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Preface

Inequalities play an important role in almost all branches of mathematics as well
as in other areas of science. The basic wdredualities’ by Hardy, Littlewood

and Podlya appeared in 1934 and the bookwdualities” by Beckenbach and
Bellman published in 1961 andialytic Inequalities’ by Mitrinovi € published

in 1970 made considerable contributions to this field and supplied motivations,
ideas, techniques and applications. Since 1934 an enormous amount of effort has
been devoted to the discovery of new types of inequalities and to the application of
inequalities in many parts of analysis. The usefulness of mathematical inequalities
is felt from the very beginning and is now widely acknowledged as one of the
major driving forces behind the development of modern real analysis.

The theory of inequalities is in process of continuous development state
and inequalities have become very effective and powerful tools for studying a
wide range of problems in various branches of mathematics. This theory in re-
cent years has attracted the attention of a large number of researchers, stimulated
new research directions and influenced various aspects of mathematical analysis
and applications. Among the many types of inequalities, those associated with the
names of Jensen, Hadamard, Hilbert, Hardy, Opial, Poincaré, Sobolev, Levin and
Lyapunov have deep roots and made a great impact on various branches of math-
ematics. The last few decades have witnessed important advances related to these
inequalities that remain active areas of research and have grown into substantial
fields of research with many important applications. The development of the the-
ory related to these inequalities resulted in a renewal of interest in the field and
has attracted interest from many researchers. A host of new results have appeared
in the literature.

The present monograph provides a systematic study of some of the most fa-
mous and fundamental inequalities originated by the above mentioned mathemati-
cians and brings together the latest, interesting developments in this important
research area under a unified framework. Most of the results contained here are
only recently discovered and are still scattered over a large number of nonspecial-
ist periodicals. The choice of material covers some of the most important results

Vi



Viii Preface

in the field which have had a great impact on many branches of mathematics.
This work will be of interest to mathematical analysts, pure and applied mathe-
maticians, physicists, engineers, computer scientists and other areas of science.
For researchers working in these areas, it will be a valuable source of reference
and inspiration. It could also be used as a text for an advanced graduate course.
The author acknowledges with great pleasure his gratitude for the fine cooper-
ation and assistance provided by the staff of the book production department of
Elsevier Science. | also express deep appreciation to my family members for their
encouragement, understanding and patience during the writing of this book.

B.G. Pachpatte
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Introduction

The usefulness of mathematical inequalities in the development of various
branches of mathematics as well as in other areas of science is well established
in the past several years. The major achievements of mathematical analysis from
Newton and Euler to modern applications of mathematics in physical sciences,
engineering, and other areas have exerted a profound influence on mathematical
inequalities. The development of mathematical analysis is crucially dependent on
the unimpeded flow of information between theoretical mathematicians looking
for applications and mathematicians working in applications who need theory,
mathematical models and methods. Twentieth century mathematics has recog-
nized the power of mathematical inequalities which has given rise to a large
number of new results and problems and has led to new areas of mathematics.
In the wake of these developments has come not only a new mathematics but a
fresh outlook, and along with this, simple new proofs of difficult results.

The classic work Inequalities’ by Hardy, Littlewood and Pdlya appeared in
1934 and earned its place as a basic reference for mathematicians. This book is
the first devoted solely to the subject of inequalities and is a useful guide to this
exciting field. The reader can find therein a large variety of classical and new
inequalities, problems, results, methods of proof and applications. The work is
one of the classics of the century and has had much influence on research in
several branches of analysis. It has been an essential source book for those in-
terested in mathematical problems in analysis. The work has been supplemented
with “Inegualities’ by Beckenbach and Bellman written in 1965 anhalytic
Inequalities’ by Mitrinovi € published in 1970, which made considerable contri-
butions to this field. These books provide handy references for the reader wishing
to explore the topic in depth and show that the theory of inequalities has been
established as a viable field of research.

The last century bears witness to a tremendous flow of outstanding results
in the field of inequalities, which are partly inspired by the aforementioned
monographs, and probably even more so by the challenge of research in various
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2 Introduction

branches of mathematics. The subject has received tremendous impetus from out-
side of mathematics from such diverse fields as mathematical economics, game
theory, mathematical programming, control theory, variational methods, oper-
ation research, probability and statistics. The theory of inequalities has been
recognized as one of the central areas of mathematical analysis throughout the
last century and it is a fast growing discipline, with ever-increasing applications
in many scientific fields. This growth resulted in the appearance of the theory of
inequalities as an independent domain of mathematical analysis.

The Holder inequality, the Minkowski inequality, and the arithmetic mean and
geometric mean inequality have played dominant roles in the theory of inequal-
ities. These and many other fundamental inequalities are now in common use
and, therefore, it is not surprising that numerous studies related to these areas
have been made in order to achieve a diversity of desired goals. Over the past
decades, the theory of inequalities has developed rapidly and unexpected results
were found, along with simpler new proofs for existing results, and, consequently,
new vistas for research opened up. In recent years the subject has evoked consid-
erable interest from many mathematicians, and a large number of new results has
been investigated in the literature. It is recognized that in general some specific
inequalities provide a useful and important device in the development of different
branches of mathematics. We shall begin our consideration of results with some
important inequalities which find applications in many parts of analysis.

The history of convex functions is very long. The beginning can be traced back
to the end of the nineteenth century. Its roots can be found in the fundamental
contributions of O. Hélder (1889), O. Stolz (1893) and J. Hadamard (1893). At
the beginning of the last century J.L.W.V. Jensen (1905, 1906) first realized the
importance and undertook a systematic study of convex functions. In the years
thereafter this research resulted in the appearance of the theory of convex func-
tions as an independent domain of mathematical analysis.

In 1889, Holder [151] proved that if”(x) > 0, then f satisfied what later
came to be known as Jensen’s inequality. In 1893, Stolz [412] (see [390,391])
proved that iff is continuous ofia, b] and satisfies

1
f(%) < §[f<x> + f»]. (1)

then f has left and right derivatives at each point(ef »). In 1893, Hadamard
[134] obtained a basic integral inequality for convex functions that have an in-
creasing derivative ofu, b]. In his pioneering work, Jensen [164,165] used (1)

to define convex functions and discovered the great importance and perspective
of these functions. Since then such functions have been studied more extensively,
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and a good exposition of the results has been given in the bGokvex Func-
tions’ by A.W. Roberts and D.E. Varberg [397].
Among many important results discovered in his basic work [164,165] Jensen
proved one of the fundamental inequalities of analysis which reads as follows.
Let f be a convex function in the Jensen sense[@rb]. For any points
X1,...,X, in [a,b] and any rational nonnegative numbeis...,r, such that
ri+---+r, =1, we have

f(Zrixi) <D orif ). )

i=1 i=1

Inequality (2) is now known in the literature as Jensen’s inequality. It is one
of the most important inequalities for convex functions and has been extended
and refined in several different directions using different principles or devices.
The fundamental work of Jensen was the starting point for the foundation work in
convex functions and can be cited as anticipation what was to come. The general
theory of convex functions is the origin of powerful tools for the study of prob-
lems in analysis. Inequalities involving convex functions are the most efficient
tools in the development of several branches of mathematics and has been given
considerable attention in the literature.

One of the most celebrated results about convex functions is the following
fundamental inequality.

Let f:[a, b] — R be a convex function, whef® denotes the set of real num-
bers. Then the following inequality holds

a+b 1 b fla)+ f(b)
f( 2 )gmfa f(x)dng- (3)

Inequality (3) is now known in the literature as Hadamard’s inequality. The
left-hand side of (3), proved in 1893 by Hadamard [134] before convex func-
tions had been formally introduced, for functiofisvith f’ increasing ora, b],
is sometimes called the Hadamard inequality and the right-hand side is known
as the “Jensen inequality” or vice versa. There are also papers which attribute
inequality (3) completely to Hadamard.

In view of the repeated mentioning of the inequality given in (3), it will be
referred to it as to the “Hadamard inequality”. In 1985, Mitrinbaind Lackov@

[212] pointed out that the inequalities in (3) are due to C. Hermite who obtained
them in 1883, ten years before Hadamard. Inequalities of the form (3) not only
are of interest in their own right but also have important applications in vari-
ous branches of mathematics. The last few decades have witnessed important
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advances related to inequalities (2) and (3) and numerous variants, generaliza-
tions and extensions of these inequalities have appeared in the literature.

One of the many fundamental and remarkable mathematical discoveries of
D. Hilbert is the following inequality (see [141, p. 226]).

If p>1,p =p/(p—1) and) al < A, b} < B, the summations running
from 1 tooo, then

SOy b o T g, @)
m-+n  SIn(r/p)
unless the sequenée,,} or {b,} is null.

The above result is known in the literature as Hilbert's inequality or Hilbert's
double series theorem. The integral analogue of Hilbert’s inequality can be stated
as follows (see [141, p. 226]).

If p>1,p'=p/(p—Dandfg” fP(x)dx < F, [5° " (»)dy <G, then

/°° ® fx)g(y) dedy < — " FUPGUP (5)
o Jo x+y sin(z/p)

unlessf =0org=0.

The inequalities in (4) and (5) marked the beginning of a new era in the de-
velopment of the theory of inequalities, which, within a few decades, was very
successful and produced numerous variants, generalizations and applications.
This work was inspired by the great mathematician D. Hilbert (see [141, p. 226])
whose fundamental contributions to many areas of mathematics are well known.

In the course of attempts to simplify the proofs of inequalities (4) and (5) Hardy
[136] (see also [141, pp. 239-240]) discovered the following famous inequality.

If p>1,a4,>20,A,=a1+--+a,, then

i:(A_)p - <pL—1)pn§“5’ (6)

unless all they,’s are zeros. The consta@t/(p — 1))? is the best possible.

The most celebrated result corresponding to the series inequality (6) for inte-
grals due to Hardy [136] is embodied in the following inequality.

If p>1, f(x) >0andF(x) = [y f()dt, then

[EfaGe) [re o

unlessf = 0. The constant is the best possible.
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Inequality (6) or its integral analogue given in (7) is now known in the liter-
ature as Hardy’s inequality. Inequalities (6) and (7) are the most inspiring and
fundamental inequalities in mathematical analysis. A detailed account on earlier
developments related to inequalities (4)—(7) can be found in [141, Chapter 1X].
Hardy’s inequalities given in (6) and (7) were the major influences in the further
development of the theory and applications of such inequalities. Since the appear-
ance of inequalities (6) and (7), a large number of papers has appeared in the
literature which deals with alternative proofs, various generalizations, extensions,
and applications of these inequalities.

In the past several years there has been considerable interest in the study of
integral inequalities involving functions and their derivatives. In 1960, Z. Opial
[231] published a remarkable paper which contains the following integral inequal-
ity.

Let y(x) be of clasg"! on 0< x < h and satisfyy(0) = y(k) = 0 andy(x) > 0
in (0, k). Then the following inequality holds

h horh )
/ |y @)y (x)| dx < Z/ |y (x)|" dx. (8)
0 0

The constang is the best possible.

In the same year, C. Olech [230] published a note which deals with a sim-
ple proof of Opial’s inequality. Moreover, Olech showed that (8) is valid for any
function y(x) which is absolutely continuous de, 4] and satisfies the bound-
ary conditionsy(0) = y(h) = 0. From Olech’s proof, it is clear that in order to
prove (8), it is sufficient to prove the following inequality.

Let y(t) be absolutely continuous df, 4] andy(0) = 0. Then the following
inequality holds

h horh )
f |y ()Y ()] dx < 5/ |y ()| dx. (9)
0 0

The constan{;— is the best possible.

Inequality (8) is known in the literature as Opial’s inequality and it is one of the
most important and fundamental integral inequalities in the analysis of qualitative
properties of solutions of ordinary differential equations. Since the discovery of
Opial's inequality in 1960 an enormous amount of work has been done, and many
papers which deal with new proofs, various generalizations, extensions and dis-
crete analogues have appeared in the literature; see [4] and the references cited
therein.

Motivated by a paper of H.A. Schwarz [404] published in 1885, in the
year 1894, H. Poincaré established [389] (see also [211, p. 142]) the following
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fundamental inequality

/fT f3(x, y)drdy < %/ﬁ[(%)z—k <%)2i|dxdy, (10)

whereT is a convex region ang is a function such thaf/;. f(x, y)dxdy =0
ando is the chord of that region.

In the same paper Poincaré gave an inequality analogues to (10) for a three-
dimensional region. In view of the importance of the inequalities of the form (10)
many authors have investigated different versions of the above inequality from
different view points. The most useful inequality analogous to (10) which is how
known in the literature as Poincaré inequality can be stated as follows.

If E is a bounded region in two or three dimensions anid a sufficiently
smooth function which vanishes on the boundagyof E, then

A/ uszgf [Vu|?dA, (11)
E E
wherei denotes the smallest eigenvalue of the problem
Vv+rv=0 inE, v=0 OnJE, (12)
o o
whereV = (E’ R L

It is recognized that Poincaré-type inequalities provide, in general, a useful
and important device in the study of qualitative as well as quantitative proper-
ties of solutions of partial differential equations. Because of their usefulness and
importance, Poincaré-type inequalities have attracted much attention and gener-
alizations to various aspects have been established in the literature. The discrete
analogues of Poincaré-type inequalities have gained increasing significance in the
last decades as is apparent from the large number of applications in the study of
finite difference equations. Especially, in view of wider applications, the inequali-
ties of the forms (10) and (11) have been generalized and sharpened from the very
day of their discovery.

One of the most celebrated results discovered by S.L. Sobolev [410] is the
following integral inequality (see [157, p. 101])

o o0
/ / u® dx dy
—00 J —00
o o0 o0 o0 o
<—(/ / uzdxdy)</ / |gradu|2dxdy>, (13)
2 —o0 J—00 —00 J—00

whereu(x, y) is any smooth function of compact support in two-dimensional
Euclidean spacé&y, | gradu|? = |24|? + |g—;‘, |2 and« is a dimensionless constant.
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Inequality (13) is known as Sobolev's inequality, although the same name is
used also for the above inequality indimensional Euclidean space. Inequal-
ities of the forms (10), (11) and (13) or their variants have been applied with
considerable success to the study of problems in the theory of partial differen-
tial equations and have established the foundations of the finite element analysis.
There is vast literature which deals with various generalizations, extensions, and
variants of these inequalities and their applications; see [3,120,121] and refer-
ences therein.

It is well known that one of the important and effective techniques in the the-
ory of differential equations is the comparison method (see [416]). Inequalities
involving comparison of solutions of second-order differential equations provide
a major tool in the study of second-order differential equations. In particular, the
basic comparison results due to C. Sturm [414] (see also [145, pp. 334-336]) and
that of A.J. Levin [187] have played an important role in the study of several qual-
itative properties of the solutions of certain second-order differential equations.
These comparison results can be found in several classical books, see [145,416].

A useful tool for the study of the qualitative nature of solutions of ordinary
linear differential equations of the second order is the fact thatsif is a real-
valued, absolutely continuous function @n 5] with y’(z) of integrable square
andy(a) = 0= y(b), then fors in (a, b) we have

b 4
/ Y OFd > 2. (14)

Moreover, if y(z) = 0 on [a, b] the equality holds only it = (a + b)/2 and
y(@)=y(){1— |2t —a—b)/(b—a)|}. In particular, with the aid of this inequal-
ity one may show that i (¢) is a real-valued continuous function such that the
differential equation

y' (@) + p()y(t) =0 (15)

has a nonidentically vanishing real-valued solution possessing two distinct zeros
on|a, b], then

b 4
/ ptdr > Tt (16)

wherep™ (1) = maxX{p(t), 0}, see [393-395].

Inequality (16) is due originally to Lyapunov [201] and it is known that the
constant equal to 4 in (16) cannot, in general, be replaced by a larger one. One
of the nice purposes of (16) is that a researcher may obtain a lower bound for
the distance between two consecutive zeros of a solution of (15) by means of an
integral measurement @f. The importance of this famous result of Lyapunov for
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the study of differential equations has been recognized since its discovery and has
received extensive attention over the years, and a number of new Lyapunov-type
inequalities which are quite useful in the study of various classes of second-order
differential equations investigated in the literature.

The aforementioned inequalities play a fundamental role in different branches
of mathematics, and in recent years has attracted the attention of a large number of
researchers who are interested both in theory and in applications. The abundance
of applications is stimulating a rapid development of the theory of these inequal-
ities and, at present, this theory is one of the most rapidly developing areas of
mathematical analysis. Over the years, generalizations, extensions, refinements,
improvements, discretizations and new applications of these inequalities are con-
stantly being found by researchers in various branches of mathematics. Although
much progress in this field has been made in recent years, these results have not
been readily accessible to a wider audience until now. These new developments
has motivated the author to write a monograph devoted to the recent developments
related to these most important inequalities in mathematics.

A major problem for anyone attempting an exposition related to the above
inequalities is the vast extent of the literature. It would be neither easy nor par-
ticularly desirable to include everything that is known about these inequalities
between the covers of one book, so in this monograph an attempt has been made
to present a detailed account of the most inspiring and fundamental results re-
lated to the above inequalities which are mostly discovered over the most recent
years. A list of applications related to these inequalities is nearly endless, and
we are convinced that many new and beautiful applications are still waiting to be
revealed. A detailed and comprehensive account of typical applications, together
with a full bibliography, may be found in the various references given at the end.

This monograph consists of five chapters and an extensive list of references.
Chapter 1 deals with important inequalities involving convex functions which
find important applications in various branches of mathematics. It contains a de-
tailed study of a wide variety of inequalities related to the well-known Jensen
and Hadamard inequalities, that have recently entered the literature. Chapter 2
is devoted to a great variety of new and fundamental inequalities related to the
well-known Hardy and Hilbert inequalities recently investigated in the literature
and which will open up new vistas for further research in this field. Chapter 3
considers many new inequalities of the Opial type recently investigated in the lit-
erature and which involve functions of one or many independent variables and
which has proven to be important in the theory of ordinary and partial differential
equations. Chapter 4 presents a number of new inequalities related to the well-
known inequalities of Poincaré and Sobolev which finds important applications
in the study of partial differential equations and finite element analysis. Chapter 5
is concerned with basic inequalities developed in the literature related to the most
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important inequalities of Levin and Lyapunov which are useful in the study of
differential equations. It deals with a number of new generalizations, extensions,
and variants of the original Levin and Lyapunov inequalities. Each chapter ends
with miscellaneous inequalities for further study and notes on bibliographies.
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Chapter 1

Inequalities Involving Convex Functions

1.1 Introduction

The fundamental work of Jensen [164,165] in the years 1905, 1906 is the start-
ing point of the systematic study of convex functions. Even before Jensen, the
literature shows results which refer to convex functions. In fact the roots of such
functions can be found in the work of Holder [151] in 1889 and Hadamard [134]

in 1893, although these roots were not explicitly specified in their works. As noted
by Popoviciu [390, p. 48], Stolz [412] is the first to introduce convex functions in
the year 1893. Starting from the pioneer papers of Jensen [164,165] there is re-
markable interest in the theory of convex functions and these ideas are at the core
of many problems in different branches of mathematics. Over the years several
new inequalities involving convex functions which have important applications
in various branches of mathematics have been developed. This chapter presents
some basic inequalities involving convex functions which find significant appli-
cations in mathematical analysis, applied mathematics, probability theory, and
various other branches of mathematics.

1.2 Jensen’s and Related Inequalities

Let I denote a suitable interval of the real liRe A function f : I — R is called
convex in the Jensen sense or J-convex or midconvex if

x+y JF&x)+ f(y)
f( 5 >< 5 (1.2.1)

for all x,y € I. Jensen [164,165] is first to define a convex function by using
inequality (1.2.1) and to draw attention to their importance. A funcfiod — R

11
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is called convex if

fx+@=0y) <A@+ A=) 122

forall x,y € I andx € (0,1). Itis called strictly convex provided that inequal-

ity (1.2.2) is strict forx # y. If — f: I — R is convex, then we say thgt: 7 — R

is concave. Taking. = 1/2 it shows that all functions satisfying (1.2.2) also
satisfy (1.2.1), but the definitions are not equivalent since there are functions dis-
continuous on an open interval that satisfy (1.2.1), while all functions that sat-
isfy (1.2.2) are continuous on open intervals. The definition of convex function
has very natural generalization to real-valued functions defined on an arbitrary
normed linear spacé. We merely require that the domaln of f be convex.

This response assures that far x> € U, o € (0, 1), f will always be defined at

ax1 + (1 — a)x2. We then definef to be convex oV C L if

flaxa+ Q= a)xz) <af(x) + (1 —a) f(x2).

A detailed account on the various properties of convex functions can be found
in [211,384,397].

In this section we shall deal with Jensen’s and related inequalities involving
convex functions investigated by various authors over the years, which find sig-
nificant applications in various branches of mathematics.

We begin with Jensen’s inequality, which is one of the basic and most impor-
tant inequalities in mathematics.

THEOREM 1.2.1. Suppose that f is J-convex and I = [a, b]. For any points
x1,...,x, € I and any rational nonnegative numbers, r1,...,r, such that
ri1+---+r, =1, wehave

f(me) < Zrif(xi)- (1.2.3)
i=1 i=1

PROOF
Case 1. Forn =2 andr; = rp = 1/2, we have (1.2.1). For; = 1/n,
i=1,...,n,inequality (1.2.3) becomes

1 1w
f(; in) <) f). (1.2.4)
i=1 i=1
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First we prove (1.2.4) by using an idea of a proof fron€&& [370]. Suppose
that (1.2.4) is valid for alk, 2 < k < n. Denotingx = -1; ""*1x;, we have

n+1
OE (HZx,)
1
5( le

A
A5 A
A

\

l ))
x + —Xn41

n

1 ))
X+ —Xp41

n

Jxi)+— ((n -Df)+ f(xn+1))>

I\Jll—\

1
n

I\)lH

which is
n+1

flo<— Z £,

and the proof of (1.2.2) is complete by mductlon.
Case 2. Sincery, ..., r, are nonnegative rational numbers there is a natural
numberm and nonnegative integeys, ..., p, such thatn = p1 +---+ p, and
=L4&i=1...,n. Now, by Case 1, we have

m’

f<(x1+...+xl)+---+(xn+---+xn))
m
YD fE) ) fen) g5
m

where in the first bracket there gvg terms, and so on, in theth bracketp,, terms.
Thus (1.2.5) reads as

1y . Pi
f(;ZPm) <Z;f(xi), (1.2.6)
i=1 i=1
and by takingp; /m = r; in (1.2.6) we get (1.2.3). The proof is complete. [

REMARK 1.2.1. Following Jensen, there came a series of papers giving condi-
tions under which (1.2.3) is valid. If we remove some of the restrictions on the
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thereby increasing the kinds of combinations of points. .., x, under consid-
eration, it is to be expected that the class of functions still satisfying Jensen’s
inequality will be smaller.

As an immediate consequence of Theorem 1.2.1 we have the following useful
version of Jensen’s inequality.

COROLLARY 1.2.1. Let f:U € L — R isaconvex mapping on convex set U of
real linear space L, x; areinC,i =1,...,n,and p; >0with P, =% "7 _; p; >0,
then

1< 1 &
f(;ﬂ gl’m> < E;Pif(xi)- (1.2.7)

In [367] P&aric has given a simple proof of the following form of the Jensen—
Steffensen inequality.

THEOREM 1.2.2. Let x and p be two n-tuples of real numbers such that x is
nonincreasing, x; € [a,b], 1<i <n,and0< P < P, k=1,...,n—1,P, > 0,
where P, = Zf‘zl pi, k=1, ..., n. Thenfor every real-valued convex function f
defined on [a, b],

1< 1 &
f(?ﬂ ;Pixi) < P, ;Pif(xz')- (1.2.8)

PrROOF Note that if eacty; is positive, inequality (1.2.8) follows easily from the
definition of a convex function. A convex functiof is characterized by having
a supporting line at each point, that is,

F@ = f©)>MGE—c) (1.2.9)

for all z andc, whereM depends omr. (In fact M = f/(c) where f'(c) exists,
andM is any number betweefi’ (¢) and f/ (c) at the countable set where these
are different.)

Using (1.2.9) we can easily obtain the following known inequalities:

fQ—-—f)=2M(iz—-y), z>y=c, and

f@Q—fOM<Miz—-y), y<z<ec,

(1.2.10)

whereM is defined as above.
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Let x and p satisfy the conditions of the Jensen-Steffensen inequality. Let
=4 X", pix; and letP, = P, — Pr_1. Then

n

Pu(x1—X%) =Y pixa—x) =Y (xj-1—x;)P; >0,

i=2 j=2
sox < x1. Similarly,
n—1 n—1
Pa(E —xa) = pilxi —x,) = Y (xj —xj11)P; >0,
i=1 j=1

S0x, < X < x1. Letm be such that € [x,,41, x;n]. HereafterM is to be given its
value atc = x.
We can easily show that the following identity is valid

1 ¢ 1
f(?n ;p;x,) ~ 7 > pif)

m—1

P
=2 (MG —xi41) = f) + f (is1) -

i=

=

_ _\ P
+ (M(xm —X) = fxm) + f(x))7
i%+l
Py

+ (f(E) = fGmy1) — M(E — xmp1))

+ Z (f @) = f(xis1) — M(xi — xi21)) ’*1. (1.2.11)
i=m+1 n

Now, using (1.2.10) and (1.2.11) we get (1.2.8). The proof is complete. [

Let f: I — R be areal-valued function and= (x1, ..., x,) € I", the expres-
sion

1
fk,n:fk,n(x):T Z f(;(xi1+"'+xik))

(k) 1<it<<ix<n

is used by Gabler [123] to define “sequentially convex functions”. These functions
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are a special case of convex functions. Gabler also gives the inequality

Jen () Z fegrn(x), k=1...,n—1, (1.2.12)

for sequentially convex functions.

In the following theorem we present the result given by in [375] which
gives a sequence of interpolating inequalities for the well-known Jensen inequal-
ity for convex functions.

THEOREM1.2.3. Let f: 1 — R beaconvex functionand x = (x1, ..., x,) € I".
Let

fk,n = fk,n(xv P)

1 PirXis + -+ piXi
=1 ) (Pi1+"'+Pik)f( = f1+...+ . lk),
(k—l)P" 1<ip<<ir<n Pi1 Diy

where p; are positive numbersand P, =Y/, p;. Then

Jenx, p) = fiarn(x, p), k=1,...,n—1, (1.2.13)

isvalid.

PrOOFE Indeed, we have

PirXiy + -+ PigaXigyq

(piy+---+pi )f(

i1 it1 Dit -+ Pis
= (Pi1 +---+ pik+1)

k+1 PigXig o Pig g ¥ig g ~Pi i

Zj:l(pil o F P — pif) PiytFPig 1P
< f 1
Zj:l(l?il + -+ Py — Pi_,-)

< (pil +-- Pik+1)

Pilxi1+"'+Pik+1xik+1*Pijxij )

k+1
Zj:l(pil T Piga T pi/)f( Pig b D —Pi;

+1
Y Py Py — Piy)

X

k+1
} i (Pilxil + o PigaXigg — DijXi; )
P .

= (piy + -+ Pigyr — Pi))f
; 11 lk+1 Lj Pil + +pik+l _ Pij
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Therefore, we have

1
fk+l,n = Z (pi]_ +- 4+ pik+1)

"
k n1ip < <igyp1<n
(Pilxil +o+ pik+1xik+l)
x f
Pipt o+ P

k+1

1
S oo Z Z(Pi1+"'+Pik+1 — pij)

k( k )P” 1<it < <ipp1<n j=1

(pilxil +--- 4+ Pirs1Xigs1 — pi_,'xij >
Pi1+"'+Pik+1 _Pij

1 p<x<+...+p4x.
=—— Z (Pil—i—...—l—pik)f( = l.1+”.+ {k lk)
(k—l)Pn 1<ig<<ix<n Pix Piy

= fk,n-
The proof is complete. 0

REMARK 1.2.2. We note that inequality (1.2.12) is an interpolating inequality
for Jensen’s inequality for convex functions. Indeed, we have

1"
f<_zpixi) zfn,ng"'gfk+1,n<fk,n<"'<fl,n
P i=1

1 n
=— ) pif(xi). (1.2.14)
Pa i=1

The above results are also valid for convex functions defined on arbitrary real
linear space, and ip;, i =1, ..., n, are rational numbers, they are also valid for
midconvex functions defined on an arbitrary real linear space.

Let f:C Cc X — R be a convex function on convex sét of real lin-
ear spaceX, x; e C andp; >0,i=1,...,n, with P, =" ; p; > 0. Let
T be a nonempty set and let be a natural number witlh > 2. Suppose
that a1, ...,q, :T — R arem functions with the property that;(z) > 0 and
a1(t)+---+ay@)=1foralltinT andi =1, ..., m.
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Consider the sequence of functions defined by (see [90])

1 n
F"@) = Z pinf |:a1(t)x11 () 4+ am(0) -3 pix,-],
"i=1

lll

1 n
R0=25 pilpizf[am)xil+az(t>x,»2

noq,io=1

1 n
+ (a3() + -+ +Oém(t))P— Zpixz},

=1

n

1
F™ @) = T > P Pinaf |:051(t)xi1 ot a1,
n

i1,.., im-1=1

+ o (1) — szxz:|

and
Fim(t) = Z Piy Pi f(@a(Oxiy + - + o (D)3, ),

wheretrisinT,n > 1.
It is clear that the above mappings are well defined for &lIT'.
The following theorem is proved in [90].

THEOREM1.2.4. Let f, p;,x;,i =1,...,n, and m beasabove. Then

(i) we havethe inequalities

1 n n
f(;n Zpix,-) <A < <M O <FM o < B Zpiﬂxi)
i=1

(1.2.15)
forall zinT;
(i) ifthereexistsatge T sothat a1(fg) =-- - =ap(f0) =0,1< p<m — 1,
then

1 n
; [m] .\ _ plml _ v
tlen; Fi™ (1) = F"\(to) = f(P,, l.E_l p,x,) (1.2.16)
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forall 1< j < p;
(iii) ifthereexistsary € T sothat o, (r1) = 1, then

m m l -
supF" (1) = supF ™ (1) = FI" (1) = ?2 pi f (i) (1.2.17)
teT teT ’ n i
and
1 n
ine wlml oy plml gy — -
;Q;Fq (t)=F, (tl)—f<;n _E_lp,xl>, (1.2.18)

foral p<j<m—-1landl<g<p-—1;
(iv) if T isa convex subset of alinear space Y and «;, i =1, ..., n, satisfies
the condition

ai(ytL+ Br2) = ya;(ty) + Ba; (t2) (AF)
forallry,;z€ T andy, B > Owithy + = 1,then FI"!, 1< j <m—1,and FI)

are convex mappingsin 7.

PROOE (i) By Jensen’s inequality, we have

1« 1
Fl[m](t) > f|:<F Z pilxil)al(t) + (052(1‘) + - tay, (t))F Zpix,-:|
n n l=1

i1=1

1 n
= f(P_n ;Pixi)

for all t in T, which shows the first inequality in (1.2.15).
Now, suppose that& j <m — 2 andr € T. Then, by Jensen’s inequality, we
have

[m]
Fia®
1
! Z pil"'pij+1f|:al(t)xi1 +oFajpa(®)xje
P” i1,ny ij_*_l:l

1 n
+ (aj+2(t) + - +am(t))F Zpixi:|
izl



20 Chapter 1. Inequalities Involving Convex Functions

1 n
z— Y b pi f|ea®xiy + -+ a0,
P" i1,y ij—l

1 n
+ (F Z pi_i+1xi_,‘+1>0‘j+1(t)

"iia=1
12
+ (oj2(t) + -+ Otm(t))Fn X; Pixi:|
i=
=F")
which shows that the sequen(:E[””(t)}”’ ! is monotonous nondecreasing for

allrinT.
On the other hand, by Jensen’s inequality, we also have

1
F"@y > ——= 3" piy-pi, o f |:“l(t)xi1+"'+05m1(t)xim1
( Z plm ‘xlm)alm (t):|
lm—l
foralltinT.

Finally, by the convexity off on C, one has

Flaa®xig + -+ +om (Ox;,) <on@) f(xig) + -+ + o (1) f (xi,,)

foralltin T andx; € C,i =1,..., m. Multiplying by p;,, ..., p;,, and summing
inig,... im from 1 ton, we get

Z Pig * sz (al(t)xil +--tay (t)xim)

i1,.,im=1
n

< D i Pigloea® f i)+ om0 f(x3,)]

i1,0in=1

=a1 PN pi fGi) + o+ amOPITEY pi, f(x,)

i1=1 im=1

=Pty pif(x)

i=1
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for all r € T, which is equivalent with the last part of inequality (1.2.15). The
proof of statement (i) is finished.
(i) If aa(to) =---=0ap,(tg) =0,1< p<m —1,then

1 n
FI"(1) = Z i piy f ((ap+1<ro> o am(10) me)
mi=1

i1,..,0p=1 i=1
1 n
= f(?,, leix,)
i=

Since

1 ¢ )
f(; sz-x,») < F" (o) < - < FIM(rg),
=1
statement (ii) is proved.

(i) If ap(t1) =1, thenas(r1) =0 for all s # p, 1< s < m. Thus, for
p<j<m-—1,o0nehas

n

F][m]([l) = n ' Z Pil"'pijf(xij)

Pu i=1
"(1y).

If1<qg<p-—1,wehave

1 n
Fym(n) = — Z pir--Pig f\ 5 Y pixi
P i1 Pn i=1

-1(7 %)

which shows the statements (1.2.17) and (1.2.18).
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(iv) Lety, B >0withy 4+ 8 =1andr, r» € T. Then, by the convexity of,
we have

Fi"\(yis+ pr)
=— Z Piy- ~~pijf[0l1()/l1 + Br2)xip + - +oj(yin+ Bra)x;
+ (ajpalyts+ Bra) + - -

l n
+am(ytn+ ,3t2)) 7 Zl pl-xi:|
1 n
=7 Z Diy - pijf y | oa(t)xi + - - +Otj(t1)xl~j
1 n
+ (Olj+1(t1) 4t Olm(t1))Fn ;Pixi:|
+8 |:Oll(f2)xil + ()X,

1 n
+ (Olj+1(t2) 4t Olm(tz))F Zpixi:|)
"i=1
<y F" )+ BFI" (1)

forall 1< j <m — 1, which shows thaF/[m] is convex o .

The fact thatF""] is convex orl’ goes likewise, we omit the details. The proof
of the theorem is finished. a

The classical inequality between the weighted arithmetic and geometric means
states:
If x1,...,x, andpa, ..., p, are positive real numbers, then

n yr o
(]‘[x;’f> < sz,-xi, (1.2.19)
i=1 =1

whereP, =7 ; p;. Equality holds in (1.2.19) if and only 1 = - - - = x,,.
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The following corollary given in [90] improves inequality (1.2.19).

COROLLARY 1.2.2. Let f:C C X — (0, c0) be a convex function on a convex
subset C of alinear space X whichisalso logarithmically concave on C. Then for
all x;, pi, a; and m as above, we have the following refinement of the arithmetic
mean—geometric mean inequality:

1 n
=3 pif G = F 0 > E @ >z F
=1

1 n
> F{m](z)f<P— Zp,-xi)
mi=1

> =6 = =6 = 6"

n /P,
> (]_[[f(x,-)]”’) (1.2.20)

i=1
for all  in T, where

n

n 1/p,
1
G = ( [] 7 [al(t)xil + (@2 + - an®) 5 ; p,-x,}) :

i1=1

0= ( TT s i, o,

i1,ip=1

12 1/p?
+(0130)‘|’"'+Olm(t))P_ZPixij|) ,
ni_1

n
GE;n_]l(t) = ( 1_[ FPPin g |:011(l)xi1 ot 1 (X,

i1,0eim—1=1

; Pyt
1
+ am(I)Fn X;Pixi:|>
=
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and

. /P
G[m](l‘) — ( 1_[ [P Pim [Oll(f)xil + - +Olm(t)xim]) )

i1,0im=1
wherez isinT.

PrROOF The argument of the second part of (1.2.20) follows by (1.2.15) for the
convex mapping—log and we omit the details. O

REMARK 1.2.3. If in the above corollary we choosg: (0, c0) — (0, 00),
f(x) = x, we obtain the following improvement of the arithmetic mean and geo-
metric mean inequality

1 n

R o

P i=1

1/p,

n n Piq
1
> (1‘[ [al-mx,-l t (20) + -+ am) 5 :pl-xi] )
"i=1

i1=1
n
2( I1 |:al(t)xi1+a2(t)xi2
i1,ip=1

1/p?

1 n Piq Pip
+ (a3(1) +-~-+Olm(l))17 Zpixi:| )
=1

> >
“ 1 " PigPiy_q 1/P;n_l
> ( ]_[ [al(t)xi1+-~-+am(t)gn me} )
i1,im—1=1 i=1
n 1/py
> ( H [Oll(f)xil +...+am(t)xim]pll-~[71m)
i1,0im=1
n 1/ Py
i=1

forallzinT.
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In view of the important role played by Jensen’s inequality in analysis, many
mathematicians have tried not only to establish (1.2.3) or (1.2.7) in a variety of
ways but also to find different extensions, refinements and counterparts, see [90,
92,207,218,219,370,373] where further references are given.

The corresponding integral analogues of the well-known Jensen’s inequality
are also widely used in the mathematical analysis and applications.

The following integral analogue of Jensen’s inequality is adapted from [174,
p. 133].

THEOREM 1.2.5. Let f:I = [a,b] — R be a convex function. Let h:1 —
(0,00) and u: I — R, =[0, o0) areintegrable functions. Then

b b
<fa h(t)u(t) dt) < Ja MO @) dr (1.2.21)

fab h(t)dt fab h(t)dt
provided that all the integralsin (1.2.21)are meaningful.
PrROOF Lety > 0 be fixed. From the convexity of it follows that there exists a
k € R such that

f@®) — f(y)=k(t—y) forallt>0.

Puttingr = u(¢) and multiplying the resulting inequality by(z) we obtain
after integration ovefa, b] that

b b
/h(t)f(u(t))dt—f(y)/ h(t) dt

a

b b
> k{ / h@®u@)dt —y / h(r) dt}. (1.2.22)
a a
Inequality (1.2.21) now follows by putting
[ r@ude
B fabh(t) dr
The proof is complete. O

In [411] Steffensen uses his inequality which is now known in the literature as
Steffensen’s inequality (see [211, p. 107]) to derive a generalization of Jensen’s
inequality for convex functions. A corresponding inequality for integrals is also
givenin [411], see [211, p. 109]. For another generalization of Jensen’s inequality
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and its integral analogue we refer the interested readers to Ciesieski [63] where
analogous results are given for functions of two variables. In [31] Boas has also
obtained some interesting results concerning Jensen’s inequality and its integral
analogues.

Let f:1 — R be a continuous convex function, whekds the range of the
continuous functiory : [a, b] — R. The following results are valid.

Jenseninequality. The inequality

b b
(ﬁg&NMﬂ><Lf@@”m“) (1.2.23)

[? dr(x) [? dr(x)

holds if f is continuous, provided that is nondecreasing, bounded, and

Aa) £ r(b).

Jensen—Seffensen inequality. Inequality (1.2.23) holds iff is continuous and
monotonic (in either sense) provided thats either continuous or of bounded
variation, and it satisfies

Aa) < A(x) <AD), xe€la,b]; A(b) > A(a).

Jensen-Boas inequality. Inequality (1.2.23) holds ifA is continuous or of
bounded variation and satisfies

Aa) < A(xp) S A(yD) SA(2) <o S A(n-1) < Axp) < A(D)

for all xi in (yk—1, k), yo=a, y, = b, andr(b) > A(a), provided thatf is con-
tinuous and monotonic (in either sense) in each ofithel intervals(yi—1, yi).

Forn =1, we obtain the Jensen—Steffensen inequality from the Jensen—-Boas
inequality, and in the limit a8 — oo, A would increase ang would be required
to be continuous, thus Jensen’s inequality is a limiting case of the Jensen—-Boas
inequality.

In 1982, Péaric [367] (see also [369]) has given an interesting and short proof
of the Jensen—Boas inequality. In his proof he used only Jensen’s inequality for
sums, that is,

1< 1<
f(; ZP:’M) < P Zpif(Xi), (1.2.24)
"i=1 n =1

wherep; >0 with P, =37 1 pi >0,x; € fori =1,...,n, and the Jensen—
Steffensen inequality. Inequality (1.2.24) can easily be obtained from (1.2.23).
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If A(a) < A(y1) < A(y2) < -+ < A(yp—1) < A(b), then from the Jensen—
Steffensen inequality we have the inequalities

<y>:v1g(x)dx(x)>g o () dax)

Vk Yk =50
fYk—l dA(x) Vk—1 dA (x)
that is,
1 [
flo) < —/ Fle@) i), k=1....n,
Pk Jyi_1
with the notation
Y Yk o (x) dA(x)
Pr = dr(x), fp="2" ~ T k=1,...n.
Vo1 Sy, dr)

Sincepy >0andy, €1, k=1,...,n, from Jensen’s inequality (1.2.24) we have

f<fab g(X)d)L(X)> _ <ZZ:1 pklk) < ZZ:]_ Pkf(lk)
fab di(x) Yok ) ik
S o) [, F g () do)
< )

h ZZ::L Pk

_ Je S6) 4
fabd)‘(x) ‘

If A(y;j—1) = A(y;) for somej, then d.(x) =0 on[y;_1, y;] and

b n b n
[swdm= Y . [aw= 3

a k=1,ksj k=1k#j

so, using (1.2.24), we can also easily prove that the Jensen—Boas inequality is
valid.

For some interesting variants and generalizations of Jensen'’s integral inequal-
ity, see [211] and the references cited therein.

In 1975, Mitrinovic and Vast [214] use the so-called “centroid method” to
obtain two new inequalities which are complementary to (the discrete version
of) Jensen’s inequality for convex functions. In [19] Beesack presents a general
version of such inequalities using the same geometric ideas used in [214] but not
using the centroid method itself. The results given in [19] extend the domain of



28 Chapter 1. Inequalities Involving Convex Functions

the inequalities (even in the discrete case) and clarify the value of the constant
appearing in the inequality.
The main results in [19] are given in the following theorems.

THEOREM 1.2.6. Let v be a nonnegative measure on o -algebra of subsets of
aset D and let ¢, f bereal v-measurable functions on D such that ¢(x) > 0,
—00 <x1< f(x)<xz2<ooforall xeDand [,qdv=1.Let ¢ bea convex
function on I = [x1, x»] suchthat ¢” (x) > 0 with equality for most isolated points
of I (so ¢ isstrictly convex on I). If either

() ¢(x)>0foralxelor
(i") ¢(x) > 0 for x3 < x < x2, with either ¢(x1) = 0, ¢'(x1) # 0 or
¢ (x2) =0,¢"(x2) #0,0r
(i) ¢(x) <Oforallxelor
(i") ¢(x) <Ofor x1 < x < x2, with precisely one of ¢ (x1) =0, ¢ (x2) =0,

then
/q¢(f)dv</\¢<f qfdv) (1.2.25)
D D

holds for some A > lincases (i) and (i") or A € (0, 1) in cases (ii) and (ii"). More
precisely, a value of A (depending on x1, x2, ¢) for (1.2.25)may be determined
asfollows. Set u = [¢ (x2) — P (x1)]/(x2 — x1). If u =0, let x = x be the unique
solution of the equation ¢'(x) = 0, x1 < X < x2, then A = ¢(x1)/¢ (x) suffices
for (1.2.25).In case u # 0O, let x = x be the unique solution in [x1, x2] of the
equation

g(x) = pe(x) — ¢’ () [¢(x1) + n(x —x1)] =0, (1.2.26)
then A = u/¢’'(x) suffices for (1.2.25).Moreover, we have x1 < X < x2 in the
cases (i) and (ii). Moreover, equality holdsin (1.2.25)if and only if f(x) = x; for
x € D; where D1, D are v-measurable subsets of D suchthat D = D1 U D> and
X =x1fqudv +x2fD2qdv.

PROOF We note that both integrals in (1.2.25) exist since bptand¢ (f) are
bounded measurable functions. In all cag€sy) is continuous and strictly in-
creasing oY so that, by the mean value theorem applieg tove have

¢'(x1) < 1 < ¢'(x2). (1.2.27)

Consider the pairs &1, ¢ (x1)), B(x2, ¢ (x2)) on the convex curve = ¢ (x). The
equation of the chord AB is

y=¢ (1) + plx —x1) =m(x).
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We also consider the family of convex curves with equatiprsi¢ (x), A > 0,
and we show there is a unigue> 0 such that the curve will be tangent to the
line AB at a pointP(x, A¢ (X)) with x € I. (In fact,x1 < X < x in cases (i), (ii).)
This case holds if and only if the pair of equations,

1 (x) = u, (1.2.28)
AP (x) = m(x), (1.2.29)

have a unique solutiox, 1) with x € I, A > 0. In caseu = 0, equations (1.2.28)
and (1.2.29) reduce top’(x) =0, A (x) = ¢ (x1). If ¢ (x1) # 0, these equations
have the unique solutiogx, 1) determined by’ (x) =0, A = ¢(x1) /¢ (X) where
we observe that; < x < x2, by the mean value theorem applieditoThe case
¢ (x1) = 0 is impossible whem # 0 since thenp (x2) = 0 also, which is not the
case. Note that > 0, wheng (x1) # 0.

When u # 0 we shall first consider only the cases (i) and (ii). By (1.2.28),
A # 0 and eliminating. from the pair of equations (1.2.28), (1.2.29), we see that
x = X must be a solution of equation (1.2.26). We now show that this equation
has a unique solution ofx1, x2). First note that

gx) =) (u—9'(x1),  glx2) =d(x2) (1 — ¢’ (x2)).

Since¢ (x1), ¢ (x2) have the same sign, it follows from (1.2.27) tldt1), g(x2)
have opposite sign. Thyshas at least one zero @m, x2). Moreover,

g'(x) = —m(x)$" (x)

does not change sign ¢my, x2]. For, the linear functiom (x) hasm (x;) = ¢ (x;)

for i = 1,2 and hence is either always positive in case (i) or always negative in
case (ii), onx1, x2]. It follows thatg is strictly a monotonic function ofx1, x2],

and thus equation (1.2.26) has a unique solutiog x € (x1, x2). Moreover,

¢’ (%) # 0 since if it were then setting= x in (1.2.26) it would imply 0= u¢ (x),
which is impossible whem # 0 because) (x) # 0 on (x1, x2). If we now take

A =pu/¢’'(x) then it is easy to see that the péir, 1) satisfies equations (1.2.28),
(1.2.29) and is the only such pair, with < x < x2,

X1

Ap(X) = (x1) + p(x —x1) = <1— ¢ (x2)

X —x1
X2 — X1

)E _
>¢(X1) +

X2 — X1
or

AP (xX) > p(x). (1.2.30)
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From this idea, it follows that > 1 in case (i) and. < 1 in case (ii). It remains to
show thath > 0 in case (ii) wheru # 0. This result follows from (1.2.29) since
A (X) =m(x) and, as noted above,andm have the same sign an

As for the cases i and (if), which are relaxed versions of (i) and (ii), re-
spectively, we omit details but note that in casg {f ¢ (x1) =0, ¢’ (x1) # 0 then
we necessarily have’(x1) > 0 andu > 0, while if ¢(x2) =0, ¢’'(x2) # 0 we
must haveu < ¢'(x2) < 0. For the first of these conditions, we hayéx) =
pue(x) — p(x — x1)¢’(x) = u(x — xp)[¢'(X) — ¢'(x)] for x1 < X < x < xz,
whereg(x) < 0 for x1 < x < x2, SOX = x1 is the unique solution of (1.2.26)
on [x1, x2], and equations (1.2.28), (1.2.29) clearly have the unique solution
x = x1 0N [x1,x2] with A = u/¢’(x1) > 1. A similar analysis applies to the
second case offi where we now findt = x2 and A = u/¢’(x2) > 1. For the
two cases of (i), we observe in the first that' (x1) < O must hold, thak = x1,
0<A=u/¢'(x1) <1, and in the second that(x2) > 0 must hold andt = x>,
O<i=pu/¢'(x2) <1.

It only remains to prove inequality (1.2.25) with the valuexofletermined
above. To prove this point we note that since the line AB is tangent to the graph
of the strictly convex (since > 0) function1¢ (x) at the pointP, we have for
allx eI,

¢ (x2) — ¢ (x1)
— X

Ap(x) = m(x) =¢(x1) + (x —x1),

with equality only forx = x. We may taker = [}, ¢f dv since thisx € /. This
gives

xqb(/ qfdv) >¢<xl>+M</ qfdv—x1>
D X2 — X1 D

- / {qb(xl) 40D m o) —x1>} dv
D X2

—
> / a6 (f)dv,
D

precisely as at (1.2.30). Equality holds for the last step if and onfi(if) = x1
or x2 on v-measurable subsef®¥ or D, of D. Hence equality holds in (1.2.25)
precisely for suchy where, in addition,

X:/qfdv:xlf qdv+x2/ q dv.
D Dy D>

In case the measur@(A) = qudv is atomless, we observe that given any
X € [x1, x2] such setd1, D, exist but are not in general unique. O
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COROLLARY 1.2.3. Let all the hypotheses of Theorem 1.2.6hold except that now
¢ is concave on I with ¢” (x) < 0 with equality for at most isolated points of 1.

Then
/ q¢(f)dv>x¢< / qfdv), (1.2.31)
D D

where A is determined precisely as before. Now, A > 1 holds if ¢(x) < O
on (x1,x2) and 0 < A < 1if ¢(x) > 0 on (x1, x2). Equality holdsin (i) for pre-
cisely the same f (if any) asin Theorem 1.2.6.

This point follows from the Theorem 1.2.6 applied to the convex function
p1=—9.

THEOREM1.2.7. Letv, D, ¢q, f, x1, x2 beasin Theorem 1.2.6and let ¢ (x) be
any differentiable function on I = [x1, x»] such that ¢’(x) exists and is strictly
increasing on . Then we have

/q¢(f)dv<x+¢</ qfdv> (1.2.32)
D D

for some A, satisfying 0 < A < (x2 — x1)[u — ¢’ (x1)], where

_ [9(x2) — @ (x1)]
n=—-—

X2 — X1

More precisaly, A may be determined for (1.2.32)as follows. Let x = x be the
unique solution of the equation ¢’(x) = i, x1 < X < x2, then

A=¢(x1) — o (x) + p(x —x1)

sufficesin (1.2.32).Equality holdsin (1.2.32)only for f(x) = x;, x € D;, where
D1, D, are v-measurable subsets of D such that D = D; U D, and

)E:xlf qdv+x2/ g dv,
D, D>

when such sets exist.

PrROOF The proof is similar to that given for Theorem 1.2.6 but is much easier.
Using the same notation as before, we again have (1.2.27) and now look for the
convex curve with the equation= 1 + ¢ (x) which is tangent to the chord AB
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at a point(x, y) with x1 < X < x2. This result will occur if and only ifc, » now
satisfy the pair of equations,
¢'(x) =p, (1.2.33)
A4 P (x) =m(x). (1.2.34)
Since¢’ is strictly increasing or it follows from the mean value theorem that
equation (1.2.33) has a unigue solutior (x1, x2), and ther is uniquely deter-
mined from (1.2.34) as
A=m(x)—¢(x)
=¢(x1) — ¢ (X) + pu(x —x1)
=@ —x)[p—¢'(X)], wherex; <X <x.

From this we also obtain

0<X<(x2—xD)[p—¢'(x]

The proof of inequality (1.2.32) is just as before since we now have, with this
value of2,

A+o(x) Zm(x) =¢(x1) +

¢ (x2) — P(x1)
—(x —x1)
X2 — X1

for all x € 1. Again, we seix = [, ¢ dv and use the strict convexity gfon I to
obtain (1.2.32). The equality conditions follow precisely as in Theorem 12.6.

COROLLARY 1.2.4. Let all the hypotheses of Theorem 1.2.7 be satisfied except
that ¢’ (x) isstrictly decreasing on 7. Then

qb(/qudv) é)»—i—/quS(f)dv, (1.2.35)

where

0<i<(x2—xD)[¢'(x1) — ]
with
= [ (x2) — p(x1)] .
X2 — X1
In fact, we may take A = ¢(x) — ¢ (x1) — u(x — x1), where x = x is the unique
solution of the equation ¢’ (x) = u, x1 < X < x2. Equality holdsin (1.2.35)under
precisely the same condition asin (1.2.32).
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To prove this result we need to apply Theorem 1.2.7 to the fungtioa —¢
for which u1 = —pu, etc.

For interesting remarks and applications of Theorems 1.2.6 and 1.2.7 and their
comparisons with other inequalities, we refer the reader to Beesack [19] and some
of the references cited therein.

1.3 Jessen’s and Related Inequalities

This section deals with a generalization of Jensen’s inequality for convex func-
tions due to Jessen [166] involving isotonic linear functionals. Some gen-
eral inequalities complementary to Jessen’s inequality given by Beesack and
Pe&aric [20] and Péaric and Beesack [376] for convex functions involving iso-
tonic linear functionals are also given.

Let E be a nonempty set antl be a linear class of real-valued functions
g E — R having the following properties:

(L1) f,geL— (af +bg)e Lforalla,beRand
(L) 1eL,thatis,if f(r)=1,t € E,thenf e L.

We also consider isotonic linear functionals L — R. That is, we suppose

(A1) A(af +bg)=aA(f)+DbA(g)for f,geL,a,beRand
(A2) feL, f(t)>200nE — A(f) >0 (A is isotonic).

We note that common examples of such isotonic linear functiotale given
by:

A(g) =/ gdu or A(g)= Zpkgk,
E keE
whereu is a positive measure oh in the first case and’ is a subset of natural
numbers withp; > 0 in the second case.
In 1931, Jessen [166] gives the following generalization of the Jensen inequal-
ity for convex functions (see [20, p. 537], also [390, p. 33]).

THEOREM1.3.1. Let L satisfy properties (L1), (L2) on a nonempty set E, and
suppose ¢ is a convex function on an interval I C R. If A is any isotonic linear
functional with A(1) = 1then, for all g € L suchthat ¢(g) € L,wehave A(g) € 1
and

P(A(9) < A(¢(9)- (1.3.1)

PrROOF First observe that if = [«, 8] andg € L with ¢(g) € L, then we must
havea < g(t) < B,t € E, wherea = A(ae — 1) < A(g) < B8,S0A(g) € I. Since
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¢ is convex onl, for anyxg € I there is a constamt = m(xg) such that
¢ (x) =2 ¢(xo) +m(x —xp), o€l
In this inequality, sex = g(¢), xo = A(g), and apply the functional to obtain

A(p(9)) = ¢(A(g) + m(A(g) — A®)),
proving (1.3.1). a

We now give three basic lemmas established in [20] which are comple-
ments of Jessen’s inequality (1.3.1), in that they are inequalities of the form
A(¢(g)) < x (A(g)) for appropriatey .

LEMMA 1.3.1. Let ¢ beconvexon I =[m, M], —oco <m < M < oo, let L sat-

isfy conditions (L1), (L2) and let A be any isotonic linear functional on L with

A1) =1.Then,forall g € L suchthat¢(g) e L (som < g(t) <M forallt € E),

we have

(M — A(g))p(m) + (A(g) —m)p(M)
M —m ’

A(p(9) < (1.3.2)

ProoOF From the definition of convex function,

P < —— ¢+ ——pw). u<v<wu<w.

Now, letu =m, v=g(t), w = M to obtain

M —
— g(”qs( >+g(” o), 1k,

¢(g(t))
Since A satisfies(A1), (A2) and A(k) = k holds for all constants, (1.3.2) fol-
lows. O

LEmMmMA 1.3.2. (a)Let L satisfy conditions (L1), (L) and A satisfy condi-
tions (A1), (A2), and A(r) = 1. Suppose ¢ is convex on [m, M], —co < m <
M < oo, such that ¢”(x) > 0 with equality for at most isolated points of I (so
that ¢ is strictly convex on I). Suppose that either (i) ¢(x) > Ofor all x € I or
(i) ¢(x) > 0 for m <x < M with either ¢(m) =0, ¢'(m) #0 or ¢(M) =0,
@' (M) #0;or (i) ¢(x) <Oforall x € I or (ii") ¢(x) < O0for m < x < M with
precisely one of ¢ (m) =0, ¢ (M) = 0. Then, for all g € L suchthat ¢(g) € L (so
m<gt)<MforallrekE),

A(p(9) < 1p(A(®) (1.3.3)
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holdsfor some A > 1incases (i) and (i") or A € (0, 1) in cases (i) and (ii"). More
precisely, avalue of A (depending only onm, M, ¢) for (1.3.3)may be determined
asfollows. Set u = (¢ (M) — p(m))/(M — m). If u =0, let x = x be the unique
solution of the equation ¢’(x) =0, m <X < M, then A = ¢ (m)/p(x) suffices
for (1.3.3).If u #£ 0, let x = x bethe unique solution in [m, M] of the equation

1o (x) — ¢’ () {p(m) + u(x —m)} =0,

then A = u/¢’'(x) suffices for (1.3.3). Moreover, we have m < x < M in the
cases (i) and (ii).

(b) Let all the hypotheses of (a) hold except that now ¢ is concave on I with
¢” (x) < 0,with equality for at most isolated points of /. Then the reverseinegual -
ity to (1.3.3)holds, where 1 is determined precisely as before. Now A > 1 holds if
¢(x)<0on(m,M)andO <A <1lif¢p(x) >0o0n (m, M).

PROOF (a) As in [212] (see also [19]) we consider the point@:Bg (m)) and
C(M, ¢ (M)) on the convex curve = ¢(x). The equation of the chord BC is

y=¢(m)+ u(x —m) = h(x).

By Lemma 1.3.1, we obtaird (¢ (g)) < h(A(g)). If we consider the family of
convex curves with equations= A¢ (x), A > 0, we can show as in [214] (or [19])
that there is a unique > 0 which satisfies the conditions stated in the lemma such
that the curve will be tangent to the chord BC. Heh¢e) < 1¢(y) forall y € I.
Takingy = A(g) it gives

A(p(9) <h(A®) < rp(A(9),

proving (1.3.3).
(b) follows when (@) is applied to the convex functigpn= —¢. O

REMARK 1.3.1. Itis clear that the last inequality in the above proof constitutes
a refinement of (1.3.3).

LEMMA 1.3.3. (a)lLet L, A and g beasinLemma1.3.2,and let ¢ (x) be any dif-
ferentiablefunction on I = [m, M] suchthat ¢’(x) existsand isstrictly increasing
on I. Then we have

A(p() <A+ 0(A®g) (1.3.4)

for some A satisfying0 < A < (M —m){u — ¢’ (m)}, where u = (¢ (M) — ¢ (m))/
(M — m). More precisely, A may be determined for (1.3.4)asfollows. Let x = x
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be the unique solution of the equation ¢’(x) = u, m < x < M. Then

A=¢(m) —¢(x) + p(x —m)

sufficesin (1.3.4).
(b) Let all the hypotheses of (a) be satisfied except that ¢’(x) is strictly de-
creasing on /. Then

P(A(®) <A+ A(0(9),

where 0 < A < (M — m){¢’(m) — u} with u as in (a). In fact we may take
A=¢(x)—¢d(m) — u(x —m) withx asin (a).

PrROOFE (a) The proof is similar to that of Lemma 1.3.2. Using Lemma 1.3.1
we also haved (¢ (g)) < h(A(g)), wherey = h(x) is the equation of the chord
joining B(m, ¢ (m)) to C(M, ¢ (M)). Now we consider the family of curves with
equationsy = A + ¢ (x). We can show precisely as in [214] or [19], that there is
a uniqueir > 0 satisfying the stated conditions such that the curve will be tangent
to the line BC. Thereforé(A(g)) <A+ ¢(A(g)), SO

A(¢(®) <h(A(®) <A +¢(A®),

proving (1.3.4).
(b) follows when (a) is applied to convex functighn = —¢. |

REMARK 1.3.2. The last inequalities of the proof again constitute a refinement
of (1.3.4).

REMARK 1.3.3. Lemmas 1.3.2 and 1.3.3 are generalizations of results from
[214] and [19]. In [214] the special case,

Z?:l Pi '

was considered and conditions for equality to hold in (1.3.3) were given. The
paper [19] deals with special case

A(g) = pi >0,

A(g):/pgdv, With/ pdv=1,
D D

and equality conditions were given for both (1.3.3) and (1.3.4) in this case.
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The following results established by Beesack ancaifie [20] deal with some
theorems as applications or examples to the basic inequalities given in Theo-
rem 1.3.1 and Lemmas 1.3.1-1.3.3, and include applications to generalized mean
values with respect to the functional

THEOREM 1.3.2. Let L satisfy conditions (L1), (L2) on E, and let A satisfy
conditions (A1), (A2) with A(1) = 1. Suppose ¢ is convex on I = [0, co), and
f 1 — R satisfies the condition

d(x) < f(x) <CP(Bx), xe€l, (1.3.5)

where B, C > 0 are constants. Then, for all g € L such that ¢ > 0 on E and
f(Bg),(Bg) € L, wehave

f(A(®)) <CA(f(Bg)). (1.3.6)
PROOF Using both parts (1.3.5) and (1.3.1) we obtain
f(A(®)) <Co(BA(g)) = Co(A(Bg)) < CA(o(Bg)) < CA(f(Bg)).
The proof is complete. O

REMARK 1.3.4. Inequality (1.3.6) is a generalization of the sufficiency of a half
of Theorem 1 of Mulholland [223]. Wheli satisfies (1.3.5) for some convex
Mulholland callsf quasiconvex of.

THEOREM1.3.3. Let L, A beasin Theorem 1.3.1.Suppose ¢ is concave on an
interval I C R and that v (x) = x¢ (x) isconvex on I. Then, for all g € L such
that g2, #(g), ¥(g) € L and A(g) > 0, we have

Alp(®) <9(A®) <

Algd(@) _ (A<g2>>_ (13.7)

A(g) A(g)

PrRoOOFE The first and second inequalities of (1.3.7) are consequences of (1.3.1)
applied to the convex functions-¢ and x¢. Since the operator;(f) =
A(gf)/A(g) is alinear, isotonic functional with1(1) = 1 and the last inequality

of (1.3.7) also follows from (1.3.1). O

Let I = (a,b), —co <a < b < oo, and lety, x : I — R be continuous and
strictly monotonic. Supposg and A satisfy the conditions (1), (L2) and (A),
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(A2) with A(1) =1 on a base sdf, and that) (g), x (g) € L for someg € L. We
define the generalized mean with respect, to the operatarsdy by
My(g; A=y AW (@)}, geL. (1.3.8)

Observe that itx < ¥ (g(x)) < B for x € E, then by the isotonic character 4f,
we haveo < A(y(g)) < B so thatMy, is well defined by (1.3.8). We note also
that the above assumptions imply thdk) € I for x € E. In the following theo-
rems given by Beesack and@2eic [20] we assume that € L satisfies the above
conditions so that the theorems hold for sgch

THEOREM 1.3.4. Under the above hypotheses we have
My (g; A) < My (g; A), (1.3.9)
provided either x isincreasing and ¢ = x o 1 is convex, or x is decreasing

and ¢ is convex.

PrROOF Forg € L, we have both)(g) € L and (g) € L by assumption. Hence
¢ (g)) = x(g) € LforgeL,soif¢ is convex it follows from Jessen’s inequal-
ity (1.3.1) that

p(A(v(®)) < A(x(9).
Hence, if is increasing, sg¢ ~1 is also increasing, we obtain
x oA @) < xHA(x (@)

which is (1.3.9). In caseé is concave, se-¢ is convex, we obtain the first in-
equality above with the direction reversed. Since now is decreasing withy,
we again obtain (1.3.9). |

REMARK 1.3.5. Theorem 1.3.4 is a generalization to functionals of the general
mean value inequality given in [141, Theorem 92, p. 75].

THEOREM1.3.5. Let L, A, ¢ and x beasin Theorem1.3.4,but with I = [m, M]
and —oco <m < M < oo. Then, for all g e L suchthatm < g(r) < M fort € E,
we have

(v M) =y (m) A(x (9)) — (x (M) — x(m))A(¥(9))
SY M) x(m) — x (M)yr(m), (1.3.10)

provided ¢ = x o ¥~ is convex. The opposite inequality to (1.3.10)holds when
¢ isconcave.
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PROOF In casey is increasing on/ we havemi = ¥(m) < ¥ (g@®)) <
Yv(M) = M; for all t € E. So, by Lemma 1.3.1 witlw, M replaced bymj1,
M7, we have

Alp(v(9) < {v M) — (AW (@) x (m) + (A(Y (@) — ¥ (m)) x (M)
x [w (M) —ym)]

which reduces to (1.3.10). {f is decreasing oti, we haveM; < ¥ (g()) < m1
for t € E and, with an obvious modification of proof, the result follows as be-
fore. O

The following lemma given in [20] includes the corresponding versions of
Jessen’s inequality (1.3.1) and Lemmas 1.3.1-1.3.3.

LEMMA 1.3.4. Let L satisfy conditions (L1), (L2) and A satisfy conditions (A1),
(A2) onabaseset E. Supposek € L withk > 0on E and A(k) > 0,and that ¢ is
a convex function on an interval I c R. For any function g1 : E — R such that
kg1 € L and k¢ (g1) € L, we have

¢<A(kgl)) < A(k</>(g1)). (1.3.11)
A(k) A(k)

If in addition, I = [m, M] where —oo <m < M < oo, then

Akp(sD) < [MA(k) — A(kg1)]1p(m) + [A(kg1) —mA(k)]¢(M)_ (1.3.12)

M—m

Moreover, when ¢ satisfies the strict convexity conditions of Lemmas 1.3.2
or 1.3.3,then

A(kg1)
A(kd)(gl))ékA(k)qb( 200 ) (1.3.13)
or
A(kg1)
A(k¢(g1))<A(k){A+¢( A% )} (1.3.14)

where ) isdetermined asin Lemmas 1.3.20r 1.3.3,respectively.

PROOF. In caseg; € L and¢(g1) € L, andk is such thakh € L for all h € L,
the functionalF : L — R defined by

A(kh)

—, hel
Ak "€

F(h) =
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is an isotonic linear functional satisfying(1l) = 1. In this case, (1.3.11)—(1.3.14)
follow from (1.3.1)—(1.3.4).

Under the weaker hypotheses stated abové,gn, we must proceed some-
what differently, essentially by giving a direct proof of (1.3.11)—(1.3.14) along the
same lines used proving (1.3.1)—(1.3.4). It suffices to deal with (1.3.11) since simi-
lar modifications handle the other proofs. As beforé,# [«, 8] thenk¢ (g1) € L
impliesa < g1(¢) < Bfort € E, whencexk(t) < k(t)g1(t) < Bk(t), so it follows
thatxo = A(kg1)/A(k) € I. The convexity ofp on I again yields

P(g1(1)) = ¢(x0) +m[g1(t) —x0], 1€E,
So

k()¢ (g1(1)) = ¢ (x0)k (1) +m[k(1)g1(t) — xok(1)], t€E,

for an appropriate constamt. Application of the linear isotonic functional now
gives (1.3.11). O

The following theorems given in [20] deal with Holder’'s and Minkowski’'s
inequalities respectively for isotonic functionals.

THEOREM 1.3.6. Let L satisfy conditions (L), (L2) and A satisfy conditions
(A1), (A)onabaseset E.If p>1andg=p/(p —1) sothat p~14+471=1,
thenifw, f,g>00nEandwf?”, wg?, wfg € L, we have

A(wfg) < AYP (wfP)AY (wg?). (1.3.15)

Incase0 < p <1 (or p<0)and A(wg?) > 0 (or A(wf?) > 0), the opposite
inequality to (1.3.15)holds.

PROOF Suppose first thatA(wg?) > 0 and p > 1. Then (1.3.15) follows
from (1.3.11) by the substitutions

¢(x) =xP, g1=fg P, k=wg, (1.3.16)
since therk € L, kg1 = wfg € L andk¢(g1) = wf? € L. Thus (1.3.15) holds in
this case. In casd (wf?) > 0, we may apply (1.3.15) witlp, ¢, f, g replaced

by ¢, p, g, f to obtain (1.3.15) again. Finally, suppose beattwg?) = 0 and
A(wfP)=0. Since

1 1
O<wfg < —wfP+ -wg? ONE,
p q
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it follows that A (wfg) = 0 also, so again (1.3.15) holds. This proof completes the
casep > 1.

For the case & p < 1, we haveP = 1/p > 1 and so may apply (1.3.15)
with p, ¢, f, g replaced byP, 0 = (1— p)~ 1, f1=(fg)?, g1 = g~ for which

wfl” =wfg, wng =wg? andwf1g1 = wf? which all belong tol.. We obtain

A(wfP) < AP (wfg)AY P (wg?),

which reduces to the opposite of (1.3.15) providgavg?) > 0. Finally, if p <0
then 0< ¢ < 1, and we may apply the case just considered witly, f, g re-
placed byy, p, g, f, providedA(wf?) > 0. O

THEOREM 1.3.7. Let L and A be asin Theorem 1.3.6.1f p > 1 and if w, f,
g=00nE withwf?, wg?, w(f + g)? € L, then

AYP(w(f +9)7) < AYP(wfP) + AYP (wgP). (1.3.17)

The opposite inequality to (1.3.17)holdsif 0 < p < 1,and also if p < O provided
A(wfP) >0, A(wg?) > 0inthiscase.

PROOF As in the proof of the ordinary Minkowski inequality, we write
w(f +8)" =wf(f +" t+wg(f +9)" L
Applying A to this, (1.3.15) then yields, in cage> 1,
A(w(f +8)") <{AYP (wfP) + AYP (wg?) JAY (w(f +)7).

whereq = p/(p — 1). Hence (1.3.17) follows ifA(w(f + g)”) > 0. However,
if A(w(f + g)?) =0, then since X wf?, wg? < w(f + g)?, we see that
A(wfP)=A(wgP) =0, and (1.3.17) still holds.

If 0 < p < 1, the opposite of (1.3.15) yields the opposite of the last displayed
inequality providedd (w(f + g)?) > 0, and hence also the opposite of (1.3.17) if
A(w(f+g)P) > 0.As above, ifA(w(f +g)?) =0thenA(wf?) = A(wg?P) =0,
so the opposite of (1.3.17) still holds. Finallyif< 0, we again obtain the oppo-
site of the last displayed inequality provided beattwf?) > 0 andA(wg?) > 0.

If A(w(f+g)?) > 0, the opposite of (1.3.17) follows. B(w(f + g)”) =0, then
the opposite of (1.3.17) clearly holds since theW? (w(f + g)?) = +oo. O

We also observe that in the cgge< 0, we have X w(f + g)? < wfP, wg?,
so thatA(w(f + g)?) =0 if eitherA(wf?) =0 or A(wg?) = 0. Thus, the oppo-
site inequality to (1.3.17) holde¢ > oo) even in this degenerate case.
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The following lemma given in [376] shows that the requiremgrite convex
in (1.3.1) can be relaxed.

LEMMA 1.3.5. Let L satisfy properties (L1), (L2) on a nonempty set E, and
suppose ¢ : I — R isa function such that there exists a constant k for which

¢(y) —¢(yo) Zk(y —yo) forallyel, (1.3.18)

where yp isafixed pointin 1. I1f A: L — R isany isotonic linear functional with
A(1) = 1then, for all g € L suchthat ¢(g) € L and A(g) = yo, inequality (1.3.1)
holds.

The proof is similar to the proof of Jessen’s inequality given in Theorem 1.3.1.

If ¢ is convex onl then, for eachyg € I, a constantt = k(yp) exists such
that (1.3.18) holds. Clearly not afl satisfying (1.3.18) for somgp e I, k € R
are convex.

For the next refinement of Jessen’s inequality, we shall assume2thatan
algebra of subsets df, and that the linear class of functiopsE — R satisfies
not only (L1), (L2) but also

(L3) gL, E1€ 2= gCpg, €L,

whereCg, is the characteristic function &;. That is,Cg, (1) = 1 fort € E1 and
Cg,(t)=0fort € E — Ey. It follows from (L), (L3) thatCg, € L forall E1 € 2.
Also, L contains constant functions by4(). (L2). Observe that

A(CE)+ACe_g) =1,  A(g) = A(gCr,) + A(gCr_g,).  (1.3.19)

LEMMA 1.3.6. Let L satisfy properties(L1), (L2) and (L3) on a nonempty set E,
and suppose ¢ is a convex function on an interval I C R. If A is any isotonic
functional on L with A(1) = 1 then, for all g € L such that ¢ (g) € L, we have

Fg(E)2Fg(El)+Fg(E_El)>Fg(El)>O (1-3-20)
for all E1 € £2 suchthat 0 < A(CEg,) < 1, where

M) (13.21)

F,(E1)=A —A
s (E1) = A(¢(2)CE,) (CE1)¢< A(Cry)
Equality holds in thefirst part of (1.3.20)for strictly convex ¢ if and only if

AgCr) _ AGCE-E)
A(CE)  A(Cp-py)
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PrRoOF To prove the first inequality of (1.3.20), set= A(Cg,), ¢ = A(Cg—g;)
(so p + g =1 by the first equation of (1.3.19)) = A(gCEg,)/A(CE,),
y=A(gCe_g,;)/A(Cg—g,) in the convexity condition

po(x)+qop(y) = ¢(px+qy), p+qg=1 (1.3.22)

and use the fact thatx + gy = A(g) by the second equation of (1.3.19) and
similarly use

A(p(2) =A(d(2)CEy) + A(¢(9)CE—E,).

To prove the last inequality of (1.3.20), and hence also the second one, observe
that inequality (1.3.1) applies to the isotonic linear functiodat L — R as de-
fined by

ACE,)
Ax(g) = ———,

M A Cr

and havingA1 (1) = 1. Equality holds in the first part of (1.3.20), and for strictly
convexg, this equality is the case if and onlyiif=y, since O< p, ¢ < 1. O

gelL,

REMARK 1.3.6. The inequalities in (1.3.20) are a substantial refinement of the
Jessen inequality (1.3.1) since (1.3.20) gives a lower bound) (on the differ-

enceA(¢(g)) — ¢ (A(g)) = F,(E).

Next we give a generalization of Lemma 1.3.6, followed by a related general-
ization of an inequality of Knopp as established bg&& and Beesack in [376].

COROLLARY 1.3.1. Let L satisfy properties (L1), (L2) and (L3) on a honempty
set E, and set , x be strictly monotonic functions on an interval I such that
¢ =yx oy Lisconvexon I.If A isany isotonic linear functional on L with
A(1) = 1then, for all g € L suchthat x(g), ¥ (g) € L, we have

H(E) > Hy(E1) + Ho(E — E1) > Hg(E1) >0 (1.3.23)
for all E1 € £2 suchthat 0 < A(Cg,) < 1, where

A(W(g)CEl)>

1.3.24
A(CEy) ( )

Hy(E1) = A(x(8)CE,) — A<CE1>¢(

Equality holdsin thefirst part of (1.3.23)for strictly convex ¢ if and only if

AW©)Cr) _ AW (@)CE-5y)
A(Cr,) A(Cr—Fy)
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PrROOF. Letg e L with x(g) € L, ¥(g) € L, and sefg1 = ¥ (g) sog1 € L and
#(g1) = x(g) € L. Since

Fg,(E1) = Hy(E1) for E1 € 2,

inequality (1.3.23) follows from (1.3.20). The above equality conditiorgfbke-
wise follows from that of Lemma 1.3.6 fgrn = ¢ (g). Lemma 1.3.6 is, of course,
just a special case/((x) = x, ¢ = x) of Corollary 1.3.1, but only in the cageis
strictly monotonic. O

THEOREM 1.3.8. Let L satisfy conditions (L1), (L2) on a nonempty set E and
let A be an isotonic linear functional on L with A(1) = 1. Let ¢, x be strictly
monotonic functionson 7 = [m, M], —oco <m < M < oo, suchthat ¢ = y oy 1
isconvexon I. For all g € L suchthat x(g) e L, ¥(g) € L (som < g(t) < M for
all r € E), we have

0< A(x(®) — o(A(¥())
< gmax {f (m) + (1= ) x (M) = @[y (m) + (1= O)y (M)]}.  (1.3.25)

PrROOF As in the proof of Corollary 1.3.1, se$; = ¥ (g). Then g1 € L,
#(g1) € L andm1 < g1(t) < M1, wheremy = ¥ (m), M1 =y (M) if ¥ is in-
creasing omy = (M), M1 = ¢ (m) if ¥ is decreasing. By Lemma 1.3.1,

A(x(9) —¢(A(v(9))

=A(¢(g1) — ¢(AgD)

P (M1 — A(g1)¢p(m1) + (A(g1) —m1)p(M1)
= My —mq

< max (69 (ny) + (1= 0)¢ (M) — $[6m1 + (1= 6)M1]}. (1.326)

?(A(g1)

If [m1, M1] = [y (m), ¥ (M)] the right-hand inequality of (1.3.25) is reduced.
If [m1, M1] = [ (M), y¥(m)] the same result follows by making the sub-
stitution 6 — 1 — 0 in (1.3.25). The left-hand inequality is equivalent to
¢ (A(g1)) < A(¢(g1)) and so follows by (1.3.1). O

The following theorem given by Raric and Beesack in [376] deals with re-
formulation of inequalities (1.3.1) and (1.3.2) and presents an application which
will illustrate the power of this reformulation.
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THEOREM 1.3.9. Let ¢ be a convex on an interval I O [m, M], where —oo <
m< M <oo.upposeg: E — Rsatisfiesm < g(t) < Mforallte E,thatge L
and ¢(g) e L. Let A: L — R beanisotonic linear functional with A(1) =1 and
let p = pg, g = g be nonnegative numbers (with p + ¢ > 0) for which

A(g) = Pt aM. (1.3.27)
p+q
Then
¢<M) < A(qb(g)) < M (1.3.28)
p+q p+q

PROOF Observe first that sinoe < A(g) < M, there always exigt > 0,4 >0,
p + ¢ > 0 satisfying (1.3.27). The first inequality in (1.3.28) is (1.3.1), while the
second of (1.3.28) is (1.3.2). O

REMARK 1.3.7. Observe that for the givgn ¢ (determined by) in (1.3.27),

this inequality can be regarded as a refinement of the inequality obtained from
the definition of convexity for the functiop. In caseA(g) = m, it follows that

Pe > 0,9, =0 and (1.3.28) reduces th(m) < A(¢(g)) < ¢ (m) so that no re-
finement is possible. Similarly, i (¢) = M no genuine refinement of (1.3.28) is
possible. We now show that whenever< A(g) < M, a refinement of

(pm +qM) o PO(m) +q¢(M)
P+q p+q

is possible for arbitraryp > 0, ¢ > 0, one of the form of (1.3.28) but for an
appropriately chosen functign € L, g1 = g1,p,4, Namely

po(m) +qp (M)

(pm+qM
p+q

i )sA(cp(gl))s

provided only ¢(g1) € L. Hence, of course, as in (1.3.27), we haue<
g1(t) < M fort € E and A(g1) = (pm +gM)/(p + q). To prove this idea we
consider two cases: (@Y (p + q) < [A(g) —m]/(M —m) and (b)q/(p + q) >
[A(g) —m]/(M —m). If (@) holds, it suffices to takg; (r) = ag(t) + m(1+ «) for
te E,witha =qg(M —m)/{(p + q)[A(g) —m]}, so that O< o < 1. If (b) holds,
one can likewise verify that it suffices to tae(r) = Bg(t) + M(1—B) fort € E,
with 8 = p(M —m)/{(p + q)[M — A(g)]1} while (b) implies 0< 8 < 1.

For various other applications and remarks on classical inequalities and means
we refer the reader to [20,376] and the references cited therein.
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1.4 Some General Inequalities Involving Convex Functions

In this section we shall give some inequalities involving convex functions es-
tablished by various investigators in the past few years related to the well-know
Jensen-Steffensen inequality

1 < 10
f(,j ;Pi%) < P_n;Pif(xi), (1.4.1)

wherex and p are twon-tuples of real numbers such thate 7, 1 <i <n, and
I is an interval fromR, P, = Y7, pi >0, f:1 — R is convex, and for every
monotonicn-tuple x if and only if

0K P <Py k=12...n—1 (M)

In a 1981 paper, Raric [366] has obtained necessary and sufficient conditions
for the validity of reverse inequality, that is,

1 n 1 n
f(? me) Z 5 Zpif(xi)- (1.4.2)
=1 "1

In [366], the following Fuch’s generalization of the majorization theorem
(see [122]) is used to establish the main results.

LEMMA 1.4.1. Letay >--->as, b1 >--- > by and g, ..., gs bereal numbers
such that

k

k
Y qiai <Y qibi, 1<k<s—1,
i=1 i=1

and

N N
Y aiai=Y_qibi.
i=1 i=1

Then for every convex function f,
N N
> aifa) < qi fby). (1.4.3)
i=1 i=1

In [366] Pearic has given the following two theorems.
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THEOREM 1.4.1. Let x be a nonincreasing tuple of real numbers, x; € I,
1<i <n, preal n-tuple, and thereexists x;, j € (1, ..., n), such that

k n
1
Zp,-(x,-—xj)<0 for every k such that x;, >X=F2p,~xi,
=1 n i—1
. ' (1.4.4)
Zpi(xi —x;) 20 forevery k such that x; < x.
i=k

(If x1 < & thefirst condition in (1.4.4)is taken to be vacuous and if x,, > x the
second condition in (1.4.4)is taken to be vacuous.) If X € I then, for every convex
function f: 1 — R, (1.4.2)holds.

If the reverse inequalities hold in (1.4.4),then (1.4.1)holds.

PROOF Letx € [x,41, x,]. By substitutions of

() s=n+1,qi=pi,ai=x;,1<i <r;gry1=—Pn, a1 1=1%; q; = pi—1,
ai=xi_1,r+2<i<n+1;h;=x;,1<i<n+1,and

(i) s=n+1a=x;,1<i<n+1 q =pi, bi=x;, 1<i<r,
Gr+1=—Pu,brr1=Xx,qi = pi-1,bi = x;—1,r +2<i<n+1,

from Lemma 1.4.1, we get Theorem 1.4.1. It can easily be shown that the case
x1 < X andx, > x can exist only for inequality (1.4.2). O

THEOREM1.4.2. Let x and p betwo n-tuples of real numbers such that x; € I,
1<i<n,xel and P, > 0. Inequality (1.4.2) holds for every convex func-
tion f:1 — R and for every monaotonic n-tuple x if and only if there exists
m e (1,...,n) such that

P, <0, k<m, and P, <0, k>m, (1.4.5)

where Py = P, — Pi_1.

PROOF Suppose that (1.4.5) holds. Using the identities

k k-1
> pi(xi —xw) =k —xm)P+ »_ Pi(xi —xi31) and
i=1 i=1

] ) (1.4.6)
Y o pili —xm) =k —xa) Pt Y Pilxi —xi-1),

i=k i=k+1
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we get, inthe case; > --- > x,,

k
Zpi(xz‘—xm)<0, 1<k<m, and
- (1.4.7)

n
> pixi—xm) >0, m<k<n.
i=k

Letx € [x,41, x,] and letm < r. Then the conditions (1.4.4), fgr=m are obvi-
ously satisfied if I< k < m andr < k < n. Suppose that fok; andm < k1 < r,
the condition (1.4.4) is invalid, that iifil pi(xi —x;y) = 0. Since, from (1.4.7),
we haveZ?:k1+l pi(xi —xp) >0, we gety 7 _; pi(xi —x,) >0, thatisx > x,,
what is evidently a contradiction. Analogously, in the case- r or x1 < X,
X < x,, we get that (1.4.2) holds. M; < --- < x,, we can also prove that (1.4.2)
is valid.

Next, suppose that (1.4.2) holds. Letr) =x2,x; =0,i =1,...,k — 1, and
xi=1,i =k, ...,n. Then (1.4.2) becom&®;/P,)? > P,/ P,. Hence,P; <0 or
P,_1<0,k=2,...,n.

Now let k < m and suppose thaf, <O0. Letx; =0, 1<i<k—1,x =1,
k<i<m-—1andy =1+¢,m <i <n.Thenk = (P;+ P,,)/P,. SinceP; <0,
we can choose sufficiently small thatx < 1. Let f(z) =z —1if z>1 and
f(z) =0forz < 1. Then (1.4.2) becomes/P,) 3", ep; <0, thatis,P, <O.
Similarly we can conclude thaP,, < 0 implies P, < 0. So (1.4.5) for some
m € (1,...,n) must be satisfied. O

REMARK 1.4.1. Analogously we can prove (1.4.1). Indeed suppose that condi-
tion (M) holds. Using the identities (1.4.6) we get, in the case> --- > x,,

that for everym = 1, ...,n, (1.4.7) holds with the reverse inequalities. Since
X € [xr41, xr], We can suppose thate [x,11, x,]. Then (1.4.4) with the reverse
inequalities holds foj = r and forj = r 4+ 1, that is, (1.4.1) is valid.

Next suppose that (1.4.1) holds. Letx) = x2, x; =1, 1<i <k, andx; =0,
k+1<i<n.Then (1.4.1) become&:/P,)? < P/ P,, thatis, 0< Py < P,,
1<k <n.

Now we shall give the following corollaries from [366].

COROLLARY 1.4.1. Let x1 < -+ < xp SO g1 < -+- < xpy, m € (0,1,
on),xiel, 1<i<n,0el,and pisreal n-tuple.
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(i) Inequality

Zpl (x) > (Zplxl)+2<pl—1>f(0> (1.4.8)

holds for every convex function f:7 — Rifandonly if 0< P, <1, 1<k <m,
0< P <1l,m+1<k<n.

(i) Let >% 4 pix; € I. The reverse inequality holds in (1.4.8)if and only if
there exists j < m such that

P;<0, i<j, P>l j<i<m, P<0, i<m+1,
or there exists j > m such that

P; <0, i<m, P>1 m+1<i<j, and P <0, i>]j.

PrROOF Let Theorems 1.4.1 and 1.4.2 hold for+ 1 with x; = x; and p; = p;,

1 <i < n+ 1. By substitution,x; = x;, p; = pi, 1 <i <m, Xpt1 =0,

Pmi1=1— Py, Xi =x;, pi=pi—1,m+2<i<n+1, we get Corollary 1.4.1.
O

As a simple consequence of Theorem 1.4.2 we have the following corollary.

COROLLARY 1.4.2.Let x and p be two n-tuples of real numbers such that
xiel,1<i<n,xeland

pm >0, pi<0, i#m, P, > 0.

Then (1.4.2)holds for every convex function f: 7 — R.
Next we shall give some inequalities for convex-dominated functions given by

Dragomir and lonescu in [88].
We shall introduce the following class of functions (see [88]).

DEFINITION 1.4.1. Letg:I — R be a given convex function on interval
from R. The real functionf: I — R is calledg-convex dominated o if the
following condition is satisfied

M)+ Q=0 fO) — f(Ax+ @ —n)y)
<Ag) + A =1g() —g(rx + (1 —N)y) (1.4.9)

forall x, y in I andx € [0, 1].
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The following simple characterization of convex-dominated functions is valid.
LEMMA 1.4.2. Let g bea convex functionon I and f : I — R. Then the follow-
ing statements are equivalent:

(i) f isg-convex dominatedon /;
(i) g— fandg+ f areconvexon I; and
(iii) there exist two convex mappings %, [ on I such that f = (h —[)/2 and
g=(h+1/2.

PROOF (i) < (ii). Condition (1.4.9) is equivalent to

Mg — f))+ A= (g) — F»)
>g(Ax + (L= 1y) = f(Ax + A= 1y),

Mg+ f@)+ A= (g) + ()
>g(hx+ @ =1)y)+ f(Ax + Q= 2)y)

forall x, y € I andx € [0, 1], that is,g — f andg + f are convex od if and only
if (1.4.9) holds.
(i) < (iii). Itis obvious. O

Let F(I) be the linear space of all real-valued functions defined/ and
J: F(I) — R be a functional satisfying the properties:

(J) J(af +Bg)=alJ(f)+BJ(g) foralla, BeRandf, ge F(I),and
(&) J(f) = 0forall convex functionsf on 1.

The following lemma plays an important role in the sequel.

LEMMA 1.4.3. Let J be a functional satisfying conditions (J1), (%). Then, for
every convex function g and for every g-convex dominated function f on I, the
following inequality holds:

lg(H)| < I (9. (1.4.10)

PROOF Let g be a convex function ang' be g-convex dominated ori. By
Lemma 1.4.2, it follows thag — f andg + f are convex orl. Then

0<J(g—N=J@—-J(f) and 0K J(g+ )=J(®+J(f)
which gives
—-J(@)<J()<JI(®.
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SinceJ (g) > 0, inequality (1.4.10) is proven. O

In [88] Dragomir and lonescu have obtained the following improvement of the
Jensen inequality.

THEOREM 1.4.3. Let g be a given convex function on 7 and f:J — R be
g-convex dominated. Then, for every x; € I, p; > 0, 1 < i < n, such that
P, =>""_, pi > 0, we have the inequality

Pi Y pif) - f(l,,i,1 ;pi-xi>‘

n
i=1

1 1
< o Zpig(xi) - g(? Zpixi). (1.4.11)
" i=1 n i=1
PrRooFE Consider the functional
J(H== Z e — (= Z xi |, feF)
P, l.zlp’ i P, l.:lp’x’ ’ '

ThenJ satisfies conditions (J and (3) (by Jensen’s inequality). Applying Lem-
ma 1.4.3, we obtain inequality (1.4.11). The proof is finished. O

In [88] the following improvement of Fuch’s generalization of the majorization
theorem (see [122]) is given.

THEOREM1.4.4. Leta; > --- > a5, b1 > --- > by and ¢q1, ..., g; bereal num-
bers such that

k

k s s
Zqz‘aiSZqz‘bi, 1<k<s—1, ZQiaiZZQibi~
i=1 i=1 i=1

i=1

If g isconvexon I and f is g-convex dominated on I, then the following inequality
holds:

N

S ai(f ) — @) <D (e — gan). (1.4.12)

i=1 i=1
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ProoOF Consider the functional

T =Y ai(fbi) — f@)), feFW).

i=1

Then J satisfies conditions {J and (3), by Fuchs’ inequality, see also Lem-
ma 1.4.1. Applying Lemma 1.4.3, we deduce inequality (1.4.12). a

The following theorem given in [88] deals with an improvement of the Jensen—
Steffensen inequality.

THEOREM1.4.5. Let x and p be two n-tuples of real numbers such that x; € 7,
1<i<n,and I isaninterval fromR and P, > 0. Then the following statements
are equivalent:

(i) For every convex function g: 1 — R, for every g-convex dominated func-
tion f and for all monotonic n-tuple x, inequality (1.4.11)hold.
(i) OK P Pyforallk=1,2,...,n—1.

PrROOF (i) = (ii) is obviously the Jensen-Steffensen inequality. £i)i) con-
siders the functional

1 & 1<
J(f)=anpif(xi)—f<gn;pixi>, ferd).

ThenJ verifies conditions () and (3), by the Jensen—Steffensen inequality, see
Theorem 1.2.2. Applying Lemma 1.4.3, we obtain (1.4.11). |

The next theorem given in [88] improves &2&ic’'s theorem given above in
Theorem 1.4.1.

THEOREM 1.4.6. Let x be a nonincreasing n-tuple of real numbers, x; € I,
1<i <n, preal n-tuple, and thereexists x;, j € (1,2, ..., n), such that

k n
1

Zpi(x,-—xj)go foreveryksuchthatxk>£=F2pixi,

i—1 n i—1

‘n ' (1.4.13)

Zpi(x,-—xj)>o for every k such that x; < x.

i=1
(If x1 < x then the first condition in (1.4.13)is taken to be vacuous, if x, > x
the second condition in (1.4.13)is taken to be vacuous.) If x € I, then for every
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convex function g: I — R and for every g-convex dominated function f: 7 — R,
we have

n

1 1
8 —Zpixi ——Zpig(x,-)
Py = P,

"i=1
1 < 1 <
f(P_n ;Pixi) ~ 7 ;Pif(xz')

If the reverse inequalitiesin (1.4.13)hold, then (1.4.11)holds.

> . (1.4.14)

The proof follows by a similar argument by using Theorem 1.4.1 given above.

1.5 Hadamard’s Inequalities

In 1893, J. Hadamard [134] investigates one of the fundamental inequalities in
analysis, which is now known in the literature as Hadamard’s inequality. Over
the years many authors have developed various extensions, variants and refine-
ments of Hadamard'’s inequality. In this section we shall deal with Hadamard’s
and related inequalities as established by various investigators during the past few
years.

The following theorem deals with Hadamard’s inequality involving convex
functions.

THEOREM1.5.1.If f:I — R isa convex function, where I = [a, b] and R are
a set of real numbers, then the inequalities

b
() < [ e LOEID gy

2 2

arevalid.

PROOFE Sincef is convex on/, then fort € [0, 1], we have
f(ta+(1—t)b) <tf(a)+ QA —1)f ). (1.5.2)
Integrating (1.5.2) with respect tcon [0, 1] we get

fla+ 1)

5 (1.5.3)

1
/ f(ta+ @ —0b)dr <
0
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On the other hand, sincgis convex onl, then forzt € [0, 1] we have

a+by ta+A—-0b @A—-ta+1tb
1(157) (e )

< %[f (ta+@—0b) + f(L—na+1b)].  (154)

Integrating inequality (1.5.4) with respectton [0, 1] we get

1
f(a;rb> < %/ [f(ta+ @ —0)b)+ f((A—1)a+1b)]dt
0

i 1 1
=§[/0 f(m+(1—f)b)dt+/0 f((l—t)a+tb)dt]. (1.5.5)

By putting 1— ¢ = s in the second integral on the right-hand side of (1.5.5), we
have

1 1
f(a;b><%|:/o f(ta—i—(l—t)b)dt—}—/o f(sa+(1—s)b)ds]

1
:/ f(ta+ (1 —1)b)dr. (1.5.6)
0
From (1.5.3) and (1.5.6), we get
1
f(‘“zrb><f f(ta+(1—t)b)dtgw. (15.7)
0

By puttingta + (1—¢t)b = x in the integral involved in (1.5.7), itis easy to observe
that

1 b
/ f(ta+ @ —1b)dr = L / f(x)dx. (1.5.8)
0 b—a a
Using (1.5.8) in (1.5.7) we get the required inequalities in (1.5.1) and the proof is
complete. |

In 1976, A. Lupas [200] proves that jf, ¢ > 0, f is convex o D [a, b] and
v=(pa—+qb)/(p+q),then

pa+qb><i/”” Ny < PL@+af®
f(p+q <o), Q) ST g

(1.5.9)
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provided O< y < [(b — a)/(p + ¢)Imin(p,q). The casep =g =1, y =

(b — a)/2 of (1.5.9) is Hadamard’s inequality. In [376] it is shown that un-
der the same hypotheses Hadamard'’s inequality yields the following refinement
of (1.5.9).

THEOREM 1.5.2.If p, ¢ > 0, f isconvexon I D [a,b] and v = (pa + gb)/

(p+q), then
pa—i—qb) l/”+y
< — () dt
f( p+q 2y Ju—y !

1
<SSFO=»+f0o+y)]

< pf(a) +qfb)

(1.5.10)
p+q

PROOF First observe that if & y < [(b —a)/(p + g)] min(p, ¢) then, by con-
sidering two cases (& p < ¢, 0< g < p), one easily verifies that <v — y <
v+ y < b, sof is defined onv — y, v + y]. By Hadamard's inequality (1.5.1)
with a, b replaced by — y, v + y, we obtain

[fO=y+f+W] (1.5.11)

NI =

1 [y
Fo < 2—/ Fydi <
Y Jv—y

By the definition of convexity, we have, far< x1 < x» < x3 < b,

—x
fx2) < S (x3).
—x
Hence, takinge; = a, x3 = b we obtain
b
f—y) < b(if( Y+ 22 r ), (1.5.12)
fw+y < %f( R +y L. (1.5.13)

From (1.5.11)—(1.5.13), we now have
1 vty
ro<s [ rod
y v—y

1
< §[f<v -+ f+y)]
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1[b6—v vV—a
<—[ fla)+ f(b)}
—a b—a

S20p
_pf@+af®b)
p+qg

proving (1.5.10). a

In 1990, S.S. Dragomir [82] has given the following refinements of Hadamard's
inequalities.

THEOREM 1.5.3.Let f:[a,b] - R be a convex mapping. Then, for all
t € [a, b], we have the following inequalities

+b 1 b rb
f(az ><(b_a)2/Q/a Ftx + (@ —10)y)drdy

1 b
gm/ﬂ fx)dx

<@ er fo) (1.5.14)

PROOE Sincef is convex ona, b], then for allx, y € [a, b] andt € [0, 1], we
have

flx+@A—0y) <tf )+ A= f(Q).
Integrating this inequality ofu, b] x [a, b] we get

b prb b rb
/ /bﬂm4%1—0yﬁkdy</ /[#Uﬂ+(l—0f0ﬂdx®

b
—G-a [ e
which proves the second part of (1.5.14) by using the right half of Hadamard’s

inequality.
On the other hand, by Jensen’s inequality for double integrals, we have

1 b rb

1 b rb
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and since

1 brb a+b

the proof is complete. O

COROLLARY 1.5.1. Let f beasin Theorem 1.5.3.Then

a+b 1 brb /x4y
f( 2 )g(b—a)zfa/a f( 2 )d”'y
1 b
Sm/ﬂ fx)dx

<@ er f®) (1.5.15)

THEOREM1.5.4. Let f:[a, b] — R be a convex mapping on [a, b]. Then
1 brb /x4y
— dxd
(b—a)zfafa f( 2 ) g
1 b pb pl
<— tx +(1—1t)y)dxdyd:
(b—a)Z/a/afof( v)dedy

1 b
< —/ f(x)dx. (1.5.16)
b—al,

ProOF Consider the mapping: [a, b] — R given by

1 b rb

For allz, 12 € [0, 1] ande, B > 0O witha + B =1, we have

1
(b—a)?

o b rb
gm// f(rx + @A —r)y)dedy

b rb
glar + Bro) = / / f (et + Br2)x + (1 — ary — Bra)y) dx dy

’3 b rb
+m// f(t2x+(1—t2))’)dXdy

=ag(r1) + Bg(r2),
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which proves thag is convex o0, 1].
By means of Hadamard's inequalities for the convex mapgirend using
Fubini's theorem for multiple integrals, we have

1 b rb x+y
(b—a)Z/L,/a f( 2 >dXdy
1 1
= — < d
g(2> /Og(t)t
1 b pb pl
:azm///fW+aﬁmm@w

0 1
\g()+g() / F)dx,

The proof is complete. |

The next theorem given by Dragomir [86], in one sense, is an improvement of
the “right” inequality in (1.5.1).

THEOREM 1.5.5. Let f:[a,b] — R be a differentiable convex function. Then
the following inequalities

1 b 1 b rb

b
gr(f(aHf(b)— 1 /f(x)dx) (15.17)
2 b—al,

arevalid for all ¢ in [0, 1].

PROOF Sincef is convex ora, b], we have
fltx+@=0)y) <tf()+ A=) f(y)

for all x, y in [a, b] andt in [0, 1]. Integrating the above inequality ¢a, 12 we
obtain

b rb b rb
// f(tx+(l—t)y)dxdy<// [tf(x)+(1—t)f(y)]dxdy

b
=<b—a>/ F)dr,
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from which the first part of the proof of the inequalities in (1.5.17) follows.
On the other hand, sincgis convex and derivable da, b], we have

flix+@=0y)—fOM=t@x—y)f'»

forall x, y in [a, b] and¢ in [0, 1]. Integrating both sides of the above inequality
on[a, b]? we get

b pb b
//f(tx+(l—t)y)dxdy—(b—a)/ f(x)dx

b pb
>t// (x —y)f(y)dxdy. (1.5.18)

Since a simple calculation yields that

b pb
// (x —y)f'(y)dxdy

b
_ (b—a)f Feyde — (b — a2l DT

2

by using this formula in (1.5.18), we obtain
b b pb
(b—a)/ f(x)dx —/ / f(tx+ @ —1)y)dxdy

b
< z[(b _a)zw — —a)/ f(x)dx}

for all ¢ in [0, 1], which is the second inequality in (1.5.17). O

COROLLARY 1.5.2. Let f beasin Theorem 1.5.5.Then we have

1 b 1 b pb x+y
b—al f(x)dx——_ )2// f( > )dxdy
|:f(a)+f(b) f f(x)dx]

The following theorem also is given in [86].

0<

S 2
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THEOREM1.5.6. Let f beasin Theorem 1.5.5.Then for all ¢ in [0, 1], we have
theinequality

b
0< —/ f(x)dx—i f(tx+(1—t)a+b>dx

b
< (1—r)[f(“)+f(b) - bia/ f(x)dx]. (1.5.19)

2

PrROOF First, we observe that

f(tx+(1—t)#) <tf(X)+(1—l)f< +b>

for all x in [a, b] andz in [0, 1]. Integrating the above inequality with respeckto
over|[a, b] and using the left half of inequality (1.5.1) we have

b
L f(tx+(1—t)a—+b>dx
b—al,
/ f(x)dx+(1—t)f<a+b>

t —1
m/a f(X)derm/a fx)dx

b
= ﬁ/{; f(x)dx.

On the other hand, the functighbeing differentiate convex o, b], we get

f(tx +- t)#) fw=a- t)(# —x)f/(x)

forall ¢ in [0, 1] andx in [a, b]. Integrating the above inequality with respeckto
onla, b] we get

b b
1 f(tx+(1—t)a+b>dx— 1 / f(x) dx
b—al, b—al,

2

b
> (1—z)f (# —x)f/(x)dx (1.5.20)
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forall ¢ in [0, 1]. A simple computation shows that

b b b .
f(“;r —x>f/(x)dx:/ f(x)dx_(b_“)w-

Using this equality in (1.5.20) we get the required inequality in (1.5.19). O

COROLLARY 1.5.3. Let f beasin Theorem 1.5.6.Then we have

1 b (a+3b)/4
0<—/ fx)dx — / f(x)dx
b—al, b—a J@atbya
1[ f(a@) + f(b) 1 b
gé[ 2 _b—a/a f(x)dx}'

In [381] Pe&aric and Dragomir and in [87] Dragomir obtain a generalization
and refinement of Hadamard’s inequality for isotonic linear functional. In the fol-
lowing theorems we give the results of [87,381]. We need the following lemmas
given in [87,381].

LEMMA 1.5.1. Let X be a linear space and C be its convex subset. Then the
following statements are equivalent for amapping /: X — R

(i) fisconvexon C and
(i) forall x,y e C,themapping g, ,:[0,1] = R, gx y = f(tx + (1 —1)y) is
convex on [0, 1].

PROOF (i) = (ii). Supposex, y € C and letr, 12 € [0, 1], A1, A2 > 0 with
A+ A2=1.Then
gry(Aats + Aot2) = f((hat1 + Aat2)x + (1= A1ty — dat2)y)
= f((Aat1+ A2r2)x + (A (L —11) + A2(1—12))y)
<af(x + A —1)y) +raf (t2x + (1 —12)y)
= A1gx,y (1) + A28x,y(12),

thatis, g, , is convex ono, 1].
(i) = (i). Letx,y e C andiy, A2 > 0withi1+ 212 =1. Then

FOax 4+ 22y) = f(rax + (L= A1)y)
= gx,y(AZ “1442-0)



62 Chapter 1. Inequalities Involving Convex Functions

< )\lgx,y(l) + )Lng,y(o)
=xf(x)+ 12 (y),

that is, f is convex onC and the lemma is proved. O

LEMMA 1.5.2. Let X be a real linear space and C be a convex subset. If
f:C—Risconvexon C, thenfor all x, y in C, the mapping g ,:[0,1] - R
given by

1
gy =S[f(tx+ Q= 0y) + F(A—Dx +1)]

isalso convex on [0, 1]. In addition, we have the inequality

b
1(E2) < perto < LO1O

forall x,yinC andr € [0, 1].

PROOF Supposex, y € C and letsy, 12 € [0,1] ande, 8 > 0 with o + 8 = 1.
Then

1
gx,ylaty + Bt2) = E[f((atl + Br2)x + (1 — aty — Bra)y)
+ f((L—aty — Bto)x + (atr + Bt2)y)]

Sy + A —1)y) + Blr2x + 1 —12)y))

NI -

+ fla(@—)x +my) + B(A—12)x +12y))]

< Slaf (nx + A —t)y) 4 Bf (r2x + AL —12)y)

NI =

+ otf((l —t)x + tly) + ﬂf((l —t)x + tzy)]
=agy,y(t1) + Bgx,y(12),

which shows thag, , is convex on0, 1].
By the convexity off we can state

1
gx,y(t) P> f(é(tx+(1—t)y+(1—[)x+ty)> :f<?>

and also

[t/ )+ A=DFO) + A= f0) +1f )] = LTI

NI -

8x,y() <
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for all ¢ in [0, 1], which completes the proof. [l

In [381] P&aric and Dragomir have given the following generalization of
Hadamard’s inequality for isotonic linear functionals.

THEOREM1.5.7. Let f:C <€ X — R beaconvex functionon C, L and A satisfy
conditions (L1), (L2) and (A1), (A2) inSection1.3,and2: E — R, 0< h(r) <1,
h e Lissuchthat g, , oh € L for x, y givenin C, where E be a nonempty set. If
A (1) = 1, then we have the inequality

F(AWx + (1— A(w)y) < A[f(hx + (1= h)y)]

<
SAM @ +(1—AM) f().  (15.21)

ProoOF Consider the mapping, ,:[0,1] — R, gy ,(s) = f(sx + (1 — 5)y).
Then, by the Lemma 1.5.1, we haye , is convex on[0, 1]. For allr € E, we
have

gy (R0 -1+ (1= h(®)) - 0) <h(®)gx,y(D) + (1= h(1))gx,,(0)
which implies
A(gr.y (1) < AR gr,y (1) + (1 — A(h))gx,y(0),

that is,

A[f(hx + A —h)y)] S AM) f(x) + (1— A) f ().
On the other hand, by using Jessen’s inequality in Theorem 1.3,1,tove have

e,y (AM) < A(gx,y (M),
which gives
F(AWx + (1— A(w)y) < A[f(hx + A= h)y)].

and the proof is complete. O

In [87] Dragomir has given the following refinement of Hadamard’s inequality
for isotonic linear functionals.

THEOREM 1.5.8. Let f:C € X — R be a convex function on convex set C,
L and A satisfy conditions (L1), (L2) and (A1), (A2) in Section 1.3, and
h:E—-R,0< h(t)<1,te€ E, heL issuch that f(hx + (1 — h)y) and
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f((A— h)x + hy) belong to L for x, y fixed in C. If A(1) = 1, then we have
the inequality

j(x;y><%DLMMx+@—Awﬂﬂ+f“l—MmV+A“””
1

< S(A[f (hx + A= my) [+ A[f (A = x + hy)])

gf(X)Jrf(y)_

5 (1.5.22)

ProoF Consider the mapping, ,:[0, 1] — R given in Lemma 1.5.2. Then
gx,y is convex on[0, 1]. Applying Jessen’s inequality in Theorem 1.3.1 for the
mappinggy, y, we get

8x,y (A(h)) < A(gx,y(h))-
But

1
gey(AD) = 5[f(A(h)x + (1= AM)y)+ f((L— A)x + A(h)y)]

and

Algey ) = 5 (ALF(hx + A= h)y)] + AL (A~ e + ),

and the second inequality in (1.5.22) is proved.
To prove the first inequality in (1.5.22), we observe that by Lemma 1.5.2

7(*57) < ensaan)

which is the desired statement.
Finally, we observe that by the convexity 6f we get

1

2L+ @)+ A(@— i+ iy)] < TOFTIO o
Applying to this inequality the functionad and sinceA(1) = 1, we obtain the
last part of (1.5.22). O

1.6 Inequalities of Hadamard Type |

During the past few years several papers have appeared which deals with
Hadamard-type inequalities involving various classes of functions. In this sec-
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tion, we offer some basic inequalities of Hadamard type that have recently been
published.
In 1985, Godunova and Levin [130] introduce the following class of functions.
A mapping f: I — R is said to belong to the clag3(7) if it is nonnegative
and, for allx, y € I andx € (0, 1), satisfies the inequality

f(x)+ VAS))

fOx+A=ny) S ==+

(1.6.1)

wherel is an interval fromR.

In [130] it is noted that all nonnegative monotone and nonnegative convex
functions belong to this class and also proves the following result:

If feQ()andx,y,zel,then

fOE=NE-+ M- -+ f@E-—0E-y) 20 (1.6.1)

In fact, (1.6.1) is equivalent to (1.6.1) so it can be used alternatively in the
definition of the clasg)(I). For the casef (x) = x", r € R, inequality (1.6.1)
obviously coincides with the well-known Schur inequality.

The following result deals with an inequality of Hadamard type recently estab-
lished in [93] for a class of functiong (7).

THEOREM1.6.1. Let f € Q(I),a,b e l,witha <b and f € L1[a, b]. Then

b 4 b
f(a; )< b_a/ F@)dy (1.6.2)
and
b
bi/ p(x) f(x)dx < M, (1.6.3)
—al, 2
where
pry= &=NC—a)

b-a)?
The constant equal to 4 in (1.6.2)is the best possible.

PROOF Sincef € Q(I), we have for alk, y € I (with A =1/2 in (1.6.1)),

2(f@) + F() = f(%)
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thatis, withx =ta + (1 — )b,y = (1 —t)a +tb, t € [0, 1],

2(f(ta+ L= 0b) + f((1—1)a+1b)) > ,(#)

Integrating the above inequality ovi, 1] we have

1 1
2(/0 f(m+(1—t)b)dt+f0 f((l—t)a+tb)dt>>f(#). (1.6.4)

Since

1 1 b
/ f(ta—{—(l—t)b)dt:/ f((l—t)a+tb)dt=if f(x)dx,
0 0 b—al,

we get inequality (1.6.2) from (1.6.4).
For the proof of (1.6.3), we first note thatffe Q(I) then, for alla, b € I and
A €0, 1], it yields

AA=20)f(ra+ @A —=1b) <A —2) f(a)+1f (D)
and

ML= f((A=1a+2rb) <Af(a)+ (L—1) f(b).

By adding these inequalities and integrating the resulting inequalif@.ds, we
find that

1
/0 AL=0)(f(ra+ @ —2b)+ f((1—A)a+ rb))dr
< fla)+ fb). (1.6.5)

Moreover,
1
/ A1 =) f(ra+ (L —21)b)dr
0

1
=/ AML—2) f((1—21)a+ rb) dr
0

1 (b-—x)x—a

We get (1.6.3) by combining (1.6.5) with (1.6.6).
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The constant equal to 4 in (1.6.2) is the best possible because this inequality
reduces to an equality for the function

1, a<x<#,

f@) =14 x=4t,

1, # <x < b.
Moreover, this function is of the clag3(/) because

fx  fo 1 1
O T S Y

=g(A) > min g(A
g) O<A<lg( )

— g(%) =4> f(Ax+ (1 —Ny).

The proof is complete. O

In [93] the following class of functions is introduced.
A mappingf: I — R, belongs to the clasB(I) (I is an interval fromR) if it
is nonnegative and, for all, y € I andx € [0, 1], satisfies the inequality

Fax+@=1y) < f@)+ F Q). (1.6.7)

Obviously, 9(I) D P(I) and for applications it is important to note also that
P(I) contains all monotone, convex and quasi-convex functions, that is, functions
satisfying f (Ax + (1 — 1)y) <max(f (x), f(¥)).

In [93] the following version of Hadamard's inequality in the restricted class
of functions is given.

THEOREM1.6.2. Let f € P(I),a,bel,witha <band f € L1[a, b]. Then

b 2 b
f(anr )émfa Fx)de <2(f (@) + f(b)). (1.6.8)

Both inequalities are the best possible.

PrRoOOF Accordingto (1.6.7) withhk =ra+(1—1t)b,y =(1—t)a+tb,t € [0, 1],
andi = 1/2 we find that

f<“J2rb> < f(ta+@A=0b)+ f(A—1Da+1b).
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Integrating the above inequality with respect taver [0, 1], we obtain

1
f(““’) < [[(rlea+@-o00)+ r(@=na+ b)) d
0

2
2 b
— = [ s

and the first inequality is proved. The proof of the second inequality follows by
using (1.6.7) withk = a, y = b and integrating with respect foover|0, 1].

The first inequality in (1.6.8) reduces to an equality for the (nondecreasing)
function

f(x)_{o, a§x<#,
1 P <x<o,
and the second inequality reduces to an equality for the (nondecreasing) function
f@)—{a e
1, a<x<b.
The proof is complete. O

In [128] versions of the upper Hadamard inequality are developeddonvex
andr-concave functions.

Recall that a positive functioif is log-convex on a real intervad, b] if, for
all x, y € [a, b] andA € [0, 1], we have

FOx+@-ny) < FO fF (1.6.9)

If the reverse inequality holdg, is termed log-concave.
Also the power meaM, (x, y; A) of orderr of positive numbers, y is de-
noted by

(Axr +(1- A)y’)l/r

if r=£0,
xhyl=* if r=0.
In the special cask = 1/2, we contract this notation t#, (x, y).
In view of the above, a natural generalizing concept is that-obnvexity.
A positive functionf is r-convex onfa, b] if, for all x, y € [a, b] andx € [0, 1],

[+ @ =0y) <M (f), fF():2). (1.6.10)

The definition ofr-convexity naturally complements the concept-afoncavity,
in which the inequality is reversed. We have that 0-convex functions are simply

M, (x,y;A) =
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log-convex functions and 1-convex functions are ordinary convex functions. For
the latter the requirement thatconvex function be positive can clearly be relaxed.
Again, in all the above, we may take a real linear sp&de place of the real
line. The conditiony, y € [a, b] then becomes, y € U for U a convex set irX.
In [128] the authors have developed Hadamard-type inequalities for log-convex
functions and more generally ferconvex functions. It is convenient to separate
the proof of the former special case as the functional representations differ in
detail from those of the general case.
It will be convenient to invoke the logarithmic medrix, y) of two positive
numbersy, y, which is given by
Loy = | o Y7
X, X =Y,
and the generalized logarithmic means of ordef positive numbers, y, defined
by

r+l_ r+l

#1%’ r#0,-1,x#y,
xX=y .
Fr(x,y) = { Ix=iny> r=0,x#y,
|nX—|ny _
S r=-ha#y,
X, xX=y

(see [194]).
The following theorem proved in [128] deals with a version of the upper
Hadamard inequality for log-convex functions.

THEOREM1.6.3. Let f be a positive, log-convex function on [a, b]. Then

1 b
bTa/ fo)ydt <L(f(a), f(b)).
For f a positive log-concave function, the inequality is reversed.

PROOF First suppose that(a) # f(b). By (1.6.9) we have
b 1
/ f(®)dt = (b—a)/ f(sb+(1—s)a)ds
a 0

1
<®-a) / £ F@) ds
0

B Yo
_(b—a)f(a)/(; {%} ds
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FB)\* FONT
=(b- L |
o-ar@|(55) [n(Fa),
fb) = f(a)
In £ (b) —In f(a)
= (b—a)L(f(a), f(b)).

=0b-—-a)

For f(a) = f(b), we have with the same development
b 1
/ f@)dr =@ —a)/ f(sb+ (1—s)a)ds
a 0
1
<(b-a) f f®) f@ds
0

1
=(b—a)/ f(a)ds
0

=(b—-a)f(a)
=((b—a)L(f(a), f(b)).

