3!
+
x5

5!
+R5(x)

where R5(x) =
f (6)(c)x6

6!
=
¡ sin c£ x6

6!

where c 2 ]¡ 0:3, 0:3[

On this interval, f (6)(c) is maximum when c = 0:3:

) maximum error ¼ (0:3)6

720
£ sin 0:3 ¼ 2:992£ 10¡7

6 3o = ¼
60

radians. So, sin 3o = sin
¡
¼
60

¢
sin 3o ¼ ¼

60
¡
¡
¼
60

¢3
3!

+

¡
¼
60

¢5
5!

¡ ::::::

¼ 0:052 359 9¡ 0:000 023 9 + 3:3£ 10¡9
¼ 0:052 34

7 ex = 1 + x+
x2

2!
+
x3

3!
+
x4

4!
+ ::::::

So, e¡x
2

= 1¡ x2 + x4

2!
¡ x6

3!
+
x8

4!
¡ ::::::

)
R 1
0
e¡x

2

dx

¼
·
x¡ x3

3
+
x5

10
¡ x7

42
+
x9

216
¡ x11

1320
+
x13

9360

¸1
0

¼ 0:747 (to 3 d.p.)
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8 ex
2

= 1 + x2 +
x4

2!
+
x6

3!
+
x8

4!
+ ::::::

So,
R 1
0
ex

2

dx

¼
·
x+

x3

3
+
x5

10
+
x7

42
+
x9

216
+
x11

1320
+
x13

9360

¸1
0

¼ 1:463

9 From question 2, (1 + x2)¡1

= 1¡ x2 + x4 ¡ x6 + x8 ¡ ::::::+ (¡1)nx2n + ::::::
Integrating both sides with respect to x gives

arctanx = x¡ x3

3
+
x5

5
¡ x7

7
+
x9

9
¡ ::::::

+
(¡1)nx2n+1
2n+ 1

+ ::::::

10 2x = ex ln 2

) 2x = 1 + x ln 2 +
(x ln 2)2

2!
+
(x ln 2)3

3!
+ ::::::

+
(x ln 2)n

n!
+ ::::::

Since the interval for convergence for ex is R then R is
the interval of convergence for 2x.

11 From question 2,

(1 + x)¡1 = 1¡ x+ x2 ¡ x3 + x4 ¡ x5 + ::::::
So, (1 + x3)¡1 = 1¡ x3 + x6 ¡ x9 + x12 ¡ x15 + ::::::
andZ 1

3

0

1

1 + x3
dx ¼

·
x¡ x4

4
+
x7

7
¡ x10

10
+
x13

13
¡ ::::::

¸ 1
3

0

¼ 0:3303
12 From question 1,

ln(1 + x) = x¡ x2

2
+
x3

3
¡ x4

4
+ ::::::

) ln(1¡ x) = ¡x¡ x2

2
¡ x3

3
¡ x4

4
¡ ::::::

But ln
³
1 + x

1¡ x
´
= ln(1 + x)¡ ln(1¡ x)

) ln
³
1 + x

1¡ x
´
= 2x+

2x3

3
+
2x5

5
+
2x7

7
+ ::::::

If
1 + x

1¡ x = 2, then x = 1
3

) ln 2 ¼ 2
¡
1
3

¢
+ 2

3

¡
1
3

¢3
+ 2

5

¡
1
3

¢5
i.e., ln 2 ¼ 0:693

¡
or 842

1215

¢
13 ex = 1 + x+

x2

2!
+
x3

3!
+
x4

4!
+
x5

5!
+ ::::::

e¡1 = 1¡ 1 + 1

2!
¡ 1

3!
+
1

4!
¡ 1

5!
+ ::::::

=

1X
n=0

(¡1)n
n!

where lim
n!1

1

n!
= 0

and
1

n!
is a positive decreasing sequence.

So, jS ¡ Snj 6 bn+1
fAlternating Series Est. Theoremg
) jS ¡ S10j 6 b11 = 1

10!
< 5£ 10¡7

and S10 ¼ 0:367 879

14 ex = 1 + x+
x2

2!
+
x3

3!
+
x4

4!
+ ::::::

> 1 + x for all x > 0

So, ex > 1 + x is true as required

Thus (1 + u1)(1 + u2)::::::(1 + un)

6 eu1eu2 ::::::eun

6 eu1+u2+::::::+un½
nQ
k=1

(1 + uk)

¾
is increasing as 1 + ui > 1

for i = 1, 2, 3, ......, k

and
nP
k=1

uk > 0

If
nP
k=1

uk converges then e

nP
k=1

uk

is an upper

bound for fang : Hence
nQ
k=1

(1 + uk) converges

fMonotonic convergence theoremg

15 a The roots of
sinx

x
are the solutions of

sinx

x
= 0

i.e., sinx = 0 but x 6= 0
These are x = k¼, k 2 Z , k 6= 0

b sinx = x¡ x3

3!
+
x5

5!
¡ x7

7!
+ ::::+

(¡1)nx2n¡1
(2n¡ 1)! + ::::

)
sinx

x

= 1¡ x2

3!
+
x4

5!
¡ x6

7!
+ ::::+

(¡1)nx2n¡2
(2n¡ 1)! + ::::

where lim
n!1

¯̄̄
an+1
an

¯̄̄
= lim

n!1

¯̄̄̄
x2

(2n+ 1)2n

¯̄̄̄
= 0

Interval of convergence is R .

c The zeros of

³
1¡ x

¼

´³
1 +

x

¼

´³
1¡ x

2¼

´³
1 +

x

2¼

´
are §¼, §2¼, §3¼, ......

d Multiplying in pairs³
1¡ x

¼

´³
1 +

x

¼

´
= 1¡ x2

¼2³
1¡ x

2¼

´³
1 +

x

2¼

´
= 1¡ x2

4¼2

...

etc.

From a and c,
sinx

x
and the product³

1¡ x

¼

´³
1 +

x

¼

´³
1¡ x

2¼

´³
1 +

x

2¼

´
::::::

have the same zeros, supporting Euler’s claim.

i.e.,
sinx

x
=

µ
1¡ x2

¼2

¶µ
1¡ x2

4¼2

¶µ
1¡ x2

9¼2

¶
e The coefficient of x2 in

sinx

x
is ¡ 1

3!

and the coefficient of x2 in the product expansion
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is

³
¡ 1

¼2

´h
1 +

1

22
+
1

32
+ ::::::

i
Thus 1 +

1

22
+
1

32
+ :::::: =

¼2

3!
=
¼2

6

f

1X
r=1

1

(2r)2
= 1

4

1X
r=1

1

r2
=
¼2

24

)
1X
r=1

1

(2r ¡ 1)2 =
¼2

6
¡ ¼2

24
=
¼2

8

EXERCISE 10E.1

1
x

¡2 ¡1 0 1 2

¡2 0:70 0:35 0 ¡0:35 ¡0:70
¡1 0:35 0:17 0 ¡0:17 ¡0:35

y 0 0 0 0 0 0

1 ¡0:35 ¡0:17 0 0:17 0:35

2 ¡0:70 ¡0:35 0 0:35 0:70

2 a

b

3

4

dy

dx
is undefined when y = 5x¡ 10

dy

dx
is 0 when x2 + 4y2 = 1

5

n
xn+1 = xn + h
yn+1 = yn + hf(xn, yn) where h = 0:2

and f(xn, yn) = 1 + 2xn ¡ 3yn
) yn+1 = yn + 0:2(1 + 2xn ¡ 3yn)

= 0:2 + 0:4xn + 0:4yn
x0 = 0
x1 = 0:2
x2 = 0:4
x3 = 0:6
x4 = 0:8
x5 = 1

y0 = 1
y1 = 0:6
y2 = 0:52
y3 = 0:568
y4 = 0:6672
y5 = 0:786 88

So, y(1) ¼ y5 ¼ 0:787

6

n
xn+1 = xn + 0:1
yn+1 = yn + 0:1 (sin(xn + yn))

x0 = 0
x1 = 0:1
x2 = 0:2
x3 = 0:3
x4 = 0:4
x5 = 0:5

y0 ¼ 0:5
y1 ¼ 0:547 94
y2 ¼ 0:608 30
y3 ¼ 0:680 61
y4 ¼ 0:763 69
y5 ¼ 0:855 52

So, y(0:5) ¼ y5 ¼ 0:856
EXERCISE 10E.2

1 Solve all of these by separation of variables.

a y = 3 + ln 2¡ ln j2¡ xj b y = arcsin
£
3
2
(x2 ¡ 1)

¤
c y = ln

³
4
p
j2x2 + 4x+ 1j(e2 + 3)¡ 3

´
d y = 3ex

¯̄̄
x¡ 1
x+ 1

¯̄̄
e y = arctan(ln jxj)

2 a
dT

dt
= k(T ¡R), k a constant

b Solve
dT

dt
= k(T ¡ 18) to obtain T = Aekt + 18

Use T (0) = 82 to find A = 64

and T (6) = 50 to find ek =
¡
1
2

¢ 1
6

So, T = 64
¡
1
2

¢ t
6 + 18

Show that when T = 26, t = 18

and when T = 20, t = 30

So, it would take 30¡ 18 = 12 min.
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�
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3

gradient of OP is
y

x

) gradient of PQ = ¡x
y

Solve
dy

dx
= ¡x

y
to obtain

y2

2
=
¡x2
2

+ c

Given (1, 2) lies on the curve, show that c = 2 1
2

Hence, y2 = 5¡ x2:
4

Slope of AB =
dy

dx
= ¡ y

2x

Solve this to obtain ln jyj = ¡ 1
2
ln jxj+ c

Use the point (1, 1) to show c = 0

Hence show y =
1p
x
:

5 a
dm

dt
/ m i.e.,

dm

dt
= ¡km, k a constant > 0

fthe negative sign is there because the mass is decreasingg
Solving gives m = Ae¡kt

When t = 0, m = m0 ) A = m0

So, m = m0e
¡kt

b When t = 30, m = 4
5
m0

Use this to obtain e¡k = (0:8)
1
30

So, m = m0(0:8)
t
30

m = 1
2
m0 when t ¼ 93:2 days

6 If y = vx,
dy

dx
=
dv

dx
x+ v

a
dy

dx
=
x¡ y
x

becomes

dv

dx
x+ v =

x¡ vx
x

Simplify to get
1

1¡ 2v
dv

dx
=
1

x

then solve to get 1¡ 2v = A

x2

i.e., 1¡ 2y

x
=

A

x2

i.e., x2 ¡ 2xy = A (A a constant)

b arctan
³
y

x

´
¡ 1

2
ln(x2 + y2) = c (c a constant)

c x2 + y2 = Ax, A a constant

7 a Let y = vx, )
dy

dx
=
dv

dx
x+ v

) x
dv

dx
+ v = v + f(v)g(x)

) x
dv

dx
= f(v)g(x)

) 1

f(v)

dv

dx
=
g(x)

x
i.e., is separable

b For x
dv

dx
= y + e

y

x

we let y = vx

and hence show that e¡v
dv

dx
= x¡2

Solve to show v = ln
³

x

1¡ cx
´

) y = x ln
³

x

1¡ cx
´

8 a y = 3 + ce¡4x b y = ¡ 1
2
ex +

³
2

e3
+

1

2e2

´
e3x

c y = x¡ 1 + 1
2
ex +

µ
e¡ e2

2

¶
e¡x

d y = sinx+
cosx

x
+
c

x

9 Show that
dy

dx
+
³
1 +

1

x

´
y = 1¡ x

The IF is e

R
(1+ 1

x )dx = ex+lnx = exelnx = xex

) xex
dy

dx
+ (x+ 1)exy = exx(1¡ x)

)
d

dx
(xexy) = xex ¡ x2ex

) xyex =
R
(xex ¡ x2ex) dx

Using integration by parts

xyex = ex
¡
¡x2 + 3x¡ 3

¢
+ c

) y = ¡x+ 3¡ 3

x
+

c

xex

10 a i Lfeaxg =

Z 1

0

e¡sxeax dx

=

Z 1

0

e(a¡s)x dx

=
h

1

a¡ se
(a¡s)x

i1
0

= ¡ 1

a¡ se
0 fsince s > ag

=
1

s¡ a

y

xx

y

Q

P ,( )x y�

y

x
x

y

A

P ,( )x y�

2x

B
1

2
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ii Lfxg =

Z 1

0

e¡sxx dx

=
h
¡x
s
e¡sx

i1
0
¡
Z 1

0

³
¡1
s
e¡sx

´
dx

fIntegration by Partsg

= 0 + 0 +
1

s

Z 1

0

e¡sx dx fsince s > 0g

=
1

s

h
¡1
s
e¡sx

i1
0

=
¡1
s2
(0¡ 1)

=
1

s2

iii Lfsin axg =
Z 1

0

e¡sx sin axdx

Now

Z 1

0

e¡sx sinaxdx

=
h
¡1
s
e¡sx sin ax

i1
0
¡
Z 1

0

³
¡a
s
e¡sx cos ax

´
dx

fIntegration by Partsg

= 0¡ 0 + a

s

Z 1

0

e¡sx cos ax dx

=
a

s

µ·
¡e

¡sx

s
cos ax

¸1
0

¡
Z 1

0

³
a

s
e¡sx sinax

´
dx

¶
fIntegration by Partsg

=
a

s

µ
0¡ ( 1¡s )¡

a

s

Z 1

0

e¡sx sin axdx

¶
=

a

s2
¡ a2

s2

Z 1

0

e¡sx sin axdx

) Lfsin axg = a

s2
¡ a2

s2
Lfsin axg

)

µ
1 +

a2

s2

¶
Lfsin axg = a

s2

)
s2 + a2

s2
Lfsin axg = a

s2

) Lfsin axg = a

s2 + a2

b i Lff 0(x)g

=

Z 1

0

e¡sx (f 0(x)) dx

=
£
e¡sxf(x)

¤1
0
¡
Z 1

0

¡
¡se¡sxf(x)

¢
dx

fIntegration by Partsg

= 0¡ f(0) + s
Z 1

0

¡
e¡sxf(x)

¢
dx

= ¡f(0) + sLff(x)g
= sLff(x)g ¡ f(0)

ii Lff 00(x)g

=

Z 1

0

e¡sx (f 00(x)) dx

=
£
e¡sxf 0(x)

¤1
0
¡
Z 1

0

¡
¡se¡sxf 0(x)

¢
dx

fIntegration by Partsg
= 0¡ f 0(0) + s

Z 1

0

¡
e¡sxf 0(x)

¢
dx

= ¡f 0(0) + sLff 0(x)g
= ¡f 0(0) + s (sLff(x)g ¡ f(0))
= s2Lff(x)g ¡ sf(0)¡ f 0(0)

iii Starting with f 00(x) + f(x) = x, take the Laplace
Transform of both sides.

