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demoalignment.m

%demoedittext

h.fig=figure('Color','white');



h.textbox=uicontrol('Style','text',...

'units','normalized',...

'position',[.4 .5 .2 .05],...

'String','Left Aligned',...

'HorizontalAlignment','left')



h.checkbox=uicontrol('Style','text',...

'units','normalized',...

'position',[.4 .4 .2 .05],...

'String','Center Aligned',...

'HorizontalAlignment','center')



h.checkbox=uicontrol('Style','text',...

'units','normalized',...

'position',[.4 .3 .2 .05],...

'String','Right Aligned',...

'HorizontalAlignment','right')








fun_pltg2.fig

hgS_050200:[1x1  struct array]



			[1x6  char array]


			[1x1  double array]


			[1x1  struct array]			@ = 
	Units : [1x10  char array]
	Color : [1x3  double array]
	Colormap : [64x3  double array]
	FileName : [1x61  char array]
	IntegerHandle : [1x3  char array]
	InvertHardcopy : [1x2  char array]
	MenuBar : [1x4  char array]
	Name : [1x24  char array]
	NumberTitle : [1x3  char array]
	PaperPosition : [1x4  double array]
	Position : [1x4  double array]
	Resize : [1x3  char array]
	HandleVisibility : [1x8  char array]
	Tag : [1x7  char array]
	ApplicationData : [1x1  struct array]









			[10x1  struct array]			@ = 

10x1 struct array with fields: 
	type
	handle
	properties
	children
	special









			[0x0  double array]









builtindialogs.m

%built in dialog boxes

%msgbox('My Error Message','Error Window Name','error');



%msgbox('My Help Message','Help Window Name','help');



%msgbox('My Warning Message','Warning Window Name','warn');





%question_ans = questdlg('Do you want a hard copy?',...

%			'OUTPUT','Yes','No','No')

%if strcmp(question_ans,'Yes')

%	print

%end





%answers = inputdlg({'My first question',...

%                     'My 2nd question',...

%                     'My 3rd question',},...

%                     'Window Name',[1 2 1],...

%                    {'defAns1','defAns2','defAns3'});



%[filename,pathname] = uigetfile('*.m',...

%                                 'UIGETFILE TITLE',...

%                                 100,100);



[filename,pathname] = uiputfile('Default.m',...

                                 'UIPUTFILE TITLE');








fun_pltg.fig

hgS_050200:[1x1  struct array]



			[1x6  char array]


			[1x1  double array]


			[1x1  struct array]			@ = 
	Units : [1x10  char array]
	Color : [1x3  double array]
	Colormap : [64x3  double array]
	FileName : [1x60  char array]
	IntegerHandle : [1x3  char array]
	InvertHardcopy : [1x2  char array]
	MenuBar : [1x4  char array]
	Name : [1x24  char array]
	NumberTitle : [1x3  char array]
	PaperPosition : [1x4  double array]
	Position : [1x4  double array]
	Resize : [1x3  char array]
	HandleVisibility : [1x8  char array]
	Tag : [1x7  char array]
	ApplicationData : [1x1  struct array]









			[8x1  struct array]			@ = 

8x1 struct array with fields: 
	type
	handle
	properties
	children
	special









			[0x0  double array]









democheckbox.m

%democheckbox

h.radio1=uicontrol('Style','radio',...

'units','normalized',...

'position',[.3 .5 .15 .05],...

'String','Radio Button')



h.radio2=uicontrol('Style','radio',...

'units','normalized',...

'position',[.5 .6 .15 .05],...

'String','Radio Button')



h.radio3=uicontrol('Style','radio',...

'units','normalized',...

'position',[.7 .5 .15 .05],...

'String','Radio Button')



h.radio4=uicontrol('Style','radio',...

'units','normalized',...

'position',[.5 .3 .15 .05],...

'String','Radio Button')






demoedittext.m

%demoedittext

h.fig=figure('Color','white');



h.textbox=uicontrol('Style','edit',...

'units','normalized',...

'position',[.1 .5 .15 .05],...

'String','Editable Text')



h.checkbox=uicontrol('Style','edit',...

'units','normalized',...

'position',[.4 .5 .15 .05],...

'String','Editable Text')



h.checkbox=uicontrol('Style','edit',...

'units','normalized',...

'position',[.7 .5 .15 .05],...

'String','Edited Text')








demoenable.m

h.fig=figure('Color','white');



h.tb1=uicontrol('Style','toggle',...

'units','normalized',...

'position',[.1 .8 .13 .1],...

'String','Enable','FontWeight','bold')



h.tb2=uicontrol('Style','toggle',...

'units','normalized',...

'position',[.4 .8 .13 .1],...

'String','Enable','FontWeight','bold','Enable','off')










demofonts.m

%demoedittext

h.fig=figure('Color','white');



h.t1=uicontrol('Style','edit',...

'units','normalized',...

'position',[.1 .4 .15 .05],...

'String','italic',...

'FontAngle','italic')



h.t2=uicontrol('Style','edit',...

'units','normalized',...

'position',[.3 .4 .15 .05],...

'String','oblique',...

'FontAngle','oblique')



h.t3=uicontrol('Style','edit',...

'units','normalized',...

'position',[.5 .4 .15 .05],...

'String','normal',...

'FontAngle','normal')





h.t4=uicontrol('Style','edit',...

'units','normalized',...

'position',[.1 .6 .15 .05],...

'String','normal',...

'FontWeight','normal')



h.t5=uicontrol('Style','edit',...

'units','normalized',...

'position',[.3 .6 .15 .05],...

'String','light',...

'FontWeight','light')



h.t6=uicontrol('Style','edit',...

'units','normalized',...

'position',[.5 .6 .15 .05],...

'String','bold',...

'FontWeight','bold')



h.t7=uicontrol('Style','edit',...

'units','normalized',...

'position',[.7 .6 .15 .05],...

'String','demi',...

'FontWeight','demi')








demoframe.m

%demoframe

h.fig=figure('Color','white');



h.checkbox1=uicontrol('Style','checkbox',...

'units','normalized',...

'position',[.1 .8 .16 .05],...

'String','Display Results')



h.checkbox2=uicontrol('Style','checkbox',...

'units','normalized',...

'position',[.1 .7 .15 .05],...

'String','Print Results')



h.textbox1=uicontrol('Style','text',...

'units','normalized',...

'position',[.1 .6 .2 .05],...

'String','Status Bar')



h.frame1=uicontrol('Style','frame',...

'units','normalized',...

'position',[.5 .6 .3 .3])



h.frame2=uicontrol('Style','frame',...

'units','normalized',...

'position',[.55 .5 .2 .08])





h.frame3=uicontrol('Style','frame',...

'units','normalized',...

'position',[.3 .05 .3 .3])



h.frame4=uicontrol('Style','frame',...

'units','normalized',...

'position',[.35 .06 .2 .08])



h.checkbox3=uicontrol('Style','checkbox',...

'units','normalized',...

'position',[.4 .25 .16 .05],...

'String','Display Results')



h.checkbox4=uicontrol('Style','checkbox',...

'units','normalized',...

'position',[.4 .2 .15 .05],...

'String','Print Results')



h.textbox2=uicontrol('Style','text',...

'units','normalized',...

'position',[.36 .065 .15 .05],...

'String','Status Bar')






demolistbox.m

h.fig=figure('Color','white');



h.listbox1=uicontrol('Style','listbox',...

'units','normalized',...

'position',[.1 .8 .16 .15],...

'String','Option 1|Option 2|Option 3|Option 4|Option 5')



h.listbox2=uicontrol('Style','listbox',...

'units','normalized',...

'position',[.4 .8 .16 .15],...

'String','Option 1|Option 2|Option 3|Option 4|Option 5')



h.listbox3=uicontrol('Style','listbox',...

'units','normalized',...

'position',[.7 .8 .16 .15],...

'String','Option 1|Option 2|Option 3|Option 4|Option 5')






demolistboxtop.m

u = uicontrol('style','listbox',...

      'string','Option1|Option2|Option3|Option4|Option5',...

      'position',[10 10 75 50]);








demopbutt.m

h.fig=figure('Color','white');



h.pb1=uicontrol('Style','pushbutton',...

'units','normalized',...

'position',[.1 .8 .13 .1],...

'String','Push Me!','FontWeight','bold')



h.pb2=uicontrol('Style','pushbutton',...

'units','normalized',...

'position',[.4 .8 .13 .1],...

'String','Push Me!','FontWeight','bold')










demopopup.m

h.fig=figure('Color','white');



h.popup1=uicontrol('Style','popup',...

'units','normalized',...

'position',[.1 .8 .16 .05],...

'String','Pop-Up Menu|Option 2|Option 3')



h.popup2=uicontrol('Style','popup',...

'units','normalized',...

'position',[.4 .8 .16 .05],...

'String','Pop-Up Menu|Option 2|Option 3')



h.popup3=uicontrol('Style','popup',...

'units','normalized',...

'position',[.7 .8 .16 .05],...

'String','Pop-Up Menu|Option 2|Option 3')






demoradio.m

%democheckbox

h.fig=figure('Color','white');

h.radio1=uicontrol('Style','radio',...

'units','normalized',...

'position',[.3 .5 .15 .05],...

'String','Radio Button')



h.radio2=uicontrol('Style','radio',...

'units','normalized',...

'position',[.5 .6 .15 .05],...

'String','Radio Button')



h.radio3=uicontrol('Style','radio',...

'units','normalized',...

'position',[.7 .5 .15 .05],...

'String','Radio Button')



h.radio4=uicontrol('Style','radio',...

'units','normalized',...

'position',[.5 .4 .15 .05],...

'String','Radio Button')






demoslider.m

%democheckbox

h.fig=figure('Color','white');

h.s1=uicontrol('Style','slider',...

'units','normalized',...

'position',[.3 .6 .15 .05],...

'String','Radio Button')



h.s2=uicontrol('Style','slider',...

'units','normalized',...

'position',[.3 .4 .15 .05],...

'String','Radio Button')



h.s3=uicontrol('Style','slider',...

'units','normalized',...

'position',[.3 .2 .15 .05],...

'String','Radio Button')








demotoggle.m

h.fig=figure('Color','white');



h.tb1=uicontrol('Style','toggle',...

'units','normalized',...

'position',[.1 .8 .13 .1],...

'String','Toggle Me!','FontWeight','bold')



h.tb2=uicontrol('Style','toggle',...

'units','normalized',...

'position',[.4 .8 .13 .1],...

'String','Toggle Me!','FontWeight','bold')










demouimenu.m

%uimenudemo

h_fig=figure('MenuBar','none','Color','white')

h_m=uimenu(h_fig,'Label','Object')

h_n=uimenu(h_fig,'Label','Extras')

h_m1=uimenu(h_m,'Label','Axes Properties', 'Enable','on')

    h_m1_1=uimenu(h_m1,'Label','&Box')

    h_m1_2=uimenu(h_m1,'Label','BGrid','Accelerator','B')

h_m2=uimenu(h_m,'Label','Images')



h_m3=uimenu(h_m,'Label','Line')

    h_m3_1=uimenu(h_m3,'Label','Color')    

    h_m3_2=uimenu(h_m3,'Label','Style')

        h_m3_2_1=uimenu(h_m3_2,'Label','Solid',...

            'Checked','on')

        h_m3_2_2=uimenu(h_m3_2,'Label','Dashed')

        h_m3_2_3=uimenu(h_m3_2,'Label','Dotted')

        h_m3_2_4=uimenu(h_m3_2,'Label','Dash-Dotted')



h_m4=uimenu(h_m,'Label','Surface')

h_m5=uimenu(h_m,'Label','Text')

h_m6=uimenu(h_m,'Label','Delete','Separator','on')










demouimenusep.m

%uimenudemo

h_fig=figure('MenuBar','none','Color','white')

h_m=uimenu(h_fig,'Label','File')

h_n=uimenu(h_fig,'Label','Extras')

h_m1=uimenu(h_m,'Label','Info')

h_m2=uimenu(h_m,'Label','Save','Separator','on')

h_m3=uimenu(h_m,'Label','Save As...')

h_m4=uimenu(h_m,'Label','Print...','Separator','on')

h_m5=uimenu(h_m,'Label','Quit','Separator','on')

%h_m6=uimenu(h_m,'Label','Delete','Separator','on')










demouimenuseparator.m

%uimenudemo

h_fig=figure('MenuBar','none','Color','white')

h_m=uimenu(h_fig,'Label','File')

h_n=uimenu(h_fig,'Label','Extras')

h_m1=uimenu(h_m,'Label','Info')

h_m2=uimenu(h_m,'Label','Save','Separator','on')

h_m3=uimenu(h_m,'Label','Save As...')

h_m4=uimenu(h_m,'Label','Print...','Separator','on')

h_m5=uimenu(h_m,'Label','Quit','Separator','on')

%h_m6=uimenu(h_m,'Label','Delete','Separator','on')










dragbox.m

function [rect] = dragbox(unitsval)
% DRAGBOX
%
% Usage:
%          [rect] = dragbox(units_string);
% where,
%
% rect:         is the RECT vector over which the
%               drag box is defined ([left bottom width height]).
% units_string: is a string containing the name
%               of any of the legal units that
%               the figure can have.
%
% Example
%          figure
%          [rect] = dragbox('normalized')
% Wait for mouse button to be pressed.
waitforbuttonpress;

% Determine figure and get its Units.
h_fig = gcf;
original_figunits = get(h_fig,'Units');

% Specify Pixels for units and get location at
% which mouse button is pressed.
set(h_fig,'Units','Pixels');
firstpoint = get(h_fig,'CurrentPoint');

% Create the drag box.
rbbox([firstpoint 0 0],firstpoint);

% Get the location at which button is released.
lastpoint = get(h_fig,'CurrentPoint');

% Calculate a standard rect vector from two locations.
rect = [min(firstpoint,lastpoint),abs(firstpoint-lastpoint)];

% Normalize the rect vector to the figure.
figpos = get(h_fig,'Position');
rect = rect./[figpos(3:4) figpos(3:4)];

% Put the rect vector in the specified units.
if nargin == 0
   unitsval = original_figunits;
end

if ~strcmp(lower(unitsval(1)),'n')
  set(h_fig,'Units',unitsval);
  figpos = get(h_fig,'Position');
  rect = rect.*[figpos(3:4) figpos(3:4)];
end

% Put the figure back in the original units.
set(h_fig,'Units',original_figunits);







equeue.m

%event queue code

h_fig_1 = figure('position',[100 100 100 100],...

    'menubar','none',...

	'windowbuttondownfcn','disp(''Fig1 WBDF'')',...

	'windowbuttonupfcn','disp(''Fig1 WBUF'')',...

	'windowbuttonmotionfcn',...

       'disp(''Fig1 WBMF'')',...

	'buttondownfcn','disp(''Fig1 BDF'')');

h_ui = uicontrol('style','pushbutton',...

	'position',[25 25 50 50],...

	'callback','disp(''UI CallBack'')',...

	'buttondownfcn','disp(''UI BDF'')');

h_fig_2 = figure('position',[200 100 100 100],...

    'menubar','none',...

	'windowbuttondownfcn','disp(''Fig2 WBDF'')',...

	'windowbuttonupfcn','disp(''Fig2 WBUF'')',...

	'windowbuttonmotionfcn',...

       'disp(''Fig2 WBMF'')',...

	'buttondownfcn','disp(''Fig2 BDF'')');








framingdemo.m

%framing demo

h_fig = figure('position',[200 200 120 100],...

               'resize','off',...

               'numbertitle','off',...

               'MenuBar','none',...

               'Color','white')

% Create frame object that covers entire figure region.

h_frame = uicontrol(h_fig,'style','frame',...

                          'position',[0 0 120 100])

% Create overall label.

h_stext = uicontrol(h_fig,'style','text',...

                          'string','Waveform Type',...

                          'position',[10 75 100 20]);

% Create set of three radio buttons.

h_radio(1) = uicontrol(h_fig,'style','radio',...

                          'string','Square Wave',...

                          'position',[10 55 100 20],...

                          'value',1);

h_radio(2) = uicontrol(h_fig,'style','radio',...

                          'string','Saw Tooth Wave',...

                          'position',[10 30 100 20]);

h_radio(3) = uicontrol(h_fig,'style','radio',...

                          'string','Sinusoidal Wave',...

                          'position',[10 5 100 20]);








fun_plt1.m

% M-File: fun_plt1.m

% All UIcontrol items are in normalized units so

% that the user can resize the screen as desired.



% Create the figure object and store its handle.

h_fig = figure('MenuBar','none');



% Create the axes object in the upper half of the figure.

axes('position',[.07 .5 .86 .4],'box','on')



% Create the two frames. The first lies below all uiobjects

% while the second is used to make a border for the status/

% message window.

h_frame_1 = uicontrol(h_fig,... 

		'Position',[ 0 0 1 0.4 ],... 

		'Style','frame',... 

		'Units','normalized'); 

h_frame_2 = uicontrol(h_fig,... 

		'Position',[0.08 0.05 0.84 0.11 ],... 

		'Style','frame',... 

		'Units','normalized');



% Create the callback for check box labeled "Box".

% This callback will determine the value of the

% checkbox object, whose handle is stored in h_box,

% and then set the current axes property accordingly.

% Finally, it displays a message by setting the

% string of the static text uicontrol whose handle

% is stored in h_status (created later).

box_clbk_str = ['boxstatus = get(h_box,''value'');'...

                'if boxstatus == 0;'...

                '  set(gca,''box'',''off'');'...

                'else;'...

                '  set(gca,''box'',''on'');'...

                'end;'...

                'boxstatus = get(gca,''box'');'...

                'set(h_status,''string'',' ...

                '[''The box property is '' boxstatus]);'];

% Create the check box, setting its value to 1

% since we initialized the axes figure this way.

h_box = uicontrol(h_fig,... 

		'CallBack',box_clbk_str,... 

		'Position',[ 0.7 0.2 0.16 0.07 ],... 

		'String','Box',... 

		'Style','checkbox',... 

		'Units','normalized',... 

		'Value',[ 1 ]); 



% Create the callback for the check box labeled "Grid"

% This callback will determine the value of the

% checkbox object, whose handle is stored in h_grid,

% and then use the grid function accordingly.

% Finally it displays a message by setting the

% string of the static text uicontrol whose handle

% is stored in h_status (created later).

grid_clbk_str = ['gridstatus = get(h_grid,''value'');'...

                'if gridstatus == 0;'...

                '  grid off;'...

                'else;'...

                '  grid on;'...

                'end;'...

                'gridstatus = get(gca,''xgrid'');'...

                'set(h_status,''string'',' ...

                '[''The grid is '' gridstatus]);'];



% Create the grid check box.

h_grid = uicontrol(h_fig,... 

		'CallBack',grid_clbk_str,... 

		'Position',[ 0.7 0.3 0.16 0.07 ],... 

		'String','Grid',... 

		'Style','checkbox',... 

		'Units','normalized');



% Create the callback that will plot the function any

% time the x data values or y function has been altered

% by the user.  Some error checking is performed just

% in case the user types in values or a function that

% cannot be plotted.

plot_clbk_str = [...

	'err_ind = 0;'...

	'eval([''x = '' get(h_xdata,''string'') '';''],'...

	'      ''err_ind=1;'');'...

	'if err_ind == 0;'...

	' eval([''y = '' get(h_ydata,''string'') '';''],'...

	'      ''err_ind=2;'');'...

	'end;'...

	'if err_ind == 0;'...

	'  plot(x,y);'...

	'  boxstatus = get(h_box,''value'');'...

	'  if boxstatus == 0;'...

 	'   set(gca,''box'',''off'');'...

	'  else;'...

	'   set(gca,''box'',''on'');'...

	'  end;'...

	'  gridstatus = get(h_grid,''value'');'...

	'  if gridstatus == 0;'...

	'   grid off;'...

	'  else;'...

	'   grid on;'...

	'  end;'...

	'  set(h_status,''string'',''Function Plotted'');'...

	'elseif err_ind == 1;'...

	'  set(h_status,''string'',''Error defining x'');'...

	'elseif err_ind == 2;'...

	'  set(h_status,''string'',''Error defining y(x)'');'...

	'end'];

% Create the edit boxes for the x and y data.  Both of

% these edit boxes will use the previous callback. In

% addition, initialize them with valid inputs.

h_ydata = uicontrol(h_fig,... 

		'CallBack',plot_clbk_str,... 

		'Position',[ 0.25 0.2 0.39 0.07 ],... 

		'String','(x*.1).^2',... 

		'Style','edit',... 

		'Units','normalized'); 

h_xdata = uicontrol(h_fig,... 

		'CallBack',plot_clbk_str,... 

		'Position',[ 0.25 0.3 0.39 0.07 ],... 

		'String','-10:10',... 

		'Style','edit',... 

		'Units','normalized'); 



% Create a static text object that will be used

% to display messages to the user.

h_status = uicontrol(h_fig,... 

		'CallBack','guiplot1(''h_uic_12'');',... 

		'Position',[ 0.1 0.07 0.8 0.07 ],... 

		'String','Status Window',... 

		'Style','text',... 

		'Units','normalized'); 



% Create the "x = " and "y(x)=" static text objects.

% We do not need to store their handles since these

% objects are neither manipulated nor queried by other

% object callbacks.

uicontrol(h_fig,... 

		'Position',[ 0.08 0.3 0.15 0.07 ],... 

		'String','x =',... 

		'Style','text',... 

		'Units','normalized'); 

uicontrol(h_fig,... 

		'Position',[ 0.08 0.2 0.15 0.07 ],... 

		'String','y(x) =',... 

		'Style','text',... 

		'Units','normalized'); 



% Initialize the plot with the initial x and y data

% by evaluating the callback string that would be

% evaluated if the x or y data changes.



eval(plot_clbk_str);








fun_plt2.m

function fun_plt2(command_str)

% FUN_PLT2

%

% This function demonstrates how global variables

% can be used to create a GUI in a function.



if nargin == 0

  command_str = 'initialize';

end



% DEFINE VARIABLES THAT WILL STORE THE HANDLES AS GLOBAL

global h_box h_grid h_ydata h_xdata h_status



% INITIALIZE THE GUI SECTION.

if strcmp(command_str,'initialize')

    % Make sure that the GUI has not been already

    % initialized in another existing figure.

    h_figs = get(0,'children');

    fig_exists = 0;

    for fig = h_figs'

      fig_exists = strcmp(get(fig,'name'),...

                       'Function Plotter');

      if fig_exists

         figure(fig);  % Bring figure to front of screen.

         return;  % No need to reinitialize, exit function.

      end

    end



    h_fig = figure('name','Function Plotter');



	axes('position',[.07 .5 .86 .4])



	% Create the two frames.

	uicontrol(h_fig,... 

		'Position',[ 0 0 1 0.4 ],... 

		'Style','frame',... 

		'Units','normalized'); 

	uicontrol(h_fig,... 

		'Position',[0.08 0.05 0.84 0.11 ],... 

		'Style','frame',... 

		'Units','normalized');



	% Create the "Box" check box.

	h_box = uicontrol(h_fig,... 

		'CallBack','fun_plt2(''Set Box'');',... 

		'Position',[ 0.7 0.2 0.16 0.07 ],... 

		'String','Box',... 

		'Style','checkbox',... 

		'Units','normalized',... 

		'Value',[ 1 ]); 

	% Create the check box labeled "Grid".

	h_grid = uicontrol(h_fig,... 

		'CallBack','fun_plt2(''Set Grid'');',... 

		'Position',[ 0.7 0.3 0.16 0.07 ],... 

		'String','Grid',... 

		'Style','checkbox',... 

		'Units','normalized');



	% Create the edit boxes for the x data.

	h_ydata = uicontrol(h_fig,... 

		'CallBack','fun_plt2(''Plot Function'');',... 

		'Position',[ 0.25 0.2 0.39 0.07 ],... 

		'String','(x*.1).^2',... 

		'Style','edit',... 

		'Units','normalized'); 

	% Create the edit boxes for the y data.

	h_xdata = uicontrol(h_fig,... 

		'CallBack','fun_plt2(''Plot Function'');',... 

		'Position',[ 0.25 0.3 0.39 0.07 ],... 

		'String','-10:10',... 

		'Style','edit',... 

		'Units','normalized'); 



	% Create a static text object that will be used

	% to display messages to the user.

	h_status = uicontrol(h_fig,... 

		'Position',[ 0.1 0.07 0.8 0.07 ],... 

		'String','Status Window',... 

		'Style','text',... 

		'Units','normalized'); 

	% Create the "x = " and "y(x)=" static text objects.

	uicontrol(h_fig,... 

		'Position',[ 0.08 0.3 0.15 0.07 ],... 

		'String','x =',... 

		'Style','text',... 

		'Units','normalized'); 

	uicontrol(h_fig,... 

		'Position',[ 0.08 0.2 0.15 0.07 ],... 

		'String','y(x) =',... 

		'Style','text',... 

		'Units','normalized'); 



	% INITIALIZE the plot with the initial x and y data.

	fun_plt2('Plot Function');



% CALLBACK FOR THE "Box" CHECK BOX.

elseif strcmp(command_str,'Set Box')

	boxstatus = get(h_box,'value');

	if boxstatus == 0;

	  set(gca,'box','off');

	else

	  set(gca,'box','on');

	end

	set(h_status,'string',...

	    ['The box property is ' get(gca,'box')]);



% CALLBACK FOR THE "Grid" CHECK BOX.

elseif strcmp(command_str,'Set Grid')

	gridstatus = get(h_grid,'value');

	if gridstatus == 0

	  grid off

	else;

	  grid on

	end

	set(h_status,'string',...

	    ['The grid is ' get(gca,'xgrid')]);



% CALLBACK FOR THE X and Y(X) EDIT BOXES.

elseif strcmp(command_str,'Plot Function')

	err_ind = 0;

	eval(['x = ' get(h_xdata,'string') ';'],'err_ind=1;');

	if err_ind == 0;

	 eval(['y = ' get(h_ydata,'string') ';'],'err_ind=2;');

	end



	if err_ind == 0

	  plot(x,y);

	  fun_plt2('Set Box');

	  fun_plt2('Set Grid');

	  set(h_status,'string','Function Plotted');

	elseif err_ind == 1

	  set(h_status,'string','Error defining x');

	elseif err_ind == 2

	  set(h_status,'string','Error defining y(x)');

	end



end % END command_str comparison checks.








fun_plt2a.m

function fun_plt2(command_str)

% FUN_PLT2

%

% This function demonstrates how global variables

% can be used to create a GUI in a function.



if nargin == 0

  command_str = 'initialize';

end



% DEFINE VARIABLES THAT WILL STORE THE HANDLES AS GLOBAL

global h_box h_grid h_ydata h_xdata h_status



% INITIALIZE THE GUI SECTION.

if strcmp(command_str,'initialize')

    % Make sure that the GUI has not been already

    % initialized in another existing figure.

    h_figs = get(0,'children');

    fig_exists = 0;

    for fig = h_figs'

      fig_exists = strcmp(get(fig,'name'),...

                       'Function Plotter');

      if fig_exists

         figure(fig);  % Bring figure to front of screen.

         return;  % No need to reinitialize, exit function.

      end

    end



    h_fig = figure('name','Function Plotter');



	axes('position',[.07 .5 .86 .4])



	% Create the two frames.

	uicontrol(h_fig,... 

		'Position',[ 0 0 1 0.4 ],... 

		'Style','frame',... 

		'Units','normalized'); 

	uicontrol(h_fig,... 

		'Position',[0.08 0.05 0.84 0.11 ],... 

		'Style','frame',... 

		'Units','normalized');



	% Create the "Box" check box.

	h_box = uicontrol(h_fig,... 

		'CallBack','fun_plt2(''Set Box'');',... 

		'Position',[ 0.7 0.2 0.16 0.07 ],... 

		'String','Box',... 

		'Style','checkbox',... 

		'Units','normalized',... 

		'Value',[ 1 ]); 

	% Create the check box labeled "Grid".

	h_grid = uicontrol(h_fig,... 

		'CallBack','fun_plt2(''Set Grid'');',... 

		'Position',[ 0.7 0.3 0.16 0.07 ],... 

		'String','Grid',... 

		'Style','checkbox',... 

		'Units','normalized');



	% Create the edit boxes for the x data.

	h_ydata = uicontrol(h_fig,... 

		'CallBack','fun_plt2(''Plot Function'');',... 

		'Position',[ 0.25 0.2 0.39 0.07 ],... 

		'String','(x*.1).^2',... 

		'Style','edit',... 

		'Units','normalized'); 

	% Create the edit boxes for the y data.

	h_xdata = uicontrol(h_fig,... 

		'CallBack','fun_plt2(''Plot Function'');',... 

		'Position',[ 0.25 0.3 0.39 0.07 ],... 

		'String','-10:10',... 

		'Style','edit',... 

		'Units','normalized'); 



	% Create a static text object that will be used

	% to display messages to the user.

	h_status = uicontrol(h_fig,... 

		'Position',[ 0.1 0.07 0.8 0.07 ],... 

		'String','Status Window',... 

		'Style','text',... 

		'Units','normalized'); 

	% Create the "x = " and "y(x)=" static text objects.

	uicontrol(h_fig,... 

		'Position',[ 0.08 0.3 0.15 0.07 ],... 

		'String','x =',... 

		'Style','text',... 

		'Units','normalized'); 

	uicontrol(h_fig,... 

		'Position',[ 0.08 0.2 0.15 0.07 ],... 

		'String','y(x) =',... 

		'Style','text',... 

		'Units','normalized'); 



	% INITIALIZE the plot with the initial x and y data.

	fun_plt2('Plot Function');



% CALLBACK FOR THE "Box" CHECK BOX.

%elseif strcmp(command_str,'Set Box')

	%boxstatus = get(h_box,'value');

	%if boxstatus == 0;

	%  set(gca,'box','off');

    %else

	  %set(gca,'box','on');

      %end

	%set(h_status,'string',...

	%    ['The box property is ' get(gca,'box')]);

switch command_str

case 'Set Box'

    boxstatus = get(h_box,'value');

	if boxstatus == 0;

	  set(gca,'box','off');

	else

	  set(gca,'box','on');

	end

	set(h_status,'string',...

	    ['The box property is ' get(gca,'box')]);



% CALLBACK FOR THE "Grid" CHECK BOX.    

case 'Set Grid'

    gridstatus = get(h_grid,'value');

	if gridstatus == 0

	  grid off

	else;

	  grid on

	end

	set(h_status,'string',...

	    ['The grid is ' get(gca,'xgrid')]);

    

% CALLBACK FOR THE X and Y(X) EDIT BOXES.

case 'Plot Function'

	err_ind = 0;

	eval(['x = ' get(h_xdata,'string') ';'],'err_ind=1;');

	if err_ind == 0;

	 eval(['y = ' get(h_ydata,'string') ';'],'err_ind=2;');

	end

    if err_ind == 0

	  plot(x,y);

	  fun_plt2('Set Box');

	  fun_plt2('Set Grid');

	  set(h_status,'string','Function Plotted');

	elseif err_ind == 1

	  set(h_status,'string','Error defining x');

	elseif err_ind == 2

	  set(h_status,'string','Error defining y(x)');

	end

    

end

end



% CALLBACK FOR THE "Grid" CHECK BOX.

%elseif strcmp(command_str,'Set Grid')

%	gridstatus = get(h_grid,'value');

%	if gridstatus == 0

%	  grid off

%	else;

%	  grid on

%	end

%	set(h_status,'string',...

%	    ['The grid is ' get(gca,'xgrid')]);



% CALLBACK FOR THE X and Y(X) EDIT BOXES.

%elseif strcmp(command_str,'Plot Function')

	%err_ind = 0;

	%eval(['x = ' get(h_xdata,'string') ';'],'err_ind=1;');

	%if err_ind == 0;

	 %eval(['y = ' get(h_ydata,'string') ';'],'err_ind=2;');

     %end



%	if err_ind == 0

%	  plot(x,y);

%	  fun_plt2('Set Box');

%	  fun_plt2('Set Grid');

%	  set(h_status,'string','Function Plotted');

%	elseif err_ind == 1

%	  set(h_status,'string','Error defining x');

%	elseif err_ind == 2

%	  set(h_status,'string','Error defining y(x)');

%	end



%end % END command_str comparison checks.








fun_pltg.m

function varargout = fun_pltg(varargin)
% FUN_PLTG Application M-file for fun_pltg.fig
%    FIG = FUN_PLTG launch fun_pltg GUI.
%    FUN_PLTG('callback_name', ...) invoke the named callback.

% Last Modified by GUIDE v2.0 07-Aug-2002 11:14:24

if nargin == 0  % LAUNCH GUI

	fig = openfig(mfilename,'reuse');

	% Use system color scheme for figure:
	set(fig,'Color',get(0,'defaultUicontrolBackgroundColor'));

	% Generate a structure of handles to pass to callbacks, and store it. 
	handles = guihandles(fig);
	guidata(fig, handles);

	if nargout > 0
		varargout{1} = fig;
	end

elseif ischar(varargin{1}) % INVOKE NAMED SUBFUNCTION OR CALLBACK

	try
		if (nargout)
			[varargout{1:nargout}] = feval(varargin{:}); % FEVAL switchyard
		else
			feval(varargin{:}); % FEVAL switchyard
		end
	catch
		disp(lasterr);
	end

end


%| ABOUT CALLBACKS:
%| GUIDE automatically appends subfunction prototypes to this file, and 
%| sets objects' callback properties to call them through the FEVAL 
%| switchyard above. This comment describes that mechanism.
%|
%| Each callback subfunction declaration has the following form:
%| <SUBFUNCTION_NAME>(H, EVENTDATA, HANDLES, VARARGIN)
%|
%| The subfunction name is composed using the object's Tag and the 
%| callback type separated by '_', e.g. 'slider2_Callback',
%| 'figure1_CloseRequestFcn', 'axis1_ButtondownFcn'.
%|
%| H is the callback object's handle (obtained using GCBO).
%|
%| EVENTDATA is empty, but reserved for future use.
%|
%| HANDLES is a structure containing handles of components in GUI using
%| tags as fieldnames, e.g. handles.figure1, handles.slider2. This
%| structure is created at GUI startup using GUIHANDLES and stored in
%| the figure's application data using GUIDATA. A copy of the structure
%| is passed to each callback.  You can store additional information in
%| this structure at GUI startup, and you can change the structure
%| during callbacks.  Call guidata(h, handles) after changing your
%| copy to replace the stored original so that subsequent callbacks see
%| the updates. Type "help guihandles" and "help guidata" for more
%| information.
%|
%| VARARGIN contains any extra arguments you have passed to the
%| callback. Specify the extra arguments by editing the callback
%| property in the inspector. By default, GUIDE sets the property to:
%| <MFILENAME>('<SUBFUNCTION_NAME>', gcbo, [], guidata(gcbo))
%| Add any extra arguments after the last argument, before the final
%| closing parenthesis.



% --------------------------------------------------------------------
function varargout = x_value_Callback(x_value, eventdata, handles, varargin)
fun_pltg('y_fun_Callback',handles.y_fun, eventdata, handles, varargin);



% --------------------------------------------------------------------
function varargout = y_fun_Callback(y_fun, eventdata, handles, varargin)

err_ind = 0;
	eval(['x = ' get(handles.x_value,'string') ';'],'err_ind=1;');
	if err_ind == 0;
	 eval(['y = ' get(y_fun,'string') ';'],'err_ind=2;');
	end
    if err_ind == 0
	  plot(x,y);
	  set(handles.box_check,'Value',1);
      fun_pltg('box_check_Callback',handles.box_check, eventdata, handles, varargin);
      set(handles.grid_check,'Value',1);
      fun_pltg('grid_check_Callback',handles.grid_check, eventdata, handles, varargin);
      
	  set(handles.status,'string','Function Plotted');
	elseif err_ind == 1
	  set(handles.status,'string','Error defining x');
	elseif err_ind == 2
	  set(handles.status,'string','Error defining y(x)');
	end


% --------------------------------------------------------------------
function varargout = grid_check_Callback(grid_check, eventdata, handles, varargin)

gridstatus = get(grid_check,'value');
	if gridstatus == 0
	  grid off
	else;
	  grid on
	end
	set(handles.status,'string',...
	    ['The grid is ' get(gca,'xgrid')]);


% --------------------------------------------------------------------
function varargout = box_check_Callback(box_check, eventdata, handles, varargin)

 boxstatus = get(box_check,'value');
	if boxstatus == 0;
	  set(gca,'box','off');
	else
	  set(gca,'box','on');
	end
	set(handles.status,'string',...
	    ['The box property is ' get(gca,'box')]);
   






fun_pltg2.m

function varargout = fun_pltg2(varargin)
% FUN_PLTG2 Application M-file for fun_pltg2.fig
%    FIG = FUN_PLTG2 launch fun_pltg2 GUI.
%    FUN_PLTG2('callback_name', ...) invoke the named callback.

% Last Modified by GUIDE v2.0 08-Aug-2002 09:06:02

if nargin == 0  % LAUNCH GUI

	fig = openfig(mfilename,'reuse');

	% Use system color scheme for figure:
	set(fig,'Color',get(0,'defaultUicontrolBackgroundColor'));

	% Generate a structure of handles to pass to callbacks, and store it. 
	handles = guihandles(fig);
	guidata(fig, handles);

	if nargout > 0
		varargout{1} = fig;
	end

elseif ischar(varargin{1}) % INVOKE NAMED SUBFUNCTION OR CALLBACK

	try
		if (nargout)
			[varargout{1:nargout}] = feval(varargin{:}); % FEVAL switchyard
		else
			feval(varargin{:}); % FEVAL switchyard
		end
	catch
		disp(lasterr);
	end

end


%| ABOUT CALLBACKS:
%| GUIDE automatically appends subfunction prototypes to this file, and 
%| sets objects' callback properties to call them through the FEVAL 
%| switchyard above. This comment describes that mechanism.
%|
%| Each callback subfunction declaration has the following form:
%| <SUBFUNCTION_NAME>(H, EVENTDATA, HANDLES, VARARGIN)
%|
%| The subfunction name is composed using the object's Tag and the 
%| callback type separated by '_', e.g. 'slider2_Callback',
%| 'figure1_CloseRequestFcn', 'axis1_ButtondownFcn'.
%|
%| H is the callback object's handle (obtained using GCBO).
%|
%| EVENTDATA is empty, but reserved for future use.
%|
%| HANDLES is a structure containing handles of components in GUI using
%| tags as fieldnames, e.g. handles.figure1, handles.slider2. This
%| structure is created at GUI startup using GUIHANDLES and stored in
%| the figure's application data using GUIDATA. A copy of the structure
%| is passed to each callback.  You can store additional information in
%| this structure at GUI startup, and you can change the structure
%| during callbacks.  Call guidata(h, handles) after changing your
%| copy to replace the stored original so that subsequent callbacks see
%| the updates. Type "help guihandles" and "help guidata" for more
%| information.
%|
%| VARARGIN contains any extra arguments you have passed to the
%| callback. Specify the extra arguments by editing the callback
%| property in the inspector. By default, GUIDE sets the property to:
%| <MFILENAME>('<SUBFUNCTION_NAME>', gcbo, [], guidata(gcbo))
%| Add any extra arguments after the last argument, before the final
%| closing parenthesis.



% --------------------------------------------------------------------
function varargout = x_value_Callback(x_value, eventdata, handles, varargin)
fun_pltg('y_fun_Callback',handles.y_fun, eventdata, handles, varargin);



% --------------------------------------------------------------------
function varargout = y_fun_Callback(y_fun, eventdata, handles, varargin)

err_ind = 0;
	eval(['x = ' get(handles.x_value,'string') ';'],'err_ind=1;');
	if err_ind == 0;
	 eval(['y = ' get(y_fun,'string') ';'],'err_ind=2;');
	end
    if err_ind == 0
	  plot(x,y);
	  set(handles.box_check,'Value',1);
      fun_pltg('box_check_Callback',handles.box_check, eventdata, handles, varargin);
      set(handles.grid_check,'Value',1);
      fun_pltg('grid_check_Callback',handles.grid_check, eventdata, handles, varargin);
      
	  set(handles.status,'string','Function Plotted');
	elseif err_ind == 1
	  set(handles.status,'string','Error defining x');
	elseif err_ind == 2
	  set(handles.status,'string','Error defining y(x)');
	end


% --------------------------------------------------------------------
function varargout = grid_check_Callback(grid_check, eventdata, handles, varargin)

gridstatus = get(grid_check,'value');
	if gridstatus == 0
	  grid off
	else;
	  grid on
	end
	set(handles.status,'string',...
	    ['The grid is ' get(gca,'xgrid')]);


% --------------------------------------------------------------------
function varargout = box_check_Callback(box_check, eventdata, handles, varargin)

 boxstatus = get(box_check,'value');
	if boxstatus == 0;
	  set(gca,'box','off');
	else
	  set(gca,'box','on');
	end
	set(handles.status,'string',...
	    ['The box property is ' get(gca,'box')]);
   


% --------------------------------------------------------------------
function varargout = Exit_Button_Callback(h, eventdata, handles, varargin)

exit_button=questdlg('Exit Now?','Exit Program','Yes','No','No');
switch exit_button
case 'Yes'
    delete(handles.figure1)
case 'No'
    return
end

% --------------------------------------------------------------------
function varargout = Plot_Now_Button_Callback(h, eventdata, handles, varargin)

fun_pltg('y_fun_Callback',handles.y_fun, eventdata, handles, varargin);






gui_scrl.m

function gui_scrl(command_str,Argument2)

% GUI_SCRL

% examples/chap10/gui_scrl.m

%

% Example of scrolling window.

% Type gui_scrl or gui_scrl('initialize',string_matrix);



if nargin < 1

	command_str = 'initialize';

end



if ~strcmp(command_str,'initialize')

	handles = get(gcf,'userdata');

	h_sldr = handles(1);

	h_edit = handles(2);

end



if strcmp(command_str,'initialize')



	h_fig = figure('position',[200 200 200 100],...

				 'resize','off',...

				 'name','Scroll Bar',...

				 'numbertitle','off');

	

	h_frm = uicontrol(h_fig,...

		'style','frame',...

		'position',[0 0 200 100]);

	

	if nargin < 2

		init_string = str2mat('This is the first',...

	  	'La','La','La','This is the fifth','Blah',...

		'Blah','Blah','This is the last');

	else

		init_string = Argument2;

	end

	h_edit = uicontrol(h_fig,...

		'style','edit',...

		'max',2,...

		'string',init_string,...

		'position',[5 5 175 90],...

		'userdata',init_string);



	h_sldr = uicontrol(h_fig,...

		'callback','gui_scrl(''Scrolling'');',...

		'style','slider',...

		'min',1,...

		'max',size(init_string,2),...

		'sliderstep',[1 2]*(1/(size(init_string,2)-1)),...

		'value',1,...

		'position',[180 5 15 90],...

		'userdata',1);

		

	handles = [h_sldr,h_edit];

	set(h_fig,'userdata',handles);



elseif strcmp(command_str,'Scrolling')

	old_val = get(h_sldr,'userdata');

	newval = round(get(h_sldr,'max')-get(h_sldr,'value')+1);

	set(h_sldr, 'userdata',newval);

	str = get(h_edit,'userdata');

	set(h_edit,'string',str(1,newval:size(str,2)));

end








gui_size.m

function gui_size(command_str)

% GUI_SIZE

% examples/chap10/gui_size.m

%

% Example of user on-the-fly defined pop-up-menu.

if nargin < 1

	command_str = 'initialize';

end



if ~strcmp(command_str,'initialize')

	handles = get(gcf,'userdata');

	h_text = handles(1);

	h_editsize = handles(2);

	h_popsize = handles(3);

end



if strcmp(command_str,'initialize')

    h_fig = figure('position',[200 200 200 100],...

			'resize','off',...

			'name','String Sizer',...

			'numbertitle','off',...

            'MenuBar','none');

	

  h_ax = axes('position',[0 .5 1 .5],...

	'visible','off',...

	'xlim',[0 1],'ylim',[0 1]);

				

  h_text = text(.5,.5,0,'String',...

	'FontSize',10,...

	'HorizontalAlignment','center',...

	'VerticalAlignment','middle');



  h_editsize = uicontrol(h_fig,...

	'callback','gui_size(''Sized by Edit'');',...

	'style','edit',...

	'position',[70 15 30 20],...

	'string','10');

		

  h_popsize = uicontrol(h_fig,...

	'callback','gui_size(''Sized by Popup'');',...

	'style','pop',...

	'position',[110 15 30 20],...

	'string',' 5|10|15|20',...

	'value',2);

	

  handles = [h_text h_editsize h_popsize];

  set(h_fig,'userdata',handles);



elseif strcmp(command_str,'Sized by Popup')

  option_sizes = get(h_popsize,'string');

  choice = get(h_popsize,'value');

  set(h_editsize,'string',option_sizes(choice,:));

  set(h_text,'fontsize',str2num(option_sizes(choice,:)));



elseif strcmp(command_str,'Sized by Edit')

  option_sizes = str2num(get(h_popsize,'string'));

  size_choice = floor(str2num(get(h_editsize,'string')));



  % MAKE SURE THE USER'S INPUT IS A LEGAL FONT SIZE.

  if size_choice > 0

	if any(option_sizes == size_choice)

	% IF THE USER'S CHOICE EXISTS IN THE LIST, USE IT.

	  choice = find(option_sizes == size_choice);

	  set(h_popsize,'value',choice);

	  set(h_editsize,'string',num2str(option_sizes(choice)));

	  set(h_text,'fontsize',option_sizes(choice));

	else

	% OTHERWISE CREATE A NEW OPTION IN THE MENU LIST,

	% PUTTING IT IN THE RIGHT SORTED POSITION.

	  option_sizes = [option_sizes; floor(size_choice)];

	  [new_opt_sizes,ind] = sort(option_sizes);

	  choice = find(ind == length(new_opt_sizes));



	  new_pop_str = sprintf('%3d',new_opt_sizes);

	  new_pop_str = reshape(new_pop_str,...

			     3,length(new_opt_sizes))';

		

	  set(h_popsize,'string',new_pop_str);

	  set(h_popsize,'value',choice);

	  set(h_editsize,...

		'string',num2str(new_opt_sizes(choice)));

	  set(h_text,'fontsize',new_opt_sizes(choice));

    end

  else

	choice = get(h_popsize,'value');

	set(h_editsize,'string',num2str(option_sizes(choice)));

  end



end % END command_str comparison checks.








gui_sldr.m

function gui_sldr(command_str)

% GUI_SLDR

% examples/chap10/gui_sldr.m

%

% Example of creating slider GUIs.



if nargin < 1

	command_str = 'initialize';

end



if ~strcmp(command_str,'initialize')

	handles = get(gcf,'userdata');

	h_sldr = handles(1);

	h_val = handles(2);

end

if strcmp(command_str,'initialize')



	h_fig = figure('position',[100 200 200 75],...

		'resize','off',...

		'numbertitle','off',...

		'name','Slider GUI',...

        'MenuBar','none');

		

	h_frame = uicontrol(h_fig,...

		'style','frame',...

		'position',[0 0 200 75]);

		

	h_sldr = uicontrol(h_fig,...

		'callback','gui_sldr(''Slider Moved'');',...

		'style','slider',...

		'min',-15,'max',15,...

		'position',[25 20 150 20]);



	h_min = uicontrol(h_fig,...

		'style','text',...

		'string',num2str(get(h_sldr,'min')),...

		'position',[25 45 25 20]);

	

	h_max = uicontrol(h_fig,...

		'style','text',...

		'string',num2str(get(h_sldr,'max')),...

		'position',[150 45 25 20]);

	

	h_val = uicontrol(h_fig,...

		'callback','gui_sldr(''Change Value'');',...

		'style','edit',...

		'string',num2str(get(h_sldr,'value')),...

		'position',[80 45 40 20]);



	handles = [h_sldr h_val];

	set(h_fig,'userdata',handles);

elseif strcmp(command_str,'Change Value')

	user_value = str2num(get(h_val,'string'));

	if ~length(user_value)

	 user_value = (get(h_sldr,'max')+get(h_sldr,'min'))/2;

	end

	user_value = min([user_value get(h_sldr,'max')]);

	user_value = max([user_value get(h_sldr,'min')]);

	set(h_sldr,'value',user_value);

	set(h_val,'string',num2str(get(h_sldr,'value')));



elseif strcmp(command_str,'Slider Moved')

	set(h_val,'string',num2str(get(h_sldr,'value')));



end








gui_togm.m

function [name] = gui_togm(command_str)

% GUI_TOGM

% examples/chap10/gui_togm.m

%

% Example of a GUI that toggles menus.



if nargin < 1

	command_str = 'initialize';

end



if ~strcmp(command_str,'initialize')

	handles = get(gcf,'userdata');

	h_menu_opt = handles(1);

	h_menu = handles(2:4);

end



if strcmp(command_str,'initialize')



	h_fig = figure('position',[200 200 200 50],...

				 'resize','off',...

				 'numbertitle','off',...

				 'menubar','none');

	h_menu_opt = uimenu('label','Options',...

		'callback','gui_togm(''Set Menu Labels'');');

	h_menu(1) = uimenu(h_menu_opt,'label','Properties...');

	h_menu(2) = uimenu(h_menu_opt,'label','','visible','off')

	h_menu(3) = uimenu(h_menu_opt,'label','',...

	                   'visible','off');

	

	handles = [h_menu_opt,h_menu];

	set(gcf,'userdata',handles);

	gui_togm('Set Menu Labels');

	

elseif strcmp(command_str,'Set Menu Labels')

	seltyp = get(gcf,'selectiontype');

	if strcmp(seltyp,'normal')

	  set(h_menu(1),'label','Properties','visible','on');

	  set(h_menu(2),'label','','visible','off');

	  set(h_menu(3),'label','','visible','off');

	elseif strcmp(seltyp,'alt')

	  set(h_menu(1),'label','Alternate Properties',...

	                'visible','on');

	  set(h_menu(2),'label','Delete Alternates',...

	                'visible','on');

	  set(h_menu(3),'label','Copy Alternates',...

	                'visible','on');

	elseif strcmp(seltyp,'extend')

	  set(h_menu(1),'label','Cut','visible','on');

	  set(h_menu(2),'label','Copy','visible','on');

	  set(h_menu(3),'label','Paste','visible','on');

	elseif strcmp(seltyp,'open')

	  set(h_menu(1),'label','Open 1','visible','on');

	  set(h_menu(2),'label','Open 2','visible','off');

	  set(h_menu(3),'label','Open 3','visible','on');

	end

end








gui_wave.m

function gui_wave(command_str,Argument2)
% GUI_WAVE
% examples/chap10/gui_wave.m
%
% Example of mutually exclusive radio button coding

if nargin < 1
	command_str = 'initialize';
end

if ~strcmp(command_str,'initialize')
	handles = get(gcf,'userdata');
	h_radio = handles(1:3);
end

if strcmp(command_str,'initialize')

	h_fig = figure('position',[200 200 120 100],...
               'resize','off',...
               'numbertitle','off',...
               'MenuBar','none');
	% Create Frame that covers entire
	h_frame = uicontrol(h_fig,'style','frame',...
                          'position',[0 0 120 100]);
	% Create overall label
	h_stext = uicontrol(h_fig,'style','text',...
                          'string','Waveform Type',...
                          'position',[10 75 100 20]);
	% Create set of 3 Radio buttons
	h_radio(1) = uicontrol(h_fig,'style','radio',...
                          'callback','gui_wave(''Waveform Change'',1);',...
                          'string','Square Wave',...
                          'position',[10 55 100 20],...
                          'value',1);
	h_radio(2) = uicontrol(h_fig,'style','radio',...
                          'callback','gui_wave(''Waveform Change'',2);',...
                          'string','Saw Tooth Wave',...
                          'position',[10 30 100 20]);
	h_radio(3) = uicontrol(h_fig,'style','radio',...
                          'callback','gui_wave(''Waveform Change'',3);',...
                          'string','Sinusoidal Wave',...
                          'position',[10 5 100 20]);

	handles = [h_radio];
	set(h_fig,'userdata',handles);

elseif strcmp(command_str,'Waveform Change')
	num_buttons = length(h_radio);
	button = Argument2;
	if get(h_radio(button),'value') == 1
	  set(h_radio([1:(button-1), (button+1):num_buttons]),'value',0);
	else
	  set(h_radio(button),'value',1);
	end

end % END command_str comparison check







gui_wave2.m

function gui_wave(command_str,Argument2)
% GUI_WAVE
% examples/chap10/gui_wave2.m
%
% Example of mutually exclusive menu coding

if nargin < 1
	command_str = 'initialize';
end

if ~strcmp(command_str,'initialize')
	handles = get(gcf,'userdata');
	h_menu = handles(1:3);
end

if strcmp(command_str,'initialize')

	h_fig = figure('position',[200 200 120 100],...
               'resize','off',...
               'numbertitle','off',...
               'MenuBar','none');
	% Create Frame that covers entire
	h_frame = uicontrol(h_fig,'style','frame',...
                          'position',[0 0 120 100]);
	% Create overall label
	h_stext = uicontrol(h_fig,'style','text',...
                          'string','Waveform Type',...
                          'position',[10 75 100 20]);
	% Create set of 3 pulldown menus
	h_radio(1) = uicontrol(h_fig,'style','pulldown',...
                          'callback','gui_wave(''Waveform Change'',1);',...
                          'string','Square Wave',...
                          'position',[10 55 100 20],...
                          'value',1);
	h_radio(2) = uicontrol(h_fig,'style','radio',...
                          'callback','gui_wave(''Waveform Change'',2);',...
                          'string','Saw Tooth Wave',...
                          'position',[10 30 100 20]);
	h_radio(3) = uicontrol(h_fig,'style','radio',...
                          'callback','gui_wave(''Waveform Change'',3);',...
                          'string','Sinusoidal Wave',...
                          'position',[10 5 100 20]);

	handles = [h_radio];
	set(h_fig,'userdata',handles);

elseif strcmp(command_str,'Waveform Change')
	num_buttons = length(h_radio);
	button = Argument2;
	if get(h_radio(button),'value') == 1
	  set(h_radio([1:(button-1), (button+1):num_buttons]),'value',0);
	else
	  set(h_radio(button),'value',1);
	end

end % END command_str comparison check







gui_wind.m

function gui_wind(command_str)
% GUI_WIND
% examples/chap10/gui_wind.m
%
% Example of creating windowed GUIs.

if nargin < 1
	command_str = 'initialize';
end

if ~strcmp(command_str,'initialize')
	handles = get(gcf,'userdata');
	h_cube = handles(1);
	h_dir = handles(2);
	h_xrot = handles(3);
	h_yrot = handles(4);
end
if strcmp(command_str,'initialize')

	h_fig = figure('position',[100 200 300 250],...
		'resize','off',...
		'numbertitle','off',...
		'name','Windowed GUI',...
        'MenuBar','none');
	
	h_s(1) = uicontrol('style','text',...
			'position',[0 0 1 .25],...
			'units','normalized');
	h_s(2) = uicontrol('style','text',...
			'position',[0 0 .1 1],...
			'units','normalized');
	h_s(3) = uicontrol('style','text',...
			'position',[0 .9 1 .1],...
			'units','normalized');
	h_s(4) = uicontrol('style','text',...
			'position',[.9 0 .1 1],...
			'units','normalized');
	h_push = uicontrol(h_fig,...
			'style','pushbutton',...
			'position',[.1 .05 .2 .15],...
			'units','normalized',...
			'string','Rotate',...
			'interruptible','on',...
			'callback','gui_wind(''Rotate'');');

	h_dir = uicontrol(h_fig,...
			'style','checkbox',...
			'position',[.32 .07 .25 .11],...
			'units','normalized',...
			'string','Clockwise',...
			'value',1,...
			'callback','gui_wind(''Change Rotation'');');
			
	h_xrot = uicontrol(h_fig,...
			'style','checkbox',...
			'position',[.6 .02 .35 .11],...
			'units','normalized',...
			'string','X-Rotation Axis',...
			'callback','gui_wind(''Change Rotation'');');
	h_yrot = uicontrol(h_fig,...
			'style','checkbox',...
			'position',[.6 .13 .35 .11],...
			'units','normalized',...
			'string','Y-Rotation Axis',...
			'callback','gui_wind(''Change Rotation'');');
						
	h_ax = axes('position',[.1 .25 .8 .65],...
				'userdata',0);

	x = [0 1 1 0 0 0 1 1 0 0 NaN 1 1 NaN 1 1 NaN 0 0];
	y = [0 0 1 1 0 0 0 1 1 0 NaN 0 0 NaN 1 1 NaN 1 1];
	z = [0 0 0 0 0 1 1 1 1 1 NaN 1 0 NaN 0 1 NaN 1 0];
	h_cube = line(x-0.5,y-0.5,z-0.5,'erasemode','background');
	axis('square');
	axis([-1 1 -1 1 -1 1]*1.5);
	axis('off')
	view(-37.5,15);
%	set(h_cube,);

	handles = [h_cube h_dir h_xrot h_yrot];
	set(gcf,'userdata',handles);
	
elseif strcmp(command_str,'Change Rotation')
	direction = sign(get(h_dir,'val')-.5);
	rotation_axis = [get(h_xrot,'value') ...
					 get(h_yrot,'value') ...
					 1];
	set(gca,'userdata',[1 direction rotation_axis]);

elseif strcmp(command_str,'Rotate')
	rotation_increment = 5*sign(get(h_dir,'value')-.5); % degrees
	rotation_axis = [get(h_xrot,'value') ...
					 get(h_yrot,'value') ...
					 1];
	rotation_origin = [0 0 0];
	num_of_incr = 720;
	angle_swept = 0;
	rotate_counter = 0;
	while abs(angle_swept) < 720
	   rotate(h_cube,rotation_axis,...
                  rotation_increment,rotation_origin);
	   rotate_counter = rotate_counter + 1;
	   angle_swept = angle_swept + rotation_increment;
	   if rotate_counter > 5
	      command_issued = get(gca,'userdata');
	      if command_issued(1) > 0
		     rot_dir = command_issued(2);
			 rotation_increment = abs(rotation_increment)*rot_dir;
			 rotation_axis = command_issued(3:5);
		     set(gca,'userdata',0);
		  end
		  rotate_counter = 0;
	   end
	   drawnow;
	end
end







imagebutton.m

h_fig=figure('position',[100 100 50 50],...

'color',[.8 .8 .8],...

'menubar','none');

axes('position',[0 0 1 1],...

     'xlim',[0 1],'ylim',[0 1],...

     'visible','off');

p = patch([.08 .08 1 1],[0 .92 .92 0],...

     [0 0 0 0],[0 0 0 0],'facecolor',[.6 .6 .6],...

     'edgecolor','none') ;

patch(.2*cos(linspace(0,2*pi,4))+.3,...

	.2*sin(linspace(0,2*pi,4))+.3,...

	ones(1,4), ones(1,4),....

    'facecolor',[0 0 0]);% Create triangle

patch(.2*cos(linspace(0,2*pi,6))+.7,...

	.2*sin(linspace(0,2*pi,6))+.4,...

	ones(1,6), ones(1,6),...

    'facecolor',[0 0 0]);  % Create pentagon

patch(.1*cos(linspace(0,2*pi,15))+.5,...

	.1*sin(linspace(0,2*pi,15))+.7,...

	ones(1,15), ones(1,15),...

    'facecolor',[0 0 0]);% Create circle

l = line([0.08 1 1],[0 0 .92],[2 2 2],'linewidth',2,...

	'color',[.3 .3 .3]);

% This clears the map so that capture only

% captures what is required.

set(h_fig,'colormap',[]); 

Xup=getframe(h_fig);% On State Image

set(gcf,'color',[.2 .2 .2]);

set(p,'facecolor',[.4 .4 .4]);

set(l,'color',[.8 .8 .8]);

Xdw=getframe(h_fig);% Off State Image








imagebutton2.m



figure('position',[100 100 100 100],...

	'menubar','none',...

    'colormap',mapupdwn);

axes('position',[.2 .2 .6 .6],...

	'visible','off','ydir','reverse',...

	'xlim',[0 size(Xup.cdata,2)],'ylim',[1 size(Xup.cdata,1)]);

hold on

image_up = image(Xup.cdata);

image_down = image(Xdw.cdata);

set(image_up,'userdata',image_down,...

	'buttondownfcn',['set(get(gco,''userdata'')'...

		',''visible'',''on'');' ...

		'set(gco,''visible'',''off'')']);

set(image_down,'userdata',image_up,...

	'visible','off',...

	'buttondownfcn',['set(get(gco,''userdata'')'...

		',''visible'',''on'');'...

		'set(gco,''visible'',''off'')']);








imbutton.m



h_fig=figure('Position',[100 100 200 200],...

             'menubar','none')

h_button = uicontrol('style','pushbutton',...

           'tooltipstring','bitmap on a button',...

           'position',[30 70 140 125])



set(h_button,'Cdata',bimage);  










interon.m

%note, with modern MATLAB this example no longer applies.

figure('position',[200 200 100 100],...

        'menubar','none');



h_close = uicontrol('position',[25 25 50 50],...

	  'string','Close',...

      'Interruptible','on',...

	  'callback',['yn_ans = questdlg(''Are you sure ' ...

	  'you want to close the figure?'',''Yes'',''No'');' ...

	  'if strcmp(yn_ans,''Yes'');close;end'])








layeringdemo.m

% Chapter 10 layering demo

figure('position',[100 200 250 160]);

uicontrol('style','frame',...

          'position',[10 50 160 80]);

uicontrol('style','pushbutton',...

          'string','Close Figure',...

          'position',[30 70 80 20],...

          'callback','close');

uicontrol('style','frame',...

          'position',[80 10 70 130]);

axes








mvrs_obj.m

function mvrs_obj(command_str,Argument);
% MVRS_OBJ
% chap10/mvrs_obj.m
%
% Used to move and resize axes objects
% and move text objects.
% Start capability by issuing
%	mvrs_obj
% Then click and hold and drag to
% move an object (axes objects will be
% moved from lower-left corner).
% To resize an axes object hold the control
% or alt key before click hold and dragging
% near desired corner of axes object.

global CUR_OBJ CUR_OBJ_TYPE FIX_PT

if nargin == 0
	command_str = 'initialize';
end
if strcmp(command_str,'initialize')
	set(gcf,'windowbuttondownfcn','mvrs_obj(''Set Up'')');
elseif strcmp(command_str,'Set Up')
	CUR_OBJ = get(gcf,'currentobj');
	if CUR_OBJ ~= gcf
	  CUR_OBJ_TYPE = get(CUR_OBJ,'type');
	  
	  if strcmp(get(gcf,'selectiontype'),'normal')
	  % SET UP MOVING OBJECT ROUTINE
	  	set(gcf,'pointer','fleur');
		if strcmp(CUR_OBJ_TYPE,'text')
			set(CUR_OBJ,'erasemode','xor');
		elseif strcmp(CUR_OBJ_TYPE,'axes')
			set(gcf,'units','pixels');
			set(0,'units','pixels');
			set(CUR_OBJ,'units','pixels');
			cur_obj_loc = get(CUR_OBJ,'position');
			fig_pos = get(gcf,'position');
			set(0,'pointerlocation',fig_pos(1:2)+...
					cur_obj_loc(1:2));
		end
		set(gcf,'windowbuttonupfcn','mvrs_obj(''Done'')');
		set(gcf,'windowbuttonmotionfcn',...
            'mvrs_obj(''Move Object'')');
		set(CUR_OBJ,'selected','on');
	  elseif strcmp(get(1,'selectiontype'),'alt')
		% SET UP RESIZE OBJECT
		if strcmp(CUR_OBJ_TYPE,'axes')
			set(gcf,'units','pixels');
			set(0,'units','pixels');
			set(CUR_OBJ,'units','pixels');
			cur_obj_loc = get(CUR_OBJ,'position');
			fig_pos = get(gcf,'position');
			corner_loc = [cur_obj_loc(1:2); ...
				cur_obj_loc(1:2)+...
                [0 cur_obj_loc(4)];...
				cur_obj_loc(1:2)+...
                [cur_obj_loc(3) 0];...
				cur_obj_loc(1:2)+...
                cur_obj_loc(3:4)   ];
			corner_loc_scrn =...
                [corner_loc(:,1)+fig_pos(1) ...
				corner_loc(:,2)+fig_pos(2)];
			scrn_pnt_loc = get(0,'pointerlocation');
			[dumval,min_ind] = ...
                min(sum((([corner_loc_scrn-ones(4,1)*...
                    scrn_pnt_loc]).^2)'));
			if min_ind == 1; 
                FIX_PT = corner_loc(4,:);
			elseif min_ind ==2; 
                FIX_PT = corner_loc(3,:);
			elseif min_ind ==3; 
                FIX_PT = corner_loc(2,:);
			elseif min_ind ==4; 
                FIX_PT = corner_loc(1,:);end
			set(0,'pointerlocation',...
                corner_loc_scrn(min_ind,:));
					set(gcf,'windowbuttonupfcn',...
                        'mvrs_obj(''Done'')');
		    set(gcf,'windowbuttonmotionfcn',...
                'mvrs_obj(''Resize Object'')');
		   set(CUR_OBJ,'selected','on');

		end
	  end
	end
elseif strcmp(command_str,'Move Object')
% CALLBACK FOR WHEN THE POINTER IS MOVED AND THE
% OPERATION GOAL IS TO MOVE AN OBJECT 
	if strcmp(CUR_OBJ_TYPE,'text')
		cur_pnt_loc = get(get(CUR_OBJ,'parent'),...
            'currentpoint');
		set(CUR_OBJ,'position',cur_pnt_loc(1,:));
	elseif strcmp(CUR_OBJ_TYPE,'axes')
		cur_obj_loc = get(CUR_OBJ,'position');
		cur_pnt_loc = get(gcf,'currentpoint');
		new_obj_loc = [cur_pnt_loc cur_obj_loc(3:4)];
		set(CUR_OBJ,'position',new_obj_loc);
	end
	
elseif strcmp(command_str,'Resize Object')
% CALLBACK FOR WHEN THE POINTER IS MOVED AND THE
% OPERATION GOAL IS TO RESIZE AN OBJECT 
	if strcmp(CUR_OBJ_TYPE,'axes')
		curr_pnt = get(gcf,'currentpoint');
		relloc = curr_pnt > FIX_PT;
		if all(relloc == [0 0]),set(gcf,'pointer','botl');
		elseif all(relloc == [0 1]),set(gcf,'pointer','topl');
		elseif all(relloc == [1 0]),set(gcf,'pointer','botr');
		elseif all(relloc == [1 1]),set(gcf,'pointer','topr');
		end
		new_pos = [min([curr_pnt ;FIX_PT]),...
                max([abs(curr_pnt-FIX_PT);[1 1]])];
		%keyboard
		set(CUR_OBJ,'position',new_pos);
	end
	
elseif strcmp(command_str,'Done')
% OPERATION GOAL HAS BEEN COMPLETED SINCE
% USER RELEASED THE MOUSE
	if strcmp(CUR_OBJ_TYPE,'text')
		set(CUR_OBJ,'erasemode','normal');
	elseif strcmp(CUR_OBJ_TYPE,'axes')
		set(CUR_OBJ,'units','normalized');
	end
	set(CUR_OBJ,'selected','off');
	set(gcf,'pointer','arrow');
	set(gcf,'windowbuttonupfcn','');
	set(gcf,'windowbuttonmotionfcn','')
end







resample.m

function image_out=resample(image_in,scale)

%resample an RGB image

%by throwing out rows and columns

%usage: IMAGE_OUT = RESAMPLE(IMAGE_IN,SCALE)

%SCALE is an integer.



[m n p]=size(image_in);

rows = 1:scale:m;

X=image_in(rows,:,:);

    

cols = 1:scale:n;

image_out=X(:,cols,:);












scrllwin.m

function [out1] = scrllwin(command,p1,p2,p3,p4,p5,p6,p7) 
%  SCRLLWIN - Creates a scrollable non enabled edit window. 
%   handle_list,get_str
%  usage:  scrllwin(command,param1,param2,...);
%   
%    where both inputs are string types
%   
%       'command' can be 
%          1) 'initialize' - creates new scroll window.
%          2) 'set'        - changes contents to new string given
%		             by new_string.
%          3) 'add'        - adds new_string to the string in the 
%			     scroll window.
%          4) 'get'        - gets the string in the scroll window.
%
%
%    e.g. h1 = scrllwin('new','string',new_string);
%
%             Creates a scroll window using entire figure window.
%
%
%    e.g. h1 = scrllwin('new','string',new_string,'position',position_vector);
%
%             Creates a scroll window over the portion of the figure
%			defined by position_vector.
%
%    e.g. h1 = scrllwin('new','string',new_string,'position',position_vector...
%			 'tag',tag_string);
%
%             Creates a scroll window over the portion of the figure
%			defined by position_vector with a specific tag.
%
%    e.g. scrllwin('set',h1,'string',new_string,...)
%
%    e.g. scrllwin('add',h1,'string',Added_string) % adds the new string
%						      to the bottom of the
%						      window stack.
%    e.g. [h1,string_returned] = scrllwin('get',h1,'string'); 
%    e.g. [h1,position_returned] = scrllwin('get',h1,'position'); 
%    e.g. [h1,tag_returned] = scrllwin('get',h1,'tag'); 
%
%       new_string  can be a string in either str2mat format 
%                    where each row corresponds to a line of text or
%                    it can be one entire long string where the lines
%                    are separated by the character '|'. 
%
%	position_vector is the same as the position vector for other uicontrol
% 			objects with a 5th element being the proportion of the
%			width that the slider will take up.
%
%			= [left bottom width height slider_proportion]
%			  The units of the position are normalized to the figure
%			  window.
%
%	tag_string  is a string which uniquely identifies the scroll window.
%		    If it is not unique or not given, a unique tag will will
%		    be created by adding a numeric to the one provided or to
%		    the default (default = 'scrllwinobj')
%   
%  If no arguements are used the GUI is initialized. 
%
%  See also STR2MAT, NUM2STR, and UICONTROL 
%
 
%  Created: 27-Jan-95 
%  Using  : GUI Maker Ver 2.0 by Patrick Marchand 
%                         (pmarchan@motown.ge.com) 
%  Author :  Patrick Marchand
%  Mods.  :  
%   

%  Copyright (c) 1995  PATRICK MARCHAND
%       Permission is granted to modify and re-distribute this 
%	code in any manner as long as this notice is preserved. 
%	All standard disclaimers apply. 

get_str = [];
if nargin == 0 
	command = 'new'; p1 = 'demo';
end 

if isstr(command) 
	if strcmp(lower(command),'initialize') | ...
	   strcmp(lower(command),'new') | ...
	   strcmp(lower(command),'create')
		command_num = 0;

	   sw_str = '';
	   sw_pos = [0 0 1 1];
	   sw_tag = 'scrllwinobj';

	   if rem(nargin,2) == 1
	      for loop_input = 1:2:(nargin-1)
	        attr = eval([sprintf('p%g',loop_input)]);
		attr_val = eval([sprintf('p%g',loop_input+1)]);
		if strcmp(lower(attr(1:3)),'tag')
	   	   sw_tag = attr_val;
		elseif strcmp(lower(attr(1:3)),'pos')
	   	   sw_pos = attr_val;
		elseif strcmp(lower(attr(1:3)),'str')
	   	   sw_str = attr_val;
		end
	      end
	   else
		if strcmp(p1,'demo')
		   sw_str = ['To stick text into a this scrolling window,'...
		   '|create a string catenated together by the' ...
		   '|pipe character (vertical line character).',...
		   '|You can also pass it a string matrix,',...
		   '|where each row in the string matrix,'...
		   '|corresponds to a new line in the scroll',...
		   '|box.',...
		   '|            - Patrick Marchand'];
		   sw_pos = [0 0 1 1];
		   sw_tag = 'scrllwinobj';
		else
		   error('Wrong number of inputs to scrllwin.m')
		end
	   end
	else
	   if strcmp(lower(command),lower('set')) 
	    if rem(nargin,2) == 0
	      attr_types_ind = zeros(1,3);
	      for loop_input = 2:2:(nargin-1)
	        attr = eval([sprintf('p%g',loop_input)]);
		attr_val = eval([sprintf('p%g',loop_input+1)]);
		if strcmp(lower(attr(1:3)),'tag')
	   	   sw_tag = attr_val;attr_types_ind(1) = 1;
		elseif strcmp(lower(attr(1:3)),'pos')
	   	   sw_pos = attr_val;attr_types_ind(2) = 1;
		elseif strcmp(lower(attr(1:3)),'str')
	   	   sw_str = attr_val;attr_types_ind(3) = 1;
		end
	      end
	    else
	     error('Wrong number of inputs to scrllwin.m')
	    end
		command_num = 1; command3_type = 1;
	   elseif strcmp(lower(command),lower('add')) 
	    if rem(nargin,2) == 0
	      attr_types_ind = zeros(1,3);
	      for loop_input = 2:2:(nargin-1)
	        attr = eval([sprintf('p%g',loop_input)]);
		attr_val = eval([sprintf('p%g',loop_input+1)]);
		if strcmp(lower(attr(1:3)),'tag')
	   	   sw_tag = attr_val;attr_types_ind(1) = 1;
		elseif strcmp(lower(attr(1:3)),'pos')
	   	   sw_pos = attr_val;attr_types_ind(2) = 1;
		elseif strcmp(lower(attr(1:3)),'str')
	   	   sw_str = attr_val;attr_types_ind(3) = 1;
		end
	      end
	    else
	     error('Wrong number of inputs to scrllwin.m')
	    end
		command_num = 2; command3_type = 2; 
	   elseif strcmp(lower(command),lower('get')) 
	    if rem(nargin,2) == 1
	      attr_types_ind = zeros(1,3);
	      for loop_input = 2:2:(nargin-1)
	        attr = eval([sprintf('p%g',loop_input)]);
		if strcmp(lower(attr(1:3)),'tag')
	   	   sw_tag = attr_val;attr_types_ind(1) = 1;
		elseif strcmp(lower(attr(1:3)),'pos')
	   	   sw_pos = attr_val;attr_types_ind(2) = 1;
		elseif strcmp(lower(attr(1:3)),'str')
	   	   sw_str = attr_val;attr_types_ind(3) = 1;
		end
	      end
	    else
	     error('Wrong number of inputs to scrllwin.m')
	    end
		command_num = 3; command3_type = 3;
	   end
	end 
end 

if length(sw_pos) == 4
 	sw_pos = [sw_pos .05];
end

if command_num ~= 0 
	handle_list = p1;
	sw_obj_s = findobj(handle_list,'flat','style','slider'); 
	sw_obj_e = findobj(handle_list,'flat','style','edit'); 
	handle_list = [sw_obj_s sw_obj_e];
end 


if command_num == 0 

	gcf; % get current figure to put objects into

	%  Uicontrol Object Creation 

	   for loop = 1:size(sw_str,1)
	     if loop == 1
	      strval = [deblank(fliplr(deblank(fliplr(sw_str(loop,:))))) ];
	     else
	      strval = [strval '|' ...
			deblank(fliplr(deblank(fliplr(sw_str(loop,:))))) ];
	     end
	   end

	numlines = length(findstr(strval,'|')) + 1;
	line_start_ind = [1 findstr(strval,'|')+1];
	startline = 1;

	if length(line_start_ind) > 1
	  str_ind_start = line_start_ind(startline);
	  str_ind_end = length(strval);
	  strshown = strval(str_ind_start:str_ind_end);
	elseif length(line_start_ind) == 1
	  str_ind_start = 1;
	  str_ind_end = length(strval);
	  strshown = strval(str_ind_start:str_ind_end);
	else
	  strshown = '';
	end

	cnt = 1;
	if length(findobj(gcf,'tag',[sw_tag])) > 0
	   while length(findobj(gcf,'tag',[sw_tag num2str(cnt)])) > 0
	    cnt = cnt+1;
	   end
	   sw_tag_s = [sw_tag num2str(cnt)];
	   sw_tag_e = [sw_tag num2str(cnt)];
	else
	   sw_tag_s = [sw_tag  ];
	   sw_tag_e = [sw_tag  ];
	end

	sw_pos_e = [sw_pos(1:2) (sw_pos(3)-sw_pos(5)) sw_pos(4)];
	sw_pos_s = [sw_pos_e(1)+sw_pos_e(3) sw_pos_e(2) sw_pos(5) sw_pos_e(4)];

	sw_cbk_s = [    'h_uic_1 = findobj(gcf,''tag'',''' sw_tag_s ''',''style'',''slider'');'...
			'h_uic_2 = findobj(gcf,''tag'',''' sw_tag_e ''',''style'',''edit'');'...
			'h_uic_1 = h_uic_1(1);h_uic_2 = h_uic_2(1);'...
			'ud = get(h_uic_1,''userdata'');'...
			'val = abs(get(h_uic_1,''val''));'...
			'if val > ud(1);val = ceil(val);'...
			'else;val = floor(val);end;' ...
			'set(h_uic_1,''val'',-val);' ...
			'strval = get(h_uic_2,''userdata'');'...
			'numlines = length(findstr(strval,''|'')) + 1;'...
			'line_start_ind = [1 findstr(strval,''|'')+1];'...
			'startline = val;'...
			'set(h_uic_1,''userdata'',[startline]);'...
			'if length(line_start_ind) > 1;'...
			  'str_ind_start = line_start_ind(startline);'...
			  'str_ind_end = length(strval);'...
			  'strshown = strval(str_ind_start:str_ind_end);'...
			'elseif length(line_start_ind) == 1;'...
			  'str_ind_start = 1;'...
			  'str_ind_end = length(strval);'...
			  'strshown = strval(str_ind_start:str_ind_end);'...
			'else;'...
			  'strshown = '''';'...
			'end;'...
			'set(h_uic_2,''string'',strshown);'...
		    ];
	sw_cbk_e = [''];

	sw_obj_e = uicontrol(... 
		'CallBack',sw_cbk_e,... 
		'Backgroundcolor',[.6 .6 .6],...
		'Max',[ 2 ],... 
		'Position',sw_pos_e,... 
		'Enable','on',... 
		'String',strshown,... 
		'Style','edit',... 
		'Units','normalized',... 
		'Tag',sw_tag_e,... 
		'UserData',strval);

	sw_obj_s = uicontrol(... 
		'CallBack',sw_cbk_s,... 
		'Position',sw_pos_s,... 
		'Style','slider',... 
		'Units','normalized',... 
		'Value',[ 0.02 ],... 
		'Min',-numlines,'Max',-1,'Val',-1,...
		'Tag',sw_tag_s,... 
		'UserData',[startline]); 

	handle_list = [sw_obj_e sw_obj_s];

elseif command_num == 1 
	if attr_types_ind(3) == 1
		h_uic_1 = sw_obj_s;
		h_uic_2 = sw_obj_e;

		val = 1;
		set(h_uic_1,'val',-val);
	
		strval = get(h_uic_2,'userdata');
		strval2 = '';
		for loop = 1:size(sw_str,1)
		  if loop == 1
		  strval2 = [deblank(fliplr(deblank(fliplr(sw_str(loop,:))))) ];
		  else
		   strval2 = [strval2 '|' ...
			deblank(fliplr(deblank(fliplr(sw_str(loop,:))))) ];
		  end
		end
		strval = [strval2];
		set(h_uic_2,'userdata',strval);
	   
		numlines = length(findstr(strval,'|')) + 1;
		line_start_ind = [1 findstr(strval,'|')+1];
		startline = val;
		set(h_uic_1,'userdata',[startline],'min',min([-1,-numlines]));

		if length(line_start_ind) > 1
		  str_ind_start = line_start_ind(startline);
		  str_ind_end = length(strval);
		  strshown = strval(str_ind_start:str_ind_end);
		elseif length(line_start_ind) == 1
		  str_ind_start = 1;
		  str_ind_end = length(strval);
		  strshown = strval(str_ind_start:str_ind_end);
		else
		  strshown = '';
		end
		set(h_uic_2,'string',strshown);

	elseif attr_types_ind(2) == 1
	 sw_pos_e = [sw_pos(1:2) (sw_pos(3)-sw_pos(5)) sw_pos(4)];
	 sw_pos_s = [sw_pos_e(1)+sw_pos_e(3) sw_pos_e(2) sw_pos(5) sw_pos_e(4)];
	   set(sw_obj_e,'position',sw_pos_e);
	   set(sw_obj_s,'position',sw_pos_s);

	elseif attr_types_ind(1) == 1
	  cnt = 1;
	  if length(findobj(gcf,'tag',[sw_tag])) > 0
	   while length(findobj(gcf,'tag',[sw_tag num2str(cnt)])) > 0
	    cnt = cnt+1;
	   end
	   sw_tag_s = [sw_tag num2str(cnt)];
	   sw_tag_e = [sw_tag num2str(cnt)];
	  else
	   sw_tag_s = [sw_tag  ];
	   sw_tag_e = [sw_tag  ];
	  end

	sw_cbk_s = [    'h_uic_1 = findobj(gcf,''tag'',''' sw_tag_s ''',''style'',''slider'');'...
			'h_uic_2 = findobj(gcf,''tag'',''' sw_tag_e ''',''style'',''edit'');'...
			'h_uic_1 = h_uic_1(1);h_uic_2 = h_uic_2(1);'...
			'ud = get(h_uic_1,''userdata'');'...
			'val = abs(get(h_uic_1,''val''));'...
			'if val > ud(1);val = ceil(val);'...
			'else;val = floor(val);end;' ...
			'set(h_uic_1,''val'',-val);' ...
			'strval = get(h_uic_2,''userdata'');'...
			'numlines = length(findstr(strval,''|'')) + 1;'...
			'line_start_ind = [1 findstr(strval,''|'')+1];'...
			'startline = val;'...
			'set(h_uic_1,''userdata'',[startline]);'...
			'if length(line_start_ind) > 1;'...
			  'str_ind_start = line_start_ind(startline);'...
			  'str_ind_end = length(strval);'...
			  'strshown = strval(str_ind_start:str_ind_end);'...
			'elseif length(line_start_ind) == 1;'...
			  'str_ind_start = 1;'...
			  'str_ind_end = length(strval);'...
			  'strshown = strval(str_ind_start:str_ind_end);'...
			'else;'...
			  'strshown = '''';'...
			'end;'...
			'set(h_uic_2,''string'',strshown);'...
		    ];
	sw_cbk_e = [''];

	   set(sw_obj_e,'tag',sw_tag_e,'callback',sw_cbk_e);
	   set(sw_obj_s,'tag',sw_tag_s,'callback',sw_cbk_s);
	else
 	end
elseif command_num == 2 
	if attr_types_ind(3) == 1
		h_uic_1 = sw_obj_s;
		h_uic_2 = sw_obj_e;

		ud = get(h_uic_1,'userdata');
		val = abs(get(h_uic_1,'val'));
		if val > ud(1)
		   val = ceil(val);
		else
		   val = floor(val);
		end
		set(h_uic_1,'val',-val);
	
		strval = get(h_uic_2,'userdata');
		strval2 = '';
		for loop = 1:size(sw_str,1)
		  if loop == 1
		  strval2 = [deblank(fliplr(deblank(fliplr(sw_str(loop,:))))) ];
		  else
		   strval2 = [strval2 '|' ...
			deblank(fliplr(deblank(fliplr(sw_str(loop,:))))) ];
		  end
		end
		strval = [strval '|' strval2];
		set(h_uic_2,'userdata',strval);
	   
		numlines = length(findstr(strval,'|')) + 1;
		line_start_ind = [1 findstr(strval,'|')+1];
		startline = val;
		set(h_uic_1,'userdata',[startline],'min',min([-1,-numlines]));

		if length(line_start_ind) > 1
		  str_ind_start = line_start_ind(startline);
		  str_ind_end = length(strval);
		  strshown = strval(str_ind_start:str_ind_end);
		elseif length(line_start_ind) == 1
		  str_ind_start = 1;
		  str_ind_end = length(strval);
		  strshown = strval(str_ind_start:str_ind_end);
		else
		  strshown = '';
		end
		set(h_uic_2,'string',strshown);

	end
elseif command_num == 3 
	if attr_types_ind(3) == 1
	   h_uic_1 = sw_obj_s;
	   h_uic_2 = sw_obj_e;

	   ud = get(h_uic_1,'userdata');
	   val = abs(get(h_uic_1,'val'));
	   if val > ud(1)
	      val = ceil(val);
	   else
	      val = floor(val);
	   end
	   set(h_uic_1,'val',-val);

	   strval = get(h_uic_2,'userdata');
	   if command3_type == 3
	      get_str = strval;
	   end
	elseif attr_types_ind(2) == 1
	   pos_e = get(sw_obj_e,'position');
	   pos_s = get(sw_obj_s,'position');
	   pos = [pos_e(1:2) (pos_e(3)+pos_s(3)) pos_e(4) pos_s(3)];
	   get_str = pos;

	elseif attr_types_ind(1) == 1
	   get_str = get(sw_obj_e,'tag');
	else
	   get_str = [];
	end

else 
	error('Error: scrllwin.m called with incorrect command.') 
end 

if command_num == 0
  out1 = handle_list;
elseif command_num == 3
  out1 = get_str;
end







stretchable.m

%Making a GUI stretchable.

%Create the figure.

figure('position',[150 100 200 150],...

    'MenuBar','none',...

    'Color','white');

% Create the uicontrol objects with normalized units.

h_frame = uicontrol('style','frame',...

          'units','normalized',...

          'position',[0 0 1 1]);

h_stext_font = uicontrol('style','text',...

          'units','normalized',...

          'position',[.05 .1 .25 .15],...

          'string','Font:');

h_popup_font = uicontrol('style','popup',...

          'units','normalized',...

          'position',[.3 .1 .65 .15],...

          'string','Helvetica|Times|Courier|Symbol');



h_stext_color =  uicontrol('style','text',...

          'units','normalized',...

          'position',[.05 .3 .25 .15],...

          'string','Color:');

h_edit_color =  uicontrol('style','edit',...

          'units','normalized',...

          'position',[.3 .3 .65 .15],...

          'string','white');

% Create a multiple line editable text object

% by setting the Max property to a value greater

% than 1 plus the Min property (Min default = 0).

h_edit_multi = uicontrol('style','edit',...

    'units','normalized',...

    'position',[.05 .5 .9 .45],...

    'string',['Line Number 1|Line # 2|and line number 3'],...

    'max',2)








uidial.m

function uidial(command_str,Argument1,Argument2)

% UIDIAL

% examples/chap10/uidial.m

% Creates a dial user interface to learn how to

% make a custom GUI object.

% Usage:

%          uidial('initialize',min,max);

%

%  The value of the dial is stored and can be 

%  gotten from the current axes UserData property.



if nargin == 0 

	command_str = 'initialize';

end



if ~strcmp(command_str,'initialize')

	handles = get(gcf,'userdata');

	h_arrow = handles(1);

	h_stextval = handles(2);

end



if strcmp(command_str,'initialize')

	% Define default min and max values of dial.

	if nargin == 3

		minval = Argument1;

		maxval = Argument2;

	else

		minval = 0;

		maxval = 100;

	end



	h_fig=figure('Position',[200 200 200 200],...

		'color',[.7 .7 .7],...

		'menubar','none',...

        'resize','off',...

        'Units','normalized');

	h_ax=axes('color',[.7 .7 .7],...

		'xcolor',[.7 .7 .7],...

		'ycolor',[.7 .7 .7],...

		'xtick',[],'ytick',[],...

		'xlim',[-1 1],'ylim',[0 1],...

		'DataAspectRatio',[1 1 1],...

		'position',[.2 .1 .6 .8]);



	% Draw arrow in its minimum setting.

	arrowx = [0 -1 -.85 NaN -1 -.85];

	arrowy = [0 0 -.05 NaN 0 .05];

	arrowz = [0 0  0  0   0  0];

	% Store a matrix that can be manipulated

	% and used to draw the arrow after a rotation

	% angle has been determined.

	arrowud = [arrowx(:),arrowy(:),...

		arrowz(:),ones(prod(size(arrowx)),1)]';

	h_arrow = line(arrowx,arrowy,...

		'linewidth',2,...

		'clipping','off',...

		'erasemode','background',...

		'userdata',arrowud);



	% Create labels and the radial lines.

	h_stext = uicontrol(h_fig,...

		'style','text',...

		'string','Value:',...

		'units','norm',...

		'position',[.2 .2 .3 .13]);

	h_stextval = uicontrol(h_fig,...

		'style','text',...

		'string',sprintf('%2.1f',minval),...

		'units','norm',...

		'position',[.5 .2 .3 .13],...

		'min',minval,'max',maxval);

	h_dialborder = line(1.1*cos(0:.1:pi),...

		1.1*sin(0:.1:pi),...

		'color',[0 0 0],...

        'linewidth',2,...

		'clipping','off');

	h_t(1)=text(-1.15,0,sprintf('%2.1f',minval),...

		'horizontalalignment','right');

	h_t(2)=text(1.1,0,sprintf('%2.1f',maxval),...

		'horizontalalignment','left');

	h_t(3)=text(0,1.15,sprintf('%2.1f',...

		(maxval-minval)/2+minval),...

		'horizontalalignment','center',...

		'verticalalignment','bottom');



	% Make sure all the objects that the user might click on

	% to rotate the arrow with will recognize the initial

	% click.

	set([h_ax;h_t(:);h_dialborder;h_arrow],...

	  'buttondownfcn',...

	            'uidial(''Set Calls'');uidial(''Rotate'')');

	set(gcf,'userdata',[h_arrow h_stextval])

	

elseif strcmp(command_str,'Set Calls')

	% Define when the user clicks on the dial.  Set up

	% the callbacks that should occur when the user moves or 

	% releases the mouse button.

	set(gcf,'windowbuttonupfcn',...

	        'set(gcf,''windowbuttonmotion'','''')');

	set(gcf,'windowbuttonmotionfcn','uidial(''Rotate'')');



elseif strcmp(command_str,'Rotate')

	% Define the callback that should occur when the user

	% moves the mouse button.



	% Find out where the mouse pointer is located.

	pt = get(gca,'currentpoint');

	pt = pt(1,1:2);

	% Determine the angle that the pointer is at with

	% respect to the arrow's hinge.

	deg = atan2(pt(2),-pt(1))*180/pi;

	% Make sure the arrow does not swing past limits.

	if deg < 0 & abs(deg) < 90 

		deg = 0;

	elseif deg>180 | (deg<0 & abs(deg) > 90)

		deg = 180;

	end



	% Scale angle linearly between dial's minimum

	% and maximum values.

	minval = get(h_stextval,'min');

	maxval = get(h_stextval,'max');

	val = (deg/(180-0)*((maxval-minval)))+minval;



	% Store the value in the current axes UserData

	% where it can be retrieved by an application.

	set(gca,'userdata',val);



	% Create transformed coordinate points for the

	% arrow.

	arrowud = get(h_arrow,'userdata');

	A = viewmtx(deg,90);

	newarrow = A*arrowud;

	set(h_arrow,'xdata',newarrow(1,:),'ydata',newarrow(2,:));



	% Update the value indicator.

	set(h_stextval,'string',sprintf('%2.1f',val));



end








uidial2.m

function uidial2(command_str,Argument1,Argument2)
%UIDIAL
%examples/chap7/uidial.m
%Creates a dial user interface to learn how to
%make a custom GUI object.
%
%   uidial('initialize',min,max);
%
%  The value of the dial is stored and can be 
%  gotten from the current axes userdata property.

if nargin == 0 
	command_str = 'initialize';
end

if ~strcmp(command_str,'initialize')
	handles = get(gcf,'userdata');
	h_arrow = handles(1);
	h_stextval = handles(2);
end

if strcmp(command_str,'initialize')
	% Define default min and max values of dial
	if nargin == 3
		minval = Argument1;
		maxval = Argument2;
	else
		minval = 0;
		maxval = 100;
	end

	h_fig=figure('pos',[200 200 200 200],...
		'color',[.7 .7 .7],...
		'resize','off');
	h_ax=axes('color',[.7 .7 .7],...
		'xcolor',[.7 .7 .7],...
		'ycolor',[.7 .7 .7],...
		'xtick',[],'ytick',[],...
		'xlim',[-1 1],'ylim',[0 1],...
		'aspect',[NaN 1],...
		'position',[.2 .1 .6 .8]);

	% Draw arrow in itØs minimum setting
	arrowx = [0 -1 -.85 NaN -1 -.85];
	arrowy = [0 0 -.05 NaN 0 .05];
	arrowz = [0 0  0  0   0  0];
	% Store a matrix that can be manipulated
	% and used to draw the arrow after a rotation
	% angle has been determined.
	arrowud = [arrowx(:),arrowy(:),...
		arrowz(:),ones(prod(size(arrowx)),1)]';
	h_arrow = line(arrowx,arrowy,...
		'linewidth',2,...
		'clipping','off',...
		'erasemode','background',...
		'userdata',arrowud);

	% Create Labels and the radial lines.
	h_stext = uicontrol(h_fig,...
		'style','text',...
		'string','Value:',...
		'position',[.1 .2 .4 .13],...
		'units','norm');
	h_stextval = uicontrol(h_fig,...
		'style','text',...
		'string',sprintf('%2.1f',minval),...
		'position',[.4 .2 .3 .13],...
		'units','norm',...
		'min',minval,'max',maxval);
	h_dialborder = line(1.1*cos(0:.1:pi),...
		1.1*sin(0:.1:pi),...
		'color',[0 0 0],...
		'clipping','off');
	h_t(1)=text(-1.15,0,sprintf('%2.1f',minval),...
		'horizontalalignment','right');
	h_t(2)=text(1.1,0,sprintf('%2.1f',maxval),...
		'horizontalalignment','left');
	h_t(3)=text(0,1.15,sprintf('%2.1f',...
		(maxval-minval)/2+minval),...
		'horizontalalignment','center',...
		'verticalalignment','bottom');

	% Make sure all the objects that the user might click on
	% to rotate the arrow with will recognize the initial
	% click
	set([h_ax;h_t(:);h_dialborder;h_arrow],...
	  'buttondownfcn','uidial(''Set Calls'');uidial(''Rotate'')');
	set(gcf,'userdata',[h_arrow h_stextval])
	disp('Click (and drag) anywhere along the dial radius')
	disp('to graphically move the dial pointer.')
	
elseif strcmp(command_str,'Set Calls')
	% Define when the user clicks on the dial, set up
	% the callbacks that should occur when the user moves or 
	% releases the mouse button.
	set(gcf,'windowbuttonupfcn','set(gcf,''windowbuttonmotion'','''')');
	set(gcf,'windowbuttonmotionfcn','uidial(''Rotate'')');

elseif strcmp(command_str,'Rotate')
	% Define the callback that should occur when the user
	% moves the mouse button.

	% Find out where the mouse pointer is located.
	pt = get(gca,'currentpoint');
	pt = pt(1,1:2);
	% Determine the angle that the pointer is with
	% respect to the arrrow hinge.
	deg = atan2(pt(2),-pt(1))*180/pi;
	% Make sure the arrow does not swing past limits.
	if deg < 0 & abs(deg) < 90 
		deg = 0;
	elseif deg>180 | (deg<0 & abs(deg) > 90)
		deg = 180;
	end

	% Scale angle linearly between dials minimum
	% and maximum values.
	minval = get(h_stextval,'min');
	maxval = get(h_stextval,'max');
	val = (deg/(180-0)*((maxval-minval)))+minval;

	% Store the value in the current axes UserData
	% where it can be retrieved by an application.
	set(gca,'userdata',val);

	% Create transformed coordinate points for the
	% arrow.
	arrowud = get(h_arrow,'userdata');
	A = viewmtx(deg,90);
	newarrow = A*arrowud;
	set(h_arrow,'xdata',newarrow(1,:),'ydata',newarrow(2,:));

	% Update the value indicator.
	set(h_stextval,'string',sprintf('%2.1f',val));

end







uimenusummary.m

h_fig = figure('MenuBar','none','Color','white',...

    'Name','Uimenu Demo','NumberTitle','off');



% Create top level menus.

h_menu_props = uimenu(h_fig,'label','Properties');



% Create menu items.

h_menu_axes = uimenu(h_menu_props,'label','Axes');

h_menu_line = uimenu(h_menu_props,'label','Line');

h_menu_patch = uimenu(h_menu_props,'label','Patch');

h_menu_surface = uimenu(h_menu_props,'label','Surface');

h_menu_text = uimenu(h_menu_props,'label','Text');



% Create some submenu items to the line object.

h_menu_line_col = uimenu(h_menu_line,'label','Colors');

h_menu_line_sty = uimenu(h_menu_line,'label','Styles');

h_menu_line_thk = uimenu(h_menu_line,'label','Width');



% Create submenu items to Styles.

h_menu_line_solid = uimenu(h_menu_line_sty,'label','Solid');

h_menu_line_solid = uimenu(h_menu_line_sty,'label','Dashed');

h_menu_line_solid = uimenu(h_menu_line_sty,...

		'label','Stars','separator','on');

h_menu_line_solid = uimenu(h_menu_line_sty,...

		'label','Crosses');








uimenusummary2.m

h_fig = figure('MenuBar','none','Color','white',...

    'Name','Uimenu Demo 2','NumberTitle','off');



% Create top level menus.

h_menu_edit = uimenu(h_fig,'label','Edit');

h_menu_options = uimenu(h_fig,'label','Options');

h_menu_window = uimenu(h_fig,'label','Window');





% Create some submenu items to the line object.

h_menu_edit_undo = uimenu(h_menu_edit,'label','Undo','Accelerator','Z',...

    'Enable','off');

h_menu_edit_cut = uimenu(h_menu_edit,'label','Cut','Accelerator','X',...

    'Separator','on','Enable','off');

h_menu_edit_copy = uimenu(h_menu_edit,'label','Copy','Accelerator','C',...

    'Enable','off');

h_menu_edit_paste = uimenu(h_menu_edit,'label','Paste','Accelerator','V');

h_menu_line_clear = uimenu(h_menu_edit,'label','Clear','Enable','off');
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simcube.m



x = [0 1 1 0 0  0 1 1 0 0  1 1 1 1 0 0];

y = [0 0 1 1 0  0 0 1 1 0  0 0 1 1 1 1];

z = [0 0 0 0 0  1 1 1 1 1  1 0 0 1 1 0];



plot3(x,y,z,'-k');



for i=1:length(x)

   text(x(i),y(i),z(i),[num2str(x(i)),',',num2str(y(i)),',',num2str(z(i))],...

       'verticalalignment','bottom');

        

end

axis equal

axis off

view(-37.5,30)

axis([-1 2 -1 2 0 1])






buttons.m

%Section 7.5.2.8

%Example using mouse event driven properties



fighandle = figure;



bdfcnstring = ['selecttype=get(gcf,''selectiontype'');'...

    'firstpnt = get(gcf,''currentpoint'');'...

	'figunits = get(gcf,''units'');'...

	'set(gcf,''pointer'',''crosshair'');'...

	'disp([''The selection type is:'' selecttype]);'...

	'disp([''First X: '' num2str(firstpnt(1)) '' '' figunits]);'...

	'disp([''First Y: '' num2str(firstpnt(2)) '' '' figunits]);'...

	'set(gcf,''windowbuttonmotionfcn'',bmfcnstring,'...

	'''windowbuttonupfcn'',bufcnstring);'];



bmfcnstring = [...

	'currentpnt = get(gcf,''currentpoint'');'...

	'offset = currentpnt-firstpnt;'...

	'disp([''X-Offset: '' num2str(offset(1)) '' '' figunits]);'...

	'disp([''Y-Offset: '' num2str(offset(2)) '' '' figunits]);'];



bufcnstring = ['set(gcf,''pointer'',''arrow'');'...

	'lastpnt = get(gcf,''currentpoint'');'...

	'disp([''Last X: '' num2str(lastpnt(1)) '' '' figunits]);'...

	'disp([''Last Y: '' num2str(lastpnt(2)) '' '' figunits]);'...

	'set(gcf,''windowbuttonmotionfcn'','''');'];



set(fighandle,'buttondownfcn',bdfcnstring);








c3p3.m

%This is a solution to Chapter 3 Problem 3 on page 100



tau=0:.1:2*pi;

y=sin(tau);

plot(tau,y);title('Sine of 0 to 2\pi')

xlabel('\tau = 0 to 2\pi')

for x=3:5

    

    text(3*pi/x, sin(3*pi/x),['\leftarrowsin(',...

            num2str(3*pi/x),') = ',num2str(sin(3*pi/x))])

    end

    

    








cube1.m

%cube1

x = [0 1 1 0 0 0 1 1 0 0 NaN 1 1 NaN 1 1 NaN 0 0];

y = [0 0 1 1 0 0 0 1 1 0 NaN 0 0 NaN 1 1 NaN 1 1];

z = [0 0 0 0 0 1 1 1 1 1 NaN 1 0 NaN 0 1 NaN 1 0];





cube_h = plot3(x-0.5,y-0.5,z-0.5);

axis('square');

axis([-1 1 -1 1 -1 1]*2);

view(-37.5,15);

set(cube_h,'erasemode','background');

rotation_increment = 5; % degrees

rotation_axis = [0 0 1];

rotation_origin = [0 0 0];

num_of_incr = 360/rotation_increment;

for loop = 1:num_of_incr

   rotate(cube_h,rotation_axis,...

                  rotation_increment,rotation_origin);

   drawnow;

end








cube2.m



x = [0 1 1 0 0 0 1 1 0 0 NaN 1 1 NaN 1 1 NaN 0 0];

y = [0 0 1 1 0 0 0 1 1 0 NaN 0 0 NaN 1 1 NaN 1 1];

z = [0 0 0 0 0 1 1 1 1 1 NaN 1 0 NaN 0 1 NaN 1 0];





cube_h = plot3(x-0.5,y-0.5,z-0.5);

axis('square');

axis([-1 1 -1 1 -1 1]*2);

view(-37.5,15);

set(cube_h,'erasemode','background');

rotation_increment = 5; % degrees

rotation_axis = [0 0 1];

rotation_origin = [0 0 0];

num_of_incr = 360/rotation_increment;

for loop = 1:num_of_incr

   rotate(cube_h,rotation_axis,...

                  rotation_increment,rotation_origin);

   drawnow;

end



cube2_h = line(x+1,y+1,z+1,'erasemode','background');

for loop = 1:num_of_incr

   rotate(cube_h,rotation_axis,...

                  rotation_increment,rotation_origin);

   rotate(cube2_h,rotation_axis+[1 1 0],...

                  rotation_increment,rotation_origin+1);

   drawnow;

end








cube3.m

x = [0 0 1 1 0]; y = [0 1 1 0 0]; z = zeros(size(x));

rotation_axis = [0 0 1];

rotation_origin = [0 0 0];

rotation_increment = 5; % degrees

num_of_incr = 360/rotation_increment;

s1_h = surf([x;x]-.5,[y;y]-.5,[z+0.5;z-0.5]);

set(s1_h,'erasemode','background',...

       'facecolor','none',...

       'edgecolor','g');

s2_h = surface([x;x]+1.5,[y;y]+1.5,[z+.5;z-0.5]+1.5,...

       'erasemode','background',...

       'facecolor','none',...

       'edgecolor','r');

s3_h = surface([x;x]+1.5,[y;y],[z+.5;z-0.5],...

       'erasemode','background',...

       'facecolor','none',...

       'edgecolor','b');

axis([-3 3 -3 3 -3 3]);axis('square');

for loop = 1:num_of_incr

   rotate(s1_h,rotation_axis,...

                rotation_increment,rotation_origin);

   rotate(s2_h,rotation_axis+[1 1 0],...

                rotation_increment,rotation_origin+1);

   rotate(s3_h,rotation_axis,...

                rotation_increment,rotation_origin);

   drawnow;

end








cube4.m

xx = [0 0 1 1 0 NaN 0 1 NaN 1 0;...

      0 0 1 1 0 NaN 0 1 NaN 1 0];

yy = [0 1 1 0 0 NaN 1 1 NaN 1 1;...

      0 1 1 0 0 NaN 0 0 NaN 0 0];

zz = [1 1 1 1 1 NaN 1 1 NaN 0 0;...

      0 0 0 0 0 NaN 1 1 NaN 0 0];

% Set up rotation variables.

rotation_increment = 5; % degrees

rotation_axis = [0 0 1];

rotation_origin = [0 0 0];

num_of_incr = 360/rotation_increment;

% Generate 3 translated versions of the cube.

s1_h = surf([xx]-.5,[yy]-.5,[zz]-.5);

set(s1_h, 'erasemode','background','facecolor','g');

s2_h = surface([xx]+1.5,[yy]+1.5,[zz]+1,...

       'erasemode','background','facecolor','r');

s3_h = surface([xx]+1.5,[yy],[zz]-0.5,...

       'erasemode','background','facecolor','b');

% Set up the proper proportions.

axis([-3 3 -3 3 -3 3]);axis('square');

grid off;

% Define the rotation specifications for each cube.

for loop = 1:num_of_incr

   rotate(s1_h,rotation_axis,...

                rotation_increment,rotation_origin);

   rotate(s2_h,rotation_axis+[1 1 0],...

                rotation_increment,rotation_origin+1);

   rotate(s3_h,rotation_axis,...

                rotation_increment,rotation_origin);

   drawnow;

end








fig4d20.m

%Section 4.1.11

%Figure 4.28

% create some shape data

x = [0 1 1 0 0.5 0.5];

y = [0 0 1 1 0.5 0.5];

z = [0 0 0 0 1 -1];



plot3(x,y,z,'o','markersize',4,...

    'markerfacecolor','black');

axis equal;

grid on;

for i=1:length(x)

   text(x(i),y(i),z(i),num2str(i),...

        'verticalalignment','bottom');

end



%specify the triangles

tri=[1 2 5; 

     2 3 5; 

     3 4 5; 

     4 1 5; 

     1 2 6; 

     2 3 6; 

     3 4 6; 

     4 1 6];

 

% generate the triangular mesh plot

hold on

trimesh(tri,x,y,z,'edgecolor','black');










fig4d28.m



%Section 4.1.13

%Figure 4.32

% Define the x data range

x = linspace(-3*pi,3*pi,50);

% Evaluate the function

r = cos(x).*sin(0.5*x).*exp((x.^2)/200);

% Force the minimum radius to zero.

r = r - min(r);

subplot(1,2,1);

plot(r,linspace(0,1,length(r)));

title('Radial Profile');

ylabel('z')

subplot(1,2,2);

cylinder(r);

title('Resulting Cylinder');

zlabel('z')






fig4d35.m

%Section 4.2.4

%Figure 4.37



azrange=-60:20:0;

elrange=0:30:90;

spr=length(azrange);

spc=length(elrange);

pane=0;

for az=azrange

    for el=elrange

        pane=1+pane;

        subplot(spr,spc,pane);

        [x,y,z]=peaks(20);

        mesh(x,y,z);

        view(az,el);

        tstring=['Az=',num2str(az),' El=',num2str(el)];

        title(tstring)

        axis off

    end

end








fig4d38241.m

%Section 4.3.1.1

%This will create Figure 4.38

figure(1)%the simplest slice, perpendicular to axis

[x,y,z] = meshgrid(-2:.2:2, -2:.2:2, -2:.2:2);

v = x .* exp(-x.^2 - y.^2 - z.^2);



slice(x, y, z, v,1,0,0)

axis tight

%This will create Figure 4.39

figure(2)%slicing at an angle

%first define a surface and rotate it.

%get the handle to the surface

Hslice = surf(-2:.2:2, -2:.2:2, zeros(length(z)));

%now rotate -45 degrees about the x axis

rotate(Hslice,[-1 0 0],-45);

%now use a little handle graphics to get the data that 

%defines the slice plane

xs = get(Hslice,'XData');

ys = get(Hslice,'Ydata');

zs = get(Hslice,'Zdata');

delete(Hslice); %since it is not needed



%to slice with the new plane simply...

slice(x,y,z,v,1,0,Inf)

hold on

slice(x,y,z,v,xs,ys,zs)





hold off



%20 contour lines on the x=1 plane

Hcs=contourslice(x,y,z,v,1,0,Inf,20);

set(Hcs,'EdgeColor','white', 'LineWidth', 1.0);



%20 contour lines on the 45 degree plane

Hcs=contourslice(x, y, z, v,xs,ys,zs,20);

set(Hcs,'EdgeColor','white','LineWidth', 1.0);

axis tight



%for Figure 4-41, slicing with a surface

figure(3)

slice(x, y, z, v,1,0,0)

hold on



[xss,yss,zss]=sphere;

slice(x,y,z,v,xss,yss,zss);

view([-29,12]);

axis tight

    



   






fig4d51.m

load wind

%extract a portion of the volume

[x y z u v w] =... 

    subvolume(x,y,z,u,v,w,[105,120,nan,30,2,6]);



%compute the magnitude of the wind

wind_vel = sqrt(u.^2 + v.^2 + w.^2);



%slice at the extremities

lims=volumebounds(x,y,z,u,v,w);

slice(x,y,z,wind_vel,...

[lims(1),lims(2)],[lims(4)],[lims(5)])



%specify where to put cones

xrange = linspace(lims(1),lims(2),8);

yrange = linspace(lims(3),lims(4),8);

zrange = linspace(lims(5),lims(6),6);

[cx cy cz] = meshgrid(xrange,yrange,zrange);

coneplot(x,y,z,u,v,w,cx,cy,cz,wind_vel,1);



%pretty it up a bit

shading interp

axis equal








fig7d15216.m

%Section 7.5.3.3 Axis Location and Position

%For Figures 7.15 and 7.16



figure;

plot(0:9,[0:9].^2);

a1=gca;

a2=axes;

plot(-10:10,[-10:10].^3);

set (a2,'xaxislocation','top','yaxislocation','right',...

        'color','none');

pause

numxticka1=length(get(a1,'xtick'));

xlima2=get(a2,'xlim');

xincr=(abs(diff(xlima2))/(numxticka1-1));

newxtks = [xlima2(1):xincr: xlima2(2)];

set(a2,'xtick',newxtks);

display('New XTicks set')

pause

numyticka1=length(get(a1,'ytick'));

ylima2=get(a2,'ylim');

yincr=(abs(diff(ylima2))/(numyticka1-1));

newytks = [ylima2(1):yincr: ylima2(2)];

set(a2,'ytick',newytks);

display('New YTicks set')

pause



% Rounding may not always be appropriate, but is done

% on the next two lines to make the graph look cleaner.

set(a2,'xticklabel',round(get(a2,'xtick')))

set(a2,'yticklabel',round(get(a2,'ytick')))








fig7d21.m

%Section 7.5.3.4

%Figure 7.21

%linestyledemo

figure;

% Specify black color

colorordermatrix = [0 0 0];

% Specify Line Styles

linestylematrix = ['- ';'--';': ';'-.';'x ']; 

axes('ColorOrder',colorordermatrix,...

     'LineStyleOrder',linestylematrix,...

     'NextPlot','add');

plot(xdata,ydata)








fig7d32.m

%Section 7.5.4

%Figure 7.32

%linewidth demo

figure;

axes('XLim',[0 6],'YLim',[0 7],'Box','on');

x = [1:4]; y = ones(size(x));

thicknessrange = [0.25 0.5 1 2 4 10];

for thicknessindex = 1:length(thicknessrange)

   line('XData',x,'YData',y*thicknessindex,...

         'LineWidth',thicknessrange(thicknessindex));

   text(5,thicknessindex,...

         num2str(thicknessrange(thicknessindex)));

end

title('LineWidths indicated next to line')








fig7d33.m

%Section 7.5.4

%Figure 7.33

%markersizedemo

figure;

axes('XLim',[0 6],'YLim',[0 6],'Box','on');

x = [1:4]; y = ones(size(x));

markersizerange = [1 3 6 12 20];

for markersizeindex = 1:length(markersizerange )



   line('XData',x,'YData',y*markersizeindex ,...

          'LineStyle','none','Marker','x',...

   		  'MarkerSize',markersizerange (markersizeindex ));

   text(5,markersizeindex ,...

        num2str(markersizerange (markersizeindex )));

end

title('MarkerSize  indicated next to line')








fig7d34.m

%Section 7.5.4

%Figure 7.34

%marker color demo

figure;

line_h=plot([-.5 .5 .5 -.5 -.5],[-.5 -.5 .5 .5 -.5]);

set(line_h, 'linestyle','--',...

    'color','blue',...

    'linewidth',2,...

    'marker','hexagram',...

    'markersize',15,...

    'markeredgecolor','red',...

    'markerfacecolor','yellow');

axis([-1 1 -1 1]);








fig7d35.m

%Section 7.5.5

%Figure 7.35

%rectangle demo



figure;

curvesize=[0 0.2 0.5 0.8 1];

axis([1 20 1 20]);

for inc=1:5

	rect_h(inc)=rectangle;

	set(rect_h(inc),'Position',[2,3*inc,2,2],'Curvature',curvesize(inc));

	text(5,3*inc, num2str(curvesize(inc)));

end

inc=inc+1;

rect_h(inc)=rectangle

set(rect_h(inc),'Position',[9 6 6 6],'Curvature',[0.3 0.7],...

	'LineStyle',':', 'LineWidth',2,'EdgeColor','blue',...

	'FaceColor',[1 0 0]);

text(10,4, {'Curvature = [0.3 0.7]', 'EdgeColor = blue'...

