
Graphics and GUIs
with

MATLAB
®

T H I R D E D I T I O N

© 2003 by Chapman & Hall/CRC

demoalignment.m

%demoedittext

h.fig=figure('Color','white');

h.textbox=uicontrol('Style','text',...

'units','normalized',...

'position',[.4 .5 .2 .05],...

'String','Left Aligned',...

'HorizontalAlignment','left')

h.checkbox=uicontrol('Style','text',...

'units','normalized',...

'position',[.4 .4 .2 .05],...

'String','Center Aligned',...

'HorizontalAlignment','center')

h.checkbox=uicontrol('Style','text',...

'units','normalized',...

'position',[.4 .3 .2 .05],...

'String','Right Aligned',...

'HorizontalAlignment','right')

fun_pltg2.fig

hgS_050200:[1x1 struct array]

			[1x6 char array]

			[1x1 double array]

			[1x1 struct array]			@ =
	Units : [1x10 char array]
	Color : [1x3 double array]
	Colormap : [64x3 double array]
	FileName : [1x61 char array]
	IntegerHandle : [1x3 char array]
	InvertHardcopy : [1x2 char array]
	MenuBar : [1x4 char array]
	Name : [1x24 char array]
	NumberTitle : [1x3 char array]
	PaperPosition : [1x4 double array]
	Position : [1x4 double array]
	Resize : [1x3 char array]
	HandleVisibility : [1x8 char array]
	Tag : [1x7 char array]
	ApplicationData : [1x1 struct array]

			[10x1 struct array]			@ =

10x1 struct array with fields:
	type
	handle
	properties
	children
	special

			[0x0 double array]

builtindialogs.m

%built in dialog boxes

%msgbox('My Error Message','Error Window Name','error');

%msgbox('My Help Message','Help Window Name','help');

%msgbox('My Warning Message','Warning Window Name','warn');

%question_ans = questdlg('Do you want a hard copy?',...

%			'OUTPUT','Yes','No','No')

%if strcmp(question_ans,'Yes')

%	print

%end

%answers = inputdlg({'My first question',...

% 'My 2nd question',...

% 'My 3rd question',},...

% 'Window Name',[1 2 1],...

% {'defAns1','defAns2','defAns3'});

%[filename,pathname] = uigetfile('*.m',...

% 'UIGETFILE TITLE',...

% 100,100);

[filename,pathname] = uiputfile('Default.m',...

 'UIPUTFILE TITLE');

fun_pltg.fig

hgS_050200:[1x1 struct array]

			[1x6 char array]

			[1x1 double array]

			[1x1 struct array]			@ =
	Units : [1x10 char array]
	Color : [1x3 double array]
	Colormap : [64x3 double array]
	FileName : [1x60 char array]
	IntegerHandle : [1x3 char array]
	InvertHardcopy : [1x2 char array]
	MenuBar : [1x4 char array]
	Name : [1x24 char array]
	NumberTitle : [1x3 char array]
	PaperPosition : [1x4 double array]
	Position : [1x4 double array]
	Resize : [1x3 char array]
	HandleVisibility : [1x8 char array]
	Tag : [1x7 char array]
	ApplicationData : [1x1 struct array]

			[8x1 struct array]			@ =

8x1 struct array with fields:
	type
	handle
	properties
	children
	special

			[0x0 double array]

democheckbox.m

%democheckbox

h.radio1=uicontrol('Style','radio',...

'units','normalized',...

'position',[.3 .5 .15 .05],...

'String','Radio Button')

h.radio2=uicontrol('Style','radio',...

'units','normalized',...

'position',[.5 .6 .15 .05],...

'String','Radio Button')

h.radio3=uicontrol('Style','radio',...

'units','normalized',...

'position',[.7 .5 .15 .05],...

'String','Radio Button')

h.radio4=uicontrol('Style','radio',...

'units','normalized',...

'position',[.5 .3 .15 .05],...

'String','Radio Button')

demoedittext.m

%demoedittext

h.fig=figure('Color','white');

h.textbox=uicontrol('Style','edit',...

'units','normalized',...

'position',[.1 .5 .15 .05],...

'String','Editable Text')

h.checkbox=uicontrol('Style','edit',...

'units','normalized',...

'position',[.4 .5 .15 .05],...

'String','Editable Text')

h.checkbox=uicontrol('Style','edit',...

'units','normalized',...

'position',[.7 .5 .15 .05],...

'String','Edited Text')

demoenable.m

h.fig=figure('Color','white');

h.tb1=uicontrol('Style','toggle',...

'units','normalized',...

'position',[.1 .8 .13 .1],...

'String','Enable','FontWeight','bold')

h.tb2=uicontrol('Style','toggle',...

'units','normalized',...

'position',[.4 .8 .13 .1],...

'String','Enable','FontWeight','bold','Enable','off')

demofonts.m

%demoedittext

h.fig=figure('Color','white');

h.t1=uicontrol('Style','edit',...

'units','normalized',...

'position',[.1 .4 .15 .05],...

'String','italic',...

'FontAngle','italic')

h.t2=uicontrol('Style','edit',...

'units','normalized',...

'position',[.3 .4 .15 .05],...

'String','oblique',...

'FontAngle','oblique')

h.t3=uicontrol('Style','edit',...

'units','normalized',...

'position',[.5 .4 .15 .05],...

'String','normal',...

'FontAngle','normal')

h.t4=uicontrol('Style','edit',...

'units','normalized',...

'position',[.1 .6 .15 .05],...

'String','normal',...

'FontWeight','normal')

h.t5=uicontrol('Style','edit',...

'units','normalized',...

'position',[.3 .6 .15 .05],...

'String','light',...

'FontWeight','light')

h.t6=uicontrol('Style','edit',...

'units','normalized',...

'position',[.5 .6 .15 .05],...

'String','bold',...

'FontWeight','bold')

h.t7=uicontrol('Style','edit',...

'units','normalized',...

'position',[.7 .6 .15 .05],...

'String','demi',...

'FontWeight','demi')

demoframe.m

%demoframe

h.fig=figure('Color','white');

h.checkbox1=uicontrol('Style','checkbox',...

'units','normalized',...

'position',[.1 .8 .16 .05],...

'String','Display Results')

h.checkbox2=uicontrol('Style','checkbox',...

'units','normalized',...

'position',[.1 .7 .15 .05],...

'String','Print Results')

h.textbox1=uicontrol('Style','text',...

'units','normalized',...

'position',[.1 .6 .2 .05],...

'String','Status Bar')

h.frame1=uicontrol('Style','frame',...

'units','normalized',...

'position',[.5 .6 .3 .3])

h.frame2=uicontrol('Style','frame',...

'units','normalized',...

'position',[.55 .5 .2 .08])

h.frame3=uicontrol('Style','frame',...

'units','normalized',...

'position',[.3 .05 .3 .3])

h.frame4=uicontrol('Style','frame',...

'units','normalized',...

'position',[.35 .06 .2 .08])

h.checkbox3=uicontrol('Style','checkbox',...

'units','normalized',...

'position',[.4 .25 .16 .05],...

'String','Display Results')

h.checkbox4=uicontrol('Style','checkbox',...

'units','normalized',...

'position',[.4 .2 .15 .05],...

'String','Print Results')

h.textbox2=uicontrol('Style','text',...

'units','normalized',...

'position',[.36 .065 .15 .05],...

'String','Status Bar')

demolistbox.m

h.fig=figure('Color','white');

h.listbox1=uicontrol('Style','listbox',...

'units','normalized',...

'position',[.1 .8 .16 .15],...

'String','Option 1|Option 2|Option 3|Option 4|Option 5')

h.listbox2=uicontrol('Style','listbox',...

'units','normalized',...

'position',[.4 .8 .16 .15],...

'String','Option 1|Option 2|Option 3|Option 4|Option 5')

h.listbox3=uicontrol('Style','listbox',...

'units','normalized',...

'position',[.7 .8 .16 .15],...

'String','Option 1|Option 2|Option 3|Option 4|Option 5')

demolistboxtop.m

u = uicontrol('style','listbox',...

 'string','Option1|Option2|Option3|Option4|Option5',...

 'position',[10 10 75 50]);

demopbutt.m

h.fig=figure('Color','white');

h.pb1=uicontrol('Style','pushbutton',...

'units','normalized',...

'position',[.1 .8 .13 .1],...

'String','Push Me!','FontWeight','bold')

h.pb2=uicontrol('Style','pushbutton',...

'units','normalized',...

'position',[.4 .8 .13 .1],...

'String','Push Me!','FontWeight','bold')

demopopup.m

h.fig=figure('Color','white');

h.popup1=uicontrol('Style','popup',...

'units','normalized',...

'position',[.1 .8 .16 .05],...

'String','Pop-Up Menu|Option 2|Option 3')

h.popup2=uicontrol('Style','popup',...

'units','normalized',...

'position',[.4 .8 .16 .05],...

'String','Pop-Up Menu|Option 2|Option 3')

h.popup3=uicontrol('Style','popup',...

'units','normalized',...

'position',[.7 .8 .16 .05],...

'String','Pop-Up Menu|Option 2|Option 3')

demoradio.m

%democheckbox

h.fig=figure('Color','white');

h.radio1=uicontrol('Style','radio',...

'units','normalized',...

'position',[.3 .5 .15 .05],...

'String','Radio Button')

h.radio2=uicontrol('Style','radio',...

'units','normalized',...

'position',[.5 .6 .15 .05],...

'String','Radio Button')

h.radio3=uicontrol('Style','radio',...

'units','normalized',...

'position',[.7 .5 .15 .05],...

'String','Radio Button')

h.radio4=uicontrol('Style','radio',...

'units','normalized',...

'position',[.5 .4 .15 .05],...

'String','Radio Button')

demoslider.m

%democheckbox

h.fig=figure('Color','white');

h.s1=uicontrol('Style','slider',...

'units','normalized',...

'position',[.3 .6 .15 .05],...

'String','Radio Button')

h.s2=uicontrol('Style','slider',...

'units','normalized',...

'position',[.3 .4 .15 .05],...

'String','Radio Button')

h.s3=uicontrol('Style','slider',...

'units','normalized',...

'position',[.3 .2 .15 .05],...

'String','Radio Button')

demotoggle.m

h.fig=figure('Color','white');

h.tb1=uicontrol('Style','toggle',...

'units','normalized',...

'position',[.1 .8 .13 .1],...

'String','Toggle Me!','FontWeight','bold')

h.tb2=uicontrol('Style','toggle',...

'units','normalized',...

'position',[.4 .8 .13 .1],...

'String','Toggle Me!','FontWeight','bold')

demouimenu.m

%uimenudemo

h_fig=figure('MenuBar','none','Color','white')

h_m=uimenu(h_fig,'Label','Object')

h_n=uimenu(h_fig,'Label','Extras')

h_m1=uimenu(h_m,'Label','Axes Properties', 'Enable','on')

 h_m1_1=uimenu(h_m1,'Label','&Box')

 h_m1_2=uimenu(h_m1,'Label','BGrid','Accelerator','B')

h_m2=uimenu(h_m,'Label','Images')

h_m3=uimenu(h_m,'Label','Line')

 h_m3_1=uimenu(h_m3,'Label','Color')

 h_m3_2=uimenu(h_m3,'Label','Style')

 h_m3_2_1=uimenu(h_m3_2,'Label','Solid',...

 'Checked','on')

 h_m3_2_2=uimenu(h_m3_2,'Label','Dashed')

 h_m3_2_3=uimenu(h_m3_2,'Label','Dotted')

 h_m3_2_4=uimenu(h_m3_2,'Label','Dash-Dotted')

h_m4=uimenu(h_m,'Label','Surface')

h_m5=uimenu(h_m,'Label','Text')

h_m6=uimenu(h_m,'Label','Delete','Separator','on')

demouimenusep.m

%uimenudemo

h_fig=figure('MenuBar','none','Color','white')

h_m=uimenu(h_fig,'Label','File')

h_n=uimenu(h_fig,'Label','Extras')

h_m1=uimenu(h_m,'Label','Info')

h_m2=uimenu(h_m,'Label','Save','Separator','on')

h_m3=uimenu(h_m,'Label','Save As...')

h_m4=uimenu(h_m,'Label','Print...','Separator','on')

h_m5=uimenu(h_m,'Label','Quit','Separator','on')

%h_m6=uimenu(h_m,'Label','Delete','Separator','on')

demouimenuseparator.m

%uimenudemo

h_fig=figure('MenuBar','none','Color','white')

h_m=uimenu(h_fig,'Label','File')

h_n=uimenu(h_fig,'Label','Extras')

h_m1=uimenu(h_m,'Label','Info')

h_m2=uimenu(h_m,'Label','Save','Separator','on')

h_m3=uimenu(h_m,'Label','Save As...')

h_m4=uimenu(h_m,'Label','Print...','Separator','on')

h_m5=uimenu(h_m,'Label','Quit','Separator','on')

%h_m6=uimenu(h_m,'Label','Delete','Separator','on')

dragbox.m

function [rect] = dragbox(unitsval)
% DRAGBOX
%
% Usage:
% [rect] = dragbox(units_string);
% where,
%
% rect: is the RECT vector over which the
% drag box is defined ([left bottom width height]).
% units_string: is a string containing the name
% of any of the legal units that
% the figure can have.
%
% Example
% figure
% [rect] = dragbox('normalized')
% Wait for mouse button to be pressed.
waitforbuttonpress;

% Determine figure and get its Units.
h_fig = gcf;
original_figunits = get(h_fig,'Units');

% Specify Pixels for units and get location at
% which mouse button is pressed.
set(h_fig,'Units','Pixels');
firstpoint = get(h_fig,'CurrentPoint');

% Create the drag box.
rbbox([firstpoint 0 0],firstpoint);

% Get the location at which button is released.
lastpoint = get(h_fig,'CurrentPoint');

% Calculate a standard rect vector from two locations.
rect = [min(firstpoint,lastpoint),abs(firstpoint-lastpoint)];

% Normalize the rect vector to the figure.
figpos = get(h_fig,'Position');
rect = rect./[figpos(3:4) figpos(3:4)];

% Put the rect vector in the specified units.
if nargin == 0
 unitsval = original_figunits;
end

if ~strcmp(lower(unitsval(1)),'n')
 set(h_fig,'Units',unitsval);
 figpos = get(h_fig,'Position');
 rect = rect.*[figpos(3:4) figpos(3:4)];
end

% Put the figure back in the original units.
set(h_fig,'Units',original_figunits);

equeue.m

%event queue code

h_fig_1 = figure('position',[100 100 100 100],...

 'menubar','none',...

	'windowbuttondownfcn','disp(''Fig1 WBDF'')',...

	'windowbuttonupfcn','disp(''Fig1 WBUF'')',...

	'windowbuttonmotionfcn',...

 'disp(''Fig1 WBMF'')',...

	'buttondownfcn','disp(''Fig1 BDF'')');

h_ui = uicontrol('style','pushbutton',...

	'position',[25 25 50 50],...

	'callback','disp(''UI CallBack'')',...

	'buttondownfcn','disp(''UI BDF'')');

h_fig_2 = figure('position',[200 100 100 100],...

 'menubar','none',...

	'windowbuttondownfcn','disp(''Fig2 WBDF'')',...

	'windowbuttonupfcn','disp(''Fig2 WBUF'')',...

	'windowbuttonmotionfcn',...

 'disp(''Fig2 WBMF'')',...

	'buttondownfcn','disp(''Fig2 BDF'')');

framingdemo.m

%framing demo

h_fig = figure('position',[200 200 120 100],...

 'resize','off',...

 'numbertitle','off',...

 'MenuBar','none',...

 'Color','white')

% Create frame object that covers entire figure region.

h_frame = uicontrol(h_fig,'style','frame',...

 'position',[0 0 120 100])

% Create overall label.

h_stext = uicontrol(h_fig,'style','text',...

 'string','Waveform Type',...

 'position',[10 75 100 20]);

% Create set of three radio buttons.

h_radio(1) = uicontrol(h_fig,'style','radio',...

 'string','Square Wave',...

 'position',[10 55 100 20],...

 'value',1);

h_radio(2) = uicontrol(h_fig,'style','radio',...

 'string','Saw Tooth Wave',...

 'position',[10 30 100 20]);

h_radio(3) = uicontrol(h_fig,'style','radio',...

 'string','Sinusoidal Wave',...

 'position',[10 5 100 20]);

fun_plt1.m

% M-File: fun_plt1.m

% All UIcontrol items are in normalized units so

% that the user can resize the screen as desired.

% Create the figure object and store its handle.

h_fig = figure('MenuBar','none');

% Create the axes object in the upper half of the figure.

axes('position',[.07 .5 .86 .4],'box','on')

% Create the two frames. The first lies below all uiobjects

% while the second is used to make a border for the status/

% message window.

h_frame_1 = uicontrol(h_fig,...

		'Position',[0 0 1 0.4],...

		'Style','frame',...

		'Units','normalized');

h_frame_2 = uicontrol(h_fig,...

		'Position',[0.08 0.05 0.84 0.11],...

		'Style','frame',...

		'Units','normalized');

% Create the callback for check box labeled "Box".

% This callback will determine the value of the

% checkbox object, whose handle is stored in h_box,

% and then set the current axes property accordingly.

% Finally, it displays a message by setting the

% string of the static text uicontrol whose handle

% is stored in h_status (created later).

box_clbk_str = ['boxstatus = get(h_box,''value'');'...

 'if boxstatus == 0;'...

 ' set(gca,''box'',''off'');'...

 'else;'...

 ' set(gca,''box'',''on'');'...

 'end;'...

 'boxstatus = get(gca,''box'');'...

 'set(h_status,''string'',' ...

 '[''The box property is '' boxstatus]);'];

% Create the check box, setting its value to 1

% since we initialized the axes figure this way.

h_box = uicontrol(h_fig,...

		'CallBack',box_clbk_str,...

		'Position',[0.7 0.2 0.16 0.07],...

		'String','Box',...

		'Style','checkbox',...

		'Units','normalized',...

		'Value',[1]);

% Create the callback for the check box labeled "Grid"

% This callback will determine the value of the

% checkbox object, whose handle is stored in h_grid,

% and then use the grid function accordingly.

% Finally it displays a message by setting the

% string of the static text uicontrol whose handle

% is stored in h_status (created later).

grid_clbk_str = ['gridstatus = get(h_grid,''value'');'...

 'if gridstatus == 0;'...

 ' grid off;'...

 'else;'...

 ' grid on;'...

 'end;'...

 'gridstatus = get(gca,''xgrid'');'...

 'set(h_status,''string'',' ...

 '[''The grid is '' gridstatus]);'];

% Create the grid check box.

h_grid = uicontrol(h_fig,...

		'CallBack',grid_clbk_str,...

		'Position',[0.7 0.3 0.16 0.07],...

		'String','Grid',...

		'Style','checkbox',...

		'Units','normalized');

% Create the callback that will plot the function any

% time the x data values or y function has been altered

% by the user. Some error checking is performed just

% in case the user types in values or a function that

% cannot be plotted.

plot_clbk_str = [...

	'err_ind = 0;'...

	'eval([''x = '' get(h_xdata,''string'') '';''],'...

	' ''err_ind=1;'');'...

	'if err_ind == 0;'...

	' eval([''y = '' get(h_ydata,''string'') '';''],'...

	' ''err_ind=2;'');'...

	'end;'...

	'if err_ind == 0;'...

	' plot(x,y);'...

	' boxstatus = get(h_box,''value'');'...

	' if boxstatus == 0;'...

 	' set(gca,''box'',''off'');'...

	' else;'...

	' set(gca,''box'',''on'');'...

	' end;'...

	' gridstatus = get(h_grid,''value'');'...

	' if gridstatus == 0;'...

	' grid off;'...

	' else;'...

	' grid on;'...

	' end;'...

	' set(h_status,''string'',''Function Plotted'');'...

	'elseif err_ind == 1;'...

	' set(h_status,''string'',''Error defining x'');'...

	'elseif err_ind == 2;'...

	' set(h_status,''string'',''Error defining y(x)'');'...

	'end'];

% Create the edit boxes for the x and y data. Both of

% these edit boxes will use the previous callback. In

% addition, initialize them with valid inputs.

h_ydata = uicontrol(h_fig,...

		'CallBack',plot_clbk_str,...

		'Position',[0.25 0.2 0.39 0.07],...

		'String','(x*.1).^2',...

		'Style','edit',...

		'Units','normalized');

h_xdata = uicontrol(h_fig,...

		'CallBack',plot_clbk_str,...

		'Position',[0.25 0.3 0.39 0.07],...

		'String','-10:10',...

		'Style','edit',...

		'Units','normalized');

% Create a static text object that will be used

% to display messages to the user.

h_status = uicontrol(h_fig,...

		'CallBack','guiplot1(''h_uic_12'');',...

		'Position',[0.1 0.07 0.8 0.07],...

		'String','Status Window',...

		'Style','text',...

		'Units','normalized');

% Create the "x = " and "y(x)=" static text objects.

% We do not need to store their handles since these

% objects are neither manipulated nor queried by other

% object callbacks.

uicontrol(h_fig,...

		'Position',[0.08 0.3 0.15 0.07],...

		'String','x =',...

		'Style','text',...

		'Units','normalized');

uicontrol(h_fig,...

		'Position',[0.08 0.2 0.15 0.07],...

		'String','y(x) =',...

		'Style','text',...

		'Units','normalized');

% Initialize the plot with the initial x and y data

% by evaluating the callback string that would be

% evaluated if the x or y data changes.

eval(plot_clbk_str);

fun_plt2.m

function fun_plt2(command_str)

% FUN_PLT2

%

% This function demonstrates how global variables

% can be used to create a GUI in a function.

if nargin == 0

 command_str = 'initialize';

end

% DEFINE VARIABLES THAT WILL STORE THE HANDLES AS GLOBAL

global h_box h_grid h_ydata h_xdata h_status

% INITIALIZE THE GUI SECTION.

if strcmp(command_str,'initialize')

 % Make sure that the GUI has not been already

 % initialized in another existing figure.

 h_figs = get(0,'children');

 fig_exists = 0;

 for fig = h_figs'

 fig_exists = strcmp(get(fig,'name'),...

 'Function Plotter');

 if fig_exists

 figure(fig); % Bring figure to front of screen.

 return; % No need to reinitialize, exit function.

 end

 end

 h_fig = figure('name','Function Plotter');

	axes('position',[.07 .5 .86 .4])

	% Create the two frames.

	uicontrol(h_fig,...

		'Position',[0 0 1 0.4],...

		'Style','frame',...

		'Units','normalized');

	uicontrol(h_fig,...

		'Position',[0.08 0.05 0.84 0.11],...

		'Style','frame',...

		'Units','normalized');

	% Create the "Box" check box.

	h_box = uicontrol(h_fig,...

		'CallBack','fun_plt2(''Set Box'');',...

		'Position',[0.7 0.2 0.16 0.07],...

		'String','Box',...

		'Style','checkbox',...

		'Units','normalized',...

		'Value',[1]);

	% Create the check box labeled "Grid".

	h_grid = uicontrol(h_fig,...

		'CallBack','fun_plt2(''Set Grid'');',...

		'Position',[0.7 0.3 0.16 0.07],...

		'String','Grid',...

		'Style','checkbox',...

		'Units','normalized');

	% Create the edit boxes for the x data.

	h_ydata = uicontrol(h_fig,...

		'CallBack','fun_plt2(''Plot Function'');',...

		'Position',[0.25 0.2 0.39 0.07],...

		'String','(x*.1).^2',...

		'Style','edit',...

		'Units','normalized');

	% Create the edit boxes for the y data.

	h_xdata = uicontrol(h_fig,...

		'CallBack','fun_plt2(''Plot Function'');',...

		'Position',[0.25 0.3 0.39 0.07],...

		'String','-10:10',...

		'Style','edit',...

		'Units','normalized');

	% Create a static text object that will be used

	% to display messages to the user.

	h_status = uicontrol(h_fig,...

		'Position',[0.1 0.07 0.8 0.07],...

		'String','Status Window',...

		'Style','text',...

		'Units','normalized');

	% Create the "x = " and "y(x)=" static text objects.

	uicontrol(h_fig,...

		'Position',[0.08 0.3 0.15 0.07],...

		'String','x =',...

		'Style','text',...

		'Units','normalized');

	uicontrol(h_fig,...

		'Position',[0.08 0.2 0.15 0.07],...

		'String','y(x) =',...

		'Style','text',...

		'Units','normalized');

	% INITIALIZE the plot with the initial x and y data.

	fun_plt2('Plot Function');

% CALLBACK FOR THE "Box" CHECK BOX.

elseif strcmp(command_str,'Set Box')

	boxstatus = get(h_box,'value');

	if boxstatus == 0;

	 set(gca,'box','off');

	else

	 set(gca,'box','on');

	end

	set(h_status,'string',...

	 ['The box property is ' get(gca,'box')]);

% CALLBACK FOR THE "Grid" CHECK BOX.

elseif strcmp(command_str,'Set Grid')

	gridstatus = get(h_grid,'value');

	if gridstatus == 0

	 grid off

	else;

	 grid on

	end

	set(h_status,'string',...

	 ['The grid is ' get(gca,'xgrid')]);

% CALLBACK FOR THE X and Y(X) EDIT BOXES.

elseif strcmp(command_str,'Plot Function')

	err_ind = 0;

	eval(['x = ' get(h_xdata,'string') ';'],'err_ind=1;');

	if err_ind == 0;

	 eval(['y = ' get(h_ydata,'string') ';'],'err_ind=2;');

	end

	if err_ind == 0

	 plot(x,y);

	 fun_plt2('Set Box');

	 fun_plt2('Set Grid');

	 set(h_status,'string','Function Plotted');

	elseif err_ind == 1

	 set(h_status,'string','Error defining x');

	elseif err_ind == 2

	 set(h_status,'string','Error defining y(x)');

	end

end % END command_str comparison checks.

fun_plt2a.m

function fun_plt2(command_str)

% FUN_PLT2

%

% This function demonstrates how global variables

% can be used to create a GUI in a function.

if nargin == 0

 command_str = 'initialize';

end

% DEFINE VARIABLES THAT WILL STORE THE HANDLES AS GLOBAL

global h_box h_grid h_ydata h_xdata h_status

% INITIALIZE THE GUI SECTION.

if strcmp(command_str,'initialize')

 % Make sure that the GUI has not been already

 % initialized in another existing figure.

 h_figs = get(0,'children');

 fig_exists = 0;

 for fig = h_figs'

 fig_exists = strcmp(get(fig,'name'),...

 'Function Plotter');

 if fig_exists

 figure(fig); % Bring figure to front of screen.

 return; % No need to reinitialize, exit function.

 end

 end

 h_fig = figure('name','Function Plotter');

	axes('position',[.07 .5 .86 .4])

	% Create the two frames.

	uicontrol(h_fig,...

		'Position',[0 0 1 0.4],...

		'Style','frame',...

		'Units','normalized');

	uicontrol(h_fig,...

		'Position',[0.08 0.05 0.84 0.11],...

		'Style','frame',...

		'Units','normalized');

	% Create the "Box" check box.

	h_box = uicontrol(h_fig,...

		'CallBack','fun_plt2(''Set Box'');',...

		'Position',[0.7 0.2 0.16 0.07],...

		'String','Box',...

		'Style','checkbox',...

		'Units','normalized',...

		'Value',[1]);

	% Create the check box labeled "Grid".

	h_grid = uicontrol(h_fig,...

		'CallBack','fun_plt2(''Set Grid'');',...

		'Position',[0.7 0.3 0.16 0.07],...

		'String','Grid',...

		'Style','checkbox',...

		'Units','normalized');

	% Create the edit boxes for the x data.

	h_ydata = uicontrol(h_fig,...

		'CallBack','fun_plt2(''Plot Function'');',...

		'Position',[0.25 0.2 0.39 0.07],...

		'String','(x*.1).^2',...

		'Style','edit',...

		'Units','normalized');

	% Create the edit boxes for the y data.

	h_xdata = uicontrol(h_fig,...

		'CallBack','fun_plt2(''Plot Function'');',...

		'Position',[0.25 0.3 0.39 0.07],...

		'String','-10:10',...

		'Style','edit',...

		'Units','normalized');

	% Create a static text object that will be used

	% to display messages to the user.

	h_status = uicontrol(h_fig,...

		'Position',[0.1 0.07 0.8 0.07],...

		'String','Status Window',...

		'Style','text',...

		'Units','normalized');

	% Create the "x = " and "y(x)=" static text objects.

	uicontrol(h_fig,...

		'Position',[0.08 0.3 0.15 0.07],...

		'String','x =',...

		'Style','text',...

		'Units','normalized');

	uicontrol(h_fig,...

		'Position',[0.08 0.2 0.15 0.07],...

		'String','y(x) =',...

		'Style','text',...

		'Units','normalized');

	% INITIALIZE the plot with the initial x and y data.

	fun_plt2('Plot Function');

% CALLBACK FOR THE "Box" CHECK BOX.

%elseif strcmp(command_str,'Set Box')

	%boxstatus = get(h_box,'value');

	%if boxstatus == 0;

	% set(gca,'box','off');

 %else

	 %set(gca,'box','on');

 %end

	%set(h_status,'string',...

	% ['The box property is ' get(gca,'box')]);

switch command_str

case 'Set Box'

 boxstatus = get(h_box,'value');

	if boxstatus == 0;

	 set(gca,'box','off');

	else

	 set(gca,'box','on');

	end

	set(h_status,'string',...

	 ['The box property is ' get(gca,'box')]);

% CALLBACK FOR THE "Grid" CHECK BOX.

case 'Set Grid'

 gridstatus = get(h_grid,'value');

	if gridstatus == 0

	 grid off

	else;

	 grid on

	end

	set(h_status,'string',...

	 ['The grid is ' get(gca,'xgrid')]);

% CALLBACK FOR THE X and Y(X) EDIT BOXES.

case 'Plot Function'

	err_ind = 0;

	eval(['x = ' get(h_xdata,'string') ';'],'err_ind=1;');

	if err_ind == 0;

	 eval(['y = ' get(h_ydata,'string') ';'],'err_ind=2;');

	end

 if err_ind == 0

	 plot(x,y);

	 fun_plt2('Set Box');

	 fun_plt2('Set Grid');

	 set(h_status,'string','Function Plotted');

	elseif err_ind == 1

	 set(h_status,'string','Error defining x');

	elseif err_ind == 2

	 set(h_status,'string','Error defining y(x)');

	end

end

end

% CALLBACK FOR THE "Grid" CHECK BOX.

%elseif strcmp(command_str,'Set Grid')

%	gridstatus = get(h_grid,'value');

%	if gridstatus == 0

%	 grid off

%	else;

%	 grid on

%	end

%	set(h_status,'string',...

%	 ['The grid is ' get(gca,'xgrid')]);

% CALLBACK FOR THE X and Y(X) EDIT BOXES.

%elseif strcmp(command_str,'Plot Function')

	%err_ind = 0;

	%eval(['x = ' get(h_xdata,'string') ';'],'err_ind=1;');

	%if err_ind == 0;

	 %eval(['y = ' get(h_ydata,'string') ';'],'err_ind=2;');

 %end

%	if err_ind == 0

%	 plot(x,y);

%	 fun_plt2('Set Box');

%	 fun_plt2('Set Grid');

%	 set(h_status,'string','Function Plotted');

%	elseif err_ind == 1

%	 set(h_status,'string','Error defining x');

%	elseif err_ind == 2

%	 set(h_status,'string','Error defining y(x)');

%	end

%end % END command_str comparison checks.

fun_pltg.m

function varargout = fun_pltg(varargin)
% FUN_PLTG Application M-file for fun_pltg.fig
% FIG = FUN_PLTG launch fun_pltg GUI.
% FUN_PLTG('callback_name', ...) invoke the named callback.

% Last Modified by GUIDE v2.0 07-Aug-2002 11:14:24

if nargin == 0 % LAUNCH GUI

	fig = openfig(mfilename,'reuse');

	% Use system color scheme for figure:
	set(fig,'Color',get(0,'defaultUicontrolBackgroundColor'));

	% Generate a structure of handles to pass to callbacks, and store it.
	handles = guihandles(fig);
	guidata(fig, handles);

	if nargout > 0
		varargout{1} = fig;
	end

elseif ischar(varargin{1}) % INVOKE NAMED SUBFUNCTION OR CALLBACK

	try
		if (nargout)
			[varargout{1:nargout}] = feval(varargin{:}); % FEVAL switchyard
		else
			feval(varargin{:}); % FEVAL switchyard
		end
	catch
		disp(lasterr);
	end

end

%| ABOUT CALLBACKS:
%| GUIDE automatically appends subfunction prototypes to this file, and
%| sets objects' callback properties to call them through the FEVAL
%| switchyard above. This comment describes that mechanism.
%|
%| Each callback subfunction declaration has the following form:
%| <SUBFUNCTION_NAME>(H, EVENTDATA, HANDLES, VARARGIN)
%|
%| The subfunction name is composed using the object's Tag and the
%| callback type separated by '_', e.g. 'slider2_Callback',
%| 'figure1_CloseRequestFcn', 'axis1_ButtondownFcn'.
%|
%| H is the callback object's handle (obtained using GCBO).
%|
%| EVENTDATA is empty, but reserved for future use.
%|
%| HANDLES is a structure containing handles of components in GUI using
%| tags as fieldnames, e.g. handles.figure1, handles.slider2. This
%| structure is created at GUI startup using GUIHANDLES and stored in
%| the figure's application data using GUIDATA. A copy of the structure
%| is passed to each callback. You can store additional information in
%| this structure at GUI startup, and you can change the structure
%| during callbacks. Call guidata(h, handles) after changing your
%| copy to replace the stored original so that subsequent callbacks see
%| the updates. Type "help guihandles" and "help guidata" for more
%| information.
%|
%| VARARGIN contains any extra arguments you have passed to the
%| callback. Specify the extra arguments by editing the callback
%| property in the inspector. By default, GUIDE sets the property to:
%| <MFILENAME>('<SUBFUNCTION_NAME>', gcbo, [], guidata(gcbo))
%| Add any extra arguments after the last argument, before the final
%| closing parenthesis.

% --
function varargout = x_value_Callback(x_value, eventdata, handles, varargin)
fun_pltg('y_fun_Callback',handles.y_fun, eventdata, handles, varargin);

% --
function varargout = y_fun_Callback(y_fun, eventdata, handles, varargin)

err_ind = 0;
	eval(['x = ' get(handles.x_value,'string') ';'],'err_ind=1;');
	if err_ind == 0;
	 eval(['y = ' get(y_fun,'string') ';'],'err_ind=2;');
	end
 if err_ind == 0
	 plot(x,y);
	 set(handles.box_check,'Value',1);
 fun_pltg('box_check_Callback',handles.box_check, eventdata, handles, varargin);
 set(handles.grid_check,'Value',1);
 fun_pltg('grid_check_Callback',handles.grid_check, eventdata, handles, varargin);

	 set(handles.status,'string','Function Plotted');
	elseif err_ind == 1
	 set(handles.status,'string','Error defining x');
	elseif err_ind == 2
	 set(handles.status,'string','Error defining y(x)');
	end

% --
function varargout = grid_check_Callback(grid_check, eventdata, handles, varargin)

gridstatus = get(grid_check,'value');
	if gridstatus == 0
	 grid off
	else;
	 grid on
	end
	set(handles.status,'string',...
	 ['The grid is ' get(gca,'xgrid')]);

% --
function varargout = box_check_Callback(box_check, eventdata, handles, varargin)

 boxstatus = get(box_check,'value');
	if boxstatus == 0;
	 set(gca,'box','off');
	else
	 set(gca,'box','on');
	end
	set(handles.status,'string',...
	 ['The box property is ' get(gca,'box')]);

fun_pltg2.m

function varargout = fun_pltg2(varargin)
% FUN_PLTG2 Application M-file for fun_pltg2.fig
% FIG = FUN_PLTG2 launch fun_pltg2 GUI.
% FUN_PLTG2('callback_name', ...) invoke the named callback.

% Last Modified by GUIDE v2.0 08-Aug-2002 09:06:02

if nargin == 0 % LAUNCH GUI

	fig = openfig(mfilename,'reuse');

	% Use system color scheme for figure:
	set(fig,'Color',get(0,'defaultUicontrolBackgroundColor'));

	% Generate a structure of handles to pass to callbacks, and store it.
	handles = guihandles(fig);
	guidata(fig, handles);

	if nargout > 0
		varargout{1} = fig;
	end

elseif ischar(varargin{1}) % INVOKE NAMED SUBFUNCTION OR CALLBACK

	try
		if (nargout)
			[varargout{1:nargout}] = feval(varargin{:}); % FEVAL switchyard
		else
			feval(varargin{:}); % FEVAL switchyard
		end
	catch
		disp(lasterr);
	end

end

%| ABOUT CALLBACKS:
%| GUIDE automatically appends subfunction prototypes to this file, and
%| sets objects' callback properties to call them through the FEVAL
%| switchyard above. This comment describes that mechanism.
%|
%| Each callback subfunction declaration has the following form:
%| <SUBFUNCTION_NAME>(H, EVENTDATA, HANDLES, VARARGIN)
%|
%| The subfunction name is composed using the object's Tag and the
%| callback type separated by '_', e.g. 'slider2_Callback',
%| 'figure1_CloseRequestFcn', 'axis1_ButtondownFcn'.
%|
%| H is the callback object's handle (obtained using GCBO).
%|
%| EVENTDATA is empty, but reserved for future use.
%|
%| HANDLES is a structure containing handles of components in GUI using
%| tags as fieldnames, e.g. handles.figure1, handles.slider2. This
%| structure is created at GUI startup using GUIHANDLES and stored in
%| the figure's application data using GUIDATA. A copy of the structure
%| is passed to each callback. You can store additional information in
%| this structure at GUI startup, and you can change the structure
%| during callbacks. Call guidata(h, handles) after changing your
%| copy to replace the stored original so that subsequent callbacks see
%| the updates. Type "help guihandles" and "help guidata" for more
%| information.
%|
%| VARARGIN contains any extra arguments you have passed to the
%| callback. Specify the extra arguments by editing the callback
%| property in the inspector. By default, GUIDE sets the property to:
%| <MFILENAME>('<SUBFUNCTION_NAME>', gcbo, [], guidata(gcbo))
%| Add any extra arguments after the last argument, before the final
%| closing parenthesis.

% --
function varargout = x_value_Callback(x_value, eventdata, handles, varargin)
fun_pltg('y_fun_Callback',handles.y_fun, eventdata, handles, varargin);

% --
function varargout = y_fun_Callback(y_fun, eventdata, handles, varargin)

err_ind = 0;
	eval(['x = ' get(handles.x_value,'string') ';'],'err_ind=1;');
	if err_ind == 0;
	 eval(['y = ' get(y_fun,'string') ';'],'err_ind=2;');
	end
 if err_ind == 0
	 plot(x,y);
	 set(handles.box_check,'Value',1);
 fun_pltg('box_check_Callback',handles.box_check, eventdata, handles, varargin);
 set(handles.grid_check,'Value',1);
 fun_pltg('grid_check_Callback',handles.grid_check, eventdata, handles, varargin);

	 set(handles.status,'string','Function Plotted');
	elseif err_ind == 1
	 set(handles.status,'string','Error defining x');
	elseif err_ind == 2
	 set(handles.status,'string','Error defining y(x)');
	end

% --
function varargout = grid_check_Callback(grid_check, eventdata, handles, varargin)

gridstatus = get(grid_check,'value');
	if gridstatus == 0
	 grid off
	else;
	 grid on
	end
	set(handles.status,'string',...
	 ['The grid is ' get(gca,'xgrid')]);

% --
function varargout = box_check_Callback(box_check, eventdata, handles, varargin)

 boxstatus = get(box_check,'value');
	if boxstatus == 0;
	 set(gca,'box','off');
	else
	 set(gca,'box','on');
	end
	set(handles.status,'string',...
	 ['The box property is ' get(gca,'box')]);

% --
function varargout = Exit_Button_Callback(h, eventdata, handles, varargin)

exit_button=questdlg('Exit Now?','Exit Program','Yes','No','No');
switch exit_button
case 'Yes'
 delete(handles.figure1)
case 'No'
 return
end

% --
function varargout = Plot_Now_Button_Callback(h, eventdata, handles, varargin)

fun_pltg('y_fun_Callback',handles.y_fun, eventdata, handles, varargin);

gui_scrl.m

function gui_scrl(command_str,Argument2)

% GUI_SCRL

% examples/chap10/gui_scrl.m

%

% Example of scrolling window.

% Type gui_scrl or gui_scrl('initialize',string_matrix);

if nargin < 1

	command_str = 'initialize';

end

if ~strcmp(command_str,'initialize')

	handles = get(gcf,'userdata');

	h_sldr = handles(1);

	h_edit = handles(2);

end

if strcmp(command_str,'initialize')

	h_fig = figure('position',[200 200 200 100],...

				 'resize','off',...

				 'name','Scroll Bar',...

				 'numbertitle','off');

	

	h_frm = uicontrol(h_fig,...

		'style','frame',...

		'position',[0 0 200 100]);

	

	if nargin < 2

		init_string = str2mat('This is the first',...

	 	'La','La','La','This is the fifth','Blah',...

		'Blah','Blah','This is the last');

	else

		init_string = Argument2;

	end

	h_edit = uicontrol(h_fig,...

		'style','edit',...

		'max',2,...

		'string',init_string,...

		'position',[5 5 175 90],...

		'userdata',init_string);

	h_sldr = uicontrol(h_fig,...

		'callback','gui_scrl(''Scrolling'');',...

		'style','slider',...

		'min',1,...

		'max',size(init_string,2),...

		'sliderstep',[1 2]*(1/(size(init_string,2)-1)),...

		'value',1,...

		'position',[180 5 15 90],...

		'userdata',1);

		

	handles = [h_sldr,h_edit];

	set(h_fig,'userdata',handles);

elseif strcmp(command_str,'Scrolling')

	old_val = get(h_sldr,'userdata');

	newval = round(get(h_sldr,'max')-get(h_sldr,'value')+1);

	set(h_sldr, 'userdata',newval);

	str = get(h_edit,'userdata');

	set(h_edit,'string',str(1,newval:size(str,2)));

end

gui_size.m

function gui_size(command_str)

% GUI_SIZE

% examples/chap10/gui_size.m

%

% Example of user on-the-fly defined pop-up-menu.

if nargin < 1

	command_str = 'initialize';

end

if ~strcmp(command_str,'initialize')

	handles = get(gcf,'userdata');

	h_text = handles(1);

	h_editsize = handles(2);

	h_popsize = handles(3);

end

if strcmp(command_str,'initialize')

 h_fig = figure('position',[200 200 200 100],...

			'resize','off',...

			'name','String Sizer',...

			'numbertitle','off',...

 'MenuBar','none');

	

 h_ax = axes('position',[0 .5 1 .5],...

	'visible','off',...

	'xlim',[0 1],'ylim',[0 1]);

				

 h_text = text(.5,.5,0,'String',...

	'FontSize',10,...

	'HorizontalAlignment','center',...

	'VerticalAlignment','middle');

 h_editsize = uicontrol(h_fig,...

	'callback','gui_size(''Sized by Edit'');',...

	'style','edit',...

	'position',[70 15 30 20],...

	'string','10');

		

 h_popsize = uicontrol(h_fig,...

	'callback','gui_size(''Sized by Popup'');',...

	'style','pop',...

	'position',[110 15 30 20],...

	'string',' 5|10|15|20',...

	'value',2);

	

 handles = [h_text h_editsize h_popsize];

 set(h_fig,'userdata',handles);

elseif strcmp(command_str,'Sized by Popup')

 option_sizes = get(h_popsize,'string');

 choice = get(h_popsize,'value');

 set(h_editsize,'string',option_sizes(choice,:));

 set(h_text,'fontsize',str2num(option_sizes(choice,:)));

elseif strcmp(command_str,'Sized by Edit')

 option_sizes = str2num(get(h_popsize,'string'));

 size_choice = floor(str2num(get(h_editsize,'string')));

 % MAKE SURE THE USER'S INPUT IS A LEGAL FONT SIZE.

 if size_choice > 0

	if any(option_sizes == size_choice)

	% IF THE USER'S CHOICE EXISTS IN THE LIST, USE IT.

	 choice = find(option_sizes == size_choice);

	 set(h_popsize,'value',choice);

	 set(h_editsize,'string',num2str(option_sizes(choice)));

	 set(h_text,'fontsize',option_sizes(choice));

	else

	% OTHERWISE CREATE A NEW OPTION IN THE MENU LIST,

	% PUTTING IT IN THE RIGHT SORTED POSITION.

	 option_sizes = [option_sizes; floor(size_choice)];

	 [new_opt_sizes,ind] = sort(option_sizes);

	 choice = find(ind == length(new_opt_sizes));

	 new_pop_str = sprintf('%3d',new_opt_sizes);

	 new_pop_str = reshape(new_pop_str,...

			 3,length(new_opt_sizes))';

		

	 set(h_popsize,'string',new_pop_str);

	 set(h_popsize,'value',choice);

	 set(h_editsize,...

		'string',num2str(new_opt_sizes(choice)));

	 set(h_text,'fontsize',new_opt_sizes(choice));

 end

 else

	choice = get(h_popsize,'value');

	set(h_editsize,'string',num2str(option_sizes(choice)));

 end

end % END command_str comparison checks.

gui_sldr.m

function gui_sldr(command_str)

% GUI_SLDR

% examples/chap10/gui_sldr.m

%

% Example of creating slider GUIs.

if nargin < 1

	command_str = 'initialize';

end

if ~strcmp(command_str,'initialize')

	handles = get(gcf,'userdata');

	h_sldr = handles(1);

	h_val = handles(2);

end

if strcmp(command_str,'initialize')

	h_fig = figure('position',[100 200 200 75],...

		'resize','off',...

		'numbertitle','off',...

		'name','Slider GUI',...

 'MenuBar','none');

		

	h_frame = uicontrol(h_fig,...

		'style','frame',...

		'position',[0 0 200 75]);

		

	h_sldr = uicontrol(h_fig,...

		'callback','gui_sldr(''Slider Moved'');',...

		'style','slider',...

		'min',-15,'max',15,...

		'position',[25 20 150 20]);

	h_min = uicontrol(h_fig,...

		'style','text',...

		'string',num2str(get(h_sldr,'min')),...

		'position',[25 45 25 20]);

	

	h_max = uicontrol(h_fig,...

		'style','text',...

		'string',num2str(get(h_sldr,'max')),...

		'position',[150 45 25 20]);

	

	h_val = uicontrol(h_fig,...

		'callback','gui_sldr(''Change Value'');',...

		'style','edit',...

		'string',num2str(get(h_sldr,'value')),...

		'position',[80 45 40 20]);

	handles = [h_sldr h_val];

	set(h_fig,'userdata',handles);

elseif strcmp(command_str,'Change Value')

	user_value = str2num(get(h_val,'string'));

	if ~length(user_value)

	 user_value = (get(h_sldr,'max')+get(h_sldr,'min'))/2;

	end

	user_value = min([user_value get(h_sldr,'max')]);

	user_value = max([user_value get(h_sldr,'min')]);

	set(h_sldr,'value',user_value);

	set(h_val,'string',num2str(get(h_sldr,'value')));

elseif strcmp(command_str,'Slider Moved')

	set(h_val,'string',num2str(get(h_sldr,'value')));

end

gui_togm.m

function [name] = gui_togm(command_str)

% GUI_TOGM

% examples/chap10/gui_togm.m

%

% Example of a GUI that toggles menus.

if nargin < 1

	command_str = 'initialize';

end

if ~strcmp(command_str,'initialize')

	handles = get(gcf,'userdata');

	h_menu_opt = handles(1);

	h_menu = handles(2:4);

end

if strcmp(command_str,'initialize')

	h_fig = figure('position',[200 200 200 50],...

				 'resize','off',...

				 'numbertitle','off',...

				 'menubar','none');

	h_menu_opt = uimenu('label','Options',...

		'callback','gui_togm(''Set Menu Labels'');');

	h_menu(1) = uimenu(h_menu_opt,'label','Properties...');

	h_menu(2) = uimenu(h_menu_opt,'label','','visible','off')

	h_menu(3) = uimenu(h_menu_opt,'label','',...

	 'visible','off');

	

	handles = [h_menu_opt,h_menu];

	set(gcf,'userdata',handles);

	gui_togm('Set Menu Labels');

	

elseif strcmp(command_str,'Set Menu Labels')

	seltyp = get(gcf,'selectiontype');

	if strcmp(seltyp,'normal')

	 set(h_menu(1),'label','Properties','visible','on');

	 set(h_menu(2),'label','','visible','off');

	 set(h_menu(3),'label','','visible','off');

	elseif strcmp(seltyp,'alt')

	 set(h_menu(1),'label','Alternate Properties',...

	 'visible','on');

	 set(h_menu(2),'label','Delete Alternates',...

	 'visible','on');

	 set(h_menu(3),'label','Copy Alternates',...

	 'visible','on');

	elseif strcmp(seltyp,'extend')

	 set(h_menu(1),'label','Cut','visible','on');

	 set(h_menu(2),'label','Copy','visible','on');

	 set(h_menu(3),'label','Paste','visible','on');

	elseif strcmp(seltyp,'open')

	 set(h_menu(1),'label','Open 1','visible','on');

	 set(h_menu(2),'label','Open 2','visible','off');

	 set(h_menu(3),'label','Open 3','visible','on');

	end

end

gui_wave.m

function gui_wave(command_str,Argument2)
% GUI_WAVE
% examples/chap10/gui_wave.m
%
% Example of mutually exclusive radio button coding

if nargin < 1
	command_str = 'initialize';
end

if ~strcmp(command_str,'initialize')
	handles = get(gcf,'userdata');
	h_radio = handles(1:3);
end

if strcmp(command_str,'initialize')

	h_fig = figure('position',[200 200 120 100],...
 'resize','off',...
 'numbertitle','off',...
 'MenuBar','none');
	% Create Frame that covers entire
	h_frame = uicontrol(h_fig,'style','frame',...
 'position',[0 0 120 100]);
	% Create overall label
	h_stext = uicontrol(h_fig,'style','text',...
 'string','Waveform Type',...
 'position',[10 75 100 20]);
	% Create set of 3 Radio buttons
	h_radio(1) = uicontrol(h_fig,'style','radio',...
 'callback','gui_wave(''Waveform Change'',1);',...
 'string','Square Wave',...
 'position',[10 55 100 20],...
 'value',1);
	h_radio(2) = uicontrol(h_fig,'style','radio',...
 'callback','gui_wave(''Waveform Change'',2);',...
 'string','Saw Tooth Wave',...
 'position',[10 30 100 20]);
	h_radio(3) = uicontrol(h_fig,'style','radio',...
 'callback','gui_wave(''Waveform Change'',3);',...
 'string','Sinusoidal Wave',...
 'position',[10 5 100 20]);

	handles = [h_radio];
	set(h_fig,'userdata',handles);

elseif strcmp(command_str,'Waveform Change')
	num_buttons = length(h_radio);
	button = Argument2;
	if get(h_radio(button),'value') == 1
	 set(h_radio([1:(button-1), (button+1):num_buttons]),'value',0);
	else
	 set(h_radio(button),'value',1);
	end

end % END command_str comparison check

gui_wave2.m

function gui_wave(command_str,Argument2)
% GUI_WAVE
% examples/chap10/gui_wave2.m
%
% Example of mutually exclusive menu coding

if nargin < 1
	command_str = 'initialize';
end

if ~strcmp(command_str,'initialize')
	handles = get(gcf,'userdata');
	h_menu = handles(1:3);
end

if strcmp(command_str,'initialize')

	h_fig = figure('position',[200 200 120 100],...
 'resize','off',...
 'numbertitle','off',...
 'MenuBar','none');
	% Create Frame that covers entire
	h_frame = uicontrol(h_fig,'style','frame',...
 'position',[0 0 120 100]);
	% Create overall label
	h_stext = uicontrol(h_fig,'style','text',...
 'string','Waveform Type',...
 'position',[10 75 100 20]);
	% Create set of 3 pulldown menus
	h_radio(1) = uicontrol(h_fig,'style','pulldown',...
 'callback','gui_wave(''Waveform Change'',1);',...
 'string','Square Wave',...
 'position',[10 55 100 20],...
 'value',1);
	h_radio(2) = uicontrol(h_fig,'style','radio',...
 'callback','gui_wave(''Waveform Change'',2);',...
 'string','Saw Tooth Wave',...
 'position',[10 30 100 20]);
	h_radio(3) = uicontrol(h_fig,'style','radio',...
 'callback','gui_wave(''Waveform Change'',3);',...
 'string','Sinusoidal Wave',...
 'position',[10 5 100 20]);

	handles = [h_radio];
	set(h_fig,'userdata',handles);

elseif strcmp(command_str,'Waveform Change')
	num_buttons = length(h_radio);
	button = Argument2;
	if get(h_radio(button),'value') == 1
	 set(h_radio([1:(button-1), (button+1):num_buttons]),'value',0);
	else
	 set(h_radio(button),'value',1);
	end

end % END command_str comparison check

gui_wind.m

function gui_wind(command_str)
% GUI_WIND
% examples/chap10/gui_wind.m
%
% Example of creating windowed GUIs.

if nargin < 1
	command_str = 'initialize';
end

if ~strcmp(command_str,'initialize')
	handles = get(gcf,'userdata');
	h_cube = handles(1);
	h_dir = handles(2);
	h_xrot = handles(3);
	h_yrot = handles(4);
end
if strcmp(command_str,'initialize')

	h_fig = figure('position',[100 200 300 250],...
		'resize','off',...
		'numbertitle','off',...
		'name','Windowed GUI',...
 'MenuBar','none');
	
	h_s(1) = uicontrol('style','text',...
			'position',[0 0 1 .25],...
			'units','normalized');
	h_s(2) = uicontrol('style','text',...
			'position',[0 0 .1 1],...
			'units','normalized');
	h_s(3) = uicontrol('style','text',...
			'position',[0 .9 1 .1],...
			'units','normalized');
	h_s(4) = uicontrol('style','text',...
			'position',[.9 0 .1 1],...
			'units','normalized');
	h_push = uicontrol(h_fig,...
			'style','pushbutton',...
			'position',[.1 .05 .2 .15],...
			'units','normalized',...
			'string','Rotate',...
			'interruptible','on',...
			'callback','gui_wind(''Rotate'');');

	h_dir = uicontrol(h_fig,...
			'style','checkbox',...
			'position',[.32 .07 .25 .11],...
			'units','normalized',...
			'string','Clockwise',...
			'value',1,...
			'callback','gui_wind(''Change Rotation'');');
			
	h_xrot = uicontrol(h_fig,...
			'style','checkbox',...
			'position',[.6 .02 .35 .11],...
			'units','normalized',...
			'string','X-Rotation Axis',...
			'callback','gui_wind(''Change Rotation'');');
	h_yrot = uicontrol(h_fig,...
			'style','checkbox',...
			'position',[.6 .13 .35 .11],...
			'units','normalized',...
			'string','Y-Rotation Axis',...
			'callback','gui_wind(''Change Rotation'');');
						
	h_ax = axes('position',[.1 .25 .8 .65],...
				'userdata',0);

	x = [0 1 1 0 0 0 1 1 0 0 NaN 1 1 NaN 1 1 NaN 0 0];
	y = [0 0 1 1 0 0 0 1 1 0 NaN 0 0 NaN 1 1 NaN 1 1];
	z = [0 0 0 0 0 1 1 1 1 1 NaN 1 0 NaN 0 1 NaN 1 0];
	h_cube = line(x-0.5,y-0.5,z-0.5,'erasemode','background');
	axis('square');
	axis([-1 1 -1 1 -1 1]*1.5);
	axis('off')
	view(-37.5,15);
%	set(h_cube,);

	handles = [h_cube h_dir h_xrot h_yrot];
	set(gcf,'userdata',handles);
	
elseif strcmp(command_str,'Change Rotation')
	direction = sign(get(h_dir,'val')-.5);
	rotation_axis = [get(h_xrot,'value') ...
					 get(h_yrot,'value') ...
					 1];
	set(gca,'userdata',[1 direction rotation_axis]);

elseif strcmp(command_str,'Rotate')
	rotation_increment = 5*sign(get(h_dir,'value')-.5); % degrees
	rotation_axis = [get(h_xrot,'value') ...
					 get(h_yrot,'value') ...
					 1];
	rotation_origin = [0 0 0];
	num_of_incr = 720;
	angle_swept = 0;
	rotate_counter = 0;
	while abs(angle_swept) < 720
	 rotate(h_cube,rotation_axis,...
 rotation_increment,rotation_origin);
	 rotate_counter = rotate_counter + 1;
	 angle_swept = angle_swept + rotation_increment;
	 if rotate_counter > 5
	 command_issued = get(gca,'userdata');
	 if command_issued(1) > 0
		 rot_dir = command_issued(2);
			 rotation_increment = abs(rotation_increment)*rot_dir;
			 rotation_axis = command_issued(3:5);
		 set(gca,'userdata',0);
		 end
		 rotate_counter = 0;
	 end
	 drawnow;
	end
end

imagebutton.m

h_fig=figure('position',[100 100 50 50],...

'color',[.8 .8 .8],...

'menubar','none');

axes('position',[0 0 1 1],...

 'xlim',[0 1],'ylim',[0 1],...

 'visible','off');

p = patch([.08 .08 1 1],[0 .92 .92 0],...

 [0 0 0 0],[0 0 0 0],'facecolor',[.6 .6 .6],...

 'edgecolor','none') ;

patch(.2*cos(linspace(0,2*pi,4))+.3,...

	.2*sin(linspace(0,2*pi,4))+.3,...

	ones(1,4), ones(1,4),....

 'facecolor',[0 0 0]);% Create triangle

patch(.2*cos(linspace(0,2*pi,6))+.7,...

	.2*sin(linspace(0,2*pi,6))+.4,...

	ones(1,6), ones(1,6),...

 'facecolor',[0 0 0]); % Create pentagon

patch(.1*cos(linspace(0,2*pi,15))+.5,...

	.1*sin(linspace(0,2*pi,15))+.7,...

	ones(1,15), ones(1,15),...

 'facecolor',[0 0 0]);% Create circle

l = line([0.08 1 1],[0 0 .92],[2 2 2],'linewidth',2,...

	'color',[.3 .3 .3]);

% This clears the map so that capture only

% captures what is required.

set(h_fig,'colormap',[]);

Xup=getframe(h_fig);% On State Image

set(gcf,'color',[.2 .2 .2]);

set(p,'facecolor',[.4 .4 .4]);

set(l,'color',[.8 .8 .8]);

Xdw=getframe(h_fig);% Off State Image

imagebutton2.m

figure('position',[100 100 100 100],...

	'menubar','none',...

 'colormap',mapupdwn);

axes('position',[.2 .2 .6 .6],...

	'visible','off','ydir','reverse',...

	'xlim',[0 size(Xup.cdata,2)],'ylim',[1 size(Xup.cdata,1)]);

hold on

image_up = image(Xup.cdata);

image_down = image(Xdw.cdata);

set(image_up,'userdata',image_down,...

	'buttondownfcn',['set(get(gco,''userdata'')'...

		',''visible'',''on'');' ...

		'set(gco,''visible'',''off'')']);

set(image_down,'userdata',image_up,...

	'visible','off',...

	'buttondownfcn',['set(get(gco,''userdata'')'...

		',''visible'',''on'');'...

		'set(gco,''visible'',''off'')']);

imbutton.m

h_fig=figure('Position',[100 100 200 200],...

 'menubar','none')

h_button = uicontrol('style','pushbutton',...

 'tooltipstring','bitmap on a button',...

 'position',[30 70 140 125])

set(h_button,'Cdata',bimage);

interon.m

%note, with modern MATLAB this example no longer applies.

figure('position',[200 200 100 100],...

 'menubar','none');

h_close = uicontrol('position',[25 25 50 50],...

	 'string','Close',...

 'Interruptible','on',...

	 'callback',['yn_ans = questdlg(''Are you sure ' ...

	 'you want to close the figure?'',''Yes'',''No'');' ...

	 'if strcmp(yn_ans,''Yes'');close;end'])

layeringdemo.m

% Chapter 10 layering demo

figure('position',[100 200 250 160]);

uicontrol('style','frame',...

 'position',[10 50 160 80]);

uicontrol('style','pushbutton',...

 'string','Close Figure',...

 'position',[30 70 80 20],...

 'callback','close');

uicontrol('style','frame',...

 'position',[80 10 70 130]);

axes

mvrs_obj.m

function mvrs_obj(command_str,Argument);
% MVRS_OBJ
% chap10/mvrs_obj.m
%
% Used to move and resize axes objects
% and move text objects.
% Start capability by issuing
%	mvrs_obj
% Then click and hold and drag to
% move an object (axes objects will be
% moved from lower-left corner).
% To resize an axes object hold the control
% or alt key before click hold and dragging
% near desired corner of axes object.

global CUR_OBJ CUR_OBJ_TYPE FIX_PT

if nargin == 0
	command_str = 'initialize';
end
if strcmp(command_str,'initialize')
	set(gcf,'windowbuttondownfcn','mvrs_obj(''Set Up'')');
elseif strcmp(command_str,'Set Up')
	CUR_OBJ = get(gcf,'currentobj');
	if CUR_OBJ ~= gcf
	 CUR_OBJ_TYPE = get(CUR_OBJ,'type');
	
	 if strcmp(get(gcf,'selectiontype'),'normal')
	 % SET UP MOVING OBJECT ROUTINE
	 	set(gcf,'pointer','fleur');
		if strcmp(CUR_OBJ_TYPE,'text')
			set(CUR_OBJ,'erasemode','xor');
		elseif strcmp(CUR_OBJ_TYPE,'axes')
			set(gcf,'units','pixels');
			set(0,'units','pixels');
			set(CUR_OBJ,'units','pixels');
			cur_obj_loc = get(CUR_OBJ,'position');
			fig_pos = get(gcf,'position');
			set(0,'pointerlocation',fig_pos(1:2)+...
					cur_obj_loc(1:2));
		end
		set(gcf,'windowbuttonupfcn','mvrs_obj(''Done'')');
		set(gcf,'windowbuttonmotionfcn',...
 'mvrs_obj(''Move Object'')');
		set(CUR_OBJ,'selected','on');
	 elseif strcmp(get(1,'selectiontype'),'alt')
		% SET UP RESIZE OBJECT
		if strcmp(CUR_OBJ_TYPE,'axes')
			set(gcf,'units','pixels');
			set(0,'units','pixels');
			set(CUR_OBJ,'units','pixels');
			cur_obj_loc = get(CUR_OBJ,'position');
			fig_pos = get(gcf,'position');
			corner_loc = [cur_obj_loc(1:2); ...
				cur_obj_loc(1:2)+...
 [0 cur_obj_loc(4)];...
				cur_obj_loc(1:2)+...
 [cur_obj_loc(3) 0];...
				cur_obj_loc(1:2)+...
 cur_obj_loc(3:4)];
			corner_loc_scrn =...
 [corner_loc(:,1)+fig_pos(1) ...
				corner_loc(:,2)+fig_pos(2)];
			scrn_pnt_loc = get(0,'pointerlocation');
			[dumval,min_ind] = ...
 min(sum((([corner_loc_scrn-ones(4,1)*...
 scrn_pnt_loc]).^2)'));
			if min_ind == 1;
 FIX_PT = corner_loc(4,:);
			elseif min_ind ==2;
 FIX_PT = corner_loc(3,:);
			elseif min_ind ==3;
 FIX_PT = corner_loc(2,:);
			elseif min_ind ==4;
 FIX_PT = corner_loc(1,:);end
			set(0,'pointerlocation',...
 corner_loc_scrn(min_ind,:));
					set(gcf,'windowbuttonupfcn',...
 'mvrs_obj(''Done'')');
		 set(gcf,'windowbuttonmotionfcn',...
 'mvrs_obj(''Resize Object'')');
		 set(CUR_OBJ,'selected','on');

		end
	 end
	end
elseif strcmp(command_str,'Move Object')
% CALLBACK FOR WHEN THE POINTER IS MOVED AND THE
% OPERATION GOAL IS TO MOVE AN OBJECT
	if strcmp(CUR_OBJ_TYPE,'text')
		cur_pnt_loc = get(get(CUR_OBJ,'parent'),...
 'currentpoint');
		set(CUR_OBJ,'position',cur_pnt_loc(1,:));
	elseif strcmp(CUR_OBJ_TYPE,'axes')
		cur_obj_loc = get(CUR_OBJ,'position');
		cur_pnt_loc = get(gcf,'currentpoint');
		new_obj_loc = [cur_pnt_loc cur_obj_loc(3:4)];
		set(CUR_OBJ,'position',new_obj_loc);
	end
	
elseif strcmp(command_str,'Resize Object')
% CALLBACK FOR WHEN THE POINTER IS MOVED AND THE
% OPERATION GOAL IS TO RESIZE AN OBJECT
	if strcmp(CUR_OBJ_TYPE,'axes')
		curr_pnt = get(gcf,'currentpoint');
		relloc = curr_pnt > FIX_PT;
		if all(relloc == [0 0]),set(gcf,'pointer','botl');
		elseif all(relloc == [0 1]),set(gcf,'pointer','topl');
		elseif all(relloc == [1 0]),set(gcf,'pointer','botr');
		elseif all(relloc == [1 1]),set(gcf,'pointer','topr');
		end
		new_pos = [min([curr_pnt ;FIX_PT]),...
 max([abs(curr_pnt-FIX_PT);[1 1]])];
		%keyboard
		set(CUR_OBJ,'position',new_pos);
	end
	
elseif strcmp(command_str,'Done')
% OPERATION GOAL HAS BEEN COMPLETED SINCE
% USER RELEASED THE MOUSE
	if strcmp(CUR_OBJ_TYPE,'text')
		set(CUR_OBJ,'erasemode','normal');
	elseif strcmp(CUR_OBJ_TYPE,'axes')
		set(CUR_OBJ,'units','normalized');
	end
	set(CUR_OBJ,'selected','off');
	set(gcf,'pointer','arrow');
	set(gcf,'windowbuttonupfcn','');
	set(gcf,'windowbuttonmotionfcn','')
end

resample.m

function image_out=resample(image_in,scale)

%resample an RGB image

%by throwing out rows and columns

%usage: IMAGE_OUT = RESAMPLE(IMAGE_IN,SCALE)

%SCALE is an integer.

[m n p]=size(image_in);

rows = 1:scale:m;

X=image_in(rows,:,:);

cols = 1:scale:n;

image_out=X(:,cols,:);

scrllwin.m

function [out1] = scrllwin(command,p1,p2,p3,p4,p5,p6,p7)
% SCRLLWIN - Creates a scrollable non enabled edit window.
% handle_list,get_str
% usage: scrllwin(command,param1,param2,...);
%
% where both inputs are string types
%
% 'command' can be
% 1) 'initialize' - creates new scroll window.
% 2) 'set' - changes contents to new string given
%		 by new_string.
% 3) 'add' - adds new_string to the string in the
%			 scroll window.
% 4) 'get' - gets the string in the scroll window.
%
%
% e.g. h1 = scrllwin('new','string',new_string);
%
% Creates a scroll window using entire figure window.
%
%
% e.g. h1 = scrllwin('new','string',new_string,'position',position_vector);
%
% Creates a scroll window over the portion of the figure
%			defined by position_vector.
%
% e.g. h1 = scrllwin('new','string',new_string,'position',position_vector...
%			 'tag',tag_string);
%
% Creates a scroll window over the portion of the figure
%			defined by position_vector with a specific tag.
%
% e.g. scrllwin('set',h1,'string',new_string,...)
%
% e.g. scrllwin('add',h1,'string',Added_string) % adds the new string
%						 to the bottom of the
%						 window stack.
% e.g. [h1,string_returned] = scrllwin('get',h1,'string');
% e.g. [h1,position_returned] = scrllwin('get',h1,'position');
% e.g. [h1,tag_returned] = scrllwin('get',h1,'tag');
%
% new_string can be a string in either str2mat format
% where each row corresponds to a line of text or
% it can be one entire long string where the lines
% are separated by the character '|'.
%
%	position_vector is the same as the position vector for other uicontrol
% 			objects with a 5th element being the proportion of the
%			width that the slider will take up.
%
%			= [left bottom width height slider_proportion]
%			 The units of the position are normalized to the figure
%			 window.
%
%	tag_string is a string which uniquely identifies the scroll window.
%		 If it is not unique or not given, a unique tag will will
%		 be created by adding a numeric to the one provided or to
%		 the default (default = 'scrllwinobj')
%
% If no arguements are used the GUI is initialized.
%
% See also STR2MAT, NUM2STR, and UICONTROL
%

% Created: 27-Jan-95
% Using : GUI Maker Ver 2.0 by Patrick Marchand
% (pmarchan@motown.ge.com)
% Author : Patrick Marchand
% Mods. :
%

% Copyright (c) 1995 PATRICK MARCHAND
% Permission is granted to modify and re-distribute this
%	code in any manner as long as this notice is preserved.
%	All standard disclaimers apply.

get_str = [];
if nargin == 0
	command = 'new'; p1 = 'demo';
end

if isstr(command)
	if strcmp(lower(command),'initialize') | ...
	 strcmp(lower(command),'new') | ...
	 strcmp(lower(command),'create')
		command_num = 0;

	 sw_str = '';
	 sw_pos = [0 0 1 1];
	 sw_tag = 'scrllwinobj';

	 if rem(nargin,2) == 1
	 for loop_input = 1:2:(nargin-1)
	 attr = eval([sprintf('p%g',loop_input)]);
		attr_val = eval([sprintf('p%g',loop_input+1)]);
		if strcmp(lower(attr(1:3)),'tag')
	 	 sw_tag = attr_val;
		elseif strcmp(lower(attr(1:3)),'pos')
	 	 sw_pos = attr_val;
		elseif strcmp(lower(attr(1:3)),'str')
	 	 sw_str = attr_val;
		end
	 end
	 else
		if strcmp(p1,'demo')
		 sw_str = ['To stick text into a this scrolling window,'...
		 '|create a string catenated together by the' ...
		 '|pipe character (vertical line character).',...
		 '|You can also pass it a string matrix,',...
		 '|where each row in the string matrix,'...
		 '|corresponds to a new line in the scroll',...
		 '|box.',...
		 '| - Patrick Marchand'];
		 sw_pos = [0 0 1 1];
		 sw_tag = 'scrllwinobj';
		else
		 error('Wrong number of inputs to scrllwin.m')
		end
	 end
	else
	 if strcmp(lower(command),lower('set'))
	 if rem(nargin,2) == 0
	 attr_types_ind = zeros(1,3);
	 for loop_input = 2:2:(nargin-1)
	 attr = eval([sprintf('p%g',loop_input)]);
		attr_val = eval([sprintf('p%g',loop_input+1)]);
		if strcmp(lower(attr(1:3)),'tag')
	 	 sw_tag = attr_val;attr_types_ind(1) = 1;
		elseif strcmp(lower(attr(1:3)),'pos')
	 	 sw_pos = attr_val;attr_types_ind(2) = 1;
		elseif strcmp(lower(attr(1:3)),'str')
	 	 sw_str = attr_val;attr_types_ind(3) = 1;
		end
	 end
	 else
	 error('Wrong number of inputs to scrllwin.m')
	 end
		command_num = 1; command3_type = 1;
	 elseif strcmp(lower(command),lower('add'))
	 if rem(nargin,2) == 0
	 attr_types_ind = zeros(1,3);
	 for loop_input = 2:2:(nargin-1)
	 attr = eval([sprintf('p%g',loop_input)]);
		attr_val = eval([sprintf('p%g',loop_input+1)]);
		if strcmp(lower(attr(1:3)),'tag')
	 	 sw_tag = attr_val;attr_types_ind(1) = 1;
		elseif strcmp(lower(attr(1:3)),'pos')
	 	 sw_pos = attr_val;attr_types_ind(2) = 1;
		elseif strcmp(lower(attr(1:3)),'str')
	 	 sw_str = attr_val;attr_types_ind(3) = 1;
		end
	 end
	 else
	 error('Wrong number of inputs to scrllwin.m')
	 end
		command_num = 2; command3_type = 2;
	 elseif strcmp(lower(command),lower('get'))
	 if rem(nargin,2) == 1
	 attr_types_ind = zeros(1,3);
	 for loop_input = 2:2:(nargin-1)
	 attr = eval([sprintf('p%g',loop_input)]);
		if strcmp(lower(attr(1:3)),'tag')
	 	 sw_tag = attr_val;attr_types_ind(1) = 1;
		elseif strcmp(lower(attr(1:3)),'pos')
	 	 sw_pos = attr_val;attr_types_ind(2) = 1;
		elseif strcmp(lower(attr(1:3)),'str')
	 	 sw_str = attr_val;attr_types_ind(3) = 1;
		end
	 end
	 else
	 error('Wrong number of inputs to scrllwin.m')
	 end
		command_num = 3; command3_type = 3;
	 end
	end
end

if length(sw_pos) == 4
 	sw_pos = [sw_pos .05];
end

if command_num ~= 0
	handle_list = p1;
	sw_obj_s = findobj(handle_list,'flat','style','slider');
	sw_obj_e = findobj(handle_list,'flat','style','edit');
	handle_list = [sw_obj_s sw_obj_e];
end

if command_num == 0

	gcf; % get current figure to put objects into

	% Uicontrol Object Creation

	 for loop = 1:size(sw_str,1)
	 if loop == 1
	 strval = [deblank(fliplr(deblank(fliplr(sw_str(loop,:)))))];
	 else
	 strval = [strval '|' ...
			deblank(fliplr(deblank(fliplr(sw_str(loop,:)))))];
	 end
	 end

	numlines = length(findstr(strval,'|')) + 1;
	line_start_ind = [1 findstr(strval,'|')+1];
	startline = 1;

	if length(line_start_ind) > 1
	 str_ind_start = line_start_ind(startline);
	 str_ind_end = length(strval);
	 strshown = strval(str_ind_start:str_ind_end);
	elseif length(line_start_ind) == 1
	 str_ind_start = 1;
	 str_ind_end = length(strval);
	 strshown = strval(str_ind_start:str_ind_end);
	else
	 strshown = '';
	end

	cnt = 1;
	if length(findobj(gcf,'tag',[sw_tag])) > 0
	 while length(findobj(gcf,'tag',[sw_tag num2str(cnt)])) > 0
	 cnt = cnt+1;
	 end
	 sw_tag_s = [sw_tag num2str(cnt)];
	 sw_tag_e = [sw_tag num2str(cnt)];
	else
	 sw_tag_s = [sw_tag];
	 sw_tag_e = [sw_tag];
	end

	sw_pos_e = [sw_pos(1:2) (sw_pos(3)-sw_pos(5)) sw_pos(4)];
	sw_pos_s = [sw_pos_e(1)+sw_pos_e(3) sw_pos_e(2) sw_pos(5) sw_pos_e(4)];

	sw_cbk_s = ['h_uic_1 = findobj(gcf,''tag'',''' sw_tag_s ''',''style'',''slider'');'...
			'h_uic_2 = findobj(gcf,''tag'',''' sw_tag_e ''',''style'',''edit'');'...
			'h_uic_1 = h_uic_1(1);h_uic_2 = h_uic_2(1);'...
			'ud = get(h_uic_1,''userdata'');'...
			'val = abs(get(h_uic_1,''val''));'...
			'if val > ud(1);val = ceil(val);'...
			'else;val = floor(val);end;' ...
			'set(h_uic_1,''val'',-val);' ...
			'strval = get(h_uic_2,''userdata'');'...
			'numlines = length(findstr(strval,''|'')) + 1;'...
			'line_start_ind = [1 findstr(strval,''|'')+1];'...
			'startline = val;'...
			'set(h_uic_1,''userdata'',[startline]);'...
			'if length(line_start_ind) > 1;'...
			 'str_ind_start = line_start_ind(startline);'...
			 'str_ind_end = length(strval);'...
			 'strshown = strval(str_ind_start:str_ind_end);'...
			'elseif length(line_start_ind) == 1;'...
			 'str_ind_start = 1;'...
			 'str_ind_end = length(strval);'...
			 'strshown = strval(str_ind_start:str_ind_end);'...
			'else;'...
			 'strshown = '''';'...
			'end;'...
			'set(h_uic_2,''string'',strshown);'...
];
	sw_cbk_e = [''];

	sw_obj_e = uicontrol(...
		'CallBack',sw_cbk_e,...
		'Backgroundcolor',[.6 .6 .6],...
		'Max',[2],...
		'Position',sw_pos_e,...
		'Enable','on',...
		'String',strshown,...
		'Style','edit',...
		'Units','normalized',...
		'Tag',sw_tag_e,...
		'UserData',strval);

	sw_obj_s = uicontrol(...
		'CallBack',sw_cbk_s,...
		'Position',sw_pos_s,...
		'Style','slider',...
		'Units','normalized',...
		'Value',[0.02],...
		'Min',-numlines,'Max',-1,'Val',-1,...
		'Tag',sw_tag_s,...
		'UserData',[startline]);

	handle_list = [sw_obj_e sw_obj_s];

elseif command_num == 1
	if attr_types_ind(3) == 1
		h_uic_1 = sw_obj_s;
		h_uic_2 = sw_obj_e;

		val = 1;
		set(h_uic_1,'val',-val);
	
		strval = get(h_uic_2,'userdata');
		strval2 = '';
		for loop = 1:size(sw_str,1)
		 if loop == 1
		 strval2 = [deblank(fliplr(deblank(fliplr(sw_str(loop,:)))))];
		 else
		 strval2 = [strval2 '|' ...
			deblank(fliplr(deblank(fliplr(sw_str(loop,:)))))];
		 end
		end
		strval = [strval2];
		set(h_uic_2,'userdata',strval);
	
		numlines = length(findstr(strval,'|')) + 1;
		line_start_ind = [1 findstr(strval,'|')+1];
		startline = val;
		set(h_uic_1,'userdata',[startline],'min',min([-1,-numlines]));

		if length(line_start_ind) > 1
		 str_ind_start = line_start_ind(startline);
		 str_ind_end = length(strval);
		 strshown = strval(str_ind_start:str_ind_end);
		elseif length(line_start_ind) == 1
		 str_ind_start = 1;
		 str_ind_end = length(strval);
		 strshown = strval(str_ind_start:str_ind_end);
		else
		 strshown = '';
		end
		set(h_uic_2,'string',strshown);

	elseif attr_types_ind(2) == 1
	 sw_pos_e = [sw_pos(1:2) (sw_pos(3)-sw_pos(5)) sw_pos(4)];
	 sw_pos_s = [sw_pos_e(1)+sw_pos_e(3) sw_pos_e(2) sw_pos(5) sw_pos_e(4)];
	 set(sw_obj_e,'position',sw_pos_e);
	 set(sw_obj_s,'position',sw_pos_s);

	elseif attr_types_ind(1) == 1
	 cnt = 1;
	 if length(findobj(gcf,'tag',[sw_tag])) > 0
	 while length(findobj(gcf,'tag',[sw_tag num2str(cnt)])) > 0
	 cnt = cnt+1;
	 end
	 sw_tag_s = [sw_tag num2str(cnt)];
	 sw_tag_e = [sw_tag num2str(cnt)];
	 else
	 sw_tag_s = [sw_tag];
	 sw_tag_e = [sw_tag];
	 end

	sw_cbk_s = ['h_uic_1 = findobj(gcf,''tag'',''' sw_tag_s ''',''style'',''slider'');'...
			'h_uic_2 = findobj(gcf,''tag'',''' sw_tag_e ''',''style'',''edit'');'...
			'h_uic_1 = h_uic_1(1);h_uic_2 = h_uic_2(1);'...
			'ud = get(h_uic_1,''userdata'');'...
			'val = abs(get(h_uic_1,''val''));'...
			'if val > ud(1);val = ceil(val);'...
			'else;val = floor(val);end;' ...
			'set(h_uic_1,''val'',-val);' ...
			'strval = get(h_uic_2,''userdata'');'...
			'numlines = length(findstr(strval,''|'')) + 1;'...
			'line_start_ind = [1 findstr(strval,''|'')+1];'...
			'startline = val;'...
			'set(h_uic_1,''userdata'',[startline]);'...
			'if length(line_start_ind) > 1;'...
			 'str_ind_start = line_start_ind(startline);'...
			 'str_ind_end = length(strval);'...
			 'strshown = strval(str_ind_start:str_ind_end);'...
			'elseif length(line_start_ind) == 1;'...
			 'str_ind_start = 1;'...
			 'str_ind_end = length(strval);'...
			 'strshown = strval(str_ind_start:str_ind_end);'...
			'else;'...
			 'strshown = '''';'...
			'end;'...
			'set(h_uic_2,''string'',strshown);'...
];
	sw_cbk_e = [''];

	 set(sw_obj_e,'tag',sw_tag_e,'callback',sw_cbk_e);
	 set(sw_obj_s,'tag',sw_tag_s,'callback',sw_cbk_s);
	else
 	end
elseif command_num == 2
	if attr_types_ind(3) == 1
		h_uic_1 = sw_obj_s;
		h_uic_2 = sw_obj_e;

		ud = get(h_uic_1,'userdata');
		val = abs(get(h_uic_1,'val'));
		if val > ud(1)
		 val = ceil(val);
		else
		 val = floor(val);
		end
		set(h_uic_1,'val',-val);
	
		strval = get(h_uic_2,'userdata');
		strval2 = '';
		for loop = 1:size(sw_str,1)
		 if loop == 1
		 strval2 = [deblank(fliplr(deblank(fliplr(sw_str(loop,:)))))];
		 else
		 strval2 = [strval2 '|' ...
			deblank(fliplr(deblank(fliplr(sw_str(loop,:)))))];
		 end
		end
		strval = [strval '|' strval2];
		set(h_uic_2,'userdata',strval);
	
		numlines = length(findstr(strval,'|')) + 1;
		line_start_ind = [1 findstr(strval,'|')+1];
		startline = val;
		set(h_uic_1,'userdata',[startline],'min',min([-1,-numlines]));

		if length(line_start_ind) > 1
		 str_ind_start = line_start_ind(startline);
		 str_ind_end = length(strval);
		 strshown = strval(str_ind_start:str_ind_end);
		elseif length(line_start_ind) == 1
		 str_ind_start = 1;
		 str_ind_end = length(strval);
		 strshown = strval(str_ind_start:str_ind_end);
		else
		 strshown = '';
		end
		set(h_uic_2,'string',strshown);

	end
elseif command_num == 3
	if attr_types_ind(3) == 1
	 h_uic_1 = sw_obj_s;
	 h_uic_2 = sw_obj_e;

	 ud = get(h_uic_1,'userdata');
	 val = abs(get(h_uic_1,'val'));
	 if val > ud(1)
	 val = ceil(val);
	 else
	 val = floor(val);
	 end
	 set(h_uic_1,'val',-val);

	 strval = get(h_uic_2,'userdata');
	 if command3_type == 3
	 get_str = strval;
	 end
	elseif attr_types_ind(2) == 1
	 pos_e = get(sw_obj_e,'position');
	 pos_s = get(sw_obj_s,'position');
	 pos = [pos_e(1:2) (pos_e(3)+pos_s(3)) pos_e(4) pos_s(3)];
	 get_str = pos;

	elseif attr_types_ind(1) == 1
	 get_str = get(sw_obj_e,'tag');
	else
	 get_str = [];
	end

else
	error('Error: scrllwin.m called with incorrect command.')
end

if command_num == 0
 out1 = handle_list;
elseif command_num == 3
 out1 = get_str;
end

stretchable.m

%Making a GUI stretchable.

%Create the figure.

figure('position',[150 100 200 150],...

 'MenuBar','none',...

 'Color','white');

% Create the uicontrol objects with normalized units.

h_frame = uicontrol('style','frame',...

 'units','normalized',...

 'position',[0 0 1 1]);

h_stext_font = uicontrol('style','text',...

 'units','normalized',...

 'position',[.05 .1 .25 .15],...

 'string','Font:');

h_popup_font = uicontrol('style','popup',...

 'units','normalized',...

 'position',[.3 .1 .65 .15],...

 'string','Helvetica|Times|Courier|Symbol');

h_stext_color = uicontrol('style','text',...

 'units','normalized',...

 'position',[.05 .3 .25 .15],...

 'string','Color:');

h_edit_color = uicontrol('style','edit',...

 'units','normalized',...

 'position',[.3 .3 .65 .15],...

 'string','white');

% Create a multiple line editable text object

% by setting the Max property to a value greater

% than 1 plus the Min property (Min default = 0).

h_edit_multi = uicontrol('style','edit',...

 'units','normalized',...

 'position',[.05 .5 .9 .45],...

 'string',['Line Number 1|Line # 2|and line number 3'],...

 'max',2)

uidial.m

function uidial(command_str,Argument1,Argument2)

% UIDIAL

% examples/chap10/uidial.m

% Creates a dial user interface to learn how to

% make a custom GUI object.

% Usage:

% uidial('initialize',min,max);

%

% The value of the dial is stored and can be

% gotten from the current axes UserData property.

if nargin == 0

	command_str = 'initialize';

end

if ~strcmp(command_str,'initialize')

	handles = get(gcf,'userdata');

	h_arrow = handles(1);

	h_stextval = handles(2);

end

if strcmp(command_str,'initialize')

	% Define default min and max values of dial.

	if nargin == 3

		minval = Argument1;

		maxval = Argument2;

	else

		minval = 0;

		maxval = 100;

	end

	h_fig=figure('Position',[200 200 200 200],...

		'color',[.7 .7 .7],...

		'menubar','none',...

 'resize','off',...

 'Units','normalized');

	h_ax=axes('color',[.7 .7 .7],...

		'xcolor',[.7 .7 .7],...

		'ycolor',[.7 .7 .7],...

		'xtick',[],'ytick',[],...

		'xlim',[-1 1],'ylim',[0 1],...

		'DataAspectRatio',[1 1 1],...

		'position',[.2 .1 .6 .8]);

	% Draw arrow in its minimum setting.

	arrowx = [0 -1 -.85 NaN -1 -.85];

	arrowy = [0 0 -.05 NaN 0 .05];

	arrowz = [0 0 0 0 0 0];

	% Store a matrix that can be manipulated

	% and used to draw the arrow after a rotation

	% angle has been determined.

	arrowud = [arrowx(:),arrowy(:),...

		arrowz(:),ones(prod(size(arrowx)),1)]';

	h_arrow = line(arrowx,arrowy,...

		'linewidth',2,...

		'clipping','off',...

		'erasemode','background',...

		'userdata',arrowud);

	% Create labels and the radial lines.

	h_stext = uicontrol(h_fig,...

		'style','text',...

		'string','Value:',...

		'units','norm',...

		'position',[.2 .2 .3 .13]);

	h_stextval = uicontrol(h_fig,...

		'style','text',...

		'string',sprintf('%2.1f',minval),...

		'units','norm',...

		'position',[.5 .2 .3 .13],...

		'min',minval,'max',maxval);

	h_dialborder = line(1.1*cos(0:.1:pi),...

		1.1*sin(0:.1:pi),...

		'color',[0 0 0],...

 'linewidth',2,...

		'clipping','off');

	h_t(1)=text(-1.15,0,sprintf('%2.1f',minval),...

		'horizontalalignment','right');

	h_t(2)=text(1.1,0,sprintf('%2.1f',maxval),...

		'horizontalalignment','left');

	h_t(3)=text(0,1.15,sprintf('%2.1f',...

		(maxval-minval)/2+minval),...

		'horizontalalignment','center',...

		'verticalalignment','bottom');

	% Make sure all the objects that the user might click on

	% to rotate the arrow with will recognize the initial

	% click.

	set([h_ax;h_t(:);h_dialborder;h_arrow],...

	 'buttondownfcn',...

	 'uidial(''Set Calls'');uidial(''Rotate'')');

	set(gcf,'userdata',[h_arrow h_stextval])

	

elseif strcmp(command_str,'Set Calls')

	% Define when the user clicks on the dial. Set up

	% the callbacks that should occur when the user moves or

	% releases the mouse button.

	set(gcf,'windowbuttonupfcn',...

	 'set(gcf,''windowbuttonmotion'','''')');

	set(gcf,'windowbuttonmotionfcn','uidial(''Rotate'')');

elseif strcmp(command_str,'Rotate')

	% Define the callback that should occur when the user

	% moves the mouse button.

	% Find out where the mouse pointer is located.

	pt = get(gca,'currentpoint');

	pt = pt(1,1:2);

	% Determine the angle that the pointer is at with

	% respect to the arrow's hinge.

	deg = atan2(pt(2),-pt(1))*180/pi;

	% Make sure the arrow does not swing past limits.

	if deg < 0 & abs(deg) < 90

		deg = 0;

	elseif deg>180 | (deg<0 & abs(deg) > 90)

		deg = 180;

	end

	% Scale angle linearly between dial's minimum

	% and maximum values.

	minval = get(h_stextval,'min');

	maxval = get(h_stextval,'max');

	val = (deg/(180-0)*((maxval-minval)))+minval;

	% Store the value in the current axes UserData

	% where it can be retrieved by an application.

	set(gca,'userdata',val);

	% Create transformed coordinate points for the

	% arrow.

	arrowud = get(h_arrow,'userdata');

	A = viewmtx(deg,90);

	newarrow = A*arrowud;

	set(h_arrow,'xdata',newarrow(1,:),'ydata',newarrow(2,:));

	% Update the value indicator.

	set(h_stextval,'string',sprintf('%2.1f',val));

end

uidial2.m

function uidial2(command_str,Argument1,Argument2)
%UIDIAL
%examples/chap7/uidial.m
%Creates a dial user interface to learn how to
%make a custom GUI object.
%
% uidial('initialize',min,max);
%
% The value of the dial is stored and can be
% gotten from the current axes userdata property.

if nargin == 0
	command_str = 'initialize';
end

if ~strcmp(command_str,'initialize')
	handles = get(gcf,'userdata');
	h_arrow = handles(1);
	h_stextval = handles(2);
end

if strcmp(command_str,'initialize')
	% Define default min and max values of dial
	if nargin == 3
		minval = Argument1;
		maxval = Argument2;
	else
		minval = 0;
		maxval = 100;
	end

	h_fig=figure('pos',[200 200 200 200],...
		'color',[.7 .7 .7],...
		'resize','off');
	h_ax=axes('color',[.7 .7 .7],...
		'xcolor',[.7 .7 .7],...
		'ycolor',[.7 .7 .7],...
		'xtick',[],'ytick',[],...
		'xlim',[-1 1],'ylim',[0 1],...
		'aspect',[NaN 1],...
		'position',[.2 .1 .6 .8]);

	% Draw arrow in itØs minimum setting
	arrowx = [0 -1 -.85 NaN -1 -.85];
	arrowy = [0 0 -.05 NaN 0 .05];
	arrowz = [0 0 0 0 0 0];
	% Store a matrix that can be manipulated
	% and used to draw the arrow after a rotation
	% angle has been determined.
	arrowud = [arrowx(:),arrowy(:),...
		arrowz(:),ones(prod(size(arrowx)),1)]';
	h_arrow = line(arrowx,arrowy,...
		'linewidth',2,...
		'clipping','off',...
		'erasemode','background',...
		'userdata',arrowud);

	% Create Labels and the radial lines.
	h_stext = uicontrol(h_fig,...
		'style','text',...
		'string','Value:',...
		'position',[.1 .2 .4 .13],...
		'units','norm');
	h_stextval = uicontrol(h_fig,...
		'style','text',...
		'string',sprintf('%2.1f',minval),...
		'position',[.4 .2 .3 .13],...
		'units','norm',...
		'min',minval,'max',maxval);
	h_dialborder = line(1.1*cos(0:.1:pi),...
		1.1*sin(0:.1:pi),...
		'color',[0 0 0],...
		'clipping','off');
	h_t(1)=text(-1.15,0,sprintf('%2.1f',minval),...
		'horizontalalignment','right');
	h_t(2)=text(1.1,0,sprintf('%2.1f',maxval),...
		'horizontalalignment','left');
	h_t(3)=text(0,1.15,sprintf('%2.1f',...
		(maxval-minval)/2+minval),...
		'horizontalalignment','center',...
		'verticalalignment','bottom');

	% Make sure all the objects that the user might click on
	% to rotate the arrow with will recognize the initial
	% click
	set([h_ax;h_t(:);h_dialborder;h_arrow],...
	 'buttondownfcn','uidial(''Set Calls'');uidial(''Rotate'')');
	set(gcf,'userdata',[h_arrow h_stextval])
	disp('Click (and drag) anywhere along the dial radius')
	disp('to graphically move the dial pointer.')
	
elseif strcmp(command_str,'Set Calls')
	% Define when the user clicks on the dial, set up
	% the callbacks that should occur when the user moves or
	% releases the mouse button.
	set(gcf,'windowbuttonupfcn','set(gcf,''windowbuttonmotion'','''')');
	set(gcf,'windowbuttonmotionfcn','uidial(''Rotate'')');

elseif strcmp(command_str,'Rotate')
	% Define the callback that should occur when the user
	% moves the mouse button.

	% Find out where the mouse pointer is located.
	pt = get(gca,'currentpoint');
	pt = pt(1,1:2);
	% Determine the angle that the pointer is with
	% respect to the arrrow hinge.
	deg = atan2(pt(2),-pt(1))*180/pi;
	% Make sure the arrow does not swing past limits.
	if deg < 0 & abs(deg) < 90
		deg = 0;
	elseif deg>180 | (deg<0 & abs(deg) > 90)
		deg = 180;
	end

	% Scale angle linearly between dials minimum
	% and maximum values.
	minval = get(h_stextval,'min');
	maxval = get(h_stextval,'max');
	val = (deg/(180-0)*((maxval-minval)))+minval;

	% Store the value in the current axes UserData
	% where it can be retrieved by an application.
	set(gca,'userdata',val);

	% Create transformed coordinate points for the
	% arrow.
	arrowud = get(h_arrow,'userdata');
	A = viewmtx(deg,90);
	newarrow = A*arrowud;
	set(h_arrow,'xdata',newarrow(1,:),'ydata',newarrow(2,:));

	% Update the value indicator.
	set(h_stextval,'string',sprintf('%2.1f',val));

end

uimenusummary.m

h_fig = figure('MenuBar','none','Color','white',...

 'Name','Uimenu Demo','NumberTitle','off');

% Create top level menus.

h_menu_props = uimenu(h_fig,'label','Properties');

% Create menu items.

h_menu_axes = uimenu(h_menu_props,'label','Axes');

h_menu_line = uimenu(h_menu_props,'label','Line');

h_menu_patch = uimenu(h_menu_props,'label','Patch');

h_menu_surface = uimenu(h_menu_props,'label','Surface');

h_menu_text = uimenu(h_menu_props,'label','Text');

% Create some submenu items to the line object.

h_menu_line_col = uimenu(h_menu_line,'label','Colors');

h_menu_line_sty = uimenu(h_menu_line,'label','Styles');

h_menu_line_thk = uimenu(h_menu_line,'label','Width');

% Create submenu items to Styles.

h_menu_line_solid = uimenu(h_menu_line_sty,'label','Solid');

h_menu_line_solid = uimenu(h_menu_line_sty,'label','Dashed');

h_menu_line_solid = uimenu(h_menu_line_sty,...

		'label','Stars','separator','on');

h_menu_line_solid = uimenu(h_menu_line_sty,...

		'label','Crosses');

uimenusummary2.m

h_fig = figure('MenuBar','none','Color','white',...

 'Name','Uimenu Demo 2','NumberTitle','off');

% Create top level menus.

h_menu_edit = uimenu(h_fig,'label','Edit');

h_menu_options = uimenu(h_fig,'label','Options');

h_menu_window = uimenu(h_fig,'label','Window');

% Create some submenu items to the line object.

h_menu_edit_undo = uimenu(h_menu_edit,'label','Undo','Accelerator','Z',...

 'Enable','off');

h_menu_edit_cut = uimenu(h_menu_edit,'label','Cut','Accelerator','X',...

 'Separator','on','Enable','off');

h_menu_edit_copy = uimenu(h_menu_edit,'label','Copy','Accelerator','C',...

 'Enable','off');

h_menu_edit_paste = uimenu(h_menu_edit,'label','Paste','Accelerator','V');

h_menu_line_clear = uimenu(h_menu_edit,'label','Clear','Enable','off');

File Attachment
GUIBookChapter10_MFiles.zip

usflag300.gif

usflag.bmp

usflag.dib

usflag.gif

sunset.bmp

File Attachment
GUIBookImageFiles.zip

simcube.m

x = [0 1 1 0 0 0 1 1 0 0 1 1 1 1 0 0];

y = [0 0 1 1 0 0 0 1 1 0 0 0 1 1 1 1];

z = [0 0 0 0 0 1 1 1 1 1 1 0 0 1 1 0];

plot3(x,y,z,'-k');

for i=1:length(x)

 text(x(i),y(i),z(i),[num2str(x(i)),',',num2str(y(i)),',',num2str(z(i))],...

 'verticalalignment','bottom');

end

axis equal

axis off

view(-37.5,30)

axis([-1 2 -1 2 0 1])

buttons.m

%Section 7.5.2.8

%Example using mouse event driven properties

fighandle = figure;

bdfcnstring = ['selecttype=get(gcf,''selectiontype'');'...

 'firstpnt = get(gcf,''currentpoint'');'...

	'figunits = get(gcf,''units'');'...

	'set(gcf,''pointer'',''crosshair'');'...

	'disp([''The selection type is:'' selecttype]);'...

	'disp([''First X: '' num2str(firstpnt(1)) '' '' figunits]);'...

	'disp([''First Y: '' num2str(firstpnt(2)) '' '' figunits]);'...

	'set(gcf,''windowbuttonmotionfcn'',bmfcnstring,'...

	'''windowbuttonupfcn'',bufcnstring);'];

bmfcnstring = [...

	'currentpnt = get(gcf,''currentpoint'');'...

	'offset = currentpnt-firstpnt;'...

	'disp([''X-Offset: '' num2str(offset(1)) '' '' figunits]);'...

	'disp([''Y-Offset: '' num2str(offset(2)) '' '' figunits]);'];

bufcnstring = ['set(gcf,''pointer'',''arrow'');'...

	'lastpnt = get(gcf,''currentpoint'');'...

	'disp([''Last X: '' num2str(lastpnt(1)) '' '' figunits]);'...

	'disp([''Last Y: '' num2str(lastpnt(2)) '' '' figunits]);'...

	'set(gcf,''windowbuttonmotionfcn'','''');'];

set(fighandle,'buttondownfcn',bdfcnstring);

c3p3.m

%This is a solution to Chapter 3 Problem 3 on page 100

tau=0:.1:2*pi;

y=sin(tau);

plot(tau,y);title('Sine of 0 to 2\pi')

xlabel('\tau = 0 to 2\pi')

for x=3:5

 text(3*pi/x, sin(3*pi/x),['\leftarrowsin(',...

 num2str(3*pi/x),') = ',num2str(sin(3*pi/x))])

 end

cube1.m

%cube1

x = [0 1 1 0 0 0 1 1 0 0 NaN 1 1 NaN 1 1 NaN 0 0];

y = [0 0 1 1 0 0 0 1 1 0 NaN 0 0 NaN 1 1 NaN 1 1];

z = [0 0 0 0 0 1 1 1 1 1 NaN 1 0 NaN 0 1 NaN 1 0];

cube_h = plot3(x-0.5,y-0.5,z-0.5);

axis('square');

axis([-1 1 -1 1 -1 1]*2);

view(-37.5,15);

set(cube_h,'erasemode','background');

rotation_increment = 5; % degrees

rotation_axis = [0 0 1];

rotation_origin = [0 0 0];

num_of_incr = 360/rotation_increment;

for loop = 1:num_of_incr

 rotate(cube_h,rotation_axis,...

 rotation_increment,rotation_origin);

 drawnow;

end

cube2.m

x = [0 1 1 0 0 0 1 1 0 0 NaN 1 1 NaN 1 1 NaN 0 0];

y = [0 0 1 1 0 0 0 1 1 0 NaN 0 0 NaN 1 1 NaN 1 1];

z = [0 0 0 0 0 1 1 1 1 1 NaN 1 0 NaN 0 1 NaN 1 0];

cube_h = plot3(x-0.5,y-0.5,z-0.5);

axis('square');

axis([-1 1 -1 1 -1 1]*2);

view(-37.5,15);

set(cube_h,'erasemode','background');

rotation_increment = 5; % degrees

rotation_axis = [0 0 1];

rotation_origin = [0 0 0];

num_of_incr = 360/rotation_increment;

for loop = 1:num_of_incr

 rotate(cube_h,rotation_axis,...

 rotation_increment,rotation_origin);

 drawnow;

end

cube2_h = line(x+1,y+1,z+1,'erasemode','background');

for loop = 1:num_of_incr

 rotate(cube_h,rotation_axis,...

 rotation_increment,rotation_origin);

 rotate(cube2_h,rotation_axis+[1 1 0],...

 rotation_increment,rotation_origin+1);

 drawnow;

end

cube3.m

x = [0 0 1 1 0]; y = [0 1 1 0 0]; z = zeros(size(x));

rotation_axis = [0 0 1];

rotation_origin = [0 0 0];

rotation_increment = 5; % degrees

num_of_incr = 360/rotation_increment;

s1_h = surf([x;x]-.5,[y;y]-.5,[z+0.5;z-0.5]);

set(s1_h,'erasemode','background',...

 'facecolor','none',...

 'edgecolor','g');

s2_h = surface([x;x]+1.5,[y;y]+1.5,[z+.5;z-0.5]+1.5,...

 'erasemode','background',...

 'facecolor','none',...

 'edgecolor','r');

s3_h = surface([x;x]+1.5,[y;y],[z+.5;z-0.5],...

 'erasemode','background',...

 'facecolor','none',...

 'edgecolor','b');

axis([-3 3 -3 3 -3 3]);axis('square');

for loop = 1:num_of_incr

 rotate(s1_h,rotation_axis,...

 rotation_increment,rotation_origin);

 rotate(s2_h,rotation_axis+[1 1 0],...

 rotation_increment,rotation_origin+1);

 rotate(s3_h,rotation_axis,...

 rotation_increment,rotation_origin);

 drawnow;

end

cube4.m

xx = [0 0 1 1 0 NaN 0 1 NaN 1 0;...

 0 0 1 1 0 NaN 0 1 NaN 1 0];

yy = [0 1 1 0 0 NaN 1 1 NaN 1 1;...

 0 1 1 0 0 NaN 0 0 NaN 0 0];

zz = [1 1 1 1 1 NaN 1 1 NaN 0 0;...

 0 0 0 0 0 NaN 1 1 NaN 0 0];

% Set up rotation variables.

rotation_increment = 5; % degrees

rotation_axis = [0 0 1];

rotation_origin = [0 0 0];

num_of_incr = 360/rotation_increment;

% Generate 3 translated versions of the cube.

s1_h = surf([xx]-.5,[yy]-.5,[zz]-.5);

set(s1_h, 'erasemode','background','facecolor','g');

s2_h = surface([xx]+1.5,[yy]+1.5,[zz]+1,...

 'erasemode','background','facecolor','r');

s3_h = surface([xx]+1.5,[yy],[zz]-0.5,...

 'erasemode','background','facecolor','b');

% Set up the proper proportions.

axis([-3 3 -3 3 -3 3]);axis('square');

grid off;

% Define the rotation specifications for each cube.

for loop = 1:num_of_incr

 rotate(s1_h,rotation_axis,...

 rotation_increment,rotation_origin);

 rotate(s2_h,rotation_axis+[1 1 0],...

 rotation_increment,rotation_origin+1);

 rotate(s3_h,rotation_axis,...

 rotation_increment,rotation_origin);

 drawnow;

end

fig4d20.m

%Section 4.1.11

%Figure 4.28

% create some shape data

x = [0 1 1 0 0.5 0.5];

y = [0 0 1 1 0.5 0.5];

z = [0 0 0 0 1 -1];

plot3(x,y,z,'o','markersize',4,...

 'markerfacecolor','black');

axis equal;

grid on;

for i=1:length(x)

 text(x(i),y(i),z(i),num2str(i),...

 'verticalalignment','bottom');

end

%specify the triangles

tri=[1 2 5;

 2 3 5;

 3 4 5;

 4 1 5;

 1 2 6;

 2 3 6;

 3 4 6;

 4 1 6];

% generate the triangular mesh plot

hold on

trimesh(tri,x,y,z,'edgecolor','black');

fig4d28.m

%Section 4.1.13

%Figure 4.32

% Define the x data range

x = linspace(-3*pi,3*pi,50);

% Evaluate the function

r = cos(x).*sin(0.5*x).*exp((x.^2)/200);

% Force the minimum radius to zero.

r = r - min(r);

subplot(1,2,1);

plot(r,linspace(0,1,length(r)));

title('Radial Profile');

ylabel('z')

subplot(1,2,2);

cylinder(r);

title('Resulting Cylinder');

zlabel('z')

fig4d35.m

%Section 4.2.4

%Figure 4.37

azrange=-60:20:0;

elrange=0:30:90;

spr=length(azrange);

spc=length(elrange);

pane=0;

for az=azrange

 for el=elrange

 pane=1+pane;

 subplot(spr,spc,pane);

 [x,y,z]=peaks(20);

 mesh(x,y,z);

 view(az,el);

 tstring=['Az=',num2str(az),' El=',num2str(el)];

 title(tstring)

 axis off

 end

end

fig4d38241.m

%Section 4.3.1.1

%This will create Figure 4.38

figure(1)%the simplest slice, perpendicular to axis

[x,y,z] = meshgrid(-2:.2:2, -2:.2:2, -2:.2:2);

v = x .* exp(-x.^2 - y.^2 - z.^2);

slice(x, y, z, v,1,0,0)

axis tight

%This will create Figure 4.39

figure(2)%slicing at an angle

%first define a surface and rotate it.

%get the handle to the surface

Hslice = surf(-2:.2:2, -2:.2:2, zeros(length(z)));

%now rotate -45 degrees about the x axis

rotate(Hslice,[-1 0 0],-45);

%now use a little handle graphics to get the data that

%defines the slice plane

xs = get(Hslice,'XData');

ys = get(Hslice,'Ydata');

zs = get(Hslice,'Zdata');

delete(Hslice); %since it is not needed

%to slice with the new plane simply...

slice(x,y,z,v,1,0,Inf)

hold on

slice(x,y,z,v,xs,ys,zs)

hold off

%20 contour lines on the x=1 plane

Hcs=contourslice(x,y,z,v,1,0,Inf,20);

set(Hcs,'EdgeColor','white', 'LineWidth', 1.0);

%20 contour lines on the 45 degree plane

Hcs=contourslice(x, y, z, v,xs,ys,zs,20);

set(Hcs,'EdgeColor','white','LineWidth', 1.0);

axis tight

%for Figure 4-41, slicing with a surface

figure(3)

slice(x, y, z, v,1,0,0)

hold on

[xss,yss,zss]=sphere;

slice(x,y,z,v,xss,yss,zss);

view([-29,12]);

axis tight

fig4d51.m

load wind

%extract a portion of the volume

[x y z u v w] =...

 subvolume(x,y,z,u,v,w,[105,120,nan,30,2,6]);

%compute the magnitude of the wind

wind_vel = sqrt(u.^2 + v.^2 + w.^2);

%slice at the extremities

lims=volumebounds(x,y,z,u,v,w);

slice(x,y,z,wind_vel,...

[lims(1),lims(2)],[lims(4)],[lims(5)])

%specify where to put cones

xrange = linspace(lims(1),lims(2),8);

yrange = linspace(lims(3),lims(4),8);

zrange = linspace(lims(5),lims(6),6);

[cx cy cz] = meshgrid(xrange,yrange,zrange);

coneplot(x,y,z,u,v,w,cx,cy,cz,wind_vel,1);

%pretty it up a bit

shading interp

axis equal

fig7d15216.m

%Section 7.5.3.3 Axis Location and Position

%For Figures 7.15 and 7.16

figure;

plot(0:9,[0:9].^2);

a1=gca;

a2=axes;

plot(-10:10,[-10:10].^3);

set (a2,'xaxislocation','top','yaxislocation','right',...

 'color','none');

pause

numxticka1=length(get(a1,'xtick'));

xlima2=get(a2,'xlim');

xincr=(abs(diff(xlima2))/(numxticka1-1));

newxtks = [xlima2(1):xincr: xlima2(2)];

set(a2,'xtick',newxtks);

display('New XTicks set')

pause

numyticka1=length(get(a1,'ytick'));

ylima2=get(a2,'ylim');

yincr=(abs(diff(ylima2))/(numyticka1-1));

newytks = [ylima2(1):yincr: ylima2(2)];

set(a2,'ytick',newytks);

display('New YTicks set')

pause

% Rounding may not always be appropriate, but is done

% on the next two lines to make the graph look cleaner.

set(a2,'xticklabel',round(get(a2,'xtick')))

set(a2,'yticklabel',round(get(a2,'ytick')))

fig7d21.m

%Section 7.5.3.4

%Figure 7.21

%linestyledemo

figure;

% Specify black color

colorordermatrix = [0 0 0];

% Specify Line Styles

linestylematrix = ['- ';'--';': ';'-.';'x '];

axes('ColorOrder',colorordermatrix,...

 'LineStyleOrder',linestylematrix,...

 'NextPlot','add');

plot(xdata,ydata)

fig7d32.m

%Section 7.5.4

%Figure 7.32

%linewidth demo

figure;

axes('XLim',[0 6],'YLim',[0 7],'Box','on');

x = [1:4]; y = ones(size(x));

thicknessrange = [0.25 0.5 1 2 4 10];

for thicknessindex = 1:length(thicknessrange)

 line('XData',x,'YData',y*thicknessindex,...

 'LineWidth',thicknessrange(thicknessindex));

 text(5,thicknessindex,...

 num2str(thicknessrange(thicknessindex)));

end

title('LineWidths indicated next to line')

fig7d33.m

%Section 7.5.4

%Figure 7.33

%markersizedemo

figure;

axes('XLim',[0 6],'YLim',[0 6],'Box','on');

x = [1:4]; y = ones(size(x));

markersizerange = [1 3 6 12 20];

for markersizeindex = 1:length(markersizerange)

 line('XData',x,'YData',y*markersizeindex ,...

 'LineStyle','none','Marker','x',...

 		 'MarkerSize',markersizerange (markersizeindex));

 text(5,markersizeindex ,...

 num2str(markersizerange (markersizeindex)));

end

title('MarkerSize indicated next to line')

fig7d34.m

%Section 7.5.4

%Figure 7.34

%marker color demo

figure;

line_h=plot([-.5 .5 .5 -.5 -.5],[-.5 -.5 .5 .5 -.5]);

set(line_h, 'linestyle','--',...

 'color','blue',...

 'linewidth',2,...

 'marker','hexagram',...

 'markersize',15,...

 'markeredgecolor','red',...

 'markerfacecolor','yellow');

axis([-1 1 -1 1]);

fig7d35.m

%Section 7.5.5

%Figure 7.35

%rectangle demo

figure;

curvesize=[0 0.2 0.5 0.8 1];

axis([1 20 1 20]);

for inc=1:5

	rect_h(inc)=rectangle;

	set(rect_h(inc),'Position',[2,3*inc,2,2],'Curvature',curvesize(inc));

	text(5,3*inc, num2str(curvesize(inc)));

end

inc=inc+1;

rect_h(inc)=rectangle

set(rect_h(inc),'Position',[9 6 6 6],'Curvature',[0.3 0.7],...

	'LineStyle',':', 'LineWidth',2,'EdgeColor','blue',...

	'FaceColor',[1 0 0]);

text(10,4, {'Curvature = [0.3 0.7]', 'EdgeColor = blue'...

		 'FaceColor = red'});

axis equal;

fig7d36.m

%Section 7.5.6.1

%Figure 7.36

%patchdemo1

figure;

vertex = [-0.5 -0.5 0; % Vertex 1

 0.5 -0.5 0; % Vertex 2

 0.5 0.5 0; % Vertex 3

 -0.5 0.5 0; % Vertex 4

 0 0 -1]; % Vertex 5

faces = [1 2 3 4; % Face F1

 1 2 5 NaN; % Face F2

 2 3 5 NaN; % Face F3

 3 4 5 NaN; % Face F4

 4 1 5 NaN]; % Face F5

p=patch('vertices',vertex,...

 'faces',faces,...

 'facecolor',[.5 .5 .5]);

axis([-1 1 -1 1 -1 0]);

view(3);

fig7d37.m

%Section 7.5.6.2

%Figure 7.37

%patchdemo2

x = [-1 -1 1 1 -1];

y = [-1 1 1 -1 -1];

figure;

axes('XLim',[-4 4],'YLim',[-4 4],'box','on')

p1 = patch('XData',x,'YData',y,'FaceColor','blue');

text(0,0,'p1');

p2 = patch('XData',x+2,'YData',y+2,'FaceColor',[1 0 0],...

	'Edgecolor',[0 1 0],'linewidth',3, 'marker','o');

text(2,2,'p2');

p3 = patch('XData',x-2,'YData',y+2,'FaceColor','none',...

	'Edgecolor',[.3 .3 .3],'linewidth',6);

text(-2,2,'p3');

p4 = patch('XData',x+2,'YData',y-2,'FaceColor',[0 1 1],...

	'Edgecolor','none','linewidth',3,'marker','hexagram',...

	'markeredgecolor','yellow','markerfacecolor','red',...

	'markersize',20);

text(2,-2,'p4');

p5 = patch('XData',x-2,'YData',y-2,'FaceColor',[0 1 1],...

	'Edgecolor',[1 1 1],'linewidth',50);

text(-2,-2,'p5');

fig7d425.m

%Section 7.4.3.3 Clipping

%Figures 7.4 and 7.5

x = -5:15;

LineHandles = plot(x,x+5,'--r',x,x-3,'g');

TextHandles(1) = text(6.5,5,...

 'This String will have clipping off');

TextHandles(2) = text(-1,3.5,...

 'This String will have clipping on');

axis([0 10 0 10]);

set(LineHandles(1),'Clipping','off');

set(TextHandles(2),'Clipping','on');

fig7d45.m

%Section 7.5.9

%Figure 7.45

%text demo 3

axis([0 10 0 10])

text(0,9,'fontweight=bold, fontname=times new roman, fontsize=12, fontangle=normal',...

 'FontWeight','bold', 'Fontname','times new roman', 'FontSize',12,'FontAngle','normal');

text(0,7,'fontweight=light, fontname=times new roman , fontsize=10, fontangle=normal',...

 'FontWeight','light','Fontname','times new roman', 'FontSize',10,'FontAngle','normal');

text(0,5,'fontweight=normal, fontname=arial, fontsize=12, fontangle=normal',...

 'Fontname','arial', 'FontSize',12,'FontAngle','normal');

text(2,3,{'fontweight=bold, fontname=brush script, fontsize=12',...

 'fontangle=normal, color=red'},...

 'FontWeight','bold', 'Fontname','brush script', 'FontSize',12,...

 'FontAngle','normal','Color','red');

fig7d46.m

%Section 7.5.9

%Figure 7.46

%textdemo4

text(1.5,4.5,'HorizontalAlignment=left','horiz','left')

text(1.5,3.5,'HorizontalAlignment=center','horiz','center')

text(1.5,2.5,'HorizontalAlignment=right','horiz','right')

hold on

plot([1.5*ones(1,3)],[2.5:4.5],'+','markersize',30)

text(2.5,5,'VerticalAlignment=top','vert','top')

text(2.5,4,'VerticalAlignment=cap','vert','cap')

text(2.5,3,'VerticalAlignment=middle','vert','mid')

text(2.5,2,'VerticalAlignment=baseline','vert','base')

text(2.5,1,'VerticalAlignment=bottom','vert','bottom')

plot([2.5*ones(1,5)],[1:5],'+','markersize',30)

set(gca,'vis','off')

axis([0 5 0 6]);axis(axis)

fig7d47248.m

%findobjdemo1

x = 0:.1:10;

plot(x,sin(x).*exp(-.5*x));

xlabel('x'); ylabel('y')

text(4,.3,'y = sin(x).*exp(-.5x)');

text(5,-0.1,'Here''s the maximum');

pause

line_handle = findobj('type','line');

set(line_handle,'linestyle','--');

text_handle = findobj('string','Here''s the maximum');

set(text_handle,'string','Here''s the minimum');

fig7d6.m

%Section 7.4.3.7

%Figure 7.6

h_butt = uicontrol('Style','pushbutton','Position',[20 40 60 20]);

h_a1=axes('Position',[.2,.1,.7,.8]);

axis([0,10,0,10]);

TextHandles(1) = text(5,5,...

 'Text object Selected "off"');

TextHandles(2) = text(5,3,...