The proof is complete. |
A similar proof gives the following generalization established in [128].

THEOREM 1.6.4. Let f be a positive, log-convex function on a convex set
U C X, where X isalinear vector space. Thenfor a, b € U,

1
/0 f(sa+ @ —=s5)b)ds <L(f(a), f(b)).

The following inequalities may be derived by way of corollaries to Theorems
1.6.3and 1.6.4.

COROLLARY 1.6.1. Let f bea positive log-convex function on [a, b]. Then

1 b
b_a/a f(r)dr
min (x—a)L(f(a),f(x))+(b—X)L(f(X),f(b)).

x€la,b] b—a

< (1.6.11)
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If f isa positive log-concave function, then

1 b
m/a f@)de

> max x —a)L(f(@). fxX) + b - Lf ). fB)

x€la,b] b—a

(1.6.12)

PROOF Let f be a positive log-convex function. Then by Theorem 1.6.3, we
have that

b X b
/f(t)dt:/ f(t)dt+/ f(@)dt

S —a)L(f(@), f() + b =x)L(f(x), f(b))

for all x € [a, b], whence (1.6.11). Similarly we can prove (1.6.12). O

COROLLARY 1.6.2. Let f be a positive log-convex function on [a, b]. Then

1 [t 1< i—1 i
m/a f(t)dt<;§L<f<a+T(b—a)),f(a—{—;(b—a))).

If f isa positive log-concave function, then inequality is reversed.
PROOF The result follows by applying Theorem 1.6.3 to the integrals on the
right-hand side in
b n a+i(b—a)/n
/ f(t)dt=Z/ f@)dr.
a i—1 a+(i—-1)(b—a)/n O

COROLLARY 1.6.3.

(a) Let f be a positive log-convex function on [a, b]. Then

1 b
[ o <ma(r@. 1),

whileif f islog-concave, then

1 b
m/ f@de =/ f(a)f®). (1.6.13)
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(b) Let f be a positive, log-convex function on a convex set U C X, where
X isalinear vector space. Thenfor a,b € U,

1
A F(sa+ 1= 5)b)ds < Mia(f (@), b)),

whileif f islog-concave, then
1
/O f(sa + (1—s)b) ds >/ f(a) f (D).

ProOF Part (a) follows from Theorem 1.6.3 and the inequalities
G(a,b) < L(a,b) < Mys(a, b),

whereL(a, b), M,(a, b) are as defined above at{a, b) is the geometric mean
(see also [194]). Part (b) follows similarly from Theorem 1.6.4. |

In [128] the following Hadamard-type inequality ferconvex functions is
proved.

THEOREM1.6.5. Suppose f isa positive r-convex function on [a, b]. Then

1 b
m/ f(@0)de < F(f(a), f()).
If f isa positive r-concave function, then the inequality is reversed.

PROOFE The caser = 0 has been dealt with Theorem 1.6.3. Suppose ithat
0, —1. First assume thaf(a) # f(b). By (1.6.10) we have

b 1
/ f(t)dt:(b—a)/ f(sb+(l—s)a)ds
a 0

g(b—a{élhf%m+41—snﬁmn”’¢
O g
fr@ JTb)— fr(a)
b)) — )
r+1 - @
=(b—a)F(f(a), f(b)).

=(b—a)

=0b-a)
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For f(a) = f(b), we have similarly

b 1 r
/f(t)dtg(b—a)fo{sf’(a)+(1—s)f’(a)} ds

=(b—a)f(a)
=((b-a)F(f(a), f(a).

Finally, letr = —1. For f (a) # f(b), we have again

b 1
/ f@)yde < (b— a)/ sty +a- S)f_l(a)}_lds
a 0
b— 1/ ()

- t—de
1/f) = 1/f (@) Ji/r@

_ b—a (In 1 I 1 )
CYfB) -1 @\ fb) f(a)

In f(a) — In £(b)
=(bh— p) L
(b—a)f(a)f(b) @10

=(b-a)F-a(f(@), f(b)).

When f(a) = f(b) the proof is similar. O

In concluding this section, we note that in [365] the authors have obtained some
generalizations of the extensions of Hadamard’s inequalitydonvex functions
involving Stolarsky means. For inequalities of Hadamard’s type, see also [118,
220].

1.7 Inequalities of Hadamard Type II

The classical inequality of the Hadamard type has been generalized and extended
in several directions. In this section we shall give some results on refinements and
variants of Hadamard’s inequality given by various investigators.

In 1992, Dragomir [84] has obtained some refinements of Hadamard’s inequal-
ities (1.5.1) by considering the following two mappings involving convex func-
tions

b
H(t):ﬁf f(tx—i—(l—t)#)dx (1.7.1)



74 Chapter 1. Inequalities Involving Convex Functions

and

1 b pb
F([):—/ / fltx+ (1 —1)y)dxdy, (1.7.2)
b - a)2 a Ja ( )
where f :[a, b] — R is a convex function andl and F are real-valued functions
defined ora, b].
The main results given in [84] are given in the following two theorems.

THEOREM1.7.1. Let f:[a, b] — R be a convex function. Then

() H isconvexon [0, 1].
(i) Wehave

. a+b
tel[rg)fl]H(t) =H(0) = f<—2 )
and

1 b
sup H)=H(1) = —/ f(x)dx.
1€[0,1] b—al,
(iii) H increases monotonically on [0, 1].

PROOE (i) Leta, B > 0witha + 8 =1 andr, 2 € [0, 1]. Then

H(aty + Bt2)

b
_ 1 /f(a<t1x+(1—t1)a+b>+ﬂ<t2x~|—(1—t2)a+b>>dx
b—al. 2 2

1 b +b
b_a/a f(t1x+(1—tl)a2 )dx

b
+ﬁif f(tzx+(1—tz)a+b>dx
b—al,

<o

2
=aH () + BH(12)

which shows tha#f is convex in[0, 1].
(ii) We shall prove the following inequalities

f(““’) <H(®)

2
<t 1 b ¢ d+b
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b
fx)dx

~

b—al,

forall ¢ in [0, 1].
By Jensen’s integral inequality, we have

b
H(t) > f(if |:tx+(1—t)a+b}dx)
f<a+b>

Now, using the convexity of , we get

H(t) < —/ |:tf(x)+(1—t)f( +b>]dx
1 a+b
:[—b_a/‘; f(x)dx-l—(l—t)f( > ),

and the second inequality in (1.7.3) is proven.
The last inequality is obvious because the mapping

b
g(l)—l—/ f(X)dx—ir(l—l)f( a )

is increasing monotonically oi©, 1].

(i) Let 1, 2 € (0, 1) with #2 > #1. Then,H being convex on0, 1),

H(t2) — H(ll)
fo—11

H'_(12)

1 (b, a+b
= — 1_ _
b—al, f+<t1x+( t1) 5 )(x

Since f is convex ona, b], we deduce that

f(a;rb> f(t1x+(1—t1) +b)

> fl <t1x+(l—t1)a+b)<a;b —X)

a+b

75

(1.7.3)

).
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for everyx in [a, b]. Thus

1 b b b
m/ﬂ fjr<t1x+(1—t1)’“2r )(x—a_; >dx

1r 1 b a+b a+b
>loma [ (a3 oo (457

1 a+b
= a[’“’” -/ (T)] >0

ConsequentlyH (r2) — H(t1) > 0 for 1> > > 11 > 0 which shows thatd in-
creases monotonically d@, 1]. The proof is complete. |

THEOREM1.7.2. Let f:[a, b] — R be a convex function. Then

() Fo+3=FG-o)foraloel0, 3]
(i) F isconvexon [0, 1].
(i) We have

b
sup F(t)=F(0) = F(1) = L/ £x)dx
1€[0,1] b—al,

. (1 b (x+y
i ro=r(3)=goa [ [ (5w

(iv) The following inequality is valid

a+b 1
<Fl=).
1(%7)<#(3)
(v) F decreases monotonically on [O, %] and increases monotonically

on[3,1].
(vi) We have the inequality

and

H@) < F(t) forallte[O0,1].

PROOF. (i) Leto € [0, 1. We have

1 1 b b 1 1
F(“*é)if—mz/afa f(("*é)’C*(é‘“)y)dxdy



1.7. Inequalities of Hadamard Type I 77

s [ () o2 e
=(3-0)

(i) The argument is similar to that in the proof of Theorem 1.7.1(i).
(ii) Forall x, yin [a, b] andt in (0, 1], we have

ftx+@=0)y) <tf )+ Q=0 f(Q).
Integrating this inequality ifie, b] x [a, b] we get

b rb b rb
[ [ rexsa-nnaray< [ [ Trw+a-nsom]da

b
=<b—a>/ )

which shows thatF'(r) < F(0) = F(1) for all ¢ in [0, 1]. Since f is convex
on[a, b] forall ¢t € [0, 1] andx, y in [a, b], we have

1
SLF (e @ =0y) + £ (ty + (2= 1) ] > f(x;y)

Integrating this inequality ifia, b] x [a, b] we deduce
b b
/ / f(x +y> dx dy
a Ja 2
1 [brb
5// [f(ex + @ =0)y) + f(ry + (1~ 1)x)] dx dy

b rb
:// f(tx+(1—t)y)dxdy

which implies thatF(1/2) < F(¢) for all ¢ in [0, 1], and the statement is proven.
(iv) Using Jensen’s inequality for double integrals we have

®- a>2// ( +y)d @ /f<(b a)?// (Hy)dXdy)

Since a simple computation shows that

1 /bfb XY qegy - TP
b—a2), ), T2 )T T2
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the proof is complete.
(v) Sincef is convex on0, 1), we have forp > 11,11, 12 € (%, 1),

F(t2) — F(11)

1 b rb
>F, =— (¢ 1—¢ — y)dx dy.
th—11 +(tl) (b—a)Z/a /{: f+(1x+( 1)y)(x y) y
By the convexity off on[a, b], we deduce

(x =1 —-2n)
2

() s s

forall x, y in [a, b] andt; € (3, 1), which is equivalent to

/ 2 _l’_
=) fi(rx + A —m)y) > m[f(tlx"i‘(l—ll)y) —f<x > y>:|

Integrating ona, b] x [a, b] we obtain

F' (1) > 2 F(t1) F1 >0, ¢ 11

which shows tha¥ increases monotonically c{r%, 1].

The fact thatF' increases monotonically d@, %] follows from the above con-
clusion using statement (i).
(vi) A simple computation shows that

1 [P 1 [P
H(t):b_a/ f<b_af [tx—l—(l—t)y]dy)dx.

Using Jensen'’s integral inequality we derive

1 b b
H(r)gm/ f(/ [tx+(l—t)y]dy>dx

for all 7 in [0, 1], and the proof is complete. O

In [89] Dragomir and lonescu have given the following theorem.

THEOREM 1.7.3. Let f:C € X — R be a convex mapping on a convex sub-
set C of alinear space X. For a, b two given elementsin C, define the mapping
F(a,b):[0,1] - R by

F(a,b)(t)=Z[f(ta+ QA —0)b) + f((L—1t)a +1b)]

NIl -
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for all £ in [0, 1]. Then

() F(a.b)(o +3)=F(a,b)(3 —o)foraleino,3l.
(i) suppo,1) F(a,b)(t) = F(a,b)(0) = F(a,b)(1) = (f(a) + f(b)/2.
(iil) inf ;c0.1) F(a, b)) = F(a, b)(3) = f(“F2).
(iv) F(a,b)isconvexon [0, 1].
(v) We have the generalized Hadamard inequalities

1
f(“;b> g[ Flta+@—0b)dr < M (1.7.4)
0

(vi) Let p; >0 with P, =3/ 1 p; >0 and ; arein [0,1] for all i =
1,...,n. Then we have the following inequalities

a+b 1<
f<2 ><nmm@i§¥m)

1 n
<) piF(a, b))
Pa i=1

< w, (1.7.5)

which isthe discrete variant of Hadamard’ s resullt.
Moreover, if weassumethat X =R and a, b in C, a < b, here C isan interval

of real numbers, we also have
(vii) F(a,b) is monotone decreasing on [0, %] and monotone increasing

on[3,1].
(viii) We have the identity

b 1 b
/ F(a,b)(t)dt:—/ fx)dx.
a b—a a

(ix) Hadamard'sinequalities hold, that is,

a+b 1 (P f@) + f(b)
f( 5 )ém/a f(x)dx<f.

(x) If f isdifferentiable on [a, b], then

f(a;—b) L@+ f®) b

. ;“ (f'b) — f'(@)).
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PROOF (i) A simple computation shows that
F(a,b !
(a, )(O’ + E)

1 1 1 1 1
=3l 2)a o))+ A ((G-o)et (o 2)0)]
=F(a,b !
~ren(3-0)

forall o in [0, %], which proves the statement.
(i) Using the convexity off we get

1 b
Fwwx0<5&fm%+d—0f@%+ﬂ—ﬂfw%waﬂ=1£2%l£l

forall r in [0, 1] and

F@@@szmmzi@%i@’

which proves the assertion.
(iii) By the convexity of f, we also have
ta+1—0)b+ A —1t)a+1tb a+b
2 =3

ran(d)o(5)

which shows the statement.
(iv) Leta, B = 0witha + 8 =1andt, t2 € [0, 1]. Then

F(a,b)(1) = f[

forall ¢ in [0, 1] and

1
Fla, b)(ai + piz) = S[f (@[na + L= 1w)b] + Blr2a + (1 - 12)b])

+f(a[(d—t)a +11b] + B[(1 — 12)a + 12b]) ]

< Z[af(na + (1 —1)b) + Bf (12a + (1 - 12)b)

NI

+af (1—r)a+nb) + Bf (1 —t2)a + 12b) |
=waF(a,b)(t1) + BF(a,b)(r2),

which shows thaf (a, b) is convex o0, 1].
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(v) F(a,b) being convex on[0,1], it is integrable on[0,1] and by
(i) and (iii), we get

1
f(”b) </ Fla, by d < LD TIO
0

2 2

Since a simple calculation shows that

1 1
/ F(a,b)(t)dtzf f(ta+ @ —10)b)dr,
0 0

the proof of inequality (1.7.4) is complete.
(vi) The firstinequality in (1.7.5) is obvious from (iii). The second inequality
follows by Jensen’s inequality applied for the convex mapgiia, b).
To prove the last inequality in (1.7.5), by (ii) we observe that

fla)+ f(b)
2

foralli =1,...,n. By multiplying with p; > 0 and summing these inequalities
overi from 1 ton, we obtain the desired inequality.

(vii) F(a,b) being convex on(0, 1) for all t> > 11, with 71, 2 € [%,1),
we have

F(a,b)(ti) <

F(a,b)(t2) — F(a, b)(11)
Ih—n
> F'(a, b)(t1)

a
2

[fi(Q—1t)a+ub) — fi(na+ A —m)b)].

Sincer; € [%, 1), we have(l — r1)a + 11b > r1a + (1 — 11)b and becausg’. is
monotone increasing o@, b), we deduce that

fi(@=ma+nb) > fi(na+ A—1)b),
that is, F (a, b) is monotone increasing dg, 1) and by (ii) also in[ 3. 1].

The fact thatF (a, b) is monotone decreasing ¢@, %] goes likewise.
(viii) Itis easy to observe that

1 1 b
/ f(ta+(1—t)b)dt=—/ f(x)dx.
0 b—al,

(ix) Follows by (v) and (viii).
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(x) Sincef is differentiable oria, b], we have
flta+@Q=0b) > f@)+A-nb—a)f'(a),
f(A=ta+1b) > f(a)+t(b—a)f (a),

for all ¢ in [0, 1]. Summing these inequalities we get
Fa.0® > f@)+ % @),
The fact that
F(a,b)(®) = f(b) - b%af’(b)

for ¢t € [0, 1], goes likewise. O

The next theorem deals with the inequalities of Hadamard's type for
Lipschitzian mappings given in [92].

THEOREM 1.7.4. Let f:1 C R — R be an M-Lipschitzian mapping on I and
a, b € I with a < b. Then we have the inequalities

a+b 1 b M
‘f< 2 >_b——a/a f(x>dX‘<z<b—a> (1.7.6)
and
f(a)+ f(b) 1 b M
2 _b_a/a f(x)dX‘ég(b—a), (1.7.7)

where M > Qisa Lipschitzian constant.

ProOOF Letr €0, 1]. Then we have foralk, b e I,

|tf @ +@—=1)f®)— f(ta+ (1 —1)b)|
=|t(f@ — f(ta+ @A —=0b))+ A=) (f®b) — f(ta+ (1—1)b))|
<t|f@ = f(ta+ A =0)b)|+ A —0)|fb) — f(ta+ (1—1)b)|
<tMla—(ta+ @A —0b)|+ L —)M|b— (ta+ (1 —1)b)|
=2t(L—1)M|b —al. (1.7.8)

If we choose = 1/2, we have also

f(@) + fb) a+b\| M
: —f( . >‘<7|b—a|. (1.7.9)
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If we putza + (1 —¢)b instead ofe and(1 — ¢)a + tb instead ofb in (1.7.9),
respectively, then we have

fa+A—-1)b)+ f(A—1t)a+1tb) a+b
2 AN

M2t — 1|
< RS
2
for all t € [0, 1]. If we integrate inequality (1.7.10) d@, 1], we have

1 1
’}[/ f(ta+(1—t)b)dt+/ f((l—t)a+tb)dt]—f<a+b>‘
21Jo 0 2
1
gM/ |2t — 1] dr.
2 Jo

Thus, from

b —al (1.7.10)

1

1
/f(ta—i—(l—t)b)dt:/ F((A=1)a+1b)dt
0

0

1 b

1 1
/ |2t — 1] df = =,
0 2

we obtain inequality (1.7.6).
Note that, by inequality (1.7.8), we have

and

[tf(@)+ Q=0 f®)— f(ta+ A —1)b)| <2t(L—1)M (b — a)

forall t € [0, 1] anda, b € I with a < b. Integrating o0, 1], we have
1 1 1

’f(a)/ tdt—l—f(b)/ (1—t)dt—/ f(ta+ @ —1)b)drt
0 0 0

1
<2M(b—a)/ t(1—1)de.
0

Hence from

1 1 1 1 1
/ tdt:/ 1l-1dr== and [ t(l—1p)dr ==,
0 0 2 0 6
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we have
f@+fo) 1 fb M
— < —(p—
> b—al fo)dx| < 3(19 a)
and so we have inequality (1.7.7). The proof is complete. O

For various other inequalities of Hadamard’s type, see [47,135,349,356,357]
and the references cited therein.

1.8 Some Inequalities Involving Concave Functions

There exists a vast literature on inequalities involving concave functions. In [203,
204] Maligranda, Pearic and Persson and in [364] Pearce anddié have given
generalizations of well-known inequalities of Gruss [133], Barnes [15], Borell
[37-39], Favard [111] and Berwald [28] which involve concave functions. This
section deals with inequalities given in the above mentioned papers.

The following inequalities are well known.

Let f andg denote nonnegative concave functiong0yi].

@ If p,g>1,then

(p+DYP (g + 1Y
6

1
/0 F)g(x) dr > gl (18.1)

(i) If0 < p,qg <1,then

(p+DYP (g + 1Y
3

1
/o F(x)gx)dr < 11l pllglly- (1.8.2)

Forp > 0 andf > 0, we use the usual notatidrf |, = (fol |f17 dx)Y/P.

Inequalities (1.8.1) and (1.8.2) in general were proved by Barnes [15]. In the
casep = g = 1, inequalities (1.8.1) and (1.8.2) were proved by Griss [133].
We note that from inequality (1.8.1) it follows, in the special casel, g(x) =1,
the Favard inequality [111]

1 1 1/p
[ redes PR g, (1.8.3)

and similarly with (1.8.2). Therefore we quote (1.8.1) and (1.8.2) as Griss—Barnes
inequalities.
In [37] Borell observes the following inequality.
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Let f andg be nonnegative concave functionsfanb]. If p, ¢ > 1, then

1
/Of(x)g(x)dx
i/ 1)t/a 0)g(0 Deg(l
> (p+1 6(61+ ) ||f”p||g”q+f( )g( )Jgf( )g( )' (1.8.4)

Inequality (1.8.4) is here referred to as a Borell inequality.

Favard [111] proves the following result.

Let f be nonnegative and not identically zero, continuous and a concave
function on [a, b], and let¢ be a convex function on0,2f], where f =
ﬁf: f(@)dr. Then

b 1 2f

1
slrwja< o= [T omd= [ o@i)a  wss)

b—a a 2f 0

In [28] Berwald proves the following generalization of Favard’s inequality.

Let f be nonnegative and not identically zero, continuous and a concave func-
tion on[a, b], and letyr be a strictly increasing function d@, co). Assume that
¢ is a convex function with respect t, that is,¢ o ¥ ~1 is convex function
on [0, o). If 7 is a positive (i.e., nonnegative and not identically zero) root of the
equation

1 [ 1
:/ Y (y)dy = ——y[ f()]dr, (1.8.6)
Z Jo b—a

then

L / o[/ (0]d / o(y)dy = / oHds.  (187)

The rearrangement function is important and useful in inequalities of different
type in the theory of symmetric spaces and in the theory of interpolation of opera-
tors. Therefore many properties of rearrangement are known. In [202] Maligranda
has given an important property concerning the concavity and convexity of re-
arrangement.

For a measurable functiofion an interval0, a], 0 < a < oo, the distribution
functiondy is defined or{0, oo) by

diy=m({sel:|f(s)|>1}), 1=0,
and the decreasing rearrangemghton [0, co) by

ffoy=inf{A>0:d;0) <t} =0



86 Chapter 1. Inequalities Involving Convex Functions

The functionsdy and f* are decreasing and right continuous. The func-
tion dy is bounded bymI =a and so f*(t) = 0 for ¢t > a. Moreover,

if ap=essinfer|f(x)]>0 thend;(A) =a for 0< A <ayp, and if by =
esssup.; | f(x)] <oothends(h)=0forx>b;.

Furthermore f*(ds (1)) < A, dy(f*(2)) <t and f*(dy (1) — §) > A provides
thatds(A) > 6 > 0,d ¢ (f*(¢t) —e) > t provides thatf*(t) > ¢ > 0, and ifd y hap-
pens to be continuous and strictly decreasing, tfieis simply the inverse func-
tion of dy on the appropriate interval.

A function f defined on an interval C [0, co) is said to be concave an if
forall x, y e J and O< o < 1, we have

flax+Q—)y) Zaf(x) +A—a) f(y).
In [202] the following theorem is given.

THEOREM1.8.1. Let f be a positive measurable function on I =[O, a].

(a) If fisconcaveon,thend; isconcaveon [0, by) and f* isconcaveon 1.
(b) If f is convex on I, then d is convex on [ay,o00) and f* is convex
on [0, 00).

PrROOF (a) Suppose thaf is a positive concave function oh SetA (i) =
{xel: f(x) > A}, A > 0. Thendy (1) =m(Ay(1)) and for 0< A1, A2 < by,
O<a<l1,

Ap(ari+ A —a)r2) DaAr(ry) + (L —a)Ar(r2).

The setsA ¢ (A1) andA ¢ (i) are convex. Therefore there are intenvaland/,
where the following equality is true (for measurable subgetise well-known
Brunn—Minkowski theorem gives only inequality):

m(I1+ I2) = m(I1) + m(1).
Thus
d(ar1+ A —a)r2) =m[As(ars + (1 —a)r2)]
>mlaAr(h1) +(1—a)Ar(12)]

=am(Ar(A1) + A —a)m(Af(r2))
=adr(A) + (1 —a)dr(r2),

that is,d is a concave function of®, b 7).
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Now, let for any fixed 0< 11, t» < a and sufficiently smalk; > 0, &2 > 0, be
r = f*(t1) —e1, A2 = f*(t2) — e2. Then

dy (Ol)\l +(1- ot))»z) Zadp(A) + (1 —a)dr(A2)
=ads(f*(11) —e1) + (L — a)d (f*(t2) — £2)
>at1 + (1— o)y,

that is,
[Han+ @ —an) > ari+ 1 -a)ke
=af () + 1 —a) f*(t2) —ae1 — (1 - a)e2.
Also, from the concavity off we haved(0) = a and so

dy(ary) > adp(r1) + (1 —a)ds(0)
= Oldf A+ A —a)a
=adf(f () —e1) + 1—a)a
>oat1 + (1 —w)a,
which means that
et + 1 —a)a) > ar
= O[f* (t]_) — el

=af*(t) + (1—a) f*(a) — ae1.

But 1, e2 were arbitrary chosen, therefofé is concave ord.
(b) Suppose thaf is a positive convex function oh SetBy (1) =1 —A (1),
L =>0.Thenforay <Ay, A2 <00, 0<a <1,

aBy(h1) + (L—a)Bf(r2) C Bp(arr+ (1—a)i2)
and so

Ay (otkl +1- Ol))»z)
=1—-By(ar1+ 1 —a)r2) CI—[aBs(r1) + (1 —a)Bs(r2)].

The setsBy(11) and By(12) are convex subsets df, that is, intervals in/.
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Therefore
dy (oe)»l +QA- a))»z) = m[Af(ot)»l +(1- a)kz)]
<a—ml[aBs(k1)+ (1—a)Bs(12)]
=a—ala—df( )] — A—a)|a—ds(r2)]
=ady(A) + (L —a)ds(r2).

Thusd is a convex function ol ¢, 00).
Now, letr1, 12 € [0, 0), 0< a < 1 andi1 = f*(t1), A2 = f*(£2). Then

df(ar1+ A —a)rz) <adp(ha) + (1 —a)dy(h2)
<atr+ A -2
and so
f* (Oltl +@A- Ol)tz) <arr+ L —a)rs
=af*(n) + (1 —a) f*(t2);

that is, f* is convex o0, co). O

The following inequality given in [203] deals with a generalization of inequal-
ity (1.8.3).

THEOREM 1.8.2. Let f and g be nonnegative and concave functions on [0, 1]
andlet p, g > 1. Then

! 1YP(g + 1)V4 0)e(0
[ a=nrwewar > CEEZEED S gy g, + LOE
0
(1.8.8)
and
! DYP (g + 1Y Dol
/Oxf(x>g(x>dx>(”+ S gl + TEES (w89

Equality in (1.8.8)and (1.8.9) occurs if either (1) f(x) =1 —x, g(x) =x (or
f@)=x,gx)=1-—x)or (2) f(x)=gx)=xo0r(3) f(x) =gx)=1—x.

PROOF The assumptions that andg are nonnegative and concave imply that
we may assumg, g € C* and that we have the following estimates:

fO—fM<E=yf(y and gkx)—g(y) <@x—yeO»,.
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forall x, y € (0, 1). Therefore, by multiplying the first inequality ky(y) and the
second byf (y), and then adding, we obtain

FEW + f(Mgx) <2f (Mg + & —N[f Mg + f(NE' ]

Moreover,
x = MeM + fME ) =(x =)'
d
= f(x)g(y) — 5(@ —x)f(ME).

and we conclude that
fgM + f(gkx) + ((y —x)f(Mg(») <3f(Mgy).
By integrating over from 0 tox, we obtain
1@ [Cemdy+ s [ rody+ 050 <3 [ oo,
that is,
d X X X
d—( | rod [ e dy) +af 00 <3 [ gy
X 0 0 0
Now, an integration with respect iofrom 0 to 1 gives

1 1 0 0 1 x
/f(y)dyf g dy+ L )Zg()<3/ U f(y)g(y)dy]dx
0 0 0 0

that is,

0)g(0 L
/ f(x)dx/ gx)ydy + ——— A )g( ) /o 1—-x)f(x)gx)dx. (1.8.10)

Then using twice the Favard inequality (1.8.3) we obtain (1.8.8).
Similarly, by first integrating ovep from x to 1 and after that over from O
to 1, we obtain

1 1 1
—/ f(x)dx/ g dr +
3Jo 0

1
e / fgmdse.  (1.8.11)
0
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Again using twice the Favard inequality (1.8.3) we obtain (1.8.9). Moreover, it is
straightforward to check that we have equality both in (1.8.8) and (1.8.9) for all
the cases (1)—(3), and the proof is complete. a

As an application of Theorem 1.8.1, Maligranda [202] has obtained the fol-
lowing well-known Favard inequality.

THEOREM 1.8.3. Let f be a positive concave func_tion onl= [0, a] not iden-
tically zero and let ¢ be a convex function on [0, 2f], where f = %foa f(x)dx.
Then

1 [a 2f
Zfo o[ f (x)] dx Zf/ ¢ () du. (1.8.12)

PROOF First, we will prove as in [147] that

/u fr@de < f(Z—f) /u ff@)de forallxel. (1.8.13)
0 a a/ Jo

In fact,

X a . a2 X .
x<a_§>/o f (t)dt_E/O f*(t)dr

:/x(a—t)dt/af*(t)dt—/u(a—t)dt/xf*(t)dt

0 0 0 0
:/x(a—t)dt/af*(t)dt—}-[/x(a—t)dt—/a(a—t)dti|[xf*(t)dt

0 x 0 0 0
=/X(a—t)dt/af*(t)dt—/a(a—t)dt/xf*(t)dt

0 X x 0

:/0/ [(a—1)f*(s) — (@a—s)f"(1)]dsdr,

and for 0<r < x <a,we haves = (a — s)/(a — )t + (1 + (a — s)/(a — t))a.
Then, from the concavity of *,

O —f (t)+<1——)f (a) = —f 0,
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that is, expression in the last integral is positive and inequality (1.8.13) holds. Let
fortel,

g(t)=2a"2t /a £ (x)dx.
0

Theng*(t) =2a=2(a — 1) [ f(x)dx and (1.8.13) means that

/x F¥o)de < /x gf(r)ydr forallx el. (1.8.14)
0 0

Second, we shall need the well-known majorization theorem proved by Hardy,
Littlewood and Pdlya [141, Theorem 250].

If (1.8.14) holds andp is a convex function on an interval which contains
f*(H)Ug*), then

/0 o[ f* () dr] < fo o[g* ()] dr. (1.8.15)
In fact, for anyu, v > 0, we have

Pu) —¢(v) < DL (W) (u —v),

and, using the Stieltjes integral with(x) = fé‘[f*(t) — g*(®)]dr, we get
[ oo -gwla= [ ol(ro)are

— ¢, (f*(@) F(a) - /O F(o) d, (£7(0))
< Ov
so (1.8.15) holds.

Now, since the functiorf and its rearrangement are equimeasurable, it follows
that

/Od)(f(t))dt:/0 ¢(f*(t))dt</0 P (g*(1))dr

a a 2 _
2/0 ¢(g(t))dt=/o ¢(;tf>dt

a [?f
:Z_f/o ¢ (u) du.
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The proof is complete. |

The following weighted versions of the majorization lemmas given in [204]
will be needed in the proofs of further results.

LEMMA 1.8.1. Let v be a weight function. If 4 is an increasing function
on (a, b), then

x b b X
/h(t)v(t)dt/ v(t)dt</ h(t)v(t)dt/ v(t)dr for all x €[a, b].

a a a a

If h isa decreasing function on (a, b), then the reverse inequality holds.

ProoOF If fax v(t)dr =0 thenv(¢t) =0 a.e. orn«, x], and we obtain the equality.
Now assume thaf; v(t)dr > 0. If h is increasing, then

x b
/h(t)v(t)dt/ v(t) dr
X x b
=/ h(t)v(t)dt[/ v(t)dt+/ v(t)dt]
b b x x b
=[/ h(t)v(t)dt—/ h(t)v(t)dt}/ v(t)dt—i—/ h(t)v(t)dt/ v(t) dt

b X b X
=/ h(t)v(t)dt/ v(t)dt—/ h(t)v(t)dt/ v(t) dr

X b
+/ h(t)v(t)dtf v(r) dr

b X b X
g/ h(t)v(t)dt/ v(t)dt—h(x)/ v(t)dt/ v(t)de

a

X b
+h(x)/ v(t)dt/ v(t) dt

b X
=/ h(t)v(t)dt/ v() dr.

The proof of the case with decreasing functiors similar. O
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LEMMA 1.8.2. Let w beaweight functionand let f and g be positive integrable
functions on [a, b]. Suppose that ¢ : [0, co) — R isa convex function and that

fx f@Ow(t)dr < fx gw(t)dr for all x € [a, b]
and

b b
/ FOw(r) di = / cOwn)dr.

(i) If f isdecreasingon [a, b], then

b b
/¢>[f(t)]w(t)dt<f P[g(t)|w(t)dr.

(ii) If g isincreasing on [a, b], then
b b
f¢[g(t)]w(t)dt<f o[ f(O)]w)dr.

PROOF. If we prove the inequalities fap € C1(0, 00), then the general case fol-
lows from the pointwise approximation g¢fby smooth functions.
Sinceg is a convex function of0, co), it follows that

¢ (u1) — d(u2) < @' (ur)(us —u) forug, up >0.

If we setF(x) = fax[f(t) — g(®)]w(t)dt, then F(x) < 0 for all x € [a, b], and
F(a)=F(b)=0.
If f is decreasing ofu, b], then

b
/ {o[f@®)] —o[g]}w()dr
b
< [ o' [fOf@) — @) }w(r)de
b b b
= / P'[fO]dF @) =[¢'[fO]FD)], — f Foyd{¢'[ ()]}

b
- —/ Fd{¢/[f 0]} <0.

a
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Similarly, if g is increasing, then
b
/ {o[sO] =[O ]Jw@)dr
b
<f ¢/[g(t)]{g(t)—f(t)}w(t)dt
b , b
= [ oleold-Fo] =l [eo]rol,+ [ Fode o]

b
= / Fd{¢'[s]} <O.
The proof is complete. O

Our next theorem deals with a weighted version of the Favard inequality es-
tablished in [204].

In order to obtain the classical Favard result we need to define a nufnber
connected with a positive concave functignin the weighted situation the num-
bers f; for an increasing functiorf, and f; of a decreasing functiorf will in
general be different. Of course, in the case whes 1 these numbers coincide
and they are equal to the numbgin the Favard result.

THEOREM 1.8.4. (i)Let f be a positive increasing concave function on [a, b].
Assume that ¢ isa convex function on [0, 2f; ], where

. (0—a) ] fOwnd

, 1.8.16
(22t — ayw(t)dr] ( )

Then
b

b—al,

1

¢[f(t)]w(t) dr g/ ¢(2sf,-)w[a(1—s) —I—bs] ds. (1.8.17)
0

If f isincreasing convex function on [a, b] and f(a) = 0, then the reverse in-
equality in (1.8.17)holds.

(i) Let f bea positivedecreasing concavefunction on [a, b]. Assumethat ¢ is
a convex function on [0, 2], where

G —a) [? fFw() de

. 1.8.18
(27— Hyw(r) dr] ( )
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Then
1 b
b—al,

1
¢[f(t)]w(t)dr<[ ¢(2s fa)wlas +b(L—s)] ds. (1.8.19)
0

If f is a decreasing convex function on [a, b] and f(b) = 0, then the reverse
inequality in (1.8.19)holds.

PROOF (i) For the positive concave functiofy the function, defined by (1) =
f(@)/(t —a), is decreasing ofu, b]. In fact, fora < 11 < r2 < b, we have

f) =f<2:Zt2+ tz_atz__(;l_a)a>
> 079 ) + (1— tl_a)f(a)
fo—a fo—a
> tl_af(tz)-
I —a

Using Lemma 1.8.1 with the weight?) = (r —a)w(¢) and with the decreasing
functionh(t) = f(¢t)/(t — a) we obtain

x b x b
/(t—a)w(t)dt/ f(t)w(t)dtgf f(t)w(t)dt/ (t —a)w()dt (1.8.20)

for all x € [a, b]. According to (1.8.16), inequality (1.8.20) can be written in the
form

b—a

Then using the majorization lemma (Lemma 1.8.2(ii)) we have (only here we are
using the assumption thgtis increasing)

b b rt—a -
/¢[f(t)]w(t)dt</ ¢<m2fi>w(t)dt.

/x L4 rwdr < /X FOw) dr forall x € [a, b].

But

1 b t—a_ - 1 2f; b—a
b—a‘/[; ¢<m2fi)w(f)df=2—f_ ; ¢>(y)w(a+y 27 )dy

1

1
=/ 6 (25 ) w[a(L— )+ bs] ds,
0

and inequality (1.8.17) is proved.
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(i) For the positive concave functioff, the functionk, defined byh(r) =
f(@)/(b—1t),is increasing otfa, b]. In fact, fora <t <12 < b, we have

b—1t b—tl—(b—tz)b>

I
b—n b—n

b—1t
(1— b—tl)f(b)

f(t2)=f<

21)—1‘2
b—t

Using Lemma 1.8.1 with weight(¢) = (b — r)w(¢z) and with the increasing func-
tionh(t) = f(¢t)/(b — t) we obtain

X b
/ f(t)w(t)dt/ b —w(r)dr

X b
</ (b—t)w(t)dt/ f@Ow()d (1.8.21)

forall x € [a, b]. In view of (1.8.18), inequality (1.8.21) can be written in the form

/x FOw)dr < /x s;tzfdw(z)dt for all x € [a, b].
a a —a

Then using the majorization lemma (Lemma 1.8.2(i)) we have (assuming that

increasing)
b brb—t_ .
/ ¢[f(f)]w(t)df</ ¢<m2fd>w(t)dt.

But

1ot (bt gt 2fa ,_ b g
b_afa¢<—b_ fd)w(t)t 271 Jo ¢(y)( y—zfd)y

1
= / ¢(2s fa)wlas +b(L—s)]ds
0
and inequality (1.8.19) follows. The proof of the convex case is similar. [

In the following theorem we present a generalization of the Berwald inequality
to the weighted case given in [204].
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THEOREM 1.8.5. Let ¢ be a convex function with respect to the strictly increas-
ing function v, that is, ¢ o ¥~ is convex.

(i) If f isapositiveincreasing concave function on [a, b] and z; is a positive
root of the equation
Z

1 (& b— 1 b
- I/I(y)w(a+_—_ay>dy:— Y[ fO]w) dr, (1.8.22)

zZi Jo Zj b—al,
then
b

b—al,

1
¢[f(t)]w(t) dr S/ (b(sZ,-)w[a(l—s)—i—bs] ds. (1.8.23)
0

If £ isan increasing convex function on [a, b] with f(a) = 0, then the reverse
inequality in (1.8.23)holds.

(ii) If f isa positive decreasing concave function on [a, b] and if z,; isa posi-
tive root of the equation

1 [Z b— 1 b
.—/ Wy)w(b - _—ay) dy = —/ v[f@O]w@)d,  (1.8.24)
Zd Jo Zd b—al,

then

b 1
1 o[ f () ]w()dr </ ¢ (sZg)wlas + b(L—s)]ds. (1.8.25)
0

b—aJ,

If f is a decreasing convex function on [a, b] with f(b) = 0, then the reverse
inequality in (1.8.25)holds.

PrROOEF (i) If f is a positive increasing concave function [en b], then there
existsrg € [a, b] such tha{(zog — a)/(b — a)]z; = f (o) and

t—a _ t—a._
b zi < f@) forallte(a,rn] and b—zi > f(t) forallt e 1, b].
—d —d

(1.8.26)

Equality (1.8.22) can be written in the form

b t—a b
/¢<b—azi>w(t)dt:/ Y[ O)]we dr.

We prove that

fx¢(;:zzi)w(t)dtg/xw[f(;)]w(;)dt forallx € (a,b). (1.8.27)
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If a < x < 1o, then inequality (1.8.27) follows immediately from (1.8.26). If
to < x < b, then, by using equality (1.8.22) and the second inequality in (1.8.26),

we obtain
x t—a._
/aw<b_az,~>w(t)dt
b _ b .
=/a W(;_Zii)w(l)dt—/x @b(;)_zz,-)w(t)dt
b b ri—a
=/'vaﬂw0ﬂh—/1w(b_az>wmdz

b b
< f Y[ f@)]we)dr — f Y[ f®)]w) dr

— / vf O] d. (1.8.28)

a

According to inequalities (1.8.27) and (1.8.28), the assumptiongtkaty —* is
convex and Lemma 1.8.2(ii), we find that

b b rt—a
/¢[f(z>]w<t)dt</ ¢(b Z,)w(t)dt.

—da

Moreover,

1 b rir—q_ 1 [ b—a
/¢>< a)w(t)dt:_—/ ¢>(y)w<a+ = y>dy
b—al, b—a Zi Jo Zi

1
= f ¢(szi)w[a(l— ) +bs] ds,
0

and inequality (1.8.23) is proved.
(iiy If f is a positive decreasing concave function[anb], then there exists
t1 € [a, b] such thal{(b — 1)/ (b — a)]zqg = f(t1) and

r_
zqg foralltela,n] and
—d

f(t)<b
(1.8.29)

t_
zq forallr e[, b].
—dad

fo=-
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Equality (1.8.24) can be written in the following form

b (b—t b
/¢(b—a5d>w(t)d’=/ Y[ F@O]w()dr.

We prove that

/Xl/f[f(t)]w(t)dt</X1ﬁ(l[::;2d)w(t)dt forall x € (a,b). (1.8.30)

If a <x < 1, then inequality (1.8.30) follows immediately from (1.8.29). If
t1 < x < b, then, by using equality (1.8.24) and the second inequality in (1.8.29),
we obtain

/ Y[ f®)]w) dr

b

b
1/1 F@O]w@)de — f Y[ f(O)]w@) de
b b— b
=/ w(b Zd>w(t)dt /w[fm]w(r)dt

b b _
</ Ilf(b Zd)w(t)dt fl/f(b t2d>w(t)dt
b N b—a

:fa W(b d)lU(t)dt

By using inequality (1.8.30), equality (1.8.24), the assumptiongheaiy 1 is
convex and Lemma 1.8.2(i), we obtain

b b b—
/¢>[f(t)]w(t)dt</ ¢><b_
Furthermore,

1 b — Zd _
b / qb(b t@)w(t)dt:_i/ [¢(y)w(b—b_—ay> dy
—aJq b—a Zd Ja 2d

1
= / ¢(de)w[as +b(1— s)] ds
0

t2d>w(t)dt.
a

and inequality (1.8.25) is proved. O
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1.9 Miscellaneous Inequalities
1.9.1 Pegaric and Dragomir [379]

Let f:C — R be a convex (concave) function @i p; > 0,i =1,...,n, and
P, =>4 pi > 0. Then the following inequality holds

n

1 n 1 1 k+1
f(Fn X;Pixi) <(2) W Z Piy plk+lf<k+1z )

1,00k 1=1

< () % Z Piy sz < lef)

Z Di f(xi),
P i=1
wherek is a positive integer such thatlk <n — 1.

1.9.2 Dragomir [85]

Let f:C — R be a convex mappingy; € C, p; >0 andP, =)/ ;1 pi >0,
whereC is a convex subset of real linear spateThen the following inequality
holds

1 n
_Zpif(xi) szxt
Pn i—1 n i—1
1= 1=
1 1<
> _Zpif(xi) Dk Z Piy sz _Z-xij
Pa i=1 Pa i k j=1

Zf(xzj

kPk Z Piy - Pix

i1,...,0g=1
k
1 & 1
—pr 2 Papu|f (;Z’%) =
g, ig=1 j=1
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for every positive integet such that X k < n.

1.9.3 Dragomir [83]

Let f:[0, A]— R be a function such that the mappiggx) = f(x) — f(A — x)
is (convex) concave ofi0, A], A < A. If x; € [0,A], pi >0,i=1,....n
xi; € {xi}i=1...n» Pi; € (piti=1...n @Nd P, =14 p; > 0, then

1 ¢ 1<
f(?n §Pixi> - f<P_,, ;(A —xi)Pi)

n

1 1 k+1
(\) Pk+l Z p plk 1f<k+1z )

i1, ik—1=1 j=1

1 n 1 k+1
_W Z Piy - Dig— 1f<k+12( Xz])

i1,00ik—1=1

1 1&
ﬁ Z Diy Pikf % Z'xif
n ,/:1
1 k
Z piy-- P f (E Z(A - xij)>
j=1

1 n 1 n
> () 5 o pif () =5 ) pi(A—xi).
"i=1 "i=1

1.9.4 P&aric [373]

Let the linear spaceX¥ andY be endowed with partial orders which are compat-
ible with the linear structures of andY, respectively. LetD C X be a convex
set. A functionf : D — Y is called 1-convex (convex of first order) if and only if

the relation
x+y S+ f)
f( ! ) <ot (A)

holds for all comparable, y € D (i.e., such that either < y or y < x). Usually
a partial order inX is generated by a con@ C X and the functions fulfilling (A)
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are called C—J)-convex. Letf: D — Y be a (C—J)-convex function. If either
x1 << x, Orxy >+ > x, hold forn pointsxy, ..., x, from D, then

1< 1<
f(; ;xi) < ;;ﬂm.

1.9.5 Pegaric [373]

Let f:D — Y be a C-J)-convex function and let;, i = 1,...,n, be points
in D chosen so that; < --- < x,,. Define

1 1
fm,n=<:1) Z f(E(Xil‘i‘""i‘Xim))

1<ii<<im<n

for1<m <n.Then

fn,ng"'gfm,ng“'gfl,na 1<m<na

whereD andY are as in Section 1.9.4.

1.9.6 Mond and Pe&arit [219]

A mapping f defined on the sef of rectangular matrices with values in the set
of (rectangular) matrices is said to be increasing & B implies f (A) < f(B).

It is decreasing, by definition, if the mappidg— — f(A) is increasing. A map-
ping f is said to be semi-convex dhif X,Y € T; X <Y implies that, for any

0 < A < 1, the convex combinationX + (1 — A)Y isin T, that is,T is a convex
set, and

FAX+@A=0Y)<AfX) + A=) fF).
It is semi-concave, by definition, if the mappig— —F(X) is semi-convex.
Let f be semi-convex o, let p;, i =1,...,n, be nonnegative numbers with
P,=>7,pi>0andletX; eT,i=1,...,n, satisfy
X1<Xo<--<X, or Xn=2Xo2--2 Xy

Then
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1.9.7 Dragomir and Sandor [91]
Let f:C € X — R be a uniformly-convex function defined on a convex suldset

of alinear spac&, p; >0, P, =)/ 1 pi>0andx; €C,i=1,...,n. Then

> 0.

1 < 1 <
=2 i) - ( Zm) > oD pillll— | 2
ni=1 P i=1 ni=1

2:1%%
”il

1.9.8 Dragomir and Sandor [91]

Leta; >--->a;, b1 >--- 2 by andqs, ..., g; be real numbers such that

k s s
Zqza,\z gibi, l<k<s-1, Y aiai=Y_qibi
i=1 i=1

i=1

If f is uniformly-convex on the interval (I containsa;, b; fori =1,...,n),
then

Zqz fb) — flan) qub—a >0.

1.9.9 Dragomir and Sandor [91]
Let x and p be twon-tuples of real numbers such that = >} ; p; > 0 and

O<P<P,k=1...,n—1, andx is a monotonicn-tuple. Then, for all
uniformly-convex functionsf: I — R, x; € I,i =1, ...,n, we have

?Zl’if(xi) - f(? Zpixi) > FZP:'XZ-Z— (F ZP;‘X?) >0.
=1 =1 =1 =1

1.9.10 Fejér [114]

Let f:[a,b] — R andg:[a, b] — R, be integrable and symmetric with respect
to the linex = (a 4+ b)/2, thatis,g((a + b)/2+t) = g((a + b)/2—1t). Then

b b b b b
w/ g(t)dt</ f(t)g(t)dt<f<%)/ g(®)dr.
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1.9.11 Pearic [371]

If f:[a,b] — Ris aconvex function and if € [0, 1], then
1 b 1 b pb
<— - 1-
0 b_a/af(x)dx (b—a)Z/a/a f(tx+ @ —1)y)dedy

b
< min(t,l—t)(f(a);f(b) — bia_/ f(x)dx).

1.9.12 Péaric [371]

Let p,q > 0, f be convex oY D [a, b], A = (pa + gb)/(p + q) andc be a real
number such that

b—a .
O<c<——min(p, q).
pP+q

If r €0, 1], then

1 A+c 1 A+c pA+c

0« Z_C/A% f(X)dx_@fAfc /Aic f(tx+(1—t)y)dxdy

pf@+qfd) 1 /A“
A

w0

<min(t, 1— t)(

—C

1.9.13 Brenner and Alzer [41]

Suppose, g e R, let f :[a, b] — R be concave and lgt:[a, b] — Rg (where

R* and Rg denote the positive and nonnegative real numbers) be integrable
and symmetric with respect to the line= A = (pa + ¢gb)/(p + q), that is,
gA+1)=g(A—1).If

b—a .
0<y < ——min(p, q),
p+q

then
Aty Aty
PHOTA® [ < [ rogwn
p+q A-y A=y
A+y
gf<1tm+qb>/ g(t)dr.
P+q A=y
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1.9.14 Dragomir, P€ari¢ and Sandor [94]

Let f:1 — R (I c Risinterval) be a continuous convex function andigh € 1,
neN={12,...}. Then

a+b 1w i i fla)+ f(D)
f( 2 )<;;<(n+l>a+(l_n+l)b>< 2 '

1.9.15 Dragomir, P&ari¢c and Sandor [94]

Let f: I — R be a continuous convex function andb € I, a <b,n e N (N is
the set of natural numbers). Then

n+1

a+b 1 b b X
(0 < gt [ f(zn+l)dxl...dxn+1
a a i1
1 B B "X

<

1 b pb +
<—(b_a)2/u/a f<x12x2>dx1dx2

b
gi/ f(x)dxgw‘
b—al, 2

1.9.16 Buse, Dragomir and Barbu [49]
Let 7 be an interval withz, b € 1° (1% is an interior ofl) anda < b. If f:1 - R

is a convex function o andg; (m) > 0 for all i, m € N (N is the set of natural
numbers) then

a+b 1 b b rqrm)x1+ - 4 gm(m)xp,
(557) < gma [ (g

1 b
gmfg fx)dx,

whereQ,, =q1(m) + -+ g (m) > 0,m € N.
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1.9.17 Busge, Dragomir and Barbu [49]

Let f:1 c R — R be a convex function o#, a, b € 1° = (a, b) with a < b and
gi(m) > 0 for all i, m € N (N is the set of natural numbers). ##,, = g1(m) +
<+ +gm(m) >0 and

2 2
lim qi(m) + +qm(m):

07

then

. 1 bt fqamxi+ -+ gm (m)xm>
lim —— [ ... dxq --- dxyy,
minoo (b—a)m/a /; f( Om !
a+b
:f< ! )

1.9.18 Pearce and Raric [364]

If f:[a,b]— [0, c0) is continuous and concave, then

b b
P max fﬂ(x)/ f“(t)dt</ P @y dr,

o+ 28 a<x<b a

holds for all real numberg andg with o + 8 > 0and O< 8 < 1.

1.9.19 Brenner and Alzer [41]

If f:la,b]— (0, 0) is continuous and concave, then

1 b b odr a+b
1< /af(t)dt/a m<1+log[f(7>/\/f(a)f(b)]

(b—a)?

1.9.20 Maligranda, P&ari¢ and Persson [203]

Assume thatf andg are nonnegative functions df, 1] such that the functions
fY andgl/? are concave ofD, 1] for somea, b > 0.

@ If p,g>1,then

1
fo F)g)dx = Bla+1,b+ D(pa+ Y7 qb+ DY £1,llgll,-
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Equality occurs iff (x) = ex? andg(x) = d(1 — x)? with ¢, d positive constants.
Here B denotes the usual beta functidip, ¢) = folxl"l(l —x)4 Ldx.
(i) If0 < p,q<1,then

(pa + 1)1/1’(qb + 1)l/a
a+b+1

1
/0 F(x)gx)dr < If1pligllg-

Equality occurs if eitherf (x) = cx® andg(x) = dx” or f(x) = ¢(1 — x)* and
g(x) =d(1— x)? with ¢, d positive constants.

1.9.21 Brenner and Alzer [41]

For a continuous and concave functign[a, b] — R,

_ _ b
1 max [f(x)—ir(x 7@+ G x)f(b)kbia/ fydr.

2 a<x<b b—a

Further, if f is strictly concave on a nondegenerate interval, then the inequality is
strict.

1.9.22 Brenner and Alzer [41]
If f:[a,b] — Ris continuous and concave, then
1 b . X —a a+x b—x x+b
—_— Hdr < min .
b—a/a Fo agxlgb[b—af( 2 >+b—af< 2 ):|

Strict inequality holds if and only if there is a nondegenerate subinterval on which
f is strictly concave.

1.9.23 Peéaric, Peric and Persson [383]

Let f, g be real-valued functions defined on the interva)b), —oco < a <
b < oco. We say thatf is C-decreasing(-increasing),C > 1, if f(t) < Cf(s)
(f(s) < Cf()) wheneves <t,t,s € (a,b).

Let¢: [0, co) — R be a concave, nonnegative and differentiable function such
that¢ (0) =0 and let—co < a < b < 0.

(@) If f is C-decreasing ang is increasing, differentiable and such that
g(a+0)=0, then

b b
¢(c / f(x)dg(x)><C / ¢ (f(0)g(0) £ () dg ().
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(b) If f is C-increasing andg is increasing, differentiable and such that
g(a+0)=0, then

1 b 1 (b
¢><5 / f(x)dg(x)> > < / ¢ (f(0)g(0) £ () dg ).

(c) If f is C-increasing ande is decreasing, differentiable and such that
g(b—0)=0, then

b b
¢<C/ f(X)d[—g(X)]> <C/ ¢’ (f0)g) f () d[—g)].

(d) If f is C-decreasing ang is decreasing, differentiable and such that
g —0)=0, then

1 /b 1 b
¢(E/ f(x)d[—g(x)])>5f ' (f)g) fx)d[—g)].

(e) If the condition ¢ is concave” is replaced byy‘is convex”, then all the
above inequalities in (a)—(d) hold in the reversed direction.

1.9.24 Farwing and Zwick [110]

Let xo, ..., x, be given real numbers, whete< xg < --- < x, < b. Let f be a
real-valued function defined dn, b] and let[xo, . .., x, ] f denote therth divided
difference of f at the pointsy, ..., x,. Let £ be a convex function otu, b).
Then

1 & 1 ¢
f(")|: Zx,'i| <nl[xo, ..., xplf < —Zf(")(x,-).

If xo # x,, then strict inequalities hold if and only if ¢ P,.1 (the space of all
polynomials of degree n + 1).

1.9.25 Abramovich, Mond and Péari¢ [1]
Let F(x1,..., x,) be a complex function in complex variables and let
|F(x1, ..., x0)| <|F(lxal ..., |xn1)]-

Letalso|F(x1, ..., x,)| be a concave function far= (x1, ..., x,) € R". If f;(t),
..... n, w(t) are complex functions of real variables afid:)w(r), w(z) are
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integrable oria, b], then

Ac) =

/ w@) F(f1(), ..., fa(®))d

a

F(fcblw(t)fl(t)ldt f§’|w<r>fn(r>|dt)‘
[rword T P el de

is a decreasing function in a < ¢ < b.

b
+/ |w ()| dr

1.9.26 Griiss [133]

Let f, g be positive concave integrable functionsbg [0, a]. Then
a a 3 a
/ f(S)ds/ g(s)ds < —a/ f(s)g(s)ds.
0 0 2 Jo

1.9.27 Bergh [26]

Let f be a positive and quasi-concave function®n, that is, f(s) < max(d,
D f (). Assume that & p < g < oo and O<a < 1. Then

00 d 1/q
(/ (t‘“f(t))q—t>
0 1
1p_1) o0 de\ /P
0
where equality holds fof (1) = min(1, ¢).

1.9.28 Maligranda, P&ari¢ and Persson [204]

Let 1< p < o0 and letv andw be weight functions. Then the inequality

b 1/p b
[/ fp(t)w(t)dr} < c/ Fv@)dt (%)
holds for all positive concave functionson [a, b] if and only if

b 1/p
K(t,s)? d
sup U” b(t $)7w(e) t] < C < oo,
se@b) [ K(t,s)v(t)dt
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whereK is the kernel given by

s—a)yb—1t) fa<s<t<b,

K(t,s)z{
t—a)b—s) fa<r<s<b.

If 0 < p < 1, then the reverse inequality im)(is valid if and only if

o LK@ wo ]

> >C=>0.
se@b) [V K (t,s)v(t) dr

1.9.29 Borell [38]

Let f1, f2,..., fn be nonnegative concave functions iy 1] and letp, > 1,
k=1,...,n. Then

1 n n
G [ TT A > [T+ DY il
k=1 k=1

where for p > 0 and f > 0 the usual notation| f|, = (folf(x)l’ dx)/7,
Cn = (n+ DY/ (51221, Equality occurs iffi(x) = x, k € I, and fi(x) =
1-—x,kel, for the sets of indices such thatu I’ = {1, 2,...,n} and one of

them containg5] elements.

1.9.30 Brenner and Alzer [41]

Let f1, f2,..., f» be nonnegative concave functions fh1] and letp; > 1,
k=1,2,...,n.Then

1 n
[ Tlames
0 k=1

> Ko [ @+ p) Y70 fell o + 501D (1"[ fe(0) + H fk(1)>

k=1

where forp > 0 and f > 0 the usual notation f |, = (/5 f7(x)dx)"/? and
Ky = ["5211511/0n + D(n — D).
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1.10 Notes

One of the most fundamental inequalities for convex functions is that associ-
ated with the name of Jensen. Theorem 1.2.1 deals with a well-known Jensen
inequality [164,165] which finds important applications in various branches of
mathematics. Theorem 1.2.2 deals with a Jensen—Steffensen inequality, and its
proof is due to Pearic [367]. Theorem 1.2.3 is due to &eic [375] and The-

orem 1.2.4 is due to Dragomir and Milo$éJB0]. Theorem 1.2.5 is taken from
Beesack [19]. Theorem 1.3.1 is a generalization of Jensen’s inequality established
by Jessen [166] in 1931. The remaining results in Section 1.3 are taken from
Beesack and Raric [20,376]. The results in Theorems 1.4.1 and 1.4.2 are due to
Pe&aric [366] and the results in Theorems 1.4.3-1.4.6 are taken from Dragomir
and lonescu [88].

Theorem 1.5.1 deals with the famous Hadamard inequality discovered in [134].
Theorem 1.5.2 is taken from Beesack andd&i [20]. Theorems 1.5.3-1.5.6 are
due to Dragomir [82,86]. Theorems 1.6.1 and 1.6.2 are taken from Dragomir,
Pe&aric and Persson [93]. Theorems 1.6.3-1.6.5 are due to Gill, Pearce and
P&aric [128]. Theorems 1.7.1 and 1.7.2 are due to Dragomir [84] and The-
orem 1.7.3 is taken from Dragomir and lonescu [89] while Theorem 1.7.4
is taken from Dragomir, Cho and Kim [92]. Theorem 1.8.1 is taken from
Maligranda [202] which deals with an important property concerning the con-
cavity and convexity of rearrangement. Theorem 1.8.2 is taken from Maligranda,
Pe&aric and Persson [203] and Theorem 1.8.3 is due to Maligranda [202]. Theo-
rems 1.8.4 and 1.8.5 are taken from Maligrand&dfée and Persson [204].
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Chapter 2

Inequalities Related to Hardy’s Inequality

2.1 Introduction

In the course of attempts to simplify the proof of Hilbert's double series theo-
rem, G.H. Hardy [136] first proved in 1920 the most famous inequality which
is now known in the literature as Hardy’s inequality. Hardy’s inequality is re-
markable in terms of its simplicity, the large number of results to which it deals,
and the variety of applications which can be related to it. Since from its dis-
covery Hardy's inequality has evoked the interest of many mathematicians, and
large number of papers have appeared which deal with new proofs, various ex-
tensions, refinements, generalizations and series analogues. In the past few years,
various investigators have discovered many useful and new inequalities related to
well-known Hardy'’s inequality. This chapter presents a number of new and basic
inequalities related to Hardy’s inequality recently investigated in order to achieve
a diversity of desired goals.

2.2 Hardy’s Series Inequality and Its Generalizations

There is a vast and growing literature related to the series inequalities. In this
section we will give some basic inequalities involving series of terms, which find
important applications in analysis.

In an attempt to give a simple proof of Hilbert's inequality, Hardy [136] (see
also [141, Theorem 315]) establishes the following most fundamental inequality.

THEOREM2.2.1. If p>1,a, 20and A, =ay + a2+ --- + ay, then

;(%)p < (ﬁ)p X_;a,ﬂ’, (2.2.1)

113
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unless all the a are zero. The constant is the best possible.

PrRoOOF The proof given here is due to Elliott [105] and is also given in [141]. By
relabeling, if necessary, we may assume that 0 and hence that eact), > 0.

We writew,, for A, /n and agree that any number with suffix 0 is equal to 0. Now,
by making use of the elementary inequality

x4 ny"+1 > (n+Dxy", (2.2.2)
x,y > 0reals, we observe that

P P p-1 p p
oy  ap =0p —

-1

{na — (1 — D1},

p—-1 p—-1
n n—-12 _
n n—1
ga,f(l— pf].) + p—l{(p_ 1)a,f+oe5_l}
1
= ﬂ{(n—l)ozf;_l—no{f,j}. (2.2.3)

By substituting: =1, 2, ..., N in (2.2.3) and adding the inequalities we have

N N Ndp
3ol - Ll o e, < — ¥ <o. (2.2.4)
n=1 p= n=1 P
From (2.2.4) we observe that
Y p a 1
Olyllj < m ZO(,/I;_ ay. (225)
n=1 n=1

Using Holder’'s inequality with indicegp, p/(p — 1) on the right-hand side
of (2.2.5) we have

N » N p s/ N (r=1/p

n=1

Dividing by the last factor on the right-hand side (which is certainly positive) and
raising the result to thpth power, we get

N p p N
n=1 n=1
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When we makeV tend to infinity we obtain (2.2.1), except that we have “less
than or equal to” in place of “less than”. In particular, we see gt ; o) is
finite.

Returning to (2.2.5), and replacirg by co, we obtain

1
dan

2. 2.

n=1 n

ob”
1
0 p / (p=D/p
(Za,f) (Zaf) . (2.2.8)
n=1

n=1

o p o0
P4
a?’l X p _ 1 —
< P
p—1
There is an inequality in the second place unle$3 and(«?) are proportion, that

is, unlessy, = Ca,,, whereC is independent of. If this is so thena; = a1 > 0)

C must be 1, and thed, = na, for all n. This idea is inconsistent with the

convergence op .2 ; a; . Hence

00 p 00 1/p / (r—b/p
Za5<_p_l<nz_la,f) (;w) | (2.29)

n=1

and (2.2.1) follows from (2.2.9) as (2.2.7) followed from (2.2.6).
To prove the constant factor the best possible, we take

a,=n"Y?, n<N, a,=0, n>N.

Then
00 N 1
doar=>"=,
n=1 n:ln

n n
A=Y v r s / P gy — le{n@fl)/p “1). n<.
) -
1

p p —
n p—1 n

whereg, — 0 whenn — co. It follows that

© AN LA\ » \” 0
S(0) = x(5) = () a-mxa

n=1
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whereny — 0 whenN — oco. Hence, any inequality of the type

oo oo
A p p
Z(_”) < <—p 1) 1-o> af
n=1 n p= n=1
is false ifa, is chosen as above amdis sufficiently large. |

The above theorem states the relationship between the arithmetic means of a
sequence and the sequence itself. This theorem along with its integral analogue
was first proved by Hardy, which later went by the name “Hardy’s inequality”.
The constant at the right-hand side of (2.2.1) is determined by Landu in [182],
who showed that it is the best possible for each

There are many generalizations and extensions of Theorem 2.2.1, which have
been proved by different writers in different ways; and we give some of these
results here in the following theorems.

In 1926, Copson [69] generalizes Theorem 2.2.1 by replacing the arithmetic
mean of a sequence by a weighted arithmetic mean. We shall first consider the
following version of Copson’s generalization of Hardy’s inequality.

THEOREM2.2.2. Let p > 1,1, > 0,4, > 0,n=1,2,..., 3% ),a) converge,
and further let A, =Y 1 Ai, Ay =Y /_1 Aia;. Then

oo o0

A p p
an(—”) < (L) mal. (2.2.10)
=1 An p— 1

n=1

PROOF We writea, = A, A; 1 and agree that any number with suffix 0 is equal
to 0. Now, by making use of the elementary inequality (2.2.2), we observe that

)\'l‘lal’l; - L)\;1‘1}101571
p—1

14 -1
= )\narlt) - 1055 [Anay — Ay—10p,-1]
p p -1
= <)‘-n — An—>0ly1; + —Anfl()lnflohé7
p—1 p—1

p P An—1 P P
< <)¥n — Ay ﬂ)an + p— 1[05”_1 +(p— 1)05n]

1
= —[(p)\n —An—pAp+pAp_1— An—l)alf + An—la,f,l]
p—1
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_ 1 An — A Ay — A A P+ Ap_1a?
= m[(p n—An— p(An — Ap—1) — n—l)an + n—lan_l]
1 P P
= ﬁ[(l’)\n —An — Phn — Ap—1)ay + Anflan_l]
1 P j2
= —[_Anan + Anflan_l]

= ——[An_10) | — Aper]. (2.2.11)

By substitutingz =1, ..., N in (2.2.11) and adding the inequalities, we have

N N
_ 1
> e — Ll > hnanal Tt < ——1A,,a,'; <0. (2.2.12)
n=1 P n=1 P
From (2.2.12) we observe that
N N
Y el < L3 haned (2.2.13)
n=1 r-1.=

Using Hoélder's inequality with indicep, p/(p — 1) on the right-hand side
of (2.2.13) we have

N » N Yp s N (p=1/p
St < —p_l(zxna;:) (Z/\naﬁ) .
n=1 n=1 n=1

Dividing the above inequality by the last factor on the right-hand side and raising
the result to thepth power, we obtain

N p N
3 el < <L> > hnal. (2.2.14)
p—1
n=1 n=1
When we makeV tend to infinity we obtain (2.2.10). O

A version of the companion inequality proved by Copson [69] can be stated as
follows.
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THEOREM2.2.3. Let p> 1,4, >0,a, >0for n=1,2,...,3 °° A,al con-
verge, and further let

n o0 )\"a‘
A,,:ZAi, A,,:Z /’1.’.
i=1
Then

o0 o0
> MAR<pPY haal. (2.2.15)
n=1 n=1

As in the proof of Theorem 2.2.1, see also Copson [69, p. 12], the constants in-
volved in (2.2.10) and (2.2.15) are best possible. In 1928, Hardy in his paper [137]
notes that the inequality given in Theorem 2.2.3 does not require a separate proof
but can be derived from Copson'’s first inequality given in Theorem 2.2.2. In view
of this remark, here we omit the proof of Theorem 2.2.3. For an independent proof
of Theorem 2.2.3, see Copson [69].

In [139] Hardy and Littlewood generalizes Hardy's inequality in Theo-
rem 2.2.1 as follows.

THEOREM 2.2.4. Suppose p > 0, c isa real (but not necessarily positive) con-
stantand Y7 ; a, isa series of positive terms. Set

n 00
A1,1=Zak and A”‘X’:Zak'
k=1 k=n

If p > 1wehave

o o0

ancAfn <K anc(nan)p withe > 1, (2.2.16)
n=1 n=1

(e8] o0
Zn_cAf:OO <K Zn_c(nan)p withc < 1, (2.2.17)
n=1 n=1

andif p < 1 we have

o0
> AL =K ) nC(nay)? withe > 1, (2.2.18)

o0 o0
Zn_"A,",)oo >K Zn_c(nan)p withc < 1, (2.2.19)
n=1
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where K denotes a positive constant, not necessarily the same at each occurrence.

Theorem 2.2.4 was generalized by Leindler in [186], who replaced in
(2.2.16)—(2.2.19) the sequenige “} by an arbitrary sequendg, }: for instance,
he proved the inequality

o) 00 00 p

Y hAL < pP inl’(ZAm) a? (2.2.20)
n=1 n=1 m=n

with p > 1 anda, > 0.

In [226] Nemeth gives further generalizations by combing Hardy’s inequality
in Theorem 2.2.1 and the Hardy and Littlewood inequality in Theorem 2.2.4. In
the following theorem we present the results given in [226]. We use the following
definitions given in [226].

(i) C e M, denotes that the matriX = (c,,,,) satisfies the conditions:

cmy >0, v<m, tmy=0, v>mmv=12 .., and

0< ™Y <Ny, O<v<n<m. (2.2.21)
Cn,v
(i) C € M> denotes that,,, > 0 (v >m) andcy,, =0 (v <m,m,v =
1,2,...),

Cm,v

>Ny, O0<n<m<v. (2.2.22)

Cnv

(i) C € M3 denotes that, ,, >0 (v>=>m) andcy,, =0 (v <m,v,m =
1,2,...),

0< U™ < Na wn>m>0. (2.2.23)
Cu.n

(iv) C € M4 denotes that,,, >0 (v<m) andc,,, =0 (v > m,v,m =
1,2,...),

Cu,m

>Ng, 0<v<m<n, (2.2.24)

Cu,n

whereN; denote positive absolute constantsifer 1, 2, 3, 4.

The main result given by Nemeth in [226] follows.

THEOREM 2.2.5.Let g, >0 and A, >0, n=12,..., be given, and let
C = (cpm k) beatriangular matrix.
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(@) If C € M1 and p > 1, then

p
Zk (ch,mam> Np(p D kal p(ZAmcm n) al. (2.2.25)

m=1 m=n

(b) IfC e M3and p > 1,then

oo 0 p o0 m p

1 1—
E Am< E Cn,man> gNé’(” )pp E Ain p( E )\ncm,n> ab. (2.2.26)
m=1 n=m m=1 n=1

(c) fCeMzyand0< p <1,then

oo oo p 00 n p

1- 1-
E kn< E cn,vav> >N£ p)pp” E A p( E ck,nkk) al. (2.2.27)
n=1 v=n n=1 k=1

(d) IfCeMypand0< p <1,then

00 m p o] 00 p

1- 1-
> :)\m<§ jc,,,man) > NP PPy ”(2 :,\”cm,,,) ab. (2.2.28)
m=1 n=1 m=1 n=m

We note that Theorem 2.2.5 implies Leindler’s theorem in [186], further if
A = cm,mf(}n_)p and we writec,, » f(n) instead of elements of the matiix, then
assertion (a) includes Theorem 3 of Izumi, Izumi and Petersen [163], and in the
casei, = f(;)” andcg , = f(k)ag ,, assertion (d) reduces to Theorem 5 of Davis
and Petersen [78].

In the proof of the above theorem, we require the following lemmas.

LEMMA 2.2.1[78,Lemma 1]if p>1andz, >0,n=1,2,..., then
n p n k
(sz> SPZZk(Zzu)
k=1 k=1 \v=1

PrROOE LetA, =z1+ -4z, r=1,2,...,n. Then

p—1

A'Il
)P =p / xP
0

A1 X2 An
=p</ +/ +--~+/ >xp_1dx
0 A1 )Ln—l
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-1 -1 -1
<pAA T+ Q2 =AM T = MDA
=pldf + 2@+ 2Pz )P

The proof is complete. O

The proofs of the following lemmas are similar to that of Lemma 2.2.1 (see
[226]).

LEMMA 2.2.2. If 0< p<landz; >0,z, 20,n=2,3,..., then
n p n k p—1
(ZZk) 21)2@(2@) .
k=1 k=1 \v=1

LEMMA 2.2.3. If 0O<p<landz, >20,n=12,..., then for every natural
number N, for which zy > 0,

) i)

k=n

LEMMA 2.24. If p>1landz, >0,n=12,..., then for every natural num-
ber N,

(S) crse(se)

k=n v=k

PROOF OF THEOREM 2.2.5. Forp = 1 the assertions are obvious; we have
only to interchange the order of summations. Further we may assume that not
all a, vanish (otherwise the theorem is evident).

(a) By Lemma 2.2.1 we obtain, f@ = (c;n 1) € M1,

N n p—1
Z)\n<zcn,mam> PZA ch mam<zcn kak>
n=1 m=1

n=1 m=1

p—1
Nf 1PZ)‘ ch mam(zcm kak>

m=1

N /[ m =1y
= Nf_lp Z <Zcm,kak) am Z AnCn,m-
n=m

m=1 \ k=1
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Hence, using Hélder's inequality, we have

N n p
Z)"n ( Z Cn,mam>

n=1 m=1
N m PyVa( N N p 1/p
_1 1—
<N]l_7 P{ZM;(ZCm,kak) } {ka p(z)\ncn,m> arﬁ}
m=1 k=1 m=1 n=m

with ¢ = p/(p — 1), which by standard computation gives assertion (a).
(b) By Lemma 2.2.4 we have, f@ = (¢, 1) € M3,

N

N p N N N p—1
Z Am ( Z Cn,man> <p Z Am Z Cn,mQn < ch,mav>
n=m m=1 n=m v=n

p—1
Né) lpzk chman<zcvnau)

m=1 n=m

r-1 n
= Ng 1p Z(ZCU’"GU> an Z CnmAm-

v=n m=1

Hence, using Hélder's inequality, we have
N N p
Z Am ( Z Cn,m“n)
m=1 n=m
N N AR P 1/p
<Ng_lp{z)\n(zcv,nav) } {Zkl p(zcnm m) m} ,
n=1 v=n

whereq = p/(p — 1) which by standard computation gives assertion (b).
(c) Using Lemma 2.2.3 with an indexfor whichay > 0, we obtain

N N p—1
Z)\n<zcn,vav> PZ)‘ ch vav<zcn kak>
n=1 v=n

n=1 v=n

N N N p-1
1—
>N2 pp § An § Cn,vav(E Cv,kak>
n=1 v=n k=v
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N /N r=1
:Ng_ppZ(ch,kak> Ay Z)\ncn,v-
n=1

v=1 \k=v

Hence, using Holder’s inequality [16, p. 19], we have
N N p
Z)\n (ch,vav>
n=1 v=n
N N pyYa( N v p 1/p
>N21_pp{2)nv<20v,kak> } {ZA%”( )ann,v> a{)’} .
v=1 k=v v=1 1

n=

This result gives assertion (c) by standard computation.
(d) We may assume that # 0. Using Lemma 2.2.2, Holder’s inequality with
indicesp,q = p/(p — 1), we have

N m p
3 A(z)
m=1 n=1
N m n p-1
Z=p Z Am ch,man ch,mak
m=1 n=1 k=1
N m n p-1
1-p
= N4 P Z Am ch,man < ch,nak>
m=1 n=1 k=1
N n -1 N
1-p
= N4 P Z Z Ck,nAk ap Z )"mcn,m

n=1 \k=1 m=n

N n PyYq( N N p 1/p
1- 1—
= N4 pp{ E kn( E Ck,nak> } { E An p( E )\mcn,m> alf} .
n=1 k=1 n=1 m=n

By standard computation this result gives assertion (d), and the proof is com-
plete. O

In [196] Love has established generalizations of Hardy’s and Copson’s series
inequalities by replacing means by more general linear transforms. The results
in [196] are based on the following lemma.

LEMMA 2.2.5. If g is a decreasing (equimeasurable) rearrangement of a non-
negative measurable function f on (0,¢), & is nonnegative and decreasing
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on (0,b),0< b <candp > 0,then
b b c c
/ f)h(u)du </ g(u)h(u)du, f f(M)pdbt:/ g()? du.
0 0 0 0

PROOFE The second result is immediate. For the first,ddie a decreasing re-
arrangement of on (0, b) and letk () = f(u) for b <u < c. Also, leth(u) =0
for b <u < ¢, so thath is decreasing ofi0, ¢). Observing thag is a decreas-
ing rearrangement df on (0, ¢), two applications of Theorem 378 in [141], one
on (0, b) and the other oif0, ¢), give

b b c c b
/ fhdué/ khdu:[ khdué/ ghdu:/ ghdu. 0
0 0 0 0 0

The following theorems given in [196] generalize Copson’s inequalities in
Theorems 2.2.2 and 2.2.3 (see also [70]), restated perhaps more neatly.

THEOREM2.2.6. If p > 1, a(¢) isnonnegative and decreasing in (0, 1],
1 m
A =/ a(H)r™ P dr < oo, An >0, Ay = an
0
n=1

and

A A
|@mn| < na<An) for 0 <n <m.

m

p\ 1/p 00 1/p
) gA(Z)meCmV)) s
m=1

Then

m

2 AmnXn

n=1

i

m=1

where (x,) isa fixed sequence.

PrROOFE It will be enough to prove the inequality with upper terminal of the
outer summations replaced by any positive integer Fix suchM and a se-
quence(xy).

Let f(u) = |x,| for A,_1 <u < A, and O<n < M, whereAg=0. Letg(u)
be a decreasing rearrangementfadfi) on (0, Ay,]. Form such that < m < M,
let

m
1
im = )\m/p Z lamnxn] and Ap_1 <s < Ap.
n=1
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Then

1
:/ a(t)g(Ayt)de
0

1
< / a(t)g(st)de.
0

Lemma 2.2.5 has been used after (2.2.29). From (2.2.30),

M /p Mg A /p
Z p Z p
Zm = — / Zm dS
(m:l ) ( Am Am-1 )

m=1

M Am 1 P 1/p
< (Z/ (/ a(t)g(st) dt) ds)
m=1Am-1 0

Ay 1 b4 1/p
= (/ (/ oz(t)g(st)dt) ds)
0 0
1 Ay 1/p
</ (/ a(t)P g(st)? ds) dr
o \Jo
1 Ay 1/p
=/ a(t)t_l/”</ g(st)ptds> dt
0 0
1 Ayt 1/p
=/ a(t)t_l/p</ gu)? du) dr
0 0

125

(2.2.29)

(2.2.30)

(2.2.31)
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Ay 1/p
< A(/ g(u)pdu> (2.2.32)
0

Am 1/p
A( f(u)pdu> (2.2.33)
0

" 1/p
= (Z/ f(u)l’du>
m=1

M 1/p
=A<ka|xm|p> .
m=1

The “double integral” version of Minkowski’s inequality [141, Theorem 202] has
been used at (2.2.31), and Lemma 2.2.5 at (2.2.33). Making oo the inequal-
ity follows. O

COROLLARY 2.2.1 (Copson’s inequality, Theorem 2.2.2.p > ¢ > 1, (x,,), An
and A,, areasin Theorem2.2.6,and x,, > 0, then
1/p
(Z mAD xm> .

(B

PrROOF ForO<t<1andO<n <m,let

mAPTE 0 4
at) =1t/P"1 and ay, = 2 — _"a<_”>_ (2.2.34)
AYP Aw \Ap

Theorem 2.2.6 now applies with = p/(c — 1) which after replacingx, by
AX /P, gives Copson’s inequality. O

THEOREM2.2.7. If p > 1,ta(t) isnonnegative and increasing in [1, co),
o0
B=/ o)t~ P dr < oo, An >0, A’”:Z)‘"
1

and

A A
|@mn| < na(An> for 0 <m <n,

m
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r\ 1/p o 1/p
) <B<Z)\m|xn|p> ,
m=1

then

00 00
Z Am Z AmnXn
m=1 n=m

where (x,,) is a fixed sequence.

PROOF. Letg = p/, B(t) =t ta(t™Y) andb,, = Anamn; L. Theng > 1, B(z) is
nonnegative and decreasing(ih 1],

1 1 )\n An
[ Bwu=Y9du =B <00 and Ibmn|<—5< )
0 A \Am

for 0 < n < m. So Theorem 2.2.6 applies with, «(z) anda,,, replaced byg,
B(t) andb,,,. Replacingyx,, by )»,Tl/qyn, and defining,,, =0 for 0 < m < n, the
strong form of that theorem gives

x / oo q\ 1/q 00 1/q
(Z(Zp\%qun/\;”"an) ) <B<Z|ymlq>
m=1

m=1 \n=1

for all y,. The converse of Holder'’s inequality [141, Theorems 15 and 167] leads
to the conjugate inequality

© [/ oo r\ 1/p 00 1/p
(Z<Z|A%/qun)vr_nl/qyn|) ) < B(Z |ym|p>
m=1 \n=1 m=1

for all y,. Noting the definitions ob,,,, and puttingy, = k,%/pxn, this result
reduces to (the strong form of) the stated conclusion. O

COROLLARY 2.2.2 (Copson’s inequality, Theorem 2.2.3).p > 1> ¢ > 0,
An and A, areasin Theorem2.2.7,x, > 0and )7 ; A,x, isconvergent, then

%) [} p\ 1/p p e} 1/p
(ZAmAmc<anxn> ) < 1_C<ZAmA,’3,‘Cx,,’;> .
m=1 n=m m=1

PrRoOFE This proof follows from Corollary 2.2.1, but with> 1 and O<m < n
in (2.2.34) and Theorem 2.2.7 used instead of Theorem 2.2.6. O
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2.3 Series Inequalities Related to Those of Hardy, Copson
and Littlewood

Hardy’s inequality concerning the series of terms given in Theorem 2.2.1 has
received wide attention from the booknéequalities’ written in 1934 by Hardy,
Littlewood and Pdlya. In this section we present some basic inequalities due to
Copson and related to those of Hardy, Copson and Littlewood. In what follows,
we assume that all the sums exist on the respective domains of definitions and
agree that the value of any functiayn, n) or u(n) for m =0 orn =0 is zero.

In 1979, Copson [71] proves two series inequalities which in fact are the dis-
crete analogues of the integral inequalities established earlier in 1932 by Hardy
and Littlewood [140].

The first result established by Copson in [71] is given in the following theorem.

THEOREM 2.3.1. Let {a,} be a sequence of real numbers such that 3> a2,
> (A%a,)? are convergent. Then

{Z(Aa,az} < a2y (A%a,)?

Equality occurs if and only if a, = O for all n, where Aa, = a,+1 — a, and
A2a, = A(Aay).
PROOF Since

A(ayAdy) = aps10%a, + (Aay)?,

we have
N N
2 2 2 2
ZanJrlA an + Z(Aan) =an+1A%an+1—a-yAa—y.
-M -M

But sincez‘i"OO a,% convergentg, tends to zero ag — oo and asn — —oo.
Therefore

N N
M”—r>noo{ZMan+lA2an + XM:(Aan)z} =0.

N—oo

By Cauchy'’s inequality,

00
2
Z ap+1A%ay
—00
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is absolutely convergent. Hende™ (Aan)2 is also convergent, and

o0 o0
Z(Aan)z = Zan+lAzan-
—0o0 —o0
Therefore
o 2 o o
{Z(Aan)z} < Zai_l Z(Azan)z. (2.3.1)
—0Q0 —0Q —0o0

Equality occurs if and only if there exists a real constasuch thatA?q, =
Aray 1 for all values ofn. The solution of this difference equation is

an = AK} + B3,
wherek; andk, are the roots of the equation
(k —1)% = Ak
if 2 #0, butitis

a,=A+ Bn

if A =0. The latter case is impossible since the sepi¢s. a would diverge.
If A £ 0, k1 andky are unequal andik, = 1. If k3 andk, are real, one is nu-
merically greater than unity, the other less, aﬁd" a2 diverges. Ifky andk;
are complexa, = C cosna + B), andy "> a2 diverges again. Hence equality
occurs in (2.3.1) if and only i, = O for all values of:. O

The second result established by Copson in [71] is embodied in the following
theorem.

THEOREM 2.3.2. Let {a,} be a sequence of real numbers such that > 3’ a?
>3 (AZ%a,)? are convergent. Then

!i(Aan)z} < 4Za Azan
0

Equality occursif and only if a, = O for all n.
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PrROOF The proof depends on a generalization of Cauchy’s inequality, that

Z Cl’% Z anby Z anCp
D=|Yab, Y.b2 Y buycy|=0,
dancn Y. bpcn Zc,%
a result stated in [141, p. 16]. Equality occurs if and only if the sequences

{an}, {by}, {ca} are linearly independent. If we pét, = Aay,, ¢, = A2a,, we
obtain

A H G
D=|\H B F|>0,
G F C
where
o0 o0 o0
A=Y d? B=> (Aan)?, c=>"(A%,)%,
0 0 0
o o0 o0
F:ZAanAzan, G:Za”Azan, H:ZanAa,,.
0 0 0

The seriesA and C are, by hypotheses, convergent. The sefieis absolutely
convergent by Cauchy’s inequality. If we pyt =0 for all n < 0, we see that the
seriesB is convergent; see the proof of Theorem 2.3.1. Then, again by Cauchy’s
inequality, the serie§ and H are absolutely convergent. The determinAntan-
ishes if and only if there exist real constants3, y, not all zero, such that

aa, + BAa, + )/Azan =0
for all n. This implies, either that, = 0 for all n or that
ap =r" cos(pr +q),

wherep, ¢, r are real and & r < 1 since)_ a,f convergent.
Now

Ad? = 2a, Aa, + (Aay)?.
Summing fromn = 0 ton = oo, we find that

2H + B = —a3,
using the fact that,, — 0 asn — oo. Similarly

2F +C = —bj3,
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wherebg = Aag. Lastly, from

AlayAay) = anAzan + AanAZan + (Aan)z,

we obtain
G + B + F = —agho.
Hence
A ~3(@2+B) G
D=|-3@Z+B) B 33+ 0)
G —3B3+0) c

=ABC + %(ag +B) (b5 +C)G — %A(bg +C)?-BG? - ic(ag +B)%.
Therefore
2ABC + (a3 + B) (b5 + C)G — 2BG? > % (b3 +C)* + 5C(ad + B)?

> (a3 + B) (b2 + C)V/(AC),

by the arithmetic mean— geometric mean inequality. Equality at the last step occurs
only whenA(b3 + €)% = C (a3 + B)?. Hence

2ABC — 2BG? > {/(AC) — G }(ag + B) (b% + C).

By Cauchy’s inequality,G2 < AC. If G2 < AC, we can divide through by
+/(AC) — G, to obtain

2B{\/(AC) + G} > (ad + B) (b3 + C).

Therefore

2B+/(AC) > (a§ + B) (b5 + C) — 2BG

= (ad + B)(b5 + C) — 2B(B + G) + 2B

But

1, 1
B+G=—aobo—F=—aobo+§b0+EC.



132 Chapter 2. Inequalities Related to Hardy's Inequality

Therefore

2B/(AC) > (a5 + B) (b5 + C) — 2B (%b

= agb§ 4 2aoboB + 2B% + a5C

1
2 — agho + 56) +2B?

= (aoho + B)?> + B +ddcC.
This result gives
2B\/(AC) — B% > (agho + B)? +d3C.

Therefore, ifG2 < AC,

B <2,/(AC),

the required inequality.
The relationG2 = AC, that is,

e¢]

{i::anAzan} = i::ag X:(Azan)2

0

holds if and only if there exists a constantsuch thatA2a, = ra,. If A =0,
Aa, is a constant and so is zero by the convergence condition which again implies
thata, is constant and so is zero.Af= 0, {a,} is the null sequence. i =0,

an = ak] + Bk5,

where k1 and k» are the roots of(k — 1)2 = A. The roots are different.
If A=—u2<0,
ap =a(l+iw)" +pL—iw)"

which is impossible by the convergence condition|fbt-ix| > 1, anda, does
not then tend to zero as— oo. If 1 = v2 > 0, wherev > 0,

an=0a(l+v)" + (1 —0v)"

which tends to zero as— oo if and only if « =0 and O< v < 2. Dropping the
factor 8, the only case whe6? = AC is a, =", where—1 < r < 1. This gives

B=(r —1)%A, C=(r—1%A,
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and so
b=/(AC) < 2+/AC.

The inequality also holds whefi? = AC.

It remains to consider the conditions under whigh= 2,/(AC). Going over
the proof, we see that they are following:

(i) {an}, {Aay}, {A%a,} are linearly dependent sequences,
(i) A®§+C)?=C(a§+B)?,
(iii) aobo+ B =0,a2C =0.

In fact, (iii) implies that{a,,} is the null-sequence, and (i) and (ii) follow.d§ = 0
then B = 0, henceAa, = 0 anda, is zero for alln. If C =0 thenAZq, =0,
henceAaq, is a constant and so is zero by the convergence condition. This result
implies thata, is zero for alln.

We have thus covered all the cases. We have proved that

o0 2 oo o
{Z(Aa,,)z} <4Za32(A2an)2,
0 0 0
with equality if and only ifa, is zero for all values of:. O

REMARK 2.3.1. As observed by Copson in [71] the constants in inequalities
in Theorems 2.3.1 and 2.3.2 are best possible. For detailed discussion, see [71,
pp. 110 and 114].

In [277] Pachpatte establishes some generalizations of Copson’s inequality
given in Theorem 2.2.2. The main result established in [277] is given in the fol-
lowing theorem.

THEOREM2.3.3. Let f(u) be areal-valued positive convex function defined for

u > 0.Let p > 1bea constant, A, > 0, a, > 0, Z,filknf”(an) converge, and

ZMP(—”) < (—) D fP(an). (2.3.2)
Ay p—1

n=1 n=1

PROOF Sincef is convex, by Jensen’s inequality (see [174, p. 133]), we have

A, F,
f(A—n> < A (2.3.3)



134 Chapter 2. Inequalities Related to Hardy's Inequality

where F, = Y""_1 A; f(a;). We write o, = F,LA;l and agree that any number
with suffix 0 is equal to 0. Now, by making use of the elementary inequality

W T > 4+ Duok, w,v >0k >1, (2.3.4)
we observe that
-1
)\narlz) - L)\nf(an)()(rlt)
p—1

p -1
= )Lnarlzj - 1055 [an Ay —ap_14;,-1]

p 14 -1
= Ay ar‘? + An—lan—larlz)
1 p—1

p p, An-1r p p
< <An R An>an + p_l[(xn_l—i-([?—l)an]

1

= ﬁ[An_lar[;il — Anad]. (2.3.5)
By substituting: = 1, ..., m in (2.3.5) and adding the inequalities, we see that

m

_ 1
3|tk — L flaned ™t < ——= Anad, <O. (2.3.6)
= p—1 p—1

From (2.3.6) we observe that

m m
>l < pi_l (? fan Ha VPl ™, (23.7)
n=1 n=1

Using Hoélder's inequality with indicew, p/(p — 1) on the right-hand side
of (2.3.7) we have

m p m 1/p m (p=1/p
’;xnakm{;w(an)} {anaf} .

n=1

Dividing the above inequality by the last factor on the right-hand side and raising
the result to thepth power, we obtain

N (Fa )’ 7 Vv
ZM(A—) <<ﬁ) >t (an). (23.8)
n=1 " n=1
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Now, from (2.3.3) and (2.3.8), we have

Zx fl’( ) ZA( ) <( )pix P (ay). (2.3.9)

By letting m tend to infinity in (2.3.9), we obtain the desired inequality in (2.3.2).
The proof is complete. O

The next result established by Pachpatte in [307] deals with the Hardy-type
series inequality in two independent variables.

THEOREM 2.3.4. If p > 1 isa constant, b(m,n) > 0 for m,n € N (the set of
natural numbers) and

B(m,n) = ZZ ZZb(x y) (2.3.10)

s=11= 1 x ly=1
for m,n € N, then
4p (e olNe o]
ZZB”(m n) < ( ) >0 b m,n). (2.3.11)
m=1n=1 m=1n=1

The equality holdsin (2.3.11)if b(m,n) =0 for m,n € N.

PROOFE If b(m,n) is null, then (2.3.11) is trivially true. Let us suppose that
b(m,n) >0forallm,ne N.LetM > 1, L > 1 be any integers, and define

M L
Sm=Y_ Y BP(m,n). (2.3.12)

m=1n=1

From (2.3.12) we observe that

M L
Sme=Y_ m~P af(m.n), (2.3.13)

m=1 n=1

where

ar(m,n) = = Z Z ZZb(x y). (2.3.14)

=31x1)1
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From (2.3.14) and using inequality (2.3.4), we observe that

af(m,m—( ) {Z ZZb(x y)}al(m n)

s=1 x=1ly=1

=a] Pm,n) — (ﬁ){nal(m, n)—(m—LYDor(m,n — 1)}affl(m, n)
:{1—( li )n} (m, n)—i—(pp >(n—1)a1(m n—l)al (m,n)

N

+ (pp 1)(11—1) {otf(m,n—l)—l—(p—l)af(m,n)}

1
= (—l) {(n — 1)otf(m, n—1) —naj P(m, n)} (2.3.15)
p—
Now, keepingm fixed in (2.3.15) and lettingg =1, ..., L, and adding the in-
equalities, we have

St (;£9)5

{Z%ZZb(m)}af(m,n)

s=1 x=1ly=1

L
< (p—il> 2 A0 =Dl 0nn 1) = nay on,m)}
n=1

1

<O0. (2.3.16)

From (2.3.16) and using Hdélder's inequality with indicesp/(p — 1), we ob-
serve that

Zam n) < < )Z {Z ZZb(x y)}al (m, n)

s=1 x=1ly=1
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SRR

s=1 x=1ly=1

L (p=b/p
x {Zaf(m,n)} . (2.3.17)
n=1

Dividing both sides of (2.3.17) by the last factor on the right-hand side and raising
the result to thepth power we get

L b \P &
Setmn(3Ly)

n=1

{%{i % iib(x,y)} }p. (2.3.18)

s=1 x=1ly=1

From (2.3.13) and (2.3.18), we observe that

p L M
p _
SmL < (—p - 1> E n P E af(m,n), (2.3.19)

n=1 s=1
where

a2(m,n) = Z ZZb(x y). (2.3.20)

s= l x=1y=1
From (2.3.20) and using inequality (2.3.4), it is easy to observe that

1K -
ocg(m,n)— <%)Z{22b(x,y)}a5 1(m,n)

p 1 x=1y=1

< <p_il> {(m — 1)ocg(m —1,n) —ma, P(m, n)} (2.3.21)

Keepingn fixed in (2.3.21) and lettinge = 1, ..., M, and adding the inequalities,
we have

m

M M n
> oL, n) — (ﬁ) 3 %{ZZW, y)]a5‘1<m,n>
m=1

m=1 x=1y=1

M
< ) (m 1)a (m —1,n) —ma, L(m, n)}

=1

:—( 1 )Mocz(M n) < (2.3.22)



138 Chapter 2. Inequalities Related to Hardy's Inequality

From (2.3.22) and by following the same procedure below (2.3.16) up to (2.3.18),
we get

M
Za§(m,n)<(p—) Z{ ZZb(x y)} (2.3.23)
m=1

x=1y=1

From (2.3.19) and (2.3.23), we observe that

2p M L
SvL < (Ll) mep Zag(m,n), (2.3.24)
pP= m=1 n=1
where
1 n m
az(m,n) = - Z Zb(x, y). (2.3.25)
y=1x=1

From (2.3.25) and using (2.3.4), we observe that
m
ozg(m, n) — (ﬁ) {Zb(x, n)}ag_l(m, n)
x=1

< <L1> {(n — 1)a§(m, n—1)— nag(m, n)}. (2.3.26)
p—

Now, by following the same procedure below (2.3.15) up to (2.3.18), we get

L
Zag(m,n)g( ) Z{Zb(x y)} (2.3.27)
n=1

n=1lx=1

From (2.3.24) and (2.3.27), we observe that

3p L M
Su < ( ) D) afm.n). (2.3.28)

n=1m=1

where
1 m
ag(m,n) = — Zb(x, n). (2.3.29)
mn x=1

From (2.3.29) and using inequality (2.3.4), we observe that

(xf;(m, n) — (ﬁ)b(m, n)otffl(m, n)
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< (p 1 1>{(m Vel —1n) —mef(n.m)}.  (2.3.30)

Now, following the same procedure below (2.3.21) up to (2.3.23), we get

Za{{(m n) < ( > Zb(m n). (2.3.31)

From (2.3.28) and (2.3.31), we observe that

ap M L
SmL < ( ) > bom.n). (2.3.32)

m=1n=1

By letting M and L tend to infinity in (2.3.32), we get the desired inequality
in (2.3.11). The proof is complete. O

REMARK 2.3.2. If we defineB(m, n) in (2.3.10) by

s1 N Sp—2  tr-2 Sp—1 fr—1
USRS 3 IR0 3D DD DD DISE-) 3) B TS
Moo= 1 g =1h 1= 1s’ =1 T1-1
(2.3.33)
for m,n € N, then in place of inequality (2.3.11) we get
er (e olNe ]
ZZBp(m n) < ( 1) 0> b m,n). (2.3.34)
m=1n=1 m=1n=1

The proof of inequality (2.3.34) is a natural extension of the proof of Theo-
rem 2.3.4 given above. Further, we note that the inequality obtained in (2.3.34)
can be extended to the functions of several independent variables.

In 1967, J.E. Littlewood [195] presents several open problems concerning el-
ementary inequalities for infinite series which have their roots in the theory of
orthogonal series. One of his simplest problem is to decide whether a cohstant
exists for which

D ady ah Am <k apAl, (2.3.35)
n m=1 n

whereA, =aj + - -- 4+ a,, and the inequality is to hold for all nonnegative hum-
bersai, az, ..., andk is an absolute constant. An answer to Littlewood’s question
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was published in 1987 by G. Bennett [22—24] who shows that (2.3.35) is valid
with k = 4. Actually, Bennett proves the following more general result.

THEOREM2.3.5. Let p,g > 1. Then

1 _1 14
Zaﬁ’AZ[Za,}T”/"] <[2p 14 > [ak Af)% (2.3.36)
n

m>=n P n

wherea’ sare arbitrary nonnegative numberswith partial sumA,, = a1+ - - +a,.

PrROOFE The proof involves just two applications of Hoélder's inequality. We
may assume that only finitely many of thg's are positive, say;, = 0 when-
evern > N. To keep the notation manageable, we &gt= a,A2/” andc, =

> isn an?'?. Elementary estimates give

AP 2 by 4+ by (=B, say (2.3.37)

and
Cp = Cpp1 < rc;_la,}ﬂ’/q, (2.3.38)
wherer (> 1) is to be chosen later.
Letting 8 = (2p — 1)~1 so that 0< 6 < 1, the left-hand side of (2.3.36) may
be rewritten as

1-0), p6
L= 6",
n

Applying Hoélder’s inequality with indices 21 — 0) and 2/ (1 + 6), we have
(1-6)/2
L< [Z b,%”] [Z b,%”e/(”‘))c,fq/(“f’)}
n n
(1-6)/2 (14+0)/2
= |:Z b,%pil |:Z bnc,fil ,
n

n

1+6)/2

where we have set

2p—1
po 2 _@Cr=ba_, (2.3.39)
146 p

Thus, to prove (2.3.36), it suffices to show that

> buey <rt > biP (2.3.40)
n n
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Summing by parts, and then applying (2.3.37) and (2.3.38), we see that

anc —ZB n+1 +BNCN

N
I+p/q 41+q/p r—1
<r Zan Ay C;
n=1

N
1/r* p—1,2
S e
n=1

wherer* =r/(r — 1) is the conjugate of (see (2.3.39)). Applying Hélder’s in-
equality once more gives

Zb cr [Zb c T/r*[;bf,p]l/r,

which is equivalent to (2.3.40). The proof is complete. O

REMARK 2.3.3. Settingp =2 andg = 1 in the theorem above, and interchang-
ing the order of summation on the left-hand side of (2.3.36), it shows that (2.3.35)
holds withk = 3/2. Furthermore, setting = 1 andg = 2 leads to

2
ZanAﬁ[ 3 a,?/zi| <4y a2Al. (2.3.41)
n n

m>n

For further results related to Littlewood’s problem, see [195].

In [326] Pachpatte has established the inequalities in the following theorem
which are similar to that of Littlewood'’s inequality given in (2.3.35).

THEOREM 2.3.6.Let p> 1,9 > 1,r > 1 bereal constants. If @, >0, n =
1,2,...,and A, =) _;am, then

N N
N+1
Y anAn < > > al, (2.3.42)
n=1 n=1
N
Z A< [(p+ N +D]T > ALl (2.3.43)

n=1
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and
ZAP+" r<[(p+g+r(N+D)] ZA” a+r (2.3.44)
n=1

PrROOF Rewriting the left-hand side of (2.3.42), and using the Schwarz inequal-
ity, interchanging the order of summations, and using the elementary inequality
a'?pY2 < (a +b)/2,a > 0, b > 0 reals, we observe that

1 n
3 o= S ;o)

- N —1/2- 241/2
5 )]

Ln=1 i L n= 1

r n 112 N 1/2
(o] [z ()]

Ln=1 . L n= 1 m=1

r N 12 N n 1/2
-] | 2(),

Ln=1 _ Ln=1\m=1

r N 1¥2r N N 1/2
S Za;(zlﬂ

Ln=1 p Lm=1 n=m

- N q12F N 1/2
= Znaf Z(N—m+1)ai:|

Ln=1 . Lm=1

N

[ N
E[Znaf—i— Z(N —n+ l)a3j|
n=1 n=1

N
N+1L
=
n=1

This proves the required inequality in (2.3.42).
By takingz,, = a,, anda = p + ¢ in the following inequality (see [226])

(£ Ee(E)
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wherea > lisaconstantang, >0,m=1,2, ..., we have

n
A,f+q <(p+9) Z amAf;,-’_q_l. (2.3.45)

m=1

By taking the sum on both sides of (2.3.45) from 1Noand interchanging the
order of the summation, we observe that

N N n
YAt < (p +q>Z(ZamA,’ff‘“>

n=1 n=1 \m=1

N
=(p+9) Y anAhTTHN —m +1)
m=1

N

<SP+ON+DY (a Al
n=1

N
=P+ +DY (Aha,) (AT (2.3.46)
n=1

By using Holder's inequality with indices, ¢ /(¢ — 1) on the right-hand side
of (2.3.46), we have

N N g N g—D/q
ZA5+q<(p+q)(N+l)|:ZAﬁaZ:| |:ZA,’1)+‘{| . (2.3.47)

n=1 n=1 n=1

Dividing by the last factor on the right-hand side of (2.3.47) and raising tgftine
power of the resulting inequality, we get the desired inequality in (2.3.43).

By rewriting the left-hand side of (2.3.44) and using Holder’s inequality with
indices(q +r)/r, (¢ + r)/q and the inequality (2.3.43), we observe that

N
ZAp+q r Z pr/(q+r) p Aﬁ+q—pr/(q+r))

n=1

N r/(q+r) q/(q+r)
[Z AP q+r] [2A5+q+r]

n=1
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N r/(q+r)
< [ZAﬁ’aZ”}

n=1

N q/(q+r)
x [[(p +q+r N+ > A5a3+ri|
n=1

N

=[(p+g+nNWN+D]* > Alal™.
n=1

This result is the required inequality in (2.3.44), and the proof is completé&l

REMARK 2.3.4. By takingp =1, ¢ =1 in (2.3.43), we get the lower bound on
the left-hand side of the inequality given in (2.3.42).

2.4 Hardy’s Integral Inequality and Its Generalizations

One of the many fundamental mathematical discoveries of G.H. Hardy is the fol-
lowing integral inequality [141, Theorem 327] discovered in 1920 in the course
of attempts to simplify the proof of Hilbert's double series theorem.

THEOREM2.4.1.If p>1, f(x) > 0and F(x) = fy f(t)dt, then

o0 E P - p P e’} »
[ () dx (_p_l) [ (2.4.0)

unless f = 0. The constant is the best possible.

PrROOF The proof given here is due to Hardy [136] and is also given in [141,
pp. 242—-243]. We may suppogeis not null.

Letn >0, f, =min(f,n), F, = fé‘ f» dx and letXg be so large that, and so
fan, Fy are not null in(0, X) whenX > Xg. We have

X 14 X
FEN 1 pd 1,
fo () =g ) g

1—pF’f7 X X F, p-1
- [_xi@] L (_) £
r—-1 1o p—1Jo \ x

X -1
ST

< —
“p—1Jo \x
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since the integral term vanishesxat 0 in virtue of F,, = o(x). Using Hdlder’s
inequality with indicesp, p/(p — 1) we have

/j(%)”dx S ﬁ(fox(%ydx)l/p,(/ox ff)l/p, (2.4.2)

wherep’ = p/(p — 1). The left-hand side being positive (and finite), this inequal-

ity gives
X F. p )4 X
/ (—") dx < (L) / £Fdx.
0o \ X r—1) Jo

We maken — oo in this inequality, the result being to suppress the two suffixes
Making X — oo we have

®/F p p o0
[ o) [ e
0o \x r—=1) Jo
the desired result with<” for “ <”. Making n — oo and thenX — oo in (2.4.2)
we have

[E LN (e e

The integrals in this inequality being now known to be all finite and positive,

0 X p - 1 0

unlessx P FP and f? are effectively proportional, which is impossible since it
would makef a power ofyx, andf(;’O f? is divergent. O

The proof that the constant is the best possible follows the same lines as before
in Theorem 2.1: take f(x) =0 forx <1, f(x) = x~YP~¢ for x > 1, where
¢ > 0 is a constant.

The above inequality is now known in the literature as Hardy’s integral inequal-
ity. In the past few years, a number of generalizations, variants and extensions of
the above inequality have been given by several investigators. Here we give some
of these results in the following theorems.

In a paper [137] published in 1928, Hardy himself proved the following gen-
eralization of the inequality given in Theorem 2.4.1.
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THEOREM2.4.2. If p>1,m#1, f(x) > 0and R(x) is defined by

R(x) = f%of(t)dt’ m>1 (2.4.4)
[®fd, m<1,
then
[ee} p o]
/ x_me(x)dx<{ P } / x_m(xf(x))pdx, (2.4.5)
0 lm—=11} Jo

unless f = 0. The constant is the best possible.
The proof of this theorem follows by the same arguments as in the proof of
Theorem 2.4.1 with suitable modifications. Here we leave the details to the reader.
In the following two theorems we present the main results given by Copson
in [70] whose proofs are based on the ideas of the proofs of similar results given
by Levinson in [190] and by Pachpatte in [254].

THEOREM 2.4.3. Let p > 1, m > 1 be constants. Let f(x) be a nonnegative
function on (0, co) and let r(¢) be a positive function on (0, co) and let

R(x) Z/X r(t)dr, F(x) zfxr(t)f(t) dr. (2.4.6)
0 0
Then

[OO R™"(x)r(x)FP(x)dx
0

V4 e8]
<<L>f RP™™ (x)r(x) P (x) dx. (2.4.7)
0

m—1

PrROOFE Let0<a < b < oo and define, forn > 1,

Fyu(x) =/Xr(t)f(t)dt

for x € (a, b) with Fo(x) = F(x). Integrating by parts gives
b
/ R™™(x)r (x)FY (x) dx
a

R—m+1 b b p—m+1 B
Z[ —m +(1C)Ff(x)]a _/a T_i_(?PFf Yore) fxde.  (2.4.8)



2.4. Hardy’s Integral Inequality and Its Generalizations 147

Sincem > 1, from (2.4.8) we observe that

b
/ R™"™(x)r(x)FF (x)dx

b
<L [ R r@) £ FL 0 d
m—1]J,

p b
_ {R(p_m)/p(x)rl/p(x)f(x)}

T m—1),
x (R0 (o) P=D/P () FP N fdx. (2.4.9)
Using Hoélder's inequality with indicep, p/(p — 1) on the right-hand side
of (2.4.9) we obtain

b
/ R™™(x)r(x)FP (x) dx

» b 1/p
< (—){/ R”_’”(X)r(X)f”(x)dx}
m—1 a

b (p—D/p
X {/ R™™(x)r(x)FFf (x) dx} ) (2.4.10)

Dividing both sides of (2.4.10) by the second integral factor on the right-hand side
of (2.4.10), and raising both sides to thth power, we obtain

b p p
/ R_m(x)r(x)Fap(x)dx < <F>

b
1 f RP7"x)r(x)fP(x)dx. (2.4.11)

a

From (2.4.11) we have

b P poo
/ R r(x)FF (x)dx < (ﬁ) / RP7"(x)r(x) fP(x)dx. (2.4.12)
a 0

Leta < ¢ < b. Then from (2.4.12) we have

b 4 00
/R_m(x)r(x)Fap(x)dx<<ﬁ)/ RP™"(x)r(x) fP(x) dx. (2.4.13)
c 0

Lettinga — 0 in (2.4.13) we have

b V4 o)
f R‘%)r(x)F”(x)dxg(L) / RP (0)r (x) f7 (x) dx.
¢ m—1 0
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Since this inequality holds for arbitraryfc¢ < b, it follows that

[ee} p 00
/ R™™(0)r(x)FP(x) dx < <L> / RP™ (x)r (x) 7 (x) dx.
0 m—1) Jo

The proof is complete. |

THEOREM2.4.4. Let p > 1,m < 1 beconstants. Let f(x), r(x) and R(x) beas
defined in Theorem 2.4.3.1f F(x) is defined by

F(x)= /Oor(t)f(t)dt (2.4.14)
for x € (0, 00), then
/00 R (x)r(x)FP(x)dx
0

p poo
< (L) / RP™"(x)r(x) f7 (x) dx. (2.4.15)
0

1-m

PrROOF Let0<a < b < oo and define fom < 1,

b
Fy(x) = / r(1) £ (1)

for x € (a, b) with Foo(x) = F(x). Integrating by parts gives

b
/ R™"(x)r(x)Ff (x) dx

R—m+1 b b R_m+1 B
- [—m+1F’f(x)} _f TJF(I)PFK Y0 (=r(0) () dx. (2.4.16)

Sincem < 1, from (2.4.16) we observe that

b
/ R™"(x)r(x)F} (x) dx

b
<L | Rr@) £ F 7 0 de

S1-m ),
p b
— - {R(p_m)/p(x)rl/p(x)f(x)}

« {Rfm(pfl)/p(x)r(Pfl)/P(x)Flf’_l(x)} dx. (2.4.17)
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Using Hoélder's inequality with indicep, p/(p — 1) on the right-hand side
of (2.4.17) we obtain

b
/R—"’(x)r(x)Fg’(x)dx
» b 1/p
< —{ / R”‘m(x)r(x)f”(x)dx}
1-m|J,
(r=D/p

b
X {/ R_m(x)r(x)Fbp(x)d.x} ) (2.4.18)

Dividing both sides of (2.4.18) by the second integral factor on the right-hand side
of (2.4.18), and raising both sides to thth power, we obtain

b P prb
/R_m(x)r(x)Ff(x)dx§<ﬁ> / RP7"(x)r(x) fP(x)dx. (2.4.19)

From (2.4.19) we have

b p poo
f R_m(x)r(x)Fbp(x)dx < <L> / RP7T™"(x)r(x) fP(x)dx. (2.4.20)
a 0

1-m

Leta < ¢ < b. Then from (2.4.20) we have

c P o]
[R_m(x)r(x)Ff(x)dx§<ﬁ>/‘) RP7"(x)r(x) fP(x)dx. (2.4.21)

Lettingb — oo in (2.4.21) gives

c P o]
/ R (x)r(x) FP(x) dx < (L> / RV (x)r (x) 7 (x) dx.
a 1-m 0

Since this holds for any, ¢, 0 < a < ¢, it follows that

[ee} P o]
/ R7™"(x)r(x)FP(x)dx < (L> / RP7"(x)r(x) fP(x)dx.
0 1-m) Jo

The proof is complete. O

REMARK 2.4.1. In [70] Copson has given the two companion results corre-
sponding to Theorems 2.4.3 and 2.4.4 whea P < 1 and he also has given

two more companion results corresponding to Theorems 2.4.3 and 2.4.4 when
m = 1. For more details, we refer the interested readers to [70].
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In the next two theorems we give the generalizations of Hardy’s inequality
established by Love in [199]. In what follows, the functions involved have do-
mains in(0, co) or (0, o0)2 and ranges ifi0, oo]. The word “increasing” is used
for “nondecreasing” and similarly for “decreasing”. A functier(x) is called
submultiplicative if its values are positive and satisfixy) < o (x)o (y) for all
x andy in (0, 00). The integrals are Lebesgue integrals, and they are said to exist
even if their values are infinite since their integrals are measurable and nonneg-
ative. The words “measurable” and “Measurable” are used to denote linear and
plane measurability respectively. Th¢éh power of the numbey (x) is denoted

by f(x)?, not by f9(x).

THEOREM 2.4.5. Let 1 < g <00, 0 < b < o0 and b1 = maxb, 1}. Let o (x)
be submultiplicative and measurable on (0, c0), t(x) be decreasing and positive
on (0, b), H(x, y) be Measurable, nonnegative and homogeneous of degree 7 — 1
on0<y<x<bg,and

1
A =/ HL 0o ()} dr < oo.
0

If f(x) ismeasurable and nonnegative on (0, b) and

b 1/q
= ( [ reroerma) <o
then
i =" [ e 0y
exists finitely for almost all x in (0, ), and

IHfI <Al fI.

PROOFE By Fubini’s theorem, there is € (0, b) such thatH (¢, y) is measurable
on O0< y < &. ThereforeH (&, &£t) is measurable on @ ¢ < 1, hence so is

X h—1
H(x,xt)z(E) H(, &)

for eachx € (0, b1). This result with (2.4.22) below ensures the existence, finite
or infinite, of H f (x) for eachx € (0, b] and also ofA.
ForO<x < b,

1 1
Hf(x)= xih/o H(x,xt) f(xt)xdr = /0 H(@,1)f(xr)dt. (2.4.22)
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Using the form [141, Theorem 202] of Minkowski’s inequality at (2.4.23),

b 1 q 1/q
lHf| = (f (/ H(, 1) f(xt) dt) o(x)r(x)dx>
0 0

1 b 1/q
g/ (f H(l,t)qf(xt)qa(x)r(x)dx> dr (2.4.23)
0 0

1/q

1 b
:/ H(l,t)( tf(y)qa(ytl)t(ytl)tldy) dr
0 0

1 b 1/q
</ H(l,t)(f f(y)qa(y)a(tl)r(y)tldy> dt
0 0
=Alfl.

In particular,||Hf|| < co and sinces andt are positive in(0, b), it follows that
Hf (x), which exists for allx in (0, b) as already shown, and also is finite for
almost allx in (0, ). O

REMARK 2.4.2. The first half of Hardy’s inequality in the form of Theorem 330
in [141] is the case of Theorem 2.4.5 in whiéh= o0, r > 1, o(x) = x97",
t(x) =1, H(x,y) =x""1andA = ¢/(r — 1). Hardy’s inequality in its original
form of Theorem 327 in [141] is the case= ¢ and thuss (x) = 1.

THEOREM 2.4.6. Let 1 < g < 00, 0< a < 00 and a1 = min{a, 1}. Let o(x)
be submultiplicative and measurable on (0, co), t(x) be increasing and pos-

itive on (a,00), H(x,y) be Measurable, nonnegative and homogeneous of
degreeh —10na; <x <y < o0, and

B= /OOH(l, t){t_la(t_l)}l/q dr < oo.
1

If f(x) ismeasurable and nonnegative on (0, co) and

00 1/q
Ifl= (/ f(X)"G(x)t(x)dX> <00,
then
1 o
Hfw = [ HEd
exists finitely for almost all x in (a, 00), and

IHfI<BISI.
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The proof of this theorem is formally the same as the proof of Theorem 2.4.5
with suitable changes and thus we omit the details.

REMARK 2.4.3. Theorems 2.4.5 and 2.4.6 are generalizations of Theorems
1.1 and 1.3in [198]. In [199] there are theorems about the best possible constants
and discrete analogues of Theorems 2.4.5 and 2.4.6.

In [221] Muckenhoupt has given the following more general versions of
Hardy’s inequality with weights. In which Oco is taken to be 0 and the usual
convention is used for the integralsgifor p’ is co.