Lff 00(x) + f(x)g = Lfxg
) Lff 00(x)g+Lff(x)g = 1

s2
fa iig

) s2Lff(x)g ¡ sf(0)¡ f 0(0)+Lff(x)g = 1

s2
fb iig

) Lff(x)g(s2 + 1) = 1

s2
+ s£ 0 + 2

)Lff(x)g =
1

s2+2

s2 + 1
=

2s2 + 1

s2(s2 + 1)

=
1

s2
+

1

s2 + 1
fusing partial fractionsg

= Lfxg+Lfsinxg
) Using a i and ii, f(x) = x+ sinx

Check: If f(x) = x+ sinx

f 0(x) = 1 + cosx and f 00(x) = ¡ sinx
) f 00(x) + f(x) = x+ sinx¡ sinx = x X

Also, f(0) = 0 + sin 0 = 0 X

and f 0(0) = 1 + cos 0 = 2 X

REVIEW SET 10A

2 1

3 a ¡ 2
7

b does not converge c 0 d diverges e 0 f ¡ 1
9

g
p
6
3

h ¡ 1
2

i 3 j ¼
2

k 0 l 0 m 0 n ¡1
REVIEW SET 10B

2 diverges when x = 1, converges (to ¡ ln 2) when x = ¡1
4 1

4
,
X1

r=1

1

r (r + 1) (r + 2)
= :25

6 converges for x 2 [2; 4]. Radius is 1.

7 diverges 8 diverges 10 diverges

11 If an 2 R then
1P
n=0

a2n and
1P
n=0

¡
an ¡ 1

n

¢2
are not

necessarily convergent.

For example, if an =
(¡1)np
n

then
1P
n=1

an converges.

However,
1P
n=1

a2n =
1P
n=1

1
n

and

1P
n=1

¡
an ¡ 1

n

¢2
=

1P
n=1

³
1
n
¡ (¡1)n

n
p
n
+ 1

n2

´
both diverge.
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12 converges for x < 1
2 13 b b11 =

1

ln 10
¼ 0:4343

14 diverges as lim
n!1

³
n

n+ 5

´n
=

1

lim
n!1

¡
1 + 5

n

¢n = 1

e5

15 a
1

x
+

¡1
x+ 1

REVIEW SET 10C

1 (x¡ 1) + (x¡ 1)2 + 1
2
(x¡ 1)3 2 0:310 4 1:350

6 If ¡1 < x < 1, then 1¡ x+ x2 ¡ x3 + ::: = 1

x+ 1
Integrating with respect to x,

f (x) = ln (1 + x) = x¡ x2

2
+ x3

3
¡ x4

4
+ :::

REVIEW SET 10D

1 a = 2, b = ¡1
2 a

dy

dx
=
2x¡ y
x

b
dy

dx
= ¡ 1

2
y tanx

3

4 y ¼ 1:009 5 y = 2(x¡ 1)ex¡2 6 y =
¡1

x2 ¡ x+ c
7 y2 = 3x2 + 2x¡ 1 8 y =

x8 ¡ 1
x3

9 a
dV

dt
= k

p
h b

dh

dt
=
k

4

p
h c 20 min

REVIEW SET 10E

1 For equation a,
dy

dx
= 1 at (0, 0). Hence a is B.

For equation b,
dy

dx
= 0 at (2, 2).

Hence b is C and c is A.

2

3 y2 + 2x2 ln jxj+ cx2 4 y =
5p
x

5
dy

dx
=
y ¡ 3x2y3

x
, y =

r
2x2

3x4 ¡ 40
6 a y = 2x

p
x¡ 4x

b y =
¡ cos2 x
2 sinx

or y = ¡1
2
cotx cosx

7 a P ¼ 400

1 + 123
77
e¡

1
5
t

people b ¼ 387 people

c yes, 400

8 a

b Consider the triangle the tangent makes with the x-
and y-axes.

slope =
rise

run
= tan®

)
dy

dx
= tan®

c Now tan µ = tan 2® fusing ag
=

2 tan®

1¡ tan2 ® fusing the identityg

) tan µ(1¡ tan2 ®) = 2 tan®

) tan µ tan2 ®+ 2 tan®¡ tan µ = 0

) tan® =
¡2§p4 + 4 tan2 µ

2 tan µ

=
¡1§p1 + tan2 µ

tan µ
But tan µ > 0 and tan® > 0,

so tan® =
¡1 +p1 + tan2 µ

tan µ

) since tan µ =
y

x
, tan® =

¡1 +
r
1 +

y2

x2
y

x

)
dy

dx
=

p
x2 + y2 ¡ x

y

d If we let r2 = x2 + y2, then y2 = r2 ¡ x2

and 2r
dr

dx
= 2x+ 2y

dy

dx

) y
dy

dx
= r

dr

dx
¡ x ...... (1)

But
dy

dx
=

p
x2 + y2 ¡ x

y

so y
dy

dx
=
p
x2 + y2 ¡ x = r ¡ x ...... (2)

) r
dr

dx
¡ x = r ¡ x ffrom (1) and (2)g

)
dr

dx
= 1 which has solution r = x+ c

) r2 = (x+ c)2

) x2 + y2 = x2 + 2cx+ c2

) y2 = c2 + 2cx for some constant c.

e y = f(x) is parabolic, since x is a quadratic in y.

� �����

�

�

��

��

y

x

� � � � ���

�

�

�

�

�

��

y

x

�
�

P ,( )x y� y x����( )

y x�����( )

x

y

�

Since the line from P
is parallel to the -
axis, we can mark in
the new angle as
shown

corresponding
angles

Hence
exterior angle

theorem

x

®

µ ®

f
g

f
g

= 2

y

x

rise

run

�
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388 ANSWERS

EXERCISE 11A.1

1 It is false. For example if n = 4, 24 ¡ 1 = 15 = 3£ 5
i.e., composite.

2 2p ¡ 1 (p a prime) will not always be a prime.
For example, p = 11, 211 ¡ 1 = 2047 = 23£ 89:

3 a 32, 33, 34, 35, 36 b 90, 91, 92, 93, 94, 95

4 Impossible, as for example LHS is divisible by 3 whereas
RHS is not divisible by 3.

5 a Factors of any integer appear in pairs. For example,
factors of 12 are 1, 12 and 2, 6 and 3, 4. However, for
a perfect square, one of the factor pairs is a repeat.

For example, factors of 16 are 1, 16 and 2, 8 and 4, 4.
So we have at least one factor pair and one other factor
(4 in the above example), which is an odd number of
factors.

b Any positive integer > 2 can be written as a product
of prime factors in index form. That is,

N = p1
a1 p2

a2 p3
a3 :::::: pk

ak

) N2 = p1
2a1 p2a22 :::::: p

2ak
k

) the number of factors is

2a1 + 2a2 + 2a3 + ::::::+ 2ak
= 2(a1 + a2 + a3 + ::::::+ ak)

which is even

6 The number ends in 24 and so is divisible by 4.

(Any number ending in 24 has form
100n+ 24 where n 2 Z + and
100n+ 24 = 4(25n+ 6) where 25n+ 6 2 Z +.)

Also the sum of the number’s digits is 63 where 63 is divis-
ible by 9 and so the original number is divisible by 9.

So, the number is divisible by 4£ 9 = 36.

7 If 2x+ 4y = 62 then x+ 2y = 31.

So, if y = t, t 2 Z then x = 31¡ 2t.
Hence, there are infinitely many solutions of the form
x = 31¡ 2t, y = t, t 2 Z .

If t = 15, x = 1, y = 15 is one solution.

8 Yes, even though the strings of composites between them
seem to get larger.

Proof: Suppose the number of primes is finite and so there
exists a largest prime, p say.

Suppose that the product of all primes less than or equal to
p is N ,

i.e., N = 2£ 3£ 5£ 7£ 11£ ::::::£ p.

Now N + 1 is certainly > p.

If N+1 is a prime, then p is not the largest prime number.

If N+1 is composite, then it must contain at least one prime
factor greater than p. This is because N +1 when divided
by primes less than or equal to p leaves a remainder of 1.

A contradiction in both cases. So, the number of primes is
infinite.

9 Suppose
p
2 is rational,

i.e.,
p
2 =

p

q
where p, q 2 Z + and p and q have no
common factors.

) 2 =
p2

q2
which implies that p2 = 2q2

This is a contradiction as LHS has an even number of
factors and RHS has an odd number of factors.

fWe proved in 5b that “A perfect square always has an even
number of prime factors”.g

10 5041 = 712 and so is not prime.

EXERCISE 11A.2.1

In questions 1 and 2 the ‘induction step’ only is shown.

1 a 3k+1 ¡ 7(k + 1)
= 3£ 3k ¡ 7k ¡ 7
> 3(7k)¡ 7k ¡ 7

i.e., > 14k ¡ 7
i.e., > 7(2k ¡ 1)
i.e., > 35 fas k > 3g
i.e., > 0

b (k + 1)k+1 ¡ (k + 1)!
= (k + 1)(k + 1)k ¡ (k + 1)k!
> (k + 1)kk ¡ (k + 1)k!
> (k + 1)

£
kk ¡ k!

¤
> 3£ 0

i.e., > 0

c (k + 1)!¡ 3k+1
= (k + 1)k!¡ 3(3k)
> (k + 1)3k ¡ 3(3k)
> 3k(k + 1¡ 3)
> 3k(k ¡ 2)

i.e., > 0 as k > 6

2 a (n+ 1)3 ¡ 4(n+ 1)
= n3 + 3n2 + 3n+ 1¡ 4n¡ 4
= (n3 ¡ 4n) + (3n2 + 3n¡ 3)
= 3A+ 3(n2 + n¡ 1)
3(A+ n2 + n¡ 1) where

A+ n2 + n¡ 1 2 Z +
etc.

b 5[k+1]+1 + 2(3k+1) + 1

= 5(5k+1) + 6(3k) + 1

= 5
£
8A¡ 2(3k)¡ 1

¤
+ 6(3k) + 1

= 40A¡ 4(3k)¡ 4
= 4(10A¡ [3k + 1])

where 3k is always odd

and so 3k + 1 is always even.

= 4(10A¡ 2B)
= 8(5A¡B) where 5A¡B 2 Z +

etc.

c 8[k+1]+2 + 92[k+1]+1

= 8(8k+2) + 81(92k+1)

= 8(8k+2) + 81(73A¡ 8k+2)
= 81(73A)¡ 73(8k+2)
= 73(81A¡ 8k+2)

where 81A¡ 8k+2 2 Z
etc.

3 a The nth repunit

= 1 + 10 + 102 + 103 + ::::::+ 10n¡1 which is a
geometric series with u1 = 1 and r = 10

=
1(10n ¡ 1)
10¡ 1 or

10n ¡ 1
9
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ANSWERS 389

b The first repunit is 1 which by definition is neither
prime nor composite. So, the statement is false.

c Ali’s statement is true.

Use if » B ) » A then A ) B.

So we need to prove that “If a repunit does not have a
prime number of digits then the repunit is not prime”.

i.e., “If a repunit has a composite number of digits
then the repunit is composite”.

Proof:

If the nth repunit is such that n = ab, then

n = 1111::::::1| {z } 1111::::::1| {z } ::::::: 1111::::::1| {z }
a of these a of these a of these| {z }

b lots of a

= (1111::::::1)
£
1 + 10a + 102a + ::::::+ 10(b¡1)a

¤
or

³
10a ¡ 1
9

´µ
(10a)b ¡ 1
10a ¡ 1

¶
both forms of which are composite.

d The third repunit, 111 = 3£ 37 contradicts the state-
ment.

EXERCISE 11A.2.2

1 Induction step only

ak+1 = ak + ak¡1

6
¡
5
3

¢k
+
¡
5
3

¢k¡1
6
¡
5
3

¢k+1 ¡ 3
5
+ 9

25

¢
6
¡
5
3

¢k+1 ¡ 15
25
+ 9

25

¢
6
¡
5
3

¢k+1 ¡ 24
25

¢
6
¡
5
3

¢k+1
, etc

2 As b1 and b2 are odd and twice an odd is even, then
bn = even + odd = odd.

3 If Sn =

nX
k=1

fk then

S1 = 1
S2 = 2
S3 = 4
S4 = 7 and Sn = fn+2 ¡ 1
S5 = 12 fby observationg
S6 = 20
S7 = 33

Inductive step only

Sk+1 = Sk + fk+1
= fk+2 ¡ 1 + fk+1
= (fk+2 + fk+1)¡ 1
= fk+3 ¡ 1
= f[k+1]+2 ¡ 1

4 Prove fn >
¡
3
2

¢n¡2
, n > 3 first by induction.

Then prove fn < 2
n¡2, n > 3 by induction.

Likewise for the challenge where n > 1.

5 fn = fn+2 ¡ fn+1

)
nX
k=1

fk = f3 ¡ f2
+ f4 ¡ f3
+ f5 ¡ f4

...
+ fn+2 ¡ fn+1

= fn+2 ¡ f2
= fn+2 ¡ 1 (QED)

6 Let

nX
k=1

f2k¡1 = Sn say, then

S1 = f1 = 1 = f2
S2 = f1 + f3 = 1 + 2 = 3 = f4
S3 = f1 + f3 + f5 = 1 + 2 + 5 = 8 = f6
S4 = f1 + f3 + f5 + f7 = 1 + 2 + 5 + 13 = 21 = f8

It appears that Sn = f2n for all n > 1:

Our postulate is then,
nX
k=1

f2k¡1 = f2n for all n > 1:

Induction step only (on r):
r+1X
k=1

f2k¡1 =

rX
k=1

f2k¡1 + f2r+1

= f2r + f2r+1

= f2r+2

= f2[r+1] etc.

7 Let

nX
k=1

( fk)
2 = Sn say, then

S1 = ( f1)
2 = 1 = 1£ 1

S2 = ( f1)
2 + ( f2)

2 = 1 + 1 = 2 = 1£ 2
S3 = ( f1)

2 + ( f2)
2 + ( f3)

2 = 2 + 22 = 6 = 2£ 3
S4 = ( f1)

2 + ( f2)
2 + ( f3)

2 + ( f4)
2 = 6 + 9 = 15 = 3£ 5

S5 = 15 + 25 = 40 = 5£ 8
It appears that Sn = fnfn+1 for all n > 1:

Our postulate is then,
nX
k=1

( fk)
2 = fnfn+1 for all n > 1:

Induction step only (on r):
r+1X
k=1

( fk+1)
2 =

rX
k=1

( fk+1)
2 + ( fr+1)

2

= frfr+1 + ( fr+1)
2

= fr+1(fr + fr+1)

= fr+1fr+2 etc.
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8 Induction step only

fk+2fk ¡ ( fk+1)2
= (fk+1 + fk)fk ¡ ( fk+1)2
= fk+1fk + ( fk)

2 ¡ ( fk+1)2
= fk+1fk + fk+1fk¡1 ¡ (¡1)k ¡ ( fk+1)2
= fk+1(fk + fk¡1 ¡ fk+1) + (¡1)k+1
= fk+1(fk+1 ¡ fk+1) + (¡1)k+1
= (¡1)k+1

9 Let Sn =

nX
k=1

f2k

) S1 = f2 = 1 = f3 ¡ 1
S2 = f2 + f4 = 1 + 3 = 4 = f5 ¡ 1
S3 = f2 + f4 + f6 = 4 + 8 = 12 = f7 ¡ 1
S4 = f2 + f4 + f6 + f8 = 12 + 21 = 33 = f9 ¡ 1

So, we postulate that

nX
k=1

f2k = f2n+1 ¡ 1

Induction step only (on r)
r+1X
k=1

f2k =

rX
k=1

f2k + f2r+2

= f2r+1 ¡ 1 + f2r+2
= f2r+3 ¡ 1
= f2[r+1]+1 ¡ 1

etc.