		     'FaceColor = red'});

axis equal;






fig7d36.m

%Section 7.5.6.1

%Figure 7.36

%patchdemo1



figure;

vertex = [-0.5 -0.5  0;    % Vertex 1

           0.5 -0.5  0;    % Vertex 2

           0.5  0.5  0;    % Vertex 3

          -0.5  0.5  0;    % Vertex 4

           0    0   -1];   % Vertex 5

faces = [1 2 3 4;          % Face F1

         1 2 5 NaN;        % Face F2

         2 3 5 NaN;        % Face F3

         3 4 5 NaN;        % Face F4

         4 1 5 NaN];       % Face F5

p=patch('vertices',vertex,...

        'faces',faces,...

        'facecolor',[.5 .5 .5]);

axis([-1 1 -1 1 -1 0]);

view(3);








fig7d37.m

%Section 7.5.6.2

%Figure 7.37

%patchdemo2

x = [-1 -1 1 1 -1];

y = [-1 1 1 -1 -1];

figure;

axes('XLim',[-4 4],'YLim',[-4 4],'box','on')

p1 = patch('XData',x,'YData',y,'FaceColor','blue');

text(0,0,'p1');

p2 = patch('XData',x+2,'YData',y+2,'FaceColor',[1 0 0],...

	'Edgecolor',[0 1 0],'linewidth',3, 'marker','o');

text(2,2,'p2');

p3 = patch('XData',x-2,'YData',y+2,'FaceColor','none',...

	'Edgecolor',[.3 .3 .3],'linewidth',6);

text(-2,2,'p3');

p4 = patch('XData',x+2,'YData',y-2,'FaceColor',[0 1 1],...

	'Edgecolor','none','linewidth',3,'marker','hexagram',...

	'markeredgecolor','yellow','markerfacecolor','red',...

	'markersize',20);

text(2,-2,'p4');

p5 = patch('XData',x-2,'YData',y-2,'FaceColor',[0 1 1],...

	'Edgecolor',[1 1 1],'linewidth',50);

text(-2,-2,'p5');






fig7d425.m

%Section 7.4.3.3 Clipping

%Figures 7.4 and 7.5

x = -5:15;

LineHandles = plot(x,x+5,'--r',x,x-3,'g');

TextHandles(1) = text(6.5,5,...

        'This String will have clipping off');

TextHandles(2) = text(-1,3.5,...

        'This String will have clipping on');

axis([0 10 0 10]);



set(LineHandles(1),'Clipping','off');

set(TextHandles(2),'Clipping','on');








fig7d45.m

%Section 7.5.9

%Figure 7.45

%text demo 3

axis([0 10 0 10])





text(0,9,'fontweight=bold, fontname=times new roman, fontsize=12, fontangle=normal',...

    'FontWeight','bold', 'Fontname','times new roman', 'FontSize',12,'FontAngle','normal');



text(0,7,'fontweight=light, fontname=times new roman , fontsize=10, fontangle=normal',...

    'FontWeight','light','Fontname','times new roman', 'FontSize',10,'FontAngle','normal');



text(0,5,'fontweight=normal, fontname=arial, fontsize=12, fontangle=normal',...

    'Fontname','arial', 'FontSize',12,'FontAngle','normal');



text(2,3,{'fontweight=bold, fontname=brush script, fontsize=12',...

        'fontangle=normal, color=red'},...

    'FontWeight','bold', 'Fontname','brush script', 'FontSize',12,...

    'FontAngle','normal','Color','red');








fig7d46.m

%Section 7.5.9

%Figure 7.46

%textdemo4



text(1.5,4.5,'HorizontalAlignment=left','horiz','left')

text(1.5,3.5,'HorizontalAlignment=center','horiz','center')

text(1.5,2.5,'HorizontalAlignment=right','horiz','right')

hold on

plot([1.5*ones(1,3)],[2.5:4.5],'+','markersize',30)

text(2.5,5,'VerticalAlignment=top','vert','top')

text(2.5,4,'VerticalAlignment=cap','vert','cap')

text(2.5,3,'VerticalAlignment=middle','vert','mid')

text(2.5,2,'VerticalAlignment=baseline','vert','base')

text(2.5,1,'VerticalAlignment=bottom','vert','bottom')

plot([2.5*ones(1,5)],[1:5],'+','markersize',30)

set(gca,'vis','off')

axis([0 5 0 6]);axis(axis)








fig7d47248.m

%findobjdemo1



x = 0:.1:10;

plot(x,sin(x).*exp(-.5*x));

xlabel('x'); ylabel('y')

text(4,.3,'y = sin(x).*exp(-.5x)');

text(5,-0.1,'Here''s the maximum');



pause



line_handle = findobj('type','line');

set(line_handle,'linestyle','--');

text_handle = findobj('string','Here''s the maximum');

set(text_handle,'string','Here''s the minimum');








fig7d6.m

%Section 7.4.3.7

%Figure 7.6



h_butt = uicontrol('Style','pushbutton','Position',[20 40 60 20]);





h_a1=axes('Position',[.2,.1,.7,.8]);

axis([0,10,0,10]);

TextHandles(1) = text(5,5,...

        'Text object Selected "off"');

TextHandles(2) = text(5,3,...

        'Text object Selected "on"');



h_a2=axes('Position',[.5 .6 .3 .2])    



set(TextHandles(2),'Selected','on');



set(h_a1,'Selected','on');



set(h_butt,'Selected','on');








fig8d15.m

%Section 8.2.7

%Figure 8.15



figure

view(3);

[x,y,z] = sphere(20);

% Create the outer sphere.

z1 = z; 

z1(:,1:4) = NaN*z1(:,1:4);

c1 = ones(size(z1));

s1 = surface(2*x,2*y,2*z1,c1);

% Create the inner sphere.

z2 = z;

c2 = 2*ones(size(z2));

c2(:,1:4) = 3*ones(size(c2(:,1:4)));

s2 = surface(1.5*x,1.5*y,1.5*z2,c2);

colormap([0 1 0;.5 0 0; 1 0 0]);

grid;

set(gca,'box','on');








fig8d31.m

%Section 8.3.3.4

%Figure 8.31

n = 20;

t = (0:n)'*2*pi/n;

x = [cos(0:.1:(2*pi)) ones(1,10) -1 -2 -3]+3;

y = [fliplr(1:(length(x)-3)) 1 1 1 ];

t = (0:20)'*2*pi/20;

xx = cos(t)*x;

yy = sin(t)*x;

zz = ones(n+1,1)*y;

[nx,ny,nz] = surfnorm(xx,yy,zz);

reflectance = specular(nx,ny,nz,[-80.5 30],...

[-70 -30],5) + diffuse(nx,ny,nz,[230 40]);

figure('colormap',hot);

surface_handle = surf(xx,yy,zz,reflectance);

shading interp

axis('off');










fig8d32234.m

%Section 8.3.4

%Figures 8.32 and 8.33

% Define the coordinates of the virtual line

x = 0:.02:5*pi;

y = sin(x);

z = 0*x;

% Define the color values of each coordinate of the line

c = y;

% Generate the plot.

figure;

surface([x;x],[y;y],[z;z],[c;c],...

	'facecolor','none',...

	'edgecolor','flat',...

	'linewidth',3);

set(gca,'box','on','xtick',[0:pi:5*pi],...

	    'xticklabels','0|pi|2pi|3pi|4pi|5pi');

axis([0 5*pi -1.1 1.1])

grid on



%This is for the multi-colored spiral plot

u = 0:.2:4*pi;

x = cos(u);

y = sin(u);

z = u;

figure('colormap',cool(64));

h_surface = surface([0*x;x],[0*y;y],[z;z],...

	'facecolor','none',...

	'edgecolor','flat',...

	'meshstyle','row',...

	'linewidth',3);

view([-40 40]);

grid on

%grid on;








makergb.m

function rgbimage = makergb(bitmap,colormap)

%RGBIMAGE = MAKERGB(BITMAP,COLORMAP)

%where BITMAP is a NxM array, and COLORMAP is a Cx3 double array

%RGBIMAGE will be a NxMx3 double array.

%Makes an RGB image from an array of indexes (BITMAP)into 

%a color map (COLORMAP).

%MAKERGB will determine if the index array needs to be 1-shifted.





bitmap=double(bitmap);

if min(bitmap(:))==0 %is it 0 indexed?

    offset=1

else

    offset=0

end



[rows,cols]=size(bitmap);



for L=1:3

    layer=colormap(bitmap(:,:)+offset,L);

    layer=reshape(layer,rows,cols);

    rgbimage(:,:,L)=layer;

    

end


















movie9d1.m

%Section 9.1

%Frame-by-frame capture and playback

%mov9d1

% Create a figure that is a little smaller than 

% standard to save

% memory since we will be storing 20 frames.  

%If your machine has a lot of memory you do

% not have to define the position property of the %figure.

movie_figure = figure('position',[100 250 300 200]);

M = moviein(15);

[x,y] = meshgrid([-10:0.5:10]);

for frame_number = 1:15

   z = bessel(0,( frame_number-1)*.2 + sqrt(x.^2 + y.^2));

   surf(x,y,z);

   axis([-10 10 -10 10 -.5 1]);

   % Bring the figure to the front before taking a snapshot.

   figure(movie_figure);

   M(:,frame_number) = getframe;

end



frame_order = [1:15 14:-1:1];

number_repeats = 5;

movie(M,[number_repeats frame_order]);








MRIViz.m

%Displaying Images of MRI Data

%To display one of the MRI images, use the image command, indexing into the data array to obtain the eighth image. Then adjust

%axis scaling, and install the MRI colormap, which was loaded along with the data.

subplot(2,2,1);

load mri

D = squeeze(D);

image_num = 4;

image(D(:,:,image_num))

axis image

colormap(map)



%Save the x and y axis limits for use in the next part of the example.



x = xlim;

y = ylim;

%Displaying a 2-D Contour Slice

%You can treat this MRI data as a volume because it is a collection of slices taken progressively through the 3-D object. Use

%contourslice to display a contour plot of a slice of the volume. To create a contour plot with the same orientation and size as the

%image created in the first part of this example, adjust the y-axis direction (axis), set the limits (xlim, ylim), and set the data aspect

%ratio (daspect).

subplot(2,2,2);

contourslice(D,[],[],image_num)

axis ij;

xlim(x);

ylim(y);

daspect([1,1,1]);

colormap('default');



%Displaying 3-D Contour Slices

%Unlike images, which are 2-D objects, contour slices are 3-D objects that you can display in any orientation. For example, you can

%display four contour slices in a 3-D view. To improve the visibility of the contour line, increase the LineWidth to 2 points (one point

%equals 1/72 of an inch).

subplot(2,2,3);

phandles = contourslice(D,[],[],[1,12,19,27],8);

view(3); axis tight

set(phandles,'LineWidth',2)







%You can use isosurfaces to display the overall structure of a volume. When combined with isocaps, this technique can reveal

%information about data on the interior of the isosurface.



%First, smooth the data with smooth3; then use isosurface to calculate the isodata. Use patch to display this data as a graphics

%object.



subplot(2,2,4);

Ds = smooth3(D);

hiso = patch(isosurface(Ds,5),...

    'FaceColor',[1,.75,.65],...

    'EdgeColor','none');



%Adding an Isocap to Show a Cutaway Surface

%Use isocaps to calculate the data for another patch that is displayed at the same isovalue (5) as the surface. Use the unsmoothed

%data (D) to show details of the interior. You can see this as the sliced-away top of the head.



hcap = patch(isocaps(D,5),...

    'FaceColor','interp',...

    'EdgeColor','none');

colormap(map)



%Defining the View

%Define the view and set the aspect ratio (view, axis, daspect).



view(45,30) 

axis tight 

daspect([1,1,.4])



%Add lighting and recalculate the surface normals based on the gradient of the volume data, which produces smoother lighting

%(camlight, lighting, isonormals). Increase the AmbientStrength property of the isocap to brighten the coloring without

%affecting the isosurface. Set the SpecularColorReflectance of the isosurface to make the color of the specular reflected light

%closer to the color of the isosurface; then set the SpecularExponent to reduce the size of the specular spot.



lightangle(45,30); 

set(gcf,'Renderer','zbuffer'); lighting phong

isonormals(Ds,hiso)

set(hcap,'AmbientStrength',.6)

set(hiso,'SpecularColorReflectance',0,'SpecularExponent',50)



colormap('default');






norm2fig.m

function normtxtpos = norm2fig(normfigpos)

 



% Pass this function normalized  positions in the figure

% and it will return the positions relative to the current

% axes.

%

%   passing a [0 0] would refer to lower left corner

%   passing a [0 1] would refer to top left corner

%   passing a [1 0] would refer to lower right corner

%   passing a [1 1] would refer to top right corner



apos = get(gca,'pos');

normtxtpos = [(normfigpos(1,1)-apos(1,1))/apos(1,3) ,...

              (normfigpos(1,2)-apos(1,2))/apos(1,4)];








pielabel.m



function pielabel(h,string_cell)

%PIELABEL(H,STRING_CELL) will add the labels in STRING_CELL to the pie chart with handle H.

%Example:

%gov_rev_percentages = [31 36 18 8 7];

%h = pie(gov_rev_percentages);

%pielabel(h,{'Soc. Sec. Tax: ';'Personal Income Tax: ';...

%       'Borrowing: ';'Corporate Taxes: ';'Misc: '});



%The pie chart's labels are text graphics objects. To modify the text strings and their positions, first get the objects' strings

%and extents. Braces around a property name ensure that get outputs a cell array, which is important when working with

%multiple objects.



textObjs = findobj(h,'Type','text');    %get the current text objects

oldStr = get(textObjs,{'String'});      %get all the current strings

val = get(textObjs,{'Extent'});         %get the extents of the text

oldExt = cat(1,val{:});



%Create the new strings, then set the text objects' String properties to the new strings.

New_Labels = string_cell

newStr = strcat(New_Labels,oldStr);

set(textObjs,{'String'},newStr)



%Find the difference between the widths of the new and old text strings and change 

%the values of the Position properties.



val1 = get(textObjs, {'Extent'});

newExt = cat(1, val1{:});

offset = sign(oldExt(:,1)).*(newExt(:,3)-oldExt(:,3))/2;

pos = get(textObjs, {'Position'});

textPos =  cat(1, pos{:});

textPos(:,1) = textPos(:,1)+offset;

set(textObjs,{'Position'},num2cell(textPos,[3,2]))






Plate10.m

%This is the multiple color map demo

%used for Plate 10



% Define color map.

colormap([hsv(32);hot(32);cool(32);flag(32)]);



% Create first subplot using first quarter of color map.

subplot(221)

x = 0:.02:5*pi;

y = sin(x);

surface([x;x],[y;y],0*[x;x],[y;y],...

        'face','none','edge','flat','linewidth',3)

set(gca,'box','on');

axis([min(x) max(x) [min(y) max(y)]*1.1 ])

% Use equations found at beginning of this section.

cmin = min(y) - (1 - 1)*(max(y)-min(y))/(32 - 1 + 1);

cmax = min(y) + (128 - 1 + 1)*(max(y)-min(y))/(32 - 1 + 1);

caxis([cmin cmax]);



% Create second subplot using middle half of color map.

subplot(222)

u = 0:.02:10*pi;

x = exp(-.05*u).*cos(u);

y = exp(-.05*u).*sin(u);

z = .05*u;

surface([x;x],[y;y],[z;z],[z;z],...

        'face','none','edge','flat','linewidth',2)

view(3);axis([-1 1 -1 1 0 1.5]);grid;

set(gca,'ztick',[0 .5 1 1.5])

% Use equations found at beginning of this section.

cmin = min(z)- (33 - 1)*(max(z)-min(z))/(96 - 33 + 1);

cmax = min(z)+ (128 - 33 + 1)*(max(z)-min(z))/(96 - 33 + 1);

caxis([cmin cmax]);



% Create third subplot using last quarter of color map.

subplot(223)

x = 0:.2:5*pi;

y = sin(x);

surface([x;x],[y;y],0*[x;x],[y;y],...

        'face','none','edge','flat','linewidth',.5)

set(gca,'box','on');

axis([0 5*pi -1.1 1.1])

% Use equations found at beginning of this section.

cmin = min(y)- (97 - 1)*(max(y)-min(y))/(128 - 97 + 1);

cmax = min(y)+ (128 - 97 + 1)*(max(y)-min(y))/(128 - 97 + 1);

caxis([cmin cmax])

caxis([-7 1])



% Create fourth subplot using middle half of color map..

subplot(224)

u = 0:.02:10*pi;

x = exp(-.05*u).*cos(u);

y = exp(-.05*u).*sin(u);

z = .05*u;

surface([x;x],[y;y],[z;z],[z;z],...

        'face','none','edge','flat','linewidth',2)

% Use equations found at beginning of this section.

cmin = min(z) - (33 - 1)*(max(z)-min(z))/(96 - 33 + 1);

cmax = min(z) + (128 - 33 + 1)*(max(z)-min(z))/(96 - 33 + 1);

caxis([cmin cmax])

set(gca,'box','on');








polardb.m

function hpol = polardb(theta,rho,line_style,rho_axis)
%POLARDB	Polar coordinate plot where radial scale is in decibels.
%	POLARDB(THETA, RHO) makes a plot using polar decibel coordinates of
%	the angle THETA, in radians, versus the radius 10log(RHO).
%	POLARDB(THETA,RHO,S) uses the linestyle specified in string S.
%	See PLOT for a description of legal linestyles.
%	POLARDB(THETA,RHO,S,RHO_AXIS) uses RHO_AXIS to define the minimum.
%	and maximum ring limits of RHO.
%
%	See also POLAR PLOT, LOGLOG, SEMILOGX, SEMILOGY.

%	Copyright (c) 1984-94 by The MathWorks, Inc.
%	Modified 2/1/95 Patrick Marchand : To include dB capability

if nargin < 1
	error('Requires 2 3 or 4 input arguments.')
elseif nargin == 2 
	if isstr(rho)
		line_style = rho;
		rho = theta;
		[mr,nr] = size(rho);
		if mr == 1
			theta = 1:nr;
		else
			th = (1:mr)';
			theta = th(:,ones(1,nr));
		end
	else
		line_style = 'auto';
	end
elseif nargin == 1
	line_style = 'auto';
	rho = theta;
	[mr,nr] = size(rho);
	if mr == 1
		theta = 1:nr;
	else
		th = (1:mr)';
		theta = th(:,ones(1,nr));
	end
end
if nargin < 4
  rho_axis = [];
end
if isstr(theta) | isstr(rho)
	error('Input arguments must be numeric.');
end
if any(size(theta) ~= size(rho))
	error('THETA and RHO must be the same size.');
end

% get hold state
cax = newplot;
next = lower(get(cax,'NextPlot'));
hold_state = ishold;

% get x-axis text color so grid is in same color
tc = get(cax,'xcolor');

% Hold on to current Text defaults, reset them to the
% Axes' font attributes so tick marks use them.
fAngle  = get(cax, 'DefaultTextFontAngle');
fName   = get(cax, 'DefaultTextFontName');
fSize   = get(cax, 'DefaultTextFontSize');
fWeight = get(cax, 'DefaultTextFontWeight');
set(cax, 'DefaultTextFontAngle',  get(cax, 'FontAngle'), ...
	'DefaultTextFontName',   get(cax, 'FontName'), ...
	'DefaultTextFontSize',   get(cax, 'FontSize'), ...
	'DefaultTextFontWeight', get(cax, 'FontWeight') )

% only do grids if hold is off
if ~hold_state

% make a radial grid
	hold on;
	hhh=plot([ (theta(:))],[ 10*log10(abs(rho(:)))]);
	v = [get(cax,'xlim') get(cax,'ylim')];
	ticks = length(get(cax,'ytick'));
	delete(hhh);
% check radial limits and ticks
	rmin = v(3); rmax = v(4); rticks = ticks-1;
	if rticks > 5	% see if we can reduce the number
		if rem(rticks,2) == 0
			rticks = rticks/2;
		elseif rem(rticks,3) == 0
			rticks = rticks/3;
		end
	end

% define a circle
	th = 0:pi/50:2*pi;
	xunit = cos(th);
	yunit = sin(th);
% now really force points on x/y axes to lie on them exactly
    inds = [1:(length(th)-1)/4:length(th)];
    xunits(inds(2:2:4)) = zeros(2,1);
    yunits(inds(1:2:5)) = zeros(3,1);

	if length(rho_axis) ~= 0
	   rmin = min([rho_axis(1) rmin]);
	   rmax = max([rho_axis(2) rmax]);
	end

	if length(rho_axis) > 2
	   rinc =  rho_axis(3);
	else
	   rinc = (rmax-rmin)/rticks;
	end

	rvals = ((rmin:rinc:rmax));
	if ~any(rvals == rmax)
	   rmax = max(rvals)+rinc;
	   rvals = [rvals rmax];
	end

	for i= rvals
		plot(xunit*(i-rmin),yunit*(i-rmin),'-','color',tc,'linewidth',1);
		text(0,round((i-rmin+rinc/20) ) ,...
		['  ' num2str(round(i*1e4)/1e4)],'verticalalignment','bottom' );
	end
% plot spokes
	th = (1:6)*2*pi/12;
	cst = cos(th); snt = sin(th);
	cs = [-cst; cst];
	sn = [-snt; snt];
	plot((rmax-rmin)*cs,(rmax-rmin)*sn,'-','color',tc,'linewidth',1);
% annotate spokes in degrees
	rt = 1.1*(rmax-rmin);
	for i = 1:max(size(th))
		text(rt*cst(i),rt*snt(i),int2str(i*30),'horizontalalignment','center' );
		if i == max(size(th))
			loc = int2str(0);
		else
			loc = int2str(180+i*30);
		end
		text(-rt*cst(i),-rt*snt(i),loc,'horizontalalignment','center' );
	end

% set viewto 2-D
	view(0,90);
% set axis limits
	axis((rmax-rmin)*[-1 1 -1.1 1.1]);
end

% Reset defaults.
set(cax, 'DefaultTextFontAngle', fAngle , ...
	'DefaultTextFontName',   fName , ...
	'DefaultTextFontSize',   fSize, ...
	'DefaultTextFontWeight', fWeight );

% transform data to Cartesian coordinates.
xx = (( -rmin)+10*log10(rho)).*cos(theta);
yy = (( -rmin)+10*log10(rho)).*sin(theta);

% plot data on top of grid
if strcmp(line_style,'auto')
	q = plot(xx,yy);
else
	q = plot(xx,yy,line_style);
end
if nargout > 0
	hpol = q;
end
if ~hold_state
	axis('equal');axis('off');
end

% reset hold state
if ~hold_state, set(cax,'NextPlot',next); end







polardb2.m

function hpol = polar(theta,rho,line_style)

%POLAR  Polar coordinate plot.

%   POLAR(THETA, RHO) makes a plot using polar coordinates of

%   the angle THETA, in radians, versus the radius RHO.

%   POLAR(THETA,RHO,S) uses the linestyle specified in string S.

%   See PLOT for a description of legal linestyles.

%

%   See also PLOT, LOGLOG, SEMILOGX, SEMILOGY.



%   Copyright 1984-2001 The MathWorks, Inc. 

%   $Revision: 5.21 $  $Date: 2001/04/15 12:00:43 $

%   Modified by Thomas Holland 2002/02/07



if nargin < 1

    error('Requires 2 or 3 input arguments.')

elseif nargin == 2 

    if isstr(rho)

        line_style = rho;

        rho = theta;

        [mr,nr] = size(rho);

        if mr == 1

            theta = 1:nr;

        else

            th = (1:mr)';

            theta = th(:,ones(1,nr));

        end

    else

        line_style = 'auto';

    end

elseif nargin == 1

    line_style = 'auto';

    rho = theta;

    [mr,nr] = size(rho);

    if mr == 1

        theta = 1:nr;

    else

        th = (1:mr)';

        theta = th(:,ones(1,nr));

    end

end

if isstr(theta) | isstr(rho)

    error('Input arguments must be numeric.');

end

if ~isequal(size(theta),size(rho))

    error('THETA and RHO must be the same size.');

end



% get hold state

cax = newplot;

next = lower(get(cax,'NextPlot'));

hold_state = ishold;



% get x-axis text color so grid is in same color

tc = get(cax,'xcolor');

ls = get(cax,'gridlinestyle');



% Hold on to current Text defaults, reset them to the

% Axes' font attributes so tick marks use them.

fAngle  = get(cax, 'DefaultTextFontAngle');

fName   = get(cax, 'DefaultTextFontName');

fSize   = get(cax, 'DefaultTextFontSize');

fWeight = get(cax, 'DefaultTextFontWeight');

fUnits  = get(cax, 'DefaultTextUnits');

set(cax, 'DefaultTextFontAngle',  get(cax, 'FontAngle'), ...

    'DefaultTextFontName',   get(cax, 'FontName'), ...

    'DefaultTextFontSize',   get(cax, 'FontSize'), ...

    'DefaultTextFontWeight', get(cax, 'FontWeight'), ...

    'DefaultTextUnits','data')



% only do grids if hold is off

if ~hold_state



% make a radial grid

    hold on;

    maxrho = max(10*log10(abs(rho(:))))

    %hhh=plot([-maxrho -maxrho maxrho maxrho],[-maxrho maxrho maxrho -maxrho]);

    %set(gca,'dataaspectratio',[1 1 1],'plotboxaspectratiomode','auto')

    %v = [get(cax,'xlim') get(cax,'ylim')];

    %ticks = sum(get(cax,'ytick')>=0);

    %delete(hhh);

    hhh=plot([ (theta(:))],[ 10*log10(abs(rho(:)))]);

	v = [get(cax,'xlim') get(cax,'ylim')];

	ticks = length(get(cax,'ytick'));

	%delete(hhh);

    

% check radial limits and ticks

    rmin = 0; rmax = v(4); rticks = max(ticks-1,2);

    if rticks > 5   % see if we can reduce the number

        if rem(rticks,2) == 0

            rticks = rticks/2;

        elseif rem(rticks,3) == 0

            rticks = rticks/3;

        end

    end



% define a circle

    th = 0:pi/50:2*pi;

    xunit = cos(th);

    yunit = sin(th);

% now really force points on x/y axes to lie on them exactly

    inds = 1:(length(th)-1)/4:length(th);

    xunit(inds(2:2:4)) = zeros(2,1);

    yunit(inds(1:2:5)) = zeros(3,1);

% plot background if necessary

    if ~isstr(get(cax,'color')),

       patch('xdata',xunit*rmax,'ydata',yunit*rmax, ...

             'edgecolor',tc,'facecolor',get(gca,'color'),...

             'handlevisibility','off');

    end



% draw radial circles

    c82 = cos(82*pi/180);

    s82 = sin(82*pi/180);

    rinc = (rmax-rmin)/rticks;

    for i=(rmin+rinc):rinc:rmax

        hhh = plot(xunit*i,yunit*i,ls,'color',tc,'linewidth',1,...

                   'handlevisibility','off');

        text((i+rinc/20)*c82,(i+rinc/20)*s82, ...

            ['  ' num2str(i)],'verticalalignment','bottom',...

            'handlevisibility','off')

    end

    set(hhh,'linestyle','-') % Make outer circle solid



% plot spokes

    th = (1:6)*2*pi/12;

    cst = cos(th); snt = sin(th);

    cs = [-cst; cst];

    sn = [-snt; snt];

    plot((rmax-rmin)*cs,(rmax-rmin)*sn,ls,'color',tc,'linewidth',1,...

         'handlevisibility','off')



% annotate spokes in degrees

    rt = 1.1*(rmax-rmin);

    for i = 1:length(th)

        text(rt*cst(i),rt*snt(i),int2str(i*30),...

             'horizontalalignment','center',...

             'handlevisibility','off');

        if i == length(th)

            loc = int2str(0);

        else

            loc = int2str(180+i*30);

        end

        text(-rt*cst(i),-rt*snt(i),loc,'horizontalalignment','center',...

             'handlevisibility','off')

    end



% set view to 2-D

    view(2);

% set axis limits

    axis((rmax-rmin)*[-1 1 -1.15 1.15]);

end



% Reset defaults.

set(cax, 'DefaultTextFontAngle', fAngle , ...

    'DefaultTextFontName',   fName , ...

    'DefaultTextFontSize',   fSize, ...

    'DefaultTextFontWeight', fWeight, ...

    'DefaultTextUnits',fUnits );



% transform data to Cartesian coordinates.

xx = ((-rmin)+10*log10(rho)).*cos(theta);

yy = ((-rmin)+10*log10(rho)).*sin(theta);



% plot data on top of grid

if strcmp(line_style,'auto')

    q = plot(xx,yy);

else

    q = plot(xx,yy,line_style);

end

if nargout > 0

    hpol = q;

end

if ~hold_state

    set(gca,'dataaspectratio',[1 1 1]), axis off; set(cax,'NextPlot',next);

end

set(get(gca,'xlabel'),'visible','on')

set(get(gca,'ylabel'),'visible','on')












rotcube.m

function x=rotcube()

%CUBE is a function to demonstrate run-time animation.

%A cube is drawn with lines.

%Use the arrow keys to control the direction of rotation.

%ESC key to exit.



x = [0 1 1 0 0 0 1 1 0 0 NaN 1 1 NaN 1 1 NaN 0 0];

y = [0 0 1 1 0 0 0 1 1 0 NaN 0 0 NaN 1 1 NaN 1 1];

z = [0 0 0 0 0 1 1 1 1 1 NaN 1 0 NaN 0 1 NaN 1 0];

rot_axis = [0 0 1];

rot_org = [0 0 0];



cube_h = plot3(x-0.5,y-0.5,z-0.5);



axis('square');

axis([-1 1 -1 1 -1 1]*2);

view=[-37,30];



set(cube_h,'erasemode','background');

rotation_increment = 5;



rotation_axis = rot_axis;

rotation_origin = rot_org;



fig_h=gcf;



key = 28;



while key ~= 27 % watch for ESC key

    if waitforbuttonpress == 1; 

    key = get(fig_h,'currentcharacter');

    

     switch key

        case 28    % <- rotate left

            rotation_axis = [0 0 1];

            rotation_increment = -5;

        case 29    % -> rotate right

            rotation_axis = [0 0 1];

            rotation_increment = 5;

        case 30    %  rotate up

            rotation_axis = [0 1 0];

            rotation_increment = 5;

        case 31    %  rotate down

            rotation_axis = [0 1 0];

            rotation_increment = -5;

        case 27 % ESC key

        close(fig_h)

        clear

        return

        

    end

    

        rotate(cube_h,rotation_axis,...

            rotation_increment,rotation_origin);

        drawnow;

    end

    

end

    

x=key;

%close(fig_h);











sidetext.m

function sidetext(string,p1,v1,p2,v2,p3,v3,p4,v4,p5,v5,p6,v6,p7,v7,p8,v8)
%SIDETEXT	label's the right hand side of an axes for 2-D and 3-D plots.
% 	SIDETEXT('text') adds text beside the X-axis on the current axis.
%
%	SIDETEXT('text','Property1',PropertyValue1,'Property2',PropertyValue2,...)
%	sets the values of the specified properties of the sidetext.
%
%	See also XLABEL, YLABEL, ZLABEL, TITLE, TEXT.

%	Copyright (c) 1984-94 by The MathWorks, Inc.
%	Modified 12/15/95 to put text on side of axes - PRM

ax = gca;
h = findobj(get(ax,'children'),'tag','side_text_string');

if h
  set(h,'string',string);
else
  h = text(1.05,0.5,string,'units','normalized','Vertical','middle',...
	'Horizontal','center','rotation',90,'tag','side_text_string');
end

%Over-ride text objects default font attributes with
%the Axes' default font attributes.
set(h, 'FontAngle',  get(ax, 'FontAngle'), ...
	'FontName',   get(ax, 'FontName'), ...
	'FontSize',   get(ax, 'FontSize'), ...
	'FontWeight', get(ax, 'FontWeight'), ...
	'string',     string);

if nargin > 1,
	if (nargin-1)/2-fix((nargin-1)/2),
		error('Incorrect number of input arguments')
	end
	cmdstr='';
	for i=1:(nargin-1)/2-1,
		cmdstr = [cmdstr,'p',num2str(i),',v',num2str(i),','];
	end
	cmdstr = [cmdstr,'p',num2str((nargin-1)/2),',v',num2str((nargin-1)/2)];
	eval(['set(h,',cmdstr,');']);
end







boxdemo.m

%Section 7.5.3.1

%Figure 7.8

%Box property demo



subplot(2,2,1);axis;

title('Box Off 2D')

subplot(2,2,2);axis;view(3);

title('Box Off 3D')

subplot(2,2,3);axis;

set(gca,'Box','on');

title('Box On 2D')

subplot(2,2,4);axis;view(3);

set(gca,'Box','on');

title('Box On 3D')






slowani.m

%slow animation

t = 0:0.1:10*pi;

x = t.*sin(t);

y=t.*cos(t);

axislimits = [min(x) max(x) min(y) max(y) min(t) max(t)];

figure

tic

for indexnumber = 1:length(x)

   plot3(x(indexnumber ),y(indexnumber ),...

         t(indexnumber ),'bo');

   axis(axislimits);

   drawnow;

end

toc



%a little faster

figure

axis(axislimits);



line_handle = line(x(1 ),y(1 ),t(1 ),...

         'color','c',...

         'linestyle','o');

tic     

for indexnumber = 2:length(x)

   delete(line_handle );

   line_handle = line(x(indexnumber ),...

                      y(indexnumber ),...

                      t(indexnumber ),...

                      'color','b',...

                      'linestyle','o');

   drawnow;

end

toc



%faster yet

figure

line_handle = plot3(x(1 ),y(1 ),t(1 ),'bo');

set(line_handle,'erasemode','xor');

axis(axislimits);

tic

for indexnumber = 2:length(x)

   set(line_handle ,'xdata',x(indexnumber ),...

                     'ydata',y(indexnumber ),...

                     'zdata',t(indexnumber ));

   drawnow;

end

toc










subplotdemo.m

%demonstrates other subplot arrangements

%two on the first row, one on the second

figure(1)

subplot(2,2,1),ezplot('sin(x)')

subplot(2,2,2),ezplot('cos(x)')

subplot(2,1,2),ezplot('sin(x)^2/x^2')



%one on the first row, two on the second

figure(2)

subplot(2,2,3),ezplot('sin(x)')

subplot(2,2,4),ezplot('cos(x)')

subplot(2,1,1),ezplot('sin(x)^2/x^2')



%one on the left, then two on the right

figure(3)

subplot(2,2,2),ezplot('sin(x)')

subplot(2,2,4),ezplot('cos(x)')

subplot(1,2,1),ezplot('sin(x)^2/x^2')






toptitle.m

function toptitle(string)
% TOPTITLE
%
% Places a title over a set of subplots.
% Best results are obtained when all subplots are
% created and then toptitle is executed.
%
% Usage:
%            h = toptitle('title string')
%          

% Patrick Marchand (prmarchand@nvidia.com)
% Thomas Holland (tholland@infinityassociates.com)

titlepos = [.5 1]; % normalized units.

ax = gca;
set(ax,'units','normalized');
axpos = get(ax,'position');

offset = (titlepos - axpos(1:2))./axpos(3:4);

text(offset(1),offset(2),string,'units','normalized',...
     'horizontalalignment','center','verticalalignment','middle');

% Make the figure big enough so that when printed the
% toptitle is not cut off nor overlaps a subplot title.
h = findobj(gcf,'type','axes');
set(h,'units','points');
set(gcf,'units','points')
figpos = get(gcf,'position');
set(gcf,'position',figpos + [0 0 0 15])
set(gcf,'units','pixels');
set(h,'units','normalized');





File Attachment
GUIBookMFiles.zip
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PPRREEFFAACCEE

First, I must say that it was quite an honor to be asked to update Patrick’s 
seminal work. The original “Graphics and GUIs with MATLAB” was my 
introduction to the graphics capabilities of MATLAB , and it was by that book 
that I came to a working knowledge of handle graphics. That was way back 
with MATLAB 4. Now we are at MATLAB 6 (release 13 is in beta release at the 
time of this writing) and MATLAB is more capable, powerful, and user friendly 
than ever – a far cry from MATLAB 4! 

As with Patrick’s earlier text, this book is intended to present a 
comprehensive discussion of the MATLAB graphics system. This third edition 
builds on the earlier editions by including the objects and properties new to 
MATLAB version 6 and includes the new features of the MATLAB 
environment. The organization of this edition is a little different as well. In 
teaching MATLAB, I have observed that not everyone wants to be a handle 
graphics guru (but they don’t know what they are missing!). Many just want to 
be able to plot their data quickly and effectively. MATLAB has addressed this 
desire by expanding, for instance, the Figure Window tools, and providing the 
more casual user with a tool to modify many figure properties. Consequently, 
most of the first half of this book requires little or no knowledge of handle 
graphics. The second half thoroughly covers the concept of handle graphics, 
and how to create graphical user interfaces.  

As with the earlier editions, this book has been written to be useful to 
anyone, regardless of their level of expertise with MATLAB. If you know 
nothing about MATLAB programming, you can learn much by starting at the 
beginning and working through the examples in this book. If you are already 
conversant with the MATLAB programming language, you will find a great 
deal of information here that is not readily apparent in the MATLAB 
documentation. However, I must point out that MATLAB’s documentation has 
improved with the product and you are encouraged to delve into the 
documentation – but be aware, there is a lot of it!  

The folks at the MathWorks continue to improve MATLAB, and its 
capabilities have grown well beyond the scope of a single text. New objects 
have been created for the latest versions, and the integrated development 
environment is more capable and customizable than ever.  

MATLAB is a registered trademark of 
The MathWorks Inc. 

For production information, please contact: 
The MathWorks, Inc. 

3 Apple Hill Drive 
Natick, MA 01760-2098, USA 

Phone: (508) 647-7000 
Email: info@mathworks.com

www.mathworks.com 
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The code in this text is written with version 6 in mind, so some of it will not 
work with earlier versions. The code has been written for clarity, not 
necessarily efficiency, and the functions kept as simple as possible so that you 
can focus on the graphics aspects. You can download any of the code in this 
text by going to  

 http://www.infinityassociates.com  

and following the links for this book. You will also find the solutions to the end 
of chapter exercises. 

If you are familiar with the earlier editions, you will see some familiar things 
here. Good is good and Patrick did such a fine job that much of what he 
presented then is still quite applicable and educational. Some things have  
been dropped, such as Patrick’s GUI builder. In many respects, modern 
MATLAB doesn’t need that any more. There are many new ideas in this 
edition, along of course with the new functions, features, and properties that 
the latest MATLAB has to offer. Perhaps one of the best aspects of MATLAB is 
that The MathWorks has continued to develop the product with very little 
compatibility problems. Although there were some major changes from 
version 4 to version 5 that led to a few problems for some extreme users, the 
transition from 5 to 6 has been smooth and has yielded a version that is more 
user friendly and more capable than ever. 

So why am I writing this preface instead of Patrick? Patrick is very busy with 
new challenges in his career that have taken him a little out of the MATLAB 
world, at least as a regular user. My little consulting company, Infinity 
Technology Associates, has used his text for some time as a complement to 
our teachings, and I use MATLAB extensively for modeling and analysis in my 
position as director of a modeling and simulation facility for the Department of 
the Navy. Through one turn or another, I was contacted about a follow-up to 
Patrick’s second edition. It has been exciting updating and expanding Patrick’s 
original work and I know you will find this book a valuable tutorial and 
resource as you grow in your knowledge and skill of programming MATLAB 
Graphics and GUIs. However, don’t stop with this book. Use MATLAB as 
much as you can, read the abundance of documentation that comes with 
MATLAB, and by all means experiment. Soon you will wonder how you ever 
got your work done without MATLAB. 

Best wishes and happy programming! 

Thomas Holland 

© 2003 by Chapman & Hall/CRC
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11 IINNTTRROODDUUCCTTIIOONN

1.1 Overview 
As the volume and complexity of data and results continues to grow with 

the increasing complexity of data sources and algorithms, the need for intuitive 
representations of that data and results becomes increasingly critical. The 
graphical representation of the results is often not only the most effective 
means of conveying the points of the study or work which has provided the 
data, but is in most cases an expectation of the audience of the work.  Even as 
computing hardware continues to increase in capability, MATLAB® continues 
to be one of the best applications available for providing both the 
computational capabilities of generating data and displaying it in a variety of 
graphical representations. With the advent of version 6, MATLAB has taken on 
a new look, a new integrated development environment (IDE), new graphics 
development tools, and introduces some new functions. It is in that light that 
we offer the “upgraded” version of this book. 

Welcome to the third edition of Graphics and GUIs with MATLAB! Those of 
you familiar with the first and second editions will find that this third edition 
carries on in the same tradition of conversational style that Patrick set forth in 
the first two editions, as well as illustrative examples, and some details that 
give you a peak under the hood of MATLAB.  But just as MATLAB version 6 
has introduced major changes in several areas, so has this third edition. In 
addition to the new MATLAB specific commands and techniques, this edition 
offers sections on Visualization Considerations and Elements of GUI Design, 
which are general treatments applicable to any development software. Those 
familiar with the earlier editions will also be happy to find that there are now 
problem sets at the end of some chapters that will (hopefully) motivate the 
new MATLAB programmer to exercise the techniques addressed earlier in the 
chapter and make this book more suitable to classroom settings.  But just so 
that you don’t become too frustrated, solutions for the problems, as well as 
code listings for most of the examples, are available at 

 www.infinityassociates.com/graphics_and_guis 

MATLAB is not just a computation and plotting package; it is a versatile and 
flexible tool which allows users with even the most elementary programming 
capabilities to produce sophisticated graphics and graphical user interfaces 

IN THIS CHAPTER
1.1 OVERVIEW
1.2 ORGANIZATION OF THIS BOOK
1.3 TERMINOLOGY AND THE MATLAB PROGRAMMING LANGUAGE
1.4 OTHER REFERENCES
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(GUIs).  The level of sophistication is only limited by one’s needs, curiosity, 
and imagination. 

As in the previous editions, it is the goal of this book to provide you with 
information, examples, and techniques which should give you the background 
you need to become a MATLAB graphics and GUI expert.  If you are already 
conversant with the MATLAB programming language, this book will provide 
you a ready reference with illustrative examples. If you are new to MATLAB, 
you will find this book an excellent tutorial leading you to MATLAB 
proficiency. As in the previous editions, this book will help take you from 
wherever you are in your MATLAB skills, to many steps closer to where you 
want to be.  

1.2 Organization of This Book 
This book is organized into three general parts: Part 1: Information 

Visualization, Part 2: MATLAB Graphics Objects, and Part 3: Graphical User 
Interfaces.  Each part is intended to provide the reader with a general 
introduction to the topic area before going into specific topics in MATLAB. For 
instance, if your main interest is in the visualization of data, the part on 
Information Visualization will give you a rudimentary introduction to the topic. 
Similarly, the part on Graphical User Interfaces will provide you with a good 
background useful in any programming language. Taken as a whole, the three 
parts will introduce you to the greater field of information visualization and 
GUI design in general, and with MATLAB specifically.  

Part 1: Information Visualization will introduce you to visualization 
considerations such as when to use 2-D and 3-D techniques, the advantages 
and pitfalls of color, how motion can add another dimension of understanding, 
and how dynamic interaction with a visualization can enhance intuitive 
understanding. Contained in this part are the elementary aspects of plotting in 
two and three dimensions; MATLAB’s graphics commands are discussed and 
applied in illustrative examples. Plot manipulation and special plots are 
explored, including volumetric visualization for both scalar and vector volume 
data. Reading, writing, and manipulating bitmap graphics is covered in this 
section as well as printing, exporting, and saving your MATLAB visualizations. 

Part 2: MATLAB Graphics Objects thoroughly explores the concept of 
graphics objects by introducing the fundamentals of MATLAB’s Handle 
Graphics™.   If you consider yourself somewhat experienced with the basic 
plotting capabilities of MATLAB, you might well want to start with this chapter.  
A basic understanding of Handle Graphics needs to be achieved before you 
can move on to more complex and sophisticated programming of graphics 
and GUI applications. The first chapter in this section explores graphics 
objects, handles to them, properties and ways to change the values of 
properties. The next two chapters explore the details of powerful dimensions 
that can enhance the understanding of your data, specifically the properties of 
color, light, transparency, and animation.   Once you have grasped the 
concepts here you can then appreciate the power of MATLAB and will be fully 
equipped to comprehend the programming techniques to follow in Part 3. 

Part 3: Graphical User Interfaces will bring together all you have learned by 
summarizing practical considerations for good GUI design. The three phases 
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of interface design, user, and appearance considerations are covered first, 
followed by thorough coverage of the MATLAB Graphical User Interface 
Design Environment (GUIDE).  Finally, user interface control elements, user 
actions, and the MATLAB event queue are covered so that you will be able to 
create GUIs that go beyond the boundaries of GUIDE. 

The intent of the overall structure of this book is to lead any MATLAB 
programmer through a wide variety of graphics related subjects.  The 
information, examples, and tutorials are designed to illustrate different 
techniques of creating graphics.  These techniques can be expanded and 
tailored to meet your individual needs and desires. 

In addition to the topic descriptions, many of the chapters contain icons in 
the margins to help quickly lead you to the information you need.  The icons 
and their significance are as follows: 

Speedy Solutions for those who are in a rush and don’t have the time for 
the details.  

Power Tips will especially add to your MATLAB knowledge to make you a 
stronger programmer. Hopefully the whole book falls under this icon, but 
there are some special tips that particularly enhance your abilities. 

Tools describe what we especially feel are outstanding methods, 
techniques, and MATLAB programs that accomplish a specific job and make 
your life easier. The programs that get this icon are very useful and 
complement the standard set of programs that come with MATLAB. These 
include public domain M-files available from the MathWorks FTP server 
(ftp.mathworks.com) as well as files found at  

 www.infinityassociates.com/graphics_and_guis 

M-file indicates that a nonstandard function is to be developed. The 
discussion that follows will teach you how the MATLAB code accomplishes a 
certain task. For your convenience, some of these M-files will be 
downloadable from the above website; however, we do recommend that you 
study the code – after all, it is there for your edification. 

FAQ directs your attention to the answer to a frequently asked question 
about the current topic. Many of these questions come from newsgroups and 
classroom discussions. 

Warning will call your attention to typical pitfalls.  

Other visual cues will help you get around in the book. MATLAB function 
names that appear in the discussions will be in bold. MATLAB code examples, 
fragments, and listings are throughout the book and can be recognized readily 
by the distinctive courier font in which they are cast. For example, plotting the 
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sine of a vector x that ranges from -2  to  +2  in 0.1 increments with the sin
function looks like this: 

x = [-2*pi:.1:2*pi]; 
y = sin(x); 
plot(y)

This same style is used for “general forms” of MATLAB functions and 
commands as well; however, the general forms will use all capital letters just 
like in the MATLAB command line help. For example, the general form of the 
view function when using it to return the current viewing perspective is given 
by: 

[AZ,EL] = VIEW 

Finally, even after you become quite familiar with MATLAB graphics and 
GUIs, there are always going to be “problems” or situations that require 
additional thought to determine how to best accomplish a task. For just such 
occasions, as in the earlier editions, we have compiled a “Quick Reference” in 
the Appendix . These sheets provide a summarized list of helpful hints that will 
help ease and hopefully speed up your development process. Many of these 
hints have come about through our own development, consulting, and 
teaching experience.  Included with each hint is a reference to the applicable 
sections of the book that provide further explanation on the topic or related 
topics. 

1.3 Terminology and the MATLAB Programming 
Language 

If you are new to MATLAB, it would be wise to familiarize yourself with 
some basic terminology and concepts. We recommend that you review the 
documentation included with MATLAB. A good place to start is with the 
“Getting Started” section of the MATLAB Help. If you have just upgraded to 
version 6, you will want to get familiar with the new MATLAB Desktop and the 
tools that make it up. When you start your MATLAB the Desktop is the first 
thing you see. In it you will see windows with names like “Workspace,” 
“Command History,” “Command Window,” and “Launch Pad.” This desktop 
can be configured in different ways, in essence customizing it to the way you 
like to work. Once you have installed and started your MATLAB, simply click 
on Help and then select “Full Product Family Help.” From there, click on the 
folder entitled “MATLAB” then  click on “Getting Started.” The Mathworks has 
done a fine job of constructing a very extensive set of hyper-linked documents 
that allow you to get both fast answers and detailed discussions. Be sure to 
familiarize yourself with the MATLAB workspace, directory structure, and file 
types.  You should understand what the MATLAB search path is and how you 
can add and remove directories from this search path.  You should also know 
that in this book you will be working primarily with the MATLAB file types M-
files, FIG-files, and MAT-files.  The final assumption we must make is that you 
know what we mean by the “Command Window” and the “Figure Window.” 
The Command Window is where you can enter commands directly to 
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MATLAB. The Figure Window is where you display graphics and GUIs by 
issuing the appropriate commands in the Command Window. 

1.3.1 Getting Started 

The MATLAB Desktop is what results when you invoke MATLAB on your 
computer and provides a convenient and easily configurable interface to the 
various tools that make up the development environment. Depending on how 
you have set preferences for your specific installation of MATLAB, it should 
look something like that shown in Figure1.1. 

In order to begin, we must assume that you have already gained some 
familiarity with the MATLAB development environment. Of course the portion 
of the MATLAB desktop with which you should be most familiar is the 
Command Window as this is where you will issue commands directly to 
MATLAB. Specifically, you type the MATLAB statements at the Command 
Window prompt which is denoted by  >> . Generally we will refer to this as 
the “command prompt.”  A few other items with which you will want to 
become familiar are: the Command History where all the commands entered 
in the Command Window are recorded, the MATLAB Search Path and how 
you can add and remove folders from this search path, and the three MATLAB 
file types that we will be mainly working with M-files, FIG-files, and MAT-files. 
These file types derive their names from the file extensions. We will avoid 

Figure1.1 The MATLAB desktop. 
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other MATLAB file types such as MEX-Files and P-Files. You will also want to 
become familiar with the MATLAB  Figure Window as this is where you 
display graphics and GUIs and the MATLAB Editor/Debugger where you will 
create scripts and functions.  

1.3.2 Getting Help 

This section is intended to get you pointed in the right direction in order to 
familiarize you with the MATLAB environment in terms of the directory 
structure, the file types, and the various windows that are available to you. If 
you are new to MATLAB it would be wise to familiarize yourself with some 
basic terminology and concepts. We recommend that you review the 
documentation that is included on the MATLAB Documentation CD. A good 
place to start is with the “Getting Started” section of the MATLAB Help.  You 
can do this easily. After starting MATLAB, just select Help  MATLAB Help
from the pull-down menu in the Desktop. When you do, you will see 
something like that shown in Figure1.2. 

From here you can dig as deeply as you wish into the many aspects of 
MATLAB. 

The commands which are issued to MATLAB can be either from the original 
set of functions that came with your MATLAB package or the ones that you 
develop in the form of M-file scripts or functions. These are text files with a 
“.m” extension. Throughout this book a MATLAB “program” or “function” 
refers to a function M-file, that is MATLAB code that has the keyword 
“function” in its first line. We will use the term “script” to refer to an M-file that 

Figure1.2 Getting started: Help 
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is simply a stored list of commands. Although the differences between M-file 
functions and scripts are profound, we will assume that you already 
understand those differences. If you don’t, or would like to review M-file 
scripts and functions, we again refer you to the documentation that came with 
your MATLAB package.   

One of the nice aspects about the MATLAB language is that it can be 
expanded by writing new functions and scripts.  Moreover, any new M-file can 
be supplemented with on-line help. (By on-line we are not referring to the 
internet, but to the help available from the command prompt in the Command 
Window.) The on-line help feature and hypertext documentation are both 
useful as quick references to built-in features of MATLAB, but on-line help is 
something that you can provide and build into your own M-files. It practically 
becomes a necessity when M-files are shared among MATLAB users.  A well-
documented function relieves a user from the responsibility of understanding 
every minute detail of a function’s operation, and allows the programmer to 
obtain desired results by following the syntax or usage of the M-file. 

The on-line help feature is activated by typing help filename, where filename
is the name of the M-file whose help contents you wish to have listed (e.g. >> 
help plot).  Here is an example you can try in the Command Window.  

>> help tic 

 TIC Start a stopwatch timer. 
    The sequence of commands TIC, operation, TOC 
    prints the number of seconds required for the 
    operation. 

    See also TOC, CLOCK, ETIME, CPUTIME. 

Notice that what happens when you invoke help for a function is that 
MATLAB returns in the Command Window the first block of contiguous 
commented lines starting from the second line of the M-file. (Try either the 
Editor/Debugger or the type command to see the contents of TIC.M.) When 
creating your own functions and help comments, keep in mind that the first 
comment line of the M-file should be as concise and descriptive as possible, 
since this is the line that will appear when one executes help directory-name,
where directory-name is the name of the directory or folder containing M-files 
(as an example type: help graphics).   

As you continue to expand your MATLAB vocabulary, the help command 
will be a very convenient alternative to the HTML help, the documentation 
CD, or other printed documentation that came with your software purchase. 
Sometimes all that is needed is a quick bit of information or reminder of the 
details, and the on-line help is perfect for that. 

Several other commands that are convenient in helping you enrich your 
command vocabulary are more, type, and demo.  The function more controls 
the number of lines which are displayed at a given time to the Command 
Window. You can turn it on by issuing the command more on, so that you can 
read the contents of the Command Window before the next page of output is 
displayed.  Pressing the return key displays the next line of output while the 
space bar displays the next page.  If you wish to stop paging through the 
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output, just press the letter “q” on the keyboard.  Issuing more off turns off the 
paging feature. 

The contents of many MATLAB commands can be viewed by either using 
the type command or by opening up the file in MATLAB’s Editor/Debugger. If 
you want to open a file with the Editor/Debugger simply type edit followed by 
filename at the command prompt. (You can also use the pull-down menus in 
the desktop.) If you do this, the file will be opened in the Editor/Debugger and 
you can make and save changes. (Type edit factorial to see an example of a 
simple function in the Editor/Debugger.)  However, if all you want is to quickly 
see the contents of an M-file, the command type filename allows you to list the 
contents of a file (if no extension is provided, MATLAB assumes and searches 
for an M-file) in the Command Window.  We believe that viewing MATLAB 
programs is perhaps the quickest way to learn how to program your own 
MATLAB code.  Using type is just the quick way of viewing the source code. 
However, in some cases the source code of the command is not available in a 
text file and cannot be typed out.  For example, issuing type line will return 
“line is a built-in function.”  This means that this command has been built into 
MATLAB itself for computational efficiency and speed. 

The Command History window keeps a record of all the commands you 
type at the command prompt. You can also select commands there and drag 
them into the Command Window. However, sometimes (especially when you 
are learning) you will want to save a log of your commands. The diary
filename command can be used to keep a running record of what was typed 
and displayed in the Command Window.  This can be useful in program 
development for several reasons.  The first reason is that occasionally you may 
clear the Command History window before realizing that you have forgotten 
which commands you issued and what order they must be executed in to 
achieve specific results; but if diary is on you will have a file record of the 
commands you used.  Another advantage of using the diary command is that 
you can create a script or function fairly rapidly by editing the resulting diary 
file and saving it as an M-file.  

You can be selective as to what goes to the diary file by switching between 
diary states. The commands diary on and diary off, respectively allow or 
prevent your typed commands and MATLAB output to be sent to the file.  In 
addition you can switch between different diary files by reissuing the diary
filename command, where filename is the name of a different or new diary file.  
Diary output is always appended to the file that you specify. 

Finally, we encourage you to check out the MATLAB demo packages. 
When you do, you will get a flavor of some of what can be accomplished with 
MATLAB.  At the very least, you may get a jump on a solution to a problem by 
remembering that one of the demos did something similar to what you would 
like to be able to do.  Once you find that demo, you can step through the 
code and use the ideas or techniques for your own code.  The MathWorks 
expects and encourages you to examine their M-files so that you can learn the 
language quicker and with less frustration.  To get a list of demos that are 
available to you, type help demos at the command prompt. Depending on 
which version MATLAB and which Toolboxes you have installed on your 
system, additional demonstrations may be provided to illustrate specific 
package capabilities. 
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1.4 Other References 
In general, you might find the following reference materials of use while 

going through this book: 

MATLAB’s Using MATLAB (version 6) 

MATLAB’s Using MATLAB Graphics (version 6) 

Although we try to provide some guidelines and rules of thumb concerning 
good visualization and graphical user interface approaches, you might 
consider the following texts enlightening: 

The Visual Display of Quantitative Information by Edward Tufte 

Envisioning Information by Edward Tufte 

Scientific Visualization and Graphics Simulation by Daniel Thalmann 

GUI Design Essentials by Susan Weinshenk, Pamela Jamar, and Sarah C. 
Yeo 
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22 VVIISSUUAALLIIZZAATTIIOONN CCOONNSSIIDDEERRAATTIIOONNSS

2.1 Why Visualize? 
The obvious question that is at the heart of MATLAB graphics is “Why 

would I ever want to visualize my data?” At its very essence, science is the 
quest for truth. However, some of those truths are not easily discovered, and 
in many cases, we don’t even know how to ask the appropriate questions that 
will lead to the truth.  Consider the fact that many natural phenomena are too 
fast, too slow, too large, or too small to be studied through direct observation 
or with traditional laboratory techniques. How can we see the unseen or gain 
enough insight into the nature of things to even know what is worthwhile to 
investigate? Also, consider that everything humankind has made and every fact 
that has been discovered were first birthed as an idea, i.e., something with 
form only in the mind’s eye. We revere those who can see beyond the 
apparent and call them “visionary.” A dictionary will tell us that to visualize 
means, “To form a mental image or vision of.”  Therefore, when we discuss 
what it means to visualize something with MATLAB or with anything else for 
that matter, we need to be aware of the significant role the mind plays in this 
discussion. However, this is a book about MATLAB, not about philosophy, but 
it is important that you realize that what we are really exploring in this book 
are ways to represent something, whether that something is a graphical 
representation of a real-world object, a hypothetical mathematical construct, 
or specific values of some measurable quantities. Most importantly, we want 
to create those representations in such a way that the human mind can 
understand them and then ask the right questions that lead to the discovery of 
new things or to a better understanding of our universe.  

So why do you need visualization? Aside from making your boss look good 
to his superiors, the visualization of your data can help you identify and 
emphasize areas of interest, such as where significant events occur, or where 
the data exhibits a curious behavior. It can also help you to convey your 
thoughts, observations, or conclusions to others in a quick and intuitive way. 
There are probably as many applications for MATLAB as there are users of it, 
and every application will have its own special needs, but even amongst all 
that, a little understanding of some scientific visualization fundamentals will 
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help you achieve the results you desire. Table 2.1.1 lists some of the reasons 
to visualize your data. 

Table 2.1.1 Reasons to Visualize Data 

Explore it Exploit it 
Emphasize some aspect of it Analyze it 
Gain new insights into it Assess or control the quality of it 
See “the invisible” Present it 
Publish it Interact with it 

One can easily argue that the need to visualize data and information has, 
largely, driven our technology. The entire field of computer graphics, which 
includes hardware and software, is devoted to furthering the science of how 
we represent and interact with information in effective ways.  

2.2 Characteristics of Good Data Visualization 
MATLAB has established itself as a preeminent computing environment. By 

computing environment we mean that not only does MATLAB provide the 
user with quick access to many data processing functions, but also allows a 
MATLAB programmer to create special purpose applications to be used by 
“domain specialists.” These domain specialists are often not interested in 
knowing the intricacies of MATLAB  programming, but are very interested in 
having analytical tools that are intuitive to use and in which they can have 
confidence. Since you are reading this book, you either have a need for 
visualizing some of your own data, or you are involved in developing some 
form of graphical user interface, either for your own analytical efforts, or to 
support some domain specialists who really don’t want to be programmers. In 
Chapter 10 we will discuss the essential elements of GUI design. Here we will 
consider how to better represent data and results so that the salient aspects of 
the information contained in the data can be readily observed.  

In Table 2.1.1 we listed some reasons why you would want to visualize 
data. Remember, the basic reason for visualization is to help you, or those you 
work with, solve problems. Cognitive psychologists have demonstrated that 
the way in which a problem is presented can determine how difficult a 
problem is to solve, so we “re-present” the problem in more understandable, 
i.e., intuitive, ways and in doing so gain insight.  

Good visualizations must be meaningful; every plotted point, and each 
colored line needs to help with the intuitive understanding. This leads to issues 
of perception, and since visualization in the scope of this book is visual, we are 
talking about visual perception. This idea of perception has to be distinguished 
according to two primary areas of intent: 1) the display and communication of 
data, and 2) the investigation and understanding of data.  The direction with 
which you are approaching your problem will determine largely the manner in 
which you visualize your data. A good visualization should distill the vast 
quantity of data, or the difficult-to-understand concept, into quantities and 
terms that are readily understandable. It is by comparison to what we know 
that we discover what we don’t know. It is much easier to see an anomalous 
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spike in data when it is plotted, as opposed to looking at a list of numbers on a 
printout. The modern scientific world is not a simple world. We have 
developed the scientific tools we have in order to investigate and 
communicate in unambiguous terms. In this communication, we must strive 
for clarity, precision, and efficiency. Table 2.2.1 lists some characteristics of 
good data visualizations.

Table 2.2.1  Characteristics of Good Visualizations 

A Good Visualization Should… Because… 

Serve a clear purpose. We are interested in describing, 
exploring, or recording something. 

Show the data without distorting it. The data is what is important, or 
more fundamentally, the truth the 
data reveals. 

Cause the viewer to think about 
the substance of the data. 

Understanding will be sacrificed if 
graphic design, or some other 
“flashy” mechanism draws 
attention away from the content. 

Present large quantities of 
numbers in a small space. 

We are often overwhelmed by 
many numbers; we need to make 
large data sets coherent. 

Take advantage of the natural 
tendency to make visual 
comparisons. 

It is easy for us to see relative 
differences. 

Reveal information at various 
levels of detail.  

It is easier to understand the 
bigger picture when the details are 
available to support it. 

2.3 Data Quantity and Dimension 
Advances in technology are allowing us to gather data at an ever-increasing 

rate. Microphones, video cameras, telescopes, satellites, radars, etc., work 
round the clock gathering more data about the universe around us. X-rays, 
ultrasound, computed tomography, magnetic resonance images, etc., are 
likewise gathering more data about the universe within us. From the immensity 
of the universe probed with radio telescopes, to the minutiae within molecules 
observed with electron microscopes, we are witnessing a massive flood of 

                                                     
 If you are interested in the field of information visualization, we highly 

recommend the works of Edward R. Tufte, in particular his seminal text, The
Visual Display of Quantitative Information, 1983, published by Graphics 
Press. 
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data such as has never before been seen in human history. In addition, to 
compound it all, doing so at a rate well beyond the human capacity to 
observe or understand it. The computing capabilities that thirty years ago were 
the sole domain of expensive computer installations at the defense 
department or in university laboratories are now well exceeded on the 
average homeowner’s desktop. Therefore, whether you are dealing with data 
generated by your computer from pure mathematical formulations, or 
measured with a physical sensor, perhaps the two most important 
considerations in deciding how to represent your data are likely to be the 
quantity of it and its dimension.  

The quantity of the data might require you to consider statistical methods to 
show trends or occurrences of interest relative to the data set. The dimension 
of your data might require something more than a simple x-y plot. You might 
need to consider 3-D plots, slices of 2-D data, or combinations of 2-D and 3-D 
plots to get the emphasis you need. In any event, the old axiom, “A picture is 
worth a thousand words,” is a mere understatement in today’s world.  

2.4 Color, Light, and Shading 
Color is probably the most commonly used, and abused, visualization 

technique. For instance, bright colors can be used to indicate that a particular 
item should be noted in a presentation, or to quickly draw your attention to 
points that exceed a threshold in a plot. One should always keep in mind that 
the intent of any visualization is to foster the communication of some idea, 
whether it be overall results or stressing a specific aspect of some analysis. In 
our brief discussion of color, we include lighting and shading as well.  

In most simple visualizations, we can effectively use color to distinguish 
between different data series. This is most commonly seen as multiple lines of 
a plot where each line is a different color. Typically, in such simple plots, the 
two colors need only be distinguishable to clearly define the data. 
Unfortunately, plots are printed and copied and often not in color, then the 
advantages of color are lost. In such situations, it is good to denote each data 
series with a distinctive marker, or line style. Figure 2.1 and Figure 2.2 show 
similar plots of the same data. In Figure 2.1, the lines are plotted in blue and 
green, poor choices for black-and-white printing and possibly confusing even 
in color slide presentations where lighting is poor or someone has color 
blindness. Although different markers were used for each data series, they are 
not distinct enough to really help with the problem. Figure 2.2 is the better 
plot. Although the color might still be a problem in black-and-white printing, 
the line styles have been changed so that they are easily distinguishable, and a 
marker is used on only one data series. Figure 2.2 will convey the data better 
even when copied. 
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Varying hue is good for displaying different types of objects in visualization, 
but in many numerical analysis cases, we are interested in ordinal, interval, or 
ratio data. Differences in hues do not necessarily imply differences in 
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Figure 2.1 Although one trace is green and the other blue, this simple 2-
line plot is difficult to read in low light or in black-and-white (as it is 

printed here). 
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Figure 2.2  This 2-line plot is easier to read since two different line styles 
are used. It would look even better if it were in color.  
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magnitude; it is not obvious that red has a higher value than blue. Differing 
brightness levels (or saturation levels of a certain color) can convey differing 
magnitudes, and a gradual change from one hue to another is effective in 
doing this. Realize, however, that not everyone perceives color in the same 
way. Color blindness is common, and color perception even changes with age. 
When you use color, be sure that the meaning of the color is unambiguous. 
Think of color as another dimension for representing information. Never use it 
to “pretty-up” a graph. 

Figure 2.3  Hue and transparency in a 3-D plot . 
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2.5 Motion 
Like color, motion is another representative dimension. Motion is used to 

represent changes over time, or to indicate sequential changes in higher 
dimensional data. Consider that a single observation that varies in time can be 
easily represented in a 2-D plot of the observation versus time. However, what 
happens if the measurements are 2-D themselves, such as a sequence of 
photographic images? This can be represented in a number of ways. Perhaps 
the most common is an image sequence, or frames. Like a movie, each image 
is a “slice in time.” We will explore using motion in Chapter 9.  

2.6 Interaction 
The most useful data visualization methods allow the user to interact with 

the data by changing viewing angles, thresholding levels, applying false colors, 
and otherwise manipulating the presentation of the information content of the 
data dynamically. As you proceed through this book, you will see that 
MATLAB allows some simple dynamic manipulations through the Figure 
Window. More importantly, you will see that MATLAB provides you with a 
host of graphics functions that allow you to build your own custom 
visualizations with which you can interact to any degree you wish if you are 
willing to program them so. Truly, the only limit to visualization with MATLAB 
is your imagination! 

To whet your appetite, start your MATLAB and type demo at the command 
prompt.  

Figure 2.4 Visualizing MRI Data 
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Figure 2.5   Play with the MATLAB Demos. 
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3.1  Sources of Data 
What operations you perform on any given set of data as well as how you 

choose to visualize it are usually determined by the source of the data and by 
which aspects of it you wish to emphasize. In general, all the data you will 
ever work with will either be the result of some generating function, i.e., 
function data,  or will be a measurement of some real-world property, i.e., 
measured data.  

3.1.1 Function Data 

Function data is data that is created by some mathematical operation. Its 
typical characteristics include: 1) data-uniformity, i.e., the data is not sparse or 
riddled with discontinuities, 2) free of corrupting noise, and 3) controllability, 
i.e., you can vary parameters, change algorithms, etc., and so re-create data in 
any form you desire.  However, such ideal data rarely is representative of the 
real world, and in the case where generated data is intended to represent real-
world phenomena a great deal of energy is expended in making generated 
data look like measured data. You can think of function data as any data which 
is the result of an algorithm, and in short you have complete control over the 
range, quantity, and values of the data. A simple example of function data is 
the mixing of two sinusoidal waves such as that described by the expression 

y(t) = sin(20 t)+sin(60 t)

and shown in 0. 

IN THIS CHAPTER…
3.1 SOURCES OF DATA
3.2 IMPORTING DATA
3.3 ELEMENTARY 2D PLOTS
3.4 SIMPLE 2D PLOT MANIPULATION 
3.5 SPECIALIZED 2D PLOTTING
3.6 PLOT EDITING IN THE MATLAB FIGURE WINDOW
3.7 ILLUSTRATIVE PROBLEMS
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3.1.2 Measured Data 

Measured data results from some real-world sensing or probing. Examples 
of measured data include data such as daily temperature highs, g-force, 
velocity, etc.. The principal characteristics of measured data are: 1) measured 
data is only as accurate as the device making the measurement, 2) there is 
always some degree of uncertainty associated with the data, 3) data may take 
extreme excursions, and 4) measured data might be incomplete or have gaps. 
This last characteristic is a particularly interesting one in that it is more 
common than one might at first think. Consider daily temperature readings. It 
is common that readings do not exist for many days for a given year or in 
some cases, data might only be taken sporadically. (Either way, such data is 
called “sparse” and MATLAB provides a memory efficient means of dealing 
with such data.) However, it is up to you as the programmer, analyst, scientist, 
or engineer to determine how to deal with gaps in your data and how you 
choose to visualize such data is highly dependent on the intended use of it. 
Figure 3.2 shows a plot of average daily temperatures for the first sixty days of 
the years 1995 through 2000 for Anchorage, Alaska.1 The ‘o’ data marker 
indicates the 6-year mean for that day. In this data a value of –99 indicates that 
no data is available, i.e., a data gap. You can see that on about the 10th day of 
one of the years no data was taken. 

                                                     
1 Climatic data provided by the University of Dayton Average Daily Temperature Archive. 
Environmental Protection Agency Average Daily Temperature Archive, 
http://www.engr.udayton.edu/weather/, courtesy of J. K. Kissock. 
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Figure 3.1 An example of function data. 
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3.2 Importing Data 
Whenever we are dealing with data in MATLAB, whether it is function 

generated, or measured, we are first faced with just how to bring that data into 
the MATLAB environment. Fortunately MATLAB provides a rich set of 
commands that support data input and output from many different standard 
formats. If you have a data file that was created using another application or 
program, the contents of that data file can be imported into the MATLAB 
workspace.  Once you have imported the data, you can then manipulate or 
plot the data.  However, before we consider data files from other applications, 
we should also understand how to import data saved during other MATLAB 
sessions. In many cases, you will be working with other MATLAB users and 
you will need to operate on their data. 

3.2.1 MATLAB Data Formats 

Modern MATLAB supports a broad range of standard data formats. The 
following tables list the data formats for which MATLAB provides built-in 
support and the associated import commands.   

Data Formats Command Returns 

MAT  - MATLAB workspace LOAD Variables in file 
CSV  - Comma separated 
numbers   

CSVREAD Double array 

TXT – Formatted data in a text file TEXTREAD Double array 
DAT  - Formatted text IMPORTDATA Double array 
DLM  - Delimited text DLMREAD Double array 
TAB  - Tab separated text DLMREAD Double array 
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Figure 3.2 Example of measured data. 
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Spreadsheet Formats Command Returns 

XLS  - Excel worksheet XLSREAD Double array and cell 
array 

WK1  - Lotus 123 worksheet WK1READ Double array and cell 
array 

Scientific Data Formats Command Returns 

CDF  - Common Data Format CDFREAD Cell array of CDF records 
FITS - Flexible Image Transport 
System   

FITSREAD Primary or extension 
table data 

HDF  - Hierarchical Data Format HDFREAD HDF or HDF-EOS data 
set 

Image Formats Command Returns 

TIFF – Tagged  image format IMREAD Truecolor, grayscale or 
indexed image(s) 

PNG – Portable network graphics IMREAD Truecolor, grayscale or 
indexed image 

HDF – Hierarchial data format IMREAD Truecolor or indexed 
image(s) 

BMP – Windows bitmap IMREAD Truecolor or indexed 
image 

Audio Formats Command Returns 
AU – Next/Sun Sound AUREAD Sound data and sample 

rate 
SND – Next/Sun Sound AUREAD Sound data and sample 

rate 
WAV – Microsoft Wave Sound WAVREAD Sound data and sample 

rate 

Movie Formats Command Returns 

AVI  - Movie AVIREAD MATLAB movie 

3.2.2 Importing High-Level Data 

The most straightforward method of importing data is to use the load
command. The load command can read either binary files containing matrices 
generated by earlier MATLAB sessions (usually by use of the save command), 
or text files containing numeric data. If the data file was created in an earlier 
MATLAB session, simply issuing the load command with the filename is all that 
is needed. The save command will save the specified data in MATLAB’s binary 
data format.  The following example shows just how simple this can be.  
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>> save mydata X Y % mydata.mat created 
:
:
>> load mydata % in a later session 

The important points to remember in using save and load in this way is that 
MATLAB will by default attach the “.mat” extension to the data file and the file 
will be created or read from the current working directory.  

As stated earlier, this use of the save and load commands uses the default 
MATLAB binary file format. Although many other applications are now being 
created that can read and write this format, save and load can be used to both 
write and read text data which can make importing and exporting data a 
simple matter.  Either command could have been issued with the keyword –
ASCII. If save was used with –ASCII, the data is automatically tab delimited. 
Otherwise, you should make sure that your data file is organized as a 
rectangular table of numbers, separated by blanks, with one row per line, and 
an equal number of elements in each row. For example, let’s say that you have 
an ASCII data file called datafile.dat which contains three columns of data.  
The first column contains the integers 1 through 10.  The second column lists 
the square root of the first column’s numbers.  Finally, the third column 
contains the square of the numbers in the first column. 

  datafile.dat: 

 1.0000 1.0000 1.0000 

 2.0000 1.4142 4.0000 

 3.0000 1.7321 9.0000 

  . 

  . 

  . 

 10.0000 3.1623 100.0000 

The data can then be imported into the MATLAB workspace by typing: 

>> load datafile.dat 

 You do not need to specify that the file is an ASCII format as the load
command is smart enough to recognize that.  MATLAB puts the data 
contained in the datafile.dat file into a matrix variable called datafile.  This 
matrix will have 10 rows and 3 columns.  New variables can be defined from 
the rows, columns, and elements of the datafile variable.  To find out exactly 
how and what you can do with variables by means of their indices, take a look 
at the sections in the Getting Started with MATLAB manual. 
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3.2.3 Importing Low-Level Data 

Often data files contain headers, that is, descriptive statements describing 
how, when, and under what circumstances the following data was collected or 
generated. Usually you will wish to bypass the header after you have extracted 
the information you need from it. Additionally, other complicating factors such 
as rows that have varying number of columns, or text interspersed with 
numerical data will inevitably be encountered. Even if your data is not in one 
of the standard formats, you can use the low-level file input/output (I/O) 
functions MATLAB provides. In such circumstances where the format of the 
file is known, but is not one of the standard formats, it will most likely be best 
to make use of the fread and fscanf commands. Both commands are used to 
read binary data from a file according to a specified format. Both are part of 
the low-level I/O commands available in MATLAB and require that certain 
parameters that describe the precision and location of the data in the file be 
specified. The general form of the fread command is: 

[A,COUNT] = FREAD(FID,SIZE,PRECISION) 
[A,COUNT] = FREAD(FID,SIZE,PRECISION,SKIP) 

Here, A is the matrix returned by the fread command that contains the data 
which was read. COUNT is an optional output argument that tells you how 
many elements were successfully read. As you can see, fread expects up to 
four input arguments. The first argument, FID, is a required value that 
corresponds to the file identification number of the file to be read. This value is 
obtained by using the fopen command. The second argument, SIZE, is 
optional and tells the fread command how much data is to be read. 
PRECISION is a string that specifies the format of the data. Typically this 
consists of a data specifier such as int or float followed by an integer 
giving the size in bits. In general MATLAB’s low-level I/O functions are based 
on the I/O functions of the ANSI C Library. If you are already familiar with C, 
then you will be familiar with these commands. The table, “MATLAB Low-Level 
I/O Commands” lists both the binary and ASCII low-level file I/O commands 
in MATLAB. The following steps are generally what is required to read and 
write data to data files: 

1. Open the file to be read or written to using fopen.

2. Operate on the file: 

a. fread for reading binary data, 

b. fwrite for writing binary data, 

c. fgets or fgetl for reading text strings line by line, 

d. fscanf for reading formatted ASCII data, 

e. fprintf for writing formatted ASCII data. 

3. fclose to close the file. 

Although the following table can serve as a handy reminder, please refer to 
the on-line help or to the MATLAB Function Reference to learn more about 
MATLAB’s low-level file I/O commands. 
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MATLAB Low-Level I/O Commands 

Command Action Usage 
FOPEN Opens a file 

for reading 
or writing. 

FID = FOPEN('FILENAME','PERMISSION') 

FCLOSE Used to 
close a file 
once 
reading or 
writing is 
complete. 

STATUS = FCLOSE(FID) 

FGETL Reads a line 
from a file 
but discards 
the newline 
character. 

TLINE = FGETL(FID) 

FGETS Reads a line 
from a file 
and keeps 
the newline 
character. 

TLINE = FGETS(FID) 

FREAD Reads 
binary data 
from a file. 

[A, COUNT] = FREAD(FID,SIZE,PRECISION) 

FWRITE Writes 
binary data 
to a file. 

COUNT = FWRITE(FID,A,PRECISION,SKIP) 

FPRINTF Writes 
formatted 
data to a 
file. 

COUNT = FPRINTF(FID,FORMAT,A,...) 

FSCANF Reads 
formatted 
data from a 
file. 

[A,COUNT] = FSCANF(FID,FORMAT,SIZE) 

It is not our intention to present a comprehensive discussion on the different 
data importing functions available in MATLAB. You can read the MATLAB 
helps on any of these functions as you come across a need for them. The main 
points to be made here is that MATLAB supports a host of data formats and 
provides the low-level functions to let you build a special import function if 
you need it. 

3.3 Elementary 2-D Plots 
The most basic, yet often the most useful, graph that you may wish to 

create is a simple line plot of numeric data.  The MATLAB language provides a 
set of high-level commands that are used to create these simple line plots.  In 
order to simplify the discussion and descriptions of 2-D plots, let’s take a 
moment and list relevant graphics objects and fundamental graphics 
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terminology.  Essentially, graphics objects are the basic elements which, when 
assembled and drawn on your monitor’s screen, generate pictures and visual 
information.  Even the most elementary plot consists of several graphics 
objects.  The window in which the plot appears, the lines, the axes, and the 
labels that make up the plot are all examples of graphics objects.  The 
following list will help you become familiar with some of the MATLAB graphics 
objects referred to in this section without getting into the details which we will 
discuss in Chapter 7.   

The following objects and terms are occasionally referred to in this section: 

figure: the window in which other graphics objects are placed 

axes: a graphics object that defines a region of the figure in which 
the graph is drawn 

line: a graphics object that represents the data that you have 
plotted 

text: a graphics object that is comprised of a string of characters 
and terms 

title: the text object that is located directly above an axes object 

xlabel: the text object associated with the x-axis 

ylabel: the text object associated with the y-axis 

These objects and terms also happen to be the names of  some of the 
plotting functions that can be used while creating 2-D plots. 

To start, the MATLAB command plot will be examined in detail. Then we 
will look at a group of three commands (semilogx, semilogy, and loglog) that 
are variations of the plot command with respect to the axis scaling.  After 
these are presented, a group of plotting commands that are more specialized 
in terms of their application are presented.  We’ve placed these specialized 
plotting commands in the broad category of Specialized 2-D Plotting, since 
these are easily created with simple high-level MATLAB commands. Finally we 
will discuss how to edit a plot once it is created and examine the MATLAB 
Figure Window and its various parts as it has undergone quite a few changes 
in the recent releases of MATLAB.  

3.3.1 A General Overview of the Plot Command 

Most of the MATLAB  graphics commands are straightforward and intuitive 
(or at least they become intuitive fairly quickly as you move along the 
language’s learning curve).  The plot command is the first one that we will 
explore.   For example, a graph of an arbitrary set of data values assigned to 
the variable y can be generated using the command plot(y). Let’s say that your 
data set was the cubic of the numbers from negative five to four in step 
increments of one tenth.  This data can be generated and plotted by typing 

y = (-5:0.1:4).^3; 
plot(y);

at the command prompt.  You will obtain the figure shown in Figure 3.3.   
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Notice that the x-axis labels are not the numbers that were cubed, rather 
they are the subscript or index numbers of the vector y.  MATLAB  
automatically plots your data versus the index number when only one 
argument is passed to the plot function.  You can verify this by typing 

length(y)

and seeing that 

ans = 91 

is returned.  In the figure, you can see that the last point defining the line (in 
the upper right-hand corner) is at the point 91 on the x-axis and 64 = y(91) on 
the y-axis.  

Although there may be instances in which having the indices of the plotted 
data displayed along the x-axis is useful, in many cases it will be more 
informative to display the value of the input or parameter that was responsible 
for the data output.  In order to accomplish this for our previous example, we 
can use 

x = -5:0.1:4; 
y = (x).^3; 
plot(x,y);

and the Figure Window will contain the plot that appears in Figure 3.4. 
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Figure 3.3 Plot of y = (-5:0.1:4).^3 
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Now we can add some labels to the x- and y-axes, a title to make the graph 
more informative, and a grid to assist in estimating values from the line in the 
graph.  We will create the label “x” for the x-axis, “y” for the y-axis, and put 
“Graph of y = x^3” as the title to the graph.  MATLAB makes adding these very 
simple; just type the following at the command prompt:  

xlabel('x');
ylabel('y');
title('Graph of y = x^3'); 
grid;

Figure 3.5 shows the results of applying these commands. 
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Figure 3.4 Use plot(x,y) where y = x.^3 
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The plot command arguments are not restricted to being vectors; the inputs 
may also be matrices.  When passing inputs to the plotting function, there are 
several simple rules to keep in mind so that the appearance of the graph is 
what you expect.  The rules can be summarized as follows: 

plot(y) 

If y is a vector, you will generate a line of y versus the index 
numbers of y. 

If y is a matrix, you will generate a set of lines where each line 
corresponds to the graph of one of the matrix columns versus 
the row number. 

plot(x,y) 

If x and y are vectors of the same length, a graph of y versus x 
will be displayed. 

If x is a vector and y is a matrix, the rows or columns of y will 
be plotted against x. If a column of the y matrix has the same 
length as vector x, then the columns will be plotted versus x.  
If the rows have the same length as vector x, then the rows 
will be plotted versus x.  If the number of rows and columns 
of y are the same, the columns will be plotted versus x. 

If x is a matrix and y is a vector, y will be plotted against 
either the  rows or columns of x. If a column of the x matrix  
has the same length as vector y, then y will be plotted versus 
columns of x.  If the number of rows of x is equivalent to the 
length as vector y, then y will be plotted versus the rows of x.   
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Figure 3.5 Adding labels, a title, and a grid. 
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If the number of rows and columns of x are the same, y will 
be plotted versus the columns of x. 

If x and y are matrices which have the same number of rows 
and columns, the columns of y will be plotted against the 
columns of x. 

We have already looked at plotting a simple vector by itself or versus 
another vector.  Let’s look at a few examples which illustrate these rules.  In 
the Command Window, type 

x = (0:0.2:9)'; 
alpha = 0:5; 
y = besselj(alpha,x);  % Bessel function 
plot(x,y)
xlabel('x');
ylabel('y');
title('y = besselj(ALPHA,x), for alpha = 0,1,2,3,4, and 
5');

The y variable is a 46-by-6 element matrix and x is a vector with 46 elements.  
The plotting results are shown in Figure 3.6.  For this example it does not 
matter to the plot command if y is transposed or not;  MATLAB recognizes the 
size of the two input variables and appropriately plots y in the orientation that 
matches the dimensions of x. However, the besselj function does require that 

alpha have as many columns as rows in x. 

Try the same example but substitute plot(y) for plot(x,y).  Here columns of 
y are plotted, so you end up with essentially the same figure, but with the x-
axis labels representing the row index number of y.  You could also plot the 

0 1 2 3 4 5 6 7 8 9
−0.5

0

0.5

1

x

y

y = besselj(ALPHA,x), for alpha = 0,1,2,3,4, and 5

Figure 3.6 Plotting the matrix y versus the vector x. 
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rows of y by using plot(y'), but in this example the graph, Figure 3.7, may look 
interesting but doesn't provide much in the way of information. 

If you have a color monitor, you may have noticed in the previous examples 
that when multiple lines are plotted, they will have various colors automatically 
assigned to them.  As you will read later on in this section, one of the ways by 
which the line types (e.g., solid, dashed, etc.), plot symbols (e.g., circles, stars, 
etc.), and line colors can be defined is by passing a string argument directly to 
the plot function.  However, for any of the cases in which more than one line 
is created and where you have not defined the color in the plot statement, the 
color of the lines will be cycled through a specific set of colors.  By default, 
there are six colors that MATLAB will automatically cycle the lines through.  
Later you will learn how to change line colors to accommodate your needs. 
Chapter 7 digs deeply into the objects that make up a figure and how to affect 
their properties such as the order in which line colors are chosen. 

The number of inputs can also be extended.  You can use the format 
plot(x1,y1,x2,y2,...) where the rules mentioned above apply for each x and y 
pair.  For example, if you wanted to plot three lines representing the data sets 

x1 = 0:.1:10; 
y1 = cos(x1); 
x2 = 1.5*x1; 
y2 = 2*cos(x2); 
x3 = 2*x1; 
y3 = 3*sin(x3); 
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Figure 3.7 Plotting the rows of a 46 by 6 element matrix. 
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you could use 

plot(x1,y1,x2,y2,x3,y3)

If the x1, x2, x3 and y1, y2, y3 data had been, respectively, in an X and Y 
matrix (in this example it is possible because the sizes of the individual vectors 
are the same and can be used to build a larger matrix) 

X = [x1' x2' x3']; 
Y = [y1' y2' y3']; 

you could have also used 
plot(X,Y)

Both of these plot commands would give you the exact same plot shown in 
Figure 3.8. Be aware of the fact that depending on the situation, there are 
usually many ways to achieve the same end result.  If the x1, x2, x3 and y1, y2, 
y3 vectors could not have been used to build a larger matrix, the 
plot(x1,y1,x2,y2,x3,y3) would be more appropriate.  As you continue through 
this book and your MATLAB  vocabulary grows, you will see that there are 

other methods that can be used to get the same three lines on your display. 

If you were able to visualize the data in your mind's eye and expected 
something that was close to the results in Figure 3.8, or if you were able to 
look at the data and associate a line with one of the data set combinations, it 
was most likely due to the fact that the data sets were fairly simple.  In many 
cases this would probably not be easy to do.  On your screen the lines are in 
color, so if you memorized the fact that by default MATLAB currently cycles 
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Figure 3.8 Using plot(X,Y) or plot(x1,y1,x2,y2,…). 

© 2003 by CRC Press LLC



through the colors blue, green, red, cyan, magenta, yellow, and black when 
creating multiple lines with a plot command, you would have known that the 
blue one corresponds to the (x1,y1) combinations, the green line corresponds 
to the (x2,y2) combinations, and the red line corresponds to the (x3,y3) 
combinations.  Realistically, if you are presenting your plots to others, your 
audience is probably not likely to have memorized the MATLAB color cycle 
and unless you are some kind of savant, you probably aren’t going to want to 
memorize it either! Of course you can always look it up in the reference 
guide, type help plot, set your own default, look at the axes ColorOrder 
property (an object property you’ll learn about in Chapter 7), or even run a 
quick test.  But in any event, if you print out a figure with a black and white 
printer, you are still going to be out of luck unless you make use of MATLAB’s 
line types or plotting symbols.  Also, since defaults may change from version 
to version (as the color cycle did from version 4 to version 5), if it matters what 
color a plot is displayed as on your monitor, it is always best to specify exactly 
what you want.  

Fortunately, the plot  command accepts a color-linestyle-marker string, 
which is a character string argument by which you can specify line types, plot 
symbols, and colors.  For instance, if you wanted to plot a red dashed line with 
the vectors x and y, you could simply type the command 

plot(x,y,'--r'); % Plot y versus x as red dashed 
line.

The string that you create to define the characteristics of the line may use 
any combination of characters  shown in Table 3.3.1 for the line type, symbol, 
or color. As you can see, your string may have from 1 to 4 characters.  The 
order of the character sets does not matter. Later we will see how to alter the 
line properties using the Property Editor from the Figure Window itself. And in 
Chapter 7  you will learn how to directly work with figure objects.   

Table 3.3.1 Line Color, Marker Style, and Line Style Strings 

Line Color Marker Style 
character creates character creates 

b or blue blue line . point 
g or green green line o circle 
r or red red line x x-mark 
c or cyan cyan line + plus 
m or magenta magenta line * star 
y or yellow yellow line s square 
k or black black line d diamond 
  v triangle down 

Line Style ^ triangle up 
character creates < triangle left 

- solid > triangle right 
: dotted p pentagram 
-. dashdot h hexagram 
-- dashed  

© 2003 by CRC Press LLC



It is important to realize that when you are using plot symbols, the symbols 
will appear centered on the data points.  Lines, however, will interpolate 
(linearly) between the data points.  Therefore, if you are plotting a continuous 
function (such as sin(x)), the relative smoothness of the line may depend on 
the number of samples being passed to the function and the spacing between 
the samples. Also bear in mind that the colors that have been listed in Table 
3.3-1 are not the only colors that can be used.  You will see how to create 
lines with other colors when we discuss the Plot Editing Mode in Section 3.6 
and Handle Graphics in Chapter 7. 

Let's look at an example of how a combination of line styles and symbols 
can be informative.  First, we will create some data by squaring a range of 
values and adding some normally distributed random noise: 

x1 = [-3:.2:3]; 
y1 = x1.^2 + randn(size(x1)); 

Given the input and noisy output, let’s say we want to fit a 2nd order 
polynomial curve to the data. To do this we can use the MATLAB functions 
polyfit and polyval in the following manner: 

p =  polyfit(x1,y1,2); 
x2 = [-3:.5:3]; 
y2 = polyval(p,x2); 

Now we shall plot the data which was used as input to our curve fitting 
routine as green circles, and the fitted curve as a cyan dashed line. 

plot(x1,y1,'og',x2,y2,'--c');

And for a flourish, add some informative labels and a grid with 

xlabel('Input');
ylabel('Output');
title('Noisy data = "o" and Fitted Curve = "--" '); 
grid

and voila,  we have quickly created the combination plot of our results shown 
in Figure 3.9. 
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3.3.2 Logarithmic Plots 

Not all data lends itself to a linear scale representation. Sometimes, the 
range of the data to be plotted is so great that it is difficult to see just what the 
data is doing. MATLAB provides three forms of the plot function that let us 
view data that is better represented with a logarithmic scale, namely semilogx,
semilogy, and loglog. Each is used just as the plot function, but use a 
logarithmic scale (base 10), for either the x-axis, y-axis, or both axes 
respectively.  

As an example, consider the data generated by the following code. 

x=-10:.1:10;
y=exp(x.^3);

The x-axis data is clearly linear but the data computed from it isn’t. If we use 
our familiar plot function with 

plot(x,y)

we will get the plot shown in Figure 3.10. 
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Figure 3.9 A combination plot. 
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In this case our plot looks much like a straight line and we would be hard 
pressed to read any values off of it. However, using semilogy reveals much 
more about the nature of the data. Simply plot the data again using, 

semilogy(x,y)

and you will get the plot shown in Figure 3.11.  
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Figure 3.10   Using plot is ineffective when the data scale varies greatly. 
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Figure 3.11  Using semilogy reveals details about the  data. 
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If our x-axis data was better represented with a logarithmic scale, we would 
use semilogx. If both need logarithmic scales, then loglog could be used.  

3.4 Simple 2-D Plot Manipulation 
So making a simple plot is easy enough with the plot command. In fact, you 

can see how attractive MATLAB might be for making quick plots and easily 
adding axis labels and titles. There’s lots more you can do and that is what we 
are going to discuss next.  

3.4.1 Generating Plots with Multiple Data Sets 

As you just learned, you can plot multiple sets of data with a single plot
command. However, MATLAB does not restrict you to using a single call to 
the plot command in order to plot multiple lines in a graph. A command 
which you might find very useful is the hold command. The hold command 
allows you to add additional lines to the current graph without erasing what 
already exists in it. When hold is not used, the plot command will replace the 
contents of the current graph. The hold command can be used in three 
different ways: 

hold on tells MATLAB that you want all subsequent lines and surfaces 
to be added to the current graph. 

hold off is used to turn off the hold command, setting MATLAB back 
to the default mode of replacing the current graph with a 
new one. 

hold when used by itself will toggle the mode between the hold
on and hold off state. 

Here is an example where we will add three lines to a single graph using 
three plot statements to produce the graph shown in Figure 3.12. 

x = -2:.1:2; 
plot(x,sin(x),'-r');
hold on 
plot(x,sin(x.^2),'--b');
plot(x,cos(x.^2),':g');
hold off 

Both the hold on and hold off statements could have been replaced simply 
with the command hold.  In fact, the hold off is not necessary at all.  We have 
used it here to make sure that the graph returns to its default state.  This way, 
if you type in subsequent examples, you will obtain results identical to those 
shown in the figures which are illustrated in this book.  We also suggest using 
the on and off arguments in  programs so that the hold state is not ambiguous 
to a person reading the M-file.  If you are concerned about inadvertently 
plotting on an existing graph, you would be, for instance, completely safe from 
accidentally adding the solid red line, plot(x,sin(x),'-r'), to a previously existing 
graph, by using the clear figure command clf .
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Notice that in this example we had to tell the plot command which color to 
use with each of the lines or else each line would have been plotted in blue, 
the default first color for MATLAB plots. This is because the plot command 
starts with the default first color each time it is called. Although hold is on, that 
fact is completely ignored by the plot command. The hold command simply 
keeps the current plot while subsequent plot commands are issued. 

In some instances you will have data sets that you want to display on the 
same graph; however, the y-axis data values are not in the same range.  
MATLAB provides a useful graphics function for just such an occasion. The 
command plotyy, will help you plot these types of data sets on the same 
graph. This is best explained with an example. 

Let’s say you have created the following data sets: 

x1 = 0:.1:20; 
y1 = x1.*sin(x1); 
x2 = 10:.2:25; 
y2 = 50*x2; 

If you plotted them with 

plot(x1,y1,'-b',x2,y2,'--g');
title('y1 is the blue line, y2 is the green dashed 
line');
ylabel('y');
xlabel('x');
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Figure 3.12  Multiple line plot using hold. 
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As you can see in Figure 3.13 it is difficult to see the y1 values since 
MATLAB’s auto-scaling is choosing the y-axis limits so as to display all the data 
points. 

Instead we could use plotyy to plot the data: 

plotyy(x1,y1,x2,y2)

which would generate the plot shown in Figure 3.14 . 

0 5 10 15 20 25
−200

0

200

400

600

800

1000

1200

1400
y1 is the blue line, y2 is the green dashed line

y

x

Figure 3.13  Using plot to graph data sets with a large range of y-axis 
values is not always acceptable. 
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Observe that the y1 data took the first default color and that the y2 data 
took the second. Also notice how MATLAB colored the y axis appropriately. 
Unfortunately, the plotyy command does not allow us to change the color or 
type of line used in plotting the same way we did with the plot command. 
Also, using ylabel would only affect the left  y-axis and we would not be able 
to label the right y-axis. However, by making use of MATLAB’s handle graphics 
(see Chapter 7) we can do exactly what we intend, that is plotting the two sets 
of data with complete control over the color, line style, and even labeling each 
axis appropriately. 

The following code will do just that: 

[axeshandles,line1handle,line2handle]=plotyy(x1,y1,x2,y2);
set(line1handle,'linestyle','-','color','blue');
set(line2handle,'linestyle','--','color','green');
title('y1 is the blue line,y2 is the green dashed line'); 
axes(axeshandles(1));
ylabel('y1=x.*sin(x)');
axes(axeshandles(2));
ylabel('y2=50*x');
xlabel('x');

The handles (which you will learn about in Chapter 7) are used here to give 
us control over setting the linestyle and color attributes so that we can readily 
distinguish between the data sets. The plotyy command returns the handles to 
the graph’s two axes in axeshandles, and the handles to objects from each plot 
in line1handle and line2handle. The first element in axeshandles, 
axeshandles(1), is the left axes and the second, axeshandles(2) is the right axis. 
The above code sets the appropriate properties and will give the plot shown in 
Figure 3.15. 
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Figure 3.14  Using the plotyy command. 

� � � � 	 �

© 2003 by CRC Press LLC



Notice how nice our graph looks with each axis labeled appropriately and 
with our choice of color and line styles! Don’t get overly worried about the 
use of handles and object properties here. You will learn all about that in 
Chapter 7. Just keep in mind that to get the greatest control over plots in 
MATLAB you will need to know about Handle Graphics. 

3.4.2 Using Axis to Customize Plots 

You probably noticed that MATLAB automatically scales the x-axis and y-
axis to encompass the data set or sets that you are plotting. In addition, the 
axes are automatically labeled and in a standard Cartesian coordinate system 
with the origin in the lower-left corner.  Often you will want to display a 
different region of the graph than what MATLAB’s default settings have 
provided.  The axis command can be used to manipulate the attributes of a 
graph’s axes.  Table 3.4.1 summarizes the uses of this function with respect to 
2-dimensional plots. 
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Figure 3.15  Using plotyy to show 2 data sets. 
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Table 3.4.1 The axis function summary for 2-D plots. 

Function Action 
axis([xmin xmax ymin ymax]) set the minimum and maximum x- and y-axis 

limits. xmax and/or ymax can be set to Inf to 
force MATLAB to autoscale the upper x- and 
y-axis limits. xmin and/or ymin can be set to -
Inf to force MATLAB to scale the lower x- 
and y-axis limits. 

axis auto returns the axis scaling to its default, 
automatic mode where, for each dimension, 
'nice' limits are chosen based on the extents 
of all lines in the graph. 

axis manual freezes the scaling at the current limits, so 
that if hold is turned on, subsequent plots 
will use the same limits. 

axis normal puts the axes into the default (automatic) 
state and restores the current axis box to full 
size, removing any restrictions on the scaling 
of the units. This undoes the effects of axis
square,  and axis equal.

axis square forces the axes to have square dimensions. 

axis equal forces the unit spacing, i.e., the tic marks, on 
the x- and  y- axis to be equal. 

axis ij puts origin of graph in upper-left corner.  The 
x-axis scale numbering increases from left to 
right. The y-axis scale numbering increases 
from top to bottom.  

axis xy forces the axes to use a standard Cartesian 
coordinate system with the origin of the 
graph in the lower-left corner.  The x-axis 
scale numbering increases from left to right. 
The y-axis scale numbering increases from 
bottom to top. 

axis tight forces the x- and y-axes limits to the 
minimum and maximum data values, i.e., the 
range of the data. 

axis off turns off, i.e., hides, the axes labels, tic marks, 
and box by making them invisible. 

axis on turns on, i.e., makes visible, the axes labels, 
tic marks, and box. 

� � � � � �
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We haven’t said anything about this before, but MATLAB commands also 
have a functional form. This is called command-function duality. The axis 
command is as good a command as any to explain this. For instance, you can 
use the command form by typing 

axis square 

at the command prompt, or you could use the function form by typing 

axis(‘square’)

MATLAB treats each method the same. The utility of the command form is that 
you can compound a couple of these axis manipulations at the same time, 
such as with 

axis equal tight

which will force the unit spacing to be the same on the two axes and force the 
limits to the ranges provided in the plotted data sets. 

Depending on the data used to create your graph, you may decide that 
only a specific portion of the graph is important or has relevance.  You can 
always determine which elements are of interest and then re-plot only those 
elements of the data.  This is inconvenient, time-consuming, and may still not 
give you exactly what you want.  The axis command provides the easiest and 
most straightforward way to manually define the x- and y-axis limits. 
For instance, if you plot the following data 

x = -10:.1:10; 

with 

y = exp(x).*sin(x).*(x.^3); 
plot(x,y)
xlabel('x');
ylabel('y');

you will obtain the results illustrated in Figure 3.16. 
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This graph shows all the data, but the graph seems to indicate that the 
expression for y is flat for x between negative 10 and 3.  To see what is going 
on for these values of x, we can “zoom” in on this region by using the axis 
command.  To use this function, pass a vector containing the minimum and 
maximum values of the x- and y-axes that you want shown (e.g., axis([xmin 
xmax ymin ymax])).  Let's say we want the x-axis to run only from negative ten 
to three and the y-axis to run from negative six to seven.  To achieve this, type 

axis([-10 3 -6 7]) 

which will give the results shown in Figure 3.17. 
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Figure 3.16  Automatic scaling can be misleading. 
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Simply typing

axis auto 

at the command prompt will plot all the data again in the graph. 

When you write MATLAB M-files that create graphics there will be times 
when you might need to know the current graph’s axis limits.  This is useful for 
things such as determining how to appropriately redefine them based on their 
value, or perhaps you are interested in them for some other purpose.  To get 
and put the current axis limits into a variable, use 

variable_name = axis; 

When the current graph is 2-dimensional, variable_name will be a row vector 
with 4 elements ([xmin xmax ymin ymax]).  The following example illustrates 
the case in which you want use the minimum limits of the x- and y-axes that 
MATLAB determines, but want to customize the maximum values for both 
axes. 

x = 0:0.1:(5*pi); 
plot(x,7.5*sin(x));
axis_limits = axis 
desired_max_x = 10; 
desired_max_y = 15; 
axis([axis_limits(1) desired_max_x ... 
      axis_limits(3) desired_max_y]); 
new_limits = axis 

The axis limits before redefining them are  
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Figure 3.17  Manually defining the axis reveals details of the data. 
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axis_limits = [0 16 -8 8] 

and after redefining them, the limits are 

new_limits = [0 10 -8 15] 

Earlier we showed you how by using hold on you can create graphs with 
multiple lines by separately issuing the plot command for each line.   If the 
data for a particular line exceeds the boundaries of the x- and y-axis limits, 
MATLAB redefines the axis scales to include the new data.  In some instances 
this may not be desirable.  To keep the automatic scaling from occurring, you 
just need to define the axes limits using axis([xmin xmax ymin ymax]) or 
axis(axis).  By setting the axis limits to something other than 'auto,' the axis 
mode is set into a manual mode instead of automatic.  Therefore, any 
subsequent plots that are added to the current one will not change the axes 
scales.  The axis(axis) method of defining the limits freezes the current axis 
scaling limits because you are calling the axis function twice.  The call that is 
performed within the parentheses returns a vector of the current axes limits 
that in turn is passed to the axis function.  The axes limits are not changed, but 
since you have manually defined the axis limits, they will no longer change to 
accommodate the minimum and maximum values of subsequent data plots. 

The axis command also provides a quick way to change the aspect ratio of 
the axes.  By default, the axes will size themselves to fill up most of the Figure 
Window, independent of how you have sized the Figure Window.  Depending 
on the data you have plotted, you may want the axes to be square in their 
physical dimensions.  To illustrate this, create a Figure Window by typing 

figure

Then resize this Figure Window so that its dimensions are rectangular.  Now 
let’s create a circle with a radius of two units, using 

x = 2*cos([0:10:360]*(pi/180)); 
y = 2*sin([0:10:360]*(pi/180)); 
plot(x,y)
axis([-5 5 -5 5]) 

At this point the circle probably has a slight elliptical shape such as shown in 
Figure 3.18.
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Now we can force the axes size to be that of a square instead of a rectangle 
with the command 

axis(‘square’)

 which will result in the plot of Figure 3.19. 
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Figure 3.18  Circular data appears elliptical without customizing the axes 
with the axis command. 
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Now this looks more like a circle! But before we can be confident in our use 
of the axis(‘square’) command, let’s take our understanding a little further by 
looking at the plot of an ellipse. 

Keep in mind that using axis('square') does not necessarily keep the unit 
spacing on the x-axis the same size as the unit spacing on the y-axis, it merely 
forces the size of the axes to be a square instead of the default axes size, 
which tries to make the most of the Figure Window real estate.  To illustrate, 
create an ellipse by typing 

x = 2*cos([0:10:360]*(pi/180)); 
y = 4*sin([0:10:360]*(pi/180)); 
plot(x,y)
axis('square')

which will produce the plot shown in Figure 3.20. 
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Figure 3.19  Using axis(‘square’). 
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Now you can clearly see that we have an ellipse that looks like a circle. Such a 
representation could lead to problems that are merely annoying or potentially 
devastating.

To insure that you have the correct aspect ratio, use axis('equal'). Typing 

axis('equal')

after the axis('square') command of the previous example will produce the 
graph shown in Figure 3.21.  
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Figure 3.20  Elliptical data looks circular with axis('square'). 
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You can also force the range of the axis limits to adjust to the minimum and 
maximum data values of the ellipse by using axis(‘tight’). If you do, you will get 
the plot shown in Figure 3.22. 

Recall that the default Cartesian axes has its origin in the lower-left corner of 
the plot.  The x-axis lies horizontally along the bottom of the figure with the 
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Figure 3.21  Using axis(‘equal’) to graph the ellipse. 
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Figure 3.22  Using axis('tight') to adjust the axes to the ellipse data. 
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axis scale values increasing from left to right.  The y-axis lies vertically along the 
left side of the Figure Window with the axis scale values increasing from 
bottom to top.  You can tell MATLAB to locate the origin of the axes in the 
upper-left corner with the y-axis scale values increasing from top to bottom by 
using the command axis('ij'). To revert back to the default Cartesian axes use 
axis('xy'). In Chapter 7 you will learn how to reverse the direction of the x-axis 
numbering using the axes object properties.  

If you think that your data is not correctly proportioned, use axis(‘equal’) to 
make sure that the scaling of the axis is indeed equal. Also, be aware that the 
axis(‘auto’) command only assures that the scaling can accommodate all the 
data in the graph; it will not necessarily undo the ‘square’ and ‘equal’ settings. 
To be sure you are back in the default mode, use axis(‘normal’).

One last feature of the axis function that we will mention here is that you 
can make the axes and all labels associated with the axes invisible by typing 
axis('off').  In this mode, the graphics that were plotted in the axes will remain 
visible. This is useful if all you need is the data.  To see the axes and labels 
again simply type axis('on').

3.4.3 Creating Supporting Text and Legends 

In the last section of this chapter we will explore some of the new 
interactive ways MATLAB lets us edit our plots. You will see just how quick 
and easy it is to edit plots in the plot editing mode. Although convenient for 
quick edits, it is still necessary to understand how to add text to your plots 
using the specific text commands. You have already seen how to add text to 
the x-axis, y-axis, and at the top for a title using xlabel, ylabel, and title.
Although these are sure to be the most common commands you will use 
when creating plots, MATLAB provides you with additional means for adding 
supporting text in any arbitrary position to your graph using the text
command. We will also show you how you can place text with your mouse 
using gtext. Finally you will learn how the legend command can quickly add a 
legend to your multi-line plots.  

Before we begin with the built-in functions of MATLAB, we will present a 
quick diversion to a handy tool called sidetext. The sidetext function provides 
a simple means to placing text at the right side of the axes with its orientation 
identical to that created with ylabel. The sidetext function uses handle 
graphics to manipulate the position and orientation of the string you provide. 
Once you have downloaded sidetext and placed it in your working directory, 
try the following example: 

t = 0:0.02:2;  phi_0 = 45*pi/180; 
y = sin(2*pi*t + phi_0); 
plot(t,y);
grid on; 
xlabel('t');
ylabel('y');
title('Plot of Sin(2*pi*t + phi_0)'); 
sidetext('phi_0 = 45 degrees');

which produces the graph shown in Figure 3.23. 
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Now change the scale of the axes with 

axis([0 3 –2 2]) 

and the graph will be that shown in Figure 3.24. The important point to note 
here is that changing the scale of the axes will not affect the position of the 
text created with sidetext since it positions the text relative to the axes. 
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Figure 3.23  SIDETEXT places a string on the right side of the axis. 
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You can place text interactively with the mouse by passing a string to the 
function gtext.  After this command is issued, the mouse pointer will change 
from the standard arrow to a crosshair when the pointer is in the Figure 
Window.  Position the crosshairs over the location in the figure where you 
wish to place the text and press either the mouse button or a key on your 
keyboard.  The text string will appear left justified and vertically on top of the 
data point that was selected.  For example, create a graph and type 

gtext('This text was placed with gtext') 

Now, scale the axes to something other than what is currently shown in your 
figure.  Notice that this text string changes its location relative to the axes 
border, but not relative to the data point that was selected.  This function is 
useful when you have completed a graph and want to add a few additional 
lines of text. Also as you will learn in the last section of this chapter, the 
current version of MATLAB lets you add text in the plot editing mode. 
However, if you are creating multiple plots, a fair number of text strings, or just 
want to automate this process in your MATLAB program, most likely you’ll find 
that the text function is better suited for these types of tasks.  

The text function is both a high- and low-level graphics function that can be 
used to add character strings to a graph.  For now, we'll look at it as a high-
level text placement command.  After you learn about Handle Graphics in 
Chapter 7 we will explore the techniques and ways in which these graphics 
objects can be manipulated. 

  The most elementary way that text can be added to the current graph is 
with text(x,y,'text') where the data point (x,y) corresponds to a location in the 
current axes.  As an example, let’s have MATLAB draw a line plot and label the 
maximum data point as such. 
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Figure 3.24  SIDETEXT is unaffected by axes scale. 
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% Create and plot the x and y data 
x = -2:0.1:2; 
y = 3 - (x+1).^2; 
plot(x,y);
xlabel('x'); ylabel('y'); title('y = 3 - (x+1).^2'); 
grid on 
axis([-2 2 -5 5]); 
% Determine the maximum y data value 
[max_y_value,max_y_index] = max(y); 
corresponding_x_value = x(max_y_index); 
% Put a red circle symbol at the maximum data point 
hold on 
plot(corresponding_x_value,max_y_value,'or');
hold off 
% Create a string vector 
our_string = sprintf('%g is the maximum data point',... 
             max_y_value); 
% Put the string into the graph at the max y value 
text(corresponding_x_value,max_y_value+0.5,our_string);

This script will create the plot and text shown in Figure 3.25.  Here we have 
added the 0.5 to the max_y_value variable so that the text will not overlap the 
line.  By default, the text string will be placed left justified and vertically 
centered on the (x,y) data point that is provided.  The addition of the 0.5 can 
be avoided by passing properties to the text function to keep the text vertically 
above the data point.  To learn about all the text object’s properties and how 
they can be used to manipulate the text’s attributes, see Chapter 7. 

The text function can also be used in a manner very similar to the way plot is 
used.  For instance, if you want to create a scatter plot of the percent change 
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Figure 3.25 : Using the text function to add text to your plot. 
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in the consumer price index versus unemployment between 1965 and 1980, 
you can type 

% Source of data: Economic Report of the President, 1986. 
cpi_data = [1.7 2.9 2.9 4.2 5.4 5.9 4.3 3.3 6.2 ... 
   11.0 9.1 5.8 6.5 7.7 11.3 13.5]; 
perc_unemploy_data = [4.5 3.8 3.8 3.6 3.5 4.9 5.9 ... 
    5.6 4.9 5.6 8.5 7.7 7.0 6.0 5.8 7.0]; 
year_strings = ['1965';'1966';'1967';'1968';'1969';... 
      '1970';'1971';'1972';'1973';'1974';... 
      '1975';'1976';'1977';'1978';'1979';'1980' ]; 
plot(perc_unemploy_data,cpi_data,'o');
% In this next text command two text properties were made
% use of so that the plot would look better.  You will 
%learn how to manipulate these in Chapter 7. 
text(perc_unemploy_data,cpi_data,year_strings,...
   'fontsize',10,... 
   'verticalalignment','bottom'); 
axis([0 10 0 14]); 
xlabel('Percent Unemployment'); 
ylabel('Percent change in CPI'); 

will create the plot shown in Figure 3.26. 

You might have been wondering how to add a block of text, i.e., multiple 
lines of text to labels and titles. Perhaps it occurred to you that you could 
create multiple lines by repeated use of the text command, but then you 
would be faced with a kind of trial and error approach in order to get the 
location of your text to look right.  Fortunately MATLAB provides a way to 
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Figure 3.26  Scatter Plot with text labels. 
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accomplish this without resorting to such manual methods. All of the built-in 
MATLAB text functions will accept a cell array of strings where each string 
contains the text for each line.  This code for example, 

string_array(1)={'This will be the first line.'}; 
string_array(2)={'This will be the second line.'}; 
string_array(3)={'And so on...'}; 
gtext(string_array);

will place the three lines of text wherever you position the mouse pointer in 
the figure. If you know exactly where you want to place the block of text, you 
could use 

text(0.5,0.5,string_array);

The final text placement command we will discuss is this section is the 
legend command. This function creates a legend of the line types that you 
have used in the current graph and associates these line types with the text 
strings that you pass to it.  The order in which the lines are created is the order 
in which they are associated with the legend strings. For example, 

x = 0:.1:(2*pi); 
sx=sin(x);
cx=cos(x);
plot(x,sx,'-r',x,cx,'--c');
axis([0 2*pi -1.5 1.5]) 
legend('Sin(x)','Cos(x)');

will produce the result shown in Figure 3.27. 
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Figure 3.27  Creating a figure legend. 
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If you are not sure in which order the lines were created or you want only a 
few of the lines put into a legend you can use this form of the legend function: 

legend(linetype1, string1,linetype2,string2,...) 

This is probably the safest way to insure that when you create the legend the 
text string is correctly associated with the line you wanted.  Implementing this 
for the previous example, we see that the legend command is replaced with 

legend('-r','Sin(x)','--c','Cos(x)');

If you do not like the position that was automatically chosen by the legend
function, you can use the mouse to click and drag the legend to a location of 
your choice. 