THEOREM2.4.7. Let 1 < p < 00, thereisafinite C for which

[/OO'U(x) xf(t)dt
0 0

istruefor real f if and only if

1/p r , 1/p’
_sur{/ ‘U(x)‘pdx] |:/ V@)™ dx:| < 00, (2.4.25)
0 0

where 1/p + 1/p’ =1 and U(x), V(x) are weight functions. Furthermore, if
C istheleast constant for which (2.4.24)holds, then B < C < pY/?(p")¥?'B for
l<p<ocandB=Cif p=1or cc.

1/p

)4 1/p o0
dx:| < c[/ !V(x)f(x)!pdx:| (2.4.24)
0

THEOREM2.4.8. If 1 < p < 00, thereisa finite C such that

00 00 P 1/p 00 1/p
[/ ‘U(x) f()de dxi| < c[f |V(x)f(x)|pdxi| (2.4.26)
0 X 0

istruefor real f if and only if

1/p 1/p'
_sup[/ \Ux)|? ] [/ V)|~ " dy ] < 00,
r>0

wherel/p+1/p’=1land U(x), V (x) are weight functions. Furthermore, if C is
the least constant for which (2.4.26)istrue, then B < C < p¥?(p)¥/?'B.

PROOFS OFTHEOREMS2.4.7AND 2.4.8. For Theorem 2.4.7 it is sufficient to
prove the asserted inequalities betwéeandC. The new proof is the proof that
C < BpYP(p")¥P". The proof given here that < C is standard.
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To prove thatC < BpY?(p/)Y/?" for 1 < p < oo, it will be shown that

00 x P 1/p
[/ ‘U(x)/ f(@)dt dxi|
0 0

’ 0 1/p
<Bp1“’(p’)1/”[ fo |V(X)f(x)|pdx:| . (2.4.27)

To do this, leth(x) = [ fy |V ()|~7 dr1¥PP). By Holder's inequality, thepth
power of the left-hand side of (2.4.27) is bounded by

00 x x , p/pr
/ |U(x)|”[/ \f(t)V(t)h(t)|pdt:||:/ |V@h@)|™? dui| dx.
0 0 0

Simple special arguments justify this expression evan(ifia(z) is 0 oroo on a
set of positive measure provided the right-hand side of (2.4.27) is finite. Fubini’s
theorem shows that this expression equals to

) 00 x p-1
/0|f(r)V(z)h(z)}”(/ |U(x)\”[/0 \V(u)h(u)—f”}dz] du)dt.
t

(2.4.28)
Now, by performing the inner integration, it is apparent that
00 X , p—1
/ |U(x)|”[/ |V@h@w)|™" dui| du (2.4.29)
t 0
equals to
g [ x . (r=1/p'
(r')” / }U(x)|”[/0 V@™ dui| dx.
t
By the definition ofB, this expression is bounded above by
[ 00 -1/p'
(Bp)" / |U(x)|”[/ |U(u)|pduj| dx. (2.4.30)
1 X

Performing the outer integration shows that this expression equals to

1 00 1/p
p(Bp')” [/ U@)|” dx] : (2.4.31)
t
By the definition ofB, this expression is bounded by

pB”(p)" )| ", (2.4.32)
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Now in (2.4.28) we use the fact that (2.4.29) is bounded above by (2.4.32). This
shows that (2.4.28) is bounded above by gite power of the right-hand side
of (2.4.27) and completes the proof of (2.4.27) fot b < oco.

For p =1 andp = oo, the fact thatC < B is proved by showing that

[/W‘U(x)/x f@)de
0 0

For p = 1, inequality (2.4.33) follows just by interchanging the order of integra-
tion on the left-hand side of the inequality.
If p=o0,

P 1/p [} 1/p
dxi| gBU ]V(x)f(x)]pdx:| . (2.4.33)
0

< [esssubf(t)V(t)|]|U(x)|/0 |V(t)|*1dt,

0<r<x

‘U(x)/x f(t)dt
0

and (2.4.33) follows immediately.
To prove thatB < C, observe that for a nonnegatiyg a reduction of the
intervals of integration in (2.4.24) shows that fox O,

00 py pr
[/ \U(x)|”dx} / f@)dt
r 0

It is sufficient to show that

00 1/p r , 1/p’
[f }U(x)|”dx] [/ Vo™ dxi| <C. (2.4.35)
r 0

If p#£1andO< fg |V (x)|~P dx < oo, inequality (2.4.35) follows immediately
from (2.4.34) by takingf(x) = |[V(x)|™”". If p=1 and O< esssup., ., 1/
|V (x)| < oo, (2.4.35) follows from (2.4.34) by lettingf be the character-
istic function of the set where /IV(x)| > —1/n + esssug_,_, 1/|V (x)|
and then lettings — oo. If [ fy |V (x)|™" dx]¥/?" = 0, (2.4.35) is immediate.
If [ fy 11/ V()P dx]¥?" = oo, there exists anf(x) such that[ [y | f(x) x
V()P dx]¥P < oo and [§ f(x)dx = co. Then if C < co, (2.4.34) with this
f shows thaf /> |U (x)|? dx]¥/? = 0 so (2.4.35) holds. I€ = oo, (2.4.35) is
obviously true.

To prove Theorem 2.4.8, assume first that O/ (x) <00 and O< V(x) < o0
almost everywhere ofD, co). Let g be a function inL? . By Fubini's theorem,

r 1/p
ch \V(x)f(x)\”dx] . (2.4.34)
0

/OOI:U(x) /OO f@ dti|g(x) dx (2.4.36)
0 X
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equals to

X X dx d
‘/ t t JE— l? t.

By Hélder’s inequality, this expression is bounded above by

Py
dt:| .

00 1/p
P
[/0 | fOV ) dt] [ ‘V(r) g(x)U (x)dx

By Theorem 2.4.7, this expression is bounded by

1p (. NP * p Yr o P yr
PP (o) B[/O F OV dr] [fo ] ,

and the converse of Holder's inequality shows thak p¥/?(p’)Y/?'B. Simple
limiting arguments take care of the cases wh&randV are 0 orco on a set
of positive measure. The proof th&t< C is most easily done by imitating the
corresponding proof of Theorem 2.4.7. O

In [221] another necessary and sufficient condition is given for (2.4.24) to hold
with a finite C and also the question of general measures is also considered. For
various other inequalities related to Hardy's integral inequality, see [17,18,40,65,
146,148,167,168,199,217,221].

2.5 Further Generalizations of Hardy’s Integral Inequality

In the past few years a large number of papers has appeared in the literature which
deal with various generalizations of the Hardy’s integral inequality. In this section
we shall deal with some generalizations of Hardy's integral inequality established
by Levinson in [190] and Pachpatte in [295,344].

In 1964, Levinson [190] proved the following generalizations of Hardy's inte-
gral inequality.

THEOREM 2.5.1. On an open interval, finite or infinite, let ¢ (1) > 0 be defined
and have a second derivative ¢” > 0. For some p > 1, let

09" > (1— %)(qﬁ’)z. (2.5.1)

At the ends of the interval, let ¢ take its limiting values, finite or infinite. Then, if
for 0 < x < oo, therange of values of f(x) liein the closed interval of definition
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of ¢ and if G is defined by

G(x) = %/Ox () dt (2.5.2)
for 0 < x < o0, then
/ood)(G(x))dx < (L>p/m¢(f(x)) dr, (2.5.3)
0 p—=1) Jo
unless ¢ =0.
PROOF. Let

Yy = (pw)Y? >0,

Then by (2.5.1)y" (1) > 0 whereyr(u) > 0. Hencey («) is convex. Then by
Jensen’s inequality,

1 [ 1 [*
w(;/O f(t)dt)<;/o Y (f(@®)dr. (2.5.4)

Hardy’s inequality in Theorem 2.4.1 applieddd f (x)) gives

/OOOG/OX Y (f @) dt)pdx < (ﬁ)p/:o(l/,(f(x)))p dr.

Using (2.5.4) andy? = ¢ the proof of the theorem is complete. |

REMARK 2.5.1. We note that in the special case whgn) = u?, u > 0, it
shows the constant is the best possible.

Theorem 2.5.1 is essentially a special case of the following theorem given by
Levinson in [190, Theorem 2].

THEOREM2.5.2. Let ¢ and f beasin Theorem 2.5.1.For x > O let r(x) > 0,
be continuous and monotone nondecreasing and set

R(x) = fx r(t)de. (2.5.5)
0

Then

[’} 1 X p P o0
/O ¢<%/O r(:)f(r)dt>dx<<p—_1) /O $(f(0))dx.  (2.5.6)
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PROOF First we prove the special case corresponding@) = u”, p > 1. The

general form then follows by using Jensen’s inequality and the special case. Let
¢ =u”,u >0, and in this part of the proof let > 0 andf € L? (0, c0). Let

F,(x)= 1 ’ 1) f()de
aX)= m/; r( )f(
and let

ga(x) =r"Y7(x) / 0 f (.

For 0< a < b < 00, integrating by parts gives
b b
/ FJ(x)dx =/ r()R™P(x)gd (x) dx
a a

b b
- [_LR—P“(x)gé’ (x)} + L / FY ™) £ () d
p—1 « pP—1

a

b
-1 : 1 [ RO ) gr (or' () d. (2.5.7)

From (2.5.7) it is easy to observe that

b p b R(x) ’ P b p—1
(p— 1)/ Fy (x)dx +/ %r (x)Fg (x) dx < P/ Fg ~(x) f(x)dx.
¢ ¢ ¢ (2.5.8)

Sincer(x) is nondecreasing,
b b 1
(p— 1)/ F (x)dx < p/ Fi ™ (x) f(x) dx.

Applying Hélder’s inequality with indicep, p/(p — 1) to the right member and
dividing through gives

b 1/p b 1/p
(p—1></ F;’<x>dx> <p</ f”(x)dx> .

<—£—)p=k (2.5.9)

Or letting
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gives

b b
/Ff(x)dxgk/ FP(x)dx.

Letc > a. Then

b 00
f FP (x)dx gkf fP(x)dx.
c 0

Now leta — 0 on the left. Then

b 1 x P 00
f (—/ r(t)f(t)dt> dxgk/ £P(x)dx.
¢ \R(x) Jo 0

Since this inequality holds for arbitraty> ¢ > 0, it follows that

[ee] X p [ee]
/ ( 1 /r(t)f(t)dt) dxgk/ £P(x) dx.
o \R(x)Jo 0

Next, letys = 1/? as in the proof of Theorem 2.5.1. By Jensen’s inequality,

1 x 1 X
W(m/o r(l)f(l)dt> < %/(; r(l)W(f(t))dt. (2.5.10)

Using (2.5.9) and (2.5.8) we get

> 1 ' b p \’ [ »
/O (R(x)/o r(t)\[’(f(t))dt> dx<<—p_1) /0 Y (f ()" dr.

Combining the above inequality with (2.5.10) and usinf = ¢ proves (2.5.6)
and the proof is complete. a

REMARK 2.5.2. Inthe case= 1, Theorem 2.5.2 is a slightly weaker version of
Theorem 2.5.1. I (u) = € and f (x) is replaced by log (x), where nowf > 0,
then (2.5.6) becomes, on letting— oo,

/ exp(i /xr(t)logf(t)dt> dx < e/ f(x)dx,
0 R(x) Jo 0

which forr =1 is a consequence of a result of Knopp [141, p. 250]. Forgany
for which ¢¢” > ¢’2, one can lep — oo in (2.5.6) to get for such a case

/OOO R(lx)¢<fox r@) f(t) dt) dx < efooo¢(f(x>) dx.
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If ¢ is monotone and hence has an inverse, the analogue of introducing the loga-
rithm can be used here.

The following theorem also given by Levinson in [190] is valid and does not
requirer to be monotone.

THEOREM 2.5.3. Let ¢ and f beasin Theorem2.5.1.Let r(x) > 0,x > 0, be
absolutely continuous and let R(x) asin (2.5.5)exist. Let there exist A > 0 such
that for almost all x > 0,

r'R

r—2+p—12 . (2.5.11)

>

Then

o 1 X 00
/o R(x)¢</c, ’(t)f(t)df>dx<”’fo ¢(f(x))dx. (2.5.12)

PROOF The proof proceeds as for Theorem 2.5.2 up to (2.5.8). Using (2.5.11)
in (2.5.8) gives

b b
/ FP(x)dr < 2 / FP ) £ (x) di.

a a

Proceeding now much as in the proof of Theorem 2.5.2 gives

00 x p 00
f - ( / r(t)f(t)dt) dx < 37 f £7 ) dx. (25.13)
o R \Jo 0
Applying (2.5.13) toy (f) instead off and using (2.5.10) completes the proof.
U

REMARK 2.5.3. Thecase=1, ¢ = u? with A = p/(p — 1) shows the constant
in (2.5.12) to be the best possible.

In 1992, Pachpatte [295] has established the following generalizations of the
certain extensions of well-known Hardy’s inequality given by Chan in [52].

THEOREM 2.5.4. Let p > 1 be a constant and r be a positive and absolutely
continuous function on (1, b) where 1 < b < oo. Let f be a honnegative function
on (1, b)andr(r) f(r)/t isintegrableon (1, b). Let

re 1 (2.5.14)

1— px(logx) o
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for almost all x € (1, b) and for some constant « > 0. If F(x) isdefined by

b
F(x):i/ roso
r(x) Jx t

for x € (1, b), then

b b
/ x*lFP(x)dxg(ap)Pf x"Hogx) f(x)]” dx. (2.5.15)
1 1

THEOREM 2.5.5. Let p > 1 be a constant and r be a positive and absolutely
continuous function on (0, 1). Let f be a nonnegative function on (0, 1) and
r(t) f(¢)/t isintegrableon (0, 1). Let

/
r'(x) > 1
rx) = p

for almost all x € (0, 1) and for some constant 8 > 0. If F(x) isdefined by

Fx) = i/ rf@ g,
r(x) Jo

t

1— px(logx) (2.5.16)

for x € (0, 1), then

1 1
/xleP(x)dxg(ﬁp)P/ xYllogx| £ (x)]” dx. (2.5.17)
0 0

REMARK 2.5.4. We note that in the special cases when =1 anda = 8 =1,

and settingf (t) = th(z), the inequalities established in Theorems 2.5.4 and 2.5.5
reduces respectively to inequalities (1a) and (2a) given in Theorems 1 and 2
by Chan in [52]. If we replace the function(x) by 1/r(x) in Theorems
2.5.4 and 2.5.5, then we get the corresponding variants of the inequalities in The-
orems 2.5.4 and 2.5.5 which may be of interest in certain situations.

PROOFS OFTHEOREMS2.5.4AND 2.5.5. If £ is null, then inequality (2.5.15)

is trivially true. We assume thaf is not null. Integrating the left-hand side
in (2.5.15) by parts we have

b b
/ x PP (x)dx = p/ x_l(logx)f(x)F”_l(x) dx
1 1

r'(x)
r(x)

b
+p/ (logx) —== FP (x) dx. (2.5.18)
1
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From (2.5.18) we observe that
b r/(x) 1
/ [1—px(|0gx)—]x FP(x)dx
1 r(x)
b
=p/ x"Y(logx) £ (x) FP~1(x) dx. (2.5.19)
1

By using (2.5.14) in (2.5.19) and then using Hdélder's inequality with indjees
p/(p — 1) on the right-hand side, we obtain

b
/ x1FP(x)dx
1
b
< ap/ (Y)Y Yogx) f () ][(x )P P/P FP~(x)] dx
1
b 1 1/p
<apf 16806 (dog £ ) |
1
b (r-D/p
x {/ xle(x)dx} ) (2.5.20)
1

Dividing both sides of (2.5.20) by the second integral factor on the right-hand side
of (2.5.20), and then taking thgh power of both sides of the resulting inequality,
we get the desired inequality (2.5.15). This proof completes Theorem 2.5.4.

In order to prove Theorem 2.5.5, we may suppg@ss not null. Integrating the
left-hand side in (2.5.17) by parts we have

1 1
/ x PPy de = —p f xYlogx) f(x) FP~(x) dx
0 0

1 ’
—I—pf (logx)@ﬂ(x)dx. (2.5.21)
0

r(x

From (2.5.21) we observe that

1 l
/ |:1 - px(logx)r (x))i|x1Fp(x)dx
0

r(x

1
gp/ x Ylogx| £(x)FP~1(x) dx. (2.5.22)
0
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Now, by using (2.5.16) in (2.5.22) and by following the arguments as in the proof
of Theorem 2.5.4 given below inequality (2.5.19), we get the required inequality
in (2.5.17) and the proof of Theorem 2.5.5 is complete. O

In the following theorems, we present the results established by Pachpatte
in [344] by using a uniform treatment based on the idea used first by Levinson
[190] and then by Pachpatte in [252—-255,268,295], Pachpatte and Love [278] and
Pe&aric and Love [382]. These results yield in special cases some of the earlier as
well as recent generalizations of Hardy’s inequality given in [70,162,198,382].

THEOREM2.5.6. Let p > 1, m # 1 be constants. Let f(x) be a nonnegative and
integrable function on (0, oo) and let 2(x) be a positive continuous function on
(0,00),and let H(x) = fd" h(t)dz. Let w(x) and r(x) be positive and absolutely
continuous functions on (0, co). Let

1 Hw'®) | p H@r@) 1
T 1he) wm M1k o) S a O (@523

__ L HOww  p HOr® Lo 1 (2524
1—-m h(x) wx) 1-m h(x) r(x) o2

for almost all x € (0, co) and for some positive constantsag, ap. If F'(x) isdefined
by

L fFrohn fod form>1,
FO=11 o (2.5.25)
o e rOh@ f(de form <1,

for x € (0, 00), then

fm wx)H @)™ h(x)FP(x)dx
0

V4 9]
< [a< P )} / W) HE)P ™ h(x) fP(x)dx,  (2.5.26)
|m —1] 0
where o = max{a1, az}. Equality holdsin (2.5.26)if f(x) =0.

THEOREM2.5.7. Let0<a <b < o0, p>0and g > 0, « > 0 be constants. Let
w(x), r(x) be positive and locally absolutely continuous on (a, b) and f(x) be
almost everywhere nonnegative and measurable on (a, b). Let

1 [frof@ o

FO=70 1y Tiog®rn

(2.5.27)
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for all x in[a,b), and

F(x)=0((b—x)"1?) asx—>b". (2.5.28)
If p>1and
SR L GO (2.5.29)
q w(x) X q rx) X«

for almost all x in (a, b), then

b q-1 P pb q-1
/w(x)%(log%) Fp(x)dx<<o;—p) f wx)= <Iogb) £P(x) dx.

(2.5.30)

If 0 < p < 1andthereverseinequality in (2.5.29)holds, then the reverse inequal -
ity in (2.5.30)also holds.

THEOREM 2.5.8.Let a <b < R, p > 1, g <1, @ > 0 be constants. Let
w(x), r(x) be positive and locally absolutely continuous in (a, b). Let h(x) be
a positive continuous function and let H (x) = fa" h(t)dt, for x € (a,b). Let f(x)
be nonnegative and measurable on (a, b). Let

1 H()C)w’(JC)|09<H(R)>Jr p H(X)F’(JC)IO <H(R)>>}

B 1—g h(x) w(x) H(x) 1—q h(x) r(x) H(x)
(2.5.31)
for almost all x in (a, b). If F(x) is defined by
F(x)= i /X r(t)h(t) f(t)de (2.5.32)
r(x) Jq

for all x € (a, b), then

b
/a w(x)H (x)h(x )(Iog(H(( )))) FP(x)dx

p b
S(fgt}) /u w(x)(H(x)) h( )(Iog(H((R))>> £P(x) dx.

(2.5.33)

PROOFS OF THEOREMS 2.5.6-2.5.8. For the proof of HEorem 2.5.6, let
0 < a < b < oo and define, fom > 1,

1 X
FAX)Z@/ r(Oh () f (@) dr,
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with Fo(x) = F(x). Integrating by parts gives

b
/ wx)H @) ™™h(x)FP (x) dx

—m+17b
= [w(x)Ff(x)%]a

—m+1
/ H(x) [’(x)Ff(x>+w<x)pFa’"1<x)

{ r(x)(r(x)h(x) f(x)) —r'(x) f r(h(t) f(t)dt H .
ra(t)

(2.5.34)

Sincem > 1, from (2.5.34) we observe that

/b[l_ 1 Hx) w(x) p H(x)r'(x)

—m »
m—1hx) wx) m—1hx) rx) i|w(x)H(x) h(x)FY (x) dx

b
<mL_1 w@)H @) ™" () £ ) FY ) d

b
— mL—]_ [w(x)l/pH(x)(p_m)/ph(x)l/pf(x)]

x [w(x)(P—l)/PH(x)—M(P—l)/Ph(x)([’—l)/l?pffl(x)] dx
(2.5.35)

Using (2.5.23) and applying Holder’s inequality with indigesp/(p — 1) on the
right-hand side of (2.5.35), we obtain

b
/w(x)H(x)*’"h(x)Fa”(x)dx

1/p

b
<a1( P ){ / w(x)H(x)P—mh(xW(x)dx}
m—1 a

(p=1/p

b
X {/ w(x)H—”'(x)h(x)F;’(x)dx} ) (2.5.36)
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Dividing both sides of (2.5.36) by the second integral factor on the right-hand side
of (2.5.36), and raising both sides to thth power, we obtain

b
/w(x)H_m(x)h(x)Fap(x)dx

p b
g[al(m’ilﬂ / W) HP ™ ()h(x) fP()dr.  (2.5.37)

From (2.5.37) we have

b
/ wx)H " (x)h(x)FF (x) dx

P [}
g[al( P ﬂ/ W) HP ™ ()h(x) fP)dr.  (2.5.38)
m—1 0

Leta < ¢ < b. Then, from (2.5.38), we have

b
/w(x)H—'"(x)h(x)Ff(x)dx

14 e}
g[al( P ﬂ/ wo)HP ™™ ()h(x) P dr.  (2.5.39)
m—l 0

Lettinga — 0 in (2.5.39) we have

b
/ w(x)H " (x)h(x)FP(x)dx

r \1|" ™
< |:ot1( >i| / wx)HPT"(x)h(x) fP(x)dx. (2.5.40)
m—1 0
Since this inequality holds for arbitrary©c¢ < b, it follows that

/OO wx)H " (x)h(x)FP(x)dx
0

P [}
<[a1< P )}[ W) HP ™ ()h(x) fP)dr.  (2.5.41)
m—1 0

Let 0< a < b < oo and define, fom < 1,

1 b
Fb(x)me r(t)h(t) f (1) dr,
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with Fo (x) = F(x). Now, by following the same steps as in the proof of inequal-
ity (2.5.41) with suitable modifications, we obtain

/‘00 w)H " (x)h(x)FP (x)dx
0

V4 (e%e]
<[a2< P )} / w)HP ™™ ()h(x) fP)dv.  (2.5.42)
1—m 0

From (2.5.41) and (2.5.42), we obtain

/‘00 w)H " (x)h(x)FP(x)dx
0

14 [e%e)
< [a( P )} f w(x)HP =" (x)h(x) £P (x) dx.
|m —1] 0

The proof of Theorem 2.5.6 is complete.
To prove Theorem 2.5.7, lgt > 1 and suppose that> 0. Integrating by parts

we have

b p\\41
/w(x) (IOg( >> FP(x)dx
qb
= [—w(x)Fp(x)E(log(é)> i|
q X a

b 1 b q
+/ 5('09’(;)) {w’(X)F”(x)er(x)pF”_l(x)

y [r( )V(X)f(x) Y (x )/ r) f(@) } 1 }dx
xlog(1/x) tlog(b/1t) r2(x) '
(2.5.43)

From (2.5.43) we observe that

b
/ [1— Exw () |Og<—) + Ll @) |Og<—)]
a qg w(x) X q r(x) X
1




2.5. Further Generalizations of Hardy’s Integral Inequality 167

b (r=b/p q—(q—D(p-D/p
2 (U 1y, XY/ (0g(b/x) ]
= /a [w (x) x1og(b/x) fx)
p\\ @ D-D/p
« |:w(l7—l)/!7x—(l7—1)/17 (Iog(—)) F”_l(x):| dx.
X

(2.5.44)

Using (2.5.29) and applying Hélder’s inequality with indicesp/(p — 1) we

obtain
b q—1
/ w(x)l<|og(é>) FP(x)dx
a X x

< ag{/ b wmxpl(log(b/x))w1f”(x)dx}l/p
q Ua xP(log(b/x))?

b p\\41 (p=1)/p
x{/ w(x)xl<log<;>> Fp(x)dx} . (2.5.45)

Dividing both sides of (2.5.45) by the second integral factor on the right-hand
side of (2.5.45) and taking theth power on both sides of the resulting inequality
we get the desired inequality in (2.5.30). Similarly, ikOp < 1 and (2.5.29) is
reversed, the reverse inequality in (2.5.30) is obtained.

Suppose instead that= 0. If 0 < &’ < b, all the hypotheses hold witl re-
placed bya’, under their respective conditions gnand in (2.5.29). Call these
inequalities(2.5.30). Asa’ | a*, the modifiedF (x) increases toward the value
given in (2.5.27), and both sides ¢2.5.30) tend to the corresponding sides
of (2.5.30), using the monotonic convergence theorem for the left-hand sides.
This fact limits processes thus produces inequality (2.5.30) as required. This re-
sult completes the proof of Theorem 2.5.7.

We next establish the inequality (2.5.33) in Theorem 2.5.8. Integrating by parts
we obtain

b —-q
/w(x)H@ﬁ%(x)(bg(%)) FP(x)dx

| ete @y ey
- —q+1

(" (og(H(R)/H (x))) "¢
a —q + 1
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x {w/(x)FP(x) +wx)pFP(x)

[r(x)(r(x)h(x)f(x)) —r'(x) / r(t)h@) f(t) dti| } dx }
(2.5.46)

1
200

From (2.5.46) we observe that
/b[l_ 1 H®) u/(x) <H(R)
a 1—g h(x) wx) H(

)
1 H(R)
x wx)Hx) "h(x)| log T

b —q+1
< ﬁ/a w(x)h(x)f(x)(log(%)) FP1(x) dx

- () ()
)

x we)YP (H@) ™) PP (h@) 77 f(x)

ol ) T

x wx) P VPP (H0) ") PP P dx. (2.5.47)

) 14 H(X)V/(X)IO <H(R)>i|
1—q h(x) r(x) H (x)

F”( ) dx

Using (2.5.31) and applying Hélder’s inequality with indicesp/(p — 1) we
obtain

b
/a w(x)H(x)~ 1h(x)(|og< H(( ))>> FP(x)dx
b
S ACE)RC )
1-glJa H (x) H(x)
_1y—(p=D) Y
Xw(x)(H(x) ) h(x) fP(x)dx

b 1 ( ) (p=1)/p
X {/ wx)H (x)~ h(x)(log(H( ))) Fp(x)dx} . (2.5.48)
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Dividing both sides of (2.5.48) by the second integral factor on the right-hand side
of (2.5.48) and taking theth power on both sides of the resulting inequality we
get the required inequality in (2.5.33). The proof of Theorem 2.5.8 is complete.

2.6 Hardy-Type Integral Inequalities

There are many extensions and variants of Hardy’s integral inequality (2.4.1) es-
tablished by different writers in different ways. In this section we give some of
these results established in the literature during the past few years.

In 1968, lzurai and Izumi [162] obtained the following variant of Hardy’s in-
equality in Theorem 2.4.1.

THEOREM?2.6.1. Let p > 1ands < —1andlet f be nonnegative and integrable
on (0, b). If x* f(x)? isintegrable, then

b p P pb X p
/ xSG(x)"’dx<( ) / x* f(—) — f(x)| dx, (2.6.1)
0 —s—1 0 2
where
G(x):/x @) dr. (2.6.2)
x/2

PrRoOOF The proof is based on the idea used in [434, p. 20]. First of all we have

Gx) = / S raydi= / "SI 0-Ds1p ) dy

/2 x/2

x 1/p x 1/q
< (/ 5 F ()P dt) (/ —(p+s)q/p dt)
x/2 x/2

= O(x_(”l)/p) asx — 0,

Where% + % =1, and then, i # —1,

b
/ x*G(x)? dx
0

ot Pt i o (f6) 1f(x/2)
_[s+lG(x)pi|o_S+—1/o R < x 2 x/2 )dx
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If s < —1, then the first term on the right-hand side is negative and hence the
second term is positive, and

b
/ XSG (x)P dx
0

b
<= /0 xSG(XV’l(f(x) - f@)) dx

I4 ’ s(p=1/p p—1 s—s(p—1)/p X
/ X G(x)P~x f(x)—f(z)‘dx
0

<
—s—1
2\ |? 1/p
oo s(3)[[as) "

p b 1/q b
< </ x*G(x)? dx) </ x*
—-s—1\Jo 0

Dividing both sides of the above inequality by the first integral factor on the right-
hand side and taking theth power of both sides we get inequality (2.6.1). O

REMARK 2.6.1. We note that in [162] Izumi and Izumi also have given some
other similar variants of Hardy’s inequality so as to use the same in order to estab-
lish some inequalities for Fourier series. For other results, we refer the interested
readers to [162].

In [255] and [337] Pachpatte has established the following variants of Hardy’s
inequality in Theorem 2.4.1.

THEOREM2.6.2. Let p > 1,m > 1 beconstants. Let f be a nonnegative and in-
tegrable function on (0, b), b > O isa constant. Let r be a positive and absolutely
continuous function on (0, ). Let

p_rx 1

l+ mx r(_x) = o (263)
for almost all x € (0, ) and for some constant « > 0. Then
b
/ xT"FP(x)dx
0
p porb _ml 1 X x P
< {a(m_1>} /0 x {@ r(x)f(x)—r(i)f<§) } dx, (2.6.4)

where
Flx) = i Trf@)
r(x) x/2 t

dr.
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PROOF Integrating by parts the left-hand side in (2.6.4) we obtain
b
/ x"FP(x)dx
0

—m+1 b
[z

p b —m+1 1 X prl d
+—m 1/~ e ){r(x)f(x)—r<2>f<§)} (x)dx
b
_ —m+1" (x) 14
il A AL (2.6.5)

From (2.6.5) we observe that

b
p r@| _,
/0[1+m 1 r():| FP(x)dx
b
p —m\(P=1/p p-1
g(m—1>/o[(x ) Fr]

% |:(x ) (p— 1)/P —mr( )

r(x) f(x) - ( )f(%)udx

(2.6.6)

From (2.6.3) and using Holder’s inequality with indigesp/(p — 1) on the right-
hand side of (2.6.6), we obtain

b
/ xMFP(x)dx
0

b (p=1/
o[ rerma]
b 1/
x{/o x—m[ (1) r(x)f(x)—r<x>f<%> de} " (2.6.7)

Dividing both sides of (2.6.7) by the first integral factor on the right-hand side
in (2.6.7) and taking thepith power on both sides we get the desired inequality
in (2.6.4). The proof is complete. O

REMARK 2.6.2. Ifwetakein Theorem 2.6.2(x) = 1,a = 1 and—m = s where
s < —1is a constant, then we get the inequality in Theorem 2.6.1 given in [162,
Theorem 2].
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THEOREM 2.6.3. Let p > 1, m > 1 be constants. Let f be a nonnegative and
integrable function on (0, ), 0 < b < co. If F(x) is defined by

x '
F(x) =/ 1'< &ds) dr (2.6.8)

28 \Jij2 §

for x € (O, b), then

b 2p b
/x_’"F”(X)dx<<L> /x_’” f(x)—f<£>
0 m—1 0 4

PROOFE Integrating the left-hand side in (2.6.9) by parts we have

14
dv.  (2.6.9)

b
/ x"FP(x)dx
0

—m+1

b p
_m—le(b)+<m—l>

b X x/2
X/ x—m+1Fp—l(x)|:E &ds_}if &dsi|dx.
0

X Jxpp s 2x/2 x4 S

(2.6.10)

From (2.6.10) and using Holder’s inequality with indigesp/(p — 1) we observe
that

b
/xfme(x)dx
0
b
(1)
m—1 0
b X
<( )4 )/ x—me—l(x){/ |f(S)|dS}dx
m—1/ Jo x4 S
-(+51)
S \m-1
b X
X/Q [(x—m)(p—l)/pr—l(x)]|:(x—m)—(17—l)/ﬂ+1/x |f§S)|ds]dx

/4

ds|dx

xMFP1(x)

O /"/Zf(s)
LACUP :

x/2 S /4
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» b —(-b/p
([ oroe]
m—1 0
b X p 1/p
X [/ x_m{/ RAC ds} dx:| . (2.6.11)
0 x/4 S

Dividing both sides of (2.6.11) by the first integral factor on the right-hand side
in (2.6.11) and taking theth power of both sides we get

b P rb X p
f XTMEP(x) d < <L> / xm{f 'f(—s)'ds} dv.  (2.6.12)
0 m—1/ Jo x4 S
Now, integrating by parts the integral on the right-hand side in (2.6.12), we have
b X p
/ x_’"{/ If(s)lds} dr
0 x/4 S
—m+1 b
__b {/ |f ()] ds}+< p >
m—1Jpa s m—1
b X p—1
ey O] 1 SN PYE
<L e o= 2l () e

(2.6.13)

From (2.6.13) and using Holder’s inequality with indigesp /(p — 1) we observe

that
/()bxm{/xj4|f£s)|ds}l’dx
(e [l e
X [(x_m)—(P—l)/P-i-l Fx) — f(%)H "
< (ﬁ)[/obx—mullfisn ds}ﬂdx]w—l)/p
[ [ lpeo-1(3)

p 1/p
dx] . (2.6.14)
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Dividing both sides of (2.6.14) by the first integral factor on the right-hand side
in (2.6.14) and taking thgth power of both sides we get

b [T 1fG) >1’
" ' ds | dx
/0 * </x/4 s ’
p \' (" . x
“(w2) [l

Using (2.6.15) in (2.6.12) we get the desired inequality in (2.6.9). The proof is
complete. 0

P
dx. (2.6.15)

Motivated by Hardy’s inequality, in 1987, Pachpatte [254] establishes the fol-
lowing inequalities.

THEOREM 2.6.4. Let m # 1 and p; > 1, j =1, 2,3, be constants. Let f;(x),
j =1,2,3, benonnegative and integrable functions on (0, co) and let r; (x), j =
1, 2, 3, be positive and absol utely continuous functions on (0, co). Let

2p; \ i) 1

1+ (i)x / > — form>1, (2.6.16)
m—1) rix) o
2p; \ T 1

1- (i)xj— > form<l, (2.6.17)
1-m) ri(x) = B;

for almost all x > 0 and for some positive constants o, 8, j =1, 2, 3. If F;(x),
j=1,2, 3, aredefined by

r':(Lx) Jo 7r"(t)tfj(’) dt form>1,
J
Fi(x)=

1 poori(n)fi®)
mfx %dt fOI’m<1,

(2.6.18)

then

/ [ EP O ERE ) + RO FLE G0 + FEGO FA )] dy
0
3

ij 21 oo —m 2D]
g;[{)‘<|m—1|)} /Ox f; (x)dxi|, (2.6.19)

where 1 = max{e;, 8;} for j = 1,2, 3. Equality holds in (2.6.19)if f;(x) =0,
j=1,23.
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THEOREM2.6.5. Letm, p;, f;,r; beasin Theorem2.6.4.Let

4p; \ i) 1

1+ (i>x]— > form>1, (2.6.20)
m—1/ r;j(x) o
4p; \ i) 1

1- (i>x1— > form <1, (2.6.21)
1-m/) rj(x) ,Bj

for almost all x > 0 and for some positive constants aj, ﬁ}, i=123.1fF;(x),
j=1,2,3,aredefined by (2.6.18),then

f T FPY ) P20 PP o[ FP () + FJ2(x) 4+ F52(x) ] dx
0

3 Ap;
A AP PIL 4
<Z[{A(|m_l|)} /0 X" (x)d.x:|, (2.6.22)

where A = maxXa;, B} for j = 1,2,3. Equality holds in (2.6.22) if
fix)=0,j=123.

REMARK 2.6.3. Inthe special caseswhep=p >1, fj=f, F;=F,r; =1,
A =1 andA’ =1, the inequalities established in (2.6.19) and (2.6.22) reduce,
respectively, to the following inequalities

© —m 2 2p 2 oo —m g2
f x "FP(x)dx < / x " FAP(x)dx (2.6.23)
0 lm — 1 0
and
> —m 4 4P oo —m ¢4
/ xMF*P(x)dx < / x7 P (x) dx. (2.6.24)
0 lm — 1] 0

We note that the inequalities obtained in (2.6.23) and (2.6.24) are the slight vari-
ants of Hardy'’s inequality in Theorem 2.4.2.

THEOREM2.6.6.Letm#1and p; > 1,i =1,...,n, be constants. Let g;(x),
i =1,...,n, be nonnegative and integrable functions on (0, co) and let k; (x),
i =1,...,n, bepositive and absolutely continuous functions on (0, co). Let

; k! 1
1+ np xﬂ >— form>1, (2.6.25)
m—1) ki(x) "~ v

N 1
1o (P KD L <1 (2.6.26)
1-m k,'(x) 5,‘
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for almost all x > 0 and for some positive constants y;, 8;, i =1, ..., n. If G;(x),
i=1,...,n,aredefined by

(2.6.27)

X ki (1)gi (1)
G| 7 (X) Jo 2 dr form > 1,
l [ kW@ g form <1
k,-(x) X t !

then

/Oox—’"]_[c;{’f(x)dx
0

i=1

n

1 npi npi o) -
gﬁg[{’“‘(w—u)} /0 gi”de] (2.6.28)

1

where © = maxy;, 8;} for i =1, ..., n. Equality holdsin (2.6.28)if g;(x) =0
i=1,...,n.

REMARK 2.6.4. In the special case when=p >1,g,=¢,Gi =G,k =1
andu = 1, the inequality established in (2.6.28) reduces to the following inequal-

ity
S np \" [®
/ xMG"P (x)dx < / x"g"P(x)dx,
0 Im — 1] 0

which in turn is a variant of Hardy’s inequality in Theorem 2.4.2.

The following inequalities established by Pachpatte in [254] have their origins
in the variant of Hardy’s inequality given by Izumi and Izumi in Theorem 2.6.1.

THEOREM 2.6.7.Let m > 1 and p; > 1, j = 1,2,3, be constants. Let
hj(x), j =1, 2,3, benonnegativeand integrablefunctionson (0, ) andlet z; (x),
j =1,2,3, bepositive and absolutely continuous functions on (0, b). Let

2p; ) Z () i
1+<m 1 Z](X) (2.6.29)

for almost all x € (0, b) and for some positive constants n;, j =1, 2, 3. If H; (x),
j=1,2, 3, aredefined by
1  zj(Oh;(1)

Hj(0)= zj(x) Jx/2 t

dr, (2.6.30)
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then

b
/ x M[HPM o) HY? (x) + HY?(x) HY® (x) + HE® (x) H]* (x) ] dx
0

bl

J
b1 Vs NEATHE:
< lggloeme - Gn()

THEOREM2.6.8. Letm, p;, h;, z; beasdefined in Theorem 2.6.7.Let

2p;
} dx:|. (2.6.31)

4pj ) g™ 1
1+ (m e e (2.6.32)

for almost all x € (0, b) and for some positive constants &, j =1, 2, 3. If H;(x),
j=1,2, 3, defined by (2.6.30),then

b
/ xTMHPN ) HY? () HY? o [H (x) + HY? (x) + HY*(x) ] dx
0

3

e ()]

B 1
x/o x—m{zj(x) zj(x)hj(x)—zj-(%)hj(%)

REMARK 2.6.5. In the special cases wheny = p > 1,h; =h,H; = H,
zj =1,n; =1 andg; =1, the inequalities established in (2.6.31) and (2.6.33)
reduce, respectively, to the inequalities

b 2p b 2p
/meZP(x)dx<<2—p> /x*m h(x)—h(f) dv, (2.6.34)
0 0

4pj
} dx] (2.6.33)

m-—1 2

and

b 4p b 4p
/x—mH4P(x)dx<<4—"> /x—m h(x)—h(%) dv. (2.6.35)
0 0

m—1

We note that, by settingm =sand 2 =p >1in(26.34)and g=p > 1
in (2.6.35), the inequalities obtained in (2.6.34) and (2.6.35) reduce to the inequal-
ity established by Izumi and Izumi in Theorem 2.6.1.
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THEOREM2.6.9. Let m >1and p; > 1,i =1,...,n, be constants. Let ¢;(¢),
i =1,...,n, benonnegative and integrable functionson (0, ») and let w; (x), i =
1,..., n, be positive and absolutely continuous functions on (0, b). Let

i i 1
1+ ( P )x wi) 1 (2.6.36)
m—=1) wi(x)" v
for almost all x € (0, b) and for some positive constants y;,i =1, ..., n. If Q;(x),

i=1,...,n, aredefined by

1 T w;i()gi (1) "
w;i(x) Jx 2 t

Qi(x) =

, (2.6.37)

then

b n
/ x M ]_[ O (x) dx
0 i=1

b Gl

b —m 1 . ) XN
X/c; X {m)wz(x)ql(x)_uh(E)%(E)

REMARK 2.6.6. We note that in the special case when=p > 1, ¢; = ¢,
0; = 0, w; =1 andy; = 1, the inequality established in (2.6.38) reduces to the

q(x) — q —
2

b np rb
/ ‘xfm an(x)dx < < np ) / )C7m
0 m—1 0

which in turn, by setting-m = s andnp = p° > 1, reduces to the inequality of
Izumi and Izumi given in Theorem 2.6.1.

4]

(2.6.38)

np
dx?

PROOFS OF THEOREMS 2.6.4-2.6.9. Let O< a < b < oo and define, for
m>1,

_ 1 @ fi@)
Fiot) = 5 / S, (2.6.39)
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with Fjo(x) = F;(x) for j =1,2,3. From (2.6.39) and using the elementary in-
equalitiescica + a3 + cac1 < €2 + ¢5 + ¢3 (for c1, ¢z, c3 real), we observe that

FPL)FY2(x) + F32 () FLE (x) + FR (o) FM (x)

< PP () + FP2(x) + FEP (x). (2.6.40)

Multiplying both sides of (2.6.40) by~ and integrating frona to » we have
b
/ x M FPN O FY2 () + FL2(0) F32(x) + F32(0) F{H(x) | dx
a

b b b
é/ x_mFlzapl(x)dx—i—/ x_szzapz(x)dx—i—/ x_mFgaps(x)dx.
(2.6.41)

Integrating by parts we have
b .
/ x_'"ij’(x)d.x
a

x—m+l 2 b
= F./
[_m +1 /4 (X)i|a

b ,—m+1
X 2pi—1
- ST

1 HOSOY (060
Al () el 2w e

(2.6.42)

for j =1, 2,3. Sincem > 1, from (2.6.42) we observe that

b 2[)] I"}(X) —m 2Pj
/;|:1+<m_1>xrj(x):|x F2P (x) de

2, b . ) (o ) -
< ( Dj ) / [(xm)(zp_/ 1)/(2P_/)fj (x)][(xm) @p; l)/(ZP-’)FJ?a’)’ l(x)] dx.
a (2.6.43)

From (2.6.16) and applying Hélder’s inequality with indicgs;22p;/(2p; — 1)
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on the right-hand side of (2.6.43), we obtain
b —m 2Pj
; X Fja (x)dx

2p; b 2 Vi)
<Olj<m_1){/a xTM T (o de

b - @p;~1)/2p))
—m J
X {/ X Fja (x)dx}

a

(2.6.44)

Dividing both sides of (2.6.44) by the second integral factor on the right-hand side
of (2.6.44) and raising both sides to thg;2h power we obtain

b . 2pj b )
/ x—me”f(x)dxg{aj< 2pj )} / X £ () (2.6.45)
a 4 m—1 a I

for j =1, 2, 3. Using (2.6.45) in (2.6.41) we have

b
/ x PPN FY2(x) + F32 () L2 (x) + FR2(x) U (x) ] dx

3 . 2pj b ‘
ZH%-(mz’ifl)} /x—'"ff”f(x)dx]. (2.6.46)

Jj=1

N

From (2.6.46) we have

b
/ x PPN FY2(x) + F32(x) F32 (x) + FL2(x) FJ(x) ] dx

: 2pj roo ‘
<Z[{a;<mzlifl>} fo x—mf]_zl’f(x)dx}. (2.6.47)

Jj=1

Leta < c < b. Then, from (2.6.47), we have

b
/ x M FPN ) FY2(x) + FY2 () FL2 () 4+ FA2(x) FH(x) ] dx

2p; 2p;j oo w20
H%‘(m_’l)} /Ox f,-”(x)dx}. (2.6.48)

33

3
1

J
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Lettinga — 0 on the left-hand side of (2.6.48) we have

b
/ x M[FPP O FY2 () + FY2(0) FP (x) + FY2 () F* (x) ] dx

3 2p: \12Pi [ _
S C

j=1

Since this inequality holds for arbitrary<©c¢ < b, it follows that

/ xMFPM O FY2 () + FY2(x) 3P (x) + FY2 () F (x) ] dx
0

3 120 oo
<Z[{a,-<mzlifl>} p/O xmf/?p'/(x)dxj|. (2.6.49)

j=1

Let 0<a < b < oo and define, fom < 1,

1 [(Prif
Fin) = s / ’-’(t)tff(” o, (2.6.50)

with Fj(x) = Fj(x) for j =1, 2, 3. Now, by following the same steps as in the
proof of inequality (2.6.49) with suitable modifications, we obtain

foo x M FPM ) FY2 () + FL2(0) FP (x) + F52(0) F{* (x)] dx
0
3

) 2pj oo )
gZHm(mzlifl)} /Ox—mff”f(x)dx]. (2.6.51)

j=1

From (2.6.49) and (2.6.51), we obtain

/oo x MFPM O FY2 () + FY2(x) 3P (x) + FY2 () F (x) ] dx
0

3 2p;
2Pj bi e —m 2P
gZHA(m—u)} /0 iy (’C)d"]'

The proof of Theorem 2.6.4 is complete.
In order to establish inequality (2.6.22) in Theorem 2.6.5, letd< b < oo
and defineF;, (x) by (2.6.39). From (2.6.39) and using the elementary inequal-

ities c1caca(c1 + c2 + ¢3) < 3(cacz + cacz + c3c1)?, (c1c2 + cacs + cze1) <
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c% + c% + c% and(c1 + c2 4 ¢3)2 < 3(05 + c% + cg) (for c1, c2, c3 real) (see [211,
pp. 201, 203]), we observe that

FM ) F32(x) 320 [FIN(x) 4+ FL2(x) + FE2(x0)]

FRPH () + FaP2(x) + FaP3(x). (2.6.52)

Multiplying both sides of (2.6.52) by ™" and integrating frona to b we have
b
/ xTMFIN ) Fy2 () FRRO[FL ) + FL2 () + FS2(x) ] dx

b b b
g/ x_meapl(x)dx—f—/ x—sz“u”z(x)der/ X" F3P3(x) dx.

(2.6.53)
The rest of the proof of Theorem 2.6.5 follows exactly the same steps as in
the proof of Theorem 2.6.4 below inequality (2.6.41) with suitable changes, and

hence we omit the further details.
Let 0 < a < b < oo and define, forn > 1,

R T MO O)
Gm(x)—ki(x)/u S (2.6.54)

with Gjo(x) = G;(x),i = 1,...,n. From (2.6.54) and using the elementary

mequalltles Ty e < 12 ¢ and g )" <Y e (for
c1, .. > Oreal forn > 1) (see [211]), we observe that

1/nqn n
1 i
HG” (x) = HHG” (x)} }gzigqj (x). (2.6.55)

Multiplying both sides of (2.6.55) by ™" and integrating frona to b we have

/ _mHGp’(x)dx< / _’”{Zanl(x)}

Now, by following the same steps as in the proof of Theorem 2.6.4 below in-
equality (2.6.41) with suitable modifications, we obtain the desired inequality
in (2.6.28). The proof of Theorem 2.6.6 is complete.
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From (2.6.30) and using the elementary inequaliyp + coc3 + c3c1 < c% +
2+ c2 (for c1, ¢z, c3 real), we observe that

HP* (x) HY2(x) + HY?(x) HL® (x) + HE? () HI (x)

< H{PH () + HY2 () + HYP(x). (2.6.56)

Multiplying both sides of (2.6.56) by~ and integrating from 0 té we have
b
/ xT"[HPM 0 HY? (x) + HY? (x) HY® (x) + HE? (x) H{* (x) ] dx
0

b b b
<f x*me”l(x)der/ x*msz”z(x)dij/ X" HZP (x) dx.
0 0 0

(2.6.57)
Integrating by parts we obtain
b .
/xf’"H/p"(x)dx
o ‘
x—m+l 2p; b
=[],
2p; b m 1 ) . (X (X 2pj—1
+<m_1)/0x o) Zj(X)hj(x) — z; > hj > Hj (x) dx
2p; b Zi(x) 5,
—(L)/ LT PP ) d (2.6.58)
m—1)Jo Zj(x) J

From (2.6.58) we observe that
b 2p; 75 (x) 2.
/0 [ (m—1>xzj(X) *UH T
b
<< 2pj )/ [(x_m)—(zn,-—n/zm-x_m 1
m—1/Jo zj(x)

z,-(x)hj(x)—z,(%)hj(%) ]

x [(emm) DRI g ] di. (2.6.59)

X
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From (2.6.29) and using Hdélder’s inequality with indicgs; 22p; /(2p; — 1) we
obtain

b —m 2Pj
/x Hj (x)dx
0
2pi
gnj(m—jl)
b1 x X
A lsm e -u(3)n(3)

b . 2p;—~1/2p))
X {/ x_mij’(x)dx}
0

2pj 1/@pj)
|l

(2.6.60)

Dividing both sides of (2.6.60) by the second integral factor on the right-hand side
of (2.6.60) and taking the2 th power on both sides of the resulting inequality,
we obtain

b 2
/ x_mij’(x)dx
0

2p; 2p;
i)
X/o ! {Zj<x) Z’(x)h’(”_z’<5>h’<§)

for j = 1,2,3. Using (2.6.61) in (2.6.57) we obtain the desired inequality
in (2.6.31). The proof of Theorem 2.6.7 is complete. O

2p;j
} dx (2.6.61)

The proofs of Theorems 2.6.8 and 2.6.9 follow from the proof of Theo-
rem 2.6.7 and by similar arguments as in the proofs of Theorems 2.6.5 and 2.6.6
and with suitable modification. Here we omit the details.

2.7 Multidimensional Hardy-Type Inequalities

In view of wider applications, Hardy’s integral inequality has been generalized in
various directions. The present section is devoted to the multidimensional Hardy-
type inequalities investigated by Pachpatte in [293,315,333,341]. The analysis
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used in the proofs is based on the applications of well-known Fubini’'s theorem
and Jensen’s integral inequality.

In [315] Pachpatte established the following Hardy-type integral inequalities
involving functions of two independent variables.

THEOREM 2.7.1. Let f be a nonnegative integrable function on A = (0, a) x
(0, b), where a, b are positive constants, and r1, ro be positive and absolutely
continuous functions on (0, co) such that

P 1
P rz(y ) 1 2.7.2)

p— p—1" r2(y) /3

for almost all x, y € (0, c0) and some constants « > 0,8 > 0,p > 1. If F is
defined by

F(x,y)=

* /’ ri(s)ra(o) f (s, 1) dr ds 2.7.3)
y

r1()r2(y) Jxj2Jy2 st

for (x,y) € A, then
a rb p
LR o
0Jo xy
2p
p
R
/“/” o ENEAWE
x 0Jo {Xyrl(X)rz(y) rz(y)(rl(x)f(x,y) r2<2)f<2,y)>
p
—re(3) (s (x:3) =(3) (5. 3) || e

(2.7.4)
THEOREM2.7.2. Let g be a nonnegative integrable function on A and the func-
tions r1, r2 and the constant p be as defined in Theorem 2.7.1 satisfying the
conditions (2.7.1)and (2.7.2).If G is defined by

P ri@)rags. ) oo

1
G = o) /x/z 0 5t

(2.7.5)
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for (x,y) € A, then
IR
0JO Xy
2p
p p
comr(-2)

<[ [ s s n —n(3)e(50)
o Jo xyri(x) 1ELE Y N2)8\ 2

THEOREM 2.7.3. Let & be a nonnegative integrable function on A and the
functions r1, r2 and the constant p be as in Theorem 2.7.1 satisfying (2.7.1)
and (2.7.2).If H isdefined by

H(x,y):#/x/‘y Mdtds (2.7.7)
ri()r2(y) Jo Jys2

P
} dy dx

p
} dydx. (2.7.6)

st

for (x,y) € A, then
[L1 oo
o Jo Xy
2p
<<aﬁ>1’< P )
p—1

x/a/b{ ! ro(y)h(x,y) —r <X>h<x X)
0 Jo Lxyra(y) 2L YT 5 "2

REMARK 2.7.1. The inequalities (2.7.4), (2.7.6) and (2.7.8) extend the result
provided in [255, Theorem 1, with = m therein] to the case of two independent
variables. In the special casergfx) = r2(y) = 1,a = 8 =1, inequalities (2.7.4),
(2.7.6) and (2.7.8) reduce to

a pb 14
// {F(x,y)} dy dx
0Jo Xy
2
(%)
p—1
a pb 1
% _
INAts

p
} dydx. (2.7.8)

p
dy dx,

(2.7.9)

£ y) —f<%,y> = f(x, %) +f(§ %) }
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[ L1952 we
<5 L

[l o

o) [ e a(3)

respectively. Inequalities (2.7.9)—(2.7.11) can be considered as the two indepen-
dent variables generalizations of the slight variant of Hardy’s inequality given in
Theorem 2.6.1.

X
g(x,y)—g<§,y>

p
} dy dx, (2.7.10)

N

P
} dy dx, (2.7.11)

PROOFS OFTHEOREMS 2.7.1-2.7.3. Forf = 0 inequality (2.7.4) is trivially
true. We assume that is positive and denote by the integral on the left-hand
side of (2.7.4). By using Fubini’'s theorem (see [3, p. 18]), we observe that

I =fa(xr1(x))_p11(x)dx, (2.7.12)
0

where

b X p
zl(x):f y”{ ! /y r2(”</ rl(s)f“’”ck)dr} dy. (2.7.13)
0 r2(y) Jyp2 t x/2 s

By keepingx fixed in (2.7.13) and integrating by parts, we have the relation

—p+1 b x P
I(x)= _b ! { ! r2(t) |:/ ne)fes.n ds:| dt}
p—=11rab) Jp2 t x/2 §

Lo y,,+1{ 1o rz(l)[ / ri(s) (s, 1) ds} dt}“
p— 1 r2(y) y2 1 x/2 s
[rz(y)<r2(y) /" r1(s) f(s,y) ds
y x/2 s

1r2(y/2) [ rals)f(s,¥/2) ds)
T2 )2 x/2 s

) Y rz(t)(/" rl(s)f(s,t>ds) dt] dy.
y2 1 x/2 s

(2.7.14)

1
X
r2(y)
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implying

b ! y X 14
/ (1+ P y”z(y)>yp{ 1 V2(I)|:/ ri(s) f (s, 1) dsi| dt} dy
0 p—1"ray) r2(y) Jy2 t /2 s

P ”{ym[ 1o rz(t)< / ra(s) f (s, 1) ds) dtT‘l
r—1Jo r2(y) Jyp2 t x/2 s

y 1 ’rz(y)/x ri(s) f(s, y) ds
x/2 s

2 x/2 S

From (2.7.1), (2.7.15), using Hdlder's integral inequality with indices
p/(p—1) we get

(2.7.15)

ap -1
L) < ——1PP"(x)
p—1

b X
y |:/ { 1 ‘rz(y)/ r1(S)f(S»y)ds
o Lyra(y) x/2 s

<y>/x ri(s) f(s,y/2)
—-r2| = ——— s
2 x/2 N

Dividing both sides of (2.7.16) byl(p_l)/p(x) and raising the result to thgth
power we get

ap p/b _ { 1
he < 22 p
1) (1’ - 1) 0 r2(y)

e

(2.7.16)

rz(y)/x rl(S)f(S,Y)ds
x/2 s

<y>/x r1(s).f (s, y/2)
-\ = —— " ds
2 x/2 N

Substituting (2.7.17) in (2.7.12) and using Fubini’s theorem, we obtain

ap \? [
1< ( ) f v Iy dy, (2.7.18)
p—1 0

P
} dy.

(2.7.17)
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where
a A |m(x, )| )?
— py_ v s 70
12(”_/0 g {rl(X)rz(y)} d (2.7.19)
X , X , 2
mx, y) = ra(y) /x/zw‘“ _rz@ fx/zwd‘“

(2.7.20)

Now, keepingy fixed in (2.7.19), using the relatiofin(x, y)| = m(x,y) x
sgrm(x, y) and integrating by parts, we have the equality

a—l’“{ Im(a, y)| }"
—p+1|r@ray)

L P “x_,,H{ m(x, )| }P‘l

L(y) =

r—1Jo ri(x)ra(y)

Sgnm(x, y) X X
X m[rz(y)(rl(ﬂf(x, y) - rl(z)f(z, y))

A3 nr(s3)-n(3)7(33)) ]

_p f”x_pﬂ{ jm(x, y)| }" Frio) m(x, y)sgn(x.y)
0 ri(x)ra(y) r1(x) ri(x)ra(y)

p—1
(2.7.21)

which implies
/'a<1+ 14 xri(X)>x_,,{ Im(x, y)l }pdx
0 p—1 ri(x) ri(x)ra(y)
P “[x_,,H{ m(x, y)| }"‘1}
p—1 ri(x)ra(y)
1
X [7 rz(y)<f’1(X)f(x y)—Vl< )f( ))
xr1(x)ra(y)
“r(3) (r00r(3) = (3)(3:3))

(2.7.22)
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From (2.7.2), (2.7.22), using Holder's inequality with indigesp/(p — 1), we
get

I(y) < PP 1r=0r
p—1

a 1
-p)y____—
X[/o ! {m(x)rz(y)
Dl -a(3) (3 )

Dividing both sides of (2.7.23) bg/z(”_l)/”(y), and raising to thepth power, we
get

p
L) < (’3—”>

rz(y>(r1(x>f<x, ) — r1<§)f(§, y))
P 1/p
f ol

(2.7.23)

p—1

@ 1 x X
X/O X p{m rz(y)<r1(x)f(X,y)—r1<§>f<§,y>>

—(3) (re0r(x:3) = (3)r(3:3))|| o

(2.7.24)
Substituting (2.7.24) in (2.7.18) and using Fubini's theorem we get (2.7.4), which
completes the proof of Theorem 2.7.1.
The proofs of Theorems 2.7.2 and 2.7.3 follow by the similar arguments as
in the proof of Theorem 2.7.1 with suitable modifications. Here we omit the de-
tails. |

In the following theorems we present Hardy-type integral inequalities involv-
ing functions of several independent variables. In what followsBleind H be
subsets of the-dimensional Euclidean spa@ defined byB = {x e R": 0 <
x <oo} and H = {x e R": a < x < b}, where Qa,b € R" anda > 0. For
the functionsu(z) and v(z) defined onB and H, respectively, we denote by
[pu(z)dz, fo Lu@ dz and |}, v(z) dz, fo , v(z) dz then-fold integrals

0o oo y1 Yn
f u(zg, ..., Zn) Az, - -+ dzg, / f u(z1, ..., zn) dzy --- dza
X1 Xn
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and

by b, y1 Yn

// v(z1, ... s 2n) Az - - - dzg, // V(21 .. .5 2n) 2 - - - 21,
ay an X1 Xn

respectively, where; < y; anda; < b;. Hereafter, in this section without further
mention, we assume that all inequalities between vectors are componentwise and
all the integrals exists on the respective domains of their definitions.

In 1992, Pachpatte [293] has established the following multivariate version of
Hardy'’s integral inequality given in Theorem 2.4.1.

THEOREM2.7.4. Let p > 1 bea constant. Let f(x) be a nonnegative and inte-
grable function on B, and define

F(x) =/ fdy, xeB, (2.7.25)
BO,X
then
n -P np
/(ﬂx,) FP(x)dx < <L> / £P(x) dr. (2.7.26)
B\,_; p—1 B
Equality holdsin (2.7.26)if f(x) = 0.

PrOOF Leta = (a1,...,a,) € B,b=(b1,...,b,) € B,0<a <b < o0, and
define

Fy(x) :/ f»)dy, xeB. (2.7.27)
Ba.x

From (2.7.27) and by Fubini's theorem [3, p. 18], we have

[

=

b1 bp—1
=/ / (x1x2- - xp—1)" P
ai an—1
by Xn X1
XU x;ﬂ(/ (/
An An ai

Xp—1 P
/ (51, ..., 8n—1,8p)dsy—q- -+ dsl) dsn) dxn}dx,,_l-~- dxq.
" (2.7.28)

n

4
xi) FP(x)dx
1
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By keepingxi, ..., x,—1 fixed and integrating by parts, and using the fact that
p > 1 and Holder's inequality with indiceg, p/(p — 1), we see that

by Xn X1 Xn—1 P
/ xn_p{/ (/ / f(S1,...,sn_l,sn)dsn_lmdS1>dsn} dx,

b*p+1

n p—1
__p+1{/ (/ /an ) f(sls'* , Sp— l,sn)dsn 1 dSl)dSn}

b)l

+ pP 1 P+1{/ </ / f(S]_,.. y Sn— 1ssn)
p—1
X Osp—q--- dSl) dsn}
X1 Xn—-1
X {/ / f(S]_, ey Sp—1, xn)dSnfl‘-. ds1}an
aj an—-1
p )
< p—1/ ’ {/ (/ / SOt
p—1
X dsp—1--- dSl) dsn}
X1 Xn—1
x{/ / f(Sl,...,Snl,xn)dSn1"'dsl}dxn
al an—1
by Xn X1 Xn—-1
< Pl{/ x,,_p{/ (/ / f(s1, ..., 8501, 5p)
p— a a, ay ap—1

P (p=1)/p
X ds;—1--- dsl> ds,,} dx,,}

by ( px1 Xn—1 p 1/p
X{[ {/ / f(sl’--wsn—lvxn)dsn—l"'dsl} dxn} .
An ay ap—1

(2.7.29)

Dividing both sides of (2.7.29) by the first integral factor on the right-hand side
of (2.7.29), and raising both sides to thth power, we get

by ,
IR A
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p P by x1 Xn—1 p
< (—) / {f / fs1, o0, Sn—1, xp) Osy_g -+ O|S1} dx;,.
p—1 an ay an-1

(2.7.30)

Substituting (2.7.30) in (2.7.28) and using Fubini’s theorem we have

n P
/ [[x] Flede
Babr \jz1
p p by bn-1
< (_) f [ (_xl_xZ...xn_l)_p
P — 1 ay an—1
by X1 Xn—1 p
X{/ {/ / f(sl,--~a5n—1’xn)d5n—l"'dsl} dxn}
an ai an—1

X Oxy_p--- dxg

p p by by—2 by
= — 1X2 - Xp—
(xax2- - xp—2)" "
p—-1 ay ap—2 Jap
by—1 —p Xn—1 X1
x / i f /
ap—1 ap—1 ai

Xn—2 p
/ f(s1, .0, 80—2, Sp—1, xn)dsn—Z"‘ dS]_} dsn—l} dxn—l}
an—2

x dx, dx,_2--- dxq. (2.7.31)

Now, by following exactly the same arguments as above, we obtain

bn-1 —p Xn—1 x1
/ xh / / »
an—1 an—1 ai

Xn—2 )4
/ f(s1, 0, 8n—2,8p—1, xX) dsy—2- - dS1> dsnl} dx,—1
a

n—2
p Xn—1 X1
G
p—1 an-1 a
Xn—2 p

: / fGs1, .o 802, Xp—1, Xp) ds;,—2--- dS]_} dx, 1.

anp—2
(2.7.32)
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Substituting (2.7.32) in (2.7.31) we have

n -pP
/ ( 1_[ xi> FP(x)dx
Ba.b i=1

i=

2
< P '
< —
p—1
by by—2 by
X / / (xl...xn_z)_p
ai ap—-2 Jdap

bn-1 x1 Xp—2 P
X / / / f(s1, .0, 80—2, Xp—1, xn)dsn—Z"' ds1 dx,_1
ap—1 ai Aap—2

x dx, dx,_2--- dxq. (2.7.33)

Continuing in this way we finally get

n -P np
/ <Hxi) FP(x)dx < (L) £P(x) dx. (2.7.34)
Ba‘b p - l B(z.b

i=1

Letc=(c1,...,¢y) € Banda < ¢ < b. Then, from (2.7.34), we have

n P np
/ (Hx,-) FP(x)dx < <L> / £P(x) d. (2.7.35)
Bey \ i1 p—1 B

Lettinga — 0, thatis,a; — 0 on the left-hand side of (2.7.35) we have

n -p np
p
] Frod< | —— P (x) dx. 2.7.36
/B<]1x> (x) (p_1> fo ) (2.7.36)

Since this inequality holds for arbitrary©c¢ < b, it follows that

n 4 np
/(Hxi) FP(x)dx < (L) / £P(x) dx. (2.7.37)
B\, 1 p—1 B

The proof is complete. O

The following theorem established by Pachpatte [293] is a multivariate version
of a slight variant of Levinson’s inequality given in [190, Theorem 1].
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THEOREM 2.7.5. Let ¢ (u) > 0 be defined on an open interval, finite or infinite,
and at the ends of the intervals, let ¢ takeits limiting values, finite or infinite. For
some p > 1, let ¥/ (u) be convex. If, for x € B, the range of values of f(x) lies

in the closed interval of definition of ¢ and ¢ (f(x)) is integrable on B and if
F(x) isasdefined in Theorem 2.7.4,then

A¢<(ﬂxi)_lF(x)) dx < (pL_1>np/B¢(f(x)) dx. (2.7.38)

Equality holdsin (2.7.38)if ¢ (f(x)) = 0.

PROOF Lety (1) = {¢(u)}¥? > 0. Theny (1) is convex. By Jensen’s inequality
(see [174, p. 133]), we have

i -1
W((Hn) F(X)) < (H%) / v (f(y)dy. (2.7.39)
i=1 Bo.x

Applying (2.7.26) with f (x) replaced by (f(x)) we have

f{(ﬂ)/ vs <y>>dy}p <(-25)" [vre) e

(2.7.40)
Using¢ = ¥” and (2.7.39) we have

¢(<§xi>lF(x)> - iw((ﬁx,)l) N f(y)dy}p
{(sz) /BOA f(y))dy}p. (2.7.41)

From (2.7.41) and (2.7.40), we observe that

AR ) o]
() e
< )"P/B¢ (f(x)dx
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The proof is complete. |

REMARK 2.7.2. We note that in [33, p. 465] Boas and Imoru have obtained a
two-dimensional version of Hardy’s inequality in Theorem 2.4.1 by using differ-
ent analysis. Here the approach to obtain a multivariate version of a slight variant
of Hardy’s inequality is more direct and quite elementary.

In [341] Pachpatte has established the following multivariate variants of
Hardy’s inequality.

THEOREM2.7.6. Let p > 1 be a constant and f(x) be a nonnegative and inte-
grablefunction on By ,. If

Fo= [ ford venu, (2.7.42)
then
n n n p
/ (Hxil>F"(x)dx Sp"”/ (l_[xil)|:<l_[xi |ngi)f(x)] dx.
Bra\j=1 Bia \ ;=1 i=1
(2.7.43)

ProoOF If f is null, inequality (2.7.43) is trivially true. We assume thétis
not null. Denote byl the integral on the left-hand side of (2.7.43). By Fubini’'s
theorem [3, p. 18] we observe that

ay an—1 [ "
IZ/ / (Hxil>ln dxy—1- - dxg, (2.7.44)
1 1 i=1

where

Aan Aan ai
1 Xn X1
ap—1 P
/ fOa, oo, Yn—1, yn)dyn—l"' d)’1> dyn> dx;,. (2745)
Xn—1

By keepingxy, ..., x,—1 fixed in (2.7.45) and integrating by parts, we have

an ai
<Jiosea( ([
Xn X1



2.7. Multidimensional Hardy-Type Inequalities 197

an—1 p
/ FOL - yn=1, y) dyp—1 - - dyl) dyn) ]
Xn—1

An An ai
[ (e [ ([
1 Xn X1

ap—1 p—l
/ FOL V=1 Y dyp—1- - dy1> dyn]
Xp—1

n—

ai an—-1
X (_/ / f(yls~--syn—1sxn)dyn—1"' dyl) dyn) dx,,.
X1 Xn—1

(2.7.46)

An

1

From (2.7.46) we observe that

an
-1
I, :pf [x,il’ P (logx,)
1

al ap—1
X(/ / f()’1,,)’n1,xn)d)’nldy1>:|
X1 Xn—1
1 “l
X|:Xn(p )/P/ (/
Xn X1

an—-1 p-1
/ fOL ., Y1, yn) dy,—1 -+ dy1> dyn} dx,.
e (2.7.47)

Now, applying Holder’s inequality with indiceg, p/(p — 1) on the right-hand
side of (2.7.47), we obtain

[ ( 71)/ ai
I < p[f (x,,” p(lng,,)(f
1 x1

an—1 P 1/p 1
/ FO1s ey Yne1, %) dyy_1- - dy1>> dxn] A
e (2.7.48)

Dividing both sides of (2.7.48) by the second factor on the right-hand side
of (2.7.48), and then raising both sides to jite power, we obtain

dn
1, gpP/ x,f_l(logx,,)p
1

ay ap—1 p
X (f / FO1 oy Yn—1, Xn) dyn—1- -~ dyl) dxy.
X1 Xn—1
(2.7.49)
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Substituting (2.7.49) in (2.7.44) and using Fubini’'s theorem we observe that

ay an_n [1—2 L “
1<pl’/l /1 Hxl_ /1 x 7 (10gxn) P T—1 dx, dry_2- - - dxq,
i=1

(2.7.50)

where

ap—1 1 ap—1 ai
In_l - \/ xnil / / o
1 Xn—-1 x1
p

an—-2
/ FOL o Yn—2, Yn—1, Xp) dyp—2- - dyl) dyn—l) dx,—1.
Xn—2
(2.7.51)

Now, by following exactly the same arguments as above with suitable modifica-
tions, we obtain

an—1 1 ai
I—1 < Pp/ x5—1(|09xn—1)p</
1 X1
P

an—2
f FOL o Y2, Xn—1, X)) dy—2 - - - dyl) dx,—1.
Xn—2
(2.7.52)

Substituting (2.7.52) in (5.7.50) and again using Fubini’'s theorem we have

2 ay fan-3 n=3 1
I < pP / l_[xl_
1 1 .
i=1
ap—1 Qn
-1 -1
X / x,f_l (IOQanl)p/ x;f (logx,)? I, _2dx, dx,_1dx,_3--- dxg,
1 1

where

an—2 1 an—2 ai
In_2 - / xn72 / f o
1 Xn—2 X1

an—-3 p
T / SO1, oo, =3, Yn—2, Xn—1, Xn) dyn—S cee dyl) dyn—2> dx, 2.
Xn—-3
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Continuing in this way we finally get

n n p
I< p”p/ ( xi_l) |:(1_[x,- |ng,-)f(x):| dx.
Bia \ ;=1 i=1

This is the required inequality in (2.7.43) and the proof is complete. O

THEOREM2.7.7. Let p > 1 be a constant and f(x) be a nonnegative and inte-
grablefunction on Bg 1. If

F(x)= . f()dy, xe€Boi, (2.7.53)
0,x

/ ( xl._l) FP(x)dx
Bo1 \ ;1

n P
xi_1>|:(l_[xi||0gx,-|)f(x)i| dve. (2.7.54)
1 i=1

<p' /
Boa \ ;

i=

then

n

The proof of this theorem follows by the same arguments as in the proof of
Theorem 2.7.6 given above with suitable modifications. We omit the details.

REMARK 2.7.3. In the special case when= 1, the inequalities established in
Theorems 2.7.6 and 2.7.7 reduce respectively to inequalities (1a) and (2a) given
by Chan in [52] in Theorems 1 and 2, respectively. In [52] the results are ob-
tained by using the method of Banson [25]. Here our proofs are more direct and
elementary.

In [333] Pachpatte establishes the following Hardy-type inequalities involving
functions of several variables.

THEOREM 2.7.8. Let p > 1 be a constant. Let f(x) be a nonnegative and in-
tegrable function on B and let r;(x;), i = 1,...,n, be positive and absolutely
continuous functions on (0, co) and let

Ri(xj) = /xj ri (i) dy; (2.7.55)
0
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exist. Let

1 \Ri(xp)ri(x;)) _ 1
1 ! > — 2.7.56
" (p - 1) r2(x;) ai ( )

for all x; > 0 and for some positive constants«;, i =1, ..., n. If F(x) is defined
by

F(x)= m Boj(izl'[lrf(y,-)f(wdy) (2.7.57)
for x € B, then
/Fp(x)mgll[(ﬂ)p/ £P(x) dx. (2.7.58)
B ia\r—=1/ Jp

Equality holdsin (2.7.58)if f(x) =0.

THEOREM2.7.9. Let p and f beasin Theorem2.7.8.Let r;(x;),i =1,..., n,
be positive, continuous and monotone nondecreasing functions on (0, co). If
R; (x;) and F (x) be asdefined in (2.7.55)and (2.7.57),respectively, where r; (x;)
are as defined above, then

np
f FP(x)dx < (L) f £P(x) dx. (2.7.59)
B p—1 B

Equality holdsin (2.7.59)if f(x) =0.
THEOREM2.7.10.Let p, f,ri,i=1,..., n, beasdefinedin Theorem2.7.8.Let

p xir!(x;) 1
14 (P Jrnbd) 1 2.7.60
(P—1> ri(x;) B ( )

for all x; > 0 and for some positive constants 8;, i = 1, ..., n. If G(x) is defined
by

1 n
Gx) = m——— (Hr,-<y,->>f(y) dy (2.7.61)

H?:l xiri (xi) JBy, i=1
for x € B, then

n

GP(x)dx <
Jrora<II;

i=1

Bi \’
_1) /I;fp(x)dx. (2.7.62)
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Equality holdsin (2.7.62)if f(x) =0.

THEOREM2.7.11.Let p, f,r;,i =1,...,n, beasdefinedin Theorem2.7.8.Let

/

ir; (X 1

1- (L>x i) 1 (2.7.63)
p—=1) rix)) ~ v

for all x; > 0 and for some positive constants y;, i =1, ..., n. If H(x) isdefined

by
. 2 (ri(xi) 1
H(x)—l_[< - )AOY’V(m)f(y)dy (2.7.64)

i=1

for x € B, then

“( pvi p/
H?(x)dx < P(x)dx. 2.7.65
/l; (x) E(p_l) A (2.7.65)

Equality holdsin (2.7.65)if f(x) =0.

REMARK 2.7.4. We note that (i) in the special cases whém,) =1 andw; =1

in (2.7.56) andn = 1, the inequalities established in Theorems 2.7.8 and 2.7.9
reduce to the slight variant of Hardy's inequality given in Theorem 2.4.1,
(ii) in the special case when = 1, the inequalities established in Theorems
2.7.10 and 2.7.11 reduce to the inequalities established by Levinson in [190, The-
orems 4 and 5].

THEOREM2.7.12. Let ¢ (1) > 0 be defined on an open interval, finite or infinite,
and at the ends of the interval, let ¢ take its limiting values, finite or infinite.
For some p > 1, let ¢/ (u) be convex. Let r;(x;) and R;(x;) be as defined in
Theorem 2.7.8satisfying the condition (2.7.56).If, for x € B, the range of values
of f(x) lieinthe closed interval of definition of ¢ and ¢ ( f (x)) isintegrableon B,
and if F(x) isdefined by (2.7.57),then

/;;¢(F(x))dxSﬁ(ppfil)p/lgﬂf(x))dx. (2.7.66)

i=1

Equality holdsin (2.7.66)if ¢ (f(x)) =0.

THEOREM 2.7.13. Let ¢, p, ¢¥/?, f,¢(f) be as defined in Theorem 2.7.12.
Let r;(x;) and R;(x;) be as defined in Theorem 2.7.9.1f F(x) is defined as in
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Theorem 2.7.9,then

np
/ $(F(x)) dx < (L) / ¢ (f(x)) dr. (2.7.67)
B p—1 B
Equality holdsin (2.7.67)if ¢ (f(x))=0

REMARK 2.7.5. The inequalities established in Theorems 2.7.12 and 2.7.13 can
be considered as the multivariate versions of the inequalities given by Levinson
n [190, Theorems 3 and 2]. However, our hypotheseg an differs slightly

from those used by Levinson in [190]. Here the conditidiix) > 0 used in [190,

p. 389] is not needed and the condition

1
W>@—Qwﬁz»L

used in [190, p. 389] is replaced ®? being convex, since this fact is all re-
quired for the application of Jensen’s inequality in the proofs.

PROOFS OF THEOREMS 2.7.8-2.7.13. Letu = (a1,...,a,) € B, b = (b1,
., b)) eB,0=(0,...,0) € R" be such that 6 a < b < 00, and define

1 n
FO = R i i d 2.7.68
(x) l_[i:l R; (x;) Bur (ll:[lr 6 ))f()’) y ( )

for x € B. From (2.7.68) and by Fubini’'s theorem (see [3, p. 18]), we have

/ FP (x) dx

b1
/ £“<memv
by, Xn X1
X|:/ Rn_p(xn)|:/ rn()’n)(/
ap an al

Xn—1 n-1 p
/ (l—[ri(yz'))f()’L-~-,yn—1,yn)dyn—1--~ dyl) dy,,i| dx,,i|
Aan—1 ;

i=1
x Oxy_q1--- dxg. (2.7.69)



2.7. Multidimensional Hardy-Type Inequalities 203

By keepingxy, ..., x,—1 fixed and integrating by parts, we have

bn
f R;p(xn)
Xn X1
< o [
an a

Xn—1 4
/ <l_[rl (i) )f(y:l. aaaaa Yn—-1, yn)dyn—l"' dyl) dyn:| dx,

n—1

bn
:[ Rn_p(xn)rn(xn)

n

1
n(Xp)

Xn x1
X / Fn(Yn) / cee
an ay

n—1

p
Xp—
/ < l_[ ri (yi) )f(yls ey Yn—1,Xp) dyn—l te dyl) dyn] dx,
ap—1

Rn_p+l(bn) 1 /bn ( ) /xl
— n(Vn e
—p+1 |, ™\,

n—1

p
Xn—1
/ (]_[ri(yi))f(yl ..... Y1, Y) AYn—1- - dyl) dyn}
-1\ j=1

+(Ll>/ R; P*l(xn)[/x" rn(yn)</“--~
an al

p
Xp—
ap—1

/-1 p—1
(]_[ i (Yi)) SO Y1, yn) dyn—1- - dyl) dyn}

i=1

(/ / ( ri (yi) )f()’L-u»}’nl,xn)d}’nl"‘ d)’l> dx,

an-1 i=1
1 n Ry " o) () .

( 1> 2()6,1) /a,, 70 (Yn) /al

P
(Hrl(yl )f(}’Lu-v)’n Lyn)d}’nl"'d)’l) d)’ni| dx,,.

-1 \ij=1

(2.7.70)
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204
Sincep > 1, from (2.7.70) we observe that
bn 1\ RaCe)ry ()] - T 1
1 BT n T AR, P
fa,, [ i (p - 1) 20) } o) / " On) fal
Xn—1 n-1 p
' / (1_[ ri()’i))f(yl, S e yn) dyn—l e dyl) dyn:| d_xn
n-1 i=1
by Xn X1
< <L>[ R;P+1(xn)[[ Vn(yn)(/
p— 1 an An ay

Xn_1 n—1 p—1
/ ( ri(yi)>f(y1,...,yn_1, Vn) Oyp—1--- dyl) dyn}
ap—1 1

i=

(2.7.71)

From (2.7.56) and applying Hoélder’s inequality with indigesp/(p — 1) on the
right-hand side of (2.7.71), we obtain

by _ Xn X1 Xn—1 n—1
/ Ry” (xn) / i (yn) / f [Tron
An an ai Aap—1 i=1
p
X f1y s Va1, Yn) Oyp_1--- dyl) dyn:| dx;,
by Xn X1 Xp—1 n-1
< ( P )[f Rn”(x,o[/ rn(y,»(f / (Hri(yl-)>
p—1 an an ay -1\ ;=1
p (r=D/p
X f(V1s ey Yn=1,Yn) dyn—l s dyl) dyn:| dxn:|
b, X1 Xn—1 n-1
LT (o)
Aan ai ap—1 i=1

p 1/p
X fO1 ooy Yn=1 Yn) dyn—1- - dy1} dxn:| .
(2.7.72)
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Dividing both sides of (2.7.72) by the first integral factor on the right-hand side
of (2.7.72) and then raising both sides to gtb power we obtain

by _ Xn X1 Xp—1 n—1
/ Rn”(x,o[/ m(m)(/ / (Hmy,-))
An An ai Aap—1 i=1

P
X fVLy ooy Yn=1, Yn) Oyp—1--- dy1> dyn} dx,

) L1 )

p
X fO1 ey Yn—1, X)) dyp—1- - dyl} dx,,.

(2.7.73)

Substituting (2.7.73) in (2.7.69) and using Fubini's theorem we have

/ FP(x)dx
Bah

b1 b1 by X1
( >/ / (H"fmx,))p[/ U

X dxy—1--- dxg

<P0ln )P/bl /bnz fbn 1
\p=1) o Jap S (T2 RGP
by 1 Xp—1 n—2
X |:/ n l(x” 1) |:/ Frn—1(Yn— 1)</ f ( ri (yi )
Aan—-1 Aan—1 Aan—2 1

i=

p
X fOV1sevvs Yn=2s Yn—1, Xp) dyp_2- - - dy1> d)’n—l] dxn—1:|

X Oxp dxp—p- - dxg. (2.7.74)
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Now, by following exactly the same arguments as above, we obtain

bn-1 _
/ Rnf]_(xn—l)
ap—1
Xn—1 X1 Xn—2 n—2
| [ oo ([ [T (T
an—-1 ai Aap—2 i=1

P
X fV1y ooy Yn—2y Yn—-1, Xn) dyp_2- - - dy1> dYn1i| dx,_1

() [0 L ()

P
X fO1 s Yn—2, Xn—1, X,) dyp—2- - - dyl} dx,—1.

(2.7.75)
Substituting (2.7.75) in (2.7.74) we have
/ FJ(x)dx
Ba,h
< ( PQn ) (P“n l>p
p—1
/ /‘tlZ/bn |:/bnl|:/1
(1= fR @) | Jans
Xp_2 n—2 P
/ (Hh’(%))f(m,...,yn—z,xn—l,xn)dyn—z“ dm} dxn—l:|
an—2 i=1
x dx, dx,_o--- dxj. (2.7.76)

Continuing in this way we finally get

n C\P
FP(x)dx < <”“’> / P(x)dx. 2.7.77
fB E 11 voi) J, @ (2.7.77)



2.7. Multidimensional Hardy-Type Inequalities 207

Letc=(c1,...,cy) € Banda < ¢ < b. Then, from (2.7.77), we have

f Fap(x)dxgﬁ( Pt )pf £P(x) dx. (2.7.78)
Bey a\r—1) Jg

Lettinga — 0, that is,a; — 0 on the left-hand side of (2.7.78) we have

/ Fp(x)dx<ﬁ< pei ),,/ £P(x) dx. (2.7.79)
Bc,b p - 1 B

i=1

Since this holds for arbitrary @ ¢ < b, it follows that

/Fp(x)dx<ﬁ< pei ),,/ £P(x) dx. (2.7.80)
B p—1) Jp

i=1
The proof of Theorem 2.7.8 is complete.
The proof of Theorem 2.7.9 proceeds in the same way as the proof of
Theorem 2.7.8. By following the same arguments as in Theorem 2.7.8 we ob-
tain (2.7.70). O

Since r;(x;) are monotone nondecreasing, from (2.7.70) we observe that
(see [190, p. 391])

b’l _
/ R (o)
dn

Xn X1
X / n(Yn) / T
an ai

n—1

Xn—1 p
/ (l_["i()’i))f(yls vy V=1, Y dyp—1 - dy1> dyn:| dx,,

n=1 \j=1

bn Xn X
<(L)f R;”“(m[f rn(y,»(f
P — 1 ap an ayl

xp_q /11 p—1
/ (Hri(yi))f()’L---»yn—l»)’n)d)’n—l"' dyl) dyn}

-1

n i=1
x1 xpq 11

X / Hri(yi) f(ylv~--vyn—19xn)dyn—l"'dyl dx,,.
ax Aap—1

i=1
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The rest of the proof of Theorem 2.7.9 follows the same steps as in the proof of
Theorem 2.7.8 below inequality (2.7.71) with suitable changes and hence we omit
the further details.

The proofs of Theorems 2.7.10 and 2.7.11 can be completed by following the
similar arguments as in the proof of Theorem 2.7.8 (see also [190, p. 393]) with
suitable modifications. We leave the details to the reader.

Let v (u) = (¢ (u))Y? > 0. Theny () is convex. By repeated application of
Jensen’s inequality (see [174, p. 133]), we have

¥ (F(x)) < [TriGov (£()dy (2.7.81)

1_[ 1R('xl) /BOx':

for x € B. Applying (2.7.58) toy ( f (x)) instead off (x) we have

1 n p
/I?[W . (HH(Yi))W(f()’))dY} dx
i=1 i X 0 \ i

1

<l—[< P“z) /B (W (f )" d. (2.7.82)

Using¢ (u) = ¥”(u) and (2.7.81) we have

B(F () = (¥(F())”
<[% (]i[rxy,-))w(f(y))dy}p. (2.7.89)

i=1 Rl (-xl) Bo,x i=1

From (2.7.83) and (2.7.82), we observe that

1 n p
Feo)de < [ | = (i dy| d
fB $(F()) /B [Hi:l R,-<xl-) BO.X(i]:[r@ ))d/(f(y)) y] "

1

B —

p—1
=T1(;72) f e

The proof of Theorem 2.7.12 is complete.
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The proof of Theorem 2.7.13 proceeds in the same way as in the proof of
Theorem 2.7.12 with suitable changes and hence we omit the details. [

REMARK 2.7.6. The multidimensional variants of Hardy's inequality are re-
cently given by other investigators by using different techniques. Here we note

that the above results are established by using elementary analysis and the in-
equalities obtained in Theorems 2.7.8-2.7.13 are of independent interest.

2.8 Inequalities Similar to Hilbert’s Inequality

The well-known inequality due to Hilbert and its integral analogue can be stated
as follows (see [141, p. 226]).

THEOREMA. Ifp>1,p'=p/(p—1) and > ah < A, Zb,’,’/ < B, the summa-
tions running from 1 to oo, then

m+n Sln(n/p)

unless the sequence {a,, } or {b,} isnull.

THEOREMB. If p> 1, p'=p/(p — 1 and [;° fP(x)dx < F, [5° g (y) x
dy < G, then

[e.olyee]
/ S x)g(y) drdy < — b4 FUPGYY.
oJo x+y sin(zt/ p)

unless f =0o0r g=0.

The inequalities in Theorems A and B were studied extensively and humerous
variants, generalizations and extensions appear in the literature, see [141,210,213,
424] and the references cited therein. Recently in a series of papers [334,335,342,
343,350,352,353] Pachpatte has established a number of new inequalities similar
to the inequalities given in Theorems A and B. In this section we present some of
these results.

In [334] Pachpatte has given the following inequality similar to that of Hilbert’s
inequality in Theorem A.

THEOREM 2.8.1.Let p > 1, ¢ > 1 be constants and {a,,} and {b,} be
two nonnegative sequences of real numbers defined for m = 1,2,...,k and
n=12...,r, where k,r are natural numbers and define A,, = > . ; a, and
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AP Y k vz
ZZ C(p,q,k,r)(Z(k—m+1)(A,€,lam)2>

m=1n= 1 m=1

. 1/2
x (Z(r —n+ 1)(33‘1bn)2> , (2.8.1)

n=1

unless {a,,} or {b,} isnull, where
C(p.q.k.r)= —pqd_ (2.8.2)

PROOF By using the following inequality (see [78,226])

n a n m
(sz> <a2zm<ZZk> )
m=1 m=1 k=1

wherex > lisaconstantang, >0,m=1,2,..., itis easy to observe that
m
h<pY aAl™ m=12.. .k (2.8.3)
n
Bl <q) bBIY n=12...r (2.8.4)
=1

From (2.8.3), (2.8.4) and using the Schwarz inequality and the elementary in-
equalityc'/2d¥/2 < (¢ + d)/2 (for ¢, d nonnegative reals), we observe that

m n
-1 -1
AﬁBngq<ZasA§’ )(thB? )
=1

s=1

m 1/2 n 1/2
<Pq<’”)l/2(2(asf\é"l)2) <n>l/2( (b;qu_l)z)
t

s=1 =1

1 m 12/ 5 1/2
<§P61(m+n)<2(asAfl)2> (Z(b,3?1)2> . (2.8.5)

s=1 t=1

Dividing both sides of (2.8.5) by: + n and then taking the sum overfrom 1
to r, first, and then the sum overfrom 1 tok, and using the Schwarz inequality
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and then interchanging the order of the summations (see [226,326]) we observe
that

Yoy
Sl S (S ) Hs(Genr) ]
{

(o) o]

n=1\r=1

=pq~/l§{ i(aSAfl)z(,él)}l/z{; i (2:1)}1/2

k

1/2
=C(p.q.k.r) (Z(asAé’_l)z(k —5— 1))

s=1

r 1/2
x (Z(b,Bf‘l)z(r —t+ 1))

=1

k 12
=Cwak ’><Z<’< —m 1>(amA,’;l)2>

m=1

r 1/2
X <Z(r—n+1)(annq_l)2> .
n=1

The proof is complete. O

REMARK 2.8.1. If we takep = ¢ = 1 in Theorem 2.8.1, then inequality (2.8.1)
reduces to the following inequality

sz—i—n

m=1n=1

k 12, 4 1/2
<C(L 1k, r)( D k—m+ 1)(am)2> (Z(r —n+ 1)(b,1)2) :

m=1 n=1
(2.8.6)
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whereC (1, 1, k, r) is obtained by taking = ¢ = 1in (2.8.2).

The next result established by Pachpatte in [334] deals with the further gener-
alization of the inequality obtained in (2.8.6).

THEOREM 2.8.2. Let {a,,}, {b,}, An, B, be asin Theorem 2.8.1.Let {p,,}
and {g,} be two positive sequences for m =1,2,...kandn=1,2,...,r, and
define P,, =) ity psand Q, =Y /_; ¢;. Let ¢ and ¢ be two real-valued, non-
negative, convex and submultiplicative functions defined on R = [0, co). Then

k 2\ 1/2
Am B, m
§ y LB W ) M(k,r)<§j<k—m+1>[pm¢<—2 )})
m=1 m

m=1n=1
1/2

r 2
X<Z(r—n+1)|:qnlﬁ<z—n>]> . (2.8.7)
n=1 n

where

Mk, )__(§[¢S°im)]) (Z;[W(Q%)Dm' (2.8.8)

ProOOF From the hypotheses and by using Jensen’s inequality and Schwarz in-
equality (see [211]), it is easy to observe that

$(An) = ¢<Pm 3 p;as/Zps>
s=1 s s=1
< ¢<Pm>¢(z ”‘V“‘Y/Zps)
s=1 s=1

s

¢ (P) = ds
< —Pm Z Ps¢<;)

s=1

P m 211/2
< @(m)”z{Z[m(%)} } (28.9)

s=1 $
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and similarly,
1/2

" . b\
¥(By) < WQQ v, )1/2{2[%1//(;)} } : (2.8.10)

=1

From (2.8.9) and (2.8.10) and using the elementary inequaftydl/? <
(¢ +d)/2 (c, d nonnegative reals), we observe that

m 1/2
1 &(Pn) a:\1°
¢(Am>w<Bn><§<m+")[ P iz[m(E)] } }

mn s=1

[efghe@I]] e

Dividing both sides of (2.8.11) by + » and then taking the sum overfrom 1
to r, first, and then the sum over from 1 tok, and using the Schwarz inequality
and then interchanging the order of the summations we observe that

¢ (An) ¥ (By)

)
[ {,1’ (@) H}

._\
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k

— Mk, r)(é[ ¢<Z)] h—s+ 1))1/2
(S )

2 1/2
= M (k, r)(Z(k m+1>[pm¢( )] )
m=1
, b2 1/2
x (Z(r—n+1>[qnw(—”>} )
n=1 4n
The proof is complete. a

REMARK 2.8.2. By applying the elementary inequality/2d'/? < (¢ + d)/2
(for ¢, d nonnegative reals) on the right-hand sides of (2.8.1) and (2.8.7), we get
respectively the following inequalities

k

p
Z Z AnBi %C(p, q.k, r)|:Z(k —m+ (AL a,)?

m=1ln= lm+n m=1

+ Z(r —n—+ 1)(B,(flbn)2i|
n=1

(2.8.12)
and

k 2
> Zi‘m’")m ) ZM(k, r)[Z(k —m+ 1)[;»@(%)]

m=1n=1

(2.8.13)

The following two theorems established by Pachpatte in [334] deal with slight
variants of the inequality given in Theorem 2.8.2.
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THEOREM 2.8.3. Let {a,,} and {b,,} be as in Theorem 2.8.1,and define 4,, =
Lsm agand B, =1%" b, form=12... kadn=12...,r, where
k, r arenatural numbers. Let ¢ and ¢ be two real-valued, nonnegative and convex
functions defined on R;.. Then

k r k 1/2
33 (AW (B < C(L Lk, r) < S k—m+ 1)[¢<am>]2>

m-+n

m=1n=1 m=1

- 1/2
x (Z(r —n+ 1)[w(bn)]2> . (2814

n=1

where C(1, 1, k, r) isdefined by taking p = ¢ = 1in (2.8.2).

PrROOFE From the hypotheses and by using Jensen'’s inequality and Schwarz in-
equality, it is easy to observe that

1 m
¢(Am>=¢<z ;a>

1 m
< ;;max)

m 1/2
1 1/2 2
< —(m) {S:Zl[qs(as)] } (2.8.15)
and similarly,
1 n 1/2
¥ (By) < ;(n)l/Z{X;[W(bz)]z} . (2.8.16)
=

The rest of the proof can be completed by following the same steps as in the proof
of Theorems 2.8.1 and 2.8.2 with suitable changes, and hence we omit the de-
tails. O

THEOREM 2.8.4. Let {a,,}, {b,}, {pm}, {gn}, Pm, On be asin Theorem 2.8.2
and define A,, = % > psas and B, = é S qib form=1,2,... kand
n=12,...,r,wherek, r are the natural numbers. Let ¢ and iy be asin Theo-
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rem2.8.3.Then

ZZP Q ¢(Am)w(Bn)

m-rn
m=1n=1 +

k 1/2

m=1

- 1/2
x (Z(r —n+ 1)[qnw(bn)]2> : (2.8.17)

n=1

where C(1, 1, k, r) isdefined by taking p = ¢ = 1in (2.8.2).

PrRoOOF From the hypotheses and using Jensen’s inequality and Schwarz inequal-
ity, it is easy to observe that

1 m
P (An) = ¢<P— Zm%)
mog—1

Zps¢(as)
l’ﬂ s= 1
m 1/2
(m)l/z{ > [pst(as)] } (2.8.18)
s=1
and similarly,
1 n 1/2
¥ (By) < E(nf”{Z[qfwaar)f} . (2.8.19)
=1

Proceeding as in the proofs of Theorems 2.8.1 and 2.8.2 given above with suitable
modifications we get the required inequality in (2.8.17). O

In [350] Pachpatte has established the following theorem.

THEOREM 2.8.5. Let {a,,} and {b,,} be two nonnegative sequences of real num-
bersdefinedfor m =0,1,2,...,kandn=0,1,2,...,r and ag = bg = 0, where
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k, r are natural numbers. Then

L ambn
sz—i—n

m=1n=1
N k 12, , 1/2
< <mz_:l(k—m+1)(Vam)2> nz::l(r —n+1(Vbh)?]

(2.8.20)

where Va,,, = a,, — a—1 and Vb, = b, — b, _1.

PROOF From the hypotheses, it is easy to observe that the following identities
hold

m
am=» Vas, m=12 ..k (2.8.21)
s=1
and
n
bp=) Vb, n=12...r (2.8.22)
=1

From (2.8.21) and (2.8.22) and using Schwarz inequality and the elementary in-
equalitycl/2d¥/2 < (¢ 4+ d) /2 (for ¢, d nonnegative reals), we observe that

aub, = (Z Vas> (Z Vb,)
s=1 =1
m 1/2 " 1/2
<<m)1/2(2<w5>2> (n)1/2<Z(Vbt>2)

s=1 =1

1 m 2, p 1/2
<5(m+n)<2(ws>2> (Z(vmz) :

s=1 =1

Rewriting the above inequality and taking the sum ovdrom 1 tor, first, and
then the sum ovem of the resulting inequality from 1 té and using Schwarz
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inequality and then interchanging the order of the summations we observe that

ZZ

mlnl

n=1

1 k m 1/2 r n 1/2
< 5(}«)1/2( > (Z(Va&)) <r)1/2<Z(Z(Vbt>2>>

m=1\s=1 n=1\t=1

sl ()

1 k Y2, 4 1/2
— 5@(;(%‘02@ —s+ 1)) (Z(Vb,)z(r —t+ 1))

t=1

I\)lH

1 k 12 , 1/2
= 5@( D tk—m+ 1)(Vam)2> (Z(r —n+ 1)(Vbn)2> .

m=1 n=1

The proof is complete. a

The next theorem deals with the further generalization of Theorem 2.8.5 and
is established by Pachpatte in [335].

THEOREM 2.8.6. Let {a,,} and {b,} be two nonnegative sequences of real
numbers defined for m = 1,2,...,k and n = 1,2,...,r with aqg =bg =0
and let {p,,} and {g,} be two positive sequences of real numbers defined for
m=12,....,.kandn=12,...,r, where k, r are natural numbers, and define
Py=) " 1psand 0, =>"7 ;q;. Let ¢ and v be two real-valued nonnegative,
convex and submultiplicative functions defined on R, = [0, o0). Then

k 2
Z Z ¢(am>1/f(bn> M(k,r)(Z(k - l)|:pm¢(Vpam>] )
m=1

m=1n=1 mn

1/2

1/2

r 2
X <Z(I’—n+1)|:%zw<vqbn>j| ) , (2.8.23)
n=1 n
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where
k

1 s P\ [ ven P\
Mk, r)=§<2|: Pm’" } ) (Z[ an } ) (2.8.24)

m=1 n=1

and Va,, = a,;, — ay—1, Vb, =b,, — b, 1.

PrROOF From the hypotheses, it is easy to observe that the following identities
hold

m

am =Y Va,, m=12 .k (2.8.25)
s=1
n

ba=Y Vb, n=12...r (2.8.26)
t=1

From (2.8.25) and (2.8.26) and using Jensen'’s inequality (see [211]), we observe
that

m

d(am) = ¢<Pm ZPS VaS/X:Ps)
s=1 $ s=1

p
m Vay m
< ¢<Pm>¢><2ps /Zm)
s=1 Ps s=1
m V .
< cb(Pm)Zpsqs( e )/Pm (2.8.27)
s=1 Ps
and similarly,
“ Vb,
Y (bn) < Y (Qn) ZCIH,”(q—)/Qn. (2.8.28)
=1 !

The rest of the proof can be completed by following the same arguments as in the
proof of Theorem 2.8.2 with suitable modifications and here we omit the further
details. 0

REMARK 2.8.3. If we apply the elementary inequalith/2d/? < (c +d)/2 (for
¢, d nonnegative reals) on the right-hand sides of (2.8.20) and (2.8.23) then we
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get respectively the following inequalities

>y

m=1n=1

m+n

k r
_m[ D k—m+D(Van)®+ > (r—n+ 1)(Vbn)2} (2.8.29)

m=1 n=1

and

& an) (b)
Yy, o)

m=1n=1 mtn
2
M(k r{Z(/« m+1)[pm¢< )}
m=1 Pm
4 Vb, \ 1
+Z(r—n+1)[qnw(q )} . (2.8.30)
n=1 n

In [353] Pachpatte has established the following inequality similar to that of
the extension of Hilbert’s inequality given in [141, p. 253].

THEOREM 2.8.7.Let p > 1, g > 1 be constants and % + % = 1. Let {a,,}
and {b,} be two sequences of real numbers defined for m = 1,2, ...,k and
n=12, ...,r,wherek, r are natural numberswith ag = bg = 0. Then

|am|1bn|
qump T+pnq 1

m=1n=1
k p s » 1/q
<M(p,q,k, r)( Z(k —m+ 1)|Vam|l’) <Z(r —n+ 1)|Vbn|fl> ,
m=1 n=1
(2.8.31)
where
1
M(p,q,k,r)=—kP=D/ppa=bia (2.8.32)
rq

and Va,, =a,;, — ay—1, Vb, = b,, — b, _1.
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PROOF From the hypotheses, it is easy to observe that the following identities
hold:

am =Y _ Vas, (2.8.33)
s=1

by=» Vb, (2.8.34)
=1

for m=1212....,k, n=212,...,r. From (2.8.33) and (2.8,34) and using

Holder's inequality with indicesp, p/(p — 1) and g, ¢/(g — 1), respectively,
we have

m 1/p
lam| < WW"”“’(Z |Vas|”) : (2.8.35)
s=1
n 1/q
b < (n)<qlW(Z |Vb,|q> : (2.8.36)
=1

form=1,2,...,k,n=12,...,r. From(2.8.35), (2.8.36) and using the elemen-
tary inequality

2 A 1 1
1< =+-—=, 21202220, —-4+-=1p>1, (2.8.37)
p P q

we observe that

m Yp /s n 1/q
|| 1bn| < <m>(1’—1>/f’<n)<q—1)/q(2 |Vas|f’> (Z mw)

s=1 =1

mp_l nq_l m 1/p n 1/q
<[ > + p }(Zwasv’) <Z|Vb,|") (2.8.38)
t=1

s=1

form=1212....,k,n=212,...,r. From (2.8.38) we observe that

|am||bn]

1 1
— < i(iwasw) m(Xn:Wb,w) ! (2.8.39)
qmP==+ pnd P4 s=1 t=1

form=1212....k,n=12,...,r. Taking the sum on both sides of (2.8.39) first
overn from 1 tor and then the sum over from 1 tok of the resulting inequality
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and using Hdolder’s inequality with indices, p/(p — 1) andg,q¢/(¢ — 1) and
interchanging the order of summations we observe that

|am 1bn]
qump 1+pnq 1

m=1n=

() N5 )

m=1

1 k m 1/p 1/q
< E(k)(P—l)/P{Z< |VaS|P>} (V)(q_l)/q{Z<Z|Vbt|q)}

n=1

k p / » 1/q
=M(p,q,k,r>(Z(k—m+1>|wm|"> (Z(r—n+1)|wn|‘f) :

m=1 n=1

The proof is complete. |

The following two independent variable version of the inequality given in
Theorem 2.8.7 is also established by Pachpatte in [353]. In what follows, we
denote byR the set of real numbers. L&f ={1,2,...}, No=1{0,1,2,...},

Ne =1{0,1,2,...,a}, « € N. For a functionv(s, r):Ng x Ng — R, we define
the operator&vyv(s, t) = v(s,t) — v(s — 1, 1), Vovu(s,t) = v(s, t) — v(s,t — 1)
andVaViv(s, 1) = Vo(Viv(s, 1)) = V1(Vau(s, 1)).

THEOREM2.8.8. Letp > 1,q > Lbeconstantsand £ + 1 = 1. Leta(s, 1) 1N, x
Ny = R, b(k,r):N; x N, > Rand a(0,¢) =b(0,1) =0,a(s,0) =b(s,00 =0
Then

la(s, Dl|bk, )|
ZZ<ZZq(st)P Ty plhr)yi= 1)

s=1t=1 \k=1r

x oy 1/p
<L(p.g.x.y.z, w)(ZZ(x — s+ 1y =1+ 1)|V2Viacs, t)!”)

s=1r=1

W 1/q
x (Z > @ —k+Dw —r +1)|VaVib(k, r)|q) (2.8.40)

k=1r=1
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for x, y,z, w in N, where
1 o 0-D/p (@D
L(pa q,X,Y,2, w): _(x)’) (ZU)) (2841)
prq
for x,y,z,winN.

PROOF From the hypotheses, it is easy to observe that the following identities
hold:

s t
a(s,t)=Y_Y VaVia(€,n), (2.8.42)
g=1n=1
k r
blk,r) =YY VaVib(o.1) (2.8.43)
o=17t=1

for (s, 1) € Ny x Ny, (k,r) € N; x N,,. From (2.8.42), (2.8.43) and using Holder’s
inequality with indices, p/(p — 1) andq, ¢ /(g — 1), respectively, we have

K t 1/p
la(s, )] < (s)P=V/P (Z Z;vzvla(g, n)\”) , (2.8.44)

g=1n=1
k r 1/q
bk, )] < (kr)@=D/4 ( >3 | Vavabeo, f)\q) . (28.45)
o=17=1

for (s,1) € Ny x Ny, (k,r) € N; x Ny,. From (2.8.44), (2.8.45) and using the
elementary inequality (2.8.37), it is easy to observe that

la(s, D||b(k, r)]
q(st)P~t+ p(krya=t

s k

1 t p r 1/q
< —<ZZ|V2V1G(51 77)|p> (ZZ|V2V1b(o‘,t)|q>

Pa E=1n=1 o=1t=1
(2.8.46)

for (s,1) € Ny x Ny, (k,r) € N; x Ny,. Taking the sum on both sides of (2.8.46)
first overr from 1 tow and overk from 1 toz and then taking the sum on both
sides of the resulting inequality first ovefrom 1 toy and overs from 1 tox and
then using Hdlder’s inequality with indices, p/(p — 1) andg,q/(¢ — 1) and
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interchanging the order of the summation we observe that

Zi Zi la(s. 0)|1b(k. )|
S\ g o et + pknyt

{iZ(iZIWw@ n)l”)l/p]

s=1t=1 \é=1pn=1

X {XZ:Xw:(Xk:Xr:Wleb(a, r)|">1/q}

k=1r=1\o=17t=1

(xy)(p 1>/p{22<22\v2v1a(g n)\”) }w

s=1t=1 \é=1n=1

z w k r /g
x (zw)@~D/a {Z Z < Z Z|V2V1b(0, T)|q) }

k=1r=1\o=17=1

x 0y 1/p
=L(p.q.x.y.2 w)(ZZ(x — s+ (y — 1 +1)|V2Vaa(s, r)|”>

s=1r=1

7z w 1/q
x(ZZ(z—k+1)(w—r+1)|v2v1b(k,r)|q) .

k=1r=1

The proof is complete. a

REMARK 2.8.4. If we apply the elementary inequality (2.8.37) on the right-hand
sides of (2.8.31) and (2.8.40), then we get respectively the following inequalities

Z Z | || D]
qm" 1+pnq 1

m=1n=

k
1
<M<p,q,k,r>[—Z(k—m+1)|Vam|" Z(r—n+1)|Vbn|q}
pm:l n=1
(2.8.47)
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and
X y z w
ZZ ZZ la(s, )|1b(k, )|
SE\ T o a4 pkeyt
1<
<L(P’q’x’y’Z’W>[;ZZ<x —s+D(y — 1+ 1)|V2Via(s, 0)|”
s=11r=1

+ 2 Y > @ —k+Dw —r +1)|VaVibik, r)|"}.
k=1r=1
(2.8.48)

The following theorems deals with the integral analogues of the inequalities in
Theorems 2.8.1-2.8.4 established by Pachpatte in [334].

THEOREM2.8.9.Letp>1,g>1and f(c) >0, g(t) >0for o € (0,x), T €
(0, y), where x, y are positive real numbers, and define F(s) = f; f(o)do and
G(1) = [y g(t)dr,for s € (0,x), t € (0, ). Then

p q x 1/2
/ / T g < D y)( / (x —s>(F"—1(s>f<s))2ds)
0
x (/ (v —0(G17) dt) : (2.8.49)
0
unless f =0or g =0, where
1
D(p.q.x,y) = 5pq/xy. (2.8.50)
PrROOF From the hypotheses, it is easy to observe that
FP(s) =p/ FPY(o) f(o)do, s€(0,x), (2.8.51)
0

t
Gq(t)zq/ G Y ()g(r)dr, te(0,y). (2.8.52)
0
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From (2.8.51) and (2.8.52) and using Schwarz inequality and the elementary in-
equalityc/2d¥/? < (c + d)/2 (for ¢, d nonnegative reals), we observe that

FP(s)G(r)
= pq( / S F”—l(o)f(wdo) ( f t Gq—l<r>g(r)dr)
0 0
s 1/2 t 1/2
<pq(s>1/2( / (Fp—l(a)f(o-))zda) (t)l/z( / (Gq—1<r>g<r))2dr)
0 0
1 s 2 1/2 t 2 1/2
<§pq(s+t)( /O (FP~1(0) f(0)) do) ( /O (G (n)g(1)) dr) :

(2.8.53)

Dividing both sides of (2.8.53) by + ¢ and then integrating overfrom 0 to y,

first, and then integrating the resulting inequality ovefrom O tox and using
Schwarz inequality we observe that

// Fp(s)Gq(t) ds dr
s+t
1 X K 5 1/2
SEPQ{/ (/ (prl(cr)f(o)) da) }
o \Jo
y t 5 1/2
[ (oot
o \Jo
1 X s 9 1/2
<—pq(x>1/2{ / ( / (FP=Y(0) f (o)) do)ds}
2 o \Jo
y t 9 1/2
X(y)l/z{/ (/ (Gq_l(t)g(r)) dr) dt}
o \Jo
12
=D(p.q.x, y)( f (= $)(FP~1) £ ()2 )

y . , \2
x </0 (v — (G 1)g1)) dt) .

The proof is complete.
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REMARK 2.8.5. In the special case when= g = 1, inequality (2.8.49) reduces
to the following inequality

F&G®) |
// s+t

1/2 y 1/2

<D<1,1,x,y>< fo (x—S)fZ(S)dS> ( /0 (y—t)gz(odr) ,

(2.8.54)

whereD(1, 1, x, y) is obtained by takingg = ¢ = 1 in (2.8.50).

THEOREM 2.8.10. Let f, g, F, G be asin Theorem 2.8.9.Let p(s) and g(1)
be two positive functions defined for o € (0, x), t € (0, y), and define P(s) =
Jo plo)do and Q(t) = [ g(v)dr, for s € (0, x), ¢ € (0, y), where x, y are posi-
tive real numbers. Let ¢ and v be asin Theorem 2.8.2.Then

/ /y ¢(F(S))W(G(t))
s+t

1/2
< Lx, y)(f (x—s)[p(sw(f(”)] ds)
p(s)
1/2
(/ (y—t)[ (t)w(gii)} dt) , (2.8.55)
where

1 TN N\ [ Tv P\
L(x’y)_§</o[ - }m) (/0[ o :|dt> . (2856)

PrRoOF From the hypotheses and by using Jensen’s inequality and the Schwarz
inequality, it is easy to observe that

¢(F(S))=¢<P(S)f ()&dd// p(U)d(f)

$(P(s)) Flo)
<
Py Jo P M’( (o )) ’

$(P(s)) 1/2{ [ <f( ))} }1/2
\[ P(s) ]() / @ oo )] (2.8.57)
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and similarly,

1/2
s <[l fon (55 ] oso

From (2.8.57) and (2.8.58) and using the elementary inequaifi/2 < (¢ +
d)/2 (for ¢, d nonnegative reals), we observe that

1 P (P(s)) f(@) 12
¢(F(s))w(G(t))<5(s+t)[ P(s) {/o [ @ w(p( ))] d”} }

Y (Q(1) g(1) 12
X[ 0() {/o[ § W(q( )ﬂ dt} } (2.8.59)

The rest of the proof can be completed by following the same steps as in the proof
of Theorem 2.8.9 and closely looking at the proof of Theorem 2.8.2, hence we
omit the details. O

THEOREM 2.8.11.Let f,g be as in Theorem 2.8.9, and define F(s) =
1[5 flo)do and G(r) = 2 [ g(r)de, for s € (0,x),1 € (0, y), where x, y are
positive real numbers. Let ¢ and i be asin Theorem 2.8.3.Then

YUY oost
/O/o s+t¢(F(s))w(G(f))dsdt
* , \M2
§D(1,1,x,y)</0 (X—S)[¢(f(s))] dS)

y 5 \12
X (/O (v —n[v(g®)] dt) , (2.8.60)

where D(1, 1, x, y) is obtained by taking p = ¢ = 1in (2.8.50).

THEOREM 2.8.12. Let f, g, p,q, P, Q be as in Theorem 2.8.10,and define
F(s) = 355 Jo P(0) f(0)do and G(1) = 5t [ q(1)g(x) dr, for s € (0,x),1 €
(0, y), where x, y are positive real numbers. Let ¢ and  be as defined in Theo-
rem2.8.3.Then

/ X f P PEQWFEE)VG®)
s+t

. 12
<D, 1,x, y)(fo (x — s)[p(s)d)(f(s))]zdS)
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y 2 1/2
x (/0 (v —D[g®Ov(s®)] dt) : (2.8.61)
where D(1, 1, x, y) isdefined by taking p = ¢ = 1in (2.8.50).

The proofs of Theorems 2.8.11 and 2.8.12 can be completed by following
the proof of Theorem 2.8.10 and closely looking at the proofs of Theorems
2.8.3 and 2.8.4 and by making use of the integral versions of Jensen’s and the
Schwarz inequalities. Here we omit the details.

The integral analogues of Theorems 2.8.5 and 2.8.6 established by Pachpatte
in [335,350] are given in the following theorems.

THEOREM 2.8.13.Let f € CL([0,x),R,), g € C1([0,y),Ry) and f(0) =
g2(0) =0,where Ry = [0, 00), x, y € R, the set of real numbers. Then

/x/y f(s)g@) ds dr
0 Jo s+t

1 X 1/2 y 1/2
<§¢x_y</ (x—s)f’<s)2ds) (/ (y—z)g’(t)zdt) , (2.8.62)
0 0

where“’” denotes the derivative of a function.

ProOFE From the hypotheses we have the following identities
N
f(s) = / f(o)do, sel0,x), (2.8.63)
0

t
g(t) = / g (t)ydr, 1e€l0,y). (2.8.64)
0

From (2.8.63), (2.8.64) and using the Schwarz inequality and the elementary in-
equalityc'/?d/2 < (c + d)/2 (for ¢, d nonnegative reals), we observe that

s t
f(s)gm) = (/O f’(a)dcr)(/o g’(r)dr>
s 1/2
< (S)1/2</ f’z(o)da>
0

/ t 1/2
<r>1/2( / g’%)dz)
0

1 s 1/2 t 1/2
gi(s+t)</ f’z(o)do) (/ g’z(r)dr) . (2.8.65)
0 0
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Rewriting (2.8.65) and then integrating overom O toyy, first, and then integrat-
ing the resulting inequality over from O tox and using the Schwarz inequality
we observe that

/x/y fs)g) ds dr
0 Jo s+t '
1 X s 1/2 y t 1/2
g—(/ (f f’z(a)do> ds)(/ (/ g’z(t)df> dt)
2\ Jo \Jo o \Jo
1 X s 1/2
< —(x)l/2</ </ f’z(a)do) ds>
2 o \Jo
y t 1/2
x (y)1/2</ (/ ¢'%(1) dr) dt)
0 0

1 x 12, py 12
= é\/x_y</o (x —s)f’z(s)ds> </O (v — g%t dt) .