 'Text object Selected "on"');

h_a2=axes('Position',[.5 .6 .3 .2])

set(TextHandles(2),'Selected','on');

set(h_a1,'Selected','on');

set(h_butt,'Selected','on');

fig8d15.m

%Section 8.2.7

%Figure 8.15

figure

view(3);

[x,y,z] = sphere(20);

% Create the outer sphere.

z1 = z;

z1(:,1:4) = NaN*z1(:,1:4);

c1 = ones(size(z1));

s1 = surface(2*x,2*y,2*z1,c1);

% Create the inner sphere.

z2 = z;

c2 = 2*ones(size(z2));

c2(:,1:4) = 3*ones(size(c2(:,1:4)));

s2 = surface(1.5*x,1.5*y,1.5*z2,c2);

colormap([0 1 0;.5 0 0; 1 0 0]);

grid;

set(gca,'box','on');

fig8d31.m

%Section 8.3.3.4

%Figure 8.31

n = 20;

t = (0:n)'*2*pi/n;

x = [cos(0:.1:(2*pi)) ones(1,10) -1 -2 -3]+3;

y = [fliplr(1:(length(x)-3)) 1 1 1];

t = (0:20)'*2*pi/20;

xx = cos(t)*x;

yy = sin(t)*x;

zz = ones(n+1,1)*y;

[nx,ny,nz] = surfnorm(xx,yy,zz);

reflectance = specular(nx,ny,nz,[-80.5 30],...

[-70 -30],5) + diffuse(nx,ny,nz,[230 40]);

figure('colormap',hot);

surface_handle = surf(xx,yy,zz,reflectance);

shading interp

axis('off');

fig8d32234.m

%Section 8.3.4

%Figures 8.32 and 8.33

% Define the coordinates of the virtual line

x = 0:.02:5*pi;

y = sin(x);

z = 0*x;

% Define the color values of each coordinate of the line

c = y;

% Generate the plot.

figure;

surface([x;x],[y;y],[z;z],[c;c],...

	'facecolor','none',...

	'edgecolor','flat',...

	'linewidth',3);

set(gca,'box','on','xtick',[0:pi:5*pi],...

	 'xticklabels','0|pi|2pi|3pi|4pi|5pi');

axis([0 5*pi -1.1 1.1])

grid on

%This is for the multi-colored spiral plot

u = 0:.2:4*pi;

x = cos(u);

y = sin(u);

z = u;

figure('colormap',cool(64));

h_surface = surface([0*x;x],[0*y;y],[z;z],...

	'facecolor','none',...

	'edgecolor','flat',...

	'meshstyle','row',...

	'linewidth',3);

view([-40 40]);

grid on

%grid on;

makergb.m

function rgbimage = makergb(bitmap,colormap)

%RGBIMAGE = MAKERGB(BITMAP,COLORMAP)

%where BITMAP is a NxM array, and COLORMAP is a Cx3 double array

%RGBIMAGE will be a NxMx3 double array.

%Makes an RGB image from an array of indexes (BITMAP)into

%a color map (COLORMAP).

%MAKERGB will determine if the index array needs to be 1-shifted.

bitmap=double(bitmap);

if min(bitmap(:))==0 %is it 0 indexed?

 offset=1

else

 offset=0

end

[rows,cols]=size(bitmap);

for L=1:3

 layer=colormap(bitmap(:,:)+offset,L);

 layer=reshape(layer,rows,cols);

 rgbimage(:,:,L)=layer;

end

movie9d1.m

%Section 9.1

%Frame-by-frame capture and playback

%mov9d1

% Create a figure that is a little smaller than

% standard to save

% memory since we will be storing 20 frames.

%If your machine has a lot of memory you do

% not have to define the position property of the %figure.

movie_figure = figure('position',[100 250 300 200]);

M = moviein(15);

[x,y] = meshgrid([-10:0.5:10]);

for frame_number = 1:15

 z = bessel(0,(frame_number-1)*.2 + sqrt(x.^2 + y.^2));

 surf(x,y,z);

 axis([-10 10 -10 10 -.5 1]);

 % Bring the figure to the front before taking a snapshot.

 figure(movie_figure);

 M(:,frame_number) = getframe;

end

frame_order = [1:15 14:-1:1];

number_repeats = 5;

movie(M,[number_repeats frame_order]);

MRIViz.m

%Displaying Images of MRI Data

%To display one of the MRI images, use the image command, indexing into the data array to obtain the eighth image. Then adjust

%axis scaling, and install the MRI colormap, which was loaded along with the data.

subplot(2,2,1);

load mri

D = squeeze(D);

image_num = 4;

image(D(:,:,image_num))

axis image

colormap(map)

%Save the x and y axis limits for use in the next part of the example.

x = xlim;

y = ylim;

%Displaying a 2-D Contour Slice

%You can treat this MRI data as a volume because it is a collection of slices taken progressively through the 3-D object. Use

%contourslice to display a contour plot of a slice of the volume. To create a contour plot with the same orientation and size as the

%image created in the first part of this example, adjust the y-axis direction (axis), set the limits (xlim, ylim), and set the data aspect

%ratio (daspect).

subplot(2,2,2);

contourslice(D,[],[],image_num)

axis ij;

xlim(x);

ylim(y);

daspect([1,1,1]);

colormap('default');

%Displaying 3-D Contour Slices

%Unlike images, which are 2-D objects, contour slices are 3-D objects that you can display in any orientation. For example, you can

%display four contour slices in a 3-D view. To improve the visibility of the contour line, increase the LineWidth to 2 points (one point

%equals 1/72 of an inch).

subplot(2,2,3);

phandles = contourslice(D,[],[],[1,12,19,27],8);

view(3); axis tight

set(phandles,'LineWidth',2)

%You can use isosurfaces to display the overall structure of a volume. When combined with isocaps, this technique can reveal

%information about data on the interior of the isosurface.

%First, smooth the data with smooth3; then use isosurface to calculate the isodata. Use patch to display this data as a graphics

%object.

subplot(2,2,4);

Ds = smooth3(D);

hiso = patch(isosurface(Ds,5),...

 'FaceColor',[1,.75,.65],...

 'EdgeColor','none');

%Adding an Isocap to Show a Cutaway Surface

%Use isocaps to calculate the data for another patch that is displayed at the same isovalue (5) as the surface. Use the unsmoothed

%data (D) to show details of the interior. You can see this as the sliced-away top of the head.

hcap = patch(isocaps(D,5),...

 'FaceColor','interp',...

 'EdgeColor','none');

colormap(map)

%Defining the View

%Define the view and set the aspect ratio (view, axis, daspect).

view(45,30)

axis tight

daspect([1,1,.4])

%Add lighting and recalculate the surface normals based on the gradient of the volume data, which produces smoother lighting

%(camlight, lighting, isonormals). Increase the AmbientStrength property of the isocap to brighten the coloring without

%affecting the isosurface. Set the SpecularColorReflectance of the isosurface to make the color of the specular reflected light

%closer to the color of the isosurface; then set the SpecularExponent to reduce the size of the specular spot.

lightangle(45,30);

set(gcf,'Renderer','zbuffer'); lighting phong

isonormals(Ds,hiso)

set(hcap,'AmbientStrength',.6)

set(hiso,'SpecularColorReflectance',0,'SpecularExponent',50)

colormap('default');

norm2fig.m

function normtxtpos = norm2fig(normfigpos)

% Pass this function normalized positions in the figure

% and it will return the positions relative to the current

% axes.

%

% passing a [0 0] would refer to lower left corner

% passing a [0 1] would refer to top left corner

% passing a [1 0] would refer to lower right corner

% passing a [1 1] would refer to top right corner

apos = get(gca,'pos');

normtxtpos = [(normfigpos(1,1)-apos(1,1))/apos(1,3) ,...

 (normfigpos(1,2)-apos(1,2))/apos(1,4)];

pielabel.m

function pielabel(h,string_cell)

%PIELABEL(H,STRING_CELL) will add the labels in STRING_CELL to the pie chart with handle H.

%Example:

%gov_rev_percentages = [31 36 18 8 7];

%h = pie(gov_rev_percentages);

%pielabel(h,{'Soc. Sec. Tax: ';'Personal Income Tax: ';...

% 'Borrowing: ';'Corporate Taxes: ';'Misc: '});

%The pie chart's labels are text graphics objects. To modify the text strings and their positions, first get the objects' strings

%and extents. Braces around a property name ensure that get outputs a cell array, which is important when working with

%multiple objects.

textObjs = findobj(h,'Type','text'); %get the current text objects

oldStr = get(textObjs,{'String'}); %get all the current strings

val = get(textObjs,{'Extent'}); %get the extents of the text

oldExt = cat(1,val{:});

%Create the new strings, then set the text objects' String properties to the new strings.

New_Labels = string_cell

newStr = strcat(New_Labels,oldStr);

set(textObjs,{'String'},newStr)

%Find the difference between the widths of the new and old text strings and change

%the values of the Position properties.

val1 = get(textObjs, {'Extent'});

newExt = cat(1, val1{:});

offset = sign(oldExt(:,1)).*(newExt(:,3)-oldExt(:,3))/2;

pos = get(textObjs, {'Position'});

textPos = cat(1, pos{:});

textPos(:,1) = textPos(:,1)+offset;

set(textObjs,{'Position'},num2cell(textPos,[3,2]))

Plate10.m

%This is the multiple color map demo

%used for Plate 10

% Define color map.

colormap([hsv(32);hot(32);cool(32);flag(32)]);

% Create first subplot using first quarter of color map.

subplot(221)

x = 0:.02:5*pi;

y = sin(x);

surface([x;x],[y;y],0*[x;x],[y;y],...

 'face','none','edge','flat','linewidth',3)

set(gca,'box','on');

axis([min(x) max(x) [min(y) max(y)]*1.1])

% Use equations found at beginning of this section.

cmin = min(y) - (1 - 1)*(max(y)-min(y))/(32 - 1 + 1);

cmax = min(y) + (128 - 1 + 1)*(max(y)-min(y))/(32 - 1 + 1);

caxis([cmin cmax]);

% Create second subplot using middle half of color map.

subplot(222)

u = 0:.02:10*pi;

x = exp(-.05*u).*cos(u);

y = exp(-.05*u).*sin(u);

z = .05*u;

surface([x;x],[y;y],[z;z],[z;z],...

 'face','none','edge','flat','linewidth',2)

view(3);axis([-1 1 -1 1 0 1.5]);grid;

set(gca,'ztick',[0 .5 1 1.5])

% Use equations found at beginning of this section.

cmin = min(z)- (33 - 1)*(max(z)-min(z))/(96 - 33 + 1);

cmax = min(z)+ (128 - 33 + 1)*(max(z)-min(z))/(96 - 33 + 1);

caxis([cmin cmax]);

% Create third subplot using last quarter of color map.

subplot(223)

x = 0:.2:5*pi;

y = sin(x);

surface([x;x],[y;y],0*[x;x],[y;y],...

 'face','none','edge','flat','linewidth',.5)

set(gca,'box','on');

axis([0 5*pi -1.1 1.1])

% Use equations found at beginning of this section.

cmin = min(y)- (97 - 1)*(max(y)-min(y))/(128 - 97 + 1);

cmax = min(y)+ (128 - 97 + 1)*(max(y)-min(y))/(128 - 97 + 1);

caxis([cmin cmax])

caxis([-7 1])

% Create fourth subplot using middle half of color map..

subplot(224)

u = 0:.02:10*pi;

x = exp(-.05*u).*cos(u);

y = exp(-.05*u).*sin(u);

z = .05*u;

surface([x;x],[y;y],[z;z],[z;z],...

 'face','none','edge','flat','linewidth',2)

% Use equations found at beginning of this section.

cmin = min(z) - (33 - 1)*(max(z)-min(z))/(96 - 33 + 1);

cmax = min(z) + (128 - 33 + 1)*(max(z)-min(z))/(96 - 33 + 1);

caxis([cmin cmax])

set(gca,'box','on');

polardb.m

function hpol = polardb(theta,rho,line_style,rho_axis)
%POLARDB	Polar coordinate plot where radial scale is in decibels.
%	POLARDB(THETA, RHO) makes a plot using polar decibel coordinates of
%	the angle THETA, in radians, versus the radius 10log(RHO).
%	POLARDB(THETA,RHO,S) uses the linestyle specified in string S.
%	See PLOT for a description of legal linestyles.
%	POLARDB(THETA,RHO,S,RHO_AXIS) uses RHO_AXIS to define the minimum.
%	and maximum ring limits of RHO.
%
%	See also POLAR PLOT, LOGLOG, SEMILOGX, SEMILOGY.

%	Copyright (c) 1984-94 by The MathWorks, Inc.
%	Modified 2/1/95 Patrick Marchand : To include dB capability

if nargin < 1
	error('Requires 2 3 or 4 input arguments.')
elseif nargin == 2
	if isstr(rho)
		line_style = rho;
		rho = theta;
		[mr,nr] = size(rho);
		if mr == 1
			theta = 1:nr;
		else
			th = (1:mr)';
			theta = th(:,ones(1,nr));
		end
	else
		line_style = 'auto';
	end
elseif nargin == 1
	line_style = 'auto';
	rho = theta;
	[mr,nr] = size(rho);
	if mr == 1
		theta = 1:nr;
	else
		th = (1:mr)';
		theta = th(:,ones(1,nr));
	end
end
if nargin < 4
 rho_axis = [];
end
if isstr(theta) | isstr(rho)
	error('Input arguments must be numeric.');
end
if any(size(theta) ~= size(rho))
	error('THETA and RHO must be the same size.');
end

% get hold state
cax = newplot;
next = lower(get(cax,'NextPlot'));
hold_state = ishold;

% get x-axis text color so grid is in same color
tc = get(cax,'xcolor');

% Hold on to current Text defaults, reset them to the
% Axes' font attributes so tick marks use them.
fAngle = get(cax, 'DefaultTextFontAngle');
fName = get(cax, 'DefaultTextFontName');
fSize = get(cax, 'DefaultTextFontSize');
fWeight = get(cax, 'DefaultTextFontWeight');
set(cax, 'DefaultTextFontAngle', get(cax, 'FontAngle'), ...
	'DefaultTextFontName', get(cax, 'FontName'), ...
	'DefaultTextFontSize', get(cax, 'FontSize'), ...
	'DefaultTextFontWeight', get(cax, 'FontWeight'))

% only do grids if hold is off
if ~hold_state

% make a radial grid
	hold on;
	hhh=plot([(theta(:))],[10*log10(abs(rho(:)))]);
	v = [get(cax,'xlim') get(cax,'ylim')];
	ticks = length(get(cax,'ytick'));
	delete(hhh);
% check radial limits and ticks
	rmin = v(3); rmax = v(4); rticks = ticks-1;
	if rticks > 5	% see if we can reduce the number
		if rem(rticks,2) == 0
			rticks = rticks/2;
		elseif rem(rticks,3) == 0
			rticks = rticks/3;
		end
	end

% define a circle
	th = 0:pi/50:2*pi;
	xunit = cos(th);
	yunit = sin(th);
% now really force points on x/y axes to lie on them exactly
 inds = [1:(length(th)-1)/4:length(th)];
 xunits(inds(2:2:4)) = zeros(2,1);
 yunits(inds(1:2:5)) = zeros(3,1);

	if length(rho_axis) ~= 0
	 rmin = min([rho_axis(1) rmin]);
	 rmax = max([rho_axis(2) rmax]);
	end

	if length(rho_axis) > 2
	 rinc = rho_axis(3);
	else
	 rinc = (rmax-rmin)/rticks;
	end

	rvals = ((rmin:rinc:rmax));
	if ~any(rvals == rmax)
	 rmax = max(rvals)+rinc;
	 rvals = [rvals rmax];
	end

	for i= rvals
		plot(xunit*(i-rmin),yunit*(i-rmin),'-','color',tc,'linewidth',1);
		text(0,round((i-rmin+rinc/20)) ,...
		[' ' num2str(round(i*1e4)/1e4)],'verticalalignment','bottom');
	end
% plot spokes
	th = (1:6)*2*pi/12;
	cst = cos(th); snt = sin(th);
	cs = [-cst; cst];
	sn = [-snt; snt];
	plot((rmax-rmin)*cs,(rmax-rmin)*sn,'-','color',tc,'linewidth',1);
% annotate spokes in degrees
	rt = 1.1*(rmax-rmin);
	for i = 1:max(size(th))
		text(rt*cst(i),rt*snt(i),int2str(i*30),'horizontalalignment','center');
		if i == max(size(th))
			loc = int2str(0);
		else
			loc = int2str(180+i*30);
		end
		text(-rt*cst(i),-rt*snt(i),loc,'horizontalalignment','center');
	end

% set viewto 2-D
	view(0,90);
% set axis limits
	axis((rmax-rmin)*[-1 1 -1.1 1.1]);
end

% Reset defaults.
set(cax, 'DefaultTextFontAngle', fAngle , ...
	'DefaultTextFontName', fName , ...
	'DefaultTextFontSize', fSize, ...
	'DefaultTextFontWeight', fWeight);

% transform data to Cartesian coordinates.
xx = ((-rmin)+10*log10(rho)).*cos(theta);
yy = ((-rmin)+10*log10(rho)).*sin(theta);

% plot data on top of grid
if strcmp(line_style,'auto')
	q = plot(xx,yy);
else
	q = plot(xx,yy,line_style);
end
if nargout > 0
	hpol = q;
end
if ~hold_state
	axis('equal');axis('off');
end

% reset hold state
if ~hold_state, set(cax,'NextPlot',next); end

polardb2.m

function hpol = polar(theta,rho,line_style)

%POLAR Polar coordinate plot.

% POLAR(THETA, RHO) makes a plot using polar coordinates of

% the angle THETA, in radians, versus the radius RHO.

% POLAR(THETA,RHO,S) uses the linestyle specified in string S.

% See PLOT for a description of legal linestyles.

%

% See also PLOT, LOGLOG, SEMILOGX, SEMILOGY.

% Copyright 1984-2001 The MathWorks, Inc.

% $Revision: 5.21 $ $Date: 2001/04/15 12:00:43 $

% Modified by Thomas Holland 2002/02/07

if nargin < 1

 error('Requires 2 or 3 input arguments.')

elseif nargin == 2

 if isstr(rho)

 line_style = rho;

 rho = theta;

 [mr,nr] = size(rho);

 if mr == 1

 theta = 1:nr;

 else

 th = (1:mr)';

 theta = th(:,ones(1,nr));

 end

 else

 line_style = 'auto';

 end

elseif nargin == 1

 line_style = 'auto';

 rho = theta;

 [mr,nr] = size(rho);

 if mr == 1

 theta = 1:nr;

 else

 th = (1:mr)';

 theta = th(:,ones(1,nr));

 end

end

if isstr(theta) | isstr(rho)

 error('Input arguments must be numeric.');

end

if ~isequal(size(theta),size(rho))

 error('THETA and RHO must be the same size.');

end

% get hold state

cax = newplot;

next = lower(get(cax,'NextPlot'));

hold_state = ishold;

% get x-axis text color so grid is in same color

tc = get(cax,'xcolor');

ls = get(cax,'gridlinestyle');

% Hold on to current Text defaults, reset them to the

% Axes' font attributes so tick marks use them.

fAngle = get(cax, 'DefaultTextFontAngle');

fName = get(cax, 'DefaultTextFontName');

fSize = get(cax, 'DefaultTextFontSize');

fWeight = get(cax, 'DefaultTextFontWeight');

fUnits = get(cax, 'DefaultTextUnits');

set(cax, 'DefaultTextFontAngle', get(cax, 'FontAngle'), ...

 'DefaultTextFontName', get(cax, 'FontName'), ...

 'DefaultTextFontSize', get(cax, 'FontSize'), ...

 'DefaultTextFontWeight', get(cax, 'FontWeight'), ...

 'DefaultTextUnits','data')

% only do grids if hold is off

if ~hold_state

% make a radial grid

 hold on;

 maxrho = max(10*log10(abs(rho(:))))

 %hhh=plot([-maxrho -maxrho maxrho maxrho],[-maxrho maxrho maxrho -maxrho]);

 %set(gca,'dataaspectratio',[1 1 1],'plotboxaspectratiomode','auto')

 %v = [get(cax,'xlim') get(cax,'ylim')];

 %ticks = sum(get(cax,'ytick')>=0);

 %delete(hhh);

 hhh=plot([(theta(:))],[10*log10(abs(rho(:)))]);

	v = [get(cax,'xlim') get(cax,'ylim')];

	ticks = length(get(cax,'ytick'));

	%delete(hhh);

% check radial limits and ticks

 rmin = 0; rmax = v(4); rticks = max(ticks-1,2);

 if rticks > 5 % see if we can reduce the number

 if rem(rticks,2) == 0

 rticks = rticks/2;

 elseif rem(rticks,3) == 0

 rticks = rticks/3;

 end

 end

% define a circle

 th = 0:pi/50:2*pi;

 xunit = cos(th);

 yunit = sin(th);

% now really force points on x/y axes to lie on them exactly

 inds = 1:(length(th)-1)/4:length(th);

 xunit(inds(2:2:4)) = zeros(2,1);

 yunit(inds(1:2:5)) = zeros(3,1);

% plot background if necessary

 if ~isstr(get(cax,'color')),

 patch('xdata',xunit*rmax,'ydata',yunit*rmax, ...

 'edgecolor',tc,'facecolor',get(gca,'color'),...

 'handlevisibility','off');

 end

% draw radial circles

 c82 = cos(82*pi/180);

 s82 = sin(82*pi/180);

 rinc = (rmax-rmin)/rticks;

 for i=(rmin+rinc):rinc:rmax

 hhh = plot(xunit*i,yunit*i,ls,'color',tc,'linewidth',1,...

 'handlevisibility','off');

 text((i+rinc/20)*c82,(i+rinc/20)*s82, ...

 [' ' num2str(i)],'verticalalignment','bottom',...

 'handlevisibility','off')

 end

 set(hhh,'linestyle','-') % Make outer circle solid

% plot spokes

 th = (1:6)*2*pi/12;

 cst = cos(th); snt = sin(th);

 cs = [-cst; cst];

 sn = [-snt; snt];

 plot((rmax-rmin)*cs,(rmax-rmin)*sn,ls,'color',tc,'linewidth',1,...

 'handlevisibility','off')

% annotate spokes in degrees

 rt = 1.1*(rmax-rmin);

 for i = 1:length(th)

 text(rt*cst(i),rt*snt(i),int2str(i*30),...

 'horizontalalignment','center',...

 'handlevisibility','off');

 if i == length(th)

 loc = int2str(0);

 else

 loc = int2str(180+i*30);

 end

 text(-rt*cst(i),-rt*snt(i),loc,'horizontalalignment','center',...

 'handlevisibility','off')

 end

% set view to 2-D

 view(2);

% set axis limits

 axis((rmax-rmin)*[-1 1 -1.15 1.15]);

end

% Reset defaults.

set(cax, 'DefaultTextFontAngle', fAngle , ...

 'DefaultTextFontName', fName , ...

 'DefaultTextFontSize', fSize, ...

 'DefaultTextFontWeight', fWeight, ...

 'DefaultTextUnits',fUnits);

% transform data to Cartesian coordinates.

xx = ((-rmin)+10*log10(rho)).*cos(theta);

yy = ((-rmin)+10*log10(rho)).*sin(theta);

% plot data on top of grid

if strcmp(line_style,'auto')

 q = plot(xx,yy);

else

 q = plot(xx,yy,line_style);

end

if nargout > 0

 hpol = q;

end

if ~hold_state

 set(gca,'dataaspectratio',[1 1 1]), axis off; set(cax,'NextPlot',next);

end

set(get(gca,'xlabel'),'visible','on')

set(get(gca,'ylabel'),'visible','on')

rotcube.m

function x=rotcube()

%CUBE is a function to demonstrate run-time animation.

%A cube is drawn with lines.

%Use the arrow keys to control the direction of rotation.

%ESC key to exit.

x = [0 1 1 0 0 0 1 1 0 0 NaN 1 1 NaN 1 1 NaN 0 0];

y = [0 0 1 1 0 0 0 1 1 0 NaN 0 0 NaN 1 1 NaN 1 1];

z = [0 0 0 0 0 1 1 1 1 1 NaN 1 0 NaN 0 1 NaN 1 0];

rot_axis = [0 0 1];

rot_org = [0 0 0];

cube_h = plot3(x-0.5,y-0.5,z-0.5);

axis('square');

axis([-1 1 -1 1 -1 1]*2);

view=[-37,30];

set(cube_h,'erasemode','background');

rotation_increment = 5;

rotation_axis = rot_axis;

rotation_origin = rot_org;

fig_h=gcf;

key = 28;

while key ~= 27 % watch for ESC key

 if waitforbuttonpress == 1;

 key = get(fig_h,'currentcharacter');

 switch key

 case 28 % <- rotate left

 rotation_axis = [0 0 1];

 rotation_increment = -5;

 case 29 % -> rotate right

 rotation_axis = [0 0 1];

 rotation_increment = 5;

 case 30 % rotate up

 rotation_axis = [0 1 0];

 rotation_increment = 5;

 case 31 % rotate down

 rotation_axis = [0 1 0];

 rotation_increment = -5;

 case 27 % ESC key

 close(fig_h)

 clear

 return

 end

 rotate(cube_h,rotation_axis,...

 rotation_increment,rotation_origin);

 drawnow;

 end

end

x=key;

%close(fig_h);

sidetext.m

function sidetext(string,p1,v1,p2,v2,p3,v3,p4,v4,p5,v5,p6,v6,p7,v7,p8,v8)
%SIDETEXT	label's the right hand side of an axes for 2-D and 3-D plots.
% 	SIDETEXT('text') adds text beside the X-axis on the current axis.
%
%	SIDETEXT('text','Property1',PropertyValue1,'Property2',PropertyValue2,...)
%	sets the values of the specified properties of the sidetext.
%
%	See also XLABEL, YLABEL, ZLABEL, TITLE, TEXT.

%	Copyright (c) 1984-94 by The MathWorks, Inc.
%	Modified 12/15/95 to put text on side of axes - PRM

ax = gca;
h = findobj(get(ax,'children'),'tag','side_text_string');

if h
 set(h,'string',string);
else
 h = text(1.05,0.5,string,'units','normalized','Vertical','middle',...
	'Horizontal','center','rotation',90,'tag','side_text_string');
end

%Over-ride text objects default font attributes with
%the Axes' default font attributes.
set(h, 'FontAngle', get(ax, 'FontAngle'), ...
	'FontName', get(ax, 'FontName'), ...
	'FontSize', get(ax, 'FontSize'), ...
	'FontWeight', get(ax, 'FontWeight'), ...
	'string', string);

if nargin > 1,
	if (nargin-1)/2-fix((nargin-1)/2),
		error('Incorrect number of input arguments')
	end
	cmdstr='';
	for i=1:(nargin-1)/2-1,
		cmdstr = [cmdstr,'p',num2str(i),',v',num2str(i),','];
	end
	cmdstr = [cmdstr,'p',num2str((nargin-1)/2),',v',num2str((nargin-1)/2)];
	eval(['set(h,',cmdstr,');']);
end

boxdemo.m

%Section 7.5.3.1

%Figure 7.8

%Box property demo

subplot(2,2,1);axis;

title('Box Off 2D')

subplot(2,2,2);axis;view(3);

title('Box Off 3D')

subplot(2,2,3);axis;

set(gca,'Box','on');

title('Box On 2D')

subplot(2,2,4);axis;view(3);

set(gca,'Box','on');

title('Box On 3D')

slowani.m

%slow animation

t = 0:0.1:10*pi;

x = t.*sin(t);

y=t.*cos(t);

axislimits = [min(x) max(x) min(y) max(y) min(t) max(t)];

figure

tic

for indexnumber = 1:length(x)

 plot3(x(indexnumber),y(indexnumber),...

 t(indexnumber),'bo');

 axis(axislimits);

 drawnow;

end

toc

%a little faster

figure

axis(axislimits);

line_handle = line(x(1),y(1),t(1),...

 'color','c',...

 'linestyle','o');

tic

for indexnumber = 2:length(x)

 delete(line_handle);

 line_handle = line(x(indexnumber),...

 y(indexnumber),...

 t(indexnumber),...

 'color','b',...

 'linestyle','o');

 drawnow;

end

toc

%faster yet

figure

line_handle = plot3(x(1),y(1),t(1),'bo');

set(line_handle,'erasemode','xor');

axis(axislimits);

tic

for indexnumber = 2:length(x)

 set(line_handle ,'xdata',x(indexnumber),...

 'ydata',y(indexnumber),...

 'zdata',t(indexnumber));

 drawnow;

end

toc

subplotdemo.m

%demonstrates other subplot arrangements

%two on the first row, one on the second

figure(1)

subplot(2,2,1),ezplot('sin(x)')

subplot(2,2,2),ezplot('cos(x)')

subplot(2,1,2),ezplot('sin(x)^2/x^2')

%one on the first row, two on the second

figure(2)

subplot(2,2,3),ezplot('sin(x)')

subplot(2,2,4),ezplot('cos(x)')

subplot(2,1,1),ezplot('sin(x)^2/x^2')

%one on the left, then two on the right

figure(3)

subplot(2,2,2),ezplot('sin(x)')

subplot(2,2,4),ezplot('cos(x)')

subplot(1,2,1),ezplot('sin(x)^2/x^2')

toptitle.m

function toptitle(string)
% TOPTITLE
%
% Places a title over a set of subplots.
% Best results are obtained when all subplots are
% created and then toptitle is executed.
%
% Usage:
% h = toptitle('title string')
%

% Patrick Marchand (prmarchand@nvidia.com)
% Thomas Holland (tholland@infinityassociates.com)

titlepos = [.5 1]; % normalized units.

ax = gca;
set(ax,'units','normalized');
axpos = get(ax,'position');

offset = (titlepos - axpos(1:2))./axpos(3:4);

text(offset(1),offset(2),string,'units','normalized',...
 'horizontalalignment','center','verticalalignment','middle');

% Make the figure big enough so that when printed the
% toptitle is not cut off nor overlaps a subplot title.
h = findobj(gcf,'type','axes');
set(h,'units','points');
set(gcf,'units','points')
figpos = get(gcf,'position');
set(gcf,'position',figpos + [0 0 0 15])
set(gcf,'units','pixels');
set(h,'units','normalized');

File Attachment
GUIBookMFiles.zip

CHAPMAN & HALL/CRC
A CRC Press Company

Boca Raton London New York Washington, D.C.

P A T R I C K M A R C H A N D
NVIDIA

O . T H O M A S H O L L A N D
The Naval Surface Warfare Center Dahlgren Division

Graphics and GUIs
with

MATLAB
®

T H I R D E D I T I O N

© 2003 by Chapman & Hall/CRC

This book contains information obtained from authentic and highly regarded sources. Reprinted material is quoted with
permission, and sources are indicated. A wide variety of references are listed. Reasonable efforts have been made to publish
reliable data and information, but the author and the publisher cannot assume responsibility for the validity of all materials
or for the consequences of their use.

Neither this book nor any part may be reproduced or transmitted in any form or by any means, electronic or mechanical,
including photocopying, microfilming, and recording, or by any information storage or retrieval system, without prior
permission in writing from the publisher.

The consent of CRC Press LLC does not extend to copying for general distribution, for promotion, for creating new works,
or for resale. Specific permission must be obtained in writing from CRC Press LLC for such copying.

Direct all inquiries to CRC Press LLC, 2000 N.W. Corporate Blvd., Boca Raton, Florida 33431.

Trademark Notice:

Product or corporate names may be trademarks or registered trademarks, and are used only for
identification and explanation, without intent to infringe.

Visit the CRC Press Web site at www.crcpress.com

© 2003 by Chapman & Hall/CRC

No claim to original U.S. Government works
International Standard Book Number 1-58488-320-0

Library of Congress Card Number 2002034769
Printed in the United States of America 1 2 3 4 5 6 7 8 9 0

Printed on acid-free paper

Library of Congress Cataloging-in-Publication Data

Marchand, Patrick.
Graphics and GUIs with MATLAB / by Patrick Marchand and O. Thomas Holland.—

 3rd ed.
 p. cm.
Includes bibliographical references and index.
ISBN 1-58488-320-0
 1. Computer graphics. 2. Graphical user interfaces (Computer systems) 3. MATLAB.

 I. Holland, O. Thomas. II. Title.

 T385 .M3634 2002
 006.6

¢

6—dc21 2002034769

C3200 disclaimer Page 1 Tuesday, October 22, 2002 8:03 AM

© 2003 by Chapman & Hall/CRC

PPRREEFFAACCEE

First, I must say that it was quite an honor to be asked to update Patrick’s
seminal work. The original “Graphics and GUIs with MATLAB” was my
introduction to the graphics capabilities of MATLAB , and it was by that book
that I came to a working knowledge of handle graphics. That was way back
with MATLAB 4. Now we are at MATLAB 6 (release 13 is in beta release at the
time of this writing) and MATLAB is more capable, powerful, and user friendly
than ever – a far cry from MATLAB 4!

As with Patrick’s earlier text, this book is intended to present a
comprehensive discussion of the MATLAB graphics system. This third edition
builds on the earlier editions by including the objects and properties new to
MATLAB version 6 and includes the new features of the MATLAB
environment. The organization of this edition is a little different as well. In
teaching MATLAB, I have observed that not everyone wants to be a handle
graphics guru (but they don’t know what they are missing!). Many just want to
be able to plot their data quickly and effectively. MATLAB has addressed this
desire by expanding, for instance, the Figure Window tools, and providing the
more casual user with a tool to modify many figure properties. Consequently,
most of the first half of this book requires little or no knowledge of handle
graphics. The second half thoroughly covers the concept of handle graphics,
and how to create graphical user interfaces.

As with the earlier editions, this book has been written to be useful to
anyone, regardless of their level of expertise with MATLAB. If you know
nothing about MATLAB programming, you can learn much by starting at the
beginning and working through the examples in this book. If you are already
conversant with the MATLAB programming language, you will find a great
deal of information here that is not readily apparent in the MATLAB
documentation. However, I must point out that MATLAB’s documentation has
improved with the product and you are encouraged to delve into the
documentation – but be aware, there is a lot of it!

The folks at the MathWorks continue to improve MATLAB, and its
capabilities have grown well beyond the scope of a single text. New objects
have been created for the latest versions, and the integrated development
environment is more capable and customizable than ever.

MATLAB is a registered trademark of
The MathWorks Inc.

For production information, please contact:
The MathWorks, Inc.

3 Apple Hill Drive
Natick, MA 01760-2098, USA

Phone: (508) 647-7000
Email: info@mathworks.com

www.mathworks.com

© 2003 by Chapman & Hall/CRC

The code in this text is written with version 6 in mind, so some of it will not
work with earlier versions. The code has been written for clarity, not
necessarily efficiency, and the functions kept as simple as possible so that you
can focus on the graphics aspects. You can download any of the code in this
text by going to

 http://www.infinityassociates.com

and following the links for this book. You will also find the solutions to the end
of chapter exercises.

If you are familiar with the earlier editions, you will see some familiar things
here. Good is good and Patrick did such a fine job that much of what he
presented then is still quite applicable and educational. Some things have
been dropped, such as Patrick’s GUI builder. In many respects, modern
MATLAB doesn’t need that any more. There are many new ideas in this
edition, along of course with the new functions, features, and properties that
the latest MATLAB has to offer. Perhaps one of the best aspects of MATLAB is
that The MathWorks has continued to develop the product with very little
compatibility problems. Although there were some major changes from
version 4 to version 5 that led to a few problems for some extreme users, the
transition from 5 to 6 has been smooth and has yielded a version that is more
user friendly and more capable than ever.

So why am I writing this preface instead of Patrick? Patrick is very busy with
new challenges in his career that have taken him a little out of the MATLAB
world, at least as a regular user. My little consulting company, Infinity
Technology Associates, has used his text for some time as a complement to
our teachings, and I use MATLAB extensively for modeling and analysis in my
position as director of a modeling and simulation facility for the Department of
the Navy. Through one turn or another, I was contacted about a follow-up to
Patrick’s second edition. It has been exciting updating and expanding Patrick’s
original work and I know you will find this book a valuable tutorial and
resource as you grow in your knowledge and skill of programming MATLAB
Graphics and GUIs. However, don’t stop with this book. Use MATLAB as
much as you can, read the abundance of documentation that comes with
MATLAB, and by all means experiment. Soon you will wonder how you ever
got your work done without MATLAB.

Best wishes and happy programming!

Thomas Holland

© 2003 by Chapman & Hall/CRC

http://www.infinityassociates.com

DDEEDDIICCAATTIIOONN

This book is first dedicated to the Creator, who has made us with inquisitive
minds able to fathom the mysteries of the universe.

And secondly to Linda, Katy, and Danny, the best family I could ever have.

I also would like to acknowledge the influence of Wendy Martinez and Ronald
Gross – two GUI gurus with whom it is a pleasure to work with, and of course,
Patrick Marchand, who started it all.

© 2003 by Chapman & Hall/CRC

CCOONNTTEENNTTSS

1 INTRODUCTION

1.1 OVERVIEW
1.2 ORGANIZATION OF THIS BOOK

1.3 TERMINOLOGY AND THE MATLAB PROGRAMMING LANGUAGE
1.3.1 Getting Started
1.3.2 Getting Help

1.4 OTHER REFERENCES

2 VISUALIZATION CONSIDERATIONS

2.1 WHY VISUALIZE?
2.2 CHARACTERISTICS OF GOOD DATA VISUALIZATION
2.3 DATA QUANTITY AND DIMENSION

2.4 COLOR, LIGHT, AND SHADING
2.5 MOTION
2.6 INTERACTION

3 PLOTTING IN TWO DIMENSIONS

3.1 SOURCES OF DATA
3.1.1 Function Data
3.1.2 Measured Data

3.2 IMPORTING DATA
3.2.1 MATLAB Data Formats
3.2.2 Importing High-Level Data
3.2.3 Importing Low-Level Data

3.3 ELEMENTARY 2-D PLOTS
3.3.1 A General Overview of the Plot Command
3.3.2 Logarithmic Plots

3.4 SIMPLE 2-D PLOT MANIPULATION
3.4.1 Generating Plots with Multiple Data Sets
3.4.2 Using Axis to Customize Plots
3.4.3 Creating Supporting Text and Legends
3.4.4 Text Placement
3.4.5 Special Text Character Formats
3.4.6 Using Subplot to Create Multiple Axes

3.5 SPECIALIZED 2-D PLOTTING
3.5.1 Bar Graphs
3.5.2 Histograms
3.5.3 Stairstep Graphs
3.5.4 Stem Plots
3.5.5 Plots with Error Bars
3.5.6 Pie Charts
3.5.7 Area Plots
3.5.8 Working with Complex Data

© 2003 by Chapman & Hall/CRC

3.5.9 Using the Polar Coordinate System
3.5.10 Plotting Functions with MATLAB
3.5.11 Creating Filled Plots and Shapes

3.6 PLOT EDITING IN THE MATLAB FIGURE WINDOW

3.6.1 Plot Editing Mode
3.6.2 The Property Editor
3.6.3 Zooming and Rotating
3.6.4 Exporting, Copying, and Pasting

3.7 ILLUSTRATIVE PROBLEMS

4 PLOTTING IN THREE DIMENSIONS

4.1 ELEMENTARY 3-D PLOTTING
4.1.1 Using Plot3
4.1.2 Creating 3-D Meshes and Surfaces
4.1.3 Waterfall Plots
4.1.4 3-D Plots of Non-Uniformly Sampled Data
4.1.5 Creating Shaded Surface Plots
4.1.6 Removing Hidden Lines
4.1.7 Contour Plots
4.1.8 Quiver Plots
4.1.9 Combination Plots
4.1.10 3-D Stem Plots
4.1.11 Generating Surfaces with Triangles
4.1.12 Polygons in a 3-D Space
4.1.13 Built-In Surface Functions

4.2 SIMPLE 3-D PLOT MANIPULATION

4.2.1 The Camera Toolbar
4.2.2 Generalizing the Axis for 3 Dimensions
4.2.3 3-D Plot Rotation
4.2.4 Using the View Command

4.3 VOLUME VISUALIZATION
4.3.1 Scalar Volume Data

4.3.1.1 Slice Planes
4.3.1.2 Contour Slices
4.3.1.3 Isosurfaces and Isocaps

4.3.2 Vector Volume Data
4.3.2.1 Stream Plots
4.3.2.2 Stream Lines
4.3.2.3 Stream Particles
4.3.2.4 Stream Ribbons
4.3.2.5 Stream Tubes
4.3.2.6 Cone Plots

4.4 A WORD ABOUT ANNOTATING 3-D PLOTS
4.5 ILLUSTRATIVE PROBLEMS

5 IMAGE GRAPHICS

5.1 IMAGE FILES AND FORMATS

© 2003 by Chapman & Hall/CRC

5.1.1 Common Image File Types
5.2 IMAGE I/O

5.2.1 Reading a Graphics Image
5.2.2 Displaying a Graphics Image
5.2.3 Writing a Graphics Image

5.3 IMAGE TYPES AND PROPERTIES
5.3.1 Indexed Images
5.3.2 Intensity Level Images
5.3.3 Truecolor Images

6 GENERATING OUTPUT

6.1 THE QUICKEST WAY TO PAPER
6.1.1 Page Setup

6.2 PRINTING COLORED LINES TO BLACK & WHITE PRINTERS

6.3 ELECTRONIC OUTPUT
6.3.1 Using File Export
6.3.2 Using the Windows Clipboard

6.4 USING THE PRINT COMMAND

6.4.1 Creating Hardcopy with PRINT
6.4.2 Creating Graphics Files Using Print
6.4.3 Adding Additional Figures to a File
6.4.4 Publishing Using 4-Color Separation
6.4.5 EPS with a Preview Image
6.4.6 Rendering Method with -zbuffer or -painters
6.4.7 Indicating Which Figure Window to Print
6.4.8 Saving Figures for Future Use

7 HANDLE GRAPHICS

7.1 GRAPHICS OBJECTS
7.2 GRAPHICS OBJECTS HIERARCHY

7.3 GRAPHICS OBJECTS HANDLES
7.3.1 Determining Handles at Creation
7.3.2 Getting Handles of Current Objects

7.4 PROPERTIES
7.4.1 The Property Editor
7.4.2 Manipulating Properties
7.4.3 Universal Object Properties

7.4.3.1 ButtonDownFcn, BusyAction, and Interruptible
7.4.3.2 Children and Parent
7.4.3.3 Clipping
7.4.3.4 CreateFCN and DeleteFCN
7.4.3.5 HandleVisibility
7.4.3.6 HitTest
7.4.3.7 Selected and SelectionHighlight
7.4.3.8 Tag and Type
7.4.3.9 UserData
7.4.3.10 Visible

© 2003 by Chapman & Hall/CRC

7.5 OBJECT SPECIFIC PROPERTIES
7.5.1 Root Properties

7.5.1.1 Display Related Root Properties
7.5.1.2 Root Properties Related to the State of MATLAB
7.5.1.3 Behavior Related Properties of the Root

7.5.2 Figure Properties
7.5.2.1 Figure Properties Affecting Position
7.5.2.2 Style and Appearance Properties of the Figure Object
7.5.2.3 Figure Properties that Control the Colormap
7.5.2.4 Figure Properties that Affect Transparency
7.5.2.5 Properties that Affect How Figures are Rendered
7.5.2.6 Properties Related to the Current State of a Figure
7.5.2.7 Figure Properties that Affect the Pointer
7.5.2.8 Figure Properties that Affect Callback Execution
7.5.2.9 Figure Properties that Control Access to Objects
7.5.2.10 Figure Properties that Affect Printing

7.5.3 Axes Properties
7.5.3.1 Axes Properties Controlling Boxes and Tick Marks
7.5.3.2 Properties Affecting Axes Character Formats
7.5.3.3 Axes Properties Determining Axis Location and Position
7.5.3.4 Axes Properties Affecting Grids, Lines, and Color
7.5.3.5 Properties Affecting Axis Limits
7.5.3.6 Axes Properties Related to Viewing Perspective

7.5.4 Line Properties
7.5.5 Rectangle Properties
7.5.6 Patch Properties

7.5.6.1 Properties Defining Patch Objects
7.5.6.2 Properties Specifying Lines, Color, and Markers
7.5.6.3 Properties Affecting Lighting and Transparency

7.5.7 Surface Properties
7.5.8 Image Properties
7.5.9 Text Properties

7.6 SETTING DEFAULT PROPERTIES

7.7 UNDOCUMENTED PROPERTIES
7.8 USING FINDOBJ
7.9 ILLUSTRATIVE PROBLEMS

8 USING COLOR, LIGHT, AND TRANSPARENCY

8.1 SIMPLE COLOR SPECIFICATIONS
8.2 COLOR MAPS

8.2.1 Effects of Color Maps in General
8.2.2 Color Axis Control

8.2.2.1 Color Control with Direct Mapping
8.2.2.2 Color Control with Scaled Mapping

8.2.3 Color Maps as they Relate to Graphics Objects
8.2.3.1 Color Maps and the Surface Object
8.2.3.2 Patch Objects and the Color Map
8.2.3.3 Images and the Color Map

8.2.4 Color Shading

© 2003 by Chapman & Hall/CRC

8.2.5 Brightening and Darkening Color Maps
8.2.6 Spinning the Color Map
8.2.7 Making Use of the Invisible Color with NaN
8.2.8 Creating Simple Color Bars
8.2.9 The Pseudocolor Plot
8.2.10 Texture Mapping

8.3 MODELING OBJECT LIGHTING

8.3.1 Light Properties
8.3.2 Functions that Make Use of Light

8.3.2.1 Lighting Commands
8.3.3 Lighting Models

8.3.3.1 The Diffuse Lighting Model
8.3.3.2 The Ambient Lighting Model
8.3.3.3 The Specular Lighting Model
8.3.3.4 Combining Lighting Models
8.3.3.5 A Final Word on Light Objects

8.3.4 Creating Color Varying Lines with Surface Objects
8.4 OBJECT TRANSPARENCY

8.4.1 Alpha Properties
8.4.1.1 AlphaData
8.4.1.2 Alphamap
8.4.1.3 ALim
8.4.1.4 ALimMode
8.4.1.5 AlphaDataMapping
8.4.1.6 FaceAlpha
8.4.1.7 EdgeAlpha
8.4.1.8 FaceVertexAlphaData

8.4.2 Alpha Functions
8.4.2.1 alpha
8.4.2.2 alphamap
8.4.2.3 alim

8.4.3 Setting a Single Transparency Value
8.4.4 Mapping Data to Transparency

8.5 ILLUSTRATIVE PROBLEMS

9 ANIMATION

9.1 FRAME-BY-FRAME CAPTURE AND PLAYBACK
9.1.1 Taking a Snapshot
9.1.2 Playing a Movie
9.1.3 Preallocating Memory
9.1.4 Practically Speaking

9.1.4.1 Recording the Entire Figure
9.1.4.2 Animating a Portion of the Figure

9.1.5 Making an AVI Movie
9.2 ON-THE-FLY GRAPHICS OBJECT MANIPULATION

9.2.1 Simple Animation Functions
9.2.2 The Wrong and Right Way to Animate Graphics
9.2.3 The Need for Speed
9.2.4 Animating Lines
9.2.5 Animated Rotations

© 2003 by Chapman & Hall/CRC

9.2.6 Forcing a Graphic to Leave a Trail
9.3 CHOOSING THE RIGHT TECHNIQUE

10 ELEMENTS OF GUI DESIGN

10.1 WHAT IS A MATLAB GRAPHICAL USER INTERFACE?
10.2 THE THREE PHASES OF INTERFACE DESIGN

10.2.1 Analysis
10.2.2 Design

10.2.2.1 User Considerations
10.2.2.2 The Reason for the GUI
10.2.2.3 Cognitive Considerations
10.2.2.4 Physical Considerations

10.2.3 Paper Prototyping
10.2.3.1 Appearance

10.2.4 Construction
10.3 UI CONTROL ELEMENTS

10.3.1 The Styles
10.3.1.1 Check Boxes
10.3.1.2 Editable Text
10.3.1.3 Frames
10.3.1.4 Pop-Up Menus
10.3.1.5 List Boxes
10.3.1.6 Push Buttons
10.3.1.7 Toggle Buttons
10.3.1.8 Radio Buttons
10.3.1.9 Sliders
10.3.1.10 Static Text

10.3.2 UI Control Properties
10.3.2.1 Uicontrol BackgroundColor
10.3.2.2 Uicontrol ButtonDownFcn
10.3.2.3 Uicontrol CData
10.3.2.4 Uicontrol CallBack
10.3.2.5 Uicontrol Enable
10.3.2.6 Uicontrol Extent
10.3.2.7 Uicontrol ForegroundColor
10.3.2.8 Uicontrol Font Angle, Name, Size, Units, and Weight
10.3.2.9 Uicontrol HorizontalAlignment
10.3.2.10 Uicontrol Min, Max, and Value
10.3.2.11 Uicontrol SliderStep
10.3.2.12 Uicontrol TooltipString
10.3.2.13 Uicontrol Position
10.3.2.14 Uicontrol String
10.3.2.15 Style
10.3.2.16 ListBoxTop
10.3.2.17 Uicontrol Units

© 2003 by Chapman & Hall/CRC

10.3.2.18 Uicontrol Interruptible
10.3.2.19 Uicontrol Tag
10.3.2.20 Uicontrol UserData
10.3.2.21 Uicontrol Visible
10.3.2.22 Other UI Control Properties

10.3.3 Creating Uicontrol Objects
10.3.3.1 Uicontrol Object Layering
10.3.3.2 Framing Objects
10.3.3.3 A Stretchable GUI
10.3.3.4 Predefined GUIs and Dialog Boxes

10.4 UIMENU ELEMENTS

10.4.1 Uimenu Properties
10.4.1.1 Uimenu Accelerator
10.4.1.2 Uimenu CallBack
10.4.1.3 Uimenu Checked
10.4.1.4 Uimenu Children
10.4.1.5 Uimenu Enable
10.4.1.6 Uimenu ForegroundColor
10.4.1.7 Uimenu Label
10.4.1.8 Uimenu Position
10.4.1.9 Uimenu Separator
10.4.1.10 Uimenu Interruptible
10.4.1.11 Uimenu Tag
10.4.1.12 Uimenu UserData
10.4.1.13 Uimenu Visible
10.4.1.14 Other Uimenu Properties

10.4.2 Creating Uimenus
10.4.2.1 Top Level Uimenu
10.4.2.2 Menu Items and Submenu Titles
10.4.2.3 Summary

10.5 LOW-LEVEL MATLAB GUI PROGRAMMING TECHNIQUES

10.5.1 Strings of MATLAB Statements and Expressions
10.5.2 Programming Approaches in MATLAB

10.5.2.1 Creating All Graphics Elements in the Base Workspace
10.5.2.2 Storing Handles as Global Variables
10.5.2.3 Storing Handles in the UserData Properties
10.5.2.4 Utilizing Tags and the FINDOBJ Command

10.6 HIGH-LEVEL GUI DEVELOPMENT – GUIDE
10.6.1 The Layout Editor
10.6.2 The Property Inspector
10.6.3 The Object Browser
10.6.4 The Menu Editor
10.6.5 Saving the GUI

10.6.5.1 The GUIDE Created FIG-File
10.6.5.2 The GUIDE Created M-File

10.6.6 Executing a GUI
10.6.7 Editing a Previously Created GUI

10.7 COMMON PROGRAMMING DESIRES WITH UI OBJECTS
10.7.1 Creating Exclusive Radio Buttons
10.7.2 Linking Sliders and Editable Text Objects
10.7.3 Editable Text and Pop-Up Menu

© 2003 by Chapman & Hall/CRC

10.7.4 Windowed Frame and Interruptions
10.7.5 Toggling Menu Labels
10.7.6 Customizing a Button with Graphics

10.8 THE MATLAB EVENT QUEUE

10.8.1 Event Scheduling and Execution
10.8.2 Execution Order of Events

10.8.2.1 Mouse Button Pressed Down
10.8.2.2 Mouse Button Released
10.8.2.3 Mouse Pointer Moved

10.8.3 Interruptible vs. Uninterruptible
10.8.4 Common Mouse Action Examples

10.8.4.1 Moving Objects with the Mouse
10.8.4.2 Dynamic Boxes Using the RBBOX Function

10.9 CREATING CUSTOM USER INTERFACE COMPONENTS

10.9.1 Simulating Buttons with Image Objects
10.9.2 Creating a Dial

APPENDIX : QUICK REFERENCES

© 2003 by Chapman & Hall/CRC

11 IINNTTRROODDUUCCTTIIOONN

1.1 Overview
As the volume and complexity of data and results continues to grow with

the increasing complexity of data sources and algorithms, the need for intuitive
representations of that data and results becomes increasingly critical. The
graphical representation of the results is often not only the most effective
means of conveying the points of the study or work which has provided the
data, but is in most cases an expectation of the audience of the work. Even as
computing hardware continues to increase in capability, MATLAB® continues
to be one of the best applications available for providing both the
computational capabilities of generating data and displaying it in a variety of
graphical representations. With the advent of version 6, MATLAB has taken on
a new look, a new integrated development environment (IDE), new graphics
development tools, and introduces some new functions. It is in that light that
we offer the “upgraded” version of this book.

Welcome to the third edition of Graphics and GUIs with MATLAB! Those of
you familiar with the first and second editions will find that this third edition
carries on in the same tradition of conversational style that Patrick set forth in
the first two editions, as well as illustrative examples, and some details that
give you a peak under the hood of MATLAB. But just as MATLAB version 6
has introduced major changes in several areas, so has this third edition. In
addition to the new MATLAB specific commands and techniques, this edition
offers sections on Visualization Considerations and Elements of GUI Design,
which are general treatments applicable to any development software. Those
familiar with the earlier editions will also be happy to find that there are now
problem sets at the end of some chapters that will (hopefully) motivate the
new MATLAB programmer to exercise the techniques addressed earlier in the
chapter and make this book more suitable to classroom settings. But just so
that you don’t become too frustrated, solutions for the problems, as well as
code listings for most of the examples, are available at

 www.infinityassociates.com/graphics_and_guis

MATLAB is not just a computation and plotting package; it is a versatile and
flexible tool which allows users with even the most elementary programming
capabilities to produce sophisticated graphics and graphical user interfaces

IN THIS CHAPTER
1.1 OVERVIEW
1.2 ORGANIZATION OF THIS BOOK
1.3 TERMINOLOGY AND THE MATLAB PROGRAMMING LANGUAGE
1.4 OTHER REFERENCES

© 2003 by CRC Press LLC

www.infinityassociates.com

(GUIs). The level of sophistication is only limited by one’s needs, curiosity,
and imagination.

As in the previous editions, it is the goal of this book to provide you with
information, examples, and techniques which should give you the background
you need to become a MATLAB graphics and GUI expert. If you are already
conversant with the MATLAB programming language, this book will provide
you a ready reference with illustrative examples. If you are new to MATLAB,
you will find this book an excellent tutorial leading you to MATLAB
proficiency. As in the previous editions, this book will help take you from
wherever you are in your MATLAB skills, to many steps closer to where you
want to be.

1.2 Organization of This Book
This book is organized into three general parts: Part 1: Information

Visualization, Part 2: MATLAB Graphics Objects, and Part 3: Graphical User
Interfaces. Each part is intended to provide the reader with a general
introduction to the topic area before going into specific topics in MATLAB. For
instance, if your main interest is in the visualization of data, the part on
Information Visualization will give you a rudimentary introduction to the topic.
Similarly, the part on Graphical User Interfaces will provide you with a good
background useful in any programming language. Taken as a whole, the three
parts will introduce you to the greater field of information visualization and
GUI design in general, and with MATLAB specifically.

Part 1: Information Visualization will introduce you to visualization
considerations such as when to use 2-D and 3-D techniques, the advantages
and pitfalls of color, how motion can add another dimension of understanding,
and how dynamic interaction with a visualization can enhance intuitive
understanding. Contained in this part are the elementary aspects of plotting in
two and three dimensions; MATLAB’s graphics commands are discussed and
applied in illustrative examples. Plot manipulation and special plots are
explored, including volumetric visualization for both scalar and vector volume
data. Reading, writing, and manipulating bitmap graphics is covered in this
section as well as printing, exporting, and saving your MATLAB visualizations.

Part 2: MATLAB Graphics Objects thoroughly explores the concept of
graphics objects by introducing the fundamentals of MATLAB’s Handle
Graphics™. If you consider yourself somewhat experienced with the basic
plotting capabilities of MATLAB, you might well want to start with this chapter.
A basic understanding of Handle Graphics needs to be achieved before you
can move on to more complex and sophisticated programming of graphics
and GUI applications. The first chapter in this section explores graphics
objects, handles to them, properties and ways to change the values of
properties. The next two chapters explore the details of powerful dimensions
that can enhance the understanding of your data, specifically the properties of
color, light, transparency, and animation. Once you have grasped the
concepts here you can then appreciate the power of MATLAB and will be fully
equipped to comprehend the programming techniques to follow in Part 3.

Part 3: Graphical User Interfaces will bring together all you have learned by
summarizing practical considerations for good GUI design. The three phases

© 2003 by CRC Press LLC

of interface design, user, and appearance considerations are covered first,
followed by thorough coverage of the MATLAB Graphical User Interface
Design Environment (GUIDE). Finally, user interface control elements, user
actions, and the MATLAB event queue are covered so that you will be able to
create GUIs that go beyond the boundaries of GUIDE.

The intent of the overall structure of this book is to lead any MATLAB
programmer through a wide variety of graphics related subjects. The
information, examples, and tutorials are designed to illustrate different
techniques of creating graphics. These techniques can be expanded and
tailored to meet your individual needs and desires.

In addition to the topic descriptions, many of the chapters contain icons in
the margins to help quickly lead you to the information you need. The icons
and their significance are as follows:

Speedy Solutions for those who are in a rush and don’t have the time for
the details.

Power Tips will especially add to your MATLAB knowledge to make you a
stronger programmer. Hopefully the whole book falls under this icon, but
there are some special tips that particularly enhance your abilities.

Tools describe what we especially feel are outstanding methods,
techniques, and MATLAB programs that accomplish a specific job and make
your life easier. The programs that get this icon are very useful and
complement the standard set of programs that come with MATLAB. These
include public domain M-files available from the MathWorks FTP server
(ftp.mathworks.com) as well as files found at

 www.infinityassociates.com/graphics_and_guis

M-file indicates that a nonstandard function is to be developed. The
discussion that follows will teach you how the MATLAB code accomplishes a
certain task. For your convenience, some of these M-files will be
downloadable from the above website; however, we do recommend that you
study the code – after all, it is there for your edification.

FAQ directs your attention to the answer to a frequently asked question
about the current topic. Many of these questions come from newsgroups and
classroom discussions.

Warning will call your attention to typical pitfalls.

Other visual cues will help you get around in the book. MATLAB function
names that appear in the discussions will be in bold. MATLAB code examples,
fragments, and listings are throughout the book and can be recognized readily
by the distinctive courier font in which they are cast. For example, plotting the

� � � � � �

� � � � 	 �

 � � � �

��

 � � � � �

��
� � �

�
� � 	 � � � � �

© 2003 by CRC Press LLC

sine of a vector x that ranges from -2 to +2 in 0.1 increments with the sin
function looks like this:

x = [-2*pi:.1:2*pi];
y = sin(x);
plot(y)

This same style is used for “general forms” of MATLAB functions and
commands as well; however, the general forms will use all capital letters just
like in the MATLAB command line help. For example, the general form of the
view function when using it to return the current viewing perspective is given
by:

[AZ,EL] = VIEW

Finally, even after you become quite familiar with MATLAB graphics and
GUIs, there are always going to be “problems” or situations that require
additional thought to determine how to best accomplish a task. For just such
occasions, as in the earlier editions, we have compiled a “Quick Reference” in
the Appendix . These sheets provide a summarized list of helpful hints that will
help ease and hopefully speed up your development process. Many of these
hints have come about through our own development, consulting, and
teaching experience. Included with each hint is a reference to the applicable
sections of the book that provide further explanation on the topic or related
topics.

1.3 Terminology and the MATLAB Programming
Language

If you are new to MATLAB, it would be wise to familiarize yourself with
some basic terminology and concepts. We recommend that you review the
documentation included with MATLAB. A good place to start is with the
“Getting Started” section of the MATLAB Help. If you have just upgraded to
version 6, you will want to get familiar with the new MATLAB Desktop and the
tools that make it up. When you start your MATLAB the Desktop is the first
thing you see. In it you will see windows with names like “Workspace,”
“Command History,” “Command Window,” and “Launch Pad.” This desktop
can be configured in different ways, in essence customizing it to the way you
like to work. Once you have installed and started your MATLAB, simply click
on Help and then select “Full Product Family Help.” From there, click on the
folder entitled “MATLAB” then click on “Getting Started.” The Mathworks has
done a fine job of constructing a very extensive set of hyper-linked documents
that allow you to get both fast answers and detailed discussions. Be sure to
familiarize yourself with the MATLAB workspace, directory structure, and file
types. You should understand what the MATLAB search path is and how you
can add and remove directories from this search path. You should also know
that in this book you will be working primarily with the MATLAB file types M-
files, FIG-files, and MAT-files. The final assumption we must make is that you
know what we mean by the “Command Window” and the “Figure Window.”
The Command Window is where you can enter commands directly to

© 2003 by CRC Press LLC

MATLAB. The Figure Window is where you display graphics and GUIs by
issuing the appropriate commands in the Command Window.

1.3.1 Getting Started

The MATLAB Desktop is what results when you invoke MATLAB on your
computer and provides a convenient and easily configurable interface to the
various tools that make up the development environment. Depending on how
you have set preferences for your specific installation of MATLAB, it should
look something like that shown in Figure1.1.

In order to begin, we must assume that you have already gained some
familiarity with the MATLAB development environment. Of course the portion
of the MATLAB desktop with which you should be most familiar is the
Command Window as this is where you will issue commands directly to
MATLAB. Specifically, you type the MATLAB statements at the Command
Window prompt which is denoted by >> . Generally we will refer to this as
the “command prompt.” A few other items with which you will want to
become familiar are: the Command History where all the commands entered
in the Command Window are recorded, the MATLAB Search Path and how
you can add and remove folders from this search path, and the three MATLAB
file types that we will be mainly working with M-files, FIG-files, and MAT-files.
These file types derive their names from the file extensions. We will avoid

Figure1.1 The MATLAB desktop.

© 2003 by CRC Press LLC

other MATLAB file types such as MEX-Files and P-Files. You will also want to
become familiar with the MATLAB Figure Window as this is where you
display graphics and GUIs and the MATLAB Editor/Debugger where you will
create scripts and functions.

1.3.2 Getting Help

This section is intended to get you pointed in the right direction in order to
familiarize you with the MATLAB environment in terms of the directory
structure, the file types, and the various windows that are available to you. If
you are new to MATLAB it would be wise to familiarize yourself with some
basic terminology and concepts. We recommend that you review the
documentation that is included on the MATLAB Documentation CD. A good
place to start is with the “Getting Started” section of the MATLAB Help. You
can do this easily. After starting MATLAB, just select Help MATLAB Help
from the pull-down menu in the Desktop. When you do, you will see
something like that shown in Figure1.2.

From here you can dig as deeply as you wish into the many aspects of
MATLAB.

The commands which are issued to MATLAB can be either from the original
set of functions that came with your MATLAB package or the ones that you
develop in the form of M-file scripts or functions. These are text files with a
“.m” extension. Throughout this book a MATLAB “program” or “function”
refers to a function M-file, that is MATLAB code that has the keyword
“function” in its first line. We will use the term “script” to refer to an M-file that

Figure1.2 Getting started: Help

© 2003 by CRC Press LLC

is simply a stored list of commands. Although the differences between M-file
functions and scripts are profound, we will assume that you already
understand those differences. If you don’t, or would like to review M-file
scripts and functions, we again refer you to the documentation that came with
your MATLAB package.

One of the nice aspects about the MATLAB language is that it can be
expanded by writing new functions and scripts. Moreover, any new M-file can
be supplemented with on-line help. (By on-line we are not referring to the
internet, but to the help available from the command prompt in the Command
Window.) The on-line help feature and hypertext documentation are both
useful as quick references to built-in features of MATLAB, but on-line help is
something that you can provide and build into your own M-files. It practically
becomes a necessity when M-files are shared among MATLAB users. A well-
documented function relieves a user from the responsibility of understanding
every minute detail of a function’s operation, and allows the programmer to
obtain desired results by following the syntax or usage of the M-file.

The on-line help feature is activated by typing help filename, where filename
is the name of the M-file whose help contents you wish to have listed (e.g. >>
help plot). Here is an example you can try in the Command Window.

>> help tic

 TIC Start a stopwatch timer.
 The sequence of commands TIC, operation, TOC
 prints the number of seconds required for the
 operation.

 See also TOC, CLOCK, ETIME, CPUTIME.

Notice that what happens when you invoke help for a function is that
MATLAB returns in the Command Window the first block of contiguous
commented lines starting from the second line of the M-file. (Try either the
Editor/Debugger or the type command to see the contents of TIC.M.) When
creating your own functions and help comments, keep in mind that the first
comment line of the M-file should be as concise and descriptive as possible,
since this is the line that will appear when one executes help directory-name,
where directory-name is the name of the directory or folder containing M-files
(as an example type: help graphics).

As you continue to expand your MATLAB vocabulary, the help command
will be a very convenient alternative to the HTML help, the documentation
CD, or other printed documentation that came with your software purchase.
Sometimes all that is needed is a quick bit of information or reminder of the
details, and the on-line help is perfect for that.

Several other commands that are convenient in helping you enrich your
command vocabulary are more, type, and demo. The function more controls
the number of lines which are displayed at a given time to the Command
Window. You can turn it on by issuing the command more on, so that you can
read the contents of the Command Window before the next page of output is
displayed. Pressing the return key displays the next line of output while the
space bar displays the next page. If you wish to stop paging through the

© 2003 by CRC Press LLC

output, just press the letter “q” on the keyboard. Issuing more off turns off the
paging feature.

The contents of many MATLAB commands can be viewed by either using
the type command or by opening up the file in MATLAB’s Editor/Debugger. If
you want to open a file with the Editor/Debugger simply type edit followed by
filename at the command prompt. (You can also use the pull-down menus in
the desktop.) If you do this, the file will be opened in the Editor/Debugger and
you can make and save changes. (Type edit factorial to see an example of a
simple function in the Editor/Debugger.) However, if all you want is to quickly
see the contents of an M-file, the command type filename allows you to list the
contents of a file (if no extension is provided, MATLAB assumes and searches
for an M-file) in the Command Window. We believe that viewing MATLAB
programs is perhaps the quickest way to learn how to program your own
MATLAB code. Using type is just the quick way of viewing the source code.
However, in some cases the source code of the command is not available in a
text file and cannot be typed out. For example, issuing type line will return
“line is a built-in function.” This means that this command has been built into
MATLAB itself for computational efficiency and speed.

The Command History window keeps a record of all the commands you
type at the command prompt. You can also select commands there and drag
them into the Command Window. However, sometimes (especially when you
are learning) you will want to save a log of your commands. The diary
filename command can be used to keep a running record of what was typed
and displayed in the Command Window. This can be useful in program
development for several reasons. The first reason is that occasionally you may
clear the Command History window before realizing that you have forgotten
which commands you issued and what order they must be executed in to
achieve specific results; but if diary is on you will have a file record of the
commands you used. Another advantage of using the diary command is that
you can create a script or function fairly rapidly by editing the resulting diary
file and saving it as an M-file.

You can be selective as to what goes to the diary file by switching between
diary states. The commands diary on and diary off, respectively allow or
prevent your typed commands and MATLAB output to be sent to the file. In
addition you can switch between different diary files by reissuing the diary
filename command, where filename is the name of a different or new diary file.
Diary output is always appended to the file that you specify.

Finally, we encourage you to check out the MATLAB demo packages.
When you do, you will get a flavor of some of what can be accomplished with
MATLAB. At the very least, you may get a jump on a solution to a problem by
remembering that one of the demos did something similar to what you would
like to be able to do. Once you find that demo, you can step through the
code and use the ideas or techniques for your own code. The MathWorks
expects and encourages you to examine their M-files so that you can learn the
language quicker and with less frustration. To get a list of demos that are
available to you, type help demos at the command prompt. Depending on
which version MATLAB and which Toolboxes you have installed on your
system, additional demonstrations may be provided to illustrate specific
package capabilities.

© 2003 by CRC Press LLC

1.4 Other References
In general, you might find the following reference materials of use while

going through this book:

MATLAB’s Using MATLAB (version 6)

MATLAB’s Using MATLAB Graphics (version 6)

Although we try to provide some guidelines and rules of thumb concerning
good visualization and graphical user interface approaches, you might
consider the following texts enlightening:

The Visual Display of Quantitative Information by Edward Tufte

Envisioning Information by Edward Tufte

Scientific Visualization and Graphics Simulation by Daniel Thalmann

GUI Design Essentials by Susan Weinshenk, Pamela Jamar, and Sarah C.
Yeo

© 2003 by CRC Press LLC

22 VVIISSUUAALLIIZZAATTIIOONN CCOONNSSIIDDEERRAATTIIOONNSS

2.1 Why Visualize?
The obvious question that is at the heart of MATLAB graphics is “Why

would I ever want to visualize my data?” At its very essence, science is the
quest for truth. However, some of those truths are not easily discovered, and
in many cases, we don’t even know how to ask the appropriate questions that
will lead to the truth. Consider the fact that many natural phenomena are too
fast, too slow, too large, or too small to be studied through direct observation
or with traditional laboratory techniques. How can we see the unseen or gain
enough insight into the nature of things to even know what is worthwhile to
investigate? Also, consider that everything humankind has made and every fact
that has been discovered were first birthed as an idea, i.e., something with
form only in the mind’s eye. We revere those who can see beyond the
apparent and call them “visionary.” A dictionary will tell us that to visualize
means, “To form a mental image or vision of.” Therefore, when we discuss
what it means to visualize something with MATLAB or with anything else for
that matter, we need to be aware of the significant role the mind plays in this
discussion. However, this is a book about MATLAB, not about philosophy, but
it is important that you realize that what we are really exploring in this book
are ways to represent something, whether that something is a graphical
representation of a real-world object, a hypothetical mathematical construct,
or specific values of some measurable quantities. Most importantly, we want
to create those representations in such a way that the human mind can
understand them and then ask the right questions that lead to the discovery of
new things or to a better understanding of our universe.

So why do you need visualization? Aside from making your boss look good
to his superiors, the visualization of your data can help you identify and
emphasize areas of interest, such as where significant events occur, or where
the data exhibits a curious behavior. It can also help you to convey your
thoughts, observations, or conclusions to others in a quick and intuitive way.
There are probably as many applications for MATLAB as there are users of it,
and every application will have its own special needs, but even amongst all
that, a little understanding of some scientific visualization fundamentals will

IN THIS CHAPTER…
2.1 WHY VISUALIZE?
2.2 CHARACTERISTICS OF GOOD DATA VISUALIZATION
2.3 DATA QUANTITY AND DIMENSION
2.4 COLOR, LIGHT, AND SHADING
2.5 MOTION
2.6 INTERACTION

© 2003 by CRC Press LLC

help you achieve the results you desire. Table 2.1.1 lists some of the reasons
to visualize your data.

Table 2.1.1 Reasons to Visualize Data

Explore it Exploit it
Emphasize some aspect of it Analyze it
Gain new insights into it Assess or control the quality of it
See “the invisible” Present it
Publish it Interact with it

One can easily argue that the need to visualize data and information has,
largely, driven our technology. The entire field of computer graphics, which
includes hardware and software, is devoted to furthering the science of how
we represent and interact with information in effective ways.

2.2 Characteristics of Good Data Visualization
MATLAB has established itself as a preeminent computing environment. By

computing environment we mean that not only does MATLAB provide the
user with quick access to many data processing functions, but also allows a
MATLAB programmer to create special purpose applications to be used by
“domain specialists.” These domain specialists are often not interested in
knowing the intricacies of MATLAB programming, but are very interested in
having analytical tools that are intuitive to use and in which they can have
confidence. Since you are reading this book, you either have a need for
visualizing some of your own data, or you are involved in developing some
form of graphical user interface, either for your own analytical efforts, or to
support some domain specialists who really don’t want to be programmers. In
Chapter 10 we will discuss the essential elements of GUI design. Here we will
consider how to better represent data and results so that the salient aspects of
the information contained in the data can be readily observed.

In Table 2.1.1 we listed some reasons why you would want to visualize
data. Remember, the basic reason for visualization is to help you, or those you
work with, solve problems. Cognitive psychologists have demonstrated that
the way in which a problem is presented can determine how difficult a
problem is to solve, so we “re-present” the problem in more understandable,
i.e., intuitive, ways and in doing so gain insight.

Good visualizations must be meaningful; every plotted point, and each
colored line needs to help with the intuitive understanding. This leads to issues
of perception, and since visualization in the scope of this book is visual, we are
talking about visual perception. This idea of perception has to be distinguished
according to two primary areas of intent: 1) the display and communication of
data, and 2) the investigation and understanding of data. The direction with
which you are approaching your problem will determine largely the manner in
which you visualize your data. A good visualization should distill the vast
quantity of data, or the difficult-to-understand concept, into quantities and
terms that are readily understandable. It is by comparison to what we know
that we discover what we don’t know. It is much easier to see an anomalous

© 2003 by CRC Press LLC

spike in data when it is plotted, as opposed to looking at a list of numbers on a
printout. The modern scientific world is not a simple world. We have
developed the scientific tools we have in order to investigate and
communicate in unambiguous terms. In this communication, we must strive
for clarity, precision, and efficiency. Table 2.2.1 lists some characteristics of
good data visualizations.

Table 2.2.1 Characteristics of Good Visualizations

A Good Visualization Should… Because…

Serve a clear purpose. We are interested in describing,
exploring, or recording something.

Show the data without distorting it. The data is what is important, or
more fundamentally, the truth the
data reveals.

Cause the viewer to think about
the substance of the data.

Understanding will be sacrificed if
graphic design, or some other
“flashy” mechanism draws
attention away from the content.

Present large quantities of
numbers in a small space.

We are often overwhelmed by
many numbers; we need to make
large data sets coherent.

Take advantage of the natural
tendency to make visual
comparisons.

It is easy for us to see relative
differences.

Reveal information at various
levels of detail.

It is easier to understand the
bigger picture when the details are
available to support it.

2.3 Data Quantity and Dimension
Advances in technology are allowing us to gather data at an ever-increasing

rate. Microphones, video cameras, telescopes, satellites, radars, etc., work
round the clock gathering more data about the universe around us. X-rays,
ultrasound, computed tomography, magnetic resonance images, etc., are
likewise gathering more data about the universe within us. From the immensity
of the universe probed with radio telescopes, to the minutiae within molecules
observed with electron microscopes, we are witnessing a massive flood of

 If you are interested in the field of information visualization, we highly

recommend the works of Edward R. Tufte, in particular his seminal text, The
Visual Display of Quantitative Information, 1983, published by Graphics
Press.

© 2003 by CRC Press LLC

data such as has never before been seen in human history. In addition, to
compound it all, doing so at a rate well beyond the human capacity to
observe or understand it. The computing capabilities that thirty years ago were
the sole domain of expensive computer installations at the defense
department or in university laboratories are now well exceeded on the
average homeowner’s desktop. Therefore, whether you are dealing with data
generated by your computer from pure mathematical formulations, or
measured with a physical sensor, perhaps the two most important
considerations in deciding how to represent your data are likely to be the
quantity of it and its dimension.

The quantity of the data might require you to consider statistical methods to
show trends or occurrences of interest relative to the data set. The dimension
of your data might require something more than a simple x-y plot. You might
need to consider 3-D plots, slices of 2-D data, or combinations of 2-D and 3-D
plots to get the emphasis you need. In any event, the old axiom, “A picture is
worth a thousand words,” is a mere understatement in today’s world.

2.4 Color, Light, and Shading
Color is probably the most commonly used, and abused, visualization

technique. For instance, bright colors can be used to indicate that a particular
item should be noted in a presentation, or to quickly draw your attention to
points that exceed a threshold in a plot. One should always keep in mind that
the intent of any visualization is to foster the communication of some idea,
whether it be overall results or stressing a specific aspect of some analysis. In
our brief discussion of color, we include lighting and shading as well.

In most simple visualizations, we can effectively use color to distinguish
between different data series. This is most commonly seen as multiple lines of
a plot where each line is a different color. Typically, in such simple plots, the
two colors need only be distinguishable to clearly define the data.
Unfortunately, plots are printed and copied and often not in color, then the
advantages of color are lost. In such situations, it is good to denote each data
series with a distinctive marker, or line style. Figure 2.1 and Figure 2.2 show
similar plots of the same data. In Figure 2.1, the lines are plotted in blue and
green, poor choices for black-and-white printing and possibly confusing even
in color slide presentations where lighting is poor or someone has color
blindness. Although different markers were used for each data series, they are
not distinct enough to really help with the problem. Figure 2.2 is the better
plot. Although the color might still be a problem in black-and-white printing,
the line styles have been changed so that they are easily distinguishable, and a
marker is used on only one data series. Figure 2.2 will convey the data better
even when copied.

© 2003 by CRC Press LLC

Varying hue is good for displaying different types of objects in visualization,
but in many numerical analysis cases, we are interested in ordinal, interval, or
ratio data. Differences in hues do not necessarily imply differences in

−8 −6 −4 −2 0 2 4 6 8
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Figure 2.1 Although one trace is green and the other blue, this simple 2-
line plot is difficult to read in low light or in black-and-white (as it is

printed here).

−8 −6 −4 −2 0 2 4 6 8
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Figure 2.2 This 2-line plot is easier to read since two different line styles
are used. It would look even better if it were in color.

© 2003 by CRC Press LLC

magnitude; it is not obvious that red has a higher value than blue. Differing
brightness levels (or saturation levels of a certain color) can convey differing
magnitudes, and a gradual change from one hue to another is effective in
doing this. Realize, however, that not everyone perceives color in the same
way. Color blindness is common, and color perception even changes with age.
When you use color, be sure that the meaning of the color is unambiguous.
Think of color as another dimension for representing information. Never use it
to “pretty-up” a graph.

Figure 2.3 Hue and transparency in a 3-D plot .

© 2003 by CRC Press LLC

2.5 Motion
Like color, motion is another representative dimension. Motion is used to

represent changes over time, or to indicate sequential changes in higher
dimensional data. Consider that a single observation that varies in time can be
easily represented in a 2-D plot of the observation versus time. However, what
happens if the measurements are 2-D themselves, such as a sequence of
photographic images? This can be represented in a number of ways. Perhaps
the most common is an image sequence, or frames. Like a movie, each image
is a “slice in time.” We will explore using motion in Chapter 9.

2.6 Interaction
The most useful data visualization methods allow the user to interact with

the data by changing viewing angles, thresholding levels, applying false colors,
and otherwise manipulating the presentation of the information content of the
data dynamically. As you proceed through this book, you will see that
MATLAB allows some simple dynamic manipulations through the Figure
Window. More importantly, you will see that MATLAB provides you with a
host of graphics functions that allow you to build your own custom
visualizations with which you can interact to any degree you wish if you are
willing to program them so. Truly, the only limit to visualization with MATLAB
is your imagination!

To whet your appetite, start your MATLAB and type demo at the command
prompt.

Figure 2.4 Visualizing MRI Data

© 2003 by CRC Press LLC

Figure 2.5 Play with the MATLAB Demos.

© 2003 by CRC Press LLC

33 PPLLOOTTTTIINNGG IINN TTWWOO DDIIMMEENNSSIIOONNSS

3.1 Sources of Data
What operations you perform on any given set of data as well as how you

choose to visualize it are usually determined by the source of the data and by
which aspects of it you wish to emphasize. In general, all the data you will
ever work with will either be the result of some generating function, i.e.,
function data, or will be a measurement of some real-world property, i.e.,
measured data.

3.1.1 Function Data

Function data is data that is created by some mathematical operation. Its
typical characteristics include: 1) data-uniformity, i.e., the data is not sparse or
riddled with discontinuities, 2) free of corrupting noise, and 3) controllability,
i.e., you can vary parameters, change algorithms, etc., and so re-create data in
any form you desire. However, such ideal data rarely is representative of the
real world, and in the case where generated data is intended to represent real-
world phenomena a great deal of energy is expended in making generated
data look like measured data. You can think of function data as any data which
is the result of an algorithm, and in short you have complete control over the
range, quantity, and values of the data. A simple example of function data is
the mixing of two sinusoidal waves such as that described by the expression

y(t) = sin(20 t)+sin(60 t)

and shown in 0.

IN THIS CHAPTER…
3.1 SOURCES OF DATA
3.2 IMPORTING DATA
3.3 ELEMENTARY 2D PLOTS
3.4 SIMPLE 2D PLOT MANIPULATION
3.5 SPECIALIZED 2D PLOTTING
3.6 PLOT EDITING IN THE MATLAB FIGURE WINDOW
3.7 ILLUSTRATIVE PROBLEMS

© 2003 by CRC Press LLC

3.1.2 Measured Data

Measured data results from some real-world sensing or probing. Examples
of measured data include data such as daily temperature highs, g-force,
velocity, etc.. The principal characteristics of measured data are: 1) measured
data is only as accurate as the device making the measurement, 2) there is
always some degree of uncertainty associated with the data, 3) data may take
extreme excursions, and 4) measured data might be incomplete or have gaps.
This last characteristic is a particularly interesting one in that it is more
common than one might at first think. Consider daily temperature readings. It
is common that readings do not exist for many days for a given year or in
some cases, data might only be taken sporadically. (Either way, such data is
called “sparse” and MATLAB provides a memory efficient means of dealing
with such data.) However, it is up to you as the programmer, analyst, scientist,
or engineer to determine how to deal with gaps in your data and how you
choose to visualize such data is highly dependent on the intended use of it.
Figure 3.2 shows a plot of average daily temperatures for the first sixty days of
the years 1995 through 2000 for Anchorage, Alaska.1 The ‘o’ data marker
indicates the 6-year mean for that day. In this data a value of –99 indicates that
no data is available, i.e., a data gap. You can see that on about the 10th day of
one of the years no data was taken.

1 Climatic data provided by the University of Dayton Average Daily Temperature Archive.
Environmental Protection Agency Average Daily Temperature Archive,
http://www.engr.udayton.edu/weather/, courtesy of J. K. Kissock.

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Figure 3.1 An example of function data.

© 2003 by CRC Press LLC

http://www.engr.udayton.edu/weather/

3.2 Importing Data
Whenever we are dealing with data in MATLAB, whether it is function

generated, or measured, we are first faced with just how to bring that data into
the MATLAB environment. Fortunately MATLAB provides a rich set of
commands that support data input and output from many different standard
formats. If you have a data file that was created using another application or
program, the contents of that data file can be imported into the MATLAB
workspace. Once you have imported the data, you can then manipulate or
plot the data. However, before we consider data files from other applications,
we should also understand how to import data saved during other MATLAB
sessions. In many cases, you will be working with other MATLAB users and
you will need to operate on their data.

3.2.1 MATLAB Data Formats

Modern MATLAB supports a broad range of standard data formats. The
following tables list the data formats for which MATLAB provides built-in
support and the associated import commands.

Data Formats Command Returns

MAT - MATLAB workspace LOAD Variables in file
CSV - Comma separated
numbers

CSVREAD Double array

TXT – Formatted data in a text file TEXTREAD Double array
DAT - Formatted text IMPORTDATA Double array
DLM - Delimited text DLMREAD Double array
TAB - Tab separated text DLMREAD Double array

0 10 20 30 40 50 60 70
−100

−80

−60

−40

−20

0

20

40

Figure 3.2 Example of measured data.

© 2003 by CRC Press LLC

Spreadsheet Formats Command Returns

XLS - Excel worksheet XLSREAD Double array and cell
array

WK1 - Lotus 123 worksheet WK1READ Double array and cell
array

Scientific Data Formats Command Returns

CDF - Common Data Format CDFREAD Cell array of CDF records
FITS - Flexible Image Transport
System

FITSREAD Primary or extension
table data

HDF - Hierarchical Data Format HDFREAD HDF or HDF-EOS data
set

Image Formats Command Returns

TIFF – Tagged image format IMREAD Truecolor, grayscale or
indexed image(s)

PNG – Portable network graphics IMREAD Truecolor, grayscale or
indexed image

HDF – Hierarchial data format IMREAD Truecolor or indexed
image(s)

BMP – Windows bitmap IMREAD Truecolor or indexed
image

Audio Formats Command Returns
AU – Next/Sun Sound AUREAD Sound data and sample

rate
SND – Next/Sun Sound AUREAD Sound data and sample

rate
WAV – Microsoft Wave Sound WAVREAD Sound data and sample

rate

Movie Formats Command Returns

AVI - Movie AVIREAD MATLAB movie

3.2.2 Importing High-Level Data

The most straightforward method of importing data is to use the load
command. The load command can read either binary files containing matrices
generated by earlier MATLAB sessions (usually by use of the save command),
or text files containing numeric data. If the data file was created in an earlier
MATLAB session, simply issuing the load command with the filename is all that
is needed. The save command will save the specified data in MATLAB’s binary
data format. The following example shows just how simple this can be.

© 2003 by CRC Press LLC

>> save mydata X Y % mydata.mat created
:
:
>> load mydata % in a later session

The important points to remember in using save and load in this way is that
MATLAB will by default attach the “.mat” extension to the data file and the file
will be created or read from the current working directory.

As stated earlier, this use of the save and load commands uses the default
MATLAB binary file format. Although many other applications are now being
created that can read and write this format, save and load can be used to both
write and read text data which can make importing and exporting data a
simple matter. Either command could have been issued with the keyword –
ASCII. If save was used with –ASCII, the data is automatically tab delimited.
Otherwise, you should make sure that your data file is organized as a
rectangular table of numbers, separated by blanks, with one row per line, and
an equal number of elements in each row. For example, let’s say that you have
an ASCII data file called datafile.dat which contains three columns of data.
The first column contains the integers 1 through 10. The second column lists
the square root of the first column’s numbers. Finally, the third column
contains the square of the numbers in the first column.

 datafile.dat:

 1.0000 1.0000 1.0000

 2.0000 1.4142 4.0000

 3.0000 1.7321 9.0000

 .

 .

 .

 10.0000 3.1623 100.0000

The data can then be imported into the MATLAB workspace by typing:

>> load datafile.dat

 You do not need to specify that the file is an ASCII format as the load
command is smart enough to recognize that. MATLAB puts the data
contained in the datafile.dat file into a matrix variable called datafile. This
matrix will have 10 rows and 3 columns. New variables can be defined from
the rows, columns, and elements of the datafile variable. To find out exactly
how and what you can do with variables by means of their indices, take a look
at the sections in the Getting Started with MATLAB manual.

© 2003 by CRC Press LLC

3.2.3 Importing Low-Level Data

Often data files contain headers, that is, descriptive statements describing
how, when, and under what circumstances the following data was collected or
generated. Usually you will wish to bypass the header after you have extracted
the information you need from it. Additionally, other complicating factors such
as rows that have varying number of columns, or text interspersed with
numerical data will inevitably be encountered. Even if your data is not in one
of the standard formats, you can use the low-level file input/output (I/O)
functions MATLAB provides. In such circumstances where the format of the
file is known, but is not one of the standard formats, it will most likely be best
to make use of the fread and fscanf commands. Both commands are used to
read binary data from a file according to a specified format. Both are part of
the low-level I/O commands available in MATLAB and require that certain
parameters that describe the precision and location of the data in the file be
specified. The general form of the fread command is:

[A,COUNT] = FREAD(FID,SIZE,PRECISION)
[A,COUNT] = FREAD(FID,SIZE,PRECISION,SKIP)

Here, A is the matrix returned by the fread command that contains the data
which was read. COUNT is an optional output argument that tells you how
many elements were successfully read. As you can see, fread expects up to
four input arguments. The first argument, FID, is a required value that
corresponds to the file identification number of the file to be read. This value is
obtained by using the fopen command. The second argument, SIZE, is
optional and tells the fread command how much data is to be read.
PRECISION is a string that specifies the format of the data. Typically this
consists of a data specifier such as int or float followed by an integer
giving the size in bits. In general MATLAB’s low-level I/O functions are based
on the I/O functions of the ANSI C Library. If you are already familiar with C,
then you will be familiar with these commands. The table, “MATLAB Low-Level
I/O Commands” lists both the binary and ASCII low-level file I/O commands
in MATLAB. The following steps are generally what is required to read and
write data to data files:

1. Open the file to be read or written to using fopen.

2. Operate on the file:

a. fread for reading binary data,

b. fwrite for writing binary data,

c. fgets or fgetl for reading text strings line by line,

d. fscanf for reading formatted ASCII data,

e. fprintf for writing formatted ASCII data.

3. fclose to close the file.

Although the following table can serve as a handy reminder, please refer to
the on-line help or to the MATLAB Function Reference to learn more about
MATLAB’s low-level file I/O commands.

© 2003 by CRC Press LLC

MATLAB Low-Level I/O Commands

Command Action Usage
FOPEN Opens a file

for reading
or writing.

FID = FOPEN('FILENAME','PERMISSION')

FCLOSE Used to
close a file
once
reading or
writing is
complete.

STATUS = FCLOSE(FID)

FGETL Reads a line
from a file
but discards
the newline
character.

TLINE = FGETL(FID)

FGETS Reads a line
from a file
and keeps
the newline
character.

TLINE = FGETS(FID)

FREAD Reads
binary data
from a file.

[A, COUNT] = FREAD(FID,SIZE,PRECISION)

FWRITE Writes
binary data
to a file.

COUNT = FWRITE(FID,A,PRECISION,SKIP)

FPRINTF Writes
formatted
data to a
file.

COUNT = FPRINTF(FID,FORMAT,A,...)

FSCANF Reads
formatted
data from a
file.

[A,COUNT] = FSCANF(FID,FORMAT,SIZE)

It is not our intention to present a comprehensive discussion on the different
data importing functions available in MATLAB. You can read the MATLAB
helps on any of these functions as you come across a need for them. The main
points to be made here is that MATLAB supports a host of data formats and
provides the low-level functions to let you build a special import function if
you need it.

3.3 Elementary 2-D Plots
The most basic, yet often the most useful, graph that you may wish to

create is a simple line plot of numeric data. The MATLAB language provides a
set of high-level commands that are used to create these simple line plots. In
order to simplify the discussion and descriptions of 2-D plots, let’s take a
moment and list relevant graphics objects and fundamental graphics

© 2003 by CRC Press LLC

terminology. Essentially, graphics objects are the basic elements which, when
assembled and drawn on your monitor’s screen, generate pictures and visual
information. Even the most elementary plot consists of several graphics
objects. The window in which the plot appears, the lines, the axes, and the
labels that make up the plot are all examples of graphics objects. The
following list will help you become familiar with some of the MATLAB graphics
objects referred to in this section without getting into the details which we will
discuss in Chapter 7.

The following objects and terms are occasionally referred to in this section:

figure: the window in which other graphics objects are placed

axes: a graphics object that defines a region of the figure in which
the graph is drawn

line: a graphics object that represents the data that you have
plotted

text: a graphics object that is comprised of a string of characters
and terms

title: the text object that is located directly above an axes object

xlabel: the text object associated with the x-axis

ylabel: the text object associated with the y-axis

These objects and terms also happen to be the names of some of the
plotting functions that can be used while creating 2-D plots.

To start, the MATLAB command plot will be examined in detail. Then we
will look at a group of three commands (semilogx, semilogy, and loglog) that
are variations of the plot command with respect to the axis scaling. After
these are presented, a group of plotting commands that are more specialized
in terms of their application are presented. We’ve placed these specialized
plotting commands in the broad category of Specialized 2-D Plotting, since
these are easily created with simple high-level MATLAB commands. Finally we
will discuss how to edit a plot once it is created and examine the MATLAB
Figure Window and its various parts as it has undergone quite a few changes
in the recent releases of MATLAB.

3.3.1 A General Overview of the Plot Command

Most of the MATLAB graphics commands are straightforward and intuitive
(or at least they become intuitive fairly quickly as you move along the
language’s learning curve). The plot command is the first one that we will
explore. For example, a graph of an arbitrary set of data values assigned to
the variable y can be generated using the command plot(y). Let’s say that your
data set was the cubic of the numbers from negative five to four in step
increments of one tenth. This data can be generated and plotted by typing

y = (-5:0.1:4).^3;
plot(y);

at the command prompt. You will obtain the figure shown in Figure 3.3.

© 2003 by CRC Press LLC

Notice that the x-axis labels are not the numbers that were cubed, rather
they are the subscript or index numbers of the vector y. MATLAB
automatically plots your data versus the index number when only one
argument is passed to the plot function. You can verify this by typing

length(y)

and seeing that

ans = 91

is returned. In the figure, you can see that the last point defining the line (in
the upper right-hand corner) is at the point 91 on the x-axis and 64 = y(91) on
the y-axis.

Although there may be instances in which having the indices of the plotted
data displayed along the x-axis is useful, in many cases it will be more
informative to display the value of the input or parameter that was responsible
for the data output. In order to accomplish this for our previous example, we
can use

x = -5:0.1:4;
y = (x).^3;
plot(x,y);

and the Figure Window will contain the plot that appears in Figure 3.4.

0 10 20 30 40 50 60 70 80 90 100
−150

−100

−50

0

50

100

Figure 3.3 Plot of y = (-5:0.1:4).^3

© 2003 by CRC Press LLC

Now we can add some labels to the x- and y-axes, a title to make the graph
more informative, and a grid to assist in estimating values from the line in the
graph. We will create the label “x” for the x-axis, “y” for the y-axis, and put
“Graph of y = x^3” as the title to the graph. MATLAB makes adding these very
simple; just type the following at the command prompt:

xlabel('x');
ylabel('y');
title('Graph of y = x^3');
grid;

Figure 3.5 shows the results of applying these commands.

−5 −4 −3 −2 −1 0 1 2 3 4
−150

−100

−50

0

50

100

Figure 3.4 Use plot(x,y) where y = x.^3

© 2003 by CRC Press LLC

The plot command arguments are not restricted to being vectors; the inputs
may also be matrices. When passing inputs to the plotting function, there are
several simple rules to keep in mind so that the appearance of the graph is
what you expect. The rules can be summarized as follows:

plot(y)

If y is a vector, you will generate a line of y versus the index
numbers of y.

If y is a matrix, you will generate a set of lines where each line
corresponds to the graph of one of the matrix columns versus
the row number.

plot(x,y)

If x and y are vectors of the same length, a graph of y versus x
will be displayed.

If x is a vector and y is a matrix, the rows or columns of y will
be plotted against x. If a column of the y matrix has the same
length as vector x, then the columns will be plotted versus x.
If the rows have the same length as vector x, then the rows
will be plotted versus x. If the number of rows and columns
of y are the same, the columns will be plotted versus x.

If x is a matrix and y is a vector, y will be plotted against
either the rows or columns of x. If a column of the x matrix
has the same length as vector y, then y will be plotted versus
columns of x. If the number of rows of x is equivalent to the
length as vector y, then y will be plotted versus the rows of x.

−5 −4 −3 −2 −1 0 1 2 3 4
−150

−100

−50

0

50

100

x

y

Graph of y = x3

Figure 3.5 Adding labels, a title, and a grid.

© 2003 by CRC Press LLC

If the number of rows and columns of x are the same, y will
be plotted versus the columns of x.

If x and y are matrices which have the same number of rows
and columns, the columns of y will be plotted against the
columns of x.

We have already looked at plotting a simple vector by itself or versus
another vector. Let’s look at a few examples which illustrate these rules. In
the Command Window, type

x = (0:0.2:9)';
alpha = 0:5;
y = besselj(alpha,x); % Bessel function
plot(x,y)
xlabel('x');
ylabel('y');
title('y = besselj(ALPHA,x), for alpha = 0,1,2,3,4, and
5');

The y variable is a 46-by-6 element matrix and x is a vector with 46 elements.
The plotting results are shown in Figure 3.6. For this example it does not
matter to the plot command if y is transposed or not; MATLAB recognizes the
size of the two input variables and appropriately plots y in the orientation that
matches the dimensions of x. However, the besselj function does require that

alpha have as many columns as rows in x.

Try the same example but substitute plot(y) for plot(x,y). Here columns of
y are plotted, so you end up with essentially the same figure, but with the x-
axis labels representing the row index number of y. You could also plot the

0 1 2 3 4 5 6 7 8 9
−0.5

0

0.5

1

x

y

y = besselj(ALPHA,x), for alpha = 0,1,2,3,4, and 5

Figure 3.6 Plotting the matrix y versus the vector x.

© 2003 by CRC Press LLC

rows of y by using plot(y'), but in this example the graph, Figure 3.7, may look
interesting but doesn't provide much in the way of information.

If you have a color monitor, you may have noticed in the previous examples
that when multiple lines are plotted, they will have various colors automatically
assigned to them. As you will read later on in this section, one of the ways by
which the line types (e.g., solid, dashed, etc.), plot symbols (e.g., circles, stars,
etc.), and line colors can be defined is by passing a string argument directly to
the plot function. However, for any of the cases in which more than one line
is created and where you have not defined the color in the plot statement, the
color of the lines will be cycled through a specific set of colors. By default,
there are six colors that MATLAB will automatically cycle the lines through.
Later you will learn how to change line colors to accommodate your needs.
Chapter 7 digs deeply into the objects that make up a figure and how to affect
their properties such as the order in which line colors are chosen.

The number of inputs can also be extended. You can use the format
plot(x1,y1,x2,y2,...) where the rules mentioned above apply for each x and y
pair. For example, if you wanted to plot three lines representing the data sets

x1 = 0:.1:10;
y1 = cos(x1);
x2 = 1.5*x1;
y2 = 2*cos(x2);
x3 = 2*x1;
y3 = 3*sin(x3);

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
−0.5

0

0.5

1

Figure 3.7 Plotting the rows of a 46 by 6 element matrix.

© 2003 by CRC Press LLC

you could use

plot(x1,y1,x2,y2,x3,y3)

If the x1, x2, x3 and y1, y2, y3 data had been, respectively, in an X and Y
matrix (in this example it is possible because the sizes of the individual vectors
are the same and can be used to build a larger matrix)

X = [x1' x2' x3'];
Y = [y1' y2' y3'];

you could have also used
plot(X,Y)

Both of these plot commands would give you the exact same plot shown in
Figure 3.8. Be aware of the fact that depending on the situation, there are
usually many ways to achieve the same end result. If the x1, x2, x3 and y1, y2,
y3 vectors could not have been used to build a larger matrix, the
plot(x1,y1,x2,y2,x3,y3) would be more appropriate. As you continue through
this book and your MATLAB vocabulary grows, you will see that there are

other methods that can be used to get the same three lines on your display.

If you were able to visualize the data in your mind's eye and expected
something that was close to the results in Figure 3.8, or if you were able to
look at the data and associate a line with one of the data set combinations, it
was most likely due to the fact that the data sets were fairly simple. In many
cases this would probably not be easy to do. On your screen the lines are in
color, so if you memorized the fact that by default MATLAB currently cycles

0 2 4 6 8 10 12 14 16 18 20
−3

−2

−1

0

1

2

3

Figure 3.8 Using plot(X,Y) or plot(x1,y1,x2,y2,…).

© 2003 by CRC Press LLC

through the colors blue, green, red, cyan, magenta, yellow, and black when
creating multiple lines with a plot command, you would have known that the
blue one corresponds to the (x1,y1) combinations, the green line corresponds
to the (x2,y2) combinations, and the red line corresponds to the (x3,y3)
combinations. Realistically, if you are presenting your plots to others, your
audience is probably not likely to have memorized the MATLAB color cycle
and unless you are some kind of savant, you probably aren’t going to want to
memorize it either! Of course you can always look it up in the reference
guide, type help plot, set your own default, look at the axes ColorOrder
property (an object property you’ll learn about in Chapter 7), or even run a
quick test. But in any event, if you print out a figure with a black and white
printer, you are still going to be out of luck unless you make use of MATLAB’s
line types or plotting symbols. Also, since defaults may change from version
to version (as the color cycle did from version 4 to version 5), if it matters what
color a plot is displayed as on your monitor, it is always best to specify exactly
what you want.

Fortunately, the plot command accepts a color-linestyle-marker string,
which is a character string argument by which you can specify line types, plot
symbols, and colors. For instance, if you wanted to plot a red dashed line with
the vectors x and y, you could simply type the command

plot(x,y,'--r'); % Plot y versus x as red dashed
line.

The string that you create to define the characteristics of the line may use
any combination of characters shown in Table 3.3.1 for the line type, symbol,
or color. As you can see, your string may have from 1 to 4 characters. The
order of the character sets does not matter. Later we will see how to alter the
line properties using the Property Editor from the Figure Window itself. And in
Chapter 7 you will learn how to directly work with figure objects.

Table 3.3.1 Line Color, Marker Style, and Line Style Strings

Line Color Marker Style
character creates character creates

b or blue blue line . point
g or green green line o circle
r or red red line x x-mark
c or cyan cyan line + plus
m or magenta magenta line * star
y or yellow yellow line s square
k or black black line d diamond
 v triangle down

Line Style ^ triangle up
character creates < triangle left

- solid > triangle right
: dotted p pentagram
-. dashdot h hexagram
-- dashed

© 2003 by CRC Press LLC

It is important to realize that when you are using plot symbols, the symbols
will appear centered on the data points. Lines, however, will interpolate
(linearly) between the data points. Therefore, if you are plotting a continuous
function (such as sin(x)), the relative smoothness of the line may depend on
the number of samples being passed to the function and the spacing between
the samples. Also bear in mind that the colors that have been listed in Table
3.3-1 are not the only colors that can be used. You will see how to create
lines with other colors when we discuss the Plot Editing Mode in Section 3.6
and Handle Graphics in Chapter 7.

Let's look at an example of how a combination of line styles and symbols
can be informative. First, we will create some data by squaring a range of
values and adding some normally distributed random noise:

x1 = [-3:.2:3];
y1 = x1.^2 + randn(size(x1));

Given the input and noisy output, let’s say we want to fit a 2nd order
polynomial curve to the data. To do this we can use the MATLAB functions
polyfit and polyval in the following manner:

p = polyfit(x1,y1,2);
x2 = [-3:.5:3];
y2 = polyval(p,x2);

Now we shall plot the data which was used as input to our curve fitting
routine as green circles, and the fitted curve as a cyan dashed line.

plot(x1,y1,'og',x2,y2,'--c');

And for a flourish, add some informative labels and a grid with

xlabel('Input');
ylabel('Output');
title('Noisy data = "o" and Fitted Curve = "--" ');
grid

and voila, we have quickly created the combination plot of our results shown
in Figure 3.9.

© 2003 by CRC Press LLC

3.3.2 Logarithmic Plots

Not all data lends itself to a linear scale representation. Sometimes, the
range of the data to be plotted is so great that it is difficult to see just what the
data is doing. MATLAB provides three forms of the plot function that let us
view data that is better represented with a logarithmic scale, namely semilogx,
semilogy, and loglog. Each is used just as the plot function, but use a
logarithmic scale (base 10), for either the x-axis, y-axis, or both axes
respectively.

As an example, consider the data generated by the following code.

x=-10:.1:10;
y=exp(x.^3);

The x-axis data is clearly linear but the data computed from it isn’t. If we use
our familiar plot function with

plot(x,y)

we will get the plot shown in Figure 3.10.

−3 −2 −1 0 1 2 3
−1

0

1

2

3

4

5

6

7

8

9

Input

O
ut

pu
t

Noisy data = "o" and Fitted Curve = "−−"

Figure 3.9 A combination plot.

© 2003 by CRC Press LLC

In this case our plot looks much like a straight line and we would be hard
pressed to read any values off of it. However, using semilogy reveals much
more about the nature of the data. Simply plot the data again using,

semilogy(x,y)

and you will get the plot shown in Figure 3.11.

−10 −8 −6 −4 −2 0 2 4 6 8 10
0

5

10

15
x 10

305

Figure 3.10 Using plot is ineffective when the data scale varies greatly.

−10 −8 −6 −4 −2 0 2 4 6 8 10

10
−300

10
−200

10
−100

10
0

10
100

10
200

10
300

Figure 3.11 Using semilogy reveals details about the data.

© 2003 by CRC Press LLC

If our x-axis data was better represented with a logarithmic scale, we would
use semilogx. If both need logarithmic scales, then loglog could be used.

3.4 Simple 2-D Plot Manipulation
So making a simple plot is easy enough with the plot command. In fact, you

can see how attractive MATLAB might be for making quick plots and easily
adding axis labels and titles. There’s lots more you can do and that is what we
are going to discuss next.

3.4.1 Generating Plots with Multiple Data Sets

As you just learned, you can plot multiple sets of data with a single plot
command. However, MATLAB does not restrict you to using a single call to
the plot command in order to plot multiple lines in a graph. A command
which you might find very useful is the hold command. The hold command
allows you to add additional lines to the current graph without erasing what
already exists in it. When hold is not used, the plot command will replace the
contents of the current graph. The hold command can be used in three
different ways:

hold on tells MATLAB that you want all subsequent lines and surfaces
to be added to the current graph.

hold off is used to turn off the hold command, setting MATLAB back
to the default mode of replacing the current graph with a
new one.

hold when used by itself will toggle the mode between the hold
on and hold off state.

Here is an example where we will add three lines to a single graph using
three plot statements to produce the graph shown in Figure 3.12.

x = -2:.1:2;
plot(x,sin(x),'-r');
hold on
plot(x,sin(x.^2),'--b');
plot(x,cos(x.^2),':g');
hold off

Both the hold on and hold off statements could have been replaced simply
with the command hold. In fact, the hold off is not necessary at all. We have
used it here to make sure that the graph returns to its default state. This way,
if you type in subsequent examples, you will obtain results identical to those
shown in the figures which are illustrated in this book. We also suggest using
the on and off arguments in programs so that the hold state is not ambiguous
to a person reading the M-file. If you are concerned about inadvertently
plotting on an existing graph, you would be, for instance, completely safe from
accidentally adding the solid red line, plot(x,sin(x),'-r'), to a previously existing
graph, by using the clear figure command clf .

© 2003 by CRC Press LLC

Notice that in this example we had to tell the plot command which color to
use with each of the lines or else each line would have been plotted in blue,
the default first color for MATLAB plots. This is because the plot command
starts with the default first color each time it is called. Although hold is on, that
fact is completely ignored by the plot command. The hold command simply
keeps the current plot while subsequent plot commands are issued.

In some instances you will have data sets that you want to display on the
same graph; however, the y-axis data values are not in the same range.
MATLAB provides a useful graphics function for just such an occasion. The
command plotyy, will help you plot these types of data sets on the same
graph. This is best explained with an example.

Let’s say you have created the following data sets:

x1 = 0:.1:20;
y1 = x1.*sin(x1);
x2 = 10:.2:25;
y2 = 50*x2;

If you plotted them with

plot(x1,y1,'-b',x2,y2,'--g');
title('y1 is the blue line, y2 is the green dashed
line');
ylabel('y');
xlabel('x');

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Figure 3.12 Multiple line plot using hold.

© 2003 by CRC Press LLC

As you can see in Figure 3.13 it is difficult to see the y1 values since
MATLAB’s auto-scaling is choosing the y-axis limits so as to display all the data
points.

Instead we could use plotyy to plot the data:

plotyy(x1,y1,x2,y2)

which would generate the plot shown in Figure 3.14 .

0 5 10 15 20 25
−200

0

200

400

600

800

1000

1200

1400
y1 is the blue line, y2 is the green dashed line

y

x

Figure 3.13 Using plot to graph data sets with a large range of y-axis
values is not always acceptable.

© 2003 by CRC Press LLC

Observe that the y1 data took the first default color and that the y2 data
took the second. Also notice how MATLAB colored the y axis appropriately.
Unfortunately, the plotyy command does not allow us to change the color or
type of line used in plotting the same way we did with the plot command.
Also, using ylabel would only affect the left y-axis and we would not be able
to label the right y-axis. However, by making use of MATLAB’s handle graphics
(see Chapter 7) we can do exactly what we intend, that is plotting the two sets
of data with complete control over the color, line style, and even labeling each
axis appropriately.

The following code will do just that:

[axeshandles,line1handle,line2handle]=plotyy(x1,y1,x2,y2);
set(line1handle,'linestyle','-','color','blue');
set(line2handle,'linestyle','--','color','green');
title('y1 is the blue line,y2 is the green dashed line');
axes(axeshandles(1));
ylabel('y1=x.*sin(x)');
axes(axeshandles(2));
ylabel('y2=50*x');
xlabel('x');

The handles (which you will learn about in Chapter 7) are used here to give
us control over setting the linestyle and color attributes so that we can readily
distinguish between the data sets. The plotyy command returns the handles to
the graph’s two axes in axeshandles, and the handles to objects from each plot
in line1handle and line2handle. The first element in axeshandles,
axeshandles(1), is the left axes and the second, axeshandles(2) is the right axis.
The above code sets the appropriate properties and will give the plot shown in
Figure 3.15.

0 5 10 15 20 25
−20

−15

−10

−5

0

5

10

15

20

0 5 10 15 20 25
500

600

700

800

900

1000

1100

1200

1300

Figure 3.14 Using the plotyy command.

� � � � 	 �

© 2003 by CRC Press LLC

Notice how nice our graph looks with each axis labeled appropriately and
with our choice of color and line styles! Don’t get overly worried about the
use of handles and object properties here. You will learn all about that in
Chapter 7. Just keep in mind that to get the greatest control over plots in
MATLAB you will need to know about Handle Graphics.

3.4.2 Using Axis to Customize Plots

You probably noticed that MATLAB automatically scales the x-axis and y-
axis to encompass the data set or sets that you are plotting. In addition, the
axes are automatically labeled and in a standard Cartesian coordinate system
with the origin in the lower-left corner. Often you will want to display a
different region of the graph than what MATLAB’s default settings have
provided. The axis command can be used to manipulate the attributes of a
graph’s axes. Table 3.4.1 summarizes the uses of this function with respect to
2-dimensional plots.

0 5 10 15 20 25
−20

−15

−10

−5

0

5

10

15

20
y1 is the blue line, y2 is the green dashed line

y1
=

x.
*s

in
(x

)

0 5 10 15 20 25
500

600

700

800

900

1000

1100

1200

1300

y2
=

50
*x

x

Figure 3.15 Using plotyy to show 2 data sets.

© 2003 by CRC Press LLC

Table 3.4.1 The axis function summary for 2-D plots.

Function Action
axis([xmin xmax ymin ymax]) set the minimum and maximum x- and y-axis

limits. xmax and/or ymax can be set to Inf to
force MATLAB to autoscale the upper x- and
y-axis limits. xmin and/or ymin can be set to -
Inf to force MATLAB to scale the lower x-
and y-axis limits.

axis auto returns the axis scaling to its default,
automatic mode where, for each dimension,
'nice' limits are chosen based on the extents
of all lines in the graph.

axis manual freezes the scaling at the current limits, so
that if hold is turned on, subsequent plots
will use the same limits.

axis normal puts the axes into the default (automatic)
state and restores the current axis box to full
size, removing any restrictions on the scaling
of the units. This undoes the effects of axis
square, and axis equal.

axis square forces the axes to have square dimensions.

axis equal forces the unit spacing, i.e., the tic marks, on
the x- and y- axis to be equal.

axis ij puts origin of graph in upper-left corner. The
x-axis scale numbering increases from left to
right. The y-axis scale numbering increases
from top to bottom.

axis xy forces the axes to use a standard Cartesian
coordinate system with the origin of the
graph in the lower-left corner. The x-axis
scale numbering increases from left to right.
The y-axis scale numbering increases from
bottom to top.

axis tight forces the x- and y-axes limits to the
minimum and maximum data values, i.e., the
range of the data.

axis off turns off, i.e., hides, the axes labels, tic marks,
and box by making them invisible.

axis on turns on, i.e., makes visible, the axes labels,
tic marks, and box.

� � � � � �

© 2003 by CRC Press LLC

We haven’t said anything about this before, but MATLAB commands also
have a functional form. This is called command-function duality. The axis
command is as good a command as any to explain this. For instance, you can
use the command form by typing

axis square

at the command prompt, or you could use the function form by typing

axis(‘square’)

MATLAB treats each method the same. The utility of the command form is that
you can compound a couple of these axis manipulations at the same time,
such as with

axis equal tight

which will force the unit spacing to be the same on the two axes and force the
limits to the ranges provided in the plotted data sets.

Depending on the data used to create your graph, you may decide that
only a specific portion of the graph is important or has relevance. You can
always determine which elements are of interest and then re-plot only those
elements of the data. This is inconvenient, time-consuming, and may still not
give you exactly what you want. The axis command provides the easiest and
most straightforward way to manually define the x- and y-axis limits.
For instance, if you plot the following data

x = -10:.1:10;

with

y = exp(x).*sin(x).*(x.^3);
plot(x,y)
xlabel('x');
ylabel('y');

you will obtain the results illustrated in Figure 3.16.

© 2003 by CRC Press LLC

This graph shows all the data, but the graph seems to indicate that the
expression for y is flat for x between negative 10 and 3. To see what is going
on for these values of x, we can “zoom” in on this region by using the axis
command. To use this function, pass a vector containing the minimum and
maximum values of the x- and y-axes that you want shown (e.g., axis([xmin
xmax ymin ymax])). Let's say we want the x-axis to run only from negative ten
to three and the y-axis to run from negative six to seven. To achieve this, type

axis([-10 3 -6 7])

which will give the results shown in Figure 3.17.

−10 −8 −6 −4 −2 0 2 4 6 8 10
−12

−10

−8

−6

−4

−2

0

2

4
x 10

6

x

y

Figure 3.16 Automatic scaling can be misleading.

© 2003 by CRC Press LLC

Simply typing

axis auto

at the command prompt will plot all the data again in the graph.

When you write MATLAB M-files that create graphics there will be times
when you might need to know the current graph’s axis limits. This is useful for
things such as determining how to appropriately redefine them based on their
value, or perhaps you are interested in them for some other purpose. To get
and put the current axis limits into a variable, use

variable_name = axis;

When the current graph is 2-dimensional, variable_name will be a row vector
with 4 elements ([xmin xmax ymin ymax]). The following example illustrates
the case in which you want use the minimum limits of the x- and y-axes that
MATLAB determines, but want to customize the maximum values for both
axes.

x = 0:0.1:(5*pi);
plot(x,7.5*sin(x));
axis_limits = axis
desired_max_x = 10;
desired_max_y = 15;
axis([axis_limits(1) desired_max_x ...
 axis_limits(3) desired_max_y]);
new_limits = axis

The axis limits before redefining them are

−10 −8 −6 −4 −2 0 2
−6

−4

−2

0

2

4

6

x

y

Figure 3.17 Manually defining the axis reveals details of the data.

© 2003 by CRC Press LLC

axis_limits = [0 16 -8 8]

and after redefining them, the limits are

new_limits = [0 10 -8 15]

Earlier we showed you how by using hold on you can create graphs with
multiple lines by separately issuing the plot command for each line. If the
data for a particular line exceeds the boundaries of the x- and y-axis limits,
MATLAB redefines the axis scales to include the new data. In some instances
this may not be desirable. To keep the automatic scaling from occurring, you
just need to define the axes limits using axis([xmin xmax ymin ymax]) or
axis(axis). By setting the axis limits to something other than 'auto,' the axis
mode is set into a manual mode instead of automatic. Therefore, any
subsequent plots that are added to the current one will not change the axes
scales. The axis(axis) method of defining the limits freezes the current axis
scaling limits because you are calling the axis function twice. The call that is
performed within the parentheses returns a vector of the current axes limits
that in turn is passed to the axis function. The axes limits are not changed, but
since you have manually defined the axis limits, they will no longer change to
accommodate the minimum and maximum values of subsequent data plots.

The axis command also provides a quick way to change the aspect ratio of
the axes. By default, the axes will size themselves to fill up most of the Figure
Window, independent of how you have sized the Figure Window. Depending
on the data you have plotted, you may want the axes to be square in their
physical dimensions. To illustrate this, create a Figure Window by typing

figure

Then resize this Figure Window so that its dimensions are rectangular. Now
let’s create a circle with a radius of two units, using

x = 2*cos([0:10:360]*(pi/180));
y = 2*sin([0:10:360]*(pi/180));
plot(x,y)
axis([-5 5 -5 5])

At this point the circle probably has a slight elliptical shape such as shown in
Figure 3.18.

© 2003 by CRC Press LLC

Now we can force the axes size to be that of a square instead of a rectangle
with the command

axis(‘square’)

 which will result in the plot of Figure 3.19.

−5 −4 −3 −2 −1 0 1 2 3 4 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

Figure 3.18 Circular data appears elliptical without customizing the axes
with the axis command.

© 2003 by CRC Press LLC

Now this looks more like a circle! But before we can be confident in our use
of the axis(‘square’) command, let’s take our understanding a little further by
looking at the plot of an ellipse.

Keep in mind that using axis('square') does not necessarily keep the unit
spacing on the x-axis the same size as the unit spacing on the y-axis, it merely
forces the size of the axes to be a square instead of the default axes size,
which tries to make the most of the Figure Window real estate. To illustrate,
create an ellipse by typing

x = 2*cos([0:10:360]*(pi/180));
y = 4*sin([0:10:360]*(pi/180));
plot(x,y)
axis('square')

which will produce the plot shown in Figure 3.20.