10 Let Sn =

2n¡1X
k=1

fkfk+1

) S1 = f1f2 = 1£ 1 = 1 = 12
S2 = f1f2 + f2f3 + f3f4 = 1 + 2 + 6 = 9 = 3

2

S3 = f1f2 + f2f3 + f3f4 + f4f5 + f5f6

= 9 + 15 + 40

= 64

= 82

i.e., S1 = ( f2)
2, S2 = ( f4)

2, S3 = ( f6)
2, ......

So we postulate that

2n¡1X
k=1

fkfk+1 = (f2n)
2

Induction step only (on r)
2r+1X
k=1

fkfk+1 =

2r¡1X
k=1

fkfk+1 + f2rf2r+1 + f2r+1f2r+2

= (f2r)
2 + f2rf2r+1 + f2r+1(f2r + f2r+1)

= (f2r)
2 + 2f2rf2r+1 + ( f2r+1)

2

= (f2r + f2r+1)
2

= (f2r+2)
2 etc.

11 F =
h
1 1
1 0

i
F2 =

h
1 1
1 0

i h
1 1
1 0

i
=
h
2 1
1 1

i
F3 =

h
2 1
1 1

i h
1 1
1 0

i
=
h
3 2
2 1

i

F4 =
h
3 2
2 1

i h
1 1
1 0

i
=
h
5 3
3 2

i
F5 =

h
5 3
3 2

i h
1 1
1 0

i
=
h
8 5
5 3

i
So, we postulate that

Fn =
h
fn+1 fn
fn fn¡1

i
where fn is the nth
Fibonacci number

Now prove this by induction on n.

Since jFnj = jFjn fdeterminant propertyg¯̄̄
fn+1 fn
fn fn¡1

¯̄̄
=

¯̄̄
1 1
1 0

¯̄̄n
) fn+1fn¡1 ¡ (fn)2 = (¡1)n

12 (fn)
2 ¡ (fn¡1)2 + (¡1)n

= (fn + fn¡1)(fn ¡ fn¡1) + (¡1)n
= fn+1(fn ¡ fn¡1) + (¡1)n
= fnfn+1 ¡ fn+1fn¡1 + (¡1)n
= fnfn+1 ¡

£
(fn)

2 + (¡1)n
¤
+ (¡1)n ffrom 8g

= fnfn+1 ¡ (fn)2 ¡ (¡1)n + (¡1)n
= fn(fn+1 ¡ fn)
= fnfn¡1 (QED)

gcd (LHS) = gcd (RHS)

= gcd of each term

= 1 ffrom (¡1)ng
EXERCISE 11A.3.1

1 a d j n ) n = kd, k 2 Z
) an = kad, k 2 Z
) ad j an

b d j n and d j m
) n = k1d and m = k2d, k1k2 2 Z
) an+ bm = k1ad+ k2bd

= d(k1a+ k2b)

where k1a+ k2b 2 Z
) d j an+ bm

c d j n ) n = kd, k 2 Z +
but k > 1 ) kd > d

) n > d

) d 6 n

2 Let d be a common divisor of a and a+ 1,

i.e., d j a and d j a+ 1
) d j (a+ 1)¡ a
fd j n and d j m ) d j an+ bm propertyg
) d j 1

3 a We observe that 2 j 14m+ 20n
) 2 j 101 which is false.
Hence, the impossibility.

b 14m+ 21n = 100
But 7 j 14m+ 21n and 7 - 100
Hence, the impossibility.

4 a j b and a j c
) b = k1a and c = k2a, k1k2 2 Z
) b§ c = k1a§ k2a = (k1 § k2)a where k1 § k2 2 Z
) a j b§ c
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EXERCISE 11A.3.2

1 a (only) 66 = 3(22) + 0 i.e., r = 0 ) 3 j 66
2 a (only) 100 = 17(5) + 15

) quotient is 5, remainder is 15

5 No

6 Example: 4 j 2£ 6, but 4 jÁ 2 and 4 jÁ 6

So, b and c have to contain factors whose product is a.

7 p j q where p, q 2 Z + ) q = pk where k 2 Z +
But k > 1 ) pk > p:

So, q > p i.e., p 6 q:

8 p j q ) q = ap, a 2 Z
) qk = akpk, ak 2 Z
) pk j qk

9 If all integers are not odd then at least one is even
) product is even.

fodd £ even = (2a+ 1)2b which is even
even £ even = 2a£ 2b which is eveng

Using the contrapositive:
If product is not even ) all integers are odd

i.e., product is odd ) all integers are odd.

10 a Any integer n takes the form 3a, 3a+ 1, 3a+ 2
where a 2 Z
) n2 = (3a)2, (3a+ 1)2 or (3a+ 2)2

) n2 = 3(3a2), 3(3a2 + 2a) + 1
or 3(3a2 + 4a+ 1) + 1

) n2 = 3k or 3k + 1, k 2 Z
b Any integer is odd or even

) n = 2k + 1 or n = 2k, k 2 Z
) n2 = 4k2 + 4k + 1 or 4k2

) n2 = 4(k2 + k) + 1 or 4k2

) n2 has form 4q or 4q + 1, q 2 Z
c 1234567 = 4(308641) + 3

which is of the form 4q + 3, q 2 Z
) 1234567 is not a perfect square

EXERCISE 11A.3.3

1 To prove: 5 j a , 5 j a2

()) If 5 j a then a = 5q, q 2 Z
) a2 = 25q2

) a2 = 5(5q2), 5q2 2 Z
) 5 j a2

(() Using contrapositive (i.e., 5 jÁ a ) 5 jÁ a2)

If 5 jÁ a then a = 5k + 1, 5k + 2

5k + 3 or 5k + 4

) a2 =

8>><>>:
25k2 + 10k + 1

25k2 + 20k + 4

25k2 + 30k + 9

25k2 + 40k + 16

) a2 =

8>><>>:
5(5k2 + 2k) + 1

5(5k2 + 4k + 1)¡ 1
5(5k2 + 6k + 2)¡ 1
5(5k2 + 8k + 3) + 1

) a2 = 5b§ 1, b 2 Z
) 5 jÁ a2

So, as 5 jÁ a ) 5 jÁ a2 then 5 j a2 ) 5 j a:

2 3 j a2 , 9 j a2
()) 3 j a2 ) 3 j a fExample 9g

) a = 3k, k 2 Z
) a2 = 9k2

) 9 j a2

(() 9 j a2 ) a2 = 9k, k 2 Z
) a2 = 3(3k)

) 3 j a2

3 a n = 2, n¡ 2 = 0 ) (n+ 3)(n¡ 2) = 0
b If n = ¡3, n+ 3 = 0

So (n+ 3)(n¡ 2) = 0 which )Á n = 2
i.e., converse is false.

4 a False b True c False d True e False

f False g False

5 a As 8p+ 7 = 8p+ 4 + 3

= 4(2p+ 1) + 3

= 4q + 3, q 2 Z
b 11 = 4(2) + 3 has form 4q + 3

but does not have form 8p+ 7, p 2 Z .

6 a Every integer n has form 3a, 3a+ 1 or 3a+ 2

) n3 = 27a3

or 27a3 + 27a2 + 9a+ 1

or 27a3 + 54a2 + 36a+ 8, a 2 Z
) n3 = 9(3a3)

or 9(3a3 + 3a2 + a) + 1

or 9(3a3 + 6a2 + 4a+ 1)¡ 1, a 2 Z
) n3 has form 9k, 9k + 1 or 9k ¡ 1

b Likewise, using n = 5a, 5a+ 1, 5a+ 2, 5a+ 3 or
5a+ 4:

7 Suppose 3k2 ¡ 1 = n2, n 2 Z
) 3k2 ¡ 1 = (3a)2 or (3a+ 1)2 or (3a+ 2)2

) 3k2 = 9a2 + 1

or 9a2 + 6a+ 2

or 9a2 + 12a+ 5

all of which are impossible as the LHS is divisible by 3,
whereas the RHS is not divisible by 3.

8 n could be of the form 6a, 6a+ 1, 6a+ 2, 6a+ 3,
6a+ 4 or 6a+ 5:

Show for each case
n(n+ 1)(2n+ 1)

6
is an integer.

Alternatively

12 + 22 + 32 + ::::::+ n2 =
n(n+ 1)(2n+ 1)

6
is a well

known formula and the LHS is the sum of integers.

9 The nth repunit is 1 + 10 + 102 + 103 + ::::::+ 10n¡1:
Now 102, 103, 104, ......, 10n¡1 are all divisible by 4

) the nth repunit has form 11 + 4k1
= 4(k1 + 2) + 3

= 4k + 3

However, we proved in Exercise 11A.3.2 Question 10 b
that all perfect squares have form 4k or 4k + 1:

Hence, the impossibility.
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10 All integers a have form 7n, 7n§ 1, 7n§ 2 or 7n§ 3
) a2 = (7n)2 = 7(7n2) = 7k

or (7n§ 1)2 = 49n2 § 14n+ 1 = 7k + 1
or (7n§ 2)2 = 49n2 § 28n+ 4 = 7k + 4
or (7n§ 3)2 = 49n2 § 42n+ 9 = 7k + 2

and a3 = (7n)3 = 7(49n3) = 7k

or (7n§ 1)3 = 343n3 § 147n2 + 21n§ 1
= 7k § 1 form

or (7n§ 2)3 = 343n3 § 294n2 + 84n§ 8
= 7k § 1 form

or (7n§ 3)3 = 343n3 § 441n2 + 189n§ 27
= 7k § 6

From both, it takes either the form 7k or 7k + 1:

11 a n = 2a or 2a+ 1, a 2 Z
i.e., either even or odd

) 7n3 + 5n

= 7(2a)3 + 5(2a) or 7(2a+ 1)3 + 5(2a+ 1)

) 7n3 + 5n

= 56a3 + 10a or 56a3 + 84a2 + 52a+ 12
both of which are even

b n = 3a, 3a+ 1 or 3a¡ 1
) n(7n2 + 5) = 3a(63a2 + 5)

or n(7n2 + 5) = (3a+ 1)(63a2 + 42a+ 12)

or n(7n2 + 5) = (3a¡ 1)(63a2 ¡ 42a+ 12)
and in each case one of the two factors is divisible by 3
) n(7n2 + 5) is of the form 3k

c From a n(7n2 + 5) is divisible by 2

From b n(7n2 + 5) is divisible by 3

) n(7n2 + 5) is divisible by 2£ 3 = 6:
12 a3 ¡ a = a(a2 ¡ 1) = a(a+ 1)(a¡ 1)

but a has form 3k, 3k + 1 or 3k ¡ 1
) a3 ¡ a = 3k(3k + 1)(3k ¡ 1)
or (3k + 1)(3k + 2)(3k)

or (3k ¡ 1)(3k)(3k ¡ 2)
and in each case a factor of 3 exists

) 3 j a3 ¡ a
13 a Let 4k1 + 1 and 4k2 + 1 be two such integers

) (4k1 + 1)(4k2 + 1)

= 16k1k2 + 4k1 + 4k2 + 1

= 4(4k1k2 + k1 + k2) + 1

which is also of the form 4k + 1, k 2 Z
b Let 4k1 + 3 and 4k2 + 3 be two such integers

) (4k1 + 3)(4k2 + 3)

= 16k1k2 + 12k1 + 12k2 + 9

= 4(4k1k2 + 3k1 + 3k2 + 2) + 1

which is of the form 4p+ 1, p 2 Z
c The square of an odd number has form 4k + 1,
k 2 Z :

14 The square of an odd number has form 4p+ 1, p 2 Z
(Question 13c)

i.e., a2 = 4p+ 1

) a4 = (4p+ 1)2 = 16p2 + 16p+ 1

) a4 = 16(p2 + p) + 1

which is of the form 16k + 1, k 2 Z

15 The induction step only.
If Pk is true, (k ¡ 1)(k)(k + 1) = 6A, A 2 Z
Now k(k + 1)(k + 2)

= (k ¡ 1)(k)(k + 1) + 3k(k + 1)
= 6A+ 3(2B)

= 6(A+B) where A+B 2 Z
etc.

Note: k(k + 1) is the product of consecutive integers,
one of which must be even.
) k(k + 1) is even.

or directly by the DA,
any integer n has form 6a, 6a+ 1, 6a+ 2,
6a+ 3, 6a+ 4 or 6a+ 5 etc.

16 n5 ¡ n = n(n4 ¡ 1)
= n(n2 + 1)(n2 ¡ 1)
= n(n¡ 1)(n+ 1)(n2 + 1)

where n has form 5a, 5a+ 1, 5a+ 2, 5a+ 3 or 5a+ 4

So, n5 ¡ n = 5a(5a¡ 1)(5a+ 1)(25a2 + 1)
or (5a+ 1)(5a)(5a+ 2)(25a2 + 10a+ 2)

or (5a+ 2)(5a+ 1)(5a+ 3)(25a2 + 20a+ 5)

or (5a+ 3)(5a+ 2)(5a+ 4)(25a2 + 30a+ 10)

or (5a+ 4)(5a+ 3)(5a+ 5)(25a2 + 40a+ 17)

and in each case one of the factors is divisible by 5.
etc.

17 Let the integers be (n¡ 1), n and (n+ 1)
) sum of cubes

= (n¡ 1)3 + n3 + (n+ 1)3
= n3 ¡ 3n2 + 3n¡ 1 + n3 + n3 + 3n2 + 3n+ 1
= 2n3 + 6n

= 2n(n2 + 3)

then use induction on n for n > 1, n 2 Z
then use the DA.

Which proof is better? Why?

EXERCISE 11A.3.4

1 1 001 111 1012
= 29 + 26 + 25 + 24 + 23 + 22 + 20

= 637 in base 10

2 201 021 1023
= 2£ 38 + 1£ 36 + 2£ 34 + 1£ 33 + 1£ 32 + 2
= 14 05110

3 a 110 2123 b 23228 c 22 4627 4 10 300 1125

5 21 3314 6 11758 7 a 21 2429 b 5 426 128 2269

9 101 110 011 101 010 111 100 0112

10 110 111 011 011 000 1102

11 20 100 220 111 202 102 1223

13 5
7
= 0:714 285 or 0: _714 28_5

EXERCISE 11A.4.1

1 a No, as 9 is not a multiple of gcd(24, 18) = 6

b gcd (2, 3) = 1 and 67 is a multiple of 1

) yes and infinitely many solutions exist.

c gcd (57, 95) = 19 and 19 is a multiple of 19

) yes and infinitely many solutions exist.

d gcd (1035, 585) = 45 and 90 is a multiple of 45

) yes and infinitely many solutions exist.
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e gcd (45, 81) = 9 and 108 is a multiple of 9

) yes and infinitely many solutions exist.