The proof is complete. O

THEOREM 2.8.14. Let f € C1([0,x),R,), g € CL(0, y),Ry) with f(0) =
g(0)=0and let p(o) and ¢g(t) be two positive functions defined for o € [0, x)
and r €[0, y), and P(s) = J, p(c)do and Q(¢) = féq(r) dz, for s € [0, x) and
t € [0, y), where x, y are positive real numbers. Let ¢ and  be as in Theo-
rem2.8.6.Then

/X PO NYEO) 4o
0

0 s+t
X 1 2 1/2
<L(x,y></ (x—s)[p(s)qb(f(”)} ds>
0 p(s)
y / 2 1/2
x (/O (y—t)[q(r)w(i((:)) dt) , (2.8.66)

where

1 Tee) T NP [ Tv )P\
L(x’y)_§</0[ P(s) ]ds) </o[ 0 ] dt) (2.8.67)

and “’” denotes the derivative of a function.

PrROOFE From the hypotheses we have identities (2.8.63) and (2.8.64). From
(2.8.63) and (2.8.64) and using Jensen’s integral inequality (see [211]), we
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observe that

(1) = ¢ (P(v)/ p() / p(a)do)
<¢(P(s>)¢>( ( / / p(d)da)

¢ (P(s))
2.8.68
[ms)}uw( S e
and similarly,
¥ Q) / <g’<r))d 0 8.69
w(g(t))é[ 00 } Oq(r)w .0 )& (2.8.69)

From (2.8.68) and (2.8.69) and using the elementary inequafity/2 < (c +
d)/2 (for ¢, d nonnegative reals), we observe that

o(f))v ()
| (e )
(e oo () =)
<[ o e )} o}
[Leg o [ oo (5)] o
e[ PE L e ()] =]
[E WLl (E )] o

The rest of the proof can be completed by following the same steps as in the proof
of Theorem 2.8.13, and hence we omit it here. O

REMARK 2.8.6. If we apply the elementary inequality/2d*/? < (¢ +d) /2 (for
¢, d nonnegative reals) on the right-hand sides of (2.8.62) and (2.8.66), we get
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respectively the following inequalities

/ fy f(S)g(t)
—\/x_y[/ (x —s)f’z(s)ds + /y(y — t)g’z(t) dt] (2.8.71)
0 0

and

/ /y ¢(f(S))1/f(g(l))

X / 2
<3L<x,y)[/ <x—s)[p(s>¢<f(s)>} ds
2 0 p(s)
y / 2
+/ (y—t)[q(t)w(g(t))} dt]. (2.8.72)
0 q(t)

The integral analogue of Theorem 2.8.7 established by Pachpatte in [353] is
given in the following theorem.

THEOREM 2.8.15.Let p > 1,4 > 1 be constants and % + ql = 1. Let f(s)

and g(t) be real-valued continuous functions defined on 7, =[0,x) and I, =
[0, y), respectively, and f(0) = g(0) = 0. Then

/f ISOUEDT
qsP~1 4 pra-1

X 1/p y 1/q
<K<p,q,x,y)</o <x—s>\f’<s>\”ds> (/O (y—r>|g’(z>|‘1dz)

(2.8.73)

for x, y € Io = (0, o0), where
1
K(p,qg,x,y)= _x(P—l)/Py(q—l)/ll (2.8.74)
prq
for x, y € Io.

PrRoOFE From the hypotheses we have the following identities

fls)= /S f'(0)do (2.8.75)
0
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and
t
g(n) = / ¢ () de, (2.8.76)
0

fors e I, t € I,. From (2.8.75) and (2.8.76) and using Holder’s integral inequal-
ity with indicesp, p/(p — 1) andq, g/(q — 1), respectively, we have

s 1/p
[F)] < (s)“’”“’( /0 |f’(a)|pdo) , (2.8.77)

t 1/q
g < <r><‘1”/q< /0 ') dr) (2.8.78)

for s € I,t € I,. From (2.8.77), (2.8.78) and using the elementary inequal-
ity (2.8.37), we observe that

K 1/p t 1/4
|F®)]|g®] < (s)“’—l)/f’(t)("—”/q( f |f/(o)|”do> ( / Ig/(r>!qdr)
0 0

gp1 tq 1 1/p t 1/q
5 frore)(fwora)

for s € I, t € I,. From the above inequality we observe that

|fllg@®  _ 1 » /P(ft L )1/q
gsP 1t pra1 S pq</ £ ()] dU) ; lg'()|"dr (2.8.79)

for s € I, t € I,,. Integrating both sides of (2.8.79) ovefrom 0 toy, first, and
then integrating the resulting inequality owefrom O to x and using Holder’s
integral inequality with indiceg, p/(p — 1) andq, g/(q — 1) we observe that

[f(s)llg®)] ds dr
qsP=1 4 pra-1 :
1 x s 1/p y t 1/q
<—{/ (firer) el [ ([ror) «}
pPq \Jo 0 0 0
1 x s 1/p
<—(x)<f"1>/"{/ </ \f’(o)\”da> ds}
pPq 0 0
y t 1/q
x (y)(q—l)/q{/ </ ’g’(r)|q dr) dt}
0 0
X 1/p y 1/q
=K(p,q,x,y)</o (x—s)lf/(s>|”ds> (fo (y—r)lg’<t>|th) .

N
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The proof is complete. |

REMARK 2.8.7. If we apply the elementary inequality (2.8.37) on the right-hand
side of (2.8.73), then we get the following inequality

// If@le® o o
gsP~—14 pra-1
1 (Y
<K<p,q,x,y>[—f (x—S)|f’(S)|pds+—/ (y—t>|g/(r)|"dr}.
P Jo qJo
(2.8.80)

In [342] Pachpatte establishes the following inequality similar to the integral
analogue of Hilbert's inequality.

THEOREM 2.8.16.Let n > 1 be an mteger Let u € C"(I,R),v € C"(I,,R)
and u¥(0) = v®0)=0fori =0,1,2,. —1,where I, = [0, x), I, = [0, y).

Then
Yy sy ® (s
[ A2
oJo S +1t
X , \V2
§M1(n,k,x,y)</ (x —5)|u™(5)| ds)
0

y 2 1/2
x (f =™ @) dt) : (2.8.81)
0

where

_1 /5
Mi(n,k,x,y) = 2l —k— DR -2 -1 (2.8.82)

PrROOF From the hypotheses and Taylor expansion, we have

1 N
(k) _ _ n—k—1 (n)
ut(s) = G koD /0 (s —o) u'™ (o) do, (2.8.83)

t
U(k)(t)zm/ (t — )" L™ (r)dr, (2.8.84)
“k—1' ),
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for s € I,t € I,. From (2.8.83) and using the Schwarz integral inequality, we
have

1 s
|u(k)(s)} < m/o (s — O.)nfk71|u(n)(o_)| do
1 s 1/2 s ) 172
S —</ (s —G)Z(H_k_l) d(T) (/ |M(n)(0’)| d(r)
n—k—D'\ Jo 0
1 S(Zn—2k—1)/2 s ) 1/2
= (n)
T (n—k—1)! (2n—2k—1)1/2</0 ™ ()] d(f) (2.8.85)

for s € I,. Similarly, from (2.8.84) and using the Schwarz integral inequality, we
have

© 1 ((2n—2-1)/2 ' o 5 1/2
EAIGIES PR e T I T (/0 ™ (o) dr) (2.8.86)

for ¢ € I,. From (2.8.85), (2.8.86) and using the elementary inequati®*/? <
(c +d)/2 (for ¢, d nonnegative reals), we have

! [SZ"_Zk_l—G—t

1
2[(n —k— 1220 — 2k — 1)

s 1/2 t 1/2
X (/ |u(”)(cr)|2da> (f |v(”)(t)|2dr) (2.8.87)
0 0

fors € I, t € I,. Rewriting (2.8.87) and then integrating overom O to y, first,
and then integrating the resulting inequality owefrom O to x and using the
Schwarz integral inequality we have

X ry (k) (k)
// ZJIMZk(i)HvZn(tZ)k' ldet
0 Jo SsTETE AT
1
(n—k—l)!]2(2n—2k—1)

x s 2 1/2 y t 2 1/2
X (f </ |u(")(0)| da) ds></ (/ |v(")(t)| dr) dt)
0 0 0 0

‘u(k)(s)|‘v(k)(t)| < 2n—2k—l]

1
<=
2]
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1/2
<3 1 A (feere)a)
S 2[(n—k—1N%2n -2k — 1)
y t 2 1/2
xﬂ(/ (/ |v(”)(t)| dr)dt)
0 0
x 12/ py 1/2
:Ml(n,x,y)</ (x—s)|u<”>(s)|2ds) (/ (y—t)|u<">(t)|2dt>
0 0

The proof is complete. O

REMARK 2.8.8. In the special case whén= 0, inequality (2.8.81) reduces to
the following inequality

[ (s)]|v ()]
/./0 T ldsdt

) 1/2 y ) 1/2
<M1<n,o,x,y)</ (x —)[u® ()| ds) (/ =™ dr) :
0 0

(2.8.88)

and, by takingn = 1, inequality (2.8.88) reduces to the slight variant of the
inequality given in Theorem 2.8.13. If we apply the elementary inequality
c1724%2 < (¢ + d)/2 (for ¢,d nonnegative reals) on the right-hand side of
(2.8.81), then we get the following inequality

IO o)
/o/o §2n—2—1 1 (2n-2%-1 ds dr
x y
< %Ml(n,k,x,y)[/ (x —S)!u(")(S)|2ds+/ O —t)\v(”)(t)lzdt]-
0 0
(2.8.89)

The integral analogue of the inequality in Theorem 2.8.8 established by
Pachpatte in [353] is given in the following theorem.

In what follows, we use the notatioris= [0, c0), Iy = (0, 00), Ig = [0, B),
B € Ip, denotes the subintervals Bf For any functioru :I x I — R we denote
the patrtial denvatlvegfiu(s 1), alu(s t) and 57 atu(s t) by Dyu(s, t), Dou(s, t)
andD>D1u(s, t) = D1Dou(s, t), respectively.

THEOREM 2.8.17. Let p > 1, g > 1 be constants and 1411 Let f(s, 1)
and g(s, t) be real-valued continuous functions defined on I, x I, and I, x I,
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respectively, and £ (0, 1) = g(0,1) = 0, (s, 0) = g(s, 0) = 0. Then
/xfy</1/w LG5, Dllgk, 1) dkdr) ds dr
0Jo \JoJo qGsn)r=t+ pkrys—1

X ry 1/p
<C(p.q.x.y.2, w)(/ [ (x —$)(y — )| D2D1f (s, 0)|" ds dr)
0 JO

x </Ozfow(z —k)(w —r)|DaD1g(k, r)|? dkdr)l/q (2.8.90)
for x, y, z, w € Iy, where
C(p,q,x,y,z,w) = %(xy)(p_l)/”(zw)(‘%l)/q (2.8.91)
for x, y,z, w € Io.
PrROOF From the hypotheses we have the following identities

s pt
f(s,t)=/0/0 DyD1 f (£, 1) d& dn, (2.8.92)

k pr
gk, r)= / / D>D1g(o, 1) do dr, (2.8.93)
0JO

for (s,1) € Iy x I, (k,r) € I, x I,. From (2.8.92), (2.8.93) and using Hdlder’s
integral inequality with indicew, p/(p — 1) andq, ¢/(¢ — 1), respectively, we
observe that

s 1/p
|f(s,t>|<<sr)“’—1>/”< fo fOZ|Dlef(s,n)|”d5dn) ., (2.8.99)

k pr 1/q
|g(k,r)|<(kr)<‘f—1)/q<// |D2D1g(0,t)|qdodr> , (2.8.95)
0JO

for (s,t) € I, x I, (k,r) € I, x I,. From (2.8.94) and (2.8.95) and using the
elementary inequality (2.8.37), it is easy to observe that

N 1/
£ G5, Dlg k. 1) <i<f/t}DzD1f(é,n)\pd§dn> ’
pPq 0J0

q(s0)P~+ pkr)a=t =
k pr 1/q
x (// |D2D1g (o, r)|qdadr) (2.8.96)
0JO
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for (s,t) € I, x I, (k,r) € I, x I,,. Integrating both sides of (2.8.96) first over
from O tow and overk from O toz and then integrating both sides of the resulting
inequality over from O toy and overs from 0 tox and using Holder’s inequality
with indicesp, p/(p — 1) andgq, ¢ /(g — 1) and Fubini’'s theorem we observe that

/x/y(/Z/w |f (s, 0)lgk, )l dkdr)dsdt
0Jo \JoJo qG)P=t+ pkrya—1
1 X pry s pt 1/p
<—U/ (f/yDlef(s,m!”dsdn) dsdr}
prq 0JO 0JO
zZ pw k pr 1/q
x[// (// |D2D1g(a,r)|qdadr> dkdr]
0JO 0JO
(p—1)/ X ry s pt 1/p
gw(/ f)<// |D2D1f(§,n)|pd§dn)dsdt)
rq 0JO 0JO
7 pw k pr 1/q
x(zw)(q_l)/q<// (/f |D2D1g(a,r)|qdadr)dkdr>
0JO 0Jo

X pry 1/p
:C(p,q,x,y,z,w)(/o/(; (x—s)(y—t)|D2D1f(s,t)|pdsdt>

z pw 1/q
X (/ [ (Z—k)(U)—V)|D2D1g(k, r)|q dkdr) .
0JO

The proof is complete. |

REMARK 2.8.9. By using the elementary inequality (2.8.37) on the right-hand
side of (2.8.90), we get the following inequality

/x/y(/sz [f(s,Dllglk, 1) dkdr)dsdt
0oJo \JoJo q(st)P~1+ p(krya—1

X ory
<C(pqux7yssz)|:%/ / (X—S)(y—f)|D2D1f(S7l)}pdef
0Jo

1 zZ rw
+—// (z—k)(w—r)|D2D1g(k,r)|qdkdri|.

qJoJo
(2.8.97)
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2.9 Miscellaneous Inequalities
2.9.1 Hardy and Littlewood [139]

Suppose thai,, > 0,n=1,2,..., andc is a real number. Set

n
Apn = E ay.
v=m

If p>1we have

o o

Zn_cAin <K Zn_c(nan)p with ¢ > 1,
n=1 n=1

o0 o
X:n_”A{;oo <K Zn_"(nan)p with ¢ < 1,
n=1 n=1

and if 0< p < 1 we have

o0 o0
ZniCAin >K an"(nan)p with ¢ > 1,
n=1 n=1

o0 o
X:n_CA,I;Oo >K Zn_”(nan)p with ¢ < 1,
n=1

where K denotes a positive absolute constant, not necessary the same at each
occurrence.

2.9.2 Leindler[186]

Leta, >0andr, >0,n=1,2,..., be given. Letv; < --- < v, < --- denote the
indices for whichi,,, > 0. Let N denote the number of the positive terms of the
sequence., provided this number is finite; in the contrary case,¥et co. Set
vo=0, and if N < oo thenvy+1 = co. Using the notations

n n
Am,nzzai and Am,nzz)\ia 1<m<n<oo,

i=m i=m
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we have the following inequalities

o0

p p 1-p P
Z)‘”Al,n Z)‘ Avnoo Vp—1+1,v,°
n=1

00
p pP 1-p
Z)‘nAn,oo = Z)L Al Un Un Vpp1—10

for p > 1 (the constanp? being the best possible one), and

N o]

Z)‘l pAgnooAgn 1+1v, SZA”A?W
n=1

N

Z)“l pAll?vnAvn Upgp1—1 S 92)‘ A"OO’
n=1

forO<p <1.

2.9.3 lzumi, Izumi and Petersen [163]

Letp>1,a, 20,m=212,..., gm)>0,m=1,2,..., andC = (cp, ) be
a positive triangular matrix (i.eG, « = 0 for k > m andc¢,, ¢ > 0 for k < m,
m=12..)1If

00
E Cmm < OQ
m=1

and

o0
3" gm)ch ., < Argmch,t foralln >1

m=n
then
00 m P 00
D glm) ( Zcm,nan) <A2) g(map,
m=1 n=1 m=1

whereA1, A; are constants independent of the terms under the summation sign.
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2.9.4 lzumi, lIzumi and Petersen [163]

Leta, >20,m=21,2,..., g(m)>0,m=1,2,..., andC = (¢, x) be a positive
triangular matrix which satisfies the conditions

00
Z g(m)cm,p,cm,v < Alg(v)cv,u for all =,

m=v

then

o m 2 o
> g(m)(Zcm,vav) <A2)_ glmah,
m=1 v=1 m=1
whereAj, Az are constants independent of the terms under the summation sign.
2.9.5 Love [196]
If p>1,a(t)>0,a()is decreasing i0, 1], ra(¢) is increasing if1, co),

t
c=/ a(t)r VP dr < oo, An >0, Am=21n,
0

A A A
|@mn| < _na<A_n> form #n, |ann| < 2A_n05(1)’

Ay m n
00
E AmnXn

p\ Up 00 1/p
) SC(ZAmlxmlp) s
n=1 m=1

where{x,} is an arbitrary fixed sequence.

then

(5

m=1

2.9.6 Love [196]

fg>p>11—(pt—¢ 1 <r1<1, a@) is nonnegative and decreasing
in (0, 1],

1 1/r
L= (/ a() 17"/ dt) < 00, An >0, Ay = Z?»n
0

and

m

)\’i/[’_l/q""l/r An
[amn| < TW(A_> forO<n <m,
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q\ 1/q 00 1/p
) <L(Z)\m|xm|p> ,
n=1

then

) m
( Z Am Z AmnXn
m=1 n=1

where{x,} is a fixed sequence.

2.9.7 Pachpatte [307]

If p > 1isaconstaniz(n) > 0 forn € N, the set of natural numbers, and

mp—2 mp—1
A(n) = Z Z > Za(mr)
n11 l m2 1 me_1= 1m - m =1
for n € N with mg =n, then
o0 rp o
ZAP(nK(L) > aP(n). (2.9.1)
n=1 P— 1 n=1

Equality holds in (2.9.1) itz(n) =0 forn € N.

2.9.8 Pachpatte [292]

Let R denote the set of real numbers ahidbe a subset dR” defined byB = {x €
R": 1< x <oo}wherel=(1,...,1) € R". For a functioru : B — R denote

Zu(y)— Z Z (YL, Yn)

=1 =1

and

Xn

D u(y) = Z D Uy ),

le yi= 1 Yn= =1

wherel=(1,...,1) € B, x = (x1,..., x,) € B such thatl < x, that is, 1< x;.
Assume that all inequalities between vectors are componentwise and all the sums
exist on the respective domains of their definitions and the value of any function
u(x, ..., x,) with any of its component zero is equal to Oplt> 1 is a constant,

fx) > Oforx € B and

Ax)=Y_f(y). xe€B, (2.9.2)

B x
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then

AG) ><( P )n,, P(x 2.9.3
XB:(Hlei < > . (2.9.3)

r=1) =
Equality holds in (2.9.3) iff (x) =0 forall x;,i =1,2,...,n
2.9.9 Pachpatte [277]

Let f;(u), j = 1,2, be real-valued positive convex functions definedifor 0.
Let p; > 1, j = 1,2, be constants}, > O, a’ >0, ]_12 3% A X
f].p1+p2(an), j =1,2, converge, and further let, = >"7_; A;, A = =Yk ¥
a,.(j), j=1,2.Then

S A (A(l)>f (A(Z))
n=1 An

p1+p2
<( p1+p2 )
p1+p2—1

X |:<p1+p2>zk fp1+p2( (1))+<p1+p2)z)” fp1+[72( (2)):|

2.9.10 Pachpatte [277]

(i) Let f;(w), j =1,2,3, be real-valued positive convex functions defined
for u > 0. Let p; > 1, j = 1,2,3, be constantsi, > 0,4 >0, j =1,2,3,
Py )Lnsz”f @), j =1,2,3, converge, and further let, = >7_, 1, A}’ =
Y xa, j=1,2,3.Then

i)\n [ffl(A(l))f <A(2))
n=1 n
(YR (D)o )

3 2 00
2pj P 201 (j)
< An ’ ’.
> (525) S

j=1
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(i) Let f;. pj. Ar. A be asin () and52, 4, /1" (@), j = 1.2.3, con-

verge. Then
00 A(l) A(Z) A(3)
Lt (5 ) ()0 (%)
n=1 An

() () e ()

3 .
<Z( 4p, )‘””ik £ (a)

j=1

2.9.11 Pachpatte [277]

Let f;(w),j =1,...,m, be real-valued positive convex functions defined for
u>0. letp;>1,j=1,....m, be constantsi, > 0,a\’ >0, j=1,....m
Z;’;l)»,,f;npj(a,(/)), j= 1m converge, and further lett, = Y7, 4;,
AP =" ua®, j=1,....m. Then

el () 2 S

n=1

2.9.12 Pachpatte [305]

Let H(u) be a real-valued nonnegative convex function defined«fer 0. Let
M >0,a, >0and

n n n
A=) ki, Ap=) hiai,  Qn=) kH(a).
i=1 i=1

i=1

(i) If p>0,q > 1 be real constants afd > ; A, [Qn /AP [H (an)]? < oo,
then

S An )17 —. [Q:7" a
ZA{H(A—)} <M‘IZAH[A—} [H(aw]’
n=1 n

n=1 n

whereM =(p+¢q)/(p+q —1).
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(ii) If p,q,r be nonnegative real constants such that- > 1 and) > ; A, x
[Qn/AW]P[H (a,)]9"" < oo, then

ix [H(ﬂ)r+ [H(an)] < BY Z)\ [ } H(a)]"™
n:1 n An n n n k]
whereB=(p+q+r)/(p+q+r—1).

2.9.13 Bennett [23]

Letp,q,r > 1.1f {a,}7° ; is a sequence of nonnegative numbers with partial sums
Ay=ai+az+---+ay,, then

r _ r
Sabai( L axrt) < (PEEDE) S akante.
n

m>n p n

2.9.14 Alzer[9]

Letay,...,ay be nonnegative real numbers such that az < --- < ay and let
Apy=Y7 qa.1f p>1,4>0,r>0are real numbers such that

d:w>k,

p

wherek > 1 is an integer, then

N N k-1 N
> al Al [ 3 a,}j”/‘f} <[Tw@— /e (ah ag)t*.

n=1 m=n i=0 n=1

If k=1 then assumption; < a2 < --- < ay can be dropped.

2.9.15 Cochran and Lee [65]

If y andp are constants withr > 0 andp > 1, and 0< x,, < 1, then

o) m p/mP e8]
Eor(IT)  corr Lo

n=1 m=1
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2.9.16 Andersen and Heinig [14]

Let {K(m,n)} be a nonnegative double sequence defined ia {(m,n) € Z x
Z: n < m} such thatk (m, n) is nonincreasing im and nondecreasing inwhere
Z denote the set of integers.

() f1 < p<q<ooand{u,}, {v,} are nonnegative sequences such that, for
someB, 0< B8 <1, and all integery,

00 1/q r 1/p
(Z{Km,r)}ﬂquZ) ( > {K<r,n>}‘”)p’v;”’) <C<oo,

n=r n=Tee (2.9.4)

wherep’ denotes the conjugate index pf then for all sequencdg,,},

B q\ /g 00 1/p
( > ) gAC( > |vnan|f’) :

n=—0oo n=—oo

n

Up Z K(n, m)a;,

m=—00

In casep = 1, the second sum in (2.9.4) is replaced in the usual way by the
supremum fon < r.

(i) If1 < p <g <ooand{u,}, {v,} are nonnegative sequences such that, for
somep, 0< B <1, and all integers,

r g / , , 1/p'
( > {K<r,n>}’3"u2> (Z{Km,r)}“"“”” v;") <C <o,
n=—0oo n=r

wherep’ denotes the conjugate index pf then for all sequenceds, },

o0 q\ 1/q 00 1/p
( > ) <AC‘( > |vnanll’> :

n=—oo n=—oo

o0
Uy Z K(m,n)a,,

m=n

2.9.17 Pachpatte [309]

Leta >0,p>0,9 > 1 bereal constants. L&t=1{1,2,...},No={0,1,2,...},
Nom =1{0,1,2,...,m} for some fixedn € N and A is the forward difference
operator. Lefu,}, n € Ng ,,, be a sequence of real numbers. Then

m—1 m—1 |u | q
Zn“lun|p+‘1<M{Z(n+1)°‘+q|un|ﬂ< " +|Aun|> }

m
n=0 n=0

1/q
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m—1 1/q'
{Z(n+1)“|un|”+ff} ,
m—1 m—1 | | q 1/q
Znalunl"“KM{Z(Hl)“*H n|"( " +|Aun|> }
n=0

n=0
_ 1/q’
[
n=0

m—1 m—1 |u| q 1/q

Zn“|un|"+q<M{Z(n+1)<“+1>q|un|"( . +|Aun|) }

m—1 m—1 | | q 1/q

Zn"wp*%M{Z(nﬂ)“@1>|un|f’< . |Aun|) }
m

m—1 1/q'
x {Z(n + DIt |un|f’+q} :

where

2.9.18 Pachpatte [303]

Letp>1,4,>0,a,>0,n=12,..., A, => 7" 1Ahiaj, Ay = :_1X; and
that}"°2 , A,al converges. Then

o0 p p—1

VA p
E )\n< p_nl> §P< — ) } )Lna’l;’
n=1 An n=1

p—1

whereVA} = A} — A”_, and that any number with suffix zero is equal to 0.
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2.9.19 Andersen[13]

Letd >0, 1< p < g < oo and supposéu, }5°, {v,}5° are nonnegative extended
real-valued sequences. There is a consfaimdependent ofa,, }3°, {b,}7° such

that
1/p / 1/q
(mev’vm) (Z|bn|qun)
n=1

m=1

’

anby,
Z Z (m+n)*|

n=1lm=1

if and only if there is a finite constam such that

) " Yq / o=V (=D 1/p’
A n m
S DD v marr | SK
(n+r) (m+r)
n=1 m=1

for all positive integers, wherep’ andq’ denote the conjugate index pfandg,
respectively.

2.9.20 lzumiand lzumi [162]

Let p > 1 ands > —1 and letf be a nonnegative, nonincreasing and integrable
function on(0, b). If x* f(x)? is integrable, then

b b X p b p
/ x*G(x)P dx<A/ x‘v<f(—) —f(x)) dx+A< fx) dx) ,
0 0 2 b2

whereG(x) = [, I gt and A is a constant depending only grands.

X

2.9.21 Shum [407]

Letp>1,r#1andf(x) e L[O,b] or f(x) € L[a, o] according as- > 1 or
r <1,wherea > 0,b > 0. If F(x) is defined by

Jo fOd,  r>1,

F =
(0 [ fode, r<1,



2.9. Miscellaneous Inequalities 249

and iffobx"(xf)” dx < oo in (i) and [ x " (xf)” dx < oo in (i), then

b p
(i) / x"FPdx + ——bY¥ FP(b)
0 r—1
p P prb
g( ) fx_r(xf)pdx forr > 1,
r—1 0
°° p
(i) / x"FPdx + ——FP(a)
a 1-r

p \ [
< (1—> / x"(xf)Pdx forr <1,
_r ,

with equality in (i) or (ii) only for f = 0, where the constarip/(r — 1))? or
(p/(A—r))P is the best possible when the left-hand side of (i) or (ii) is un-
changed, respectively.

2.9.22 Mohapatra and Russell [217]

Suppose that:(-, ) is defined onR, x R, with a(x,7r) >0 for 0 <t < x,
a(x,t) =0 fort > x, and suppose that, for some const&at> 1,

a(x,t) < Kipa(y,t) forx>y>t. (2.9.5)

Letg(x) >0,x € Ry, andg(-)a(-, 1) € L(0,¢) for eachr > 0, and write
t
Go(t) = / gx)alx,t)dx, t>0.
0
Let f(r) >0,r e Ry, anda(x, -) f(-) € L(0, x) for eachx > 0, and write

Fi(x) = /xa(x, Hf@)d, x>0.
0

(&) fl<p<o0,0<m<o00,g(x)>00n(0,m), then
/(; gFl dx < (pKffl)p/O gYP(Gaf)P dx. (2.9.6)
(&) If0<p<1,0<r <oo, F1(x) > 0 onRR4, then

o0 o0
/ gF dx > (pKf_l)p/ g P(Gaf)P dx. (2.9.7)

r
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(ag) If p =1then hypothesis (2.9.5) is not required and (2.9.6) far@ < oo

and (2.9.7) for O< r < oo hold, with equality in (2.9.6) forn = oo and (2.9.7)
forr =0.

2.9.23 Mohapatra and Russell [217]

Assume thata(-, -) is defined onR; x Ry with a(x,7) > 0 for O < x < ¢,
a(x,t) =0 forx > ¢, and suppose that, for some const&at> 1,

a(x,t) < Koa(y,t) forx<y<t. (2.9.8)

Letg(x) >0,x e Ry, andg(-)a(-, 1) € L(0,t) for eachr > 0, and write

t
G1(t) :f gx)alx,t)dx, t>0.
0

Let f(t) >0,t e Ry, anda(x, ) f(-) € L(x, oco) for eachx > 0, and write

Fo(x) = /ooa(x,t)f(t) dr, x>0.

(b)) fl<p<oo0,0<r<oo,gx)>00n(r 00), then

/gFZ”dxg(pkg"l)”/ ¢Y P (G1f)P dx. (2.9.9)

r

(b2) fO0<p<1,0<m< o0, Fo(x) > 00nR,, then
fo gFydx > (ng‘l)”/o g P(G1f)P dx. (2.9.10)

(b3) If p =1 then hypothesis (2.9.8) is not required and (2.9.9) far0< oo
and (2.9.10) for O< m < oo hold, with equality in (2.9.9) for = 0 and (2.9.10)
for m = oo.

2.9.24 Levinson [190]

Letp > 1, f(x) > 0andr(x) > 0,x > 0, be absolutely continuous. Let

/ j—
wo_p-t 1

r p A
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for almost allx > 0 and for someé. > 0. If

r(x) [ f@)
x 1@

J(x)= dr,

then

/me(x)dxgkpfwfp(x)dx.
0 0

2.9.25 Pachpatte [255]

Let p > 1, m > 1 be constants. Lef be a nonnegative and integrable function
on (0, b), b > 0 is a constant. Let be a positive and absolutely continuous func-
tionon (0, b). Let

_p T (x)
m— 1 r(x)
for almost allx € (0, b) and for some constant> 0. Then

b p P rb
f xT"MFP(x)dx < <(x( )) f x " <r(x)
0 m—1 0

where

J&x)  f(x/2)
r(x)  r(x/2

) e

_ AU
F(x)=r(x) x/2<tr(t)) dr

2.9.26 Pachpatte [255]

Let p, f,r be as in Section 2.9.25 a{x) = fg‘ r(t)dr. Letg be a positive and
absolutely continuous function @, b). Let

1 Rx)q(x) 1 R (x)
S p-1rx) gq) p-1 r2(x) "«

for almost allx € (0, b) for some constant > 0. Then

b
/ q(x)FP (x)dx
0

p P b 1
<(“(p—l)) fo qm{xr(x)

r () f(x) — r(f>f<f)
2 2

p
o
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where
1 Trf@) a

FO=20 ). 1

2.9.27 Pachpatte [268]

Letm #1andp; > 1, j =1, 2, be constants such th%lt + p_12 =1. Let f;(x),
J =1,2, be nonnegative and integrable functions(6noo) and letr;(x), j =
1, 2, be positive and absolutely continuous functiong@ro). Let

rix) 1
1—|—< Pj )x] >— form>1,
o

m—1/ rjx)
l—(L)xr ) i form < 1,
1-m) rjx) ,Bj

for almost allx > 0 and for some positive constanisg, 8;, j = 1, 2. If F;(x),
j =1,2, are defined by

()f“(t)f’(’)dt form>1

ri(x !

Fiy=1{" ) (2.9.11)
) f; (@)

rj(x) [ dr form < 1,

then

o 1 Pl Propeo P1
/ x"MFi(x)Fa(x)dx < — <A1< )) / x7M () d
0 p1 lm —1] 0

p2 00
+ i(}\2< P2 )) / xfmfZPZ(x)dx,
p2 lm — 1] 0

(2.9.12)

wherei; = maxXa;, g;} for j =1, 2. Equality holds in (2.9.12) if; (x) =0

2.9.28 Pachpatte [268]

Letm, f;,r; be asin Section 2.9.27 and > 1, j =1, 2, be constants. Let

ri (X) 1
1+<p1+p2>x —* form > 1,
m-—1 rj(x) o

ri(x)
1_(1’1+P2>x 1* form > 1,
1-m rj(x) ﬂ
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for almost allx > 0 and for some positive constarai;, ﬂj, J=L2.1f Fi(x),
j=1,2, are defined by (2.9.11), then

/ xTMFPN () F32 (x) dx
0

p1t+p2 poo
() oo

+ < pl )(A*(pl+p2>>pl+p2 /Oox—)nfp1+p2(x)dx
p1tp2)\"A\Im 1 0 2 ’
(2.9.13)

where)\j. = max{aj, /37} for j =1, 2. Equality holds in (2.9.13) if (x) = 0.

2.9.29 Pachpatte [268]

Letm > 1andp; > 1, j = 1,2, be constants such théi& + ,,—12 =1. Leth;(x),

7 =1,2, be nonnegative and integrable functiong@rb) and letz; (x), j =1, 2,
be positive and absolutely continuous functiong@yb). Let

. Z/- X
1+ (L)xﬁ > i
m—1) z;j(x) " y;j

for almost allx € (0, b) and for some positive constantg, j = 1, 2. If H;(x),
Jj=1,2, defined by

1 Y zj@®h;) ar
z;(x) Jx/2 t

Hj(x)= , (2.9.14)
then

b
/ x 7" Hi(x)Ho(x) dx
0

1 P1 prebo 11 x x
u(n(20)) [l feome = (G)n(;)
P2
“alel(a%))
D2 m—1

b P X x
X/o X {% zz(x)hz(x)—zz(z)hz(z)

r1
}dx

p2
} dr.
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2.9.30 Pachpatte [268]

Letm, h;,z; be asin Section 2.9.29 apg > 1, j =1, 2, be constants. Let

p1+p2 Z(x) 1
1+<m—1> Z](x)

for almost allx € (0, b) and for some positive constarﬁ;, J=12.1f Hj(x),
j =12, are defined by (2.9.14), then

b
/x_mHlpl(x)Hé’z(x)dx
0
<< P1 )(6 <P1+P2>>pl+p2
S\ p1tp2 Wm—1
b X
X/o x~ { ()z1(X)h1(X) (2>h1(§>
() ()
p1+p2
X/o x_m{ 2(0) ZZ(x)hZ(x)_”(Z)hZ(;)

2.9.31 Pachpatte [337]
Let p > 1, m > 1 be constants. Lef be a nonnegative and integrable function
on(0,b), 0< b < oco. If F(x) is defined by

X t
F(x) =/ 1-< I ds> d
o ! t/j2 S
for x € (0, b), then

b p 2p b
/ xTMFP(x)dx < (—) / x "
0 m—1 0

2.9.32 Pachpatte [337]

dx

}p1+p2

dx.

}171+172

P
dx.

~(3)

Let p, m and f be as in Section 2.9.31. F(x) is defined by

F(x):/x 1'( lﬁds)dt
x2t\Jo 8
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(3)

for x € (0, b), then

b p 2p b
/ xT"FP(x)dx < (—) f x "
0 m—1 0

2.9.33 Pachpatte [255]

p
dx.

Let p > 1, m > 1 be constants. Lef be a nonnegative and integrable function
on (0, b). Letr be a positive and absolutely continuous function@yb). Let

p ') p 1
1 > —
+m—1xr(x)+m—1 o

for almost allx € (0, b) and for some constant> 0. Then

b
/ x "FP(x)dx
0

p P rb 3 1 X X p
feGE [ rlishoro -z @) e
where
1 X
Fx) = / r(t) f(¢)dr.
xr(x) Jx2

2.9.34 Pachpatte [255]
Let p,m, f andr be as in Section 2.9.33. Let

p xr/(X) p
m—1 r(x) m-—1

=

Rk

for almost allx € (0, ) and for some constant> 0. Then

b p P rb
f x"FP(x)dx < (a( )) / x_m{r(x)
0 m—1 0

where

f&x)  1f(x/2)
r(x) 2 r(x/2)

}dx,

re) [*fO .

== X Jx2 r(t)
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2.9.35 Pachpatte [253]

Assume that:

(H1) Let p > 1 be a constant. Lef(x) be a nonnegative and integrable func-
tion on (0, 00). Let r;(x), i = 1,...,n, be positive and absolutely continuous
functions on(0, co).

(H2) There exist positive constantg, 8; such that for almost alf > 0,

1+<L> r(x) i form > 1,
o

m—1 rl(x)
1- <L> L (x) ! form < 1,
1-m rl(x) /31

fori=1,...,nhold. If m #1 andf(;>Q x7™ fP(x)dx < co andE(x) defined by

fx rit) 1 f’l ret) 1 . (m-2ra-1lp-1) 1
r1(X) 1 ra2(t1) rp r3z) " JO thi1 Tn(tn—1)
X fort 0 £ oy dry—y - drpdr, mo> 1,
E(x) = ©ri(t) 1 ooty 1 o0 rp-1lta-1) 1
r1(X) o r2(t) Jn 12 r3(f2) th-2  th-1  rp-1(ty—1)
x [ %f(rn)dzn dt,_q---dipdty, m<1,
then

P o0
/ x"MfP(x)dx form > 1,
0

o) . n ' p n
/0 xTMEP(x)dx < |:<Elocl)<—m_l> :|
o0 n p n]? oo
TMEP(x)dx < | —— P (x)dx 1.
/0 X (x) |:<,=1_£IB><1_’"):| /0 x " FP(x) orm <

2.9.36 Pachpatte [253]

Assume that (i) in Section 2.9.35 and following hypothesisz}hold.

(H3) There exist positive constantssuch that, for almost alt > 0,

1+(1)1R<>(> !
X)r.-(X —
2(x) ki
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fori=1,...,nand
X
R; (x) :/ ri()dr, i=1,...,n,
0

holds. Letp (1) > 0 be defined on an open interval, finite or infinite, have a second

derivative¢” > 0 and
1
p¢” > (1— —)¢’2,
p

and at the ends of the interwaltake its limiting values, finite or infinite, and for
0 < x < o0, the range of values of (x) lie in the closed interval of definition
of . If [5~ ¢ (f(x))dx < oo andJ(x) is defined by

th—2
J = . n—1\Un—
()= R1<> Rz(tl) R3(f2) ./0 n=alin=)

th—1
2 (t) f(ty) dt, dty,—q - - - diadrq,
XRn(tnfl)/O ru(tn) f (tn) -1 2dr

/Oooqs(ux) [(Hk)( )n:|p/000¢(f(X))dx

2.9.37 Pachpatte [310]

then

Let B be a subset of the-dimensional Euclidean spad®® defined byB =
{x e R": 0 <x < oo} for 0 e R". For the functionu(z) defined onB, denote
by [pu(z)dz, [ u(z)dz then-fold integrals

o (0.¢]
/ / M(Zl,u-,Zn)dZn"'le,
0 0

y1 Yn
/ f u(z1, ..., 2n) dzy --- dza,
X1 Xn

respectively, where; < y;.

(i) Let p > 1 andc > 1 be constants. Lef (x) be a nonnegative and in-
tegrable function onB and letr;(x;),i = 1,...,n, be nonnegative continuous
functions on(0, co) and let

Xi
Ri(Xi)Z/O ri(ydy;,, 0<x; <oo.
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If F(x) is defined by

n

F(x) =fB (Hr,-(m)f(y) dy, xeB,
0,x

i=1
then

/ (HR;C(x»n (x») FP(x) dx
B

i=1

np n
S <cf1) é(HRfc(xi)ri(xiOf”(x) dx. (2.9.15)

i=1

Equality holds in (2.9.15) iff (x) = 0.
(i) Let p, f,r;, R; be defined as in (i) and < 1 be a constant. I¥(x) is
defined by

F(X)=/B (]_[ri(yi)>f(y)dy, x € B,

i=1
then

/ (HR;C(x»n (x») FP (x) dx
B

i=1

np n
S <1fc) é(flj[lRipc(xi)ri(xiOf”(x) d. (2.9.16)

Equality holds in (2.9.16) iff (x) = 0.

2.9.38 Pachpatte [310]
Let H be a subset of the-dimensional Euclidean spa&® defined byH = {x

R": a < x < b}, wherea, b € R" anda > 0. For a functioru(z) defined onH,
we denote b)fH u(z)dz, fHX , u(z) dz then-fold integrals

respectively, where; < b;, x; < y;.
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(i) Let p > 1, u <1 be constants and9a < b < M, where Qa, b, M are

in R”. Let g(x) be a nonnegative and integrable function Bnand letr; (x;),
i =1,...,n, be nonnegative continuous functionsgn< x; < M; and let

X
Ri(xi)=/ ri(yi)dyi, ai <x; <M;.
a;

If G(x) is defined by
G(x) =/ (]‘[n(y»)g(y)dy, a<x<b,
Hax \ j=1
then

n (M —u
/, (H{'Og@ig;)) } R i)y (x,-)) G (x) dx

i=1

» \" . Ri(MON"™" p—1,
() ()| o

(2.9.17)

Equality holds in (2.9.17) ig(x) = 0.
(i) Let p,a,b, M, g,r;, R; be as in part (i) above and > 1 be a constant. If
G (x) is defined by

n

G(x) =/H (l_[ri(y,-)>g(y) dy, a<x<b,
x,b

i=1

- RGO\ ™ 1
fH( JIOg( R,-(x,->>} R (’“’)’I(XJ)G”(x)dx

r \% . RiMON"" -1, ),
“(+%) L(g{'°g<&(x,->>} i) Jeod

(2.9.18)

Equality holds in (2.9.18) ig(x) = 0.
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2.9.39 Pachpatte [342]
Let n > 2, 0< k < n — 2 be integers. Let € CL(I,R,), u € C"(I;,R),

veC(I,,R) anduD0) =vi-D0)=0,i =1,...,n, wherel, = [0, x),
I, =0, y). Then

o R O O]
/c;/o §2n—2%-3 4 ;2n-2%—3 ds dr
X s s (n—1) , 2d g 1/2
<Mk, x, D n—
(n, k,x y)(/o (x s)rz(s)</o |(r(o)u @) cr) s)
y t t - )2 1/2
x(/o <y—r>%</ol(r@>v< Dig))| ds)dr> ,

_1 VT
M kX ) = S k2@ — 2= 3)

where

2.9.40 Pachpatte [342]

Lletn > 1, 0< k <n—1 be integers. Let € C"(I,Ry), u € C¥(I,,R),
v e CZ”(Iy,IR) and u=Y(0) = v0=D©) = 0, (r(Ou™ ()Y = (0) x
v™(0)(—D =0,i=1,...,n, wherel, = [0, x), I, = [0, y). Then

T wP )Pl
/o/o §2—2k—1 4 (2021 dls dl
X 1/2
<M(n,k,x,y)</ (x—s) 2()(/ | r(g)u(n)(g))(n)| do ) )
)12 1/2
(/ =1 20)(/ |(r v )™ ds)dr) ,

where
_1 VX
M@, k,x,y)= 2[(n—D!(n —k —1)!(2n — 1)]2(2}1 — 2k — 1)'
2.10 Notes

In 1920, G.H. Hardy proved the inequality given in Theorem 2.2.1. He deduced
inequality (2.2.1) from the corresponding inequality for integrals. Theorems
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2.2.2 and 2.2.3 are due to Copson [69]. Theorem 2.2.4 deals with a generalization
of Hardy’s inequality in Theorem 2.2.1 and is established by Hardy and Little-
wood in [139]. Theorem 2.2.5 is due to Nemeth [226] which deals with gener-
alizations of the Hardy—Littlewood inequality given in Theorem 2.2.4. Theorems
2.2.6 and 2.2.7 are taken from Love [196].

The results in Theorems 2.3.1 and 2.3.2 are due to Copson [71]. Theorems
2.3.3 and 2.3.4 are taken from Pachpatte [277] and [307]. The result in The-
orem 2.3.5 is due to Bennett [22] which, in fact, is motivated by Littlewood’s
problem [195]. The inequalities in Theorem 2.3.6 are taken from Pachpatte [326].
Theorem 2.4.1 deals with the famous integral inequality first discovered by Hardy
in [136]. Theorem 2.4.2 is a further generalization of the inequality in Theo-
rem 2.4.1 and also established by Hardy in [137]. The inequalities in Theorems
2.4.3 and 2.4.4 are due to Copson [70]. Theorems 2.4.5 and 2.4.6 are taken from
Love [199]. Theorems 2.4.7 and 2.4.8 deal with the general versions of Hardy’s
integral inequality with weights and are taken from Muckenhoupt [221].

Theorems 2.5.1-2.5.3 deal with certain generalizations of well-known Hardy’s
integral inequality established by Levinson in [190]. The results given in
Theorems 2.5.4-2.5.8 deal with some basic generalizations of Hardy’s integral
inequality established by Pachpatte [295,344]. Theorem 2.6.1 deals with the vari-
ant of Hardy’s integral inequality and is proved by Izumi and Izumi in [162].
The results in Theorems 2.6.2—-2.6.9 deal with some extensions and variants
of Hardy’s integral inequality established by Pachpatte [254,255,337] (see also
[266,305,306]). The results given in Section 2.7 deal with certain multidimen-
sional generalizations and variants of Hardy’s integral inequality established by
Pachpatte in [293,315,333,341]. Section 2.8 contains some new results on in-
equalities similar to Hilbert’s inequality established by Pachpatte in [334,335,
342,343,350,352,353]. Section 2.9 deals with miscellaneous inequalities which
claim their origin in well-known Hardy’s inequalities.
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Chapter 3

Opial-Type Inequalities

3.1 Introduction

In 1960, Z. Opial [231] discovered one of the most fundamental integral inequal-
ities involving a function and its derivative, which is now known in the literature
as Opial's inequality. In the same year, C. Olech [230] published a note which
addresses a simpler proof of Opial’s inequality under weaker conditions. Starting
from the pioneer papers [230,231], the result of Opial has received considerable
attention and many papers have appeared, which provides with the simple proofs,
various generalizations, extensions and discrete analogues of Opial’'s inequality
and its generalizations. The importance of Opial’s inequality and its generaliza-
tions and extensions lies in successful utilization to many interesting applications
in the theory of differential equations. Good surveys of the work on such inequal-
ities together with many references are contained in monographs [4,211,215].
In the past few years, numerous variants, generalizations and extensions of Opial’'s
inequality which involves functions of one and many independent variables have
been found in various directions. This chapter deals with important fundamental
results on Opial-type inequalities recently investigated in the literature by various
investigators.

3.2 Opial-Type Integral Inequalities
In [231] Opial established the following interesting integral inequality

h h h 2
/ |u(r)u’(t)|dt<—/ |u(1)|" o, (3.2.1)
0 4 Jo

263
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whereu(t) € C1[0, h], u(r) > 01in (0, h) such that:(0) = u(h) = 0. In (3.2.1) the
constam’}1 is the best possible. The first simple proof of inequality (3.2.1) is given
by Olech [230] in his paper published along with Opial’s paper [231]. In the years
thereafter, numerous variants, generalizations and extensions of inequality (3.2.1)
have appeared in the literature; see [4,211,215] and the references given therein.
In this section we present a weaker form of (3.2.1) and its simplified proof based
on Olech [230] as well as variants established by various investigators during the
past few years.

We begin with the following weaker form of Opial’s inequality (3.2.1) which
Olech establishes in [230].

THEOREM 3.2.1. Let u be an absolutely continuous function on [0, 4] and let
u(0) = u(h) = 0. Then inequality (3.2.1) holds. Equality holds in (3.2.1)if and
only if

cx forO<x

<
u(t) =
cth—x) fors<x<

h
25

3.2.2
. ( )
where ¢ is a constant.

PROOF. Lety(t) = fé lu'(s)|ds andz(¢) = fth |/ (s)|ds. Then we have the fol-
lowing relations

Y0 =|u' @) =—-2 () (3.2.3)
and
lu@)| <y@®),  |u®)] <), (3.2.4)
for ¢t € [0, h]. From (3.2.3) and (3.2.4), we get

h/2 h/2 1 h
/ |lu(tyu (1) dr < / y(1)y (1) dt = —yz(—> (3.2.5)
0 0 2 2

and

h h 1 h
/ |lu(t)u’ ()| dr < —/ 07 @) dr==72( = ). (3.2.6)
h/2 h2 2°\2
From (3.2.5) and (3.2.6), we find that

h
/0 lu(t)u’ ()| dr < %[yz(%> +z2<g>] (3.2.7)
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On the other hand, using the Cauchy—Schwarz inequality, we have

hy2 2 /2
y2<ﬁ) = </ |u' ()] dt) < ﬁ/ |u’(t)|2dt, (3.2.8)
2 0 2 0
h 2 h
22<ﬁ) = </ |u' ()] dt) < ﬁ/ |u’(t)|2dt. (3.2.9)
2 hy2 2 Jn2

Now the desired inequality in (3.2.1) follows from (3.2.7)—(3.2.9).
Now suppose that the equality holds in (3.2.1), that is,

h h h 2
/ |u(t)u/(t)|dt:—f |u(1)|" . (3.2.10)
0 4 Jo
Then from (3.2.7)—(3.2.9), we get
h/2 2 g k)2 )
(/ |u/(t)|dt> =—/ |u(1)|” d, (3.2.11)
0 2 Jo
h 2 h h 2
(/ |u/(t)|dt> :—/ |u(1)|” de. (3.2.12)
h/2 2 )2

It is easy to see that equalities (3.2.11) and (3.2.12) are possible if and only if

u'(1)] = constant almost everywhere [0, 5] and in[4, 2]. Hencey(t) and
z(t) are linear. Further, it follows from (3.2.10), (3.2.7), (3.2.11) and (3.2.12)
that|u(t)| = y(t) for 0< ¢ < 4 and|u(t)| = z(t) for 4 <t < h. These facts im-
ply (3.2.2). The proof is complete. O

In [419] Traple has given the inequalities in the following theorem.
THEOREM 3.2.2. Let p be a nonnegative and continuous function on [0, k]. Let

u be an absolutely continuous function on [0, 4] with u(0) = u(h) = 0. Then the
following inequalities hold

h 2 h h h 2
/p(t)|u(t)| drg—(/ p(t)dt)(/ |u' ()] dt), (3.2.13)
0 4\Jo 0
h h ot 1/2 h 2
/p(;)|u(z)||u’(t)|dt<(—f pz(t)dt) (/ |u' (1) dt). (3.2.14)
0 4 Jo 0

PrOOF Forr € [0, k], we have

t h
|u()| </ |u’(s)| ds, |u@)] g/ |u’(s)| ds. (3.2.15)
0 t
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From (3.2.15) we observe that

1 h
lu(t)| < 5/ |u/ (1) dt.
0

From the above inequality and using the Schwarz inequality, we have

h 1 h h 2
fp(r>|u(t>|2dr<1/ p(r)(/ |u’<t>!2dr)
0 0 0
h h
gﬁ(/ p(t)dt></ |u/(t)|2dt>,
4\ Jo 0

which is the required inequality in (3.2.13).
By using inequality (3.2.13) and the Schwarz inequality, we observe that

h
/O p®)|u@)||u’ )| dr

h , \Y2/ h , \2
<</ PA0)|u)] dt) <f ' ()] dt)
0 0
h h 12, 1/2
<(ﬁf Pz(t)dt/ |u/(t)|2dt> (/ |u’(t)|2dt)
4 Jo 0 A
h 1/2 h
=(ﬁf pz(t)dt> </ |u/(t)|2dt>.
4 Jy 0

The proof is complete. O

In the following two theorems we present the inequalities of the Opial type
established by Pachpatte in [348].

THEOREM3.2.3. Let p > 0,9 > 1, m > 1 bereal numbers. If u € C1([0, h], R)
satisfies u(0) = u(h) =0, then

h h
/|u(t)|m(p+q)dl<[(p+q)m1(m)]q/ )| | ()| i, (3.2.16)
0 0

h h
/|u(t)|’”(”+‘”dt<[(p+q)'"1(m)]1’+"/ W' O" P dr,  (3.2.17)
0 0
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where

h
I(m) = / [ 4 (h— "] Yehr, (3.2.18)
0
PrROOF From the hypotheses, we have the following identities
t
uPt@) = (p+ q)/ uPT4 ()’ (s) ds, (3.2.19)
0
h
uPta() = —(p + q)f uP T4 () (s) ds, (3.2.20)
t

for z € [0, h]. From (3.2.19), (3.2.20) and using Holder’s inequality with indices
m,m/(m — 1), we obtain

|M(t) |m(P+q)

t
< (p+q)’"t’”‘1/ lu(s)| 7w (5| ds, (3.2.21)
0

|M(t)|m(p+q)
h
<(p+q)"h— t)'"‘lf u(s)|" PP ()" ds, (3.2.22)
t

for ¢ € [0, k]. Multiplying (3.2.21) byr! = and (3.2.22) by — )1~ and adding
these inequalities we obtain

[ 4 (h = )Y Ju ()"
<P+ /Oh lus)|" P [ (5)[™ ds. (3.2.23)
From (3.2.23) we get
|u(t)|m(P+q)
<SP+ [+ (-]

" mp/q| 7. N|m m(p+q—1)—mp/q
X A [|u(s)| |u (s)| ][|u(s)| ]ds (3.2.24)
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for ¢ € [0, h]. Integrating (3.2.24) oii0, 1] and using Hdélder’s inequality with
indicesq, g/(¢q — 1), we obtain

h
/ |M(t)|m(17+!1) dr
0

h
<(p +q)’"1(m)f0 [ ™9 u’ @) " [Ju) [T H7"4 ]

<(p+)"1(m)

h m m Yq s ph m(p+g) (¢=D/q
x(/o lu@®) " |u’ @) th) </0 (o)™ dt) .

(3.2.25)
If fél lu(r)|"P+49) dr = 0 then (3.2.16) is trivially true, otherwise, dividing both
sides of (3.2.25) byfé’ lu(t)|" P+ dry@—D/a and then taking theth power on
both sides of the resulting inequality we get the required inequality in (3.2.16).
By using Hélder's inequality with indice&p + q)/p, (p + q)/q to the inte-
gral on the right-hand side of (3.2.16) and following the arguments as in the last
part of the proof of inequality (3.2.16) with suitable changes, we get the required
inequality in (3.2.17). The proof is complete. |

THEOREM 3.2.4.Let p >0,¢ > 1, r >0, m > 1 be real numbers. If u €
C([0, n], R) satisfies u(0) = u(h) = 0, then

h
/0|u(t)|m(p+q)|u/(t)|mrdt
h
<[(p+q+r)’”1(m)]qf )™ | " dr,  (3.2.26)
0
h
/0 |u(t)|m(p+q)|u’(t)‘mrdt
h
<[(p+gq +r)’"1(m)]”+‘ff |/ ()P dr, (3.2.27)
0

where I (m) is defined by (3.2.18).

PrROOF Rewriting the integral on the left-hand side of (3.2.26) and using
Hélder’s inequality with indicesq + r)/r, (¢ + r)/q and inequality (3.2.16),
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we observe that
h (p+q)
/ lu@)|™ " [’ ()" dt
0

= /h Hu(l‘)|m(l7r/(q+r)) ’M/(t) |mr]Hu(t)‘m(p+q)_m(pr/(q+r))] ar
0

h r/q+r eh q/(q+r)
g[/ |u(z)|’””|u’(z)|”’(q+’)dt] U |u(r)|’"(”+"+”dz}
0 0

h r/(g+r)
< U )| [u’ (1)@ dt]
0

h q/(q+r)
X [[(p +qg+ r)ml(m)]q+r/ ‘u(t)’mqu’(t)’m(qH) dti|
0

h
— [(P +q +r)ml(m)]qA ’u(t)rnp‘u/(t)’m(q-i-r) dr.
This result is the required inequality in (3.2.26).

From (3.2.26) and using Hdlder's inequality with indicép + ¢)/p,
(p +49)/q, we observe that

h
/ @[ 0| ol
0
<[(p+g+r"1m)]?
h
X/ [|u(t)|mp|u/(t)}m(rp/(PJrq))]Hu/(t)|m(q+r)7m(rp/(p+q))]dt
0

<[ +g+n"1m)]’
h pl(p+ rh q/(p+q)
« [/ |u(t)’m(17+q)|u/(t)’mr dti| |:/ |u/(t)|Yn(P+q+r) dt] )
0 0

Now, by following the arguments as in the last part of the proof of inequality
(3.2.16) with suitable modifications, we get the required inequality in (3.2.27).
The proof is complete. O

REMARK 3.2.1. We note that the inequalities in (3.2.16) and (3.2.27) are similar
to that of Opial’s inequality given in (3.2.1) which in turn yield respectively the
lower and upper bounds on the integral of the form involved on the left-hand side
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of (3.2.1) while the inequalities obtained in (3.2.17) and (3.2.26) are different
from those of (3.2.1).

In [304] Pachpatte has established the inequalities in the following theorems
which can be considered as their origin to well-known Weyl's inequality [423],
see also [141, p. 165] and Opial's inequality in (3.2.1).

THEOREM 3.2.5. Let « > 0, p > 0, g > 1 be real constants and f be a real-
valued continuously differentiable function defined on (0, b) for a fixed real num-
ber b > 0. Then the following inequalities hold

b b a \1q
/ ©lroP e < M(f Hrm)” ('f( ) +|f (t)l) )
0 0
(g—D/q
( ““If(t)|”+‘f dt) : (3.2.28)
b 1/q
(/ t("‘“)q}f( )}p<|f( )| e (t)|> dt>
0
b (g—D/q
x (/ |f(t)|p+th> : (3.2.29)
0

at2 2(p+q)
where M = {337, o1 )

X

b
/ t“|f(t)|p+th <M
0

REMARK 3.2.2. It is interesting to note that, if the functighis continuously
differentiable on(0, co), then lettingh — oo in (3.2.28) and (3.2.29) we get re-
spectively the following inequalities

00 00 1/q
/ t“|f(t)|p+q dr < M(/ t“+1|f(t)|p|f’(t)|q dt)
0 0

00 (¢—D/q
x</ t“+1’f(t)|p+th> . (3.2.30)
0
00 ) 1/q
/ t“lf(r)l”*qdr<M</ t“*”ﬂf(r)l”lf/(r)lqdt)
0 0

00 (¢g—D/q
x <f | F0)]7* dt) . (3.2.31)
0
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In particular, if we takex =0, p =0, ¢ = 2, then the inequalities obtained in
(3.2.30), (3.2.31) reduce to the slight variants of Weyl's inequality given in [141,
p. 165].

THEOREM3.2.6. Let o, p, g, f beasdefined in Theorem 3.2.5.Then the follow-
ing inequalities hold

b
/r“‘]f(t)|”+th
0
b
<M‘1/ 1t f@)|” <|f()|+|f(t)|> (3.2.32)
0
b
/to‘|f(t)|P+th
0

b P+q
< Mp+q/ a+p+q<|f(t)| +|f'@ )|> dr, (3.2.33)
0
where M isasdefined in Theorem 3.2.5.
REMARK 3.2.3. If the functionf is continuously differentiable o0, co), then
lettingb — oo in (3.2.32) and (3.2.33) we get respectively the following inequal-
ities
o o
f ©ro P dr < Mq/ | fo]Td,  (3.2.34)
0 0
o o
/ ©roP 7 dr < MP+‘1/ 9P| £ P dr. (3.2.35)
0 0
Here we note that the inequalities obtained in (3.2.34) and (3.2.35) are similar to
that of the Opial-type inequality (3.2.1) and those of well-known Hardy’s inequal-
ity (2.4.1).
THEOREM3.2.7. Let «, p, ¢ beasdefined in Theorem 3.2.5and let f beareal-

valued continuously differentiable function defined on (a, b) for fixed real num-
bersa < b. Then the following inequalities hold

/q
/ 11| £(0) | de < |H|+(p+q)(/ 11 £ ()] |f<t>|"dt)

(g—D/q
x</ |t|“+l|f(t)|p+th) . (3.2.36)
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b b 1/q
/|r|“|f<r>|”+"dr<|H|+(Zii)(f Itl‘“+l)q|f(t)|”|f’(t)|qdt)

b @—D/q
x (/ |f]"F dt) , (3.2.37)

where
H=-—"7 i 1 (6 ) | &) — a*Hisgna)®| @] (3.2.38)

REMARK 3.2.4. We note that, in the special case whes 1, the inequalities
obtained in (3.2.36) and (3.2.37) reduces to the following inequality

b 1
[ elsolr e
a
< |Hol + ( ) / 1T £ (]| £ @) b, (3.2.39)
whereHj is defined by the right-hand side of (3.2.38) taking 1.

PROOFS OFTHEOREMS3.2.5—-3.5.7. Integrating by parts we have the following
identity

b
/ [f“‘“ - %t“*z] |F@O|P T ()] sgnf @) dr
0
b +
= —/ [(a + D — }(a + 2)t“+1:| For dr. (3.2.40)
0 b ptq
From (3.2.40) we observe that
b
(o + 1)/ ] fF@)|" 7 dr
0
b o1
=(« +2)/ ta+1_|f(t)|17+‘1 dr

o [ ror e rolsn o
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b a1l +
<(a+2)f T F )| dr
0 b
b 1 _
+(P+9) / r“+1[1+ 5r]|f<r>|”*q Irwla. (3242)
0
From (3.2.41) we observe that

b
/ t“|f(t)|p+"dz
0

0l+2 b 1 +
< otz Nl
(553) [ esglrol

2(p+q) ba+l pHa—=1 o
ail bt |f(0) | £/ ()| dr

b
gM/O ta+l|f(t)|p+q—l|:|fbﬂ + |f/(t)|:| dt

:M/bl:t(a+l)/q|f(t)|l7/q<|f(t)| +|f/([)|>i|
0 b

x |:t(a+1)((q1)/(1) | f@|Pretrre } dr. (3.2.42)

Now, by using Hoélder’s inequality with indiceg ¢ /(¢ — 1), we get the required
inequality in (3.2.28).

In order to establish inequality (3.2.29), we rewrite the last inequality
in (3.2.42) in the following form

b b
/ t“|f(t)|p+q dr < M/ |:t“+1|f(t)|p/q(@ + |f’(;)|>i|
0 0
x [| £ 0[PP dbr. (3.2.43)

By using Holder’s inequality with indices, ¢ /(¢ — 1) on the right-hand side
of (3.2.43), we get the desired inequality in (3.2.29). The proof of Theorem 3.2.5
is complete.

By following the same arguments as in the proof of Theorem 3.2.5, we have
the inequality (3.2.42). Rewriting the inequality (3.2.42) and using Hdlder's
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inequality with indicesy, g /(¢ — 1), we have
b b
/ | f0]" M dr < M/ [r“*l‘“((q_l)/q)|f(t)|p/q(—lfg)' + |f’(t)’)}
0 0

x [ta((q—l)/q) ’f(t)’lﬂrq—l—p/q] dr

b q 1/q
<M</ t“*qlf(t)l"<|fbﬂ+|f’(t)i> dt)
0

b (g—D/q
x (/ iG] ek dt) . (3.2.44)
0

If fé’ t| f()|PT4 dt = 0 then (3.2.32) is trivially true; otherwise, dividing both
sides of (3.2.44) by[é’ | f(t)|P+4 dr)@—D/4 and then taking theth power on
both sides of the resulting inequality, we get the required inequality in (3.2.32).

Rewriting inequality (3.2.42) and using Hoélder’s inequality with indipes g,
(p+9)/(p+q—1), we have

Pl pon Pt T wtdaog—1 iy (1O (0
/or\fm\ dng/o [z PHI-D/(ptq (T+|f(t)!)]

x [,a((p+q—1)/(p+q))‘f(t)‘lﬂrq—l] dt

b p+q 1/(p+q)
< M(/O ta+p+q<|f;t)| + |f/(t)|> dt)

b N (p+q—1)/(p+q)
x </ | f 0|’ "dt) . (3.2.45)
0

Now, by following the arguments as in the last part of the proof of inequal-
ity (3.2.32) with suitable modifications, we get the required inequality in (3.2.33).
The proof of Theorem 3.2.6 is complete.

By rewriting and integrating by parts the integral on the left-hand side
of (3.2.36), we have

b b
/ |t|“|f(t)|p+th:/ 1 (sgn)® | £ ()7 de

b
:H—(p+q>f L £ )|PH (1) (sgne)® dbr.
a+1) ),
(3.2.46)
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From (3.2.46) we observe that
b
/ 11| £ ()| dr

b
<|H|+(Z—ﬁ) [ s o)

b
<|H|+(Z—j:;1_)/ [|l|(“+1)/q|f(t)|p/q|f’(t)”

x [1]@HD@D/D| ()| PHITIP 6, (3.2.47)

Now, by using Holder’s inequality with indices ¢ /(¢ — 1) to the integral on the
right-hand side of (3.2.47), we get the required inequality in (3.2.36).

The proof of inequality (3.2.37) is similar to that of the proof of inequal-
ity (3.2.36) given above with suitable modifications, so we omit it here. The proof
of Theorem 3.2.7 is complete. O

3.3 Wirtinger-Opial-Type Integral Inequalities

There is extensive literature on integral inequalities involving functions and their
derivatives which claim their origin to the well-known Wirtinger- and Opial-type
integral inequalities (see [141,211]). In this section we present some results es-
tablished in [51,238,241,283].

In [238] Pachpatte has established the Wirtinger- and Opial-type integral in-
equalities in the following three theorems. In what follows, the synibbi (x)
denotes théth derivative ofu(x) with D% (x) = u(x) for x € [a, b] = I and we
write D1u(x) = Du(x) forx € I.

THEOREM3.3.1. Let p;_1,i =1, ..., n, bereal-valued nonnegative continuous
functions defined on 7. Let £, g € C"~D (1) and D"~1f(x), D" 1g(x) are ab-

solutely continuous on I with DX f (a) = D¥ f(b) =0, D¥g(a) = D*g(b) = O for
0 < k < n — 1. Then the following inequalities hold

b n . )
/ Y pia®|D T )| D e )] dr
4 =1
1/b—a
g_
()

XZK/ p;_l(t)dt)</ [|D’f(t)|2+|Dlg(t)|2]dt>:|, (3.3.1)
i=1 ¢ a
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b n _ . 2
( / Y pia@|DTH O] DT )] dt)
4 =1

n (1\? 4
<E<Z) (b—a)
s b 2 b i 4 i 4
XZK/ pil(t)dt)</ [|[D' f®)|"+|D'g)] ]dt)}, (3.3.2)
i=1 a a
n h ) )
H( / pica®|DTHF )] [D' e ()] dr)

i=1
() (55°)
x ili[(/abpi_l(t) dt) ([[|fo(¢)|2 +|Dig)[] dt)]. (3.3.3)

REMARK 3.3.1. In the special case whéd f = D'g, the inequalities estab-
lished in Theorem 3.3.1 reduce to the new integral inequalities of the Wirtinger
type studied by many authors in the literature (see [211]). In this special case, it
is easy to observe from the inequalities in (3.3.1) and (3.3.3) that the following
inequality

b i 2
/ pi—1()| DI ()| dr

a

_ b b ‘
<<b4a>(/ Pi—l(t)dl‘></ |le(t)\2dz> (3.3.4)

holds fori =1, ..., n, which in turn is a further generalization of the integral
inequality established by Traple in [419, p. 160]. Further if we tAkg = D' f
andn = 2, then inequality (3.3.2) reduces to the following integral inequality

b 2 2
f [po)| £ )2+ prd)|DF 2] i

1 2 b b
(3o ([ o) [ o)
b b
+</ pf(t)dt)(/ |D2f(t)|4dt>]. (3.3.5)
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The inequalities of the type (3.3.5) are considered by the authors in [18,211] by
using a different technique. However, the bounds obtained on the right-hand side

in (3.3.5) cannot be compared with the bound obtained in [18,211].

THEOREM 3.3.2. Let p;_1, f, g be asin Theorem 3.3.1.Then the following in-
equalities hold

'3 i—1 2| Hi—1 2
pri_1<t)|D’ FO]F D g(0)| dr
4 =1
< }(})z(b —a)®
~2\4
- b b 4 i 4
XZ[(/ pi_l(t)dt></ [[D'f®]" +|D' g ]dt>:|, (3.3.6)
i=1t 4 a
b 1 2 i 2 ?
( / D pica@®|DT ]| D e ()] dt)
a =1

n(1\* 8
<§(Z> (b—a)

n b b
XZ[(/ p,?_l(t)dr>(/ [\Dif(t)]8+]Dig(t)\8]dt)}, (3.3.7)
i=1 a a

I1(

i=1
_(1)'(1 2”b 3
<(z) (5) -0
n b b
x]‘[[(/ pil(t)dt></ [\D"f(r)|4+|Dl‘g(z)\4]dz)]. (3.3.8)
i=1 a a

REMARK 3.3.2. In the special case whePig = D'f, the inequalities

b i—1 2| Hi—1 2
/ pi—1()| D' F |7 DI g ()] dr)

a

in (3.3.6)—(3.3.8) reduce to the new inequalities. In this special case, it is easy

to observe from inequalities (3.3.6) and (3.3.8) that the following inequality

b ) 4 1\2
/ pi—1(| D' ()| dr < <Z> b-a®
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b b
x(/ pil(z)dz><f yDif(t)\“dz) (3.3.9)

holds fori =1, ..., n.

THEOREM 3.3.3. Let p;_1, f, g beasin Theorem 3.3.1.Then the following in-
equalities hold

/ > pica@[| DT @0)]| D ()] + | D g ()|| DY £ (1)|] de

4 =1

n h— b 1/2
() [ )
i=1 “

b . .
x (/ (D' f ) + |D'g0)]*] dt):|, (3.3.10)

b i—1 2| i 2 i—1 2| i 2
[ paollD o PIp s + [ e D f o a

i—1

n 1\ 2 b 1/2
S oo ([ 00)
i=1 a
b . .
x (f [|D'f(r)|4+|D'g(t)|4]dt)}. (3.3.11)

REMARK 3.3.3. We note that, for = 1, the inequality established in (3.3.10)
reduces to the inequality established by Pachpatte in [243]. In the special case
when D' f = D'g, the inequalities established in (3.3.10) and (3.3.11) reduce to
the Opial-type integral inequalities.

PROOFS OFTHEOREMS3.3.1-3.3.3. From theyipotheses, for everye I and
i=1,...,n,we have

t b
DILf(r) = / Difs)ds,  DITHf(=— / D f(s)ds, (3.3.12)

a t

t b
Di*lg(t)z/ Dig(s)ds, folg(t)z—/ Dig(s)ds. (3.3.13)
a t
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From (3.3.12) and (3.3.13), we observe that
. 1 rb .
|D’_1f(t)| < 5/ |D' f(1)| dt, (3.3.19)

) 1 b .
!D’_lg(t)léif |D'g(1)| dr, (3.3.15)

fori=1,..., n. From (3.3.14) and (3.3.15), and using the elementary inequality
cd < %(c2 +d?) (for ¢, d reals) and Schwarz inequality, we obtain

Y pica®[DTH (]| D)

i=1

10 b b
\Zzpi—l(t)</ |D‘f(t)|dt)(f |D’g<t)|dt)
i=1 a a
1¢ (" 2 b 2
<3y ([ prola) + ([ o)) ]
i=1 a a
b—a
(%)

XZp, (t)(/ [|D' f(t)| +|D'g()| ]dt) (3.3.16)

1
2

X

Integrating both sides of (3.3.16) fromto b we obtain the desired inequality
in (3.3.1).

Taking the square on both sides of inequality (3.3.1) and using the elementary
inequality (c1 + - - + cx)? < n(c? + - -+ ¢2) (for cy, ..., ¢, reals), Schwarz in-
equality, and the elementary inequality+ d)? < 2(c? + d?) (for ¢, d reals), we
obtain

2
(f Zp, 10| DL (]| D 1g(t)|dt)
1 2 1 2
<(3) (5) -0’
$ b 2 b i 2 i 2 2
XZ[(/ Pi—l([)dt) (/ [[D'f@®)|"+|D' g ]dt)}
i=1 @ a
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n(3) (3) oo
smz)\a) b-a
. b 2 b 2 i 212
XZ[<f pi_l(t)dt></ [|D'f)|"+|D'g®)|] dt>i|
i=1t 4 a
< E(Z) b—-a)

X é[(/abpf_la) dt> </ab[|fo(r)|4+ |D g()[*] dt>i|.

The proof of inequality (3.3.20) is complete.
From (3.3.14) and (3.3.15), and using the elementary inequality %(c2 +
d?) (for ¢, d reals) and Schwarz inequality, we obtain, fet 1, ..., n,

b . .
/ pi—1)| DT ()| |D g ()| i

1/ (P " pi "I

<Z(/ p,»_lmdr)(f |le<r>|dt)(/ |Dlg(t)|d’)

1/ b 10/ (% 2 P i ’
<Z(/a pi_l(t)dz>§[</a |D’f(t>|df) +</ ‘Dlg(’”dl)]
<%(b4a></ pi—l(t)dt></ [|D'f(f>|2+}Dlg“”z]dt)'

(3.3.17)

From (3.3.17) we have

n

b . .
H(/ pi1(t)|D“1f(t)||D“1g(t)ldt)

<(a) (47
x 11[(/17 pi—1(t) dr) (fabﬂD"f(z)!Z +|Dig)[*] dr)},

which is the desired inequality in (3.3.3) and the proof of Theorem 3.3.1 is com-
plete. O
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From (3.3.14), (3.3.15) and using Schwarz inequality, we observe that

b

|Di_lf(t)|2<<51f>(b—a) f D' f e, (33.18)
b

0l < (7)e-a [ Do e (33.19)

fori=1,...,n. Now, from (3.3.18) and (3.3.19), and following exactly the same
arguments as in the proof of inequality (3.3.1) in Theorem 3.3.1, we obtain the
desired inequality in (3.3.6).

The details of the proofs of inequalities (3.3.7) and (3.3.8) follow from
(3.3.18) and (3.3.19), and following exactly the same arguments as in the proofs of
inequalities (3.3.2) and (3.3.3) given in Theorem 3.3.1 and hence we omit further
details.

By virtue of Schwarz inequality, the inequality (3.3.4) and the elementary in-
equalityc2d¥/2 < 3(c + d) (for ¢, d > 0, reals), we observe that

/ Zp, 1O D@D )] + [ D' e )| | D £ ()] de

n

b . 5 \Y2/ b , \ 2
<Z[</ praA|DT () dr) (/ D' g (1)] dz) }
i=1t 4 “
n b . , \12 1/2
+Z[</ pEi®|D e () dt) (f IG] dt) }
i=1 a
n _ b b 1/2
(%) ([ Aaos)([ otrora))
l=1 a a
‘ 1/2
x(/ |Dlg(t)|2dt> }
n bh— b b 1/2
S o) ([ 19r0e)
i=1 “ “

([ 1wrora) ]
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n _ b 1/2
(TN

i=1 a

b ) 1/2 b ) 1/2
x(f |D' f(1)] dt) (f |D'g(1)| dt) }

n b— b Y2, 0b '
<Z[<< 4a)/ p?_l(t)dt) (/ [|D’f(t)l2+|D’g(t)|2]dt)},

i=1 4 a

which is the desired inequality in (3.3.10).

The details of the proof of inequality (3.3.11) follow by the same argument as
in the proof of inequality (3.3.10) given above by using inequality (3.3.9) in place
of inequality (3.3.4). We omit the details.

In [241] Pachpatte has established the inequalities in the following theorem.

THEOREM3.3.4. Let p(t) be a real-valued nonnegative continuous function de-
fined on I = [0, b]. Let f € D (1) with D"~1 £ (r) absolutely continuous for
teland D""1f0) =D"1f(b)=0,for r=1,...,n. Then the following in-
equalities hold

b n 2/n
/O p(r)(]‘[ |D"1f<r>\) dt
r=1

< %(/f,;(;)dr) (fob(ilD’.f(t)f) dt), (3.3.20)

r=1

b n 2/n
/P(t)<1_[|D"1f(t)|2> o
0 r=1
1 b
<;</0 p(t)dz>
r—1 2 . 2
X(z_;[(/o D) df)(/o D" f (1) dt)D, (3.3.21)

b n 1/n n
/O p(r)(]‘[ ID’lf(t)|> (Z |D’f(t)|> d
r=1 r=1

b b ) 1/2 b n . ,
<(z /o P <’>df) /O ;!D FO7 ) dr ). (33.22)
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REMARK 3.3.4. In the special cases when=1 andn = 2, the inequalities
established in Theorem 3.3.4 reduces to Wirtinger- and Opial-type inequalities,
see [241].

PROOF OFTHEOREM 3.3.4. From the hypotheses we have the following identi-
ties

t
D Yrm) :/O D’ f(s)ds, (3.3.23)

b
DT () = —/ D’ f(s)ds, (3.3.24)

t

fortel andr =1,...,n. From (3.3.23) and (3.3.24), we obtain

1 b
D] < Efo |D” f(t)|dt (3.3.25)

fort eI andr =1,...,n. From (3.3.25) and using the elementary inequalities

n 1/n n
(]_[a,) < %Zai (3.3.26)
i=1 i=1

(foray,...,a, > Oreals and > 1) and

n 2 n
(Za,) <n2ai2 (3.3.27)
i=1 i=1

(for as, ..., a, reals) and Schwarz inequality, we obtain

(@Drw)“ [(g)"r"[(ﬁ(/;‘Drmdt))”T
Ao
%[ [ sola) ]

43/ <Z|D’f(t)|2) d. (3.3.28)
r=1

N

-bll—\
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Multiplying (3.3.28) by p(¢) and integrating the resulting inequality from O4o

we obtain the desired inequality in (3.3.20).
From the hypotheses, we have the following identities

t
[D 1)) = 2/0 D'Lf(s)D" f(s)ds, (3.3.29)

b
[Dr_lf(t)]z = —zf D" "Yf(s)D" f(s)ds, (3.3.30)

t

fort el andr=1,...,n. From (3.3.29) and (3.3.30), we obtain

b
D" F o)) < /0 |D" L F ()| | D" £ ()] o (3.3.31)

fort el andr=1,...,n. From (3.3.31) and using inequalities (3.3.26), (3.3.27)
and Schwarz inequality, we obtain

n 2/n n b 1/n4q2
(]_[|D"lf(t)|2> < {(H(f }Drlf(t)||D’f(t)|dt)> }
r=1 r=1 0
1 (b ?
- r—1 r
{ng/() D17 |D f(t)ldt}
1 n b B . 2
gﬁ[nZ;(/o D" f()||D f(t)|dt>]

1w b , b )
<5§[(/c> Do df)(/o D" £ (1) dt)].

(3.3.32)

Multiplying both sides of (3.3.32) by(¢) and integrating the resulting inequality
from O tob we obtain the desired inequality in (3.3.21).

By using Schwarz inequality and inequalities (3.3.20) and (3.3.27), we observe
that

b n 1/n n
fo p(r)(]"[ \D"lfm!) (Z \D’f(z)\) dt
r=1 r=1

b n 2/n 1/2 b/ n 2 1/2
2 r—1 r
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L))
(L {Zr)s)
= (% /Ob P2 dt)l/2</ob<r:l|l)’f(t)|2> df)~

This result is the desired inequality in (3.3.22). The proof is complete. [

In [51] Calvert established the following inequalities by using the method of
Olech [230].

THEOREM 3.3.5. Let u be absolutely continuous on (a, b) with u(a) = 0, where
—o0o < a<b<oo.Let f(t) bea continuous complex-valued function defined for
all ¢ intherange of u and for all real ¢ of theformz(s) = [; |u’(s)| ds. Suppose
that | f(t)| < f(¢]) for all ¢, and that f(r1) < f(r2) for 0 <1 < t2. Let r be
positive, continuous, and fabrl‘q(t)dt <oo,wherel/p+1/g=1,p> 1. Let
F(s)= fg f(o)do, s > 0. Then the following inequality holds

b
/ | f(u(®)u' @)| dr

b 1/q b 1/p
<F<</ rlq(t)dt> (/ r(t)|u/(t)|pdt) ) (3.3.33)

with equality if and only if u(r) = A [ r1=4(s)ds. The same result (but with
equality for u(r) = [”r1~4(s)ds) holds if u(b) =0 and —co < a < b < o0,
where A is a constant.

PROOF. Letz(t) = [} [u(s)|ds, t € (a,b). Thenz'(t) = [u'(+)], and it follows

that
b b t
/ |f(u(t))u’(t)|dt=/ f(/ u’(s)ds)u’(z)
b t
g/ f<fu/(s)ds>|u'(t)|dt

dr
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b t
g/ f(/ ‘u’(s)’ds)’u’(t)’dt
b
zf fz®)Z @) dr = F(z(b)).  (3.3.34)

Now, using Holder’s inequality with indices, ¢, we get
b
z2(b) :/ |u' (1) it

b
= / r VPP (7 (1) de

b 1/q b 1/p
g(/ rl_q(t)dt) (/ r(t)z’(t)f’dt> : (3.3.35)

Inequality (3.3.33) now follows from (3.3.34) and (3.3.35) and the fact fhat
nondecreasing. a

REMARK 3.3.5. Letf(t)=t?~1, p>1,u(a) =0, —o0 <a < b < co. Then
b 1/ (b p=1 ;b
/ luP =Xty ()| dr < —</ rl_q(t)dt) / r|u’ ()| dr.
a P \Ja a

THEOREM 3.3.6. Let u and v be absolutely continuous functions on (a, b) with
u(a) = v(a) =0, where —oo < a < b < co. Let r(¢) and s(¢) be positive, con-
tinuous functions on (a, b) and fab(r(t))_z dr < oo, fab (s(1))~2dt < co. Then the
following inequality holds

b
[ [|e@)v' )|+ |v@)u(1)]] o
b 5 b _2 b ) b 2 1/2
g[/ (r) dt/ (s()) dt/ r2@)|u' ()] dt/ 2| @) dt} ,
(3.3.36)

with equality if and only if u(r) = A [ (r(1))~2dr and v(r) = B [ (s(1))~2dt,
where A, B are constants.

PROOF Letx(t) = [} [u'(c)|do and y(t) = [} [v/(0)|do, thenx'(t) = |u'(t)]
and y'(r) = [V/(¢)|]. It is easy to observe thatu(z)| = |fat u'(o)do| <
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[ (o) do = x(1) and|v(#)] < y(1). Thus, it follows that

b b
[ v o]+ ool < [ xoyo+yoxo)

a

bd
:/a a(x(t)y(t))dt
=x(b)y(b),
where
b -1
x(b):/ (r®) r@|u’ )| dr
b 1/2 b 1/2
g(/ (r(t))_zdt) (/ (r(t))2|u/(t)|2dt>
and

b
y(b) =/ (s(0) s()|v' ()] de

b Y2, b 172
<(f (s(t))_zdt> (/ (s(t))zlv’(t)|2dt> )

Inequality (3.3.36) now follows immediately from the above obtained inequali-
ties. O

REMARK 3.3.6. If we takev(r) = u(¢) andr(t) =s(t) =1 in (3.3.36), then we
get the following inequality

b _ b
/|u(z)u’(t)|dt<b7“/ lu/(0))? .

In [283] Pachpatte has established the following inequality.

THEOREM 3.3.7. Letu,, r=1,..., m, be absolutely continuous functions de-
fined on [a, b] with u,(a) = u,(b) =0.Let g,(u), r =1,..., m, be continuous
functions defined for all « in the range of «, and for all real ¢ of the form
t(s) = [ |u.(o)ldo or t(s) = [; |u).(o)|do; |gr-(u)| < gr(lu]) for all u and
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gr(u1) < g-(u2) for 0 < uy < up. Then for every ¢ € (a, b), the following in-
equality holds

b m 1/m
/{]—ng(ur(t))u;(t)l} dr
4 \r=1
1 <, b
<;§[Gr</a iur(t)|dt>+G,</c |u,(z)|dt>], (3.3.37)

where G, (u) = [ g-()dr foru >0andr=1,...,m.

PROOF Letc € [a, b] and define

t
zr(t)=/ |u).(5)| ds (3.3.38)
0

fora<t<candr=1,...,mand

v (1) = /b |uy.(s)| ds (3.3.39)
'
forc<tr<bandr=1,...,m. From (3.3.38) and (3.3.39), we have
2. (t) = |u,.(t)| (3.3.40)
fora<t<candr=1,...,mand
v (1) = —|u (1) (3.3.41)
forc<r<bandr=1,..., m. We note that

f
u,(t):/ ul.(s)ds (3.3.42)

fora<t<candr=1,...,mand

b
ur(t) = —/ u,.(s)ds (3.3.43)
t

forc <t <bandr =1,...,m. From the hypotheses, the arithmetic mean—
geometric mean inequalities (3.3.26), (3.3.42), (3.3.40) and (3.3.38) we observe
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that

1/m
/ {]_[}gr ur (1))u (t)|} dr

r=1

Z e (wr 0)i) 0] e

r=1v4¢
1 c t d d
< = / ’
mrzzl [ o[ lole)uold
— E f gr zr(t))z (t) dr
m

1" zr(c)
==y / g (1) dr
m r=1 0

=

1 ;
= Z ;Gr (Zr (C))

- EZcr(/C|M;(;)|dt>. (3.3.44)
m a

r=1

Similarly, from the hypotheses and inequalities (3.3.26), (3.3.43), (3.3.41)
and (3.3.39), we have

b m 1/m 1 m b
/{]‘[}g,(nr(n)u;(m} dté;ZGr(/ |u;(t)|dr>. (3.3.45)
¢ =1 r=1 ¢

The desired inequality in (3.3.37) follows from (3.3.44) and (3.3.45) and the proof
is complete. O

REMARK 3.3.7. In the special case when= 1, inequality (3.3.37) reduces to
b c b
/ |81 (ua(0))uy ()| dr < G1</ RG] dt) + G1</ |uy ()] dt>
(3.3.46)

for ¢ € [a, b]. Inequality (3.3.46) is a variant of the inequality due to Calvert given
in Theorem 3.3.5. On takingy(r) = ¢t and henceG1(u) = fg‘ o do =u?/2 and
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¢ = (a+b)/2in (3.3.46) and using Schwarz inequality on the right-hand side of
the resulting inequality, we obtain Opial’s inequality given in (3.2.1).

3.4 Inequalities Related to Opial’'s Inequality

Opial’'s inequality given in (3.2.1) or its generalizations and variants have many
important applications in the theory of differential equations. In the past few
years many authors have obtained various useful generalizations and extensions
of this inequality. In this section we offer some basic inequalities established by
Pachpatte in [239,303], which claim their origin in Opial’s inequality.

In [239] Pachpatte has established the inequalities in the following theorems
which deal with the Opial-type integral inequalities involving two functions and
their first-order derivatives.

THEOREM3.4.1. Let p(¢) be positive and continuous function on a finite or infi-

niteinterval a <t < b suchthat ff p~L(t)dr < oo. If u(r) and v(r) are absolutely
continuous functionson (a, b) and u(a) = u(b) =0, v(a) = v(b) =0, then

b ’ ’ 1 b / 2 ’ 2
/[|u(t)v O]+ [v@u (t)|]dt<§A/ pO[|w’ O]+ |v'®)|]de, (3.4.)
where

c b
A=/ P_l(f)dtzf ptod, a<c<b. (3.4.2)

Equality holdsin (3.4.1)if and only if
t

uny=o0 = [ prod, a<i<e
a

b
u(t) = v(r) = M/ pNs)ds, c<r<b,
t
where M isa constant.
REMARK 3.4.1. In the special case whefr) = v(¢), Theorem 3.4.1 reduces to
the inequality established by Yang [428, Theorem 1] which in turn contains as a

special case Opial’s inequality given in Theorem 3.2.1.

THEOREM3.4.2. Let p(r) be positive and continuousfunction onaninterval a <
t < c with fa‘ p~L(r)dr < 0o, and let ¢(¢) be bounded, positive, continuous and
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nonincreasing function on a < ¢t < ¢. If u(z) and v(¢) are absolutely continuous
functionsona <t < cand u(a) = v(a) =0, then

f gO[|u@v' O]+ [v)u’ @)|] de

l C c
< 5/ P_l(t)dt/ p(z)q(t)[|u’(t)|2+ |u’(t)\2] de,  (3.4.3)

with equality if and only if ¢ (#) = constantnd u () = v(¢) = Mfa’ p~1(s)ds for
a <t <c,where M isa constant.

THEOREM 3.4.3. Let p(¢) be positive and continuous function on an interval
¢ <t < b with ff’ p~ (1) dr < o0, and let ¢(r) be bounded, positive, continuous
and nondecreasing function on ¢ < 7 < b. If u(¢) and v(¢) are absolutely contin-
uous functionson ¢ <t < b and u(b) = v(b) =0, then

b
f qO[|u@v' @] + v @)|] dr

10 b 22
gE/ p- (t)dt/ pOgO[|' @]+ [V O] ]dr,  (3.4.4)

with equality if and only if ¢ () = constanand u(t) = v(t) = M ftb p~1(s)ds for
¢ <t < b,where M isaconstant.

REMARK 3.4.2. In the special case whefr) = v(¢), Theorems 3.4.2 and 3.4.3
reduce to Theorems 3 anddven in [428].

THEOREM 3.4.4. If u(t) and v(¢) are absolutely continuous functions on a <
t <bwithu(a) =u()=0,v(a) =v(b) =0,then

b
/ lu@v @) |"[Juv'®)] + [v@u’ ()] de

< —22(51 :1?():;1) ah[|u’(t) 2y )2 e, (3.4.5)
where m > 0 isa constant. Equality holdsin (3.4.5)if and only if

u@®) =v@t) =M@ —a), a<t<c,

u@®) =v@t)=M®b —1), c<t<b,

where M is a constant.
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REMARK 3.4.3. ltisinteresting to note that, in the special case wien= v(z)

and 2n + 1 = n, Theorem 3.4.4 reduces to the inequality established by Yang
[428, Theorem 4] which in itself contains as a special case Opial’'s inequality
whenn =1,a =0 andb =h.

PROOFS OFTHEOREMS3.4.1-3.4.4. Let € [a, b] and define
t t
y(1) :/ |u’(s)| ds, z(t) :/ |v/(s)| ds (3.4.6)
a a
fora<r<cand

b b
r(t) = —/ |u'(s)| ds, w(t) = —/ v/ (s)] ds (3.4.7)
t t

for ¢ <t < b, then we have

Yy =lW®|, o=@ (3.4.8)
fora<r<cand
ro=ld®],  we) =) (3.4.9)
for ¢ <t < b. We note that
t t
u(t) =/ u'(s)ds, v(1) =/ v/ (s) ds (3.4.10)
fora <t <cand
b b
u(t) = —/ u'(s)ds, v(t) = —f v/ (s) ds (3.4.11)
t t
for ¢ <t < b. From (3.4.10) and (3.4.6) and (3.4.11) and (3.4.7), we observe that
um[ <y, o] <z0) (3.4.12)
fora<tr<cand
lu| < —r@), @) < —w() (3.4.13)

for ¢ <t < b.Now, from (3.4.12), (3.4.8), and upon using the elementary inequal-

ity
af < %[az +p?] fora, preals, (3.4.14)
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the definitions ofy(¢) andz(¢) given in (3.4.6) and Schwarz inequality, we have
/ [Ju@v' @] + [v@)u’ 0)]] dr
< / [y()Z' (1) +z(1)y'(1)] dt

¢ d
=/ g L@z0]d
= y(c)z(c)

1
< é[yz(c) +2%(0)]

([ (2 rilwola) + ([ (o2 )Vrolvola) |

1 C C
< 5/ p_l(t)dtf p(t)[|u/(t)|2+|v’(t)|2] dr. (3.4.15)

Similarly, from (3.4.13), (3.4.9) and upon using the elementary inequality (3.4.14),
the definitions of-(+) andw(¢) given in (3.4.7) and Schwarz inequality, we have

b

/ [|u@v' @]+ [v@)u' )] de

1 b 1 b , 2 , 2
< 5/ P (t)dt/ pO[|u' ]+ |v'®)|] dr. (3.4.16)

From (3.4.15), (3.4.16) and the definition afgiven in (3.4.2), the desired in-
equality in (3.4.1) follows. The proof of Theorem 3.4.1 is complete.
Letc € [a, b] and define

t t
y(t):/ Vaq(s)|u'(s)| ds, z(t):/ Va(s)|v'(s)| ds (3.4.17)
fora <t <cand
b b
r(t):—/ Va(s)|u'(s)|ds, w(t):—/ Vas)|v'(s)|ds  (3.4.18)
t t

for ¢ <t < b, then we have

YO =Vao W' ®], 20 =Vq@®)|v )| (3.4.19)
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fora <t <cand

w'(t) =/q)|v' )| (3.4.20)

for ¢ <t < b. Now, from (3.4.10), (3.4.17), nonincreasing characteg @§ on
a <t <c,in Theorem 3.4.2 and (3.4.11), (3.4.18), nondecreasing character of
g(@)onc <t <b,inTheorem 3.4.3, we observe that

1 1
|M(f)| < (ﬁ))’@), |U(t)‘ < <ﬁ>z(ﬂ (3.4.21)

fora<tr<cand

1 1
lu@)| < —<ﬁ>m), ()] < —(m)w(t) (3.4.22)

for ¢ <t < b, respectively. Now the proofs of Theorems 3.4.2 and 3.4.3 follow by
closely looking at the proof of Theorem 3.4.1 given above with suitable modifi-
cations. We omit the details.

From (3.4.8) and (3.4.12) and using the elementary inequality (3.4.14), the
definitions ofy(z) andz(¢) given in (3.4.6), Schwarz inequality and Hélder’s in-
equality, we have

r'(t) =vq(@)

f lu@v@) " [Ju@v' @)] + [v@)u’ @)]] dr

< / YO (@) [y®)Z () +z(1)y' (1)] dr

_ cd 1 m+1 m+1
_fa dt<m+1y OO d

1
— - + 1ym+1(C)Zm+l(C)

1 m+1 2 m+1 2
<o l07 0 + ()]

“awral{([ o) | ([ o) |

(c _a)2m+1
< - -
2m+1) Ja

2(m+1)

[|u' ()] + o' @) . (3.4.23)

Similarly, from (3.4.9), (3.4.13) and upon using the elementary inequal-
ity (3.4.14), the definitions of (r) andw(¢) given in (3.4.7), Schwarz inequality
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and Hélder's inequality, we obtain
b m
/ lu@v®)|" [|u)v'(@0)| + |v@)u’ @)]] e
C
(b= (b 2t |y 20mt D)
<— dr. 3.4.24
st D . [|u' @] +'OT" ] dr. (3.4.24)

Now taking ¢ = (a + b)/2, we obtain the desired inequality in (3.4.5) from
(3.4.23) and (3.4.24).

In the following theorems we present some general inequalities similar to
Opial’'s inequality established by Pachpatte in [303]. In what follows, for the
sake of brevity we writef; for f;(lu;(t)]), f/ for f/(lu;()]), u; for u(t), with
t € [a, b] and use the notation

L[fl 7777 fHVf]/_s“-sfri’ua_ 77777 M:’l]
= f1- faa Syl
+ fl' e fn—Zf;;7]_|u;lfl|fn +--+ f]/_|ué|_|f2 e fns n>=2.
THEOREM 3.4.5. Let u;(¢), i =1,...,n, be real-valued absolutely continuous
functionson [a, b] withu; (a) =0.Let f;(r),i =1,...,n, bereal-valued nonneg-
ative continuous nondecreasing functionsfor » > 0 and f; (0) = O such that f/(r)

exist, nonnegative, continuous and nondecreasing for » > 0. Then, the following
inequality holds

b n b
/ L[fl,...,fn,fl’,...,f,;,u’l,...,u;]dt<]_[fi</ |u;(z)|dr>.
a l:l a

(3.4.25)
Inequality (3.4.25)also holds if we replace the condition u; (a) = 0 by u; (b) = 0.
As an immediate consequence of Theorem 3.4.5 we have the following result.

THEOREM3.4.6. Assumethat in the hypotheses of Theorem3.4.5wehaveu; = u
and f; = f. Then
n

fab{f(|u(f)|)}"_lf’(|u(t)|)|u’(t)|dt<%{f(/ab|u’(z)|dz>} . (3.4.26)

Inequality (3.4.26)also holdsif we replace the condition u(a) = 0 by u(b) = 0.
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REMARK 3.4.4. Ifwetake: = 2in (3.4.26), then we get the following inequality

b b 2
/af(|u(t)|)f/(|u(t)|)|u/(t)|dt<%{f([a |u/(t)|dt>}, (3.4.27)

which is analogous to the inequality given in [130]. Further, by takiitg) =
r"+1in (3.4.27),m > 0 is a constant, and using Hélder’s inequality with indices
2(m +1) and 2m + 1)/(2m + 1) to the resulting integral on the right-hand side,
we see that (3.4.27) reduces to the following inequality

= a)2m+l

b
2m+1, ,
/{; |M([)’ |M (l)|dt<m

b
/ /(6 " o, (3.4.28)

which reduces to the form of Opial’s inequality given in [211, Theorémp2154]
whenm = 0.

A slightly different version of the inequality given in Theorem 3.4.5 is embod-
ied in the following theorem.

THEOREM3.4.7. Let u;, fi, f/ beasin Theorem 3.4.5.Let p; () > 0 be defined

on [a, b] and [ab pit)ydt=1,i=1,...,n. If h(r) is a positive, convex and in-
creasing function for r > 0, then

. o [f |} (1)
< ﬁ(h 1(/ Pi(t)h( i )dt)). (3.4.29)
5 a pi(t)

Inequality (3.4.29)also holds if we replace the condition u; (a) = 0 by u; (b) = 0.
The following result is an easy consequence of Theorem 3.4.7.

THEOREM 3.4.8. Assume that in the hypotheses of Theorem 3.4.7 we have
u;=u, f; = f and p; = p. Then

b
[ @Dy (uor oo

a

AL on

Inequality (3.4.30)also holds if we replace the condition u(a) = 0 by u(b) = 0.
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REMARK 3.4.5. If we take: = 2in (3.4.30), then we get the following inequality

b
[ £ s (el o] e

a

AL )] o

We also note that in the special cases inequality (3.4.31) yields the various in-
equalities as discussed in Remark 3.4.4.

PROOFS OFTHEOREMS3.4.5-3.4.8. Let € [a, b] and define
!
zi (1) =/ lu'(s)|ds, i=1...,n, (3.4.32)
a

implying
@) =|ui@®)|, telabli=1...,n (3.4.33)
Fort € [a, b] we have the following identities

t
ui(t) :/ ui(s)ds, i=1,...,n. (3.4.34)

From (3.4.34) and (3.4.32), we observe that
lui)| <zi(0), i=1...,n. (3.4.35)

Using (3.4.35), (3.4.33) and (3.4.32) we get
/abL[fl,...,fn,fl’,...,f,;,ug,...,u;]dt
< f b[fl(m(r)) w fa=1(za-1(0) £ (20 (D) 2, (1)
+ f1(z10) -+ fa—2(zn-2(0) f_1(z0-1(0) 21 (®) fa (2 ©))

+ -+ f1(22(0)250) f2(z2(0)) - -+ fu(zn(0))] dt

Z/;b%[izli[lﬁ(zz'(f))] dr
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=[]/iz®)
i=1

n b
=]_[ﬁ(/ |u§<r)|dt),
i=1 a
b u’(s)ds in case of

being the required inequality in (3.4.25). Defining?) = |,
u; (b) = 0, then observing that; ()| < z; (¢), similarly as above, we get (3.4.25).
The proof of Theorem 3.4.5 is complete. O

From the hypotheses of Theorem 3.4.7, we observe that

b b -1
/|u;(r)|dz={/ p,(t)|”8|dt}{/ pi(t)dt} . i=1...n

(3.4.36)

Sinceh is convex, from (3.4.36) and using Jensen’s inequality [174, p. 113], we

obtain
h(/b / ) / <| /(r)|)
luj@)|de ) < | pi(Hh (3.4.37)
a a pl()
’ 1 ju} (1)
/ |ui ()] dr <h (/ ,()h( ) t). (3.4.38)
a a pi(t)

All the hypotheses of Theorem 3.4.5 being satisfied we get (3.4.25). Using
(3.4.38) in (3.4.25), we obtain the required inequality in (3.4.29). The proof of
Theorem 3.4.7 is complete. a

which implies

We omit the proofs of Theorems 3.4.6 and 3.4.8 being immediate from those
of Theorems 3.4.5 and 3.4.7.

3.5 General Opial-Type Integral Inequalities

Since its discovery in 1960, Opial’s integral inequality has been generalized in
various directions by several authors. In this section we shall give the inequalities
established by Godunova and Levin [130], Rozanova [399] and Pachpatte [346]
which contain as special cases many known generalizations of Opial’s integral
inequality given by other investigators.

In 1967, Godunova and Levin [130] established the following inequalities.
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THEOREM3.5.1. Let u(z) bereal-valued absolutely continuous function defined
on [a, b] with u(a) = 0. Let F be real-valued convex, increasing function on
[0, co) with F(0) = 0. Then the following inequality holds

b b
/F’(W(r)])\ﬁ(z)}dng(/ |u’(t)]dz). (3.5.1)

PrRooOF. Definez(t) = fa’ |u'(s)|ds, t € [a,b]. Thenz'(¢) = |u'(¢)| and|u(?)| <
z(¢). Thus, it follows that

b b
/F/(|u(t)|)}u’(r)|dt<f F'(z(0))Z' (1) dt

a

b
=/a aF(z(x))olt

= F(z(b))

b
= F</ |u' (1) dt>.

The proof is complete. O

REMARK 3.5.1. By takingF (r) = r? and hence’(r) = 2r in (3.5.1) and us-
ing Holder’s inequality on the right-hand side of the resulting inequality, we get
Opial’'s inequality given in [211, Theorem, 2. 154].

THEOREM3.5.2. Let u(¢) bereal-valued absolutely continuous function defined
on [a, b] with u(a) = u(b) = 0. Let F, g be real-valued convex and increasing
functions on [0, co) with F(0) = 0. Further, let p(¢) be real-valued positive on
[a, b] and fab p(t) df = 1. Then the following inequality holds

- : S [ ' (1)]
F(|u(t)|)|u (t)|dt<2F g p()g 25() dr) ). (3.5.2)

PROOF Letc € (a, b), so that in the intervdla, ¢] the functionu(¢) satisfies the
hypotheses of Theorem 3.5.1 and the following inequality holds

/CF/(|u(t)|)|u/(t)| dr < F<f |u'(1)| dt). (3.5.3)
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Next, in the intervalc, b] the functionu(z) is absolutely continuous andb) = 0.
By following the similar argument as in the proof of Theorem 3.5.1, we obtain

b b
/ F’(|u(t)|)|u/(t)|dt<F(/ |u’(t)|dz). (3.5.4)
If we chooser so that
c b 1 b
/ yu’(t)|dt=/ W’(z)\dz:E/ |u' ()] dt, (3.5.5)

then a combination of (3.5.4) and (3.5.5) gives

b b
/F’(|u(z)|)|u’(t)|dt<2F<:—2L/ |u/(r)|dr>. (3.5.6)

Sinceg(t) is convex, by using Jensen’s inequality (see [174, p. 133]), we have

b ' b b / b
g</a (';p((tt))|>p(t)dt/fa P(ﬂdt)gfa g(|2up((tt))|)p(t)d‘//a .

which in view offab p(t)dr = 1 and the increasing nature gfimplies

1 b b "(t

Ef |u/(t)|dt<g‘1</ p(t)g(ztp((t))l)dt). (3.5.7)
Using the increasing behavior &f and (3.5.7) in (3.5.6), inequality (3.5.2) fol-
lows. O

In 1972, Rozanova [399] obtained the following extension of the inequality
given in Theorem 3.5.1.

THEOREM 3.5.3. Let u(¢) be absolutely continuous on [a, b] and u(a) = 0. Let
F, g beasinTheorem3.5.2and let p(¢) >0, p'(¢r) > 0, € [a, b], with p(a) =0.
Then

b lu ()] ' (1) b ' ()]
[/ o () oo [ (i)
(3.5.8)

Moreover, equality holds in (3.5.8) for the function u(¢) = cp(r), where c is a
constant.
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ProOOF Definez(tr) = fa’ lu'(s)|ds, t € [a,b]. Thenz'(¢t) = /()| and|u(?)| <
z(t). Lett € (a, b), then by using Jensen’s inequality (see [174, p. 133)), it follows

that
lu(®)| z(?)
< 7
g( p(r)) g(p(z))
<g(ft lu(s)l // p(S)dS)
7'(s)
p(t)/ )¢ (p()>
Using the above inequality we obtain
/ (I /()I) ( (IM(OI))dt
a (1) ()
</hp(t)g< ()> (/ p(s)g< /()> )dt
a (1) a '(s)
_ b d t , Z/(S)
_/a E[F(/a p“”(p'(s))ds)}dt
. Z'(t)
- </ s ( /(r))dt>
b 1
/ |u'(1)]
=F dr |,
(/ s (p/(r)) t)

which is the same as (3.5.8). The proof is complete. O

The following theorems deal with the generalized Opial-type integral inequal-
ities established by Pachpatte in [346].

THEOREM 3.5.4. Let u;, v;, i =1,...,n, bereal-valued absolutely continuous
functionson I = [a, b],a, b € Ry = [0, 00), Withu; (a) =v;(a) =0,i=1,...,n

Let F, G be real-valued nonnegative, continuous and nondecreasing functions
onR’ with F(0,...,00=0,G(0,...,0) = 0suchthat all their first-order partial
derivatives F/, G, i =1,...,n, are nonnegative, continuous and nondecreasing
onR%.Leto;, vi,i=1..., n, be real-valued positive, convex and increasing
functions on (0, 00). Let r;(#) > 0, r/(t) > 0, ri(a) =0, e;(t) > 0, e(t) > 0,
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ei(a)=0,i=1,...,n. Then the following integral inequality holds

b |u1(t)|> (|un<z>|>)
/[ < W( o ) O
~ va(0)] I\ o, (VO
* 2,6 (elmwl( e1(0) ) ””” e”“”’”( en(0) ))e" W”( o) )
+G(e1(z>w1<':g;') ..... eAt)%(%))
~ lua(t)] lun DI s [N
* 2T (”“M’l( () ) """ r”“”’”( (D) ))ri(’)d”( 1) >]dt
<F</hr’<t)¢ ('”/1(”')dr /hr’(t)qb ('““”')dt)
UL e ) T A
b / b I
xG(f e/l(t)l//]_('le)/iE;;I)dt ..... / e;(t)dm(%)dt). (3.5.9)

PrROOFE From the hypotheses on, v;, r;, ¢;,i =1,...,n, we have

t t
|lui ()| = ‘/ u;(s)ds g/ |uj(s)| ds, (3.5.10)
t t
|vi(t)|=‘/ vi(s)ds g/ |vj(s)| ds, (3.5.11)
a a
1
r,-(t):/ ri(s)ds, (3.5.12)
1
ei(t)=/ e;(s)ds, (3.5.13)
a
fort € I. From (3.5.10)—(3.5.13) and using the hypothesegoth;,i =1, ..., n,

and Jensen’s inequality [174, p. 133], we obtain
(i) AQIACI
"”( () )gd”( Ao // mds)

u;(s)|
; 3.5.14
rz(t)/ ()¢< ’()) ( )
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i (0)] HOLAOLY
’”’(a(r)) ’”<u T ) // )ds>
0/(s)]
i S, 3.5.15
el(t)/ ”‘”(’()) (3:5.15)

for t € I. From (3.5.14), (3.5.15) and using the hypotheBes;, G, G}, i =
1,...,n, we observe that

[ nom (261)
X§G§<e1(t)t/f1<|zgi|) ..... en(t)wn<|:”g;|>>e£(t)wi('Zg;')
o{enn(2). o (20)
Xt o () o () |
< /;[F( [ ("N Yo [ o (1 )

S [ (o () )
e ()
ro( [ aom( B a e, [T (120 ) o)
Sor([ (o e (5 )
cron(%)J

and
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(" d iy ZAQ] y luy, ()]
‘/a E[FU rl(”"“( ) )ds """ / r”“”’"( /()) Y)
t /
cof [ s i (1))
a 1 n
B b, luy (1) , 0]
_F(/a rl(t)¢1( 0 )dt ..... /a rn(t)¢n( ) )
b b
ol o (5o [ e (521)9)
a 1 a

The proof of inequality (3.5.9) is complete. O

THEOREM 3.5.5. Let u;, v;, F, F/, G, G}, ¢;, ¥, i =1,..., n, be asin The-
orem3.5.4.Let p;,qi,i=1,..., n, be real-valued positive functions defined on
Iandfabpi(t)dt=1,fabq,-(t)dt=1,i:1 ..... n.Leth;, wi,i=1,..., n, be
real-valued positive, convex, and increasing functions on (0, co). Then the follow-
ing integral inequality holds

b lua(1)] | (1))
/a [ ( ()¢< ()) """ r"(”‘f’"( G ))
~ v1(0)| O o, (100
* ;Gi (61(’)w1( ex(r) > """ e”“”’"( ent) ))e" (W’< H0) )
+G (el(r)wl( ':Eg ') ..... en (D) ( 'Zg;' ))
S lua (1)) lun O\ <|u;<t)|)
F/lrio —=),..., Fn () ()i [ — d
xg ,<r1<t)¢1< rl(t)) <>¢>< ey ))r(r>¢> 0 } ‘
b /
< F<hfl<[ pl(t)h1<ri(t)¢1< |u1((t))| >/p1(t)) dt>,
h1< / pna)hn(r (r)d)n( - ) /pn(t))dt>>
i [ vy ()]
1 / 1
XG<w1 (/a QI(I)U)l(el(t)wl( ei(l) )/Ql(t)) dt>7
b /
-1 / |Un(t)|
W, (/a qn(t)wn(en(t)llfn< e () )/qn(t)> dt)). (3.5.16)
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PROOF From the assumptions, we write

b, i) (1)]
L:ﬂﬁ@(40)>w
b , lu) (1) b
Z/ (Pi(t)ri(t)‘f’i(m)/pi(t)) dl‘// pi(t)ds, (3.5.17)
/be/(t)w‘<|u;(t)|)dt
PRSP 0)
b , v/()] b
Z/ (Qi(t)@i(t)lffi(m)/qi(l)> dt// gi(t)dr, (3.5.18)

fori=1,..., n. From (3.5.17), (3.5.18) and using the hypothesesignw;,
i=1,..., n, and Jensen’s inequality [174, p. 133], we obtain

b ,
AVRCACTIL)
b
< / m(t)hi(r;(r)qsi(
b /
wi(/ €£(l)¢i<|3g;|>dt>

b /
</ qi(Hw; <€;(l‘)¢i<%>/&]i (t)) dr, (3.5.20)

fori =1,...,n. From (3.5.19) and (3.5.20), we observe that
b (¢t
[ riwn (M) a
af (7 Ju} (0)]
1 o (i U '
< h; </a pi(t)h; <r,-(t)¢z< ) )/p, (t)) dt), (3.5.21)
b /(¢
[ e (o
af (7 v (1)]
1 . . / . l .
< w; (/(; gi (Hw; (ei (t)lﬁz( 0 )/q, (t)> dt), (3.5.22)

fori=1,..., n. Since all the hypotheses of Theorem 3.5.4 are among those of
Theorem 3.5.5, we see that inequality (3.5.9) holds. Now using (3.5.21), (3.5.22)

|uj ()]
ri(t)

>/mm)m, (3.5.19)
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on the right-hand side of (3.5.9) we get the desired inequality in (3.5.16) and the
proof is complete. U

REMARK 3.5.2. (i) In the special case when= 1, the inequalities estab-
lished in Theorems 3.5.4 and 3.5.5 reduce to the inequalities established by
Pachpatte in [302]. (i) If we tak&s = 1 and henceG; =0,i=1,...,n, in
(3.5.9) and (3.5.16), then we get the inequalities established bariPend
Brnetic in [377]. For a detailed discussion on the further special versions of the
inequalities given in (3.5.9) and (3.5.16), see [302,346,399].

In [30] Bloom has established some Opial-type inequalities involving general-
ized Hardy operators. The results given in [30] are based on the observation made
by Sinnamon in [409] and also as discussed by Bloom in [30, p. 28].

An operatorT acting onR is called a Hardy operator, i has the form

T = / Fis)ds (35.23)

fort eI =[a,bl,a,b e Ry =0, c0), wheref (¢) is real-valued continuous func-
tion defined or/. We say that the functioyi(¢) belongs to the class if it can be
represented in the form (3.5.23). We note that the results given below also hold,
if the Hardy operatof” has the form

b
Tf(t) :/ f(s)ds (3.5.24)
t
fort € I, wheref () is continuous function of.
The following theorems deal with the inequalities established by Pachpatte
in [346].

THEOREM3.5.6. Let f;, g, €U,i=1,...,n,and F, F/, G, G},i=1,...,n,
be asin Theorem 3.5.4.Then the following integral inequality holds

b
f [F(|Tf1(t)

+G(|Tg1(t)

T®)Y Gi(|Tar®)]. ... [Ten(®)])]2i (0]

i=1

g e ooy

g e ey g e ey

Tg.()|) D F/(|Tfa(0) Tfn(t)mfi(t)}] dr

i=1
b b b b
gF(/ |f1(t)|dt,...,/ |fn(t)|dt)G(/ |g1(t)|dt,...,/ |gn(t)\dz>.

(3.5.25)



3.5. General Opial-Type Integral Inequalities 307

PrROOF From the hypotheses, it is easy to observe that

t
\Tfi(t)\=‘/ fi(s)ds

t
</ | fi(s)] ds, (3.5.26)

t
|Tgi(t)| = ‘/ gi(s)ds

t
</ |gi (s)} ds, (3.5.27)

forrel,i=1,...,n. From (3.5.26), (3.5.27) and using the assumptions, we
observe that

+G(|Tg1®)]. .., |Tgn(t)|)ZE/(|Tf1(z)| ..... |Tf,1(t)|)|ﬁ(t)|:| dt

i=1

.....

I
—
>
&la
—
N |
A~
a\ﬁ
=
~~
1)
~
o
1%9)
-~
N
o
~
o
=)
——

The proof is complete. O
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THEOREM3.5.7. Let fi, gi, F, F/, G, G} beasin Theorem3.5.6and p;, ¢;, h;,

w; fori =1,...,n beasin Theorem 3.5.5.Then, the following integral inequality
holds

/ab[F(|Tf1(t)|,..., T £,

®)])|gi ()]

G(|Tg10)], ...,

(t)|)|fi(t)|i| dr

i=1

b
o[ r(22))
h( ”"()h< <)> >>
_1 b lg1(®)]
x G| wy q1(H) w1 ) dr |,
b
..,wn_l</ qn(t)wn<|§ng;|>dt>>. (3.5.28)

The proof can be completed by following the proof of Theorem 3.5.6 and
closely looking at the proofs of Theorems 3.5.4 and 3.5.5 with suitable modi-
fications. Here we omit the details.

REMARK 3.5.3. In the special cases, the inequalities given in Theorems
3.5.6 and 3.5.7 yield various new inequalities of the Opial type which are different
from those of given by Bloom in [30]. For further generalizations of Theorems
3.5.6 and 3.5.7, see [346].

