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Chapter 0

Introduction

In one of the first attempts to apply regression techniques to economic data,

Moore (1914) estimated the “law of demand” for various commodities. In his

application the percentage change in the price per unit is explained by a linear

or cubic function of the percentage change of the produced quantities. His results

are summarized as follows:

“The statistical laws of demand for the commodities corn, hay, oats,

and potatoes present the fundamental characteristic which, in the clas-

sical treatment of demand, has been assumed to belong to all demand

curves, namely, they are all negatively inclined”.

(Moore 1914, p. 76). Along with his encouraging results, Moore (1914) estimated

the demand curve for raw steel (pig-iron). To his surprise he found a positively

sloped demand curve and he claimed he have found a brand-new type of demand

curve. Lehfeldt (1915), Wright (1915) and Working (1927) argued, however, that

Moore has actually estimated a supply curve because the data indicated a moving

demand curve that is shifted during the business cycle, whereas the supply curve

appears relatively stable.

This was probably the first thorough discussion of the famous identification

problem in econometrics. Although the arguments of Wright (1915) come close to

a modern treatment of the problem, it took another 30 years until Haavelmo (1944)

suggested a formal framework to resolve the identification problem. His elegant
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4 CHAPTER 0. INTRODUCTION

probabilistic framework has become the dominating approach in subsequent years

and was refined technically by Fisher (1966), Rothenberg (1971), Theil (1971) and

Zellner (1971), among others.

Moore’s (1914) estimates of “demand curves” demonstrate the importance

of prior information for appropriate inference from estimated economic systems.

This is a typical problem when collected data are used instead of experimental

data that are produced under controlled conditions. Observed data for prices and

quantities result from an interaction of demand and supply so that any regression

between such variables require further assumptions to disentangle the effects of

shifts in the demand and supply schedules.

This ambiguity is removed by using prior assumptions on the underlying eco-

nomic structure. A structure is defined as a complete specification of the prob-

ability distribution function of the data. The set of all possible structures S is

called a model. If the structures are distinguished by the values of the parameter

vector θ that is involved by the probability distribution function, then the identi-

fication problem is equivalent to the problem of distinguishing between parameter

points (see Hsiao 1983, p. 226). To select a unique structure as a probabilistic

representation of the data, we have to verify that there is no other structure in

S that leads to the same probability distribution function. In other words, an

identified structure implies that there is no observationally equivalent structure

in S. In this case we say that the structure is identified (e.g. Judge et al. 1988,

Chapter 14).

In this thesis I consider techniques that enables structural inference (that is

estimation and tests in identified structural models) by focusing on a particular

class of dynamic linear models that has become important in recent years. Since

the books of Box and Jenkins (1970) and Granger and Newbold (1977), time series

techniques have become popular for analysing the dynamic relationship between

time series. Among the general class of the multivariate ARIMA (AutoRegressive

Integrated Moving Average) model, the Vector Autoregressive (VAR) model turns

out to be particularly convenient for empirical work. Although there are important

reasons to allow also for moving average errors (e.g. Lütkepohl 1991, 1999), the



5

VAR model has become the dominant work horse in the analysis of multivariate

time series. Furthermore, Engle and Granger (1987) show that the VAR model is

an attractive starting point to study the long run relationship between time series

that are stationary in first differences. Since Johansen’s (1988) seminal paper, the

cointegrated VAR model has become very popular in empirical macroeconomics.

An important drawback of the cointegrated VAR approach is that it takes the

form of a “reduced form representation”, that is, its parameters do not admit

a structural interpretation. In this thesis, I review and supplement recent work

that intends to bridge the gap between such reduced form VAR representations

and structural models in the tradition of Haavelmo (1944). To do this, I first

discuss in Chapter 1 aspects of the reduced form model that are fundamental

for the subsequent structural analysis as well. In Chapter 2 I consider structural

models that take the form of a linear set of simultaneous equations advocated by

the influential Cowles Commission. An alternative kind of structural models are

known as “Structural VAR models” or “Identified VAR models”. These models

are considered in Chapter 3. Problems due to the temporal aggregation of time

series are studied in Chapter 4 and Chapter 5 deals with some new approaches to

analyze nonlinear models. Chapter 6 concludes and makes suggestions for future

work.
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Chapter 1

The reduced form

Since Haavelmo (1944) it is common in econometrics to distinguish a structural

model from the reduced form of an economic system. The reduced form provides

a data admissible statistical representation of the economic system and the struc-

tural form can be seen as a reformulation of the reduced form in order to impose

a particular view suggested by economic theory. Therefore, it is important to

specify both the reduced and structural representation appropriately.

In this chapter the vector autoregressive (VAR) model is used as a convenient

statistical representation of the reduced form relationship between the variables.

Zellner and Palm (1974) and Wallis (1977) argue that under certain conditions the

reduced (or final) form of a set of linear simultaneous equations can be represented

as a VARMA (Vector-Autoregressive-Moving-Average) process. Here it is as-

sumed that such a VARMA representation can be approximated by a VAR model

with a sufficient lag order. A similar framework is used by Monfort and Rabem-

ananjara (1990), Spanos (1990), Clemens and Mizon (1991), Juselius (1993) inter

alia.

The reduced form model is represented by a conditional density function of

the vector of time series yt conditional on It denoted by f(yt|It; θ), where θ is a

finite dimensional parameter vector (e.g. Hendry and Mizon 1983). Here we let

It = {yt−1, yt−2, . . .} and it is usually assumed that f(·|· ; θ) is the normal density.

Sometimes the conditioning set includes a vector of “exogenous variables”. How-

7



8 CHAPTER 1. THE REDUCED FORM

ever, the distinction between endogenous and exogenous variables is considered

as a structural problem and will be discussed in Chapter 2.

The specification of an appropriate VAR model as a statistical representation

of the reduced form involves the following problems:

• The choice of the model variables.

• The choice of an appropriate variable transformation (if necessary).

• The selection of the lag order.

• The specification of the deterministic variables (dummy variables, time trend

etc.)

• The selection of the cointegration rank.

This chapter contributes mainly to the last issue, that is, the selection of the

cointegration rank. Problems involved by deterministic variables are only touched

occasionally and the choice of an appropriate variable transformation is considered

only in the sense that the choice of the cointegration rank may suggest that (some

of) the variables must be differenced to obtain a stationary VAR representation.

We do not discuss the choice of the lag order because there already exists an

extensive literature dealing with this problem (cf. Lütkepohl 1991, Lütkepohl

and Breitung 1997, and the references therein). Furthermore, it is assumed that

the variables of the system are selected guided by to economic theory.

If the reduced form VAR model is specified, it can be estimated by using

a maximum likelihood approach. For completeness I restate in Section 1.1 some

well-known results on the estimation of stationary VAR models that are enhanced

in Section 1.3 by introducing deterministic terms. Some useful representations

of cointegrated VAR models are considered Section 1.3. Section 1.4 suggests a

unifying approach for the estimation of the cointegration vectors and Section 1.5

discusses different approaches for testing the cointegration rank.
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1.1 The stationary VAR model

Assume that the n × 1 times series vector yt is stationary with E(yt) = 0 and

E(yty
′
t+j) = Γj such that there exists a Wold representation of the form:

yt = ε∗t +B1ε
∗
t−1 +B2ε

∗
t−2 + · · · (1.1)

= B(L)ε∗t , (1.2)

where B(L) = In + B1L + B2L
2 + · · · is a (possibly infinite) n × n lag poly-

nomial and ε∗t is a vector of white noise errors with positive definite covariance

matrix E(ε∗t ε
∗
t
′) = Σ∗. Furthermore, it is assumed that the matrix polynomial

|B(z)| 6= 0 for all |z| ≤ 1. If in addition the coefficient matrices B1, B2, . . . obey∑∞
j=1 j

1/2||Bj|| <∞, where ||Bj|| = [tr(BjB
′
j)]

1/2, then there exists a VAR repre-

sentation of the form

yt = A1yt−1 + A2yt−2 + · · ·+ ε∗t .

In practice this infinite VAR representation is approximated by a finite order

VAR[p] model:

yt = A1yt−1 + · · ·+ Apyt−p + εt , (1.3)

where εt = ε∗t+Ap+1yt−p−1+Ap+2yt−p−2+· · · and, thus, the error vector εt includes

the approximation error ηpt = Ap+1yt−p−1 + Ap+2yt−p−2 + · · ·. In what follows it

is assumed that the approximation error is “small” relative to the innovation ε∗t

and so I am able to neglect the term ηpt . With respect to the consistency and

asymptotic normality of the least-squares estimator, Lewis and Reinsel (1985)

have shown that the approximation error is asymptotically negligible if for →∞
and p→∞

√
T

∞∑
j=p+1

||Aj|| → 0 . (1.4)

In many cases this condition is satisfied if p increases with the sample size T but

at a smaller rate than T . For example, if yt is generated by a finite order MA

process, then p(T ) = T 1/δ with δ > 3 is sufficient for (1.4) to hold (see Lütkepohl

1991, p. 307).
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Unfortunately, such asymptotic conditions are of limited use in practice. First,

there is usually a wide range of valid rates for p(T ). For MA models we may use

p(T ) = T 1/3.01 as well as p(T ) = T 1/100. Obviously, both possible rules will render

quite different model orders. Second, a factor c may be introduced such that

p(T ) = cT 1/δ. For asymptotic considerations the factor c is negligible as long as

c > 0. However, in small samples it can make a big difference if c = 0.1 or c = 20,

for example. In practice it is therefore useful to employ selection criteria for the

choice of the autoregressive order p (see Lütkepohl 1991, Chapter 4).

For later reference I now summarize the basic assumptions of the VAR model

used in the subsequent sections.

Assumption 1.1 (Stationary VAR[p] model). Let yt = [y1t, . . . , ynt]
′ be an n× 1

vector of stationary time series with the VAR[p] representation

yt = A1yt−1 + · · ·+ Apyt−p + εt , (1.5)

where {εt} is white noise with E(εt) = 0, E(εtε
′
t) = Σ and Σ is a positive definite

n× n matrix.

Usually, the coefficient matrices are unknown and can be estimated by multi-

variate least-squares. Let xt = [y′t−1, . . . , y
′
t−p]

′ and A = [A1, . . . , Ap] so that the

VAR[p] model can be written as yt = Axt + εt. Then the least-squares estimator

is given by

Â =
T∑

t=p+1

ytx
′
t

(
T∑

t=p+1

xtx
′
t

)−1

.

Under Assumption 1.1 the least-squares estimator is consistent and asymptotically

normally distributed with

√
T vec(Â− A)

d−→ N(0, VÂ) ,

where

VÂ = [E(xtx
′
t)]
−1 ⊗ Σ .

If in addition it is assumed that εt is normally distributed, then the least-squares

estimator is asymptotically equivalent to the maximum likelihood estimator and,

hence, the least-squares estimator is asymptotically efficient.
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The covariance matrix Σ can be consistently estimated using

Σ̂ =
1

T − p

T∑
t=p+1

(yt − Âxt)(yt − Âxt)′ . (1.6)

1.2 Deterministic terms

So far I have assumed that E(yt) = 0. In most applications, however, yt has a

nonzero mean such as a constant or a linear time trend. Assume that the mean

is a linear function of the k × 1 vector dt so that

E(yt) = Cdt . (1.7)

For example, the elements of the matrix dt may be the terms of a polynomial time

trend or dummy variables.

Another possibility to accommodate a nonzero mean is to include deterministic

terms in the autoregressive representation

yt = C∗d∗t + A1yt−1 + · · ·+ Apyt−p + εt . (1.8)

The relationship between the mean function implied by (1.7) and (1.8) is found

from solving the difference equation

Cdt − A1Cdt−1 − · · · − ApCdt−p = C∗d∗t .

If the elements of dt can be represented as tk for k = {0, 1, 2, . . .}, then d∗t = dt.

However in other cases C 6= C∗, in general.

The matrix C∗ in (1.8) can be asymptotically efficiently estimated by OLS.

The mean function in (1.7) is asymptotically efficiently estimated by applying a

GLS procedure to

yt = Cdt + ut , (1.9)

where

ut = A1ut−1 + · · ·+ Aput−p + εt .

The GLS estimator of C results as

C̃ =
T∑

t=p+1

ỹtd̃
′
t

(
T∑

t=p+1

d̃td̃
′
t

)−1

, (1.10)
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where

ỹt = yt − A1yt−1 − · · · − Apyt−p

d̃t = dt − A1dt−1 − · · · − Apdt−p .

To obtain a feasible GLS procedure, the unknown matrices A1, . . . , Ap must be

replaced by consistent estimates.

As shown by Grenander and Rosenblatt (1957, Sec. 7) there are important

cases where the OLS estimator of C is as efficient as the GLS estimator. For

example, this is the case if the elements of dt are the terms of a polynomial trend

regression, i.e., dt = (tj)j=0,...,k. Another example are seasonal dummy variables,

which can be estimated efficiently by OLS (cf Grenander and Rosenblatt 1957, p.

246).

Besides trend polynomials and seasonal dummies the deterministic term often

includes “impulse-dummies” and “step-dummies”. Since such terms are not con-

sidered by Grenander and Rosenblatt (1957), the following theorem states that for

step-dummies a similar result applies while for an impulse-dummy the OLS esti-

mate has a different limiting distribution than the GLS estimate. As in Grenander

and Rosenblatt (1957) I consider a univariate process but the generalization to a

vector process is straightforward.

THEOREM 1.1 Let dpt and dst denote an impulse-dummy and a step-dummy

defined as

dpt (λ) =

 1 for t = T0

0 otherwise
and dst(λ) =

 0 for t ≤ T0

1 for t > T0

where T0 = [λT ], 0 < λ < 1, and [·] indicates the integer part of the argument.

(i) For the regression model yt = csdst(λ)+ut, where ut = α1ut−1 + . . .+αput−p+εt

is a stationary AR[p] process, the OLS and GLS estimates have the same limiting

distribution.

(ii) The respective estimates for the model yt = cpdpt (λ) + ut have a different

distribution as long as ut is different from a white noise process.
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Proof: (i) In the model with a step-dummy dst(λ) we have

T−1/2

T∑
t=1

dst(λ)ut = T−1/2

T∑
t=T0

ut
d−→ N

(
0,

σ2(1− λ)

(1− α1 − · · · − αp)2

)
.

Furthermore, T−1
∑T

t=1 d
s
t(λ)2 = (1− λ). It follows that the OLS estimator of cs

is asymptotically distributed as

N

(
0,

σ2

(1− λ)(1− α1 − · · · − αp)2

)
.

To derive the limiting distribution of the GLS estimator, let

d̃st(λ) = dst(λ)− α̂1d
s
t−1(λ)− · · · − α̂pdst−p(λ) .

Using d̃st(λ) = 1− α̂1 − . . .− α̂p for t > T0 + p we obtain

plim
T→∞

T−1

T∑
t=1

[d̃st(λ)]2 = (1− λ)(1− α1 − · · · − αp)2

and

T−1/2

T∑
t=1

d̃st(λ)εt
d−→ N

(
0, σ2(1− λ)(1− α1 − · · · − αp)2

)
.

Combining these results it follows that

√
T

T∑
t=1

d̃st(λ)εt

T∑
t=1

[d̃st(λ)]2

d−→ N

(
0,

σ2

(1− λ)(1− α1 − · · · − αp)2

)
,

and, thus, the GLS estimator has the same asymptotic distribution as the OLS

estimator.

(ii) For the model with an impulse-dummy dpt (λ) we have for the OLS estimator

ĉp = yT0 so that

ĉp − cp d−→ N(0, σ2
u) ,

where σ2
u denotes the variance of ut. For the GLS estimator we have c̃p = yT0 −

α̂1yT0−1 − · · · − α̂pyT0−p and, thus,

c̃p − cp d−→ N(0, σ2
ε) .
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Unless σ2
u = σ2

ε , that is ut is white noise, the limiting distributions for the estima-

tors of cp are different, in general. �

Since the least-squares estimation of a VAR system is equivalent to the separate

estimation of the equations, it is straightforward to show that this result also holds

for a multivariate estimation of the VAR system. Furthermore it can be shown by

using the same techniques as in Theorem 1.1 that in a regression with a polynomial

trend dummy defined as djt = d1
t (λ)tj the OLS and GLS estimates have the same

limiting distribution as well.

The Grenander-Rosenblatt theorem and its extension to step dummies in The-

orem 1.1 implies that for estimating the parameters of a VAR process the esti-

mation method (OLS or GLS) is irrelevant for the asymptotic properties.1 Fur-

thermore the invariance of the ML estimation implies that the ML estimation

of λ is identical to λ̃ = g(θ̂), where g(·) is a matrix function Rk → Rk with a

regular matrix of first derivatives and θ, λ are k × 1 vectors. Since there exists

a one-to-one relationship between C and C∗ it therefore follows that asymptot-

ically the estimates of A1, . . . , Ap and Σ are not affected whether the process is

demeaned by estimating the mean in (1.7) or in (1.8). Thus I present only the

limiting distributions for the case of an OLS based on (1.8).

THEOREM 1.2 Let yt−Cdt be a stationary n×1 vector generated by a VAR[p]

as in Assumption 1.1. Furthermore assume that there exits a diagonal matrix

ΥT = diag[T δ1 , . . . , T δk ] with δr > 0 for r = 1, . . . , k such that the limiting matrix

Γd = lim
T→∞

Υ−1
T

T∑
t=p+1

d̃td̃
′
t where d̃t = dt − A1dt−1 − · · · − Apdt−p

exists and is positive definite. Let â = vec(Â), σ̂ = vech(Σ̂) and ĉ = vec(Ĉ), where

vec(Â) stacks the columns of Â into a vector, vech(Σ̂) stacks the non-redundant

1Notice that in Grenander and Rosenblatt (1957) as well as in Theorem 1.1 it is assumed

that yt − E(yt) is stationary. The results do not apply if the process has one or more roots on

the unit circle (see Lütkepohl and Saikkonen 2000).
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elements of the columns of Σ̂ into a n(n+ 1)/2 vector and

Â =
T∑

t=p+1

ȳtx̄
′
t

(
T∑

t=p+1

x̄tx̄
′
t

)−1

Σ̂ = T−1

T∑
t=p+1

(ȳt − Âx̄t)(ȳt − Âx̄t)′ ,

ȳt−j = yt−j − Ĉdt, x̄t = [ȳ′t−1, . . . , ȳ
′
t−p]

′. As T →∞


√
T (â− a)
√
T (σ̂ − σ)

Υ
1/2
T (ĉ− c)

 d−→ N(0, diag[Va, Vσ, Vc]) ,

where

Va = Γ−1
x ⊗ Σ

Vσ = 2D+
n (Σ⊗ Σ)D+

n
′

Vc = Γ−1
d ⊗ Σ .

where D+
n = (D′nDn)−1D′n is the Moore-Penrose generalized inverse of the n2 ×

n(n+ 1)/2 duplication matrix Dn (cf. Lütkepohl 1991, p. 84).

Proof: The proof is a straightforward extension of the proof in Lütkepohl (1991,

Sec. 3.4.3). �

Since the asymptotic covariance matrix is block diagonal, it follows that any other

consistent estimator for C besides Ĉ can be used without affecting the asymptotic

properties of the other estimators. Thus, even if a mean function is used where

the Grenander-Rosenblatt theorem does not apply, the limiting distributions of

A1, . . . , Ap and Σ are not affected by the estimator of C as long as C is estimated

consistently. Furthermore a possible overspecification of the deterministic terms

does not affect the asymptotic properties of the estimators of A1, . . . , Ap and Σ.
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1.3 Alternative representations of cointegrated

VARs

As already observed by Box and Jenkins (1970), many economic variables must

be differenced to become stationary. They introduced the notation that a (mean-

adjusted) variable is called I(d) (integrated of order d) if at least d differences

are necessary to achieve a stationary series. Modeling integrated time series in a

multivariate system raises a number of important problems and since the late 80s

various inference procedures were suggested to deal with such problems. It is not

the intention to give a detailed account of all developments in this area.2 Rather,

I focus on the most important developments as well as on my own work in this

area.

Consider the VAR[p] model

yt = A1yt−1 + · · ·+ Apyt−p + εt , (1.11)

where for convenience we leave out deterministic terms like constants, time trends

and dummy variables. As noted in Section 1.1, the process is stationary if the

polynomial A(L) = In − A1L − · · · − ApLp has all roots outside the unit circle,

that is, if

|In − A1z − · · · − Apzp| 6= 0 for all |z| ≤ 1 .

On the other hand, if |A(zj)| = 0 for |zj| = 1 and j = 1, 2, . . . , q, we say that the

process has q unit roots. In what follows, I will focus on unit roots “at frequency

zero”, i.e., zj = 1 for j = 1, 2, . . . , q. Complex unit roots are important in the

analysis of the seasonal behavior of the time series but are left out here for ease

of exposition.

To assess the properties of the process, it is not sufficient to consider merely the

number of unit roots. For example, assume that the process for yt = [y1t, y2t, y3t]
′

has two unit roots. This may be due to fact that [∆y1t,∆y2t, y3t] is stationary,

where ∆ = 1 − L denotes the difference operator. Another possibility is that

2For recent surveys see, e.g., Hamilton (1994), Watson (1994), Mills (1998), Lütkepohl

(1999a).
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[∆2y1t, y2t, y3t] is stationary, i.e., y1t is I(2) in the terminology of Box and Jenkins

(1970). Finally the unit roots may be due to the fact that [∆y1t,∆y2t, y3t − by1t]

is stationary. In this case y3t and y1t are integrated but there exists a linear

combination y3t− by1t that is stationary. In this case we say that the variables y3t

and y1t are cointegrated.

To facilitate the analysis, it is convenient to rule out that components of yt

are integrated with a degree larger than one. The analysis of I(2) variables is

considerably more complicated than the analysis of I(1) variables (see, e.g., Stock

and Watson 1993, Johansen 1995c), and in empirical practice the case with I(1)

variables is more important. We therefore make the following assumption:

Assumption 1.2 The vector ∆yt is stationary.

The VECM representation. Following Engle and Granger (1997) it is conve-

nient to reformulate the VAR system as a “vector error correction model” (VECM)

given by

∆yt = Πyt−1 + Γ1∆yt−1 + · · ·+ Γp−1∆yt−p+1 + εt , (1.12)

where Π =
∑p

j=1 Aj − In and Γj = −
∑p

i=j+1 Ai. This representation can be used

to define cointegration in a VAR system.

DEFINITION 1.1 (Cointegration). A VAR[p] system as defined in Assumption

1.1 is called cointegrated with rank r, if r = rk(Π) with 0 < r < n.

If Π has a reduced rank then there exists a factorisation Π = αβ ′ such that α

and β are n× r matrices. Furthermore, from Assumption 1.2 and (1.12) it follows

that Πyt−1 = αβ ′yt−1 is stationary. Since α is a matrix of constants, β′yt defines r

stationary linear combinations of yt. Furthermore, it follows that ∆yt has a MA

representation of the form

∆yt = εt + C1εt−1 + C2εt−1 + · · ·

∆yt = C(L)εt .

As shown by Johansen (1991), the MA representation can be reformulated as

∆yt = C(1)εt + C∗(L)∆εt , (1.13)
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where C∗(L) = C∗0 + C∗1L + C∗2L
2 + · · · has all roots outside the complex unit

circle,

C(1) = β⊥[α′⊥Γ(1)β⊥]−1α′⊥ , (1.14)

and Γ(1) = I +
∑p−1

j=1 Γj (Johansen 1991, Theorem 4.1). Assumption 1.2 implies

that the matrix [α′⊥Γ(1)β⊥] is invertible.

A canonical representation. The VECM representation used by Engle and

Granger (1987), Johansen (1995a) and many others is not the only way to rep-

resent a cointegrated system. Phillips (1991) uses a “triangular representation”

resulting from the partitioning yt = [y′1t, y
′
2t]
′, where y1t and y2t are r × 1 and

(n − r) × 1 subvectors. In the subsequent sections it will be convenient to use

another representation that is based on the following theorem.

THEOREM 1.3 Let yt be a n×1 vector of cointegrated variables with 0 < r < n

and ∆yt is stationary. Then there exists an invertible matrix Q = [β∗, γ∗]′, where

β∗ is an n × r cointegration matrix and γ∗ is an n × (n − r) matrix linearly

independent of β∗ such that

xt =

[
x1t

x2t

]
= Qyt =

[
β∗′yt

γ∗′yt

]

T−1/2

[aT ]∑
i=1

x1i ⇒ Wr(a)

T−1/2x2,[aT ] ⇒ Wn−r(a),

where [aT ] signifies the integer part of aT and Wr(a), Wn−r(a) are uncorrelated r

and (n− r) dimensional Brownian motions with unit covariance matrix.

Proof: From the MA representation (1.13) we have

β′yt = β′C∗(L)εt

= β′C∗(1)εt + β′C∗∗(L)∆εt

γ′yt = γ′C(1)
t∑
i=1

εi + C∗(L)εt ,
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where γ is an n× (n−r) matrix linearly independent of β and C∗∗(L) = [C∗(L)−
C∗(1)](1 − L)−1 has all roots outside the complex unit circle. The expression

(1−L)−1 is equivalent to the polynomial 1 +L+L2 +L3 + . . .. Let R be a lower

block diagonal matrix such that

R =

[
R11 0

R21 R22

]

and [
β′C∗(1)

γ′C

]
Σ

[
β′C∗(1)

γ′C

]′
= RR′.

Then, by using

Q = R−1

[
β′

γ′

]
=

[
β∗′

γ∗′

]

it follows that T−1/2
∑[aT ]

i=1 x1i and T−1/2x2,[aT ] converge weakly to the standard

Brownian motions Wr and Wn−r, respectively (e.g. Phillips and Durlauf 1986).

�

This representation is called “canonical” since it transforms the system into r

asymptotically independent stationary and n− r nonstationary components with

uncorrelated limiting processes. Since this representation separates the stationary

and non-stationary components from the system it is convenient for the analysis

of the asymptotic properties of the system. Furthermore, the representation is

related to Phillips’ (1991) triangular representation given by

y1t = By2t + ut (1.15)

∆y2t = vt , (1.16)

where ut and vt are I(0). However, (1.15) implies the normalization β = [Ir,−B]′

that is not assumed in the former representation.

The SE representation. Another convenient reformulation of the system is

the representation in the form of a traditional system of Simultaneous Equations

(SE). This representation imposes r2 normalization restrictions on the loading
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matrix α. Specifically, we let

α∗ =

[
φ′

Ir

]
, (1.17)

where φ is an unrestricted r × (n − r) matrix. Obviously, φ′ = α1α
−1
2 , where

α = [α′1, α
′
2]′ and α2 is an invertible r × r matrix. Note that the variables in yt

can always be arranged such that α2 is invertible.

The system (1.12) is transformed by using the matrix

C0 =

[
In−r −φ′

0 Ir

]

so that

C0∆yt = Π∗yt−1 + Γ∗1∆yt−1 + · · ·+ Γ∗p−1∆yt−p+1 + u∗t , (1.18)

where Π∗ = C0αβ
′ = [0, π2]′, Γ∗j = C0Γ and π′2 = α2β

′ is the lower r × n block of

Π = αβ ′. Let yt = [y′1t, y
′
2t]
′, then (1.18) can be represented by the two subsystems:

∆y1t = φ′∆y2t + lags + w1t (1.19)

∆y2t = π′2yt−1 + lags + w2t (1.20)

where “lags” represent the terms due to ∆yt−1, . . . ,∆yt−p+1. Although, the sys-

tem (1.18) is written as a structural model considered by Hsiao (1997), it is not

a “structural” system in the usual sense. It should further be noticed that in

(1.19) the rank restrictions show up in the form of (n− r)2 linear over-identifying

restrictions. The remaining r equations in (1.20) are just identified. The SE rep-

resentation turns out to be useful for imposing restrictions on the parameters (see

Chapter 2).

1.4 Weak exogeneity in stationary VARs

An important structural assumption is the distinction between exogenous and

endogenous variables. Let z′t = [y′t, x
′
t], where yt and xt are m × 1 and k × 1

vectors of time series, respectively. Furthermore we define the increasing sigma-

field Zt = {zt, zt−1, zt−2, . . .}. Then, according to Engle et al. (1983) the variable
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xt is (weakly) exogenous if we can factorize the joint density of zt with parameter

vector θ = [θ′1, θ
′
2]′ as

f(zt|Zt−1, ; θ) = f1(yt|xt,Zt−1; θ1) · f2(xt|Zt−1; θ2)

such that the parameter vector θ1 of the conditional density f1(·|· ; θ1) does not

depend on the parameter vector θ2 of the conditional density f2(·|· ; θ2), and θ1

and θ2 are variation free, that is, a change in θ2 has no effect on θ1 (cf Engle et

al. 1983).

In the dynamic structural model given in (??) the parameter θ1 comprises the

elements of the matrices Γ0, . . . ,Γp, B0, . . . , Bp and the non-redundant elements of

Σ. To embed the structural form in a corresponding form derived from the VAR

representation of the system we define the matrix

Q =

[
Im −Σ12Σ−1

22

0 Ik

]
,

where the covariance matrix of the VAR innovations Σ = E(εtε
′
t) is decomposed

as [
Σ11 Σ12

Σ21 Σ22

]
such that Σ11 is the covariance matrix of the innovations of yt and Σ22 is the

covariance matrix of the innovations of xt. Multiplying the VAR system (1.5) by

Q yields a block recursive system of the form

Φ0zt = Φ1zt−1 + · · ·+ Φpzt−p + vt (1.21)

or for the first m equations

yt = Φ12xt + Φ1,1zt−1 + · · ·+ Φ1,pzt−p + v1t , (1.22)

where Φ0 = Q, Φ12 = Σ12Σ−1
22 and the matrix Φ1,j denotes the upper m × n

block of the matrix Φj = QAj for j = 1, . . . , p. Similarly, vt is partitioned as

Qεt = vt = [v′1t, v
′
2t]
′, where the covariance matrix of vt is block diagonal with

respect to v1 and v2.
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In many applications, economic theory does not imply restrictions on the short

run dynamics of the system.3 Thus we follow Monfort and Rabemananjara (1990)

and assume that there are no restrictions on the matrices Γ1,Γ2, . . . ,Γp. Premulti-

plying (1.22) by B0 and comparing the result with (??) gives rise to the following

characterization of a vector of weakly exogenous variables.

DEFINITION 1.2 Let zt = [y′t, x
′
t]
′ be an n × 1 time series vector with a sta-

tionary VAR[p] representation as given in Assumption 1.1 and εt ∼ N(0,Σ). The

subvector xt is weakly exogenous for the parameters of the structural form (??),

iff

B0Φ12 = Γ0 . (1.23)

It is straightforward to show that this definition is indeed equivalent to the defi-

nition of weak exogeneity suggested by Engle et al. (1983). From (1.22) it follows

that

E(yt|xt, zt−1, . . . , zt−p) = Φ12xt + Φ1,1zt−1 + · · ·+ Φ1,pzt−p

Accordingly, if xt is predetermined, the parameters of the structural form result

as functions from the parameters of the conditional mean and variance of yt given

xt, zt−1, . . . , zt−p. Under normality it follows that the vector of structural param-

eters θ1 in f1(yt|xt,Zt−1; θ1) does not depend on θ2 in f2(xt|Zt−1; θ2).

If there are (cross-equation) restrictions on the matrices B1, . . . , Bp some ex-

tra conditions are needed to ensure that xt is weakly exogenous (see Monfort

and Rabemananjara 1990). An important example for such restrictions are rank

restrictions in cointegrated systems.

Assume that the structural analog of a cointegrated system can be represented

as

C0zt = C1zt−1 + C2zt−2 + · · ·+ Cpzt−p + et , (1.24)

where zt = [y′t, x
′
t]
′ is partitioned such that

C0 =

[
B0 −Γ0

Cxx Cxy

]
3A notable exception are models based on dynamic maximization assuming rational expec-

tations (e.g. Wickens 1982).
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and the upper m × n block of Cj (j = 1, . . . , p) is equal to [Bj,Γj]. The error

vector et = [u′t, w
′
t]
′ is white noise. Accordingly, the upper m equations of the

system yield a traditional structural form as given in (??). The structural system

as given in (1.24) is obtained from the reduced form VAR representation (1.5) by

a pre-multiplication with the matrix C0.

Premultiplying the reduced form VECM (1.12) by C0 the structural form of

the cointegrated system is obtained (cf Johansen and Juselius 1994)

B0∆yt = α∗1β
′zt−1 + Γ0∆xt + Γ∗1∆zt−1 + · · ·+ Γ∗p−1∆zt−p+1 + ut , (1.25)

where Γ∗j is the upper m×n block of the matrix C0Γj and α∗1 = [Γ0, B0]α. Without

additional restrictions both expectations E(yt|xt, zt−1, . . . ,zt−p) and E(yt|zt−1, . . . ,

zt−p) depend on the error correction term β′zt−1, in general. It follows that the

parameter vectors θ1 in f1(yt|xt,Zt−1; θ1) and θ2 in f2(xt|Zt−1; θ2) depend on β

and, hence, xt is not weakly exogenous in the sense of Engle et al. (1983). How-

ever, if the lower k × n block of α (resp. Π) is a zero matrix, that is, the error

correction term does not enter the “marginal model”, then the vector θ1 does not

depend on β (see Boswijk and Urbain (1997) and the references therein).

As before let

E(yt|xt, zt−1, . . . , zt−p) = Φ12xt + Φ1,1zt−1 + · · ·+ Φ1,pzt−p .

If there are no restrictions on Γ∗1, . . . ,Γ
∗
p−1, Definition 1.2 can be straightforwardly

adapted to the case of weak exogeneity in a cointegrated system.

DEFINITION 1.3 Let z′t = [y′t, x
′
t] be a (m + k) × 1 time series vector with

a cointegrated VAR[p] representation given in (1.12) and εt ∼ N(0,Σ). The

subvector xt is weakly exogenous with respect to the structural VECM given in

(1.25), iff

(i) B0Φ12 = Γ0

and (ii) α2 = 0,

where α2 is the lower k × r block of the matrix α.
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This definition of weak exogeneity is more general than the definition suggested

by Johansen (1992b), who assumes that B0 = I and Boswijk and Urbain (1997),

who assume that the matrix B0 is block triangular. In the latter case , the

condition (i) of Definition 1.3 can be replaced by the condition (i’) E(utw
′
t) = 0,

where et = [u′t, w
′
t] is the vector of disturbances in (1.24).