2 b x = 2, y = 21 c x = ¡3, y = 2
d x = ¡5, y = 9 e x = 6, y = 2

3 b x = 2 + 3t, y = 21¡ 2t, t 2 Z
c x = ¡3 + 5t, y = 2¡ 3t, t 2 Z
d x = ¡5 + 13t, y = 9¡ 23t, t 2 Z
e x = 6 + 9t, y = 2 + 5t, t 2 Z

EXERCISE 11A.4.2

1 a a j b ) b = ka, k 2 Z
) bc = kac

) a j bc
b a j b and a j c ) b = k1a and c = k2a, k1, k2 2 Z

) bc = k1k2a
2

) a2 j bc
c a j b and c j d ) b = k1a and d = k2c, k1, k2 2 Z

) bd = k1k2ac

) ac j bd
d a j b ) b = ka, k 2 Z

) bn = knan

) an j bn as kn 2 Z
Converse is true.

2 k must have form 3a, 3a+ 1 or 3a+ 2

k k + 2 k + 4
3a 3a+ 2 3a+ 4

3a+ 1 3a+ 3 3a+ 5
3a+ 2 3a+ 4 3a+ 6

Each time one of k, k + 2 or k + 4 is divisible by 3.

3 The statement is false.

For example, 8 j (13 + 3), but 8 jÁ 13 and 5 jÁ 3:

4 a i n n+ 1 n+ 2
3a 3a+ 1 3a+ 2

3a+ 1 3a+ 2 3a+ 3
3a+ 2 3a+ 3 3a+ 4

Each time one of the factors is divisible by 3
) n(n+ 1)(n+ 2) is divisible by 3.

ii In any set of 3 consecutive integers, at least one of
them is even, i.e., divisible by 2. So, from i the
product of 3 consecutive integers is divisible by
3£ 2 = 6.

iii In any set of 4 consecutive integers, two of them are
even. So, the product is divisible by 4.

iv In any four consecutive integers, one of them must be
divisible by 2 and one must be divisible by 4. Since
one of them must be divisible by 3, the product is
divisible by 2£ 4£ 3 = 24.

5 As k 2 Z , k must have form 3a, 3a+ 1 or 3a+ 2:

If k = 3a, k(k2 + 8) is divisible by 3.

If k = 3a+ 1, k(k2 + 8)

= (3a+ 1)(9a2 + 6a+ 9)

= 3(3a+ 1)(3a2 + 2a+ 3)

which is divisible by 3.

If k = 3a+ 2, k(k2 + 8)

= (3a+ 2)(9a2 + 12a+ 12)

= 3(3a+ 2)(3a2 + 4a+ 4)

which is divisible by 3.

So, in all cases, k(k2 + 8) is divisible by 3

i.e., 3 j k(k2 + 8):
6 a 1£ 2£ 3£ 4 + 1 = 25 = 52

2£ 3£ 4£ 5 + 1 = 121 = 112

3£ 4£ 5£ 6 + 1 = 361 = 192

b (n¡ 1)n(n+ 1)(n+ 2) + 1
= (n2 + 2n)(n2 ¡ 1) + 1
= n4 + 2n3 ¡ n2 ¡ 2n+ 1
= (n2 + n¡ 1)2, a perfect square

7 a Let gcd (a, a+ n) = d

) d j a and d j a+ n
) d j (a+ n)¡ a flinearityg
) d j n
i.e., gcd (a, a+ n) j n

b If n = 1, gcd (a, a+ 1) j 1
) gcd (a, a+ 1) = 1

8 only a gcd (3k + 1, 13k + 4)

= gcd (3k + 1, 13(3k + 1)¡ 3(13k + 4)) flinearityg
= gcd (3k + 1, 1)

= 1

9 a Let d = gcd (4a¡ 3b, 8a¡ 5b)
= gcd (4a¡ 3b, 8a¡ 5b¡ 2(4a¡ 3b))
= gcd (4a¡ 3b, b)
= gcd (4a¡ 3b+ 3b, b)
= gcd (4a, b) ) d j 4a and d j b
Now d j b but d does not necessarily divide a:

b If b = ¡1, d = gcd (4a+ 3, 8a+ 5)

) d j ¡1 ) d = 1 fas d > 0g
) gcd (4a+ 3, 8a+ 5) = 1

10 a gcd (a, b) = 1

) 9 x, y 2 Z such that ax+ by = 1

But c j a ) a = kc

) kcx+ by = 1

) gcd (c, b) = 1

b gcd (a, b) = 1

) 9 x, y 2 Z such that ax+ by = 1 ...... (1)

) a2x2 + 2abxy + b2y2 = 1

) a2x2 + b[2axy + by2] = 1

and [ax2 + 2bxy]a+ b2y2 = 1

) gcd (a2, b) = 1 and gcd (a, b2) = 1 (QED)

Thus a2p1 + bp2 = 1 ...... (2)

and aq1 + b
2q2 = 1 ...... (3)

where p1, p2, q1, q2 2 Z
Now ab(ax+ by) = ab ffrom (1)g
From (2), a3p1 + abp2 = a

) a3p1 + (a
2bx+ ab2y)p2 = a

) a = a3p1 + a
2®+ b2¯

and in (3)

(a3p1 + a
2®+ b2¯)q1 + b

2q2 = 1

) a2(ap1q1 + ®q1) + b
2(¯q1 + q2) = 1

) gcd (a2, b2) = 1
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11 a 2k ¡ 1 = (2¡ 1)(2k¡1 + 2k¡2 + 2k¡3 + ::::::+ 2 + 1)
fusing the given identityg
) 2k ¡ 1 = 1111::::::1| {z } in base 2

k of them

If d j n ) dth repunit (base z) j nth repunit (base 2)

) 2d ¡ 1 j 2n ¡ 1
b 5 j 35 ) 25 ¡ 1 j 235 ¡ 1

) 31 j 235 ¡ 1
7 j 35 ) 27 ¡ 1 j 235 ¡ 1

) 127 j 235 ¡ 1
) 235 ¡ 1 is divisible by both 31 and 127:

12 a gcd (3k + 2, 5k + 3)

= gcd (3k + 2, 5(3k + 2)¡ 3(5k + 3)) flinearityg
= gcd (3k + 2, 1)

= 1

) 3k + 2, 5k + 3 are relatively prime.

b gcd (5k + 3, 11k + 7)

= gcd (5k + 3, 5(11k + 7)¡ 11(5k + 3)) flinearityg
= gcd (5k + 3, 2) where 5k + 3 is always odd

= 1

) 5k + 3, 11k + 7 are relatively prime.

EXERCISE 11A.4.3

1 a gcd = 11, r = 5, s = ¡26
b gcd = 6, r = 132, s = ¡535
c gcd = 793, r = 0, s = 1

d gcd = 115, r = 2, s = ¡3
e gcd = 1, r = 13, s = ¡21
f gcd (fn+1, fn) = gcd (fn+1 ¡ fn, fn) flinearityg

= gcd (fn¡1, fn)

= gcd (fn, fn¡1)

...

= gcd (f2, f1) fby inductiong
= gcd (1, 1)

= 1

2 gcd (f8, f4) = gcd (21, 3) = 3

gcd (f12, f8) = gcd (144, 21) = 3
... etc.

suggests gcd (f4(n+1), f4n) could be 3.

Then prove this statement.

3 gcd (f10, f5) = gcd (55, 5) = 5

gcd (f15, f10) = gcd (610, 55) = 5
... etc.

suggests gcd (f5(n+1), f5n) = 5:

Then prove this statement.

EXERCISE 11A.4.4

1 First find the gcd. Then use lcm =
ab

gcd

a gcd = 1, lcm = 32 461

b gcd = 1, lcm = 475 728

c gcd = 6, lcm = 6300 402

d gcd = 1, lcm = 299 307

EXERCISE 11A.5

1 a No solutions exist

b x = 445 + 14t, y = ¡805¡ 33t, t 2 Z
c No solutions exist

d x = ¡15 + 7t, y = 20¡ 9t, t 2 Z
e x = ¡3 + 4t, y = 18¡ 23t, t 2 Z
f x = 176¡ 35t, y = ¡1111 + 221t, t 2 Z

2 a x = 1, y = 6

c No positive solutions

b x 16 9 2

y 2 20 38

d Infinitely many positive solutions of the form
x = ¡242 + 57t, y = ¡671 + 158t, t 2 Z , t > 5:

3 7 j x and 11 j y ) x = 7a, y = 11b, a, b 2 Z
So 7a+ 11b = 100:

General solution is

a = ¡300 + 11t, b = 200¡ 7t, t 2 Z :
a > 0, b > 0, ) t = 28

So, a = 8, b = 4 and 100 = 56 + 44:

4 Show m+ w + c = 20 ...... (1)
5m+ 4w + 2c = 62 ...... (2)

and deduce that 3m+ 2w = 42
which has one solution m = 14, w = 0

) m = 14 + 2t, w = ¡3t, t 2 Z
So, c = 6 + t fusing (1)g
Putting m > 0, w > 0, c > 0 gives
t = ¡1, ¡2, ¡3, ¡4, ¡5
So solutions are: m 12 10 8 6 4

w 3 6 9 12 15

c 5 4 3 2 1

5 Show that c+ r + f = 100

5c+ r +
f

20
= 100

leads to 19f = 80c and 99c+ 19r = 1900

One solution is c = 0, r = 100
) c = 0 + 19t, r = 100¡ 99t
But c > 1 and r > 1: Hence, t = 1:
Thus c = 19, r = 1, f = 80
i.e., buys 19 cats, 1 rabbit, 80 fish.

6 Smith travels for 6 hours. Jones travels for 2 hours.

7 Show a+ b+ c = 100 and

35a+
40b

3
+ 5c = 1000

Hence, show that 18a+ 5b = 300:

One solution is a = 0, b = 60:

General solution is
a = 0 + 5t, b = 60¡ 18t, t 2 Z :

But a > 0, b > 0 ) t > 0 and t < 3 1
3

) t = 1, 2, 3.

t 1 2 3

a 5 10 15

b 42 24 6

c 53 66 79

are the 3 possible
solutions
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EXERCISE 11A.6.1

1 a n has form pa11 pa22 pa33 ...... p
ak
k

If all powers are even then

a1 = 2b1, a2 = 2b2, ......, ak = 2bk where bi 2 Z
, n = p2b11 p2b22 p2b33 ...... p

2bk
k

, n = (pb11 pb22 pb33 ...... p
bk
k )

2

, n is a perfect square.

b The factors of any integer appear as factor pairs and in
the case of a perfect square only we get a repeated pair.
For example, the factors of 16 are 1, 16 2, 8 4, 4|{z}

repeat

) the factors of a perfect square number 2p+ 1 are
fp pairs plus 1g i.e., an odd number of factors.

2 Suppose
p
2 is rational,

i.e.,
p
2 =

p

q
, p, q 2 Z , gcd (p, q) = 1

) p2 = 2q2

By 1 b, p2 has an odd number of factors.

) 2q2 has an odd number of factors.

) q2 has an even number of factors.

a contradiction to the result of 1 b.

Thus, the supposition is false and so
p
2 is irrational.

EXERCISE 11A.6.2

1 a 143 = 11£ 13, so 143 is not a prime

b 221 = 13£ 17, so 221 is not a prime

c 199 is a prime

d 223 is a prime

2 Any even number e, is a multiple of 2,

i.e., e = 2k, k 2 Z
) e is prime , k = 1

fotherwise e has 2 factorsg

3 a 1 + a+ a2 + ::::::+ an¡1 =
1(an ¡ 1)
a¡ 1

fas is the sum of a geometric seriesg
) an ¡ 1 = (a¡ 1)(1 + a+ a2 + ::::::+ an¡1)
and if an¡1 is a prime then a¡ 1 = 1 i.e., a = 2
fotherwise it has two factorsg

b No, as for example, 24 ¡ 1 = 15 = 3£ 5
i.e., 24 ¡ 1 is a composite.

c Let n = kl where k > 2

) 2n ¡ 1 = 2kl ¡ 1
= (2k)l ¡ 1
= (2k ¡ 1)[(2k)l¡1 + (2k)l¡2 + ::::::+ 1]

Now as k > 2, 2k ¡ 1 > 3
) 2n ¡ 1 is composite, so the claim is true.

d No, for example 211 ¡ 1 = 2047 = 23£ 89
which is composite.

4 111 = 3£ 37, 1111 = 11£ 101, 11 111 = 41£ 271
) none of them is prime.

5 p j q ) q = kp
which is composite unless k = 1
) q = p

6 a 9555 = 3£ 5£ 72 £ 13
b 989 = 23£ 43
c 9999 = 32 £ 11£ 101
d 111 111 = 3£ 7£ 11£ 13£ 37

7 a primes b the product of two primes

8 a The primes which divide 50!
are the prime factors of 1, 2, 3, 4, ......, 50
These are: 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37,

41, 43 and 47:

b There are many factors of 2 and fewer factors of 5 and as
2s and 5s are needed to create 0s, the number of zeros
equals the number of 5s.

This is 12. fas 25 and 50 provide two 5s each.g
So 50! ends in 12 zeros (in expanded form).

c 1! 25 6
26! 50 6
51! 75 6

...

276! 300 6
72

301! 310 2
74

i.e., n = 310, 311, 312, 313, 314

9 a If a = pa11 pa22 pa33 ...... p
ak
k

then an = pna11 pna22 pna33 ...... p
nak
k

So, if p j an then p is one of the pi and so pn j an:
b If a = pa11 pa22 ...... p

ak
k then

a2 = p2a11 p2a22 ...... p
2ak
k :

So, if p j a2 then p is one of the pi

) p j a:
Similar argument for c.

10 a All integers have form 4k, 4k + 1, 4k + 2 or
4k + 3 where 4k and 4k + 2 are composites as
they are even
) all odd primes have either the form 4k + 1 or
4k + 3:

b Suppose that there are a finite number of primes of the
form 4k + 3 and these are p1, p2, p3, ...... pn where

p1 < p2 < p3 < :::::: < pn.

Let N = 4(p1 p2 p3 ...... pn) + 3.

Notice that N has the form 4k + 3, k 2 Z
If N is a prime number, then pn is not the largest prime
of the form 4k + 3:

If N is composite, then it must contain prime factors of
the form 4k + 1 or 4k + 3.

But N cannot contain only prime factors of the form
4k + 1 since the product of any such numbers is not
of the form 4k + 3.

This is shown by: (4k1 + 1)(4k2 + 1)

= 4(4k1k2 + k1 + k2) + 1

Hence, N must contain a prime factor of the form
4k + 3.