3.6 Opial-Type Inequalities Involving
Higher-Order Derivatives

In 1968, Willett [425] established the following inequality

[ luou ol < S [T P, (3:6.1)

wherex € [a,b], u € C™[a, b] with u@ (@) =0fori =0,1,2,...,n — 1 and
n > 1. Further results on some improvements, variants and generalizations of
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inequality (3.6.1) are given by a number of investigators, see [4] and the refer-
ences given therein. In this section we shall present certain variants and extensions
of inequality (3.6.1) investigated by Pachpatte in [239,296,312,317].

In the year 1986, Pachpatte [239] has proved the following Opial-type integral
inequalities involving two functions and theith-order derivatives.

THEOREM3.6.1. Letu, v e C" V[qa, b] suchthat u® (a) = v® (@) = 0for k =

0,1,2,....,n—1,wheren > 1. Let uD, v—D pe absolutely continuous and
L2 ™ @))2dt < oo, [7 0™ (1)[2dr < oo. Then

b
f [Ju®)v™ @] + |v@u™ ()] dt

b
<B(b— a)"/ [u™ @) + [v® @) ] (3.6.2)
where
1 n 2
B= %(2;1 — 1) : (3.6.3)

Equality holds in (3.6.2)if and only if n = 1 and u™ (t) = v (r) = M, where
M isa constant.

THEOREM3.6.2. Letu,ve Cla,blandu/, ..., u D v/, ..., v D arepiece-
wise continuous, x ", v—1 are absolutely continuous with fab lu™ (6)|2dr <
00, 2™ @)2dt < 00, u® (@) = v®(a) = 0, u® (b) = v® (b) = 0 for k =
0,1,...,n—1,wheren > 1, then

b
/ [Ju@v® @]+ [v@u™ @)]] dr

—a\" b
gB(b 2“) / (™ @[+ [ )] b, (3.6.4)
where B is given by (3.6.3). Equality holds in (3.6.4) if and only if n =1
and u(t) =v(@@t) =M@t —a)",a<t < (a+Db)/2; ut) =v(t) =M®b - 1)",
(a+0b)/2<t <b,where M isaconstant.

REMARK 3.6.1. We note that, in the special case when we take= v(¢) in

Theorems 3.6.1 and 3.6.2, we get the integral inequalities established by Das in
[77, Theorem 1 and Remark on p. 259] which in turn contains as a special case
the Opial inequality (3.2.1) and the sharper version of the inequality established
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by Willett in (3.6.1). In order to avoid duplication, we omit the detailed discussion
concerning the equalities in (3.6.2) and (3.6.4) and refer the reader to [77, p. 259]
and [4, pp. 130-131].

PROOFS OF THEOREMS 3.6.1 AND 3.6.2. From the hypotheses of Theo-
rem 3.6.1 we have

_ 1 ! n—1 (n)

— 1 ! n—1_(n)
U(t) = m/‘; (l —S) v (S) dS, (366)

for ¢ € [a, b]. Now, multiplying (3.6.5) and (3.6.6) by (r) andu"(¢), respec-
tively, and upon using Schwarz inequality, we obtain

(n) _ \n—1/2 t 1/2
|u(t)v<">(t)|<l(vn_(tl))|!((t2nf)1)1/2 (/ |u<">(s)|2ds> . (3.6.7)

(n) _ \n—1/2 t 1/2
|v(t)u<">(t)|<'?n_(tf)'!((tznf)l)l/z (/ |v<">(s)|2ds> . (3.6.8)

From (3.6.7) and (3.6.8), we obtain

b
/ [Ju)v™ )|+ [v@)u™ )] dt

1
S (n —1)!(2n — 1)1/2

) ; RN :
X/ (t_a)n—l/2|:|v(n)(t)‘(/ |u(n)(s)| dS)
; 12
+wmman(/'w@nofw) }dﬁ (3.6.9)

Now, first applying Schwarz inequality and then upon using the elementary in-
equalities(a + p)? < 2(e? + p?) anda¥2pY2 < J(a + ), a, p > 0 (for o, B
reals) to the right-hand side of (3.6.9), we obtain

b
/ [Ju®v™ @)] + [v)u™ ()|] dr

1 b 2(1—1/2) vz
<0r4ma—nm</“_” m)
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b t 5 1/2
x([ |:|v(")(t)|(/ |u(”)(s)| ds)
t 1/242 1/2
+|u(”)(t)|</ |v(")(s)|2ds) }dt)

< b —a)
S (n=1D)!(2n — 1)Y2(2n)1/2

b t
X (2/ |:|v(”)(t)]2</ }u(n)(s)|2ds>
t 1/2
+ |u(")(t)|2</ |v(”)(s)’2ds>:| dt)

_ V2(b —a)
~ (n—D!(2n — HY2(2n)1/2

([ G mope)([ o) f«)
V2(b —a)" ] ] 12
= Di2n— 1)1/2(2n)1/2<</a Ju )(S)yzds> </ i )(S)‘zds))

1 n 12 b 2 2
<ﬁ<—2n—1> (b—a)"/ [[u™ @]+ o™ @)|] dr

The proof of Theorem 3.6.1 is complete.

The proof of Theorem 3.6.2 follows immediately on using (3.6.2) once on
[a, #] and again or{#,b], where on the latter interval, in view of the as-
sumptions on, v, we have

u(t): (_ )1]1)'/ ( t)n 1 (il)(s)ds

v(t): - )1';'/ (s — )" L™ (5) ds.

The details are omitted. O
In [296] Pachpatte has established the Opial-type inequalities in the following

theorems, involving functions and their higher-order derivatives. In what follows,
we letl =[a,b] andry(t) >0,k=1, ..., n — 1, andz(z) be sufficiently smooth
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functions on[a, b]. Ther-derivative of the function is defined as follows.
D9z =¢,
p®; = rk(Dﬁkfl)Z)/7 k=1..n-1(""=%=D), (3.6.10)
D;n)z = (D;n_l)z)/.
Further, we set
1, ifk=n-—1,
Ri(a, 1) = ft dst1 f;k+1 dsit2 “.‘/'Sn—2 dsy-1 fO<k<n-—1.

a rr41(Sk+1) Tk+2(Sk+2) a rn—1(sp-1)°
(3.6.11)

THEOREM3.6.3. Letr; >0, j=1,...,n — 1, u, v be real-valued continuous
functions defined on/ and r-derivatives of u, v exist, be continuouson I and such
that D u(a) = D’v(a@)=0,i =0,1,...,n —1,forn >1anda  I. Then

b
f [[(Pw) O] [(Dv) O] + [ (D v) 0| (D) )] ] dr

a

_ { G0 (211D u) )P + | (D)) F] e, ik =n—1,

M P[[(DPu) )P+ (DY) @[] de, if0<k <n—1,
(3.6.12)
where
1 b 1/2
M= [5/ (t —a)R(a, 1) dt] . (3.6.13)

REMARK 3.6.2. (i) If we takek = 0 in inequality (3.6.12), then it reduces to the
following inequality

b
[ Tl 0)0)] + [0 [ (20
b
<uto [ [BPOP (D0 w. @o1a

where

1 (b 1/2
Mo=[§f (t—a)Rg(a,t)dt} ) (3.6.15)



3.6. Opial-Type Inequalities Involving Higher-Order Derivatives 313

(i) Puttingv=uin(3.6.12)and; =1,j=1,...,n -1, we get
b b 2
/ |u(t)||u(")(t)|dt<Cn/ |u™ ()| o, (3.6.16)

whereC, = 5 f(b —a)". Inequality (3.6.16) contains Opial’s inequality given
in Theorem 2|n [211, p. 154] withn = 1.

THEOREM 3.6.4. Let p, ¢ be positive constants satisfying p +¢ > 1and r;, u
be asin Theorem 3.6.3.Then

b
[ 1@ u ol (oo a

_ { g7 P+ (p+ )1 —a)? [P |(Du) )| dr, ifk=n—1

N 21D u) )| o, ifO<k<n-—1,
(3.6.17)
where
q qa/(p+a)[ b p/(p+q)
N:<—> [/ (t—a)P+‘1_1R,f+q(a,t)dti| . (3.6.18)
p+tq a
REMARK 3.6.3. If we takeék =0in (3.6.17), we get
b b
f lu()|7|(D™u) ()| df < NO/ (D u) 0] dr, (3.6.19)
a a
whereNy is obtained by the right-hand side of (3.6.18) by taking 0.
THEOREM3.6.5. Letrj, u beasin Theorem 3.6.3.Then
b1 ) b 9 (n+1)/2
/ 1’[|(D§'>u)(t)|dt<QU (D™ u) @) dti| : (3.6.20)
a i_o a
where
1 n—2 1/2
— _a\n 2
0= [ +1/ (t —a) ll_!)R (a, t)dt:| ) (3.6.21)

REMARK 3.6.4. Bysetting; =1, j=1,...,n—1, thentaking: = 1 and using

the usual convention thzﬂj’inl R2(a 1) = 1 for n1 > no, whereny andny are
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integers, we see that inequality (3.6.20) reduces to Opial’'s inequality given in
Theorem 2in [211, p. 154].

PROOFS OFTHEOREMS3.6.3-3.6.5. dder the assumptions of Theorem 3.6.3
foranyt € I, we have

fat (Dﬁn)u)(s) ds, if k=n—1,
(Dﬁk)u)(t) — f' dsii1 fasm dsiy2 [0z dsy 1 S”‘l(Dr(")u)(s) ds

a rr41(Sk+1) Tk+2(Sk+2) a  rp-1(sp-1) Ja

< Ri(a,t) fut ’(D,(")u)(s)’ ds, fO<k<n—1
(3.6.22)

Now, multiplying (3.6.22) by(D™v)(#)| and (3.6.22) with = v by | (D" u)(#)],
respectively, and making use of the properties of modulus and Schwarz inequality,
we get the inequalities

(D) 0| (D v) )]
(D)@ f; (D u) ()] ds,

ifk=n-—1,
(t —a)Y2Ri(a, | (D) O (S [(Du) ()| ds) M2,
fo<k<n—1,

(D) O] |(Dfu) )]
(PP )] [ (D v) o] a,
if k=n—1,
(t —a)2Ri (a, 0| (D" u) O] (f1 |(DMv) ()] ds) ™2,
ifO<k<n-—1,

which imply

b
[ 1@ 0ol + P00 (o] @

L2 LU (D u) )] ds) (7 | (D v) )| ds)] e, if k=n 1,
[P — )R (a, 1)
< [[(D0) @) (f [(DE u) (5)[*ds) 2

+ |(Dr(")u)(t)|(fat |(Dr(")v)(s)|2ds)l/2] dr, ifO<k<n-—1
(3.6.23)



3.6. Opial-Type Inequalities Involving Higher-Order Derivatives 315

In order to prove inequality (3.6.12), we consider the following two cases.

Case |. Let k =n — 1. From (3.6.23), using the elementary inequatify <
%(az + ?), a, B >0 (for «, B reals) and the Schwarz inequality, we obtain

b
f [H(DPu) O] [(DF0) @] + (D) @[ (D) ()]
b b
<([ 1emaole)( [ 10mols)
1 D™ )2 ™) (1) |2
< E(b—a)/ [[(DM™u) ()| + [(DIv) ()| ] dr, (3.6.24)

being the required inequality in (3.6.12) fo=n — 1.

Casell. Let0<k <n—1.From (3.6.23), using Schwarz inequality, the elemen-
tary inequality(e + 8)2 < 2(a?+ ) and/af < 3(@+8), o, f >0 (o, p reals),
we get

b
[ TI@E@l[pen) 0]+ o) ol () o] d
b 1/2
<(/ (z—a)R,f(a,t)dz>
b t 5 1/2
A [ lemaol([1emers)
t 1/212  y1/2
el [ 1eeyefs) ]l
b 1/2
g(/ (z—a)R,f(a,t)dt>
b 2 t 2
{2 [lomaoP( [ 1ornePe)

t 1/2
Pl ([ e re) ol

b 1/2
= (2/ (t —a)R?(a, 1) dt>
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i {/‘lb %[(/: ’(Dﬁn)u)(s)’zds> (/; |(Dr(”)v)(s)’2ds>:| }1/2
=2 b(t —a)R%(a, 1) dr i
J
([ o) ([ o)

1 [? 2 V2w 2 (n) 2
< (5/ (t_a)Rk(a,t)dt> / (DY) @)% + (D) (1) 2] .
(3.6.25)

being the required inequality in (3.6.12) for0k < n — 1. Thus the proof of
Theorem 3.6.3 is complete.

To prove Theorem 3.6.4, take modulo gpith power on both sides of (3.6.22)
and use Holder’s inequality with indicgs+ g and(p + q)/(p + ¢ — 1), SO we
have

|(DPu) )]

(t — a)P(Pta—D/(p+q) (fat |(D§n)u)(s)|p+q ds)p/(”q),

ifk=n—1,
(t — )PP+ a=D/ PO R (a, 1) ([ | (DI u) (5) |7 ds)?/ P+
fOo<k<n—1

(3.6.26)

Now, multiplying both sides of (3.6.26) UYDE”)M)(t)H, then integrating frona
to b and applying Holder’s inequality with indic&® + ¢)/p, (p + q)/q to the
integrals on the right-hand side, we find

b
[ (0P 0r oo

(f2(t — ayrta-? dt)p/(pw)
X (fab |(D;n)u)(t)|P+q (fat |(Dr(”)u)(s)}p+q ds)p/q dt)q/(p+q)7
(f2(t — )yt 4R (a, 1y dr) P/ P+
X (fab |(D£n)u)(t)|l7+q (-[at |(D£")u)(s)}p+q ds)p/q dt)q/(erq)
ifO<k<n—1,

N
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g1/ P+ (p+ ) b — @ [ |(Du) " dr, i k=n—1,

N 2D u) ()] P b, ifO<k<n—1
(3.6.27)

The proof of Theorem 3.6.4 is complete.

By the hypotheses of Theorem 3.6.5, we have inequality (3.6.22). Taking
0,1,...,n—1in(3.6.22) and modulo, we get

t
|(DQu)(1)| < Ro(a,t)/ |(D™u)(s)] ds,

t
(DD u) ()| < Rl(a,t)/ [(Du)(s)] ds,

t
[(D2u) ()| < Ru—2(a, 1) / (D u)(s)] ds,
t
(P Vu)o] < [ (D)),

From these inequalities and using Schwarz inequality, we obtain

1_[|(D(’) (t)|<l_[R(a O|(D™Mu) (z);(/ |(D™u) (s)|ds)

i=0
n—2

n/2
<[] Rita.n|(Du) )] - a)"/z(/ |(D"u)(s)| ds> :

i=0
(3.6.28)

Integrating both sides of (3.6.28) framto » and using again Schwarz inequality,
we find

/]_[ |(DDu)(t)| dr
n/2
/(t—a)"/zl_[R(a D|(DMu) (z)|</ |(DPu)(s)| ds) dt

i=0
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b n—2 1/2
< (f (t—a)" [ | R, t)dt)
a i=0

b . [ 5\ A\ 2
X (/ |(D™Mu) ()| (/ [(D™Mu) ()| ds> dt)

b 5 (n+1)/2
:Q(/ |(DM™u) @) dt) .

The proof of Theorem 3.6.5 is complete. O
REMARK 3.6.5. We note that, by following the proof of Theorem 3.6.3 with suit-

able modifications, we can establish inequality (3.6.14)ferv in the following
useful variant

/l |lu()|[(DIDu)(s)| ds < M§ (@) /t |(D"Du)(s)|? ds, (3.6.29)

wherea, t € I andr;, u are as defined in Theorem 3.6.3 butwitk= 1, ..., n -2,
i=01..,n-2forn>2,

1 rt 1/2
Mg () = [E/ (s—a)Réz(a,s)ds:| (3.6.30)
with
t 51 Sn—3
RS(a,t)=/ ds dsz / _ G2 (3.6.31)
a T1(s1) Jo  ra(s2) a Tn—2(8p—-2)

Inequality (3.6.29) is formulated in the framework of Willett's inequality (3.6.1)
which is suitable in certain applications.

It is easy to observe that the constant obtained in (3.6.16) is better than that
in (3.6.1).

Inequality (3.6.16) with sharper constant= sL;(5"5)¥/2 is established in
Das [77, Theorem 1]. However, our proof does not yield the better constant as
in [77], because there is a difficulty involved in proving the much more general
result as given in Theorem 3.6.3, that is, proving (3.6.24), (3.6.25). We also note
that the results established in Theorems 3.6.3-3.6.5 can be extended to the case

when we replace the conditions

DVua)=DPv@)=0 by DVu)=DPvb)=0, i=0,1,....,n—1
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The following theorem established by Pachpatte in [312] involves a generalization
of Opial’s inequality involving a function and its higher-order derivatives.

THEOREM 3.6.6.Let u € C™[a,b] be a real-valued function such that
u®(@)=0fork=0,1,...,n—1andn > 1.Let w, v be positive and continuous

functions defined on [a, b]. Let p > 1 and ¢ > 0 be real numbers and r; > 0O,
k=0,1,...,n —1,bereal numberswith YV~ = 1. Then

b n—1 p
/ w(f)[n‘u(k)(t)}rk] ‘M(”)(I)‘th

k=0
b
<C(p,q)f v(®)]u™ ()" dr, (3.6.32)

where

g \Y/@wrof b n-1 .
C(p,q) = <—> / w2 =P (1) Y " [(n — k — 1)!]
p+q a =0

t
y [/ oY1) (g
a

p(prq=1)/(p+q) ) PTD/P  P/(P+q)
x (1 —5)(PHOC=D/ra =D ds} } dt}
(3.6.33)
isfinite.
PROOF From the hypotheses, anwe have
(k) 1 ! k—1_(n)
— o\ k— n
u (t)_(n—k—l)!/a (t—ys) u'™ (s)ds (3.6.34)

fork=0,1,...,n— 1. From (3.6.34) and using the elementary inequality
n—1 n—1 n—1 1/p
Ha;kQZrkakg{Zrka,f} ;
k=0 k=0 k=0

wherea; > 0,k=0,1,...,n — 1, andp > 1 be any real number ang as stated
in theorem. By using Hoélder’s inequality with indicgst-q, (p +¢q)/(p +q — 1),
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we observe that

n—1 p
|: 1_[ |u(k)(t)|rki|
k=0

n
<D onlu® ]

|
-

=~
= O

<Y n[fm—k=117"
k=

o

t p
« {f (U—l/(p+q)(s)(t —s)”_k_l)(vl/(p+q)(s)|u(")(s)’) ds}

a

3
|
U

<Y n[m—k=D1"
0

w—
Il

t p(p+q—1)/(p+q)
y [ / oY= () (s _ s)<p+q><n—k—1>/<p+q—1>}
a

t
X [/ v(s)|u(”)(s)|p+q ds (3.6.35)

a

}p/(zﬂrq)

Multiplying both sides of (3.6.35) bw (7)) (r)|¢ and integrating the resulting
inequality froma to b, rewriting and then using Hoélder’s inequality with indices
(p+9q)/p, (p+q)/q, we observe that

b n—1 p
f w(t)|:l—[ |u(k)(t)|rk:| |u(")(t)|q dr
“ k=0

n—1

b
< / |:w(t)v_q/(”+")(t) Y onfm—k-11]7"

k=0

t
“ { / oY1 gy (f _ )P~/ +a-D g

a

}p(p+ql)/(p+q):|

t r/(p+q)
x |:vq/(p+q)(t)’u(”)(t)|q{/ v(s)|u® (s)|" ds} ]dr
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b n—1
< i/ w(”+4)/”(t)v—q/f’(t){Zrk[(n —k—1]7"

a k=0

t
y [/ o~ Ypra=1) (g
a

x (t — s)(p+q)(n—k—1)/(p+q—1) ds

p/(p+q)
dt}

j|17(p+q—1)/(p+q) }(”+‘7)/”

b t r/q q/(p+q)
x{/ v(t)|u<">(z)|”+q[f v(s)|u(")(s)|p+qui| dt}
b
:C(p,q)/ (@) |[u™ (0|7 dr.

The proof is complete. O

REMARK 3.6.6. We note that by specializing inequality (3.6.32) we get the
various inequalities established earlier by different investigators. We also note
that Theorem 3.6.6 can be extended to the case when we replace the conditions
u®(@)=0byu®()=0fork=0,1,...,n — 1. For more details, see [312].

The inequalities in the following theorems are established by Pachpatte
in [317].
To formulate the results conveniently, we set

Mi=[n—i-D] *@m—j-D] "

b
x {f wP/(P—ps)(t)
a

t ) p1(p—1)/(p—p3)
y (/ - s)mn—l—l)/(p—l)v—l/(p—b(s)ds)
a

t ) p2(p=1)/(p—p3)
y (/ (¢ — 5)PO—I=D/(r=D)=1/(p-1) (S)ds>
a

X v7p3/(P7P3) (t) dt

(p—p3)/p
} (3.6.36)
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and

My=[(n—1)]"%

y {/b w(p+q)/p(t) (/t[ft (t — S)n—l(s _ l')”_l ds:| (p+q)/(p+q-1)
a a T r(s)

p+q-1 p/(p+q)
x v—l/(l?-i-q—l)(.[)d-[) =P (1) dt} , (3.6.37)

wherep1, p2, p3, p = p1+ p2+ p3; p.q.n,i, j are suitable constants andr),
v(?), r(t) are suitable functions defined dn= [a, b], a < b are real constants,
and

b n—2 p/(p—pn)
M3: {/ wp/(p_Pn)(t)<l_[Ri[7i(a’t)>

a i=0

t p—1
X </ vfl/(P*l)(S) dS) U*Pn/(pfpn)(t)

a

(p—pn)/p
} ,  (3.6.38)

wherepo, p1, ..., pn, p =Y i_o pi are suitable constants,(r) andv(r) are suit-
able functions defined ohandR; is as defined in (3.6.11).

THEOREM 3.6.7. Let p1, p2, p3 be nonnegative real numbers satisfying p =
p1+p2+p3>p3>0,p>1andletn >2and0<i < j <n— 1beintegers.
Let f(r) be of class C" on I satisfying f(a) = f'(a) =--- = f* V() = 0.
Suppose that w(z) and v(¢) are positive and continuous functions defined on 1.
Then

b
/w(t)lf“)(t)\”l|f<f)(t)|”2|f("’(t)|”3dt

a

N

3 p3/p b

<—> le v @)|" dr, (3.6.39)
p a

where M isfinite and defined by (3.6.36).

THEOREM3.6.8. Let p, g be positive real numbers satisfying p + ¢ > 1 and let
n > 1 be an integer. Let r(r) > 0 be of class C” on I and f(z) be of class
on [ satisfying Y~V (a) =0, (r(a) f ™ (a))?~P =0fori =1,2, ..., n. Suppose
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that w(r) and v(z) are positive and continuous functions defined on 7. Then

b
f w®|f O |(r@) £P @) " | dr

q q/(p+q) b )| p+
<<T> Ma / v@®)|(r@ P ®)" [P dr, (3.6.40)
pTq a

where M> isfinite and defined by (3.6.37).

The following corollary to Theorem 3.6.8 given by Pachpatte in [317] is of
independent interest.

COROLLARY 3.6.1. Let r(r) > O be of class C" on I and f(t) be of class C%"

on I satisfying £~V (a) =0, (r(a) f™(a))"~D =0fori =1,2,...,n. Suppose
that M (¢) defined by

( )n—l( _ )n—l 2 1/2
M) =[(n— 1] {/ (f U Al r(s; ‘ ds] dr)dx}

isfinite, then

/ |f(S)|| V(S)f(n)(s))(n)|ds z(t)/ | r(t)f(n)(s))(n)| ds
forn>1andrel.

This situation is the case of Theorem 3.6.8 in which- ¢ =1 andw(¢) =
v(t) = 1 andb is replaced by a variabkeand M is replaced by (1).

THEOREM 3.6.9. Let po, p1,..., pn be nonnegative real numbers satisfying
p=>iopi>pnp>1lLletri(t)>0,i=1...,n—1,n>1,and f(¢) be
continuous function defined on 7. Let r-derivatives of f(¢) exist, be continuous
on I and suchthat D\ f(a) =0,i =0,1,...,n — 1. Supposethat w(r) and v(r)
are positive and continuous functions defined on 7. Then

b n )
/ w [ T](DP £)@)
i=0

a

pi dr

Pn/p b
g(%) M3/ v(|(D £) )" dt, (3.6.41)

where M3 isfinite and defined by (3.6.38).
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PROOFS OFTHEOREMS 3.6.7-3.6.9. From theyipotheses of Theorem 3.6.7
and Taylor expansion, we have the representation

; 1 ! )
(i) _ _ n—i—=1 ()
f (r)—i(n_i_l)!/a (t — )" (s) ds (3.6.42)

for 0<i <n— 1. From (3.6.42) and using Hélder's inequality with indices
p/(p —1), p, we observe that, fare 1,

‘f(i)(t)|l71
< [(n i 1)!]—171{/1[0 _ s)’l—i—lv_l/p(s)][vl/p(s)|f(")(s)|]ds}

pP1

B t ) p1(p=D/p
< [(n i 1);] P1 (/ (r — S)P(n—t—1)/(ﬂ—1)v—1/(P—l) (s) ds)
a

t r1/p
X </ v(s)|f(")(s)|pds> . (3.6.43)

From (3.6.43) and rewriting (3.6.43) by replacingy j,0<i < j<n-1, and
p1 by p2, we observe that

w®| OO DD £ )|
<[m—i-D] - j-D] "

t ) ri(p=1/p
y [w(,)< / (t _s)pm—l—l)/(p—l)v—l/(p—l)(S)ds)
a

t ) p2(p=1/p
" (/ « —s)p<”]l)/(pl)vl/(pl)(s)ds>
a

vP3/p (t)]

t (p—p3)/p
X|:vp3/P(t)|f(”)(t)|p3(/ u(s)|f<")(s)|”ds> ’ } (3.6.44)

Now, integrating both sides of (3.6.44) framto » and using Holder’s inequality
with indicesp/(p — p3), p/p3 on the right-hand side of the resulting inequality,
we observe that

b
/ W] £ £ @72 £ )] e

a

b t (p—p3)/p3 p3/p
<Ml{/ v(r>|f<”>(r>|”(f v<s>|f<"><s)|"ds) dt}
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p3/p b
=<%) le v(®)| @) o,

whereM; is defined in (3.6.36). The proof of Theorem 3.6.7 is complete.
From the hypotheses of Theorem 3.6.8 and Taylor expansion, we have the
representations

__r n—1 p()
f@) = m/g =" fW(s)ds (3.6.45)

and

r(s) f™(s) =

1)'/ (s — )" Yr@) £ )™ dr. (3.6.46)

By substituting (3.6.46) into (3.6.45) and reversing the order of integration on the
double integral, we have the representation formula (see [97, p. 315])

1
[(n — D2

O B
x/ U — r((:) . dS](’(f)f(")(f))(n)df (3.6.47)

f=

fora <t <s <t <b. From (3.6.47) and using Hélder’s inequality with indices
(p+q)/(p+q—1), p+q, we observe that

FO <[ -]

% {/t[< =9 st ds)vl/(pﬂ)(f)]
a T r(s)

p
x [P+ ()| (r () £ P (1)) ] dt}

n—1¢.__ _yn—1 (p+q)/(p+q—-1)
<[m-D1] U(/ t =" —7) ds)pq M
r(s)

}p(p+q—l)/(p+q)

x p~Y(p+q=1) (r)dr

t p/(p+q)
x {/ (@) (r () £ (1)) [P dr}

(3.6.48)
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From (3.6.48) we observe that

w(t)if(t)ipi(r(t)f(”)(t))(n)|q

t t (o=l _ yn—1 (p+q)/(p+q—1)
<[<n—1>!]‘2”[w<t>{ / ( o ds>

p(p+q—1)/(p+q)
x v—l/(P-i-q—l)(.[) d.[}

v—Q/(I’+fI)(t)i|
% |:U11/(P+¢1) (t)| (r (t)f(n) (t))(”) |‘1

t p/(p+q)
x {/ v(@)|(r(x) £ ()| dr} } (3.6.49)

Now, integrating both sides of (3.6.49) framto b and using Holder’s inequality
with indices(p + q)/p, (p + q)/q on the right-hand side of the resulting inequal-
ity, we observe that

b
/ w®)| O (@) £ )™ |7 de

a

b
< Mz{/ v(z)|(r(t)f(n)(t))(n)|p+q
' rlq q/(p+q)
([l sl

p/(p+q) b
= <%) Mz/ v(t)|(r(t)f(”)(t))(”)|p+q dr,
pPTq a

whereM; is defined by (3.6.37). This result is the required inequality in (3.6.40)
and the proof of Theorem 3.6.8 is complete.
From the hypotheses of the Theorem 3.6.9, foraay , we have

[HD £)(s)ds, ifi=n—1,
(@) _ t_ds; sit1 _ ds; Sp_2  ds,_1
(D7) 0= Ja ri+1(;«1+1) Ja" ri+2(:‘:i2) - Ja ri—1(sn—1) (3.6.50)

<O O b, #0<in-1
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From (3.6.50) we observe that

f;|(D£")f)(s)|ds, ifi=n—1,

oseh e (3.6.51)
Ri(a,1) [, |(Dr f)(s)|ds, ifo<i<n—1.

(D F) )] < i
From (3.6.51) we observe that

t pPo

(0O )0 < wg ([ (02 )olas)

' p
(02 Dol < & an( [ 100 ol

t Pn-2
P2 <R,’;"_;<a,r)< / |(D£">f)(s>|ds> ,

t Pn—-1
g ( / |(D;”>f)<s>|ds) :

From these inequalities and using Holder’s inequality with indjgég — 1), p,
we observe that

(D2 ) )

(D" F) )

wn [ TI(DF )]

i=0
<w®|(DM ) @)

n—2 t P—Pn
] AT —
i=0 a

Pn

n-2 t (p=D(p—pw)/p
< w(t)l_[R{”w,r)( / vl/“’l)(s)ds)
i=0 a

t (p—pn)/p
Pn (/ v()|(DM f)()]” ds> ]

(3.6.52)

Ufpn/p (l):|

x [vpn/P (1) | (Df")f) (1)

Now, integrating both sides of (3.6.52) framto » and using Holder's inequality
with indicesp/(p — p»), p/p» On the right-hand side of the resulting inequality,
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we observe that

/ w(r)]‘ﬂ (DO 1)@

a

b t (p—pn)/ Pn pn/p
<Ms{ f v<r>I(Dﬁ”)f)<r>|”( / v(s)I(Dﬁ”)f)(s)|pdS> dt}

p Pn/p b
z(_n) Ma / v(0)| (D £)@)]" dr,

p

P:

whereMs3 is defined by (3.6.38). The proof of Theorem 3.6.9 is complete ]

3.7 Opial-Type Inequalities in Two and Many
Independent Variables

In the past few years, a number of papers have been written dealing with Opial-
type inequalities, involving functions of two and many independent variables and
their partial derivatives. In this section, we offer basic integral inequalities involv-
ing functions of two and many independent variables established by Yang [429]
and Pachpatte [233,261,267,284] which claim their origin in Opial’s inequality.
First we introduce some of the notations used in our subsequent discussion:
Let A = [a,b] X [c,d], A1 = [a,X] X [¢, Y], Az = [a, X] x [Y,d],
Az = [X,b] x [, Y], Asa = [X,b] x [V,d] for a < X < b, ¢ < Y < d;
a,b,c,d, X, Y e R (R the set of real numbers). Further, lB[p(r) = 5 p),
Dih(s,t) = h(s t), Doh(s,t) = 8zh(s t), DaD1h(s,t) = asath(s t) for
functionSp(r) h(s,t) defined orR and A respectively.
In 1982, Yang [429] has obtained the following analogue of Opial’s inequality
in two independent variables.

THEOREM 3.7.1. If f(s,1), D1f(s,t) and DoD1 f(s,t) are continuous func-
tionson A and f(a,r) = f(b,t) = D1f(s,c) = D1f(s,d) =0for a <s < b,
c<t<d,then

b pd
// | f(s.0)||D2D1f (s, 1)| dr s

_ _ b pd
gws(dc)f/ |D2D1f (s, 1) e ds. (3.7.1)
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PROOF In order to prove (3.7.1), we consider the following four cases.

Casel. Let (s,7) € A1 and define
s t
z(s,t)z// |D2D1 f (u, v)| dv du. (3.7.2)
Then

t
Dlz(s,t):/ |D2D1 £ (s, v)| dv,

(3.7.3)
Dzz(s,t)=/ |D2D1 f (u, 1) du.

From (3.7.3) we observe that, for each fixed:(s, ) is nondecreasing for
on[c, Y]. Sincef(a,t) =0andD1 f(s,c) =0 for (s, 1) € A1, we have

|fs.0)| < f |D1f (u,1)| du, (3.7.4)

t
|D1f(s, 1) </ |D2D1 f (s, v)| dv = D1z(s, 1). (3.7.5)

From (3.7.4) and (3.7.5), we observe that, farr) € A1,

|f(s,t)|</ | Daz(u, )| du = z(s, 1). (3.7.6)

From (3.7.6), (3.7.5), (3.7.2) and applying Schwarz inequality, we have
X oy
// | f(s,0)||D2D1f (s, 1)| de ds
a c
X Y
S// Z(s,t)‘Dlef(s,t)|dtds
X Y
</ (s, Y)/ |D2D1 f (s, 1)| dt ds

X
= / z(s,Y)D1z(s, Y) ds

1
= Ezz(x, Y)
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1 X pY 2
=—<// ’D2D1f(s,t)|dtds>
2 a c
_ _ X Y
gW// | DDy f (s, )| dr ds. (3.7.7)
a C
Casell. Let (s,t) € A2 and define
s pd
z(s,t):// |D2D1 f (u, v)| dv du. (3.7.8)
a Jt
Caselll. Let (s, 1) € Az and define
b pt
z(s,t):// |D2D1f(u,v)}dvdu. (3.7.9)
CaselV. Let (s,t) € A4 and define
b pd
z(s,t):f/ | D2D1 f (u, v)| dv du. (3.7.10)
s t

Now, by following similar arguments to those in the proof of Case I, but with
suitable modifications, we obtain the following estimates in Cases II-1V:

X pd
//Y | f(s,0)||D2D1f (s, 1)| dt ds
_ _ X pd
gW// | D2D1f (5. 1)| i s, (3.7.11)
a JY
b pY
/x/ | f(s,0)||D2D1f (s, )| dt ds

_ _ b pY
<%2(YC)// |D2D1f (s, 1)| e ds (3.7.12)
XJc

and
b pd
// | f(s,0)||D2D1f (s, 1)| dt ds
XJY

_ _ b pd
g%// |DaD1f (s, 1) | s, (3.7.13)
XJY

respectively.
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LetX =(a+b)/2,Y =(c+d)/2.ThenX —a=b—-X=(b—a)/2,Y —c=
d—Y =(d —c)/2. It follows from (3.7.7), (3.7.11)—(3.7.13) that

b pd
// | f(s.0)||D2D1f (s, 1)|dt ds
X pY
=// | f(s,0)||D2D1f (s, 1)| dt ds
X pd
+//Y | f(s,0)||D2D1f (s, 1)| dr ds
b pY
+/X[ | f(s,0)||D2D1f (s, 1)| dr ds

b pd
+// | f(s,0)||D2D1f (s, 1)| e s
XJY
— _ b pd
g(Z)Léddff |D2D1 £ (s, )| dr ds.

This result is the desired inequality in (3.7.1) and the proof is complete. [

In 1985, Pachpatte [233] has established some integral inequalities of Opial
type in two independent variables. To formulate the results in [233], we list the
following hypotheses.

(H1) Let f(s,t), D1f(s,t), D2D1f(s,t) andg(s,t), D1g(s,t), D2D1g(s, t)
be continuous onA and f(a,t) = f(b,t) = D1f(s,c) = D1f(s,d) = 0,
gla,t)y=g(b,t) = D1g(s,c) = D1g(s,d) =0for (s, 1) € A.

(H2) Let h(s,t), D1h(s,t), D2D1h(s,t) be continuous om andh(a,t) =
h(b,t) = D1h(s,c) = D1h(s,d) =0 for (s, 1) € A.

Before stating the results in [233], we introduce the following notation for
convenience:
L[m, f(s.1),g(s, 1), D2D1f(s,1), D2D1g (s, 1)]

=G, 0||gts. 0|} [| £ (s, 0)||D2D1g(s. )| + |g(s, )|| D2D1f (5, 7)
DD1L[m, D2D1f (s, 1), D2D1g(s, 1)]

I:

2(m+1) 2(m+1)

= |D2D1f(s,1)| + | D2D1g(s. 1)|
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M([m, f(s,1),8(s, 1), h(s, 1), D2D1f (s, 1), D2D1g(s. 1), D2D1h(s, )]
={|fG.0|g. D" [| £ (s.0||D2D1g(s. )] + |g(s. )| | D2D1f (5. 1)]]
+{[gGs.0)||nts, )|} [|gCs. || D2D1h(s, )| + |h(s, 1) || D2D1g (s, 1)]]
+{|nGs. O £ O} [|1(s, 0)||D2D1f (s.)| + | f (s, 1)|| D2D1h(s, 1)
D2D1M[m, D2D1f (s, 1), D2D1g(s, 1), D2D1h(s, 1)]

];

2(m+1) 2(m+1) 2(m+1)

= |D2D1f(s,1)| + |D2D1g (s, 1) + |D2D1h(s, 1)
N[f(s.1),g(s.1), h(s,1), D2D1f (s, 1), D2D1g(s. 1), D2D1h(s, )]
=|f (s, 0)||gs. 0)||h(s, O|[|D2D1f (5. 1)| + |D2D1g (s, 1)| + | D2D1h(s, 1)|]
+[|FG. 0]+ g6 0] + |hGs, )]
x [ £ (s, 0)|[g (s, 0)|| D2D1h(s, 1)
+|g(s. )| [h(s, )| | D2D1f (s, )| + |h(s, D)|| f (s, 1) || D2D1g (s, 1)

wherem > 0 is a constant.
The results established in [233] are embodied in the following theorems.

THEOREM3.7.2. Assume that (H1) holds. Then
b pd
f / L[m. f(s.1). g(s.1). DaD1 (s. 1), DaD1g(s. 1)] dr ds
a C

b pd
gl(m/f D2D1L[m, D2D1f (s, 1), D2D1g(s, )] d ds, (3.7.14)

where

(3.7.15)

m

1 [-ad-o]"
_2(m+1)[ 4 } '

REMARK 3.7.1. In the special case whels, 1) = f(s,¢) and 2n + 1 =n, the
inequality established in Theorem 3.7.2 reduces to the following inequality

b pd
// | f(s,0)["|D2D1f (s, 0)| de ds

_ _ n pb pd
XX n—:::ll:(b a)4(d C):| f/ |D2le(svt)|n+1dtds’ (3716)
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which in turn contains as a special case Yang's inequality given in (3.7.1) when
n = 1. We also note that the inequality obtained in (3.7.16) is a two independent
variable analogue of Yang's generalization of the Opial inequality [428, Theo-
rem 4] (see also [430]).

As a consequence of Theorem 3.7.2, we have the following corollary.

COROLLARY 3.7.1. Assumethat (H;) and (H») hold. Then
b pd
// M[m,f(s,t),g(s,t),h(s,t),
a c
D2D1f (s, 1), D2D1g(s, 1), D2D1h(s, 1)] dr ds

b pd
<2Km// D2D1M[m, DaD1f (s, 1), DoD1g(s, t), D2D1h(s, 1)] dr ds,
“re (3.7.17)

where K, isasdefined in (3.7.15).

THEOREM3.7.3. Assume that (H1) and (H») hold. Then
b pd
// N[f(s,1),8(s, 1), h(s,1), DaD1f (s, 1), DaD1g(s, 1), D2D1h(s, )] dr ds

b pd
<4K1// D2D1M([1, D2D1f (s, 1), DoD1g(s, t), D2D1h(s, )] dr ds,
e (3.7.18)

where K isobtained by substituting m = 1in (3.7.15).

REMARK 3.7.2. Note that the inequalities established in Theorems 3.7.2 and
3.7.3 and Corollary 3.7.1 are the two independent variable analogues of the in-
equalities established earlier by Pachpatte in [239,240,256].

PROOFS OFTHEOREMS3.7.2AND 3.7.3. In order to prove Theorem 3.7.2, we
consider the following four cases.

Casel. Let (s,7) € A1 and define

s pt
Z(s,t):// |D2D1 f (u, v)| dv du, (3.7.19)
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and
Ky t
w(s,t):// |D2D1g(u,v)|dvdu. (3.7.20)
Then

Diz(s, 1) = /l |D2D1 £ (s, v)| dv, Doz(s, 1) Z/X |D2D1 f (u, )| du,
' ’ (3.7.21)
and
Diw(s, 1) = /t |D2D1g(s,v)|dv,  Dow(s, 1) = fs |D2D1g(u, 1) du.
‘ ’ (3.7.22)
From (3.7.21) and (3.7.22), we observe that for each fixeds, r) andw(s, 1)

are nondecreasing faron [c, Y]. Since f(a,t) = g(a,t) =0 and D1 f (s, c) =
D1g(s,c) =0, for (s, t) € A1, we have

5. 0)] <f | Dy f (u, )| e,

. (3.7.23)
|g(s, 1) </a |D1g(u, )| du,
|D1f(s, )] < /c[ |D2D1 f (s, v)| dv = D1z(s, 1), (3.7.29)
|D1g(s, )| < [t |D2D1g(s,v)| dv = Dyw(s, 1). (3.7.25)
From (3.7.23)—(3.7.25), we observe that
| f(s.0)] < /a |D1z(u, )| du = z(s, 1), (3.7.26)
lg(s. 0] < /S |Dyw(u, )| du = w(s, 1). (3.7.27)

From (3.7.26), (3.7.27), (3.7.24), (3.7.25) and applying the elementary inequality

aB < 3(@? + p?) (for o, B reals), (3.7.19), (3.7.20) followed by two applications
each of the Schwarz inequality and the Hoélder inequality with indices1 and
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(m 4+ 1)/m, we obtain

X pY
// L[m, f(s,1),8(s.1), DaD1f (s, 1), D2D1g(s, )] dr ds

X pY
<// {26, Hw(s, )}

x [z(s, )| D2D1g(s, 1)| + w(s, 1)| D2D1f (s, 1)|] de ds
X Y
</ z’”+1(s,Y)w'"(s,Y)</ |D2D1g(s,t)}dt>ds
X Y
+/ 2" (s, Vyw™ (s, Y)(/ |D2D1f(s,t)ydz>ds

X
= / [z (s, Y)w™ (s, Y) Drw(s, Y) + 2" (s, Y)w (s, Y) D1z(s, V)] ds

= / Xi izm“(s Y)w™ (s, Y) | ds
W Os|m+1 ’ ’

1

m+1 m+1
=— X,Y X,Y
P (X, Nw™ (X, Y)

1
<
2(m + 1)

1 X Y 2 mil
:mu(/afc |D2D1f(s,t)|dtds)}

X Y 22 mal

+{<// |D2D1g(s,t)}dtds)} }

~ B ml X Ay m+1
<{(X a)(Y — o)} “// |D2le(s,;)|2dtds}

2(m+1)
X pY 5 m+1
+{// |D2D1g (s, 1) dtds} }

{(X —a)(Y —c))2n+t
2(m+1)

[ X, 1)) + (w™i(x, 1))?]

~X

X rY
x// D2D1L[m, DoD1f(s.t), D2D1g(s, 1)] d ds. (3.7.28)
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Casell. Let (s, t) € A2 and define
s pd
Z(s,t):// |D2D1 f (u, v)| dv du, (3.7.29)
a Jit
s pd
w(s,t):// |D2D1g(u,v)|dvdu. (3.7.30)
a Jt
Caselll. Let (s, 1) € Az and define
b pt
Z(s,t):// |D2D1 f (u, v)| dv du, (3.7.31)
N c
b pt
w(s,t):// |D2D1g(u, v)| dv du. (3.7.32)
CaselV. Let (s,7) € A4 and define
b pd
z(s,t):// |D2D1 f (u, v)| dv du, (3.7.33)
s Jt
b pd
w(s,t):// |D2D1g(u, v)| dv du. (3.7.34)
s t

Now, by following similar arguments to those in the proof of Case I, but with
suitable modifications, we obtain the following estimates in Cases II-1V:

X pd
f/ L[m, f(s,1),8(s,1), D2D1f (s, 1), D2D1g(s, )] dr ds
a JY

{(X —a)(d - Y))?+!
2(m+1)

AN

X pd
x// DD1L[m, DoD1f(s, 1), D2D1g(s,1)]dtds,  (3.7.35)
a JY

b pY
/ f L[m, f(s,1),8(s,t), DaD1f(s,1), Dleg(s,t)] drds
XJc

{(b—X)(¥Y —c)}2+1
2(m+1)

X

b prY
x// D2D1L[m, D2D1f (s, 1), DaD1g(s, 1)] dt ds (3.7.36)
X Jc



3.7. Opial-Type Inequalities in Two and Many Independent Variables 337

and
b pd
// L[m, f(s,1),8(s.1), DaD1f (s, 1), D2D1g(s, )] dr ds
XJY
{(b—X)(d —Y))**
= 2(m + 1)
b pd
x// D2D1L[m, DoD1f (s, 1), D2D1g(s, )] dds, (3.7.37)
XJY
respectively.

LetX=(a+b)/2,Y =(c+d)/2.ThenX —a=b—X=(b—a)/2,Y —c=
d—Y =(d —c)/2. It follows from (3.7.28) and (3.7.35)—(3.7.37) that

b pd
// L[m, f(s.1),8(s.1), DaD1f(s, 1), DoD1g(s, 1)] dr ds
X pY
=ff L[m, f(s.1),8(s,t), DaD1f(s, 1), DoD1g(s, t)] dr ds
X pd
+// L[m, f(s.1),g(s,1), D2D1f(s, 1), D2D1g(s, 1)] d ds
a JY
b pY
+// L[m, f(s,1),8(s, 1), D2D1f (s, 1), D2D1g(s, )] dr ds
X Je
b rd
+// L[m, f(s.1),g(s,1), DaD1f(s, 1), DaD1g(s, 1)] dr ds
XJY

b pd
<Km// D2D1L[m, D2D1f(s, 1), D2D1g(s, 1)] dr ds.
a C

The proof of Theorem 3.7.2 is complete.
In order to prove Theorem 3.7.3, we make the following definitions in corre-
sponding Cases I-IV considered in the proof of Theorem 3.7.2:

s rt

r(s,t):/f |D2D1h(u, v)|dvdu  for (s,7) € As, (3.7.38)
aJc
s pd

r(s,t):// |D2D1h(u,v)|dvdu for (s,1) € Az,  (3.7.39)
aJt

b pt
r(s,t):// |DoD1h(u, v)|dvdu for (s, 1) € As, (3.7.40)
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b pd

r(s,t):// |D2D1h(u, v)|dvdu  for (s,1) € Ag.  (3.7.41)
s Jt

Now we consider the details of the proof of the following case corresponding
to Case | in the proof of Theorem 3.7.2.

Case |9, Let (s,1) € A1 as in Case |. It is easy to observe that for each fixed
s,r(s,t), (s,t) € A1 as in Case |, we have

|h(s, )| <r(s 1) (3.7.42)

and

t
|D1h(s, 1) gf | D2D1h(s, v)| dv

= D1r(s,t). (3.7.43)

From (3.7.26), (3.7.27), (3.7.42), (3.7.24), (3.7.25), (3.7.43) and using the ele-
mentary inequalities ooz (o + a2 + @3) < %(alaz + ooz + 063061)2, o102 +
apo3 + o3 < o + 05 +al, (a1 + oz +a3)? < 3 + a3 +a3) (for ag, a2, a3

reals), (3.7.19), (3.7.20), (3.7.38) and repeated application of Schwarz inequality,
we obtain

X pY
/f N[f(s,1),8(s, 1), h(s, 1),
DaD1f (s, 1), DaD1g(s, ), DaD1h(s, )] dr ds
X
g/ [2(s, V)w(s, Y)r(s,Y)[Diz(s, Y) + Diw(s, Y) + D1r(s, Y)]

+ 26, Y) +w(s, Y) +r(s, V)]
x [z(s, Y)w(s, Y)D1r(s, Y)
+ w(s, Y)r(s, Y)D1z(s, Y) + r(s, Y)z(s, Y) Diw(s, ¥)]] ds
X9
:/a 5[z(s, Vw(s, Y)r(s,Y)[z(s, Y) +w(s, Y) +r(s, Y)]] ds
=z(X, NwX, V)rX,V)[z(X, V) +wX,Y)+rX,Y)]

1
< é[z(x, VNwX,Y)+wX, VrX,Y)+rX, V)z(X, Y)]2
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1
<FPE D P& D+ )

<[P NP + [w2x, D]+ [P, 1]

X pY 232
:{[// |D2D1f(s,t)}dtds]
X pY 1242
+{[// |D2D1g (s, 1)| dr ds }
X pY :2 2
+{U/ |D2D1h(s, 1)|dr ds }

<{x -y -of’

X rY
x// D2D1M[1, D2D1f (s, 1), D2D1g(s, t), D2D1h(s, )] dr ds.

The proofs of Cases %-IV° corresponding to Cases II-IV follow by the same
arguments as those given in the proof of Theorem 3.7.2 in view of the above
proof of Case{ with suitable modifications. We omit the remaining details of the
proof of Theorem 3.7.3. O

The inequalities in the following two theorems similar to those of Wirtinger-
and Opial-type inequalities are established by Pachpatte [267].

THEOREM 3.7.4. Let p(x, y) be a real-valued nonnegative continuous function
definedon A. Let f,-(x, y), D1f(x,y), D2D1 f(x, y) bereal-valued continuous
functions defined on A for r =1, ..., n with f,.(a, y) = (b, y) = D1f(x,¢) =
D1fr(x,d)y=0fora<x <b,c<y<d.Then

b rd n 2/n
//p(x,y><1"[|fr ’"’) dy dx
aJe r=1
1 b pd
<_K(avbvcydanvmlv"-aml‘l)<// p(xvy)dydx>
n

(// Z|D2D1fr(x y)| 2mr dydx) (3.7.44)
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wherem, > 1,r =1, ..., n, are constants and

K(avbvc3d7n’mlv"'7mn)

2
22 mamr n
- {%} [(b—a)d— o)) 2D (3.7 45)

isa constant dependingona, b, c,d,n,m1, ..., my,.

REMARK 3.7.3. Inthe special caseswhendi)=1forr=1,...,n, (i) n=2

(i) n =1, (v)n =2 andmy =mp =1, and (v)n = 1 andm1 = 1, the inequality
established in (3.7.44) reduces to some interesting inequalities of the Wirtinger
type which are similar to the two independent variable analogues of the inequali-
ties given by Pachpatte in [243] and Traple in [419].

THEOREM3.7.5. Letthefunctions p(x, y), f,(x,y), D1f(x,y), D2D1 fr(x, y)

beasin Theorem 3.7.4.Then
1/n n
) (Z|D2ler : m’) dy dx

// plx, y)( | fr(x, 2

b pd 1/2
<(K(a,b,c,d,n,ml,...,mn)// pz(x,y)dydx>
b pd n o
X(// <Z|D2ler(x’y)| ')dydx>, (3.7.46)
a e r=1

wherem, > 1 (for r =1,...,n) are constants and K (a, b, c,d,n,ma, ..., my)
isasdefined in (3.7.45).

REMARK 3.7.4. Ifwe take (iyn, =1forr=1,...,n, (i) n=1, (ii) n =1 and
m1=11in (3.7.46), then we get Opial-type inequalities similar to that of given by
Traple in [419]. Further, in the special case whe, y) is constantp = 1 and

m1 =1, the inequality in (3.7.46) reduces to the following inequality

b pd
f/ | fi(x, y)|| D2D1 fa(x, y)| dy dx

\w// |DaD1 fa(x, y)|Pdydy.  (3.7.47)

Here we note that the constaiat— a)(d — ¢) /4 involved in (3.7.47) is not the best
possible constant. Inequality (3.7.47) with better constianta) (d — ) /(8v/2) is
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established by Pachpatte in [260]. However, here our proof of inequality (3.7.46)
depends on the inequality established in Theorem 3.7.4 which in turn does not
yield the better constant obtained in [260].

PROOFS OF THEOREMS 3.7.4 AND 3.7.5. From the hypothesis of Theo-
rem 3.7.4, it is easy to observe that the following identities hold:

frx,y) = /x/y D2D1 f, (s, t) de ds, (3.7.48)
x pd

frx,y) = —/ / DDy f, (s, t) de ds, (3.7.49)

aJy

by

frx,y) = —/ f DDy f, (s, t) dr ds, (3.7.50)

b pd
frx,y) = / / D> D1 f, (s, ) dt ds, (3.7.51)
X y

forr=1,...,n. From (3.7.48)—(3.7.51), we observe that

| fr(x, )| < // |D2D1 f, (s, 1)| dt ds. (3.7.52)

From (3.7) and using Holder’s inequality with indices, m, /(m, — 1) for r =
1,...,n, we obtain

m 1 }”
ré(Z) {b—a)yd -0} // |D2D1 £, (s, 1)

From (3.7.53) and using the elementary inequalities

" dt ds.
(3.7.53)

| fr

n 1/n n
b; < E b; (3.7.54)

(for by, ...,b, > Oreals andk > 1) and

n 2 n
(Zbl) @be (3.7.55)
i=1 i=1
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(for by, ..., b, reals), and Schwarz inequality, we obtain

n 2/n
(H | fr () m’)
r=1

1 %Zle’"r 2 Zn (my—1)
< <—> {—a)d—o)}r==2"

4

n b od 1ny 2

x({ﬂ(// |D2D1fr(s,t)m’dtds>} )
r:1 a c

1\ 4 Zrmamr 25 (m,—1)
<<—> {(b—a)d — o)} =1

4
1y b pd . 2
x ;r;(/ch |D2D1 fr (s, 1) ’dzds>

2y
1 1 EZ,=1m, 2o .
S <_) (b —a)d — o)} Zr-almr =

n\4
n b rd 2
X(Z(// [D2D1 £,(5.1) ’”'drds))
r=1 W4 J¢

1
g_K(a7b7C9dan’mla‘-'amn)
n

b pd n o
X/f <Z|DzD1fr(s,t)| ’)dtds. (3.7.56)
a Jc =1

Multiplying both sides of (3.7.56) by (x, y) and integrating the resulting in-
equality onA we have
2/n
m’) dy dx

b prd n
A/C p(x,y)(r]jllfr(x,y)

1 b pd
g_K(aab5cad7n7mla"'amn)<// P(xa)’)dydx>
n a c

bopd [ 1 o
X (// (Z|D2D1fr(x,)’)’ ’)dydx).
ade \r=1
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This result is the desired inequality in (3.7.44) and the proof of Theorem 3.7.4 is
complete.

From the hypotheses of Theorem 3.7.5 we have inequality (3.7.44). By using
Schwarz inequality and inequalities (3.7.44) and (3.7.55), we observe that

b pd n
ff p(x,y)(]"ﬂfr(x,y) ’”’)dydx
avce r=1
b d . 2/n 1/2
<<f/ p2<x,y)(1"[|fr(x,y)’”’> dydx)
a e r=1
b ood [ n 2 1/2
x(// (Z|D2ler(an) m,> dydx)
aJe r=1
{1 b pd
< ;K(a,b,c,d,n,ml,...,mn)</f pz(x,y)dydx>
bpd[ 1 o 12
x(// (Z|Dlefr(x,y>| ')dydx)}
aJe r=1
b rd n o 1/2
x{// n<Z|D2D1fr()€,)’)| ’)dydx}
a e r=1

b pd 1/2
={K(a,b,c,d,n,ml,...,mn)(// p2(x,y)dydx>}
b prd n om
x{// (Z|Dzblfr(x,y>| ’)dydx},
aJe r=1

which is the desired inequality in (3.7.46) and the proof of Theorem 3.7.5 is com-
plete. O

1/n n
’”") <Z |D2D1 £ (x, y)
r=1

In the following theorems, we shall deal with some Opial-type inequalities
involving functions of several independent variables established by Pachpatte
in [261,284].

First we will introduce some notations which we will use in our discus-
sion. LetR denote the set of real numbers aRfl the n-dimensional Euclid-
ean space. LeB be a bounded domain iR" defined byB = []/_;[a;. b;].
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Let x = (x1,...,x,) denote a variable point iB, B, = [[/_;[ai,x;] and
dx = dry - dx,. Let Dh(u) = §h(w), Deh(x1, ..., %) = gh(x1,..., %),
1<k <n, and DMA(xs.....xn) = gelgh(.....x) = Dy-- Dih(xa,

.. Xxn), 1< k < n. By using the above notation we haah = Dh. For any
real-valued functiom (x) defined onB, we denote b)jB u(x) dx then-fold inte-
gral fabn” . -fabll u(xq,...,x,)dxy--- dx,, and forx € B we denote b)[BX u(y)dy
the n-fold integral [”--- [(tu(y1,...,ya)dy1---dy, and |gradu(x)| =
oy |%|2)1/2. We denote byF(B) the class of continuous functiongx):

B — R for which D"u(x) = D1 - - Dyu(x) (D; = aix,-) exists and that, for each
1 < l < nl u(x)|x,-:a,- = O
In [261] Pachpatte has established the following Opial-type integral inequality.

THEOREM3.7.6. Let p > 1,9 > 1 be constants. Let u be a real-valued function
belonging to C1(B) which vanishes on the boundary 3 B of B. Then the following
inequality holds

/]u(x)|"|gradu(x)\qu<M/ | gradu(x)|” ™ dx, (3.7.57)
B B
where
1/1\?[ a/(p+q)
M:;<§> {Z(bj—a‘,)f”@ﬂ)/q} . (3.7.58)
j=1

PrRoOOFE From the hypotheses, we have the following identities
nu(x) = Z/ —u(xl,...,tj,...,xn)dtj, (3.7.59)
nu(x) = Z/ —u(xl,...,tj,...,xn)dtj. (3.7.60)
From (3.7.59) and (3.7.60), we observe that

lu(x)] < > Z/ ‘—u(xl,..., LX) dt . (3.7.61)
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Using Holder’s inequality with indicesp + q)/(p + ¢ — 1) and p + q to the
integral on the right-hand side of (3.7.61), we obtain

n

1
o] < 53

[(bj _ aj)(p+q—1)/(p+q)
j=1

(L)

J

0
—u(x1, ... tj, ..., X,)

ptq 1/(p+q)
dl‘j) i| .
3tj

(3.7.62)

Taking pth power on both sides of (3.8.62) and using the elementary inequality

n k n
(Zc,) <Mk,n2cf, (3.7.63)
i=1 i=1

wherecy, ..., c, > 0reals and; , =n*1, k> 1, andM; , =1,0< k < 1, we
obtain

a)”

1V v -
< <Z) n? 12[(bj_aj)p(p+q H/(p+q)

aj

J

0
—u(Xg, ..ty Xy)

p+q r/(p+q)
dt,) ]
8tj ’

(3.7.64)

Multiplying both sides of (3.7.64) bygradu(x)|? we have
|u(x)|”| gradu (x)|?

g} } pi (b _a.)p(p+q_1)/<P+‘1)|gradu(x)|q
n J J

2
bj p+q p/(p+q)
X (/ dl‘,’) i|
. .

(3.7.65)

j=1

0
—u(X1, ..., i, ., Xpy)
atj J "

Integrating both sides of (3.7.65) with respectin...,x, on B and using
Holder’s inequality for integrals with indice® + ¢)/p and (p + ¢)/q on the
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right-hand side we get

/ |u(x)|P| gradu(x)\q dx
B

11\ p(p+q=1)/(p+q) p+q /e
<3 >l —ap fB|gradu(x)] dr
j=1
bi| g r+q r/(p+q)
x{/(/ —u(xg, ..., tj, ..., Xp) dtj>d.x} :|
B aj atj
1\ g P(p+a—1)/(p+q) p/(p+a)
=-13) 2|®i—a) (b —aj)
n =1
N q/(p+q)
X {/ ’gradu(x)’[7 qu}
B
r+q r/(p+q)
J

Now, using Hdélder’s inequality for sum with indicég + ¢)/p and(p +¢)/q on
the right-hand side of (3.7.66) and an application of a suitable version of inequal-
ity (3.7.63), we obtain

/ |u(x)|P|gradu(x)}qu
B
" q/(p+q)
1/1\” (p+q)/ rtq
<;<§> Z(bj—aj)”” q q/ |gradu(x)| dx
j=1 5

p+q »/(p+q)
dx}

. q/(p+q)
=M{/ | gradu (x)|” qu}
B

(b

dx

——u(x)

p+q\ 2/ PN (P+q)/2
8)6]'

}p/ (p+q)
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" q/(p+q) N q/(p+q)
<M{/|gradu(x)\p qu} {/ | gradu (x)|” qu}
B B

:M/ ]gradu(x)|”+qu.
B
This inequality is required in (3.7.57) and the proof is complete. O

A slightly different version of Theorem 3.7.6 also given by Pachpatte in [261]
is embodied in the following theorem.

THEOREM 3.7.7.Let p, > 1,9, > 1, r =1,...,m, be constants. Let u,,
r=1,...,m, bereal-valued functions belonging to C1(B) which vanish on the
boundary 0 B of B. Then, the following inequality holds

m 1 m ot
/ 1_[ |u,(x) Pri gradu, (x)| " dx < —ZM,/ ’gradu,(x)} (p'+q')dx,
B,1 n r=1 B
(3.7.67)
where
171\ [ 2 ar/(pr+ar)
i . — 4 \mPr(prtar)/qr
Mr_n<2> [Zl(b, aj)"prprta q} (3.7.68)
j=

forr=1,...,m.

PrROOF Using the elementary inequality

m 1/m 1 m
(Eci) < EZCi

(for c1, ..., c, > 0 reals), inequality (3.7.63) and the repeated application of in-
equality (3.7.57) we observe that

fBr]j[l\ur(m

[

pr

gradu, (x| dx

pr

gradu, (x)

1m™m
Qr} j| dx
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< [ > Jur (0] | gradu, (x) "'] dx
r=1

S|k

. —

<

NE

1
il M, f | gradur(x)|m(p'"+q'") dx.
m . B

Il
iR

This inequality is desired in (3.7.67) and the proof is complete. |

In [284] Pachpatte has established the following Opial-type inequality involv-
ing functions of several variables.

THEOREM3.7.8. Let u € F(B). Then the following inequality holds

fB|u(x)||D1.--Dnu(x)|dx

n 1/2
< (/[(H(xi—ai))/ |Dl--~Dnu(y)|2dy} dx)
BL\i=1 By

) 1/2
X </ |D1-~-Dnu(x)| dx) . (3.7.69)
B
PrROOF For anyu € F(B) we have the following identity
u(x) :/ D1--- Dyu(y)dy. (3.7.70)
By

From (3.7.70) and using Schwarz inequality in the integral form, we observe that

()| </B D1+~ Dyue(y)| dy

n 2 1/2
<<H(x,~—a,~)) (/B }Dl---D,,u(y)|2dy) . (3.7.71)

i=1

Now, by using Schwarz inequality in the integral form, we have

/B’u(x)HDwanu(x)’dx

1/2 1/2
< (f |u(x)|2dx> <f |D1-~-Dnu(x)|2d.x> . (3.7.72)
B B
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Using (3.7.71) on the right-hand side of (3.7.72) we get the required inequality
in (3.7.69) and the proof is complete. O

REMARK 3.7.5. Itis easy to observe that

f[(ﬂ(n—a»)/ |D1"'Dnu(y)|2dy:|dx
Bl \i=1 By
B\ix1 B

= o H(b —ay) /\Dl - Dyu(x)[*dx. (3.7.73)

Now, using (3.7.73) on the right-hand side of (3.7.69), we have the following
inequality

/|u(x)||D1~--Dnu(x)|dx

(\/_)" l_[(b az)/ |D1- Dnu(x)| dx. (3.7.74)

If we taken = 1in (3.7.74) and denote by = a, by = b, D1u = u’, x1 = x, then
inequality (3.7.74) reduces to the following inequality

|u(x)||u (x)| dx < |u (x)| dx. (3.7.75)
ﬁ

Here we note that the constant appearing in (3.7.75) is greater than the constant
obtained in Opial’s inequality given in Theorem i@ [211, p. 154]. The main
reason for increase is the difficulty involved in proving the much more general
inequality given in (3.7.74).

3.8 Discrete Opial-Type Inequalities

In 1967, Wong [426] has established the following discrete inequality

n

Zu{’(u; —ui-1) < (n * 1) Z(ul —u;_)P Y, (3.8.1)

i=1
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valid for a nondecreasing sequeriag} of nonnegative real numbers wiily = 0

and p > 1. Inequality (3.8.1) is a discrete analogue of the variant of Opial’s in-
equality given by Hua in [158]. In the past few years many results have appeared
in the literature concerning various extensions and variants of inequality (3.8.1),
see [4] and the references therein. In this section we shall deal with some discrete
inequalities investigated by Pachpatte in [235,262,280,287,318,347] which claim
their origin to the discrete analogue of Opial’s inequality.

Before giving the results we first introduce some of the notations and def-
initions used in our discussion. L& ={1,2,...}, No={0,1,2,...}, Ng, =
{0,1,2,...,n}, Nyy1 ={1,2,...,n+ 1}, n € N; A andV are the forward and
backward difference operators defined®y; = w41 — uk, k € No, Vuy = uy —
up—1, k € N. The symbolA‘u; = AA L) = A" (Auy), where A%uy = uy.
Throughout, we shall use the convention that the empty sums and products are
taken to be 0 and 1, respectively.

An interesting Opial-type discrete inequality involving two sequences and their
forward differences, established by Pachpatte in [262], is given in the following
theorem.

THEOREM3.8.1. Let {u;} and {v;}, k € Ng, be nondecreasing sequences of non-
negative real numberswith ug = vg = 0. Then the following inequality holds

n—1

Z[MkAvk + vep1Aug] <
k=0

NS

n—1
> [(Au)® + (Av)?] (3.8.2)
k=0

for all n € Np.

PROOF ltis easy to observe that the following identity holds
A(upvg) = ug Avk + vip1Aug (3.8.3)

for k € Ng. From (3.8.3) we obtain

n—1
Z[ukAvk + vkr1Aur]l = unvy (3.8.4)
k=0

for n € No. Using the elementary inequality < 3(a? + p2) (for o, g reals)
and the facts that,, = Z;é Auy, v, = Zz;é Avg, and Schwarz inequality, we

observe that
1 n—1 2 n—1 2
unUn<§|:<ZAuk> +<ZAvk> ]
k=0 k=0
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<

NI S

n—1
> [(Aw)® + (Ave)?). (3.8.5)
k=0

The desired inequality in (3.8.2) follows from (3.8.4) and (3.8.5). The proof is
complete. O

As an immediate consequence of Theorem 3.8.1 established in [262] is em-
bodied in the following theorem.

THEOREM3.8.2. Let {ux}, k € No, be a nondecreasing sequence of honnegative
real numberswith ug = 0. Then the following inequality holds

n—1

n+ 1 n—1 )
Zuk+1Auk < 5 Z(Auk) (3.8.6)
k=0 k=0

for all n € Np.

PROOF Settingv; = uy, k € Ny, in (3.8.2), we have

n—1 n—1
Z[uk + up+1]Aup <n Z(Auk)z. (3.8.7)
k=0 k=0
We observe that
n—1 n—1
Z[Mk + upr1]Aug = Z[—Auk + 2up 1] Aug
k=0 k=0
n—1 n—1
== (Aw)*+2) wr1hAu. (3.8.8)
k=0 k=0

From (3.8.7) and (3.8.8) we obtain the desired inequality in (3.8.6) and the proof
is complete. O

The following Wirtinger-type discrete inequality established in [347] is useful
in the proof of the next result.

THEOREM 3.8.3. Let p > 1 be a given real number and {at}, k € No,,, be a
sequence of nonnegative real numbers. Let {u;}, k € No ,, be a sequence of real
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numbers with ug = u, = 0. Then the following inequality holds

n—1
Zakmul’ < (Z[klp +(n—kr] )<Z|Auk|p) (3.8.9)

k=0

PrROOF From the hypotheses, we have

up = Z Aug, (3.8.10)
=—> Au,, (3.8.11)

for k € Ng,,. From (3.8.10), (3.8.11) and using Holder’s inequality with indices
p, p/(p — 1), we obtain

k—1
url? SKPTEY | Aug|?, (3.8.12)
o=0
n—1
ul? < (=P | Aug|?, (3.8.13)
o=k

for k € Np_,. Multiplying (3.8.12) byk'~? and (3.8.13) byn — k)1~? and adding
the resulting inequalities we obtain

n—1
(K7 + (= Y P lluel? < Y 1 Aug |? (3.8.14)
o=0
for k € Ng,. From (3.8.14) we observe that
aglugl? <[P + (n —k)t7] L Z |Aug|? (3.8.15)

for k € Ng,. Now summing both sides of (3.8.15) froin=0 ton — 1 we get
inequality (3.8.9). The proof is complete. a

The following result established in [347] deals with the discrete Opial-type
inequality.
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THEOREM 3.8.4.Let ¢ >0, r >0, « > 0, 8 > 0 be real numbers with
(% +1=1and qo > 1, and {b;}, k € No,, be a sequence of nonnegative real
numbers. Let {x;} and {y«}, k € No,, be sequences of real numbers with xo =

yo = x, = y, = 0. Then the following inequality holds

n—1

D bl Ayl + 1yl Axel”]

k=0
n—1 1/«
k=0

n—1
x <Z[O—1[(|Axk|q“ + [ Aye|?%) + %(mmrﬂ + |Ayk|”3)D.
= (3.8.16)

PrRoOOFE From Hoélder’s inequality with indiceg andj, we have
n—1 n—1 Yo sp—1 1/B
D bl Anl” < (sz‘ |xk|q°‘) (Z |Ayk|”f‘> . (3817)
k=0 k=0 k=0
From (3.8.17) and (3.8.9) and Young’s inequality, we observe that
n—1

> bl Ayl

k=0

n—1 n—1 1/e
< [ (Z[quo‘ +(n— k)lq“]lbg> (Z |Axk|‘1"‘> }
k=0 k=0
n—1 1/B
X {Z |Ayk|”’}
k=0
n—1 1/e
< (B o)
k=0

x ni[imkaaJrlmykrﬂ} . (3.8.18)
=oL% p
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Similarly, we obtain

n—1 n—1 . 1/a
> belyil | Axl” < ( [K179 4 (n — k)L00]” b;;>
k=0 k=0

k=0

n—1 1 v 1 5
x ZI:E|A)’I<| + 518l } (3.8.19)

Adding (3.8.18) and (3.8.19) gives inequality (3.8.16). The proof is compléte.
The inequality in the following theorem is established in [280].

THEOREM 3.8.5. Let {i;}, i € Np, be a sequence of real numbers with ug = 0.
Let f(¢) be defined for all + = u; and for all ¢ of the form ¢(j) = Z/chlvuk:
|f(@®)] < f(Jt]) for all + and that f(¢) is nondecreasing for ¢ > 0, where Vuy =
uy — uj—1. Then the following inequality holds

Y f @V < F(Dvm)
i=1

i=1

n i i—1
+Z[.f(2|wk|> —f(Z|wk|)}|wi|, (3.8.20)
i=1 k=1 k=1

where F(s) =f5 f(o)do,s >0.

REMARK 3.8.1. If we takef(r) = r, then we getF(s) = s2/2, and inequal-
ity (3.8.20) reduces to the following inequality

n n
D iV < <E + 1> > 1vulA. (3.8.21)
, 2 ,
i=1 i=1
PrROOF OFTHEOREM3.8.5. Since:; = Zf{:l Vuy, it follows that
i
f<ZVuk>Vui
k=1
n i
< Zf(z IVukl) IVu;]. (3.8.22)
k=1

i=1

n

S fnvVui| =)
i=1

i=1
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Now, from the definition off' and the properties of the functigfy we obtain

F(gw) _F(gw)

Yit Vit
- / f(o)do

i—1
o Vel

i—1
>f<Z|Vuk|>|w,~|
k=1

=f<§|Vukl>|Vuil + [f(}élvbtkl) —f(Z;IVukI)]WmI-

(3.8.23)
From (3.8.23) we observe that

i i i—-1
f<2|wk|)|w,-| < F(Zmu) - F(Z |wk|>
k=1 k=1 k=1

i) A

(3.8.24)

Now, substituting =1, ..., n on both sides of inequality (3.8.24) and summing
up, we obtain

Zf(2|wk|)|w,-| < F(Zmu)
i=1 k=1 k=1
n i i—1
+Z[f<2|wk|> - f(Dwu)}wm.
i=1 k=1 k=1
(3.8.25)

Replacingk by i in the first term on the right-hand side in (3.8.25) and using
this bound in (3.8.22) we obtain the desired inequality in (3.8.20). The proof is
complete. 0

The following theorem deals with the discrete Opial-type inequalities estab-
lished in [318].
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THEOREM 3.8.6. Let p > 1, ¢ > 1 be constants. Let A, > 0,a, >0and A, =
Ao+ Ay, Ay = Agar + - - - + Ayay for n e N. Then the following inequalities
hold

" Ap(Aq — Aqi ) P+q ptg—1 m
Yt < fl( g 1) Y hah™, (3.8.26)
n=1 An pT4 n=1

1pte-1 M
ZAP (A7 —A5_q) < Q(m:+)q Z(Anan)”q (3.8.27)

where any number with suffix zero is equal to 0.

PrROOF SinceA,_1 < A,, we have

1-k
AL (Al — AP )= A”(ZAq Ak 1)(A —An1)
k=0

< AP TN A, — A, (3.8.28)

which implies, by using Hélder's inequality with indices + ¢, (p + q)/
(p + ¢ — 1) and a suitable version of Theorem 2.2.2, the inequality

"L AL (AL =AY )

2

n=1
m A, p+q—1
<gq 2;(/‘—”) (Anayn)
n=

N Ypta) - (pra—D /gy [(An T
zqz)\npqan)\npq pq(_)
n

Ar[lﬂrqfl

n=1 A
m Y+ m g PHa=D/(p+q)
<q[zxna5ﬂ [z () ]
n=1 =1
m 1+ ptqg \PHE (p+q=1/(p+q)
< A Clp+q <—) )\’ a[’+q
q[z o s
p+g—1 m
:q( Ptq > Z)\na1€]+q,
p+q—-1 —
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proving (3.8.26).
From (3.8.28), using inequality (3.8.1), we have

m
-1
ZA’” (Af—Al_)) <q ) ATTTHAL - An-)

n=1

_am Pt &

(Ap — Ay_p)PHe
p+q ,; S

q(m+DPri—t &

And Pq
ta > " (hnan)

n=1

which proves (3.8.27). The proof is complete. O

Before giving the next theorem, we introduce the basic notations and defi-
nitions needed in our discussion. Lét= {1, 2, ...} andNg, ={0,1,2, ..., n},
Mo, =1{0,1,2,...,m} for m,n € N and Q = Ng, x Mp,,. We shall use the
usual convention of writing(x, y) = 0 if x ¢ Ng , or y ¢ Mg, or bothx ¢ No,
andy ¢ Mp,,, wherez(x, y) is a function defined orQ. We define the op-
erators:Viz(x,y) = z(x,y) — z(x — 1, y), Voz(x,y) = z(x,y) — z(x,y — 1),
VaoViz(x,y) = Viz(x, y) — Viz(x, y — 1) for (x, y) € Q.

The inequalities in the following theorem are established in [235].

THEOREM 3.8.7. Let f(x,y) and g(x, y) be real-valued functions defined for
(x,y) € Q such that f(0,y) =g(0,y) =0, f(n,y) =g(n,y) =0, f(x,0) =
g(x,0)=0, f(x,m)=g(x,m)=0. Then the following inequalities hold

D3I ]|ge )|

x=1y=1

1/ nm\2 & &
gi(?) D lIVaVas e [P+ [ V2Vage, »|*] (3.8:29)

x=1y=1

DO (£ || VaVig e, )| + g (x, 0| |VaVaf (x, y)|]

x=1y=1

S (%) S S VaVasf P + [VaVag e ] (3.8.30)

x=1y=1
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REMARK 3.8.2. If we takeg(x, y) = f(x,y) in (3.8.29) and (3.8.30), then we
get respectively the following inequalities

n m 2 n m
SN < (%) Y S | Vavafix.y)

2

x=1y=1 x=1y=1
(3.8.31)
DY If @ || VaVifix, )] < (%) SN vevaf 2
x=1y=1 x=1y=1
(3.8.32)

We note that the inequalities obtained in (3.8.31) and (3.8.32) are respectively the
discrete Wirtinger- and Opial-type inequalities in two independent variables.

PrROOF OFTHEOREM 3.8.7. From the hypotheses, it is easy to observe that the
following identities hold

x )y
F) =) VaVif(s.1), (3.8.33)
s=1t=1
fe ==Y > VaVaf(s.1), (3.8.34)
s=1r=y+1
n y
fy)y== > > VaVif(s.1), (3.8.35)
s=x+1t=1
fay)= D" Y VaVif(s.0). (3.8.36)
s=x+1lr=y+1

From (3.8.33)—(3.8.36), we obtain

A f e,y <D0 | VaVafis. o). (3.8.37)
s=1t=1
Similarly, we obtain
A,y <Y | VaVag(s. 1)l (3.8.38)

s=1tr=1
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From (3.8.37), (3.8.38), and using the elementary inequafity< 3 (a? + $?)
(for «, B reals) and Schwarz inequality, we obtain

DX e w|]g y)|

x=1y=1

5993109 L) [0 i FH)

x=1ly=1\s=1r=1 s=1t=1

() (S5 v ) (55 v o)

s=1r=1 s=1r=1

n m 2
1
Ao (gme)]
s=11=1 s=11=1
1 2 n m
() S S+ SeTasts

x=1y=1

This result completes the proof of inequality (3.8.29).
By using Schwarz inequality, inequality (3.8.31) and the elementary inequality
a¥/28Y2 < T(a + p) (for o, B > O reals), we observe that

DO 1@ || VaVig, »)| + g, »)|[VaVas(x. )]

x=1y=1

n m 12¢ n m 1/2
<{ZZ|f(x,y)|2} iZZ|V2V1g(x,y)|2}

x=1y=1 x=1y=1

nom 2 n m 1/2
+{ZZ|g<x,y)|2} izzwzvlf(x,y)lz}

x=1y=1 x=1y=1

2 n m 2 n m 1/2
é{(%) ZZ|V2V1f(X,y)|2} {ZZ|V2V1g(x,y)|2}

x=1y=1 x=1y=1
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nm 2 nm Y2 n m b2
+:(7> ZZ|Vzv1g(x,y)|2} {ZZWMN,WV}

x=1y=1 x=1y=1

( HZZWMW ”|} {Zn:ilvzvlg(x,y)lz}m

x=1y=1 x=1y=1

< <%> 3 S [IVaVas P + [ VaVag (e, w7,

x=1y=1

which is the desired inequality in (3.8.30), and the proof is complete. |
In [287] Pachpatte has established the inequalities in the following theorem.

THEOREM 3.8.8. Let u(x, y) be a real-valued function defined for (x,y) € Q
such that u(0, y) =u(n,y) =0, u(x,0) =u(x,m)=0and 1< p; < oo fori =
1, 2, 3, 4 be constants. Then the following inequalities hold

DN Jue [ Vautx, y)| 2 Vaulx, y)| | V2Viu(x, )7
x=1y=1
4 n m 1/2
<KH{ZZ|V2V1“(XJ)|2”"} , (3.8.39)
i=1lx=1y=1
I3 Jute, | Vaux, )| 2| Vau(x, )|
x=1y=1
LH{ZZWMW y>|”’} (3.8.40)
1 1 X 1)7
where
1\ 2P1t+p2+p3
K= (_> nPrtrs=ly prtra—1 (3.8.41)
2

2p1+p2+p3
L= <_) nPItP3=2y pitre=2, (3.8.42)
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PROOF From the hypotheses, it is easy to observe that the following identities
hold:

x Yy
u(x,y) =Y VaViuls. 1), (3.8.43)
s=1r=1
X m
ue,y) ==y Y VaViuls, 1), (3.8.44)
s=1t=y+1
n y
u(x,y)=— Y > VaViu(s,1), (3.8.45)
s=x+1r=1
u(,y)= Y Y VaViu(s.1). (3.8.46)
s=x+1t=y+1
y
Vau(x,y) =Y VaViu(x,1), (3.8.47)
t=1
m
Viu(x,y)=— > VaViu(x,1), (3.8.48)
t=y+1
X
Vau(x,y) =Y VaViu(s, ), (3.8.49)
s=1
n
Vau(x,y)=— Yy VaViuls, y), (3.8.50)
s=x+1

for (x,y) € Q. From (3.8.43)—(3.8.46), (3.8.47), (3.8.48) and (3.8.49), (3.8.50),
we observe that

1 2 n m
|u(x, y)| < (E) 3 | VaVaucs. 1)), (3.8.51)
s=1t=1
1 m
[Vautx, v < 5 > | VaVaulx, ). (3.8.52)
=1

1 n
|Vau(x, y)| < > 2; |V2Viu(s, y)
S=

, (3.8.53)
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respectively, folx, y) € Q. Taking on both sides of (3.8.51), (3.8.52) and (3.8.53)
the powers1, p2 andps, respectively, and using Holder’s inequality with indices

p1, p1/(p1—1); p2, p2/(p2—1) andps, p3/(p3 — 1), respectively, on the right-
hand sides we get

2p nom
|u(x, y)|p1 < <}> 1(nm)pl_li:z |V2V1u(s, t)|p1, (3.8.54)

2 s=1t=1
P2 m
!Vlu(x,y)|p2 < (%) mpz_lZ|V2V1u(x,t)|p2, (3.8.55)
=1
p3 n
}Vzu(x, y)’m < <%> n”3_12 ’Vngu(s, y)}pa, (3.8.56)

s=1

respectively. From (3.8.54)—(3.8.56), we observe that

e, )| [Vau e, y) |72 Vau(x, )| 72| V2 Vaulx, y) |

< L{ZZ |VoVius, t)}”l} {Z |VaViu(x, t)|"2}

s=1t=1 =1
n
x iz |VoVius, y)|p3}|V2V1u(x, | (3.8.57)
s=1

where L is defined by (3.8.42). Now, taking the sum on both sides of (3.8.57),
first fromy = 1 tom and then fronx = 1 tor, and using Schwarz inequality and
rewriting the sums, we observe that

n m

DO ute )| Vautx, y)| 7| Vau(x, y)| 72| VaViulx, y)|™
x=1y=1

< L{ZZ |V2V1u(s,t)|”1}

s=1r=1

x ZZ{Z |VaViu(x, r)l”z} :Z |VaViu(s, y)|”3}!vzv1u<x, |

x=1y=11lr=1 s=1

gL{Zzwsz(s,z)V’l}

s=1r=1
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{ZZ(Z |VaVau(x, t)|1’2) (i }Vzvlu(s,y)y?s)z}l/z

x=1y=1 s=1

n m 1/2
X {ZZ |VaViu(x, y)|2p4}

x=1y=1

n m 1/2
< L(nm)l/z{z > | VaVau(x, y>|2”1} (nm)/?

x=1y=1
n 1/2
{ZZ(Z [V2Vau(x, l)|2p2> (Z |V2Vau(s, y)|2p3> }
x=1y=1 s=1

nom 1/2
X {ZZ |V2Viu(x, y)|2p4}

x=1y=1

4 n m 172
:Kn{ZZ|V2V1u(x,y)|2pi} .

i=1lx=1y=1
This result completes the proof of inequality (3.8.39). The proof of inequal-

ity (3.8.40) follows by closely looking at the proof of inequality (3.8.39) and here
we omit the details. O

For various other discrete Opial-type inequalities, see [4,270,284,360] and
some of the references given therein.

3.9 Miscellaneous Inequalities
3.9.1 Agarwal and Pang [5]

Let @ > 1 be a given real number and Igtbe a nonnegative and continuous
function on[0, #]. Further, letx be an absolutely continuous function fh 4],
with u(0) = u(h) = 0. Then the following inequality holds

h o 1 h o— h / o
fp(t)|u(t)| dt<§<f (t(h—1))" 1)/2p(t)dt)/ |/ (1)[* .
0 0 0
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For p(t) = constant, the above inequality reduces to

h a W (a+1 a+1\ (" 2
/O|u(t)| dt<7B< B )/O |u'(1)|" o,

whereB is the beta function.

3.9.2 Agarwal and Pang [5]

Letr > 0,5 >0,a > 0 andB > 0 be real numbers Wit% + % =1andra > 1,

and letp e CO[0, 4] be nonnegative. Furthermore, lgtandg be absolutely con-
tinuous on[0, 4] with f(0) = g(0) = f(h) = g(h) = 0. Then the following in-
equality holds

h
/0 pO[[f @] g’ @] + | @ |gCo)| ]dx

1 h ’ ra ’ roa 1 h ’ sp ’ sB
<11{—/ [[F @) +]g'@)] ]dx-i-—/ [/ @ + g )] ]dx},
o Jo ,3 0
where

1 h o 1/
11:<—/O [x(h—x)]( 1)/2p°‘(x)dx> .

3.9.3 Alzer[11]

Letr > 0,5 >0, > 0 andp > 0 be real numbers witf} + % =1andra >1,

and letp € C9[0, 1] be nonnegative. Furthermore, |gtandg be absolutely con-
tinuous on[0, 4] with f(0) = g(0) = f(h) = g(h) = 0. Then the following in-
equality holds

h
fo pO[|f@®| g @] + ] ] |gC)| ]dx
h h
<12{§/0 [!f’(x>\’“+!g’(x)\’“]dw%/o [\f’(x)!sﬂJr\g’(x)rﬁ]dx},

where

h 1 1/
I = (/ [xl_“" + (h — x)l_m]_ p%(x) dx) .
0
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3.9.4 Adams[2]

Letu be a continuously differentiable function on an open inte@ak) for fixed
h>0.If 8>1anda > 0, then

f ()Pt < 2 / (o) i + ’3/ P o 0| .

If p>1anda > p—1,then

h 2 P ph p
/(;|u(t)|pt“pdt<2pl<%> /()('ug' +|u/(t)|p>t°‘dt.

3.9.5 Pachpatte [283]

Let f, forr =1, ..., m be absolutely continuous functions an b] with f,(a) =
fr(b) =0.If h.(u) forr =1, ..., m be nonnegative convex and increasing func-
tions on[0, co) andk, (0) = 0, then, for every: € (a, b), the following inequality
holds

b m m
/ {Hhi(\fr<x>|>»f;<x>|} dx
4 \r=1

m c b
< %;P(/ |f;(x>|dx) +h</ If,’(x)ldx)}-

Furthermore, letp, for r = 1,...,m be positive functions ora, b] and

fab pr)dx <oo. If Y, (u) forr=1,..., m are nonnegative, convex and increas-
ing functions on[0, co) and v, (0) = 0O, then, for every € (a, b), the following
inequality holds

b|m o
fa{r_l"[lh;(|fr(x>|)|f/(x>|} dx
<n_11§[h,(</acpr<x)dx>wl
. {fﬁmmm('ﬁiﬁ')dx//:pr<x)dx})
—i—hr((/chpr(x)dx>l/fr_l{/cbpr(x)1ﬂr(|;r§x;|)dx// r(x)dx})}
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3.9.6 Pachpatte [256]

If f,g,h are absolutely continuous functions @m 5] and f(a) = f(b) =0,
g(a) =g(b) =0, h(a) = h(b) =0, then

b
/ [lfOgOrO|([f O]+ g O]+ W' ®)])

+([fO|+ e+ [r®)])
x (| fgR )|+ [gOh@) f/ ()| + |h @) f(1)g'(1)])] o

b—a\® [?
g( 2“) / [l£O + g O + W o] de. (3.9.1)

Equality holds in (3.9.1) if and only if

M@ —a), a<t<%P,
a

= =h =
f(t) g(t) (t) {M(b_t)s %b <l< b:

whereM is a constant.

3.9.7 Love[197]

Letp>0,¢g>0,p+g=r>1,0<a<b< o0,y <r, wkx) be decreasing
and positive ina, b). Letm andn be integersim > n > 0, F be complex-valued
and hagim — 1)th derivative locally absolutely continuous|ia, b), and F (a) =
F'(a) =---= F™ D (a) = 0. Then the following inequality holds

b
/ }F(x)|P|F(m—n) (x)|qu—mp—nq—lw(x) dx

1
<
{Q=y/r)m}P{A—y/rn}

where(k),, =k(k+1)(k+2)--- (k+m — 1) and(k)o = 1.

b
f|F<’">(x)|’xV*1w(x)dx,

3.9.8 Pachpatte [245]

Letu,v e C" V[qa, b] be such that® (a) = v (@) =0fork=0,1,...,n — 1,
wheren > 1, u®=D, =D pe absolutely continuous arﬁj’ lu™ ()2 dr < o0,
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fab lv™ (1)|?dr < co. Then the following inequality holds

b
/ [[u® @)™ @)] + |v® ©)u™ (1)|] dt

1 n—k b (n) 14y |2 ) 14y |2
<SMib—a) [[u™ @]+ [v™ @[] dr, (3.9.2)
where
1 n—=k 1/2
M = (n—k)!(Zn—Zk—1> (3.93)

for 0 < k < n — 1. Equality holds in (3.9.2) if and only it =0, n =1 and
u™ (1) =v™ (1) = ¢, wherec is a constant.

3.9.9 Pachpatte [245]

Assume that the hypotheses of Section 3.9.8 hold. Then the following inequality
holds

b
/ [[u®Ou® @)+ v O™ )] + [u® O™ @) + [v® @©u™ (1)]] dr

<M(b—a)"* /b[|u(")(t)|2 + ™ 1) [*] d, (3.9.4)

whereM; is as given in (3.9.3) for & £ < n — 1. Equality holds in (3.9.4) if and
onlyif k=0,n =1 andu™ (r) = v (r) = ¢, wherec is a constant.

3.9.10 Pachpatte [245]

Letu € C"D[a, b] be suchthat® (a) =0fork=0,1,...,n—1, wheren > 1,
u~1 be absolutely continuous alﬁ lu®™ (1)|2dr < co. Then the following in-
equality holds

bl n
/ [T«®@®
4 k=0

where

b (n+1)/2
dr < Ne(b — a)<"2+1>/2</ |u(")(t)|2dt> . (3.9.5)
a

N 1 ( N2+ +1) )1/2
T D+ DT a0 —k— D \[T}a(@1 — 2 — 1)
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for 0 < k <n — 1. Equality holds in (3.9.5) if and only it = 1 andu™ () is a
constant.

3.9.11 Pachpatte [323]

Letu € C®D[qa, b] be such that” (@) =0fori =0,1,...,n — 1 wheren > 1.
Let u—1 be absolutely continuous adﬁ |u™ (1)|2dr < 0o. Then

b N b 2
/Z’u("_k)(t)Hu(”)(t)’dt<M/ 1 ()|,

k=1

where

1/2
NG (b—a)*
M‘T[Z(k ! (2k — 1)} '

3.9.12 Pachpatte [323]

Let « be as in Section 3.9.11 ar}(j’ lu®™ (1)|*dr < oo. Then, for 0<i < j <
n—1,

b . 1 - b 4 172
f|u(’)(t)u(f)(t)|dt<%C(n,i,j)(b—a)z”_’_f+1/2</ ™ (@) dt) ,

where
1

ot ) = T T i = — D2 =D L2 = =1

3.9.13 Pachpatte [324]

Letr;, j=1,...,n — 1, u be real-valued, continuous functions definedlos

[a, b] andr-derivatives ofu exist, be continuous ohand such thani)u(a) =
i=01,...,n—1,forn>1anda €. Then

/Z|D(k) YO||(DPu) (r)\dz<_/ |(Du) ()| ot

oo (-]

where
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and Ry (a, t) is defined by (3.6.11).

3.9.14 Pachpatte [324]

Letr;, u be as in Section 3.9.13. Then, forli < j <n — 1,

b .
[ 10000090l (00w @

. { Na(fy
Na(fy

PP P d)?, ifi=j=n—1,

(

|(D™Mu) )P de)¥?, ifo<i<j<n—1,
where

1/2

Ni= (b — a)®? Nz:i(/b[R-(a HR;(a t)(t—a)]zdt)
3 ’ VAV

and Ry (a, t) is defined by (3.6.11).

3.9.15 Pachpatte [316]

Let p,q be positive real numbers satisfying+ ¢ > 1 and letn > 1 be an
integer. Letu € C"[a, b] be a real-valued function such that’(a) = 0 for
i=01...,n—1 Letw() andv(z) be positive and continuous functions de-
fined on[a, b]. Then the following inequality holds

b n
f w(®) Y [u PO |[u )| dr

k=1

q q/(p+q) b N
< (—) M(p,cn/ v(®)|u™ )" dt,
p+q a

where

b
M(p.q) = [ / w<P+‘”/"(r>v‘1/”<r>[(<k -n)7*

t
9 {/ o~V rHa=1) ()
a

w (1 — 5)*=D@+)/(p+a=1) g

} p(p+q—l)/(p+q)i| (p+q)/p] p/(p+q)
dr

is finite.
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3.9.16 Cheung [60]

Let p > 1 andg > 0 be any real numbers and> 1 be a fixed integer. Let
re>0,k=0,1,...,n — 1, be real numbers with {_5r, = 1. Let f € C" be
a real-valued function ana@ be a positive continuous weight function gn b].

If f®@) =0foralk=0,1,...,n — 1, and ifw is nonincreasing, then the
following inequality holds

b n—1 p
/ w(x)<l_[ |f(k)(x)|rk> }f(")(x)|q dx
a k=0

n—1 b
<3 M- [ r 00| .
k=0 a
where
— (A —a)]T0r -
My = aq“q[i(n X a)} [(n—&)]™"
n—k—a
and
1
o=—"-"-.
p+gq

3.9.17 Fink [117]

Let 0< k <r <n, n > 2, but fixed, and lete(r) e C"~V[0,a], x@(0) =0,
0<i<n—1,x"D() absolutely continuous anff [x™ (#)|* dt < co, where
uw=1 and% + % = 1. Then the following inequality holds

a a 2/
/O Ix(’”(r)x(”(r)ldt<C(n,k,r,umz"—k—’“‘”“(fo Ix"”(z)l“dt) :

where

1
2((n —k — )N2[(n — k — Lyv + 1]/

Cnk,k+1, 1) =

and

Cn, k,r, 1)
1
< .
n—k—=D'n—r)[(n—r)v+1UY[2n—k—r—Lv+2]/v
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3.9.18 Pachpatte [359]

Letn >2, 0<m < n — 2 be integers. Let(r) > 0 be of classC! on I =
la,b], a < b and y(r) be of classC” on I satisfyingy(a) =0, y¢~Y(a) =0,

i=23,...,n, andfab |(r (1) y"~D(1))'|2dr < oo. Then the following inequality
holds

b
/ ™| |r @y "o (r0)y™* P )| dr

b 2 3/2
<M1(/ Oy DY | dt) ,

where

1 b ! n—m—2 1/2 1 2 1z
Ml:«/é(n—m—Z)!{/a (t—a)(/a (t—s) (s—a) mds) dt}

is finite.

3.9.19 Pachpatte [359]

Letn >2,0<m <n—2 beintegers. Let(r) > 0 be of clas€” 1 on [ = [a, b],
a < b andy(r) be of clasC"~1 on I satisfyingy(a) =0, (r(a)y’(a)) =2 =0,

i=23,..., n, andfab |(r(1)y' (1))"~V12dr < 0o. Then the following inequality
holds

b
/ Y@@y @)™ ||y’ @) " o

b 2 \?
<Mz< f [(r)y )" dt) :

where

1
V32 =2+ 12 —m =2+ 1(n — 2)!(n —m — 2)!

b s 1 2 4172
X [ (t _ a)Z(n—m—2)+l f _(S _ a)[Z(n—2)+1]/2 dS dt
a a T(s)

M;

is finite.
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3.9.20 Pachpatte [359]

Letn >1,0<k<n—1,0<m <n—1beintegers. Let(r) > 0 be of clas<”
onI =[a,b], a <b, and y(r) be of classC? on I satisfyingy"‘~P(a) =0,
(r(@)y™ (@)=Y =0, for i = 1,2,...,n, and [*|(-(1)y™ )™ 2dt < oo.
Then the following inequality holds

b
/ YOO Oy ) ™ (r©y® @) | dr

b 3/2
<M3</ |(r<t)y<"><t))(")|2dr) ,

where
1
M3 =
V3V =1J2n —=2m —1n —D'(n —k — D'(n — m — 1)!

b t 1 2 11/2
x {/ (t — a)Z”—Z'"—l(/ (t —s)" (s —q)@-D2_—_ ds) dt}
a a r(s)

is finite.

3.9.21 Pachpatte [260]

Supposep, g are positive and continuous functions en = [a, X] x [c¢, Y].
Let f, D1f, D2D; f be continuous functions ofi; with f(a,t) = D1 f(s,c) =0
fora<s<X,c<t<Y.Then,ifm,n>0,m+n > 1, we have

X pY
/ / plfI"|D2D1f|" dt ds

X pY
gKl(X,Y,m,n)/f q|D2D1 f1™ " dt ds, (3.9.6)
a C

where

K1(X,Y,m,n)

n n/(m-+n) X pY
=< ) {// p(m+n)/mq7n/m
m+n a Je
s pt m+n—1 m/(m-+n)
X ( / / q—1/<m+”—1>dvdu) dtds}
aJe

(3.9.7)
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is finite. In casen < 0, m + n > 1, inequality (3.9.6) holds with<” replaced
by 11211.

3.9.22 Pachpatte [260]

Supposep, g are positive and continuous functions a» = [a, X] x [Y,d].
Let f, D1f, D2D1f be continuous functions om, with f(a,r) = D1f (s,
d)=0fora<s<X,Y<t<d.Then,ifm,n>0,m+n > 1, we have

X pd
// plfI"D2D1f|" dt ds
a JY

X pd
§K2(X,Y,m,n)// q|D2Dy fI™ " dt ds, (3.9.8)
a JY

where

Ko(X,Y,m,n)

n n/(m+n) X pd
:< ) {/f p(m+n)/mq—n/m
m+n a Jy
s prd m+n—1 m/(m+n)
x(// q_l/(m+”_l)dvdu> dtds}
a Jt

(3.9.9)

is finite. In casen < 0, m + n > 1, inequality (3.9.8) holds with<” replaced
by il}!l.

3.9.23 Pachpatte [260]

Supposep, g are positive and continuous functions e = [X, b] x [c, Y].
Let f, D1f, D2D1f be continuous functions oms with f(b,t) = D1 f (s,
c)=0forX <s<b,c<t<Y.Then,ifm,n>0,m+n> 1, we have

by
/ / plfI"|D2D1f|" dt ds
X Jc

b pY
<K3(X,Y,m,n)f/ q|D2Dy f1" " dt ds, (3.9.10)
X Jc
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where

K3(X,Y,m,n)

n n/(m+n) b pY
:< ) { / / plntn)/m g =n/m
m-+n xJe
b pt m+n—1 m/(m+n)
x<// ql/(m“l)dvdu) dtds}
N C

(3.9.11)

is finite. In casen < 0, m +n > 1, inequality (3.9.10) holds with<” replaced
by “>".

3.9.24 Pachpatte [260]

Supposep, g are positive and continuous functions ey = [X, b] x [Y,d].
Let f, D1f, D2D1 f be continuous functions of\g with f(b,t) = D1f(s,d) =0
for X <s<b,Y<tr<d.Then,ifm,n>0,m+n > 1, we have

b pd
// plfI"|D2D1f|" dt ds
xJy

b pd
<K4(X,Y,m,n)// q|DoD1 fI™ " dt ds, (3.9.12)
XJY

where

K4(X» Yam5n)

n n/(m+n) b pd
=< ) {// p(m+n)/mq—n/m
m-+n xJy
b prd m+n—1 m/(m+n)
x( / / q—1/<m+"—l>dvdu) dtds}
s Jt

(3.9.13)

is finite. In casen < 0, m + n > 1, inequality (3.9.12) holds with<” replaced
by 5‘211.

3.9.25 Pachpatte [260]

Supposep, g are positive and continuous functions ah= [a, b] x [c,d].
Let f, D1f, D2D1f be continuous functions o with f(a,t) = f(b,t) =
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D1f(s,c) = D1f(s,d) =0 for a <s < b, ¢ <t < d. Suppose there exist
Xo € (a,b) andY1, Y € (c, d) such that

K1(Xo, Y1,m,n) = K2(Xo, Y1,m, n)
= K3(Xo, Y2, m,n)
= Ka(Xo, Y2,m,n), (3.9.19)

whereK1, K>, K3 and K4 are defined by (3.9.7), (3.9.9), (3.9.11) and (3.9.13),
respectively. Then, ifz,n > 0,m +n > 1, we have
b pd b pd
/ / pIfI"|D2Dy f|" dt ds < K(m,n)/ / q|D2Dy f|" " dt ds,
(3.9.15)

whereK (m, n) denotes any common value of the four constants givenin (3.9.14).
In casem < 0,m +n > 1, inequality (3.9.15) holds with<” replaced by 2"

3.9.26 Pachpatte [257]

Let f, D1f, D2D1f be real-valued continuous functions dn= [a, b] x [c, d]
and f(a,t) = f(b,t) = D1f(s,c) = D1f(s,d) =0fora<s<b, c <t <d.
Let H(r) be a real-valued continuous function defined forr&l, r) of the form
L[N |DaDy f (m,n)|dndm, (s,1) € A1 = [a, X] x [c, Y], and similar integrals
for (r,s) on Az =[a, X1 x [Y,d], Az3=[X,b] x [c,Y]andAz =[X, b] x [V, d],
and|H (r)| < H(|r)) for all » and thatH (r1) < H(r2) for 0<r1 < rp. Then the
following inequality holds

b pd
f/ |H(f(s,0))D2D1f (s, 1)| de ds

X rY X rd
SF(// \Dlef(s,r)!drds>+F(// \Dlef(s,r)ydzds)
a c a y
by b pd
+F<// |D2le(s’t)|dtds>+F<// |D2D1f(s,t)|dtds),
X Je xJy

whereF (r) = for H(o)do,r > 0.

3.9.27 Pachpatte [266]

Let f, D1f, D2D1f be real-valued continuous functions én= [a, b] x [c, d]
and f(a,t) = f(b,t) = D1f(s,c) =D1f(s,d)=0fora <s <b, c <t <d.
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If H(r) is a convex increasing function di®, co) with H(0) = 0, then, for
(X,Y) € A, the following inequality holds

// "(|£(s,0)|)| D2D1f (s, )| dr ds

X pd
<H(// |D2D1f(S,t)|dtds>+H<// |D2D1f(s,t)|dtds)
a c a Y
b pY b rd
—l—H(// |D2D1f(s,t)}dtds)+H</f }Dlef(s,z)|dzds>.
XJc xJy

3.9.28 Pachpatte [271]

Let f(s,1), D1f(s,t), D2D1f(s,t) be real-valued continuous functions an=
[a,b] x [c,d]land f(a,t) = f(b,t) = D1f(s,c)=D1f(s,d)=0fora <s <b,

¢ <t <d.Let Hr) be a real-valued continuously differentiable function on
[0, 00) with H(0) =0, H'(r) > 0 and H'(r) nondecreasing of0, co]. Then,
for (X, Y) € A, the following inequality holds

// (|f6.n))} ’(yf(s,r)|)\132131f(s,z)ydtds
4
< 3 {H(1;D2D11))
n
j=1
wheren > 2 and
X pY
11D2D1f=// |D2D1f (s, 1)| dr ds,
X pd
12D2D1f:// |D2D1f(s,t)|dtds,
a JY
b Y
13D2D1f=/"/ |D2D1f(s,t)|dtds,
XJc

b pd
I4D2D1f=// |D2D1 f (s, 1)| dt ds.
XJy
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3.9.29 Pachpatte [294]
Letu(x,y), Diu(x,y), Dou(x,y), D2D1u(x, y) be real-valued continuous func-

tions defined onA = [a,b] x [c,d] with u(a,y) = u(b,y) = Diu(x,c) =
Diu(x,d)=0fora <x <b,c<y<d.

() Let1< p; <oofori=1,2,3be constants. Then

b pd
[ [ s P Dt Dt

3 b pd
< Mll_[(/ / |D2D1u(x, y)|" dy dx),
i=1 e

where
2p1+p2+p3
M= <_> (b — a)Pr+P32(q — ¢)PrHpa=2,
2
(i) Let1 < p; <oofori =12, 3,4 be constants. Then

b pd
ff ux, )| Dau(x, y)|P?| Dou(x, y) |7 | D2Dru(x, y) ™ dy dx
a C

4 b prd - 1/2
gle—[(f/ |D2D1u(x,y)| p'dydx) ,
i1 \Wa Je
where

1\ 2p1tpatps
My = <§> b - a)p1+”3_l(d — c)”1+”2_1.

3.9.30 Pachpatte [244]
Letu;(x, y) (fori =1, 2) and their partial derivativeB1u; (x, y), Dou;(x, y) be
absolutely continuous real-valued functions definedfos: [a, b] x [c,d] and

ui(a,y) =u;(b,y) =0, u;(x,c) = u;(x,d) = 0. Then the following inequality
holds

b pd
/ / [JusCx, y) D2Daua(x, y)| + |uz2(x, y) D2Dyua(x, y)|
a C

+ |Dius(x, y) Daua(x, y)| + | Diua(x, y) Dous(x, y)|] dy dx
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b—a)yd—c) [b¢ 5 ,
g ?V/‘ / [’Dleul(x,y)‘ +‘D2Dlu2(x,y)‘ ]dydx
a C

3.9.31 Pachpatte [313]

Let m,n > 1 be integers and\ = [0,a] x [0,b], a > 0, b > 0. Letu(x,y) €
F(A), whereF (A) denote the class of continuous functionsA — R for which
D3 Diu(x, y) exists and continuous an and such thaDéu(x, 00=0,0<j<
m—1, Diu(O, y)=0,0<i<n-—1,where

"u(x,y) 0"u(x,y)
n _ m _
Diu(x,y) = g D5'u(x,y) = e
and
8n+mu(x y)
DD w(x,y) = ————=
2 Dju(x,y) ax™ gy

Then the following inequalities hold
a prb
/0 /O JuCx, || D Ducx, y)| dy
a pb 2
<ﬁ// |Dg Dlutx, )[?dydr,
o Jo
a pb
/0/0 |Diu(x, y)|| Dy Diu(x, y)| dydx
a prb 2
gm// | DY Du(x, y)|”dydx,
0 Jo
a prb
[ [ 1pguce ] 05 Djuce. ] ay

a pb
g/ﬁ/ / |D5"Dfu(x,y)|2dydx,
0 Jo

where

a1 p2m
L= D D@ — Damen = 1)

me a2n

M= DZmen—1n YTl DPm@ =1
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3.9.32 Pachpatte [280]

Let {u;} and{v;} for i € N be sequences of real numbers wih= vo = 0. Then
the following inequality holds

n n
n+1
E [lui [[Vvi | + v | Vui]] < —

i=1 i=1

[IVui ? + Vi 2]
for all n € N, whereN andV are as defined in Section 3.8.

3.9.33 Pachpatte [234]

Let {px}, k = 1,...,n, be a sequence of nonnegative real numberg.fif,
{gx}, k € N,41, are the sequences of real numbers such fhat f,11 = 0,
81=8n+1= O, then

kZ::lPkaHgH (Zm)(Z |Afk|2+|Agk|2]>

k=1

for all n € N. Further, lety > 1, > 1 be constants, then

n 1\¢+r+1
Zpk|fk|‘f|gk|f<(§) n?tr- l(ZPk)(Z |Afk|2‘1+|Agk|2’]>

k=1 k=1
for all n € N, whereN,, ;1 andN are as defined in Section 3.8.
3.9.34 Pachpatte [234]

Let {pr}, { fx}, {gr} be the sequences as defined in Section 3.9.33. Then the fol-
lowing inequality holds

12/ ,
Zpk | fellAgel + gkl Afil] < (Zpk) (Z[|Afk|2+|Agk|2]).

k=1 k=1

3.10 Notes

Inequality (3.2.1) was first proved by the Polish mathematician Z. Opial [231]
in 1960. An interesting feature of Opial’'s result is that it yields the best possi-
ble constant. The original proof of Opial’'s inequality can also be found in [4].
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Theorem 3.2.1 covers a weaker form of Opial’s inequality due to Olech [230].
Moreover, Olech’s proof is simpler than that of Opial. Theorem 3.2.2 which
deals with Wirtinger- and Opial-type inequalities is due to Traple [419]. Theo-
rems 3.2.3 and 3.2.4 are due to Pachpatte [348] which provide new estimates
on Opial-type inequalities. The inequalities in Theorems 3.2.5-3.5.7 are due to
Pachpatte [304] which claim their origin to the well-known Weyl inequality [141,

p. 165] and in the special cases contains the inequalities of Weyl, Opial and Hardy
type.

Theorems 3.3.1-3.3.4 deal with Wirtinger- and Opial-type inequalities and are
taken from Pachpatte [238,241]. Theorems 3.3.5 and 3.3.6 are due to Calvert [51],
and Theorem 3.3.7 is taken from Pachpatte [283]. The inequalities in Theo-
rems 3.4.1-3.4.8 are taken from Pachpatte [239,303] which are motivated by
the various generalizations and extensions of Opial's inequality. The inequali-
ties in Theorems 3.5.1 and 3.5.2 are due to Godunov and Levin [130]. The-
orem 3.5.3 is a generalization of Theorem 3.5.1 given by Rozanova in [399].
Theorems 3.5.4-3.5.7 deal with generalized Opial-type integral inequalities es-
tablished by Pachpatte in [346]. The results given in Section 3.6 cover basic
Opial-type inequalities involving functions and their higher-order derivatives es-
tablished by Pachpatte. Theorems 3.6.1 and 3.6.2 are taken from [239], Theorems
3.6.3-3.6.5 are taken from [296], Theorem 3.6.6 is taken from [312] and Theo-
rems 3.6.7-3.6.9 are taken from [317].

In 1982, Yang [429] obtained an analogue of Opial’s inequality involving func-
tions of two independent variables. Theorem 3.7.1 is due to Yang [429]. Theo-
rems 3.7.2-3.7.5 are taken from Pachpatte [233,267]. Theorems 3.7.6 and 3.7.7
cover Opial-type inequalities in several independent variables and established by
Pachpatte [261]. Theorem 3.7.8 is about another version of Opial-type inequality
involving functions of many independent variables and is due to Pachpatte [284].
Discrete analogues of Opial's inequality and its generalizations are established
by Wong [426], Lee [183] and others, see [4]. Inequality (3.8.1) is due to Wong
[426] and is a discrete variant of Opial’s inequality given by Hua in [158]. All
the results given in Section 3.8 are due to Pachpatte [235,262,280,287,318,347]
which claim their origin to the discrete analogue of Opial’s inequality, see [4].
Section 3.9.9 is about some useful miscellaneous inequalities related to Opial’s
inequality investigated by various investigators.



Chapter 4

Poincaré- and Sobolev-Type Inequalities

4.1 Introduction

In the development of the theory of partial differential equations and in establish-
ing the foundations of the finite element analysis, the fundamental role played by
certain inequalities and variational principles involving functions and their partial
derivatives is well known. In particular, the integral inequalities originally due
to Poincaré and Sobolev and their various generalizations and variants have been
extensively used in the study of problems in the theory of partial differential equa-
tions and finite element analysis. Because of the dominance of such inequalities in
the qualitative analysis of partial differential equations and in finite element analy-
sis, numerous studies have been made of various types of new inequalities related
to Poincaré- and Sobolev-type inequalities. These investigations have achieved a
diversity of desired goals. Over the years a number of papers have appeared in
the literature which deals with the far-reaching generalizations, extensions and
variants of Poincaré and Sobolev inequalities and their various applications. This
chapter deals with a number of new inequalities recently discovered in the litera-
ture which claim their origin to the inequalities of Poincaré and Sobolev.

Let R be the set of real numbers amgl be a bounded domain iiR",
the n-dimensional Euclidean space, defined By= [];_;[a;, b;]. For x; € R,
x = (x1,...,x,) is a variable point inB and & = dx1---dx,. For any con-
tinuous real-valued function(x) defined onB, we denote bnyu(x)dx the

n-fold integralfaljj- . ~fab11 u(xy, ..., x,)dxq --- dx,. The notationfa}j" u(xy, ..., t,
. xp)d fori=1,...,nwe mean, foi =1, itis fabllu(tl,xz, ...,x,)dry and
so on, and for = n, it is f{i" u(x1, ..., xp—1,1,)dt,. For any continuous real-
valued functionu(x) defined onR”, we denote b)fi u(xy, ..., ti, ..., x,)ds; the
integral ffooou(m,...,ti, .., xydy, i =1,...,n, taken along the whole line

381



382 Chapter 4. Poincaré- and Sobolev-Type Inequalities

throughx = (x1, ..., x;, ..., x,) parallel to thex;-axis, and denote bﬁRn u(x)dx
the n-fold integral [ -+ [* u(x1, ..., x,) dxy - - dx,. For any function (x)

defined onB or R”, we define|gradu(x)| = (3", |3“(x) 12)1/2, We say that a
function is of compact support i if it is nonzero onIy on a bounded subdo-
main S’ of the domainsS, where$’ lies at a positive distances, the boundary

of S. We assume without further mention that all the integrals exist on the respec-
tive domains of their definitions.

4.2 Inequalities of Poincaré, Sobolev and Others

There exists a vast literature on the various generalizations, extensions and vari-
ants of Poincaré’s inequality (10), see Introduction. We start with the following
useful version of Poincaré’s inequality given in Friedman [120, p. 284].

THEOREM4.2.1. Llet QO ={x = (x1,...,x,) e R": 0<x; <o, i =1,...,n}
and let u be a real-valued function belonging to C1(Q). Then

2
/uz(x)dxgin(/ u(x)dx) +E02/ |g|’adu(x)|2dx. (4.2.1)
0 " \Jo 2 Jo

PrROOF For anyx = (x1,...,X,), y = (¥1,..., yn) € Q, the following identity
holds

u(x) —u(y) = Z/ 5u(y1,...,y,~_1,t,~,x,~+1,...,x,,)dti. (4.2.2)

Taking square on both sides of (4.2.2) and using the elementary inequality
O-r1an?<nY!_4a?, whereq; are reals and Schwarz inequality, we have

u?(x) + u?(y) — 2u(x)u(y)

n o 2
d
<no E / <a—tiu(y1, e Vie1, by Xixd, .- .,xn)) d;. (4.2.3)

Integrating (4.2.3) with respectiq, ..., x,, y1,..., ¥, We get

2 n 2
20"/ u?(x) dx—2</ u(x)dx) <na”+22/ (iu(x)> dx
) 0] ‘—Jo 0x;

from which (4.2.1) follows. O
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In [247] Pachpatte has given the following variant of Theorem 4.2.1.