If xt is weakly exogenous for the structural parameters B0,Γ0,Γ
∗
1, . . . ,Γ

∗
p−1,

then the partial system (1.25) can be estimated efficiently without involving the

marginal model for xt (Johansen 1992b). In particular, if m = 1, the parameters

can be estimated efficiently by OLS on the single equations. Dolado (1992) shows

that condition (ii) in Definition 1.3 is not necessary to establish the efficiency of

the OLS estimator. The reason is that for an efficient OLS estimator it is required

that

lim
T→∞

E(∆xTu
′
T ) = 0 .

This condition is satisfied by imposing α2 = 0 but it may also be fulfilled by

imposing restrictions on β⊥ (cf. Dolado 1992).

1.5 Identifying restrictions

Consider the structural VECM model given by (1.25). To achieve a unique iden-

tification of the structural form, restrictions on the parameters are required. Fol-

lowing Hsiao (1997) I first make the following assumption:

Assumption 1.3 It is assumed that |B0| 6= 0 and T−2
T∑
t=1

xtx
′
t converges in dis-

tribution to a nonsingular random matrix.

Hsiao (1997) shows that this assumption implies that the roots of the poly-

nomial B0 + B1L + · · · + BpL
p lie outside the unit circle and, thus, the usual

stability condition for dynamic systems (e.g. Davidson and Hall 1991) is satisfied.

An important property of the stable dynamic system is that the distribution of yt

conditional on xt does not depend on initial conditions.

Johansen and Juselius (1994) distinguish four kinds of identifying assumptions:
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(i) Linear restrictions on the contemporary relationships:

R0vec(B0,Γ0) = r0 . (1.26)

(ii) Restrictions on the short run dynamics:

R1vec(Γ∗1, . . . ,Γ
∗
p−1) = r1 . (1.27)

(iii) Restrictions on the long run relationships:

Rβvec(β) = rβ . (1.28)

(iv) Restrictions on the “loading matrix”:

Rαvec(α∗1) = rα . (1.29)

In principle we may also include restrictions on the covariance matrix Σ in the

list of identifying assumptions. However, in the traditional Cowles-Commission

type of structural models such restrictions are not very common. In contrast,

the “structural VAR approach” which is considered in Chapter 3 relies heavily on

covariance restrictions.

To identify the parameters of the structural form, a sufficient number of re-

strictions is required. Hsiao (1997) calls the matrix Π∗1 = α∗1β
′ “long run rela-

tion matrices”. He assumes that linear restrictions are imposed on the matrix

A∗ = [B0,Γ0,Γ
∗
1, . . . ,Γ

∗
p−1,Π

∗
1] so that for the g’th equation the restriction can

concisely be written as R∗ga
∗
g = 0, where a∗g is the g’th column of A∗′ and R∗g is a

known matrix. In this case the rank condition is

rk(R∗gA
∗′) = m− 1 .

Hsiao (1997) emphasize that this rank condition is equivalent to the usual rank

condition in the SE model and, thus, cointegration does not imply additional

complications to the identification problem. However, this is only true if Π∗1 is

considered as the long run parameter matrix. In Johansen’s (1995b) framework

the long run parameters are represented by the matrix β and the nonlinearity im-

plied by the product α∗1β
′ indeed imply additional problems for the identification
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of the system. Specifically Johansen (1995b) points out that the rank condition

must be checked for every possible value of β. He suggests a sequential procedure

to verify a more restrictive concept labeled as “generic identification”.

In practice, identification is often checked by applying the so-called order con-

dition, which is a necessary condition for identification. The application of these

criteria for restrictions of the form (i) and (ii) is well documented in many econo-

metric text books (e.g. Judge et al. 1988, Hamilton 1994) and there is no need

to repeat the discussion here. Rather I will concentrate on the structural form of

a cointegrated system given in (1.25).

First, I consider the identification of the cointegration matrix β. Johansen and

Juselius (1990, 1992) consider restrictions of the form

Rβ = 0, j = 1, . . . , r (1.30)

or β = Hϕ, (1.31)

where R is a given (n−q)×n matrix and H is a n×q matrix obeying RH = 0 and

q ≤ n − r. Comparing this restriction with (1.28) reveals two differences. First,

the restriction (1.30) assumes rβ = 0. This specification excludes the restriction of

cointegration parameters to prespecified values. Since the cointegration property

is invariant to a scale transformation of the cointegration vector, such constants

are not identified.4 Second, all r cointegration vectors are assumed to satisfy the

same linear restriction Rβj = 0, where βj is the j’th row of β. Of course, this is

a serious limitation of such type of restrictions. Nevertheless, in many empirical

applications, the restrictions on the cointegration vectors can be written as in

(1.30) (e.g. Johansen and Juselius 1990, 1992, Hoffman and Rasche 1996).

Of course, if there is only one cointegration vector, then this kind of restriction

does not imply a loss of generality. Another important class of restrictions covered

by (1.30) is the case that the basis of the cointegration space is known. As in King

et al. (1991) assume that yt = [ct, it, ot]
′, where ct denotes the log of consumption,

4To facilitate the interpretation, the cointegration vectors are often normalized so that one of

the coefficients is unity. However such a normalization does not restrict the cointegration space

and is therefore not testable.
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it is the log of investment, and ot denotes the log output. Suppose that ct−ot and

it − ot are stationary. Accordingly, the cointegration space can be represented as

β =


1 0

0 1

−1 −1

ϕ .

Another important special case are “separable restrictions”, that is, restrictions

that apply to different parts of the cointegration vectors. An example is the

restriction: [
1 −1 0 0

0 0 1 −1

]
β = 0 .

Notwithstanding these cases encountered frequently in practice, the restriction

(1.30) rules out important cases. Johansen and Juselius (1994) therefore consider

more general restrictions given by

diag(R1, . . . , Rr)vec(β) = 0

or

β = [H1ϕ1, . . . , Hrϕr] , (1.32)

where Hj is a n×qj matrix and ϕj is a qj×1 vector with qj ≤ n−r. This set of re-

strictions is more general than (1.30), since it allows for different linear restrictions

on the cointegration vectors. However, no restrictions across cointegration vec-

tors are accommodated. Such restrictions between different cointegration vectors,

however, do not seem to be important in practice.

To identify the cointegration vector βj it is required that no other cointegration

vector (or a linear combination thereof) satisfy the restriction for βj. Accordingly,

the rank condition results as

rk(Rjβ1, . . . , Rjβr) = r − 1

(cf. Johansen and Juselius 1994). The problem with the application of such a

rank condition is that it depends on the (unknown) parameter values β1, . . . , βr.

To overcome the difficulties Johansen and Juselius (1994) suggest a criterion to

check for generic identification. Inserting (1.32) gives

rk(RjH1ϕ1, . . . , RjHrϕr) = r − 1 .
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From this rank condition Johansen (1995) derives a sequence of rank criteria which

can be used to check the identification for “almost all” possible vectors β. Fur-

thermore a simple order condition can be derived. Since (Rjβ) is a qj × r matrix,

qj ≥ r − 1 restrictions are needed to identify βj in addition to a normalization

restriction.

Davidson (1998) suggests an “atheoretical” approach to achieve unique coin-

tegration vectors that are identified up to a scale transformation. A cointegration

vector is called irreducible if no variable can be omitted from the cointegration

relationship without loss of the cointegration property. Such an irreducible coin-

tegration vector is unique up to a scale transformation. Davidson (1998) provides

a program that allows to determine the irreducible cointegration vectors from an

estimated cointegration matrix.

Whenever the long run parameters β are properly identified, the short run

parameters can be identified in the usual way. Letting wt = β′yt, the structural

form of the VECM can be written as

B0∆yt = α∗1wt−1 + Γ0∆xt + Γ∗1∆zt−1 + · · ·+ Γ∗p−1∆zt−p+1 + ut , (1.33)

which takes the form of a traditional linear system of simultaneous equations. It

follows that the “short run parameters” B0,Γ0, α
∗
1,Γ

∗
1, . . . ,Γ

∗
p−1 can be identified

by applying the traditional rank or order conditions (e.g. Judge et al. 1988, Hsiao

1997).

As in Johansen and Juselius (1994) it is assumed that the long run and short

run parameters were identified separately. However, as pointed out by Boswijk

(1995), it is possible to identify β by using restrictions on α. For example, assume

that α is restricted to have a form similar to α = [Ir, α2]′. Then β is identified

and can be computed from the reduced form as the upper block of the matrix

Π = αβ ′. This identification is used in the SE representation of a cointegrated

system which is discussed in Section 1.3. The mixed case using restrictions on α

and β together to identify β is more complicated and does not seem important

for the empirical practice. See Boswijk (1995) for more details.

As in the usual SE model, the identifying assumptions are derived from eco-

nomic theory. The assumptions on the long run relationships often result from
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equilibrium conditions on markets for goods and services, whereas the short run

restrictions are more difficult to motivate. An important source of short run

restrictions is the theory of rational expectations. Unfortunately, the resulting

restrictions usually imply highly nonlinear cross equation restrictions that are

difficult to impose on the SE systems. Therefore, the short run restrictions are

often imposed by making informal (“plausible”) assumptions or by testing the

coefficients against zero (the simplification stage of Hendry’s methodology). Ex-

amples are Juselius (1998) and Lütkepohl and Wolters (1998). Similarly, Garratt

et al. (1999) advocate a different treatment of long and short run restrictions.

They derive the long run relationships from (steady state) economic theory and

impose these restrictions on the cointegration vectors of a cointegrated VAR. The

resulting model for the long run relationship is called the “core model”:

β′zt − c0 − c1t = wt ,

where the vector zt = [y′t, x
′
t]
′ comprises the endogenous and exogenous variables

of the system and β is subject to linear restrictions given in (1.28). At the second

stage, the short run response is represented in the model of the usual form (1.25).

The lag length of the adjustment model is selected by using conventional informa-

tion criteria like AIC or the BIC (cf. Lütkepohl 1991). Furthermore, coefficients

may be set to zero whenever they turn out to be insignificant with respect to a

prespecified significance level.

1.6 Estimation under long run restrictions

First the estimation of cointegrated VAR models with restrictions on the coin-

tegration vectors is considered. Since we assume that all other parameters are

unrestricted, the model can be estimated in its concentrated form:

∆ỹt = αβ ′ỹt−1 + ε̃t , (1.34)

where ∆ỹt and ỹt−1 are residual vectors from a regression of ∆yt and yt−1 on

∆yt−1, . . . ,∆yt−p+1 and possible deterministic terms. The concentrated form is
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equivalent to a cointegrated VAR[1] model. In what follows we therefore drop the

tildes for notational convenience.

In the case that the restrictions on β take the form as in (1.31), Johansen and

Juselius (1990, 1992) suggest a simple ML estimation procedure. The restriction

is inserted in the VECM format (1.34) yielding

∆yt = αφ′H ′yt−1 + εt

= α∗y∗t−1 + εt , (1.35)

where α∗ = αφ′ and y∗t−1 = H ′yt−1. The restricted cointegration vectors can

easily be estimated from a reduced rank regression of ∆yt on y∗t−1 (cf Johansen

and Juselius 1992).

To estimate the model under the more general set of restrictions given in (1.32)

no such simple reformulation of the model is available. Inserting the restriction

for the j’th cointegration vector in (1.34) gives

∆yt =
r∑
j=1

αjϕ
′
jH
′
jyt−1 + εt . (1.36)

Assume that we want to estimate the parameters of the first cointegration vector

ϕ1. Equation (1.36) can then be reformulated as

∆yt = α1ϕ
′
1H
′
1yt−1 + ϑ′2yt−1 + εt , (1.37)

where ϑ2 = [β2, . . . , βr]. The idea of the switching algorithm suggested by Jo-

hansen (1995) is to estimate α∗1 = α1ϕ
′
1 conditional on an initial estimate of the

remaining cointegration vectors stacked in ϑ2. In other words the system is es-

timated by treating the additional variables z2t = ϑ′2yt−1 as given. With the

resulting estimate of β1 a new set of variables is formed that are treated as given

for the estimation of the second cointegration vector. Therefore, the procedure

employs updated cointegration vectors on every estimation stage and proceeds

until the estimates have converged.

Johansen (1995b) was not able to show that his “switching algorithm” indeed

converges to the global maximum of the likelihood function. Nevertheless, his

method is computationally convenient and seems to have reasonable properties in
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practice. It is implemented in the PcGive 9.0 software of Doornik and Hendry

(1996).

Pesaran and Shin (1995) consider the ML estimation of the restricted likelihood

function which is equivalent to maximizing the function

S∗(β, λ) = log |β′ATβ| − log |β′BTβ|+ 2λ′Hβvec(β) , (1.38)

where AT = S11 − S01S11S
′
01 and BT = S11 with Sij as defined in Section 1.4 and

restrictions of the general form (1.28) with rβ = 0. The derivative is

∂S∗(β, λ)

vec(β)
=
(

[(β′ATβ)−1 ⊗ AT ]− [(β′BTβ)−1 ⊗BT ]
)

vec(β) +H ′βλ .

From this derivative and ∂S∗(β, λ)/λ = Hβvec(β), Pesaran and Shin (1995) derive

a first order condition which can be written as vec(β) = f(β), where f(β) is a

complicated nonlinear function. Based on this first order condition they suggest

an iterative scheme, where the updated estimate β(1) results from the preliminary

estimate β(0) as f(β(0)). An important problem with such a procedure is, however,

that it is unknown whether it converges to a maximum. Pesaran and Shin (1995)

therefore suggest a “generalized Newton Raphson procedure” based on the first

and second derivatives of S∗(β, λ) given in (1.38). This estimator turns out to

be quite complicated but can be implemented by using numerical techniques (cf

Pesaran and Shin (1995) for more details).

Hsiao (1997) argues that structural models can be estimated in the usual way

(e.g. using 2SLS, 3SLS or FIML) from a structural version of the VECM model.

However, this is only possible if the long run restrictions can be written as linear

restrictions on the matrix Π∗1 = α∗1β
′. Unfortunately, the matrix Π∗ mixes short

and long run parameters so that a linear restriction on β must be translated

into linear restriction on Π∗. A simple way to do this is suggested in Breitung

(1995b). As in Section 1.3 we reformulate the system using α∗ = αα−1
2 = [φ, Ir]

′

and φ = α1α
−1
2 . Furthermore, we define π2 = βα′2 so that α∗π

′
2 = αβ ′.

The reduced form VECM is multiplied by the matrix

C0 =

[
In−r −φ′

0 Ir

]
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so that the resulting system can be written as

∆y1t = φ′∆y2t + w1t (1.39)

∆y2t = π′2yt−1 + w2t , (1.40)

where yt = [∆y′1t,∆y
′
2t]
′. For more details on this representation see Section 1.3.

The restriction for the j’th cointegration vector can be formulated as

βj = π2aj = Hjϕj , j = 1, . . . , r ,

where aj is the j’th row of α−1
2 . Inserting this restriction into the subsystem (1.40)

gives

a′j∆y2t = a′jπ
′
2yt−1 + w∗2t

= ϕjH
′
jyt−1 + w∗2t

= ϕjy
∗
j,t−1 + w∗2t , (1.41)

where w∗2t = a′jw2t and y∗j,t−1 = H ′jyt−1. Accordingly, the lower subsystem of the

structural model (1.40) is replaced by equations of the form (1.41), where the

vector y∗j,t−1 is a vector of transformed variables.

An example may help to illustrate the approach. To highlight the key features

of the transformation, consider the following example. Let yt = [Yt, Rt, rt,Mt]
′,

where Yt is the log of output, Rt and rt are a long term and a short term interest

rates, and Mt is the log of real money balances. Economic theory gives rise to two

cointegrating relationships, namely, a money demand relationship and the term

structure of interest rates. Accordingly, the cointegration space can be represented

as b1Mt − b1Yt + b2Rt + b3rt ∼ I(0) and b4Rt − b4rt ∼ I(0) (see, e.g., Hoffman

and Rasche, 1996, p. 194). Hence, under this hypothesis the cointegration space

is given by the matrix

β =


−b1 0

b2 −b4

b3 b4

b1 0

 = [H1ϕ1, H2ϕ2] , (1.42)
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where

H1 =


−1 0 0

0 1 0

0 0 1

1 0 0

 , ϕ1 = [ b1, b2, b3 ] , H2 =


0

−1

1

0

 , ϕ2 = b4 .

Imposing these restrictions gives the following structural form:

∆Yt = φ11∆rt + φ12∆Mt + w1t

∆Rt = φ21∆rt + φ22∆Mt + w2t

a11∆rt = −a12∆Mt + ϕ11(Mt−1 − Yt−1) + ϕ12Rt−1 + ϕ13rt−1 + w∗1t

a22∆Mt = −a21∆rt + ϕ21(Rt−1 − rt−1) + w∗2t .

To estimate this system, the third and fourth equation must be divided by a11

and a22, respectively. The resulting system can be estimated with conventional

system estimators such as the 3SLS or the FIML estimator and no additional

complications arise by the cointegration properties of the system (cf. Hsiao 1997).

The asymptotic properties of the 2SLS and 3SLS estimator are given in

THEOREM 1.4 Let yt be generated by a cointegrated VAR[1] with 0 < r <

n. Furthermore, J1 and J2 are known matrices satisfying rk(J1α) = s ≤ r and

rk(β′J2) ≤ s. Then:

(i) The 2SLS and 3SLS estimates of φ in (1.39) are identical.

(ii) The 2SLS and the 3SLS estimates of J1π
′J2 are

√
T–consistent and asymp-

totically normally distributed with the same non-singular covariance matrix.

Proof: (i) As has been shown by Zellner and Theil (1962) the 2SLS and 3SLS

estimates of an over-identified subsystem are identical if the remaining equations

are just identified.

(ii) The model can be re-written as

∆yt =

[
φ′ 0

0 π′2

][
∆y2t

yt−1

]
+ wt
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=

[
φ′ 0 0

0 α2 τ

]
∆y2t

β′yt−1

β′⊥yt−1

+ wt

= Xtθ + wt ,

where τ = 0 and

θ = vec(φ, π2, α
′
2), Xt =

[
In−r ⊗∆y′2t 0

0 Ir ⊗ y′t−1β

]
.

In this representation the subvector θ1 in θ = [θ′1, θ
′
2]′ comprises the parameters

attached to stationary variables, whereas θ2 contains the parameters attached to

the nonstationary variables β′⊥yt−1. In this representation [α2, τ ] = π′2Q
−1, where

Q = [β, β⊥]′.

Stacking the observations for t = 2, . . . , T into matrices such asX = [X ′12, . . . , X
′
1T ]′,

y = [∆y′2, . . . ,∆y
′
T ]′, and w = [w′2, . . . , w

′
T ]′ the model is written as y = Xθ + w.

The matrix of instruments is defined as Z1t = (In⊗ y′t−1) and Z = [Z ′12, . . . , Z
′
1T ]′.

The IV estimator of θ is given by

θ̂iv = [X ′Z(Z ′ΩZ)−1Z ′X]−1X ′Z(Z ′ΩZ)−1Z ′y .

For the 2SLS estimate Ω = I and for the 3SLS estimate Ω = (IT−1 ⊗ C0ΣC ′0).

Let ΥT = diag{T−1/2I, T−1I}. Using Q = [β, β⊥]′ we get

ΥTX
′ZQΥT (ΥTQ

′Z ′ΩZQΥT )−1ΥTQ
′Z ′XΥT ⇒

[
A′1 0

0 B′1

][
A2 0

0 B2

]−1 [
A1 0

0 B1

]

=

[
A′1A

−1
2 A1 0

0 B′1B
−1
2 B1

]
and

ΥTX
′ZQΥT (ΥTQ

′Z ′ΩZQΥT )−1Υ2Q
′Z ′w ⇒

[
A′1 0

0 B′2

][
A2 0

0 B2

]−1 [
B3

B4

]

=

[
A′1A

−1
2 B3

B′1B
−1
2 B4

]
,

where Ai (i = 1, 2) are fixed matrices and Bi (i = 1, . . . , 4) are stochastic matrices

which can be represented as functionals of Brownian motions. Note that only the
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matrices A2 and B3 depend on the covariance matrix Ω. With these results we

obtain:

ΥT (θ̂iv − θ) ⇒

[
(A′1A

−1
2 A1)−1A′1A

−1
2 B3

(B′1B
−1
2 B1)−1B′1B

−1
2 B4

]
.

Since A1 and B2 are square matrices we get

ΥT (θ̂iv − θ) ⇒

[(
A−1

1 B3

B−1
1 B4

)]
.

which does not depend on Ω. Thus, the limiting distributions of the 2SLS and

the 3SLS estimators are the same.

(iii) Since B3 is normally distributed it is seen from (ii) that the IV estimator

for θ1 is asymptotically normal. Furthermore, B1 is the limit of T−2
∑
β′⊥yt−1y

′
t−1β⊥

and B4 is the limit of T−1
∑
β′⊥yt−1 so that B−1

1 B4 is mixed normal. The IV esti-

mate of the matrix π2 is equivalent to the product of IV estimates α̂2,ivβ̂
′
iv. Since

β̂ is super-consistent, the asymptotic behaviour is similar to α̂2,ivβ
′. Therefore a

necessary condition for J1π̂
′
2,iv to have a regular normal limiting distribution is

that the matrix J1 has rank s1 ≤ r rows. Similarly, it is easy to show that a sec-

ond necessary condition is that π̂′2,ivJ2 = α̂2,ivβ
′J2 whenever rk(β′J2) ≤ s because

otherwise the rank of the covariance matrix is singular. �

Remark A: It is important to notice that the cointegration parameters are not

estimated super-consistently but have the usual rate for coefficients attached to

stationary variables. The reason is that in the SE system the matrix π2 = βα′2 is

a product of short and long run parameters so that the properties implied by the

short run parameters dominate the asymptotic properties of the estimate of π2.

Remark B: Since the system (1.39) – (1.40) is a linear transformation of the

VECM system, the FIML estimate π̂2 is identical to (β̂α̂′2), where β̂ and α̂2 denote

Johansen’s (1988) ML estimators. Accordingly, T−consistent estimates of the

cointegration vectors can be obtained by post-multiplying π̂2 with the inverse of

α̂′2. It will be shown below that if the cointegration vectors are identified by

using sufficient long run restrictions, the associated parameters can be estimated

T−consistently.
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Remark C: The matrix of coefficients attached to the lagged levels admits the

expansion π̂2 = α̂2β
′ + Op(T

−1), where α̂2 is the least-squares estimate of α2 in

the regression ∆y2t = α2zt−1 + w2t and z = β′yt. Thus, for any fixed matrices J1

and J2 the estimates are
√
T−consistent and asymptotically normal. To obtain a

nonsingular covariance matrix of J1π
′
2J2, rank conditions on the matrices J1 and

J2 are required.

Next, we consider the Full Information Maximum Likelihood (FIML) estimator.

Using the SE representation (1.39) and (1.40) the following lemma gives simple

expressions for the scores of the likelihood function.

LEMMA 1.1 (i) Let B̂1(zt) and B̂2(zt) denote the least-squares estimates of B1

and B2 in a regression

zt = B1w1t +B2w2t + et ,

where w1t, w2t are (n−r)×1 and r×1 subvectors such that wt = [w′1t, w
′
2t]
′ = C0εt.

Then, the scores of the likelihood function for the SE model given in (1.39) – (1.40)

can be written as

∂L(φ, π2)

∂φ′
= B̂1(∆y2t)

∂L(φ, π2)

∂π′2
= B̂2(yt−1),

where L(·) denotes the (conditional) log-likelihood function.

Proof: (i) For convenience we first orthogonalize the system given by (1.39)

and (1.40) so that it is written in a recursive form. Let w1t = H1w2t + v1t,

E(w2tw
′
2t) = Σ22, H1 = [E(w2tw

′
2t)]
−1E(w2tw

′
1t) such that v1t is orthogonal to w2t

and Σ1|2 denotes the covariance matrix of v1t. Then, the log-likelihood function

is given by

2L(·) = const − T ln |Σ22| − T ln |Σ1|2|

−
∑

w′2tΣ
−1
22 wt2 −

∑
(w1t −H ′1w2t)

′Σ−1
1|2(w1t −H ′1w2t).

It is easy to obtain the derivatives with respect to Σ∗ = E(wtw
′
t) as

∂L
∂(Σ∗)

=
T

2
Σ∗ − 1

2
W ′W ,
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where W = [W1,W2], W1 = [w12, . . . , w1T ]′, W2 = [w22, . . . , w2T ]′. Differentiating

with respect to φ′ and inserting estimates for H1 and Σ1|2 gives

∂L
∂φ′

= ∆Y ′2(W1 −W2H1)Σ−1
1|2

= ∆Y ′2P2W1(W ′
1P2W1)

= B̂1(y2t)

where P2 = I −W2(W ′
2W2)−1W ′

2.

Concentrating with respect to Σ22 and Σ1|2 we get

∂L
∂π2

= Y ′−1[I − V1(V ′1V1)−1W ′
1]W2(W ′

2W2)−1

= [Y ′−1 − B̂1(yt−1)W ′
1]W2(W ′

2W2)−1

= Y ′−1P1W2(W ′
2P1W2)−1 (1.43)

= B̂2(yt−1) , (1.44)

where P1 = I −W1(W ′
1W1)−1W ′

1. �

Using the expressions for the scores in this lemma, a simple scoring algorithm

can be constructed by replacing the conditional expectations by least-squares

coefficients from multivariate regressions of the respective vectors on the residuals

ŵ1t, ŵ2t of the previous iteration.

It is interesting to know whether the asymptotic equivalence of the estimators

is also reflected in small samples. To this end a small Monte Carlo experiment is

performed. The data are generated according to the model

y1t = y1,t−1 + ε1t (1.45)

y2t = π11y1,t−1 + ε2t , (1.46)

where

εt ∼ N

0,

 1 0.5

0.5 1

 .

For this model φ = 0 and π′2 = [π21,−1]. The FIML estimator is computed

using the scoring algorithm suggested in Theorem 1.1. Table 2.1 presents the
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Table 2.1: Standardized RMSE for different estimators

T=100 T=1000
√
T ·RMSE of 2SLS 3SLS FIML 2SLS 3SLS FIML

π21=1

φ̂ 1.02 1.02 0.94 1.01 1.01 1.00

π̂21 1.50 1.45 1.41 1.43 1.44 1.43

π̂22 1.44 1.44 1.39 1.43 1.43 1.43

π21=0.5

φ̂ 0.92 0.92 0.87 0.90 0.90 0.89

π̂21 0.79 0.69 0.68 0.64 0.63 0.63

π̂22 1.30 1.29 1.25 1.25 1.25 1.25

π21=0.2

φ̂ 0.80 0.80 0.77 0.79 0.79 0.78

π̂21 0.49 0.34 0.34 0.26 0.23 0.23

π̂22 1.14 1.13 1.11 1.09 1.09 1.09

Note: This table presents the standardized root mean squared errors for alternative

estimators computed from 1000 Monte Carlo replications of the model (1.45) and

(1.46) with φ = 0 and π′2 = [π21,−1].

standardized root mean squared error computed as

√
T · RMSE(θ̂) =

√√√√ T

M

M∑
i=1

(θ̂i − θ)2 , (1.47)

where θ̂i is the i’th realization (i = 1, . . . ,M) of the estimator θ̂ for θ. In case of
√
T–consistent estimates the standardized RMSE should converge to the limiting

value as T → ∞. In our experiment we let π21 ∈ {1, 0.5, 0.2}, T ∈ {100, 1000}
and M = 1000.

As can be seen from Table 2.1 the alternative estimators perform roughly

similar in samples as large as T = 1000. Moreover, the standardized RMSE are of

the same magnitude confirming our theoretical result that all estimates are
√
T–
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consistent. In small samples, however, the performance of the estimators depends

crucially on the parameter π21. This parameter determines the importance of the

random walk component in y2t and thus affects the validity of the asymptotic

approximation in small samples. In effect, if π21 is small, the dynamic properties

of the series y2t are dominated by the stationary term ε2t. For stationary variables

the 3SLS (and FIML) estimates are more efficient than the 2SLS estimates, so

that a gain in efficiency is observed for π21 = 0.2. For a more important random

walk component in y2t we observe that all estimators perform similarly.

An important problem is the normalization of the equation (1.41). Usually

the matrix C0 is normalized to have unit elements on the leading diagonal. This

normalization implies that the variable with a unit coefficient is the dependent

variable in the equation. For this normalization, all parameter estimates are

asymptotically normal with the usual convergence rate of
√
T . The reason is

that the ML estimate of π′2 = α2β
′ is identical to α̂2β̂

′, where α̂2 and β̂ denote

the ML estimates using Johansen’s approach. Since α̂2 is
√
T -consistent and

asymptotically normal, the asymptotic properties of π̂2 are dominated by the

properties of α̂2.

If one is interested in super-consistent estimates of the cointegration param-

eters, a normalization with respect to the cointegration parameters is required.

A possibility is to normalize the cointegration vectors as in Phillips (1991). This

is achieved by letting β̂P = π̂2(π̂21)−1, where π̂21 is the upper r × r block of π̂2.

The resulting estimator is T−consistent and has the same asymptotic properties

as Phillips’ (1991) estimator.

1.7 Restrictions on short run parameters

Following Johansen and Juselius (1994) and Hsiao (1997), the parameters α∗1,Γ0,

Γ∗1, . . . ,Γ
∗
p−1 in (1.25) are classified as “short run parameters”. Usually, economic

theory is silent about the short run parameters Γ∗1, . . . ,Γ
∗
p−1. Therefore, these

parameters are left unrestricted and, thus, these parameters can be “partialled

out” for convenience. In contrast, economic theory often motivates hypotheses on
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the loading matrix α (or α∗1).

Hypotheses on α. Johansen (1991) and Johansen and Juselius (1992) consider

the null hypothesis

Rαα = 0 or α = Aϕα , (1.48)

where Rα is a known (n − q) × n matrix and A is an n × q matrix satisfying

RαA = 0. Note that q cannot be smaller than r because otherwise the rank of α

is smaller than r.

To estimate the system under restriction (1.48) we consider again a VAR[1]

model and assume that no other restrictions are imposed. Following Johansen

(1995a, p. 124) the system is multiplied by the matrices Ā and A⊥ with the

properties that Ā′A = I and A′⊥A = 0 so that

Ā′∆yt = ϕαβ
′yt−1 + Ā′εt

A′⊥∆yt = A′⊥εt .

The restricted eigenvalue problem results as

|λS11.aperp − S ′a1.aperpS
−1
aa.a⊥

Sa1.a⊥| = 0 , (1.49)

where

S11.a⊥ = S11 − S10A⊥(A′⊥S00A⊥)−1A′⊥S
′
10

Sa1.aperp = Ā′S11 − Ā′S10A⊥(A′⊥S00A⊥)−1A′⊥S
′
10

Saa.a⊥ = Ā′S11Ā− Ā′S10A⊥(A′⊥S00A⊥)−1A′⊥S
′
10Ā

(see Johansen, 1995a, Theorem 8.2). Estimates for the cointegration vectors are

obtained as the eigenvectors of the eigenvalue problem (1.49).

Since this approach is fairly complicated, it is attractive to consider the cor-

responding procedure in the SE approach. Premultiplying the (concentrated)

VECM format with Rα gives

Rα∆yt = ε∗t

where ε∗t = Rαεt.
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An important special case of linear restrictions on α is the hypothesis that a

subset of variables is weakly exogenous. Let zt = [y′t, x
′
t]
′, where yt and xt are

m × 1 and k × 1 subvectors. Then, the conditional model for yt given xt can be

estimated efficiently if xt is weakly exogenous for the parameters of the conditional

model in the sense of Engle, Hendry and Richard (1983). From Definition 1.3 it

follows that this is the case if the error correction term β′yt−1 does not enter the

marginal system for xt and, thus, the corresponding block α2 is equal to zero.

This restriction can easily be imposed using the simultaneous equation ap-

proach given in (1.39) – (1.40). The null hypothesis (1.48) implies that the rows

of Rα lie in the space spanned by the columns of the orthogonal complement α⊥.

Accordingly, the null hypothesis can be imposed by replacing the upper n−q rows

of transformation matrix C0 by the first n− q rows of Rα.

As an example, assume that we want to test whether the variable it in the

cointegrated system yt = [Yt, it,Mt]
′ is weakly exogenous. If we assume a single

cointegration relationship, this hypothesis implies that the second element of the

vector α is zero. Accordingly Rα = [0, 1, 0] and the model becomes

∆it = w1t (1.50)

∆Yt = a1∆Mt + w2t (1.51)

∆Mt = b1Yt−1 + b2it−1 + b3Mt−1 + w3t . (1.52)

The additional over-identifying restriction in (1.50) can be tested, e.g., using an

LR test procedure, for example. In our example it is also possible to test the

restriction by testing whether the additional inclusion of ∆Mt in equation (1.50)

yields a significant coefficient.

Hypotheses on α may also be motivated by a structural model for the per-

manent shocks defined as τt = α′⊥εt (cf. Johansen 1995, p. 74). For example, a

real business cycle framework implies that the permanent shocks are related to

the technical progress (or other supply side factors) and, thus, it may be asserted

that innovations of monetary variables do not enter the permanent shock. To

identify the first permanent shock of the system (1.50) — (1.52) as a real shock,

we may therefore set the coefficient a1 equal to zero, which is of course identical

to assuming that Yt is weakly exogenous.
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The information that some variables in yt are exogenous may also be used to

improve the power of the LR test for the cointegration rank (Harbo et al. 1998

and Pesaran et al. 1999). Consider a VAR[1] process for the vector zt = [y′t, x
′
t]
′,

where yt is a vector of m endogenous variables and xt is the vector of k exogenous

variables. Following Harbo et al. (1998) assume that the structural VECM can be

written as in (1.25) where B0 = Im and the matrices Γ0 and Γ∗j (j = 1, . . . , p− 1)

are assumed to be unrestricted. Hence, the only restriction, which is used is that

xt is exogenous and, thus, the respective submatrix of α in the reduced form

VECM is equal to zero. The concentrated model results as

∆ỹt = Π∗1z̃t−1 + ũt ,

where ỹt and z̃t−1 are the residuals from a regression of yt and zt−1 = [y′t−1, x
′
t−1]′

on ∆xt, . . . ,∆xt−p+1. The LR test of the hypothesis r = r0 results as the sum of

the eigenvalues from a reduced rank regression of ∆ỹt on z̃t−1. As shown by Harbo

et al. (1998) the resulting LR (trace) statistic is asymptotically distributed as

Λ(r0) ⇒ tr
{∫ 1

0

dWm−r(a)Wn−r(a)′
(∫ 1

0

Wn−r(a)Wn−r(a)′da

)−1

∫ 1

0

Wn−r(a)dWm−r(a)′
}

and, thus, the table for the critical values must account for the dimensions m and

r (see Harbo et al. 1998).

