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Introduction

This book is mostly based on a series of notes for a primer course in electrical
and computer engineering that I taught at the City College of New York
School of Engineering. Each week, the class met for an hour of lecture and a
three-hour computer laboratory session where students were divided into
small groups of 12 to 15 students each. The students met in an informal learn-
ing community setting, a computer laboratory, where each student had the
exclusive use of a PC. The small size of the groups permitted a great deal of
individualized instruction, which was a key ingredient to cater successfully
to the needs of students with heterogeneous high school backgrounds.

A student usually takes this course in the second semester of his or her
freshman year. Typically, the student would have completed one semester of
college calculus, and would be enrolled in the second course of the college
calculus sequence and in the first course of the physics sequence for students
in the physical sciences and engineering.

My purpose in developing this book is to help bring the beginner engineer-
ing student’s analytical and computational skills to a level of competency
that would permit him or her to participate, enjoy, and succeed in subsequent
electrical and computer engineering courses. My experience indicates that
the lack of mastery of fundamental quantitative tools is the main impediment
to a student’s progress in engineering studies.

The specific goals of this book are

1. To make you more comfortable applying the mathematics and
physics that you learned in high school or in college courses,
through interactive activities.

2. To introduce you, through examples, to many new practical tools
of mathematics, including discrete variables material that are
essential to your success in future electrical engineering courses.

3. To instruct you in the use of a powerful computer program,
MATLAB®*, which was designed to be simultaneously user-
friendly and powerful in tackling efficiently the most demanding
problems of engineering and sciences.

4. To give you, through the applications and examples covered,
glimpses of some of the fascinating problems that an electrical or

* MATLAB® is a registered trademark of the MathWorks, Inc., 3 Apple Hill Drive, Natick, MA,
01760-2098, USA. Tel: 508-647-7000, Fax: 508-647-7101, e-mail: info@mathworks.com, Web:
www.mathworks.com.
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computer engineer solves in the course of completing many of his
or her design projects.

My experience indicates that you can achieve the above goals through the
following work habits that I usually recommend to my own students:

• Read carefully the material from this book that is assigned to you
by your instructor for the upcoming week, and make sure to solve
the suggested preparatory exercises in advance of the weekly lecture.

• Attend the lecture and follow closely the material presented, in
particular the solutions to the more difficult preparatory exercises
and the demonstrations.

• Following the lecture, make a list of questions on the preparatory
material to which you still seek answers, and ask your instructor
for help and clarification on these questions, preferably in the first
30 minutes of your computer lab session.

• Complete the in-class exercises during the computer lab session. If
you have not finished solving all in-class exercises, make sure you
complete them on your own, when the lab is open, or at home if
you own a computer, and certainly before the next class session,
along with the problems designated in the book as homework
problems and assigned to you by your instructor.

In managing this course, I found it helpful for both students and instruc-
tors to require each student to solve all problems in a bound notebook. The
advantage to the student is to have easy access to his or her previous work,
personal notes, and reminders that he or she made as the course pro-
gressed. The advantage to the instructor is to enhance his or her ability to
assess, more easily and readily, an individual student’s progress as the
semester progresses.

This book may be used for self-study by readers with perhaps a little more
mathematical maturity acquired through a second semester of college calcu-
lus. The advanced reader of this book who is familiar with numerical meth-
ods will note that, in some instances, I did not follow the canonical order for
the sequence of presentation of certain algorithms, thus sacrificing some opti-
mality in the structure of some of the elementary programs included. This
was necessitated by the goal I set for this book, which is to introduce both
analytical and computational tools simultaneously.