THEOREM4.2.2. Let Q beasdefined in Theorem4.2.1and f, g bereal-valued
functions belonging to C1(Q). Then

/ f(x)g(x)dx
0

< ;(fQ f(x)dx) (/ngdx)

+ %02/ [|gradf(x)|2+ |gradg(x)|2] dx. (4.2.4)
o

PROOF For anyx, y € Q andh € C1(Q), the following identity holds
h(x) — h( )—iin ih( 1.ty X xp) df; (4.2.5)
y _i_l ' 8tl y].?"‘?yl—lv s l+17"'7 n L e

Writing (4.2.5) for the functionsf and g, and then by multiplying the results
and using the elementary inequalitigs < 3 (a? + b%), (X1 a)? <n Y i, d?
(a, b, a; are reals) and Schwarz inequality, we obtain

f@egx)+ f(Meg(y) — f(x)g(y) — fF()gx)

9 2
+ {gg(yl, ey VieL, by X2y - s xn)} i| dy. (4.2.6)
1

Integrating both sides of (4.2.6) with respeckto. .., x,, y1, ..., yu, We get

20" -2
o /Qf(x)g(x)dx </Qf(x)dX>(/Qg(x)dx)

< %o’”z/ [|gradf(x)|2+ |gradg(x)|2]dx. (4.2.7)
Q
The desired inequality (4.2.4) follows from inequality (4.2.7). d

REMARK 4.2.1. We note that in the special case wgén) = f(x), the inequal-
ity established in Theorem 4.2.2 reduces to the inequality given in Theorem 4.2.1.
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In [236] Pachpatte has established the following Poincaré-type inequality.

THEOREM4.2.3. Let Q be asdefined in Theorem 4.2.1and f, g be real-valued
functions belonging to C1(Q) which vanish on the boundary 8 Q of Q. Then

/]f(x)y\g(x)\dx /[\gradf(x)y +|gradg(x)|*]dr.  (4.2.8)

PrOOF If x € Q, then we have the following identities

nf(x) = Z/ —f(xl,..., ..... xp) dt;, (4.2.9)

nf(x) = Z/ 5f(xl ..... tiv..., xp) ;. (4.2.10)

From (4.2.9) and (4.2.10), we obtain

n o a
2n| f(x)| gZ/o 5f(x1,...,t,-,...,xn) dy;. (4.2.11)
i=1 !
Similarly, we obtain
2n|g(x)| Z/ ety x| dE (4.2.12)

From (4.2.11), (4.2.12) and using the elementary inequalittes 3(a? + 5?),
Ol ian?<nY ' a? (for a, b, a; reals) and Schwarz inequality, we obtain

|f)]|g0)]
1 [ o d 2
< QJ [;/0 B_Iif(xl ..... t,..., xp)| d
n o a 2
+§/o a—tig(xl,...,t,-,...,x,,) dr | (4.2.13)

Integrating both sides of (4.2.13) with respeck{o. . ., x, we get

/ 1) [g(n)| dr < / [|grads (v)[? + |gradg (x)|] dx
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The proof is complete. O

REMARK 4.2.2. Inthe special case whgfx) = f(x), the inequality established
in Theorem 4.2.3 reduces to the following Poincaré-type integral inequality

2
/\f(x)|2dx<:—/ |gradf (x) | dx. (4.2.14)
0 nJo

One of the many mathematical discoveries of S.L. Sobolev is the following
integral inequality (see [157, p. 101])

o (o) o o0 o0 o0 o
/ f u4dxdy<—(/ f uzdxdy></ / |gradu|2dxdy),
—00 J—c0 2 —o00 J—00 —0o0 J—00

(4.2.15)

whereu(x, y) is any smooth function of compact support in two-dimensional
Euclidean space andis a dimensionless constant.

Inequality (4.2.15) is known as Sobolev’s inequality, although the same name
is attached to the above inequality indimensional Euclidean space. Inequal-
ities of the form (4.2.15) or its variants have been applied with considerable
success to the study of many problems in the theory of partial differential equa-
tions and in establishing the foundations of the finite element analysis. There is a
vast literature which deals with various generalizations, extensions and variants of
inequality (4.2.15).

In 1964, Payne [362] has given the following version of inequality (4.2.15).

THEOREM4.2.4. Let u(x, y) be any smooth function of compact support in two-
dimensional Euclidean space E». Then

o0 o 1 o0 o0 o o
/ f u4dxdy<—</ / uzdxdy></ f |gradu|2dxdy>.
—00 J—00 2 —o0 J —00 —00 J—00

(4.2.16)

PrROOF From the hypotheses, we have the following identities

uz(x, y) = Z/X u(s, y)aiu(s, y)ds = —Z/wu(s, y)aiu(s, y)ds, (4.2.17)
oo s Y s
u?(x, y) = 2/}' u(x,t)%u(x, t)dr = —Z/mu(x,t)%u(x, t)dr. (4.2.18)

o]
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From (4.2.17) and (4.2.18), we obtain

ds (4.2.19)

2 o 0
W2(x, y) </ juts. 9| S=uts, )
oo s

and

dr. (4.2.20)

2 > 9
u (x,y)</ |u(x,t)| Eu(x,t)

From (4.2.19) and (4.2.20), we observe that

/oo /Oo Wr. y) de dy
< o0 o0 o0 8
\/_oo/_oo{</_oo|“(s’”|‘£”(s’y)

X (fwiu(x,t)|

By using the Schwarz inequality on the right-hand side of (4.2.21), we get

[ e
A2l
ALY wo) ([T wn)] ez

Now an application of the arithmetic mean and geometric mean inequality on
the last term on the right-hand side of (4.2.22) leads to the desired inequality
in (4.2.16). O

.

? (x,1)
—u(x,
ot

dt) } dedy. (4.2.21)

In 1963, Serrin [405] proved the following useful multidimensional integral
inequality.

THEOREM 4.2.5. Let E be a bounded domain in R", n > 2, and u be a real-
valued function such that u € C1(E) and u = 0 on 8 E, the boundary of E, then

(n—1)/n 1 1/2
(/ |u|"/<"—1>(x)dx> < (—) /ygradu(x)|dx. (4.2.23)
E 4n E
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PrROOF From the hypotheses, we have the following identities

X1 o9
u(x) = / —u(ty, x2, ..., x,) dt1, (4.2.24)
o0 011
> 93
u(x) = —/ —u(t1, x2, ..., x,) di1. (4.2.25)
X1 8[1

From (4.2.24) and (4.2.25), we obtain

1 d
|u(x)| < —/‘—u(ll,xz,...,xn) dfy. (4.2.26)
2 J1|0n
Similarly, we obtain
u(x)| < }/ iu(x fiy .oy x)| dty (4.2.27)
\2 la[l 1.5t ... Xn 1 e

fori =2,3,...,n. From (4.2.26) and (4.2.27), we observe that

_1 1\ =D 9 (-1
|M(x)|n/(n ) < (é) A a_tlu(tlv-x27 o 7-xl’l) dtl
1/(n—1)
X oo X {/ —u(X1, ..., Xn—1, ) dtn} (4.2.28)
nl 0y

We integrate both sides of (4.2.28) with respeckiaand use on the right-hand
side the general version of Holder’s inequality (see [179, p. 40])

1/k 1k
/lfl"'fkldk < {f|f1|’<dz} {f|fk|kdz} , (4.2.29)

wherek = n — 1. We then integrate the resulting inequality with respeabtand
use inequality (4.2.29) on the right-hand side. We repeat this procedure, integrat-
ing with respect taes, . .., x,, and obtain (see [121, Chapter 1, Theorem 9.3])

/ |u(x)}n/("7l) dx
E

_ 1 n/(n—1) / 9
~\2 £ 0

dx

—u(x)
X1

1/(n-1)
u(x) }

1/(n—-1)
of AL
£lo

Xn

(4.2.30)
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From (4.2.30) and using the elementary inequalities

n 1/n 1 n
{Hci} <—Zci
i=1 n i=1

for nonnegative reals, ..., ¢, andn > 1 and

n 2 n
(Zc,) <ani2
i=1 i=1

forcy, ..., c, reals, we obtain

(n=D)/n
(=)
E
<1 1/n
\z{/E } Al

-
3 [ e
:< >1/2/|gradu(x)|dx

The proof is complete. a

u(x)

}1/1’!

0xy,

B_x,u(x)

REMARK 4.2.3. We note that on employing Schwarz inequality on the right-
hand side of (4.2.23) we get the following inequality

(n—1)/n 1/2 1/2
</ |u(x)|n/(nfl) dx) < <V(D)) </ |gradu(x)|2dx) ’
E 4n E

(4.2.31)
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whereV (D) is then-dimensional measure @. By takingn = 3 andu = ¢2 in
(4.2.23) and using the Schwarz inequality, we obtain

3 2/3 12 ) 1/2 ) 1/2
E}¢(x)| de ] <3 E¢ (x) dx E|grad¢(x)’ dx

and so
5 3/4 5 3/4
( [ 1ol dx> < 3—3/4< / ¢2<x>dx> ( [ larads o) dx) .
E E E
(4.2.32)
In 1991, Pachpatte [290] has established the following inequality.
THEOREM4.2.6. Let u be areal-valued sufficiently smooth function of compact

support in E, the n-dimensional Euclidean space withn >2, and p>0,9 > 1
and g < n. Then

(n—q)/n n
</|u(x)\"’+‘””/("‘q)dx) gMZ/\u(x)]”
E i=1 E

q
dx,

%u(x)
(4.2.33)

where

M= }[(p+q)(n—1)}q_
nl 2(n—q)

PROOF First we establish inequality (4.2.33) fgr=0, ¢ =1 and by taking
u(x) = v(x). Sincev(x) is a smooth function of compact supportih we have
the following identities

X1 a
v(x) = / —v(f, x2, ..., Xp) drq, (4.2.34)
—oo 011
> 9
v(x) = —/ —v(f1, x2, ..., x,) di1. (4.2.35)
X1 8tl

From (4.2.34) and (4.2.35), we obtain

1/ a
()| < —/‘—v(tl,xg,...,xn) dry. (4.2.36)
2 J1|0n



390 Chapter 4. Poincaré- and Sobolev-Type Inequalities

Similarly, we obtain

0
—p(xL ety x| (4.2.37)

for i = 2,...,n. Now, by following exactly the same steps as in the proof of
Theorem 4.2.5 below inequality (4.2.27), we obtain

(n=1)/n 1"
n/(n—1)
dr <L /
</E‘U(X)| ) 2n IZ:; E|0

This result proves inequality (4.2.33) fpr=0, ¢ = 1 andu(x) = v(x). To prove
(4.2.33), we take

(4.2.38)

v(x) — {u(x)}(P-‘rq)(n—l)/("—q)

and hence

aiv(x) = w{u(x)}(”Jr‘”("’l)/("’q)*liu(x)
Xi n— 9x;

in inequality (4.2.38), and rewriting the resulting inequality we have

(n—1)/n
</ |u(x)|(p+q)n/(n—q) dx)
E

< (p;—l(ci)(n 1 Z/| x )|p/q |u(x)|‘*”+‘“(” D/n-)~1-p/g 4.

M(X)

(4.2.39)

Using Holder’s inequality with indiceg, ¢/(¢ — 1) on the right-hand side of
(4.2.39) we obtain

(/ |u(x)|(p+q)n/(n—q) dx>(n_l)/n
_ton-1 ! Ya
S 2n(n—q) : | (x)|

(¢=D/q
x {f|u(x)|(p+q)"/(n_q)dx} . (4.2.40)
E

If [, [u(x)|PTO/1=0) dy = 0 then (4.2.33) is trivially true; otherwise, we divide
both sides of (4.2.40) by |u(x)|PT"/ (1= dyx}@=D/4 and then raise both
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sides to the powej and use the elementary inequality
n q n
{Zci} gdq,n: Ciq,
i=1 i=1

wherec; are nonnegative realg, , = nd-1, g>1,andd;,=1,0<¢g <1, 0n
the right-hand side to get (4.2.33). The proof is complete. O

REMARK 4.2.4. By takingp =0, ¢ =2 andn > 3 in (4.2.33) and then raising
the power X2 on both sides of the resulting inequality, we get

(n—=2)/(2n) _ 1/2
</}u(x)|2n/(n2)dx> «/(_n( b (/ |gl’adu(x)|2dx> .
E n— E
(4.2.41)

Further, by takingp =1, ¢ = 1 in (4.2.33) and raising the powey2 on both
sides of the resulting inequality, we get
1/2
dx) .

n-D/@)  q
2n/(n—1)
u(x) d.x) < —
(4.2.42)

We note that inequality (4.2.41) is established by Nirenberg in [229] and inequal-
ity (4.2.42) provides a new estimate on the Nirenberg-type inequality.

8—iu(x)

4.3 Poincaré- and Sobolev-Type Inequalities |

The importance of the Poincaré and Sobolev inequalities in the theory of partial
differential equations is well known, and over the years much effort has been de-
voted to the study of these inequalities. In this section we present some Poincaré-
and Sobolev-type inequalities established by Pachpatte in [249,265,290].

In 1987, Pachpatte [265] established the following Poincaré-type inequality.

THEOREM 4.3.1. Let p > 2 be a constant and B = [[;_4[0, a;] be a bounded
domaininR". Let u be a real-valued function belonging to C (B) which vanishes
on the boundary 0 B of B. Then

/\u(x)]”dx ( ) /\gradu(x)\” (4.3.1)

wherea = max{ay, ..., a,}.
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PrRoOOF From the hypotheses, we have the following identities

nu(x) = Z/ L %u(xl, vty xp) dg, (4.3.2)
=170 9
nu(x) = Z/ —u(xl, ety xp) d (4.3.3)

From (4.3.2) and (4.3.3), we observe that

n

1&, [
< .
ol <53 [

i=1

0
—u(X1, ..., by, Xn)

d;. 434
o i (4.3.4)

From (4.3.4) and using the elementary inequality (see [79,211])

n k n
(Zc,-> gck,nzc{f, (4.3.5)
i=1 i=1

wherec; are nonnegative reals adtf , =n*~1, k> 1, andC;, =1, 0<k <1
Holder’s inequality with indiceg, p/(p — 1) and using the definition af, we

obtain
p n a; P
‘5 \Jo

=1

0
—u(X1, ..y by, Xn)
31, i n

< R - yp—1 / 9 7 pdt.
< <2n> n ;Zl(al) ( A atlu(m,.--, iseeesXn) ,>
<1 p=1 2 — ; pd- 4.3.6
\—<—) o / atlu(xl,...,tl,...,xn) 1| (4.3.6)

Integrating both sides of (4.3.6) with respectin ..., x, on B and using the
definition ofe and inequality (4.3.5) we have
p
dx

JAZCIS %(%)p“’”[ 2L
A6 Rl
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6L
<6 L2

p
= E(g> /’gradu(x)|pdx.
n\2 B

This result is the desired inequality in (4.3.1) and the proof is complete. [

The following theorem deals with the Poincaré-type inequality which is an in-
tegral analogue of the discrete inequality given by Pachpatte in [242, Theorem 1].

THEOREM4.3.2. Letu, p, B, « beasin Theorem4.3.1.Then

(r=D/p
</ |u(x)’[7/([7_1) dx)
B

171\ 12 ) 1/2
<§<—) a(ZU"")*"P)/(Z”( / |gradu(x)| dx) . (43.7)
B

n

PrROOF From the hypotheses and by following the proof of Theorem 4.3.1, we
have (4.3.4). From (4.3.4) and using inequality (4.3.5) and Holder's inequality
with indicesp, p/(p — 1), we have

|M(x)|p/(p71)

L\P/P=D [ pai| g p/(p=1)
< <z> (;A a—tiu(xl,...,t,',...,xn) dl,')
1\P/»-D " PIr=D
< <E> n!’/(!’—l)—l;<‘/(; 8—tiu(xl,...,l‘i,...,xn) dt,‘)
i=

1\7/P-D 1(p—1) n a; 1/p

g _ P— dr:

() ()

i=1
a;

X{/O 8—tiu(x1,...,t,~...,xn)

( 1 )P/(P—l) V-1 i a;
<| = (an)™'P™ /
2n i=170

p/(p=1) (p=D/p\ p/(p—D
o)

r/(p=1)

d
dr;.

—u(X1, ..., b, ., Xn)
3ti i n

(4.3.8)
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Integrating both sides of (4.3.8) with respeckto. .., x, on B, using the defini-
tion of @ and inequality (4.3.5) we observe that

/}u(x)|p/(pfl)dx
B
1 p/(p—1) 1(p—1) n 9
< = pP— -
< <2n> (an) a;/tg‘axiu(x)

< 1\»/®-D Yip-1)
== (an)™ Py
)

gips

i=1

1\»/P-D
< (_) (an)l/(p_l)a/ .
2]’1 B

r/(p=1)
_ <E) n*p/(Z(Pfl))/ |gradu(x)|p/(pfl)dx. (4.3.9)
B

r/(p—1)
dx

a
B_Xiu(x)

p/(p—1)2P=D/py P/2p=1)

dx

2 } p/2(p—1)

2

From (4.3.9) and using Hélder's inequality with indiceép2— 1)/p, 2(p —
1)/(p — 2) and the definition o& we observe that

(p=b/p
</ |u(x)|p/(p_l)dx>

(p=b/p

( > —1/2(/|gradu(x)|"/(” Ddx)
(p—2)/(2(p-1)) 2 p/(p=D)\ (p=1)/p

(g ool ™)

B

1/2

( ) —1/2 (p 2)/(2”)(/|gradu(x)| dx)

1\ /2 1/2
:§<;> 20— ">+P">/<2P)</|gradu(x)| dx) .

This result is the required inequality in (4.3.7) and the proof is complete. O

The following theorem established in [265] deals with the Sobolev-type in-
equality.
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THEOREM4.3.3. Let p > 1 bea constant and u, B, « be asin Theorem 4.3.1.

Then
/|u(x)|pdx
B

<ﬁ</|u(x)|2(1’1>dx)l/2</| radu(x)|2dx>l/2 (4.3.10)
2y \Jp 5 ' o

PrROOF From the hypotheses, we have the following identities

n X; 8

nu? (x) = pZ/ uP e, ot X)) — U (XL, e e X)) O,
. 0
i=1

at;

(4.3.11)

L[ d

nu? (x) = —p;/Xi up_l(xl, .. .,t,-,...,xn)a—tiu(xl, e by X dn
l (4.3.12)
From (4.3.11) and (4.3.12), we observe that
p_ P [ p—1
|u(x)| < Z;/o |u(x1,...,t,-,...,x,,)i
d

X a—tiu(xl,...,ti,...,xn) ds;. (4.3.13)

Integrating both sides of (4.3.13) with respectxtg.. ., x, on B and using the
definition ofa we have

" _1| 8
/B|u(x)|pdx < gn—“Z/B|u(x)|" 1‘£u(x)
i=1 !

From (4.3.14) and using Schwarz inequality and the elementary inequality
Qb2 <n Yt b? (for by, ..., b, reals), we obtain

/|u(x)|pdx
B

dx. (4.3.14)
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1/2
PY 12 2(p-1)
<2nn (/B|u(x)| d) ( )
1/2
_ e 2p-1 2
2ﬁ</3|u(x)| dx) (/B|gradu(x)| dx) .

This result is the desired inequality in (4.3.10) and the proof is complete.[]

—u(x)

The following variant of Sobolev’s inequality is established in [290].

THEOREM 4.3.4. Let p > 0, ¢ > 1 be constants and u, B, « be as in Theo-
rem4.3.1.Then

p+q 1f(p+a\ |? n/ p
/B‘u(x)’ dxén{< > )oz} ; B|u(x)‘

PrRoOFE From the hypotheses, we have the following identities

(4.3.15)

n X;
nu?*1(x) = (p +q) Z/O WP )
i=1

0
X a—u(xl, con iy oo, xy)dy (4.3.16)

and
n a;
nup+‘f(x)=—(p+q)2/ WPy, g x)
i=1%i
0
xgu(xl,...,ti,...,xn)dti. (4.3.17)
i

From (4.3.16) and (4.3.17), we observe that

|u(x)|p+q\p+q2/ |M(xla"-? 5"'5xn)|p+q_1
a
X |—u(X1, ...y tiy ..., xy)|dt;. (4.3.18)
dt;
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Integrating both sides of (4.3.18) ovBrand using the definition af and rewrit-
ing the resulting inequality we have

/ |u(x)|p+q dx

B
3
)

P+a\ /
<< o» )a;flJu(x)V’q .

By using Holder’s inequality on the right-hand side of (4.3.19) with indiges
q/(qg — 1), we have

/|u(x)|p+qu
B
<(%t )X ot

If [5lu(x)|PT9dx =0 then (4.3.15) is trivially true; otherwise, we divide both
sides of (4.3.20) by{ [, [u(x)|P? dx}¢~D/ and then raise both sides to the
powerg and use the elementary inequalily’;_; ek <nk1 Y cl{‘ (forc; >0
reals andk > 1) to get (4.3.15). The proof is complete. O

lue)| PP e, (4.3.19)

q 1/q (¢—D/q
dx} {/ }u(x)|p+qu} .
B

(4.3.20)

REMARK 4.3.1. We note that, in the special cases wherp@# 2, ¢ =2 and
(i) p =0, inequality (4.3.15) reduces, respectively, to the following inequalities

1 ! 9 2
/B\u(x)y“dx < ;(204)2;/3}14(@\2'8—#@) (4.3.21)
and
/B\u(x)yq (q“) /Z 5u(x) (4.3.22)

Inequality (4.3.21) is a Sobolev-type inequality, while inequality (4.3.22) is a vari-
ant of Poincaré-type inequality given in Theorem 4.3.1.

The following Poincaré- and Sobolev-type inequalities involving two functions
are established in [249].
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THEOREM4.3.5. Let p, ¢ > 1 beconstantsand B = []"_;[a;, b;] be a bounded

domaininR". Let u, v be sufficiently smooth functions defined on B which vanish
on the boundary 9 B of B. Then

/|u(x)|p|v(x)|qu
B

p+q+1
< E(%) ap+‘1/[|gradu(x)|2p+|gradv(x)|2q]dx, (4.3.23)
n B

wherea = maxby —az, ..., b, — a,}.

THEOREM4.3.6. Let p, g, B, u, v, « beasin Theorem 4.3.5.Then

/B|u(x)\"\v(x)y"dx

2 (p=1)/p 1/p
< e [(/ ‘u(x)|2pdx> (/ ’gradu(x)|2pdx>
8n B B
g—D/q 1/q
+</|v(x)\2‘1dx> </|gradv(x)|2‘1dx) } (4.3.24)
B B

REMARK 4.3.2. In the special cases when= ¢ = 1 anda; = 0, inequal-
ities (4.3.23) and (4.3.24) reduce to the Poincaré-type inequality given in
Theorem 4.2.3.

PROOFS OF THEOREMS 4.3.5 AND 4.3.6. From the hypotheses of Theo-
rem 4.3.5, we have the following identities

nu(x) = Z/ —u(xl,...,t,-,...,x,,)dti, (4.3.25)

nu(x) = Z/ —u(xl, et xp) d (4.3.26)
From (4.3.25) and (4.3.26), we observe that

Juo)| < Z /

ey tiy i, Xn) dr;. (4.3.27)
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From (4.3.27) and using inequality (4.3.5), Holder’s inequality with indipes
p/(p—1) (see[74, p. 126]) and the definition @f we obtain

’ (
—u(xq, ...
dt; !

1\? n bi
o< (3) (£

i=1

<)L

Similarly, we obtain

o< (2[5

stl'v"'v-xﬂ)

ces iy ein,

ety oo Xn)

.

P
dti]. (4.3.28)

Xn)

q
dt,-:|. (4.3.29)

From (4.3.28), (4.3.29) and using the elementary inequality< %(c2 +d?)
(for ¢, d reals), inequality (4.3.5) witlk = 2, the Schwarz inequality and the

definition of, we obtain

u@)[" o]
S OROER IR
(R

SE RO ERTA
AL
SOyl

+Z/a

0 (
—u(xy, ...
9t ot

at;

R

iy Xp)

7ti7"'7'xl’l)

costiy e, Xp)

—u(xl,...,ti,...,

e liyein,

Xn)

» 2
dt,'

g 2
dy;

P 2
dl‘i }

1]

2p
dr, i

2q
dt,' .

(4.3.30)

Xn)

Xn)
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Integrating both sides of (4.3.30) with respeckio. .., x, on B, using the defi-
nition of « and a suitable version of inequality (4.3.5) we get

/B|u(x)‘p‘v(x)|q dx

ptq+l
< }<%) aPTi 1
n
- v()

LR T o ][

p+q+1
< }G) ap+q/ ngadu(x)|2p+ |gradu(x)|2"]dx
B

a—xlu(x)

T

“n\2

The proof of Theorem 4.3.5 is complete.
From the hypotheses of Theorem 4.3.6, for arig B, we have the following
identities

n X;
i d
nu”(X)=p§ / wP e, .t xn)—8 UL, oo tiy .o, Xxy) 0,
. a; l
1

(4.3.31)
nu? (x) = —pi/ uP=Y(xq, .. 85, xn)iu(xl,...,ti,...,xn)dti.
, i
(4.3.32)
From (4.3.31) and (4.3.32), we observe that
|u(x)|p ZnZ/ |u(x1,..., ..,)cn)|p_:L
a
X | =—u(x1, ..., 6, ..., %) dt;. (4.3.33)
at;
Similarly, for anyx in B, we obtain the following inequality
}v(x)|q 4 Z/ }v(xl,..., ..,xn)’qil
a0
X av(xl,...,ti,...,xn) dti. (4334)
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From (4.3.33), (4.3.34) and using the elementary inequality< %(c2 +d?)

(for ¢, d reals), inequality (4.3.5) witlt = 2, the Schwarz inequality and the
definition of«, we obtain

iu(x)|p|v(x)|q < H:Z/ |u(x1,..., ..,)cn)|p_l

0
X | —U(X1y ooy liyene, Xpy)

at;

2
dll‘:|

2
dt,':| }

2
dtl‘}

|:Z/ |v(x1,..., ..,x,,)|q_1

X

—v(X1, ..y tiy e, Xp)
ali i n

n b;
< %{Z{L, |u(xl,...,ti,...,x,,)|p_l

i=1

X | —u(X1, ooy tiyeen,Xp)

0t

n bi 1
+Z{/ ‘v(xl,...,t,-,...,x,,)‘q
j=1 'Y

cestiy o Xp)

l

{Z/ \M(XL..., ""wxn)lz(”_l)

i

2

X dy;

—u(x1, ..., t, .., Xy)
a1 i n

+2/ lvCx, ... 5 ..,,xn)’2(q—1>
a;

X |—v(X1, ..y tiy.n, Xpn)
at;

2
dr; } (4.3.35)



402 Chapter 4. Poincaré- and Sobolev-Type Inequalities
Integrating both sides of (4.3.35) with respectio. .., x, on B, using the defini-

tion of « and Hdélder’s inequality on the right-hand side with indigeg /(p — 1)
andq, g/(q — 1) (see [74, p. 126]) we obtain

/ |u(x)|p|v(x)|q dx
B

2
< {/|”(x)|2(p_1)|gradu(x)|2dx+/|v(x)|2(q_1)|gradv(x)|2dx}
5 B

= 8n
) (p=1/p ) 1/p
[(/ |u ) ”dx> (/|gradu(x)| ”dx>
B B
(¢—D/q 1/q
+ (/ }v(x)|2qd.x) (/ |gl’adv(x)’2q dx) :|
B B

This inequality is the desired inequality in (4.3.24) and the proof of Theorem 4.3.6
is complete. O

<

pqo?
8n

4.4 Poincaré- and Sobolev-Type Inequalities Il

In the recent past, several authors have presented numerous integral inequalities
of Poincaré and Sobolev type. In this section we present some Poincaré- and
Sobolev-type inequalities investigated by Pachpatte in [237,246].

In 1986, Pachpatte [237] has established the following inequalities of the
Poincaré and Sobolev type, involving functions of several independent variables.

THEOREM4.4.1. Let B = []/_4[0, a;] be a bounded domain in R”, n > 3. Let

1< p < Q and u be a real-valued function belonging to C1(B) which vanishes
on the boundary 0 B of B. Then

1/p
(fpare)
B

[Ty a)(Q—P/ Q)
2nl/p

n
« (Zain/(Q—p)
i=1

where (| Vu(x)[l0)2 = Y7 I5-u(x)[€.

<

0 1/0
( /B (Ivue],) dx> . (44.1)

)(Q—P)/(PQ)
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REMARK 4.4.1. In the special case whéh=2 andp =n/(n — 1) (for n > 3),
we see that k p < Q holds and inequality (4.4.1) reduces to

(n=1)/n
(/ |u(x)|”/(”71) dx)

(1‘[ 1Gi )(n=2)/@n)
Zn(n 1)/n

n (n—2)/(2n) 1/2
x <Za?’/("‘2>> </|gradu(x)|2dx> . (4.4.2)
B

i=1

THEOREM4.4.2. Let p>1, P, 0 >1, P14+ 01=1 B beasin Theo-
rem4.4.1and u be a real-valued function belonging to Cl(B) which vanishes on
the boundary d B of B. Then

p (- ro-v o \°
weg(§0) (fpre)
/B|u(x)‘ 2n<j221af> B|u(x)| x
0 \Ye
x (/B(”Vu(x)HQ) dx) , (4.4.3)

where (|| Vu(x)| ¢)€ isas defined in Theorem 4.4.1.

REMARK 4.4.2. By takingp =n/(n —1) (forn > 3), P =Q =2 in (4.4.3)
and then squaring on both sides of the resulting inequality we have the following
inequality

2

(fpor=a)
Z el /|()|2/(" D dy /|rad dx 4.4.4
Sin =12 gradu (x)|* (4.4.4)

Further, forn = 3, inequality (4.4.4) reduces to

(o)
< Z 1 ==t </|u(x)}dx)(/}gradu(x)| dx) (4.4.5)

For the inequalities of the forms (4.4.4) and (4.4.5), see [152,155].
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PROOFS OFTHEOREMS4.4.1AND 4.4.2. Ifu € C1(B), then we have the fol-
lowing identities

nu(x) = Z/ l %u(xl, cotiy e xp) ds, (4.4.6)
i=1 0 i
nu(x) = Z/ —u(xl, vty xp) ds (4.4.7)

From (4.4.6) and (4.4.7), we obtain

uto)| < Z /

From (4.4.8) and using the elementary inequality (see [3, p. 338])
n k n
(Zci) <ty (4.4.9)
i=1 i=1
(for ¢; > O reals and > 1), we obtain

o< (2 £

for any p > 1. Applying Hoélder’s inequality with indices?, 0 > 1 (P~1 +
0~1=1)to each integral in (4.4.10) we get

cestiy o Xp) dt,'. (4.4.8)

),, (4.4.10)

a—tlu(xl,...,ti,...,xn)dti

» 1 X a; 1p a; 0 1/0\p
ot S (([10)! ([ o))
1 & ai| g 0 p/Q
_ p/P ) )
=5 ;ai (/c; a—tlu(xl, costiy e Xn) dt,) . (4.4.11)

Integrating both sides of (4.4.11) ovBrwe get

/|u(x)|pdx
ot L (U

cstiy ooy Xn)

0 r/Q
dt,'> dx.

(4.4.12)
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Now, applying Hélder’s inequality with indiceg; = Q/(Q — p), g1= Q/p to
each integral on the right-hand side in (4.4.12), we get

/!u(x)|pdx
B
< Micyanemrre Xn:ap/Pa?/Q (/
B

0
2 P )

o r/Q
)
i=1

B—Xiu(x)

_ (Tj_ya)@P/2 Xn:ay</
i—1 ! B

0 p/Q
. 4.4.1
o) dx) (4.4.13)

Now, applying Holder’s inequality to the sum on the right-hand side in (4.4.13)
with indicesp1 andg; again, we obtain

/|u(x)|pdx
B
< (H?Zlal.)(Q—P)/Q
2Pn
n (O-p)/Q n 3 0 p/Q
x aP2/C=p (/ —u(x) dx) . (4414
(% 2\Jsfox (449

From (4.4.14) we have

1/p
(/ |u(x)|pdx>
B

(-, a;)@—r/rQ)
2nl/p

n (Q-p)/(pQ) 1/0
(o) (sl o)™
i=1 B

The proof of Theorem 4.4.1 is complete.
From the hypotheses of Theorem 4.4.2; & C(B) then we have the follow-
ing identities

<

X

n Xi
nup(x)sz/o {u(xl,...,t,-,...,xn)}p_l
i=1

0
X gu(xl,...,ti,...,x,,)dt,’, (4.4.15)
i
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n a;
nup(x)z—pZ/ {u(xl,...,t,- ..... xn)}p_1
i=1%

0
X Eu(xl,...,t,-,...,xn)dti. (4.4.16)
i

From (4.4.15) and (4.4.16), we obtain

|u(x)‘p<£2n:/ai|u(x1 co i X )|p_1‘iu(x1 ety X)) | Ot
\Zni:lo ’ s Cly s VR Btl ’ s Ml N l

(4.4.17)

Integrating both sides of (4.4.17) ovBrwe get

D n 1l 9
/B|u(x)|pdx< Z;ai/Bht(x)V’ ‘a—xiu(x)

Applying Hélder’s inequality with indice®, 0 > 1 (P~1+ 0~1 =1) to each
integral on the right-hand side in (4.4.18) we get

/|u(x)|pdx
B

dv.  (4.4.18)

n 1/P 0 1/0

)4 - a

<3 Loa{ feol" ) ([ |ueo] ar)
/p n 0 1/0

_Pr P(p=1) (12

=il ae) (o] a)

1

Now, applying Holder’s inequality to the sum on the right-hand side in the above
inequality with the same indiceR, Q, we obtain

/’u(x)|pdx
B

n

1p 1/P 1/0
< %(Zai’) ([l o2 ae) ([ (vum)®ar)

i=1

This inequality is the desired inequality in (4.4.3) and the proof of Theorem 4.4.2
is complete. a

The following Poincaré- and Sobolev-type inequalities in which the constants
appearing do not depend on the size of the domain of definitions of the functions
are established in [246].
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THEOREM4.4.3. Letu,, r =1, ..., m, be sufficiently smooth functions of com-
pact support in E, the n-dimensional Euclidean space with n > 2. Then

m 1/m (n—1)/n
e
E\iz1

1 1\ =D/n m
< — radu, dx. 4.4.19
m(m) ;/E!g iy ()] (4.4.19)

REMARK 4.4.3. We note that in the special case whes 1, u; = u, inequality
(4.4.19) reduces to the following inequality

(n—=1)/n
{/ |u(x)|"/(n71) dx} Su/ }gradu(x)|dx,
E E

whereu = 1/+/4n, which is given in Theorem 4.2.5.

THEOREM4.4.4. Letu,,r =1, ..., m, be sufficiently smooth functions of com-
pact supportin E, the n-dimensional Euclidean spacewithn > 2, andlet p, > 1
be constants. Then

m 1/m (n—1)/n
{/ (1—[|ur(x)|<<pr+2>/2)(n/<n1))) d.x}
E

r=1

1
N EA N ﬁ po+2)) "
\\/ﬁ mn r=1 4

xg{/E’ur(x)

1/2 1/2
Pr dx} { / }gradu,(x)}zdx} . (4.4.20)
E

REMARK 4.4.4. We note that in the special case where 1, inequality (4.4.20)
reduces to

{ / g ()| (PTHRIDO/0=D) g
E

1/2 1/2
<%<p1:2>{/E|ul(x)|pldx} {/E|gradu1(x)|dx} . (4.4.21)

}(n—l)/"
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On takingn = 2 andp1 = 2 in (4.4.21) and squaring both sides of the resulting
inequality, we obtain the sharpened version of Sobolev’s inequality established by
Payne in [362].

The next two theorems established in [246] deal with the Poincaré- and
Sobolev-type inequalities in which the constants appearing depend on the size
of the domain of definitions of the function.

THEOREM4.4.5. Let B =[]/_;[a;, b;] be a bounded domain in R" withn > 2,
u-,r=1..., m, be sufficiently smooth functions defined on B which vanish on
the boundary 8 B of B and p, > 2 be constants. Then

/ ﬁ| pr 1/mdx<i ¢ 1/m(Z:"1Pr)i/| radu, (x)
s\ 1L ur(x) S\ 2 5 gradu, (x

r=1
wherea = max{by —as, ..., b, — a,}.

prdx

(4.4.22)

THEOREM4.4.6. Let B, u,,r=1,...,m, beasin Theorem4.4.5and p, > 1 be
constants. Then

m 1/m
/ <1—”ur(x)|(pr+2>/2> d
B\,=1

m 1/m
o pr+2
s m@(lj[l( 2 ))
xZ{/|ur(x)
r=1 /B

where o is as defined in Theorem 4.4.5.

1/2 , 1/2
br dx} { f |gradu, (x)| dx} , (4.4.23)
B

REMARK 4.4.5. In the special case whem = 1, inequalities (4.4.22) and
(4.4.23) reduce respectively to the following Poincaré- and Sobolev-type inequal-
ities

1 p1
/ |u1(x)|p1 dx < —<g) f |gradu1(x)|pldx, p1=>2, (4.4.24)
B n\2 B
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and

/ |Ml(x)|(p)+2)/2dx
B

a p +2 1/2 1/2
< o] | fmcora] " o

(4.4.25)

For similar inequalities, see [73,120,121,152-157,178,179,418].

PROOFS OF THEOREMS 4.4.3 AND 4.4.4. From the hypotheses of Theo-
rem 4.4.3, we have the following identities

X1 a
u,(x) = / Z)_Mr(tl’ X2, ..., xp)dtq, (4.4.26)
_oo 011
o
d
u,(x) = —/ 8—ur(t1, X2, ..., xp)df, (4.4.27)
X1 n

forr=1,...,m. From (4.4.26) and (4.4.27), we obtain

1 B
|ur(x)| < —/ —uy(t1, X2, ..., x,)| dr1. (4.4.28)
2 J1|011

Similarly, we obtain

dy; (4.4.29)

1 0
|ur ()] < 2) a—tiur(m,.--,ti,..-,xn)

fori =2,...,n. From (4.4.28) and (4.4.29), we observe that

Jur o[

1 n/(n—1) 9 1/(n—1)
< (E) {/1 8—tlur(11,xz,m,xn) dtl}
1/(n=1)
X o X {/ gur(xl, e Xn_1,ty) dt,,} (4.4.30)
n n

forr=1,...,m. From (4.4.30) and using the inequality

k

k 1/k 1
(Hc,) <7 > e (4.4.31)
i=1

i=1
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(for ¢; nonnegative reals arid> 1), we obtain

m 1/m
{]‘[|ur<x)|”/ ‘”‘”}
r=1

_ 171 n/(n—1) / 9 (t ) " 1/(n—1)
\m 2 1 atlul laxZa"'axn 1
9 1/(n-1)
X X {/ 87“1(351’ ces X1, 1y) dtn}
nl|9ln
9 1/(n-1)
+{/'_Mm(tl7x2a---axn) dtl}
/0t
5 1/(n—1)
x~-~x{/ — U (X1, . Xn—1, 1) dt,,} }
nl 0ty

(4.4.32)

We integrate both sides of (4.4.32) with respeckicand use on the right-hand
side the general version of Hoélder's inequality (4.2.29) (see [179, p. 40]) with
k =n — 1. We then integrate the resulting inequality with respects;t@nd use
inequality (4.4.31) on the right-hand side. We repeat this procedure, integrating
with respect toes, . . ., x,, and obtain (see [121, Chapter 1, Theorem 9.3])

m 1/m
/<H|ur(x)’n/(n_l)) dx
E\;=1

1/1 n/(n—1)

g_ —

.(2)

gl
+{/E T

dx

ui(x)

0
—uy(x)

1/(n—-1)
0x1 }

1/(n—-1)
dx} {/
E
1/(n-1)
o
E|D

Xn

00Xy,

U (X)

1(n-1)
dx } .

(4.4.33)

— Uy (X)
X1
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From (4.4.33) and using inequalities (4.3.5), (4.4.31) and the inequality

n 2 n
<Zci) < aniz, (4.4.34)
i=1 i=1

wherecy, ..., ¢, are reals, we obtain

m 1/m (n—1)/n
ek
E

r=1
(n—1)/n 1/n

<G sl {5

2\m E 0 E an

" 1/n / 9

£lo

—uy(x)

X1

d
#{ [ g

1 1 (n—=1)/n

<uln) U J
Al
+ ik

1/n
u1(x) dx}

U (X)

"

—u1(x) ui(x)

0x1

P
9

Xn

— U (x) +~--+‘ 9 um(x)}dx}
X1 0xy,
B 1/1 (n—1)/n 9 2 l/2dx
=arln) A dlgmeo] o gme]]

%, U (X)

17

ad
4t

-l
EH: axlum(x)

1 1 (n—=1)/n m
<—|( = i, dx.
m(}ﬂ) ;/}Jgra bt (x) |

The proof of Theorem 4.4.3 is complete.
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From the assumptions of Theorem 4.4.4, we have the following identities

+2)/2 +2\ (Y 2
{ur(x)}(p 2 = <prT)/ uf/ (t1, x2, ..., Xn)
—00

d
x —uy(t1, x2, ..., Xx,) dr1, (4.4.35)
o1

+2)/2 +2\ [*
{u ()} P2 =—(”T>/ ul (11, x2, . xn)
x1

0
X —up(t1, X2, ..., %) dt1, (4.4.36)
dary

forr=1,...,m. From (4.4.35) and (4.4.36), we obtain

|ur(x)|(pr+2)/2

+2 /2| 0
< Pr /|Mr(t1,xz, ceey Xn) pr/ —u,(t1, X2, ..., x,)|dt1.  (4.4.37)
4 1 o
Similarly, we obtain
r+2)/2
|ur(x)|(p +2)/
+2 /2| 0
g (pr4 )/i“ur(xla-"’ti7"-7xn) p/ ‘a_tl-ur(Xl’-”’ti’“.’xn) dtl
(4.4.38)
fori =2,...,n. From (4.4.37) and (4.4.38), we observe that
r+2)/2 -1
|u,(x)|((p +2)/2)(n/(n—1))
. pr +2 n/(n—1)
4
1/(n-1)
,/2| 0
X {/|u7’(t17x27 "'7x)'l) b / la_ur(tlvxz’ ~--,xn) dtl}
1 I
1/(n—-1)
,/2| 0
X X {/|ur(xly~--sxn—l,tn) p/ ’_u}’(-xl?"'v-xn—lvtn) dtn}
n oty

(4.4.39)
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forr=1,...,m. From (4.4.39) and inequality (4.4.31), we obtain

m 1m
{ 1_[ |Mr (x)i((pr+2)/2)(n/(n_1)) }

r=1

m n/(n—1) ) Ym
< 1 l—[(pr + 2)
m-_ 4

2| 0
X H/|u1(t1,x2,.--,xn)|pl/ ‘—ul(tl,xz,.--,xn)
1 or1

X {/|u1(x1,...,x,,_1, t,z)|pl/2
n

1/(n-1)
dtl}

0
X | —u1(x1, ..., Xn—1, 1)

dt,

1/(n-1)
dr, }

12 1/(n-1)
+o {f|um(t1,x2,...,xn)|pm ——um (1, X2, ..., Xn) dtl}
m/2
X e X {/|um(x1,...,x,,_1,tn)|p /
n
1/(n=1)
X | =—Um (X1, ..., Xn_1,n) dt,,} j| (4.4.40)
dty

We integrate both sides of (4.4.40) with respectcip use Holder's inequality
(4.2.29) on the right-hand side, then integrate the resulting inequality with respect
to x2, and finally use inequality (4.2.29) on the right-hand side once more. We
repeat this process, integrating with respectsa. ., x,, we obtain

m 1/m
/ {l—[ |”r (x) | (pr+2)/2)(n/(n=1)) }
E

r=1

_ 1/m
1 m pr+2 n/(n—1)
%{Q(T)
H/|u (x)|"V/? ‘ u(x)
{ / (0|72 ‘ ui(x)

}1/(n—1)

} 1/(n—1)
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Pm/2
+ {/;’um(x” 3

ium(x) dx
X1
pm/2
X {/;:‘um(x)‘ 3

1/(n—-1)
dx} ] (4.4.41)
From (4.4.41), (4.3.5), (4.4.31), the Schwarz inequality and (4.4.34), we obtain

}1/(nl)

m 1/m (n—1)/n
{/ {1—[|ur(x)|(<pr+2>/2)<n/<n—1>>} dx}
E

r=1

<<3><" Dim| 2 (pr+z>
S \m 4
1/n
x“f|u1<x)|”l/‘ L u1(x) }

XX {/ |M1(x)|m/2‘iu1(X)
E 0xy

1/m

1/n
“|

1/n
dx}

'

Pm/2

- {/ [t (x)
E

- d

) {/;‘”m(xﬂp . 3Xn

— Uy (X)
1/1 n=L)/n( m pr+2 1
<) {E(T )

ad
8_xlum(x)

x {/|u1<x>|””2Hiu1(x> +~-.+) i uﬂx)}dx
E 0x1 dxy,
pm/2|| @ 9
+~--+/!um(x>| [—umm +---+‘ um(x)}dX}
E dx1 Xy,
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1
<t i ﬁ po+2y |
S n\m i 4

y {/E|u1(x)|mdx}l/2
A/

i (x)
—uq(x
0x1 !

+--+ ‘—ul(x)

+ {/E|um(x)|p'" dx}l/z
U

m 1/m
()|
\ﬁ n r=1 4

x ;{/EM(X)

—— U (%) Up (X)

0x1

SR
ox

Xn

415

)"

2 11/2
]

1/2 1/2
"rdx} {/’gradu,(x)|2dx} )
E

This inequality is the desired inequality (4.4.20) and the proof of Theorem 4.4.4

is complete.

O

PROOFS OF THEOREMS 4.4.5 AND 4.4.6. From the hypotheses of Theo-
rem 4.4.5, since, (x) are smooth functions defined dhwhich vanish on the

boundaryo B of B, we have the following identities

nu,(x) = Z/ —u,(xl,...,ti,...,

and

nu,(x) = Zf —u,(xl,...,ti,...,

xn) (4.4.42)

xq) (4.4.43)
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forr=1,...,m. From (4.4.42) and (4.4.43), we observe that

2n|u,(x)| ety x| dE . (4.4.44)

From (4.4.44) and on using inequality (4.3.5), Holder’s inequality with indices
pry pr/(pr — 1) and the definition of, we obtain
pr
dl‘,’} :|

) S
SO 1A o]

From (4.4.45) and inequality (4.4.31), we obtain

([esor)

1 m
m Zr=1pr
o1 (E) WA -1

~
nm\ 2

AL

Y ~S

a_hur(xly"'7tia"‘5xn)

ety Xp)

m dti:|
[Z / " dt,-:H. (4.4.46)

By integrating both sides of (4.4.46) ovBr using the definition o& and inequal-
ity (4.3.5) withk = 2/p, < 1, we have

()

r=1

1 m
m Zr: Pr
< i(}) ' am i p)—1

N
nm\ 2

cestiy o Xn)
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ol ([l
T

1 m Zr 1Pr
<%< ) Z / |gradu, (x)

The proof of Theorem 4.4.5 is complete.
From the assumptions on the functiangx) in Theorem 4.4.6, we have the
following identities

2)/2 pr+2\ [~ (M p)2
n(u,()c))(pr+ )2 _ (rT) |:Z'/ w21, )
i=1v4

Bl
X B—QMr(xl’“"ti"“’xn)dti ,

dx

p172/p1y p1/2
u1(x) ] }

++‘axn

Pm

0xy,

Pm2/Pm Y Pm/2
[ e

Prdy

(4.4.47)

n(ur(x))(pr+2)/2 (pr +2) [Z/ p,/2(xl, Lt .“’xn)

a
X 8—Gur(X1,...,[i,...,xn)dti s

(4.4.48)
forr=1,...,m. From (4.4.47) and (4.4.48), we observe that

2n|ur(x)|(pr+2)/2

(pr+2) [2/ (X1, s sy X)

0

pr/2

cestiy o Xn)

l

dt,-:|. (4.4.49)
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From (4.4.49) and inequality (4.4.31), we obtain

m 1/m
< l_[ iur (.X) |(pr+2)/2>
r=1

1/m
1 (rq(p+2
<
\an(r_l—ll< 2 >>

a
{[Z/ |ul(xla et "'axn)|p1/2‘_ul(-xla "'ati7~"7-xn)
dt;

dl‘i:|

|:Z/ |um(x1,..., -,...,)c,,)’pm/2

X U (X1 ev oy tiy ey Xn)

PP dtl} } (4.4.50)

Integrating both sides of (4.4.50) ovBt using the definition ofr, the Schwarz
inequality and inequality (4.4.34) we have

1/m

f ﬁ|ur(x)|(pr+2>/2 dr
B\,=1
<i ﬁ(pr+2> Lm
= 2nm ol 2

{/|u1(x)|”” H ur(x)| + - +‘ i u1<x>}dx
0xy,
+/Ium(x)|””‘/2[ ()| + - +‘—um<x)} }
B 8x

m 1/m
o pr+2
g R -
2nm<l_[1< 2 ))

r=



4.5. Inequalities of Dubinskii and Others 419

ST AR DI W

1/2
+{/|um<x)|p'"dx}
B
d
x {/B[ ot (¥)
1 m +2 /m
pr
“aar(11(27))
m 1/2 12
xZ{/|u,(x) prdx} {/|gradu,(x)|2dx} .
r=1/B B

This inequality is the required inequality in (4.4.23) and the proof of Theo-
rem 4.4.6 is complete. O

ad
+...+‘

ox, u1(x)

o]

0
+o ot ‘—um(x)
0xy,

4.5 Inequalities of Dubinskii and Others

Integral inequalities of Poincaré and Sobolev type play a fundamental role in
the theory and applications of partial differential equations. A large number of
inequalities related to these inequalities are established by several authors in
the literature. In this section we deal with certain inequalities established by
Dubinskii [95], Alzer [10] and Pachpatte [345].

In what follows, we letx = (x1,...,x,) be a variable point inR"”, an
n-dimensional Euclidean spacé; be a bounded region ifR” with bound-
ary 0G satisfying the cone condition (see [95()" (G) is the space of functions
u(x) with bounded derivatives i@ (the closure ofG) up to orderm inclusive,
dx = dx1 --- dx, is the volume element, ands ds the surface element corre-
sponding todG. Constant quantities, not dependingox), will be denoted by
the symbolK. In different inequalities their meaning will be different.

The inequalities in the following theorems are established by Dubinskii [95].

THEOREM 4.5.1. Let —00 < ag < +00, a1 = 1, u(x), lu(x)|*t1 e C1(G).
Then the following inequality is valid

a
/ |u|0lo+0ll dx g K[/ |M|a0 u
G G ox

1

oy
dx+/ |u|°‘°+a1dsi| (4.5.1)
i G
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fori=1,...,n. Theconstant K dependson ag, o1 and G.

PrROOF From the divergence theorem we have

d
/ (x |u|0‘°+“1) dx = / xilu|%0Tot ds. (4.5.2)
G 9x; 9G
From (4.5.2) it is easy to observe that

ou

/ |u|“°+“1dx < K|;/ |u|ao+a1—1 -
G G

ax,-

dx+/ |u|“°+“1dsi|, (4.5.3)
G

from which, fore; = 1, we obtain inequality (4.5.1). ti1 > 1, then

/ | |0(0+O(1 1
Bxl
/| |060/011

ou
< [ ] -
o1 Xi

y|¥oter—l-ao/a1 g,

o
Cdr 4 (—“1 — 1>e“1/<°‘11> / u|*0tdx.  (4.5.4)
o1 G

Here we have used Young’s inequality

P 1 1 1
ab<8—a1’+—s 9, a,b>0,—+—-=1¢>0,
p q P q
for p = @1. Choosings > 0 sufficiently large, from (4.5.3) and (4.5.4), we obtain
inequality (4.5.1). |

REMARK 4.5.1. We note that, for the case whef «, are even ana|;g = 0,
inequality (4.5.1) was obtained earlier by Visik [421].

THEOREM 4.5.2. Let —co <ag <400, 21 20, a2 20, a1 + a2 > 1, u(x),
lu(x)|*otertez ¢ ¢1(G). Then the following inequality is valid

ou |*2
/|u|“°+“l ol / 0
G 0x; G

The proof follows by estimating the integral on the left-hand side of (4.5.5), by
using Young's inequality with indeg = (@1 + az)az_l and Theorem 4.5.1.

a1tar

ou

Xi

dx+/ |u|a°+“1+“2ds:| (4.5.5)
9G

fori=1,....n
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THEOREM4.5.3. Let ap, a1 and a2 be nonnegative numbers, a3 > 1, a3 > a1,
a0+ a2 + a3 — (a3 — a1)(az — 1)™1 > 0, u(x) € C%(G). Then the following
inequality isvalid

a1tax+tas
/ jujeo| 24 dx
0x;
2,
U PR Kl L
axl a.xi
Ju apta1taztas
+/ |u|ao+a1+a2+a3ds+/ - ds] (4.5.6)
3G 3G | 0X;
fori=1,...,n
PrROOF We have the obvious equalities
+ao+ +azt+az—1
|u|(¥0 8” areTes | |0l0 8” 8” e S|gn8_u
ox; 0x; 8xl ax;
1 9 . a1toaptaz—1 . u
o+1sign sigh—.
ao+18x, [|u| g u] 0x; 9 0x;
Integrating this equation ove&¥ we obtain
ajtoao+oz
/ o] 2™ v
G ax;
1 9 aytoar+az—1 ) 9
/ — [lul*tsignu]| — sigh—£ d.
“aot1l G 0x; ox; 0x;

From this equation, integrating by parts, we have

/ juj@o| 21 ou
G

0x;

a1top+o3z

dx

aitax+az—2| 42 a1+axtaz—1
|:/| |ao+1 ou 0“u 2 dx+f |M|ao+l ou ds:|
ax; ox G 0x;
a1top+az—2 2
< K|:/ |u|010+1 3_u 3_14 dx
G 0x; 8xi2

ou

+/ |u|ao+a1+a2+a3 ds—i—/
G G

apta1taztas
dsi| (4.5.7)
8xi

Here we use Young'’s inequality with indgx= (o + a1 + a2 + a3)(ag + 1)1
to the integral ovenG. Inequality (4.5.7) yields inequality (4.5.6) for the case
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az=a1=1. If a3 > 1, then applying Young’s inequality and Theorem 4.5.2, we

obtain
+optas—2) g2,
8x.
a2/ 2
=/ |:|u|(0to+a1)/013 Qu "2 9%u ]
G 0x; ax.

Ju a1+toptaz—2—az/a3
% |:|u|ao+l (ao+a1)/az| % ax i|dx
i
g3 du |*2] 9%u
<— | ful*oter— "
a3 Jg 0x; 8x

n (“3 - 1>8—ﬂt3/(l¥3—l)
a3

a1taztaz—(az—a1)/(e3z—1)

/ o @a—an)/(ag=1) | ¥ dx
8x,
a3 du |%2| 92u
< | qupeoter]| 22 dx
a3 Jg E)xl Bxi
u a1taz+a3
+K8_a3/(a3_l)f |u|0| — dx
G 3xi
+K87a3/(0‘371)/ |u|ao+a1+ﬂt2+ﬁta ds. (4.5.8)
G

Inequality (4.5.6) follows from (4.5.7) and (4.5.8)df> 0 is taken sufficiently
large. O

THEOREM4.5.4. Let ao, a1, a2, a3 be nonnegative numbers, aq > 1, a3 > a1,
oz — anag =0, Y4 Jop — aalas — ar)(@a — )71 > 0, and u(x) € C2(G).
Then the following inequality is valid

/ 0
G

a1tartas

32
Bx
du |*2

0x;

ou
8xl

|:/ |u|010+(¥1
4
+f Ju| =% ds+/
G G

dx

a3tog

92y
dx

ax,.

Z,_lai
u ds} (4.5.9)

3)6,'
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fori=1,...,n.

The proof of inequality (4.5.9) follows from Young’s inequality with index
p=(a3+ 0[4)0[[1 and Theorem 4.5.3.
In the following theorems, we let

n

|gradu (x) ||M = (Z

i=1

a—xiu(x)

w\ /n
) , w>0,
S be the set of all real-valued functiongx) which are continuous omB =
[T/_1lai, b1 (the bounded domain inR") which satisfy u(x)l|y=q =
u(x)|y,=p, = 0 for eachi € {1,...,n}, and for which the partial derivatives
aixiu(x) exist.
The following theorem is given by Alzer in [10].

THEOREM 4.5.5. Let A > 1 and i > 0 be real numbers. Then we have for all
ues

/|u(x)|*dx < K,,(x,u;a,b)f | gradu(x)]|; dx, (4.5.10)
B B
where

n
Kn(h, 3 a, b) = 10)n~ ™0 [T — a/™,
i=1

in which

1
I(}) =/ [tH + (1—r)H]*ldt.
0
PrROOF From the hypotheses, we have the following identities

X g
u(x) :/ —u(xX1, ..., by, X)) 0t (4.5.11)
aj ati

and

b;
u(x):—/ —_u(xl,...,ti,...,x,,)dti. (4.5.12)
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From (4.5.11), (4.5.12) and using Holder’s inequality with indizes /(1 — 1),

we get
Py 9 *
|u(x)] <</ SUOL i) dti)
a; 14
xi| g A
< (x; —ai)k_lf —u(x1, ..ty .., xp)| dfy,  (4.5.13)
a; ati
s bl g *
|u(x)| < (b; —xi))‘flf 8_tu(x1’ cotiy o, xy)| dy. o (4.5.14)
Xi i

From (4.5.13) and (4.5.14), we obtain fgre (a;, b;)

A
dr;.

b; 9

o) [ [ — a)* ™ + (b — x) ] < / ‘Eu(xl,...,t,‘,...,xn)
a; l

(4.5.15)

Next, we multiply both sides of (4.5.15) byx; — a;)¥* + (b; — x;)**1~1 and
integrate oveB. Then we have

b;
/ |M(x)fkdx < / [ —a)*™ + (b —xi)lfk]fldxi /
B a; B

Now, by takingi =1, ..., n in the above inequality and multiplying the resulting
inequalities and applying arithmetic mean—geometric mean inequality, we obtain

/|u(x)|’\dx
B

n bi 1 1/n

< H(/ [ —aD™™ + (b —x)* ] dxi)
j=1 Wi
n A 1/n
d
<TI0 o)

n b; 1/n n
<%]‘[</ [(xi—ai)l—k+<bl-—x,->l—k]‘1dx,-> fBZ
i=1

. a;
i=1 l

A
dx.

i (x)
—u(x
8)(,'

i (x)
—ux
ax,’

2
dx

i (x)
—ux
8xi

n 1
(i) [ 00 [ lomacoliec
i=1 0 ’

(4.5.16)
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Finally, we use the inequality (see [48, pp. 143 and 159])

n n 4
Zaf‘ < nl_mm(l’”‘)<2a,~> , a;=20,i=1...,n, >0, (4.5.17)
i=1 i=1

to obtain

n

i)
|orade @)} = 3| —ux)
=1

A n

-3

i=1

A/
—u(x)

Bxi
M)UM

n

< nl—min(l,k/u) (Z

i=1

a_xi”(x)

— oML/ grag (x)|

A
" (4.5.18)

so that (4.5.16) and (4.5.18) imply

n 1
/|u(x)|”dx< (]_[(bi—ai)*/”)/ [+ @-n ]
B i=1 0
ML) / lgradu(x)| dr.
B 13

The proof is complete. O

REMARK 4.5.2. We note that inequality (4.5.10) sharpens the inequality given
by Agarwal and Sheng in [6]. For further results, see [7,10] and the references
given therein.

In [345] Pachpatte has established the inequalities in the following theorems.

THEOREM4.5.6.Let p>0,¢g>1,r>1, u> 0beconstantsand u € S. Then

/|u(x)|’(”+q)dx<Mq/|u(x)|”’||gradu(x)||;"dx, (4.5.19)
B B

/yu(x)\’(”q)dx <M”+q/ |gradu(o) /""" dx,  (4.5.20)
B B
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where
M= [(p + g)"n~minLr/1) (l_[(b,- —ap)"/ ") I(r):|, (4.5.21)
i=1
in which
1
1) = / (157 + @ -l tar. (4.5.22)
0

PrROOF From the hypotheses, we have the following identities
Xi
u”+q(X)=(p+q)/ WPt g, ot )
a;

0
X Eu(xl,...,ti,...,xn)dti, (4.5.23)
i

b;
ul*(x) = —(p+q)f wPt o, ot x)
Xi

ad
X gu(xl,...,ti,...,xn)dti, (4.5.24)
i

fori=1,...,n. From (4.5.23), (4.5.24) and using Holder’s inequality with in-
dicesr, r/(r — 1), we observe that

xi
+ _ +g-1
@[ P < (p+ q) (ki — i)’ 1/ P i

aj

8 r
X 8—tiu(x1,...,t,-,...,xn) ds;,
(4.5.25)
b;
_ -1
) P < (p + g (b — xi)" 1/ Xt ) [P
X
8 r
X a—tiu(xl,...,ti,...,xn) ds;,
(4.5.26)

fori=1,...,n. From (4.5.25) and (4.5.26), we obtain fore (a;, b;)

[ —a)*™ + (b — x) ¥ ] |uto) [P
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bi
<(p +q)’/ I e

a;

a r
gu(xl,...,t,’,...,xn) ds;. (4.5.27)
i

X

Next, we multiply both sides of (4.5.27) biyx; —a))¥" + (b —x)¥"1"1 and
integrate oveB. Then we have

b;
/|M(X)|r(p+q)dx < (p+q)r/ [ —a) ™ + (b —x)¥ 7]y
B ai

/|u( )’r(n+q 1)

Now, by takingi =1, ...,n in (4.5.28) and multiplying the resulting inequalities
and applying the arithmetic mean—geometric mean inequality, we obtain

/ |u(x)}r(p+q)d.x
B

(x) (4.5.28)

n

bi 1/n
<+ H(/ [ —a)™™" + (b — xi)l_’]_ldxi)
i=1 4
r 1/n
dx)

n
r(ptq-n| 9
X E(/B‘u(x)’ r

_u(x)
by 9
—(p—i-q)’l_[(/ [ —a)t™ + (b —x)*"] dx,-)

i=1

X/Z‘u(x)’r(p+q_l)
Bi:l
1 “ 1 1
= w+ar ([Jo—ar) [T+ a-oT e
i=1 0

< / o]+ gradke (o) | dr. (4.5.29)
B

1/n

dx

0
a—xiu(X)

By using inequality (4.5.17), as in the proof of Theorem 4.5.5, we obtain

lgradi(x)||. < n*=MnEr/0] gradu (x) I (4.5.30)
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From (4.5.29) and (4.5.30), we obtain

/ ’u(x)‘r(p+q)dx
B

g(p_'_q)rn—min(l,r/u)
. bi — ir/n I / r(p+q—1) d rdx
X(E( a;) ) ) | Ju)| |gradu(o |,
_M / (o™ | gracuo |/ ] [Juce) [ 42~ e, (45.31)
B

Using Holder's inequality with indiceg, ¢/(¢g — 1) on the right-hand side of
(4.5.31) we have

/ ]u(x)}r(p+q)dx
B

(¢—D/q

1/q
<M[ f |u<x>|’”||gradu<x>||;q] [ [ |u<x>|"”+‘“dx] . (45.32)
B B

If 5 lu(x)|"PT9) dx = 0 then (4.5.19) is trivially true; otherwise, we divide both
sides of (4.5.32) by [, [u(x)|"?*9) dx]“~1/4 and then raise both sides to the
powerg to get the required inequality in (4.5.19).

By using Hdolder’s inequality with indice& + q)/p, (p + ¢)/q to the right-
hand side of (4.5.19), we get

/ |u(x)|r(p+q)dx
B

p/(p+q) q/(p+q)
< M4 |:/ |u(x)|r(p+q)dx] |:/ ||gradu(x)||ffp+q) dx} )
B B

(4.5.33)

If 5 lu(x)|"P+9) dx = 0 then (4.5.20) is trivially true; otherwise, we divide both
sides of (4.5.33) by [y u(x)|" P+ dx]7/(P+9) and then raise both sides to the
power (p + ¢q)/q to get the required inequality in (4.5.20). The proof is com-
plete. a

THEOREM4.5.7. Letp>0,¢g>1,m>0,r > 1, u > Obeconstantsandu € S.
Then

o loraducol7 e < 27 f oo 17 .
(4.5.34)
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and

f |u(x)’r(p+q) ngadu(x)H;’" dr < Lﬂ+q/ ngadu(x)”;(”w“")dx,
B B
(4.5.35)

where

L= |:(p + g + m) = min@r/0 <1_[(b,~ — ai)’/"> I(r):|, (4.5.36)

i=1

inwhich 7 (r) is defined by (4.5.22).

PROOF By rewriting the integral on the left-hand side of (4.5.34) and using
Holder’s inequality with indicesqg + m)/m, (¢ + m)/q and inequality (4.5.19),
we observe that

/B )| 7 grack () |7 d

:/;}Hu(x)‘r(pm/(%—m)) ngadu(x)”;m]”u(x)|r(‘”+q)_r(‘"m/(q+m))]dx
m/(q+m)
< [/ |u(x)\rpngadu(x)HL(q*m) dxi|
B

q/(q+m)
« I:/ |u(x)|r(p+q+m) dxj|
B

< [ [ ol Jaradieco ] o
B

n qg+m
x H(p +q +m) n (l_[(bi - a»r/")I(r)}

i=1

:|m/(q+m)

q/(q+m)
x /B |u(x)|rp||gradu(x)||;(q+m)dx:|

Y / Ju@)|”” | graduo |74+ d.
B

The proof of inequality (4.5.34) is complete.
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By rewriting inequality (4.5.34) and using Holder's inequality with indices
(p+9)/p, (p+q)/q, we observe that

/B a7 grack () | d

<L /;?[|u(x)|rp ”gradu(x)||:L(mp/(p+q))][”gradu(x)||;(q+m)—r(mp/(p+q))]dx

r(p+g) . p/(p+q)
§Lq|:/3|u(x)| Jgradu(o) | dx}

q/(p+q)
X [/ ngadu(x)”lrjp—wrm) dx:|
B

Now, by following the arguments as in the last part of the proof of inequality
(4.5.20) with suitable modifications, we get the required inequality in (4.5.35).
The proof is complete. |

4.6 Poincaré- and Sobolev-Like Inequalities

In the present section we shall deal with the Poincaré- and Sobolev-like inequali-
ties established by Pachpatte in [276,289].
The following inequalities are established in [276].

THEOREM4.6.1. Letu,,r =1,..., N, be sufficiently smooth functions defined
on B = [[_4lai, b;], the bounded domain in R", which vanish on the boundary
oBof Bandletm > 1, p > 2 bereal constants. Then

N p/(p—1) 2m(p-1)/p N n
FAPSEEIS R BT o] b
B r=1YBi=1

r=1

4m
dx,

d
a_xiur(x)
(4.6.1)

where

2m

k1 = i ﬁ (p(4m+2nm—n)—2nm)/p

1= a ,
nN \ 4

inwhicha =maxby —ax, ..., b, —a,}.
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REMARK 4.6.1. In the special case when= 1, inequality (4.6.1) reduces to
the following inequality

N ) p/(p=1) 2(p—1)/p N ng 4
< k9 2
UB{ZWM } dx} \klzfgz o ()| dx.
r=1 r=1 i=1
(4.6.2)
where
N
0= 2 ymtdH=2n/p
AT
THEOREM4.6.2. Let u,, m, p beasin Theorem4.6.1.Then
N p/(p—1) 2m(p-1)/p
[ /{z|u,(x)|z} dx}
B =1
N n om 9 2m
<k2 / uy(x) ‘—u,(x) dx, (4.6.3)
; Bz=Zl| | axi

where

ky = }NZm—la(p(Zm—i-an—n)—an)/p’
n

inwhicha =maxby —azi, ..., b, —ay}.

REMARK 4.6.2. We note that in the special case whes 1, inequality (4.6.3)

reduces to
N p/(p—1) 2(p=1/p
U {Z|u,(x)|2} dx]
) )
N n ) 9 2
<k , —u,(x)| dx, 4.6.4
2;/19;|u €3] ‘M“ (x) (4.6.4)
where

k9= N w21/,
n
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PROOFS OF THEOREMS 4.6.1 AND 4.6.2. From the hypotheses of Theo-
rem 4.6.1, we have the following identities

nu,(x) = Z/ —u,(xl,...,ti,...,xn)dti (4.6.5)
and
nu,(x) = Z/ a—tlur(xl,...,ti,...,xn)dti, (4.6.6)
forr=1,..., N. From (4.6.5) and (4.6.6), we observe that

2, ()] < Z/

forr=1,..., N. From (4.6.7), using inequality (4.3.5), the Schwarz inequality
and the definition of, we obtain

cestiy o Xpn)

d; (4.6.7)

2
|Mr(x)|2<< ) [Zf 8_hur(xla"'9tia"'axll) dtl]
1 2 n b; 8 2
<<Z> n;{/ai a—nur(xl,...,t,-,...,xn) dti}
2
< )Z/ u,(xl,...,t,-,...,xn) ds;. (4.6.8)

From (4.6.8), using inequality (4.3.5) repeatedly, Holder's inequality with indices
p, p/(p —1) and the definition of, we obtain

N p/(p—1)
{ Z|ur<x)|2}
r=1

a \P/P—D
< (4_) (Nn)[’/([’—l)—l
n

2

n bi| 5
—uy (X1, ...yt ..., Xp)
D[ [agerten

i=1

2 p/(p—1)
dy; }
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a \P/=D
< (E) (Nn)l/(P—l)al/(P—l)

[

r=11li=1

a_tlur(xl,---,tiv---vxn)

2p/(p=1)
dt,'} . (4.6.9)

Integrating both sides of (4.6.9) ovBrand using the definition af we have

N p/(p=1)
A
B =1

o \P/(P=D V-1 N (n
() S

r=11i=1

2p/(p—1)
dx} .

(4.6.10)

B_xiur(x)

From (4.6.10), using inequality (4.3.5) repeatedly, Holder’s inequality with in-
dices 2n(p — 1)/p, 2m(p — 1)/(2m(p — 1) — p) and the definition otx, we

obtain
N p/(p=1) 2m(p-1)/p
[ / [z,u,<x)|z} dx}
Bl,=1

a \P/P=D 2m(p—1)/p
(g

4n
2p/(p—1) 2m(p-1)/p
dx } }:|

N n
=l
a \P/P=D 2m(p=1)/p
{(4_) (Nnot)l/(p_l)a} (Nm)2n(r=D/p=1

r=1li=1
N 9 2p/(p—1) 2m(p=1)/p
X Z ‘ﬁur(x) dx}
1

B_JC[Mr(x)

r=1

o /(p— D 2m(p=1)/p
{ <_ ( Nnot)l/(p_l)a} (N2 p-D/p-1
4

( (2m(p - p)/pZ{Z/'iur(x) 4mdx}
dx;

r=11li=1
dx. (4.6.11)

4m
3_xi uy(x)
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The proof of Theorem 4.6.1 is complete.
From the assumptions on the functiangx) in Theorem 4.6.2, we have the
following identities

nuz(x) 22[ uy(x1, ..., 4 ...,x,,)aitiu,(xl,...,ti,...,xn)dt,',
(4.6.12)
nu?(x) = —22/ (V1 By o Xn) 5 9 Up(X1s oo by ey Xn) Oy,
at;
(4.6.13)
forr=1,..., N. From (4.6.12) and (4.6.13), we observe that
n|ur(x)‘ Z/ |ur(x1,... x,,)| 9 —up (X1, ..y by, x|
a1,
(4.6.14)

From (4.6.14), using inequality (4.3.5) repeatedly, Holder’s inequality with in-
dicesp, p/(p — 1) and the definition of,, we obtain as in (4.6.9)

N p/(p=1)
{Z|ur(x>|2>
r=1

1\ P/(r=1
< (_) (Nna)l/(Pfl)
n

N n b;
XZ(Z{/ |:|ur(xl,...,ti,...,xn)|
r=1\i=1""4%

(xl»---»tis---sxn)

p/(p—1)
i| dr; }) (4.6.15)

Integrating both sides of (4.6.15) ovBrand using the definition af, we have

N p/(p—1)
A
Bl,21

1\ P/(P=D
< <_> (Nna)l/(p_l)a
n

l
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N (s 9 p/(p=1)
XZ{Z{/BDW(W‘B—MW(M} dx}}. (4.6.16)

r=11i=1
From (4.6.16), using inequality (4.3.5) repeatedly, Holder’s inequality with in-
dices 2n(p — 1)/p, 2n(p — 1)/(2m(p — 1) — p) and the definition ofx and
following the same steps as in the proof of inequality (4.6.11) we get the required
inequality in (4.6.3). The proof of Theorem 4.6.2 is complete. O

In our further discussion, we make use of the following fundamental result. In
what follows, an open, simply connected, boundedssef points inR” is said
to be a normal domain iB admits the application of the following Gauss integral
theorem (see [149, p. 49)).

On the set of boundary poinise B with B = B + 9 B (union of B andd B)
there is a real-valued vector field

1/2
z2(x) = (z2(x), ..., za(x))  with |z] = {Zzz(x)} =1

such that, for all complex-valued(x) = w(x1, ..., x,) € CX(B),
d
/ —w(x)dx = wx)z;(x)ds, i=1,...,n, (4.6.17)
B 0x; 3B

where d = dx; --- dx, is the volume element and dhe surface element corre-
sponding to B.
The following inequalities are also established in [276].

THEOREM4.6.3. Let B be a normal domain in R” with boundary 3 B and B =

B+0B.Letm>1, p>2bereal constantsand u,, r =1, ..., N, bereal-valued
functions such that u,, {3, |u,[2}?/%?=V e C1(B). Then

N r/(p—1) 2m(p—1)/p
2
B =1
p/(p—1) :|2m(p—1)/p

N
2
<k E , d
3”:'/33:r:1|u (X)| ’

N n om 9 2m
+ r o 4r
;/B;W )] ‘axi” (x)

dx}, (4.6.18)
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where
ks = max{ 221(p=1/p=1(25)2n(p=D/p
22m<p1)/p1<@)2m(p_1)/p (”(P - 1)>_2m/6
n 45
8 (D(B))(Zm(P1)P)/P(Nn)2m—l}7
inwhich § = max{|x1], ..., |x.|} and D(B) isthe n-dimensional measure of B.

THEOREM 4.6.4. Let B be a normal domain in R” with sufficiently smooth
boundary 9B and B = B + 9B. Let a;(x) € CX(B), i = 1,...,n, be aux-
iliary functions such that «;(x) = z;(x) for x € 9B. Let m > 1, p > 2 be
real constants and u,, r = 1,..., N, be real-valued functions such that u,,
2 lur ()22~ € C1(B). Then

N p/(p—1) 2m(p-1)/p
|:'/ {Z|ur(x)|2} ds:|
9B

r=1

N p/(p=1) 2m(p—1)/p
NS
Bl

N n
om| 0
+;/B;|ur(x)| '8—xiur(x)

2m
dx}, (4.6.19)

where

’

2c1cP 2m(p-1)/p
kg = max{zz’"(pl)“’l<60+ L )

p—1
22m(p=1)/p (2C1C—p/(p—l))2m(l’—1)/l’

in which D(B) isasin Theorem4.6.3,c > 0 isan arbitrary constant and

, c1= sup {Sup|oci(x)|}.

i=1,...,n"‘xeB

29
co= Sup{z aai (x)

xeB i=1 i
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PROOFS OF THEOREMS 4.6.3 AND 4.6.4. If we set w(x) = x; X
(XN Ju,(x)12)?/(P=D in Gauss integral formula (4.6.17), then we have

p/(p=1)

N p/(p=1) N
/B{;M(MZ} dx = /;sz'{;|ur(x)|2} zi (x) ds

p N 5 p/(p—D-1
‘fo’(p_—l){Z'”’(x)' }

r=1

N
x Zz|u,(x)|a%u,(x)signu,(x)dx

r=1
(4.6.20)
fori =1,...,n. From (4.6.20) we observe that
N 5 r/(p—1)
n/{2|ur(x)| } dx
B ;=1
n N 5 p/(p—=1)
:/ {in{2|ur(x)| } zi(x)}ds
Bliz1 L=1
_
p—1
n N /(p-1) N 3
2 .
X X; u,(x uy (x)|—u,(x)signu, (x) } dx.
/B{g [Z_;! <)|} ;! Sl gnu, (x)
(4.6.21)

From (4.6.21), the definition &f and the fact thaly; (x)| < 1fori =1,...,n, we
obtain

N p/(p—1)
n/ {Z|u,(x)}2} dx
B r=1
N ) r/(p=1)
<né r d
n /aB{rZ_yu (x)‘ ] s

208 N /(-1 N n
+ 2 {Z|ur(x)|2} Z{|ur(X)|Z

p=1Js\;= r=1 i=1

0
8—xiu,(x) } dx.

(4.6.22)
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From (4.5.22) and using the following version of Young’s inequality

1 -1 _
didy < ;Spdlp + <p7)g_l’/(l7—1)dé’/(1’ 1)7 (4.6.23)

wheredy, d> >0, p > 2, ¢ > 0, and setting = {n(p — 1)/(48)}¥/7, we observe
that

N r/(p—1)
n/ {Z|u,(x)|2} dx
B2
N ) p/(p—1)
<nd r d
n AB{;W (x)| } s
208 1 r/(p=1)
2 ) o]

p—1
p—1\(np =\ "D
()

N r/(p—1)
x {Zhur(x) Z ” :|dx. (4.6.24)
=1

r=1

—ur(x)

From (4.6.24) we observe that

N p/(p—1)
ot
B =1
N p/(p—1)
<28/ {Z|ur(x)’2} ds
9B

r=1
45 (n(p — 1) -1/(p-1) N
+7< 25 ) /32

From (4.6.25) and using the following inequality repeatedly,

n k n
{Zai} <My Yy af, (4.6.26)
i=1 i=1

p/(p=1)
” .

(4.6.25)

a—xiur(x)
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whereq; are nonnegative reals ardy , = k1 k> 1, M,=10<k<1,

Hélder's inequality with indicesi2(p — 1)/p, 2n(p — 1)/(2m(p — 1) — p), we
observe that

N p/(p—1) 2m(p—1)/p
[/{Z\u,(x)E} dxj|
Bl,=1

< 22m(p=1)/p-1

N p/(p—1) 2m(p—1)/p
x {(23)2’"0’—1)/!’ [/ iZ]ur(x)\z} ds]
B

r=1

N {45 <n(p _ 1)>—1/([7—1)}2Wl([7—1)/17

n 45
p/(p=1) 2m(p-1)/p

N n
Tl
Bl=1 i=1
N ) p/(p—1) 2m(p=1)/p
< 22n(r=1/p=1 25y2n(p=1)/p / . d
| [ fguor]

+22m(p71)/p71 45 (n(p — 1) =1/(p=1)y2m(p—-1)/p
45

n

(2m(p—1)—p)/(2m(p-1))
=
B

sl

r=

0
a_x,»”’(x)

ad
a—xiur(x)

2m p/@2m(p—1)2m(p—1)/p
N p/(p—1) 2m(p—1)/p
<22"“”1>/P1<28>2'"<P””’[/ {Z|u,<x)|2} ds:|
B | ;=1

+22m(p71)/p71 45 (n(p — 1) =1/(p=1)y2m(p—-1)/p
n 45

2m
dx.

N n
n(p—1)— _ 0
y (D(B))(z’ (P=D=P)/P (pyy2m 12/32\%()6”2”[’8”%()6)
r=1 i=1 !

(4.6.27)
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From (4.6.27) and the definition &8, the desired inequality in (4.6.18) follows.
The proof of Theorem 4.6.3 is complete.

From the hypotheses of Theorem 4.6.4, siBdeas sufficiently smooth bound-
ary, we have auxiliary functionsg (x) = z; (x) for x € 9B (see [149, p. 69]). Then,
by making use of formula (4.6.17), we have

N r/(p=1)
/ {Z|ur(x)|2} ds
3B

r=1

n N p/(p=1)
:/ {Zziz(x)}{zwr(x)}z} ds
3B | =1 r=1
n N p/(p—1)
:/ {Zai(x){zwr(x)}z} zi(x)}ds
B =1 r=1
5 n N 5 p/(p=1)
= ~ i r dx
e g fgeor] |
"oy N 5 p/(p=1)
:/B{Za—xjai(x)}{Z‘ur(xﬂ } dx

i=1 r=1

1/(p—-1
{Za, <x>{2|ur<x>|2}

r=1

X Z|ur(x)|—ur(x) Slgnur(x)} . (4.6.28)

r=1

From (4.6.28) and using the definitions®f c1, and Young’s inequality (4.6.23)
with ¢ = ¢, we observe that

N r/(p—1)
/{Z|ur(x)|2} ds
9B | =1
N p/(p—1)
<co/B{Z|ur(X)|2} dx

r=1

/(p-1) N
{ _ur(x)

+ 22 /{Zlurml } )3
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N p/(p=1)
<co/B{Z|ur<x)|2} i

r=1

2per 1 N ) p/(p—1)
et ZoP
+p_1/3[pc {;yuroc)\ }
+ (p__l)cp/(Pl)
p
x|
oene p/(p—1)

:(CO 1 )/{Z]u,(x)} } dx

N
+2c1c*P/(P*l)/ {Z{|u,
B

r=1

—ur(X)

It

p/(p=1)
” dx. (4.6.29)

From (4.6.29), using inequality (4.6.26) repeatedly, Holder’s inequality with in-
dices 2n(p — 1)/p, 2n(p — 1)/(2m(p — 1) — p) and following the same steps

as in the proof of inequality (4.6.27) with suitable changes, we get the desired
inequality in (4.6.19). The proof of Theorem 4.6.4 is complete. O

a_xiur(x)

The inequalities in the following theorems are established by Pachpatte
in [289].

THEOREM4.6.5. Let B be a normal domain in R" with boundary 9 B and B =
B+0dB.Letu,,r=1,...,m, bereal-valued functions belonging to C1(B). Then

m 1/m m m
2 dr < / 2(x) ) d / duy ()[% | dx |,
/B|:l_[ur(x)] [x /,L|: 3B(X:ur(x)> s + B(Zygra ] (x)|

r=1 r=1
(4.6.30)
where .« = max{ %, 2} s — max(|xal, ..., |xl).

REMARK 4.6.3. In the special case when= 1 andu1(x) = u(x), inequality
(4.6.30) reduces to the following inequality

/uz(x)dx <M1|:/ uz(x)ds—l—/ |gradu(x)|2dxi|, (4.6.31)
B IB B
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whereu1 is the constant defined hy whenm = 1. An inequality closely related

to (4.6.31) in which the multiplicative constant on the right-hand side is different

was first used by Friedrichs (see [392, p. 242]) to study the problem of bounded-
ness from below of a differential operator and is now known in the literature as
Friedrich’s second inequality.

THEOREM 4.6.6. Let B be a normal domain in R” with sufficiently smooth
boundary 9B and B = B + 9B. Let o (x) € CX(B), i = 1,...,n, be auxiliary
functionssuch that o;; (x) = z; (x) for x € 9B. Letu,,r =1, ..., m, bereal-valued
functions belonging to C1(B). Then

m 1/m
/ |:l_[ uf(x):| ds
Bl ;-1

< k[/g (Zuf(x)) dx + /B<§|gradu,(x)|2> dx:|, (4.6.32)

r=1

where A = maxX{coc + <&, €44} ¢ > Oisarbitrary constant and

mc’ m

, c1= sup {sup|a,-(x)|}.

i=1,...,n ‘xeB

co= Sup{z iai (x)

0X;
xeB i=1 i

REMARK 4.6.4. We note that in the special case whes 1 andu1(x) = u(x),
inequality (4.6.32) reduces to

f ul(x)ds < M/ [uz(x) + ‘gradu(x)}z] dx, (4.6.33)
9B B

wherei; is the constant defined Bywhenm = 1. The inequalities of the forms
(4.6.33) are established by many authors by using Trace theorem in interpolation

spaces (see, e.g., [154]). For different forms, see [149,208,392] and the references
given therein.

PROOFS OFTHEOREMS4.6.5AND 4.6.6. If we setu(x) =x,-u§(x) in Gauss
integral formula (4.6.17), then we have

/uf(x)dxzf xiuf(x)zi(x)ds—f 2x;u,(x)iu,(x)dx (4.6.34)
B 9B B 0x;
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fori=1,...,nandr=1,...,m. From (4.6.34) we observe that

n/ uf(x)dx
B
:/ (Zx,-uf(x)zﬂx)) ds—/(ZZx u,(x) ur(x)) . (4.6.35)
B i1

Using the elementary inequality
1
|2ab| < ca® + =b°, (4.6.36)
C

wherea, b, ¢ are arbitrary real numbers ard> 0. Settingc = 25' we observe
that

a
—2xiup (x)—u;(x)| <8
8xl~

a
Zur(x)aur(x)

L A
<8 g+ (] |

2
= Zul(x) + 282{iu,(x)} ) (4.6.37)
2 ax,-

From (4.6.35), (4.6.37), the definition 6fand the fact thalz; (x)| < 1 fori =
1,...,n, we obtain

n/ uf(x)dx
B
gSn/ uz(x)ds+}n/u2(x)dx+282/ Xn:{iur(ﬂ}z dx.
0B 2 Jp " B\ = 1 9xi

=1
(4.6.38)

From (4.6.38) we obtain the inequality

2
/uf(x) dx <28/ ug(x) ds—i—ﬂ/ ’gradur(x)|2dx (4.6.39)
B 9B n Jp

forr=1,...,m. From (4.6.39) and the elementary inequality

m 1/m m
1
|:1_[arj| g - E ar, ar 2 Oa (4640)
r=1 mn r=1
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we observe that

m 1/m m
1
2 dxé _f 2 d
/B[Hur(x)} - B(gw)) x

r=1 1

< “[fa3<i”3(")> ds +/I;<i|gradu,(x)|2> dx:|.

r=1 r=1

The proof of Theorem 4.6.5 is complete.

From the hypotheses of Theorem 4.6.6, sikéas a sufficiently smooth
boundary, we choose auxiliary functiomgx) so thaty; (x) € C1(B) andw; (x) =
zi(x) for x € 9B (see [149, p. 69]), we have

/uf(x)ds
3B
:/ (Zziz(x)uf(x)) ds
9B\ =1

:/ (Zai(x)uf(x)zi(x)> ds
9B\ i=1

a
:/I;{Za—xl%(x)}uf(X)dx-i-A[ZZa,(x)ur(x) ur(x)}

i=1
(4.6.41)

Here, a suitable version of the Gauss integral formula (4.6.17) has been used to
get the last equality in (4.6.41). Using (4.6.36), Schwarz inequality for sums and
the definition ofc; we observe that

ZZa, (O (x) 5 — m(x)

i=1

Mr(x)

1 2
<eci|e +Eur(x)

(0 2 1
<ci|en {—u,(x)} + —uf(x):|. (4.6.42)
|: z=zl ox; c
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From (4.6.41), (4.6.42) and using the definitioncef we obtain

/ uf(x)ds < <C00+Cl>/ uf(x)dx—i—ccln/|gradur(x)|2dx. (4.6.43)
dB 4 B B

From (4.6.40) and (4.6.43), we observe that

m 1 m
2 d < _/ 2 d

A[A(gﬁ@))dx—i—/lg(g‘gradur(x)‘z) dxi|.

(4.6.44)

1/m

This inequality is the desired inequality in (4.6.32) and the proof of Theorem 4.6.6
is complete. O

For various other inequalities similar to that of Poincaré and Sobolev, see
[56,98,127,154,193,264] and the references given therein.

4.7 Some Extensions of Rellich’s Inequality

In his fundamental work on perturbations theory of eigenvalue problems F. Rellich
[396] established the following inequality:

20, 4 2
[ raupar > A [ e 02 R)
n 16 Rn

whereu (x) is a function inC5°(R" \ {0}) which is notidentically zeroC'3° denote
the vector space of infinitely differentiable functions with compact support (see
[3,p.9) andA =31, %

In this section we deal with extensions of inequality (R) established by
Pachpatte in [286,288]. In what follows, we assume #ias an open, connected

subset ofR” that is not necessarily bounded and that the bounajHry)f His suf-
ficiently smooth |n order that the Green formulas applies.\Let (ax1

ey m)
8x,,
andA =>" a Pl A point in R" is denoted by = (x1, ..., x,) and its norm

is given by|x| = (Z,:l Ixi1%)1/2. For any nonnegative integer, we denote by
C™(H) the vector space consisting of all functioggswhich, together with all
their partial derivativedD*¢ of order|a| < m, are continuous o and denote
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by C3°(H) the vector space of infinitely differentiable functions with compact
support (see [3, p. 9]).

We begin with the following useful inequalities established in [286].

THEOREM4.7.1. Let p >0, ¢ > 1 be constants, g € C2(H), Ag #0in H and
u € C3°(H) be areal-valued function. Then

/|Ag||u|f’+qu <p+q>4/ g4V |Vg [ ul?[Vult dv.  (4.7.1)

THEOREM4.7.2. Let p, g, g, u beasin Theorem4.7.1.Then

/ |AglulP*? dx
H
< (p+q)”*"/ |Ag|~ P+ v g PHa| vy |PHe . (4.7.2)
H
REMARK 4.7.1. If we takeg = [x|**2, « > 0 is a real constant, and hence

Vgl = (o + 2)2x|2t2 and Ag = (o + n)(a + 2)|x|% in (4.7.2), then we get
the following Hardy-type inequality (see [27, p. 303])

p+q
/|x| |u|P+f1dx<<p:[q) /|x|P+f1+“|W|P+’1dx. (4.7.3)
n H

The Rellich-type inequalities established in [286] are given in the following
theorems.

THEOREM 4.7.3. If p, ¢, g, u be asin Theorem 4.7.1,then for any constants
§>0,¢e>0,

/|Ag|—<q—1>|g|q|u|f’|Au|‘fdx
H
> -1 Yq(p +q — 1) sgnAg) / glul?t172|vu 2 dx
H
)
—s‘f—l"—/ 1Ag] 4D |V g|?u|?| Vil dx
P+qJu

—i—eq_ll:quq—(q—l)s—i- / |[AgllulPtdx. (4.7.4)

(p +q)q+1}
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THEOREMA4.7.4.1f p, q, g, u, 8, ¢ beasin Theorem4.7.3,then

[ 138l g A
H
> - D(p 4 q)(p +q — 1) sgnAg) f glul?T472|Vu 2 dx
H

_ E(P-Hl—l)(;f |Ag|—(l7+q—1)|Vg|p+q|vu|p+q dx
H

8

(P+q-1)
+e 1-(p+g—-De+ ———
[ K A PR

}/ |Ag|lulPT9dx. (4.7.5)
H

REMARK 4.7.2. We note that in the special cases wpea 0, ¢ = 2 and using
the definition sgtAg) = Ag/|Ag|, inequalities (4.7.4) and (4.7.5) reduce to the
following inequality

/ |Ag1 7 gl?| Aul® dx
H

)
>—s/ [ZgAg+8|Vg|2]|Ag|—1|w|2dx+e[1—e+Z]f |Agllul® dx,
H H
(4.7.6)

which is established by Bannett in [21, Theorem 5]. By taking 0 andg = 4

in (4.7.4) andp = 2,9 = 2 in (4.7.5), we get the inequalities of the Rellich type.
Furthermore, by specializing the conditions png and the functiorg in (4.7.4)
and (4.7.5) we get different inequalities of some interest in their own right.

PROOFS OFTHEOREMS4.7.1AND 4.7.2. By applying Green'’s first formula to
Sy Aglu|P*4 dx, we have

/Ag|u|p+qu=—f VgV (julPt?)dx. 4.7.7)
H H
From (4.7.7) and using the definition, sgg) = Ag/|Ag|, the fact that

V(|ulP*9) = (p + ¢)|u|Pt9~1Vu sgnu, and applying Hélder’s inequality with
indicesq, q/(qg — 1), we observe that

/ |AgllulP* dr
H

=—sgr(Ag)/ VgV (lulP*)dx
H
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=—(p+q) sgr(Ag)/ VglulPT4 vy sgru dx
H
<@+ [ Vel ds
H

=P+ f [1agI7 @D glul /| Vul][| Ag| @D/ u|P 4177 /0] d
H

.’ 1/q (g=1/q
<<p+q>{fH|Ag|—‘q—>|Vg|"|u|”|wwdx} {/ngnuwdx} .
(4.7.8)

If [, 1AgllulPT9dx =0 then (4.7.1) is trivially true; otherwise, we divide both
sides of (4.7.8) by [}, [Ag||u|P*7 dx}~V/4 and then raise both sides of the
resulting inequality to the power, to get inequality (4.7.1). The proof of Theo-
rem 4.7.1 is complete.

From the hypotheses of Theorem 4.7.2 and by following the proof of Theo-
rem 4.7.1, we have

/IAgIIMI”+qu<(p+Q)/ Vgllue| P47 V| e
H H

—(p-+ ) [ [18g7 000 vg) 9]
H
x [|Ag|(p+qfl)/(p+q)|M|p+qfl]dx. (4.7.9)
Now, using Holder’s inequality with indiceg + ¢, (p +¢)/(p + g — 1) on the
right-hand side of (4.7.9) and following exactly the same arguments as in the last
part of the proof of Theorem 4.7.1 given above with suitable changes, we get the
desired inequality in (4.7.2). The proof of Theorem 4.7.2 is complete. O

REMARK 4.7.3. If we takeg, |[Vg|? and Ag as in Remark 4.7.1, in inequality
(4.7.9), then we get

x|%|u|P™ dx
H

<<P+C]>/ |x|a+1|u|p+q—1|vu|dx
a+n H

<P + CI> / [ @) 7 ][ | D/ ) ot Ly =1l
a+n H

(4.7.10)
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Using Holder’s inequality with indicep + ¢, (p +¢)/(p + g — 1) on the right-
hand side of (4.7.10) we get the following Weyl-type inequality (see [27, p. 303])

+
/le"‘lul”*qu< rra f|x|“+1|Vu|p+qu
H a+n H
(p+q=1/(p+q)
x {/ |x|a+1|u|p+4dx}
H

For a version of Weyl’s inequality in one independent variable, see [25].

}1/(p+q)

(4.7.11)

PROOFS OFTHEOREMS 4.7.3 AND 4.7.4. LetA, B, C, D denote integrals
(without the exterior constants) in (4.7.4) successively. Applying Green’s second
formulato [, Aglu|?*? dx we have

f Aglu|PT9 dx =f gA(JulP*9) dx. (4.7.12)
H H
Using the definition, sgmg) = Ag/|Ag| in (4.7.12), we observe that
Dzsgr(Ag)/ gA(JulP*?) dx. (4.7.13)
H

Using the fact that

A(lul”™) = (p + @lulP T Ausgnu + (p + @) (p + g — Du|" 72| Vu?
(4.7.14)

in (4.7.13) we have
D =sgnAg)(p +q) f glul”t 1 Ausgnu dx
H
+sgrmg><p+q><p+q—1>/Hg|u|l’+‘f—2|w|2dx
<(p+q)/HIgllul”*"*llAuIdx+(p+q)(p+q—1)Sgr(Ag)B

=(p +q>/ [1Ag17 @D/ g julP/?| Aul][| Ag| =@~/ P a7/ dy
H

+(p+q)(p+q9—1)sgnAg)B. (4.7.15)

Now, first applying Holder’s inequality with indices ¢ /(¢ — 1) on the right-hand
side of (4.7.15) and then using Young’s inequality with indigeg /(g — 1), we
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see that

L 1/q q-D/q
D<(p+q>{/ i >|g|q|u|"|Au|‘1dx} {/ |Ag||u|"+qu}
H H

+ (P +9)(p+q—1DsgnAg)B
= (P +@)AYIDIV 4 (p+q)(p + 9 — 1) SgAL) B
=(p+ q)(g—(q—l)/qu/q)(8(q—l)/qD(q—l)/q)

+ P+ (p+q—1DsgnAg)B

< <p+q)8_(q_1>A+ Pt+eoq-1 .
q q

+ (P +9)(p+q—1)sgnAg)B (4.7.16)
for ¢ > 0. Now, for anys > 0, from (4.7.1) we observe that

8

8C — ——
(p+q)

Combining this fact with (4.7.16) we have

~1
D< (p+q>8<q1>A+ P+alg-1 .
q q

+ P+ (p+qg—1sgnAg)B +3C — LD (4.7.17)
(p+q)1

forall ¢ > 0 ands > 0. Rewriting (4.7.17) we get the desired inequality in (4.7.4).
The proof of Theorem 4.7.3 is complete.

In order to prove Theorem 4.7.4, lat B, C, D denote the integrals (without
the exterior constants) in (4.7.5) successively. By following the arguments in the
first part of the proof of Theorem 4.7.3, we have

D < (p +q)f lgllul?T = Auldx + (p + q)(p + g — 1) sgn(Ag) B
H

=(p+ 6])/ [|Ag|—(P+q—1)/(P+f1)|g||Au|][|Ag|(P+q—1)/(P+fJ)|M|P+!1—1] dx
H
+(+q9)(p+qg—1)sgnAg)B. (4.7.18)

Now, first using Holder’s inequality with indices+q, (p +¢)/(p +q — 1), then
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Young’s inequality with indicep + ¢, (p +¢)/(p +¢ — 1) on the right-hand side

in (4.7.18), inequality (4.7.2) and following closely the arguments in the proof
of Theorem 4.7.3 with suitable modifications, we get the required inequality in
(4.7.5). The proof of Theorem 4.7.4 is complete. O

REMARK 4.7.4. If we specialize inequalities (4.7.4) and (4.7.5) by putting
Ix|%t2, o > O real, and henceg|? = (o +2)2|x|2 12, Ag = ( +n)(a +2)|x|%,

we get some new inequalities similar to that of inequality given by Bennett [21,
p. 992].

The following inequality established in [288] is needed in proving the next
theorem.

THEOREM4.7.5. Let p > 2 beaconstant, g € C?(H), Ag #0in H and u, €
Cy°(H), r=1,..., N, bereal-valued functions. Then

N p/(p=1)
[ 131 > uf? dx
H r=1

2p/(p—=1)
o
p—1

N p/(p=1)
x/H|Ag|—(p+1)/(p—l)|Vg|2p/(p—1){ZWLMZ} dv. (4.7.19)
r=1

PROOF By applying Green’s first formula tg,, Ag{>"~ ; |u,?}?/*~V dx and
using the definition, sgi\g) = Ag/|Ag|, we observe that

N p/(p=1)
/H|Ag|[Z|ur|2] dx

r=1

N p/(p=1)
:—sgrrAg>/HVgV{Z|ur|2} dr

r=1
</ Vgl
H

N r/(p=1)
V{Z |ur|2}
r=1

dx. (4.7.20)
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By simple calculation, it is easy to see that

N p/(p=1) 2p (p+1)/(p=1)
V{sz} <( ){sz} {Dvmz}
r=1

(4.7.21)
Using (4.7.21) in (4.7.20) and applying Hélder’s inequality with indiceg@ +
1), 2p/(p — 1) we have

N p/(p=1
f |Ag|{2|ur|2} d
H r=1

2p N (p+1)/(2(p-1))
< == Ag|PTD/(2p) 12
(p—1>/y{| s 2 el

r=1

N 1/2
x[mgr("*”/(z”’w{waz} ]dx

r=1

Gl flEr] )

N r/(p—1) (r—1)/@2p)
{/ |Ag|™ (p+D/(p— l)|vg|2P/(P 1){Z|VM |2} dx} )
r=1

1/2

(p+D/(2p)

(4.7.22)

If [y 1AgH N lur |2}/ P~ dx = 0, then (4.7.19) is trivially true; otherwise,
we divide both sides of (4.7.22) b/, [Agl{30 1 lu, |27/ P=D dx)(r+D/@p)
and raise both sides to the poweas/2p — 1), to get the inequality (4.7.19). The
proof is complete. a

The Rellich-type inequality established in [288] is given in the following the-
orem.

THEOREM4.7.6. Let p, g, u, be asin Theorem 4.7.5.Then for any constants
§>0,¢>0,

p/(p—1)
/ |Ag|™ (p+1)/(p— l)|g|2/7/(/7 1){Z|AM’ } dx
r=1



4.7. Some Extensions of Rellich’s Inequality 453

[ 4
> —¢ &
p—1

p/(p=1)
/ | Ag|~Y/P=D | g/~ D{ZW” | } d

r=1

—1/(p—1)}

p/(p—1)
_58/ | Ag|~(PHD/ =Dy g 2/ (= D{ZWM |2} e
r=1

4 de 2p —2p/(p-1)
+g[1_g _ . +5( ) ]
p-1 (p-1 p—-1

N p/(p=1)
/ |Ag]| {Z } dr. (4.7.23)

PROOF Let A, B, C, D denote the integrals (without the exterior constants)
in (4.7.23) successively. Applying Green's second formula figAg x

(XN lu,12y?/P=D dx and using the definition, sgng) = Ag/|Ag|, we ob-
serve that

N p/(p—1)
_sgr(Ag)/ gA{ |u,|2} dr. (4.7.24)
r=1

By the simple partial differentiation, we have the following identity

N r/(p—1)
A{Z |ur|2}

/(-1 N

N
2
= (—pl){sz} > lur|Auy sgru,
P r=1

r=1
Y- N

N
= <%){Z|ur|2} > 1V, 2 sgru,
r=1

r=1

N =p+2/(p=D »n (N 2
o Nisz} Z{Zw sgnur}.

i=1lr=1
(4.7.25)
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Using (4.7.25) in (4.7.24) and applying Schwarz inequality for sum we see that

N }1/(p—1) N

< (pz—fl)/ngl{Zlurlz > lurl| Ay dx

r=1 r=1

N }1/(17—1) N

*(%)/H'g'{zlurlz >V P

r=1
+— |g|{ > lurl?
2
(p 1) i

Bl

i=1

} (=p+2)/(p—1)

ou,

)dx. (4.7.26)

i

Let I1, I, I3 denote the integrals (without the exterior constants) on the right-
hand side in (4.7.26) successively. From the definitioh @nd applying Young's
inequality with indicesp, p/(p — 1), Schwarz inequality first for sum and then
for integrals, we observe that

r N 1/(p—1) N
11=/ |Ag|1“’iZ|ur|2 1AgI7YP1gl > lur | Auy | | e
H L r=1

r=1
'1 N 1/(p-1)
< [ | iaelf >
H_p r=1

p—1 N p/(p—1)
+ <T>|Ag|—1/<P—1>|g|P/<P—1>iDurnAm} }dx

r=1

1 ~1
<ips (P_)/ | Ag| =YD P/(P=D
p p H

N 12 ¢ N 1/2y p/(p—1)
x “sz} :mez} } dx
r=1 r=1
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N p/(2(p-1)
x/ [mgﬁ/Z{DurF} ]
H r=1

N p/2(p—-1)
x |:|Ag|—([7+1)/(2([7—1))|g|[’/([7—1) {Z IAur|2} j| dx

r=1
1 p—1 N p/(p=1) 1/2
< —D+(—) f 1AgI] > lurl? dx
p p H —_
N r/(p—1) 1/2
x {/ |Ag|—(p+1)/(l7—1)|g|2P/(P—1){Z|Aur|2} d_x}
i r=1
1 -1
— D+ (p—>Dl/2A1/2. (4.7.27)
P p

Rewriting I> and applying Young’s inequality with indicgs p/(p — 1) we have

12=fH[|Ag|1/”{:Zlmrﬁ}1/(p_l)][|Ag|—1/p|g|{iwmz”dx

r=1
1 N r/(p—1)
< [ Z1ag Y
R
p—1 N p/(p—1)
+ (T)|Ag|—1/“’—1>|g|”/<”—l>{Z |Vur|2} ]dx

r=1

_ipg <”—_1>B. (4.7.28)
p p

Rewriting I3 and applying Holder’s inequality with indicgs p/(p — 1) we have

Iszﬁ[[mgﬁ“’{imrﬁ}l/(pD}[|Ag|—”l’|g|{imrﬁ”dx

r=1 r=1

N p/(p=1) 1/p
< !/ |Ag|=2|ur|2} dx}
H r=1
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N r/(p=1) (p=1)/p
% i/ |Ag|—1/(17—1)|g|17/([7—1){Z|Vur|2} dx}
H

r=1
= pYrpr=V/p, (4.7.29)
Now, using (4.7.27)—(4.7.29) in (4.7.26) and applying the elementary inequality

2ab < a® + b? (a, b reals) and Young’s inequality with indices p/(p — 1), we
observe that

D< <L>D L opY2AY2 L op 4 AP g1/
p-1 (p—12
4

- <—1> D +2(Y2DY?)(e71/2AY?) 1 2B
b

(piipl)z (VP DY/P) (7P pr—DP)

4 1 ap 1 1
< (—)D +eD+-A+2B+—L [—sD + (p—)el/@l)za}
p—1 & (p—DLp p

4 4¢ 1 4
= e+ — 4+ = D+—A+[2+78‘1/(1"1)}B 4.7.30
[ p—-1 (p—l)z} 3 (r—1 ( )

for e > 0. Now, for anys > 0, from (4.7.19) we observe that

2p =2p/(p—1)
§C — 8(—1> D>0. (4.7.31)
p—

From (4.7.30) and (4.7.31), we have

D<|e+ 4 + 4e D + lA
X |€ -

p=1 (p-1?2 &

4 2 —2p/(p—1)
+ [2+ 8—1/0’—1)}3 +5C — 3(—”) D (4.7.32)
(p—D p—1

for all ¢ > 0,8 > 0. Rewriting (4.7.32) we get the desired inequality in (4.7.23).
The proof is complete. O

REMARK 4.7.5. We note that in the special cases, whenMix 1, u1 = u,

(i) N=1,u1 =u and p = 2, inequality (4.7.23) reduces to the new inequali-
ties. If we specialize inequality (4.7.23) by takidég= 1, u1 = u and then by
putting ¢ = |x|**2, « > 0 real constant, and hen¢¥g|? = (o + 2)%|x|%**2,
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Ag = (e +n)(a + 2)|x|*, we get an inequality similar to that of inequality given
by Bennett in [21, p. 992]. For other extensions and variants of the Rellich in-
equality, see [8,191,387,396,403] and some of the references cited therein.

4.8 Poincaré- and Sobolev-Type Discrete Inequalities

Discrete inequalities involving functions of several independent variables and
their forward differences have been investigated by many authors in the litera-
ture. This section deals with the Poincaré- and Sobolev-type discrete inequalities
established by Pachpatte in [269,275,285].

In what follows R denote the set of real numbers aNd= {1, 2,...}. For
x =(x1,...,x,) € N* andz(x):N" — R, we define the forward difference op-
erators byA1z(x) = z(x1 + L, x2, ..., x4) —2(x), ..., Apz(x) = z(x1, . . ., Xp—1,
xp + 1) — z(x). The notationA;z(x1, ..., yi,...,xp) fori =1,...,n we mean,
fori =1, itis A1z(y1,x2, ..., xp) = z(y1 + L, x2, ..., %) — z2(¥1, X2, ..., Xpn)
and so on, fori =n, itis Ayz(x1,...,%—1, Yn) = 2(x1, ..., Xp—1,¥n + 1) —
z(X1, ..., Xp—1, yu). Let B=T]/_4[1, a; + 1] be a bounded domain iN" with
n > 1 as an integer.

We denote by (B) the class of functions(x) : B — R for which

z2(Lxo, ... xp) =2(x1, L, x3, ..., xp) =+ =2(x1, ..., X3-1, 1) =0,
zlar+1,x2, ..., xp) = z2(x1, a2+ 1, x3, ..., xp)
:---:Z(,Xj]_,...,xn—l,an+1):O'

Fory = (y1,...,y,) andz(x): B — R, we use the following notations

an ay n 1/2
Zz(y) — Z Z Z(V1s v vs Y)s |Az(x)| = <Z|Aiz(x)|2) .

B yn=1 y1=1 =1
Throughout, the empty sum and product are taken to be 0 and 1, respectively.
The following Poincaré-type discrete inequalities are established in [269].
THEOREM 4.8.1. Let p,, > 2 be constants and u,, € F(B) for m =1,...,r.
Then

r

r 1/” 1 o %Z:;l=lp’
Z<H|um(y)|pm) g;(f) Z<Z|Aum()’) pm),
B m m=1" B

=1

(4.8.1)

wherea = max{ay, ..., a,}.
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REMARK 4.8.1. Inthe special case wheg- 1, inequality (4.8.1) reduces to the
following Poincaré-type discrete inequality

1 p1
> luam|™ < ;(%) > | Aua ()] (4.8.2)
B B

in n independent variables.

THEOREM4.8.2. Letu,, € F(B)form=1,...,r. Then

(Z[ l_[ \um(y)|]1/r)2 < (”Z;z)mi:l(;mmy)\z), (4.8.3)

B Lm=1

wherea isasin Theorem4.8.1.

REMARK 4.8.2. Inthe special case wheg= 1, inequality (4.8.3) reduces to the
following Poincaré-type discrete inequality

2 a2
<Z|u1()’)|) < (I)
B B

in n independent variables.

(4.8.4)

PROOFS OFTHEOREMS4.8.1AND 4.8.2. Sincey,, € F(B), we have the fol-
lowing identities

Ny (x) = Z{ZAum(xl,...,y,-,...,x,,)}, (4.8.5)

i=1ly;

num(x):—Z{Xl: A[um(xl,...,yi,...,xn)}, (4.8.6)

i=1 Lyi=x;

form=1,...,r. From (4.8.5) and (4.8.6), we obtain

’um(x)| Z{Z|A um(xl,...,y,-,...,x,,)‘} (4.8.7)

i=1y;

form=1,...,r. From (4.8.7) and using the elementary inequality

k 14 k
{Zbi} gd%k(Zb}’) (4.8.8)
i=1 i=1
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whereb; > 0 reals,d, , = k71, y > 1, anddyx =1, 0< y <1, Holder's in-
equality with indicesp,,,, pm/(pm — 1) and using the definition af, we obtain

Pm Pm
|um(x)|p'” < <—) np’"_lz{ZM um(xl,...,yi,...,x,,)|}

i=1y;

At

i=1

{Z|A um(xl,...,yi,...,xn)|pm}. (4.8.9)

Vi

From (4.8.9) and using the elementary inequality

r 1/r 1 r
{ [1 bm} <= b, (4.8.10)
r
m=1 m=1

whereb,, > 0 reals and > 1, we obtain

r 1/r
(]‘[|um(x>|”'">

m=1

1Nxr
72m= Pm
< i(l) R T) SRR

~
nr\ 2

Z{Z{Z|Azum(n,~-,yi,...,xn)|”’”}}. (4.8.11)

m=11i=1 ly;

Settingx; = y;,i =1,...,n, in (4.8.11) and taking the sum over both sides of
(4.8.11) with respect tgs, . .., y, on B and using the definition af and inequal-
ity (4.8.8) withy =2/p, <1 we have

S(fimeor)

B m=1

1N
;Zm: Pm -
< i(l) BT SRR

~
nr\2

Bl {[Eeor ]

B i=1

1 o %Z:n:lpm r »
<G)E) T Dlemor)

m=1" B
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The proof of Theorem 4.8.1 is complete.
From the hypotheses of Theorem 4.8.2, we have inequality (4.8.7). From
(4.8.7) and using inequality (4.8.10), we obtain

Lljlbm(x)q”’ < (%) Z{Z{Zm um(xl,...,y,»,...,xn)\“.

m=11i=1 ly;
(4.8.12)

Settingx; = y;, i =1,...,n, in (4.8.12) and taking the sum over both sides of
(4.8.12) with respect tg, ..., y, on B, using the definition ofr, then taking

the square on both sides of the resulting inequality, using inequality (4.4.8), first
with k =r, y = 2, and then withkk = n, y = 2, Schwarz inequality and again the
definition ofa we have

(o)

S

m=1

Sy
!

(

() g peeolf
ol pfreol |
(ki Reeerl)
(&) Efgot]

This inequality is the required inequality in (4.8.3) and the proof of Theorem 4.8.2
is complete. |

The following discrete inequality is established in [275].

THEOREM 4.8.3. Let p, ¢ > 2 be constants such that 1 + = =1 and suppose
that u, v € F(B). Then

AP A4
<= |Au |+ =
§B »leml < B| "+ 2

(4.8.13)
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where A = /2, inwhich « = maxas, ..., a,}.

REMARK 4.8.3. Ifwe taket = v = f andp = ¢ = 2in (4.8.13), then we get the
following Wirtinger-type discrete inequality imindependent variables

2
Yol < S Ylarml (4.8.14)
B B

PROOF OFTHEOREM 4.8.3. From the hypotheses, it is easy to observe that the
following identities hold

nu(x) = Z:ZA u(xl,...,y,-,...,xn)}, (4.8.15)

i=1y;
n a;
nu(x) = —Z{ Z A,-u(xl,...,yi,...,xn)}. (4.8.16)
i=1lyi=x;

From (4.8.15) and (4.8.16), we observe that

Zn‘u(x)’ Z!Z‘A u(xl,...,yi,...,xn)|}. (4.8.17)

i=1y;

Similarly, we obtain

2n‘v(x)| Z Z|A v(xl,...,yi,...,xn)|}. (4.8.18)

i=1\ly;=
From (4.8.17), (4.8.18) and using the elementary inequality

1 1
biby < =b7 + =b3, (4.8.19)
p q

whereby, by >0, p > 1 and% + % =1, we obtain

P
’u(x)||v(x)‘ { |:Z Z‘A u(xl,...,yi,...,xn)|}:|}

i=1\ly=

11| & & !
+_{Z[Z{Z|A,~v(xl,...,yi,...,xn)|H}. (4.8.20)

i=1ly;=1
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From (4.8.20) and using the elementary inequality (4.8.8), Holder’'s inequality
with indicesp, p/(p — 1) andgq, ¢q/(q¢ — 1), we obtain

1 1 p n a; P
(o) Jvo)] < ;(Z) n”‘lz{ZIAiu(xl,--.,yl-,...,xn)|}

i=1ly=1

T Y vl Do I ]

9 i=1y;

) ey

i=1

{Z|A,u(x1,...,yi,...,xn)|p}

i

11\ 1 v - q
+—<Z> n? o~ Z Z|A,~v(x1,...,y,-,...,xn)| )

q i=1 ly;=1
(4.8.21)

Settingx; = y;, i = 1,...,n, in (4.8.21), taking the sum over both sides of

(4.8.21) with respect tg1, ..., y, on B, using the definition o& and the suit-
able applications of (4.8.8) we get

> ||

<%<Z> ;{im u<y>|”}+—<—> ;{é\mv(w}
&) sl fEer] |

1 2/qy4q/2
A sl
l’lq 3
<=3%a ”+— A a
pZle u(y)| o %] v(y)|

This inequality completes the proof of Theorem 4.8.3. O

The discrete inequalities in the following theorems are established in [285].
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THEOREM4.8.4. Letu, € F(B)forr=1,..., M andletm >1and p > 2 be
real constants. Then

M p/(p=1)q2m(p=1)/p M n
[z{z\uw} } LYY A, 4822)
B Ur=1 r=1 B i=1

where

n\4

LN o1 (ptamion 2
ki = < ) V2L (pm-2nm—m)~2nm)/p

REMARK 4.8.4. If we takem =1 in (4.8.22) then we get the inequality anal-
ogous to the discrete version of the inequality of the form given by Lieb and
Thirring in [193]. On takingy, (x) =u(x) forr=1,..., Mandm =1, p=21in
(4.8.22), we get the following discrete Poincaré-type inequality

1\ =
Y Juol* < —(%) DI (4.8.23)
B n B i=1
THEOREM4.8.5. Let u,, m, p beasin Theorem4.8.4.Then

M p/(p—D2m(p-1)/p
[Z{ZWMZ} ]

B r=1

M n M n
<k2 Y3 N Jaiue ™ k3 Y03 e )P A ()"

r=1 B i=1 r=1 B i=1
(4.8.24)
where
1
kZ — ZM2m—la(p(2m+2nm—n)—2nm)/p’ k3 — 22mk2.