−5 −4 −3 −2 −1 0 1 2 3 4 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

Figure 3.19 Using axis(‘square’).

© 2003 by CRC Press LLC

Now you can clearly see that we have an ellipse that looks like a circle. Such a
representation could lead to problems that are merely annoying or potentially
devastating.

To insure that you have the correct aspect ratio, use axis('equal'). Typing

axis('equal')

after the axis('square') command of the previous example will produce the
graph shown in Figure 3.21.

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−4

−3

−2

−1

0

1

2

3

4

Figure 3.20 Elliptical data looks circular with axis('square').

© 2003 by CRC Press LLC

You can also force the range of the axis limits to adjust to the minimum and
maximum data values of the ellipse by using axis(‘tight’). If you do, you will get
the plot shown in Figure 3.22.

Recall that the default Cartesian axes has its origin in the lower-left corner of
the plot. The x-axis lies horizontally along the bottom of the figure with the

−5 −4 −3 −2 −1 0 1 2 3 4 5
−4

−3

−2

−1

0

1

2

3

4

Figure 3.21 Using axis(‘equal’) to graph the ellipse.

−2 −1 0 1 2
−4

−3

−2

−1

0

1

2

3

4

Figure 3.22 Using axis('tight') to adjust the axes to the ellipse data.

© 2003 by CRC Press LLC

axis scale values increasing from left to right. The y-axis lies vertically along the
left side of the Figure Window with the axis scale values increasing from
bottom to top. You can tell MATLAB to locate the origin of the axes in the
upper-left corner with the y-axis scale values increasing from top to bottom by
using the command axis('ij'). To revert back to the default Cartesian axes use
axis('xy'). In Chapter 7 you will learn how to reverse the direction of the x-axis
numbering using the axes object properties.

If you think that your data is not correctly proportioned, use axis(‘equal’) to
make sure that the scaling of the axis is indeed equal. Also, be aware that the
axis(‘auto’) command only assures that the scaling can accommodate all the
data in the graph; it will not necessarily undo the ‘square’ and ‘equal’ settings.
To be sure you are back in the default mode, use axis(‘normal’).

One last feature of the axis function that we will mention here is that you
can make the axes and all labels associated with the axes invisible by typing
axis('off'). In this mode, the graphics that were plotted in the axes will remain
visible. This is useful if all you need is the data. To see the axes and labels
again simply type axis('on').

3.4.3 Creating Supporting Text and Legends

In the last section of this chapter we will explore some of the new
interactive ways MATLAB lets us edit our plots. You will see just how quick
and easy it is to edit plots in the plot editing mode. Although convenient for
quick edits, it is still necessary to understand how to add text to your plots
using the specific text commands. You have already seen how to add text to
the x-axis, y-axis, and at the top for a title using xlabel, ylabel, and title.
Although these are sure to be the most common commands you will use
when creating plots, MATLAB provides you with additional means for adding
supporting text in any arbitrary position to your graph using the text
command. We will also show you how you can place text with your mouse
using gtext. Finally you will learn how the legend command can quickly add a
legend to your multi-line plots.

Before we begin with the built-in functions of MATLAB, we will present a
quick diversion to a handy tool called sidetext. The sidetext function provides
a simple means to placing text at the right side of the axes with its orientation
identical to that created with ylabel. The sidetext function uses handle
graphics to manipulate the position and orientation of the string you provide.
Once you have downloaded sidetext and placed it in your working directory,
try the following example:

t = 0:0.02:2; phi_0 = 45*pi/180;
y = sin(2*pi*t + phi_0);
plot(t,y);
grid on;
xlabel('t');
ylabel('y');
title('Plot of Sin(2*pi*t + phi_0)');
sidetext('phi_0 = 45 degrees');

which produces the graph shown in Figure 3.23.

� � � � 	

© 2003 by CRC Press LLC

Now change the scale of the axes with

axis([0 3 –2 2])

and the graph will be that shown in Figure 3.24. The important point to note
here is that changing the scale of the axes will not affect the position of the
text created with sidetext since it positions the text relative to the axes.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

t

y

Plot of Sin(2*pi*t + phi
0
)

ph
i 0 =

 4
5

de
gr

ee
s

Figure 3.23 SIDETEXT places a string on the right side of the axis.

© 2003 by CRC Press LLC

You can place text interactively with the mouse by passing a string to the
function gtext. After this command is issued, the mouse pointer will change
from the standard arrow to a crosshair when the pointer is in the Figure
Window. Position the crosshairs over the location in the figure where you
wish to place the text and press either the mouse button or a key on your
keyboard. The text string will appear left justified and vertically on top of the
data point that was selected. For example, create a graph and type

gtext('This text was placed with gtext')

Now, scale the axes to something other than what is currently shown in your
figure. Notice that this text string changes its location relative to the axes
border, but not relative to the data point that was selected. This function is
useful when you have completed a graph and want to add a few additional
lines of text. Also as you will learn in the last section of this chapter, the
current version of MATLAB lets you add text in the plot editing mode.
However, if you are creating multiple plots, a fair number of text strings, or just
want to automate this process in your MATLAB program, most likely you’ll find
that the text function is better suited for these types of tasks.

The text function is both a high- and low-level graphics function that can be
used to add character strings to a graph. For now, we'll look at it as a high-
level text placement command. After you learn about Handle Graphics in
Chapter 7 we will explore the techniques and ways in which these graphics
objects can be manipulated.

 The most elementary way that text can be added to the current graph is
with text(x,y,'text') where the data point (x,y) corresponds to a location in the
current axes. As an example, let’s have MATLAB draw a line plot and label the
maximum data point as such.

0 0.5 1 1.5 2 2.5 3
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

t

y

Plot of Sin(2*pi*t + phi
0
)

ph
i 0 =

 4
5

de
gr

ee
s

Figure 3.24 SIDETEXT is unaffected by axes scale.

© 2003 by CRC Press LLC

% Create and plot the x and y data
x = -2:0.1:2;
y = 3 - (x+1).^2;
plot(x,y);
xlabel('x'); ylabel('y'); title('y = 3 - (x+1).^2');
grid on
axis([-2 2 -5 5]);
% Determine the maximum y data value
[max_y_value,max_y_index] = max(y);
corresponding_x_value = x(max_y_index);
% Put a red circle symbol at the maximum data point
hold on
plot(corresponding_x_value,max_y_value,'or');
hold off
% Create a string vector
our_string = sprintf('%g is the maximum data point',...
 max_y_value);
% Put the string into the graph at the max y value
text(corresponding_x_value,max_y_value+0.5,our_string);

This script will create the plot and text shown in Figure 3.25. Here we have
added the 0.5 to the max_y_value variable so that the text will not overlap the
line. By default, the text string will be placed left justified and vertically
centered on the (x,y) data point that is provided. The addition of the 0.5 can
be avoided by passing properties to the text function to keep the text vertically
above the data point. To learn about all the text object’s properties and how
they can be used to manipulate the text’s attributes, see Chapter 7.

The text function can also be used in a manner very similar to the way plot is
used. For instance, if you want to create a scatter plot of the percent change

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−5

−4

−3

−2

−1

0

1

2

3

4

5

x

y

y = 3 − (x+1).2

3 is the maximum data point

Figure 3.25 : Using the text function to add text to your plot.

© 2003 by CRC Press LLC

in the consumer price index versus unemployment between 1965 and 1980,
you can type

% Source of data: Economic Report of the President, 1986.
cpi_data = [1.7 2.9 2.9 4.2 5.4 5.9 4.3 3.3 6.2 ...
 11.0 9.1 5.8 6.5 7.7 11.3 13.5];
perc_unemploy_data = [4.5 3.8 3.8 3.6 3.5 4.9 5.9 ...
 5.6 4.9 5.6 8.5 7.7 7.0 6.0 5.8 7.0];
year_strings = ['1965';'1966';'1967';'1968';'1969';...
 '1970';'1971';'1972';'1973';'1974';...
 '1975';'1976';'1977';'1978';'1979';'1980'];
plot(perc_unemploy_data,cpi_data,'o');
% In this next text command two text properties were made
% use of so that the plot would look better. You will
%learn how to manipulate these in Chapter 7.
text(perc_unemploy_data,cpi_data,year_strings,...
 'fontsize',10,...
 'verticalalignment','bottom');
axis([0 10 0 14]);
xlabel('Percent Unemployment');
ylabel('Percent change in CPI');

will create the plot shown in Figure 3.26.

You might have been wondering how to add a block of text, i.e., multiple
lines of text to labels and titles. Perhaps it occurred to you that you could
create multiple lines by repeated use of the text command, but then you
would be faced with a kind of trial and error approach in order to get the
location of your text to look right. Fortunately MATLAB provides a way to

0 1 2 3 4 5 6 7 8 9 10
0

2

4

6

8

10

12

14

1965

19661967

1968

1969
1970

1971

1972

1973

1974

1975

1976

1977

1978

1979

1980

Percent Unemployment

P
er

ce
nt

 c
ha

ng
e

in
 C

P
I

Figure 3.26 Scatter Plot with text labels.

© 2003 by CRC Press LLC

accomplish this without resorting to such manual methods. All of the built-in
MATLAB text functions will accept a cell array of strings where each string
contains the text for each line. This code for example,

string_array(1)={'This will be the first line.'};
string_array(2)={'This will be the second line.'};
string_array(3)={'And so on...'};
gtext(string_array);

will place the three lines of text wherever you position the mouse pointer in
the figure. If you know exactly where you want to place the block of text, you
could use

text(0.5,0.5,string_array);

The final text placement command we will discuss is this section is the
legend command. This function creates a legend of the line types that you
have used in the current graph and associates these line types with the text
strings that you pass to it. The order in which the lines are created is the order
in which they are associated with the legend strings. For example,

x = 0:.1:(2*pi);
sx=sin(x);
cx=cos(x);
plot(x,sx,'-r',x,cx,'--c');
axis([0 2*pi -1.5 1.5])
legend('Sin(x)','Cos(x)');

will produce the result shown in Figure 3.27.

0 1 2 3 4 5 6
−1.5

−1

−0.5

0

0.5

1

1.5
Sin(x)
Cos(x)

Figure 3.27 Creating a figure legend.

© 2003 by CRC Press LLC

If you are not sure in which order the lines were created or you want only a
few of the lines put into a legend you can use this form of the legend function:

legend(linetype1, string1,linetype2,string2,...)

This is probably the safest way to insure that when you create the legend the
text string is correctly associated with the line you wanted. Implementing this
for the previous example, we see that the legend command is replaced with

legend('-r','Sin(x)','--c','Cos(x)');

If you do not like the position that was automatically chosen by the legend
function, you can use the mouse to click and drag the legend to a location of
your choice.

3.4.4 Text Placement

There are several ways to place text in a position relative to the figure
instead of the axes. For instance, you may wish to have a calendar date
always located in the lower right-hand corner of the figure, even when you are
displaying multiple axes, or subplots (see the following section). One method
you can use is to create invisible axes that cover the entire figure space. Then
place text within the invisible axes where location (0,0) is the lower left-hand
corner and (1,1) is the upper right-hand corner of the figure. If you use this
technique we recommend that, until you learn more about graphic objects
and their handles, you create the invisible axes and the specially placed text
after the rest of your plot looks the way you want it. The following code will
produce the plot shown in Figure 3.28.

plot(0:.1:10,cos(0:.1:10))
date_string = date;
axes('position',[0 0 1 1],'visible','off');
text(1,0,date_string,'horizontalalignment','right',...
 'verticalalignment','bottom');
text(0,0,'Lower Left String',...
 'horizontalalignment','left',...
 'verticalalignment','bottom');
text(1,1,'Top Right String',...
 'horizontalalignment','right',...
 'verticalalignment','top');
text(0,1,'Top Left
String','horizontalalignment','left',...
 'verticalalignment','top');

© 2003 by CRC Press LLC

The problem alluded to above is that if you were to subsequently add another
plot with

hold on
plot(0:.1:10,sin(0:.1:10))

you end up plotting to the invisible axes as shown in Figure 3.29. This
happens since plot commands always apply to the most recently created axes,
unless you take advantage of handle graphics (and that’s not until Chapter 7).

0 1 2 3 4 5 6 7 8 9 10
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

06−Aug−2002ower Left String

Top Right Stringop Left String

Figure 3.28 Placing text using invisible axes.

© 2003 by CRC Press LLC

This plot looks bad because the text that we placed earlier moved to new
locations when the invisible axes limits automatically scaled to accommodate
the limits of the new data.

A way we can overcome the restrictions of this method is to normalize the
position of the current axes to the figure and then place text in normalized
units. With this approach it does not matter when you generate the text as
long as there is at least one plot on the screen. This means that after you have
created a plot with some specially placed text, you can then, for example, add
more lines to the plot without affecting the text positions or without worrying
about plotting to an invisible axis. To make this process easier we can create a
new function, norm2fig, which will return the normalized text positions.

function normtxtpos = norm2fig(normfigpos)
% Pass this function normalized positions in the figure
% and it will return the positions relative to the
current
% axes.
%
% passing a [0 0] would refer to lower left corner
% passing a [0 1] would refer to top left corner
% passing a [1 0] would refer to lower right corner
% passing a [1 1] would refer to top right corner

apos = get(gca,'pos');
normtxtpos = [(normfigpos(1,1)-apos(1,1))/apos(1,3) ,...
 (normfigpos(1,2)-apos(1,2))/apos(1,4)];

This function will let us quickly generate the text positions we want for the
previous example to get the results shown in Figure 3.30.

0 1 2 3 4 5 6 7 8 9 10
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

6−Aug−2002ower Left String

 Right Stringop Left String

Figure 3.29 Problems arise when adding to a plot after using the
invisible axes method.

� � � � 	

© 2003 by CRC Press LLC

To duplicate this result, first plot the sine, be sure that hold is on, then do the
following:

plot(0:.1:10,cos(0:.1:10))
date_string = date;
tpos = norm2fig([1 0]);
text(tpos(1,1),tpos(1,2),date_string,...
 'units','normalized',...
 'horizontalalignment','right',...
 'verticalalignment','bottom');
tpos = norm2fig([0 0]);
text(tpos(1,1),tpos(1,2),'Lower Left String',...
 'units','normalized',...
 'horizontalalignment','left',...
 'verticalalignment','bottom');
tpos = norm2fig([1 1]);
text(tpos(1,1),tpos(1,2),'Top Right String',...
 'units','normalized',...
 'horizontalalignment','right',...
 'verticalalignment','top');
tpos = norm2fig([0 1]);
text(tpos(1,1),tpos(1,2),'Top Left String', ...
 'units','normalized',...
 'horizontalalignment','left',...
 'verticalalignment','top');

Short of the methods of Chapter 7, this approach works well.

3.4.5 Special Text Character Formats

You’ve seen that adding a string of text is relatively easy. You’ve even seen
that you can have text in a title or on an axis label with more than one line by

0 1 2 3 4 5 6 7 8 9 10
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

06−Aug−2002ower Left String

Top Right Stringop Left String

Figure 3.30 Using the normalized position method of text placement.

© 2003 by CRC Press LLC

storing your strings in cell arrays. But in all these cases the text we provided
were those characters available directly from our keyboard. What about
special characters like the Greek alphabet, superscripts, subscripts, arrows, and
other mathematical sysmbols?

Fortunately MATLAB has the capability of modifying text to have different
styles. It does this by providing support for a subset of the TeX characters. TeX
is a standard notation for special character sets. You can recognize it right
away as it will have a backslash “\” prefixing a character name. For example,
the Greek character (big omega) is specified by “\Omega” in TeX. Table
3.4.2 lists all the TeX characters available in MATLAB.

Table 3.4.2 TeX Characters Available in MATLAB

TeX
Characters Result

TeX
Characters Result

TeX
Characters Result

\alpha \upsilon \sim

\beta \phi \leq

\gamma \chi \infty

\delta \psi \clubsuit

\epsilon \omega \diamondsuit

\zeta \Gamma \heartsuit

\eta \Delta \spadesuit

\theta \Theta \leftrightarrow

\vartheta \Lambda \leftarrow

\iota \Xi \uparrow

\kappa \Pi \rightarrow

\lambda \Sigma \downarrow

\mu \Upsilon \circ

\nu \Phi \pm

\xi \Psi \geq

\pi \Omega \propto

\rho \forall \partial

\sigma \exists \bullet

\varsigma \ni \div

\tau \cong \neq

\equiv \approx \aleph

\Im \Re \wp

\otimes \oplus \oslash

\cap \cup \supseteq

continued on next page

© 2003 by CRC Press LLC

TeX
Characters Result

TeX
Characters Result

TeX
Characters Result

\supset \subseteq \subset

\int \in \o

\rfloor \lceil \nabla

\lfloor \cdot \dots

\perp \neg \prime

\wedge \times \0

\rceil \surd \mid

\vee \varpi \copyright

\langle \rangle

In addition to recognizing the special characters already listed, the MATLAB
TeX interpreter also recognizes the following stream modifiers that control the
font used.

Table 3.4.3 TeX Stream Modifiers

TeX Stream Modifier Description

\bf Bold font.

\it Italics font.

\sl Oblique font (rarely used).

\rm Normal font.

^ Make part of string superscript.

_ Make part of string subscript.

\fontname{fontname} Specify the font family to use.

\fontsize{fontsize} Specify the font size in FontUnits.

The first four modifiers are mutually exclusive so you can’t use them
together. However, you can use \fontname in combination with one of the
other modifiers. Also, stream modifiers remain in effect until the end of the
string or only within the context defined by braces { }. The following code
illustrates using the TeX interpreter and produces the plot shown in Figure
3.31.

plot(0:.1:2*pi, sin(0:.1:2*pi))
xlabel('\tau = 0 to 2\pi','FontSize',16)
ylabel('sin(\tau)','FontSize',16)
title('\it{Value of the Sine from 0 to 2
\pi}','FontSize',16)

© 2003 by CRC Press LLC

What about if you want to print a “\”, “{“, “}”, “^”, or “_”? Since these have
meaning in the TeX interpreter you will need to tell the interpreter to ignore
the command. This is achieved by using a backslash “\” right before them.

3.4.6 Using Subplot to Create Multiple Axes

You’ve seen that you can have multiple plots on an axis, either by plotting
multiples or by using the hold command and issuing another plot command.
However, you are not limited to having one axes object in a Figure Window.
The easiest way to create multiple axes in a Figure Window is to make use of
the command subplot. This function breaks up the Figure Window's space
into subregions or panes and is very useful for showing related information
that is better viewed in individual plots. Calling the command with three
arguments creates these subregions; the first two specify how many regions
there will be in terms of rows and columns, and the third argument specifies
which region you wish to plot in. For example, subplot(m,n,p) subdivides the
Figure Window into m-by-n regions and creates axes in the pth region, where
regions are numbered from left to right and top to bottom within the figure.
For example, the following will break up the Figure Window into three distinct
regions and create an axes object in the second one.

subplot(3,1,2)

After you have created an axes object in one of the regions, you can then
use any plotting command you want. The axes created with subplot can be
treated in the same way as the ones that are created when no subregions are
specified. In fact, you can create an axes object which encompasses the

0 1 2 3 4 5 6 7
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

τ = 0 to 2π

si
n(

τ)

Value of the Sine from 0 to 2 π

Figure 3.31 Using TeX for special characters.

© 2003 by CRC Press LLC

entire Figure Window's space by issuing subplot(1,1,1) and get the same axes
that you would have gotten by using plot commands without the subplot
function.

If an axes already exists in the subregion identified with the subplot
command, the existing axes becomes the current axes to which all subsequent
graphics commands are issued. You can flip back and forth between these
regions by re-issuing the subplot command to set one of the other axes or
regions as the current axes.

As an example, let’s break up the figure space into four panes configured in
a 2-by-2 fashion. The following code will create a figure space with four
subregions configured as a 2-by-2. We will plot three different shapes
separately in the first three regions and then have the fourth subregion contain
all three shapes superimposed on top of one another.

% CREATE THE X and Y SHAPE DATA.
x_square = [-3 3 3 -3 -3];
y_square = [-3 -3 3 3 -3];
x_circle = 3*cos([0:10:360]*pi/180);
y_circle = 3*sin([0:10:360]*pi/180);
x_triangle = 3*cos([90 210 330 90]*pi/180);
y_triangle = 3*sin([90 210 330 90]*pi/180);

%PLOT THE CIRCLE IN THE UPPER LEFT SUBREGION.
subplot(2,2,1)
plot(x_circle,y_circle,'--g'); axis([-4 4 -4 4]);
axis('equal');
title('Circle');

%PLOT THE SQUARE IN THE UPPER RIGHT SUBREGION.
subplot(2,2,2)
plot(x_square,y_square,'-r'); axis([-4 4 -4 4]);
axis('equal');
title('Square');

%PLOT THE TRIANGLE IN THE LOWER LEFT SUBREGION.
subplot(2,2,3)
plot(x_triangle,y_triangle,':b'); axis([-4 4 -4 4]);
axis('equal');
title('Triangle');

%PLOT THE COMBINATION PLOT IN THE LOWER RIGHT SUBREGION.
subplot(2,2,4)
plot(x_square,y_square,'-r');
hold on;
plot(x_circle,y_circle,'--g');
plot(x_triangle,y_triangle,':b');
axis([-4 4 -4 4]); axis('equal');
title('Combination Plot');

Figure 3.32 shows the results of this script.

© 2003 by CRC Press LLC

Keep in mind, that if at any time you create a subplot that breaks up the
figure into a new M-by-N configuration, the set of existing axes will be deleted!

A useful (and undocumented) manipulation of the subplot can be used to
place a different number of subplots on a row. For instance, instead of having
four subplots in a two-by-two matrix, we could have two subplots on the top
row and one subplot on the bottom row that spans the figure. The following
code will create the plot shown in Figure 3.33.

subplot(2,2,1),ezplot('sin(x)')
subplot(2,2,2),ezplot('cos(x)')
subplot(2,1,2),ezplot('sin(x)^2/x^2')

The first two uses of subplot appear familiar enough; however, the final call
specifies the large axis shown at the bottom of the figure. To create a similar
figure with the single plot at the top use:

subplot(2,2,3),ezplot('sin(x)')
subplot(2,2,4),ezplot('cos(x)')
subplot(2,1,1),ezplot('sin(x)^2/x^2')

−5 0 5
−4

−2

0

2

4
Circle

−5 0 5
−4

−2

0

2

4
Square

−5 0 5
−4

−2

0

2

4
Triangle

−5 0 5
−4

−2

0

2

4
Combination Plot

Figure 3.32 Multiple axes with subplot.

�

 � �
 �
 � �

� � � � � �

© 2003 by CRC Press LLC

To create a subplot with one large plot axis on the left side and two small
plot axes in a column on the right, use:

subplot(2,2,2),ezplot('sin(x)')
subplot(2,2,4),ezplot('cos(x)')
subplot(1,2,1),ezplot('sin(x)^2/x^2')

 After you have created some subplots, you may have noticed that if you
use the title command a title is created on top of the current axes. In some
cases you may wish to have a title that is centered at the top of the Figure
Window instead. Certainly you could use any of the text placement functions
that were discussed previously such as gtext and text. However, if you do not
want to be prompted or waited upon to place the text as with gtext, or you
don’t want to determine the desired position’s relative location to the current
axes as which would need to be done with text, you can use a function we
include here called toptitle. This function will perform the calculations
required to place a title string at the top of the figure regardless of the region
to which you are currently plotting. The format for using toptitle is simply
toptitle(string_vector) where string_vector is a character string containing the
set of characters that you wish to have appear at the top of the figure. Don’t
worry about the details of the code for now, but after you have read Chapter
7 you will be able to understand it readily.

−5 0 5

−1

−0.5

0

0.5

1

x

sin(x)

−5 0 5

−1

−0.5

0

0.5

1

x

cos(x)

−6 −4 −2 0 2 4 6

0

0.2

0.4

0.6

0.8

1

x

sin(x)2/x2

Figure 3.33 Odd axis made with subplot.

© 2003 by CRC Press LLC

function toptitle(string)
% TOPTITLE
%
% Places a title over a set of subplots.
% Best results are obtained when all subplots are
% created and then toptitle is executed.
%
% Usage:
% h = toptitle('title string')
%

% Patrick Marchand (prmarchand@nvidia.com)
% Thomas Holland (tholland@infinityassociates.com)

titlepos = [.5 1]; % normalized units.

ax = gca;
set(ax,'units','normalized');
axpos = get(ax,'position');

offset = (titlepos - axpos(1:2))./axpos(3:4);

text(offset(1),offset(2),string,'units','normalized',...

'horizontalalignment','center','verticalalignment','middl
e');

% Make the figure big enough so that when printed the
% toptitle is not cut off nor overlaps a subplot title.
h = findobj(gcf,'type','axes');
set(h,'units','points');
set(gcf,'units','points')
figpos = get(gcf,'position');
set(gcf,'position',figpos + [0 0 0 15])
set(gcf,'units','pixels');
set(h,'units','normalized');

3.5 Specialized 2-D Plotting
MATLAB provides several high-level plotting routines to facilitate the

creation of some of the more common types of graphs and certain special or
application specific graphs. Some of these routines are similar to those
typically found in plotting packages or spreadsheet applications. This section
will make you aware of the types of specialized plots that are available and
how they are used. We will start with the common types of graphs such as
the bar graph and histogram type plots. Then we will look at plots that help
show statistical distributions of data or discrete data and how to generate plots
in other coordinate systems. Finally this section will touch on plotting complex
data and how to generate a polygon of your own creation.

3.5.1 Bar Graphs

A bar graph can quickly be created with the bar command. The bar
function can be used to plot bars with heights specified by the variable

��
� � � � � �

© 2003 by CRC Press LLC

argument, bar_height_vector, versus the index number of that variable by
using

bar(bar_height_vector);

If instead of the index to the variable, you want to plot bars versus another
variable, you can use bar(x,y), where x and y are equal length vectors, and
vector x contains values which are both in ascending order and evenly spaced.
If x is not evenly spaced or in ascending order, the routine will do the best it
can do, but the results will most likely not be what you wanted.

If, for example, you want to create a bar graph of the percentage of widgets
that passed quality tests versus the assembly line number, you can type

assembly_line_number = [1 2 3 4 5 6 7];
percentage_passed = [85 93 87 91 95 71 98];
bar(assembly_line_number,percentage_passed);
xlabel('Assembly Line Number')
ylabel('Percentage Passed')

which will produce the plot shown in Figure 3.34.

When you plot bar graphs, you may wish to have labels other than the
numeric ones that automatically appear on your x-axis. In these cases, the
simplest way to plot your bar graph is with the bar(bar_height_vector) format.
Then see the section in Chapter 7 about axes properties to find out how you
can manipulate the axis labels.

1 2 3 4 5 6 7
0

10

20

30

40

50

60

70

80

90

100

Assembly Line Number

P
e
r
c
e
n
t
a
g
e

P
a
s
s
e
d

Figure 3.34 Using the bar function.

© 2003 by CRC Press LLC

You also have the option of passing a string argument to define the color
and line style of the bars with

bar(x,line_style_string);

or

bar(x,y,line_style_string);

The string, line_style_string, takes on the same format as the string used in
the plot command. The bar function can also be used to create the data
which defines the lines making up the bars. This is done by requesting that the
bar function return two output variables with either

[x_line_data,y_line_data] = bar(x);

or

[x_line_data,y_line_data] = bar(x,y);

In this mode of operation, the bar function does not draw anything.
However, these output variables, x_line_data and y_line_data, can be used
with the plot command (e.g., plot(x_line_data,y_line_data)) to generate the bar
graph.

The bar plotting function has the ability of clustering multiple data sets,
stacking and generating horizontal bar plots. When you pass a matrix to the
bar function, a bar will be generated for each element of the matrix. The bars
associated with the elements in a specific row will be clustered together, while
at the same time maintaining color properties for the bars generated from the
matrix elements in a specific column. For example, if we have a 2-by-4 matrix,
there will be 4 groups of 2 bars clustered around each x-axis data point
associated with a row element in the matrix as shown in Figure 3.35.

x = [1 3 4 6];
Y = [3 1 ; 4 2 ; 2 3 ; 2.5 2];
bar(x,Y);
grid on;

If we did not provide the x-axis data points such as by using bar(Y),
MATLAB would have used the row number and the four clusters would have
been evenly spaced.

© 2003 by CRC Press LLC

In the next example, several variations of the same data set (the x and Y
used in the previous example) are generated in the four subplots with bar and
barh. (The barh function is essentially identical to bar except that the bars are
plotted horizontally.) The stacked bar plots are created by specifying the 'stack'
bar style ('group' is the default). A bar’s width and the relative amount of
separation between bars within a clustered group can be specified by
providing a scalar argument; the default value for this scalar is 0.8. A value
less than 1 makes the bars thinner and separates them more, a value of 1
makes the bars in a group touch one another, and a value greater than 1
makes the bars overlap. The plots are shown in Figure 3.36.

subplot(221);
bar(Y,'stack');
subplot(222);
bar(x,Y,.5) % The 0.5 specifies that the grouped bars be
 % separated by more than the default of 0.8.
subplot(223);
barh(Y,'stack');
subplot(224);
barh(Y,1); % The 1 specifies that the bars in a group
 % touch one another

1 3 4 6
0

0.5

1

1.5

2

2.5

3

3.5

4

Figure 3.35 Clustered bar graph.

© 2003 by CRC Press LLC

The examples done here can be repeated using MATLAB’s bar3 and bar3h
commands to give the plots a 3-D look. Just repeat the examples and
substitute bar3 for bar and bar3h for barh. The only other thing you have to
know is that the default style for 2-D bar graphs is grouped while the default
style for 3-D bar graphs is 'detached'. Therefore, when the style is not
explicitly stated in the example, you will have to provide the 'grouped' style to
get the 3-D counterpart. For example, the 3-D counterpart to the plot shown
in Figure 3-32, is created with

bar3(x,Y,'grouped');

and is shown in Figure 3.37.

1 2 3 4
0

1

2

3

4

5

6

1 3 4 6
0

0.5

1

1.5

2

2.5

3

3.5

4

0 2 4 6

1

2

3

4

0 1 2 3 4

1

2

3

4

Figure 3.36 Using various combinations of the bar and barh functions.

© 2003 by CRC Press LLC

3.5.2 Histograms

Histograms are essentially a kind of bar graph that is created by first
specifying the number bins that specify a range of values, and then counting
the number of occurrences of a data set that fall within each bin. One of the
most common uses of the histogram is in image processing where we are
often interested in the spectrum of the color (or gray-scale) of an image. For a
16-color image, we could indicate on the x-axis 4 bins, each covering four of
the colors, and plot the number of pixels that fall into each bin on the y-axis.
There are many uses of the histogram and it is frequently used to give insight
into the occurrence of events relative to some categories of interest.

 The MATLAB hist function can be used to automatically create a histogram
of the data you pass to it. If you use hist(y), the function will create a
histogram with 10 equally spaced bins that cover the range of values between
the minimum and maximum values of the variable y. In addition, you may
specify either the number of bins or the centers of the bins by respectively
passing a scalar or vector as a second argument to the hist function. The hist
function makes use of the bar function to plot the histogram, and therefore,
when you pass bin centers as a vector argument, you should pass points that
are equally spaced and in ascending order. If the centers are not equally
spaced or in order, you may not get the results you expect. Just as with the
bar function, you may suppress the plotting of the histogram by having the
function return two output variables. For example,

[n,x] = hist(y);

or

[n,x] = hist(y,number_of_bins);

1

3

4

6

0

0.5

1

1.5

2

2.5

3

3.5

4

Figure 3.37 3-D version of Figure 3.35.

© 2003 by CRC Press LLC

or

[n,x] = hist(y,bin_centers);

will return two vectors. The variable n is a vector containing the number of
occurrences that correspond to the bins with centers specified in the variable
x.

As an example, let’s create exponentially distributed data and plot the
histogram as shown in Figure 3.38.

number_data_points = 5000;
Beta = 2;
y = -Beta*log(rand(1,number_data_points));
x = 0.2:0.4:10; % Bin Centers
hist(y,x);
ylabel('Count')

To plot the percentage of data points that fall within a particular bin on the y-
axis instead of the count, we could use

[n,centers] = hist(y,x);
bar(centers,(n/number_data_points)*100);
ylabel('Percentage');

and we would get the plot shown in Figure 3.39.

−2 0 2 4 6 8 10 12
0

100

200

300

400

500

600

700

800

900

1000

C
o
u
n
t

Figure 3.38 A histogram of exponentially distributed samples.

© 2003 by CRC Press LLC

3.5.3 Stairstep Graphs

 Instead of creating lines that directly connect your data, if you so choose
you can create a plot that emphasizes the discrete nature of the data.
MATLAB provides a function that will create a stairstep graph of your data.
You can use stairs(y) or stairs(x,y) to draw horizontal lines at the level
specified by the elements of y. This level will be held constant over the period
between the values specified by the index numbers when using stairs(y) or the
elements in x when using stairs(x,y). The stairstep plot is similar to a bar graph
with the exception that the vertical lines are not dropped down all the way to
the zero value point on the y-axis. In addition, the x values do not necessarily
need to be spaced equally or in ascending order. To illustrate the use of stairs
and to show the difference in results with respect to the plot function, we
generate the four subplots shown in Figure 3.40 with the following code.

% Using unequally spaced data
x = [linspace(0,2*pi,20) linspace(2*pi,4*pi,10)];
subplot(221); stairs(x,cos(x));
title('stairs(x,cos(x))');
subplot(222); plot(x,cos(x)); title('plot(x,cos(x))');

% Using non-strictly increasing data.
x2 = [1:9 4:-1:1]; y2 = [1:9 8:-1:6 1];
subplot(223); stairs(x2,y2); title('stairs(x2,y2)');
subplot(224); plot(x2,y2); title('plot(x2,y2)');

0 1 2 3 4 5 6 7 8 9 10
0

2

4

6

8

10

12

14

16

18

20

P
e
r
c
e
n
t
a
g
e

Figure 3.39 Showing percentage of occurrence with the hist function.

© 2003 by CRC Press LLC

As with bar and hist, you can suppress the creation of the graph by using

[xs,ys] = stairs(y)

or

[xs,ys] = stairs(x,y);

You can then use

plot(xs,ys)

to will produce a stairstep graph from the vectors xs and ys.

3.5.4 Stem Plots

Stem plots provide yet another method of visualizing discrete data
sequences, such as sampled time series data. In these types of graphs, vertical
lines terminating with a symbol such as a circle are drawn from the zero value
point on the y-axis to the values of the elements in the vector passed along
with the command, stem(y). If you want spacing other than that provided by
the element index number, you can use stem(x,y), where x specifies where the
line is drawn along the x-axis. Figure 3.41 is an example that can be produced
with the following code.

x = 0:0.25:(3*pi);
stem(x,sin(x));
title('stem(x,sin(x))');
xlabel('x');

0 5 10 15
−1

−0.5

0

0.5

1
stairs(x,cos(x))

0 5 10 15
−1

−0.5

0

0.5

1
plot(x,cos(x))

0 2 4 6 8 10
1

2

3

4

5

6

7

8

9
stairs(x2,y2)

0 2 4 6 8 10
1

2

3

4

5

6

7

8

9
plot(x2,y2)

Figure 3.40 Comparing the stairs and plot functions.

© 2003 by CRC Press LLC

You can tell MATLAB to use any of the line styles and to terminate your
stem plots with any of the marker types that are in Table 3.3.1. Additionally,
these terminators can be either filled or unfilled. This line of code,

stem(x,sin(x),'-.','p','filled');

will generate a stem plot in which the lines are dash-dotted and the
terminating symbol is a filled five-pointed star as shown in Figure 3.42.

0 1 2 3 4 5 6 7 8 9 10
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
stem(x,sin(x))

x

Figure 3.41 Visualizing discrete data with stem.

© 2003 by CRC Press LLC

3.5.5 Plots with Error Bars

Error bars are used to show uncertainty in the accuracy of plotted values.
With the errorbar(x,y,e) function, MATLAB will plot a line which passes
through the set of (x,y) points with vertical lines that are called error bars
centered about the (x,y) points that have lengths corresponding to twice the
elements of the error vector e. When x, y, and e are same sized matrices lines
with their error bars will be drawn on a per column basis. This type of plot can
be useful if you are plotting data mean values, yet you wish to convey the
range over which values may have fallen. If, for example, you run a simulation
and want to see the effect of some input parameter, you can run the
simulation many times for each value of the input parameter, so that you
could determine a mean and standard deviation of the resulting output. To
illustrate, the following code will generate some mean and standard deviation
data and plot it with error bars that indicate the range of values that are within
three standard deviations of the mean. The result is shown in Figure 3.43.

x_values = 1:0.5:10;
y_mean_values = 10*exp(-x_values)+3;
y_std_deviation_values = 1./x_values;
errorbar(x_values,y_mean_values,3*y_std_deviation_values)
;
xlabel('x'); ylabel('y');
title('Plot of data means, with errorbars indicating +/-3
standard deviations');

0 1 2 3 4 5 6 7 8 9 10
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Figure 3.42 A stem plot with filled terminators and dash-dotted lines.

© 2003 by CRC Press LLC

3.5.6 Pie Charts

In MATLAB pie charts display the percentage that each element in a vector
or matrix contributes to the sum of all elements. They are useful when you
want to show the relative proportion of data elements to one another. For
example, let’s say you have some data representing where government
revenues come from, specifically Soc.Sec. Tax = 31%, Personal Income Tax =
36%, Borrowing = 18%, Corporate Taxes = 8%, Misc. = 7%. The pie function
will create a pie chart of this data as shown in Figure 3.44.

gov_rev_percentages = [31 36 18 8 7];
h = pie(gov_rev_percentages);

0 2 4 6 8 10 12
2

3

4

5

6

7

8

9

10

x

y

Plot of data means, with errorbars indicating +/−3 standard deviations

Figure 3.43 Using error bars to show deviation from a mean.

© 2003 by CRC Press LLC

The pie function will let you label each section of the pie chart,
unfortunately it will replace the values that are printed. To do this, use the pie
function passing a cell array containing the desired labels. The cell array must
be the same size as the data and must only contain strings. To demonstrate
this, consider the previous code with specified labels.

gov_rev_percentages = [31 36 18 8 7];
pie(gov_rev_percentages,{'Soc. Sec. Tax','Personal Income
Tax','Borrowing','Corporate Taxes','Misc'})

The result is shown in Figure 3.45. Although there are labels for each slice of
the pie, we no longer have the numerical values.

31%

36%

18%

8%

7%

Figure 3.44 Creating a pie chart with pie.

© 2003 by CRC Press LLC

We could just include the data values as text in our strings, but that is not a
very elegant method and could become tedious if we had much to do. What
is preferable is to have MATLAB simply add our labels to the numerical values.
Unfortunately, it is not straightforward to add supporting text to pie charts; to
do so requires the use of handle graphics (Chapter 7). However, if all you
would like to do is quickly add labels to each pie section, we provide a handy
function called pielabel that will do the trick. You can download pielabel from
the web site mentioned in Chapter 1. With pielabel you can generate the pie
chart, then add the labels you like. Here is the code that produces the desired
result shown in Figure 3.46.

gov_rev_percentages = [31 36 18 8 7];
h = pie(gov_rev_percentages);
pielabel(h,{'Soc. Sec. Tax: ';'Personal Income Tax: ';...
 'Borrowing: ';'Corporate Taxes: ';'Misc: '});

Figure 3.45 Labeling with pie omits numerical values.

© 2003 by CRC Press LLC

As with the pie function, you must be sure that the cell array containing the
labels is the same size as the data, otherwise pielable returns an error. Also be
aware that since pielabel appends the strings to the data values, if you call it
multiple times on the same pie chart you will get additional text appended to
the labels.

You can emphasize a particular pie slice by “exploding” the piece out from
the rest of the pie. To do this you pass one more argument to the pie
function. The explode argument is a vector that is the same size as the data
vector. Non-zero elements specify that the particular pie slice should be
moved. As an example, the “Borrowing” pie piece could be emphasized with

explode = [0 0 0.25 0 0];
h = pie(gov_rev_percentages,explode);
pielabel(h,{'Soc. Sec. Tax: ';'Personal Income Tax: ';...
 'Borrowing: ';'Corporate Taxes: ';'Misc: '});

which will produce the pie chart shown in Figure 3.47.

Soc. Sec. Tax: 31%

Personal Income Tax: 36%

Borrowing: 18%

Corporate Taxes: 8%

Misc: 7%

Figure 3.46 A pie chart with labels using pielabel.

© 2003 by CRC Press LLC

Just like the 3-D looking bar chart we saw earlier, MATLAB provided a 3-D
looking pie chart function called pie3. The pie3 function is used in exactly the
same manner as the pie function. If you repeat the following examples
substituting pie3 for pie you will get the result shown in Figure 3.48.

Soc. Sec. Tax: 31%

Personal Income Tax: 36%

Borrowing: 18%

Corporate Taxes: 8%

Misc: 7%

Figure 3.47 An exploded piece piechart.

Borrowing: 18%

Personal Income Tax: 36%

Corporate Taxes: 8%
Misc: 7%

Soc. Sec. Tax: 31%

Figure 3.48 An exploded 3-D looking piechart.

© 2003 by CRC Press LLC

3.5.7 Area Plots

The area function will generate a filled area plot from either a vector of
data, or the columns of a matrix. When creating an area plot with a vector,
the data points defined by the vector are straight line connected. Then the
area between the lines and the y axis at 0 (by default) will be filled in. To
change the y-axis value to which the plot is filled, you can use the form
area(Y,ymin) or area(X,Y,ymin), where the ymin argument specifies the
location to which the plot is filled. The area plot is generated from a patch
object (discussed later in Chapter 7). Therefore, the visual attributes of the
area plot can be changed using valid patch properties and property values
(also discussed in Chapter 7). For example, Figure 3.49 shows a blue area plot
in which the area is filled to the value 2 on the y-axis. This plot was generated
using,

x=[0:9];
y=5*sin(x);
area(x,y,2,'facecolor','blue');

When using matrices, a layer in the area plot is drawn for each column in the
matrix. The height of ith layer in the area plot is determined by summing the
values in each row from the 1st to ith column in the matrix (ie., sum(Y(:,1:i)')
where i is the ith layer) . You may get some strange looking plots if your data
values have negative values, but the rule used to determine the height still
holds true. The colors for the area plot representing each column is
automatically chosen from equally spaced intervals in the colormap. For
example, we can generate the 3-layered area plot seen in Figure 3-47 with the
following matrix.

Y=[1 2 .5; 2 1 .6; 1.5 1 .7; 3 1.5 .8; .5 1 .9; 1 1 1];
area(Y);

Figure 3.49 An area plot of a vector.

© 2003 by CRC Press LLC

3.5.8 Working with Complex Data

Complex data consists of both real and imaginary components and is
commonly encountered in many engineering disciplines. In MATLAB, the

complex term 1 can be represented by either of the built-in definitions I or
j (depending on whether you are a mathematician or an engineer!). MATLAB
knows you are giving it a complex value when the interpreter sees either one
affixed to a number, that is unless you have used them as variable names and
assigned another value to them. As an example, the complex number 1+3i can
be entered as 1+3j; MATLAB is perfectly content with each. In fact, since both
are built-in to MATLAB, 1+3*j works too. MATLAB supplies three built-in 2-D
plotting functions that are especially applicable to use with complex data.
These are the plot, compass, and feather functions. Although you have
already seen the plot function, we will discuss its use in the case of complex
data. The other two functions will follow. In most cases you can use the other
MATLAB plotting functions with complex data, but the result might not be
what you expect. For instance, what does it mean to plot a bar graph of
complex data?

To use the plot command with complex data, be sure that your data is in a
complex variable. The code

z = exp(j*(0:45:315)*(pi/180));
plot(z, '-o')

demonstrates this and is shown in Figure 3.51.

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
0

1

2

3

4

5

6

Figure 3.50 Area plot of a 3 by 6 matrix.

© 2003 by CRC Press LLC

As you can see, complex data points are placed in the axes with the
assumption that the x-axis and y-axis respectively correspond to the real and
imaginary components of the vector z and then connected by lines. You
could also use plot(real(z),imag(z)) to generate the same results. As another
example, let’s say you wanted to create a plot that illustrates the complex data
points, e.g., the poles and zeros of system transfer function.

zeros_points = [-8 -4];
poles_points = [-3+i*2 -3-i*2 -10 -9+3*i -9-3*i];
% The next line is used since the plot command does not
% know that the zeros_points variable represents
% data in the complex plane.
plot(zeros_points,zeros(size(zeros_points)),'or');
hold on;
plot(poles_points,'xc');
hold off;
axis([-11 1 -5 5])
xlabel('Real Axis');
ylabel('Imaginary Axis');

The results of which are shown in Figure 3.52.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Figure 3.51 Visualizing complex data with plot.

© 2003 by CRC Press LLC

The feather function produces a plot of vectors that emanate from equally
spaced points along the horizontal axis. Each arrow’s length corresponds to
the magnitude of a data element and its pointing direction indicates the angle
of the complex data. The general form of this function is feather(u,v) where u
contains the x-axis components and v the y-axis components, each in relative
coordinates. You can call the function with feather(Z) where Z is complex. As
with plot this is equivalent to feather(real(Z),imag(Z)). The line type can be
chosen in the same way it was when using the plot command with the form
feather(…, linetype_string). For an example, the following code creates some
complex data by first creating some angles and corresponding magnitudes.
Then it puts that in Cartesian format with pol2cart, and converts that result to
a complex representation with complex. Note that this would work exactly the
same with feather(u,v).

theta = (-pi/2:.15:pi/2);
r=3*cos(theta);
[u,v] = pol2cart(theta,r);
z=complex(u,v);
feather(z,'--c');

The result is the data plot with dashed cyan lines shown in Figure 3.53. You
may have noticed that the arrowhead’s size is proportional to the length (or
magnitude) of the line and that they are not solid or filled in. When we
explore more about object properties and Handle Graphics, you will learn
how to modify the arrows to suit your needs.

−10 −8 −6 −4 −2 0
−5

−4

−3

−2

−1

0

1

2

3

4

5

Real Axis

Im
ag

in
ar

y
A

xi
s

Figure 3.52 Combining complex and real data in a plot.

© 2003 by CRC Press LLC

3.5.9 Using the Polar Coordinate System

So far we have been discussing plotting routines that make use of the
Cartesian coordinate system. MATLAB also provides functions that plot data
in the polar coordinates of magnitude and angle, commonly referred to as rho
and theta respectively. Here we will discuss the MATLAB commands
compass, polar, rose, and a modified version of the function polar called
polardb.

Although the compass function takes its inputs in Cartesian format, it works
its way into this discussion because of its polar coordinate output. The
compass function is similar to the feather function in that each arrow’s length
corresponds to the magnitude of a data element and its pointing direction
indicates the angle of the complex data. However, whereas feather creates a
linear plot, the compass function will create arrows that emanate from the
origin of the axes in a polar coordinate system. As with the earlier functions,
compass can be called with either compass(z) or compass(u,v) where the
latter method is equivalent to compass(u+i*v). To demonstrate this function,
let’s create a set of arrows that increase in size from arrow to arrow in a
counterclockwise manner.

z = [1:10].*exp(i*[1:10]*36*(pi/180));
compass(z);

This will produce the plot shown in Figure 3.54.

0 5 10 15 20 25
−1.5

−1

−0.5

0

0.5

1

1.5

Figure 3.53 A feather plot of complex data.

© 2003 by CRC Press LLC

 As with the feather function, passing a character string as an additional
argument to compass changes the style and color used for the arrows.

 The polar function will create a polar plot from angle and magnitude data.
It takes the forms polar(theta,rho) or polar(theta,rho, linetype_string) where
theta corresponds to the angle (in radians) and rho corresponds to the
magnitude. As with the functions we’ve seen earlier, linetype_string is a
character string defining the line type that is used in the plot. The variables
theta and rho must be identically sized vectors or matrices. If they are
matrices the columns of theta will be plotted versus the columns of rho. As an
example, we can create the limacon with an inner loop shown in Figure 3.55
with the following code.

theta = 2*pi*[0:.01:1];
rho = 0.5 + cos(theta);
polar(theta,rho)

 2

 4

 6

 8

 10

30

210

60

240

90

270

120

300

150

330

180 0

Figure 3.54 A compass plot of complex data.

© 2003 by CRC Press LLC

If the default polar axis limits are not suitable, you may need to modify the
polar function so that it provides you with what you want. Changing the axis
limits with the axis command is not exactly straightforward. For instance, you
can't just use axis([min_theta max_theta min_angle max_angle]) as you did
with plot, because the polar coordinate system is created with plot commands
that define the concentric rings and spokes; the Cartesian x- and y-axes are
hidden but can be made visible by using axis('on').

Often when we deal with data in a polar format, we are interested in units
of relative gain or power, i.e., decibels (dB), such as with the case of an
antenna gain pattern. If you need to create a polar plot with the radial units in
decibels (10log10), you can download from the web site a version of the polar
function that we have created called polardb. This function will also allow you
to specify the line style by passing a string with
polardb(theta,rho,linetype_string). With this function you can specify the rho
axis limits by passing yet another 2-element vector that defines the minimum
and maximum dB values (i.e., polardb(theta,rho,linetype_string, [min_rho_dB
max_rho_dB])). The following code creates some data and illustrates using this
polar plotting function. The resulting plot is shown in Figure 3.56.

x = -(5*2*pi):.1:(5*2*pi);
th = linspace(-pi,pi,length(x));
rho=((1+sin(x)./x));
polardb(th,rho)

 0.5

 1

 1.5

30

210

60

240

90

270

120

300

150

330

180 0

Figure 3.55 Using polar.

© 2003 by CRC Press LLC

The function polardb was created by modifying MATLAB’s polar function.
Many MATLAB functions are available as editable M-files. As you dig deeper
into MATLAB graphics, you may find it useful to look at and use code from
existing MATLAB functions when developing your own specialized graphics
capabilities.

The last polar plot on our list is the rose function. With rose you can create
angle histograms that are drawn in polar coordinates. By using
rose(angle_data), the function will determine how many of the angles (which
are assumed to be in radians) fall within a given angular bin. By default there
are 20 evenly spaced bins between 0 and 2 . The number of bins can be
changed by using rose(angle_data_vector, number_of_bins), where the
variable number_of_bins is a scalar specifying the number of bins that should
be spaced between 0 and 2 . You can also specify the centers of the bins by
passing a vector, bin_centers, to the rose function (i.e.,
rose(angle_data,bin_centers)). If for some reason you do not want the angle
histogram to be created at the time the rose command is issued, you may
specify two output arguments using any of the valid rose synopses (e.g., [t,r] =
rose(angle_data_vector)). Then at some later time, you can create the plot by
passing these two arguments to the polar function (e.g., polar(t,r)). The
following code will produce a rose plot of data which is normally distributed in
angle about 90º. The resulting plot is shown in Figure 3.57.

angle_data = angle(exp(i*randn(1,1000)))+pi/2;
rose(angle_data)

−1.5

−0.5

 0.5

 1.5

 2.5

 3.5

30

210

60

240

90

270

120

300

150

330

180 0

Figure 3.56 Creating a polar plot with radial units in decibels.

© 2003 by CRC Press LLC

3.5.10 Plotting Functions with MATLAB

In the previous examples we have created functions to generate the data
used in our plots by first defining a variable to cover the range we are
interested in, e.g., x = -2*pi:.1:2*pi, and then coding the function we want, e.g.,
sin(x). The function fplot provides an alternative method of plotting functions
to the method of evaluating and plotting a function at a number of defined
sample points. It can be especially useful for plotting functions whose rate of
change varies rapidly for certain ranges of inputs as this function adaptively
determines what the required sampling rate is based on the function’s rate of
change.

To use fplot the function you pass to it must be either the name of an M-file
function or a string with variable x that may be passed to eval function. This
string can contain any combination of legal MATLAB commands or functions
that you have created which resemble the form y = f(x), where f(x) is the string
that you create. This function must either return a vector that is the same size
as x or a matrix with columns that have as many elements as the vector x has.

The fplot function was designed to use adaptive step control, concentrating
its evaluation in regions where the function's rate of change is the greatest. So,
you use fplot when you don’t want to determine how fine you need to sample
a function. For example, y = sin(x) cos(2x), can be plotted using

fplot('sin(x).*cos(2*x)',[0 5*pi])

 to generate the top graph in Figure 3.58. The plots beneath were done with
plot where the step size was specified as indicated, demonstrating the effect
of varying step size.

 50

 100

 150

30

210

60

240

90

270

120

300

150

330

180 0

Figure 3.57 An angle histogram created with rose.

© 2003 by CRC Press LLC

You also have the option of passing two additional arguments; one of them
is a line style string and the other is a tolerance factor. The tolerance factor is
by default set to 2*10-3 and is used to determine how much sampling is
required. Sampling is increased until the function and linearly interpolated
value between two sampled points is less than the tolerance.

If you are really impatient and don’t even want to specify a range for a
function, MATLAB provides you with a convenient function called ezplot that
will plot your function over the range -2 to +2 and place a title above it.
Here is how you would use it with function from the previous example.

ezplot('sin(x)*cos(2*x)')

The title is the string representation of the function. Also notice that we did
not have to implicitly define the function, i.e., the periods weren’t required
before the * operators. With ezplot it is assumed that operations are element
by element. Figure 3.59 shows the result of using ezplot.

0 5 10 15
−1

−0.5

0

0.5

1
Sin(x)*Cos(x) from 0 to 5π using FPLOT

0 5 10 15
−1

−0.5

0

0.5

1
Sin(x)*Cos(x) using x=0:5*pi

0 2 4 6 8 10 12 14 16
−1

−0.5

0

0.5

1
Sin(x)*Cos(x) using x=0:0.5:5*pi

Figure 3.58 Comparing fplot to plot.

© 2003 by CRC Press LLC

We should point out that you could use other ranges with ezplot by
providing a vector of the form [min, max] in which case it will perform like
fplot but will title your plot.

3.5.11 Creating Filled Plots and Shapes

Aside from the pie charts and bar charts, our plots have been made up of
lines. Although you can change the color and style of the lines, and later you
will learn how to change the thickness too, MATLAB gives you a simple
function called fill for creating 2-dimensional figures that have shapes that are
filled in with a solid color. Consider the following example, plotted in Figure
3.60, that will create several different shapes with different colored faces by
specifying the coordinates of their vertices. Then we’ll fill, scale, and translate
them.

square_x = cos([45:90:315]*pi/180);
square_y = sin([45:90:315]*pi/180);
pentagon_x = cos([36:72:360]*pi/180);
pentagon_y = sin([36:72:360]*pi/180);
octogon_x = cos([0:(360/8):360]*pi/180);
octogon_y = sin([0:(360/8):360]*pi/180);
wavy_sin_x = 0:.1:8;
wavy_sin_y = sin(wavy_sin_x);
% Create a blue square using a linetype color string.
fill(10+2*square_x,11+2*square_y,'b');
hold on;
% Create a red pentagon using the RGB color vector.
fill(1+3*pentagon_x,10+3*pentagon_y,[1 0 0]);
% Create a gray pentagon using the RGB color vector.
fill(7+2*octogon_x,7+2*octogon_y,[0.5 0.5 0.5]);
% Create a wavy shape.
fill(2*wavy_sin_x,2+2*wavy_sin_y,2+2*wavy_sin_y);

−6 −4 −2 0 2 4 6

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x

sin(x) cos(2 x)

Figure 3.59 Plotting a function with ezplot.

© 2003 by CRC Press LLC

axis([0 15 0 15]);axis('equal');

This example illustrates several features of the fill function. You use fill by
specifying fill(x,y,c), where the pairs of elements from the x and y variables
specify the vertices of the shape, and c specifies the color. The color can be
specified as a string (see the line color information in Table 3.3.1) or as a red-
green-blue vector, [R G B]. Red-green-blue vectors specify the respective
fractions of red, green, and blue content making up the color (e.g., [1 0 0] is
equivalent to 'red', [0 0 0] = 'black', [1 1 1] = 'white'). In addition, as we see
with the “wavy” shape, the color variable, c, is a vector with the same number
of elements as vectors x and y. The elements of c are scaled to indices of the
figure’s “color map,” or list of RGB combinations. If the vertices have different
color map indices, the color within the shape will be bilinearly interpolated
between the vertices. We will discuss these and many other details of using
color in Chapter 8 when we consider color and light.

In this example each shape was created with its own fill function. We
could have put this into one long fill function and eliminated the need for the
hold on command.

fill(10+2*square_x,11+2*square_y,'b',...
 1+3*pentagon_x,10+3*pentagon_y,[1 0 0],...
 7+2*octogon_x,7+2*octogon_y,...

[0.5 0.5 0.5],2*wavy_sin_x,...
2+2*wavy_sin_y,2+2*wavy_sin_y);

You should know that fill(x,y,c) supports the use of matrices and vector-
matrix combinations with the x and y variables. If both are matrices, a polygon
is drawn for each column. The colors of these polygons will be a single color
if c is a row vector, and interpolated if c is a matrix. If either the x or y variable

−2 0 2 4 6 8 10 12 14 16
0

5

10

15

Figure 3.60 Filling shapes with the fill function.

© 2003 by CRC Press LLC

is a vector and the other is a matrix, the vector will be paired up with either
the columns or rows of the matrix depending on whether the length of the
vector matches up with the length of the columns or rows of the matrix. If the
matrix is square, the columns will be used. This might sound a little confusing
at first, so an example should clear things up; the following code will create a
set of colored bow ties.

% A row vector defining the x vertices of all the bows
x = [0 0 1 1];
% A matrix defining y vertices of the bows
y = ones(5,1)*[0 1 0 1]+[1:2:10]'*ones(size(x));
% The color argument specifies a unique color for each
bow
fill(x,y,[1:5]);
axis('equal');

3.6 Plot Editing in the MATLAB Figure Window
As you have seen in the previous sections, MATLAB provides many quick

ways to generate very useful plots. You’ve also seen that by passing various
strings and vectors you can tailor certain aspects of your plot to customize it
to your needs. What you have done so far is to use the specific plotting
functions, and various helper functions, e.g., title, legend, etc., to annotate and
adjust your plots. As you will learn now, MATLAB provides some easy high-
level and low-level graphics capabilities through a, somewhat, intuitive user
interface. In this section we will discuss how to change specific features of a
plot using MATLAB’s Plot Editing Mode, and the Property Editor. You will find
these techniques very handy for one-time quick changes for your plots. This is
not the way to build programs that generate plots in an automated way; that is

−4 −2 0 2 4 6
1

2

3

4

5

6

7

8

9

10

Figure 3.61 Using fill with matrices.

© 2003 by CRC Press LLC

what the various plotting functions and Handle Graphics in Chapter 7 are for.
But for the one-time touch-up, the methods here can be quite useful.

It all starts with the Figure Window; the window that you have seen with the
previous examples. It pops up whenever you issue a plotting function. As you
might have noticed, the Figure Window has a few tool buttons and pull-
downs. You’ve might have already discovered these, but in case you haven’t
we will discuss them now.

3.6.1 Plot Editing Mode

When you see the Figure Window, after you have issued a command that
generates one, you will notice that there are several buttons as well as a pull-
down menu. Clicking on the button that looks like an arrowhead will turn on
the Plot Editing Mode. The buttons next to it let you add text and draw lines to
annotate your plot. Figure 3.62 highlights some of the features available in the
Plot Editing Mode.

The plot shown in the above figure was generated with ezplot(‘sin(x)’).
Once you have entered the Plot Editing Mode, when you click on an object in
the plot, like the line or the axis, the object will become highlighted with
distinctive markers. Clicking once on the trace above selects the line; clicking
the right mouse button will reveal a pop-up menu with properties for that
object. For example, by selecting the “Line Width” property the width of the
line can be changed by a simple click of the mouse. You don’t have to click on
the object with the left mouse button and then the right to get the case-

� � � � � � � � � 	
 � � � �
 	 	 � � � � � � � � � � � � � �
	
 � � � � � 	 � � � � 	 � � � � � � � � �

� � � 	 � � 	 � � � � � � 	 � � � � � � � � �
 � � � � � �
 �
� � � � � � � � � 	
 � � � � � �
 	 � � � � � � � � � � 	
 � � � �
 � � �

� � � � 	 � � 	 � � � � � � � � � � � � � � 	
 �
	
 � � � � �
 	 	 � � � �

�
 � � � � � � � � � � � 	 � �

� � � 	 � � � ! � � 	 �
� � � � � � � � �
 � � 	 � � 	
 � � �

Figure 3.62 The Figure Window in Plot Editing Mode.

© 2003 by CRC Press LLC

sensitive pop-up menu. If you place the cursor over the object, clicking the
right mouse button will both select the object and reveal the menu.

You can also invoke the Plot Editing Mode from the command line in
MATLAB with plotedit or plotedit(fig) where the former will begin the Plot
Editing Mode for the current figure and the latter lets you specify a figure for
editing by passing the figure number fig. In use, this is identical to selecting the
Plot Editing Mode with the mouse.

3.6.2 The Property Editor

When you open the context-sensitive pop-up menu you will notice that the
last menu item in the list is “Properties.” Selecting this will open the Property
Editor. Invoking the Property Editor on the axis in the sine plot shown in the
previous figure gives the user interface shown in Figure 3.63.

As you can see in Figure 3.63, a whole host of properties associated with
the axes are available to you to adjust, or mangle, as you desire. You can also
start the Property Editor by double clicking on an object in the plot, such as
the axis. (Note that double clicking on a text object will not start the Property
Editor, but instead will give you an edit box with which you can change the
text.) If you keep the Property Editor open, you can click on different objects
in the Figure Window and the panels in the Property Editor will change to
reveal the property selections for that object.

Another nice feature of the Property Editor is the “Edit Properties for:”
selection box. If you click on the down-triangle to the right, the Property Editor
will show you the hierarchy of objects. Figure 3.64 highlights this.

Figure 3.63 The Property Editor invoked on the axes.

© 2003 by CRC Press LLC

We will leave the detailed discussion of graphics objects and the object
hierarchy for Chapter 7. Unfortunately, the pages of a book make showing
you the simple nature of pointing and clicking in the Property Editor a bit
cumbersome. We recommend that you spend some time with an example
and see what you can learn. Try changing the line color, the axis limits, the
background color, and turning grids on and off on your own using the Plot
Editing Mode and the Property Editor; also try adding or editing the title and
axis labels. Although very useful, the Property Editor doesn’t present all the
properties available for an object, just the ones you are likely to use for high-
level editing. Later we will explore another handy tool called the Property
Inspector and see how it can help us appreciate the richness of objects in
MATLAB.

3.6.3 Zooming and Rotating

To the right of the line buttons are three buttons that look like this:

With the first button here, you can zoom in on your plot by simply dragging
the mouse in a box around the area at which you want to look more closely.
When you do, you will see that MATLAB automatically scales the axis for the
result. You can also place the cursor on a point in the image and get a 2x
zoom with each click. The resulting plot will be centered at the point of the
cursor. Selecting the second button, the “zoom out” will reduce the zoom by
2x each time you click it.

" �
 � � � � � � � � � 	
 � � � � ! � � 	

 � � � � � �
 � � � � � � � � � � 	 � � 	
 � �
� � ! � � 	 � � � � � 	
 � � � � �
 � � �
 � � � �

Figure 3.64 Viewing the object hierarchy.

© 2003 by CRC Press LLC

The third button shown here will be more useful to us after we have
discussed 3-D plots. It is the rotate 3-D button and with it you can change the
viewing perspective of your plot. You can use this button with a 2-D plot, but
there aren’t many reasons to do so.

3.6.4 Exporting, Copying, and Pasting

Once you have created a plot you probably want to save it to a file, or
perhaps paste it into a word processor or presentation application. You can
easily prepare your plots for this right from the Figure Window. Later we will
see how we can use some MATLAB commands to produce versions of our
plots to use in other applications, but for now we will focus on those available
to us from the Figure Window.

If you select File Preferences… from the Figure Window, you will open the
preferences user interface as shown in Figure 3.65. In that you can choose the
“Figure Copy Template” or “Copy Options” and make changes to the way
MATLAB will produce representations of your plots for uses in other
applications.

Figure 3.65 Changing preferences in the Figure Copy Template.

© 2003 by CRC Press LLC

3.7 Illustrative Problems
Just like a muscle, your new MATLAB muscles need exercise to get

stronger. The following problems are included to help you exercise your new
skills. If you feel the need, you can download the solutions from the web site
mentioned in Chapter 1.

1. Use linspace to create a vector t that ranges from 0 to 2 and then
plot the function)2cos()2sin(ttr first as a x-y plot, then as a
polar plot. Use subplot to keep them in the same figure.

2. Plot
x
xy)sin(2

 over the range 22 x . What should you

do about x=0? Hint: read help on eps.

3. Try to duplicate the plot shown here. Hint-1: use the sin function itself
to calculate the points where the annotation should be located. Hint-
2: try using ‘\leftarrow’ in your strings.

� � � � � �

0 1 2 3 4 5 6 7
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
Sine of 0 to 2π

τ = 0 to 2π

←sin(3.1416) = 1.2246e−016

←sin(2.3562) = 0.70711

←sin(1.885) = 0.95106

© 2003 by CRC Press LLC

44 PPLLOOTTTTIINNGG IINN TTHHRREEEE DDIIMMEENNSSIIOONNSS

4.1 Elementary 3-D Plotting
In Chapter 3, we discussed how matrix data could be visualized by plotting

with the plot command. As you might recall from Chapter 2, not all data is
intuitively represented with a 2-D plot. We live in a three-dimensional world
and much of our information is best revealed with 3-D techniques. Fortunately,
MATLAB provides you with a cornucopia of graphics functions that let you
make quick 3-D plots and visualizations of your data. This chapter is intended
to introduce you to these functions and lead you to a good understanding of
the built-in MATLAB ability to visualize in three dimensions. We will begin by
examining plot3, i.e., the three-dimensional counterpart to plot, and then
examine the various surface creation techniques, followed by contour plots,
and finally present MATLAB’s special functions for volume visualization.

4.1.1 Using Plot3

The plot3 function is used in almost the same way that plot is used, except
that an additional variable, z, is used to provide the data for the third
dimension. For example, let’s make use of the form plot3(x,y,z) by typing

t = 0:0.1:10*pi;
x = exp(-t/20).*cos(t);
y = exp(-t/20).*sin(t);
z = t;
plot3(x,y,z);
xlabel('x');
ylabel('y');
zlabel('z');

to produce Figure 4.1. Notice how the axes have been labeled using
xlabel, ylabel, and here we introduce a new labeling command, zlabel, whose
form is just like that of its siblings.

IN THIS CHAPTER…
4.1 ELEMENTARY 3-D PLOTTING
4.2 SIMPLE 3-D PLOT MANIPULATION
4.3 VOLUME VISUALIZATION
4.4 A WORD ABOUT ANNOTATING 3-D PLOTS
4.5 ILLUSTRATIVE PROBLEMS

© 2003 by CRC Press LLC

The general form of this function is plot3(x, y, z, ‘string’), however what it
does is determined by the nature of the variables passed to it, namely:

o If x, y, and z are vectors of the same length, a 3-D line is created by
connecting the coordinates specified by the elements of vectors x, y,
and z.

o If x, y, and z are matrices which have the same number of rows and
columns, several lines will be created from the columns of the
matrices.

o If some of the input variables are matrices and others are vectors, and
the vectors are the same length as either the number of rows or
columns in the matrices, MATLAB will “replicate” the vectors in a
fashion so that multiple lines can be created. If the sizes of the
vectors or matrices do not permit this, MATLAB will return an error
message.

o The variable ‘string’ is a 1, 2, or 3 character string made from the
characters compatible with the plot function (see Table 3.3.1).

You can change the perspective, i.e., the viewing angle of plot by either one
of two ways. First, you can select the Rotate 3-D tool from the Figure Window.

� � � � � � � � � � 	 � �

Doing so will let you to interactively rotate the axes of the plot by holding
down the mouse button and moving the mouse about. The specific values of

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1
0

5

10

15

20

25

30

35

xy

z

Figure 4.1 A 3-D plot using plot3.

© 2003 by CRC Press LLC

the azimuth and elevation will be shown in the lower left corner of the figure
while you are rotating the axes.

Your second option is to use the view function. The general form of this
function is view(az, el) or view([az,el]) and with it you can specify the exact
values of azimuth and elevation by which you wish to rotate the axes. The
following code will produce the different views shown in Figure 4.2.

subplot(2,2,1);plot3(x,y,z);
xlabel('x');
ylabel('y');
zlabel('z');
view(-10,10);
title('Default plot3');

subplot(2,2,2);plot3(x,y,z,'og');
xlabel('x');
ylabel('y');
zlabel('z');
view(-9,56);
title('Az=-10, El=10');

subplot(2,2,3);plot3(x,y,z,'xb');
xlabel('x');
ylabel('y');
zlabel('z');
view(0,90);
title('Az=0, El=90');

subplot(2,2,4);plot3(x,y,z,'dr');
xlabel('x');
ylabel('y');
zlabel('z');
view(90,0);
title('Az=90, El=0');

© 2003 by CRC Press LLC

Although MATLAB’s native angle unit is radians, view uses degrees for the
units of az and el. There are a few more interesting aspects of view that we
will save for a later discussion, but for now you need to know that the default
view for 3-D plots is az = -37.5o and el = 30o. Using az = 0o and el = 90o will
give the default 2-D view; you can also obtain this by using view(2). What if
you’ve rotated your axes so much that you are confused and you have grown
tired of trying to fix it by dragging the mouse around? You can quickly return
to the default 3-D view by typing view(3).

4.1.2 Creating 3-D Meshes and Surfaces

As we move into more 3-D plotting methods, we are going to find that
often we must deal with ordered pairs, i.e., data that is dependent on both an
x and a y value. Many mathematical functions are of two variables, that is, for
each pair of x and y, there is a z. You have seen this stated as z = f(x,y). One
way you could compute a z for each x y pair would be to iterate through a
nested loop, but one of the major advantages of MATLAB is that it can deal
with matrices without resorting to looping. All you need is some way to get
your data into a matrix format. If you have a vector of x values, and a vector of
y values, MATLAB provides a useful function called meshgrid that can be used
to simplify the generation of X and Y matrix arrays used in 3-D plots. It is
invoked using the form [X,Y] = meshgrid(x,y), where x and y are vectors that
help specify the region in which coordinates, defined by element pairs of the
matrices X and Y, will lie. The matrix X will contain replicated rows of the
vector x, while Y will contain replicated columns of vector y. This might seem
a little complicated at first, but an example will help make it clear. Consider
the two vectors passed to meshgrid here.

−1 −0.5 0 0.5 1−1
0

1
0

10

20

30

40
Default plot3

xy

z

−1 −0.5 0 0.5 1
−1

0

1
0

20

40

Az=−10, El=10

x

y

z
−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

x

Az=0, El=90

y

−1 −0.5 0 0.5 1
0

5

10

15

20

25

30

35

y

Az=90, El=0

z

Figure 4.2 You can change your perspective by specifying az and el in
the view function.

© 2003 by CRC Press LLC

x = [-1 0 1];
y = [9 10 11 12];
[X,Y] = meshgrid(x,y)

MATLAB returns

X =

 -1 0 1
 -1 0 1
 -1 0 1
 -1 0 1

Y =

 9 9 9
 10 10 10
 11 11 11
 12 12 12

As you can see, X is formed by the vector x being replicated as rows for
each column in y, and Y is formed by the vector y being replicated as columns
for each element in x. Each element in x has been matched with each element
in y. Be aware that typing meshgrid(x) is equivalent to meshgrid(x,x). The
meshgrid function will be used in several of the examples in this section.

The first surface plotting function we will discuss is mesh. It creates many
crisscrossed lines that look like a net draped over the surface defined by your
data. To understand what the command is plotting, consider three M-by-N
matrices, X, Y, and Z, that together specify coordinates of some surface in a
three-dimensional space. A mesh plot of these matrices can be generated with
the command mesh(X,Y,Z). Each (x(i,j),y(i,j),z(i,j)) triplet, corresponding to the
element in the ith row and jth column of each of the X, Y, and Z matrices, is
connected to the triplets defined by the elements in neighboring columns and
rows. Vertices defined by triplets created from elements that are not in either
an outer (i.e., first or last) row or column of the matrix will, therefore, be joined
to four adjacent vertices. Vertices on the edge of the surface will be joined to
three adjacent ones. Finally, vertices defining the corners of the surface will be
joined only to the two adjacent ones. In addition to providing a visual
perspective of the surface shape, this usage of mesh automatically chooses
colors of the mesh plot to be proportional to the surface’s height. Consider
the following example which will produce the plot shown in Figure 4.3 .

[X,Y] = meshgrid(linspace(0,2*pi,50),linspace(0,pi,50));
Z = sin(X).*cos(Y);
mesh(X,Y,Z)
xlabel('x'); ylabel('y'); zlabel('z');
axis([0 2*pi 0 pi -1 1])

© 2003 by CRC Press LLC

There are several ways to call the mesh command. We just looked at
mesh(X,Y,Z), however, an even more general invocation of the function can
be made with mesh(X,Y,Z,C) where the matrix C specifies the color of the
mesh plot. When this C matrix is left out of the command, the function
assumes that C = Z, thus providing a proportional mapping between color and
surface height. For now it will suffice for you to realize that the minimum and
maximum values of the matrix, C, specify the range of values that are
associated with the figure’s color map, i.e., a list of RGB color vectors. The
minimum value of C will be associated with the first row in the color map, and
the maximum value of C will be associated with the last row in the color map.
All values of C that lie between the minimum and maximum shall be
associated with a color in this list. For example, if an element of C
corresponding to one of the vertices lies halfway between the minimum and
maximum values of C, the color associated with that vertex will lie halfway
between the first and last row of the color map. We discussed general
guidance for using color in Chapter 2 and an in-depth look at color maps is
presented in Chapter 8. Here is an example that demonstrates using
manipulation of the color map to emphasize areas of identical slope. Consider
the surface produced by,

[x,y] = meshgrid(-2:.1:2, -2:.1:2);
z = x .* exp(-x.^2 - y.^2);

We can use mesh to plot this surface, however mesh will produce colors
based on the values of z. We can use the gradient function to examine this
surface and determine where the slopes are the same according to the x-axis
and the y-axis. The general form is [Cx,Cy]=gradient(Z) where Cx is the
numerically computed solution of Z/ x and Cy is Z/ y. (The actual
gradient is the vector sum of Cx and Cy.) Since the derivative of function is its
slope, the derivative taken at a point along the surface is the slope of the
surface. By using the results of gradient as our color map, we can reveal those

0
1

2
3

4
5

6

0

0.5

1

1.5

2

2.5

3

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

xy

z

Figure 4.3 A simple mesh plot.

© 2003 by CRC Press LLC

areas in the plot that have equal slope with respect to either the x, or y axes.
The code that will show constant slope in the x-axis is,

[Cx,Cy] = gradient(z,.1,.1);
mesh(x,y,z,Cx);

The gradient function assumes an increment of 1, so we have specified it here
to agree with our mesh. Figure 4.4 and Plate 1 shows the surface we are
considering, plotted with mesh with its default coloring that varies according
to the amplitude of z. Figure 4.5 and Plate 2 shows equal slopes with Cx from
gradient. Figure 4.6 is the slope with respect to the y-axis dimension.

 Color plates follow page 112.

−2

−1

0

1

2

−2

−1

0

1

2
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

Figure 4.4 A default mesh plot with color assigned to height.

© 2003 by CRC Press LLC

You should try this example on your computer so you can see the benefit of
color better. Color, when used to actually convey information, can make a
plot more informative and provides insight that may not have been achieved
otherwise.

To finalize our discussion of the mesh function we need to mention that a
mesh plot can also be created by passing two vectors, x and y, in place of the
matrices, X and Y, by using either mesh(x,y,Z) or mesh(x,y,Z,C). The length

−2

−1

0

1

2

−2

−1

0

1

2
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

dF/dx

Figure 4.5 Identifying regions of slope with respect to the x-axis.

−2

−1

0

1

2

−2

−1

0

1

2
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

dF/dy

Figure 4.6 Identifying regions of slope with respect to the y-axis.

© 2003 by CRC Press LLC

vector x must be equal to the number of columns in Z, and the length of
vector y must be equal to the number of rows in Z. When using this form of
the command, a (x(j),y(i),Z(i,j)) triplet defines the vertices over the i rows and j
columns of Z. If you do not provide the vectors x and y or matrices X and Y,
to the function, e.g., when using mesh(Z) or mesh(Z,C), MATLAB creates a
mesh plot by respectively setting the x and y vectors to the column and row
number of the matrix Z.

If you want to create a mesh plot that has a “curtain” around the edge of
the surface, you might want to take advantage of the function meshz. This
function is called with the identical input argument set used with mesh. The
curtain is created by dropping lines down from the edge of the surface to a
plane parallel to the xy-plane and at a height equal to the lowest point in the
surface. For example,

[X,Y] = meshgrid(0:.1:2*pi,-pi:.1:0);
Z = sin(X).*cos(Y);
meshz(X,Y,Z);
axis('equal');

will create the illustration shown in Figure 4.7.

4.1.3 Waterfall Plots

Similar in appearance to the curtain mesh made with meshz is the function
waterfall, which creates a mesh plot only from the row data, not from the
columns. This kind of plot is often used to visualize series of data that change

0

1

2

3

4

5

6

−3
−2.5

−2
−1.5

−1
−0.5

−0.5

0

0.5

Figure 4.7 A curtain mesh plot made with meshz.

© 2003 by CRC Press LLC

with each observation. It’s called “waterfall” because the resulting plot looks
like, well, a waterfall. The waterfall function takes the same form as mesh.

 As an example, suppose a signal is received by a sensor once a second for
one hundred seconds, but decays exponentially each second. The following
code simulates such a scenario.

x=-3*pi:.25:3*pi; %resolution of the signal
A=linspace(3,0) %100 samples
A=exp(-A); %exponential decay
X=sin(x).^2./(x+eps).^2;
Y=A'*X; %the decaying signal
waterfall(Y)

The waterfall plot of this multiple series of data is shown in Figure 4.8 and
Plate 3.

Although this contrived example created its data series in row order, data
analysis functions in MATLAB typically produce data in column order, that is,
each data series appears as a column in a matrix. In that case, remember to
transpose the matrix before calling waterfall.

4.1.4 3-D Plots of Non-Uniformly Sampled Data

If you are running experiments or collecting data from real world situations,
you will probably encounter situations in which you do not have data points
that are nicely spaced at equal increments of your input variables. Fortunately,
MATLAB has a way that allows you to represent this type of data in a plot. As
an example, let’s pretend that you have collected samples from a process that

0

20

40

60

80

0

20

40

60

80

100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 4.8 A waterfall plot of a simulated exponentially decaying signal.

© 2003 by CRC Press LLC

exhibits a response similar to the function we used in the previous example,
z=sin(x)cos(y). We will generate our data samples (x,y,z) with

x = rand(100,1)*2*pi;
y = rand(100,1)*pi;
z= sin(x).*cos(y);

This data, by itself, could not be viewed as a mesh or surface plot. The best
you could do is generate a 3-D plot with plot3(x,y,z,'.') to see the points;
however, even with plot3 it is very difficult to get a feel for what the surface
defined by the data points really looks like. Therefore, we need to generate a
set of evenly sampled data points that are generated by interpolating between
the set of original data points. First we create uniformly sampled input
variables using the meshgrid and linspace functions to create, in this example,
a 40-by-40 X and Y matrix over the region defined by our data.

[X,Y] = meshgrid(linspace(min(x),max(x),40),...
 linspace(min(y),max(y),40));

Then we let MATLAB do the work of interpolating the original data across
the uniformly spaced region with the griddata function.

Z = griddata(x,y,z,X,Y,'cubic');

Finally, we can plot it with

mesh(X,Y,Z); % View interpolated surface
hold on;
plot3(x,y,z,'.','markersize',10); % View actual samples

0 1 2 3 4 5 6 7

0
1

2
3

4
−1

−0.5

0

0.5

1

Non−Uniformly Sampled Data using Plot3

1 2 3 4 5 6

0.5
1

1.5
2

2.5
3

−1

−0.5

0

0.5

1

Non−Uniformly Sampled Data Interpolated

Figure 4.9 Mesh plotting helps to visualize non-uniformly sampled data.

© 2003 by CRC Press LLC

The plot similar to that in Figure 4.9, with the exceptions being most evident
around the fringes of the plot since there are not any data points outside the
region with which MATLAB can estimate the surface.

4.1.5 Creating Shaded Surface Plots

Depending on the relative spacing of your data, you may want to make use
of the shading function. You may have noticed in your mesh plots that each
line segment between the mesh intersections maintains a single color attribute
over the length of the segment. With some data, this may not be appropriate
or may even be misleading, especially if the sampling interval is large.
Previously we used color to identify surface slope and height, but the sampling
interval was small. This was easy enough to do since we were dealing with
function data, but with real data, we would have been forced to resample our
data to get the smaller increments. The quick alternative solution to resampling
data more finely is to use shading function with the “interp”. This command
will interpolate the line colors so that the color varies linearly across the length
of the segment. If, after applying the interpolated shading, you determine that
this is not what you want, you can always revert back to the default line colors
by typing shading faceted or shading flat. We will revisit shading when we
discuss the ways to manipulate 3-D visualizations later in this chapter. For
now, we will discuss it in terms of the function surf.

The surf function is used identically to mesh. However, instead of the
surface being represented by a screen-like grid, surf will produce a 3-D shaded
surface. Figure 4.10 shows the example of Figure 4.4 with surf used in place
of mesh.

−2

−1

0

1

2

−2

−1

0

1

2
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

Figure 4.10 Using surf to produce a surface plot.

© 2003 by CRC Press LLC

As you can see, Figure 4.10 has the appearance of a solid surface covered
by a grid. If we did not want the grid in our plot, we can use either shading flat
or shading interp. Using shading flat removes the grid, but the coloring is still
piecewise constant, i.e., each mesh line segment has a constant color value so
you see each “patch” as shown in the left plot of Figure 4.11. Using shading
interp varies each color in a segment of the plot linearly, i.e., it interpolates the
color and results in a smooth-looking surface plot as shown in the right half of
Figure 4.11.

You can reproduce the plots of Figure 4.11 with the x, y, and z that
produced Figure 4.4 and applying the following commands.

subplot(1,2,1);surf(x,y,z); axis('tight');
shading('flat');
subplot(1,2,2);surf(x,y,z); axis('tight');
shading('interp');

4.1.6 Removing Hidden Lines

When you created a mesh plot, you might have noticed that the mesh lines
behind the mesh surface are not visible. What you have seen with the mesh
and surf functions can be likened to a solid surface made up of hills and
valleys that has a multicolored net draped over it. Depending on where you
are standing in this scene, you will not be able to see behind the hills and
down into some of the valleys. Depending on the viewpoint, certain lines are
not drawn so that the 2-D representation of the 3-D data provides a relative
perspective of the surface shape and lines defining the surface. The process of
eliminating some of the lines as a function of perspective is usually referred to

−2

−1

0

1

2

−2

−1

0

1

2

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

−2

−1

0

1

2

−2

−1

0

1

2

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

Figure 4.11 Using shading to change the appearance of surface plots.

© 2003 by CRC Press LLC

as hidden line removal. However, in some cases, you might wish to have the
hidden lines visible. The function hidden allows you to turn off or turn on the
hidden line removal. Simply put, to hide lines use hidden on and to make
them visible use hidden off. Using the function by itself will toggle between
the on and off states. Figure 4.12 shows a mesh plot of the peaks function with
hidden line removal on (default), and Figure 4.13 shows it with hidden line
removal off. Typing mesh(peaks) will produce the plot.

0

10

20

30

40

50

0

10

20

30

40

50
−8

−6

−4

−2

0

2

4

6

8

10

Figure 4.12 Hidden line removal on.

© 2003 by CRC Press LLC

4.1.7 Contour Plots

Contour plots are an excellent way of visualizing some of your matrices.
Contours represent the constant data values with lines called isolines.
MATLAB provides both 2-D (top-down view) and 3-D (perspective view)
contour plots. We cover both the 2-D and 3-D contour plots in this section
since these plots are often associated with 3-D data in some way.

The simplest way to create a 2-D contour plot is to pass your matrix, Z, with
contour(Z). MATLAB will automatically choose the number and values at
which contour lines are drawn. You can also specify either the number of
lines with contour(Z,number_of_lines) or the values at which the contour lines
will be drawn with contour(Z,vector_of_data_levels). If you want to plot only
a single contour data level, make the vector_of_data_levels a two-element
vector with both elements set to the data level you want contoured.

The three methods just mentioned are plotted versus the row and column
number of the matrix Z, such that the element Z(1,1) will be located in the
lower left-hand corner of the figure. You also have the option of defining the
x- and y-axis scaling by passing either vectors or matrices that specify the x-
and y-coordinates associated with each element of the matrix Z. If these axis
scaling matrices are used, they should be passed as the first two arguments to
the contour function, i.e.,

contour(x_scale,y_scale,Z),

contour(x_scale,y_scale,Z,number_of_lines)

contour(x_scale,y_scale,Z,vector_of_data_levels)

As an example of the contour function, the following code will generate
some data and create a contour plot as shown in Figure 4.14.

[x,y] = meshgrid(linspace(0,2*pi,30),...

0

10

20

30

40

50

0

10

20

30

40

50
−8

−6

−4

−2

0

2

4

6

8

10

Figure 4.13 Hidden line removal off.

© 2003 by CRC Press LLC

linspace(0,pi,30));
z = sin(x).*cos(y+pi/2);
% In the next line the contour plot is created for
% data levels between -1 and 1 in 0.1 intervals
% excluding the 0 data level.
contour(x,y,z,[-1:0.1:-0.1 0.1:0.1:1])
xlabel('x');
ylabel('y');
title('Contour of z = sin(x).*cos(y+pi/2)');

Notice that the color of the contours is chosen in the same manner as
colors are chosen when creating multiple lines with the plot command. In
addition, in Figure 4.14 it is impossible to tell what value the data levels
correspond to or whether there are two hills, two valleys or one hill and one
valley. Fortunately, there are two options to remedy this problem; the first is
to use the function clabel, which will attach a numeric text string to each line,
the second is to create a 3-D contour plot by passing the same arguments to
the function contour3 instead of contour.

The left half of Figure 4.15 shows how to use clabel with the data from the
previous example with:

c = contour(x,y,z,[-1:0.1:-0.1 0.1:0.1:1]);
clabel(c);

The right half shows how to specify which contour lines are labeled by
passing an additional argument to clabel as follows:

c = contour(x,y,z,[-1:0.1:-0.1 0.1:0.1:1]);
clabel(c,[-1:.2:1]);

0 1 2 3 4 5 6
0

0.5

1

1.5

2

2.5

3

x

y

Contour of z = sin(x).*cos(y+pi/2)

Figure 4.14 A simple 2-D contour plot.

© 2003 by CRC Press LLC

Note that in both cases the location of the text is randomly assigned.

You can also elect to manually select which contour lines are to be labeled
and at the same time specify the location of the text by using
clabel(c,'manual'). After you enter this command, a crosshair will appear
instead of the normal mouse pointer arrow. Click down on the mouse button
(or use the space bar) and a label will be drawn as a plus sign with a height
value and attached to the contour line that is the closest to the location you
clicked on. When you have labeled as many of the contour lines that you
want, press the return key on your keyboard while the cursor is still in the
Figure Window to indicate that you have finished.

MATLAB also provides an automatic labeling method to generate plots like
that shown in Figure 4.15. To do this you must call the contour function and
retrieve both the contour matrix and the handles of the line objects. Don’t
worry about the handles too much just yet as that will become clear in
Chapter 7. For now, you can use the following code to produce the plot in
Figure 4.16.

[C,h] = contour(x,y,z);
clabel(C,h);

0 2 4 6
0

0.5

1

1.5

2

2.5

3

−0.9−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0.

0

0.3

0.

0.5

0.6

0.7
0.8

0.9

0 2 4 6
0

0.5

1

1.5

2

2.5

3

−0.8

−0.6

−0.4

−0.2

0

0.4

0.6

0.8

Figure 4.15 Using clabel to label contour plots.

© 2003 by CRC Press LLC

MATLAB uses an algorithm to determine where the labels are to be placed.
However, you can override this algorithm and manually place the labels with,

clabel(C,h,'manual');

As when you used clabel with ‘manual’ before, cross hairs will appear on
the figure and follow the mouse pointer. The difference between this manual
method and the one without the use of the handles is that this method will not
produce a plus sign, but will put the value directly on the isoline.

Additionally, you can have clabel return the graphics handles to labels so
that you can specify the properties of the labels, such as the font size or color.
For instance, we can create Figure 4.17 with,

[x,y,z] = peaks;
% Create black dashed contours
[C,h] = contour(x,y,z,'--k');
[text_handles] = clabel(C,h);
% Modify the labels to make them bigger and blue.
set(text_handles,'fontsize',15,'color','blue');

0 1 2 3 4 5 6
0

0.5

1

1.5

2

2.5

3

−
0
.
8

−
0
.
8

−0.8

−
0
.
6

−0
.6

−
0
.
6

−0
.6

−
0
.
4

−0.4

−
0
.
4

−0.4

−
0
.
4

−
0
.
2

−0.2
−
0
.
2

−
0
.
2

−0.2

−
0
.
2

0
0

0 0
0

0
0

0

0
.
2

0.2

0
.
2

0
.
2

0.2

0
.
2

0
.
4

0.4

0
.
4

0.
4

0
.
4

0
.
6

0
.
6

0.
6

0
.
6

0
.
8

0.8

0.8

Figure 4.16 Automatic labeling of isolines.

© 2003 by CRC Press LLC

A filled contour plot displays isolines with the areas between filled with a
constant color. To create a filled contour plot, use the function contourf.
Each level of the contour is filled in with a color from the current color map.
The color corresponds to the relative height of the level in the same way that
color is chosen to represent the relative height of a surface plot. The following
code will recreate the previous example as a filled contour plot.

contourf(x,y,z,[-10:10],'--k');

The result is shown in Figure 4.18.

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

−
6

−4

−4

−
2

−2

−2

−
2

−2

0

0 0

0

0

0

0

0

2

2

2

2

2

2

2

4

4

4

6

6

8

Figure 4.17 Manipulating contour label properties.

© 2003 by CRC Press LLC

Notice that in this code the vector [-10:10] was passed to the contourf
function. The contour plotting functions accept a vector specifying the levels
at which to plot contours.

The last contouring function we will consider is the 3-D contour plotting
function contour3. This function allows you to see the relative heights of the
isolines. As with contour and contourf you can pass a vector specifying the
levels you want to plot. The following code produces the plot shown in Figure
4.19.

contour3(x,y,z,[-10:10],'-b')
axis tight

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

Figure 4.18 A filled contour plot.

© 2003 by CRC Press LLC

After you have learned more about color maps in Chapter 8, you will see just
how powerful the contouring functions can be in assisting you with collecting
more information about your data.

4.1.8 Quiver Plots

Quiver plots are used to visualize the gradient fields of either mathematical
functions or data. For instance, you can plot arrows that point in the direction
of increasing or decreasing values in a matrix and that have lengths that
indicate the relative slope of the gradient at the particular locations. The
graphics function that is used to create this type of plot is quiver. There are
several different forms that can be used, but the most general is
quiver(X,Y,PX,PY,scale,linetype_string) where the matrices X and Y define the
locations of the arrows, PX and PY matrices determine the direction and
magnitude of the arrows, the scale variable is used to adjust the length of all
arrows by the specified factor, and the linetype_string can be used to specify
the color and linestyle as was presented when the plot command was
discussed. The partial derivatives (PX and PY) of a given surface can be
obtained with the function gradient. To illustrate the quiver plotting function,
let’s look at the quiver plot of the peaks function shown in Figure 4.20.

[X,Y,Z] = peaks(20);
% Determine the spacing of X matrix elements
dy = diff(X(1,1:2));
% Determine the spacing of Y matrix elements
dx = diff(Y(1:2,1));
% Determine the partial derivatives
[PX,PY] = gradient(Z,dx,dy);
quiver(X,Y,PX,PY,1,'b');
axis([min(min(X)) max(max(X)) min(min(Y)) max(max(Y))]);

−3
−2

−1
0

1
2

3

−3

−2

−1

0

1

2

−6

−4

−2

0

2

4

6

8

Figure 4.19 Showing the relative heights of isolines with contour3.

© 2003 by CRC Press LLC

Figure 4.20 has arrows pointing in the direction of increasing Z. However, to
change the direction of the arrows to point in the decreasing Z direction, all
that is needed is to type quiver(X,Y,-PX,-PY). The first two arrow location
defining matrices can be placed with vectors using quiver(x,y,PX,PY) or
quiver(x,y,PX,PY,scale, linetype_string), where the length of x is equal to the
number of columns in PX and PY and the length of y is equal to the number of
rows in PX and PY. If it is not important to know the x- and y-axis locations of
the arrows you can use quiver(PX,PY) or quiver(PX,PY,scale,linetype_string).
The scale parameter defaults to a value of 1, indicating that MATLAB will
automatically scale the arrow length. A scale value of 0 will plot the arrow
length without scaling.

4.1.9 Combination Plots

Perhaps you have been wondering how you can combine different plot
types in order to visually correlate the information in your data? Since 2-D and
3-D representations each tend to emphasize different aspects of the
information in a plot, the combination of a surface plot with a contour plot, for
example, of the same data would present a great deal of information in a
compact form. There are a couple of MATLAB functions that will create useful
combination plots, but it is very easy to create your own functions to produce
just the combination plots you want. However, before you can design a truly
custom combination plot, you will need to learn a little more about graphics
objects and their properties so that you can manipulate them to your liking.
Once you see how easily creating your own graphics functions can be
accomplished, you will only be limited by your imagination with regard to
adding new functionality in your repertoire of M-files.

If it hasn’t occurred to you yet, you have already looked at some simple
combination plots when we used the hold function to overlay line plots within
the same figure. The same can be done with any of the other graphics

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

Figure 4.20 A quiver plot of the peaks function.

© 2003 by CRC Press LLC

creating functions. For example, in many cases the information provided by a
flat quiver plot can be made easier to comprehend by overlaying a contour
plot. Let’s take the quiver plot example shown in Figure 4.20, and overlay the
corresponding contour. First, create the contour with

[X,Y,Z] = peaks(20);
% Determine the spacing of X matrix elements
dy = diff(X(1,1:2));
% Determine the spacing of Y matrix elements
dx = diff(Y(1:2,1));
% Determine the partial derivatives
[PX,PY] = gradient(Z,dx,dy);
quiver(X,Y,PX,PY,1,'b');
axis([min(min(X)) max(max(X)) min(min(Y)) max(max(Y))]);
then type
hold on

and create the contour overlay with

[C,h] = contour(X,Y,Z,[-8:2:8]);
clabel(C,h);

which will produce the result shown in Figure 4.21. This plot is much more
informative than the plot that either quiver or contour could have provided by
themselves.

As another example, we can create a three-dimensional quiver plot combined
with a surface plot. The 3-D quiver plot can be created using MATLAB’s

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

−6

−4

−4

−
2

−2

−2

−
2

−2

0

0 0

0

0

0

0

22

2

2

2

2

2

4

44

6

6

Figure 4.21 A quiver and contour combination plot.

© 2003 by CRC Press LLC

quiver3 function. Using the peaks function as in the previous example the
following code will create the data and plot it as shown in Figure 4.22.

[X,Y,Z]=peaks(20);
% Determine the surface normals
[U,V,W] = surfnorm(X,Y,Z);
% Generate the 3D quiver plot
quiver3(X,Y,Z,U,V,W);
hold on;
% Now add the surface plot
surf(X,Y,Z);
hold off

As the previous examples show, combining different plot types can provide
significant insight into data. In these cases, the plots were of the same
dimension. The MATLAB plot axes are designed to allow any type of plot to
be combined with any other. As such, you can readily combine 2-D and 3-D
plots.

As you have seen, the hold function allows different plots in the same axes.
In addition to using hold, MATLAB provides two specific combination plots
that combine a contour plot with either a mesh or surface plot. The first
function meshc will create a mesh plot with a contour plot directly below it.
The following example will help you better understand how this type of plot
might be used. Consider the surface defined by the equation z = sin(x + sin(y))
- x/10. The first step is to create the surface over some values of x and y.

[x,y] = meshgrid(0:.25:4*pi);
z = sin(x+sin(y))-x/10;

−4

−2

0

2

4

−4

−2

0

2

4
−8

−6

−4

−2

0

2

4

6

8

Figure 4.22 A combined 3-D quiver and surface plot.

© 2003 by CRC Press LLC

The plot shown in Figure 4.23 and Plate 4 is achieved by simply plotting the
surface with

meshc(x,y,z);

In a similar manner, a combination surface and contour plot can be created
with the command surfc. As an example, we can use besselj (the bessel
function) to generate some data in the following example which is plotted in
Figure 4.24 (see also Plate 5).

[x,y] = meshgrid(-5:.4:5);
z = abs(besselj(0,abs(x)+abs(y)))+.01;
surfc(x,y,10*log10(z));

0
2

4
6

8
10

12
14

0
2

4
6

8
10

12
14
−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

Figure 4.23 Using meshc to create a mesh – contour combination plot.

© 2003 by CRC Press LLC

As you experiment with the surfc and the meshc functions you will notice
that the contour is always plotted at the lowest z-axis limit that appears in the
figure. In many cases this is simply unacceptable since the contour can be
easily obscured by the surface or mesh plot. If you are lucky enough to
choose a function that shows you enough of the contour when using these
two functions, then great! But if you are not so lucky, and generally speaking
you won’t be, it does not mean that these combination plot functions will be
useless. One rather obvious work around is to simply use the view axis tool in
the Figure Window, or to use the function view. The default perspective sets
the observer at -37.5º azimuth and 30º elevation (i.e., view([-37.5 30])). You
could just lower the elevation so as to peek under the surface a bit more,
perhaps with view([-37.5 15]). The problem with this is that the perspective of
the plot is changed, likely making it difficult to extract information from the
contour lines or the surface plot, and therefore may not be desirable for some
data sets. The real solution lies in using a little Handle Graphics. Although we
will explore the topic rather thoroughly in Chapter 7, just as in the last
example of Section 3.4.1, we will resort to a little Handle Graphics here. After
you have grasped the concepts in Chapter 7, this example will seem very
simple and straightforward to you. In the meantime, you can merely resort to
this technique as it is, and dig under the surface of what is going on later.

Our best solution is to relocate the contour plot, i.e., offset it, to a level
where the surface or mesh plots cannot obscure it. Simple enough in concept,
but how is this accomplished? As we will discuss in Chapter 7, we will take
advantage of one of the properties of the contour plot, that is its Zdata. Later
you will learn that everything in MATLAB is an object and every object has
properties, and you can change the value of those properties. Without further
explanation, the process here requires two steps. First we must get “handles”
to the part of the plot we want to affect, in this case the contour plot lines.

−5

0

5

−5

0

5
−20

−18

−16

−14

−12

−10

−8

−6

−4

−2

0

Figure 4.24 A surface – contour combination plot made with surfc.

© 2003 by CRC Press LLC

Second, we will use the handles to the plot lines to access the z-axis data and
add an offset to it. Consider again the plot shown in Figure 4.24. Calling surfc
as shown here will not only plot the data, but will also return the “handles” to
what we want in H.

H=surfc(x,y,10*log10(z));

In this case, the first handle returned in H belongs to the surface; the
remaining handles belong to the contours we want to change. We can lower
the contour plane, by subtracting 5 (adding an offset of –5) from the value of
each z coordinate of each contour line. Here is the code that does it.

H=surfc(x,y,10*log10(z));
for i = 2:length(H);
 newz = get(H(i),'Zdata') - 5;
set(H(i),'Zdata',newz)
end

Figure 4.25 shows the “before and after” of offsetting the contour plot from
the surface plot.

We can’t just simply subtract 5 from z since that would alter the surface
portion of the plot. The solution shown here preserves the original data.

4.1.10 3-D Stem Plots

Stem plots were introduced in Chapter 3 and we discussed how they are
useful for visualizing discrete data sequences such as sampled time series data.
Similar to the stem function, stem3 creates vertical lines terminated with a

� � � � � �

−5

0

5

−5

0

5

−20

−18

−16

−14

−12

−10

−8

−6

−4

−2

0

−5

0

5

−5

0

5

−25

−20

−15

−10

−5

0

Figure 4.25 Before and after contour plot shifting.

© 2003 by CRC Press LLC

symbol but instead of emanating from the y-axis as in the case of stem, the
lines emanate from the xy-plane. The forms of this function are:

stem3(Z) plots the discrete surface Z as stems from the xy-plane terminated
with circles for the data value.

 stem3(X,Y,Z) plots the surface Z at the values specified in X and Y.

 Using the keyword string ‘filled’ will create the stem plot with filled markers
just like with stem. Also, you can specify the style of lines and markers used
just as with the plot function (refer to Table 3.3.1).

As an example, we can visualize the sine from 0 to 2π around a unit circle
with the following code.

theta = 0:.2:2*pi;
x=sin(theta);
y=cos(theta);
z=sin(theta);
stem3(x,y,z);
hold on
plot3(x,y,z,'r')
plot(x,y)
title('Sine Along the Unit Circle')
zlabel('Sin(theta)')

 This code also plots the unit circle as well as a red line through the stems as
shown in Figure 4.26.

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Sine Along the Unit Circle

S
i
n
(
t
h
e
t
a
)

Figure 4.26 A 3-D stem plot with supporting line plots.

© 2003 by CRC Press LLC

4.1.11 Generating Surfaces with Triangles

As you may have noticed, the surf and mesh functions use quadrilaterals as
defined by neighboring vertices in your X, Y, and Z matrices to generate the 3-
D mesh or surface plot. In some instances, you may have data that you want
displayed by a set of triangles. The functions trimesh and trisurf can be used
to generate a triangular mesh and surface plot respectively.

Both of these functions have the same synopsis and are therefore
completely interchangeable. After you have learned more about object types
in Chapter 7, you should revisit these two functions and notice that the two
functions create the same object with only minor changes in the attributes of
that object.

To help you understand how these functions work, we will look at a simple
example. Let’s say we have the data points as described in the following code
and shown in Figure 4.27.

x = [0 1 1 0 0.5 0.5]
y = [0 0 1 1 0.5 0.5]
z = [0 0 0 0 1 -1];
plot3(x,y,z,'o','markersize',4,...
 'markerfacecolor','black');
axis equal;
grid;
for i=1:length(x)
 text(x(i),y(i),z(i),num2str(i),...
 'verticalalignment','bottom');
end

0

0.5

1

0
0.2

0.4
0.6

0.8
1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

2

3

6

5

1

4

Figure 4.27 Data points for a triangular plot.

© 2003 by CRC Press LLC

We can then create a set of eight triangles: one face that connects data
points 1, 2, and 5, another for data points 2, 3, and 5, another for data points
3, 4, and 5, another for 4, 1, and 5, another for 1, 2, and 6, another for 2, 3,
and 6, another for 3, 4, and 6, and a final one for 4, 1, and 6. This is done by
creating an mx3 matrix, where each of the m rows represents a triangle by
identifying the three indices in the x, y, and z vectors that make up the three
vertices of the triangle. Continuing with the x, y, and z data we’ve just created,
the following code will create this matrix and produce the plot shown in Figure
4.28.

%specify the triangles
tri=[1 2 5;
 2 3 5;
 3 4 5;
 4 1 5;
 1 2 6;
 2 3 6;
 3 4 6;
 4 1 6];
% generate the triangular mesh plot
hold on;
trimesh(tri,x,y,z,'edgecolor','black');

0

0.5

1

0
0.2

0.4
0.6

0.8
1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

2

3

6

5

1

4

Figure 4.28 Triangular meshplot of the three data points.

© 2003 by CRC Press LLC

Each row of the matrix tri specifies the points that constitute each face of the
object.

Using the peaks function that we saw in the earlier surface plots, we can
see that the trisurf function can also be used as a way to get a look at a
surface from a set of non-uniformly sampled data points. Consider the
following code that will generate the surface shown in Figure 4.29.

x = 6*rand(1,500)-3;
y = 6*rand(1,500)-2;
z = x .* exp(-x.^2 - y.^2);
tri = delaunay(x,y);
trisurf(tri,x,y,z);
grid on;

The delaunay function creates a triangular grid for scattered data points by
returning a set of triangles such that no data points are contained in any
triangle's circumcircle. Put in simpler terms, each point is matched with its
natural neighbors (as determined by the underlying algorithm) to produce a
triangle, a circle about which will cover no other data points. This will assure
that there are the required three data points to define a triangle. Try playing
around with this code by running it multiple times and so producing a new
data set with rand, and by changing the number of data points affecting the
number of triangles.

4.1.12 Polygons in a 3-D Space

In Chapter 3 we saw that 2-dimensional polygons could readily be created
with the MATLAB fill function. Just as plot3 was the 3-dimensional
counterpart to plot, fill3 is the 3-dimensional counterpart to fill. The

−3
−2

−1
0

1
2

3

−2

−1

0

1

2

3

4
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

Figure 4.29 Visualizing non-uniformly sampled data points using trisurf.

© 2003 by CRC Press LLC

command fill3 is used in the same way as fill but with an additional vector or
matrix used to define the z-axis coordinates of the polygon. So, for example,
where you used the form fill(x,y,color_string), you could now use
fill3(x,y,z,color_string). When we discuss handle graphics in Chapter 7 we
will consider the patch function, which enables you to create any sort of
polygon and mix and match them. We save this for the discussion on handle
graphics since you will need to have a firm grasp (pun intended) on the
concepts of objects and properties.

4.1.13 Built-In Surface Functions

You have already seen that MATLAB provides a built-in surface function
called peaks. Although useful for demonstration purposes, peaks isn’t all that
practical. Of course, in theory anyway, you can always create your own
functions for any surface you desire. Fortunately, MATLAB includes three very
useful surface generating functions in its base set of graphics commands. You
can generate spheres, ellipsoids, and cylinders without determining what the
coordinates of the surface vertices should be.

The command sphere(n) will generate a plot of the unit sphere. The sphere
will be defined with (n+1)2 points. If you do not supply a number to this
graphics function, n will default to 20. You also have the option of having the
function pass the (x,y,z) coordinates of the sphere by using output arguments
with the sphere command. When the function is used in this manner the plot
will be suppressed. This allows you to alter the coordinates of the sphere and
then plot it with the mesh or surf commands. For instance, we could scale a
sphere and translate it in the 3-dimensional space. The following code will
plot both a translated version of the unit sphere, which is centered on
something other than the point (0,0,0), and a scaled version of the unit sphere.
Figure 4.30 shows the result.

[x,y,z] = sphere(25);
surf(x-3,y-2,z); %translated
hold on
surf(x*2,y*2,z*2); %scaled

© 2003 by CRC Press LLC

The ellipsoid function is actually based on the sphere function and
produces x, y, z coordinates for the ellipsoid described by the equation,

1
222

=






 −
+









 −
+







 −

z

c

y

c

x

c

r
zz

r
yy

r
xx

Where cx , cy , and cz are the centers of the radii and xr , yr , and zr are

the radii in the corresponding axis. The general form of the ellipsoid function
is [x,y,z]=ellipsoid(xc,yc,zc,rx,ry,rz,n). As with the sphere function, n relates to
the number of data points computed and is assumed to be 20 if it is not
otherwise specified. As an example, the plot shown in Figure 4.31 depicts an
ellipsoid centered at x=2, y=0, and z=2, with x-radius = 2, y-radius = 1, and z-
radius = 1. (Figure 4.31 is actually a combination plot; we’ve included the
contour in order to better visualize the elliptical shape.) The following code
will produce Figure 4.31.

[x,y,z]=ellipsoid(2,0,2,2,1,1);
surf(x,y,z);
axis([0 4 -2 2 0 4]);
hold on
contour(x,y,z);

−4
−3

−2
−1

0
1

2

−3

−2

−1

0

1

2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Figure 4.30 An example using the sphere function.

© 2003 by CRC Press LLC

Note that if you specify an ellipsoid with all radii equal to 1, you will create
the unit sphere.

The final built-in surface function MATLAB includes is cylinder. When
cylinder is called without any input or output arguments it creates a 3-
dimensional perspective of a unit cylinder, i.e., radius of one and height of
one, standing upright. Calling the function with output arguments will return
matrices that specify the coordinates, (x,y,z), of the vertices that define the
cylinder in the 3-dimensional space. This data is then useable by surf or mesh
to create a plot of the surface. There are two optional input arguments that
can be used in which case the function takes the form cylinder(R,N). The first
input argument, R, is a radius vector that defines the radius of the cylinder at
equally spaced points along the cylinder’s height, i.e., the z-axis direction. A
mathematical function can be used to generate R and so create a cylinder with
radial profile described by that function. By default, the vector defining the
radius is set to [1 1]. A cone, for instance, would be created using

cylinder([0 1])

The second input argument, N, is an integer that specifies how many points
will be used to define the circumference of the cylinder. As with its
counterpart in sphere and ellipsoid, the default value is 20. The height of the
cylinder is always scaled to run between 0 and 1; but you can scale the height
by calling the function with output arguments, then manipulating the matrix
defining the z-coordinates of the vertices, and use surf or mesh to create the
surface.

We can easily make regular cylinders with cylinder, but it is much more
interesting to use a function to create a radial profile and then create a
cylinder with that. To illustrate what the function cylinder can do, let’s work
with the mathematical expression

0

1

2

3

4

−2

−1

0

1

2
0

0.5

1

1.5

2

2.5

3

3.5

4

Figure 4.31 An example using data created with the ellipsoid function

(contour included for clarity).

© 2003 by CRC Press LLC

 200
2

)2sin()cos(
x
exxr ⋅⋅=

for x between -3π and 3π. The following code generates a plot of the radial
profile of the cylinder that we are about to create as shown in the left panel of
Figure 4.32.

% Define the x data range
x = linspace(-3*pi,3*pi,50);
% Evaluate the function
r = cos(x).* sin(0.5*x)*exp((x.^2)/200);
% Force the minimum radius to zero.
r = r - min(r);
plot(r,linspace(0,1,length(r)));
title('Radial Profile');
ylabel('z')

Try to imagine spinning this radial profile about the z-axis in a manner that
pushes the profile into and out of the page. The elements of the radial vector,
r, do not need to be all positive quantities. For example, in the previous set of
MATLAB instructions,

r = r-min(r);

forced the minimum radius to equal zero. Now we can use the cylinder
function to visualize the radial profile as shown in the right panel of Figure
4.32.

cylinder(r);

0 1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Radial Profile

z

−4

−2

0

2

4

−4

−2

0

2

4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Resulting Cylinder

z

Figure 4.32 A function-described radial profile and its corresponding

cylinder.

© 2003 by CRC Press LLC

The central axis of any shape created with cylinder is defined by a line that
is perpendicular to the xy-plane and passes through the coordinate (0,0) in this
plane. If you need to redefine the central axis location or scaling in any of the
coordinate directions, first obtain the vertex coordinates with

[X,Y,Z] = cylinder(r);

then scale by multiplying one or more of these matrices by some factor, or
translate by adding a constant to one or more of the matrices. Finally,
generate the surface with one of mesh or surf.

4.2 Simple 3-D Plot Manipulation
In Chapter 3 we presented plot editing using the tools available in the

Figure Window. These tools are just as applicable in the 3-D case as they are
for 2-D plots. The Insert Text, Insert Arrow, etc., all work just as in the 2-D
case; however be aware that if you annotate your plot before rotating it, the
annotations will not move with the plot. This can lead to confusion and
frustration so the rule of thumb is to set your view before you begin
annotations. Simply select the cursor icon in the Figure Window toolbar to
enter the plot edit mode, or type plotedit at the command prompt in the
Command Window. Then, just as in the 2-D case, you can access each object
in the figure and edit their properties by a simple point-and-click interface.

4.2.1 The Camera Toolbar

We did not cover the camera tools in the discussion of the Figure Window
tools in Chapter 3 as this is much more meaningful when dealing with 3-D
plots. Although using the camera tools might seem like animation, and in a
way it is, we reserve Chapter 9 for a detailed discussion of “proper” animation.
Here we will only deal with “simple” uses of the camera, namely those
available from the Figure Window toolbar. To facilitate this discussion, open
the Figure Window by creating a surface plot of the peaks function.

surf(peaks(30))

Now select View →→→→ Camera Toolbar. When you do, the Camera Toolbar will
appear in the Figure Window looking like Figure 4.33.

© 2003 by CRC Press LLC

The Camera Motion Controls let you select different camera motion
controls such as those that will orbit the camera or scene lighting, pan or tilt
the camera, move the camera in and out, etc. The Principal Axis Selection
tools provide a choice of axis about which some of the camera controls will
operate. The Scene Lighting tool is a toggle that switches a light on or off. It
can be useful in emphasizing the elevations and valleys in a surface. The
Projection Type tool lets you choose between orthographic and perspective
projections. Table 4.2.1 summarizes the two projection types, their
consequences, and their use. The last two tool buttons, Reset Camera and
Scene Light, and Stop Camera/Light Motion, let you reset the scene to the
standard 3-D view and stop the camera from moving. In the next section, we
will discuss the axis in general as it relates to 3-D graphics. In Chapter 7 we
will explore the camera and how to program its properties using Handle
Graphics.

� � � � � � � � � 	
 � � � � � � 	 � � �

� �
 � �
 � � � � � �

� � � � � 	
 � �

� � � � �

�
 � � 	
 � �

� � � � � � 	
 � �

� � � �

� � � � � � � �
 � 	

�

� � � � � � � � 	 � �

Figure 4.33 The Camera Toolbar in the Figure Window.

© 2003 by CRC Press LLC

Table 4.2.1 Projection Types

Projection Type How to Interpret How to Use

Orthographic
Projection

Think of the “viewing
volume” as a box
whose opposite sides
are parallel, so the
distance from the
camera does not affect
the size of surfaces in
the plot

Used to maintain the actual
size of objects and the angle
between objects. This works
well for data plots. Real-world
objects look unnatural.

Perspective
Projection

The “viewing volume”
is the projection of a
pyramid where the
apex has been cut off
parallel to the base.
Objects further from
the camera appear
smaller.

Used to create more “realistic”
views of objects. This works
best for real-world objects.
Data plots may look distorted.

You can use the tools provided in the Figure Window to fine tune your
plots, and it works well for single-use purposes, however the real power of
MATLAB is in its programmability. Next, we will see how to manipulate the
axis in code, as well as high-level color and shading manipulation.

4.2.2 Generalizing the Axis for 3 Dimensions

The axis function we used in Chapter 3 (axis([xmin xmax ymin ymax])) is
fully generalized as axis([xmin xmax ymin ymax zmin zmax cmin cmax]),
where xmin, ymin, and zmin are respectively the minimum x-, y-, and z-axis
values, xmax, ymax, and zmax are the respective maximum x-, y-, and z-axis
values, and cmin and cmax are color scaling limits. Uses such as axis('equal'),
axis('ij'), and axis('xy') also manipulate the 3-D plot but only the x- and y-axis of
the current plot are affected as discussed in Chapter 3. Table 4.2.2 summarizes
the axis function syntax and its affect on a plot.

© 2003 by CRC Press LLC

Table 4.2.2a Summary of the Axis Function

Syntax Affect

axis([xmin xmax ymin
ymax])

Sets the x- and y-axis limits .

axis([xmin xmax ymin
ymax zmin zmax cmin
cmax])

Sets the x-, y-, and z-axis limits and
the color scaling limits.

v = axis

Returns a row vector containing the
x-, y-, and z-axis limits, i.e., scaling
factors for the x-, y-, and z-axis.

axis auto

Computes the current axes' limits
automatically, based on the
minimum and maximum values of x,
y, and z data.

axis ‘auto x’
“ “‘auto y’
“ “‘auto x’
“ “‘auto xz’
“ “‘auto yz’
“ “‘auto xy’

Computes the indicated axis limit
automatically.

axis manual

Freezes scaling of the current limits.
Used with hold forces subsequent
plots to use the same limits.

axis tight

or
axis fill

Sets the axis limits to the range of
the data.

axis ij

Sets the origin of the coordinate
system to the upper left corner. The
i-axis is vertical, increasing from top
to bottom. The j-axis is horizontal,
increasing from left to right.

axis xy

This is the default coordinate system
with the origin at the lower left
corner. The x-axis is horizontal
increasing from left to right, and the
y-axis is vertical increasing from
bottom to top.

© 2003 by CRC Press LLC

Table 4.2.2b Summary of the Axis Function

Syntax Affect

axis equal

Sets the aspect ratio of the x-, y-, and
z-axis automatically according to the
range of data units in the x, y, and z
directions so that the data units are
the same in every direction. This
makes a sphere look like a sphere
instead of an ellipsoid.

axis image

The same as axis(‘equal’) but also
makes the plot box fit tightly around
the data.

axis square

Adjusts the x-, y-, and z-axis so that
they have equal lengths. This makes
the axes region of 2-D plots square
and of 3-D plots cubed.

axis vis3d

Freezes the aspect ratio so that
rotation of 3-D objects will not
“stretch-to-fill” the axes.

axis normal

Automatically adjusts the aspect
ratio of the axes and data units on
the axes to fill the plot.

axis off

or
axis on

Turns off or on all axis lines, tick
marks, and labels.