The sections of this book that are marked with asterisks include material
that I assigned as projects to students with either strong theoretical interest or
more mathematical maturity than a typical second semester freshman stu-
dent. Although incorporated in the text, they can be skipped in a first read-
ing. I hope that, by their inclusion, I will facilitate to the interested reader a
smooth transition to some new mathematical concepts and computational
tools that are of particular interest to electrical engineers.
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This text greatly benefited from course material previously prepared by my
colleagues in the departments of electrical engineering and computer science
at City College of the City University of New York, in particular, P. Com-
bettes, I. Gladkova, B. Gross, and F. Thau. They provided either the starting
point for my subsequent efforts in this course, or the peer critique for the
early versions of this manuscript. I owe them many thanks and, of course, do
not hold them responsible for any of the remaining imperfections in the text.

The preparation of this book also owes a lot to my students. Their questions
and interest in the material contributed to many modifications in the order
and in the presentation of the different chapters. Their desire for working out
more applications led me to expand the scope of the examples and exercises
included in the text. To all of them, I am grateful.

I am also grateful to Erwin Cohen, who introduced me to the fine team at
CRC Press, and to Jerry Papke whose stewardship of the project from start to
end at CRC Press was most supportive and pleasant. The editorial and pro-
duction teams at CRC in particular, Samar Haddad, the project editor,
deserve credit for the quality of the final product rendering. Naomi
Fernandes and her colleagues at The MathWorks Inc. kindly provided me
with a copy of the new release of MATLAB for which I am grateful.

I dedicate this book to Azza, Tala, and Nigh whose support and love
always made difficult tasks a lot easier.

Jamal T. Manassah
New York, January 2001
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Selected References

*The asterisk indicates more advanced material that may be skipped in a first
reading.
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1
Introduction to MATLAB® and
Its Graphics Capabilities

1.1 Getting Started

MATLAB can be thought of as a library of programs that will prove very use-
ful in solving many electrical engineering computational problems. MAT-
LAB is an ideal tool for numerically assisting you in obtaining answers,
which is a major goal of engineering analysis and design. This program is
very useful in circuit analysis, device design, signal processing, filter design,
control system analysis, antenna design, microwave engineering, photonics
engineering, computer engineering, and all other sub-fields of electrical engi-
neering. It is also a powerful graphic and visualization tool.

The first step in using MATLAB is to know how to call it. It is important to
remember that although the front-end and the interfacing for machines with
different operating systems are sometimes different, once you are inside MAT-
LAB, all programs and routines are written in the same manner. Only those
few commands that are for file management and for interfacing with external
devices such as printers may be different for different operating systems.

After entering MATLAB, you should see the prompt >>, which means the
program interpreter is waiting for you to enter instructions. (Remember to
press the Return key at the end of each line that you enter.)

Now type clf. This command creates a graph window (if one does not
already exist) or clears an existing graph window.

Because it is impossible to explain the function of every MATLAB com-
mand within this text, how would you get information on a certain command
syntax? The MATLAB program has extensive help documentation available
with simple commands. For example, if you wanted help on a function called
roots (we will use this function often), you would type help roots.

Note that the help facility cross-references other functions that may have
related uses. This requires that you know the function name. If you want an
idea of the available help files in MATLAB, type help. This gives you a list
of topics included in MATLAB. To get help on a particular topic such as the
Optimization Toolbox, type help toolbox/optim. This gives you a list of
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all relevant functions pertaining to that area. Now you may type help for
any function listed. For example, try help fmin.

1.2 Basic Algebraic Operations and Functions

The MATLAB environment can be used, on the most elementary level, as a
tool to perform simple algebraic manipulations and function evaluations.

Example 1.1
Exploring the calculator functions of MATLAB. The purpose of this example
is to show how to manually enter data and how to use basic MATLAB alge-
braic operations. Note that the statements will be executed immediately after
they are typed and entered (no equal sign is required).

Type and enter the text that follows the >> prompt to find out the MATLAB
responses to the following:

2+2

5^2

2*sin(pi/4)

The last command gave the sine of 

 

π/4. Note that the argument of the function
was enclosed in parentheses directly following the name of the function. There-
fore, if you wanted to find sin3(

 

π/4), the proper MATLAB syntax would be

sin(pi/4)^3

To facilitate its widespread use, MATLAB has all the standard elementary
mathematical functions as built-in functions. Type help elfun, which is
indexed in the main help menu to get a listing of some of these functions.
Remember that this is just a small sampling of the available functions.

help elfun

The response to the last command will give you a large list of these elemen-
tary functions, some of which may be new to you, but all of which will be
used in your future engineering studies, and explored in later chapters of
this book.