REMARK 4.8.5. In the special case when=1, p = 2 andu,(x) = u(x) for
r=1,..., M, inequality (4.8.24) reduces to the following discrete Sobolev-like
inequality

2 n 2 2 n
Yo < 53 amm|* + == 3w Pam]’. - 4.8.25)
B

B i=1 B i=1
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PROOFS OFTHEOREMS4.8.4AND 4.8.5. Sincet, € F(B), we have the fol-
lowing identities

n xi—1
nur(x):Z{ZA,-u,(xl,...,y,-,...,xn)}, (4.8.26)

i=1ly=1

nu,(x) = —Z{ Xl: Ajup(x1, ..., i, ...,xn)}, (4.8.27)

i=1 lyi=x;
forr=1,..., M. From (4.8.26) and (4.8.27), we obtain
|u,(x)| Z{Z|A u,(xl,...,yi,...,xn)|}. (4.8.28)
i=1y;

From (4.8.28) and using inequality (4.8.8), Schwarz inequality and the definition
of «, we obtain

lur (0)]? < ( ) [ {;}Aiur(xl,...,yi,...,xn)|}:|2

i

1 2 n a; 2
g(Z) n {Z|Aiur(-xlv"'7yi7""x")|}
i=1 ly=1

() {Z|Aiur(x1,...,yi,...,xn)|2}. (4.8.29)

From (4.8.29) and using (4.8.8) repeatedly, Holder’s inequality with indiges
p/(p — 1) and the definition of, we obtain

M r/(p=1)
!Z!ur(x)|2}
r=1

a \ P/ =D
< (4_) (Mn)P/(P=D-1
n

M (n (a p/(p—1)
><Z{Z{Zmiur(m,...,yi,...,x,,)|2} }

r=1li=1ly=1
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o \P/@=D
< <E> (Mn)Y (=D gl/(p=D

M n a;
x ZIZ{ Z |Aiur(x1, ..., yis -,Xn)|2p/(p_l) } } (4.8.30)

r=10i=1ly;=1

Settingx; = y;, i =1,...,n, in (4.8.30) and taking the sum over both sides of
(4.8.30) with respect tgy, ..., y, on B and using the definition af, we have

M r/(p—1)
z{DM,mE}

B Ur=1

o \P/P=D M
< (4—) (Mnot)l/(p_l)ozz
n

r=1

{Xn:{Z}Aiur(y)|2”/(”_l)}}.

i=1" B
(4.8.31)

From (4.8.31) and using inequality (4.8.8) repeatedly, Holder’'s inequality with
indices 2n(p — 1)/p, 2m(p — 1)/(2m(p — 1) — p) and the definition ofr, we

obtain
M p/(p=D2m(p—1)/p
]

r=1

p/(p—1) 2m(p-1)/p

( Mna)l/(l’_l)a} (Mny2(p=0/p—1

Z{Z’Aiur (y)|2p/(p—1) }2’”(17—1)/,,}

i=1" B

(Mn)Zm(pfl)/pfl

p/(p—1) 2m(p=1)/p
(Mna)l/(pl)a}

% (an)(Zm(p—l)—p)/p %{

r=1

i{DAiur(y)r‘”’”

i=1" B
M n

=k ) Y3 A ]
r=1 B i=1

This inequality completes the proof of Theorem 4.8.4.
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From the hypotheses of Theorem 4.8.5, we have the following identities

nug(x) Z{ Z Ajus 2(x1, ..., Vi, - .,x,,)}, (4.8.32)

i=1\y;=

nuf(x) =— Z{ ZI A,'uf(xl, s Vis ...,xn)}, (4.8.33)

i=1 lyi=x;

forr=1,..., M. From (4.8.32) and (4.8.33), we observe that

Jur ()2
1< G
<Z ZIAiuf(xl,...,yi,...,xn)|}
i=1\y=1
1< G
=5 Z|M§(x1,...,yi+1,...,xn)—uf(xl,...,yi,...,x,,)|,
i=1 ly;=
1< “Z’
o |Ai”r(x1,---,y,',...,xn)
2n i=1\y=1

X {u,(xl,...,y,'+1,...,x,,)+u,(x1,...,yi,...,xn)}|}

:_Z{Z|A,~u,(x1,...,y,~,...,xn)

yi=1

X {Aiur(xl,...,yi,...,x,,)+2ur(x1,...,y,-,...,x,,)}’}

:—Z{Z| A u,(xl,...,yi,...,xn)}z

i=1ly=1

+2ur(xla--~a)’ia--~,xn)Ai”r(xl,--~,)’ia--~,xn)|}~

(4.8.34)
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From (4.8.34) and using (4.8.8) repeatedly, Holder's inequality with indices
p/(p — 1) and the definition of;, we obtain

M p/(p—1)
{Z|ur(x>|2}
r=1

1\»/®-D
< (_) (Mn)P/(Pfl)*l

2n
M n a; ,
XZ{Z{ |{Aiur(xl»~--,yi,...,xn)}
r=1li=1 yizl

22U (X1, ..y Vis ey Xn)

p/(p=1)
XAiur(-xla"'ayia"'5x}1)|} }

1\?/(P=D
< <_> (M) P=D g/ (r=D

2n
M n a; ,
XZ{Z{ |{Ai”r(xl»---,y,',...,xn)}
r=1li=1ly;=1

22U (X1, ooy Vis ey Xn)

xAiur(xl,...,yi,...,xn)’p/(p_l)}}. (4.8.35)

Settingx; = y;, i =1,...,n, in (4.8.35) and taking the sum over both sides of
(4.8.35) with respect tg1, ..., y, on B and using the definition af, we have

M ) p/(p=1)
Z{ Jur ()] }
B r=1

1\7/P-D
< (—) (Mna)¥ P~V

2n
M n

x Z{Z{Zl{mur(y)}z + 2ur(y)A,~ur(y)}”/(”1)”. (4.8.36)
r=1li=1" B

From (4.8.36) and using inequality (4.8.8) repeatedly, Holder’'s inequality with
indices 2n(p — 1)/p, 2n(p — 1)/(2m(p — 1) — p) and the definition ok, we
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have

M p/(p—D2m(p—1)/p
Zizmerf |
B r=1
<

1\ P/ 2m(p-1)/p

(_> ( Mna)l/(f’_l)(x} (M2 p-D/p-1
2n
M

i=1" B

1\7/(r=D 2m(p=1)/p
< {(2—> (Mna)l/(/’_l)ot}
n

% (Mn)Zm(pfl)/pfl(an)(zm(P*l)*P)/P

x %{i{ZI{Amrm}z + 2ur<y>A,~ur(y)|2”’”

r=1li=1" B

" 2 — 2m(p—1)/p
x Z{ZHA%@)} + 2u, (V) Ay ()] }
r=1

2m
<<i> (Mnay2/ P 0=D10 (yg ) @01/ (qpn) 2P~/
2n

M n
x Z{Z{ZZZ’"lﬂAim(y)r‘"’ + 22m|ur(y)|2’"|A,~ur(y)|2’”]}}

r=1li=1" B

M n M n
=k Y3 A [ kY3 [ P A ()"

r=1 B i=1 r=1 B i=1

This result is the required inequality in (4.8.23) and the proof of Theorem 4.8.5is
complete. |

4.9 Miscellaneous Inequalities
4.9.1 Horgan [152]

Let u be sufficiently smooth function defined on ardimensional domairB
which vanish on the bounda#B of B, then

3/4 3/4
/ |u|3dx§3_3/4</ uzdx> (/ |Vu|2dx> ,
B B B
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where|Vu| = (Z;’:l|§—;|2)1/2-

4.9.2 Horgan and Nachlinger [155]

Let B be a bounded, three-dimensional domain with bounda@yFor any suf-
ficiently smooth function: defined onB which vanish on the bounda®dB, we

have
1/2
/|u|3dV<M[/ ude:| [/ |Vu|2dV:|.
B B B

Here|Vu| = (Z?:1|(,‘;’—;|2)1/2, dV = dx; dx, dx3, the numben is such that

M < (471)71/2)\71/4,
wherea is the smallest positive eigenvalue of the problem

V2w +iw=0 inB, u=0 ondB.

4.9.3 Pachpatte [236]

Let Q, f, g be asin Theorem 4.2.3. Then

/Q[|.f(x)| |gradg (x)| + |g(x)||gradf (x)|] dx
< zf—r /Q[|gradf<x>|2 +|gradg ()| dr.

4.9.4 Payne [362]

Letu be any smooth function of compact support in three-dimensional Euclidean
spaceEs. Then

o o0 o0
/ f f u® dxq dxodrs
—00 J =00 v —00
0o poO OO 1/2
gﬁ[/ / / uzdxldxzdxg]
9 —00 J—00 J—00

oo oo 00 3/2
X U / f |gradu|2dx1dx2dx3} .
—00 J—00 J -0
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4.9.5 Pachpatte [258]

Letu,(x,y),r=1,...,m, be any smooth functions of compact support in two-
dimensional Euclidean spaé®. Then

(NN

< %/_m/_m<;|gradu,(x,y)|>dxdy.

4.9.6 Pachpatte [258]

Let p > 1 be an integer and, (x, y), r =1, ..., m, be any smooth functions of
compact support in two-dimensional Euchdean spBageThen

//]_Ilur(x W[ gy dy

1/p+2 2 o poo
AR S [soras)
X (/00 /'OO ‘gradur(x,y)‘zdxdy)].

4.9.7 Pachpatte [265]

Letu, p, B be asin Theorem 4.3.1. Then

1/2 1/2 1/2
/|u(x)|p+1dx<%a<g> <f|u(x)‘2pdx> </|Vu(x)|2dx> )
B n B B

wherea = max{as, ..., a,} and|Vu| is as in Section 4.9.1.

4.9.8 Pachpatte [259]

Let B be a bounded domain iR", n > 2, be as in Theorem 4.3.1. Lat,,
m=1,...,r, be real-valued functions belonging &"(B) which vanish on the
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boundaryo B of B. Then

<,n1jl</l?|MM(X)|dx>>2/r < ( - )/ (Z|Vum(x)| )

wherea and|Vu,,| are as defined in Section 4.9.7.

4.9.9 Pachpatte [259]

Let the functions:,,, m =1, ..., r, be as in Section 4.9.8. Then

(E(/me(xn?dx))
T )

wherea and|Vu,,| are as in Section 4.9.8.

2/r

4.9.10 Pachpatte [259]

Let D be a bounded region iR", n > 2. Letu,,, m =1,...,r, be real-valued
twice continuously differentiable functions on the closief D which vanish
on the boundary D of D and 3“’%, i=1,...,n, belong toL,(D), the set of
functions which are square mtegrabIeDnThen

(’"t[lq')'v”m(wfdx))lh
[/ (Z\um(w! )dx"‘/D(er::l‘Aum(x)’Z> dx}’

m=1

where

" um \ 2 12 2\ [ 9%u
m m
|letm| = ( E < a_xl- > ) and Aum = E (W)

i=1 i=1 i
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4.9.11 Pachpatte [259]

Let the functionst,,, m=1,...,r, |Vu,| andAu,, be asin Section 4.9.10. Then

<"!L=[1</D|um(x)||wm<x)ldx))l/r
[ /<Z\um(x)|>dx+ f(zmum(x)‘) }

m=1

4.9.12 Pachpatte [248]

Suppose that, v € G(B), the class of sufficiently smooth functiopsB — R,
which vanish on the bounda#yB of B and B is defined as in Theorem 4.3.5.

(i) Let p,q > 2 be constants such thé\t+ % =1.Then

p q
/}u(x)”v(x)|dx < M—/ |gl’adu(x)|pdx+u—/ ‘gradv(x)}q dx,
B np Jp ng Jp

whereaw = max{b1 —ai, ..., by, —a,} andu = a/2.
(ii) Let p,g > 1 be constants. Then

/B’u(x)‘p‘v(x)r] dx

n+
() e ()]
B

whereu anda are as given in part (i).

4.9.13 Pachpatte [248]

Suppose that, v € G(B), whereG(B) is as in Section 4.9.12. Let be as in
Section 4.9.12.

(i) Let p,q > 1 be constants such th§t+ C—} =1.Then

/|u(x)||v(x)}dx
B

< L[(/ |u(x)|2(p71) dx>1/2</| radu(x)|2dx>l/2
S 2yn[\Jp B J
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1/2 1/2
+ </ |v(x)|2(p_l) dx) </ |gradv(x)|2dx) i|
B B

(i) Let p,g > 1 be constants. Then

/ ‘u(x)’p’v(x)‘q dx
B

< <ﬂ></ ’u(x)}Z(p-kq—l) dx>1/2</ ’gradu(x)’zd.x>l/2
= Zﬁ B B
1/2 1/2
+<%)</B|v(x)|z(”+q_l)dx> (/B|gradv(x)|2dx> )

4.9.14 Pachpatte [251]

Let p,g,r > 1 be constants and suppose that, w € G(B), whereG(B) is as
in Section 4.9.12. Then

[Ll ool + o o] + acof ol
1, 2p 1, 2q
<A ”/|gradu(x)’ dx + = 4f|gradv(x)| dx

n B n B
+}A2’/ |gradw(x)|2rdx,
n B
[l oo e+ foef + o e
1.4 4p 1.4 4q
<= ”/\gradu(x)} dx + =2 /\gradv(x)\ dx
n B n B

+ }A“’/ |gradw(x)|4’ dx,
n B

wherer = «/2 ande = max{b1 —ai, ..., by, — a,}.
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4.9.15 Pachpatte [251]

Let p, g, r > 2 be constants and suppose that, w € G(B), whereG(B) is as
in Section 4.9.12. Let be as in Section 4.9.14. Then

J T o + ol [w ] + o uco "] de

p2 ) 2p (p=1)/p 2p 1/p
< —A </|u(x)‘ dx> (/|gradu(x)| dx)
n B B
2 (a—D/q 1/q
+ q—)?(/ |v(x)}2q dx) (/ |gradv(x)|zqu>
n B B
2 r=1)/r 1/r
+r—)»2</ |w(x)|2r dx> </ |gradw(x)|2rdx) ,
n B B
[ oot  Tucol” + ool + o Ja
4 (r=1/p 1/p
< p—)f'(/ |u(x)|4p dx) (/ Igradu(x)|4p dx)
n B B
4 (4=D/q aq
+ ([ an) (| Joraducn o)
n B B
4 r=1)/r 1/r
+r_k4</ |w(x)|4r dx) (/ |gradw(x)|4r dx) ,
n B B

wherex is as defined in Section 4.9.14.

4.9.16 Dubinskii [95]

Let G be a bounded region iR" with boundaryr". Let u(x) € C1(G), ag >0
a1 > 1. Then the following inequalities are valid

() If «q <n,then

(n—ay)/n
(/ | @0+ /(n=ar) dx)
<K /| |‘)’0 dx+/ |u|°‘°+°‘1dy>.
z( )
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() If g =n, then

(crp+or1) r
Jua ] “”’dx) <K </ Iulwo
( )

wherep > 1 is arbitrary.
(ag) If a1 > n,then

max{u(x)| < Z(/ |u I"‘0

where the constank is as explained in Section 4.5. Here, from the uniform
boundedness of the right-hand sides of these inequalities, it follows the compact-
ness of the sets of(x) respectively in the spacds,;, ¢ < (o + ap)n/(n — ay),
L,andC.

a1
dx—i—/ |u|“°+“1dy>,
r

)

) 1/(ao+a1)

o]
dx—i—/ |0t dy
r

4.9.17 Pachpatte [263]

Let £ be ann-dimensional Euclidean space with> 2 and B be a bounded
domain in E defined byB ={x € E: a < x <b}, a=(a1,...,ay), b =
(b1,...,b,) € E for —o0 < a; < b; < o0. Letu,, r=1,..., m, be real-valued
sufficiently smooth functions defined ah which vanish only on the boundary
9B of B, andp, > 1 be constants. Then
1/m
} &
m

i
gMZ[/@radur(x)’zdx—i—/|ur(x)|2(pr_l)||nur(x)|2dxi|,
B B

r=1
r=1

ur” (x) Inu, (x) — —ur’(X)
Dr

where

m 1/m
a/n pr
M:<2m>1:[l<z) . a=maxbi—ai,...,by —ay,

2) 1/2

and

duy(x)
3)6,'

|gradu, (x)| = (Z

i=1
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4.9.18 Pachpatte [263]

Let E be ann-dimensional Euclidean space with> 2. Letu,,r =1,...,m, be
real-valued and sufficiently smooth functions of compact suppditamdp, > 1

be constants. Then
n/(n—1) 1/m (n—1)/n

|
<NZ[[ |gradur(x)|2dx+/ |ur(x)|2(p’_l)||nu,(x)|2dx:|,
r=1 E E

r=1
N i 1 (n—l)/nﬁ & 1/m
2/n\m S\ 2

and|gradu, (x)| is given as in Section 4.9.17.

ul" (x)Inu, (x) — piuf'(x)

where

4.9.19 Horgan [154]

Letu(x) be a sufficiently regular function defined on a bounded domBaimRR",
n > 1, with boundary B, then we have

/ uzngC/(u2~l—u,iu,i)dx,
9B

B

where the usual Cartesian tensor notation is used, with subscripts preceded by a
comma denoting differentiation with respect to the corresponding coordinate.

4.9.20 Pachpatte [264]

Let B be a normal domain ii" with boundaryd B andB = B + 9B (union of
B andd B). Letu(x) andv(x) be real-valued functions belonging@d(B). Then

/ u?(x)v?(x) dx
B
< ,u|:/ u?(x)v2(x)dsS +/ [uz(x)’gl’adv(x)‘2 + vz(x)’gradu(x)‘z] dx:|,
9B B

whereu = max2s, 8%2}, s =maxX{|x1|, ..., |xul}.
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4.9.21 Pachpatte [264]
Let B be a normal domain ifR" with sufficiently smooth boundary 8 and
B = B + 9B (union of B anddB). Letw;(x) € CY(B),i =1,...,n, be auxiliary

functions such that; (x) = z;(x) for x € 3B. Letu(x) andv(x) be real-valued
functions belonging t@(B). Then

/ u?(x)v2(x)ds
0B

<A|:f uz(x)vz(x)dx—}-/[uz(x)|gradv(x)|2+vz(x)|gradu(x)|2] dx:|
B B

2ncy

c

wherel = max{co + c1c, }, ¢ > 0 is an arbitrary constant and

, c1= sup [sup(a,-(x)”.

i=1,...,n‘'xeB

co= SU%Z aia,- (x)

Xi
xeB i=1 i

4.9.22 Allegretto [8]

Letu e C°(R" \ {0}), o € R, & < 0. Then the following inequality is valid

/ Ix|% (Au)® dx >K(a)/ Ix|**u?dx,
R7 R~

where
7, 92 (4—a—n)’(n—a)?
A = — K =
2 02 and K(a) 16 + (@),
2 2
. . B 2 B n“—4dn+4o —«
(@) _ke{dq’fz““}{(k)(k +n—2) (k + -2k + > )}

4.9.23 Schmincke [403]
Suppose: € C5°(B) ands € [—"(”—2_4), o0), whereB =R"\ {0}, n > 2. Then

—4)2
|Au|2dx>—s/ |W|2|x|—2dx+%(n2+4s)/ |u|?]x| % dx,
Rn B B

. 2
whereV = (55, ) andA = 3, 55,

> 0xp
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4.9.24 Chang, Wilson and Wolff [53]

Let ¢(t) be a nonnegative, increasing function @8, co) which satisfies

1°° m% < 00. Suppose that(x) is a nonnegative function oR” such that for

every cubdl,
f¢(|1|2/”v(x>)v<x)dx Ll
1

with ¢ independent of . Then for f € C5°(R"),

[ 1retewr<e [ (95
R” R®

wherec is independent of andV is as in Section 4.9.23.

4.9.25 Chanillo and Wheeden [55]

Let 1< p < o0 and ¢(r) be a nonnegative and increasing function (Gnoo)
which satisfies

/00 dt 1 + 1 1
— T < OO, N — =4
1 g1 p P

andv and w be weight functions (nonnegative measurable functionsRbn
n>1,withw e A,, the mean for all cubes

1 ae || 2 vy <.
m/lw(x) m/{w(x) X6

with ¢ independent of . Let f be Lipschitz continuous on a culdlec R" and
suppose that for all cubed c 21,

o [ o101 2 Yoo ar < [ weods,
Q Q

w(x)
wherec is independent 0®. Then

1
/I|f(x)—f1|pv(X)dx<0/I|Vf(X)|pw(x)dx, f1=m/1f(X)dx,

with ¢ independent off andV is as in Section 4.9.23. If the constant in the
hypothesis is independent pfthen so it is the one in the conclusion.
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4.9.26 Lieb and Thirring [193]

Let ¢1,..., ¢y be a finite family of functions inf1(R") which are orthonor-
mal in L2(R"), that is, [, ¢i¢; dx = & j, 1< i, j < N, where L2(R") is the
set of classes of real functions measurabl&2ina bounded open set &" and
square integrable oR"; H1(R") is the Sobolev space of order one constructed
on L2(R"). Let p be a constant satisfying mix n/2} < p < 14-n/2. Then there
exists a constarit= k(n, p) independent ofV and of thep;’s such that

N p/(p=1 2(p=D)/n N n _ 2
(o) a) e [ () e
R2 o ) n i—1 X

4.9.27 Ghidaglia, Marion and Temam [127]

Let £2 be a bounded open set Bf*, L2(£2) be the set of classes of real func-
tions which are measurable 2 and square integrable a2, H" ($2) be the
Sobolev space of order constructed orL2(s2). Suppose that there exists a lin-
ear prolongation operatadi,, mapping H™($2) into H™(R") such thatlT,,
L(H"(£2),H (R")),r=0,1,2,...,m, andIT,u(x) = u(x) for a.e.x € 2. Let

{qu}?’:l in H™(§2), m > 1, is suborthonormal ii.2(£2), that is,

N
> Ei%j/gd’id’jdx <) &

N
i,j=1 i=1

forall &, ...,&y € R. Let p be a constant satisfying the condition

n n
max{ 1, — <14 —,
{ 2m}<p +2m

then there exist two positive constakisandk, such that

N p/(p—1) 2m(p—1)/n
(o)
e\

N N
o 2 k2 2
<k1;/9 3 D% ) dx+5(m2mfg(;|¢f(x>| )dx,

la]=m
where| - | denotes the usual Euclidean normh, §(2) is the diameter of2,
D% = Dill ... D = ﬁ [@] = a1+ +a,. The constanty, k, depend
1 0%

onm, n, p and the space.
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4.9.28 Agarwal, P&€ari¢ and Brnetic [7]

Let E be a bounded domain R defined byE = [];_;[a;, b;]. Let H,(«;) stand
for the harmonic means ofy, ..., «a,. Let G(E) be the class of continuous func-
tionsu(x): E — R for which D"u(x) = D1 --- Dyu(x), D; = % exists and that
foreachi, 1<i <n, u(x)|x,=q; = u(x)|x;=p, =0.

(i) LetA,u>1andu € G(E). Then

/ Ju (o) [* d < ka2, u)/ | gradu ()]}, dx.
E E
where

1 A
ki(h, p) = ;I(K)C(;>Hn ((bi —ai)*).

1
I(A):/ [tl_)‘+(1—t)l_k]_1dt,
0

andC(e)=1lifa>1andC(x) =nl"?if0 <a < 1.
(i) Let p,A >1andu € G(E). Then

/.|u(x)|xp dx
E

A PRV (r=b/p 1/p
PO A H"((l;’ %) )I(A)(/E|u(x)|“dx> (/E||gradu(x)||§”dx)

wherel (1) is defined in (i).
(iii) Let I >0,m > 1andu € G(E). Then

m 1 l+m mn n m a m
/|”( )|l+ n<7) I(Wl)izzl(bi—ai) /E|M(x)|l'a—xiu(x)

wherel (m) is defined in (i). Moreover, in (i) and (ii),
M)l/u

Let N=1{1,2,...}, N.o1 =1{1,2,...,k,k+ 1}, ke N, N,.1=1{12,...,m,
m+ 1}, meN and O = Npy1 X Nm+1 Let F(Q) denote the class of func-

dx9

|gradu(x)| =( —u(x)
H ; 3)6,‘

4.9.29 Pachpatte [275]



4.9. Miscellaneous Inequalities 481

tions ¢: Q0 — R such thatc(l,y) =ctk +1,y) =0 for 1<y <m+ 1,
meN, Aic(x,1) =0,A1c(x,m+1)=0for 1<x <k+1, keN, where
Atc(x,y) =c(x +1,y) —c(x,y), and letAzc(x,y) =c(x,y + 1) — c(x,y)
andA1Azc(x, y) = Ar[Azc(x, y)I.

(i) Let p,qg > 1 be constants such th% + 2 =1 and suppose that
u,v e F(Q). Then

k m
DO Jute oy

x=1y=1

—ZZ\AzAlu(x |+ ZZ

x=1y=1 x=1y=1

whereu = km/4.
(ii) Let p,q > 1 be constants and suppose that € F(Q). Then

k m
DN Ju | v !

x=1y=1

p+q P
<u [(p+q>ZZ}A2A1M(X )|

x=1y=1

k

+ (quq) DY A2Ama, y)|p+q],

x=1y=1

whereu is as defined in (i).

4.9.30 Pachpatte [250]

Let O, F(Q) be as in Section 4.9.29. Let, ¢, r > 1 be constants and suppose
thatf, g,h € F(Q). Then

k m

DO e )P |, | + |2, | [hGe »|" + e, 7| £, 9]

x=1y=1

2p k m ) km 29 k m 2%
( > ZZ|A2A1f(x y)|p (T) ZZ|A2A18(X»)’)|

x=1y=1 x=1y=1
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km\ 2 & .
+<7) SN |azanee |,

x=1y=1

k m
SN @G )| hee ] ([ £ 0| + g T+ [hex, y)]7)

x=1y=1

km 4p k m 4 km 4 k m 4q
g(T) ZZ|A2A1f(x’y)|p+<T) ZZ|A2Alg(an)|

x=1y=1 x=1y=1

km \* ko "
+<T) ZZ|A2A1h(x,y)|4~

x=1y=1

4.9.31 Pachpatte [242]

Let p > 2 be a constant anl(B), a, A be as in Theorem 4.8.1. Lete F(B).
Then

(-1 12 U
(ZWY)W([’_D) p=D/p . }(}) / o 2P=m+np)/(2p) <Z\Au(y)\2> / |
2\n

B B

4.9.32 Pachpatte [242]

Let p, u, F(B), a, A be as in Section 4.9.31. Then

<Z|u(y)|2(p+2)/p < (g)zn_p/(p-i-Z) (Z}Au(y)‘z<p+2)/p
B B

)p/(p+2) >p/(p+2)

4.10 Notes

Theorem 4.2.1 was formulated by Friedman [120] and is a useful tool in the
study of partial differential equations. Different versions of this theorem essen-
tially go back to Poincaré [389], and this type of investigation was first initiated
by Schwarz [404]. Theorem 4.2.2 is due to Pachpatte [247] and is a variant of
Theorem 4.2.1. Theorem 4.2.3 is taken from Pachpatte [236]. The inequality in
Theorem 4.2.4 is due to Payne [362] and was given while studying the uniqueness
criteria for Navier—Stokes equations, and the inequality in Theorem 4.2.5 is given
by Serrin in [405]. Theorem 4.2.6 is due to Pachpatte [290] and contains, in the
special case, the known inequality due to Nirenberg given in [229].
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The results given in Section 4.3 are due to Pachpatte [249,265,290]. Theo-
rems 4.3.1-4.3.6 deal with different variants of the Poincaré and Sobolev in-
equalities. Theorems 4.4.1-4.4.6 are established by Pachpatte in [237,246]. The
results in Theorems 4.5.1-4.5.4 are taken from Dubinskii [95]. Theorem 4.5.5
is due to Alzer [10]. Theorems 4.5.6 and 4.5.7 are established by Pachpatte
in [265] and are motivated by Dubinskii's inequalities given in [95]. Theorems
4.6.1-4.6.4 which relate to Poincaré- and Sobolev-type inequalities are estab-
lished by Pachpatte in [276], while Theorems 4.6.5 and 4.6.6 are taken from
Pachpatte [289].

Theorems 4.7.1 and 4.7.2 are taken from Pachpatte [286]. Theorems
4.7.3 and 4.7.4 give the Rellich-type inequalities and are established by Pachpatte
in [286]. Theorem 4.7.5 is taken from [288] and Theorem 4.7.6 is a more general
version of the Rellich-type inequality established by Pachpatte in [288]. Theo-
rems 4.8.1-4.8.5 are due to Pachpatte [269,275,285] which relate to the discrete
Poincaré- and Sobolev-type inequalities involving functions of several indepen-
dent variables and their forward differences. Section 4.9.9 covers miscellaneous
inequalities established by various investigators.
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Chapter 5

Levin- and Lyapunov-Type Inequalities

5.1 Introduction

The importance of basic comparison inequalities has been long recognized in the
study of qualitative behavior of solutions of ordinary second-order differential
equations. The history of these inequalities for continuous differential systems
goes far back starting with the famous paper of Sturm [414] which gives inequal-
ities for the zeros of solutions of linear second-order differential equations. In his
fundamental work [201] Lyapunov has given one of the most basic and inspiring
inequalities which provides a lower bound for the distance between consecutive
zeros of the solutions of the linear second-order differential equation. Lyapunov’s
inequality has become a versatile tool in the study of qualitative nature of solu-
tions of ordinary second-order differential equations. Over the years there have
appeared a number of generalizations, extensions, variants and applications re-
lated to the basic Sturmain comparison theorem and the original Lyapunov in-
equality. This chapter considers basic inequalities developed in the literature re-
lated to the Sturmain comparison theorem and to the Lyapunov inequality which
occupies a fundamental place in the theory of ordinary differential equations.

5.2 Inequalities of Levin and Others

In this section we give results involving comparison of the solutions of linear
and nonlinear second-order differential equations investigated by Levin [187],
Kreith [171] and Ladas [177]. Here we consider only solutions which are defined
on the whole interval of definition of the independent variable and their existence
and uniqueness will be assumed without further mention. An oscillatory solution
is (by definition) one which has arbitrary large zeros.

485
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The basic Sturmain comparison theorem deals with functign$ andv(x)
satisfying

" +c(x)u=0, (5.2.1)
vV +y(x)v=0. (5.2.2)

If y(x) > c(x), then solutions of (5.2.2) oscillate more rapidly than solutions
of (5.2.1). More precisely, ift(x) is a nontrivial solution of (5.2.1) for which
u(x1) = u(x2) =0, x1 < x2, andy (x) > c¢(x) for x1 < x < x2, thenv(x) has a
zero in(xy, x2].

In 1960, Levin [187] extended Sturm’s theorem in a direction somewhat dif-
ferent from other earlier investigators. The method used by Levin involves the
transformation of the differential equations (5.2.1), (5.2.2) into the Riccati equa-
tions

w' =w?+c(x), (5.2.3)

7 =224y (), (5.2.4)
by the substitutionsy = —u’/u, z = —v’/v, respectively, and assuming thaik)
andy (x) are continuous ofw, 8].

In the following theorems we present the main comparison theorems estab-
lished by Levin in [187].

THEOREMb5.2.1. Let u and v be nontrivial solutions of (5.2.1)and (5.2.2),re-
spectively, such that u(x) does not vanish on [«, 8], v(«) # 0 and the inequality

_ul@) +/xc(t)dt> Y@ +/xy(t)dt (5.2.5)
u(a) o v(a) o
holdsfor all x on [, B]. Then v(x) does not vanish on [«, 8] and
u'(x) v (x)
_ ) > m , a<<x<§p. (5.2.6)

The same theorem holds if the inequality signsin (5.2.5)and (5.2.6)are replaced
by “>".

PROOF Sinceu(x) does not vanishy = —u’/u is continuous oria, 8] and sat-
isfies the Riccati equation (5.2.3), which is equivalent to the integral equation

X

' w?(1) dt +f c(t) dr. (5.2.7)

o

wx) =w(w) +[

o
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By the hypothesis (5.2.5),

+ /X c(t)dt > 0. (5.2.8)

Sincev(a) # 0, z = —v’/v is continuous on some intervat, §], « <8 < 8. On
this interval, (5.2.4) is well defined and implies the integral equation

z2(x) = z(0) + /X 2@t dr +/x y (1) dt. (5.2.9)

o o

From (5.2.9), (5.2.5) and (5.2.8), we observe that

X

2 > 2(@) + / oL

«
> —w(a) — /x c(t)de
Z —w(x), '
and consequentlyy (x) > —z(x). In order to show that
lz(0)] <wx) one<x <3, (5.2.10)

it is sufficient to show thaiv(x) > z(x) on this interval. Suppose to the contrary
that there exists a poin on[«, §] such that(xg) > w(xp). Then, sincéz(a)| <
w(w) from (5.2.5) (withx = @) and sincew andz are continuous ofw, §], there
existsxy ina < x1 < xgsuchthat(x1) = w(x1) andz(x) < w(x) fora < x < x1.
Since w(x) > —z(x) was established, it follows thdt(x)| < w(x) for a <

x < x1, and consequently,

flzz(t)dt</ 1w2(t)dt.

Using (5.2.9), (5.2.5) and (5.2.7) yields

X1 X

1
Z(x1)=z(oz)+/ y(t)dt+/ 22@t) dt

X1 X1
< w(a)—i—/ c(t)dt+/ w?(t) dr
= w(x1),

contradictingz (x1) = w(x1).
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Thus (5.2.10) holds on any interval, §] of continuity ofz, « < § < 8, but this
implies thatz is continuous on the entire intervial, 8], sincew(x) is bounded
andz(x) has only poles at its points of discontinuity (if any). Thus (5.2.10) holds
on all of the intervalw, 8]. This result proves (5.2.6), and since the left member
is bounded onie, 8], v(x) cannot have a zero on this interval.

A slight modification of the proof shows that i&" is replaced by " in the
hypothesis (5.2.5), then the conclusion is still valid provided fs replaced by
“>"1in (5.2.6). The proof is complete. |

THEOREM5.2.2. Let u and v be nontrivial solutions of (5.2.1)and (5.2.2),re-
spectively, such that u(x) does not vanish on [«, 8], v(8) # 0, and the inequality

u'(B) / v'(B) /
d d 5.2.11
2 6) c(t)dr > 2 (B) y(t)dr ( )
holdsfor all x on [«, B]. Then v(x) does not vanish on [«, 8] and
u'(x) v (x)
e 000 | a<x<B. (5.2.12)

The sameresult holdsif “>" in (5.2.11)and (5.2.12)isreplaced by “ >

PROOFE Let new functionsis, v1, c1, y1 be defined orx < x < 8 by the equa-
tions

ui(x) =u(a+ g —x), v1(x) =v(x + B —x),
c1(x)=cla+B—x), y1ix)=y@+ B —x).

Thenu1(x) does not vanish ofw, 8], v1(a) = v(B8) # 0 and

/ a+p—x /
RACN / rdi = P /C(t)dt

u1(a) u(B)
U,l(a) a+pf—x /(ﬂ) /
T o1@) +/a yi(t) dr = o(B) y(1)dt.

Thus the hypothesis (5.2.11) is equivalent to the hypothesis (5.2.5) of Theo-
rem 5.2.1. Since < [«, 8] if and only if « + 8 — x € [a, B], and the conclusion
(5.2.12) follows from Theorem 5.2.1. O
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In 1972, Kreith [171] has given the Levin-type comparison theorems for the
differential equations of the form

" —2b(x)u’ + c(x)u =0, (5.2.13)
v/ — 2e(x)v" +y(x)v =0, (5.2.14)

whose coefficients are assumed to be real and continuous, satisfying the initial
conditions

' (x1) + ou(x1) =0, (5.2.15)
v (x1) + Tv(x1) =0, (5.2.16)

respectively, where andz are finite constants. By means of the transformation

equations (5.2.13), (5.2.14) are transformed into Riccati equations

w' = w?+ 2bw +c, (5.2.17)
=22 +2ez+7y, (5.2.18)
and the initial conditions
l4 /
LGSV GV (5.2.19)
u(x1) v(x1)

for (5.2.13), (5.2.14), become initial values
w(x1) =0, z(xp) =T, (5.2.20)
for (5.2.17) and (5.2.18). The differential equations (5.2.17) and (5.2.18) subject

to (5.2.20) can be written as equivalent integral equations

w(x)=(7+/ wzdt+/ 2bwdt+/ cdr, (5.2.21)
X X X

1 1 1

z(x):r—i—/ zzdt—i—/ 2ezdt+/ y dr. (5.2.22)

1 1 1

It is obvious from these equations thatif> o > 0, e(x) > b(x) > 0 and

/xy(t)dt>/xc(t)dt>o

1 1
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on an interval[x1, x2], thenz(x) > w(x) > 0 as long ag(x) can be continued

on [x1, x2]. Since the singularities ab (x) andz(x) correspond to the zeros of
u(x) andv(x), respectively, these observations lead to the following comparison
theorem for (5.2.13) and (5.2.14).

THEOREM 5.2.3. Suppose u(x) is a nontrivial solution of (5.2.13)satisfying
—u'(x1)/u(x1) =0 >0,u(x2) =0.If

0] e(x) = b(x) >0 forx; <x<axz,

() /y(r)dt}/ c(t)dr >0 for x; < x < xo,

1 1
then every solution of (5.2.14) satisfying —v'(x1)/v(x1) > o has a zero in
(x1, x2].

In [171] Kreith has also given the variation of Theorem 5.2.3 which do not
require the nonnegativity of, r, b(x) and f;“l c(t) dt. We note that the integral
equations (5.2.21) and (5.2.22) can be written as

X

w(x)=a+/x(w+b)2dt+/ (c — b%)dt, (5.2.23)
X1 X

1

z(x) =7+ /X(Z +e)?dr + /X (y —€?) dr. (5.2.24)

1 1
This formulation shows that condition (ii) of Theorem 5.2.3 can be replaced by
X X
/ (7/ —ez)dt>/ (c—bz)dtZO.
X1 X1
In order to obtain the generalization of Levin’s Theorem 5.2.1, Kreith [171]

has given the following lemmas which are of independent interest.

LEMMA 5.2.1. Let w(x) and z(x) be solutions of (5.2.23)and (5.2.24),respec-
tively, for which o > —oo and

@) t+/x(y—ez)dt>

1

X
a—i—/ (c—bz)dt for x1 <x < xo,
X

1

(i) e(x) > ‘b(x)‘ for x1 <x < x2.

Then z(x) > |w(x)| aslong as z(x) can be continued on [x1, x2].
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PROOF From (5.2.24) we have

X

z(x)2r+/ (y—ez)dt for x1 <x < x2.

X1

Using (i) and (5.2.23) this result implies that

72(x) > —0o —/x(c—bz)dt

1

. o —/X(c—bz)dt—/x(vab)zdt > —w(x)
X X1

1

for x1 < x < x2. It remains to show that(x) > w(x). We assume to the contrary
that there existsg € (x1, x2] such thatz(xg) < w(xg). Then there exists an e
(x1, xo] such thatz(x) = w(x) andz(x) > Jw(x)| for x1 < x < x. Using (ii) we
have that

z(x) +e(x) > |w(x)| + |b(x)| > |w(x) +b(x)| forx1 <x <x,

and consequently thaﬁfl(z + e)2dr > ffl(w + b)?dr. Using (5.2.24), (i) and
(5.2.23) yields

w(i):cr—i—/ (c—bz)dt—i-/ (w + b)2dr
X1 X1

<r+/ (y—ez)dt—i-/ (Z—i—e)zdt:z(i),
X X1

1

which is a contradiction and establishes the lemma. O
A continuity argument can be used to establish the following lemma.

LEMMA 5.2.2. Let w(x) and z(x) be solutions of (5.2.23)and (5.2.24),respec-
tively, for which o > —o0 and

(i) t+fx(y—e2)dt>

1
(ii) e(x) > |b(x)| for x1 <x < xo.

Then z(x) > w(x) aslong as z(x) can be continued on [x1, x2].

for x1 <x < xp,

cr—i-/ (c—bz)dt

1

As an immediate consequence of Lemma 5.2.2 we have the following general-
ization of Theorem 5.2.1.
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THEOREM5.2.4. Supposeu(x) and v(x) arenontrivial solutionsof (5.2.13)and
(5.2.14),respectively, and that u(x) # 0 for x1 <x < x2, u(x2) =0.If

. v’ (x1) /x 2
- + —ef)dt
0 oo T )
> ‘_u (x1) +/ (C—bz)dt for x1 <x < x2,
u(x1) x1
(ii) e(x) > |b(x)| forxy <x <x2,

then v(x) hasazeroin (x1, x2].

In 1969, Ladas [177] has established the following generalizations of Levin’s
comparison theorems for the pair of nonlinear differential equations

x4+ pt)g(x) =0, (5.2.25)
Y'+4q)g(y) =0, (5.2.26)
for z € [a, b], under some suitable conditions on the functions involved in (5.2.25)
and (5.2.26).
THEOREMb.2.5. Let the following conditions be satisfied:

(i) p(r) and g(¢) arereal-valued continuous functionsfor ¢ € [a, b];
(i) g(s) isareal-valued continuousfunction for s € R suchthat g’(s) > 0 for
al s € [a, b], and g(0) = 0;
(i) x(¢) and y(¢) are solutions of (5.2.25)and (5.2.26),respectively, such
that x(¢) £ 0for ¢ € [a, b], y(a) # 0and, for all t € [a, b],

x'(a) y'(a)

t t
— d: — d 5.2.27
amm+ﬁpmf>‘Aﬂw+Aq®S (5:2.27)
and
8Oy = &' O =y (5.2.28)
Then, for all 7 € [a, b], y(t) # 0 and
EACNN ' y' (@)
gx@®) gy |
PROOFE Sincex(t) # 0, it follows thatg(x(¢)) # 0,1 € [a, b]. Setting
w(ty=——D_ "t clabl. (5.2.29)

Cg(x(1)’
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it is easily verified thatw satisfies the differential equation

w'=p@)+ [%g(x(t))]wz, t €la,b). (5.2.30)

The differential equation (5.2.30) will play the role of the Riccati equation to
which a linear second-order differential equation is transformed by (5.2.29) in
caseg(s) =s.

The rest of the proof, which we present for completeness, is an adaptation
of Levin's proof with minor modifications (see [177]). We set for simplicity
fra(x () = g'(x®).

Integrating (5.2.30) ovd, t], t < b, and using (ii) and (iii) we obtain

t ‘
w(t) = w(a) +/ p(s)ds +/ g/(x(s))wz(s) ds
t
> w(a) +/ p(s)ds > 0. (5.2.31)

Sincey(a) # 0, it follows from the continuity ofy(¢) that there is a closed
interval [a, c], a < ¢ < b such thaty(zr) #0,t € [a,c]. Theng(y(#)) # 0,1t €
[a,b], andz() = —y'(t)/g(y(¢)) satisfies the equation

' =q)+ [%g(y(t))}{ t €la,cl (5.2.32)

Integrating (5.2.32) ovdu, t], t < ¢, and using (i), (i) and (5.2.31) we obtain
t t
z2(t) = z(a) +/ q(s)ds +/ g (v())z2(s) ds

>z<a>+ftq<s)ds> —w(a)—ftq(wds
> —w(r). ' ' (5.2.33)
We claim now that also
2(t) <w(t), tela,cl, (5.2.34)
so that (5.2.33) and (5.2.34) would imply

|z <w@)., 1€la,cl. (5.2.35)
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Indeed if (5.2.35) were false, there should exist a paird [a, ¢] such that
z(t1) = w(t1) andw(t) > |z(¢)| for t € [a, t1]. (We used the fact that (5.2.27) for
t =a givesw(a) > |z(a)|.) Then using (5.2.33), (iii) and (5.2.31) we obtain a
contradiction

151 11
z(t1)=z(a)+/ q(S)ds+/ g'(y(9))z2(s) ds

11 11
< w(a) +/ p(s)ds + / g’(x(s))wz(s) ds
= w(t1).

Therefore, inequality (5.2.35) is established for every intefwat] of conti-
nuity of z(z). But w(z) is bounded otia, b] andz(z) can have only pole disconti-
nuities on[a, b] so (5.2.35) holds throughoit, 4], that is,

x'(1) >‘ y'(1)
gx(@) |gly@))

andg(y(r)) # 0, that is,y(r) # 0. (Here we also used the uniqueness of solutions
of (5.2.26).) O

, te€la,b],

THEOREMb5.2.6. Let in addition to the hypotheses (i) and (ii) of Theorem5.2.5,
the following condition be satisfied.

(ii”) x () and y(¢) are solutions of (5.2.25)and (5.2.26),respectively, such
that x(¢) #0,¢ € [a, b], y(b) #0and, for all ¢ € [a, b],

x/(b) /b ‘ y/(b) /b
_— d d 5.2.36
ey ) POB=oGey T 49E ( )
and
8Osy = 8Osy (5.2.37)

Then, for all ¢ € [a, b], y(t) # 0 and

x'(1) >‘ y'(0)
gx(®) "~ gy |

PrRoOOF It follows from Theorem 5.2.5 by settingt +a + b in place ofr. [

In 1970, Bobisud [34] has established Levin-type results involving comparison
of the solutions of nonlinear second-order differential equations and inequalities
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of the forms
Y +at)f(»)Z0 (5.2.38)
and
y”+p(t,y)y’+g(t,y)y§0 (5.2.39)

under some suitable conditions on the functions involved in (5.2.38) and (5.2.39).
Here we do not discuss the details.

5.3 Levin-Type Inequalities

In this section we are concerned with Levin-type inequalities established by Lalli
and Jahagirdar [180,181] and Pachpatte [327] for certain second-order nonlinear
differential equations. In what follows, it will be assumed that the solutions of the
equations considered here exist and are unique on the required interval.

In [180,181] Lalli and Jahagirdar have established Levin-type comparison the-
orems for the pair of nonlinear differential equations

u’ 4+ p@®) f(t,u) =0, (5.3.1)
o +q(0) f(t,v) =0, (5.3.2)

under some suitable conditions on the functions involved in (5.3.1), (5.3.2).
The results established in [180] are given in the following theorems.

THEOREM5.3.1. Let the following conditions be satisfied.

(i) p(») and ¢(¢) are real-valued nonnegative and continuous functions for
t €[a, Bl.

(i) f(z,x) is a real-valued nonnegative continuous function on [a, 8] x R
such that % >0, f(t,x) #0for x #0, f(z,0) =0 and f is monotone nonde-
creasing function of ¢ for each fixed x.

(i) u(¢) and v(r) are solutions of (5.3.1)and (5.3.2),respectively, such that
u(t) #0for r € [«, B], v(a) £ 0and, for al ¢ € [«, B],

u/(a) t U/(Ol) t
" @) +/a p(s)ds > ‘_71‘(01, @) +/a q(s)ds|. (5.3.3)
Then, for all 7 € [«, 8], v(z) £ 0and
__wo ’ ve | (5.3.4)
Slo,u@) | fle,v@)
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PROOF Sinceu(t) # 0, it follows that f (¢, u(z)) £ 0 for ¢ € [«, B]. Let

AN
w(t) =— f((x 2D t €la, B]. (5.3.5)
It follows that
w' (1) =p(t)|:]]:(([ ”((’t))))} +[ £ e u(t))i| (5.3.6)

Integrating (5.3.6) ovelw, ¢], t < 8, it follows that

t
w(t) > w(a) +/ p(s)ds > 0. (5.3.7)

Sincev () # 0, it follows from the continuity ofv(¢) thatv(z) # 0 for ¢ in some
interval[«, y], @ < y < 8. We put

=D ey
T T @) e

Using (5.3.2) we get the inequality

7 =q0+ d%f(“’ v())2?,  telayl. (5.3.8)

Integrating (5.3.8) fronx to ¢, « < ¢ < y, we obtain
t

20) > 20) + / g@)ds, 1efayl. (5.3.9)

From (5.3.7) and (5.3.9), in view of (5.3.3), it follows that
z(t) > —w(), te€la,y]. (5.3.10)
We will show now that
z(t) <w(), tela,y]. (5.3.11)

Suppose (5.3.11) fails to hold for alk [«, y] then thereis &, @ < t1 < y, such
that

z(n) = w(t)
and
w(t) > |z(t)| fort e fa,t1).



5.3. Levin-Type Inequalities 497

Fort =1,

fs, u(S))

11
z(t1)=z(0!)+/ CI(S)f( 20)

ds + / Ef(oz, v(s))zz(s) ds

or

11 11 d 2
—z(th) < —z(a)—/ q(S)ds—/ d—vf(a,v(S))z (s)ds

U/(O[) 1
S Fav@) ‘/a 9() s

u' (o) i
" F@u@) / pls)ds

1
= w(w) +/ p(s)ds

< w(fy),
which is a contradiction. Combining (5.3.10) and (5.3.11) we have

w(t) >

tela,yl]. (5.3.12)

Therefore, (5.3.12) is true for every intenfal, y] of continuity of z(z). Since
w(t) is bounded oifi, 8] andz(¢) can have only poles at points of discontinuities
on [«, 8], it follows that (5.3.12) holds throughoit, 8]. Thus, f(«, u(t)) # 0,
t € [«, B], and consequently,(r) # 0 on|a, B]. O

REMARK 5.3.1. We note that in the special case wifgn x) = x or f(¢,x) =
g(x), the condition thap andq be nonnegative is no longer needed in the proof
of Theorem 5.3.1.

A slight variant of Theorem 5.3.1 established in [180] is given in the following
theorem.

THEOREM5.3.2. In the hypotheses of Theorem 5.3.1,let (iii) be replaced by
(iii") u(r) and v(r) are solutions of (5.3.1)and (5.3.2),respectively, such that
u(t) £ 0for t € [«, B], v(a) # 0 and, for any o € [«, 8] and that v(o) # 0, we

have
u(0) /t p(s)ds > V(o) / q(s)ds|,

" Fo.u()) " (o 0(0)) telo.pl.

(5.3.13)
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Then, for all ¢ € [a, B], v(¢) # 0and

w0 - V(1)
f@,u@) | f@,v@)|

(5.3.14)

ProoF If (5.3.14) is false, then there israuch that

@) ‘ V(1)
fEu@) | fE, @)

Sincev(r) # 0, from the argument used for proving (5.3.4), it follows that

W | v
FEu@) | F@E @)

forz € [7, B].
In particular, fort =z, we get a contradiction. O

In [181] Lalli and Jahagirdar established comparison theorems of Levin type
given in the following theorems.

THEOREM5.3.3. Let the following conditions be satisfied.

(i) p(), q(r) arereal-valued, continuous and nonnegative functions for ¢ €

[, B;
(ii) f(z, x) isareal-valued continuous function on [«, 8] x R such that

(@) f(@t,x)#0forx #0, f(£,00=0
(b) 1< K1 < f(t,x)/f (e, x) < K2, t € [, B,
) &%/ >0

(iii) wu(r), v(r) are solutions of (5.3.1) and (5.3.2), respectively, such that
u(t) #0for ¢ € [a, B], v(a) #0and, for all 7 € [, B],

u'(a) t V' (@) P
- flenu(a) +Kl/a p(s)ds > _[_m / C](S)ds:|
' . (5.3.15)
% / p(s)ds > —f(a( () 5 +K2/ g(s) ds:
(iv) of _of
9% | (ty=u(r) Bx x(t)= v(z)




5.3. Levin-Type Inequalities 499

Then, for all 7 € [«, 8], v(z) # 0and

w) ’ V') (5.3.16)

T fu@) | @)

PROOFE Sinceu(t) # 0, it follows that f (¢, u(¢)) # 0 for ¢t € [«, 8]. Let the func-
tion w(z) be defined by

_ u'(1)
We differentiate (5.3.17) with respectt@nd obtain
w'(6) = p(o) J’:(“ ”((tt )))) e )
or
w'(t) = K1p(t) + (f(a u)) (5.3.18)

In view of (c), the above inequality reduces to

w'(t) = K1p(t)

or
t

w(t) > w(a) + K1/ p(s)ds, te€la, Bl (5.3.19)

o

Sincev(a) # 0, it follows from the continuity ofv(z) thatv(z) # 0 for ¢ in some
closed intervale, y1, @ < y < . We put

_ v' (1)
() = —m, t€la, vyl

In view of (5.3.2) and hypothesis (b), we get the inequality

(1) = KlQ(f)-i- (f(Ol )% refayl.

We integrate the above inequality framto z, ¢+ < y, and use monotonicity of
to obtain
t

z(t) 2 z(a) + Klf q(s)ds, tela,yl (5.3.20)

o
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From (5.3.20), (5.3.15) and (5.3.19), foe [«, y], we have

t

() >z(a>+1<1/ 4(s) ds

o

t
> z(a) +/ q(s)ds

t
> —w(a) — K1/ q(s)ds

_w(l)s
that is,
z(t) > —w(t) fortela, y]. (5.3.21)
Now we shall show that
z(t) <w() fortela, vl (5.3.22)

Suppose (5.3.22) fails to hold for alk [«, y] then thereis &, « <1 < ¥, such
that

z() =w(1) and w() >z(@) fortela, ).
Fort =1, we have

41
z(t1)=z(a)+/ q(s )JJ:(( (()))) ds+/ —Uf(oz, v)zzds
11 11 a
gz(a)+K2/ q(s)ds+/ a—uf(a, u)u)zds

11 11 a
<w(oa)+/ p(s)ds+/ —f(oz, w)w? ds

t
<w(a) + /a 1p(s) ]]:(( ((s)))) ds +/; —uf(a, wyw?ds

= w(f1),
which is a contradiction. Hence from (5.3.21) and (5.3.22), we have

w(t) >

t €la, vyl (5.3.23)

Therefore, (5.3.23) is true for every interval, y] of continuity of z(¢). Since
w(t) is bounded otfiee, 8] andz(¢) can have only poles at points of discontinuities
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on|a, B], it follows that (5.3.23) holds througholut, 8]. Thus f («, v(z)) # 0 for
t € [a, 8] and consequently(¢) # 0 on[a, B]. O

REMARK 5.3.2. In the special case wh¢ftir, x) = f(x) or x, then we can dis-
card the condition thap(z) and ¢(z) be nonnegative, and inequalities (5.3.15)
reduce to the inequality (5.3.3) witkii = K> = 1. In this case Levin’s result and
the result of Ladas are special cases of Theorem 5.3.3.

THEOREM5.3.4. In addition to the conditions (i) and (iv) in Theorem 5.3.3as-
sume that
(i") f(z, x) isareal-valued continuous function on [a, 8] x R such that

(@) f(t,x)#0forx#0, f(z,0)=0,
() 1< K1 < f(t,0)/f(B,x) < K2, t €la, B,
©) L>0;

(ii”) u(r) and v(r) are the solutions of (5.3.1)and (5.3.2),respectively, such
that u(z) £ 0for ¢ € [«, 8], v(B) # 0 and, for ¢ € [a, B],

u' B v B
f(ﬂ,(f()m) " Klff pOIb > _[f(ﬁ,(f()ﬁ)) +f, C’(S)ds}’
u'(B) v'(B)
F(B,u(B)) J(B,v(B))
Then, for all 7 € [a, B], v(z) #0and
W ‘ v' (1)
FBu@®) | f(B,v@)]

B p
+/ p(s)ds > +K2/ q(s)ds.
t t

tla, Bl (5.3.24)

PrRoOOF The result follows from Theorem 5.3.3 by setting + « + 8 in place
of z. O

In [327] Pachpatte has established the Levin-type comparison theorems for
nonlinear differential equations of the forms

(ah(' ) + p@) f(u@®) =0, (5.3.25)
(bHg(v'®)) +q@ f(v(1) =0, (5.3.26)
where

() p.geCU,Ry), I =]a, B], Ry =0, 00);
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(i) a,beCl(,(0,00));

(i) f e CYR,R), f(x)#0, f(0)=0 and f'(x) >0 for all x e R =
(—00, 00);

(iv) h.g € CYR,R), h(—x) = —h(x), g(—x) = —g(x); sgnh(x) = sgnx,
sgng(x) = sgnx; 0 < x/h(x) < my, 0 < x/g(x) < mo, for some constants
m1,m2 INR; liMy_ s x/h(x), lim,_  x/g(x) exist finitely.

The main results in [327] are given in the following theorems.
THEOREM 5.3.5. Assume that the hypotheses (i)—(iv) hold. If u(¢) and v(z) are

solutions of (5.3.25)and (5.3.26), respectively, such that u(¢) # 0 for r € I,
v(a)#0and, forallr e,

then, for all r € I, v(z) 20 and
_a®h@' (1) - 'b(t)g(v’(t)) (5.3.28)
J () f (@)
PROOFE Sinceu(r) # 0, it follows that f (u(z)) #£0,¢ € I. Let
w(r) = —% (5.3.29)

Differentiating (5.3.29) with respect toand using (5.3.25), it follows that

f (1)) < u'(t)
a() \h'())

Integrating (5.3.30) ovediy, 1], t < B, we obtain

u(s)) ( u'(s)

(s)  \h'(s))

From (ii)—(iv), (5.3.27) and (5.3.31), we observe that

t

w() > w(a) +/ p(s)ds > 0. (5.3.32)

o

w'(t) = p(t) + >w2(t), tel. (5.3.30)

t t !
w(t)=w(ot)+/ p(s)ds—i—/ f; )wz(s)ds. (5.3.31)

Sincev () # 0, it follows from the continuity ofv () thatv(z) # 0 for ¢ in some
closed intervala, c], @ < ¢ < B. Let

b8 (1))

=00

t €la,cl. (5.3.33)
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Differentiating (5.3.33) with respect toand using (5.3.26), it follows that

@) ( V' (1)
b(r) \gW'(n)
Integrating (5.3.34) ovdi, t], t < ¢, we obtain
B ' L6 (V)
(1) = z(a) +fa q(s)ds +/a b <g(v/(s)))z (s) ds. (5.3.35)
Using (ii), (iii), (iv), (5.3.27) and (5.3.32) in (5.3.35), we observe that

ZM)=q() +

)zz(t), 1€l cl. (5.3.34)

t

z(1) >z(oz)+/ q(s)ds

t
> —w(a) —/ p(s)ds
= —w(t) (5.3.36)

fort e [a, c].
Now we shall show that

z(t) <w(), tela,c]. (5.3.37)

Suppose (5.3.37) fails to hold for alk [«, c] then there is &1, « < 11 < ¢, such
that
z(11) = w(r) (5.3.38)

andw(t) > |z(t)| for t € [«, 11). By takingt =71 in (5.3.35) and using (ii)—(iv),
(5.3.27) and (5.3.32), we observe that

n L @s)) [ V() 2
Q(S)ds—/a bGs) (g(v’(s)))z (s)ds

—z(t1) = —z(@) — /

o

1
< —z(w) —/ q(s)ds

1
< w(w) —/ p(s)ds
< w(t),
which is a contradiction to (5.3.38). Thus, from (5.3.36) and (5.3.37), we have

w(t) > |z(t)|, t€la,cl (5.3.39)
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Therefore, (5.3.39) is true for every interyal ¢] of continuity ofz(¢). Sincew(¢)
is bounded ol andz(¢) can have only poles discontinuities it follows that
(5.3.39) holds throughout. Thus f(v(¢)) #0, ¢ € I, and consequently(z) # 0
on /. The proof is complete. O

THEOREM 5.3.6. Assume that the hypotheses (i)—(iv) hold. If u(¢) and v(z) are
solutions of (5.3.25)and (5.3.26), respectively, such that u(z) # 0 for ¢t € I,
v(B) #0and, forall r €1,

a(BYh(' (B)) /f‘ ‘b(ﬂ)g(v’(ﬁ)) /ﬂ
_— d _—— ds|, 5.3.40
Fagy T PO Trupy ) 1@d) (G340
then, for all t € I, v(¢t) £ 0 and
A ) _ ‘b(ng(v’(r)) | 5341

S (u()) S @)

The proof follows by the similar arguments as in the proof of Theorem 5.3.5.
In [327] the following Levin-type comparison theorems are also established
for the pair of nonlinear differential equations of the forms

(@®h(u®)u' ) + p(0) f (u()) =0, (5.3.42)
(bHg(v®)V' ) +q@) f(v(®) =0, (5.3.43)

wherea, b, p,q, f are as in equations (5.3.25) and (5.3.26) satisfying the hy-
potheses (i)—(iii) and
(V) h,ge CR,R)NCLR,R) andh(x) > 0, g(x) > 0 for x # 0.

THEOREM 5.3.7. Assume that the hypotheses (i)—(iii) and (v) hold. If u(z) and

v(¢) are solutions of (5.3.42)and (5.3.43),respectively, such that u(z) = 0 for
tel,v(e)#0and foral:rel,

l t ! !
_a(@)hu(e)u' @) +f (6 ds > ‘_b(a)g(v(a))v (@) +/ q(s)ds

)

fu(@)) f(a))
(5.3.44)
then, for all r € I, v(z) £ 0 and
_a®hu@)u' (1) - ‘b(t)g(v(t))v’(t) . (5.3.45)
S u)) f @)
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THEOREM 5.3.8. Assume that the hypotheses (i)—(iii) and (v) hold. If u(z) and
v(t) are solutions of (5.3.42)and (5.3.43),respectively, such that u(¢) # O for
tel,v(B)#0and, forallzel,

’ B / B
a(B)hu(B)u'(B) +/ ps)ds > ’b(ﬂ)g(v(ﬂ))v(ﬁ) +/ 4(s) ds
t t

’

f@(B)) S(B))
(5.3.46)
then, for all r € I, v(r) # 0 and
a(t)h(u(®)u'(r) . ‘b(t)g(v(t))v’(t) (5.3.47)
S (@) S (@)

The proofs of Theorems 5.3.7 and 5.3.8 follow by the similar arguments as in
the proof of Theorem 5.3.5 given above with suitable changes. Here we omit the
details.

For further extensions of Levin-type comparison theorems to the following
nonlinear differential inequality

(AW (u@®)u' ) + B@) f(u(r)) <O (5.3.48)
and to the nonlinear differential equation
(a®)y (vO)V' () +b@) f(v(1) =0 (5.3.49)

under some suitable conditions on the functions involved in (5.3.48) and (5.3.49);
see [433].

5.4 Inequalities Related to Lyapunov’s Inequality

In 1893, Lyapunov [201] proved the following remarkable inequality.
If y is a nontrivial solution of

v +q(t)y=0 (5.4.1)

on an interval containing the pointsandb, a < b, such thaty(a) = y(b) =0,
then

b
4<(b—a)f lq(s)| ds. (5.4.2)

Since from the appearance of the above inequality, various proofs, generaliza-
tions, extensions and improvements have appeared in the literature. In this section
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we are concerned with inequalities related to Lyapunov’s inequality established
by Hartman [145], Patula [361], Kwong [176] and Harris [143] for second-order
differential equations.

In [145, p. 345] Hartman has given the following theorem.

THEOREM 5.4.1. Let ¢(r) be real-valued and continuous for a < ¢ < b. Let
m(t) > 0 be a continuous function for a < ¢ < b and

. m(t)
Vm = Inf 7@ vy fora <t <b. (5.4.3)

If areal-valued nontrivial solution y(¢) of (5.4.1)has two zeros, then

b
/ m(t)g ™ (1) dt >y (b — a), (5.4.4)

where g™ (r) = max{q(¢), 0}, in particular,
b
/ (t—a)b—1t)gT(t)dt > b —a. (5.4.5)

PROOF Assume that (5.4.1) has a nontrivial solution with two zerog§mrb].
Sinceg™ (1) > q(t), the equation

y'+qt(0)y=0 (5.4.6)

is a Sturm majorant for (5.4.1) and hence has a nontrivial solytionwith two
zerost = «, B on[a, b] (see [145, p. 334]). Sincg’ = —¢ "y, it follows that (see
[145, p. 328])

t B
B—a)yt)=(B—1) / (s —a)g T (s)y(s)ds + (t — ) / (B—s5)gt(s)y(s)ds.
o t

Suppose thak, 8 are successive zeros ofand thaty(r) > 0 for o < < B.
Choose = g so thaty (1) = maxy(¢) on(«, 8). The right-hand side is increased
if y(s) is replaced by (7). Thus dividing byy(7g) > 0 gives

t B
B—a)<(f— r)/ (s —a)g ™t (s)ds + (1 — a)f (B — )" (s) .
o t

wherer =1g. Since —t < B —sfort>sandt —a <s—afors>1,

B
B—a< / (B —s)(s —a)gt(s)ds. (5.4.7)
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Finally, note thatt —a)(b —t)/(b—a) >t —a)(B—1)/(B —a) fora < a <

t < B < b; in fact, differentiation with respect t8 anda shows thatr — ) (8 —

1)/(B — ) increases withg if + > « and decreases withif r < 8. Hence (5.4.5)
follows from the last inequality (5.4.7). The relation (5.4.4) is a consequence of
(5.4.3) and (5.4.5). The proof is complete. O

Since(r —a)(b — 1) < (b —a)?/4, the choicen () = 1 in Theorem 5.4.1 gives
the following corollary.

COROLLARY 5.4.1 (Lyapunov [201]).Let ¢(¢) be real-valued and continuous
ona <t < b. Anecessary condition for (5.4.1)to have a nontrivial solution y(r)
possessing two zeros is that

b
4
+
/a q (t)dt>b

—da

One of the nice purposes of (5.4.2) is that one may obtain a lower bound for
the distance between two consecutive zeros of a solution of (5.4.1) by means of
the integral measurement @f

In [361] Patula (see also [62]) has given the following useful variant of Lya-
punov’s inequality.

THEOREMb5.4.2. Let y(¢) be a solution of (5.4.1),where y(a) = y(b) =0, and
y(t) #0,t € (a,b). Let c beapointin (a, b) where |y(r)| is maximized. Then

() /qu)dr .1
p c—a
b
0 / at > ——,
c b—c
b b—a
S +
(iii) /a q (t)dt>7(b—c)(c—a)'

PROOFR Writing g(t) = g™ (t) — g~ (t), g~ (t) = —min{g(¢), 0} and integrating
(5.4.1) yields

t t
y’(t)—y/(0)=/ q*(S)y(S)ds—/ gt (s)y(s)ds.

c c
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Note thaty’(c) = 0. Another integration gives

t t
y(t)—y(C)=[ (t—S)q_(S)y(S)ds—/ t—9)g"(s)y(s)ds.  (5.4.8)
Lett = b, so thaty(b) = 0. Equation (5.4.8) implies that
b b
ORN R OB R CHCL Y UERVATONOLE

or

b b
y(C)-i-/ (b—S)q_(S)y(S)dSZ/ (b —s5)g"(s)y(s) ds.

We may assume without loss of generality thét) > 0, 7 € [a, b]. Thus we have
b b
y(e) < / (b —35)g" ()y(s)ds < (b - c)/ " (s)y(s)ds.
Sincey(s) < y(c) if s € [a, b], it implies

b
1< (- c)/ gt (s)ds,

which in turn implies

b N 1
d
e
This result proves part (ii). Part (i) follows in a similar fashion except that in
equation (5.4.8) one now replaceby a. The sum of (i) and (ii) yields part (iii)

and the proof is complete. |

One way to view Theorem 5.4.2 is that it imposes some restrictions on the lo-
cation of the point and thus the maximum ¢ (¢)| in [a, b]. That is,fabq+(t) dt
is a finite number. But

. b—a . b—a
Iim —— = lim ——— =
c—at (b—c)(c—a) c—b- (b—c)(c—a)
Thusc cannot be too close t@ or b. Also it is interesting to note thab — a)/
(b — ¢)(c —a)) = 4/(b — a). This result means that under the hypotheses of
Theorem 5.4.2, Corollary 5.4.1 follows.

As a consequence of Theorem 5.4.2, in [361] Patula has given the following
theorem.
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THEOREM 5.4.3. Suppose ¢ T (1) € LP[0, c0), 1 < p < oo. If (5.4.1)is oscilla-
tory and if y(¢) is any solution, then the distance between consecutive zeros of
y(t) must become infinite.

PROOF Suppose not. Then there exists a solutigr with its sequence of zeros
{t.}, which has a subsequengg, } such thatz,, ., —t,,| < M < oo for all k. Let
sn, b€ apointin(t,,, t,,,,) where|y(¢)| is maximized. Thens,, —t,.| < M for
all k. Sinceg™ (1) € L?(0, 00), 1< p < oo, choosék so large that

00 1/p 1 1
(/ cﬁmpdt) S e L
1,

g

From Theorem 5.4.2, part (i), we have

Sny
/ gt(@)dt >
lnk Snk - tnk
Thus
Sny.
1< (S, —tny) gt () dr
tllk
Snp 1/p 1
< (g — w(f q+<r>"dr) (g — tu) V"
t"k
1+1 o r
< (Snk - tnk) +i/r </ q+(t)p dl)
tny,
< Ml+1/rM—l—1/r — 1< 1’
a contradiction. The proof is complete. O

The classical result of Lyapunov is usually formulated in connection with dis-
conjugacy. Hence a violation of inequality (5.4.2) implies that (5.4.1) is disconju-
gate in[a, b]. In [176] Kwong strengthened Lyapunov'’s inequality by introducing
the idea of disfocality. Below, by “a solution” we always mean “a nontrivial one”.
It is well known that between any two zeros of a solutioof (5.4.1) there is a
zero of y’. We may thus decompose the intergal b) between zeros of into
the union of the intervalga, £) and[&, b), wherey’ (&) = 0. It is possible now
to construct inequalities similar to (5.4.2) on the interv@lsé) and (€, b) sep-
arately. Following Kwong [176], (5.4.1) is right disfocal on the interjalb] if
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the solution of (5.4.1) with/(a) = 0 has no zeros ifu, b]. Left disfocality is de-
fined in a similar way. Equation (5.4.1) is disconjugate in an intdevah] if and
only if there exists a point € [a, b] such that (5.4.1) is right disfocal [, b] and
left disfocal in[a, c]. Thus Lyapunov’s result follows from the following stronger
result. If (5.4.1) is not disfocal in an interval, c], then

/Cq*(t)dt > Cia. (5.4.9)

This approach has been employed by Kwong in [176] to extend Lyapunov’s in-
equality.
In [176] Kwong has given the following necessary inequality for disfocality.

THEOREM 5.4.4. If (5.4.1) has a solution such that y’(0) = y(c) =0, 0 < c,
then

/C ot(t)dr = /C(c — gt @) dr > 1, (5.4.10)
0 0
where QF (1) = [y g™ (s) ds.

PROOFE The idea that the two integrals in (5.4.10) are equal is an elementary fact
of double integration. a

Let us make two reductions. We may first assume thzds no zeros ifi0, ¢).
Suppose that the theorem has been proved for this case. In the casehtmat
zeros in[0, ¢), let ¢ be the smallest zero. Then we hafééQJr(t)dt > 1 from
which (5.4.10) follows. Next we may assume tgat 0, so thalg™ = g. In the
contrary case, we consider the equation

') +qT1)z(t) =0, (5.4.11)

and one of its solutiong such thatz’(0) = 0. It follows from a form of the
Sturmain comparison theorem (notice that the potentfalof the new equa-
tion (5.4.11) dominates that of (5.4.1)) thalhas a zer@ in (0, ¢). The result for
positive potentials then gives, for equation (5.4.%)Q+(t) dr > 1 from which
(5.4.10) follows.

The following corollaries of Theorem 5.4.4 can be used in the study of discon-
jugacy criterion, which may be considered as the further extensions of Hartman’s
improvement of Lyapunov’s result [145, p. 346].
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COROLLARY 5.4.2. If, for all ¢ € [a, b], the following inequality holds

/(s—a)qu(s)ds /‘ (b—s)q*(s)ds 1 N 1

t—a \t—a b—1t’

then (5.4.1)isdisconjugatein (a, b).

COROLLARY 5.4.3. If, for some point ¢ € [a, b],

c b
/(t—a)q+(t)dt§1 and /(b—t)q+(t)dt<1,

then (5.4.1)isdisconjugatein [a, b].

In [143] Harris has given further extensions of Kwong’s results in [176].
In [143] Theorem 5.4.4 is stated as follows.

THEOREMA. If y isasolution of (5.4.1)with y’(0) =0 and y(c) = 0, then

c pt
// gt (rydrdr> 1. (5.4.12)
0J0

Thisresult may be paraphrased to statethat if theinequality of (5.4.12)isviolated
then (5.4.1)isright disfocal on [0, ¢).

In [143] Harris has given the following keener result which also uses both
positive and negative parts gfz).

THEOREM5.4.5. Let y(-) denote a function with the properties

(i) v =0,
(i) y () isdifferentiable on [0, c].

Set

Q) =q@)—y@) +y(@)? and
A(c) = sup /X exp{fo y(s) ds}Q(t) dr|,
0<x<c | JO t

B(c) = sup exp{Z/ y(s)ds}dt.
0<x<c /0 t




512 Chapter 5. Levin- and Lyapunov-Type Inequalities
If 4A(c)B(c) < 1,then (5.4.1)isright disfocal on [0, ¢).

COROLLARY 5.4.4. If 4csupc, <. | fo q(t) di| < 1,then (5.4.1)is right disfo-
cal on [0, ¢).

PROOFE We sety(r) =0fort € [0, ¢) in Theorem 4.4.5. O

COROLLARY 5.4.5. If

B(c)= sup exp{Z// q(r)drds}dt
0<x<cJO t JO

X X ps t 2
A(c)= sup exp{Z// q(r)dr ds} (/ q(s) ds) dr,
0<x<c /O t JO 0

then (5.4.1)isright disfocal on [0, ¢) if 4A(c)B(c) < 1.

and

PROOR We sety (1) = [y q(s) ds. O

COROLLARY 5.4.6. If

c s + c t 2
4cexp{/0 (/0 q(r)dr) ds}/o (/0 q(s)ds> dr <1,

then (5.4.1)isright disfocal on [0, ¢).
PrROOF The proof follows from Corollary 5.4.5. O

In [143] Harris has given an iterated form of Theorem A by means of a trivial
observation.

Let y denote a solution of (5.4.1) with'(0) = 0 andy(c) = 0. We may sup-
pose without loss of generality thats the least positive zero of andy(z) > 0
forr € [0, ¢). Itis also sufficient by the Sturmain comparison theorem to consider
only the case (1) = ¢ ™ (1).

We integrate (5.4.1) between 0 antb obtain

t
—y'(1) =fo g (s)y(s)ds. (5.4.13)



5.4. Inequalities Related to Lyapunov’s Inequality 513

An integration ovefO0, c] then yields
c pt

y(0)=// g T (s)y(s)ds dr
o Jo

c prt
Sy(O)// q"(s)dsdr. (5.4.14)
0Jo

This result leads to Kwong’s proof of Theorem A.
Suppose now that we integrate (5.4.13) over the interval fréorc and obtain

}’(S)=//0 gt (r)y(r)drdr.

Substitution into (5.4.13) now gives

t c T
y’(t)=/ q+(S)// gt (r)y(r)drdrds,
0 s JO

and an integration oveb, c] yields

C t C T
y(0)=// q+(S)// g™ (r)y(r)drdr ds dr
oJo s Jo
c pt c rT
<y(0)// q+(s)// gt (r)drdrdsdr.
0J0 s JO

We thus deduce that if (0) = 0 andy(c) = 0 then

c pt c rT
1< / / 61+(S)/ / gt (r)drdrdsadr. (5.4.15)
0J0 s JO

In order to compare (5.4.15) with Theorem A, we let

D(s) =/C/Tq+(r)drdt.
s JO

Inequality (5.4.15) represents an improvement over TheoremdXdf < 1. We

write
<15(s)=/c{/Squ(r)dr—}—/th“(r)dr}dt
s 0 s

= (c—s)/qur(r)dr+/C(C—r)q+(’”)dr
0 K

= /C w(s,r)g"(r)dr, (5.4.16)
0
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where
c—s ifOL<r<s,

c—r ifs<r<ec.

(s, r)= {

We note that &X ¥ (s, r) < ¢ — r, and using this upper bound in (5.4.16) we have

D(s) < /C(c —r)gt@r)dr = /C/rq"'(s) ds dr. (5.4.17)
0 0JO

This result is inconclusive since, by Theorem A, the right-hand side of (5.4.17)
is greater than 1. On the other hand, if we use the upper bauady) <c¢ — s,
in (5.4.16) we deduce that

@(s) < (c—s) /Cqu(r)dr,
0

which may be less than 1.
This process may be iterated and leads to the result that(@ =0 and
y(c) = 0 then for any integet,

c prlg c pt2 c n+2
/ / q+(t1)/ / g (13) - / / q " (t2n43) Atz g3 - - dig > 1.
0JO 11 J0 2n4+1 0

PROOF OFTHEOREM5.4.5. Lety(-) denote a solution of (5.4.1) with(0) =0
andy (-) a differentiable function to be chosen later subject to

y(0) =0. (5.4.18)

We follow the approach of Harris [142] and ugdo derive a regularizing trans-
formation of (5.4.1). We write

r(X)=—(y;/ —V>, (5.4.19)

so that by (5.4.18),
r(0) =0, (5.4.20)
and after substitution in (5.4.1),

r'=Q+2yr+r2, (5.4.21)
whereQ =g — y’ + y2. We rearrange (5.4.21) as

¥ —2yr=0+r
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and integration yields

r(x) =/X exp{Z/x y(s)ds}Q(t)dt +/X exp{Z/X y(s)ds}rz(t)dt.
0 t 0 t

(5.4.22)
Let
AX)= sup / exp{Z/ y(s)ds}Q(t)dt,
o<x<x1J0 t
B(X)= sup exp{Z/ y(s)ds}dt,
0<x<Xx JO t
R(X)= sup |r(x)|.
0<x <X
Itis clear from (5.4.22) that
[r(0)| < AX) + B(X)R(X)? forx el0, X]
and thus
R(X) < A(X) + B(X)R(X)?. (5.4.23)
U

LEMMA 5.4.1. If X issuchthat 4A(X)B(X) < 1, then

R(X) <2A(X) forx [0, X].

PrOOFR We know thatR(0) = 0 so if the result were false there would be a least
value ofx, xg, say, for whichR (xg) = 2A(xp); thus from (5.4.23),

2A(x0) < A(x0) + B(x0) R(x0)?
= A(x0) (1 + 4A(x0) B(x0)),

which gives a contradiction. d
In particular, Lemma 5.4.1 shows thal &) B(c) < 1 then

Y (x)
y(x)

- J/(x)‘ <2A(c), x€]0,cl].

Thus, ify (-) is bounded for € [0, c], theny has no zeros ifo, c].
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5.5 Extensions of Lyapunov’s Inequality

In this section we deal with inequalities similar to Lyapunov’s inequality estab-
lished by Harris and Kong [144] and Brown and Hinton [46]. Consider the linear
second-order differential equation

y' +q(t)y=0, (5.5.1)

whereq is a real-valued function belonging llqloc. In [144] Harris and Kong
extended the Lyapunov inequality given in Corollary 5.4.1 in such a way as to use
the negative part of to obtain keener bound.

The following lemma given in [144] is needed in further discussion.

LEMMA 5.5.1. If y isa solution of (5.5.1)satisfying y'(d) = 0, y(b) =0, and
y(t) >0and y'(r) <0for ¢t € (d, b), then

t

sup q(s)ds > 0.
d<t<bJd

PROOF Suppose the contrary. Thqfrjq(s)ds <O forteld,b]. Let Q(r) =
[;q(s)ds, and define the Riccati variable

y'(®)
y(@)

We thus have (d) =0, lim,_,,- r(t) = oo andr(¢) > 0 for ¢ € (d, b). It follows
from (5.5.1) that

r(t)=—

(5.5.2)

r(0) =g +r2), (5.5.3)
whence
t
r(t) = Q(t)+/ r2(s) ds.
d
In a similar way, ifz is the nontrivial solution of the equatiofi’ = 0 with

7(d)=0andR() = —7/(¢)/z(t), then

t
R(t) =/ R(s)%ds,
d

sothatR(¢r) =0 forallt € [d, 00). As a simple consequence of the general theory
of integral inequalities we see thadt) < R(r) =0 for ¢ € [d, b), thus contradic-
ing the fact that lin., ,- r(#) = co. The proof is complete. O
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The main results established in [144] are given in the following theorems.

THEOREM 5.5.1. Let y denote a nontrivial solution of (5.5.1) satisfying
y'(d) =0, y(b) =0,and y(r) # 0for r € [d, b). Then

t
/ q(s)ds
d

Moreover, if there are no extreme values of y in (d, b), then

(b—d) sup
d<t<b

> 1. (5.5.4)

'
(b—d) sup q(s)ds > 1. (5.5.5)
d<t<bJd

PROOF We assume, without loss of generality, thét) > 0 for ¢ € [d, b). With
r defined by (5.5.2), we set

t
w(t):/ r’(s)ds forze[d,b). (5.5.6)
d

Thusr(d) = w(d) = 0 and from (5.5.3) lim, ,- 7(¢) = lim,_, ,- w(t) = oo be-
cause

t
r(t):/ q(s)ds +w(t) forreld,b). (5.5.7)
d
SetQ* = sup;<,<p | f; q(s)ds| and observe that

Ir(] < 0"+ w(@)
so that
w' (1) =r2(1) < (Q* +w(n)?,
that is,
_wo
(Q* +w(1))?
Integrating (5.5.8) oveld, b] we obtain

(5.5.8)

1 b
-————| <b-d,
O*+w() |y
which impliesthat YO* < b—d or (b —d)Q* > 1. We remark that equality can-
not hold, for otherwiséQ (r)| = |fé q(s)ds| = Q* almost everywhere ofi, b),
which contradicts the fact th&@ is continuous and (d) = 0.
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If d is the largest extreme point ofin [d, b), theny’(r) <0 and thus-(¢) >0
for 1 € [d, b). Set O, = su¢,<; [;q(s)ds. By Lemma 5.5.1,0, > 0 and
from (5.5.7),

0<r(t) < Qs+ w(r).

The proof of the second part of theorem now follows in a way similar to that of
the first. O

THEOREM 5.5.2. Let y denote a nontrivial solution of (5.5.1) satisfying
y(a) =0, y'(c) =0,and y(t) # 0 for r € (a, c]. Then

/Cq(s) ds
t

Moreover, if there are no extreme values of y in (a, ¢), then

(c—a) sup
a<t<c

> 1. (5.5.9)

c

(c —a) sup q(s)ds > 1. (5.5.10)

at<ceJt
The proof is similar to the proof of Theorem 5.5.1 and is omitted.

COROLLARY 5.5.1. If

t
b-a) sup| [ gwas| <1
d<i<blJd
then (5.5.1)isright disfocal on [d, b).
If
(c—a) sup / q(s)ds| <1,
at<cldt

then (5.5.1)iseft disfocal on (a, c].

THEOREM 5.5.3. Let a and b denote two consecutive zeros of a nontrivial so-
lution y of (5.5.1).Then there exist two digjoint subintervals of [a, b], I1 and I»

satisfying

(b—a) q(s)ds >4 (5.5.11)
LUl

and

f q(s)ds <0. (5.5.12)
[a,b]—(11Ul2)
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PROOF Letc andd denote the least and greatest extreme points af [a, b],
respectively. If there is only one zero ¢fin (a, b), thenc andd coincide. Then

y'(d) =0, y(b) =0, andy’(¢) # 0 for ¢ € [d, b]. By Theorem 5.5.1, inequality
(5.5.5) holds. Thus there exigisg € (d, b] such that

b1 1 by b
/ q(s)ds > —— and / q(s)ds > / q(s)ds.
d b—d d d

Similarly, we can choose € [a, ¢) such that

c 1 c c
f q(s)ds > —— and / q(s)ds > f q(s)ds.
a ¢c—a ay a

Let Iy =[d, b1] andlo = [ay, c], then

b—a) g(s)ds = [(b—d) + (c —a)] / q(s)ds + q(S)dS)
11Ul d ax
>[(b—d)+ (c— !
> |( )+ (c—a) (b d )

— b— 24
b—d c—a

and (5.5.11) is verified. It is also easy to see tf)f?t](s) ds <Oand/™g(s) x

ds < 0. To verify (5.5.12) it is sufficient to show thgﬁf q(s)ds < 0. Infact, since
y'(¢) =y'(d) =0, we have-(c) = r(d) = 0. From (5.5.3),

d d
0=r(d)—r(c)=/ q(s)ds+/ #2(s) ds.

This result means thgf q(s)ds < 0 and hence that (5.5.12) holds. O

COROLLARY 5.5.2. Suppose that, for every two disjoint subintervals, 7; and I,
of [«, B], we have

B-a)| q)ds<a (5.5.13)
11UI>

Then (5.5.1)is disconjugate on [«, B].

PROOF Suppose the contrary, then there exists a nontrivial solytioh(5.5.1)
with y(a) = y(b) =0 for e < a < b < B. Without loss of generality we assume
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thaty(z) £ 0 for ¢ € (a, b). By Theorem 5.5.3, there exist two disjoint intervals,
Iy andlp, of [a, b] C [«, B] With

(b—a) q(s)ds > 4.
LUI»

Hence,(8 — a) f11u12‘1(s) ds > 4, which gives a contradiction. O
COROLLARY 5.5.3. Suppose that a nontrivial solution of (5.5.1)has N zeros

in [a,b] for N > 2. There exist 2N digoint subintervals of [a, b], I;; for i =
1,...,N,j=1, 2, suchthat

1 1/2
N < > [(b —a) / q(s) ds] +1, (5.5.14)
I
and
/ q(s)ds <0, (5.5.15)
la,b]—1

where I =, U%_y 1ij-

PROOE Lett,i=1,...,N, be the zeros of in [a, b]. By Theorem 5.5.3, for
i=1,..., N —1,there are two disjoint subintervals[af, #;+1], I;1 andl;2, with

4
/ q(s)ds > (5.5.16)
1;1Ul;2 tiy1—1
and
/ q(s)ds <O0. (5.5.17)
[t ti 11— 11 VU1;2)

We sum (5.5.16) for from 1 to N — 1 and see that

N1y
/q(s)ds>4z ,
! i=1

—, li+1— 1

and by the inequality for harmonic mean

Y 1Y
/q(s) ds 4N - 1) > 4(N - 1)
I IN—11 b—a

)

whence

(N—12< b%a/q(s)ds.
1
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This result implies (5.5.14). From (5.5.17) it is easy to deduce (5.5.15). O

REMARK 5.5.1. Corollary 5.5.3 provides an extension of the result [145, Corol-
lary 5.2, p. 347] in that the negative partpfo achieve a sharper bound is used.

In [46] Brown and Hinton studied the two problems concerning the equation
Y'+qx)y=0, a<x<b, (5.5.1)

wheregq is real andy € L(a, b):

(i) obtain lower bounds for the spacing of zeros of a solution, and

(i) obtain lower bounds for the spacing — « for a solutiony of (5.5.1)
satisfyingy(«) = y'(8) =0 ory’(a) = y(8) = 0.

In [46] results which relate to problems (i) and (ii) are given by using the
following versions of the Opial-type inequalities.

LEmMA 5.5.2.If f is absolutely continuous on [a, b] with f(a) =0and s €
L%(a, b), then

b b
/s(x)|f(x)||f/(x)|dx<k/ |/ (o) d, (5.5.18)
where
1 b 1/2
- - 5.1
k «/i(/a NN a)dt) , (5.5.19)

with equality if and only if f =0 (or f islinear and s is constant).
REMARK 5.5.2. Inequality (5.5.18) is a special case of an inequality obtained by

Beesack and Das (see [4]). If we replat@) = 0 in Lemma 5.5.2 byf (b) =0,
then (5.5.18) holds wherein (5.5.19) is given by

1 b ) 1/2
k=— b—1)d i 5.5.20
ﬁ(/ s()(b—1) t) ( )

The following version of the Opial inequality is also used in [46].

LEMMA 5.5.3. If f isabsolutely continuouson [a, b] with f(a) =0or f(b) =0
and 1< p < 2,then

b b P
f|f(x)|”|f/(x)|”dx<K(p)(b—a)<f |f/(x)|2dx) : (5.5.21)
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where
3 p=1,
Kp=1{% p=2, (5.5.22)
O
with

2 -2 _
1:f {1+ - )r} [1+(p— e} ar.
0 2—p
For p =1, equality holdsin (5.5.21)only for f linear.

REMARK 5.5.3. Lemma 5.5.3 has immediate application to the case where
f(a) = f(b) =0. Choose: = (a + b)/2 and apply (5.5.21) tu, c] and|c, b]
then add to obtain that

b
/ | F £/ dx

T e
<K<p>( ){(/ 1) dx)} . (5.5.23)

For p =1, (5.5.23) is strict unlesg is linear in each of the subintervdls, c]
and[c, b].

The main results established in [46] are given in the following theorems.

THEOREM 5.5.4. Suppose y is a nontrivial solution of (5.5.1) which satisfies
y(a) =y’ (b) =0.Then

b
1< 2f 0(x)*(x — a)dx, (5.5.24)
where Q(x) = /7 g(r)dt. I y/(a) = y(b) = O, then
b
1< 2/ 0(x)°(b — x) dx, (5.5.25)

where Q(x) = [¥ ¢ (1) dr.
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PROOF We first establish (5.5.24). Multiplying (5.8)1by y and integrating by
parts gives

b b
/ Y (0)%dy = / g(x)y(x)?dx
b
= / — Q' (x)y(x)%dx

b
= f 20(x)y(x)y'(x) dx

a

b
<2 / 10| [y@)|]y' (0] dr

o /b 12 b
<72(/ Q(x)z(x—a)dx> /y’(x)zdx, (5.5.26)

by (5.5.18) and (5.5.19) of Lemma 5.5.2. The inequality is strict sintiaear
impliesy =0 asy(a) = y'(b) = 0. By cancelingfab y'(x)2dx and squaring, we
obtain (5.5.24). The proof of (5.5.25) is similar using integration by parts and
(5.5.18) and (5.5.20) instead of (5.5.19). O

REMARK 5.5.4. By using the maximum 08| on[a, b] in (5.5.24) and (5.5.25),
integrating and then taking a square root, we see that

b
l<((b—-a) ma<xb / q(t)de (5.5.27)
wheny(a) = y'(b) =0, and
1< (b —a) max / q(t)dt (5.5.28)
a<x<b| ),

when y’(a) = y(b) = 0, which are the inequalities obtained by Harris and
Kong [144].

The following result similar to Theorem 5.5.4 given in [46] may be obtained
by application of Lemma 5.5.3.

THEOREM 5.5.5. Suppose y is a nontrivial solution of (5.5.1) which satis-
fies y(a) = y'(b) =0, 1< p < 2, and p’ is the conjugate index of p, that is,
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1 1 _
;+7_1.Then

b , 1/p’
1<2K(p)YP b —a)l/f’</ lo)|” dx) , (5.5.29)

where Q(x) = [” g (1) dr; if y'(a) = y(b) = 0 then (5.5.29)is true with Q(x) =
[ q(r)de. In either case K (p) is given by (5.5.22).For p = 1 the inequality is
strict. For p = 1the p’ normof Q in (5.5.29)becomes max|Q(x)|, a < x < b.

PROOF In the case(a) = y'(b) = 0 from the proof of Theorem 5.5.4, we have
that

b b
f Y ()% de <2 f |||y )|y ()] dx. (5.5.30)
a a
By application of Holder’s inequality and Lemma 5.5.2 to (5.5.30), we get that

b b , p' ;s pb 1/p
fy’(x)zdx<2</ o)’ dx) (/ |y<x>y/<x>|”dx)
b , 1p" pb
<2K<p)1/P<b—a>1“’(/ lo)[P dx) /y’(x)zdx,

with strict inequality forp = 1. Cancelingah y'(x)?dx yields (5.5.29). A similar
argument yields (5.5.29) witt (x) = [ ¢(¢) dr wheny'(a) = y(b) = 0. O

REMARK 5.5.5. Note that, fop = 1, (5.5.29) in they(a) = y'(b) = 0 case is
the same as (5.5.27) and in th€a) = y(b) = 0 case the same as (5.5.28). Theo-
rems 5.5.4 and 5.5.5 yield sufficient conditions for disfocality of (3)5that is,
sufficient conditions so that there does not exist a nontrivial solytioh(5.5.1)
satisfying either (a) = y'(b) =0 ory’(a) = y(b) = 0.

As an application of (5.5.23) in [46] the following Lyapunov-type inequality
is given.

THEOREM 5.5.6. Suppose y is a nontrivial solution of (5.5.1) which satisfies
y(@)=y®) =0,1< p<2,and Q'(x) = q(x) on|a, b]. Then

_\Vpr b , 1/p
1<2K(p)1/l’(b2“> (/ o) dx> : (5.5.31)

with K (p) given by (5.5.22).For p = 1 theinequality is strict.
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PROOF As in the proof of Theorem 5.5.4, multiplying (5.9.by y and integra-
tion by parts yields that

b b b
f Y (x)?dx = f g(x)y(x)?dx = -2 / Q)y(x)y' (x)dx.  (5.5.32)

By application of Holder’s inequality and (5.5.23) to (5.5.32), we get that

b
/y’(X)de
b , p s pb 1/p
<2(/ low)|” dx) (/ |y<x>y’<x)|”dx>

yp(b—a p s pb o 1/p b )
<2k (250 ([Tewpa) T [Tywra 6539

a

from which (5.5.31) follows. Fop = 1 the inequality is strict since a solution
of (5.5.1) cannot be linear on each of the intervals %], [#, b] as this im-
plies a discontinuity oj’. d

5.6 Lyapunov-Type Inequalities |

In 1970, Eliason [100] established a Lyapunov-type inequality for a second-order
possibly singular nonlinear differential equation of the form

(r)y) + p)yf(y) =0, (5.6.1)

which is more general than (5.4.1). The conditions assumed in [109]pand f
are as follows:

(i) onanintervala, b] under consideratiom; andp are real and continuous,
andr > 0;
(i) for y #0, f(y) is real, even, positive and continuous; and
(i) on each interval of the forng0, M| for M > 0, there exists @ > 0 such
thaty"*+1 7 (y) is strictly increasing iry and has zero limit at 0.

By a solution of (5.6.1) we mean a real continuous functigr) which satis-
fies (5.6.1) wheny(¢) # 0.

The following lemma given in [100] is needed in order to establish a Lyapunov-
type inequality for equation (5.6.1).
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LEMMA 5.6.1. Letr(z), y(¢) and y'(r) bedifferentiableon aninterval (a, b) with
r(t) > 0and y(¢) > 0. Suppose that lim,_, ,+ ,- y(¢) =0and lim,_, ,+ ,- (r () x
y'(#))'y"(t) =0for somev > 0. Then lim,_, ,+ - r(t)y'(t)y"(t) =0

PrRoOFR We shall establish the limit at only. Let g(r) = r(z)y'(t) and assume
the conclusion is false. This result being the case sinceJjmy () = 0, we may
assume there is afp > 0 and a sequengg — a* such that

|8 (tn)y" (tn)] > eo. (5.6.2)

Now, we may assume that, for sode> 0,

8" (w)y" ()] < (5.6.3)

2(b a)
forallu € (a,a + 81).

Chooseng such thatn > ng implies ¢, € (a,a + 81). For thesen, we will
consider the two p055|bll|t|es @f(z,) > 0 andg(z,) <O.

In the first case where(z,) > 0, we havey'(t,) > 0 and so lets, =a + 81
if y'(u) >0 on(t,,a+ 81) or lets, be the least zero of’(u) on (t,,a + 81),
otherwise. Clearly it follows that

0< g(sn) < |gla+81)| foreachn > no. (5.6.4)
Also, by the mean value theorem, we have that
g(tw) = g(sn) + [&'EN]tn — sn) (5.6.5)

for someg, € (1, s,). Thus sincey”(t,) < y(&,), we have from (5.6.3)—(5.6.5)
that

lg) ||y @] < g ||y @] + |8 ED|lta — sul|y” )]
< |gla+ 8Dy )|+ 18’ ED ||y ED| b —a)
<|gta+80)||y" )] + %0 (5.6.6)

The second possibility is to consider those: ng whereg(s,) < 0. Clearly,
sincey(t) > 0 on (a, b) and since lim., ,+ y(#) = 0, there exists a,, € (a, ;)
such thaty’(v,) = 0 andy’(x) < 0 on(v,, t,). Again, by the mean value theorem,
we have

g(tn) = [g/(en)](tn — Up)
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for somed, € (v,, t,). Thus sincey’ (6,) > y"(t,) we have

lgt)y" )| < &' 0| (b —a)|y” (0n)]

< 8—20 +|gta+60)|]y" )] (5.6.7)

Now, since lim_, ,+ y(t) = 0, we can choose afy > ng such that > n1 implies
that|g(a + 81)|1y" (t,)| < €0/2. This result together with (5.6.5) and (5.6.6) leads
to a contradiction of (5.6.2). Thus the conclusion of the lemma is true. [

The following theorem and corollary are established in [100].

THEOREM 5.6.1. Let y(z) be a solution of (5.6.1) with consecutive zeros at
a < b. Assume (i) and (i) are satisfied. Let M = suf|y(?)|: ¢ € (a, b)}, and sup-
pose v > 1 satisfies (iii) on (0, M]. Then

b b
16v(v+1)72<f(M)/ rildt/ ptdr. (5.6.8)

PROOF Assume without loss of generality thatQy (1) < M on (a, b) and let
to € (a, b) be such thay (rg) = M.

With A = (v + 1)/2 andv > 1 it follows thaty*~1(r) is continuous ora, b).
Also y'(¢) is continuous or(a, b) so that we may consider improper integrals in
the following computations.

First we have

10 o
ATIM =AY (1) = / vy dr < / y)‘fl|y/| dr.
at at

This equation together with a similar argument[ay) 5] yields

b
2.7 IM* < /+ y)‘_1|y’|dt.

a

The following equalities and inequalities provide the main part of the argument
establishing the theorem. The fourth equality is due to Lemma 5.6.1. We compute

16M" w4+ )72 = (2M 2 1)?

b 2
<([ e
at
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b 2
_ (/ r1/2yk—1|y/|r—l/2 dt)
a+

b~ b~
g/ ryZ()»fl)y/Zdt/ r*ldt
at at
b~ b
= [v_lry”y/]ﬁf r~tdr

at

b
+f —v_l(ry/)/y” dtf r~tdr
at at
b~ b
=/ v_lpy”“f(y)dt/ rtde
at a
b b
< v_lM”+1f(M)/ pt dt/ r~tdr.

The last strict inequality can be established by using the continuously increasing
property ofy**1 £ (y) due to (iii), the continuity ofy andy’ on (a, b) and the fact
that p must be positive on some interval where> 0.

When O< v < 1 holds in (iii) the above theorem can also be established; how-
ever, since 16/(v 4+ 1)2 < 4 for v € (0, 1) the following corollary yields a better
result. This result can be established by noting the fact thatif O satisfies (iii)
on (0, M] then anyv, > v1 also satisfies (iii). O

COROLLARY 5.6.1. Let y(r) be as in Theorem 5.6.1 except assume here that
O0<v <1, then

b b
4<f(M)/ fldt/ ptdr. (5.6.9)

In [100, p. 465] it is noted that (5.6.9) is sharp and also shown thatv1-6
1)~2in (5.6.8) cannot be replaced by a constant greater than 4.

In 1974, Eliason [102] established Lyapunov inequalities and bounds on solu-
tions of the nonlinear second-order differential equations of the forms:

(r®y' ®) +p f(y®) =0 (5.6.10)
and

Y'(@) +m(@)y' (t) +n@) f(y()) =0, (5.6.11)
under the conditions
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(Ho) The real-valued functions, ' and p are continuous on a nontrivial in-
terval J of reals, and-(¢) > O fort € J;

(H1) f:R — Ris continuously differentiable and odd witf{(y) > 0 for all
realy;

(H2) The real-valued functiona andn are continuous on a nontrivial inter-
val J of reals.

Multiplying (5.6.11) by

1
r(t)EeXp|:/ m(s)ds:| fort e J, (5.6.12)

wherewa € J is fixed, we obtain (5.6.10) and the relation
p@) =r)n(). (5.6.13)

In the special case whefiy) = y, Fink and Mary [119] (see also [205]) estab-
lished that ifa < b in J are consecutive zeros of a nontrivial solution of (5.6.11),

then
b 1 b
(b—a)/ n+—4eX[{—(§>/ |m|i| > 0. (5.6.14)

Below, the bounds are expressed in terms of a maximum value of the solution
and integral functionals involving the coefficients.
For realsd < e we let

e X
R(d,e; p)= sup P L(d,e; p)= sup P
d<x<eJx d<x<eld
’ ; (5.6.15)
S(d,e;p)= sup ps I(d,e;p)= _inf / p
d<u<v<eJu dsusvs<e Jy
Clearly, we have
e e
—/ p < Fd,e; p)é/ p* (5.6.16)
d d

holding for F denotingR, L, S or I. Also for fixede, R andS decrease monoton-
ically asd increases. Other obvious monotonicity propertied pf and 7 will

be used without explicitly stating them here. By studying relationships (5.6.16)
more closely one may also see how the inequalities become strict in certain cases
when p is not of constant sign of, e].
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Two inequalities improving (5.6.14) are

b
b- a)/ nt — 4exp{ (%) [1(a,b;m)— S(a,b; m)]} > 0; (5.6.17)

and, whenn = 0 and the solutiory is positive on(a, b) and, for some € (a, b),
satisfies

(c—1y@#)>=0 fortela,b], (5.6.18)
(b—a)S(a,b;n) > 4. (5.6.19)

By (5.6.16), the improvement of (5.6.17) follows from

b b
I(a,b;m)—S(a,b;m)}/ —(m—+m+)=—/ Im]. (5.6.20)

Strict inequality holds here, for example, when- 0, b = 47 andm(t) = Sinkt
wherek is a positive integer. In fact, we here have the rather interesting phenom-

enathat—fab |m| remains constants whilE(a, b; m) — S(a, b; m) — 0 ask — oo.
Bounds on solutions and related inequalities. We first consider a solution

of (5.6.10) wherey’(c) = 0 for somec € J. By integrating twice and applying
an integration by parts, for € J, we have

sy

+/ (/ P(T)df>f/(y(s))y’(s)ds}dt.
t N

(5.6.21)

y(©) = y(x) :f

X

By the oddness of, if y(c) # 0, we may assumeg(c) > 0; and throughout,
between consecutive zeros we will assume a solution is positive. Thusdfand
if y is positive and monotone increasing @ c¢] we may conclude from (5.6.21)
that

y(e) —y(x) < / [FO] "R, c; p[f () + f(3©) = f(y0)] e

c

= f(y(c))/ [r(t)]_lR(t,c; p) dt

cr1
< f(Y(©@)R(Kx, ¢ p)/ (;) (5.6.22)
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Furthermore, by (H) and (5.6.21), ify(x) < y(c), theny’ and p must both
be positive on some subinterval pf, c]. As a result it may be argued that the
inequalities in (5.6.22) are strict in this case.

By a similar argument, it > ¢ and if y is a positive and monotone decreasing
on|c, x], then

y(e) — y(x) < f(y(c))/ [r()] "Lic,1; p)dr

x 1
<f(y(c))L(c,x;p)/ (;) (5.6.23)

where the same conclusions on strictness apply herejf< y(c).

The inequalities in (5.6.22) and (5.6.23) clearly yield lower bounds on the
solutiony. They will next be used to place implicit lower bounds on the distance
from ¢ to the first possible zero of lying to the left or right ofc.

Suppose, then, that < b in J are two consecutive zeros of a solutign
and suppose < (a, b) satisfies (5.6.18), where, as is understopds positive
on (a,b). With f1(y) = f(y)/y for y # 0, (5.6.22) and (5.6.23), respectively,
yield

1< fl(}’(c))/ [r()] "R, c; pyde
‘r1
< f1(y(©))R(a, ¢; p)/ (;) (5.6.24)
and

b
1< fi(y(©) / [r0]  Lic.: pydr

bri
< f1(y(©)L(c, b p)f <;> (5.6.25)

The inequalities provided by the extremes of (5.6.24) and (5.6.25) improve
those of Mary [205, Theorem 7] when

c b
R(a,c; p) </ pt or L(c,b:p) </ pt, (5.6.26)
a C

respectively, and of course, (5.6.18) hold.
We now consider a problem of “distance between zeros”. By using differ-
ent variables of integration and then multiplying, from (5.6.24) and (5.6.25), we
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obtain the Lyapunov inequalities
c prb 1
1<f12(y(c))// [rr@)] R, c; p)L(c, v; p) dvdu
c rb
< flz(y(c))4_1// [r(u)r(v)]il[S(u,v;p)]zdvdu

< FA(y(©)42[S(a. b; p)]2< / b(%))z (5.6.27)

The second inequality above follows fragg < 4~1(« + )2 and
O0< R(u,c; p)+ L(c,v; p) < S(u, v; p).

The third inequality follows from monotonicity properties $and

. b 2
[OLE) =L C)
a \T c \T a \T
Inequality (5.6.19) is now a special case of (5.6.27) by simply taking square
roots in (5.6.27) where, of coursg;(v) = 1.
In order to obtain (5.6.17), we consider< b to be two consecutive ze-
ros of a solutiony of (5.6.11) wherey is positive on(a, b). Then, for some
a < c1 < c2 <b, we havey'(c1) = y'(c2) = 0 andy is monotone ona, c1] and
on|co, b).
Using (5.6.12) and (5.6.13) the first inequality of (5.6.24) yields

1< fi(y(en) f exp[— / m(w)dw]

c1 u
X max/ exp[/ m(w)dw:|n(u)dudt
t<s<er Jg o

= fl(y(61)) /Cl max /Cl expl:/um(u)) dw]n(u) du dr
a N t

t<s<er

1
< fl(y(61))/ exp[L(z, c1; Wt)]/
a t

In the linear case, the inequality provided by the extremes of (5.6.28) improves
inequality given in [119].

C

1
n™ (u) du dr. (5.6.28)
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By (5.6.25), we also obtain

b t
1<f1(y(cz))/ eXF{R(cz,t;m)]/ nt(u) du dt. (5.6.29)

c2 2
Thus with

0 =max{ fi1(y(c1), f1(y(c2)}, (5.6.30)

by (5.6.28) and (5.6.29), using different variables of integration and multiplying
we have

c1 pb
1< sz 1f {ede(u,cl; m)+R(cz,v;m)]}
a Jco

x </67vn+(x)n+(z) dz dx) dv du
u Jeo
c1 b v v 2
<4_1Q2/1/ {exp[/ m—I(u,v;m)“(/ n+) dv du
a Jeo u u

b 2
< 472021exg S(a, b; m)—I(a,b;m)]}</ n+) (b—a)?. (5.6.31)

The inequalities follow from the definitions and propertied.ofR, S and/, along
with modifications of the argument used to establish (5.6.27).

In the linear case wher@ = 1, by taking square roots of (5.6.31), we ob-
tain (5.6.17).

We now summarize the above results.

THEOREM 5.6.2. Let y be a solution of (5.6.10) satisfying y'(c) = 0 and
y(c) > 0 for some c € J. Then, for x < ¢ (x > ¢), aslong as y is positive and
monotone increasing on (x, ¢] (monotone decreasing on [c, x)), the inequalities
in (5.6.22) ((5.6.23)provide lower bounds on y(x) which are expressed in terms
of y(c) and integral functionals as defined by (5.6.15)involving the coefficients r
and p of (5.6.10).They arestrict if y(x) < y(c).

As a result, inequalities (5.6.24) ((5.6.25)), provide implicit lower bounds on
the distance froma to the first possible zer@ (b) of y lying to the left (right) ofc.
They improve previous results when (5.6.26) and (5.6.18) hold.

Inequalities (5.6.24) and (5.6.25), in turn, yield Lyapunov inequalities concern-
ing the distance between consecutive zeres b of a solutiony of (5.6.10) or
of (5.6.11), which is positive ofu, b). The first inequalities, provided by (5.6.27),
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relate to (5.6.10) and assume condition (5.6.18). The second ones provided by
(5.6.31), relate to (5.6.11) and does not assume condition (5.6.18), and they im-
prove previous results when inequality (5.6.31) is strict.

For various other results on Lyapunov-type inequalities for certain second-
order functional differential equations and equations having delayed arguments,
we refer to Eliason [103,104].

5.7 Lyapunov-Type Inequalities Il

This section deals with some Lyapunov-type inequalities established by Pachpatte
in [282,298,322,328]. In what follows, it is assumed that the solutions to the equa-
tions under consideration exist @rc R (R the set of reals) containing the points
a,b (a <b).

In [322] the following Lyapunov-type inequalities are established for the non-
linear second-order differential equations of the forms

rOlyO" |y O 2y @) +a0]y) [Py =0, (A)
rO]y®|" 2y 072y @) + a0y [Py =0, (B)

wherer € I, p > 2 is a real constant, the function / — R is C1-smooth and
r > 0, the functiory : I — R is continuous.

THEOREM 5.7.1. Let y(t) be a solution of (A) with y(a) = y(b) = 0 and
y(t) Z0for t € (a, b). Let |y(r)| bemaximized in a point ¢ € (a, b). Then

b p—1 b
1<</ r1/<1’1>(s)ds> </ |q(s)|ds>, (5.7.1)
c p*l c
1<2p(f r—1/<ﬂ—1>(s)ds> (/ |q(s>]ds>, (5.7.2)
b p—1 b
1<21’(/ r—1/<1’—1>(s)ds> </ |q(s)\ds). (5.7.3)

PROOF Let M =max|y(t)| = |y(c)], ¢ € (a, b). By assumptionM is a positive
constant. Since(a) = y(b) =0, we have

M? = |y(c)|2=2

/ y($)y'(s)ds| <2 / @[y’ ®)|ds,  (5.7.4)

b b
M2=|y(c>|2=2‘—f y(s)y'(s)ds <2f ly)][y'(s)|ds, (5.7.5)

c
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implying
b b
M2</ |y(s)||y’(s)|ds:/ r= VP ) rP ()| y)|y' ()| ds.  (5.7.6)

By taking pth power on both sides of (5.7.6), applying Hoélder’s inequality with
indicesp, p/(p — 1), integrating by parts and using the fact thét) is a solution
of (A) such thaty(a) = y(b) =0, we have

p-1 b
(/ r(s)ly(s)}p}y/(s)\pds>

p—1

b
M3 < (/ r_l/(p_l)(s) ds
a

(r(s>|y<s>| v/ )|y ())y’ (s)ds)

p—1

b
P~ Y=D(5) ds / r(s)|y<s>!”|y’<s)!”‘2y’<s>)’y<s>dS)

b p—1 b
/r_l/(p_l)(s)ds ( q(s)|y(s)|p y(S)))’(S)d5>

p—-1 b

—
S
~— ~— " ~— — “——

b
/,—1/<p—1>(s)ds (lg)|[y)[*")d )

b _
< (/ r_l/(p_l)(s)ds) (MZP/ |q(s)|ds>. (5.7.7)

Now, dividing both sides of (5.7.7) by72”, we get (5.7.1).

Inequalities in (5.7.2) and (5.7.3) follow in a similar fashion, except that now
we take pth power on both sides of (5.7.4) and (5.7.5) and applying Holder’s
inequality with indicesp, p/(p — 1), integrating by parts and using the fact that
y(¢) is a solution of (A) such thag(a) = y(b) = 0 andy’(c) = 0. The proof is
complete. O

THEOREM 5.7.2. Let y(r) be a solution of (B) with y(a) = y(b) = 0 and
y(t) #0fort € (a,b). Let |y(¢)| bemaximized in a point ¢ € (a, b). Then

1 b p-1 b

1< §</ =V (P=Dg) ds) (/ ‘q(s)’ ds), (5.7.8)
1 c [7—1 c

1< §2p (/ r Y= (5 ds> </ |q(s)| ds>, (5.7.9)
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1 b p—-1 b
1< 52” (/ Y P=D ) ds) (/ |q(s)| ds). (5.7.10)

The proof can be completed by following the proof of Theorem 5.7.1 with
suitable modifications.

In [328] Pachpatte has established Lyapunov-type inequalities for differential
equations of the forms

(rO]y ") + p0)y + )y + f(t,y) =0, ©
Ol YA + p®y + a0y + £, ) =0, o)

wheret e I, « > 1, 8 > 0, y > 2 are real constants and > B, the func-
tionsr, p,q:1 — R are continuous; and p are continuously differentiable and
r(t) > 0, the functionf: I x R — R is continuous and satisfies the condition
|f@, )] <w(,|y]), wherew: I x Ry — R4 (R4 the set of nonnegative reals)
is continuous anav (r, u) < w(t,v) forO<u < v.

THEOREM 5.7.3. Let y(¢) be a solution of equation (C) with y(a) = y(b) =0
and y(¢t) £ 0for ¢ € (a, b). Let |y(¢)| be maximized at a point ¢ € (a, b). Then

1 b «

1< W(/ Y (s) ds)
1 b

) <M“-1/a

where M = max{|y(¢)|: a <t < b}.

p'(s)
2

b
q(s) — ds+%/ w(s,M)ds), (5.7.11)

PrROOF From the hypotheses, we have

c b
M=ly(o)|= / y'(s)ds| = ‘—/ y'(s)ds|. (5.7.12)
From (5.7.12) we observe that
b b
2M</ !y’(s)|ds=/ r Y@ () V@D 6y (s)|ds.  (5.7.13)

Now, raising both sides of (5.7.13) inte + 1)th power, using the Holder in-
equality on the right-hand side of the resulting inequality with indices 1)/«
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o + 1, performing integration by parts and using the fact th@} is a solution of
equation (C) such that(a) = y(b) = 0, we observe that

b @y opb 1
(2M>‘”1<(/ ’1/“(s>ds> (f r@P @ ds)
b 1 o b a—1
( / r /“(s)ds) ( / (r®)[y' ) y/(s>)y(S>dS>
b o b a—1 7
z(/ r—l/“(s)ds) <_/ (r()]y' )] y/(S))y(S)ds)
( b

b
x (f Yy [Py () +q(s)y(s) +f(s,y(S))]dS>

b o
= (/ r Y (s) ds)
b ! b
x (/ (q(s) - ”f))yz(s) ds +/ V) £(5,9(5)) ds)
b o
< (/ r Y (s) ds)
([
b o
< (/ r e s) ds)
b
X (/ M?