3.4.4 Text Placement 

There are several ways to place text in a position relative to the figure 
instead of the axes.  For instance, you may wish to have a calendar date 
always located in the lower right-hand corner of the figure, even when you are 
displaying multiple axes, or subplots (see the following section).  One method 
you can use is to create invisible axes that cover the entire figure space.  Then 
place text within the invisible axes where location (0,0) is the lower left-hand 
corner and (1,1) is the upper right-hand corner of the figure.  If you use this 
technique we recommend that, until you learn more about graphic objects 
and their handles, you create the invisible axes and the specially placed text 
after the rest of your plot looks the way you want it.  The following code will 
produce the plot shown in Figure 3.28. 

plot(0:.1:10,cos(0:.1:10))
date_string = date; 
axes('position',[0 0 1 1],'visible','off'); 
text(1,0,date_string,'horizontalalignment','right',...
         'verticalalignment','bottom'); 
text(0,0,'Lower Left String',... 
         'horizontalalignment','left',... 
         'verticalalignment','bottom'); 
text(1,1,'Top Right String',... 
         'horizontalalignment','right',... 
         'verticalalignment','top'); 
text(0,1,'Top Left 
String','horizontalalignment','left',...
         'verticalalignment','top'); 
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The problem alluded to above is that if you were to subsequently add another 
plot with 

hold on 
plot(0:.1:10,sin(0:.1:10))

you end up plotting to the invisible axes as shown in Figure 3.29.  This 
happens since plot commands always apply to the most recently created axes, 
unless you take advantage of handle graphics (and that’s not until Chapter 7).  

0 1 2 3 4 5 6 7 8 9 10
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

06−Aug−2002ower Left String

Top Right Stringop Left String

Figure 3.28  Placing text using invisible axes. 
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This plot looks bad because the text that we placed earlier moved to new 
locations when the invisible axes limits automatically scaled to accommodate 
the limits of the new data. 

A way we can overcome the restrictions of this method is to normalize the 
position of the current axes to the figure and then place text in normalized 
units.  With this approach it does not matter when you generate the text as 
long as there is at least one plot on the screen.  This means that after you have 
created a plot with some specially placed text, you can then, for example, add 
more lines to the plot without affecting the text positions or without worrying 
about plotting to an invisible axis.  To make this process easier we can create a 
new function, norm2fig, which will return the normalized text positions. 

function normtxtpos = norm2fig(normfigpos) 
% Pass this function normalized  positions in the figure 
% and it will return the positions relative to the 
current
% axes. 
%
%   passing a [0 0] would refer to lower left corner 
%   passing a [0 1] would refer to top left corner 
%   passing a [1 0] would refer to lower right corner 
%   passing a [1 1] would refer to top right corner 

apos = get(gca,'pos'); 
normtxtpos = [(normfigpos(1,1)-apos(1,1))/apos(1,3) ,... 
              (normfigpos(1,2)-apos(1,2))/apos(1,4)]; 

This function will let us quickly generate the text positions we want for the 
previous example to get the results shown in Figure 3.30.  
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Figure 3.29  Problems arise when adding to a plot after using the 
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To duplicate this result, first plot the sine, be sure that hold is on, then do the 
following: 

plot(0:.1:10,cos(0:.1:10))
date_string = date; 
tpos = norm2fig([1 0]); 
text(tpos(1,1),tpos(1,2),date_string,...
         'units','normalized',... 
         'horizontalalignment','right',... 
         'verticalalignment','bottom'); 
tpos = norm2fig([0 0]); 
text(tpos(1,1),tpos(1,2),'Lower Left String',... 
         'units','normalized',... 
         'horizontalalignment','left',... 
         'verticalalignment','bottom'); 
tpos = norm2fig([1 1]); 
text(tpos(1,1),tpos(1,2),'Top Right String',... 
         'units','normalized',... 
         'horizontalalignment','right',... 
         'verticalalignment','top'); 
tpos = norm2fig([0 1]); 
text(tpos(1,1),tpos(1,2),'Top Left String', ... 
         'units','normalized',... 
         'horizontalalignment','left',... 
         'verticalalignment','top'); 

Short of the methods of Chapter 7, this approach works well. 

3.4.5 Special Text Character Formats 

You’ve seen that adding a string of text is relatively easy. You’ve even seen 
that you can have text in a title or on an axis label with more than one line by 
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Figure 3.30  Using the normalized position method of text placement. 
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storing your strings in cell arrays. But in all these cases the text we provided 
were those characters available directly from our keyboard. What about 
special characters like the Greek alphabet, superscripts, subscripts, arrows, and 
other mathematical sysmbols?  

Fortunately MATLAB has the capability of modifying text to have different 
styles. It does this by providing support for a subset of the TeX characters. TeX 
is a standard notation for special character sets. You can recognize it right 
away as it will have a backslash “\” prefixing a character name. For example, 
the Greek character  (big omega) is specified by “\Omega” in TeX. Table 
3.4.2 lists all the TeX characters available in MATLAB. 

Table 3.4.2 TeX Characters Available in MATLAB 

TeX
Characters Result

TeX
Characters Result

TeX
Characters Result

\alpha \upsilon \sim 

\beta \phi \leq 

\gamma \chi \infty 

\delta \psi \clubsuit 

\epsilon \omega \diamondsuit 

\zeta \Gamma \heartsuit 

\eta \Delta \spadesuit 

\theta \Theta \leftrightarrow 

\vartheta \Lambda \leftarrow 

\iota \Xi \uparrow 

\kappa \Pi \rightarrow 

\lambda \Sigma \downarrow 

\mu \Upsilon \circ 

\nu \Phi \pm 

\xi \Psi \geq 

\pi \Omega \propto 

\rho \forall \partial 

\sigma \exists \bullet 

\varsigma \ni \div 

\tau \cong \neq 

\equiv \approx \aleph 

\Im \Re \wp 

\otimes \oplus \oslash 

\cap \cup \supseteq 

continued on next page 
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TeX
Characters Result 

TeX
Characters Result

TeX
Characters Result

\supset \subseteq \subset 

\int \in \o 

\rfloor \lceil \nabla 

\lfloor \cdot \dots 

\perp \neg \prime 

\wedge \times \0

\rceil \surd \mid 

\vee \varpi \copyright 

\langle \rangle 

In addition to recognizing the special characters already listed, the MATLAB 
TeX interpreter also recognizes the following stream modifiers that control the 
font used.  

Table 3.4.3 TeX Stream Modifiers 

TeX Stream Modifier Description 

\bf Bold font. 

\it Italics font. 

\sl Oblique font (rarely used). 

\rm Normal font. 

^ Make part of string superscript. 

_ Make part of string subscript. 

\fontname{fontname} Specify the font family to use. 

\fontsize{fontsize} Specify the font size in FontUnits. 

The first four modifiers are mutually exclusive so you can’t use them 
together. However, you can use \fontname in combination with one of the 
other modifiers. Also, stream modifiers remain in effect until the end of the 
string or only within the context defined by braces { }. The following code 
illustrates using the TeX interpreter and produces the plot shown in Figure 
3.31.

plot(0:.1:2*pi, sin(0:.1:2*pi)) 
xlabel('\tau = 0 to 2\pi','FontSize',16) 
ylabel('sin(\tau)','FontSize',16)
title('\it{Value of the Sine from 0 to 2 
\pi}','FontSize',16)
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What about if you want to print a “\”, “{“, “}”, “^”, or “_”? Since these have 
meaning in the TeX interpreter you will need to tell the interpreter to ignore 
the command. This is achieved by using a backslash “\” right before them. 

3.4.6 Using Subplot to Create Multiple Axes 

You’ve seen that you can have multiple plots on an axis, either by plotting 
multiples or by using the hold command and issuing another plot command. 
However, you are not limited to having one axes object in a Figure Window.  
The easiest way to create multiple axes in a Figure Window is to make use of 
the command subplot.  This function breaks up the Figure Window's space 
into subregions or panes and is very useful for showing related information 
that is better viewed in individual plots.  Calling the command with three 
arguments creates these subregions; the first two specify how many regions 
there will be in terms of rows and columns, and the third argument specifies 
which region you wish to plot in.  For example, subplot(m,n,p) subdivides the 
Figure Window into m-by-n regions and creates axes in the pth region, where 
regions are numbered from left to right and top to bottom within the figure.  
For example, the following will break up the Figure Window into three distinct 
regions and create an axes object in the second one. 

subplot(3,1,2)

After you have created an axes object in one of the regions, you can then 
use any plotting command you want.  The axes created with subplot can be 
treated in the same way as the ones that are created when no subregions are 
specified.  In fact, you can create an axes object which encompasses the 
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Figure 3.31  Using TeX for special characters. 
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entire Figure Window's space by issuing subplot(1,1,1) and get the same axes 
that you would have gotten by using plot commands without the subplot 
function. 

If  an axes already exists in the subregion identified with the subplot
command, the existing axes becomes the current axes to which all subsequent 
graphics commands are issued.  You can  flip back and forth between these 
regions by re-issuing the subplot command to set one of the other axes or 
regions as the current axes. 

As an example, let’s break up the figure space into four panes configured in 
a 2-by-2 fashion.  The following code will create a figure space with four 
subregions configured as a 2-by-2. We will plot three different shapes 
separately in the first three regions and then have the fourth subregion contain 
all three shapes superimposed on top of one another. 

% CREATE THE X and Y SHAPE DATA. 
x_square = [-3 3 3 -3 -3]; 
y_square = [-3 -3 3 3 -3]; 
x_circle = 3*cos([0:10:360]*pi/180); 
y_circle = 3*sin([0:10:360]*pi/180); 
x_triangle = 3*cos([90 210 330 90]*pi/180); 
y_triangle = 3*sin([90 210 330 90]*pi/180); 

%PLOT THE CIRCLE IN THE UPPER LEFT SUBREGION. 
subplot(2,2,1)
plot(x_circle,y_circle,'--g'); axis([-4 4 -4 4]); 
axis('equal');
title('Circle');

%PLOT THE SQUARE IN THE UPPER RIGHT SUBREGION. 
subplot(2,2,2)
plot(x_square,y_square,'-r'); axis([-4 4 -4 4]); 
axis('equal');
title('Square');

%PLOT THE TRIANGLE IN THE LOWER LEFT SUBREGION. 
subplot(2,2,3)
plot(x_triangle,y_triangle,':b'); axis([-4 4 -4 4]); 
axis('equal');
title('Triangle');

%PLOT THE COMBINATION PLOT IN THE LOWER RIGHT SUBREGION. 
subplot(2,2,4)
plot(x_square,y_square,'-r');
hold on; 
plot(x_circle,y_circle,'--g');
plot(x_triangle,y_triangle,':b');
axis([-4 4 -4 4]); axis('equal'); 
title('Combination Plot'); 

Figure 3.32 shows the results of this script. 
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Keep in mind, that if at any time you create a subplot that breaks up the 
figure into a new M-by-N configuration, the set of existing axes will be deleted! 

A useful (and undocumented) manipulation of the subplot can be used to 
place a different number of subplots on a row. For instance, instead of having 
four subplots in a two-by-two matrix, we could have two subplots on the top 
row and one subplot on the bottom row that spans the figure. The following 
code will create the plot shown in Figure 3.33. 

subplot(2,2,1),ezplot('sin(x)')
subplot(2,2,2),ezplot('cos(x)')
subplot(2,1,2),ezplot('sin(x)^2/x^2')

The first two uses of subplot appear familiar enough; however, the final call 
specifies the large axis shown at the bottom of the figure. To create a similar 
figure with the single plot at the top use: 

subplot(2,2,3),ezplot('sin(x)')
subplot(2,2,4),ezplot('cos(x)')
subplot(2,1,1),ezplot('sin(x)^2/x^2')
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Figure 3.32  Multiple axes with subplot. 
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To create a subplot with one large plot axis on the left side and two small 
plot axes in a column on the right, use: 

subplot(2,2,2),ezplot('sin(x)')
subplot(2,2,4),ezplot('cos(x)')
subplot(1,2,1),ezplot('sin(x)^2/x^2')

 After you have created some subplots, you may have noticed that if you 
use the title command a title is created on top of the current axes.  In some 
cases you may wish to have a title that is centered at the top of the Figure 
Window instead.  Certainly you could use any of the text placement functions 
that were discussed previously such as gtext and text.  However, if you do not 
want to be prompted or waited upon to place the text as with gtext, or you 
don’t want to determine the desired position’s relative location to the current 
axes as which would need to be done with text, you can use a function we 
include here called toptitle.  This function will perform the calculations 
required to place a title string at the top of the figure regardless of the region 
to which you are currently plotting.  The format for using toptitle is simply 
toptitle(string_vector) where string_vector is a character string containing the 
set of characters that you wish to have appear at the top of the figure. Don’t 
worry about the details of the code for now, but after you have read Chapter 
7 you will be able to understand it readily. 
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function toptitle(string) 
% TOPTITLE 
%
% Places a title over a set of subplots. 
% Best results are obtained when all subplots are 
% created and then toptitle is executed. 
%
% Usage: 
%            h = toptitle('title string') 
%

% Patrick Marchand (prmarchand@nvidia.com) 
% Thomas Holland (tholland@infinityassociates.com) 

titlepos = [.5 1]; % normalized units. 

ax = gca; 
set(ax,'units','normalized');
axpos = get(ax,'position'); 

offset = (titlepos - axpos(1:2))./axpos(3:4); 

text(offset(1),offset(2),string,'units','normalized',...

'horizontalalignment','center','verticalalignment','middl
e');

% Make the figure big enough so that when printed the 
% toptitle is not cut off nor overlaps a subplot title. 
h = findobj(gcf,'type','axes'); 
set(h,'units','points');
set(gcf,'units','points')
figpos = get(gcf,'position'); 
set(gcf,'position',figpos + [0 0 0 15]) 
set(gcf,'units','pixels');
set(h,'units','normalized');

3.5 Specialized 2-D Plotting 
MATLAB provides several high-level plotting routines to facilitate the 

creation of some of the more common types of graphs and certain special or 
application specific graphs.  Some of these routines are similar to those 
typically found in plotting packages or spreadsheet applications.  This section 
will make you aware of the types of specialized plots that are available and 
how they are used.  We will start with the common types of graphs such as 
the bar graph and histogram type plots.  Then we will look at plots that help 
show statistical distributions of data or discrete data and how to generate plots 
in other coordinate systems. Finally this section will touch on plotting complex 
data and how to generate a polygon of your own creation. 

3.5.1 Bar Graphs 

A bar graph can quickly be created with the bar command.  The bar
function can be used to plot bars with heights specified by the variable 

��
� � � � � �
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argument, bar_height_vector, versus the index number of that variable by 
using 

bar(bar_height_vector);

If instead of the index to the variable, you want to plot bars versus another 
variable, you can use bar(x,y), where x and y are equal length vectors, and 
vector x contains values which are both in ascending order and evenly spaced.  
If x is not evenly spaced or in ascending order, the routine will do the best it 
can do, but the results will most likely not be what you wanted. 

If, for example, you want to create a bar graph of the percentage of widgets 
that passed quality tests versus the assembly line number, you can type 

assembly_line_number = [1 2 3 4 5 6 7]; 
percentage_passed = [85 93 87 91 95 71 98]; 
bar(assembly_line_number,percentage_passed);
xlabel('Assembly Line Number') 
ylabel('Percentage Passed') 

which will produce the plot shown in Figure 3.34. 

When you plot bar graphs, you may wish to have labels other than the 
numeric ones that automatically appear on your x-axis.  In these cases, the 
simplest way to plot your bar graph is with the bar(bar_height_vector) format.  
Then see the section in Chapter 7 about axes properties to find out how you 
can manipulate the axis labels. 
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Figure 3.34  Using the bar function. 
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You also have the option of passing a string argument to define the color 
and line style of the bars with 

bar(x,line_style_string);

or

bar(x,y,line_style_string);

The string, line_style_string, takes on the same format as the string used in 
the plot command.  The bar function can also be used to create the data 
which defines the lines making up the bars.  This is done by requesting that the 
bar function return two output variables with either 

[x_line_data,y_line_data] = bar(x); 

or

[x_line_data,y_line_data] = bar(x,y); 

In this mode of operation, the bar function does not draw anything.  
However, these output variables, x_line_data and y_line_data, can be used 
with the plot command (e.g., plot(x_line_data,y_line_data)) to generate the bar 
graph. 

The bar plotting function has the ability of clustering multiple data sets, 
stacking and generating horizontal bar plots. When you pass a matrix to the 
bar function, a bar will be generated for each element of the matrix.  The bars 
associated with the elements in a specific row will be clustered together, while 
at the same time maintaining color properties for the bars generated from the 
matrix elements in a specific column.  For example, if we have a 2-by-4 matrix, 
there will be 4 groups of 2 bars clustered around each x-axis data point 
associated with a row element in the matrix as shown in Figure 3.35. 

x = [1 3 4 6]; 
Y = [ 3 1 ; 4 2 ; 2 3 ; 2.5 2]; 
bar(x,Y);
grid on; 

If  we did not provide the x-axis data points such as by using bar(Y),
MATLAB would have used the row number and the four clusters would have 
been evenly spaced. 
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In the next example, several variations of the same data set (the x and Y 
used in the previous example) are generated in the four subplots with bar and 
barh.  (The barh function is essentially identical to bar except that the bars are 
plotted horizontally.) The stacked bar plots are created by specifying the 'stack' 
bar style ('group' is the default). A bar’s width and the relative amount of 
separation between bars within a clustered group can be specified by 
providing a scalar argument; the default value for this scalar is 0.8.  A value 
less than 1 makes the bars thinner and separates them more, a value of 1 
makes the bars in a group touch one another, and a value greater than 1 
makes the bars overlap. The plots are shown in Figure 3.36. 

subplot(221);
bar(Y,'stack');
subplot(222);
bar(x,Y,.5) % The 0.5 specifies that the grouped bars be 
            % separated by more than the default of 0.8. 
subplot(223);
barh(Y,'stack');
subplot(224);
barh(Y,1);  % The 1 specifies that the bars in a group
            % touch one another 

1 3 4 6
0

0.5

1

1.5

2

2.5

3

3.5

4

Figure 3.35  Clustered bar graph. 
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The examples done here can be repeated using MATLAB’s bar3 and bar3h
commands to give the plots a 3-D look.  Just repeat the examples and 
substitute bar3 for bar and bar3h for barh.  The only other thing you have to 
know is that the default style for 2-D bar graphs is grouped while the default 
style for 3-D bar graphs is 'detached'.  Therefore, when the style is not 
explicitly stated in the example, you will have to provide the 'grouped' style to 
get the 3-D counterpart.  For example, the 3-D counterpart to the plot shown 
in Figure 3-32, is created with  

bar3(x,Y,'grouped');

and is shown in Figure 3.37.  
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3.5.2 Histograms 

Histograms are essentially a kind of bar graph that is created by first 
specifying the number bins that specify a range of values, and then counting 
the number of occurrences of a data set that fall within each bin. One of the 
most common uses of the histogram is in image processing where we are 
often interested in the spectrum of the color (or gray-scale) of an image. For a 
16-color image, we could indicate on the x-axis 4 bins, each covering four of 
the colors, and plot the number of pixels that fall into each bin on the y-axis.  
There are many uses of the histogram and it is frequently used to give insight 
into the occurrence of events relative to some categories of interest. 

 The MATLAB hist function can be used to automatically create a histogram 
of the data you pass to it.  If you use hist(y), the function will create a 
histogram with 10 equally spaced bins that cover the range of values between 
the minimum and maximum values of the variable y.  In addition, you may 
specify either the number of bins or the centers of the bins by respectively 
passing a scalar or vector as a second argument to the hist function.  The hist
function makes use of the bar function to plot the histogram, and therefore, 
when you pass bin centers as a vector argument, you should pass points that 
are equally spaced and in ascending order.  If the centers are not equally 
spaced or in order, you may not get the results you expect.  Just as with the 
bar function, you may suppress the plotting of the histogram by having the 
function return two output variables.  For example, 

[n,x] = hist(y); 

or

[n,x] = hist(y,number_of_bins); 
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or

[n,x] = hist(y,bin_centers); 

will return two vectors.  The variable n is a vector containing the number of 
occurrences that correspond to the bins with centers specified in the variable 
x. 

As an example, let’s create exponentially distributed data and plot the 
histogram as shown in Figure 3.38.   

number_data_points = 5000; 
Beta = 2; 
y = -Beta*log(rand(1,number_data_points)); 
x = 0.2:0.4:10; % Bin Centers 
hist(y,x);
ylabel('Count')

To plot the percentage of data points that fall within a particular bin  on the y-
axis instead of the count, we could use 

[n,centers] = hist(y,x); 
bar(centers,(n/number_data_points)*100);
ylabel('Percentage');

and we would get the plot shown in Figure 3.39. 
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3.5.3 Stairstep Graphs 

  Instead of creating lines that directly connect your data, if you so choose 
you can create a plot that emphasizes the discrete nature of the data. 
MATLAB provides a function that will create a stairstep graph of your data. 
You can use stairs(y) or stairs(x,y) to draw horizontal lines at the level 
specified by the elements of y.  This level will be held constant over the period 
between the values specified by the index numbers when using stairs(y) or the 
elements in x when using stairs(x,y).  The stairstep plot is similar to a bar graph 
with the exception that the vertical lines are not dropped down all the way to 
the zero value point on the y-axis.  In addition, the x values do not necessarily 
need to be spaced equally or in ascending order.  To illustrate the use of stairs
and to show the difference in results with respect to the plot function, we 
generate the four subplots shown in Figure 3.40 with the following code. 

% Using unequally spaced data 
x = [linspace(0,2*pi,20) linspace(2*pi,4*pi,10)]; 
subplot(221); stairs(x,cos(x)); 
title('stairs(x,cos(x))');
subplot(222); plot(x,cos(x)); title('plot(x,cos(x))'); 

% Using non-strictly increasing data. 
x2 = [1:9 4:-1:1]; y2 = [1:9 8:-1:6 1]; 
subplot(223); stairs(x2,y2); title('stairs(x2,y2)'); 
subplot(224); plot(x2,y2); title('plot(x2,y2)'); 
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Figure 3.39  Showing percentage of occurrence with the hist function. 
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As with bar and hist, you can suppress the creation of the graph by using 

[xs,ys] = stairs(y) 

or

[xs,ys] = stairs(x,y); 

You can then use 

plot(xs,ys)

to will produce a stairstep graph from the vectors xs and ys. 

3.5.4 Stem Plots 

Stem plots provide yet another method of visualizing discrete data 
sequences, such as sampled time series data.  In these types of graphs, vertical 
lines terminating with a symbol such as a circle are drawn from the zero value 
point on the y-axis to the values of the elements in the vector passed along 
with the command, stem(y).  If you want spacing other than that provided by 
the element index number, you can use stem(x,y), where x specifies where the 
line is drawn along the x-axis.  Figure 3.41 is an example that can be produced 
with the following code. 

x = 0:0.25:(3*pi); 
stem(x,sin(x));
title('stem(x,sin(x))');
xlabel('x');
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Figure 3.40   Comparing the stairs and plot functions.  
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You can tell MATLAB to use any of the line styles and to terminate your 
stem plots with any of the marker types that are in Table 3.3.1. Additionally, 
these terminators can be either filled or unfilled.  This line of code,  

stem(x,sin(x),'-.','p','filled');

will generate a stem plot in which the lines are dash-dotted and the 
terminating symbol is a filled five-pointed star as shown in Figure 3.42. 
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Figure 3.41  Visualizing discrete data with stem. 
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3.5.5 Plots with Error Bars 

Error bars are used to show uncertainty in the accuracy of plotted values. 
With the errorbar(x,y,e) function, MATLAB will plot a line which passes 
through the set of (x,y) points with vertical lines that are called error bars 
centered about the (x,y) points that have lengths corresponding to twice the 
elements of the error vector e.  When x, y, and e are same sized matrices lines 
with their error bars will be drawn on a per column basis.  This type of plot can 
be useful if you are plotting data mean values, yet you wish to convey the 
range over which values may have fallen.  If, for example, you run a simulation 
and want to see the effect of some input parameter, you can run the 
simulation many times for each value of the input parameter, so that you 
could determine a mean and standard deviation of the resulting output.  To 
illustrate, the following code will generate some mean and standard deviation 
data and plot it with error bars that indicate the range of values that are within 
three standard deviations of the mean. The result is shown in Figure 3.43. 

x_values = 1:0.5:10; 
y_mean_values = 10*exp(-x_values)+3; 
y_std_deviation_values = 1./x_values; 
errorbar(x_values,y_mean_values,3*y_std_deviation_values)
;
xlabel('x'); ylabel('y'); 
title('Plot of data means, with errorbars indicating +/-3 
standard deviations'); 
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Figure 3.42  A stem plot with filled terminators and dash-dotted lines.  
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3.5.6 Pie Charts 

In MATLAB pie charts display the percentage that each element in a vector 
or matrix contributes to the sum of all elements. They are useful when you 
want to show the relative proportion of data elements to one another. For 
example, let’s say you have some data representing where government 
revenues come from, specifically Soc.Sec. Tax = 31%, Personal Income Tax = 
36%, Borrowing = 18%, Corporate Taxes = 8%, Misc. = 7%. The pie function 
will create a pie chart of this data as shown in Figure 3.44.  

gov_rev_percentages = [31 36 18 8 7]; 
h = pie(gov_rev_percentages); 
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Figure 3.43  Using error bars to show deviation from a mean. 
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The pie function will let you label each section of the pie chart, 
unfortunately it will replace the values that are printed. To do this, use the pie
function passing a cell array containing the desired labels. The cell array must 
be the same size as the data and must only contain strings. To demonstrate 
this, consider the previous code with specified labels. 

gov_rev_percentages = [31 36 18 8 7]; 
pie(gov_rev_percentages,{'Soc. Sec. Tax','Personal Income 
Tax','Borrowing','Corporate Taxes','Misc'}) 

The result is shown in Figure 3.45.  Although there are labels for each slice of 
the pie, we no longer have the numerical values.  
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Figure 3.44  Creating a pie chart with pie. 

© 2003 by CRC Press LLC



We could just include the data values as text in our strings, but that is not a 
very elegant method and could become tedious if we had much to do. What 
is preferable is to have MATLAB simply add our labels to the numerical values. 
Unfortunately, it is not straightforward to add supporting text to pie charts; to 
do so requires the use of handle graphics (Chapter 7). However, if all you 
would like to do is quickly add labels to each pie section, we provide a handy 
function called pielabel that will do the trick. You can download pielabel from 
the web site mentioned in Chapter 1.  With pielabel you can generate the pie 
chart, then add the labels you like. Here is the code that produces the desired 
result shown in Figure 3.46. 

gov_rev_percentages = [31 36 18 8 7]; 
h = pie(gov_rev_percentages); 
pielabel(h,{'Soc. Sec. Tax: ';'Personal Income Tax: ';... 
        'Borrowing: ';'Corporate Taxes: ';'Misc: '}); 

Figure 3.45  Labeling with pie omits numerical values. 
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As with the pie function, you must be sure that the cell array containing the 
labels is the same size as the data, otherwise pielable returns an error. Also be 
aware that since pielabel appends the strings to the data values, if you call it 
multiple times on the same pie chart you will get additional text appended to 
the labels. 

You can emphasize a particular pie slice by “exploding” the piece out from 
the rest of the pie.  To do this you pass one more argument to the pie 
function.  The explode argument is a vector that is the same size as the data 
vector. Non-zero elements specify that the particular pie slice should be 
moved.  As an example, the “Borrowing” pie piece could be emphasized with 

explode = [0 0 0.25 0 0]; 
h = pie(gov_rev_percentages,explode); 
pielabel(h,{'Soc. Sec. Tax: ';'Personal Income Tax: ';... 
        'Borrowing: ';'Corporate Taxes: ';'Misc: '}); 

which will produce the pie chart shown in Figure 3.47. 
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Corporate Taxes: 8%
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Figure 3.46  A pie chart with labels using pielabel. 
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Just like the 3-D looking bar chart we saw earlier, MATLAB provided a 3-D 
looking pie chart function called pie3. The pie3 function is used in exactly the 
same manner as the pie function. If you repeat the following examples 
substituting pie3 for pie you will get the result shown in Figure 3.48. 
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Corporate Taxes: 8%
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Figure 3.47  An exploded piece piechart. 
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Figure 3.48  An exploded 3-D looking piechart. 
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3.5.7 Area Plots 

The area function will generate a filled area plot from either a vector of 
data, or the columns of a matrix.  When creating an area plot with a vector, 
the data points defined by the vector are straight line connected.  Then the 
area between the lines and the y axis at 0 (by default) will be filled in.  To 
change the y-axis value to which the plot is filled, you can use the form 
area(Y,ymin) or area(X,Y,ymin), where the ymin argument specifies the 
location to which the plot is filled.  The area plot is generated from a patch 
object (discussed later in Chapter 7).  Therefore, the visual attributes of the 
area plot can be changed using valid patch properties and property values 
(also discussed in Chapter 7).  For example, Figure 3.49 shows a blue area plot 
in which the area is filled to the value 2 on the y-axis.  This plot was generated 
using, 

x=[0:9];
y=5*sin(x);
area(x,y,2,'facecolor','blue');

When using matrices, a layer in the area plot is drawn for each column in the 
matrix.  The height of ith layer in the area plot is determined by summing the 
values in each row from the 1st to ith column in the matrix (ie., sum(Y(:,1:i)') 
where i is the ith layer) .  You may get some strange looking plots if your data 
values have negative values, but the rule used to determine the height still 
holds true.  The colors for the area plot representing each column is 
automatically chosen from equally spaced intervals in the colormap. For 
example, we can generate the 3-layered area plot seen in Figure 3-47 with the 
following matrix. 

Y=[1 2 .5; 2 1 .6; 1.5 1 .7; 3 1.5 .8; .5 1 .9; 1 1 1]; 
area(Y);

Figure 3.49  An area plot of a vector. 
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3.5.8 Working with Complex Data 

Complex data consists of both real and imaginary components and is 
commonly encountered in many engineering disciplines. In MATLAB, the 

complex term 1  can be represented by either of the built-in definitions I or 
j (depending on whether you are a mathematician or an engineer!). MATLAB 
knows you are giving it a complex value when the interpreter sees either one 
affixed to a number, that is unless you have used them as variable names and 
assigned another value to them. As an example, the complex number 1+3i can 
be entered as 1+3j; MATLAB is perfectly content with each. In fact, since both 
are built-in to MATLAB, 1+3*j works too. MATLAB supplies three built-in 2-D 
plotting functions that are especially applicable to use with complex data. 
These are the plot, compass, and feather functions. Although you have 
already seen the plot function, we will discuss its use in the case of complex 
data. The other two functions will follow. In most cases you can use the other 
MATLAB plotting functions with complex data, but the result might not be 
what you expect. For instance, what does it mean to plot a bar graph of 
complex data?  

To use the plot command with complex data, be sure that your data is in a 
complex variable. The code 

z = exp(j*(0:45:315)*(pi/180)); 
plot(z, '-o') 

demonstrates this and is shown in Figure 3.51. 
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Figure 3.50  Area plot of a 3 by 6 matrix. 
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As you can see, complex data points are placed in the axes with the 
assumption that the x-axis and y-axis respectively correspond to the real and 
imaginary components of the vector z and then connected by lines.  You 
could also use plot(real(z),imag(z)) to generate the same results.  As another 
example, let’s say you wanted to create a plot that illustrates the complex data 
points, e.g., the poles and zeros of system transfer function.  

zeros_points = [-8 -4]; 
poles_points = [-3+i*2 -3-i*2 -10 -9+3*i -9-3*i ]; 
% The next line is used since the plot command does not
% know that the zeros_points variable represents
% data in the complex plane. 
plot(zeros_points,zeros(size(zeros_points)),'or');
hold on; 
plot(poles_points,'xc');
hold off; 
axis([-11 1 -5 5]) 
xlabel('Real Axis'); 
ylabel('Imaginary Axis'); 

The results of which are shown in Figure 3.52. 
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Figure 3.51  Visualizing complex data with plot. 
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The feather function produces a plot of vectors that emanate from equally 
spaced points along the horizontal axis. Each arrow’s length corresponds to 
the magnitude of a data element and its pointing direction indicates the angle 
of the complex data. The general form of this function is feather(u,v) where u 
contains the x-axis components and v the y-axis components, each in relative 
coordinates. You can call the function with feather(Z) where Z is complex. As 
with plot this is equivalent to feather(real(Z),imag(Z)). The line type can be 
chosen in the same way it was when using the plot command with the form 
feather(…, linetype_string). For an example, the following code creates some 
complex data by first creating some angles and corresponding magnitudes. 
Then it puts that in Cartesian format with pol2cart, and converts that result to 
a complex representation with complex. Note that this would work exactly the 
same with feather(u,v).

theta = (-pi/2:.15:pi/2);
r=3*cos(theta);
[u,v] = pol2cart(theta,r); 
z=complex(u,v);
feather(z,'--c');

The result is the data plot with dashed cyan lines shown in Figure 3.53. You 
may have noticed that the arrowhead’s size is proportional to the length (or 
magnitude) of the line and that they are not solid or filled in.  When we 
explore more about object properties and Handle Graphics, you will learn 
how to modify the arrows to suit your needs. 
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Figure 3.52  Combining complex and real data in a plot. 
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3.5.9 Using the Polar Coordinate System 

So far we have been discussing plotting routines that make use of the 
Cartesian coordinate system.  MATLAB also provides functions that plot data 
in the polar coordinates of magnitude and angle, commonly referred to as rho 
and theta respectively.  Here we will discuss the MATLAB commands 
compass, polar, rose, and a modified version of the function polar called 
polardb.

Although the compass function takes its inputs in Cartesian format, it works 
its way into this discussion because of its polar coordinate output. The 
compass function is similar to the feather function in that each arrow’s length 
corresponds to the magnitude of a data element and its pointing direction 
indicates the angle of the complex data. However, whereas feather creates a 
linear plot, the compass function will create arrows that emanate from the 
origin of the axes in a polar coordinate system. As with the earlier functions, 
compass can be called with either compass(z) or compass(u,v) where the 
latter method is equivalent to compass(u+i*v).  To demonstrate this function, 
let’s create a set of arrows that increase in size from arrow to arrow in a 
counterclockwise manner.  

z = [1:10].*exp(i*[1:10]*36*(pi/180)); 
compass(z);

This will produce the plot shown in Figure 3.54.  
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Figure 3.53  A feather plot of complex data. 
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 As with the feather function, passing a character string as an additional 
argument to compass changes the style and color used for the arrows. 

  The polar function will create a polar plot from angle and magnitude data. 
It takes the forms polar(theta,rho) or polar(theta,rho, linetype_string) where 
theta corresponds to the angle (in radians) and rho corresponds to the 
magnitude.  As with the functions we’ve seen earlier, linetype_string is a 
character string defining the line type that is used in the plot. The variables 
theta and rho must be identically sized vectors or matrices.  If they are 
matrices the columns of theta will be plotted versus the columns of rho.  As an 
example, we can create the limacon with an inner loop shown in Figure 3.55 
with the following code. 

theta = 2*pi*[0:.01:1]; 
rho = 0.5 + cos(theta); 
polar(theta,rho)
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Figure 3.54  A compass plot of complex data. 
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If the default polar axis limits are not suitable, you may need to modify the 
polar function so that it provides you with what you want.  Changing the axis 
limits with the axis command is not exactly straightforward.  For instance, you 
can't just use axis([min_theta max_theta min_angle max_angle]) as you did 
with plot, because the polar coordinate system is created with plot commands 
that define the concentric rings and spokes; the Cartesian x- and y-axes are 
hidden but can be made visible by using axis('on').

Often when we deal with data in a polar format, we are interested in units 
of relative gain or power, i.e., decibels (dB), such as with the case of an 
antenna gain pattern. If you need to create a polar plot with the radial units in 
decibels (10log10), you can download from the web site a version of the polar
function that we have created called polardb.  This function will also allow you 
to specify the line style by passing a string with 
polardb(theta,rho,linetype_string).  With this function you can specify the rho 
axis limits by passing yet another 2-element vector that defines the minimum 
and maximum dB values (i.e., polardb(theta,rho,linetype_string, [min_rho_dB 
max_rho_dB])). The following code creates some data and illustrates using this 
polar plotting function. The resulting plot is shown in Figure 3.56. 

x = -(5*2*pi):.1:(5*2*pi); 
th = linspace(-pi,pi,length(x)); 
rho=((1+sin(x)./x));
polardb(th,rho)
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Figure 3.55  Using polar. 
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The function polardb was created by modifying MATLAB’s polar function.  
Many MATLAB functions are available as editable M-files. As you dig deeper 
into MATLAB graphics, you may find it useful to look at and use code from 
existing MATLAB functions when developing your own specialized graphics 
capabilities. 

The last polar plot on our list is the rose function. With rose you can create 
angle histograms that are drawn in polar coordinates. By using 
rose(angle_data), the function will determine how many of the angles (which 
are assumed to be in radians) fall within a given angular bin.  By default there 
are 20 evenly spaced bins between 0 and 2 .  The number of bins can be 
changed by using rose(angle_data_vector, number_of_bins), where the 
variable number_of_bins is a scalar specifying the number of bins that should 
be spaced between 0 and 2 .  You can also specify the centers of the bins by 
passing a vector, bin_centers, to the rose function (i.e., 
rose(angle_data,bin_centers)).  If for some reason you do not want the angle 
histogram to be created at the time the rose command is issued, you may 
specify two output arguments using any of the valid rose synopses (e.g., [t,r] = 
rose(angle_data_vector)).  Then at some later time, you can create the plot by 
passing these two arguments to the polar function (e.g., polar(t,r)).  The 
following code will produce a rose plot of data which is normally distributed in 
angle about 90º. The resulting plot is shown in Figure 3.57. 

angle_data = angle(exp(i*randn(1,1000)))+pi/2; 
rose(angle_data)
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Figure 3.56  Creating a polar plot with radial units in decibels. 
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3.5.10 Plotting Functions with MATLAB 

In the previous examples we have created functions to generate the data 
used in our plots by first defining a variable to cover the range we are 
interested in, e.g., x = -2*pi:.1:2*pi, and then coding the function we want, e.g., 
sin(x). The function fplot provides an alternative method of plotting functions 
to the method of evaluating and plotting a function at a number of defined 
sample points.  It can be especially useful for plotting functions whose rate of 
change varies rapidly for certain ranges of inputs as this function adaptively 
determines what the required sampling rate is based on the function’s rate of 
change.   

To use fplot the function you pass to it must be either the name of an M-file 
function or a string with variable x that may be passed to eval function. This 
string can contain any combination of legal MATLAB commands or functions 
that you have created which resemble the form y = f(x), where f(x) is the string 
that you create.  This function must either return a vector that is the same size 
as x or a matrix with columns that have as many elements as the vector x has. 

The fplot function was designed to use adaptive step control, concentrating 
its evaluation in regions where the function's rate of change is the greatest. So, 
you use fplot when you don’t want to determine how fine you need to sample 
a function. For example, y = sin(x) cos(2x), can be plotted using 

fplot('sin(x).*cos(2*x)',[0 5*pi]) 

 to generate the top graph in Figure 3.58.  The plots beneath were done with 
plot where the step size was specified as indicated, demonstrating the effect 
of varying step size. 
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Figure 3.57  An angle histogram created with rose. 
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You also have the option of passing two additional arguments; one of them 
is a line style string and the other is a tolerance factor.  The tolerance factor is 
by default set to 2*10-3 and is used to determine how much sampling is 
required.  Sampling is increased until the function and linearly interpolated 
value between two sampled points is less than the tolerance.   

If you are really impatient and don’t even want to specify a range for a 
function, MATLAB provides you with a convenient function called ezplot that 
will plot your function over the range -2  to +2  and place a title above it. 
Here is how you would use it with function from the previous example. 

ezplot('sin(x)*cos(2*x)')

The title is the string representation of the function. Also notice that we did 
not have to implicitly define the function, i.e., the periods weren’t required 
before the * operators. With ezplot it is assumed that operations are element 
by element. Figure 3.59 shows the result of using ezplot.
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Figure 3.58  Comparing fplot to plot. 
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We should point out that you could use other ranges with ezplot by 
providing a vector of the form [min, max] in which case it will perform like 
fplot but will title your plot. 

3.5.11 Creating Filled Plots and Shapes 

Aside from the pie charts and bar charts, our plots have been made up of 
lines. Although you can change the color and style of the lines, and later you 
will learn how to change the thickness too, MATLAB gives you a simple 
function called fill for creating 2-dimensional figures that have shapes that are 
filled in with a solid color.   Consider the following example, plotted in Figure 
3.60,  that will create several different shapes with different colored faces by 
specifying the coordinates of their vertices.  Then we’ll fill, scale, and translate 
them. 

square_x = cos([45:90:315]*pi/180); 
square_y = sin([45:90:315]*pi/180); 
pentagon_x = cos([36:72:360]*pi/180); 
pentagon_y = sin([36:72:360]*pi/180); 
octogon_x = cos([0:(360/8):360]*pi/180); 
octogon_y = sin([0:(360/8):360]*pi/180); 
wavy_sin_x = 0:.1:8; 
wavy_sin_y = sin(wavy_sin_x); 
% Create a blue square using a linetype color string. 
fill(10+2*square_x,11+2*square_y,'b');
hold on; 
% Create a red pentagon using the RGB color vector. 
fill(1+3*pentagon_x,10+3*pentagon_y,[1 0 0]); 
% Create a gray pentagon using the RGB color vector. 
fill(7+2*octogon_x,7+2*octogon_y,[0.5 0.5 0.5]); 
% Create a wavy shape. 
fill(2*wavy_sin_x,2+2*wavy_sin_y,2+2*wavy_sin_y);
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Figure 3.59  Plotting a function with ezplot. 
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axis([0 15 0 15]);axis('equal'); 

This example illustrates several features of the fill function.  You use fill by 
specifying fill(x,y,c), where the pairs of elements from the x and y variables 
specify the vertices of the shape, and c specifies the color.  The color can be 
specified as a string (see the line color information in Table 3.3.1) or as a red-
green-blue vector, [R G B].  Red-green-blue vectors specify the respective 
fractions of red, green, and blue content making up the color (e.g., [1 0 0] is 
equivalent to 'red', [0 0 0] = 'black', [1 1 1] = 'white').  In addition, as we see 
with the “wavy” shape, the color variable, c, is a vector with the same number 
of elements as vectors x and y.  The elements of c are scaled to indices of the 
figure’s “color map,” or list of RGB combinations.  If the vertices have different 
color map indices, the color within the shape will be bilinearly interpolated 
between the vertices.  We will discuss these and many other details of using 
color in Chapter 8 when we consider color and light. 

In this example each shape was created with its own fill function.  We 
could have put this into one long fill function and eliminated the need for the 
hold on command. 

fill(10+2*square_x,11+2*square_y,'b',...
  1+3*pentagon_x,10+3*pentagon_y,[1 0 0],... 
  7+2*octogon_x,7+2*octogon_y,... 

[0.5 0.5 0.5],2*wavy_sin_x,... 
2+2*wavy_sin_y,2+2*wavy_sin_y);

You should know that fill(x,y,c) supports the use of matrices and vector-
matrix combinations with the x and y variables.  If both are matrices, a polygon 
is drawn for each column.  The colors of these polygons will be a single color 
if c is a row vector, and interpolated if c is a matrix.  If either the x or y variable 
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Figure 3.60  Filling shapes with the fill function. 
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is a vector and the other is a matrix, the vector will be paired up with either 
the columns or rows of the matrix depending on whether the length of the 
vector matches up with the length of the columns or rows of the matrix.  If the 
matrix is square, the columns will be used.  This might sound a little confusing 
at first, so an example should clear things up; the following code will create a 
set of colored bow ties. 

% A row vector defining the x vertices of all the bows 
x = [0 0 1 1]; 
% A matrix defining y vertices of the bows 
y = ones(5,1)*[0 1 0 1]+[1:2:10]'*ones(size(x)); 
% The color argument specifies a unique color for each 
bow
fill(x,y,[1:5]);
axis('equal');

3.6 Plot Editing in the MATLAB Figure Window 
As you have seen in the previous sections, MATLAB provides many quick 

ways to generate very useful plots. You’ve also seen that by passing various 
strings and vectors you can tailor certain aspects of your plot to customize it 
to your needs. What you have done so far is to use the specific plotting 
functions, and various helper functions, e.g., title, legend, etc., to annotate and 
adjust your plots. As you will learn now, MATLAB provides some easy high-
level and low-level graphics capabilities through a, somewhat, intuitive user 
interface. In this section we will discuss how to change specific features of a 
plot using MATLAB’s Plot Editing Mode, and the Property Editor. You will find 
these techniques very handy for one-time quick changes for your plots. This is 
not the way to build programs that generate plots in an automated way; that is 
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what the various plotting functions and Handle Graphics in Chapter 7 are for. 
But for the one-time touch-up, the methods here can be quite useful. 

It all starts with the Figure Window; the window that you have seen with the 
previous examples. It pops up whenever you issue a plotting function. As you 
might have noticed, the Figure Window has a few tool buttons and pull-
downs. You’ve might have already discovered these, but in case you haven’t 
we will discuss them now. 

3.6.1 Plot Editing Mode 

When you see the Figure Window, after you have issued a command that 
generates one, you will notice that there are several buttons as well as a pull-
down menu. Clicking on the button that looks like an arrowhead will turn on 
the Plot Editing Mode. The buttons next to it let you add text and draw lines to 
annotate your plot.  Figure 3.62 highlights some of the features available in the 
Plot Editing Mode. 

The plot shown in the above figure was generated with ezplot(‘sin(x)’). 
Once you have entered the Plot Editing Mode, when you click on an object in 
the plot, like the line or the axis, the object will become highlighted with 
distinctive markers. Clicking once on the trace above selects the line; clicking 
the right mouse button will reveal a pop-up menu with properties for that 
object. For example, by selecting the “Line Width” property the width of the 
line can be changed by a simple click of the mouse. You don’t have to click on 
the object with the left mouse button and then the right to get the case-
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Figure 3.62  The Figure Window in Plot Editing Mode. 
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sensitive pop-up menu. If you place the cursor over the object, clicking the 
right mouse button will both select the object and reveal the menu.  

You can also invoke the Plot Editing Mode from the command line in 
MATLAB with plotedit or plotedit(fig) where the former will begin the Plot 
Editing Mode for the current figure and the latter lets you specify a figure for 
editing by passing the figure number fig. In use, this is identical to selecting the 
Plot Editing Mode with the mouse. 

3.6.2 The Property Editor 

When you open the context-sensitive pop-up menu you will notice that the 
last menu item in the list is “Properties.” Selecting this will open the Property 
Editor. Invoking the Property Editor on the axis in the sine plot shown in the 
previous figure gives the user interface shown in Figure 3.63.  

As you can see in Figure 3.63, a whole host of properties associated with 
the axes are available to you to adjust, or mangle, as you desire. You can also 
start the Property Editor by double clicking on an object in the plot, such as 
the axis. (Note that double clicking on a text object will not start the Property 
Editor, but instead will give you an edit box with which you can change the 
text.) If you keep the Property Editor open, you can click on different objects 
in the Figure Window and the  panels in the Property Editor will change to 
reveal the property selections for that object. 

Another nice feature of the Property Editor is the “Edit Properties for:” 
selection box. If you click on the down-triangle to the right, the Property Editor 
will show you the hierarchy of objects. Figure 3.64 highlights this. 

Figure 3.63  The Property Editor invoked on the axes. 
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We will leave the detailed discussion of graphics objects and the object 
hierarchy for Chapter 7. Unfortunately, the pages of a book make showing 
you the simple nature of pointing and clicking in the Property Editor a bit 
cumbersome. We recommend that you spend some time with an example 
and see what you can learn. Try changing the line color, the axis limits, the 
background color, and turning grids on and off on your own using the Plot 
Editing Mode and the Property Editor; also try adding or editing the title and 
axis labels. Although very useful, the Property Editor doesn’t present all the 
properties available for an object, just the ones you are likely to use for high-
level editing. Later we will explore another handy tool called the Property 
Inspector and see how it can help us appreciate the richness of objects in 
MATLAB.  

3.6.3 Zooming and Rotating 

To the right of the line buttons are three buttons that look like this: 

With the first button here, you can zoom in on your plot by simply dragging 
the mouse in a box around the area at which you want to look more closely. 
When you do, you will see that MATLAB automatically scales the axis for the 
result. You can also place the cursor on a point in the image and get a 2x 
zoom with each click. The resulting plot will be centered at the point of the 
cursor. Selecting the second button, the “zoom out” will reduce the zoom by 
2x each time you click it.
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Figure 3.64  Viewing the object hierarchy. 
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The third button shown here will be more useful to us after we have 
discussed 3-D plots. It is the rotate 3-D button and with it you can change the 
viewing perspective of your plot. You can use this button with a 2-D plot, but 
there aren’t many reasons to do so.  

3.6.4 Exporting, Copying, and Pasting 

Once you have created a plot you probably want to save it to a file, or 
perhaps paste it into a word processor or presentation application. You can 
easily prepare your plots for this right from the Figure Window. Later we will 
see how we can use some MATLAB commands to produce versions of our 
plots to use in other applications, but for now we will focus on those available 
to us from the Figure Window. 

If you select File Preferences… from the Figure Window, you will open the 
preferences user interface as shown in Figure 3.65. In that you can choose the 
“Figure Copy Template” or “Copy Options” and make changes to the way 
MATLAB will produce representations of your plots for uses in other 
applications.  

Figure 3.65  Changing preferences in the Figure Copy Template. 
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3.7 Illustrative Problems 
Just like a muscle, your new MATLAB muscles need exercise to get 

stronger. The following problems are included to help you exercise your new 
skills. If you feel the need, you can download the solutions from the web site 
mentioned in Chapter 1. 

1. Use linspace to create a vector t that ranges from 0 to 2  and then 
plot the function )2cos()2sin( ttr first as a x-y plot, then as a 
polar plot. Use subplot to keep them in the same figure. 

2. Plot 
x
xy )sin( 2

 over the range 22 x . What should you 

do about x=0?  Hint: read help on eps.

3. Try to duplicate the plot shown here. Hint-1: use the sin function itself 
to calculate the points where the annotation should be located. Hint-
2: try using ‘\leftarrow’ in your strings.  
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44 PPLLOOTTTTIINNGG IINN TTHHRREEEE DDIIMMEENNSSIIOONNSS

4.1 Elementary 3-D Plotting 
In Chapter 3, we discussed how matrix data could be visualized by plotting 

with the plot command.  As you might recall from Chapter 2, not all data is 
intuitively represented with a 2-D plot. We live in a three-dimensional world 
and much of our information is best revealed with 3-D techniques. Fortunately, 
MATLAB provides you with a cornucopia of graphics functions that let you 
make quick 3-D plots and visualizations of your data.  This chapter is intended 
to introduce you to these functions and lead you to a good understanding of 
the built-in MATLAB ability to visualize in three dimensions.  We will begin by 
examining plot3, i.e., the three-dimensional counterpart to plot, and then 
examine the various surface creation techniques, followed by contour plots, 
and finally present MATLAB’s special functions for volume visualization. 

4.1.1  Using Plot3 

The plot3 function is used in almost the same way that plot is used, except 
that an additional variable, z, is used to provide the data for the third 
dimension.  For example, let’s make use of the form plot3(x,y,z) by typing 

t = 0:0.1:10*pi; 
x = exp(-t/20).*cos(t); 
y = exp(-t/20).*sin(t); 
z = t; 
plot3(x,y,z);
xlabel('x');
ylabel('y');
zlabel('z');

to produce Figure 4.1.  Notice how the axes have been labeled using 
xlabel, ylabel, and here we introduce a new labeling command, zlabel, whose 
form is just like that of its siblings. 

IN THIS CHAPTER…
4.1 ELEMENTARY 3-D PLOTTING
4.2 SIMPLE 3-D PLOT MANIPULATION 
4.3 VOLUME VISUALIZATION
4.4 A WORD ABOUT ANNOTATING 3-D PLOTS
4.5 ILLUSTRATIVE PROBLEMS
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The general form of this function is plot3(x, y, z, ‘string’), however what it 
does is determined by the nature of the variables passed to it, namely:  

o If x, y, and z are vectors of the same length, a 3-D line is created by 
connecting the coordinates specified by the elements of vectors x, y, 
and z. 

o If x, y, and z are matrices which have the same number of rows and 
columns, several lines will be created from the columns of the 
matrices. 

o If some of the input variables are matrices and others are vectors, and 
the vectors are the same length as either the number of rows or 
columns in the matrices, MATLAB will “replicate” the vectors in a 
fashion so that multiple lines can be created.  If the sizes of the 
vectors or matrices do not permit this, MATLAB will return an error 
message. 

o The variable ‘string’ is a 1, 2, or 3 character string made from the 
characters compatible with the plot function (see Table 3.3.1). 

You can change the perspective, i.e., the viewing angle of plot by either one 
of two ways. First, you can select the Rotate 3-D tool from the Figure Window. 
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Doing so will let you to interactively rotate the axes of the plot by holding 
down the mouse button and moving the mouse about. The specific values of 
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Figure 4.1 A 3-D plot using plot3. 
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the azimuth and elevation will be shown in the lower left corner of the figure 
while you are rotating the axes.  

Your second option is to use the view function. The general form of this 
function is view(az, el) or view([az,el]) and with it you can specify the exact 
values of azimuth and elevation by which you wish to rotate the axes.  The 
following code will produce the different views shown in Figure 4.2.  

subplot(2,2,1);plot3(x,y,z);
xlabel('x');
ylabel('y');
zlabel('z');
view(-10,10);
title('Default plot3'); 

subplot(2,2,2);plot3(x,y,z,'og');
xlabel('x');
ylabel('y');
zlabel('z');
view(-9,56);
title('Az=-10, El=10'); 

subplot(2,2,3);plot3(x,y,z,'xb');
xlabel('x');
ylabel('y');
zlabel('z');
view(0,90);
title('Az=0, El=90'); 

subplot(2,2,4);plot3(x,y,z,'dr');
xlabel('x');
ylabel('y');
zlabel('z');
view(90,0);
title('Az=90, El=0'); 
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Although MATLAB’s native angle unit is radians, view uses degrees for the 
units of az and el. There are a few more interesting aspects of view that we 
will save for a later discussion, but for now you need to know that the default 
view for 3-D plots is az = -37.5o and el = 30o.  Using az = 0o and el = 90o will 
give the default 2-D view; you can also obtain this by using view(2). What if 
you’ve rotated your axes so much that you are confused and you have grown 
tired of trying to fix it by dragging the mouse around? You can quickly return 
to the default 3-D view by typing view(3).

4.1.2 Creating 3-D Meshes and Surfaces 

As we move into more 3-D plotting methods, we are going to find that 
often we must deal with ordered pairs, i.e., data that is dependent on both an 
x and a y value. Many mathematical functions are of two variables, that is, for 
each pair of x and y, there is a z. You have seen this stated as z = f(x,y). One 
way you could compute a z for each x y pair would be to iterate through a 
nested loop, but one of the major advantages of MATLAB is that it can deal 
with matrices without resorting to looping. All you need is some way to get 
your data into a matrix format. If you have a vector of x values, and a vector of 
y values, MATLAB provides a useful function called meshgrid that can be used 
to simplify the generation of X and Y matrix arrays used in 3-D plots.  It is 
invoked using the form [X,Y] = meshgrid(x,y), where x and y are vectors that 
help specify the region in which coordinates, defined by element pairs of the 
matrices X and Y, will lie.  The matrix X will contain replicated rows of the 
vector x, while Y will contain replicated columns of vector y.  This might seem 
a little complicated at first, but an example will help make it clear. Consider 
the two vectors passed to meshgrid here. 
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Figure 4.2 You can change your perspective by specifying az and el in 
the view function. 
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x = [-1 0 1]; 
y = [9 10 11 12]; 
[X,Y] = meshgrid(x,y) 

MATLAB returns 

X = 

    -1     0     1 
    -1     0     1 
    -1     0     1 
    -1     0     1 

Y = 

     9     9     9 
    10    10    10 
    11    11    11 
    12    12    12 

As you can see, X is formed by the vector x being replicated as rows for 
each column in y, and Y is formed by the vector y being replicated as columns 
for each element in x.  Each element in x has been matched with each element 
in y.  Be aware that typing meshgrid(x) is equivalent to meshgrid(x,x).  The 
meshgrid function will be used in several of the examples in this section. 

The first surface plotting function we will discuss is mesh. It creates many 
crisscrossed lines that look like a net draped over the surface defined by your 
data.  To understand what the command is plotting, consider three M-by-N 
matrices, X, Y, and Z, that together specify coordinates of some surface in a 
three-dimensional space.  A mesh plot of these matrices can be generated with 
the command mesh(X,Y,Z). Each (x(i,j),y(i,j),z(i,j)) triplet, corresponding to the 
element in the ith row and jth column of each of the X, Y, and Z matrices, is 
connected to the triplets defined by the elements in neighboring columns and 
rows.  Vertices defined by triplets created from elements that are not in either 
an outer (i.e., first or last) row or column of the matrix will, therefore, be joined 
to four adjacent vertices.  Vertices on the edge of the surface will be joined to 
three adjacent ones.  Finally, vertices defining the corners of the surface will be 
joined only to the two adjacent ones.   In addition to providing a visual 
perspective of the surface shape, this usage of mesh automatically chooses 
colors of the mesh plot to be proportional to the surface’s height.  Consider 
the following example which will produce the plot shown in Figure 4.3 . 

[X,Y] = meshgrid(linspace(0,2*pi,50),linspace(0,pi,50)); 
Z = sin(X).*cos(Y); 
mesh(X,Y,Z)
xlabel('x'); ylabel('y'); zlabel('z'); 
axis([0 2*pi 0 pi -1 1]) 

© 2003 by CRC Press LLC



There are several ways to call the mesh command.  We just looked at 
mesh(X,Y,Z), however, an even more general invocation of the function can 
be made with mesh(X,Y,Z,C) where the matrix C specifies the color of the 
mesh plot.  When this C matrix is left out of the command, the function 
assumes that C = Z, thus providing a proportional mapping between color and 
surface height.  For now it will suffice for you to realize that the minimum and 
maximum values of the matrix, C, specify the range of values that are 
associated with the figure’s color map, i.e., a list of RGB color vectors.  The 
minimum value of C will be associated with the first row in the color map, and 
the maximum value of C will be associated with the last row in the color map.  
All values of C that lie between the minimum and maximum shall be 
associated with a color in this list.  For example, if an element of C 
corresponding to one of the vertices lies halfway between the minimum and 
maximum values of C, the color associated with that vertex will lie halfway 
between the first and last row of the color map.   We discussed general 
guidance for using color in Chapter 2 and an in-depth look at color maps is 
presented in Chapter 8.  Here is an example that demonstrates using 
manipulation of the color map to emphasize areas of identical slope. Consider 
the surface produced by, 

[x,y] = meshgrid(-2:.1:2, -2:.1:2); 
z = x .* exp(-x.^2 - y.^2); 

We can use mesh to plot this surface, however mesh will produce colors 
based on the values of z. We can use the gradient function to examine this 
surface and determine where the slopes are the same according to the x-axis 
and the y-axis. The general form is [Cx,Cy]=gradient(Z) where Cx is the 
numerically computed solution of Z/ x and Cy is Z/ y. (The actual 
gradient is the vector sum of Cx and Cy.) Since the derivative of function is its 
slope, the derivative taken at a point along the surface is the slope of the 
surface. By using the results of gradient as our color map, we can reveal those 
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Figure 4.3 A simple mesh plot. 
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areas in the plot that have equal slope with respect to either the x, or y axes. 
The code that will show constant slope in the x-axis is, 

[Cx,Cy] = gradient(z,.1,.1); 
mesh(x,y,z,Cx);

The gradient function assumes an increment of 1, so we have specified it here 
to agree with our mesh. Figure 4.4 and Plate 1   shows the surface we are 
considering, plotted with mesh with its default coloring that varies according 
to the amplitude of z. Figure 4.5 and Plate 2 shows equal slopes with Cx from 
gradient. Figure 4.6 is the slope with respect to the y-axis dimension.  

                                                     
 Color plates follow page 112. 
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You should try this example on your computer so you can see the benefit of 
color better. Color, when used to actually convey information, can make a 
plot more informative and provides insight that may not have been achieved 
otherwise.  

To finalize our discussion of the mesh function we need to mention that a 
mesh plot can also be created by passing two vectors, x and y, in place of the 
matrices, X and Y, by using either mesh(x,y,Z) or mesh(x,y,Z,C).  The length 
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Figure 4.5 Identifying regions of slope with respect to the x-axis. 
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vector x must be equal to the number of columns in Z, and the length of 
vector y must be equal to the number of rows in Z.  When using this form of 
the command, a (x(j),y(i),Z(i,j)) triplet defines the vertices over the i rows and j 
columns of Z.  If you do not provide the vectors x and y or matrices X and Y, 
to the function, e.g., when using mesh(Z) or mesh(Z,C), MATLAB creates a 
mesh plot by respectively setting the x and y vectors to the column and row 
number of the matrix Z. 

If you want to create a mesh plot that has a “curtain” around the edge of 
the surface, you might want to take advantage of the function meshz.  This 
function is called with the identical input argument set used with mesh.  The 
curtain is created by dropping lines down from the edge of the surface to a 
plane parallel to the xy-plane and at a height equal to the lowest point in the 
surface.  For example, 

[X,Y] = meshgrid(0:.1:2*pi,-pi:.1:0); 
Z = sin(X).*cos(Y); 
meshz(X,Y,Z);
axis('equal');

will create the illustration shown in Figure 4.7. 

4.1.3 Waterfall Plots 

Similar in appearance to the curtain mesh made with meshz is the function 
waterfall, which creates a mesh plot only from the row data, not from the 
columns. This kind of plot is often used to visualize series of data that change 
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Figure 4.7 A curtain mesh plot made with meshz. 
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with each observation. It’s called “waterfall” because the resulting plot looks 
like, well, a waterfall. The waterfall function takes the same form as mesh.

 As an example, suppose a signal is received by a sensor once a second for 
one hundred seconds, but decays exponentially each second. The following 
code simulates such a scenario. 

x=-3*pi:.25:3*pi; %resolution of the signal 
A=linspace(3,0)   %100 samples 
A=exp(-A);   %exponential decay 
X=sin(x).^2./(x+eps).^2;
Y=A'*X;    %the decaying signal 
waterfall(Y)

The waterfall plot of this multiple series of data is shown in Figure 4.8 and 
Plate 3. 

Although this contrived example created its data series in row order, data 
analysis functions in MATLAB typically produce data in column order, that is, 
each data series appears as a column in a matrix. In that case, remember to 
transpose the matrix before calling waterfall.

4.1.4 3-D Plots of Non-Uniformly Sampled Data 

If you are running experiments or collecting data from real world situations, 
you will probably encounter situations in which you do not have data points 
that are nicely spaced at equal increments of your input variables.  Fortunately, 
MATLAB has a way that allows you to represent this type of data in a plot.  As 
an example, let’s pretend that you have collected samples from a process that 

0

20

40

60

80

0

20

40

60

80

100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 4.8 A waterfall plot of a simulated exponentially decaying signal. 
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exhibits a response similar to the function we used in the previous example, 
z=sin(x)cos(y).  We will generate our data samples (x,y,z) with 

x = rand(100,1)*2*pi; 
y = rand(100,1)*pi; 
z= sin(x).*cos(y); 

This data, by itself, could not be viewed as a mesh or surface plot.  The best 
you could do is generate a 3-D plot with plot3(x,y,z,'.') to see the points; 
however, even with plot3 it is very difficult to get a feel for what the surface 
defined by the data points really looks like. Therefore, we need to generate a 
set of evenly sampled data points that are generated by interpolating between 
the set of original data points.  First we create uniformly sampled input 
variables using the meshgrid and linspace functions to create, in this example, 
a 40-by-40 X and Y matrix over the region defined by our data. 

[X,Y] = meshgrid(linspace(min(x),max(x),40),... 
                  linspace(min(y),max(y),40)); 

Then we let MATLAB do the work of interpolating the original data across 
the uniformly spaced region with the griddata function. 

Z = griddata(x,y,z,X,Y,'cubic'); 

Finally, we can plot it with 

mesh(X,Y,Z);  % View interpolated surface 
hold on; 
plot3(x,y,z,'.','markersize',10);   % View actual samples 
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Figure 4.9 Mesh plotting helps to visualize non-uniformly sampled data. 
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The plot similar to that in Figure 4.9, with the exceptions being most evident 
around the fringes of the plot since there are not any data points outside the 
region with which MATLAB can estimate the surface. 

4.1.5 Creating Shaded Surface Plots 

Depending on the relative spacing of your data, you may want to make use 
of the shading function.  You may have noticed in your mesh plots that each 
line segment between the mesh intersections maintains a single color attribute 
over the length of the segment.  With some data, this may not be appropriate 
or may even be misleading, especially if the sampling interval is large. 
Previously we used color to identify surface slope and height, but the sampling 
interval was small.  This was easy enough to do since we were dealing with 
function data, but with real data, we would have been forced to resample our 
data to get the smaller increments. The quick alternative solution to resampling 
data more finely is to use shading function with the “interp”.  This command 
will interpolate the line colors so that the color varies linearly across the length 
of the segment.  If, after applying the interpolated shading, you determine that 
this is not what you want, you can always revert back to the default line colors 
by typing shading faceted or shading flat. We will revisit shading when we 
discuss the ways to manipulate 3-D visualizations later in this chapter. For 
now, we will discuss it in terms of the function surf.

The surf function is used identically to mesh. However, instead of the 
surface being represented by a screen-like grid, surf will produce a 3-D shaded 
surface.  Figure 4.10 shows the example of Figure 4.4 with surf used in place 
of mesh.
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Figure 4.10  Using surf to produce a surface plot. 
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As you can see, Figure 4.10 has the appearance of a solid surface covered 
by a grid. If we did not want the grid in our plot, we can use either shading flat 
or shading interp. Using shading flat removes the grid, but the coloring is still 
piecewise constant, i.e., each mesh line segment has a constant color value so 
you see each “patch” as shown in the left plot of Figure 4.11. Using shading
interp varies each color in a segment of the plot linearly, i.e., it interpolates the 
color and results in a smooth-looking surface plot as shown in the right half of 
Figure 4.11.

You can reproduce the plots of Figure 4.11 with the x, y, and z that 
produced Figure 4.4 and applying the following commands. 

subplot(1,2,1);surf(x,y,z); axis('tight'); 
shading('flat');
subplot(1,2,2);surf(x,y,z); axis('tight'); 
shading('interp');

4.1.6 Removing Hidden Lines 

When you created a mesh plot, you might have noticed that the mesh lines 
behind the mesh surface are not visible. What you have seen with the mesh
and surf functions can be likened to a solid surface made up of hills and 
valleys that has a multicolored net draped over it. Depending on where you 
are standing in this scene, you will not be able to see behind the hills and 
down into some of the valleys. Depending on the viewpoint, certain lines are 
not drawn so that the 2-D representation of the 3-D data provides a relative 
perspective of the surface shape and lines defining the surface. The process of 
eliminating some of the lines as a function of perspective is usually referred to 
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Figure 4.11  Using shading to change the appearance of surface plots. 
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as hidden line removal. However, in some cases, you might wish to have the 
hidden lines visible. The function hidden allows you to turn off or turn on the 
hidden line removal. Simply put, to hide lines use hidden on and to make 
them visible use hidden off. Using the function by itself will toggle between 
the on and off states. Figure 4.12 shows a mesh plot of the peaks function with 
hidden line removal on (default), and Figure 4.13 shows it with hidden line 
removal off. Typing mesh(peaks) will produce the plot. 
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Figure 4.12  Hidden line removal on. 
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4.1.7 Contour Plots 

Contour plots are an excellent way of visualizing some of your matrices.  
Contours represent the constant data values with lines called isolines.  
MATLAB provides both 2-D (top-down view)  and  3-D (perspective view) 
contour plots. We cover both the 2-D and 3-D contour plots in this section 
since these plots are often associated with 3-D data in some way. 

The simplest way to create a 2-D contour plot is to pass your matrix, Z, with 
contour(Z).  MATLAB will automatically choose the number and values at 
which contour lines are drawn.  You can also specify either the number of 
lines with contour(Z,number_of_lines) or the values at which the contour lines 
will be drawn with contour(Z,vector_of_data_levels).  If you want to plot only 
a single contour data level, make the vector_of_data_levels a two-element 
vector with both elements set to the data level you want contoured. 

The three methods just mentioned are plotted versus the row and column 
number of the matrix Z, such that the element Z(1,1) will be located in the 
lower left-hand corner of the figure.  You also have the option of defining the 
x- and y-axis scaling by passing either vectors or matrices that specify the x- 
and y-coordinates associated with each element of the matrix Z.  If these axis 
scaling matrices are used, they should be passed as the first two arguments to 
the contour function, i.e., 

contour(x_scale,y_scale,Z), 

contour(x_scale,y_scale,Z,number_of_lines)  

contour(x_scale,y_scale,Z,vector_of_data_levels)  

As an example of the contour function, the following code will generate 
some data and create a contour plot as shown in Figure 4.14. 

 
[x,y] = meshgrid(linspace(0,2*pi,30),... 
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Figure 4.13  Hidden line removal off. 
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linspace(0,pi,30)); 
z = sin(x).*cos(y+pi/2); 
% In the next line the contour plot is created for  
% data levels between -1 and 1 in 0.1 intervals 
% excluding the 0 data level. 
contour(x,y,z,[-1:0.1:-0.1 0.1:0.1:1]) 
xlabel('x'); 
ylabel('y'); 
title('Contour of z = sin(x).*cos(y+pi/2)'); 

 

 

Notice that the color of the contours is chosen in the same manner as 
colors are chosen when creating multiple lines with the plot command. In 
addition, in Figure 4.14 it is impossible to tell what value the data levels 
correspond to or whether there are two hills, two valleys or one hill and one 
valley.  Fortunately, there are two options to remedy this problem; the first is 
to use the function clabel, which will attach a numeric text string to each line, 
the second is to create a 3-D contour plot by passing the same arguments to 
the function contour3 instead of contour. 

The left half of Figure 4.15 shows how to use clabel with the data from the 
previous example with: 

 
c = contour(x,y,z,[-1:0.1:-0.1 0.1:0.1:1]); 
clabel(c); 

The right half shows how to specify which contour lines are labeled by 
passing an additional argument to clabel as follows: 

 
c = contour(x,y,z,[-1:0.1:-0.1 0.1:0.1:1]); 
clabel(c,[-1:.2:1]); 
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Figure 4.14   A simple 2-D contour plot. 
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Note that in both cases the location of the text is randomly assigned.   

 

You can also elect to manually select which contour lines are to be labeled 
and at the same time specify the location of the text by using 
clabel(c,'manual').  After you enter this command, a crosshair will appear 
instead of the normal mouse pointer arrow.  Click down on the mouse button 
(or use the space bar) and a label will be drawn as a plus sign with a height 
value and attached to the contour line that is the closest to the location you 
clicked on.  When you have labeled as many of the contour lines that you 
want, press the return key on your keyboard while the cursor is still in the 
Figure Window to indicate that you have finished.  

MATLAB also provides an automatic labeling method to generate plots like 
that shown in Figure 4.15.  To do this you must call the contour function and 
retrieve both the contour matrix and the handles of the line objects. Don’t 
worry about the handles too much just yet as that will become clear in 
Chapter 7.  For now, you can use the following code to produce the plot in 
Figure 4.16. 

 
[C,h] = contour(x,y,z); 
clabel(C,h); 
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Figure 4.15  Using clabel to label contour plots. 
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MATLAB uses an algorithm to determine where the labels are to be placed. 
However, you can override this algorithm and manually place the labels with, 

 
clabel(C,h,'manual'); 

As when you used clabel with ‘manual’ before, cross hairs will appear on 
the figure and follow the mouse pointer.  The difference between this manual 
method and the one without the use of the handles is that this method will not 
produce a plus sign, but will put the value directly on the isoline.  

Additionally, you can have clabel return the graphics handles to labels so 
that you can specify the properties of the labels, such as the font size or color.  
For instance, we can create Figure 4.17 with, 

 
[x,y,z] = peaks; 
% Create black dashed contours 
[C,h] = contour(x,y,z,'--k'); 
[text_handles] = clabel(C,h); 
% Modify the labels to make them bigger and blue. 
set(text_handles,'fontsize',15,'color','blue'); 
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Figure 4.16  Automatic labeling of isolines. 
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A filled contour plot displays isolines with the areas between filled with a 
constant color. To create a filled contour plot, use the function contourf.   
Each level of the contour is filled in with a color from the current color map. 
The color corresponds to the relative height of the level in the same way that 
color is chosen to represent the relative height of a surface plot.  The following 
code will recreate the previous example as a filled contour plot. 

 
contourf(x,y,z,[-10:10],'--k'); 

 
The result is shown in Figure 4.18.   
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Figure 4.17  Manipulating contour label properties. 
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Notice that in this code the vector [-10:10] was passed to the contourf 
function. The contour plotting functions accept a vector specifying the levels 
at which to plot contours.  

The last contouring function we will consider is the 3-D contour plotting 
function contour3. This function allows you to see the relative heights of the 
isolines. As with contour and  contourf you can pass a vector specifying the 
levels you want to plot. The following code produces the plot shown in Figure 
4.19. 

  
contour3(x,y,z,[-10:10],'-b') 
axis tight 
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Figure 4.18  A filled contour plot. 
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After you have learned more about color maps in Chapter 8, you will see just 
how powerful the contouring functions can be in assisting you with collecting 
more information about your data.  

4.1.8 Quiver Plots 

Quiver plots are used to visualize the gradient fields of either mathematical 
functions or data. For instance, you can plot arrows that point in the direction 
of increasing or decreasing values in a matrix and that have lengths that 
indicate the relative slope of the gradient at the particular locations.  The 
graphics function that is used to create this type of plot is quiver.  There are 
several different forms that can be used, but the most general is 
quiver(X,Y,PX,PY,scale,linetype_string) where the matrices X and Y define the 
locations of the arrows, PX and PY matrices determine the direction and 
magnitude of the arrows, the scale variable is used to adjust the length of all 
arrows by the specified factor, and the linetype_string can be used to specify 
the color and linestyle as was presented when the plot command was 
discussed.  The partial derivatives (PX and PY) of a given surface can be 
obtained with the function gradient.  To illustrate the quiver plotting function, 
let’s look at the quiver plot of the peaks function shown in Figure 4.20. 

 
[X,Y,Z] = peaks(20); 
% Determine the spacing of X matrix elements 
dy = diff(X(1,1:2));  
% Determine the spacing of Y matrix elements 
dx = diff(Y(1:2,1));  
% Determine the partial derivatives 
[PX,PY] = gradient(Z,dx,dy);  
quiver(X,Y,PX,PY,1,'b'); 
axis([min(min(X)) max(max(X)) min(min(Y)) max(max(Y))]); 
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Figure 4.19  Showing the relative heights of isolines with contour3. 
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Figure 4.20 has arrows pointing in the direction of increasing Z.  However, to 
change the direction of the arrows to point in the decreasing Z direction, all 
that is needed is to type quiver(X,Y,-PX,-PY).  The first two arrow location 
defining matrices can be placed with vectors using quiver(x,y,PX,PY) or 
quiver(x,y,PX,PY,scale, linetype_string), where the length of x is equal to the 
number of columns in PX and PY and the length of y is equal to the number of 
rows in PX and PY.  If it is not important to know the x- and y-axis locations of 
the arrows you can use quiver(PX,PY) or quiver(PX,PY,scale,linetype_string). 
The scale parameter defaults to a value of 1, indicating that MATLAB will 
automatically scale the arrow length. A scale value of 0 will plot the arrow 
length without scaling.  

4.1.9 Combination Plots  

Perhaps you have been wondering how you can combine different plot 
types in order to visually correlate the information in your data? Since 2-D and 
3-D representations each tend to emphasize different aspects of the 
information in a plot, the combination of a surface plot with a contour plot, for 
example, of the same data would present a great deal of information in a 
compact form. There are a couple of MATLAB functions that will create useful 
combination plots, but it is very easy to create your own functions to produce 
just the combination plots you want.  However, before you can design a truly 
custom combination plot, you will need to learn a little more about graphics 
objects and their properties so that you can manipulate them to your liking.  
Once you see how easily creating your own graphics functions can be 
accomplished, you will only be limited by your imagination with regard to 
adding new functionality in your repertoire of M-files. 

If it hasn’t occurred to you yet, you have already looked at some simple 
combination plots when we used the hold function to overlay line plots within 
the same figure.  The same can be done with any of the other graphics 
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Figure 4.20  A quiver plot of the peaks function. 
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creating functions. For example, in many cases the information provided by a 
flat quiver plot can be made easier to comprehend by overlaying a contour 
plot. Let’s take the quiver plot example shown in Figure 4.20, and overlay the 
corresponding contour.  First, create the contour with 

 
[X,Y,Z] = peaks(20); 
% Determine the spacing of X matrix elements 
dy = diff(X(1,1:2)); 
% Determine the spacing of Y matrix elements 
dx = diff(Y(1:2,1)); 
% Determine the partial derivatives 
[PX,PY] = gradient(Z,dx,dy);  
quiver(X,Y,PX,PY,1,'b'); 
axis([min(min(X)) max(max(X)) min(min(Y)) max(max(Y))]); 
then type 
hold on 

 
and create the contour overlay with 
 

[C,h] = contour(X,Y,Z,[-8:2:8]); 
clabel(C,h); 

which will produce the result shown in Figure 4.21. This plot is much more 
informative than the plot that either quiver or contour could have provided by 
themselves. 
 

 
 
As another example, we can create a three-dimensional quiver plot combined 
with a surface plot.  The 3-D quiver plot can be created using MATLAB’s 
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Figure 4.21  A quiver and contour combination plot. 
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quiver3 function.  Using the peaks function as in the previous example the 
following code will create the data and plot it as shown in Figure 4.22. 

  
[X,Y,Z]=peaks(20); 
% Determine the surface normals 
[U,V,W] = surfnorm(X,Y,Z); 
% Generate the 3D quiver plot 
quiver3(X,Y,Z,U,V,W); 
hold on; 
% Now add the surface plot  
surf(X,Y,Z); 
hold off 

 
As the previous examples show, combining different plot types can provide 
significant insight into data. In these cases, the plots were of the same 
dimension. The MATLAB plot axes are designed to allow any type of plot to 
be combined with any other. As such, you can readily combine 2-D and 3-D 
plots.    

As you have seen, the hold function allows different plots in the same axes. 
In addition to using hold, MATLAB provides two specific combination plots 
that combine a contour plot with either a mesh or surface plot. The first 
function meshc will create a mesh plot with a contour plot directly below it.  
The following example will help you better understand how this type of plot 
might be used. Consider the surface defined by the equation z = sin(x + sin(y)) 
- x/10.  The first step is to create the surface over some values of x and y.  

 
[x,y] = meshgrid(0:.25:4*pi); 
z = sin(x+sin(y))-x/10; 
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Figure 4.22  A combined 3-D quiver and surface plot. 
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The plot shown in Figure 4.23 and Plate 4 is achieved by simply plotting the 
surface with 
 

meshc(x,y,z); 
 

 

In a similar manner, a combination surface and contour plot can be created 
with the command surfc.  As an example, we can use  besselj (the bessel 
function) to generate some data in the following example which is plotted in 
Figure 4.24 (see also Plate 5). 

 
[x,y] = meshgrid(-5:.4:5); 
z = abs(besselj(0,abs(x)+abs(y)))+.01; 
surfc(x,y,10*log10(z)); 
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Figure 4.23  Using meshc to create a mesh – contour combination plot. 
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As you experiment with the surfc and the meshc functions you will notice 
that the contour is always plotted at the lowest z-axis limit that appears in the 
figure.  In many cases this is simply unacceptable since the contour can be 
easily obscured by the surface or mesh plot.  If you are lucky enough to 
choose a function that shows you enough of the contour when using these 
two functions, then great!  But if you are not so lucky, and generally speaking 
you won’t be, it does not mean that these combination plot functions will be 
useless. One rather obvious work around is to simply use the view axis tool in 
the Figure Window, or to use the function view.  The default perspective sets 
the observer at -37.5º azimuth and 30º elevation (i.e., view([-37.5 30])). You 
could just lower the elevation so as to peek under the surface a bit more, 
perhaps with view([-37.5 15]).  The problem with this is that the perspective of 
the plot is changed, likely making it difficult to extract information from the 
contour lines or the surface plot, and therefore may not be desirable for some 
data sets.  The real solution lies in using a little Handle Graphics. Although we 
will explore the topic rather thoroughly in Chapter 7, just as in the last 
example of Section 3.4.1, we will resort to a little Handle Graphics here. After 
you have grasped the concepts in Chapter 7, this example will seem very 
simple and straightforward to you.  In the meantime, you can merely resort to 
this technique as it is, and dig under the surface of what is going on later.  

Our best solution is to relocate the contour plot, i.e., offset it, to a level 
where the surface or mesh plots cannot obscure it. Simple enough in concept, 
but how is this accomplished? As we will discuss in Chapter 7, we will take 
advantage of one of the properties of the contour plot, that is its Zdata. Later 
you will learn that everything in MATLAB is an object and every object has 
properties, and you can change the value of those properties. Without further 
explanation, the process here requires two steps. First we must get “handles” 
to the part of the plot we want to affect, in this case the contour plot lines. 
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Figure 4.24  A surface – contour combination plot made with surfc. 

© 2003 by CRC Press LLC



  

Second, we will use the handles to the plot lines to access the z-axis data and 
add an offset to it. Consider again the plot shown in Figure 4.24. Calling surfc 
as shown here will not only plot the data, but will also return the “handles” to 
what we want in H. 

 
H=surfc(x,y,10*log10(z)); 

In this case, the first handle returned in H belongs to the surface; the 
remaining handles belong to the contours we want to change. We can lower 
the contour plane, by subtracting 5 (adding an offset of –5) from the value of 
each z coordinate of each contour line. Here is the code that does it. 

 
H=surfc(x,y,10*log10(z)); 
for i = 2:length(H); 
 newz = get(H(i),'Zdata') - 5; 
set(H(i),'Zdata',newz) 
end 

 
Figure 4.25 shows the “before and after” of offsetting the contour plot from 
the surface plot. 

 
We can’t just simply subtract 5 from z since that would alter the surface 
portion of the plot. The solution shown here preserves the original data. 

4.1.10 3-D Stem Plots 

Stem plots were introduced in Chapter 3 and we discussed how they are 
useful for visualizing discrete data sequences such as sampled time series data. 
Similar to the stem function, stem3 creates vertical lines terminated with a 
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Figure 4.25  Before and after contour plot shifting. 
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symbol but instead of emanating from the y-axis as in the case of stem, the 
lines emanate from the xy-plane. The forms of this function are: 

stem3(Z)  plots the discrete surface Z as stems from the xy-plane terminated 
with circles for the data value. 

 stem3(X,Y,Z) plots the surface Z at the values specified in X and Y. 

 Using the keyword string ‘filled’ will create the stem plot with filled markers 
just like with stem. Also, you can specify the style of lines and markers used 
just as with the plot function (refer to Table 3.3.1). 

As an example, we can visualize the sine from 0 to 2π around a unit circle 
with the following code. 

 
theta = 0:.2:2*pi; 
x=sin(theta); 
y=cos(theta); 
z=sin(theta); 
stem3(x,y,z); 
hold on 
plot3(x,y,z,'r') 
plot(x,y) 
title('Sine Along the Unit Circle') 
zlabel('Sin(theta)') 

 This code also plots the unit circle as well as a red line through the stems as 
shown in Figure 4.26. 

 
 
 

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Sine Along the Unit Circle

S
i
n
(
t
h
e
t
a
)

 
Figure 4.26  A 3-D stem plot with supporting line plots. 
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4.1.11 Generating Surfaces with Triangles 

As you may have noticed, the surf and mesh functions use quadrilaterals as 
defined by neighboring vertices in your X, Y, and Z matrices to generate the 3-
D mesh or surface plot.  In some instances, you may have data that you want 
displayed by a set of triangles.  The functions trimesh and trisurf can be used 
to generate a triangular mesh and surface plot respectively. 

Both of these functions have the same synopsis and are therefore 
completely interchangeable.  After you have learned more about object types 
in Chapter 7, you should revisit these two functions and notice that the two 
functions create the same object with only minor changes in the attributes of 
that object. 

To help you understand how these functions work, we will look at a simple 
example.  Let’s say we have the data points as described in the following code 
and shown in Figure 4.27. 

 
x = [0 1 1 0 0.5 0.5] 
y = [0 0 1 1 0.5 0.5] 
z = [0 0 0 0 1 -1]; 
plot3(x,y,z,'o','markersize',4,... 
    'markerfacecolor','black'); 
axis equal; 
grid; 
for i=1:length(x) 
   text(x(i),y(i),z(i),num2str(i),... 
        'verticalalignment','bottom'); 
end 
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Figure 4.27  Data points for a triangular plot. 
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We can then create a set of eight triangles: one face that connects data 
points 1, 2, and 5, another for data points 2, 3, and 5, another for data points 
3, 4, and 5, another for 4, 1, and 5, another for 1, 2, and 6, another for 2, 3, 
and 6, another for 3, 4, and 6, and a final one for 4, 1, and 6. This is done by 
creating an mx3 matrix, where each of the m rows represents a triangle by 
identifying the three indices in the x, y, and z vectors that make up the three 
vertices of the triangle. Continuing with the x, y, and z data we’ve just created, 
the following code will create this matrix and produce the plot shown in Figure 
4.28. 

 
%specify the triangles 
tri=[1 2 5;  
     2 3 5;  
     3 4 5;  
     4 1 5;  
     1 2 6;  
     2 3 6;  
     3 4 6;  
     4 1 6]; 
% generate the triangular mesh plot  
hold on; 
trimesh(tri,x,y,z,'edgecolor','black'); 
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Figure 4.28  Triangular meshplot of the three data points. 
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Each row of the matrix tri specifies the points that constitute each face of the 
object.  

Using the peaks function that we saw in the earlier surface plots, we can 
see that the trisurf function can also be used as a way to get a look at a 
surface from a set of non-uniformly sampled data points. Consider the 
following code that will generate the surface shown in Figure 4.29. 

 
x = 6*rand(1,500)-3; 
y = 6*rand(1,500)-2; 
z = x .* exp(-x.^2 - y.^2); 
tri = delaunay(x,y); 
trisurf(tri,x,y,z); 
grid on; 

 

The delaunay function creates a triangular grid for scattered data points by 
returning a set of triangles such that no data points are contained in any 
triangle's circumcircle. Put in simpler terms, each point is matched with its 
natural neighbors (as determined by the underlying algorithm) to produce a 
triangle, a circle about which will cover no other data points. This will assure 
that there are the required three data points to define a triangle. Try playing 
around with this code by running it multiple times and so producing a new 
data set with rand, and by changing the number of data points affecting the 
number of triangles.  

4.1.12 Polygons in a 3-D Space 

In Chapter 3 we saw that 2-dimensional polygons could readily be created 
with the MATLAB fill function.  Just as plot3 was the 3-dimensional 
counterpart to plot, fill3 is the 3-dimensional counterpart to fill.  The 
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Figure 4.29  Visualizing non-uniformly sampled data points using trisurf. 
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command fill3 is used in the same way as fill but with an additional vector or 
matrix used to define the z-axis coordinates of the polygon.  So, for example, 
where you used the form fill(x,y,color_string), you could now use 
fill3(x,y,z,color_string).    When we discuss handle graphics in Chapter 7 we 
will consider the patch function, which enables you to create any sort of 
polygon and mix and match them. We save this for the discussion on handle 
graphics since you will need to have a firm grasp (pun intended) on the 
concepts of objects and properties.  

4.1.13 Built-In Surface Functions 

You have already seen that MATLAB provides a built-in surface function 
called peaks. Although useful for demonstration purposes, peaks isn’t all that 
practical. Of course, in theory anyway, you can always create your own 
functions for any surface you desire. Fortunately, MATLAB includes three very 
useful surface generating functions in its base set of graphics commands.  You 
can generate spheres, ellipsoids, and cylinders without determining what the 
coordinates of the surface vertices should be.  

The command sphere(n) will generate a plot of the unit sphere.  The sphere 
will be defined with (n+1)2 points.  If you do not supply a number to this 
graphics function, n will default to 20.  You also have the option of having the 
function pass the (x,y,z) coordinates of the sphere by using output arguments 
with the sphere command.  When the function is used in this manner the plot 
will be suppressed.  This allows you to alter the coordinates of the sphere and 
then plot it with the mesh or surf commands.  For instance, we could scale a 
sphere and translate it in the 3-dimensional space.  The following code will 
plot both a translated version of the unit sphere, which is centered on 
something other than the point (0,0,0), and a scaled version of the unit sphere. 
Figure 4.30 shows the result. 

 
[x,y,z] = sphere(25); 
surf(x-3,y-2,z); %translated 
hold on 
surf(x*2,y*2,z*2); %scaled 
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The ellipsoid function is actually based on the sphere function and 
produces x, y, z coordinates for the ellipsoid described by the equation, 
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Where cx , cy , and cz are the centers of the radii and xr , yr , and zr are 

the radii in the corresponding axis. The general form of the ellipsoid function 
is [x,y,z]=ellipsoid(xc,yc,zc,rx,ry,rz,n). As with the sphere function, n relates to 
the number of data points computed and is assumed to be 20 if it is not 
otherwise specified. As an example, the plot shown in Figure 4.31 depicts an 
ellipsoid centered at x=2, y=0, and z=2, with x-radius = 2, y-radius = 1, and z-
radius = 1. (Figure 4.31 is actually a combination plot; we’ve included the 
contour in order to better visualize the elliptical shape.) The following code 
will produce Figure 4.31.  

 
[x,y,z]=ellipsoid(2,0,2,2,1,1); 
surf(x,y,z); 
axis([0 4 -2 2 0 4]); 
hold on 
contour(x,y,z); 
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Figure 4.30  An example using the sphere function. 
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Note that if you specify an ellipsoid with all radii equal to 1, you will create 
the unit sphere.  

The final built-in surface function MATLAB includes is cylinder. When 
cylinder is called without any input or output arguments it creates a 3-
dimensional perspective of a unit cylinder, i.e., radius of one and height of 
one, standing upright.  Calling the function with output arguments will return 
matrices that specify the coordinates, (x,y,z), of the vertices that define the 
cylinder in the 3-dimensional space. This data is then useable by surf or mesh 
to create a plot of the surface.  There are two optional input arguments that 
can be used in which case the function takes the form cylinder(R,N).  The first 
input argument, R, is a radius vector that defines the radius of the cylinder at 
equally spaced points along the cylinder’s height, i.e., the z-axis direction. A 
mathematical function can be used to generate R and so create a cylinder with 
radial profile described by that function. By default, the vector defining the 
radius is set to [1 1].  A cone, for instance, would be created using 

 
cylinder([0 1]) 

The second input argument, N, is an integer that specifies how many points 
will be used to define the circumference of the cylinder. As with its 
counterpart in sphere and ellipsoid, the default value is 20.  The height of the 
cylinder is always scaled to run between 0 and 1; but you can scale the height 
by calling the function with output arguments, then manipulating the matrix 
defining the z-coordinates of the vertices, and use surf or mesh to create the 
surface. 

We can easily make regular cylinders with cylinder, but it is much more 
interesting to use a function to create a radial profile and then create a 
cylinder with that. To illustrate what the function cylinder can do, let’s work 
with the mathematical expression 
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Figure 4.31  An example using data created with the ellipsoid function 

(contour included for clarity). 
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 200
2

)2sin()cos(
x
exxr ⋅⋅=  

for x between -3π and 3π.  The following code generates a plot of the radial 
profile of the cylinder that we are about to create as shown in the left panel of 
Figure 4.32. 

  
% Define the x data range 
x = linspace(-3*pi,3*pi,50); 
% Evaluate the function 
r = cos(x).* sin(0.5*x)*exp((x.^2)/200); 
% Force the minimum radius to zero. 
r = r - min(r); 
plot(r,linspace(0,1,length(r))); 
title('Radial Profile'); 
ylabel('z') 

Try to imagine spinning this radial profile about the z-axis in a manner that 
pushes the profile into and out of the page.  The elements of the radial vector, 
r, do not need to be all positive quantities.  For example, in the previous set of 
MATLAB instructions, 

 
r = r-min(r); 

forced the minimum radius to equal zero.  Now we can use the cylinder 
function to visualize the radial profile as shown in the right panel of Figure 
4.32. 

 
cylinder(r); 
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Figure 4.32  A function-described radial profile and its corresponding 

cylinder. 
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The central axis of any shape created with cylinder is defined by a line that 
is perpendicular to the xy-plane and passes through the coordinate (0,0) in this 
plane.  If you need to redefine the central axis location or scaling in any of the 
coordinate directions, first obtain the vertex coordinates with 

 
[X,Y,Z] = cylinder(r); 

then scale by multiplying one or more of these matrices by some factor, or 
translate by adding a constant to one or more of the matrices.  Finally, 
generate the surface with one of mesh or surf.  

4.2 Simple 3-D Plot Manipulation 
In Chapter 3 we presented plot editing using the tools available in the 

Figure Window. These tools are just as applicable in the 3-D case as they are 
for 2-D plots. The Insert Text, Insert Arrow, etc., all work just as in the 2-D 
case; however be aware that if you annotate your plot before rotating it, the 
annotations will not move with the plot. This can lead to confusion and 
frustration so the rule of thumb is to set your view before you begin 
annotations. Simply select the cursor icon in the Figure Window toolbar to 
enter the plot edit mode, or type plotedit at the command prompt in the 
Command Window. Then, just as in the 2-D case, you can access each object 
in the figure and edit their properties by a simple point-and-click interface.  

4.2.1 The Camera Toolbar 

We did not cover the camera tools in the discussion of the Figure Window 
tools in Chapter 3 as this is much more meaningful when dealing with 3-D 
plots. Although using the camera tools might seem like animation, and in a 
way it is, we reserve Chapter 9 for a detailed discussion of “proper” animation. 
Here we will only deal with “simple” uses of the camera, namely those 
available from the Figure Window toolbar. To facilitate this discussion, open 
the Figure Window by creating a surface plot of the peaks function. 

 
surf(peaks(30)) 

 
Now select View →→→→ Camera Toolbar. When you do, the Camera Toolbar will 
appear in the Figure Window looking like Figure 4.33.  
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The Camera Motion Controls let you select different camera motion 
controls such as those that will orbit the camera or scene lighting, pan or tilt 
the camera, move the camera in and out, etc. The Principal Axis Selection 
tools provide a choice of axis about which some of the camera controls will 
operate.  The Scene Lighting tool is a toggle that switches a light on or off. It 
can be useful in emphasizing the elevations and valleys in a surface. The 
Projection Type tool lets you choose between orthographic and perspective 
projections. Table 4.2.1 summarizes the two projection types, their 
consequences, and their use. The last two tool buttons, Reset Camera and 
Scene Light, and Stop Camera/Light Motion, let you reset the scene to the 
standard 3-D view and stop the camera from moving. In the next section, we 
will discuss the axis in general as it relates to 3-D graphics. In Chapter 7 we 
will explore the camera and how to program its properties using Handle 
Graphics. 

� � � � � � � � � 	 
 � � � � � � 	 � � � 


� � 
 � � 
 � � � � � � 
 


� � � � � 	 
 � �

� � � � �

� 
 � � 	 
 � �

� � � � � � 	 
 � �

� � � �

� � � � � � � � 
 � 	

�

� � � � � � � � 	 � �

 
Figure 4.33  The Camera Toolbar in the Figure Window. 
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Table 4.2.1  Projection Types 

Projection Type How to Interpret How to Use 

Orthographic 
Projection 

Think of the “viewing 
volume” as a box 
whose opposite sides 
are parallel, so the 
distance from the 
camera does not affect 
the size of surfaces in 
the plot 

Used to maintain the actual 
size of objects and the angle 
between objects. This works 
well for data plots. Real-world 
objects look unnatural.  

Perspective 
Projection 

The “viewing volume” 
is the projection of a 
pyramid where the 
apex has been cut off 
parallel to the base. 
Objects further from 
the camera appear 
smaller. 

Used to create more “realistic” 
views of objects. This works 
best for real-world objects. 
Data plots may look distorted. 

   
 

You can use the tools provided in the Figure Window to fine tune your 
plots, and it works well for single-use purposes, however the real power of 
MATLAB is in its programmability. Next, we will see how to manipulate the 
axis in code, as well as high-level color and shading manipulation. 

4.2.2 Generalizing the Axis for 3 Dimensions 

The axis function we used in Chapter 3 (axis([xmin xmax ymin ymax]) ) is 
fully generalized as axis([xmin xmax ymin ymax zmin zmax cmin cmax]), 
where xmin, ymin, and zmin are respectively the minimum x-, y-, and z-axis 
values, xmax, ymax, and zmax are the respective maximum x-, y-, and z-axis 
values, and cmin and cmax are color scaling limits.  Uses such as axis('equal'), 
axis('ij'), and axis('xy') also manipulate the 3-D plot but only the x- and y-axis of 
the current plot are affected as discussed in Chapter 3. Table 4.2.2 summarizes 
the axis function syntax and its affect on a plot.  
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Table 4.2.2a  Summary of the Axis Function 

Syntax Affect 
 
axis([xmin xmax ymin 
ymax]) 

 
Sets the x- and y-axis limits . 

 
axis([xmin xmax ymin 
ymax zmin zmax cmin 
cmax]) 

 
Sets the x-, y-, and z-axis limits and 
the color scaling limits. 

 
v = axis 

 
Returns a row vector containing the 
x-, y-, and z-axis limits, i.e., scaling 
factors for the x-, y-, and z-axis. 

 
axis auto 

 
Computes the current axes' limits 
automatically, based on the 
minimum and maximum values of x, 
y, and z data. 

 
axis ‘auto x’ 
“   “‘auto y’ 
“   “‘auto x’ 
“   “‘auto xz’ 
“   “‘auto yz’ 
“   “‘auto xy’ 

 

 
Computes the indicated axis limit 
automatically. 

 
axis manual 

 
Freezes scaling of the current limits. 
Used with hold forces subsequent 
plots to use the same limits. 

 
axis tight  

or  
axis fill 

 
Sets the axis limits to the range of 
the data. 

 
axis ij 

 
Sets the origin of the coordinate 
system to the upper left corner. The 
i-axis is vertical, increasing from top 
to bottom. The j-axis is horizontal, 
increasing from left to right. 

 
axis xy 

 
This is the default coordinate system 
with the origin at the lower left 
corner. The x-axis is horizontal 
increasing from left to right, and the 
y-axis is vertical increasing from 
bottom to top. 
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Table 4.2.2b  Summary of the Axis Function 

Syntax Affect 
 
axis equal 

 
Sets the aspect ratio of the x-, y-, and 
z-axis automatically according to the 
range of data units in the x, y, and z 
directions so that the data units are 
the same in every direction. This 
makes a sphere look like a sphere 
instead of an ellipsoid. 

 
axis image 

 
The same as axis(‘equal’) but also 
makes the plot box fit tightly around 
the data. 

 
axis square 

 
Adjusts the x-, y-, and z-axis so that 
they have equal lengths. This makes 
the axes region of 2-D plots square 
and of 3-D plots cubed. 

 
axis vis3d 

 
Freezes the aspect ratio so that 
rotation of 3-D objects will not  
“stretch-to-fill” the axes. 

 
axis normal 

 
Automatically adjusts the aspect 
ratio of the axes and data units on 
the axes to fill the plot. 

 
axis off 

or 
axis on 

 
Turns off or on all axis lines, tick 
marks, and labels. 

 
[mode,visibility,direc
tion] = axis('state') 

 
Returns the strings indicating the 
current axes settings:  
mode = ‘auto’ or ‘manual’ 
visibility = ‘on’ or ‘off’ 
direction = ‘xy’ or ‘ij’ 

  
 

4.2.3 3-D Plot Rotation 

As you recall from Chapter 3, the Figure Window provides some specific 
tools for modifying the appearance of your plot. Recall the zooming and 
rotating buttons; these are still very much functional, and even more useful, 
with a 3-D plot. Figure 4.34 depicts the peaks function plotted differently in 
four subplots. Each subplot has been altered using either the zoom or rotate 
buttons. To zoom or rotate a subplot using the buttons, simply click on the 
button you wish to apply, then start clicking in the subplot. Notice that 
zooming changes the size of the axes by a factor of two in the subplot and 
can quickly overwhelm the other subplots.  
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As you click on a plot to rotate it, if you hold the mouse button down you 
will see that MATLAB creates a reference box around the plot. You will also 
notice that the azimuth and elevation specifying the rotation is displayed in the 
Figure Window, but only as long as you keep the mouse button depressed. 
Figure 4.35 shows what you can expect to see. 

 

 
Figure 4.34  The results of using the zooming and rotation tools from the 

Figure Window. 

 
Figure 4.35  The rotation box is visible while the mouse button is 

depressed. 
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The rotate tool can also be activated from the command line or M-File with 
rotate3d. In the next section we will discuss how to exercise greater control 
over our point-of-view of a 3-D plot. 

4.2.4 Using the View Command 

In the previous section, we saw how to use the rotation button to change 
the aspect, i.e., our point of view, of a 3-D plot. You noticed that as you kept 
the mouse button depressed, the Figure Window would indicate the aspect in 
terms of azimuth (Az) and elevation (El). You can achieve the same results 
from the command line or in your M-Files but with greater control by using the 
view function. The function view is used to specify the aspect you want to use 
to view a 3-D plot. You use it by calling it explicitly with two input arguments 
specifying the value of azimuth and elevation, or with a single input, being a 
vector with the values as its elements. When called with a two-element vector 
as an output argument, view will return the aspect currently in use.  

In its simplest form, the function is used by passing an azimuth (Az) and 
elevation (El) angles in degrees as input arguments with  

 
view(Az,El) 

 or with a single vector variable with two elements, 

 
view([Az El]) 

The angles are defined with respect to the axis origin, where the azimuth 
angle, Az, is in the xy-plane and the elevation angle, El, is relative to the x-y 
plane. Figure 4.36 depicts how to interpret the azimuth and elevation angles 
relative to the plot coordinate system.  
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If you call view after creating a 3-D plot, it will return the current azimuth 
and elevation of the plot. If you have not previously changed these values, 
then this will return the default values of az = -37.5o and el = 30o.  Consider 
again the surface plot of the peaks function. 

 
surf(peaks(20)) 

 
The code, 
 

[az el]=view 
 
will return  
 

az = 
 
  -37.5000 
 
 
el = 
 
    30 

 
which are the default values for the azimuth and elevation. 

As you have seen already, you can use the rotate tool from the Figure 
Window and change the aspect of the view of your plot. Let’s say that you 
have been merrily rotating away at your plot with the rotate tool, and now you 
have discovered that you can’t tell up from down in the figure. In such a 
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Figure 4.36   The point-of-view in a 3-D plot. 
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situation, which happens more often than you might expect, view can come to 
your rescue. One way to use view is to issue the function with the default 
azimuth and elevation values. 

 
view(-37.5, 30) 

 

However, even more convenient, the view function has two very simple 
forms that can help you when you get in such a bind. The forms of the 
function 

 
view(3) 

and 
 
view(2) 

will restore the current plot to the default 3-D or 2-D views respectively.  
Again we visit the function peaks, this time presenting multiple views of it 
using the view function, as shown in Figure 4.37, created with the following 
code. 

 
azrange=-60:20:0; 
elrange=0:30:90; 
spr=length(azrange); 
spc=length(elrange); 
pane=0; 
for az=azrange 
    for el=elrange 
        pane=1+pane; 
        subplot(spr,spc,pane); 
        [x,y,z]=peaks(20); 
        mesh(x,y,z); 
        view(az,el); 
        tstring=['Az=',num2str(az),... 

' El=',num2str(el)]; 
        title(tstring) 
        axis off 
    end 
end 
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4.3 Volume Visualization 
In the 3-D visualization methods discussed so far, we have been concerned 

with surfaces. Volume visualization is concerned with representing a three- 
dimensional matrix of points, i.e., a volume, in which each point can be either 
a scalar (magnitude only) or vector (magnitude and direction). Scalar data is a 
single value for each point, while vector data for a point is either two or three 
values. Knowing the difference between scalar and vector volume data 
determines which techniques are better suited for your visualization. In short, 
since scalar data presents amplitude at a point within a volume, they are best 
visualized with isosurfaces, slice planes, and contour slices. On the other hand, 
vector data represents both magnitude and direction at a point in a volume so, 
consequently, techniques such as particle, ribbon, tube, cone, and arrow plots 
are more appropriate. Keep in mind, just as we have seen already, that when it 
comes to data visualization, a combination of techniques is often the most 
effective at conveying the salient information in any instance of visualization – 
even more so with volume visualization. The document that came with your 
MATLAB software (if you don’t have it in printed form, it will be included in 
your document disk), Using MATLAB Graphics, presents an excellent treatment 
of volume visualization and includes some striking examples. We will touch on 
the highpoints of volume visualization in this section and use the example data 
that comes with MATLAB in examples here. 

4.3.1 Scalar Volume Data 

MATLAB includes a host of functions specifically designed for scalar volume 
data visualization. In general, X, Y, and Z are arrays that specify the points on 
the x-, y-, and z-axis at which volume data, V, is provided. Table 4.3.1 lists 
those functions, but be sure to read the command prompt help for each 

Az=−60 El=0 Az=−60 El=30 Az=−60 El=60 Az=−60 El=90

Az=−40 El=0 Az=−40 El=30 Az=−40 El=60 Az=−40 El=90

Az=−20 El=0 Az=−20 El=30 Az=−20 El=60 Az=−20 El=90

Az=0 El=0 Az=0 El=30 Az=0 El=60 Az=0 El=90

 
Figure 4.37  Multiple views of the peaks function. 
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function to see all the capabilities. The functions that produce plots return 
handles to the graphics objects they create. 

 
Table 4.3.1 Scalar Volume Computation Functions 

Function Action 

FVC = 
isocaps(X,Y,Z,V,ISOVALUE) 

Computes an isosurface end cap geometry 
for data V at isosurface value ISOVALUE 
and returns a structure containing the faces, 
vertices, and colors of the end cap which 
can be passed directly to the patch 
function. 

NC = 
isocolors(X,Y,Z,C,VERTICES) 

Computes the colors of isosurface vertices 
VERTICES using color values C and 
returning them in the array NC. 

N = 
isonormals(X,Y,Z,V,VERTICES) 

Computes the normals (N) of isosurface 
vertices VERTICES by using the gradient of 
the data in V. 

FV = 
isosurface(X,Y,Z,V,ISOVALUE) 

Extracts an isosurface at ISOVALUE in the 
volume V, returning the structure FV 
containing the faces and vertices of the 
isosurface, suitable for use with the patch 
function. 

NFV = reducepatch(P,R) Reduces the number of faces in a patch P 
by a fraction R of the original faces. It 
returns the structure NFV containing the 
new faces and vertices. 

[NX, NY, NZ, NV] = 
reducevolume(X,Y,Z,V,[Rx Ry 
Rz]) 

Reduces the number of elements in a 
volume by only keeping every Rx, Ry, Rz 
element in the corresponding x, y, or z 
direction. 

NFV = shrinkfaces(P,SF) Reduces the size of patch P by shrink factor 
SF, returning a structure NFV containing the 
new faces and vertices. 

W = smooth3(V,’gaussian’, SIZE) 
W = smooth3(V,’box’, SIZE) 

Smooths the data in V according to the 
convolution kernel of size SIZE specified by 
the given string.  

FVC = surf2patch(S) Converts a surface object S into a patch 
object. FVC is a structure containing the 
faces, vertices, and colors of the new patch.  

[NX, NY, NZ, NV] = 
subvolume(X,Y,Z,V,LIMITS) 

Extracts a subset of volume data from V 
using limits LIMITS = [xmin xmax ymin ymax 
zmin zmax]. 

contourslice(X,Y,Z,V,Sx,Sy,Sz) Draws contours in a volume slice plane at 
the points in the vectors Sx, Sy, and Sz. 

patch(x,y,z,C) Creates a patch in the 3-D space of color 
defined by C. 

slice(X,Y,Z,V,Sx,Sy,Sz) Draws a slice plane described by the 
vectors Sx, Sy, Sv, through the volume V. 
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4.3.1.1 Slice Planes 

When 3-D surface plots or contours are not sufficient for visualizations, an 
example of which might be determining the heat transfer or density 
characteristics of a solid object, you will most likely have a need for the slice 
function. Table 4.3.1b presents the general form of the slice function, however 
it can also take on a number of other forms, based on the input provided.  

The slice function will plot “slices” of the volumetric data, V, along planes 
which are perpendicular to either the yz-, xz-, or xy-axis planes at locations Sx, 
Sy, or Sz on the respective x-, y-, or z-axis. These can be multiple slices on each 
axis. This is best explained by example; consider the scalar volume bounded 
by 

 
[x,y,z] = meshgrid(-2:.2:2, -2:.2:2, -2:.2:2); 

 
and defined by 
 

v = x .* exp(-x.^2 - y.^2 - z.^2); 
 
We can use the function slice to visualize slices through the volume, in this 
case at  planes at x = 1, y = 0, and z = 0, as shown in Figure 4.38. 
 

slice(x, y, z, v,1,0,0) 
axis tight 
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Figure 4.38  Slicing through a scalar volume. 
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MATLAB doesn’t limit you only to slices parallel to one of the axis planes. 
However, creating slice planes at arbitrary angles does require just a little bit of 
handle graphics. Here are the steps to slice with a plane at an arbitrary angle: 

1. Create the surface to slice with by defining a surface and 
rotating it. You will need the handle to that surface in the 
following steps, so get it too. Here we use the bounds of the 
original volume as the bounds of our slice plane; notice how 
the z-axis is zeroed.  

 
Hslice = surf(-2:.2:2, -2:.2:2, zeros(length(z))); 

 

2. Rotate the slicing surface to the desired angle using the 
rotate function. Here we rotate only about the x-axis. 

 
rotate(Hslice,[-1 0 0],-45); 

 

3. Use the get function to retrieve the data that defines the 
rotated slice plane. 

 
xs = get(Hslice,'XData'); 
ys = get(Hslice,'Ydata'); 
zs = get(Hslice,'Zdata'); 

 

4. Use slice to plot the new slice plane.  

 
slice(x,y,z,v,1,0,Inf) 
hold on 
slice(x,y,z,v,xs,ys,zs) 

 

The result is shown in Figure 4.39. 

 

� � � � � �  
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4.3.1.2 Contour Slices 

Contour lines can be added to slices readily with the function contourslice. 
This function is shown in its general form in Table 4.3.1b and as with other 
volume visualization functions, it takes the arrays defining the volume space 
(X, Y, and Z), and the value for the volume (V), but it also requires the slice 
plane specification (Sx, Sy, Sz). By default, contourslice will automatically 
assign contour line colors based on the value of the volume, but usually when 
we are combining slices with contours, we want our contour lines to be a 
single easy to see color and let the slice provide the color indicating the value 
of the volume. However, to do so requires the application of a little Handle 
Graphics, so without apology we present here the solution, as in the previous 
example. Let’s say we want to add white contour lines to the plot in Figure 
4.39. This might seem a little challenging at first since our view includes both a 
vertical slice and then an intersecting slice at 45 degrees. Continuing with the 
previous example, here’s how to do it: 

 
Hcs=contourslice(x,y,z,v,1,0,Inf,20); 
set(Hcs,'EdgeColor','white','LineWidth', 1.0); 
 

The first line plots 20 contour lines on the x = 1 plane and returns the handles 
to them. The set function, which you will learn more about in Chapter 7, is 
then used to set the color of the contour lines to white and the width of the 
lines to 1 (which is wider than the default hairline width).  
 

For the 45-degree plane, we must be sure to use the slice plane data that 
defines that slice, i.e., xs, ys, and zs in this example. 

 
Hcs=contourslice(x, y, z, v,xs,ys,zs,20); 

−2

−1

0

1

2

−2

−1

0

1

2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

 
Figure 4.39  A slice at –45 degrees. 
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set(Hcs,'EdgeColor','white','LineWidth', 1.0); 
 

Figure 4.40 (see Plate 6) shows the result. Note that you do not have to have  
hold on with contourslice since it will hold the current plot itself. 

 

As a final note about slice planes, they don’t have to be planes at all! 
MATLAB allows you to use any surface you care to create in defining, what is 
more properly stated as, the slicing surface. To illustrate this, let’s continue 
with this same data, and slice it with the surface of a unit sphere. 

First, put a slice in the original volume at x = 1. Be sure that hold on is 
activated. 

 
slice(x, y, z, v,1,0,0) 
hold on 
 

Then get the surface definition for a sphere using MATLAB’s convenient 
sphere function. Recall that sphere will create a unit sphere centered at zero. 