Example 1.2
Assigning and calling values of parameters. In addition to inputting data
directly to the screen, you can assign a symbolic constant or constants to rep-
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resent data and perform manipulations on them. For example, enter and note
the answer to each of the following:

a=2

b=3

c=a+b

d=a*b

e=a/b

f=a^3/b^2

g=a+3*b^2

Question: From the above, can you deduce the order in which MATLAB per-
forms the basic operations?

In-Class Exercise

Pb. 1.1 Using the above values of a and b, find the values of:
a. h = sin(a) sin(b)
b. i = a1/3b3/7

c. j = sin–1(a/b) = arcsin(a/b)

1.3 Plotting Points

In this chapter section, you will learn how to use some simple MATLAB
graphics commands to plot points. We use these graphics commands later in
the text for plotting functions and for visualizing their properties. To view all
the functions connected with 2-dimensional graphics, type:

help plot

All graphics functions connected with 3-dimensional graphics can be looked
up by typing

help plot3

A point P in the x-y plane is specified by two coordinates. The x-coordinate
measures the horizontal distance of the point from the y-axis, while the
y-coordinate measures the vertical distance above the x-axis. These coordi-
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nates are called Cartesian coordinates, and any point in the plane can be
described in this manner. We write for the point, P(x, y).

Other representations can also be used to locate a point with respect to a
particular set of axes. For example, in the polar representation, the point is
specified by an r-coordinate that measures the distance of the point from the
origin, while the 

 

θ-coordinate measures the angle which the line passing
through the origin and this point makes with the x-axis.

The purpose of the following two examples is to learn how to represent
points in a plane and to plot them using MATLAB.

Example 1.3
Plot the point P(3, 4).

Solution: Enter the following:

x1=3;

y1=4;

plot(x1,y1,'*')

Note that the semicolon is used in the above commands to suppress the
echoing of the values of the inputs. The '*' is used to mark the point that we
are plotting. Other authorized symbols for point displays include 'o', '+',
'x', … the use of which is detailed in help plot.

Example 1.4
Plot the second point, R(2.5, 4) on the graph while keeping point P of the pre-
vious example on the graph.

Solution: If we went ahead, defined the coordinates of R, and attempted to
plot the point R through the following commands:

x2=2.5;

y2=4;

plot(x2,y2,'o')

we would find that the last plot command erases the previous plot output.
Thus, what should we do if we want both points plotted on the same

graph? The answer is to use the hold on command after the first plot.
The following illustrates the steps that you should have taken instead of

the above:

hold on

x2=2.5;



© 2001 by CRC Press LLC

y2=4;

plot(x2,y2,'o')

hold off

The hold off turns off the hold on feature.

NOTES
1. There is no limit to the number of plot commands you can type

before the hold is turned off.
2. An alternative method for viewing multiple points on the same

graph is available: we may instead, following the entering of the
values of x1, y1, x2, y2, enter:

plot(x1,y1,'*',x2,y2,'o')

This has the advantage, in MATLAB, of assigning automatically a different
color to each point.

1.3.1 Axes Commands

You may have noticed that MATLAB automatically adjusts the scale on a
graph to accommodate the coordinates of the points being plotted. The axis
scaling can be manually enforced by using the command axis([xmin
xmax ymin ymax]). Make sure that the minimum axis value is less than the
maximum axis value or an error will result.

In addition to being able to adjust the scale of a graph, you can also change
the aspect ratio of the graphics window. This is useful when you wish to see
the correct x to y scaling. For example, without this command, a circle will
look more like an ellipse.

Example 1.5
Plot the vertices of a square, keeping the geometric proportions unaltered.