Rahbek and Mosconi (1999) consider tests of the cointegration rank in the

presence of weakly exogenous I(0) regressors. Let xt denote a stationary weakly

exogenous variable. Rahbek and Mosconi (1999) suggest forming the partial sum

process x∗t = x1 + · · ·+xt and include x∗t instead of xt in the system. The resulting

cointegration vector is restricted not to include the variables in x∗t and the usual

LR test procedures can be applied in the system z∗t = [y′t, x
∗
t
′]′.

Testing causality. Another important hypothesis concerning the short run pa-

rameters of the system is that some variables are not causal for other variables of

the system. Let yt be partitioned as yt = [y′1t, y
′
2t, y

′
3t]
′, where the three subvectors

are of dimension n1, n2 and n3, respectively. If y2t is not causal for y1t accord-

ing to the definition of Granger (1969), then E(y1,t+1|It) = E(y1,t+1|I∗t ), where
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It = {yt, yt−1, . . .} and I∗t = {y1t, y3t, y1,t−1, y3,t−1, . . .}. Although this hypothesis

imposes restrictions on the matrices Π = αβ ′ and Γ1, . . . ,Γp−1 in (1.12), we con-

centrate our discussion to the restrictions on the matrix Π. Restrictions on the

matrices Γ1, . . . ,Γp−1 do not imply additional complications.

Toda and Phillips (1993, 1994) consider two approaches to test the causality

hypothesis. First, the hypothesis may be tested by using an unrestricted VAR in

levels. In a VAR[1] system4 this amounts to testing whether the estimated matrix

Π̃12 from the partitioning

Π̃ =


Π̃11 Π̃12 Π̃13

Π̃21 Π̃22 Π̃23

Π̃11 Π̃12 Π̃13

 =

(
T∑
t=2

yty
′
t−1

)(
T∑
t=2

yt−1y
′
t−1

)−1

is significantly different from the zero matrix. Since this estimator has asymptotic

representation Π̃12 = α̂1β
′
2 + Op(T

−1), where αj and βj (j = 1, 2, 3) are subma-

trices of α and β partitioned according to the subvectors of yt. To obtain an

asymptotically normal estimator for Π12 with a nonsingular covariance matrix we

need to assume that rk(β2) = r2. This condition is called “sufficient cointegration”

by Toda and Phillips (1994). Of course this condition may fail in practice and

for this case, Toda and Phillips (1993) show that the asymptotic distribution of

the Wald statistic is nonstandard and depends on nuisance parameters. Assume

for example that n = 3 and r = 1 with a cointegration vector β = [β1, 0, β3]′ so

that rk(β2) = 0. In this case the Wald statistic fails to yield an asymptotically χ2

distributed test statistic.

The second approach is to estimate α and β by using Johansen’s ML estima-

tor and testing whether α̂1β̂
′
2 is significantly different from zero. This approach

suffers from a similar rank problem and sufficient conditions for χ2 distributed

test statistics are the rank conditions (i) rk(β2) = r2 or (ii) rk(α1) = n1 (cf Toda

and Phillips 1993).

Dolado and Lütkepohl (1996) and Toda and Yamamoto (1995) suggest an

elegant approach to resolve these problems. They show that the Wald test has

the usual χ2 distribution whenever the VAR model is estimated with an additional

lag which is, however, not included in the null hypothesis. This test is called the
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“lag-augmentation test” for causality. Assume that we estimate a VAR[2] model

instead of the true VAR[1] process. Then, the estimator of Π12 results from

replacing y1t and y2,t−1 by the residual vectors from the regressions of y1t and

y2,t−1 on yt−2. In contrast to the original variables, these residuals are stationary

and, therefore, the resulting estimate for Π12 has standard asymptotic properties

and the Wald statistic is valid in any case. Of course this approach implies a loss

of power because the model is augmented with unnecessary regressors.

The causality hypothesis can also be implemented in the SE approach. Assume

that the system can be arranged so that the last n1 < r equations have y1t as the

set of dependent variables. If there is no causality from y2t, then the respective

coefficients of the matrix π′2 in the lower n1 equations are zero. Of course, the

dimension of the vector must have a dimension lower than r which is also assumed

in the work of Toda and Phillips (1993, 1994). Furthermore from Theorem 1.4 (iii)

rank conditions for α1 and β2 can be deduced that are the same as in Toda and

Phillips (1993, 1994). Therefore, the SE approach suffers from the same problems

as the other approaches.

1.8 Deterministic terms

In this section the treatment of deterministic terms is discussed. Following Jo-

hansen (1994) we will confine ourselves to the case of a constant and linear trend.

Models with dummy variables like intervention dummies or seasonal dummies can

be handled in a similar manner.

For convenience we consider again a cointegrated VAR[1] model. Since we can

concentrate out any unrestricted higher order dynamics this does not imply a loss

of generality. Introducing a linear time trend in the VECM representation yields

∆yt = µ∗0 + µ∗1t+ Πyt−1 + εt . (1.53)

Since ∆yt is allowed to have a linear time trend, yt may have a quadratic time

trend, in general. Accordingly, the demeaned VECM can be written as

∆yt − µ0 − µ1t = Π
[
yt−1 − µ0 − µ1(t− 1)− µ2(t− 1)2

]
+ εt . (1.54)
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Table 2.2: Hypotheses on the deterministic trends

mean function Restrictions in SE Explanation

H(r) µ∗0 + µ∗1t — no restrictions

H∗(r) µ∗0 + αb1t c∗1 = 0 no quadratic trend in data

H1(r) µ0 c∗1 = 0, µ∗21 = 0 no trend in β′yt

H∗1 (r) αb0 c∗0 = 0, c∗1 = 0, µ∗21 = 0 no trend in data

H2 0 no deterministics

Using (1.53) we get

µ∗0 + µ∗1t = E(∆yt)− E(Πyt−1)

= µ0 + µ1t− Π(µ0 − µ1 + µ2)− Π(µ1 − 2µ2)t− Πµ2t
2 .

To match both sides of the equation we obtain Πµ2 = 0 or, equivalently, β′µ2 = 0.

The vectors µ∗i (i = 0, 1) can be projected onto the subspaces spanned by the

columns of α and α⊥:

µ∗i = αbi + α⊥ci , (1.55)

where bi = (α′α)−1α′µ∗i and ci = (α′⊥α⊥)−1α′⊥µ
∗
i (see Johansen, 1994, p. 208).

Accordingly we define

α′⊥µ
∗
i = α′⊥α⊥ci

≡ c∗i .

Using α′⊥ = [I,−φ′], the SE system (1.39) and (1.40) can accommodate determin-

istic terms:

∆y1t = c∗0 + c∗1t+ φ′∆yt2 + w1t (1.56)

∆y2t = µ∗20 + µ∗21t+ π′2yt−1 + w2t , (1.57)

where µ∗2j denotes the lower r × 1 subvector of µ∗j .

Johansen (1994) considers 5 hypotheses of interest which are included in Table

2.2. Using the representation given in (1.56) and (1.57) these hypotheses can
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be formulated by using restrictions on c∗0, c
∗
1, µ

∗
20 and µ∗21 (see Table 2.2). Thus,

Johansen’s hypotheses about the deterministic part of the model can conveniently

be tested using LR tests for restrictions on the constant and the drift. Since the

tests are based on a linear transformation of the model, the LR statistics have the

same asymptotic χ2 distributions as in Johansen (1994).

1.9 An empirical example

To illustrate the estimation and test procedures discussed in this chapter we con-

sider a four variable system yt = [Yt, Rt, rt,Mt]
′ as in Hoffman and Rasche (1996).

We use quarterly U.S. data running from 1970(i) through 1994(iv). Output (Yt)

is measured by the log of real GNP, Rt is the ten year government bond yield,

the short term interest rate rt is measured by the 3-month LIBOR and Mt is the

log of the money base M3 adjusted by the implicit price deflator of GNP. The

data for Yt and Mt are seasonally adjusted and taken form the Main Economic

Indicator data base of the OECD. The interest rates are taken from the IMF data

base.

We start with an appropriate deterministic specification. For this purpose an

unrestricted linear trend is included and the lag order of the VAR is determined.

The BIC and Hannan-Quinn criteria are minimized by a VAR[2] specification so

a VAR[2] model is used for the following analysis. The likelihood ratio statistics

cannot reject the null hypothesis that there is no trend term in the VAR represen-

tation (H1(r)). Since the hypothesis H∗1 (r) : c∗0 = 0 is rejected but H∗(r) : c∗1 = 0

cannot be rejected, I conclude that the unconditional mean of the variables can

be represented by a linear time trend.

Next, the cointegration rank is selected. This can be done by using Johansen’s

test based on eigenvalues or by using a likelihood ratio test on the restrictions in

the SE representation (1.39) – (1.40). The results of both procedures are presented

in Table 2.3. As expected, both approaches yield identical results and suggest that

the cointegration rank is r = 2.

Economic theory suggests (see, e.g., Hoffman and Rasche 1996) that the two
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Table 2.3: LR tests of the cointegration rank

(a) Johansen’s LR test statistics

H0 : r0 = 4 r0 = 3 r0 = 2 r0 = 1 r0 = 0

max. EV — 0.887 3.846 27.77 46.71

trace — 0.887 4.732 32.50 79.21

(b) Simultaneous equation representation

r0 = 4 r0 = 3 r0 = 2 r0 = 1 r0 = 0

L(r0) 1052.746 1052.302 1050.379 1036.496 1013.141

−2[L(r0)− L(r0 + 1)] — 0.887 3.846 27.77 46.71

−2[L(r0)− L(n)] — 0.887 4.732 32.50 79.21

(c) 0.05 Critical values

H0 : r0 = 4 r0 = 3 r0 = 2 r0 = 1 r0 = 0

max. EV (µ0 6= 0) — 3.962 14.04 20.78 27.17

trace (µ0 6= 0) — 3.962 15.20 29.51 47.18

cointegration relationships are a money demand relation

Mt = Yt + β1Rt − β2rt + u1t (1.58)

and the term structure relation

Rt = rt + u2t , (1.59)

where u1t and u2t are stationary error terms. Although the order condition for

identification is fulfilled for these two cointegration vectors, the rank condition is

violated. This can be seen by subtracting δ(Rt− rt−u2t) = 0 from the right hand

side of (1.58) yielding

Mt = Yt + (β1 − δ)Rt − (β2 − δ)rt + (u1t + δu2t) .
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For any value for δ this gives a new cointegrated relationship and, therefore, β1

and β2 are not jointly identified. However, the difference between the coefficients

of the interest rates is identified. In practice one may therefore normalize one of

the coefficients to be equal to zero by letting δ = β2, for example. In this case the

interest rate rt cancels from the money demand relation and the coefficient of Rt

measures the difference β1 − β2. For a detailed discussion of this and alternative

identification procedures see Hoffman and Rasche (1996, 194f).

The corresponding system of simultaneous equations is estimated as

∆Ỹt = 0.030∆r̃t + 2.693∆M̃t + w̃1t

∆R̃t = −0.773∆r̃t − 138.4∆M̃t + w̃2t

∆r̃t = −110.2∆M̃t + 0.072(R̃t−1 − r̃t−1) + w̃3t

∆M̃t = −0.0007∆r̃t − 0.025(M̃t−1 − Ỹt−1)− 0.0007Rt−1 + w̃4t ,

where the constants of the equations are suppressed. From these estimates, the

money demand relation results as Mt = Yt − 0.026Rt + û1t, where 0.026 is the

estimated difference between β1 and β2 in (1.58). The LR test statistic for the

over-identifying restriction in the term structure equation (1.59) is 0.9905 which is

not significant with respect to the critical values of an asymptotic χ2-distribution

with one degree of freedom. Exactly the same value of the test statistic results if

the test statistic is computed by using the LR procedure of Johansen and Juselius

(1994).

Finally, we test whether the variables Yt and Rt are weakly exogenous. Ap-

plying the simultaneous equations approach suggested in Section 1.3 we test that

the corresponding row of the matrix α is zero. The LR statistic for the hypothesis

that Yt is weakly exogenous is 24.349. This value is highly significant with respect

to an asymptotic χ2 distribution with two degrees of freedom. In contrast, the

LR statistic for the hypothesis that Rt is exogenous is only 1.340 and, therefore,

implies that this variable may be treated as (weakly) exogenous. These results

correspond well with conventional wisdom suggesting that the long run interest

rate is determined outside the system on the international capital markets (e.g.

Nautz and Wolters 1999).



Chapter 2

Structural VARs

Until the late 70th, the simultaneous equation approach, advocated by the influen-

tial Cowles Commission clearly dominated the empirical research in econometrics.

However, the initial optimism about the potential of the simultaneous equation

model was not fulfilled and the inability of large macroeconomic models to com-

pete with “atheoretic” Box-Jenkins ARIMA models on predictive grounds led to

an increased adoption of time series techniques. In particular, the seminal paper

by Sims (1980) prepared the ground for the ultimate success of vector autoregres-

sions in econometrics. However, as argued forcefully by, e.g., Cooley and LeRoy

(1985), vector autoregressions have the status of “reduced form” and, thus, are

merely vehicles to summarize the dynamic properties of the data. Without refer-

ring to a specific economic structure such reduced form VAR models are difficult

to understand. For example, it is often difficult to draw any conclusion from the

large number of coefficient estimates in a VAR system. As long as such parameters

are not related to “deep” structural parameters characterizing preferences, tech-

nologies, and optimization behaviour, the parameters do not have an economic

meaning and are subject to the so-called “Lucas critique”.

The new research program known as Real Business Cycle (RBC) agenda em-

ploys dynamic stochastic general equilibrium models that are driven by real tech-

nology shocks. In later work (e.g. Christiano and Eichenbaum 1992) further

“shocks” like demand shocks resulting from public expenditures or the supply of

49
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money were included to represent other aspects of the economic system. Kyd-

land and Prescott (1982) acknowledge from the outset that their models, like all

models, are false and they recognize that traditional econometric estimation pro-

cedures such as Gaussian maximum likelihood may be inappropriate. Therefore,

they advocate to apply less structured “calibration” methods, that is, the param-

eters underlying the simulated model economy are typically set to values that are

considered to be “reasonable” or in agreement with earlier estimates.

At the same time, Sims (1981, 1986), Bernanke (1986) and Shapiro and Watson

(1988) put forward a new kinds of econometric model that is now known as “struc-

tural VAR” (SVAR) or “identified VAR” approach. There are several features of

this approach that make the SVAR model an attractive model for empirical work

in the spirit of the RBC agenda. First, the deviations from the steady state of a

RBC model can usually be represented by a (vector) ARMA model that can be

conveniently approximated by a vector autoregression. Second, the driving forces

of an RBC type model are different kinds of exogenous shocks. This parallels the

structural shocks identified from a typical SVAR model.

The similarity of the RBC and the SVAR approach initiated several stud-

ies comparing the outcomes of calibrated RBC models with the corresponding

findings from estimating a SVAR model. Cogley and Nason (1995) are able to

produce a good correspondence between both approaches, whereas Cooley and

Dwyer (1998) observe that results from SVAR models are sensitive to the identi-

fying assumption and may produce outcomes that are at odds with the original

RBC style model. Using German data, Breitung and Heinemann (1998) find

that both approaches yield qualitatively similar findings but differ substantially

in detail.

Another important motivation for the development of SVAR models was the

paradigm of “rational expectations” (cf Sims 1980). In Section 3.1 the relationship

between rational expectation models and the identification of shocks is discussed.

Different approaches to identify the structural shocks are discussed in Section

3.2. A general class of structural VAR models is presented in Section 3.3 and

Section 3.4 discusses alternative approaches to estimate the structural parameters.
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Section 3.5 suggests a latent variable framework that can be used for estimation

and inference. Long run restrictions are considered in Section 3.6 and inference

on impulse response function is considered in Section 3.7. Section 3.8 gives three

empirical applications and Section 3.9 discusses problems of the structural VAR

approach.

2.1 Rational expectations

The theory of rational expectations implies that the effects of expected policy

actions are generally different from the effects of an unexpected policy. This

can be demonstrated using the money demand model of Cuthbertson and Taylor

(1989).1

Assume that (real) money demand Mt is decomposed into a planned compo-

nent Mp
t and an unplanned component εMt . It is assumed that agents choose short

run money balances to minimize the expected present value of a quadratic loss

function. This gives rise to the planned money demand of the form

Mp
t = β1Mt−1 + β1(1− β2)

∞∑
j=0

βj2Et−1(M∗
t+j) ,

where 0 < β1, β2 < 1 are parameters implied by the quadratic loss function, Et−1

denotes expectation with respect to the information available at time t− 1 and

M∗
t = γ0 + γ1Yt + γ2it

denotes the desired long run money balances which are obtained by ignoring

adjustment costs (cf. Cuthbertson and Taylor 1989). The variable Yt and it

represent (logged) output and the relevant interest rate.

The unplanned component is represented as

εMt = Mt − Et−1Mt = b1ε
Y
t + b2ε

i
t + uMt , (2.1)

i.e., the εMt is a weighted average of the prediction errors εYt = Yt − Et−1Yt and

εit = it − Et−1it and an additional error uMt .
1The relationship between rational expectations and SVAR models is discussed in Dhrymes

and Thomakos (1998).
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We are now in the position to compare the effects of an expected and an

unexpected monetary policy using the interest rates as instruments. A predictable

change in it affects the observed money demand via the expected long run money

demand Et−1(M∗
t+j), whereas an unexpected change in the interest rate enters the

unplanned component with coefficient γ1. Accordingly, the effects of expected and

unexpected changes in the interest rates may be quite different (see also McCallum

1999). The SVAR approach focuses on the effects of unexpected variation in the

policy instrument by using a linear relationship similar to (2.1).

If expectations ofM∗
t+j are linear with respect to the information set {xt−1, xt−2,

. . .}, where xt = [Mt, Yt, it]
′, we obtain

Mt = ψ0 +
∞∑
j=1

x′t−jψj + b1ε
Y
t + b2ε

i
t + uMt .

This equation contains all typical features of an SVAR model. The conditional

expectation with respect to the past of the process is µMt−1 = ψ0 +
∑∞

j=1 x
′
t−jψj.

In an SVAR model this expectation is approximated by a finite number of lags in

all variables of the system. Furthermore, possible (nonlinear) restrictions on the

parameters ψ1, ψ2, . . . resulting from the particular rational expectation model

are ignored in order to keep the estimation procedure “sophisticatedly simple”

(Zellner 1992). The terms b1ε
Y
t and b2ε

i
t represent the part of the prediction error

of Mt that is due to other variables like Yt and it and, thus, the remaining error

uMt represents the “autonomous” shock associated with real money balances.

To sum up, it is seen that models involving rational expectation can be repre-

sented as an SVAR model. The resulting structural shocks represent the “news”

in the variable that cannot be explained by other variables of the system and,

therefore, measure the autonomous contribution to the respective variables. It is

quite natural to focus on the dynamic effects of such shocks when assessing the

impact of political instruments on the target variables.
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2.2 The identification of shocks

As already noted, structural shocks are the central quantities in an SVAR model.

These shocks are unpredictable with respect to the past of the process and are the

input of a linear dynamic system producing the n-dimensional time series vector

yt. These shocks are attached with an economic meaning such as an oil price

shock, reunification shock, exchange rate shock or a monetary shock. It should

be noted, however, that these shocks do not only represent disastrous singular

events. In contrast, we assume that the economy is hit regularly by such shocks

and the size of the shock is usually small.

Since the shocks are not directly observed, assumptions are needed to identify

them. There seems to be a consensus that structural shocks should be mutually

uncorrelated (and thus “orthogonal”). This assumption is required to consider the

dynamic impact of an isolated shock. If the shocks were correlated, we would have

to take into account the relationship between the shocks. Moreover, the decom-

position into orthogonal components has a long tradition in statistical analysis,

and is also used in factor analysis, for example. Another possibility is to consider

the shocks as bits of information about the state of the economic system. Hence,

the news of the system is projected into a particular orthogonal space, where the

axes represent different aspects of reality.

The assumption of orthogonal shocks is, however, not sufficient to achieve

identification. For an n dimensional system, n(n − 1)/2 additional restrictions

are necessary. These restrictions can be obtained from a “timing scheme” for

the shocks. Such an identification scheme assumes that the shocks may affect a

subset of variables directly within the current time period, whereas another subset

of variables is affected with a time lag only. An example of such an identification

scheme is the triangular (or recursive) identification suggested by Sims (1980).

In this model the shocks enter the equation successively so that the shock of the

second equation does not affect the variable explained by the first equation in the

same period. Similarly, the third shock does not affect the variables explained by

the first and second equation in the current time period. Such a scheme is called

a “Wold causal chain system” (Wold 1960) and is often associated with a causal
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chain from the first to the last variable in the system.

An alternative approach to the identification of the shocks is to formulate

structural equations for the errors of the system. In this case it is convenient to

think of the equations as an IS curve or a money demand relation, for example,

but with the difference that the equations apply to the unexpected part of the

variables (the “innovations”) instead of the variables themselves. If the equations

are valid for the system variables, then they also apply for the unexpected part of

the variables. Therefore, the identification using a set of simultaneous equations

is appealing with respect to the traditional approach advocated by the Cowles

Commission and it is not surprising that this kind of identification has become

very popular in empirical work using SVAR models.

In recent work, the identification of shocks using restrictions on the long run

effects of structural shocks has become popular. In many cases economic theory

suggests that the effects of some shocks are zero in the long run, that is, the

shocks are transitory with respect to particular variables. For example, classical

economic theory implies that the effect of nominal shocks on real variables like

output or unemployment vanishes as time goes by. Such assumptions give rise to

nonlinear restrictions on the parameters and may be used to identify the structure

of the system. However, recent work demonstrates (e.g. Faust and Leeper 1997)

that such long run restrictions may be problematical in practice.

There are several important differences between the identification of an SVAR

model and the identification of a simultaneous equation model. First, the latter

models are usually identified by linear (exclusion) restrictions. In contrast, SVAR

models assume orthogonal shocks so that the structure is identified using also

restrictions on the covariance matrix of the errors. This complicates the estimation

of such systems considerably.

Second, traditional simultaneous equation models usually employ many more

restrictions than necessary to identify the system, that is, these models are often

highly over-identified. In his famous critique, Sims (1980) qualifies these overly

restricted models as “incredible”. SVAR proponents therefore try to avoid to over-

simplifying the structure and impose just enough restrictions needed to identify
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the structure. Accordingly, most SVAR models are just identified. However, it

is important to notice that just identified models are merely a convenient refor-

mulation of the reduced form. Therefore, as long as the reduced form is correctly

specified, any just identified structure is also correctly specified in a statistical

sense and it is not possible to decide between alternative identified structures on

empirical grounds. To quote Dhrymes and Tomakos (1998, p. 190):

“Thus, two just identifying sets of conditions, which have diametri-

cally opposed economic implications may well have the same empirical

justification, viz. the estimates of the reduced form parameters in the

context of which they are applied. As such they do not add anything

further to our understanding of the economic phenomenon in question

over and above what was conveyed by the reduced form, and they are

both equally defensible or equally subject to severe criticism.”

SVAR models are used to quantify prior views of the economy and to assess the

plausibility of the outcomes. For example, we may use a Keynesian structure

to investigate the long run effects of a monetary shock on unemployment. A

monetarist economist would in contrast favour an SVAR model with the restriction

that the long run effect of a monetary shock on real variables vanishes. Since both

structures are based on the same reduced form, both structures are admissible and,

thus, it is not possible to decide which model “is true”.

However, it is possible to assess the plausibility of the outcomes. If, for ex-

ample, a Keynesian economist finds that an expansive monetary shock leads to

increasing unemployment and rising prices, then such result would be highly im-

plausible with respect to a Keynesian framework. If, on the other hand, our

Keynesian economist would find that the effects of a monetary shock are similar

to the effects in a monetarist type of model, then this result suggests that the

observed effect of a monetary policy is not sensitive with respect to the different

orthodox perspectives (e.g. Dolado, Lopez-Salido and Vega 1999).
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2.3 A class of structural VARs

Assume that the n × 1 time series vector yt admits a stationary VAR[p] repre-

sentation as defined in Assumption 1.1. This VAR model is referred to as the

reduced form of the system. Associated with the reduced form is a structural form

resulting from the set of structural equations:

Bεt = Rut , (2.2)

so that

Byt = BA1yt−1 + · · ·+BApyt−p +Rut . (2.3)

The matrices B and R are assumed to be invertible and ut is an n × 1 vector of

structural shocks with covariance matrix E(utu
′
t) = Ω. This includes all models

considered by Amisano and Giannini (1997).

The dynamic effect of the structural shocks is analysed by considering the

moving average representation

yt = εt + Φ1εt−1 + Φ2εt−2 + · · · ≡ Φ(L)εt

= B−1Rut + Φ1B
−1Rut−1 + Φ2B

−1Rut−2 + · · · = Ψ(L)ut ,

where Φ(L) = A(L)−1 and Ψ(L) = A(L)−1B−1R. If yt is measured in first differ-

ences, then the matrix

Ψ ≡ Ψ(1) = (In − A1 − · · · − Ap)−1B−1R (2.4)

measures the long run impact of ut on the levels of yt.

To identify the parameters, restrictions on the parameter matrices B,R,A1,

. . . , Ap,Ω are necessary. In empirical applications such restrictions are suggested

by economic theory or are imposed just for convenience. The most popular kinds

of restrictions can be classified as follows:

(i) The structural errors are assumed to be mutually uncorrelated such that

Ω = E(utu
′
t) is a diagonal matrix. In some applications, the shocks are

normalized to have a unit variance, i.e., Ω = In.
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(ii) R = In. The vector of innovations (εt) is modeled as an interdependent

system of linear equations such that Bεt = ut, where B is normalized to have

ones on the leading diagonal and linear restrictions of the form Q1vec(B) =

h1 are imposed. Empirical examples include Sims (1986), Bernanke (1986)

and Shapiro and Watson (1988).

(iii) B = In. In this case the model for the innovations is εt = Rut and to exclude

some (linear combinations of the) structural shocks in particular equations,

restrictions of the form Q2vec(R) = h2 are imposed. Empirical examples

can be found in Blanchard and Quah (1989), Roberts (1993) and Ahmed et

al. (1993).

(iv) The AB-model of Amisano and Giannini (1997) combines (ii) and (iii) such

that the model for the innovations is Bεt = Rut. Accordingly, the two sets

of restrictions Q1vec(B) = h1 and Q2vec(R) = h2 are used to identify the

system. Empirical examples are provided by Blanchard (1989) and Gali

(1992).

(v) If (some of) the variables are measured in first differences, there may be

prior information on the long run effect of the shocks. The long run effect

of the shocks are measured by the matrix Ψ which is defined in (2.13). If a

shock is assumed to have no permanent effect on the elements of yt, then the

respective elements of Ψ are zero. Such linear restrictions can be written

as Q3vec(Ψ) = h3 (see, e.g. Lütkepohl and Breitung 1997). Empirical

examples are given by Blanchard and Quah (1989), King et al. (1991) and

Roberts (1993).

2.4 Estimation

The estimation of the SVAR model is equivalent to the problem of estimating a

simultaneous equation model with covariance restrictions. Using (2.2) the struc-

tural model can be reformulated as

B∆yt = Π∗yt−1 + Γ∗1∆yt−1 + · · ·+ Γ∗p−1∆yt−p+1 +Rut , (2.5)
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where Π∗ = −B(In−
∑p

j=1 Aj) = and Γ∗k = −
∑p

j=k+1 BAj for k = 1, . . . , p−1. In

this formulation the long run behaviour of the shocks is determined by the matrix

Π∗, while the short run dynamics are governed by the matrices Γ∗1, . . . ,Γ
∗
p−1.

Let ∆ỹt and ỹt−1 denote the residual vectors from the regressions of ∆yt and

yt−1 on ∆yt−1, . . . ,∆yt−p+1. If there are no restrictions on the short run parameters

Γ∗1, . . . ,Γ
∗
p−1 we may concentrate the system as

B∆ỹt = Π∗ỹt−1 +Rũt , (2.6)

which results from replacing Γ∗1, . . . ,Γ
∗
p by least-squares estimates.

For notational convenience we reformulate model (2.5) as

B∆yt = Π∗yt−1 + Cxt−1 +Rut ,

where C = [Γ∗1, . . . ,Γp−1, C
∗
p−1] and xt−1 = [∆y′t−1, . . . ,∆y

′
t−p+1]′. It is assumed

that ut is white noise with ut ∼ N(0, In). The log-likelihood function of the model

is

L(B,C,R) = const + (T − p) ln |det(BR−1)| (2.7)

−1

2

T∑
t=p+1

(B∆yt − Π∗yt−1 − Cxt−1)(RR′)−1(B∆yt − Π∗yt−1 − Cxt−1)′ ,

subject to the restrictions:

Q1vec(B) = h1 (2.8)

Q2vec(R) = h2 (2.9)

Q3vec(Ψ) = h3 . (2.10)

where the (2.10) implies restrictions on the long run effect of the structural shocks.

In general, the maximization of (2.7) under the constraints (2.8) – (2.10) is

a computationally demanding problem. Even for the very simple model of Blan-

chard and Quah (1989), there exist multiple solutions and there are points in

the parameter space, where the log-likelihood function is undefined. In particular

the latter problem occurs when the matrix B or R is singular and convergence

problems can arise in the neigbourhood of singular matrices.
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If there are no restrictions on the long run impact matrix Ψ, the maximation

problem can be simplified by “concentrating out” the parameters in C. Setting

the derivative with respect to C equal to zero gives

Ĉ =
T∑

t=p+1

(B∆− Π∗yt−1)ytx
′
t−1

(
T∑

t=p+1

xt−1x
′
t−1

)−1

and

B∆yt − Π∗yt−1 − Ĉxt−1 = B∆yt − Π∗yt−1

−
( T∑
t=p+1

(B∆yt − Π∗yt−1)x′t−1

)( T∑
t=p+1

xt−1x
′
t−1

)−1

xt−1

= B∆ỹt − Π∗ỹt−1 ,

Accordingly, the ML problem is equivalent to the maximation of the concentrated

likelihood function

LC(B,Π∗, R) = const + (T − p) ln |det(BR−1)|

−1

2

T∑
t=p+1

(∆ỹt − Π∗ỹt−1)′B(RR′)−1(B∆ỹt − Π∗ỹt−1) .

The likelihood function corresponds to a “concentrated model” given by

B∆ỹt = Π∗ỹt−1 +Rũt . (2.11)

Accordingly, the ML estimation of the concentrated system is equivalent to the

maximization of (2.7).

The concentration with respect to C is not possible in systems with restrictions

on the long run effect on ut and in other cases where C is restricted. In the next

section, a convenient representation is suggested, which allows the inclusion of

long run restrictions.

Instead of the ML estimation of the system, other estimation principles may

be adopted. The Minimum Distance (MD) estimation first estimates the reduced

form parameters θ =vec(A1, . . . , Ap,Σ) and then obtains structural estimates of

the vector of structural parameters λ by solving the problem

λMD = argmin
λ
{[θ̂ − F (λ)]′Vθ[θ̂ − F (λ)]} , (2.12)
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subject to the restrictions (2.8) – (2.10), where θ̂ denotes the vector of the esti-

mated reduced form parameters (cf. Watson 1995). The matrix Vθ denotes the

asymptotic covariance matrix of the estimator θ̂. The function θ = F (λ) relates

the reduced form parameters to the structural parameters. This function is the

vectorized analog of the two matrix functions

Σ = B−1RR′(B′)−1

Ψ = (In − A1 − · · · − Ap)−1B−1R

subject to the constraints (2.8) – (2.10). The estimation procedure based on (2.12)

is asymptotically equivalent to the ML estimation.

Furthermore, a GMM procedure can be adopted. The assumption that the

structural shocks are uncorrelated gives rise to the following (n− 1)n/2 moment

conditions:

E(uitujt) = 0 for i < j , (2.13)

subject to the constraints (2.8) – (2.10), where ut = [u1t, . . . , unt]
′ is given by

ut = B−1R(yt − A1yt−1 − · · · − Apyt−p) .

The GMM estimate is obtained by minimizing the distance function

θGMM = argmin
λ

{(
T∑

t=p+1

mt(λ)′

)
W

(
T∑

t=p+1

mt(λ)

)}

where mt(λ) = (uitujt)i<j, λ is the vector of structural parameters and W is a

weight matrix given by

W =

[
T∑

t=p+1

E[mt(λ)mt(λ)′]

]−1

.

In practice this weight matrix is replaced by

WT =

[
T∑

t=p+1

mt(λ̂)mt(λ̂)′

]−1

,

where mt(λ̂) = (ûitûjt)i<j and ûit denotes the estimated structural shock from

a consistent initial estimate of the model. A possible initial estimate may be
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obtained by replacing W by the identity matrix. If the errors are i.i.d. and

normally distributed, the GMM estimator is asymptotically equivalent to the ML

estimator. However, if the errors are non-normal or heteroscedastic, the GMM

estimator is asymptotically more efficient than the (pseudo) ML estimator.

2.5 A latent variables framework

Assume that the matrices Γ∗1, . . . ,Γ
∗
p−1 in (2.5) are not subject to restrictions so

that the model can be represented as

B∆ỹt = Π∗ỹt−1 +Rut, (2.14)

where ∆ỹt and ỹt−1 denote the residual vectors from the regressions of ∆yt and

yt−1 on ∆yt−1, . . . ,∆yt−p+1. For convenience we drop the tildes and consider the

VAR[1] model.

To derive the latent variable representation we pre-multiply (2.14) by R−1

yielding

R−1B∆yt = R−1Π∗yt−1 + ut

= −Ψ−1yt−1 + ut.

Using Ψ = −Π∗−1R the two sets of latent variables are defined as

ξyt = R−1B∆yt, (2.15)

ξxt = −Ψ−1yt−1. (2.16)

Using these variables the system can simply be written as

ξyt = ξxt + ut. (2.17)

The measurement equations (2.15) and (2.16) relate the latent variables to the

observed variables, whereas the system equations (2.17) specify the relationship

between the latent variables. The problem with (2.15) is that the equation is non-

linear in the structural parameters. To avoid such complications it is convenient

to introduce another set of latent variables defined by the measurement equation
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∆yt = ξzt and, thus, from (2.15) the corresponding system equation is Rξyt = Bξzt .