 
[xss,yss,zss]=sphere; 
 

Now slice the volume with the sphere surface, and adjust the perspective with 
view for a better look. 

 
slice(x,y,z,v,xss,yss,zss); 
view([-29,12]); 
axis tight 
 

Your plot should look something like the one shown in Figure 4.41.  
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Figure 4.40  Contour lines on slice planes. 
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4.3.1.3 Isosurfaces and Isocaps 

Another interesting and insightful method of volume visualization is to 
identify a surface throughout the space where the value of the volume is a 
constant. Just like contour lines connect values of z that are equal in a 2-D 
space where z=f(x,y), the function isosurface will outline in a  volume where 
v=f(x,y,z) is a constant. To illustrate this, we will use a demonstration function 
included with MATLAB called flow. This is a function in three variables, and 
represents the speed profile of a submerged jet in an infinite tank. We like it 
because it produces an image with changing contours that readily illustrates 
interesting features of volume visualization. Let’s say we want to look at the 
flow data where it is equal to -1.5.  

 
[x y z v] = flow; 
isosurface(x, y, z, v, -1.5); 

 
The resulting plot is shown in Figure 4.42. 
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Figure 4.41  You can use any surface to “slice” a volume.  
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Whereas isosurface outlines where a volume is of constant value, isocaps 
can be used to show what is inside the volume. Technically stated, isocaps 
computes an isosurface end-cap geometry for a given isovalue. Again, let’s 
consider the data generated by the flow function, but this time use isocaps. 

 
isocaps(x,y,z,v, -1.5); 
view(3); 
 

The resulting visualization is shown in Figure 4.43. 
 

 
Figure 4.42  An isosurface plot of the fluid function data at a value of  -

1.5. 
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4.3.2 Vector Volume Data 

A 3-D vector field has both magnitude and direction for every point in the 
volume. Just as with the scalar volume data, vector volume data requires 
coordinates for x-, y-, and z-axis, but for vector volume, each point has either a 
2- or 3-element vector that describes both magnitude and direction. Table 
4.3.2 summarizes the visualization functions that deal with vector volume data. 
In these functions, the arrays  X, Y, and Z define the coordinates for velocity 
vector data U, V, and W,  i.e., the 3-D vector field. The drawing functions can 
return handles to the surface objects in the plot. Be aware that these functions 
can take varied inputs, depending on usage, and we only show the most basic 
form of the function here for brevity. Please use the help command with the 
function name to get complete details.  

 
Table 4.3.2 Vector Volume Computation Functions 

Function Action 

[CURLX, CURLY, CURLZ, CAV] = 
curl(X,Y,Z,U,V,W) 

Computes the curl and angular 
velocity (CAV) perpendicular to 
the flow of the  3-D vector field . 

DIV = divergence(X,Y,Z,U,V,W) Computes the divergence of the 
vector field. 

VERTSOUT = 
interpstreamspeed(X,Y,Z,U,V,W,VERTICES) 

Computes the streamline vertices 
(returning a cell array of vertex 
arrays) from vector field data U, V, 
and W, magnitudes (speed) by 
interpolation at vertices (such as 
those produced by stream2 or 
stream3) specified by the cell 
array VERTICES. 

continued on next page… 

0

1

2

3

4

5

−3

−2

−1

0

1

2

3
−3

−2

−1

0

1

2

3

 
Figure 4.43  Isocaps shows what is inside a volume. 
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Table 4.3.2 Vector Volume Plotting Functions 

Function Action 

XY = stream2(X,Y,U,V,STARTX,STARTY) Computes 2-D stream line data, 
returning a cell array, XY, of vertex 
arrays suitable for use with 
plotting functions like streamline. 

XYZ = 
stream3(X,Y,Z,U,V,W,STARTX,STARTY,STA
RTZ) 

Computes 3-D stream line data 
returning a cell array, XYZ, of 
vertex arrays suitable for use with 
plotting functions like streamline. 

LIMS = volumebounds(X,Y,Z,U,V,W) Returns the x- , y-, and z- axis 
coordinates and color limits for a 
volume as a vector LIMS = [xmin 
xmax ymin ymax zmin zmax cmin 
cmax]. 

[NX, NY, NZ, NV] = 
subvolume(X,Y,Z,V,LIMITS) 

Extracts a subset of the volume 
data. The extent of the subset is 
specified in the vector LIMITS = 
[xmin, xmax, ymin, ymax, zmin, 
zmax], which contains coordinate 
values. 

coneplot(X,Y,Z,U,V,W,Cx,Cy,Cz) Plots velocity vectors as cones at 
the points Cx, Cy, and Cz in the 
vector field. 

streamline(X,Y,Z,U,V,W,STARTX,STARTY,S
TARTZ) 

Draws stream lines from either 2-
D or 3-D vector data. STARTX, et 
al., define the starting positions of 
the stream lines. 

streamparticles(VERTICES, N) Draws stream particles using the 
vertices (such as those produced 
by stream2 or stream3) in the cell 
array VERTICES. N is the number 
of stream particles drawn, or the 
fraction of the total if less than 1. 
If not specified, the default is used, 
N=1, or 100% of the vertices.  

streamribbon(X,Y,Z,U,V,W,STARTX,START
Y,STARTZ) 

Draws stream ribbons from vector 
data U, V, and W. STARTX, et al., 
define the starting positions of the 
stream lines at the center of the 
ribbons. The twist of the ribbons is 
proportional to the curl of the 
vector field. 

streamslice(X,Y,Z,U,V,W,Sx,Sy,Sz) Draws stream lines with direction 
arrows using the vector data U, V, 
and W, aligned in an x, y, z plane 
defined by Sx, Sy, Sz. 

streamtube(X,Y,Z,U,V,W,STARTX,STARTY,
STARTZ) 

Draws stream tubes from vector 
data U, V, and W. STARTX, et al., 
define the starting positions of the 
stream lines at the center of the 
tubes. 
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Throughout this section on vector volume data, we will use an example data 
set included with MATLAB, wind.mat, that represents the air currents over 
North America. This data is made up of wind speed and direction vectors 
within a volume. You can access this data with the load command. Typing, 

load wind 

at the command prompt will load the data into the MATLAB workspace. (If 
you have been doing the examples as you read, you might want to first clear 
the workspace by issuing the clear command.) Once you load the wind data, 
you will have the volume arrays x, y, and z , and the volume vector arrays u, v, 
and w. We will use this data to illustrate the topics in this section. 

First, we must point out that although this section is concerned with volume 
data that has both magnitude and direction, you can still use scalar volume 
techniques with vector volume data; all you have to do is convert the vectors 
to scalars by computing the magnitude of the vectors. In the case of the wind 
data,

wind_vel = sqrt(u.^2 + v.^2 + w.^2); 
slice(x,y,z,wind_vel,[80,90,100,110,120],Inf,Inf)
axis equal 
shading interp 

produces the plot shown in Figure 4.44. 

However, Figure 4.44 gives us no information about the direction of the wind. 
In fact, we have lost that information completely in the computation of 
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Figure 4.44  Vector data plotted as scalar data. 
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wind_vel. Now we shall turn our attention to stream plots, and how they are 
useful in visualizing the direction of flow within a volume. 

4.3.2.1 Stream Plots 

Since vector volume data can be thought of as particles flowing through a 
volume, it is desirable to have some visualization methods that indicate the 
direction of flow. Stream plots do just that. The differences amongst the stream 
plots provided in MATLAB have to do with the way the streams are visualized. 
Stream plots are typically combined with other visualization techniques, such 
as slices, in order to provide richer information content. Table 4.3.3 
summarizes the five stream plot techniques available in MATLAB and their use. 

Table 4.3.3  MATLAB Stream Plot Techniques 

Stream Plot  
Technique 

Function Use 

Lines steamslice 
streamline 
stream2 
stream3 

Traces the path that a particle in the 
vector field follows.  

Particles streamparticles Markers that trace stream lines. Useful 
for creating stream line animations. 
Usually used in combination with 
stream lines. 

Ribbons streamribbon Similar to stream lines, but the width of 
the ribbon allows it to show twist, i.e., 
curl angular velocity. 

Tubes streamtube Again, similar to stream lines, but the 
width of the tube can be varied. Tubes 
are useful for showing the divergence 
of a vector field. 

Cones coneplot Each particle in the volume vector field 
is represented by a conical arrowhead 
or arrow, indicating both magnitude 
and direction.  

We will now look at each of these techniques, applying them to the wind
data as an example. Since each of these techniques is used to represent 
direction of flow, in many cases we will have to define starting points for the 
streams. This will become obvious as we explore the examples. Additionally, 
some of the techniques are better used with Handle Graphics and those will 
be deferred to later chapters. 
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4.3.2.2 Stream Lines 

In many cases, you will want to explore your data before you dive into a 
specific volume visualization technique. The more you know about your data 
the more effective you can make your visualization. Continuing with the 
example we started in the previous section, we would be wise to explore the 
extents of our data, and then proceed with the appropriate volume 
visualization techniques. Earlier, we examined the wind data using slices, but 
only after we had converted the data to scalar data. This gave us a feel for the 
magnitude of the data, but in doing so, the direction information was ignored. 
In fact, our choice of slice planes was somewhat arbitrary. Now, we will try to 
do better. 

The function streamslice is designed to show particle flow in a slice through 
the volume. Consider again the plot in Figure 4.44. Here we see that the data 
extends in the z-direction from about 0 to somewhere around 15. Let�s say we 
are interested in the wind velocity and direction at a slice exactly midway of 
the z-data. Rather than estimating from our previous plot, we can determine 
exactly the midway plane by examining the extents of the volume in the z-axis 
and so do better than guessing. The following code generalizes the approach. 

minz=min(z(:));
maxz=max(z(:));
midz=(maxz-minz)/2;

Now we can create a slice midway in the z-plane using slice. Then we will 
use streamslice to visualize the direction of the flow in the plane. 

slice(x,y,z,wind_vel,[],[],[midz])
streamslice(x,y,z,u,v,w,[],[],[midz]);
axis equal 
shading interp 

Figure 4.45 (see Plate 7) shows the result of combining these two plots.  
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As you can see, the general direction of the flow is in the positive x 
direction. It is also easy to see the zones of high and low velocity by using the 
scalar data, i.e., the magnitude. This plot gives us a very intuitive sense of the 
data.

The other stream plotting function you should be familiar with is stream3.
Refer to Table 4.3.2, for the form of the function. The wind data is almost 
ready for use by stream3, but we have to also provide starting points for the 
stream lines. The following example produces a plot much like Figure 4.44 but, 
rather than guessing, the limits of the volume are found using volumebounds.
Five slice planes are located linearly spaced along the x-axis.  

lims=volumebounds(x,y,z,u,v,w);
slice(x,y,z,wind_vel,...
    [linspace(lims(1),lims(2),5)],[],[]); 

Next, meshgrid is used to define the start for the stream lines. The x-axis 
value is set to the lower limit of the volume, that will make all the stream lines 
start from the lower x �boundary. The y- and z-axis are incremented through 
their extents. (Yes, linspace could have been used here like it was with the 
slice function.) 

[sx sy sz] = meshgrid(lims(1),... 
    lims(3):5:lims(4), lims(5):5:lims(6)); 

Finally we use streamline to plot the result returned by the stream3 function. 

streamline(stream3(x,y,z,u,v,w,sx,sy,sz));
shading interp; 
axis equal; 
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Figure 4.45  Using streamslice to visualize the direction of flow. 
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The result is shown in Figure 4.46. 

4.3.2.3 Stream Particles 

Stream particles are used to put markers in the vector field. They can be 
used to show both position and velocity of the stream line. They are 
particularly useful in animation of stream lines, a topic we will visit when we 
discuss animation in Chapter 9. Here, we will deal with stream particles in the 
static case. 

The function streamparticles relies on a variable called vertices which is a 
cell array that contains the vertices of the volume. This is the type of cell array 
that is typically returned by the stream3 function, and in fact, is what was used 
by streamline in the previous example. You can simply replace streamline in 
the previous example with streamparticles and MATLAB will reward you with 
success, but what you will see will look a bit messy. However, we can 
demonstrate using particles by noting that there is an interesting phenomenon 
between about 110 and 120 on the x-axis and between 15 and 40 on the y-
axis. To investigate this area closer, we shall first redefine where we start our 
stream. 

[sx sy sz] = meshgrid(100, 15:5:40, 3:2:6); 

Then plot using streamline enhanced with streamparticles.

streamline(stream3(x,y,z,u,v,w,sx,sy,sz));
streamparticles(stream3(x,y,z,u,v,w,sx,sy,sz),...
'markers',2)
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Figure 4.46  Stream lines with volume slices. 
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view(3)
axis tight 

The string �markers� is a keyword to streamparticles for �marker size� so 
that it will know that the number that follows specifies the size of the marker 
to use. Unfortunately, in this plot, the particles don�t convey any more 
information than the stream lines do. We will see this and other properties 
when we revisit stream particles and put them in motion in Chapter 9. 

4.3.2.4 Stream Ribbons 

Stream ribbons are used to represent flow, just like a stream line, but unlike 
a line, a ribbon depicts the data direction and rotation about the axis of flow. 
This rotation is mathematically known as �curl� and we will not delve into the 
mathematical formulation for that here. If you know what curl is, then its use is 
obvious to you. If the concept of curl is new to you, you will find it most useful 
for vector field data such as that used in the example here. In this kind of 
visualization, the curl looks like a twist in the ribbon. In its basic form, the 
function streamribbon allows you to specify an angle for the twist for each 
vertex in the ribbon. However, streamribbon will determine the curl if you do 
not specify it. Note that the function curl is available for this type of 
computation.

The simplest way to use streamribbon is shown in the following code. Here, 
no twist is specified, so streamribbon will compute a twist proportional to the 
curl of the vector field. The width is constant and determined automatically. 
Figure 4.48 is the resulting plot. 
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Figure 4.47  Stream particles combined with stream lines. 
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[sx sy sz] = meshgrid(100, 15:5:40, 3:2:6); 
streamribbon(x,y,z,u,v,w,sx,sy,sz);
shading interp; 
view(3);
%some camera and lighting controls we will 
%discuss later 
camlight; lighting gouraud 

As with other such plotting functions, streamribbon can return handles to the 
objects it creates. You are encouraged to read the helps on this function once 
you have read about Handle Graphics and Color and Light in Chapters 7 and 
8.

4.3.2.5 Stream Tubes 

Since curl represents the �twist� about a vertex in vector fields, you might 
wonder what mathematical method is used to represent direction at each 
point, relative to the flow direction. This is called �divergence� and is most 
readily visualized with stream tubes that vary in diameter based on magnitude. 
The function streamtube is used much like streamribbon, and replacing the 
streamribbon function in the previous example with 

streamtube(x,y,z,u,v,w,sx,sy,sz)

produces the plot shown in Figure 4.49 (see Plate 8). 

Figure 4.48   Stream ribbons convey �twist� information. 
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To better see the detail, you might zoom in on an interesting part of the plot 
as shown in Figure 4.50, or select a smaller subset of the volume.   

4.3.2.6 Cone Plots 

Cone plots represent the data in a vector field as a cone having direction 
and length proportional to the velocity at that point in the field. The function 
coneplot  can be used to produce such a plot. As with the previous vector 

Figure 4.49  Stream tubes are used to show divergence. 

Figure 4.50  A closer view of stream tubes reveals divergence. 
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volume plots, you need to specify both the volume and volume vectors, but 
instead of just indicating where to start a stream, with coneplot you must 
specify the position of the cones within the volume.  

Cone plots are very effective when combined with other volume 
visualization techniques. Using the wind data provided with MATLAB we will 
set about demonstrating using coneplot and introduce some new functions 
too. Consider the following code. 

load wind 
%extract a portion of the volume 
[x y z u v w] =... 
subvolume(x,y,z,u,v,w,[105,120,nan,30,2,6]);

%compute the magnitude of the wind 
wind_vel = sqrt(u.^2 + v.^2 + w.^2); 

%slice at the extremities 
lims=volumebounds(x,y,z,u,v,w);
slice(x,y,z,wind_vel,...
[lims(1),lims(2)],[lims(4)],[lims(5)])

%specify where to put cones 
xrange = linspace(lims(1),lims(2),8); 
yrange = linspace(lims(3),lims(4),8); 
zrange = linspace(lims(5),lims(6),6); 
[cx cy cz] = meshgrid(xrange,yrange,zrange); 
coneplot(x,y,z,u,v,w,cx,cy,cz,wind_vel,1);

%pretty it up a bit 
shading interp 
axis equal 

Here we use the function subvolume to extract only the portion of the 
volume we want to consider. Notice that the minimum y axis data is specified 
as NaN (Not-a-Number) which tells the subvolume function to start with the 
beginning of the data on that axis. As with our examples demonstrating stream 
lines, we find the wind velocity and this time make some slices at the 
boundaries of our data; the function volumebounds makes doing this 
convenient as it returns the extents of the volume in vector form. Now we 
specify the vertices where we want cones and pass those values to coneplot.
Here we use coneplot in the form where we specify a matrix for color, in this 
case wind_vel. We also specify a comfortable size for the cones. The result is 
the plot shown in Figure 4.51 where the direction of each cone is the direction 
of the wind and both the length and color represent the velocity. We will 
revisit this plot in Chapter 8 where we will improve on the presentation of it by 
manipulating the lighting and color. 
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4.4 A Word About Annotating 3-D Plots 
The approach you take to adding text to 3-dimensional plots is very similar 

to doing so for 2-dimensional plots (see Chapter 3, Section 4). The only real 
difference is that you now have a z-axis that you can label. You have already 
seen this in action in this chapter such as with the example of Figure 4.26 
where we used the function zlabel.

In addition to the function zlabel, the function text can be specified with x-, 
y-, and z-coordinates, allowing you to place text anywhere in the 3-D space. 
The example of Figure 4.27 demonstrates the use of specifying a z-coordinate 
with text. Bear in mind, that placing text with either text or gtext simply puts 
the text where you specify; if you change the plot by re-plotting or changing 
the axis, the text will not likely be where you want it. As far as labeling axes, 
use x-, y-, or zlabel.
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Figure 4.51  Cones visualize magnitude and direction in a vector volume 
field. 
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4.5 Illustrative Problems 

1. Create a 3-dimensional pyramid using the fill3 function.  Can 
you create each face individually with vectors defining the x-, y-, and 
z-coordinates? What about creating it with one fill3 command and a 
set of x-, y-, and z-coordinate matrices? 

2. Load the MRI data mri.mat (provided with MATLAB). What 
variables were loaded?  Read about the function squeeze in the 
MATLAB helps. Then try the following code 

D = squeeze(D); 
image_num = 4; 
image(D(:,:,image_num))
axis image 
colormap(map)

You can treat this MRI data as a volume because it is a collection of slices 
taken progressively through the 3-D object. Try using contourslice to display a 
contour plot of a slice of the volume.  
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5.1 Image Files and Formats 
With digital cameras and scanners available at ridiculously low prices, 

practically everyone is familiar with images on their computer. Images can 
convey a great deal of information in a very intuitive form. Images don�t have 
to be of the real world, they can certainly be representations of mathematical 
phenomena; in fact, that�s exactly what we have been exploring in the pages 
of this book. But whatever the case, at some point in your use of MATLAB, 
you will be faced with either one of two image file related issues; either you 
will want to read in a scanned (or similarly digitized) picture and operate on it, 
or you will want to generate an image file from a plot or some graphic you 
have created in MATLAB and now wish to share with the outside world.  In 
fact, bitmap images are a natural �data type� for MATLAB since images can be 
simply thought of as 2-D arrays. Consequently, all the array manipulation and 
operations you are familiar with are applicable. The only issue is how to get 
the images into or out of your computer. Of course, you could write your own 
low-level I/O functions, assuming you are suitably familiar with the image file 
format you are dealing with, but fortunately, MATLAB provides some 
convenient and powerful ways of getting images in and out, and also of 
viewing them by means of a robust set of image file specific functions. Table 
5.1.1 summarizes the image specific functions that come with MATLAB. If you 
have the image processing toolbox, then you will have many more image 
functions. 

Table 5.1.1 Image Graphics Specific Functions 

Function Action 

[X,Map] = imread(fname, fmt) Reads an image from a graphics file. 

image(C) Displays the matrix C as an image. 

colormap(Map) Sets the current image�s colormap to Map. 

imagesc(C) Same as image, except that the data is 
scaled to use the entire colormap. 

continued on next page� 

IN THIS CHAPTER�
5.1 IMAGE FILES AND FORMATS
5.2 IMAGE I/O
5.3 IMAGE TYPES AND PROPERTIES

© 2003 by CRC Press LLC



Function Action 

A = imfinfo(fname,fmt) Gets information about the fmt formatted 
image file fname and returns it in the 
structure A. 

imwrite(X, fname, fmt) Writes matrix X to fname in fmt format. 

newmap =brighten(beta), 
brighten(fig,beta), 
brighten(map,beta) 

Lightens (or darkens) the current color map, 
the current figure, or a specified color map. 

 Even if we are not conversant with the technical details of the file formats, 
most of us are at least familiar with the names of a few of the common image 
data formats. You have probably heard of �bitmaps,� �tiffs,� �jpegs,� and �gifs,� 
but you might not know why there are different formats or what the 
differences are between them.  We will not go into an extended discussion of 
the different formats in this book, but we will try to give you enough 
information to help you with your image file work in MATLAB.  

5.1.1 Common Image File Types 

Image data files fall into three general formats. The first is non-compressed
bitmaps, the second is compressed bitmaps, and the third is vector graphics.  

Non-compressed bitmaps, like early versions of the BMP (bitmap) and TIFF 
(tagged image file format) formats, are image data files that simply store each 
pixel of image data in an array. Compressed bitmaps do the same thing, 
except some mathematical function is applied to the data to attempt to reduce 
the size of the file. Compressed bitmaps can be further broken down into lossy
and lossless formats as well. Lossy formats actually lose some of the original 
data during compression and it is usually a judgment call as to how much of 
the data can be lost before it is no longer suitable for its intended use. The 
JPEG format is lossy to varying degrees depending on the compression ratio. 
You will always get the image file size reduced with JPEG, but you might do so 
with severe degradation of the data. The simple images shown in Figure 5.1 
illustrate the possible effects of compression. The top image is in an 
uncompressed TIFF format; the bottom is JPEG with only moderate 
compression. In this case, compression introduces artifacts because of the 
strong contrast edges in the image; a natural trait of the JPEG compression 
process. 
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Figure 5.2 and Figure 5.3  demonstrate the appropriate use of compression. 
The image in Figure 5.2  is uncompressed and has a file size of 3.6M Bytes, 
while the compressed version in Figure 5.3  only takes 65K Bytes in a file. The 
differences between the two are revealed only under close inspection. 
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Figure 5.1  Compression introduces artifacts.  
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Figure 5.2 An uncompressed image stored in a 3.6MB file. 
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Once you compress an image with a lossy method, the data is lost and 
cannot be recovered.  Lossless formats like PNGs, GIFs, and compressed TIFs 
offer varying degrees of compression based on the data, but do not compress 
to the point of losing data. This is achieved through methods such as Run 
Length Encoding (RLE) in which recurring pixels are stored as a single pixel and 
a count value.  

The third format, vector graphics, relies on a kind of descriptive computer 
language to tell either your computer screen or your printer how to draw the 
graphic. Postscript is a kind of vector graphics format and we will usually talk 
about images that are �encapsulated postscript.� The �encapsulated� part of 
EPS is that usually a TIFF or JPEG image is contained within the Postscript file. 
An EPS file will generate beautiful images of plots, line art, and letters, and 
accommodates images where subtle changes in shading occur by 
encapsulating a bitmap image format. Keep in mind that Postscript is 
dependent on the device (usually a printer) that the file is output to, i.e., an 
EPS file cannot be readily printed on a non-Postscript printer (there are 
software converters that will allow this).  

5.2 Image I/O 
If you are generating an image file for use by others, you will likely choose a 

format that is commonly viewable with most image editing software. If your 
image contains only a few colors or is made up of mostly constant color areas, 
then the color-mapped formats, e.g., PNG and GIF, will do well; however, if 
you are sharing your images on the Internet, you will probably choose a 
format that will compress your data and reduce file size. If your images 
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Figure 5.3 The same image after JPEG compression uses only 65KB. 
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contain many shades of color without distinct boundaries, e.g., using shading 
interp or photographic images, then you will probably pick a true-color image 
format. Finally, if you are reading an image provided by someone else you 
need to be able to read whatever format is provided. Fortunately, MATLAB 
gives you a great deal of choice in all cases without having to know a lot 
about the details of a particular image file format. Table 5.1.2 lists the image 
file formats that MATLAB can read and write. 

Table 5.1.2 MATLAB Readable Image File Types 

Extension  Type Read 
Write 

Use 

bmp bitmap or 
device 
independent 
bitmap 

R/W Native format for Microsoft Windows. 
Can support up to 24-bit color. Originally 
uncompressed, run-length encoding 
(lossless) compression is now supported.  

jpg jpeg � joint 
photographic 
experts 
group 

R/W 24-bit (true color) support. Created to 
support the photographic industry. 
Compression can result in noticeable loss 
of image quality in some images or 
annoying �artifacts.� Compression ratios 
of 25 or 30 to 1 with photographic 
images producing good results are not 
uncommon, but the more you compress, 
the poorer the picture quality. No 
transparency support. 

tiff tagged 
image file 
format 

R/W Originally created in the 1980s to 
support data output from scanners (raster 
scan). Limited to 4GB of data. Can 
contain information about colorimetry 
calibration, gamut tables, etc., such as 
occurs with remote sensing and multi-
spectral applications. Can support various 
compression algorithms in compressed 
modes. 

gif graphics 
interchange 
format 

R Very common and used extensively on 
the Internet. Works well for illustrations 
or clip-arts that have large areas of flat 
colors. Does not work so well with 
photographic images or images with 
continuous tones. Limited to 256 colors 
that are �dithered� to look like more 
colors. Supports animation (GIF89a 
standard). Use for logos, bullets, or clip-
arts where few colors are used. Typically 
5 to 1 compression ratio. 

continued on next page� 
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Extension  Type Read 
Write 

Use 

png portable 
network 
graphics 

R/W Similar to GIF, very efficient lossless 
compression, supporting  variable 
transparencies (alpha channels), and 
gamma correction, but not animations. 

pcx  R/W Similar to bmp, up to 24-bit color and 
lossless compression.  

hdf hierarchical 
data format 

R/W A data interchange format championed 
by the National Center for 
Supercomputing Applications.  

xwd X-Windows 
Dump

R/W Used on Unix workstations. 

ico Windows 
icon format 

R Used by Windows for icon graphics. 32 
x 32 bits by default. Can have multiple 
images in one file (animations). No 
compression. 

cur Windows 
cursor format 

R Used by Windows for cursor graphics. 
Can contain animations. No 
compression. 

The three principal image I/O functions in MATLAB are imread (for reading 
graphics files), imwrite(for writing data to a graphics file format), and imfinfo
(for retrieving information about a specific graphics file).  

5.2.1 Reading a Graphics Image 

MATLAB includes a JPEG image of the complex planetary nebula 
NGC6543A, a.k.a. the �Cat�s Eye Nebula,� in the file ngc6543a.jpg. This 
should have been automatically placed in a folder on your MATLAB path 
when you installed MATLAB. You can use imfinfo to retrieve information 
about the image file. Its general form is  

imfinfo(filename, fmt)

where both input variables are strings, the first being the name of the file 
and the second being the image file format. To retrieve the file data about the 
Cat�s Eye Nebula, you could type, 

imfinfo('ngc6543a','jpg')

which will return 

ans =

           Filename: 
'C:\MATLAB6p1\toolbox\matlab\demos\ngc6543a.jpg'
        FileModDate: '02-Oct-1996 23:19:16' 
           FileSize: 27387 
             Format: 'jpg' 
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      FormatVersion: '' 
              Width: 600 
             Height: 650 
           BitDepth: 24 
          ColorType: 'truecolor' 
    FormatSignature: '' 

From this we can see that ngc6543a.jpg is a 600x650 truecolor image. Note 
that you don�t have to specify a file extension in filename provided the 
extension is the same as fmt. The function imfinfo returns a structure, so we 
could have used, 

info = imfinfo('ngc6543a','jpg'); 

and then accessed specific data from the fields, such as 

info.Format

which would return the string �jpg�.  

The imread function has the general form  

[X,C]=imread(filename,fmt)

where filename and fmt are strings specifying the name of the file and its 
format, just as in imfinfo. X is the returned image data, which can be MxN for 
indexed images, or MxNx3 for true color images, and C is the colormap if the 
image is indexed. For example, you can read the Cat�s Eye Nebula  image with 
the following code. 

[x,c]=imread('ngc6543a.jpg','jpg');

Since this is a truecolor image, this will return a 650x600x3 uint8 array in x 
and an empty array for c since there is no colormap with JPEG images. 
Knowing this is a JPEG format, we know there would not be a colormap so we 
could have used the form, 

x=imread('ngc6543a','jpg');

As with imfinfo, we don�t have to specify an extension with the file name if the 
extension correctly corresponds to the specified file format fmt.

5.2.2 Displaying a Graphics Image   

Displaying the image you have just read is achieved by simply typing  

image(x)

This will open a Figure Window and plot the image on the axis. If you have 
read the JPEG image above, image will readily accept the 3-D array and 
display the RGB images. Notice that the same plotting considerations of 
relative axis scale arise here as well; you might wish to use axis equal to 
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correct the perspective. If the image you read is an indexed image, i.e., a 2-D 
index array with a corresponding Nx3 colormap, you will need to use the 
colormap function to get the correct coloring of the plot. At the website you 
can download the indexed image usflag.dib (Windows device-independent-
bitmap). Once you have that file you can read it, then view it with, 

[x,cm]=imread('usflag.dib','bmp');
image(x)

You should see the image shown in Figure 5.4. 

 Notice that the colors are not as you would expect. You might have 
something very strange indeed if you have been using other colormaps since 
MATLAB will apply the last colormap used in the current Figure Window. To 
get the expected patriotic colors, you will next need to load the appropriate 
colormap, in this case cm.  

colormap(cm)

Figure 5.4 An indexed image without its colormap. 
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In Section 5.3 we examine indexed images in more detail. 

5.2.3 Writing a Graphics Image 

Writing the contents of a Figure Window to an image file is just as simple as 
reading one. The imwrite function provides a means to create image files of 
the formats indicated in Table 5.1.2. The general form of imwrite is, 

imwrite(A,filename,fmt)

where A is the image, either grayscale if NxM, or truecolor if NxMx3, 
filename is a string containing the name of the file to be created, and fmt is a 
string indicating one of the write formats indicated in Table 5.1.2. For the case 
of an indexed image, i.e., one containing an image and colormap, imwrite
takes the following form. 

imwrite(X,C,filename,fmt)

In this case, X is an NxM array of indexes into colormap C. Using imwrite
can be easily demonstrated by loading one of the color image data files that is 
distributed with MATLAB and writing to one of the image file formats. In the 
following example, we will use the load function to load an image of a clown. 
Typing 

load clown 
at the command prompt will load X,  a 200x300 double array, and map, an 

81x3 double array, into the workspace. Notice that this data is an index array 
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Figure 5.5   An indexed image with the appropriate colormap. 
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and colormap. We can then create, for instance, a PNG format image by 
typing, 

imwrite(X,map,'clown.png','png')

which will create the file clown.png in the default working folder.  

5.3 Image Types and Properties 
Whenever we deal with images we need to be aware that there are 

fundamentally three types of image data formats. You have already seen some 
of this in the previous examples. The first image data format is indexed images 
where two arrays are used to describe the image. The second image data 
format is intensity level images, comprised of a single array where each 
element indicates the relative intensity of a pixel. The third data format is 
called truecolor and uses three intensity level arrays, where each is the relative 
intensity of red, green, and blue primary colors.  

5.3.1 Indexed Images 

  By indexed we mean that the image is created from information in two 
arrays: the first is an array of indexes into the second, which is a three-column 
array containing the red, green, and blue contributions for each pixel. The 
following code will load an image of a clown and display it in a Figure 
Window, looking like that shown in Figure 5.6. 

load clown 
image(X)
colormap(map)
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Figure 5.6   Who is that clown? 
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When we load clown.mat the arrays X and map were placed in the MATLAB 
workspace. The array X is an array of indices; row indexes actually, specifying 
which row from map (an 81x3 array) the pixel color is to be taken from. 
Looking at a few pixels from the upper left corner, we see 

X(1:5,1:5)

ans = 

     2     2     2     2     2 
    61    69    69    69    69 
    69    61    69    61    69 
    61    69    61    61    56 
    69    55    61    44    61 

Each element is a number corresponding to a row in the color map. We can 
find the color components for each of these pixels by 

map(unique(X(1:5,1:5)),:)

ans = 

    0.1250         0         0 
    0.8672    0.4141    0.1250 
    0.8672    0.5781         0 
    0.8672    0.5781    0.1250 
    0.9961    0.5781    0.1250 
    0.9961    0.7031    0.1250 

The unique function returns only one instance of an element, and orders the 
results, so the first row here corresponds to an index value of 2, the second 
44, the third 55, etc.. We can see these first few pixels, shown in Figure 5.7, 
with the following code. 

image(X(1:5,1:5))
colormap(map)
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Try this. 

image(X(20:60,50:100))
colormap(map)

 Use unique again to see how many different colors are used in this portion of 
the image. 

map(unique(X(20:60,50:100)),:)

5.3.2 Intensity Level Images 

An intensity image file does not provide a color map. Instead, the array 
describes the image by relative pixel amplitude. An example of such an image 
is the “raw” image from an imaging device such as a CCD (charge-coupled 
device) imager. These devices, being digital, assign a value to the pixel based 
on the intensity of the light falling on it . Most are either 8-bit or 16-bit devices, 
meaning that for any pixel the intensity range is either 28 (0-255) or 216 (0-
65,535) where 0 is no light and the maximum is fully illuminated. When an 
image from such a device is viewed, we typically do so in shades of gray. 
However, since MATLAB uses color maps when it plots an image, intensity 
image or not, we need to tell MATLAB what kind of color map should be 
used. The default data type in MATLAB is 64-bit floating-point numbers, i.e., 
double precision. However most image data formats are designed to use no 
more file space than is necessary. It is indeed wasteful to use an 8-bit imaging 
device and store its output with 64-bit numbers. The MATLAB image functions 
typically will deal with images in their native format as either 8-bit (uint8) or 
16-bit (uint16) unsigned integers.  

When plotting intensity level images, you will find that MATLAB’s built-in 
color maps don’t always agree with the scale of your image.  With the 

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

Figure 5.7  The upper left 5x5 of the clown image. 
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following code, a 256-level grayscale image is viewed using image along with 
the color map gray.

image(X); colormap(gray); 

Since the color maps in MATLAB are 64 levels, in this case, since there actually 
are 256 shades of gray, shades will be lost when using a built in color map as 
shown in Figure 5.8. Shades are lost since all indexes above 64 are mapped to 
the highest level in the map, in this case white. 

One simple solution is to create a 256-shades-of-gray color map in this 
manner: 

gray256 = linspace(0,1,256)'; 
gray256 = (repmat(gray256,1,3))'; 

This will create a 256-shade color map and produce much better results as 
shown in Figure 5.9.  
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Figure 5.8   A 256-level gray scale image loses quality when used with a 
64-level color map. 
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Another solution to the color map-scaling problem is the function imagsc,
which serves the same purpose as image, but scales the image data to use the 
full extent of the color map. The following code will take an 8-bit intensity 
image X and scale it to the built-in MATLAB color map gray.

imagesc(double(X),[0 255]); colormap(gray); 

Note that imagesc requires the image data to be of type double. Although 
upon close inspection once can discern loss of shades, since the color map 
has been used across the full extent of the image’s intensities, the results are 
quite good as shown in Figure 5.10.  
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Figure 5.9 Same image using gray256. 
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5.3.3 Truecolor Images 

Truecolor images are in essence a set of three intensity image arrays where 
one is red filtered, another green filtered, and the last one blue filtered. For any 
given pixel in the image, the corresponding element from each of the arrays 
contributes a proportionate amount of red, green, or blue.  

The following function can be used to translate an indexed image into RGB 
format. Not only useful in seeing the relative contributions of red, green, and 
blue, but later we will see the need for converting indexed bitmaps to RGB in 
MATLAB when we present CData. 

function rgbimage = makergb(bitmap,colormap) 
%RGBIMAGE = MAKERGB(BITMAP,COLORMAP) 
%where BITMAP is a NxM array, and COLORMAP is 
% a Cx3 double array 
%RGBIMAGE will be a NxMx3 double array. 
%Makes an RGB image from an array of indexes 
%(BITMAP)into
%a color map (COLORMAP). 
%MAKERGB will determine if the index array needs 
%to be 1-shifted. 

bitmap=double(bitmap);
if min(bitmap(:))==0 %is it 0 indexed? 
    offset=1 
else
    offset=0 
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Figure 5.10  The result of mapping a 256-gray-level image to 64 gray 
levels using imagesc. 
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end

[rows,cols]=size(bitmap);

for L=1:3 
    layer=colormap(bitmap(:,:)+offset,L); 
    layer=reshape(layer,rows,cols); 
    rgbimage(:,:,L)=layer; 

end

We can see the relative contribution of red, green, and blue using makergb
along with, 

load clown 
rgbclown=makergb(X,map);
subplot(1,3,1),imagesc(rgbclown(:,:,1)),axis square, 
title('Red');
subplot(1,3,2),imagesc(rgbclown(:,:,2)),axis square, 
title('Green');
subplot(1,3,3),imagesc(rgbclown(:,:,3)),axis square, 
title('Blue');
colormap gray 
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Figure 5.11  The red, green, and blue components of the clown image 
shown in relative intensity. 
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In Chapter 5 we saw how to read and write image files of the standard 
image file formats. You also need to know how to print your output to printers 
and how to create graphic output that can be used in other computer 
applications such as word processors. There are several ways to do this 
depending on the intended use of the image and the format of image output 
you need. 

6.1 The Quickest Way to Paper 
The first output goal we will explore is how to get the graphics of your 

Figure Window to paper. The simplest way to do this is to use the File  Print 
pull-down from the Figure Window as shown in Figure 6.1.  

When you select this option, your plot will be sent to your printer via your 
operating system’s print manager. Before you go off sending everything to 
your printer, notice the other printing commands available in the pull-down 
window; these are Page Setup, Print Setup, and Print Preview. The Page 
Setup item will open a window with tabs that allow you to change various 
properties of the page to be printed such as the size and position of the plot 
on the page, portrait or landscape orientations, color or black and white lines 
and text, and also some axis properties such as whether or not MATLAB 
should recalculate the axis tic marks based on the printed size, or to keep the 
tic marks as seen on your computer display. The Print Setup window will open 
the Windows printer setup panel. The options you have there depend on the 
printer or printers you have installed. The Print Preview window can be used 
to see a representation of what your printed page will look like. If you don’t 
like what you see, a button is available to take you to the Page Setup window. 
When you are satisfied, clicking on the Print button will print your plot. 

IN THIS CHAPTER…
6.1 THE QUICKEST WAY TO PAPER 
6.2 PRINTING COLORED LINES TO BLACK & WHITE PRINTERS
6.3 ELECTRONIC OUTPUT
6.4 USING THE PRINT COMMAND
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6.1.1 Page Setup 

When you print in MATLAB, the contents of the Figure Window are what is 
printed. This includes the axes, labels, titles, annotations, and any other objects 
that you see. By default, MATLAB assumes a print area centered on 8.5-inch 
by 11-inch paper that is 8 inches by 6 inches with no window frame. The 
default figure and axis background color is white. Tic marks and axis limits are 
automatically calculated to accommodate the printed size, so it very likely will 
be different from what you see on the computer’s display. However, you can 
alter many of the figure attributes that affect the appearance of your output 
from the Page Setup window. By selecting File  Page Setup you will open a 
window comprised of four tabbed sections. These are listed in Table 6.1.1. 

Table 6.1.1 Page Setup Tabs 

Tabbed Section Actions 
Size and Position Choose to automatically print the figure at the screen size, 

centered on the page, or manually set the size and position of 
the figure on the page. 

Paper Set paper size and orientation. 
Lines and Text Select to print lines and text in their colors or in black and white. 
Axes and Figure Choose to use the tic marks and axis limits you see on the 

screen, or have MATLAB recalculate them based on the printed 
size of the figure. Here you can also choose to print the figure 
with its color background, or force it to white background. 

Figure 6.1 Printing from the Figure Window. 
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If you are not printing to an 8.5-inch-wide by 11-inch-high piece of paper, 
you will want to go to the Paper tab to choose one of the other twenty-two 
paper types, or to create your own Custom paper type.  The Lines and Text 
tab lets you choose to print in black and white for lines and text. Notice that in 
each tab, there is a graphic depicting the placement of your figure on the 
page. You can hold the mouse button down on this representation and move 
it to different places on the page, or change the size of the figure on the page. 

6.2 Printing Colored Lines to Black & White Printers 
Unless you have changed the default line style and color properties of the 

root object, MATLAB will by default plot lines in the “solid line” or '-' setting.  If 
you have several lines up at once, they may or may not be different colors, 
depending on how you plotted them.  When you print these to a black and 
white printer, the lines might be difficult to distinguish from one another. 

For one-time printing, you can use the MATLAB Property Editor as discussed 
in Chapter 3 and change the style of the lines so that you can easily distinguish 
them when printed.  

Another approach that will let you set the line style and color once for a 
session is with the following code.  

% Make default color black 
set(0,'defaultaxescolororder',[0 0 0]);
% Change the line style order to anything you want, 
% for example, (solid,dashed,dash-dotted,dotted,and 
% circles. 
set(0,'defaultaxeslinestyleorder','-|--|-.|:|o')

This uses a little Handle Graphics to change the default axes color to black 
only, and sets a line style order to continuous, dashed, dash-dotted, dotted, 
and circles. With this code, the styles are changed at the “root level,” meaning 
that the properties are altered for all figures during the session. To return to 
the original MATLAB defaults, use 

set(0,'defaultaxeslinestyleorder','factory')
set(0,'defaultaxescolororder','factory');

If you want to make a different line style order, or axes color order the 
default every time you use your MATLAB, all you need to do is include the 
set code shown above in a file called startup.m; MATLAB looks for this file 
each time you start a MATLAB session. There is also a master MATLAB 
startup file called matlabrc.m and you can add or modify code there, but it 
is not advisable. If you want to change your MATLAB startup options, you 
should read the on-line helps on startup and matlabrc. 
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6.3 Electronic Output 
In addition to printing to paper, MATLAB supports various electronic 

formats for graphics output. You have already learned how to read and write 
image files using imread and imwrite. Now you will learn how to use the pull-
downs from the Figure Window and the print function from the Command 
Line to create image files of your plots in standard image file formats that can 
be easily imported into various applications. 

6.3.1 Using File Export 

Selecting File  Export from the Figure Window will open a dialog window 
that will allow you to name and save your plot in any of the image file formats 
listed in Table 6.4.1. 

Table 6.4.1 Export Plot Image Formats 

File Format Extension 
Enhanced Meta File EMF 
Windows Bitmap BMP 
Encapsulated Postscript 
(4-types) 

EPS

Adobe Illustrator AI 
JPEG JPG 
TIFF (compressed or non-compressed) TIF 
Portable Network Graphics PNG 
Paintbrush (24-bit) PCX 
Portable Bitmap PBM 
Portable Graymap PGM 
Portable Pixmap PPM 

Simply select the folder where you want to save the file, give it a name and 
specify the format in which you wish to save the plot. Although exporting is 
convenient, aside from selecting among four types of encapsulated postscript 
and compressed or non-compressed TIFF, you have very little control over the 
specific image formats. For instance, the default quality level of 75 is used in 
the JPEG format.

6.3.2 Using the Windows Clipboard 

If you have MATLAB installed on a Windows system, you can copy a figure 
to the clipboard by using Edit  Copy Figure and then paste the figure into 
another Windows application. When you do paste the image, you have the 
choice either of pasting it as a picture, or as a Windows Metafile. The 
advantage of pasting it as a Windows Metafile is that you can edit various 
parts of the image. For instance, if you paste your figure into Microsoft Word, 
you can select the image, ungroup it, then edit the axis lines, text, plot lines, 
etc.  

Before you use the Copy Figure pulldown, you should select Edit  Copy 
Options which will open the Preferences Dialog Window to a section called 
Figure Copy Options. Here you can alter the specifications of various 
properties of the figure before it is copied to the Clipboard. Here you have the 
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choice of making the plot keep the axis tic marks that you see on the screen 
or use the settings established by File  Page Setup. Notice that this is a 
subset to the Figure Copy Template. If you select Figure Copy Template, you 
can use built-in settings that will optimize the size of lines and fonts in your 
figure for Microsoft Word or PowerPoint as well as make some limited specific 
changes to the Clipboard copy. 

6.4 Using the Print Command 
Certainly the most powerful way to print your Figure Window, either to a 

printer or to an image file, is by using the print function. In its simplest use, 
print will send the contents of the current Figure Window to the computer’s 
default printer.  The general form of print is 

PRINT –DEVICETYPE -OPTIONS 

Since both the devicetype and options are optional, if you do not supply 
them, MATLAB will determine the default values for your system.  The printer 
command and device type that print uses by default can be determined by 
typing 

[printcommand,devicetype] = printopt 

The function printopt will return the current printer type and output 
destination. It can also be edited to change your default printer type and 
destination. 

6.4.1 Creating Hardcopy with PRINT 

Every time you issue the print command, it determines the default printer 
settings by issuing a call to the printopt function. The default device type on 
Windows systems (-dwin) is to print through the Windows Print Manager.  The 
default type is a Level 2 black and white PostScript (-dps2) for Unix and 
Macintosh systems.  As we mentioned in the last section, you can alter the 
device type and print command by editing the printopt.m file, but we suggest 
that you consult the Full Product Family Help or the MATLAB Reference Guide 
for more information about printopt.m before you do. Typing help print in the 
Command Window will list all the print options, device drivers, etc., available 
in MATLAB.  

6.4.2 Creating Graphics Files Using Print 

Essentially, the only thing you need to do to generate electronic copies of 
your figure is to add a file name to the print statement you used when 
generating paper copies.  The full synopsis for the print command when 
generating files is 

print -devicetype -options filename 

For example, the following code segment will generate a file called 
graphics1.eps in level 1 black and white encapsulated postscript form. 
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print -deps graphics1.epsf 

If you specify that MATLAB generate an encapsulated PostScript file, it will 
not be sent to the printer and MATLAB will generate a file. If you do not give it 
a file name, MATLAB will warn you that it cannot print encapsulated postscript 
to a printer and will create a file in the current working directory. 

6.4.3 Adding Additional Figures to a File 

To keep the number of electronic files to a minimum, you may find it useful 
to append figures to the same file.  Normally, if you type 

print -deps filename 

and the file filename already exists, it will be overwritten without warning.  
However, by adding on an argument as follows 

print -deps -append filename 

the figure is added to the end of the file as a new page.  Later, the entire set of 
figures can be conveniently viewed or printed at once. 

6.4.4 Publishing Using 4-Color Separation 

When generating PostScript and Encapsulated PostScript files, you have the 
option of generating figures using cyan, magenta, yellow, and black (CMYK) 
color values instead of red, green, and blue (RGB).  This is often needed when 
sending files to particular color printers that can take advantage of matching 
figure colors more precisely with CMYK color values.  As an example, you 
might type 

print -depsc -cmyk filename 

to generate an Encapsulated color PostScript file. 

6.4.5 EPS with a Preview Image  

If you are creating encapsulated postscript images to be included in a 
document, it is useful to have a preview image instead of the postscript 
message box when you include a figure in your word processor.  This makes it 
easier to remember what the figure contains when you are editing a 
document. Most modern word processors allow the use of encapsulated 
postscript with a preview image.   If you have a Figure Window open and you 
type, 

print -depsc -tiff -r300 figure1 

MATLAB will save the entire contents of the Figure Window at a resolution 
of 300 dpi in the file figure1.eps and generate a TIFF bit map of the entire 
Figure Window, always at 72 dpi, that can be used by other applications as the 
preview image. 
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6.4.6 Rendering Method with -zbuffer or -painters 

There are many methods by which an image can be rendered, i.e., 
interpreted for printing. When using the print function, by default MATLAB 
will determine which rendering method to use when printing a figure, 
however, there are some situations in which you will want to have control 
over which method gets used. In general, if you are plotting lines and less 
complex figures, it will be to your advantage to use the painters algorithim (-
painters).  If your plots are more complex, say you are plotting surfaces or 
using lights, it will be better to use the Z-buffer method (-zbuffer). OpenGL is 
another rendering method that is available on many computer systems. This 
method is generally faster than painters or zbuffer and in some cases enables 
MATLAB to access special graphics hardware that is available on some 
systems. 

If you want control over the printing resolution of a figure use the -zbuffer 
option and specify the resolution with the print command’s -rnumber option 
(where number represents the number of dots per inch, dpi).  If you are only 
going to display the figure on your screen or plan on using it in a web page, 
changing the resolution to a number higher than the default will not provide 
you with better image quality, but it will increase your file size. The same can 
be said when sending the file to a printer; only choose a number that is no 
greater than what your printer can support. Since the Z-buffer method uses 
raster graphics to draw the figure, the size of the file and memory needed to 
print will depend on 3 factors: the resolution, the size of the graphic, and 
whether or not you are using a color or grayscale driver. The OpenGL method 
can take advantage of compatible video hardware, if it is available, and 
significantly reduce the time to render an image. Although OpenGL has the 
potential of being very fast, there are some caveats to consider: 1) OpenGL 
does not do color map interpolation which means that plots created using 
surface that use index color with interpolated faces or edges will not be as you 
expect; 2) Similarly, the phong value for face lighting and edge lighting of 
surfaces is not supported.  

6.4.7 Indicating Which Figure Window to Print 

When you have multiple Figure Windows open, you can specify the Figure 
Window number that you want to print from the command line using the 
form, 

print -fhandle 

where handle is the figure number.  By default, MATLAB will print the 
current figure (usually the last one created or the last one that you clicked your 
mouse in). Later you will be able to appreciate the ability to specify the figure 
to be printed. Soon you will learn how to create GUIs in MATLAB. In a GUI, 
for instance, you could provide a user with a GUI window that lets the user 
create figures in a different window. You might want to have a print button in 
your GUI, then the callback, which you will learn about later, of that button 
would need to use the form of the print function in which you pass the 
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figure’s handle so that you can be sure that the figure you intended to print 
gets printed.  

6.4.8 Saving Figures for Future Use 

You will notice that from the Figure Window, you can select File  Save. If 
you do so, MATLAB will give you the option to save your Figure Window as a 
FIG-file with a fig extension to the file name. FIG-files are binary files that 
contain a complete description of the Figure Window and all that is in it. In 
previous versions of MATLAB (prior to version 6), figures were saved by saving 
an M-File and corresponding MAT-File. The FIG-file format did not exist in 
earlier versions of MATLAB. In those earlier versions, figures were saved as an 
M-file that generated the figure from data that was stored in a MAT-file. You 
ran the M-file and it generated your figure. The print command still supports 
this older approach. The option dmfile tells the print command to create the 
M-file and if need be the MAT-file to reproduce the figure. Please be aware 
however, that you will not find reference to it in the helps for print.

print -dmfile filename 

To regenerate the figure, just execute the M-file by typing the name of the 
file you saved.  

MATLAB version 6 was a radical departure in many ways from earlier 
MATLAB versions. There were changes in appearance to some extent, but 
many of the changes occurred “under the skin” of MATLAB and the FIG-file 
format was created to accommodate those changes that the earlier figure 
saving method could not. For example, the earlier method could not keep 
figure annotations. With the FIG-file, annotations and other changes you make 
with the plot editing tools are saved. In Chapter 10 we will see how being able 
to easily save and create FIG-files can lead to rapid GUI development. 
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7.1 Graphics Objects 
By this time, you have already explored many of MATLAB’s graphics 

capabilities. What you’ve done so far can be thought of as “high-level” 
graphics, i.e., it didn’t require you to get very deep into what was really going 
on in MATLAB. Nevertheless, we have already had to “slip” a little Handle 
Graphics in a few places in order to get the results we wanted. This chapter 
however, marks your departure from the high-level use of MATLAB graphics, 
and begins your journey into a deeper understanding of the basic mechanism 
behind everything that happens in MATLAB. Here you will learn how to use 
“low-level” functions to manipulate every aspect of graphics objects. You will 
learn more about graphics objects and how to affect their properties, which 
will give you the knowledge you need to become a master MATLAB 
programmer.

All of the high-level graphics functions that have been discussed so far either 
create or manipulate graphics objects.  The term “graphics object” may 
conjure up mental images of computer generated spheres or cubes, or it might 
bring to mind some of the objects that you have already created either with 
examples in this book or on your own, such as lines (using plot, plot3, etc.), 
surfaces (created with surf, mesh, etc.), and text (using text, xlabel, etc.).  
However, you have already seen many other objects and probably didn’t even 
realize it.  The computer screen, the individual Figure Windows, the axes, and 
images are all MATLAB graphics objects.  As you proceed in this book, you 
will learn more about these objects, as well as some more graphics objects 
such as user interface controls and user interface menus.  You should think of 
these graphics objects as drawing primitives, i.e., the elementary building 
blocks that are used to generate plots that are more intricate in the Handle 
Graphics system. 

IN THIS CHAPTER…
7.1 GRAPHICS OBJECTS
7.2 GRAPHICS OBJECTS HIERARCHY
7.3 GRAPHICS OBJECTS HANDLES 
7.4 PROPERTIES
7.5 OBJECT SPECIFIC PROPERTIES
7.6 SETTING DEFAULT PROPERTIES
7.7 UNDOCUMENTED PROPERTIES
7.8 USING FINDOBJ
7.9 ILLUSTRATIVE PROBLEMS
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In addition to the computer monitor’s screen, which is considered the root
object, there are 12 other graphics object types.   

The 12 low-level graphics functions that create graphics objects, as well as 
the root object which is present at the time you invoke MATLAB, are either 
the name of the object or an abbreviation of the name and are listed here in 
the following table. 

Graphics 
Object 

Low-Level Creation Function Description 

Figure figure or figure(H) A window to show 
other graphics objects. 

Axes axes, axes(H), or 
axes(‘position’,RECT) 

The axes for showing 
graphs in a figure. 

UIcontrol Uicontrol The user interface 
control is used to 
execute a function in 
response to the user. 

UImenu Uimenu User defined menus in 
the figure. 

UIcontextmenu uicontextmenu('PropertyName1',value1,…) A pop-up menu that 
appears when a user 
right-clicks on a 
graphics object. 

Image image(C) or image(x,y,C) A 2-D bitmap. 

Light light(‘PropertyName’,’PropertyValue’,…) Light sources that 
affect the coloring of 
patch and surface 
objects. 

Line line(x,y) or line(x,y,z) A line in 2-D or 3-D 
plots. 

Patch patch(x,y,c) or patch(x,y,z,c) A polygon that is filled 
with some color or 
texture and has edges.

Rectangle rectangle, rectangle(‘Position’,[x,y,w,h]), 
or rectangle(‘Curvature’,[x,y],…) 

A 2-D shape; can be 
rectangle or oval 
created within an axes 
object. 

Surface surface(X,Y,Z,C), surface(X,Y,Z),  
surface(Z,C), surface(Z) 

3-D representation of 
data plotted as heights 
above the x-y plane. 

Text text(x,y,text_string) or 
text(x,y,z,text_string) 

Character strings used 
in a figure. 

   

The x, y, and z variables that define the coordinates of the line object are 
the arguments to the line graphics function. These variables can be either 
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vectors or matrices.  If the variables are matrices, an individual line object will 
be created for each column of data. 

The x, y, and z variables that are passed to the patch function specify the 
vertex coordinates of the patch object.  If the variables are matrices, the patch 
command will draw a polygon for each column of the matrices.  The c variable 
is used to specify the color of the patch objects.  For now, consider this 
variable to be defined as a RGB triplet or as a string to provide a uniform color 
across the polygon.  Later we will present other forms of specifying the color.  

Low-level surface object creation may use X, Y, and Z matrix variables to 
specify the corner points of the surface’s quadrilaterals.  X and Y may also be 
vectors, in which case the length of X must be equal to the number of columns 
in Z and the length of Y must be equal to the number of rows in matrix Z.  If 
provided, the matrix C defines the color of the surface object and must either 
be the same size as Z (size(C) = size(Z)) to allow for interpolated shading or 
have one less row and column (size(C) = size(Z)-1) for flat shading.  We will 
see more about how to use the C matrix in a later chapter. 

Text object locations can be defined with the variables x, y, and z.  By 
default, the string will be placed so that the first character is left justified and 
vertically centered about the point specified by the coordinate (x,y) or (x,y,z). 

You cannot see light objects, but you can see their effects on patch and 
surface objects.  They essentially specify light sources to which you can 
control style, color, and location.  The properties of light objects will be 
discussed in this chapter and in the next chapter we will embark on an in-
depth exploration of light, color, and transparency. The other objects in the 
table that deal with user interfaces will be encountered in Chapter 10.  

There are two main advantages of using low-level graphics functions. The 
first is that they never clear the axes or alter any of the current attributes of the 
existing graphics. Recall that subsequent calls to the plot function would clear 
the current Figure Window (unless hold was set to on, or another Figure 
Window was open.) The second advantage is that you can pass property 
name/value pairs as additional arguments to these functions to control various 
aspects of the graphics objects at the time of creation.  In Section 7.4 we will 
examine the different properties for each of the graphics objects, but first we 
shall explain how all these objects relate to each other in the graphics 
environment. 

7.2 Graphics Objects Hierarchy 
The MATLAB graphics system is an effective and powerful object oriented

approach based on the simple paradigm of parent-child relationships between 
some of the objects.  Each object has its own identity and characteristics as 
defined by its attributes or properties. In the previous section, some examples 
of the typical types of graphics objects that fall under each object category 
were presented; now we shall discuss how these objects relate to one another.  
In the next section, we will look at the properties of all the objects. 

The parent-child relationship in MATLAB graphics is straightforward.  
Essentially, a child object cannot exist without the existence of its parent 
object.  For example, before a surface object can be drawn, both a figure and 
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an axes object must be present.  Fortunately, you are not required to 
specifically create a parent object by typing the low-level graphic function in 
the Command Window (or by writing them in an M-file) before generating 
children objects.  If the parent figure and axes objects are not present, 
MATLAB will automatically create them and then draw the surface object. 
Although you could very well create these objects yourself with, 

figure;
axes;
plot(1:10)

you could have just typed 

plot(1:10)

and MATLAB would create the figure and axes (assuming that another 
Figure Window was not already present).  If you then close the Figure 
Window with the close command, neither the axes nor surface object will 
remain on the screen, since they cannot exist without their respective parents.  
Later we will learn about the delete command, which allows you to delete 
specific graphics objects from the set of objects contained within the current 
graphics environment.  The primary point here is to understand that when a 
parent is deleted, so are its children. 

So you might be wondering which graphics objects can be parents and 
which ones can only be children?  The screen object is the most basic of all 
and is the foundation on which all other objects must rest. As previously 
mentioned, the screen object is referred to as the root object because the 
organization of graphics objects can be cast into a tree-like hierarchy, where, 
without the roots, the rest of the tree’s components are not able to survive or 
exist. Figure 7.1 depicts where the various graphics objects are in the 
hierarchical tree. 
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Figure Objects are the windows in which all other graphics objects are 
displayed.  High-level graphics functions, e.g., plot, will automatically create a 
Figure Window if one is not already present.  They can also be invoked with 
the command figure. In fact you have already been relying on Handle 
Graphics for, as you have already seen, you must use this command to create 
multiple Figure Windows.  The Figure Window is a child of the root object, i.e., 
the screen object. The root object can be the parent to as many Figure 
Windows as you want, provided your computer system has enough memory. 
When there are multiple figure objects displayed, subsequent calls to the plot
function will create plots in the current figure, i.e., the last Figure Window on 
which an action was made. The simplest way to make a given Figure Window 
the current one is to explicitly select it with  

figure(figure_number)

where figure_number is the integer displayed in the border at the top of the 
Figure Window.   The current Figure Window is the one which subsequent 
graphics commands will affect. 

Figure objects have four different types of children. The children can be 
either a type of user interface object, specifically user interface control 
(UIcontrol), user interface menu (UImenu), and user context menu 
(UIcontextmenu), or axes objects. A figure can have multiple children, and not 
all its children need be of the same type. 
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Figure 7.1  The graphics objects hierarchy tree. 
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The UIcontrol objects are used to generate graphical user interface controls. 
Their positions can be over any region of the Figure Window. There are 
various styles of controls that can be defined and each UIcontrol style allows a 
user to provide MATLAB with input data or a stimulus for initiating the 
execution of a predetermined set of actions. The UImenu objects are used to 
generate graphical user interface menus. UImenus appear at the top of the 
Figure Window when using MATLAB on X-Windows and MS-Windows 
systems.  On a Macintosh system, the menu objects that are children of the 
current figure will appear at the top of the screen (by default, the menus 
provided by MATLAB and the system software will also appear).  However, no 
matter what system you are using, these menus are children of a specific 
figure. The UIcontextmenu objects are used to generate menus that appear 
when a user right-clicks on a graphics object. Chapter 10 will examine these 
objects in detail and show how easily they can be used to create sophisticated 
interfaces. 

An axes object specifies a region of the Figure Window that will contain any 
collection of the seven axes children.  In the previous chapter, we saw that the 
subplot command could be used to designate multiple regions in the Figure 
Window for displaying multiple plots in the same Figure Window. Essentially, 
this high-level command creates an axes object in a location which is 
dependent on the input arguments.  The axes object can be the parent to line, 
patch, surface, rectangle, image, light, and text objects.  Instead of having high-
level commands create an axes object, they can also be created explicitly with 
the axes function. 

Line objects are the basic drawing primitives used to create 2-D and 3-D 
plots and contours. Specifically, they are used by the plot, plot3, contour,
contour3, ezplot, fplot, and other specialized high-level commands. These 
objects do not have any children, but can have many siblings, which do not 
necessarily need to be other line objects. 

Patch objects can also be used in both 2-D and 3-D contexts (unlike images 
they can be viewed from any perspective). These objects are usually thought 
of as filled polygons whose edge and face colors can be independently 
defined. Their colors can be defined with either a solid or an interpolated color 
or even with no color (making them transparent). These objects have no 
children, but since they are children of axes objects they can have line, 
surfaces, text, and other patch objects as siblings.  You have already seen 
these objects created in Chapter 4 using fill and fill3.

Surface objects are used to visualize data in a 3-D perspective. A surface is 
generated with a set of colored quadrilaterals, where each individual 
quadrilateral is very similar to a patch object. The edge and face colors can 
also be defined as solid, interpolated, or transparent. Usually the colors are 
related to the height of the object, but this need not be the case.  These 
objects have no children, but may accompany other line, patch, surface, and 
text objects in their axes parent.  They can be created with commands that 
create mesh and surf type graphics, in addition to pcolor (which will be 
discussed later). 

Rectangle objects are 2-dimensional objects that have four sides and 
corners that have a specific roundness or “curvature.” This type of object, 
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created with the function rectangle, includes square-cornered rectangles, 
rounded rectangles, and ellipses. Rectangle objects, like image objects, can 
only be viewed in 2-D.  

Image objects can be viewed only in a 2-D perspective; if you attempt to 
view them from any other perspective, they will not appear.  Images are 
graphical representations of matrix data, where each matrix element value 
defines the color of a particular rectangle in the image. More specifically, the 
element is an index that points to one color within a list of colors (usually 
referred to as a color map) stored in the figure object. These objects are 
children of axes objects and therefore can be visualized with other axes 
children as long as the axes object is viewed from a 2-dimensional perspective.  
The image objects are displayed with the image or imagesc function. 

Light objects are created using the light function, but are not objects that 
can be viewed in a plot directly. Instead, light objects affect the appearance of 
other objects in a plot. Specifically, light objects affect how surface and patch 
objects look, and have properties that include color, style, position, etc.  

Finally, there are text objects. These character strings provide descriptive 
information to the plot. They can be used as axis labels or titles that are 
restricted in terms of their location with respect to the axes object. They can 
be character strings that are placed interactively with the plot editing tools 
available in the Figure Window, automatically by high-level commands such as 
clabel or legend, or they can be manually placed by either defining their 
location with a MATLAB command such as text or even with the mouse 
pointer such as by using gtext.  These objects are children of axes objects and 
have no children themselves. Figure 7.2 shows a Figure Window with a typical 
collection of graphics objects. 
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Figure 7.2 A typical collection of graphics objects. 

In order to manipulate the characteristics or properties of these graphics 
objects with low-level graphics commands, you need to have some way of 
addressing each object. Previously, it was mentioned that The MathWorks 
coined the term “Handle Graphics” for the graphics system used by MATLAB. 
Handles provide the user with a way of identifying the graphics object that 
you want information about or whose information you want to alter. The next 
section further discusses the relevance of graphics object handles and how 
they can be obtained. 

7.3 Graphics Objects Handles  
To put it simply, a graphics object handle is a unique identifier assigned to 

every single graphics object. The term “handle” is appropriately descriptive in 
that it is analogous to handles of everyday objects found around the home 
(such as doors, frying pans, luggage, etc.). Just as these common handles
provide you with means of gaining access, holding on to, and opening up 
everyday objects, graphics handles provide a means of both specifying and 
viewing the contents of MATLAB generated graphics objects. 

Depending on the complexity of the graphics you create, there may be 
hundreds of objects resulting in hundreds of handles. (Minimally there will 
always be at least one graphics handle since if you are running MATLAB the 
root object must exist.) Keeping track of these handles, by assigning them to 
variables, provides easy access to the properties of the graphics objects. 
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However, even if you do not wish to keep track of these handles at the time 
the objects are created, as we shall see MATLAB provides a handy means to 
quickly acquire these handles. MATLAB’s handle and property features give 
you a great deal of flexibility and freedom to arrive at your desired goal, but 
always remember that there is no one correct or best path that you can take. 

Handles can be either integers or floating point numbers that MATLAB 
automatically generates for an object. Once assigned, the number, which is 
the handle, cannot be changed and will remain viable until the graphics object 
is deleted. Although MATLAB generates handles as needed, there are a 
number of objects for which the handles will always be the same from session 
to session: the first one of these is the screen or root object, which always has 
the handle of zero; secondly, if using the figure command, a figure’s handle 
will always be an integer and the first figure created will have a handle of one.  
In MATLAB’s default mode of operation, this integer is displayed in the border 
at the top of every Figure Window.  For example, the Figure Window shown 
on the previous page has “Figure No. 1” displayed in the border and therefore, 
its handle is the integer 1.  The figure objects are numbered consecutively 
from 1 to the number of figures you have displayed on your screen.  The only 
exception to this rule is when you close or quit a Figure Window that is not 
the last one created.  In this case, the next created figure will use the next 
lowest available number.  For example, if you have figures 1 through 5 
displayed, and then close figures 2 and 3, the next new figure generated will 
be assigned a handle number of 2 and will also be labeled as such (“Figure 
No. 2”).  All other graphics objects will be assigned a floating-point number. 

Before we discuss how these handles are used to change the properties of 
graphics objects, we will discuss some techniques that can be used to obtain 
the graphics handles. Generally speaking, you can either obtain the handles of 
objects at the time they are created, or you can get the handles from objects 
that already exist. 

7.3.1 Determining Handles at Creation 

All low-level and most high-level plotting functions return the handles to the 
objects that they create if an output argument is supplied during their 
execution.  For example, we can create a figure, an axes, and a line object and 
store their handles respectively in the variables figure_handle, axes_handle, 
and line_handle with something like the following code: 

figure_handle = figure; 
axes_handle = axes; 
line_handle = plot(exp(-([-3:3].^2)); 

If more than one graphics object of a particular type is created, as when you 
create multiple lines with one plot statement, the handles will be returned as a 
column vector.  The caveat with the high-level functions (such as plot) is that 
they only return the handles to objects that are created by the function if a 
figure and axes object were already present when, in fact, we know that the 
figure and axes object will automatically be generated if one currently does 
not exist.  Therefore, even though the third line in this example would 
generate the desired plot all by itself, we could not have obtained the figure 
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and axes handle at the time of their creation without the first and second lines 
(later you will learn about other low-level functions and techniques that can be 
used to obtain object handles after creation). 

Many high-level graphics functions can be called in ways that will return the 
data being plotted. Some of these functions, such as ezplot, will return an 
error if called with an output argument. Many of these commands, e.g., 
ellipsoid, stairs, can be forced to suppress plot creation and will return other 
information, if called with an output argument, that can be plotted, such as the 
coordinates of lines vertices. When called in this manner they do not return 
graphics handles. The following table is a list of high-level MATLAB commands 
that generate plots but do not return graphics object handles when an output 
argument is supplied. 

Graphics Functions That Do Not Return a Handle When Called with Outputs 

bar ezplot rose 

compass feather stairs 

cylinder fplot quiver 

ellipsoid hist sphere 

errorbar polar cylinder 

  For these commands, you could always create the plot in two steps: the 
first step would be to create the coordinates with the command, and the 
second step would be to pass the coordinates to the functions plot or surf. As 
an example, the stairs function can return a handle to the line objects that 
make up its plot, however if you wanted to get the actual values making up 
the plot you must use the function calling two output arguments. When you 
do this, you are not given the handles to the line objects. Consider this 
example where we use the stairs function in conjunction with plot to look at 
the histogram of some normal-randomly distributed numbers. 

x=randn(1,100);
hist_x=hist(x);
[X,Y]=stairs(hist_x) %this is step one 
plot(X,Y) %this is step two 

This gives you access to the data used to create the plot. Still it would be very 
helpful to access this data, which we know must be part of the object, at a 
lower level. This is exactly what we will discuss in the next section as we 
venture into the properties of objects, but first we will present how to get 
handles of current objects when they were not determined at creation time. 

7.3.2 Getting Handles of Current Objects 

Several functions are useful for obtaining handles of current objects.  
(Remember that the current figure is the active figure which subsequent 
plotting commands would affect.)  To determine which figure is the current 
one, you can use 

figure_handle = gcf; 
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where gcf is a function that  "gets current figure."  The variable figure_handle 
could have been named anything you like.  Although this is not very useful if 
you work with only one Figure Window since gcf will always return the 
number 1 if only one figure is displayed. However, gcf can be useful when 
working with multiple Figure Windows.  At the very least, it can be used as a 
way of double-checking to assure that subsequent plotting commands appear 
in the figure that you expect. 

But what about what’s inside the figure? You can use the “get current axes” 
function gca to obtain the graphics handle of the current axes.  The current 
axes are the axes in the current figure to which subsequent plotting 
commands would be sent.  When you switch between figures, the gca
command will return the handle to the current axes within the active figure.  If 
there are multiple axes in the figure, the function will return the handle either 
to the one that was most recently created or the one that was most recently 
plotted, whichever event occurred most recently. 

Finally, there is also a graphics object within each figure referred to as the 
current object.  This is the object in the current figure that was last touched in 
some way; either most recently created, manipulated, or clicked on with the 
mouse pointer.  To obtain the handle to this object, the function gco, for “get 
current object,” is available.  

So, why is it useful to store the handles or use handle requesting functions?  
For one, they will provide you with a means of determining or modifying an 
object’s properties.  Secondly, the commands gcf and gca can be used as a 
means of switching between multiple figures or axes so that the next plotting 
command you issue will appear in the figure and location as you intended.  
Finally, once the objects’ handles are stored in some set of variables, you can 
make any figure or axes current.  This could be accomplished by respectively 
executing the commands figure(figure_handle) or axes(axes_handle), where 
figure_handle and axes_handle are the object handles to the figure and axes 
you want to make current. 

Consider that when developing your own custom M-files it is a good idea to 
assume that at the time your function is invoked there may be other figures 
and axes objects already displayed that you or a user do not want altered.  
Therefore, it may be wise not to use programming styles that depend on a 
particular figure number being available in which to display graphics.  As an 
example, consider a situation in which you want to plot some data to two 
different figures, and then, after you looked at the data, you would like to 
reuse the two figures.  Do not use a form in your code that does the following: 

figure(1);
plot(...);
figure(2);
plot(...);
disp('Press any key to continue'); 
pause
figure(1);
plot(...);
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where the “...” represents legal plotting arguments. Rather, assume that 
figures 1 and 2 already contain some graphics that you (or the user) do not 
want destroyed and use a form such as 

fig_handle1 = figure; 
plot(...);
fig_handle2 = figure; 
plot(...);
disp('Press any key to continue'); 
pause
figure(fig_handle1);
plot(...);

We will also recommend that you use variable names for your handles that 
are a little more descriptive than fig_handle1 and fig_handle2. This will make 
your programs more readable and make it easier for other individuals to look 
at your code and determine how the handles are being used! 

Handles and the functions that return handles can be used as arguments to 
commands that make use of handles.  In the next section, you will learn about 
the functions get and set that can be used to query and specify a graphics 
object’s property values.  There are also the commands clf, cla, and delete
that can be used to clear the current figure, clear the current axis, or delete an 
object by using its handle. The delete function is used in conjunction with gca
and gcf to remove graphics objects that are displayed in the current MATLAB 
work session.  For example, the objects in the current axes, but not the axes 
itself, can be deleted with the cla command; using delete(gca) will not only 
remove the contents of the axes, but will delete the axes as well. Likewise, clf
will clear the contents of the current figure, whereas delete(gcf) will delete the 
current Figure Window. You can also delete just a single object with 
delete(gco). Remember that if an object is deleted, all children of that object 
will also be deleted. The thought might have already occurred to you that 
quite a lot of graphics objects can exist in a Figure Window, and you are right. 
It would be very inconvenient if we had to rely solely on a user touching a 
graphics object, or always keeping track of our handles at creation. After we 
discuss the properties of objects, we will introduce another technique for 
obtaining the handles of graphics objects by making use of the function 
findobj.

7.4 Properties 
Every graphics object has a set of properties associated with it, i.e., named 

values, that contain all the information needed for display.  At the time a 
graphics object is created, the properties that you do not explicitly specify are 
initialized to their default values.  Property values can be in the form of strings, 
vectors, or matrices, but are always used to define a characteristic or attribute 
related to an object. 

In this section, you will be introduced to the Property Editor; a GUI included 
with MATLAB that lets you browse graphics objects and their properties. Then, 
and more importantly, you will learn M-File programming techniques that will 
let you determine what the names of the properties are, how their values can 
be determined and manipulated, and how you can alter their default values. 
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By the end of this chapter, you will know how to create objects, find objects, 
and change their properties in just the manner that best works in your specific 
application. In fact, from here on out in this book, object properties will be key 
in almost all the discussions, so much so that we will indicate object property 
names in italics. 

7.4.1 The Property Editor  

The Property Editor is a convenient graphical utility that allows you to 
quickly navigate around objects and edit most of an object’s properties. (We 
say “most” because not all properties are visible via the Property Editor.) The 
greatest benefits of the Property Editor are its convenience of accessing object 
properties and its ability to depict the organization of objects in a figure. It is 
very handy for one-time “tune-ups” of plots and for quickly seeing object 
properties and values. 

You invoke the Property Editor either by going into property editing mode 
in a Figure Window, achieved by clicking on the arrow in the toolbar and then 
double-clicking on an object in the figure, or by typing the command propedit
in the Command Window. If you type propedit without a Figure Window in 
existence, the Property Editor will open to the root object properties and looks 
something like Figure 7.3. 

If you have any Figure Windows open, when you invoke the Property Editor 
from the Command Window, it will open with the current figure in the “Edit 
Properties for:” box.  

Figure 7.3 The Property Editor showing the root object. 
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7.4.2 Manipulating Properties 

Manipulating object properties requires that you first know the property 
names for the various objects. From using the Property Editor you might think 
that this is a daunting requirement, however it is not necessary to memorize 
the names nor must you continually look them up in the MATLAB 
documentation.  MATLAB provides two functions, namely get and set, that 
allow you to list all available or settable properties for a given object. Even 
though you do not need to memorize all the properties, after you become 
familiar with them you will see that the property names are fairly intuitive or at 
least become so fairly quickly. If you think about the English words that 
describe the characteristic of the graphics object that you want to change, you 
will very likely come up with the property name. For instance, if you want to 
change the color of a line from yellow to blue, you would look at a line object 
property called Color. If you want to change the style of the line from solid to 
dashed line, you will need to look at the LineStyle property of the line object. 

To list all of the properties for a graphics object with handle h, use get(h).  In 
addition to listing the properties, get will list the corresponding property values 
next to the property. If you know what the property name is and you wish to 
determine the value that is currently assigned to that property, you can use 
get(h,'PropertyName'), where PropertyName is a string of characters that 
spellout the property’s name. 

To see which properties you can specify the properties value, use set(h).  If 
a property has a finite number of values that can be specified for that property, 
they will be listed next to the property in the following form 

PropertyName : [ PropertyValue1 | {PropertyValue2} |
             PropertyValue3 | PropertyValue4 | ... ] 

where the property between the curly-braces (“{” and “}”) is the default 
value for the property.  Therefore, in this example, PropertyValue2 is the 
default or current setting of the objects PropertyName property. Properties 
that are not limited to a finite number of possible values will simply be listed as  

 PropertyName 

so that you realize that you may specify these properties.  If you want to 
specify a property, you use 

set(h,'PropertyName',PropertyValue)

where h is the handle to the object that you are manipulating.  Although we 
use the full property name in the examples found in this book, there are a 
couple of things you can keep in mind that can save time in specifying and 
querying object property values. The first is that the capital letters are not 
required, but are used only to make the properties easier to read. The second 
is that the full name of the property does not need to be used, but only 
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enough characters to uniquely identify a given property. As you will see, for 
many of the object properties, you need to pass only the first three characters 
of the property name. 

When you use get to see the properties of an object, MATLAB returns a 
structure array of the object’s property information. For example, if you used 

MyObjectInfo = get(h); 

you could then determine the value of any of the properties of object h in 
the following manner:  

MyObjectInfo.PropertyName

Note that PropertyName must be the name of one of the valid object 
properties. Also, be aware that PropertyName must be used with the correct 
capitalization since MATLAB structure field names are case sensitive. So as an 
example, let’s say you have a just created a Figure Window (this could have 
been done with a high-level command) and you want to determine the setting 
for the orientation of a printed page. You might do this in this way: 

MyObjectInfo=get(gcf)
MyObjectInfo.PaperOrientation

which will return, 

ans = 
portrait

Just as with get, set will return a structure array if called with a return value. 
You can use set in this manner when you want to put all the possible 
PropertyValues for an object with handle h into a structure array.  

PosPropVals = set(h); 

With this method you can look at the possible property values that could be 
used for a particular property, say PropertyName, with 

PosPropVals.PropertyName

Say you wanted to know what the possible units are for a figure; assuming 
you have a Figure Window with handle h you could use: 

PosPropVals=set(h);

then look at the Units property with, 

PosPropVals.Units

This will return something like, 

ans =

    'inches' 
    'centimeters' 
    'normalized' 
    'points' 
    'pixels' 
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    'characters' 

which are the possible value specifications for the Units property. 

7.4.3 Universal Object Properties 

There are a number of properties that are common to all graphics objects in 
MATLAB and there are some other properties that are common among several 
types of graphics objects; however, there are fifteen documented properties 
that are common to all graphics objects. We are careful to emphasize 
documented properties since those are the ones that are either found in the 
MATLAB documentation or listed with get when MATLAB is running with the 
factory default settings.  Undocumented properties will be discussed later and 
as you will learn, there are undocumented properties that are common to all 
graphics objects as well. If you are running a version of MATLAB before 
version 6, you might notice some differences. The common properties that are 
documented are listed in the table below along with the specific attributes 
related to their values.   

The tables in this and the next few sections that summarize the graphics 
properties are organized and sorted alphabetically by the property name in 
the first column.  The second column tells you whether or not you can use the 
function set to specify the property value.  If the property is read only 
(indicated with a “Yes” in this column), you cannot modify the property value.  
The third column lists the type of information or the possible options that you 
can set or get.  Limited property value options are indicated where the 
contents within this column are surrounded by square brackets “[  ]” and the 
choices are separated with the separator character “|”.  The factory default 
value is indicated by the option that is surrounded by braces “{}”. These values 
are passed to and from the get and set functions as strings. For example, to set 
the Selected property to on for an object with handle h, you could use 
set(h,'Selected', 'on').  Entries in the third column that are surrounded by 
square brackets, yet have no separator characters, indicate that there is a strict 
format for the value matrix and that MATLAB expects the individual elements 
to be in a particular order. Finally, if brackets do not surround entries in the 
third column, this indicates that their values can be numbers, integers, handles, 
strings, or characters. The format column indicates whether the property 
values are stored as a limited number of elements, an unrestricted (in length) 
row vector, a column vector, or a matrix. 

Some of these properties do not affect all of the graphics objects; 
nonetheless, each of these properties still exists and therefore is listed here as 
a common property. For example, the ButtonDownFcn, Clipping, Interruptible, 
and Visible properties of the root object will not alter any aspect of MATLAB’s 
graphics and interface operations. 

The Type property is read only; in other words, you can only use the get
function with them.  If you try to set this property, you will get an error 
message like, 

??? Error using ==> set 
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Attempt to modify read-only figure property: 'Type'. 

The “ValueType/Options” column within the table shows whether a string 
or number can be specified or retrieved from the property with the set and get
functions.  Entries containing brackets indicate that there are only a limited 
number of options available for those object’s properties.  Even though string 
quotes are not shown, they would need to be used when setting those 
properties.  For example, if you want to set the Visible property to “off” for an 
object whose handle has been stored in the variable h, you can use 

set(h,'Visible','off')

The property “Format” column indicates how the property values must be 
passed to or from the object.  The entry “row” means that the value can be 
either a row vector of numbers or characters.  The entry “column” means that 
the value can be either a column vector of numbers or characters.  Both row 
and column formatted property values may also be a single element or the 
empty number ([ ]) or string (['']) matrix when appropriate.  Only the UserData
property is unrestricted (in the same sense that any other variable within the 
MATLAB work space is unrestricted) with regard to the data that it can store. 

Property 
Read
Only ValueType/Options Format 

BusyAction No [ {queue} | cancel ] row 
ButtonDownFcn No string row 

Children No* handle(s) column 
Clipping No [ {on} | off ] row 

CreateFcn No string row 
DeleteFcn No string row 

HandleVisibility No [ {on} | callback | yes ] row 
HitTest No [ {on} | off ] row 

Interruptible No [ no | {yes} | off | {on} ] row 
Parent No handle one element

Selected No [{off} | on ] row 
SelectionHighlight No [ {no} | yes | {off} | on ] row 

Tag No string row 
Type Yes string row 

UserData No number(s) or string matrix 
Visible No [ {on} | off ] row 

* Although you cannot create new handles in the Children property, you can change the
order of the handles and so change the stacking order of the objects.

7.4.3.1 ButtonDownFcn, BusyAction, and Interruptible

The ButtonDownFcn (button down function), BusyAction, and Interruptible
properties will be fully addressed in Chapter 10 when we discuss using objects 
as a mechanism for the user to interface with MATLAB.  Briefly, 
ButtonDownFcn is used to specify a single or set of legal MATLAB commands 
that perform some action when the user clicks the mouse button in an area 
that is near, in, or on (depending on the graphics object type) a graphics 
object.  The BusyAction property controls what should happen to the events 
that are spawned from actions taken by the user directed at the object when 
some other event is currently being executed.  Let’s say you have two objects 
that have their ButtonDownFcn property defined and you click on one object 
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and then the other object before the commands stored in the first object's 
ButtonDownFcn have completed.  If the BusyAction property is set to queue, 
the commands in the second object’s ButtonDownFcn property will be 
executed after the first object’s commands finish.  If the BusyAction property is 
set to cancel, the commands in the second object’s ButtonDownFcn property 
will be ignored.  The Interruptible property specifies whether the sequence of 
events that are programmed to occur when a user interacts with graphics 
objects can be interrupted by the execution of additional event-driven 
sequences. 

7.4.3.2 Children and Parent

The Children and Parent properties of an object will contain the graphics 
object handles to the children and parent of that object.  The root object 
never has a parent.  And therefore, the value of the Parent property of the root 
object will be the empty matrix.  All other objects will have a single number 
that corresponds to their parent stored in the Parent property.  Objects such as 
lines, text, patches, and surfaces have no children and therefore, their Children 
properties will be the empty matrix.  Figure and axes objects will always have a 
parent object and may have children, depending on whether or not children 
have been created.  As a historical note, in versions before MATLAB 5, these 
properties were read-only.  With the modern versions of MATLAB you can 
reassign an object to another object of the same Type.  For example, you can 
move an axes object from one figure to another just by setting the axes 
object’s Parent property to the figure handle to which you want to move the 
axes object.  You can also reorder the handles in the Children property, i.e., 
you can set the property to any permutation of the current handle values that 
are stored in the object’s Children property, with the result of changing the 
stacking of the objects on the display. In this manner the Children property 
sets the order in which certain objects (figure, axes, uicontrol, and uimenu) are 
displayed when their screen positions overlap.  The lower the index number of 
the handle that is stored in the Children property’s column matrix, the closer 
the object will be drawn to the user’s viewpoint to the screen.  By 
manipulating this property, you can force an object that might otherwise be 
hidden from view to move to the front of the screen. 

7.4.3.3 Clipping

Although an available property of all objects, the Clipping property only 
affects line, patch surface, image, and text objects.  Line, patch, surface, and 
image objects by default have their Clipping property set to “on”, while text 
objects have this property set to “off”.  For these objects, when the Clipping is 
set to “on”, portions of the object that lie beyond the region of space defined 
by their parent axes will not be seen.  When Clipping is set to “off”, portions of 
the object will be seen even if they are outside of the axes object perimeter.  
You can illustrate this property with the following code. 

x = -5:15; 
LineHandles = plot(x,x+5,'--r',x,x-3,'g'); 
TextHandles(1) = text(6.5,5,... 
        'This String will have clipping off'); 
TextHandles(2) = text(-1,3.5,... 
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        'This String will have clipping on'); 
axis([0 10 0 10]); 

You should have the result shown in Figure 7.4. 

Now we shall set Clipping “off” for the red dashed line (this object’s handle 
is stored as the first element in the LineHandles variable because it is defined 
by the first three arguments in the plot command) and “on” for the text object 
whose handle is stored in TextHandles(2) by typing 

set(LineHandles(1),'Clipping','off');
set(TextHandles(2),'Clipping','on');

The result is shown in Figure 7.5. Notice how the dashed line now extends 
beyond the boundaries of the axes object since we set its Clipping property to 
“off”.  Also notice that the characters that previously lay outside the axes 
boundaries are no longer visible now that the Clipping property has been set 
to “on” for that text object.  The Clipping property affects how the graphics 
are displayed, but does not affect the data or characters of the object; the 
characters that are no longer displayed still reside within the text object, so 
that if at some later time you decide to set Clipping “off” for this object, the 
characters will reappear. 
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Figure 7.4 Line objects default to Clipping “On”, but text objects 
default to Clipping “Off”. 
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7.4.3.4 CreateFcn and DeleteFcn

The CreateFcn (create function) property can be assigned a string containing 
legal MATLAB commands that will be executed during an event in which a 
duplicate of the object is being created. If that sounds a little confusing, 
consider an example where, if you use the copyobj function on a graphics 
object that has the CreateFcn property set, the string in this property will be 
evaluated as if it were typed on the command line.  (copyobj makes a copy of 
a graphics object along with all of its children.)  

Try the following: 

h = figure;
set(h,'CreateFcn','display(''Cloning a figure.'')'); 
copyobj(h,0);

You should see a result like,  

ans = 
Cloning a figure. 

after you type the second command. The only other way this property can 
really have an affect is if the root’s DefaultObjectTypeCreateFcn is set so that 
whenever an object of ObjectType is created, the string will be evaluated.  For 
instance, if you typed, 

set(0,'DefaultFigureCreateFcn',...
       'display(''OK, here''s a figure.'')') 
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Figure 7.5  Here Clipping is set to “off” for the dashed line and “on” for 
one of the text objects. 
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every time a new figure was created, the display string would be shown on 
the command line output. 

The DeleteFcn (delete function) property’s value may be assigned a string 
containing legal MATLAB commands that will be executed during an event 
which destroys or removes the object from existence.  For example, if you 
executed 

 delete(object_handle)

the object whose handle had been assigned to the variable object_handle
will execute its destroy function.  In addition, if the object that is being deleted 
has children, the children’s respective destroy functions will also be executed. 
Other events that will execute destroy functions are when you close a Figure 
Window or perform another graphics command that replaces any currently 
displayed graphics objects.

7.4.3.5 HandleVisibility

The HandleVisibility property has nothing to do with what you see on your 
screen; rather, it has to do with one manner in which objects are grouped by 
MATLAB and accessed from the command line, functions, and callback 
routines (which we will discuss in Chapter 10).  The default value of this 
property is “on”, and means that the object’s handle is available to the 
command line, any function, and callback routine.  If the value is set to “off’”, 
the object’s graphics handle is not visible to functions, and callback routines 
assume you have not set the root’s ShowHiddenHandles (see the next section 
of this chapter) property to “off”.  For instance, if you set figure 1’s 
HandleVisibility to off with, 

figure(1);
set(1,'HandleVisibility','off');
figure(2);

and then get the Children property of the root object, the value 1 (a figure’s 
handle is in most cases the figure number) will not be in the returned list, as 
you can see with, 

get(0,'Children')

ans = 
     2 

In addition, if you execute a close('all') command, only figures with their 
HandleVisibility set to “on” will be closed.  With the value set to “off”, 
functions like findobj, gco, gcf, and gca will not return the figure’s graphics 
handle. If the HandleVisibility property is set to “callback”, then only a callback 
routine (such as that defined in a figure’s ButtonDownFcn) will have visibility to 
the handle.  For example, continuing the simple example from above, type 

set(1,'HandleVisibility','callback');
set(2,'ButtonDownFcn','get(0,''Children'')');
% Note that Children is surrounded by 2 single quotes. 
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Now, every time you click in figure number 2, MATLAB will return 

ans = 
     2 
     1 

But if you typed  

get(0,'Children')

MATLAB would only return 

ans = 
     2 

7.4.3.6 HitTest

This property is used to control access to graphics objects when a mouse 
click has occurred on an object. Specifically, the value assigned to an object’s 
HitTest property determines if the object can become the current object, i.e., 
its handle be returned by the gco command and a figure’s CurrentObject
property (see the next section). If HitTest is set to “off”, clicking on the object 
will select the object below it, typically the figure containing it. Although all 
graphics objects have this property, only axes, figures, images, lines, patches, 
rectangles, surfaces, and text will respond to it. The default is “on” which 
means that the object clicked on will be set to the current object. 

7.4.3.7 Selected and SelectionHighlight

When the Selected property of an object is in its “on” state, the object will 
be circumscribed with a selection box that has little handles in the corners.  
The selection box can either be dashed or solid, depending on the object type 
(for instance, text objects will have a solid selection box, while axes objects 
will have a dashed box).  Although all objects have this property, root, light, 
uicontrolmenu, and uimenu objects are not affected by it. Lines, surfaces, 
images, and uimenus do not have a visible selection box with either setting; 
instead, the presence of the little handles is all that is affected. Figure 7.6 
illustrates the Selected property “off” and “on” states. 
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Working closely with the Selected property is the SelectionHighlight
property.  The SelectionHighlight property is “on” by default for every object, 
thereby letting you see the selection box when the Selected property is set to 
“on”.  You also have the option of having an object be selected while keeping 
its selection box invisible by setting the SelectionHightlight to “off” and the 
Selected property “on”.  This combination of properties makes it convenient to 
search for a set of objects using findobj without having the visual indication 
that those objects are selected, such as with  

findobj('selected','on')

7.4.3.8  Tag and Type

The Tag property is an extremely useful graphics property that allows you to 
store any string vector in any of the graphics objects.  For instance, you may 
assign a meaningful name to one or more of the graphics objects you create. 
Later you could then use findobj with the Tag property as a simple way of 
obtaining the handle to a particular object. 

The Type property just identifies the object’s type as being one of the 13 
possible types (root, figure, axes, line, rectangle, patch, surface, image, light, 
text, uimenu, uicontextmenu, or uicontrol).  This is a read-only property that 
comes in handy when searching for particular objects. 

Figure 7.6 The effects of setting Selected  “on” and “off”. 
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7.4.3.9 UserData

The UserData (user specified data) property allows you to store number or 
string matrices in a graphics object.  It provides a good place to put 
information that you want to associate with the object, but does not 
necessarily have to be related to the object.  One advantage of storing 
information in an object’s UserData property is that even if you clear the 
workspace with the function clear, the data will remain with this object and 
can be retrieved at any time.  The graphics object does not alter or use the 
information stored in this property.  However, we will learn that since you can 
design an event driven graphics system with MATLAB, you can program 
MATLAB to make use of this data storage location during the occurrence of 
some event.  For example, you could have the contents displayed to the user 
or mathematically manipulated if the user clicked on a graphics object.  The 
use of the UserData property will become clear when we discuss user 
interfaces and provide illustrative examples. 

7.4.3.10 Visible

The Visible property allows you to determine whether or not a graphics 
object is displayed (visible) or hidden (not visible).  This property has no effect 
on the root object.  If the Visible property of a figure is specified as “off”, the 
Figure Window and its contents will be invisible.  For all other objects, the 
Visible property affects only the visibility of the object whose property is 
specified; making the axes object invisible will not make its children invisible.  
By default, this property is set to “on” when an object is created. 

7.5 Object Specific Properties 
The properties covered in the previous section are universal or common for 

every graphics object in the MATLAB graphics environment.  In this section we 
will examine the properties that are specific to the root, figure, axes, line, 
rectangle, patch, surface, light, and text objects.  The properties of those 
objects that are related to color (color, light, and transparency) will be quickly 
mentioned in this section but left for detailed discussion in the next chapter.  
Image object properties are looked at again in this section, while user interface 
control, menu, and context menu object properties will be discussed in 
Chapter 10.  This section has been designed to give you informative tables, 
illustrations, and simple examples that make use of the object properties.  The 
Appendix contains duplicates of these tables for quick reference. 

At this time it is important to point out that the order in which the 
commands discussed in this section are performed and whether executing 
them from an M-File or the command line has different implications on the 
final results.  This is because MATLAB does not update the display or render 
graphics with every command when running an M-File.  Rather, an event 
queue is established to store consecutive graphics statements so that they may 
be more efficiently executed.  There are four events that cause MATLAB to 
flush out the queue so that these stored commands can generate graphics 
objects or modify an object’s property alterations: 

1. a return of control to the MATLAB Command Window prompt, 
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2. a pause or waitforbuttonpress statement, 

3. the execution of the getframe function, and 

4. the execution of a drawnow command. 

The pause command waits for a key to be pressed, while the command 
waitforbuttonpress, which will be discussed in Chapter 10, waits for the 
mouse button to be clicked.  Since these two commands suspend execution 
of MATLAB code, the graphics environment is updated so that the objects in 
the Figure Windows accurately represent their current attributes.  The 
getframe function requires the objects to represent their present state because 
this function can be used to take a snapshot of a Figure Window. The 
getframe  and drawnow functions will be discussed in detail in Chapter 9. 

The examples in this section assume that you are reading along and perhaps 
typing in commands so that you see their effects on your monitor.  By typing 
the commands, the graphics events are getting flushed immediately so that 
you will see the same results presented in the figures shown in this book after 
you have executed the given sequence of commands. 

7.5.1 Root Properties 

In addition to the universal properties that the root has which were 
discussed in the previous section, the root object contains quite a few 
properties, some of which are not even related to graphics. These properties 
can be categorized into properties about the display, properties related to the 
state of MATLAB, and properties related to the behavior of MATLAB. The 
nature of these categories will become clear in the following discussions.  The 
following table summarizes the documented properties of the root object. 
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Property Read-
Only 

ValueType/Options Format 

Display Related 

FixedWidthFontName No string row 

ScreenDepth  Yes integer 1 element 

ScreenSize  Yes [left bottom width height] 4-element row 

Related to the State of MATLAB 

CallbackObject Yes handle 1 element 

CurrentFigure No handle 1 element 

ErrorMessage No string row 

PointerLocation  No [x-coordinate,y-coordinate] 2-element row 

PointerWindow  Yes handle 1 element 

ShowHiddenHandles Yes [ on | {off} ] row 

Behavior Related 

Diary No [ on | {off} ] row 

DiaryFile No string row 

Echo No [ on | {off} ] 1 element 

Format No [ short | long | {shortE} | longE | 
hex | bank | + | rat ] 

row 

FormatSpacing No [ {loose} | compact ] row 

Language No string row 

RecursionLimit No integer 1 element 

Units No [ inches | centimeters | normalized 
| points | {pixels} ] 

row 

    

7.5.1.1 Display Related Root Properties 

The first display related property we will present is FixedWidthFontName.
This property takes a string that specifies what fixed-width font MATLAB will 
use for axes, text, and uicontrols whose FontName property is set to 
FixedWidth. The advantage given by FixedWidthFontName is that you do not 
need to independently code font names in MATLAB applications and thereby 
enables these applications to run without modification in locales where non-
ASCII character sets are used; MATLAB attempts to set the value of 
FixedWidthFontName to the correct value for a given locale. In general you will 
not be changing this property since you should create axes, text, and 
uicontrols with their FontName properties set to FixedWidth when you want to 
use a fixed-width font for these objects. You can also change this property to 
set a different font for the fixed-width font. In most cases, the default for the 
value of FixedWidthFontName is ‘Courier’.  Here’s an example. 

get(0,'FixedWidthFontName')
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ans = 

Courier

On startup, MATLAB determines the value that is assigned to the 
ScreenDepth property.  The value assigned to ScreenDepth specifies the 
number of bits that correspond to the number of colors that the display system 
of your computer is configured to display. The number actually corresponds to 
the exponent of a power of 2, i.e., the number of bits used for color. For 
example, if you have your monitor set up for 256 colors, then ScreenDepth
will be 8 (28 = 256); for 16K colors, the value will be 24 (224=16,777,216).

The ScreenSize property contains the size of the screen as a four-element 
vector that specifies the lower left corner coordinate (left, bottom) and the 
width and height as 

[left bottom width height] 

The left and bottom elements of this vector are both zero for all root unit 
specifications except pixels.  When the root’s Units property is set to “pixels”, 
the left and bottom elements will both be the number one. The width and 
height elements will depend on the monitor size and units used. So, for an 
example, if you are using a 1024 x 768 display, 

get(0,'ScreenSize')

will return 
ans = 

           1           1        1024         768 

7.5.1.2 Root Properties Related to the State of MATLAB 

The next six properties are related to the state of MATLAB, i.e., they contain 
information that can be used to determine what is going on in a MATLAB 
session. The first we will discuss is the CallbackObject property. Although this 
will make more sense when we get to Chapter 10, at this time let us be 
satisfied with knowing that callbacks are simply the code that is executed 
when a user interface is invoked. This property of the root, when accessed by 
the command line, will contain an empty matrix.  It is only when an object’s 
callback routine (e.g., ButtonDownFcn, Callback, DeleteFcn, CreateFcn, etc.) 
is being executed that this property will contain a value, namely, the handle of 
the object whose callback routine is currently being executed.  This property 
provides the best way for a callback routine to determine which object it is 
executing from (particularly if multiple objects execute the same callback 
routine) so that the routine can, for instance, access its own UserData property 
to get information that has been stored there.  As a simple example, try typing 

figure; figure; 
set(findobj('Type','figure'),...
   'ButtonDownFcn','get(0,''CallbackObj'')') 

Notice that CallbackObj is surrounded by two single quotes. 
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Then click in one and then the other Figure Window; you should see the 
figure number appear in the Command Window corresponding to the figure 
you clicked in.  However, if at the command line you type

get(0,'callbackobj')

MATLAB will return 

ans = 

     [] 

The CurrentFigure property will contain the handle of the current Figure 
Window, i.e., the Figure Window that was most recently created, clicked in, or 
made current with 

figure(h)
or  

set(0,'CurrentFigure',h)

where h is the handle of an existing Figure Window. Note that figure will 
restack the Figure Windows if multiple ones exist, while set does not. If there 
are no figure objects, 

get(0,'CurrentFigure')

returns the empty matrix. However, gcf will always return a figure handle, and 
creates one if no figure objects exist. 

The ErrorMessage property contains a string consisting of the last error 
message issued by MATLAB or the last value to which you set this property.  
The lasterr function retrieves the value of this property by executing   

get(0,'ErrorMessage')

The content of this property can be useful in routines that could result in a 
MATLAB error message if the user of your function or graphical user interface 
were to do something incorrectly.  For example, to execute functions you 
know could result in an error, you can use the eval('try','catch') where try is the 
function you would like to execute but know may result in an error if used 
incorrectly, and catch is a function that will get the string stored in 
ErrorMessage, (e.g., error_string = get(0, 'ErrorMessage'); ) parse the string, and 
perform some action that is dependent on the error message that was found 
to have occurred. 

The PointerLocation (current pointer location) property can be used to 
report the position of the mouse pointer. Executing  

get(0,'PointerLocation')

will return a 2-element vector that contains the x- (horizontal) and y-
coordinates (vertical) of the pointer with respect to the lower left corner of the 
computer screen (not the Figure Window).  This will be a useful property in 
some graphical user interface applications, such as when creating functions 
that allow you to use the mouse to define the position of a graphics object by 
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clicking and dragging the object.  You can also use it to place the mouse 
pointer in a particular location on the screen at the occurrence of a particular 
user action or event. For example, you can use ScreenSize  and 
PointerLocation  to place the pointer in the middle of the screen with 

ScreenSize = get(0,'ScreenSize'); 
set(0,'PointerLocation',ScreenSize(3:4)/2);

The PointerWindow property reports the handle of the Figure Window that 
contains the mouse pointer. This is another property that is particularly useful 
in callbacks. If there are no Figure Windows being displayed at the moment or 
the mouse pointer is not within a Figure Window, this property will be set to 
zero.  By itself, this property may not seem too useful, but you will learn about 
potential uses for it in Chapter 10 when we discuss graphical user interfaces. 

The ShowHiddenHandles property is related to the universal property of 
HandleVisibility and by default is set to “off” which allows the HandleVisibility
of each object to dictate whether its handle will be visible at the command 
line, during a callback type routine, or not at all.  If you set 
ShowHiddenHandles to “on”, the object property is overridden and all object 
handles will be visible. 

7.5.1.3 Behavior Related Properties of the Root 

The remaining eight root properties (Diary, DiaryFile, Echo, Format,
FormatSpacing, Language, RecursionLimit, and Units) have no effect on 
MATLAB in a graphics context, but they nevertheless are properties of the root 
object.  The Diary and DiaryFile properties are directly related to the diary
command, which as you know can be used to keep a record of your MATLAB 
command line entries and outputs. (See Chapter 1.) Using this property for 
instance, you could use the following in an M-File; 

set(0,'diary','on')

which would be equivalent to typing  

diary on 

at the command prompt. Likewise diary off is an alias for set(0,'diary','off').  
The diary command also lets you specify the name of the diary file. If, for 
some reason, instead of using the diary command, you wanted to make use of 
the root property, it would be just as effective to use  

set(0,'DiaryFile','filename')

The MATLAB commands echo on and echo off are just setting the root 
property Echo, respectively, to “on” or “off”.  Setting Echo to “on” forces each 
line of a script file to be displayed as it is executed.   

The Format property can be used to affect how MATLAB displays numbers 
in the Command Window. Values for Format are the strings “short”, “long”, 
“shortE”, “longE”, “shortG”, “longG”, “hex”, “bank”, “+”, and “rational”. 
Similarly, FormatSpacing affects the line spacing of output to the Command 
Window. Its possible values are “loose” and “compact”. For example, using 
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the format command at the command prompt to set the Command Window 
to longE and compact format with 

format long e 
format compact 

can be achieved using set with, 

set(0,'Format','longE')
set(0,'FormatSpacing','compact')

Please recognize that you would typically control the format of output using 
formats in the printf function; see the MATLAB helps and documentation for 
more about how to produce formatted output. 

The property Language is a system environment setting that reports the 
language your version of MATLAB is designed for. The code 

get(0,'Language')

will return, 

ans = 
english

The property RecursionLimit tells MATLAB how deep in recursion, that is 
how deep nested M-File calls can go, before MATLAB will terminate it. The 
default value is 500.  

The property Units specifies the units MATLAB uses to interpret size and 
location data of your computer screen. Possible values are “pixels”, 
“normalized”, “inches”, “centimeters”, “points”, and “characters”. All units are 
measured from the lower left corner of the screen. “Normalized” units map 
the lower left corner of the screen to (0,0) and the upper right corner to 
(1.0,1.0). “Inches”, “centimeters”, and “points” are absolute units. One point 
equals 1/72 of an inch. “Characters” are units defined by characters from the 
default system font, specifically, the width of one unit is the width of the letter 
x, the height of one character is the distance between the baselines of two 
lines of text. The default value for  Units is “pixels”.  

7.5.2 Figure Properties 

You have already seen lots of figure objects. Figure objects are those 
objects created with the figure function, or by other functions that invoke 
figure  such as plot, surf, etc.. Each figure object will be a window and we 
often refer to these as Figure Windows. The properties that are found with 
every figure object, except those that are universal properties, are listed in the 
following table.  The table uses the same structure as the previous property 
tables. 
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Property Read
Only 

ValueType/Options Format 

Positioning the Figure 

Position No [left bottom height width] 4-element row 

Units  No [ inches | centimeters | normalized |     points |
{pixels} ] 

row 

Style & Appearance 

Color  No [Red Green Blue] or color string RGB vector 

MenuBar  No [{figure} | none] 1 element 

Name  No string row 

NumberTitle  No [ {on} | off ] row 

Resize  No [ {on} | off ] row 

WindowStyle No [ {normal} | modal ] row 

Colormap Controls 

Colormap  No M RGB number triplets M-by-3 matrix 

Dithermap  No N RGB number triplets M-by-3 matrix 

Dithermapmode No [ auto | {manual}] row 

FixedColors  No N RGB number triplets N-by-3 matrix 

MinColormap  No number 1 element 

ShareColors  No [ no | {yes} ] row 

Transparency 

Alphamap No default is 64 values progression from 0 to 1 M-by-1 vector 

Renderer 

BackingStore  No [ {on} | off  ] row 

DoubleBuffer No [ on | {off} ] row 

Renderer  No [ {patinters} | zbuffer | OpenGL ] row 

RendererMode  No [ {auto} | manual ] row 

Current State 

CurrentAxes  No handle 1 element 

CurrentCharacter No character 1 element 

CurrentObject  No handle 1 element 

CurrentPoint  No [x-coordinate, y-coordinate] 2-element row 

SelectionType  Yes [normal | extended | alt | open] row 

continued on next page 
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Property Read
Only 

ValueType/Options Format 

Properties that Affect the Pointer 

Pointer  No [ crosshair | fullcrosshair | {arrow} | ibeam 
| watch | topl | topr | botl | botr | left | 
top | right | bottom | circle | cross | fleur 
| custom ] 

string 

PointerShapeHotSpot  No (row index, column index) 2-element row 

PointerShapeCData  No 1s where black, 2s where white, NaNs 
where transparent 

16-by-16 

Callback Execution 

CloseRequestFcn  No string, function handle, or cell-array 
{‘closereq’} 

string, 1-
element, cell-

array

KeyPressFcn  No string string 

ResizeFcn  No string string 

UIContextMenu No Number 1 element 

WindowButtonDownFcn No string string 

WindowButtonMotionFcn No string string 

WindowButtonUpFcn  No string string 

Controlling Access to Objects 

IntegerHandle  No [ {on} | off ] string 

NextPlot  No [ {add} | replace | replacechildren ] string 

    

Properties that Affect Printing 

InvertHardcopy  No [ {on} | off ] string 

PaperOrientation  No [ {portrait} | landscape] string 

PaperPosition  No [left bottom width height] 4-element row 

PaperPositionMode No [ {auto} | manual] string 

PaperSize  No [width height] 2-element row 

PaperType  No [ {usletter} | uslegal | A0 | A1 | A2 | A3 | 
A4 | A5 | B0 | B1 | B2 | B3 | B4 | B5 | 
arch-A | arch-B | arch-C | arch-D | arch-E | 
A | B | C | D | E | tabloid | <custom> ] 

string 

PaperUnits  No [{inches}|centimeters| normalized |  
points ] 

string 

General 

FileName No A name of a FIG-File to be used with 
GUIDE; see Chapter 10.  

string 

7.5.2.1 Figure Properties Affecting Position 

The first set of figure object properties, Position and Units, deals with 
location of the Figure Window on the screen. The Position property of a figure 
object contains a vector that specifies the left bottom, width, and height ([left 
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bottom width height]) in the current units (as specified by the contents of 
Units). The creators of MATLAB give a special name to this four-element 
vector – rect. Typically we will see the rect vector whenever we discuss the 
position of a graphics object. For example, if you want to place the current 
figure in the exact center of the screen and resize it so that it is 200 pixels 
wide by 50 pixels high, you can do the following: 

set(0,'units','pixels');
set(gcf,'units','pixels');
screenrect = get(0,'screensize'); 
screenwidth = screenrect(3);
screenheight = screenrect(4); 
figwidth = 200;
figheight = 50; 
figposition = [(screenwidth/2-figwidth/2)... 
               (screenheight/2-figheight/2)... 
               figwidth figheight]; 
set(gcf,'position',figposition);

The first two lines make sure that the root and figure are both using pixel 
units, just in case you (or the user if you are designing a MATLAB routine that 
others may use) have changed one or both of these object’s units from their 
factory default values.  This code assumes that there is a current figure 
available.  It still works if there is no existing figure object; however, a figure 
will be generated when you type the second line, and this figure will have the 
default Position property value.  Then only when you type the last line will the 
figure be sized as desired.  Most likely, you will want to specify the desired 
dimensions when the figure object is created so that you can get the desired 
end result immediately.  To achieve this, you can modify the above code by 
removing the second line and replacing the last line with 

figure('position',figposition)

or with 

figure('position',figposition,'units','pixels')

to safeguard against alterations in the default unit values. 

7.5.2.2 Style and Appearance Properties of the Figure Object 

The next set of figure object properties we will look at closely follows the 
previous discussion and has to do with the style and appearance of the Figure 
Window.

When you call up a figure, it is by default a pleasing shade of gray (specified 
by the RGB vector [0.8 0.8 0.8].)  However, you can specify any color by 
making use of the figure’s Color property.  For example, if you want to set 
figure 1’s color to yellow, you can type 

set(1,'Color','yellow')

or  
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set(1,'Color',[1 1 0]) 

In order to give Figure Windows more meaning, you can assign a name to 
them.  The name can be specified by setting the Name property to any string 
of characters.  These characters will then appear in the top or title bar of the 
Figure Window next to the “Figure No. X” (where X is the handle of the Figure 
Window).  The “Figure No. X” in the title bar can be suppressed by setting the 
NumberTitle property of the Figure Window to “off”. By setting the Resize
property to “off”, you can prohibit the user from changing the dimensions of 
the figure with the mouse.  (The default value for this property is “on” so that 
the user can resize the window.)  Although properly part of “Callback 
Execution”, it is helpful to mention the ResizeFcn (resize function) property 
here. ResizeFcn  allows you to specify any legal MATLAB commands as a 
string which will be evaluated when the user attempts to modify the height 
and width of the figure with either the mouse or the set function.   

The property MenuBar allows you to either hide or show the menu bar 
placed at the top of a Figure Window.  For those of you who are developing 
MATLAB code for use on a Macintosh operating system, this property will let 
you suppress the display of the default menus that appear when the figure is 
selected.  In the MATLAB version for the Macintosh, the default menus for 
Figure Windows are “File,” “Edit,” “Options,” and “Window.”  If the MenuBar
property is set to “none” for a given figure, these menus will not be visible 
when that figure is active.  The default value for this property is “figure”, 
however if you are using GUIDE for your GUI development the default is 
“none”.  If you are just creating plots and not defining any custom user 
interface menus, it is probably best to leave this figure property in its default 
mode.  Note that this property affects only built-in menus; menus defined with 
the uimenu command, which will be discussed in Chapter 10, are not affected 
by this property.   

The figure object property WindowStyle can be set to either “normal” (the 
default) or “modal”. With this property, you can direct a Figure Window to 
trap all keyboard and mouse events that occur, essentially forcing the user to 
deal with the Figure Window in some way before any other action can take 
place. With WindowStyle  set to “modal”  the user will not have access to  any 
other MATLAB window (including the Command Window). In addition, a 
modal Figure Window remains “stacked” on top of other MATLAB windows 
until it is deleted, at which time focus returns to the window that last had the 
focus. 

7.5.2.3 Figure Properties that Control the Colormap 

From the previous table you can see that several properties have to do with 
controlling the color map. We will only examine three of those properties 
here, namely FixedColors, Dithermap, and Dithermapmode; the remaining 
three properties, Colormap, MinColormap, and ShareColors, affect the color of 
surface, image, and patch objects that are displayed in the figure and are 
deferred to a more detailed discussion in Chapter 8. Essentially, you can use 
any RGB triplet or any of the legal color strings to define the color of your 
choosing. FixedColors keeps track of the colors that are being used by axes, 
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line, and text objects within the figure.  As an example, create a quick plot and 
see what colors are being used.  

ezplot('sin(x)')
get(gcf,'FixedColors')

ans = 

         0         0         0 
    1.0000    1.0000    1.0000 
    0.8000    0.8000    0.8000 
         0         0    1.0000 
         0    0.5000         0 
    1.0000         0         0 
         0    0.7500    0.7500 
    0.7500         0    0.7500 
    0.7500    0.7500         0 
    0.2500    0.2500    0.2500 

Notice that each row of the returned array specifies an RGB triplet.  