Solution: Enter the following:

x1=-1;y1=-1;x2=1;y2=-1;x3=-1;y3=1;x4=1;y4=1;

plot(x1,y1,'o',x2,y2,'o',x3,y3,'o',x4,y4,'o')

axis([-2 2 -2 2])

axis square %square shape

Note that prior to the axis square command, the square looked like a rect-
angle. If you want to go back to the default aspect ratio, type axis normal.
The % symbol is used so that you can type comments in your program. Com-
ments following the % symbol are ignored by the MATLAB interpreter.
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1.3.2 Labeling a Graph

To add labels to your graph, the functions xlabel, ylabel, and title can
be used as follows:

xlabel('x-axis')

ylabel('y-axis')

title('points in a plane')

If you desire to add a caption anywhere in the graph, you can use the MAT-
LAB command gtext('caption') and place it at the location of your
choice, on the graph, by clicking the mouse when the crosshair is properly
centered there.

1.3.3 Plotting a Point in 3-D

In addition to being able to plot points on a plane (2-D space), MATLAB is
also able to plot points in a three-dimensional space (3-D space). For this, we
utilize the plot3 function.

Example 1.6
Plot the point P(3, 4, 5).

Solution: Enter the following commands:

x1=3; y1=4; z1=5;

plot3(x1,y1,z1,'*')

You can also plot multiple points in a 3-D space in exactly the same way as
you did on a plane. Axis adjustment can still be used, but the vector input
into the axis command must now have six entries, as follows:

axis([xmin xmax ymin ymax zmin zmax])

You can similarly label your 3-D figure using xlabel, ylabel, zlabel,
and title.

1.4 M-files

In the last section, we found that to complete a figure with a caption, we had
to enter several commands one by one in the command window. Typing
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errors will be time-consuming to fix because if you are working in the com-
mand window, you need to retype all or part of the program. Even if you
do not make any mistakes (!), all of your work may be lost if you inadvert-
ently quit MATLAB and have not taken the necessary steps to save the con-
tents of the important program that you just finished developing. To
preserve large sets of commands, you can store them in a special type of file
called an M-file.

MATLAB supports two types of M-files: script and function M-files. To hold
a large collection of commands, we use a script M-file. The function M-file is
discussed in Chapter 3. To make a script M-file, you need to open a file using
the built-in MATLAB editor. For both Macs and PCs, first select New from the
file menu. Then select the M-file entry from the pull-down menu. After typing
the M-file contents, you need to save the file:

For Macs and PCs, select the save as command from the file win-
dow. A field will pop up in which you can type in the name you
have chosen for this file (make sure that you do not name a file by
a mathematical abbreviation, the name of a mathematical function,
or a number). Also make sure that the file name has a .m extension
added at the end of its name.

For Macs, save the file in a user’s designated volume.

For PCs, save the file in the default (bin) subdirectory.

To run your script M-file, just type the filename (omitting the .m extension
at its end) at the MATLAB prompt.

Example 1.7
For practice, go to your file edit window to create the following file that you
name myfile.m.

clear, clf

x1=1;y1=.5;x2=2;y2=1.5;x3=3;y3=2;

plot(x1,y1,'o',x2,y2,'+',x3,y3,'*')

axis([0 4 0 4])

xlabel('xaxis')

ylabel('yaxis')

title('3points in a plane')

After creating and saving myfile.m, go to the MATLAB command window
and enter myfile. MATLAB will execute the instructions in the order of the
statements stored in your myfile.m file.
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1.5 MATLAB Simple Programming

1.5.1 Iterative Loops

The power of computers lies in their ability to perform a large number of
repetitive calculations. To do this without entering the value of a parameter
or variable each time that these are changed, all computer languages have
control structures that allow commands to be performed and controlled by
counter variables, and MATLAB is no different. For example, the MATLAB
“for” loop allows a statement or a group of statements to be repeated.

Example 1.8
Generate the square of the first ten integers.