[mode,visibility,direc
tion] = axis('state')

Returns the strings indicating the
current axes settings:
mode = ‘auto’ or ‘manual’
visibility = ‘on’ or ‘off’
direction = ‘xy’ or ‘ij’

4.2.3 3-D Plot Rotation

As you recall from Chapter 3, the Figure Window provides some specific
tools for modifying the appearance of your plot. Recall the zooming and
rotating buttons; these are still very much functional, and even more useful,
with a 3-D plot. Figure 4.34 depicts the peaks function plotted differently in
four subplots. Each subplot has been altered using either the zoom or rotate
buttons. To zoom or rotate a subplot using the buttons, simply click on the
button you wish to apply, then start clicking in the subplot. Notice that
zooming changes the size of the axes by a factor of two in the subplot and
can quickly overwhelm the other subplots.

© 2003 by CRC Press LLC

As you click on a plot to rotate it, if you hold the mouse button down you
will see that MATLAB creates a reference box around the plot. You will also
notice that the azimuth and elevation specifying the rotation is displayed in the
Figure Window, but only as long as you keep the mouse button depressed.
Figure 4.35 shows what you can expect to see.

Figure 4.34 The results of using the zooming and rotation tools from the

Figure Window.

Figure 4.35 The rotation box is visible while the mouse button is

depressed.

© 2003 by CRC Press LLC

The rotate tool can also be activated from the command line or M-File with
rotate3d. In the next section we will discuss how to exercise greater control
over our point-of-view of a 3-D plot.

4.2.4 Using the View Command

In the previous section, we saw how to use the rotation button to change
the aspect, i.e., our point of view, of a 3-D plot. You noticed that as you kept
the mouse button depressed, the Figure Window would indicate the aspect in
terms of azimuth (Az) and elevation (El). You can achieve the same results
from the command line or in your M-Files but with greater control by using the
view function. The function view is used to specify the aspect you want to use
to view a 3-D plot. You use it by calling it explicitly with two input arguments
specifying the value of azimuth and elevation, or with a single input, being a
vector with the values as its elements. When called with a two-element vector
as an output argument, view will return the aspect currently in use.

In its simplest form, the function is used by passing an azimuth (Az) and
elevation (El) angles in degrees as input arguments with

view(Az,El)

 or with a single vector variable with two elements,

view([Az El])

The angles are defined with respect to the axis origin, where the azimuth
angle, Az, is in the xy-plane and the elevation angle, El, is relative to the x-y
plane. Figure 4.36 depicts how to interpret the azimuth and elevation angles
relative to the plot coordinate system.

© 2003 by CRC Press LLC

If you call view after creating a 3-D plot, it will return the current azimuth
and elevation of the plot. If you have not previously changed these values,
then this will return the default values of az = -37.5o and el = 30o. Consider
again the surface plot of the peaks function.

surf(peaks(20))

The code,

[az el]=view

will return

az =

 -37.5000

el =

 30

which are the default values for the azimuth and elevation.

As you have seen already, you can use the rotate tool from the Figure
Window and change the aspect of the view of your plot. Let’s say that you
have been merrily rotating away at your plot with the rotate tool, and now you
have discovered that you can’t tell up from down in the figure. In such a

� �

� �

� �

� �

� �

� �

� �

� �

Figure 4.36 The point-of-view in a 3-D plot.

© 2003 by CRC Press LLC

situation, which happens more often than you might expect, view can come to
your rescue. One way to use view is to issue the function with the default
azimuth and elevation values.

view(-37.5, 30)

However, even more convenient, the view function has two very simple
forms that can help you when you get in such a bind. The forms of the
function

view(3)

and

view(2)

will restore the current plot to the default 3-D or 2-D views respectively.
Again we visit the function peaks, this time presenting multiple views of it
using the view function, as shown in Figure 4.37, created with the following
code.

azrange=-60:20:0;
elrange=0:30:90;
spr=length(azrange);
spc=length(elrange);
pane=0;
for az=azrange
 for el=elrange
 pane=1+pane;
 subplot(spr,spc,pane);
 [x,y,z]=peaks(20);
 mesh(x,y,z);
 view(az,el);
 tstring=['Az=',num2str(az),...

' El=',num2str(el)];
 title(tstring)
 axis off
 end
end

© 2003 by CRC Press LLC

4.3 Volume Visualization
In the 3-D visualization methods discussed so far, we have been concerned

with surfaces. Volume visualization is concerned with representing a three-
dimensional matrix of points, i.e., a volume, in which each point can be either
a scalar (magnitude only) or vector (magnitude and direction). Scalar data is a
single value for each point, while vector data for a point is either two or three
values. Knowing the difference between scalar and vector volume data
determines which techniques are better suited for your visualization. In short,
since scalar data presents amplitude at a point within a volume, they are best
visualized with isosurfaces, slice planes, and contour slices. On the other hand,
vector data represents both magnitude and direction at a point in a volume so,
consequently, techniques such as particle, ribbon, tube, cone, and arrow plots
are more appropriate. Keep in mind, just as we have seen already, that when it
comes to data visualization, a combination of techniques is often the most
effective at conveying the salient information in any instance of visualization –
even more so with volume visualization. The document that came with your
MATLAB software (if you don’t have it in printed form, it will be included in
your document disk), Using MATLAB Graphics, presents an excellent treatment
of volume visualization and includes some striking examples. We will touch on
the highpoints of volume visualization in this section and use the example data
that comes with MATLAB in examples here.

4.3.1 Scalar Volume Data

MATLAB includes a host of functions specifically designed for scalar volume
data visualization. In general, X, Y, and Z are arrays that specify the points on
the x-, y-, and z-axis at which volume data, V, is provided. Table 4.3.1 lists
those functions, but be sure to read the command prompt help for each

Az=−60 El=0 Az=−60 El=30 Az=−60 El=60 Az=−60 El=90

Az=−40 El=0 Az=−40 El=30 Az=−40 El=60 Az=−40 El=90

Az=−20 El=0 Az=−20 El=30 Az=−20 El=60 Az=−20 El=90

Az=0 El=0 Az=0 El=30 Az=0 El=60 Az=0 El=90

Figure 4.37 Multiple views of the peaks function.

© 2003 by CRC Press LLC

function to see all the capabilities. The functions that produce plots return
handles to the graphics objects they create.

Table 4.3.1 Scalar Volume Computation Functions

Function Action

FVC =
isocaps(X,Y,Z,V,ISOVALUE)

Computes an isosurface end cap geometry
for data V at isosurface value ISOVALUE
and returns a structure containing the faces,
vertices, and colors of the end cap which
can be passed directly to the patch
function.

NC =
isocolors(X,Y,Z,C,VERTICES)

Computes the colors of isosurface vertices
VERTICES using color values C and
returning them in the array NC.

N =
isonormals(X,Y,Z,V,VERTICES)

Computes the normals (N) of isosurface
vertices VERTICES by using the gradient of
the data in V.

FV =
isosurface(X,Y,Z,V,ISOVALUE)

Extracts an isosurface at ISOVALUE in the
volume V, returning the structure FV
containing the faces and vertices of the
isosurface, suitable for use with the patch
function.

NFV = reducepatch(P,R) Reduces the number of faces in a patch P
by a fraction R of the original faces. It
returns the structure NFV containing the
new faces and vertices.

[NX, NY, NZ, NV] =
reducevolume(X,Y,Z,V,[Rx Ry
Rz])

Reduces the number of elements in a
volume by only keeping every Rx, Ry, Rz
element in the corresponding x, y, or z
direction.

NFV = shrinkfaces(P,SF) Reduces the size of patch P by shrink factor
SF, returning a structure NFV containing the
new faces and vertices.

W = smooth3(V,’gaussian’, SIZE)
W = smooth3(V,’box’, SIZE)

Smooths the data in V according to the
convolution kernel of size SIZE specified by
the given string.

FVC = surf2patch(S) Converts a surface object S into a patch
object. FVC is a structure containing the
faces, vertices, and colors of the new patch.

[NX, NY, NZ, NV] =
subvolume(X,Y,Z,V,LIMITS)

Extracts a subset of volume data from V
using limits LIMITS = [xmin xmax ymin ymax
zmin zmax].

contourslice(X,Y,Z,V,Sx,Sy,Sz) Draws contours in a volume slice plane at
the points in the vectors Sx, Sy, and Sz.

patch(x,y,z,C) Creates a patch in the 3-D space of color
defined by C.

slice(X,Y,Z,V,Sx,Sy,Sz) Draws a slice plane described by the
vectors Sx, Sy, Sv, through the volume V.

© 2003 by CRC Press LLC

4.3.1.1 Slice Planes

When 3-D surface plots or contours are not sufficient for visualizations, an
example of which might be determining the heat transfer or density
characteristics of a solid object, you will most likely have a need for the slice
function. Table 4.3.1b presents the general form of the slice function, however
it can also take on a number of other forms, based on the input provided.

The slice function will plot “slices” of the volumetric data, V, along planes
which are perpendicular to either the yz-, xz-, or xy-axis planes at locations Sx,
Sy, or Sz on the respective x-, y-, or z-axis. These can be multiple slices on each
axis. This is best explained by example; consider the scalar volume bounded
by

[x,y,z] = meshgrid(-2:.2:2, -2:.2:2, -2:.2:2);

and defined by

v = x .* exp(-x.^2 - y.^2 - z.^2);

We can use the function slice to visualize slices through the volume, in this
case at planes at x = 1, y = 0, and z = 0, as shown in Figure 4.38.

slice(x, y, z, v,1,0,0)
axis tight

−2

−1

0

1

2

−2

−1

0

1

2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Figure 4.38 Slicing through a scalar volume.

© 2003 by CRC Press LLC

MATLAB doesn’t limit you only to slices parallel to one of the axis planes.
However, creating slice planes at arbitrary angles does require just a little bit of
handle graphics. Here are the steps to slice with a plane at an arbitrary angle:

1. Create the surface to slice with by defining a surface and
rotating it. You will need the handle to that surface in the
following steps, so get it too. Here we use the bounds of the
original volume as the bounds of our slice plane; notice how
the z-axis is zeroed.

Hslice = surf(-2:.2:2, -2:.2:2, zeros(length(z)));

2. Rotate the slicing surface to the desired angle using the
rotate function. Here we rotate only about the x-axis.

rotate(Hslice,[-1 0 0],-45);

3. Use the get function to retrieve the data that defines the
rotated slice plane.

xs = get(Hslice,'XData');
ys = get(Hslice,'Ydata');
zs = get(Hslice,'Zdata');

4. Use slice to plot the new slice plane.

slice(x,y,z,v,1,0,Inf)
hold on
slice(x,y,z,v,xs,ys,zs)

The result is shown in Figure 4.39.

� � � � � �

© 2003 by CRC Press LLC

4.3.1.2 Contour Slices

Contour lines can be added to slices readily with the function contourslice.
This function is shown in its general form in Table 4.3.1b and as with other
volume visualization functions, it takes the arrays defining the volume space
(X, Y, and Z), and the value for the volume (V), but it also requires the slice
plane specification (Sx, Sy, Sz). By default, contourslice will automatically
assign contour line colors based on the value of the volume, but usually when
we are combining slices with contours, we want our contour lines to be a
single easy to see color and let the slice provide the color indicating the value
of the volume. However, to do so requires the application of a little Handle
Graphics, so without apology we present here the solution, as in the previous
example. Let’s say we want to add white contour lines to the plot in Figure
4.39. This might seem a little challenging at first since our view includes both a
vertical slice and then an intersecting slice at 45 degrees. Continuing with the
previous example, here’s how to do it:

Hcs=contourslice(x,y,z,v,1,0,Inf,20);
set(Hcs,'EdgeColor','white','LineWidth', 1.0);

The first line plots 20 contour lines on the x = 1 plane and returns the handles
to them. The set function, which you will learn more about in Chapter 7, is
then used to set the color of the contour lines to white and the width of the
lines to 1 (which is wider than the default hairline width).

For the 45-degree plane, we must be sure to use the slice plane data that
defines that slice, i.e., xs, ys, and zs in this example.

Hcs=contourslice(x, y, z, v,xs,ys,zs,20);

−2

−1

0

1

2

−2

−1

0

1

2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Figure 4.39 A slice at –45 degrees.

© 2003 by CRC Press LLC

set(Hcs,'EdgeColor','white','LineWidth', 1.0);

Figure 4.40 (see Plate 6) shows the result. Note that you do not have to have
hold on with contourslice since it will hold the current plot itself.

As a final note about slice planes, they don’t have to be planes at all!
MATLAB allows you to use any surface you care to create in defining, what is
more properly stated as, the slicing surface. To illustrate this, let’s continue
with this same data, and slice it with the surface of a unit sphere.

First, put a slice in the original volume at x = 1. Be sure that hold on is
activated.

slice(x, y, z, v,1,0,0)
hold on

Then get the surface definition for a sphere using MATLAB’s convenient
sphere function. Recall that sphere will create a unit sphere centered at zero.

[xss,yss,zss]=sphere;

Now slice the volume with the sphere surface, and adjust the perspective with
view for a better look.

slice(x,y,z,v,xss,yss,zss);
view([-29,12]);
axis tight

Your plot should look something like the one shown in Figure 4.41.

−2

−1

0

1

2

−2

−1

0

1

2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Figure 4.40 Contour lines on slice planes.

© 2003 by CRC Press LLC

4.3.1.3 Isosurfaces and Isocaps

Another interesting and insightful method of volume visualization is to
identify a surface throughout the space where the value of the volume is a
constant. Just like contour lines connect values of z that are equal in a 2-D
space where z=f(x,y), the function isosurface will outline in a volume where
v=f(x,y,z) is a constant. To illustrate this, we will use a demonstration function
included with MATLAB called flow. This is a function in three variables, and
represents the speed profile of a submerged jet in an infinite tank. We like it
because it produces an image with changing contours that readily illustrates
interesting features of volume visualization. Let’s say we want to look at the
flow data where it is equal to -1.5.

[x y z v] = flow;
isosurface(x, y, z, v, -1.5);

The resulting plot is shown in Figure 4.42.

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−2
−1

0
1

2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Figure 4.41 You can use any surface to “slice” a volume.

© 2003 by CRC Press LLC

Whereas isosurface outlines where a volume is of constant value, isocaps
can be used to show what is inside the volume. Technically stated, isocaps
computes an isosurface end-cap geometry for a given isovalue. Again, let’s
consider the data generated by the flow function, but this time use isocaps.

isocaps(x,y,z,v, -1.5);
view(3);

The resulting visualization is shown in Figure 4.43.

Figure 4.42 An isosurface plot of the fluid function data at a value of -

1.5.

© 2003 by CRC Press LLC

4.3.2 Vector Volume Data

A 3-D vector field has both magnitude and direction for every point in the
volume. Just as with the scalar volume data, vector volume data requires
coordinates for x-, y-, and z-axis, but for vector volume, each point has either a
2- or 3-element vector that describes both magnitude and direction. Table
4.3.2 summarizes the visualization functions that deal with vector volume data.
In these functions, the arrays X, Y, and Z define the coordinates for velocity
vector data U, V, and W, i.e., the 3-D vector field. The drawing functions can
return handles to the surface objects in the plot. Be aware that these functions
can take varied inputs, depending on usage, and we only show the most basic
form of the function here for brevity. Please use the help command with the
function name to get complete details.

Table 4.3.2 Vector Volume Computation Functions

Function Action

[CURLX, CURLY, CURLZ, CAV] =
curl(X,Y,Z,U,V,W)

Computes the curl and angular
velocity (CAV) perpendicular to
the flow of the 3-D vector field .

DIV = divergence(X,Y,Z,U,V,W) Computes the divergence of the
vector field.

VERTSOUT =
interpstreamspeed(X,Y,Z,U,V,W,VERTICES)

Computes the streamline vertices
(returning a cell array of vertex
arrays) from vector field data U, V,
and W, magnitudes (speed) by
interpolation at vertices (such as
those produced by stream2 or
stream3) specified by the cell
array VERTICES.

continued on next page…

0

1

2

3

4

5

−3

−2

−1

0

1

2

3
−3

−2

−1

0

1

2

3

Figure 4.43 Isocaps shows what is inside a volume.

© 2003 by CRC Press LLC

Table 4.3.2 Vector Volume Plotting Functions

Function Action

XY = stream2(X,Y,U,V,STARTX,STARTY) Computes 2-D stream line data,
returning a cell array, XY, of vertex
arrays suitable for use with
plotting functions like streamline.

XYZ =
stream3(X,Y,Z,U,V,W,STARTX,STARTY,STA
RTZ)

Computes 3-D stream line data
returning a cell array, XYZ, of
vertex arrays suitable for use with
plotting functions like streamline.

LIMS = volumebounds(X,Y,Z,U,V,W) Returns the x- , y-, and z- axis
coordinates and color limits for a
volume as a vector LIMS = [xmin
xmax ymin ymax zmin zmax cmin
cmax].

[NX, NY, NZ, NV] =
subvolume(X,Y,Z,V,LIMITS)

Extracts a subset of the volume
data. The extent of the subset is
specified in the vector LIMITS =
[xmin, xmax, ymin, ymax, zmin,
zmax], which contains coordinate
values.

coneplot(X,Y,Z,U,V,W,Cx,Cy,Cz) Plots velocity vectors as cones at
the points Cx, Cy, and Cz in the
vector field.

streamline(X,Y,Z,U,V,W,STARTX,STARTY,S
TARTZ)

Draws stream lines from either 2-
D or 3-D vector data. STARTX, et
al., define the starting positions of
the stream lines.

streamparticles(VERTICES, N) Draws stream particles using the
vertices (such as those produced
by stream2 or stream3) in the cell
array VERTICES. N is the number
of stream particles drawn, or the
fraction of the total if less than 1.
If not specified, the default is used,
N=1, or 100% of the vertices.

streamribbon(X,Y,Z,U,V,W,STARTX,START
Y,STARTZ)

Draws stream ribbons from vector
data U, V, and W. STARTX, et al.,
define the starting positions of the
stream lines at the center of the
ribbons. The twist of the ribbons is
proportional to the curl of the
vector field.

streamslice(X,Y,Z,U,V,W,Sx,Sy,Sz) Draws stream lines with direction
arrows using the vector data U, V,
and W, aligned in an x, y, z plane
defined by Sx, Sy, Sz.

streamtube(X,Y,Z,U,V,W,STARTX,STARTY,
STARTZ)

Draws stream tubes from vector
data U, V, and W. STARTX, et al.,
define the starting positions of the
stream lines at the center of the
tubes.

© 2003 by CRC Press LLC

Throughout this section on vector volume data, we will use an example data
set included with MATLAB, wind.mat, that represents the air currents over
North America. This data is made up of wind speed and direction vectors
within a volume. You can access this data with the load command. Typing,

load wind

at the command prompt will load the data into the MATLAB workspace. (If
you have been doing the examples as you read, you might want to first clear
the workspace by issuing the clear command.) Once you load the wind data,
you will have the volume arrays x, y, and z , and the volume vector arrays u, v,
and w. We will use this data to illustrate the topics in this section.

First, we must point out that although this section is concerned with volume
data that has both magnitude and direction, you can still use scalar volume
techniques with vector volume data; all you have to do is convert the vectors
to scalars by computing the magnitude of the vectors. In the case of the wind
data,

wind_vel = sqrt(u.^2 + v.^2 + w.^2);
slice(x,y,z,wind_vel,[80,90,100,110,120],Inf,Inf)
axis equal
shading interp

produces the plot shown in Figure 4.44.

However, Figure 4.44 gives us no information about the direction of the wind.
In fact, we have lost that information completely in the computation of

70

80

90

100

110

120

130

140

10

20

30

40

50

60

0

5

10

15

Figure 4.44 Vector data plotted as scalar data.

© 2003 by CRC Press LLC

wind_vel. Now we shall turn our attention to stream plots, and how they are
useful in visualizing the direction of flow within a volume.

4.3.2.1 Stream Plots

Since vector volume data can be thought of as particles flowing through a
volume, it is desirable to have some visualization methods that indicate the
direction of flow. Stream plots do just that. The differences amongst the stream
plots provided in MATLAB have to do with the way the streams are visualized.
Stream plots are typically combined with other visualization techniques, such
as slices, in order to provide richer information content. Table 4.3.3
summarizes the five stream plot techniques available in MATLAB and their use.

Table 4.3.3 MATLAB Stream Plot Techniques

Stream Plot
Technique

Function Use

Lines steamslice
streamline
stream2
stream3

Traces the path that a particle in the
vector field follows.

Particles streamparticles Markers that trace stream lines. Useful
for creating stream line animations.
Usually used in combination with
stream lines.

Ribbons streamribbon Similar to stream lines, but the width of
the ribbon allows it to show twist, i.e.,
curl angular velocity.

Tubes streamtube Again, similar to stream lines, but the
width of the tube can be varied. Tubes
are useful for showing the divergence
of a vector field.

Cones coneplot Each particle in the volume vector field
is represented by a conical arrowhead
or arrow, indicating both magnitude
and direction.

We will now look at each of these techniques, applying them to the wind
data as an example. Since each of these techniques is used to represent
direction of flow, in many cases we will have to define starting points for the
streams. This will become obvious as we explore the examples. Additionally,
some of the techniques are better used with Handle Graphics and those will
be deferred to later chapters.

© 2003 by CRC Press LLC

4.3.2.2 Stream Lines

In many cases, you will want to explore your data before you dive into a
specific volume visualization technique. The more you know about your data
the more effective you can make your visualization. Continuing with the
example we started in the previous section, we would be wise to explore the
extents of our data, and then proceed with the appropriate volume
visualization techniques. Earlier, we examined the wind data using slices, but
only after we had converted the data to scalar data. This gave us a feel for the
magnitude of the data, but in doing so, the direction information was ignored.
In fact, our choice of slice planes was somewhat arbitrary. Now, we will try to
do better.

The function streamslice is designed to show particle flow in a slice through
the volume. Consider again the plot in Figure 4.44. Here we see that the data
extends in the z-direction from about 0 to somewhere around 15. Let�s say we
are interested in the wind velocity and direction at a slice exactly midway of
the z-data. Rather than estimating from our previous plot, we can determine
exactly the midway plane by examining the extents of the volume in the z-axis
and so do better than guessing. The following code generalizes the approach.

minz=min(z(:));
maxz=max(z(:));
midz=(maxz-minz)/2;

Now we can create a slice midway in the z-plane using slice. Then we will
use streamslice to visualize the direction of the flow in the plane.

slice(x,y,z,wind_vel,[],[],[midz])
streamslice(x,y,z,u,v,w,[],[],[midz]);
axis equal
shading interp

Figure 4.45 (see Plate 7) shows the result of combining these two plots.

© 2003 by CRC Press LLC

As you can see, the general direction of the flow is in the positive x
direction. It is also easy to see the zones of high and low velocity by using the
scalar data, i.e., the magnitude. This plot gives us a very intuitive sense of the
data.

The other stream plotting function you should be familiar with is stream3.
Refer to Table 4.3.2, for the form of the function. The wind data is almost
ready for use by stream3, but we have to also provide starting points for the
stream lines. The following example produces a plot much like Figure 4.44 but,
rather than guessing, the limits of the volume are found using volumebounds.
Five slice planes are located linearly spaced along the x-axis.

lims=volumebounds(x,y,z,u,v,w);
slice(x,y,z,wind_vel,...
 [linspace(lims(1),lims(2),5)],[],[]);

Next, meshgrid is used to define the start for the stream lines. The x-axis
value is set to the lower limit of the volume, that will make all the stream lines
start from the lower x �boundary. The y- and z-axis are incremented through
their extents. (Yes, linspace could have been used here like it was with the
slice function.)

[sx sy sz] = meshgrid(lims(1),...
 lims(3):5:lims(4), lims(5):5:lims(6));

Finally we use streamline to plot the result returned by the stream3 function.

streamline(stream3(x,y,z,u,v,w,sx,sy,sz));
shading interp;
axis equal;

80

90

100

110

120

130

20
25

30
35

40
45

50
55

6
8

10

Figure 4.45 Using streamslice to visualize the direction of flow.

© 2003 by CRC Press LLC

The result is shown in Figure 4.46.

4.3.2.3 Stream Particles

Stream particles are used to put markers in the vector field. They can be
used to show both position and velocity of the stream line. They are
particularly useful in animation of stream lines, a topic we will visit when we
discuss animation in Chapter 9. Here, we will deal with stream particles in the
static case.

The function streamparticles relies on a variable called vertices which is a
cell array that contains the vertices of the volume. This is the type of cell array
that is typically returned by the stream3 function, and in fact, is what was used
by streamline in the previous example. You can simply replace streamline in
the previous example with streamparticles and MATLAB will reward you with
success, but what you will see will look a bit messy. However, we can
demonstrate using particles by noting that there is an interesting phenomenon
between about 110 and 120 on the x-axis and between 15 and 40 on the y-
axis. To investigate this area closer, we shall first redefine where we start our
stream.

[sx sy sz] = meshgrid(100, 15:5:40, 3:2:6);

Then plot using streamline enhanced with streamparticles.

streamline(stream3(x,y,z,u,v,w,sx,sy,sz));
streamparticles(stream3(x,y,z,u,v,w,sx,sy,sz),...
'markers',2)

80

90

100

110

120

130

20
25

30
35

40
45

50
55

0

5

10

15

Figure 4.46 Stream lines with volume slices.

© 2003 by CRC Press LLC

view(3)
axis tight

The string �markers� is a keyword to streamparticles for �marker size� so
that it will know that the number that follows specifies the size of the marker
to use. Unfortunately, in this plot, the particles don�t convey any more
information than the stream lines do. We will see this and other properties
when we revisit stream particles and put them in motion in Chapter 9.

4.3.2.4 Stream Ribbons

Stream ribbons are used to represent flow, just like a stream line, but unlike
a line, a ribbon depicts the data direction and rotation about the axis of flow.
This rotation is mathematically known as �curl� and we will not delve into the
mathematical formulation for that here. If you know what curl is, then its use is
obvious to you. If the concept of curl is new to you, you will find it most useful
for vector field data such as that used in the example here. In this kind of
visualization, the curl looks like a twist in the ribbon. In its basic form, the
function streamribbon allows you to specify an angle for the twist for each
vertex in the ribbon. However, streamribbon will determine the curl if you do
not specify it. Note that the function curl is available for this type of
computation.

The simplest way to use streamribbon is shown in the following code. Here,
no twist is specified, so streamribbon will compute a twist proportional to the
curl of the vector field. The width is constant and determined automatically.
Figure 4.48 is the resulting plot.

load wind

100
105

110
115

120
125

130

20
25

30
35

40
45

50

3

3.5

4

4.5

5

Figure 4.47 Stream particles combined with stream lines.

© 2003 by CRC Press LLC

[sx sy sz] = meshgrid(100, 15:5:40, 3:2:6);
streamribbon(x,y,z,u,v,w,sx,sy,sz);
shading interp;
view(3);
%some camera and lighting controls we will
%discuss later
camlight; lighting gouraud

As with other such plotting functions, streamribbon can return handles to the
objects it creates. You are encouraged to read the helps on this function once
you have read about Handle Graphics and Color and Light in Chapters 7 and
8.

4.3.2.5 Stream Tubes

Since curl represents the �twist� about a vertex in vector fields, you might
wonder what mathematical method is used to represent direction at each
point, relative to the flow direction. This is called �divergence� and is most
readily visualized with stream tubes that vary in diameter based on magnitude.
The function streamtube is used much like streamribbon, and replacing the
streamribbon function in the previous example with

streamtube(x,y,z,u,v,w,sx,sy,sz)

produces the plot shown in Figure 4.49 (see Plate 8).

Figure 4.48 Stream ribbons convey �twist� information.

© 2003 by CRC Press LLC

To better see the detail, you might zoom in on an interesting part of the plot
as shown in Figure 4.50, or select a smaller subset of the volume.

4.3.2.6 Cone Plots

Cone plots represent the data in a vector field as a cone having direction
and length proportional to the velocity at that point in the field. The function
coneplot can be used to produce such a plot. As with the previous vector

Figure 4.49 Stream tubes are used to show divergence.

Figure 4.50 A closer view of stream tubes reveals divergence.

© 2003 by CRC Press LLC

volume plots, you need to specify both the volume and volume vectors, but
instead of just indicating where to start a stream, with coneplot you must
specify the position of the cones within the volume.

Cone plots are very effective when combined with other volume
visualization techniques. Using the wind data provided with MATLAB we will
set about demonstrating using coneplot and introduce some new functions
too. Consider the following code.

load wind
%extract a portion of the volume
[x y z u v w] =...
subvolume(x,y,z,u,v,w,[105,120,nan,30,2,6]);

%compute the magnitude of the wind
wind_vel = sqrt(u.^2 + v.^2 + w.^2);

%slice at the extremities
lims=volumebounds(x,y,z,u,v,w);
slice(x,y,z,wind_vel,...
[lims(1),lims(2)],[lims(4)],[lims(5)])

%specify where to put cones
xrange = linspace(lims(1),lims(2),8);
yrange = linspace(lims(3),lims(4),8);
zrange = linspace(lims(5),lims(6),6);
[cx cy cz] = meshgrid(xrange,yrange,zrange);
coneplot(x,y,z,u,v,w,cx,cy,cz,wind_vel,1);

%pretty it up a bit
shading interp
axis equal

Here we use the function subvolume to extract only the portion of the
volume we want to consider. Notice that the minimum y axis data is specified
as NaN (Not-a-Number) which tells the subvolume function to start with the
beginning of the data on that axis. As with our examples demonstrating stream
lines, we find the wind velocity and this time make some slices at the
boundaries of our data; the function volumebounds makes doing this
convenient as it returns the extents of the volume in vector form. Now we
specify the vertices where we want cones and pass those values to coneplot.
Here we use coneplot in the form where we specify a matrix for color, in this
case wind_vel. We also specify a comfortable size for the cones. The result is
the plot shown in Figure 4.51 where the direction of each cone is the direction
of the wind and both the length and color represent the velocity. We will
revisit this plot in Chapter 8 where we will improve on the presentation of it by
manipulating the lighting and color.

© 2003 by CRC Press LLC

4.4 A Word About Annotating 3-D Plots
The approach you take to adding text to 3-dimensional plots is very similar

to doing so for 2-dimensional plots (see Chapter 3, Section 4). The only real
difference is that you now have a z-axis that you can label. You have already
seen this in action in this chapter such as with the example of Figure 4.26
where we used the function zlabel.

In addition to the function zlabel, the function text can be specified with x-,
y-, and z-coordinates, allowing you to place text anywhere in the 3-D space.
The example of Figure 4.27 demonstrates the use of specifying a z-coordinate
with text. Bear in mind, that placing text with either text or gtext simply puts
the text where you specify; if you change the plot by re-plotting or changing
the axis, the text will not likely be where you want it. As far as labeling axes,
use x-, y-, or zlabel.

106
108

110
112

114
116

118
120

18

20

22

24

26

28

30

3

4

5

Figure 4.51 Cones visualize magnitude and direction in a vector volume
field.

© 2003 by CRC Press LLC

4.5 Illustrative Problems

1. Create a 3-dimensional pyramid using the fill3 function. Can
you create each face individually with vectors defining the x-, y-, and
z-coordinates? What about creating it with one fill3 command and a
set of x-, y-, and z-coordinate matrices?

2. Load the MRI data mri.mat (provided with MATLAB). What
variables were loaded? Read about the function squeeze in the
MATLAB helps. Then try the following code

D = squeeze(D);
image_num = 4;
image(D(:,:,image_num))
axis image
colormap(map)

You can treat this MRI data as a volume because it is a collection of slices
taken progressively through the 3-D object. Try using contourslice to display a
contour plot of a slice of the volume.

© 2003 by CRC Press LLC

55 IIMMAAGGEE GGRRAAPPHHIICCSS

5.1 Image Files and Formats
With digital cameras and scanners available at ridiculously low prices,

practically everyone is familiar with images on their computer. Images can
convey a great deal of information in a very intuitive form. Images don�t have
to be of the real world, they can certainly be representations of mathematical
phenomena; in fact, that�s exactly what we have been exploring in the pages
of this book. But whatever the case, at some point in your use of MATLAB,
you will be faced with either one of two image file related issues; either you
will want to read in a scanned (or similarly digitized) picture and operate on it,
or you will want to generate an image file from a plot or some graphic you
have created in MATLAB and now wish to share with the outside world. In
fact, bitmap images are a natural �data type� for MATLAB since images can be
simply thought of as 2-D arrays. Consequently, all the array manipulation and
operations you are familiar with are applicable. The only issue is how to get
the images into or out of your computer. Of course, you could write your own
low-level I/O functions, assuming you are suitably familiar with the image file
format you are dealing with, but fortunately, MATLAB provides some
convenient and powerful ways of getting images in and out, and also of
viewing them by means of a robust set of image file specific functions. Table
5.1.1 summarizes the image specific functions that come with MATLAB. If you
have the image processing toolbox, then you will have many more image
functions.

Table 5.1.1 Image Graphics Specific Functions

Function Action

[X,Map] = imread(fname, fmt) Reads an image from a graphics file.

image(C) Displays the matrix C as an image.

colormap(Map) Sets the current image�s colormap to Map.

imagesc(C) Same as image, except that the data is
scaled to use the entire colormap.

continued on next page�

IN THIS CHAPTER�
5.1 IMAGE FILES AND FORMATS
5.2 IMAGE I/O
5.3 IMAGE TYPES AND PROPERTIES

© 2003 by CRC Press LLC

Function Action

A = imfinfo(fname,fmt) Gets information about the fmt formatted
image file fname and returns it in the
structure A.

imwrite(X, fname, fmt) Writes matrix X to fname in fmt format.

newmap =brighten(beta),
brighten(fig,beta),
brighten(map,beta)

Lightens (or darkens) the current color map,
the current figure, or a specified color map.

 Even if we are not conversant with the technical details of the file formats,
most of us are at least familiar with the names of a few of the common image
data formats. You have probably heard of �bitmaps,� �tiffs,� �jpegs,� and �gifs,�
but you might not know why there are different formats or what the
differences are between them. We will not go into an extended discussion of
the different formats in this book, but we will try to give you enough
information to help you with your image file work in MATLAB.

5.1.1 Common Image File Types

Image data files fall into three general formats. The first is non-compressed
bitmaps, the second is compressed bitmaps, and the third is vector graphics.

Non-compressed bitmaps, like early versions of the BMP (bitmap) and TIFF
(tagged image file format) formats, are image data files that simply store each
pixel of image data in an array. Compressed bitmaps do the same thing,
except some mathematical function is applied to the data to attempt to reduce
the size of the file. Compressed bitmaps can be further broken down into lossy
and lossless formats as well. Lossy formats actually lose some of the original
data during compression and it is usually a judgment call as to how much of
the data can be lost before it is no longer suitable for its intended use. The
JPEG format is lossy to varying degrees depending on the compression ratio.
You will always get the image file size reduced with JPEG, but you might do so
with severe degradation of the data. The simple images shown in Figure 5.1
illustrate the possible effects of compression. The top image is in an
uncompressed TIFF format; the bottom is JPEG with only moderate
compression. In this case, compression introduces artifacts because of the
strong contrast edges in the image; a natural trait of the JPEG compression
process.

© 2003 by CRC Press LLC

Figure 5.2 and Figure 5.3 demonstrate the appropriate use of compression.
The image in Figure 5.2 is uncompressed and has a file size of 3.6M Bytes,
while the compressed version in Figure 5.3 only takes 65K Bytes in a file. The
differences between the two are revealed only under close inspection.

20 40 60 80 100 120 140 160 180 200 220

10

20

30

40

50

60

20 40 60 80 100 120 140 160 180 200 220

10

20

30

40

50

60

Figure 5.1 Compression introduces artifacts.

Uncompressed 3.6MB

200 400 600 800 1000 1200

100

200

300

400

500

600

700

800

900

Figure 5.2 An uncompressed image stored in a 3.6MB file.

© 2003 by CRC Press LLC

Once you compress an image with a lossy method, the data is lost and
cannot be recovered. Lossless formats like PNGs, GIFs, and compressed TIFs
offer varying degrees of compression based on the data, but do not compress
to the point of losing data. This is achieved through methods such as Run
Length Encoding (RLE) in which recurring pixels are stored as a single pixel and
a count value.

The third format, vector graphics, relies on a kind of descriptive computer
language to tell either your computer screen or your printer how to draw the
graphic. Postscript is a kind of vector graphics format and we will usually talk
about images that are �encapsulated postscript.� The �encapsulated� part of
EPS is that usually a TIFF or JPEG image is contained within the Postscript file.
An EPS file will generate beautiful images of plots, line art, and letters, and
accommodates images where subtle changes in shading occur by
encapsulating a bitmap image format. Keep in mind that Postscript is
dependent on the device (usually a printer) that the file is output to, i.e., an
EPS file cannot be readily printed on a non-Postscript printer (there are
software converters that will allow this).

5.2 Image I/O
If you are generating an image file for use by others, you will likely choose a

format that is commonly viewable with most image editing software. If your
image contains only a few colors or is made up of mostly constant color areas,
then the color-mapped formats, e.g., PNG and GIF, will do well; however, if
you are sharing your images on the Internet, you will probably choose a
format that will compress your data and reduce file size. If your images

Compressed 65KB

200 400 600 800 1000 1200

100

200

300

400

500

600

700

800

900

Figure 5.3 The same image after JPEG compression uses only 65KB.

© 2003 by CRC Press LLC

contain many shades of color without distinct boundaries, e.g., using shading
interp or photographic images, then you will probably pick a true-color image
format. Finally, if you are reading an image provided by someone else you
need to be able to read whatever format is provided. Fortunately, MATLAB
gives you a great deal of choice in all cases without having to know a lot
about the details of a particular image file format. Table 5.1.2 lists the image
file formats that MATLAB can read and write.

Table 5.1.2 MATLAB Readable Image File Types

Extension Type Read
Write

Use

bmp bitmap or
device
independent
bitmap

R/W Native format for Microsoft Windows.
Can support up to 24-bit color. Originally
uncompressed, run-length encoding
(lossless) compression is now supported.

jpg jpeg � joint
photographic
experts
group

R/W 24-bit (true color) support. Created to
support the photographic industry.
Compression can result in noticeable loss
of image quality in some images or
annoying �artifacts.� Compression ratios
of 25 or 30 to 1 with photographic
images producing good results are not
uncommon, but the more you compress,
the poorer the picture quality. No
transparency support.

tiff tagged
image file
format

R/W Originally created in the 1980s to
support data output from scanners (raster
scan). Limited to 4GB of data. Can
contain information about colorimetry
calibration, gamut tables, etc., such as
occurs with remote sensing and multi-
spectral applications. Can support various
compression algorithms in compressed
modes.

gif graphics
interchange
format

R Very common and used extensively on
the Internet. Works well for illustrations
or clip-arts that have large areas of flat
colors. Does not work so well with
photographic images or images with
continuous tones. Limited to 256 colors
that are �dithered� to look like more
colors. Supports animation (GIF89a
standard). Use for logos, bullets, or clip-
arts where few colors are used. Typically
5 to 1 compression ratio.

continued on next page�

© 2003 by CRC Press LLC

Extension Type Read
Write

Use

png portable
network
graphics

R/W Similar to GIF, very efficient lossless
compression, supporting variable
transparencies (alpha channels), and
gamma correction, but not animations.

pcx R/W Similar to bmp, up to 24-bit color and
lossless compression.

hdf hierarchical
data format

R/W A data interchange format championed
by the National Center for
Supercomputing Applications.

xwd X-Windows
Dump

R/W Used on Unix workstations.

ico Windows
icon format

R Used by Windows for icon graphics. 32
x 32 bits by default. Can have multiple
images in one file (animations). No
compression.

cur Windows
cursor format

R Used by Windows for cursor graphics.
Can contain animations. No
compression.

The three principal image I/O functions in MATLAB are imread (for reading
graphics files), imwrite(for writing data to a graphics file format), and imfinfo
(for retrieving information about a specific graphics file).

5.2.1 Reading a Graphics Image

MATLAB includes a JPEG image of the complex planetary nebula
NGC6543A, a.k.a. the �Cat�s Eye Nebula,� in the file ngc6543a.jpg. This
should have been automatically placed in a folder on your MATLAB path
when you installed MATLAB. You can use imfinfo to retrieve information
about the image file. Its general form is

imfinfo(filename, fmt)

where both input variables are strings, the first being the name of the file
and the second being the image file format. To retrieve the file data about the
Cat�s Eye Nebula, you could type,

imfinfo('ngc6543a','jpg')

which will return

ans =

 Filename:
'C:\MATLAB6p1\toolbox\matlab\demos\ngc6543a.jpg'
 FileModDate: '02-Oct-1996 23:19:16'
 FileSize: 27387
 Format: 'jpg'

© 2003 by CRC Press LLC

 FormatVersion: ''
 Width: 600
 Height: 650
 BitDepth: 24
 ColorType: 'truecolor'
 FormatSignature: ''

From this we can see that ngc6543a.jpg is a 600x650 truecolor image. Note
that you don�t have to specify a file extension in filename provided the
extension is the same as fmt. The function imfinfo returns a structure, so we
could have used,

info = imfinfo('ngc6543a','jpg');

and then accessed specific data from the fields, such as

info.Format

which would return the string �jpg�.

The imread function has the general form

[X,C]=imread(filename,fmt)

where filename and fmt are strings specifying the name of the file and its
format, just as in imfinfo. X is the returned image data, which can be MxN for
indexed images, or MxNx3 for true color images, and C is the colormap if the
image is indexed. For example, you can read the Cat�s Eye Nebula image with
the following code.

[x,c]=imread('ngc6543a.jpg','jpg');

Since this is a truecolor image, this will return a 650x600x3 uint8 array in x
and an empty array for c since there is no colormap with JPEG images.
Knowing this is a JPEG format, we know there would not be a colormap so we
could have used the form,

x=imread('ngc6543a','jpg');

As with imfinfo, we don�t have to specify an extension with the file name if the
extension correctly corresponds to the specified file format fmt.

5.2.2 Displaying a Graphics Image

Displaying the image you have just read is achieved by simply typing

image(x)

This will open a Figure Window and plot the image on the axis. If you have
read the JPEG image above, image will readily accept the 3-D array and
display the RGB images. Notice that the same plotting considerations of
relative axis scale arise here as well; you might wish to use axis equal to

© 2003 by CRC Press LLC

correct the perspective. If the image you read is an indexed image, i.e., a 2-D
index array with a corresponding Nx3 colormap, you will need to use the
colormap function to get the correct coloring of the plot. At the website you
can download the indexed image usflag.dib (Windows device-independent-
bitmap). Once you have that file you can read it, then view it with,

[x,cm]=imread('usflag.dib','bmp');
image(x)

You should see the image shown in Figure 5.4.

 Notice that the colors are not as you would expect. You might have
something very strange indeed if you have been using other colormaps since
MATLAB will apply the last colormap used in the current Figure Window. To
get the expected patriotic colors, you will next need to load the appropriate
colormap, in this case cm.

colormap(cm)

Figure 5.4 An indexed image without its colormap.

© 2003 by CRC Press LLC

In Section 5.3 we examine indexed images in more detail.

5.2.3 Writing a Graphics Image

Writing the contents of a Figure Window to an image file is just as simple as
reading one. The imwrite function provides a means to create image files of
the formats indicated in Table 5.1.2. The general form of imwrite is,

imwrite(A,filename,fmt)

where A is the image, either grayscale if NxM, or truecolor if NxMx3,
filename is a string containing the name of the file to be created, and fmt is a
string indicating one of the write formats indicated in Table 5.1.2. For the case
of an indexed image, i.e., one containing an image and colormap, imwrite
takes the following form.

imwrite(X,C,filename,fmt)

In this case, X is an NxM array of indexes into colormap C. Using imwrite
can be easily demonstrated by loading one of the color image data files that is
distributed with MATLAB and writing to one of the image file formats. In the
following example, we will use the load function to load an image of a clown.
Typing

load clown
at the command prompt will load X, a 200x300 double array, and map, an

81x3 double array, into the workspace. Notice that this data is an index array

50 100 150 200 250 300 350

20

40

60

80

100

120

140

160

180

200

Figure 5.5 An indexed image with the appropriate colormap.

© 2003 by CRC Press LLC

and colormap. We can then create, for instance, a PNG format image by
typing,

imwrite(X,map,'clown.png','png')

which will create the file clown.png in the default working folder.

5.3 Image Types and Properties
Whenever we deal with images we need to be aware that there are

fundamentally three types of image data formats. You have already seen some
of this in the previous examples. The first image data format is indexed images
where two arrays are used to describe the image. The second image data
format is intensity level images, comprised of a single array where each
element indicates the relative intensity of a pixel. The third data format is
called truecolor and uses three intensity level arrays, where each is the relative
intensity of red, green, and blue primary colors.

5.3.1 Indexed Images

 By indexed we mean that the image is created from information in two
arrays: the first is an array of indexes into the second, which is a three-column
array containing the red, green, and blue contributions for each pixel. The
following code will load an image of a clown and display it in a Figure
Window, looking like that shown in Figure 5.6.

load clown
image(X)
colormap(map)

50 100 150 200 250 300

20

40

60

80

100

120

140

160

180

200

Figure 5.6 Who is that clown?

© 2003 by CRC Press LLC

When we load clown.mat the arrays X and map were placed in the MATLAB
workspace. The array X is an array of indices; row indexes actually, specifying
which row from map (an 81x3 array) the pixel color is to be taken from.
Looking at a few pixels from the upper left corner, we see

X(1:5,1:5)

ans =

 2 2 2 2 2
 61 69 69 69 69
 69 61 69 61 69
 61 69 61 61 56
 69 55 61 44 61

Each element is a number corresponding to a row in the color map. We can
find the color components for each of these pixels by

map(unique(X(1:5,1:5)),:)

ans =

 0.1250 0 0
 0.8672 0.4141 0.1250
 0.8672 0.5781 0
 0.8672 0.5781 0.1250
 0.9961 0.5781 0.1250
 0.9961 0.7031 0.1250

The unique function returns only one instance of an element, and orders the
results, so the first row here corresponds to an index value of 2, the second
44, the third 55, etc.. We can see these first few pixels, shown in Figure 5.7,
with the following code.

image(X(1:5,1:5))
colormap(map)

© 2003 by CRC Press LLC

Try this.

image(X(20:60,50:100))
colormap(map)

 Use unique again to see how many different colors are used in this portion of
the image.

map(unique(X(20:60,50:100)),:)

5.3.2 Intensity Level Images

An intensity image file does not provide a color map. Instead, the array
describes the image by relative pixel amplitude. An example of such an image
is the “raw” image from an imaging device such as a CCD (charge-coupled
device) imager. These devices, being digital, assign a value to the pixel based
on the intensity of the light falling on it . Most are either 8-bit or 16-bit devices,
meaning that for any pixel the intensity range is either 28 (0-255) or 216 (0-
65,535) where 0 is no light and the maximum is fully illuminated. When an
image from such a device is viewed, we typically do so in shades of gray.
However, since MATLAB uses color maps when it plots an image, intensity
image or not, we need to tell MATLAB what kind of color map should be
used. The default data type in MATLAB is 64-bit floating-point numbers, i.e.,
double precision. However most image data formats are designed to use no
more file space than is necessary. It is indeed wasteful to use an 8-bit imaging
device and store its output with 64-bit numbers. The MATLAB image functions
typically will deal with images in their native format as either 8-bit (uint8) or
16-bit (uint16) unsigned integers.

When plotting intensity level images, you will find that MATLAB’s built-in
color maps don’t always agree with the scale of your image. With the

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

Figure 5.7 The upper left 5x5 of the clown image.

© 2003 by CRC Press LLC

following code, a 256-level grayscale image is viewed using image along with
the color map gray.

image(X); colormap(gray);

Since the color maps in MATLAB are 64 levels, in this case, since there actually
are 256 shades of gray, shades will be lost when using a built in color map as
shown in Figure 5.8. Shades are lost since all indexes above 64 are mapped to
the highest level in the map, in this case white.

One simple solution is to create a 256-shades-of-gray color map in this
manner:

gray256 = linspace(0,1,256)';
gray256 = (repmat(gray256,1,3))';

This will create a 256-shade color map and produce much better results as
shown in Figure 5.9.

50 100 150 200

50

100

150

200

250

300

Figure 5.8 A 256-level gray scale image loses quality when used with a
64-level color map.

© 2003 by CRC Press LLC

Another solution to the color map-scaling problem is the function imagsc,
which serves the same purpose as image, but scales the image data to use the
full extent of the color map. The following code will take an 8-bit intensity
image X and scale it to the built-in MATLAB color map gray.

imagesc(double(X),[0 255]); colormap(gray);

Note that imagesc requires the image data to be of type double. Although
upon close inspection once can discern loss of shades, since the color map
has been used across the full extent of the image’s intensities, the results are
quite good as shown in Figure 5.10.

50 100 150 200

50

100

150

200

250

300

Figure 5.9 Same image using gray256.

© 2003 by CRC Press LLC

5.3.3 Truecolor Images

Truecolor images are in essence a set of three intensity image arrays where
one is red filtered, another green filtered, and the last one blue filtered. For any
given pixel in the image, the corresponding element from each of the arrays
contributes a proportionate amount of red, green, or blue.

The following function can be used to translate an indexed image into RGB
format. Not only useful in seeing the relative contributions of red, green, and
blue, but later we will see the need for converting indexed bitmaps to RGB in
MATLAB when we present CData.

function rgbimage = makergb(bitmap,colormap)
%RGBIMAGE = MAKERGB(BITMAP,COLORMAP)
%where BITMAP is a NxM array, and COLORMAP is
% a Cx3 double array
%RGBIMAGE will be a NxMx3 double array.
%Makes an RGB image from an array of indexes
%(BITMAP)into
%a color map (COLORMAP).
%MAKERGB will determine if the index array needs
%to be 1-shifted.

bitmap=double(bitmap);
if min(bitmap(:))==0 %is it 0 indexed?
 offset=1
else
 offset=0

50 100 150 200

50

100

150

200

250

300

Figure 5.10 The result of mapping a 256-gray-level image to 64 gray
levels using imagesc.

� � � � �

© 2003 by CRC Press LLC

end

[rows,cols]=size(bitmap);

for L=1:3
 layer=colormap(bitmap(:,:)+offset,L);
 layer=reshape(layer,rows,cols);
 rgbimage(:,:,L)=layer;

end

We can see the relative contribution of red, green, and blue using makergb
along with,

load clown
rgbclown=makergb(X,map);
subplot(1,3,1),imagesc(rgbclown(:,:,1)),axis square,
title('Red');
subplot(1,3,2),imagesc(rgbclown(:,:,2)),axis square,
title('Green');
subplot(1,3,3),imagesc(rgbclown(:,:,3)),axis square,
title('Blue');
colormap gray

Red

100 200 300

50

100

150

200

Green

100 200 300

50

100

150

200

Blue

100 200 300

50

100

150

200

Figure 5.11 The red, green, and blue components of the clown image
shown in relative intensity.

© 2003 by CRC Press LLC

66 GGEENNEERRAATTIINNGG OOUUTTPPUUTT

In Chapter 5 we saw how to read and write image files of the standard
image file formats. You also need to know how to print your output to printers
and how to create graphic output that can be used in other computer
applications such as word processors. There are several ways to do this
depending on the intended use of the image and the format of image output
you need.

6.1 The Quickest Way to Paper
The first output goal we will explore is how to get the graphics of your

Figure Window to paper. The simplest way to do this is to use the File Print
pull-down from the Figure Window as shown in Figure 6.1.

When you select this option, your plot will be sent to your printer via your
operating system’s print manager. Before you go off sending everything to
your printer, notice the other printing commands available in the pull-down
window; these are Page Setup, Print Setup, and Print Preview. The Page
Setup item will open a window with tabs that allow you to change various
properties of the page to be printed such as the size and position of the plot
on the page, portrait or landscape orientations, color or black and white lines
and text, and also some axis properties such as whether or not MATLAB
should recalculate the axis tic marks based on the printed size, or to keep the
tic marks as seen on your computer display. The Print Setup window will open
the Windows printer setup panel. The options you have there depend on the
printer or printers you have installed. The Print Preview window can be used
to see a representation of what your printed page will look like. If you don’t
like what you see, a button is available to take you to the Page Setup window.
When you are satisfied, clicking on the Print button will print your plot.

IN THIS CHAPTER…
6.1 THE QUICKEST WAY TO PAPER
6.2 PRINTING COLORED LINES TO BLACK & WHITE PRINTERS
6.3 ELECTRONIC OUTPUT
6.4 USING THE PRINT COMMAND

© 2003 by CRC Press LLC

6.1.1 Page Setup

When you print in MATLAB, the contents of the Figure Window are what is
printed. This includes the axes, labels, titles, annotations, and any other objects
that you see. By default, MATLAB assumes a print area centered on 8.5-inch
by 11-inch paper that is 8 inches by 6 inches with no window frame. The
default figure and axis background color is white. Tic marks and axis limits are
automatically calculated to accommodate the printed size, so it very likely will
be different from what you see on the computer’s display. However, you can
alter many of the figure attributes that affect the appearance of your output
from the Page Setup window. By selecting File Page Setup you will open a
window comprised of four tabbed sections. These are listed in Table 6.1.1.

Table 6.1.1 Page Setup Tabs

Tabbed Section Actions
Size and Position Choose to automatically print the figure at the screen size,

centered on the page, or manually set the size and position of
the figure on the page.

Paper Set paper size and orientation.
Lines and Text Select to print lines and text in their colors or in black and white.
Axes and Figure Choose to use the tic marks and axis limits you see on the

screen, or have MATLAB recalculate them based on the printed
size of the figure. Here you can also choose to print the figure
with its color background, or force it to white background.

Figure 6.1 Printing from the Figure Window.

© 2003 by CRC Press LLC

If you are not printing to an 8.5-inch-wide by 11-inch-high piece of paper,
you will want to go to the Paper tab to choose one of the other twenty-two
paper types, or to create your own Custom paper type. The Lines and Text
tab lets you choose to print in black and white for lines and text. Notice that in
each tab, there is a graphic depicting the placement of your figure on the
page. You can hold the mouse button down on this representation and move
it to different places on the page, or change the size of the figure on the page.

6.2 Printing Colored Lines to Black & White Printers
Unless you have changed the default line style and color properties of the

root object, MATLAB will by default plot lines in the “solid line” or '-' setting. If
you have several lines up at once, they may or may not be different colors,
depending on how you plotted them. When you print these to a black and
white printer, the lines might be difficult to distinguish from one another.

For one-time printing, you can use the MATLAB Property Editor as discussed
in Chapter 3 and change the style of the lines so that you can easily distinguish
them when printed.

Another approach that will let you set the line style and color once for a
session is with the following code.

% Make default color black
set(0,'defaultaxescolororder',[0 0 0]);
% Change the line style order to anything you want,
% for example, (solid,dashed,dash-dotted,dotted,and
% circles.
set(0,'defaultaxeslinestyleorder','-|--|-.|:|o')

This uses a little Handle Graphics to change the default axes color to black
only, and sets a line style order to continuous, dashed, dash-dotted, dotted,
and circles. With this code, the styles are changed at the “root level,” meaning
that the properties are altered for all figures during the session. To return to
the original MATLAB defaults, use

set(0,'defaultaxeslinestyleorder','factory')
set(0,'defaultaxescolororder','factory');

If you want to make a different line style order, or axes color order the
default every time you use your MATLAB, all you need to do is include the
set code shown above in a file called startup.m; MATLAB looks for this file
each time you start a MATLAB session. There is also a master MATLAB
startup file called matlabrc.m and you can add or modify code there, but it
is not advisable. If you want to change your MATLAB startup options, you
should read the on-line helps on startup and matlabrc.

© 2003 by CRC Press LLC

6.3 Electronic Output
In addition to printing to paper, MATLAB supports various electronic

formats for graphics output. You have already learned how to read and write
image files using imread and imwrite. Now you will learn how to use the pull-
downs from the Figure Window and the print function from the Command
Line to create image files of your plots in standard image file formats that can
be easily imported into various applications.

6.3.1 Using File Export

Selecting File Export from the Figure Window will open a dialog window
that will allow you to name and save your plot in any of the image file formats
listed in Table 6.4.1.

Table 6.4.1 Export Plot Image Formats

File Format Extension
Enhanced Meta File EMF
Windows Bitmap BMP
Encapsulated Postscript
(4-types)

EPS

Adobe Illustrator AI
JPEG JPG
TIFF (compressed or non-compressed) TIF
Portable Network Graphics PNG
Paintbrush (24-bit) PCX
Portable Bitmap PBM
Portable Graymap PGM
Portable Pixmap PPM

Simply select the folder where you want to save the file, give it a name and
specify the format in which you wish to save the plot. Although exporting is
convenient, aside from selecting among four types of encapsulated postscript
and compressed or non-compressed TIFF, you have very little control over the
specific image formats. For instance, the default quality level of 75 is used in
the JPEG format.

6.3.2 Using the Windows Clipboard

If you have MATLAB installed on a Windows system, you can copy a figure
to the clipboard by using Edit Copy Figure and then paste the figure into
another Windows application. When you do paste the image, you have the
choice either of pasting it as a picture, or as a Windows Metafile. The
advantage of pasting it as a Windows Metafile is that you can edit various
parts of the image. For instance, if you paste your figure into Microsoft Word,
you can select the image, ungroup it, then edit the axis lines, text, plot lines,
etc.

Before you use the Copy Figure pulldown, you should select Edit Copy
Options which will open the Preferences Dialog Window to a section called
Figure Copy Options. Here you can alter the specifications of various
properties of the figure before it is copied to the Clipboard. Here you have the

© 2003 by CRC Press LLC

choice of making the plot keep the axis tic marks that you see on the screen
or use the settings established by File Page Setup. Notice that this is a
subset to the Figure Copy Template. If you select Figure Copy Template, you
can use built-in settings that will optimize the size of lines and fonts in your
figure for Microsoft Word or PowerPoint as well as make some limited specific
changes to the Clipboard copy.

6.4 Using the Print Command
Certainly the most powerful way to print your Figure Window, either to a

printer or to an image file, is by using the print function. In its simplest use,
print will send the contents of the current Figure Window to the computer’s
default printer. The general form of print is

PRINT –DEVICETYPE -OPTIONS

Since both the devicetype and options are optional, if you do not supply
them, MATLAB will determine the default values for your system. The printer
command and device type that print uses by default can be determined by
typing

[printcommand,devicetype] = printopt

The function printopt will return the current printer type and output
destination. It can also be edited to change your default printer type and
destination.

6.4.1 Creating Hardcopy with PRINT

Every time you issue the print command, it determines the default printer
settings by issuing a call to the printopt function. The default device type on
Windows systems (-dwin) is to print through the Windows Print Manager. The
default type is a Level 2 black and white PostScript (-dps2) for Unix and
Macintosh systems. As we mentioned in the last section, you can alter the
device type and print command by editing the printopt.m file, but we suggest
that you consult the Full Product Family Help or the MATLAB Reference Guide
for more information about printopt.m before you do. Typing help print in the
Command Window will list all the print options, device drivers, etc., available
in MATLAB.

6.4.2 Creating Graphics Files Using Print

Essentially, the only thing you need to do to generate electronic copies of
your figure is to add a file name to the print statement you used when
generating paper copies. The full synopsis for the print command when
generating files is

print -devicetype -options filename

For example, the following code segment will generate a file called
graphics1.eps in level 1 black and white encapsulated postscript form.

© 2003 by CRC Press LLC

print -deps graphics1.epsf

If you specify that MATLAB generate an encapsulated PostScript file, it will
not be sent to the printer and MATLAB will generate a file. If you do not give it
a file name, MATLAB will warn you that it cannot print encapsulated postscript
to a printer and will create a file in the current working directory.

6.4.3 Adding Additional Figures to a File

To keep the number of electronic files to a minimum, you may find it useful
to append figures to the same file. Normally, if you type

print -deps filename

and the file filename already exists, it will be overwritten without warning.
However, by adding on an argument as follows

print -deps -append filename

the figure is added to the end of the file as a new page. Later, the entire set of
figures can be conveniently viewed or printed at once.

6.4.4 Publishing Using 4-Color Separation

When generating PostScript and Encapsulated PostScript files, you have the
option of generating figures using cyan, magenta, yellow, and black (CMYK)
color values instead of red, green, and blue (RGB). This is often needed when
sending files to particular color printers that can take advantage of matching
figure colors more precisely with CMYK color values. As an example, you
might type

print -depsc -cmyk filename

to generate an Encapsulated color PostScript file.

6.4.5 EPS with a Preview Image

If you are creating encapsulated postscript images to be included in a
document, it is useful to have a preview image instead of the postscript
message box when you include a figure in your word processor. This makes it
easier to remember what the figure contains when you are editing a
document. Most modern word processors allow the use of encapsulated
postscript with a preview image. If you have a Figure Window open and you
type,

print -depsc -tiff -r300 figure1

MATLAB will save the entire contents of the Figure Window at a resolution
of 300 dpi in the file figure1.eps and generate a TIFF bit map of the entire
Figure Window, always at 72 dpi, that can be used by other applications as the
preview image.

© 2003 by CRC Press LLC

6.4.6 Rendering Method with -zbuffer or -painters

There are many methods by which an image can be rendered, i.e.,
interpreted for printing. When using the print function, by default MATLAB
will determine which rendering method to use when printing a figure,
however, there are some situations in which you will want to have control
over which method gets used. In general, if you are plotting lines and less
complex figures, it will be to your advantage to use the painters algorithim (-
painters). If your plots are more complex, say you are plotting surfaces or
using lights, it will be better to use the Z-buffer method (-zbuffer). OpenGL is
another rendering method that is available on many computer systems. This
method is generally faster than painters or zbuffer and in some cases enables
MATLAB to access special graphics hardware that is available on some
systems.

If you want control over the printing resolution of a figure use the -zbuffer
option and specify the resolution with the print command’s -rnumber option
(where number represents the number of dots per inch, dpi). If you are only
going to display the figure on your screen or plan on using it in a web page,
changing the resolution to a number higher than the default will not provide
you with better image quality, but it will increase your file size. The same can
be said when sending the file to a printer; only choose a number that is no
greater than what your printer can support. Since the Z-buffer method uses
raster graphics to draw the figure, the size of the file and memory needed to
print will depend on 3 factors: the resolution, the size of the graphic, and
whether or not you are using a color or grayscale driver. The OpenGL method
can take advantage of compatible video hardware, if it is available, and
significantly reduce the time to render an image. Although OpenGL has the
potential of being very fast, there are some caveats to consider: 1) OpenGL
does not do color map interpolation which means that plots created using
surface that use index color with interpolated faces or edges will not be as you
expect; 2) Similarly, the phong value for face lighting and edge lighting of
surfaces is not supported.

6.4.7 Indicating Which Figure Window to Print

When you have multiple Figure Windows open, you can specify the Figure
Window number that you want to print from the command line using the
form,

print -fhandle

where handle is the figure number. By default, MATLAB will print the
current figure (usually the last one created or the last one that you clicked your
mouse in). Later you will be able to appreciate the ability to specify the figure
to be printed. Soon you will learn how to create GUIs in MATLAB. In a GUI,
for instance, you could provide a user with a GUI window that lets the user
create figures in a different window. You might want to have a print button in
your GUI, then the callback, which you will learn about later, of that button
would need to use the form of the print function in which you pass the

© 2003 by CRC Press LLC

figure’s handle so that you can be sure that the figure you intended to print
gets printed.

6.4.8 Saving Figures for Future Use

You will notice that from the Figure Window, you can select File Save. If
you do so, MATLAB will give you the option to save your Figure Window as a
FIG-file with a fig extension to the file name. FIG-files are binary files that
contain a complete description of the Figure Window and all that is in it. In
previous versions of MATLAB (prior to version 6), figures were saved by saving
an M-File and corresponding MAT-File. The FIG-file format did not exist in
earlier versions of MATLAB. In those earlier versions, figures were saved as an
M-file that generated the figure from data that was stored in a MAT-file. You
ran the M-file and it generated your figure. The print command still supports
this older approach. The option dmfile tells the print command to create the
M-file and if need be the MAT-file to reproduce the figure. Please be aware
however, that you will not find reference to it in the helps for print.

print -dmfile filename

To regenerate the figure, just execute the M-file by typing the name of the
file you saved.

MATLAB version 6 was a radical departure in many ways from earlier
MATLAB versions. There were changes in appearance to some extent, but
many of the changes occurred “under the skin” of MATLAB and the FIG-file
format was created to accommodate those changes that the earlier figure
saving method could not. For example, the earlier method could not keep
figure annotations. With the FIG-file, annotations and other changes you make
with the plot editing tools are saved. In Chapter 10 we will see how being able
to easily save and create FIG-files can lead to rapid GUI development.

© 2003 by CRC Press LLC

77 HHAANNDDLLEE GGRRAAPPHHIICCSS

7.1 Graphics Objects
By this time, you have already explored many of MATLAB’s graphics

capabilities. What you’ve done so far can be thought of as “high-level”
graphics, i.e., it didn’t require you to get very deep into what was really going
on in MATLAB. Nevertheless, we have already had to “slip” a little Handle
Graphics in a few places in order to get the results we wanted. This chapter
however, marks your departure from the high-level use of MATLAB graphics,
and begins your journey into a deeper understanding of the basic mechanism
behind everything that happens in MATLAB. Here you will learn how to use
“low-level” functions to manipulate every aspect of graphics objects. You will
learn more about graphics objects and how to affect their properties, which
will give you the knowledge you need to become a master MATLAB
programmer.

All of the high-level graphics functions that have been discussed so far either
create or manipulate graphics objects. The term “graphics object” may
conjure up mental images of computer generated spheres or cubes, or it might
bring to mind some of the objects that you have already created either with
examples in this book or on your own, such as lines (using plot, plot3, etc.),
surfaces (created with surf, mesh, etc.), and text (using text, xlabel, etc.).
However, you have already seen many other objects and probably didn’t even
realize it. The computer screen, the individual Figure Windows, the axes, and
images are all MATLAB graphics objects. As you proceed in this book, you
will learn more about these objects, as well as some more graphics objects
such as user interface controls and user interface menus. You should think of
these graphics objects as drawing primitives, i.e., the elementary building
blocks that are used to generate plots that are more intricate in the Handle
Graphics system.

IN THIS CHAPTER…
7.1 GRAPHICS OBJECTS
7.2 GRAPHICS OBJECTS HIERARCHY
7.3 GRAPHICS OBJECTS HANDLES
7.4 PROPERTIES
7.5 OBJECT SPECIFIC PROPERTIES
7.6 SETTING DEFAULT PROPERTIES
7.7 UNDOCUMENTED PROPERTIES
7.8 USING FINDOBJ
7.9 ILLUSTRATIVE PROBLEMS

© 2003 by CRC Press LLC

In addition to the computer monitor’s screen, which is considered the root
object, there are 12 other graphics object types.

The 12 low-level graphics functions that create graphics objects, as well as
the root object which is present at the time you invoke MATLAB, are either
the name of the object or an abbreviation of the name and are listed here in
the following table.

Graphics
Object

Low-Level Creation Function Description

Figure figure or figure(H) A window to show
other graphics objects.

Axes axes, axes(H), or
axes(‘position’,RECT)

The axes for showing
graphs in a figure.

UIcontrol Uicontrol The user interface
control is used to
execute a function in
response to the user.

UImenu Uimenu User defined menus in
the figure.

UIcontextmenu uicontextmenu('PropertyName1',value1,…) A pop-up menu that
appears when a user
right-clicks on a
graphics object.

Image image(C) or image(x,y,C) A 2-D bitmap.

Light light(‘PropertyName’,’PropertyValue’,…) Light sources that
affect the coloring of
patch and surface
objects.

Line line(x,y) or line(x,y,z) A line in 2-D or 3-D
plots.

Patch patch(x,y,c) or patch(x,y,z,c) A polygon that is filled
with some color or
texture and has edges.

Rectangle rectangle, rectangle(‘Position’,[x,y,w,h]),
or rectangle(‘Curvature’,[x,y],…)

A 2-D shape; can be
rectangle or oval
created within an axes
object.

Surface surface(X,Y,Z,C), surface(X,Y,Z),
surface(Z,C), surface(Z)

3-D representation of
data plotted as heights
above the x-y plane.

Text text(x,y,text_string) or
text(x,y,z,text_string)

Character strings used
in a figure.

The x, y, and z variables that define the coordinates of the line object are
the arguments to the line graphics function. These variables can be either

© 2003 by CRC Press LLC

vectors or matrices. If the variables are matrices, an individual line object will
be created for each column of data.

The x, y, and z variables that are passed to the patch function specify the
vertex coordinates of the patch object. If the variables are matrices, the patch
command will draw a polygon for each column of the matrices. The c variable
is used to specify the color of the patch objects. For now, consider this
variable to be defined as a RGB triplet or as a string to provide a uniform color
across the polygon. Later we will present other forms of specifying the color.

Low-level surface object creation may use X, Y, and Z matrix variables to
specify the corner points of the surface’s quadrilaterals. X and Y may also be
vectors, in which case the length of X must be equal to the number of columns
in Z and the length of Y must be equal to the number of rows in matrix Z. If
provided, the matrix C defines the color of the surface object and must either
be the same size as Z (size(C) = size(Z)) to allow for interpolated shading or
have one less row and column (size(C) = size(Z)-1) for flat shading. We will
see more about how to use the C matrix in a later chapter.

Text object locations can be defined with the variables x, y, and z. By
default, the string will be placed so that the first character is left justified and
vertically centered about the point specified by the coordinate (x,y) or (x,y,z).

You cannot see light objects, but you can see their effects on patch and
surface objects. They essentially specify light sources to which you can
control style, color, and location. The properties of light objects will be
discussed in this chapter and in the next chapter we will embark on an in-
depth exploration of light, color, and transparency. The other objects in the
table that deal with user interfaces will be encountered in Chapter 10.

There are two main advantages of using low-level graphics functions. The
first is that they never clear the axes or alter any of the current attributes of the
existing graphics. Recall that subsequent calls to the plot function would clear
the current Figure Window (unless hold was set to on, or another Figure
Window was open.) The second advantage is that you can pass property
name/value pairs as additional arguments to these functions to control various
aspects of the graphics objects at the time of creation. In Section 7.4 we will
examine the different properties for each of the graphics objects, but first we
shall explain how all these objects relate to each other in the graphics
environment.

7.2 Graphics Objects Hierarchy
The MATLAB graphics system is an effective and powerful object oriented

approach based on the simple paradigm of parent-child relationships between
some of the objects. Each object has its own identity and characteristics as
defined by its attributes or properties. In the previous section, some examples
of the typical types of graphics objects that fall under each object category
were presented; now we shall discuss how these objects relate to one another.
In the next section, we will look at the properties of all the objects.

The parent-child relationship in MATLAB graphics is straightforward.
Essentially, a child object cannot exist without the existence of its parent
object. For example, before a surface object can be drawn, both a figure and

© 2003 by CRC Press LLC

an axes object must be present. Fortunately, you are not required to
specifically create a parent object by typing the low-level graphic function in
the Command Window (or by writing them in an M-file) before generating
children objects. If the parent figure and axes objects are not present,
MATLAB will automatically create them and then draw the surface object.
Although you could very well create these objects yourself with,

figure;
axes;
plot(1:10)

you could have just typed

plot(1:10)

and MATLAB would create the figure and axes (assuming that another
Figure Window was not already present). If you then close the Figure
Window with the close command, neither the axes nor surface object will
remain on the screen, since they cannot exist without their respective parents.
Later we will learn about the delete command, which allows you to delete
specific graphics objects from the set of objects contained within the current
graphics environment. The primary point here is to understand that when a
parent is deleted, so are its children.

So you might be wondering which graphics objects can be parents and
which ones can only be children? The screen object is the most basic of all
and is the foundation on which all other objects must rest. As previously
mentioned, the screen object is referred to as the root object because the
organization of graphics objects can be cast into a tree-like hierarchy, where,
without the roots, the rest of the tree’s components are not able to survive or
exist. Figure 7.1 depicts where the various graphics objects are in the
hierarchical tree.

© 2003 by CRC Press LLC

Figure Objects are the windows in which all other graphics objects are
displayed. High-level graphics functions, e.g., plot, will automatically create a
Figure Window if one is not already present. They can also be invoked with
the command figure. In fact you have already been relying on Handle
Graphics for, as you have already seen, you must use this command to create
multiple Figure Windows. The Figure Window is a child of the root object, i.e.,
the screen object. The root object can be the parent to as many Figure
Windows as you want, provided your computer system has enough memory.
When there are multiple figure objects displayed, subsequent calls to the plot
function will create plots in the current figure, i.e., the last Figure Window on
which an action was made. The simplest way to make a given Figure Window
the current one is to explicitly select it with

figure(figure_number)

where figure_number is the integer displayed in the border at the top of the
Figure Window. The current Figure Window is the one which subsequent
graphics commands will affect.

Figure objects have four different types of children. The children can be
either a type of user interface object, specifically user interface control
(UIcontrol), user interface menu (UImenu), and user context menu
(UIcontextmenu), or axes objects. A figure can have multiple children, and not
all its children need be of the same type.

� � � �

�
��
�
�	

� �
� �
� �
�

� �
	 �
�

� �
� �
� 	
� �
�
	 �
��

� 	 �
� 	 � �

� � � � � � 	

� 	 � � � � �
 	
� � � � �

� � � � �

� � � � 	
� � � 	

Figure 7.1 The graphics objects hierarchy tree.

© 2003 by CRC Press LLC

The UIcontrol objects are used to generate graphical user interface controls.
Their positions can be over any region of the Figure Window. There are
various styles of controls that can be defined and each UIcontrol style allows a
user to provide MATLAB with input data or a stimulus for initiating the
execution of a predetermined set of actions. The UImenu objects are used to
generate graphical user interface menus. UImenus appear at the top of the
Figure Window when using MATLAB on X-Windows and MS-Windows
systems. On a Macintosh system, the menu objects that are children of the
current figure will appear at the top of the screen (by default, the menus
provided by MATLAB and the system software will also appear). However, no
matter what system you are using, these menus are children of a specific
figure. The UIcontextmenu objects are used to generate menus that appear
when a user right-clicks on a graphics object. Chapter 10 will examine these
objects in detail and show how easily they can be used to create sophisticated
interfaces.

An axes object specifies a region of the Figure Window that will contain any
collection of the seven axes children. In the previous chapter, we saw that the
subplot command could be used to designate multiple regions in the Figure
Window for displaying multiple plots in the same Figure Window. Essentially,
this high-level command creates an axes object in a location which is
dependent on the input arguments. The axes object can be the parent to line,
patch, surface, rectangle, image, light, and text objects. Instead of having high-
level commands create an axes object, they can also be created explicitly with
the axes function.

Line objects are the basic drawing primitives used to create 2-D and 3-D
plots and contours. Specifically, they are used by the plot, plot3, contour,
contour3, ezplot, fplot, and other specialized high-level commands. These
objects do not have any children, but can have many siblings, which do not
necessarily need to be other line objects.

Patch objects can also be used in both 2-D and 3-D contexts (unlike images
they can be viewed from any perspective). These objects are usually thought
of as filled polygons whose edge and face colors can be independently
defined. Their colors can be defined with either a solid or an interpolated color
or even with no color (making them transparent). These objects have no
children, but since they are children of axes objects they can have line,
surfaces, text, and other patch objects as siblings. You have already seen
these objects created in Chapter 4 using fill and fill3.

Surface objects are used to visualize data in a 3-D perspective. A surface is
generated with a set of colored quadrilaterals, where each individual
quadrilateral is very similar to a patch object. The edge and face colors can
also be defined as solid, interpolated, or transparent. Usually the colors are
related to the height of the object, but this need not be the case. These
objects have no children, but may accompany other line, patch, surface, and
text objects in their axes parent. They can be created with commands that
create mesh and surf type graphics, in addition to pcolor (which will be
discussed later).

Rectangle objects are 2-dimensional objects that have four sides and
corners that have a specific roundness or “curvature.” This type of object,

© 2003 by CRC Press LLC

created with the function rectangle, includes square-cornered rectangles,
rounded rectangles, and ellipses. Rectangle objects, like image objects, can
only be viewed in 2-D.

Image objects can be viewed only in a 2-D perspective; if you attempt to
view them from any other perspective, they will not appear. Images are
graphical representations of matrix data, where each matrix element value
defines the color of a particular rectangle in the image. More specifically, the
element is an index that points to one color within a list of colors (usually
referred to as a color map) stored in the figure object. These objects are
children of axes objects and therefore can be visualized with other axes
children as long as the axes object is viewed from a 2-dimensional perspective.
The image objects are displayed with the image or imagesc function.

Light objects are created using the light function, but are not objects that
can be viewed in a plot directly. Instead, light objects affect the appearance of
other objects in a plot. Specifically, light objects affect how surface and patch
objects look, and have properties that include color, style, position, etc.

Finally, there are text objects. These character strings provide descriptive
information to the plot. They can be used as axis labels or titles that are
restricted in terms of their location with respect to the axes object. They can
be character strings that are placed interactively with the plot editing tools
available in the Figure Window, automatically by high-level commands such as
clabel or legend, or they can be manually placed by either defining their
location with a MATLAB command such as text or even with the mouse
pointer such as by using gtext. These objects are children of axes objects and
have no children themselves. Figure 7.2 shows a Figure Window with a typical
collection of graphics objects.

© 2003 by CRC Press LLC

Figure 7.2 A typical collection of graphics objects.

In order to manipulate the characteristics or properties of these graphics
objects with low-level graphics commands, you need to have some way of
addressing each object. Previously, it was mentioned that The MathWorks
coined the term “Handle Graphics” for the graphics system used by MATLAB.
Handles provide the user with a way of identifying the graphics object that
you want information about or whose information you want to alter. The next
section further discusses the relevance of graphics object handles and how
they can be obtained.

7.3 Graphics Objects Handles
To put it simply, a graphics object handle is a unique identifier assigned to

every single graphics object. The term “handle” is appropriately descriptive in
that it is analogous to handles of everyday objects found around the home
(such as doors, frying pans, luggage, etc.). Just as these common handles
provide you with means of gaining access, holding on to, and opening up
everyday objects, graphics handles provide a means of both specifying and
viewing the contents of MATLAB generated graphics objects.

Depending on the complexity of the graphics you create, there may be
hundreds of objects resulting in hundreds of handles. (Minimally there will
always be at least one graphics handle since if you are running MATLAB the
root object must exist.) Keeping track of these handles, by assigning them to
variables, provides easy access to the properties of the graphics objects.

� � � � � 	 � � � � 	 � �

� � 	 � � � � � 	 � �

� � � � � � 	 � � � � 	 � �

� 	 � � � � � � 	 � � �

 � 	 � � � � � 	 � � � � 	 � � � � � � �
 � � � � 	 � � �

 � 	 � � � � � 	 � � � � 	 � � 	 � � � � � � 	 � � �

© 2003 by CRC Press LLC

However, even if you do not wish to keep track of these handles at the time
the objects are created, as we shall see MATLAB provides a handy means to
quickly acquire these handles. MATLAB’s handle and property features give
you a great deal of flexibility and freedom to arrive at your desired goal, but
always remember that there is no one correct or best path that you can take.

Handles can be either integers or floating point numbers that MATLAB
automatically generates for an object. Once assigned, the number, which is
the handle, cannot be changed and will remain viable until the graphics object
is deleted. Although MATLAB generates handles as needed, there are a
number of objects for which the handles will always be the same from session
to session: the first one of these is the screen or root object, which always has
the handle of zero; secondly, if using the figure command, a figure’s handle
will always be an integer and the first figure created will have a handle of one.
In MATLAB’s default mode of operation, this integer is displayed in the border
at the top of every Figure Window. For example, the Figure Window shown
on the previous page has “Figure No. 1” displayed in the border and therefore,
its handle is the integer 1. The figure objects are numbered consecutively
from 1 to the number of figures you have displayed on your screen. The only
exception to this rule is when you close or quit a Figure Window that is not
the last one created. In this case, the next created figure will use the next
lowest available number. For example, if you have figures 1 through 5
displayed, and then close figures 2 and 3, the next new figure generated will
be assigned a handle number of 2 and will also be labeled as such (“Figure
No. 2”). All other graphics objects will be assigned a floating-point number.

Before we discuss how these handles are used to change the properties of
graphics objects, we will discuss some techniques that can be used to obtain
the graphics handles. Generally speaking, you can either obtain the handles of
objects at the time they are created, or you can get the handles from objects
that already exist.

7.3.1 Determining Handles at Creation

All low-level and most high-level plotting functions return the handles to the
objects that they create if an output argument is supplied during their
execution. For example, we can create a figure, an axes, and a line object and
store their handles respectively in the variables figure_handle, axes_handle,
and line_handle with something like the following code:

figure_handle = figure;
axes_handle = axes;
line_handle = plot(exp(-([-3:3].^2));

If more than one graphics object of a particular type is created, as when you
create multiple lines with one plot statement, the handles will be returned as a
column vector. The caveat with the high-level functions (such as plot) is that
they only return the handles to objects that are created by the function if a
figure and axes object were already present when, in fact, we know that the
figure and axes object will automatically be generated if one currently does
not exist. Therefore, even though the third line in this example would
generate the desired plot all by itself, we could not have obtained the figure

© 2003 by CRC Press LLC

and axes handle at the time of their creation without the first and second lines
(later you will learn about other low-level functions and techniques that can be
used to obtain object handles after creation).

Many high-level graphics functions can be called in ways that will return the
data being plotted. Some of these functions, such as ezplot, will return an
error if called with an output argument. Many of these commands, e.g.,
ellipsoid, stairs, can be forced to suppress plot creation and will return other
information, if called with an output argument, that can be plotted, such as the
coordinates of lines vertices. When called in this manner they do not return
graphics handles. The following table is a list of high-level MATLAB commands
that generate plots but do not return graphics object handles when an output
argument is supplied.

Graphics Functions That Do Not Return a Handle When Called with Outputs

bar ezplot rose

compass feather stairs

cylinder fplot quiver

ellipsoid hist sphere

errorbar polar cylinder

 For these commands, you could always create the plot in two steps: the
first step would be to create the coordinates with the command, and the
second step would be to pass the coordinates to the functions plot or surf. As
an example, the stairs function can return a handle to the line objects that
make up its plot, however if you wanted to get the actual values making up
the plot you must use the function calling two output arguments. When you
do this, you are not given the handles to the line objects. Consider this
example where we use the stairs function in conjunction with plot to look at
the histogram of some normal-randomly distributed numbers.

x=randn(1,100);
hist_x=hist(x);
[X,Y]=stairs(hist_x) %this is step one
plot(X,Y) %this is step two

This gives you access to the data used to create the plot. Still it would be very
helpful to access this data, which we know must be part of the object, at a
lower level. This is exactly what we will discuss in the next section as we
venture into the properties of objects, but first we will present how to get
handles of current objects when they were not determined at creation time.

7.3.2 Getting Handles of Current Objects

Several functions are useful for obtaining handles of current objects.
(Remember that the current figure is the active figure which subsequent
plotting commands would affect.) To determine which figure is the current
one, you can use

figure_handle = gcf;

© 2003 by CRC Press LLC

where gcf is a function that "gets current figure." The variable figure_handle
could have been named anything you like. Although this is not very useful if
you work with only one Figure Window since gcf will always return the
number 1 if only one figure is displayed. However, gcf can be useful when
working with multiple Figure Windows. At the very least, it can be used as a
way of double-checking to assure that subsequent plotting commands appear
in the figure that you expect.

But what about what’s inside the figure? You can use the “get current axes”
function gca to obtain the graphics handle of the current axes. The current
axes are the axes in the current figure to which subsequent plotting
commands would be sent. When you switch between figures, the gca
command will return the handle to the current axes within the active figure. If
there are multiple axes in the figure, the function will return the handle either
to the one that was most recently created or the one that was most recently
plotted, whichever event occurred most recently.

Finally, there is also a graphics object within each figure referred to as the
current object. This is the object in the current figure that was last touched in
some way; either most recently created, manipulated, or clicked on with the
mouse pointer. To obtain the handle to this object, the function gco, for “get
current object,” is available.

So, why is it useful to store the handles or use handle requesting functions?
For one, they will provide you with a means of determining or modifying an
object’s properties. Secondly, the commands gcf and gca can be used as a
means of switching between multiple figures or axes so that the next plotting
command you issue will appear in the figure and location as you intended.
Finally, once the objects’ handles are stored in some set of variables, you can
make any figure or axes current. This could be accomplished by respectively
executing the commands figure(figure_handle) or axes(axes_handle), where
figure_handle and axes_handle are the object handles to the figure and axes
you want to make current.

Consider that when developing your own custom M-files it is a good idea to
assume that at the time your function is invoked there may be other figures
and axes objects already displayed that you or a user do not want altered.
Therefore, it may be wise not to use programming styles that depend on a
particular figure number being available in which to display graphics. As an
example, consider a situation in which you want to plot some data to two
different figures, and then, after you looked at the data, you would like to
reuse the two figures. Do not use a form in your code that does the following:

figure(1);
plot(...);
figure(2);
plot(...);
disp('Press any key to continue');
pause
figure(1);
plot(...);

© 2003 by CRC Press LLC

where the “...” represents legal plotting arguments. Rather, assume that
figures 1 and 2 already contain some graphics that you (or the user) do not
want destroyed and use a form such as

fig_handle1 = figure;
plot(...);
fig_handle2 = figure;
plot(...);
disp('Press any key to continue');
pause
figure(fig_handle1);
plot(...);

We will also recommend that you use variable names for your handles that
are a little more descriptive than fig_handle1 and fig_handle2. This will make
your programs more readable and make it easier for other individuals to look
at your code and determine how the handles are being used!

Handles and the functions that return handles can be used as arguments to
commands that make use of handles. In the next section, you will learn about
the functions get and set that can be used to query and specify a graphics
object’s property values. There are also the commands clf, cla, and delete
that can be used to clear the current figure, clear the current axis, or delete an
object by using its handle. The delete function is used in conjunction with gca
and gcf to remove graphics objects that are displayed in the current MATLAB
work session. For example, the objects in the current axes, but not the axes
itself, can be deleted with the cla command; using delete(gca) will not only
remove the contents of the axes, but will delete the axes as well. Likewise, clf
will clear the contents of the current figure, whereas delete(gcf) will delete the
current Figure Window. You can also delete just a single object with
delete(gco). Remember that if an object is deleted, all children of that object
will also be deleted. The thought might have already occurred to you that
quite a lot of graphics objects can exist in a Figure Window, and you are right.
It would be very inconvenient if we had to rely solely on a user touching a
graphics object, or always keeping track of our handles at creation. After we
discuss the properties of objects, we will introduce another technique for
obtaining the handles of graphics objects by making use of the function
findobj.

7.4 Properties
Every graphics object has a set of properties associated with it, i.e., named

values, that contain all the information needed for display. At the time a
graphics object is created, the properties that you do not explicitly specify are
initialized to their default values. Property values can be in the form of strings,
vectors, or matrices, but are always used to define a characteristic or attribute
related to an object.

In this section, you will be introduced to the Property Editor; a GUI included
with MATLAB that lets you browse graphics objects and their properties. Then,
and more importantly, you will learn M-File programming techniques that will
let you determine what the names of the properties are, how their values can
be determined and manipulated, and how you can alter their default values.

© 2003 by CRC Press LLC

By the end of this chapter, you will know how to create objects, find objects,
and change their properties in just the manner that best works in your specific
application. In fact, from here on out in this book, object properties will be key
in almost all the discussions, so much so that we will indicate object property
names in italics.

7.4.1 The Property Editor

The Property Editor is a convenient graphical utility that allows you to
quickly navigate around objects and edit most of an object’s properties. (We
say “most” because not all properties are visible via the Property Editor.) The
greatest benefits of the Property Editor are its convenience of accessing object
properties and its ability to depict the organization of objects in a figure. It is
very handy for one-time “tune-ups” of plots and for quickly seeing object
properties and values.

You invoke the Property Editor either by going into property editing mode
in a Figure Window, achieved by clicking on the arrow in the toolbar and then
double-clicking on an object in the figure, or by typing the command propedit
in the Command Window. If you type propedit without a Figure Window in
existence, the Property Editor will open to the root object properties and looks
something like Figure 7.3.

If you have any Figure Windows open, when you invoke the Property Editor
from the Command Window, it will open with the current figure in the “Edit
Properties for:” box.

Figure 7.3 The Property Editor showing the root object.

© 2003 by CRC Press LLC

7.4.2 Manipulating Properties

Manipulating object properties requires that you first know the property
names for the various objects. From using the Property Editor you might think
that this is a daunting requirement, however it is not necessary to memorize
the names nor must you continually look them up in the MATLAB
documentation. MATLAB provides two functions, namely get and set, that
allow you to list all available or settable properties for a given object. Even
though you do not need to memorize all the properties, after you become
familiar with them you will see that the property names are fairly intuitive or at
least become so fairly quickly. If you think about the English words that
describe the characteristic of the graphics object that you want to change, you
will very likely come up with the property name. For instance, if you want to
change the color of a line from yellow to blue, you would look at a line object
property called Color. If you want to change the style of the line from solid to
dashed line, you will need to look at the LineStyle property of the line object.

To list all of the properties for a graphics object with handle h, use get(h). In
addition to listing the properties, get will list the corresponding property values
next to the property. If you know what the property name is and you wish to
determine the value that is currently assigned to that property, you can use
get(h,'PropertyName'), where PropertyName is a string of characters that
spellout the property’s name.

To see which properties you can specify the properties value, use set(h). If
a property has a finite number of values that can be specified for that property,
they will be listed next to the property in the following form

PropertyName : [PropertyValue1 | {PropertyValue2} |
 PropertyValue3 | PropertyValue4 | ...]

where the property between the curly-braces (“{” and “}”) is the default
value for the property. Therefore, in this example, PropertyValue2 is the
default or current setting of the objects PropertyName property. Properties
that are not limited to a finite number of possible values will simply be listed as

 PropertyName

so that you realize that you may specify these properties. If you want to
specify a property, you use

set(h,'PropertyName',PropertyValue)

where h is the handle to the object that you are manipulating. Although we
use the full property name in the examples found in this book, there are a
couple of things you can keep in mind that can save time in specifying and
querying object property values. The first is that the capital letters are not
required, but are used only to make the properties easier to read. The second
is that the full name of the property does not need to be used, but only

© 2003 by CRC Press LLC

enough characters to uniquely identify a given property. As you will see, for
many of the object properties, you need to pass only the first three characters
of the property name.

When you use get to see the properties of an object, MATLAB returns a
structure array of the object’s property information. For example, if you used

MyObjectInfo = get(h);

you could then determine the value of any of the properties of object h in
the following manner:

MyObjectInfo.PropertyName

Note that PropertyName must be the name of one of the valid object
properties. Also, be aware that PropertyName must be used with the correct
capitalization since MATLAB structure field names are case sensitive. So as an
example, let’s say you have a just created a Figure Window (this could have
been done with a high-level command) and you want to determine the setting
for the orientation of a printed page. You might do this in this way:

MyObjectInfo=get(gcf)
MyObjectInfo.PaperOrientation

which will return,

ans =
portrait

Just as with get, set will return a structure array if called with a return value.
You can use set in this manner when you want to put all the possible
PropertyValues for an object with handle h into a structure array.

PosPropVals = set(h);

With this method you can look at the possible property values that could be
used for a particular property, say PropertyName, with

PosPropVals.PropertyName

Say you wanted to know what the possible units are for a figure; assuming
you have a Figure Window with handle h you could use:

PosPropVals=set(h);

then look at the Units property with,

PosPropVals.Units

This will return something like,

ans =

 'inches'
 'centimeters'
 'normalized'
 'points'
 'pixels'

© 2003 by CRC Press LLC

 'characters'

which are the possible value specifications for the Units property.

7.4.3 Universal Object Properties

There are a number of properties that are common to all graphics objects in
MATLAB and there are some other properties that are common among several
types of graphics objects; however, there are fifteen documented properties
that are common to all graphics objects. We are careful to emphasize
documented properties since those are the ones that are either found in the
MATLAB documentation or listed with get when MATLAB is running with the
factory default settings. Undocumented properties will be discussed later and
as you will learn, there are undocumented properties that are common to all
graphics objects as well. If you are running a version of MATLAB before
version 6, you might notice some differences. The common properties that are
documented are listed in the table below along with the specific attributes
related to their values.

The tables in this and the next few sections that summarize the graphics
properties are organized and sorted alphabetically by the property name in
the first column. The second column tells you whether or not you can use the
function set to specify the property value. If the property is read only
(indicated with a “Yes” in this column), you cannot modify the property value.
The third column lists the type of information or the possible options that you
can set or get. Limited property value options are indicated where the
contents within this column are surrounded by square brackets “[]” and the
choices are separated with the separator character “|”. The factory default
value is indicated by the option that is surrounded by braces “{}”. These values
are passed to and from the get and set functions as strings. For example, to set
the Selected property to on for an object with handle h, you could use
set(h,'Selected', 'on'). Entries in the third column that are surrounded by
square brackets, yet have no separator characters, indicate that there is a strict
format for the value matrix and that MATLAB expects the individual elements
to be in a particular order. Finally, if brackets do not surround entries in the
third column, this indicates that their values can be numbers, integers, handles,
strings, or characters. The format column indicates whether the property
values are stored as a limited number of elements, an unrestricted (in length)
row vector, a column vector, or a matrix.

Some of these properties do not affect all of the graphics objects;
nonetheless, each of these properties still exists and therefore is listed here as
a common property. For example, the ButtonDownFcn, Clipping, Interruptible,
and Visible properties of the root object will not alter any aspect of MATLAB’s
graphics and interface operations.

The Type property is read only; in other words, you can only use the get
function with them. If you try to set this property, you will get an error
message like,

??? Error using ==> set

© 2003 by CRC Press LLC

Attempt to modify read-only figure property: 'Type'.

The “ValueType/Options” column within the table shows whether a string
or number can be specified or retrieved from the property with the set and get
functions. Entries containing brackets indicate that there are only a limited
number of options available for those object’s properties. Even though string
quotes are not shown, they would need to be used when setting those
properties. For example, if you want to set the Visible property to “off” for an
object whose handle has been stored in the variable h, you can use

set(h,'Visible','off')

The property “Format” column indicates how the property values must be
passed to or from the object. The entry “row” means that the value can be
either a row vector of numbers or characters. The entry “column” means that
the value can be either a column vector of numbers or characters. Both row
and column formatted property values may also be a single element or the
empty number ([]) or string (['']) matrix when appropriate. Only the UserData
property is unrestricted (in the same sense that any other variable within the
MATLAB work space is unrestricted) with regard to the data that it can store.

Property
Read
Only ValueType/Options Format

BusyAction No [{queue} | cancel] row
ButtonDownFcn No string row

Children No* handle(s) column
Clipping No [{on} | off] row

CreateFcn No string row
DeleteFcn No string row

HandleVisibility No [{on} | callback | yes] row
HitTest No [{on} | off] row

Interruptible No [no | {yes} | off | {on}] row
Parent No handle one element

Selected No [{off} | on] row
SelectionHighlight No [{no} | yes | {off} | on] row

Tag No string row
Type Yes string row

UserData No number(s) or string matrix
Visible No [{on} | off] row

* Although you cannot create new handles in the Children property, you can change the
order of the handles and so change the stacking order of the objects.

7.4.3.1 ButtonDownFcn, BusyAction, and Interruptible

The ButtonDownFcn (button down function), BusyAction, and Interruptible
properties will be fully addressed in Chapter 10 when we discuss using objects
as a mechanism for the user to interface with MATLAB. Briefly,
ButtonDownFcn is used to specify a single or set of legal MATLAB commands
that perform some action when the user clicks the mouse button in an area
that is near, in, or on (depending on the graphics object type) a graphics
object. The BusyAction property controls what should happen to the events
that are spawned from actions taken by the user directed at the object when
some other event is currently being executed. Let’s say you have two objects
that have their ButtonDownFcn property defined and you click on one object

© 2003 by CRC Press LLC

and then the other object before the commands stored in the first object's
ButtonDownFcn have completed. If the BusyAction property is set to queue,
the commands in the second object’s ButtonDownFcn property will be
executed after the first object’s commands finish. If the BusyAction property is
set to cancel, the commands in the second object’s ButtonDownFcn property
will be ignored. The Interruptible property specifies whether the sequence of
events that are programmed to occur when a user interacts with graphics
objects can be interrupted by the execution of additional event-driven
sequences.

7.4.3.2 Children and Parent

The Children and Parent properties of an object will contain the graphics
object handles to the children and parent of that object. The root object
never has a parent. And therefore, the value of the Parent property of the root
object will be the empty matrix. All other objects will have a single number
that corresponds to their parent stored in the Parent property. Objects such as
lines, text, patches, and surfaces have no children and therefore, their Children
properties will be the empty matrix. Figure and axes objects will always have a
parent object and may have children, depending on whether or not children
have been created. As a historical note, in versions before MATLAB 5, these
properties were read-only. With the modern versions of MATLAB you can
reassign an object to another object of the same Type. For example, you can
move an axes object from one figure to another just by setting the axes
object’s Parent property to the figure handle to which you want to move the
axes object. You can also reorder the handles in the Children property, i.e.,
you can set the property to any permutation of the current handle values that
are stored in the object’s Children property, with the result of changing the
stacking of the objects on the display. In this manner the Children property
sets the order in which certain objects (figure, axes, uicontrol, and uimenu) are
displayed when their screen positions overlap. The lower the index number of
the handle that is stored in the Children property’s column matrix, the closer
the object will be drawn to the user’s viewpoint to the screen. By
manipulating this property, you can force an object that might otherwise be
hidden from view to move to the front of the screen.

7.4.3.3 Clipping

Although an available property of all objects, the Clipping property only
affects line, patch surface, image, and text objects. Line, patch, surface, and
image objects by default have their Clipping property set to “on”, while text
objects have this property set to “off”. For these objects, when the Clipping is
set to “on”, portions of the object that lie beyond the region of space defined
by their parent axes will not be seen. When Clipping is set to “off”, portions of
the object will be seen even if they are outside of the axes object perimeter.
You can illustrate this property with the following code.

x = -5:15;
LineHandles = plot(x,x+5,'--r',x,x-3,'g');
TextHandles(1) = text(6.5,5,...
 'This String will have clipping off');
TextHandles(2) = text(-1,3.5,...

© 2003 by CRC Press LLC

 'This String will have clipping on');
axis([0 10 0 10]);

You should have the result shown in Figure 7.4.

Now we shall set Clipping “off” for the red dashed line (this object’s handle
is stored as the first element in the LineHandles variable because it is defined
by the first three arguments in the plot command) and “on” for the text object
whose handle is stored in TextHandles(2) by typing

set(LineHandles(1),'Clipping','off');
set(TextHandles(2),'Clipping','on');

The result is shown in Figure 7.5. Notice how the dashed line now extends
beyond the boundaries of the axes object since we set its Clipping property to
“off”. Also notice that the characters that previously lay outside the axes
boundaries are no longer visible now that the Clipping property has been set
to “on” for that text object. The Clipping property affects how the graphics
are displayed, but does not affect the data or characters of the object; the
characters that are no longer displayed still reside within the text object, so
that if at some later time you decide to set Clipping “off” for this object, the
characters will reappear.

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10

This String will have clipping off

This String will have clipping on

Figure 7.4 Line objects default to Clipping “On”, but text objects
default to Clipping “Off”.

© 2003 by CRC Press LLC

7.4.3.4 CreateFcn and DeleteFcn

The CreateFcn (create function) property can be assigned a string containing
legal MATLAB commands that will be executed during an event in which a
duplicate of the object is being created. If that sounds a little confusing,
consider an example where, if you use the copyobj function on a graphics
object that has the CreateFcn property set, the string in this property will be
evaluated as if it were typed on the command line. (copyobj makes a copy of
a graphics object along with all of its children.)

Try the following:

h = figure;
set(h,'CreateFcn','display(''Cloning a figure.'')');
copyobj(h,0);

You should see a result like,

ans =
Cloning a figure.

after you type the second command. The only other way this property can
really have an affect is if the root’s DefaultObjectTypeCreateFcn is set so that
whenever an object of ObjectType is created, the string will be evaluated. For
instance, if you typed,

set(0,'DefaultFigureCreateFcn',...
 'display(''OK, here''s a figure.'')')

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10

This String will have clipping off

 will have clipping on

Figure 7.5 Here Clipping is set to “off” for the dashed line and “on” for
one of the text objects.

© 2003 by CRC Press LLC

every time a new figure was created, the display string would be shown on
the command line output.

The DeleteFcn (delete function) property’s value may be assigned a string
containing legal MATLAB commands that will be executed during an event
which destroys or removes the object from existence. For example, if you
executed

 delete(object_handle)

the object whose handle had been assigned to the variable object_handle
will execute its destroy function. In addition, if the object that is being deleted
has children, the children’s respective destroy functions will also be executed.
Other events that will execute destroy functions are when you close a Figure
Window or perform another graphics command that replaces any currently
displayed graphics objects.

7.4.3.5 HandleVisibility

The HandleVisibility property has nothing to do with what you see on your
screen; rather, it has to do with one manner in which objects are grouped by
MATLAB and accessed from the command line, functions, and callback
routines (which we will discuss in Chapter 10). The default value of this
property is “on”, and means that the object’s handle is available to the
command line, any function, and callback routine. If the value is set to “off’”,
the object’s graphics handle is not visible to functions, and callback routines
assume you have not set the root’s ShowHiddenHandles (see the next section
of this chapter) property to “off”. For instance, if you set figure 1’s
HandleVisibility to off with,

figure(1);
set(1,'HandleVisibility','off');
figure(2);

and then get the Children property of the root object, the value 1 (a figure’s
handle is in most cases the figure number) will not be in the returned list, as
you can see with,

get(0,'Children')

ans =
 2

In addition, if you execute a close('all') command, only figures with their
HandleVisibility set to “on” will be closed. With the value set to “off”,
functions like findobj, gco, gcf, and gca will not return the figure’s graphics
handle. If the HandleVisibility property is set to “callback”, then only a callback
routine (such as that defined in a figure’s ButtonDownFcn) will have visibility to
the handle. For example, continuing the simple example from above, type

set(1,'HandleVisibility','callback');
set(2,'ButtonDownFcn','get(0,''Children'')');
% Note that Children is surrounded by 2 single quotes.

© 2003 by CRC Press LLC

Now, every time you click in figure number 2, MATLAB will return

ans =
 2
 1

But if you typed

get(0,'Children')

MATLAB would only return

ans =
 2

7.4.3.6 HitTest

This property is used to control access to graphics objects when a mouse
click has occurred on an object. Specifically, the value assigned to an object’s
HitTest property determines if the object can become the current object, i.e.,
its handle be returned by the gco command and a figure’s CurrentObject
property (see the next section). If HitTest is set to “off”, clicking on the object
will select the object below it, typically the figure containing it. Although all
graphics objects have this property, only axes, figures, images, lines, patches,
rectangles, surfaces, and text will respond to it. The default is “on” which
means that the object clicked on will be set to the current object.

7.4.3.7 Selected and SelectionHighlight

When the Selected property of an object is in its “on” state, the object will
be circumscribed with a selection box that has little handles in the corners.
The selection box can either be dashed or solid, depending on the object type
(for instance, text objects will have a solid selection box, while axes objects
will have a dashed box). Although all objects have this property, root, light,
uicontrolmenu, and uimenu objects are not affected by it. Lines, surfaces,
images, and uimenus do not have a visible selection box with either setting;
instead, the presence of the little handles is all that is affected. Figure 7.6
illustrates the Selected property “off” and “on” states.

© 2003 by CRC Press LLC

Working closely with the Selected property is the SelectionHighlight
property. The SelectionHighlight property is “on” by default for every object,
thereby letting you see the selection box when the Selected property is set to
“on”. You also have the option of having an object be selected while keeping
its selection box invisible by setting the SelectionHightlight to “off” and the
Selected property “on”. This combination of properties makes it convenient to
search for a set of objects using findobj without having the visual indication
that those objects are selected, such as with

findobj('selected','on')

7.4.3.8 Tag and Type

The Tag property is an extremely useful graphics property that allows you to
store any string vector in any of the graphics objects. For instance, you may
assign a meaningful name to one or more of the graphics objects you create.
Later you could then use findobj with the Tag property as a simple way of
obtaining the handle to a particular object.

The Type property just identifies the object’s type as being one of the 13
possible types (root, figure, axes, line, rectangle, patch, surface, image, light,
text, uimenu, uicontextmenu, or uicontrol). This is a read-only property that
comes in handy when searching for particular objects.

Figure 7.6 The effects of setting Selected “on” and “off”.

© 2003 by CRC Press LLC

7.4.3.9 UserData

The UserData (user specified data) property allows you to store number or
string matrices in a graphics object. It provides a good place to put
information that you want to associate with the object, but does not
necessarily have to be related to the object. One advantage of storing
information in an object’s UserData property is that even if you clear the
workspace with the function clear, the data will remain with this object and
can be retrieved at any time. The graphics object does not alter or use the
information stored in this property. However, we will learn that since you can
design an event driven graphics system with MATLAB, you can program
MATLAB to make use of this data storage location during the occurrence of
some event. For example, you could have the contents displayed to the user
or mathematically manipulated if the user clicked on a graphics object. The
use of the UserData property will become clear when we discuss user
interfaces and provide illustrative examples.

7.4.3.10 Visible

The Visible property allows you to determine whether or not a graphics
object is displayed (visible) or hidden (not visible). This property has no effect
on the root object. If the Visible property of a figure is specified as “off”, the
Figure Window and its contents will be invisible. For all other objects, the
Visible property affects only the visibility of the object whose property is
specified; making the axes object invisible will not make its children invisible.
By default, this property is set to “on” when an object is created.

7.5 Object Specific Properties
The properties covered in the previous section are universal or common for

every graphics object in the MATLAB graphics environment. In this section we
will examine the properties that are specific to the root, figure, axes, line,
rectangle, patch, surface, light, and text objects. The properties of those
objects that are related to color (color, light, and transparency) will be quickly
mentioned in this section but left for detailed discussion in the next chapter.
Image object properties are looked at again in this section, while user interface
control, menu, and context menu object properties will be discussed in
Chapter 10. This section has been designed to give you informative tables,
illustrations, and simple examples that make use of the object properties. The
Appendix contains duplicates of these tables for quick reference.

At this time it is important to point out that the order in which the
commands discussed in this section are performed and whether executing
them from an M-File or the command line has different implications on the
final results. This is because MATLAB does not update the display or render
graphics with every command when running an M-File. Rather, an event
queue is established to store consecutive graphics statements so that they may
be more efficiently executed. There are four events that cause MATLAB to
flush out the queue so that these stored commands can generate graphics
objects or modify an object’s property alterations:

1. a return of control to the MATLAB Command Window prompt,

© 2003 by CRC Press LLC

2. a pause or waitforbuttonpress statement,

3. the execution of the getframe function, and

4. the execution of a drawnow command.

The pause command waits for a key to be pressed, while the command
waitforbuttonpress, which will be discussed in Chapter 10, waits for the
mouse button to be clicked. Since these two commands suspend execution
of MATLAB code, the graphics environment is updated so that the objects in
the Figure Windows accurately represent their current attributes. The
getframe function requires the objects to represent their present state because
this function can be used to take a snapshot of a Figure Window. The
getframe and drawnow functions will be discussed in detail in Chapter 9.

The examples in this section assume that you are reading along and perhaps
typing in commands so that you see their effects on your monitor. By typing
the commands, the graphics events are getting flushed immediately so that
you will see the same results presented in the figures shown in this book after
you have executed the given sequence of commands.

7.5.1 Root Properties

In addition to the universal properties that the root has which were
discussed in the previous section, the root object contains quite a few
properties, some of which are not even related to graphics. These properties
can be categorized into properties about the display, properties related to the
state of MATLAB, and properties related to the behavior of MATLAB. The
nature of these categories will become clear in the following discussions. The
following table summarizes the documented properties of the root object.

© 2003 by CRC Press LLC

Property Read-
Only

ValueType/Options Format

Display Related

FixedWidthFontName No string row

ScreenDepth Yes integer 1 element

ScreenSize Yes [left bottom width height] 4-element row

Related to the State of MATLAB

CallbackObject Yes handle 1 element

CurrentFigure No handle 1 element

ErrorMessage No string row

PointerLocation No [x-coordinate,y-coordinate] 2-element row

PointerWindow Yes handle 1 element

ShowHiddenHandles Yes [on | {off}] row

Behavior Related

Diary No [on | {off}] row

DiaryFile No string row

Echo No [on | {off}] 1 element

Format No [short | long | {shortE} | longE |
hex | bank | + | rat]

row

FormatSpacing No [{loose} | compact] row

Language No string row

RecursionLimit No integer 1 element

Units No [inches | centimeters | normalized
| points | {pixels}]

row

7.5.1.1 Display Related Root Properties

The first display related property we will present is FixedWidthFontName.
This property takes a string that specifies what fixed-width font MATLAB will
use for axes, text, and uicontrols whose FontName property is set to
FixedWidth. The advantage given by FixedWidthFontName is that you do not
need to independently code font names in MATLAB applications and thereby
enables these applications to run without modification in locales where non-
ASCII character sets are used; MATLAB attempts to set the value of
FixedWidthFontName to the correct value for a given locale. In general you will
not be changing this property since you should create axes, text, and
uicontrols with their FontName properties set to FixedWidth when you want to
use a fixed-width font for these objects. You can also change this property to
set a different font for the fixed-width font. In most cases, the default for the
value of FixedWidthFontName is ‘Courier’. Here’s an example.

get(0,'FixedWidthFontName')

© 2003 by CRC Press LLC

ans =

Courier

On startup, MATLAB determines the value that is assigned to the
ScreenDepth property. The value assigned to ScreenDepth specifies the
number of bits that correspond to the number of colors that the display system
of your computer is configured to display. The number actually corresponds to
the exponent of a power of 2, i.e., the number of bits used for color. For
example, if you have your monitor set up for 256 colors, then ScreenDepth
will be 8 (28 = 256); for 16K colors, the value will be 24 (224=16,777,216).

The ScreenSize property contains the size of the screen as a four-element
vector that specifies the lower left corner coordinate (left, bottom) and the
width and height as

[left bottom width height]

The left and bottom elements of this vector are both zero for all root unit
specifications except pixels. When the root’s Units property is set to “pixels”,
the left and bottom elements will both be the number one. The width and
height elements will depend on the monitor size and units used. So, for an
example, if you are using a 1024 x 768 display,

get(0,'ScreenSize')

will return
ans =

 1 1 1024 768

7.5.1.2 Root Properties Related to the State of MATLAB

The next six properties are related to the state of MATLAB, i.e., they contain
information that can be used to determine what is going on in a MATLAB
session. The first we will discuss is the CallbackObject property. Although this
will make more sense when we get to Chapter 10, at this time let us be
satisfied with knowing that callbacks are simply the code that is executed
when a user interface is invoked. This property of the root, when accessed by
the command line, will contain an empty matrix. It is only when an object’s
callback routine (e.g., ButtonDownFcn, Callback, DeleteFcn, CreateFcn, etc.)
is being executed that this property will contain a value, namely, the handle of
the object whose callback routine is currently being executed. This property
provides the best way for a callback routine to determine which object it is
executing from (particularly if multiple objects execute the same callback
routine) so that the routine can, for instance, access its own UserData property
to get information that has been stored there. As a simple example, try typing

figure; figure;
set(findobj('Type','figure'),...
 'ButtonDownFcn','get(0,''CallbackObj'')')

Notice that CallbackObj is surrounded by two single quotes.

© 2003 by CRC Press LLC

Then click in one and then the other Figure Window; you should see the
figure number appear in the Command Window corresponding to the figure
you clicked in. However, if at the command line you type

get(0,'callbackobj')

MATLAB will return

ans =

 []

The CurrentFigure property will contain the handle of the current Figure
Window, i.e., the Figure Window that was most recently created, clicked in, or
made current with

figure(h)
or

set(0,'CurrentFigure',h)

where h is the handle of an existing Figure Window. Note that figure will
restack the Figure Windows if multiple ones exist, while set does not. If there
are no figure objects,

get(0,'CurrentFigure')

returns the empty matrix. However, gcf will always return a figure handle, and
creates one if no figure objects exist.

The ErrorMessage property contains a string consisting of the last error
message issued by MATLAB or the last value to which you set this property.
The lasterr function retrieves the value of this property by executing

get(0,'ErrorMessage')

The content of this property can be useful in routines that could result in a
MATLAB error message if the user of your function or graphical user interface
were to do something incorrectly. For example, to execute functions you
know could result in an error, you can use the eval('try','catch') where try is the
function you would like to execute but know may result in an error if used
incorrectly, and catch is a function that will get the string stored in
ErrorMessage, (e.g., error_string = get(0, 'ErrorMessage');) parse the string, and
perform some action that is dependent on the error message that was found
to have occurred.

The PointerLocation (current pointer location) property can be used to
report the position of the mouse pointer. Executing

get(0,'PointerLocation')

will return a 2-element vector that contains the x- (horizontal) and y-
coordinates (vertical) of the pointer with respect to the lower left corner of the
computer screen (not the Figure Window). This will be a useful property in
some graphical user interface applications, such as when creating functions
that allow you to use the mouse to define the position of a graphics object by

© 2003 by CRC Press LLC

clicking and dragging the object. You can also use it to place the mouse
pointer in a particular location on the screen at the occurrence of a particular
user action or event. For example, you can use ScreenSize and
PointerLocation to place the pointer in the middle of the screen with

ScreenSize = get(0,'ScreenSize');
set(0,'PointerLocation',ScreenSize(3:4)/2);

The PointerWindow property reports the handle of the Figure Window that
contains the mouse pointer. This is another property that is particularly useful
in callbacks. If there are no Figure Windows being displayed at the moment or
the mouse pointer is not within a Figure Window, this property will be set to
zero. By itself, this property may not seem too useful, but you will learn about
potential uses for it in Chapter 10 when we discuss graphical user interfaces.

The ShowHiddenHandles property is related to the universal property of
HandleVisibility and by default is set to “off” which allows the HandleVisibility
of each object to dictate whether its handle will be visible at the command
line, during a callback type routine, or not at all. If you set
ShowHiddenHandles to “on”, the object property is overridden and all object
handles will be visible.

7.5.1.3 Behavior Related Properties of the Root

The remaining eight root properties (Diary, DiaryFile, Echo, Format,
FormatSpacing, Language, RecursionLimit, and Units) have no effect on
MATLAB in a graphics context, but they nevertheless are properties of the root
object. The Diary and DiaryFile properties are directly related to the diary
command, which as you know can be used to keep a record of your MATLAB
command line entries and outputs. (See Chapter 1.) Using this property for
instance, you could use the following in an M-File;

set(0,'diary','on')

which would be equivalent to typing

diary on

at the command prompt. Likewise diary off is an alias for set(0,'diary','off').
The diary command also lets you specify the name of the diary file. If, for
some reason, instead of using the diary command, you wanted to make use of
the root property, it would be just as effective to use

set(0,'DiaryFile','filename')

The MATLAB commands echo on and echo off are just setting the root
property Echo, respectively, to “on” or “off”. Setting Echo to “on” forces each
line of a script file to be displayed as it is executed.

The Format property can be used to affect how MATLAB displays numbers
in the Command Window. Values for Format are the strings “short”, “long”,
“shortE”, “longE”, “shortG”, “longG”, “hex”, “bank”, “+”, and “rational”.
Similarly, FormatSpacing affects the line spacing of output to the Command
Window. Its possible values are “loose” and “compact”. For example, using

© 2003 by CRC Press LLC

the format command at the command prompt to set the Command Window
to longE and compact format with

format long e
format compact

can be achieved using set with,

set(0,'Format','longE')
set(0,'FormatSpacing','compact')

Please recognize that you would typically control the format of output using
formats in the printf function; see the MATLAB helps and documentation for
more about how to produce formatted output.

The property Language is a system environment setting that reports the
language your version of MATLAB is designed for. The code

get(0,'Language')

will return,

ans =
english

The property RecursionLimit tells MATLAB how deep in recursion, that is
how deep nested M-File calls can go, before MATLAB will terminate it. The
default value is 500.

The property Units specifies the units MATLAB uses to interpret size and
location data of your computer screen. Possible values are “pixels”,
“normalized”, “inches”, “centimeters”, “points”, and “characters”. All units are
measured from the lower left corner of the screen. “Normalized” units map
the lower left corner of the screen to (0,0) and the upper right corner to
(1.0,1.0). “Inches”, “centimeters”, and “points” are absolute units. One point
equals 1/72 of an inch. “Characters” are units defined by characters from the
default system font, specifically, the width of one unit is the width of the letter
x, the height of one character is the distance between the baselines of two
lines of text. The default value for Units is “pixels”.