Since p1, p2, p3, ......, pn are not factors of N there
exists a prime factor of the form 4k + 3 which is
greater than pn. A contradiction!
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EXERCISE 11A.7.1

1 a 15¡ 1 = 14 = 2£ 7
) 1, 15 are congruent (mod 7)

b No, as 8¡ (¡1) = 9 and 7 jÁ 9:

c No, as 99¡ 2 = 97 and 7 jÁ 97:

d 699¡ (¡1) = 700 and 7 j 700
) ¡1, 699 are congruent (mod 7)

2 a 29¡ 7 = 22 and 22 has factors 1, 2, 11, 22

) m = 2, 11 or 22

b 100¡ 1 = 99 ) m = 3, 9, 11, 33 or 99

c 53¡ 0 = 53 ) m = 53

d 61¡ 1 = 60
) m = 2, 3, 4, 5, 6, 10, 12, 15, 20, 30 or 60

3 a 13 (mod 20) b 33 mod (42)

c 0 (mod 12) d 4 mod (10)

4 a 2 (mod 7) b 6 mod (7)

c 2 (mod 7) d 6 mod (7)

5 a 12 (mod 37) b 9 mod (13)

c 3 (mod 11)

6 a 53103 + 10353 (mod 39)

´ 14103 + (¡14)53 (mod 39)

´ 14103 ¡ 1453 (mod 39)

´ 1453[1450 ¡ 1] (mod 39)

´ 1453[(142)25 ¡ 1 (mod 39)

´ 1453[125 ¡ 1] (mod 39)

= 0 (mod 39) ) 53103 + 10353 is divisible by 39.

b 333111 + 111333 (mod 7)

´ 4111 + (¡1)333 (mod 7)

´ 2222 ¡ 1 (mod 7)

´ (23)74 ¡ 1 (mod 7)

´ 174 ¡ 1 (mod 7)

´ 0 (mod 7) ) 333111 + 111333 is divisible by 7

7 a i 1 (mod 11) ii 1 (mod 13) iii 1 (mod 19)
iv 1 (mod 17)

Postulate: an¡1 ´ 1 (mod n)

b i 4 mod (12) ii 7 (mod 9)
Neither agree with the postulate.

c 134 ´ 1 (mod 5) agrees.

New Postulate: ap¡1 ´ 1 (mod p), p a prime

8 a i 2! ´ 2 (mod 3) ii 4! ´ 4 (mod 5)

iii 10! ´ 10 (mod 11) iv 6! ´ 6 (mod 7)

Postulate: (n+ 1)! ´ n+ 1 (mod n)

b i 3! ´ 2 (mod 4)

ii 5! ´ 0 (mod 6) Do not agree with postulate.

c 12! ´ 12 (mod 13) agrees.

New postulate: (p+ 1)! ´ p+ 1 (mod p), p a prime.

9 a 52n + 3£ 25n¡2 (mod 7)

= (52)n + 3£ 25(n¡1)+3 (mod 7)

´ 4n + 3£ 4n¡1 £ 1 (mod 7)

´ 4n¡1(4 + 3) (mod 7)

´ 0 (mod 7)

) 52n + 3£ 25n¡2 is divisible by 7 for all n 2 Z +

b 3n+2 + 42n+1 (mod 13)

= 3n+2 + (42)n £ 4 (mod 13)

´ 3n+2 + 3n £ 4 (mod 13)

´ 3n(32 + 4) (mod 13)

´ 3n(13) (mod 13)

´ 0 (mod 13)

) 3n+2 + 42n+1 is divisible by 13 for all n 2 Z +
c 5n+2 + 25n+1 (mod 27)

= 5n+2 + (25)n £ 2 (mod 27)

´ 5n+2 + 5n £ 2 (mod 27)

´ 5n(52 + 2) (mod 27)

´ 5n(27) (mod 27)

´ 0 (mod 27)

) 5n+2 + 25n+1 is divisible by 27 for all n 2 Z +
10 Let n = 2k, k 2 Z

) n2 = 4k2

) n2 ´ 0 (mod 4)

Let n = 2k + 1, k 2 Z
) n2 = 4k2 + 4k + 1
) n2 = 4(k2 + k) + 1
) n2 ´ 1 (mod 4)

11 Any integer n must have form 3k, 3k + 1 or 3k + 2

i.e., n ´ 0, 1 or 2 (mod 3)

) n2 ´ 0, 1 or 1 (mod 3)

i.e., n2 ´ 0 or 1 (mod 3)

12 If n is an integer then

n ´ 0, 1, 2, 3, 4, 5, 6, 7 or 8 (mod 9)

) n3 ´ 0, 1, 8, 0, 1, 8, 0, 1 or 8 (mod 9)

i.e., n3 ´ 0, 1 or 8 (mod 9)

13 Let any odd integer n = 2k + 1

) n2 = (2k + 1)2 = 4k2 + 4k + 1

) n2 = 4k(k + 1) + 1

But k(k + 1) is the product of two consecutive integers,
one of which must be even.

) n2 = 4(2a) + 1, a 2 Z
) n2 = 8a+ 1

) n2 ´ 1 (mod 8)

If n is even, n2 ´ 0 (mod 8) or 4 (mod 8).

14 If a ´ b (mod c) then

a = b+ kc for k 2 Z
) gcd (a, c)

= gcd (b+ kc, c)

= gcd (b+ kc¡ kc, c) flinearityg
= gcd (b, c)

This is a restatement of the Euclidean algorithm.

15 If x2 ´ 1 (mod 3)

then x2 ¡ 1 = 3k, k 2 Z
) (x+ 1)(x¡ 1) = 3k, k 2 Z
) 3 j x+ 1 or 3 j x¡ 1
) x+ 1 = 3a or x¡ 1 = 3b, a, b 2 Z
) x = ¡1 + 3a or x = 1 + 3b

) x ´ §1 (mod 3)
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If x2 ´ 4 (mod 7)

then x2 ¡ 4 = 7k, k 2 Z
) (x+ 2)(x¡ 2) = 7k, k 2 Z
) 7 j x+ 2 or 7 j x¡ 2
) x+ 2 = 7a or x¡ 2 = 7b where a, b 2 Z
) x = §2 (mod 7)

If x2 ´ a2 (mod p) where p is prime, by similar
argument to the above x ´ §a (mod p).

16

nX
k=1

k = 1 + 2 + 3 + 4 + ::::::+ n

=
n(n+ 1)

2

= n
³
n+ 1

2

´
where

n+ 1

2
2 Z as n is odd

)

nX
k=1

k ´ 0 (mod n)

If k is even, 1 + 2 = 3 (mod 2) ´ 1 (mod 2)

1 + 2 + 3 + 4 = 10 (mod 4) ´ 2 (mod 4)

1 + 2 + 3 + 4 + 5 + 6 = 21 (mod 6) ´ 3 (mod 6)

Suggests

nX
k=1

k ´ n

2
(mod n), n even

Proof:

1 + 2 + 3 + ::::::+ n =
n(n+ 1)

2

) 1 + 2 + 3 + ::::::+ n =
n

2
(n+ 1)

and ) 1 + 2 + 3 + ::::::+ n (mod n) ´ n

2
(1) (mod n)

´ n

2
(mod n)

17

n¡1X
k=1

k3 = 13 + 23 + 33 + ::::::+ (n¡ 1)3

=
(n¡ 1)2n2

4
fa well known formulag

Now consider n = 4m+ r for r = 0, 1, 2, 3

If r = 0, n = 4m and

(n¡ 1)2n2
4

=
(4m¡ 1)216m2

4

= 4m2(4m¡ 1)2 which is divisible by 4

If r = 1, n = 4m+ 1 and

(n¡ 1)2n2
4

=
(4m)2(4m+ 1)2

4

= 4m2(4m¡ 1)2 which is divisible by 4

If r = 2, n = 4m+ 2 and

(n¡ 1)2n2
4

=
(4m+ 1)24(2m+ 1)2

4

= (4m+ 1)2(2m+ 1)2 which is not divisible by 4

If r = 3, n = 4m+ 3 and

(n¡ 1)2n2
4

=
(4m+ 2)2(4m+ 3)2

4

= (2m+ 1)2(4m+ 3)2 which is not divisible by 4

Thus

n¡1X
k=1

k3 ´ 0 (mod n) when

n has form 4m or 4m+ 1, m 2 Z , m > 1

18 On experimenting we postulate
pX

k=1

k2 ´ 0 (mod p) for all primes p > 5:

19 a Induction step only

If Pk is true, 3k ¡ 1¡ 2k = 4a, say.

Now 3k+1 ¡ 1¡ 2(k + 1)
= 3(3k)¡ 1¡ 2k ¡ 2
= 3(1 + 2k + 4a)¡ 1¡ 2k ¡ 2
= 3 + 6k + 12a¡ 3¡ 2k
= 4k + 12a

= 4(k + 3a)

´ 0 (mod 4)

etc.

Also for second part

If Pk is true, 4k ¡ 1¡ 3k = 9a, say.

Now 4k+1 ¡ 1¡ 3(k + 1)
= 4(9a+ 1 + 3k)¡ 1¡ 3k ¡ 3
= 36a+ 4 + 12k ¡ 3k ¡ 4
= 36a+ 9k

= 9(4a+ k)

´ 0 (mod 9)

etc.

b Yes,

If Pk is true, 5k ¡ 1¡ 4k = 16a, say.

Now 5k+1 ¡ 1¡ 4(k + 1)
= 5(5k)¡ 1¡ 4k ¡ 4
= 5[16a+ 1 + 4k]¡ 5¡ 4k
= 80a+ 5 + 20k ¡ 5¡ 4k
= 80a+ 16k

= 16(5a+ k)

´ 0 (mod 16)

20 211 ¡ 1 = (24)2 £ 23 ¡ 1
´ (¡7)2(8)¡ 1 (mod 23)

´ 7£ 56¡ 1 (mod 23)

´ 7£ 10¡ 1 (mod 23)

´ 69 (mod 23)

´ 0 (mod 23)

) 211 ¡ 1 is divisible by 23.

EXERCISE 11A.7.2

1 a x = 5 b x = 10 c x = 2, 6, 10
d x = 5, 16, 27, 38, 49, 60, 71, 82, 93
e x = 15, 35 f x = 3 g x = 6, 15, 24
h x = 1, 4, 7, 10, 13, 16, 19
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2 a True b True c True d True e True
f True g True h False i True j True

EXERCISE 11A.8.1

1 x ´ 59 (mod 77) 2 x ´ 206 (mod 210)

3 23 is the smallest positive number. All other numbers have
form 23 + 105k, k 2 Z +

4 a x ´ 23 (mod 30) b x ´ 6 (mod 210)
c x ´ 52 (mod 105)

EXERCISE 11A.8.2

1 a x ´ 59 (mod 77) b x ´ 206 (mod 210)
c x ´ 6 (mod 210)

2 x ´ 99 (mode 210)

3 All integers of the form 2 + 12k, k 2 Z :
4 All integers of the form 72 + 105k, k 2 Z :
5 The smallest integer is 28. All solutions have the form

28 + 60k, k 2 Z :
6 119 sweets 7 3930 coins

8 x = 3 + 7t, y = ¡1¡ 4t, t 2 Z
9 a x = 5 + 8t, y = ¡3¡ 11t, t 2 Z

b x = 4 + 5t, y = ¡3¡ 7t k 2 Z
10 62 is the smallest integer > 2

11 x ´ 653, 1423, 2193 (mod 2310)

EXERCISE 11A.9.1

1 a 1, 1, 2, 7, 0

b divisible by 11 only Divisor 2 3 5 9

Remainder 1 1 2 7

2 e i 28 ii 210 iii 21

3 a n2 (mod 10) ´ 0, 1, 4, 9, 5, 6

b They are not perfect squares as their last digits are not
0, 1, 4, 5, 6 or 9:

4 No as

3X
r=1

= 1! + 2! + 3!

= 1 + 2 + 6

= 9 is a perfect square

5 a 23 b 22 c 21 d 24

6 a k = 3n for all n 2 Z + b k = 9n for all n 2 Z +
c k = 2n for all n 2 Z +

7 a i 20 ii Yes b i 23 ii No c i 22 iii No

8 a i 31 ii Yes iii No b i 31 ii Yes iii No
c i 32 ii Yes iii Yes

EXERCISE 11A.9.2

1 6994 is not, 6993 is

5 a i An integer is divisible by 25 if the number which is
its last 2 digits is divisible by 25:

iii An integer is divisible by 125 if the number which
is its last 3 digits is divisible by 125.

b i 53 ii 51 iii 59

6 a An integer is divisible by 6 if it is divisible by both 2
and 3:

b An integer is divisible by 12 if it is divisible by both 3
and 4:

c, d likewise

7 a No b No c No

8 a Yes, No, No b Yes, No, Yes c No, No, No
d Yes, Yes, No e Yes, Yes, Yes f No, No, No

EXERCISE 11A.10.1

1 a 1 (mod 13) b 2 (mod 7) c 9 (mod 17)
d 9 (mod 13)

EXERCISE 11A.10.2

1 a x ´ 4 (mod 7) b x ´ 2 (mod 13)
c x ´ 5 (mod 11) d x ´ 5 (mod 17)

EXERCISE 11A.10.3

4 15 5 a No b No

6 1316 ´ 1 (mod 17) fFLTg
) 1316n ´ 1n (mod 17)

) 1316n+2 ´ 169 (mod 17)

) 1316n+2 + 1 ´ 170 (mod 17)

´ 0 (mod 17)

) 7 j 1316n+2 + 1 for all n 2 Z +
7 likewise to 6 8 1 9 x ´ 4201 (mod 9889)

10 x ´ 264 (mod 323) 12 4

EXERCISE 11B.1

1 No. 4 pen strokes. 2 No 3 Yes

4 a minimum cost $26
million, several
different answers. e.g.

b AHKFE, length 10
hours

EXERCISE 11B.2

1 a i 4 ii 4 iii 2, 2, 2, 2

b i 4 ii 6 iii 2, 3, 3, 4

c i 4 ii 6 iii 2, 2, 3, 3

d i 2 ii 1 iii 1, 1

e i 5 ii 4 iii 1, 1, 2, 2, 2

f i 6 ii 15 iii 5, 5, 5, 5, 5, 5

2 i a, d, e, f ii a, b, c, d, f iii d, f

3 Note: These are examples only

a i ii

iii iv

v

b yes,

A

B

C

D

E

FG

H

J
K

4 5

3

1

2
3

2
3

3

A B

CD

P Q

R
S

T

W X

YZ

c (1) i, ii, iv, v (2) i, ii, iv, v (3) iv
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4 s > k ¡ 1 edges 5 s =
p(p¡ 1)

2
6 Using 4 and 5, a simple connected graph satisfies

n¡ 1 6 s 6 n(n¡ 1)
2

.

) 2n¡ 2 6 2s 6 n2 ¡ n as required

7 Every edge has 2 ends, so if there are n edges, the total
number of edge ends is 2n. Hence the sum of the degrees
is 2n.

8 11 edges

9 The sum of the degrees is 19, which is odd.

10 a No. For a graph of order n to be simple, no vertex
can have degree more that n¡ 1. Here, the order is 5
so we cannot have a vertex of degree 5.

b No. Since there are two vertices with degree 4, then
if the graph is simple there are two vertices with edges
leading to every other vertex. Hence the minimum
degree of any other vertex is 2. This is not the case,
however, so the graph cannot be simple.

11 a Yes. The order is the number of degrees. The size is
the sum of the degrees, all divided by 2.

b No. For example, if a graph has order 4 and size 3,
it could be one of several graphs:

12 Note: These are examples only.

a b c Impossible, as the sum of
the degrees of the graph
must be even.

d e f

13 q =
pr

2

14 Note: These are examples only.

a b c d

15 a b c

16 a 45 b 15 c 14 d
n(n¡ 1)

2
e mn

17 a K4,4 b W3 (= K4) c K2

EXERCISE 11B.3.1

1 There are 12 months in a year, so by the Pigeonhole
Principle there will be at least one month (pigeonhole)
which is the birth month of two or more people (pigeons).