Solution: Edit and execute the the following script M-file:

for m=1:10

x(m)=m^2;

end;

In this case, the number of repetitions is controlled by the index variable m,
which takes on the values m = 1 through m = 10 in intervals of 1. Therefore, ten
assignments were made. What the above loop is doing is sequentially assign-
ing the different values of m^2 (i.e., m2) in each element of the “x-array.” An
array is just a data structure that can hold multiple entries. An array can be
1-D such as in a vector, or 2-D such as in a matrix. More will be said about
vectors and matrices in subsequent chapters. At this time, think of the 1-D
and 2-D arrays as pigeonholes with numbers or ordered pair of numbers
respectively assigned to them.

To find the value of a particular slot of the array, such as slot 3, enter:

x(3)

To read all the values stored in the array, type:

x

Question: What do you get if you enter m?

1.5.2 If-Else-End Structures

If a sequence of commands must be conditionally evaluated based on a rela-
tional test, the programming of this logical relationship is executed with
some variation of an if-else-end structure.
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A. The simplest form of this structure is:
if expression

commands evaluated if expression is True

else

commands evaluated if expression is False

end

NOTES
1. The commands between the if and else statements are evaluated

if all elements in the expression are true.
2. The conditional expression uses the Boolean logical symbols &

(and), | (or), and ~ (not) to connect different propositions.

Example 1.9
Find for integer 0 < a ≤ 10, the values of C, defined as follows:

and b = 15.

Solution: Edit and execute the following script M-file:

for a=1:10

b=15;

if a>5

C(a)=a*b;

else

C(a)=(a*b)*(3/2);

end

end

Check that the values of C that you obtain by typing C are:

22.5 45 67.5 90 112.50 90 105 120 135 150

B. When there are three or more alternatives, the if-else-end struc-
ture takes the form:
if expression 1

Commands 1 evaluated if expression 1 is True

C
ab a

ab a
=

>

≤







for

for

5
3
2

5
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elseif expression 2

Commands 2 evaluated if expression 2 is True

elseif expression 3

Commands 3 evaluated if expression 3 is True

…

else

Commands evaluated if no other expression is True

end

In this form, only the commands associated with the first True expression
encountered are evaluated; ensuing relational expressions are not tested.

1.5.2.1 Alternative Syntax to the if Statement

As an alternative to the if syntax, we can use, in certain instances, Boolean
expressions to specify an expression in different domains. For example,
(x>=l) has the value 1 if x is larger than or equal to 1 and zero otherwise;
and (x<=h) is equal to 1 when x is smaller than or equal to h, and zero oth-
erwise.

The relational operations allowed inside the parentheses are: ==, <=, >=,
~=, <, >.

Homework Problem

Pb. 1.2 For the values of integer a going from 1 to 10, using separately the
methods of the if syntax and the Boolean alternative expressions, find the
values of C if:

Use the stem command to graphically show C.

1.6 Array Operations

In the above examples, we used for loops repeatedly. However, this kind of
loop-programming is very inefficient and must be avoided as much as possi-

C a a

C a a

C a a

= <
= + ≤ <
= ≥

2 3
5 3 7

7

for
for
for
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ble in MATLAB. In fact, ideally, a good MATLAB program will always mini-
mize the use of loops because MATLAB is an interpreted language — not a
compiled one. As a result, any looping process is very inefficient. Neverthe-
less, at times we use the for loops, when necessitated by pedagogical reasons.

To understand array operations more clearly, consider the following:

a=1:3 % a starts at 1, goes to 3 in increments of 1.

If the increment is not 1, you must specify the increment; for example:

b=2:2:6 % b starts at 2, goes to 6 in increments of 2

To distinguish arrays operations from either operations on scalars or on
matrices, the symbol for multiplication becomes .*, that of division ./, and
that of exponentiation .^. Thus, for example:

c=a.*b % takes every element of a and multiplies
% it by the element of b in the same array location

Similarly, for exponentiation and division:

d=a.^b

e=a./b

If you try to use the regular scalar operations symbols, you will get an error
message.