7.5.2 Figure Properties

You have already seen lots of figure objects. Figure objects are those
objects created with the figure function, or by other functions that invoke
figure such as plot, surf, etc.. Each figure object will be a window and we
often refer to these as Figure Windows. The properties that are found with
every figure object, except those that are universal properties, are listed in the
following table. The table uses the same structure as the previous property
tables.

© 2003 by CRC Press LLC

Property Read
Only

ValueType/Options Format

Positioning the Figure

Position No [left bottom height width] 4-element row

Units No [inches | centimeters | normalized | points |
{pixels}]

row

Style & Appearance

Color No [Red Green Blue] or color string RGB vector

MenuBar No [{figure} | none] 1 element

Name No string row

NumberTitle No [{on} | off] row

Resize No [{on} | off] row

WindowStyle No [{normal} | modal] row

Colormap Controls

Colormap No M RGB number triplets M-by-3 matrix

Dithermap No N RGB number triplets M-by-3 matrix

Dithermapmode No [auto | {manual}] row

FixedColors No N RGB number triplets N-by-3 matrix

MinColormap No number 1 element

ShareColors No [no | {yes}] row

Transparency

Alphamap No default is 64 values progression from 0 to 1 M-by-1 vector

Renderer

BackingStore No [{on} | off] row

DoubleBuffer No [on | {off}] row

Renderer No [{patinters} | zbuffer | OpenGL] row

RendererMode No [{auto} | manual] row

Current State

CurrentAxes No handle 1 element

CurrentCharacter No character 1 element

CurrentObject No handle 1 element

CurrentPoint No [x-coordinate, y-coordinate] 2-element row

SelectionType Yes [normal | extended | alt | open] row

continued on next page

© 2003 by CRC Press LLC

Property Read
Only

ValueType/Options Format

Properties that Affect the Pointer

Pointer No [crosshair | fullcrosshair | {arrow} | ibeam
| watch | topl | topr | botl | botr | left |
top | right | bottom | circle | cross | fleur
| custom]

string

PointerShapeHotSpot No (row index, column index) 2-element row

PointerShapeCData No 1s where black, 2s where white, NaNs
where transparent

16-by-16

Callback Execution

CloseRequestFcn No string, function handle, or cell-array
{‘closereq’}

string, 1-
element, cell-

array

KeyPressFcn No string string

ResizeFcn No string string

UIContextMenu No Number 1 element

WindowButtonDownFcn No string string

WindowButtonMotionFcn No string string

WindowButtonUpFcn No string string

Controlling Access to Objects

IntegerHandle No [{on} | off] string

NextPlot No [{add} | replace | replacechildren] string

Properties that Affect Printing

InvertHardcopy No [{on} | off] string

PaperOrientation No [{portrait} | landscape] string

PaperPosition No [left bottom width height] 4-element row

PaperPositionMode No [{auto} | manual] string

PaperSize No [width height] 2-element row

PaperType No [{usletter} | uslegal | A0 | A1 | A2 | A3 |
A4 | A5 | B0 | B1 | B2 | B3 | B4 | B5 |
arch-A | arch-B | arch-C | arch-D | arch-E |
A | B | C | D | E | tabloid | <custom>]

string

PaperUnits No [{inches}|centimeters| normalized |
points]

string

General

FileName No A name of a FIG-File to be used with
GUIDE; see Chapter 10.

string

7.5.2.1 Figure Properties Affecting Position

The first set of figure object properties, Position and Units, deals with
location of the Figure Window on the screen. The Position property of a figure
object contains a vector that specifies the left bottom, width, and height ([left

© 2003 by CRC Press LLC

bottom width height]) in the current units (as specified by the contents of
Units). The creators of MATLAB give a special name to this four-element
vector – rect. Typically we will see the rect vector whenever we discuss the
position of a graphics object. For example, if you want to place the current
figure in the exact center of the screen and resize it so that it is 200 pixels
wide by 50 pixels high, you can do the following:

set(0,'units','pixels');
set(gcf,'units','pixels');
screenrect = get(0,'screensize');
screenwidth = screenrect(3);
screenheight = screenrect(4);
figwidth = 200;
figheight = 50;
figposition = [(screenwidth/2-figwidth/2)...
 (screenheight/2-figheight/2)...
 figwidth figheight];
set(gcf,'position',figposition);

The first two lines make sure that the root and figure are both using pixel
units, just in case you (or the user if you are designing a MATLAB routine that
others may use) have changed one or both of these object’s units from their
factory default values. This code assumes that there is a current figure
available. It still works if there is no existing figure object; however, a figure
will be generated when you type the second line, and this figure will have the
default Position property value. Then only when you type the last line will the
figure be sized as desired. Most likely, you will want to specify the desired
dimensions when the figure object is created so that you can get the desired
end result immediately. To achieve this, you can modify the above code by
removing the second line and replacing the last line with

figure('position',figposition)

or with

figure('position',figposition,'units','pixels')

to safeguard against alterations in the default unit values.

7.5.2.2 Style and Appearance Properties of the Figure Object

The next set of figure object properties we will look at closely follows the
previous discussion and has to do with the style and appearance of the Figure
Window.

When you call up a figure, it is by default a pleasing shade of gray (specified
by the RGB vector [0.8 0.8 0.8].) However, you can specify any color by
making use of the figure’s Color property. For example, if you want to set
figure 1’s color to yellow, you can type

set(1,'Color','yellow')

or

© 2003 by CRC Press LLC

set(1,'Color',[1 1 0])

In order to give Figure Windows more meaning, you can assign a name to
them. The name can be specified by setting the Name property to any string
of characters. These characters will then appear in the top or title bar of the
Figure Window next to the “Figure No. X” (where X is the handle of the Figure
Window). The “Figure No. X” in the title bar can be suppressed by setting the
NumberTitle property of the Figure Window to “off”. By setting the Resize
property to “off”, you can prohibit the user from changing the dimensions of
the figure with the mouse. (The default value for this property is “on” so that
the user can resize the window.) Although properly part of “Callback
Execution”, it is helpful to mention the ResizeFcn (resize function) property
here. ResizeFcn allows you to specify any legal MATLAB commands as a
string which will be evaluated when the user attempts to modify the height
and width of the figure with either the mouse or the set function.

The property MenuBar allows you to either hide or show the menu bar
placed at the top of a Figure Window. For those of you who are developing
MATLAB code for use on a Macintosh operating system, this property will let
you suppress the display of the default menus that appear when the figure is
selected. In the MATLAB version for the Macintosh, the default menus for
Figure Windows are “File,” “Edit,” “Options,” and “Window.” If the MenuBar
property is set to “none” for a given figure, these menus will not be visible
when that figure is active. The default value for this property is “figure”,
however if you are using GUIDE for your GUI development the default is
“none”. If you are just creating plots and not defining any custom user
interface menus, it is probably best to leave this figure property in its default
mode. Note that this property affects only built-in menus; menus defined with
the uimenu command, which will be discussed in Chapter 10, are not affected
by this property.

The figure object property WindowStyle can be set to either “normal” (the
default) or “modal”. With this property, you can direct a Figure Window to
trap all keyboard and mouse events that occur, essentially forcing the user to
deal with the Figure Window in some way before any other action can take
place. With WindowStyle set to “modal” the user will not have access to any
other MATLAB window (including the Command Window). In addition, a
modal Figure Window remains “stacked” on top of other MATLAB windows
until it is deleted, at which time focus returns to the window that last had the
focus.

7.5.2.3 Figure Properties that Control the Colormap

From the previous table you can see that several properties have to do with
controlling the color map. We will only examine three of those properties
here, namely FixedColors, Dithermap, and Dithermapmode; the remaining
three properties, Colormap, MinColormap, and ShareColors, affect the color of
surface, image, and patch objects that are displayed in the figure and are
deferred to a more detailed discussion in Chapter 8. Essentially, you can use
any RGB triplet or any of the legal color strings to define the color of your
choosing. FixedColors keeps track of the colors that are being used by axes,

� � � � � �

© 2003 by CRC Press LLC

line, and text objects within the figure. As an example, create a quick plot and
see what colors are being used.

ezplot('sin(x)')
get(gcf,'FixedColors')

ans =

 0 0 0
 1.0000 1.0000 1.0000
 0.8000 0.8000 0.8000
 0 0 1.0000
 0 0.5000 0
 1.0000 0 0
 0 0.7500 0.7500
 0.7500 0 0.7500
 0.7500 0.7500 0
 0.2500 0.2500 0.2500

Notice that each row of the returned array specifies an RGB triplet.

Two other color-related figure properties discussed here, Dithermap and
DithermapMode are used by MATLAB if you are using a low-color display
(typically 8-bit color). By default, the DithermapMode is set to “auto” and
MATLAB creates a dithermap using the Floyd-Steinberg algorithm that contains
colors from the entire color spectrum until something is drawn in the figure.
Every time MATLAB renders a figure (like when you add something new to a
figure), MATLAB regenerates the dithermap when the DithermapMode is set
to “auto”. To speed up the amount of time it takes MATLAB to render a
figure, once you are done adding objects that contain new colors to a figure,
you should set the DithermapMode to “manual”. Remember that once you
add new colors after having set the mode to “manual”, combinations of colors
in a 6-pixel group will be selected to approximate any colors that you add that
do not exist in the Dithermap, and therefore, you will lose some accuracy in
the color content shown on your display.

7.5.2.4 Figure Properties that Affect Transparency

The only property in this category is one called Alphamap. We will see this
property in Chapter 8 when we discuss object transparency. In this chapter
suffice it to say that by default the Alphamap property contains a row vector of
64 elements and is used in conjunction with the rendering of surface, image,
and patch objects, but not other graphics objects.

7.5.2.5 Properties that Affect How Figures are Rendered

The BackingStore property in its default mode is set to “on”. This property
specifies whether or not the Figure Window must be redrawn every time you
switch between the figure in question and another window. In its “on” setting,
the figure will be redrawn or refreshed every time you switch between figures,
in addition to when the figure is resized or another graphics object is added to
the figure. In its “off” state, the figure is redrawn only when resizing or adding
additional graphics objects. When there are simple line plots in a figure, there
may not be a noticeable delay when the figure is being refreshed; however, if

© 2003 by CRC Press LLC

3-dimensional surface plots or figures that contain a large number of objects
are refreshed, it can be an annoyance to have BackingStore set to “off”. We
recommend that you leave this property in its “on” state and make use of the
command refresh to force a complete redrawing, i.e., refreshing, of a Figure
Window.

The properties Renderer and RendererMode are related to rendering speed
and accuracy of displayed plots. By default, the RenderMode property is set to
“auto” which is usually desirable since MATLAB will then determine which is
most likely the best way to render your graphics; however, there can be
advantages such as when printing (see Chapter 6) to overriding the default to
achieve the results you need. Whenever you set the RenderMode to
“manual”, or set the Renderer property (which will also set RenderMode to
“manual”), MATLAB will no longer use what it thinks is the best rendering
algorithm for the figure. The three rendering methods that MATLAB supports
are Z-buffering (“zbuffer”), Painters (“painters”), and OpenGL (“OpenGL”).
The first two methods are algorithmically based, while the third, OpenGL is a
hardware-based rendering method that is available on many computer
systems. The Painters method is MATLAB's original rendering method and is
typically faster when the figure contains only simple or small graphics objects.
However, the Painters algorithm will not work if you are displaying image,
surface, or patch objects in a figure using RGB specifications. The Z-buffering
algorithm determines which graphics object is closest to the viewer (you) at
each pixel and draws the front-most portion of the virtually closest object, i.e.,
if you can’t see it, it won’t be drawn. This can be the fastest rendering
algorithm when the figure is built up of many complex graphics objects. Z-
buffering can draw graphics object faster and more accurately because objects
are colored on a per pixel basis and MATLAB renders only those pixels.
Although fast, this method can consume a lot of system memory, especially if
the scene is complex. OpenGL, if available on your system, is generally faster
than Painters or Z-buffer, especially if your computer has a video card that
offers its own OpenGL processing. If you have a simple figure, such as a line
plot, the Painters algorithm will generally display it more accurately and
quicker.

The property DoubleBuffer applies to animations, which is the subject of
Chapter 9, and can take the values “on” or “off” which is the default. Double
buffering can be used to speed up the process of animating an image as it first
draws to an off-screen pixel buffer and then blits (think of it as throwing the
whole image out at once) the buffer contents to the screen once the drawing
is complete. You would typically want to take advantage of double buffering
to produce flicker-free rendering for simple animations, such as those involving
lines. It is not as effective for objects containing large numbers of polygons.
We will revisit these ideas again in Chapter 9 where we will discuss how to
determine the best rendering methods for the type of animation you want to
produce.

7.5.2.6 Properties Related to the Current State of a Figure

The figure object keeps track of things like which axes within the figure will
be plotted to next, what was the last keyboard character pressed within the
Figure Window, and even the location of the pointer when the last mouse

© 2003 by CRC Press LLC

button press and release occurred. The figure object has several properties
starting with the word “Current” that are used to store these handles,
characters, or locations. The CurrentAxes property stores the handle to the
current axes, where the current axes are the axes that will be the parent to
graphics objects created by subsequent plotting commands. If you have a
figure that contains no axes objects, this property will contain the empty
matrix; however, the moment you query this property with the get command,
an axes object will be created and its handle will be returned. Earlier, we
learned that you can use the command gca to get the handle of the current
axes; now, you may realize that this command is merely

get(gcf,'CurrentAxes')

If there are multiple axes objects within the figure, one will always be the
current axes. You can also specify any of these axes objects to be current by
setting the CurrentAxes property to the handle of the axes with

set(figureHandle,'CurrentAxes', axesHandle)

 so that your next plotting command creates the object in the axes.

MATLAB has many features that facilitate the creation of user interfaces.
Depending upon the type of interface you design, you may come across a
need for the CurrentCharacter property. When a figure is active and you press
a key (or key combination such as shift + a character), the corresponding
string will automatically be stored in the CurrentCharacter property. This
property is read-only and is often used in callback routines in conjunction with
the KeyPressFcn property. We will show this in an example in the subsection
dealing with callback execution.

The CurrentObject property will contain the empty matrix until you press
the mouse pointer somewhere within the Figure Window. If you click the
mouse on top of or in the region which is very close (usually called the hot
zone) to a graphics object, that object’s handle will be placed in the
CurrentObject property until you select another object with the mouse. If
there are multiple objects located under the mouse pointer location at the
time the user presses the mouse button, the object which is closest to the top
of the graphics object stack will be selected. The object stack is initially
determined by the order of object creation. The most recent object created
will be at the top of the stack. However, the stacking order changes once
objects are clicked on with the mouse. The object most recently selected will
be moved to the top of the graphics stack. The stacking order is kept track of
with the Children property of the figure. For instance, the object whose
handle is the first element in the column of handles stored in the Children
property will be at the top of the stack. The CurrentObject property can be set
by passing the handle of an object that exists within the figure with

set(figurehandle,'CurrentObject',objecthandle)

If the current object is deleted, the CurrentObject property will be the empty
matrix. Finally, you may query this property with

get(figurehandle, 'CurrentObject')

© 2003 by CRC Press LLC

or by using gco which will get the current object within the current figure,
whereas when you use the get function and explicitly specify the figure
handle, the current object for that figure will be returned.

Another useful property of figure objects is that they have the ability to keep
track of the last location that the mouse button was either clicked down or
released within the figure. The x- and y-coordinates of the most recent of these
two events are stored in the CurrentPoint property and the coordinates' values
are in units specified by the Units property of the figure. If the mouse pointer
is moved while the button is held down (a click and drag), the CurrentPoint will
be updated as the pointer is moved. These x- and y-coordinates are always
measured with respect to the lower left corner of the figure and therefore are
independent of the figure’s location within the screen. This property is useful
when you want a user to have the ability to provide information to MATLAB
with the mouse. For instance, if you want the user to specify the corner points
of an object, you might make use of this property and one of the properties
presented in the next subsection, e.g., WindowButtonDownFcn, that is
designed to execute as a result of a mouse event.

The SelectionType property’s value depends on either the way that the
mouse button is pressed (single or double click), the button that is pressed (for
a multi-button mouse), or which key was held down when the mouse button
was pressed. The following tables present the actions that are required to set
the SelectionType value to “normal”, “open”, “alt”, or “extend”. When a key +
button combination is given, it means to hold down the specified key and then
press the mouse button. Since the value for SelectionType is system
dependent, values for Windows, Macintosh, and Unix X-Windows operating
systems are listed in the first table. The second table lists the values possible
from either two-button or three-button mice.

Selection Type Windows Macintosh X-Windows

“normal” Single click Single click Single click

“open” Double click Double click Double click

“alt” Alt + click Option + click Ctrl + click

“extend” Shift + click Shift + click Shift + click

Selection Type 2-Button Mouse 3-Button Mouse

“normal” Left button Left button

“open” Double click* Double click*

“alt” Right button Right button

“extend” Right + Left button Center button

* Note: A double click with a multi-button mouse must be performed
with the same button.

© 2003 by CRC Press LLC

To experimentally determine how your system’s mouse operations affect
the SelectionType property, try the following:

fighandle = figure;
windowbuttondownstr =
['disp([get(gcf,''selectiontype'')])'];
set(fighandle,'windowbuttondownfcn',windowbuttondownstr);

Now click down in the Figure Window using several of the techniques
described in the previous tables.

7.5.2.7 Figure Properties that Affect the Pointer

This set of properties belonging to figure objects allows you alter the
appearance of the mouse pointer. The Pointer property specifies the symbol
type that is used to identify where the pointer is located within the figure. By
default this is the “arrow” symbol that is most likely similar to the arrow that
you are accustomed to seeing when you select from menus within your
operating system. However, when the pointer is within the Figure Window,
you can specify that it use any one of the 17 symbol-names that MATLAB
offers. The 17 symbols with their corresponding names are shown in the
following table, however your pointers might look different based on the
pointer “scheme” which is active on your system.

Pointer Names and Symbols

crosshair left

fullcrosshair
crosshair lines extend

full horizontal & vertical
top

arrow right

ibeam bottom

watch (busy) circle

topl cross

topr fleur

botl custom
16 x 16 pixels contained

 in PointerShapeCdata

botr

© 2003 by CRC Press LLC

 If the standard pointer styles do not provide exactly what you need, you
can generate a custom pointer using the “custom” option of the Pointer
property and define your custom pointer with the PointerShapeCData property
and the PointerShapeHotSpot properties. By default the custom pointer is the
16-by-16 pixel face shown in the above table. Altering the 16-by-16 matrix in
the PointerShapCData will allow you to make whatever pointer you need. The
elements of the matrix can be either 1’s (corresponding to black pixels), 2’s
(corresponding to white pixels), or NaNs (corresponding to transparent pixels).
The (1,1) element of the matrix specifies the upper left corner pixel, while
element (16,16) specifies the lower-right corner. The PointerShapeHotSpot
defines which pixel in the custom pointer is used to determine the location of
the pointer (or the value stored in the CurrentPoint figure property) and is by
default (1,1). In Chapter 10 we will demonstrate some GUI techniques by
developing a convenient GUI-based pointer editor called ptredit.

7.5.2.8 Figure Properties that Affect Callback Execution

The functions that get invoked whenever an action is taken on a MATLAB
graphics object, e.g., moving the mouse over an object, clicking on an object,
etc., are called callbacks. We will discuss callbacks in great detail in Chapter
10. For this section you need to realize that there are a number of figure
properties that affect the execution of callbacks. The first of these,
CloseRequestFcn (close request function), is a property to which you can
assign a set of MATLAB commands that will be executed any time the Figure
Window is closed. The value of this property can be a string of the
commands, a handle to a function, or a cell-array containing the commands
that you want executed when the figure is closed such as when you issue the
close command with either

close(figure_handle)

 or

close all

and whenever you close a Figure Window from the computer's window
manager menu, or when you quit MATLAB. Consequently, this string must
contain valid MATLAB commands, just as you would with using the eval
function. For example, if you wanted to display a message before a particular
window was closed, you could use

handle = figure;
set(handle,'CloseRequestFcn',...
 ['display([''You have closed figure #''',...
 ',num2str(get(0,''CallbackObject''))]);closereq']...
);

which will display a message in the Command Window when the figure is
closed.

The closereq function is the default value of the CloseRequestFcn property
and executes the following code,

© 2003 by CRC Press LLC

shh=get(0,'ShowHiddenHandles');
set(0,'ShowHiddenHandles','on');
currFig=get(0,'CurrentFigure');
set(0,'ShowHiddenHandles',shh);
delete(currFig);

which will unconditionally delete the current figure and destroy the Figure
Window.

So as you can see, the CloseRequestFcn property is typically used when you
want to query the user before finalizing the closing of a figure. The following
code that uses the function questdlg, will prompt the user with a pop-up
window before closing the figure.

selection = questdlg(['Do you really want to close ',...
 'Figure #',int2str(gcf),'?'],...
 'Close My Figure',...
 'Yes','No','Yes');

switch selection,
 case 'Yes',
 delete(gcf)
 case 'No'
 return
end

To use this code, save it to an M-File named closemyfig.m (or any other
name you like) then

set(gcf,'CloseRequestFcn','closemyfig')

The qestdlg function takes a string or cell-array of strings, and creates a
modal dialog box (one that must be answered before other action can take
place) that automatically wraps the cell array or string (vector or matrix) to fit
an appropriately sized window. It will return the name of the button (in this
case “Yes” or “No”) that is pressed. The second string argument (‘Close
Figure Function’) provides the title to the modal window. The following
strings, ‘Yes’, ‘No’, and ‘Yes’, specify each button and the last being the
default. If you tried the above code as described, you should see a result
similar to Figure 7.7.

� � � � 	 �

© 2003 by CRC Press LLC

As you might imagine, you could easily have a nondestructive function
assigned to the CloseRequestFcn property that will not allow the figure to be
closed, such as with

set(gcf,'CloseRequestFcn','disp(''I’ll Never Die!'')')

Most likely, you will create such a situation inadvertently during some code
development. Fortunately, with your command of handle graphics, you can
always type delete(figure_handle) at the command line.

Later in this chapter we will discuss default properties, but until then, you
might find it of value to know that you can apply a custom function like
closemyfig.m to all figures without having to use set with each one. To do this,
you can set a default value on the root level with

set(0,'DefaultFigureCloseRequestFcn','closemyfig')

MATLAB will now use this setting for the CloseRequestFcn of all subsequently
created figures.

As you will see in Chapter 10, MATLAB has many features that facilitate the
creation of user interfaces. As you have seen already, the CurrentCharacter
property will contain a string representing the key that was pressed while in
the active figure. (Recall that this property can only be queried.)
Complimentary to the CurrentCharacter property is the KeyPressFcn property.
The KeyPressFcn property allows you to specify a string of MATLAB commands
that will be executed every time a key is pressed in that Figure Window.
There are some rules to keep in mind when creating strings for this property,
but they will be discussed in Chapter 10. Basically, if the string that you want
to use can be executed with the eval function without any errors (as with the
CloseRequestFcn), it will most likely work when executed at the occurrence of
a key press. As a simple illustration try the following:

figurehandle = figure;
keypress = ['disp([''The current character is: '' '...
 'get(gcf,''CurrentCharacter'')])'];
set(figurehandle,'KeyPressFcn',keypress);

Figure 7.7 Using the CloseRequestFcn property.

�

 � 	 �
 � � �

© 2003 by CRC Press LLC

After executing these commands, click your mouse in the Figure Window and
type a few characters. If you type the character “b”, the message “The current
character is now: b” will appear in the Command Window.

There are several points to remember when creating executable or
evaluatable strings; first, if you want a string to contain a quote within it, then
you need to use two single quotes in a row. The second is that the string will
be passed to the eval function and evaluated in the base MATLAB workspace
even if these properties are specified within a function that you create (as if
they were script files). Therefore, the string can only make use of variables and
information that are available in the workspace and not the local variables
within a function (unless they are specified as global variables). A complete
elaboration on this point will be discussed in Chapter 10.

In addition to the Resize property that we presented earlier, there is a
property named ResizeFcn (resize function) that, just like the previous
property, allows you to specify any legal MATLAB commands as a string which
will be evaluated when the user attempts to modify the height and width of
the figure with either the mouse or the set command.

The UIContextMenu property of a figure keeps a value which is a handle to
a user interface context menu that is to be associated with the figure. We will
examine this property in detail in Chapter 10.

The WindowButtonDownFcn, WindowButtonMotionFcn, and Window-
ButtonUpFcn are three figure properties that can be used to evaluate and
execute a string containing MATLAB commands at the occurrence of a mouse
driven event. The WindowButtonDownFcn is used to store a string that will be
evaluated whenever a mouse button is pressed down within that Figure
Window. The WindowButtonMotionFcn is used to store a string that will be
evaluated whenever the mouse pointer moves within the Figure Window.
Finally, the WindowButtonUpFcn string will be evaluated when the mouse
button is released.

To further illustrate what we have just presented about figure properties that
affect callback execution, let’s look at an example that uses several of the
mouse event driven properties. In this example, we shall have MATLAB
identify the type of selection and the current location of the pointer when the
user clicks down the mouse button in the Figure Window. In addition, we
shall use the crosshair cursor instead of the arrow. If the user then holds down
the mouse button and moves the pointer around, the location of the pointer
relative to the initial location will be displayed. Finally, when the user releases
the mouse button, the current point will be displayed and the cursor should
once again become an arrow. For now, we will display these quantities in the
Command Window, however, once you learn about the text object properties,
you will see how easy it is to display these values within the figure object itself.

fighandle = figure;

bdfcnstring =
['selecttype=get(gcf,''selectiontype'');'...
 'firstpnt = get(gcf,''currentpoint'');'...
 'figunits = get(gcf,''units'');'...
 'set(gcf,''pointer'',''crosshair'');'...

© 2003 by CRC Press LLC

 'disp([''The selection type is:'' selecttype]);'...
 'disp([''First X: '' num2str(firstpnt(1)) '' ''
figunits]);'...
 'disp([''First Y: '' num2str(firstpnt(2)) '' ''
figunits]);'...
 'set(gcf,''windowbuttonmotionfcn'',bmfcnstring,'...
 '''windowbuttonupfcn'',bufcnstring);'];

bmfcnstring = [...
 'currentpnt = get(gcf,''currentpoint'');'...
 'offset = currentpnt-firstpnt;'...
 'disp([''X-Offset: '' num2str(offset(1)) '' ''
figunits]);'...
 'disp([''Y-Offset: '' num2str(offset(2)) '' ''
figunits]);'];

bufcnstring = ['set(gcf,''pointer'',''arrow'');'...
 'lastpnt = get(gcf,''currentpoint'');'...
 'disp([''Last X: '' num2str(lastpnt(1)) '' ''
figunits]);'...
 'disp([''Last Y: '' num2str(lastpnt(2)) '' ''
figunits]);'...
 'set(gcf,''windowbuttonmotionfcn'','''');'];

set(fighandle,'buttondownfcn',bdfcnstring);

The variable budfcnstring is set up to determine the SelectionType,
CurrentPoint, and Units values of the figure and change the cursor into a
crosshair when the user first clicks anywhere within the figure. Since this string
is evaluated in the base workspace, the firstpnt and figunits variables will be
available when the bmfcnstring and bufcnstring strings are evaluated. In
addition, the WindowButtonMotionFcn and WindowButtonUpFcn are specified
when the user clicks down on the mouse button. In this example, it was not
absolutely necessary to set the WindowButtonUpFcn at the time when the user
clicks down (it could have just as easily been defined in the last line of the
code). However, the WindowButtonMotionFcn needs to be specified at that
time, because after the user releases the button, we will clear the motion
property so that further pointer motion does not display X- and Y-Offset values
until the mouse button is once again pressed. The variable bdfcnstring resets
the cursor to the default and displays the final location point. (Notice, as was
stated at the beginning of this chapter, that the property names are not case
sensitive, however we keep the cases in the discussion to avoid confusion.)

7.5.2.9 Figure Properties that Control Access to Objects

The IntegerHandle property is, by default, set to “on”. This means that the
figure’s handle will match its figure number shown in the title bar of the figure.
For example, figure 1’s handle will be the number 1, which means you can use
set(1,...) to change figure 1’s properties. However, if you set the
IntegerHandle property of a figure to “off”, you will no longer be able to
access the figure using the figure number, since MATLAB will reassign a new
floating point number as the figure handle. You can always determine this
handle (assuming the HandleVisibility property has not been set off) by clicking
in the figure and then performing a gcf or using the findobj function. This

� � � � 	 �

© 2003 by CRC Press LLC

property can be useful when you want to reduce the chances of the user
accidentally changing a figure’s properties, since integers are much more
easily typed than some random floating point handle number.

By default, if you create a plot with any of the high-level graphing routines
such as plot, surf, contour, etc., the plot will be drawn in the current figure (if
there is no current figure, a figure will be created). This can happen because
the current figure’s NextPlot property is in the “add” state. In this state, all of
the figure’s properties will remain the same. You can also set this property to
“replace”, which will force any subsequent plotting function to reset all of the
figure’s properties (except the position property) and remove all figure
contents before creating the new plot. If you do not want to reset all of the
figure’s properties, but do want to remove all figure contents before creating a
new plot, set the contents of NextPlot to “replacechildren”. However, if you
want to put a level of protection on the contents of the figure, you can do so
by setting the figure’s HandleVisibility to “off”; this will force any following
high- or low-level plotting functions to create a new figure (or make use of the
next figure that does not have its HandleVisbility property set to off) before it
can draw its graphics objects.

7.5.2.10 Figure Properties that Affect Printing

Seven properties affect how a figure is printed. These are InvertHardCopy,
PaperOrientation, PaperPosition, PaperPositionMode, PaperSize, PaperType,
and PaperUnits.

PaperOrientation determines whether the figure is oriented in a portrait or
landscape fashion on the printed page (yet you can always use the command
orient landscape or orient portrait to specify how the figure is to be printed).

PaperPosition takes a four-element vector that defines a rectangle of the
form [left, bottom, width, height] specifying the location of the figure on a
printed page. The element left specifies the distance from the left side of the
paper to the left side of the rectangle and bottom specifies the distance from
the bottom of the page to the bottom of the rectangle. Together these
distances define the lower left corner of the rectangle. The elements width and
height define the dimensions of the rectangle. The units of these values is
defined by the PaperUnits property and in most cases can be left in its default
setting of “inches”. The PaperPosition property is used to enforce “What you
see is what you get” (WYSIWYG); when set to “manual” the figure will be
printed using the value specified by the PaperPosition property. In the default
“auto” mode the figure will be printed the same size as it appears on the
computer screen and centered on the page, i.e., WYSIWYG.

PaperSize and PaperType are used to specify the size of the paper on which
to print the figure. PaperType lets you choose from many standard paper sizes.
If you set the value of PaperType to one of the standards, the size of that
standard, in the units specified in PaperUnits, will then be contained in
PaperSize. Here’s an example to illustrate.

set(1,'PaperType','A0')
get(1,'PaperSize')

© 2003 by CRC Press LLC

ans =
 33.1354 46.8466

set(1,'PaperUnits','centimeters')
get(1,'PaperSize')

ans =

 84.1000 118.9000

7.5.3 Axes Properties

The Axes object has more properties than any other object, in part because
many of the properties are duplicated for each axis. All these properties give
you a great deal of freedom in specifying exactly how you want your plot or
graphics to appear. First, we will look at the properties that affect the
appearance of the axes object itself and then we will look at those properties
that affect the children of axes objects.

The following table lists alphabetically all properties specific to the axes
object. Notice the axis-specific properties beginning with XColor; each of these
can take either X, Y, or Z depending on the axis you wish to affect. For
instance, XColor is the property whose value determines the color of the x-axis,
while YColor is the property affecting the color of the y-axis. Where properties
are duplicated for each axis, we have denoted this by underlining the axis
identifier in this table. In the discussions we will simply use the appropriate
property name.

Property Read
Only

ValueType/Options Format

Properties Affecting Transparency and Lighting

ALim No

ALimMode No [{auto} | manual]

AmbientLightColor No

Properties Controlling Boxes and Tick Marks

Box No [on | {off}] row

TickLength No [2-Dticklength 3-Dticklength] 2-element
row

TickDir No [{in} | out]

TickDirMode No [{auto} | manual]

XMinorTick No [on | {off}] row

XTick No numbers

XTickLabel No string matrix

XTickLabelMode No [{auto} | manual] row

XTickMode No [{auto} | manual] row
continued on next page

© 2003 by CRC Press LLC

Property Read
Only

ValueType/Options Format

Properties Affecting Character Formats

FontAngle No [{normal} | italic | oblique]

FontName No name of desired font string

FontSize No number 1-element

FontUnits No [inches | centimeters | normalized
| {points} | pixels]

string

FontWeight No [light | {normal} | demi | bold] string

Properties Determining Axis Location and Position

Position No [left bottom width height] 4-element
row

Units No [inches | centimeters | {normalized}
| points | pixels | characters]

XAxisLocation No [top | {bottom}] string

YaxisLocation No [{left} | right] row

CurrentPoint No mouse click near and far x, y, z axis
locations

2-by-3
matrix

Title No handle of text object 1 element

Properties Affecting Grids, Lines, and Color

Color No [Red Green Blue] or color string

ColorOrder No M RGB number triplets M-by-3
matrix

CLim No [cmin cmax] 2-element
row

CLimMode No [{auto} | manual] string

DrawMode No [{normal} | fast]

XGrid No [on | {off}]

GridLineStyle No [- | -- | {:} | -. | none] string

Layer No [top | {bottom}] string

LineStyleOrder No string array of linestyle symbol(s) matrix

LineWidth No number 1element

MinorGridLineStyle No [- | -- | {:} | -. | none]

XColor No [Red Green Blue] or color string row

Xform No 4 x 4 Perspective Transformation 4 x 4 matrix

XLabel No Handle of text object 1 element

XMinorGrid No [on | {off}] row

NextPlot No [add | {replace} | replacechildren] string

continued on next page

© 2003 by CRC Press LLC

Property Read
Only

ValueType/Options Format

Properties Affecting Axis Limits

DataAspectRatio No [x y z] relative ratio of axis
lengths

2-element
row

DataAspectRatioMode No [{auto} | manual] string

PlotBoxAspectRatio No [x y z] relative ratios of box
lengths

3-element
row

PlotBoxAspectRatioMode No [{auto} | manual]

XDir No [{normal} | reverse] row

XLim No [xmin xmax] 2-element
row

XLimMode No [{auto} | manual] row

XScale No [{linear} | log] row

Axes Properties Related to Viewing Perspective

CameraPosition No [x y z] numbers 3-element
row

CameraPositionMode No [{auto} | manual] string

CameraTarget No [x y z] numbers 3-element
row

CameraTargetMode No [{auto} | manual] string

CameraUpVector No [x y z] numbers 3-element
row

CameraUpVectorMode No [{auto} | manual]

CameraViewAngle No number 1 element

CameraViewAngleMode No [{auto} | manual] string

Layer No [top | {bottom}] string

Projection No [{orthographic} | perspective]

View No [DegreesAzimuth
DegreesElevation]

2-element
row

The first three properties in this table, ALIm, ALimMode, and
AmbientLightColor deal with image, surface, and patch objects, and how
lighting and transparency is affected by them. ALim and ALimMode specifically
affect transparency, while AmbientLightColor deals with the color of light.
Since Chapter 8 deals specifically with light and transparency, we shall leave
these properties for that discussion.

7.5.3.1 Axes Properties Controlling Boxes and Tick Marks

The Box property specifies whether the axes region should be enclosed
within a box in its 2-D view or by a cube in its 3-D view. Figure 7.8 illustrates
the differences between the different perspectives when the Box property is
set to “off” or “on”.

© 2003 by CRC Press LLC

In addition to the box attribute of the previous figure, look at the tick
markers in the 2- and 3-D perspectives: the tick markers are, by default, 1%
(0.01) of the width and height of the axes object in 2-D perspectives and 2.5%
(0.025) in 3-D views. In addition, notice that the tick markers face inward in
the 2-D plots and outward in the 3-D plots; both of these attributes can be
controlled with the TickLength, TickDir, and TickDirMode properties to suit
your personal preferences. The TickLength property value is a 2-element vector
where the first element specifies the length as a percentage of the axes object
width and height in 2-D perspectives, and the second element specifies the
length as a percentage of the axes object in 3-D perspectives. By default,
TickDir is set to “in” for 2-D graphs and “out” for the 3-D graphs as long as the
TickDirMode is set to “auto”. Once you change the value of TickDirMode to
“manual”, which can also occur by setting the TickDir property, 2-D and 3-D
graphs will have their ticks pointing in the direction defined by TickDir. Yet, as
with all settable properties, you can override the default properties by using
the set command or by specifying the property values upon object creation.
You can also specify whether or not to show minor tick marks with the
XminorTick property. Setting the value of XMinorTick to “on” will show tick
marks between the major tick marks.

 One of the most common questions that people ask is

 “How can I specify the values that will be displayed on the axis?”

 To do this for the x-axis, you will make use of the Xtick and XTickLabel
properties (for the y- and z-axes, just substitute Y or Z for the X in the property
names). The XTick property is used to identify the locations on the axis where
tick marks will be placed. It also ends up automatically specifying which
numbers, called tick labels (since they can be forced to include characters), are

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
Box Off 2D

0
0.5

1

0

0.5

1
0

0.5

1

Box Off 3D

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
Box On 2D

0
0.5

1

0

0.5

1
0

0.5

1

Box On 3D

Figure 7.8 The effect of the Box property in 2-D and 3-D views.

��
� � �

© 2003 by CRC Press LLC

displayed along the axis. The XTickLabel property lets you specify a string of
characters for each tick mark on the x-axis. Let’s say we want to plot the sine
function from 0 to 4 ; typing

x = 0:(pi/16):(4*pi);
plot(x,sin(x));
axis([0 4*pi -1 1]);

will yield the plot shown in Figure 7.9.

As you can see, the tick marks and labels are automatically generated.
However, we can specify them manually. For instance, we can force a tick
mark at /2 increments with

set(gca,'XTick',[0:(pi/2):4*pi])

to get Figure 7.10.

0 2 4 6 8 10 12
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Figure 7.9 Default X-axis tick mark labels and locations.

© 2003 by CRC Press LLC

Unfortunately, the tick mark labels are floating point representations instead
of symbolic representations. However, we can specify that MATLAB replace
the number 1.5708 with 'pi/2', 3.1416 with 'pi', etc. by typing

set(gca,'XTickLabel',...
 ['0|pi/2|pi|3pi/2|2pi|5pi/2|3pi|7pi/2|4pi'])

To create the value string we recommend making use of the separator
character “|” (usually typed with the shift+\ key on most keyboards) instead of
using the str2mat function or manually typing in a string matrix. Generally,
using the “|” is easier to type and read once you realize that the separator
character can be used in this fashion. We show the other methods here in
order to be thorough.

set(gca,'XTickLabel',...
 str2mat('0','pi/2','pi','3pi/2','2pi',...
 '5pi/2','3pi','7pi/2','4pi'));

or

set(gca,'XTickLabel',...
 ['0 ';'pi/2 ';' pi ';'3pi/2';' 2pi ';...
 '5pi/2';' 3pi ';'7pi/2';' 4pi '])

Both of these approaches require you to set up the string matrix and force
you to pay particular attention to the number of spaces within each string.
Modern MATLAB has some very powerful character string manipulation
capabilities that make such tasks easy, foremost of which is the cell-array. You
can also use cell-arrays to store your XtickLabels value as shown in the
following code.

0 1.5708 3.1416 4.7124 6.2832 7.854 9.4248 10.9956 12.5664
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Figure 7.10 Specifying x-axis tic marks with XTick.

© 2003 by CRC Press LLC

s={'0','pi/2','pi','3pi/2','2pi',...
'5pi/2','3pi','7pi/2','4pi'}

set(gca,'XTickLabel',s)

No matter which technique you end up using, they will all provide you with
the result in Figure 7.11.

Unfortunately, tick labels do not interpret TeX character sequences like Title
and XLabel properties do; e.g., xlabel({'Units of \pi.' }) would yield ‘Units of ’
as the x-axis label. Therefore we cannot simply specify symbols like the Greek
letter “ ” in a cell-array. However, if your computer has a symbolic font
installed on it, you can take advantage of the FontName property for an axis
object as shown here:

set(gca,'FontName','Symbol')
t=['0|p/2|p|3p/2|2p|5p/2|3p|7p/2|4p']
set(gca,'XTickLabels',t)

This will produce the attractively labeled x-axis of Figure 7.12.

0 pi/2 pi 3pi/2 2pi 5pi/2 3pi 7pi/2 4pi
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Figure 7.11 Specifying x-axis tic mark labels with XTickLabel.

© 2003 by CRC Press LLC

 If you specify fewer numbers of tick mark labels than there are tick marks,
the labels will be reused in a cyclical fashion. Once you specify either the
location of the tick marks or their labels, the XTickMode and XTickLabelMode
will respectively be set to their “manual” mode of operation. The manual
mode keeps MATLAB from automatically determining the tick locations or
labels that should be used to account for the data being plotted within the
axes object. For example, plot a simple line with

figure
plot(1:10)
hold on

and then set the Xtick property to the manual setting and plot another line
which extends beyond the x-axis limits with

set(gca,'XTickMode','manual')
plot(6*ones(1,15))

You can see from the result shown in Figure 7.13 that the labels stop after
just 10. This happened because we forced MATLAB not to automatically
calculate new tick mark locations.

0 π/2 π 3π/2 2π 5π/2 3π 7π/2 4π
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Figure 7.12 Changing the FontName property of the x-axis.

© 2003 by CRC Press LLC

Now create the plot in Figure 7.14 by typing

figure
plot(1:10)
hold on
set(gca,'XTickLabelMode','manual')
plot(6*ones(1,15))

The lines in this plot are identical; however, the labels “1” through “10” are
now spread over the x-axis, whereas the data really runs from 1 to 15. As you
can see, this is dangerous, because the plot labels misrepresent the data that
was plotted (the 1, 2, 3, and 4 on the x-axis really correspond to the numbers
1, 5, 10, and 15).

1 2 3 4 5 6 7 8 9 10
1

2

3

4

5

6

7

8

9

10

Figure 7.13 The result of setting XtickMode to “manual” before adding a
second line.

© 2003 by CRC Press LLC

7.5.3.2 Properties Affecting Axes Character Formats

In addition to specifying which tick marks and labels are displayed, the
character format of the x-, y-, and z-axes tick labels can be specified with the
FontAngle, FontName (which you have already seen), FontSize, FontWeight,
and FontUnits properties. If you want the tick labels of the current axes to be
both bold and italic, you can use

set(gca,'FontAngle','Italic','FontWeight','Bold')

You need to be aware that these font properties are applied to all of the
axes’ tick mark labels. You do not have control over the font used on an axis-
by-axis basis. For example, you cannot assign a bold Helvetica font for the x-
axis tick mark labels, while using a normal Times font for the y-axis tick mark
labels. Also note that the text objects generated with the commands xlabel,
ylabel, zlabel, and title will use the font properties of the current axes when
they are created; however, you do have individual control over their attributes
and can alter them to your pleasing (see text object properties). The FontUnits
property is particularly useful if you want the tick mark labels to scale
proportionately with the size of the axes and figure. If you want the tick mark
labels to scale, set the axes FontUnits to normalized.

7.5.3.3 Axes Properties Determining Axis Location and Position

The Units property of an axes object only affects the value and
interpretation of the axes Position property. The value of Units can be
specified in “inches”, “centimeters”, “normalized”, “points”, “pixels”, or
“characters”. The position rect vector of a single axes object that is created
either by a high-level graphics function (other than subplot) or by the low-level

1 2 3 4
1

2

3

4

5

6

7

8

9

10

Figure 7.14 Setting XtickLabelMode incorrectly leads to incorrect results.

© 2003 by CRC Press LLC

axes command will default to [0.130 0.110 0.775 0.815] (normalized units).
This position tends to keep it visually centered in the figure; however, you can
reposition the current axes with set(gca,'Positon',newposrect), where
newposrect is a four-element rect vector ([left bottom width height]) that
defines the lower left corner coordinate, (left, bottom), with the first 2
elements and the width and height with the last 2 elements. The (left, bottom)
coordinate measurement is made with respect to the lower left corner of the
figure object within which the axes object exists.

In Chapter 3 you learned how to use the plotyy command to plot different
y-axis limits against the x-axis. Now with handle graphics you can do even
more. The axis location properties XaxisLocation and YaxisLocation give you
the ability to specify whether the x-axis labels are on “top” or “bottom” of the
plot and the y-axis labels are on the “left” or “right” side of the plot. By default
the x-axis label will be on the “bottom” and the y-axis labels on the “left”.
Now you can quickly create overlaying plots with different x-axis and y-axis
limits in the same graph by modifying the XAxisLocation and YAxisLocation
properties. The following example will illustrate this and generate the plot in
Figure 7.15.

figure;
plot(0:9,[0:9].^2);
a1=gca;
a2=axes;
plot(-10:10,[-10:10].^3);
set (a2,'xaxislocation','top','yaxislocation','right',...
 'color','none');

0 1 2 3 4 5 6 7 8 9
0

10

20

30

40

50

60

70

80

90
−10 −8 −6 −4 −2 0 2 4 6 8 10

−1000

−800

−600

−400

−200

0

200

400

600

800

1000

Figure 7.15 Superimposed axes objects.

© 2003 by CRC Press LLC

Notice that this figure has extra tick marks. To turn off the extra tick marks,
set both axes’ Box properties to “off”.

set([a1 a2],'box','off')

Now, if you wanted grid marks, you can turn on the grids with

axes(a1); grid on;
axes(a2); grid on;

Unfortunately, this does not look good because there are a different
number of tick marks on the left as compared to the right and the bottom as
compared to the top. Here’s one solution that will produce Figure 7.16.

numxticka1=length(get(a1,'xtick'));
xlima2=get(a2,'xlim');
xincr=(abs(diff(xlima2))/(numxticka1-1));
newxtks = [xlima2(1):xincr: xlima2(2)];
set(a2,'xtick',newxtks);

numyticka1=length(get(a1,'ytick'));
ylima2=get(a2,'ylim');
yincr=(abs(diff(ylima2))/(numyticka1-1));
newytks = [ylima2(1):yincr: ylima2(2)];
set(a2,'ytick',newytks);

% Rounding may not always be appropriate, but is done
% on the next two lines to make the graph look cleaner.
set(a2,'xticklabel',round(get(a2,'xtick')))
set(a2,'yticklabel',round(get(a2,'ytick')))

��
� � � � � �

0 1 2 3 4 5 6 7 8 9
0

10

20

30

40

50

60

70

80

90
−10 −8 −6 −3 −1 1 3 6 8 10

−1000

−778

−556

−333

−111

111

333

556

778

1000

Figure 7.16 Matching tick marks on superimposed axes.

© 2003 by CRC Press LLC

If you are using a color printer, Figure 7.16 could be improved by changing
the color of one of the lines along with its associated x-axis and y-axis. This can
be done using the XColor property presented in the next discussion.

7.5.3.4 Axes Properties Affecting Grids, Lines, and Color

In Chapter 3 we showed you that a grid could be created with the grid
command. This command essentially sets the XGrid, YGrid, and ZGrid
properties to their “on” state. With these axes properties you have the
prerogative of specifying that the grid be displayed for the axis you want.
Furthermore, you can specify the line type of the grid to something other than
the default dotted lines (':') with the property GridLineStyle and the line width
to something other than the default of 0.5 with the LineWidth properties. The
line width affects all axes property lines (grid lines and the full or partial box
drawn around the axes object). For example, we can have solid horizontal
grid lines for a plot with

figure;
plot(randn(1,10))
set(gca,'YGrid','on','GridLineStyle','-','Linewidth',3)

to obtain Figure 7.17.

In addition to specifying line styles and widths, we can also specify the color
of the axes object. By default, the Color property is set to the string “none”;
however, you can use any of the legal color strings or any RGB color intensity
triplet. For example, if you want the current axes to be red, you can use

set(gca,'color','red')

1 2 3 4 5 6 7 8 9 10
−2

−1.5

−1

−0.5

0

0.5

1

1.5

Figure 7.17 Altering the axes' LineWidth and GridLineStyle properties.

© 2003 by CRC Press LLC

or

set(gca,'color',[1 0 0])

The x-, y- and z-axis line colors can be individually specified, respectively,
with the XColor, YColor, and ZColor properties. These properties do not only
specify the color of the actual axis lines, they also define the color used for tick
marks, tick mark labels, and grid lines. If you want to make parts of the axis
“invisible,” you will need to set the component’s color to the color of the axes.
For instance, let’s continue with the last example, but specify that the x-axis
components should not appear in the figure (see Figure 7.18). Typing,

set(gca,'YColor',[.3 .3 .3],'Xcolor',get(gca,'color'))

almost accomplishes what we want. However, you will notice that the x-axis
labels, which are now white, are visible against the default gray ([0.8 0.8 0.8])
Figure Window. We can overcome this by forcing the Figure Window’s color
to white as well with,

set(gcf,'Color','white')

which results in Figure 7.18.

You might notice that on some platforms the top corners of the y-axis lines
have a white spot on your screen instead of the dark gray that was specified.
This has to do with the order in which lines are rendered and stacked upon
one another by MATLAB. These two dots are the end-points of the z-axis
lines. Even though we are viewing this plot in a 2-dimensional perspective, the
z-axis lines are still drawn orthogonal to the screen. To make sure that these
appear in the same color, we can define the color of the z-axis lines with

set(gca,'ZColor',[.3 .3 .3]);

© 2003 by CRC Press LLC

Along the same line of thought, let’s look at this plot in three dimensions and
turn the ZGrid property on with

view(-37.5,35)
set(gca,'ZGrid','on')

If you have been following along by typing in the examples, you should get
something like the plot shown on the left side of Figure 7.19.

1 2 3 4 5 6 7 8 9 10
−1

−0.5

0

0.5

1

1.5

2

2.5

Figure 7.18 Making an axis invisible.

© 2003 by CRC Press LLC

Notice that the lines of this plot have gaps in them and the grid lines in the
z-axis at -1 and 1 are obscured. The reason for this is that the lines created by
the axes Box property in the x-axis direction are black and drawn on top of the
plot because they are closer to the observer in the perspective shown. For
this example, it would be best to keep the Box property set to “off” as shown
above on the right-hand side. It is important to recognize that there is a
stacking order in terms of a viewer’s perspective of 3-D graphics and that even
if the object is colored to make it “invisible,” the object still exists and may be
drawn in front of other objects. In 2-D views of the plot, you can control
whether the axis lines are drawn above or below the graphics objects in the
plot with the Layer property. By default, this property will be set to “bottom”
which will force the axis lines to be drawn below the axes’ children. If you
want the axis lines to be drawn over the children, set the value of Layer to
“top”.

The axes property DrawMode, in its default setting of “normal”, will make
sure that objects are drawn in such a manner so that those that are farther
from the viewer are rendered before those that are closer. This property can
be set to “fast”, which disables the 3-dimensional sorting of objects and forces
MATLAB to draw the objects in the order that they were originally created.
The figures will be drawn quicker; however, the plot may be misleading in 3-
dimensional perspectives as to the true order of the object’s location with
respect to one another.

You have already been using color in your plots to distinguish multiple data
sets, and you already know how to specify the color for each line as you plot
it, or to allow MATLAB to automatically assign colors as it plots. However, you
are probably asking yourself the following question.

0

2

4

6

8

10

−4

−2

0

2

−1

−0.5

0

0.5

1

0

2

4

6

8

10

−4

−2

0

2

−1

−0.5

0

0.5

1

Figure 7.19 Black box lines created a blanked-out strip.

© 2003 by CRC Press LLC

“How do I change the order in which colors are used when plotting multiple
lines?”

By default MATLAB uses a predetermined set of colors to cycle through
when plotting more than one line at a time (e.g., using plot(X,Y) where X and
Y are matrices or plot(x1,y1,x2,y2,x3,y3,...)). This default order is yellow,
magenta, cyan, red, green, and blue. The number of colors, the color values,
and the order in which the colors are used can be predetermined and set as
desired with the axes ColorOrder property. The ColorOrder property is an M-
by-3 matrix containing M RGB triplets. For example, the default is the
following 6-by-3 matrix:

RGB Triplets Corresponds to the color
1 1 0 yellow
1 0 1 magenta
0 1 1 cyan
1 0 0 red
0 1 0 green
0 0 1 blue

If you want a particular plot to contain several lines that cycle between the
colors red, green, and blue (shown in Figure 7.20 with slight variations in
shading since this book is printed in black and white), you could do the
following:

figure;
colorordermatrix = [1 0 0; 0 1 0; 0 0 1];
axes('ColorOrder',colorordermatrix,'NextPlot','add');
xdata = [1:10];
ydata = xdata'*[1:5];
plot(xdata,ydata);

��
� � �

© 2003 by CRC Press LLC

The NextPlot property must be specified as “add” instead of “replace”, so
that, when the plot command is executed, the axes object that has the desired
ColorOrder value is not deleted.

There are two techniques that do not require the NextPlot property to be
set to “add” that can be used to get the line colors to cycle through the
desired set of colors. One technique is to use the low-level command line to
generate the line objects, and the other is to set the default ColorOrder value
to the one you want. The line command leaves the axes properties alone and,
therefore, will use the colors in the order specified by the ColorOrder
property. We will learn more about setting the default properties later in this
chapter, but for now, if you want to do this, use the command

set(0,'DefaultAxesColorOrder',colorordermatrix)

where colorordermatrix is the variable that contains your M-by-3 color
matrix.

 Another frequently asked question is

 “Since I use a black-and-white printing device, I would rather have MATLAB
cycle through various line style types instead of colors. How can I do this?”

 This is accomplished in a manner similar to the one used for colors, except
in this case we need to make use of the LineStyleOrder and ColorOrder
properties. The ColorOrder property should be set to one color and the
LineStyleOrder should contain a matrix in which each row defines a legal line
style. By default, the LineStyleOrder property is set to the solid line character
string “-”. Using the same xdata and ydata variables from the previous example,
we can create the same plot, except this time, we will require that all of the

1 2 3 4 5 6 7 8 9 10
0

5

10

15

20

25

30

35

40

45

50

Figure 7.20 Controlling the order of automatic color assignment.

© 2003 by CRC Press LLC

generated lines are colored white and that they cycle through several line
types (solid, dashed, dash-dotted, dotted, and the “x” marker). Type

figure;
% Specify black color
colorordermatrix = [0 0 0];
% Specify Line Styles
linestylematrix = ['- ';'--';': ';'-.';'x '];
axes('ColorOrder',colorordermatrix,...
 'LineStyleOrder',linestylematrix,...
 'NextPlot','add');
plot(xdata,ydata)

to obtain Figure 7.21.

Note that the specification for the LineStyleOrder can be composed of any
valid line style or marker type. You could also have specified the
linestylematrix using the form

linestylematrix = ['-|--|:|-.|x '];

where the “|” is used to separate each style or marker. Here again, we do
not necessarily need to specify the NextPlot property. We could just as easily
replace the plot(xdata,ydata) with line(xdata,ydata). We could also specify the
default values for the ColorOrder and LineStyleOrder with

set(0,'DefaultAxesColorOrder',colorordermatrix)
set(0,'DefaultAxesLineStyleOrder',linestyleordermatrix)

1 2 3 4 5 6 7 8 9 10
0

5

10

15

20

25

30

35

40

45

50

Figure 7.21 Cycling line styles automatically with LineStyleOrder.

© 2003 by CRC Press LLC

where the colorordermatrix is a variable that contains a single RGB color
intensity triplet (e.g., [0 0 0] in the example above) and linestyleordermatrix is a
string matrix containing the desired line styles (e.g., ['- ';'--';': ';'-.';'x '] in the
example above).

If both the ColorOrder and LineStyleOrder axes properties have multiple
rows, lines will be created in a manner such that the first line style will be used
while the colors cycle through their possibilities, then the second line style will
be used while the colors again cycle through their possibilities, and so on. For
instance, if you used

set(gca,'ColorOrder',[1 0 0; 0 1 0],...
 'LineStyleOrder ,['--';'-.';': ']);

and you plotted seven lines at once, the color of each of the lines would
appear as stated in the following table:

Line Number Line Attributes

1 Red dashed

2 Green dashed

3 Red dash-dotted

4 Green dash-dotted

5 Red dotted

6 Green dotted

7 Red dashed

The CLim property affects the color attributes of surface and patch graphics
objects. A complete discussion of this property will be left for Chapter 8. For
now, it will suffice to understand that the CLim property defines how MATLAB
maps the colors that are stored in the figure’s Colormap property to the data
values of the surface and patch objects found within that axes object. By
default, this property is a 2-element vector ([cmin cmax]) that contains the
smallest and largest z-axis data values of surface and patch children of the axes
object. This allows MATLAB to map the entire spectrum of Colormap colors
to the data values. However, you have the ability to set the limits to your
liking. This gives you the freedom of specifying either that only a given portion
of the color map will be used across your plotted data or that the portions of
the surface or patch objects falling above or below the two limits will,
respectively, be colored with the maximum or minimum color in the
Colormap.

Here again, there is a high-level command equivalence to setting this
property.

The high-level command... is equivalent to...
caxis([cmin cmax]) set(gca,'CLim',[cmin cmax])

© 2003 by CRC Press LLC

Once you set the CLim property, the CLimMode property will be changed
from “auto” to “manual”. If later you want MATLAB to automatically define
the CLim limits, you can set the CLimMode property back to “auto”.

We can look (on your display) at three examples that make use of both the
CLim and the View properties (additional examples related to color maps and
the CLim property will be provided in Chapter 8) by plotting with the peaks
function as follows:

[x,y,z] = peaks;
surf(x,y,z);
shading interp;
set(gca,'view',[90 0]);% You could also use view([90 0]);

to see how the full range of colors from the current color map are being
used.

Now, if you type

get(gca,'CLim')

you will see that

ans =
 -6.5466 8.0752

is returned and is identical to the result returned from the command

[min(min(z)) max(max(z))]

Next, redefine the CLim limits with

set(gca,'CLim',[-3 3]);

You could also have used

caxis([-3 3]);

so that the color of data points in the surface above (in the z-axis direction)
the upper limit are colored with the last color defined by the value of the
figure’s Colormap property, whereas those in the surface below (in the z-axis
direction) the lower limit are colored with the first color in the Colormap.

Finally, once again redefine the CLim limits with

set(gca,'CLim',[-12 10]); %You could use caxis([-12 10])

so that only a portion of the color map is used to color the surface.

7.5.3.5 Properties Affecting Axis Limits

In addition to the DrawMode property, several other axes object properties
have an affect on the children of that axes in one way or another. For one, the
upper and lower data limits of the individual axis lines can be defined with the
XLim, YLim, and ZLim properties. Normally, these are automatically specified
because the XLimMode, YLimMode, and ZLimMode properties are set to

© 2003 by CRC Press LLC

“auto”. However, if at some time you specify any of these limits, either
directly with set or with the axis command, the respective LimMode property
will be set to “manual”.

The command... is equivalent to...
axis([5 10 3 7]) set(gca,'XLim',[5 10],'YLim',[3 7])

axis([1 4 -10 10 5 6]) set(gca,'XLim',[1 4],'YLim',...
[-10 10],'Zlim',[5 6])

axis('axis') set(gca,'XLimMode','manual','YLimMode',...
'manual','ZLimMode','manual')

Once a particular axis mode has been placed in its manual setting, the limits
of that axis will not change (even if you add other graphics objects with values
that fall outside the data limits of the axes) until you place the mode into the
auto setting. This is particularly useful when there is a region of interest to
which you plan to add plots. You can always define the axis after all the plots
have been added; however, you will see that when you are adding plots from
the command line or when you are working with animated plots, these
properties come in handy. Typing

x = [-5:.5:7];
plot(x,x.^2)

will generate the plot shown below on the left of Figure 7.22. If you then
use

set(gca,'xlim',[-2 3])

the x-axis will run between -2 and 3, and the y-axis will automatically be
adjusted with new limits as shown with the figure on the right of Figure 7.22.

© 2003 by CRC Press LLC

If we now want to hold the y-axis limits constant so that we may add
another plot to the figure without altering the limits, we can type

set(gca,'YLimMode','manual')

Previously, we learned that the command hold on could be used to set the
axes object in a mode that will keep all existing objects in the plot when
subsequent graphics statements are executed. This command sets the
property NextPlot to “add”, instead of the default of “replace”, so that new
graphics objects are added as children to the axes object. The “replace” mode
will delete (or replace) the existing children of the axes object and clear all of
the axes properties to their default values before creating the new children.
There is also a mode called “replacechildren” that removes all axes children,
but does not reset the other properties before adding the new children.

So let’s add another line to the existing figure by setting the NextPlot
property to “add”. Since both the YLimMode and XLimMode properties are set
to manual, only the portion of the next plot that falls within the existing limits
will be seen, as in Figure 7.23.

set(gca,'NextPlot','add')
x2=[-10:10];
y2 = 2*x2+6;
plot(x2,y2,'b');

−5 0 5 10
0

5

10

15

20

25

30

35

40

45

50

−2 −1 0 1 2 3
0

1

2

3

4

5

6

7

8

9

Figure 7.22 Using XLim to adjust x-axis limits.

© 2003 by CRC Press LLC

If the X and YLimMode had been set to automatic (auto) either before or
after the last plot, the limits would be automatically determined so that both of
these lines would be seen in their entirety.

In addition to being able to specify the upper and lower limits of the x-, y-,
and z-axis, you can also specify the direction of increasing values for each of
the axis lines. This is defined with the XDir, YDir, and ZDir properties. By
default, the directions are all set to “normal”, meaning that the axes object
forms a standard right-handed coordinate system. However, under certain
circumstances, you may wish to have one or even all of the directions
reversed. This is accomplished by setting the direction property to “reverse”
for the desired axis lines. The command axis('ij') is a high-level command that
alters the direction properties so that you can put the 2-D coordinate system
origin in the upper left corner. Its handle graphics equivalent is

set(gca,'YDir','reverse')

If you have generated the last plot you can demonstrate the affects of the XDir
and YDir properties with,

set(gca,'XDir','reverse','YDir','reverse')

which should look like the plot in Figure 7.24.

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5 3
0

2

4

6

8

10

12

Figure 7.23 Adding plots while keeping current axis limits.

© 2003 by CRC Press LLC

The axes properties also give you control over whether or not an axis is
scaled linearly or logarithmically. This can be individually specified for any of
the x-, y-, and z-axes with the XScale, YScale, and ZScale properties of the axes.
For example, we can plot the series 1:100 in a logarithmic scale with the
following code,

plot(1:100);
set(gca,'YScale','log');
grid on;

which produces the plot shown in Figure 7.25.

−2−1.5−1−0.500.511.522.53

0

2

4

6

8

10

12

Figure 7.24 Reversing axis direction with XDir and YDir.

© 2003 by CRC Press LLC

The DataAspectRatio property is a three-element vector that defines the
relative ratios of a unit of length along the x-, y-, and z-axis. The
PlotBoxAspectRatio property is also a three-element vector that defines the
relative ratios of the box that contains the axes object. By default, both of the
mode properties will be set to “auto”, thereby letting MATLAB try to display
the objects within the axes with the highest possible resolution in the space
defined by the axes object’s Position property. Stretch-to-fill is the term
associated with this default behavior of MATLAB. MATLAB attempts to create
the largest axes it can in the region specified by the Position property with a
data aspect ratio that best fits the x- and y-axis limits. Some of the axis
command inputs that specify values for these ratios are shown in the following
table.

The high-level command... is equivalent to...
axis('equal') set(gca,'DataAspectRatio',[1 1 1])

axis('square') set(gca,'PlotBoxAspectRatio',[1 1 1])

axis('normal') set(gca,'DataAspectRatioMode','auto')
set(gca,'PlotBoxAspectRatioMode','auto')

The best way to get an idea of how these two ratios affect the apparent size of
the axes object and the data within them is to look at several examples that
use various settings. Run MATLAB's aspect ratio demo by typing ardemo or
try the following examples. Figures 7.26 through 7.31use the plot of a square
and a circle that were created with

x = [-1 -1 1 1 -1]; y = [-1 1 1 -1 -1];
x2 = cos((0:5:360)*pi/180);

0 10 20 30 40 50 60 70 80 90 100
10

0

10
1

10
2

Figure 7.25 Setting YScale to “log”.

© 2003 by CRC Press LLC

y2 = 2*sin((0:5:360)*pi/180);
plot(x,y,x2,y2)
axis([-2 2 -2 2])

followed by the appropriate form of set, e.g.,

set(gca,'DataAspectRatioMode','auto',...
 'PlotBoxAspectRatioMode','auto')

for Figure 7.26. The title on top of each plot shows the value of the aspect
ratio properties of the axes object.

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
DataAspectRatioMode=auto, PlotBoxAspectRatioMode=auto

Figure 7.26

© 2003 by CRC Press LLC

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
DataAspectRatio=[1 1 1], PlotBoxAspectRatioMode=auto

Figure 7.27

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
DataAspectRatioMode=auto, PlotBoxAspectRatio=[1 1 1]

Figure 7.28

© 2003 by CRC Press LLC

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
DataAspectRatio=[1 1 1], PlotBoxAspectRatio=[1 1 1]

Figure 7.29

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
DataAspectRatioMode=auto, PlotBoxAspectRatio=[2 1 1]

Figure 7.30

© 2003 by CRC Press LLC

As you can see, each of these settings changes the way the visualized data is
perceived. You should always be careful to look at the axis tick mark labels to
obtain a true appreciation and understanding of the data’s relevance.

7.5.3.6 Axes Properties Related to Viewing Perspective

The View and Xform are two closely related axes properties that control the
manner in which 3-dimensional graphics objects are drawn on the 2-
dimensional plane. The View property stores a 2-element vector ([azimuth
elevation]) that defines an observational viewpoint in terms of the number of
degrees in azimuth and elevation just as was described with the view function
in Chapter 4. Any point in 3-D space can be defined with the azimuth and
elevation angles and some measure of the distance (or range) from the
observer to the origin. The origin is not necessarily the point (0,0,0); rather it
is the point (xmin,ymin,zmin) defined by the lower limits of the XLim, YLim, and
ZLim properties. Specifying an azimuth, elevation, and range would allow the
observer to swing around within the 3-D space to view an object from any
desired location. However, the View property does not require a range, since
MATLAB will automatically determine a range that allows the object being
viewed to be as large as possible while under the constraint of remaining
within the axes object’s position boundaries.

The next properties we will discuss prescribe how the objects in the axes
(which we might just as well refer to as the scene) are viewed as if you were
looking through a camera. These properties are the CameraPosition,
CameraTarget, CameraUpVector, and CameraViewAngle. Along with each of
these is a corresponding mode property (i.e., just add “Mode” to the end of
the property names mentioned) that by default is set to “auto”. The
CameraPosition property specifies the position in data (x,y,z) coordinates from

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1

0

1

2
DataAspectRatio=[1 5 1], PlotBoxAspectRatioMode=auto

Figure 7.31

© 2003 by CRC Press LLC

which you are looking through the camera, while the CameraTarget specifies
the location in data coordinates at which you are pointing your camera. The
default settings force the CameraTarget to be the center of the axes containing
your graphics objects, the CameraUpVector to the y-axis direction in 2-D views
and the z-axis direction in 3-D views, and the scene to fill as much as possible
of the axes position rectangle.

These properties give you many controls over the way objects are viewed,
particularly when it is important to view a scene from different angles without
resizing the scene. In other words, this lets your perspective revolve around
or move through a scene without changing the apparent relative distance at
which you are looking at the axes, which makes it easier to do data
comparisons between different views.

The most useful point to remember is that if you want to keep MATLAB
from resizing the axes object, use

set(gca,'CameraViewAngleMode','manual')

After you have done this, you can revolve around a scene by changing the
view with the view([az el]) command where az and el refer to the azimuth and
elevation from which you want to view the objects in the axes (see Chapter 4).
You can also move through the scene by changing the values in
CameraPosition and CameraTarget. Making a movie (see Chapter 9) by
combining snapshots of a scene that you revolve and move through is easy
and can produce a great presentation!

The CameraUpVector property allows you, in a sense, to define the relative
tilt of the camera with respect to the line defined by the camera and camera
target locations.

A closely related property is the axes Projection property. This lets you
define either an “orthographic” or a “perspective” display of your graph.
These projections were introduced in Chapter 4, but we shall discuss them
again. Orthographic should be used when trying to maintain the relative x-, y-,
and z-axis data units. For example, when you are plotting 3-D views of
mathematical functions, you should use the orthographic projection mode:

set(gca,'projection','orthographic')

If you are plotting objects that you want to have shrink in size the farther
they lie from the camera’s position, you should use perspective mode:

set(gca,'projection','perspective'))

7.5.4 Line Properties

The following table summarizes the properties that every line object has in
addition to those that are common to all graphics objects.

© 2003 by CRC Press LLC

Property Read
Only

ValueType/Options Format

Color No [Red Green Blue] or color string RGB row

EraseMode No [{normal} | background | xor | none] row

LineStyle No [{-} | -- | : | -. | none] row

LineWidth No number 1 element

Marker No [+ | o | * | . | x | square | diamond | v
| ^ | > | < | pentagram | hexagram |
{none}]

row

MarkerSize No number 1 element

MarkerEdgeColor No [none | {auto}] -or- a ColorSpec row

MarkerFaceColor No [{none} | auto] -or- a ColorSpec row

XData No numbers vector

YData No numbers vector

ZData No numbers vector

Line objects are children of a single axes object and therefore must have
some property that defines their relative position within their parent. The
XData, YData, and Zdata properties are just for this purpose. These three
properties store the data values that you are plotting with a line when you
issue either a high-level command such as plot(x,y) or the low-level graphics
command, line(x,y). Every line can be thought of as a bunch of connected
dots, where the ith dot is at a coordinate specified by (XData(i),YData(i),
ZData(i)). To render a line, MATLAB requires that the XData and YData
property values be the same length vectors. ZData, however, must either be
an empty matrix, [], or a vector that is the same length as XData and YData. In
the event that you use a plotting command, such as plot(x,y) or line(x,y) for 2-
D plotting, i.e., specifying only x and y, ZData will contain the empty matrix
and it is assumed that the ZData coordinate is the number zero for each
XData, YData element pair. Only when you create a 3-D line, such as with
plot3(x,y,z) or line(x,y,z), or when you specifically set this property value to
some vector, perhaps with

set(line_handle,'ZData',vector_of_zvalues);

will the ZData property contain numeric values.

Most of the other line properties are used to specify the visual features of
the line object. So in order to illustrate the effects of these properties, we shall
create a simple line object and keep track of its handle.

figure;
x = [1:6];
y = sin(x);
line_handle = plot(x,y);

This last line could have been replaced with any one of the following:

© 2003 by CRC Press LLC

line_handle = plot(y);

or

line_handle = line('XData',x,'YData',y);

or

line_handle = line(x,y);

The Color property contains a single RGB intensity vector that defines the
color of the line. To set this property, you may pass either a legal color string
or a 3-element vector. For instance, to make our line green, we can use

set(line_handle,'color','green')

or

set(line_handle,'color','g')

or

set(line_handle,'color',[0 1 0])

Previously, when we specified the colors of lines by passing a color string
along to the plot command, the routine was essentially setting this property
for you.

This was also the case with the LineStyle property. For instance, if you use
the command plot(x,y,'g:') to create a green dotted line, the plot routine will
separate the string into its two subcomponents, 'g' and ':'. The 'g' is used to set
the Color property and the ':' is used to set the LineStyle property. The
LineStyle property can be any one of the five types identified in the previous
table.

The Marker property lets you choose from one of 14 markers (13 styles and
“none”). Markers are placed at every data point specified by the X, Y, and
ZData coordinate vectors. Since you can choose a line style and marker type
at the same time, you are probably plotting too many lines in a graph if you
find that you have run out of combinations!

The LineWidth property, by default, is set to 0.5 points (1 point = 1/72 inch).
To illustrate some of the various line thicknesses, we can run the following
script:

figure;
axes('XLim',[0 6],'YLim',[0 7],'Box','on');
x = [1:4]; y = ones(size(x));
thicknessrange = [0.25 0.5 1 2 4 10];
for thicknessindex = 1:length(thicknessrange)
 line('XData',x,'YData',y*thicknessindex,...
 'LineWidth',thicknessrange(thicknessindex));
 text(5,thicknessindex,...
 num2str(thicknessrange(thicknessindex)));
end
title('LineWidths indicated next to line')

This script will generate the plot shown in Figure 7.32.

© 2003 by CRC Press LLC

Since the width of a line is specified in terms of points, values of 1 and less
will all look identical on the screen; however, when you print them out, you
will see the difference.

Please note that the LineWidth will also change the widths of the markers,
but not the size of the markers. To change the marker size, you need to use
the MarkerSize property.

By default, the MarkerSize is six points. As a quick exercise, see if you can
generate a similar script (before looking at the code) to the one we just used
above to generate the figure shown in Figure 7.33.

0 1 2 3 4 5 6
0

1

2

3

4

5

6

7

0.25

0.5

1

2

4

10

LineWidths indicated next to line

Figure 7.32 Controlling line widths.

© 2003 by CRC Press LLC

figure;
axes('XLim',[0 6],'YLim',[0 6],'Box','on');
x = [1:4]; y = ones(size(x));
markersizerange = [1 3 6 12 20];
for markersizeindex = 1:length(markersizerange)

 line('XData',x,'YData',y*markersizeindex ,...
 'LineStyle','none','Marker','x',...
 'MarkerSize',markersizerange (markersizeindex));
 text(5,markersizeindex ,...
 num2str(markersizerange (markersizeindex)));
end
title('MarkerSize indicated next to line')

A line’s marker also has edge (MarkerEdgeColor) and face
(MarkerFaceColor) color properties. A marker’s face is the region within the
boundary defined by the marker’s edge. The “+”, “.”, “x”, and “*” markers do
not have faces, and therefore, their color is only affected by the
MarkerEdgeColor property. To illustrate, the following code will create
hexagrams that have a yellow face, red edge, and are connected by a blue
dashed line as shown in Figure 7.34:

figure;
l=plot([-.5 .5 .5 -.5 -.5],[-.5 -.5 .5 .5 -.5]);
set(l, 'linestyle','--',...
 'color','blue',...
 'linewidth',2,...
 'marker','hexagram',...
 'markersize',15,...
 'markeredgecolor','red',...
 'markerfacecolor','yellow');
axis([-1 1 -1 1]);

0 1 2 3 4 5 6
0

1

2

3

4

5

6

1

3

6

12

20

MarkerSize indicated next to line

Figure 7.33 Using Marker and MarkerSize.

© 2003 by CRC Press LLC

Of course, you will have to try this on your computer to see the colors. As you
can see, using various combinations of the Color, LineStyle, LineWidth, Marker,
MarkerEdgeColor, and MarkerFaceColor properties will give you quite a bit of
freedom in defining many line object appearances.

The EraseMode property of line objects is used to give some level of control
over the manner in which a particular line object is erased and/or redrawn.
This property is primarily manipulated when animating graphics objects, of
which we will make extensive use in Chapter 9 when we discuss animation.
For now, we will simply point out that this property is set to “normal” by
default so that objects are rendered in the figure to provide an accurate
presentation of the objects that currently exist in their relative order in relation
to the perspective of the observer. The price paid for the accurate figure
representation is speed. The other three modes of erasing are much faster,
but have certain implications with regard to what is shown in the figure. The
“none” setting will keep MATLAB from updating the region of the figure where
the object was found before it was either deleted or moved. The “xor” mode
allows the particular object to be moved or deleted without affecting the
objects that are rendered below it. However, since the object is xored with
the color of the objects below it, its color will be influenced by other objects
and can be guaranteed only when the object is located on top of the figure
object. Finally, the “background” setting will make sure that the object is
drawn with the right color. However, when an object with an EraseMode set
to “background” is deleted or erased, any other object located below it will
temporarily be damaged with an imprint of the erased object drawn in the
figure’s background color. All of these inaccuracies are removed at the time
that either a refresh is issued or another graphics object which has its
EraseMode property set to “normal” is created, moved, or deleted.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Figure 7.34 Using marker and line properties.

© 2003 by CRC Press LLC

7.5.5 Rectangle Properties

In the previous example, we created what looked like a rectangle by using
the plot function and specifying data that defined the sides of the rectangle.
Although this looks like a rectangle, it is not an actual rectangle as far as
MATLAB is concerned. A rectangle in MATLAB is a unique graphics object
and therefore has properties that specify it. The following table lists those
properties unique to rectangle objects.

Property Read
Only

ValueType/Options Format

Curvature No [x, y] 1 or 2 element

EraseMode No [{normal} | background | xor | none] row

FaceColor No ColorSpec | {none} row

EdgeColor No {ColorSpec} | none row

LineStyle No [{-} | -- | : | -. | none] row

LineWidth No number 1 element

Position No [x,y,width,height] vector

As you would expect, rectangle objects have a Position property, specified
by the same rect vector format we have previously seen. Also, since a
rectangle is made of a line, there are the properties LineStyle and LineWidth.
Similar to what we have seen with the Marker property of line objects, we see
that rectangle objects have FaceColor and EdgeColor properties as well. One
property that rectangles have that you probably did not anticipate is Curvature.
This property takes either a one- or two-element vector as its value where the
vector specifies the curve into the corners. If there is only one value specified,
then both the vertical and horizontal segments of the rectangle take the curve;
if two elements are provided, then the first affects the horizontal segment, and
the second the vertical segment. The range of these values are 0 to 1 where 0
is no curvature (corners would meet at right angles) and 1 is maximum
curvature. The properties of a rectangle object are perhaps best understood by
example. The following code will produce the result shown in Figure 7.35.

figure;
curvesize=[0 0.2 0.5 0.8 1];
axis([1 20 1 20]);
for inc=1:5
 rect_h(inc)=rectangle;
 set(rect_h(inc),'Position',[2,3*inc,2,2],...
 'Curvature',curvesize(inc));
 text(5,3*inc, num2str(curvesize(inc)));
end
inc=inc+1;
rect_h(inc)=rectangle
set(rect_h(inc),'Position',[9 6 6 6],...
 'Curvature',[0.3 0.7],'LineStyle',':',...
 'LineWidth',2,'EdgeColor','blue',...

© 2003 by CRC Press LLC

 'FaceColor',[1 0 0]);
text(10,4, {'Curvature = [0.3 0.7]',...
 'EdgeColor = blue','FaceColor = red'});
axis equal;

As you can see, when the value of Curvature is 1 (or [1 1]), the rectangle
becomes a circle.

Although convenient and potentially very useful, rectangle objects are
somewhat limited as far as graphics control. For instance, you might have
noticed that rectangles do not have XData or YData, so you can not rotate
rectangle objects with the rotate command, nor can you specify their
transparency since they don’t have AlphaData. However, you will learn in the
next section about a much more robust object that will allow you to
manipulate its appearance in practically every way imaginable.

7.5.6 Patch Properties

A patch object is made up of one or more polygons. It is defined by the
coordinates of its vertices. Each patch can have its own color, transparency,
etc., and can be either 2-D or 3-D. The following table lists all the patch
properties that are not common to all graphics objects.

0 5 10 15 20

2

4

6

8

10

12

14

16

18

20

0

0.2

0.5

0.8

1

Curvature = [0.3 0.7]
EdgeColor = blue
FaceColor = red

Figure 7.35 Rectangle objects.

© 2003 by CRC Press LLC

Property Read
Only

ValueType/Options Format

Properties Defining Patch Objects

Faces No permutation of 1:M N-by-V matrix

Vertices No numbers x-, y-, z-coordinates M-by-3 matrix

XData No coordinates of the points at
the vertices

vector or
matrix

YData No coordinates of the points at
the vertices

vector or
matrix

ZData No coordinates of the points at
the vertices

vector or
matrix

Properties Specifying Lines, Color, and Markers

CData No numbers vector

CDataMapping No [direct | {scaled}] row

EdgeColor No [none | {flat} | interp] or
[Red Green Blue] or color
string

row

FaceColor No [none | {flat} | interp] or
[Red Green Blue] or color
string

row

FaceVertexCData No RGB per patch, face, or vertex matrix

LineStyle No [{'-'} | '--' | '-.' | ':' | 'none'] row

LineWidth No number 1 element

Marker No ['square' | 'diamond' | 'v' | '^'
| '>' | '<' | '.' | 'pentagram' |
'hexagram' | 'o' | 'x' | '+' | '*' |
{none}]

row

MarkerEdgeColor No [none | {auto} | [R G B] |
color_string]

row

MarkerFaceColor No [{none} | auto | [R G B] |
color_string]

row

MarkerSize No number 1 element

continued next page

© 2003 by CRC Press LLC

Property Read
Only

ValueType/Options Format

Properties Affecting Lighting and Transparency

AmbientStrength No numbers vector

BackFaceLighting No [unlit | lit | {reverselit}] row

FaceLighting No [none | {flat} | gouraud |
phong]

row

DiffuseStrength No number 1element

EdgeLighting No [{none} | {flat} | gouraud |
phong]

row

SpecularColorReflectance No number ranging from 0 to 1 1 element

SpecularExponent No number > or = to 1 1 element

SpecularStrength No number ranging from 0 to 1 1 element

VertexNormals No numbers M-by-3 matrix

NormalMode No [{auto} | manual] row

EraseMode No [{normal} | none | xor |
background]

row

AlphaDataMapping No [none |direct | {scaled}] row

EdgeAlpha No [{scalar = 1} | flat | interp] 1element or
string

FaceAlpha No [{scalar = 1} | flat | interp] 1element or
string

FaceVertexAlphaData No transparency data 1element or
M-by-1 matrix

7.5.6.1 Properties Defining Patch Objects

Just as line objects used XData, YData, and ZData properties to store data
that defines the coordinates that are connected sequentially to form a line,
patch objects use these three properties to store data that defines the
locations of its vertices. Here again, if the ZData property contains the empty
matrix, it is assumed that the patch object lies in the xy-plane (the z-axis
coordinates are assumed to be zero). In addition, if the first and last vertex
coordinates do not form a closed path, MATLAB automatically joins these two
vertices.

Try not to think of patches as a single polygon; patches can have as many
faces as you want. Each column of the X, Y, and ZData properties refers to a
face of the patch object. Additional properties, Vertices and Faces, are part of
the patch object to make it easier to define patches with more than one face.
With the Vertices property, you can define all the possible vertices you want to
use (and additional ones if it makes your life easier) as an M-by-3 matrix, where
each of the M rows represents a vertex’s x,y,z coordinates. Then you define
groups of the vertices that are to be connected with an N-by-V matrix in the
Faces property, where N is the number of faces and V is the maximum number
of vertices you want in any single face. The faces are drawn by connecting the
vertices in the order specified by going from column 1 to column V.

© 2003 by CRC Press LLC

 You might be wondering,

What if I want different type polygons for some of the faces in the patch?

If you wanted a mix of quadrilateral faces and triangular faces, the
maximum number of rows you need is four. For the rows defining triangles,
you need only three vertices, so just put a NaN in the fourth column of those
rows. As an example, we can create a patch object with different polygons.

figure;
vertex = [-0.5 -0.5 0; % Vertex 1
 0.5 -0.5 0 ; % Vertex 2
 0.5 0.5 0; % Vertex 3
 -0.5 0.5 0; % Vertex 4
 0 0 -1]; % Vertex 5
faces = [1 2 3 4; % Face F1
 1 2 5 NaN; % Face F2
 2 3 5 NaN; % Face F3
 3 4 5 NaN; % Face F4
 4 1 5 NaN]; % Face F5
p=patch('vertices',vertex,...
 'faces',faces,...
 'facecolor',[.5 .5 .5]);
axis([-1 1 -1 1 -1 0]);
view(3);

to produce the upside-down pyramid shown in Figure 7.36.

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1
−1

−0.8

−0.6

−0.4

−0.2

0

Figure 7.36 A single patch object with 5 faces.

© 2003 by CRC Press LLC

7.5.6.2 Properties Specifying Lines, Color, and Markers

Each face of a patch object can be thought of as being composed of three
subcomponents. The first subcomponent is the edge or line that connects
each of the vertices in the sequence in which they are specified. The second
subcomponent is the patch’s face or region that lies within the vertices. And
the third, which is by default not displayed, is the set of markers that can be
located at the vertices.

You can define the edge color, style, and width of a patch object with the
EdgeColor, LineStyle, and LineWidth properties.

Markers are drawn only if you set the Marker property with a valid setting.
Just as with line objects, a marker’s edge color, face color, and size can be
altered with the MarkerEdgeColor, MarkerFaceColor, and MarkerSize
properties. The only difference with a patch’s marker edge and face color
properties is that they have an “auto” setting. If in “auto” mode, their colors
will depend on the value specified in the EdgeColor property. This allows the
marker colors to be interpolated. Finally, remember that the marker’s edge
width is determined by the LineWidth property.

To better understand how these properties can be used, let’s look at a
simple example. First, we will define the coordinates of a single polygon.
Then we will create translated patch objects that illustrate the use of the
different properties. The results are shown in Figure 7.37.

x = [-1 -1 1 1 -1];
y = [-1 1 1 -1 -1];
figure;
axes('XLim',[-4 4],'YLim',[-4 4],'box','on')
p1 = patch('XData',x,'YData',y,'FaceColor','blue');
p2 = patch('XData',x+2,'YData',y+2,...
'FaceColor',[1 0 0],'Edgecolor',[0 1 0],...
'linewidth',3, 'marker','o');
p3 = patch('XData',x-2,'YData',y+2,'FaceColor','none',...
 'Edgecolor',[.3 .3 .3],'linewidth',6);
p4 = patch('XData',x+2,'YData',y-2,...
'FaceColor',[0 1 1],'Edgecolor','none',...
'linewidth',3,'marker','hexagram',...
'markeredgecolor','yellow','markerfacecolor','red',...
'markersize',20);
p5 = patch('XData',x-2,'YData',y-2,'FaceColor',[0 1
1],...
 'Edgecolor',[0 0 0],'linewidth',40);

© 2003 by CRC Press LLC

The last two patch objects, p4 and p5, are created to illustrate that there is a
difference between specifying the color of the axes object (black on most
platforms) or none for the EdgeColor and FaceColor properties. If a
subcomponent’s color value is set to “none”, that component of the patch
object will not be rendered. On the other hand, a white component will get
rendered and may partially hide another object (see p1 in the example) or
even its complement component (as seen by the fact that p5’s face
component is partially obscured by its edge component). This is particularly
evident when the figure or axes object is not white.

You should also be aware of the fact that the order in which these patch
objects were created has significance in the final result. This is because we did
not specify any values for the ZData properties of these patch objects and,
therefore, they are all in the same xy-plane. The objects most recently created
will be on top of the other objects.

The EdgeColor and FaceColor of a patch object can also be set to “flat” or
“interp” (interpolated). In order to use one of these options, you need to
specify the color data, CData or FaceVertexCData, of the patch object. If either
of these two CData properties is not specified and you try to define the
EdgeColor or FaceColor property as “flat” or “interp”, or the MarkerEdgeColor,
or MarkerFaceColor as “flat”, MATLAB will return one of the following
warning messages:

Warning: Patch FaceVertexCData length (0) must equal
Vertices length (5) for flat EdgeColor.

Warning: Color Data is not set for Interpolated shading.

Warning: Patch FaceVertexCData of size 0 cannot be used
with Flat shading.

−4 −3 −2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

2

3

4

p1

p2p3

p4p5

Figure 7.37 Demonstrating patch properties.

© 2003 by CRC Press LLC

Warning: Color Data is not set for marker flat coloring.

and the patch object will not be rendered.

Although you were introduced to how color maps and true color are
specified in MATLAB in Chapter 5, we will visit those topics again in Chapter
8. Furthermore, we will discuss the Cdata, FaceVertexCData, and
CDataMapping properties in greater detail in Chapter 8. For now, we will give
just a brief discussion as it applies to the patch object. As a general overview,
the color data (Cdata and FaceVertexCData) properties are used to specify the
colors at the corners of each face. Which of these two properties you use will
most likely depend on what form you used to enter in the location of the
patch’s corners. If you used the X, Y, ZData properties, then CData is probably
the most appropriate. If you used the Vertices and Faces properties, then you
will probably want to use FaceVertexCData. If you are using multifaceted
patches you will notice that, in general, using the FaceVertexCData is easier
because you have to define the color at a vertex that is used for multiple faces
only once, where as with CData you need to specify the color at the corner for
each face.

For now, when the CDataMapping is set to the default value of “scaled”,
you can think of the color data values as a range of values that get scaled to
the size of the figure’s color map to identify the color at each of the patch
vertices or each face. By scaled, we mean that the smallest color data value
will be mapped to (or, in other words, drawn using) the first color in the color
map, and the largest color data value will be mapped to the last color in the
color map. This default setting lets you flip between different sized color maps
without having to recalculate the CData or FaceVertexCData values. When the
CDataMapping is set to “direct”, you can think of the color data values as
indices to the figure’s color map that are used to identify the color at each of
the patch vertices or each face.

Remember that the size of the matrices you assign to either of color data
value properties and the setting of the FaceColor and EdgeColor properties will
specify how MATLAB should interpret your coloring intentions.

If you want... set the patch’s ...
a single true color for all faces FaceColor to an RGB value

or
FaceColor to “flat” and FaceVertexCData to an
RGB value

a single color for all faces that are
indexed to the color map

FaceColor to “flat”, CDataMapping to “direct”,
and FaceVertexCData to a single colormap
index containing the color you want.

a single color for all faces that are scaled
to the color map

FaceColor to “flat”, CDataMapping to “scaled”,
and FaceVertexCData to a single value that is
chosen in relation to the axes object’s CLim
property limits value.

one true color for each face FaceColor to “flat” and FaceVertexCData to an
M-by-RGB (i.e., M-by-3) matrix, where M is the
number of faces.

continued next page

© 2003 by CRC Press LLC

If you want... set the patch’s ...
one color for each face that is indexed
to the color map

FaceColor to “flat”, CDataMapping to “direct”,
and FaceVertexCData to a column of M
colormap indices containing the color you
want, where M is the number of faces.

one color for each face that is scaled to
the color map

FaceColor to “flat”, CDataMapping to “scaled”,
and FaceVertexCData to a column of M (the
number of faces) values that are chosen in
relation to the axes object’s CLim property
limits.

interpolated true color for each face FaceColor to “interp” and FaceVertexCData to
an V-by-RGB (i.e., V-by-3) matrix, where V is
the number of vertices.

interpolated color for each face that is
indexed to the color map

FaceColor to “interp”, CDataMapping to
“direct”, and FaceVertexCData to a column of
V colormap indices containing the color you
want, where V is the number of vertices.

interpolated color for each face that is
scaled to the color map

FaceColor to “interp”, CDataMapping to
“scaled”, and FaceVertexCData to a column of
V (the number of vertices) values that are
chosen in relation to the axes object’s CLim
property limits.

7.5.6.3 Properties Affecting Lighting and Transparency

This last set of patch properties have to do with how patch objects are
affected by lighting and transparency. Although we will cover these properties
in greater detail in Chapter 8, we will give a brief overview here.
VertexNormals are automatically calculated by MATALB when the
NormalMode property is set to “auto”. We will see these properties with
surface objects as well. These normals are used by MATLAB to perform
calculations that determine the visual effects of lighting models on the patch
object. Modifying the VertexNormals sets the NormalMode property to
“manual” and prohibits MATLAB from recalculating the normals. Providing
your own set of normals in lieu of MATLAB automatically determining them
can lead to very interesting lighting effects.

Additional properties that give you control over how lighting affects the
patch objects are SpecularStrength, DiffuseStrength, AmbientStrength;
properties used to specify the respective intensity components of light objects
that are reflected off of the patch object. The SpecularExponent property
determines the size of the highlight spot due to a light source shining on the
patch object. The default value is 10. Increasing this value makes the spot
smaller and decreasing it makes the spot larger. The SpecularColorReflectance
property controls the color of the reflected light spot emanating from the
patch object. It can vary between 0 and 1, where values approaching 0
indicate that MATLAB should reflect more of the patch’s color, and values
approaching 1 indicate that MATLAB should reflect more of the light object’s
color. The FaceLighting and EdgeLighting properties specify the method that
MATLAB should use to calculate the effect of light on the patch object. You
will find that setting the EdgeLighting and FaceLighting to “flat” for patch

© 2003 by CRC Press LLC

objects is generally optimal. “Gouraud” and “phong” lighting is usually best
used when viewing curved surfaces. Finally, there is a property called
BackFaceLighting. BackFaceLighting by default is set to “reverselit”, which
means that patch objects whose VertexNormals point away from the camera
are illuminated. BackFaceLighting can be used to highlight only the patch
objects whose VertexNormals are facing the camera by setting it to “unlit”.
The “lit” setting can be used if you are seeing strange lighting effects along the
edges of the patch objects.

The EraseMode property of patch objects has the same meaning as was
briefly discussed for line objects. This property will also be elaborated when
animation is presented in Chapter 9.

The remaining properties, AlphaDataMapping, EdgeAlpha, FaceAlpha, and
FaceVertexAlphaData determine how patch objects present transparency data,
a.k.a., alpha data. We will discuss this in greater detail in Chapter 8, but for
now we will present a brief overview as an appetizer. The properties
EdgeAlpha and FaceAlpha specify the transparency of the edges and faces of
patches respectively. Both take values of either a single scalar value between 0
and 1, where 0 is fully transparent and 1 (the default) is completely opaque, or
“flat” or “interp” in which cases the property FaceVertexAlphaData must
contain valid alpha data. Note that you must have supplied alpha data when
you select “flat” or “interp” or MATLAB will report a warning like,

Warning: Patch FaceVertexAlphaData of size 0 cannot be
used with Flat Alpha..

or

Warning: Alpha Data is not set for Interpolated shading.

The AlphaDataMapping property specifies the method MATLAB will use to
map the transparency, i.e., “none” such that alpha data is “clamped” between
0 and 1, “scaled” (the default) where alpha data is mapped linearly to span the
portion of the alphamap indicated by the axes ALim property, or “direct” in
which case alpha data in the FaceVertexAlphaData property is taken directly.
As we said, we will present using these properties fully in Chapter 8.

7.5.7 Surface Properties

Surface objects have properties which are an assembled mix of properties
from both the line and patch graphics objects. You have already become
somewhat familiar with surface objects by virtue of the surf function in
Chapter 4. However, you will wield great power over surface objects once
you go beneath the surface (so to speak) and become familiar with the
properties which are listed in the following table. We will only briefly describe
these properties in this section, but see them again in the following chapter on
color, light, and transparency. Also, many of these properties are already
familiar to you, having been presented with line and patch objects.

	
 � � �

© 2003 by CRC Press LLC

Property Read
Only

ValueType/Options Format

Properties that Define a Surface

XData No coordinates of the points at the
vertices

vector or
matrix

YData No coordinates of the points at the
vertices

vector or
matrix

ZData No coordinates of the points at the
vertices

vector or
matrix

Properties that Specify Lines, Colors, and Markers

CData No numbers vector

CDataMapping No [direct | {scaled}] row

LineStyle No [{'-'} | '--' | '-.' | ':' | 'none'] row

LineWidth No number 1 element

EdgeColor No [none | {flat} | interp] or
[Red Green Blue] or color string

row

FaceColor No [none | {flat} | interp | texturemap]
or [Red Green Blue] or color string

row

Marker No ['square' | 'diamond' | 'v' | '^' | '>' | '<'
| '.' | 'pentagram' | 'hexagram' | 'o' | 'x'
| '+' | '*' | {none}]

row

MarkerEdgeColor No [none | {auto} | [R G B] | color_string] row

MarkerFaceColor No [{none} | auto | [R G B] | color_string] row

MarkerSize No number 1 element

Properties Affecting Lighting and Transparency

AmbientStrength No numbers vector

BackFaceLighting No [unlit | lit | {reverselit}] row

DiffuseStrength No number 1element

EdgeLighting No [{none} | {flat} | gouraud | phong] row

FaceLighting No [none | {flat} | gouraud | phong] row

NormalMode No [{auto} | manual] row

SpecularColorReflectance No number ranging from 0 to 1 1 element

SpecularExponent No number > or = to 1 1 element

SpecularStrength No number ranging from 0 to 1 1 element

VertexNormals No numbers M-by-3 matrix

AlphaData No default = 1 (opaque) M-by-N matrix
of double or

uint8

AlphaDataMapping No [none |direct | {scaled}] row

EdgeAlpha No [{scalar = 1} | flat | interp] 1element or
string

FaceAlpha No [{scalar = 1} | flat | interp] 1element or
string

Surface objects store matrices in the XData, YData, and ZData properties.
These three properties define the vertices of the quadrilaterals which make up
the surface object. The XData and YData properties do not need to be
matrices. They can be vectors, provided that there are as many elements in

© 2003 by CRC Press LLC

XData as there are columns in ZData, and as many elements in YData as there
are rows in Zdata. If you store an M-by-N matrix in ZData, then you must store
either a 1-by-N vector or an M-by-N matrix in the XData property. Likewise,
you must store either a 1-by-M vector or an M-by-N matrix in the YData
property.

In addition to the three vertex position properties, the color data property,
CData, must also be defined. Most high-level commands set ZData and CData
to the same matrix so that color will be proportional to the height of the
surface. However, we will see that if you set the FaceColor property to
“texturemap”, CData can be any size you desire. Under this circumstance, the
CData will be treated like an image that you want to have “wrapped” across
or made to fit within the surface. Normally, the FaceColor property is set to
flat and the color of a particular quadrilateral within the surface will be
identified by the upper left-hand element of the set of four elements defining
the color. Consider for a moment that the following MATLAB code

sx = [1 2 3];
sy = [4 5 6];
sZ = [1 2 3;
 4 5 6;
 7 8 9];
figure
axes('view',[-37.5, 30])
surface('XData',sx,'YData',sy,'ZData',sZ,'CData',sZ);
% We could also use surface(sx,sy,sZ,sZ).

will generate Figure 7.38.

As you can see, the 3-by-3 matrix, sZ, creates four quadrilaterals.

1

1.5

2

2.5

3

4

4.5

5

5.5

6
1

2

3

4

5

6

7

8

9

Figure 7.38 Creation of a simple surface.

© 2003 by CRC Press LLC

The lines that surround each quadrilateral are called the edges, and are by
default black. These can be defined in several different ways using the
EdgeColor property, just as the patch edge lines can be specified. For
example, if you want the surface with handle, h_surface, to have red edges,
you can use

set(h_surface,'EdgeColor','red')

or

set(h_surface,'EdgeColor',[1 0 0]);

If you do not want edges, you can set the EdgeColor to “none”. This
property may also be set to “flat” or “interp”. The value “flat” will use a single
color for the edge of a particular quadrilateral that is based on the upper left
most element of the group of four elements in CData that are associated with
that face. On the other hand, “interp” will linearly interpolate the edge line
segments between the face’s four CData elements.

You can also set the LineStyle of the edge lines to something other than the
default solid lines ('-'). In addition to the style of the line, you can also set its
thickness with the property LineWidth (default = 0.5). If you have decided to
use one of the standard set of markers, you may set the MarkerSize,
MarkerEdgeColor, and MarkerFaceColor properties to alter the marker’s
attributes. These have the same affect that they had on patch objects. The
“auto” value of the MarkerEdgeColor and MarkerFaceColor lets the EdgeColor
property dictate the color of the markers. Just as with patch objects,
remember that the surface’s marker’s edge width is determined by the
LineWidth property.

Finally, the last property you can manipulate to affect the appearance of the
surface quadrilateral edges is the MeshStyle property. When the LineStyle is
set so that the edges are solid lines, you can specify which edges are drawn.
By default the edges are on all four sides of each quadrilateral, or in other
words, down each row and column of the ZData matrix. However, if you
want the edges to run only along the columns of the ZData, you can set the
MeshStyle to “column”, and if you want them to run along the rows of the
ZData, set this property to “row”. Figure 7.39 shows the effect of MeshStyle
set to “row” as well as some line width alteration applied to the previous
example with

set(h_surf,'MeshStyle','row','EdgeColor',[1 0 1],...
 'LineWidth',4)

© 2003 by CRC Press LLC

Figure 7.40 shows the effect of using

set(h_surf,'MeshStyle','column','EdgeColor',[1 0 1],...
 'LineWidth',4)

The manner in which the color of the faces of the surface’s quadrilaterals
can be specified is similar to the way that an individual patch object’s face

1

1.5

2

2.5

3

4

4.5

5

5.5

6
1

2

3

4

5

6

7

8

9

MeshStyle=row, EdgeColor=[1 0 1], LineWidth=4

Figure 7.39 Manipulating the MeshStyle ‘row.’

1

1.5

2

2.5

3

4

4.5

5

5.5

6
1

2

3

4

5

6

7

8

9

MeshStyle=column, EdgeColor=[1 0 1], LineWidth=4

Figure 7.40 Manipulating the MeshStyle ‘column.’

© 2003 by CRC Press LLC

color is specified. You may specify that all quadrilaterals be a certain color by
setting the FaceColor property to either a legal color string or RGB triplet
vector. By default, this property is set to “flat” so that each quadrilateral face is
a solid color that usually corresponds to the height of the upper left corner of
the quadrilateral. In Chapter 8 you will learn how to set the quadrilateral face
colors so they are proportional to the height of the quadrilateral’s center. You
may also set the FaceColor to “interp” so that the color is interpolated through
the four elements of CData that are associated with the vertices of each
quadrilateral. This will give a smooth blend of color between adjacent
quadrilaterals and depending on the values, CData can be used to give an
accurate representation of surface height across the entire surface.

Just as with patch objects, when the CDataMapping is set to the default
value of “scaled”, you can think of the color data values as a range of values
that get scaled to the size of the figure’s color map to identify the color at
each of the corners of a face in the surface. This default setting lets you flip
between different sized color maps (see Chapter 8) without having to
recalculate the CData values. When the value of CDataMapping is set to
“direct”, you can think of the color data values as indices to the figure’s color
map that are used to identify the color at each corner of each face of the
surface object.

Remember that the size of the matrices you assign to either of color data
value properties and the setting of the FaceColor and EdgeColor properties will
specify how MATLAB should interpret your coloring intentions.

Just as with patches, surface VertexNormals are automatically calculated by
MATLAB when the NormalMode property is set to “auto”. The normals are
used to perform calculations that determine the visual effects of lighting
models on the surface of each object. Modifying the VertexNormals sets the
NormalMode property to “manual” and keeps MATLAB from recalculating the
normals.

Although we will discuss lighting and transparency in detail in Chapter 8,
you have already seen an introduction to these properties with the patch
object discussion. So we will dispense with repeating that brief introduction,
and merely point out that the properties of SpecularStrength, DiffuseStrength,
and AmbientStrength are, just as with patch objects, used to specify the
respective intensity components of light objects that are reflected off of the
surface object. The defaults and uses are the same as with patch objects. The
SpecularExponent property determines the size of the highlight spot due to a
light source shining on the surface object. The SpecularColorReflectance
property controls the color of the reflected light spot emanating from the
surface object. The FaceLighting and EdgeLighting properties specify the
method that MATLAB should use to calculate the effect of light on the surface
object. BackFaceLighting, by default, is set to reverselit, which means that
patch objects whose VertexNormals point away from the camera are
illuminated. Just as we stated with patch objects, BackFaceLighting can be used
to highlight only the surface objects whose VertexNormals are facing the
camera by setting it to “unlit”. The “lit” setting can be used if you are seeing
strange lighting effects along the edges of the surface object.

© 2003 by CRC Press LLC

Finally, just as patch objects can have transparency, so can surfaces. The
same properties you saw with patch objects exist with surface objects as well.
All we will say here, is that just like with patch objects, alpha data must exist
for the surface object before using EdgeAlpha or FaceAlpha. If alpha data has
not been defined, you will get warnings like,

Warning: size(AlphaData) must equal size(ZData) or
size(ZData)-1 for flat alpha.

or

Warning: size(AlphaData) must equal size(ZData) for
interpolated alpha.

We will cover alpha data thoroughly in the next chapter.

7.5.8 Image Properties

Although Chapter 5 dealt with images, we intentionally left out any
discussion of handle graphics. Image objects are created anytime you invoke
the image or imagesc commands. As you have seen, MATLAB lets you do
quite a lot without relying on handle graphics and object properties. But by
now you have gained a great deal of familiarity with object properties, and are
probably quite comfortable using the set and get commands. Image objects in
MATLAB are children of axes objects, just like lines, patches, and surfaces.
Knowing the properties that affect images will give you a greater command
over what you can do with them. The following table lists the properties that
pertain to image objects.

Property Read
Only

ValueType/Options Format

General Properties of the Image Object

CData No numbers matrix or M-
by-N-by-3
array

CDataMapping No [{direct} | scaled] row

XData No [min, max] default = [1, size(CData,2)] 2-element
vector

YData No [min max] default = [1, size(CData, 1)] 2-element
vector

Properties Affecting Transparency

AlphaData No default = 1 (opaque) M-by-N matrix
of double or
uint8

AlphaDataMapping No [{none} |direct | scaled] row

The CData property of an image contains the actual data that makes up the
image. The dimension of the data in CData, either MxN, or MxNx3,
determines if MATLAB displays the image using colormap colors, or as an RGB

© 2003 by CRC Press LLC

image. If the CData contains a 2-D array, then the image is either an indexed
image or an intensity image (see Chapter 5). In either case the image is
displayed using colormap colors. If the data in CData is 3-D, then the image is
a truecolor image.

The properties XData and YData specify the coordinate system for the
image. For MxN images, the default for XData is [1 N] and the default for
YData is [1 M]. This means that for an image object, the left column of the
image has an x-coordinate of 1, the right column an x-coordinate of N, the top
row a y-coordinate of 1 and the bottom row an y-coordinate of M. We can
demonstrate this with the following code,

X = [1 2 3 4;
 5 6 7 8;
 9 10 11 12];
h_image = image(X);
colormap(colorcube(12));
xlabel('x-coordinates');
ylabel('y-coordinates');

which will produce the result shown in Figure 7.41.

If you invoke the image function again, this time specifying a non-default value
for XData, such as with the following code, you will get the result shown in
Figure 7.42.

h_image2 = image(X, 'XData',[-1 2]);
colormap(colorcube(12));
xlabel('x-coordinates');
ylabel('y-coordinates');

x−coordinates

y−
co

or
di

na
te

s

0.5 1 1.5 2 2.5 3 3.5 4 4.5

0.5

1

1.5

2

2.5

3

3.5

Figure 7.41 Default image object coordinates.

© 2003 by CRC Press LLC

As you can see in Figure 7.42, the x-coordinates have been changed to the
range we specified ([-1 2]). Since we have changed the coordinate range, the
return value of commands like,

get(gca,'CurrentPoint')

will be points in the new coordinate system.

We will discuss the properties AlphaData and AlphaDataMapping in the
next chapter.

7.5.9 Text Properties

The last object we will discuss, and the last object that is a child to an axes
object, is the text object. You have been adding text, either with text
commands like text, xlabel, label, etc., or by annotating using the “Insert Text”
button from the toolbar in the Figure Window. But just like the other objects
we have seen, MATLAB offers the ability to alter the text properties so that
you can highlight the important aspects of the graphical information. In
addition to properties common to all axes children objects, the properties
associated with text objects can be categorized into those that define the text
object, those that position the text object, and those that specify the font. The
following table summarizes the properties that are specific to text objects.

x−coordinates

y−
co

or
di

na
te

s

−1.5 −1 −0.5 0 0.5 1 1.5 2 2.5

0.5

1

1.5

2

2.5

3

3.5

Figure 7.42 Changing XData to a non-default value.

© 2003 by CRC Press LLC

Property Read
Only

ValueType/Options Format

Color No [Red Green Blue] or color string RGB row

Editing No [{off} | on] row

EraseMode No [{normal} | none | xor | background] row

Extent Yes [left bottom width height] 4-element
row

FontAngle No [{normal} | italic | oblique] 1 element

FontName No string row

FontSize No numbers 1 element

FontUnits No [inches | centimeters | normalized |
points | pixels | {data}]

row

FontWeight No [light | {normal} | demi | bold] row

HorizontalAlignment No [{left} | center | right] row

Interpreter No [{tex} | none] row

Position No [x y z] coordinates row

Rotation No [AngleInDegrees] 1 element

String No string row

Units No [inches | centimeters | normalized |
points | pixels | {data}]

row

VerticalAlignment No [top | cap |{middle}| baseline | bottom] row

Each text object displays the text that is in the String property. Multiple lines
of strings are displayed by using string cell-arrays. Every cell will correspond to
a line in the multi-line string. For example, the following code

text(.1,.1,'This is single line text object.');
text(.5,.5,[{'This is line one'...
 'This is line two'...
 'This is line three'...
 'of a multiline string object'}]);

produces the results shown in Figure 7.43.

© 2003 by CRC Press LLC

Each text object is anchored to a location within the figure that is specified
with respect to its parent (an axes object). The Units of a text object are by
default in data units. This makes it easy to add text at the command line by
picking off a location in the graph using the axis tick mark labels as a guide or,
perhaps more important, allows placing text with respect to a specific point on
a plotted line, surface, or other graphics object. However, you can also specify
that the Units be in inches, centimeters, normalized, points, or pixels. These
units are all relative to the lower left corner of the axes object parent.

The Position property is stored as a 2- or 3-element row vector that defines a
coordinate, (x,y,z), in the 3-dimensional space. If a 2-element row is specified,
the z-axis coordinate is assumed zero. The position values must be specified in
the units defined by the Units property of the text object.

In addition to defining the location of the text object, you can also define
the orientation with the Rotation property. MATLAB allows you to specify any
angular value in degrees relative to zero (which is the default value). For
example,

axis([0 10 0 10])
text(5,5,'Text at 0 degrees');
text(5,5.5,'Text at 45 degrees', 'Rotation',45);
text(4.5,5,'Text at 90 degrees','Rotation',90);

creates the two text objects shown in Figure 7.44.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

This is single line text object.

This is line one
This is line two
This is line three
of a multiline string object

Figure 7.43 Cell-arrays allow multiple line text objects.

© 2003 by CRC Press LLC

After you have experimented with the different placement properties, you
may also want to look at the various properties that affect the visual aspects of
the text object. Figure 7.45 shows some of the individual text item’s properties
as they are specified in the string of the object so that you can see their
effects. Here is the code that creates the figure:

axis([0 10 0 10])

text(0,9,'fontweight=bold, fontname=times new roman,...
fontsize=12, fontangle=normal',...
'FontWeight','bold', 'Fontname','times new roman',...
'FontSize',12,'FontAngle','normal');

text(0,7,'fontweight=light, fontname=times new roman,...
fontsize=10, fontangle=normal',...
'FontWeight','light','Fontname','times new roman ',...
'FontSize',10,'FontAngle','normal');

text(0,5,'fontweight=normal, fontname=arial,...
fontsize=12, fontangle=normal',...
'Fontname','arial',FontSize',12,'FontAngle','normal');

text(2,3,{'fontweight=bold, fontname=brush script,...
fontsize=12','fontangle=normal, color=red'},...
'FontWeight','bold', 'Fontname','brush script',...
'FontSize',12,'Color','red');

You can use any of the fonts available on your system for the value of
FontName. Only a very small fraction of the number of possibilities that you
could potentially define with the text font properties has been shown.

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10

Text at 0 degrees

Te
xt
 a
t
45
 d
eg
re
es

T
e
x
t

a
t

9
0

d
e
g
r
e
e
s

Figure 7.44 The effect of the Rotation property.

© 2003 by CRC Press LLC

As you can see in the above example, in addition to the font angle, name,
size, and weight, you can also set the Color property to any legal color string
or a 3-element RGB color vector. For example, if you want some blue text at
the axes position (0.5,0.5,0), use any one of the following syntaxes:

text(0.5,0.5,'Blue Text String','color','blue');
text(0.5,0.5,'Blue Text String','color',[0 0 1]);
text(0.5,0.5,'Blue Text String','color','b');

The properties HorizontalAlignment and VerticalAlignment make it easy to
figure out their respective effects on the text’s location relative to the point
defined by the Position property. Figure 7.46 shows several text strings that
have been placed relative to the “crosshairs” drawn in the figure. The
HorizontalAlignment property will shift the text’s position relative to the point
along the x-axis, while the VerticalAlignment property shifts the text’s position
relative to the point along the y-axis.

text(1.5,4.5,'HorizontalAlignment=left','horiz','left')
text(1.5,3.5,'HorizontalAlignment=center','horiz',...
'center')
text(1.5,2.5,'HorizontalAlignment=right','horiz',...
'right')
hold on
plot([1.5*ones(1,3)],[2.5:4.5],'+','markersize',30)

text(2.5,5,'VerticalAlignment=top','vert','top')
text(2.5,4,'VerticalAlignment=cap','vert','cap')

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10

fontweight=bold, fontname=times new roman, fontsize=12, fontangle=normal

fontweight=light, fontname=times new roman , fontsize=10, fontangle=normal

fontweight=normal, fontname=arial, fontsize=12, fontangle=normal

fontweight=bold, fontname=brush script, fontsize=12
fontangle=normal, color=red

Figure 7.45 Example of text font properties.

© 2003 by CRC Press LLC

text(2.5,3,'VerticalAlignment=middle','vert','mid')
text(2.5,2,'VerticalAlignment=baseline','vert','base')
text(2.5,1,'VerticalAlignment=bottom','vert','bottom')
plot([2.5*ones(1,5)],[1:5],'+','markersize',30)
set(gca,'vis','off')
axis([0 5 0 6]);axis(axis)

The two properties EraseMode and Extent are principally applicable to
animation, which will be covered in Chapter 9, however we will briefly discuss
their function here. Often, it may be advantageous or desirable to have the
text properties values change instead of deleting an existing object and then
creating a new text object with the desired values. For example, if you want
to have some text move across the top of the figure in a smooth manner, you
can set the EraseMode to “xor” or “background” depending on your particular
requirements and update the Position property as desired. The Extent property
allows you to precisely determine the region covered by the characters in the
string. The position along with the alignment properties define where the text
will lie relative to some point and is independent of the number of characters
in the string. The Extent property provides (since it is a read-only property)
additional information that depends on a combination of other properties,
specifically, FontSize, FontName, FontWeight, the number of characters in
String, Position, and the alignment properties.

The property Editing when set to “on” lets you edit the String property
contents interactively. If you have some text objects and you want to be able
to quickly update them with a new value every now and then, try

set(findobj('type','text'),...
 'buttondownfcn','set(gco,''editing'',''on'');');

HorizontalAlignment=left

HorizontalAlignment=center

HorizontalAlignment=right

VerticalAlignment=top

VerticalAlignment=cap

VerticalAlignment=middle

VerticalAlignment=baseline

VerticalAlignment=bottom

Figure 7.46 Horizontal- and VerticalAlignment properties.

© 2003 by CRC Press LLC

Try this code with the example for Figure 7.43 and you will then be able to
click on a text object and edit its string. Notice that it works just as well for the
text object that uses the cell-array as well as the single line. If you want to only
make one of the text objects editable, simply get the object’s handle (easy at
creation time) and set that one’s Editing property to “on” with something like
the following code.

h_t=text(.5,.5,’This text object is editable!’)
set(h_t,’Editable’,’on’);

The last text object property we will discuss is Interpreter. When this
property is set to its default value of “tex”, all special TeX characters are
interpreted as such. If you set the Interpreter property to “none,” the special
characters will be displayed literally. The special TeX characters, summarized in
Chapter 3, let you mix subscript, superscripts, different fonts, and symbols.

7.6 Setting Default Properties
Now that you have a pretty good understanding of what graphic object

properties are and how they can be manipulated to produce a desired visual
effect, you may be asking yourself

“Do I really need to set these properties every time, when I know, for
instance, that I always like to see text objects with the Times font and colored
blue?”

You’ll be happy to know that even though MATLAB comes with many
factory-determined default values for all the properties, you can always set the
defaults to your liking, so you do not need to set the same properties over and
over. However, you should consider whether or not you are going to be
sharing MATLAB code with colleagues and recognize that their default settings
may not be the same as yours (especially if you alter them from the factory
default).

Default properties are always set at the root level and are fairly intuitive in
terms of the name that is required. For example, to set the default font for text
objects, use,

set(0,'DefaultTextFont','Times')

and to set the default color and size of the text to blue and nine points, use:

set(0,'DefaultTextColor','blue','DefaultTextFontSize',9)

For other objects and properties, the concept is identical. To create the
default string, just concatenate the three words "Default", the object name
(such as text, figure, line, etc.), and the property name. Then set the root's
property you just determined with the default value of your choosing.
Experiment with some examples. Try setting the default color for line objects
to “cyan” instead of the factory default of “black”. What about the text that
labels the tick marks? (Hint: remember that the axes object has some
properties which affect the text of tick mark labels).

��
� � �

© 2003 by CRC Press LLC

One of the questions that we often encounter in teaching MATLAB is

“How can I make MATLAB cycle through line styles instead of colors so that
the lines are distinguishable on my black and white hardcopies?”