Two other color-related figure properties discussed here, Dithermap and 
DithermapMode are used by MATLAB if you are using a low-color display 
(typically 8-bit color).  By default, the DithermapMode is set to “auto” and 
MATLAB creates a dithermap using the Floyd-Steinberg algorithm that contains 
colors from the entire color spectrum until something is drawn in the figure.  
Every time MATLAB renders a figure (like when you add something new to a 
figure), MATLAB regenerates the dithermap when the DithermapMode is set 
to “auto”.  To speed up the amount of time it takes MATLAB to render a 
figure, once you are done adding objects that contain new colors to a figure, 
you should set the DithermapMode to “manual”.  Remember that once you 
add new colors after having set the mode to “manual”, combinations of colors 
in a 6-pixel group will be selected to approximate any colors that you add that 
do not exist in the Dithermap, and therefore, you will lose some accuracy in 
the color content shown on your display. 

7.5.2.4 Figure Properties that Affect Transparency 

The only property in this category is one called Alphamap. We will see this 
property in Chapter 8 when we discuss object transparency. In this chapter 
suffice it to say that by default the Alphamap property contains a row vector of 
64 elements and is used in conjunction with the rendering of surface, image, 
and patch objects, but not other graphics objects.  

7.5.2.5 Properties that Affect How Figures are Rendered 

The BackingStore property in its default mode is set to “on”.  This property 
specifies whether or not the Figure Window must be redrawn every time you 
switch between the figure in question and another window.  In its “on” setting, 
the figure will be redrawn or refreshed every time you switch between figures, 
in addition to when the figure is resized or another graphics object is added to 
the figure.  In its “off” state, the figure is redrawn only when resizing or adding 
additional graphics objects.  When there are simple line plots in a figure, there 
may not be a noticeable delay when the figure is being refreshed;  however, if 
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3-dimensional surface plots or figures that contain a large number of objects 
are refreshed, it can be an annoyance to have BackingStore set to “off”.  We 
recommend that you leave this property in its “on” state and make use of the 
command refresh to force a complete redrawing, i.e., refreshing, of a Figure 
Window.

The properties Renderer and RendererMode are related to rendering speed 
and accuracy of displayed plots. By default, the RenderMode property is set to 
“auto” which is usually desirable since MATLAB will then determine which is 
most likely the best way to render your graphics; however, there can be 
advantages such as when printing (see Chapter 6) to overriding the default to 
achieve the results you need.  Whenever you set the RenderMode to 
“manual”, or set the Renderer property (which will also set RenderMode to 
“manual”), MATLAB will no longer use what it thinks is the best rendering 
algorithm for the figure.  The three rendering methods that MATLAB supports 
are Z-buffering (“zbuffer”), Painters (“painters”), and OpenGL (“OpenGL”). 
The first two methods are algorithmically based, while the third, OpenGL is a 
hardware-based rendering method that is available on many computer 
systems. The Painters method is MATLAB's original rendering method and is 
typically faster when the figure contains only simple or small graphics objects. 
However, the Painters algorithm will not work if you are displaying image, 
surface, or patch objects in a figure using RGB specifications. The Z-buffering 
algorithm determines which graphics object is closest to the viewer (you) at 
each pixel and draws the front-most portion of the virtually closest object, i.e., 
if you can’t see it, it won’t be drawn.  This can be the fastest rendering 
algorithm when the figure is built up of many complex graphics objects. Z-
buffering can draw graphics object faster and more accurately because objects 
are colored on a per pixel basis and MATLAB renders only those pixels. 
Although fast, this method can consume a lot of system memory, especially if 
the scene is complex. OpenGL, if available on your system, is generally faster 
than Painters or Z-buffer, especially if your computer has a video card that 
offers its own OpenGL processing.  If you have a simple figure, such as a line 
plot, the Painters algorithm will generally display it more accurately and 
quicker.

The property DoubleBuffer applies to animations, which is the subject of 
Chapter 9, and can take the values “on” or “off” which is the default. Double 
buffering can be used to speed up the process of animating an image as it first 
draws to an off-screen pixel buffer and then blits (think of it as throwing the 
whole image out at once) the buffer contents to the screen once the drawing 
is complete. You would typically want to take advantage of double buffering 
to produce flicker-free rendering for simple animations, such as those involving 
lines. It is not as effective for objects containing large numbers of polygons. 
We will revisit these ideas again in Chapter 9 where we will discuss how to 
determine the best rendering methods for the type of animation you want to 
produce. 

7.5.2.6 Properties Related to the Current State of a Figure 

The figure object keeps track of things like which axes within the figure will 
be plotted to next, what was the last keyboard character pressed within the 
Figure Window, and even the location of the pointer when the last mouse 
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button press and release occurred.  The figure object has several properties 
starting with the word “Current” that are used to store these handles, 
characters, or locations.  The CurrentAxes property stores the handle to the 
current axes, where the current axes are the axes that will be the parent to 
graphics objects created by subsequent plotting commands.  If you have a 
figure that contains no axes objects, this property will contain the empty 
matrix; however, the moment you query this property with the get command, 
an axes object will be created and its handle will be returned.  Earlier, we 
learned that you can use the command gca to get the handle of the current 
axes; now, you may realize that this command is merely 

get(gcf,'CurrentAxes')

If there are multiple axes objects within the figure, one will always be the 
current axes.  You can also specify any of these axes objects to be current by 
setting the CurrentAxes property to the handle of the axes with 

set(figureHandle,'CurrentAxes', axesHandle) 

 so that your next plotting command creates the object in the axes. 

MATLAB has many features that facilitate the creation of user interfaces.  
Depending upon the type of interface you design, you may come across a 
need for the CurrentCharacter property.  When a figure is active and you press 
a key (or key combination such as shift + a character), the corresponding 
string will automatically be stored in the CurrentCharacter property. This 
property is read-only and is often used in callback routines in conjunction with 
the KeyPressFcn property. We will show this in an example in the subsection 
dealing with callback execution.  

The CurrentObject property will contain the empty matrix until you press 
the mouse pointer somewhere within the Figure Window.  If you click the 
mouse on top of or in the region which is very close (usually called the hot 
zone) to a graphics object, that object’s handle will be placed in the 
CurrentObject property until you select another object with the mouse.  If 
there are multiple objects located under the mouse pointer location at the 
time the user presses the mouse button, the object which is closest to the top 
of the graphics object stack will be selected.  The object stack is initially 
determined by the order of object creation.  The most recent object created 
will be at the top of the stack.  However, the stacking order changes once 
objects are clicked on with the mouse.  The object most recently selected will 
be moved to the top of the graphics stack.  The stacking order is kept track of 
with the Children property of the figure.  For instance, the object whose 
handle is the first element in the column of handles stored in the Children
property will be at the top of the stack.  The CurrentObject property can be set 
by passing the handle of an object that exists within the figure with 

set(figurehandle,'CurrentObject',objecthandle)

If the current object is deleted, the CurrentObject property will be the empty 
matrix.  Finally, you may query this property with 

get(figurehandle, 'CurrentObject') 
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or by using gco which will get the current object within the current figure, 
whereas when you use the get function and explicitly specify the figure 
handle, the current object for that figure will be returned. 

Another useful property of figure objects is that they have the ability to keep 
track of the last location that the mouse button was either clicked down or 
released within the figure. The x- and y-coordinates of the most recent of these 
two events are stored in the CurrentPoint property and the coordinates' values 
are in units specified by the Units property of the figure.   If the mouse pointer 
is moved while the button is held down (a click and drag), the CurrentPoint will 
be updated as the pointer is moved.  These x- and y-coordinates are always 
measured with respect to the lower left corner of the figure and therefore are 
independent of the figure’s location within the screen.  This property is useful 
when you want a user to have the ability to provide information to MATLAB 
with the mouse.  For instance, if you want the user to specify the corner points 
of an object, you might make use of this property and one of the properties 
presented in the next subsection, e.g., WindowButtonDownFcn, that is 
designed to execute as a result of a mouse event.   

The SelectionType property’s value depends on either the way that the 
mouse button is pressed (single or double click), the button that is pressed (for 
a multi-button mouse), or which key was held down when the mouse button 
was pressed.  The following tables present the actions that are required to set 
the SelectionType value to “normal”, “open”, “alt”, or “extend”.  When a key + 
button combination is given, it means to hold down the specified key and then 
press the mouse button. Since the value for SelectionType is system 
dependent, values for Windows, Macintosh, and Unix X-Windows operating 
systems are listed in the first table. The second table lists the values possible 
from either two-button or three-button mice. 

Selection Type Windows Macintosh X-Windows 

“normal” Single click Single click Single click 

“open” Double click Double click Double click 

“alt” Alt + click Option + click Ctrl + click 

“extend” Shift + click Shift + click Shift + click 

    

Selection Type 2-Button Mouse 3-Button Mouse 

“normal” Left button Left button 

“open” Double click* Double click* 

“alt” Right button Right button 

“extend” Right + Left button Center button 

* Note: A double click with a multi-button mouse must be performed 
with the same button. 
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To experimentally determine how your system’s mouse operations affect 
the SelectionType property, try the following: 

fighandle = figure; 
windowbuttondownstr = 
['disp([get(gcf,''selectiontype'')])'];
set(fighandle,'windowbuttondownfcn',windowbuttondownstr);

Now click down in the Figure Window using several of the techniques 
described in the previous tables. 

7.5.2.7 Figure Properties that Affect the Pointer 

This set of properties belonging to figure objects allows you alter the 
appearance of the mouse pointer. The Pointer property specifies the symbol 
type that is used to identify where the pointer is located within the figure.  By 
default this is the “arrow” symbol that is most likely similar to the arrow that 
you are accustomed to seeing when you select from menus within your 
operating system.  However, when the pointer is within the Figure Window, 
you can specify that it use any one of the 17 symbol-names that MATLAB 
offers.  The 17 symbols with their corresponding names are shown in the 
following table, however your pointers might look different based on the 
pointer “scheme” which is active on your system.  

Pointer Names and Symbols 

crosshair left 

fullcrosshair 
crosshair lines extend 

full horizontal & vertical 
top 

arrow right 

ibeam bottom 

watch (busy) circle 

topl cross 

topr fleur 

botl custom 
16 x 16 pixels contained 

 in PointerShapeCdata 

botr
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 If the standard pointer styles do not provide exactly what you need, you 
can generate a custom pointer using the “custom” option of the Pointer
property and define your custom pointer with the PointerShapeCData property 
and the PointerShapeHotSpot properties.  By default the custom pointer is the 
16-by-16 pixel face shown in the above table. Altering the 16-by-16 matrix in 
the PointerShapCData will allow you to make whatever pointer you need.  The 
elements of the matrix can be either 1’s (corresponding to black pixels), 2’s 
(corresponding to white pixels), or NaNs (corresponding to transparent pixels).  
The (1,1) element of the matrix specifies the upper left corner pixel, while 
element (16,16) specifies the lower-right corner.  The PointerShapeHotSpot
defines which pixel in the custom pointer is used to determine the location of 
the pointer (or the value stored in the CurrentPoint figure property) and is by 
default (1,1). In Chapter 10 we will demonstrate some GUI techniques by 
developing a convenient GUI-based pointer editor called ptredit.

7.5.2.8 Figure Properties that Affect Callback Execution 

The functions that get invoked whenever an action is taken on a MATLAB 
graphics object, e.g., moving the mouse over an object, clicking on an object, 
etc., are called callbacks. We will discuss callbacks in great detail in Chapter 
10. For this section you need to realize that there are a number of figure 
properties that affect the execution of callbacks. The first of these,  
CloseRequestFcn (close request function), is a property to which you can 
assign a set of MATLAB commands that will be executed any time the Figure 
Window is closed.  The value of this property can be a string of the 
commands, a handle to a function, or a cell-array containing the commands 
that you want executed when the figure is closed such as when you issue the 
close command with either  

close(figure_handle)

 or 

close all 

and whenever you close a Figure Window from the computer's window 
manager menu, or when you quit MATLAB. Consequently, this string must 
contain valid MATLAB commands, just as you would with using the eval
function.  For example, if you wanted to display a message before a particular 
window was closed, you could use 

handle = figure; 
set(handle,'CloseRequestFcn',...
     ['display([''You have closed figure #''',... 
     ',num2str(get(0,''CallbackObject''))]);closereq']... 
    ); 

which will display a message in the Command Window when the figure is 
closed.  

The closereq function is the default value of the CloseRequestFcn property 
and executes the following code, 
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shh=get(0,'ShowHiddenHandles');
set(0,'ShowHiddenHandles','on');
currFig=get(0,'CurrentFigure');
set(0,'ShowHiddenHandles',shh);
delete(currFig);

which will unconditionally delete the current figure and destroy the Figure 
Window.

So as you can see, the CloseRequestFcn property is typically used when you 
want to query the user before finalizing the closing of a figure. The following 
code that uses the function questdlg, will prompt the user with a pop-up 
window before closing the figure.  

selection = questdlg(['Do you really want to close ',... 
             'Figure #',int2str(gcf),'?'],... 
             'Close My Figure',... 
             'Yes','No','Yes'); 

switch selection, 
   case 'Yes', 
     delete(gcf) 
   case 'No' 
     return 
end

To use this code, save it to an M-File named closemyfig.m (or any other 
name you like) then 

set(gcf,'CloseRequestFcn','closemyfig')

The qestdlg  function takes a string or cell-array of strings, and creates a 
modal dialog box (one that must be answered before other action can take 
place) that automatically wraps the cell array or string (vector or matrix) to fit 
an appropriately sized window.  It will return the name of the button (in this 
case “Yes” or “No”) that is pressed.  The second string argument ( ‘Close 
Figure Function’) provides the title to the modal window.  The following 
strings, ‘Yes’, ‘No’, and ‘Yes’, specify each button and the last being the 
default. If you tried the above code as described, you should see a result 
similar to Figure 7.7. 
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As you might imagine, you could easily have a nondestructive function 
assigned to the CloseRequestFcn property that will not allow the figure to be 
closed, such as with  

set(gcf,'CloseRequestFcn','disp(''I’ll Never Die!'')') 

Most likely, you will create such a situation inadvertently during some code 
development. Fortunately, with your command of handle graphics, you can 
always type delete(figure_handle) at the command line.   

Later in this chapter we will discuss default properties, but until then, you 
might find it of value to know that you can apply a custom function like 
closemyfig.m to all figures without having to use set with each one. To do this, 
you can set a default value on the root level with 

set(0,'DefaultFigureCloseRequestFcn','closemyfig')

MATLAB will now use this setting for the CloseRequestFcn of all subsequently 
created figures. 

As you will see in Chapter 10, MATLAB has many features that facilitate the 
creation of user interfaces.  As you have seen already, the CurrentCharacter
property will contain a string representing the key that was pressed while in 
the active figure.  (Recall that this property can only be queried.) 
Complimentary to the CurrentCharacter property is the KeyPressFcn property.  
The KeyPressFcn property allows you to specify a string of MATLAB commands 
that will be executed every time a key is pressed in that Figure Window.  
There are some rules to keep in mind when creating strings for this property, 
but they will be discussed in Chapter 10.  Basically, if the string that you want 
to use can be executed with the eval function without any errors (as with the 
CloseRequestFcn), it will most likely work when executed at the occurrence of 
a key press.  As a simple illustration try the following: 

figurehandle = figure; 
keypress = ['disp([''The current character is: '' '... 
      'get(gcf,''CurrentCharacter'')])']; 
set(figurehandle,'KeyPressFcn',keypress);

Figure 7.7 Using the CloseRequestFcn property. 

�

 � 	 � 
 � � �

© 2003 by CRC Press LLC



After executing these commands, click your mouse in the Figure Window and 
type a few characters.  If you type the character “b”, the message “The current 
character is now: b” will appear in the Command Window. 

There are several points to remember when creating executable or 
evaluatable strings; first, if you want a string to contain a quote within it, then 
you need to use two single quotes in a row.  The second is that the string will 
be passed to the eval function and evaluated in the base MATLAB workspace 
even if these properties are specified within a function that you create (as if 
they were script files). Therefore, the string can only make use of variables and 
information that are available in the workspace and not the local variables 
within a function (unless they are specified as global variables).  A complete 
elaboration on this point will be discussed in Chapter 10.  

In addition to the Resize property that we presented earlier, there is a 
property named ResizeFcn (resize function) that, just like the previous 
property, allows you to specify any legal MATLAB commands as a string which 
will be evaluated when the user attempts to modify the height and width of 
the figure with either the mouse or the set command.   

The UIContextMenu property of a figure keeps a value which is a handle to 
a user interface context menu that is to be associated with the figure. We will 
examine this property in detail in Chapter 10. 

The WindowButtonDownFcn, WindowButtonMotionFcn, and Window-
ButtonUpFcn are three figure properties that can be used to evaluate and 
execute a string containing MATLAB commands at the occurrence of a mouse 
driven event.  The WindowButtonDownFcn is used to store a string that will be 
evaluated whenever a mouse button is pressed down within that Figure 
Window.  The WindowButtonMotionFcn is used to store a string that will be 
evaluated whenever the mouse pointer moves within the Figure Window.  
Finally, the WindowButtonUpFcn string will be evaluated when the mouse 
button is released.  

To further illustrate what we have just presented about figure properties that 
affect callback execution, let’s look at an example that uses several of the 
mouse event driven properties.  In this example, we shall  have MATLAB 
identify the type of selection and the current location of the pointer when the 
user clicks down the mouse button in the Figure Window.  In addition, we 
shall use the crosshair cursor instead of the arrow.  If the user then holds down 
the mouse button and moves the pointer around, the location of the pointer 
relative to the initial location will be displayed.  Finally, when the user releases 
the mouse button, the current point will be displayed and the cursor should 
once again become an arrow.  For now, we will display these quantities in the 
Command Window, however, once you learn about the text object properties, 
you will see how easy it is to display these values within the figure object itself. 

fighandle = figure; 

bdfcnstring = 
['selecttype=get(gcf,''selectiontype'');'...
    'firstpnt = get(gcf,''currentpoint'');'... 
 'figunits = get(gcf,''units'');'... 
 'set(gcf,''pointer'',''crosshair'');'... 
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 'disp([''The selection type is:'' selecttype]);'... 
 'disp([''First X: '' num2str(firstpnt(1)) '' '' 
figunits]);'...
 'disp([''First Y: '' num2str(firstpnt(2)) '' '' 
figunits]);'...
 'set(gcf,''windowbuttonmotionfcn'',bmfcnstring,'... 
 '''windowbuttonupfcn'',bufcnstring);']; 

bmfcnstring = [... 
 'currentpnt = get(gcf,''currentpoint'');'... 
 'offset = currentpnt-firstpnt;'... 
 'disp([''X-Offset: '' num2str(offset(1)) '' '' 
figunits]);'...
 'disp([''Y-Offset: '' num2str(offset(2)) '' '' 
figunits]);'];

bufcnstring = ['set(gcf,''pointer'',''arrow'');'... 
 'lastpnt = get(gcf,''currentpoint'');'... 
 'disp([''Last X: '' num2str(lastpnt(1)) '' '' 
figunits]);'...
 'disp([''Last Y: '' num2str(lastpnt(2)) '' '' 
figunits]);'...
 'set(gcf,''windowbuttonmotionfcn'','''');']; 

set(fighandle,'buttondownfcn',bdfcnstring);

The variable budfcnstring is set up to determine the SelectionType,
CurrentPoint, and Units values of the figure and change the cursor into a 
crosshair when the user first clicks anywhere within the figure.  Since this string 
is evaluated in the base workspace, the firstpnt and figunits variables will be 
available when the bmfcnstring and bufcnstring strings are evaluated.  In 
addition, the WindowButtonMotionFcn and WindowButtonUpFcn are specified 
when the user clicks down on the mouse button.  In this example, it was not 
absolutely necessary to set the WindowButtonUpFcn at the time when the user 
clicks down (it could have just as easily been defined in the last line of the 
code).  However, the WindowButtonMotionFcn needs to be specified at that 
time, because after the user releases the button, we will clear the motion 
property so that further pointer motion does not display X- and Y-Offset values 
until the mouse button is once again pressed.  The variable bdfcnstring resets 
the cursor to the default and displays the final location point. (Notice, as was 
stated at the beginning of this chapter, that the property names are not case 
sensitive, however we keep the cases in the discussion to avoid confusion.) 

7.5.2.9 Figure Properties that Control Access to Objects 

The IntegerHandle property is, by default, set to “on”.  This means that the 
figure’s handle will match its figure number shown in the title bar of the figure.  
For example, figure 1’s handle will be the number 1, which means you can use 
set(1,... ) to change figure 1’s properties.  However, if you set the 
IntegerHandle property of a figure to “off”, you  will no longer be able to 
access the figure using the figure number, since MATLAB will reassign a new 
floating point number as the figure handle.  You can always determine this 
handle (assuming the HandleVisibility property has not been set off) by clicking 
in the figure and then performing a gcf or using the findobj function.  This 
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property can be useful when you want to reduce the chances of the user 
accidentally changing a figure’s properties, since integers are much more 
easily typed than some random floating point handle number. 

By default, if you create a plot with any of the high-level graphing routines 
such as plot, surf, contour, etc., the plot will be drawn in the current figure (if 
there is no current figure, a figure will be created).  This can happen because 
the current figure’s NextPlot property is in the “add” state.  In this state, all of 
the figure’s properties will remain the same.    You can also set this property to 
“replace”, which will force any subsequent plotting function to reset all of the 
figure’s properties (except the position property) and remove all figure 
contents before creating the new plot.  If you do not want to reset all of the 
figure’s properties, but do want to remove all figure contents before creating a 
new plot, set the contents of NextPlot to “replacechildren”. However, if you 
want to put a level of protection on the contents of the figure, you can do so 
by setting the figure’s HandleVisibility to “off”; this will force any following 
high- or low-level plotting functions to create a new figure (or make use of the 
next figure that does not have its HandleVisbility property set to off) before it 
can draw its graphics objects. 

7.5.2.10 Figure Properties that Affect Printing 

Seven properties affect how a figure is printed. These are InvertHardCopy,
PaperOrientation, PaperPosition, PaperPositionMode, PaperSize, PaperType,
and PaperUnits.

PaperOrientation determines whether the figure is oriented in a portrait or 
landscape fashion on the printed page (yet you can always use the command 
orient landscape or orient portrait to specify how the figure is to be printed). 

PaperPosition takes a four-element vector that defines a rectangle of the 
form [ left, bottom, width, height ] specifying the location of the figure on a 
printed page. The element left specifies the distance from the left side of the 
paper to the left side of the rectangle and bottom specifies the distance from 
the bottom of the page to the bottom of the rectangle. Together these 
distances define the lower left corner of the rectangle. The elements width and 
height define the dimensions of the rectangle. The units of these values is 
defined by the PaperUnits property and in most cases can be left in its default 
setting of “inches”.  The PaperPosition property is used to enforce “What you 
see is what you get” (WYSIWYG); when set to “manual” the figure will be 
printed using the value specified by the PaperPosition property. In the default 
“auto” mode the figure will be printed the same size as it appears on the 
computer screen and centered on the page, i.e., WYSIWYG. 

PaperSize and PaperType are used to specify the size of the paper on which 
to print the figure. PaperType lets you choose from many standard paper sizes. 
If you set the value of PaperType to one of the standards, the size of that 
standard, in the units specified in PaperUnits, will then be contained in 
PaperSize. Here’s an example to illustrate. 

set(1,'PaperType','A0')
get(1,'PaperSize')
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ans = 
   33.1354   46.8466 

set(1,'PaperUnits','centimeters')
get(1,'PaperSize')

ans = 

   84.1000  118.9000 

7.5.3 Axes Properties 

The Axes object has more properties than any other object, in part because 
many of the properties are duplicated for each axis. All these properties give 
you a great deal of freedom in specifying exactly how you want your plot or 
graphics to appear. First, we will look at the properties that affect the 
appearance of the axes object itself and then we will look at those properties 
that affect the children of  axes objects. 

The following table lists alphabetically all properties specific to the axes 
object. Notice the axis-specific properties beginning with XColor; each of these 
can take either X, Y, or Z depending on the axis you wish to affect. For 
instance, XColor is the property whose value determines the color of the x-axis, 
while YColor is the property affecting the color of the y-axis. Where properties 
are duplicated for each axis, we have denoted this by underlining the axis 
identifier in this table. In the discussions we will simply use the appropriate 
property name. 

Property Read
Only

ValueType/Options Format 

Properties Affecting Transparency and Lighting 

ALim No

ALimMode No [ {auto} | manual ]  

AmbientLightColor No

    
Properties Controlling Boxes and Tick Marks 

Box No [ on | {off} ] row 

TickLength No [ 2-Dticklength 3-Dticklength ] 2-element 
row 

TickDir No [ {in} | out ]  

TickDirMode No [ {auto} | manual ]  

XMinorTick No [ on | {off} ] row 

XTick No numbers  

XTickLabel No string matrix 

XTickLabelMode No [ {auto} | manual ] row 

XTickMode No [ {auto} | manual ] row 
continued on next page
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Property Read
Only

ValueType/Options Format 

Properties Affecting Character Formats 

FontAngle No [ {normal} | italic | oblique ]  

FontName No name of desired font string 

FontSize No number 1-element 

FontUnits No [ inches | centimeters | normalized
| {points} | pixels ] 

string 

FontWeight No [ light | {normal} | demi | bold ] string

Properties Determining Axis Location and Position 

Position No [left bottom width height] 4-element 
row 

Units No [ inches | centimeters | {normalized}
| points | pixels | characters ] 

XAxisLocation No [ top | {bottom} ] string 

YaxisLocation No [ {left} | right ] row 

CurrentPoint No mouse click near and far x, y, z axis
locations  

2-by-3 
matrix

Title No handle of text object 1 element 

    
Properties Affecting Grids, Lines, and Color 

Color No [ Red Green Blue ] or color string  

ColorOrder No M RGB number triplets M-by-3 
matrix

CLim No [ cmin cmax ] 2-element 
row 

CLimMode No [ {auto} | manual ] string 

DrawMode No [ {normal} | fast ]  

XGrid No [ on | {off} ]  

GridLineStyle No [ - | -- | {:} | -. | none ] string

Layer No [ top | {bottom} ] string

LineStyleOrder No string array of linestyle symbol(s) matrix

LineWidth No number 1element 

MinorGridLineStyle No [ - | -- | {:} | -. | none ]  

XColor No [ Red Green Blue ] or color string row 

Xform No 4 x 4 Perspective Transformation 4 x 4 matrix 

XLabel No Handle of text object 1 element 

XMinorGrid No [ on | {off} ] row 

NextPlot No [ add | {replace} | replacechildren ] string 

continued on next page 
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Property Read
Only 

ValueType/Options Format 

Properties Affecting Axis Limits 

DataAspectRatio No [ x y z ] relative ratio of axis
lengths 

2-element 
row 

DataAspectRatioMode  No [ {auto} | manual ] string 

PlotBoxAspectRatio No [ x y z ] relative ratios of box
lengths 

3-element 
row 

PlotBoxAspectRatioMode No [ {auto} | manual ]  

XDir No [ {normal} | reverse ] row 

XLim No [xmin   xmax] 2-element 
row 

XLimMode No [ {auto} | manual ] row 

XScale No [ {linear} | log ] row 

Axes Properties Related to Viewing Perspective 

CameraPosition No [ x y z ] numbers 3-element 
row 

CameraPositionMode No [ {auto} | manual ] string 

CameraTarget No [ x y z ] numbers 3-element 
row 

CameraTargetMode No [ {auto} | manual ] string 

CameraUpVector No [ x y z ] numbers 3-element 
row 

CameraUpVectorMode No [ {auto} | manual ]  

CameraViewAngle No number 1 element 

CameraViewAngleMode No [ {auto} | manual ] string 

Layer No [ top | {bottom} ] string

Projection No [ {orthographic} | perspective ]  

View No [DegreesAzimuth 
DegreesElevation ] 

2-element 
row 

The first three properties in this table, ALIm, ALimMode, and 
AmbientLightColor deal with image, surface, and patch objects, and how 
lighting and transparency is affected by them. ALim and ALimMode specifically 
affect transparency, while AmbientLightColor deals with the color of light. 
Since Chapter 8 deals specifically with light and transparency, we shall leave 
these properties for that discussion. 

7.5.3.1 Axes Properties Controlling Boxes and Tick Marks 

The Box property specifies whether the axes region should be enclosed 
within a box in its 2-D view or by a cube in its 3-D view. Figure 7.8 illustrates 
the differences between the different perspectives when the Box property is 
set to “off” or “on”. 
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In addition to the box attribute of the previous figure, look at the tick 
markers in the 2- and 3-D perspectives: the tick markers are, by default, 1% 
(0.01) of the width and height of the axes object in 2-D perspectives and 2.5% 
(0.025) in 3-D views.  In addition, notice that the tick markers face inward in 
the 2-D plots and outward in the 3-D plots; both of these attributes can be 
controlled with the TickLength, TickDir, and TickDirMode properties to suit 
your personal preferences. The TickLength property value is a 2-element vector 
where the first element specifies the length as a percentage of the axes object 
width and height in 2-D perspectives, and the second element specifies the 
length as a percentage of the axes object in 3-D perspectives.  By default,  
TickDir is set to “in” for 2-D graphs and “out” for the 3-D graphs as long as the 
TickDirMode is set to “auto”.  Once you change the value of TickDirMode to 
“manual”, which can also occur by setting the TickDir property, 2-D and 3-D 
graphs will have their ticks pointing in the direction defined by TickDir. Yet, as 
with all settable properties, you can override the default properties by using 
the set command or by specifying the property values upon object creation. 
You can also specify whether or not to show minor tick marks with the 
XminorTick property. Setting the value of XMinorTick to “on” will show tick 
marks between the major tick marks. 

 One of the most common questions that people ask is 

 “How can I specify the values that will be displayed on the axis?” 

  To do this for the x-axis, you will make use of the Xtick and XTickLabel
properties (for the y- and z-axes, just substitute Y or Z for the X in the property 
names). The XTick property is used to identify the locations on the axis where 
tick marks will be placed. It also ends up automatically specifying which 
numbers, called tick labels (since they can be forced to include characters), are 
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Figure 7.8 The effect of the Box property in 2-D and 3-D views. 
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displayed along the axis. The XTickLabel property lets you specify a string of 
characters for each tick mark on the x-axis. Let’s say we want to plot the sine 
function from 0 to 4 ; typing 

x = 0:(pi/16):(4*pi); 
plot(x,sin(x));
axis([0 4*pi -1 1]); 

will yield the plot shown in Figure 7.9. 

As you can see, the tick marks and labels are automatically generated. 
However, we can specify them manually.  For instance, we can force a tick 
mark at /2 increments with 

set(gca,'XTick',[0:(pi/2):4*pi])

to get Figure 7.10. 
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Figure 7.9 Default X-axis tick mark labels and locations. 

© 2003 by CRC Press LLC



Unfortunately, the tick mark labels are floating point representations instead 
of symbolic representations. However, we can specify that MATLAB replace 
the number 1.5708 with 'pi/2', 3.1416 with 'pi', etc. by typing 

set(gca,'XTickLabel',...
 ['0|pi/2|pi|3pi/2|2pi|5pi/2|3pi|7pi/2|4pi']) 

To create the value string we recommend making use of the separator 
character “|” (usually typed with the shift+\ key on most keyboards) instead of 
using the str2mat function or manually typing in a string matrix.  Generally, 
using the “|” is easier to type and read once you realize that the separator 
character can be used in this fashion.  We show the other methods here in 
order to be thorough.  

set(gca,'XTickLabel',...
  str2mat('0','pi/2','pi','3pi/2','2pi',... 
  '5pi/2','3pi','7pi/2','4pi')); 

or

set(gca,'XTickLabel',...
  ['0    ';'pi/2 ';'  pi ';'3pi/2';' 2pi ';... 
  '5pi/2';' 3pi ';'7pi/2';' 4pi ']) 

Both of these approaches require you to set up the string matrix and force 
you to pay particular attention to the number of spaces within each string.  
Modern MATLAB has some very powerful character string manipulation 
capabilities that make such tasks easy, foremost of which is the cell-array. You 
can also use cell-arrays to store your XtickLabels value as shown in the 
following code.   

0 1.5708 3.1416 4.7124 6.2832 7.854 9.4248 10.9956 12.5664
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Figure 7.10  Specifying x-axis tic marks with XTick. 
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s={'0','pi/2','pi','3pi/2','2pi',...
'5pi/2','3pi','7pi/2','4pi'}

set(gca,'XTickLabel',s)

No matter which technique you end up using, they will all provide you with 
the result in Figure 7.11. 

Unfortunately, tick labels do not interpret TeX character sequences like Title
and XLabel properties do; e.g., xlabel( {'Units of \pi.' } ) would yield ‘Units of ’
as the x-axis label. Therefore we cannot simply specify symbols like the Greek 
letter “ ” in a cell-array. However, if your computer has a symbolic font 
installed on it, you can take advantage of the FontName property for an axis 
object as shown here: 

set(gca,'FontName','Symbol')
t=['0|p/2|p|3p/2|2p|5p/2|3p|7p/2|4p']
set(gca,'XTickLabels',t)

This will produce the attractively labeled x-axis of Figure 7.12. 
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Figure 7.11  Specifying x-axis tic mark labels with XTickLabel. 
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  If you specify fewer numbers of tick mark labels than there are tick marks, 
the labels will be reused in a cyclical fashion.  Once you specify either the 
location of the tick marks or their labels, the XTickMode and XTickLabelMode
will respectively be set to their “manual” mode of operation.  The manual 
mode keeps MATLAB from automatically determining the tick locations or 
labels that should be used to account for the data being plotted within the 
axes object.  For example, plot a simple line with 

figure
plot(1:10)
hold on 

and then set the Xtick property to the manual setting and plot another line 
which extends beyond the x-axis limits with 

set(gca,'XTickMode','manual')
plot(6*ones(1,15))

You can see from the result shown in Figure 7.13 that the labels stop after 
just 10. This happened because we forced MATLAB not to automatically 
calculate new tick mark locations.   
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Figure 7.12  Changing the FontName property of the x-axis. 
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Now create the plot in Figure 7.14 by typing 

figure
plot(1:10)
hold on 
set(gca,'XTickLabelMode','manual')
plot(6*ones(1,15))

The lines in this plot are identical; however, the labels “1” through “10” are 
now spread over the x-axis, whereas the data really runs from 1 to 15.  As you 
can see, this is dangerous, because the plot labels misrepresent the data that 
was plotted (the 1, 2, 3, and 4 on the x-axis really correspond to the numbers 
1, 5, 10, and 15). 
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Figure 7.13 The result of setting XtickMode to “manual” before adding a 
second line. 
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7.5.3.2 Properties Affecting Axes Character Formats 

In addition to specifying which tick marks and labels are displayed, the 
character format of the x-, y-, and z-axes tick labels can be specified with the 
FontAngle, FontName (which you have already seen), FontSize, FontWeight,
and FontUnits properties.  If you want the tick labels of the current axes to be 
both bold and italic, you can use 

set(gca,'FontAngle','Italic','FontWeight','Bold')

You need to be aware that these font properties are applied to all of the 
axes’ tick mark labels.  You do not have control over the font used on an axis-
by-axis basis.  For example, you cannot assign a bold Helvetica font for the x-
axis tick mark labels, while using a normal Times font for the y-axis tick mark 
labels.  Also note that the text objects generated with the commands xlabel,
ylabel, zlabel, and title will use the font properties of the current axes when 
they are created; however, you do have individual control over their attributes 
and can alter them to your pleasing (see text object properties).  The FontUnits
property is particularly useful if you want the tick mark labels to scale 
proportionately with the size of the axes and figure.  If you want the tick mark 
labels to scale, set the axes FontUnits to normalized. 

7.5.3.3 Axes Properties Determining Axis Location and Position  

The Units property of an axes object only affects the value and 
interpretation of the axes Position property.  The value of Units can be 
specified in “inches”, “centimeters”, “normalized”, “points”, “pixels”, or 
“characters”.  The position rect vector of a single axes object that is created 
either by a high-level graphics function (other than subplot) or by the low-level 
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Figure 7.14 Setting XtickLabelMode incorrectly leads to incorrect results. 
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axes command will default to [0.130 0.110 0.775 0.815] (normalized units).  
This position tends to keep it visually centered in the figure; however, you can 
reposition the current axes with set(gca,'Positon',newposrect), where 
newposrect is a four-element rect vector ([left bottom width height]) that 
defines the lower left corner coordinate, (left, bottom), with the first 2 
elements and the width and height with the last 2 elements.  The (left, bottom) 
coordinate measurement is made with respect to the lower left corner of the 
figure object within which the axes object exists. 

In Chapter 3 you learned how to use the plotyy command to plot different 
y-axis limits against the x-axis. Now with handle graphics you can do even 
more. The axis location properties XaxisLocation and YaxisLocation give you 
the ability to specify whether the x-axis labels are on “top” or “bottom” of the 
plot and the y-axis labels are on the “left” or “right” side of the plot.  By default 
the x-axis label will be on the “bottom” and the y-axis labels on the “left”.  
Now you can quickly create overlaying plots with different x-axis and y-axis 
limits in the same graph by modifying the XAxisLocation and YAxisLocation
properties.  The following example will illustrate this and generate the plot in 
Figure 7.15. 

figure;
plot(0:9,[0:9].^2);
a1=gca;
a2=axes;
plot(-10:10,[-10:10].^3);
set (a2,'xaxislocation','top','yaxislocation','right',... 
        'color','none'); 
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Figure 7.15  Superimposed axes objects. 
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Notice that this figure has extra tick marks. To turn off the extra tick marks, 
set both axes’ Box properties to “off”. 

set([a1 a2],'box','off') 

Now, if you wanted grid marks, you can turn on the grids with  

axes(a1); grid on;
axes(a2); grid on; 

Unfortunately, this does not look good because there are a different 
number of tick marks on the left as compared to the right and the bottom as 
compared to the top.  Here’s one solution that will produce Figure 7.16. 

numxticka1=length(get(a1,'xtick'));
xlima2=get(a2,'xlim');
xincr=(abs(diff(xlima2))/(numxticka1-1));
newxtks = [xlima2(1):xincr: xlima2(2)]; 
set(a2,'xtick',newxtks);

numyticka1=length(get(a1,'ytick'));
ylima2=get(a2,'ylim');
yincr=(abs(diff(ylima2))/(numyticka1-1));
newytks = [ylima2(1):yincr: ylima2(2)]; 
set(a2,'ytick',newytks);

% Rounding may not always be appropriate, but is done 
% on the next two lines to make the graph look cleaner. 
set(a2,'xticklabel',round(get(a2,'xtick')))
set(a2,'yticklabel',round(get(a2,'ytick')))
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Figure 7.16 Matching tick marks on superimposed axes. 
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If you are using a color printer, Figure 7.16 could be improved by changing 
the color of one of the lines along with its associated x-axis and y-axis. This can 
be done using the XColor property presented in the next discussion. 

7.5.3.4 Axes Properties Affecting Grids, Lines, and Color 

In Chapter 3 we showed you that a grid could be created with the grid
command.  This command essentially sets the XGrid, YGrid, and ZGrid
properties to their “on” state.  With these axes properties you have the 
prerogative of specifying that the grid be displayed for the axis you want.  
Furthermore, you can specify the line type of the grid to something other than 
the default dotted lines (':') with the property GridLineStyle and the line width 
to something other than the default of 0.5 with the LineWidth properties.  The 
line width affects all axes property lines (grid lines and the full or partial box 
drawn around the axes object).  For example, we can have solid horizontal 
grid lines for a plot with 

figure;
plot(randn(1,10))
set(gca,'YGrid','on','GridLineStyle','-','Linewidth',3)

to obtain Figure 7.17. 

In addition to specifying line styles and widths, we can also specify the color 
of the axes object.  By default, the Color property is set to the string “none”; 
however, you can use any of the legal color strings or any RGB color intensity 
triplet.  For example, if you want the current axes to be red, you can use  

set(gca,'color','red')
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Figure 7.17 Altering  the axes' LineWidth and GridLineStyle properties. 
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or  

set(gca,'color',[1 0 0]) 

The x-, y- and z-axis line colors can be individually specified, respectively, 
with the XColor, YColor, and ZColor properties.  These properties do not only 
specify the color of the actual axis lines, they also define the color used for tick 
marks, tick mark labels, and grid lines.  If you want to make parts of the axis 
“invisible,” you will need to set the component’s color to the color of the axes.  
For instance, let’s continue with the last example, but specify that the x-axis 
components should not appear in the figure (see Figure 7.18). Typing, 

set(gca,'YColor',[.3 .3 .3],'Xcolor',get(gca,'color')) 

almost accomplishes what we want. However, you will notice that the x-axis 
labels, which are now white, are visible against the default gray  ([0.8 0.8 0.8]) 
Figure Window. We can overcome this by forcing the Figure Window’s color 
to white as well with, 

set(gcf,'Color','white')

which results in Figure 7.18. 

You might notice that on some platforms the top corners of the y-axis lines 
have a white spot on your screen instead of the dark gray that was specified.  
This has to do with the order in which lines are rendered and stacked upon 
one another by MATLAB.   These two dots are the end-points of the z-axis 
lines.  Even though we are viewing this plot in a 2-dimensional perspective, the 
z-axis lines are still drawn orthogonal to the screen.  To make sure that these 
appear in the same color, we can define the color of the z-axis lines with 

set(gca,'ZColor',[.3 .3 .3]); 
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Along the same line of thought, let’s look at this plot in three dimensions and 
turn the ZGrid property on with 

view(-37.5,35)
set(gca,'ZGrid','on')

If you have been following along by typing in the examples, you should get 
something like the plot shown on the left side of Figure 7.19. 
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Figure 7.18  Making an axis invisible. 
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Notice that the lines of this plot have gaps in them and the grid lines in the 
z-axis at -1 and 1 are obscured.  The reason for this is that the lines created by 
the axes Box property in the x-axis direction are black and drawn on top of the 
plot because they are closer to the observer in the perspective shown.  For 
this example, it would be best to keep the Box property set to “off” as shown 
above on the right-hand side.  It is important to recognize that there is a 
stacking order in terms of a viewer’s perspective of 3-D graphics and that even 
if the object is colored to make it “invisible,” the object still exists and may be 
drawn in front of other objects.  In 2-D views of the plot, you can control 
whether the axis lines are drawn above or below the graphics objects in the 
plot with the Layer property. By default, this property will be set to “bottom” 
which will force the axis lines to be drawn below the axes’ children.  If you 
want the axis lines to be drawn over the children, set the value of Layer to 
“top”. 

The axes property DrawMode, in its default setting of “normal”, will make 
sure that objects are drawn in such a manner so that those that are farther 
from the viewer are rendered before those that are closer.  This property can 
be set to “fast”, which disables the 3-dimensional sorting of objects and forces 
MATLAB to draw the objects in the order that they were originally created.  
The figures will be drawn quicker; however, the plot may be misleading in 3-
dimensional perspectives as to the true order of the object’s location with 
respect to one another. 

You have already been using color in your plots to distinguish multiple data 
sets, and you already know how to specify the color for each line as you plot 
it, or to allow MATLAB to automatically assign colors as it plots. However, you 
are probably asking yourself the following question. 
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Figure 7.19 Black box lines created a blanked-out strip. 
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“How do I change the order in which colors are used when plotting multiple 
lines?”

By default MATLAB uses a predetermined set of colors to cycle through 
when plotting more than one line at a time (e.g., using plot(X,Y) where X and 
Y are matrices or plot(x1,y1,x2,y2,x3,y3,...)).  This default order is yellow, 
magenta, cyan, red, green, and blue.  The number of colors, the color values, 
and the order in which the colors are used can be predetermined and set as 
desired with the axes ColorOrder property.  The ColorOrder property is an M-
by-3 matrix containing M RGB triplets.  For example, the default is the 
following 6-by-3 matrix: 

RGB Triplets Corresponds to the color 
1     1     0 yellow 
1     0     1 magenta 
0     1     1 cyan 
1     0     0 red 
0     1     0  green 
0     0     1 blue 

If you want a particular plot to contain several lines that cycle between the 
colors red, green, and blue (shown in Figure 7.20 with slight variations in 
shading since this book is printed in black and white), you could do the 
following: 

figure;
colorordermatrix = [1 0 0; 0 1 0; 0 0 1]; 
axes('ColorOrder',colorordermatrix,'NextPlot','add');
xdata = [1:10]; 
ydata = xdata'*[1:5]; 
plot(xdata,ydata);

��
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The NextPlot property must be specified as “add” instead of “replace”, so 
that, when the plot command is executed, the axes object that has the desired 
ColorOrder value is not deleted. 

There are two techniques that do not require the NextPlot property to be 
set to “add” that can be used to get the line colors to cycle through the 
desired set of colors.  One technique is to use the low-level command line to 
generate the line objects, and the other is to set the default ColorOrder value 
to the one you want.  The line command leaves the axes properties alone and, 
therefore, will use the colors in the order specified by the ColorOrder
property. We will learn more about setting the default properties later in this 
chapter, but for now, if you want to do this, use the command 

set(0,'DefaultAxesColorOrder',colorordermatrix)

where colorordermatrix is the variable that contains your M-by-3 color 
matrix. 

 Another frequently asked question is 

 “Since I use a black-and-white printing device, I would rather have MATLAB 
cycle through various line style types instead of colors.  How can I do this?” 

  This is accomplished in a manner similar to the one used for colors, except 
in this case we need to make use of the LineStyleOrder and ColorOrder
properties.  The ColorOrder property should be set to one color and the 
LineStyleOrder should contain a matrix in which each row defines a legal line 
style.  By default, the LineStyleOrder property is set to the solid line character 
string “-”. Using the same xdata and ydata variables from the previous example, 
we can create the same plot, except this time, we will require that all of the 
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Figure 7.20 Controlling the order of automatic color assignment. 
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generated lines are colored white and that they cycle through several line 
types (solid, dashed, dash-dotted, dotted, and the “x” marker).  Type 

figure;
% Specify black color 
colorordermatrix = [0 0 0]; 
% Specify Line Styles 
linestylematrix = ['- ';'--';': ';'-.';'x '];
axes('ColorOrder',colorordermatrix,...
     'LineStyleOrder',linestylematrix,... 
     'NextPlot','add'); 
plot(xdata,ydata)

to obtain Figure 7.21.   

Note that the specification for the LineStyleOrder can be composed of any 
valid line style or marker type.  You could also have specified the 
linestylematrix using the form 

linestylematrix = ['-|--|:|-.|x '];

where the “|” is used to separate each style or marker. Here again, we do 
not necessarily need to specify the NextPlot property.  We could just as easily 
replace the plot(xdata,ydata) with line(xdata,ydata).  We could also specify the 
default values for the ColorOrder and LineStyleOrder with 

set(0,'DefaultAxesColorOrder',colorordermatrix)
set(0,'DefaultAxesLineStyleOrder',linestyleordermatrix)
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Figure 7.21 Cycling line styles automatically with LineStyleOrder.
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where the colorordermatrix is a variable that contains a single RGB color 
intensity triplet (e.g., [0 0 0] in the example above) and linestyleordermatrix is a 
string matrix containing the desired line styles (e.g., ['- ';'--';': ';'-.';'x '] in the 
example above). 

If both the ColorOrder and LineStyleOrder axes properties have multiple 
rows, lines will be created in a manner such that the first line style will be used 
while the colors cycle through their possibilities, then the second line style will 
be used while the colors again cycle through their possibilities, and so on.  For 
instance, if you used 

set(gca,'ColorOrder',[1 0 0; 0 1 0],... 
    'LineStyleOrder ,['--';'-.';': ']); 

and you plotted seven lines at once, the color of each of the lines would 
appear as stated in the following table: 

Line Number Line Attributes 

1 Red dashed 

2 Green dashed 

3 Red dash-dotted 

4 Green dash-dotted 

5 Red dotted 

6 Green dotted 

7 Red dashed 

The CLim property affects the color attributes of surface and patch graphics 
objects.  A complete discussion of this property will be left for Chapter 8.  For 
now, it will suffice to understand that the CLim property defines how MATLAB 
maps the colors that are stored in the figure’s Colormap property to the data 
values of the surface and patch objects found within that axes object.  By 
default, this property is a 2-element vector ([cmin cmax]) that contains the 
smallest and largest z-axis data values of surface and patch children of the axes 
object.  This allows MATLAB to map the entire spectrum of Colormap colors 
to the data values.  However, you have the ability to set the limits to your 
liking.  This gives you the freedom of specifying either that only a given portion 
of the color map will be used across your plotted data or that the portions of 
the surface or patch objects falling above or below the two limits will, 
respectively, be colored with the maximum or minimum color in the 
Colormap.

Here again, there is a high-level command equivalence to setting this 
property. 

The high-level command... is equivalent to... 
caxis([cmin cmax]) set(gca,'CLim',[cmin cmax]) 
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Once you set the CLim property, the CLimMode property will be changed 
from “auto” to “manual”. If later you want MATLAB to automatically define 
the CLim limits, you can set the CLimMode property back to “auto”. 

We can look (on your display) at three examples that make use of both the 
CLim and the View properties (additional examples related to color maps and 
the CLim property will be provided in Chapter 8) by plotting with the peaks
function as follows: 

[x,y,z] = peaks; 
surf(x,y,z);
shading interp; 
set(gca,'view',[90 0]);% You could also use view([90 0]); 

to see how the full range of colors from the current color map are being 
used. 

Now, if you type

get(gca,'CLim')

you will see that 

ans = 
      -6.5466    8.0752 

is returned and is identical to the result returned from the command  

[min(min(z)) max(max(z))] 

Next, redefine the CLim limits with 

set(gca,'CLim',[-3 3]); 

You could also have used 

caxis([-3 3]); 

so that the color of data points in the surface above (in the z-axis direction) 
the upper limit are colored with the last color defined by the value of the 
figure’s Colormap property, whereas those in the surface below (in the z-axis 
direction) the lower limit are colored with the first color in the Colormap.

Finally, once again redefine the CLim limits with 

set(gca,'CLim',[-12 10]); %You could use caxis([-12 10]) 

so that only a portion of the color map is used to color the surface. 

7.5.3.5 Properties Affecting Axis Limits 

In addition to the DrawMode property, several other axes object properties 
have an affect on the children of that axes in one way or another.  For one, the 
upper and lower data limits of the individual axis lines can be defined with the 
XLim, YLim, and ZLim properties.  Normally, these are automatically specified 
because the XLimMode, YLimMode, and ZLimMode properties are set to 
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“auto”.  However, if at some time you specify any of these limits, either 
directly with set or with the axis command, the respective LimMode property 
will be set to “manual”. 

The command... is equivalent to... 
axis([5 10 3 7]) set(gca,'XLim',[5 10],'YLim',[3 7]) 

axis([1 4 -10 10 5 6]) set(gca,'XLim',[1 4],'YLim',... 
[-10 10],'Zlim',[5 6]) 

axis('axis') set(gca,'XLimMode','manual','YLimMode',... 
'manual','ZLimMode','manual')

Once a particular axis mode has been placed in its manual setting, the limits 
of that axis will not change (even if you add other graphics objects with values 
that fall outside the data limits of the axes) until you place the mode into the 
auto setting.  This is particularly useful when there is a region of interest to 
which you plan to add plots.  You can always define the axis after all the plots 
have been added; however, you will see that when you are adding plots from 
the command line or when you are working with animated plots, these 
properties come in handy.  Typing 

x = [-5:.5:7]; 
plot(x,x.^2)

will generate the plot shown below on the left of Figure 7.22. If you then 
use 

set(gca,'xlim',[-2 3]) 

the x-axis will run between -2 and 3, and the y-axis will automatically be 
adjusted  with new limits as shown with the figure on the right of Figure 7.22. 
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If we now want to hold the y-axis limits constant so that we may add 
another plot to the figure without altering the limits, we can type 

set(gca,'YLimMode','manual')

Previously, we learned that the command hold on could be used to set the 
axes object in a mode that will keep all existing objects in the plot when 
subsequent graphics statements are executed.  This command sets the 
property NextPlot to “add”, instead of the default of “replace”, so that new 
graphics objects are added as children to the axes object.  The “replace” mode 
will delete (or replace) the existing children of the axes object and clear all of 
the axes properties to their default values before creating the new children.  
There is also a mode called “replacechildren” that removes all axes children, 
but does not reset the other properties before adding the new children. 

So let’s add another line to the existing figure by setting the NextPlot
property to “add”. Since both the YLimMode and XLimMode properties are set 
to manual, only the portion of the next plot that falls within the existing limits 
will be seen, as in Figure 7.23. 

set(gca,'NextPlot','add')
x2=[-10:10];
y2 = 2*x2+6; 
plot(x2,y2,'b');

−5 0 5 10
0

5

10

15

20

25

30

35

40

45

50

−2 −1 0 1 2 3
0

1

2

3

4

5

6

7

8

9

Figure 7.22 Using XLim to adjust x-axis limits. 
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If the X and YLimMode had been set to automatic (auto) either before or 
after the last plot, the limits would be automatically determined so that both of 
these lines would be seen in their entirety. 

In addition to being able to specify the upper and lower limits of the x-, y-, 
and z-axis, you can also specify the direction of increasing values for each of 
the axis lines.  This is defined with the XDir, YDir, and ZDir properties.  By 
default, the directions are all set to “normal”, meaning that the axes object 
forms a standard right-handed coordinate system.  However, under certain 
circumstances, you may wish to have one or even all of the directions 
reversed.  This is accomplished by setting the direction property to “reverse” 
for the desired axis lines.  The command axis('ij') is a high-level command that 
alters the direction properties so that you can put the 2-D coordinate system 
origin in the upper left corner. Its handle graphics equivalent is 

set(gca,'YDir','reverse')

If you have generated the last plot you can demonstrate the affects of the XDir
and YDir properties with, 

set(gca,'XDir','reverse','YDir','reverse')

which should look like the plot in Figure 7.24. 
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Figure 7.23 Adding plots while keeping current axis limits. 
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The axes properties also give you control over whether or not an axis is 
scaled linearly or logarithmically.  This can be individually specified for any of 
the x-, y-, and z-axes with the XScale, YScale, and ZScale properties of the axes.  
For example, we can plot the series 1:100 in a logarithmic scale with the 
following code, 

plot(1:100);
set(gca,'YScale','log');
grid on; 

which produces the plot shown in Figure 7.25. 
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Figure 7.24 Reversing axis direction with XDir and YDir. 
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The DataAspectRatio property is a three-element vector that defines the 
relative ratios of a unit of length along the x-, y-, and z-axis. The 
PlotBoxAspectRatio property is also a three-element vector that defines the 
relative ratios of the box that contains the axes object.  By default, both of the 
mode properties will be set to “auto”, thereby letting MATLAB try to display 
the objects within the axes with the highest possible resolution in the space 
defined by the axes object’s Position property.  Stretch-to-fill is the term 
associated with this default behavior of MATLAB.  MATLAB attempts to create 
the largest axes it can in the region specified by the Position property with a 
data aspect ratio that best fits the x- and y-axis limits.  Some of the axis 
command inputs that specify values for these ratios are shown in the following 
table. 

The high-level command... is equivalent to... 
axis('equal') set(gca,'DataAspectRatio',[1 1 1]) 

axis('square') set(gca,'PlotBoxAspectRatio',[1 1 1]) 

axis('normal') set(gca,'DataAspectRatioMode','auto') 
set(gca,'PlotBoxAspectRatioMode','auto')

The best way to get an idea of how these two ratios affect the apparent size of 
the axes object and the data within them is to look at several examples that 
use various settings.  Run MATLAB's aspect ratio demo by typing ardemo or 
try the following examples. Figures 7.26 through 7.31use the plot of a square 
and a circle that were created with 

x = [-1 -1 1 1 -1]; y = [-1 1 1 -1 -1]; 
x2 = cos((0:5:360)*pi/180); 
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Figure 7.25 Setting YScale to “log”. 
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y2 = 2*sin((0:5:360)*pi/180); 
plot(x,y,x2,y2)
axis([-2 2 -2 2]) 

followed by the appropriate form of set, e.g.,

set(gca,'DataAspectRatioMode','auto',...
    'PlotBoxAspectRatioMode','auto') 

for Figure 7.26. The title on top of each plot shows the value of the aspect 
ratio properties of the axes object. 
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Figure 7.26  
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Figure 7.27  
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Figure 7.29  
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As you can see, each of these settings changes the way the visualized data is 
perceived.   You should always be careful to look at the axis tick mark labels to 
obtain a true appreciation and understanding of the data’s relevance. 

7.5.3.6 Axes Properties Related to Viewing Perspective 

The View and Xform are two closely related axes properties that control the 
manner in which 3-dimensional graphics objects are drawn on the 2-
dimensional plane.  The View property stores a 2-element vector ([azimuth 
elevation]) that defines an observational viewpoint in terms of the number of 
degrees in azimuth and elevation just as was described with the view function 
in Chapter 4. Any point in 3-D space can be defined with the azimuth and 
elevation angles and some measure of the distance (or range) from the 
observer to the origin.  The origin is not necessarily the point (0,0,0); rather it 
is the point (xmin,ymin,zmin) defined by the lower limits of the XLim, YLim, and 
ZLim properties.  Specifying an azimuth, elevation, and range would allow the 
observer to swing around within the 3-D space to view an object from any 
desired location.  However, the View property does not require a range, since 
MATLAB will automatically determine a range that allows the object being 
viewed to be as large as possible while under the constraint of remaining 
within the axes object’s position boundaries. 

The next properties we will discuss prescribe how the objects in the axes 
(which we might just as well refer to as the scene) are viewed as if you were 
looking through a camera.  These properties are the CameraPosition,
CameraTarget, CameraUpVector, and CameraViewAngle.  Along with each of 
these is a corresponding mode property (i.e., just add “Mode” to the end of 
the property names mentioned) that by default is set to “auto”.  The 
CameraPosition property specifies the position in data (x,y,z) coordinates from 
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which you are looking through the camera, while the CameraTarget specifies 
the location in data coordinates at which you are pointing your camera.  The 
default settings force the CameraTarget to be the center of the axes containing 
your graphics objects, the CameraUpVector to the y-axis direction in 2-D views 
and the z-axis direction in 3-D views, and the scene to fill as much as possible 
of the axes position rectangle. 

These properties give you many controls over the way objects are viewed, 
particularly when it is important to view a scene from different angles without 
resizing the scene.  In other words, this lets your perspective revolve around 
or move through a scene without changing the apparent relative distance at 
which you are looking at the axes, which makes it easier to do data 
comparisons between different views. 

The most useful point to remember is that if you want to keep MATLAB 
from resizing the axes object, use 

set(gca,'CameraViewAngleMode','manual')

After you have done this, you can revolve around a scene by changing the 
view with the view([az el]) command where az and el refer to the azimuth and 
elevation from which you want to view the objects in the axes (see Chapter 4).  
You can also move through the scene by changing the values in 
CameraPosition and CameraTarget.  Making a movie (see Chapter 9) by 
combining snapshots of a scene that you revolve and move through is easy 
and can produce a great presentation! 

The CameraUpVector property allows you, in a sense, to define the relative 
tilt of the camera with respect to the line defined by the camera and camera 
target locations. 

A closely related property is the axes Projection property.  This lets you 
define either an “orthographic” or a “perspective” display of your graph.  
These projections were introduced in Chapter 4, but we shall discuss them 
again. Orthographic should be used when trying to maintain the relative x-, y-, 
and z-axis data units. For example, when you are plotting 3-D views of 
mathematical functions, you should use the orthographic projection mode: 

set(gca,'projection','orthographic')

If you are plotting objects that you want to have shrink in size the farther 
they lie from the camera’s position, you should use perspective mode: 

set(gca,'projection','perspective'))

7.5.4 Line Properties 

The following table summarizes the properties that every line object has in 
addition to those that are common to all graphics objects.  
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Property Read
Only

ValueType/Options Format 

Color No [Red Green Blue] or color string RGB row 

EraseMode No  [{normal} | background | xor | none ] row 

LineStyle No [{-} | -- | : | -. | none ] row 

LineWidth No number 1 element 

Marker No [+ | o | * | . | x | square | diamond | v
| ^ | > | < | pentagram | hexagram |
{none} ] 

row 

MarkerSize No number 1 element 

MarkerEdgeColor No [none | {auto} ] -or- a ColorSpec row 

MarkerFaceColor No [{none} | auto ] -or- a ColorSpec row 

XData No numbers vector 

YData No numbers vector 

ZData No numbers vector 

     

Line objects are children of a single axes object and therefore must have 
some property that defines their relative position within their parent.  The 
XData, YData, and Zdata properties are just for this purpose.  These three 
properties store the data values that you are plotting with a line when you 
issue either a high-level command such as plot(x,y) or the low-level graphics 
command, line(x,y).  Every line can be thought of as a bunch of connected 
dots, where the ith dot is at a coordinate specified by (XData(i),YData(i),
ZData(i)).  To render a line, MATLAB requires that the XData and YData
property values be the same length vectors.  ZData, however, must either be 
an empty matrix, [ ], or a vector that is the same length as XData and YData.  In 
the event that you use a plotting command, such as plot(x,y) or line(x,y) for 2-
D plotting, i.e., specifying only x and y,  ZData will contain the empty matrix 
and it is assumed that the ZData coordinate is the number zero for each 
XData, YData element pair.  Only when you create a 3-D line, such as with 
plot3(x,y,z) or line(x,y,z), or when you specifically set this property value to 
some vector, perhaps with 

set(line_handle,'ZData',vector_of_zvalues);

will the ZData property contain numeric values. 

Most of the other line properties are used to specify the visual features of 
the line object.  So in order to illustrate the effects of these properties, we shall 
create a simple line object and keep track of its handle. 

figure;
x = [1:6]; 
y = sin(x); 
line_handle = plot(x,y); 

This last line could have been replaced with any one of the following: 
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line_handle = plot(y); 

or

line_handle = line('XData',x,'YData',y); 

or

line_handle = line(x,y); 

The Color property contains a single RGB intensity vector that defines the 
color of the line.  To set this property, you may pass either a legal color string 
or a 3-element vector.  For instance, to make our line green, we can use 

set(line_handle,'color','green')

or

set(line_handle,'color','g')

or

set(line_handle,'color',[0 1 0]) 

Previously, when we specified the colors of lines by passing a color string 
along to the plot command, the routine was essentially setting this property 
for you. 

This was also the case with the LineStyle property.  For instance, if you use 
the command plot(x,y,'g:') to create a green dotted line, the plot routine will 
separate the string into its two subcomponents, 'g' and ':'.  The 'g' is used to set 
the Color property and the ':' is used to set the LineStyle property.  The 
LineStyle property can be any one of the five types identified in the previous 
table. 

The Marker property lets you choose from one of 14  markers (13 styles and 
“none”).  Markers are placed at every data point specified by the X, Y, and 
ZData coordinate vectors.  Since you can choose a line style and marker type 
at the same time, you are probably plotting too many lines in a graph if you 
find that you have run out of combinations! 

The LineWidth property, by default, is set to 0.5 points (1 point = 1/72 inch).  
To illustrate some of the various line thicknesses, we can run the following 
script: 

figure;
axes('XLim',[0 6],'YLim',[0 7],'Box','on'); 
x = [1:4]; y = ones(size(x)); 
thicknessrange = [0.25 0.5 1 2 4 10]; 
for thicknessindex = 1:length(thicknessrange) 
   line('XData',x,'YData',y*thicknessindex,... 
         'LineWidth',thicknessrange(thicknessindex)); 
   text(5,thicknessindex,... 
         num2str(thicknessrange(thicknessindex))); 
end
title('LineWidths indicated next to line') 

This script will generate the plot shown in Figure 7.32.   
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Since the width of a line is specified in terms of points, values of 1 and less 
will all look identical on the screen; however, when you print them out, you 
will see the difference. 

Please note that the LineWidth will also change the widths of the markers, 
but not the size of the markers.  To change the marker size, you need to use 
the MarkerSize property. 

By default, the MarkerSize is six points.  As a quick exercise, see if you can 
generate a similar script (before looking at the code) to the one we just used 
above to generate the figure shown in Figure 7.33. 
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Figure 7.32 Controlling line widths. 
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figure;
axes('XLim',[0 6],'YLim',[0 6],'Box','on'); 
x = [1:4]; y = ones(size(x)); 
markersizerange = [1 3 6 12 20]; 
for markersizeindex = 1:length(markersizerange ) 

   line('XData',x,'YData',y*markersizeindex ,... 
        'LineStyle','none','Marker','x',... 
        'MarkerSize',markersizerange (markersizeindex )); 
   text(5,markersizeindex ,... 
        num2str(markersizerange (markersizeindex ))); 
end
title('MarkerSize  indicated next to line') 

A line’s marker also has edge (MarkerEdgeColor) and face 
(MarkerFaceColor) color properties.  A marker’s face is the region within the 
boundary defined by the marker’s edge.  The “+”, “.”, “x”, and “*” markers do 
not have faces, and therefore, their color is only affected by the 
MarkerEdgeColor property.  To illustrate, the following code will create 
hexagrams that have a yellow face, red edge, and are connected by a blue 
dashed line as shown in Figure 7.34: 

figure;
l=plot([-.5 .5 .5 -.5 -.5],[-.5 -.5 .5 .5 -.5]); 
set(l, 'linestyle','--',... 
    'color','blue',... 
    'linewidth',2,... 
    'marker','hexagram',... 
    'markersize',15,... 
    'markeredgecolor','red',... 
    'markerfacecolor','yellow'); 
axis([-1 1 -1 1]); 
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Figure 7.33 Using Marker and MarkerSize.
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Of course, you will have to try this on your computer to see the colors. As you 
can see, using various combinations of the Color, LineStyle, LineWidth, Marker,
MarkerEdgeColor, and MarkerFaceColor properties will give you quite a bit of 
freedom in defining many line object appearances.  

The EraseMode property of line objects is used to give some level of control 
over the manner in which a particular line object is erased and/or redrawn.  
This property is primarily manipulated when animating graphics objects, of 
which we will make extensive use in Chapter 9 when we discuss animation.  
For now, we will simply point out that this property is set to “normal” by 
default so that objects are rendered in the figure to provide an accurate 
presentation of the objects that currently exist in their relative order in relation 
to the perspective of the observer.  The price paid for the accurate figure 
representation is speed.  The other three modes of erasing are much faster, 
but have certain implications with regard to what is shown in the figure.  The 
“none” setting will keep MATLAB from updating the region of the figure where 
the object was found before it was either deleted or moved.  The “xor” mode 
allows the particular object to be moved or deleted without affecting the 
objects that are rendered below it.  However, since the object is xored with 
the color of the objects below it, its color will be influenced by other objects 
and can be guaranteed only when the object is located on top of the figure 
object.  Finally, the “background” setting will make sure that the object is 
drawn with the right color.  However, when an object with an EraseMode set 
to “background” is deleted or erased, any other object located below it will 
temporarily be damaged with an imprint of the erased object drawn in the 
figure’s background color.  All of these inaccuracies are removed at the time 
that either a refresh is issued or another graphics object which has its 
EraseMode property set to “normal” is created, moved, or deleted. 
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Figure 7.34 Using marker and line properties. 
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7.5.5 Rectangle Properties 

In the previous example, we created what looked like a rectangle by using 
the plot function and specifying data that defined the sides of the rectangle. 
Although this looks like a rectangle, it is not an actual rectangle as far as 
MATLAB is concerned. A rectangle in MATLAB is a unique graphics object 
and therefore has properties that specify it. The following table lists those 
properties unique to rectangle objects. 

Property Read
Only

ValueType/Options Format 

Curvature No [x, y] 1 or 2 element 

EraseMode No [ {normal} | background | xor | none ] row 

FaceColor No ColorSpec | {none} row 

EdgeColor No {ColorSpec} | none row 

LineStyle No  [ {-} | -- | : | -. | none ] row 

LineWidth No number 1 element 

Position No [x,y,width,height] vector 

     

As you would expect, rectangle objects have a Position property, specified 
by the same rect vector format we have previously seen. Also, since a 
rectangle is made of a line, there are the properties LineStyle and LineWidth.
Similar to what we have seen with the Marker property of line objects, we see 
that rectangle objects have FaceColor and EdgeColor properties as well. One 
property that rectangles have that you probably did not anticipate is Curvature.
This property takes either a one- or two-element vector as its value where the 
vector specifies the curve into the corners. If there is only one value specified, 
then both the vertical and horizontal segments of the rectangle take the curve; 
if two elements are provided, then the first affects the horizontal segment, and 
the second the vertical segment. The range of these values are 0 to 1 where 0 
is no curvature (corners would meet at right angles) and 1 is maximum 
curvature. The properties of a rectangle object are perhaps best understood by 
example. The following code will produce the result shown in Figure 7.35. 

figure;
curvesize=[0 0.2 0.5 0.8 1]; 
axis([1 20 1 20]); 
for inc=1:5 
 rect_h(inc)=rectangle; 
 set(rect_h(inc),'Position',[2,3*inc,2,2],... 
     'Curvature',curvesize(inc)); 
 text(5,3*inc, num2str(curvesize(inc))); 
end
inc=inc+1;
rect_h(inc)=rectangle
set(rect_h(inc),'Position',[9 6 6 6],... 
    'Curvature',[0.3 0.7],'LineStyle',':',... 
    'LineWidth',2,'EdgeColor','blue',... 
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 'FaceColor',[1 0 0]); 
text(10,4, {'Curvature = [0.3 0.7]',... 
     'EdgeColor = blue','FaceColor = red'}); 
axis equal; 

As you can see, when the value of Curvature is 1 (or [1 1] ), the rectangle 
becomes a circle.   

Although convenient and potentially very useful, rectangle objects are 
somewhat limited as far as graphics control. For instance, you might have 
noticed that rectangles do not have XData or YData, so you can not rotate 
rectangle objects with the rotate command, nor can you specify their 
transparency since they don’t have AlphaData. However, you will learn in the 
next section about a much more robust object that will allow you to 
manipulate its appearance in practically every way imaginable.  

7.5.6 Patch Properties 

A patch object is made up of one or more polygons. It is defined by the 
coordinates of its vertices. Each patch can have its own color, transparency, 
etc., and can be either 2-D or 3-D. The following table lists all the patch 
properties that are not common to all graphics objects. 
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Figure 7.35 Rectangle objects. 
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Property Read
Only 

ValueType/Options Format 

Properties Defining Patch Objects 

Faces No permutation of 1:M N-by-V matrix 

Vertices No numbers x-, y-, z-coordinates M-by-3 matrix 

XData No coordinates of the points at 
the vertices 

vector or 
matrix

YData No coordinates of the points at 
the vertices 

vector or 
matrix

ZData No coordinates of the points at 
the vertices 

vector or 
matrix

Properties Specifying Lines, Color, and Markers 

CData No numbers vector 

CDataMapping No [ direct | {scaled}] row 

EdgeColor No [ none | {flat} | interp ] or 
[Red Green Blue] or color 
string 

row 

FaceColor No [ none | {flat} | interp ] or 
[Red Green Blue] or color 
string 

row 

FaceVertexCData No RGB per patch, face, or vertex matrix 

LineStyle No [ {'-'} | '--' | '-.' | ':' | 'none'] row 

LineWidth No number 1 element 

Marker No [ 'square' | 'diamond' | 'v' | '^' 
| '>' | '<' | '.' | 'pentagram' | 
'hexagram' | 'o' | 'x' | '+' | '*' | 
{none}] 

row 

MarkerEdgeColor No [ none | {auto} | [R G B] | 
color_string] 

row 

MarkerFaceColor No [ {none} | auto | [R G B] | 
color_string] 

row 

MarkerSize No number 1 element 

continued next page 
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Property Read
Only

ValueType/Options Format 

Properties Affecting Lighting and Transparency 

    

AmbientStrength No numbers vector 

BackFaceLighting No [ unlit | lit | {reverselit} ] row 

FaceLighting No [ none | {flat} | gouraud | 
phong ] 

row 

DiffuseStrength No number 1element 

EdgeLighting No [ {none} | {flat} | gouraud | 
phong ] 

row 

SpecularColorReflectance No number ranging from 0 to 1 1 element 

SpecularExponent No number > or = to 1 1 element 

SpecularStrength No number ranging from 0 to 1 1 element 

VertexNormals No numbers M-by-3 matrix 

NormalMode No [ {auto} | manual ] row 

EraseMode No [ {normal} | none | xor | 
background ] 

row 

AlphaDataMapping No [ none |direct | {scaled} ] row 

EdgeAlpha No [{scalar = 1} | flat | interp ] 1element or
string 

FaceAlpha No [{scalar = 1} | flat | interp ] 1element or
string 

FaceVertexAlphaData No transparency data 1element or
M-by-1 matrix 

7.5.6.1 Properties Defining Patch Objects 

Just as line objects used XData, YData, and ZData properties to store data 
that defines the coordinates that are connected sequentially to form a line, 
patch objects use these three properties to store data that defines the 
locations of its vertices.  Here again, if the ZData property contains the empty 
matrix, it is assumed that the patch object lies in the xy-plane (the z-axis 
coordinates are assumed to be zero).  In addition, if the first and last vertex 
coordinates do not form a closed path, MATLAB automatically joins these two 
vertices. 

Try not to think of patches as a single polygon; patches can have as many 
faces as you want.  Each column of the X, Y, and ZData properties refers to a 
face of the patch object.  Additional properties, Vertices and Faces, are part of  
the patch object to make it easier to define patches with more than one face.  
With the Vertices property, you can define all the possible vertices you want to 
use (and additional ones if it makes your life easier) as an M-by-3 matrix, where 
each of the M rows represents a vertex’s x,y,z coordinates.  Then you define 
groups of the vertices that are to be connected with an N-by-V matrix in the 
Faces property, where N is the number of faces and V is the maximum number 
of vertices you want in any single face.  The faces are drawn by connecting the 
vertices in the order specified by going from column 1 to column V. 
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 You might be wondering,  

What if I want different type polygons for some of the faces in the patch?

If you wanted a mix of quadrilateral faces and triangular faces, the 
maximum number of rows you need is four.  For the rows defining triangles, 
you need only three vertices, so just put a NaN in the fourth column of those 
rows. As an example, we can create a patch object with different polygons. 

figure;
vertex = [-0.5 -0.5  0;    % Vertex 1 
           0.5 -0.5  0 ;   % Vertex 2 
           0.5  0.5  0;    % Vertex 3 
          -0.5  0.5  0;    % Vertex 4 
           0    0   -1];   % Vertex 5 
faces = [1 2 3 4;          % Face F1 
         1 2 5 NaN;        % Face F2 
         2 3 5 NaN;        % Face F3 
         3 4 5 NaN;        % Face F4 
         4 1 5 NaN];       % Face F5 
p=patch('vertices',vertex,...
        'faces',faces,... 
        'facecolor',[.5 .5 .5]); 
axis([-1 1 -1 1 -1 0]); 
view(3);

to produce the upside-down pyramid shown in Figure 7.36. 
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Figure 7.36 A single patch  object with 5 faces. 
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7.5.6.2 Properties Specifying Lines, Color, and Markers 

Each face of a patch object can be thought of as being composed of three 
subcomponents.  The first subcomponent is the edge or line that connects 
each of the vertices in the sequence in which they are specified.  The second 
subcomponent is the patch’s face or region that lies within the vertices.  And 
the third, which is by default not displayed, is the set of markers that can be 
located at the vertices. 

You can define the edge color, style, and width of a patch object with the 
EdgeColor, LineStyle, and LineWidth properties. 

Markers are drawn only if you set the Marker property with a valid setting.  
Just as with line objects, a marker’s edge color, face color, and size can be 
altered with the MarkerEdgeColor, MarkerFaceColor, and MarkerSize
properties.  The only difference with a patch’s marker edge and face color 
properties is that they have an “auto” setting.  If in “auto” mode, their colors 
will depend on the value specified in the EdgeColor property.  This allows the 
marker colors to be interpolated.  Finally, remember that the marker’s edge 
width is determined by the LineWidth property. 

To better understand how these properties can be used, let’s look at a 
simple example.  First, we will define the coordinates of a single polygon.  
Then we will create translated patch objects that illustrate the use of the 
different properties. The results are shown in Figure 7.37. 

x = [-1 -1 1 1 -1]; 
y = [-1 1 1 -1 -1]; 
figure;
axes('XLim',[-4 4],'YLim',[-4 4],'box','on') 
p1 = patch('XData',x,'YData',y,'FaceColor','blue'); 
p2 = patch('XData',x+2,'YData',y+2,... 
'FaceColor',[1 0 0],'Edgecolor',[0 1 0],... 
'linewidth',3, 'marker','o'); 
p3 = patch('XData',x-2,'YData',y+2,'FaceColor','none',... 
 'Edgecolor',[.3 .3 .3],'linewidth',6); 
p4 = patch('XData',x+2,'YData',y-2,... 
'FaceColor',[0 1 1],'Edgecolor','none',... 
'linewidth',3,'marker','hexagram',...
'markeredgecolor','yellow','markerfacecolor','red',...
'markersize',20);
p5 = patch('XData',x-2,'YData',y-2,'FaceColor',[0 1 
1],...
 'Edgecolor',[0 0 0],'linewidth',40); 
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The last two patch objects, p4 and p5, are created to illustrate that there is a 
difference between specifying the color of the axes object (black on most 
platforms) or none for the EdgeColor and FaceColor properties.  If a 
subcomponent’s color value is set to “none”, that component of the patch 
object will not be rendered.  On the other hand, a white component will get 
rendered and may partially hide another object (see p1 in the example) or 
even its complement component (as seen by the fact that p5’s face 
component is partially obscured by its edge component).  This is particularly 
evident when the figure or axes object is not white. 

You should also be aware of the fact that the order in which these patch 
objects were created has significance in the final result.  This is because we did 
not specify any values for the ZData properties of these patch objects and, 
therefore, they are all in the same xy-plane.  The objects most recently created 
will be on top of the other objects.   

The EdgeColor and FaceColor of a patch object can also be set to “flat” or 
“interp” (interpolated).  In order to use one of these options, you need to 
specify the color data, CData or FaceVertexCData, of the patch object.  If either 
of these two CData properties is not specified and you try to define the 
EdgeColor or FaceColor property as “flat” or “interp”, or the MarkerEdgeColor,
or MarkerFaceColor as “flat”,  MATLAB will return one of the following 
warning messages: 

Warning: Patch FaceVertexCData length (0) must equal 
Vertices length (5) for flat EdgeColor. 

Warning: Color Data is not set for Interpolated shading. 

Warning: Patch FaceVertexCData of size 0 cannot be used 
with Flat shading. 
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Figure 7.37 Demonstrating patch properties. 
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Warning: Color Data is not set for marker flat coloring. 

and the patch object will not be rendered. 

Although you were introduced to how color maps and true color are 
specified in MATLAB in Chapter 5, we will visit those topics again in Chapter 
8. Furthermore, we will discuss the Cdata, FaceVertexCData, and 
CDataMapping properties in greater detail in Chapter 8. For now, we will give 
just a brief discussion as it applies to the patch object.  As a general overview, 
the color data (Cdata and FaceVertexCData) properties are used to specify the 
colors at the corners of each face.  Which of these two properties you use will 
most likely depend on what form you used to enter in the location of the 
patch’s corners.  If you used the X, Y, ZData properties, then CData is probably 
the most appropriate.  If you used the Vertices and Faces properties, then you 
will probably want to use FaceVertexCData.  If you are using multifaceted 
patches you will notice that, in general, using the FaceVertexCData is easier 
because you have to define the color at a vertex that is used for multiple faces 
only once, where as with CData you need to specify the color at the corner for 
each face. 

For now, when the CDataMapping is set to the default value of “scaled”, 
you can think of the color data values as a range of values that get scaled to 
the size of  the figure’s color map to identify the color at each of the patch 
vertices or each face.  By scaled, we mean that the smallest color data value 
will be mapped to (or, in other words, drawn using) the first color in the color 
map, and the largest color data value will be mapped to the last color in the 
color map.  This default setting lets you flip between different sized color maps 
without having to recalculate the CData or FaceVertexCData values. When the 
CDataMapping is set to “direct”, you can think of the color data values as 
indices to the figure’s color map that are used to identify the color at each of 
the patch vertices or each face. 

Remember that the size of the matrices you assign to either of color data 
value properties and the setting of the FaceColor and EdgeColor properties will 
specify how MATLAB should interpret your coloring intentions. 

If you want... set the patch’s ... 
a single true color for all faces FaceColor to an RGB value 

or 
FaceColor to “flat” and FaceVertexCData to an 
RGB value 

a single color for all faces that are 
indexed to the color map 

FaceColor to “flat”, CDataMapping to “direct”, 
and FaceVertexCData to a single colormap 
index containing the color you want. 

a single color for all faces that are scaled 
to the color map 

FaceColor to “flat”, CDataMapping to “scaled”, 
and FaceVertexCData to a single value that is 
chosen in relation to the axes object’s CLim
property limits value. 

one true color for each face FaceColor to “flat” and FaceVertexCData to an 
M-by-RGB (i.e., M-by-3) matrix, where M is the 
number of faces. 

continued next page 
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If you want... set the patch’s ... 
one color for each face that is indexed 
to the color map 

FaceColor to “flat”, CDataMapping to “direct”, 
and FaceVertexCData to a column of M 
colormap indices containing the color you 
want, where M is the number of faces. 

one color for each face that is scaled to 
the color map 

FaceColor to “flat”, CDataMapping to “scaled”, 
and FaceVertexCData to a column of M (the 
number of faces) values that are chosen in 
relation to the axes object’s CLim property 
limits. 

interpolated true color for each face FaceColor to “interp” and FaceVertexCData to 
an V-by-RGB (i.e., V-by-3) matrix, where V is 
the number of vertices. 

interpolated color for each face that is 
indexed to the color map 

FaceColor to “interp”, CDataMapping to 
“direct”, and FaceVertexCData to a column of 
V colormap indices containing the color you 
want, where V is the number of vertices. 

interpolated color for each face that is 
scaled to the color map 

FaceColor to “interp”, CDataMapping to 
“scaled”, and FaceVertexCData to a column of 
V (the number of vertices) values that are 
chosen in relation to the axes object’s CLim
property limits. 

7.5.6.3 Properties Affecting Lighting and Transparency 

This last set of patch properties have to do with how patch objects are 
affected by lighting and transparency. Although we will cover these properties 
in greater detail in Chapter 8, we will give a brief overview here. 
VertexNormals are automatically calculated by MATALB when the 
NormalMode property is set to “auto”. We will see these properties with 
surface objects as well. These normals are used by MATLAB to perform 
calculations that determine the visual effects of lighting models on the patch 
object.  Modifying the VertexNormals sets the NormalMode property to 
“manual” and prohibits MATLAB from recalculating the normals. Providing 
your own set of normals in lieu of MATLAB automatically determining them 
can lead to very interesting lighting effects. 

Additional properties that give you control over how lighting affects the 
patch objects are SpecularStrength, DiffuseStrength, AmbientStrength;
properties used to specify the respective intensity components of light objects 
that are reflected off of the patch object.  The SpecularExponent property 
determines the size of the highlight spot due to a light source shining on the 
patch object.  The default value is 10.  Increasing this value makes the spot 
smaller and decreasing it makes the spot larger.  The SpecularColorReflectance
property controls the color of the reflected light spot emanating from the 
patch object. It can vary between 0 and 1, where values approaching 0 
indicate that MATLAB should reflect more of the patch’s color, and values 
approaching 1 indicate that MATLAB should reflect more of the light object’s 
color.  The FaceLighting and EdgeLighting properties specify the method that 
MATLAB should use to calculate the effect of light on the patch object.  You 
will find that setting the EdgeLighting and FaceLighting to “flat” for patch 
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objects is generally optimal.  “Gouraud” and “phong” lighting is usually best 
used when viewing curved surfaces.  Finally, there is a property called 
BackFaceLighting. BackFaceLighting by default is set to “reverselit”, which 
means that patch objects whose VertexNormals point away from the camera 
are illuminated. BackFaceLighting can be used to highlight only the patch 
objects whose VertexNormals are facing the camera by setting it to “unlit”.  
The “lit” setting can be used if you are seeing strange lighting effects along the 
edges of the patch objects. 

The EraseMode property of patch objects has the same meaning as was 
briefly discussed for line objects.  This property will also be elaborated when 
animation is presented in Chapter 9. 

The remaining properties, AlphaDataMapping, EdgeAlpha, FaceAlpha, and 
FaceVertexAlphaData determine how patch objects present transparency data, 
a.k.a., alpha data. We will discuss this in greater detail in Chapter 8, but for 
now we will present a brief overview as an appetizer. The properties 
EdgeAlpha and FaceAlpha specify the transparency of the edges  and faces of 
patches respectively. Both take values of either a single scalar value between 0 
and 1, where 0 is fully transparent and 1 (the default) is completely opaque, or 
“flat” or “interp” in which cases the property FaceVertexAlphaData must 
contain valid alpha data. Note that you must have supplied alpha data when 
you select “flat” or “interp” or MATLAB will report a warning like, 

Warning: Patch FaceVertexAlphaData of size 0 cannot be 
used with Flat Alpha..

or

Warning: Alpha Data is not set for Interpolated shading. 

The AlphaDataMapping property specifies the method MATLAB will use to 
map the transparency, i.e., “none” such that alpha data is “clamped” between 
0 and 1, “scaled” (the default) where alpha data is mapped linearly to span the 
portion of the alphamap indicated by the axes ALim property, or “direct” in 
which case alpha data in the FaceVertexAlphaData property is taken directly. 
As we said, we will present using these properties fully in Chapter 8. 

7.5.7 Surface Properties 

Surface objects have properties which are an assembled mix of properties 
from both the line and patch graphics objects. You have already become 
somewhat familiar with surface objects by virtue of the surf function in 
Chapter 4. However, you will wield great power over surface objects once 
you go beneath the surface (so to speak) and become familiar with the 
properties which are listed in the following table. We will only briefly describe 
these properties in this section, but see them again in the following chapter on 
color, light, and transparency. Also, many of these properties are already 
familiar to you, having been presented with line and patch objects. 

	 
 � � � 
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Property Read 
Only

ValueType/Options Format 

Properties that Define a Surface 

XData No coordinates of the points at the 
vertices 

vector or 
matrix

YData No coordinates of the points at the 
vertices 

vector or 
matrix

ZData No coordinates of the points at the 
vertices 

vector or 
matrix

Properties that Specify Lines, Colors, and Markers 

CData No numbers vector 

CDataMapping No [ direct | {scaled}] row 

LineStyle No [ {'-'} | '--' | '-.' | ':' | 'none'] row 

LineWidth No number 1 element 

EdgeColor No [ none | {flat} | interp ] or 
[Red Green Blue] or color string 

row 

FaceColor No [ none | {flat} | interp | texturemap ] 
or  [Red Green Blue] or color string 

row 

Marker No [ 'square' | 'diamond' | 'v' | '^' | '>' | '<' 
| '.' | 'pentagram' | 'hexagram' | 'o' | 'x' 
| '+' | '*' | {none}] 

row 

MarkerEdgeColor No [ none | {auto} | [R G B] | color_string] row 

MarkerFaceColor No [ {none} | auto | [R G B] | color_string] row 

MarkerSize No number 1 element 

Properties Affecting Lighting and Transparency 

AmbientStrength No numbers vector 

BackFaceLighting No [ unlit | lit | {reverselit} ] row 

DiffuseStrength No number 1element 

EdgeLighting No [ {none} | {flat} | gouraud | phong ] row 

FaceLighting No [ none | {flat} | gouraud | phong ] row 

NormalMode No [ {auto} | manual ] row 

SpecularColorReflectance No number ranging from 0 to 1 1 element 

SpecularExponent No number > or = to 1 1 element 

SpecularStrength No number ranging from 0 to 1 1 element 

VertexNormals No numbers M-by-3 matrix 

AlphaData No default = 1 (opaque) M-by-N matrix
of double or 

uint8 

AlphaDataMapping No [ none |direct | {scaled} ] row 

EdgeAlpha No [{scalar = 1} | flat | interp ] 1element or 
string 

FaceAlpha No [{scalar = 1} | flat | interp ] 1element or 
string 

Surface objects store matrices in the XData, YData, and ZData properties.  
These three properties define the vertices of the quadrilaterals which make up 
the surface object.  The XData and YData properties do not need to be 
matrices.  They can be vectors, provided that there are as many elements in 
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XData as there are columns in ZData, and as many elements in YData as there 
are rows in Zdata. If you store an M-by-N matrix in ZData, then you must store 
either a 1-by-N vector or an M-by-N matrix in the XData property.  Likewise, 
you must store either a 1-by-M vector or an M-by-N matrix in the YData
property. 

In addition to the three vertex position properties, the color data property, 
CData, must also be defined.  Most high-level commands set ZData and CData
to the same matrix so that color will be proportional to the height of the 
surface.  However, we will see that if you set the FaceColor property to 
“texturemap”, CData can be any size you desire.  Under this circumstance, the 
CData will be treated like an image that you want to have “wrapped” across 
or made to fit within the surface.  Normally, the FaceColor property is set to 
flat and the color of a particular quadrilateral within the surface will be 
identified by the upper left-hand element of the set of four elements defining 
the color.  Consider for a moment that the following MATLAB code 

sx = [1 2 3 ]; 
sy = [4 5 6]; 
sZ = [1  2  3; 
      4  5  6; 
      7  8  9]; 
figure
axes('view',[-37.5, 30]) 
surface('XData',sx,'YData',sy,'ZData',sZ,'CData',sZ);
% We could also use surface(sx,sy,sZ,sZ). 

will generate Figure 7.38. 

As you can see, the 3-by-3 matrix, sZ, creates four quadrilaterals. 
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Figure 7.38 Creation of a simple surface. 
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The lines that surround each quadrilateral are called the edges, and are by 
default black.  These can be defined in several different ways using the 
EdgeColor property, just as the patch edge lines can be specified.  For 
example, if you want the surface with handle, h_surface, to have red edges, 
you can use 

set(h_surface,'EdgeColor','red')

or  

set(h_surface,'EdgeColor',[1 0 0]); 

If you do not want edges, you can set the EdgeColor to “none”.  This 
property may also be set to “flat” or “interp”.  The value “flat” will use a single 
color for the edge of a particular quadrilateral that is based on the upper left 
most element of the group of four elements in CData that are associated with 
that face.  On the other hand, “interp” will linearly interpolate the edge line 
segments between the face’s four CData elements. 

You can also set the LineStyle of the edge lines to something other than the 
default solid lines ('-').  In addition to the style of the line, you can also set its 
thickness with the property LineWidth (default = 0.5).  If you have decided to 
use one of the standard set of markers, you may set the MarkerSize,
MarkerEdgeColor, and MarkerFaceColor properties to alter the marker’s 
attributes.  These have the same affect that they had on patch objects.  The 
“auto” value of the MarkerEdgeColor and MarkerFaceColor lets the EdgeColor
property dictate the color of the markers.  Just as with patch objects, 
remember that the surface’s marker’s edge width is determined by the 
LineWidth property. 

Finally, the last property you can manipulate to affect the appearance of the 
surface quadrilateral edges is the MeshStyle property.  When the LineStyle is 
set so that the edges are solid lines, you can specify which edges are drawn.  
By default the edges are on all four sides of each quadrilateral, or in other 
words, down each row and column of the ZData matrix.  However, if you 
want the edges to run only along the columns of the ZData, you can set the 
MeshStyle to “column”, and if you want them to run along the rows of the 
ZData, set this property to “row”.  Figure 7.39  shows the effect  of MeshStyle
set to “row” as well as some line width alteration applied to the previous 
example with  

set(h_surf,'MeshStyle','row','EdgeColor',[1 0 1],... 
    'LineWidth',4) 
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Figure 7.40 shows the effect of using 

set(h_surf,'MeshStyle','column','EdgeColor',[1 0 1],... 
    'LineWidth',4) 

The manner in which the color of the faces of the surface’s quadrilaterals 
can be specified is similar to the way that an individual patch object’s face 
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MeshStyle=row, EdgeColor=[1 0 1], LineWidth=4

Figure 7.39 Manipulating the MeshStyle ‘row.’ 
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Figure 7.40 Manipulating the MeshStyle ‘column.’ 
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color is specified.  You may specify that all quadrilaterals be a certain color by 
setting the FaceColor property to either a legal color string or RGB triplet 
vector.  By default, this property is set to “flat” so that each quadrilateral face is 
a solid color that usually corresponds to the height of the upper left corner of 
the quadrilateral. In Chapter 8 you will learn how to set the quadrilateral face 
colors so they are proportional to the height of the quadrilateral’s center.  You 
may also set the FaceColor to “interp” so that the color is interpolated through 
the four elements of CData that are associated with the vertices of each 
quadrilateral.  This will give a smooth blend of color between adjacent 
quadrilaterals and depending on the values, CData can be used to give an 
accurate representation of surface height across the entire surface. 

Just as with patch objects, when the CDataMapping is set to the default 
value of “scaled”, you can think of the color data values as a range of values 
that get scaled to the size of  the figure’s color map to identify the color at 
each of the corners of a face in the surface.  This default setting lets you flip 
between different sized color maps (see Chapter 8) without having to 
recalculate the CData values. When the value of CDataMapping is set to 
“direct”, you can think of the color data values as indices to the figure’s color 
map that are used to identify the color at each corner of each face of the 
surface object. 

Remember that the size of the matrices you assign to either of color data 
value properties and the setting of the FaceColor and EdgeColor properties will 
specify how MATLAB should interpret your coloring intentions. 

Just as with patches, surface VertexNormals are automatically calculated by 
MATLAB when the NormalMode property is set to “auto”.  The normals are 
used to perform calculations that determine the visual effects of lighting 
models on the surface of each object.  Modifying the VertexNormals sets the 
NormalMode property to “manual” and keeps MATLAB from recalculating the 
normals. 

Although we will discuss lighting and transparency in detail in Chapter 8, 
you have already seen an introduction to these properties with the patch 
object discussion. So we will dispense with repeating that brief introduction, 
and merely point out that the properties of SpecularStrength, DiffuseStrength,
and AmbientStrength are, just as with patch objects,  used to specify the 
respective intensity components of light objects that are reflected off of the 
surface object.  The defaults and uses are the same as with patch objects. The 
SpecularExponent property determines the size of the highlight spot due to a 
light source shining on the surface object.  The SpecularColorReflectance
property controls the color of the reflected light spot emanating from the 
surface object. The FaceLighting and EdgeLighting properties specify the 
method that MATLAB should use to calculate the effect of light on the surface 
object. BackFaceLighting, by default, is set to reverselit, which means that 
patch objects whose VertexNormals point away from the camera are 
illuminated. Just as we stated with patch objects, BackFaceLighting can be used 
to highlight only the surface objects whose VertexNormals are facing the 
camera by setting it to “unlit”.  The “lit” setting can be used if you are seeing 
strange lighting effects along the edges of the surface object. 
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Finally, just as  patch objects can have transparency, so can surfaces. The 
same properties you saw with patch objects exist with surface objects as well. 
All we will say here, is that just like with patch objects, alpha data must exist 
for the surface object before using EdgeAlpha or FaceAlpha. If alpha data has 
not been defined, you will get warnings like, 

Warning: size(AlphaData) must equal size(ZData) or 
size(ZData)-1 for flat alpha. 

or

Warning: size(AlphaData) must equal size(ZData) for 
interpolated alpha. 

We will cover alpha data thoroughly in the next chapter. 

7.5.8 Image Properties 

Although Chapter 5 dealt with images, we intentionally left out any 
discussion of handle graphics. Image objects are created anytime you invoke 
the image  or imagesc  commands. As you have seen, MATLAB lets you do 
quite a lot without relying on handle graphics and object properties. But by 
now you have gained a great deal of familiarity with object properties, and are 
probably quite comfortable using the set and get commands. Image objects in 
MATLAB are children of axes objects, just like lines, patches, and surfaces. 
Knowing the properties that affect images will give you a greater command 
over what you can do with them. The following table lists the properties that 
pertain to image objects. 

Property Read
Only

ValueType/Options Format 

General Properties of the Image Object 

CData No numbers matrix or M-
by-N-by-3
array

CDataMapping No [ {direct} | scaled] row 

XData No [min, max] default = [1, size(CData,2)] 2-element 
vector 

YData No [min max] default = [1, size(CData, 1)] 2-element 
vector 

Properties Affecting Transparency 

AlphaData No default = 1 (opaque) M-by-N matrix 
of double or 
uint8 

AlphaDataMapping No [ {none} |direct | scaled ] row 

The CData property of an image contains the actual data that makes up the 
image. The dimension of the data in CData, either MxN, or MxNx3, 
determines if MATLAB displays the image using colormap colors, or as an RGB 
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image. If the CData contains a 2-D array, then the image is either an indexed 
image or an intensity image (see Chapter 5). In either case the image is 
displayed using colormap colors. If the data in CData is 3-D, then the image is 
a truecolor image. 

The properties XData and YData specify the coordinate system for the 
image. For MxN images, the default for XData is [1 N] and the default for 
YData is [1 M]. This means that for an image object, the left column of the 
image has an x-coordinate of 1, the right column an x-coordinate of N, the top 
row a y-coordinate of 1 and the bottom row an y-coordinate of M. We can 
demonstrate this with the following code, 

X = [1 2 3 4;
     5 6 7 8;
     9 10 11 12]; 
h_image = image(X); 
colormap(colorcube(12));
xlabel('x-coordinates');
ylabel('y-coordinates');

which will produce the result shown in Figure 7.41. 

If you invoke the image function again, this time specifying a non-default value 
for XData, such as with the following code, you will get the result shown in 
Figure 7.42. 

h_image2 = image(X, 'XData',[-1 2]); 
colormap(colorcube(12));
xlabel('x-coordinates');
ylabel('y-coordinates');
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Figure 7.41 Default image object coordinates. 
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As you can see in Figure 7.42, the x-coordinates have been changed to the 
range we specified ([-1 2]). Since we have changed the coordinate range, the 
return value of commands like, 

get(gca,'CurrentPoint')

will be points in the new coordinate system.  

We will discuss the properties AlphaData and AlphaDataMapping in the 
next chapter.

7.5.9 Text Properties 

The last object we will discuss, and the last object that is a child to an axes 
object, is the text object. You have been adding text, either with text 
commands like text, xlabel, label, etc., or by annotating using the “Insert Text” 
button from the toolbar in the Figure Window. But just like the other objects 
we have seen,  MATLAB offers the ability to alter the text properties so that 
you can highlight the important aspects of the graphical information. In 
addition to properties common to all axes children objects, the properties 
associated with text objects can be categorized into those that define the text 
object, those that position the text object, and those that specify the font.  The 
following table summarizes the properties that are specific to text objects. 
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Figure 7.42 Changing XData to a non-default value. 
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Property Read
Only

ValueType/Options Format 

Color No [Red Green Blue] or color string RGB row 

Editing No [{off} | on ] row 

EraseMode No [{normal} | none | xor | background ] row 

Extent Yes [left bottom width height] 4-element 
row 

FontAngle  No [ {normal} | italic | oblique ] 1 element 

FontName No string row 

FontSize No numbers 1 element 

FontUnits No [ inches | centimeters | normalized | 
points | pixels | {data} ] 

row 

FontWeight No [ light | {normal} | demi | bold ] row 

HorizontalAlignment No [ {left} | center | right ] row 

Interpreter No [ {tex} | none ] row 

Position No [x y z] coordinates row 

Rotation No [AngleInDegrees] 1 element 

String No string row 

Units No [ inches | centimeters | normalized | 
points | pixels | {data} ] 

row 

VerticalAlignment No [top | cap |{middle}| baseline | bottom] row 

Each text object displays the text that is in the String property. Multiple lines 
of strings are displayed by using string cell-arrays. Every cell will correspond to 
a line in the multi-line string. For example, the following code 

text(.1,.1,'This is single line text object.'); 
text(.5,.5,[{'This is line one'... 
               'This is line two'... 
               'This is line three'... 
               'of a multiline string object'}]); 

produces the results shown in Figure 7.43. 
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Each text object is anchored to a location within the figure that is specified 
with respect to its parent (an axes object).  The Units of a text object are by 
default in data units. This makes it easy to add text at the command line by 
picking off a location in the graph using the axis tick mark labels as a guide or, 
perhaps more important, allows placing text with respect to a specific point on 
a plotted line, surface, or other graphics object. However, you can also specify 
that the Units be in inches, centimeters, normalized, points, or pixels. These 
units are all relative to the lower left corner of the axes object parent. 

The Position property is stored as a 2- or 3-element row vector that defines a 
coordinate, (x,y,z), in the 3-dimensional space. If a 2-element row is specified, 
the z-axis coordinate is assumed zero. The position values must be specified in 
the units defined by the Units property of the text object. 

In addition to defining the location of the text object, you can also define 
the orientation with the Rotation property. MATLAB allows you to specify any 
angular value in degrees relative to zero (which is the default value).  For 
example, 

axis([0 10 0 10]) 
text(5,5,'Text at 0 degrees'); 
text(5,5.5,'Text at 45 degrees', 'Rotation',45); 
text(4.5,5,'Text at 90 degrees','Rotation',90); 

creates the two text objects shown in Figure 7.44. 
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Figure 7.43 Cell-arrays allow multiple line text objects. 
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After you have experimented with the different placement properties, you 
may also want to look at the various properties that affect the visual aspects of 
the text object. Figure 7.45 shows some of the individual text item’s properties 
as they are specified in the string of the object so that you can see their 
effects. Here is the code that creates the figure:  

axis([0 10 0 10]) 

text(0,9,'fontweight=bold, fontname=times new roman,... 
fontsize=12, fontangle=normal',... 
'FontWeight','bold', 'Fontname','times new roman',... 
'FontSize',12,'FontAngle','normal');

text(0,7,'fontweight=light, fontname=times new roman,... 
fontsize=10, fontangle=normal',... 
'FontWeight','light','Fontname','times new roman ',... 
'FontSize',10,'FontAngle','normal');

text(0,5,'fontweight=normal, fontname=arial,... 
fontsize=12, fontangle=normal',... 
'Fontname','arial',FontSize',12,'FontAngle','normal');

text(2,3,{'fontweight=bold, fontname=brush script,... 
fontsize=12','fontangle=normal, color=red'},... 
'FontWeight','bold', 'Fontname','brush script',... 
'FontSize',12,'Color','red');

You can use any of the fonts available on your system for the value of 
FontName. Only a very small fraction of the number of possibilities that you 
could potentially define with the text font properties has been shown.  
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Figure 7.44 The effect of the Rotation property. 
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As you can see in the above example, in addition to the font angle, name, 
size, and weight, you can also set the Color property to any legal color string 
or a 3-element RGB color vector. For example, if you want some blue text at 
the axes position (0.5,0.5,0), use any one of the following syntaxes: 

text(0.5,0.5,'Blue Text String','color','blue'); 
text(0.5,0.5,'Blue Text String','color',[0 0 1]); 
text(0.5,0.5,'Blue Text String','color','b'); 

The properties HorizontalAlignment and VerticalAlignment make it easy to 
figure out their respective effects on the text’s location relative to the point 
defined by the Position property. Figure 7.46 shows several text strings that 
have been placed relative to the “crosshairs” drawn in the figure.  The 
HorizontalAlignment property will shift the text’s position relative to the point 
along the x-axis, while the VerticalAlignment property shifts the text’s position 
relative to the point along the y-axis. 

text(1.5,4.5,'HorizontalAlignment=left','horiz','left')
text(1.5,3.5,'HorizontalAlignment=center','horiz',...
'center')
text(1.5,2.5,'HorizontalAlignment=right','horiz',...
'right')
hold on 
plot([1.5*ones(1,3)],[2.5:4.5],'+','markersize',30)

text(2.5,5,'VerticalAlignment=top','vert','top')
text(2.5,4,'VerticalAlignment=cap','vert','cap')
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Figure 7.45 Example of text font properties.  
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text(2.5,3,'VerticalAlignment=middle','vert','mid')
text(2.5,2,'VerticalAlignment=baseline','vert','base')
text(2.5,1,'VerticalAlignment=bottom','vert','bottom')
plot([2.5*ones(1,5)],[1:5],'+','markersize',30)
set(gca,'vis','off')
axis([0 5 0 6]);axis(axis) 

The two properties EraseMode and Extent are principally applicable to 
animation, which will be covered in Chapter 9, however we will briefly discuss 
their function here. Often, it may be advantageous or desirable to have the 
text properties values change instead of deleting an existing object and then 
creating a new text object with the desired values.  For example, if you want 
to have some text move across the top of the figure in a smooth manner, you 
can set the EraseMode to “xor” or “background” depending on your particular 
requirements and update the Position property as desired. The Extent property 
allows you to precisely determine the region covered by the characters in the 
string. The position along with the alignment properties define where the text 
will lie relative to some point and is independent of the number of characters 
in the string. The Extent property provides (since it is a read-only property) 
additional information that depends on a combination of other properties, 
specifically, FontSize, FontName, FontWeight, the number of characters in 
String, Position, and the alignment properties.  

The property Editing when set to “on” lets you edit the String property 
contents interactively. If you have some text objects and you want to be able 
to quickly update them with a new value every now and then, try 

set(findobj('type','text'),...
    'buttondownfcn','set(gco,''editing'',''on'');'); 
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Figure 7.46 Horizontal- and VerticalAlignment properties. 

© 2003 by CRC Press LLC



Try this code with the example for Figure 7.43 and you will then be able to 
click on a text object and edit its string. Notice that it works just as well for the 
text object that uses the cell-array as well as the single line. If you want to only 
make one of the text objects editable, simply get the object’s handle (easy at 
creation time) and set that one’s Editing property to “on” with something like 
the following code. 

h_t=text(.5,.5,’This text object is editable!’) 
set(h_t,’Editable’,’on’);

The last text object property we will discuss is Interpreter. When this 
property is set to its default value of “tex”, all special TeX characters are 
interpreted as such.  If you set the Interpreter property to “none,” the special 
characters will be displayed literally. The special TeX characters, summarized in 
Chapter 3, let you mix subscript, superscripts, different fonts, and symbols. 

7.6 Setting Default Properties 
Now that you have a pretty good understanding of what graphic object 

properties are and how they can be manipulated to produce a desired visual 
effect, you may be asking yourself  

“Do I really need to set these properties every time, when I know, for 
instance, that I always like to see text objects with the Times font and colored 
blue?”

You’ll be happy to know that even though MATLAB comes with many 
factory-determined default values for all the properties, you can always set the 
defaults to your liking, so you do not need to set the same properties over and 
over. However, you should consider whether or not you are going to be 
sharing MATLAB code with colleagues and recognize that their default settings 
may not be the same as yours (especially if you alter them from the factory 
default).

Default properties are always set at the root level and are fairly intuitive in 
terms of the name that is required.  For example, to set the default font for text 
objects, use, 

set(0,'DefaultTextFont','Times')

and to set the default color and size of the text to blue and nine points, use: 

set(0,'DefaultTextColor','blue','DefaultTextFontSize',9)

For other objects and properties, the concept is identical.  To create the 
default string, just concatenate the three words "Default", the object name 
(such as text, figure, line, etc.), and the property name.  Then set the root's 
property you just determined with the default value of your choosing.  
Experiment with some examples. Try setting the default color for line objects 
to “cyan” instead of the factory default of “black”.  What about the text that 
labels the tick marks? (Hint: remember that the axes object has some 
properties which affect the text of tick mark labels). 

��
� � �
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One of the questions that we often encounter in teaching MATLAB is  

“How can I make MATLAB cycle through line styles instead of colors so that 
the lines are distinguishable on my black and white hardcopies?” 

The answer is easily solved by setting the defaults. Remembering that the axes 
object contains information about the order of colors and lines that are chosen 
when multiple lines are plotted at once, you can put something like 

set(0,'DefaultAxesColorOrder',[0 0 0]); 
set(0,'DefaultAxesLineStyleOrder',['-|--|-.|:']);

You could simply type these commands at the command prompt, or you 
can have this be your default if you put these lines in your startup.m file.  The 
file startup.m is looked for by MATLAB each time you start a MATLAB session 
and anything you put in there will be executed.  

7.7 Undocumented Properties 
All of the properties that have been discussed so far are referred to as 

documented properties, i.e., they are covered to some degree of detail in the 
MATLAB documentation such as the MATLAB Reference, User's Guide, or 
from the command line help. However, MATLAB has what we call 
undocumented properties, i.e., those that do not appear in any of the 
documentation. In fact, these properties do not even appear with set or get 
unless you tell MATLAB specifically that you want to make them visible. One 
root property that was not mentioned previously (because it is 
undocumented) is HideUndocumented, which can be set to either “on” (the 
default setting) or “off”.  In its default setting of “on,” none of the 
undocumented properties of any of the MATLAB objects can be accessed, but 
when this root property’s value is set to “off” by using 

set(0,'HideUndocumented','off')

you will be able to access the hidden properties of any of the MATLAB 
objects.  

You might be asking, “Why would MATLAB have undocumented 
properties?” There are several reasons for undocumented properties; the first 
is that these are experimental properties used by The MathWorks that may or 
may not be available for use in future versions of MATLAB.  Another reason is 
that some properties are holdovers from previous versions of MATLAB and so 
are kept as aids to assist in the upward compatibility of the software package.   

You should be aware of the fact that The MathWorks does not support nor 
encourage the use of these undocumented properties, and it is even with 
hesitancy that we present how to access them in this text. However, since this 
book is intended to be an extensive guide to MATLAB graphics and graphical 
user interfaces, we feel that at least a brief mention of the existence of these 
properties is warranted. However, be aware that using undocumented 
properties, and even worse, relying on them, will most likely lead to difficulties 
and incompatibilities with future versions of MATLAB.  

�
� � � � � � 	 
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7.8 Using FINDOBJ 
One of the most powerful built-in functions, as far as graphics are 

concerned, is the findobj function. The findobj function (which is short for 
“find object”)  relieves you of having to keep track of an object’s graphics 
handles, such as by always having to assign an object handle to a variable 
name.  Maintaining sets of variables for handles can be time consuming, 
tedious, and in general, adds a lot of overhead to MATLAB programs that 
create and manipulate numerous graphics objects. The findobj function gives 
you the freedom, with considerable flexibility, to quickly “search” for object 
handles.  If MATLAB did not have a function like findobj, you could have 
created a similar routine by taking advantage of the parent-child relationship of 
objects. For instance,  you could create a function that starts at some level in 
the hierarchy and searches down for an object with a particular property/value 
combination(s); this is essentially what findobj is doing. However, since this 
capability is already provided as a built-in function, it is quite fast at finding the 
object or objects that meet the specified search criteria. Although you have 
already seen this function in action a little, we will now formally present it. 

The syntax of findobj in its simplest form is  

h = findobj 

which returns the root handle in addition to the handle of all its descendants 
(basically h will be a column vector containing the handle to every graphics 
object available in the current MATLAB session).  The next form of findobj is 
to supply some search criteria such as 

h = findobj('Property1Name','Property1Value',...); 

which will return only the object handles of those objects that have a 
property named Property1Name which is set to Property1Value.  If you do not 
want to start the search at the root object, you may start at any object or 
objects by using the syntax 

h = findobj(ObjectHandles,... 
  'Property1Name','Property1Value',...); 

where ObjectHandles is a single element or vector containing the handles 
to objects from which you want the search to commence.  By default, if 
ObjectHandles is not supplied, it is assumed to be the root handle, 0.  Finally, 
if you have a set of object handles and want to find the subset that meets 
specific criteria, you can use the form 

h = findobj(ObjectHandles,'flat',... 
  'Property1Name','Property1Value',...); 

This only checks to see if any of the handles supplied in ObjectHandles 
have the property/value combination specified. 

Let’s look at a quick example of how you might want to use findobj at the 
command line to alter the appearance or information provided by a figure.  
First, let’s create a plot, like the one shown in Figure 7.47, and add some text 
in addition to the x- and y-axis labels: 
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x = 0:.1:10; 
plot(x,sin(x).*exp(-.5*x));
xlabel('x'); ylabel('y') 
text(4,.3,'y = sin(x).*exp(-.5x)'); 
text(5,-0.1,'Here''s the maximum'); 

Oops! It would appear that we didn’t quite get things right. We put the wrong 
string in one of the text objects and we wanted the line to be dashed not solid.  
We could just start over, but armed with what we now know about handle 
graphics we can simply get the handles and alter their respective properties, as 
with the following code: 

line_handle = findobj('type','line'); 
set(line_handle,'linestyle','--');
text_handle = findobj('string','Here''s the maximum'); 
set(text_handle,'string','Here''s the minimum'); 

Now our plot should look like the one shown in Figure 7.48. 
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Figure 7.47 Oops!  
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The findobj function and Tag property are a perfect combination for finding 
and manipulating MATLAB graphics.  Since all graphics objects have the Tag
property, you can conceivably give each object a meaningful and unique 
name.  For instance,  if you plot several lines in the same figure, you can name 
them individually with 

plot(x1,y1,'--b','tag','dataset1');
hold on; 
plot(x2,y2,'tag','dataset2');
 . 
 . 
 . 