Note that array operations such as the above require that the two arrays
have the same length (i.e., the same number of elements). To verify that two
arrays have the same number of elements (dimension), use the length com-
mand. Thus, to find the length of a and b, enter:

length(a)

length(b)

NOTE The expression x=linspace(0,10,200) is also the generator for
an x-array with first element equal to 0, a last element equal to 10, and having
200 equally spaced points between 0 and 100. Here, the number of points
rather than the increment is specified; that is, length(x)=200.

1.7 Curve and Surface Plotting

Review the sections of the Supplement pertaining to lines, quadratic func-
tions, and trigonometric functions before proceeding further.



© 2001 by CRC Press LLC

1.7.1 x-y Parametric Plot

Now edit another M-file called myline.m as follows and execute it.

N=10;

for m=1:N

x(m)=m;

y(m)=2*m+3;

end

plot(x,y)

After executing the M-file using myline, you should see a straight line con-
necting the points (1, 5) and (10, 23). This demonstration shows the basic con-
struct for creating two arrays and plotting the points with their x-coordinate
from a particular location in one array and their y-coordinate from the same
location in the second array. We say that the plot command here plotted the
y-array vs. the x-array.

We note that the points are connected by a continuous line making a
smooth curve; we say that the program graphically interpolated the discrete
points into a continuous curve. If we desire to see additionally the individual
points corresponding to the values of the arrays, the last command should be
changed to:

plot(x,y,x,y,'o')

Example 1.10
Plot the two curves y1 = 2x + 3 and y2 = 4x + 3 on the same graph.

Solution: Edit and execute the following script M-file:

for m=1:10 m=1:10;

x(m)=m; x=m;

y1(m)=2*m+3; or better y1=2*m+3;

y2(m)=4*m+3; y2=4*m+3;

end plot(x,y1,x,y2)

plot(x,y1,x,y2)

Finally, note that you can separate graphs in one figure window. This is
done using the subplot function in MATLAB. The arguments of the subplot
function are subplot(m,n,p), where m is the number of rows partitioning
the graph, n is the number of columns, and p is the particular subgraph cho-
sen (enumerated through the left to right, top to bottom convention).
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1.7.1.1 Demonstration: Plotting Multiple Figures within a Figure 
Window

Using the data obtained in the previous example, observe the difference in
the partition of the page in the following two sets of commands:

subplot(2,1,1)

plot(x,y1)

subplot(2,1,2)

plot(x,y2)

and

clf

subplot(1,2,1)

plot(x,y1)

subplot(1,2,2)

plot(x,y2)

1.7.2 More on Parametric Plots in 2-D

In the preceding subsection, we generated the x- and y-arrays by first writing
the x-variable as a linear function of a parameter, and then expressed the
dependent variable y as a function of that same parameter. What we did is
that, instead of thinking of a function as a relation between an independent
variable x and a dependent variable y, we thought of both x and y as being
dependent functions of a third independent parameter. This method of curve
representation, known as the parametric representation, is described by (x(t),
y(t)), where the parameter t varies over some finite domain (tmin, tmax). Note,
however, that in the general case, unlike the examples in the previous chapter
subsection, the independent variable x need not be linear in the parameter,
nor is the process of parametrization unique.

Example 1.11
Plot the trigonometric circle.

Solution: Recalling that the x-coordinate of any point on the trigonometric
circle has the cosine as x-component and the sine as y-component, the gener-
ation of the trigonometric circle is immediate:

th=linspace(0,2*pi,101)

x=cos(th);

y=sin(th);
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plot(x,y)

axis square

The parametric representation of many common curves is our next topic of
interest. The parametric representation is defined such that if x and y are con-
tinuous functions of t over the interval I, we can describe a curve in the x-y
plane by specifying:

C: x = x(t), y = y(t), and t ∈ I

More Examples:
In the following examples, we want to identify the curves f(x, y) = 0 corre-
sponding to each of the given parametrizations.