2 Divide the dartboard into 6 equal sectors. The maximum
distance between any two points in a sector is 10 cm.
Since there are 7 darts, at least two must be in the same
sector (Pigeonhole Principle). Hence there are two darts
which are at most 10 cm apart.

3 Divide the equilateral triangle
into 16 identical triangles as
shown. The length of each
side of the small triangles is
2:5 cm.

If there are 17 points, then at
least two must be in the same
triangle (Pigeonhole Principle).
Hence, there are at least two points which are at most 2:5 cm
apart.

4 Suppose they each receive a different number of prizes.
Since each child receives at least one prize, the smallest
number of prizes there can be is
1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10 = 55.
But there are only 50 prizes. Hence, at least two children
must receive the same number.

5 The pairs of numbers 1 & 12, 2 & 11, 3 & 10, 4 & 9,
5 & 8, 6 & 7 all add up to 13. Consider the three numbers
which are not selected. These can come from at least 3 of
the pairs. Hence, there are at least 3 pairs for which both
numbers are selected.

EXERCISE 11B.3.2

1 No. e.g., each have 4 vertices.

2 No. e.g., each have 3 edges.

3 No. We have the same size and order, and the degrees of
the vertices of one match the degrees of the vertices of the
other. However, the connectivity of the graphs is not necess-
arily preserved. e.g.,

4 a Yes

b No. The degrees of the vertices do not match.

c No. The first graph is bipartite while the second is not.

d Yes.

e No. The degrees of the vertices do not match.

5 a No. The graphs have the same size and order, and
same degrees on the vertices. However, the connectivity
is not preserved, since the graph on the left is bipartite
but the graph on the right is not.

is bipartite since every blue
connects only to reds, and
every red connects only to
blues.

b No, as the connectivity is not preserved. The graph on
the left has nodes of degree 2 being adjacent, whereas
the graph on the right does not.

and

A

B

C

D

E

A

B

CD

E

blue

red

blue

redred

blue

10 cm

2.5 cm

2.
5

cm

A

B

CD

E

A

D

BE

C
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c No. The graph on the left is bipartite but the graph on
the right is not.

is bipartite since every blue
connects only to reds, and
every red connects only to
blues.

d Yes e Yes

6 a Each edge has two ends, and each end contributes one
to the degrees of the vertices.

b The number of vertices of odd degree must be even.

c Let “is a friend of” be represented by an edge of a graph
where the people are nodes. There are nine people, and
if they are all friends with exactly five others, there
would be an odd number of vertices of odd degree.

7 Suppose there are n vertices, each of different degree. For
the graph to be simple, the highest degree that any vertex can
be is n¡ 1. Hence the degrees must be 0, 1, 2, 3, .... n¡ 1.

However, this is a contradiction because if a simple graph has
a vertex with degree n¡ 1 then it must be connected, yet we
also have a vertex with degree 0.

) there are at most n¡ 1 different degrees, and so at least
two vertices have the same degree. (Pigeonhole Principle)

8 a 1 b 2

c 6

9 a 2

b 4

c 11

10 We have m pigeonholes containing n pigeons, where
n > m. If none of the holes contain more than one pigeon,
then there can be at most m£ 1 = m pigeons.

Since n > m, this supposition is false. Hence, at least one
hole contains more than one pigeon.

11 a With 4 vertices:

With 5 vertices:

b

c

d Consider a complete graph with n vertices. It has size

n(n¡ 1)
2

. Now to create a self-complementary graph

with n vertices, both the graph and its complement must
have the same number of vertices.

Hence,
n(n¡ 1)

2
must be even.

i.e.,
n(n¡ 1)

2
= 2t, for some integer t

) n(n¡ 1) = 4t, t 2 Z .

Now if n is odd, then n¡ 1 is even, and vice versa.
) whichever one is even must be a multiple of 4
) either n = 4k or n¡ 1 = 4k for some integer k
) G has either 4k or 4k + 1vertices, k 2 Z .

EXERCISE 11B.3.3

1 a can b cannot as it is not symmetric c can

2 There are 10 1s in the matrix.

Sum of degrees
= 2 + 3 + 2 + 3
= 10

3 a b

4 a

2664
0 0 1 1 0
0 0 0 1 1
1 0 0 0 1
1 1 0 0 0
0 1 1 0 0

3775 b

2664
0 1 0 0 1
1 0 1 0 0
0 1 0 1 0
0 0 1 0 1
1 0 0 1 0

3775

c

2664
0 0 1 1 0
0 0 0 1 1
1 0 0 0 1
1 1 0 0 0
0 1 1 0 0

3775 All 3 graphs
are isomorphic

5 a

The graphs are the same; only their labels are changed.
) they are isomorphic

b Yes. In both graphs, every vertex is adjacent to every
other vertex.

EXERCISE 11B.3.4

1 a

24 0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

35 b

24 0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0

35

c

2664
0 1 1 1 1
1 0 1 0 1
1 1 0 1 0
1 0 1 0 1
1 1 0 1 0

3775 d

2664
0 1 1 1 1
1 0 0 0 0
1 0 0 0 0
1 0 0 0 0
1 0 0 0 0

3775

e

2664
0 0 1 1 1
0 0 1 1 1
1 1 0 0 0
1 1 0 0 0
1 1 0 0 0

3775

blue

red

blue

redred

blue

This is one of
many answers:

No. If there are vertices, there are possible edges.
Hence, the complement of a graph with vertices can-
not have the same number of edges as the original graph.

3 3
3

A B

D C

E B

D C

A
A B

D C

A B

D C

Gz

D B

A C

Gx
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2 a

266664
0
0

0

377775
1s everywhere else

0s on the leading
diagonal

b

266666664

0 1 1
1 0 1
1

1 1 0

377777775

1s in the far corners

1s on the diagonals either
side of the leading
diagonal

0s on the leading diagonal
and everywhere else

c

266666664

0 1 1 1
1 0 1 1
1 1 0 1
1 1 0

1 1 0

377777775

0s on the leading diagonal

1s everywhere else in the
first row and column

1s on the diagonals either
side of the leading diagonal

1s in the far corners of the
remainder

0s everywhere else

d

266666664

0 0 1 1

0 0 1 1
1 1 0 0

1 1 0 0

377777775

m£m block of 0s

m£ n block of 1s

n£ n block of 0s

n£m block of 1s

3 Find A for K4, and then find A2, A3, A4, A5.

a 2 b 7 c 20 d 61

4 Find A for K3,3, and then find A2, A3, A4, A5. Remember
that the adjacent vertices are shown by the 1s in A.

a 0 b 9 c 0 d 81

5 a 3 b 0 c 27 d 0

6 a A =

"
0 1 1
1 0 1
1 1 0

#
, A2 =

"
2 1 1
1 2 1
1 1 2

#
,

A3 =

"
2 3 3
3 2 3
3 3 2

#
, A4 =

"
6 5 5
5 6 5
5 5 6

#
b We can develop a recurrence relationship:

If An¡1 =

"
a b b
b a b
b b a

#
then An =

"
2b a+ b a+ b
a+ b 2b a+ b
a+ b a+ b 2b

#

This can be written in the general form An =

"
c d d
d c d
d d c

#

where c = 2
3
[2n ¡ (¡1)n] = (¡1)n¡1

n¡2P
i=0

(¡2)i+1

and d = 1
3
[2n ¡ (¡1)n] = (¡1)n¡1

n¡1P
i=0

(¡2)i

7 A =

24 0
0

0

35, A2 =

24 m
m

m

35

A3 =

266664
m(m¡ 1)

m(m¡ 1)

m(m¡ 1)

377775
The recurrence relationship is:

If An¡1 =

24 a a

a

35 then An =

24 bm bm

bm

35

This can be written in the general form An =

24 c c

c

35
where c = (¡1)n¡1

n¡2P
i=0

(1¡m)i+1

and d = (¡1)n¡1
n¡1P
i=0

(1¡m)i

8 a A =

2664
0 0 0 1 1
0 0 0 1 1
0 0 0 1 1
1 1 1 0 0
1 1 1 0 0

3775, A2 =

2664
2 2 2 0 0
2 2 2 0 0
2 2 2 0 0
0 0 0 3 3
0 0 0 3 3

3775

A3 =

2664
0 0 0 6 6
0 0 0 6 6
0 0 0 6 6
6 6 6 0 0
6 6 6 0 0

3775, A4 =

2664
12 12 12 0 0
12 12 12 0 0
12 12 12 0 0
0 0 0 18 18
0 0 0 18 18

3775

b For odd k, Ak =

2664
0 0 0
0 0 0
0 0 0

0 0
0 0

3775

For even k, Ak =

2664
0 0
0 0
0 0

0 0 0
0 0 0

3775

9 a A =

24 35, A2 =

24 35

A3 =

24 35, A4 =

24 35
b For odd k,

Ak=

2664
3775

For even k,

Ak =

2664
3775

1

1

1
0

0

1

10

0

0

0

1

1

m£m m£n

n£nn£m

1

1
(m¡ 1)

¡
m+ (m¡ 1)2

¢
¡
m+ (m¡ 1)2

¢

b

b

(a+ b (m¡ 1))

d

d

6
k¡1
2

6
k¡1
2

2
k
2£3 k2¡1

2
k
2
¡1£3 k2

n

m

0

0

m£m m£n

n£nn£m

0

0

mn

mn

m£m m£n

n£nn£m

mn2

m n2

0

0

m£m m£n

n£nn£m

(mn)
k¡1
2 n

k
2£m

k
2
¡1

n
k
2
¡1£m

k
2(mn)

k¡1
2

0

0 0

0
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EXERCISE 11B.4.1

1 a traversable b traversable c neither

d neither e traversable f neither

2 Note: These are examples only.

a b

c

3 a Eulerian b traversable c neither

d Eulerian (for m > 3)

4 a Eulerian for n odd, traversable for n = 2, otherwise
neither.

b Eulerian if m and n are both even, traversable if m or
n is 2 and the other is odd, otherwise neither.

5 a 0, 2 or 4 b 2 or 4 c 2 or 4

6 a 3 b 4 c 5

7 No. Yes - either

8 For any graph G, the sum of the degrees of the vertices is
even.
) there must be an even number of vertices of odd degree
We can add an edge between any pair of vertices with odd
degree, thus reducing the number of vertices with odd degree
by 2. We repeat until all vertices have even degree.
At this time the graph is Eulerian.

9 Only graphs which are Eulerian (no vertices with odd degree)
or traversable (two vertices with odd degree) may be drawn
with a single pen stroke without repeating an edge.
Since there are 8 vertices with odd degree present, it takes
8
2
= 4 pen strokes.

10 There are 4 odd vertices, so that
we cannot clear every road exactly
once no matter where we start.

The most efficient method is to
repeat the roads shown:

11 ()) Suppose the graph is bipartite, so there are two disjoint
edge sets A and B. Suppose we are at a particular vertex
in set A. In order to form a circuit back to this vertex,
we must move to set B then back to set A, and repeat
this a certain number of times. Each trip from set A to
set B and back adds 2 to the length of the circuit.
Hence, the circuit must have even length.

(() Suppose the graph contains only even length circuits.
If we choose any vertex v 2 V (G), then we can define
sets of vertices:

Set A is the set of vertices with paths of odd length
to v.

Set B is the set of vertices with paths of even length
to v.

Now if any vertex w belongs to both sets A and B, then
there must exist an odd length circuit in the graph. This
is a contradiction, so A and B are disjoint sets. Since
this is true for all vertices v, the graph is bipartite.

EXERCISE 11B.4.2

1 a i Hamiltonian ii semi-Hamiltonian

iii Hamiltonian

b i semi-Hamiltonian ii Hamiltonian

iii semi-Hamiltonian iv semi-Hamiltonian

v Hamiltonian

2 K5 and W4 (b ii) satisfy the first observation.

K5, W6 and W4 (b ii) satisfy the second observation.

K5, and W4 (b ii) satisfy the third observation.

3 Note: These are examples only.
a Cn for all n > 2 b Wn for all n > 2

c d K2,3

4 m and n must both be even.

5 Kn has n vertices, each with degree n¡ 1.
From the observation of Dirac, a Hamiltonian cycle exists if

n¡ 1 > 1
2
n, i.e., if n > 2

However, from Dirac we must have n > 2.
So, Kn contains a Hamiltonian cycle for all n > 2.

6

7 From Exercise 11B.4.1, question 11, a graph is bipartite
if and only if each of its circuits is of even length.

) if a bipartite graph has an odd number of vertices, it
cannot contain a circuit visiting every vertex.

) G cannot be Hamiltonian.

a

Since there are 13 vertices, which is an odd number, the
graph is not Hamiltonian.

b

8 This graph is bipartite with 6 vertices in one edge set and 5 in
the other. Since the total is odd, the graph is not Hamiltonian.

9

or

A B

If we label each vertex either A
or B, we can show that the graph
is bipartite.

Az

Bv

Am

An Ax

BzBc

Ac

Av

Bn

Bx

Bb

Ab

becomes

Az Ax Ac Av Ab An Am

Bz Bx Bc Bv Bb Bn

If each square on a chessboard is represented by a vertex,
and vertices are adjacent if a knight can move between
them, then the resulting graph is bipartite. The white
squares and the black squares form the two disjoint sets.
If is odd then is also odd. Hence no Hamiltonian
cycle exists. If is even, a Hamiltonian cycle still
does not necessarily exist!

n n n
n

£
Note:
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EXERCISE 11B.5.1

1 a b

c d

2 No, the problem cannot be solved on any surface.

3 a

b non-planar

c

d non-planar

EXERCISE 11B.5.2

1 a 5 vertices, 10 edges

b Using e+ 2 = r + v, we would need r = 7 regions.

c Each region of K5 can be represented using a triangle.
) each region has at least 3 edges.
Now 3£ 7 = 21, but since every edge is a border
for two regions, we have counted every edge twice.

As
21

2
= 10 1

2
, we need at least 11 edges. But we

only have 10 edges, so we have a contradiction and
K5 cannot be planar.

2 When we count over regions, each edge is counted twice.

Hence, 2e > 3r, i.e., r 6 2
3
e

Now for a planar graph, e+ 2 = v + r

) e+ 2 6 v + 2
3
e

) 1
3
e 6 v ¡ 2

) e 6 3v ¡ 6
3 Since the graph is bipartite, each region has a minimum of

4 edges. When we count over the regions, each edge is

counted twice. Hence, 2e > 4r, i.e., r 6 1
2
e

Now for a planar graph, e+ 2 = v + r

) e+ 2 6 v + 1
2
e

) 1
2
e 6 v ¡ 2
e 6 2v ¡ 4

Note: e 6 2v ¡ 4 is a necessary but not a sufficient
condition for a bipartite graph to be planar.

e.g., is bipartite but not planar.
However, it has e = 12 and
v = 9, so e 6 2v ¡ 4 is
satisfied.