You can then find the appropriate line’s handle by using something like 

line1_handle = findobj('tag','dataset1'); 

and proceed with modifying the line's properties as you see fit. 

Later on, when some of the advanced graphics topics and GUIs are 
discussed, the usefulness of this function will become more evident. 
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Figure 7.48 Finding handles with findobj makes changes easy! 
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7.9 Illustrative Problems 

1. Create a plot of 10 random numbers distributed N(0,1) vs. the 
numbers 1 to 10. Using the set command along with the gca
command turn the Ygrid to on, the GridLineStyle to – and the 
Linewidth to 3). 

2. Continue with this example and set the y-axis color to red and the x-
axis color to green. 

3. Open a blue Figure Window. Plot a sine curve in solid yellow and a 
cosine curve in dashed green. Get the handle for the yellow curve 
and change its color to black.  

4. Plot a sine curve as a solid line. Use the findobj command to go back 
and change it to a dashed line. 

5. A tag is another handy concept that we only touched on in our 
discussions.  Recall that we can use tags to keep track of objects by 
name. You can assign a value to the Tag property either with the 
Property Editor or with handle-graphics methods.  

For example we might execute the following command sequence. 

plot(x1,y1,’--b’,’tag’,’dataset1’);
hold on; 
plot(x2,y2,’tag’,’dataset2’);

Now we can find the line handle for the second curve using. 

H_line2 = findobj(‘tag’,’dataset2’); 

Plot a sine curve in blue and a cosine curve in green. Go back and use the first 
curve’s tag to make it thicker. 
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8.1 Simple Color Specifications 
Now that you have seen examples using both high-level plotting commands 

and low-level object property manipulation, it is appropriate to discuss the 
capabilities and features that MATLAB’s functions related to color provide.  As 
was mentioned in Chapter 2, color adds yet another dimension and therefore, 
an additional degree of freedom with regard to the amount of information that 
can be present in a figure.  Gone are the days of black and white and 
monochrome computer monitors. In fact, most people even have color 
printers in their homes and offices. The judicious use of color can greatly 
enhance the visibility, and information content of MATLAB graphics. 

In addition to color, lighting can be used to make a three-dimensional 
surface look more realistic.  By creating the effect of light reflecting off of the 
different curves of a surface, you will get more information about the data 
creating the plot.  Light can be moved around a scene to produce different 
visual effects. 

Finally, as if color and light (and how it is reflected) weren’t enough, 
MATLAB also supports transparency. Transparency gives you the ability to see 
one set of data through another set. This is a very powerful capability, 
especially when used with volume plots. 

So, let’s get started and learn how to control the color, lighting, and 
transparency of our MATLAB graphics objects.   

8.2 Color Maps 
In Chapters 3 and 4 we looked at defining the color of most graphics 

objects with the easiest technique available, namely, using color specifications.  
We saw that you could use the high-level commands to specify the color of 
the lines by passing string arguments that contained color names as we usually 
refer to them when talking with other people.  For example, a red line can be 
created by simply typing plot(x,y,'red').  After we learned about object handles, 
we saw that we can alter the properties of any graphics object.  For example,  
to specify a green color for the current figure’s background, we can set its 
color with set(gcf,'Color','green').  We also have seen that you don’t need to 

IN THIS CHAPTER…

8.1 SIMPLE COLOR SPECIFICATIONS
8.2 COLOR MAPS
8.3 MODELING OBJECT LIGHTING
8.4 OBJECT TRANSPARENCY
8.5 ILLUSTRATIVE PROBLEMS

© 2003 by CRC Press LLC



spell out the whole name of a property, so you could use short names for a 
color, or even a single letter, as long as it is unambiguous. We also saw that 
we can specify a color using relative contributions of red, green, and blue in 
what is called RGB format, so we could specify yellow for an axes background 
with set(gca, ‘Color’,[1 1 0]). MATLAB has a term for the three ways you can 
specify colors: it’s called ColorSpec and is either RGB triple, short name, or 
long name. The table below lists the colors that MATLAB recognizes when you 
use a string to represent either their long or short names. 

The long name... The short name... 
blue b 

black k 

cyan c 

green g 

magenta m 

red r 

white w 

yellow y 

When we created some of our 3-dimensional surface plots we observed 
that the surface’s color varied with the height of the surface, and we also made 
the color a function of the rate of curvature of the surface. In Chapter 5 we 
saw that MATLAB used certain built-in color maps for certain images, and 
three arrays representing red, green, and blue components (RGB) for others,  
but beyond that we didn’t look very deep under the hood as to how color is 
controlled. The next section is aimed at teaching you about the commands 
that relate to these two color specification techniques and how you can use 
them to control an object’s color. 

Generally speaking, a color map is simply a three-column matrix whose 
length is equal to the number of colors it defines. Each row in this matrix 
defines a particular color by specifying the contribution of red, green, and blue 
components.  Each component is an intensity value between zero and one, in 
a manner such that a zero is no intensity of the color, while a one turns on 
that component to full intensity. MATLAB comes with many predefined colors, 
many of which you have already used.  The individual binary color 
representations are already associated with a name or a character string as 
shown in the following table. 
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R G B Color Character 
[ 0 0 0 ] black k 

[ 0 0 1 ] blue b 

[ 0 1 0 ] green g 

[ 0 1 1 ] cyan c 

[ 1 0 0 ] red r 

[ 1 0 1] magenta m 

[ 1 1 0 ] yellow y 

[ 1 1 1 ] white w 

When we plotted lines and specified their colors with one of the strings 
above, the string was translated to the 3-element RGB vector.  We could have 
just as easily used other colors by passing or setting the color property of the 
objects with some 3-element vector containing a fraction of the individual red, 
green, and blue color intensities.  For instance, to create a dark gray color we 
could use a vector like [0.3 0.3 0.3] or we could create a bright gray color with 
[0.8 0.8 0.8],  a copper color with [1 0.62 0.4], and even aquamarine with 
[0.49 1 0.83].  So you can see, you have the freedom of defining any color 
you want.  Appendix A contains a list of some useful colors and their 
corresponding RGB values. 

Color maps are just tables of colors that are organized in some desired 
fashion.  MATLAB has many map-generating functions.  The default map that is 
stored in the figure’s colormap property is a 64-by-3 array of the jet color map.  
The entire list of map-generating functions is shown in the table below. 

Function Color Map Description 
autumn Smooth shades of red through yellow 
bone Gray-scale with a tinge of blue 
colorcube Regularly spaced colors with additional grays, red, green, and 

blue. 
cool Shades of cyan and magenta  
copper Linear copper-tone  
flag Alternating red, white, blue, and black, completely changing 

with each index increment 
gray Linear gray-scale  
hot Black-red-yellow-white 
hsv Hue-saturation-value, colors begin with 

red, pass through yellow, green, cyan, blue, magenta, and 
return to red 

jet Variant of hsv that is associated with an astrophysical fluid jet 
simulation from the National Center for Supercomputer 
Applications – this is MATLAB’s default color map 

lines Uses the colors specified in the ColorOrder property of the 
axes object to generate a colormap 

continued on next page 
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Function Color Map Description 
pink Pastel shades of pink – makes grayscale images look “sepia 

tone” 
prism Alternating red, orange, yellow, green, blue, violet 
spring Shades of magenta and yellow  
summer Shades of green and yellow 
white All white monochrome colormap 
winter Shades of blue and green color map 

You can run the MATLAB demo function imageext to look at a demonstration 
of the color maps. 

In Chapter 7 we saw that ColorMap was a property of the figure object. To 
generate a matrix of RGB values, pass any one of these functions an integer 
that specifies the number of colors that are to be generated.  For instance, to 
create a 32-by-3 hot color map matrix, just type something like 

ColorMapMatrix = hot(32); 

and if you want to place it into your current figure’s ColorMap property, 
type 

set(gcf,'colormap',hot(32));

or

colormap(hot(32));

The colormap(map) function simply performs a set(gcf, 'ColorMap', map).  If 
you do not specify a size for the color map with an integer (e.g., the 32 in the 
above two examples), the matrix size will default to a 64-by-3 element matrix.  
This might be something to consider when creating your own color map 
generating functions.  All of these color map generating functions can be 
created with simple mathematical expressions (i.e., they can be created with 
several lines of MATLAB code).  Take a look at some of these functions in the 
editor and see how they work. For instance, just type edit hsv at the command 
prompt. Most of these color map generating functions return a set of RGB 
values that are created by sampling across three functions (i.e., one for the red, 
blue, and green components of the RGB vectors) between the lower and 
upper limits (the exception is flag, which cycles through red, white, blue, and 
black).  You will see that these functions, when finely sampled, can be used to 
provide a nice transitional color gradation.  To finely sample a color map 
function, just pass the function a large integer value. 

8.2.1 Effects of Color Maps in General 

Only surface, patch, and image objects are directly affected by the values in 
the ColorMap property of a figure.  The colors of line, rectangle, text, axes, 
uimenu, uicontrol, and figure objects are completely independent of what lies 
in the figure’s ColorMap.

This does not mean that the RGB vectors found in the figure’s ColorMap or 
returned from a color map generating function are useless when you generate 
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line, rectangle, text, axes, uimenu, uicontrol, and figures objects.  Rather, you 
may find it convenient to obtain the colors that you want to use for these 
objects from one of these two sources of RGB values, particularly if you are 
not accustomed to defining colors with RGB vectors. 

If you want to plot lines with colors other than the ones you can define with 
a color specification (i.e., the colors that you can specify with a string like 'red', 
'green', etc.), first create a RGB matrix.  Then, from this matrix, choose the 
colors one by one or all at once, depending on your needs.  For example, if 
you want to generate 10 uniquely colored lines, first create a color map matrix 
with at least 10 colors, then use a for...end loop to plot a line with the color 
from this matrix using code like 

map = hot(10); 
for data_set_index = 1:10; 
   plot(X(:,data_set_index),map(data_set_index,:)); 
end

You can also put the RGB matrix in the axes object’s ColorOrder property 
and plot all the lines at once with something like 

map = hot(10); 
X = rand(20,10)+ones(20,1)*[1:10]; 
figure;
% The next line creates (since  one does not exist)an
% axes and sets its properties. 
set(gca,'colororder',map,'nextplot','add','box','on');
plot(X);
title('Colored lines using colororder and... 
       the hot colormap') 

8.2.2 Color Axis Control 

As you just saw, the color map generating function was used to define only 
the RGB values used for a set of lines.  Color maps, in a more sophisticated 
sense, are used primarily for plotting surfaces, patches, and images.  For the 
duration of this chapter, unless otherwise noted, the use of the word “object” 
will refer to one of these three.   

Essentially, color maps are interpreters that are used to translate values to 
colors.  The translated values are found in the CData property of each of these 
objects.  There are two methods by which you can translate the CData values 
to colors; direct mapping and scaled mapping. These are possible values of the 
CDataMapping property. 

8.2.2.1 Color Control with Direct Mapping 

When an object uses direct mapping, its color data values (rounded down 
to the nearest integer) are used as indices to a row in the color map.  For 
example, if you put the default color map into a matrix, 

X=colormap;

you can see that size of the color map is 64-by-3.  So if we had an object 
that had a color data value of 15 (i.e., one of its CData value terms was 15), 
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the part of the object associated with that term would map to (be colored 
with) the color identified by the 15th row in the color map (i.e., X(15,:)).  A 
CData value of 64 or greater would map to the 64th row and a CData value of 
1 or less would map to row 1.  

Image objects are similar to surface objects, except there is no ZData
property.  By default the values of an image object that are stored in the CData
are assumed to be actual indices to the color map matrix, since an image 
object’s default value for CDataMapping is direct. These indices are usually 
specified as integers; however, if they do have decimal portions, the values will 
be rounded down to the nearest integer. 

8.2.2.2 Color Control with Scaled Mapping 

Often the CData values correspond to the height of the surface or patch 
object.  In fact, for these two objects, the CData property is not always 
specifically defined or set by the user.  If the CData is not provided,  MATLAB 
will automatically set this property equal to the ZData property values, and the 
CDataMapping property will be set to “scaled”. This means that color data 
values will be linearly scaled to the color map. This is called pseudocolor.  The 
simplest way to control the scaling is by using the pseudocolor axis, i.e., caxis,
command. 

Depending on how the caxis function is used, it performs either a get or set
on the CLim property of the axes object.  Remember from the last chapter that 
CLim contains a 2-element vector, [cmin cmax].  The two values are used to 
linearly transform data values in the CData property of surface and patch 
objects to indices where each index identifies a RGB row, i.e., a color, in the 
ColorMap property of the figure.  The mathematical transformation of the 
CData values to indices is described by 

max

maxmin
minmax

min
min1

ccm

ccc
cc

ccfix

cc

index       Equation 8.1 

where c is an individual CData value and m is length of the color map 
matrix.  By default, the cmin and cmax values are automatically chosen by 
MATLAB to correspond, respectively, to the absolute minimum and maximum 
CData values found in any of the patch or surface objects in the axes object.  
This allows MATLAB to use the entire range of colors in the color map over 
the plotted data.  However, using either the function 

caxis([cmin cmax]) 

or

set(axes_handle,'CLim',[cmin cmax]) 
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allows you to control how your data is mapped into indices of the color map.  
After you set the CLim property with either of these methods, the CLimMode
property of the axes will be set to “manual”, and therefore, auto scaling of the 
color axis will no longer be done for surface and patch objects contained 
within that axes object.  However, if at some point you would like MATLAB to 
determine the color limits, set the CLimMode back to “auto”. 

8.2.3 Color Maps as they Relate to Graphics Objects 

To better understand how the CData values are translated to colors, we will 
look at examples for each of the three objects that are directly affected by 
color maps, namely; surfaces, patches, and images.   

8.2.3.1 Color Maps and the Surface Object 

We will start by looking at an example that illustrates how CData values are 
converted to indices for surface objects.  Since the direct mapping method is 
straightforward and is not the default setting for a surface object, the 
discussion that follows regarding the determination of the color map indices 
assumes that the surface object’s CDataMapping property is set to “scaled”.  
Consider a situation in which there are three colors (red, blue, and green) in 
the ColorMap,

so that m = size(map,1) = 3.  If we have a 4-by-4 element CData matrix  

5224
9310
6204
7235

cdata

and assume that the CLim property contains the minimum and maximum 
values of the CData (i.e., [cmin cmax] = [-5 9]), we can readily determine the 
index numbers using Equation 8.1 to be 

3222
3222
3221
3211

index

Now, before you quickly create a surface plot of this data and see something 
different from what you might expect, think about how a surface is created 

green
blue
red

map
100
010
001
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with surf(cdata).  Since, in this example, we are not supplying any x- or y-
coordinate data, recognize that the x- and y-coordinates are simply the row 
and column indices. Therefore, the CData values along with the row and 
column indices specify 16 vertices where each neighboring set of 4 elements 
is connected by means of a quadrilateral. As shown below, in terms of the 
elements within the CData matrix, there will be nine quadrilaterals. 

5224
9310
6204
7235

cdata

You might wonder why we need 16 indices to the color map when there are 
only nine quadrilaterals. With surfaces, each vertex can be assigned a color.  
This allows MATLAB to perform a bilinear interpolation between the four 
vertex colors to determine the color at any point within the quadrilateral. If 
you do not want to use color interpolation, the CData can also be a 3-by-3 
matrix in the example above. Color interpolation is only needed when the 
surface property FaceColor or EdgeColor is set to “interp”, such as in the case 
when you issue the command shading interp.  When the FaceColor property is 
set to “flat” or “faceted”, the quadrilateral’s color will be determined by the 
color index of the vertex with the smallest row and column number.  
Continuing with our previous example, we see that the CData element in the 
first row and column (-5) has an index value equal to one (as calculated earlier 
with Equation 8.1), which, in turn, indicates that the quadrilateral defined by 
the 

04
35

components of the matrix will be red (i.e., since the index value equals 1, the 
quadrilateral will use the first row in our three-color color map).  Taking the 
same approach in determining the color of the quadrilateral defined by the 
component 

52
93

of the CData matrix, we see that it will be green. 

cdata

5 3 2 7
4 0 2 6
0 1 3 9
4 2 2 5

index

1 1 2 3
1 2 2 3
2 2 2 3
2 2 2 3

red red green
red green green
green green green
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Proceeding with a mental image of our expectations, we can set up and plot 
the surface with 

map = [1 0 0; 0 1 0; 0 0 1]; 
figure('colormap',map);
% colormap(map) could have also been used in line above. 
cdata = [-5 -3 2 7; -4 0 2 6; 0 1 3 9; 4 2 2 5]; 
surface_handle = surf(cdata); 

to obtain Figure 8.1.  We see that this figure has nine quadrilaterals; three of 
them are red and six are green. 

Now consider the same surface with interpolated shading by typing  

set(surface_handle,'facecolor','interp');

In Figure 8.2 we can see that the index values previously calculated are indeed 
used to identify the colors of the vertices and that each quadrilateral’s color is 
bilinearly interpolated between the vertex colors. 
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Figure 8.1 Controlling the color of a surface object. 
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At this point, the edges of each quadrilateral can be identified because the 
EdgeColor of the surface has been left in its default setting, black ([0 0 0]).  
However, in Chapter 7 you learned that edges color can be defined, too.  You 
can specify that the edges of the quadrilaterals have a solid color by setting 
the EdgeColor either to a particular RGB value (note, the RGB vector does not 
have to be one of the values in the color map) or to “flat” which will use the 
color indices of the vertices to identify a color for the segment of the line 
associated with that vertex.  Whenever the FaceColor is set to “interp”, the 
figure will look the same when you set EdgeColor to “none” or “interp”.  This 
is because the “none” setting makes the edge lines invisible exposing the 
interpolated face colors below the edges.  

You should also realize that the color of each quadrilateral or vertex does 
not need to relate to the height, or z coordinate, of the surface.  You can also 
use a form such as surf(z,c) or surf(x,y,z,c).  In these two forms, the color data 
can be whatever you want it to be as long as either 

size(c) = = size(z) 
or

size(c) = = size(z) – 1 

holds true.  For example, we can plot the peaks function with stripes of colors 
in either the y-axis direction using 

s = peaks(20); 
c = meshgrid(1:20); 
surf(s,c);

or, as shown in Figure 8.3, with stripes in the x-axis direction with 

surf(s,c');
grid on; 
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Figure 8.2 Interpolated shading. 

© 2003 by CRC Press LLC



Color stripes may not be very informative, however, color might be used to 
identify regions of a surface that have like curvatures, gradients, or whatever is 
of interest to you.  For example, in Figure 8.4 color identifies the regions of the 
peaks function that have similar curvature. 

s = peaks(20); 
c = del2(s); 
surface_handle = surf(s,c); 
set(surface_handle,'FaceColor','interp');
colormap(hot(10));
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Figure 8.3 Forcing stripes across a surface. 
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A question that often arises is 

“I have a surface that is symmetric in terms of its height; however, when I plot it 
with the surf command, the colors are not symmetric.  What is the reason for 
this?”

The surf command, by default, will display the surface with a faceted shading 
(i.e., shading faceted).  The quickest way to solve the problem is to change the 
shading to interpolated with shading interp, which varies the color in each line 
segment and face by interpolating the color map index, or true color value, 
across the line or face. 

The reason we don’t get the result we would expect is that the last row and 
column are not used in determining the color of the individual quadrilateral 
faces for surface objects that are displayed in the faceted or flat shading; 
remember that the color value assigned to the upper left vertex of each 
quadrilateral, when looked at in terms of the matrix, determines the color.  If 
you want to have faceted or flat symmetric shading, a solution is to calculate 
the height of the center of each quadrilateral and use this as the CData matrix.  
For example, the following code 

[x,y] = meshgrid(-3:.5:3); 
z = x.^2; 
% Now plot the matrix and see that the color is not 
symmetric.
surf(x,y,z);
% Calculate the CData matrix by averaging the vertex 
heights.
[m,n] = size(z); 
C = ( z(1:(m-1),1:(n-1)) + z(2:m,1:(n-1)) + ... 
      z(1:(m-1),2:n) + z(2:m,2:n) ) / 4; 
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Figure 8.4 Coloring based on surface curvature. 
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surf(x,y,z,C);
generates the two plots shown in Figure 8.5 and illustrates the difference in 
color symmetries.  The left-hand side of the figure shows the non-symmetric 
colored surface, while the right-hand plot shows the symmetric colored 
surface. 

8.2.3.2 Patch Objects and the Color Map 

Now that we have looked at surfaces, let’s revisit the patch object and see 
what kinds of visual effects can be obtained with color.  An individual patch 
object is created with the command patch(x,y,z,c) or patch(x,y,c), where the 
vectors x, y, and z define the vertex coordinates and c specifies the color data 
i.e., the CData property of the patch object.  Please note that if z is not 
supplied, the ZData property of the patch object is set to the empty or null 
matrix, and the patch object is rendered as if the z-component of each vertex 
was zero.  The variable, c, can be one of the built-in color names (a string), an 
RGB vector, a scalar, or a vector of values where there is one element for each 
vertex. As we saw in Chapter 7, patches can also be defined by their vertices 
using the form patch('Vertices', v, 'Faces', f, 'FaceVertexCData', fvc,...).  With this 
form, the color data is specified by the FaceVertexCData property of the patch.  
When using FaceVertexCData, any corner of a face of the patch object 
connected to a particular vertex will have the same color associated with it.  
Whereas when specifying color with CData, corners that are shared by a 
patch’s faces can have multiple colors assigned to them.  This allows you to 
have complete and independent control over the colors in a particular face of 
a patch object. 
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Figure 8.5 A symmetric surface with non-symmetric coloring (left) and 
symmetric coloring (right) achieved by determining the surface 

height at the center of each quadrilateral. 
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If a simple color string or RGB vector is used for the Cdata or 
FaceVertexCData, the entire patch object will be one solid color (usually 
referred to as flat coloring).  If the CData is set to a scalar, the entire patch 
object will also be a flat color, however in this case the color is determined by 
the translation of Equation 8.1 if using scaled mapping, or by the scalar to an 
index to the color map.  If there is an element in the c variable for each vertex, 
Equation 8.1 can be used to identify what color will be applied to each vertex.  
In other words, if the CData property is set to a scalar or a vector (with more 
than 3 elements), the parent axes of the patch object will specify the color axis 
in the same way it does for surface objects, i.e., elements in the c vector are 
translated to color map indices. 

In the next example, a pentagon is created and each vertex is specified to 
have a particular color.  Five triangles are also created and used to indicate the 
color that is at each of the pentagon’s vertices.  The pentagon’s coloring is 
interpolated across the object’s face and the color map contains a 20-by-3 jet 
color matrix.  The results of this example are shown in Figure 8.6 and Plate 9 .

figure('colormap',jet(20));
axis([-1.5 1.5 -1.5 1.5]) 

p = patch([cos(linspace(0,360,6)*pi/180)],... 
          sin(linspace(0,360,6)*pi/180),... 
      [0 0 0 0 0 0], [1 1 2 5 2 1],... 
         'facecolor','interp') 

rotate(patch([1.1 1.3 1.3],[0 .15 -.15],[0 0 0],[1]),... 
       [0 90],0); 
rotate(patch([1.1 1.3 1.3],[0 .15 -.15],[0 0 0],[1]),... 
     [0 90],1*72); 
rotate(patch([1.1 1.3 1.3],[0 .15 -.15],[0 0 0],[2]),... 
     [0 90],2*72); 
rotate(patch([1.1 1.3 1.3],[0 .15 -.15],[0 0 0],[5]),... 
     [0 90],3*72); 
rotate(patch([1.1 1.3 1.3],[0 .15 -.15],[0 0 0],[2]),... 
     [0 90],4*72); 

                                                     
 Color plates follow page 112. 
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You will learn more about the rotate graphics function in Chapter 9; 
however, it essentially relieves you from the responsibility of determining the 
coordinate transformation required to rotate an object.  The syntax for rotate 
is  

rotate(object_handle,axis_of_rotation,angle_degrees,origin_of_rotation), 

 where the variable object_handle is the handle to the object that will be 
rotated, axis_of_rotation is a 2-element ([Az El]) or 3-element ([x y z]) vector 
that defines the axis about which the object should be rotated.  The axis of 
rotation passes through the point (0,0,0) unless otherwise specified with the 
origin_of_rotation variable.  The number of degrees that the object will be 
rotated through is specified by the third argument, angle_degrees.  (You could 
also use a routine such as viewmtx to determine a coordinate transformation 
matrix.) 

8.2.3.3 Images and the Color Map 

We have already discussed image types and their characteristics in Chapter 
5. In Chapter 7 we presented the properties of image objects. The list of 
properties belonging to image objects are presented again here to facilitate 
our discussion of how the color map is influenced by these properties. 
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Figure 8.6 Defining the color of patch vertices. 

© 2003 by CRC Press LLC



Property Read
Only

ValueType/Options Format 

General Properties of the Image Object 

CData No numbers matrix or M-
by-N-by-3
array

CDataMapping No [ {direct} | scaled] row 

XData No [min, max] default = [1, size(CData,2)] 2-element 
vector 

YData No [min max] default = [1, size(CData, 1)] 2-element 
vector 

Properties Affecting Transparency 

AlphaData No default = 1 (opaque) M-by-N matrix
of double or
uint8 

AlphaDataMapping No [ {none} |direct | scaled ] row 

Of course these properties are in addition to the universal properties 
already discussed in Chapter 7.  Recall that the XData and YData properties are 
vectors that specify the region in the xy-plane that the image object will 
occupy.  The image is scaled to fit between the first and last element stored in 
each of these two properties.  The elements between the first and last do not 
affect the image object's location in the xy-plane.  For example, if the XData is 
[1 10] or [1:10] or [1 43 20 10], the image would be located in its axes object 
parent over the x-data values from one to ten, while the region occupied in the 
y-axis direction would depend on the values in the YData property in a similar 
manner.

So far, you have seen that the color of both surface and patch objects is 
determined by transforming the color data (CData) values of the object to 
indices in the figure’s color map by means of the color limits (CLim) of the 
axes object.  Image objects, on the other hand, with their default settings are 
unaffected by color limits of the axis.  When the CDataMapping property is set 
to “direct”, the color data values of images are expected to be integers 
between 1 and the number of rows in the color map, i.e., 
size(get(gcf,'colormap'),1).  These values are integers because they are used as 
indices to the figure’s color map without any transformation and, therefore, 
represent the color of a portion of the image object. 

Color data values that are not integers are rounded down to the nearest 
integer, while those values that are less than one are assumed to be one.  
Those values greater than the number of rows in the color map are assumed 
equal to the number of rows in the color map.  This is an important fact to 
realize and implies that if there are indexes with values outside the allowable 
range, those portions of the image will be “clamped” to the upper or lower 
color values in the color map.  This image clamping translates to a loss of 
information and can distort or make it difficult to discern the essence of the 
image.  Usually you will not have a problem with this if you are using any of 
the images that come with MATLAB since images and their color maps are 
usually stored in the same binary (.mat) file.  However, since you might want 
to create your own images, you need to be aware of image clamping effects. 
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To illustrate, the next example shows how easily an image can be generated 
and demonstrates what image clamping can do. The next two figures use the 
following image data: 

X = [1 1 1 1 1 
     1 2 2 2 1 
     1 2 3 2 1 
     1 2 2 2 1 
     1 2 3 2 1 
     1 2 2 2 1 
     1 1 1 1 1]; 

image(X)
colormap([.2 .2 .2; 1 1 1; .5 .5 .5]); 

will generate the left-hand plot of Figure 8.7, while 

image(X)
colormap([.2 .2 .2 ; 1 1 1]) 

will generate the right-hand plot. 

Image objects can also scale their CData to the color map using Equation 8.1, 
if you set the CDataMapping to “scaled”.  If you have some image’s color data 
values in X, and you want to use any given sized color map to obtain the most 
information out of the image, the scaled setting of CDataMapping is usually the 
easiest method. 

image_handle=image(X);
set(image_handle,'CDataMapping','scaled');
set(gca,'clim',[min(min(X))   max(max(X))]); 

Try loading the penny.mat image and experiment with different sized color 
maps. 

load penny; 
figure;
i=image(P, 'CDataMapping','scaled'); 
colormap(copper(255));
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Figure 8.7 An image clamped by a limited number of color map entries. 
The desired image on the left and the clamped on the right. 
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will let you see the greatest amount of detail in the data matrix, P.  But if you 
wanted to visually quantize the data into fewer levels of detail, you could 
change the size of the color map and MATLAB will scale the color data to it. 
So,

colormap(copper(10))

will produce the illustration shown in Figure 8.8. 

Had you used the default direct value of the CDataMapping property, the data 
values in P greater than 10 would be clamped to the last color in the color 
map. 

You may have noticed in the previous two figures that the y-axis labels 
increase in the reverse direction than is normally displayed.  This is due to the 
fact that when an image is created, the axes object’s YDir property is set to 
“reverse”. This keeps the image oriented in the same manner as the data in the 
CData matrix.  In addition, images created with the image function can be 
visualized only in 2-dimensional perspectives.  Later in this chapter, you will 
learn how to visualize image data in 3-dimensional perspectives. 

The EraseMode property of image objects can be used to control the 
manner in which an image object is erased and/or redrawn.  This property is 
primarily manipulated when animating graphics objects, which we will discuss 
in Chapter 9.  The default setting of “normal” will give the most accurate 
presentation of the image object.  The other three modes of erasing are faster, 
but you will lose some accuracy.  With “none”, MATLAB will not update the 
region where the object was located before it was either deleted or moved.  
This is the mode that you should use, if you want to update the image’s CData
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Figure 8.8 Viewing an image with a scaled color map with 10 entries. 
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quickly but are not translating the object in the xy-plane.  For instance, if you 
have several same-sized images and you want to flip between them, create 
one image object whose EraseMode is set to “none” and update only the 
CData with the next image’s data.  The “xor” setting lets you move or delete 
the object without affecting objects rendered behind the image; however, the 
image’s color will be affected by objects rendered behind it.  The 
“background” setting will make sure the image object is drawn in the correct 
color, but if the image is deleted or moved, an imprint of the erased image 
object will remain until you do a refresh or a new object that has its 
EraseMode property set to “normal” is created, moved, or deleted. 

The last two properties, AlphaData and AlphaDataMapping, have to do with 
making part (or all) of the image transparent. These properties exist in surface 
and patch objects as well and are subject to an entire section later in this 
chapter.

8.2.4 Color Shading 

To control how color is applied to surface and patch objects, you can use 
the graphics function named shading.  One of the following three arguments 
must accompany the command: flat, faceted, or interp.  The default shading 
applied to surfaces and patch objects is faceted.  Each quadrilateral has a 
constant color face and edges that are highlighted with black lines.  Flat 
shading is the same as faceted, except that there are no edge lines, while 
interpolated shading makes use of bilinear color interpolation between the 
vertices. 

The command shading manipulates the FaceColor and EdgeColor properties 
of surface and patch graphics objects. In the following comparison table, 
surface_handles is the variable containing the handle or handles to all surface 
and patch objects in the current axes object whose shading you want to alter. 

Using… is the same as…. 
shading flat set(surface_handles,'FaceColor','flat','EdgeColor','none') 

shading faceted set(surface_handles,'FaceColor','faceted','EdgeColor',[0 0 0]) 

shading interp set(surface_handles,'FaceColor','interp','EdgeColor','none') 

8.2.5 Brightening and Darkening Color Maps 

The graphics function brighten can be used to alter a color map by either 
brightening or darkening the colors.  Depending on the value of the argument 
passed to the brighten command, the intensity of the color map is either 
increased, i.e., brightened, or decreased, i.e., darkened. To brighten the 
existing figure’s color map, use 

brighten(intensity_factor);
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where the intensity_factor should be a value between zero and one.  To 
darken the existing figure’s color map, use an intensity_factor with a value 
between negative one and zero. 

Applying a change in sign to the intensity_factor after having already used 
that intensity_factor to alter the color map will lead to the original color map.  
In other words, the MATLAB code 

brighten(intensity_factor);
brighten(-intensity_factor);

would yield the color map that existed before the two statements were 
executed. 

You can also create a new color map matrix without affecting the current 
figure’s ColorMap property by using an output argument such as 

new_colormap = brighten(map,intensity_factor); 

or

new_colormap = brighten(intensity_factor); 

where the first syntax form returns an altered color intensity of the map you 
passed to the function and the second form returns an intensity-altered map of 
the current figure. 

We can look at the RGB plots (see following figures) for the hot color map 
in its normal, brightened, and darkened mode using 

plot(hot);axis([1 64 0 1]) 
title('hot color map');
plot(brighten(hot,.75));axis([1 64 0 1]) 
title('brighten(hot,.75)');
plot(brighten(hot,-.75));axis([1 64 0 1]) 
title('brighten(hot,-.75)');
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Figure 8.9 Original red, green, and blue components of the hot color 
map. 
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Figure 8.10  Plotting the red, green, and blue components of a 
brightened version of the hot color map. 

© 2003 by CRC Press LLC



8.2.6 Spinning the Color Map 

An interesting visual effect can be created by spinning the color map.  This 
essentially entails shifting the color map colors up or down in terms of row 
index numbers.  Those colors that either would be shifted below the first index 
or above the last indexed row in the color map matrix are wrapped around to 
the end or the beginning depending on how the rows are shifted.  After the 
color map matrix has been redefined, the map is quickly applied to the current 
figure.  Now, if you do enough of these shifts quickly, the visual effect is as if 
the colors were moving across the surface in the figure.  The 
spinmap(time,shift_increment) function makes this easy to accomplish.  The 
variable, time, is the period in seconds (whether or not it truly represents 
seconds depends upon the speed of the platform on which MATLAB is 
running) over which the color map should spin (default is five seconds) and 
shift_increment is the number of rows by which each color in the current color 
map should be shifted down.  An upward shift can be achieved by providing a 
negative integer.  Larger values, in terms of absolute value, of the 
shift_increment argument lead to a faster rotation through the color map 
indices. Be aware however, that because of differences in the many graphics 
cards in modern computers, spinning the color map might produce 
unexpected results; consequently you might have to change the color mode of 
your environment. If you try to use spinmap and get a message like, 
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Figure 8.11  Plot of the red, green, and blue components of a darkened 
version of the hot color map. 
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Warning: Colormap animation is only possible for 256 
color screens. 

try changing the number of colors you are using for your display. You will also 
have to restart MATLAB after changing colors so that system properties are 
reported properly to MATLAB. 

To see an example of the spinmap function, try the following: 

figure('ShareColors','off');
peaks(20);
shading interp; 
spinmap(10,1);

If you want to slow down the rate by more than a single row index shift, 
you can increase the size of the color matrix.  For example, 

colormap(hsv(128));
spinmap(10,1)

will be a smoother and longer rotation through the color map colors than 
with the previous example.  To have a little fun, try this: 

figure('ShareColors','off');
patch([0 0 10 10 0 1 9 9 1 1 0],... 
      [0 10 10 0 0 1 1 9 9 1 0],... 
      zeros(1,11),[1 2 3 4 5 5 4 3 2 1 1],... 
      'EdgeColor','none'); 
colormap(flag(128));
spinmap(5,1);

8.2.7 Making Use of the Invisible Color with NaN 

MATLAB’s Not-a-Number (NaN) representation is a convenient way of 
making portions of a surface invisible.  For example, if you zoom into a region 
of some 3-dimensional plot, you may not like the way that MATLAB clips the 
regions outside of the x-, y-, and z-axis limits.  This would be a prime example 
of when the use of NaNs will help achieve your desired results.  Another case 
might involve a situation in which you have altered the color axis (CLim)
property to force a color variation over a particular portion of a surface and 
you want those regions outside of the limits to be invisible instead of clamped 
to the first or last color in the color map. 

There are several techniques that can be used to achieve these and other 
similar types of results.  Typically, they involve setting the elements of the color 
data, i.e., the CData property, to NaNs.  Let’s first look at an example in which 
we want to zoom in on a particular region of the 3-D plot shown in Figure 
8.12.

[x,y] = meshgrid(-3:0.1:3); 
z = sin(sqrt(x.^2+y.^2)).*exp(-(sqrt(x.^2+y.^2))); 
surface_handle  = surf(x,y,z); 

�
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shading flat 
axis([-3 3 -3 3 min(min(z)) max(max(z))]) 

Zooming in on a region of the surface with 

axis([0 3 0 3 min(min(z)) max(max(z))]) 

will produce Figure 8.13, which, as you can see, obscures the x- and y-axis 
tick mark labels. 
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Figure 8.12  A flat shaded surface plot. 
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However, with the following code we can make those regions of the 
surface that fall outside desired limits invisible as shown in Figure 8.14. 

indexs = find(~(x <= max(get(gca,'xlim')) & ... 
                x >= min(get(gca,'xlim')) & ... 
                y <= max(get(gca,'ylim')) & ... 
                y >= min(get(gca,'ylim')) & ... 
                z <= max(get(gca,'zlim')) & ... 
                z >= min(get(gca,'zlim')) ) ); 
c = get(surface_handle,'cdata'); 
c(indexs) = NaN*c(indexs); 
set(surface_handle,'cdata',c);
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Figure 8.13  Zooming in on a region with the axis command can obscure 
axis tick mark and label information. 
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Now, looking at this example, you might be thinking, and correctly so, that 
the same results can be achieved by plotting the quadrant that we are 
interested in by redefining x, y, and z.  In addition to illustrating a technique, 
this previous solution may be useful in situations where perhaps you need to 
clip parts of the surface that extend beyond some set of limits along the z-axis. 

In the next example we plot two spheres, where one sphere is inside the 
other as shown in Figure 8.15. Here is the code: 

figure
view(3);
[x,y,z] = sphere(20); 
% Create the outer sphere. 
z1 = z;
z1(:,1:4) = NaN*z1(:,1:4); 
c1 = ones(size(z1)); 
s1 = surface(2*x,2*y,2*z1,c1); 
% Create the inner sphere. 
z2 = z; 
c2 = 2*ones(size(z2)); 
c2(:,1:4) = 3*ones(size(c2(:,1:4))); 
s2 = surface(1.5*x,1.5*y,1.5*z2,c2); 
colormap([0 1 0;.5 0 0; 1 0 0]); 
grid;
set(gca,'box','on');
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Figure 8.14  Using NaNs to remove unwanted portions. 
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Three colors are used in the color map.  Green is used for the outer sphere, 
while two shades of red are used for the inner sphere.  The darker red helps it 
look as if the outer sphere is casting a shadow on the inner one -  a clever 
trick, but as you will learn in the section on lighting, there are commands that 
make it easy for you to apply various lighting models and color shading to 
your graphics. 

As a final note to this section, even though NaNs were applied to either the 
CData or ZData surface properties in the two examples above, you should be 
aware that the NaNs could have been applied to either the XData or YData
properties just as well.  In addition, using NaNs to make portions of an object 
invisible is also applicable to line objects.  An NaN in the XData, YData, or 
ZData properties of a line will make invisible segments about the coordinate 
with NaN.  It is almost as if the “pen” that draws the line is lifted off the screen 
when MATLAB sees that the next coordinate contains an NaN.  The pen is set 
back on the screen at the next coordinate that does not contain an NaN.  To 
illustrate this very useful ability, the following code will clip off the top and 
bottom portions of a sine wave as shown in Figure 8.16. 

x = [0:pi/16:4*pi]; 
y = sin(x); 
index = find(abs(y) > .5); 
x(index) = NaN*x(index); 
plot(x,y);
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Figure 8.15  Cutting a hole in a surface with NaNs to make the surfaces 
behind visible. 
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8.2.8 Creating Simple Color Bars 

It is often useful to visualize data in 3-dimensional perspectives so that a lot 
of data can be seen in one figure.  However, it is often difficult to extract 
specific information from these types of plots.  For example, 3-dimensional 
surface plots may show you the general regions of minima and maxima, but 
even with a grid, it is difficult to determine the height of the surface at any 
location on the surface.  You have seen that color can aid this process 
considerably.  Furthermore, a color bar can be used to make it even easier for 
the observer to associate colors with the surface values.  MATLAB provides a 
graphics command called colorbar to make it very easy to generate a color-to-
value association bar. 

By default, typing colorbar after having created a surface plot creates a 
vertical color bar to the right of the axes with the 3-dimensional view. The 
following code will produce the plot of the peaks function shown in Figure 
8.17 with an associated color bar. 

surf(peaks(30));
colormap(hot));
colorbar
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Figure 8.16  Using NaNs to “lift the pen.” 
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You can also tell MATLAB to generate the color bar below the figure of 
interest by using 

colorbar('horizontal')

If you require even more flexibility in the placement of the color bar, create 
and store the handle of an axes object in the desired position for the color bar.  
Then pass the graphics handle of that axes object to the colorbar function with 

colorbar(axes_object_handle);

where axes_object_handle is the axes object that will contain the color bar.  
If the width is less than the height of the axes object, the bar will be labeled 
vertically; otherwise, the colorbar will be labeled horizontally. 

8.2.9 The Pseudocolor Plot 

A pseudocolor plot (sometimes referred to as a checkerboard plot) can be 
created with the pcolor function.  This graphics function creates a surface 
object in which the ZData elements are set to zero and displays the plot in a 
perspective which makes it appear as if you are looking directly down on the 
surface (i.e., view([0 90])).  By default, the FaceColor of this surface object is 
faceted.  This function’s syntax is very similar to the syntax used by surf,
except that you do not supply the z-axis coordinates of the vertices.  You need 
only specify the vertice colors such as with pcolor(C).  However, you may 
specify the x- and y-axis components of the vertex coordinates with 
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Figure 8.17  A color bar allows easier association of color to value. 
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pcolor(x,y,C) or pcolor(X,Y,C).  If vectors x and y are supplied, the length of x 
must correspond to the number of columns in C and the length of y must 
correspond to the number of rows.  The actual color of each quadrilateral, as 
with all surface objects, is determined by scaling the CData values with the 
color axis limits to an index to the color map.  When the surface is being 
displayed in the default “faceted” shading, the color in the ith row and jth 
column is determined by the element C(i,j).  However, when the shading is 
interpolated (i.e., the FaceColor property is set to “interp”), a bilinear color 
interpolation between the four vertices of each quadrilateral is performed. 

It is useful to identify the similarities between the pcolor and image graphics 
functions by comparing the graphics objects that they create.   

The surface object created by pcolor(C) will have the same number of 
vertices as the number of color cells that an image object created with 
image(C).  Unless you need to generate parametric grids or need to have 
control over the spacing of the color cells, it is often advantageous, in terms of 
rendering speed, to use image instead of pcolor. 

The pcolor function is a useful means of visualizing the contents of the 
colormap.  For example, if you want to display a 32-element hsv color map, 
type 

M = 32; 
figure
pcolor([1:M;1:M]');
colormap(hsv(M));
set(gca,'Position',[.4 .1 .2 .8]) 
title('hsv(32) colormap') 

The result is shown in Figure 8.18. 
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Now that we have a simple way of displaying color maps, try to answer the 
next frequently asked question, without looking at the answer, by using your 
knowledge of specifying color axis scaling and creating color maps. 

Since the figure object contains the color map and axes objects are children 
of figures, how can I have multiple axes objects using the colors from different 
color map generation functions in the same figure as shown in Figure 8.19?

You might have noticed, for example in using a function like subplot, that 
using the colormap command affected all subplots – not always what you 
want to do! 
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Figure 8.18  Pseudocolor plot of the hsv color map. 
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This leads to the following question, 
“If I want to use several concatenated color maps so that I can have multiple 
axes objects using different portions of the figure’s color map as discussed, 
how do I determine the minimum and maximum color values?” 

The following two equations can be used to determine the required color 
axis values: 

)mincdatamaxcdata(
1+xminmapindexmaxmapinde

1+xminmapindeN+mincdatacmax

)mincdatamaxcdata(
1+xminmapinde-xmaxmapinde

1-xminmapindemincdatacmin

-

-

-

where cmin and cmax are the minimum and maximum color axis limits 
specified in CLim (i.e., caxis([cmin cmax])).  The mincdata and maxcdata are 
the minimum and maximum color data values that are to be plotted in the 
axes object.  The variable minmapindex and maxmapindex are the minimum 
and maximum index numbers to the color map that contains N colors (i.e., the 
figure’s ColorMap property is an N-by-3 RGB matrix).  For example, consider a 
situation in which the data in one of the axes objects varied between -1 and 1 
and the figure’s colormap property had 64 rows.  If you want the color of the 
contents of this axes object to be scaled to the first 32 rows of the color map, 
first determine the value of the variables needed in the previous equations: 

mincdata = -1; 
maxcdata = 1; 
N = 64; 
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Figure 8.19  Using multiple color maps in the same figure. 
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minmapindex = 1; 
maxmapindex = 32; 

Next, plug these values into the equations to obtain 

cmin = -1; 
cmax = 3; 

Finally, set the axes object’s CLim property to [-1 3] by typing 

caxis([-1 3]); 

Plate 10 was created with this technique with the code shown below. 

% Define color map. 
colormap([hsv(32);hot(32);cool(32);flag(32)]);

% Create first subplot using first quarter of color map. 
subplot(221)
x = 0:.02:5*pi; 
y = sin(x); 
surface([x;x],[y;y],0*[x;x],[y;y],...

'facecolor','none','edgecolor','flat','linewidth',3)
set(gca,'box','on');
axis([min(x) max(x) [min(y) max(y)]*1.1 ]) 
% Use equations found at beginning of this section. 
cmin = min(y) - (1 - 1)*(max(y)-min(y))/(32 - 1 + 1); 
cmax = min(y) + (128 - 1 + 1)*(max(y)-min(y))/(32 - 1 + 
1);
caxis([cmin cmax]); 

% Create second subplot using middle half of color map. 
subplot(222)
u = 0:.02:10*pi; 
x = exp(-.05*u).*cos(u); 
y = exp(-.05*u).*sin(u); 
z = .05*u; 
surface([x;x],[y;y],[z;z],[z;z],...

'facecolor','none','edgecolor','flat','linewidth',2)
view(3);axis([-1 1 -1 1 0 1.5]);grid; 
set(gca,'ztick',[0 .5 1 1.5]) 
% Use equations found at beginning of this section. 
cmin = min(z)- (33 - 1)*(max(z)-min(z))/(96 - 33 + 1); 
cmax = min(z)+ (128 - 33 + 1)*(max(z)-min(z))/(96 - 33 + 
1);
caxis([cmin cmax]); 

% Create third subplot using last quarter of color map. 
subplot(223)
x = 0:.2:5*pi; 
y = sin(x); 
surface([x;x],[y;y],0*[x;x],[y;y],...

'facecolor','none','edgecolor','flat','linewidth',.5)
set(gca,'box','on');
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axis([0 5*pi -1.1 1.1]) 
% Use equations found at beginning of this section. 
cmin = min(y)- (97 - 1)*(max(y)-min(y))/(128 - 97 + 1); 
cmax = min(y)+ (128 - 97 + 1)*(max(y)-min(y))/(128 - 97 + 
1);
caxis([cmin cmax]) 
caxis([-7 1]) 

% Create fourth subplot using middle half of color map.. 
subplot(224)
u = 0:.02:10*pi; 
x = exp(-.05*u).*cos(u); 
y = exp(-.05*u).*sin(u); 
z = .05*u; 
surface([x;x],[y;y],[z;z],[z;z],...

'facecolor','none','edgecolor','flat','linewidth',2)
% Use equations found at beginning of this section. 
cmin = min(z) - (33 - 1)*(max(z)-min(z))/(96 - 33 + 1); 
cmax = min(z) + (128 - 33 + 1)*(max(z)-min(z))/(96 - 33 + 
1);
caxis([cmin cmax]) 
set(gca,'box','on');

8.2.10 Texture Mapping 

So far we have looked only at defining the vertex colors for surfaces which 
could then be used to color a particular quadrilateral with a flat or bilinearly 
interpolated color.  In addition, we have also explored image objects and seen 
that we are limited to viewing them in the xy-plane and only in 2-dimensional 
perspectives.  Now wouldn’t it be great if we could wrap an image over any 
surface of our choosing?  Well, MATLAB does provide a method for doing this, 
and it is called texture mapping.  Reviewing the surface object properties, 
recall that the FaceColor property has the following five choices: 

[ none | {flat} | interp | texturemap ] - or - a ColorSpec 

When the FaceColor property is set to “flat”, the size of the CData matrix 
must either be the same as the matrix stored in the ZData property or have 
one less row and column.  If the FaceColor property is set to “interp”, the 
CData matrix must be of the same dimensions as the ZData matrix of the 
surface object.  Only when the FaceColor property is set to “texturemap” are 
you unlimited as to the size of the CData matrix. 

If the FaceColor Property is set to… then the CData matrix size is… 
none unrestricted - (makes no difference) 
flat size(CData) = size(ZData) or 

size(CData) = size(ZData) - 1 
interp size(CData) = size(ZData) 
texturemap unrestricted 
ColorSpec unrestricted - (makes no difference) 

� � � � � 
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We shall now demonstrate how to take a surface and an image and 
combine them so that the image is mapped to the surface. The surface we will 
use is the portion of a cylinder produced by, 

[x,y,z] = cylinder(1,30); 
surface_handle = surf(x(1:2,15:30),... 
                      y(1:2,15:30),... 
                      z(1:2,15:30)); 

and the image will be the MATLAB clown of Chapter 5 notoriety. Our 
subjects are shown in Figure 8.20. 

The procedure here is to first load the clown image and then place it  into 
the CData property of the cylindrical type surface. Here is the code that will do 
just that. 

load clown 
[x,y,z] = cylinder(1,30); 
figure('Colormap',map);
surface_handle = surf(x(1:2,15:30),... 
                      y(1:2,15:30),... 
                      z(1:2,15:30)); 
set(surface_handle,'FaceColor','texturemap','cdata',flipu
d(X));
set(gca,'box','on');

The result is shown in Figure 8.21. 
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Figure 8.20  We will map the image to the surface. 
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If at a later time you want to alter the FaceColor property from 
“texturemap” to one of the other possible settings, make sure that the CData
matrix is appropriately resized so that rendering errors do not occur. 

In the next example we will load in some topographic data that comes with 
MATLAB and texture map it onto a wavy map-like surface.  The difference in 
this case is that the data was not stored in an image format (i.e., there are 
elements of the data matrix that are non-integer or negative).  Therefore, we 
see that any data set you have can be texture mapped to a surface object. 

Here is the code that will create the surface as shown in Figure 8.22. 

[x,y] = meshgrid(1:20); 
z = (x-10).^3+(y-10).^3; 
s1 =surf(z) 
axis('off')
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Figure 8.21  A texture mapped surface. 
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We then load and apply the texture map data with the following code and 
produce Figure 8.23 which can also be seen in color in Plate 11. 

load topo 
set(s1,'facecolor','texturemap','cdata',topo)
colormap(topomap1);

Figure 8.22  The surface object that will be texture mapped. 

Figure 8.23  A non-image data set mapped to a surface object. 
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8.3 Modeling Object Lighting 
In Chapter 4, before we introduced handle graphics, we looked at 3-D plots 

and learned that in most cases we can get quite impressive results using high-
level 3-D plotting commands like mesh, and surf. In this chapter, having armed 
you with the concept of object handles in Chapter 7, we have already taken 
you into the deep areas of color. The next property we will now study in some 
detail is object lighting. Light, unlike color, is not a direct property, but rather 
what we might call an indirect property. That is, we can’t point to an object in 
our figures and say, “that’s a light object,” but rather the appearance of surface 
and patch objects is affected by the unseen light objects present in our figure. 
Where the light is, its intensity, color, different lighting models etc., is the 
subject of this section.  First we will look at the properties of the light object, 
then we will exercise and demonstrate those properties with functions like 
camlight, lightangle, surfl, surfnorm, material, diffuse, and specular.

8.3.1 Light Properties 

In order to reveal detail and accentuate important information in a 3-
dimensional scene, MATLAB provides the capability of adding lighting effects 
with the graphics object light.  This object can be placed in relation to or 
directed toward other graphics objects in the scene.  The visual attributes of 
patch and surface objects are affected by light objects.  To create a light 
object, you use the function light.  The properties of this object were only 
briefly mentioned in Chapter 7, but are presented here and summarized in the 
following table. 

Property Read
Only

ValueType/Options Format 

Properties Defining the Light Object 
Color No [R G B] or color string 3-element 

vector or
row 

Position No x-, y-, z-coordinates in axes units 
Default: [1 0 1] 

3-element 
row 

Style No [{infinite} | local] string 
     

A light by default will be a white light, but you may alter it to whatever color 
you want with its Color property.  This property may be set to a three-element 
RGB value, such as [1 0 0] (which would make a red light), or a string 
specifying the color you want, like 'red'. 

The meaning of the Position property will depend on whether you have set 
the Style property to “infinite” or “local”.  The default Style property value is 
“infinite”, which means that the light source is placed at infinity and the rays 
radiating from the source are pointing in the direction specified by the Position
property.  If the Style property is set to “local”, the light source will be located 
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at the point specified by the Position property, and will radiate in all directions 
from that point. 

8.3.2 Functions that Make Use of Light 

Lighting models are used to create highlights to curvatures and faces of a 
surface graphics object.  Lighting models determine the amount of reflectance 
that occurs from a light source at a specific location with respect to the 
surface. The reflectance is then a measure that can be scaled and transformed 
into indices pointing to particular rows of a color map. 

The first function that we will look at is surfl.  This function creates a 3-
dimensional surface plot where the shading is based on a mixture of diffuse,
specular, and ambient lighting models. Using surfl is practically automatic and 
so requires the least amount of specification by the user.  There are several 
ways that surfl can be used.  If you supply only the height information, Z, to 
the surface with surfl(Z, ‘light’), the lighting will, by default, be 45 degrees 
counterclockwise in azimuth from the current view point, i.e., if [az,el] = view. 
With surfl, in addition to the surface object, there will be created a white light 
source placed at infinity with its Position property set to [0 -0.707 0.707].  You 
can use surfl without ‘light’, but it will not create a light object; instead, it will 
alter the color map of the surface object to make it look like there is a light 
object in the specified direction. 

Just as with surf, you may also specify the x- and y-coordinates of the 
vertices with surfl(X,Y,Z).  If you need to specify a different light source 
direction, you can use surfl(Z,s) or surfl(X,Y,Z,s), where s is either a 3-element 
vector, [Sx Sy Sz], or a 2-element vector, [az el], defining the direction from the 
object to the light source.  Consider Figure 8.24 which is generated with the 
following code: 

[X,Y] = meshgrid(-3:.1:3); 
Z = sin(2*X).*sin(Y).*sqrt(X.^2 + Y.^2); 
surface_handle = surfl(X,Y,Z,[0 30]); 
shading flat; 
colormap(gray);
set(gca,'box','on');
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Typically, the best results are obtained with flat or interpolated shading applied 
to the surface and that the surface be defined on a fine grid.  In addition, 
simple color maps (i.e., maps that are made up of many shades of the same 
color) should be used.  The gray, bone, and pink color maps are usually ideal 
for these types of plots. 

To better explain how the light direction vector, s, is used, the following 
table contains example values of s  and their interpretation.  

If the light source vector s is… then the source of the light is… 
[0 0 1] or  [0 90] directly above surface 
[0 0 -1] or  [0 -90] directly below surface 
[1 0 0] or [90 0] pointed down the x-axis 
[0 -1 1] or [0 45] pointed at a slight angle down on the surface 

In the code that produced Figure 8.24, we could have also generated a light 
object, by using  

surface_handle = surfl(X,Y,Z,[0 30],'light'); 

instead of  

surface_handle = surfl(X,Y,Z,[0 30]); 

Try the previous example and create a light object.  Then to find the 
graphics handle of the light object, use 
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Figure 8.24  Automatic lighting provided by surfl. 

© 2003 by CRC Press LLC



h_light(1)=findobj('type','light');

Now we could make this light object radiate blue light by using the 
command 

set(h_light(1),'color','blue');

We could also create another light object off to the right using the 
command 

h_light(2) = light('color','green','style','local'); 

and generate the following figure which can also be seen in Plate 12. 

If you want more control over the lighting model, you can also use 
surfl(X,Y,Z,s,k), where k is a 4-element vector that defines the ambient, diffuse, 
specular, and spread coefficients ([ka kd ks spread] that normally default to the 
values [0.55 0.6 0.4 10]).  These coefficients are used to apply a weighting to 
reflectance values that are returned from the various light model functions. 

The functions that generate the reflectance values all utilize the normals to 
the surface at the vertex locations.  The command surfnorm (which we first 
saw in an example in Chapter 4)has been created to compute, and if desired 
display, the 3-dimensional surface normals.  If you want to display the normals 
of a matrix, Z, that represent the height of the surface at the vertex locations, 
use surfnorm(Z).

Figure 8.25  Surface with one green light and one blue light. 
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Each patch and surface object already contains the normals calculated at 
the vertices of the object. These are stored in the VertexNormals property.  As 
long as the object’s NormalMode is set to auto, MATLAB will recalculate them 
any time you make changes to the object that would affect the normals.   

The x- and y-axis locations of the vertices are assumed to be the row and 
column numbers of the Z matrix elements.  If the x- and y-coordinates of the 
surface are known, you can use surfnorm(X,Y,Z). For example, if we wanted 
to display the normals of a sphere, we could type 

[x,y,z] = sphere(10); 
surfnorm(x,y,z);
grid on; 

Which will produce Figure 8.26. 

To store the components of the normals, use 

[nx,ny,nz] = surfnorm(z); 

or

[nx,ny,nz] = surfnorm(x,y,z); 

After storing the normal components, if you are generating your own 
normals for the surface and patch objects, you can make use of the functions 
diffuse or specular depending on your lighting model preference.  Both 
models generate reflectance values in the range zero to one, where a zero 
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Figure 8.26  Surface normals are used to determine how an object 
reflects light. 
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means that none of the light is reflected and a one means that all of the light is 
reflected. In modern versions of MATLAB, since the normals for each patch 
and surface object are stored in the object’s VertexNormals property, you do 
not need to calculate them.  Also, it is important to remember that the edge 
(EdgeLighting) and face lighting (FaceLighting) that you have specified for your 
objects has a very significant visual effect.  More often than not, you will find it 
convenient to use lighting none, lighting flat, lighting gouraud, or lighting 
phong to specify the edge and face lighting properties.  The flat lighting 
method forces the entire face of a surface or patch object to have the same 
color at each pixel.  The gouraud lighting method determines the colors at the 
vertices of the faces using the normals and then interpolates these colors 
across the face, while phong interpolates the normals across the face and 
calculates the color at each pixel. 

8.3.2.1 Lighting Commands 

We need to mention here, that in addition to setting values in patch and 
surface objects lighting properties, there are several MATLAB commands (such 
as lighting that you have already seen) that can not only let you create a light 
object, but quickly set some interesting lighting effects. The following table lists 
the MATLAB lighting commands. 

Command Description Arguments 
camlight sets the position of a light,  

creates one if it doesn’t exist 
headlight, right, left, [az,el] 

light creates a light object ‘Property1’,’Value1’’,… 
lightangle positions a light in spherical 

coordinates, creates a light 
if it doesn’t exist 

az, el 

lighting select a lighting method flat, gourard, phong,  none 
material sets the reflectance property shiny, dull, metal, or 

[ka kd ks n sc] (see discussion)

These commands are best illustrated with an example. The following code 
will quickly generate the surface object shown in Figure 8.27. 

ezsurf('sin(sqrt(x^2+y^2))/sqrt(x^2+y^2)',...
    [-6*pi,6*pi]); 
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Now try the following and see what happens. 

shading interp 
lightangle(-45,30)
material dull 

Play around with these commands to see what they can do.  

8.3.3 Lighting Models 

In MATLAB you can achieve the effects of lighting in two ways: one is to 
create a light object with one of the light object creating commands (a light 
object can also be created simultaneously with surf, mesh, pcolor, fill, fill3,
surface, and patch); the other is to use a lighting model. Lighting models do 
not rely on the presence of a light object, instead the appearance of light is 
created by altering the CData values of an object. Three different functions 
apply these models to the surface or patch object. They are diffuse, ambient,
and specular. Remember, instead of applying these models, you could achieve 
similar results by creating light objects and specifying the appropriate 
properties of the patch or surface objects. We will point this out in the 
following discussions.  

8.3.3.1 The Diffuse Lighting Model 

The diffuse  function uses an algorithm that generates reflectance values 
based upon Lambert’s Law for diffuse surfaces.  This function calculates the 
reflectance as a function of the angle between the surface normals and the 
direction of the light source (reflectance = cos( ), where  is the angle).  When 
the normal and light source directions are the same, the reflectance will be the 
largest. 
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Figure 8.27  A surface we will use. 
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diffuse_reflection  = diffuse(nx,ny,nz,s); 

where nx, ny, and nz are normal components calculated by surfnorm, and s 
is the direction of the light source with respect to the surface.  The light source 
direction can be provided as either a 3-element (x,y,z) or 2-element (az,el) 
vector. The following code will create a sphere surface object with diffuse 
lighting characteristics as shown in Figure 8.28. 

[x,y,z] = sphere(20); 
[nx,ny,nz] = surfnorm(x,y,z); 
diffuse_refl = diffuse(nx,ny,nz,[0.5 -1 1]); 
surf(x,y,z,diffuse_refl);
shading interp; 
colormap(gray);

The method just shown achieves its results by altering the color data values 
(CData) of an object and therefore does not require a light object.  You can 
verify that no light object was created by typing 

findobj('type','light')

which will return 

ans = 

   Empty matrix: 0-by-1 

You could  control the diffuse reflection using the patch or surface object’s 
DiffuseStrength property.  However, for this property to have an effect on the 
object, there must be a light source (i.e., you must create a light object with 
one of the light creating commands). The only restriction on the value you 
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Figure 8.28  Applying a diffuse model – no light object created. 
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assign to this property is that it must be greater than or equal to zero. One 
way to describe diffuse reflection is to think of it as the spread or creeping of 
the light across the object.  By increasing the value, you increase the intensity 
or the spread of the diffuse reflection. 

8.3.3.2 The Ambient Lighting Model 

Ambient light shines across all surface and patch objects in a uniform 
manner.  The color of the ambient light is by default white (i.e., [1 1 1]) and 
can be changed only on a per axes object basis, since the axes object stores 
the color in its AmbientLightColor property.  The ambient light’s relative effect 
on the objects for a given axes object can be controlled by setting the patch 
and surface AmbientStrength property with a value greater than or equal to 
zero.  Regardless of the value set to the AmbientStrength, a light object must 
be present in the scene if you want to see the ambient light. 

Assuming a light object is present, a zero AmbientStrength setting means 
that the ambient light has no effect on the object.  Pixels of the object that 
have non-zero color components (RGB) corresponding to non-zero 
components of the ambient light color will be affected by the ambient light.  
You can think of it as a multiplicative effect, whereby the pixel's red, green, 
and blue components, [Rp Gp Bp], and the ambient light’s components [Ra 
Ga Ba], and the AbientStrength, A, are multiplied to determine the pixels final 
color intensity, 

Pixel Color Intensity = [Rp Gp Bp] .* [Ra Ga Ba] * A 

For example, if an object is green, then none of the ambient light’s red and 
blue components will contribute to the light on that object.  However, the 
object’s green components will get brighter.  Experiment with the following 
code which will create Figure 8.29: 

z=ones(2,4);
c(:,:,1) = [0 0 0; 0 0 0]; % Red component of each face 
c(:,:,2) = [1 .6 .3; 1 .6 .3]; % Green component
c(:,:,3) = [0 0 0; 0 0 0];     % Blue component
s=surf(z,c);
set(s,'diffusestrength',0,...
      'specularstrength',0,... 
      'ambientstrength',1); 
l=light;
axis equal 
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You will notice that if you change only the red and blue components of the 
axes object’s AmbientColor using,  

set(gca,'AmbientColor',[.5 1 0]); 

the three shades of green will not change.  However, if you make the green 
component less than 1, the shades of green will get darker.   

Try increasing the surface’s AmbientStrength, and you will notice that the 
shades of green will all be the same brightness when using values greater than 
3.33 (I = 1/(Rg*Ra) = 1/(1*0.3)), since you have pushed the brightness of all 
three faces  to their maximum value of 1. 

8.3.3.3 The Specular Lighting Model 

The specular function’s algorithm generates the largest reflectance values 
when the normals are in the direction halfway between the light source and 
the viewer.  To use this function, you can use either 

specular_reflectance = specular(nx,ny,nz,s,v); 

or  

specular_reflectance = specular(nx,ny,nz,s,v,spread); 

where nx, ny, and nz are determined with surfnorm, s is the direction of the 
light source from the surface, v is the direction of the viewer from the surface, 
and spread is a measure of how quickly the reflectance falls from the peak 
reflectance value.  The s and v variables must be defined as either a 3-element 
([x y z]) or 2-element ([azimuth elevation]) directional vector.  The spread 

Figure 8.29  Test surface for ambient color effects. 
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variable defaults to 10 if not supplied. Spread values larger than 10 force the 
reflectance to fall more quickly. The following code demonstrates using 
specular with the results shown in Figure 8.30. 

[x,y,z] = sphere(20); 
[nx,ny,nz] = surfnorm(x,y,z); 
specular_refl = specular(nx,ny,nz,[0.5 -1 1],[-37.5 
30],1);
surf(x,y,z,specular_refl);
shading interp; 
colormap(gray);

Again, we point out that since no light object creating command was issued, 
there is no light object in this figure. The specular function changed the CData
values to give the appearance of lighting. If we had a light object, we could 
create diffuse reflection using the patch or surface object’s SpecularStrength,
SpecularExponent, and SpecularColorReflectance properties.  For these 
properties to have an effect on the object, there must be at least one light 
source (i.e., you must create a light object with the light function). By 
increasing the SpecularStrength (any finite value greater than or equal to zero), 
you increase the intensity of the the specular reflection.  By increasing the 
SpecularExponent (a value greater than zero), you increase the size of the “hot 
spot”.  The SpecularColorReflectance property lets you decide the fraction 
(using values between 0 and 1) of the color of the specular reflectance.  
Values closer to 0 use more of the object color in the reflectance, while values 
closer to one use more of the light color as a percentage of the reflected 
color.
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Figure 8.30  A sphere enhanced by specular lighting – again, no light 
object created. 
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8.3.3.4 Combining Lighting Models 

The best way to learn about the different lighting models is to experiment.  
You should also remember that nothing prevents you from adding together 
the reflectance values generated from the specular or diffuse functions.  In 
fact, very interesting and visually pleasing 3-dimensional plots can be created 
with combinations of multiple light sources and different reflectance models.  
For example, Figure 8.31 (see Plate 13) was created with the following code. 

n = 20; 
t = (0:n)'*2*pi/n; 
x = [cos(0:.1:(2*pi)) ones(1,10) -1 -2 -3]+3; 
y = [fliplr(1:(length(x)-3)) 1 1 1 ]; 
t = (0:20)'*2*pi/20; 
xx = cos(t)*x; 
yy = sin(t)*x; 
zz = ones(n+1,1)*y; 
[nx,ny,nz] = surfnorm(xx,yy,zz); 
reflectance = specular(nx,ny,nz,[-80.5 30],... 
[-70 -30],5) + diffuse(nx,ny,nz,[230 40]); 
figure('colormap',hot);
surface_handle = surf(xx,yy,zz,reflectance); 
shading interp 
axis('off');

Figure 8.31  Mixing specular and diffuse reflectance models. 
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8.3.3.5 A Final Word on Light Objects 

Now that you have seen the properties of light objects, and have seen the 
results of light models, you probably have a good feel for the interaction 
between a patch or surface object and light – whether modeled light or a light 
object. Here is an example that introduces a light object into a figure, and by 
setting various surface properties creates a very natural-looking result. 
Consider the following code, recalling Figure 8.27. 

ezsurf('sin(sqrt(x^2+y^2))/sqrt(x^2+y^2)',...
    [-6*pi,6*pi]); 
view(0,75);
shading interp 
%create a light object 
h_light=lightangle(-45,30);
%use findobj to get the surface handle 
h_surf=findobj('type','surface');
%now change the surface properties that
%are affected by light 
set(h_surf,'FaceLighting','phong',...
    'AmbientStrength',0.3,... 
    'DiffuseStrength',0.6,... 
    'SpecularStrength',0.7,... 
    'SpecularExponent',0.25,... 
    'BackFaceLighting','unlit') 

Try altering the properties of h_surf and h_light to see what you can do. 

Remember, when you are using the light models, you are changing the 
patch or surface object’s CData. When you use a light object, your patch or 
surface object isn’t being inherently changed. The choice as to which method 
to use is dependent on your intended purpose of your patch and surface 
objects. 

8.3.4 Creating Color Varying Lines with Surface Objects 

In Section 8.2.9 we explored the pseudocolor plot. You probably have been 
hoping that there is some way you can have lines change color to reflect 
different values just like with surface objects.  

Even though you cannot use color maps with line objects, this does not 
mean that you cannot create graphics that look like a line with varying colors.  
The next couple of examples in this section show how you can create lines 
whose colors are specified by mathematical expressions. 

 The interesting point is that we will not use the line object; rather, we will 
use a thin surface object and create what will be called a virtual line.  Since 
surface objects can be defined by x-, y-, and z-axis data, we can create virtual 
lines that are in either the 2- or 3-dimensional plotted perspectives.  The 
following example shows how to create a virtual line in which the color is a 
function of the y-coordinate data values. 

% Define the coordinates of the virtual line 
x = 0:.02:5*pi; 
y = sin(x); 
z = 0*x; 

�
� � � � � � � �

� 	 
 � � �
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% Define the color values of each coordinate of the line 
c = y; 
% Generate the plot. 
figure;
surface([x;x],[y;y],[z;z],[c;c],...
 'facecolor','none',... 
 'edgecolor','flat',... 
 'linewidth',3); 
set(gca,'box','on','xtick',[0:pi:5*pi],...
     'xticklabels','0|pi|2pi|3pi|4pi|5pi'); 
axis([0 5*pi -1.1 1.1]) 

From the code you see that the surface object’s FaceColor is set to “none” and 
the EdgeColor is “flat”.  You can just as easily set the EdgeColor to “interp”; 
however, it will take longer for the line object to render and with some 
versions of MATLAB, you will not be able to control the LineWidth.  Figure 
8.32 shows the result, although you might want to look at Plate 14 to better 
appreciate it. 

We should point out that it is not necessary to set the FaceColor to “none”, 
unless you want to create several lines with the same surface object.  You may 
have realized that you can just as easily create multiple lines in which each 
line’s  color varies as a function of the x, y, or z data.  Each row or column of 
the matrices in the XData, YData, and ZData can be used to represent a line by 
setting the MeshStyle, respectively, to row or column instead of its default 
value of both. 

For example, we can create the plot shown in Figure 8.33 (see Plate 15 for 
the color representation) with the following code. 
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Figure 8.32  Making a virtual line with surface to create a line where the 
color changes as a function of the y-coordinate. 
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u = 0:.2:4*pi; 
x = cos(u); 
y = sin(u); 
z = u; 
figure('colormap',cool(64));
h_surface = surface([0*x;x],[0*y;y],[z;z],... 
 'facecolor','none',... 
 'edgecolor','flat',... 
 'meshstyle','row',... 
 'linewidth',3); 
view([-40 40]); 
grid on; 

8.4 Object Transparency 
Transparency is a powerful visualization technique that allows you to see an 

object while at the same time see information that would otherwise be 
obscured if the object was fully opaque. In MATLAB, you can create varying 
degrees of transparency, based on your needs, in image, patch, and surface 
objects. Transparency is useful not only in seeing what information lies behind 
or within some other (as in volume plots), but also can be used as another 
dimension for data.  

8.4.1 Alpha Properties 

The following table lists the object properties that affect transparency. 
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Figure 8.33  Creating multiple color lines with one surface object. 
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Property Read
Only

ValueType/Options Format 

AlphaData No m-by-n matrix of transparency data 
for image and surface objects 

matrix 

AlphaDataMapping No none | direct | scaled 
none =  default for images 
scaled = default for patches 

row 

FaceAlpha No Transparency for faces row or scalar

EdgeAlpha  No Transparency for edges row or scalar

FaceVertexAlphaData No Alpha data property for patches row or scalar

ALim No Alpha axis limits vector 

ALimMode No Alpha axis limits mode row 

Alphamap No Figure Alphamap matrix 

8.4.1.1 AlphaData 

Just like CData contains color data for surfaces, each element of the alpha 
data contained in AlphaData is mapped to a transparency value in the 
Alphamap. This property applies to surface and image objects 
(FaceVertexAlphaData is its counterpart for patches).  

8.4.1.2 Alphamap 

This is the set of alpha values (numbers between 0 and 1) that MATLAB 
uses to determine transparency for an object, i.e., the alpha map. The data 
stored in Alphamap is an m-by-1 array where the first row is the first alpha 
value and m is the last. The default alpha  map has 64 values linearly 
progressing from 0 to 1. Alphamap applies to surface, patch, and image 
objects. 

8.4.1.3 ALim 

ALim is an axes property that applies to any axes children using alpha data. 
It is a two-element vector, stated as [amin amax], that specifies how the alpha 
map (in AlphaData ) is mapped. The value of amin is mapped to the first alpha 
map value, and amax is the value mapped to the last alpha map value. Data 
values between are linearly interpolated across the alpha map, while values 
beyond the limits are “clamped” to the limits. Setting ALim  will set ALimMode
to “manual”. 

8.4.1.4 ALimMode 

Working with ALim, ALimMode, can take the values of  “auto” or “manual”. 
In the default “auto” mode, the ALim property is automatically set to span the 
range of all objects’ AlphaData (for surface objects) or FaceVertexAlphaData
(for patch objects). In the “manual” mode, the value of ALim is not changed 
when the AlphaData limits of axes children change. 
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8.4.1.5 AlphaDataMapping 

Hand-in-hand with AlphaData is the property AlphaDataMapping which is 
used to determine how the alpha data is to be interpreted. The three choices 
are: 

none – transparency values are clamped to be between 0 and 1, the default 
for images. 

scaled - forces the AlphaData to span the range of ALim, the default for 
patches. 

direct – uses the AlphaData as indices directly into the alpha map. 

8.4.1.6 FaceAlpha 

FaceAlpha specifies the type of transparency to be used for a patch or 
surface face. Since this applies only to patch and surface objects, it uses the 
data stored in FaceVertexAlphaData. It can be any one of the three following 
values: 

A scalar value – a number between 0 and 1 where 0 is fully transparent, i.e., 
invisible,  and 1 is completely opaque (the default). 

flat – the values stored in FaceVertexAlphaData determine the transparency 
at each face.  

interp – binary interpolation of the alpha data in FaceVertexAlphaData at 
each vertex determines the transparency of each face. 

texturemap – for surface objects only, uses transparency for the texture 
map. 

8.4.1.7 EdgeAlpha 

Similar to FaceAlpha, EdgeAlpha lets you control the transparency of the 
edges of patch faces and surfaces. The possible values for patch objects are: 

scalar - a single scalar value between 0 and 1 where 1 (the default) is fully 
opaque and 0 is invisible. 

flat - alpha data, i.e., the contents of FaceVertexAlphaData, of each vertex 
controls the transparency of the edge that follows it. 

interp - linear interpolation of the alpha data (FaceVertexAlphaData) at each 
vertex determines the transparency of the edge. 

The only difference with surface objects is that instead of 
FaceVertexAlphaData, the “flat” and “interp” options apply to AlphaData.

8.4.1.8 FaceVertexAlphaData 

FaceVertexAlphaData is a m-by-1 matrix that specifies the face and vertex 
transparency for patch objects (as defined by Faces and Vertices properties), 
the interpretation of which depends on the dimensions of the data. The 
contents of FaceVertexAlphaData can be: 

scalar – a single scalar value that will be applied to each patch. 
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matrix – m-by-1 matrix specifying one transparency value per face, where m 
is the number of rows in the Faces property or the number or rows in the 
Vertices property. 

8.4.2 Alpha Functions 

Alpha functions are those functions that will create or affect transparency 
effects in surface, patch, or image objects. The following subsections present a 
summary of the three alpha functions, namely alpha, alphamap, and alim.

8.4.2.1 alpha 

An object’s alpha data, i.e., the value stored in AlphaData, can be specified 
with the alpha function.. The possible inputs to alpha are given in the 
following table: 

Usage Interpretation 

Specifying a single alpha value for the entire object. 

alpha(scalar) Sets the face alpha to be the value of scalar where 0 = invisible and 
1= opaque 

alpha(‘flat’) face alpha set to ‘flat’ 

alpha(‘interp’) face alpha set to ‘interp’ 

alpha(‘texture’) face alpha set to a ‘texture’ 

alpha(‘opaque’) same as alpha(1) 

alpha(‘clear’) same as alpha(0) 

Specifying a different alpha value for each element in an object’s data. 

alpha(matrix) alpha data set to matrix 

alpha(‘x’) alpha data set to  x data 

alpha(‘y’) alpha data set to y data 

alpha(‘z’) alpha data set to z data 

alpha(‘color’) alpha data set to the same as the color data 

alpha(‘rand’) alpha data set to random values 

Specifying the AlphaDataMappingMethod property. 

alpha(‘scaled’) sets AlphaDataMappingMethod to ‘scaled’ 

alpha(‘direct’) sets AlphaDataMappingMethod to ‘direct’ 

alpha(‘none’) sets AlphaDataMappingMethod to ‘none’ 

8.4.2.2 alphamap 

The function alphamap is provided to let you set an object’s Alphamap
property. The following table shows the different usage specifications for 
alphamap.
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Usage Interpretation 

Forms that create a new alpha map. 
alphamap(‘default’) sets Alphamap to default values. 
alphamap(‘rampup’) creates a linear alpha map with increasing 

opacity 
alphamap(‘rampdown’) creates a linear alpha map with 

decreasing opacity 
alphamap(‘vup’) creates an alpha map that is transparent 

in the center, and linearly increasing to 
the beginning and end 

alphamap(‘vdown’) creates an alpha map that is opaque in 
the center, and linearly decreasing to the 
beginning and end 

alphamap(matrix) creates a new alpha map with the values 
of matrix.

Forms that modify the existing alpha map. 
alphamap(‘increase’) makes the alpha map more opaque 
alphamap(‘decrease’) makes the alpha map more transparent 
alphamap(‘spin’) rotates the alpha map
alphamap(‘’) creates an alpha map that is transparent 

in the center, and linearly increasing to 
the beginning and end 

alphamap(‘vdown’) creates an alpha map that is opaque in 
the center, and linearly decreasing to the 
beginning and end 

alphamap(param, length) affects parameters that create new alpha 
maps making them length long 

alphamap(change, delta) changes alpha map parameters by delta
alphamap(figure, param, 
length | change| change, 
delta) 

sets a figure’s alpha map  “param” 

Forms that return information. 
amap = alphamap returns the current alpha map 
amap= alphamap(figure) returns the current alpha map from the 

handle figure
amap = alphamap(param) returns the alpha map based on param

without setting the property 

8.4.2.3 alim  

The function alim can be used to set the value of the ALim and ALimMode 
properties.  The general form of use is alim([amin amax]) which will set the 
alpha limits. You can also use it as alim(mode) where mode is one of the valid 
ALimMode strings (“auto” or “manual”).  

The alim  function can also be used to return the contents of the ALim
property or the setting in ALimMode. Typing al=alim will return the alpha limits 
of the current axis, i.e., the data stored in the ALim property. 
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8.4.3 Setting a Single Transparency Value 

As you can see, you can use alpha to specify the contents of AlphaData and 
to set AlphaDataMappingMethod. The alpha function can be very convenient 
to use whenever you want a quick transparency of equal value across an 
object as is demonstrated with the following code, which harkens back to the 
isosurface plot of Figure 4.42 in Chapter 4. The result is shown in Figure 8.34 
and in color in Plate 16.

[x y z v] = flow; 
h_p=patch(isosurface(x, y, z, v, -3)); 
daspect([1 1 1]); 
set(h_p, 'FaceColor','green','EdgeColor','none'); 
view(3)
axis tight 
grid on 
camlight; lighting phong 
alpha(.5) %set alpha for all 

8.4.4 Mapping Data to Transparency  

We have already seen how to use our plot data by mapping it to CData so 
that the color is a function of the data. We can do the same sort of thing with 
AlphaData, essentially making the degree of transparency a function of some 
data. Consider a surface similar to mesh plot of Figure 4.3 created by 

[X,Y] = meshgrid(linspace(0,2*pi,50),linspace(0,pi,50)); 
Z = sin(X).*cos(Y); 
hsurf=surf(X,Y,Z);

Figure 8.34  Setting a single transparency value with alpha. 
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set(hsurf,'CData',gradient(Z));
set(hsurf,'AlphaData',gradient(Z));
set(hsurf,'FaceAlpha','flat');
set(hsurf,'EdgeColor','none');

In this example we used the gradient function to indicate by both color and 
transparency where the slopes of the curves are equal. Try setting the 
FaceColor to a constant, e.g., ‘blue’, and set EdgeColor to [0.8 0.8 0.8]. Can 
you change the AlphaData to another function of x, y, or z? 

Figure 8.35  Using data to specify transparency.  
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8.5 Illustrative Problems 
1. Experiment with the different EdgeColor and FaceColor settings so that 

you become more familiar with their effects.  Also look at altering the 
color axis limits by setting the CLim property.  For example, try 

set(gca,'clim',[-5 5]) 

or  

set(gca,'clim',[-20 10]) 

If the results don’t make sense, go back to Equation 8.1 and calculate the 
index to the color map using the new cmin and cmax values.  You may 
also want to try adding more colors to the color map with 

set(gcf, 'colormap',jet(20); set(gca,'climmode','auto')). 

2. Create a surface plot and apply various intensity levels to it using the 
brighten function and some of your favorite color maps. 
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99 AANNIIMMAATTIIOONN

With our study of MATLAB graphics we have concerned ourselves with the 
visualization of information. As such we have explored 2-D and 3-D 
presentations of data, using color and transparency to add more dimensions or 
to emphasize aspects of our plots, and now we add yet another dimension – 
motion. As you are about to learn, animating a graphic can be both enjoyable 
to watch and provide great insight into the nature of data. Graphical 
representations of a physical object or interactions between objects that a 
simulation is attempting to model allow someone who did not have a role in 
the design of the simulation to follow along and gain an intuitive feel for the 
results that are being generated. Additionally, we are becoming an 
increasingingly graphically oriented world, and we take great comfort in 
“seeing” information. Although this sense of comfort is purely psychological 
and really shouldn’t play a role in the amount of confidence that is put into a 
program, in many cases it does carry significant weight.  In order to fully 
comprehend and appreciate all of the animation capabilities that the MATLAB 
graphics engine provides, it will be even more important for you to implement 
the MATLAB code found in this chapter.  At the very least, run the programs 
as you are reading along and you will gain a great appreciation for the strength 
animation can add to your visualizations. 

In this chapter we will focus on two different methods of creating an 
animation.  The first is a frame-by-frame capture and playback technique, like 
frames in a movie, and the second is a true on-the-fly graphics coordinate 
location manipulation.  Both have their advantages and disadvantages and are 
geared for animating different types of graphics objects in various types of 
circumstances.  You will learn how to create animations with both of these 
techniques and will understand when it is advantageous to use one or the 
other. You will also learn how to translate your MATLAB movies into standard 
AVI format, which will allow you to make your movies easily playable on any 
computer and conveniently insertable to presentation applications like 
Microsoft’s PowerPoint.  

9.1 Frame-by-Frame Capture and Playback 
To create a movie, there are only several MATLAB commands that you will 

need to use.  There is the function moviein, which preallocates enough 
memory to capture a specified number of frames of a movie, the function 
getframe for capturing the individual frames, and the function movie for 

IN THIS CHAPTER…
9.1 FRAME-BY-FRAME CAPTURE AND PLAYBACK 
9.2 ON-THE-FLY GRAPHICS OBJECT MANIPULATION 
9.3 CHOOSING THE RIGHT TECHNIQUE
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playing back a series of captured frames.  The manner in which the two 
commands are used is fairly straightforward; however, to get the results you 
want, you need to learn about the nuances of each command and understand 
what each command is doing. 

 Although it is not necessary to preallocate memory for the data matrix that 
stores the frames of the movie, it is recommended because the amounts of 
data that must be stored are usually large and because a slight speed 
improvement with regard to the time it takes to add a movie’s frame to the 
movie data matrix can be realized. The simplest way to preallocate memory 
for a movie is by using 

M = moviein(N); 

where N is the number of frames that you intend to record.  If no axes 
object currently exists, this command will create one (and, if necessary, a 
figure object parent for that axes object will be created). 

You are now ready to create the frames of your movie. However, we will 
point out that the general form of the movie function is 
movie(H,M,N,FPS,LOC), where H is the handle to a figure or an axis (this 
means you can have a movie that is in one of these objects), M is structure 
array that contains the frames for the movie, N is the number of times the 
movie will be played, FPS is the rate the movie is to be played in frames-per-
second (default is 12 fps), and LOC is the location where the movie is to be 
played relative to the lower left-hand corner of object H (LOC is always in 
pixels, regardless of H’s Units property).  

Another word about LOC; unlike the usual position defining vector we have 
seen, LOC does not specify the size of the movie – only the position. The 
width and height of the movie is established when it is recorded. Nevertheless, 
you still have to give LOC four elements.  

The approach to the animation you are about to create relies on taking an 
individual snapshot of each frame for the movie, then quickly flashing them 
back at a fixed rate, consequently, to make a smooth and fluid movie, you will 
want each individual frame or snapshot to be only slightly different from the 
previous.  Therefore, in addition to the changes between sequential frames, 
the smoothness of the movie will also depend on the speed of your machine. 
In this example we will use the bessel function to create a visually interesting 
set of frames of a 3-dimensional surface.  

% Create a figure that is a little smaller than
% standard to save 
% memory since we will be storing 20 frames.
%If your machine has a lot of memory you do 
% not have to define the position property of the 
%figure.
movie_figure = figure('position',[100 250 300 200]); 
M = moviein(15); 
[x,y] = meshgrid([-10:0.5:10]); 
for frame_number = 1:15 
   z = bessel(0,( frame_number-1)*.2 + sqrt(x.^2 + 
y.^2));

�
� � � � � � � �
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   surf(x,y,z); 
   axis([-10 10 -10 10 -.5 1]); 
   % Bring the figure to the front before taking a 
snapshot.
   figure(movie_figure); 
   M(:,frame_number) = getframe; 
end

Now that we have created and stored all of the frames in our movie, we 
can play the movie back with 

movie(M);

If you have a fast machine and the movie played through so fast that you 
didn't even get to enjoy it, try playing forward and backward with 

frame_order = [1:15 14:-1:1]; 
number_repeats = 5; 
movie(M,[number_repeats frame_order]); 

Now that you have had a quick introduction, let’s look at the different 
command syntaxes and develop a true understanding of what each command 
is doing so that you can develop a world-class movie.  We will start with 
getframe, because the data that is returned with this function has implications 
for movie and moviein.

9.1.1 Taking a Snapshot 

To take a snapshot of the current figure or axes object for use in a movie, 
we use the command getframe.  This function can return a vector that is 
stored in a special MATLAB format called pixmap that is used for movies.  
Although now an obsolete usage, getframe can also be used to return two 
matrices for creating an image object (the first matrix is the image’s color data 
matrix and the second is the associated color map). But as we said, this is now 
an obsolete use and instead MATLAB provides the function frame2im that will 
convert an individual movie frame to an indexed image. 

In this chapter we discuss only the forms of getframe used for recording 
movie frames.  The first two elements of the returned pixmap vector identify 
the size of the frame in pixels ([width height]), and the remaining elements of 
the vector represent the actual pixels of the frame that is stored.  There are 
several forms of the command that can be used for movies.  The forms are all 
very similar, the only difference being how you specify the region over which 
a bit-mapped snapshot should be taken.  Since you are essentially specifying 
only a region on the screen, you must be aware that should another element 
lie on top of and obscure part of that region, for example, another Figure 
Window or even the Command Window, the bit-mapped image will contain 
the pixel representation of those elements.  The first form of getframe is simply 

M = getframe; 

© 2003 by CRC Press LLC



This form will use the current axes object to define the frames region.  The 
boundaries of the axes object, as defined by its Position property, specify the 
region in which the snapshot is made. If you are unsure where the boundaries 
of the axes object are, you can always set the axes Box property to “on” and 
the View property to [0 90] (i.e., the 2-dimensional view), remembering that 
from this perspective the box and everything within the box are the region 
defined by the axes Position property. By creating a movie frame with this 
form, you may lose some or all of the tick mark labels, the x-, y-, and z-axis 
labels, and the title associated with that axes object. How much of this 
information you lose depends on the rendering perspective (i.e., a 2- or 3-
dimensional view) of the axes object.  In 2-dimensional views, all labels and 
titles will be lost; while in 3-dimensional views, part of the labels and titles will 
be lost or cut off. 

You also have the option of recording a frame from any axes or figure 
object by using 

M = getframe(object_handle); 

where object_handle is the graphics handle of an axes or figure object.  
When an object handle is not supplied, it defaults to the current axes object.  
For example, using M = getframe(gcf) allows you to take a snapshot of 
everything within the current figure (i.e., multiple axes objects and their 
respective labels). 

Finally, you are not limited to specifying the frame’s position with the 
position of an axes or figure object.  An arbitrary region, with respect to a 
figure’s lower left-hand corner, can be specified using 

M = getframe(object_handle,rectangle_vector); 

where rectangle_vector is similar to the usual four-element position-defining 
vector, [left bottom width height]. The units of the rectangle_vector variable 
are the same as the Units property of the object with graphics handle 
object_handle (remember that a figure’s factory default Units are in pixels).  
The rectangle_vector, when not supplied, defaults to the Position property of 
the figure, but with the first two elements set to [0 0] since the 
rectangle_vector position is defined with respect to the lower left corner of the 
figure.

For example, let’s say you wanted to make a movie using only the upper 
right subplot in a figure that has four subplots.  The third form of getframe
would be most applicable.  To demonstrate this,  let’s create the set of 
subplots shown in Figure 9.1 with 

figure;
subplot(221);
plot(1:10);
subplot(222);
x = 0:0.1:(2*pi); 
plot(x,sin(x))
title('sin wave');xlabel('x');ylabel('y'); 
subplot(223);
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sphere(15);
subplot(224);
cylinder([1 .5 1]); 

Now create the vector that defines the upper right-hand quadrant of the figure 
using 

figure_position = get(gcf,'position'); 
rectangle_vector = [figure_position(3:4)/2 ... 
                    figure_position(3:4)/2]; 

Then plot and take a snapshot of the different versions of the sine wave in the 
appropriate axes with 

subplot(222)
for loop = 0:20 
   plot(x,sin(x+2*pi*loop/21)); 
   title('sin wave');xlabel('x');ylabel('y'); 
   M(:,loop+1) = getframe(gcf,rectangle_vector ); 
end

Finally, we can play the movie in a new figure by typing 

figure
movie(M);

You may have noticed that the new figure has axes with x and y limits ranging 
from zero to one and that the movie is being played on top of these axes and 
takes up only a small portion of the figure.  This is quite likely not what you 
would really like to see.  The following set of commands might give you the 
type of movie you are looking for 
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Figure 9.1 Sample subplots used to generate a movie. 
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figure('pos',rectangle_vector ); 
movie(gcf,M,5);

Do not change the size of the frame that is being recorded from snapshot to 
snapshot.  Changing the size of the frame either by resizing a figure or 
redefining the rectangle_vector will result in a change in the size of the vector 
that is returned from the getframe function.  This, in turn, will give you errors if 
you are storing these vectors in a movie matrix. 

9.1.2 Playing a Movie 

We are now in a position to learn more about the command movie.  As 
with most MATLAB functions, and as we mentioned at the beginning of this 
chapter, there are several ways that this function can be used.  The form 

movie(M)

plays the frames that are stored by columns in matrix M in the current axes 
object (if an axes object does not exist, a new one will be created).  Since the 
movie is played in an axes object, the x- and y-axis lines and tick mark lines of 
the axes object will be visible, unless you have made them invisible with a 
command such as set(gca,'visible','off') or axis('off').

Two other forms are 

movie(M,N)

and

movie(M,N,FramesPerSecond)

where N is either a scalar or vector defining the number of times and the 
order in which the frames are to be played, while FramesPerSecond is a scalar 
that specifies the rate at which MATLAB should try and play a movie.  By 
default, MATLAB tries to play a movie at 12 frames per second, but its success 
at achieving this rate depends on your machine’s speed.  The first element of 
the variable N will identify the number of times that the frames should be 
played.  If it is a negative number, the movie will be played forward and 
backward that many times.  For example, if N equals negative three, the movie 
will be played forward and backward three times.  If there is more than one 
element in  N, the remaining elements specify which frames and the order in 
which the frames will be played.  For example if there are five frames in the 
movie matrix M, 

NumberOfPlays = 1; 
FrameOrder = [1 2 3 4 5 4 3 2 1]; 
movie(M,[NumberOfPlays FrameOrder]) 

will play the movie one time forward and backward without repeating the 
fifth frame.  The following code 

NumberOfPlays = 2; 

�
� � � � � � � �
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FrameOrder = [1:5 4:-1:2]; 
movie(M,[NumberOfPlays FrameOrder]) 

will play the frames in the following sequence: 

1, 2, 3, 4, 5, 4, 3, 2, 1, 2, 3, 4, 5, 4, 3, 2. 

This is different from using movie(M,-2) which would play the frames in the 
following sequence: 

1, 2, 3, 4, 5, 5, 4, 3, 2, 1, 1, 2, 3, 4, 5, 5, 4, 3, 2, 1. 

The freedom of defining the order in which the frames are played and the 
number of times that the order is sequenced through (as in the previous 
example), gives you the capability, in some circumstances, to save memory by 
reusing frames instead of storing identical frames in the movie matrix. 

The final two forms of movie serve to provide you with the freedom of 
specifying the location at which the movie will be played.  Using 

movie(object_handle,M,N,FramesPerSecond)

plays the movie in the graphics object with the handle object_handle.  The 
N and FramesPerSecond variables are optional with this form if their default 
values of one and twelve are satisfactory.  The last form that will be discussed 
is movie(object_handle,M,N,FramesPerSecond,rectangle_vector). This form 
will play the movie at the location specified by rectangle_vector.  This is also a 
4-element position vector [left bottom width height], in which the left and 
bottom elements are defined with respect to the lower left-hand corner of the 
axes or figure object identified by the handle object_handle.  The width and 
height do not really matter since the movie matrix defines these two values. 

After a movie has been played, any command or action that forces the 
window to be refreshed will result in removal of any remnants of the movie 
that were in that window.  For example, resizing the figure or typing refresh 
will remove any trace of the movie from the Figure Window.  This is because 
the movie is only a bit-mapped representation that is flashed onto the Figure 
Window at a specified location.  A movie is not a graphics object (i.e., it has 
no handle and is not a child of a figure or axes object). 

9.1.3 Preallocating Memory 

As stated earlier, it is not necessary to preallocate memory for the movie 
data matrix.  However, in the name of speed and reduction of wasted effort, it 
is recommended that you do preallocate.  The savings in terms of speed is 
achieved because MATLAB does not need to reallocate memory every time a 
new frame is added to the matrix.  The probability that your efforts are wasted 
or made in vain are less likely because you will find out at the time you try to 
preallocate the memory whether or not you have enough memory.  If you 
force MATLAB to reallocate on the fly you may get an “Out of memory” error 
when it attempts to store a new frame, and you will lose the time it took to 
reach that point. 

There are different ways to preallocate the memory.  The most basic, 
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M = moviein(N) 

is used if you are recording the contents of an axes object. The variable N 
specifies the number of frames that will be stored.  This ends up being the 
number of columns needed in matrix M.  The number of rows is determined 
by the function as it calculates what the length of the pixmap vector will be to 
store the data in the current axes object. 

If you are recording the contents of an entire figure, you can use 

M= moviein(N,figure_handle); 

where figure_handle is the figure in which the frames will be recorded.  In 
both of these forms of moviein, do not resize the figure or axes object as this 
will force a change in the number of rows required to store the pixmap data. 

Finally, if you are recording the contents over some arbitrary region of a 
figure with handle figure_handle, use 

M = zeros(length(... 
          getframe(figure_handle,rectangle_vector)),N); 

where rectangle_vector is the 4-element vector, [left bottom width height] 
(defined in the units of the figure and with respect to the figure’s lower left-
hand corner), that defines the recorded region.   

9.1.4 Practically Speaking 

Although there are many different circumstances and ways in which you will 
want to create your movie, it is most likely that you will create a movie of all 
the events in a figure or portion of the figure.  For this reason, it is 
recommended that you create the frames with respect to the figure. 

9.1.4.1 Recording the Entire Figure 

If you are recording all events in a figure, use 

M = getframe(figure_handle); 

to record the frames and play them back in the same or new figure with the 
form

movie(figure_handle,M,N)

If the figure in which you are playing the movie is a new Figure Window, 
make sure that the width and height of the new figure are the same as the 
frames that were recorded.  If you didn’t keep this information, you can always 
get it directly from the movie matrix, M, by using something like 

WidthHeight = M(1:2,1)'; 
NewFigure = figure; 
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NewFigurePos = get(NewFigure,'position'); 
set(NewFigure,'position',[NewFigurePos(1:2)
WidthHeight]);

and then play the movie in this new figure with 

movie(NewFigure,M);

As an example, let’s create a movie that has two axes objects and animation 
simultaneously occurring in both. 

figpos=[100 200 150 125]; 
h_fig = figure('Position',figpos); 

for framenumber = 1:20; 
   subplot(121); 
   plot(sin(0:0.1:(2*framenumber*pi/20)),... 
            0:0.1:(2*framenumber*pi/20),'--r'); 
   axis([-1 1 0 2*pi]); 
   subplot(122); 
   plot(0,exp(-(framenumber-1)/3),'*g'); 
   axis([-1 1 0 1]);axis('off'); 
   drawnow; 
   M(framenumber)=getframe(h_fig) 

end

delete(h_fig)
h_newfig=figure('Position',figpos)
axis off 
movie(h_newfig,M,-5)

In this example, we simply take the entire figure as the frame with 
getframe(h_fig), store those frames in M, then play M in a new figure that 
is the same size as the original figure.  

9.1.4.2 Animating a Portion of the Figure 

You might be thinking at this point,  

“What if I want to animate only a portion of a figure?” 

Which is a very good question. This can be achieved quite handily by using 
the form 

M = getframe(figure_handle,rectangle_vector); 

Then play the movie back in the same figure in the same region in which it 
was recorded with 

movie(figure_handle,M,N,FramesPerSecond,...
rectangle_vector);

For example, if you have 
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h_fig = figure; 
subplot(2,1,1);
plot(abs((0-5)));axis([0 11 0 5]) 
subplot(2,1,2)
plot(sin(0:4*pi));axis([0 4*pi -1 1]) 

you can animate and record the top axes with 

subplot(2,1,1);
%Define the position of the region that 
%is to be recorded. 
figposition = get(fig,'position'); 
rectangle_vector = [0 figposition(4)/2 figposition(3) 
figposition(4)/2];
for framenumber = 1:10; 
   plot(abs((0:(framenumber -1))-5));axis([0 11 0 5]); 
   M(framenumber) = getframe(h_fig,rectangle_vector ); 
end

and then play back the movie with 

movie(fig,M,-3,12,rectangle_vector);

To play the movie in a new figure with a width and height equal to the width 
and height of the recorded frames, use something similar to 

NewFigure = figure('position',[left bottom ... 
                     rectangle_vector(3:4)]); 
movie(NewFigure,M,N,FramesPerSecond);

where left and bottom in the first line are used to position the Figure Window 
at some arbitrary location on the screen. The first line creates a figure with the 
correct proportions and the second plays the movie.  To continue with our 
previous example, try 

left = 100; 
bottom = 150; 
NewFigure = figure('position',... 
                   [left bottom rectangle_vector(3:4)]); 
movie(NewFigure,M,-3);

To summarize, carefully keep track of the width and height (in terms of pixels) 
of the region that is being recorded.  In addition, be careful and account for 
these same pixels during movie playback.  This will help you avoid problems. 

Another question you might ask is, 

“Am I limited to recording only the contents of a particular figure or axes 
object?”
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The answer is, “No.”   In certain situations, you may want to record regions 
outside a single Figure Window.  For example, you may want to record the 
events occurring in multiple Figure Windows or perhaps you just want to 
include the Figure Window borders.  There is no requirement that limits you to 
specifying frame region within the figure boundaries.  They can arbitrarily be 
defined with respect to the lower left-hand corner of the figure.  For instance, 
we could include a 20-pixel border around the current Figure Window with 

figure_position = get(gcf,'position'); 
rectangle_vector = [0 0 figure_position(3:4)] +  ... 
                   [-20 -20 40 40]; 

and then use the getframe function form 

M = getframe(gcf,rectangle_vector); 

Please note that there may be discrepancies between the actual colors and 
those used in the movie for the recorded regions that lie outside of the figure 
with respect to where the region is defined. 

9.1.5 Making an AVI Movie 

The Audio-Video Interleaved file format, or AVI file, is a standard movie file 
format that is ubiquitous in the computer world. Once you have created 
movie frames in MATLAB, you can use the movie2avi function to create an 
AVI file that you can share with others. The easiest form of the movi2avi
function is movie2avi(mov,filename) where mov is the movie created with 
getframe, i.e., what you would use with movie, and filename is a string giving 
the name of the AVI file you want to create. You don’t need to include “.avi” 
in the filename; that is done automatically. There are a number of parameters 
and values you might want to specify to improve your AVI files. When you use 
movie2avi the default frame rate is 15 fps, which may or may not be desired. 
The parameter “fps” can be used to specify a different frame rate. Another 
handy parameter is “videoname”, which allows you to give a name to the 
video stream up to 64 characters. As an example, consider again the first 
animation example (the Bessel function). Once you have M, you can create an 
AVI file named “bessel” at 12 frames per second and with a video name of “3-
D Bessel Function Animation” with the following, 

movie2avi(M,'bessel','fps',12,...
'videoname','3-D Bessel Function Animation') 

You can also specify different AVI standard compression modes to be used 
when you make an AVI with the “compression” parameter. It can take the 
strings “Indeo3”, “Indeo5”, ”Cinepak”, “MSVC”, or “None”. For Windows 
computers, the default is “Indeo3”. You can affect the quality of the movie by 
setting the “quality” parameter, which can take any value between 0 and 100 
where higher numbers are higher quality. Higher quality comes at the price of 
files size. The default quality is 75.  
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9.2 On-the-Fly Graphics Object Manipulation 
Manipulating a graphics object’s coordinates with small incremental 

changes is usually what most people envision when thinking about an 
animation process.  Creating several snapshots in advance and rapidly playing 
them back with a computer is fine if you have lots of memory or if the length 
and size of the movies is relatively small.  However, if you want to create long, 
animated sequences and you have a processor and software package that can 
perform the needed mathematical calculations and display the graphics 
quickly and smoothly, making the incremental changes on the fly can be 
advantageous.  The key point is that the changes must be made fast enough so 
that the motion looks continuous to the user. 

The MATLAB graphics environment, when programmed correctly and 
appropriately, can be used to provide a user with the perception that fluid 
animated sequences are occurring.  Using a method that does not play back a 
sequence of static prestored snapshots also provides you with the freedom of 
adaptively animating graphics in response to a user’s actions, such as the 
mouse pointer locations.  In this section of the chapter we will examine several 
ways to program MATLAB to give you these types of capabilities.  As you will 
see, these techniques do not mean that the frame playback method is useless;  
there is a time and place for each one, and it will become your responsibility 
to learn when to use one over the other.  It is one of the goals of this book to 
make you aware of some of the questions that you will need to ask so that 
you can make a well-informed decision. 

9.2.1 Simple Animation Functions 

Perhaps the simplest on-the-fly animation you can do in MATLAB is 
achieved with two functions that come with MATLAB that allow you to create 
a 2- and 3-dimensional curve tracing animation.  The 2-D form is called comet
while the 3-D form is comet3.  The basic use of these functions involves simply 
determining the path that you would like to have traced (i.e., the x- and y-
coordinates for the 2-D form, and the x-, y-, and z-coordinates for the 3-D 
form) and passing them to the functions.  You should note that since we are 
predetermining the coordinate values, this method does not lend itself toward 
adaptively changing the path to some arbitrary event or stimulus such as that 
provided by a user’s actions. (However, if you look at the file comet.m, you 
might get some clever ideas!)  Regardless of that point, these functions can be 
informative in the sense of watching the progression of a line. 

The line trace animation is started with either comet(x,y) or comet(x,y,p).  
The x and y identify the coordinates of the trace.  The variable p, when 
supplied, determines the distance by which the comet’s tail should follow the 
front of the trace.  By default, it is set to 10% (i.e., p = 0.10) of the length of 
vector x; however, you may specify that it have a value in the range 0 p < 1.  
The 3-D trace is the same as the 2-D trace except that a z-coordinate is 
supplied using comet3(x,y,z) or comet3(x,y,z,p).  In both cases, the comet 
trace is created from the first three colors from the color order, and with the 
default is essentially a blue circle with a dark green tail that turns to a red line. 
These are incrementally drawn from coordinate point to coordinate point with 
the red line traced on top of the green after a specified delay.  The axis limits 
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are predetermined so that all portions of the line trace will be displayed. As an 
example, consider the 3-dimensional comet created with the following code: 

t = 0:0.01:10*pi; 
x = t.*sin(t);y=t.*cos(t); 
comet3(x,y,t);

This will look like Figure 9.2 after the animation is completed. If you have a 
really fast computer and the animation happens too fast for you, try reducing 
the increment of t to something like 0.001. 

Much of the figure’s contents are lost if you resize or refresh the Figure 
Window after the animation has finished.  This is because each component 
within the animation was programmed to be drawn and erased in a particular 
fashion. This means that if you try to do something to such a figure, like print 
it, you will not see the “erased” plot.  In the next section, you will learn about 
the properties of graphics objects that are manipulated to produce animations, 
and what must be done in order to output an image produced by these 
methods. 

9.2.2 The Wrong and Right Way to Animate Graphics 

Before we learn how to animate graphics, it is often helpful to see and learn 
from the wrong way of animating graphics.  You will find that using the plot
command over and over is very inefficient and yields poor results.  To provide 
a level of comparison, we will try and animate a blue circle along the same 

Figure 9.2 The aftermath of comet3. 
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path that was used in the comet3 example.  First we can recreate the data 
with 

t = 0:0.01:10*pi; 
x = t.*sin(t); 
y=t.*cos(t);
axislimits = [min(x) max(x) min(y) max(y) min(t) max(t)]; 
figure
for indexnumber = 1:length(x) 
   plot3(x(indexnumber ),y(indexnumber ),... 
         t(indexnumber ),'bo'); 
   axis(axislimits); 
   drawnow; 
end

We see that the circle does indeed appear to be moving along the 
trajectory specified by the (x,y,t) coordinates.  However, it is moving very 
slowly and the axes flicker every time the circle is plotted.  This happens 
because every time the plot3 command is issued, a new graphics object (i.e., 
the circle) is created and the axes object is refreshed.  The drawnow
command forces MATLAB to flush the event queue and to render the newly 
created graphics.  If this command was not there, you would not see the circle 
appear until its final position has been drawn in the last iteration of the 
for...end loop. 

In addition to the drawnow, there are only three other events that force the 
screen to be updated.  These commands are summarized in the table below.  
With respect to animations, the drawnow function is the most useful; 
however, the pause command can also come in handy. 

Events that force MATLAB to flush 
the event queue 

Examples 

execution of the drawnow comand drawnow; 

issuing a figure command figure; 
figure(1); 

execution of the pause 
command 

pause; 
pause(1); 

using getframe M(k)=getframe 

execution of waitfor waitfor(h,’PropertyName’) 

a return to the command prompt keyboard; 
value = input(‘Enter a value’) 

Getting back to the example, you might be thinking that instead of plotting 
the point with plot3 we could use the lower level command called line.  This 
way we would have to set up the axes object only once and then create a 
new line object at the coordinates along the trajectory while at the same time 
deleting the old line object.  For instance, using the same data as above, we 
can try: 
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figure
axis(axislimits);

line_handle = line(x(1 ),y(1 ),t(1 ),... 
         'color','c',... 
         'linestyle','o'); 
for indexnumber = 2:length(x) 
   delete(line_handle ); 
   line_handle = line(x(indexnumber ),... 
                      y(indexnumber ),... 
                      t(indexnumber ),... 
                      'color','b',... 
                      'linestyle','o'); 
   drawnow; 
end

Unfortunately, this code will once again produce slow and unsatisfactory 
results. (If these examples are too slow on your computer, stop the execution 
with CTRL-C and try changing the t increment to something like 0.1.) We need 
to get to the root of the problem, which is the fact that deleting and, more 
importantly, creating graphics requires a lot of overhead.  This time we will 
create only a single line object and update its XData, YData, and ZData
properties.  The initial creation can be performed with either the plot3 or line
command.  In addition, we will need to change the EraseMode property from 
its default setting of “normal” to either “xor” or “background”.  Let’s look at 
the results and then go into the explanation. 

figure
line_handle = plot3(x(1 ),y(1 ),t(1 ),'co'); 
set(line_handle,'erasemode','xor');
axis(axislimits);
for indexnumber = 2:length(x) 
   set(line_handle ,'xdata',x(indexnumber ),... 
                     'ydata',y(indexnumber ),... 
                     'zdata',t(indexnumber )); 
   drawnow; 
end

On a 1GHz PentiumIII machine, the for...end loop was over eight times 
faster than the previous approach (over thirty times faster than the first 
approach) and the axes object did not flicker anymore.  Changing the way 
MATLAB draws and erases the graphics object from “normal” to “xor” has 
provided a major improvement in the quality of the animation.  Let’s look at 
some of the attributes of the various erase modes, listed from the fastest at the 
top, to the slowest at the bottom. 
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Erase Mode Attributes 

none o Object is not erased when it is moved or
destroyed (deleted). 

o 3-D rendering calculations suppressed. 

background o Object drawn and erased by xoring with color
of screen beneath. 

o Damages color of object(s) beneath. 
o Color guaranteed at all times. 
o 3-D rendering calculations suppressed. 

xor o Object drawn and erased by xoring with color
of screen beneath. 

o Does not damage color of object(s) beneath. 
o Color guaranteed only when placed directly

over figure background color. 
o 3-D rendering calculations suppressed. 

normal o Most accurate representation of object.· 
o Colors and 3-D rendering calculations

performed. 

Even though the attributes of the erase modes other than “normal” suppress 
the 3-D rendering calculations for that object, it should be noted that the 
calculation and therefore the correct rendering order will be performed if the 
screen is redrawn by a command such as refresh.

9.2.3 The Need for Speed 

Of the erase modes, “normal” is by far the slowest. To achieve better results 
in terms of speed, several properties within the object’s parent and 
grandparent (i.e., the axes and figure object) should also be changed.  Setting 
the axes object’s DrawMode property to “fast” instead of to “normal” and the 
figure’s BackingStore property to “off” instead of to “on” will help speed up an 
animation.  As was discussed in Chapter 7, the BackingStore should be set to 
“on” when the simulation is not running and there are surface or image 
objects in the figure that take some time to render.  Remember, when 
BackingStore is “off”, the figure will be redrawn every time another Figure 
Window is selected. 

You will also find out that the human eye is fairly slow and you can often 
speed up a graphics animation by increasing the increments used to translate 
or rotate an object and still make it look like a smooth simulation.  The last 
speed tip we shall suggest is not to make a practice of changing the number of 
vertices within the animated object during the simulation.  For instance, adding 
elements to the XData, YData, or ZData will slow an animation considerably. 

9.2.4 Animating Lines 

Up until now, the line object animated had only one point.  Animating a 
series of coordinates is just as easy.  For instance, we can create the 
appearance of a rope that is being swung around and around like a jump rope 
with 
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x = 0:(pi/48):pi; 
ropeheight = sin(x); 
line_handle = plot(x,ropeheight); 
axis([0 pi -1.1 1.1]); 
grid on; 
set(line_handle,'LineWidth',3,'EraseMode','background');
for phi = 0:pi/64:10*pi 
   set(line_handle,'ydata',cos(phi)*ropeheight); 
   drawnow; 
end

Next, change the EraseMode to “background” (by altering the sixth line of 
the code above) and run the same animation; notice how sections of the grid 
lines are being removed by the animated line.  After the animation is 
complete, you can type refresh to redraw the screen. 

9.2.5 Animated Rotations 

A classic example illustrating animation in three dimensions is a spinning 
wire frame cube.  To create the cube, we define the x-, y-, and z-coordinates 
with 

x = [0 1 1 0 0 0 1 1 0 0 NaN 1 1 NaN 1 1 NaN 0 0]; 
y = [0 0 1 1 0 0 0 1 1 0 NaN 0 0 NaN 1 1 NaN 1 1]; 
z = [0 0 0 0 0 1 1 1 1 1 NaN 1 0 NaN 0 1 NaN 1 0]; 

The NaNs are not necessarily required when drawing lines that have their 
EraseMode property set to “normal”.  However, if the EraseMode is set to 
“xor”, the edges of the cube that are traced over twice can cancel each other 
out, making it look as if those edges are invisible.  Therefore,  we use NaNs to 
lift the “pen” off the paper (see Chapter 8) so that none of the edges of the 
cube are traced twice. 