The answer is easily solved by setting the defaults. Remembering that the axes
object contains information about the order of colors and lines that are chosen
when multiple lines are plotted at once, you can put something like

set(0,'DefaultAxesColorOrder',[0 0 0]);
set(0,'DefaultAxesLineStyleOrder',['-|--|-.|:']);

You could simply type these commands at the command prompt, or you
can have this be your default if you put these lines in your startup.m file. The
file startup.m is looked for by MATLAB each time you start a MATLAB session
and anything you put in there will be executed.

7.7 Undocumented Properties
All of the properties that have been discussed so far are referred to as

documented properties, i.e., they are covered to some degree of detail in the
MATLAB documentation such as the MATLAB Reference, User's Guide, or
from the command line help. However, MATLAB has what we call
undocumented properties, i.e., those that do not appear in any of the
documentation. In fact, these properties do not even appear with set or get
unless you tell MATLAB specifically that you want to make them visible. One
root property that was not mentioned previously (because it is
undocumented) is HideUndocumented, which can be set to either “on” (the
default setting) or “off”. In its default setting of “on,” none of the
undocumented properties of any of the MATLAB objects can be accessed, but
when this root property’s value is set to “off” by using

set(0,'HideUndocumented','off')

you will be able to access the hidden properties of any of the MATLAB
objects.

You might be asking, “Why would MATLAB have undocumented
properties?” There are several reasons for undocumented properties; the first
is that these are experimental properties used by The MathWorks that may or
may not be available for use in future versions of MATLAB. Another reason is
that some properties are holdovers from previous versions of MATLAB and so
are kept as aids to assist in the upward compatibility of the software package.

You should be aware of the fact that The MathWorks does not support nor
encourage the use of these undocumented properties, and it is even with
hesitancy that we present how to access them in this text. However, since this
book is intended to be an extensive guide to MATLAB graphics and graphical
user interfaces, we feel that at least a brief mention of the existence of these
properties is warranted. However, be aware that using undocumented
properties, and even worse, relying on them, will most likely lead to difficulties
and incompatibilities with future versions of MATLAB.

�
� � � � � � 	

© 2003 by CRC Press LLC

7.8 Using FINDOBJ
One of the most powerful built-in functions, as far as graphics are

concerned, is the findobj function. The findobj function (which is short for
“find object”) relieves you of having to keep track of an object’s graphics
handles, such as by always having to assign an object handle to a variable
name. Maintaining sets of variables for handles can be time consuming,
tedious, and in general, adds a lot of overhead to MATLAB programs that
create and manipulate numerous graphics objects. The findobj function gives
you the freedom, with considerable flexibility, to quickly “search” for object
handles. If MATLAB did not have a function like findobj, you could have
created a similar routine by taking advantage of the parent-child relationship of
objects. For instance, you could create a function that starts at some level in
the hierarchy and searches down for an object with a particular property/value
combination(s); this is essentially what findobj is doing. However, since this
capability is already provided as a built-in function, it is quite fast at finding the
object or objects that meet the specified search criteria. Although you have
already seen this function in action a little, we will now formally present it.

The syntax of findobj in its simplest form is

h = findobj

which returns the root handle in addition to the handle of all its descendants
(basically h will be a column vector containing the handle to every graphics
object available in the current MATLAB session). The next form of findobj is
to supply some search criteria such as

h = findobj('Property1Name','Property1Value',...);

which will return only the object handles of those objects that have a
property named Property1Name which is set to Property1Value. If you do not
want to start the search at the root object, you may start at any object or
objects by using the syntax

h = findobj(ObjectHandles,...
 'Property1Name','Property1Value',...);

where ObjectHandles is a single element or vector containing the handles
to objects from which you want the search to commence. By default, if
ObjectHandles is not supplied, it is assumed to be the root handle, 0. Finally,
if you have a set of object handles and want to find the subset that meets
specific criteria, you can use the form

h = findobj(ObjectHandles,'flat',...
 'Property1Name','Property1Value',...);

This only checks to see if any of the handles supplied in ObjectHandles
have the property/value combination specified.

Let’s look at a quick example of how you might want to use findobj at the
command line to alter the appearance or information provided by a figure.
First, let’s create a plot, like the one shown in Figure 7.47, and add some text
in addition to the x- and y-axis labels:

© 2003 by CRC Press LLC

x = 0:.1:10;
plot(x,sin(x).*exp(-.5*x));
xlabel('x'); ylabel('y')
text(4,.3,'y = sin(x).*exp(-.5x)');
text(5,-0.1,'Here''s the maximum');

Oops! It would appear that we didn’t quite get things right. We put the wrong
string in one of the text objects and we wanted the line to be dashed not solid.
We could just start over, but armed with what we now know about handle
graphics we can simply get the handles and alter their respective properties, as
with the following code:

line_handle = findobj('type','line');
set(line_handle,'linestyle','--');
text_handle = findobj('string','Here''s the maximum');
set(text_handle,'string','Here''s the minimum');

Now our plot should look like the one shown in Figure 7.48.

0 1 2 3 4 5 6 7 8 9 10
−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

x

y

y = sin(x).*exp(−.5x)

Here’s the maximum

Figure 7.47 Oops!

© 2003 by CRC Press LLC

The findobj function and Tag property are a perfect combination for finding
and manipulating MATLAB graphics. Since all graphics objects have the Tag
property, you can conceivably give each object a meaningful and unique
name. For instance, if you plot several lines in the same figure, you can name
them individually with

plot(x1,y1,'--b','tag','dataset1');
hold on;
plot(x2,y2,'tag','dataset2');
 .
 .
 .

You can then find the appropriate line’s handle by using something like

line1_handle = findobj('tag','dataset1');

and proceed with modifying the line's properties as you see fit.

Later on, when some of the advanced graphics topics and GUIs are
discussed, the usefulness of this function will become more evident.

0 1 2 3 4 5 6 7 8 9 10
−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

x

y
y = sin(x).*exp(−.5x)

Here’s the minimum

Figure 7.48 Finding handles with findobj makes changes easy!

© 2003 by CRC Press LLC

7.9 Illustrative Problems

1. Create a plot of 10 random numbers distributed N(0,1) vs. the
numbers 1 to 10. Using the set command along with the gca
command turn the Ygrid to on, the GridLineStyle to – and the
Linewidth to 3).

2. Continue with this example and set the y-axis color to red and the x-
axis color to green.

3. Open a blue Figure Window. Plot a sine curve in solid yellow and a
cosine curve in dashed green. Get the handle for the yellow curve
and change its color to black.

4. Plot a sine curve as a solid line. Use the findobj command to go back
and change it to a dashed line.

5. A tag is another handy concept that we only touched on in our
discussions. Recall that we can use tags to keep track of objects by
name. You can assign a value to the Tag property either with the
Property Editor or with handle-graphics methods.

For example we might execute the following command sequence.

plot(x1,y1,’--b’,’tag’,’dataset1’);
hold on;
plot(x2,y2,’tag’,’dataset2’);

Now we can find the line handle for the second curve using.

H_line2 = findobj(‘tag’,’dataset2’);

Plot a sine curve in blue and a cosine curve in green. Go back and use the first
curve’s tag to make it thicker.

© 2003 by CRC Press LLC

88 UUSSIINNGG CCOOLLOORR,, LLIIGGHHTT,, AANNDD

TTRRAANNSSPPAARREENNCCYY

8.1 Simple Color Specifications
Now that you have seen examples using both high-level plotting commands

and low-level object property manipulation, it is appropriate to discuss the
capabilities and features that MATLAB’s functions related to color provide. As
was mentioned in Chapter 2, color adds yet another dimension and therefore,
an additional degree of freedom with regard to the amount of information that
can be present in a figure. Gone are the days of black and white and
monochrome computer monitors. In fact, most people even have color
printers in their homes and offices. The judicious use of color can greatly
enhance the visibility, and information content of MATLAB graphics.

In addition to color, lighting can be used to make a three-dimensional
surface look more realistic. By creating the effect of light reflecting off of the
different curves of a surface, you will get more information about the data
creating the plot. Light can be moved around a scene to produce different
visual effects.

Finally, as if color and light (and how it is reflected) weren’t enough,
MATLAB also supports transparency. Transparency gives you the ability to see
one set of data through another set. This is a very powerful capability,
especially when used with volume plots.

So, let’s get started and learn how to control the color, lighting, and
transparency of our MATLAB graphics objects.

8.2 Color Maps
In Chapters 3 and 4 we looked at defining the color of most graphics

objects with the easiest technique available, namely, using color specifications.
We saw that you could use the high-level commands to specify the color of
the lines by passing string arguments that contained color names as we usually
refer to them when talking with other people. For example, a red line can be
created by simply typing plot(x,y,'red'). After we learned about object handles,
we saw that we can alter the properties of any graphics object. For example,
to specify a green color for the current figure’s background, we can set its
color with set(gcf,'Color','green'). We also have seen that you don’t need to

IN THIS CHAPTER…

8.1 SIMPLE COLOR SPECIFICATIONS
8.2 COLOR MAPS
8.3 MODELING OBJECT LIGHTING
8.4 OBJECT TRANSPARENCY
8.5 ILLUSTRATIVE PROBLEMS

© 2003 by CRC Press LLC

spell out the whole name of a property, so you could use short names for a
color, or even a single letter, as long as it is unambiguous. We also saw that
we can specify a color using relative contributions of red, green, and blue in
what is called RGB format, so we could specify yellow for an axes background
with set(gca, ‘Color’,[1 1 0]). MATLAB has a term for the three ways you can
specify colors: it’s called ColorSpec and is either RGB triple, short name, or
long name. The table below lists the colors that MATLAB recognizes when you
use a string to represent either their long or short names.

The long name... The short name...
blue b

black k

cyan c

green g

magenta m

red r

white w

yellow y

When we created some of our 3-dimensional surface plots we observed
that the surface’s color varied with the height of the surface, and we also made
the color a function of the rate of curvature of the surface. In Chapter 5 we
saw that MATLAB used certain built-in color maps for certain images, and
three arrays representing red, green, and blue components (RGB) for others,
but beyond that we didn’t look very deep under the hood as to how color is
controlled. The next section is aimed at teaching you about the commands
that relate to these two color specification techniques and how you can use
them to control an object’s color.

Generally speaking, a color map is simply a three-column matrix whose
length is equal to the number of colors it defines. Each row in this matrix
defines a particular color by specifying the contribution of red, green, and blue
components. Each component is an intensity value between zero and one, in
a manner such that a zero is no intensity of the color, while a one turns on
that component to full intensity. MATLAB comes with many predefined colors,
many of which you have already used. The individual binary color
representations are already associated with a name or a character string as
shown in the following table.

© 2003 by CRC Press LLC

R G B Color Character
[0 0 0] black k

[0 0 1] blue b

[0 1 0] green g

[0 1 1] cyan c

[1 0 0] red r

[1 0 1] magenta m

[1 1 0] yellow y

[1 1 1] white w

When we plotted lines and specified their colors with one of the strings
above, the string was translated to the 3-element RGB vector. We could have
just as easily used other colors by passing or setting the color property of the
objects with some 3-element vector containing a fraction of the individual red,
green, and blue color intensities. For instance, to create a dark gray color we
could use a vector like [0.3 0.3 0.3] or we could create a bright gray color with
[0.8 0.8 0.8], a copper color with [1 0.62 0.4], and even aquamarine with
[0.49 1 0.83]. So you can see, you have the freedom of defining any color
you want. Appendix A contains a list of some useful colors and their
corresponding RGB values.

Color maps are just tables of colors that are organized in some desired
fashion. MATLAB has many map-generating functions. The default map that is
stored in the figure’s colormap property is a 64-by-3 array of the jet color map.
The entire list of map-generating functions is shown in the table below.

Function Color Map Description
autumn Smooth shades of red through yellow
bone Gray-scale with a tinge of blue
colorcube Regularly spaced colors with additional grays, red, green, and

blue.
cool Shades of cyan and magenta
copper Linear copper-tone
flag Alternating red, white, blue, and black, completely changing

with each index increment
gray Linear gray-scale
hot Black-red-yellow-white
hsv Hue-saturation-value, colors begin with

red, pass through yellow, green, cyan, blue, magenta, and
return to red

jet Variant of hsv that is associated with an astrophysical fluid jet
simulation from the National Center for Supercomputer
Applications – this is MATLAB’s default color map

lines Uses the colors specified in the ColorOrder property of the
axes object to generate a colormap

continued on next page

© 2003 by CRC Press LLC

Function Color Map Description
pink Pastel shades of pink – makes grayscale images look “sepia

tone”
prism Alternating red, orange, yellow, green, blue, violet
spring Shades of magenta and yellow
summer Shades of green and yellow
white All white monochrome colormap
winter Shades of blue and green color map

You can run the MATLAB demo function imageext to look at a demonstration
of the color maps.

In Chapter 7 we saw that ColorMap was a property of the figure object. To
generate a matrix of RGB values, pass any one of these functions an integer
that specifies the number of colors that are to be generated. For instance, to
create a 32-by-3 hot color map matrix, just type something like

ColorMapMatrix = hot(32);

and if you want to place it into your current figure’s ColorMap property,
type

set(gcf,'colormap',hot(32));

or

colormap(hot(32));

The colormap(map) function simply performs a set(gcf, 'ColorMap', map). If
you do not specify a size for the color map with an integer (e.g., the 32 in the
above two examples), the matrix size will default to a 64-by-3 element matrix.
This might be something to consider when creating your own color map
generating functions. All of these color map generating functions can be
created with simple mathematical expressions (i.e., they can be created with
several lines of MATLAB code). Take a look at some of these functions in the
editor and see how they work. For instance, just type edit hsv at the command
prompt. Most of these color map generating functions return a set of RGB
values that are created by sampling across three functions (i.e., one for the red,
blue, and green components of the RGB vectors) between the lower and
upper limits (the exception is flag, which cycles through red, white, blue, and
black). You will see that these functions, when finely sampled, can be used to
provide a nice transitional color gradation. To finely sample a color map
function, just pass the function a large integer value.

8.2.1 Effects of Color Maps in General

Only surface, patch, and image objects are directly affected by the values in
the ColorMap property of a figure. The colors of line, rectangle, text, axes,
uimenu, uicontrol, and figure objects are completely independent of what lies
in the figure’s ColorMap.

This does not mean that the RGB vectors found in the figure’s ColorMap or
returned from a color map generating function are useless when you generate

© 2003 by CRC Press LLC

line, rectangle, text, axes, uimenu, uicontrol, and figures objects. Rather, you
may find it convenient to obtain the colors that you want to use for these
objects from one of these two sources of RGB values, particularly if you are
not accustomed to defining colors with RGB vectors.

If you want to plot lines with colors other than the ones you can define with
a color specification (i.e., the colors that you can specify with a string like 'red',
'green', etc.), first create a RGB matrix. Then, from this matrix, choose the
colors one by one or all at once, depending on your needs. For example, if
you want to generate 10 uniquely colored lines, first create a color map matrix
with at least 10 colors, then use a for...end loop to plot a line with the color
from this matrix using code like

map = hot(10);
for data_set_index = 1:10;
 plot(X(:,data_set_index),map(data_set_index,:));
end

You can also put the RGB matrix in the axes object’s ColorOrder property
and plot all the lines at once with something like

map = hot(10);
X = rand(20,10)+ones(20,1)*[1:10];
figure;
% The next line creates (since one does not exist)an
% axes and sets its properties.
set(gca,'colororder',map,'nextplot','add','box','on');
plot(X);
title('Colored lines using colororder and...
 the hot colormap')

8.2.2 Color Axis Control

As you just saw, the color map generating function was used to define only
the RGB values used for a set of lines. Color maps, in a more sophisticated
sense, are used primarily for plotting surfaces, patches, and images. For the
duration of this chapter, unless otherwise noted, the use of the word “object”
will refer to one of these three.

Essentially, color maps are interpreters that are used to translate values to
colors. The translated values are found in the CData property of each of these
objects. There are two methods by which you can translate the CData values
to colors; direct mapping and scaled mapping. These are possible values of the
CDataMapping property.

8.2.2.1 Color Control with Direct Mapping

When an object uses direct mapping, its color data values (rounded down
to the nearest integer) are used as indices to a row in the color map. For
example, if you put the default color map into a matrix,

X=colormap;

you can see that size of the color map is 64-by-3. So if we had an object
that had a color data value of 15 (i.e., one of its CData value terms was 15),

© 2003 by CRC Press LLC

the part of the object associated with that term would map to (be colored
with) the color identified by the 15th row in the color map (i.e., X(15,:)). A
CData value of 64 or greater would map to the 64th row and a CData value of
1 or less would map to row 1.

Image objects are similar to surface objects, except there is no ZData
property. By default the values of an image object that are stored in the CData
are assumed to be actual indices to the color map matrix, since an image
object’s default value for CDataMapping is direct. These indices are usually
specified as integers; however, if they do have decimal portions, the values will
be rounded down to the nearest integer.

8.2.2.2 Color Control with Scaled Mapping

Often the CData values correspond to the height of the surface or patch
object. In fact, for these two objects, the CData property is not always
specifically defined or set by the user. If the CData is not provided, MATLAB
will automatically set this property equal to the ZData property values, and the
CDataMapping property will be set to “scaled”. This means that color data
values will be linearly scaled to the color map. This is called pseudocolor. The
simplest way to control the scaling is by using the pseudocolor axis, i.e., caxis,
command.

Depending on how the caxis function is used, it performs either a get or set
on the CLim property of the axes object. Remember from the last chapter that
CLim contains a 2-element vector, [cmin cmax]. The two values are used to
linearly transform data values in the CData property of surface and patch
objects to indices where each index identifies a RGB row, i.e., a color, in the
ColorMap property of the figure. The mathematical transformation of the
CData values to indices is described by

max

maxmin
minmax

min
min1

ccm

ccc
cc

ccfix

cc

index Equation 8.1

where c is an individual CData value and m is length of the color map
matrix. By default, the cmin and cmax values are automatically chosen by
MATLAB to correspond, respectively, to the absolute minimum and maximum
CData values found in any of the patch or surface objects in the axes object.
This allows MATLAB to use the entire range of colors in the color map over
the plotted data. However, using either the function

caxis([cmin cmax])

or

set(axes_handle,'CLim',[cmin cmax])

© 2003 by CRC Press LLC

allows you to control how your data is mapped into indices of the color map.
After you set the CLim property with either of these methods, the CLimMode
property of the axes will be set to “manual”, and therefore, auto scaling of the
color axis will no longer be done for surface and patch objects contained
within that axes object. However, if at some point you would like MATLAB to
determine the color limits, set the CLimMode back to “auto”.

8.2.3 Color Maps as they Relate to Graphics Objects

To better understand how the CData values are translated to colors, we will
look at examples for each of the three objects that are directly affected by
color maps, namely; surfaces, patches, and images.

8.2.3.1 Color Maps and the Surface Object

We will start by looking at an example that illustrates how CData values are
converted to indices for surface objects. Since the direct mapping method is
straightforward and is not the default setting for a surface object, the
discussion that follows regarding the determination of the color map indices
assumes that the surface object’s CDataMapping property is set to “scaled”.
Consider a situation in which there are three colors (red, blue, and green) in
the ColorMap,

so that m = size(map,1) = 3. If we have a 4-by-4 element CData matrix

5224
9310
6204
7235

cdata

and assume that the CLim property contains the minimum and maximum
values of the CData (i.e., [cmin cmax] = [-5 9]), we can readily determine the
index numbers using Equation 8.1 to be

3222
3222
3221
3211

index

Now, before you quickly create a surface plot of this data and see something
different from what you might expect, think about how a surface is created

green
blue
red

map
100
010
001

© 2003 by CRC Press LLC

with surf(cdata). Since, in this example, we are not supplying any x- or y-
coordinate data, recognize that the x- and y-coordinates are simply the row
and column indices. Therefore, the CData values along with the row and
column indices specify 16 vertices where each neighboring set of 4 elements
is connected by means of a quadrilateral. As shown below, in terms of the
elements within the CData matrix, there will be nine quadrilaterals.

5224
9310
6204
7235

cdata

You might wonder why we need 16 indices to the color map when there are
only nine quadrilaterals. With surfaces, each vertex can be assigned a color.
This allows MATLAB to perform a bilinear interpolation between the four
vertex colors to determine the color at any point within the quadrilateral. If
you do not want to use color interpolation, the CData can also be a 3-by-3
matrix in the example above. Color interpolation is only needed when the
surface property FaceColor or EdgeColor is set to “interp”, such as in the case
when you issue the command shading interp. When the FaceColor property is
set to “flat” or “faceted”, the quadrilateral’s color will be determined by the
color index of the vertex with the smallest row and column number.
Continuing with our previous example, we see that the CData element in the
first row and column (-5) has an index value equal to one (as calculated earlier
with Equation 8.1), which, in turn, indicates that the quadrilateral defined by
the

04
35

components of the matrix will be red (i.e., since the index value equals 1, the
quadrilateral will use the first row in our three-color color map). Taking the
same approach in determining the color of the quadrilateral defined by the
component

52
93

of the CData matrix, we see that it will be green.

cdata

5 3 2 7
4 0 2 6
0 1 3 9
4 2 2 5

index

1 1 2 3
1 2 2 3
2 2 2 3
2 2 2 3

red red green
red green green
green green green

© 2003 by CRC Press LLC

Proceeding with a mental image of our expectations, we can set up and plot
the surface with

map = [1 0 0; 0 1 0; 0 0 1];
figure('colormap',map);
% colormap(map) could have also been used in line above.
cdata = [-5 -3 2 7; -4 0 2 6; 0 1 3 9; 4 2 2 5];
surface_handle = surf(cdata);

to obtain Figure 8.1. We see that this figure has nine quadrilaterals; three of
them are red and six are green.

Now consider the same surface with interpolated shading by typing

set(surface_handle,'facecolor','interp');

In Figure 8.2 we can see that the index values previously calculated are indeed
used to identify the colors of the vertices and that each quadrilateral’s color is
bilinearly interpolated between the vertex colors.

1
1.5

2
2.5

3
3.5

4

1

1.5

2

2.5

3

3.5

4
−5

0

5

10

Figure 8.1 Controlling the color of a surface object.

© 2003 by CRC Press LLC

At this point, the edges of each quadrilateral can be identified because the
EdgeColor of the surface has been left in its default setting, black ([0 0 0]).
However, in Chapter 7 you learned that edges color can be defined, too. You
can specify that the edges of the quadrilaterals have a solid color by setting
the EdgeColor either to a particular RGB value (note, the RGB vector does not
have to be one of the values in the color map) or to “flat” which will use the
color indices of the vertices to identify a color for the segment of the line
associated with that vertex. Whenever the FaceColor is set to “interp”, the
figure will look the same when you set EdgeColor to “none” or “interp”. This
is because the “none” setting makes the edge lines invisible exposing the
interpolated face colors below the edges.

You should also realize that the color of each quadrilateral or vertex does
not need to relate to the height, or z coordinate, of the surface. You can also
use a form such as surf(z,c) or surf(x,y,z,c). In these two forms, the color data
can be whatever you want it to be as long as either

size(c) = = size(z)
or

size(c) = = size(z) – 1

holds true. For example, we can plot the peaks function with stripes of colors
in either the y-axis direction using

s = peaks(20);
c = meshgrid(1:20);
surf(s,c);

or, as shown in Figure 8.3, with stripes in the x-axis direction with

surf(s,c');
grid on;

1
1.5

2
2.5

3
3.5

4

1

1.5

2

2.5

3

3.5

4
−5

0

5

10

Figure 8.2 Interpolated shading.

© 2003 by CRC Press LLC

Color stripes may not be very informative, however, color might be used to
identify regions of a surface that have like curvatures, gradients, or whatever is
of interest to you. For example, in Figure 8.4 color identifies the regions of the
peaks function that have similar curvature.

s = peaks(20);
c = del2(s);
surface_handle = surf(s,c);
set(surface_handle,'FaceColor','interp');
colormap(hot(10));

0

5

10

15

20

0

5

10

15

20
−8

−6

−4

−2

0

2

4

6

8

Figure 8.3 Forcing stripes across a surface.

© 2003 by CRC Press LLC

A question that often arises is

“I have a surface that is symmetric in terms of its height; however, when I plot it
with the surf command, the colors are not symmetric. What is the reason for
this?”

The surf command, by default, will display the surface with a faceted shading
(i.e., shading faceted). The quickest way to solve the problem is to change the
shading to interpolated with shading interp, which varies the color in each line
segment and face by interpolating the color map index, or true color value,
across the line or face.

The reason we don’t get the result we would expect is that the last row and
column are not used in determining the color of the individual quadrilateral
faces for surface objects that are displayed in the faceted or flat shading;
remember that the color value assigned to the upper left vertex of each
quadrilateral, when looked at in terms of the matrix, determines the color. If
you want to have faceted or flat symmetric shading, a solution is to calculate
the height of the center of each quadrilateral and use this as the CData matrix.
For example, the following code

[x,y] = meshgrid(-3:.5:3);
z = x.^2;
% Now plot the matrix and see that the color is not
symmetric.
surf(x,y,z);
% Calculate the CData matrix by averaging the vertex
heights.
[m,n] = size(z);
C = (z(1:(m-1),1:(n-1)) + z(2:m,1:(n-1)) + ...
 z(1:(m-1),2:n) + z(2:m,2:n)) / 4;

0

5

10

15

20

0

5

10

15

20
−8

−6

−4

−2

0

2

4

6

8

Figure 8.4 Coloring based on surface curvature.

��
� � �

© 2003 by CRC Press LLC

surf(x,y,z,C);
generates the two plots shown in Figure 8.5 and illustrates the difference in
color symmetries. The left-hand side of the figure shows the non-symmetric
colored surface, while the right-hand plot shows the symmetric colored
surface.

8.2.3.2 Patch Objects and the Color Map

Now that we have looked at surfaces, let’s revisit the patch object and see
what kinds of visual effects can be obtained with color. An individual patch
object is created with the command patch(x,y,z,c) or patch(x,y,c), where the
vectors x, y, and z define the vertex coordinates and c specifies the color data
i.e., the CData property of the patch object. Please note that if z is not
supplied, the ZData property of the patch object is set to the empty or null
matrix, and the patch object is rendered as if the z-component of each vertex
was zero. The variable, c, can be one of the built-in color names (a string), an
RGB vector, a scalar, or a vector of values where there is one element for each
vertex. As we saw in Chapter 7, patches can also be defined by their vertices
using the form patch('Vertices', v, 'Faces', f, 'FaceVertexCData', fvc,...). With this
form, the color data is specified by the FaceVertexCData property of the patch.
When using FaceVertexCData, any corner of a face of the patch object
connected to a particular vertex will have the same color associated with it.
Whereas when specifying color with CData, corners that are shared by a
patch’s faces can have multiple colors assigned to them. This allows you to
have complete and independent control over the colors in a particular face of
a patch object.

−4

−2

0

2

4

−4

−2

0

2

4

0

1

2

3

4

5

6

7

8

9

Non−Symmetrical

−4

−2

0

2

4

−4

−2

0

2

4

0

1

2

3

4

5

6

7

8

9

Symmetrical

Figure 8.5 A symmetric surface with non-symmetric coloring (left) and
symmetric coloring (right) achieved by determining the surface

height at the center of each quadrilateral.

© 2003 by CRC Press LLC

If a simple color string or RGB vector is used for the Cdata or
FaceVertexCData, the entire patch object will be one solid color (usually
referred to as flat coloring). If the CData is set to a scalar, the entire patch
object will also be a flat color, however in this case the color is determined by
the translation of Equation 8.1 if using scaled mapping, or by the scalar to an
index to the color map. If there is an element in the c variable for each vertex,
Equation 8.1 can be used to identify what color will be applied to each vertex.
In other words, if the CData property is set to a scalar or a vector (with more
than 3 elements), the parent axes of the patch object will specify the color axis
in the same way it does for surface objects, i.e., elements in the c vector are
translated to color map indices.

In the next example, a pentagon is created and each vertex is specified to
have a particular color. Five triangles are also created and used to indicate the
color that is at each of the pentagon’s vertices. The pentagon’s coloring is
interpolated across the object’s face and the color map contains a 20-by-3 jet
color matrix. The results of this example are shown in Figure 8.6 and Plate 9 .

figure('colormap',jet(20));
axis([-1.5 1.5 -1.5 1.5])

p = patch([cos(linspace(0,360,6)*pi/180)],...
 sin(linspace(0,360,6)*pi/180),...
 [0 0 0 0 0 0], [1 1 2 5 2 1],...
 'facecolor','interp')

rotate(patch([1.1 1.3 1.3],[0 .15 -.15],[0 0 0],[1]),...
 [0 90],0);
rotate(patch([1.1 1.3 1.3],[0 .15 -.15],[0 0 0],[1]),...
 [0 90],1*72);
rotate(patch([1.1 1.3 1.3],[0 .15 -.15],[0 0 0],[2]),...
 [0 90],2*72);
rotate(patch([1.1 1.3 1.3],[0 .15 -.15],[0 0 0],[5]),...
 [0 90],3*72);
rotate(patch([1.1 1.3 1.3],[0 .15 -.15],[0 0 0],[2]),...
 [0 90],4*72);

 Color plates follow page 112.

© 2003 by CRC Press LLC

You will learn more about the rotate graphics function in Chapter 9;
however, it essentially relieves you from the responsibility of determining the
coordinate transformation required to rotate an object. The syntax for rotate
is

rotate(object_handle,axis_of_rotation,angle_degrees,origin_of_rotation),

 where the variable object_handle is the handle to the object that will be
rotated, axis_of_rotation is a 2-element ([Az El]) or 3-element ([x y z]) vector
that defines the axis about which the object should be rotated. The axis of
rotation passes through the point (0,0,0) unless otherwise specified with the
origin_of_rotation variable. The number of degrees that the object will be
rotated through is specified by the third argument, angle_degrees. (You could
also use a routine such as viewmtx to determine a coordinate transformation
matrix.)

8.2.3.3 Images and the Color Map

We have already discussed image types and their characteristics in Chapter
5. In Chapter 7 we presented the properties of image objects. The list of
properties belonging to image objects are presented again here to facilitate
our discussion of how the color map is influenced by these properties.

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

Figure 8.6 Defining the color of patch vertices.

© 2003 by CRC Press LLC

Property Read
Only

ValueType/Options Format

General Properties of the Image Object

CData No numbers matrix or M-
by-N-by-3
array

CDataMapping No [{direct} | scaled] row

XData No [min, max] default = [1, size(CData,2)] 2-element
vector

YData No [min max] default = [1, size(CData, 1)] 2-element
vector

Properties Affecting Transparency

AlphaData No default = 1 (opaque) M-by-N matrix
of double or
uint8

AlphaDataMapping No [{none} |direct | scaled] row

Of course these properties are in addition to the universal properties
already discussed in Chapter 7. Recall that the XData and YData properties are
vectors that specify the region in the xy-plane that the image object will
occupy. The image is scaled to fit between the first and last element stored in
each of these two properties. The elements between the first and last do not
affect the image object's location in the xy-plane. For example, if the XData is
[1 10] or [1:10] or [1 43 20 10], the image would be located in its axes object
parent over the x-data values from one to ten, while the region occupied in the
y-axis direction would depend on the values in the YData property in a similar
manner.

So far, you have seen that the color of both surface and patch objects is
determined by transforming the color data (CData) values of the object to
indices in the figure’s color map by means of the color limits (CLim) of the
axes object. Image objects, on the other hand, with their default settings are
unaffected by color limits of the axis. When the CDataMapping property is set
to “direct”, the color data values of images are expected to be integers
between 1 and the number of rows in the color map, i.e.,
size(get(gcf,'colormap'),1). These values are integers because they are used as
indices to the figure’s color map without any transformation and, therefore,
represent the color of a portion of the image object.

Color data values that are not integers are rounded down to the nearest
integer, while those values that are less than one are assumed to be one.
Those values greater than the number of rows in the color map are assumed
equal to the number of rows in the color map. This is an important fact to
realize and implies that if there are indexes with values outside the allowable
range, those portions of the image will be “clamped” to the upper or lower
color values in the color map. This image clamping translates to a loss of
information and can distort or make it difficult to discern the essence of the
image. Usually you will not have a problem with this if you are using any of
the images that come with MATLAB since images and their color maps are
usually stored in the same binary (.mat) file. However, since you might want
to create your own images, you need to be aware of image clamping effects.

© 2003 by CRC Press LLC

To illustrate, the next example shows how easily an image can be generated
and demonstrates what image clamping can do. The next two figures use the
following image data:

X = [1 1 1 1 1
 1 2 2 2 1
 1 2 3 2 1
 1 2 2 2 1
 1 2 3 2 1
 1 2 2 2 1
 1 1 1 1 1];

image(X)
colormap([.2 .2 .2; 1 1 1; .5 .5 .5]);

will generate the left-hand plot of Figure 8.7, while

image(X)
colormap([.2 .2 .2 ; 1 1 1])

will generate the right-hand plot.

Image objects can also scale their CData to the color map using Equation 8.1,
if you set the CDataMapping to “scaled”. If you have some image’s color data
values in X, and you want to use any given sized color map to obtain the most
information out of the image, the scaled setting of CDataMapping is usually the
easiest method.

image_handle=image(X);
set(image_handle,'CDataMapping','scaled');
set(gca,'clim',[min(min(X)) max(max(X))]);

Try loading the penny.mat image and experiment with different sized color
maps.

load penny;
figure;
i=image(P, 'CDataMapping','scaled');
colormap(copper(255));

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5

1

2

3

4

5

6

7

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5

1

2

3

4

5

6

7

Figure 8.7 An image clamped by a limited number of color map entries.
The desired image on the left and the clamped on the right.

© 2003 by CRC Press LLC

will let you see the greatest amount of detail in the data matrix, P. But if you
wanted to visually quantize the data into fewer levels of detail, you could
change the size of the color map and MATLAB will scale the color data to it.
So,

colormap(copper(10))

will produce the illustration shown in Figure 8.8.

Had you used the default direct value of the CDataMapping property, the data
values in P greater than 10 would be clamped to the last color in the color
map.

You may have noticed in the previous two figures that the y-axis labels
increase in the reverse direction than is normally displayed. This is due to the
fact that when an image is created, the axes object’s YDir property is set to
“reverse”. This keeps the image oriented in the same manner as the data in the
CData matrix. In addition, images created with the image function can be
visualized only in 2-dimensional perspectives. Later in this chapter, you will
learn how to visualize image data in 3-dimensional perspectives.

The EraseMode property of image objects can be used to control the
manner in which an image object is erased and/or redrawn. This property is
primarily manipulated when animating graphics objects, which we will discuss
in Chapter 9. The default setting of “normal” will give the most accurate
presentation of the image object. The other three modes of erasing are faster,
but you will lose some accuracy. With “none”, MATLAB will not update the
region where the object was located before it was either deleted or moved.
This is the mode that you should use, if you want to update the image’s CData

20 40 60 80 100 120

20

40

60

80

100

120

Figure 8.8 Viewing an image with a scaled color map with 10 entries.

© 2003 by CRC Press LLC

quickly but are not translating the object in the xy-plane. For instance, if you
have several same-sized images and you want to flip between them, create
one image object whose EraseMode is set to “none” and update only the
CData with the next image’s data. The “xor” setting lets you move or delete
the object without affecting objects rendered behind the image; however, the
image’s color will be affected by objects rendered behind it. The
“background” setting will make sure the image object is drawn in the correct
color, but if the image is deleted or moved, an imprint of the erased image
object will remain until you do a refresh or a new object that has its
EraseMode property set to “normal” is created, moved, or deleted.

The last two properties, AlphaData and AlphaDataMapping, have to do with
making part (or all) of the image transparent. These properties exist in surface
and patch objects as well and are subject to an entire section later in this
chapter.

8.2.4 Color Shading

To control how color is applied to surface and patch objects, you can use
the graphics function named shading. One of the following three arguments
must accompany the command: flat, faceted, or interp. The default shading
applied to surfaces and patch objects is faceted. Each quadrilateral has a
constant color face and edges that are highlighted with black lines. Flat
shading is the same as faceted, except that there are no edge lines, while
interpolated shading makes use of bilinear color interpolation between the
vertices.

The command shading manipulates the FaceColor and EdgeColor properties
of surface and patch graphics objects. In the following comparison table,
surface_handles is the variable containing the handle or handles to all surface
and patch objects in the current axes object whose shading you want to alter.

Using… is the same as….
shading flat set(surface_handles,'FaceColor','flat','EdgeColor','none')

shading faceted set(surface_handles,'FaceColor','faceted','EdgeColor',[0 0 0])

shading interp set(surface_handles,'FaceColor','interp','EdgeColor','none')

8.2.5 Brightening and Darkening Color Maps

The graphics function brighten can be used to alter a color map by either
brightening or darkening the colors. Depending on the value of the argument
passed to the brighten command, the intensity of the color map is either
increased, i.e., brightened, or decreased, i.e., darkened. To brighten the
existing figure’s color map, use

brighten(intensity_factor);

© 2003 by CRC Press LLC

where the intensity_factor should be a value between zero and one. To
darken the existing figure’s color map, use an intensity_factor with a value
between negative one and zero.

Applying a change in sign to the intensity_factor after having already used
that intensity_factor to alter the color map will lead to the original color map.
In other words, the MATLAB code

brighten(intensity_factor);
brighten(-intensity_factor);

would yield the color map that existed before the two statements were
executed.

You can also create a new color map matrix without affecting the current
figure’s ColorMap property by using an output argument such as

new_colormap = brighten(map,intensity_factor);

or

new_colormap = brighten(intensity_factor);

where the first syntax form returns an altered color intensity of the map you
passed to the function and the second form returns an intensity-altered map of
the current figure.

We can look at the RGB plots (see following figures) for the hot color map
in its normal, brightened, and darkened mode using

plot(hot);axis([1 64 0 1])
title('hot color map');
plot(brighten(hot,.75));axis([1 64 0 1])
title('brighten(hot,.75)');
plot(brighten(hot,-.75));axis([1 64 0 1])
title('brighten(hot,-.75)');

© 2003 by CRC Press LLC

10 20 30 40 50 60
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
hot color map

Figure 8.9 Original red, green, and blue components of the hot color
map.

10 20 30 40 50 60
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
brighten(hot,.75)

Figure 8.10 Plotting the red, green, and blue components of a
brightened version of the hot color map.

© 2003 by CRC Press LLC

8.2.6 Spinning the Color Map

An interesting visual effect can be created by spinning the color map. This
essentially entails shifting the color map colors up or down in terms of row
index numbers. Those colors that either would be shifted below the first index
or above the last indexed row in the color map matrix are wrapped around to
the end or the beginning depending on how the rows are shifted. After the
color map matrix has been redefined, the map is quickly applied to the current
figure. Now, if you do enough of these shifts quickly, the visual effect is as if
the colors were moving across the surface in the figure. The
spinmap(time,shift_increment) function makes this easy to accomplish. The
variable, time, is the period in seconds (whether or not it truly represents
seconds depends upon the speed of the platform on which MATLAB is
running) over which the color map should spin (default is five seconds) and
shift_increment is the number of rows by which each color in the current color
map should be shifted down. An upward shift can be achieved by providing a
negative integer. Larger values, in terms of absolute value, of the
shift_increment argument lead to a faster rotation through the color map
indices. Be aware however, that because of differences in the many graphics
cards in modern computers, spinning the color map might produce
unexpected results; consequently you might have to change the color mode of
your environment. If you try to use spinmap and get a message like,

10 20 30 40 50 60
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
brighten(hot,−.75)

Figure 8.11 Plot of the red, green, and blue components of a darkened
version of the hot color map.

© 2003 by CRC Press LLC

Warning: Colormap animation is only possible for 256
color screens.

try changing the number of colors you are using for your display. You will also
have to restart MATLAB after changing colors so that system properties are
reported properly to MATLAB.

To see an example of the spinmap function, try the following:

figure('ShareColors','off');
peaks(20);
shading interp;
spinmap(10,1);

If you want to slow down the rate by more than a single row index shift,
you can increase the size of the color matrix. For example,

colormap(hsv(128));
spinmap(10,1)

will be a smoother and longer rotation through the color map colors than
with the previous example. To have a little fun, try this:

figure('ShareColors','off');
patch([0 0 10 10 0 1 9 9 1 1 0],...
 [0 10 10 0 0 1 1 9 9 1 0],...
 zeros(1,11),[1 2 3 4 5 5 4 3 2 1 1],...
 'EdgeColor','none');
colormap(flag(128));
spinmap(5,1);

8.2.7 Making Use of the Invisible Color with NaN

MATLAB’s Not-a-Number (NaN) representation is a convenient way of
making portions of a surface invisible. For example, if you zoom into a region
of some 3-dimensional plot, you may not like the way that MATLAB clips the
regions outside of the x-, y-, and z-axis limits. This would be a prime example
of when the use of NaNs will help achieve your desired results. Another case
might involve a situation in which you have altered the color axis (CLim)
property to force a color variation over a particular portion of a surface and
you want those regions outside of the limits to be invisible instead of clamped
to the first or last color in the color map.

There are several techniques that can be used to achieve these and other
similar types of results. Typically, they involve setting the elements of the color
data, i.e., the CData property, to NaNs. Let’s first look at an example in which
we want to zoom in on a particular region of the 3-D plot shown in Figure
8.12.

[x,y] = meshgrid(-3:0.1:3);
z = sin(sqrt(x.^2+y.^2)).*exp(-(sqrt(x.^2+y.^2)));
surface_handle = surf(x,y,z);

�
� � � � � � 	

� �
 � �

© 2003 by CRC Press LLC

shading flat
axis([-3 3 -3 3 min(min(z)) max(max(z))])

Zooming in on a region of the surface with

axis([0 3 0 3 min(min(z)) max(max(z))])

will produce Figure 8.13, which, as you can see, obscures the x- and y-axis
tick mark labels.

−3
−2

−1
0

1
2

3

−3

−2

−1

0

1

2

3

0

0.05

0.1

0.15

0.2

0.25

0.3

Figure 8.12 A flat shaded surface plot.

© 2003 by CRC Press LLC

However, with the following code we can make those regions of the
surface that fall outside desired limits invisible as shown in Figure 8.14.

indexs = find(~(x <= max(get(gca,'xlim')) & ...
 x >= min(get(gca,'xlim')) & ...
 y <= max(get(gca,'ylim')) & ...
 y >= min(get(gca,'ylim')) & ...
 z <= max(get(gca,'zlim')) & ...
 z >= min(get(gca,'zlim'))));
c = get(surface_handle,'cdata');
c(indexs) = NaN*c(indexs);
set(surface_handle,'cdata',c);

0
0.5

1
1.5

2
2.5

3

0

0.5

1

1.5

2

2.5

3

0

0.05

0.1

0.15

0.2

0.25

0.3

Figure 8.13 Zooming in on a region with the axis command can obscure
axis tick mark and label information.

© 2003 by CRC Press LLC

Now, looking at this example, you might be thinking, and correctly so, that
the same results can be achieved by plotting the quadrant that we are
interested in by redefining x, y, and z. In addition to illustrating a technique,
this previous solution may be useful in situations where perhaps you need to
clip parts of the surface that extend beyond some set of limits along the z-axis.

In the next example we plot two spheres, where one sphere is inside the
other as shown in Figure 8.15. Here is the code:

figure
view(3);
[x,y,z] = sphere(20);
% Create the outer sphere.
z1 = z;
z1(:,1:4) = NaN*z1(:,1:4);
c1 = ones(size(z1));
s1 = surface(2*x,2*y,2*z1,c1);
% Create the inner sphere.
z2 = z;
c2 = 2*ones(size(z2));
c2(:,1:4) = 3*ones(size(c2(:,1:4)));
s2 = surface(1.5*x,1.5*y,1.5*z2,c2);
colormap([0 1 0;.5 0 0; 1 0 0]);
grid;
set(gca,'box','on');

0
0.5

1
1.5

2
2.5

3

0

0.5

1

1.5

2

2.5

3

0

0.05

0.1

0.15

0.2

0.25

0.3

Figure 8.14 Using NaNs to remove unwanted portions.

© 2003 by CRC Press LLC

Three colors are used in the color map. Green is used for the outer sphere,
while two shades of red are used for the inner sphere. The darker red helps it
look as if the outer sphere is casting a shadow on the inner one - a clever
trick, but as you will learn in the section on lighting, there are commands that
make it easy for you to apply various lighting models and color shading to
your graphics.

As a final note to this section, even though NaNs were applied to either the
CData or ZData surface properties in the two examples above, you should be
aware that the NaNs could have been applied to either the XData or YData
properties just as well. In addition, using NaNs to make portions of an object
invisible is also applicable to line objects. An NaN in the XData, YData, or
ZData properties of a line will make invisible segments about the coordinate
with NaN. It is almost as if the “pen” that draws the line is lifted off the screen
when MATLAB sees that the next coordinate contains an NaN. The pen is set
back on the screen at the next coordinate that does not contain an NaN. To
illustrate this very useful ability, the following code will clip off the top and
bottom portions of a sine wave as shown in Figure 8.16.

x = [0:pi/16:4*pi];
y = sin(x);
index = find(abs(y) > .5);
x(index) = NaN*x(index);
plot(x,y);

−2

−1

0

1

2

−2

−1

0

1

2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Figure 8.15 Cutting a hole in a surface with NaNs to make the surfaces
behind visible.

© 2003 by CRC Press LLC

8.2.8 Creating Simple Color Bars

It is often useful to visualize data in 3-dimensional perspectives so that a lot
of data can be seen in one figure. However, it is often difficult to extract
specific information from these types of plots. For example, 3-dimensional
surface plots may show you the general regions of minima and maxima, but
even with a grid, it is difficult to determine the height of the surface at any
location on the surface. You have seen that color can aid this process
considerably. Furthermore, a color bar can be used to make it even easier for
the observer to associate colors with the surface values. MATLAB provides a
graphics command called colorbar to make it very easy to generate a color-to-
value association bar.

By default, typing colorbar after having created a surface plot creates a
vertical color bar to the right of the axes with the 3-dimensional view. The
following code will produce the plot of the peaks function shown in Figure
8.17 with an associated color bar.

surf(peaks(30));
colormap(hot));
colorbar

0 5 10 15
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
Unaltered

0 5 10 15
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
Using NaNs

Figure 8.16 Using NaNs to “lift the pen.”

© 2003 by CRC Press LLC

You can also tell MATLAB to generate the color bar below the figure of
interest by using

colorbar('horizontal')

If you require even more flexibility in the placement of the color bar, create
and store the handle of an axes object in the desired position for the color bar.
Then pass the graphics handle of that axes object to the colorbar function with

colorbar(axes_object_handle);

where axes_object_handle is the axes object that will contain the color bar.
If the width is less than the height of the axes object, the bar will be labeled
vertically; otherwise, the colorbar will be labeled horizontally.

8.2.9 The Pseudocolor Plot

A pseudocolor plot (sometimes referred to as a checkerboard plot) can be
created with the pcolor function. This graphics function creates a surface
object in which the ZData elements are set to zero and displays the plot in a
perspective which makes it appear as if you are looking directly down on the
surface (i.e., view([0 90])). By default, the FaceColor of this surface object is
faceted. This function’s syntax is very similar to the syntax used by surf,
except that you do not supply the z-axis coordinates of the vertices. You need
only specify the vertice colors such as with pcolor(C). However, you may
specify the x- and y-axis components of the vertex coordinates with

−6

−4

−2

0

2

4

6

8

0
5

10
15

20
25

30

0

5

10

15

20

25

30
−8

−6

−4

−2

0

2

4

6

8

10

Figure 8.17 A color bar allows easier association of color to value.

© 2003 by CRC Press LLC

pcolor(x,y,C) or pcolor(X,Y,C). If vectors x and y are supplied, the length of x
must correspond to the number of columns in C and the length of y must
correspond to the number of rows. The actual color of each quadrilateral, as
with all surface objects, is determined by scaling the CData values with the
color axis limits to an index to the color map. When the surface is being
displayed in the default “faceted” shading, the color in the ith row and jth
column is determined by the element C(i,j). However, when the shading is
interpolated (i.e., the FaceColor property is set to “interp”), a bilinear color
interpolation between the four vertices of each quadrilateral is performed.

It is useful to identify the similarities between the pcolor and image graphics
functions by comparing the graphics objects that they create.

The surface object created by pcolor(C) will have the same number of
vertices as the number of color cells that an image object created with
image(C). Unless you need to generate parametric grids or need to have
control over the spacing of the color cells, it is often advantageous, in terms of
rendering speed, to use image instead of pcolor.

The pcolor function is a useful means of visualizing the contents of the
colormap. For example, if you want to display a 32-element hsv color map,
type

M = 32;
figure
pcolor([1:M;1:M]');
colormap(hsv(M));
set(gca,'Position',[.4 .1 .2 .8])
title('hsv(32) colormap')

The result is shown in Figure 8.18.

� � � � �

© 2003 by CRC Press LLC

Now that we have a simple way of displaying color maps, try to answer the
next frequently asked question, without looking at the answer, by using your
knowledge of specifying color axis scaling and creating color maps.

Since the figure object contains the color map and axes objects are children
of figures, how can I have multiple axes objects using the colors from different
color map generation functions in the same figure as shown in Figure 8.19?

You might have noticed, for example in using a function like subplot, that
using the colormap command affected all subplots – not always what you
want to do!

1 1.5 2

5

10

15

20

25

30

hsv(32) colormap

Figure 8.18 Pseudocolor plot of the hsv color map.

© 2003 by CRC Press LLC

This leads to the following question,
“If I want to use several concatenated color maps so that I can have multiple
axes objects using different portions of the figure’s color map as discussed,
how do I determine the minimum and maximum color values?”

The following two equations can be used to determine the required color
axis values:

)mincdatamaxcdata(
1+xminmapindexmaxmapinde

1+xminmapindeN+mincdatacmax

)mincdatamaxcdata(
1+xminmapinde-xmaxmapinde

1-xminmapindemincdatacmin

-

-

-

where cmin and cmax are the minimum and maximum color axis limits
specified in CLim (i.e., caxis([cmin cmax])). The mincdata and maxcdata are
the minimum and maximum color data values that are to be plotted in the
axes object. The variable minmapindex and maxmapindex are the minimum
and maximum index numbers to the color map that contains N colors (i.e., the
figure’s ColorMap property is an N-by-3 RGB matrix). For example, consider a
situation in which the data in one of the axes objects varied between -1 and 1
and the figure’s colormap property had 64 rows. If you want the color of the
contents of this axes object to be scaled to the first 32 rows of the color map,
first determine the value of the variables needed in the previous equations:

mincdata = -1;
maxcdata = 1;
N = 64;

1 1.2 1.4 1.6 1.8 2

5

10

15

20

25

30

hsv portion of colormap used

1 1.2 1.4 1.6 1.8 2

5

10

15

20

25

30

gray portion of colormap used

Figure 8.19 Using multiple color maps in the same figure.

��
� � �

© 2003 by CRC Press LLC

minmapindex = 1;
maxmapindex = 32;

Next, plug these values into the equations to obtain

cmin = -1;
cmax = 3;

Finally, set the axes object’s CLim property to [-1 3] by typing

caxis([-1 3]);

Plate 10 was created with this technique with the code shown below.

% Define color map.
colormap([hsv(32);hot(32);cool(32);flag(32)]);

% Create first subplot using first quarter of color map.
subplot(221)
x = 0:.02:5*pi;
y = sin(x);
surface([x;x],[y;y],0*[x;x],[y;y],...

'facecolor','none','edgecolor','flat','linewidth',3)
set(gca,'box','on');
axis([min(x) max(x) [min(y) max(y)]*1.1])
% Use equations found at beginning of this section.
cmin = min(y) - (1 - 1)*(max(y)-min(y))/(32 - 1 + 1);
cmax = min(y) + (128 - 1 + 1)*(max(y)-min(y))/(32 - 1 +
1);
caxis([cmin cmax]);

% Create second subplot using middle half of color map.
subplot(222)
u = 0:.02:10*pi;
x = exp(-.05*u).*cos(u);
y = exp(-.05*u).*sin(u);
z = .05*u;
surface([x;x],[y;y],[z;z],[z;z],...

'facecolor','none','edgecolor','flat','linewidth',2)
view(3);axis([-1 1 -1 1 0 1.5]);grid;
set(gca,'ztick',[0 .5 1 1.5])
% Use equations found at beginning of this section.
cmin = min(z)- (33 - 1)*(max(z)-min(z))/(96 - 33 + 1);
cmax = min(z)+ (128 - 33 + 1)*(max(z)-min(z))/(96 - 33 +
1);
caxis([cmin cmax]);

% Create third subplot using last quarter of color map.
subplot(223)
x = 0:.2:5*pi;
y = sin(x);
surface([x;x],[y;y],0*[x;x],[y;y],...

'facecolor','none','edgecolor','flat','linewidth',.5)
set(gca,'box','on');

��
� � � � � �

© 2003 by CRC Press LLC

axis([0 5*pi -1.1 1.1])
% Use equations found at beginning of this section.
cmin = min(y)- (97 - 1)*(max(y)-min(y))/(128 - 97 + 1);
cmax = min(y)+ (128 - 97 + 1)*(max(y)-min(y))/(128 - 97 +
1);
caxis([cmin cmax])
caxis([-7 1])

% Create fourth subplot using middle half of color map..
subplot(224)
u = 0:.02:10*pi;
x = exp(-.05*u).*cos(u);
y = exp(-.05*u).*sin(u);
z = .05*u;
surface([x;x],[y;y],[z;z],[z;z],...

'facecolor','none','edgecolor','flat','linewidth',2)
% Use equations found at beginning of this section.
cmin = min(z) - (33 - 1)*(max(z)-min(z))/(96 - 33 + 1);
cmax = min(z) + (128 - 33 + 1)*(max(z)-min(z))/(96 - 33 +
1);
caxis([cmin cmax])
set(gca,'box','on');

8.2.10 Texture Mapping

So far we have looked only at defining the vertex colors for surfaces which
could then be used to color a particular quadrilateral with a flat or bilinearly
interpolated color. In addition, we have also explored image objects and seen
that we are limited to viewing them in the xy-plane and only in 2-dimensional
perspectives. Now wouldn’t it be great if we could wrap an image over any
surface of our choosing? Well, MATLAB does provide a method for doing this,
and it is called texture mapping. Reviewing the surface object properties,
recall that the FaceColor property has the following five choices:

[none | {flat} | interp | texturemap] - or - a ColorSpec

When the FaceColor property is set to “flat”, the size of the CData matrix
must either be the same as the matrix stored in the ZData property or have
one less row and column. If the FaceColor property is set to “interp”, the
CData matrix must be of the same dimensions as the ZData matrix of the
surface object. Only when the FaceColor property is set to “texturemap” are
you unlimited as to the size of the CData matrix.

If the FaceColor Property is set to… then the CData matrix size is…
none unrestricted - (makes no difference)
flat size(CData) = size(ZData) or

size(CData) = size(ZData) - 1
interp size(CData) = size(ZData)
texturemap unrestricted
ColorSpec unrestricted - (makes no difference)

� � � � �

© 2003 by CRC Press LLC

We shall now demonstrate how to take a surface and an image and
combine them so that the image is mapped to the surface. The surface we will
use is the portion of a cylinder produced by,

[x,y,z] = cylinder(1,30);
surface_handle = surf(x(1:2,15:30),...
 y(1:2,15:30),...
 z(1:2,15:30));

and the image will be the MATLAB clown of Chapter 5 notoriety. Our
subjects are shown in Figure 8.20.

The procedure here is to first load the clown image and then place it into
the CData property of the cylindrical type surface. Here is the code that will do
just that.

load clown
[x,y,z] = cylinder(1,30);
figure('Colormap',map);
surface_handle = surf(x(1:2,15:30),...
 y(1:2,15:30),...
 z(1:2,15:30));
set(surface_handle,'FaceColor','texturemap','cdata',flipu
d(X));
set(gca,'box','on');

The result is shown in Figure 8.21.

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

The Surface The Clown

50 100 150 200 250 300

20

40

60

80

100

120

140

160

180

200

Figure 8.20 We will map the image to the surface.

© 2003 by CRC Press LLC

If at a later time you want to alter the FaceColor property from
“texturemap” to one of the other possible settings, make sure that the CData
matrix is appropriately resized so that rendering errors do not occur.

In the next example we will load in some topographic data that comes with
MATLAB and texture map it onto a wavy map-like surface. The difference in
this case is that the data was not stored in an image format (i.e., there are
elements of the data matrix that are non-integer or negative). Therefore, we
see that any data set you have can be texture mapped to a surface object.

Here is the code that will create the surface as shown in Figure 8.22.

[x,y] = meshgrid(1:20);
z = (x-10).^3+(y-10).^3;
s1 =surf(z)
axis('off')

−1

−0.5

0

0.5

1

−1
−0.8

−0.6
−0.4

−0.2
0

0.2
0.4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 8.21 A texture mapped surface.

�
� � � � � � 	

© 2003 by CRC Press LLC

We then load and apply the texture map data with the following code and
produce Figure 8.23 which can also be seen in color in Plate 11.

load topo
set(s1,'facecolor','texturemap','cdata',topo)
colormap(topomap1);

Figure 8.22 The surface object that will be texture mapped.

Figure 8.23 A non-image data set mapped to a surface object.

© 2003 by CRC Press LLC

8.3 Modeling Object Lighting
In Chapter 4, before we introduced handle graphics, we looked at 3-D plots

and learned that in most cases we can get quite impressive results using high-
level 3-D plotting commands like mesh, and surf. In this chapter, having armed
you with the concept of object handles in Chapter 7, we have already taken
you into the deep areas of color. The next property we will now study in some
detail is object lighting. Light, unlike color, is not a direct property, but rather
what we might call an indirect property. That is, we can’t point to an object in
our figures and say, “that’s a light object,” but rather the appearance of surface
and patch objects is affected by the unseen light objects present in our figure.
Where the light is, its intensity, color, different lighting models etc., is the
subject of this section. First we will look at the properties of the light object,
then we will exercise and demonstrate those properties with functions like
camlight, lightangle, surfl, surfnorm, material, diffuse, and specular.

8.3.1 Light Properties

In order to reveal detail and accentuate important information in a 3-
dimensional scene, MATLAB provides the capability of adding lighting effects
with the graphics object light. This object can be placed in relation to or
directed toward other graphics objects in the scene. The visual attributes of
patch and surface objects are affected by light objects. To create a light
object, you use the function light. The properties of this object were only
briefly mentioned in Chapter 7, but are presented here and summarized in the
following table.

Property Read
Only

ValueType/Options Format

Properties Defining the Light Object
Color No [R G B] or color string 3-element

vector or
row

Position No x-, y-, z-coordinates in axes units
Default: [1 0 1]

3-element
row

Style No [{infinite} | local] string

A light by default will be a white light, but you may alter it to whatever color
you want with its Color property. This property may be set to a three-element
RGB value, such as [1 0 0] (which would make a red light), or a string
specifying the color you want, like 'red'.

The meaning of the Position property will depend on whether you have set
the Style property to “infinite” or “local”. The default Style property value is
“infinite”, which means that the light source is placed at infinity and the rays
radiating from the source are pointing in the direction specified by the Position
property. If the Style property is set to “local”, the light source will be located

© 2003 by CRC Press LLC

at the point specified by the Position property, and will radiate in all directions
from that point.

8.3.2 Functions that Make Use of Light

Lighting models are used to create highlights to curvatures and faces of a
surface graphics object. Lighting models determine the amount of reflectance
that occurs from a light source at a specific location with respect to the
surface. The reflectance is then a measure that can be scaled and transformed
into indices pointing to particular rows of a color map.

The first function that we will look at is surfl. This function creates a 3-
dimensional surface plot where the shading is based on a mixture of diffuse,
specular, and ambient lighting models. Using surfl is practically automatic and
so requires the least amount of specification by the user. There are several
ways that surfl can be used. If you supply only the height information, Z, to
the surface with surfl(Z, ‘light’), the lighting will, by default, be 45 degrees
counterclockwise in azimuth from the current view point, i.e., if [az,el] = view.
With surfl, in addition to the surface object, there will be created a white light
source placed at infinity with its Position property set to [0 -0.707 0.707]. You
can use surfl without ‘light’, but it will not create a light object; instead, it will
alter the color map of the surface object to make it look like there is a light
object in the specified direction.

Just as with surf, you may also specify the x- and y-coordinates of the
vertices with surfl(X,Y,Z). If you need to specify a different light source
direction, you can use surfl(Z,s) or surfl(X,Y,Z,s), where s is either a 3-element
vector, [Sx Sy Sz], or a 2-element vector, [az el], defining the direction from the
object to the light source. Consider Figure 8.24 which is generated with the
following code:

[X,Y] = meshgrid(-3:.1:3);
Z = sin(2*X).*sin(Y).*sqrt(X.^2 + Y.^2);
surface_handle = surfl(X,Y,Z,[0 30]);
shading flat;
colormap(gray);
set(gca,'box','on');

© 2003 by CRC Press LLC

Typically, the best results are obtained with flat or interpolated shading applied
to the surface and that the surface be defined on a fine grid. In addition,
simple color maps (i.e., maps that are made up of many shades of the same
color) should be used. The gray, bone, and pink color maps are usually ideal
for these types of plots.

To better explain how the light direction vector, s, is used, the following
table contains example values of s and their interpretation.

If the light source vector s is… then the source of the light is…
[0 0 1] or [0 90] directly above surface
[0 0 -1] or [0 -90] directly below surface
[1 0 0] or [90 0] pointed down the x-axis
[0 -1 1] or [0 45] pointed at a slight angle down on the surface

In the code that produced Figure 8.24, we could have also generated a light
object, by using

surface_handle = surfl(X,Y,Z,[0 30],'light');

instead of

surface_handle = surfl(X,Y,Z,[0 30]);

Try the previous example and create a light object. Then to find the
graphics handle of the light object, use

−3
−2

−1
0

1
2

3

−3

−2

−1

0

1

2

3
−3

−2

−1

0

1

2

3

Figure 8.24 Automatic lighting provided by surfl.

© 2003 by CRC Press LLC

h_light(1)=findobj('type','light');

Now we could make this light object radiate blue light by using the
command

set(h_light(1),'color','blue');

We could also create another light object off to the right using the
command

h_light(2) = light('color','green','style','local');

and generate the following figure which can also be seen in Plate 12.

If you want more control over the lighting model, you can also use
surfl(X,Y,Z,s,k), where k is a 4-element vector that defines the ambient, diffuse,
specular, and spread coefficients ([ka kd ks spread] that normally default to the
values [0.55 0.6 0.4 10]). These coefficients are used to apply a weighting to
reflectance values that are returned from the various light model functions.

The functions that generate the reflectance values all utilize the normals to
the surface at the vertex locations. The command surfnorm (which we first
saw in an example in Chapter 4)has been created to compute, and if desired
display, the 3-dimensional surface normals. If you want to display the normals
of a matrix, Z, that represent the height of the surface at the vertex locations,
use surfnorm(Z).

Figure 8.25 Surface with one green light and one blue light.

© 2003 by CRC Press LLC

Each patch and surface object already contains the normals calculated at
the vertices of the object. These are stored in the VertexNormals property. As
long as the object’s NormalMode is set to auto, MATLAB will recalculate them
any time you make changes to the object that would affect the normals.

The x- and y-axis locations of the vertices are assumed to be the row and
column numbers of the Z matrix elements. If the x- and y-coordinates of the
surface are known, you can use surfnorm(X,Y,Z). For example, if we wanted
to display the normals of a sphere, we could type

[x,y,z] = sphere(10);
surfnorm(x,y,z);
grid on;

Which will produce Figure 8.26.

To store the components of the normals, use

[nx,ny,nz] = surfnorm(z);

or

[nx,ny,nz] = surfnorm(x,y,z);

After storing the normal components, if you are generating your own
normals for the surface and patch objects, you can make use of the functions
diffuse or specular depending on your lighting model preference. Both
models generate reflectance values in the range zero to one, where a zero

−1.5
−1

−0.5
0

0.5
1

1.5

−1.5

−1

−0.5

0

0.5

1

1.5
−1.5

−1

−0.5

0

0.5

1

1.5

Figure 8.26 Surface normals are used to determine how an object
reflects light.

© 2003 by CRC Press LLC

means that none of the light is reflected and a one means that all of the light is
reflected. In modern versions of MATLAB, since the normals for each patch
and surface object are stored in the object’s VertexNormals property, you do
not need to calculate them. Also, it is important to remember that the edge
(EdgeLighting) and face lighting (FaceLighting) that you have specified for your
objects has a very significant visual effect. More often than not, you will find it
convenient to use lighting none, lighting flat, lighting gouraud, or lighting
phong to specify the edge and face lighting properties. The flat lighting
method forces the entire face of a surface or patch object to have the same
color at each pixel. The gouraud lighting method determines the colors at the
vertices of the faces using the normals and then interpolates these colors
across the face, while phong interpolates the normals across the face and
calculates the color at each pixel.

8.3.2.1 Lighting Commands

We need to mention here, that in addition to setting values in patch and
surface objects lighting properties, there are several MATLAB commands (such
as lighting that you have already seen) that can not only let you create a light
object, but quickly set some interesting lighting effects. The following table lists
the MATLAB lighting commands.

Command Description Arguments
camlight sets the position of a light,

creates one if it doesn’t exist
headlight, right, left, [az,el]

light creates a light object ‘Property1’,’Value1’’,…
lightangle positions a light in spherical

coordinates, creates a light
if it doesn’t exist

az, el

lighting select a lighting method flat, gourard, phong, none
material sets the reflectance property shiny, dull, metal, or

[ka kd ks n sc] (see discussion)

These commands are best illustrated with an example. The following code
will quickly generate the surface object shown in Figure 8.27.

ezsurf('sin(sqrt(x^2+y^2))/sqrt(x^2+y^2)',...
 [-6*pi,6*pi]);

© 2003 by CRC Press LLC

Now try the following and see what happens.

shading interp
lightangle(-45,30)
material dull

Play around with these commands to see what they can do.

8.3.3 Lighting Models

In MATLAB you can achieve the effects of lighting in two ways: one is to
create a light object with one of the light object creating commands (a light
object can also be created simultaneously with surf, mesh, pcolor, fill, fill3,
surface, and patch); the other is to use a lighting model. Lighting models do
not rely on the presence of a light object, instead the appearance of light is
created by altering the CData values of an object. Three different functions
apply these models to the surface or patch object. They are diffuse, ambient,
and specular. Remember, instead of applying these models, you could achieve
similar results by creating light objects and specifying the appropriate
properties of the patch or surface objects. We will point this out in the
following discussions.

8.3.3.1 The Diffuse Lighting Model

The diffuse function uses an algorithm that generates reflectance values
based upon Lambert’s Law for diffuse surfaces. This function calculates the
reflectance as a function of the angle between the surface normals and the
direction of the light source (reflectance = cos(), where is the angle). When
the normal and light source directions are the same, the reflectance will be the
largest.

−15
−10

−5
0

5
10

15

−15
−10

−5
0

5
10

15

−0.5

0

0.5

1

x

sin(sqrt(x2+y2))/sqrt(x2+y2)

y

Figure 8.27 A surface we will use.

© 2003 by CRC Press LLC

diffuse_reflection = diffuse(nx,ny,nz,s);

where nx, ny, and nz are normal components calculated by surfnorm, and s
is the direction of the light source with respect to the surface. The light source
direction can be provided as either a 3-element (x,y,z) or 2-element (az,el)
vector. The following code will create a sphere surface object with diffuse
lighting characteristics as shown in Figure 8.28.

[x,y,z] = sphere(20);
[nx,ny,nz] = surfnorm(x,y,z);
diffuse_refl = diffuse(nx,ny,nz,[0.5 -1 1]);
surf(x,y,z,diffuse_refl);
shading interp;
colormap(gray);

The method just shown achieves its results by altering the color data values
(CData) of an object and therefore does not require a light object. You can
verify that no light object was created by typing

findobj('type','light')

which will return

ans =

 Empty matrix: 0-by-1

You could control the diffuse reflection using the patch or surface object’s
DiffuseStrength property. However, for this property to have an effect on the
object, there must be a light source (i.e., you must create a light object with
one of the light creating commands). The only restriction on the value you

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1
−1

−0.5

0

0.5

1

Figure 8.28 Applying a diffuse model – no light object created.

© 2003 by CRC Press LLC

assign to this property is that it must be greater than or equal to zero. One
way to describe diffuse reflection is to think of it as the spread or creeping of
the light across the object. By increasing the value, you increase the intensity
or the spread of the diffuse reflection.

8.3.3.2 The Ambient Lighting Model

Ambient light shines across all surface and patch objects in a uniform
manner. The color of the ambient light is by default white (i.e., [1 1 1]) and
can be changed only on a per axes object basis, since the axes object stores
the color in its AmbientLightColor property. The ambient light’s relative effect
on the objects for a given axes object can be controlled by setting the patch
and surface AmbientStrength property with a value greater than or equal to
zero. Regardless of the value set to the AmbientStrength, a light object must
be present in the scene if you want to see the ambient light.

Assuming a light object is present, a zero AmbientStrength setting means
that the ambient light has no effect on the object. Pixels of the object that
have non-zero color components (RGB) corresponding to non-zero
components of the ambient light color will be affected by the ambient light.
You can think of it as a multiplicative effect, whereby the pixel's red, green,
and blue components, [Rp Gp Bp], and the ambient light’s components [Ra
Ga Ba], and the AbientStrength, A, are multiplied to determine the pixels final
color intensity,

Pixel Color Intensity = [Rp Gp Bp] .* [Ra Ga Ba] * A

For example, if an object is green, then none of the ambient light’s red and
blue components will contribute to the light on that object. However, the
object’s green components will get brighter. Experiment with the following
code which will create Figure 8.29:

z=ones(2,4);
c(:,:,1) = [0 0 0; 0 0 0]; % Red component of each face
c(:,:,2) = [1 .6 .3; 1 .6 .3]; % Green component
c(:,:,3) = [0 0 0; 0 0 0]; % Blue component
s=surf(z,c);
set(s,'diffusestrength',0,...
 'specularstrength',0,...
 'ambientstrength',1);
l=light;
axis equal

© 2003 by CRC Press LLC

You will notice that if you change only the red and blue components of the
axes object’s AmbientColor using,

set(gca,'AmbientColor',[.5 1 0]);

the three shades of green will not change. However, if you make the green
component less than 1, the shades of green will get darker.

Try increasing the surface’s AmbientStrength, and you will notice that the
shades of green will all be the same brightness when using values greater than
3.33 (I = 1/(Rg*Ra) = 1/(1*0.3)), since you have pushed the brightness of all
three faces to their maximum value of 1.

8.3.3.3 The Specular Lighting Model

The specular function’s algorithm generates the largest reflectance values
when the normals are in the direction halfway between the light source and
the viewer. To use this function, you can use either

specular_reflectance = specular(nx,ny,nz,s,v);

or

specular_reflectance = specular(nx,ny,nz,s,v,spread);

where nx, ny, and nz are determined with surfnorm, s is the direction of the
light source from the surface, v is the direction of the viewer from the surface,
and spread is a measure of how quickly the reflectance falls from the peak
reflectance value. The s and v variables must be defined as either a 3-element
([x y z]) or 2-element ([azimuth elevation]) directional vector. The spread

Figure 8.29 Test surface for ambient color effects.

© 2003 by CRC Press LLC

variable defaults to 10 if not supplied. Spread values larger than 10 force the
reflectance to fall more quickly. The following code demonstrates using
specular with the results shown in Figure 8.30.

[x,y,z] = sphere(20);
[nx,ny,nz] = surfnorm(x,y,z);
specular_refl = specular(nx,ny,nz,[0.5 -1 1],[-37.5
30],1);
surf(x,y,z,specular_refl);
shading interp;
colormap(gray);

Again, we point out that since no light object creating command was issued,
there is no light object in this figure. The specular function changed the CData
values to give the appearance of lighting. If we had a light object, we could
create diffuse reflection using the patch or surface object’s SpecularStrength,
SpecularExponent, and SpecularColorReflectance properties. For these
properties to have an effect on the object, there must be at least one light
source (i.e., you must create a light object with the light function). By
increasing the SpecularStrength (any finite value greater than or equal to zero),
you increase the intensity of the the specular reflection. By increasing the
SpecularExponent (a value greater than zero), you increase the size of the “hot
spot”. The SpecularColorReflectance property lets you decide the fraction
(using values between 0 and 1) of the color of the specular reflectance.
Values closer to 0 use more of the object color in the reflectance, while values
closer to one use more of the light color as a percentage of the reflected
color.

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1
−1

−0.5

0

0.5

1

Figure 8.30 A sphere enhanced by specular lighting – again, no light
object created.

© 2003 by CRC Press LLC

8.3.3.4 Combining Lighting Models

The best way to learn about the different lighting models is to experiment.
You should also remember that nothing prevents you from adding together
the reflectance values generated from the specular or diffuse functions. In
fact, very interesting and visually pleasing 3-dimensional plots can be created
with combinations of multiple light sources and different reflectance models.
For example, Figure 8.31 (see Plate 13) was created with the following code.

n = 20;
t = (0:n)'*2*pi/n;
x = [cos(0:.1:(2*pi)) ones(1,10) -1 -2 -3]+3;
y = [fliplr(1:(length(x)-3)) 1 1 1];
t = (0:20)'*2*pi/20;
xx = cos(t)*x;
yy = sin(t)*x;
zz = ones(n+1,1)*y;
[nx,ny,nz] = surfnorm(xx,yy,zz);
reflectance = specular(nx,ny,nz,[-80.5 30],...
[-70 -30],5) + diffuse(nx,ny,nz,[230 40]);
figure('colormap',hot);
surface_handle = surf(xx,yy,zz,reflectance);
shading interp
axis('off');

Figure 8.31 Mixing specular and diffuse reflectance models.

© 2003 by CRC Press LLC

8.3.3.5 A Final Word on Light Objects

Now that you have seen the properties of light objects, and have seen the
results of light models, you probably have a good feel for the interaction
between a patch or surface object and light – whether modeled light or a light
object. Here is an example that introduces a light object into a figure, and by
setting various surface properties creates a very natural-looking result.
Consider the following code, recalling Figure 8.27.

ezsurf('sin(sqrt(x^2+y^2))/sqrt(x^2+y^2)',...
 [-6*pi,6*pi]);
view(0,75);
shading interp
%create a light object
h_light=lightangle(-45,30);
%use findobj to get the surface handle
h_surf=findobj('type','surface');
%now change the surface properties that
%are affected by light
set(h_surf,'FaceLighting','phong',...
 'AmbientStrength',0.3,...
 'DiffuseStrength',0.6,...
 'SpecularStrength',0.7,...
 'SpecularExponent',0.25,...
 'BackFaceLighting','unlit')

Try altering the properties of h_surf and h_light to see what you can do.

Remember, when you are using the light models, you are changing the
patch or surface object’s CData. When you use a light object, your patch or
surface object isn’t being inherently changed. The choice as to which method
to use is dependent on your intended purpose of your patch and surface
objects.

8.3.4 Creating Color Varying Lines with Surface Objects

In Section 8.2.9 we explored the pseudocolor plot. You probably have been
hoping that there is some way you can have lines change color to reflect
different values just like with surface objects.

Even though you cannot use color maps with line objects, this does not
mean that you cannot create graphics that look like a line with varying colors.
The next couple of examples in this section show how you can create lines
whose colors are specified by mathematical expressions.

 The interesting point is that we will not use the line object; rather, we will
use a thin surface object and create what will be called a virtual line. Since
surface objects can be defined by x-, y-, and z-axis data, we can create virtual
lines that are in either the 2- or 3-dimensional plotted perspectives. The
following example shows how to create a virtual line in which the color is a
function of the y-coordinate data values.

% Define the coordinates of the virtual line
x = 0:.02:5*pi;
y = sin(x);
z = 0*x;

�
� � � � � � � �

� 	
 � � �

© 2003 by CRC Press LLC

% Define the color values of each coordinate of the line
c = y;
% Generate the plot.
figure;
surface([x;x],[y;y],[z;z],[c;c],...
 'facecolor','none',...
 'edgecolor','flat',...
 'linewidth',3);
set(gca,'box','on','xtick',[0:pi:5*pi],...
 'xticklabels','0|pi|2pi|3pi|4pi|5pi');
axis([0 5*pi -1.1 1.1])

From the code you see that the surface object’s FaceColor is set to “none” and
the EdgeColor is “flat”. You can just as easily set the EdgeColor to “interp”;
however, it will take longer for the line object to render and with some
versions of MATLAB, you will not be able to control the LineWidth. Figure
8.32 shows the result, although you might want to look at Plate 14 to better
appreciate it.

We should point out that it is not necessary to set the FaceColor to “none”,
unless you want to create several lines with the same surface object. You may
have realized that you can just as easily create multiple lines in which each
line’s color varies as a function of the x, y, or z data. Each row or column of
the matrices in the XData, YData, and ZData can be used to represent a line by
setting the MeshStyle, respectively, to row or column instead of its default
value of both.

For example, we can create the plot shown in Figure 8.33 (see Plate 15 for
the color representation) with the following code.

0 pi 2pi 3pi 4pi 5pi

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Figure 8.32 Making a virtual line with surface to create a line where the
color changes as a function of the y-coordinate.

© 2003 by CRC Press LLC

u = 0:.2:4*pi;
x = cos(u);
y = sin(u);
z = u;
figure('colormap',cool(64));
h_surface = surface([0*x;x],[0*y;y],[z;z],...
 'facecolor','none',...
 'edgecolor','flat',...
 'meshstyle','row',...
 'linewidth',3);
view([-40 40]);
grid on;

8.4 Object Transparency
Transparency is a powerful visualization technique that allows you to see an

object while at the same time see information that would otherwise be
obscured if the object was fully opaque. In MATLAB, you can create varying
degrees of transparency, based on your needs, in image, patch, and surface
objects. Transparency is useful not only in seeing what information lies behind
or within some other (as in volume plots), but also can be used as another
dimension for data.

8.4.1 Alpha Properties

The following table lists the object properties that affect transparency.

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1
0

2

4

6

8

10

12

14

Figure 8.33 Creating multiple color lines with one surface object.

© 2003 by CRC Press LLC

Property Read
Only

ValueType/Options Format

AlphaData No m-by-n matrix of transparency data
for image and surface objects

matrix

AlphaDataMapping No none | direct | scaled
none = default for images
scaled = default for patches

row

FaceAlpha No Transparency for faces row or scalar

EdgeAlpha No Transparency for edges row or scalar

FaceVertexAlphaData No Alpha data property for patches row or scalar

ALim No Alpha axis limits vector

ALimMode No Alpha axis limits mode row

Alphamap No Figure Alphamap matrix

8.4.1.1 AlphaData

Just like CData contains color data for surfaces, each element of the alpha
data contained in AlphaData is mapped to a transparency value in the
Alphamap. This property applies to surface and image objects
(FaceVertexAlphaData is its counterpart for patches).

8.4.1.2 Alphamap

This is the set of alpha values (numbers between 0 and 1) that MATLAB
uses to determine transparency for an object, i.e., the alpha map. The data
stored in Alphamap is an m-by-1 array where the first row is the first alpha
value and m is the last. The default alpha map has 64 values linearly
progressing from 0 to 1. Alphamap applies to surface, patch, and image
objects.

8.4.1.3 ALim

ALim is an axes property that applies to any axes children using alpha data.
It is a two-element vector, stated as [amin amax], that specifies how the alpha
map (in AlphaData) is mapped. The value of amin is mapped to the first alpha
map value, and amax is the value mapped to the last alpha map value. Data
values between are linearly interpolated across the alpha map, while values
beyond the limits are “clamped” to the limits. Setting ALim will set ALimMode
to “manual”.

8.4.1.4 ALimMode

Working with ALim, ALimMode, can take the values of “auto” or “manual”.
In the default “auto” mode, the ALim property is automatically set to span the
range of all objects’ AlphaData (for surface objects) or FaceVertexAlphaData
(for patch objects). In the “manual” mode, the value of ALim is not changed
when the AlphaData limits of axes children change.

© 2003 by CRC Press LLC

8.4.1.5 AlphaDataMapping

Hand-in-hand with AlphaData is the property AlphaDataMapping which is
used to determine how the alpha data is to be interpreted. The three choices
are:

none – transparency values are clamped to be between 0 and 1, the default
for images.

scaled - forces the AlphaData to span the range of ALim, the default for
patches.

direct – uses the AlphaData as indices directly into the alpha map.

8.4.1.6 FaceAlpha

FaceAlpha specifies the type of transparency to be used for a patch or
surface face. Since this applies only to patch and surface objects, it uses the
data stored in FaceVertexAlphaData. It can be any one of the three following
values:

A scalar value – a number between 0 and 1 where 0 is fully transparent, i.e.,
invisible, and 1 is completely opaque (the default).

flat – the values stored in FaceVertexAlphaData determine the transparency
at each face.

interp – binary interpolation of the alpha data in FaceVertexAlphaData at
each vertex determines the transparency of each face.

texturemap – for surface objects only, uses transparency for the texture
map.

8.4.1.7 EdgeAlpha

Similar to FaceAlpha, EdgeAlpha lets you control the transparency of the
edges of patch faces and surfaces. The possible values for patch objects are:

scalar - a single scalar value between 0 and 1 where 1 (the default) is fully
opaque and 0 is invisible.

flat - alpha data, i.e., the contents of FaceVertexAlphaData, of each vertex
controls the transparency of the edge that follows it.

interp - linear interpolation of the alpha data (FaceVertexAlphaData) at each
vertex determines the transparency of the edge.

The only difference with surface objects is that instead of
FaceVertexAlphaData, the “flat” and “interp” options apply to AlphaData.

8.4.1.8 FaceVertexAlphaData

FaceVertexAlphaData is a m-by-1 matrix that specifies the face and vertex
transparency for patch objects (as defined by Faces and Vertices properties),
the interpretation of which depends on the dimensions of the data. The
contents of FaceVertexAlphaData can be:

scalar – a single scalar value that will be applied to each patch.

© 2003 by CRC Press LLC

matrix – m-by-1 matrix specifying one transparency value per face, where m
is the number of rows in the Faces property or the number or rows in the
Vertices property.

8.4.2 Alpha Functions

Alpha functions are those functions that will create or affect transparency
effects in surface, patch, or image objects. The following subsections present a
summary of the three alpha functions, namely alpha, alphamap, and alim.

8.4.2.1 alpha

An object’s alpha data, i.e., the value stored in AlphaData, can be specified
with the alpha function.. The possible inputs to alpha are given in the
following table:

Usage Interpretation

Specifying a single alpha value for the entire object.

alpha(scalar) Sets the face alpha to be the value of scalar where 0 = invisible and
1= opaque

alpha(‘flat’) face alpha set to ‘flat’

alpha(‘interp’) face alpha set to ‘interp’

alpha(‘texture’) face alpha set to a ‘texture’

alpha(‘opaque’) same as alpha(1)

alpha(‘clear’) same as alpha(0)

Specifying a different alpha value for each element in an object’s data.

alpha(matrix) alpha data set to matrix

alpha(‘x’) alpha data set to x data

alpha(‘y’) alpha data set to y data

alpha(‘z’) alpha data set to z data

alpha(‘color’) alpha data set to the same as the color data

alpha(‘rand’) alpha data set to random values

Specifying the AlphaDataMappingMethod property.

alpha(‘scaled’) sets AlphaDataMappingMethod to ‘scaled’

alpha(‘direct’) sets AlphaDataMappingMethod to ‘direct’

alpha(‘none’) sets AlphaDataMappingMethod to ‘none’

8.4.2.2 alphamap

The function alphamap is provided to let you set an object’s Alphamap
property. The following table shows the different usage specifications for
alphamap.

© 2003 by CRC Press LLC

Usage Interpretation

Forms that create a new alpha map.
alphamap(‘default’) sets Alphamap to default values.
alphamap(‘rampup’) creates a linear alpha map with increasing

opacity
alphamap(‘rampdown’) creates a linear alpha map with

decreasing opacity
alphamap(‘vup’) creates an alpha map that is transparent

in the center, and linearly increasing to
the beginning and end

alphamap(‘vdown’) creates an alpha map that is opaque in
the center, and linearly decreasing to the
beginning and end

alphamap(matrix) creates a new alpha map with the values
of matrix.

Forms that modify the existing alpha map.
alphamap(‘increase’) makes the alpha map more opaque
alphamap(‘decrease’) makes the alpha map more transparent
alphamap(‘spin’) rotates the alpha map
alphamap(‘’) creates an alpha map that is transparent

in the center, and linearly increasing to
the beginning and end

alphamap(‘vdown’) creates an alpha map that is opaque in
the center, and linearly decreasing to the
beginning and end

alphamap(param, length) affects parameters that create new alpha
maps making them length long

alphamap(change, delta) changes alpha map parameters by delta
alphamap(figure, param,
length | change| change,
delta)

sets a figure’s alpha map “param”

Forms that return information.
amap = alphamap returns the current alpha map
amap= alphamap(figure) returns the current alpha map from the

handle figure
amap = alphamap(param) returns the alpha map based on param

without setting the property

8.4.2.3 alim

The function alim can be used to set the value of the ALim and ALimMode
properties. The general form of use is alim([amin amax]) which will set the
alpha limits. You can also use it as alim(mode) where mode is one of the valid
ALimMode strings (“auto” or “manual”).

The alim function can also be used to return the contents of the ALim
property or the setting in ALimMode. Typing al=alim will return the alpha limits
of the current axis, i.e., the data stored in the ALim property.

© 2003 by CRC Press LLC

8.4.3 Setting a Single Transparency Value

As you can see, you can use alpha to specify the contents of AlphaData and
to set AlphaDataMappingMethod. The alpha function can be very convenient
to use whenever you want a quick transparency of equal value across an
object as is demonstrated with the following code, which harkens back to the
isosurface plot of Figure 4.42 in Chapter 4. The result is shown in Figure 8.34
and in color in Plate 16.

[x y z v] = flow;
h_p=patch(isosurface(x, y, z, v, -3));
daspect([1 1 1]);
set(h_p, 'FaceColor','green','EdgeColor','none');
view(3)
axis tight
grid on
camlight; lighting phong
alpha(.5) %set alpha for all

8.4.4 Mapping Data to Transparency

We have already seen how to use our plot data by mapping it to CData so
that the color is a function of the data. We can do the same sort of thing with
AlphaData, essentially making the degree of transparency a function of some
data. Consider a surface similar to mesh plot of Figure 4.3 created by

[X,Y] = meshgrid(linspace(0,2*pi,50),linspace(0,pi,50));
Z = sin(X).*cos(Y);
hsurf=surf(X,Y,Z);

Figure 8.34 Setting a single transparency value with alpha.

© 2003 by CRC Press LLC

set(hsurf,'CData',gradient(Z));
set(hsurf,'AlphaData',gradient(Z));
set(hsurf,'FaceAlpha','flat');
set(hsurf,'EdgeColor','none');

In this example we used the gradient function to indicate by both color and
transparency where the slopes of the curves are equal. Try setting the
FaceColor to a constant, e.g., ‘blue’, and set EdgeColor to [0.8 0.8 0.8]. Can
you change the AlphaData to another function of x, y, or z?

Figure 8.35 Using data to specify transparency.

© 2003 by CRC Press LLC

8.5 Illustrative Problems
1. Experiment with the different EdgeColor and FaceColor settings so that

you become more familiar with their effects. Also look at altering the
color axis limits by setting the CLim property. For example, try

set(gca,'clim',[-5 5])

or

set(gca,'clim',[-20 10])

If the results don’t make sense, go back to Equation 8.1 and calculate the
index to the color map using the new cmin and cmax values. You may
also want to try adding more colors to the color map with

set(gcf, 'colormap',jet(20); set(gca,'climmode','auto')).

2. Create a surface plot and apply various intensity levels to it using the
brighten function and some of your favorite color maps.

© 2003 by CRC Press LLC

99 AANNIIMMAATTIIOONN

With our study of MATLAB graphics we have concerned ourselves with the
visualization of information. As such we have explored 2-D and 3-D
presentations of data, using color and transparency to add more dimensions or
to emphasize aspects of our plots, and now we add yet another dimension –
motion. As you are about to learn, animating a graphic can be both enjoyable
to watch and provide great insight into the nature of data. Graphical
representations of a physical object or interactions between objects that a
simulation is attempting to model allow someone who did not have a role in
the design of the simulation to follow along and gain an intuitive feel for the
results that are being generated. Additionally, we are becoming an
increasingingly graphically oriented world, and we take great comfort in
“seeing” information. Although this sense of comfort is purely psychological
and really shouldn’t play a role in the amount of confidence that is put into a
program, in many cases it does carry significant weight. In order to fully
comprehend and appreciate all of the animation capabilities that the MATLAB
graphics engine provides, it will be even more important for you to implement
the MATLAB code found in this chapter. At the very least, run the programs
as you are reading along and you will gain a great appreciation for the strength
animation can add to your visualizations.

In this chapter we will focus on two different methods of creating an
animation. The first is a frame-by-frame capture and playback technique, like
frames in a movie, and the second is a true on-the-fly graphics coordinate
location manipulation. Both have their advantages and disadvantages and are
geared for animating different types of graphics objects in various types of
circumstances. You will learn how to create animations with both of these
techniques and will understand when it is advantageous to use one or the
other. You will also learn how to translate your MATLAB movies into standard
AVI format, which will allow you to make your movies easily playable on any
computer and conveniently insertable to presentation applications like
Microsoft’s PowerPoint.

9.1 Frame-by-Frame Capture and Playback
To create a movie, there are only several MATLAB commands that you will

need to use. There is the function moviein, which preallocates enough
memory to capture a specified number of frames of a movie, the function
getframe for capturing the individual frames, and the function movie for

IN THIS CHAPTER…
9.1 FRAME-BY-FRAME CAPTURE AND PLAYBACK
9.2 ON-THE-FLY GRAPHICS OBJECT MANIPULATION
9.3 CHOOSING THE RIGHT TECHNIQUE

© 2003 by CRC Press LLC

playing back a series of captured frames. The manner in which the two
commands are used is fairly straightforward; however, to get the results you
want, you need to learn about the nuances of each command and understand
what each command is doing.

 Although it is not necessary to preallocate memory for the data matrix that
stores the frames of the movie, it is recommended because the amounts of
data that must be stored are usually large and because a slight speed
improvement with regard to the time it takes to add a movie’s frame to the
movie data matrix can be realized. The simplest way to preallocate memory
for a movie is by using

M = moviein(N);

where N is the number of frames that you intend to record. If no axes
object currently exists, this command will create one (and, if necessary, a
figure object parent for that axes object will be created).

You are now ready to create the frames of your movie. However, we will
point out that the general form of the movie function is
movie(H,M,N,FPS,LOC), where H is the handle to a figure or an axis (this
means you can have a movie that is in one of these objects), M is structure
array that contains the frames for the movie, N is the number of times the
movie will be played, FPS is the rate the movie is to be played in frames-per-
second (default is 12 fps), and LOC is the location where the movie is to be
played relative to the lower left-hand corner of object H (LOC is always in
pixels, regardless of H’s Units property).

Another word about LOC; unlike the usual position defining vector we have
seen, LOC does not specify the size of the movie – only the position. The
width and height of the movie is established when it is recorded. Nevertheless,
you still have to give LOC four elements.

The approach to the animation you are about to create relies on taking an
individual snapshot of each frame for the movie, then quickly flashing them
back at a fixed rate, consequently, to make a smooth and fluid movie, you will
want each individual frame or snapshot to be only slightly different from the
previous. Therefore, in addition to the changes between sequential frames,
the smoothness of the movie will also depend on the speed of your machine.
In this example we will use the bessel function to create a visually interesting
set of frames of a 3-dimensional surface.

% Create a figure that is a little smaller than
% standard to save
% memory since we will be storing 20 frames.
%If your machine has a lot of memory you do
% not have to define the position property of the
%figure.
movie_figure = figure('position',[100 250 300 200]);
M = moviein(15);
[x,y] = meshgrid([-10:0.5:10]);
for frame_number = 1:15
 z = bessel(0,(frame_number-1)*.2 + sqrt(x.^2 +
y.^2));

�
� � � � � � � �

© 2003 by CRC Press LLC

 surf(x,y,z);
 axis([-10 10 -10 10 -.5 1]);
 % Bring the figure to the front before taking a
snapshot.
 figure(movie_figure);
 M(:,frame_number) = getframe;
end

Now that we have created and stored all of the frames in our movie, we
can play the movie back with

movie(M);

If you have a fast machine and the movie played through so fast that you
didn't even get to enjoy it, try playing forward and backward with

frame_order = [1:15 14:-1:1];
number_repeats = 5;
movie(M,[number_repeats frame_order]);

Now that you have had a quick introduction, let’s look at the different
command syntaxes and develop a true understanding of what each command
is doing so that you can develop a world-class movie. We will start with
getframe, because the data that is returned with this function has implications
for movie and moviein.

9.1.1 Taking a Snapshot

To take a snapshot of the current figure or axes object for use in a movie,
we use the command getframe. This function can return a vector that is
stored in a special MATLAB format called pixmap that is used for movies.
Although now an obsolete usage, getframe can also be used to return two
matrices for creating an image object (the first matrix is the image’s color data
matrix and the second is the associated color map). But as we said, this is now
an obsolete use and instead MATLAB provides the function frame2im that will
convert an individual movie frame to an indexed image.

In this chapter we discuss only the forms of getframe used for recording
movie frames. The first two elements of the returned pixmap vector identify
the size of the frame in pixels ([width height]), and the remaining elements of
the vector represent the actual pixels of the frame that is stored. There are
several forms of the command that can be used for movies. The forms are all
very similar, the only difference being how you specify the region over which
a bit-mapped snapshot should be taken. Since you are essentially specifying
only a region on the screen, you must be aware that should another element
lie on top of and obscure part of that region, for example, another Figure
Window or even the Command Window, the bit-mapped image will contain
the pixel representation of those elements. The first form of getframe is simply

M = getframe;

© 2003 by CRC Press LLC

This form will use the current axes object to define the frames region. The
boundaries of the axes object, as defined by its Position property, specify the
region in which the snapshot is made. If you are unsure where the boundaries
of the axes object are, you can always set the axes Box property to “on” and
the View property to [0 90] (i.e., the 2-dimensional view), remembering that
from this perspective the box and everything within the box are the region
defined by the axes Position property. By creating a movie frame with this
form, you may lose some or all of the tick mark labels, the x-, y-, and z-axis
labels, and the title associated with that axes object. How much of this
information you lose depends on the rendering perspective (i.e., a 2- or 3-
dimensional view) of the axes object. In 2-dimensional views, all labels and
titles will be lost; while in 3-dimensional views, part of the labels and titles will
be lost or cut off.

You also have the option of recording a frame from any axes or figure
object by using

M = getframe(object_handle);

where object_handle is the graphics handle of an axes or figure object.
When an object handle is not supplied, it defaults to the current axes object.
For example, using M = getframe(gcf) allows you to take a snapshot of
everything within the current figure (i.e., multiple axes objects and their
respective labels).

Finally, you are not limited to specifying the frame’s position with the
position of an axes or figure object. An arbitrary region, with respect to a
figure’s lower left-hand corner, can be specified using

M = getframe(object_handle,rectangle_vector);

where rectangle_vector is similar to the usual four-element position-defining
vector, [left bottom width height]. The units of the rectangle_vector variable
are the same as the Units property of the object with graphics handle
object_handle (remember that a figure’s factory default Units are in pixels).
The rectangle_vector, when not supplied, defaults to the Position property of
the figure, but with the first two elements set to [0 0] since the
rectangle_vector position is defined with respect to the lower left corner of the
figure.

For example, let’s say you wanted to make a movie using only the upper
right subplot in a figure that has four subplots. The third form of getframe
would be most applicable. To demonstrate this, let’s create the set of
subplots shown in Figure 9.1 with

figure;
subplot(221);
plot(1:10);
subplot(222);
x = 0:0.1:(2*pi);
plot(x,sin(x))
title('sin wave');xlabel('x');ylabel('y');
subplot(223);

© 2003 by CRC Press LLC

sphere(15);
subplot(224);
cylinder([1 .5 1]);

Now create the vector that defines the upper right-hand quadrant of the figure
using

figure_position = get(gcf,'position');
rectangle_vector = [figure_position(3:4)/2 ...
 figure_position(3:4)/2];

Then plot and take a snapshot of the different versions of the sine wave in the
appropriate axes with

subplot(222)
for loop = 0:20
 plot(x,sin(x+2*pi*loop/21));
 title('sin wave');xlabel('x');ylabel('y');
 M(:,loop+1) = getframe(gcf,rectangle_vector);
end

Finally, we can play the movie in a new figure by typing

figure
movie(M);

You may have noticed that the new figure has axes with x and y limits ranging
from zero to one and that the movie is being played on top of these axes and
takes up only a small portion of the figure. This is quite likely not what you
would really like to see. The following set of commands might give you the
type of movie you are looking for

0 2 4 6 8 10
0

2

4

6

8

10

0 2 4 6 8
−1

−0.5

0

0.5

1
sine wave

x

y

−1

0

1

−1

0

1
−1

−0.5

0

0.5

1

−1

0

1

−1

0

1
0

0.5

1

Figure 9.1 Sample subplots used to generate a movie.

© 2003 by CRC Press LLC

figure('pos',rectangle_vector);
movie(gcf,M,5);

Do not change the size of the frame that is being recorded from snapshot to
snapshot. Changing the size of the frame either by resizing a figure or
redefining the rectangle_vector will result in a change in the size of the vector
that is returned from the getframe function. This, in turn, will give you errors if
you are storing these vectors in a movie matrix.

9.1.2 Playing a Movie

We are now in a position to learn more about the command movie. As
with most MATLAB functions, and as we mentioned at the beginning of this
chapter, there are several ways that this function can be used. The form

movie(M)

plays the frames that are stored by columns in matrix M in the current axes
object (if an axes object does not exist, a new one will be created). Since the
movie is played in an axes object, the x- and y-axis lines and tick mark lines of
the axes object will be visible, unless you have made them invisible with a
command such as set(gca,'visible','off') or axis('off').

Two other forms are

movie(M,N)

and

movie(M,N,FramesPerSecond)

where N is either a scalar or vector defining the number of times and the
order in which the frames are to be played, while FramesPerSecond is a scalar
that specifies the rate at which MATLAB should try and play a movie. By
default, MATLAB tries to play a movie at 12 frames per second, but its success
at achieving this rate depends on your machine’s speed. The first element of
the variable N will identify the number of times that the frames should be
played. If it is a negative number, the movie will be played forward and
backward that many times. For example, if N equals negative three, the movie
will be played forward and backward three times. If there is more than one
element in N, the remaining elements specify which frames and the order in
which the frames will be played. For example if there are five frames in the
movie matrix M,

NumberOfPlays = 1;
FrameOrder = [1 2 3 4 5 4 3 2 1];
movie(M,[NumberOfPlays FrameOrder])

will play the movie one time forward and backward without repeating the
fifth frame. The following code

NumberOfPlays = 2;

�
� � � � � � � �

© 2003 by CRC Press LLC

FrameOrder = [1:5 4:-1:2];
movie(M,[NumberOfPlays FrameOrder])

will play the frames in the following sequence:

1, 2, 3, 4, 5, 4, 3, 2, 1, 2, 3, 4, 5, 4, 3, 2.

This is different from using movie(M,-2) which would play the frames in the
following sequence:

1, 2, 3, 4, 5, 5, 4, 3, 2, 1, 1, 2, 3, 4, 5, 5, 4, 3, 2, 1.

The freedom of defining the order in which the frames are played and the
number of times that the order is sequenced through (as in the previous
example), gives you the capability, in some circumstances, to save memory by
reusing frames instead of storing identical frames in the movie matrix.

The final two forms of movie serve to provide you with the freedom of
specifying the location at which the movie will be played. Using

movie(object_handle,M,N,FramesPerSecond)

plays the movie in the graphics object with the handle object_handle. The
N and FramesPerSecond variables are optional with this form if their default
values of one and twelve are satisfactory. The last form that will be discussed
is movie(object_handle,M,N,FramesPerSecond,rectangle_vector). This form
will play the movie at the location specified by rectangle_vector. This is also a
4-element position vector [left bottom width height], in which the left and
bottom elements are defined with respect to the lower left-hand corner of the
axes or figure object identified by the handle object_handle. The width and
height do not really matter since the movie matrix defines these two values.

After a movie has been played, any command or action that forces the
window to be refreshed will result in removal of any remnants of the movie
that were in that window. For example, resizing the figure or typing refresh
will remove any trace of the movie from the Figure Window. This is because
the movie is only a bit-mapped representation that is flashed onto the Figure
Window at a specified location. A movie is not a graphics object (i.e., it has
no handle and is not a child of a figure or axes object).

9.1.3 Preallocating Memory

As stated earlier, it is not necessary to preallocate memory for the movie
data matrix. However, in the name of speed and reduction of wasted effort, it
is recommended that you do preallocate. The savings in terms of speed is
achieved because MATLAB does not need to reallocate memory every time a
new frame is added to the matrix. The probability that your efforts are wasted
or made in vain are less likely because you will find out at the time you try to
preallocate the memory whether or not you have enough memory. If you
force MATLAB to reallocate on the fly you may get an “Out of memory” error
when it attempts to store a new frame, and you will lose the time it took to
reach that point.

There are different ways to preallocate the memory. The most basic,

� 	
 � � �

© 2003 by CRC Press LLC

M = moviein(N)

is used if you are recording the contents of an axes object. The variable N
specifies the number of frames that will be stored. This ends up being the
number of columns needed in matrix M. The number of rows is determined
by the function as it calculates what the length of the pixmap vector will be to
store the data in the current axes object.

If you are recording the contents of an entire figure, you can use

M= moviein(N,figure_handle);

where figure_handle is the figure in which the frames will be recorded. In
both of these forms of moviein, do not resize the figure or axes object as this
will force a change in the number of rows required to store the pixmap data.

Finally, if you are recording the contents over some arbitrary region of a
figure with handle figure_handle, use

M = zeros(length(...
 getframe(figure_handle,rectangle_vector)),N);

where rectangle_vector is the 4-element vector, [left bottom width height]
(defined in the units of the figure and with respect to the figure’s lower left-
hand corner), that defines the recorded region.

9.1.4 Practically Speaking

Although there are many different circumstances and ways in which you will
want to create your movie, it is most likely that you will create a movie of all
the events in a figure or portion of the figure. For this reason, it is
recommended that you create the frames with respect to the figure.

9.1.4.1 Recording the Entire Figure

If you are recording all events in a figure, use

M = getframe(figure_handle);

to record the frames and play them back in the same or new figure with the
form

movie(figure_handle,M,N)

If the figure in which you are playing the movie is a new Figure Window,
make sure that the width and height of the new figure are the same as the
frames that were recorded. If you didn’t keep this information, you can always
get it directly from the movie matrix, M, by using something like

WidthHeight = M(1:2,1)';
NewFigure = figure;

© 2003 by CRC Press LLC

NewFigurePos = get(NewFigure,'position');
set(NewFigure,'position',[NewFigurePos(1:2)
WidthHeight]);

and then play the movie in this new figure with

movie(NewFigure,M);

As an example, let’s create a movie that has two axes objects and animation
simultaneously occurring in both.

figpos=[100 200 150 125];
h_fig = figure('Position',figpos);

for framenumber = 1:20;
 subplot(121);
 plot(sin(0:0.1:(2*framenumber*pi/20)),...
 0:0.1:(2*framenumber*pi/20),'--r');
 axis([-1 1 0 2*pi]);
 subplot(122);
 plot(0,exp(-(framenumber-1)/3),'*g');
 axis([-1 1 0 1]);axis('off');
 drawnow;
 M(framenumber)=getframe(h_fig)

end

delete(h_fig)
h_newfig=figure('Position',figpos)
axis off
movie(h_newfig,M,-5)

In this example, we simply take the entire figure as the frame with
getframe(h_fig), store those frames in M, then play M in a new figure that
is the same size as the original figure.

9.1.4.2 Animating a Portion of the Figure

You might be thinking at this point,

“What if I want to animate only a portion of a figure?”

Which is a very good question. This can be achieved quite handily by using
the form

M = getframe(figure_handle,rectangle_vector);

Then play the movie back in the same figure in the same region in which it
was recorded with

movie(figure_handle,M,N,FramesPerSecond,...
rectangle_vector);

For example, if you have

��
�
 �

© 2003 by CRC Press LLC

h_fig = figure;
subplot(2,1,1);
plot(abs((0-5)));axis([0 11 0 5])
subplot(2,1,2)
plot(sin(0:4*pi));axis([0 4*pi -1 1])

you can animate and record the top axes with

subplot(2,1,1);
%Define the position of the region that
%is to be recorded.
figposition = get(fig,'position');
rectangle_vector = [0 figposition(4)/2 figposition(3)
figposition(4)/2];
for framenumber = 1:10;
 plot(abs((0:(framenumber -1))-5));axis([0 11 0 5]);
 M(framenumber) = getframe(h_fig,rectangle_vector);
end

and then play back the movie with

movie(fig,M,-3,12,rectangle_vector);

To play the movie in a new figure with a width and height equal to the width
and height of the recorded frames, use something similar to

NewFigure = figure('position',[left bottom ...
 rectangle_vector(3:4)]);
movie(NewFigure,M,N,FramesPerSecond);

where left and bottom in the first line are used to position the Figure Window
at some arbitrary location on the screen. The first line creates a figure with the
correct proportions and the second plays the movie. To continue with our
previous example, try

left = 100;
bottom = 150;
NewFigure = figure('position',...
 [left bottom rectangle_vector(3:4)]);
movie(NewFigure,M,-3);

To summarize, carefully keep track of the width and height (in terms of pixels)
of the region that is being recorded. In addition, be careful and account for
these same pixels during movie playback. This will help you avoid problems.

Another question you might ask is,

“Am I limited to recording only the contents of a particular figure or axes
object?”

© 2003 by CRC Press LLC

The answer is, “No.” In certain situations, you may want to record regions
outside a single Figure Window. For example, you may want to record the
events occurring in multiple Figure Windows or perhaps you just want to
include the Figure Window borders. There is no requirement that limits you to
specifying frame region within the figure boundaries. They can arbitrarily be
defined with respect to the lower left-hand corner of the figure. For instance,
we could include a 20-pixel border around the current Figure Window with

figure_position = get(gcf,'position');
rectangle_vector = [0 0 figure_position(3:4)] + ...
 [-20 -20 40 40];

and then use the getframe function form

M = getframe(gcf,rectangle_vector);

Please note that there may be discrepancies between the actual colors and
those used in the movie for the recorded regions that lie outside of the figure
with respect to where the region is defined.

9.1.5 Making an AVI Movie

The Audio-Video Interleaved file format, or AVI file, is a standard movie file
format that is ubiquitous in the computer world. Once you have created
movie frames in MATLAB, you can use the movie2avi function to create an
AVI file that you can share with others. The easiest form of the movi2avi
function is movie2avi(mov,filename) where mov is the movie created with
getframe, i.e., what you would use with movie, and filename is a string giving
the name of the AVI file you want to create. You don’t need to include “.avi”
in the filename; that is done automatically. There are a number of parameters
and values you might want to specify to improve your AVI files. When you use
movie2avi the default frame rate is 15 fps, which may or may not be desired.
The parameter “fps” can be used to specify a different frame rate. Another
handy parameter is “videoname”, which allows you to give a name to the
video stream up to 64 characters. As an example, consider again the first
animation example (the Bessel function). Once you have M, you can create an
AVI file named “bessel” at 12 frames per second and with a video name of “3-
D Bessel Function Animation” with the following,

movie2avi(M,'bessel','fps',12,...
'videoname','3-D Bessel Function Animation')

You can also specify different AVI standard compression modes to be used
when you make an AVI with the “compression” parameter. It can take the
strings “Indeo3”, “Indeo5”, ”Cinepak”, “MSVC”, or “None”. For Windows
computers, the default is “Indeo3”. You can affect the quality of the movie by
setting the “quality” parameter, which can take any value between 0 and 100
where higher numbers are higher quality. Higher quality comes at the price of
files size. The default quality is 75.

��
�
 �

© 2003 by CRC Press LLC

9.2 On-the-Fly Graphics Object Manipulation
Manipulating a graphics object’s coordinates with small incremental

changes is usually what most people envision when thinking about an
animation process. Creating several snapshots in advance and rapidly playing
them back with a computer is fine if you have lots of memory or if the length
and size of the movies is relatively small. However, if you want to create long,
animated sequences and you have a processor and software package that can
perform the needed mathematical calculations and display the graphics
quickly and smoothly, making the incremental changes on the fly can be
advantageous. The key point is that the changes must be made fast enough so
that the motion looks continuous to the user.

The MATLAB graphics environment, when programmed correctly and
appropriately, can be used to provide a user with the perception that fluid
animated sequences are occurring. Using a method that does not play back a
sequence of static prestored snapshots also provides you with the freedom of
adaptively animating graphics in response to a user’s actions, such as the
mouse pointer locations. In this section of the chapter we will examine several
ways to program MATLAB to give you these types of capabilities. As you will
see, these techniques do not mean that the frame playback method is useless;
there is a time and place for each one, and it will become your responsibility
to learn when to use one over the other. It is one of the goals of this book to
make you aware of some of the questions that you will need to ask so that
you can make a well-informed decision.

9.2.1 Simple Animation Functions

Perhaps the simplest on-the-fly animation you can do in MATLAB is
achieved with two functions that come with MATLAB that allow you to create
a 2- and 3-dimensional curve tracing animation. The 2-D form is called comet
while the 3-D form is comet3. The basic use of these functions involves simply
determining the path that you would like to have traced (i.e., the x- and y-
coordinates for the 2-D form, and the x-, y-, and z-coordinates for the 3-D
form) and passing them to the functions. You should note that since we are
predetermining the coordinate values, this method does not lend itself toward
adaptively changing the path to some arbitrary event or stimulus such as that
provided by a user’s actions. (However, if you look at the file comet.m, you
might get some clever ideas!) Regardless of that point, these functions can be
informative in the sense of watching the progression of a line.

The line trace animation is started with either comet(x,y) or comet(x,y,p).
The x and y identify the coordinates of the trace. The variable p, when
supplied, determines the distance by which the comet’s tail should follow the
front of the trace. By default, it is set to 10% (i.e., p = 0.10) of the length of
vector x; however, you may specify that it have a value in the range 0 p < 1.
The 3-D trace is the same as the 2-D trace except that a z-coordinate is
supplied using comet3(x,y,z) or comet3(x,y,z,p). In both cases, the comet
trace is created from the first three colors from the color order, and with the
default is essentially a blue circle with a dark green tail that turns to a red line.
These are incrementally drawn from coordinate point to coordinate point with
the red line traced on top of the green after a specified delay. The axis limits

© 2003 by CRC Press LLC

are predetermined so that all portions of the line trace will be displayed. As an
example, consider the 3-dimensional comet created with the following code:

t = 0:0.01:10*pi;
x = t.*sin(t);y=t.*cos(t);
comet3(x,y,t);

This will look like Figure 9.2 after the animation is completed. If you have a
really fast computer and the animation happens too fast for you, try reducing
the increment of t to something like 0.001.

Much of the figure’s contents are lost if you resize or refresh the Figure
Window after the animation has finished. This is because each component
within the animation was programmed to be drawn and erased in a particular
fashion. This means that if you try to do something to such a figure, like print
it, you will not see the “erased” plot. In the next section, you will learn about
the properties of graphics objects that are manipulated to produce animations,
and what must be done in order to output an image produced by these
methods.

9.2.2 The Wrong and Right Way to Animate Graphics

Before we learn how to animate graphics, it is often helpful to see and learn
from the wrong way of animating graphics. You will find that using the plot
command over and over is very inefficient and yields poor results. To provide
a level of comparison, we will try and animate a blue circle along the same

Figure 9.2 The aftermath of comet3.

© 2003 by CRC Press LLC

path that was used in the comet3 example. First we can recreate the data
with

t = 0:0.01:10*pi;
x = t.*sin(t);
y=t.*cos(t);
axislimits = [min(x) max(x) min(y) max(y) min(t) max(t)];
figure
for indexnumber = 1:length(x)
 plot3(x(indexnumber),y(indexnumber),...
 t(indexnumber),'bo');
 axis(axislimits);
 drawnow;
end

We see that the circle does indeed appear to be moving along the
trajectory specified by the (x,y,t) coordinates. However, it is moving very
slowly and the axes flicker every time the circle is plotted. This happens
because every time the plot3 command is issued, a new graphics object (i.e.,
the circle) is created and the axes object is refreshed. The drawnow
command forces MATLAB to flush the event queue and to render the newly
created graphics. If this command was not there, you would not see the circle
appear until its final position has been drawn in the last iteration of the
for...end loop.

In addition to the drawnow, there are only three other events that force the
screen to be updated. These commands are summarized in the table below.
With respect to animations, the drawnow function is the most useful;
however, the pause command can also come in handy.

Events that force MATLAB to flush
the event queue

Examples

execution of the drawnow comand drawnow;

issuing a figure command figure;
figure(1);

execution of the pause
command

pause;
pause(1);

using getframe M(k)=getframe

execution of waitfor waitfor(h,’PropertyName’)

a return to the command prompt keyboard;
value = input(‘Enter a value’)

Getting back to the example, you might be thinking that instead of plotting
the point with plot3 we could use the lower level command called line. This
way we would have to set up the axes object only once and then create a
new line object at the coordinates along the trajectory while at the same time
deleting the old line object. For instance, using the same data as above, we
can try:

� 	
 � � �

© 2003 by CRC Press LLC

figure
axis(axislimits);

line_handle = line(x(1),y(1),t(1),...
 'color','c',...
 'linestyle','o');
for indexnumber = 2:length(x)
 delete(line_handle);
 line_handle = line(x(indexnumber),...
 y(indexnumber),...
 t(indexnumber),...
 'color','b',...
 'linestyle','o');
 drawnow;
end

Unfortunately, this code will once again produce slow and unsatisfactory
results. (If these examples are too slow on your computer, stop the execution
with CTRL-C and try changing the t increment to something like 0.1.) We need
to get to the root of the problem, which is the fact that deleting and, more
importantly, creating graphics requires a lot of overhead. This time we will
create only a single line object and update its XData, YData, and ZData
properties. The initial creation can be performed with either the plot3 or line
command. In addition, we will need to change the EraseMode property from
its default setting of “normal” to either “xor” or “background”. Let’s look at
the results and then go into the explanation.

figure
line_handle = plot3(x(1),y(1),t(1),'co');
set(line_handle,'erasemode','xor');
axis(axislimits);
for indexnumber = 2:length(x)
 set(line_handle ,'xdata',x(indexnumber),...
 'ydata',y(indexnumber),...
 'zdata',t(indexnumber));
 drawnow;
end

On a 1GHz PentiumIII machine, the for...end loop was over eight times
faster than the previous approach (over thirty times faster than the first
approach) and the axes object did not flicker anymore. Changing the way
MATLAB draws and erases the graphics object from “normal” to “xor” has
provided a major improvement in the quality of the animation. Let’s look at
some of the attributes of the various erase modes, listed from the fastest at the
top, to the slowest at the bottom.

© 2003 by CRC Press LLC

Erase Mode Attributes

none o Object is not erased when it is moved or
destroyed (deleted).

o 3-D rendering calculations suppressed.

background o Object drawn and erased by xoring with color
of screen beneath.

o Damages color of object(s) beneath.
o Color guaranteed at all times.
o 3-D rendering calculations suppressed.

xor o Object drawn and erased by xoring with color
of screen beneath.

o Does not damage color of object(s) beneath.
o Color guaranteed only when placed directly

over figure background color.
o 3-D rendering calculations suppressed.

normal o Most accurate representation of object.·
o Colors and 3-D rendering calculations

performed.

Even though the attributes of the erase modes other than “normal” suppress
the 3-D rendering calculations for that object, it should be noted that the
calculation and therefore the correct rendering order will be performed if the
screen is redrawn by a command such as refresh.

9.2.3 The Need for Speed

Of the erase modes, “normal” is by far the slowest. To achieve better results
in terms of speed, several properties within the object’s parent and
grandparent (i.e., the axes and figure object) should also be changed. Setting
the axes object’s DrawMode property to “fast” instead of to “normal” and the
figure’s BackingStore property to “off” instead of to “on” will help speed up an
animation. As was discussed in Chapter 7, the BackingStore should be set to
“on” when the simulation is not running and there are surface or image
objects in the figure that take some time to render. Remember, when
BackingStore is “off”, the figure will be redrawn every time another Figure
Window is selected.

You will also find out that the human eye is fairly slow and you can often
speed up a graphics animation by increasing the increments used to translate
or rotate an object and still make it look like a smooth simulation. The last
speed tip we shall suggest is not to make a practice of changing the number of
vertices within the animated object during the simulation. For instance, adding
elements to the XData, YData, or ZData will slow an animation considerably.