Example 1.12
C: x = 2t – 1, y = t + 1, and 0 < t < 2. The initial point is at x = –1, y = 1, and the
final point is at x = 3, y = 3.

Solution: The curve f(x, y) = 0 form can be obtained by noting that:

2t – 1 = x ⇒ t = (x + 1)/2

Substitution into the expression for y results in:

This describes a line with slope 1/2 crossing the x-axis at x = –3.

Question: Where does this line cross the y-axis?

Example 1.13
C: x = 3 + 3 cos(t), y = 2 + 2 sin(t), and 0 < t < 2π. The initial point is at x = 6, y
= 2, and the final point is at x = 6, y = 2.

Solution: The curve f(x, y) = 0 can be obtained by noting that:

Using the trigonometric identity cos2(t) + sin2(t) = 1, we deduce the following
equation:

y
x= +
2

3
2

sin( ) cost
y

t
x=

− ( ) = −2
2

3
3

and
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This is the equation of an ellipse centered at x = 3, y = 2 and having major and
minor radii equal to 3 and 2, respectively.

Question 1: What are the coordinates of the foci of this ellipse?

Question 2: Compare the above curve with the curve defined through:

x = 3 + 3 cos(2t), y = 2 + 2 sin(2t), and 0 < t < 2π

What conclusions can you draw from your answer?

In-Class Exercises

Pb. 1.3 Show that the following parametric equations:

x = h + a sec(t), y = k + b tan(t), and –π/2 < t < π/2

are those of the hyperbola also represented by the equation:

Pb. 1.4 Plot the hyperbola represented by the parametric equations of Pb.
1.3, with h = 2, k = 2, a = 1, b = 2. Find the coordinates of the vertices and the
foci. (Hint: One branch of the hyperbola is traced for –π/2 < t < π/2, while the
other branch is traced when π/2 < t < 3π/2.)

Pb. 1.5 The parametric equations of the cycloid are given by:

x = Rωt + R sin(ωt), y = R + R cos(ωt), and 0 < t

Show how this parametric equation can be obtained by following the kine-
matics of a point attached to the outer rim of a wheel that is uniformly rolling,
without slippage, on a flat surface. Relate the above parameters to the linear
speed and the radius of the wheel.

Pb. 1.6 Sketch the curve C defined through the following parametric equa-
tions:

( ) ( )y x−
+ − =

2
2

3
3

1
2

2

2

2

( ) ( )x h
a

y k
b

− −
−

=
2

2

2
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Homework Problems

The following set of problems provides the mathematical basis for under-
standing the graphical display on the screen of an oscilloscope, when in the
x-y mode.

Pb. 1.7 To put the quadratic expression

Ax2 + Bxy + Cy2 + Dx + Ey + F = 0

in standard form (i.e., to eliminate the x-y mixed term), make the transformation

Show that the mixed term is eliminated if 

Pb. 1.8 Consider the parametric equations

C: x = a cos(t), y = b sin(t + ϕ), and 0 < t < 2π

where the initial point is at x = a, y = b sin(ϕ), and the final point is at x = a,
y = b sin(ϕ).

a. Obtain the equation of the curve in the form f(x, y) = 0.
b. Using the results of Pb. 1.7, prove that the ellipse inclination angle

is given by:

x t

t t

t t

t t

y t

t
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Pb. 1.9 If the parametric equations of a curve are given by:

C: x = cos(t), y = sin(2t), and 0 < t < 2π

where the initial point is at x = 1, y = 0, and the final point is at x = 1, y = 0.
The curve so obtained is called a Lissajous figure. It has the shape of a fig-

ure 8 with two nodes in the x-direction and only one node in the y-direction.
What do you think the parametric equations should be if we wanted m

nodes on the x-axis and n nodes on the y-axis? Test your hypothesis by plot-
ting the results.

1.7.3 Plotting a 3-D Curve

Our next area of exploration is plotting 3-D curves.

Example 1.14
Plot the helix.