Now, dividing both sides of (5.7.14) bg2M)**+1, we get the desired inequality
in (5.7.11). The proof is complete. O

q(s)—”—()‘|y(>| ds+/ ly()| [ £ (s, y())| d )

b
q(s) — ds —i—/ Mw(s, M) ds). (5.7.14)

p'(s)
2

THEOREM5.7.4. Let y(r) be a solution of equation (D) with y(a) = y(b) =



538 Chapter 5. Levin- and Lyapunov-Type Inequalities

and y(t) £ 0for ¢t € (a, b). Let |y(¢)| bemaximized in a point ¢ € (a, b). Then

b r—1
1< (/ V=D g ds)

1 b p/(s) 1 b
where M = max|y(t)| = |y(c)|, ¢ € (a, b).
PrROOF From the hypotheses, we have
M? = Zf y(s$)y'(s)ds = —2/ y(s)y'(s) ds. (5.7.16)
a a

From (5.7.16) we observe that
) b

w2 < [holyold
a

b
:f (r_l/y(s)|y(s)‘1_ﬂ/y)(rl/y(s)}y(s)’ﬂ/y!y'(s)‘)ds. (5.7.17)
a

The rest of the proof can be completed by taking the powdo both sides
of (5.7.17), using Hdlder’s inequality with indices/ (y — 1), y, performing in-
tegration by parts, using the fact that) is a solution of equation (D) such that
y(a) = y(b) = 0, and closely looking at the proof of Theorem 5.7.3. a

In [298] Pachpatte has derived Lyapunov-type inequalities for the differential
equations of the forms

(rOh(Y®)) + p@y@) £ (1, y®) =0, (E)
(rOR(y®)y' ) + pOyO) f (1, (@) =0, (F)
where the following conditions are assumed to hold:

(i) », p:1 — R are continuous and is positive and continuously differen-
tiable on/;
(i) h e CYR,(0,00)), h(—x) = —h(x), sgna(x) = sgnx, x/h(x) < B,
whereg > 0 is a constant and lign,gx/ 2 (x) exists finitely;
(i) f:1 x R — R is a continuous function such thaf(z, y)| < w(, |y]),
wherew: I x Ry — Ry is continuous anab(t, u) < w(t, v) for0<u < v.
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THEOREMS5.7.5. Assumethat the hypotheses (i)—(iii) hold. Let y(z) bea solution
of (E)with y(a) =y(b) =0,and y(¢r) #0,¢ € (a,b). Let c beapointin (a, b) at

which |y(¢)| is maximized. Then
>(/ |p(s)|ws, M)ds) (5.7.18)

b
s<o(f 5o
ﬂ(/Ci) )(/ |P()|ws, M)ds) (5.7.19)

b
1<ﬁ(/€ mm)(/c |P(S)|w(S,M)ds>, (5.7.20)

where M = max|y(t)| = |y(c)|, ¢ € (a, b).

1

N

PROOF By hypotheses, we have the equalities

=|yo)|= /Cy/(s)ds, (5.7.21)
’ b
M= |y()|= ‘—/c y'(s) ds|, (5.7.22)
which imply
2M < /b|y/(s)|ds. (5.7.23)

Squaring both sides of (5.7.23) and using Schwarz inequality, the integration by
parts and the fact that(z) is a solution of (E) withy(a) = y(b) = 0, by hypothe-
ses (i)—(iii), we have

b
4M2< (/ [r_1/2(3)|h(y/(s))|_1/2|y’(s)|l/2]

a

2
< 26 ') A 0 )

b Ly )
( o F) h(O/()) ds) </ rOR)y (s)ds)

( r<—s)ds)( | () (v)ds)
ﬂ( )(— b(r(s>h(y’<s>))’y<s>ds)

//\
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b 1 b X
ﬁ(/a @ds></a p(s)y (S)f(s,y(s))ds)

b b
) ﬂ(/ o ds) <M2/ |p(s)|w(s, M) ds>. (5.7.24)
a 1) .,

Now, dividing both sides of (5.7.24) b\f2, we get (5.7.18).
Inequalities (5.7.19), (5.7.20) follow in similar fashion, but using, moreover,
the conditiony’(c) = 0. O

THEOREMS.7.6. Assume that the hypotheses (i)—(iii) hold. Let y(¢) beasolution
of (F),with y(a) =y() =0,and y(t) #0,7 € (a, b). Let cbeapointin (a, b) at
which |y(¢)| ismaximized. Then

b 1 1 b
2<,8</a @ds><ﬁfa !p(s)|w(s,M)ds>, (5.7.25)
1 c 1 1 [
§<ﬁ</a @ds>(ﬁfa |p(s)|w(s,M)ds>, (5.7.26)
1
E\

b 1 1 b
<,3</C @ds><ﬁfc !p(s)‘w(s,M)ds), (5.7.27)

where M = max|y(t)| = |y(c)|, ¢ € (a, b).

PROOF By hypotheses, we have the equalities

M? = y%(c) = Z/Cy(s)y’(s) ds, (5.7.28)
b
M? = y2(c) = —2/ ¥(s)y'(s) ds, (5.7.29)
which imply
b
M? i/ |y(s)||y/(s)|ds. (5.7.30)

Squaring both sides of (5.7.30) and rewriting we have

b
M < (/ [~ 25| (y() |3 v [?]

a

2
x [rY2(s) [ (y() 2]y o) [ 2|y’<s)|]ds) '
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The rest of the proof can be completed by closely looking at the proof of Theo-
rem 5.7.5 with suitable modifications. O

The following result given in [282] deals with a Lyapunov-type inequality for
the second-order linear finite difference equation

A(r(m)Ay(m)) + p(n)y(n) =0 (G)
fornelo ={a,a+1,a+2,...}, a is an integer, the operatax is defined
by Aym)=yn+1) — yn), n € I, y(n), r(n), c(n), n € I, are real-valued

functions andr(n) > 0. Let I C Iy, be defined byl = {a,a + 1, a + 2,...,
a+m =b}, m > 2, we denote by? the interior ofI. Clearly, 7° is nonempty.

THEOREM 5.7.7. Let y(n) be a solution of equation (G) such that y(a) =
y(b) =0, y(n) #£0for n e I°. Let k bea point in 19 where |y(n)| is maximized.

Then
b—1 1 b—1
4< (Z @) ( a|p(n)]>. (5.7.31)

n=a

PROOF LetM = |y(k)|, k € I°. Itis obvious that
k-1
y(k)y =Y Ay(n), (5.7.32)
n=a

b-1
y(k) ==Y Ay(n). (5.7.33)
n=k
From (5.7.32) and (5.7.33), we observe that
b—1
2M <) | Ay(m)]. (5.7.34)

Now, squaring both sides of (5.7.34), using the Schwarz inequality, the following
formula of summation by parts

n—1 n—1

> us)Av(s) = (o) —u(@u(0) — ¥ "v(s + DAu(s),  (5.7.35)

s=0 s=0
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and the fact thap (n) is a solution of (G) withy(a) = y(b) = 0, we observe that

b—1 2
aM? < (Zr_l/z(n)rl/z(n)‘Ay(n)})

n=a

b—1 1 b—1
< (Z %) (Z(r(ra)Ay(n))Ay(n))

n=a

b1 4 b—1
_ <Z m) <_ Zy(n + 1)A(r(n)Ay(n)))
b—1 -
(Z r(n)) <Z 0+ 1>p(n)y(n)>
b—-1
) (Z r(n)) <Z|P(”)|) e

Dividing both sides of (5.7.36) by/2 we get the desired inequality in (5.7.32).
The proof is complete. |

5.8 Lyapunov-Type Inequalities Il

In this section we present Lyapunov-type inequalities for certain higher-order dif-
ferential equations established by Hochstadt [150], Chen [57], Chen and Yeh [58]
and Pachpatte [321]. We shall consider only those solutions of the equations con-
sidered here which exist ahc R (R the set of reals) containing the poirntsbh
(a < b) and are nontrivial.

We begin with the following Lyapunov-type inequality established by
Hochstadt in [150] (see also [225]).

THEOREMb5.8.1. Consider the differential equation

(n) _ 5, 0m-1

y py —qy=0, n>=2 (A1)

where p and ¢ areintegrable on [a, b]. Suppose that a nontrivial solution of (A1)
has at least n zeroson [a, b]. Then

1/n
[(b—a)"_l/ |q|dt:| / |pldr > 2. (5.8.1)
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PROOF In order to prove (5.8.1), we reduce;(to a system by letting

xizy(i_l), i=12,....,n
so that
x£:xi+lv i:1,2,...,n—1,
/ (5.8.2)
X, = pXp +qx1.

Sincey vanishes: times on[a, b], eachx; vanishes at least once on that interval.
We can, therefore, spliu, b] into two subintervalga, c] and[c, b], wherea <
¢ < b, such that on each of them, eaghvanishes at least once.

First, we shall consider the intervid, c], and letx; denote the maximum
of |x;| on that interval. Using (5.8.2) and the fact that eaclvanishes at some
point on[a, c] we have

Xi < Xigp1(c — -1, (5.8.3)

el < 1 f qldi + f bl dr, (5.8.4)

wherex, (¢) = 0. From (5.8.3) we see that
1< Fnlc—a)" L

and combined with (5.8.4) we finally have

C C
|xn|<in(c—a)"—1/ Iqldt+f pllldr. (5.8.5)
a t

From (5.8.5), by means of Gronwall’'s inequality [145, p. 24], we find that

| |q|drexp(/ |p|dr>, (5.8.6)
a a
and finally,
ex dr
/ lq Idt/—p( Jo 1! ). (5.8.7)
a)n 1
Similarly,

/ lg|dr > eXp( f |p|dt). (5.8.8)

)nl
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Combine (5.8.7) and (5.8.8) and use the inequality

An B" _ (A+ B)"
= ,
an—1 pn—1 (a +b)n71

to obtain

b 1 ¢ 1 b n
(b—a)”‘lf lq|dt > [exp<—;/ Ipldt)+exp<—;/ Ipldtﬂ .

(5.8.9)
In order to derive the required inequality (5.8.1), we use the fact that
exp(—x)=>1—x

in (5.8.9) and extract theth root of both sides. Then

1 b 1/n 1 c b
[(b—a)"— / |q|dr} >2—;</ |p|dr+/ |p|dr)

1 b
=2——f Ipldr.
n a

which is equivalent to (5.8.1). ]

In [58] Chen and Yeh have given the Lyapunov-type inequality for the differ-
ential equation of the form

Lax(t)+ ) pi0)x (@) fi(x() = q (1), (A2)

i=1
where the operators; are recursively defined by

1 d

Lox =x, Lix=———L
0 T ) de

j*lx’ j=1’21"‘3n9rn(t)=1’

and

(i) rj(t) e CR4, RL\{O)), j=1,2,...,n;
(i) pi(),q(t) e CR4,R),i=1,2,....m, p;(t)#0;
(i) fi(y) e CR,R),fory>0, fi(y)= fi(—y)>0,i=1,2,...,m.

The main result established in [58] is given in the following theorem.



5.8. Lyapunov-Type Inequalities IlI 545
THEOREMS5.8.2. Let @y > a2 > -+ - > &, —1 berespectively the zeros of
le(t)» sz(t)» ML ] Ln—lx(t)v

where x(¢) is a nontrivial solution of (A2). Supposethat b < ;1 and a > a1
arezerosof x(¢). If

M =maxx(t)| = |x(t0)|, t.t0€ (b,a),
(5.8.10)
Ki= max fi(y), i=12....,m.
ye[-M,M]

Then

1£0) S1
1< / r1(s1) / ras2) -+
b o1

m

“/‘n—l[zpf(s)l(i +$}dsdsn_l dsl, (5811)

n—1 i=1

a 51
1< / F1(s1) / ra(s2) - -
fo o1

sn1 [ ™
f {ij(s)lg 4 14wl }ds dsy_1---dsy,  (5.8.12)
«, M

n—1 i=1

a 51
2« / F1(s1) / Fas2) - -
b o1

, ~/sn_l{zp,~+(s)l<,- + |q1$)| } dsdg,—y - dsa. (5.8.13)

n=1 Lj=1

PrROOFE On repeated integration from equationpjAwe get

x'(1)
ri(t)

t 52
= / r2(s2) / r3(s3)---
o1 o2

Sn—1 m
: / {Z[p;m — P )] () fi(x(5)) + q(s)} dsds, g - dsa.

n—1 i=1

= Lix(t) — L1x(a1)
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Integrating it fromzg to # we obtain

x(1) — x(to)

t 1
=/ r1(S1)/ ra(s2) -
10 o]

m

Sn—1
- / {Z[p; (s) — piF ()]x(5) fi(x(5)) +q(s) { dsds,—1 --- ds1.

n-1 =1

(5.8.14)

Letr = a so thatx(a«) = 0. Hence equation (5.8.14) becomes

a 51
x(to) + / ri(s1) / ra(s2) - -
fo 1

Sp_1 M
/ ZPZ_ ()x(s) fi (x(s)) dsds,—1 -+~ dsa
Un—1

i=1

a s1
= / r1(s1) / ra(s2) -
10 o]

Sn—1 m
/ {ij(s)x(s)fi(x(s)) - q(s)} dsds, 1 --- dsy.

-1 Li=1

Without loss of generality, we may assume thét) > 0, ¢ € [b, a]. Thus, it fol-
lows from condition (iii) that

a 51
x(to) </ rl(Sl)/ ra(s2) - - -
o (231

Sp—1 m
/ {ij(s)x(s)fi(x(s)) —q(s)} dsds, 1 --- dsg

n=1 Ui=1

which by (5.8.10) implies

a 51
1< / ri(s1) / ra(s2) -
10 o1

Sn—1 m
- {Zp?(s)K,- +122 } ds 1 - dos.

n=1 =1
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This result proves (5.8.12). Similarly we can prove (5.8.11) except that in (5.8.14)
we now replace by b. The sum of (5.8.11) and (5.8.12) yields (5.8.13). O

In [57] Chen has given the Lyapunov-type inequality for the differential-
difference equation of the form

(rOh(y ) +a@)y @) f(y(t — o)) =b0), (A3)
where

(i) a,be CR4,R), Ry =[0,00) C R (R the set of reals);
(i) r e C" YRy, R) andr > 0;
(i) o € C(R4, (0,00)) ando (t) < m, wherem > 0 is a constant;
(iv) h € CL(R, (0,00)), h(—x) = —h(x), sgni(x) = sgnx, x/h(x) < B,
whereg > 0 is a constant and lip, g x/ 2 (x) exists finitely;
(v) f(x) is a continuous, even, real positive function Bnand increasing
onR,, with f(0) =0.

The following Lyapunov-type inequality is established in [57].

THEOREM 5.8.3. Assume that o1 > a2 > -+ > a3 > a,_2 are respectively
zeros of

(rOr('®)). (rOr(®))" ..
(ror(y©)" 2 oy 0))"

where y(¢) is a nontrivial solution of equation (As). Furthermore, suppose that
1 < ay—2 and tp > aq are zeros of y(r). Let

L=sup{y(r): 1 € (t1 —m, 12), 11,12 > m}

and

M =supl|y(®)]: t €11, 121}
Then

2 dt 2 (t _ tl)n—Z
ser [l [ ol

1 2 (t — tl)n—Z
- M/,l W|b(”|df}~ (5.8.15)
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PROOF Integration of (&) n — 2 times gives
=1"(roh(y' ®))
ag o2 op—2
+ / / . / a(s)y(s) f(y(s — o (s)))dsds,—2 - - ds2
t 52 Sp—2

=/ 1/ 2/ 'l—zb(s)dsdsn,Z dsz' (5816)
! 52 Sn—2
Sinceag > a2 > -+ > ay—3 > a2, We obtain from (5.8.16),
[(r@R(Y®))'|
a1 po (251
é/ / / la)| |y || f(y(s —o(s)))|dsdsy—z - - dso
! 52 Sn—2

o1 o1 o1
+/ / / ’b(s)‘ ds ds,,_o - - - dso,
t 52 Sp—2

which implies

o1 (s — t)n—3

(/)| < [ S a1 (5 = o) ¢

o1 (s — t)"_3
+/t T |b(s)| ds. (5.8.17)

i
/ y' () dt
n

2
M = |y(to)| = ‘—/ y'(t)dt
o

Let M = |y(to)l, to € [11, t2]. Now,

M = |y(to)| =

, (5.8.18)

, (5.8.19)

which implies
2
2M</ |y ()| dr
n

_ (71 Yol?
Ty G@)Y2 (R (0))V/2

(r@) 2 (h(y'))) 2]y @)% dr.

(5.8.20)
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The rest of the proof can be completed by squaring both sides of (5.8.20), using
the Schwarz inequality, integration by parts, the fact siat is a solution of (&)

with y(r1) = y(r2) = 0, formula (5.8.17) and by closely looking at the proof of
Theorem 5.7.5. O

In [321] Pachpatte has derived Lyapunov-type inequalities for the equations of
the forms:

D"[r( D" pn)g(y'®)]] +yO f(t.y®) = 0),  (Ba)
D" [r D" ph(y®)y' ®]] +y®) f(t,y®) = 01),  (B2)
D' [r)D" Hph(y(®))g(y')]] +y@) f(t. y(®)) = Q(1),  (Ba)

wheren > 2 is an integer an®” = %. The conditions assumed on the functions
involved in (B;)—(Bg3) are as follows.

(H1) r:I — R is C"-smooth and- > 0; p:I — R is C¥~1-smooth and
p>0andQ:I — Ris continuous;

(H2) g € CY(R, (0,00)), g(—x) = —g(x), sgng(x) = sgnx, x/g(x) < @,
a > 0is a constant and lim, g x/g(x) exists finitely;

(H3) h € CY(R, (0,0)), h(—x) = —h(x), sgnh(x) = sgnx, x/h(x) < B,
B > 0isaconstant and lim, g x/ h(x) exists finitely;

(Hs) f:I xR — R is a continuous function such thgf(z, y)| < w(z, |y]),
wherew : I x Ry — Ry is continuous anab (¢, u) < w(t, v) for0<u < v.

For simplification of details of presentation, we set
E(1,m, z(s21))

fazfas /a,Hl 1 /anfan+1
t Js3 Sp—1 m(sy) Sn JSp1

a1
. / 7(s2y) dsg, dso,—1 -« - ds,41ds;, ds,—1 - - - dss, (Bs)

Son—1

wheren > 2, t € (a,b), andm(t) > 0, z(r) > 0 are real-valued continuous

functions defined ona, b) and 02,03, ..o, Oy 1, U, Oyt 1, - o, 21 AT Suit-
able points in(a, b). We denote byE (¢, m, z(s2,)) the integral on the right-hand
side of (By) with the upper limitsag, a3, ..., ay—1, &y, Ayt1, - - ., a2,—1 Of the

integrals all replaced by the greatest number fremi =2,3,...,n — 1,n,
n+1,...,2n—1.
The main results established in [321] are given in the following theorem.
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THEOREM 5.8.4. (i) Assume that the hypotheses (H1), (H2) and (H4) hold.
Let g > a3 > -+ > @y—1 >y > Apg1 > -+ > 0,1 be respectively zeros
of D[p(1)g(y' ()], D2[p(t)g(y (N1, ... D"2[p)g(y' ()], r) D" p(1) x
g/ ()], DIr) D" p0)g(y )L, ... D" Hr@) D" p(1)g (¥ (1))]], where
y(t) isanontrivial solution of (B1). Supposethat a < «p,—1 and b > «, are zeros
of y(¢). Let ¢ beapoint in (a, b) where |y(¢)| is maximized. Then

b1
4< (/ dsz)
a p(SZ)

br__ 1 _—
X (/ |:E(sz, rw(sz,, M)) + ME(Sz, r, IQ(sz,z)|)i| dsz>, (5.8.21)

where M = max|y ()| = |y(c)|, ¢ € (a, ).

(i) Assume that the hypotheses (H1), (H3) and (H4) hold. Let oo > a3 >
Cee > Qp—1 > Ay >yl > - > o1 berespectively zerosof D[ p(t)h(y (1)) x
YO, Dph(y))y' O], ..., D" 2[ph(y®)y' )], rD"p) x
h(y@)y' ®],  Dlr@)D"Hp®h(y@)y' ]l ..., D" Hr@)D"Hpk) x
h(y())y'(t)]], where y(¢) isanontrivial solution of (B2). Supposethat a < ap,_1
and b > ap arezerosof y(¢). Let ¢ beapointin (a, b), where | y(¢)| is maximized.
Then

b1
2< d
<P (/ p(s2) Sz)

> 1 _
x(f [ME(Sz,r,w(szn,M))-l-WE(sz,r,|Q(szn)|)]ds2), (5.8.22)

where M = max|y(t)| = |y(c)|, ¢ € (a, b).

(i) Assume that the hypotheses (H1)—(Hg) hold. Let oo > a3 > -+ > o1 >
an > g1 > -+ > agy—1 be respectively zeros of DIp(H)h(y(1)g(y' ()],
D?[ph(y))g(y' ()], ... D" 2[ph(y@)g(y' )],  r(D" p@) x
h(y()g(y' )], DIr@) D" p@h(y@)g(y )], ..., D" r@) D" Hp(t) x
h(y())g(y'(£))]], where y(¢) is a nontrivial solution of (Bs). Suppose that
a <ag,—1and b > ap arezeros of y(¢). Let c beapointin (a, b), where |y(¢)| is
maximized. Then

b1
2sep </a p(s2) dsz)

ri— 1 _
><<fa [ME(sz,r,w(szn,M)HWE(sz,r,|Q(sz,,)|)}dsz>, (5.8.23)
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where M = max|y ()| = |y(c)l, ¢ € (a, b).
PrROOE (i) Integrating 2 — 2 times equation (B, by hypotheses, we get

D2 2[p)g(y' ()] + E(t. 7, y(s20) f (520, ¥(520)))
= E(t,r, Q(sz,,)). (5.8.24)

b
= ‘—/ y'(s2) ds2|.

From the hypotheses, we have

/ ' (s2) ds2

From (5.8.25) we observe that

M= Iy(c)| = (5.8.25)

b
oM < / 1y (s2)| ds2
a

b
= / (p‘”z(szﬂy’(sz)ll/zlg(y%sz))|‘1/2)

X (Pl/z(S2)|y/(32)|1/2|g(y/(82))|1/2> ds2.  (5.8.26)

By squaring both sides of (5.8.26), applying Schwarz inequality, integrating by
parts, using the facts thata) = y(b) = 0, the solutiony(¢) of (B1) satisfies the
equivalent integral equation (5.8.24) and hypothese}, (H2) and (Hi), we have

b 1 /(52) b
( G2 2072) s2 ) p(s2)g(y'(s2))y (s2) ds2

d 4 /
a(/ pGs2) ”) (/ P(s2)8(y'(s2))y (s2) S2>
h

N

o dso

(52) [P(s2)8(y'(52))] ¥(s2) dSz)

([ o)L
(RES (g —"
([ e

ds2 / |y(s2)|[E (s2. 7. |y (s20) || £ (520, ¥ (520))])

N
Q

N

o

p (Sz)

+ E(Sz, r, |Q(s2,,)’)] dsz)
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b
] 5
a P(SZ)

b
X <f M[E(sz, r, Mw(s2,, M)) + E(sz, r, |Q(s2,,)’)] ds2>. (5.8.27)

Now, dividing both sides of (5.8.27) by/2, we get the required inequality
in (5.8.21).
(ii) Integrating 2« — 2 times equation (B, by hypotheses, we get
~DZ2[pOh(y0))y' ®] + E(t. 7, y(s20) f (s20. y(520)))
= E(t, T, Q(szn)). (5.8.28)

From the hypotheses, we have

c b
M?=y%(c)=2 / Y(52)y (s2) dsp = —2 / Y(s2)y (s2)dso.  (5.8.29)

a

From (5.8.29) we observe that

b
M2 < / ly(s2)[[y(s2)| sz

b
= f (p~Y2(s2)|y(s2)| 2|1 (v (s2)) | )

a

1/2 1/2

x (pY%(s2)|h(y(52))]

The rest of the proof follows by arguments similar to those in the proof of (i)
given below inequality (5.8.26) with suitable changes.
(i) Integrating 21 — 2 times equation (B, by hypotheses, we get

(=D 2[ph(y))g(y' )] + E(t, 7, y(s20) f (5205 Y (520)) )
= E(t, r, Q(sgn)). (5.8.31)

As in the proof of (ii), we observe that

ly(s2)[ %]y (s2)|) ds2.  (5.8.30)

b
M2 < / ly(s2)[[y(s2)| ds2

b
= / (p™Y2(s2)|y(s2) |72 |1 (v (s2) |2y 52 V2|2 (v (520) )

a

x (P22 |y 2[R (v ) [y (2?8 (¢ (s2)) [?) dsz.
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Inequality (5.8.23) follows in a fashion similar to that in the proofs of (i), (ii) with
suitable modifications. The proof is complete. O

5.9 Miscellaneous Inequalities
5.9.1 Bobisud [34]
Consider the differential inequality
u’" +A@M) fw) <0 (5.9.1)
and the differential equation
v/ +a@)f(v) =0, (5.9.2)

on an intervala, 8). Suppose that the following hypotheses hold.

(H1) f e Y0, 00)NCI0,00), f(u)>0andf'(u) >0foru=>0, f(0)=0,
f/ nondecreasing for positive arguments;

(H2) a, A € Cla, B] with A(¢) > a(t) > 0 on[e«, B). Letu, v satisfy (5.9.1),
(5.9.2), respectively, ofw, 8) and be such that(«) > v(@) > 0,u > 0 on[e, B),
V() <0, and

@ V@
fu@) ~ @)
W@ V@)

— > — ds.
F@@) fw«nf+1;““)s

Thenv does not vanish ofw, ).

5.9.2 Bobisud [34]

Consider the differential inequality (5.9.1) and the differential equation (5.9.2).
Suppose that the following hypothesis holds

(H3) f e CY0,00)NC[O, 00), f(u)>0andf'(u) >0foru>0, f(0)=0,
f/ nonincreasing for positive arguments.

Letu, v satisfy (5.9.1), (5.9.2), respectively, an B), whereA, a € Cla, B]. Sup-
pose further thab (o) > u(e) > 0, u > 0 on[a, B), and

U/(OC) t
_fww»+L““ms

u'(at)

(@)

t
+/ A(s)ds > , tela,p).
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Thenv does not vanish ofw, 8) and

u'(t) V(1)

R T ‘f(v(t)) ’

t€la, B).

5.9.3 Wong [427]

Let fsatisfy

(i) f(x,y)is continuous fox > 0 andy > 0,
(i) f(x,y)>0foreachx >0 andy > 0,
(i) f(x,y) is anincreasing function of for eachx > 0.

Suppose: andv are respectively solutions of
u’ = fx,wutt®, w0 =A, u'(0) =B,
and

V' > fx, 0ot v(0)=A, v (0) =B,

for0< x < T, wheres > 0 is a constant. Then(x) > u(x) forO<x < T.

5.9.4 Wong [427]

Let f satisfy

() f(x,y)is continuous forx > 0 andy > 0,
(i) f(x,y)>0foreachx >0 andy > 0,
(iii) f(x,y) is a decreasing function gffor eachx > 0.

Let L(x) = A + Bx, whereA >0, B >0 andA? + B2 > 0.
Supposer andv are respectively solutions of

W' = fe,wut®, u0)=A, u'(0)= B,

and
V' > f(x, L)) w(0)=A, v(0)=B,

on[0, T), wheree > 0 is a constant. Then(x) > u(x) on (0, T).
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5.9.5 Hartman [145]

Let ¢ (¢) be real-valued and continuous for0r < T. Letu(z) # 0 be a solution
of

u" 4+ q(tu =0,
andN the number of its zeros on9¢ < T. Then

N < —<T/ q*(;)dr> +1.
2 0

5.9.6 Fink and Mary [119]
Let a andb be successive zeros of a nontrivial solution to
y'+gy + fy=0,

where f andg are integrable. Then

b 1 b
(b—a)/ f+(x)dx—4exp<—§/ ’g(x)|dx) >0

and a fortiori

b b
(b—a)/ f+(x)dx+2/ |g(x)|dx > 4.

5.9.7 Eliason [101]
Consider the nonlinear second-order differential equation of the form
Y+ pl)y* =0, (5.9.3)

wheren is a positive integer ang is a positive and continuous function on a
compact interval of realg:, b] with a < b. Along with (5.9.3) consider Rayleigh
quotient

(fab y/2 dx)n+1

JO)=—F——,
(f? py2+2dy)

(5.9.4)

where the domain of is

D(J)={y € D'[a,b]: y(a) =0andy # 0 on[a, b},
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whereD’[a, b] is the set of all continuous real-valued functions having sectionally

continuous derivatives ofu, b]. Let A1(p) be the least positive value of(y)
in (5.9.4) fory € D(J). Then

b
(Ch a)"“kl(p)f pdr>1
Furthermore the inequality is sharp.

5.9.8 Wend [422]

Let G(I) denote the class of all complex-valued, continuous, and nonzero func-
tions p(x) defined on/: xo < x < oo which has the further property that, for any
three numbers, b andc such thatvg <a < b < ¢ < 00,

b c
/ 1 dx‘ < / 1 dx
a PX) a PX)

¢ 1 ¢ 1
[ <[ [
b p(x) a P(X)
Supposep(x) € G(I), anday < az < --- < a, are consecutive zeros of a solu-

tion of (p(x)y") + f(x)y =0, a1 > xo, where f(x) is a complex-valued and
continuous function od. Thena, must satisfy the inequalities

an an  dy
" 1</xo ’f(x”dx/xo POl
n—1</an’f()c)|</)C u )dx,
o o 1P
n—1</a"|f(x>|</a" o )dx
o STT0]

5.9.9 Wend [422]

)

Supposef (x) is complex-valued and continuous dnxp < x < o0, xg > 0, and
f;;o |fx)|dx =N.If a1 <a2 <--- < a, aren consecutive zeros of a solution of

Y+ f(x)y =0,a1 > xo, then

an>\/|:(n—l)—(1+(#i|/2N, n>3.
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5.9.10 Pachpatte [297]
Let y(¢r) be a nontrivial solution of

(r)y) + p)y +q@®y +g®)yf(t, y) =h()

with consecutive zeros atandb, a < b. Assume that the following conditions
hold.

@) r,p,q,g,h: I — Rare continuous functions; p are continuously differ-
entiable and (¢) > 0 (wherel C R),

(i) The function f:I x R — R is continuous and satisfiels (z, y)| <
w(t,|y]), in whichw:I x Ry — R4 is continuous andv (¢, u) < w(t, v) for
O<u<v.

Let M =suf|y(@)|: t € (a,b)}. Then

4< (/bidt>(/b[5|p/m|+|q<r)|+|g<t)|w(r M>+i|h<t>|}dt)
RAVAFGRIAV A P oM '

5.9.11 Dabhiya and Singh [75]

Let y(¢) be a solution of

(rh(y'®)) + p)y®) f(y(t —o@)) =0

with consecutive zeros at < b. Let L = sup(y(¢), t € (a — m, b)}, a,b > m.
Assume that the following conditions hold.

(i) re CYRL,R), r(r) >0; p e CR4,R);
(i) 0 € CR4, (0,00)) ando () < m, wherem > 0 is a constantyf (x) is a
continuous, even, real positive function®Brand increasing oR ; with f(0) = 0;
(i) h e CYR, (0,00)), h(—x) = —h(x), sgni(x) = sgnx, x/h(x) < B,
whereg > 0 is a constant and lipn, g x/ 2 (x) exists finitely.

Suppose thag(z) is not identically equal to zero da, 4], then

4 b1 b,
Esf(L)(/a %dt><fa p (z)dr),

wherep™ (1) = max{p(), 0}.
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5.9.12 Pachpatte [354]
Consider the differential equation

Ol O O) +a0]yo o =0, (5.9.5)

wherer € I, @ > 1, 8 > 1 are constants, the function / — R is C1-smooth,
r > 0, and the functiog : I — R is continuous. Let(¢) be a solution of (5.9.5)
with y(a) = y(b) =0 andy(¢) # 0 fort € (a, b). Let |y(¢)| be maximized in a
pointc € (a, b). Then

b o b
1<Mﬁ_“</ r_l/“(s)ds> <f |q(s)|ds>,
1 2ot ybe (/‘Cr_l/“(s) ds) </C|q(s)| ds>,
ah . ab
1< 20ty b (/ e (s) ds) </ }q(s)| ds),

whereM = max|y(t)| = |y(c)|, ¢ € (a, b).
5.9.13 Pachpatte [320]
Consider the differential equation

rOly O" 2y @) + [y®)|" £ (1, y1)) =0, (5.9.6)

wherer € I andp > 2 is a constant, and ():/ — R is a continuously differ-
entiable function and(¢) > 0 (wherel C R) (ii) f:1 x R — R is a continuous
function such thatf (¢, y)| < w(t, |y|), wherew: I x Ry — R, is a continuous
function andw(z, u) < w(t, v) for 0 < u < v. Let y(r) be a solution of (5.9.6)
with y(a) = y(b) =0, andy(t) #0, t € (a, b). Let ¢ be a point in(a, b) where
|y ()] is maximized. Then

L (Y ( [ vova) (1L ad
() ([ o) ([ o)
c p—1 c 1
1< (/ r V=D (5 ds) (/ —w(s, M) dS),
a a M
b p—1 b 1
1< (/ r—l/(p—l)(s)ds> <f Mw@,M)ds),

whereM = max|y(t)| = |y(c)|, ¢ € (a, b).
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5.9.14 Pachpatte [322]
Consider the following differential equation

(. y)y) +gt.y) =0, (5.9.7)
under the conditions:

(i) f(t.y) € CYI x R, (0,00)), is an odd function with respect to,
sgnf(t,y) = sgny, y/f(t,y) < r(t), wherel Cc R, r € C(, (0, 00)) and
limy,_oy/f(,y) exists finitely;

(i) g e CU xR, R)and|g(z, y)| <w(t, |y]), wherew € C(I xRy, R;) such
thatw(, u) <w(t,v) forO<u < v.

Let y(¢) be a solution of (5.9.7) witly(a) = y(b) =0, andy(¢) # 0 for ¢t €
(a, b). Letc be a point in(a, b), where|y(¢)| is maximized. Then

b b
1<%</H r(s)ds)(%/a w(s,M)ds),

whereM = max|y(t)| = |y(c)|, ¢ € (a, b).

5.9.15 Pachpatte [331]
Consider the finite difference equation
a—1 -1

A(rm)| Ay Aym) + e |ym|* Ty =0, (5.9.8)
wheren € I ={a,a+1,a+2,...},aisanintegerq > 1, 8 > 1 are constants,
Ay(n)=yn+1) —y@m)forn € I, r(n),c(n),n € I are real-valued functions
andr(n) > 0. Define asubset of Ioc by I ={a,a +1,a+2,...,a + m = b},
m > 2, denote byi® the nonempty interior of . Let y(n), n € I, be a solution of

equation (5.9.8) such thaia) = y(b) =0, y(n) # 0 for n € I°. If k is a point
in 1° where|y(n)| is maximized, then

b—1 o /p-1
1<M’3°‘<Zrl/°‘(s)> <Z|c(s)

whereM = max|y(n)| = |y(k)|, k € I°.
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5.9.16 Levin[188]

Let ¢(¢) be a real-valued continuous function fin »] such that relative to the
differential equation

(="y® (@) — q(0)y (1) =0,
there exists offu, b] a pair of conjugate points, then

[(n —1)!1?

b
+ 105,y LT DT
/a gt @®)dt > 47 (2n 1)(b—a)2"—1’

whereg™ (t) = max{q (), 0.

5.9.17 Chen [57]
Consider the differential equation
Y @) +a@)y@) =0, (5.9.9)

wherea € C(Ry,R). Assume thawy > a3 > --- > a,_1 are zeros ofy” (¢),
V1), ...,y D(r), respectively, wherg(r) is a nontrivial solution of equa-
tion (5.9.9). Letr; < a1 andr, > a2 be zeros ofy(¢). Then

t _ n—2
4 </2w|a(l‘)|dt.
t

-t J, -2

5.9.18 Wend [422]

Supposef (x) is continuous and complex-valued function dnxg < x < oo,
x0=0.Ifay <a2 <--- < a, aren consecutive zeros of a solution of equation

y® + f(x)y =0,

a1 >x0>=0,n=kq +r >k, then

aj+k-1
1</ g, 9)|| f)]de, j=12...,n—k+1,

a;

whereg(x, s) is Green'’s function for the system

YW=0,  y@j)=y@j1)==y@jr-1)=0.
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5.9.19 Pachpatte [319]

Consider the following differential equation

(YOI 2 ®)  +a0|y0]" 2y)=0, p=2n>3  (5.9.10)

whereg is real-valued and continuous function be= [0, c0). Set

al a2 Up—-2
E(t, h(s)) =/ / / h(s)dsds,_» --- ds3zdsp, (5.9.11)
t 52 Sy

n—2

whereh(t) is a real-valued nonnegative continuous function defined @md
a1, 0, ..., a,_p are suitable points in. Denote byE (z, i (s)) the integral on the
right-hand side of (5.9.11) when the upper limits o, .. ., a,—2 of integrals are
all replaced by the greatest number frami =1,2,...,n — 2. Letag > a2 >
.-+ > a,_o be, respectively, zeros afy’ (t)|?=2y' (1)), (Iy'(®)|P~2y (1)), ...,
(1Y (O)1P=2y'(1))"=2 , wherey(r) is a nontrivial solution of (5.9.10), let < «,,_»
andb > a1 be zeros ofy(¢), and|y(¢)| is maximized inc € (a, b). Then

b
1< 2_p(b—a)p_1/ E(sl, q(s)|)ds1,
1< (c—a)Pt /C E(s1, |q(s)|) ds1,
b —
1< (b—c)p_lf E(sl, q(s)|)ds1.

5.9.20 Pachpatte [339]

Consider the differential equation

(raa (a2 (2O (O O @) ) )Y
+q)|y®| 7y =0, (5.9.12)

wheren > 2,t € I =[0,00),« > 1,8 > 1 are constants, the functions I — R,
i=12,...,n — 1, are sufficiently smooth and;(r) > 0 and the function
q 1 — R is continuous. Set

E[t,F, h(s)]

=E[t,ro,r3,ra,...,ra—1,h(s)]
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rz(t)[ r3(sz)/ ra(s3)

— Ap—2
. / 7/ h(s)dsds,_2 --- ds3zdsz, (5.9.13)
Sp—3 'n l(sn 2)

wheret € I, r;(¢t) are as defined above aridr) is a real continuous func-
tion defined on/. Denote byE[r, 7, h(s)] the integral on the right-hand side
of (5.9.13), when the upper limits;, all replaced by the greatest of. Let
a1 > ap > -+ > a,_2 be respectively zeros of

Ol O Y @), (o0 O Y o)),
(Fa—2) (- (2 (@ ]y O Y @) ) -++)),

wherey(¢) is a nontrivial solution of (5.9.12), let < «;,,_2 andb > «1 be zeros
of y(z) and|y(¢)| is maximized inc € (a, b). Then
]d51>,

b @/ b
1<Mﬁ_“</ rll/a(sl)dsl) (/ E[sl,f,
a a
c o c__
1< ot pype (/ rl_l/a(Sl) ds1> (/ E[s1.7, |q()]] ds1>,
b, @/ b
1< 20t ybe (/ ry % (s1) ds1> </ E[s1,7, ]dsl>,

whereM = max|y(t)| = |y(¢)|, ¢ € (a, b).

5.10 Notes

The results given in Theorems 5.2.1 and 5.2.2 are the further extensions of well-
known Sturm'’s theorem, established in 1960 by Levin [187]. Lemmas 5.2.1 and
5.2.2 and Theorems 5.2.3 and 5.2.4 are taken from Kreith [171]. Theorems 5.2.5
and 5.2.6 are due to Ladas [177]. Theorems 5.3.1-5.3.4 are the further general-
izations of Levin’s comparison theorems and are taken from Lalli and Jahagirdar
[180,181]. Theorems 5.3.5-5.3.8 are due to Pachpatte [327] which deals with
Levin-type comparison theorems related to certain second-order differential equa-
tions.

Theorem 5.4.1 and Corollary 5.4.1 are taken from Hartman [145]. Theorems
5.4.2 and 5.4.3 are taken from Patula [361], see also Cohen [62] for similar re-
sults. Theorem 5.4.4 and Corollaries 5.4.2 and 5.4.3 are due to Kwong [176]. The-
orem 5.4.5 and Corollaries 5.4.4-5.4.6 are taken from Harris [143]. Lemma 5.5.1,
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Theorems 5.5.1-5.5.3 and Corollaries 5.5.1-5.5.3 are taken from Harris and
Kong [144], and Lemmas 5.5.2 and 5.5.3, Theorems 5.5.4 and 5.5.5 and Corol-
laries 5.5.4 and 5.5.5 are taken from Brown and Hinton [46]. Lemma 5.6.1, The-
orem 5.6.1, Corollary 5.6.1 and Theorem 5.6.2 are due to Eliason [100,102].

Theorems 5.7.1 and 5.7.2 are taken from Pachpatte [322]. Theorems 5.7.3
and 5.7.4 are due to Pachpatte [328] and Theorems 5.7.5 and 5.7.6 are taken
from Pachpatte [298] while Theorem 5.7.7 is taken from Pachpatte [282]. The-
orem 5.8.1 is due to Hochstadt [150], Theorem 5.8.2 is due to Chen and
Yeh [58], Theorem 5.8.3 is due to Chen [57] and Theorem 5.8.4 is taken from
Pachpatte [321]. Section 5.9 contains some miscellaneous inequalities of Levin
and Lyapunov type.



This page intentionally left blank



References

[1] Abramovich, S., B. Mond and J.E. Paric, Sharpening Jensen’s inequality
and a majorization theorem, J. Math. Anal. Appl. 214 (1997), 721-728.

[2] Adams, R.A., Some integral inequalities with applications to the imbed-
ding of Sobolev spaces defined over irregular domains, Trans. Amer. Math.
Soc. 178 (1973), 401-429.

[3] Adams, R.A., Sobolev Spaces, Academic Press, New York, 1985.

[4] Agarwal, R.P. and P.Y.H. Pang, Opial Inequalities with Applications in
Differential and Difference Equations, Kluwer Academic Publishers, Dor-
drecht, 1995.

[5] Agarwal, R.P. and P.Y.H. Pang, Remarks on the generalization of Opial’'s
inequality, J. Math. Anal. Appl. 190 (1995), 559-577.

[6] Agarwal, R.P. and Q. Sheng, Sharp integral inequalities independent
variables, Nonlinear Anal. 26 (1996), 179-210.

[7] Agarwal, R.P., J. Rearic and I. Brnett, Improved integral inequalities in
n independent variables, Comput. Math. Appl. 33 (1997), 27-38.

[8] Allegretto, W., Nonoscillation theory of elliptic equations of order, Pa-
cific J. Math. 64 (1976), 1-16.

[9] Alzer, H., On a problem of Littlewood, J. Math. Anal. Appl. 199 (1996),
403-408.

[10] Alzer, H., Some integral and discrete inequalities in several independent
variables, Math. Comput. Modelling 25 (1997), 97-104.

[11] Alzer, H., On Opial-type inequality involving higher-order derivatives of
two functions, Appl. Math. Lett. 10 (1997), 123-128.

[12] Anastassiou, G.A., Opial-type inequalities for linear differential operators,
Math. Inequal. Appl. 1 (1998), 193-200.

[13] Andersen, K.F., Weighted inequalities for the Stieltjes transformation and
Hilbert double series, Proc. Roy. Soc. Edinburgh Sect. A 86 (1980), 75-84.

[14] Andersen, K.F. and H.P. Heinig, Weighted norm inequalities for certain
integral operators, SIAM J. Math. Anal. 14 (1983), 834—-844.

[15] Barnes, D.C., Some complements of Holder's inequality, J. Math. Anal.
Appl. 26 (1969), 82-87.

565



566 References

[16] Beckenbach, E.F. and R. Bellman, Inequalities, Springer-Verlag, Berlin—
New York, 1970.

[17] Beesack, P.R., Hardy's inequality and its extensions, Pacific J. Math.
11 (1961), 39-61.

[18] Beesack, P.R., Integral inequalities involving a function and its derivative,
Amer. Math. Monthly 78 (1971), 705-741.

[19] Beesack, P.R., On inequalities complementary to Jensen’s, Canad. J. Math.
35 (1983), 324-338.

[20] Beesack, P.R. and J.E.&eic, On Jessen’s inequality for convex functions,

J. Math. Anal. Appl. 110 (1985), 536-552.

[21] Bennett, D.M., An extension of Rellich’s inequality, Proc. Amer. Math.
Soc. 106 (1989), 987—993.

[22] Bennett, G., An inequality suggested by Littlewood, Proc. Amer. Math.
Soc. 100 (1987), 474-476.

[23] Bennett, G., Some elementary inequalities, Quart. J. Math. Oxford 38
(1987), 401-425.

[24] Bennett, G., Some elementary inequalities, Quart. J. Math. Qxford 39
(1988), 385-400.

[25] Benson, D.C., Inequalities involving integrals of functions and their deriv-
atives, J. Math. Anal. Appl. 17 (1967), 292—-308.

[26] Bergh, J., A converse inequality of Holder type, Math. Z. 215 (1994),
205-208.

[27] Bernis, F., Compactness of the support for some nonlinear elliptic problems
of arbitrary order in dimensio®v, Comm. Partial Differential Equations 9
(1984), 271-312.

[28] Berwald, L., Verallgemeinerung eines Mittelwertsatzes von J. Favard fur
positive konkave Funktionen, Acta Math. 79 (1947), 17-37.

[29] Block, H.D., Discrete analogues of certain integral inequalities, Proc.
Amer. Math. Soc. 8 (1957), 852—-859.

[30] Bloom, S., First and second order Opial inequalities, Studia Math. 126
(1997), 27-50.

[31] Boas, R.P. Jr,, The Jensen-Steffensen inequality, Univ. Beograd Publ. Elek-
trotehn. Fak. Ser. Mat. Fiz. Nos 302-319 (1970), 1-8.

[32] Boas, R.P. Jr., Some integral inequalities related to Hardy’s inequality,
J. Anal. Math. 23 (1970), 53-63.

[33] Boas, R.P. Jr. and C.O. Imoru, Elementary convolution inequalities, SIAM
J. Math. Anal. 6 (1975), 457-471.

[34] Bobisud, L.E., Comparison and oscillation theorems for nonlinear second-
order differential equations and inequalities, J. Math. Anal. Appl. 37
(1970), 5-14.



References 567

[35] Bobisud, L.E., Steady-state turblent flow with reaction, Rocky Mountain
J. Math. 21 (1991), 993-1007.

[36] Bobisud, L.E., Existence of solutions of some nonlinear diffusion prob-
lems, J. Math. Anal. Appl. 168 (1992), 413-424.

[37] Borell, C., Inverse inequalities for concave or generalized concave func-
tions, Research Report No. 44, Dept. of Math., Uppsala Univ., 1972.

[38] Borell, C., Inverse Holder inequalities in one and several dimensions,
J. Math. Anal. Appl. 41 (1973), 300-312.

[39] Borell, C., Integral inequalities for generalized concave or convex func-
tions, J. Math. Anal. Appl. 43 (1973), 419-440.

[40] Bradley, J.S., Hardy inequalities with mixed norms, Canad. Math. Bull. 21
(1978), 405-408.

[41] Brenner, J.L. and H. Alzer, Integral inequalities for concave functions with
applications to special functions, Proc. Roy. Soc. Edinburgh Sect. A 118
(1991), 173-192.

[42] Breuer, S. and D. Gottlieb, Hille—Wintner type oscillation criteria for lin-
ear ordinary differential equations of second order, Ann. Polon. Math. 30
(1975), 257-262.

[43] Brezis, H. and E.H. Lieb, Sobolev inequalities with reminder terms,
J. Funct. Anal. 62 (1985), 73-86.

[44] Brnetic, I. and J. Péaric, Some new Opial type inequalities, Math. Inequal.
Appl. 1 (1998), 385-390.

[45] Brown, B.M. and W.D. Evans, On an extension of Copson’s inequality for
finite series, Proc. Roy. Soc. Edinburgh Sect. A 121 (1992), 169-183.

[46] Brown, R.C. and D.W Hinton, Opial’s inequality and oscillation of 2-nd
order equations, Proc. Amer. Math. Soc. 125 (1992), 1123-1129.

[47] Bullen, P.S., Error estimates for some elementary quadrature rules, Univ.
Beograd Publ. Elektrotehn. Fak. Ser. Mat. Fiz. Nos 602—-633 (1978),
97-103.

[48] Bullen, P.S., D.S. Mitrinow and P.M Vaasgi, Means and Their Inequalities,
Reidel, Dordrecht—-Boston-Lancaster—Tokyo, 1988.

[49] Buse, C., S.S. Dragomir and D. Barbu, The convergence of some se-
guences connected to Hadamard's inequality, Demonstratio Math. 29
(1996), 53-59.

[50] Calderon, A.P. and A. Zygmund, Local properties of solutions of elliptic
partial differential equations, Studia Math. 20 (1961), 171-225.

[51] Calvert, J., Some generalizations of Opial’s inequality, Proc. Amer. Math.
Soc. 18 (1967), 72-75.

[52] Chan, L.Y., Some extensions of Hardy's inequality, Canad. Math. Bull. 22
(1979), 165-169.



568 References

[53] Chang, S.Y.A., J.M. Wilson and T.H. Wolff, Some weighted norm in-
equalities concerning the Schrédinger operators, Comment. Math. Helv.
60 (1985), 217-246.

[54] Chanillo, S. and R.L. Wheeden, Inequalities for Peano maximal functions
and Marcinkiewicz integrals, Duke Math. J. 50 (1983), 573—603.

[55] Chanillo, S. and R.L. Wheedei,” estimates for fractional integrals and
Sobolev inequalities with applications to Schrédinger operators, Comm.
Partial Differential Equations 10 (1985), 1077-1116.

[56] Chanillo, S. and R.L. Wheeden, Weighted Poincaré and Sobolev inequali-
ties and estimates for weighted Peano maximal functions, Amer. J. Math.
107 (1995), 1191-1226.

[57] Chen, L.S., A Lyapunov inequality and forced oscillations in general non-
linear nth order differential—difference equations, Glasgow Math. J. 18
(1977), 161-166.

[58] Chen, L.S. and C.C. Yeh, Note on distance between zeros attherder
differential equations, Atti. Accad. Naz. Lincei 61 (1976), 217—-221.

[59] Cheung, W.S., On Opial-type inequalities in two variables, Aequationes
Math. 38 (1989), 236—244.

[60] Cheung, W.S., Some new Opial-type inequalities, Mathematica 37 (1990),
136-142.

[61] Cheung, W.S., Some generalized Opial-type inequalities, J. Math. Anal.
Appl. 162 (1991), 317-321.

[62] Chon, J.H.E., Consecutive zeros of solutions of ordinary second order dif-
ferential equations, J. London Math. Soc. 5 (1972), 465—-468.

[63] Ciesielski, Z., A note on some inequalities of Jensen’s type, Ann. Polon.
Math. 4 (1958), 269-274.

[64] Clark, S. and D. Hinton, Lyapunov inequality for linear Hamiltonian sys-
tems, Math. Inequal. Appl. 1 (1998), 201-209.

[65] Cochran, J.A. and C.S. Lee, Inequalities related to Hardy’s and Heinig's,
Math. Proc. Cambridge Philos. Soc. 96 (1984), 1-7.

[66] Coddington, E.A., An Introduction to Ordinary Differential Equations,
Prentice-Hall, Englewood Cliffs, NJ, 1961.

[67] Coddington, E.A. and N. Levinson, Theory of Ordinary Differential Equa-
tions, McGraw-Hill, New York, 1955.

[68] Coifman, R.R. and C.L. Fefferman, Weighted norm inequalities for maxi-
mal functions and singular integrals, Studia Math. 51 (1974), 241-250.

[69] Copson, E.T., Note on series of positive terms, J. London Math. Soc. 2
(1927), 9-12 and 3 (1928), 49-51.

[70] Copson, E.T., Some integral inequalities, Proc. Roy. Soc. Edinburgh
Sect. A 75 (1975/1976), 157-164.



References 569

[71] Copson, E.T., Two series inequalities, Proc. Roy. Soc. Edinburgh Sect. A
83 (1979), 109-114.

[72] Courant, R. and D. Hilbert, Methods of Mathematical Physics, Vol. I,
Wiley, New York, 1953.

[73] Crooke, P.S., On two inequalities of Sobolev type, Appl. Anal. 3 (1974),
345-358.

[74] Curtain, R.F., Foundations of functional analysis theory, Control Theory
and Topics in Functional Analysis, Vol. 1, International Atomic Energy
Agency, Vienna, 1976, pp. 101-176.

[75] Dahiya, R.S. and B. Singh, A Lyapunov inequality and nonoscillation theo-
rem for a second order nonlinear differential-difference equation, J. Math.
Phys. Sci. 7 (1973), 163-170.

[76] Das, K.M., Comparison and monotonicity theorems for second order non-
linear differential equations, Acta Math. Hungar. 15 (1964), 449-456.

[77] Das, K.M., An inequality similar to Opial’s inequality, Proc. Amer. Math.
Soc. 22 (1969), 258—-261.

[78] Davies, G.S. and G. Peterson, On an inequality of Hardy’'s (I), Quart.
J. Math. Oxford 15 (1964), 165—-169.

[79] Delbosco, D., Sur une inégalite de la norme, Univ. Beograd Publ. Elek-
trotehn. Fak. Ser. Mat. Fiz. Nos 678-715 (1980), 206—208.

[80] Del Pino, M. and R. Manasevich, Oscillation and non-oscillation for
(u'|1P~2u"Y + a(®)|u|P~%u = 0, p > 1, Houston J. Math. 14 (1988),
173-177.

[81] Del Pino, M., M. Elgueta and R. Manasevich, A homotopic deformation
along p of Leray—Schauder degree result and existence|foy —2u’)’ +
f(t,u)=0,u(0)=u(T)=0, p > 1, J. Differential Equations 80 (1989),
1-13.

[82] Dragomir, S.S., Two refinements of Hadamard’s inequalities, Coll. Sci.
Pap. Fac. Sci. Kragujevac 11 (1990), 23-26.

[83] Dragomir, S.S., Some refinements of Ky Fan’s inequality, J. Math. Anal.
Appl. 163 (1992), 317-321.

[84] Dragomir, S.S., Two mappings in connection to Hadamard'’s inequalities,
J. Math. Anal. Appl. 167 (1992), 49-56.

[85] Dragomir, S.S., Some refinements of Jensen’s inequality, J. Math. Anal.
Appl. 168 (1992), 518-522.

[86] Dragomir, S.S., Some integral inequalities for differentiable convex func-
tions, Contrib. Sec. Math. Tech. Sci. 13 (1992), 13-17.

[87] Dragomir, S.S., Refinements of Hadamard’s inequality for isotonic linear
functionals, Tamkang J. Math. 24 (1993), 101-106.

[88] Dragomir, S.S. and N.M. lonescu, On some inequalities for convex-
dominated functions, Anal. Numer. Theor. Approx. 19 (1990), 21-27.



570 References

[89] Dragomir, S.S. and N.M. lonescu, Some remarks on convex functions,
Anal. Numer. Theor. Approx. 21 (1992), 31-36.

[90] Dragomir, S.S. and D.M. MiloSebj A sequence of mappings connected
with Jensen’s inequality and applications, Mat. Vesnik 44 (1992), 113-121.

[91] Dragomir, S.S. and J. Sandor, Some inequalities for uniformly-convex
functions, Mathematica 34 (1992), 133-138.

[92] Dragomir, S.S., Y.J. Cho and S.S. Kim, Inequalities of Hadamard'’s type
for Lipschitzian mappings and their applicaitions, J. Math. Anal. Appl. 245
(2000), 489-501.

[93] Dragomir, S.S., J.E. PBaric and L. Persson, Some inequalities of
Hadamard type, Research Report No. 13, Dept. Appl. Math., Lulea Univ.
of Technology, 1994.

[94] Dragomir, S.S., J.E. Baric and J. Sandor, A note on the Jensen—Hadamard
inequalities, Anal. Numer. Theor. Approx. 19 (1990), 29-34.

[95] Dubinskii, J.A., Some integral inequalities and the solvability of degen-
erate quasilinear elliptic systems of differential equations, Math. Sb. 64
(1964), 458-480.

[96] Ebihara, Y. and T. Nambu, A remark on the initial value problems for
some quasilinear parabolic equations, Math. Rep. Kyushu Univ. 11 (1977),
47-51.

[97] Edelson, A.L. and J.D. Schuur, Nonoscillatory solutiong(zof™)™ +
f (¢, x)x =0, Pacific J. Math. 109 (1983), 313—-325.

[98] Edmunds, D.E. and B. Opic, Weighted Poincaré and Friedrichs inequali-
ties, J. London Math. Soc. 47 (1993), 79-96.

[99] Edmunds, D.E., B. Opic and J. Rakosnik, Poincaré and Friedrichs inequali-
ties in abstract Sobolev spaces, I, Math. Proc. Cambridge Philos. Soc. 115
(1994), 159-173.

[100] Eliason, S.B., A Lyapunov inequality for a certain second order nonlinear
differential equation, J. London Math. Soc. 2 (1970), 461-466.

[101] Eliason, S.B., Comparison theorems for second order nonlinear differential
equations, Quart. Appl. Math. 35 (1971), 391-402.

[102] Eliason, S.B., Lyapunov inequalities and bounds on solutions of certain
second order equations, Canad. Math. Bull. 17 (1974), 499-504.

[103] Eliason, S.B., Lyapunov type inequalities for certain second order func-
tional differential equations, SIAM J. Appl. Math. 27 (1974), 180-199.

[104] Eliason, S.B., Distance between zeros of certain differential equations hav-
ing delayed arguments, Ann. Mat. Pura Appl. CVI (1975), 273-291.

[105] Elliott, E.B., A simple exposition of some recently proved facts as to con-
vergency, J. London Math. Soc. 1 (1926), 93-96.

[106] Evans, W.D. and W.N. Everitt, A return to the Hardy—Littlewood integral
inequality, Proc. Roy. Soc. London Ser. A 380 (1982), 447-486.



References 571

[107] Evans, W.D. and W.N. Everitt, On an inequality of Hardy—Littlewood
type, I, Proc. Roy. Soc. Edinburgh Sect. A 101 (1985), 131-140.

[108] Fabes, E.B., C.E. Kenig and R.P. Serapioni, The local regularity of solu-
tions of degenerate elliptic equations, Comm. Partial Differential Equations
7 (1982), 77-116.

[109] Fan, K., O. Taussky and J. Todd, Discrete analogues of inequalities of
Wirtinger, Monatsh. Math. 59 (1955), 73-90.

[110] Farwig, R. and D. Zwick, Some divided difference inequalities for
n-convex functions, J. Math. Anal. Appl. 108 (1985), 430—437.

[111] Favard, J., Sur les valeures moyennes, Bull. Sci. Math. 57 (1933), 54-64.

[112] Fefferman, C.L. and E.M. Stein{” spaces of several variables, Acta
Math. 129 (1972), 137-193.

[113] Feinberg, J.M., Some Wirtinger-like inequalities, SIAM J. Math. Anal. 10
(1979), 1258-1271.

[114] Fejér, L., Uber die Fourierreihen, Il, Math.-Naturwiss. Anz. Ungarn Akad.
Wiss. 24 (1906), 369—-390.

[115] Fink, A.M., Onthe zeros of” + py = 0 with linear, convex and concaye
J. Math. Pures Appl. 46 (1967), 1-10.

[116] Fink, A.M., Discrete inequalities of generalized Wirtinger type, Aequa-
tiones Math. 11 (1974), 31-39.

[117] Fink, A.M., On Opial’s inequality forf™, Proc. Amer. Math. Soc. 115
(1992), 177-181.

[118] Fink, A.M., Two inequalities, Univ. Beograd Publ. Elektrotehn. Fak. Ser.
Mat. Fiz. 6 (1995), 48—49.

[119] Fink, A.M. and D.F. St. Mary, On an inequality of Nehari, Proc. Amer.
Math. Soc. 21 (1969), 640—642.

[120] Friedman, A., Partial Differential Equations of Parabolic Type, Prentice-
Hall, Englewood Cliffs, NJ, 1964.

[121] Friedman, A., Partial Differential Equations, Holt, Reinhart and Winston,
New York, 1969.

[122] Fuchs, L., A new proof of an inequality of Hardy—Littlewood—Polya, Math.
Tidsskr. 13 (1947), 53-54.

[123] Gabler, S., Folgenkeexe Funktionen, Manuscripta Math. 29 (1979),
29-47.

[124] Galbraith, A.S., On the zeros of solutions of ordinary differential equations
of the second order, Proc. Amer. Math. Soc. 17 (1966), 333—-337.

[125] Garabedian, P.R., Partial Differential Equations, Wiley, New York, 1964.

[126] Gatto, A.E. and R.L. Wheeden, Sobolev inequalities for products of pow-
ers, Trans. Amer. Math. Soc. 314 (1989), 727-743.



572 References

[127] Ghidaglia, J.M., M. Marion and R. Temam, Generalization of the Sobolev—
Lieb—Thirring inequalities and applications to the dimension of attractors,
Differential Integral Equations 1 (1988), 1-21.

[128] Gill, P.M., C.E.M. Pearce and J.E. ¢eic, Hadamard'’s inequalities for
r-convex functions, J. Math. Anal. Appl. 215 (1997), 461-470.

[129] Godunova, E.K. and V.I. Levin, On an inequality of Maroni (in Russian),
Mat. Zametki 2 (1967), 221-224.

[130] Godunova, E.K. and V.1. Levin, Neravenstva dlja funkcii shirokogo klassa
soderzhashchego vypuklye, monotonnye i nekotorye drugie vidy funkcii,
Vychisl. Mat. i Mat. Fiz., Mezvuzov. Sh. N&uTrudov, MGPL, Moscow,
1985, pp. 138-142.

[131] Graef, J.R., T. Kushano, H. Onose and P.W. Spikes, On the asymptotic
behavior of oscillatory solutions of functional differential equations, Funk-
cial. Ekvac. 26 (1983), 11-16.

[132] Grimmer, R.C. and P. Waltman, A comparison theorem for a class of non-
linear differential inequalities, Monatsh. Math. 72 (1968), 133—-136.

[133] Griss, G., Uber das Maximum des absoluten Betrages von
s [P g dy — T [P foydr f7 g(x)dx, Math. Z. 39 (1935),
215-226.

[134] Hadamard, J., Etude sur les propriétés des fonctions entiéres et en par-
ticulier d’'une fonction considérée par Riemann, J. Math. Pures Appl. 9
(1893), 171-215.

[135] Hammer, P.C., The mid-point method of numerical integration, Math.
Mag. 31 (1957/1958), 193-195.

[136] Hardy, G.H., Note on a theorem of Hilbert, Math. Z. 6 (1920), 314-317.

[137] Hardy, G.H., Notes on some points in the integral calculus, Messenger of
Math. 57 (1928), 12-16.

[138] Hardy, G.H., Divergent Series, Cambridge Univ. Press, 1948.

[139] Hardy, G.H. and J.E. Littlewood, Elementary theorems concerning power
series with positive coefficients and moment constants of positive func-
tions, J. Reine Angew. Math. 157 (1927), 141-158.

[140] Hardy, G.H. and J.E. Littlewood, Some integral inequalities connected with
the calculus of variations, Quart. J. Math. Oxford 3 (1932), 241-252.

[141] Hardy, G.H., J.E. Littlewood and G. Pdlya, Inequalities, Cambridge Univ.
Press, 1934.

[142] Harris, B.J., On the oscillation of solutions of linear differential equations,
Mathematica 31 (1984), 214-226.

[143] Harris, B.J., On an inequality of Lyapunov for disfocality, J. Math. Anal.
Appl. 146 (1990), 495-500.

[144] Harris, B.J. and Q. Kong, On the oscillation of differential equations with
an oscillatory coefficient, Trans. Amer. Math. Soc. 347 (1995), 1831-1839.




References 573

[145] Hartman, P., Ordinary Differential Equations, Wiley, New York, 1964.

[146] Heing, H.P., Some extensions of Hardy’s inequality, SIAM J. Math. Anal.
6 (1975), 698-713.

[147] Heing, H.P. and L. Maligranda, Chebyshev inequality in function spaces,
Real Anal. Exchange 17 (1991/1992), 211-247.

[148] Heing, H.P. and V.D. Stepanov, Weighted Hardy inequalities for increasing
functions, Canad. J. Math. 45 (1993), 104-116.

[149] Hellwing, G., Differential Operators of Mathematical Physics, Addison-
Wesley, Boston, MA, 1967.

[150] Hochstadt, H., On an inequality of Lyapunov, Proc. Amer. Math. Soc. 22
(1969), 282-284.

[151] Hélder, O., Uber einen Mittelwerthssatz, Nachr. Ges. Wiss. Géttingen,
1889, pp. 38-47.

[152] Horgan, C.O., Integral bounds for solutions of nonlinear reaction—diffusion
equations, J. Appl. Math. Phys. (ZAMP) 28 (1977), 197-204.

[153] Horgan, C.O., Plane entry flows and energy estimates for the Navier—
Stokes equations, Arch. Ration. Mech. Anal. 68 (1978), 359-381.

[154] Horgan, C.O., Eigenvalue estimates and the trace theorem, J. Math. Anal.
Appl. 69 (1979), 231-242.

[155] Horgan, C.O. and P.R. Nachlinger, On the domain of attraction for steady
states in heat conduction, Internat. J. Engrg. Sci. 14 (1976), 143-148.

[156] Horgan, C.O. and W.E. Olmstead, Exponential decay estimates for a class
of nonlinear Dirichlet problems, Arch. Ration. Mech. Anal. 71 (1979),
221-235.

[157] Horgan, C.O. and L.T. Wheeler, Spatial decay estimates for the Navier—
Stokes equations with applications to the problem of entry flow, SIAM
J. Appl. Math. 35 (1978), 97-116.

[158] Hua, L.K., On an inequality of Opial, Scientia Sinica 14 (1965), 789-790.

[159] Hurri, R., Poincaré domains iR"”, Ann. Acad. Sci. Fenn. Ser. A | Math.
Dissertationes 71 (1988), 1-41.

[160] Hurri, R., The weighted Poincaré inequalities, Math. Scand. 67 (1990),
145-160.

[161] Imoru, C.O., On some integral inequalities related to Hardy’'s, Canad.
Math. Bull. 20 (1977), 307-312.

[162] Izumi, M. and S. Izumi, On some inequalities for Fourier series, J. Anal.
Math. 21 (1968), 277—-291.

[163] Izumi, M., S. Izumi and G.M. Petersen, On Hardy’s inequality and its gen-
eralization, Téhoku Math. J. 21 (1969), 601-613.

[164] Jensen, J.LW.V., Om keaxe Funktioner og Uligheder Mellem Mid-
delveerdier, Nyt. Tidsskr. Math. 16B (1905), 49-69.



574 References

[165] Jensen, J.L.W.V., Sur les fonctions weres et les inédigés entre les
valeurs moyennes, Acta Math. 30 (1906), 175-193.

[166] Jessen, B., Bemeerkninger om konvekse Funktioner og Uligheder imellem
Middeleerdier, I, Mat. Tidsskr. B (1931), 17-28.

[167] Johnson, P.D. Jr. and R.N. Mohapatra, Inequalities involving lower trian-
gular matrices, Proc. London Math. Soc. 41 (1980), 83-137.

[168] Kadlec, J. and A. Kufner, Characterization of functions with zero traces by
integrals with weight functions, If:asopis Bst. Mat. 92 (1967), 16—28.

[169] Karlin, S. and Z. Ziegker, Some inequalities for generalized concave func-
tions, J. Approx. Theory 13 (1975), 276-293.

[170] Knopp, K., Uber die maximalen Abstande und Verhéltnisse verschiedener
Mittelwerte, Math. Z. 39 (1935), 768—776.

[171] Kreith, K., Comparison theorems for nonselfadjoint differential equations
based on integral inequalities, Proc. Amer. Math. Soc. 34 (1972), 105-109.

[172] Kreith, K., Oscillation Theory, Lecture Notes in Math., Vol. 324, Springer-
Verlag, Berlin—-New York, 1973.

[173] Kufner, A. and B. Opic, How to define reasonably weighted Sobolev
spaces, Comment. Math. Univ. Carolin. 25 (1984), 537-554.

[174] Kufner, A., O. John and S. Eik, Function Spaces, Noordhoff Internat.
Publishers, Layden, 1977.

[175] Kulenovic, M.R. and M.K. Grammatikopoules, On the asymptotic behav-
ior of second order differential inequalities with alternating coefficients,
Math. Nachr. 98 (1980), 317-327.

[176] Kwong, M.K., On Lyapunov’s inequality for disfocality, J. Math. Anal.
Appl. 83 (1981), 486-494.

[177] Ladas, G., On oscillation and boundedness of solutions of nonlinear differ-
ential equations, Bull. Soc. Math. Grece 10 (1969), 48-54.

[178] Ladyzhenskaya, O.A., The Mathematical Theory of Viscous Incompress-
ible Flow, Gordon and Breach, New York, 1969.

[179] Ladyzhenskaya, O.A. and N.N. Uraltseva, Linear and Quasilinear Elliptic
Equations, Academic Press, New York, 1969.

[180] Lalli, B.S. and R.P. Jahagirdar, On Levin’s comparison theorem, Bull. Soc.
Math. Grece 13 (1972), 129-132.

[181] Lalli, B.S. and R.P. Jahagirdar, Comparison theorems of Levin type,
J. Math. Anal. Appl. 49 (1975), 705—709.

[182] Landu, E., A note on a theorem concerning series of positive terms, J. Lon-
don Math. Soc. 1 (1926), 38—39.

[183] Lee, C.M., On a discrete analogue of inequalities of Opial and Yang,
Canad. Math. Bull. 11 (1968), 73-77.

[184] Lee, C.S., On some generalizations of inequalities of Opial, Yang and
Shum, Canad. Math. Bull. 23 (1980), 71-80.



References 575

[185] Leighton, W., On the zeros of solutions of a second order linear differential
equations, J. Math. Pures Appl. 44 (1965), 297-310.

[186] Leindler, L., Generalization of inequalities of Hardy and Littlewood, Acta
Sci. Math. 31 (1970), 279-285.

[187] Levin, AJ., A comparison principle for second-order differential equa-
tions, Soviet Math. Dokl. 1 (1960), 1313-1316.

[188] Levin, A.J., Distribution of the zeros of solutions of a linear differential
equation, Soviet Math. Dokl. 5 (1964), 818—-821.

[189] Levinson, N., Generalization of an inequality of Ky Fan, J. Math. Anal.
Appl. 8 (1964), 133-134.

[190] Levinson, N., Generalizations of an inequality of Hardy, Duke Math. J. 31
(1964), 389-394.

[191] Lewis, R.T., Singular elliptic operators of second order with purely discrete
spectra, Trans. Amer. Math. Soc. 271 (1982), 653-666.

[192] Liberman, G.M., Interior gradient bounds for non-uniformly parabolic
equations, Indiana Univ. Math. J. 32 (1983), 579-601.

[193] Lieb, E. and W. Thirring, Inequalities for the moments of the eigenvalues
of the Schrédinger Hamiltonian and their relation to Sobolev inequalities,
Studies in Mathematical Physics (E. Lieb, S. Stmon and A. Wightman,
Eds), Princeton Univ. Press, Princeton, NJ, 1976, pp. 269—-303.

[194] Lin, T.P., The power mean and the logarithmic mean, Amer. Math. Monthly
81 (1979), 879-883.

[195] Littlewood, J.E., Some new inequalities and unsolved problems, Inequali-
ties (O. Shisha, Ed.), Academic Press, New York, 1967, pp. 151-162.

[196] Love, E.R., Generalizations of Hardy’s and Copson’s inequalities, J. Lon-
don Math. Soc. 30 (1984), 431-440.

[197] Love, E.R., Inequalities like Opial’'s inequality, Rocznik Naukowo-
Dydaktyczny, Z. 97, Prace Mathematiczne, Vol. XI, 1985, Wydaw. Nauk.
WSP, Krakéw, pp. 109-118.

[198] Love, E.R., Generalizations of Hardy’s integral inequality, Proc. Roy. Soc.
Edinburgh Sect. A 100 (1985), 237-262.

[199] Love, E.R., Inequalities related to those of Hardy and of Cochran and Lee,
Math. Proc. Cambridge Philos. Soc. 99 (1986), 395-408.

[200] Lupss, A., A generalization of Hadamard'’s inequality for convex functions,
Univ. Beograd Publ. Elektrotehn. Fak. Ser. Mat. Fiz. Nos 544-576 (1976),
115-121.

[201] Lyapunov, A.M., Probléme general de la stabilité du mouvement, Princeton
Univ. Press, Princeton, NJ, 1947.

[202] Maligranda, L., Concavity and convexity of rearrangement, Comment.
Math. Prace Mat. 32 (1992), 85-90.



576 References

[203] Maligranda, L., J.E. Raric and L.E. Persson, On some inequalities of the
Griiss—Barnes and Borell type, J. Math. Anal. Appl. 187 (1994), 306—-323.

[204] Maligranda, L., J.E. Rmric and L.E. Persson, Weighted Favard and
Berwald inequalities, J. Math. Anal. Appl. 190 (1995), 248-262.

[205] Mary, D.F.St., Some oscillation and comparison theoremsrf@yy’)’ +
p()y =0, J. Differential Equations 5 (1969), 314—-323.

[206] Mazja, V.G., Sobolev Spaces, Springer-Verlag, Berlin—New York, 1985.

[207] McShane, E.J., Jensen’s inequality, Bull. Amer. Math. Soc. 43 (1937),
521-527.

[208] Michlin, S.G., Variational Methods in Mathematical Physics (in Russian),
Moscow, 1957; English transl.: Oxford, 1965.

[209] Mikhailov, V.P., Partial Differential Equations, Mir, Moscow, 1978.

[210] Mingze, G., On Hilbert's inequality and its applications, J. Math. Anal.
Appl. 212 (1997), 316-323.

[211] MitrinoviE, D.S., Analytic Inequalities, Springer-Verlag, Berlin-New York,
1970.

[212] MitrinoviE, D.S. and 1.B. Lackod, Hermite and convexity, Aequationes
Math. 28 (1985), 225-232.

[213] Mitrinovic, D.S. and J.E. Raric, On inequalities of Hilbert and Widder,
Proc. Edinburgh Math. Soc. 34 (1991), 411-414.

[214] Mitrinovi€, D.S. and P.M. Vaséi The centroid method in inequalities, Univ.
Beograd Publ. Elektrotehn. Fak. Ser. Mat. Fiz. Nos 498-541 (1975), 3-16.

[215] Mitrinovi€, D.S., J.E. Pearic and A.M. Fink, Inequalities Involving Func-
tions and Their Integrals and Derivatives, Kluwer Academic Publishers,
Dordrecht, 1991.

[216] Mitrinovi€, D.S., J.E. P&aric and A.M. Fink, Classical and New Inequali-
ties in Analysis, Kluwer Academic Publishers, Dordrecht, 1992.

[217] Mohapatra, R.N. and D.C. Russell, Integral inequalities related to Hardy’s
inequality, Aequationes Math. 26 (1985), 199—-207.

[218] Mond, B. and J.E. Raric, Remarks on Jensen’s inequality for opera-
tor convex functions, Ann. Univ. Mariae Curie-Sklodwska Sect. A XLVII
(1993), 96-103.

[219] Mond, B. and J.E. Raric, Inequalities for semi-convex matrix functions,
J. Math. Anal. Appl. 185 (1994), 367-377.

[220] Mond, B. and J.E. Raric, A companion to Fink’s inequality, Octogon
Math. Mag. 5 (1997), 17-18.

[221] Muckenhoupt, B., Hardy’s inequality with weights, Studia Math. XLIV
(1972), 31-38.

[222] Muckenhoupt, B., Weighted norm inequalities for the Hardy maximal func-
tion, Trans. Amer. Math. Soc. 165 (1972), 207-226.



References 577

[223] Mulholland, H.P., The generalization of certain inequality theorems involv-
ing powers, Proc. London Math. Soc. 33 (1932), 481-516.

[224] Myjak, J., Boundary value problems for nonlinear differential and differ-
ence equations of the second order, Zeszyty Nauk. Uniw. Jagiello. Prace
Mat. 15 (1971), 113-123.

[225] Nehari, Z., On an inequality of Lyapunov, Studies in Mathematical
Analysis and Related Topics, Stanford Univ. Press, Stanford, CA, 1962,
pp. 256-261.

[226] Nemeth, J., Generalizations of the Hardy-Littlewood inequality, Acta Sci.
Math. (Szeged) 32 (1971), 295-299.

[227] Neuman, E., Inequalities involving multivariate convex functions, Il, Proc.
Amer. Math. Soc. 109 (1990), 965-974.

[228] Neuman, E. and J.E. Baric, Inequalities involving multivariate convex
functions, J. Math. Anal. Appl. 137 (1989), 541-549.

[229] Nirenberg, L., On elliptic partial differential equations, Ann. Scuola Norm.
Sup. Pisa 13 (1959), 116-162.

[230] Olech, C., A simple proof of a certain result of Z. Opial, Ann. Polon. Math.
8 (1960), 61-63.

[231] Opial, Z., Sur une inégalité, Ann. Polon. Math. 8 (1960), 29-32.

[232] Opic, B., Necessary and sufficient conditions for imbaddings in weighted
Sobolev space€;asopis Pést Mat. 114 (1989), 165-175.

[233] Pachpatte, B.G., On Opial type inequalities in two independent variables,
Proc. Roy. Soc. Edinburgh Sect. A 100 (1985), 263—-270.

[234] Pachpatte, B.G., Discrete analogues of some inequalities ascribed to
Wirtinger, Utilitas Math. 28 (1985), 137-143.

[235] Pachpatte, B.G., On certain discrete inequalities in two independent vari-
ables, Soochow J. Math. 11 (1985), 91-95.

[236] Pachpatte, B.G., On Poincaré type integral inequalities, J. Math. Anal.
Appl. 114 (1986), 111-115.

[237] Pachpatte, B.G., On two inequalities of the Serrin type, J. Math. Anal.
Appl. 116 (1986), 193-199.

[238] Pachpatte, B.G., On a class of new integral inequalities, J. Math. Anal.
Appl. 117 (1986), 318-325.

[239] Pachpatte, B.G., On Opial-type integral inequalities, J. Math. Anal. Appl.
120 (1986), 547-556.

[240] Pachpatte, B.G., On certain integral inequalities related to Opial’s inequal-
ity, Period. Math. Hungar. 17 (1986), 119-125.

[241] Pachpatte, B.G., On Wirtinger—Opial type integral inequalities, Tamkang
J. Math. 17 (1986), 1-6.

[242] Pachpatte, B.G., On some new multidimensional discrete inequalities,
Tamkang J. Math. 17 (1986), 21-29.



578 References

[243] Pachpatte, B.G., A note on an inequality ascribed to Wirtinger, Tamkang
J. Math. 17 (1986), 69-73.

[244] Pachpatte, B.G., A note on a new integral inequality, Soochow J. Math. 12
(1986), 63—65.

[245] Pachpatte, B.G., On some new generalizations of Opial's inequality,
Demonstratio Math. 19 (1986), 281—-291.

[246] Pachpatte, B.G., On Sobolev type integral inequalities, Proc. Roy. Soc. Ed-
inburgh Sect. A 103 (1986), 1-14.

[247] Pachpatte, B.G., A note on Poincaré’s integral inequality, An.tStiinjv.
“Al.l. Cuza” lasi 32 (1986), 35—-36.

[248] Pachpatte, B.G., On some new integral inequalities in several independent
variables, Chinese J. Math. 14 (1986), 69—79.

[249] Pachpatte, B.G., A note on two multidimensional integral inequalities, Util-
itas Math. 30 (1986), 123-129.

[250] Pachpatte, B.G., On certain multidimensional discrete inequalities, Chinese
J. Math. 14 (1986), 185-195.

[251] Pachpatte, B.G., On multidimensional integral inequalities involving three
functions, Soochow J. Math. 12 (1986), 67—78.

[252] Pachpatte, B.G., On some extensions of Levinson's generalizations of
Hardy’s inequality, Soochow J. Math. 13 (1987), 203-210.

[253] Pachpatte, B.G., On Hardy type integral inequalities, Tamkang J. Math. 18
(1987), 27-41.

[254] Pachpatte, B.G., On a new class of Hardy type inequalities, Proc. Roy. Soc.
Edinburgh Sect. A 105 (1987), 265-274.

[255] Pachpatte, B.G., On some variants of Hardy’s inequality, J. Math. Anal.
Appl. 124 (1987), 495-501.

[256] Pachpatte, B.G., On an integral inequality involving functions and their
derivatives, Soochow J. Math. 13 (1987), 211-214.

[257] Pachpatte, B.G., On two inequalities similar to Opial’s inequality in two
independent variables, Period. Math. Hungar. 18 (1987), 137-141.

[258] Pachpatte, B.G., A note on Sobolev type inequalities in two independent
variables, J. Math. Anal. Appl. 122 (1987), 114-120.

[259] Pachpatte, B.G., A note on multidimensional integral inequalities, J. Math.
Anal. Appl. 122 (1987), 122-128.

[260] Pachpatte, B.G., On two independent variable Opial-type integral inequal-
ities, J. Math. Anal. Appl. 125 (1987), 47-57.

[261] Pachpatte, B.G., On multidimensional Opial-type inequalities, J. Math.
Anal. Appl. 126 (1987), 85-89.

[262] Pachpatte, B.G., A note on Opial and Wirtinger type discrete inequalities,
J. Math. Anal. Appl. 127 (1987), 470-474.



References 579

[263] Pachpatte, B.G., On logarithmic Sobolev type inequalities, Chinese
J. Math. 15 (1987), 69-79.

[264] Pachpatte, B.G., On two inequalities of the Sobolev type, Chinese J. Math.
15 (1987), 247-252.

[265] Pachpatte, B.G., A note on Poincaré and Sobolev type integral inequalities,
Tamkang J. Math. 18 (1987), 1-7.

[266] Pachpatte, B.G., On Yang type integral inequalities, Tamkang J. Math. 18
(1987), 69-96.

[267] Pachpatte, B.G., On some new integral inequalities in two independent
variables, J. Math. Anal. Appl. 129 (1988), 375-382.

[268] Pachpatte, B.G., On some integral inequalities similar to Hardy’s inequal-
ity, J. Math. Anal. Appl. 129 (1988), 596—-606.

[269] Pachpatte, B.G., On discrete inequalities of the Poincaré type, Period.
Math. Hungar. 19 (1988), 227-233.

[270] Pachpatte, B.G., A note on discrete inequalities in several variables,
Tamkang J. Math. 19 (1988), 1-6.

[271] Pachpatte, B.G., On certain two dimensional integral inequalities, Chinese
J. Math. 17 (1989), 273-279.

[272] Pachpatte, B.G., On Wirtinger like discrete inequalities, Tamkang J. Math.
20 (1989), 211-219.

[273] Pachpatte, B.G., On a generalized Opial type inequality in two independent
variables, An. Stiib, Univ. “Al.l. Cuza” lasi 35 (1989), 231-235.

[274] Pachpatte, B.G., On integral inequalities similar to Opial's inequality,
Demonstratio Math. 22 (1989), 21-27.

[275] Pachpatte, B.G., On multidimensional Wirtinger type discrete inequalities,
Tamkang J. Math. 20 (1989), 289-296.

[276] Pachpatte, B.G., On Sobolev-Lieb—Thirring type inequalities, Chinese
J. Math. 18 (1990), 385-397.

[277] Pachpatte, B.G., A note on Copson’s inequality involving series of positive
terms, Tamkang J. Math. 21 (1990), 13-19.

[278] Pachpatte, B.G. and E.R. Love, On some new inequalities related to
Hardy's integral inequality, J. Math. Anal. Appl. 149 (1990), 17-25.

[279] Pachpatte, B.G., A note on two dimensional integral inequality, Tamkang
J. Math. 21 (1990), 211-213.

[280] Pachpatte, B.G., On Opial like discrete inequalities, An. Stiumiv.
“Al.l. Cuza” lagi 36 (1990), 237—-240.

[281] Pachpatte, B.G., A note on Lyapunov type inequalities, Indian J. Pure Appl.
Math. 21 (1990), 45-49.

[282] Pachpatte, B.G., On Lyapunov type finite difference inequality, Tamkang
J. Math. 21 (1990), 337-339.



580 References

[283] Pachpatte, B.G., A note on certain generalizations of Opial's inequality,
An. Stiint. Univ. “Al.l. Cuza” lasi 36 (1990), 21-24.

[284] Pachpatte, B.G., Opial type inequality in several variables, Tamkang
J. Math. 22 (1991), 7-11.

[285] Pachpatte, B.G., On Lieb and Thirring type discrete inequalities, Tamkang
J. Math. 22 (1991), 145-151.

[286] Pachpatte, B.G., On some extensions of Rellich’s inequality, Tamkang
J. Math. 22 (1991), 259-265.

[287] Pachpatte, B.G., Opial type discrete inequalities in two variables, Tamkang
J. Math. 22 (1991), 323-328.

[288] Pachpatte, B.G., A note on Rellich type inequalities, Libertas Math. 11
(1991), 105-115.

[289] Pachpatte, B.G., On Friedrichs and Trace type inequalities, The Chung
Yuan J. 20 (1991), 1-5.

[290] Pachpatte, B.G., On some variants of Sobolev's inequality, Soochow
J. Math. 17 (1991), 121-129.

[291] Pachpatte, B.G., Asymptotic behavior of oscillatory solutions of a second
order functional differential equation, Proc. Nat. Acad. Sci. India Sect. A
61 (1991), 501-506.

[292] Pachpatte, B.G., A many variable generalization of Hardy’s inequality con-
cerning a series of terms, Tamkang J. Math. 23 (1992), 349-354.

[293] Pachpatte, B.G., On multivariate Hardy type inequalities, An. {Stilnjv.
“AlLl. Cuza” lasi 38 (1992), 355-361.

[294] Pachpatte, B.G., On an inequality of Opial type in two variables, Indian
J. Pure Appl. Math. 23 (1992), 657—-661.

[295] Pachpatte, B.G., A note on certain inequalities related to Hardy’s inequal-
ity, Indian J. Pure Appl. Math. 23 (1992), 773-776.

[296] Pachpatte, B.G., On inequalities of the Opial type, Demonstratio Math. 25
(1992), 35-45.

[297] Pachpatte, B.G., On an inequality of Lyapunov for a certain second order
differential equation, The Chung Yuan J. 21 (1992), 5-7.

[298] Pachpatte, B.G., On the zeros of solutions of certain differential equations,
Demonstratio Math. 25 (1992), 825-833.

[299] Pachpatte, B.G., On certain two dimensional Hardy type integral inequali-
ties, J. Ramanujan Math. Soc. 7 (1992), 93-102.

[300] Pachpatte, B.G., A note on certain new series inequality, Ann. Univ. Tim-
isoara SerStjint. Mat. 31 (1993), 95-100.

[301] Pachpatte, B.G., A note on certain new integrodifferential inequalities,
Stud. Univ. Babe;Bolyai Math. 38 (1993), 25-29.

[302] Pachpatte, B.G., A note on generalized Opial type inequalities, Tamkang
J. Math. 24 (1993), 229-235.



References 581

[303] Pachpatte, B.G., Some inequalities similar to Opial’s inequality, Demon-
stratio Math. 26 (1993), 643-647.

[304] Pachpatte, B.G., On some inequalities of the Weyl type, An.tStiin|v.
“Al.l. Cuza” lasi 40 (1994), 89-95.

[305] Pachpatte, B.G., Inequalities related to Hardy and Copson, Ant. &tiifv.
“Al.l. Cuza” lagi 40 (1994), 267—-273.

[306] Pachpatte, B.G., A note on Hardy like integral inequalities, Tamkang
J. Math. 25 (1994), 221-224.

[307] Pachpatte, B.G., On Hardy type discrete inequalities, Libertas Math. 14
(1994), 154-157.

[308] Pachpatte, B.G., On an inequality of Hardy—Littlewood type, J. Ramanujan
Math. Soc. 9 (1994), 49-54.

[309] Pachpatte, B.G., A note on Weyl type discrete inequalities, J. Math. Anal.
Appl. 188 (1994), 711-716.

[310] Pachpatte, B.G., On some generalizations of Hardy’s integral inequality for
functions of several variables, Demonstratio Math. 27 (1994), 43-51.

[311] Pachpatte, B.G., Discrete inequalities in three variables, Unpublished Man-
uscript, 1994.

[312] Pachpatte, B.G., A note on inequalities related to Opial’s inequality, Indian
J. Pure Appl. Math. 25 (1994), 1031-1037.

[313] Pachpatte, B.G., Inequalities involving functions of two variables, J. Sci.
Marathwada Univ. 27 (1994), 53-54.

[314] Pachpatte, B.G., A Lyapunov type inequality for a certain second order
differential equation, Proc. Nat. Acad. Sci. India Sect. A 64 (1994), 69—73.

[315] Pachpatte, B.G., On Hardy type integral inequalities for functions of two
variables, Demonstratio Math. 28 (1995), 239-244.

[316] Pachpatte, B.G., Generalization of Opial’s inequality, Octogon Math. Mag.
3 (1995), 4-6.

[317] Pachpatte, B.G., On Opial type inequalities involving higher order deriva-
tives, J. Math. Anal. Appl. 190 (1995), 763—773.

[318] Pachpatte, B.G., A note on Opial type inequalities involving partial sums,
Demonstratio Math. 28 (1995), 33-35.

[319] Pachpatte, B.G., A note on an inequality similar to Lyapunov's inequality,
Demonstratio Math. 28 (1995), 915-920.

[320] Pachpatte, B.G., An inequality suggested by Lyapunov’s inequality, Publ.
Cent. Rech. Math. Pures Ser. | 26 (1995), 1-4.

[321] Pachpatte, B.G., On Lyapunov type inequalities for certain higher order
differential equations, J. Math. Anal. Appl. 195 (1995), 527-536.

[322] Pachpatte, B.G., On some new inequalities related to the zeros of solutions
of certain second order differential equations, (I) and (Il), Bul. Inst. Politeh.
lasi Mat. XLI (1995), 25-32 and 53-57.



582 References

[323] Pachpatte, B.G., Inequalities of Opial type that involve higher order deriv-
atives, An. Stiim, Univ. “Al.l. Cuza” lasi 42 (1996), 367-371.

[324] Pachpatte, B.G., A note on Opial like integral inequalities, Publ. Cent.
Rech. Math. Pures Ser. | 27 (1996), 13-17.

[325] Pachpatte, B.G., On an inequality of Lyapunov type, Octogon Math. Mag.
4 (1996), 29-31.

[326] Pachpatte, B.G., A note on some series inequalities, Tamkang J. Math. 27
(1996), 77-79.

[327] Pachpatte, B.G., On Levin type comparison theorems for certain second
order differential equations, Acta Math. Scientia 17 (1997), 51-55.

[328] Pachpatte, B.G., Lyapunov type integral inequalities for certain differential
equations, Georgian Math. J. 4 (1997), 139-148.

[329] Pachpatte, B.G., On an inequality related to the zeros of solutions of certain
second order differential equations, Octogon Math. Mag. 5 (1997), 35-37.

[330] Pachpatte, B.G., A note on some inequalities analogues to Griiss inequality,
Octogon Math. Mag. 5 (1997), 62—66.

[331] Pachpatte, B.G., Inequalities related to the zeros of solutions of certain
second order difference equations, Stud. Univ. BaBelyai Math. XLII
(1997), 91-96.

[332] Pachpatte, B.G., Inequalities for Differential and Integral Equations, Aca-
demic Press, New York, 1998.

[333] Pachpatte, B.G., On multivariate generalizations of Hardy's inequality,
Libertas Math. 18 (1998), 23-47.

[334] Pachpatte, B.G., On some new inequalities similar to Hilbert's inequality,
J. Math. Anal. Appl. 226 (1998), 166-179.

[335] Pachpatte, B.G., A note on Hilbert type inequality, Tamkang J. Math. 29
(1998), 293-298.

[336] Pachpatte, B.G., Discrete inequalities in three independent variables,
Demonstratio Math. 21 (1998), 849-854.

[337] Pachpatte, B.G., A note on some extensions of Hardy’s inequality, An.
Stiint. Univ. “Al.l. Cuza” lasi 44 (1998), 95-100.

[338] Pachpatte, B.G., On some inequalities similar to Lyapunov’s inequality,
Bul. Inst. Politeh. Iaj Math. XLIV (XLVIII) (1998), 21-30.

[339] Pachpatte, B.G., Integral inequalities associated to the zeros of solutions of
certain higher order differential equations, Fasc. Math. 29 (1999), 87-97.

[340] Pachpatte, B.G., A note on an inequality similar to Opial’s inequality,
Tamkang J. Math. 30 (1999), 63-66.

[341] Pachpatte, B.G., A note on multivariate variants of Hardy's inequality,
Fasc. Math. 30 (1999), 107-112.

[342] Pachpatte, B.G., Inequalities similar to the integral analogue of Hilbert’s
inequality, Tamkang J. Math. 30 (1999), 139-146.



References 583

[343] Pachpatte, B.G., On a new inequality analogues to Hilbert's inequality,
Radovi Math. 9 (1999), 5-11.

[344] Pachpatte, B.G., On some generalizations of Hardy’s integral inequality,
J. Math. Anal. Appl. 234 (1999), 15-30.

[345] Pachpatte, B.G., On Sobolev-Visik—Dubinskii type inequalities, Tamkang
J. Math. 30 (1999), 213-218.

[346] Pachpatte, B.G., On some generalized Opial type inequalities, Ana-
Iytic and Geometric Inequalities and Their Applications (M. Rassias and
H.M. Srivastava, Eds), Kluwer Academic Publishers, Dordrecht, 1999,
pp. 301-322.

[347] Pachpatte, B.G., A note on two new discrete inequalities, Octogon Math.
Mag. 7 (1999), 33-36.

[348] Pachpatte, B.G., A note on some new Opial type integral inequalities,
Octogon Math. Mag. 7 (1999), 80-84.

[349] Pachpatte, B.G., On some integral inequalities involving convex functions,
RGMIA Res. Rep. Coll. 3(3) (2000), 487—-492.

[350] Pachpatte, B.G., A note on an inequality of Hilbert type, Octogon Math.
Mag. 8 (2000), 23-26.

[351] Pachpatte, B.G., A note on Hadamard like inequalities, Octogon Math.
Mag. 8 (2000), 37-42.

[352] Pachpatte, B.G., On an inequality similar to Hilbert's inequality, Bul. Inst.
Politech. Iaj Mat. XLVI (2000), 31-36.

[353] Pachpatte, B.G., Inequalities similar to certain extensions of Hilbert’s in-
equality, J. Math. Anal. Appl. 243 (2000), 217-227.

[354] Pachpatte, B.G., Inequalities related to the zeros of solutions of certain sec-
ond order differential equations, Facta Univ. Ser. Math. Inform. 16 (2001),
35-44.

[355] Pachpatte, B.G., On two independent variable Hardy type integral inequal-
ities, Bul. Inst. Politech. Isi, Mat. XLVIII (2002), 33—44.

[356] Pachpatte, B.G., On some inequalities for convex functions, RGMIA Res.
Rep. Coll. 6(3) (2003), 1-9.

[357] Pachpatte, B.G., A note on variants of certain inequalities for convex func-
tions, Tamkang J. Math. 34 (2003), 163-167.

[358] Pachpatte, B.G., Inequalities of Opial type in three independent variables,
Tamkang J. Math. 35 (2004), 145-147.

[359] Pachpatte, B.G., Inequalities similar to Opial’s inequality involving higher
order derivatives, Tamkang J. Math., to appear.

[360] Pachpatte, B.G., On certain discrete inequalities involving functions of sev-
eral variables, submitted.

[361] Patula, W.T., On the distance between zeros, Proc. Amer. Math. Soc. 52
(1975), 247-251.



584 References

[362] Payne, L.E., Unigueness criteria for steady state solutions of the Navier—
Stokes equations, Simpos. Internat. Appl. Anal. Fiz. Mat. (Cagliari-
Sassari), Edizioni Cremonese, Rome, 1965, pp. 130-153.

[363] Pearcé, C.E.M and J.E. &egic, A continuous analogue and extension of
Rado’s formulae for convex and concave functions, Bull. Austral. Math.
Soc. 53 (1996), 229-233.

[364] Pearcé, C.E.M and J.E.¢&ic, On some inequalities of Brenner and Alzer
for concave functions, J. Math. Anal. Appl. 198 (1996), 282—-288.

[365] Pearcé, C.E.M, J.E. Paric and V. Simie, Stolarsky means and Hadamard’s
inequality, J. Math. Anal. Appl. 220 (1998), 99-1009.

[366] Pearic, J.E., Inverse of Jensen—Steffensen’s inequality, Glas. Math. 16
(1981), 229-233.

[367] Pearic, J.E., A short proof of a variant of Jensen’s inequality, J. Math.
Anal. Appl. 87 (1982), 278-280.

[368] Pearic, J.E., A simple proof of the Jensen—Steffensen inequality, Amer.
Math. Monthly 91 (1984), 195-196.

[369] Pearic, J.E., On some inequalities for functions with nondecreasing incre-
ments, J. Math. Anal. Appl. 98 (1984), 188-197.

[370] Pearic, J.E., Notes on convex functions, General Inequalities, Internat.
Ser. Numer. Math., Vol. 6, 1992, pp. 449-454.

[371] Pearic, J.E., Remarks on two interpolations of Hadamard’s inequalities,
Contrib. Sec. Math. Tech. Sci. 13 (1992), 9-12.

[372] Pearic, J.E., A multidimential generalization of weight convex functions,
Comment. Math. 32 (1992), 123-131.

[373] Pe&aric, J.E., On Jensen inequality fé-J-convex functions, Comment.
Math. 33 (1993), 111-118.

[374] Pearic, J.E., An Integral Inequality, Hadronic Press, Palm Harbor, FL,
1993, pp. 471-478.

[375] P&aric, J.E., Remarks on an inequality of S. Sabler, J. Math. Anal. Appl.
184 (1994), 19-21.

[376] Pearic, J.E. and P.R. Beesack, On Jessen’s inequality for convex functions,
I, J. Math. Anal. Appl. 118 (1986), 125-144.

[377] Pearic, J.E. and L. Brneti, Note on generalization of Godunova—Levin—
Opial inequalities, Demonstratio Math. 30 (1997), 545-549.

[378] Pe&aric, J.E. and L. Brneti, Note on the generalization of the Godunova—
Levin—Opial inequality in several independent variables, J. Math. Anal.
Appl. 215 (1997), 274-282.

[379] P&aric, J.E. and S.S. Dragomir, A refinement of Jensen inequality and
applications, Stud. Univ. BabeBolyai Math. 34 (1989), 15-19.

[380] Pearic, J.E. and S.S. Dragomir, On some integral inequalities for convex
functions, Bul. Inst. Politeh. & Math. 36 (1990), 19-23.



References 585

[381] Pearic J.E. and S.S. Dragomir, A generalization of Hadamard’s inequality
for isotonic linear functionals, Radovi Math. 7 (1991), 103-107.

[382] Pearic, J.E. and E.R. Love, Still more generalizations of Hardy’s inequal-
ity, J. Austral. Math. Soc. Ser. A 58 (1995), 1-11.

[383] Pearic, J.E., |. Ped and L.E. Persson, Integral inequalities for monotone
functions, J. Math. Anal. Appl. 215 (1997), 235-251.

[384] Pe&aric, J.E., F. Proschan and Y.L. Tong, Convex Functions, Partial Order-
ing, and Statistical Applications, Academic Press, San Diego, CA, 1992.

[385] Peterson, G.M., An inequality of Hardy’s, Quart. J. Math. Oxford 13
(1962), 237-240.

[386] Pfeffer, A.M., On certain discrete inequalities and their continuous ana-
logues, J. Res. Nat. Bur. Standards Ser. B 70 (1967), 221-231.

[387] Piepenbrink, J., Integral inequalities and theorems of Liouville type,
J. Math. Anal. Appl. 2 (1969), 630—639.

[388] Pittenger, A.O., Inequalities between arithmetic and logarithmic means,
Univ. Beograd Publ. Elektrotehn. Fak. Ser. Mat. Fiz. Nos 678—715 (1980),
15-18.

[389] Poincaré, H., Sur les équations de la physique mathématique, Rend. Circ.
Mat. Palermo 8 (1884), 57-156.

[390] Popoviciu, T., Les fonctions cuwexes, Actubtés Sci. Indust. No. 992,
Paris, 1944.

[391] Popoviciu, T., La simplicité du rest dans certaines formules de quadrature,
Mathematica (Cluj) 6 (1964), 157-184.

[392] Prenter, P.M., Splines and Variational Methods, Wiley, New York, 1975.

[393] Reid, W.T., A matrix Lyapunov inequality, J. Math. Anal. Appl. 32 (1970),
424-434,

[394] Reid, W.T., A generalized Lyapunov inequality, J. Differential Equations
13 (1973), 182—-196.

[395] Reid, W.T., Interpolation between a trace formula and Lyapunov type in-
equalities, J. Differential Equations 23 (1977), 448-459.

[396] Rellich, F., Perturbation Theory of Eigenvalue Problems, Gordon and
Breach, New York, 1969.

[397] Roberts, A.W. and D.E. Varberg, Convex Functions, Academic Press, New
York and London, 1973.

[398] Rosen, G., Minimum value for in the Sobolev inequality)|¢3| <
cVol3, SIAM J. Appl. Math. 21 (1971), 30-32.

[399] Rozanova, G.I., Integral inequalities with derivatives and with arbitrary
convex functions (in Russian), Moskow Gos. Red. Inst. Vcen Zap. 460
(1972), 58-65.

[400] Salem, Sh., On Opial type inequalities in three independent variables,
Kyungpook Math. J. 36 (1996), 63—72.



586 References

[401] Sandor, J., Some integral inequalities, Elem. Math. 43 (1988), 177-180.

[402] Sandor, J., On the Jensen—Hadamard inequality, Stud. UnivsEdigai
Math. 36 (1991), 9-15.

[403] Schmincke, U.W., Essential self-adjointness of a Schrédinger operator with
strongly singular potential, Math. Z. 124 (1972), 47-50.

[404] Schwarz, H.A., Uber ein die Flachen kleinsten Flacheninhalts betreffendes
Problem der Variationsrechnung, Acta Soc. Sci. Fenn. 15 (1885), 315-362.

[405] Serrin, J., The initial value problem for the Navier—Stokes equations, Non-
linear Problems (R.E. Langer, Ed.), Univ. Wisconsin Press, Madison, WI,
1963, pp. 69-78.

[406] Showalter, R.E., Hilbert Space Methods for Partial Differential Equations,
Pitman, New York, 1977.

[407] Shum, D.T., On integral inequalities related to Hardy’s, Canad. Math. Bull.
14 (1971), 225-230.

[408] Singh, B., Forced oscillations in general ordinary differential equations,
Tamkang J. Math. 6 (1975), 5-11.

[409] Sinnamon, G.J., Weighted Hardy and Opial-type inequalities, J. Math.
Anal. Appl. 160 (1991), 434-445.

[410] Sobolev, S.L., Some Applications of Functional Analysis in Mathematical
Physics, lzdat. Leningrad. Gos. Univ., Leningrad, 1950; English transl.:
Trans. Math. Monographs, Vol. 7, Amer. Math. Soc., Providence, RI, 1963.

[411] Steffensen, J.F., On certain inequalities and method of approximation,
J. Inst. Actuaries 51 (1919), 274-297.

[412] Stolz, O., Grundzige der Differential und Integralrechnung, Vol. 1,
Leipzig, 1893, pp. 35-36.

[413] Stredulinsky, W., Weighted Inequalities and Degenerate Elliptic Partial
Differential Equations, Lecture Notes in Math., Vol. 1074, Springer-Verlag,
New York, 1984.

[414] Sturm, C., Sur les équations differentielles linearies du second ordre,
J. Math. Pures Appl. 1 (1836), 106-186.

[415] Swanson, C.A., Nonoscillation criteria for elliptic equations, Canad. Math.
Bull. 12 (1969), 275-280.

[416] Swanson, C.A., Comparison and Oscillation Theory of Linear Differential
Equations, Academic Press, New York, 1968.

[417] Swistochowski, Z., On the inequality of the typg* + A5 > 4(A1 +
A2)~1, Ann. Univ. Mariae Curie-Sktodowska Sect. A (1985), 159-163.

[418] Talenti, G., Best constants in Sobolev’s inequality, Ann. Mat. Pura Appl.
110 (1976), 353-372.

[419] Traple, J., On aboundary value problem for systems of ordinary differential
equations of second order, Zeszyty Nauk. Univ. Jagiello. Prace Mat. 15
(1971), 159-168.



References 587

[420] Vast, P.M. and I.B. Lackod, Some complements to the paper “On an
inequality for convex functions”, Univ. Beograd Publ. Elektrotehn. Fak.
Ser. Mat. Fiz. Nos 544-576 (1976), 59-62.

[421] Visik, M.I., On the solvability of the first boundary value problem for non-
linear elliptic systems of differential equations, Dokl. Akad. Nauk SSSR
134 (1960), 749-752.

[422] Wend, D.V.V., On the zeros of solutions of some linear complex differential
equations, Pacific J. Math. 10 (1960), 713-722.

[423] Weyl, H., The Theory of Groups and Quantum Mechanics, English transl.,
Dover, New York, 1931.

[424] Widder, D.V., An inequality related to one of Hilbert’s, J. London Math.
Soc. 4 (1929), 194-198.

[425] Willett, D., The existence—uniqueness theorem fordh order linear or-
dinary differential equation, Amer. Math. Monthly 75 (1968), 174—-178.

[426] Wong, J.S.W., A discrete analogue of Opial’s inequality, Canad. Math.
Bull. 10 (1967), 115-118.

[427] Wong, P.K., Bounds for solutions to a class of nonlinear second-order dif-
ferential equations, J. Differential Equations 7 (1970), 139-146.

[428] Yang, G.S., On a certain result of Z. Opial, Proc. Japan Acad. 42 (1966),
78-83.

[429] Yang, G.S., Inequality of Opial-type in two variables, Tamkang J. Math. 13
(1982), 255-259.

[430] Yang, G.S., A note on some integrodifferential inequalities, Soochow
J. Math. 9 (1983), 231-236.

[431] Yang, G.S., A note on an inequality similar to Opial’s inequality, Tamkang
J. Math. 18 (1987), 101-104.

[432] Yang, E.H., Opial-type integral inequalities involving several arbitrary in-
creasing convex functions, J. Math. Anal. Appl. 195 (1995), 495-505.

[433] Yeh, C.C., Levin's comparison theorems for second order nonlinear differ-
ential equations and inequalities, Math. Japon. 36 (1991), 703-710.

[434] Zygmund, A., Trigometric Series, Vol. |, Cambridge Univ. Press, 1959.



This page intentionally left blank



Index

A

analytic inequalities 1

applied mathematics 11

arithmetic mean and geometric mean
inequality 2, 23, 24, 131, 288, 386,
427

B
Borell inequality 85, 110

C
Cauchy’s inequality 128, 130, 131
compact support 6, 385, 389, 407
comparison

inequalities 485

method 7

theorems 486, 498
concave functions 84, 85, 90, 94, 96-98
control theory 2
convex

functions 2, 3,11, 12, 15, 25, 27, 33, 46

50, 53, 58, 85, 90, 94, 97, 133

mapping 14, 19, 50

set 14
convex-dominated functions 49, 50, 53
Copson’s

inequality 126, 127, 133

series inequalities 123

D

discrete
analogues 263
inequalities 349, 350, 460, 462, 463
Opial-type inequalities 352, 355

589

E

eigenvalue problems 445

Euclidean space 7, 343, 385, 389, 407,
469, 470, 475, 476

F
Favard's inequality 84, 85, 89, 90, 94
finite

difference equations 6

element analysis 8, 381, 385
Fubini’'s theorem 58, 150, 154, 185, 187,

188, 191, 193, 196, 198, 202, 205

Fuchs’ inequality 52
functions of several variables 348

G

game theory 2

Gauss integral formula 442, 444
Green'’s

first formula 451

function 560

second formula 449, 453
Gronwall’s inequality 543
Gruss—Barnes inequalities 84

H
Hadamar-type inequalities 64
Hadamard’s inequality 3, 53, 55, 58, 63,
67,69, 73,79
Hardy and Littlewood inequality 119
Hardy operator 306
Hardy-type
inequality 446
integral inequalities 169, 185, 190
series inequality 135



590

Hardy'’s
inequality 4,5, 113,116, 118, 127,
150-152, 159, 162, 174-176, 187,
196, 201, 209, 271
integral inequality 145, 155, 169, 184,
191
series inequality 113
harmonic means 480, 520
Hilbert's
double series theorem 4,113, 144
inequality 4, 113, 220, 234
Holder’s inequality 2, 40, 114, 117, 122,
123,127, 134, 136, 140, 141, 143,
147, 149, 153, 157, 161, 164, 167,
168, 171-173, 179, 184, 188, 190,
192, 197, 204, 221-223, 233,
267-269, 273-275, 286, 294-296,
299, 316, 320, 324-327, 334, 341,
345, 346, 352, 353, 356, 362, 387,
390, 392-394, 397, 399, 402,
404-406, 410, 413, 416, 424, 426,
428-430, 432-435, 439, 441, 449,
450, 452, 455, 459, 462, 464, 465,
467, 535, 536

|
inequalities
for infinite series 139
involving functions and their derivatives
275
of the Opial type 266
related to Opial’s inequality 290
similar to Hilbert's inequality 209
integrable functions 25, 259
integral equations 486, 489, 490
interpolating inequalities 16
isotonic linear functionals 33, 40, 64

J
J-convex function 11, 102
Jensen—Boas inequality 26, 27
Jensen-Steffensen inequality 14, 15, 26
Jensen’s and Schwarz inequalities 229
Jensen’s
inequality 2, 3,11, 14, 16, 17, 19,
25-27, 33, 77, 81, 133, 157, 158, 202,
212, 215, 216, 219, 227, 298, 300, 301
integral inequality 27, 185
Jessen’s inequality 33, 42, 64

Index

L
Leindler’s theorem 120
Levin-type
inequalities 495
comparison theorems 489, 495, 501,
504, 505
Levin’s comparison theorems 492
Levinson’s inequality 194
linear space 14, 17,19
Littlewood's
inequality 141
question 139
log-concave function 69, 71
log-convex function 68-72
logarithmic mean 69
Lyapunov-type inequalities 8, 525, 534,
536, 538, 541, 542, 544, 547, 549
Lyapunov’s inequality 485, 505, 507, 509,
510

M

majorization

lemma 92, 96

theorem 46

mathematical

analysis 1,2,5,8, 11
economics 2

inequalities 1

models 1

programming 2

mean value theorem 526
measurable functions 85, 86, 478
midconvex functions 11, 17
Minkowski's inequality 2, 40, 126, 151
multidimensional

Hardy-type inequalities 184
integral inequality 386

N

Nirenberg-type inequality 391
normal domain 435, 477
normed linear space 12

o

operation research 2
Opial-type

discrete inequality 350



Index

inequalities 263, 283, 306, 311, 328,
340, 343, 363, 521
inequalities involving higher-order
derivatives 308
inequality 271, 348
integral inequalities 263, 278, 298, 301,
344
Opial’s inequality 5, 263, 269, 290, 292,
295, 296, 299, 309, 313, 314, 319,
328,521
ordinary differential equations 5, 7, 485

P
partial differential equations 6, 8, 381, 385,
391
perturbations theory 445
physical sciences 1
Poincaré inequality 6, 381
Poincaré- and Sobolev-type
discrete inequalities 457
inequalities 381, 391, 402, 406, 408
Poincaré-type
discrete inequalities 457, 458
inequalities 6, 384, 391, 393, 397, 398
integral inequality 385
pole discontinuities 494, 497
probability theory 11

Q

quasi-convex function 37, 67

R

Rellich-type inequalities 446, 452
Rellich’s inequality 445, 457
Riccati equations 486, 489, 493

S

Schwarz inequality 142, 210, 212, 213,
215-218, 226, 229, 230, 235, 265,
266, 279-281, 283, 284, 290, 293,

591

294, 310, 314, 315, 317, 329, 334,
342, 348, 350, 359, 362, 382, 384,
386, 388, 395, 399, 401, 414, 418,
432, 454, 460, 464, 541, 549, 551
second-order differential equations 7
series inequalities 113, 128
Sobolev space 479
Sobolev-like inequality 463
Sobolev-type inequality 394, 397
Sobolev’s inequality 7, 385, 396, 408
Steffensen’s inequality 25
Stolarsky means 73
Sturmain comparison theorem 485, 510,
512

T
Taylor expansion 234
theory

of convex functions 2

of differential equations 263, 290
two and many independent variables 328
two independent variables 185-187

w

weight functions 152

Weyl-type inequality 449

Weyl's inequality 270, 271, 449

Wirtinger- and Opial-type inequalities 358

Wirtinger—Opial-type integral inequalities
275

Wirtinger-type discrete inequality 351, 461

Y
Yang's
generalization of the Opial inequality
333
inequality 333
Young's inequality 353, 420-423, 440,
449, 450, 454-456



This page intentionally left blank



	front cover
	copyright
	front matter
	Preface
	table of contents
	Introduction
	body
	1. Inequalities Involving Convex Functions
	1.1 Introduction
	1.2 Jensen’s and Related Inequalities
	1.3 Jessen’s and Related Inequalities
	1.4 Some General Inequalities Involving Convex Functions
	1.5 Hadamard’s Inequalities
	1.6 Inequalities of Hadamard Type I
	1.7 Inequalities of Hadamard Type II
	1.8 Some Inequalities Involving Concave Functions
	1.9 Miscellaneous Inequalities
	1.10 Notes

	2. Inequalities Related to Hardy’s Inequality
	2.1 Introduction
	2.2 Hardy’s Series Inequality and Its Generalizations
	2.3 Series Inequalities Related to Those of Hardy, Copson and Littlewood
	2.4 Hardy’s Integral Inequality and Its Generalizations
	2.5 Further Generalizations of Hardy’s Integral Inequality
	2.6 Hardy-Type Integral Inequalities
	2.7 Multidimensional Hardy-Type Inequalities
	2.8 Inequalities Similar to Hilbert’s Inequality
	2.9 Miscellaneous Inequalities
	2.10 Notes

	3. Opial-Type Inequalities
	3.1 Introduction
	3.2 Opial-Type Integral Inequalities
	3.3 Wirtinger–Opial-Type Integral Inequalities
	3.4 Inequalities Related to Opial’s Inequality
	3.5 General Opial-Type Integral Inequalities
	3.6 Opial-Type Inequalities Involving Higher-Order Derivatives
	3.7 Opial-Type Inequalities in Two and Many Independent Variables
	3.8 Discrete Opial-Type Inequalities
	3.9 Miscellaneous Inequalities
	3.10 Notes

	4. Poincaré- and Sobolev-Type Inequalities
	4.1 Introduction
	4.2 Inequalities of Poincaré, Sobolev and Others
	4.3 Poincaré- and Sobolev-Type Inequalities I
	4.4 Poincaré- and Sobolev-Type Inequalities II
	4.5 Inequalities of Dubinskii and Others
	4.6 Poincaré- and Sobolev-Like Inequalities
	4.7 Some Extensions of Rellich’s Inequality
	4.8 Poincaré- and Sobolev-Type Discrete Inequalities
	4.9 Miscellaneous Inequalities
	4.10 Notes

	5. Levin- and Lyapunov-Type Inequalities
	5.1 Introduction
	5.2 Inequalities of Levin and Others
	5.3 Levin-Type Inequalities
	5.4 Inequalities Related to Lyapunov’s Inequality
	5.5 Extensions of Lyapunov’s Inequality
	5.6 Lyapunov-Type Inequalities I
	5.7 Lyapunov-Type Inequalities II
	5.8 Lyapunov-Type Inequalities III
	5.9 Miscellaneous Inequalities
	5.10 Notes

	back matter
	References
	Index