The complete LV system results as

Measurement equations:

 ∆yt = ξzt

yt−1 = −Ψξxt

System equations:

[
ξzt

ξyt

]
=

[
(I −B) R

0 0

][
ξzt

ξyt

]
+

[
0

I

]
ξxt +

[
0

ut

]
.

This is the conventional formulation of Linear Structural Relations (LISREL) as

suggested by Jöreskog (1969). The matrix B is normalized to have ones on the

leading diagonal. Note that the vector of latent variables ξzt is a linear combi-

nation of ξyt and, therefore, no additional measurement equations are required.2

Furthermore, if B = In we can neglect ξzt and a LV model can be formulated with

(2.17) as the set of system equations.

The main advantage of formulating the structural VAR as a LV model of the

LISREL type is that the system is formulated linearly in the parameters of interest

B,R,Ψ. Such a system can conveniently be estimated and tested using widely

used software like the LISREL package by Jöreskog and Sörbom (1993).

2.6 Imposing long run restrictions

So far we have assumed that the vector yt has a stationary representation. In this

section the case that the lag polynomial A(L) has some roots on the unit circle is

considered and, thus, the shocks may have a permanent effect on the time series.

The first model that introduces information on the long run behaviour is the

often cited paper by Blanchard and Quah (1989). In this paper it is assumed that

one variable (output) is I(1), whereas the second variable (the unemployment rate)

2To implement such a system into the LISREL program, one specifies the first set of mea-

surement equations as ∆yt = ξzt +Kξyt and imposes the restriction K = 0.
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is I(0). For the identification of the shocks it is assumed that the demand shock

has a transitory effect on output (that is its effect tends to zero with an increasing

time horizon), whereas supply shocks may effect output permanently. Crowder

(1995) demonstrates that this model can be written as a special cointegrated

system with the cointegration vector β = [0, 1]′.3

The Blanchard-Quah model was extended to systems with more then two

variables by King et al. (1991). Further developments of this kind of models are

discussed in Levtchenkova, Pagan and Robertson (1998).

Contemporaneous identification of the shocks. While cointegration among

the variables imposes restrictions on the long run relationship between the system

variables, the first class of models assumes that the structural shocks are identified

by restrictions on R and B. Accordingly, the structural shocks are identified

by their contemporaneous relationship instead of their long run effects on the

variables. An example is the empirical model of Clarida and Gertler (1996).

Assume that the cointegrating vectors are known so that the error correction

terms can be constructed as wt = β′yt. The structural system is written as

B∆yt = α∗wt−1 +

p−1∑
k=1

Γ∗k∆yt−k +Rut , (2.18)

where α∗ = Bα. Since α is assumed to be unrestricted, so is α∗. Hence, we

are able to “partial out” the unrestricted coefficient matrices α∗ and Γ∗1, . . . ,Γ
∗
p−1

by regressing ∆yt on wt−1,∆yt−1, . . . ,∆yt−p+1. Let ε̃t denote the corresponding

vector of residuals. Then, the structural system is transformed into

Bε̃t = Rũt . (2.19)

It follows that the only difference from the original SVAR model is that the struc-

tural model is formulated by using the residuals from the VECM representation

(1.12) instead of the unrestricted VAR residuals.
3However, Crowder (1995) is in error when claiming that α′⊥ is (a multiple of) [0, 1] (p.236).

Such a restriction would imply that no lagged Ut enters the output equation. This, however, is an

additional restriction not entailed in the original model. Since the BQ-Model is just identified,

there is no such over-identification restriction to be tested as suggested by Crowder.
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Permanent and transitory shocks. To accommodate a structural interpreta-

tion of the long run behaviour of the system, the shocks are classified as “perma-

nent” and “transitory”. While a permanent shock has a long run effect on the

future level of at least one variable, all impulse response functions with respect to

a transitory shock die out as the lag horizon tends to infinity.

In a system with cointegration rank r, there are n− r permanent and r transi-

tory shocks. As shown, e.g., in Johansen (1994), the vector of permanent shocks

can be represented as upt = α′⊥εt. The vector of transitory (or “cyclical”) shocks

can be represented as uct = γ′εt, where the columns of the n × r matrix γ are

linearly independent of the columns of α⊥. In the structural form (2.2) the shocks

are related to the innovations by

ut =

[
upt

uct

]
= R−1Bεt . (2.20)

In order to impose the restriction that the first n−r elements of ut are permanent

shocks, the upper (n− r)× n block of the matrix (R−1B) must be orthogonal to

α. Furthermore, let R be lower block-triangular so that the upper right (n−r)×r
block is zero. In this case, the permanent shocks result from setting the upper

block of B equal to α⊥. Accordingly, shocks are restricted to have a permanent

effect by setting the corresponding rows of Γ = R−1B equal to zero.

This gives rise to the following estimation procedure. Let ∆ỹt and ỹt−1 denote

the residuals from a regression of ∆yt and yt−1 on ∆yt−1, . . . ,∆yt−p, respectively.

Letting ξyt = R−1B∆ỹt = Γw̃t−1 + ũt with w̃t−1 = β′ỹt−1, the corresponding LV

model is given by

Measurement equations:

 ∆ỹt = ξzt

w̃t−1 = ξxt

System equations:

[
ξzt

ξyt

]
=

[
(I −B) R

0 0

][
ξzt

ξyt

]
+

[
0

Γ

]
ξxt +

[
0

ut

]
,
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where the permanent shocks result from setting the corresponding rows of Γ equal

to zero.

This framework is more general than the estimation method suggested by

King et al. (1991) that is based on a just identified system with a triangular

identification of the transitory shocks (see Section 3.8.3 for more details).

Linear restrictions on the long run effect of the shocks. If the structural

model implies restrictions on the magnitude of the long run effect, a LV represen-

tation of the LISREL type does not seem possible in the general case. However,

for B = In the LV framework can be used as follows.

Following Warne (1990) the cointegrated system is transformed to a statio-

nary VAR using the vector of transformed variables zt = [y′tβ,∆y
′
tγ]′, where γ

is some fixed n × (n − r) matrix linearly independent of β. The vector zt has

a stationary VAR(p) representation and, thus, the usual SVAR framework can

be used. Let Ψz denote the long run impulse response of the integrated series

st =
∑t

j=1 zj = [
∑t

j=1 y
′
jβ, y

′
tγ]′ with respect to the structural shocks. From the

relationship between yt and zt we can deduce the long run response of st from the

impact matrix Ψz. Let

D(L) =

[
Ir 0

0 (1− L)In−r

]
and D(L) =

[
(1− L)Ir 0

0 In−r

]
such that D(L)D(L) = (1− L)In. Furthermore, let Q = [β, γ]′. The relationship

between zt and yt is given by

zt = D(L)Qyt . (2.21)

Multiplying with Q−1D(L) gives

∆yt = Q−1D(L)zt . (2.22)

It follows that the long run impulse response of yt denoted by Ψy is given by

Ψy = Q−1D(1)Ψz (2.23)

and, thus, linear restrictions on Ψy imply linear restrictions on Ψz. That is,

the structural form of the cointegrated VAR can be estimated by using the LV

representation for zt as considered in Section 3.5.
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It is important to notice that the matrix Q is treated as fixed. Since β can

be estimated super-consistently, one may use an estimate of β without affecting

the asymptotic properties of the estimation procedure. The choice of γ is more

problematical. Of course it is possible to select the values of γ arbitrarily as

a block from the identity matrix, for example. However, if there is no prior

information about the cointegrating space, it may be that some vectors of γ fall in

the cointegrating space and, therefore, the matrix Q is not invertible. In practice

one should therefore test whether the column vectors of γ fall in the cointegrating

space by using, e.g., Johansen’s (1991) LR tests.

2.7 Inference on impulse responses

The impulse response ϕh(i, j) measures the effect of the j’th shock on the i’th

variable h periods ahead (cf. Lütkepohl 1991, Sec. 2.3.2). Formally the impulse

response function is defined as

ϕh(i, j) =
∂E(yi,t+h|Yt−1, ujt)

∂ujt
, (2.24)

where Yt−1 = {yt−1, yt−2, . . .}. The impulse responses can be computed from the

MA representation of the system. It is convenient to introduce the companion

form of the VAR model:

zt = Mzt−1 + νt , (2.25)

where

zt = [y′t, y
′
t−1, . . . , y

′
t−p+1]′

νt = [ε′t, 0
′]′

M =



A1 A2 · · · Ap−1 Ap

In 0 · · · 0 0

0 In · · · 0 0
...

. . .
...

0 0 · · · In 0


.
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The matrices B and R are subject to the linear restrictions

Q1vec(B) = h1 (2.26)

Q2vec(R) = h2. (2.27)

These restrictions can be re-written as

vec(B) = h∗1 +Q∗1b
∗ (2.28)

vec(R) = h∗2 +Q∗2r
∗ , (2.29)

where b∗ and r∗ are unrestricted parameter vectors, Q∗1 and Q∗2 are known matrices

with the property Q1Q
∗
1 = 0 and Q2Q

∗
2 = 0 and h1, h2 are vector of constants.

From this representation the original time series vector is obtained as yt = J ′zt,

where J is a selection matrix defined as J ′ = [In, 0, . . . , 0]. Using the companion

form, the MA representation can be written as

yt =
∞∑
j=0

J ′M jJεt−j

=
∞∑
j=0

J ′M jJBR−1ut−j .

Let Φh denote the impulse response matrix with typical element ϕh(i, j). From

the MA representation this matrix results as

Φh = J ′MhJB−1R . (2.30)

The impulse response can therefore be represented as a nonlinear function of the

structural parameters:

ϕh = vec(Φh) = fhϕ(θ) , (2.31)

where θ =vec([A1, . . . , Ap], B,R) ≡ [θ′1, θ
′
2, θ
′
3]′.

Lütkepohl (1990) derives the asymptotic distribution of the estimated impulse

response function for the VAR model with triangular identification scheme by

using the Delta method. This method can also be used to derive the asymptotic

distribution of the estimated impulse responses in the structural model:

ϕ̂h = fhϕ(θ̂) . (2.32)
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The Delta method is based on the mean value expansion:

ϕ̂h = ϕh +∇fhϕ(θ̄)(θ̂ − θ) , (2.33)

where θ̄ lies on the intersection of θ and θ̂, and ∇fhϕ(θ̄) denotes the derivative

∂fhϕ(θ)/∂θ′ evaluated at θ̄. To derive the asymptotic distribution of the estimated

impulse responses, the derivatives must be computed. For the case R = In and a

structural matrix B with the restriction Q1vec(B) = h1, the derivative is derived

in Vlaar (1999). The following lemma provides the derivative of fhϕ(θ) for the case

that the variables are not cointegrated and no long run restrictions are used to

identify the parameters.

LEMMA 2.1 Let yt be generated by the structural model given by (2.3) with the

parameter vector θ = [θ′1, b
∗′, r∗′]′ and θ1 = vec(A1, . . . , Ap). Then, the derivative

is given by

∇fhϕ(θ) = [Da
h, D

b
h, D

r
h] ,

where

Da
0 = 0 for h = 0

Da
h =

h−1∑
j=0

(B−1R)′J ′(M ′)h−1−j ⊗ J ′MhJ for h = 1, 2, . . .

Db
h =

(
−R′B′−1 ⊗ J ′MhJB−1

)
Q∗1

Dr
h =

(
I ⊗ J ′MhJB−1

)
Q∗2 .

Proof: The result follows from (2.30) and eq. (13) in Sec. 10.5.1 of Lütkepohl

(1996) and is similar to the result given in Lütkepohl (1990, Prop. 1).

From eq. (1) in Sec. 10.6.1 of Lütkepohl (1996) it follows that

∂fhϕ(θ̂)

∂vec(B)′
= −R′B′−1 ⊗ J ′MhJB−1 .

Using ∂vec(B)/∂b∗′ = Q∗1 the matrix Db
0 follows immediately.

From eq. (3) in Sec. 10.4.1 of Lütkepohl (1996) it follows that

∂fhϕ(θ̂)

∂vec(R)′
= I ⊗ J ′MhJB−1 .
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Using ∂vec(R)/∂r∗′ = Q∗2 the matrix Dr
0 follows easily. �

If the structural model is subject to long run restrictions, the derivative is much

more complicated. The problem is that the respective restrictions are nonlinear:

Q3vec
[
(In − A1 − · · · − Ap)−1B

]
= Q3

[
In ⊗ (In − A1 − · · · − Ap)−1

]
vec(B) = h3 .

For the estimated model this restriction takes the form:

Q̂3vecB̂ = h3 , (2.34)

where Q̂3 = Q3[In⊗ (In− Â1− · · · − Âp)−1]. Vlaar (1999) calls (2.34) a “stochas-

tic restriction”. He notes that the software packages Malcolm in Rats (see

Mosconi 1998) treats this restriction like a usual linear restriction by neglecting

the stochastic nature of the matrix Q̂3. Vlaar (1999) therefore derives the correct

asymptotic distribution by taking into account the distribution of Q̂3. The result-

ing formulae are however rather messy and it is therefore appealing to make use

of the reformulation used to derive the latent variable representation.

Following Johansen (1988) the system can be represented as

∆yt = Πyt−p + Γ̃1∆yt−1 + · · ·+ Γ̃p−1∆yt−p+1 + εt

= −B−1RΨ−1yt−p + Γ̃1∆yt−1 + · · ·+ Γ̃p−1∆yt−p+1 +B−1Rut ,

where Γ̃j = −In + A1 + · · · + Aj for j = 1, . . . , p − 1. The difference to the form

used in (1.12) is that here the levels are lagged by p periods instead of a single

lag. It is assumed that Γ̃j are unrestricted matrices for j = 1, . . . , p − 1. This

model can be written in companion form as in (2.25), where

zt = [∆y′t,∆y
′
t−1, . . . ,∆y

′
t−p+2, y

′
t−p+1]

M =



Γ̃1 Γ̃2 · Γ̃p−2 Γ̃p−1 −B−1RΨ−1

In 0 . 0 0 0

0 In . 0 0 0

. . . . . .

0 0 . 0 In 0

0 0 . 0 In In
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νt = [(B−1Rut)
′, 0]′ .

The impulse response matrix with respect to h periods results as

Φh = J ′MhJB−1R .

The important advantage of this representation is that long run restrictions can

be written as linear restrictions on Ψ:

Q3vec(Ψ) = h3 or vec(Ψ) = h∗3 +Q∗3ψ
∗ .

The derivative can be obtained in the same manner as in the case without long

run restrictions. The results are given in the following lemma.

LEMMA 2.2 Let yt be generated by the VAR[p] model with the structural form

(2.2) and the parameter vector θ = [θ′1, b
∗′, r∗′, ψ∗′]′, where θ1 = vec(A1, . . . , Ap).

Then, the derivative is given by

∇fhϕ(θ) = [Da
h, D

b
h, D

r
h, D

ψ
h ] ,

where

Da
0 = 0 for h = 0

Da
h =

h−1∑
j=0

(B−1R)′J ′(M ′)h−1−j ⊗ J ′MhJ for h = 1, 2, . . .

Db
h =

[
F h
M(Ip+1 ⊗Kn,p+1 ⊗ In)(vec(τ)⊗Ψ′R′B′

−1 ⊗B−1)−R′−1 ⊗ J ′MhJ
]
Q∗1

Dr
h =

[
−F h

M(Ip+1 ⊗Kn,p+1 ⊗ In)(vec(τ)⊗ In ⊗B−1R) + In ⊗ J ′MhJB−1
]
Q∗2

Dψ
h =

[
−F h

M(Ip ⊗Kn,p ⊗ In)(vec(τ)⊗Ψ′ ⊗B−1)
]
Q∗3

where Kn,k is a commutation matrix (e.g. Lütkepohl 1996, p. 9) and

F h
M =

h−1∑
j=0

(B−1R)′J ′(M ′)h−1−j ⊗ J ′Mh

τ =

[
01×p−1 1

0p−1×p−1 0p−1×1

]
.
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Proof: The derivative of fhϕ(θ̂) with respect to θ1 has the same form as in the

case of Lemma 2.1. For the remaining derivatives we have to account for the

dependence of M on B, R and Ψ. Using the chain rule and the product rule we

obtain

∂fhϕ(θ̂)

vec(B)′
= F h

M

vec(M)

vec(B)′
−R′B′−1 ⊗ J ′MhJB−1

∂fhϕ(θ̂)

vec(R)′
= F h

M

vec(M)

vec(R)′
+ In ⊗ J ′MhJB−1 ,

where F h
M = ∂fhϕ(θ̂)/vec(M)′. To compute the derivatives of M it is useful to

write

M =



Γ̃1 Γ̃2 · Γ̃p−2 Γ̃p−1 0

In 0 . 0 0 0

0 In . 0 0 0

. . . . . .

0 0 . 0 In 0

0 0 . 0 In In


+ τ ⊗−B−1RΨ

Using eq. (7b) of Sec. 10.5.5, eq. (3) of Sec. 10.4.1 and eq. (1) of Sec. 10.6.1 of

of Lütkepohl (1996) we get

∂vec(M)

∂vec(Ψ)′
= −(Ip+1 ⊗Kn,p+1 ⊗ In)(vec(τ)⊗ In ⊗B−1R)

∂vec(M)

∂vec(B)′
= (Ip ⊗Kn,p ⊗ In)(vec(τ)⊗Ψ′R′B′

−1 ⊗B−1)

∂vec(M)

∂vec(R)′
= −(Ip ⊗Kn,p ⊗ In)(vec(τ)⊗Ψ′ ⊗B−1).

Finally, using ∂vec(B)/∂b∗′ = Q∗1, ∂vec(R)/∂r∗′ = Q∗2 and ∂vec(Ψ)/∂ψ∗′ = Q∗3

the derivatives follow. �

With these results for the derivative ∇fhϕ(θ) we are able to state the main

result:

THEOREM 2.1 Under the assumptions that

(i) rk[∇fhϕ(θ)] = n2

(ii)
√
T (θ̂ − θ) d−→ N(0,Σθ)
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where Σθ is the asymptotic covariance matrix of θ̂, it follows that

√
T (ϕ̂h − ϕh)

d−→ N(0,∇fhϕ(θ)Σθ∇fhϕ(θ)′) ,

where ∇fhϕ(θ) is given in Lemma 2.1 or Lemma 2.2.

Proof: The proof of this theorem immediately follows from the mean value

expansion given in (2.33). �

It is important to notice that the assumptions (i) and (ii) in Theorem 2.1

may fail in practice. As pointed out by Lütkepohl (1990), the derivative may

be zero for some particular values of the structural parameters. This problem

already occurs in a univariate model (cf. Benkwitz et al. 2000). In the simple

AR(1) model yt = αyt−1 + εt the estimated impulse response is ϕ̂h = α̂h. The

derivative is ∇fhϕ(θ) = hαh−1. Obviously, the derivative is zero for α = 0 and

h ≥ 2 and, thus, the impulse responses have a nonstandard limiting distribution

and converge with the rate T h/2 instead of
√
T . Benkwitz et al. (2000) discuss

alternative methods to overcome this problem.

Assumption (ii) of Theorem 2.1 may be violated if the process has roots on or

inside the unit circle. In this case some parameters have a nonstandard limiting

distribution. Again it is useful to consider the simplest case of a univariate AR(1)

model. If α = 1, the least-squares estimator is distributed as

T (α̂− 1) ⇒
∫ 1

0
W (r)dW (r)∫ 1

0
W (r)2dr

and, obviously, the impulse responses fail to be asymptotically normally dis-

tributed for all h. Phillips (1998) shows that for h→∞ the impulse responses are

not even consistent as h/T → λ for T →∞ and λ > 0, that is, if the lag horizon

of the impulse responses are large relative to the sample size. This problem can

however be resolved by using the VECM representation instead of an unrestricted

VAR in levels (Phillips 1998 and Vlaar 1999).

Sims and Zha (1994) argue hat classical (frequentist) confidence intervals can

be poor measures of the ignorance about estimated impulse response functions in

small samples. First, using bootstrap methods yields a confidence interval which
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is based on “an average across informative and uninformative samples” (Sims and

Zha 1994, p.6). In contrast, a Bayesian confidence interval always conditions on

the actual sample and, thus, provides a measure of ignorance by using the data

at hand. Second, in small samples confidence intervals often exhibit a substantial

asymmetry. This important feature cannot be represented by using an asymptotic

approach based on a normal limiting distribution.

Most of the empirical studies using SVAR models neglect possible information

on the long run relationships among the variables. To address this question in

more detail, assume that yt is generated by a cointegrated model with a VECM

representation given in (1.12). Engle and Yoo (1991) show that the information

matrix of the likelihood function assuming normal innovations is block diagonal

with respect to θ1 = vec(β), θ2 = vec(α,Γ1, . . . ,Γp−1) and θ3 = vec(Σ). Accord-

ingly, the estimates Σ̂ (and therefore B̂ and R̂) are asymptotically independent of

the estimates of Γ1, . . . ,Γp−1,Π and β. It follows that the structural parameters

in B and R are not affected by imposing the rank restrictions on Π as long as Π

is estimated consistently.

Since the impulse responses involve the parameter matrices B, R and Π, this

result is not sufficient to conclude that the distribution of the impulse response

function is not affected by the cointegration properties. Nevertheless, it can be

shown that the impulse response matrix at a fixed lag horizon is indeed asympto-

tically the same whether an unrestricted VAR in levels or an appropriate VECM

is used to estimate the impulse responses. This result is based on the following

lemma (see also Phillips and Durlauf 1986 and Sims et al. (1990) for similar

results).

LEMMA 2.3 Assume that yt is generated by a cointegrated VAR. Let Π̃ denote

the unrestricted least-squares estimator of Π and Π̂ is the ML estimator conditional

on the true cointegration rank r. Then, Π̃ = Π̂ + op(T
−1/2).

Proof: To facilitate the notation, a VAR(1) model is used to demonstrated the

result. The extension to VAR(p) models is straightforward.

Let Υ = [T−1/2β, T−1β⊥]′. In a VAR(1) model the unrestricted least-squares
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estimator for Π is given by:

Π̃ =

(
T∑
t=2

∆yty
′
t−1

)(
T∑
t=2

yt−1y
′
t−1

)−1

=

(
T∑
t=2

∆yty
′
t−1Υ′

)(
Υ

T∑
t=2

yt−1y
′
t−1Υ′

)−1

Υ.

Denoting

T∑
t=2

Υyt−1y
′
t−1Υ′ =

[
A1 op(1)

op(1) A2

]
T∑
t=2

εty
′
t−1Υ′ =

[
B1 B2

B3 B4

]
,

where

A1 = T−1
T∑
t=2

β′yt−1y
′
t−1β A2 = T−2

T∑
t=2

β′⊥yt−1y
′
t−1β⊥

B1 = T−1/2
T∑
t=2

εty
′
t−1β B2 = T−1/2

T∑
t=2

εty
′
t−1β⊥

B3 = T−1
T∑
t=2

εty
′
t−1β B4 = T−1

T∑
t=2

εty
′
t−1β⊥ .

It follows that

√
T (Π̃− Π) =

[
B1A

−1
1 β′ + T−1/2B2A

−1
2 β′⊥

B3A
−1
1 β′ + T−1/2B4A

−1
2 β′⊥

]
.

Since the ML estimator Π̂ is asymptotically equivalent to the least-squares esti-

mator of ∆yt on β′yt−1 we have

√
T (Π̂− Π) =

[
B1A

−1
1 β′

B3A
−1
1 β′

]
+ op(1)

and, thus, the required result follows. �

It may be surprising to learn that imposing the correct rank restriction on

the matrix Π yields no gain in efficiency for estimating the impulse responses.

The reason is that the limiting behaviour of the impulse responses at a finite lag

horizon is dominated by the limiting behaviour of the short run parameters.
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THEOREM 2.2 Let yt be generated by a cointegrated VAR with cointegration

rank r and a VECM representation as in (1.12). Then, the asymptotic distribution

of the estimated impulse response at a finite lag horizon h is the same whether the

impulse response is estimated from an unrestricted VAR instead or a VECM with

cointegration rank r.

Proof: The VECM model has a companion form according to (2.25) with

zt =


∆yt

...

∆yt−p+2

yt

 , M =



Γ̃1 Γ̃2 . Γ̃p−2 Γ̃p−1 Π

In 0 . 0 0 0

. . . . . .

0 0 . In 0 0

0 0 . 0 In In


, νt =


εt

0
...

0


The impulse responses result as

Φh = J ′MhJBR−1

or

ϕh = fhϕ(θ) ,

where θ =vec(Γ̃1, . . . , Γ̃p−1,Π, B,R). Using Lemma (2.3) it follows that θ̂ = θ̃ +

op(T
−1/2) so that under the conditions of Theorem 2.1

ϕ̂h(i, j) = fϕ(θ̂)

= fϕ(θ̃) + op(T
−1/2)

and, thus, ϕ̂h(i, j) and ϕ̃h(i, j) have the same limiting distributions. �

This result implies that information on the long run relationship of the vari-

ables does not help to improve the short run impulse responses. However, Clarida

and Gertler (1996) claim that in small samples the estimates may be improved

by imposing the correct cointegration rank. Furthermore, as shown by Phillips

(1998) the estimates of the impulse responses deteriorate with an increasing lag

horizon and become insignificant if the lag horizon grows as fast as the sample

size. Hence, in practice it may be advantageous to use a VECM representation

with a proper cointegration rank to estimate the impulse responses.
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2.8 Empirical applications

In this section we consider three structural models that can be seen to be “repre-

sentative” for many recent applications using SVAR models. The first example is

related to the early contributions by Sims (1981, 1986). The simple structure of

the model allows the application of a convenient instrumental variable estimator.

The model suggested by Blanchard and Quah (1989) achieves identification by

imposing assumptions on the long run effect of the shocks. This model is ex-

tended by King et al. (1991) in order to identify n − r permanent shocks in a

cointegrated system. For the latter two models point estimates of the structural

parameters can be obtained analytically by exploiting the relationship between

the parameters of the structural and the reduced form. However, standard errors

of the estimates are not available by using this approach.

The fourth example is an over-identified structural model which was recently

suggested by Swanson and Granger (1997). This model is motivated using a

causal interpretation based on graph theory. The LV framework provides effi-

cient estimation and inference procedures for estimating and testing such kind of

models.

2.8.1 A simple IS-LM model

To illustrate the “first generation” SVAR models advocated by Sims (1981),

Bernanke (1986) and others, a traditional IS-LM model is estimated using quar-

terly U.S. data from 1970(i) to 1997(iv). The output Yt is measured by real GDP,

Mt is the monetary base as computed by the Federal Reserve Bank of St. Louis

divided by the GDP deflator, and it is the 3-month interbank interest rate.

Let εYt , εit and εMt denote the innovations of the VAR equations for Yt, it and

Mt. The model considered in Pagan (1995) is given by

εYt = α εit + uISt (IS curve)

εit = β1 ε
Y
t + β2 ε

M
t + uLMt (inverted money demand)

εMt = uMS
t (money supply)

(2.35)
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Accordingly, R = I3 and

B =


1 −α 0

−β1 1 −β2

0 0 1

 .

Estimating this model (2.35) by using the LISREL package yields the estimated

equations:

εYt = 0.04 εit + uISt

(0.26)

εit = 0.14 εYt − 0.73 εMt + uLMt ,

(0.51) (−4.99)

where t-values are given in parentheses. The estimate of the coefficient α is in-

significant and positive so that we do not obtain a reasonable estimate of the IS

equation. The parameters of the LM curve have the correct sign but the estimate

of β1 is statistically insignificant.

Nevertheless, we compute the impulse response functions to analyse the im-

pact of structural shocks on the system variables. The respective graphs are given

in Figure 3.1. It should be mentioned that the LISREL package does not provide

confidence intervals for the impulse responses so that it is difficult to assess the

economic relevance of the results. With this limitation Figure 3.1 a) shows that

in response to an upward shift of the IS curve output increases immediately but

the increase dies out within six years. A positive money demand shock (LM) is

equivalent to an increase in the interest rate and from Figure 3.1 b) it can be

seen that output decreases gradually with a minimum after two years. The im-

pulse response function shows that the small positive correlation between output

and interest rates resulting from the estimated IS curve is merely a short run

phenomenon and at longer horizons the relationship is strong and negative as

expected from economic theory.

The negative response of output following a positive money supply shock is

somewhat puzzling. From theory we expect that an increase in real money bal-

ances yields an expansive effect on output. However, the impulse response function
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Figure 2.1: Impulse responses for the IS-LM model
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Table 3.1: Variance decompositions

IS LM MS

yt 1 0.996 0.003 0.001

4 0.915 0.055 0.030

8 0.525 0.331 0.144

12 0.133 0.648 0.219

it 1 0.010 0.810 0.180

4 0.332 0.614 0.054

8 0.533 0.404 0.063

12 0.622 0.264 0.114

Mt 1 0.000 0.000 1.000

4 0.050 0.068 0.882

8 0.525 0.331 0.144

12 0.133 0.648 0.219

The table presents the forecast variances decomposition with respect to

the structural shocks. All numbers are given in decimales. The forecast

horizon is measured in quarters.

given in Figure 3.1 c) implies that a positive money supply shock produces a drop

in output after roughly 2 years. Although the size of the effect is moderate, this

result suggests that monetary policy shocks are not measured appropriately by in-

novations in the monetary base. Indeed, recent empirical work demonstrates that

monetary policy in the U.S. is more accurately measured by innovations in the

Federal Funds Rate or a combination of a narrow monetary base and short-term

interest rates (Bernanke and Mihov 1997).

A positive shift in the IS curve increases interest rates with a maximal re-

sponse at two years (Figure 3.1 d), whereas real money decreases gradually with

a minimum at three years (Figure 3.1 g). These effects are predicted by the IS-

LM model. Similarly, a LM shock leads to an increase in interest rates and a
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decrease in real money (see Figures 3.1 e and 3.1 h) which is also predicted by the

theoretical model. Finally, a positive money supply shock leads to an immediate

drop in interest rates (Figure 3.1 f) and a gradual increase in real money. This

effect is known as the “liquidity effect” and is also an important consequence of

the standard IS-LM model (e.g. Hamilton 1997).

To assess the importance of the three different shocks for the system variables,

the forecast error variances of the variables are decomposed with respect to the

shocks. Since the shocks are orthogonal, their contribution can be measured as

a fraction of the total forecast error variance. The results for different forecast

horizons are presented in Table 3.1. It turns out that the money supply shock

contributes only a small fraction to the forecast error variance of output. Once

again this result confirms that the innovation in money does not seem to be an

accurate indicator for monetary policy. IS shocks clearly dominate the short run

behaviour of the output series but with respect to a longer forecast horizon, IS

shocks become less important. Finally, money demand shocks play a minor role

in the short run. However with an increasing forecast horizon, the LM shocks

become more and more important. The relative contribution of the shocks to the

forecast error variance of interest rates and real money can be interpreted in a

similar manner.

Summing up, the results demonstrate that even such a simple model for the

U.S. economy is able to produce reasonable results although some findings are at

variance with our preconceptions emerging from the basic version of an IS-LM

model. In fact, it is often encountered in practice that some aspects of the SVAR

model are inconsistent with theoretical reasoning. For example, in several studies

for the U.S., monetary policy shocks produce results consistent with common

priors about the qualitative effects of monetary policy on output and prices, but

produce a so-called “liquidity puzzle”, that is, expansive monetary policy increases

interest rates (see, e.g., Fung and Kasumovich 1998). However, such a result does

not demonstrate the general failure of the SVAR approach. Rather, such findings

give an indication of the direction in which the model may be improved.
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2.8.2 The Blanchard-Quah model

Based on a simple economic model, Blanchard and Quah (1989) identify supply

shocks to have persistent effects on output whereas demand shocks are transitory.

That is, in a VAR model with yt = [∆Yt, Ut]
′, where Yt denotes the log of output

and Ut is the unemployment rate, the vector of structural shocks ut = [ust , u
d
t ]
′ is

identified by setting the (1,2) element of the long run impact matrix Ψ equal to

zero. Furthermore, we let Ω = I, so that the shocks are normalized to have unit

variance.

The structural form is related to the reduced form as

ΨΨ′ = (I − A1 − · · · − Ap)−1Σ(I − A′1 − · · · − A′p)−1 .

Since Ψ is assumed to be lower triangular, it can be obtained from a Choleski

decomposition of the matrix (I − A1 − · · · − Ap)
−1Σ(I − A′1 − · · · − A′p)

−1. It

is important to note, however, that this computation implies that the diagonal

elements of Ψ are strictly positive. This additional identification restriction will

be discussed below.

The Blanchard-Quah model can also be estimated by using the LV represen-

tation that has the simple form:

Measurement equations:

 ∆ỹt = Rξyt

ỹt−1 = −Ψξxt

System equations: ξyt = ξxt + ut ,

where ∆ỹt and ỹt−1 denote the first step residuals obtained from a regression of

∆yt and yt−1 on the lags of ∆yt and the deterministic terms of the system. The

(1, 2) element of Ψ is set to zero.

With respect to the discussion in Section 3.6 it is also interesting to compare

the findings with the corresponding results using a cointegration approach. Since

Ut is assumed to be stationary, it follows that β = [0, 1]′ and the error correction
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form of the model is

∆Yt = α1Ut−1 +
8∑
j=1

c11,j∆Yt−j +
7∑
j=1

c12,j∆Ut−j + ε1t

∆Ut = α2Ut−1 +
8∑
j=1

c21,j∆Yt−j +
7∑
j=1

c22,j∆Ut−j + ε2t .

An estimate of α = [α1, α2]′ is obtained by OLS and an orthogonal complement of

this vector is α⊥ = [α2,−α1]′. Accordingly, an estimator of the matrix Q defined

in Section 3.6 can be constructed as

Q =

[
0 1

α2 −α1

]
.

To compute R, let P be the Choleski factor of (QΣQ′). Then, as shown in Section

3.6, R can be obtained as R = Q−1P .

To estimate the system, we first employ the software package LISREL 8.12a

to estimate the latent variable representation. The maximum likelihood estimates

result as

R̂ =


0.070 0.876

(0.237) (15.75)

0.207 −0.196

(3.067) (2.841)


and

Ψ̂ =


0.489 0

(3.067)

0.008 −3.809

(0.005) (2.995)

 ,

where the absolute t-values are given in parentheses. The estimates are numeri-

cally identical to the estimates obtained by applying the computational method

suggested by Blanchard and Quah (1989). However, the t-statistics are not avail-

able by using the latter technique.