Now we will plot the cube as shown in Figure 9.3 centered precisely on the 
origin (0,0,0) with 

cube_h = plot3(x-0.5,y-0.5,z-0.5); 
axis('square');
axis([-1 1 -1 1 -1 1]*2); 
view(-37.5,15);
set(cube_h,'erasemode','background');
rotation_increment = 5; % degrees 
rotation_axis = [0 0 1]; 
rotation_origin = [0 0 0]; 
num_of_incr = 360/rotation_increment; 
for loop = 1:num_of_incr 
   rotate(cube_h,rotation_axis,... 
                  rotation_increment,rotation_origin); 
   drawnow; 
end
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Some neat interactive rotation animations can be achieved with the rotate
command using graphical user interfaces and different origins of rotations 
(e.g., variable rotation_origin) and axes of rotations (e.g., rotation_axis).  The 
rotate function performs the calculations for rotating a graphics object about 
some defined axis of rotation.

This next example demonstrates a truly interactive animation by checking 
for user entry and rotating the cube accordingly. Copy this function and use 
the arrow keys to control the rotation of the cube. Press the ESC key to exit 
the program. Note that you must have the cursor somewhere on the Figure 
Window before you press the keys on the keyboard. 

function x=rotcube() 
%CUBE is a function to demonstrate run-time animation. 
%A cube is drawn with lines. 
%Use the arrow keys to control the direction of rotation. 
%ESC key to exit. 

x = [0 1 1 0 0 0 1 1 0 0 NaN 1 1 NaN 1 1 NaN 0 0]; 
y = [0 0 1 1 0 0 0 1 1 0 NaN 0 0 NaN 1 1 NaN 1 1]; 
z = [0 0 0 0 0 1 1 1 1 1 NaN 1 0 NaN 0 1 NaN 1 0]; 
rot_axis = [0 0 1]; 
rot_org = [0 0 0]; 

cube_h = plot3(x-0.5,y-0.5,z-0.5); 

axis('square');
axis([-1 1 -1 1 -1 1]*2); 
view=[-37,30];

set(cube_h,'erasemode','background');
rotation_increment = 5; 
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Figure 9.3 Animating a cube. 
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rotation_axis = rot_axis; 
rotation_origin = rot_org; 

fig_h=gcf;

key = 28; 

while key ~= 27 % watch for ESC key 
    if waitforbuttonpress == 1;
    key = get(fig_h,'currentcharacter'); 

     switch key 
        case 28    % <- rotate left 
            rotation_axis = [0 0 1]; 
            rotation_increment = -5; 
        case 29    % -> rotate right 
            rotation_axis = [0 0 1]; 
            rotation_increment = 5; 
        case 30    %  rotate up 
            rotation_axis = [0 1 0]; 
            rotation_increment = 5; 
        case 31    %  rotate down 
            rotation_axis = [0 1 0]; 
            rotation_increment = -5; 
        case 27 % ESC key 
        close(fig_h) 
        clear 
        return 

    end 

        rotate(cube_h,rotation_axis,... 
            rotation_increment,rotation_origin); 
        drawnow; 
    end 

end

x=key;

Try creating several cubes and simultaneously rotating them in different 
ways with the following code.  

x = [0 1 1 0 0 0 1 1 0 0 NaN 1 1 NaN 1 1 NaN 0 0]; 
y = [0 0 1 1 0 0 0 1 1 0 NaN 0 0 NaN 1 1 NaN 1 1]; 
z = [0 0 0 0 0 1 1 1 1 1 NaN 1 0 NaN 0 1 NaN 1 0]; 

cube_h = plot3(x-0.5,y-0.5,z-0.5); 
axis('square');
axis([-1 1 -1 1 -1 1]*2); 
view(-37.5,15);
set(cube_h,'erasemode','background');
rotation_increment = 5; % degrees 
rotation_axis = [0 0 1]; 
rotation_origin = [0 0 0]; 
num_of_incr = 360/rotation_increment; 
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for loop = 1:num_of_incr 
   rotate(cube_h,rotation_axis,... 
                  rotation_increment,rotation_origin); 
   drawnow; 
end

cube2_h = line(x+1,y+1,z+1,'erasemode','background'); 
for loop = 1:num_of_incr 
   rotate(cube_h,rotation_axis,... 
                  rotation_increment,rotation_origin); 
   rotate(cube2_h,rotation_axis+[1 1 0],... 
                  rotation_increment,rotation_origin+1); 
   drawnow; 
end

The more objects you manipulate, the slower the animation will become.  You 
will need to experiment to find out what the capabilities of your machine are 
with respect to animations. 

You should always try to look for the simplest way to form the graphic 
objects.  For instance, cubes could also be formed with surface objects as 
illustrated with the following. Again, some variables are from previous 
examples. 

x = [0 0 1 1 0]; y = [0 1 1 0 0]; z = zeros(size(x)); 
rotation_axis = [0 0 1]; 
rotation_origin = [0 0 0]; 
rotation_increment = 5; % degrees 
num_of_incr = 360/rotation_increment; 
s1_h = surf([x;x]-.5,[y;y]-.5,[z+0.5;z-0.5]); 
set(s1_h,'erasemode','background',...
       'facecolor','none',... 
       'edgecolor','g'); 
s2_h = surface([x;x]+1.5,[y;y]+1.5,[z+.5;z-0.5]+1.5,... 
       'erasemode','background',... 
       'facecolor','none',... 
       'edgecolor','r'); 
s3_h = surface([x;x]+1.5,[y;y],[z+.5;z-0.5],... 
       'erasemode','background',... 
       'facecolor','none',... 
       'edgecolor','b'); 
axis([-3 3 -3 3 -3 3]);axis('square'); 
for loop = 1:num_of_incr 
   rotate(s1_h,rotation_axis,... 
                rotation_increment,rotation_origin); 
   rotate(s2_h,rotation_axis+[1 1 0],... 
                rotation_increment,rotation_origin+1); 
   rotate(s3_h,rotation_axis,... 
                rotation_increment,rotation_origin); 
   drawnow; 
end

The FaceColor property of the surface objects has been set to “none” to 
avoid flickering.  If you want to graphically animate a solid cube, the top and 
bottom of each box could be added and the FaceColor property could be 
specified.  The following code animates three solid cubes: 
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% Generate vertices for the surface of a single cube. 
xx = [0 0 1 1 0 NaN 0 1 NaN 1 0;... 
      0 0 1 1 0 NaN 0 1 NaN 1 0]; 
yy = [0 1 1 0 0 NaN 1 1 NaN 1 1;... 
      0 1 1 0 0 NaN 0 0 NaN 0 0]; 
zz = [1 1 1 1 1 NaN 1 1 NaN 0 0;... 
      0 0 0 0 0 NaN 1 1 NaN 0 0]; 
% Set up rotation variables. 
rotation_increment = 5; % degrees 
rotation_axis = [0 0 1]; 
rotation_origin = [0 0 0]; 
num_of_incr = 360/rotation_increment; 
% Generate 3 translated versions of the cube. 
s1_h = surf([xx]-.5,[yy]-.5,[zz]-.5); 
set(s1_h, 'erasemode','background','facecolor','g'); 
s2_h = surface([xx]+1.5,[yy]+1.5,[zz]+1,... 
       'erasemode','background','facecolor','r'); 
s3_h = surface([xx]+1.5,[yy],[zz]-0.5,... 
       'erasemode','background','facecolor','b'); 
% Set up the proper proportions. 
axis([-3 3 -3 3 -3 3]);axis('square'); 
% Define the rotation specifications for each cube. 
for loop = 1:num_of_incr 
   rotate(s1_h,rotation_axis,... 
                rotation_increment,rotation_origin); 
   rotate(s2_h,rotation_axis+[1 1 0],... 
                rotation_increment,rotation_origin+1); 
   rotate(s3_h,rotation_axis,... 
                rotation_increment,rotation_origin); 
   drawnow; 
end
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Three solid cubes (green, red, and blue in color) as shown in Figure 9.4 will 
be rendered and then animated about some axis of rotation.  As you will see, 
the surface objects do not render smoothly.  There may be some flickering, 
and if you look closely, you can see that the faces of the cubes that are 
farthest from the viewer will briefly be visible. Also notice that if you turn grid
on the grid will be erased where the cubes occlude it. 

9.2.6 Forcing a Graphic to Leave a Trail 

In some instances you may not want the graphic to be erased from its last 
position when it is moved to a new location.  This can be useful, for instance, 
if you are tracing a path.  This type of graphics animation does not need to 
update a lot of object vertices and therefore can be very fast.  You may find 
that you need to slow it down with either more steps in the for...end loop or 
by putting a pause statement before the drawnow as the following code 
illustrates. 

x = 0:500; 
y = sin(.05*x+cos(x*.1)); 
figure('backingstore','off');
axes('drawmode','fast','box','on');
axis([min(x) max(x) min(y) max(y)]); 
line_handle = line(x(1:2),y(1:2)); 
set(line_handle,'linewidth',2,'erasemode','none');
for index_counter = 2:length(x); 
   set(line_handle,... 
         'xdata',[x(index_counter+[0 -1])],... 
         'ydata',[y(index_counter+[0 -1])]); 
   pause(.5); 
   drawnow; 
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Figure 9.4 Animated surfaces. 
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end

% To keep the trace on the plot for printing or 
% if the user resizes the figure window, you may 
% want to add the following two lines. 
line(x,y,'linewidth',2);
refresh

This is similar to the technique used in comet and comet3.  Text, patch, and 
surface objects can also have their EraseMode property set to “none” to create 
interesting pictures.  Remember that after the figure is refreshed, the old 
locations of the object will be erased.  If you want to get a hardcopy of a 
picture that has been generated with objects that have been moved around 
without erasing the last object’s location, use 

[imagematrix,map] = getframe(figure_handle); 

This form of getframe essentially takes a snapshot of the object contents (in 
this case, the figure) and returns an image data matrix and the color map 
needed to correctly display the colors in the object.  The image data can be 
displayed with an image object.  For instance, to display this captured image in 
a new figure, use 

newfig = figure; 
figpos = get(newfig,'position'); 
set(newfig,'position',...
            [figpos(1:2) fliplr(size(imagematrix))]); 
axes('units','normalized','position',[0 0 1 1]); 
image(imagematrix);
colormap(map);
set(gca,'visible','off');

9.3 Choosing the Right Technique 
There are several questions that you should ask yourself when deciding 

whether to use the frame-by-frame movie play back or the on the fly graphic's 
coordinate manipulation technique to create your graphical animation.  In 
some instances the choice is easy.  For example, if you answer yes to either of 
the following questions, you should consider creating a data matrix with 
getframe and playing it back with movie: 

• Are large or complex surface objects going to be animated? 

• Is there a small set of still shots that could be used and pieced 
together? 

However, if you answer yes to any of the next few questions, you will want 
to use the on the fly coordinate manipulation technique: 

• Will there be user interaction during the animation sequence? For 
instance, will the user have the ability to use the mouse or keyboard to alter 
the simulation during its progression (see Chapter 6 for information about 
recognizing user controlled events)? 

• Are the graphics objects to be animated relatively simple? 

• Do you want to mix in sound with your animation? 

� 	 
 � � �
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Other questions that you will need to think about are: 

What constraints in terms of speed and memory are imposed by 
the machine on which you are running MATLAB? 

Can you store the number of frames needed to generate a movie? 

Can you generate and animate the number of graphics objects that 
you believe will be required in the animation?  

Experimenting with the different animation techniques and getting a 
feel for your machine’s capabilities with regard to speed and 
MATLAB animations is the best way to figure out which technique 
you should use and in what circumstances. 
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10.1 What is a MATLAB Graphical User Interface? 
The Graphical User Interface, or GUI, refers to the now universal idea of 

icons, buttons, etc., that are visually presented to a user as a “front-end” of a 
software application. Most of us would consider a software application that 
accepted only keyboard-entered commands as quite archaic, and even down 
right primitive. We much prefer to point our mouse pointer to a graphical 
representation of some aspect of the application, click on it (invoking some 
event), and continue working with the application through interactive cues. 
We are also accustomed to windows, pull-down menus, slider controls, and 
check boxes. How slow and boring the software world was before the GUI! 
There can be many reasons for creating a GUI. For instance, you might wish to 
automate a function that you use many times, or perhaps you want to share it 
with others who don’t need, want, or care about knowing MATLAB. Perhaps 
you would like to create an interactive demonstration. 

Not to be behind the times, the MathWorks has provided MATLAB 
programmers with a set of structured event driven components in the form of 
user interface controls (uicontrols) and menus (uimenus) that can easily be 
assembled and used to create GUIs.  The fundamental power of GUIs is that 
they provide a means through which individuals can communicate with the 
computer without programming commands.  The components have become 
quite standardized and developed into a user friendly and intuitive set of tools.  
These tools can be used to increase the productivity of a user or to provide a 
window to the sophistication and power of a MATLAB application for people 
with little or no MATLAB programming experience. 

The set of user interface components supplied with MATLAB allows you to 
design GUIs that match those used in sophisticated software packages.  The 
components are graphics objects just like those we discussed in Chapter 7, 
with handles and properties, and come in two classes: user interface controls 
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(uicontrols) and user interface menus (uimenus).  Considering the great deal of 
flexibility and usefulness that these objects provide, the programming required 
to design a fully functional GUI is amazingly simple.  The uicontrols and 
uimenus can be combined with other graphics objects to create informative, 
intuitive, and aesthetically pleasing GUIs.  This chapter is designed to make 
you aware of all the user interface capabilities and to show you how to 
program fully functional GUIs that meet your needs.  In addition to showing 
how to create and program uicontrol and uimenu objects, this chapter will 
also attempt to broaden your programming horizons by showing how you can 
use the other graphics objects previously discussed to design your own 
interface components.  

In this chapter we will present access to uicontrols and uimenus through 
two fundamentally different approaches. The first approach is a low-level, 
bottom-up approach where we use our skills with handle graphics to write M-
files that implement any GUI design we wish. The second approach will briefly 
examine the use of MATLAB’s Graphical User Interface Development 
Environment, or GUIDE for short. (We think of GUIDE as a top-down GUI 
development approach.) GUIDE is high-level, yet powerful and extremely easy 
to use; an excellent tool for quickly developing GUIs that takes care of much 
of the “bookkeeping” usually associated with GUI development. Although not 
as rapid for quick GUI development as the GUIDE approach, working at a 
lower level you have complete control over your GUI.  We will devote a great 
deal of this chapter to the low-level approach since it is the approach that 
gives you the greatest control and also will teach you much about the inner 
workings of MATLAB GUIs. Even if you end up preferring to use GUIDE for 
your GUI development, the knowledge of the low-level approach is still very 
much applicable and will provide you with valuable insight. Let’s face it; either 
way you will be a MATLAB GUI developing fiend when you finish this chapter! 

Before we dive right into building GUIs, we believe that a brief discussion 
on general GUI design is in order. The following discussion is not intended to 
substitute for a university text on software interface design, but it should give 
you a basic understanding of what is important in GUI design and how to 
efficiently proceed with your GUI implementation. After discussing general 
GUI design, we will present the details of the uicontrol and uimenu objects. 
Then we will present GUIDE and take you through an example, then look at 
the low-level programming approach. Finally, we will wrap things up with a 
discussion of common programming needs and desires. 

10.2 The Three Phases of Interface Design 
One can make the argument that there are three phases of good GUI 

design. These are mostly common sense, but it is good for us to present them 
here in a formal manner. See reference 4 at the beginning of the Appendix for 
an intelligent yet easy to read treatment of interface design that succinctly 
covers what’s important in a good GUI. In this section we quickly present the 
three phases of good GUI design and offer some “rules-of-thumb” that are 
good to apply with your MATLAB, or any other GUIs. 
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10.2.1 Analysis 

Before you start your GUI design, you need to consider who will be using it 
and how. For instance, if you were creating a computer interface for toddlers, 
you probably would not use written words, but large, brightly colored click-
able pictures would probably work nicely. However, the same approach 
would probably not be as well received if you were tasked with creating an 
interface for your company’s director of marketing (or maybe it would!). The 
point is that you need to keep the user in mind. Many MATLAB programmers 
find themselves as the primary user of their GUIs. This is because they have 
found that automating tasks and having a convenient GUI is up-front time well 
spent. You might find yourself as part of a development team and your task is 
to create a rich yet intuitive to use GUI for functions and data provided by 
other members. In such a case, the analysis portion of good GUI design could 
be very important indeed. The analysis process can become very involved, 
depending on the goals, and could require extensive usability specifications, 
developing user case scenarios, identifying the expertise of the user, computer 
system limitations, and plans for future upgrades based on user feedback. 

10.2.2 Design 

Once you understand your users and the information that is to be 
interfaced with, you can begin the process of laying out your GUI. In the 
design phase you still aren’t writing the GUI, although you might feel like you 
want to; instead, you are considering what components, tasks, and sequences 
are required to make your GUI effective. Unbelievably, pencil and paper is still 
a great way to explore your GUI design. Again, for major projects, this can 
become an involved task, but in the course of the GUI development, it is time 
well spent. We will talk about this again in the next section on Paper 
Prototyping.

10.2.2.1 User Considerations 

Remember, whatever GUI you create has two major components: one is 
the GUI itself, the other is the user. It is important that you know who your 
users will be; you would not design a GUI to be used by kindergarteners the 
same as for a group of scientists at a research laboratory. Human factors 
specialists consider people from visual, cognitive, and physical perspectives. 
Of course we are limiting our scope to what we might do with MATLAB, but 
as you have seen, MATLAB gives you significant graphical capabilities—and as 
you are about to learn, its GUI capabilities are just as rich.  

10.2.2.2 The Reason for the GUI 

You should always keep in mind the reason (or reasons) for building a GUI 
(especially in MATLAB). These reasons stem from the fundamental goal of the 
GUI of being a useful and reliable tool for accomplishing a larger task. The 
nature of the tasks you are likely to use GUIs in MATLAB for generally involve 
automating laborious computations, or searching for or learning about 
information content in data.

If the GUI is to be used primarily as a tool that helps you accomplish a 
larger task, then you will want to pay particular attention to methods that: 
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1. Reduce the demands on the user. 

2. Match the user’s workflow. 

3. Take advantage of accepted interface standards. 

When your goal is to expedite a laborious task, keeping things simple 
should be a rule. Keep the number of windows, decision points, etc., to a 
minimum. Don’t expect a user (or even yourself if you are the user) to learn 
new ways to do the same old things; put basic pull-downs in the menu bar, 
use universal accelerators, e.g., CTRL-C for copy, and use accepted language 
for common descriptors, e.g., “Save” and “Save As…”. 

If the GUI is to be used for searching for information, such as gleaning data 
for specific statistical content, looking at data from different perspectives or 
with different plot types, then it is important that you build in the ability for 
users to quickly change between different presentations of the data, change 
resolutions, and dialog with data processing methods. GUIs of this nature 
should: 

1. Provide flexibility. 

2. Quickly go back and forth. 

3. Not overwhelm the user. 

The GUI should be flexible in that the user can select from a list of data 
searching perspectives and statistical methods. The user should be able to start 
broadly, and then narrow the search. The user should be able to quickly apply 
different methods or plot techniques, and “undo” if the selection turned out to 
be undesirable. Finally, don’t overwhelm the user with too many choices. 
Arrange choices in a logical fashion and limit how much the user must 
remember. Provide helps and tips where necessary. 

10.2.2.3 Cognitive Considerations 

Cognition refers to people’s ability to think and learn. There are a few rules 
of thumb you should keep in mind when developing your GUIs that will make 
using your GUI both intuitive and a generally pleasant experience.  

1. Don’t require the user to remember many things at once: In 
general, people can remember about seven new things for about 
twenty seconds. With MATLAB you can help the user remember by 
using the Uicontextmenu property to include “right-click”. Perhaps 
the easiest to use memory aid you can include in your MATLAB 
GUIs is the ToolTipString  (see Section 10.3.2.12).   

2. Organize functions and operations into logical groupings: You can 
use frames in MATLAB (see Section 10.3.1.3) to indicate groupings 
of user interface control objects (buttons, text fields, etc.) and 
separators (see Section 10.4.1.9) in pull-downs and other user 
interface menus. 

3. Present information in the proper context: If things don’t appear to 
be where they should be, or if they don’t happen when expected, a 
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user can become frustrated with a GUI. Remember to give your 
GUI a descriptive title using the figure property Name. In addition, 
label controls and axes as appropriate. If you have to wonder what 
something is, it probably needs a label.  

4. Strive for consistency in your GUIs: Most people know to look to 
the upper left in a menu bar to find tools that let you save or open 
a file, print, etc. This is just the standard that we have all become 
accustomed to; don’t be arrogant and force your users to look in 
places that are not standard. 

10.2.2.4 Physical Considerations 

Don’t lose sight of the fact that you (or your users) must interact physically 
with your GUI. That means they will have to use their eyes, hands, and 
possibly their ears. (Yes, you can use sound in MATLAB but we do not explore 
that in this text.) Whatever your GUI accomplishes, the user must use the 
keyboard, mouse, and monitor to effectively interact with the computer. Some 
rules of thumb here are: 

Keep accelerator key combinations simple, e.g., CTRL+SHIFT+Character 
requires three fingers so should probably be avoided (unless you want to 
make the action very deliberate). Don’t mix mouse and keyboard commands 
without careful consideration. It is best to keep the interface predominantly 
one or the other. If the text entries are always the same, then consider using a 
list box (see Section 10.3.1.5); if they are always different consider using 
editable text (see Section 10.3.1.2). The visual display should not be too busy 
or have too many colors as this can obscure the presentation of data and 
interface controls.  

10.2.3 Paper Prototyping 

Perhaps the most effective GUI development process you can do before 
actually creating your GUI is to create a paper prototype. Simply put, take a 
sheet of paper, and sketch just how you want the GUI to appear to the user. 
Of course, this is done after you have determined what the goals of the GUI 
are to be. The paper prototype is a design mockup that lets you explore the 
layout of your user interface objects, buttons, dialogs, etc., and data 
presentation components, e.g., plots. You will be trying to optimize the 
position and organization of your GUI to best accomplish your goal. If your 
task is large, or if you are part of an organized software (or analysis) team 
effort, your paper prototype can also be used to communicate your 
understanding of the GUIs goals with the rest of the team.  

10.2.3.1 Appearance 

Soon in this chapter, we will be developing a GUI. In this GUI, we want the 
user to be able to specify an arbitrary function and arbitrary range over which 
the function will be plotted. We also want the user to be able to easily change 
some of the plot features. Since this GUI is simple, we can probably assume a 
single window with a single axes object and some uicontrols to let the user 
quickly change things. Figure 10.1 shows our paper prototype. 
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This paper prototype is simple, since we will use this GUI to demonstrate 
many things. Regardless of the complexity, the paper prototyping approach is 
always a good way to start. 

10.2.4 Construction 

Ah, here is the part for which you are waiting! Now that you know how you 
want to use your GUI, what information is presented through it, what features 
you will need, how you will arrange your objects, etc., you can start building 
something that works. The bulk of this chapter deals with uicontrol and 
uimenu objects and their properties and how to use them in constructing 
MATLAB GUIs. 

Depending on the complexity of the GUI task you are undertaking, you 
might find the need to prototype the GUI. (This can be particularly easy with 
MATLAB’s GUIDE.) Your prototype can help you identify flaws in your design 
before you have invested too much time in implementation. By prototyping, 
we mean creating the user interface portion without detailing the functions 
that respond to the user actions (callbacks). First, we will explore the uicontrol 
and uimenu objects and their properties, then use MATLAB’s Graphical User 
Interface Development Environment (GUIDE) to get a GUI running quickly, 
and finish this chapter with a look at some specific GUI applications that 
demonstrate GUI capabilities.  

Figure 10.1  Paper prototype of a GUI we will build. 
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10.3 UI Control Elements 
Most of the MATLAB user interface control, or uicontrol, elements are 

created with the purpose of performing an action or setting up the options for 
a future action.  The action is executed or the option is set when the user 
selects the uicontrol with the mouse pointer.  As you will see, there are 
different methods of selecting the various uicontrol objects.  However, the act 
of selecting usually consists of moving the mouse pointer directly over the 
object and clicking the mouse button. 

This section has been designed to introduce the set of uicontrol object 
styles, the type of actions each style is normally used for, and the properties 
that are associated with every uicontrol object.  This will be accomplished by 
means of descriptions, tables, and examples.  It is essential that you have a 
good understanding or at least are familiar with the various properties, so that 
the advanced programming techniques discussed in later sections are clear 
and easy to follow. 

10.3.1 The Styles 

The ten styles of MATLAB uicontrol objects along with a brief description 
are listed below. 

 

UI Control Style value Description 

Check Box ‘checkbox’ indicates the state of an option or attribute 

Editable Text ‘edit’ user editable text box 

Frame ‘frame’ used to visually group controls 

Pop-up Menu ‘popup’ provides a list of mutually exclusive options 

List Box ‘listbox’ shows a scrollable list of selections 

Push Button ‘pushbutton’ invokes an event immediately 

Radio Button ‘radio’ indicates an option that can be selected 

Toggle Button ‘toggle’ only two states, “on” or “off” 

Slider ‘slider’ used to represent a range of values 

Static Text ‘text’ displays a string of text in a box 

 

Each style will be discussed along with example illustrations of its 
appearance in different states. 

10.3.1.1 Check Boxes 

The check box uicontrol (Style property set to “checkbox”) is a useful means 
of representing two states of an option that you may want to provide.  The 
two states will be referred to as “on” or “off” for simplicity, but can just as 
easily indicate true/false, yes/no, or some other bipolar combination.  In its off 
state, the check box will consist of an empty (Macintosh or MS-Windows) or 
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unfilled (X-Windows) square with some type of label located on the right-hand 
side of the box.  The label should be descriptive enough that the user 
understands the implications of setting the box to its on or off state.  In the on 
state, the check box’s square will contain a “ ”. 

The state of a check box can be changed by clicking the mouse over any 
portion of the uicontrol.  You are not restricted to clicking in the actual square 
as illustrated below.  If the user had clicked on the text or the shaded gray 
region, the check box’s state would have toggled as well.  By following the 
arrows in Figure 10.2, we see the manner in which the appearance of the 
check box changes from one state to the next.  The intermediate states appear 
only during the time that the user is pressing the mouse button when the 
mouse is over the uicontrol object. 

 

If you need more than the two bipolar choices a check box offers, look at 
pop-up menus or radio buttons (both are discussed later in this chapter) as an 
alternative uicontrol object.  Multiple check boxes are convenient in situations 
where the user may have several options that can be simultaneously selected.  
In addition, it is recommended that when you can group a set of check boxes 
in terms of some type of similarity (e.g., function or importance), you should 
visually group them with their physical location and, where appropriate, with a 
frame object (see Frames later in this chapter). 

10.3.1.2 Editable Text 

The editable text style (Style property set to “edit”) is used in situations that 
require the user to enter strings of characters or numbers.  The strings, in turn, 
are used by the application for which the interface has been built.  For 
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Figure 10.2  Checkbox states. 
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instance, rather than prompting the user at the command line for a string, you 
can create an editable text uicontrol.  Later, you will see that this uicontrol can 
be appropriately sized to contain one or more text lines. 

The editable text item can be initialized with a string or string matrix that the 
user can delete, edit, or leave alone.  Clicking anywhere within this object will 
change the mouse from a pointer to a text insertion indicator.  Once the text 
insertion indicator is available, characters can be inserted by typing the desired 
keys or deleted by using the delete or backspace key.  Portions or all of the 
text can be highlighted by click and dragging within the uicontrol item, to 
allow for quick string replacement or deletion.  Highlighted text will be 
replaced with the next keyboard character that is pressed. 

In Figure 10.3, the editable text uicontrol has been initialized with “Editable 
Text”.  The portion of the string “able” is highlighted and then replaced with 
“ed”. 

 

Editable text elements are often used in conjunction with a static text 
uicontrol (see Static Text later in this chapter) so that the user is aware of what 
he or she is providing the application.  It is a good idea, whenever possible, to 
initialize the editable text uicontrol with the default value of the string so that 
the user does not always need to type in the most likely string. 

10.3.1.3 Frames 

The frame object (Style property set to “frame”) serves no purpose in terms 
of action-related responses to a user’s mouse click.  However, it is usually used 
to serve as an important visual aid.  Other uicontrol items may be visually 
grouped with a frame so that the appearance of the GUI guides the user’s 
actions.  It is an extremely effective method of organizing the GUI in a logical 
and intuitive fashion. 

The frame makes the GUI more aesthetically pleasing by providing a solid 
background that helps blend a set of uicontrols into one complete and 
cohesive interface.  If the colors remain in their default values or are 
appropriately chosen, the edges of other uicontrol objects like static text, 
check boxes, and radio buttons will no longer be distinctly visible.  Figure 10.4 
shows how several miscellaneous uicontrol objects can be combined with two 
frame objects into one interface. 

 

 

Figure 10.3  Editable text 
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10.3.1.4 Pop-Up Menus 

A pop-up menu (Style property set to “popup”) is usually used in situations 
where multiple choices need to be available to the user.  The current selection 
is displayed in an unopened pop-up menu.  However, when the user clicks 
and holds down the mouse button anywhere within the object, a list of 
choices will appear.  Another choice can be made by dragging the mouse 
over to any of the choices and releasing the mouse button.  The example 
found in the following illustration shows that first the “Pop-up Menu” choice is 
displayed.  The user then clicks and drags the mouse pointer down to the 
choice represented by “Option 2” and releases the mouse.  In the final state, 
we see that “Option 2” is the current selection. 

 

A pop-up menu is readily recognized by the down pointing triangle symbol 
appearing on the right-hand side of the object.  
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Figure 10.4  Use frames to create logical groupings. 

 

Figure 10.5  Use pop-up menus to pick one of many choices. 
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10.3.1.5 List Boxes 

List Boxes (Style property set to “listbox”) are very similar to pop-up menus. 
Essentially they are used to provide users with a set of options from which 
they can choose one.  The main difference with a list box is that you can make 
the set of options visible to the user at all times (depending on the size of the 
box you make and the number of items in the box).  Then, depending on the 
size of the box, the user may need to scroll through the list to find the option 
he or she desires.  Once the item is found, the user must click on it to select it. 
With the current version of MATLAB you are not able to select more than one 
item. 

 

If any of the items that the user can select from are wider than the box, a 
scroll bar will be placed on the bottom edge of the box.  Finally, if the number 
of items are all visible in the space provided by the box, the scroll bar on the 
right hand side becomes disabled. 

10.3.1.6 Push Buttons 

The push button (Style property set to “pushbutton”) is perhaps the most 
prevalent uicontrol style. It is used primarily to indicate that a desired action 
should immediately take place.  Since push buttons represent actions, they are 
usually labeled with a verb, e.g., start, run, install, etc., that describes the action 
that will take place if the user clicks on the button. 

 

 

Figure 10.6  List boxes let you display as many choices as you wish. 
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Figure 10.7  Push buttons are for immediate actions. 
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Push buttons have a 3-dimensional look that makes it appear as if they are 
being pressed when the user clicks on the object.  In addition, they are very 
similar in appearance on all computing platforms. 

10.3.1.7 Toggle Buttons 

The toggle button (Style property set to “toggle”) looks just like a push 
button, except there is no intermediate state.  Rather, the button will remain in 
its selected or not selected state after the user clicks on it.  Functionally, it is 
very similar to a check box user interface, since there are two states associated 
with it. 

 

The toggle button is considered to be selected when it looks as if it is 
pressed in, and unselected when it looks like it is raised out of the screen. 

10.3.1.8 Radio Buttons 

The radio button uicontrol style (Style property set to “radio”) is similar to 
the check box in that there are two states associated with each button.  The 
difference lies in the manner in which they are normally used.  Usually two or 
more radio buttons are “linked” together as a group.  They are linked in the 
sense that only one of the buttons will be in its selected (i.e., on) state. 

The individual radio button consists of a circular- (Macintosh and MS-
Windows) or diamond- (X-Windows) shaped symbol with an accompanying 
label.  The label should be descriptive enough that the user understands the 
implications of setting the radio button to its on or off state.  In its off state, the 
radio button will be empty.  In the on state, the circle will contain a dot 
(Macintosh or MS-Windows) or the diamond will be filled in (X-Windows). 

The following figure indicates the appearance of the radio button as it 
transitions from its off state to its on state and back. 

 

 

Figure 10.8  Toggle buttons are binary. 
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If your GUI has more than one set of linked radio buttons, you should 
separate them with enough space or with multiple frames so that the group is 
visually distinct from another group of radio buttons. 

10.3.1.9 Sliders 

Sliders (Style property set to “slider”) are useful in representing to users that 
they have a fixed range of values from which to choose.  In its most common 
form, the slider is comprised of a trough, an indicator bar, and a set of arrows.  
The trough represents the range of values, while the location of the indicator 
bar within the trough represents the current value specified by the slider.  The 
arrows are supplied to assist in moving the bar in one direction or another. 

The user moves an indicator bar to specify a desired value from within the 
allowable range.  This bar can be moved in one of several ways.  The first is 
accomplished by click and dragging the indicator bar to a new location within 
the trough.  The second is accomplished by clicking within the trough on the 
side of the indicator bar that corresponds with the direction in which the bar 
should move.  This will shift the bar by approximately 10% of the total range 
specified by the trough.  The final method is to click on the arrow that points 
in the direction in which it is desired that the bar move.  This will shift the bar 
by approximately 1% of the total range specified by the trough.  In the 
example below, the user clicks and holds the right-hand arrow until the 
indicator bar has shifted to the desired setting. 
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Figure 10.9  Radio buttons are either “off” or “on”. 
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Depending on its size, the slider may consist of only a trough and indicator 
bar when used with an X-Windows version of MATLAB.  If either the length-to-
width or width-to-length proportion is less than four to one, the X-Windows 
slider will consist of only a trough and indicator bar. Macintosh and MS-
Windows sliders will always consist of all three slider components. 

The slider has no way of explicitly indicating the numeric value that the 
slider represents; therefore, it is recommended that an editable text or static 
text style uicontrol accompany the slider.  The text uicontrol will allow the user 
to see the numeric value to which the slider is set.  Furthermore, editable text 
would allow the user to manually type in an exact value.  It is also 
recommended that the limits of the range be shown with one of these text 
uicontrol elements.  Later on in this chapter, you will learn how to create a 
GUI that contains this type of slider/text uicontrol combination.  The 
circumstances and ultimate purpose of the GUI will most likely dictate the 
requirements regarding the appearance and amount of information that needs 
to be presented to the user. 

10.3.1.10 Static Text 

The static text style (Style property set to “text”) of uicontrol is available for 
creating labels, status messages, or other information pertinent to the user.  
The text graphics objects (i.e., those objects created with the text command) 
cannot be placed on top of frames.  Therefore, if you are using frame objects 
and want to create labels, you will need to use the static text style. 

Static text does not perform any action if the user clicks on any part of the 
object.  In addition, the user cannot edit the information that is displayed. 

10.3.2 UI Control Properties 

Just as with all other MATLAB graphics objects, uicontrol objects have a set 
of properties that can be manipulated to suit your needs and help you obtain 
the look you want for your GUI.  The following table lists all of the properties 

 

Figure 10.10  Use sliders to select a fixed range. 
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associated with a uicontrol object.  Each row contains the property’s name, 
the read-only status, the property values (the default value is contained in “{}”), 
and the format of the value.  Note that these objects also contain the universal 
properties discussed in Chapter 3.  Some of the universal properties, such as 
ButtonDownFcn, are shown below and discussed in a following section since 
they have a special or somewhat different meaning with uicontrol objects. 

 

Property Read
Only

ValueType/Options Format 

BackgroundColor No [Red Green Blue] or color string RGB row 
ButtonDownFcn No string row 

CData No  matrix 
CallBack No string row 
Enable No [ on | {off} | inactive ] row 
Extent Yes [0,0,width,height] row 

FontAngle No [ {normal} | italic | oblique ] row 
FontName No string row 
FontSize No number 1 element 
FontUnits No {points} | normalized | inches | 

centimeters | pixels 
row 

FontWeight No [ light | {normal} | demi | bold ] row 
ForegroundColor No [Red Green Blue] or color string RGB row 

HorizontalAlignment No [ left | {center} | right ] row 
Interruptible No {on} | off row 

ListBoxTop No number 1 element 
Max No number 1 element 
Min No number 1 element 

Position No [left bottom width height] 4-element 
row 

String No string string matrix 
Style No [ {pushbutton} | radiobutton | 

togglebutton | checkbox | edit | text | 
slider | frame | popupmenu | list box] 

row 

SliderStep No number 1 element 
TooltipString No string row 

Units No [ inches | centimeters | normalized | 
points | {pixels} ] 

row 

UIContextMenu No handle 1 element 
Value No number 1 element 
Tag No string row 

UserData No string(s) or number(s) matrix 
Visible No [ {on} | off ] row 
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10.3.2.1 Uicontrol BackgroundColor 

The BackgroundColor property defines the color of the region defined by 
the uicontrol object’s Position property.  You may define the value with either 
an RGB intensity triplet vector or a legal color specification string (e.g., 'red', 'r', 
'white', etc.).  By default the background color will be a light gray whose RGB 
intensity triplet is [0.8314    0.8157    0.7843]. 

10.3.2.2 Uicontrol ButtonDownFcn 

The ButtonDownFcn (button down function) property is a string of one or 
more legal MATLAB expressions that specify the action that should take place 
if the user clicks the mouse button down on top of a narrow strip that runs 
along the object’s perimeter.  Please make a distinction between this property 
and the CallBack property.  The action stored in the ButtonDownFcn is not 
evaluated when the mouse button pointer location is within the region of the 
uicontrol defined by its Position property.  This string is evaluated as if the 
command 

 
eval(buttondownfcnstring) 

 

had been typed in at the command line, where buttondownfcnstring is the 
string stored in the ButtonDownFcn property.  Therefore, if it requires any 
stored variables, the variables must be available at the base MATLAB 
workspace (not the function workspace).  Finally, if you are not sure whether 
or not a ButtonDownFcn string is considered legal, see Section 10.5.1 (“Strings 
of MATLAB Statements and Expressions”). 

10.3.2.3 Uicontrol CData 

Just as we saw CData with image, surface, and patch objects, uicontrol 
objects have a CData property as well. The value of the CData property is an 
M-by-N-by-3 matrix of RGB values that specify an image that can be on both 
push buttons and toggle buttons. 

10.3.2.4 Uicontrol CallBack 

The CallBack  property specifies the action that is performed when the user 
clicks within the uicontrol boundary as defined by its Position property.  Just as 
with the ButtonDownFcn, the CallBack property stores a string that is evaluated 
in the base MATLAB workspace.  As long as the string can be evaluated error 
free with the command 

 
eval(callbackstring) 

 
from the command line (i.e., all variables it requires exist in some fashion), 
there will be no error messages invoked when the uicontrol button is activated 
by the user.  The CallBacks of frame and static text uicontrols will never be 
evaluated.  They were not designed with the purpose of performing an action 
if the user clicks on them.  Editable text objects can be activated in the 
following instances: 
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• the string is altered and the user moves the pointer outside the 
editable text region, or 

• the user presses the return key in a single line editable text object, 
or 

• the user presses the control-return (X-Windows or MS-Windows) or 
command-return (Macintosh) keyboard combination  

All other uicontrol object styles will be activated when the user clicks down 
and releases the mouse button anywhere within the object’s perimeter as 
defined by the Position property. 

Examples of the CallBack will be provided later when we create and 
program the GUI. 

10.3.2.5 Uicontrol Enable 

The Enable property can be set to “on”, “off”, or “inactive”.  If it is set to 
“off” or “inactive”, the user will not be able to activate the uicontrol and, 
correspondingly, no callback action will occur as a result of a mouse click on 
the object.  In its default value of “on”, the uicontrol will perform the action 
defined by its CallBack when the user clicks on the object. 

As illustrated in the figure below, the text that is displayed in a uicontrol 
object will become dim when the Enable property is set to “off”.  When the 
uicontrol is in its inactive or “on” setting it will look the same (shown on the 
left below); however, in the inactive state, the user cannot execute the 
callback by clicking on the uicontrol. 

 

 

If a uicontrol object’s Enable property is “on”, clicking with the left mouse 
button causes MATLAB to perform the following actions in the order shown: 

1. Set the figure's SelectionType property. 

2. Execute the control's CallBack routine. 

3. MATLAB will not set, i.e., update, the figure's CurrentPoint property 
and will not execute either the control's ButtonDownFcn or the 
figure's WindowButtonDownFcn callback. 
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Figure 10.11 Enable property can deactivate a control. 
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If a uicontrol object’s Enable  property is set to either “inactive” or “off”, 
then left-clicking on it causes the following to take place in the order shown: 

1. Sets the figure's SelectionType property. 

2. Sets the figure's CurrentPoint property. 

3. Executes the figure's WindowButtonDownFcn callback. 

4. Executes the control's ButtonDownFcn callback. 

5. Executes the selected context menu item's Callback routine. 

6. Does not execute the control's Callback routine. 
 
The previous also occur as shown anytime you right-click on a uicontrol 
object, regardless of the setting of Enable. If you right-click on the object, the 
objects context menu (which will be discussed later in this section) will be 
shown if one has been associated with it. 

A particular use of setting this property to “inactive” or “off” is to enable 
you to implement object dragging or resizing using the ButtonDownFcn 
callback routine. 

10.3.2.6 Uicontrol Extent 

The Extent property is a read-only four-element vector that specifies the size 
and position of the character string used to label the uicontrol. It is of the form 
[0,0,width,height] where the first two elements are always zero and width and 
height are the dimensions of the rectangle. These are in units specified by the 
Units property.  

Since the Extent property is defined in the same units as the uicontrol itself, 
it is particularly useful in determining the proper sizing for the uicontrol with 
regard to its label. You can do this by first defining the String property and 
setting the font using the relevant font properties, then get the value of the 
Extent property. All you need to do then is set the Position property to be 
slightly larger than the width and height values of Extent. 

If you have more than one line of strings, the Extent rectangle encompasses 
all the lines of text. For single line strings, the Extent is returned as a single line, 
even if the string wraps when displayed on the uicontrol object. 

10.3.2.7 Uicontrol ForegroundColor 

The ForegroundColor property specifies the color of the label and symbols 
(e.g., the square in a check box) of an uicontrol object.  You may define the 
value with either a RGB intensity triplet vector or a legal color specification 
string (e.g., 'red', 'r', 'white', etc.).  By default, the foreground color will be  
black, i.e., [0 0 0]. 

10.3.2.8 Uicontrol Font Angle, Name, Size, Units, and Weight 

These properties allow you to change the font characteristics of the text 
label associated with each uicontrol object.  These are basically the same set 
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of properties that affect the appearance of text objects.  The FontAngle is by 
default set to “normal”, but you can also set it to “italic” or “oblique”. 

 

The FontName and FontSize properties can respectively be the name of your 
favorite font that your system supports and a value corresponding to how big 
or small you want your fonts. The FontUnits property is used to specify the 
units used by the FontSize property. The default is “points” where 1 point is 
1/72 of an inch. When set to “normalized” the unit is set to a fraction of the 
height of the uicontrol so that if you resize the uicontrol the font size will 
change accordingly.The FontWeight property can be set to “normal”, “light”, 
“bold”, or “demi” to give you the following look to a label: 

 

10.3.2.9 Uicontrol HorizontalAlignment 

The HorizontalAlignment dictates how the text label is displayed on the 
uicontrol.  The next figure illustrates left, center, and right alignment of the 
label in a static text uicontrol. 

 

As a note, the push button labels are always center aligned, while the check 
boxes, radio buttons, editable text, and pop-up menu labels will come up, by 
default, left aligned.  (You can change the default by editing the root objects 

 

Figure 10.12 FontAngle 

 

Figure 10.13 FontWeight 

 

Figure 10.14 HorizontalAlignment 
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defaultUicontrolHorizontalAlignment property. ) There is no property available 
that allows you to align the label in the vertical direction. 

10.3.2.10 Uicontrol Min, Max, and Value 

The significance of these three properties is different for each of the 
uicontrol object styles.  However, in all uicontrols the values of the Min and 
Max properties must be scalars and are by default set to zero and one, 
respectively.  Even though the Value property can take on a row or column 
vector, it will always revert to a scalar after the uicontrol has been activated. 

For check boxes and radio buttons, the number that is stored in the Min 
property will be used to set the value of the Value property when the check 
box or radio button transitions to its “off” state.  The number that is stored in 
the Max property will be used to set the value of the Value property when the 
check box or radio button transitions to its “on” state. 

The difference in the values stored in the Max and Min properties 
determines whether or not an editable text uicontrol can contain a single or 
multiple lines of text.  If the difference is greater than one, the editable text 
uicontrol can have multiple lines of text; otherwise, it will have only a single 
line of text.  Unfortunately, it does not specify how many lines can be entered 
by the user.  As long as 

Max - Min  > 1 
 
holds true, the user can enter as many lines as he or she desires. 

For push buttons, the value stored in the Max property will be transferred to 
the Value property for the period during which the CallBack is being evaluated. 
After the CallBack is completed, the Value property will once again be set to 
the value stored in the Min property. 

 The range of values that governs the trough of a slider uicontrol object is 
defined by the Min and Max properties.  The Value property will contain the 
numeric value that corresponds to the position of the indicator bar.  If the 
slider is drawn horizontally, the Min property value will correspond to the 
value of the slider when the indicator bar is as far left as it can go.  In addition, 
the Max property value will correspond to the value of the slider when the 
indicator bar is as far right as it can go.  In the event that the slider is drawn 
vertically, the Min property value is associated with the bottom of the trough 
and the Max property value is associated with the top of the trough.   

The Min and Max properties have no meaning for pop-up, static text, and 
frame uicontrols.  The Value property does indicate which pop-up menu 
choice is being displayed (an integer indicating the first, second, etc. item); 
however, it has no meaning for static text and frame objects. 

10.3.2.11 Uicontrol SliderStep 

The SliderStep property affects only slider uicontrol objects.  It is a 2-
element row where the first element (by default 0.01) specifies how far the bar 
should move as a fraction of the entire length of the trough when the user 
clicks on one of the arrows on either end of the slider.  The second element 
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(by default 0.1) specifies how far the bar should move as a fraction of the 
entire length of the trough when the user clicks in the  trough.   

Additionally, SliderStep sets up the granularity of the values to which the 
slider bar can be moved and the values that are stored in the Value property of 
the slider uicontrol object.  For example, this feature can be used to relieve 
you of having to round or manipulate the value returned.  If you created a 
slider object with 

 
slider_handle = uicontrol('style','slider',... 
           'sliderstep',[.2 .25],'max',10,'min',0,... 
           'position',[10 10 200 10]); 

 
and then you moved the slider bar around and did a  

 
value = get(slider_handle,'value'); 

you are guaranteed that the value will be one of the values in the matrix [0 
2 2.5 4 5 6 7.5 8 10]. 

10.3.2.12 Uicontrol TooltipString 

The TooltipString property stores a string that is displayed whenever a user 
allows the mouse cursor to loiter over the uicontrol. This property is very 
useful in providing brief explanations or reminders to help the user in using a 
GUI. 

10.3.2.13 Uicontrol Position 

The location of the uicontrol object in the figure object is specified with the 
Position property.  The format of the position vector is the usual [left bottom 
width height] vector that we have seen with other graphics objects.  Since the 
parent object of the uicontrol is the figure, the position vector is defined with 
respect to the lower left-hand corner of the figure.  The units of this vector are 
specified by the Units property. 
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Figure 10.15 The location of uicontrol objects given by Position. 
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10.3.2.14 Uicontrol String 

The displayed text labels and choices that appear on the uicontrol are 
specified by means of the String property.  This property can be set to a string 
matrix or vector.  If there is more than one row in the matrix, only the first row 
will be used to label push buttons, check boxes, radio buttons, and static text.  
Editable text (Style = “edit”) and pop-up menus make use of the additional 
rows.  If the editable text object has been set up to allow multiple lines (see 
Section 10.5.8, “UIcontrol Min, Max, and Value”), the additional rows will 
correspond to the displayed lines of text; otherwise, only the first row of the 
string matrix will be used.  For pop-up menus, each row corresponds to a 
choice in the list of items that appears when the user clicks the mouse pointer 
on top of the object.  Frames and sliders do not make use of the String 
property. 

As a helpful speed hint, you do not necessarily need to create string 
matrices with the usual matrix format or with str2mat.  When setting the String 
property of a uicontrol object, MATLAB recognizes the character “|” as the 
end of a row. For instance, if you wanted a string matrix that had the words 
“Apple,” “Banana,” and “Pear” on different lines, you could create a cell array 
by typing 

 
string_value = {'Apple';'Banana';'Pear  '}; 

 

or 
 
string_value = str2mat('Apple','Banana','Pear'); 

However, the simplest and quickest way is to type 
 
string_value = ['Apple|Banana|Pear']; 

which does not require you to count characters or to use another MATLAB 
function.  Please note that this works only when you want to create a string 
matrix for uicontrol objects.  The first two forms actually store a string matrix 
(i.e., in this case a 3-by-6 matrix of characters) in the variable string_value; 
however, the method that uses the “|” stores a row vector (i.e., a 1-by-17 
vector of characters) in the variable string_value.  But once you 

 
set(uicontrol_handle,'string',string_value) 

where uicontrol_handle is the graphics handle of a uicontrol object, the 
String property will contain the same string matrix regardless of which one of 
the methods was used to create string_value. 

10.3.2.15 Style 

The Style property specifies whether the user interface control object will be 
a check box, editable text, frame, pop-up menu, list box, push button, toggle 
button, radio button, slider, or static text component.  The default Style value 
creates a push button.  The table in Section 10.4.1 shows the value that you 
need to use for the Style property to create each type of control object. 
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10.3.2.16 ListBoxTop 

List boxes have their own special property called ListBoxTop. For a given set 
of items that are specified in the String property of the list box uicontrol object, 
you can specify which item is at the top of the visible portion of the list.  This is 
applicable only if there are more items than fit in the space provided by the 
Position property.  For example, if you typed 

 
u = uicontrol('style','listbox',... 
      
'string','Option1|Option2|Option3|Option4|Option5',... 
      'position',[10 10 75 50]); 

you would get the following list box. 

 

Without clicking on the arrows, you can specify that “Option3” be at the 
top of the visible list of items by setting the ListBoxTop property with 

 
set(u,'listboxtop',3) 

to get the list shown below. 

 

The actual order of the list box has not changed, but rather the list box has 
been positioned such that item 3 is at the top. 

 

 

 

Figure 10.16 A typical list box. 

 

Figure 10.17 Same list box with ListBoxTop set to 3. 
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10.3.2.17 Uicontrol Units 

The location of the uicontrol object is specified by the Position property in 
units specified by the Units property.  By default, the units will be in pixels; 
however, you may also choose them to be in inches, centimeters, points, or 
normalized. 

Pixels, inches, centimeters, and pixels are referred to as absolute units, while 
normalized units are considered a relative unit of measurement.  If a uicontrol 
object uses absolute units, its size will be independent of the size of the figure 
object parent.  In fact, if the figure is too small, the uicontrol objects may be 
located outside the boundaries of the figure and will not be seen by the user.  
However, if the units are “normalized”, the control objects will scale 
proportionately with respect to the figure object parent (the lower left-hand 
corner is considered to be (0,0) and the upper right-hand corner is (1,1)). 

10.3.2.18 Uicontrol Interruptible 

The Interruptible property will be discussed in detail later in this chapter (see 
Section 10.8.3, “Interruptible vs. Uninterruptible”).  Before this property can be 
fully understood, it is essential for you to be familiar with the various types of 
MATLAB events and how they are processed.  For now, suffice it to say that 
this property controls whether or not the execution of a CallBack can be 
interrupted by another event, such as clicking the mouse button on a uicontrol 
object. 

The Interruptible property can be set to “on” or “off”.  By default the value is 
“on” which means that the CallBack can be interrupted to execute the action 
associated with another event.  Only after the interrupting action has been 
completed, can the interrupted CallBack be completed. On the other hand, a 
value of “off” means that a uicontrol’s CallBack execution cannot be 
interrupted, so must be completed before another event (such as the CallBack 
of another uicontrol) object can be executed.   

10.3.2.19 Uicontrol Tag 

This property is extremely useful when programming GUIs in a fashion that 
requires MATLAB to search for the handle of a specific uicontrol object.  The 
Tag property can contain a string row vector of your choice.  It is usually 
assigned a descriptive name that uniquely identifies a particular uicontrol 
object from all the other uicontrol objects.  This property does nothing in 
terms of the appearance or the action associated with the uicontrol object.  
Using the Tag property in conjunction with findobj has already been 
mentioned in Section 7.8; further examples that illustrate this property’s 
usefulness will be presented in Section 10.5.2.4 of this chapter. 

10.3.2.20 Uicontrol UserData 

The UserData property is essentially used as a storage facility that 
accompanies the object until it is deleted.  It is unaffected by the clear 
command and therefore is a safe place to store matrix data that you want 
associated with a uicontrol or that you want to be able to access regardless of 
the state of MATLAB’s base workspace. By default, this property contains the 
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empty matrix, [ ].  You can store any valid MATLAB data type in this property. 
You can use structures or cell-arrays to store a mix of data types.   

 

10.3.2.21 Uicontrol Visible 

By default, the Visible property is set to “on” so that the object can be seen 
by the user.  However, in certain circumstances, you may wish to make the 
uicontrol object invisible.  The uicontrol object can be made invisible by 
setting this property to “off”.  This becomes useful when you want to have 
layers of uicontrol objects in the same figure. 

The Visible property can also be used to limit the number of uicontrol 
objects that are displayed at once. For instance, you may want to program a 
GUI so that the state of a particular uicontrol object dictates whether or not 
other uicontrol objects are available to the user.  This can be quite important 
to the readability of the GUI.  It helps reduce the chance that the user will be 
overwhelmed with too many controls and options to an application.  Over 
time, as the user becomes familiar with the application, he or she can explore 
additional features by bringing them to view. 

10.3.2.22 Other UI Control Properties 

The Type property specifies the kind of MATLAB graphics object and is 
always set to “uicontrol” for an uicontrol object.  This is a read-only property. 

In terms of the object’s family tree, the parent of a uicontrol object will 
always be the handle to the figure in which the object is drawn.  This handle 
will be stored in the Parent property.  The Children property will contain the 
empty matrix because uicontrols have no children. 

10.3.3 Creating Uicontrol Objects 

UIcontrol objects are created with the uicontrol command.  In this section 
of the chapter we merely present a few examples of creating uicontrol objects 
since here we are purely interested in the appearance of the GUI, not the 
functionality.  Defining or coding the CallBack property will be discussed in 
Section 10.5 (“Low-Level GUI Programming Techniques”). 

There are a few basic forms of the uicontrol function that you can choose 
from.  The simplest is 

 
handle = uicontrol('Property1Name',Property1Value,... 
                   'Property2Name',Property2Value,... 
                      . 
                      . 
                      . 
                   'PropertyXName,PropertyXValue) 
 

where you specify the attributes of the uicontrol object with as many 
PropertyName/PropertyValue pairs required to fully describe the object.  In this 
sample form there are X pairs.  The PropertyName can be any one of the 
properties listed in the table found in Section 10.3.2 and PropertyValue is any 
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legitimate value that can be assigned to the property.  This form of the 
uicontrol command will create the uicontrol object in the current figure.  If 
there is no current figure object, a new figure will be created. 

You may also use the form 
 
handle = uicontrol(figure_handle,... 
                   'Property1Name',Property1Value,... 
                   'Property2Name',Property2Value,... 
                      . 
                      . 
                      . 
                   'PropertyXName,PropertyXValue) 
 

which forces the uicontrol object to be created in the figure with graphics 
handle figure_handle.  In both forms, it is at your discretion to decide whether 
or not the uicontrol object’s graphics handle needs to be stored.  In the 
examples above, the control objects graphics handle is stored in the variable 
handle.   

10.3.3.1 Uicontrol Object Layering 

The order in which you create your control objects is very important, 
especially if your GUI will contain frame objects. The first uicontrol that is 
created will lie at the “bottom,” while every additional uicontrol object will be 
closer to the viewer than the previous.  All uicontrols will be drawn in front of 
all other graphics object types. The next example illustrates both of these 
points. 

 
figure('position',[100 200 250 160]); 
uicontrol('style','frame',... 
          'position',[10 50 160 80]); 
uicontrol('style','pushbutton',... 
          'string','Close Figure',... 
          'position',[30 70 80 20],... 
          'callback','close'); 
uicontrol('style','frame',... 
          'position',[80 10 70 130]); 
axes 
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In Figure 10.18 above, we see that the axes object is drawn below all other 
objects even though it was created last.  The other point seen is that the 
uicontrol objects, on the other hand, are layered in terms of the order in which 
they were created.  A useful feature of MATLAB is that the layering of 
uicontrol objects can be controlled by manipulating the order of their handles 
in the figure object’s Children property.  The handle of a uicontrol object with 
a lower index in the figure object’s Children property will be drawn closer to 
the user (i.e., will be drawn above the other uicontrol objects). 

10.3.3.2 Framing Objects 

In the previous example, the default units (pixels) were used to define the 
positions of the objects.  Pixels or any other absolute unit of measurement is 
often useful when defining the distance between two objects when creating a 
GUI.  Since different monitors have different pixel spacings, if you use pixels as 
the unit of measurement, you can ensure that there is enough space so that 
the edges of one object remain distinguishable from any neighboring object’s 
edges. 

For example, let’s say you want to create a set of radio buttons that are 
encompassed by a frame and that the figure should be only fairly compact.  
You first need to decide on the size and positions of the buttons and the static 
text label.  This is done somewhat experimentally at first, until you gain a feel 
for how much space you need for the longest label.  In this case, we find out 
that 100 pixels in width and 20 in height is sufficient.  We could then decide 
that each button will be separated vertically with five pixels and that we want 
ten pixels between an edge of a button and the figure boundary.  Start adding 
up the pixels and you should be able to determine that a figure object that is 
120 by 100 pixels will do the job.  The figure object is created with these 
dimensions and its Resize and NumberTitle properties are turned off.  The 
Resize property is important because we do not want the user to change the 
size of the figure in this example.  After the figure is created, create the frame, 
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Figure 10.18 Layering of uicontrol objects. 
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add a descriptive static text uicontrol object, and finally, create the three radio 
buttons.   The code and the final result (Figure 10.19) are presented below. 

 
h_fig = figure('position',[200 200 120 100],... 
               'resize','off',... 
               'numbertitle','off') 
% Create frame object that covers entire figure region. 
h_frame = uicontrol(h_fig,'style','frame',... 
                          'position',[0 0 120 100]) 
% Create overall label. 
h_stext = uicontrol(h_fig,'style','text',... 
                          'string','Waveform Type',... 
                          'position',[10 75 100 20]); 
% Create set of three radio buttons. 
h_radio(1) = uicontrol(h_fig,'style','radio',... 
                          'string','Square Wave',... 
                          'position',[10 55 100 20],... 
                          'value',1); 
h_radio(2) = uicontrol(h_fig,'style','radio',... 
                          'string','Saw Tooth Wave',... 
                          'position',[10 30 100 20]); 
h_radio(3) = uicontrol(h_fig,'style','radio',... 
                          'string','Sinusoidal Wave',... 
                          'position',[10 5 100 20]); 
 

 
 
Please note that the code provided above performs no function and the radio 
buttons are not mutually exclusive, since we have not added any CallBacks to 
the uicontrols.  To learn how to make mutually exclusive radio buttons, see 
Section 10.7.1. 

10.3.3.3 A Stretchable GUI 

If you are going to allow the user to resize the figure, it is recommended 
that you use normalized units (Units property set to “normalized”) for all 
uicontrol objects within the figure.  Using pixels or one of the other absolute 
units of measurement inside a resizable figure can lead to a situation where 
the user has resized the figure to such a degree that some of the uicontrol 
objects are no longer visible.  With normalized units, the uicontrols will scale 
themselves with respect to the figure boundary.  In the worst case, the user 

 

Figure 10.19 Framed static text and radio button controls. 
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might shrink the figure to a point at which it is difficult to read labels; however, 
at least the user will be aware that the uicontrol objects exist and can always 
increase the size of the figure until the controls are once again readable. 

In the next example we will create a resizable figure that has a pop-up 
menu, some static text, and some editable text (see Figure 10.20).  From this 
example you can see how objects can be positioned with normalized units 
and how an editable text string can be created with multiple lines.  

 
% Create the figure. 
figure('position',[150 100 200 150],... 
    'MenuBar','none',... 
    'Color','white'); 
% Create the uicontrol objects with normalized units. 
h_frame = uicontrol('style','frame',... 
          'units','normalized',... 
          'position',[0 0 1 1]); 
h_stext_font = uicontrol('style','text',... 
          'units','normalized',... 
          'position',[.05 .1 .25 .15],... 
          'string','Font:'); 
h_popup_font = uicontrol('style','popup',... 
          'units','normalized',... 
          'position',[.3 .1 .65 .15],... 
          'string','Helvetica|Times|Courier|Symbol'); 
 
h_stext_color =  uicontrol('style','text',... 
          'units','normalized',... 
          'position',[.05 .3 .25 .15],... 
          'string','Color:'); 
h_edit_color =  uicontrol('style','edit',... 
          'units','normalized',... 
          'position',[.3 .3 .65 .15],... 
          'string','white'); 
% Create a multiple line editable text object 
% by setting the Max property to a value greater 
% than 1 plus the Min property (Min default = 0). 
h_edit_multi = uicontrol('style','edit',... 
    'units','normalized',... 
    'position',[.05 .5 .9 .45],... 
    'string',['Line Number 1|Line # 2|and line number 
3'],... 
    'max',2) 
 

After you have created the previous GUI, resize the Figure Window so that 
you understand what happens to uicontrols with normalized units. 
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10.3.3.4 Predefined GUIs and Dialog Boxes 

There are some functional GUIs that come with MATLAB that you may find 
useful.  There are four “canned” dialog box generating functions that use some 
of the uicontrol objects presented in this chapter, namely:  errordlg (error 
dialog), helpdlg (help dialog), msgbox (message box), warndlg (warning 
dialog), inputdlg (input dialog), and questdlg (question dialog). 

The first four commands are essentially the same in the sense that you can 
display a message in a small Figure Window that also contains a push button 
labeled “OK”.  The figure will disappear when the user presses the “OK” push 
button.  All three functions take at least two arguments.  The first is the 
message that you want to have displayed in the dialog box, and the second is 
the name of dialog box figure (there is a default name supplied if you do not 
provide one).  You may also pass the errordlg function a third string argument, 
'on'.  This will make sure that there is only one figure with the name provided 
in the second argument string (i.e., if another dialog figure has this name, its 
message window will be updated).  The warndlg function also takes a third 
argument, 'replace', which will replace an existing warning dialog box that has 
the same window name with the new information.  If a help dialog has the 
same name as the one you are creating with the helpdlg function, MATLAB 
will replace its message with the new string. All of these dialog functions will 
wrap your string as needed to fit the dialog box size; however, a cell array is 
preferred so that you define the string for each line with a new cell element.  
Some examples of these commands are given below 

 
h_wfig = warndlg('Warning Message String',... 
'Warning Dialog'); 
h_efig = errordlg('Not a valid input',... 
'Input Error','on'); 
h_helpdlg = helpdlg('Try again!'); 
 

The difference between the commands is the procedure by which they deal 
with existing dialog boxes that have the same name (i.e., the figure Name  
property).  Both the helpdlg and warndlg commands will bring an existing 
named dialog box to the front of the screen without updating its contents.  

 

Figure 10.20 A stretchable GUI. 
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This is different from the way the errordlg command works with the third 
argument as described above. 

The message dialog box, in addition to the message string and the window 
name string, can take more arguments.  You can provide a string as the last 
argument to the msgbox function that contains 'modal', 'non-modal', or 
'replace'.  These specify the behavior of the message dialog box and whether 
or not it should replace any existing message box.  The default is non-modal 
which means that the user can click on other windows while the message box 
is active.  Modal means that the user must acknowledge the message box by 
clicking on the “OK” button before he can select another window with the 
mouse. 

The msgbox function can also take on a set of arguments to define an icon 
that will be displayed in the box.  By default, no icon is displayed; however, 
you can display an error icon, help icon, warning icon, or your own custom 
image icon. 

Typing 
 
msgbox('My Error Message','Error Window Name','error'); 
 

will produce: 

 

 

Typing 
 
msgbox('My Help Message','Help Window Name','help'); 
 

will produce: 

 

 

Figure 10.21 An error dialog window. 
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The code 
 
msgbox('My Warning Message',... 
'Warning Window Name','warn'); 
 

will produce: 

 
 

You can also use the form 
 
msgbox('My Message',' Window Name',... 
        'custom',iconData,iconCmap); 
 

where iconData is a matrix containing image data and iconCmap is the 
image’s color map. 

You can use the questdlg command to create a question message with 
either two or three push-button answer options.  The format for a two-button 
question dialog box is 

 
string_returned = questdlg(QuestionString,... 
                           ButtonString_1,... 

 

Figure 10.22 A help dialog window. 

 

Figure 10.23 A warning dialog window. 
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                           ButtonString_2); 
 

where the three arguments are all strings.  After the user clicks on one of the 
two push buttons, the string of that push button will be returned and stored in 
the string_returned variable.  A three-push-button question dialog box is 
created in the following manner: 

 
string_returned = questdlg(QuestionString,... 
                           WindowNameString,... 
                           ButtonString_1,... 
                           ButtonString_2,... 
                           ButtonString_3,... 
                           DefaultString); 
 

where DefaultString must be ButtonString_1, ButtonString_2, or 
ButtonString_3. 

The question dialog box is modal, that is, the user must press one of the 
answers before control is returned to the source, such as the command line, 
function, or script that originally called the questdlg function.  For example, 
you may want to question the user after a figure was generated to find out 
whether or not a print-out of the plot is desired.  This can be done with the 
following code: 

 
question_ans = questdlg('Do you want a hard copy?',... 
   'OUTPUT','Yes','No','No') 
if strcmp(question_ans,'Yes') 
 print 
end 
 

Figure 10.24 shows the resulting question dialog box. 

 
 

The inputdlg function is a very good way to quickly ask a user for 
information without having to do text-based questions and answers or 
generate a GUI. 

 

Figure 10.24 A question dialog window. 
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Creating a set of questions as a cell array (where each question is in one cell 
of the array) provides the number of lines you want the user to be able to 
answer the questions on, and the default answers.  You can quickly create a 
convenient method for prompting a user for information. 

For example, 
 
answers = inputdlg({'My first question',... 
                     'My 2nd question',... 
                     'My 3rd question',},... 
                     'Window Name',[1 2 1],... 
                    {'defAns1','defAns2','defAns3'}); 
 

will produce the following GUI: 

 

 

The answers typed in by the user will be returned by the function (to the 
variable answers in this example) as a cell array, where each cell index, i, is the 
answer to the ith question.  If the user hits “Cancel”, an empty cell array is 
returned. 

Besides creating simple message or question dialog boxes, you can also 
create a dialog box with the command uigetfile to obtain the filename and 
directory path of a file.  The complete syntax used for this command is 

 
[filename, pathname] = uigetfile('FilterString',... 
                                 'Dialog Box Title',... 
                                 left, bottom); 
 

'FilterString' specifies the extension that the file must have in order to be 
listed in the dialog box and 'Dialog Box Title' is the string that will appear as a 
title to the interface.  The variables left and bottom are used to specify the 
location of the figure in terms of the distance in pixels from the lower left 
corner of the screen.  The left and bottom arguments do not work on all 

 

Figure 10.25 An input dialog window. 
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platforms.  In addition, you are not required to specify all four arguments.  
However, the order in which they are specified cannot be changed.  If you 
want to provide the user with a list of all the M-files in the directory, you can 
use 

 
[filename,pathname] = uigetfile('*.m',... 
                                 'UIGETFILE TITLE',... 
                                 100,100); 
 

which will create the interface shown in Figure 10.26.  In this figure, if the 
demopopup M-file was chosen (either by double clicking on the file or by 
highlighting the file and pressing “Open”), the filename variable would equal 
'demopopup.m' and the pathname would be a string identifying the path 
(directory or folder) in which the demopopup.m file is located.  If the user had 
instead selected “Cancel,” a zero would be returned in the filename  and 
pathname variables. 

 

 

To request the name of a new file from the user you can use the command 
uiputfile.  The syntax format of uiputfile is very similar to that of uigetfile, the 
only difference being that instead of specifying the extension of the files to be 
listed, you specify the default name of the new file.  For example, 

 
[filename,pathname] = uiputfile('Default.m',... 
                                 'UIPUTFILE TITLE'); 
 

will produce the dialog box shown in Figure 10.27. 

 

 

Figure 10.26 An example use of uigetfile. 
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The function uisetfont allows a user to select the font, size, and style of text 
objects.  To change the font attributes of text and/or axes objects, pass their 
graphics handles to the function with 

 
uisetfont(object_handles) 
 

Be aware that the variable object_handles may contain only the handles to 
uicontrol, axes, and text objects.  Figure 10.28 shows a typical font dialog box.  
To find out more about this function (like how to use it with a font structure) 
type help uisetfont. 

 

 

Figure 10.27 An example uiputfile GUI. 
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Finally, there is one last built-in GUI that can be used to change the color of 
any graphics object. This is the function uisetcolor.  This function is used by 
passing the handles of the objects whose color you would like to change.  To 
learn more about this function, type help uisetcolor. 

10.4 Uimenu Elements 
User interface menus can exist within figures, other menus, or context 

menus. This takes the form of pull-down menus such as the familiar menu bar 
at the top of a Figure Window on X- and MS-Windows systems, and at the top 
of the screen on a Macintosh system.  The menu bar will have one or more 
menu titles from which the user can choose.  If a user clicks and holds down 
the mouse button when the pointer is located on top of a title, a list of menu 
items will appear.  The user can then drag the pointer over any of the menu 
items.  Those menu items that have arrowheads on the right-hand side are 
called submenus.  If a user selects a submenu, another list of items will appear.  
You are not limited to the number of submenu levels (see Figure 10.29).  
When the user releases the mouse button after highlighting a menu item, that 
item’s CallBack will be executed just as a uicontrol object’s CallBack is 
executed after it has been activated.  Menu titles, menu items, and submenus 
are all uimenu (user interface menu) objects that are created with the uimenu 
function. 

 

 

Figure 10.28 A sample uisetfont GUI. 
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In addition to the differences in the location of the menu bar among the 
different platform versions of MATLAB, there are several other differences.  
Since there are no system default menu items in X-Windows figures, the Figure 
Window will contain only a menu bar if a menu object has been created.  MS-
Windows and Macintosh versions of MATLAB have default menu titles and, 
therefore, will always have a menu bar.  By default, the MS-Windows figure 
will contain the “File,” “Edit,” “Windows,” and “Help” menu titles.  If you want 
to turn off these system default pull-down menus, set the MenuBar property of 
the Figure Window to “none”. If you don’t turn them off, new menu bar 
menus will be placed after the defaults. 

10.4.1 Uimenu Properties 

Just as with all other MATLAB graphics objects, uimenu objects have a set 
of properties that can be manipulated to suit your needs and help obtain the 
look you want for your GUI.  The following table lists all of the properties 
associated with a uimenu object.  As before with our property tables, each 
row contains the properties name, the read-only status, the property values 
(the default value is contained in “{}”), and the format of the value.  Note that 
these objects also contain the universal properties discussed in Chapter 7.  The 
universal properties that you are likely to find useful have been included at the 
end of the table. 
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Figure 10.29 Uimenu objects create pull-down menus.  
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Property Read
Only

ValueType/Options Format 

Accelerator No string row 
CallBack No string row 
Checked No [ on | {off} ] row 
Children Yes object_handles column 
Enable No [ on | {off} | inactive ] row 

ForegroundColor No [Red Green Blue] or color string RGB row 
Label No string row 

Position No [left bottom width height] 4-element 
row 

Separator No [ on {off} ] row 
Interruptible No {on} | off row 

Tag No string row 
UserData No string(s) or number(s) matrix 
Visible No [ {on} | off ] row 

 

10.4.1.1 Uimenu Accelerator 

The Accelerator property defines the keyboard strokes that the user can use 
to activate the uimenu object.  This provides the user with an alternative to the 
point, click, and select method of activating the object.  When users become 
familiar with the GUI, they tend to look for shortcuts to reduce the time and 
effort it takes to accomplish an action, and accelerators provide this. It is good 
practice to always provide an accelerator for a uimenu object. 

The manner in which an accelerator key is defined depends on the platform 
on which you are running MATLAB.  For MS-Windows, the accelerator 
defaults to the first character in the Label property if the Accelerator property is 
left blank.  For labels on the menu bar, the accelerator is activated by pressing 
the ALT+character keyboard combination. If you have labels on the menu bar 
that begin with the same letter, subsequent presses of the character while still 
holding down ALT will stepthrough the labels. For submenus, where the 
Accelerator property has been specified, the keyboard combination is 
CTRL+character where character is the first character of the string set in 
Accelerator. The user will know that a menu item has an accelerator by the 
fact that the text “<Ctrl>-character” (where character is the letter that must be 
pressed along with the control key) appears to the right of the object’s label as 
shown in Figure 10.30. 
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10.4.1.2 Uimenu CallBack 

The CallBack  property specifies the action that is performed when the 
uimenu object is activated.  There is a difference between menu (and 
submenu) titles and menu (submenu) items in terms of when the uimenu 
object is activated and the CallBack is processed.  Uimenus that contain menu 
and submenu titles will be activated when the user clicks down on these 
objects.  A menu item’s CallBack is processed when the user releases the 
mouse button over the uimenu object.  Just as with uicontrol objects, the 
CallBack  property stores a string that is evaluated in the base MATLAB 
workspace.  As long as the string can be evaluated error free with the 
command eval(callbackstring) from the command line (i.e., all variables it 
requires exist in some fashion), there will be no error messages invoked when 
the uimenu is activated by the user. 

Examples of uimenu CallBack coding will be provided later when we create 
and program the GUI. 

10.4.1.3 Uimenu Checked 

The Checked  property specifies whether or not the uimenu object will have 
a check mark (Macintosh or MS-Windows) or open box (X-Windows) symbol 
placed to the left of the displayed label.  The symbol will appear only when the 
Checked property is set to “on” as shown in  Figure 10.31.  By default, this 
property is set to “off”.  The check mark is typically used to indicate whether 
or not a specific attribute regarding the application is turned on or off. 

 

 

Figure 10.30 Press the Ctrl key to activate an accelerator. 
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10.4.1.4 Uimenu Children 

The  menu items that appear below a menu title or to the right of a 
submenu title are the children of that menu title or submenu title object.  
Figure 10.32 depicts this relationship. The circled uimenu objects are the 
children of the object pointed to by the arrow leading from the circle. 

 

 
The Children property is a read-only property that lists the graphics handles of 
an object’s children in a column vector.  The order in which the handles are 
listed is from most recent to earliest created uimenu.  The only type of object 
that a uimenu object can have as a child is another uimenu object.  Menu or 
submenu items will have no children and the Children property will be the 
empty matrix. 
 
 
 
 
 

 

Figure 10.31 The Checked property set to “on” marks a label. 

 

Figure 10.32 Parent / Child relationship between uimenus. 
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10.4.1.5 Uimenu Enable 

The Enable property can be set to either “on” or “off”.  If it is set to “off”, 
the user will not be able to activate the uimenu and, therefore, no action will 
occur as a result of a mouse release over the object.  In addition, if a submenu 
title is not enabled, the user will not be able to see that object’s children.  In its 
default value of “on”, the uimenu will perform the action defined by its 
CallBack property when selected by the user. 

As illustrated below, the text that is displayed in a uimenu object will be 
“dimmed”  when the Enable property is set to “off”. 

 

10.4.1.6 Uimenu ForegroundColor 

The ForegroundColor property specifies the color of the label and symbols 
(e.g., the arrowheads, check marks, or boxes) of a uimenu object.  You may 
define the value with either a RGB intensity triplet vector or a legal color 
specification string (e.g., 'red', 'r', 'white', etc.).  By default, the foreground color 
will be black or [0 0 0]. 

10.4.1.7 Uimenu Label 

The descriptive text that appears on the uimenu is stored in the Label 
property.  This vector must be a string row vector. 

As stated earlier (see Section 10.4.1.1, “UImenu Accelerator”), the uimenu 
mnemonic for MS-Windows versions of MATLAB is specified in the Label 
property.  Any character that exists in the label and is not already used as an 
mnemonic to another menu object can be used as the mnemonic by inserting 
the “&” character in front of the desired character.  The user can then simply 
press the Alt-character keyboard combination to activate and execute the 
CallBack associated with that uimenu object.  For example, if the label is 'Grid', 
you can define the letter “G” as the accelerator by setting the Label property 
to '&Grid'.  If instead you want to use the letter “d”, set the Label property to 
'Gri&d'. 
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Figure 10.33 Uimenu Enable property in “on” and “off” states. 
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If you use a uimenu to bring up another figure which also contains a GUI, it 
is good practice to add three dots (...) to the end of the uimenu label.  This has 
become the conventional way of indicating to the user that there is more than 
meets the eye with this menu object selection.  For example, the label 'Save 
As...' is usually used to indicate that more information (such as a new file 
name) will be requested from the user. 

10.4.1.8 Uimenu Position 

By default, menu items appear in the order in which they are created 
beneath their respective parents.  You can alter this order by setting the 
Position property to the integer value that coincides with the desired order.  
Menu titles in the menu bar are ordered from left to right and menu items are 
ordered from top to bottom by increasing Position value.  Figure 10.34 
indicates the value stored in the Position property of the uimenu objects 
shown. 

 

 

10.4.1.9 Uimenu Separator 

The Separator property specifies whether or not a uimenu object will have a 
horizontal line drawn along its top edge.  The Separator property’s default 
setting is “off” which means that there will not be a line between the menu 
item and the menu item directly above it.  This property does not apply to 
uimenu objects located in the menu bar nor to the first choice in a list of menu 
items.  Figure 10.35 shows the affect that the separator has on the appearance 
of the menu list (the menu with label “Print” and “Quit” have their Separator 
properties set to “on” in the right-hand side of the illustration). 
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Figure 10.34 Position numbers of the various uimenu objects. 
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10.4.1.10 Uimenu Interruptible 

The Interruptible property will be discussed in great detail later in this 
chapter (see Section 10.8.3 “Interruptible vs. Uninterruptible”).  Before this 
property can be fully understood, it is essential for you to be familiar with the 
various types of MATLAB events and how they are processed.   Basically, this 
property controls whether or not the execution of a CallBack can be 
interrupted by another event such as when the user clicks the mouse button to 
activate a uimenu object. 

The Interruptible property can be set to “on” or “off”.  By default the value is 
“on” and means that a CallBack’s execution can be interrupted to execute the 
action associated with another event.  On the other hand, a setting of “off” 
means that the CallBack  must be completed before another event (such as 
the CallBack of another uimenu or uicontrol object) can be executed; only 
after the interrupting action has been completed can the interrupted CallBack 
be completed. 

10.4.1.11 Uimenu Tag 

This property is extremely useful when programming GUIs in a fashion that 
requires MATLAB to search for the handle of a specific uimenu object.  The 
Tag property can contain a string row vector of your choice.  It is usually 
assigned a descriptive name that uniquely identifies a particular uimenu object 
from all the other graphics objects.  This property does nothing in terms of the 
appearance or action associated with the pull-down menu.  We will see this 
property’s usefulness in Section 10.5.2.4 of this chapter. 

10.4.1.12 Uimenu UserData 

The UserData property is essentially used as a storage facility that 
accompanies the object until it is deleted.  It is unaffected by the command 
clear and, therefore, is a safe place to store matrix data that you want 
associated with a uimenu or that you want to be able to access regardless of 
the state of MATLAB’s base workspace.  You can use cell arrays or structures 
to hold arbitrary mixes of data in this property. 

 

Figure 10.35 Using Separator to emphasize logical groupings. 
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10.4.1.13 Uimenu Visible 

Normally, the Visible property is set to “on” so that the object can be seen 
by the user.  However, in certain circumstances, you may wish to make the 
uimenu object invisible.  The uimenu object can be made invisible by setting 
this property to “off”.  This becomes useful when you want to limit the amount 
of information that the user is subjected to or when there are items from a list 
that do not apply to the particular situation under which the pull-down menu 
was selected. 

If the Visible property is set to “off” for a menu title or submenu title, then 
that title uimenu object along with all of its children will not be visible. 

10.4.1.14 Other Uimenu Properties 

The Type property specifies the kind of MATLAB graphics object and is 
always set to uimenu for a uimenu object.  This is a read-only property. 

In terms of the object’s family tree, the parent of a uimenu object found in 
the menu bar (i.e., a menu title object) will always be the handle to the figure 
that the object is drawn in (X- and MS-Windows) or associated with 
(Macintosh).  This handle will be stored in the Parent property.  The parent of 
the uimenu objects found in the menu will be the handle to the uimenu object 
that had to be selected to make the object visible. 

The ButtonDownFcn, Clipping, Selected, and DestroyFcn properties are 
available to the uimenu object.  The Clipping and Selected properties are both 
by default set to “off” and even in their “on” state do absolutely nothing to the 
appearance and performance of the uimenu object.  The ButtonDownFcn 
property is by default set to the empty string matrix (['']) and has no effect on 
the performance or appearance of the uimenu object. 

10.4.2 Creating Uimenus 

Uimenu objects are created with the uimenu command.  In this section of 
the chapter we will look at only a few examples of uimenu object creation.  
Here we are purely interested in the appearance of the pull-down menus, not 
the functionality.  Defining or coding the CallBack property will be left for a 
later section.  

10.4.2.1 Top Level Uimenu 

There are a couple of basic forms of the uimenu function from which you 
can choose.  The difference is only in the manner in which the parent of the 
uimenu object is specified.  The simplest way to create a uimenu object in the 
menu bar (sometimes called a menu title or a top level menu) is with 

 
handle = uimenu('Property1Name',Property1Value,... 
                'Property2Name',Property2Value,... 
                      . 
                      . 
                      . 
                'PropertyXName,PropertyXValue) 
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where you specify the attributes of the uimenu object with as many 
PropertyName/PropertyValue pairs as required to fully describe the object.  In 
this sample form there are X pairs.  The PropertyName can be any one of the 
properties listed under Section 10.3.2 and PropertyValue is any legitimate 
value that can be assigned to the property.  Even though there are a lot of 
different properties to choose from, menu titles are often created by specifying 
the Label and in some instances, the Tag, CallBack, and/or UserData 
properties.  For example, a menu title labeled “Help” could be created with 

 
h_uimenu_title1 = uimenu('label','Help'); 
   

This form of the uimenu command will create the uimenu object in the 
current figure.  If there is no current figure object available, a new figure will 
be created. 

You might also use the form 
 
h_uimenu_title1 = uimenu(figure_handle,... 
                   'Property1Name',Property1Value,... 
                   'Property2Name',Property2Value,... 
                      . 
                      . 
                      . 
                   'PropertyXName,PropertyXValue) 
 

which forces the top level uimenu object to be created in the figure with 
graphics handle figure_handle.  In both forms, it is at your discretion to decide 
whether or not the uimenu object’s graphics handle needs to be stored (in 
both forms shown, the control objects graphics handle would be stored in the 
variable h_uimenu_title1).   

10.4.2.2 Menu Items and Submenu Titles 

Menu items and submenu titles are created with a form of uimenu that is 
almost identical to the second form used to create top level menu titles.  The 
only difference is that a uimenu object’s handle must be supplied as the first 
argument to the uimenu command as shown with 

 
h_uimenu_item = uimenu(uimenu_handle,... 
                   'Property1Name',Property1Value,... 
                   'Property2Name',Property2Value,... 
                      . 
                      . 
                      . 
                   'PropertyXName,PropertyXValue) 
 

This new menu item will become visible (assuming its Visible property has 
not been set to “off”) whenever the user selects the uimenu with the graphics 
handle uimenu_handle.  The menu object whose handle is stored in 
h_uimenu_item will become a submenu title if another uimenu object uses 
h_uimenu_item as its parent. 
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10.4.2.3 Summary 

To summarize menu object creation, all you really need to remember is that 
when you create a menu object, you specify the parent with the first argument 
to the uimenu command.  A uimenu object’s parent can only be either a 
figure (in the case of a top level menu) or another uimenu object (in the case 
of a menu item).  A menu item becomes a submenu title whenever another 
uimenu object uses its graphics handle.  In addition, you should also 
remember that unless you want to redefine the Position properties, the order 
in which you create the menu objects is important.  The menu titles in the 
menu bar will be created from left to right, while menu items will be created 
from top to bottom.  The next example illustrates some of the code needed to 
create the structure of a small portion of a pull-down menu interface as shown 
in Figure 10.36.  

 
%Create a figure window and title it. 
h_fig = figure('MenuBar','none','Color','white',... 
    'Name','Uimenu Demo','NumberTitle','off'); 
 
% Create top level menus. 
h_menu_props = uimenu(h_fig,'label','Properties'); 
 
% Create menu items. 
h_menu_axes = uimenu(h_menu_props,'label','Axes'); 
h_menu_line = uimenu(h_menu_props,'label','Line'); 
h_menu_patch = uimenu(h_menu_props,'label','Patch'); 
h_menu_surface = uimenu(h_menu_props,'label','Surface'); 
h_menu_text = uimenu(h_menu_props,'label','Text'); 
 
% Create some submenu items to the line object. 
h_menu_line_col = uimenu(h_menu_line,'label','Colors'); 
h_menu_line_sty = uimenu(h_menu_line,'label','Styles'); 
h_menu_line_thk = uimenu(h_menu_line,'label','Width'); 
 
% Create submenu items to Styles. 
h_menu_line_solid = 
uimenu(h_menu_line_sty,'label','Solid'); 
h_menu_line_solid = 
uimenu(h_menu_line_sty,'label','Dashed'); 
h_menu_line_solid = uimenu(h_menu_line_sty,... 
  'label','Stars','separator','on'); 
h_menu_line_solid = uimenu(h_menu_line_sty,... 
  'label','Crosses');     
  . 

 
. 

 
. 
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This example was provided purely to show how the relationship (parent/child) 
between one menu item and the next is created.  There is no functionality to 
the interface at this point because the CallBack properties have not been 
specified. 

Designing and making intelligent use of all the uimenu object’s attributes 
can lead to the creation of an intuitive, easy to use, robust pull-down menu 
interface.  In particular, combinations of the Separator, Enable, and Checked 
properties can be used to guide the user to the choice he or she is most likely 
looking for.  Consider a situation in which you are designing an interface that 
allows the user to select graphics objects and then manipulate their attributes.  
You might have a menu, such as the one in the previous figure, called 
“Properties” and beneath it, the names of the various objects as submenu titles 
to those object’s attributes.  If the user selected a line object you could make 
the other object submenu titles dim (i.e., set Enable “off”). 

 

Perhaps in this same example, you have a menu called “Edit” that has Undo, 
Cut, Copy, Paste, and Clear as menu items.  You could segregate Undo from 
the rest with a separator.  Furthermore, if a graphics object was not selected, 
you might make the Cut, Copy, and Clear items dim as shown in Figure 10.37. 
 

 

Figure 10.36 A simple uimenu. 
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10.5 Low-Level MATLAB GUI Programming 
Techniques 

At this point you have seen the inner workings of and how to create GUI’s 
controls and pull-down menus.  However, even though your interface may 
look nice, it will not perform any actions.  Therefore, the next stage of GUI 
development involves coding the CallBack properties of the individual 
uicontrol and uimenu objects.  Whenever you activate a GUI object, that 
object invokes MATLAB code that we call the callback. The callback can be in 
the form of an eval compatible string, or can refer to a function name that is 
stored in the object’s Tag property. If the callback is a function, then it will 
have the following syntax: 

 
function varargout = 
objectTag_Callback(h,eventdata,handles,varargin) 

 
Where objectTag is the name stored in the object’s Tag property, h is the 
handle of the object that called the callback,  eventdata is a reserved argument 
not currently used, handles is a structure of all the objects in the GUI, and 
varargin is the variable-length list of arguments you want to pass to the 
callback function.  

For uicontrol, uimenu, and uicontextmenu objects, you can use the Callback 
property to define the function that is invoked when these objects are 
activated. This all sounds quite complicated at first blush, but is really quite 
straightforward once you see it in action. Let’s proceed with discussions and 
examples. 

10.5.1 Strings of MATLAB Statements and Expressions 

Before we look closely at the CallBack property, which we are primarily 
interested in when programming uicontrol and uimenu objects, there are other 
object properties such as the ButtonDownFcn, WindowButtonDownFcn,  
WindowButtonMotionFcn, WindowButtonUpFcn, and KeyPressFcn that can be 

 

Figure 10.37 Uimenu labels dimmed by setting Enable to off. 
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used to add features and capabilities to your interface.  All of these properties 
can be set to a string vector.  This string can, in turn, contain legal MATLAB 
expressions and statements that are interpreted and evaluated with MATLAB’s 
eval function when some type of user induced event occurs (e.g., the user 
selects an uicontrol or uimenu, the user moves the mouse pointer across a 
figure, the user clicks the button down on a line object, etc.). 

 The easiest way to create an eval compatible string is to first type the code 
you want evaluated as if you were creating a script. (Remember to put a 
semicolon (;) at the end of every statement!) Follow along with the discussion 
and code here as we take you through creating strings of code that will work 
with eval; we will put together a CallBack string that will create a figure, plot a 
simple line, and put a title over the plot. Use the Editor/Debugger to follow 
along with your own entry of the following code. 

 
figure; 
plot(1:10); 
title('A very complicated plot'); 
 

Next, add a quote at the beginning of every line and whenever there is a 
quote already in the code, add an extra one.  Now you should have something 
like 

 
'figure;' 
'plot(1:10);' 
'title(''A very complicated plot'');' 
 

Then, change this into a single string vector by adding an open square 
bracket at the beginning and a closed square bracket at the end, while tacking 
on an ellipse (...) to the end of all but the last line. 

 
['figure;'... 
'plot(1:10);'... 
'title(''A very complicated plot'');'] 
 

Finally, reformat the lines and specify the name of the variable that this 
string will be stored with 

 
callback_string = ['figure;'... 
            'plot(1:10);'... 
            'title(''A very complicated plot'');']; 
 

Now, we realize that this is a very simple example and that you could 
probably put this into a one-line string with no problems; however, if you 
follow this technique with even the most complicated code, you will be able 
to generate an evaluatable string!  As you become more familiar with this 
process, you will be able to create strings more efficiently and quickly.   

Cell arrays provide a useful ability to store your strings for generating your 
callbacks. The previous example could be accomplished in the following 
manner: 
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callback_string{1}='figure; plot(1:10);... 
                   title(''A very complicated plot'')' 
 

As you can see, using a cell array has a couple of advantages both having to 
do with creating lists of strings to be evaluated. One advantage is that you can 
choose a string by indexing the cell array and the other is that you can create 
lists without concern for matrix padding. 

10.5.2 Programming Approaches in MATLAB 

An important concept to understand is that the strings in the CallBack, 
ButtonDownFcn, WindowButtonDownFcn, WindowButtonMotionFcn, 
WindowButtonUpFcn, and KeyPressFcn properties are evaluated in the 
MATLAB’s command or “base workspace.”  The base workspace is the 
workspace that is used when you execute M-file scripts or when you type in 
commands at the command line (assuming command line control is not a 
result of a keyboard command from within a function or a debugging state).  A 
very simplified conceptual way of looking at workspaces is shown in Figure 
10.38.  When you execute a function, called “A” for example, from the base 
MATLAB workspace, a temporary workspace is created for function A.  This 
temporary workspace contains all the variables and information that are 
“local” to that function.  Function A can, in turn, sequentially (as defined by 
the code in function A’s M-file) call function B or any number of other 
functions, and so on.  Information can be passed between functions by means 
of input and output arguments specified in the function’s calling syntax.  After 
a function has been executed, its workspace is removed (i.e., all the local 
variables are cleared) so that the next time it is called, a fresh temporary 
workspace will once again be created. 

 

The importance of this with respect to GUIs is that if you create graphics 
objects during the execution of a function, all of the locally stored information, 
such as graphics handles, that might have been available in the function’s 
workspace, will be lost when the function has finished executing unless the 
information is either globally available (i.e., the variables are global variables), 
passed back and stored in the base workspace, or stored in a graphics object 
(i.e., a graphics object’s UserData property).  Since we have so many ways of 
storing and retrieving information, there are several approaches to 
programming a GUI. 
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Figure 10.38 The MATLAB Workspace 
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The three most common techniques will be discussed in the following 
sections.  With MATLAB’s flexibility,  you are certainly likely to think of some 
others as well.  However, we are quite certain that you will feel comfortable 
with one of the following techniques and will be designing robust, easy to use 
GUIs in no time. 

In order to make comparisons between the three techniques, we will design 
the GUI shown in Figure 10.39 with the different methods.  In this GUI we 
want to give the user the ability to specify the x data values and a function y(x) 
that will be plotted in the axes object above the GUI.  The user should also be 
able to turn the grid and box attributes of the axes on and off.  To inform the 
user as to what his actions have done and if there are any errors, a status 
message window is included at the bottom of the GUI. 

 

10.5.2.1 Creating All Graphics Elements in the Base Workspace 

The first approach we will present is perhaps the easiest way low-level way 
to build a GUI. In this approach we create all of the graphics objects in the 
base MATLAB workspace.  With this method you can store all of the graphics 
handles needed when the objects are created, and the code in the CallBack 
properties of the objects that will perform an action can refer to these handles 
when necessary.  Please be forewarned that there are several disadvantages 
with this structure, and they will be presented after the code that creates the 
GUI in Figure 10.39 is presented and discussed. 

 
% M-File: fun_plt1.m 
% All UIcontrol items are in normalized units so 
% that the user can resize the screen as desired. 
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Figure 10.39 The GUI we will build. 
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% Create the figure object and store its handle. 
h_fig = figure('MenuBar','none'); 
 
% Create the axes object in the upper half of the 
% figure. 
axes('position',[.07 .5 .86 .4],'box','on') 
 
% Create the two frames. The first lies below all  
% uiobjects 
% while the second is used to make a border for the  
% status/message window. 
h_frame_1 = uicontrol(h_fig,...  
  'Position',[ 0 0 1 0.4 ],...  
  'Style','frame',...  
  'Units','normalized');  
h_frame_2 = uicontrol(h_fig,...  
  'Position',[0.08 0.05 0.84 0.11 ],...  
  'Style','frame',...  
  'Units','normalized'); 
 
% Create the callback for check box labeled "Box". 
% This callback will determine the value of the 
% checkbox object, whose handle is stored in h_box, 
% and then set the current axes property accordingly. 
% Finally, it displays a message by setting the 
% string of the static text uicontrol whose handle 
% is stored in h_status (created later). 
box_clbk_str = ['boxstatus = get(h_box,''value'');'... 
                'if boxstatus == 0;'... 
                '  set(gca,''box'',''off'');'... 
                'else;'... 
                '  set(gca,''box'',''on'');'... 
                'end;'... 
                'boxstatus = get(gca,''box'');'... 
                'set(h_status,''string'',' ... 
                '[''The box property is '' 
boxstatus]);']; 
% Create the check box, setting its value to 1 
% since we initialized the axes figure this way. 
h_box = uicontrol(h_fig,...  
  'CallBack',box_clbk_str,...  
  'Position',[ 0.7 0.2 0.16 0.07 ],...  
  'String','Box',...  
  'Style','checkbox',...  
  'Units','normalized',...  
  'Value',[ 1 ]);  
 
% Create the callback for the check box labeled "Grid" 
% This callback will determine the value of the 
% checkbox object, whose handle is stored in h_grid, 
% and then use the grid function accordingly. 
% Finally it displays a message by setting the 
% string of the static text uicontrol whose handle 
% is stored in h_status (created later). 
grid_clbk_str = ['gridstatus = get(h_grid,''value'');'... 
                'if gridstatus == 0;'... 
                '  grid off;'... 
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                'else;'... 
                '  grid on;'... 
                'end;'... 
                'gridstatus = get(gca,''xgrid'');'... 
                'set(h_status,''string'',' ... 
                '[''The grid is '' gridstatus]);']; 
 
% Create the grid check box. 
h_grid = uicontrol(h_fig,...  
  'CallBack',grid_clbk_str,...  
  'Position',[ 0.7 0.3 0.16 0.07 ],...  
  'String','Grid',...  
  'Style','checkbox',...  
  'Units','normalized'); 
 
% Create the callback that will plot the function any 
% time the x data values or y function has been altered 
% by the user.  Some error checking is performed just 
% in case the user types in values or a function that 
% cannot be plotted. 
plot_clbk_str = [... 
 'err_ind = 0;'... 
 'eval([''x = '' get(h_xdata,''string'') '';''],'... 
 '      ''err_ind=1;'');'... 
 'if err_ind == 0;'... 
 ' eval([''y = '' get(h_ydata,''string'') '';''],'... 
 '      ''err_ind=2;'');'... 
 'end;'... 
 'if err_ind == 0;'... 
 '  plot(x,y);'... 
 '  boxstatus = get(h_box,''value'');'... 
 '  if boxstatus == 0;'... 
  '   set(gca,''box'',''off'');'... 
 '  else;'... 
 '   set(gca,''box'',''on'');'... 
 '  end;'... 
 '  gridstatus = get(h_grid,''value'');'... 
 '  if gridstatus == 0;'... 
 '   grid off;'... 
 '  else;'... 
 '   grid on;'... 
 '  end;'... 
 '  set(h_status,''string'',''Function Plotted'');'... 
 'elseif err_ind == 1;'... 
 '  set(h_status,''string'',... 
       ''Error defining x'');'... 
 'elseif err_ind == 2;'... 
 '  set(h_status,''string'',... 
       ''Error defining y(x)'');'... 
 'end']; 
% Create the edit boxes for the x and y data.  Both of 
% these edit boxes will use the previous callback. In 
% addition, initialize them with valid inputs. 
h_ydata = uicontrol(h_fig,...  
  'CallBack',plot_clbk_str,...  
  'Position',[ 0.25 0.2 0.39 0.07 ],...  
  'String','(x*.1).^2',...  
  'Style','edit',...  
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  'Units','normalized');  
h_xdata = uicontrol(h_fig,...  
  'CallBack',plot_clbk_str,...  
  'Position',[ 0.25 0.3 0.39 0.07 ],...  
  'String','-10:10',...  
  'Style','edit',...  
  'Units','normalized');  
 
% Create a static text object that will be used 
% to display messages to the user. 
h_status = uicontrol(h_fig,...  
  'CallBack','guiplot1(''h_uic_12'');',...  
  'Position',[ 0.1 0.07 0.8 0.07 ],...  
  'String','Status Window',...  
  'Style','text',...  
  'Units','normalized');  
 
% Create the "x = " and "y(x)=" static text objects. 
% We do not need to store their handles since these 
% objects are neither manipulated nor queried by other 
% object callbacks. 
uicontrol(h_fig,...  
  'Position',[ 0.08 0.3 0.15 0.07 ],...  
  'String','x =',...  
  'Style','text',...  
  'Units','normalized');  
uicontrol(h_fig,...  
  'Position',[ 0.08 0.2 0.15 0.07 ],...  
  'String','y(x) =',...  
  'Style','text',...  
  'Units','normalized');  
 
% Initialize the plot with the initial x and y data 
% by evaluating the callback string that would be 
% evaluated if the x or y data changes. 
 
eval(plot_clbk_str); 

 

This method has several drawbacks; the first and most important is that if 
the user clears the workspace with the command clear and then uses the GUI, 
the user will encounter error messages and find that the GUI no longer 
operates as expected.  This is because some of the CallBack properties refer to 
variables that will not exist after the clear command is issued. 

Another drawback is that it can be annoying and time consuming to 
generate the strings required in the callbacks, particularly if there are strings 
within strings that need to be manipulated.  These strings also become difficult 
to read and follow, even for the individual who originally created the callback 
strings.  

In addition, the strings make it difficult to modify and add additional 
functionality and features to the GUI.  The larger the string becomes, the more 
likely it becomes that a single quotation mark, ', is missing or that there are too 
many.  You might spend a lot of time trying to find the extraneous mark or the 
location that requires an additional one. 
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Finally, the execution speed of the callback may suffer as the string grows in 
length and complexity.  This is because every time the uicontrol or uimenu 
callback is evaluated, each statement or expression is re-interpreted.  If we 
could somehow put these MATLAB statements and expressions inside a 
function, the callback would execute considerably faster.  The reason for this is 
that functions only need to be interpreted and compiled the first time they are 
encountered by the MATLAB compiler. 

So, why don’t we just put the code callback statements into a function?  For 
example, let’s put the callback for the “Grid” checkbox into a function called 
setgrid.m as follows 

 
function setgrid(h_grid,h_status) 
gridstatus = get(h_grid,'value'); 
if gridstatus == 0 
  grid off; 
else 
  grid on 
end 
gridstatus = get(gca,'xgrid'); 
set(h_status,'string',['The grid is ' gridstatus]); 

and change the “Grid” check box’s CallBack property to  
 
'setgrid(h_grid,h_status)' 

 

If you have not issued a clear command and have not closed the GUI’s 
figure, you can do this at the command prompt by typing 

set(h_grid,'setgrid(h_grid,h_status)') 

This will work since the graphics handles of the “Grid” check box and the 
“Status/Message” static text objects are passed to the function.  However, the 
problem is that if you need to design callbacks that query or manipulate a lot 
of graphics objects during callback execution, you will have to pass a lot of 
arguments (i.e., the variables that store the graphics handles) to the functions.  
The next problem is that you may have many uicontrol or uimenu objects that 
all have callbacks!  You will need to consider whether or not you really want 
to have a lot of M-files cluttering up your directory or folder. 

 The next three sections are aimed at resolving these problems.  There are 
several key strategies and goals that you should keep in mind when you 
design your GUI. 

• For simplicity and compactness, create a stand-alone function that 
is designed to create the GUI and specify the callback actions.  

• For readability, design the function so that input arguments can 
be strings that describe the action that will occur.  This can make 
it easy for you or other programmers to edit the function and add 
to or modify the GUI’s appearance and features. 

• For speed, design the GUI so that the user does not become 
frustrated or inconvenienced with the response time associated 
with performing an action after the user has activated a callback.  

��
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With the ease of M-file cross-platform portability, you must realize 
that other systems or machines might not be as fast as yours and 
users may be impatient with the response time, and click multiple 
times on a GUI or click on several GUIs.  Try, when possible, to 
keep this behavior from leading to undesirable results (i.e., keep 
the number of interruptible callbacks to a minimum; see Section 
6.6.3 to learn more about interruptible GUIs). 

• For robustness, make the application’s GUI resistant to 
undesirable user actions.  It is very likely that the user will 
unintentionally perform actions that you did not specifically plan 
on occurring.  While it is impossible or at least very difficult to 
make a GUI that is completely foolproof, there are steps that you 
can take to help minimize the chance of a GUI crashing or not 
performing as expected.  For example, design the GUI so that it is 
able to withstand an accidental clear command.  If there should 
not be more than one instance of the GUI, design the creation 
portion so that it checks to see if the GUI already exists in a 
Figure Window.  In addition, use status bars wherever applicable.  
How much effort you put into making the GUI robust to these 
types of user actions depends primarily on your knowledge of the 
end users and the training they will receive. 

With these thoughts in mind, let’s look at the next GUI programming 
approach. 

10.5.2.2 Storing Handles as Global Variables 

In this approach we will put all of the previous example’s code into one 
function.  In addition, we will try to follow some of the strategies that were 
identified in the last section by making the graphics object handles that this 
function requires global variables.  Finally, we will partition the code based on 
the possible input arguments with which the function may be called.  This will 
make a big difference with respect to the ease at which the code can be read. 

When the user types either 
 
fun_plt2 

or 
 
fun_plt2('initialize') 

the GUI figure will be created.  In the initialization section of the code, a 
check is made to see if the GUI already exists.  If the GUI exists, the figure 
containing the GUI is brought to the front.  If it does not exist, the GUI is 
created.  The callbacks of the uicontrol objects call the fun_plt2 function with 
a 'Set Grid', 'Set Box', or 'Plot Function' string argument that specifies which 
section of the if...elseif...end should be executed.  This could also be achieved, 
and is simpler to make use of the switch...case construct.  The callbacks are 
easy to read and modify.  You may also notice that the 'Plot Function' section 
that is executed after the user alters either the x data or y(x) expression is 
much cleaner and simpler than in the code found in the previous section. 
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function fun_plt2(command_str) 
% FUN_PLT2 
% 
% This function demonstrates how global variables 
% can be used to create a GUI in a function. 
 
if nargin == 0 
  command_str = 'initialize'; 
end 
 
% DEFINE VARIABLES THAT WILL STORE THE HANDLES AS GLOBAL 
global h_box h_grid h_ydata h_xdata h_status 
 
% INITIALIZE THE GUI SECTION. 
if strcmp(command_str,'initialize') 
    % Make sure that the GUI has not been already 
    % initialized in another existing figure. 
    h_figs = get(0,'children'); 
    fig_exists = 0; 
    for fig = h_figs' 
      fig_exists = strcmp(get(fig,'name'),... 
                       'Function Plotter'); 
      if fig_exists 
         figure(fig);  % Bring figure to front of screen. 
         return;  % No need to reinitialize, exit 
function. 
      end 
    end 
 
    h_fig = figure('name','Function Plotter'); 
 
 axes('position',[.07 .5 .86 .4]) 
 
 % Create the two frames. 
 uicontrol(h_fig,...  
  'Position',[ 0 0 1 0.4 ],...  
  'Style','frame',...  
  'Units','normalized');  
 uicontrol(h_fig,...  
  'Position',[0.08 0.05 0.84 0.11 ],...  
  'Style','frame',...  
  'Units','normalized'); 
 
 % Create the "Box" check box. 
 h_box = uicontrol(h_fig,...  
  'CallBack','fun_plt2(''Set Box'');',...  
  'Position',[ 0.7 0.2 0.16 0.07 ],...  
  'String','Box',...  
  'Style','checkbox',...  
  'Units','normalized',...  
  'Value',[ 1 ]);  
 % Create the check box labeled "Grid". 
 h_grid = uicontrol(h_fig,...  
  'CallBack','fun_plt2(''Set Grid'');',...  
  'Position',[ 0.7 0.3 0.16 0.07 ],...  
  'String','Grid',...  
  'Style','checkbox',...  
  'Units','normalized'); 
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 % Create the edit boxes for the x data. 
 h_ydata = uicontrol(h_fig,...  
  'CallBack','fun_plt2(''Plot Function'');',...  
  'Position',[ 0.25 0.2 0.39 0.07 ],...  
  'String','(x*.1).^2',...  
  'Style','edit',...  
  'Units','normalized');  
 % Create the edit boxes for the y data. 
 h_xdata = uicontrol(h_fig,...  
  'CallBack','fun_plt2(''Plot Function'');',...  
  'Position',[ 0.25 0.3 0.39 0.07 ],...  
  'String','-10:10',...  
  'Style','edit',...  
  'Units','normalized');  
 
 % Create a static text object that will be used 
 % to display messages to the user. 
 h_status = uicontrol(h_fig,...  
  'Position',[ 0.1 0.07 0.8 0.07 ],...  
  'String','Status Window',...  
  'Style','text',...  
  'Units','normalized');  
 % Create the "x = " and "y(x)=" static text objects. 
 uicontrol(h_fig,...  
  'Position',[ 0.08 0.3 0.15 0.07 ],...  
  'String','x =',...  
  'Style','text',...  
  'Units','normalized');  
 uicontrol(h_fig,...  
  'Position',[ 0.08 0.2 0.15 0.07 ],...  
  'String','y(x) =',...  
  'Style','text',...  
  'Units','normalized');  
 
 % INITIALIZE the plot with the initial x and y data. 
 fun_plt2('Plot Function'); 
 
% CALLBACK FOR THE "Box" CHECK BOX. 
elseif strcmp(command_str,'Set Box') 
 boxstatus = get(h_box,'value'); 
 if boxstatus == 0; 
   set(gca,'box','off'); 
 else 
   set(gca,'box','on'); 
 end 
 set(h_status,'string',... 
     ['The box property is ' get(gca,'box')]); 
 
% CALLBACK FOR THE "Grid" CHECK BOX. 
elseif strcmp(command_str,'Set Grid') 
 gridstatus = get(h_grid,'value'); 
 if gridstatus == 0 
   grid off 
 else; 
   grid on 
 end 
 set(h_status,'string',... 
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     ['The grid is ' get(gca,'xgrid')]); 
 
% CALLBACK FOR THE X and Y(X) EDIT BOXES. 
elseif strcmp(command_str,'Plot Function') 
 err_ind = 0; 
 eval(['x = ' get(h_xdata,'string') ';'],'err_ind=1;'); 
 if err_ind == 0; 
  eval(['y = ' get(h_ydata,'string') ';'],'err_ind=2;'); 
 end 
 
 if err_ind == 0 
   plot(x,y); 
   fun_plt2('Set Box'); 
   fun_plt2('Set Grid'); 
   set(h_status,'string','Function Plotted'); 
 elseif err_ind == 1 
   set(h_status,'string','Error defining x'); 
 elseif err_ind == 2 
   set(h_status,'string','Error defining y(x)'); 
 end 
 
end % END command_str comparison checks. 

 
We have used the elseif programming construct for the callback sections in 
this example so that you can easily read the code regardless of your 
programming background. However, the switch…case construct is a more 
organized technique and once you are familiar with it is even more readable. 
Furthermore, it runs more efficiently. For example, we could have written the 
callback code for “Box” check box using switch…case,  
 

switch command_str 
% CALLBACK FOR THE "Box" CHECK BOX. 
case 'Set Box' 
    boxstatus = get(h_box,'value'); 
 if boxstatus == 0; 
   set(gca,'box','off'); 
 else 
   set(gca,'box','on'); 
 end 
 set(h_status,'string',... 
     ['The box property is ' get(gca,'box')]); 
   . 
   . 
   . 
   .    
case 'Set Grid' 
   . 
   .   

Whether you program this GUI using elseif  or switch…case  constructs, there 
are some fundamental problems with an approach that relies on global 
variables.  The first is that errors can still occur if the user issues either the  

 
clear all 

or  
clear global 
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commands.  The second problem is that the code which makes sure that only 
one instance of the GUI exists is absolutely necessary for functions that use 
global variables for storing graphics handles.  If this code was not in place and 
the user created two instances of the GUI by typing fun_plt2('initialize') a 
second time, then only the most recently created GUI’s setting will control the 
performance of the application.  This would occur because the values stored 
in the global variables that contain the graphics object’s handles would be 
updated with the most recently created object handles.  The older object 
handles would no longer be stored. 

10.5.2.3 Storing Handles in the UserData Properties 

So we have seen problems with both approaches presented so far (although 
the GUI does work). The approach presented in this section overcomes the 
two problems (i.e., user clears the global variables, or you want to have 
multiple instances of a GUI) that are associated with using global variables as a 
means of storing graphics handles.  However, everything has a price.  We will 
see that this technique adds a little more processing overhead.  The overhead 
is associated with the process of storing and retrieving the graphics handles.  
The relative price depends on how readable you want the M-file function to 
be. With the power of modern computers and the improved efficiency of the 
latest MATLAB version, you may very well prefer readability to eeking out the 
last drop of performance. 

A solution to the problems of the previous example is presented in the next 
listing of code and illustrates how the graphics handles can be stored in the 
figure object’s UserData property.  Since much of the code is identical to that 
shown in the previous section,  we have indicated where this occurs with a 
vertical ellipse (...) and suggest that you either look at the previous example’s 
code if you want to see these sections again or look at the file (fun_plt3.m) on 
the book’s web page. 

 
function fun_plt3(command_str) 
% FUN_PLT3 
% 
% This function demonstrates how graphics handles 
% can be stored in the figure’s UserData property. 
 
if nargin == 0 
  command_str = 'initialize'; 
end 
 
if ~strcmp(command_str,’initialize’) 
% RETRIEVE HANDLES AND REDEFINE THE HANDLE VARIABLES 
 handles = get(gcf,'userdata'); 
 h_box = handles(1); 
 h_grid = handles(2); 
 h_ydata = handles(3); 
 h_xdata = handles(4); 
 h_status= handles(5); 
end 
 
% INITIALIZE THE GUI SECTION. 
if strcmp(command_str,'initialize') 
   . 
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   . 
   . 
{CODE THAT CREATES THE GRAPHICS } 
{ OBJECTS HAS BEEN SNIPPED OUT  } 
{   SEE M-FILE OR EXAMPLE IN    } 
{       IN SECTION 10.6.2.2     } 
   . 
   . 
   . 
 
 % STORE THE HANDLES IN THE FIGURE'S USERDATA. 
 handles = [h_box h_grid h_ydata ... 
            h_xdata h_status]; 
 set(h_fig,'userdata',handles); 
 
 % Initialize the plot with the initial x and y data. 
 fun_plt3('Plot Function'); 
   . 
   . 
   . 
{CODE THAT DEFINES THE CALLBACKS } 
{    FOR THE OBJECTS HAS BEEN    } 
{   SNIPPED OUT, SEE M-FILE OR   } 
{   EXAMPLE IN SECTION 10.6.2.2   } 
   . 
   . 
   . 
end % END command_str comparison checks. 