5 If the shortest cycle has length 5, then each region has at
least 5 edges.

Hence, 2e > 5r, i.e., r 6 2
5
e

Using e+ 2 = v + r,

) e+ 2 6 v + 2
5
e

) 3
5
e 6 v ¡ 2

) 3e 6 5v ¡ 10
6 If the girth is g, then each region has at least g edges.

Hence, 2e > gr, i.e., r 6
2

g
e

Using e+ 2 = v + r,

) e+ 2 6 v +
2

g
e

) (1¡ 2

g
)e 6 v ¡ 2

) (g ¡ 2)e 6 gv ¡ 2g
7 The sum of the degrees of the edges is twice the number of

edges.

Hence, if each of the v vertices has degree at least 6, then
2e > 6v, i.e., e > 3v

This contradicts the requirement that e 6 3v ¡ 6.

So, there must be at least one vertex of degree less than or
equal to 5.

8 Kn has n vertices and
n(n¡ 1)

2
edges

Since e 6 3v ¡ 6 fquestion 2g
) n(n¡ 1)

2
6 3n¡ 6

) n2 ¡ n 6 6n¡ 12
) n2 ¡ 7n+ 12 6 0

) (n¡ 4)(n¡ 3) 6 0

) 3 6 n 6 4

Hence, K3 and K4 are the only complete planar graphs.

9

10 Consider the complete bipartite graph K2,n:
This graph has v = n+ 2 vertices, e = 2n edges, and since

every region is bounded by 4 edges, r =
e

2
= n

So, r + v = n+ (n+ 2)
= 2n+ 2
= e+ 2

i.e., Euler’s formula is satisfied ) K2,n is planar.

11 The complete bipartite graph Ks,t has v = s+ t vertices,
e = st edges, and since every region is bounded by 4 edges,

r =
e

2
=
st

2

So, r + v =
st

2
+ s+ t

and e+ 2 = st+ 2

A
B D

C

E
A B

D C

A C

B

D

E F

A B

E D

F C

H I

L K

G J

A

B

C

D

E

F

G

H

becomes

H A

E

F

G
B

C

D

A B C

E D

A B C

D

E
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) Euler’s formula is satisfied when

st

2
+ s+ t = st+ 2

i.e., st+ 2s+ 2t = 2st+ 4

i.e., st¡ 2s¡ 2t+ 4 = 0

i.e., (s¡ 2)(t¡ 2) = 0

i.e., s = 2 or t = 2

i.e., Ks,t is non-planar if both s and t are greater than 2.

EXERCISE 11B.6.1

1 a yes b no c yes d no

2

3 Only K2 is a tree. Kn where n > 2 contains at least one
cycle.

4 2(n¡ 1)
a 11 vertices.

One example is

b 18 vertices.

One example is

5 a and b, c and e 6 One example is

7 The complete bipartite graph Km,n has mn edges.
But a tree of order k has k ¡ 1 edges.

) mn = m+ n¡ 1
) m(n¡ 1) = n¡ 1

) (n¡ 1)(m¡ 1) = 0

) n = 1 or m = 1

Hence Km,n is a tree if either m or n is 1.

8 In a tree, no vertex can have a degree 0.
Now if every vertex has degree 2, the sum of the degrees is 2n.
But a tree with n nodes has n¡ 1 edges and so the sum of
the degrees is 2n¡ 2, i.e., less than 2n.
) at least 2 vertices have degree one.

EXERCISE 11B.6.2

1 These are examples only.

a b

2 n

3, 4, 5 Click on the icon to find full
solutions to these questions.

EXERCISE 11B.6.3

1

Minimum $26 million.

2 a

3 a There is a weight for
every edge from every
node to every other
node.

b, c

4

A variation is EF instead of DG.

A

3 2 2 3

1 2

2
1

0

3

4 4

3
2

1 2

33

A C

DB

G

E F

H

3 4

2 3

1 2

10

A

B

C

D

E

F
G

H

J

K

4 5

5

3

1
5

2

6
8 7

9

3

2

3
6

11

3

5

3

There are other
(minor) variations.

b

A

T

7

5

2

6

1
4

4

43

5

3

2

1

2

3

2

5

4

1

A

B
C

D

E

F

GH

I

J

2

4
6

3

8

5
3

7

9

7
5

9

6

4 8

28

A

B

C D

E

10 10

5 8

9
7

104
8

7
A

G

D

BC

F

E

30

45

50
10

15

15

3540

70
50

20

10

12 Suppose G is a simple graph with v vertices and E edges.

Together, G and G have the same number of edges as Kv,

so G has v vertices and
v(v ¡ 1)

2
¡E edges

Assuming G is planar, E 6 3v ¡ 6 ...... (1)

Now if G is also planar, then

v(v ¡ 1)
2

¡E 6 3v ¡ 6
) v(v ¡ 1) 6 2(3v ¡ 6 +E)
) v2 ¡ v 6 6v ¡ 12 + 2(3v ¡ 6)
) v2 ¡ v 6 12v ¡ 24

) v2 ¡ 13v + 24 6 0

Solving v2 ¡ 13v + 24 = 0 gives v ¼ 2:23 or 10:8

) G is not planar if v > 11
) if G has at least 11 vertices, G and G cannot both

be planar.

SOLUTIONS
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EXERCISE 11B.6.4

1 a

A ! B ! G ! D, weight 20

b

A ! F ! G ! C ! D, weight 15

2

A ! B ! E ! G or A ! B ! E ! F ! G,
both weight 23

3

A ! H ! K ! F ! E, 10 hours

4

A ! H ! G or A ! H ! K ! G, both weight 7

EXERCISE 11B.7

1 Vertices A and C have odd degrees.
) not Eulerian, and we have to travel between A and C twice.
The sum of the lengths of all the roads is 21 km and the
shortest path from A to C is 3 km.
So, the shortest distance the snowplough must travel is 24 km.

2 a A, B, C and D have odd degrees. Since the graph is
complete, exactly two sections must be repeated.

b Repeating AB and CD is 6 + 5 = 11 km
Repeating AC and BD is 7 + 4 = 11 km
Repeating AD and BC is 9 + 12 = 21 km

The sum of the lengths of the paths is 43 km.
) the shortest distance to be travelled is 54 km,

repeating either AB and CD or AC and BD.

An example route is:
A ! B ! C ! A ! D ! C ! D ! B ! A

c Repeating AB and CD is 4 + 7 = 11 hours
Repeating AC and BD is 4 + 3 = 7 hours
Repeating AD and BC is 6 + 6 = 12 hours

The sum of the times of the paths is 30 hours.
) the shortest total time is 37 hours,

repeating AC and BD.

An example route is:
A ! C ! B ! D ! C ! A ! D ! B ! A

3 a Vertices B, F, G and H have odd degrees.

b Repeating BF and GH has smallest distance
7 + 2 = 9 units
Repeating BG and FH has smallest distance
5 + 3 = 8 units
Repeating BH and FG has smallest distance
4 + 5 = 9 units

The sum of the distances of all the roads is 55 units.

) the shortest distance to be travelled is 55 + 8
= 63 units, travelling BG and FH twice.

A possible route is:
A ! B ! C ! D ! E ! C ! H ! E ! F !
H ! B ! A ! G ! F ! H ! G ! A

4 The vertices with odd degrees are A, D, E and I.

Repeating AD and EI has smallest distance
4 + 8 = 12 units
Repeating AE and DI has smallest distance
7 + 8 = 15 units
Repeating AI and DE has smallest distance
9 + 5 = 14 units

) Peter should repeat AD (via B) and EI (via F)

An example route is:

A ! B ! C ! D ! B ! D ! F ! E ! C ! G !
E ! F ! G ! I ! H ! F ! I ! F ! B ! A

5 a AB and CD, AC and BD, AD and BC.

b Repeating AB and CD has smallest distance
3:5 + 6 = 9:5 km
Repeating AC and BD has smallest distance
6 + 5:5 = 11:5 km
Repeating AD and BC has smallest distance
5 + 5 = 10 km

The sum of the distances of all the roads is 32:5 km.
) the shortest distance to be travelled is 32:5 + 9:5

= 42 km, travelling AB (via E) and CD twice.

An example route is:

E ! A ! B ! E ! A ! D ! C ! B ! E !
D ! C ! E

A

B C

D

EF

G

4

6

13

5

6

11

8

2
8

14

114

4 10

20

17 1610 11

0

8
6

A

B C

D

EF

G

6

9

3

10

4

4

9

2
5

9

53

6 12

16 15

84

0

9
7

A

B

C
D

E

F

G

6

8

3
12

5 4

9

13

9

3

6
19

25 23
0

15
14

12
3

A

B

C

D

E

F
G

H

J K

4 5

5

3

1

5

2

6
8 7

9

3

2

3

6

11

3

5

3

13 12 10

9

10

7
7

2

0

6

6 5 4

A

B

C

D

E

F
GH

J K
6

8

6

4

7

5

9

11

3

2

2

5

3

5

3

3

3

5

1

13

9

4

7
72

0

6

6 5
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6 a The vertices with odd degrees are C, D, E and F.

b Repeating CD and EF has smallest cost
1:3 + 1:5 = 2:8 thousand dollars
Repeating CE and DF has smallest cost
2:3 + 2:6 = 4:9 thousand dollars
Repeating CF and DE has smallest cost
1:4 + 1:1 = 2:5 thousand dollars

The sum of the costs for all routes is 13:6 thousand $s.
) the lowest cost solution is to travel CF (via B) and

DE twice, and this costs $13 600 + $2500 = $16 100

An example route is:

A ! B ! F ! G ! D ! E ! F ! B ! E !
D ! C ! B ! C ! A

EXERCISE 11B.8

1 a minimum spanning tree
has weight 130

) upper bound is 260.

b Shortcut SPQR then straight back to S.
Length is 130 + 86 = 216 ) new upper bound is 216.

c Deleting S, min. spanning tree has length
55 + 43 = 98
Adding the shortest deleted edges gives
98 + 32 + 84 = 214

Deleting R, min. spanning tree has length
55 + 32 = 87
Adding the shortest deleted edges gives
87 + 43 + 65 = 195

Deleting Q, min. spanning tree has length
32 + 65 = 97
Adding the shortest deleted edges gives
97 + 55 + 43 = 195

Deleting P, min. spanning tree has length
43 + 84 = 127
Adding the shortest deleted edges gives
127 + 32 + 55 = 214

) lower bound is 214.

d Shortest path SPQRS has length 216.

2 a

Both minimum spanning trees have length 50
) upper bound is 100.

b Shortcut QRSP then straight back to Q.
Length is 50 + 30 = 80 ) new upper bound is 80.

c
Vertex
deleted

MST
length

Shortest
deleted edges

Total

P 30 20 + 20 70

S 35 15 + 20 70

R 45 15 + 15 75

Q 35 15 + 25 75

) lower bound is 75.

d Shortest paths QRSPQ or QRPSQ have length 80.

3 a Minimum spanning tree
has length 32:
) upper bound is 64.

b Shortcut PQTSRQP.
Length is 32 + 10 + 7 = 49 ) new upper bound is 49.

c
Vertex
deleted

MST
length

Shortest
deleted edges

Total

P 25 7 + 8 40

Q 27 7 + 7 41

R 26 7 + 8 41

S 23 9 + 10 42

T 23 9 + 10 42

) lower bound is 42.

d Shortest paths PQTSRP has length 43.

REVIEW SET 11A

1 a 8 b m = ¡3, n = 8

2 x = 11 + 31t, y = ¡6¡ 17t, t 2 Z
3 d = 42, x = 1, y = ¡2 5 x ´ 15(mod 17)
6 n ´ 79(mod 209) 7 x ´ 2(mod 6) or 5(mod 6) 8 7

9 m j n ) n = km for some k 2 Z

Now
Nn
Nm

=
³
10n ¡ 1
9

´³
9

10m ¡ 1
´

=
10mk ¡ 1
10m ¡ 1

=
ak ¡ 1
a¡ 1 , for a = 10m

= 1 + a+ a2 + a3 + :::::: + ak¡1

= A, an integer

) Nn = ANm, A 2 Z
) Nm j Nn

10 a 1 or 2 b 1 or 3

11 If a, b 2 Z + then a, b = 0, 1, 2(mod 3).

Possibilities are:

a b a2 b2 a2 + b2

0 0 0 0 0
1 1 1 1 2
2 2 1 1 2

So, if a2 + b2 ´ 0 (mod 3)
then a ´ 0 (mod 3) and b ´ 0 (mod 3)
) 3 j a and 3 j b
Now consider a = 1, b = 2

) a2 + b2 = 5

) 5 j a2 + b2
but 5 jÁ a and 5 jÁ b

13 a only

‘bba’ is 100b+ 10b+ a = 110b+ a

But 2b+ a = 12k, k 2 Z
) ‘bba’ = 12k + 108b = 12(k + 9b)

where k + 9b 2 Z
) ‘bba’ is divisible by 12

P Q
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ANSWERS 407

15 a If nÁ́ 0 (mod 5) then

n ´ 1, 2, 3, 4 (mod 5)

) n2 ´ 1, 4, 4, 1 (mod 5)

) n2 ´ 1, 4 (mod 5)

) n2 ´ §1 (mod 5)
b From a

n4 ´ 1 (mod 5)
Now n5 + 5n3 + 4n

= n(n4 + 5n2 + 4)

= n(n2 + 1)(n2 + 4)

If n2 ´ 1 (mod 5), n2 + 4 ´ 0 (mod 5)
If n2 ´ ¡1 (mod 5), n2 + 1 ´ 0 (mod 5)
So, n5 + 5n3 + 4n ´ 0 (mod 5)
) n5 + 5n3 + 4n is divisible by 5 for all n 2 Z +

REVIEW SET 11B

2 a only

(n+ 1)! = (n+ 1)(n)(n¡ 1) ...... (3)(2)(1)
contains at least one factor of 2

) (n+ 1)! is even

) (n+ 1)! + 2 is even

(n+ 1)! also is divisible by 3

i.e., (n+ 1)! ´ 0 (mod 3)
) (n+ 1)! + 2 ´ 2 (mod 3) i.e., m ´ 2 (mod 3)
) m+ 1 ´ 0 (mod 3)
) 3 j m+ 1

3 21 020 010 221 1023

4 x ´ 13, 30, 47 (mod51)

5 An integer is divisible by 36 if it is divisible by 4 and 9.

As the number ends in 24, which is divisible by 4, the
number is divisible by 4.