It may be interesting to note that the “supply shock” has an insignificant

contemporaneous impact (|t| = 0.237) on output growth. Thus, the demand

shock is approximately the innovation of the output growth equation.
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Figure 2.2: Impulse responses for the Blanchard-Quah model
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In Figure 3.2 the impulse response functions with respect to the structural

shocks are presented. The impulse response function are very similar to the ones

obtained by Blanchard and Quah (1989) and a careful economic interpretation of

the figures is given in their paper. The 90% confidence intervals are computed by

1000 Monte Carlo draws of the estimated reduced form and normally distributed

errors. Comparing our confidence sets with the bootstrap intervals presented in

Blanchard and Quah (1989) reveals that their confidence bands are much more

asymmetric than ours. As argued by Sims and Zha (1994), this is due to an

improper bootstrap algorithm used by Blanchard and Quah (1989).

In practical applications, the cointegration approach yields different estimates

of the structural parameters even if maximum likelihood techniques are used. This

is due to the different model representation used in this framework. If some vari-

ables are differenced, the degree of the corresponding lag polynomials is reduced

by one and, thus, the VAR equations have a different lag order. It is possible

to account for such differences by using a VAR representation with different lag

orders for the variables. The efficient estimation of such systems is, however,

much more complicated than an unrestricted VAR so that we do not consider

such modifications in what follows.

For the Blanchard-Quah model the cointegration approach yields the estimate

R̂CI =

[
0.0746 0.9296

0.2198 −0.2082

]
,

which is – in absolute values – not far away from the estimates using the LISREL

approach.

2.8.3 The KPSW model

A simple example of a cointegrated system with a structural identification of the

shocks is provided by King, Plosser, Stock and Watson (KPSW) (1991). Stan-

dard RBC models with permanent technology shocks imply that the logarithm of

private output (qt), consumption (ct) and investment (it) are I(1) processes with

the cointegration relations ct − qt ∼ I(0) and it − qt ∼ I(0). Since β⊥ (the or-

thogonal complement of β) is a vector with identical elements, the common trend
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representation according to (1.13) is found as

∆yt =


∆qt

∆ct

∆it

 =


a

a

a

 (α′⊥εt) + C̃(L)∆εt ,

where the polynomial C̃(L) = C̃0 + C̃1L + C̃2L
2 + · · · has all roots outside the

complex unit circle. It is seen that the permanent shock has an identical long run

impact on the variables.

To achieve a structural identification, King et al. (1991) assume that the

first shock (u1t) is permanent and the remaining two shocks (u2t, u3t) are transi-

tory. Furthermore, the shocks are mutually uncorrelated with unit variance, i.e.,

E(utu
′
t) = I3. These assumptions are sufficient to identify the permanent shock

but are not sufficient for the identification of the transitory shocks. The identi-

fication of u1t follows immediately from the fact that in this case α⊥ is a 3 × 1

vector and, therefore, u1t = α′⊥εt/
√
α′⊥Σα⊥. However, to identify the transitory

shocks an additional restriction is needed.

King et al. (1991) assume that the transitory shocks enter the system re-

cursively, as in the triangular identification scheme implied by using a Choleski

decomposition. Such a procedure is obtained by letting R be lower triangular and

B =


1 b1 b2

0 1 0

0 0 1

 .
Since the first shock is assumed to be permanent, the first row [1, b1, b2] must be

orthogonal to the columns of the matrix α. Furthermore the (1,1) element of B

is normalized to unity in order to achieve identification of the (1,1) element of R.

The matrix Γ = R−1Bα is a 3× 2 matrix with zeros in the first row (see Section

3.6). This model has {6, 2, 4} unknown parameters for {R,B,Γ} and, thus, the

structural model has the same number of parameters as the reduced form.

For the empirical application we use U.S. real national income account vari-

ables for 1960(i) through 1988(iv), so that the data and the sample period are sim-

ilar to King et al. (1991). The variable qt is the per capita private Gross National
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Product (GNP less government purchases of goods and services), ct measures per

capita Private Consumption Expenditures and it is measured by per capita Gross

Private Fixed Investments.4 As in King et al. (1991) all computations are based

on a VAR(6) representation.

Table 3.2 presents the results of Johansen’s (1991) trace test for the cointe-

gration rank. An unrestricted linear time trend is included and the corresponding

critical values of Perron and Campbell (1993) are applied. The hypothesis that

the three series are not cointegrated (r = 0) can be rejected at a significance level

of 0.10. Furthermore, the hypothesis that the cointegration rank is r = 1 or r = 2

cannot be rejected. Although this is only a weak empirical support we follow King

et al. (1991) and choose the cointegration rank r = 2 in what follows. Using the

LR test suggested by Johansen and Juselius (1992) the theoretical cointegration

vectors β1 = [−1, 1, 0]′ and β1 = [−1, 0,−1]′ cannot be rejected at a critical value

of 0.05.

Maximizing the likelihood function of the structural model, the following es-

timates are obtained:

B̂ =


1 0.418 −0.300

(0.09) (0.50)

0 1 0

0 0 1

 , Γ̂ =



0 0

−0.103 0.065

(1.01) (1.75)

0.079 −0.029

(0.62) (0.37)


and

R̂ =



0.950 0 0

(0.28)

0.488 −0.486 0

(1.76) (1.77)

−2.003 −2.781 1.794

(1.92) (0.90) (0.33)


.

4Our data is different from the data used in KPSW. In our application the variables are

taken from the data bank of St. Louis Federal Reserve Bank, except the population series which

comes from the Citibase data tape.
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Figure 2.3: Responses w.r.t. the permanent shock

In Figure 3.3 the impulse response functions with respect to the permanent shock

are depicted. In all, they have a similar shape as those presented in King et

al. (1991). However, the investment response is much more pronounced than

the respective response presented in the original paper. This seems to be due to

differences in the data construction.

An alternative way to formulate the structural model is to adopt a structural

model for the transformed set of variables zt = [ct − qt, it − qt,∆qt]′. The corre-
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Table 3.2: Cointegration statistics

H0 Trace 0.10 critical value 0.05 critical value

r ≤ 2 4.481 9.75 11.62

r ≤ 1 15.74 21.22 23.65

r = 0 37.17 36.52 39.67

β1 = [−1, 1, 0]′ 2.575 2.71 3.84

β2 = [−1, 0, 1]′ 0.160 2.71 3.84

joint(β1, β2) 2.642 4.60 5.99

Notes: This table presents LR statistic for the cointegration rank and for prespecified

cointegration vectors. The critical values of Perron and Campbell (1993) are applied.

sponding (concentrated) latent variables representation is

Measurement equations:

 ∆z̃t = Rξzt

z̃t−1 = −Ψzξ
x
t

System equations: ξzt = ξxt + ut .

The matrix Ψz has the following structure:

Ψz =


∗ ∗ ∗

∗ ∗ ∗

a 0 0

 ,
where a is the long run impact of the permanent shock. The zeros in the last row of

Ψz result from the assumption that the second and the third shock are transitory.

In order to identify the transitory shocks we need an additional restriction. Again

one may set the (2,3) element of R equal to zero. However, one should note that

the matrix R in the representation for zt is not identical to the matrix R of the

former model for ∆yt.
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Since the (concentrated) reduced form implies 15 parameters and [Ψz, R] con-

tains 7+9=16 parameters we need an additional restriction. In King et al. (1991)

and the cointegration approach considered above the transitory shocks are uniquely

obtained by using a Choleski decomposition. An equivalent identification is ob-

tained using a matrix with a structure like

R =


r11 r12 r13

r21 r22 0

r31 r32 r33

 ,

where r22 and r33 are positive numbers. Here, identification is achieved by assum-

ing that the third structural shock is uncorrelated with the second innovation.

The kind of identification restriction for the transitory shocks does not, however,

affect the construction of the permanent shock.

Maximizing the likelihood function of the LV model, the long run impact of

the permanent shock is estimated as 0.855 with an estimated standard deviation

of 0.181. The corresponding estimate from the cointegration approach (0.617, see

above) is in the range of two times the standard deviation.

In the present application we use the transformation matrix

Q =


−1 1 0

−1 0 1

1 0 0

 , Q−1 =


0 0 1

1 0 1

0 1 1

 .

According to (2.22) the impulse response function (IRF) of qt with respect to the

permanent shocks is identical to the cumulated IRF of ∆qt with respect to the

permanent shock. The IRF of ct is equal to the sum of the cumulated IRF of

ct− qt with respect to the permanent shock and the IRF of ct− qt with respect to

the the first transitory shock. The IRF of it is equal to the sum of the cumulated

IRF of ct − qt with respect to the permanent shock and the IRF of it − qt with

respect to the the second transitory shock.

From B̂ it is seen that the estimated permanent shock is proportional to

[1, 0.418,−0.3]εt. However, the parameter estimates are not significantly different

from zero. Excluding the investment innovation gives a permanent shock with the
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estimate 1.81 and a t-value of 3.56 for the coefficient attached to the consumption

innovation. From these results it is obvious that the parameter estimates in B̂

are highly correlated and a data consistent restriction can change the remaining

parameter estimates dramatically.

In all, this application demonstrates that the simple neoclassical growth model

seems to be perform well at least for the data used in King et al. (1991). The long

run response of consumption, investment and output to a permanent (technology)

shock is the same but the short run response of investment is much more cyclical

than the short run response of consumption. This is also predicted by standard

neoclassical models (e.g. Kydland and Prescott 1982).

2.8.4 The causal graph model of Swanson-Granger (1997)

In order to identify a causal structure for the innovations, Swanson and Granger

(1997) adopt a graph theoretical approach. Assume that a vector of uncorrelated

shocks ut = [u1t, . . . , unt]
′ can be found such that the innovations of the (station-

ary) VAR are arranged as ε1t = u1t ; ε2t = a2ε1t + u2t ; · · · ; εnt = anεn−1,t + unt.

Such a structure can be represented by a causal graph as

ε1t −→ ε2t −→ · · · −→ εnt

↑ ↑ ↑ ↑

u1t u2t · · · unt

(2.36)

The arrows are assumed to indicate a simple form of causal directionality (cf.

Swanson and Granger, 1997). It should be noted that this concept of causality is

different from what is known as “Granger causality”. The latter concept implies

an ordering in time so that a cause must be prior to the effect. The causal graph

approach is a way to formalize the notion of “instantaneous causality” discussed,

e.g., in Lütkepohl (1993).

The causal ordering given in (2.36) implies that E(εitεkt|εjt) = 0 for any

i < j < k. Accordingly, Swanson and Granger (1997) suggest testing the par-

tial correlation between εit and εkt conditional on εjt in order to recover the

causal ordering empirically. To motivate this concept consider the condition
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E(ε1tε3t|ε2t) = 0. From ε3t = a3ε2t+u3t and E(ε2tu3t) = 0 it follows that given ε2t

the variable ε1t does not help to “predict” ε3t. On the other hand, if a3 6= 0, then

the partial correlation between ε3t and ε2t conditional on ε1t is different from zero

and, thus, ε2t provide additional information to predict ε3t. Hence, ε2t may be

seen as a cause of ε3t. It is important to note that the causal graph ε1t → ε2t → ε3t

implies the same restriction on the conditional expectation as ε3t → ε2t → ε1t and,

therefore, the direction of the graph is not identified.

This causality concept can be represented as a structural VAR by letting

B =



1 0 0 · · · 0 0

−a2 1 0 · · · 0 0

0 −a3 1 · · · 0 0
...

. . .
...

...

0 0 0 · · · −an 1


(2.37)

and R = In. The corresponding LV representation is given by

Measurement equations: ε̃t = ξyt

System equations: ξyt = (I −B)ξyt + ut .

It is easy to see that such a structural model implies (n − 2)(n − 1)/2 over-

identifying restrictions, which can be tested empirically by comparing the value

of the log likelihood function with the corresponding value of the unrestricted

VAR using the LR test statistic. This test avoids problems of the sequential test

procedure suggested in Swanson and Granger (1997).

As an application of this approach we consider a four-variate system for the

U.S. including the log of the money base M3 (M), log of real GNP (Y ), the 3-

month LIBOR interest rate (R) and the log of the implicit GNP deflator (P ).

The data for M, Y and P are seasonally adjusted and is taken from the Main

Economic Indicator data base. The interest rate R is not seasonally adjusted and

taken from the IMF data base. All data run from 1970(i) through 1994(iv).
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Table 3.3: Tests for the cointegration rank of the reduced form

H0 max. eigenvalue crit. val. trace crit. val.

r = 3 1.473 3.962 1.473 3.962

r = 2 5.509 14.04 6.982 15.20

r = 1 33.31 20.78 40.29 29.51

r = 0 50.06 27.17 90.35 47.18

Note: “max. eigenvalue” and “trace” indicate Johansen’s LR statistics for

the cointegration rank including an unrestricted constant in VECM represen-

tation. The critical values correspond to a significance value of 0.05 and are

taken from Osterwald-Lenum (1990).

The vector of time series is modeled using a cointegrated VAR including a

vector of constants in the error correction representation. Model selection crite-

ria like AIC and tests for serial correlation of the errors suggest that a VAR(2)

model is sufficient to render white noise errors. Table 3.3 presents Johansen’s

(1991) trace and maximum eigenvalue test statistics for the cointegration rank.

The results suggest that there are two cointegration relationships among the vari-

ables. Therefore, the residuals from the estimated VECM model are used for the

structural model of the form Bε̃t = ũt, where B has the form as in (2.37).

Table 3.4 presents the results of the LR test of the over-identifying restrictions

implied by the corresponding causal graph. There exist 4! = 24 possible graphs.

However, since the direction of the graph is not identified, only 12 graphs are

considered. The “mirror graphs” yield the same values of the LR statistic, so

there is no point in reporting them. It turns out that only two causal graphs

are accepted at a significance level of 0.05. Both graphs do not correspond well

with the type of transmission mechanism of monetary policy discussed in the

literature. The graphs imply that (real) effects on output are “causally prior”

to the (nominal) effects on prices, while theory usually conjectures the reverse

ordering. Since we only intend to give an illustration of the approach suggested by

Swanson and Granger (1997), we do not attempt to reconcile this finding with the
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Table 3.4: Tests of the causal graph model

graph LR p-value graph LR p-value

M → Y → R→ P 3.32 0.34 R→M → Y → P 15.5 < 0.01

R→ Y →M → P 5.77 0.12 M → P → Y → R 15.9 < 0.01

R→ P →M → Y 10.7 0.01 Y → R→M → P 16.1 < 0.01

M → Y → P → R 11.8 0.01 M → R→ Y → P 17.1 < 0.01

Y →M → R→ P 12.0 < 0.01 M → R→ P → Y 22.1 < 0.01

M → P → R→ Y 12.3 < 0.01 R→M → P → Y 24.5 < 0.01

Note: The entries of this table present the values of the LR statistic of the over-

identifying restrictions of the Swanson-Granger model. Under the null hypothesis the

statistic is χ2 distributed with three degrees of freedom.

counterfactual evidence using alternative methods. A more thorough discussion

of the merits and pitfalls of this new approach is left for future research.

2.9 Problems with the SVAR approach

Identification problems. In a critique of Blanchard and Quah (1989), Lippi

and Reichlin (1993) point out that a stationary VAR has an infinite manifold

of different MA representations. Among those, however, only one (the Wold or

fundamental representation) has the property that the determinant of the MA

polynomial has all its roots on or outside the unit circle. There are, however,

non-fundamental representations with roots inside the unit circle. The associated

white noise errors are linear combinations of current, past and future values of

yt. Lippi and Reichlin (1993) argue that such non-fundamental representations

usually cannot be ruled out a priori. Specifically, nonfundamental representations

can occur if the information space of the economic agents is different from the

information space of the econometrician.

In a reply to this critique Blanchard and Quah (1993) admit that the limi-

tation to fundamental representations is somewhat arbitrary but that it cannot
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be considered less plausible than alternative non-fundamental representations. In

fact, in most cases it is not possible to select the “correct” representation on

empirical grounds and it seems thus natural to select the most convenient one.

The Blanchard–Quah methodology formally decompose a set of time series into

certain orthogonal shocks with some prespecified properties. Whether such quan-

tities have the attached economic meaning of representing demand and supply

shifts cannot be decided empirically. It merely provides one admissible inter-

pretation of the data which is generally not refutable as long as just identified

structures are considered.

Another important problem is that even if one confines oneself to the Wold

representation, the structural model need not be unique. The Blanchard-Quah

model provides a good example for illustrating the problems involved by the iden-

tification of structural VARs. The reduced form is a bivariate VAR modeling the

unemployment rate and output growth and the two structural errors are inter-

preted as supply and demand shocks, where the effect of the demand shocks on

the output measure is assumed to vanish in the long run (see Section 3.8.2).

Let rij, σij, cij denote the (i, j) elements of R, Σ = RR′ and C = Π−1. Then

the set of restrictions for the structural model is:

r2
11 + r2

12 = σ11 (2.38)

r2
21 + r2

22 = σ22 (2.39)

r21r11 + r22r12 = σ12 (2.40)

c11r12 + c12r22 = 0 . (2.41)

It is easily seen that these restrictions identify the absolute value of the parameters

but are not sufficient to determine the sign of the parameter uniquely. Specifically,

if the matrix R(1) obeys the restrictions then also the matrix R(2) = −R(1) and

R(3) =

(
−r11 −r12

r21 r22

)
, R(4) =

(
r11 r12

−r21 −r22

)
,

R(5) =

(
−r11 r12

−r21 r22

)
, R(6) =

(
r11 −r12

r21 −r22

)
,

fulfill the above constraints. In this simple example it is obvious that a unique
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representation is obtained if there are additional assumptions about the signs of

the diagonal elements of R. Indeed, this is the case if the Choleski decomposition

is applied for computing the structural parameters from the reduced form as in

Blanchard and Quah (1989). In models using R = I, identification is usually

achieved by setting the diagonal elements of B equal to one.

Waggoner and Zha (1997) show that the normalization used to identify the

shocks is not only important for the interpretation of the model but also affects

statistical inference in small samples. A similar point is made by Pagan and

Robertson (1998) by using a different perspective. To illustrate the problem, we

follow these authors and consider the model suggested by Gordon and Leeper

(1994):

MS : mt = b12it + γ′1x1t + ust

MD : it = b21mt + γ′2x2t + udt ,

where ust and udt represent money supply and money demand shocks, respectively.

The vectors x1t and x2t comprise further (exogenous) variables that are used

to identify the two equations. These variables are, however, inessential for our

reasoning and so we drop these variables for the ease of exposition.

The contemporary impulse responses are obtained as[
1 b12

b21 1

]−1

=
1

1− b21b12

[
1 −b12

−b21 1

]
. (2.42)

Economic theory implies that b12 > 0 and b21 < 0 so that b21b12 is negative. In

finite samples there is a positive probability that for the estimates b̂21b̂12 > 1,

in particular, if b21 and b12 are estimated using “weak instruments” (Pagan and

Robertson 1998). It follows that in finite samples there may be a substantial

probability that the impulse responses swich their sign. The resulting distribution

of the impulse responses therefore tends to have two different modes and the

normal distribution yields a poor approximation to the actual distribution. Pagan

and Robertson (1998) show that this problem is in fact relevant in empirical

applications. Waggoner and Zha (1997) resolve the problem by using a data

dependent normalization rule (the “ML distance normalization”). It is important
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to note, however, that the problem disappears as T tends to infinity, because the

denominator in (2.42) converges in probability to a positive constant under the

maintained assumption.

Another identification problem arises when using long run restrictions. Faust

and Leeper (1997) show that additional assumptions on the short run dynamics are

required to enable reliable inference. An intuitive explanation is that for a VAR

with an infinite lag order, a small change of the model parameters has a cumulative

effect on the long run responses of the shocks. An obvious remedy of this problem

is to assume that the VAR order is finite which is equivalent to the assumption

that all higher autoregressive coefficients are equal to zero. Alternatively, one may

assume that not only the long run effect is zero but also the responses beyond

a lag of, say, 40 periods vanish (Faust and Leaper 1997, Sec. 2.2). Although

this critique is certainly important from a theoretical perspective, it is difficult to

assess the relevance for empirical practice. The message for practical work, which

can be concluded from such kind of reasoning, is that it may be hazardous to rely

on long run restrictions, when identifying the model, in particular, if the lag order

of the VAR is large.

Finally it is interesting to consider the problem, that the dimension of the

empirical VAR is smaller than the underlying dynamic system. In this case the

estimated shocks can only be estimated in an aggregated form. The crucial ques-

tion is, whether the aggregated shocks have the same properties than the original

shocks. In the Blanchard-Quah model the demand shock are identified as the tran-

sitory shock, whereas the supply shock has a permanent effect on output. Now,

assume that there are m1 > 1 orthogonal demand shocks and m2 > 1 orthogo-

nal supply shocks with the same long run properties. The interesting question

is, whether it is possible to identify a “joint” aggregated demand (supply) shock

as a linear combination of the original demand (supply) shocks only, or whether

the aggregated system mixes up both type of shocks. Faust and Leeper (1997)

derive conditions that ensure that the aggregated demand and supply shock can

be suitably separated. However, without knowledge of the complete dynamical

process, the condition cannot be verified. Faust and Leeper (1997) present in-
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direct evidence that the condition for an appropriate separation of demand and

supply shocks is violated.

Robustness. In a number of recent papers, the SVAR approach is criticized

for its lack of robustness under different structural assumptions. For example,

Cochrane (1998) finds that output responses vary a lot as one changes identifying

assumptions. Rudebusch (1998, p. 925) concludes the comparison of the shocks

from three different SVAR specifications:

“Obviously, these three series give very different interpretations of the

history of monetary policy surprises, and in several periods, the VAR

series describe a stance for monetary policy that is greatly at variance

with historical accounts.”

As a second example, Cooley and Dwyer (1998) summarize their comparison of

different SVAR models:

“The findings of this paper suggest that conclusions about the impor-

tance of technology and other shocks based on simple SVARs are cer-

tainly not invariant to the identifying assumptions and may not be very

reliable as vehicles for identifying the relative importance of shocks.”

Needless to say that this danger is always present, when structural economet-

ric models are based on prior information derived from economic theory. There

seems to be a consensus, however, that SVAR models are particularly sensitive

to alternative identifying assumptions and that conclusions from an SVAR model

are therefore “unreliable” and “fragile”.5 In a similar vein, it is claimed that eco-

nomic theory is not informative enough to arrive at a unique SVAR specification

and, hence, the researcher is free to choose among a large number of possible

specifications. To quote Uhlig (1997):

“There is a danger here that we just get out what we have stuck in,

albeit a bit more polished and with numbers attached ...”

5It is interesting to note that the same arguments were put forward by Leamer (1983) to

criticize the simultaneous equation approach.



98 CHAPTER 2. STRUCTURAL VARS

To overcome this problem, different approaches were suggested to account for the

uncertainty of model specification. King and Watson (1997) compute the impulse

responses for all models with plausible identification assumptions. The resulting

range of impulse response functions represents the possible effects on the variable

of interest. Of course, whenever the resulting range of impulse responses is wide,

little is learned from the estimation of SVAR models.

A similar approach is suggested by Uhlig (1997) and Faust (1998). They

assume that economic theory is at best able to make predictions on the sign

of the impulse response at various lag horizons. Uhlig (1997) uses a penalized

likelihood approach that introduces a penalty term implying a sharp decrease

of the maximization criterion whenever the inequality conditions on the impulse

response functions are violated. Faust (1998) considers the range of models that

results from a rotation of the system and satisfies the sign restrictions on the

impulse responses. Within this range of models he considers the worst case and

therefore draws a very cautious conclusion about the effect on the shocks.

A closely related approach employs a Bayesian methodology. Sims and Zha

(1998) impose prior information on the autoregressive parameters, whereas Dwyer

(1998) and Gordon and Boccanfuso (1998) directly specify prior distributions

on the plausible shape of the impulse response functions. The latter approach

allows the imposition of inequality restrictions on the impulse response functions

by assigning zero weights to implausible values of the prior distributions of the

impulse responses.

Uhlig (1997) adopts a related Bayesian approach. He uses Litterman’s prior

distribution on the parameters of the VAR model and computes an estimate of

the structural parameters for each realization of the artificial model, simulated

by using the posterior distribution of the VAR parameters. The parameter values

which do not satisfy the structural assumptions (for example that a positive shock

in interest rates leads to a decreases in the monetary base) are dropped and

confidence intervals can be computed from the set of valid impulse responses

among all simulated realizations.

These alternative approaches are suggested to overcome the lack of robustness
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in the structural VAR analysis. It is however not clear, whether it is realistic

to claim for such kind of robustness. In general, prior information is necessary

because economic data are too uninformative about the underlying structure.

Therefore, it is expected that prior assumptions are important for the analysis

of economic data and, thus, different assumptions may produce different results.

Similarly, we cannot hope to be able to refute economic theories definitely by

using a structural approach (cf. Breitung et al. 1993). Therefore, these methods

should be seen as a more or less useful device to recover structures behind the

data. In other words, economic data is used to quantify prior beliefs about the

economic system rather then to decide between alternative theories.
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Chapter 3

Problems of temporal aggregation

This chapter addresses the question, how temporal aggregation affects structural

inference. Indeed this is an important issue, since in practice the frequency of

observation is usually different from what may be called the natural frequency of

the underlying time series. For example, at financial markets, agents react very

rapidly to news and, thus, the natural frequency of a model that describes the

behaviour of financial agents is likely to be minutes rather the hours or days.

However, if the natural frequency of the underlying process is high relative to

the observed frequency of the data, temporal aggregation may completely change

the structural relations in the system. It is therefore interesting to investigate the

effects of temporal aggregation on structural inference.

To do so, it is assumed that the data are generated by a discrete stochastic

process with some causal ordering as suggested by Granger (1969). Given the

causal structure of the data generating process, what kind of structural model

results when the data is temporally aggregated? Does the observed structure

correspond to the underlying causal relationship among the variables or is the

observed structure different from the original causal structure?

In this chapter it is argued that SVAR models as considered in Chapter 3 can

be motivated with respect to the underlying causal ordering by using Granger’s

original definition of a causal process. Conditions are given to ensure that suffi-

ciently aggregated data are able to reflect the causal structure in the covariance

101
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matrix of the VAR innovations. It does not come as a surprise, however, that

temporal aggregation implies a loss of information. Specifically, the contempo-

raneous correlation of the innovations cannot identify the direction of causality.

However, conditions can be given that rule out “spurious instantaneous causality”

and, thus, we are able to verify that the observed structure is not an artifact of

the underlying aggregation process.

Furthermore, I address the question what happens with a particular structure

that can be represented by a SVAR model if the data is temporally aggregated.

It is shown that in general the structural representation of the VAR may change

substantially with the aggregation level of the data. For an empirical example

I find that the general shape of the impulse responses does not change a lot by

aggregating the data. However, temporal aggregation has a substantial effect on

the magnitude of impulse responses.

There is already a rich literature that analyses the effects of temporal aggrega-

tion in a multiple time series framework. An early example is Quenouille (1957),

where the temporal aggregation of ARMA processes is studied. Amemiya and Wu

(1972), and Brewer (1973) refine and generalize Quenouille’s result by including

exogenous variables. Zellner and Montmarquette (1971) discuss the effects of tem-

poral aggregation on estimation and testing. Engle (1969) and Wei (1978) analyze

the effects of temporal aggregation on parameter estimation in a distributed lag

model. More recently, Weiss (1984), Stram and Wei (1986), Lütkepohl (1987), and

Marcellino (1999) provide detailed studies of the effects of temporal aggregation

in a VARMA framework.

The results of these studies can be summarized by quoting Tiao (1999): “So

the causality issue is muddled once the data are aggregated. The problem is that

if the data are observed at intervals when the dynamics are not working properly,

then we may not get any kind of causality.” In this chapter it is argued that this

statement is also true for inference based on structural VARs.

In Section 4.1 I discuss the concept of Granger causality under temporal ag-

gregation. Some useful asymptotic results for large aggregation intervals are pre-

sented in Section 4.2. The consequences for causal inference are discussed in
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Section 4.3 and the relevance in finite aggregation intervals is studied in Section

4.4 by using Monte Carlo simulations. In Section 4.5 presents an empirical appli-

cation where the effects of temporal aggregation are studied by using US data of

unemployment and inflation.

3.1 Granger causality

Following Granger (1969), consider a conditional distribution with respect to two

information sets which are available at time t, say It and I∗t = {It, xt, xt−1, . . .},
where xt denotes a (possibly causal) variable. As in Section 2.4, the variable xt

is defined to be Granger causal for the variable yt if there exist an h ∈ {1, 2, . . .}
such that

E(yt+h|It) 6= E(yt+h|I∗t ) . (3.1)

If It = {yt, yt−1, . . .}, that is, when causality is investigated in a bivariate system,

it is sufficient to consider h = 1 (e.g. Lütkepohl 1999).

An important problem with this definition is the choice of the sampling in-

terval. It is possible that Granger causality is observed when data is measured

at a daily basis, say, but at a monthly or quarterly frequency the causality may

disappear. Thus, for inference on causality it is important that the data has the

“correct” sampling frequency. There are two alternative approaches to deal with

this problem. First, it may be assumed that the underlying time series has a con-

tinuous time Wold representation given by y(t) =
∫
f(τ)ε(t− τ)dτ , where f(τ) is

a continuous vector function and ε(t) is continuous white noise (e.g. Christiano

and Eichenbaum (1987), Renault and Szafarz (1991)). In this framework the data

should be observed at a (approximately) continuous basis to avoid misleading

inference on causality. However, with the exception of some financial variables,

economic data are usually observed at a monthly or quarterly frequency, so the

relevance of such a continuous time framework is limited in practice.

An alternative approach is to assume that the data are generated by a discrete

ARIMA process sampled at some given frequency (e.g. Tiao 1972, Lütkepohl

1987, Marcellino 1999). When investigating causality it seems quite obvious how
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to choose the natural frequency. If we assume that cause and effect are ordered

in time so that the causal event is observed in advance of the effect then the

sampling frequency should be sufficient to distinguish the cause and the effect.

Thus, at the natural frequency there should be no contemporaneous relationship

between the cause and effect (see also Granger 1988). On the other hand, if

the process is aggregated such that the cause and effect is (partly) observed at

the same time, then the causal relationship implies a contemporary relationship

between the variables.

It therefore seems useful to link the concept of Granger causality at the natural

frequency with contemporaneous correlation for aggregated processes. Such a

causality concept is provided by the following definition.

DEFINITION 3.1 Let ξt = [xt, yt, z
′
t]
′ be an n × 1 vector of time series and

zt is an (n − 2) × 1 subvector. Further, define the information sets as It =

{zt, yt, zt−1, yt−1, . . .} and I+
t = {ξt, ξt−1, . . .} = {It, xt, xt−1, . . .}. Then xt is said

to be a cause of yt with respect to the underlying sampling frequency if

E(yt+1|xt+1, zt+1, I+
t ) 6= E(yt+1|zt+1, It).

This definition combines traditional Granger causality with instantaneous causal-

ity as used in Lütkepohl (1991, p. 40f), for example. In a vector autoregressive

system, causality according to Definition 3.1 can be tested by running the regres-

sion

yt =

p∑
i=1

αiyt−j +

p∑
j=0

βjxt−j +

p∑
j=0

γ′jzt−j + ut

and testing the hypothesis β0 = β1 = · · · = βp.

If the process is observed at the natural sampling frequency, then there is no

contemporaneous relationship between xt and yt conditional on zt and the past

of the process. Accordingly, we have β0 = 0 at the natural frequency and our

definition of causality is equivalent to the traditional (Granger) causality. If, on

the other hand, the process is multivariate white noise, then xt is an “instanta-

neous cause” of yt whenever ρ(yt, xt|zt) 6= 0, where ρ(a, b|c) denotes the partial

correlation between a and b conditional on c.
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3.2 Asymptotics

In order to examine the relationship between contemporaneous correlation and

Granger causality in the presence of temporally aggregated data, two different

procedures are considered (e.g. see Lütkepohl 1987). For flow data, time series

values are cumulated (or averaged) at k successive time periods

ȳt = k−1/2

k−1∑
j=0

yt−j ,

where the factor k−1/2 is introduced to obtain a limiting process with a finite

variance. The aggregated series results from applying skip-sampling of the form

ȲN = ȳkN , N = 1, 2, . . . .

Stock data are aggregated by directly applying the skip-sampling scheme to the

data, so that YN = ykN for N = 1, 2, . . ..

It is known (see, e.g., Lütkepohl 1987 and Marcellino 1999) that if the original

process is an ARMA process then the aggregated process also has an ARMA

representation. In general, zero restrictions on the autoregressive representation

of the original process are lost when aggregating the process, so that “spurious

causality” may occur in aggregated time series.

In order to obtain some general results on causality in aggregated time series

we consider an asymptotic theory for large aggregation intervals k. The following

theorem summarizes the results for stationary variables.

THEOREM 3.1 Let yt be generated by an n dimensional linear process yt =

C0εt + C1εt−1 + C2εt−2 + · · ·, where εt is white noise, C0 = In, E(εtε
′
t) = Ω, and

yt is one-summable such that
∑∞

j=0 j||Cj|| <∞. As k →∞, the processes for the

aggregated vectors YN and ȲN have the properties:

stock variables:

(i) lim
k→∞

E(YNY
′
N) =

∞∑
j=0

CjΩC
′
j

(ii) lim
k→∞

E(YNY
′
N+j) = 0 for j ≥ 1,
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flow variables:

(iii) lim
k→∞

E(ȲN Ȳ
′
N) = 2πfy(0)

(iv) lim
k→∞

k · E(ȲN Ȳ
′
N+1) =

∞∑
j=1

(
j∑
i=0

Ci

)
Ω

(
∞∑

i=j+1

Ci

)′
(v) lim

k→∞
k · E(ȲN Ȳ

′
N+j) = 0 for j ≥ 2,

where fy(ω) denotes the spectral density matrix of yt at frequency ω.

Proof: (i) From YN = ykN and assuming stationarity we have

E(YNY
′
N) = E(yty

′
t) =

∞∑
i=0

CiΩC
′
i .

(ii) Since the process is assumed to be ergodic we have

lim
k→∞

E(YNY
′
N+j) = lim

k→∞
E(ykNy

′
kN+jk) = 0

for all j ≥ 1.