9.2.4 Animating Lines

Up until now, the line object animated had only one point. Animating a
series of coordinates is just as easy. For instance, we can create the
appearance of a rope that is being swung around and around like a jump rope
with

© 2003 by CRC Press LLC

x = 0:(pi/48):pi;
ropeheight = sin(x);
line_handle = plot(x,ropeheight);
axis([0 pi -1.1 1.1]);
grid on;
set(line_handle,'LineWidth',3,'EraseMode','background');
for phi = 0:pi/64:10*pi
 set(line_handle,'ydata',cos(phi)*ropeheight);
 drawnow;
end

Next, change the EraseMode to “background” (by altering the sixth line of
the code above) and run the same animation; notice how sections of the grid
lines are being removed by the animated line. After the animation is
complete, you can type refresh to redraw the screen.

9.2.5 Animated Rotations

A classic example illustrating animation in three dimensions is a spinning
wire frame cube. To create the cube, we define the x-, y-, and z-coordinates
with

x = [0 1 1 0 0 0 1 1 0 0 NaN 1 1 NaN 1 1 NaN 0 0];
y = [0 0 1 1 0 0 0 1 1 0 NaN 0 0 NaN 1 1 NaN 1 1];
z = [0 0 0 0 0 1 1 1 1 1 NaN 1 0 NaN 0 1 NaN 1 0];

The NaNs are not necessarily required when drawing lines that have their
EraseMode property set to “normal”. However, if the EraseMode is set to
“xor”, the edges of the cube that are traced over twice can cancel each other
out, making it look as if those edges are invisible. Therefore, we use NaNs to
lift the “pen” off the paper (see Chapter 8) so that none of the edges of the
cube are traced twice.

Now we will plot the cube as shown in Figure 9.3 centered precisely on the
origin (0,0,0) with

cube_h = plot3(x-0.5,y-0.5,z-0.5);
axis('square');
axis([-1 1 -1 1 -1 1]*2);
view(-37.5,15);
set(cube_h,'erasemode','background');
rotation_increment = 5; % degrees
rotation_axis = [0 0 1];
rotation_origin = [0 0 0];
num_of_incr = 360/rotation_increment;
for loop = 1:num_of_incr
 rotate(cube_h,rotation_axis,...
 rotation_increment,rotation_origin);
 drawnow;
end

© 2003 by CRC Press LLC

Some neat interactive rotation animations can be achieved with the rotate
command using graphical user interfaces and different origins of rotations
(e.g., variable rotation_origin) and axes of rotations (e.g., rotation_axis). The
rotate function performs the calculations for rotating a graphics object about
some defined axis of rotation.

This next example demonstrates a truly interactive animation by checking
for user entry and rotating the cube accordingly. Copy this function and use
the arrow keys to control the rotation of the cube. Press the ESC key to exit
the program. Note that you must have the cursor somewhere on the Figure
Window before you press the keys on the keyboard.

function x=rotcube()
%CUBE is a function to demonstrate run-time animation.
%A cube is drawn with lines.
%Use the arrow keys to control the direction of rotation.
%ESC key to exit.

x = [0 1 1 0 0 0 1 1 0 0 NaN 1 1 NaN 1 1 NaN 0 0];
y = [0 0 1 1 0 0 0 1 1 0 NaN 0 0 NaN 1 1 NaN 1 1];
z = [0 0 0 0 0 1 1 1 1 1 NaN 1 0 NaN 0 1 NaN 1 0];
rot_axis = [0 0 1];
rot_org = [0 0 0];

cube_h = plot3(x-0.5,y-0.5,z-0.5);

axis('square');
axis([-1 1 -1 1 -1 1]*2);
view=[-37,30];

set(cube_h,'erasemode','background');
rotation_increment = 5;

−2
−1

0
1

2

−2

−1

0

1

2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Figure 9.3 Animating a cube.

��
� � � � � �

© 2003 by CRC Press LLC

rotation_axis = rot_axis;
rotation_origin = rot_org;

fig_h=gcf;

key = 28;

while key ~= 27 % watch for ESC key
 if waitforbuttonpress == 1;
 key = get(fig_h,'currentcharacter');

 switch key
 case 28 % <- rotate left
 rotation_axis = [0 0 1];
 rotation_increment = -5;
 case 29 % -> rotate right
 rotation_axis = [0 0 1];
 rotation_increment = 5;
 case 30 % rotate up
 rotation_axis = [0 1 0];
 rotation_increment = 5;
 case 31 % rotate down
 rotation_axis = [0 1 0];
 rotation_increment = -5;
 case 27 % ESC key
 close(fig_h)
 clear
 return

 end

 rotate(cube_h,rotation_axis,...
 rotation_increment,rotation_origin);
 drawnow;
 end

end

x=key;

Try creating several cubes and simultaneously rotating them in different
ways with the following code.

x = [0 1 1 0 0 0 1 1 0 0 NaN 1 1 NaN 1 1 NaN 0 0];
y = [0 0 1 1 0 0 0 1 1 0 NaN 0 0 NaN 1 1 NaN 1 1];
z = [0 0 0 0 0 1 1 1 1 1 NaN 1 0 NaN 0 1 NaN 1 0];

cube_h = plot3(x-0.5,y-0.5,z-0.5);
axis('square');
axis([-1 1 -1 1 -1 1]*2);
view(-37.5,15);
set(cube_h,'erasemode','background');
rotation_increment = 5; % degrees
rotation_axis = [0 0 1];
rotation_origin = [0 0 0];
num_of_incr = 360/rotation_increment;

© 2003 by CRC Press LLC

for loop = 1:num_of_incr
 rotate(cube_h,rotation_axis,...
 rotation_increment,rotation_origin);
 drawnow;
end

cube2_h = line(x+1,y+1,z+1,'erasemode','background');
for loop = 1:num_of_incr
 rotate(cube_h,rotation_axis,...
 rotation_increment,rotation_origin);
 rotate(cube2_h,rotation_axis+[1 1 0],...
 rotation_increment,rotation_origin+1);
 drawnow;
end

The more objects you manipulate, the slower the animation will become. You
will need to experiment to find out what the capabilities of your machine are
with respect to animations.

You should always try to look for the simplest way to form the graphic
objects. For instance, cubes could also be formed with surface objects as
illustrated with the following. Again, some variables are from previous
examples.

x = [0 0 1 1 0]; y = [0 1 1 0 0]; z = zeros(size(x));
rotation_axis = [0 0 1];
rotation_origin = [0 0 0];
rotation_increment = 5; % degrees
num_of_incr = 360/rotation_increment;
s1_h = surf([x;x]-.5,[y;y]-.5,[z+0.5;z-0.5]);
set(s1_h,'erasemode','background',...
 'facecolor','none',...
 'edgecolor','g');
s2_h = surface([x;x]+1.5,[y;y]+1.5,[z+.5;z-0.5]+1.5,...
 'erasemode','background',...
 'facecolor','none',...
 'edgecolor','r');
s3_h = surface([x;x]+1.5,[y;y],[z+.5;z-0.5],...
 'erasemode','background',...
 'facecolor','none',...
 'edgecolor','b');
axis([-3 3 -3 3 -3 3]);axis('square');
for loop = 1:num_of_incr
 rotate(s1_h,rotation_axis,...
 rotation_increment,rotation_origin);
 rotate(s2_h,rotation_axis+[1 1 0],...
 rotation_increment,rotation_origin+1);
 rotate(s3_h,rotation_axis,...
 rotation_increment,rotation_origin);
 drawnow;
end

The FaceColor property of the surface objects has been set to “none” to
avoid flickering. If you want to graphically animate a solid cube, the top and
bottom of each box could be added and the FaceColor property could be
specified. The following code animates three solid cubes:

© 2003 by CRC Press LLC

% Generate vertices for the surface of a single cube.
xx = [0 0 1 1 0 NaN 0 1 NaN 1 0;...
 0 0 1 1 0 NaN 0 1 NaN 1 0];
yy = [0 1 1 0 0 NaN 1 1 NaN 1 1;...
 0 1 1 0 0 NaN 0 0 NaN 0 0];
zz = [1 1 1 1 1 NaN 1 1 NaN 0 0;...
 0 0 0 0 0 NaN 1 1 NaN 0 0];
% Set up rotation variables.
rotation_increment = 5; % degrees
rotation_axis = [0 0 1];
rotation_origin = [0 0 0];
num_of_incr = 360/rotation_increment;
% Generate 3 translated versions of the cube.
s1_h = surf([xx]-.5,[yy]-.5,[zz]-.5);
set(s1_h, 'erasemode','background','facecolor','g');
s2_h = surface([xx]+1.5,[yy]+1.5,[zz]+1,...
 'erasemode','background','facecolor','r');
s3_h = surface([xx]+1.5,[yy],[zz]-0.5,...
 'erasemode','background','facecolor','b');
% Set up the proper proportions.
axis([-3 3 -3 3 -3 3]);axis('square');
% Define the rotation specifications for each cube.
for loop = 1:num_of_incr
 rotate(s1_h,rotation_axis,...
 rotation_increment,rotation_origin);
 rotate(s2_h,rotation_axis+[1 1 0],...
 rotation_increment,rotation_origin+1);
 rotate(s3_h,rotation_axis,...
 rotation_increment,rotation_origin);
 drawnow;
end

© 2003 by CRC Press LLC

Three solid cubes (green, red, and blue in color) as shown in Figure 9.4 will
be rendered and then animated about some axis of rotation. As you will see,
the surface objects do not render smoothly. There may be some flickering,
and if you look closely, you can see that the faces of the cubes that are
farthest from the viewer will briefly be visible. Also notice that if you turn grid
on the grid will be erased where the cubes occlude it.

9.2.6 Forcing a Graphic to Leave a Trail

In some instances you may not want the graphic to be erased from its last
position when it is moved to a new location. This can be useful, for instance,
if you are tracing a path. This type of graphics animation does not need to
update a lot of object vertices and therefore can be very fast. You may find
that you need to slow it down with either more steps in the for...end loop or
by putting a pause statement before the drawnow as the following code
illustrates.

x = 0:500;
y = sin(.05*x+cos(x*.1));
figure('backingstore','off');
axes('drawmode','fast','box','on');
axis([min(x) max(x) min(y) max(y)]);
line_handle = line(x(1:2),y(1:2));
set(line_handle,'linewidth',2,'erasemode','none');
for index_counter = 2:length(x);
 set(line_handle,...
 'xdata',[x(index_counter+[0 -1])],...
 'ydata',[y(index_counter+[0 -1])]);
 pause(.5);
 drawnow;

−3
−2

−1
0

1
2

3

−3

−2

−1

0

1

2

3
−3

−2

−1

0

1

2

3

Figure 9.4 Animated surfaces.

© 2003 by CRC Press LLC

end

% To keep the trace on the plot for printing or
% if the user resizes the figure window, you may
% want to add the following two lines.
line(x,y,'linewidth',2);
refresh

This is similar to the technique used in comet and comet3. Text, patch, and
surface objects can also have their EraseMode property set to “none” to create
interesting pictures. Remember that after the figure is refreshed, the old
locations of the object will be erased. If you want to get a hardcopy of a
picture that has been generated with objects that have been moved around
without erasing the last object’s location, use

[imagematrix,map] = getframe(figure_handle);

This form of getframe essentially takes a snapshot of the object contents (in
this case, the figure) and returns an image data matrix and the color map
needed to correctly display the colors in the object. The image data can be
displayed with an image object. For instance, to display this captured image in
a new figure, use

newfig = figure;
figpos = get(newfig,'position');
set(newfig,'position',...
 [figpos(1:2) fliplr(size(imagematrix))]);
axes('units','normalized','position',[0 0 1 1]);
image(imagematrix);
colormap(map);
set(gca,'visible','off');

9.3 Choosing the Right Technique
There are several questions that you should ask yourself when deciding

whether to use the frame-by-frame movie play back or the on the fly graphic's
coordinate manipulation technique to create your graphical animation. In
some instances the choice is easy. For example, if you answer yes to either of
the following questions, you should consider creating a data matrix with
getframe and playing it back with movie:

• Are large or complex surface objects going to be animated?

• Is there a small set of still shots that could be used and pieced
together?

However, if you answer yes to any of the next few questions, you will want
to use the on the fly coordinate manipulation technique:

• Will there be user interaction during the animation sequence? For
instance, will the user have the ability to use the mouse or keyboard to alter
the simulation during its progression (see Chapter 6 for information about
recognizing user controlled events)?

• Are the graphics objects to be animated relatively simple?

• Do you want to mix in sound with your animation?

� 	
 � � �

© 2003 by CRC Press LLC

Other questions that you will need to think about are:

What constraints in terms of speed and memory are imposed by
the machine on which you are running MATLAB?

Can you store the number of frames needed to generate a movie?

Can you generate and animate the number of graphics objects that
you believe will be required in the animation?

Experimenting with the different animation techniques and getting a
feel for your machine’s capabilities with regard to speed and
MATLAB animations is the best way to figure out which technique
you should use and in what circumstances.

© 2003 by CRC Press LLC

1100 EELLEEMMEENNTTSS OOFF GGUUII DDEESSIIGGNN

10.1 What is a MATLAB Graphical User Interface?
The Graphical User Interface, or GUI, refers to the now universal idea of

icons, buttons, etc., that are visually presented to a user as a “front-end” of a
software application. Most of us would consider a software application that
accepted only keyboard-entered commands as quite archaic, and even down
right primitive. We much prefer to point our mouse pointer to a graphical
representation of some aspect of the application, click on it (invoking some
event), and continue working with the application through interactive cues.
We are also accustomed to windows, pull-down menus, slider controls, and
check boxes. How slow and boring the software world was before the GUI!
There can be many reasons for creating a GUI. For instance, you might wish to
automate a function that you use many times, or perhaps you want to share it
with others who don’t need, want, or care about knowing MATLAB. Perhaps
you would like to create an interactive demonstration.

Not to be behind the times, the MathWorks has provided MATLAB
programmers with a set of structured event driven components in the form of
user interface controls (uicontrols) and menus (uimenus) that can easily be
assembled and used to create GUIs. The fundamental power of GUIs is that
they provide a means through which individuals can communicate with the
computer without programming commands. The components have become
quite standardized and developed into a user friendly and intuitive set of tools.
These tools can be used to increase the productivity of a user or to provide a
window to the sophistication and power of a MATLAB application for people
with little or no MATLAB programming experience.

The set of user interface components supplied with MATLAB allows you to
design GUIs that match those used in sophisticated software packages. The
components are graphics objects just like those we discussed in Chapter 7,
with handles and properties, and come in two classes: user interface controls

IN THIS CHAPTER…
10.1 WHAT IS A MATLAB GRAPHICAL USER INTERFACE?
10.2 THE THREE PHASES OF INTERFACE DESIGN
10.3 UI CONTROL ELEMENTS
10.4 UIMENU ELEMENTS
10.5 LOW-LEVEL MATLAB GUI PROGRAMMING TECHNIQUES
10.6 HIGH-LEVEL GUI DEVELOPMENT – GUIDE
10.7 COMMON PROGRAMMING DESIRES WITH UI OBJECTS
10.8 THE MATLAB EVENT QUEUE
10.9 CREATING CUSTOM USER INTERFACE COMPONENTS

© 2003 by CRC Press LLC

(uicontrols) and user interface menus (uimenus). Considering the great deal of
flexibility and usefulness that these objects provide, the programming required
to design a fully functional GUI is amazingly simple. The uicontrols and
uimenus can be combined with other graphics objects to create informative,
intuitive, and aesthetically pleasing GUIs. This chapter is designed to make
you aware of all the user interface capabilities and to show you how to
program fully functional GUIs that meet your needs. In addition to showing
how to create and program uicontrol and uimenu objects, this chapter will
also attempt to broaden your programming horizons by showing how you can
use the other graphics objects previously discussed to design your own
interface components.

In this chapter we will present access to uicontrols and uimenus through
two fundamentally different approaches. The first approach is a low-level,
bottom-up approach where we use our skills with handle graphics to write M-
files that implement any GUI design we wish. The second approach will briefly
examine the use of MATLAB’s Graphical User Interface Development
Environment, or GUIDE for short. (We think of GUIDE as a top-down GUI
development approach.) GUIDE is high-level, yet powerful and extremely easy
to use; an excellent tool for quickly developing GUIs that takes care of much
of the “bookkeeping” usually associated with GUI development. Although not
as rapid for quick GUI development as the GUIDE approach, working at a
lower level you have complete control over your GUI. We will devote a great
deal of this chapter to the low-level approach since it is the approach that
gives you the greatest control and also will teach you much about the inner
workings of MATLAB GUIs. Even if you end up preferring to use GUIDE for
your GUI development, the knowledge of the low-level approach is still very
much applicable and will provide you with valuable insight. Let’s face it; either
way you will be a MATLAB GUI developing fiend when you finish this chapter!

Before we dive right into building GUIs, we believe that a brief discussion
on general GUI design is in order. The following discussion is not intended to
substitute for a university text on software interface design, but it should give
you a basic understanding of what is important in GUI design and how to
efficiently proceed with your GUI implementation. After discussing general
GUI design, we will present the details of the uicontrol and uimenu objects.
Then we will present GUIDE and take you through an example, then look at
the low-level programming approach. Finally, we will wrap things up with a
discussion of common programming needs and desires.

10.2 The Three Phases of Interface Design
One can make the argument that there are three phases of good GUI

design. These are mostly common sense, but it is good for us to present them
here in a formal manner. See reference 4 at the beginning of the Appendix for
an intelligent yet easy to read treatment of interface design that succinctly
covers what’s important in a good GUI. In this section we quickly present the
three phases of good GUI design and offer some “rules-of-thumb” that are
good to apply with your MATLAB, or any other GUIs.

© 2003 by CRC Press LLC

10.2.1 Analysis

Before you start your GUI design, you need to consider who will be using it
and how. For instance, if you were creating a computer interface for toddlers,
you probably would not use written words, but large, brightly colored click-
able pictures would probably work nicely. However, the same approach
would probably not be as well received if you were tasked with creating an
interface for your company’s director of marketing (or maybe it would!). The
point is that you need to keep the user in mind. Many MATLAB programmers
find themselves as the primary user of their GUIs. This is because they have
found that automating tasks and having a convenient GUI is up-front time well
spent. You might find yourself as part of a development team and your task is
to create a rich yet intuitive to use GUI for functions and data provided by
other members. In such a case, the analysis portion of good GUI design could
be very important indeed. The analysis process can become very involved,
depending on the goals, and could require extensive usability specifications,
developing user case scenarios, identifying the expertise of the user, computer
system limitations, and plans for future upgrades based on user feedback.

10.2.2 Design

Once you understand your users and the information that is to be
interfaced with, you can begin the process of laying out your GUI. In the
design phase you still aren’t writing the GUI, although you might feel like you
want to; instead, you are considering what components, tasks, and sequences
are required to make your GUI effective. Unbelievably, pencil and paper is still
a great way to explore your GUI design. Again, for major projects, this can
become an involved task, but in the course of the GUI development, it is time
well spent. We will talk about this again in the next section on Paper
Prototyping.

10.2.2.1 User Considerations

Remember, whatever GUI you create has two major components: one is
the GUI itself, the other is the user. It is important that you know who your
users will be; you would not design a GUI to be used by kindergarteners the
same as for a group of scientists at a research laboratory. Human factors
specialists consider people from visual, cognitive, and physical perspectives.
Of course we are limiting our scope to what we might do with MATLAB, but
as you have seen, MATLAB gives you significant graphical capabilities—and as
you are about to learn, its GUI capabilities are just as rich.

10.2.2.2 The Reason for the GUI

You should always keep in mind the reason (or reasons) for building a GUI
(especially in MATLAB). These reasons stem from the fundamental goal of the
GUI of being a useful and reliable tool for accomplishing a larger task. The
nature of the tasks you are likely to use GUIs in MATLAB for generally involve
automating laborious computations, or searching for or learning about
information content in data.

If the GUI is to be used primarily as a tool that helps you accomplish a
larger task, then you will want to pay particular attention to methods that:

© 2003 by CRC Press LLC

1. Reduce the demands on the user.

2. Match the user’s workflow.

3. Take advantage of accepted interface standards.

When your goal is to expedite a laborious task, keeping things simple
should be a rule. Keep the number of windows, decision points, etc., to a
minimum. Don’t expect a user (or even yourself if you are the user) to learn
new ways to do the same old things; put basic pull-downs in the menu bar,
use universal accelerators, e.g., CTRL-C for copy, and use accepted language
for common descriptors, e.g., “Save” and “Save As…”.

If the GUI is to be used for searching for information, such as gleaning data
for specific statistical content, looking at data from different perspectives or
with different plot types, then it is important that you build in the ability for
users to quickly change between different presentations of the data, change
resolutions, and dialog with data processing methods. GUIs of this nature
should:

1. Provide flexibility.

2. Quickly go back and forth.

3. Not overwhelm the user.

The GUI should be flexible in that the user can select from a list of data
searching perspectives and statistical methods. The user should be able to start
broadly, and then narrow the search. The user should be able to quickly apply
different methods or plot techniques, and “undo” if the selection turned out to
be undesirable. Finally, don’t overwhelm the user with too many choices.
Arrange choices in a logical fashion and limit how much the user must
remember. Provide helps and tips where necessary.

10.2.2.3 Cognitive Considerations

Cognition refers to people’s ability to think and learn. There are a few rules
of thumb you should keep in mind when developing your GUIs that will make
using your GUI both intuitive and a generally pleasant experience.

1. Don’t require the user to remember many things at once: In
general, people can remember about seven new things for about
twenty seconds. With MATLAB you can help the user remember by
using the Uicontextmenu property to include “right-click”. Perhaps
the easiest to use memory aid you can include in your MATLAB
GUIs is the ToolTipString (see Section 10.3.2.12).

2. Organize functions and operations into logical groupings: You can
use frames in MATLAB (see Section 10.3.1.3) to indicate groupings
of user interface control objects (buttons, text fields, etc.) and
separators (see Section 10.4.1.9) in pull-downs and other user
interface menus.

3. Present information in the proper context: If things don’t appear to
be where they should be, or if they don’t happen when expected, a

© 2003 by CRC Press LLC

user can become frustrated with a GUI. Remember to give your
GUI a descriptive title using the figure property Name. In addition,
label controls and axes as appropriate. If you have to wonder what
something is, it probably needs a label.

4. Strive for consistency in your GUIs: Most people know to look to
the upper left in a menu bar to find tools that let you save or open
a file, print, etc. This is just the standard that we have all become
accustomed to; don’t be arrogant and force your users to look in
places that are not standard.

10.2.2.4 Physical Considerations

Don’t lose sight of the fact that you (or your users) must interact physically
with your GUI. That means they will have to use their eyes, hands, and
possibly their ears. (Yes, you can use sound in MATLAB but we do not explore
that in this text.) Whatever your GUI accomplishes, the user must use the
keyboard, mouse, and monitor to effectively interact with the computer. Some
rules of thumb here are:

Keep accelerator key combinations simple, e.g., CTRL+SHIFT+Character
requires three fingers so should probably be avoided (unless you want to
make the action very deliberate). Don’t mix mouse and keyboard commands
without careful consideration. It is best to keep the interface predominantly
one or the other. If the text entries are always the same, then consider using a
list box (see Section 10.3.1.5); if they are always different consider using
editable text (see Section 10.3.1.2). The visual display should not be too busy
or have too many colors as this can obscure the presentation of data and
interface controls.

10.2.3 Paper Prototyping

Perhaps the most effective GUI development process you can do before
actually creating your GUI is to create a paper prototype. Simply put, take a
sheet of paper, and sketch just how you want the GUI to appear to the user.
Of course, this is done after you have determined what the goals of the GUI
are to be. The paper prototype is a design mockup that lets you explore the
layout of your user interface objects, buttons, dialogs, etc., and data
presentation components, e.g., plots. You will be trying to optimize the
position and organization of your GUI to best accomplish your goal. If your
task is large, or if you are part of an organized software (or analysis) team
effort, your paper prototype can also be used to communicate your
understanding of the GUIs goals with the rest of the team.

10.2.3.1 Appearance

Soon in this chapter, we will be developing a GUI. In this GUI, we want the
user to be able to specify an arbitrary function and arbitrary range over which
the function will be plotted. We also want the user to be able to easily change
some of the plot features. Since this GUI is simple, we can probably assume a
single window with a single axes object and some uicontrols to let the user
quickly change things. Figure 10.1 shows our paper prototype.

© 2003 by CRC Press LLC

This paper prototype is simple, since we will use this GUI to demonstrate
many things. Regardless of the complexity, the paper prototyping approach is
always a good way to start.

10.2.4 Construction

Ah, here is the part for which you are waiting! Now that you know how you
want to use your GUI, what information is presented through it, what features
you will need, how you will arrange your objects, etc., you can start building
something that works. The bulk of this chapter deals with uicontrol and
uimenu objects and their properties and how to use them in constructing
MATLAB GUIs.

Depending on the complexity of the GUI task you are undertaking, you
might find the need to prototype the GUI. (This can be particularly easy with
MATLAB’s GUIDE.) Your prototype can help you identify flaws in your design
before you have invested too much time in implementation. By prototyping,
we mean creating the user interface portion without detailing the functions
that respond to the user actions (callbacks). First, we will explore the uicontrol
and uimenu objects and their properties, then use MATLAB’s Graphical User
Interface Development Environment (GUIDE) to get a GUI running quickly,
and finish this chapter with a look at some specific GUI applications that
demonstrate GUI capabilities.

Figure 10.1 Paper prototype of a GUI we will build.

© 2003 by CRC Press LLC

10.3 UI Control Elements
Most of the MATLAB user interface control, or uicontrol, elements are

created with the purpose of performing an action or setting up the options for
a future action. The action is executed or the option is set when the user
selects the uicontrol with the mouse pointer. As you will see, there are
different methods of selecting the various uicontrol objects. However, the act
of selecting usually consists of moving the mouse pointer directly over the
object and clicking the mouse button.

This section has been designed to introduce the set of uicontrol object
styles, the type of actions each style is normally used for, and the properties
that are associated with every uicontrol object. This will be accomplished by
means of descriptions, tables, and examples. It is essential that you have a
good understanding or at least are familiar with the various properties, so that
the advanced programming techniques discussed in later sections are clear
and easy to follow.

10.3.1 The Styles

The ten styles of MATLAB uicontrol objects along with a brief description
are listed below.

UI Control Style value Description

Check Box ‘checkbox’ indicates the state of an option or attribute

Editable Text ‘edit’ user editable text box

Frame ‘frame’ used to visually group controls

Pop-up Menu ‘popup’ provides a list of mutually exclusive options

List Box ‘listbox’ shows a scrollable list of selections

Push Button ‘pushbutton’ invokes an event immediately

Radio Button ‘radio’ indicates an option that can be selected

Toggle Button ‘toggle’ only two states, “on” or “off”

Slider ‘slider’ used to represent a range of values

Static Text ‘text’ displays a string of text in a box

Each style will be discussed along with example illustrations of its
appearance in different states.

10.3.1.1 Check Boxes

The check box uicontrol (Style property set to “checkbox”) is a useful means
of representing two states of an option that you may want to provide. The
two states will be referred to as “on” or “off” for simplicity, but can just as
easily indicate true/false, yes/no, or some other bipolar combination. In its off
state, the check box will consist of an empty (Macintosh or MS-Windows) or

© 2003 by CRC Press LLC

unfilled (X-Windows) square with some type of label located on the right-hand
side of the box. The label should be descriptive enough that the user
understands the implications of setting the box to its on or off state. In the on
state, the check box’s square will contain a “ ”.

The state of a check box can be changed by clicking the mouse over any
portion of the uicontrol. You are not restricted to clicking in the actual square
as illustrated below. If the user had clicked on the text or the shaded gray
region, the check box’s state would have toggled as well. By following the
arrows in Figure 10.2, we see the manner in which the appearance of the
check box changes from one state to the next. The intermediate states appear
only during the time that the user is pressing the mouse button when the
mouse is over the uicontrol object.

If you need more than the two bipolar choices a check box offers, look at
pop-up menus or radio buttons (both are discussed later in this chapter) as an
alternative uicontrol object. Multiple check boxes are convenient in situations
where the user may have several options that can be simultaneously selected.
In addition, it is recommended that when you can group a set of check boxes
in terms of some type of similarity (e.g., function or importance), you should
visually group them with their physical location and, where appropriate, with a
frame object (see Frames later in this chapter).

10.3.1.2 Editable Text

The editable text style (Style property set to “edit”) is used in situations that
require the user to enter strings of characters or numbers. The strings, in turn,
are used by the application for which the interface has been built. For

� � � �
� � � � �

� 	 � �
 � � �
 � � �
� � � � � �

� 	 �
� � � � �

Figure 10.2 Checkbox states.

© 2003 by CRC Press LLC

instance, rather than prompting the user at the command line for a string, you
can create an editable text uicontrol. Later, you will see that this uicontrol can
be appropriately sized to contain one or more text lines.

The editable text item can be initialized with a string or string matrix that the
user can delete, edit, or leave alone. Clicking anywhere within this object will
change the mouse from a pointer to a text insertion indicator. Once the text
insertion indicator is available, characters can be inserted by typing the desired
keys or deleted by using the delete or backspace key. Portions or all of the
text can be highlighted by click and dragging within the uicontrol item, to
allow for quick string replacement or deletion. Highlighted text will be
replaced with the next keyboard character that is pressed.

In Figure 10.3, the editable text uicontrol has been initialized with “Editable
Text”. The portion of the string “able” is highlighted and then replaced with
“ed”.

Editable text elements are often used in conjunction with a static text
uicontrol (see Static Text later in this chapter) so that the user is aware of what
he or she is providing the application. It is a good idea, whenever possible, to
initialize the editable text uicontrol with the default value of the string so that
the user does not always need to type in the most likely string.

10.3.1.3 Frames

The frame object (Style property set to “frame”) serves no purpose in terms
of action-related responses to a user’s mouse click. However, it is usually used
to serve as an important visual aid. Other uicontrol items may be visually
grouped with a frame so that the appearance of the GUI guides the user’s
actions. It is an extremely effective method of organizing the GUI in a logical
and intuitive fashion.

The frame makes the GUI more aesthetically pleasing by providing a solid
background that helps blend a set of uicontrols into one complete and
cohesive interface. If the colors remain in their default values or are
appropriately chosen, the edges of other uicontrol objects like static text,
check boxes, and radio buttons will no longer be distinctly visible. Figure 10.4
shows how several miscellaneous uicontrol objects can be combined with two
frame objects into one interface.

Figure 10.3 Editable text

© 2003 by CRC Press LLC

10.3.1.4 Pop-Up Menus

A pop-up menu (Style property set to “popup”) is usually used in situations
where multiple choices need to be available to the user. The current selection
is displayed in an unopened pop-up menu. However, when the user clicks
and holds down the mouse button anywhere within the object, a list of
choices will appear. Another choice can be made by dragging the mouse
over to any of the choices and releasing the mouse button. The example
found in the following illustration shows that first the “Pop-up Menu” choice is
displayed. The user then clicks and drags the mouse pointer down to the
choice represented by “Option 2” and releases the mouse. In the final state,
we see that “Option 2” is the current selection.

A pop-up menu is readily recognized by the down pointing triangle symbol
appearing on the right-hand side of the object.

�

�
 � � � � � � 	 � � � � � �
 � � 	 �
 � � � � � � � �
 � � � � �
 � � 	 �
 � � �

Figure 10.4 Use frames to create logical groupings.

Figure 10.5 Use pop-up menus to pick one of many choices.

© 2003 by CRC Press LLC

10.3.1.5 List Boxes

List Boxes (Style property set to “listbox”) are very similar to pop-up menus.
Essentially they are used to provide users with a set of options from which
they can choose one. The main difference with a list box is that you can make
the set of options visible to the user at all times (depending on the size of the
box you make and the number of items in the box). Then, depending on the
size of the box, the user may need to scroll through the list to find the option
he or she desires. Once the item is found, the user must click on it to select it.
With the current version of MATLAB you are not able to select more than one
item.

If any of the items that the user can select from are wider than the box, a
scroll bar will be placed on the bottom edge of the box. Finally, if the number
of items are all visible in the space provided by the box, the scroll bar on the
right hand side becomes disabled.

10.3.1.6 Push Buttons

The push button (Style property set to “pushbutton”) is perhaps the most
prevalent uicontrol style. It is used primarily to indicate that a desired action
should immediately take place. Since push buttons represent actions, they are
usually labeled with a verb, e.g., start, run, install, etc., that describes the action
that will take place if the user clicks on the button.

Figure 10.6 List boxes let you display as many choices as you wish.

� 	 � �
 � � �
 � � �
� � � � �

Figure 10.7 Push buttons are for immediate actions.

© 2003 by CRC Press LLC

Push buttons have a 3-dimensional look that makes it appear as if they are
being pressed when the user clicks on the object. In addition, they are very
similar in appearance on all computing platforms.

10.3.1.7 Toggle Buttons

The toggle button (Style property set to “toggle”) looks just like a push
button, except there is no intermediate state. Rather, the button will remain in
its selected or not selected state after the user clicks on it. Functionally, it is
very similar to a check box user interface, since there are two states associated
with it.

The toggle button is considered to be selected when it looks as if it is
pressed in, and unselected when it looks like it is raised out of the screen.

10.3.1.8 Radio Buttons

The radio button uicontrol style (Style property set to “radio”) is similar to
the check box in that there are two states associated with each button. The
difference lies in the manner in which they are normally used. Usually two or
more radio buttons are “linked” together as a group. They are linked in the
sense that only one of the buttons will be in its selected (i.e., on) state.

The individual radio button consists of a circular- (Macintosh and MS-
Windows) or diamond- (X-Windows) shaped symbol with an accompanying
label. The label should be descriptive enough that the user understands the
implications of setting the radio button to its on or off state. In its off state, the
radio button will be empty. In the on state, the circle will contain a dot
(Macintosh or MS-Windows) or the diamond will be filled in (X-Windows).

The following figure indicates the appearance of the radio button as it
transitions from its off state to its on state and back.

Figure 10.8 Toggle buttons are binary.

© 2003 by CRC Press LLC

If your GUI has more than one set of linked radio buttons, you should
separate them with enough space or with multiple frames so that the group is
visually distinct from another group of radio buttons.

10.3.1.9 Sliders

Sliders (Style property set to “slider”) are useful in representing to users that
they have a fixed range of values from which to choose. In its most common
form, the slider is comprised of a trough, an indicator bar, and a set of arrows.
The trough represents the range of values, while the location of the indicator
bar within the trough represents the current value specified by the slider. The
arrows are supplied to assist in moving the bar in one direction or another.

The user moves an indicator bar to specify a desired value from within the
allowable range. This bar can be moved in one of several ways. The first is
accomplished by click and dragging the indicator bar to a new location within
the trough. The second is accomplished by clicking within the trough on the
side of the indicator bar that corresponds with the direction in which the bar
should move. This will shift the bar by approximately 10% of the total range
specified by the trough. The final method is to click on the arrow that points
in the direction in which it is desired that the bar move. This will shift the bar
by approximately 1% of the total range specified by the trough. In the
example below, the user clicks and holds the right-hand arrow until the
indicator bar has shifted to the desired setting.

� 	 � �
 � � �
 � � �
� � � � � �

� � �
� � � � �

� 	
� � � � �

Figure 10.9 Radio buttons are either “off” or “on”.

© 2003 by CRC Press LLC

Depending on its size, the slider may consist of only a trough and indicator
bar when used with an X-Windows version of MATLAB. If either the length-to-
width or width-to-length proportion is less than four to one, the X-Windows
slider will consist of only a trough and indicator bar. Macintosh and MS-
Windows sliders will always consist of all three slider components.

The slider has no way of explicitly indicating the numeric value that the
slider represents; therefore, it is recommended that an editable text or static
text style uicontrol accompany the slider. The text uicontrol will allow the user
to see the numeric value to which the slider is set. Furthermore, editable text
would allow the user to manually type in an exact value. It is also
recommended that the limits of the range be shown with one of these text
uicontrol elements. Later on in this chapter, you will learn how to create a
GUI that contains this type of slider/text uicontrol combination. The
circumstances and ultimate purpose of the GUI will most likely dictate the
requirements regarding the appearance and amount of information that needs
to be presented to the user.

10.3.1.10 Static Text

The static text style (Style property set to “text”) of uicontrol is available for
creating labels, status messages, or other information pertinent to the user.
The text graphics objects (i.e., those objects created with the text command)
cannot be placed on top of frames. Therefore, if you are using frame objects
and want to create labels, you will need to use the static text style.

Static text does not perform any action if the user clicks on any part of the
object. In addition, the user cannot edit the information that is displayed.

10.3.2 UI Control Properties

Just as with all other MATLAB graphics objects, uicontrol objects have a set
of properties that can be manipulated to suit your needs and help you obtain
the look you want for your GUI. The following table lists all of the properties

Figure 10.10 Use sliders to select a fixed range.

© 2003 by CRC Press LLC

associated with a uicontrol object. Each row contains the property’s name,
the read-only status, the property values (the default value is contained in “{}”),
and the format of the value. Note that these objects also contain the universal
properties discussed in Chapter 3. Some of the universal properties, such as
ButtonDownFcn, are shown below and discussed in a following section since
they have a special or somewhat different meaning with uicontrol objects.

Property Read
Only

ValueType/Options Format

BackgroundColor No [Red Green Blue] or color string RGB row
ButtonDownFcn No string row

CData No matrix
CallBack No string row
Enable No [on | {off} | inactive] row
Extent Yes [0,0,width,height] row

FontAngle No [{normal} | italic | oblique] row
FontName No string row
FontSize No number 1 element
FontUnits No {points} | normalized | inches |

centimeters | pixels
row

FontWeight No [light | {normal} | demi | bold] row
ForegroundColor No [Red Green Blue] or color string RGB row

HorizontalAlignment No [left | {center} | right] row
Interruptible No {on} | off row

ListBoxTop No number 1 element
Max No number 1 element
Min No number 1 element

Position No [left bottom width height] 4-element
row

String No string string matrix
Style No [{pushbutton} | radiobutton |

togglebutton | checkbox | edit | text |
slider | frame | popupmenu | list box]

row

SliderStep No number 1 element
TooltipString No string row

Units No [inches | centimeters | normalized |
points | {pixels}]

row

UIContextMenu No handle 1 element
Value No number 1 element
Tag No string row

UserData No string(s) or number(s) matrix
Visible No [{on} | off] row

© 2003 by CRC Press LLC

10.3.2.1 Uicontrol BackgroundColor

The BackgroundColor property defines the color of the region defined by
the uicontrol object’s Position property. You may define the value with either
an RGB intensity triplet vector or a legal color specification string (e.g., 'red', 'r',
'white', etc.). By default the background color will be a light gray whose RGB
intensity triplet is [0.8314 0.8157 0.7843].

10.3.2.2 Uicontrol ButtonDownFcn

The ButtonDownFcn (button down function) property is a string of one or
more legal MATLAB expressions that specify the action that should take place
if the user clicks the mouse button down on top of a narrow strip that runs
along the object’s perimeter. Please make a distinction between this property
and the CallBack property. The action stored in the ButtonDownFcn is not
evaluated when the mouse button pointer location is within the region of the
uicontrol defined by its Position property. This string is evaluated as if the
command

eval(buttondownfcnstring)

had been typed in at the command line, where buttondownfcnstring is the
string stored in the ButtonDownFcn property. Therefore, if it requires any
stored variables, the variables must be available at the base MATLAB
workspace (not the function workspace). Finally, if you are not sure whether
or not a ButtonDownFcn string is considered legal, see Section 10.5.1 (“Strings
of MATLAB Statements and Expressions”).

10.3.2.3 Uicontrol CData

Just as we saw CData with image, surface, and patch objects, uicontrol
objects have a CData property as well. The value of the CData property is an
M-by-N-by-3 matrix of RGB values that specify an image that can be on both
push buttons and toggle buttons.

10.3.2.4 Uicontrol CallBack

The CallBack property specifies the action that is performed when the user
clicks within the uicontrol boundary as defined by its Position property. Just as
with the ButtonDownFcn, the CallBack property stores a string that is evaluated
in the base MATLAB workspace. As long as the string can be evaluated error
free with the command

eval(callbackstring)

from the command line (i.e., all variables it requires exist in some fashion),
there will be no error messages invoked when the uicontrol button is activated
by the user. The CallBacks of frame and static text uicontrols will never be
evaluated. They were not designed with the purpose of performing an action
if the user clicks on them. Editable text objects can be activated in the
following instances:

© 2003 by CRC Press LLC

• the string is altered and the user moves the pointer outside the
editable text region, or

• the user presses the return key in a single line editable text object,
or

• the user presses the control-return (X-Windows or MS-Windows) or
command-return (Macintosh) keyboard combination

All other uicontrol object styles will be activated when the user clicks down
and releases the mouse button anywhere within the object’s perimeter as
defined by the Position property.

Examples of the CallBack will be provided later when we create and
program the GUI.

10.3.2.5 Uicontrol Enable

The Enable property can be set to “on”, “off”, or “inactive”. If it is set to
“off” or “inactive”, the user will not be able to activate the uicontrol and,
correspondingly, no callback action will occur as a result of a mouse click on
the object. In its default value of “on”, the uicontrol will perform the action
defined by its CallBack when the user clicks on the object.

As illustrated in the figure below, the text that is displayed in a uicontrol
object will become dim when the Enable property is set to “off”. When the
uicontrol is in its inactive or “on” setting it will look the same (shown on the
left below); however, in the inactive state, the user cannot execute the
callback by clicking on the uicontrol.

If a uicontrol object’s Enable property is “on”, clicking with the left mouse
button causes MATLAB to perform the following actions in the order shown:

1. Set the figure's SelectionType property.

2. Execute the control's CallBack routine.

3. MATLAB will not set, i.e., update, the figure's CurrentPoint property
and will not execute either the control's ButtonDownFcn or the
figure's WindowButtonDownFcn callback.

� 	 � � � �
� 	

� 	 � � � �
� � �

Figure 10.11 Enable property can deactivate a control.

© 2003 by CRC Press LLC

If a uicontrol object’s Enable property is set to either “inactive” or “off”,
then left-clicking on it causes the following to take place in the order shown:

1. Sets the figure's SelectionType property.

2. Sets the figure's CurrentPoint property.

3. Executes the figure's WindowButtonDownFcn callback.

4. Executes the control's ButtonDownFcn callback.

5. Executes the selected context menu item's Callback routine.

6. Does not execute the control's Callback routine.

The previous also occur as shown anytime you right-click on a uicontrol
object, regardless of the setting of Enable. If you right-click on the object, the
objects context menu (which will be discussed later in this section) will be
shown if one has been associated with it.

A particular use of setting this property to “inactive” or “off” is to enable
you to implement object dragging or resizing using the ButtonDownFcn
callback routine.

10.3.2.6 Uicontrol Extent

The Extent property is a read-only four-element vector that specifies the size
and position of the character string used to label the uicontrol. It is of the form
[0,0,width,height] where the first two elements are always zero and width and
height are the dimensions of the rectangle. These are in units specified by the
Units property.

Since the Extent property is defined in the same units as the uicontrol itself,
it is particularly useful in determining the proper sizing for the uicontrol with
regard to its label. You can do this by first defining the String property and
setting the font using the relevant font properties, then get the value of the
Extent property. All you need to do then is set the Position property to be
slightly larger than the width and height values of Extent.

If you have more than one line of strings, the Extent rectangle encompasses
all the lines of text. For single line strings, the Extent is returned as a single line,
even if the string wraps when displayed on the uicontrol object.

10.3.2.7 Uicontrol ForegroundColor

The ForegroundColor property specifies the color of the label and symbols
(e.g., the square in a check box) of an uicontrol object. You may define the
value with either a RGB intensity triplet vector or a legal color specification
string (e.g., 'red', 'r', 'white', etc.). By default, the foreground color will be
black, i.e., [0 0 0].

10.3.2.8 Uicontrol Font Angle, Name, Size, Units, and Weight

These properties allow you to change the font characteristics of the text
label associated with each uicontrol object. These are basically the same set

© 2003 by CRC Press LLC

of properties that affect the appearance of text objects. The FontAngle is by
default set to “normal”, but you can also set it to “italic” or “oblique”.

The FontName and FontSize properties can respectively be the name of your
favorite font that your system supports and a value corresponding to how big
or small you want your fonts. The FontUnits property is used to specify the
units used by the FontSize property. The default is “points” where 1 point is
1/72 of an inch. When set to “normalized” the unit is set to a fraction of the
height of the uicontrol so that if you resize the uicontrol the font size will
change accordingly.The FontWeight property can be set to “normal”, “light”,
“bold”, or “demi” to give you the following look to a label:

10.3.2.9 Uicontrol HorizontalAlignment

The HorizontalAlignment dictates how the text label is displayed on the
uicontrol. The next figure illustrates left, center, and right alignment of the
label in a static text uicontrol.

As a note, the push button labels are always center aligned, while the check
boxes, radio buttons, editable text, and pop-up menu labels will come up, by
default, left aligned. (You can change the default by editing the root objects

Figure 10.12 FontAngle

Figure 10.13 FontWeight

Figure 10.14 HorizontalAlignment

© 2003 by CRC Press LLC

defaultUicontrolHorizontalAlignment property.) There is no property available
that allows you to align the label in the vertical direction.

10.3.2.10 Uicontrol Min, Max, and Value

The significance of these three properties is different for each of the
uicontrol object styles. However, in all uicontrols the values of the Min and
Max properties must be scalars and are by default set to zero and one,
respectively. Even though the Value property can take on a row or column
vector, it will always revert to a scalar after the uicontrol has been activated.

For check boxes and radio buttons, the number that is stored in the Min
property will be used to set the value of the Value property when the check
box or radio button transitions to its “off” state. The number that is stored in
the Max property will be used to set the value of the Value property when the
check box or radio button transitions to its “on” state.

The difference in the values stored in the Max and Min properties
determines whether or not an editable text uicontrol can contain a single or
multiple lines of text. If the difference is greater than one, the editable text
uicontrol can have multiple lines of text; otherwise, it will have only a single
line of text. Unfortunately, it does not specify how many lines can be entered
by the user. As long as

Max - Min > 1

holds true, the user can enter as many lines as he or she desires.

For push buttons, the value stored in the Max property will be transferred to
the Value property for the period during which the CallBack is being evaluated.
After the CallBack is completed, the Value property will once again be set to
the value stored in the Min property.

 The range of values that governs the trough of a slider uicontrol object is
defined by the Min and Max properties. The Value property will contain the
numeric value that corresponds to the position of the indicator bar. If the
slider is drawn horizontally, the Min property value will correspond to the
value of the slider when the indicator bar is as far left as it can go. In addition,
the Max property value will correspond to the value of the slider when the
indicator bar is as far right as it can go. In the event that the slider is drawn
vertically, the Min property value is associated with the bottom of the trough
and the Max property value is associated with the top of the trough.

The Min and Max properties have no meaning for pop-up, static text, and
frame uicontrols. The Value property does indicate which pop-up menu
choice is being displayed (an integer indicating the first, second, etc. item);
however, it has no meaning for static text and frame objects.

10.3.2.11 Uicontrol SliderStep

The SliderStep property affects only slider uicontrol objects. It is a 2-
element row where the first element (by default 0.01) specifies how far the bar
should move as a fraction of the entire length of the trough when the user
clicks on one of the arrows on either end of the slider. The second element

� � � � � �

© 2003 by CRC Press LLC

(by default 0.1) specifies how far the bar should move as a fraction of the
entire length of the trough when the user clicks in the trough.

Additionally, SliderStep sets up the granularity of the values to which the
slider bar can be moved and the values that are stored in the Value property of
the slider uicontrol object. For example, this feature can be used to relieve
you of having to round or manipulate the value returned. If you created a
slider object with

slider_handle = uicontrol('style','slider',...
 'sliderstep',[.2 .25],'max',10,'min',0,...
 'position',[10 10 200 10]);

and then you moved the slider bar around and did a

value = get(slider_handle,'value');

you are guaranteed that the value will be one of the values in the matrix [0
2 2.5 4 5 6 7.5 8 10].

10.3.2.12 Uicontrol TooltipString

The TooltipString property stores a string that is displayed whenever a user
allows the mouse cursor to loiter over the uicontrol. This property is very
useful in providing brief explanations or reminders to help the user in using a
GUI.

10.3.2.13 Uicontrol Position

The location of the uicontrol object in the figure object is specified with the
Position property. The format of the position vector is the usual [left bottom
width height] vector that we have seen with other graphics objects. Since the
parent object of the uicontrol is the figure, the position vector is defined with
respect to the lower left-hand corner of the figure. The units of this vector are
specified by the Units property.

�
 � � �

� �
 � � �

� � � � � �

� � � �

� � � � 	 �
 � � � � � � � �

!
 � �
 � � � � � � �

Figure 10.15 The location of uicontrol objects given by Position.

© 2003 by CRC Press LLC

10.3.2.14 Uicontrol String

The displayed text labels and choices that appear on the uicontrol are
specified by means of the String property. This property can be set to a string
matrix or vector. If there is more than one row in the matrix, only the first row
will be used to label push buttons, check boxes, radio buttons, and static text.
Editable text (Style = “edit”) and pop-up menus make use of the additional
rows. If the editable text object has been set up to allow multiple lines (see
Section 10.5.8, “UIcontrol Min, Max, and Value”), the additional rows will
correspond to the displayed lines of text; otherwise, only the first row of the
string matrix will be used. For pop-up menus, each row corresponds to a
choice in the list of items that appears when the user clicks the mouse pointer
on top of the object. Frames and sliders do not make use of the String
property.

As a helpful speed hint, you do not necessarily need to create string
matrices with the usual matrix format or with str2mat. When setting the String
property of a uicontrol object, MATLAB recognizes the character “|” as the
end of a row. For instance, if you wanted a string matrix that had the words
“Apple,” “Banana,” and “Pear” on different lines, you could create a cell array
by typing

string_value = {'Apple';'Banana';'Pear '};

or

string_value = str2mat('Apple','Banana','Pear');

However, the simplest and quickest way is to type

string_value = ['Apple|Banana|Pear'];

which does not require you to count characters or to use another MATLAB
function. Please note that this works only when you want to create a string
matrix for uicontrol objects. The first two forms actually store a string matrix
(i.e., in this case a 3-by-6 matrix of characters) in the variable string_value;
however, the method that uses the “|” stores a row vector (i.e., a 1-by-17
vector of characters) in the variable string_value. But once you

set(uicontrol_handle,'string',string_value)

where uicontrol_handle is the graphics handle of a uicontrol object, the
String property will contain the same string matrix regardless of which one of
the methods was used to create string_value.

10.3.2.15 Style

The Style property specifies whether the user interface control object will be
a check box, editable text, frame, pop-up menu, list box, push button, toggle
button, radio button, slider, or static text component. The default Style value
creates a push button. The table in Section 10.4.1 shows the value that you
need to use for the Style property to create each type of control object.

� � � � 	 �

��

 � �

© 2003 by CRC Press LLC

10.3.2.16 ListBoxTop

List boxes have their own special property called ListBoxTop. For a given set
of items that are specified in the String property of the list box uicontrol object,
you can specify which item is at the top of the visible portion of the list. This is
applicable only if there are more items than fit in the space provided by the
Position property. For example, if you typed

u = uicontrol('style','listbox',...

'string','Option1|Option2|Option3|Option4|Option5',...
 'position',[10 10 75 50]);

you would get the following list box.

Without clicking on the arrows, you can specify that “Option3” be at the
top of the visible list of items by setting the ListBoxTop property with

set(u,'listboxtop',3)

to get the list shown below.

The actual order of the list box has not changed, but rather the list box has
been positioned such that item 3 is at the top.

Figure 10.16 A typical list box.

Figure 10.17 Same list box with ListBoxTop set to 3.

© 2003 by CRC Press LLC

10.3.2.17 Uicontrol Units

The location of the uicontrol object is specified by the Position property in
units specified by the Units property. By default, the units will be in pixels;
however, you may also choose them to be in inches, centimeters, points, or
normalized.

Pixels, inches, centimeters, and pixels are referred to as absolute units, while
normalized units are considered a relative unit of measurement. If a uicontrol
object uses absolute units, its size will be independent of the size of the figure
object parent. In fact, if the figure is too small, the uicontrol objects may be
located outside the boundaries of the figure and will not be seen by the user.
However, if the units are “normalized”, the control objects will scale
proportionately with respect to the figure object parent (the lower left-hand
corner is considered to be (0,0) and the upper right-hand corner is (1,1)).

10.3.2.18 Uicontrol Interruptible

The Interruptible property will be discussed in detail later in this chapter (see
Section 10.8.3, “Interruptible vs. Uninterruptible”). Before this property can be
fully understood, it is essential for you to be familiar with the various types of
MATLAB events and how they are processed. For now, suffice it to say that
this property controls whether or not the execution of a CallBack can be
interrupted by another event, such as clicking the mouse button on a uicontrol
object.

The Interruptible property can be set to “on” or “off”. By default the value is
“on” which means that the CallBack can be interrupted to execute the action
associated with another event. Only after the interrupting action has been
completed, can the interrupted CallBack be completed. On the other hand, a
value of “off” means that a uicontrol’s CallBack execution cannot be
interrupted, so must be completed before another event (such as the CallBack
of another uicontrol) object can be executed.

10.3.2.19 Uicontrol Tag

This property is extremely useful when programming GUIs in a fashion that
requires MATLAB to search for the handle of a specific uicontrol object. The
Tag property can contain a string row vector of your choice. It is usually
assigned a descriptive name that uniquely identifies a particular uicontrol
object from all the other uicontrol objects. This property does nothing in
terms of the appearance or the action associated with the uicontrol object.
Using the Tag property in conjunction with findobj has already been
mentioned in Section 7.8; further examples that illustrate this property’s
usefulness will be presented in Section 10.5.2.4 of this chapter.

10.3.2.20 Uicontrol UserData

The UserData property is essentially used as a storage facility that
accompanies the object until it is deleted. It is unaffected by the clear
command and therefore is a safe place to store matrix data that you want
associated with a uicontrol or that you want to be able to access regardless of
the state of MATLAB’s base workspace. By default, this property contains the

© 2003 by CRC Press LLC

empty matrix, []. You can store any valid MATLAB data type in this property.
You can use structures or cell-arrays to store a mix of data types.

10.3.2.21 Uicontrol Visible

By default, the Visible property is set to “on” so that the object can be seen
by the user. However, in certain circumstances, you may wish to make the
uicontrol object invisible. The uicontrol object can be made invisible by
setting this property to “off”. This becomes useful when you want to have
layers of uicontrol objects in the same figure.

The Visible property can also be used to limit the number of uicontrol
objects that are displayed at once. For instance, you may want to program a
GUI so that the state of a particular uicontrol object dictates whether or not
other uicontrol objects are available to the user. This can be quite important
to the readability of the GUI. It helps reduce the chance that the user will be
overwhelmed with too many controls and options to an application. Over
time, as the user becomes familiar with the application, he or she can explore
additional features by bringing them to view.

10.3.2.22 Other UI Control Properties

The Type property specifies the kind of MATLAB graphics object and is
always set to “uicontrol” for an uicontrol object. This is a read-only property.

In terms of the object’s family tree, the parent of a uicontrol object will
always be the handle to the figure in which the object is drawn. This handle
will be stored in the Parent property. The Children property will contain the
empty matrix because uicontrols have no children.

10.3.3 Creating Uicontrol Objects

UIcontrol objects are created with the uicontrol command. In this section
of the chapter we merely present a few examples of creating uicontrol objects
since here we are purely interested in the appearance of the GUI, not the
functionality. Defining or coding the CallBack property will be discussed in
Section 10.5 (“Low-Level GUI Programming Techniques”).

There are a few basic forms of the uicontrol function that you can choose
from. The simplest is

handle = uicontrol('Property1Name',Property1Value,...
 'Property2Name',Property2Value,...
 .
 .
 .
 'PropertyXName,PropertyXValue)

where you specify the attributes of the uicontrol object with as many
PropertyName/PropertyValue pairs required to fully describe the object. In this
sample form there are X pairs. The PropertyName can be any one of the
properties listed in the table found in Section 10.3.2 and PropertyValue is any

� � � � � �

© 2003 by CRC Press LLC

legitimate value that can be assigned to the property. This form of the
uicontrol command will create the uicontrol object in the current figure. If
there is no current figure object, a new figure will be created.

You may also use the form

handle = uicontrol(figure_handle,...
 'Property1Name',Property1Value,...
 'Property2Name',Property2Value,...
 .
 .
 .
 'PropertyXName,PropertyXValue)

which forces the uicontrol object to be created in the figure with graphics
handle figure_handle. In both forms, it is at your discretion to decide whether
or not the uicontrol object’s graphics handle needs to be stored. In the
examples above, the control objects graphics handle is stored in the variable
handle.

10.3.3.1 Uicontrol Object Layering

The order in which you create your control objects is very important,
especially if your GUI will contain frame objects. The first uicontrol that is
created will lie at the “bottom,” while every additional uicontrol object will be
closer to the viewer than the previous. All uicontrols will be drawn in front of
all other graphics object types. The next example illustrates both of these
points.

figure('position',[100 200 250 160]);
uicontrol('style','frame',...
 'position',[10 50 160 80]);
uicontrol('style','pushbutton',...
 'string','Close Figure',...
 'position',[30 70 80 20],...
 'callback','close');
uicontrol('style','frame',...
 'position',[80 10 70 130]);
axes

© 2003 by CRC Press LLC

In Figure 10.18 above, we see that the axes object is drawn below all other
objects even though it was created last. The other point seen is that the
uicontrol objects, on the other hand, are layered in terms of the order in which
they were created. A useful feature of MATLAB is that the layering of
uicontrol objects can be controlled by manipulating the order of their handles
in the figure object’s Children property. The handle of a uicontrol object with
a lower index in the figure object’s Children property will be drawn closer to
the user (i.e., will be drawn above the other uicontrol objects).

10.3.3.2 Framing Objects

In the previous example, the default units (pixels) were used to define the
positions of the objects. Pixels or any other absolute unit of measurement is
often useful when defining the distance between two objects when creating a
GUI. Since different monitors have different pixel spacings, if you use pixels as
the unit of measurement, you can ensure that there is enough space so that
the edges of one object remain distinguishable from any neighboring object’s
edges.

For example, let’s say you want to create a set of radio buttons that are
encompassed by a frame and that the figure should be only fairly compact.
You first need to decide on the size and positions of the buttons and the static
text label. This is done somewhat experimentally at first, until you gain a feel
for how much space you need for the longest label. In this case, we find out
that 100 pixels in width and 20 in height is sufficient. We could then decide
that each button will be separated vertically with five pixels and that we want
ten pixels between an edge of a button and the figure boundary. Start adding
up the pixels and you should be able to determine that a figure object that is
120 by 100 pixels will do the job. The figure object is created with these
dimensions and its Resize and NumberTitle properties are turned off. The
Resize property is important because we do not want the user to change the
size of the figure in this example. After the figure is created, create the frame,

0 0.2 0.4 0.6 0.8 1
0

0.5

1

Figure 10.18 Layering of uicontrol objects.

© 2003 by CRC Press LLC

add a descriptive static text uicontrol object, and finally, create the three radio
buttons. The code and the final result (Figure 10.19) are presented below.

h_fig = figure('position',[200 200 120 100],...
 'resize','off',...
 'numbertitle','off')
% Create frame object that covers entire figure region.
h_frame = uicontrol(h_fig,'style','frame',...
 'position',[0 0 120 100])
% Create overall label.
h_stext = uicontrol(h_fig,'style','text',...
 'string','Waveform Type',...
 'position',[10 75 100 20]);
% Create set of three radio buttons.
h_radio(1) = uicontrol(h_fig,'style','radio',...
 'string','Square Wave',...
 'position',[10 55 100 20],...
 'value',1);
h_radio(2) = uicontrol(h_fig,'style','radio',...
 'string','Saw Tooth Wave',...
 'position',[10 30 100 20]);
h_radio(3) = uicontrol(h_fig,'style','radio',...
 'string','Sinusoidal Wave',...
 'position',[10 5 100 20]);

Please note that the code provided above performs no function and the radio
buttons are not mutually exclusive, since we have not added any CallBacks to
the uicontrols. To learn how to make mutually exclusive radio buttons, see
Section 10.7.1.

10.3.3.3 A Stretchable GUI

If you are going to allow the user to resize the figure, it is recommended
that you use normalized units (Units property set to “normalized”) for all
uicontrol objects within the figure. Using pixels or one of the other absolute
units of measurement inside a resizable figure can lead to a situation where
the user has resized the figure to such a degree that some of the uicontrol
objects are no longer visible. With normalized units, the uicontrols will scale
themselves with respect to the figure boundary. In the worst case, the user

Figure 10.19 Framed static text and radio button controls.

© 2003 by CRC Press LLC

might shrink the figure to a point at which it is difficult to read labels; however,
at least the user will be aware that the uicontrol objects exist and can always
increase the size of the figure until the controls are once again readable.

In the next example we will create a resizable figure that has a pop-up
menu, some static text, and some editable text (see Figure 10.20). From this
example you can see how objects can be positioned with normalized units
and how an editable text string can be created with multiple lines.

% Create the figure.
figure('position',[150 100 200 150],...
 'MenuBar','none',...
 'Color','white');
% Create the uicontrol objects with normalized units.
h_frame = uicontrol('style','frame',...
 'units','normalized',...
 'position',[0 0 1 1]);
h_stext_font = uicontrol('style','text',...
 'units','normalized',...
 'position',[.05 .1 .25 .15],...
 'string','Font:');
h_popup_font = uicontrol('style','popup',...
 'units','normalized',...
 'position',[.3 .1 .65 .15],...
 'string','Helvetica|Times|Courier|Symbol');

h_stext_color = uicontrol('style','text',...
 'units','normalized',...
 'position',[.05 .3 .25 .15],...
 'string','Color:');
h_edit_color = uicontrol('style','edit',...
 'units','normalized',...
 'position',[.3 .3 .65 .15],...
 'string','white');
% Create a multiple line editable text object
% by setting the Max property to a value greater
% than 1 plus the Min property (Min default = 0).
h_edit_multi = uicontrol('style','edit',...
 'units','normalized',...
 'position',[.05 .5 .9 .45],...
 'string',['Line Number 1|Line # 2|and line number
3'],...
 'max',2)

After you have created the previous GUI, resize the Figure Window so that
you understand what happens to uicontrols with normalized units.

� � � � � �

© 2003 by CRC Press LLC

10.3.3.4 Predefined GUIs and Dialog Boxes

There are some functional GUIs that come with MATLAB that you may find
useful. There are four “canned” dialog box generating functions that use some
of the uicontrol objects presented in this chapter, namely: errordlg (error
dialog), helpdlg (help dialog), msgbox (message box), warndlg (warning
dialog), inputdlg (input dialog), and questdlg (question dialog).

The first four commands are essentially the same in the sense that you can
display a message in a small Figure Window that also contains a push button
labeled “OK”. The figure will disappear when the user presses the “OK” push
button. All three functions take at least two arguments. The first is the
message that you want to have displayed in the dialog box, and the second is
the name of dialog box figure (there is a default name supplied if you do not
provide one). You may also pass the errordlg function a third string argument,
'on'. This will make sure that there is only one figure with the name provided
in the second argument string (i.e., if another dialog figure has this name, its
message window will be updated). The warndlg function also takes a third
argument, 'replace', which will replace an existing warning dialog box that has
the same window name with the new information. If a help dialog has the
same name as the one you are creating with the helpdlg function, MATLAB
will replace its message with the new string. All of these dialog functions will
wrap your string as needed to fit the dialog box size; however, a cell array is
preferred so that you define the string for each line with a new cell element.
Some examples of these commands are given below

h_wfig = warndlg('Warning Message String',...
'Warning Dialog');
h_efig = errordlg('Not a valid input',...
'Input Error','on');
h_helpdlg = helpdlg('Try again!');

The difference between the commands is the procedure by which they deal
with existing dialog boxes that have the same name (i.e., the figure Name
property). Both the helpdlg and warndlg commands will bring an existing
named dialog box to the front of the screen without updating its contents.

Figure 10.20 A stretchable GUI.

© 2003 by CRC Press LLC

This is different from the way the errordlg command works with the third
argument as described above.

The message dialog box, in addition to the message string and the window
name string, can take more arguments. You can provide a string as the last
argument to the msgbox function that contains 'modal', 'non-modal', or
'replace'. These specify the behavior of the message dialog box and whether
or not it should replace any existing message box. The default is non-modal
which means that the user can click on other windows while the message box
is active. Modal means that the user must acknowledge the message box by
clicking on the “OK” button before he can select another window with the
mouse.

The msgbox function can also take on a set of arguments to define an icon
that will be displayed in the box. By default, no icon is displayed; however,
you can display an error icon, help icon, warning icon, or your own custom
image icon.

Typing

msgbox('My Error Message','Error Window Name','error');

will produce:

Typing

msgbox('My Help Message','Help Window Name','help');

will produce:

Figure 10.21 An error dialog window.

© 2003 by CRC Press LLC

The code

msgbox('My Warning Message',...
'Warning Window Name','warn');

will produce:

You can also use the form

msgbox('My Message',' Window Name',...
 'custom',iconData,iconCmap);

where iconData is a matrix containing image data and iconCmap is the
image’s color map.

You can use the questdlg command to create a question message with
either two or three push-button answer options. The format for a two-button
question dialog box is

string_returned = questdlg(QuestionString,...
 ButtonString_1,...

Figure 10.22 A help dialog window.

Figure 10.23 A warning dialog window.

© 2003 by CRC Press LLC

 ButtonString_2);

where the three arguments are all strings. After the user clicks on one of the
two push buttons, the string of that push button will be returned and stored in
the string_returned variable. A three-push-button question dialog box is
created in the following manner:

string_returned = questdlg(QuestionString,...
 WindowNameString,...
 ButtonString_1,...
 ButtonString_2,...
 ButtonString_3,...
 DefaultString);

where DefaultString must be ButtonString_1, ButtonString_2, or
ButtonString_3.

The question dialog box is modal, that is, the user must press one of the
answers before control is returned to the source, such as the command line,
function, or script that originally called the questdlg function. For example,
you may want to question the user after a figure was generated to find out
whether or not a print-out of the plot is desired. This can be done with the
following code:

question_ans = questdlg('Do you want a hard copy?',...
 'OUTPUT','Yes','No','No')
if strcmp(question_ans,'Yes')
 print
end

Figure 10.24 shows the resulting question dialog box.

The inputdlg function is a very good way to quickly ask a user for
information without having to do text-based questions and answers or
generate a GUI.

Figure 10.24 A question dialog window.

© 2003 by CRC Press LLC

Creating a set of questions as a cell array (where each question is in one cell
of the array) provides the number of lines you want the user to be able to
answer the questions on, and the default answers. You can quickly create a
convenient method for prompting a user for information.

For example,

answers = inputdlg({'My first question',...
 'My 2nd question',...
 'My 3rd question',},...
 'Window Name',[1 2 1],...
 {'defAns1','defAns2','defAns3'});

will produce the following GUI:

The answers typed in by the user will be returned by the function (to the
variable answers in this example) as a cell array, where each cell index, i, is the
answer to the ith question. If the user hits “Cancel”, an empty cell array is
returned.

Besides creating simple message or question dialog boxes, you can also
create a dialog box with the command uigetfile to obtain the filename and
directory path of a file. The complete syntax used for this command is

[filename, pathname] = uigetfile('FilterString',...
 'Dialog Box Title',...
 left, bottom);

'FilterString' specifies the extension that the file must have in order to be
listed in the dialog box and 'Dialog Box Title' is the string that will appear as a
title to the interface. The variables left and bottom are used to specify the
location of the figure in terms of the distance in pixels from the lower left
corner of the screen. The left and bottom arguments do not work on all

Figure 10.25 An input dialog window.

© 2003 by CRC Press LLC

platforms. In addition, you are not required to specify all four arguments.
However, the order in which they are specified cannot be changed. If you
want to provide the user with a list of all the M-files in the directory, you can
use

[filename,pathname] = uigetfile('*.m',...
 'UIGETFILE TITLE',...
 100,100);

which will create the interface shown in Figure 10.26. In this figure, if the
demopopup M-file was chosen (either by double clicking on the file or by
highlighting the file and pressing “Open”), the filename variable would equal
'demopopup.m' and the pathname would be a string identifying the path
(directory or folder) in which the demopopup.m file is located. If the user had
instead selected “Cancel,” a zero would be returned in the filename and
pathname variables.

To request the name of a new file from the user you can use the command
uiputfile. The syntax format of uiputfile is very similar to that of uigetfile, the
only difference being that instead of specifying the extension of the files to be
listed, you specify the default name of the new file. For example,

[filename,pathname] = uiputfile('Default.m',...
 'UIPUTFILE TITLE');

will produce the dialog box shown in Figure 10.27.

Figure 10.26 An example use of uigetfile.

© 2003 by CRC Press LLC

The function uisetfont allows a user to select the font, size, and style of text
objects. To change the font attributes of text and/or axes objects, pass their
graphics handles to the function with

uisetfont(object_handles)

Be aware that the variable object_handles may contain only the handles to
uicontrol, axes, and text objects. Figure 10.28 shows a typical font dialog box.
To find out more about this function (like how to use it with a font structure)
type help uisetfont.

Figure 10.27 An example uiputfile GUI.

© 2003 by CRC Press LLC

Finally, there is one last built-in GUI that can be used to change the color of
any graphics object. This is the function uisetcolor. This function is used by
passing the handles of the objects whose color you would like to change. To
learn more about this function, type help uisetcolor.

10.4 Uimenu Elements
User interface menus can exist within figures, other menus, or context

menus. This takes the form of pull-down menus such as the familiar menu bar
at the top of a Figure Window on X- and MS-Windows systems, and at the top
of the screen on a Macintosh system. The menu bar will have one or more
menu titles from which the user can choose. If a user clicks and holds down
the mouse button when the pointer is located on top of a title, a list of menu
items will appear. The user can then drag the pointer over any of the menu
items. Those menu items that have arrowheads on the right-hand side are
called submenus. If a user selects a submenu, another list of items will appear.
You are not limited to the number of submenu levels (see Figure 10.29).
When the user releases the mouse button after highlighting a menu item, that
item’s CallBack will be executed just as a uicontrol object’s CallBack is
executed after it has been activated. Menu titles, menu items, and submenus
are all uimenu (user interface menu) objects that are created with the uimenu
function.

Figure 10.28 A sample uisetfont GUI.

© 2003 by CRC Press LLC

In addition to the differences in the location of the menu bar among the
different platform versions of MATLAB, there are several other differences.
Since there are no system default menu items in X-Windows figures, the Figure
Window will contain only a menu bar if a menu object has been created. MS-
Windows and Macintosh versions of MATLAB have default menu titles and,
therefore, will always have a menu bar. By default, the MS-Windows figure
will contain the “File,” “Edit,” “Windows,” and “Help” menu titles. If you want
to turn off these system default pull-down menus, set the MenuBar property of
the Figure Window to “none”. If you don’t turn them off, new menu bar
menus will be placed after the defaults.

10.4.1 Uimenu Properties

Just as with all other MATLAB graphics objects, uimenu objects have a set
of properties that can be manipulated to suit your needs and help obtain the
look you want for your GUI. The following table lists all of the properties
associated with a uimenu object. As before with our property tables, each
row contains the properties name, the read-only status, the property values
(the default value is contained in “{}”), and the format of the value. Note that
these objects also contain the universal properties discussed in Chapter 7. The
universal properties that you are likely to find useful have been included at the
end of the table.

� � � � � � � � � 	
 � �

 � 	 � � � � � � �

 � 	 � � � � � �
� � � � � 	 � � � � � �

� � � � � � � � �

 � 	 � � � � �

Figure 10.29 Uimenu objects create pull-down menus.

© 2003 by CRC Press LLC

Property Read
Only

ValueType/Options Format

Accelerator No string row
CallBack No string row
Checked No [on | {off}] row
Children Yes object_handles column
Enable No [on | {off} | inactive] row

ForegroundColor No [Red Green Blue] or color string RGB row
Label No string row

Position No [left bottom width height] 4-element
row

Separator No [on {off}] row
Interruptible No {on} | off row

Tag No string row
UserData No string(s) or number(s) matrix
Visible No [{on} | off] row

10.4.1.1 Uimenu Accelerator

The Accelerator property defines the keyboard strokes that the user can use
to activate the uimenu object. This provides the user with an alternative to the
point, click, and select method of activating the object. When users become
familiar with the GUI, they tend to look for shortcuts to reduce the time and
effort it takes to accomplish an action, and accelerators provide this. It is good
practice to always provide an accelerator for a uimenu object.

The manner in which an accelerator key is defined depends on the platform
on which you are running MATLAB. For MS-Windows, the accelerator
defaults to the first character in the Label property if the Accelerator property is
left blank. For labels on the menu bar, the accelerator is activated by pressing
the ALT+character keyboard combination. If you have labels on the menu bar
that begin with the same letter, subsequent presses of the character while still
holding down ALT will stepthrough the labels. For submenus, where the
Accelerator property has been specified, the keyboard combination is
CTRL+character where character is the first character of the string set in
Accelerator. The user will know that a menu item has an accelerator by the
fact that the text “<Ctrl>-character” (where character is the letter that must be
pressed along with the control key) appears to the right of the object’s label as
shown in Figure 10.30.

© 2003 by CRC Press LLC

10.4.1.2 Uimenu CallBack

The CallBack property specifies the action that is performed when the
uimenu object is activated. There is a difference between menu (and
submenu) titles and menu (submenu) items in terms of when the uimenu
object is activated and the CallBack is processed. Uimenus that contain menu
and submenu titles will be activated when the user clicks down on these
objects. A menu item’s CallBack is processed when the user releases the
mouse button over the uimenu object. Just as with uicontrol objects, the
CallBack property stores a string that is evaluated in the base MATLAB
workspace. As long as the string can be evaluated error free with the
command eval(callbackstring) from the command line (i.e., all variables it
requires exist in some fashion), there will be no error messages invoked when
the uimenu is activated by the user.

Examples of uimenu CallBack coding will be provided later when we create
and program the GUI.

10.4.1.3 Uimenu Checked

The Checked property specifies whether or not the uimenu object will have
a check mark (Macintosh or MS-Windows) or open box (X-Windows) symbol
placed to the left of the displayed label. The symbol will appear only when the
Checked property is set to “on” as shown in Figure 10.31. By default, this
property is set to “off”. The check mark is typically used to indicate whether
or not a specific attribute regarding the application is turned on or off.

Figure 10.30 Press the Ctrl key to activate an accelerator.

© 2003 by CRC Press LLC

10.4.1.4 Uimenu Children

The menu items that appear below a menu title or to the right of a
submenu title are the children of that menu title or submenu title object.
Figure 10.32 depicts this relationship. The circled uimenu objects are the
children of the object pointed to by the arrow leading from the circle.

The Children property is a read-only property that lists the graphics handles of
an object’s children in a column vector. The order in which the handles are
listed is from most recent to earliest created uimenu. The only type of object
that a uimenu object can have as a child is another uimenu object. Menu or
submenu items will have no children and the Children property will be the
empty matrix.

Figure 10.31 The Checked property set to “on” marks a label.

Figure 10.32 Parent / Child relationship between uimenus.

© 2003 by CRC Press LLC

10.4.1.5 Uimenu Enable

The Enable property can be set to either “on” or “off”. If it is set to “off”,
the user will not be able to activate the uimenu and, therefore, no action will
occur as a result of a mouse release over the object. In addition, if a submenu
title is not enabled, the user will not be able to see that object’s children. In its
default value of “on”, the uimenu will perform the action defined by its
CallBack property when selected by the user.

As illustrated below, the text that is displayed in a uimenu object will be
“dimmed” when the Enable property is set to “off”.

10.4.1.6 Uimenu ForegroundColor

The ForegroundColor property specifies the color of the label and symbols
(e.g., the arrowheads, check marks, or boxes) of a uimenu object. You may
define the value with either a RGB intensity triplet vector or a legal color
specification string (e.g., 'red', 'r', 'white', etc.). By default, the foreground color
will be black or [0 0 0].

10.4.1.7 Uimenu Label

The descriptive text that appears on the uimenu is stored in the Label
property. This vector must be a string row vector.

As stated earlier (see Section 10.4.1.1, “UImenu Accelerator”), the uimenu
mnemonic for MS-Windows versions of MATLAB is specified in the Label
property. Any character that exists in the label and is not already used as an
mnemonic to another menu object can be used as the mnemonic by inserting
the “&” character in front of the desired character. The user can then simply
press the Alt-character keyboard combination to activate and execute the
CallBack associated with that uimenu object. For example, if the label is 'Grid',
you can define the letter “G” as the accelerator by setting the Label property
to '&Grid'. If instead you want to use the letter “d”, set the Label property to
'Gri&d'.

� 	 � � � � � � � � � � � � � � 	 �

�
 � � � � � � �

� 	 � � � � � � � � � � � � � � � � �

Figure 10.33 Uimenu Enable property in “on” and “off” states.

© 2003 by CRC Press LLC

If you use a uimenu to bring up another figure which also contains a GUI, it
is good practice to add three dots (...) to the end of the uimenu label. This has
become the conventional way of indicating to the user that there is more than
meets the eye with this menu object selection. For example, the label 'Save
As...' is usually used to indicate that more information (such as a new file
name) will be requested from the user.

10.4.1.8 Uimenu Position

By default, menu items appear in the order in which they are created
beneath their respective parents. You can alter this order by setting the
Position property to the integer value that coincides with the desired order.
Menu titles in the menu bar are ordered from left to right and menu items are
ordered from top to bottom by increasing Position value. Figure 10.34
indicates the value stored in the Position property of the uimenu objects
shown.

10.4.1.9 Uimenu Separator

The Separator property specifies whether or not a uimenu object will have a
horizontal line drawn along its top edge. The Separator property’s default
setting is “off” which means that there will not be a line between the menu
item and the menu item directly above it. This property does not apply to
uimenu objects located in the menu bar nor to the first choice in a list of menu
items. Figure 10.35 shows the affect that the separator has on the appearance
of the menu list (the menu with label “Print” and “Quit” have their Separator
properties set to “on” in the right-hand side of the illustration).

�

�

!

"

#

� � � � � � � � � � � � � � �

Figure 10.34 Position numbers of the various uimenu objects.

© 2003 by CRC Press LLC

10.4.1.10 Uimenu Interruptible

The Interruptible property will be discussed in great detail later in this
chapter (see Section 10.8.3 “Interruptible vs. Uninterruptible”). Before this
property can be fully understood, it is essential for you to be familiar with the
various types of MATLAB events and how they are processed. Basically, this
property controls whether or not the execution of a CallBack can be
interrupted by another event such as when the user clicks the mouse button to
activate a uimenu object.

The Interruptible property can be set to “on” or “off”. By default the value is
“on” and means that a CallBack’s execution can be interrupted to execute the
action associated with another event. On the other hand, a setting of “off”
means that the CallBack must be completed before another event (such as
the CallBack of another uimenu or uicontrol object) can be executed; only
after the interrupting action has been completed can the interrupted CallBack
be completed.

10.4.1.11 Uimenu Tag

This property is extremely useful when programming GUIs in a fashion that
requires MATLAB to search for the handle of a specific uimenu object. The
Tag property can contain a string row vector of your choice. It is usually
assigned a descriptive name that uniquely identifies a particular uimenu object
from all the other graphics objects. This property does nothing in terms of the
appearance or action associated with the pull-down menu. We will see this
property’s usefulness in Section 10.5.2.4 of this chapter.

10.4.1.12 Uimenu UserData

The UserData property is essentially used as a storage facility that
accompanies the object until it is deleted. It is unaffected by the command
clear and, therefore, is a safe place to store matrix data that you want
associated with a uimenu or that you want to be able to access regardless of
the state of MATLAB’s base workspace. You can use cell arrays or structures
to hold arbitrary mixes of data in this property.

Figure 10.35 Using Separator to emphasize logical groupings.

© 2003 by CRC Press LLC

10.4.1.13 Uimenu Visible

Normally, the Visible property is set to “on” so that the object can be seen
by the user. However, in certain circumstances, you may wish to make the
uimenu object invisible. The uimenu object can be made invisible by setting
this property to “off”. This becomes useful when you want to limit the amount
of information that the user is subjected to or when there are items from a list
that do not apply to the particular situation under which the pull-down menu
was selected.

If the Visible property is set to “off” for a menu title or submenu title, then
that title uimenu object along with all of its children will not be visible.

10.4.1.14 Other Uimenu Properties

The Type property specifies the kind of MATLAB graphics object and is
always set to uimenu for a uimenu object. This is a read-only property.

In terms of the object’s family tree, the parent of a uimenu object found in
the menu bar (i.e., a menu title object) will always be the handle to the figure
that the object is drawn in (X- and MS-Windows) or associated with
(Macintosh). This handle will be stored in the Parent property. The parent of
the uimenu objects found in the menu will be the handle to the uimenu object
that had to be selected to make the object visible.

The ButtonDownFcn, Clipping, Selected, and DestroyFcn properties are
available to the uimenu object. The Clipping and Selected properties are both
by default set to “off” and even in their “on” state do absolutely nothing to the
appearance and performance of the uimenu object. The ButtonDownFcn
property is by default set to the empty string matrix (['']) and has no effect on
the performance or appearance of the uimenu object.

10.4.2 Creating Uimenus

Uimenu objects are created with the uimenu command. In this section of
the chapter we will look at only a few examples of uimenu object creation.
Here we are purely interested in the appearance of the pull-down menus, not
the functionality. Defining or coding the CallBack property will be left for a
later section.

10.4.2.1 Top Level Uimenu

There are a couple of basic forms of the uimenu function from which you
can choose. The difference is only in the manner in which the parent of the
uimenu object is specified. The simplest way to create a uimenu object in the
menu bar (sometimes called a menu title or a top level menu) is with

handle = uimenu('Property1Name',Property1Value,...
 'Property2Name',Property2Value,...
 .
 .
 .
 'PropertyXName,PropertyXValue)

© 2003 by CRC Press LLC

where you specify the attributes of the uimenu object with as many
PropertyName/PropertyValue pairs as required to fully describe the object. In
this sample form there are X pairs. The PropertyName can be any one of the
properties listed under Section 10.3.2 and PropertyValue is any legitimate
value that can be assigned to the property. Even though there are a lot of
different properties to choose from, menu titles are often created by specifying
the Label and in some instances, the Tag, CallBack, and/or UserData
properties. For example, a menu title labeled “Help” could be created with

h_uimenu_title1 = uimenu('label','Help');

This form of the uimenu command will create the uimenu object in the
current figure. If there is no current figure object available, a new figure will
be created.

You might also use the form

h_uimenu_title1 = uimenu(figure_handle,...
 'Property1Name',Property1Value,...
 'Property2Name',Property2Value,...
 .
 .
 .
 'PropertyXName,PropertyXValue)

which forces the top level uimenu object to be created in the figure with
graphics handle figure_handle. In both forms, it is at your discretion to decide
whether or not the uimenu object’s graphics handle needs to be stored (in
both forms shown, the control objects graphics handle would be stored in the
variable h_uimenu_title1).

10.4.2.2 Menu Items and Submenu Titles

Menu items and submenu titles are created with a form of uimenu that is
almost identical to the second form used to create top level menu titles. The
only difference is that a uimenu object’s handle must be supplied as the first
argument to the uimenu command as shown with

h_uimenu_item = uimenu(uimenu_handle,...
 'Property1Name',Property1Value,...
 'Property2Name',Property2Value,...
 .
 .
 .
 'PropertyXName,PropertyXValue)

This new menu item will become visible (assuming its Visible property has
not been set to “off”) whenever the user selects the uimenu with the graphics
handle uimenu_handle. The menu object whose handle is stored in
h_uimenu_item will become a submenu title if another uimenu object uses
h_uimenu_item as its parent.

© 2003 by CRC Press LLC

10.4.2.3 Summary

To summarize menu object creation, all you really need to remember is that
when you create a menu object, you specify the parent with the first argument
to the uimenu command. A uimenu object’s parent can only be either a
figure (in the case of a top level menu) or another uimenu object (in the case
of a menu item). A menu item becomes a submenu title whenever another
uimenu object uses its graphics handle. In addition, you should also
remember that unless you want to redefine the Position properties, the order
in which you create the menu objects is important. The menu titles in the
menu bar will be created from left to right, while menu items will be created
from top to bottom. The next example illustrates some of the code needed to
create the structure of a small portion of a pull-down menu interface as shown
in Figure 10.36.

%Create a figure window and title it.
h_fig = figure('MenuBar','none','Color','white',...
 'Name','Uimenu Demo','NumberTitle','off');

% Create top level menus.
h_menu_props = uimenu(h_fig,'label','Properties');

% Create menu items.
h_menu_axes = uimenu(h_menu_props,'label','Axes');
h_menu_line = uimenu(h_menu_props,'label','Line');
h_menu_patch = uimenu(h_menu_props,'label','Patch');
h_menu_surface = uimenu(h_menu_props,'label','Surface');
h_menu_text = uimenu(h_menu_props,'label','Text');

% Create some submenu items to the line object.
h_menu_line_col = uimenu(h_menu_line,'label','Colors');
h_menu_line_sty = uimenu(h_menu_line,'label','Styles');
h_menu_line_thk = uimenu(h_menu_line,'label','Width');

% Create submenu items to Styles.
h_menu_line_solid =
uimenu(h_menu_line_sty,'label','Solid');
h_menu_line_solid =
uimenu(h_menu_line_sty,'label','Dashed');
h_menu_line_solid = uimenu(h_menu_line_sty,...
 'label','Stars','separator','on');
h_menu_line_solid = uimenu(h_menu_line_sty,...
 'label','Crosses');
 .

.

.

© 2003 by CRC Press LLC

This example was provided purely to show how the relationship (parent/child)
between one menu item and the next is created. There is no functionality to
the interface at this point because the CallBack properties have not been
specified.

Designing and making intelligent use of all the uimenu object’s attributes
can lead to the creation of an intuitive, easy to use, robust pull-down menu
interface. In particular, combinations of the Separator, Enable, and Checked
properties can be used to guide the user to the choice he or she is most likely
looking for. Consider a situation in which you are designing an interface that
allows the user to select graphics objects and then manipulate their attributes.
You might have a menu, such as the one in the previous figure, called
“Properties” and beneath it, the names of the various objects as submenu titles
to those object’s attributes. If the user selected a line object you could make
the other object submenu titles dim (i.e., set Enable “off”).

Perhaps in this same example, you have a menu called “Edit” that has Undo,
Cut, Copy, Paste, and Clear as menu items. You could segregate Undo from
the rest with a separator. Furthermore, if a graphics object was not selected,
you might make the Cut, Copy, and Clear items dim as shown in Figure 10.37.

Figure 10.36 A simple uimenu.

© 2003 by CRC Press LLC

10.5 Low-Level MATLAB GUI Programming
Techniques

At this point you have seen the inner workings of and how to create GUI’s
controls and pull-down menus. However, even though your interface may
look nice, it will not perform any actions. Therefore, the next stage of GUI
development involves coding the CallBack properties of the individual
uicontrol and uimenu objects. Whenever you activate a GUI object, that
object invokes MATLAB code that we call the callback. The callback can be in
the form of an eval compatible string, or can refer to a function name that is
stored in the object’s Tag property. If the callback is a function, then it will
have the following syntax:

function varargout =
objectTag_Callback(h,eventdata,handles,varargin)

Where objectTag is the name stored in the object’s Tag property, h is the
handle of the object that called the callback, eventdata is a reserved argument
not currently used, handles is a structure of all the objects in the GUI, and
varargin is the variable-length list of arguments you want to pass to the
callback function.

For uicontrol, uimenu, and uicontextmenu objects, you can use the Callback
property to define the function that is invoked when these objects are
activated. This all sounds quite complicated at first blush, but is really quite
straightforward once you see it in action. Let’s proceed with discussions and
examples.

10.5.1 Strings of MATLAB Statements and Expressions

Before we look closely at the CallBack property, which we are primarily
interested in when programming uicontrol and uimenu objects, there are other
object properties such as the ButtonDownFcn, WindowButtonDownFcn,
WindowButtonMotionFcn, WindowButtonUpFcn, and KeyPressFcn that can be

Figure 10.37 Uimenu labels dimmed by setting Enable to off.

© 2003 by CRC Press LLC

used to add features and capabilities to your interface. All of these properties
can be set to a string vector. This string can, in turn, contain legal MATLAB
expressions and statements that are interpreted and evaluated with MATLAB’s
eval function when some type of user induced event occurs (e.g., the user
selects an uicontrol or uimenu, the user moves the mouse pointer across a
figure, the user clicks the button down on a line object, etc.).

 The easiest way to create an eval compatible string is to first type the code
you want evaluated as if you were creating a script. (Remember to put a
semicolon (;) at the end of every statement!) Follow along with the discussion
and code here as we take you through creating strings of code that will work
with eval; we will put together a CallBack string that will create a figure, plot a
simple line, and put a title over the plot. Use the Editor/Debugger to follow
along with your own entry of the following code.

figure;
plot(1:10);
title('A very complicated plot');

Next, add a quote at the beginning of every line and whenever there is a
quote already in the code, add an extra one. Now you should have something
like

'figure;'
'plot(1:10);'
'title(''A very complicated plot'');'

Then, change this into a single string vector by adding an open square
bracket at the beginning and a closed square bracket at the end, while tacking
on an ellipse (...) to the end of all but the last line.

['figure;'...
'plot(1:10);'...
'title(''A very complicated plot'');']

Finally, reformat the lines and specify the name of the variable that this
string will be stored with

callback_string = ['figure;'...
 'plot(1:10);'...
 'title(''A very complicated plot'');'];

Now, we realize that this is a very simple example and that you could
probably put this into a one-line string with no problems; however, if you
follow this technique with even the most complicated code, you will be able
to generate an evaluatable string! As you become more familiar with this
process, you will be able to create strings more efficiently and quickly.

Cell arrays provide a useful ability to store your strings for generating your
callbacks. The previous example could be accomplished in the following
manner:

© 2003 by CRC Press LLC

callback_string{1}='figure; plot(1:10);...
 title(''A very complicated plot'')'

As you can see, using a cell array has a couple of advantages both having to
do with creating lists of strings to be evaluated. One advantage is that you can
choose a string by indexing the cell array and the other is that you can create
lists without concern for matrix padding.

10.5.2 Programming Approaches in MATLAB

An important concept to understand is that the strings in the CallBack,
ButtonDownFcn, WindowButtonDownFcn, WindowButtonMotionFcn,
WindowButtonUpFcn, and KeyPressFcn properties are evaluated in the
MATLAB’s command or “base workspace.” The base workspace is the
workspace that is used when you execute M-file scripts or when you type in
commands at the command line (assuming command line control is not a
result of a keyboard command from within a function or a debugging state). A
very simplified conceptual way of looking at workspaces is shown in Figure
10.38. When you execute a function, called “A” for example, from the base
MATLAB workspace, a temporary workspace is created for function A. This
temporary workspace contains all the variables and information that are
“local” to that function. Function A can, in turn, sequentially (as defined by
the code in function A’s M-file) call function B or any number of other
functions, and so on. Information can be passed between functions by means
of input and output arguments specified in the function’s calling syntax. After
a function has been executed, its workspace is removed (i.e., all the local
variables are cleared) so that the next time it is called, a fresh temporary
workspace will once again be created.

The importance of this with respect to GUIs is that if you create graphics
objects during the execution of a function, all of the locally stored information,
such as graphics handles, that might have been available in the function’s
workspace, will be lost when the function has finished executing unless the
information is either globally available (i.e., the variables are global variables),
passed back and stored in the base workspace, or stored in a graphics object
(i.e., a graphics object’s UserData property). Since we have so many ways of
storing and retrieving information, there are several approaches to
programming a GUI.

" � � � � 	 � � �
 	 � � �
� # � # $ � �

 % � � �
 � � �

& � � � � � � �
 ' � % � � � (

! � 	 � �
 �) * �
& � � � % �
 �
 + � � �
 ' � % � � � (

! � 	 � �
 �) �
& � � � % �
 �
 + � � �
 ' � % � � � (

#
#
#

! � 	 � �
 �) ,
& � � � % �
 �
 + � � �
 ' � % � � � (

� � � � � 	 � �
 �) � �
& � � � % �
 �
 + � � �
 ' � % � � � (

#
#
#

� � � � � 	 � �
 �) -

Figure 10.38 The MATLAB Workspace

© 2003 by CRC Press LLC

The three most common techniques will be discussed in the following
sections. With MATLAB’s flexibility, you are certainly likely to think of some
others as well. However, we are quite certain that you will feel comfortable
with one of the following techniques and will be designing robust, easy to use
GUIs in no time.

In order to make comparisons between the three techniques, we will design
the GUI shown in Figure 10.39 with the different methods. In this GUI we
want to give the user the ability to specify the x data values and a function y(x)
that will be plotted in the axes object above the GUI. The user should also be
able to turn the grid and box attributes of the axes on and off. To inform the
user as to what his actions have done and if there are any errors, a status
message window is included at the bottom of the GUI.

10.5.2.1 Creating All Graphics Elements in the Base Workspace

The first approach we will present is perhaps the easiest way low-level way
to build a GUI. In this approach we create all of the graphics objects in the
base MATLAB workspace. With this method you can store all of the graphics
handles needed when the objects are created, and the code in the CallBack
properties of the objects that will perform an action can refer to these handles
when necessary. Please be forewarned that there are several disadvantages
with this structure, and they will be presented after the code that creates the
GUI in Figure 10.39 is presented and discussed.

% M-File: fun_plt1.m
% All UIcontrol items are in normalized units so
% that the user can resize the screen as desired.

−10 −8 −6 −4 −2 0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 10.39 The GUI we will build.

© 2003 by CRC Press LLC

% Create the figure object and store its handle.
h_fig = figure('MenuBar','none');

% Create the axes object in the upper half of the
% figure.
axes('position',[.07 .5 .86 .4],'box','on')

% Create the two frames. The first lies below all
% uiobjects
% while the second is used to make a border for the
% status/message window.
h_frame_1 = uicontrol(h_fig,...
 'Position',[0 0 1 0.4],...
 'Style','frame',...
 'Units','normalized');
h_frame_2 = uicontrol(h_fig,...
 'Position',[0.08 0.05 0.84 0.11],...
 'Style','frame',...
 'Units','normalized');

% Create the callback for check box labeled "Box".
% This callback will determine the value of the
% checkbox object, whose handle is stored in h_box,
% and then set the current axes property accordingly.
% Finally, it displays a message by setting the
% string of the static text uicontrol whose handle
% is stored in h_status (created later).
box_clbk_str = ['boxstatus = get(h_box,''value'');'...
 'if boxstatus == 0;'...
 ' set(gca,''box'',''off'');'...
 'else;'...
 ' set(gca,''box'',''on'');'...
 'end;'...
 'boxstatus = get(gca,''box'');'...
 'set(h_status,''string'',' ...
 '[''The box property is ''
boxstatus]);'];
% Create the check box, setting its value to 1
% since we initialized the axes figure this way.
h_box = uicontrol(h_fig,...
 'CallBack',box_clbk_str,...
 'Position',[0.7 0.2 0.16 0.07],...
 'String','Box',...
 'Style','checkbox',...
 'Units','normalized',...
 'Value',[1]);

% Create the callback for the check box labeled "Grid"
% This callback will determine the value of the
% checkbox object, whose handle is stored in h_grid,
% and then use the grid function accordingly.
% Finally it displays a message by setting the
% string of the static text uicontrol whose handle
% is stored in h_status (created later).
grid_clbk_str = ['gridstatus = get(h_grid,''value'');'...
 'if gridstatus == 0;'...
 ' grid off;'...

© 2003 by CRC Press LLC

 'else;'...
 ' grid on;'...
 'end;'...
 'gridstatus = get(gca,''xgrid'');'...
 'set(h_status,''string'',' ...
 '[''The grid is '' gridstatus]);'];

% Create the grid check box.
h_grid = uicontrol(h_fig,...
 'CallBack',grid_clbk_str,...
 'Position',[0.7 0.3 0.16 0.07],...
 'String','Grid',...
 'Style','checkbox',...
 'Units','normalized');

% Create the callback that will plot the function any
% time the x data values or y function has been altered
% by the user. Some error checking is performed just
% in case the user types in values or a function that
% cannot be plotted.
plot_clbk_str = [...
 'err_ind = 0;'...
 'eval([''x = '' get(h_xdata,''string'') '';''],'...
 ' ''err_ind=1;'');'...
 'if err_ind == 0;'...
 ' eval([''y = '' get(h_ydata,''string'') '';''],'...
 ' ''err_ind=2;'');'...
 'end;'...
 'if err_ind == 0;'...
 ' plot(x,y);'...
 ' boxstatus = get(h_box,''value'');'...
 ' if boxstatus == 0;'...
 ' set(gca,''box'',''off'');'...
 ' else;'...
 ' set(gca,''box'',''on'');'...
 ' end;'...
 ' gridstatus = get(h_grid,''value'');'...
 ' if gridstatus == 0;'...
 ' grid off;'...
 ' else;'...
 ' grid on;'...
 ' end;'...
 ' set(h_status,''string'',''Function Plotted'');'...
 'elseif err_ind == 1;'...
 ' set(h_status,''string'',...
 ''Error defining x'');'...
 'elseif err_ind == 2;'...
 ' set(h_status,''string'',...
 ''Error defining y(x)'');'...
 'end'];
% Create the edit boxes for the x and y data. Both of
% these edit boxes will use the previous callback. In
% addition, initialize them with valid inputs.
h_ydata = uicontrol(h_fig,...
 'CallBack',plot_clbk_str,...
 'Position',[0.25 0.2 0.39 0.07],...
 'String','(x*.1).^2',...
 'Style','edit',...

© 2003 by CRC Press LLC

 'Units','normalized');
h_xdata = uicontrol(h_fig,...
 'CallBack',plot_clbk_str,...
 'Position',[0.25 0.3 0.39 0.07],...
 'String','-10:10',...
 'Style','edit',...
 'Units','normalized');

% Create a static text object that will be used
% to display messages to the user.
h_status = uicontrol(h_fig,...
 'CallBack','guiplot1(''h_uic_12'');',...
 'Position',[0.1 0.07 0.8 0.07],...
 'String','Status Window',...
 'Style','text',...
 'Units','normalized');

% Create the "x = " and "y(x)=" static text objects.
% We do not need to store their handles since these
% objects are neither manipulated nor queried by other
% object callbacks.
uicontrol(h_fig,...
 'Position',[0.08 0.3 0.15 0.07],...
 'String','x =',...
 'Style','text',...
 'Units','normalized');
uicontrol(h_fig,...
 'Position',[0.08 0.2 0.15 0.07],...
 'String','y(x) =',...
 'Style','text',...
 'Units','normalized');

% Initialize the plot with the initial x and y data
% by evaluating the callback string that would be
% evaluated if the x or y data changes.

eval(plot_clbk_str);

This method has several drawbacks; the first and most important is that if
the user clears the workspace with the command clear and then uses the GUI,
the user will encounter error messages and find that the GUI no longer
operates as expected. This is because some of the CallBack properties refer to
variables that will not exist after the clear command is issued.

Another drawback is that it can be annoying and time consuming to
generate the strings required in the callbacks, particularly if there are strings
within strings that need to be manipulated. These strings also become difficult
to read and follow, even for the individual who originally created the callback
strings.

In addition, the strings make it difficult to modify and add additional
functionality and features to the GUI. The larger the string becomes, the more
likely it becomes that a single quotation mark, ', is missing or that there are too
many. You might spend a lot of time trying to find the extraneous mark or the
location that requires an additional one.

© 2003 by CRC Press LLC

Finally, the execution speed of the callback may suffer as the string grows in
length and complexity. This is because every time the uicontrol or uimenu
callback is evaluated, each statement or expression is re-interpreted. If we
could somehow put these MATLAB statements and expressions inside a
function, the callback would execute considerably faster. The reason for this is
that functions only need to be interpreted and compiled the first time they are
encountered by the MATLAB compiler.

So, why don’t we just put the code callback statements into a function? For
example, let’s put the callback for the “Grid” checkbox into a function called
setgrid.m as follows

function setgrid(h_grid,h_status)
gridstatus = get(h_grid,'value');
if gridstatus == 0
 grid off;
else
 grid on
end
gridstatus = get(gca,'xgrid');
set(h_status,'string',['The grid is ' gridstatus]);

and change the “Grid” check box’s CallBack property to

'setgrid(h_grid,h_status)'

If you have not issued a clear command and have not closed the GUI’s
figure, you can do this at the command prompt by typing

set(h_grid,'setgrid(h_grid,h_status)')

This will work since the graphics handles of the “Grid” check box and the
“Status/Message” static text objects are passed to the function. However, the
problem is that if you need to design callbacks that query or manipulate a lot
of graphics objects during callback execution, you will have to pass a lot of
arguments (i.e., the variables that store the graphics handles) to the functions.
The next problem is that you may have many uicontrol or uimenu objects that
all have callbacks! You will need to consider whether or not you really want
to have a lot of M-files cluttering up your directory or folder.

 The next three sections are aimed at resolving these problems. There are
several key strategies and goals that you should keep in mind when you
design your GUI.

• For simplicity and compactness, create a stand-alone function that
is designed to create the GUI and specify the callback actions.

• For readability, design the function so that input arguments can
be strings that describe the action that will occur. This can make
it easy for you or other programmers to edit the function and add
to or modify the GUI’s appearance and features.

• For speed, design the GUI so that the user does not become
frustrated or inconvenienced with the response time associated
with performing an action after the user has activated a callback.

��

 � �

�

 � � � � � � �

© 2003 by CRC Press LLC

With the ease of M-file cross-platform portability, you must realize
that other systems or machines might not be as fast as yours and
users may be impatient with the response time, and click multiple
times on a GUI or click on several GUIs. Try, when possible, to
keep this behavior from leading to undesirable results (i.e., keep
the number of interruptible callbacks to a minimum; see Section
6.6.3 to learn more about interruptible GUIs).

• For robustness, make the application’s GUI resistant to
undesirable user actions. It is very likely that the user will
unintentionally perform actions that you did not specifically plan
on occurring. While it is impossible or at least very difficult to
make a GUI that is completely foolproof, there are steps that you
can take to help minimize the chance of a GUI crashing or not
performing as expected. For example, design the GUI so that it is
able to withstand an accidental clear command. If there should
not be more than one instance of the GUI, design the creation
portion so that it checks to see if the GUI already exists in a
Figure Window. In addition, use status bars wherever applicable.
How much effort you put into making the GUI robust to these
types of user actions depends primarily on your knowledge of the
end users and the training they will receive.

With these thoughts in mind, let’s look at the next GUI programming
approach.

10.5.2.2 Storing Handles as Global Variables

In this approach we will put all of the previous example’s code into one
function. In addition, we will try to follow some of the strategies that were
identified in the last section by making the graphics object handles that this
function requires global variables. Finally, we will partition the code based on
the possible input arguments with which the function may be called. This will
make a big difference with respect to the ease at which the code can be read.

When the user types either

fun_plt2

or

fun_plt2('initialize')

the GUI figure will be created. In the initialization section of the code, a
check is made to see if the GUI already exists. If the GUI exists, the figure
containing the GUI is brought to the front. If it does not exist, the GUI is
created. The callbacks of the uicontrol objects call the fun_plt2 function with
a 'Set Grid', 'Set Box', or 'Plot Function' string argument that specifies which
section of the if...elseif...end should be executed. This could also be achieved,
and is simpler to make use of the switch...case construct. The callbacks are
easy to read and modify. You may also notice that the 'Plot Function' section
that is executed after the user alters either the x data or y(x) expression is
much cleaner and simpler than in the code found in the previous section.

© 2003 by CRC Press LLC

function fun_plt2(command_str)
% FUN_PLT2
%
% This function demonstrates how global variables
% can be used to create a GUI in a function.

if nargin == 0
 command_str = 'initialize';
end

% DEFINE VARIABLES THAT WILL STORE THE HANDLES AS GLOBAL
global h_box h_grid h_ydata h_xdata h_status

% INITIALIZE THE GUI SECTION.
if strcmp(command_str,'initialize')
 % Make sure that the GUI has not been already
 % initialized in another existing figure.
 h_figs = get(0,'children');
 fig_exists = 0;
 for fig = h_figs'
 fig_exists = strcmp(get(fig,'name'),...
 'Function Plotter');
 if fig_exists
 figure(fig); % Bring figure to front of screen.
 return; % No need to reinitialize, exit
function.
 end
 end

 h_fig = figure('name','Function Plotter');

 axes('position',[.07 .5 .86 .4])

 % Create the two frames.
 uicontrol(h_fig,...
 'Position',[0 0 1 0.4],...
 'Style','frame',...
 'Units','normalized');
 uicontrol(h_fig,...
 'Position',[0.08 0.05 0.84 0.11],...
 'Style','frame',...
 'Units','normalized');

 % Create the "Box" check box.
 h_box = uicontrol(h_fig,...
 'CallBack','fun_plt2(''Set Box'');',...
 'Position',[0.7 0.2 0.16 0.07],...
 'String','Box',...
 'Style','checkbox',...
 'Units','normalized',...
 'Value',[1]);
 % Create the check box labeled "Grid".
 h_grid = uicontrol(h_fig,...
 'CallBack','fun_plt2(''Set Grid'');',...
 'Position',[0.7 0.3 0.16 0.07],...
 'String','Grid',...
 'Style','checkbox',...
 'Units','normalized');

© 2003 by CRC Press LLC

 % Create the edit boxes for the x data.
 h_ydata = uicontrol(h_fig,...
 'CallBack','fun_plt2(''Plot Function'');',...
 'Position',[0.25 0.2 0.39 0.07],...
 'String','(x*.1).^2',...
 'Style','edit',...
 'Units','normalized');
 % Create the edit boxes for the y data.
 h_xdata = uicontrol(h_fig,...
 'CallBack','fun_plt2(''Plot Function'');',...
 'Position',[0.25 0.3 0.39 0.07],...
 'String','-10:10',...
 'Style','edit',...
 'Units','normalized');

 % Create a static text object that will be used
 % to display messages to the user.
 h_status = uicontrol(h_fig,...
 'Position',[0.1 0.07 0.8 0.07],...
 'String','Status Window',...
 'Style','text',...
 'Units','normalized');
 % Create the "x = " and "y(x)=" static text objects.
 uicontrol(h_fig,...
 'Position',[0.08 0.3 0.15 0.07],...
 'String','x =',...
 'Style','text',...
 'Units','normalized');
 uicontrol(h_fig,...
 'Position',[0.08 0.2 0.15 0.07],...
 'String','y(x) =',...
 'Style','text',...
 'Units','normalized');

 % INITIALIZE the plot with the initial x and y data.
 fun_plt2('Plot Function');

% CALLBACK FOR THE "Box" CHECK BOX.
elseif strcmp(command_str,'Set Box')
 boxstatus = get(h_box,'value');
 if boxstatus == 0;
 set(gca,'box','off');
 else
 set(gca,'box','on');
 end
 set(h_status,'string',...
 ['The box property is ' get(gca,'box')]);

% CALLBACK FOR THE "Grid" CHECK BOX.
elseif strcmp(command_str,'Set Grid')
 gridstatus = get(h_grid,'value');
 if gridstatus == 0
 grid off
 else;
 grid on
 end
 set(h_status,'string',...

© 2003 by CRC Press LLC

 ['The grid is ' get(gca,'xgrid')]);

% CALLBACK FOR THE X and Y(X) EDIT BOXES.
elseif strcmp(command_str,'Plot Function')
 err_ind = 0;
 eval(['x = ' get(h_xdata,'string') ';'],'err_ind=1;');
 if err_ind == 0;
 eval(['y = ' get(h_ydata,'string') ';'],'err_ind=2;');
 end

 if err_ind == 0
 plot(x,y);
 fun_plt2('Set Box');
 fun_plt2('Set Grid');
 set(h_status,'string','Function Plotted');
 elseif err_ind == 1
 set(h_status,'string','Error defining x');
 elseif err_ind == 2
 set(h_status,'string','Error defining y(x)');
 end

end % END command_str comparison checks.

We have used the elseif programming construct for the callback sections in
this example so that you can easily read the code regardless of your
programming background. However, the switch…case construct is a more
organized technique and once you are familiar with it is even more readable.
Furthermore, it runs more efficiently. For example, we could have written the
callback code for “Box” check box using switch…case,

switch command_str
% CALLBACK FOR THE "Box" CHECK BOX.
case 'Set Box'
 boxstatus = get(h_box,'value');
 if boxstatus == 0;
 set(gca,'box','off');
 else
 set(gca,'box','on');
 end
 set(h_status,'string',...
 ['The box property is ' get(gca,'box')]);
 .
 .
 .
 .
case 'Set Grid'
 .
 .

Whether you program this GUI using elseif or switch…case constructs, there
are some fundamental problems with an approach that relies on global
variables. The first is that errors can still occur if the user issues either the

clear all

or
clear global

© 2003 by CRC Press LLC

commands. The second problem is that the code which makes sure that only
one instance of the GUI exists is absolutely necessary for functions that use
global variables for storing graphics handles. If this code was not in place and
the user created two instances of the GUI by typing fun_plt2('initialize') a
second time, then only the most recently created GUI’s setting will control the
performance of the application. This would occur because the values stored
in the global variables that contain the graphics object’s handles would be
updated with the most recently created object handles. The older object
handles would no longer be stored.

10.5.2.3 Storing Handles in the UserData Properties

So we have seen problems with both approaches presented so far (although
the GUI does work). The approach presented in this section overcomes the
two problems (i.e., user clears the global variables, or you want to have
multiple instances of a GUI) that are associated with using global variables as a
means of storing graphics handles. However, everything has a price. We will
see that this technique adds a little more processing overhead. The overhead
is associated with the process of storing and retrieving the graphics handles.
The relative price depends on how readable you want the M-file function to
be. With the power of modern computers and the improved efficiency of the
latest MATLAB version, you may very well prefer readability to eeking out the
last drop of performance.

A solution to the problems of the previous example is presented in the next
listing of code and illustrates how the graphics handles can be stored in the
figure object’s UserData property. Since much of the code is identical to that
shown in the previous section, we have indicated where this occurs with a
vertical ellipse (...) and suggest that you either look at the previous example’s
code if you want to see these sections again or look at the file (fun_plt3.m) on
the book’s web page.

function fun_plt3(command_str)
% FUN_PLT3
%
% This function demonstrates how graphics handles
% can be stored in the figure’s UserData property.

if nargin == 0
 command_str = 'initialize';
end

if ~strcmp(command_str,’initialize’)
% RETRIEVE HANDLES AND REDEFINE THE HANDLE VARIABLES
 handles = get(gcf,'userdata');
 h_box = handles(1);
 h_grid = handles(2);
 h_ydata = handles(3);
 h_xdata = handles(4);
 h_status= handles(5);
end

% INITIALIZE THE GUI SECTION.
if strcmp(command_str,'initialize')
 .

© 2003 by CRC Press LLC

 .
 .
{CODE THAT CREATES THE GRAPHICS }
{ OBJECTS HAS BEEN SNIPPED OUT }
{ SEE M-FILE OR EXAMPLE IN }
{ IN SECTION 10.6.2.2 }
 .
 .
 .

 % STORE THE HANDLES IN THE FIGURE'S USERDATA.
 handles = [h_box h_grid h_ydata ...
 h_xdata h_status];
 set(h_fig,'userdata',handles);

 % Initialize the plot with the initial x and y data.
 fun_plt3('Plot Function');
 .
 .
 .
{CODE THAT DEFINES THE CALLBACKS }
{ FOR THE OBJECTS HAS BEEN }
{ SNIPPED OUT, SEE M-FILE OR }
{ EXAMPLE IN SECTION 10.6.2.2 }
 .
 .
 .
end % END command_str comparison checks.

This format provides you with the choice of allowing single or multiple
instances of your GUI to be created. For the GUI that we have created with
this structure, you could comment out or delete the section of the code that
checks to see if another instance already exists. If multiple instances were
allowed, each GUI instance would operate fine and without errors.

There are some additional comments that need to be made about this
coding approach. In the GUI we created for illustrative purposes, there are not
a lot of uicontrol handles that need to be stored; with larger, more complex
GUIs, there may be many uicontrol, uimenu, and other graphics handles that
need to be stored. Redefining all of the handle variables (i.e., h_box =
handles(1), h_grid = handles(2), etc., which was done in the example above)
every time the function is called as a result of a uicontrol callback may be
inefficient. The inefficiency grows when there are large numbers of graphics
objects, since it is unlikely that all of the coded callbacks require all of the
stored handles. One solution to this problem is to redefine the handle
variables that are used within the section of the code needed to execute the
callback. For instance, let’s say we removed the “RETRIEVE HANDLES AND
REDEFINE THE HANDLE VARIABLES” section of the code. Then we would
need to code the “elseif strcmp(command_str,'Set Box')” section with
something like

% CALLBACK FOR THE "Box" CHECK BOX.
elseif strcmp(command_str,'Set Box')
 % REDEFINE NEEDED HANDLE VARIABLES.
 handles = get(gcf,'userdata');

© 2003 by CRC Press LLC

 h_box = handles(1);
 h_status = handles(5);
 boxstatus = get(h_box,'value');
 if boxstatus == 0;
 set(gca,'box','off');
 else
 set(gca,'box','on');
 end
 set(h_status,'string',...
 ['The box property is ' get(gca,'box')]);

Another solution might consist of retrieving the graphics handles and storing
them in the handles variable as before, while forgetting about redefining the
individual object handle variables (i.e., h_box, h_grid, etc.). Then the code
would need to make direct use of the handles variable. For example, the
“elseif strcmp(command_str,'Set Box')” section of the code would then look
like

% CALLBACK FOR THE "Box" CHECK BOX.
elseif strcmp(command_str,'Set Box')
 boxstatus = get(handles(1),'value');
 if boxstatus == 0;
 set(gca,'box','off');
 else
 set(gca,'box','on');
 end
 set(handles(5),'string',...
 ['The box property is ' get(gca,'box')]);

With a lot of references to the handles variable, the code can become slightly
unreadable. In addition, any changes made to the appearance of the GUI,
such as removing one or more of the graphics objects, might require you to go
back and renumber a lot of indices. This can make the job of GUI
modification a painfully tedious experience.

Unless you are noticing unbearable response times, it is recommended that
you use the format in which you get the handles from the figure’s UserData
and then redefine all of the handle variables at once in the beginning of the
function. The process of altering your GUI becomes a fairly simple process,
and you still have MATLAB code that is easy to follow.

The only other potential problem which you need to be aware of can occur
if you are designing GUIs that have multiple Figure Windows. If you need to
provide the user with the ability to click on a uicontrol (or any other graphics
object) in one Figure Window and have it call a function that was used to
create a GUI in another window, you will need to throw in additional coding
hooks. Remember that the method presented in this section retrieved the
graphics handles from the current figure (i.e., handles = get(gcf,'userdata')). The
process of clicking in a Figure Window makes that figure the current figure.
Therefore, when the function that created the other GUI is called, the wrong
handles will be retrieved. It then becomes almost inevitable that you receive
error messages, unless you have been careful enough to design for this with
additional code or a form similar to that shown in the next section’s code.
You get around this problem by providing the command gcbf (get handle to

© 2003 by CRC Press LLC

current callback figure). This function gets the handle of the figure that
contains the object whose callback is currently being executed.

10.5.2.4 Utilizing Tags and the FINDOBJ Command

In the sections of this book that discussed the creation of the various
graphics objects, it was mentioned that every graphics object has a property
called Tag. This property can store a string vector, which means that you can
assign a unique name to every single graphics object, if you so desire. This
property also provides an alternative to the technique of storing the variables
in the UserData property of the figure.

To retrieve a handle to a particular object, we will use the findobj command
(see Chapter 7). The same arguments and discussions about the advantages
and disadvantages of retrieving the object handles up front in a function
instead of only when they are needed apply with this method, just as they did
with the UserData technique. The only thing that should be added to the
discussion is that the findobj is a search routine and there may be a substantial
amount of processing associated with it. The amount of processing depends
on the number of graphics objects and the syntactical form of findobj that is
used. However, it should also be pointed out that findobj is a built-in function
that has been optimized to provide a rapid response.