Also the sum of the number’s digits is 78 which is not
divisible by 9 (but is divisible by 3).
So, the number is divisible by 3, but not 9

Hence, the number is not divisible by 36, but is by 12:

6 x ´ 101 (mod 260)
7 If a 2 Z +, then a ´ 0, 1, 2 (mod 3)

) a3 ´ 0, 1, 2 (mod 3) and

5a ´ 0, 2, 1 (mod 3)

) a3 + 5a ´ 0, 0, 0 (mod 3)

) a3 + 5a ´ 0 (mod 3)
) 3 j a3 + 5a

8 a 1, 2, 3, 5, 8, 13, 21, 34, 55, 89

S1 = 1 = 3¡ 2
S2 = 3 = 5¡ 2
S3 = 6 = 8¡ 2
S4 = 11 = 13¡ 2
S5 = 19 = 21¡ 2
S6 = 32 = 34¡ 2

This suggests that
nX
k=1

Lk = Ln+2 ¡ 2
for all n 2 Z +

then strong induction

9 a 110 0012 b 618

11 Consider n = 6. 12 j 62, but 12 jÁ 6

12 n = 2a or 2a+ 1 for all n 2 Z
) n2 = 4a2 or 4a2 + 4a+ 1

) n2 ´ 0, 1 (mod 4)

) n2 ¡ 1 ´ 3, 0 (mod 4)

) n2 ¡ 1 is divisible by 4 or

n2 ¡ 1 = 4k + 3, k 2 Z
13 Show that 435(47)¡ 48 ´ 2 (mod 3)

) the number leaves a remainder of 2 when divided
by 3

) the number is not divisible by 3

14 42 ´ 22 (mod 12) )Á 4 ´ 2 (mod12)
) a2 ´ b2 (modn) )Á a ´ b (modn)
The converse is true

i.e., a ´ b (modn) ) a2 ´ b2 (modn)
32 ´ 22 (mod 5) )Á 3 ´ 2 (mod 5)
So, the statement is not true for n a prime.

a2 ´ b2 (modn) ) a ´ §b (modn)
15 n is prime

REVIEW SET 11C

1 a m = 2 b m = 2 c never

2 a m vertices
m(m¡ 1)

2
edges

b m vertices m edges

c m+ 1 vertices 2m edges

d m+ n vertices mn edges

3 If the graph has e edges, then the sum of the degrees of its
vertices is 2e.
) if the minimum degree is m and the maximum is M;

mv 6 2e 6 Mv

m 6
2e

v
6 M

4
v(v ¡ 1)

2
¡ e

5 Suppose the graph has v vertices. The sum of the edges of

G and G is the number of edges of Kv.

i.e., 17 + 11 =
v(v ¡ 1)

2
) v(v ¡ 1) = 56

) v2 ¡ v ¡ 56 = 0

) (v ¡ 8)(v + 7) = 0

) v = 8 fas v > 0g
) G has 8 vertices

6 Since G is bipartite, it has two disjoint sets of vertices.
Suppose there are m vertices in one set and v ¡m vertices
in the other.
If G is simple, the total number of edges possible is

m(v ¡m) = ¡m2 +mv, which is a quadratic in m whose

maximum occurs when m =
¡v
2(¡1) =

v

2

) the max. possible number of edges is
v

2
£ v

2
=
v2

4

i.e., e 6
v2

4

7 a

24 0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

35 b

2664
0 1 1 1 1
1 0 0 0 0
1 0 0 0 0
1 0 0 0 0
1 0 0 0 0

3775
c

2664
0 0 1 1 1
0 0 1 1 1
1 1 0 0 0
1 1 0 0 0
1 1 0 0 0

3775
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408 ANSWERS

8 These are examples only.

a b

9 a 6 paths b 4! = 24 paths c 4! = 24 paths

10 a 0 paths b 0 paths c 36 paths

11 m and n must both be even.

12 If the shortest cycle has length 5, then each region has at
least 5 edges.

Hence, 2e > 5r, i.e., r 6 2
5
e

Using e+ 2 = v + r,

) e+ 2 6 v + 2
5
e

) 3
5
e 6 v ¡ 2

) 3e 6 5v ¡ 10 and so e 6
5v ¡ 10
3

13 Since the graph is planar, e+ 2 = v + r
Now if there are 8 vertices of degree 3, there are 24 ends
of edges. ) e = 12

) 12 + 2 = 8 + r
) r = 6

i.e., there are 6 regions

14 8 regions fusing the same argument as in 13g.

REVIEW SET 11D

1 A, B, D

2 Suppose there are n vertices, each of different degree.
For the graph to be simple, the highest degree that any vertex
can be is n¡ 1.
Hence the degrees must be 0, 1, 2, ....., n¡ 1.

However, this is a contradiction because if a simple graph has
a vertex with degree n¡ 1 then it must be connected, yet we
also have a vertex with degree 0.

) there are at most n¡ 1 different degrees, and so at least
two vertices have the same degree. (Pigeonhole Principle)

3 a i Eulerian ii Hamiltonian
b i traversable ii neither
c i neither ii Hamiltonian
d i Eulerian ii Hamiltonian

4 A graph is bipartite , each of its circuits is of even length.

) if a bipartite graph has an odd number of vertices, it
cannot contain a circuit visiting every vertex.

) G cannot be Hamiltonian.

5 From the definition of isomorphism:

² for every vertex in G there is a unique corresponding
vertex in H , and vice versa.
) the order of G = the order of H .

² the adjacency of all vertices is preserved.
) the size of G = the size of H.

Converse example:

order 4
size 3

order 4
size 3

but the graphs are not isomorphic.

6 No. B has an extra edge. In A and C,
the adjacency of vertices is not preserved.

7 a

b Those in a, plus

8 a If there are 28 edges, then there are 56 ends of edges.
) the sum of the degrees of the vertices is 56.

If there are m vertices of degree 3, and 12¡m vertices
of degree 4, then
3m+ 4(12¡m) = 56

) ¡m+ 48 = 56

) m = ¡8, which is impossible

Hence, no.

b Using the same argument as in a, suppose there are m
vertices of degree 5 and 12¡m vertices of degree 6.
Show that m = 16 which is impossible. Hence, no.

9 For a simple connected graph to have as many edges as
possible, we consider the complete graphs Kn.

For n vertices, they have
n(n¡ 1)

2
edges.

Hence, we seek the lowest n such that
n(n¡ 1)

2
> 500

From this inequality show that we need at least 33 vertices.

10 Suppose G has order n. Together, G and G have the same

number of edges as Kn, i.e.,
n(n¡ 1)

2
:

However, if G and G are both trees, then they both must have
n¡ 1 edges.

Thus,
n(n¡ 1)

2
= 2(n¡ 1)

) n(n¡ 1) = 4(n¡ 1)
) (n¡ 1)(n¡ 4) = 0

) n = 1 or 4

But n = 1 is not a particularly sensible solution,
So, G has order 4:

11 G is planar and cubic. If G has order n, then the sum of the

degrees of its vertices is 3n, and so it has
3n

2
edges.

Using Euler’s formula, e+ 2 = r + v

)
3n

2
+ 2 = r + n

) r =
n

2
+ 2

K4 has 4 nodes and 4 regions.

n

2
+ 2 =

4

2
+ 2 = 4 X

REVIEW SET 11E

1

2 Each vertex of W3 has degree 3, and in fact
W3 is the same as K4.
Now a spanning tree of K4 has only 3 edges,
so the sum of the degrees of the vertices is 6.

4
3

2
1

0 2 2 2 4

1 3 3

3 1 5

O
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ANSWERS 409

We can have the configurations:

Degrees of Example Combinations
vertices

3 1 1 1 4 (4 ways to choose vertex of
degree 3)

2 2 1 1 12 (4£ 3 ways to choose vert-
ices of degree 2,

£ 2 ways to choose which
vertex of degree 1 is attached
to which of degree 2,

¥ 2 for symmetrical solu-
tions which are the reverse
of others.)

Hence there are 16 spanning trees of W3.

3

min. weight = 40

4

min. weight = 293

5

Min. connector has length 19:

Either O ! A ! D ! E ! G ! H ! Y

or O ! A ! D ! E ! G ! I ! Y

6

Shortest distance is 91 km, via the path shown.

7 a The graph has two vertices with odd degree, B and C.
) while it is not Eulerian, it is traversable.
) if we start and finish at B and C (either order), we can

walk around all tunnels without having to repeat any.

b B ! A ! E ! B ! C ! E ! D ! C. c BC

d The sum of the lengths of the tunnels is 831 m.
The shortest path from B to C is 146 m, and this is the
length that is repeated.
) the min. distance is 831 + 146 = 977 m.

8 There are 4 vertices with odd degrees: A, B, C and D.

Repeating AB and CD has min. length 10 + 13 = 23:
Repeating AC and BD has min. length 25 + 24 = 49:
Repeating AD and BC has min. length 22 + 15 = 37:

Thus, we repeat AB and CD. The sum of the length of all
roads is 113 ) the min. distance = 113 + 23 = 136 units.

9 a i

min. length = 51
) upper bound 102.

ii Shortcut C ! O ! A ! B ! O ! C
gives an upper bound of 90.

iii
Vertex
deleted

MST
length

Shortest
deleted edges

Total

A 34 17 + 24 75

B 32 19 + 24 75

C 36 15 + 25 76

O 47 15 + 27 79

) lower bound is 79

iv Shortest path is O ! A ! B ! C ! O
with length 81 units.

b i

min. length = 26
) upper bound 52.

ii Shortcut B ! A ! C ! O ! D ! B
gives an upper bound of 46.

iii
Vertex
deleted

MST
length

Shortest
deleted edges

Total

A 26 3 + 8 37

B 16 10 + 13 39

C 24 3 + 7 34

D 20 6 + 11 37

O 24 6 + 7 37

) lower bound is 39

iv Shortest path is O ! C ! A ! B ! D ! O
with length 46 units.
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412 INDEX

Abelian group

absolute convergence

absolute value function

abstraction

acyclic

adjacency matrix

adjacent vertices

algebraic structure

alternating series

alternating series estimation theorem

alternating series test

alternative hypothesis

Archimedian property

associative

bases

Bernoulli distribution

bijection

binary operation

Binet’s formula

binomial approximation

binomial distribution

bipartite graph

bounded

breadth first search

bridges of Königsberg

cancellation laws

Cantor, Georg

Cartesian plane

Cartesian product

Cayley tables

central limit theorem (CLT)

Chinese postman problem

Chinese remainder theorem

chi-squared distribution

chi-squared test

goodness of fit test

circuit

circuit graph

closure

codomain

commutative

comparison test

complement of a graph

146

214

174

346

319

306

297, 298

145

211

212

211

74

191

116, 118, 137

261

20, 31

133

136

254

42

20, 31

298, 312

193

323

310

145

110

120

120

143, 146

50

332

286

88

see

311

297

137

131

118, 138

185, 201

298

complement of a set

complete graph

composite numbers

composition of functions

conditional convergence

confidence interval

congruence

connected graph

continuous random variable

continuous uniform distribution

convergence

coprime

relatively prime

cumulative distribution function (cdf)

cycle

cyclic group

degree of a vertex

degree of freedom

De Morgan’s laws

depth first search

difference between sets

differential equation

Dijkstra’s algorithm

Diophantine equation

Dirac

direct proof

discrete random variable

discrete uniform distribution

disjoint sets

distributive

divergence

divergence test

dividend

divisibility

division algorithm

divisor

domain

edge

elements

empty relation

equivalence

equivalence classes

equivalence relation

Euclidean algorithm

Euclid’s lemma

Euler

Eulerian

115

298

256, 274

134

214

60, 66

128, 278

298, 312

19, 35

36, 42

184, 199, 214

see

19, 35

311

152

297, 298

94

117

323

117

229

319, 330

270

314

346

19

20, 31

115

116, 139

184, 199

200

258

257, 289

258

258

121, 131

297

110

124

349

124

123

267

266, 274

228, 292, 310

311
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Euler’s formula

Euler’s method

expected value

exponential distribution

Fermat’s little theorem

Fibonacci sequence

finite group

finite set

function

fundamental theorem of arithmetic

fundamental theorem of calculus

Gauss

general solution

geometric distribution

girth

goodness of fit test

graph

greatest common divisor (gcd)

group

groupoid

Hamilton

Hamiltonian graph

handshaking lemma

homeomorphic graph

homogeneous differential equation

hypergeometric distribution

Icosian game

identity

improper integral

incident

indeterminate forms

induction

infinite cyclic group

infinite group

infinite set

initial condition

injection

integer properties

integral test

integrating factor

intersection of sets

interval of convergence

inverse function

317

232

10

38, 42

292

253

146

110

131

275

40

278

230

23, 31

313

88, 95

297, 298

248, 263

145

145

310

313

301

319

237

22, 31

313

140, 160

183

298

179

250, 252

155

146

110

230

132

250

203

238

113, 114

220

135, 162

inverse operation

isomorphism

Königsberg

Klein four-group

Kruskal’s algorithm

Kuratowski’s theorem

Lagrange’s theorem

Laplace transform

least common multiple (lcm)

L’Hôpital’s rule

limit comparison test

limit of a function

limit of a sequence

linear congruence

linear Diophantine equation

loop

mapping

function

Maclaurin series

mean

Mei-Ko, Kwan

Mersenne prime

minimum connector problem

minimum weight spanning tree

modular arithmetic

monoid

monotone convergence theorem

multigraph

negative binomial distribution

normal distribution

number theory

null distribution

null hypothesis

null set

one-sided alternative hypothesis

one-to-one

injection

onto

surjection

order

141

149, 302

310

159

319, 325

319

157

241

248, 268

179

202

176

190

278, 283

270

298

see

223

30, 36

332

277

329

325

279

145

197

297, 298

25, 31

41, 42

248

78

74

111

74

see

see

249
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414 INDEX

ordered pair

order of a graph

order of a group

Ore

parameter

partial fractions

particular solution

Pascal’s distribution

negative binomial distribution

path

perfect number

permutation

Peterson graph

pigeonhole principle

planar graph

platonic solid

Poisson distribution

polyhedron

power series

power set

primality

prime numbers

prime numbers

Prim’s algorithm

principle of mathematical

induction (PMI)

probability density function (pdf)

proof

proof by contradiction

proof using contrapositive

proper subset

proper subgroup

p-series

p-value

quotient

radius of convergence

random sampling

range

ratio test

reflexive property

reflexive relation

regular graph

119

298

146

314

46

209

230

see

311

277

160

297

301

298, 316

319

25, 31

316

219

112

see

256, 274

319, 326

250, 346

35

346

346

350

112

155

205

78

258

220

46

121, 131

215, 219

112

121

298

relation

relatively prime

remainder

repunit

residue class

sampling

sampling error

Schlegel diagram

sequence

semigroup

separable differential equation

series

set

significance testing

simple graph

size of a graph

slope field

spanning tree

squeeze theorem

standardised variable

statistic

statistical hypothesis

strong induction

subgraph

subgroup

subset

surjection

symmetric difference

symmetric relation

Taylor polynomial

Taylor series

Taylor’s theorem

t-distribution

telescoping series

test for divergence

test statistic

trail

transitive property

transitive relation

travelling salesman problem (TSP)

traversable

tree

triangle inequality

121

263

258

277

127

46

48, 51, 69

314, 316

190

145

234

199

110

81

297, 298

298

231

319

193

10

46

73

252

298

155

112

133

118

122

224

223

225

64

208

200

78, 81

311

116

122

336

310, 312

319

175
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INDEX 415

truncation error

two by two contingency table

two-sided alternative hypothesis

unbiased estimator

union of sets

universal set

variance

Venn diagram

vertex (pl. vertices)

walk

weighted graph

well ordered principle

wheel graph

Yate’s continuity correction

212

98

74

15

114

111

10, 30, 36

112

297

310

324

250

297

98
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