(iii) The vector of aggregated flow variables is given by

ȲN = k−1/2

k−1∑
j=0

ykN−j

and therefore ȲN behaves as a (normalized) vector partial sum. For partial sums

it is known that

lim
k→∞

E(ȲN Ȳ
′
N) = Ω + Γ + Γ′,

where Γ =
∞∑
j=1

E(y1y
′
1+j). In the frequency domain this expression can be repre-

sented as

2πfy(0) =

(
∞∑
j=0

Cj

)
Ω

(
∞∑
j=0

C ′j

)
.
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(iv) Let

k1/2ȲN = (1 + L+ L2 + Lk−1)C(L)εt

≡ D(L)εt,

where

D(L) = Im +D1L+D2L
2 + · · ·

and

Dj =

min(j,k−1)∑
i=0

Cj−i .

It is convenient to decompose ȲN as

k1/2ȲN = D0εt +Dkεt−k +D2kεt−2k + · · ·

+D1εt−1 +Dk+1εt−k−1 +D2k+1εt−2k−1 + · · ·
...

+Dk−1εt−k+1 +D2k−1εt−2k+1 +D3k−1εt−3k+1 + · · ·

≡ u0t + · · ·+ uk−1,t ,

where

ujt = Djεt−j +Dj+kεt−j−k + · · ·

Note that E(uitu
′
jt) = 0 for i 6= j.

From

k1/2ȲN = u0t + · · ·+ uk−1,t

k1/2ȲN+1 = u0,t+k + · · ·+ uk−1,t+k

k1/2ȲN+2 = u0,t+2k + · · ·+ uk−1,t+2k

we obtain:

k · E(ȲN Ȳ
′
N+1) =

k−1∑
j=0

E(ujtu
′
j,t+k).

Consider

E(u0tu
′
0,t+k) = D0ΩD′k +DkΩD

′
2k + · · · .
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For a summable sequence Ci we have

lim
k→∞
|D2k| = lim

k→∞
|Ck+1 + Ck+2 + · · ·+ C2k| = 0

so that

lim
k→∞

E(u0tu
′
0,t+k) = D0ΩD′k

= Ω(C1 + C2 + · · ·+ Ck)
′ .

Similarly we get:

lim
k→∞

E(u1tu
′
1,t+k) = D1ΩD′k+1

= (In + C1)Ω(C2 + C3 + · · ·+ Ck+1)′

lim
k→∞

E(uk−1,tu
′
k−1,t−k) = (C1 + · · ·+ Ck−1)Ω(Ck + Ck+1 + · · ·+ C2k−1)′.

Adding these expressions gives the desired result.

It remains to show that
∞∑
j=0

(
j∑
i=0

Ci)Ω(
∞∑

i=j+1

Ci)
′ is bounded.

This follows from∥∥∥∥∥
∞∑
j=0

(
j∑
i=0

Ci

)
Ω

(
∞∑

i=j+1

C ′i

)∥∥∥∥∥ ≤
∞∑
j=0

∥∥∥∥∥
j∑
i=0

Ci

∥∥∥∥∥ ‖Ω‖
∞∑

i=j+1

j ‖Ci‖ ,

which is finite by assumption.

Consider

E(u0tu
′
0,t−pk) = D0ΩD′pk +DkΩD(p+1)k + · · · .

Since

lim
k→∞

D(p+j)k = 0 for p ≥ 2 and j = 0, 1, . . .

it follows that the autocovariances disappear for p ≥ 2. �

According to Theorem 3.1, it turns out that for k → ∞, the aggregated

processes are asymptotically white noise. Of course this result is not particularly

surprising, since it is intuitively plausible that with increasing sampling interval,

short run dynamics disappear. Furthermore, for moderate k it is expected that

aggregated flow variables are well approximated by a vector MA(1) process. The
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reason for this is that according to (iv), the first order autocorrelation is O(k−1),

while (v) implies that higher order autocorrelations are o(k−1).

Next, assume that yt is a vector of integrated variables such that yt is difference

stationary.

THEOREM 3.2 Let ∆yt be generated by an n dimensional linear process ∆yt =

εt+C1εt−1 +C2εt−2 + · · ·, where it is assumed that E(εtε
′
t) = Ω,

∑∞
j=1 j||Cj|| <∞

and the matrix C̄ =
∑∞

j=0 Cj has full rank. As k → ∞, the processes for the

aggregated vectors YN and ȲN are characterized by:

stock variables:

(i) lim
k→∞

1

k
E(YN − YN−1)(YN − YN−1)′ = 2πf∆y(0)

(ii) lim
k→∞

1

k
E(YN − YN−1)(YN+j − YN+j−1)′ = 0 for j ≥ 1,

flow variables:

(iii) lim
k→∞

1

k2
E(ȲN − ȲN−1)(Ȳ ′N − ȲN−1)′ =

4π

3
f∆y(0)

(iv) lim
k→∞

1

k2
E(ȲN − ȲN−1)(ȲN+1 − ȲN)′ =

π

3
f∆y(0)

(v) lim
k→∞

1

k2
E(ȲN − ȲN−1)(ȲN+j − YN+j−1)′ = 0 for j ≥ 2,

where f∆y(ω) denotes the spectral density matrix of ∆yt at frequency ω.

Proof: The difference

YN − YN−1 = ykN − ykN−k =
k∑
i=1

∆y(k−1)N+i

is a partial sums process with asymptotic covariance matrix

lim
k→∞

k−1E(YN − YN−1)(YN − YN−1)′ = Ω + Γ + Γ′

= 2πf∆y(0) .

(ii) Define the partial sum S1 =
k∑
i=1

ui and S2 =
2k∑

i=k+1

ui, where ut is stationary

with covariance function Γj. The covariance between S1 and S2 is given by

E(S1S
′
2) = Γ1 + 2Γ2 + · · ·+ kΓk + (k − 1)Γk+1 + · · ·+ Γ2k−1 .
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For
∑∞

j=1 j||Γj|| <∞ we have

||E(S1S
′
2)|| < ||

∞∑
j=1

jΓj||

≤
∞∑
j=1

j||Γj|| < ∞

and, thus, by letting S1 = YN − YN−1 and S2 = YN+1 − YN it follows that

E(YN − YN−1)(YN+1 − YN) is O(1). A similar result is obtained for higher or-

der autocovariances.

(iii) Let

k(ȲN − ȲN−1) = ykN − ykN−k + ykN−1 − ykN−k−1 + · · ·+ ykN−k+1 − ykN−2k+1

= Sk(L)∆ykN + Sk(L)∆ykN−1 + · · ·+ Sk(L)∆ykN−k+1

= Sk(L)2∆ykN ,

where

Sk(L) = 1 + L+ L2 + · · ·+ Lk−1

and

Sk(L)2 = 1 + 2L+ 3L2 + · · ·+ kLk−1 + (k − 1)Lk + · · ·+ L2k−2

= w0 + w1L+ w2L+ · · ·+ w2k−2L
2k−2

is a symmetric filter with triangular weights.

The covariance matrix is given by

k · E(ȲN − ȲN−1)(ȲN − ȲN−1)′ = E

(
2k−2∑
i=0

wi∆ykN−i

)(
2k−2∑
i=0

wi∆y
′
kN−i

)

=
2k−2∑

p=−2k+2

2k−1−|p|∑
i=1

wiwi+|p|Γp ,

where Γp = E(∆yt∆y
′
t−p).

Consider the odd values p = ±1,±3,±5, . . .. We have

2k−1−|p|∑
i=1

wiwi+|p| = 2

k−(|p|+1)/2∑
i=1

i(i+ p)
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and as k →∞

lim
k→∞

k−|(p+1)/2|∑
i=1

2(i2 − ip) = 2(
∞∑
i=1

i2)− 2p(
∞∑
i=1

i)

=
2

3
k3 +O(k2).

For even values p = 0,±2,±4, . . . we have

2k−1−|p|∑
i=1

wiwi+|p| = (k − |p|/2)2 + 2

k−|p|/2−1∑
i=1

i(i+ p)

and, thus,

lim
k→∞

k−|(p+1)/2|∑
i=1

2(i2 − ip) =
2

3
k3 +O(k2) .

Using these results yields

E(ȲN − ȲN−1)(ȲN − ȲN−1)′ =
2

3
k2[Γ0 +

∞∑
j=1

(Γj + Γ′j)] + o(k2)

=
4π

3
k2f∆y(0) + o(k2).

(iv) The first order autocovariance matrix is given by

k · E(ȲN − ȲN−1)(ȲN+1 − ȲN)′ =
2k−2∑

p=−2k+2

2k−1−|p|∑
i=1

wi+kwi+k+|p|Γp

where Γp = E(∆yt∆y
′
t−p).

For an odd value of p we have

lim
k→∞

2k−1−|p|∑
i=1

wi+kwi+k+|p| =
∞∑
i=1

(k − i)(i+ p) +O(k2)

= k

(
∞∑
i=1

i

)
−

(
∞∑
i=1

i2

)
+ k2p− p

(
∞∑
i=1

i

)
+O(k2)

=
1

6
k3 +O(k2) .

It follows that

E(ȲN − ȲN−1)(ȲN+1 − ȲN)′ =
1

6
k2

(
Γ0 +

∞∑
j=1

Γj + Γ′j

)
+ o(k2)

=
π

3
k2f∆y(0) + o(k2).
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(v) To simplify the proof we assume that the degree of the polynomial C(L) =

I + C1L + · · · + CqL
q is finite, that is, ∆yt has a vector MA(q) representation

with q < k. Since k → ∞ the proof is valid for q → ∞, as well. Of course, the

assumption q < k imposes the restriction that q does not grow at a faster rate

than k.

The second order autocovariance matrix is given by

k · E(ȲN − ȲN−1)(ȲN+2 − ȲN+1)′ = E

(
2k−2∑
i=0

wi∆ykN−i

)(
2k−2∑
i=0

wi∆y
′
kN+2k−i

)

=
k∑
p=1

|p|∑
i=1

wiw2k−i−|p|+1(Γp + Γ′p) .

There exists a constant c <∞ such that for all p

|p|∑
i=1

wiw2k−i−|p|+1 =

p∑
i=1

i(p− i+ 1) < cp3 .

Thus, it follows that

k∑
p=1

|p|∑
i=1

wiw2k−i−|p|+1|Γp + Γ′p| <
k∑
p=1

2cp3|Γp|

< 2ck2

k∑
p=1

p|Γp|,

where we have used p < k. From
∑k

p=1 p|Γp| <∞ it finally follows that

lim
k→∞

1

k2
E(ȲN − ȲN−1)(ȲN+2 − YN+1)′ = 0 .

Similarly it can be shown that the higher order autocorrelations converge to zero

as well. �

From Theorem 3.2 it follows that as k tends to infinity, the vector of aggregated

flow variables has the vector MA(1) representation:

k−1(ȲN − ȲN−1) = UN + (2−
√

3)UN−1, (3.2)

where

E(UNU
′
N) =

2π

1 + (2−
√

3)2
f∆y(0) .
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Note that for the special case where n = 1 (a single time series), our results

correspond to the result of Working (1960) who shows that the first order auto-

correlation of the increments from an aggregated random walk is 0.25.

The asymptotic results of Theorems 3.1 and 3.2 imply that for difference sta-

tionary stock variables as well as for stationary and difference stationary flow

variables the contemporaneous relationship of the limiting process reflects the

causal relationship at frequency zero in the sense of Geweke (1986) and Granger

and Lin (1995).

It is interesting to consider the case that yt is cointegrated. To discuss the

effects of aggregating a set of cointegrated variables it is useful to define the ma-

trix Q = [β, β⊥]′, where β is an n × r matrix of cointegration vectors such that

zt = β′yt is stationary. The matrix β⊥ is a n× (n− r) orthogonal complement of

β. The linear combinations wt = β′⊥yt are assumed to be I(1). From Theorem 3.2

(iii) it follows that Z̄N − Z̄N−1 is Op(1) whereas W̄N − W̄N−1 is Op(k
1/2). Hence,

as the aggregation interval k tends to infinity, the variance of the “nonstation-

ary linear combinations” dominates the variance of the “error correction terms”.

Consequently,

1

k3/2
(ȲN − ȲN−1) =

1

k3/2
Q−1

[
Z̄N − Z̄N−1

W̄N − W̄N−1

]
=

1

k3/2
Q−1

2 (W̄N − W̄N−1) +Op(k
−1)

where Q−1
2 is the lower n× (n− r) block of Q−1. This implies that the differences

of ȲN possess a singular distribution as k tends to infinity. It is important to note

that the limiting processes of the aggregated variables have a singular spectral

density matrix for all frequencies 0 ≤ ω ≤ π, while the spectral density matrix of

yt is singular at ω = 0 only. In other words, the limiting behavior of the aggregated

time series is dominated by the stochastic trends and, thus, the standardized

variance of the error correction terms tends to zero. Since this does not seem

to be a relevant feature of observed time series, the aggregation of cointegrated

variables is excluded from the subsequent considerations.
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3.3 Contemporaneous causality

Using the causality definition given in Section 4.2, I am able to consider the

relationship between Granger causality at the natural frequency (k = 1) and con-

temporaneous causality in the limiting process (k → ∞). As mentioned above,

this comparison is of interest as it is unlikely that any given vector of time series

will be observed with a time scale which allows an unambiguous ordering of cause

and effect in time. Thus, it is helpful to know in which situation contempora-

neous causality corresponds to Granger causality and whether it is possible that

“spurious causality” results from the aggregation process.

Spurious causality between two variables xt and yt occurs when the variables

do not possess a causal relationship at the natural frequency but for the aggregated

variables we find ρ(XN , YN |ZN) 6= 0. In this case, the causality in the aggregated

process is obviously due to the aggregation procedure. For the practical appli-

cation of a concept of causality it is therefore important to have conditions that

rules out such kind of spurious causality. The following theorem gives sufficient

conditions for non-causality between two aggregated variables.

THEOREM 3.3 Let ξt = [xt, yt, z
′
t]
′, where zt is a (n − 2) × 1 vector. Assume

that either:

(i) ξt is a vector of stationary flow variables, or

(ii) ξt is a vector of difference stationary flow variables, or

(iii) ξt is a vector of difference stationary stock variables.

If there is no Granger causality between xt and yt and

(a) xt →/ zj,t or (b) yt →/ zj,t for all j = 1, . . . , n− 2,

where zj,t is the j′th element of zt, then, as k → ∞, we have for the partial

correlations of the aggregated variables that:

for case (i) ρ(X̄N , ȲN |Z̄N) = 0

for case (ii) ρ(∆X̄N ,∆ȲN |∆Z̄N) = 0

for case (iii) ρ(∆XN ,∆YN |∆ZN) = 0 .
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Proof: For convenience, we confine ourselves to a trivariate VAR(p) process.

The proof can easily be generalized to systems with n > 3.

First consider a VAR process obeying the conditions:

xt →/ yt

yt →/ xt

(a) xt →/ zt,

that is, there is no causality between y1,t and y2,t and condition (a) is satisfied.

From the Theorems 3.1 and 3.2 we know that the limiting processes for the cases

(i) – (iii) are white noise with a covariance matrix proportional to the spectral

density matrix of the original process. Thus, the limiting process for case (i), for

example, has a representation of the form:

(
∞∑
j=0

Cj

)−1


X̄N

ȲN

Z̄N

 =


U1,N

U2,N

U3,N


where E(UNU

′
N) = Ω. A similar representation exists for the cases (ii) and (iii).

We therefore confine ourselves to case (i). The proof for case (ii) and (iii) is

straightforward.

Since we assume that the MA representation is invertible there exists an au-

toregressive representation with autoregressive polynomial

In − A1L− A2L
2 − · · · =

(
∞∑
j=0

CjL
j

)−1

and thus the limiting process can be written as
X̄N

ȲN

Z̄N

 = Ā


X̄N

ȲN

Z̄N

+


U1,N

U2,N

U3,N

 ,

where

Ā =
∞∑
j=1

Aj =


ā11 0 ā13

0 ā22 ā23

0 ā32 ā33

 .
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The zero restrictions in the matrix Ā result from the assumptions on the causal

relationship between the variables. Accordingly, we find

(1− ā11)X̄N = ā13Z̄N + U1,N

Since ρ(ȲN , Z̄N |Z̄N) = 0 and ρ(ȲN , U3,N |Z̄N) = 0 it immediately follows that

ρ(X̄N , ȲN |Z̄N) = 0.

Second, consider the condition (b) yt →/ zt instead of (a) xt →/ zt. In this case

the limiting process can be represented as
X̄N

ȲN

Z̄N

 =


ā11 0 0

0 ā22 ā23

ā31 ā32 ā33



X̄N

ȲN

Z̄N

+


U1,N

U2,N

U3,N


This gives:

(1− ā22)ȲN = ā23ZN + U2,N

(1− ā22)X̄NYN = ā23XNZN +XNU2,N

Since ρ(X̄N , Z̄N |Z̄N) = 0 and ρ(X̄N , U2,N |Z̄N) = 0 it follows that ρ(X̄N , ȲN |Z̄N) =

0.

To generalize the proof to the case k > 3, we let Z̄N be a (n− 2)-dimensional

vector. The reasoning of the proof applies to this case in a straightforward manner.

�

Theorem 3.3 gives sufficient conditions for ruling out spurious contempora-

neous causality. If conditions (a) or (b) are violated it may be the case that

there is contemporaneous causality between aggregated variables, although there

is no Granger causality at the original time scale. This is the case of spurious

contemporaneous causality.

Necessary and sufficient conditions for ruling out spurious contemporaneous

causality in aggregated time series can be derived from the relationship between

the original process at k = 1 and the limiting process for k →∞. Unfortunately,

such conditions are nonlinear and depend on the precise parameter values of the

process describing yt. Since these parameter values are usually unknown and
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cannot be estimated without observing the process at its natural frequency, the

practical value of the necessary and sufficient conditions is quite limited.

If xt → yt and yt → xt we say that there is feedback causality between xt and

yt. An important consequence of Theorem 3.3 can be derived for the case that

there is no feedback causality among the variables.

COROLLARY 3.1 For the cases (i) – (iii) of Theorem 3.3 and under the as-

sumption that there is no feedback causality among the variables it follows that,

as k → ∞, there is no spurious causality among the aggregated variables of the

system.

Whenever there is no feedback Granger causality, the variables of the system can

be arranged such that one of the conditions (a) and (b) in Theorem 3.3 is satisfied.

This rules out the case of spurious contemporary causality.

Another (less trivial) consequence of Theorem 3.3 can be derived for a trivari-

ate system. Following Dufour and Renault (1998, Definition 2.2) and Lütkepohl

and Burda (1997) we say that xt does not cause yt at horizon h if

E(yt+h|It) = E(yt+h|I+
t ), (3.3)

where It and I+
t are the same information sets as in (3.1). Obviously, the usual

definition of Granger causality given in (3.1) is a special case with h = 1. If xt

does not cause yt at any horizon we write xt →/ ∞yt. For a trivariate system the

following result holds.

COROLLARY 3.2 Let ξt = [xt, yt, zt]
′ be a stationary or the differences of a

difference stationary 3×1 vector with an invertible MA representation. If yt →/ ∞zt
and (i) – (iii) of Theorem 3.3 hold, then as k →∞, there is no spurious causality

among the aggregated counterparts.

Proof: Consider the AR representation of the system

ξt = A1ξt−1 + A2ξt−2 + · · ·+ εt .

Causality at horizon h can be deduced from the conditional expectation

E(ξt|ξt−h, ξt−h−1, . . .) = π
(h)
1 ξt−h + π

(h)
2 ξt−h−1 + π

(h)
3 ξt−h−2 + · · ·
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where the matrices π
(h)
j are given in Dufour and Renault (1998). Non-causality

between xt and yt at horizon h implies

e′2π
(h)
j e1 = 0 for j = 1, 2, . . . ,

where ei is the i’th column of the 3×3 identity matrix. The matrix π
(h)
1 is identical

to the matrix Bh in the moving average representation

ξt = εt +B1εt−1 +B2εt−2 + · · ·

Thus, noncausality at all horizons implies

e′iBhej = 0 for h = 1, 2, . . . (3.4)

Assuming stationary flow variables it follows from Theorem 3.1 that the limiting

process can be represented as (I3− Ā)ȲN = UN . Non-causality of the form yt →/ zt
at h = 1 implies that the (3, 1) elements of the matrices Ak, k = 1, 2, . . . are zero.

Accordingly, the limiting distribution can be represented as

(1− ā11)X̄N = ā12ȲN + ā13Z̄N + U1,N (3.5)

(1− ā22)ȲN = ā21X̄N + ā23Z̄N + U2,N (3.6)

(1− ā33)Z̄N = ā31X̄N + U3,N (3.7)

where āij denotes the (i, j) element of the matrix Ā =
∑
Ak. From the MA

representation we get (I−Ā)−1 = (I−B̄), where B̄ =
∑
Bk. From (3.4) it follows

that for yt →/ ∞zt we have b̄32 = 0. Thus, the representation ξ̄N = (I3− Ā)−1UN =

(I3 − B̄)UN gives rise to the equation

Z̄N = −b̄31U1,N + (1− b̄33)U3,N .

Solving this equation for U3,N and inserting in (3.7) gives

X̄N = c1Z̄N + c2U1,N , (3.8)

where c1 and c2 are functions of ā31, ā33, b̄31 and b̄33. Comparing (3.8) with (3.5)

shows that ā12 must be zero and, thus, implies the same restriction for the limiting

process as the assumption that yt does not cause xt. From Theorem 3.3 it follows
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that in this case there is no spurious contemporaneous causality between ȲN and

Z̄N .

The proofs for the cases (i) and (iii) are essentially the same. �

This result is intuitively plausible because the assumption of no causality at any

horizon rules out indirect causal effects via the remaining variable zt. Accordingly,

for xt → yt we must rule out that xt causes zt at longer lag horizons h, since

otherwise yt may be used to predict zt+h via xt+j, where 0 < j < h. Unfortunately,

I was not able to generalize this result to higher dimensional systems with n > 3.

In order to illustrate the results in this section, it is useful to construct some

examples based on a trivariate VAR(1) model for yt, where all innovation terms

represent mutually uncorrelated white noise processes.

Example A: Assume that ξt = [xt, yt, zt] is stationary and has a causal structure

given by xt → yt and yt → zt. In particular, assume a VAR(1) representation of

the form

xt = ε1,t

yt = axt−1 + ε2,t

zt = byt−1 + ε3,t .

Since xt →/ zt and zt →/ yt, it follows from Theorem 3.3 that ρ(X̄N , Z̄N |ȲN) = 0, and

that there is no contemporaneous causality between X̄N and Z̄N . Furthermore,

there is no feedback causality among the variable, so that the result immediately

follows from the Corollary 3.1.

Example B: Assume that a vector of flow variables is generated by a stationary

process given by:

xt = ayt−1 + bzt−1 + ε1,t

yt = ε2,t

zt = ε3,t .

Applying Granger’s concept of causality, there is no causality between yt and zt.

Further, a simple calculation shows that for the limiting process, ρ(ȲN , Z̄N |X̄N) =
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−ab/(a2 + a2 + 1). Thus, a necessary and sufficient condition for the aggregated

variables ȲN and Z̄N to have no contemporaneous causal relationship is that either

a or b, or both parameters are equal to zero. This result is also an immediate

consequence from Theorem 3.3, which states that there is no contemporaneous

causality if either yt or zt is not Granger causal for xt.

Example C: To illustrate the problems with aggregated stock variables which

are discussed above, consider the stationary process given by:

xt = ε1,t

yt = axt−1 + ε2,t

zt = byt−1 + ε3,t.

In this system, xt → yt and yt → zt. For k ≥ 3 the aggregated process becomes

white noise with:

XN = U1,N

YN = U2,N

ZN = abXN + U3,N .

For ab 6= 0 there exists spurious contemporaneous causality between XN and

ZN , as there is no Granger causality between xt and zt. Stated another way, the

indirect causal relationship between xt and zt via yt becomes a direct causal link

under aggregation. See also Lütkepohl and Burda (1997).

3.4 Monte Carlo experiments

In this section, the asymptotic implications of Theorem 3.3 and Corollary 3.1

are examined via a simple Monte Carlo experiment. In particular, the following

VAR(1) model is considered:
∆dxt

∆dyt

∆dzt

 =


a 0 0

b a 0

0 b a




∆dxt−1

∆dyt−1

∆dzt−1

+


ε1,t

ε2,t

ε3,t

 , (3.9)
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where d ∈ {0, 1} and εi,t is an i.i.d. vector of standard normal random variables.

For b 6= 0, the Granger causal structure of this system is: xt → yt and yt → zt.

From Theorem 3.3 and Corollary 3.1 it follows that as k →∞, the limiting process

has a partial correlation structure such that E(u1,Nu3,N |u2,N) = 0 and all other

partial correlations are nonzero, where the uj,N (j = 1, 2, 3) denote the innovations

from an estimated VAR[4] model using data generated according to (3.9) and

aggregated appropriately. Swanson and Granger henceforth: SG (1997) propose

tests for assessing whether the above partial correlation restriction holds which

are based on Fisher’s z-statistics or alternatively on t-statistics from regressions

involving the residuals. Here we use the Fisher’s z-statistic.

Empirical sizes corresponding to 5% nominal size tests and for various param-

eterizations of the VAR are reported in Tables 4.1. Note also that results are

reported for stationary stock variables, which are not treated in Theorem 3.3. In

all experiments, b is set equal to 0.5, as results were found not to be sensitive

to the choice of b. The parameter a is set equal to {0.0, 0.2, 0.4, 0.6, 0.8}. Not

surprisingly, the magnitude of the parameter a is crucial when k is small, as a

determines the roots of the autoregressive polynomial in our model. Thus, our

asymptotic results may be a poor guide to finite sample behavior for small k and

|a| close to unity.1 All entries in the Table 4.1 are based on 10,000 Monte Carlo

replications, and all estimations use 100 observations of appropriately aggregated

data.

Tables 4.1a-c contain results for cases (i) – (iii) in 3.3. Interestingly, the

empirical sizes approach the nominal size quite quickly when k increases, for small

and moderately sized values of a. For a = 0.8, however, the SG test is upwards

biased, even for relatively large values of k.

Table 4.1d reports results for stationary stock variables, for which Theorem

3.3 does not apply. For a = 0, however, note that An = 0 for n ≥ 3, and thus the

covariance matrix of the limiting process is Ω + AΩA′ + A2Ω(A2)′ (see Theorem

1Recall also that the aggregated processes which we construct are VARMA processes, in

general. Thus, lower order VAR approximations may not yield good estimates of the errors of

the process.
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Table 4.1: Empirical size of the SG test procedure

a) Stationary flow variables (case (i))

k a=0 a=0.2 a=0.4 a=0.6 a=0.8

2 0.10 0.10 0.11 0.11 0.11

5 0.07 0.08 0.16 0.33 0.61

10 0.07 0.07 0.10 0.35 0.95

20 0.07 0.07 0.08 0.19 0.98

50 0.07 0.07 0.07 0.09 0.80

100 0.07 0.07 0.07 0.07 0.47

b) Difference stationary flow variables (case (ii))

k a=0 a=0.2 a=0.4 a=0.6 a=0.8

2 0.11 0.11 0.11 0.11 0.11

5 0.08 0.10 0.17 0.34 0.61

10 0.07 0.07 0.10 0.31 0.93

20 0.07 0.07 0.07 0.14 0.95

50 0.07 0.07 0.07 0.07 0.53

100 0.07 0.07 0.07 0.07 0.17

c) Stationary stock variables (case (iii))

k a=0 a=0.2 a=0.4 a=0.6 a=0.8

2 0.10 0.11 0.11 0.11 0.11

5 0.07 0.09 0.16 0.33 0.61

10 0.07 0.07 0.10 0.35 0.95

20 0.07 0.07 0.08 0.19 0.98

50 0.07 0.07 0.07 0.09 0.80

100 0.07 0.07 0.07 0.07 0.47

d) Difference stationary flow variables

k a=0 a=0.2 a=0.4 a=0.6 a=0.8

2 0.07 0.07 0.07 0.07 0.11

5 0.07 0.07 0.07 0.09 0.26

10 0.07 0.07 0.07 0.10 0.52

20 0.07 0.07 0.07 0.10 0.66

50 0.07 0.07 0.07 0.10 0.66

100 0.07 0.07 0.07 0.10 0.66

Notes: Entries correspond to the frequency of times that the correct con-

temporaneous causal structure is uncovered, based on empirical procedure

given in SG (1997). Results are based on estimations using 100 observa-

tions of data generated according to (3.9), and aggregated according to

the aggregation interval, k. All entries are based on 10,000 Monte Carlo

replications.
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3.1 (i)), which is a diagonal matrix in this special case. Therefore, all partial

correlations are zero, and spurious contemporaneous correlation should not arise

for a = 0. This is the reason why the empirical size of the SG test is still close

to the nominal size when stationary stock variables, as long as a is close to zero.

In contrast, for a substantially different from zero, partial correlations need not

die out as k increases. Indeed, from Table 4.1 it is seen that the empirical sizes

are far from the nominal size for large values of a(i.e. when a = 0.8 and k = 100

empirical size is 0.66).

3.5 Aggregation of SVAR models

The asymptotic results of Section 4.3 can be used to analyse the (asymptotic)

effects of the aggregation procedure on the estimated structural model. Assume

that at some (“natural”) sampling frequency the process can be represented as a

stationary VAR[p] model with

Bεt = Rut .

The vector ut represents the structural shocks, where it is assumed that Ω =

E(utu
′
t) is a diagonal matrix. We therefore have E(εtε

′
t) = Σ = B−1RΩR′B′−1.

From Theorem 3.1 it follows that for k →∞ the covariance matrix of the aggre-

gated process is given by

E(yNy
′
N) = (I − A1 − · · · − Ap)−1Σ(I − A′1 − · · · − A′p)−1

and, thus, the corresponding structural model is

(I − A1 − · · · − Ap)−1BεN = RuN .

In general, the aggregation of the data therefore may have a substantial effect on

the structural model and may even change the sign of the structural parameter.

To assess the effect of temporal aggregation in practice, a simple example is

considered. Let Ut and πt denote the unemployment rate and the yearly inflation

rate of the US, which is observed on a monthly basis from 1960 (i) to 1998 (xii).
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Figure 3.1: Impulse responses at different aggregation intervals.

Neoclassical specification

solid line: supply shock dashed line: demand shock
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Two different specifications are considered. One is the neoclassical version of

the Phillips curve (cf. Dolado et al. 1999). This model employs a triangular

identification given by

εUt = ust

επt = r12u
s
t + udt ,

where εUt , ε
π
t are the residuals from an estimated VAR[15] model with a constant

mean, which is suggested by the AIC criterion. The supply shock is denoted by

ust and udt denotes the demand shock. The notion behind this specification is that

in a (neo)classical framework, monetary shocks should not affect real variables.

The estimated impulse response functions for this model are depicted in Figure

4.1. Both shocks have a positive short run effect on the unemployment rate so

that these shocks represent an unfavourable change in supply or demand. The

supply shock has a negative effect on the inflation rate at 1–3 years.2 Since we are

interested in the effect of temporal aggregation we do not give a detailed discussion

of the economic implications (see Dolado et al. (1999) for a detailed discussion of

alternative specifications).

If the data is aggregated by computing the averages3 of k time periods, we

find that for a quarterly sample frequency (k = 3) the estimated model yields

qualitatively similar results. There is again a peak at 1 year in the impulse

response of the unemployment rate with respect to a supply shock. Similarly

the minimum of the impulse response of inflation following a demand shock is

a little less than 2 years for k = 1 and k = 3. Therefore, the general shape of

the impulse response functions does not change a lot when aggregating monthly

data to a quarterly interval. Similar conclusions can be drawn be aggregating the

2It is not the intention to draw economic conclusions from this example. Therefore, no

confidence intervals are presented. Furthermore, temporal aggregation reduces the number of

observations so that it is difficult to compare the confidence intervals for different k.
3The reader may notice that the unemployment rate is not a flow variable but a stock variable.

However, since in the theoretical work I did not consider models that mix stock and flow data,

I assume that both variables are flow data. In fact, official agencies also report the average

unemployment rate within a month (quarter).
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Figure 3.2: Impulse responses at different aggregation intervals.

Monetarist specification

solid line: supply shock dashed line: demand shock
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data further to a bi-anual sample interval. Again the maximum and minimum

of the impulse response functions occur at roughly the same time but the size of

the impulse responses seems to be affected to a greater extent. For example, the

minimum in the impulse responses of the inflation rate with respect to supply

shocks is −12 for k = 3 but −7 for k = 6. The maximum response of the

unemployment rate following a supply shock is roughly 8 for k = 3 and only 4

for k = 6. Therefore, it seems that the aggregation of the data “smoothes” the

unemployment rate.

In order to check whether the conclusion is a result of the particular neoclas-

sical specification, we repeat the experiment by using a monetarist identification

scheme. In this specification it is assumed that the monetary (demand) shock may

affect the unemployment rate at a short horizon but this effect dies out with an

increasing lag horizon. That is, we impose the long run restriction as in Blanchard

and Quah (1989). The estimated impulse responses are depicted in Figure 4.2.

It is seen that this identification scheme yields quite different impulse responses.

Again we do not discuss the economic implications of this estimate but focus on

the effect of temporal aggregation.

It turns out that the general shape of the impulse response functions is com-

patible for the different aggregation intervals. In particular the relative maxima

and minima of the impulse response functions occur at roughly the same time.

However, the magnitude of the effects becomes less important for higher aggrega-

tion intervals. For example, the long run effect of supply shocks is 0.30 for k = 1

but 0.15 for k = 3 and 0.10 for k = 6. Similarly, the maximum of the impulse

response of inflation with respect to a supply shock is 0.36 at a monthly basis but

0.75 for quarterly data and 1.0 for the bi-anual aggregation interval.

Our experiment suggests that temporal aggregation may have an important

effect on the magnitude of the impulse response but seems to have little effect

on the general shape of the impulse response functions. Of course, it remains to

show that this conclusions applies to other applications as well.
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Chapter 4

Inference in nonlinear models

Since the introduction of the concept of cointegration by Granger (1981) the ana-

lysis of cointegrated models was intensively studied in a linear context, whereas

the work on the extension to nonlinear cointegration is still comparatively lim-

ited. Useful reviews of recent work in the analysis of nonlinear cointegration are

provided by Granger and Teräsvirta (1993), Granger (1995), and Granger, Inoue

and Morin (1997).

In many cases, economic theory suggests a nonlinear relationship as for the

production function or the Phillips curve, for example. However, theory does not

always provide a precise specification of the functional form so that it is desirable

to have nonparametric tools for estimation and inference.