Once again we will revisit our famous function plotting GUI. Sections of the
code that are unchanged will be snipped out of the provided code, but can be
found in earlier examples or in the file fun_plt4.m found on the book’s web
site.

function fun_plt4(command_str)
% FUN_PLT4
%
% This function demonstrates how graphics handles
% can be retrieved with the findobj command.

if nargin == 0
 command_str = 'initialize';
end

if ~strcmp(command_str,’initialize’)
% RETRIEVE HANDLES AND REDEFINE THE HANDLE VARIABLES.
 % Assume that the current figure contains the
 % fun_plt4 GUI.
 h_fig = gcf;
 if ~strcmp(get(h_fig,'tag'),'fun_plt4_figure')
 % If the current figure does not have the right
 % tag, find the one that does.
 h_figs = get(0,'children');
 h_fig = findobj(h_figs,'flat',...
 'tag','fun_plt4_figure');
 if length(h_fig) == 0
 % If the fun_plt4 GUI does not exist
 % initialize it. Then run the command string
 % that was originally requested.
 fun_plt4('initialize');
 fun_plt4(command_str);
 return;
 end

© 2003 by CRC Press LLC

 end

 % At this point we know that h_fig is the handle
 % to the figure containing the GUI of interest to
 % this function. Therefore we can use this figure
 % handle to cut down on the number of objects
 % that need to be searched for tag names as follows:
 h_box = findobj(h_fig(1),'tag','h_box');
 h_grid = findobj(h_fig(1),'tag','h_grid');
 h_ydata = findobj(h_fig(1),'tag','h_ydata');
 h_xdata = findobj(h_fig(1),'tag','h_xdata');
 h_status= findobj(h_fig(1),'tag','h_status');

 % We could have just as easily replaced the previous
 % five lines with the technique that retrieves the
 % handles from the figure userdata, assuming the
 % handles are stored there.
end

% INITIALIZE THE GUI SECTION.
if strcmp(command_str,'initialize')
 % Make sure that the GUI has not been already
 % initialized in another existing figure.
 % NOTE THAT THIS GUI INSTANCE CHECK IS NOT REQUIRED,
 % UNLESS YOU WANT TO INSURE THAT ONLY
 % ONE INSTANCE OF THE GUI IS CREATED!
 h_figs = get(0,'children');
 h_fig = findobj(h_figs,'flat',...
 'tag','fun_plt4_figure');

 if length(h_fig) > 0
 figure(h_fig(1));
 return
 end

 h_fig = figure('name','Function Plotter',...
 'tag','fun_plt4_figure');
 .
 .
 .
{CODE THAT CREATES THE OBJECTS }
{ HAS BEEN SNIPPED OUT. TAGS }
{ ARE ADDED TO THE REQUIRED }
{ GUI OBJECTS, SEE M-FILE OR }
{ EXAMPLE IN SECTION 10.6.2.2 }
 .
 .
 .
 % Initialize the plot with the initial x and y data.
 fun_plt4('Plot Function');
 .
 .
 .
{CODE THAT DEFINES THE CALLBACKS }
{ FOR THE OBJECTS HAS BEEN }
{ SNIPPED OUT, SEE M-FILE OR }
{ EXAMPLE IN SECTION 10.6.2.2 }
 .

© 2003 by CRC Press LLC

 .
 .
end % END command_str comparison checks.

The findobj technique of obtaining the graphics handles makes it easy to
design robust GUI functions. The code presented in this section showed how
you can program the GUI creation function so that the figure containing the
GUI and the handles of the graphics object does not necessarily need to be
the current figure. This allows you to have a complex GUI that is comprised of
several Figure Windows and a situation in which an activated graphics object
in one window calls the function that was used to create a different window.
Another advantage of the technique that was illustrated in this section is that
the UserData property of the figure does not need to be used to store graphics
handles.

Finally, to wrap up this section on GUI programming approaches, you
should consider combining features from all of the previous techniques. Each
one has its merits, and if you can exploit the advantages of the individual
techniques, you may find that your GUI programming style will satisfy all your
requirements in addition to meeting the typical goals of

• simplicity

• compactness

• readability

• speed

• robustness

as previously mentioned.

10.6 High-Level GUI Development – GUIDE
Now that we have given you a sound foundation in graphics objects and

their properties and looked at low-level GUI development, we now shall look
at MATLAB’s Graphical User Interface Development Environment (GUIDE).
The low-level development approach consists of more “hand-programming”
to create our GUIs, whereas GUIDE is more point and click. Which approach
is best is a decision left to you as the programmer. Each method has its
advantages.

Since this section deals with GUIDE, we shall restrict our discussion to it, at
least where it makes sense to do so. GUIDE takes much of the tedium out of
GUI development so results can be achieved quickly. However, you do lose a
little visibility of the low-level creation of the graphics objects. Also, instead of
an M-FIle (or collection of M-Files) there is also a FIG-File. We will discuss the
roles of both with respect to using GUIDE in this chapter. Once you have
explored this section on GUIDE we will again return to the low-level approach
so that we can best explain some specific GUI desires.

© 2003 by CRC Press LLC

GUIDE is itself a suite of tools that let you lay out your GUI by clicking and
dropping objects, then dragging and resizing them in the manner in which you
want them to appear. GUIDE includes a Property Inspector, that allows you to
see and edit most of the properties belonging to an object. You can then
invoke the GUI from GUIDE to test it. We will discuss these in the following
subsections, and reproduce our example GUI from the previous section (for
the last time) with GUIDE.

10.6.1 The Layout Editor

You start GUIDE by simply typing guide at the command prompt. You can
also start it by selecting GUIDE from the Launch Pad. EIther way, when you
start GUIDE, you will see a window like that shown in Figure 10.40.

The Layout Editor is where you will begin your GUI. It is comprised of a
component palette on the left, various toolbar selections across the top, and a
large gridded area where you will lay out your GUI objects. You can go
directly from your paper prototype to the Layout Editor, selecting the different
uicontrol and uimenu objects from the component palette and placing them in
the layout area. Simply select the object you want and drag it with the mouse
to the location of your choice in the layout area. You can then use the mouse
to move and resize the object. You can also use the toolbar to access various
tools in the GUIDE toolset, such as alignment, menu editor, and object
browser tools.

We know you are anxious to try GUIDE, so let’s get started building the
GUI we introduced in the previous section. You should be aware that at this
point you will actually be creating a FIG-File. This is where all your user

Figure 10.40 The GUIDE Layout Editor.

© 2003 by CRC Press LLC

interface components, i.e., objects, will reside. Notice that at no time will you
be specifying the Position property for your objects as you did with the low-
level approach. At this point, if you haven’t started GUIDE, do so now by
typing

guide

at the command prompt, or by selecting GUIDE from the launch pad. You
might find it convenient to look at Figure 10.39 and use it as your paper
layout.

Once you have GUIDE running, all you need to do is to click on the object
you want to create and drag it into the layout area. (If you aren’t sure what an
object is by its icon in the component palette, if you let the mouse pointer
dwell a moment on the icon, an information box will tell you.) Do that now for
each of the objects in the GUI. You should have an axis object, a static text
objects for “x=”, “y(x)=”, and the status message area, and two editable text
areas, one for the value of x and the other for the function y(x). You also need
two check box objects, one for “Grid” and one for “Box”. Don’t worry about
the labels on any of the objects just yet. Also, don’t save or activate the figure
at this point. When you do save or activate the figure, the second thing GUIDE
will do is create an M-File to functionalize all your callbacks. There’s a few
things you need to know before we are ready to let GUIDE do its magic.

10.6.2 The Property Inspector

If you select View →→→→ Property Inspector from the GUIDE toolbar, or if you
double-click (on Windows computers) on one of the objects in your layout,
the Property Inspector will be invoked. (You can also right-click on an object,
which will bring up a selection menu from which you can select the Property
Inspector.) It will look like that shown in Figure 10.41.

© 2003 by CRC Press LLC

Figure 10.41 The Property Inspector lets you view and edit
properties for an object.

© 2003 by CRC Press LLC

The Property Inspector will show the properties for the object, and will
change as you click on different objects. You should be quite familiar with
these properties by now. You can also edit the property values as needed.
Perhaps the most important user interface object property from the standpoint
of GUIDE is its Tag property. When you first placed an object in the layout, its
Callback property was set to the string “automatic”. What will happen when
you save or activate the figure is that GUIDE will convert this string into a
callback subfunction name and save it in an M-File of the same name as the
Figure. However, if you set the Tag property before you save or activate to a
meaningful name, e.g., “status_window”, GUIDE will use that string instead as
the subfunction name potentially resulting in much more readable code in the
M-File.

At this point, look at each of your objects with the Property Inspector, and
set their Tag properties to a meaningful name. If you want to use the names
we used they are, “x_value”, “y_fun”, “grid_check”, and “box_check”. At this
point you can also set any of the Value properties that you wish. For instance,
you might want to set the Value property of y_fun to the string ‘(x*.1).^2’
which will then be the default function when the GUI first starts.

10.6.3 The Object Browser

The Object Browser is a tool that shows a diagram of your objects in your
GUI, like that shown in Figure 10.42.

Clicking on any of the objects in the Object Browser will open the Property
Editor to that object’s properties.

Figure 10.42 The Object Browser shows a map of your objects.

© 2003 by CRC Press LLC

10.6.4 The Menu Editor

The Menu Editor is available by selecting Tools →→→→ Menu Editor from the
toolbar. From here you can specify what you want to appear on your GUI’s
menu bar, and also specify any uicontextmenu values.

10.6.5 Saving the GUI

Once you have all your objects positioned and sized in the layout area,
specified names for the Tag property of them, and set any Label or other
properties you want, you are ready to let GUIDE create the M-File where we
will next spend some time. You have two options at this point; one, you can
simply select File →→→→ Save As… from the menu bar and give your GUI a name,
or you can select Tools →→→→ Activate Figure in which case GUIDE will prompt
you for a name. When you do this, GUIDE will save your GUI to a file with the
name you gave it with the extension .fig, and also create an M-File of the same
name. In this example we named our GUI fun_pltg, so GUIDE created
fun_pltg.fig and fun_pltg.m in our current directory. We will now discuss what
GUIDE creates in these two files.

10.6.5.1 The GUIDE Created FIG-File

When GUIDE created the FIG-File from your layout, it created a binary file
that contains a serialized figure object, i.e., a complete description of the
figure object and all of its children. MATLAB uses this FIG-File to reconstruct
the figure and all of its children when you open the file. All of the objects’
property values are set to the values they had when the figure was created.
When you run your GUIDE created GUI, the FIG-File is used in conjunction
with the M-File of the same name which has the callback functions. The M-File
created by GUIDE will use the function openfig to display the GUI.

Figure 10.43 shows our sample GUI in the GUIDE Layout Editor. Next, we
will examine the M-File.

© 2003 by CRC Press LLC

10.6.5.2 The GUIDE Created M-File

The default method GUIDE uses to create your GUI automatically creates
the FIG-File and M-File. You do have the option to change this to create only
the FIG-File, to allow only one instance of the GUI to run, etc. In the default
mode, GUIDE will create an M-File with callback function prototypes. Aside
from other overhead items needed to run the GUI, these callback functions
will be the heart of your GUI. Since you have already saved your GUI, look at
the M-File now in the Editor. Hopefully you used the Tag property to give
meaningful names to your objects so the callback functions should be easy to
spot. They should have the form

function varargout = objectTag_Callback(h, eventdata,
handles, varargin)

where objectTag is the string you specified in the object’s Tag property. The
other variables are used in processing the callback and are given in the
following table.

 Argument Purpose

h the handle of the object whose callback is executing

eventdata this argument is not presently used

handles the structure containing the handles of all objects in the GUI
whose names are specified by the objects’ Tag property

varargin a list of arguments that you can pass

Following is the M-File generated by GUIDE for our simple GUI. All that you
see here, until the callback subfunctions which start with a comment that has a

Figure 10.43 Our GUI in the Layout Editor.

© 2003 by CRC Press LLC

%-->

at the start, was generated by GUIDE. Yours should look very similar.

function varargout = fun_pltg(varargin)
% FUN_PLTG Application M-file for fun_pltg.fig
% FIG = FUN_PLTG launch fun_pltg GUI.
% FUN_PLTG('callback_name', ...) invoke the named callback.

% Last Modified by GUIDE v2.0 07-Aug-2002 11:14:24

if nargin == 0 % LAUNCH GUI

 fig = openfig(mfilename,'reuse');

 % Use system color scheme for figure:
 set(fig,'Color',get(0,'defaultUicontrolBackgroundColor'));

 % Generate a structure of handles to pass to callbacks, and
store it.
 handles = guihandles(fig);
 guidata(fig, handles);

 if nargout > 0
 varargout{1} = fig;
 end

elseif ischar(varargin{1}) % INVOKE NAMED SUBFUNCTION OR CALLBACK

 try
 if (nargout)
 [varargout{1:nargout}] = feval(varargin{:}); %
FEVAL switchyard
 else
 feval(varargin{:}); % FEVAL switchyard
 end
 catch
 disp(lasterr);
 end

end

%| ABOUT CALLBACKS:
%| GUIDE automatically appends subfunction prototypes to this
file, and
%| sets objects' callback properties to call them through the
FEVAL
%| switchyard above. This comment describes that mechanism.
%|
%| Each callback subfunction declaration has the following form:
%| <SUBFUNCTION_NAME>(H, EVENTDATA, HANDLES, VARARGIN)
%|
%| The subfunction name is composed using the object's Tag and
the
%| callback type separated by '_', e.g. 'slider2_Callback',
%| 'figure1_CloseRequestFcn', 'axis1_ButtondownFcn'.
%|
%| H is the callback object's handle (obtained using GCBO).
%|
%| EVENTDATA is empty, but reserved for future use.
%|
%| HANDLES is a structure containing handles of components in GUI
using

© 2003 by CRC Press LLC

%| tags as fieldnames, e.g. handles.figure1, handles.slider2.
This
%| structure is created at GUI startup using GUIHANDLES and
stored in
%| the figure's application data using GUIDATA. A copy of the
structure
%| is passed to each callback. You can store additional
information in
%| this structure at GUI startup, and you can change the
structure
%| during callbacks. Call guidata(h, handles) after changing
your
%| copy to replace the stored original so that subsequent
callbacks see
%| the updates. Type "help guihandles" and "help guidata" for
more
%| information.
%|
%| VARARGIN contains any extra arguments you have passed to the
%| callback. Specify the extra arguments by editing the callback
%| property in the inspector. By default, GUIDE sets the property
to:
%| <MFILENAME>('<SUBFUNCTION_NAME>', gcbo, [], guidata(gcbo))
%| Add any extra arguments after the last argument, before the
final
%| closing parenthesis.

%--> The following were stubbed by GUIDE, then filled
%out to implement our GUI.
% ---

function varargout = x_value_Callback(x_value, eventdata,
handles, varargin)
fun_pltg('y_fun_Callback',handles.y_fun, eventdata, handles,
varargin);

% ---

function varargout = y_fun_Callback(y_fun, eventdata, handles,
varargin)

err_ind = 0;
 eval(['x = ' get(handles.x_value,'string') ';'],'err_ind=1;');
 if err_ind == 0;
 eval(['y = ' get(y_fun,'string') ';'],'err_ind=2;');
 end
 if err_ind == 0
 plot(x,y);
 set(handles.box_check,'Value',1);
 fun_pltg('box_check_Callback',handles.box_check, eventdata,
handles, varargin);
 set(handles.grid_check,'Value',1);
 fun_pltg('grid_check_Callback',handles.grid_check,
eventdata, handles, varargin);

 set(handles.status,'string','Function Plotted');
 elseif err_ind == 1
 set(handles.status,'string','Error defining x');
 elseif err_ind == 2
 set(handles.status,'string','Error defining y(x)');
 end

© 2003 by CRC Press LLC

% ---

function varargout = grid_check_Callback(grid_check, eventdata,
handles, varargin)

gridstatus = get(grid_check,'value');
 if gridstatus == 0
 grid off
 else;
 grid on
 end
 set(handles.status,'string',...
 ['The grid is ' get(gca,'xgrid')]);

% ---

function varargout = box_check_Callback(box_check, eventdata,
handles, varargin)

 boxstatus = get(box_check,'value');
 if boxstatus == 0;
 set(gca,'box','off');
 else
 set(gca,'box','on');
 end
 set(handles.status,'string',...
 ['The box property is ' get(gca,'box')]);

10.6.6 Executing a GUI

Once you have saved your GUI, typing its name at the command prompt
will invoke it by starting the M-File. The line

fig = openfig(mfilename,'reuse');

in the GUIDE generated M-File opens the FIG-File by using openfig with the
command mfilename. The command mfilename will return the name of the
most recently run M-File, or when called from within an M-File as it is here, it
returns the name of that M-File, and so determines its own name. The option
“reuse” opens the FIG-File named, but only if a copy is not currently open; if it
is already opened it will ensure that the existing copy is still completely on
screen and visible, raising it above all other windows.

The next code segment

handles = guihandles(fig);
guidata(fig, handles);

retrieves all the handles in the figure. This is very important to understand
because you will need to able to access these handles in order to make your
uicontrols do what you want. In our example, we named the check box for
turning the axis box on or off “box_check”. The handle for that uicontrol
object is accessed by

handles.box_check

© 2003 by CRC Press LLC

Later in the code, in our y_fun_Callback, we access this uicontrol and affect it
with

set(handles.box_check,'Value',1);
fun_pltg('box_check_Callback',handles.box_check,
eventdata, handles, varargin);

Notice that we are calling our GUI within this subfunction after we have set
box_check’s Value to one; this will cause the box_check_Callback subfunction
to turn on the box around the axis.

Take some time playing with this example and notice how the callback
process is working. Later we will discuss the event queue and learn more
about how MATLAB determines what to do when in a GUI.

10.6.7 Editing a Previously Created GUI

When using GUIDE, it is good practice to select tag and filenames before
activating or saving your GUI. Undoubtedly, there will be times when you will
want to change or add to what you have done, in which case you will need to
edit your previously created GUI. Let’s say that you want to add two buttons
to the GUI you just made, one to force plotting the function, and another to
exit the GUI. You can do this readily by simply by opening the existing GUI in
GUIDE and then dropping the desired buttons in the layout area, as shown in
Figure 10.44.

� � � � � � � � � � � 	

Figure 10.44 Editing an existing GUI in GUIDE.

© 2003 by CRC Press LLC

Remember that GUIDE will automatically assign a string to any uicontrol
Tag properties if you do not specify it, and it will use that string to construct
the name of the callback functions it generates.

Additionally, when the GUI is run, a field will be added to the handles
structure with the new name, but GUIDE can not generate a new subfunction
if you change the value of a Tag property after you have saved or activated a
GUI.

The best approach to avoiding problems related to Tag property settings, is
to set Tag whenever you add new uicontrols to your GUI.

If you put buttons like that shown in Figure 10.44 in your GUI via the layout
editor, then save, GUIDE will add callback subfunctions something like,

% ---
function varargout = Exit_Button_Callback(h, eventdata,
handles, varargin)

% ---

function varargout = Plot_Now_Button_Callback(h,
eventdata, handles, varargin)

Here is the code we added to finish the Exit and Plot Now buttons:

% ---
function varargout = Exit_Button_Callback(h, eventdata,
handles, varargin)

exit_button=questdlg('Exit Now?','Exit
Program','Yes','No','No');
switch exit_button
case 'Yes'
 delete(handles.figure1)
case 'No'
 return
end

% ---
function varargout = Plot_Now_Button_Callback(h,
eventdata, handles, varargin)

fun_pltg('y_fun_Callback',handles.y_fun, eventdata,
handles, varargin);

10.7 Common Programming Desires with UI Objects
We strongly feel that the best way to learn something new is to experience

it yourself. Therefore, six examples are included in this section. These
examples illustrate the implementation of several typical desired GUI features
using the common coding techniques previously discussed. In some cases,
only the portions of the coded function that contain the important and key
features that are relevant towards achieving the GUI’s goal are presented.

�
� � � � � � � �

© 2003 by CRC Press LLC

When sections of a function have been removed, you will see a vertically
drawn ellipse (...). For a complete listing, you can visit this book’s web site.
For the most part, we have used the “Store the graphics handles in UserData”
technique so that users of older versions of MATLAB can run the routines. If
you are running one of the more modern versions of MATLAB in which
graphics objects contain the Tag property and the findobj command is
available, you may want to rewrite some of the code to practice the other
techniques.

10.7.1 Creating Exclusive Radio Buttons

Radio button uicontrol objects are usually used in a fashion that allows a
user to select from only one of the choices that a group of radio buttons offers
at a time. Typically, a radio button group is visually separated with a frame
object that encompasses the group. You might be wondering,

“How can I make a set of radio buttons mutually exclusive?”

 This is the usual question that comes up after the radio buttons have been
positioned in the GUI. In order to make a radio button group behave in a
mutually exclusive fashion, you need to provide the MATLAB code that
accomplishes this functionality. Each radio button’s CallBack property has to
be programmed as shown below (shown from parts of the gui_wave.m M-file).

function gui_wave(command_str,Argument2)
% GUI_WAVE
% examples/chap6/gui_wave.m
%
% Example of mutually exclusive radio button coding.
 .
 .
 .
if ~strcmp(command_str,'initialize')
 handles = get(gcf,'userdata');
 h_radio = handles(1:3);
end

if strcmp(command_str,'initialize')
 .
 .
 .
 % Create set of three Radio buttons.
 h_radio(1) = uicontrol(h_fig,'style','radio',...
 'callback',guiwave(''Waveform
Change'',1),...
 'string','Square Wave',...
 'position',[10 55 100 20],...
 'value',1);
 h_radio(2) = uicontrol(h_fig,'style','radio',...
 'callback',guiwave(''Waveform
Change'',2),...
 'string','Saw Tooth Wave',...
 'position',[10 30 100 20]);
 h_radio(3) = uicontrol(h_fig,'style','radio',...

© 2003 by CRC Press LLC

 'callback',guiwave(''Waveform
Change'',3),...
 'string','Sinusoidal Wave',...
 'position',[10 5 100 20]);
 handles = [h_radio];
 set(h_fig,'userdata',handles);
 .
 .
 .
elseif strcmp(command_str,'Waveform Change')
 num_buttons = length(h_radio);
 button = Argument2;
 if get(h_radio(button),'value') == 1
 set(h_radio([1:(button-
1),(button+1):num_buttons]),...
 'value',0);
 else
 set(h_radio(button),'value',1);
 end

end % END command_str comparison check.

Running gui_wave will produce the window shown in Figure 10.45.

The CallBack property of each radio button calls the gui_wave function with
two arguments. The first argument forces MATLAB to run the “Waveform
Change” section. The second argument identifies which button has been
activated (clicked on by the user). If the activated button’s Value property is
equal to one, the code will set the Value property of the other radio buttons to
zero (the off state). The reason behind this is that the Value property is
automatically toggled before the CallBack is executed when a user clicks on a
radio button. In other words, recognize that in order for the activated button’s
Value property to equal one, its Value had to be zero before being clicked on,
since the process of activation toggles the Value property in radio buttons. In
addition, this also means that one of the other radio button’s Value property
equaled one and hence all of the other radio buttons’ values are set to zero.
Furthermore, if instead the activated button’s Value property is zero (for this to

Figure 10.45 Exclusive radio buttons created with gui_wave.

© 2003 by CRC Press LLC

happen, the user had to select the button when it was already in its on state),
all we need to do is set the Value back to one so that the button remains in its
on state.

The exact same structure could be used to create mutually exclusive
checked uimenu objects. You could create the functionality for uimenus using
virtually the same code. All you need to do is change the uicontrol objects
(h_radio) to uimenu (h_menu) objects. Then instead of setting the Value
property, set the Checked property of the uimenus in the same fashion.

10.7.2 Linking Sliders and Editable Text Objects

“How do I get the value of a slider bar to show up in a text item after the user
clicks on the slider bar?”

In this section we will look at a simple example that links together an editable
text and slider uicontrol object. When the user slides the slider bar indicator,
the editable text will be updated with the new value of the slider. The user
can also type a value in the editable text uicontrol to specify a new value of
the slider bar. The indicator bar will move to the value in the editable text
after the user presses the return key or clicks the mouse button in another
window or somewhere else within the same Figure Window. Figure 10.46
shows the GUI we will create.

function gui_sldr(command_str)
% GUI_SLDR
% examples/chap10/gui_sldr.m
%
% Example of creating slider GUIs.

if nargin < 1
 command_str = 'initialize';
end

if ~strcmp(command_str,'initialize')
 handles = get(gcf,'userdata');
 h_sldr = handles(1);
 h_val = handles(2);
end
if strcmp(command_str,'initialize')

 h_fig = figure('position',[100 200 200 75],...

��
� 	

Figure 10.46 Linking text and slider controls.

© 2003 by CRC Press LLC

 'resize','off',...
 'numbertitle','off',...
 'name','Slider GUI',...
 'MenuBar','none');

 h_frame = uicontrol(h_fig,...
 'style','frame',...
 'position',[0 0 200 75]);

 h_sldr = uicontrol(h_fig,...
 'callback','gui_sldr(''Slider Moved'');',...
 'style','slider',...
 'min',-15,'max',15,...
 'position',[25 20 150 20]);

 h_min = uicontrol(h_fig,...
 'style','text',...
 'string',num2str(get(h_sldr,'min')),...
 'position',[25 45 25 20]);

 h_max = uicontrol(h_fig,...
 'style','text',...
 'string',num2str(get(h_sldr,'max')),...
 'position',[150 45 25 20]);

 h_val = uicontrol(h_fig,...
 'callback','gui_sldr(''Change Value'');',...
 'style','edit',...
 'string',num2str(get(h_sldr,'value')),...
 'position',[80 45 40 20]);

 handles = [h_sldr h_val];
 set(h_fig,'userdata',handles);
elseif strcmp(command_str,'Change Value')
 user_value = str2num(get(h_val,'string'));
 if ~length(user_value)
 user_value = (get(h_sldr,'max')+get(h_sldr,'min'))/2;
 end
 user_value = min([user_value get(h_sldr,'max')]);
 user_value = max([user_value get(h_sldr,'min')]);
 set(h_sldr,'value',user_value);
 set(h_val,'string',num2str(get(h_sldr,'value')));

elseif strcmp(command_str,'Slider Moved')
 set(h_val,'string',num2str(get(h_sldr,'value')));

end

We recommend that you practice your GUI programming skills by attempting
to alter this code so that the slider’s minimum and maximum values can also
be changed with editable text uicontrol objects. To get started, change the
h_min and h_max uicontrols to editable text objects, and store their handles in
the figure’s UserData with the other handles. Then create two more callbacks
that make the controls operate correctly.

© 2003 by CRC Press LLC

10.7.3 Editable Text and Pop-Up Menu

In some instances you may want to allow the user to add items to a pop-up
menu if the option is not already available in the pop-up menu list. This can
be done with an editable text and pop-up menu uicontrol object. In this
example, we will allow the user to change the FontSize property of a text
object by selecting a size from a pop-up-menu. If the size the user wants does
not exist, he or she can type it into the editable text object, at which point it
will be added to the list of pop-up menu choices. Depending on the size of
the symbol used in the pop-up menu on your platform, you may need to alter
the position property so that only the symbol appears when the user does not
select the pop-up menu.

function gui_size(command_str)
% GUI_SIZE
% examples/chap10/gui_size.m
%
% Example of user on-the-fly defined pop-up-menu.
if nargin < 1
 command_str = 'initialize';
end

if ~strcmp(command_str,'initialize')
 handles = get(gcf,'userdata');
 h_text = handles(1);
 h_editsize = handles(2);
 h_popsize = handles(3);
end

if strcmp(command_str,'initialize')
 h_fig = figure('position',[200 200 200 100],...
 'resize','off',...
 'name','String Sizer',...
 'numbertitle','off',...

Figure 10.47 Entering a new number will add it to the pop-up.

© 2003 by CRC Press LLC

 'MenuBar','none');

 h_ax = axes('position',[0 .5 1 .5],...
 'visible','off',...
 'xlim',[0 1],'ylim',[0 1]);

 h_text = text(.5,.5,0,'String',...
 'FontSize',10,...
 'HorizontalAlignment','center',...
 'VerticalAlignment','middle');

 h_editsize = uicontrol(h_fig,...
 'callback','gui_size(''Sized by Edit'');',...
 'style','edit',...
 'position',[70 15 30 20],...
 'string','10');

 h_popsize = uicontrol(h_fig,...
 'callback','gui_size(''Sized by Popup'');',...
 'style','pop',...
 'position',[110 15 30 20],...
 'string',' 5|10|15|20',...
 'value',2);

 handles = [h_text h_editsize h_popsize];
 set(h_fig,'userdata',handles);

elseif strcmp(command_str,'Sized by Popup')
 option_sizes = get(h_popsize,'string');
 choice = get(h_popsize,'value');
 set(h_editsize,'string',option_sizes(choice,:));
 set(h_text,'fontsize',str2num(option_sizes(choice,:)));

elseif strcmp(command_str,'Sized by Edit')
 option_sizes = str2num(get(h_popsize,'string'));
 size_choice = floor(str2num(get(h_editsize,'string')));

 % MAKE SURE THE USER'S INPUT IS A LEGAL FONT SIZE.
 if size_choice > 0
 if any(option_sizes == size_choice)
 % IF THE USER'S CHOICE EXISTS IN THE LIST, USE IT.
 choice = find(option_sizes == size_choice);
 set(h_popsize,'value',choice);

set(h_editsize,'string',num2str(option_sizes(choice)));
 set(h_text,'fontsize',option_sizes(choice));
 else
 % OTHERWISE CREATE A NEW OPTION IN THE MENU LIST,
 % PUTTING IT IN THE RIGHT SORTED POSITION.
 option_sizes = [option_sizes; floor(size_choice)];
 [new_opt_sizes,ind] = sort(option_sizes);
 choice = find(ind == length(new_opt_sizes));

 new_pop_str = sprintf('%3d',new_opt_sizes);
 new_pop_str = reshape(new_pop_str,...
 3,length(new_opt_sizes))';

 set(h_popsize,'string',new_pop_str);

© 2003 by CRC Press LLC

 set(h_popsize,'value',choice);
 set(h_editsize,...
 'string',num2str(new_opt_sizes(choice)));
 set(h_text,'fontsize',new_opt_sizes(choice));
 end
 else
 choice = get(h_popsize,'value');
 set(h_editsize,'string',num2str(option_sizes(choice)));
 end

end % END command_str comparison checks.

10.7.4 Windowed Frame and Interruptions

Previously, we learned that axes objects and axes children cannot be placed
on top of uicontrol objects. For instance, if you create a frame that covers the
entire Figure Window and then create a plot, you will not be able to see the
plot. Therefore, it would be nice to create a window in a frame object
through which the plot could be seen. Unfortunately, there is no way to cut a
hole in a frame object. The solution is to create four static text objects that are
positioned to cover the regions around the desired location of the window.
The only purpose such a “simulated windowed frame” serves is purely for
aesthetic reasons, which can be important in certain situations. In the next
example we will create the GUI shown in Figure 10.48.

In addition to creating the windowed frame, this example will also show
how you can interrupt an object’s CallBack. This question comes up a great
deal, and quite often there is an alternative means of getting the task
accomplished without resorting to interrupting a CallBack. However, in some
cases allowing interrupts is the easiest solution. In this example, the user will

Figure 10.48 Creating a user interruptible animation GUI.

© 2003 by CRC Press LLC

be able to rotate the cube by clicking the “Rotate” push button. The user can
also change the direction in which the cube rotates and the axis around which
it rotates either before or while the cube is rotating. The cube will rotate for
720° and then come to a rest until the push button is once again selected.

function gui_wind(command_str)
% GUI_WIND
% examples/chap10/gui_wind.m
%
% Example of creating windowed GUIs.

if nargin < 1
 command_str = 'initialize';
end

if ~strcmp(command_str,'initialize')
 handles = get(gcf,'userdata');
 h_cube = handles(1);
 h_dir = handles(2);
 h_xrot = handles(3);
 h_yrot = handles(4);
end
if strcmp(command_str,'initialize')

 h_fig = figure('position',[100 200 300 250],...
 'resize','off',...
 'numbertitle','off',...
 'name','Windowed GUI',...
 'MenuBar','none');

 h_s(1) = uicontrol('style','text',...
 'position',[0 0 1 .25],...
 'units','normalized');
 h_s(2) = uicontrol('style','text',...
 'position',[0 0 .1 1],...
 'units','normalized');
 h_s(3) = uicontrol('style','text',...
 'position',[0 .9 1 .1],...
 'units','normalized');
 h_s(4) = uicontrol('style','text',...
 'position',[.9 0 .1 1],...
 'units','normalized');
 h_push = uicontrol(h_fig,...
 'style','pushbutton',...
 'position',[.1 .05 .2 .15],...
 'units','normalized',...
 'string','Rotate',...
 'interruptible','on',...
 'callback','gui_wind(''Rotate'');');

 h_dir = uicontrol(h_fig,...
 'style','checkbox',...
 'position',[.32 .07 .25 .11],...
 'units','normalized',...
 'string','Clockwise',...
 'value',1,...
 'callback','gui_wind(''Change
Rotation'');');

© 2003 by CRC Press LLC

 h_xrot = uicontrol(h_fig,...
 'style','checkbox',...
 'position',[.6 .02 .35 .11],...
 'units','normalized',...
 'string','X-Rotation Axis',...
 'callback','gui_wind(''Change
Rotation'');');
 h_yrot = uicontrol(h_fig,...
 'style','checkbox',...
 'position',[.6 .13 .35 .11],...
 'units','normalized',...
 'string','Y-Rotation Axis',...
 'callback','gui_wind(''Change
Rotation'');');

 h_ax = axes('position',[.1 .25 .8 .65],...
 'userdata',0);

 x = [0 1 1 0 0 0 1 1 0 0 NaN 1 1 NaN 1 1 NaN 0 0];
 y = [0 0 1 1 0 0 0 1 1 0 NaN 0 0 NaN 1 1 NaN 1 1];
 z = [0 0 0 0 0 1 1 1 1 1 NaN 1 0 NaN 0 1 NaN 1 0];
 h_cube = line(x-0.5,y-0.5,...

z-0.5,'erasemode','background');
 axis('square');
 axis([-1 1 -1 1 -1 1]*1.5);
 axis('off')
 view(-37.5,15);

 handles = [h_cube h_dir h_xrot h_yrot];
 set(gcf,'userdata',handles);

elseif strcmp(command_str,'Change Rotation')
 direction = sign(get(h_dir,'val')-.5);
 rotation_axis = [get(h_xrot,'value') ...
 get(h_yrot,'value')1];
 set(gca,'userdata',[1 direction rotation_axis]);

elseif strcmp(command_str,'Rotate')
 rotation_increment = 5*sign(get(h_dir,'value')-.5);
% degrees
 rotation_axis = [get(h_xrot,'value') ...
 get(h_yrot,'value')1];
 rotation_origin = [0 0 0];
 num_of_incr = 720;
 angle_swept = 0;
 rotate_counter = 0;
 while abs(angle_swept) < 720
 rotate(h_cube,rotation_axis,...
 rotation_increment,rotation_origin);
 rotate_counter = rotate_counter + 1;
 angle_swept = angle_swept + rotation_increment;
 if rotate_counter > 5
 command_issued = get(gca,'userdata');
 if command_issued(1) > 0
 rot_dir = command_issued(2);
 rotation_increment =
abs(rotation_increment)*rot_dir;

© 2003 by CRC Press LLC

 rotation_axis = command_issued(3:5);
 set(gca,'userdata',0);
 end
 rotate_counter = 0;
 end
 drawnow;
 end
end

The three check boxes all execute gui_wind('Change Rotation') and the
push button executes gui_wind('Rotate'). If the Interruptible property of the
push button had not been set to “on”, the object would rotate in the direction
and about the axis determined by the state of the check boxes at the moment
the user activated the push button and would remain unaffected by any user
actions during the course of its execution. However, since the Interruptible
property was set to “on”, the user can click any of the check boxes which will
cause the current axes UserData property to be altered with the new inputs.
Since the current axes UserData property is polled once every six passes
through the while loop, the user's actions can be recognized and the
appropriate changes in the direction and axis of rotation can be made.

10.7.5 Toggling Menu Labels

MATLAB provides the opportunity to change your pull-down menu labels
“on-the-fly.” Since the CallBack of a menu bar title or submenu title is
executed before the menu items are displayed to the user, your code can
change the attributes of the menu items before they are displayed. The menu
bar that is created with the code below does nothing except illustrate a
capability. A set of different menu items will be made available to the user
that depend on the manner in which he or she last clicked in the Figure
Window. The different types of clicks are a normal single click, a quick double
click, a shift-click (press the shift key before clicking), and a control-click (press
the control key before clicking).

function [name] = gui_togm(command_str)
% GUI_TOGM
% examples/chap10/gui_togm.m
%
% Example of a GUI that toggles menus.

if nargin < 1
 command_str = 'initialize';
end

if ~strcmp(command_str,'initialize')
 handles = get(gcf,'userdata');
 h_menu_opt = handles(1);
 h_menu = handles(2:4);
end

if strcmp(command_str,'initialize')

 h_fig = figure('position',[200 200 200 50],...
 'resize','off',...

© 2003 by CRC Press LLC

 'numbertitle','off',...
 'menubar','none');
 h_menu_opt = uimenu('label','Options',...
 'callback','gui_togm(''Set Menu Labels'');');
 h_menu(1) = uimenu(h_menu_opt,'label','Properties...');
 h_menu(2) =
uimenu(h_menu_opt,'label','','visible','off')
 h_menu(3) = uimenu(h_menu_opt,'label','',...
 'visible','off');

 handles = [h_menu_opt,h_menu];
 set(gcf,'userdata',handles);
 gui_togm('Set Menu Labels');

elseif strcmp(command_str,'Set Menu Labels')
 seltyp = get(gcf,'selectiontype');
 if strcmp(seltyp,'normal')
 set(h_menu(1),'label','Properties','visible','on');
 set(h_menu(2),'label','','visible','off');
 set(h_menu(3),'label','','visible','off');
 elseif strcmp(seltyp,'alt')
 set(h_menu(1),'label','Alternate Properties',...
 'visible','on');
 set(h_menu(2),'label','Delete Alternates',...
 'visible','on');
 set(h_menu(3),'label','Copy Alternates',...
 'visible','on');
 elseif strcmp(seltyp,'extend')
 set(h_menu(1),'label','Cut','visible','on');
 set(h_menu(2),'label','Copy','visible','on');
 set(h_menu(3),'label','Paste','visible','on');
 elseif strcmp(seltyp,'open')
 set(h_menu(1),'label','Open 1','visible','on');
 set(h_menu(2),'label','Open 2','visible','off');
 set(h_menu(3),'label','Open 3','visible','on');
 end
end

10.7.6 Customizing a Button with Graphics

You are not limited to buttons in MATLAB that only have text on them. You
can take advantage of a button’s CData property to place your own custom
graphic on the button. This can be very useful by making the button more eye-
catching or even convey information itself. All you need to do to put a graphic
on a button is to provide an image in RGB form as the value of the CData
property. The most challenging part of this is actually getting the appropriate
image you want to put on the button. Most likely, you will generate this image
with your own favorite image editing software; however, in this example, we
will generate an image from a MATLAB plot and use that to adorn our button.

First let’s create an plot to make our image. We can make one quickly with
MATLAB’s membrane function:

membrane

© 2003 by CRC Press LLC

Next we can grab a snapshot of the plot that will eventually become our
button image.

F=getframe(gcf)

will get the snapshot and store an M-by-N-by-3 (RGB) image in F.cdata.
(F.colormap is also created by getframe but is empty on systems that support
true color.)

At this point we will go ahead and create our button.

h_fig=figure('Position',[100 100 200 200],...
 'menubar','none')
h_button = uicontrol('style','pushbutton',...
 'tooltipstring','bitmap on a button',...
 'position',[30 70 140 125])

From here we see that our image needs to be no more than 140-by-125. If
we type

size(F.cdata)

we see that the image is 420-by-560. If we use f.cdata as it is, our button will
only show a portion of the image, so we need to scale the image in some way.
The following code will (crudely) scale the image by simply throwing out a
number of rows and columns as specified.

scale=4;
[m n p]=size(f.cdata);
rows = 1:scale:m;
X=f.cdata(rows,:,:);
cols = 1:scale:n;
bimage=X(:,cols,:);

results in an image bimage that is 105-by-140, which will do.

Now all that is needed to do is to set the button’s CData property with the
RGB image bimage.

set(h_button,'Cdata',bimage);

Figure 10.49 shows the result.

© 2003 by CRC Press LLC

Placing images on buttons has a lot of possibilities. By having a callback
change a button’s CData, you can have the image on the button change
dynamically. For instance, you might do this where the button shows the next
image (like a thumbnail) to be displayed.

10.8 The MATLAB Event Queue
The intent of a GUI is to provide the user with a means of interacting with

an application. A user’s actions are not predictable, and therefore the interface
must be programmed to react appropriately to an undetermined number and
order of sequential events. When a user clicks the mouse button or moves the
pointer in an interface that has a lot of features and capabilities, many different
callbacks can be triggered. In addition to user-induced events, there are also
MATLAB commands that trigger events. Having knowledge about the order
and the circumstances in which the callbacks are scheduled is very important
when deciding on how to program a GUI.

10.8.1 Event Scheduling and Execution

The events that will be discussed in this section are the user-invoked events
such as the mouse click, up and down, and mouse pointer motion. Since a
single action such as a click could trigger several callbacks (the Window-
ButtonDownFcn, WindowButtonUpFcn, CallBack, and Button-DownFcn of any
graphics object that exists below the region that was clicked on), these events
need to be scheduled. In addition to evaluating and processing the actual
callback string, MATLAB also needs to update all the properties that store
information about the action. All of the actions that MATLAB needs to
perform are placed in what will be called an “event queue” so that they can be
acted on in a logical and consistent order. Once the callback event queue has
been formed, additional user actions that attempt to schedule a set of new
callbacks are ignored unless the Interruptible property has been manipulated.
For simplicity, right now we will assume that the callbacks are not interruptible.

During execution of an individual callback string, for efficiency, MATLAB
stores all events that affect the appearance of any or all graphics on the

Figure 10.49 A plot image mapped to a button.

© 2003 by CRC Press LLC

screen, so that they can be executed at once. These events are stored in what
will be called a “graphics event queue.” The events in the graphics event
queue are evaluated and are only updated under the following circumstances:

• all callbacks in the “callback queue” are finished executing and
control is passed back to the command line

• a drawnow command is encountered

• a figure command is executed

• a getframe command is executed

• execution is temporarily halted because a pause

 waitforbuttonpress, or input command is issued.

In the event that a drawnow discard command is evaluated, the graphics
event queue will be flushed (cleared) so that none of the graphics commands
that were in the queue will be drawn on the screen. This does not mean that
if one of the commands in the event queue is to set an existing graphics
object’s property that changes that object’s appearance, the set command is
not issued. Rather, the appearance will just not be displayed on the screen
until a command that forces the figure to be redrawn is issued, such as refresh
or another plotting command.

10.8.2 Execution Order of Events

The order in which graphics object information is updated and callbacks are
evaluated can be seen in the flow charts found in the next several sections.
The best way to learn is to write a little script and experiment with the different
possibilities by clicking and dragging in different parts of the two figures. The
following code is provided to you just for that.

h_fig_1 = figure('position',[100 100 100 100],...
 'menubar','none',...
 'windowbuttondownfcn','disp(''Fig1 WBDF'')',...
 'windowbuttonupfcn','disp(''Fig1 WBUF'')',...
 'windowbuttonmotionfcn',...
 'disp(''Fig1 WBMF'')',...
 'buttondownfcn','disp(''Fig1 BDF'')');
h_ui = uicontrol('style','pushbutton',...
 'position',[25 25 50 50],...
 'callback','disp(''UI CallBack'')',...
 'buttondownfcn','disp(''UI BDF'')');
h_fig_2 = figure('position',[200 100 100 100],...
 'menubar','none',...
 'windowbuttondownfcn','disp(''Fig2 WBDF'')',...
 'windowbuttonupfcn','disp(''Fig2 WBUF'')',...
 'windowbuttonmotionfcn',...
 'disp(''Fig2 WBMF'')',...
 'buttondownfcn','disp(''Fig2 BDF'')');

© 2003 by CRC Press LLC

10.8.2.1 Mouse Button Pressed Down

When the user presses the mouse button down within the area defined by a
figure's boundaries, MATLAB processes the following sequence of actions.

See “Button Release”
flow diagram.

Is the
pointer
over a

uicontrol?

MATLAB determines and updates:
figure’s CurrentPoint & SelectionType

Execute figures WindowButtonDownFcn.

Execute the current object’sButtonDownFcn.

The current object is placed at the top of
the stacking order.

MATLAB determines and updates:
root’s CurrentFigure,
figure’s CurrentObject*

*this can include the figure itself.

User
Presses
Mouse
Button

Yes

No

As is noted in the diagram, in the event that the user clicks the mouse down
over an uicontrol button, the appearance of the uicontrol may change;
however, the CallBack is not evaluated until the mouse button is released over
that uicontrol. This gives the user the opportunity to back out of an accidental
choice by moving the mouse away from the uicontrol and releasing the button
over another region of the figure.

© 2003 by CRC Press LLC

10.8.2.2 Mouse Button Released

When the user releases the mouse button within the area defined by a
figure’s boundaries, MATLAB processes the following sequence of actions:

Is the
pointer
over a

uicontrol
?

Was
the pointer

originally pressed
over this
control?

?

Was
the pointer

originally pressed
over a

control?
?

Update figure’s CurrentPoint.
Execute WindowButtonUpFcn.

Update figure’s CurrentPoint.
Execute uicontrol’s Callback.

Update figure’s CurrentPoint.
Execute WindowMotionFcn.

User
Releases
Mouse
Button

Yes No

No No

Yes Yes

The WindowButtonMotionFcn can be executed at the time a mouse button
is released under the circumstance indicated by the flow diagram. It occurs
only if the WindowButtonMotionFcn is defined. If the user clicks down in one
figure and then moves over to another figure before releasing the mouse
button, the WindowButtonUpFcn property of the figure in which the mouse
was clicked down will be evaluated. The other figure that the pointer was
moved into will not have its WindowButtonUpFcn evaluated, but its
WindowButtonMotionFcn will be evaluated. In other words, in order for the
WindowButtonUpFcn to be evaluated, the mouse button has to be pressed
down in that figure.

10.8.2.3 Mouse Pointer Moved

When the user moves the mouse pointer within the area defined by a
figure’s boundaries, MATLAB processes the sequence of actions shown in the
following figure. This is true only if the WindowButtonMotionFcn is defined for
that figure. If it is not defined, MATLAB does not waste time updating the

© 2003 by CRC Press LLC

figure’s CurrentPoint and the root’s PointerLocation and PointerWindow
properties until they are requested.

User

Moves
Mouse
Pointer

Update figure’s CurrentPoint.
Update root’s PointerLocation & PointerWindow.

Execute WindowButtonMotionFcn.

If the mouse button is pressed and held down while the pointer is moved
into a figure whose WindowButtonMotionFcn properties are also defined, only
the WindowButtonMotionFcn of the figure that the mouse was pressed down
in will be evaluated. If the mouse is not held down and the user moves the
mouse into a different figure, normal operation will ensue. In other words,
MATLAB will evaluate the WindowButtonMotionFcn for the figure in which the
pointer is located.

Each slight movement of the mouse is an action event that can schedule a
WindowButtonMotionFcn callback. Since the number of these events that are
processed in a given amount of time depends on your machine’s speed and
the rate at which the mouse pointer is being moved across the screen,
MATLAB evaluates only the most recent WindowButtonMotionFcn callback;
the rest are discarded, otherwise a machine could become seriously bogged
down in evaluating callbacks.

10.8.3 Interruptible vs. Uninterruptible

One of the properties found in every single graphics object is the
Interruptible property. By default, this property is set to “on”, which means
that if an object’s callback is being evaluated (no matter where it is defined:
CallBack, ButtonDownFcn, WindowButtonDownFcn, etc.), it can be interrupted
by any other object’s callback. It is useful to set this property to “off” when
you want to ignore all user-invoked actions (mouse clicks or pointer
movement) that may occur while a MATLAB program is being executed.

There are many situations in which you want the user to be able to interrupt
a callback. For example, if you would like to program the CallBack of an
uicontrol, let’s say button A, to bring up another GUI that the user must
respond to before button A’s CallBack can be completed, you will want to
keep A’s Interruptible property set to “on”.

In the example GUI provided in Section 10.7.4, we saw that while an
animation was running, the user could manipulate the uicontrols and see an
immediate effect on the animation. This was because the push button that

© 2003 by CRC Press LLC

started the simulation (i.e., the one labeled “Rotate”) has its Interruptible
property set to “on”.

In order to interrupt an object’s callback, there are two requirements

1. The object’s Interruptible property must be set to “on” (the default).

2. The callback must contain a drawnow, getframe, figure, input,
pause, or waitforbuttonpress (actually, any of the waitfor…)
command.

There are situations where it does not matter what you have set the
Interruptible property to and the executing callback will be interrupted any
way; these are:

1. when the interrupting callback is a DeleteFcn or CreateFcn callback

 or

2. when a figure is executing a CloseRequest or ResizeFcn callback

10.8.4 Common Mouse Action Examples

There are a couple of examples that we can offer to teach and reinforce
some of the ideas learned in this section. First, we will demonstrate a
capability that allows the user to use the mouse button to move and resize
objects, such as text and axes objects, so that the changes do not need to be
made at the command line before printing out a hard copy of a figure. The
second is being able to create a dynamic box when the user clicks and drags
the mouse. Both of these examples were presented in a similar fashion in the
earlier editions of this book, and although modern MATLAB provides some
functions, e.g., selectmoveresize and dragrect, and the figure property
WindowStyle, we still feel that these examples are educational and will help in
understanding the event queue and the nature of mouse-related operations.

10.8.4.1 Moving Objects with the Mouse

Although you can easily move text in a plot using the plot editing mode in
the Figure Window, here we are going to develop a function that allows you
to move any graphics objects with the mouse. When the user clicks the
mouse, we determine the current object’s Type property, and then set the
WindowButtonMotionFcn and WindowButtonUpFcn properties appropriately
to allow the user to move the selected object. The user is notified that the
object has been selected by a box that appears when the Selected property is
set to “on”. In addition, the type of operation (move/resize) is identified by
the pointer type. The task of programming such a routine relies on knowing
the points where position and location data is measured with respect to, and
structuring a function to respond to, the user’s actions as summarized in Figure
10.50.

© 2003 by CRC Press LLC

function mvrs_obj(command_str,Argument);
% MVRS_OBJ
% chap10/mvrs_obj.m
%
% Used to move and resize axes objects
% and move text objects.
% Start capability by issuing
% mvrs_obj
% Then click and hold and drag to
% move an object (axes objects will be
% moved from lower-left corner).
% To resize an axes object hold the control
% or alt key before click hold and dragging
% near desired corner of axes object.

global CUR_OBJ CUR_OBJ_TYPE FIX_PT

if nargin == 0
 command_str = 'initialize';
end
if strcmp(command_str,'initialize')
 set(gcf,'windowbuttondownfcn','mvrs_obj(''Set Up'')');
elseif strcmp(command_str,'Set Up')
 CUR_OBJ = get(gcf,'currentobj');
 if CUR_OBJ ~= gcf
 CUR_OBJ_TYPE = get(CUR_OBJ,'type');

 if strcmp(get(gcf,'selectiontype'),'normal')
 % SET UP MOVING OBJECT ROUTINE
 set(gcf,'pointer','fleur');
 if strcmp(CUR_OBJ_TYPE,'text')

Root (Screen) PointerLocation

Figure

CurrentPoint

Axes
CurrentPoint

Mouse Pointer

Figure 10.50 The root, figure, and axes objects keep track of the
pointer’s location.

��
� � � �
 �

© 2003 by CRC Press LLC

 set(CUR_OBJ,'erasemode','xor');
 elseif strcmp(CUR_OBJ_TYPE,'axes')
 set(gcf,'units','pixels');
 set(0,'units','pixels');
 set(CUR_OBJ,'units','pixels');
 cur_obj_loc = get(CUR_OBJ,'position');
 fig_pos = get(gcf,'position');
 set(0,'pointerlocation',fig_pos(1:2)+...
 cur_obj_loc(1:2));
 end

 set(gcf,'windowbuttonupfcn','mvrs_obj(''Done'')');
 set(gcf,'windowbuttonmotionfcn',...
 'mvrs_obj(''Move Object'')');
 set(CUR_OBJ,'selected','on');
 elseif strcmp(get(1,'selectiontype'),'alt')
 % SET UP RESIZE OBJECT
 if strcmp(CUR_OBJ_TYPE,'axes')
 set(gcf,'units','pixels');
 set(0,'units','pixels');
 set(CUR_OBJ,'units','pixels');
 cur_obj_loc = get(CUR_OBJ,'position');
 fig_pos = get(gcf,'position');
 corner_loc = [cur_obj_loc(1:2); ...
 cur_obj_loc(1:2)+...
 [0 cur_obj_loc(4)];...
 cur_obj_loc(1:2)+...
 [cur_obj_loc(3) 0];...
 cur_obj_loc(1:2)+...
 cur_obj_loc(3:4)];
 corner_loc_scrn =...
 [corner_loc(:,1)+fig_pos(1) ...
 corner_loc(:,2)+fig_pos(2)];
 scrn_pnt_loc = get(0,'pointerlocation');
 [dumval,min_ind] = ...
 min(sum((([corner_loc_scrn-ones(4,1)*...
 scrn_pnt_loc]).^2)'));
 if min_ind == 1;
 FIX_PT = corner_loc(4,:);
 elseif min_ind ==2;
 FIX_PT = corner_loc(3,:);
 elseif min_ind ==3;
 FIX_PT = corner_loc(2,:);
 elseif min_ind ==4;
 FIX_PT = corner_loc(1,:);end
 set(0,'pointerlocation',...
 corner_loc_scrn(min_ind,:));

 set(gcf,'windowbuttonupfcn',...
 'mvrs_obj(''Done'')');
 set(gcf,'windowbuttonmotionfcn',...
 'mvrs_obj(''Resize Object'')');
 set(CUR_OBJ,'selected','on');

 end
 end
 end
elseif strcmp(command_str,'Move Object')

© 2003 by CRC Press LLC

% CALLBACK FOR WHEN THE POINTER IS MOVED AND THE
% OPERATION GOAL IS TO MOVE AN OBJECT
 if strcmp(CUR_OBJ_TYPE,'text')
 cur_pnt_loc = get(get(CUR_OBJ,'parent'),...
 'currentpoint');
 set(CUR_OBJ,'position',cur_pnt_loc(1,:));
 elseif strcmp(CUR_OBJ_TYPE,'axes')
 cur_obj_loc = get(CUR_OBJ,'position');
 cur_pnt_loc = get(gcf,'currentpoint');
 new_obj_loc = [cur_pnt_loc cur_obj_loc(3:4)];
 set(CUR_OBJ,'position',new_obj_loc);
 end

elseif strcmp(command_str,'Resize Object')
% CALLBACK FOR WHEN THE POINTER IS MOVED AND THE
% OPERATION GOAL IS TO RESIZE AN OBJECT
 if strcmp(CUR_OBJ_TYPE,'axes')
 curr_pnt = get(gcf,'currentpoint');
 relloc = curr_pnt > FIX_PT;
 if all(relloc == [0
0]),set(gcf,'pointer','botl');
 elseif all(relloc == [0
1]),set(gcf,'pointer','topl');
 elseif all(relloc == [1
0]),set(gcf,'pointer','botr');
 elseif all(relloc == [1
1]),set(gcf,'pointer','topr');
 end
 new_pos = [min([curr_pnt ;FIX_PT]),...
 max([abs(curr_pnt-FIX_PT);[1 1]])];
 %keyboard
 set(CUR_OBJ,'position',new_pos);
 end

elseif strcmp(command_str,'Done')
% OPERATION GOAL HAS BEEN COMPLETED SINCE
% USER RELEASED THE MOUSE
 if strcmp(CUR_OBJ_TYPE,'text')
 set(CUR_OBJ,'erasemode','normal');
 elseif strcmp(CUR_OBJ_TYPE,'axes')
 set(CUR_OBJ,'units','normalized');
 end
 set(CUR_OBJ,'selected','off');
 set(gcf,'pointer','arrow');
 set(gcf,'windowbuttonupfcn','');
 set(gcf,'windowbuttonmotionfcn','')
end

To test or try out this routine, create a simple plot and a text object like

plot(1:10)
text(5,5,'Test String');

then activate the moving and resizing feature with

mvrs_obj

© 2003 by CRC Press LLC

Look at how the resize object feature is incorporated into the program. As an
assignment try putting in the functionality that allows you to move uicontrol,
line, and patch objects as well. You could also set the ButtonDownFcn of the
objects (axes and uicontrol objects only) that you want to be able to
interactively move to the function selectmoveresize. For example, to be able
to move all text around, type

set(gca,'buttondownfcn','selectmoveresize');

Then, after altering the object, set the same property to an empty string so that
you don’t accidentally move something you don’t want to move.

10.8.4.2 Dynamic Boxes Using the RBBOX Function

In some situations, you may want to add a feature that allows the user to
click and drag out a dynamic and temporary box for the purpose of selecting
objects or identifying regions of a figure. Usually this box is drawn from the
location at which the mouse button was first pressed to the current location of
the mouse pointer. After the mouse button is released, the box disappears.
This is what the code below implements.

function [rect] = dragbox(unitsval)
% DRAGBOX
%
% Usage:
% [rect] = dragbox(units_string);
% where,
%
% rect: is the RECT vector over which the
% drag box is defined ([left bottom width
height]).
% units_string: is a string containing the name
% of any of the legal units that
% the figure can have.
%
% Example
% figure
% [rect] = dragbox('normalized')
% Wait for mouse button to be pressed.
waitforbuttonpress;

% Determine figure and get its Units.
h_fig = gcf;
original_figunits = get(h_fig,'Units');

% Specify Pixels for units and get location at
% which mouse button is pressed.
set(h_fig,'Units','Pixels');
firstpoint = get(h_fig,'CurrentPoint');

% Create the drag box.
rbbox([firstpoint 0 0],firstpoint);

% Get the location at which button is released.
lastpoint = get(h_fig,'CurrentPoint');

��
� � � �
 �

© 2003 by CRC Press LLC

% Calculate a standard rect vector from two locations.
rect = [min(firstpoint,lastpoint),abs(firstpoint-
lastpoint)];

% Normalize the rect vector to the figure.
figpos = get(h_fig,'Position');
rect = rect./[figpos(3:4) figpos(3:4)];

% Put the rect vector in the specified units.
if nargin == 0
 unitsval = original_figunits;
end

if ~strcmp(lower(unitsval(1)),'n')
 set(h_fig,'Units',unitsval);
 figpos = get(h_fig,'Position');
 rect = rect.*[figpos(3:4) figpos(3:4)];
end

% Put the figure back in the original units.
set(h_fig,'Units',original_figunits);

To test out this routine, type

figure;
rect = dragbox;

and then click and drag in the Figure Window. After you have established the
size of the box just dragged out, move it around by typing

set(gcf,'buttondownfcn','dragrect(rect)')

and once again clicking and dragging in the Figure Window.

10.9 Creating Custom User Interface Components
With the virtually boundless graphics capabilities of low-level MATLAB

programming, if you happen to find that the standard set of MATLAB user
interface objects does not suit all of your needs, or if you just want to spice up
your GUI and make it more interesting, you can always create your own
interface objects. In this section, we will look at creating two custom user
interface objects. If you follow along and understand how these operate, you
should then be able use your imagination and create just about any type of
interface object you want. The key to designing functional interface or display
objects is to make use of your knowledge of the available tools (i.e., the
properties of the objects and different types of events that can be recognized).
There is never one best solution. Therefore, some of the techniques that we
have been able to successfully use will be presented. Also bear in mind that
these examples are coded for clarity and you might be able to make enhances
that use MATLAB more efficiently.

Most of the techniques we will show here rely heavily on the
ButtonDownFcn of a graphics object. When the user clicks the mouse on the
object, that object’s ButtonDownFcn callback will be evaluated. Since all

� � � � � �

© 2003 by CRC Press LLC

graphics objects have this property, you can make an interface with any one
you want. For example, you could easily make one out of text object with

figure;
axes('xlim',[0 1],'ylim',[0 1],'visible','off');
callback_str = ['set(gco,''position'',[rand(1,2) 0]);'];
text(.5,.5,0,'Click on Me','buttondownfcn',callback_str);

and you have a little game that you can play for hours on end. Like trying to
swat a fly, every time you click on the text object it will move to some new
and random location.

If a 2-dimensional looking flat button suits your needs, create an interface
with a patch and text object. However, if that’s all you need, you should
probably stick with the uicontrol objects since they are easy to program and
look a lot better than any patch/text object combination. Also, remember that
you can put pictures on your buttons by using the button’s CData (See Section
10.7.6). Of course, the patch object doesn’t need to be a simple square; in
fact, you can create any shape you need and turn it into a button. That in itself
may already provide the feature you wanted that uicontrols and uimenus
could not offer, so that is the first custom component we will demonstrate.

10.9.1 Simulating Buttons with Image Objects

The easiest way to create your own custom 3-dimensional-looking push
buttons is to create two images positioned in the same location (i.e., one on
top of the other). One represents the appearance of the button in its “off”
state and the other represents its appearance in the “on” state (i.e., when the
user clicks on the object). Remember that you can achieve similar results by
using the CData property of a uicontrol object (see Section 10.7.6); however,
to create non-standard shaped buttons, you still will need to do something like
the method described next.

Usually the hardest or most time-consuming aspect of creating these types
of buttons is generating the images. This can be done several ways and you
will have to experiment and find the one that works best for you.

1. You can create your own image and color map matrix by typing in the

numbers that represent indices to the map of RGB values you have
specified. This is probably the most time-consuming and most difficult
method because you have to make a mental image of what the
numbers represent, but it can be done. Another option is to use an
image that is already in RGB format, perhaps created in some image
editing software; if you have a color mapped format image you could
use something like makergb (see section 5.3.3) to create the data for
your button.

2. You can piece together axes, patch objects, text, and anything else

you want. Size the object the way you want it and then take an
image snapshot with F = getframe. When used in this manner
getframe will return a structure in F where F.cdata is an M-by-N-by-3
snapshot. (If your computer does not support truecolor, you will get

© 2003 by CRC Press LLC

data in F.colormap.) Alter the colors to represent the figure in its
opposite state and take another snapshot. Combine the two color
maps so that both image objects can be shown simultaneously
without color distortion (see example below). To use this technique,
you must be able to have multiple software packages up on your
machine (i.e., MATLAB and your favorite drawing package). Use your
favorite software drawing package and create the button icons. Then
use X = getframe(reference_fig, capture_rectangle), where
reference_fig is the handle to a figure that is purely used as a location
reference point and capture_rectangle is a [left bottom width height]
vector that defines the region that will be captured with respect to the
lower left corner of the reference_fig figure. If you position the
drawing package window in a way so that you can see the icons even
when you are in MATLAB, you can experimentally determine the
correct capture_rectangle vector which captures the portion of the
button icons you want. Execute the getframe command and then see
what you captured by typing

image(X);
colormap(X.colormap); %only if X not truecolor (RGB)

In the next example, we will use the following code to help generate the
two images shown in Figure 10.51. To achieve a 3-dimensional look, we use
light and dark shades of a particular color. Decide on a corner from which it
should appear that a light source is located with respect to the button. The
two sides adjacent to this corner should use light shading for the button’s up
state image and a dark shading for the button’s down state. The opposite two
sides can use a thin dark border for the button’s up state and a lighter border
in the button’s down state. Choosing the shaded edge’s relative thickness in
the two button states is useful, too; your personal preferences and creativity
will guide you.

h_fig=figure('position',[100 100 50 50],...
'color',[.8 .8 .8],...
'menubar','none');
axes('position',[0 0 1 1],...
 'xlim',[0 1],'ylim',[0 1],...
 'visible','off');
p = patch([.08 .08 1 1],[0 .92 .92 0],...
 [0 0 0 0],[0 0 0 0],'facecolor',[.6 .6 .6],...
 'edgecolor','none') ;
patch(.2*cos(linspace(0,2*pi,4))+.3,...
 .2*sin(linspace(0,2*pi,4))+.3,...
 ones(1,4), ones(1,4),....
 'facecolor',[0 0 0]);% Create triangle
patch(.2*cos(linspace(0,2*pi,6))+.7,...
 .2*sin(linspace(0,2*pi,6))+.4,...
 ones(1,6), ones(1,6),...
 'facecolor',[0 0 0]); % Create pentagon
patch(.1*cos(linspace(0,2*pi,15))+.5,...
 .1*sin(linspace(0,2*pi,15))+.7,...
 ones(1,15), ones(1,15),...
 'facecolor',[0 0 0]);% Create circle

© 2003 by CRC Press LLC

l = line([0.08 1 1],[0 0 .92],[2 2 2],'linewidth',2,...
 'color',[.3 .3 .3]);
% This clears the map so that getframe only
% captures what is required.
set(h_fig,'colormap',[]);
Xup=getframe(h_fig);% On State Image
set(gcf,'color',[.2 .2 .2]);
set(p,'facecolor',[.4 .4 .4]);
set(l,'color',[.8 .8 .8]);
Xdw=getframe(h_fig);% Off State Image

Combine the two maps so that you will be able to use the two images in the
same figure without distorting their colors:

mapupdwn = [mapup;mapdw];

You will now have the two buttons shown in Figure 10.51.

Now you have developed a pair of images that you can save for future use.

save shapeimg Xdw.cdata Xup.cdata mapupdwn

To create a button that will toggle between the states represented by the
above two images, use something like the following:

load shapeimg
figure('position',[100 100 100 100],...
 'menubar','none',...
 'colormap',mapupdwn);
axes('position',[.2 .2 .6 .6],...
 'visible','off','ydir','reverse',...
 'xlim',[0 size(Xup.cdata,2)],'ylim',[1
size(Xup.cdata,1)]);
hold on
image_up = image(Xup.cdata);
image_down = image(Xdw.cdata);
set(image_up,'userdata',image_down,...
 'buttondownfcn',['set(get(gco,''userdata'')'...
 ',''visible'',''on'');' ...
 'set(gco,''visible'',''off'')']);
set(image_down,'userdata',image_up,...
 'visible','off',...
 'buttondownfcn',['set(get(gco,''userdata'')'...
 ',''visible'',''on'');'...
 'set(gco,''visible'',''off'')']);

Figure 10.51 Up and Down custom buttons using images.

© 2003 by CRC Press LLC

Since the ButtonDownFcn is a little difficult to read when it is placed into a
string, this code is presented below, as it would exist as actual MATLAB code
in a program.

set(get(gco,'userdata'),'visible','on');
set(gco,'visible','off');
% Here is where you would tack on any additional
% code that you want executed when this button is
% toggled.
 .
 .
 .

To make the button act more like a push button in the sense that the off
state is maintained only while the user holds down the button, all you need to
do is add the following line (assuming that the button is in the state in which
you want it to normally remain when you set the WindowButtonUpFcn
property).

set(gcf,'windowbuttonupfcn',...
 ['set(gco,''visible'',''on'');' ...
 'set(get(gco,''userdata''),''visible'',''off'')']);

This single line will work even if you have several custom buttons in the
interface. However, it is usually a good idea to make a button quickly set the
WindowButtonUpFcn it requires when the button down occurs. Continue
with the above example by making the ButtonDownFcn set the
WindowButtonUpFcn. In addition, have the WindowButtonUpFcn clear itself
after it has been evaluated. This should be done in one of the GUI structures
previously discussed; otherwise, you will be endlessly frustrated with errors
because a quote or parenthesis is missing.

When using images to create multiple user interface buttons make sure:

1. A single color map is applicable for all the images. Create all buttons
with a graphics drawing package. Place the images that represent the
button’s on and off states next to one another and arrange all of the
buttons so that a single capture image can be executed. This makes it
easy to keep a small-sized color map that works for all the button
images. Then break out the individual images by determining which
indices of the large captured matrix correspond to the individual
button images.

2. Use one of the GUI programming approaches to make it easy to keep
track of all the image object graphics handles and to make the code
readable.

3. When you have many custom buttons, it becomes important that you
know what state each object button is in. Consider creating a matrix
that has 3-by-M elements for the M custom buttons in your GUI. Each
column of the matrix could be dedicated to maintaining information
about a particular button. For example, row one of column one could
be the handle to the on-state image for a particular button, row 2
could be the handle to the off-state image for that button, and row 3

© 2003 by CRC Press LLC

could be used to indicate the current state of the button (much like
the Value property of a uicontrol). Keeping track of this kind of
information will make it simple to reset, automatically set certain
button states, make all your custom buttons mutually exclusive, etc.

4. Make your callbacks as independent as possible so that you don’t
need to rely on another object’s callback, since it may have been
changed from what you might expect it to be.

10.9.2 Creating a Dial

Let’s step through the process of creating a dial like the one shown in Figure
10.52. We want the user to be able to click on the dial and graphically move
the arrow about the arrow’s hinge. To move the arrow in a continuous
fashion, the user must click down and hold the mouse button while moving
about the arrow’s hinge and then release when the arrow points to the desired
value.

function uidial(command_str,Argument1,Argument2)
% UIDIAL
% examples/chap10/uidial.m
% Creates a dial user interface to learn how to
% make a custom GUI object.
% Usage:
% uidial('initialize',min,max);
%
% The value of the dial is stored and can be
% gotten from the current axes UserData property.

if nargin == 0
 command_str = 'initialize';
end

Figure 10.52 A custom dial control.

��
� � � �
 �

© 2003 by CRC Press LLC

if ~strcmp(command_str,'initialize')
 handles = get(gcf,'userdata');
 h_arrow = handles(1);
 h_stextval = handles(2);
end

if strcmp(command_str,'initialize')
 % Define default min and max values of dial.
 if nargin == 3
 minval = Argument1;
 maxval = Argument2;
 else
 minval = 0;
 maxval = 100;
 end

 h_fig=figure('Position',[200 200 200 200],...
 'color',[.7 .7 .7],...
 'menubar','none',...
 'resize','off',...
 'Units','normalized');
 h_ax=axes('color',[.7 .7 .7],...
 'xcolor',[.7 .7 .7],...
 'ycolor',[.7 .7 .7],...
 'xtick',[],'ytick',[],...
 'xlim',[-1 1],'ylim',[0 1],...
 'aspect',[NaN 1],...
 'position',[.2 .1 .6 .8]);

 % Draw arrow in its minimum setting.
 arrowx = [0 -1 -.85 NaN -1 -.85];
 arrowy = [0 0 -.05 NaN 0 .05];
 arrowz = [0 0 0 0 0 0];
 % Store a matrix that can be manipulated
 % and used to draw the arrow after a rotation
 % angle has been determined.
 arrowud = [arrowx(:),arrowy(:),...
 arrowz(:),ones(prod(size(arrowx)),1)]';
 h_arrow = line(arrowx,arrowy,...
 'linewidth',2,...
 'clipping','off',...
 'erasemode','background',...
 'userdata',arrowud);

 % Create labels and the radial lines.
 h_stext = uicontrol(h_fig,...
 'style','text',...
 'string','Value:',...
 'position',[.1 .2 .4 .13],...
 'units','norm');
 h_stextval = uicontrol(h_fig,...
 'style','text',...
 'string',sprintf('%2.1f',minval),...
 'position',[.4 .2 .3 .13],...
 'units','norm',...
 'min',minval,'max',maxval);
 h_dialborder = line(1.1*cos(0:.1:pi),...
 1.1*sin(0:.1:pi),...

© 2003 by CRC Press LLC

 'color',[0 0 0],...
 'clipping','off');
 h_t(1)=text(-1.15,0,sprintf('%2.1f',minval),...
 'horizontalalignment','right');
 h_t(2)=text(1.1,0,sprintf('%2.1f',maxval),...
 'horizontalalignment','left');
 h_t(3)=text(0,1.15,sprintf('%2.1f',...
 (maxval-minval)/2+minval),...
 'horizontalalignment','center',...
 'verticalalignment','bottom');

 % Make sure all the objects that the user might click
on
 % to rotate the arrow with will recognize the initial
 % click.
 set([h_ax;h_t(:);h_dialborder;h_arrow],...
 'buttondownfcn',...
 'uidial(''Set
Calls'');uidial(''Rotate'')');
 set(gcf,'userdata',[h_arrow h_stextval])

elseif strcmp(command_str,'Set Calls')
 % Define when the user clicks on the dial. Set up
 % the callbacks that should occur when the user moves
or
 % releases the mouse button.
 set(gcf,'windowbuttonupfcn',...
 'set(gcf,''windowbuttonmotion'','''')');
 set(gcf,'windowbuttonmotionfcn','uidial(''Rotate'')');

elseif strcmp(command_str,'Rotate')
 % Define the callback that should occur when the user
 % moves the mouse button.

 % Find out where the mouse pointer is located.
 pt = get(gca,'currentpoint');
 pt = pt(1,1:2);
 % Determine the angle that the pointer is at with
 % respect to the arrow's hinge.
 deg = atan2(pt(2),-pt(1))*180/pi;
 % Make sure the arrow does not swing past limits.
 if deg < 0 & abs(deg) < 90
 deg = 0;
 elseif deg>180 | (deg<0 & abs(deg) > 90)
 deg = 180;
 end

 % Scale angle linearly between dial's minimum
 % and maximum values.
 minval = get(h_stextval,'min');
 maxval = get(h_stextval,'max');
 val = (deg/(180-0)*((maxval-minval)))+minval;

 % Store the value in the current axes UserData
 % where it can be retrieved by an application.
 set(gca,'userdata',val);

 % Create transformed coordinate points for the

© 2003 by CRC Press LLC

 % arrow.
 arrowud = get(h_arrow,'userdata');
 A = viewmtx(deg,90);
 newarrow = A*arrowud;
 set(h_arrow,'xdata',newarrow(1,:),...
 'ydata',newarrow(2,:));

 % Update the value indicator.
 set(h_stextval,'string',sprintf('%2.1f',val));

end

This program may be altered so that the dial could be used as a means of
displaying values from an application, rather than just as an application input
device. In addition, it would also be nice to be able to specify the position
that the dial should occupy within any given figure so that multiple dials could
be created as part of a GUI. Adding these features would be a good exercise.

© 2003 by CRC Press LLC

AAPPPPEENNDDIIXX :: QQUUIICCKK RREEFFEERREENNCCEESS
The purpose of this appendix is to give you a convenient set of quick

references. Included here is a short bibliography of texts that we feel will give
you a solid background in the graphical representation of information, GUI
development, and MATLAB. Also, here are the graphics commands and
graphics objects properties in MATLAB.

Bibliographic References
1. Tufte, E. R., The Visual Display of Quantitative Information,

Graphics Press, Cheshire, CT, 1990.

2. Tufte, E. R., Envisioning Information, Graphics Press, Cheshire, CT,
1990.

3. Thalmann, D., Scientific Visualization and Graphics Simulation,
John Wiley and Sons, Inc., Chichester West Sussex, England,
1990.

4. Weinshenk, S., Jamar, P., Yeo, S. C., GUI Design Essentials, John
Wiley and Sons, Inc., New York, NY, 1997.

© 2003 by CRC Press LLC

Graphics Commands and Object Properties

MATLAB Data Formats – Section 3.2.1

Data Formats Command Returns

MAT - MATLAB workspace LOAD Variables in file
CSV - Comma separated
numbers

CSVREAD Double array

TXT – Formatted data in a text file TEXTREAD Double array
DAT - Formatted text IMPORTDATA Double array
DLM - Delimited text DLMREAD Double array
TAB - Tab separated text DLMREAD Double array

Spreadsheet Formats Command Returns

XLS - Excel worksheet XLSREAD Double array and cell
array

WK1 - Lotus 123 worksheet WK1READ Double array and cell
array

Scientific Data Formats Command Returns

CDF - Common Data Format CDFREAD Cell array of CDF records
FITS - Flexible Image Transport
System

FITSREAD Primary or extension
table data

HDF - Hierarchical Data Format HDFREAD HDF or HDF-EOS data
set

Image Formats Command Returns

TIFF - TIFF image IMREAD Truecolor, grayscale or
indexed image(s).

PNG - PNG image IMREAD Truecolor, grayscale or
indexed image

HDF - HDF image IMREAD Truecolor or indexed
image(s)

BMP - BMP image IMREAD Truecolor or indexed
image

continued on next page

© 2003 by CRC Press LLC

Audio Formats Command Returns
AU – Next/Sun Sound AUREAD Sound data and sample

rate
SND – Next/Sun Sound AUREAD Sound data and sample

rate
WAV – Microsoft Wave Sound WAVREAD Sound data and sample

rate

Movie Formats Command Returns

AVI - Movie AVIREAD MATLAB movie

Line Color, Marker Style, and Line Style Strings – Section 3.3.1

Line Color Marker Style
character creates character creates

b or blue blue line . point
g or green green line o circle
r or red red line x x-mark
c or cyan cyan line + plus
m or magenta magenta line * star
y or yellow yellow line s square
k or black black line d diamond
 v triangle down

Line Style ^ triangle up
character creates < triangle left

- solid > triangle right
: dotted p pentagram
-. dashdot h hexagram
-- dashed

© 2003 by CRC Press LLC

TeX Characters Available in MATLAB – Section 3.4.5

TeX
Characters Result

TeX
Characters Result

TeX
Characters Result

\alpha α \upsilon υ \sim ∼

\beta β \phi φ \leq ≤

\gamma γ \chi Χ \infty ∞

\delta δ \psi Ψ \clubsuit ♣

\epsilon ε \omega ω \diamondsuit ♦

\zeta ζ \Gamma Γ \heartsuit ♥

\eta η \Delta ∆ \spadesuit ♠

\theta θ \Theta Θ \leftrightarrow ↔

\vartheta ϑ \Lambda Λ \leftarrow ←

\iota ι \Xi Ξ \uparrow ↑

\kappa κ \Pi Π \rightarrow →

\lambda λ \Sigma ∑ \downarrow ↓

\mu µ \Upsilon Υ \circ °

\nu ν \Phi Φ \pm ±

\xi ξ \Psi Ψ \geq ≥

\pi π \Omega Ω \propto ∝

\rho ρ \forall ∀ \partial ∂

\sigma σ \exists ∃ \bullet •

\varsigma ς \ni ∋ \div ÷

\tau τ \cong ≅ \neq ≠

\equiv ≡ \approx ≈ \aleph ℵ

\Im ℑ \Re ℜ \wp ℘

\otimes ⊗ \oplus ⊕ \oslash ∅

\cap ∩ \cup ∪ \supseteq ⊇

\supset ⊃ \subseteq ⊆ \subset ⊂

\int ∫ \in ∈ \o

\rfloor  \lceil  \nabla ∇

\lfloor  \cdot ⋅ \dots …

\perp ⊥ \neg ¬ \prime ′

\wedge ∧ \times × \0 ∅

\rceil  \surd √ \mid 

\vee ∨ \varpi ϖ \copyright 

\langle 〈 \rangle 〉

© 2003 by CRC Press LLC

TeX Stream Modifiers – Section 3.4.5

TeX Stream Modifier Description

\bf Bold font.

\it Italics font.

\sl Oblique font (rarely used).

\rm Normal font.

^ Make part of string superscript.

_ Make part of string subscript.

\fontname{fontname} Specify the font family to use.

\fontsize{fontsize} Specify the font size in FontUnits.

Projection Types – Section 4.2.1

Projection Type How to Interpret How to Use

Orthographic
Projection

Think of the “viewing
volume” as a box whose
opposite sides are parallel,
so the distance from the
camera does not affect the
size of surfaces in the plot.

Used to maintain the actual
size of objects and the
angle between objects.
This works well for data
plots. Real-world objects
look unnatural.

Perspective
Projection

The “viewing volume” is
the projection of a pyramid
where the apex has been
cut off parallel to the base.
Objects farther from the
camera appear smaller.

Used to create more
“realistic” views of objects.
This works best for real-
world objects. Data plots
may look distorted.

© 2003 by CRC Press LLC

Summary of the Axis Function – Section 4.2.2

Syntax Affect
axis([xmin xmax ymin
ymax])

Sets the x- and y-axis limits.

axis([xmin xmax ymin
ymax zmin zmax cmin
cmax])

Sets the x-, y-, and z-axis limits and
the color scaling limits.

v = axis Returns a row vector containing the
x-, y-, and z-axis limits, i.e., scaling
factors for the x-, y-, and z-axis.

axis auto Computes the current axes' limits
automatically, based on the
minimum and maximum values of x,
y, and z data.

axis ‘auto x’
“ “‘auto y’
“ “‘auto x’
“ “‘auto xz’
“ “‘auto yz’
“ “‘auto xy’

Computes the indicated axis limit
automatically.

axis manual Freezes scaling of the current limits.
Used with hold forces subsequent
plots to use the same limits.

axis tight
or

axis fill

Sets the axis limits to the range of
the data.

axis ij Sets the origin of the coordinate
system to the upper left corner. The
i-axis is vertical, increasing from top
to bottom. The j-axis is horizontal,
increasing from left to right.

axis xy This is the default coordinate system
with the origin at the lower left
corner. The x-axis is horizontal
increasing from left to right, and the
y-axis is vertical increasing from
bottom to top.

© 2003 by CRC Press LLC

Scalar Volume Computation Functions – Section 4.3.1

Function Action
FVC =
isocaps(X,Y,Z,V,ISOVALUE)

Computes an isosurface end cap geometry
for data V at isosurface value ISOVALUE
and returns a structure containing the faces,
vertices, and colors of the end cap which
can be passed directly to the patch
function.

NC =
isocolors(X,Y,Z,C,VERTICES)

Computes the colors of isosurface vertices
VERTICES using color values C and
returning them in the array NC.

N =
isonormals(X,Y,Z,V,VERTICES)

Computes the normals (N) of isosurface
vertices VERTICES by using the gradient of
the data in V.

FV =
isosurface(X,Y,Z,V,ISOVALUE)

Extracts an isosurface at ISOVALUE in the
volume V, returning the structure FV
containing the faces and vertices of the
isosurface, suitable for use with the patch
function.

NFV = reducepatch(P,R) Reduces the number of faces in a patch P
by a fraction R of the original faces. It
returns the structure NFV containing the
new faces and vertices.

[NX, NY, NZ, NV] =
reducevolume(X,Y,Z,V,[Rx Ry
Rz])

Reduces the number of elements in a
volume by only keeping every Rx, Ry, Rz
element in the corresponding x, y, or z
direction.

NFV = shrinkfaces(P,SF) Reduces the size of patch P by shrink factor
SF, returning a structure NFV containing the
new faces and vertices.

W = smooth3(V,’gaussian’, SIZE)
W = smooth3(V,’box’, SIZE)

Smooths the data in V according to the
convolution kernel of size SIZE specified by
the given string.

FVC = surf2patch(S) Converts a surface object S into a patch
object. FVC is a structure containing the
faces, vertices, and colors of the new patch.

[NX, NY, NZ, NV] =
subvolume(X,Y,Z,V,LIMITS)

Extracts a subset of volume data from V
using limits LIMITS = [xmin xmax ymin ymax
zmin zmax].

contourslice(X,Y,Z,V,Sx,Sy,Sz) Draws contours in a volume slice plane at
the points in the vectors Sx, Sy, and Sz.

patch(x,y,z,C) Creates a patch in the 3-D space of color
defined by C.

slice(X,Y,Z,V,Sx,Sy,Sz) Draws a slice plane described by the
vectors Sx, Sy, Sv, through the volume V.

© 2003 by CRC Press LLC

Graphics Objects Creation Functions – Section 7.1

Graphics
Object

Low-Level Creation Function Description

Figure figure or figure(H) A window to show
other graphics objects.

Axes axes, axes(H), or
axes(‘position’,RECT)

The axes for showing
graphs in a figure.

UIcontrol Uicontrol The user interface
control is used to
execute a function in
response to the user.

UImenu Uimenu User defined menus in
the figure.

UIcontextmenu uicontextmenu('PropertyName1',value1,…) A pop-up menu that
appears when a user
right-clicks on a
graphics object.

Image image(C) or image(x,y,C) A 2-D bitmap.
Light light(‘PropertyName’,’PropertyValue’,…) Light sources that

affect the coloring of
patch and surface
objects.

Line line(x,y) or line(x,y,z) A line in 2-D or 3-D
plots.

Patch patch(x,y,c) or patch(x,y,z,c) A polygon that is filled
with some color or
texture and has edges.

Rectangle rectangle, rectangle(‘Position’,[x,y,w,h]),
or rectangle(‘Curvature’,[x,y],…)

A 2-D shape; can be
rectangle or oval
created within an axes
object.

Surface surface(X,Y,Z,C), surface(X,Y,Z),
surface(Z,C), surface(Z)

3-D representation of
data plotted as heights
above the x-y plane.

Text text(x,y,text_string) or
text(x,y,z,text_string)

Character strings used
in a figure.

© 2003 by CRC Press LLC

Universal Object Properties – Section 7.4.3

Property
Read
Only ValueType/Options Format

BusyAction No [{queue} | cancel] row
ButtonDownFcn No string row

Children No* handle(s) column
Clipping No [{on} | off] row

CreateFcn No string row
DeleteFcn No string row

HandleVisibility No [{on} | callback | yes] row
HitTest No [{on} | off] row

Interruptible No [no | {yes} | off | {on}] row
Parent No handle one element

Selected No [{off} | on] row
SelectionHighlight No [{no} | yes | {off} | on] row

Tag No string row
Type Yes string row

UserData No number(s) or string matrix
Visible No [{on} | off] row

* Although you cannot create new handles in the Children property, you can change the
order of the handles and so change the stacking order of the objects.

Root Properties – Section 7.5.1

Property Read-
Only

ValueType/Options Format

Display Related
FixedWidthFontName No string row

ScreenDepth Yes integer 1 element
ScreenSize Yes [left bottom width height] 4-element row

Related to the State of MATLAB
CallbackObject Yes handle 1 element
CurrentFigure No handle 1 element
ErrorMessage No string row

PointerLocation No [x-coordinate,y-coordinate] 2-element row
PointerWindow Yes handle 1 element

ShowHiddenHandles Yes [on | {off}] row
Behavior Related

Diary No [on | {off}] row
DiaryFile No string row

Echo No [on | {off}] 1 element
Format No [short | long | {shortE} | longE |

hex | bank | + | rat]
row

FormatSpacing No [{loose} | compact] row
Language No string row

RecursionLimit No integer 1 element
Units No [inches | centimeters | normalized

| points | {pixels}]
row

© 2003 by CRC Press LLC

Figure Properties – Section 7.5.2

Property Read
Only

ValueType/Options Format

Positioning the Figure

Position No [left bottom height width] 4-element row
Units No [inches | centimeters | normalized | points |

{pixels}]
row

Style & Appearance

Color No [Red Green Blue] or color string RGB vector
MenuBar No [{figure} | none] 1 element
Name No string row
NumberTitle No [{on} | off] row
Resize No [{on} | off] row
WindowStyle No [{normal} | modal] row

Colormap Controls

Colormap No M RGB number triplets M-by-3 matrix
Dithermap No N RGB number triplets M-by-3 matrix
Dithermapmode No [auto | {manual}] row
FixedColors No N RGB number triplets N-by-3 matrix
MinColormap No number 1 element
ShareColors No [no | {yes}] row

Transparency

Alphamap No default is 64 values progression from 0 to 1 M-by-1 vector
Renderer

BackingStore No [{on} | off] row
DoubleBuffer No [on | {off}] row
Renderer No [{patinters} | zbuffer | OpenGL] row
RendererMode No [{auto} | manual] row

Current State

CurrentAxes No handle 1 element
CurrentCharacter No character 1 element
CurrentObject No handle 1 element
CurrentPoint No [x-coordinate, y-coordinate] 2-element row
SelectionType Yes [normal | extended | alt | open] row

continued on next page

© 2003 by CRC Press LLC

Property Read
Only

ValueType/Options Format

Properties that Affect the Pointer

Pointer No [crosshair | fullcrosshair | {arrow} | ibeam
| watch | topl | topr | botl | botr | left |
top | right | bottom | circle | cross | fleur
| custom]

string

PointerShapeHotSpot No (row index, column index) 2-element row

PointerShapeCData No 1s where black, 2s where white, NaNs
where transparent

16-by-16

Callback Execution

CloseRequestFcn No string, function handle, or cell-array
{‘closereq’}

string, 1-
element, cell-

array

KeyPressFcn No string string

ResizeFcn No string string

UIContextMenu No Number 1 element

WindowButtonDownFcn No string string

WindowButtonMotionFcn No string string

WindowButtonUpFcn No string string

Controlling Access to Objects

IntegerHandle No [{on} | off] string

NextPlot No [{add} | replace | replacechildren] string

Properties that Affect Printing

InvertHardcopy No [{on} | off] string

PaperOrientation No [{portrait} | landscape] string

PaperPosition No [left bottom width height] 4-element row

PaperPositionMode No [{auto} | manual] string

PaperSize No [width height] 2-element row

PaperType No [{usletter} | uslegal | A0 | A1 | A2 | A3 |
A4 | A5 | B0 | B1 | B2 | B3 | B4 | B5 |
arch-A | arch-B | arch-C | arch-D | arch-E |
A | B | C | D | E | tabloid | <custom>]

string

PaperUnits No [{inches}|centimeters| normalized | points] string

General

FileName No A name of a FIG-File to be used with
GUIDE; see Chapter 10.

string

© 2003 by CRC Press LLC

Axis Properties – Section 7.5.3

Property Read
Only

ValueType/Options Format

Properties Affecting Transparency and Lighting
ALim No
ALimMode No [{auto} | manual]
AmbientLightColor No

Properties Controlling Boxes and Tick Marks
Box No [on | {off}] row
TickLength No [2-Dticklength 3-Dticklength] 2-element

row
TickDir No [{in} | out]
TickDirMode No [{auto} | manual]
XMinorTick No [on | {off}] row
XTick No numbers
XTickLabel No string matrix
XTickLabelMode No [{auto} | manual] row
XTickMode No [{auto} | manual] row

Properties Affecting Character Formats
FontAngle No [{normal} | italic | oblique]
FontName No name of desired font string
FontSize No number 1 element
FontUnits No [inches | centimeters | normalized

| {points} | pixels]
string

FontWeight No [light | {normal} | demi | bold] string

continued on next page

© 2003 by CRC Press LLC

Property Read
Only

ValueType/Options Format

Properties Determining Axis Location and Position
Position No [left bottom width height] 4-element

row
Units No [inches | centimeters | {normalized}

| points | pixels | characters]

XAxisLocation No [top | {bottom}] string
YaxisLocation No [{left} | right] row
CurrentPoint No mouse click near and far x, y, z axis

locations
2-by-3 matrix

Title No handle of text object 1 element

Properties Affecting Grids, Lines, and Color
Color No [Red Green Blue] or color string
ColorOrder No M RGB number triplets M-by-3

matrix
CLim No [cmin cmax] 2-element

row
CLimMode No [{auto} | manual] string
DrawMode No [{normal} | fast]
XGrid No [on | {off}]
GridLineStyle No [- | -- | {:} | -. | none] string
Layer No [top | {bottom}] string
LineStyleOrder No string array of linestyle symbol(s) matrix
LineWidth No number 1 element
MinorGridLineStyle No [- | -- | {:} | -. | none]
XColor No [Red Green Blue] or color string row
Xform No 4 x 4 Perspective Transformation 4 x 4 matrix
XLabel No Handle of text object 1 element
XMinorGrid No [on | {off}] row
NextPlot No [add | {replace} | replacechildren] string

Properties Affecting Axis Limits
DataAspectRatio No [x y z] relative ratio of axis lengths 2-element

row
DataAspectRatioMode No [{auto} | manual] string
PlotBoxAspectRatio No [x y z] relative ratios of box lengths 3-element

row
PlotBoxAspectRatioMode No [{auto} | manual]
XDir No [{normal} | reverse] row
XLim No [xmin xmax] 2-element

row
XLimMode No [{auto} | manual] row
XScale No [{linear} | log] row

continued on next page

© 2003 by CRC Press LLC

Property Read
Only

ValueType/Options Format

Axes Properties Related to Viewing Perspective
CameraPosition No [x y z] numbers 3-element

row
CameraPositionMode No [{auto} | manual] string
CameraTarget No [x y z] numbers 3-element

row
CameraTargetMode No [{auto} | manual] string
CameraUpVector No [x y z] numbers 3-element

row
CameraUpVectorMode No [{auto} | manual] string
CameraViewAngle No number 1 element
CameraViewAngleMode No [{auto} | manual] string
Layer No [top | {bottom}] string
Projection No [{orthographic} | perspective]
View No [DegreesAzimuth DegreesElevation] 2-element

row

Line Properties – Section 7.5.4

Property Read
Only

ValueType/Options Format

Color No [Red Green Blue] or color string RGB row
EraseMode No [{normal} | background | xor | none] row
LineStyle No [{-} | -- | : | -. | none] row
LineWidth No number 1 element
Marker No [+ | o | * | . | x | square | diamond | v

| ^ | > | < | pentagram | hexagram |
{none}]

row

MarkerSize No number 1 element
MarkerEdgeColor No [none | {auto}] -or- a ColorSpec row
MarkerFaceColor No [{none} | auto] -or- a ColorSpec row
XData No numbers vector
YData No numbers vector
ZData No numbers vector

Rectangle Properties – Section 7.5.5

Property Read
Only

ValueType/Options Format

Curvature No [x, y] 1 or 2 element
EraseMode No [{normal} | background | xor | none] row
FaceColor No ColorSpec | {none} row
EdgeColor No {ColorSpec} | none row
LineStyle No [{-} | -- | : | -. | none] row
LineWidth No number 1 element
Position No [x,y,width,height] vector

© 2003 by CRC Press LLC

Patch Properties – Section 7.5.6

Property Read
Only

ValueType/Options Format

Properties Defining Patch Objects
Faces No permutation of 1:M N-by-V matrix
Vertices No numbers x-, y-, z-coordinates M-by-3 matrix
XData No coordinates of the points at

the vertices
vector or
matrix

YData No coordinates of the points at
the vertices

vector or
matrix

ZData No coordinates of the points at
the vertices

vector or
matrix

Properties Specifying Lines, Color, and Markers

CData No numbers vector
CDataMapping No [direct | {scaled}] row
EdgeColor No [none | {flat} | interp] or

[Red Green Blue] or color
string

row

FaceColor No [none | {flat} | interp] or
[Red Green Blue] or color
string

row

FaceVertexCData No RGB per patch, face, or vertexmatrix
LineStyle No [{'-'} | '--' | '-.' | ':' | 'none'] row
LineWidth No number 1 element
Marker No ['square' | 'diamond' | 'v' | '^'

| '>' | '<' | '.' | 'pentagram' |
'hexagram' | 'o' | 'x' | '+' | '*' |
{none}]

row

MarkerEdgeColor No [none | {auto} | [R G B] |
color_string]

row

MarkerFaceColor No [{none} | auto | [R G B] |
color_string]

row

MarkerSize No number 1 element

Properties Affecting Lighting and Transparency

AmbientStrength No numbers vector
BackFaceLighting No [unlit | lit | {reverselit}] row
FaceLighting No [none | {flat} | gouraud |

phong]
row

DiffuseStrength No number 1 element
EdgeLighting No [{none} | {flat} | gouraud |

phong]
row

SpecularColorReflectance No number ranging from 0 to 1 1 element
SpecularExponent No number > or = to 1 1 element
SpecularStrength No number ranging from 0 to 1 1 element
VertexNormals No numbers M-by-3 matrix
NormalMode No [{auto} | manual] row
EraseMode No [{normal} | none | xor |

background]
row

AlphaDataMapping No [none |direct | {scaled}] row
EdgeAlpha No [{scalar = 1} | flat | interp] 1 element or

string
FaceAlpha No [{scalar = 1} | flat | interp] 1 element or

string
FaceVertexAlphaData No transparency data 1 element or

M-by-1 matrix

© 2003 by CRC Press LLC

Surface Properties – Section 7.5.7

Property Read
Only

ValueType/Options Format

Properties that Define a Surface
XData No coordinates of the points at the vertices vector or

matrix
YData No coordinates of the points at the vertices vector or

matrix
ZData No coordinates of the points at the vertices vector or

matrix

Properties that Specify Lines, Colors, and Markers
CData No numbers vector
CDataMapping No [direct | {scaled}] row
LineStyle No [{'-'} | '--' | '-.' | ':' | 'none'] row
LineWidth No number 1 element
EdgeColor No [none | {flat} | interp] or

[Red Green Blue] or color string
row

FaceColor No [none | {flat} | interp | texturemap] or
[Red Green Blue] or color string

row

Marker No ['square' | 'diamond' | 'v' | '^' | '>' | '<' |
'.' | 'pentagram' | 'hexagram' | 'o' | 'x' |
'+' | '*' | {none}]

row

MarkerEdgeColor No [none | {auto} | [R G B] | color_string] row
MarkerFaceColor No [{none} | auto | [R G B] | color_string] row
MarkerSize No number 1 element

Properties Affecting Lighting and Transparency
AmbientStrength No numbers vector
BackFaceLighting No [unlit | lit | {reverselit}] row
DiffuseStrength No number 1 element
EdgeLighting No [{none} | {flat} | gouraud | phong] row
FaceLighting No [none | {flat} | gouraud | phong] row
NormalMode No [{auto} | manual] row
SpecularColorReflectance No number ranging from 0 to 1 1 element
SpecularExponent No number > or = to 1 1 element
SpecularStrength No number ranging from 0 to 1 1 element
VertexNormals No numbers M-by-3

matrix
AlphaData No default = 1 (opaque) M-by-N

matrix of
double or
uint8

AlphaDataMapping No [none |direct | {scaled}] row
EdgeAlpha No [{scalar = 1} | flat | interp] 1 element

or string
FaceAlpha No [{scalar = 1} | flat | interp] 1 element

or string

© 2003 by CRC Press LLC

Image Properties – Section 7.5.8

Property Read
Only

ValueType/Options Format

General Properties of the Image Object
CData No numbers matrix or M-

by-N-by-3
array

CDataMapping No [{direct} | scaled] row
XData No [min, max] default = [1, size(CData,2)] 2-element

vector
YData No [min max] default = [1, size(CData, 1)] 2-element

vector

Properties Affecting Transparency
AlphaData No default = 1 (opaque) M-by-N matrix

of double or
uint8

AlphaDataMapping No [{none} |direct | scaled] row

Text Properties – Section 7.5.9

Property Read
Only

ValueType/Options Format

Color No [Red Green Blue] or color string RGB row
Editing No [{off} | on] row

EraseMode No [{normal} | none | xor | background] row
Extent Yes [left bottom width height] 4-element

row
FontAngle No [{normal} | italic | oblique] 1 element
FontName No string row
FontSize No numbers 1 element
FontUnits No [inches | centimeters | normalized |

points | pixels | {data}]
row

FontWeight No [light | {normal} | demi | bold] row
HorizontalAlignment No [{left} | center | right] row

Interpreter No [{tex} | none] row
Position No [x y z] coordinates row
Rotation No [AngleInDegrees] 1 element

String No string row
Units No [inches | centimeters | normalized |

points | pixels | {data}]
row

VerticalAlignment No [top | cap |{middle}| baseline | bottom] row

© 2003 by CRC Press LLC

Alpha Properties – Section 8.4.1

Property Read
Only

ValueType/Options Format

AlphaData No m-by-n matrix of transparency data
for image and surface objects

matrix

AlphaDataMapping No none | direct | scaled
none = default for images
scaled = default for patches

row

FaceAlpha No Transparency for faces row or scalar

EdgeAlpha No Transparency for edges row or scalar

FaceVertexAlphaData No Alpha data property for patches row or scalar

ALim No Alpha axis limits vector

ALimMode No Alpha axis limits mode row

Alphamap No Figure Alphamap matrix

© 2003 by CRC Press LLC

Uicontrol Properties – Section 10.3.2

Property Read
Only

ValueType/Options Format

BackgroundColor No [Red Green Blue] or color string RGB row
ButtonDownFcn No string row

CData No matrix
CallBack No string row
Enable No [on | {off} | inactive] row
Extent Yes [0,0,width,height] row

FontAngle No [{normal} | italic | oblique] row
FontName No string row
FontSize No number 1 element
FontUnits No {points} | normalized | inches |

centimeters | pixels
row

FontWeight No [light | {normal} | demi | bold] row
ForegroundColor No [Red Green Blue] or color string RGB row

HorizontalAlignment No [left | {center} | right] row
Interruptible No {on} | off row

ListBoxTop No number 1 element
Max No number 1 element
Min No number 1 element

Position No [left bottom width height] 4-element
row

String No string string matrix
Style No [{pushbutton} | radiobutton |

togglebutton | checkbox | edit | text |
slider | frame | popupmenu | list box]

row

SliderStep No number 1 element
TooltipString No string row

Units No [inches | centimeters | normalized |
points | {pixels}]

row

UIContextMenu handle 1 element
Value No number 1 element
Tag No string row

UserData No string(s) or number(s) matrix
Visible No [{on} | off] row

© 2003 by CRC Press LLC

Uimenu Properties – Section 10.4.1

Property Read
Only

ValueType/Options Format

Accelerator No string row
CallBack No string row
Checked No [on | {off}] row
Children Yes object_handles column
Enable No [on | {off} | inactive] row

ForegroundColor No [Red Green Blue] or color string RGB row
Label No string row

Position No [left bottom width height] 4-element
row

Separator No [on {off}] row
Interruptible No [{on} | off] row

Tag No string row
UserData No string(s) or number(s) matrix
Visible No [{on} | off] row

© 2003 by CRC Press LLC

	Cover
	Preface
	Dedication
	Contents
	Chapter 1: Introduction
	1.1 Overview
	1.2 Organization of This Book
	1.3 Terminology and the MATLAB Programming Language
	1.3.1 Getting Started
	1.3.2 Getting Help

	1.4 Other References

	Chapter 2: Visualization Considerations
	2.1 Why Visualize?
	2.2 Characteristics of Good Data Visualization
	2.3 Data Quantity and Dimension
	2.4 Color, Light, and Shading
	2.5 Motion
	2.6 Interaction

	Chapter 3: Plotting In Two Dimensions
	3.1 Sources of Data
	3.1.1 Function Data
	3.1.2 Measured Data

	3.2 Importing Data
	3.2.1 MATLAB Data Formats
	3.2.2 Importing High-Level Data
	3.2.3 Importing Low-Level Data

	3.3 Elementary 2-D Plots
	3.3.1 A General Overview of the Plot Command
	3.3.2 Logarithmic Plots

	3.4 Simple 2-D Plot Manipulation
	3.4.1 Generating Plots with Multiple Data Sets
	3.4.2 Using Axis to Customize Plots
	3.4.3 Creating Supporting Text and Legends
	3.4.4 Text Placement
	3.4.5 Special Text Character Formats
	3.4.6 Using Subplot to Create Multiple Axes

	3.5 Specialized 2-D Plotting
	3.5.1 Bar Graphs
	3.5.2 Histograms
	3.5.3 Stairstep Graphs
	3.5.4 Stem Plots
	3.5.5 Plots with Error Bars
	3.5.6 Pie Charts
	3.5.7 Area Plots
	3.5.8 Working with Complex Data
	3.5.9 Using the Polar Coordinate System
	3.5.10 Plotting Functions with MATLAB
	3.5.11 Creating Filled Plots and Shapes

	3.6 Plot Editing in the MATLAB Figure Window
	3.6.1 Plot Editing Mode
	3.6.2 The Property Editor
	3.6.3 Zooming and Rotating
	3.6.4 Exporting, Copying, and Pasting

	3.7 Illustrative Problems

	Chapter 4: Plotting in Three Dimensions
	4.1 Elementary 3-D Plotting
	4.1.1 Using Plot3
	4.1.2 Creating 3-D Meshes and Surfaces
	4.1.3 Waterfall Plots
	4.1.4 3-D Plots of Non-Uniformly Sampled Data
	4.1.5 Creating Shaded Surface Plots
	4.1.6 Removing Hidden Lines
	4.1.7 Contour Plots
	4.1.8 Quiver Plots
	4.1.9 Combination Plots
	4.1.10 3-D Stem Plots
	4.1.11 Generating Surfaces with Triangles
	4.1.12 Polygons in a 3-D Space
	4.1.13 Built-In Surface Functions

	4.2 Simple 3-D Plot Manipulation
	4.2.1 The Camera Toolbar
	4.2.2 Generalizing the Axis for 3 Dimensions
	4.2.3 3-D Plot Rotation
	4.2.4 Using the View Command

	4.3 Volume Visualization
	4.3.1 Scalar Volume Data
	4.3.1.1 Slice Planes
	4.3.1.2 Contour Slices
	4.3.1.3 Isosurfaces and Isocaps

	4.3.2 Vector Volume Data
	4.3.2.1 Stream Plots
	4.3.2.2 Stream Lines
	4.3.2.3 Stream Particles
	4.3.2.4 Stream Ribbons
	4.3.2.5 Stream Tubes
	4.3.2.6 Cone Plots

	4.4 A Word About Annotating 3-D Plots
	4.5 Illustrative Problems

	Chapter 5: Image Graphics
	5.1 Image Files and Formats
	5.1.1 Common Image File Types

	5.2 Image I/O
	5.2.1 Reading a Graphics Image
	5.2.2 Displaying a Graphics Image
	5.2.3 Writing a Graphics Image

	5.3 Image Types and Properties
	5.3.1 Indexed Images
	5.3.2 Intensity Level Images
	5.3.3 Truecolor Images

	Chapter 6: Generating Output
	6.1 The Quickest Way to Paper
	6.1.1 Page Setup

	6.2 Printing Colored Lines to Black & White Printers
	6.3 Electronic Output
	6.3.1 Using File Export
	6.3.2 Using the Windows Clipboard

	6.4 Using the Print Command
	6.4.1 Creating Hardcopy with PRINT
	6.4.2 Creating Graphics Files Using Print
	6.4.3 Adding Additional Figures to a File
	6.4.4 Publishing Using 4-Color Separation
	6.4.5 EPS with a Preview Image
	6.4.6 Rendering Method with -zbuffer or -painters
	6.4.7 Indicating Which Figure Window to Print
	6.4.8 Saving Figures for Future Use

	Chapter 7: Handle Graphics
	7.1 Graphics Objects
	7.2 Graphics Objects Hierarchy
	7.3 Graphics Objects Handles
	7.3.1 Determining Handles at Creation
	7.3.2 Getting Handles of Current Objects

	7.4 Properties
	7.4.1 The Property Editor
	7.4.2 Manipulating Properties
	7.4.3 Universal Object Properties
	7.4.3.1 ButtonDownFcn, BusyAction, and Interruptible
	7.4.3.2 Children and Parent
	7.4.3.3 Clipping
	7.4.3.4 CreateFcn and DeleteFcn
	7.4.3.5 HandleVisibility
	7.4.3.6 HitTest
	7.4.3.7 Selected and SelectionHighlight
	7.4.3.8 Tag and Type
	7.4.3.9 UserData
	7.4.3.10 Visible

	7.5 Object Specific Properties
	7.5.1 Root Properties
	7.5.1.1 Display Related Root Properties
	7.5.1.2 Root Properties Related to the State of MATLAB
	7.5.1.3 Behavior Related Properties of the Root

	7.5.2 Figure Properties
	7.5.2.1 Figure Properties Affecting Position
	7.5.2.2 Style and Appearance Properties of the Figure Object
	7.5.2.3 Figure Properties that Control the Colormap
	7.5.2.4 Figure Properties that Affect Transparency
	7.5.2.5 Properties that Affect How Figures are Rendered
	7.5.2.6 Properties Related to the Current State of a Figure
	7.5.2.7 Figure Properties that Affect the Pointer
	7.5.2.8 Figure Properties that Affect Callback Execution
	7.5.2.9 Figure Properties that Control Access to Objects
	7.5.2.10 Figure Properties that Affect Printing

	7.5.3 Axes Properties
	7.5.3.1 Axes Properties Controlling Boxes and Tick Marks
	7.5.3.2 Properties Affecting Axes Character Formats
	7.5.3.3 Axes Properties Determining Axis Location and Position
	7.5.3.4 Axes Properties Affecting Grids, Lines, and Color
	7.5.3.5 Properties Affecting Axis Limits
	7.5.3.6 Axes Properties Related to Viewing Perspective

	7.5.4 Line Properties
	7.5.5 Rectangle Properties
	7.5.6 Patch Properties
	7.5.6.1 Properties Defining Patch Objects
	7.5.6.2 Properties Specifying Lines, Color, and Markers
	7.5.6.3 Properties Affecting Lighting and Transparency

	7.5.7 Surface Properties
	7.5.8 Image Properties
	7.5.9 Text Properties

	7.6 Setting Default Properties
	7.7 Undocumented Properties
	7.8 Using FINDOBJ
	7.9 IlIustrative Problems

	Chapter 8: Using Color, Light, and Transparency
	8.1 Simple Color Specifications
	8.2 Color Maps
	8.2.1 Effects of Color Maps in General
	8.2.2 Color Axis Control
	8.2.2.1 Color Control with Direct Mapping
	8.2.2.2 Color Control with Scaled Mapping

	8.2.3 Color Maps as they Relate to Graphics Objects
	8.2.3.1 Color Maps and the Surface Object
	8.2.3.2 Patch Objects and the Color Map
	8.2.3.3 Images and the Color Map

	8.2.4 Color Shading
	8.2.5 Brightening and Darkening Color Maps
	8.2.6 Spinning the Color Map
	8.2.7 Making Use of the Invisible Color with NaN
	8.2.8 Creating Simple Color Bars
	8.2.9 The Pseudocolor Plot
	8.2.10 Texture Mapping

	8.3 Modeling Object Lighting
	8.3.1 Light Properties
	8.3.2 Functions that Make Use of Light
	8.3.2.1 Lighting Commands

	8.3.3 Lighting Models
	8.3.3.1 The Diffuse Lighting Model
	8.3.3.2 The Ambient Lighting Model
	8.3.3.3 The Specular Lighting Model
	8.3.3.4 Combining Lighting Models
	8.3.3.5 A Final Word on Light Objects

	8.3.4 Creating Color Varying Lines with Surface Objects

	8.4 Object Transparency
	8.4.1 Alpha Properties
	8.4.1.1 AlphaData
	8.4.1.2 Alphamap
	8.4.1.3 ALim
	8.4.1.4 ALimMode
	8.4.1.5 AlphaDataMapping
	8.4.1.6 FaceAlpha
	8.4.1.7 EdgeAlpha
	8.4.1.8 FaceVertexAlphaData

	8.4.2 Alpha Functions
	8.4.2.1 alpha
	8.4.2.2 alphamap
	8.4.2.3 alim

	8.4.3 Setting a Single Transparency Value
	8.4.4 Mapping Data to Transparency

	8.5 Illustrative Problems

	Chapter 9: Animation
	9.1 Frame-by-Frame Capture and Playback
	9.1.1 Taking a Snapshot
	9.1.2 Playing a Movie
	9.1.3 Preallocating Memory
	9.1.4 Practically Speaking
	9.1.4.1 Recording the Entire Figure
	9.1.4.2 Animating a Portion of the Figure

	9.1.5 Making an AVI Movie

	9.2 On-the-Fly Graphics Object Manipulation
	9.2.1 Simple Animation Functions
	9.2.2 The Wrong and Right Way to Animate Graphics
	9.2.3 The Need for Speed
	9.2.4 Animating Lines
	9.2.5 Animated Rotations
	9.2.6 Forcing a Graphic to Leave a Trail

	9.3 Choosing the Right Technique

	Chapter 10: Elements of GUI Design
	10.1 What is a MATLAB Graphical User Interface?
	10.2 The Three Phases of Interface Design
	10.2.1 Analysis
	10.2.2 Design
	10.2.2.1 User Considerations
	10.2.2.2 The Reason for the GUI
	10.2.2.3 Cognitive Considerations
	10.2.2.4 Physical Considerations

	10.2.3 Paper Prototyping
	10.2.3.1 Appearance

	10.2.4 Construction

	10.3 UI Control Elements
	10.3.1 The Styles
	10.3.1.1 Check Boxes
	10.3.1.2 Editable Text
	10.3.1.3 Frames
	10.3.1.4 Pop-Up Menus
	10.3.1.5 List Boxes
	10.3.1.6 Push Buttons
	10.3.1.7 Toggle Buttons
	10.3.1.8 Radio Buttons
	10.3.1.9 Sliders
	10.3.1.10 Static Text

	10.3.2 UI Control Properties
	10.3.2.1 Uicontrol BackgroundColor
	10.3.2.2 Uicontrol ButtonDownFcn
	10.3.2.3 Uicontrol CData
	10.3.2.4 Uicontrol CallBack
	10.3.2.5 Uicontrol Enable
	10.3.2.6 Uicontrol Extent
	10.3.2.7 Uicontrol ForegroundColor
	10.3.2.8 Uicontrol Font Angle, Name, Size, Units, and Weight
	10.3.2.9 Uicontrol HorizontalAlignment
	10.3.2.10 Uicontrol Min, Max, and Value
	10.3.2.11 Uicontrol SliderStep
	10.3.2.12 Uicontrol TooltipString
	10.3.2.13 Uicontrol Position
	10.3.2.14 Uicontrol String
	10.3.2.15 Style
	10.3.2.16 ListBoxTop
	10.3.2.17 Uicontrol Units
	10.3.2.18 Uicontrol Interruptible
	10.3.2.19 Uicontrol Tag
	10.3.2.20 Uicontrol UserData
	10.3.2.21 Uicontrol Visible
	10.3.2.22 Other UI Control Properties

	10.3.3 Creating Uicontrol Objects
	10.3.3.1 Uicontrol Object Layering
	10.3.3.2 Framing Objects
	10.3.3.3 A Stretchable GUI
	10.3.3.4 Predefined GUIs and Dialog Boxes

	10.4 Uimenu Elements
	10.4.1 Uimenu Properties
	10.4.1.1 Uimenu Accelerator
	10.4.1.2 Uimenu CallBack
	10.4.1.3 Uimenu Checked
	10.4.1.4 Uimenu Children
	10.4.1.5 Uimenu Enable
	10.4.1.6 Uimenu ForegroundColor
	10.4.1.7 Uimenu Label
	10.4.1.8 Uimenu Position
	10.4.1.9 Uimenu Separator
	10.4.1.10 Uimenu Interruptible
	10.4.1.11 Uimenu Tag
	10.4.1.12 Uimenu UserData
	10.4.1.13 Uimenu Visible
	10.4.1.14 Other Uimenu Properties

	10.4.2 Creating Uimenus
	10.4.2.1 Top Level Uimenu
	10.4.2.2 Menu Items and Submenu Titles
	10.4.2.3 Summary

	10.5 Low-Level MATLAB GUI Programming Techniques
	10.5.1 Strings of MATLAB Statements and Expressions
	10.5.2 Programming Approaches in MATLAB
	10.5.2.1 Creating All Graphics Elements in the Base Workspace
	10.5.2.2 Storing Handles as Global Variables
	10.5.2.3 Storing Handles in the UserData Properties
	10.5.2.4 Utilizing Tags and the FINDOBJ Command

	10.6 High-Level GUI Development – GUIDE
	10.6.1 The Layout Editor
	10.6.2 The Property Inspector
	10.6.3 The Object Browser
	10.6.4 The Menu Editor
	10.6.5 Saving the GUI
	10.6.5.1 The GUIDE Created FIG-File
	10.6.5.2 The GUIDE Created M-File

	10.6.6 Executing a GUI
	10.6.7 Editing a Previously Created GUI

	10.7 Common Programming Desires with UI Objects
	10.7.1 Creating Exclusive Radio Buttons
	10.7.2 Linking Sliders and Editable Text Objects
	10.7.3 Editable Text and Pop-Up Menu
	10.7.4 Windowed Frame and Interruptions
	10.7.5 Toggling Menu Labels
	10.7.6 Customizing a Button with Graphics

	10.8 The MATLAB Event Queue
	10.8.1 Event Scheduling and Execution
	10.8.2 Execution Order of Events
	10.8.2.1 Mouse Button Pressed Down
	10.8.2.2 Mouse Button Released
	10.8.2.3 Mouse Pointer Moved

	10.8.3 Interruptible vs. Uninterruptible
	10.8.4 Common Mouse Action Examples
	10.8.4.1 Moving Objects with the Mouse
	10.8.4.2 Dynamic Boxes Using the RBBOX Function

	10.9 Creating Custom User Interface Components
	10.9.1 Simulating Buttons with Image Objects
	10.9.2 Creating a Dial

	Appendix: Quick References
	Bibliographic References
	Graphics Commands and Object Properties
	MATLAB Data Formats – Section 3.2.1
	Line Color, Marker Style, and Line Style Strings – Section 3.3.1
	TeX Characters Available in MATLAB – Section 3.4.5
	TeX Stream Modifiers – Section 3.4.5
	Projection Types – Section 4.2.1
	Summary of the Axis Function – Section 4.2.2
	Scalar Volume Computation Functions – Section 4.3.1
	Graphics Objects Creation Functions – Section 7.1
	Universal Object Properties – Section 7.4.3
	Root Properties – Section 7.5.1
	Figure Properties – Section 7.5.2
	Axis Properties – Section 7.5.3
	Line Properties – Section 7.5.4
	Rectangle Properties – Section 7.5.5
	Patch Properties – Section 7.5.6
	Surface Properties – Section 7.5.7
	Image Properties – Section 7.5.8
	Text Properties – Section 7.5.9
	Alpha Properties – Section 8.4.1
	Uicontrol Properties – Section 10.3.2
	Uimenu Properties – Section 10.4.1