 
This format provides you with the choice of allowing single or multiple 
instances of your GUI to be created.  For the GUI that we have created with 
this structure, you could comment out or delete the section of the code that 
checks to see if another instance already exists.  If multiple instances were 
allowed, each GUI instance would operate fine and without errors. 

There are some additional comments that need to be made about this 
coding approach. In the GUI we created for illustrative purposes, there are not 
a lot of uicontrol handles that need to be stored; with larger, more complex 
GUIs, there may be many uicontrol, uimenu, and other graphics handles that 
need to be stored.  Redefining all of the handle variables (i.e., h_box = 
handles(1), h_grid = handles(2), etc., which was done in the example above) 
every time the function is called as a result of a uicontrol callback may be 
inefficient.  The inefficiency grows when there are large numbers of graphics 
objects, since it is unlikely that all of the coded callbacks require all of the 
stored handles.  One solution to this problem is to redefine the handle 
variables that are used within the section of the code needed to execute the 
callback.  For instance, let’s say we removed the “RETRIEVE HANDLES AND 
REDEFINE THE HANDLE VARIABLES” section of the code.  Then we would 
need to code the “elseif strcmp(command_str,'Set Box')” section with 
something like 

 
% CALLBACK FOR THE "Box" CHECK BOX. 
elseif strcmp(command_str,'Set Box') 
 % REDEFINE NEEDED HANDLE VARIABLES. 
 handles = get(gcf,'userdata'); 
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 h_box = handles(1); 
 h_status = handles(5); 
 boxstatus = get(h_box,'value'); 
 if boxstatus == 0; 
   set(gca,'box','off'); 
 else 
   set(gca,'box','on'); 
 end 
 set(h_status,'string',... 
     ['The box property is ' get(gca,'box')]); 

 
Another solution might consist of retrieving the graphics handles and storing 
them in the handles variable as before, while forgetting about redefining the 
individual object handle variables (i.e., h_box, h_grid, etc.).  Then the code 
would need to make direct use of the handles variable.  For example, the 
“elseif strcmp(command_str,'Set Box')” section of the code would then look 
like 

 
% CALLBACK FOR THE "Box" CHECK BOX. 
elseif strcmp(command_str,'Set Box') 
 boxstatus = get(handles(1),'value'); 
 if boxstatus == 0; 
   set(gca,'box','off'); 
 else 
   set(gca,'box','on'); 
 end 
 set(handles(5),'string',... 
     ['The box property is ' get(gca,'box')]); 

 
With a lot of references to the handles variable, the code can become slightly 
unreadable.  In addition, any changes made to the appearance of the GUI, 
such as removing one or more of the graphics objects, might require you to go 
back and renumber a lot of indices.  This can make the job of GUI 
modification a painfully tedious experience. 

Unless you are noticing unbearable response times, it is recommended that 
you use the format in which you get the handles from the figure’s UserData 
and then redefine all of the handle variables at once in the beginning of the 
function.  The process of altering your GUI becomes a fairly simple process, 
and you still have MATLAB code that is easy to follow. 

The only other potential problem which you need to be aware of can occur 
if you are designing GUIs that have multiple Figure Windows.  If you need to 
provide the user with the ability to click on a uicontrol (or any other graphics 
object) in one Figure Window and have it call a function that was used to 
create a GUI in another window, you will need to throw in additional coding 
hooks.  Remember that the method presented in this section retrieved the 
graphics handles from the current figure (i.e., handles = get(gcf,'userdata')).  The 
process of clicking in a Figure Window makes that figure the current figure.  
Therefore, when the function that created the other GUI is called, the wrong 
handles will be retrieved.  It then becomes almost inevitable that you receive 
error messages, unless you have been careful enough to design for this with 
additional code or a form similar to that shown in the next section’s code.  
You get around this problem by providing the command gcbf (get handle to 
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current callback figure). This function gets the handle of the figure that 
contains the object whose callback is currently being executed.  

10.5.2.4 Utilizing Tags and the FINDOBJ Command 

In the sections of this book that discussed the creation of the various 
graphics objects, it was mentioned that every graphics object has a property 
called Tag.  This property can store a string vector, which means that you can 
assign a unique name to every single graphics object, if you so desire.  This 
property also  provides an alternative to the technique of storing the variables 
in the UserData property of the figure. 

To retrieve a handle to a particular object, we will use the findobj command 
(see Chapter 7).  The same arguments and discussions about the advantages 
and disadvantages of retrieving the object handles up front in a function 
instead of only when they are needed apply with this method, just as they did 
with the UserData technique.  The only thing that should be added to the 
discussion is that the findobj is a search routine and there may be a substantial 
amount of processing associated with it.  The amount of processing depends 
on the number of graphics objects and the syntactical form of findobj that is 
used.  However, it should also be pointed out that findobj is a built-in function 
that has been optimized to provide a rapid response. 

Once again we will revisit our famous function plotting GUI. Sections of the 
code that are unchanged will be snipped out of the provided code, but can be 
found in earlier examples or in the file fun_plt4.m found on the book’s web 
site. 

function fun_plt4(command_str) 
% FUN_PLT4 
% 
% This function demonstrates how graphics handles 
% can be retrieved with the findobj command. 
 
if nargin == 0 
  command_str = 'initialize'; 
end 
 
if ~strcmp(command_str,’initialize’) 
% RETRIEVE HANDLES AND REDEFINE THE HANDLE VARIABLES. 
 % Assume that the current figure contains the  
 % fun_plt4 GUI. 
 h_fig = gcf; 
 if ~strcmp(get(h_fig,'tag'),'fun_plt4_figure') 
    % If the current figure does not have the right 
    % tag, find the one that does. 
    h_figs = get(0,'children'); 
    h_fig = findobj(h_figs,'flat',... 
                     'tag','fun_plt4_figure'); 
    if length(h_fig) == 0 
  % If the fun_plt4 GUI does not exist 
  % initialize it. Then run the command string 
  % that was originally requested. 
  fun_plt4('initialize'); 
  fun_plt4(command_str); 
  return; 
    end 
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 end 
 
    % At this point we know that h_fig is the handle 
    % to the figure containing the GUI of interest to 
    % this function.  Therefore we can use this figure 
    % handle to cut down on the number of objects 
    % that need to be searched for tag names as follows: 
 h_box = findobj(h_fig(1),'tag','h_box'); 
 h_grid = findobj(h_fig(1),'tag','h_grid'); 
 h_ydata = findobj(h_fig(1),'tag','h_ydata'); 
 h_xdata = findobj(h_fig(1),'tag','h_xdata'); 
 h_status= findobj(h_fig(1),'tag','h_status'); 
 
 % We could have just as easily replaced the previous 
 % five lines with the technique that retrieves the 
 % handles from the figure userdata, assuming the 
 % handles are stored there. 
end 
 
% INITIALIZE THE GUI SECTION. 
if strcmp(command_str,'initialize') 
    % Make sure that the GUI has not been already 
    % initialized in another existing figure. 
    % NOTE THAT THIS GUI INSTANCE CHECK IS NOT REQUIRED, 
    % UNLESS YOU WANT TO INSURE THAT ONLY  
    % ONE INSTANCE OF THE GUI IS CREATED! 
    h_figs = get(0,'children'); 
    h_fig = findobj(h_figs,'flat',... 
    'tag','fun_plt4_figure'); 
 
 if length(h_fig) > 0 
  figure(h_fig(1)); 
  return 
 end 
 
    h_fig = figure('name','Function Plotter',... 
                   'tag','fun_plt4_figure'); 
   . 
   . 
   . 
{CODE THAT CREATES THE OBJECTS } 
{ HAS BEEN SNIPPED OUT. TAGS   } 
{ ARE ADDED TO THE REQUIRED    } 
{ GUI OBJECTS, SEE M-FILE OR   } 
{ EXAMPLE IN SECTION 10.6.2.2   } 
   . 
   . 
   . 
 % Initialize the plot with the initial x and y data. 
 fun_plt4('Plot Function'); 
   . 
   . 
   . 
{CODE THAT DEFINES THE CALLBACKS } 
{    FOR THE OBJECTS HAS BEEN    } 
{   SNIPPED OUT, SEE M-FILE OR   } 
{   EXAMPLE IN SECTION 10.6.2.2   } 
   . 
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   . 
   . 
end % END command_str comparison checks. 

 

The findobj technique of obtaining the graphics handles makes it easy to 
design robust GUI functions.  The code presented in this section showed how 
you can program the GUI creation function so that the figure containing the 
GUI and the handles of the graphics object does not necessarily need to be 
the current figure.  This allows you to have a complex GUI that is comprised of 
several Figure Windows and a situation in which an activated graphics object 
in one window calls the function that was used to create a different window.  
Another advantage of the technique that was illustrated in this section is that 
the UserData property of the figure does not need to be used to store graphics 
handles. 

Finally, to wrap up this section on GUI programming approaches, you 
should consider combining features from all of the previous techniques.  Each 
one has its merits, and if you can exploit the advantages of the individual 
techniques, you may find that your GUI programming style will satisfy all your 
requirements in addition to meeting the typical goals of  

• simplicity 

• compactness 

• readability 

• speed 

• robustness 
 
as previously mentioned.  
 

10.6 High-Level GUI Development – GUIDE 
Now that we have given you a sound foundation in graphics objects and 

their properties and looked at low-level GUI development, we now shall look 
at MATLAB’s Graphical User Interface Development Environment (GUIDE). 
The low-level development approach consists of more  “hand-programming” 
to create our GUIs, whereas GUIDE is more point and click. Which approach 
is best is a decision left to you as the programmer. Each method has its 
advantages.  

Since this section deals with GUIDE, we shall restrict our discussion to it, at 
least where it makes sense to do so. GUIDE takes much of the tedium out of 
GUI development so results can be achieved quickly. However, you do lose a 
little visibility of the low-level creation of the graphics objects. Also, instead of 
an M-FIle (or collection of M-Files) there is also a FIG-File. We will discuss the 
roles of both with respect to using GUIDE in this chapter. Once you have 
explored this section on GUIDE we will again return to the low-level approach 
so that we can best explain some specific GUI desires. 
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GUIDE is itself a suite of tools that let you lay out your GUI by clicking and 
dropping objects, then dragging and resizing them in the manner in which you 
want them to appear. GUIDE includes a Property Inspector, that allows you to 
see and edit most of the properties belonging to an object. You can then 
invoke the GUI from GUIDE to test it. We will discuss these in the following 
subsections, and reproduce our example GUI from the previous section (for 
the last time) with GUIDE.  

10.6.1 The Layout Editor 

You start GUIDE by simply typing guide at the command prompt. You can 
also start it by selecting GUIDE from the Launch Pad. EIther way, when you 
start GUIDE, you will see a window like that shown in Figure 10.40. 

 

The Layout Editor is where you will begin your GUI. It is comprised of a 
component palette on the left, various toolbar selections across the top, and a 
large gridded area where you will lay out your GUI objects. You can go 
directly from your paper prototype to the Layout Editor, selecting the different 
uicontrol and uimenu objects from the component palette and placing them in 
the layout area. Simply select the object you want and drag it with the mouse 
to the location of your choice in the layout area. You can then use the mouse 
to move and resize the object. You can also use the toolbar to access various 
tools in the GUIDE toolset, such as alignment, menu editor, and object 
browser tools.  

We know you are anxious to try GUIDE, so let’s get started building the 
GUI we introduced in the previous section. You should be aware that at this 
point you will actually be creating a FIG-File. This is where all your user 

 

Figure 10.40 The GUIDE Layout Editor. 
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interface components, i.e., objects, will reside. Notice that at no time will you 
be specifying the Position property for your objects as you did with the low-
level approach. At this point, if you haven’t started GUIDE, do so now by 
typing  

 
guide 

 
at the command prompt, or by selecting GUIDE from the launch pad. You 
might find it convenient to look at  Figure 10.39 and use it as your paper 
layout. 

Once you have GUIDE running, all you need to do is to click on the object 
you want to create and drag it into the layout area. (If you aren’t sure what an 
object is by its icon in the component palette, if you let the mouse pointer 
dwell a moment on the icon, an information box will tell you.) Do that now for 
each of the objects in the GUI. You should have an axis object, a static text 
objects for “x=”, “y(x)=”, and the status message area, and two editable text 
areas, one for the value of x and the other for the function y(x). You also need 
two check box objects, one for “Grid” and one for “Box”. Don’t worry about 
the labels on any of the objects just yet. Also, don’t save or activate the figure 
at this point. When you do save or activate the figure, the second thing GUIDE 
will do is create an M-File to functionalize all your callbacks. There’s a few 
things you need to know before we are ready to let GUIDE do its magic. 

10.6.2 The Property Inspector 

If you select View  →→→→ Property Inspector from the GUIDE toolbar, or if you 
double-click (on Windows computers) on one of the objects in your layout, 
the Property Inspector will be invoked. (You can also right-click on an object, 
which will bring up a selection menu from which you can select the Property 
Inspector.) It will look like that shown in Figure 10.41. 
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Figure 10.41 The Property Inspector lets you view and edit 
properties for an object. 
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The Property Inspector will show the properties for the object, and will 
change as you click on different objects. You should be quite familiar with 
these properties by now. You can also edit the property values as needed. 
Perhaps the most important user interface object property from the standpoint 
of GUIDE is its Tag property. When you first placed an object in the layout, its 
Callback property was set to the string “automatic”. What will happen when 
you save or activate the figure is that GUIDE will convert this string into a 
callback subfunction name and save it in an M-File of the same name as the 
Figure. However, if you set the Tag property before you save or activate to a 
meaningful name, e.g., “status_window”, GUIDE will use that string instead as 
the subfunction name potentially resulting in much more readable code in the 
M-File. 

At this point, look at each of your objects with the Property Inspector, and 
set their Tag properties to a meaningful name. If you want to use the names 
we used they are, “x_value”, “y_fun”, “grid_check”, and “box_check”. At this 
point you can also set any of the Value properties that you wish. For instance, 
you might want to set the Value property of y_fun to the string ‘(x*.1).^2’ 
which will then be the default function when the GUI first starts.  

10.6.3 The Object Browser 

The Object Browser is a tool that shows a diagram of your objects in your 
GUI, like that shown in Figure 10.42. 

 

Clicking on any of the objects in the Object Browser will open the Property 
Editor to that object’s properties. 

 

 

 

Figure 10.42 The Object Browser shows a map of your objects. 
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10.6.4 The Menu Editor 

The Menu Editor is available by selecting Tools →→→→ Menu Editor from the 
toolbar. From here you can specify what you want to appear on your GUI’s 
menu bar, and also specify any uicontextmenu values. 

10.6.5 Saving the GUI 

Once you have all your objects positioned and sized in the layout area, 
specified names for the Tag property of them, and set any Label or other 
properties you want, you are ready to let GUIDE create the M-File where we 
will next spend some time. You have two options at this point; one, you can 
simply select File →→→→ Save As… from the menu bar and give your GUI a name, 
or you can select Tools →→→→ Activate Figure in which case GUIDE will prompt 
you for a name. When you do this, GUIDE will save your GUI to a file with the 
name you gave it with the extension .fig, and also create an M-File of the same 
name. In this example we named our GUI fun_pltg, so GUIDE created 
fun_pltg.fig and fun_pltg.m in our current directory. We will now discuss what 
GUIDE creates in these two files. 

10.6.5.1 The GUIDE Created FIG-File 

When GUIDE created the FIG-File from your layout, it created a binary file 
that contains a serialized figure object, i.e., a complete description of the 
figure object and all of its children.  MATLAB uses this FIG-File to reconstruct 
the figure and all of its children when you open the file. All of the objects’ 
property values are set to the values they had when the figure was created. 
When you run your GUIDE created GUI, the FIG-File is used in conjunction 
with the M-File of the same name which has the callback functions. The M-File 
created by GUIDE will use the function openfig to display the GUI. 

Figure 10.43 shows our sample GUI in the GUIDE Layout Editor. Next, we 
will examine the M-File. 
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10.6.5.2 The GUIDE Created M-File 

The default method GUIDE uses to create your GUI automatically creates 
the FIG-File and M-File. You do have the option to change this to create only 
the FIG-File, to allow only one instance of the GUI to run, etc. In the default 
mode, GUIDE will create an M-File with callback function prototypes. Aside 
from other overhead items needed to run the GUI, these callback functions 
will be the heart of your GUI. Since you have already saved your GUI, look at 
the M-File now in the Editor. Hopefully you used the Tag property to give 
meaningful names to your objects so the callback functions should be easy to 
spot. They should have the form 

 
function varargout = objectTag_Callback(h, eventdata, 
handles, varargin) 

 
where objectTag is the string you specified in the object’s Tag property. The 
other variables are used in processing the callback and are given in the 
following table. 
 

 Argument  Purpose 

h the handle of the object whose callback is executing 

eventdata this argument is not presently used 

handles the structure containing the handles of all objects in the GUI 
whose names are specified by the objects’ Tag property 

varargin a list of arguments that you can pass 

 
Following is the M-File generated by GUIDE for our simple GUI. All that you 
see here, until the callback subfunctions which start with a comment that has a  

 

Figure 10.43 Our GUI in the Layout Editor. 
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%--> 

at the start, was generated by GUIDE. Yours should look very similar. 
 
function varargout = fun_pltg(varargin) 
% FUN_PLTG Application M-file for fun_pltg.fig 
%    FIG = FUN_PLTG launch fun_pltg GUI. 
%    FUN_PLTG('callback_name', ...) invoke the named callback. 
 
% Last Modified by GUIDE v2.0 07-Aug-2002 11:14:24 
 
if nargin == 0  % LAUNCH GUI 
 
 fig = openfig(mfilename,'reuse'); 
 
 % Use system color scheme for figure: 
 set(fig,'Color',get(0,'defaultUicontrolBackgroundColor')); 
 
 % Generate a structure of handles to pass to callbacks, and 
store it.  
 handles = guihandles(fig); 
 guidata(fig, handles); 
 
 if nargout > 0 
  varargout{1} = fig; 
 end 
 
elseif ischar(varargin{1}) % INVOKE NAMED SUBFUNCTION OR CALLBACK 
 
 try 
  if (nargout) 
   [varargout{1:nargout}] = feval(varargin{:}); % 
FEVAL switchyard 
  else 
   feval(varargin{:}); % FEVAL switchyard 
  end 
 catch 
  disp(lasterr); 
 end 
 
end 
 
 
%| ABOUT CALLBACKS: 
%| GUIDE automatically appends subfunction prototypes to this 
file, and  
%| sets objects' callback properties to call them through the 
FEVAL  
%| switchyard above. This comment describes that mechanism. 
%| 
%| Each callback subfunction declaration has the following form: 
%| <SUBFUNCTION_NAME>(H, EVENTDATA, HANDLES, VARARGIN) 
%| 
%| The subfunction name is composed using the object's Tag and 
the  
%| callback type separated by '_', e.g. 'slider2_Callback', 
%| 'figure1_CloseRequestFcn', 'axis1_ButtondownFcn'. 
%| 
%| H is the callback object's handle (obtained using GCBO). 
%| 
%| EVENTDATA is empty, but reserved for future use. 
%| 
%| HANDLES is a structure containing handles of components in GUI 
using 
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%| tags as fieldnames, e.g. handles.figure1, handles.slider2. 
This 
%| structure is created at GUI startup using GUIHANDLES and 
stored in 
%| the figure's application data using GUIDATA. A copy of the 
structure 
%| is passed to each callback.  You can store additional 
information in 
%| this structure at GUI startup, and you can change the 
structure 
%| during callbacks.  Call guidata(h, handles) after changing 
your 
%| copy to replace the stored original so that subsequent 
callbacks see 
%| the updates. Type "help guihandles" and "help guidata" for 
more 
%| information. 
%| 
%| VARARGIN contains any extra arguments you have passed to the 
%| callback. Specify the extra arguments by editing the callback 
%| property in the inspector. By default, GUIDE sets the property 
to: 
%| <MFILENAME>('<SUBFUNCTION_NAME>', gcbo, [], guidata(gcbo)) 
%| Add any extra arguments after the last argument, before the 
final 
%| closing parenthesis. 
 
 
%--> The following were stubbed by GUIDE, then filled 
%out to implement our GUI. 
% ---------------------------------------------------------------
----- 
function varargout = x_value_Callback(x_value, eventdata, 
handles, varargin) 
fun_pltg('y_fun_Callback',handles.y_fun, eventdata, handles, 
varargin); 

 
 
 
% ---------------------------------------------------------------
----- 
function varargout = y_fun_Callback(y_fun, eventdata, handles, 
varargin) 
 
err_ind = 0; 
 eval(['x = ' get(handles.x_value,'string') ';'],'err_ind=1;'); 
 if err_ind == 0; 
  eval(['y = ' get(y_fun,'string') ';'],'err_ind=2;'); 
 end 
    if err_ind == 0 
   plot(x,y); 
   set(handles.box_check,'Value',1); 
      fun_pltg('box_check_Callback',handles.box_check, eventdata, 
handles, varargin); 
      set(handles.grid_check,'Value',1); 
      fun_pltg('grid_check_Callback',handles.grid_check, 
eventdata, handles, varargin); 
       
   set(handles.status,'string','Function Plotted'); 
 elseif err_ind == 1 
   set(handles.status,'string','Error defining x'); 
 elseif err_ind == 2 
   set(handles.status,'string','Error defining y(x)'); 
 end 
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% ---------------------------------------------------------------
----- 
function varargout = grid_check_Callback(grid_check, eventdata, 
handles, varargin) 
 
gridstatus = get(grid_check,'value'); 
 if gridstatus == 0 
   grid off 
 else; 
   grid on 
 end 
 set(handles.status,'string',... 
     ['The grid is ' get(gca,'xgrid')]); 
 
 
% ---------------------------------------------------------------
----- 
function varargout = box_check_Callback(box_check, eventdata, 
handles, varargin) 
 
 boxstatus = get(box_check,'value'); 
 if boxstatus == 0; 
   set(gca,'box','off'); 
 else 
   set(gca,'box','on'); 
 end 
 set(handles.status,'string',... 
     ['The box property is ' get(gca,'box')]); 
 

10.6.6 Executing a GUI 

Once you have saved your GUI, typing its name at the command prompt 
will invoke it by starting the M-File. The line 

 
fig = openfig(mfilename,'reuse'); 
 

in the GUIDE generated M-File opens the FIG-File by using openfig with the 
command mfilename. The command mfilename will return the name of the 
most recently run M-File, or when called from within an M-File as it is here, it 
returns the name of that M-File, and so determines its own name. The option 
“reuse” opens the FIG-File named, but only if a copy is not currently open; if it 
is already opened it will ensure that the existing copy is still completely on 
screen and visible, raising it above all other windows. 

The next code segment 
 
handles = guihandles(fig); 
guidata(fig, handles); 
 

retrieves all the handles in the figure. This is very important to understand 
because you will need to able to access these handles in order to make your 
uicontrols do what you want. In our example, we named the check box for 
turning the axis box on or off “box_check”. The handle for that uicontrol 
object is accessed by 

 
handles.box_check 
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Later in the code, in our y_fun_Callback, we access this uicontrol and affect it 
with 

set(handles.box_check,'Value',1); 
fun_pltg('box_check_Callback',handles.box_check, 
eventdata, handles, varargin); 

 
Notice that we are calling our GUI within this subfunction after we have set 
box_check’s Value to one; this will cause the box_check_Callback subfunction 
to turn on the box around the axis. 

Take some time playing with this example and notice how the callback 
process is working. Later we will discuss the event queue and learn more 
about how MATLAB determines what to do when in a GUI. 

10.6.7 Editing a Previously Created GUI 

When using GUIDE, it is good practice to select tag and filenames before 
activating or saving your GUI. Undoubtedly, there will be times when you will 
want to change or add to what you have done, in which case you will need to 
edit your previously created GUI. Let’s say that you want to add two buttons 
to the GUI you just made, one to force plotting the function, and another to 
exit the GUI. You can do this readily by simply by opening the existing GUI in 
GUIDE and then dropping the desired buttons in the layout area, as shown in 
Figure 10.44. 

 

 

� � � � � � � � � � � 	 
  

Figure 10.44 Editing an existing GUI in GUIDE. 
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Remember that GUIDE will automatically assign a string to any uicontrol 
Tag properties if you do not specify it, and it will use that string to construct 
the name of the callback functions it generates.  

Additionally, when the GUI is run, a field will be added to the handles 
structure with the new name, but GUIDE can not generate a new subfunction 
if you change the value of a Tag property after you have saved or activated a 
GUI.  

The best approach to avoiding problems related to Tag property settings, is 
to set Tag whenever you add new uicontrols to your GUI. 

If you put buttons like that shown in Figure 10.44 in your GUI via the layout 
editor, then save, GUIDE will add callback subfunctions something like, 

 
% -------------------------------------------------------
function varargout = Exit_Button_Callback(h, eventdata, 
handles, varargin) 
 
% ------------------------------------------------------- 

 
function varargout = Plot_Now_Button_Callback(h, 
eventdata, handles, varargin) 

Here is the code we added to finish the Exit and Plot Now buttons: 

 
% ------------------------------------------------------- 
function varargout = Exit_Button_Callback(h, eventdata, 
handles, varargin) 
 
exit_button=questdlg('Exit Now?','Exit 
Program','Yes','No','No'); 
switch exit_button 
case 'Yes' 
    delete(handles.figure1) 
case 'No' 
    return 
end 
 
% ------------------------------------------------------- 
function varargout = Plot_Now_Button_Callback(h, 
eventdata, handles, varargin) 
 
fun_pltg('y_fun_Callback',handles.y_fun, eventdata, 
handles, varargin); 

 
 

10.7 Common Programming Desires with UI Objects 
We strongly feel that the best way to learn something new is to experience 

it yourself.  Therefore, six examples are included in this section.  These 
examples illustrate the implementation of several typical desired GUI features 
using the common coding techniques previously discussed.  In some cases, 
only the portions of the coded function that contain the important and key 
features that are relevant towards achieving the GUI’s goal are presented.  

�
� � � � � � � �  
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When sections of a function have been removed, you will see a vertically 
drawn ellipse (...).  For a complete listing, you can visit this book’s web site.  
For the most part, we have used the “Store the graphics handles in UserData” 
technique so that users of older versions of MATLAB can run the routines.  If 
you are running one of the more modern versions of MATLAB in which 
graphics objects contain the Tag property and the findobj command is 
available, you may want to rewrite some of the code to practice the other 
techniques. 

10.7.1 Creating Exclusive Radio Buttons 

Radio button uicontrol objects are usually used in a fashion that allows a 
user to select from only one of the choices that a group of radio buttons offers 
at a time.  Typically, a radio button group is visually separated with a frame 
object that encompasses the group.  You might be wondering, 

“How can I make a set of radio buttons mutually exclusive?” 

  This is the usual question that comes up after the radio buttons have been 
positioned in the GUI.  In order to make a radio button group behave in a 
mutually exclusive fashion, you need to provide the MATLAB code that 
accomplishes this functionality.  Each radio button’s CallBack property has to 
be programmed as shown below (shown from parts of the gui_wave.m M-file). 

  
function gui_wave(command_str,Argument2) 
% GUI_WAVE 
% examples/chap6/gui_wave.m 
% 
% Example of mutually exclusive radio button coding. 
   . 
  . 
  . 
if ~strcmp(command_str,'initialize') 
 handles = get(gcf,'userdata'); 
 h_radio = handles(1:3); 
end 
 
if strcmp(command_str,'initialize') 
   . 
  . 
  . 
 % Create set of three Radio buttons. 
 h_radio(1) = uicontrol(h_fig,'style','radio',... 
                'callback',guiwave(''Waveform 
Change'',1),... 
                'string','Square Wave',... 
                'position',[10 55 100 20],... 
                'value',1); 
 h_radio(2) = uicontrol(h_fig,'style','radio',... 
                'callback',guiwave(''Waveform 
Change'',2),... 
                'string','Saw Tooth Wave',... 
                'position',[10 30 100 20]); 
 h_radio(3) = uicontrol(h_fig,'style','radio',... 
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                'callback',guiwave(''Waveform 
Change'',3),... 
                'string','Sinusoidal Wave',... 
                'position',[10 5 100 20]); 
 handles = [h_radio]; 
 set(h_fig,'userdata',handles); 
   . 
   . 
   . 
elseif strcmp(command_str,'Waveform Change') 
 num_buttons = length(h_radio); 
 button = Argument2; 
 if get(h_radio(button),'value') == 1 
   set(h_radio([1:(button-
1),(button+1):num_buttons]),... 
       'value',0); 
 else 
   set(h_radio(button),'value',1); 
 end 
 
end % END command_str comparison check. 

Running gui_wave will produce the window shown in Figure 10.45. 

 

 

The CallBack property of each radio button calls the gui_wave function with 
two arguments.  The first argument forces MATLAB to run the “Waveform 
Change” section.  The second argument identifies which button has been 
activated (clicked on by the user).  If the activated button’s Value property is 
equal to one, the code will set the Value property of the other radio buttons to 
zero (the off state).  The reason behind this is that the Value property is 
automatically toggled before the CallBack is executed when a user clicks on a 
radio button.  In other words, recognize that in order for the activated button’s 
Value property to equal one, its Value had to be zero before being clicked on, 
since the process of activation toggles the Value property in radio buttons.  In 
addition, this also means that one of the other radio button’s Value property 
equaled one and hence all of the other radio buttons’ values are set to zero.  
Furthermore, if instead the activated button’s Value property is zero (for this to 

 

Figure 10.45 Exclusive radio buttons created with gui_wave. 
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happen, the user had to select the button when it was already in its on state), 
all we need to do is set the Value back to one so that the button remains in its 
on state. 

The exact same structure could be used to create mutually exclusive 
checked uimenu objects.  You could create the functionality for uimenus using 
virtually the same code. All you need to do is change the uicontrol objects 
(h_radio) to uimenu (h_menu) objects.  Then instead of setting the Value 
property, set the Checked property of the uimenus in the same fashion. 

10.7.2 Linking Sliders and Editable Text Objects 

“How do I get the value of a slider bar to show up in a text item after the user 
clicks on the slider bar?”   
 
In this section we will look at a simple example that links together an editable 
text and slider uicontrol object.  When the user slides the slider bar indicator, 
the editable text will be updated with the new value of the slider.  The user 
can also type a value in the editable text uicontrol to specify a new value of 
the slider bar.  The indicator bar will move to the value in the editable text 
after the user presses the return key or clicks the mouse button in another 
window or somewhere else within the same Figure Window. Figure 10.46 
shows the GUI we will create. 
 

 
 
function gui_sldr(command_str) 
% GUI_SLDR 
% examples/chap10/gui_sldr.m 
% 
% Example of creating slider GUIs. 
 
if nargin < 1 
 command_str = 'initialize'; 
end 
 
if ~strcmp(command_str,'initialize') 
 handles = get(gcf,'userdata'); 
 h_sldr = handles(1); 
 h_val = handles(2); 
end 
if strcmp(command_str,'initialize') 
 
 h_fig = figure('position',[100 200 200 75],... 

��
� 	 
  

  

Figure 10.46 Linking text and slider controls. 
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  'resize','off',... 
  'numbertitle','off',... 
  'name','Slider GUI',... 
        'MenuBar','none'); 
   
 h_frame = uicontrol(h_fig,... 
  'style','frame',... 
  'position',[0 0 200 75]); 
   
 h_sldr = uicontrol(h_fig,... 
  'callback','gui_sldr(''Slider Moved'');',... 
  'style','slider',... 
  'min',-15,'max',15,... 
  'position',[25 20 150 20]); 
 
 h_min = uicontrol(h_fig,... 
  'style','text',... 
  'string',num2str(get(h_sldr,'min')),... 
  'position',[25 45 25 20]); 
  
 h_max = uicontrol(h_fig,... 
  'style','text',... 
  'string',num2str(get(h_sldr,'max')),... 
  'position',[150 45 25 20]); 
  
 h_val = uicontrol(h_fig,... 
  'callback','gui_sldr(''Change Value'');',... 
  'style','edit',... 
  'string',num2str(get(h_sldr,'value')),... 
  'position',[80 45 40 20]); 
 
 handles = [h_sldr h_val]; 
 set(h_fig,'userdata',handles); 
elseif strcmp(command_str,'Change Value') 
 user_value = str2num(get(h_val,'string')); 
 if ~length(user_value) 
  user_value = (get(h_sldr,'max')+get(h_sldr,'min'))/2; 
 end 
 user_value = min([user_value get(h_sldr,'max')]); 
 user_value = max([user_value get(h_sldr,'min')]); 
 set(h_sldr,'value',user_value); 
 set(h_val,'string',num2str(get(h_sldr,'value'))); 
 
elseif strcmp(command_str,'Slider Moved') 
 set(h_val,'string',num2str(get(h_sldr,'value'))); 
 
end 

 
We recommend that you practice your GUI programming skills by attempting 
to alter this code so that the slider’s minimum and maximum values can also 
be changed with editable text uicontrol objects.  To get started, change the 
h_min and h_max uicontrols to editable text objects, and store their handles in 
the figure’s UserData with the other handles.  Then create two more callbacks 
that make the controls operate correctly. 
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10.7.3 Editable Text and Pop-Up Menu 

In some instances you may want to allow the user to add items to a pop-up 
menu if the option is not already available in the pop-up menu list.  This can 
be done with an editable text and pop-up menu uicontrol object.  In this 
example, we will allow the user to change the FontSize property of a text 
object by selecting a size from a pop-up-menu.  If the size the user wants does 
not exist, he or she can type it into the editable text object, at which point it 
will be added to the list of pop-up menu choices.   Depending on the size of 
the symbol used in the pop-up menu on your platform, you may need to alter 
the position property so that only the symbol appears when the user does not 
select the pop-up menu. 

 
function gui_size(command_str) 
% GUI_SIZE 
% examples/chap10/gui_size.m 
% 
% Example of user on-the-fly defined pop-up-menu. 
if nargin < 1 
 command_str = 'initialize'; 
end 
 
if ~strcmp(command_str,'initialize') 
 handles = get(gcf,'userdata'); 
 h_text = handles(1); 
 h_editsize = handles(2); 
 h_popsize = handles(3); 
end 
 
if strcmp(command_str,'initialize') 
    h_fig = figure('position',[200 200 200 100],... 
   'resize','off',... 
   'name','String Sizer',... 
   'numbertitle','off',... 

 

Figure 10.47 Entering a new number will add it to the pop-up. 
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             'MenuBar','none'); 
  
  h_ax = axes('position',[0 .5 1 .5],... 
 'visible','off',... 
 'xlim',[0 1],'ylim',[0 1]); 
     
  h_text = text(.5,.5,0,'String',... 
 'FontSize',10,... 
 'HorizontalAlignment','center',... 
 'VerticalAlignment','middle'); 
 
  h_editsize = uicontrol(h_fig,... 
 'callback','gui_size(''Sized by Edit'');',... 
 'style','edit',... 
 'position',[70 15 30 20],... 
 'string','10'); 
   
  h_popsize = uicontrol(h_fig,... 
 'callback','gui_size(''Sized by Popup'');',... 
 'style','pop',... 
 'position',[110 15 30 20],... 
 'string',' 5|10|15|20',... 
 'value',2); 
  
  handles = [h_text h_editsize h_popsize]; 
  set(h_fig,'userdata',handles); 
 
elseif strcmp(command_str,'Sized by Popup') 
  option_sizes = get(h_popsize,'string'); 
  choice = get(h_popsize,'value'); 
  set(h_editsize,'string',option_sizes(choice,:)); 
  set(h_text,'fontsize',str2num(option_sizes(choice,:))); 
 
elseif strcmp(command_str,'Sized by Edit') 
  option_sizes = str2num(get(h_popsize,'string')); 
  size_choice = floor(str2num(get(h_editsize,'string'))); 
 
  % MAKE SURE THE USER'S INPUT IS A LEGAL FONT SIZE. 
  if size_choice > 0 
 if any(option_sizes == size_choice) 
 % IF THE USER'S CHOICE EXISTS IN THE LIST, USE IT. 
   choice = find(option_sizes == size_choice); 
   set(h_popsize,'value',choice); 
   
set(h_editsize,'string',num2str(option_sizes(choice))); 
   set(h_text,'fontsize',option_sizes(choice)); 
 else 
 % OTHERWISE CREATE A NEW OPTION IN THE MENU LIST, 
 % PUTTING IT IN THE RIGHT SORTED POSITION. 
   option_sizes = [option_sizes; floor(size_choice)]; 
   [new_opt_sizes,ind] = sort(option_sizes); 
   choice = find(ind == length(new_opt_sizes)); 
 
   new_pop_str = sprintf('%3d',new_opt_sizes); 
   new_pop_str = reshape(new_pop_str,... 
        3,length(new_opt_sizes))'; 
   
   set(h_popsize,'string',new_pop_str); 
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   set(h_popsize,'value',choice); 
   set(h_editsize,... 
  'string',num2str(new_opt_sizes(choice))); 
   set(h_text,'fontsize',new_opt_sizes(choice)); 
    end 
  else 
 choice = get(h_popsize,'value'); 
 set(h_editsize,'string',num2str(option_sizes(choice))); 
  end 
 
end % END command_str comparison checks. 

10.7.4 Windowed Frame and Interruptions 

Previously, we learned that axes objects and axes children cannot be placed 
on top of uicontrol objects.  For instance, if you create a frame that covers the 
entire Figure Window and then create a plot, you will not be able to see the 
plot.  Therefore, it would be nice to create a window in a frame object 
through which the plot could be seen.  Unfortunately, there is no way to cut a 
hole in a frame object.  The solution is to create four static text objects that are 
positioned to cover the regions around the desired location of the window.  
The only purpose such a “simulated windowed frame” serves is purely for 
aesthetic reasons, which can be important in certain situations.  In the next 
example we will create the GUI shown in Figure 10.48. 

 

 

In addition to creating the windowed frame, this example will also show 
how you can interrupt an object’s CallBack.  This question comes up a great 
deal, and quite often there is an alternative means of getting the task 
accomplished without resorting to interrupting a CallBack.  However, in some 
cases allowing interrupts is the easiest solution.  In this example, the user will 

 

Figure 10.48 Creating a user interruptible animation GUI. 
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be able to rotate the cube by clicking the “Rotate” push button.  The user can 
also change the direction in which the cube rotates and the axis around which 
it rotates either before or while the cube is rotating.  The cube will rotate for 
720° and then come to a rest until the push button is once again selected. 

 
function gui_wind(command_str) 
% GUI_WIND 
% examples/chap10/gui_wind.m 
% 
% Example of creating windowed GUIs. 
 
if nargin < 1 
 command_str = 'initialize'; 
end 
 
if ~strcmp(command_str,'initialize') 
 handles = get(gcf,'userdata'); 
 h_cube = handles(1); 
 h_dir = handles(2); 
 h_xrot = handles(3); 
 h_yrot = handles(4); 
end 
if strcmp(command_str,'initialize') 
 
 h_fig = figure('position',[100 200 300 250],... 
  'resize','off',... 
  'numbertitle','off',... 
  'name','Windowed GUI',... 
        'MenuBar','none'); 
  
 h_s(1) = uicontrol('style','text',... 
   'position',[0 0 1 .25],... 
   'units','normalized'); 
 h_s(2) = uicontrol('style','text',... 
   'position',[0 0 .1 1],... 
   'units','normalized'); 
 h_s(3) = uicontrol('style','text',... 
   'position',[0 .9 1 .1],... 
   'units','normalized'); 
 h_s(4) = uicontrol('style','text',... 
   'position',[.9 0 .1 1],... 
   'units','normalized'); 
 h_push = uicontrol(h_fig,... 
   'style','pushbutton',... 
   'position',[.1 .05 .2 .15],... 
   'units','normalized',... 
   'string','Rotate',... 
   'interruptible','on',... 
   'callback','gui_wind(''Rotate'');'); 
 
 h_dir = uicontrol(h_fig,... 
   'style','checkbox',... 
   'position',[.32 .07 .25 .11],... 
   'units','normalized',... 
   'string','Clockwise',... 
   'value',1,... 
   'callback','gui_wind(''Change 
Rotation'');'); 
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 h_xrot = uicontrol(h_fig,... 
   'style','checkbox',... 
   'position',[.6 .02 .35 .11],... 
   'units','normalized',... 
   'string','X-Rotation Axis',... 
   'callback','gui_wind(''Change 
Rotation'');'); 
 h_yrot = uicontrol(h_fig,... 
   'style','checkbox',... 
   'position',[.6 .13 .35 .11],... 
   'units','normalized',... 
   'string','Y-Rotation Axis',... 
   'callback','gui_wind(''Change 
Rotation'');'); 
       
 h_ax = axes('position',[.1 .25 .8 .65],... 
    'userdata',0); 
 
 x = [0 1 1 0 0 0 1 1 0 0 NaN 1 1 NaN 1 1 NaN 0 0]; 
 y = [0 0 1 1 0 0 0 1 1 0 NaN 0 0 NaN 1 1 NaN 1 1]; 
 z = [0 0 0 0 0 1 1 1 1 1 NaN 1 0 NaN 0 1 NaN 1 0]; 
 h_cube = line(x-0.5,y-0.5,... 

z-0.5,'erasemode','background'); 
 axis('square'); 
 axis([-1 1 -1 1 -1 1]*1.5); 
 axis('off') 
 view(-37.5,15); 
 
 handles = [h_cube h_dir h_xrot h_yrot]; 
 set(gcf,'userdata',handles); 
  
elseif strcmp(command_str,'Change Rotation') 
 direction = sign(get(h_dir,'val')-.5); 
 rotation_axis = [get(h_xrot,'value') ... 
    get(h_yrot,'value')1]; 
 set(gca,'userdata',[1 direction rotation_axis]); 
 
elseif strcmp(command_str,'Rotate') 
 rotation_increment = 5*sign(get(h_dir,'value')-.5);  
% degrees 
 rotation_axis = [get(h_xrot,'value') ... 
    get(h_yrot,'value')1]; 
 rotation_origin = [0 0 0]; 
 num_of_incr = 720; 
 angle_swept = 0; 
 rotate_counter = 0; 
 while abs(angle_swept) < 720 
    rotate(h_cube,rotation_axis,... 
                  rotation_increment,rotation_origin); 
    rotate_counter = rotate_counter + 1; 
    angle_swept = angle_swept + rotation_increment; 
    if rotate_counter > 5 
       command_issued = get(gca,'userdata'); 
       if command_issued(1) > 0 
       rot_dir = command_issued(2); 
    rotation_increment = 
abs(rotation_increment)*rot_dir; 
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    rotation_axis = command_issued(3:5); 
       set(gca,'userdata',0); 
    end 
    rotate_counter = 0; 
    end 
    drawnow; 
 end 
end 

 

The three check boxes all execute gui_wind('Change Rotation') and the 
push button executes gui_wind('Rotate').  If the Interruptible property of the 
push button had not been set to “on”, the object would rotate in the direction 
and about the axis determined by the state of the check boxes at the moment 
the user activated the push button and would remain unaffected by any user 
actions during the course of its execution.  However, since the Interruptible 
property was set to “on”, the user can click any of the check boxes which will 
cause the current axes UserData property to be altered with the new inputs.  
Since the current axes UserData property is polled once every six passes 
through the while loop, the user's actions can be recognized and the 
appropriate changes in the direction and axis of rotation can be made. 

10.7.5 Toggling Menu Labels 

MATLAB provides the opportunity to change your pull-down menu labels 
“on-the-fly.”  Since the CallBack of a menu bar title or submenu title is 
executed before the menu items are displayed to the user, your code can 
change the attributes of the menu items before they are displayed.  The menu 
bar that is created with the code below does nothing except illustrate a 
capability.  A set of different menu items will be made available to the user 
that depend on the manner in which he or she last clicked in the Figure 
Window.  The different types of clicks are a normal single click, a quick double 
click, a shift-click (press the shift key before clicking), and a control-click (press 
the control key before clicking).    

 
function [name] = gui_togm(command_str) 
% GUI_TOGM 
% examples/chap10/gui_togm.m 
% 
% Example of a GUI that toggles menus. 
 
if nargin < 1 
 command_str = 'initialize'; 
end 
 
if ~strcmp(command_str,'initialize') 
 handles = get(gcf,'userdata'); 
 h_menu_opt = handles(1); 
 h_menu = handles(2:4); 
end 
 
if strcmp(command_str,'initialize') 
 
 h_fig = figure('position',[200 200 200 50],... 
     'resize','off',... 
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     'numbertitle','off',... 
     'menubar','none'); 
 h_menu_opt = uimenu('label','Options',... 
  'callback','gui_togm(''Set Menu Labels'');'); 
 h_menu(1) = uimenu(h_menu_opt,'label','Properties...'); 
 h_menu(2) = 
uimenu(h_menu_opt,'label','','visible','off') 
 h_menu(3) = uimenu(h_menu_opt,'label','',... 
                    'visible','off'); 
  
 handles = [h_menu_opt,h_menu]; 
 set(gcf,'userdata',handles); 
 gui_togm('Set Menu Labels'); 
  
elseif strcmp(command_str,'Set Menu Labels') 
 seltyp = get(gcf,'selectiontype'); 
 if strcmp(seltyp,'normal') 
   set(h_menu(1),'label','Properties','visible','on'); 
   set(h_menu(2),'label','','visible','off'); 
   set(h_menu(3),'label','','visible','off'); 
 elseif strcmp(seltyp,'alt') 
   set(h_menu(1),'label','Alternate Properties',... 
                 'visible','on'); 
   set(h_menu(2),'label','Delete Alternates',... 
                 'visible','on'); 
   set(h_menu(3),'label','Copy Alternates',... 
                 'visible','on'); 
 elseif strcmp(seltyp,'extend') 
   set(h_menu(1),'label','Cut','visible','on'); 
   set(h_menu(2),'label','Copy','visible','on'); 
   set(h_menu(3),'label','Paste','visible','on'); 
 elseif strcmp(seltyp,'open') 
   set(h_menu(1),'label','Open 1','visible','on'); 
   set(h_menu(2),'label','Open 2','visible','off'); 
   set(h_menu(3),'label','Open 3','visible','on'); 
 end 
end 

 

10.7.6 Customizing a Button with Graphics 

You are not limited to buttons in MATLAB that only have text on them. You 
can take advantage of a button’s CData property to place your own custom 
graphic on the button. This can be very useful by making the button more eye-
catching or even convey information itself. All you need to do to put a graphic 
on a button is to provide an image in RGB form as the value of the CData 
property. The most challenging part of this is actually getting the appropriate 
image you want to put on the button. Most likely, you will generate this image 
with your own favorite image editing software; however, in this example, we 
will generate an image from a MATLAB plot and use that to adorn our button.  

First let’s create an plot to make our image. We can make one quickly with 
MATLAB’s membrane function: 

 
membrane 
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Next we can grab a snapshot of the plot that will eventually become our 
button image.  

 
F=getframe(gcf) 

will get the snapshot and store an M-by-N-by-3 (RGB) image in F.cdata. 
(F.colormap is also created by getframe but is empty on systems that support 
true color.) 

At this point we will go ahead and create our button. 
 
h_fig=figure('Position',[100 100 200 200],... 
             'menubar','none') 
h_button = uicontrol('style','pushbutton',... 
           'tooltipstring','bitmap on a button',... 
           'position',[30 70 140 125]) 

From here we see that our image needs to be no more than 140-by-125. If 
we type 

size(F.cdata) 

we see that the image is 420-by-560. If we use f.cdata as it is, our button will 
only show a portion of the image, so we need to scale the image in some way. 
The following code will (crudely) scale the image by simply throwing out a 
number of rows and columns as specified.  

 
scale=4; 
[m n p]=size(f.cdata); 
rows = 1:scale:m; 
X=f.cdata(rows,:,:); 
cols = 1:scale:n; 
bimage=X(:,cols,:); 

results in an image bimage that is 105-by-140, which will do. 

 
Now all that is needed to do is to set the button’s CData property with the 
RGB image bimage.  

 
set(h_button,'Cdata',bimage);   

 
Figure 10.49 shows the result.  
 
 

© 2003 by CRC Press LLC



Placing images on buttons has a lot of possibilities. By having a callback 
change a button’s CData, you can have the image on the button change 
dynamically. For instance, you might do this where the button shows the next 
image (like a thumbnail) to be displayed.  

10.8 The MATLAB Event Queue 
The intent of a GUI is to provide the user with a means of interacting with 

an application. A user’s actions are not predictable, and therefore the interface 
must be programmed to react appropriately to an undetermined number and 
order of sequential events. When a user clicks the mouse button or moves the 
pointer in an interface that has a lot of features and capabilities, many different 
callbacks can be triggered. In addition to user-induced events, there are also 
MATLAB commands that trigger events. Having knowledge about the order 
and the circumstances in which the callbacks are scheduled is very important 
when deciding on how to program a GUI. 

10.8.1 Event Scheduling and Execution 

The events that will be discussed in this section are the user-invoked events 
such as the mouse click, up and down, and mouse pointer motion.  Since a 
single action such as a click could trigger several callbacks (the Window-
ButtonDownFcn, WindowButtonUpFcn, CallBack, and Button-DownFcn of any 
graphics object that exists below the region that was clicked on), these events 
need to be scheduled.  In addition to evaluating and processing the actual 
callback string, MATLAB also needs to update all the properties that store 
information about the action.  All of the actions that MATLAB needs to 
perform are placed in what will be called an “event queue” so that they can be 
acted on in a logical and consistent order.  Once the callback event queue has 
been formed, additional user actions that attempt to schedule a set of new 
callbacks are ignored unless the Interruptible property has been manipulated. 
For simplicity, right now we will assume that the callbacks are not interruptible. 

During execution of an individual callback string, for efficiency, MATLAB 
stores all events that affect the appearance of any or all graphics on the 

 

Figure 10.49 A plot image mapped to a button. 
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screen, so that they can be executed at once.  These events are stored in what 
will be called a “graphics event queue.”  The events in the graphics event 
queue are evaluated and are only updated under the following circumstances: 

 

• all callbacks in the “callback queue” are finished executing and 
control is passed back to the command line 

• a drawnow command is encountered 

• a figure command is executed 

• a getframe command is executed 

• execution is temporarily halted because a pause 

 

 waitforbuttonpress, or input command is issued. 

In the event that a drawnow discard command is evaluated, the graphics 
event queue will be flushed (cleared) so that none of the graphics commands 
that were in the queue will be drawn on the screen.  This does not mean that 
if one of the commands in the event queue is to set an existing graphics 
object’s property that changes that object’s appearance, the set command is 
not issued.  Rather, the appearance will just not be displayed on the screen 
until a command that forces the figure to be redrawn is issued, such as refresh 
or another plotting command. 

10.8.2 Execution Order of Events 

The order in which graphics object information is updated and callbacks are 
evaluated can be seen in the flow charts found in the next several sections.  
The best way to learn is to write a little script and experiment with the different 
possibilities by clicking and dragging in different parts of the two figures. The 
following code is provided to you just for that. 

 
h_fig_1 = figure('position',[100 100 100 100],... 
    'menubar','none',... 
 'windowbuttondownfcn','disp(''Fig1 WBDF'')',... 
 'windowbuttonupfcn','disp(''Fig1 WBUF'')',... 
 'windowbuttonmotionfcn',... 
       'disp(''Fig1 WBMF'')',... 
 'buttondownfcn','disp(''Fig1 BDF'')'); 
h_ui = uicontrol('style','pushbutton',... 
 'position',[25 25 50 50],... 
 'callback','disp(''UI CallBack'')',... 
 'buttondownfcn','disp(''UI BDF'')'); 
h_fig_2 = figure('position',[200 100 100 100],... 
    'menubar','none',... 
 'windowbuttondownfcn','disp(''Fig2 WBDF'')',... 
 'windowbuttonupfcn','disp(''Fig2 WBUF'')',... 
 'windowbuttonmotionfcn',... 
       'disp(''Fig2 WBMF'')',... 
 'buttondownfcn','disp(''Fig2 BDF'')'); 
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10.8.2.1 Mouse Button Pressed Down 

When the user presses the mouse button down within the area defined by a 
figure's boundaries, MATLAB processes the following sequence of actions. 

 

 

See “Button Release” 
flow diagram. 

Is the 
pointer 
over a 

uicontrol? 

MATLAB determines and updates: 
figure’s CurrentPoint & SelectionType 

Execute figures WindowButtonDownFcn. 

Execute the current object’sButtonDownFcn. 

The current object is placed at the top of 
the stacking order. 

MATLAB determines and updates: 
root’s CurrentFigure, 
figure’s CurrentObject* 

 
*this can include the figure itself. 

User 
Presses 
Mouse 
Button 

Yes 

No 

 

 

As is noted in the diagram, in the event that the user clicks the mouse down 
over an uicontrol button, the appearance of the uicontrol may change; 
however, the CallBack is not evaluated until the mouse button is released over 
that uicontrol.  This gives the user the opportunity to back out of an accidental 
choice by moving the mouse away from the uicontrol and releasing the button 
over another region of the figure. 
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10.8.2.2 Mouse Button Released 

When the user releases the mouse button within the area defined by a 
figure’s boundaries, MATLAB processes the following sequence of actions: 

 

 

Is the 
pointer 
over a 

uicontrol 
?

Was 
the pointer 

originally pressed 
over this 
control? 

? 

Was 
the pointer 

originally pressed 
over a 

control? 
? 

Update figure’s CurrentPoint. 
Execute WindowButtonUpFcn. 

Update figure’s CurrentPoint. 
Execute uicontrol’s Callback. 

Update figure’s CurrentPoint. 
Execute WindowMotionFcn. 

User 
Releases 
Mouse 
Button 

Yes No

No No 

Yes Yes 

 

 

The WindowButtonMotionFcn can be executed at the time a mouse button 
is released under the circumstance indicated by the flow diagram.  It occurs 
only if the WindowButtonMotionFcn is defined.  If the user clicks down in one 
figure and then moves over to another figure before releasing the mouse 
button, the WindowButtonUpFcn property of the figure in which the mouse 
was clicked down will be evaluated.  The other figure that the pointer was 
moved into will not have its WindowButtonUpFcn evaluated, but its 
WindowButtonMotionFcn will be evaluated.  In other words, in order for the 
WindowButtonUpFcn to be evaluated, the mouse button has to be pressed 
down in that figure. 

10.8.2.3 Mouse Pointer Moved 

When the user moves the mouse pointer within the area defined by a 
figure’s boundaries, MATLAB processes the sequence of actions shown in the 
following figure.  This is true only if the WindowButtonMotionFcn is defined for 
that figure.  If it is not defined, MATLAB does not waste time updating the 
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figure’s CurrentPoint and the root’s PointerLocation and PointerWindow 
properties until they are requested. 

 

 
User 

Moves 
Mouse 
Pointer 

Update figure’s CurrentPoint. 
Update root’s PointerLocation & PointerWindow. 

Execute WindowButtonMotionFcn. 
 

If the mouse button is pressed and held down while the pointer is moved 
into a figure whose WindowButtonMotionFcn properties are also defined, only 
the WindowButtonMotionFcn of the figure that the mouse was pressed down 
in will be evaluated.  If the mouse is not held down and the user moves the 
mouse into a different figure, normal operation will ensue.  In other words, 
MATLAB will evaluate the WindowButtonMotionFcn for the figure in which the 
pointer is located. 

Each slight movement of the mouse is an action event that can schedule a 
WindowButtonMotionFcn callback.  Since the number of these events that are 
processed in a given amount of time depends on your machine’s speed and 
the rate at which the mouse pointer is being moved across the screen, 
MATLAB evaluates only the most recent WindowButtonMotionFcn callback; 
the rest are discarded, otherwise a machine could become seriously bogged 
down in evaluating callbacks. 

10.8.3 Interruptible vs. Uninterruptible 

One of the properties found in every single graphics object is the 
Interruptible property.  By default, this property is set to “on”, which means 
that if an object’s callback is being evaluated (no matter where it is defined: 
CallBack, ButtonDownFcn, WindowButtonDownFcn, etc.), it can be interrupted 
by any other object’s callback. It is useful to set this property to “off” when 
you want to ignore all user-invoked actions (mouse clicks or pointer 
movement) that may occur while a MATLAB program is being executed. 

There are many situations in which you want the user to be able to interrupt 
a callback.  For example, if you would like to program the CallBack of an 
uicontrol, let’s say button A, to bring up another GUI that the user must 
respond to before button A’s CallBack can be completed, you will want to 
keep A’s Interruptible property set to “on”. 

In the example GUI provided in Section 10.7.4, we saw that while an 
animation was running, the user could manipulate the uicontrols and see an 
immediate effect on the animation.  This was because the push button that 
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started the simulation (i.e., the one labeled “Rotate”) has its Interruptible 
property set to “on”. 

In order to interrupt an object’s callback, there are two requirements 

1. The object’s Interruptible property must be set to “on” (the default). 

2. The callback must contain a drawnow, getframe, figure, input, 
pause, or waitforbuttonpress (actually, any of the waitfor… ) 
command. 

There are situations where it does not matter what you have set the 
Interruptible  property to and the  executing callback will be interrupted any 
way; these are: 

1. when the interrupting callback is a DeleteFcn or CreateFcn callback 

       or 

2.  when a figure is executing a CloseRequest or ResizeFcn callback 
 
 

10.8.4 Common Mouse Action Examples 

There are a couple of examples that we can offer to teach and reinforce 
some of the ideas learned in this section.  First, we will demonstrate a  
capability that allows the user to use the mouse button to move and resize 
objects, such as text and axes objects, so that the changes do not need to be 
made at the command line before printing out a hard copy of a figure.  The 
second is being able to create a dynamic box when the user clicks and drags 
the mouse. Both of these examples were presented in a similar fashion in the 
earlier editions of this book, and although modern MATLAB provides some 
functions, e.g., selectmoveresize and dragrect, and the figure property 
WindowStyle, we still feel that these examples are educational and will help in 
understanding the event queue and the nature of mouse-related operations. 

10.8.4.1 Moving Objects with the Mouse 

Although you can easily move text in a plot using the plot editing mode in 
the Figure Window, here we are going to develop a function that allows you 
to move any graphics objects with the mouse.  When the user clicks the 
mouse, we determine the current object’s Type property, and then set the 
WindowButtonMotionFcn and WindowButtonUpFcn properties appropriately 
to allow the user to move the selected object. The user is notified that the 
object has been selected by a box that appears when the Selected property is 
set to “on”.  In addition, the type of operation (move/resize) is identified by 
the pointer type. The task of programming such a routine relies on knowing 
the points where position and location data is measured with respect to, and 
structuring a function to respond to, the user’s actions as summarized in Figure 
10.50. 
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function mvrs_obj(command_str,Argument); 
% MVRS_OBJ 
% chap10/mvrs_obj.m 
% 
% Used to move and resize axes objects 
% and move text objects. 
% Start capability by issuing 
% mvrs_obj 
% Then click and hold and drag to 
% move an object (axes objects will be 
% moved from lower-left corner). 
% To resize an axes object hold the control 
% or alt key before click hold and dragging 
% near desired corner of axes object. 
 
global CUR_OBJ CUR_OBJ_TYPE FIX_PT 
 
if nargin == 0 
 command_str = 'initialize'; 
end 
if strcmp(command_str,'initialize') 
 set(gcf,'windowbuttondownfcn','mvrs_obj(''Set Up'')'); 
elseif strcmp(command_str,'Set Up') 
 CUR_OBJ = get(gcf,'currentobj'); 
 if CUR_OBJ ~= gcf 
   CUR_OBJ_TYPE = get(CUR_OBJ,'type'); 
    
   if strcmp(get(gcf,'selectiontype'),'normal') 
   % SET UP MOVING OBJECT ROUTINE 
    set(gcf,'pointer','fleur'); 
  if strcmp(CUR_OBJ_TYPE,'text') 

 

Root (Screen) PointerLocation 

Figure 

CurrentPoint 

Axes 
CurrentPoint 

Mouse Pointer 

 

Figure 10.50 The root, figure, and axes objects keep track of the 
pointer’s location. 
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   set(CUR_OBJ,'erasemode','xor'); 
  elseif strcmp(CUR_OBJ_TYPE,'axes') 
   set(gcf,'units','pixels'); 
   set(0,'units','pixels'); 
   set(CUR_OBJ,'units','pixels'); 
   cur_obj_loc = get(CUR_OBJ,'position'); 
   fig_pos = get(gcf,'position'); 
   set(0,'pointerlocation',fig_pos(1:2)+... 
     cur_obj_loc(1:2)); 
  end 
 
 set(gcf,'windowbuttonupfcn','mvrs_obj(''Done'')'); 
  set(gcf,'windowbuttonmotionfcn',... 
            'mvrs_obj(''Move Object'')'); 
  set(CUR_OBJ,'selected','on'); 
   elseif strcmp(get(1,'selectiontype'),'alt') 
  % SET UP RESIZE OBJECT 
  if strcmp(CUR_OBJ_TYPE,'axes') 
   set(gcf,'units','pixels'); 
   set(0,'units','pixels'); 
   set(CUR_OBJ,'units','pixels'); 
   cur_obj_loc = get(CUR_OBJ,'position'); 
   fig_pos = get(gcf,'position'); 
   corner_loc = [cur_obj_loc(1:2); ... 
    cur_obj_loc(1:2)+... 
                [0 cur_obj_loc(4)];... 
    cur_obj_loc(1:2)+... 
                [cur_obj_loc(3) 0];... 
    cur_obj_loc(1:2)+... 
                cur_obj_loc(3:4)   ]; 
   corner_loc_scrn =... 
                [corner_loc(:,1)+fig_pos(1) ... 
    corner_loc(:,2)+fig_pos(2)]; 
   scrn_pnt_loc = get(0,'pointerlocation'); 
   [dumval,min_ind] = ... 
                min(sum((([corner_loc_scrn-ones(4,1)*... 
                    scrn_pnt_loc]).^2)')); 
   if min_ind == 1;  
                FIX_PT = corner_loc(4,:); 
   elseif min_ind ==2;  
                FIX_PT = corner_loc(3,:); 
   elseif min_ind ==3;  
                FIX_PT = corner_loc(2,:); 
   elseif min_ind ==4;  
                FIX_PT = corner_loc(1,:);end 
   set(0,'pointerlocation',... 
                corner_loc_scrn(min_ind,:)); 
    
 set(gcf,'windowbuttonupfcn',... 
                        'mvrs_obj(''Done'')'); 
      set(gcf,'windowbuttonmotionfcn',... 
                'mvrs_obj(''Resize Object'')'); 
     set(CUR_OBJ,'selected','on'); 
 
  end 
   end 
 end 
elseif strcmp(command_str,'Move Object') 
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% CALLBACK FOR WHEN THE POINTER IS MOVED AND THE 
% OPERATION GOAL IS TO MOVE AN OBJECT  
 if strcmp(CUR_OBJ_TYPE,'text') 
  cur_pnt_loc = get(get(CUR_OBJ,'parent'),... 
            'currentpoint'); 
  set(CUR_OBJ,'position',cur_pnt_loc(1,:)); 
 elseif strcmp(CUR_OBJ_TYPE,'axes') 
  cur_obj_loc = get(CUR_OBJ,'position'); 
  cur_pnt_loc = get(gcf,'currentpoint'); 
  new_obj_loc = [cur_pnt_loc cur_obj_loc(3:4)]; 
  set(CUR_OBJ,'position',new_obj_loc); 
 end 
  
elseif strcmp(command_str,'Resize Object') 
% CALLBACK FOR WHEN THE POINTER IS MOVED AND THE 
% OPERATION GOAL IS TO RESIZE AN OBJECT  
 if strcmp(CUR_OBJ_TYPE,'axes') 
  curr_pnt = get(gcf,'currentpoint'); 
  relloc = curr_pnt > FIX_PT; 
  if all(relloc == [0 
0]),set(gcf,'pointer','botl'); 
  elseif all(relloc == [0 
1]),set(gcf,'pointer','topl'); 
  elseif all(relloc == [1 
0]),set(gcf,'pointer','botr'); 
  elseif all(relloc == [1 
1]),set(gcf,'pointer','topr'); 
  end 
  new_pos = [min([curr_pnt ;FIX_PT]),... 
                max([abs(curr_pnt-FIX_PT);[1 1]])]; 
  %keyboard 
  set(CUR_OBJ,'position',new_pos); 
 end 
  
elseif strcmp(command_str,'Done') 
% OPERATION GOAL HAS BEEN COMPLETED SINCE 
% USER RELEASED THE MOUSE 
 if strcmp(CUR_OBJ_TYPE,'text') 
  set(CUR_OBJ,'erasemode','normal'); 
 elseif strcmp(CUR_OBJ_TYPE,'axes') 
  set(CUR_OBJ,'units','normalized'); 
 end 
 set(CUR_OBJ,'selected','off'); 
 set(gcf,'pointer','arrow'); 
 set(gcf,'windowbuttonupfcn',''); 
 set(gcf,'windowbuttonmotionfcn','') 
end 

 
To test or try out this routine, create a simple plot and a text object like 

 
plot(1:10) 
text(5,5,'Test String'); 

 
then activate the moving and resizing feature with 

 
mvrs_obj 
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Look at how the resize object feature is incorporated into the program. As an 
assignment try putting in the functionality that allows you to move uicontrol, 
line, and patch objects as well. You could also set the ButtonDownFcn of the 
objects (axes and uicontrol objects only) that you want to be able to 
interactively move to the function selectmoveresize. For example, to be able 
to move all text around, type 

 
set(gca,'buttondownfcn','selectmoveresize'); 

 
Then, after altering the object, set the same property to an empty string so that 
you don’t accidentally move something you don’t want to move. 

10.8.4.2 Dynamic Boxes Using the RBBOX Function 

In some situations, you may want to add a feature that allows the user to 
click and drag out a dynamic and temporary box for the purpose of selecting 
objects or identifying regions of a figure.  Usually this box is drawn from the 
location at which the mouse button was first pressed to the current location of 
the mouse pointer. After the mouse button is released, the box disappears. 
This is what the code below implements.  

 
function [rect] = dragbox(unitsval) 
% DRAGBOX 
% 
% Usage: 
%          [rect] = dragbox(units_string); 
% where, 
% 
% rect:         is the RECT vector over which the 
%               drag box is defined ([left bottom width 
height]). 
% units_string: is a string containing the name 
%               of any of the legal units that 
%               the figure can have. 
% 
% Example 
%          figure 
%          [rect] = dragbox('normalized') 
% Wait for mouse button to be pressed. 
waitforbuttonpress; 
 
% Determine figure and get its Units. 
h_fig = gcf; 
original_figunits = get(h_fig,'Units'); 
 
% Specify Pixels for units and get location at 
% which mouse button is pressed. 
set(h_fig,'Units','Pixels'); 
firstpoint = get(h_fig,'CurrentPoint'); 
 
% Create the drag box. 
rbbox([firstpoint 0 0],firstpoint); 
 
% Get the location at which button is released. 
lastpoint = get(h_fig,'CurrentPoint'); 
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% Calculate a standard rect vector from two locations. 
rect = [min(firstpoint,lastpoint),abs(firstpoint-
lastpoint)]; 
 
% Normalize the rect vector to the figure. 
figpos = get(h_fig,'Position'); 
rect = rect./[figpos(3:4) figpos(3:4)]; 
 
% Put the rect vector in the specified units. 
if nargin == 0 
   unitsval = original_figunits; 
end 
 
if ~strcmp(lower(unitsval(1)),'n') 
  set(h_fig,'Units',unitsval); 
  figpos = get(h_fig,'Position'); 
  rect = rect.*[figpos(3:4) figpos(3:4)]; 
end 
 
% Put the figure back in the original units. 
set(h_fig,'Units',original_figunits); 
 

To test out this routine, type 
 
figure; 
rect = dragbox; 

 
and then click and drag in the Figure Window. After you have established the 
size of the box just dragged out, move it around by typing 

  
set(gcf,'buttondownfcn','dragrect(rect)') 

 
and once again clicking and dragging in the Figure Window. 

10.9 Creating Custom User Interface Components 
With the virtually boundless graphics capabilities of low-level MATLAB 

programming, if you happen to find that the standard set of MATLAB user 
interface objects does not suit all of your needs, or if you just want to spice up 
your GUI and make it more interesting, you can always create your own 
interface objects.  In this section, we will look at creating two custom user 
interface objects.  If you follow along and understand how these operate, you 
should then be able use your imagination and create just about any type of 
interface object you want.  The key to designing functional interface or display 
objects is to make use of your knowledge of the available tools (i.e., the 
properties of the objects and different types of events that can be recognized).  
There is never one best solution.  Therefore, some of the techniques that we 
have been able to successfully use will be presented. Also bear in mind that 
these examples are coded for clarity and you might be able to make enhances 
that use MATLAB more efficiently. 

Most of the techniques we will show here rely heavily on the 
ButtonDownFcn of a graphics object.  When the user clicks the mouse on the 
object, that object’s ButtonDownFcn callback will be evaluated.  Since all 

� � � � � �  
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graphics objects have this property, you can make an interface with any one 
you want.  For example, you could easily make one out of text object with 

 
figure; 
axes('xlim',[0 1],'ylim',[0 1],'visible','off'); 
callback_str = ['set(gco,''position'',[rand(1,2) 0]);']; 
text(.5,.5,0,'Click on Me','buttondownfcn',callback_str); 

and you have a little game that you can play for hours on end. Like trying to 
swat a fly, every time you click on the text object it will move to some new 
and random location. 

If a 2-dimensional looking flat button suits your needs, create an interface 
with a patch and text object.  However, if that’s all you need, you should 
probably stick with the uicontrol objects since they are easy to program and 
look a lot better than any patch/text object combination. Also, remember that 
you can put pictures on your buttons by using the button’s CData (See Section 
10.7.6).  Of course, the patch object doesn’t need to be a simple square; in 
fact, you can create any shape you need and turn it into a button. That in itself 
may already provide the feature you wanted that uicontrols and uimenus 
could not offer, so that is the first custom component we will demonstrate. 

10.9.1 Simulating Buttons with Image Objects 

The easiest way to create your own custom 3-dimensional-looking push 
buttons is to create two images positioned in the same location (i.e., one on 
top of the other).  One represents the appearance of the button in its “off” 
state and the other represents its appearance in the “on” state (i.e., when the 
user clicks on the object).  Remember that you can achieve similar results by 
using the CData property of a uicontrol object (see Section 10.7.6); however, 
to create non-standard shaped buttons, you still will need to do something like 
the method described next. 

Usually the hardest or most time-consuming aspect of creating these types 
of buttons is generating the images. This can be done several ways and you 
will have to experiment and find the one that works best for you. 

 
1. You can create your own image and color map matrix by typing in the 

numbers that represent indices to the map of RGB values you have 
specified.  This is probably the most time-consuming and most difficult 
method because you have to make a mental image of what the 
numbers represent, but it can be done. Another option is to use an 
image that is already in RGB format, perhaps created in some image 
editing software; if you have a color mapped format image you could 
use something like makergb (see section 5.3.3) to create the data for 
your button. 

 
2. You can piece together axes, patch objects, text, and anything else 

you want.  Size the object the way you want it and then take an 
image snapshot with F = getframe. When used in this manner 
getframe will return a structure in F where F.cdata is an M-by-N-by-3 
snapshot. (If your computer does not support truecolor, you will get 
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data in F.colormap.) Alter the colors to represent the figure in its 
opposite state and take another snapshot.  Combine the two color 
maps so that both image objects can be shown simultaneously 
without color distortion (see example below). To use this technique, 
you must be able to have multiple software packages up on your 
machine (i.e., MATLAB and your favorite drawing package).  Use your 
favorite software drawing package and create the button icons.  Then 
use X = getframe(reference_fig, capture_rectangle), where 
reference_fig is the handle to a figure that is purely used as a location 
reference point and capture_rectangle is a [left bottom width height] 
vector that defines the region that will be captured with respect to the 
lower left corner of the reference_fig figure.  If you position the 
drawing package window in a way so that you can see the icons even 
when you are in MATLAB, you can experimentally determine the 
correct capture_rectangle vector which captures the portion of the 
button icons you want.  Execute the getframe command and then see 
what you captured by typing 

 
image(X);  
colormap(X.colormap); %only if X not truecolor (RGB) 

 

In the next example, we will use the following code to help generate the 
two images shown in Figure 10.51.  To achieve a 3-dimensional look, we use 
light and dark shades of a particular color.  Decide on a corner from which it 
should appear that a light source is located with respect to the button.  The 
two sides adjacent to this corner should use light shading for the button’s up 
state image and a dark shading for the button’s down state.  The opposite two 
sides can use a thin dark border for the button’s up state and a lighter border 
in the button’s down state.  Choosing the shaded edge’s relative thickness in 
the two button states is useful, too; your personal preferences and creativity 
will guide you. 

 
h_fig=figure('position',[100 100 50 50],... 
'color',[.8 .8 .8],... 
'menubar','none'); 
axes('position',[0 0 1 1],... 
     'xlim',[0 1],'ylim',[0 1],... 
     'visible','off'); 
p = patch([.08 .08 1 1],[0 .92 .92 0],... 
     [0 0 0 0],[0 0 0 0],'facecolor',[.6 .6 .6],... 
     'edgecolor','none') ; 
patch(.2*cos(linspace(0,2*pi,4))+.3,... 
 .2*sin(linspace(0,2*pi,4))+.3,... 
 ones(1,4), ones(1,4),.... 
    'facecolor',[0 0 0]);% Create triangle 
patch(.2*cos(linspace(0,2*pi,6))+.7,... 
 .2*sin(linspace(0,2*pi,6))+.4,... 
 ones(1,6), ones(1,6),... 
    'facecolor',[0 0 0]);  % Create pentagon 
patch(.1*cos(linspace(0,2*pi,15))+.5,... 
 .1*sin(linspace(0,2*pi,15))+.7,... 
 ones(1,15), ones(1,15),... 
    'facecolor',[0 0 0]);% Create circle 
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l = line([0.08 1 1],[0 0 .92],[2 2 2],'linewidth',2,... 
 'color',[.3 .3 .3]); 
% This clears the map so that getframe only 
% captures what is required. 
set(h_fig,'colormap',[]);  
Xup=getframe(h_fig);% On State Image 
set(gcf,'color',[.2 .2 .2]); 
set(p,'facecolor',[.4 .4 .4]); 
set(l,'color',[.8 .8 .8]); 
Xdw=getframe(h_fig);% Off State Image 

 
Combine the two maps so that you will be able to use the two images in the 
same figure without distorting their colors: 

 
mapupdwn = [mapup;mapdw]; 

 
You will now have the two buttons shown in Figure 10.51. 

 
Now you have developed a pair of images that you can save for future use. 

 
save shapeimg Xdw.cdata Xup.cdata mapupdwn 

To create a button that will toggle between the states represented by the 
above two images, use something like the following: 

 
load shapeimg 
figure('position',[100 100 100 100],... 
 'menubar','none',... 
    'colormap',mapupdwn); 
axes('position',[.2 .2 .6 .6],... 
 'visible','off','ydir','reverse',... 
 'xlim',[0 size(Xup.cdata,2)],'ylim',[1 
size(Xup.cdata,1)]); 
hold on 
image_up = image(Xup.cdata); 
image_down = image(Xdw.cdata); 
set(image_up,'userdata',image_down,... 
 'buttondownfcn',['set(get(gco,''userdata'')'... 
  ',''visible'',''on'');' ... 
  'set(gco,''visible'',''off'')']); 
set(image_down,'userdata',image_up,... 
 'visible','off',... 
 'buttondownfcn',['set(get(gco,''userdata'')'... 
  ',''visible'',''on'');'... 
  'set(gco,''visible'',''off'')']); 

 

Figure 10.51 Up and Down custom buttons using images. 
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Since the ButtonDownFcn is a little difficult to read when it is placed into a 
string, this code is presented below, as it would exist as actual MATLAB code 
in a program. 

 
set(get(gco,'userdata'),'visible','on'); 
set(gco,'visible','off'); 
% Here is where you would tack on any additional  
% code that you want executed when this button is 
% toggled. 
  .  
  . 
  . 

To make the button act more like a push button in the sense that the off 
state is maintained only while the user holds down the button, all you need to 
do is add the following line (assuming that the button is in the state in which 
you want it to normally remain when you set the WindowButtonUpFcn 
property).  

 
set(gcf,'windowbuttonupfcn',... 
    ['set(gco,''visible'',''on'');' ... 
     'set(get(gco,''userdata''),''visible'',''off'')']); 

 
This single line will work even if you have several custom buttons in the 
interface.  However, it is usually a good idea to make a button quickly set the 
WindowButtonUpFcn it requires when the button down occurs.  Continue 
with the above example by making the ButtonDownFcn set the 
WindowButtonUpFcn.  In addition, have the WindowButtonUpFcn clear itself 
after it has been evaluated.  This should be done in one of the GUI structures 
previously discussed; otherwise, you will be endlessly frustrated with errors 
because a quote or parenthesis is missing. 

When using images to create multiple user interface buttons make sure: 

1. A single color map is applicable for all the images. Create all buttons 
with a graphics drawing package.  Place the images that represent the 
button’s on and off states next to one another and arrange all of the 
buttons so that a single capture image can be executed.  This makes it 
easy to keep a small-sized color map that works for all the button 
images.  Then break out the individual images by determining which 
indices of the large captured matrix correspond to the individual 
button images. 

2. Use one of the GUI programming approaches to make it easy to keep 
track of all the image object graphics handles and to make the code 
readable. 

3. When you have many custom buttons, it becomes important that you 
know what state each object button is in.  Consider creating a matrix 
that has 3-by-M elements for the M custom buttons in your GUI.  Each 
column of the matrix could be dedicated to maintaining information 
about a particular button.  For example, row one of column one could 
be the handle to the on-state image for a particular button, row 2 
could be the handle to the off-state image for that button, and row 3 
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could be used to indicate the current state of the button (much like 
the Value property of a uicontrol).  Keeping track of this kind of 
information will make it simple to reset, automatically set certain 
button states, make all your custom buttons mutually exclusive, etc.   

4. Make your callbacks as independent as possible so that you don’t 
need to rely on another object’s callback, since it may have been 
changed from what you might expect it to be. 

10.9.2 Creating a Dial 

Let’s step through the process of creating a dial like the one shown in Figure 
10.52.  We want the user to be able to click on the dial and graphically move 
the arrow about the arrow’s hinge.  To move the arrow in a continuous 
fashion, the user must click down and hold the mouse button while moving 
about the arrow’s hinge and then release when the arrow points to the desired 
value. 

 

 
function uidial(command_str,Argument1,Argument2) 
% UIDIAL 
% examples/chap10/uidial.m 
% Creates a dial user interface to learn how to 
% make a custom GUI object. 
% Usage: 
%          uidial('initialize',min,max); 
% 
%  The value of the dial is stored and can be  
%  gotten from the current axes UserData property. 
 
if nargin == 0  
 command_str = 'initialize'; 
end 
 

 

Figure 10.52 A custom dial control. 

��
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if ~strcmp(command_str,'initialize') 
 handles = get(gcf,'userdata'); 
 h_arrow = handles(1); 
 h_stextval = handles(2); 
end 
 
if strcmp(command_str,'initialize') 
 % Define default min and max values of dial. 
 if nargin == 3 
  minval = Argument1; 
  maxval = Argument2; 
 else 
  minval = 0; 
  maxval = 100; 
 end 
 
 h_fig=figure('Position',[200 200 200 200],... 
  'color',[.7 .7 .7],... 
  'menubar','none',... 
        'resize','off',... 
        'Units','normalized'); 
 h_ax=axes('color',[.7 .7 .7],... 
  'xcolor',[.7 .7 .7],... 
  'ycolor',[.7 .7 .7],... 
  'xtick',[],'ytick',[],... 
  'xlim',[-1 1],'ylim',[0 1],... 
  'aspect',[NaN 1],... 
  'position',[.2 .1 .6 .8]); 
 
 % Draw arrow in its minimum setting. 
 arrowx = [0 -1 -.85 NaN -1 -.85]; 
 arrowy = [0 0 -.05 NaN 0 .05]; 
 arrowz = [0 0  0  0   0  0]; 
 % Store a matrix that can be manipulated 
 % and used to draw the arrow after a rotation 
 % angle has been determined. 
 arrowud = [arrowx(:),arrowy(:),... 
  arrowz(:),ones(prod(size(arrowx)),1)]'; 
 h_arrow = line(arrowx,arrowy,... 
  'linewidth',2,... 
  'clipping','off',... 
  'erasemode','background',... 
  'userdata',arrowud); 
 
 % Create labels and the radial lines. 
 h_stext = uicontrol(h_fig,... 
  'style','text',... 
  'string','Value:',... 
  'position',[.1 .2 .4 .13],... 
  'units','norm'); 
 h_stextval = uicontrol(h_fig,... 
  'style','text',... 
  'string',sprintf('%2.1f',minval),... 
  'position',[.4 .2 .3 .13],... 
  'units','norm',... 
  'min',minval,'max',maxval); 
 h_dialborder = line(1.1*cos(0:.1:pi),... 
  1.1*sin(0:.1:pi),... 
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  'color',[0 0 0],... 
  'clipping','off'); 
 h_t(1)=text(-1.15,0,sprintf('%2.1f',minval),... 
  'horizontalalignment','right'); 
 h_t(2)=text(1.1,0,sprintf('%2.1f',maxval),... 
  'horizontalalignment','left'); 
 h_t(3)=text(0,1.15,sprintf('%2.1f',... 
  (maxval-minval)/2+minval),... 
  'horizontalalignment','center',... 
  'verticalalignment','bottom'); 
 
 % Make sure all the objects that the user might click 
on 
 % to rotate the arrow with will recognize the initial 
 % click. 
 set([h_ax;h_t(:);h_dialborder;h_arrow],... 
   'buttondownfcn',... 
             'uidial(''Set 
Calls'');uidial(''Rotate'')'); 
 set(gcf,'userdata',[h_arrow h_stextval]) 
  
elseif strcmp(command_str,'Set Calls') 
 % Define when the user clicks on the dial.  Set up 
 % the callbacks that should occur when the user moves 
or  
 % releases the mouse button. 
 set(gcf,'windowbuttonupfcn',... 
         'set(gcf,''windowbuttonmotion'','''')'); 
 set(gcf,'windowbuttonmotionfcn','uidial(''Rotate'')'); 
 
elseif strcmp(command_str,'Rotate') 
 % Define the callback that should occur when the user 
 % moves the mouse button. 
 
 % Find out where the mouse pointer is located. 
 pt = get(gca,'currentpoint'); 
 pt = pt(1,1:2); 
 % Determine the angle that the pointer is at with 
 % respect to the arrow's hinge. 
 deg = atan2(pt(2),-pt(1))*180/pi; 
 % Make sure the arrow does not swing past limits. 
 if deg < 0 & abs(deg) < 90  
  deg = 0; 
 elseif deg>180 | (deg<0 & abs(deg) > 90) 
  deg = 180; 
 end 
 
 % Scale angle linearly between dial's minimum 
 % and maximum values. 
 minval = get(h_stextval,'min'); 
 maxval = get(h_stextval,'max'); 
 val = (deg/(180-0)*((maxval-minval)))+minval; 
 
 % Store the value in the current axes UserData 
 % where it can be retrieved by an application. 
 set(gca,'userdata',val); 
 
 % Create transformed coordinate points for the 
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 % arrow. 
 arrowud = get(h_arrow,'userdata'); 
 A = viewmtx(deg,90); 
 newarrow = A*arrowud; 
 set(h_arrow,'xdata',newarrow(1,:),... 
      'ydata',newarrow(2,:)); 
 
 % Update the value indicator. 
 set(h_stextval,'string',sprintf('%2.1f',val)); 
 
end 

 
This program may be altered so that the dial could be used as a means of 
displaying values from an application, rather than just as an application input 
device.  In addition, it would also be nice to be able to specify the position 
that the dial should occupy within any given figure so that multiple dials could 
be created as part of a GUI.  Adding these features would be a good exercise. 
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AAPPPPEENNDDIIXX  ::    QQUUIICCKK  RREEFFEERREENNCCEESS  
The purpose of this appendix is to give you a convenient set of quick 

references. Included here is a short bibliography of texts that we feel will give 
you a solid background in the graphical representation of information, GUI 
development, and MATLAB. Also, here are the graphics commands and 
graphics objects properties  in MATLAB.  

 
 

Bibliographic References 
1. Tufte, E. R., The Visual Display of Quantitative Information, 

Graphics Press, Cheshire, CT, 1990. 

2. Tufte, E. R., Envisioning Information, Graphics Press, Cheshire, CT, 
1990. 

3. Thalmann, D., Scientific Visualization and Graphics Simulation, 
John Wiley and Sons, Inc., Chichester West Sussex, England, 
1990. 

4. Weinshenk, S., Jamar, P., Yeo, S. C., GUI Design Essentials, John 
Wiley and Sons, Inc., New York, NY, 1997. 
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Graphics Commands and Object Properties 
 
 

MATLAB Data Formats – Section 3.2.1 

Data Formats Command Returns 

MAT  - MATLAB workspace LOAD Variables in file 
CSV  - Comma separated 
numbers   

CSVREAD Double array 

TXT – Formatted data in a text file TEXTREAD Double array 
DAT  - Formatted text IMPORTDATA Double array 
DLM  - Delimited text DLMREAD Double array 
TAB  - Tab separated text DLMREAD Double array 
   

Spreadsheet Formats Command Returns 

XLS  - Excel worksheet XLSREAD Double array and cell 
array 

WK1  - Lotus 123 worksheet WK1READ Double array and cell 
array 

   
Scientific Data Formats Command Returns 

CDF  - Common Data Format CDFREAD Cell array of CDF records 
FITS - Flexible Image Transport 
System   

FITSREAD Primary or extension 
table data 

HDF  - Hierarchical Data Format HDFREAD HDF or HDF-EOS data 
set 

   
Image Formats Command Returns 

TIFF   - TIFF image IMREAD Truecolor, grayscale or 
indexed image(s). 

PNG  - PNG image IMREAD Truecolor, grayscale or 
indexed image 

HDF  - HDF image IMREAD Truecolor or indexed 
image(s) 

BMP  - BMP image IMREAD Truecolor or indexed 
image 

continued on next page 
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Audio Formats Command Returns 
AU – Next/Sun Sound AUREAD Sound data and sample 

rate 
SND – Next/Sun Sound AUREAD Sound data and sample 

rate 
WAV – Microsoft Wave Sound WAVREAD Sound data and sample 

rate 

   
Movie Formats Command Returns 

AVI  - Movie AVIREAD MATLAB movie 
 

 

 
Line Color, Marker Style, and Line Style Strings – Section 3.3.1 

Line Color Marker Style 
character creates character creates 

b or blue blue line . point 
g or green green line o circle 
r or red red line x x-mark 
c or cyan cyan line + plus 
m or magenta magenta line * star 
y or yellow yellow line s square 
k or black black line d diamond 
  v triangle down 

Line Style ^ triangle up 
character creates < triangle left 

- solid > triangle right 
: dotted p pentagram 
-. dashdot h hexagram 
-- dashed   
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TeX Characters Available in MATLAB – Section 3.4.5 

TeX 
Characters Result 

TeX 
Characters Result

TeX 
Characters Result

\alpha α \upsilon υ \sim ∼ 

\beta β \phi φ \leq ≤ 

\gamma γ \chi Χ \infty ∞ 

\delta δ \psi Ψ \clubsuit ♣ 

\epsilon ε \omega ω \diamondsuit ♦ 

\zeta ζ \Gamma Γ \heartsuit ♥ 

\eta η \Delta ∆ \spadesuit ♠ 

\theta θ \Theta Θ \leftrightarrow ↔ 

\vartheta ϑ \Lambda Λ \leftarrow ← 

\iota ι \Xi Ξ \uparrow ↑ 

\kappa κ \Pi Π \rightarrow → 

\lambda λ \Sigma ∑ \downarrow ↓ 

\mu µ \Upsilon Υ \circ ° 

\nu ν \Phi Φ \pm ± 

\xi ξ \Psi Ψ \geq ≥ 

\pi π \Omega Ω \propto ∝ 

\rho ρ \forall ∀ \partial ∂ 

\sigma σ \exists ∃ \bullet • 

\varsigma ς \ni ∋ \div ÷ 

\tau τ \cong ≅ \neq ≠ 

\equiv ≡ \approx ≈ \aleph ℵ 

\Im ℑ \Re ℜ \wp ℘ 

\otimes ⊗ \oplus ⊕ \oslash ∅ 

\cap ∩ \cup ∪ \supseteq ⊇ 

\supset ⊃ \subseteq ⊆ \subset ⊂ 

\int ∫ \in ∈ \o  

\rfloor  \lceil  \nabla ∇ 

\lfloor  \cdot ⋅ \dots … 

\perp ⊥ \neg ¬ \prime ′ 

\wedge ∧ \times × \0 ∅ 

\rceil  \surd √ \mid  

\vee ∨ \varpi ϖ \copyright  

\langle 〈 \rangle 〉   
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TeX Stream Modifiers – Section 3.4.5 

TeX Stream Modifier Description 

\bf Bold font. 

\it Italics font. 

\sl Oblique font (rarely used). 

\rm Normal font. 

^ Make part of string superscript. 

_ Make part of string subscript. 

\fontname{fontname} Specify the font family to use. 

\fontsize{fontsize} Specify the font size in FontUnits. 
 

 

Projection Types – Section 4.2.1 

Projection Type How to Interpret How to Use 

Orthographic 
Projection 

Think of the “viewing 
volume” as a box whose 
opposite sides are parallel, 
so the distance from the 
camera does not affect the 
size of surfaces in the plot. 

Used to maintain the actual 
size of objects and the 
angle between objects. 
This works well for data 
plots. Real-world objects 
look unnatural.  

Perspective 
Projection 

The “viewing volume” is 
the projection of a pyramid 
where the apex has been 
cut off parallel to the base. 
Objects farther from the 
camera appear smaller. 

Used to create more 
“realistic” views of objects. 
This works best for real-
world objects. Data plots 
may look distorted. 
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Summary of the Axis Function – Section 4.2.2 

Syntax Affect 
axis([xmin xmax ymin 
ymax]) 

Sets the x- and y-axis limits. 

axis([xmin xmax ymin 
ymax zmin zmax cmin 
cmax]) 

Sets the x-, y-, and z-axis limits and 
the color scaling limits. 

v = axis Returns a row vector containing the 
x-, y-, and z-axis limits, i.e., scaling 
factors for the x-, y-, and z-axis. 

axis auto Computes the current axes' limits 
automatically, based on the 
minimum and maximum values of x, 
y, and z data. 

axis ‘auto x’ 
“   “‘auto y’ 
“   “‘auto x’ 
“   “‘auto xz’ 
“   “‘auto yz’ 
“   “‘auto xy’ 

 

Computes the indicated axis limit 
automatically. 

axis manual Freezes scaling of the current limits. 
Used with hold forces subsequent 
plots to use the same limits. 

axis tight  
or  

axis fill 

Sets the axis limits to the range of 
the data. 

axis ij Sets the origin of the coordinate 
system to the upper left corner. The 
i-axis is vertical, increasing from top 
to bottom. The j-axis is horizontal, 
increasing from left to right. 

axis xy This is the default coordinate system 
with the origin at the lower left 
corner. The x-axis is horizontal 
increasing from left to right, and the 
y-axis is vertical increasing from 
bottom to top. 
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Scalar Volume Computation Functions – Section 4.3.1 

Function Action 
FVC = 
isocaps(X,Y,Z,V,ISOVALUE) 

Computes an isosurface end cap geometry 
for data V at isosurface value ISOVALUE 
and returns a structure containing the faces, 
vertices, and colors of the end cap which 
can be passed directly to the patch 
function. 

NC = 
isocolors(X,Y,Z,C,VERTICES) 

Computes the colors of isosurface vertices 
VERTICES using color values C and 
returning them in the array NC. 

N = 
isonormals(X,Y,Z,V,VERTICES) 

Computes the normals (N) of isosurface 
vertices VERTICES by using the gradient of 
the data in V. 

FV = 
isosurface(X,Y,Z,V,ISOVALUE) 

Extracts an isosurface at ISOVALUE in the 
volume V, returning the structure FV 
containing the faces and vertices of the 
isosurface, suitable for use with the patch 
function. 

NFV = reducepatch(P,R) Reduces the number of faces in a patch P 
by a fraction R of the original faces. It 
returns the structure NFV containing the 
new faces and vertices. 

[NX, NY, NZ, NV] = 
reducevolume(X,Y,Z,V,[Rx Ry 
Rz]) 

Reduces the number of elements in a 
volume by only keeping every Rx, Ry, Rz 
element in the corresponding x, y, or z 
direction. 

NFV = shrinkfaces(P,SF) Reduces the size of patch P by shrink factor 
SF, returning a structure NFV containing the 
new faces and vertices. 

W = smooth3(V,’gaussian’, SIZE) 
W = smooth3(V,’box’, SIZE) 

Smooths the data in V according to the 
convolution kernel of size SIZE specified by 
the given string.  

FVC = surf2patch(S) Converts a surface object S into a patch 
object. FVC is a structure containing the 
faces, vertices, and colors of the new patch.  

[NX, NY, NZ, NV] = 
subvolume(X,Y,Z,V,LIMITS) 

Extracts a subset of volume data from V 
using limits LIMITS = [xmin xmax ymin ymax 
zmin zmax]. 

contourslice(X,Y,Z,V,Sx,Sy,Sz) Draws contours in a volume slice plane at 
the points in the vectors Sx, Sy, and Sz. 

patch(x,y,z,C) Creates a patch in the 3-D space of color 
defined by C. 

slice(X,Y,Z,V,Sx,Sy,Sz) Draws a slice plane described by the 
vectors Sx, Sy, Sv, through the volume V. 
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Graphics Objects Creation Functions – Section 7.1 

Graphics 
Object 

Low-Level Creation Function Description 

Figure figure or figure(H) A window to show 
other graphics objects. 

Axes axes, axes(H), or 
axes(‘position’,RECT) 

The axes for showing 
graphs in a figure. 

UIcontrol Uicontrol The user interface 
control is used to 
execute a function in 
response to the user. 

UImenu Uimenu User defined menus in 
the figure. 

UIcontextmenu uicontextmenu('PropertyName1',value1,…) A pop-up menu that 
appears when a user 
right-clicks on a 
graphics object. 

Image image(C) or image(x,y,C) A 2-D bitmap. 
Light light(‘PropertyName’,’PropertyValue’,…) Light sources that 

affect the coloring of 
patch and surface 
objects. 

Line line(x,y) or line(x,y,z) A line in 2-D or 3-D 
plots. 

Patch patch(x,y,c) or patch(x,y,z,c) A polygon that is filled 
with some color or 
texture and has edges. 

Rectangle rectangle, rectangle(‘Position’,[x,y,w,h]), 
or rectangle(‘Curvature’,[x,y],…) 

A 2-D shape; can be 
rectangle or oval 
created within an axes 
object. 

Surface surface(X,Y,Z,C), surface(X,Y,Z),  
surface(Z,C), surface(Z) 
 

3-D representation of 
data plotted as heights 
above the x-y plane. 

Text text(x,y,text_string) or 
text(x,y,z,text_string) 

Character strings used 
in a figure. 
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Universal Object Properties – Section 7.4.3 

Property 
Read 
Only ValueType/Options Format 

BusyAction No [ {queue} | cancel ] row 
ButtonDownFcn No string row 

Children No* handle(s) column 
Clipping No [ {on} | off ] row 

CreateFcn No string row 
DeleteFcn No string row 

HandleVisibility No [ {on} | callback | yes ] row 
HitTest No [ {on} | off ] row 

Interruptible No [ no | {yes} | off | {on} ] row 
Parent No handle one element

Selected No [{off} | on ] row 
SelectionHighlight No [ {no} | yes | {off} | on ] row 

Tag No string row 
Type Yes string row 

UserData No number(s) or string matrix 
Visible No [ {on} | off ] row 

* Although you cannot create new handles in the Children property, you can change the
order of the handles and so change the stacking order of the objects. 

 
Root Properties – Section 7.5.1 

Property Read-
Only 

ValueType/Options Format 

Display Related 
FixedWidthFontName No string row 

ScreenDepth  Yes integer 1 element 
ScreenSize  Yes [left bottom width height] 4-element row 

Related to the State of MATLAB 
CallbackObject Yes handle 1 element 
CurrentFigure No handle 1 element 
ErrorMessage No string row 

PointerLocation  No [x-coordinate,y-coordinate] 2-element row 
PointerWindow  Yes handle 1 element 

ShowHiddenHandles Yes [ on | {off} ] row 
Behavior Related 

Diary No [ on | {off} ] row 
DiaryFile No string row 

Echo No [ on | {off} ] 1 element 
Format No [ short | long | {shortE} | longE | 

hex | bank | + | rat ] 
row 

FormatSpacing No [ {loose} | compact ] row 
Language No string row 

RecursionLimit No integer 1 element 
Units No [ inches | centimeters | normalized 

| points | {pixels} ] 
row 
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Figure Properties – Section 7.5.2 

Property Read 
Only

ValueType/Options Format 

 
Positioning the Figure 

Position No [left bottom height width] 4-element row 
Units  No [ inches | centimeters | normalized |     points |

{pixels} ] 
row 

Style & Appearance 

Color  No [Red Green Blue] or color string RGB vector 
MenuBar  No [{figure} | none] 1 element 
Name  No string row 
NumberTitle  No [ {on} | off ] row 
Resize  No [ {on} | off ] row 
WindowStyle No [ {normal} | modal ] row 

Colormap Controls 

Colormap  No M RGB number triplets M-by-3 matrix 
Dithermap  No N RGB number triplets M-by-3 matrix 
Dithermapmode No [ auto | {manual}] row 
FixedColors  No N RGB number triplets N-by-3 matrix 
MinColormap  No number 1 element 
ShareColors  No [ no | {yes} ] row 

Transparency 

Alphamap No default is 64 values progression from 0 to 1 M-by-1 vector 
Renderer 

BackingStore  No [ {on} | off  ] row 
DoubleBuffer No [ on | {off} ] row 
Renderer  No [ {patinters} | zbuffer | OpenGL ] row 
RendererMode  No [ {auto} | manual ] row 

Current State 

CurrentAxes  No handle 1 element 
CurrentCharacter No character 1 element 
CurrentObject  No handle 1 element 
CurrentPoint  No [x-coordinate, y-coordinate] 2-element row 
SelectionType  Yes [normal | extended | alt | open] row 

 
continued on next page 
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Property Read 
Only

ValueType/Options Format 

 

Properties that Affect the Pointer 

Pointer  No [ crosshair | fullcrosshair | {arrow} | ibeam 
| watch | topl | topr | botl | botr | left | 
top | right | bottom | circle | cross | fleur 
| custom ] 

string 

PointerShapeHotSpot  No (row index, column index) 2-element row 

PointerShapeCData  No 1s where black, 2s where white, NaNs 
where transparent 

16-by-16 

 

Callback Execution 

CloseRequestFcn  No string, function handle, or cell-array 
{‘closereq’} 

string, 1-
element, cell-

array 

KeyPressFcn  No string string 

ResizeFcn  No string string 

UIContextMenu No Number 1 element 

WindowButtonDownFcn  No string string 

WindowButtonMotionFcn No string string 

WindowButtonUpFcn  No string string 

    

    

Controlling Access to Objects 

IntegerHandle  No [ {on} | off ] string 

NextPlot  No [ {add} | replace | replacechildren ] string 

    

    

Properties that Affect Printing 

InvertHardcopy  No [ {on} | off ] string 

PaperOrientation  No [ {portrait} | landscape] string 

PaperPosition  No [left bottom width height] 4-element row 

PaperPositionMode No [ {auto} | manual] string 

PaperSize  No [width height] 2-element row 

PaperType  No [ {usletter} | uslegal | A0 | A1 | A2 | A3 | 
A4 | A5 | B0 | B1 | B2 | B3 | B4 | B5 | 
arch-A | arch-B | arch-C | arch-D | arch-E | 
A | B | C | D | E | tabloid | <custom> ] 

string 

PaperUnits  No [{inches}|centimeters| normalized | points] string 

    

General 

FileName No A name of a FIG-File to be used with 
GUIDE; see Chapter 10.  

string 
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Axis Properties – Section 7.5.3 

Property Read
Only 

ValueType/Options Format 

Properties Affecting Transparency and Lighting 
ALim No   
ALimMode No [ {auto} | manual ]  
AmbientLightColor No   
    

Properties Controlling Boxes and Tick Marks 
Box No [ on | {off} ] row 
TickLength No [ 2-Dticklength 3-Dticklength ] 2-element 

row 
TickDir No [ {in} | out ]  
TickDirMode No [ {auto} | manual ]  
XMinorTick No [ on | {off} ] row 
XTick No numbers  
XTickLabel No string matrix 
XTickLabelMode No [ {auto} | manual ] row 
XTickMode No [ {auto} | manual ] row 
    

Properties Affecting Character Formats 
FontAngle No [ {normal} | italic | oblique ]  
FontName No name of desired font string 
FontSize No number 1 element 
FontUnits No [ inches | centimeters | normalized

| {points} | pixels ] 
string 

FontWeight No [ light | {normal} | demi | bold ] string 
    

continued on next page 
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Property Read 
Only

ValueType/Options Format 

Properties Determining Axis Location and Position 
Position No [left bottom width height] 4-element 

row 
Units No [ inches | centimeters | {normalized}

| points | pixels | characters ] 
 

XAxisLocation No [ top | {bottom} ] string 
YaxisLocation No [ {left} | right ] row 
CurrentPoint No mouse click near and far x, y, z axis

locations  
2-by-3 matrix 

Title No handle of text object 1 element 
    

Properties Affecting Grids, Lines, and Color 
Color No [ Red Green Blue ] or color string  
ColorOrder No M RGB number triplets M-by-3 

matrix 
CLim No [ cmin cmax ] 2-element 

row 
CLimMode No [ {auto} | manual ] string 
DrawMode No [ {normal} | fast ]  
XGrid No [ on | {off} ]  
GridLineStyle No [ - | -- | {:} | -. | none ] string 
Layer No [ top | {bottom} ] string 
LineStyleOrder No string array of linestyle symbol(s) matrix 
LineWidth No number 1 element 
MinorGridLineStyle No [ - | -- | {:} | -. | none ]  
XColor No [ Red Green Blue ] or color string row 
Xform No 4 x 4 Perspective Transformation 4 x 4 matrix
XLabel No Handle of text object 1 element 
XMinorGrid No [ on | {off} ] row 
NextPlot No [ add | {replace} | replacechildren ] string 
    

Properties Affecting Axis Limits 
DataAspectRatio No [ x y z ] relative ratio of axis lengths 2-element 

row 
DataAspectRatioMode  No [ {auto} | manual ] string 
PlotBoxAspectRatio No [ x y z ] relative ratios of box lengths 3-element 

row 
PlotBoxAspectRatioMode No [ {auto} | manual ]  
XDir No [ {normal} | reverse ] row 
XLim No [xmin   xmax] 2-element 

row 
XLimMode No [ {auto} | manual ] row 
XScale No [ {linear} | log ] row 
    

    

    

    
continued on next page 
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Property Read 
Only

ValueType/Options Format 

Axes Properties Related to Viewing Perspective 
CameraPosition No [ x y z ] numbers 3-element 

row 
CameraPositionMode No [ {auto} | manual ] string 
CameraTarget No [ x y z ] numbers 3-element 

row 
CameraTargetMode No [ {auto} | manual ] string 
CameraUpVector No [ x y z ] numbers 3-element 

row 
CameraUpVectorMode No [ {auto} | manual ] string 
CameraViewAngle No number 1 element 
CameraViewAngleMode No [ {auto} | manual ] string 
Layer No [ top | {bottom} ] string 
Projection No [ {orthographic} | perspective ]  
View No [ DegreesAzimuth DegreesElevation ] 2-element 

row 
 

Line Properties – Section 7.5.4 

Property Read
Only

ValueType/Options Format 

Color No [Red Green Blue] or color string RGB row 
EraseMode No  [{normal} | background | xor | none ] row 
LineStyle No [{-} | -- | : | -. | none ] row 
LineWidth No number 1 element 
Marker No [+ | o | * | . | x | square | diamond | v

| ^ | > | < | pentagram | hexagram |
{none} ] 

row 

MarkerSize No number 1 element 
MarkerEdgeColor No [none | {auto} ] -or- a ColorSpec row 
MarkerFaceColor No [{none} | auto ] -or- a ColorSpec row 
XData No numbers vector 
YData No numbers vector 
ZData No numbers vector 
     

 

Rectangle Properties – Section 7.5.5 

Property Read
Only

ValueType/Options Format 

Curvature No [x, y] 1 or 2 element
EraseMode No [ {normal} | background | xor | none ] row 
FaceColor No ColorSpec | {none} row 
EdgeColor No {ColorSpec} | none row 
LineStyle No  [ {-} | -- | : | -. | none ] row 
LineWidth No number 1 element 
Position No [x,y,width,height] vector 
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Patch Properties – Section 7.5.6 

Property Read 
Only

ValueType/Options Format 

Properties Defining Patch Objects 
Faces No permutation of 1:M N-by-V matrix 
Vertices No numbers x-, y-, z-coordinates M-by-3 matrix 
XData No coordinates of the points at

the vertices 
vector or 
matrix 

YData No coordinates of the points at
the vertices 

vector or 
matrix 

ZData No coordinates of the points at
the vertices 

vector or 
matrix 

    
Properties Specifying Lines, Color, and Markers 

CData No numbers vector 
CDataMapping No [ direct | {scaled}] row 
EdgeColor No [ none | {flat} | interp ] or

[Red Green Blue] or color
string 

row 

FaceColor No [ none | {flat} | interp ] or
[Red Green Blue] or color
string 

row 

FaceVertexCData No RGB per patch, face, or vertexmatrix 
LineStyle No [ {'-'} | '--' | '-.' | ':' | 'none'] row 
LineWidth No number 1 element 
Marker No [ 'square' | 'diamond' | 'v' | '^'

| '>' | '<' | '.' | 'pentagram' |
'hexagram' | 'o' | 'x' | '+' | '*' |
{none}] 

row 

MarkerEdgeColor No [ none | {auto} | [R G B] |
color_string] 

row 

MarkerFaceColor No [ {none} | auto | [R G B] |
color_string] 

row 

MarkerSize No number 1 element 
    

Properties Affecting Lighting and Transparency 
    
AmbientStrength No numbers vector 
BackFaceLighting No [ unlit | lit | {reverselit} ] row 
FaceLighting No [ none | {flat} | gouraud |

phong ] 
row 

DiffuseStrength No number 1 element 
EdgeLighting No [ {none} | {flat} | gouraud |

phong ] 
row 

SpecularColorReflectance No number ranging from 0 to 1 1 element 
SpecularExponent No number > or = to 1 1 element 
SpecularStrength No number ranging from 0 to 1 1 element 
VertexNormals No numbers M-by-3 matrix 
NormalMode No [ {auto} | manual ] row 
EraseMode No [ {normal} | none | xor |

background ] 
row 

AlphaDataMapping No [ none |direct | {scaled} ] row 
EdgeAlpha No [{scalar = 1} | flat | interp ] 1 element or

string 
FaceAlpha No [{scalar = 1} | flat | interp ] 1 element or

string 
FaceVertexAlphaData No transparency data 1 element or

M-by-1 matrix 
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Surface Properties – Section 7.5.7 

Property Read 
Only

ValueType/Options Format 

Properties that Define a Surface 
XData No coordinates of the points at the vertices vector or 

matrix 
YData No coordinates of the points at the vertices vector or 

matrix 
ZData No coordinates of the points at the vertices vector or 

matrix 
    

Properties that Specify Lines, Colors, and Markers 
CData No numbers vector 
CDataMapping No [ direct | {scaled}] row 
LineStyle No [ {'-'} | '--' | '-.' | ':' | 'none'] row 
LineWidth No number 1 element 
EdgeColor No [ none | {flat} | interp ] or 

[Red Green Blue] or color string 
row 

FaceColor No [ none | {flat} | interp | texturemap ] or 
[Red Green Blue] or color string 

row 

Marker No [ 'square' | 'diamond' | 'v' | '^' | '>' | '<' | 
'.' | 'pentagram' | 'hexagram' | 'o' | 'x' | 
'+' | '*' | {none}] 

row 

MarkerEdgeColor No [ none | {auto} | [R G B] | color_string] row 
MarkerFaceColor No [ {none} | auto | [R G B] | color_string] row 
MarkerSize No number 1 element 
    

Properties Affecting Lighting and Transparency 
AmbientStrength No numbers vector 
BackFaceLighting No [ unlit | lit | {reverselit} ] row 
DiffuseStrength No number 1 element 
EdgeLighting No [ {none} | {flat} | gouraud | phong ] row 
FaceLighting No [ none | {flat} | gouraud | phong ] row 
NormalMode No [ {auto} | manual ] row 
SpecularColorReflectance No number ranging from 0 to 1 1 element 
SpecularExponent No number > or = to 1 1 element 
SpecularStrength No number ranging from 0 to 1 1 element 
VertexNormals No numbers M-by-3 

matrix 
AlphaData No default = 1 (opaque) M-by-N 

matrix of
double or
uint8 

AlphaDataMapping No [ none |direct | {scaled} ] row 
EdgeAlpha No [{scalar = 1} | flat | interp ] 1 element

or string 
FaceAlpha No [{scalar = 1} | flat | interp ] 1 element

or string 
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Image Properties – Section 7.5.8 

Property Read
Only

ValueType/Options Format 

General Properties of the Image Object 
CData No numbers matrix or M-

by-N-by-3 
array 

CDataMapping No [ {direct} | scaled] row 
XData No [min, max] default = [1, size(CData,2)] 2-element 

vector 
YData No [min max] default = [1, size(CData, 1)] 2-element 

vector 
    

Properties Affecting Transparency 
AlphaData No default = 1 (opaque) M-by-N matrix

of double or
uint8 

AlphaDataMapping No [ {none} |direct | scaled ] row 
 

Text Properties – Section 7.5.9 

Property Read
Only

ValueType/Options Format 

Color No [Red Green Blue] or color string RGB row 
Editing No [{off} | on ] row 

EraseMode No [{normal} | none | xor | background ] row 
Extent Yes [left bottom width height] 4-element 

row 
FontAngle  No [ {normal} | italic | oblique ] 1 element 
FontName No string row 
FontSize No numbers 1 element 
FontUnits No [ inches | centimeters | normalized | 

points | pixels | {data} ] 
row 

FontWeight No [ light | {normal} | demi | bold ] row 
HorizontalAlignment No [ {left} | center | right ] row 

Interpreter No [ {tex} | none ] row 
Position No [x y z] coordinates row 
Rotation No [AngleInDegrees] 1 element 

String No string row 
Units No [ inches | centimeters | normalized | 

points | pixels | {data} ] 
row 

VerticalAlignment No [top | cap |{middle}| baseline | bottom] row 
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Alpha Properties – Section 8.4.1 

Property Read
Only

ValueType/Options Format 

AlphaData No m-by-n matrix of transparency data 
for image and surface objects 

matrix 

AlphaDataMapping No none | direct | scaled 
none =  default for images 
scaled = default for patches 

row 

FaceAlpha No Transparency for faces row or scalar 

EdgeAlpha  No Transparency for edges row or scalar 

FaceVertexAlphaData No Alpha data property for patches row or scalar 

ALim No Alpha axis limits vector 

ALimMode No Alpha axis limits mode row 

Alphamap No Figure Alphamap matrix 
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Uicontrol Properties – Section 10.3.2 

Property Read 
Only

ValueType/Options Format 

BackgroundColor No [Red Green Blue] or color string RGB row 
ButtonDownFcn No string row 

CData No  matrix 
CallBack No string row 
Enable No [ on | {off} | inactive ] row 
Extent Yes [0,0,width,height] row 

FontAngle No [ {normal} | italic | oblique ] row 
FontName No string row 
FontSize No number 1 element 
FontUnits No {points} | normalized | inches | 

centimeters | pixels 
row 

FontWeight No [ light | {normal} | demi | bold ] row 
ForegroundColor No [Red Green Blue] or color string RGB row 

HorizontalAlignment No [ left | {center} | right ] row 
Interruptible No {on} | off row 

ListBoxTop No number 1 element 
Max No number 1 element 
Min No number 1 element 

Position No [left bottom width height] 4-element 
row 

String No string string matrix 
Style No [ {pushbutton} | radiobutton | 

togglebutton | checkbox | edit | text | 
slider | frame | popupmenu | list box]

row 

SliderStep No number 1 element 
TooltipString No string row 

Units No [ inches | centimeters | normalized | 
points | {pixels} ] 

row 

UIContextMenu  handle 1 element 
Value No number 1 element 
Tag No string row 

UserData No string(s) or number(s) matrix 
Visible No [ {on} | off ] row 
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Uimenu Properties – Section 10.4.1 

Property Read 
Only 

ValueType/Options Format 

Accelerator No string row 
CallBack No string row 
Checked No [ on | {off} ] row 
Children Yes object_handles column 
Enable No [ on | {off} | inactive ] row 

ForegroundColor No [Red Green Blue] or color string RGB row 
Label No string row 

Position No [left bottom width height] 4-element 
row 

Separator No [ on {off} ] row 
Interruptible No [{on} | off ] row 

Tag No string row 
UserData No string(s) or number(s) matrix 
Visible No [ {on} | off ] row 
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