Unfortunately, the usual nonparametric techniques based on kernel functions

are not applicable in a nonstationary framework. The reason is that the nonpara-

metric estimate of E(y|x0) for some given value x0 is based on neighbourhood

values of x0, where the kernel function employs a weight function decreasing in

|x−x0|. If xt is a random walk, then the process drifts away from the initial value

and, thus, the relative number of observations in a neighbourhood [x0 − ε, x0 + ε]

tends to zero. This can be illustrated by considering the number of axis cross-

ings, that is, the number of times xt crosses the zero level. The number of axis

crossings can be seen as a measure of the frequency the process returns to a zero

initial value. For a stationary Gaussian AR(1) process, Kedem (1980) shows that

129
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the probability of axis crossings is

Prob(xt < 0|xt−1 > 0) =
1

2
− 1

π
sin−1 ρ ,

where ρ denotes the first order autocorrelation of xt. Note that if ρ approaches

one, then this probability tends to zero. Indeed, for a random walk process Bur-

ridge and Guerre (1996) show that the probability of an axis crossing tends to

zero with T−1/2. Similarly, it can be shown that for a random walk the relative

number of observations in the interval [x0− ε, x0 + ε] tends to zero with T−1/2 and

asymptotically does not depend on the value x0 (cf. Burridge and Guerre 1996).

Therefore, the asymptotic theory for kernel estimates is not applicable in the case

of nonstationary variables.

Alternatively, Granger and Hallman (1991a, 1991b) and Breitung and Gourié-

roux (1997) suggest using the rank transformation. It is well known that the

ranks of the observations are invariant under monotonic transformations of the

data. Thus, statistics based on the ranks of the observations do not depend on

(monotonous) nonlinear functions of the data. To motivate the test procedure I

first show in Section 5.1 that linear cointegration tests may have a poor power

against nonlinear cointegration relationships. In Section 5.2 this idea is adopted

to test for nonlinear cointegration. Furthermore, the rank transformation is used

to decide whether the cointegration relationship is linear or nonlinear (Section

5.3).

An alternative strand of literature was initiated by Bierens (1997a,b) and

Vogelsang (1998a,b). These papers allow for unknown nonlinearity in the short

run dynamics of the process. Accordingly, such tests are well suited to test for

cointegrated models with a nonlinear adjustment process. In Section 5.4 a new test

procedure is suggested. The small sample properties of the test are considered in

Section 5.5. Furthermore, the test procedures are applied to investigate the term

structure of interest rates and the relationship between German dual-class shares.
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4.1 Inconsistency of linear cointegration tests

To illustrate the problems of applying linear cointegration tests to a nonlinear

relationship, it is helpful to consider a simple example. Let xt be a nonlinear

random walk given by x3
t =

t∑
j=1

vj, where {vt}T1 is a white noise sequence with

vt ∼ N(0, σ2
v). Furthermore, yt is given by

yt = x3
t + ut , (4.1)

where ut is white noise with ut ∼ N(0, σ2
u). Figure 5.1 presents a realization of the

sequences xt and yt, where σ2
v = σ2

u = 0.01. The sample size is T = 200. Appar-

ently, there is a fairly strong comovement between both series suggesting a stable

long run relationship. However, applying an augmented Dickey-Fuller test (with

four lagged differences and a constant), the value of the t-statistic is −2.77, which

is insignificant with respect to the 0.05 significance level. In fact, the residuals of

the linear cointegration regression (see Figure 5.2) do not look stationary. On the

other hand, if the cointegration regression is based on the underlying nonlinear

relationship, that is, yt is regressed on x3
t , the resulting residual series resembles

white noise (see Figure 5.3). Applying the rank tests suggested in Section 5.3

yields significant test statistics with respect to all reasonable significance levels.

This example illustrates that ignoring the nonlinear nature of the cointegration

relationship may lead to the misleading conclusion that there exists no long run

relationship between the series.

On the other hand, one may argue that there is no problem with a test that

fails to reject in the presence a nonlinear alternative because we are interested

in detecting a linear cointegrating relationship. In many applications, however,

it is not clear whether the variables must be transformed (e.g. to logarithms)

to achieve a linear cointegrating relationship (e.g. Franses and McAleer 1998)

and thus the robustness of the test against such monotonic transformation is a

desirable property of a cointegration test.

For a theoretical analysis of a nonlinear cointegration relationship, different

concepts are used. Granger and Hallman (1991a) and Granger (1995) consider

time series which are long memory in mean but have a nonlinear relationship
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which is short memory in mean. Corradi (1995) considers “non-strong mixing”

processes (processes with a long memory) and strong mixing processes (short

memory). Here we I adopt the definition of an integrated process due to Phillips

(1987a). The degree of integration is defined as follows:

DEFINITION 4.1 (i) A time series zt is I(0) if, as T →∞,

1√
T

[aT ]∑
t=1

zt ⇒ σ̄zW (a) ,

where σ̄2
z = lim

T→∞
E(T z̄2), z̄ = T−1

T∑
t=1

zt, and W (a) represents a standard Brown-

ian motion. (ii) If (1− B)dzt ∼ I(0), then zt is integrated of order d, denoted as

zt ∼ I(d).

Different sets of sufficient conditions for zt ∼ I(0) are given in Phillips (1987a),

Gallant and White (1988), and Phillips and Solo (1992), for example. If we assume

that yt is stationary with an invertible MA representation then the usual definition

used in Section 1.3 results. However, since we assume that yt is a nonlinear

process, it may not possess a MA representation and, therefore, the assumption

of a stationary process is overly restrictive within a nonlinear framework (e.g.

Corradi 1995).

In this section I consider the nonlinear relationship between two real valued

time series {xt}T1 and {yt}T1

yt = f(xt) + ut , (4.2)

where yt ∼ I(1) and f(xt) ∼ I(1). Under the null hypothesis, ut is assumed to be

I(1), whereas under the alternative of nonlinear cointegration, ut ∼ I(0).

As demonstrated by Granger and Hallman (1991b), the Dickey-Fuller test may

perform poorly when applied to a nonlinear transformation of a random walk. To

investigate the effects of a nonlinear cointegration relationship on the power of

a residual based cointegration test, it is convenient to consider a variant of the

Dickey-Fuller test due to Sargan and Bhargava (1983) and Phillips and Ouliaris1

1The Sargan-Bhargava statistic equals the inverse of the variance ratio statistic suggested by

Phillips and Ouliaris.
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(1990). The statistic is given by

S2
T =

1

ω11·2T 2

T∑
t=1

(yt − β̂xt)2, (4.3)

where the β̂ is the least-squares estimator from a regression of yt on xt. The

parameter ω11·2 is defined in Phillips and Ouliaris (1990, below eq. 12) and can

be neglected in what follows.

For the function z = f(x) the following assumption is made:

Assumption 4.1 (i) The function f(x) is monotonically increasing. (ii) There

exists a function h(a) such that f−1(az) = h(a)f−1(z), where f−1(z) indicates the

inverse function.

In the following theorem, it is stated that a test against linear cointegration

may be inconsistent for some class of nonlinear functions. Further results can be

obtained by using the framework of Park and Phillips (1999). However, since the

latter approach requires some specialized concepts that are of no interest here,

I will confine myself to a simple class of nonlinear functions, which includes the

function yt = xat as a special case.

THEOREM 4.1 Let zt ∼ I(1) and yt is generated as in (4.2), where ut ∼ I(0).

Under Assumption 4.1, a test based on the statistic S2
T given in (4.3) is consistent

if and only if f(x) is a linear function.

Proof: Using

1

T 2

T∑
t=1

û2
t =

1

T 2

T∑
t=1

y2
t −

(
T−2

T∑
t=1

ytxt

)2

T−2
T∑
t=1

x2
t

the test is seen to be consistent if the difference on the right hand side converges

to zero as T →∞. From the continuous mapping theorem it follows that

T−2

T∑
t=1

y2
t = T−2

T∑
t=1

(zt + ut)
2 ⇒ σ̄2

z

∫ 1

0

W (a)2da. (4.4)
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Furthermore,

T−2

T∑
t=1

x2
t = T−2

T∑
t=1

f−1(zt)
2

= h(σ̄zT
−1/2)−2T−2

T∑
t=1

f−1(σ̄zT
−1/2zt)

2

⇒ h(σ̄zT
−1/2)−2

∫ 1

0

f−1[W (a)]2da

and

T−2

T∑
t=1

ytxt = T−2

T∑
t=1

ztf
−1(zt) + op(1)

= h(σ̄zT
−1/2)−1T−2

T∑
t=1

ztf
−1(σzT

−1/2zt)

⇒ σ̄zh(σ̄zT
−1/2)−1

∫ 1

0

W (a)f−1[W (a)]da .

It follows that

1

T 2

T∑
t=1

û2
t ⇒ σ̄2

z

∫ 1

0

W (a)2da− σ̄2
z

{∫ 1

0
W (a)f−1[W (a)]da

}2

∫ 1

0
f−1[W (a)]2da

. (4.5)

Since x = f−1(z) is an affine mapping it is seen that the right hand side of (4.5)

is zero iff f(x) = bx with some constant b. �

This Theorem shows that residual based cointegration tests are inconsistent

for the class of functions given by Assumption 4.1. With some straightforward

modifications the result extends to other unit root tests like the original Dickey-

Fuller test.

An example may help to illustrate the result. Let yt be generated as in the

previous example given in eq. (4.1). Using (4.5) and f−1(z) = x1/3 we have for

β 6= 0:

S2
T ⇒

∫ 1

0

W (a)2da−
[
∫
W (a)4/3da]2∫
W (a)2/3da

.

Thus, under the alternative of nonlinear cointegration, the test statistic is Op(1).

Accordingly, a test based on S2
T is inconsistent against a nonlinear cointegration

relationship as given in (4.1).
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4.2 Rank tests for unit roots

Before considering tests for cointegration based on ranks, it is useful to review the

theory on rank tests for a unit root. Assume that the time series xt is generated

by the autoregressive process:

xt = αxt−1 + ut ,

where ut is I(0) as defined in Definition 4.1.

The test statistic is based on the ranks of yt defined as

RT (yt) = Rank[of yt among y1, . . . , yT ] .

An asymptotic theory for the ranks is developed by Breitung and Gouriéroux

(1997) and is given in a slightly more general form in the following theorem:

THEOREM 4.2 Let f(yt) ∼ I(1), where f(·) is a strictly monotonous func-

tion. Then, as T → ∞, the limiting distribution of the sequence of ranks can be

represented as

T−1RT (x[aT ]) ⇒ aA1 + (1− a)A2 ,

where A1 and A2 are two independent random variables with an arcsine distribu-

tion.

Proof: Let 1I(a) be an indicator function that is one if the argument is true and

zero otherwise. Then,

T−1RT (x[aT ]) = T−1

T∑
t=1

1I(xt < x[aT ])

=
∑
t

1I

(
1√
T
z[ t
T
T ] <

1√
T
z[aT ]

)[
t

T
− t− 1

T

]
⇒

∫ 1

0

1I[W (u) < W (a)]du

=

∫ a

0

1I[W (u) < W (a)]du+

∫ 1

a

1I[W (u) < W (a)]du .

Since the increments of the Brownian motion are independent, the two parts of

the integral are independent as well.



4.2. RANK TESTS FOR UNIT ROOTS 137

Using
d
= to indicate equality in distribution we have∫ a

0

1I[W (u) < W (a)]du =

∫ a

0

1I[W (a)−W (u) > 0]du

d
=

∫ a

0

1I[W (a− u) > 0]du

d
= a

∫ 1

0

1I[W (u) > 0]du

d
= aA1 ,

where A1 =
∫ 1

0
1I[W (u) > 0]du is a random variable with an arcsine distribution

(cf. Breitung and Gouriéroux, 1997). Similarly, we find∫ 1

a

1I[W (u) < W (a)]du = (1− a)A2 ,

where A2 is another random variable with an arcsine distribution independent of

A1. �

The arcsine distribution has a quite different shape than the normal distri-

bution and some properties are discussed in Breitung and Gouriéroux (1997).

Theorem 4.2 generalizes Theorem 1 of Breitung and Gouriéroux (1997) to serially

correlated time series. It is important to notice that short run dynamics in ∆yt

do not change the distribution of the ranks. Thus, the ranks do not depend on

the long run variance of the process.

These results can be used to construct a rank test for cointegration. Consider

the null hypothesis that f(xt) and g(yt) are independent random walk sequences.

This null hypothesis is tested against the alternative of a cointegration relationship

of the form:

ut = g(yt)− f(xt) , (4.6)

where f(xt) ∼ I(1), g(yt) ∼ I(1) and ut ∼ I(0). The functions g(y) and f(x)

are monotonically increasing. If it is not known whether these functions are

monotonically increasing or decreasing, a two-sided test is available. A similar

framework is considered in Granger and Hallman (1991a).

The rank statistic is constructed by replacing f(xt) and g(yt) by RT (xt) and

RT (yt), respectively. Since it is assumed that f(xt) and g(yt) are two random
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walk series, it follows that RT (xt) = RT [f(xt)] and RT (yt) = RT [g(yt)] behave like

ranked random walks for which the limiting distribution is given in Theorem 4.2.

The advantage of a statistic based on the sequence of ranks is that the functions

f(·) and g(·) need not be known.

We consider two “distance measures” between the sequencesRT (xt) andRT (yt):

κT = T−1 sup
t
|dt| (4.7)

ξT = T−3

T∑
t=1

d2
t , (4.8)

where dt = RT (yt) − RT (xt). It should be noted that dt is Op(T ) and, thus, the

normalization factors are different from other applications of these measures. The

statistic κT is a Kolmogorov-Smirnov type of statistic considered by Lo (1991) and

ξT is a Cramer-von-Mises type of statistic used by Sargan and Bhargava (1983).

The null hypothesis of no (nonlinear) cointegration between xt and yt is rejected

if the test statistics are too small.

It is interesting to note that the statistic ξT allows for different interpretations.

Let b̃T denote the least-squares estimate from a regression of RT (yt) on RT (xt).

Using
∑
RT (xt)

2 =
∑
RT (yt)

2 = T 3/3 +O(T 2) we have

ξT =
1

T 3

T∑
t=1

[RT (yt)
2 − 2RT (yt)RT (xt) +RT (xt)

2]

=
2− 2b̃T
T 3

T∑
t=1

RT (xt)
2

=
2

3
(1− b̃T ) + op(1) .

If yt and xt are not cointegrated, then b̃T has a nondegenerate limiting distribution

(see Phillips (1987a) for the linear case). On the other hand, if yt and xt are

cointegrated, then b̃T converges to one in probability and therefore ξT converges

to zero.

Second, consider a Cramer-von Mises type of statistic based on the residuals

of a cointegration regression on the ranks:

ξ̃T =
1

T 3

T∑
t=1

[RT (yt)− b̃TRT (xt)]
2
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=
1

T 3

T∑
t=1

[RT (yt)
2 − 2b̃TRT (yt)RT (xt) + b̃2

TRT (xt)
2]

=
1− b̃2

T

T 3

T∑
t=1

RT (xt)
2

=
1

3
(1− b̃2

T ) + op(1) .

Hence, a two-step approach similar to the one suggested by Engle and Granger

(1987) can be seen as a two-sided version of a test based on ξT .

Third, the statistic ξT is related to the rank correlation coefficient, which is

known as “Spearman’s rho”. Spearman’s rho is defined as

rs = 1− 6

T 3 − T

T∑
t=1

d2
t (4.9)

(e.g. Kendall and Gibbons 1990, p.8). The statistic rs can therefore be seen as a

mapping of ξT into the interval [−1, 1]. If xt and yt are cointegrated, Spearman’s

rho converges in probability to one as T →∞.

Theorem 4.2 implies that, if f(xt) and g(yt) are independent random walk

sequences, we have

T−1d[aT ] ⇒ a(A1 −A3) + (1− a)(A2 −A4) ,

where A1, . . . ,A4 are independent random variables with an arcsine distribution.

Since Theorem 5.2 allows for heteroscedastic and serially correlated increments,

the asymptotic distributions of the differences dt is not affected by weak forms of

heteroskedasticity and short run serial correlation.

Power. Under the alternative of a cointegration relationship as given in (4.6) we

have

T−1d[aT ] = T−1
{
RT [T−1/2g(yt)]−RT [T−1/2f(xt)]

}
= T−1

{
RT [T−1/2f(xt) + op(1)]−RT [T−1/2f(xt)]

}
⇒ 0 .

Hence, κT and ξT converge to zero as T →∞, i.e., both rank tests are consistent.
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Apart from this general statement it is quite difficult to obtain analytical re-

sults for the (local) power of the test. Nevertheless, some interesting properties of

the rank test can be observed when the parametric analog of the ranked differences

is considered. Let the normalized difference of the series be defined as

δt =
yt
σ̄y
− xt
σ̄x

,

where yt and xt are I(1), E(yt) = E(xt) = 0 for all t, and σ̄2
x, σ̄

2
y denote the

respective long run variances (cf Definition 4.1). Accordingly, a parametric analog

of the statistic ξT is constructed as

DT =
1

T 2

T∑
t=1

δ2
t (4.10)

and under the null hypothesis of two uncorrelated random walk sequences, the

statistic is asymptotically distributed as
∫
W1(a)2dr+

∫
W2(a)2dr, where W1(a)

and W2 are independent standard Brownian motions. Under the alternative hy-

pothesis assume that ut = yt − βxt is stationary and β > 0. In this case we have

σ̄y = βσ̄x so that

DT =
1

T 2

T∑
t=1

(
βxt + ut
βσ̄x

− xt
σ̄x

)2

=
1

β2σ̄2
xT

2

T∑
t=1

u2.

It is seen that for large T the power of the test depends on the “signal-to-noise

ratio” β2σ̄2
x/σ

2
u, where σ2

u is the variance of ut. As a consequence, the power of

the test is a monotonically increasing function of the parameter β. In contrast,

β does not affect the power of a Dickey-Fuller cointegration test. As a result, we

expect that a test based on DT or its ranked counterpart ξT has more (less) power

than the Dickey-Fuller type cointegration test if β is large (small).

Extensions. So far I have assumed that f(xt) and g(yt) are independent I(1)

series. Of course, this assumption is quite restrictive and in many applications

it is reasonable to assume that the series are correlated. We therefore relax this

assumption and instead assume that f(xt) and g(yt) converge to two correlated

Brownian motions W1(a) and W2(a) with correlation coefficient

ρ = E[W1(1)W2(1)] .
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Since f(xt) and g(yt) are not observed it is not possible to estimate ρ directly.

Rather I will investigate the relationship between ρ and the expected correlation

coefficient of the rank differences

ρRT =

T∑
t=2

∆RT (xt)∆RT (yt)√(
T∑
t=2

∆RT (xt)2

)(
T∑
t=2

∆RT (yt)2

) . (4.11)

If there exists an (asymptotic) one-to-one relationship between ρ and E(ρRT ), then

it is possible to derive the limiting distributions of the test statistics. Unfortu-

nately, the relationship between ρ and E(ρRT ) is very complicated and an analytical

evaluation appears intractable. Therefore, Monte Carlo, simulations are employed

to approximate the functional relationship between the two parameters.

Figure 5.4 presents the estimated relation between ρ and E(ρRT ) using 5000

Monte Carlo replications with T = 100. It is seen that the correlation between

the ranked differences ρRT tends to underestimate ρ in absolute value. However,

the difference is small for moderate values of ρ, ρRT can be used as a first guess of

ρ. This suggests that for small values of ρ, the test statistic can be corrected in a

similar manner as in the linear case:

ξ∗T = ξ/σ̂2
∆d and κ∗T = κT/σ̂∆d , (4.12)

where

σ̂2
∆d = T−2

T∑
t=2

(dt − dt−1)2 .

Critical values for the corrected statistic ξ∗T and κ∗T are presented in Table A.5.1

in the appendix to this chapter. If the absolute value of ρ is close to one, this

correction performs poorly, however, and a more precise correction is required. In

general, the critical values of the statistics ξ∗T and κ∗T depend on the correlation

coefficient ρ or - by using the relationship between ρ and E(ρRT ), on E(ρRT ). Let

cαξ (ρ) denote the critical value of ξ∗T with respect to the significance level of α.

Using the relationship between ρ and E(ρRT ), the critical value may alternatively

be expressed as

cαξ (ρ) = cαξ (0)λαξ (EρRT ) ,
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Figure 5.4:

The relationship between ρ and E(ρRT )
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where λαξ (·) is an (unknown) function and cαξ (0) is the critical value of ξ∗T as

presented in Table A.5.1. Accordingly, a test with a correct size in the case of a

substantial value of the correlation coefficient is obtained as

ξ∗∗T = ξ∗T/λ
α
ξ (EρRT ) and κ∗∗T = κ∗T/λ

α
κ(EρRT ) . (4.13)

Unfortunately, the determination of the function λαξ (EρRT ) seems intractable so

that an approximation is obtained using Monte Carlo simulations. Specifically I

use 5000 Monte Carlo replications with T = 100 in the range ρ = [−0.98,−0.96, . . . ,

0.96, 0.98]. For the resulting 99 values of λαξ = cαξ (ρ)/cαξ (0) with α = 0.05 the fol-

lowing regression equations were fitted2

λ0.05
κ ' 1− 0.174(ρRT )2 (R2 = 0.985)

λ0.05
ξ ' 1− 0.462ρRT , (R2 = 0.929)

where the uncentered R2 is given in parentheses. The statistics ξ∗∗T and κ∗∗T have

the same limiting distributions as for the case assuming uncorrelated series (see

Table A.5.1 for critical values).

Furthermore, it is possible to generalize the test in order to test for cointegra-

tion among the k + 1 variables yt, x1t, . . . , xkt, where it is assumed that g(yt) and

fj(xjt) (j = 1, . . . , k) are monotonic functions. LetRT (xt) = [RT (x1t), . . . , RT (xkt)]
′

be a k× 1 vector and b̃T is the least-squares estimate from a regression of RT (yt)

on RT (xt). Using the residuals

ũt = RT (yt)− b̃′TRT (xt).

a multivariate rank statistic is obtained from the normalized sum of squares of

the residuals:

ΞT [k] = T−3

T∑
t=1

(ũRt )2 ,

2To select an appropriate regression equation, a fourth order polynomial was estimated and

the dominant regressor is selected for the approximation. Somewhat surprisingly, the dominant

regressor for λ0.05
κ (ρRT ) is the squared correlation coefficient, whereas λ0.05

ξ (ρRT ) is well approxi-

mated by using a linear function.
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Using

T−3

T∑
t=1

RT (yt)RT (xjt) =
1

2

[
2

3
− ξjt

]
+ op(1) ,

where ξjt is the bivariate rank statistic for yt and xjt defined as ξjt = T−3
∑T

t=1[RT (yt)−
RT (xjt)]

2, it is not difficult to show that the multivariate test statistic can be rep-

resented as

ΞT [k] =
1

3
− 1

4
δ′TΨT δT ,

where

δT =


ξ1T − 2/3

ξ2T − 2/3
...

ξkT − 2/3


and

ΨT = T−3

T∑
t=1

RT (xt)RT (xt)
′ .

To account for a possible correlation between the series, a modified statistic can

be constructed:

Ξ∗T [k] = ΞT [k]/σ̂2
∆u , (4.14)

where

σ̂2
∆u = T−2

T∑
t=2

(ũt − ũt−1)2 .

Critical values for the test statistic Ξ∗T [k] are presented in Table A.5.1.

4.3 A rank test for neglected nonlinearity

Whenever the rank test for cointegration indicates a stable long run relationship, it

is interesting to know whether the cointegration relationship is linear or nonlinear.

For a convenient representation of such null and alternative hypotheses I follow

Granger (1995) and write the nonlinear relationship as

yt = γ0 + γ1xt + f ∗(xt) + ut , (4.15)
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where γ0 + γ1xt is the linear part of the relationship. Under the null hypothesis it

is assumed that f ∗(xt) = 0 for all t. If f ∗(xt) is unknown, it may be approximated

by Fourier series (e.g. Gallant 1981) or a neural network (Lee, White and Granger

1993). Here we suggest to use the multiple of the rank transformation θRT (xt)

instead of f ∗(xt).

It is interesting to note that the rank transformation is to some extent related

to the neural network approach suggested by Lee, White and Granger (1993). If xt

is a k×1 vector of “input variables” and α is a corresponding vector of coefficients,

the neural network approach approximates f ∗(xt) by
∑q

j=1 βjψ(x′tαj), where ψ(·)
has the properties of a cumulated distribution function. A function often used in

practice is the logistic ψ(x) = x/(1−x). In our context, xt is a scalar variable, so

that the neural network term simplifies to βψ(αxt). Using T−1RT (xt) = F̂T (xt),

where F̂T (xt) is the empirical distribution function, the rank transformation can

be motivated by letting ψ(αxt) be the empirical distribution function with the

attractive property that the parameter α can be dropped due to the invariance of

the rank transformation.

If it is assumed that xt is exogenous and ut is white noise with ut ∼ N(0, σ2),

a score test statistic is obtained as the T ·R2 of the least-squares regression

ũt = c0 + c1xt + c2RT (xt) + et , (4.16)

where ũt = yt − γ̃0 − γ̃1xt and γ̃0 and γ̃1 are the least-squares estimates from a

regression of yt on a constant and xt.

A problem with applying the usual asymptotic theory to derive the limiting

null distribution of the test statistic is that the regression (4.16) involves the

nonstationary variables xt and RT (xt). However under some (fairly restrictive)

assumptions, the following theorem shows that under the null hypothesis c2 = 0

the score statistic is asymptotically χ2 distributed.

THEOREM 4.3 Let xt =
t∑

j=1

vj and

yt = γ0 + γ1xt + ut ,

where it is assumed that vt is I(0) and ut is white noise with E(ut) = 0 and



146 CHAPTER 4. INFERENCE IN NONLINEAR MODELS

E(u2
t ) = σ2

u. As T → ∞, the score statistic for H0 : c2 = 0 in the regression

(4.16) has an asymptotic χ2 distribution with one degree of freedom.

Proof: It is convenient to introduce the matrix notation:

X1 =


1 x1

...
...

1 xT

 and X2 =


RT (x1)

...

RT (xT )

 ,

y = [y1, . . . , yT ]′ and ũ = [ũ1, . . . , ũT ]′. With this notation, the score statistic can

be written as

T ·R2 =
1

σ̃2
(β̂2)2[X ′2X2 −X ′2X1(X ′1X1)−1X ′1X2] ,

where β̂2 is the least-squares estimator of β2 in the regression y = X1β1 +X2β2 +

u and σ̃2 = ũ′ũ/T . As shown by Park and Phillips (1988), the least-squares

estimator in a regression with strictly exogenous I(1) regressors is conditionally

normally distributed, so that conditional on X = [X1, X2], β̃2 is asymptotically

distributed as N(0, V2), where

V2 = σ2
u[X

′
2X2 −X ′2X1(X ′1X1)−1X ′1X2]−1.

Since σ̃2
u converges weakly to σ2

u it follows that T · R2 has an asymptotic χ2

distribution with one degree of freedom. �

Unfortunately, the assumptions of Theorem 4.3 are too restrictive to provide

a useful result for practical situations. In many situations, the errors ut are

found to be serially correlated and the regressor xt may be endogenous. However,

using standard techniques for cointegration regressions (Saikonnen 1991, Stock

and Watson 1993) the test can be modified to accommodate serially correlated

errors and endogenous regressors. For this purpose assume that

ut = E(ut|∆xt,∆xt±1,∆xt±2, . . .) + vt

=
∞∑

j=−∞

πj∆xt−j + vt
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and vt admits the autoregressive representation

vt =
∞∑
j=1

αjvt−j + εt ,

where the roots of the lag polynomial α(B) = 1− α1B − α2B
2 − · · · are bounded

away rom the unit circle.

Under the null hypothesis of linear cointegration we thus have the representa-

tion

yt = γ∗0 +
∞∑
j=1

αjyt−j + γ∗1xt +
∞∑

j=−∞

π∗j∆xt−j + εt (4.17)

(see Stock and Watson 1993 and Inder 1995).

A test for non-linear cointegration can be obtained by truncating the infinite

sums appropriately and forming T ·R2 for the regression of the residuals ε̃t on the

regressors of (4.17) and RT (xt). Along the lines of Theorem 4.3 it can be shown

that the resulting score statistic is asymptotically χ2 distributed under the null

hypothesis of a linear cointegration relationship.

4.4 Nonlinear short run dynamics

In recent papers by Bierens (1997a,b) and Vogelsang (1998a,b) it was observed

that it is possible to construct test statistics that asymptotically do not depend

on parameters involved in the short run dynamics of the process. Accordingly,

it is not necessary to estimate the nuisance parameters such as the coefficients

for the lagged differences in a Dickey-Fuller regression or the “long run variance”

(2π times the spectral density at frequency zero) by using a kernel estimate as in

Phillips and Perron (1988). Such an approach is called “model free” in Bierens

(1997a) and “nonparametric” in Bierens (1997b). Albeit both terms may be

somewhat misleading, I follow Bierens (1997b) and use the term “nonparametric”.

In fact, it is difficult to think of any test, which is “less parametric”.

The idea behind this approach is the following. Under suitable conditions on

the sequence ε1, ε2, . . . the functional central limit theorem (FCLT) implies

T−1/2

[aT ]∑
t=1

εt ⇒ σ̄W (a) . (4.18)
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In what follows I consider tests, which by construction do not depend on the

parameter σ̄2, asymptotically.

To test the hypothesis that yt is I(0) against the alternative yt ∼ I(1), Tanaka

(1990) and Kwiatkowski et al. (1992) suggest an LM type test statistic given by

%T =

T−2
T∑
t=1

Y 2
t

T−1
T∑
t=1

y2
t

, (4.19)

where Yt = y1 + · · · + yt denotes the partial sum process and it is assumed that

yt is white noise. If yt is serially correlated, the denominator is replaced by the

estimated long run variance (cf Kwiatkowski et al. 1992). Note that %T is the

(normalized) variance ratio of the partial sums and the original series. This test

statistic is therefore referred to as the “variance ratio statistic”.

In contrast to Kwiatkowski et al. (1992), the variance ratio statistic is em-

ployed to test the null hypothesis that yt is I(1) against the alternative yt ∼ I(0).

Thus, our test flips the null and alternative hypothesis of the test suggested by

Kwiatkowski et al. (1992). The following theorem presents the limiting null dis-

tribution of such a test procedure.

THEOREM 4.4 Let yt ∼ I(1). Then, as T →∞, we have

T−1%T ⇒
∫ 1

0
[
∫ a

0
W (s)ds]2da∫ 1

0
W (a)2da

.

Proof: From Definition (4.1) it follows that

T−1/2y[aT ] ⇒ σ̄W (a)

T−3/2Y[aT ] ⇒ σ̄

∫ a

0

W (s)ds

Thus, we get

T−1%T =

T−4
T∑
t=1

Y 2
t

T−2
T∑
t=1

y2
t

⇒
∫ 1

0
[
∫ a

0
W (s)ds]2da∫ 1

0
W (a)2da
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�

It is important to notice that the null distribution does not depend on nuisance

parameters. This is due to the fact that the parameter σ̄2 cancels in the variance

ratio. The following theorem shows that the test is consistent against stationary

alternatives and the usual class of local alternatives (e.g. Phillips 1987b).

THEOREM 4.5 Let yt be stationary with the Wold representation yt =
∞∑
j=0

γjεt−j,

where γ0 = 1,
∞∑
j=0

γ2
j < ∞, and εt is white noise with E(εt) = 0 and E(ε2

t ) = σ2
ε .

Under this alternative we have as T →∞

%T ⇒
σ̄2
∫ 1

0
W (a)2dr

σ2
y

,

where σ̄2 = (
∞∑
j=0

γj)
2σ2

ε and σ2
y =

∞∑
j=0

γ2
jσ

2
ε .

Under the local alternative φT = 1 − c/T in yt = φTyt−1 + εt the limiting

distribution is given by

T−1%T ⇒
∫ 1

0
[
∫ a

0
Jc(s)ds]

2da∫ 1

0
Jc(a)2da

,

where Jc(a) represents an Ornstein-Uhlenbeck process defined as Jc(a) =
∫ a

0
e(a−s)cdW (s).

Proof: Under a stationary alternative we have

T−2
∑

Y 2
t ⇒ σ̄2

∫ 1

0

W (a)2da .

Using these results and T−1
T∑
t=1

y2
t

p−→σ2
y , the limiting distribution against a sta-

tionary alternative follows immediately.

Under the sequence of local alternatives we have (cf Phillips 1987b)

T−1/2y[aT ] ⇒ Jc(a)

T−3/2Y[aT ] ⇒
∫ a

0

Jc(s)ds .

Therefore, the limiting distribution results from replacing the Brownian motion

W (a) in Theorem 4.4 by Jc(a). �
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Testing the cointegration rank. The variance ratio statistic for a nonpara-

metric unit root test can be generalized straightforwardly to test hypotheses on

the cointegration rank in the spirit of Johansen (1988, 1991). To this end I make

the following assumption.

Assumption 4.2 There exists an invertible matrix Q = [γ, β]′, where γ and β

are linearly independent n×q and n×(n−q) matrices, respectively, with 0 ≤ q < n

such that

Qyt =

[
γ′yt

β′yt

]
≡

[
ξt

ut

]
= zt

T−1/2ξ[aT ] ⇒ Wq(a)

T−2

T∑
t=1

utu
′
t = op(1) ,

where Wq(a) is a q–dimensional Brownian motion with unit covariance matrix.

To allow for some general nonlinear processes generating ut, it is not assumed

that the “error correction term” ut is stationary. Instead I assume that the trend

component ξt is “variance dominating” in the sense that the variance of ξt diverges

with a faster rate than ut.

The dimension of the stochastic trend component ξt is related to the cointe-

gration rank of a linear system by q = n− r, where r is the rank of the matrix Π

in the VECM representation

∆yt = Πyt−1 + vt , (4.20)

and vt is a stationary error vector. In a linear system, the hypothesis on the

number of stochastic trends is equivalent to a hypothesis on the cointegration

rank as in Johansen (1988). However, since we do not assume that the process is

linear, the representation of the form (4.20) may not exist.

Our test statistic is based on the eigenvalues λj of the problem

|λjBT − AT | = 0 , (4.21)

where

AT =
T∑
t=1

yty
′
t , BT =

T∑
t=1

YtY
′
t
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and Yt =
∑t

j=1 yj denotes the n-dimensional partial sum with respect to yt. The

eigenvalues of (4.21) are identical to the eigenvalues of the matrix RT = ATB
−1
T .

For n = 1 the eigenvalue is identical to the statistic 1/%T and, thus, the test can

be seen as a generalization of the variance ratio statistic to multivariate processes.

The eigenvalues of (4.21) are given by

λj =
η′jATηj

η′jBTηj
, (4.22)

where ηj is the eigenvector associated with the eigenvalue λj. If the vector ηj falls

inside the space spanned by the columns of γ, then η′jATηj is Op(T
2) and η′jBTηj

is Op(T
4) so that the eigenvalue is Op(T

−2). On the other hand, if the eigenvector

ηj falls into the space spanned by the columns of β, it follows that T 2λj tends to

infinity, as T →∞. Therefore, the test statistic

Λq = T 2

q∑
j=1

λj (4.23)

has a nondegenerate limiting distribution, where λ1 ≤ λ2 ≤ · · · ≤ λn denote the

eigenvalues of the matrix RT . In contrast, if the number of stochastic trends is

smaller than q, then Λq diverges to infinity. The following theorem presents the

limiting null distribution for the test statistic Λq.

THEOREM 4.6 Assume that yt admits a decomposition as in Assumption 4.2

with 0 < q ≤ n. Then, as T →∞

Λq ⇒ tr

{∫ 1

0

Wq(a)Wq(a)′da

[∫ 1

0

Vq(a)Vq(a)′da

]−1
}

,

where Wq(a) is a q-dimensional standard Brownian motion and Vq(a) =
∫ a

0
Wq(s)ds.

Proof: Let Zt =
t∑

j=1

zj denote the partial sum with respect to zt = Qyt = [ξ′t, u
′
t]
′.

Then, the eigenvalues of problem (4.21) also solves the problem

|λjDT − CT | = 0 ,

where

CT =
T∑
t=1

ztz
′
t , DT =

T∑
t=1

ZtZ
′
t .
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Partition the corresponding eigenvectors η̃j = [η̃′1j, η̃
′
2j]
′ such that η̃′jzt = η̃′1jξ1t +

η̃′2ju2t, and Zt is partitioned accordingly. We normalize the eigenvectors as

η̃1 = [η̃11, . . . , η̃1q] =

[
Iq

ΦT

]

so that η̃′1jzt = ξjt + Φ′Tut, where ξjt denotes the j-th component of the vector ξt.

It follows that

λj =
η̃′jCT η̃j

η̃′jDT η̃j

=

T∑
t=1

ξ2
jt + op(T

2)

T∑
t=1

Z2
jt + op(T 4)

=

T∑
t=1

ξ2
jt

T∑
t=1

Z2
jt

+ op(1),

where Zjt =
t∑

s=1

ξjs. As T →∞ we therefore have

T 2

q∑
j=1

λj ⇒ tr

{∫ 1

0

Wq(a)Wq(a)′da

[∫ 1

0

Vq(a)Vq(a)′da

]−1
}

�

From this theorem it follows that the asymptotic distribution of the q smallest

eigenvalues of the problem (4.21) does not depend on nuisance parameters and,

thus, we do not need to select the lag order of the VAR process as in Johansen’s

approach or the truncation lag as for the test of Quintos (1998).

Including Deterministic Terms. To accommodate processes with a nonzero

mean assume that the mean function E(yt) = Cdt is a linear function of deter-

ministic variables like a constant, time trend or dummy variables stacked in the

k× 1 vector dt and C is a matrix (or vector) of unknown coefficients. In this case

it is natural to remove the mean of the time series by using the residuals from the
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regression yt = Ĉdt + ût, where Ĉ denotes the least-squares estimator of C. The

partial sums are then constructed by using the residuals Ŷt = û1 + · · ·+ ût. This

procedure is referred to as “OLS-detrending”.3

In cointegrated systems it is often the case that the deterministic terms are

constrained under the cointegration hypothesis. In particular, it is assumed that

yt has a linear time trend, whereas the cointegrating relations β′yt have a constant

mean. This specification of the mean function is used if the model is estimated

with Johansen’s ML procedure including unrestricted constants. This specifi-

cation implies that the linear combinations ut = β′yt are adjusted for a mean,

whereas the vector of permanent components ξt = γ′yt is adjusted for a time

trend. Thus, in order to impose these restrictions on the deterministic terms,

estimates for the matrices β and γ are needed. A possible way to estimate these

matrices is to use the principle component estimator. An attractive property of

this estimator is that in this case γ is estimated to be the orthogonal complement

of the cointegration matrix. It follows, that this matrix is estimated with the

same convergence rate as the cointegration matrix (cf Harris 1997).

Let β̂ and γ̂ denote the estimates from a principal component procedure. Then,

the adjusted vector of time series results as

x∗t =

[
γ̂′yt − â0 − â1t

β̂′yt − b̂

]
,

where â0 and â1 are the least-squares estimates from a regression of ξ̂t = γ̂′yt on a

constant and a time trend and b̂ denotes the mean of ût = β̂′yt. Then, the statistic

is computed by using x∗t instead of yt and the critical values for a test with time

trend are applied. Note that

x∗t =

[
γ′yt − E(γ′yt) + op(T

1/2)

β′yt − E(β′yt) +Op(1)

]

and, thus, the differences between the estimated and true nonstationary compo-

nents are asymptotically negligible but the transitory components are measured

3Alternatively, the parameters in C may be estimated by applying quasi differences to the

nonstationary components as in Xiao and Phillips (1999).
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with an nonvanishing error. However, since the transitory components are asymp-

totically irrelevant under the null hypothesis, this does not affects the null distri-

bution of the test.

4.5 Small sample properties

Rank tests. To investigate the small sample properties of the rank tests for non-

linear cointegration I follow Gonzalo (1994) and generate two time series according

to the model equations

yt = βzt + ut , ut = αut−1 + εt (4.24)

zt = zt−1 + vt ,

where [
εt

vt

]
∼ iid N

(
0,

[
1 ρ

ρ 1

])
.

The variable xt is obtained from the random walk zt by using the inverse function

xt = f−1(zt).

Under the null hypothesis H0 : α = 1 there is no cointegration relationship

between the series. If in addition β = 0 and ρ = 0, then xt and yt are two indepen-

dent random walks with serially uncorrelated increments. For this specification,

Table 5.1 reports the rejection frequencies of different cointegration tests. The

rank tests κT and ξT are computed as in (4.7) and (4.8) and “CDF” indicates the

Dickey-Fuller t-test applied to the residuals of a linear regression of yt on xt and

a constant. The results for the linear process is given in the left half of Table 5.1

indicated by f(x) = x. It might be surprising to see that for β = 1 the rank test

is much more powerful than the CDF test if α is close to one. As was argued in

Section 5.3, this is due to the fact that the rank statistics depend on the parameter

β, whereas the Dickey-Fuller type test for cointegration does not depend on β.

In fact, the simulation results indicate that the power of the rank tests are very

sensitive to the value of β. For β = 0.5 the Dickey-Fuller tests perform better,

whereas for β = 1 the rank tests clearly outperform the Dickey-Fuller type tests.



4.5. SMALL SAMPLE PROPERTIES 155

Table 5.1: Size and power (θ = 0)

f(x) = x x3 log(x) tan(xt)

α κT ξT CDF CDF CDF CDF

Size (β = 0)

1.00 0.049 0.049 0.050 0.098 0.051 0.077

Power (β = 0.5)

0.98 0.232 0.248 0.080 0.310 0.156 0.186

0.95 0.288 0.332 0.225 0.491 0.229 0.295

0.90 0.387 0.484 0.698 0.730 0.323 0.474

0.80 0.551 0.708 0.999 0.866 0.410 0.616

Power (β = 1)

0.98 0.594 0.616 0.080 0.310 0.156 0.186

0.95 0.733 0.792 0.225 0.491 0.229 0.295

0.90 0.861 0.930 0.698 0.730 0.323 0.474

0.80 0.953 0.993 0.999 0.866 0.410 0.616

Note: Rejection frequencies resulting from 10,000 replications of the pro-

cess given in (4.24). The sample size is T = 200. The nominal size is 0.05.

The test statistic κT and ξT are defined in (4.7) and (4.8). CDF indicates a

Dickey-Fuller t-test on the residuals of a cointegrating regression including

a constant term.
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Table 5.2: Testing correlated random walks

ρ κ∗T ξ∗T κ∗∗T ξ∗∗T Ξ∗T [1]

-0.900 0.130 0.007 0.054 0.033 0.003

-0.600 0.073 0.016 0.048 0.039 0.012

-0.400 0.058 0.023 0.048 0.042 0.020

-0.200 0.052 0.030 0.049 0.042 0.029

0.000 0.048 0.041 0.047 0.040 0.042

0.200 0.050 0.053 0.047 0.040 0.056

0.400 0.052 0.070 0.043 0.037 0.074

0.600 0.062 0.096 0.039 0.036 0.107

0.900 0.105 0.234 0.038 0.053 0.255

Note: Rejection frequencies resulting from two random walks with

corr(∆xt,∆yt)=ρ. The sample size is T = 200. The statistics κ∗T and ξ∗T

are defined in (4.12) and κ∗∗T and ξ∗∗T are given in (4.13). The statistic Ξ∗T [1] is

the two-sided test statistic given in (4.14).

Table 5.3: Power against nonlinear cointegration relationships

f(x) = x3 log(x) tan(x)

regressor: RT (xt) f(xt) RT (xt) f(xt) RT (xt) f(xt)

β = 0.01 0.267 0.252 0.246 0.216 0.237 0.226

β = 0.05 0.473 0.485 0.701 0.676 0.549 0.548

β = 0.1 0.714 0.746 0.957 0.955 0.834 0.855

β = 0.5 0.974 0.988 1.000 1.000 0.999 1.000

Note: Simulated power from a score tests using RT (xt) and f(xt) as additional

regressors. The sample size is T = 200.
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It should also be noted that the rank test does not require to estimate the

cointegration parameter β. Accordingly, this test has the same power as for the

case of a known cointegration relationship. Furthermore, the rank tests impose

the one-sided hypothesis that f(xt) is an increasing function.

Since the rank tests are invariant to a monotonic transformation of the vari-

ables, the power function is the same as for the linear case. Comparing the power

of the CDF test with the rank counterparts, it turns out that the power of the

CDF test may drop dramatically for nonlinear alternatives (see also Granger and

Hallman (1991b)), while the rank test performs as well as in the linear case. In

particular, for the case f(x) = log(x) the parametric CDF test performs quite

poorly.

To study the ability of the modified statistics suggested in Section 5.3 to

account for correlated random walks, I simulate correlated data by varying the

correlation coefficient in the range ρ = −0.9, . . . , 0.9. The statistics κ∗T and ξ∗T

use a correction that is similar to the correction in the linear case. As argued in

Section 5.3, this test statistic should perform well if the correlation is moderate.

For more substantial correlation coefficients, the improved statistics κ∗∗T and ξ∗∗T

defined in (4.13) should be used.

Table 5.2 presents the empirical sizes for testing the null hypothesis of no

cointegration with β = 0 and α = 1. It turns out that the statistic κ∗T performs

well in the range ρ ∈ [−0.4, 0.4], whereas the statistic ξ∗T should only be used for

a small correlation in the range ρ ∈ [−0.2, 0.2]. In contrast, the statistics κ∗∗T and

ξ∗∗T turn out to be very robust against a correlation among xt and yt.

Next, consider the small sample properties of the rank test for nonlinear coin-

tegration suggested in Section 5.4. It is assumed that yt and xt are cointegrated

so that yt− βf(xt) is stationary. By setting α = 0.5 I generate serially correlated

errors and by letting ρ = 0.5, the variable xt is correlated with the errors ut,

that is, xt is endogenous. The rank test for nonlinear cointegration is obtained by

regressing yt on xt, yt−1,∆xt+1,∆xt,∆xt−1 and a constant. The score statistic is

computed as T ·R2 from a regression of the residuals on the same set of regressors

and the ranks RT (xt).
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To study the power of the tests I consider three different nonlinear functions.

As a benchmark I perform the tests using f(xt) instead of the ranks RT (xt). Of

course, using the true functional form, which is usually unknown in practice, the

test is expected to have better power than the test based on the ranks. Surpris-

ingly, the results of the Monte Carlo simulations (see Table 5.3) suggest that the

rank test may even be (slightly) more powerful than the parametric test, whenever

the nonlinear term enters the equation with a small weight (β = 0.01). However,

the gain in power is quite small and falls in the range of the simulation error. In

any case, the rank test performs very well and seems to imply no important loss

of power in comparison to the parametric version of the test.
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Nonlinear short run dynamics. Next, I consider the small sample properties of

nonparametric tests of Section 5.5 that were suggested to allow for nonlinear short

run dynamics. Four nonlinear processes are considered, where the assumptions of

the Dickey-Fuller test are violated. The first process it the bilinear process:

(bilin): ∆yt = φεt−1∆yt−1 + εt . (4.25)

Note that the correlation between εt−1 and ∆yt−1 implies a linear time trend in

yt. The second process is a variable coefficient model of the form

(VCM): ∆yt = αt∆yt−1 + εt with αt = cos(2πt/T ) . (4.26)

Kim (1999) shows that in such an “evolutionary model” the augmented Dickey-

Fuller test has a limiting distribution that is different from the distribution derived

in Dickey and Fuller (1979).

Third, I consider a threshold autoregressive process given by

(TAR): yt =

 yt−1 + εt for |εt| < 2σε

0.8yt−1 + εt for |εt| ≥ 2σε
. (4.27)

The fourth process is a stochastic unit root process as considered in Granger and

Swanson (1997):

(STUR): yt = αtyt−1 + εt with αt = 0.4 + 0.6αt−1 + ηt , (4.28)

where E(ε2
t ) = 1 and E(η2

t ) = 0.012. Note that E(αt) = 1.

The empirical sizes computed from 10,000 realizations with T = 200 are pre-

sented in Table 5.4. All tests allow for a linear trend. For the TAR and STUR

model, the size bias of the ADF(1) test is very small and the variance ratio statis-

tic %T performs only marginally better. However, for the bilinear model and the

VCM model, the size bias of the ADF(1) test is more substantial. In these cases

the nonparametric statistic % performs much better.

To investigate the properties of the nonparametric cointegration test I generate

data according to the “canonical” process (Toda 1994) with MA(1) errors[
∆y1t

∆y2t

]
=

[
φ1 0

0 φ2

][
y1,t−1

y2,t−1

]
+

[
ε1t

ε2t

]
−

[
0.5 0

0 0.5

][
ε1,t−1

ε2,t−1

]
, (4.29)



160 CHAPTER 4. INFERENCE IN NONLINEAR MODELS

where E(ε2
1t) = E(ε2

2t) = 1 and E(ε1tε2t) = θ. To test the hypothesis r = 1, I

let φ1 = 0 and φ2 = −0.2. Under the alternative I set φ1 ∈ {−0.05,−0.1,−0.2}.
Furthermore, I let θ = 0 and θ = 0.8 to investigate the impact of the error

correlation. The sample size is T = 200 and 10,000 samples are generated to

compute the rejection frequencies of the tests.

For Johansen’s LR trace test, the process is approximated by a VAR[p] process,

where p is 4 and 12, respectively. The respective tests are denoted by LR(4) and

LR(12). Unrestricted constants are included in each equation. The nonparametric

test statistic is denoted by Λq and the critical values are taken from Table A.5.3 in

the appendix to this chapter. First, consider the results for testing H0 : q = r = 1

presented in Table 5.5. From the empirical sizes it turns out that for θ = 0, a

VAR[4] model is not sufficient to approximate the infinite VAR process, whereas

a VAR[12] approximation yields an accurate size. The nonparametric statistic Λq

possesses a negligible size bias, only. The power of Λq is substantially smaller than

the power of LR(4) but clearly higher than the power of LR(12). Similar results

apply for the tests letting θ = 0.8. However, the LR(12) statistic now possesses a

moderate size bias, whereas Λq is nearly unbiased. Moreover, the power of Λq is

closer to the (favorable) LR(4) statistic than in the case of θ = 0.

We now turn to the test of H0 : r = 0. Under the null hypothesis the difference

of the variables are generated by a multivariate MA process. In this case, all three

test statistic are substantially biased, where the size bias does not depend on the

parameter θ. Although the size bias differs for the three tests, the differences are

moderate and some general conclusions with respect to the relative power of the

tests can be drawn. For θ = 0 and φ1 close to unity, the nonparametric test Λq

is slightly more powerful than the LR(4) test, whereas for φ1 = 0.8 the power of

LR(4) is slightly higher. Finally, the power of LR(12) is much smaller than the

power of the other two tests. For θ = 0.8 a different picture emerges. The relative

power of Λq drops substantially and for φ1 close to one, the power is even lower

than the power of the LR(12) test. The results for a model with a linear time

trend are qualitatively similar and are not presented here.
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Table 5.4: Empirical sizes for some nonlinear processes

process ADF(1) %

bilin 0.091 0.046

VCM 0.138 0.072

TAR 0.055 0.053

STUR 0.053 0.051

Note: The entries of the table display the empirical sizes com-

puted from 10,000 replications of model (4.25) – (4.28). “bilin”

is a bilinear process, “VCM” is a process with a structural

changes in the short run dynamics, “TAR” is a threshold unit

root process, and “STUR” is a stochastic unit root process.

The sample size is T = 200 and the nominal size of the test is

0.05.
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Table 5.5: Testing hypotheses on the cointegration rank

H0 : r = 1 , φ2 = −0.2

test statistic φ1 = 0 φ1 = −0.05 φ1 = −0.10 φ1 = −0.20

θ = 0

ΛT 0.059 0.346 0.604 0.853

LR(4) 0.072 0.428 0.894 0.999

LR(12) 0.048 0.180 0.389 0.636

θ = 0.8

ΛT 0.043 0.295 0.566 0.853

LR(4) 0.057 0.310 0.793 0.999

LR(12) 0.063 0.190 0.382 0.636

H0 : r = 0 , φ2 = 0

test statistic φ1 = 0 φ1 = −0.05 φ1 = −0.10 φ1 = −0.20

θ = 0

ΛT 0.107 0.300 0.582 0.900

LR(4) 0.083 0.241 0.558 0.962

LR(12) 0.094 0.166 0.290 0.506

θ = 0.8

ΛT 0.107 0.240 0.508 0.854

LR(4) 0.083 0.511 0.949 1.000

LR(12) 0.094 0.352 0.581 0.768

Note: The entries of the table report the rejection frequencies based on 10,000 replications of

model (4.29), where E(yt) is constant.
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4.6 Empirical applications

The term structure of interest rates. The rank tests are applied to test for

a possible nonlinear cointegration between interest rates with different time to

maturity. Recent empirical work suggests that interest rates with a different time

to maturity are nonlinearly related.4 The data set consists of monthly yields of

government bonds with different time to maturity as published by the Deutsche

Bundesbank. The sample runs from 1967(i) through 1995(xii) yielding 348 monthly

observations for each variable.

The nonlinear relationship between yields for different times to maturity can

be motivated as follows. Let rt denote the yield of a one-period bond and Rt

represents the yield of a two-period bond at time t. The expectation theory of

the term structure implies that

Rt = φt + 0.5rt + 0.5Et(rt+1) , (4.30)

where Et denotes the conditional expectation with respect to the relevant infor-

mation set available at period t and φt represents the risk premium. Letting

rt+1 = Et(rt+1) + 2νt and subtracting rt from both sides of (4.30) gives

Rt − rt = 0.5(rt+1 − rt) + φt + νt .

Assuming that rt is I(1) and φt + νt is stationary implies that Rt and rt are

(linearly) cointegrated (e.g. Wolters 1995). However, if the risk premium depends

on rt such that φt = f ∗(rt) + ηt with ηt stationary, then the yields are nonlinearly

cointegrated:

Rt − f(rt) = ut ∼ I(0) ,

where f(rt) = rt+f
∗(rt) and ut = 0.5(rt+1−rt)+ηt+νt. Note that ut is correlated

with rt and, therefore, rt is endogenous. Furthermore, if the sampling interval is

shorter than the time to maturity, then the errors are serially correlated even if

νt and ηt are white noise.

4See, e.g., Campbell and Galbraith (1993), Pfann et al. (1996), and the reference therein.
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To test whether interest rates possess a (nonlinear) cointegration relationship

various tests for unit roots are applied first. Neither the conventional Dickey-

Fuller t-test nor the ranked counterpart discussed in Section 5.2 reject the null

hypothesis that the interest rates are I(1) (not presented).

The results presented in Table 5.6 highlight the cointegration properties of

yields with different time to maturity. The parametric as well as the rank tests

indicate a cointegration relationship between the short term bonds, while the

evidence for cointegration between short run and long run bonds (e.g. R1 and

R10) is much weaker. Furthermore, the rank test for nonlinear cointegration

(“nonlin”) does not reveal any evidence against a linear cointegration relationship.

All values of the test statistic suggested in Section 5.4 are much smaller than the

critical value of 3.84. This result suggests that a linear version of the expectation

theory for the term structure yields an appropriate description of the long run

relationship between interest rates with different time to maturity.

Table 5.6: The cointegration relationship with R1

Var. CDF QT [1]∗ κ∗∗T ξ∗∗T ρRT nonlin

R2 –4.138∗ 0.010∗ 0.407 0.017∗ 0.893 0.003

R3 –3.591∗ 0.014∗ 0.405 0.022 0.808 0.012

R4 –3.373∗ 0.016∗ 0.404 0.023 0.730 0.034

R5 –3.213 0.018∗ 0.413 0.025 0.678 0.107

R10 –2.702 0.025 0.498 0.033 0.582 0.489

Note: “CDF” denotes the Dickey-Fuller t-test applied to the residuals of the cointe-

gration regression. ΞT [1]∗ is the two-sided test statistic given in (4.14) and κ∗∗T and

ξ∗∗T are defined in (4.13). “nonlin” indicates the test for nonlinearity using the ranks

as additional regressors, and ρRT is the correlation coefficient between the differences

of the rank sequences. “*” indicates significance at the 0.05 significance level.
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The relationship between dual-class shares. In an early paper on cointe-

gration Granger (1986, p. 218) states that “[i]f xt, yt are a pair of prices from

a jointly efficient, speculative market, they cannot be cointegrated.” The reason

is that whenever two variables are cointegrated, there exists an error correction

representation so that at least one variable can be forecasted by using the lagged

error correction term.

Recently, however, this statement was called into question in a number of

studies. For example, Kasa (1992) finds evidence for common stochastic trends

(and thus of cointegration) in international stock markets. Kehr (1997) shows

that stock prices traded at different regional markets in Germany are cointegrated

and Krämer (1999) and Dittmann (1998) find (fractional) cointegration between

different classes of stocks of the same or very similar German companies.

These conflicting views of the efficient market hypothesis can be resolved by as-

suming a nonlinear error correction mechanism (ECM). The idea is that small de-

viations from the long run relationship are not predictable as claimed by Granger

(1986). If the deviations become large, however, an effective adjustment process

prevents stock prices of fundamentally related assets from drifting too far away.

The economic reason behind such a nonlinear adjustment process is that transac-

tion costs make it unprofitable to exploit small deviations from the fundamental

relationship. When undervaluation (or overvaluation) becomes more substantial,

agents will buy (or sell) the respective assets until the fundamental relationship is

re-established. This reasoning naturally leads to a nonlinear version of the error

correction model (e.g. Escribano and Mira 1998).

We apply a variety of cointegration tests to time series data of pairs of Ger-

man voting and non-voting shares issued by the same firm (dual-class firm). Daily

stock price data adjusted for stock splits, dividends and other corporate events

are from the “Deutsche Finanzdatenbank” (DFDB) in Karlsruhe. We use loga-

rithms of stock prices in our statistical analysis. According to the criteria liquidity

and availability of long time series, a sample of 6 dual-class firms is chosen for

examination. Among those four are contained in the index of the 30 largest Ger-

man blue-chip stocks (DAX), the remaining two are in the German mid-cap index
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MDAX. In Table 5.7 the sample is further described.

German corporate law requires that holders of non-voting shares must be com-

pensated for the lack of corporate control by a dividend advantage. This usually

takes the form of a minimum preferred dividend (stated as percentage of par value)

which will be carried forward in particular years of dividend omissions (cumula-

tive preferred dividend). Both the cumulative (past) preferred dividends and the

current preferred dividends have to be paid out before the common shareholders

can receive anything. In addition some firms commit themselves to pay the non-

voting shareholders a certain (non-cumulative) amount in excess of the common

stock dividend.

To test for (linear) cointegration I first compute the augmented Dickey-Fuller

(ADF) and Phillips-Perron (PP) test applied to the residuals of a OLS cointe-

grating regression (cf. Phillips and Ouliaris 1990). For the ADF test ten lagged

differences and a constant are included in the regression. The truncation lag for

the Phillips-Perron test on the residuals is set to 20. Using these tests, only a weak

evidence for cointegration is found for RWE, and RHM (see Table 5.8), whereas in

the other cases, the null hypothesis of no cointegration is rejected at a significance

level of 0.05. Applying Johansen’s (1988) likelihood-ratio test procedure based on

a VAR[10] model with a constant restricted to the cointegration relationship gives

a slightly different picture. This test finds a cointegration relationship for RWE,

MAN and BMW. In the remaining cases, the LR statistics are insignificant.

An important problem is, however, that these test procedures are based on the

assumption of a linear process and thus may be problematical in applications using

financial time series data. Applying the nonparametric test statistic suggested in

Section 5.5, the evidence for cointegration decrease substantially. Only for BMW

the test clearly points to a cointegration relationship. For RHM a cointegration

relationship is found at the 0.05 significance level but not on the 0.01 significance

level. The diminished evidence may be due to an improved robustness against

nonlinear short run dynamics. However, it may also be due to a lack of power

compared to the parametric counterparts.

Interestingly, the rank tests for cointegration unambiguously reject the hypoth-
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esis of no cointegration. This may be the result of a structural instability of the

cointegration relationships, that may be represented by a nonlinear cointegration

relationship. In fact, as shown by Breitung and Wulff (1999), there is a strong

evidence for structural changes in RWE, MAN, BMW, and BOSS. Furthermore,

tests for nonlinearity in the error correction mechanism suggest that the stock

prices of MAN, RHM and BOSS indeed react nonlinearly to a deviation to the

long run relationship in the previous period.

Table 5.7: Details of the dual-class shares

Firm Abbrev. No. obs. Sample range Index Div. adv.

RWE RWE 5894 1/2/74 – 7/31/97 DAX 5 / –

MAN MAN 5588 4/24/75 – 7/31/97 DAX 4 / –

BMW BMW 1983 8/25/89 – 7/31/97 DAX 2 / –

Volkswagen VW 2706 10/6/86 – 7/31/97 DAX 4 / 2

Rheinmetall RHM 3182 10/31/84 – 7/31/97 MDAX 6 / 2

Boss BOSS 2052 5/22/89 – 7/31/97 MDAX 3 / 3

Note: Dividend advantage (“Div. adv.”) is expressed in percent of par value, whereby the

first figure indicates the minimum dividend and the excess dividend is given after the slash.
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Table 5.8: Cointegration tests for voting and non-voting stocks

Test RWE MAN BMW VW RHM BOSS

ADF –3.197 –5.638∗∗ –6.641∗∗ –3.551∗ –2.824 –3.812∗

PP –3.744∗ –8.707∗∗ –11.19∗∗ –4.139∗∗ –3.517∗ –5.701∗∗

LR 21.42∗ 36.21∗∗ 47.14∗∗ 15.87 17.78 18.52

Λ 94.15 236.6 501.38∗∗ 83.53 340.91∗ 302.6

RDF –22.47∗∗ –15.43∗∗ –10.74∗∗ –6.859∗∗ –7.219∗∗ –9.380∗∗

Rdiff 0.0005∗∗ 0.0011∗∗ 0.0024∗∗ 0.0058∗ 0.0047∗∗ 0.0030

Note: “ADF” denotes the augmented Dickey-Fuller test including 10 lagged differences and

a constant. “PP” is the unit root test of Phillips and Perron (1988) applied to the residuals

of the cointegration regression. “LR” is Johansen’s trace statistic for the hypothesis that the

cointegration rank is zero. Λ is the nonparametric test for cointegration. “RDF” is rank tests

for cointegration as suggested by Granger and Hallman (1991) and “Rdiff” is the statistic ξT

as defined in (4.8). ∗ and ∗∗ indicate significance with respect to the 0.05 and 0.01 significance

level, respectively.
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4.7 Appendix: Critical values

Table A.5.1: Critical values for the rank statistics

T 0.10 0.05 0.01

κ 0.644 0.552 0.422

ξ 0.057 0.042 0.024

κ∗ 0.394 0.364 0.316

ξ∗ 0.023 0.019 0.013

Ξ∗[1] 0.025 0.020 0.014

Ξ∗[2] 0.020 0.016 0.012

Ξ∗[3] 0.016 0.014 0.010

Ξ∗[4] 0.014 0.012 0.009

Ξ∗[5] 0.012 0.010 0.008

Ξ∗[6] 0.010 0.009 0.008

Note: Critical values computed from 10,000 realizations of

independent random walk sequences with T = 500.
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Table A.5.2: Critical values for T−1%T statistic (%T )

T 0.1 0.05 0.01

mean adjusted

100 0.01435 0.01004 0.00551

250 0.01433 0.01003 0.00561

500 0.01473 0.01046 0.00536

trend adjusted

100 0.00436 0.00342 0.00214

250 0.00442 0.00344 0.00223

500 0.00450 0.00355 0.00225

Note: The hypothesis of a unit root process

is rejected if the test statistic falls below the

respective critical values reported in this table.



4.7. APPENDIX: CRITICAL VALUES 171

Table A.5.3: Critical values for Λq

q0 = n− r0 0.1 0.05 0.01

mean adjusted

1 67.89 95.60 185.0

2 261.0 329.9 505.8

3 627.8 741.1 1024

4 1200 1360 1702

5 2025 2255 2761

6 3177 3460 4045

7 4650 5049 5905

8 6565 7061 8032

trend adjusted

1 222.4 281.1 443.6

2 596.2 713.3 976.1

3 1158 1330 1689

4 1972 2184 2699

5 3107 3429 4120

6 4572 4954 5780

7 6484 6984 8012

8 8830 9388 10714

Note: The hypothesis r = r0 is rejected if the test

statistic exceeds the respective critical value. The sim-

ulation are based on a sample size of T = 500.
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Chapter 5

Conclusions and outlook

The previous chapters give an account of recent research in multiple time se-

ries analysis that intends to bridge the gap between reduced form VAR models

used in Johansen’s (1995) work and structural models based on sets of simultane-

ous equations advocated by the influential Cowles commission. A variant of this

methodology was developed by Sims (1986) and others who suggest to impose

restrictions on the covariance matrix of the errors in order to identify macroe-

conomic shocks. The latter approach became recently very popular and plays a

dominating role during the last few years. It was argued that the structural frame-

work is able to account for the cointegration properties of the data so that the long

run relationship of the variables can be given a structural interpretation. This is

an important advantage over the (reduced form) cointegration analysis that can

only indicate some stationary linear combination of the variables. Whether the

observed long run relationship is a “money demand schedule” or a ”money supply

schedule” or a mixture of both cannot be decided without imposing additional

assumption needed to identify the structure.

It is sometimes argued (see e.g. Möller 1993) that it does not make sense to

attach the usual structural interpretation to the long run solution of a system

because the variables in a long run relationship cannot be qualified as dependent

and predetermined variables. This is indeed correct as long as the short run

dynamics of the system are left unspecified. However, if the dynamic structure

173
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(that is the long and short run parameters) is identified appropriately, the error

correction representation is a particular reformulation of the structural model and

structural inference applies in the usual way (Hsiao 1997).

If the errors of the system are identified as economic shocks, it is attractive to

impose cointegration relationships as it allows to qualify shocks to be transitory

or permanent. For example, it is often assumed that demand shocks affect real

quantities only in the short run, whereas supply shocks may have a permanent

effect on variables like output and unemployment. As demonstrated in Chapter 3,

such assumptions can easily be imposed in a structural cointegrated VAR model.

Using impulse response analysis the dynamic effects of structural stocks on the

variables of interest can be studied.

To discuss the alternative approaches to draw structural inference from linear

dynamic models it was assumed that sufficient identifying restrictions can be de-

rived from economic theory so that the remaining problem is how to impose these

assumptions on the cointegrated VAR system. In many applications, however,

economic theory gives only a vague motivation of some structural properties but

the initial enthusiasm that fully specified models can be derived from some basic

assumptions on optimizing agents under limited resources is unwarranted. Usu-

ally, economic theory is not a “sharp theory” in the sense that it attach a prior

probability of one to a single structure and a probability of zero to all other struc-

tures (see also Leamer 1983). Rather, theoretical reasoning suggests that some

specifications are more plausible than others. Empirical work should therefore

start with specifications that correspond best to the preferred theoretical model

and try out other specifications that are similarly plausible.

Such a “robustness analysis” is often encountered in practice (for example

Bernanke and Mihow 1997, Cochrane 1998, Rudebush 1998). Although it is

clearly desirable to have robust results for the range of all possible specifications

it is questionable to claim that robustness of the results is a necessary condition

for a credible empirical finding (e.g. Cooley and Dwyer 1998). First, it does not

seem sensible to claim for a “robust” judgement in the sense that it is always

be compatible with the addresses to the jury delivered from both the prosecutor
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and the defense counsel. Of course the judge is in a comfortable position if the

prosecutor and the defense counsel demand for the same judgement but it is unre-

alistic to claim that this should always be the case. Second, a result that is robust

against a change in the assumptions may simply demonstrate that the assump-

tions are uninformative. Why should we confine ourselves to use uninformative

assumptions?

In many cases theoretical considerations give rise to a particular structural as-

sumption but is silent about other aspects of the model that have to be specified as

well. For example, (keynesian) money demand theory states that money demand

depends on output and interest rates so that an increase in output has a positive

effect on money demand, whereas a raise in interest rates leads to a decrease in

the desired monetary base. For a dynamic analysis of the relationship between

money, output and interest rates, we need further structural assumptions on the

effect of interest rates on output (such as an IS-schedule) and an equation with

interest rates as the dependent variable (e.g. a money supply function). Hence,

the structural system employs quite different theoretical ingredients that may in-

teract in a complex way. Indeed, as argued forcefully by Sims (1980), the theory

of rational expectation implies that it does not make sense to specify structural

elements of the system in isolation. On the other hand, theoretical models that

try to model the all aspects of economic behaviour jointly are difficult to handle

and yield structural models with nonlinear cross-equation constraints (see, e.g.,

Wickens 1982) that are not considered in this thesis. Future work should therefore

allow for more complex specifications. Examples for current research in that field

are Johansen and Swensen (1999) and Kozicki and Tinsley (1988).
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