Solution: To plot a helical curve, we can imagine initially that a point is
revolving at a uniform speed around the perimeter of a circle. Now imagine
that as the circular motion is continuing, the point is moving away from the
x-y plane at some constant linear speed. The parametric representation of this
motion can be implemented in MATLAB through the following:

for m=1:201

th(m)=2*pi*.01*(m-1);

x(m)=cos(th(m));

y(m)=sin(th(m));

z(m)=th(m);

end

plot3(x,y,z)

In-Class Exercises

Pb. 1.10 In the helix of Example 1.14, what is the vertical distance (the pitch)
between two consecutive helical turns. How can you control this distance?
Find two methods of implementation.

Pb. 1.11 If instead of a circle in 2-D, as in the helix, the particle describes in
2-D a Lissajous pattern having two nodes in the y-direction and three nodes
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in the x-direction, assuming that the z-parametric equation remains the same,
show the resulting 3-D trajectory.

Pb. 1.12 What if z(t) is periodic in t? For example, z(t) = cos(t) or z(t) =
cos(2t), while the 2-D motion is still circular. Show the 3-D trajectory.

In Example 1.14, we used the for loop to generate the dependent arrays for
the helix; but as pointed out previously, a more efficient method to program
the helix is in the array notation, as follows:

th=[0:.01:2]*2*pi;

x=cos(th);

y=sin(th);

z=th;

plot3(x,y,z)

1.7.4 Plotting a 3-D Surface

We now explore the two different techniques for rendering, in MATLAB, 3-D
surface graphics: the mesh and the contour representations.

• A function of two variables z = f(x, y) represents a surface in 3-D
geometry; for example:

z = ax + by + c

represents a plane that crosses the vertical axis (z-axis) at c.
• There are essentially two main techniques in MATLAB for viewing

surfaces: the mesh function and the contour function.
• In both techniques, we must first create a 2-D array structure (like

a checkerboard) with the appropriate x- and y-values. To imple-
ment this, we use the MATLAB meshgrid function.

• The z-component is then expressed in the variables assigned to
implement the meshgrid command.

• We then plot the function with either the mesh command or the
contour command. The mesh command gives a 3-D rendering of
the surface, while the contour command gives contour lines,
wherein each contour represents the locus of points on the surface
having the same height above the x-y plane. This last rendering
technique is that used by mapmakers to represent the topography
of a terrain.
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1.7.4.1 Surface Rendering

Example 1.15
Plot the sinc function whose equation is given by:

over the domain –8 < x < 8 and –8 < y < 8.

Solution: The implementation of the mesh rendering follows:

x=[-8:.1:8];

y=[-8:.1:8];

[X,Y]=meshgrid(x,y);

R=sqrt(X.^2+Y.^2)+eps;

Z=sin(R)./R;

mesh(X,Y,Z)

The variable eps is a tolerance number = 2–52 used for determining expres-
sions near apparent singularities, to avoid numerical division by zero.

To generate a contour plot, we replace the last command in the above by:

contour(X,Y,Z,50) % The fourth argument specifies
% the number of contour lines to be shown

If we are interested only in a particular contour level, for example, the one
with elevation Z0, we use the contour function with an option, as follows:

contour(X,Y,Z,[Zo Zo])

Occasionally, we might be interested in displaying simultaneously the
mesh and contour rendering of a surface. This is possible through the use of
the command meshc. It is the same as the mesh command except that a
contour plot is drawn beneath the mesh.

Preparatory Activity: Look in your calculus book for some surfaces equations,
such as those of the hyperbolic paraboloid and the elliptic paraboloid and
others of your choice for the purpose of completing Pb. 1.16 of the next in-
class activity.

z
x y

x y
=

+( )
+

sin 2 2

2 2
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In-Class Exercises

Pb. 1.13 Use the contour function to graphically find the locus of points
on the above sinc surface that are 1/2 units above the x-y plane (i.e., the sur-
face intersection with the z = 1/2 plane).

Pb. 1.14 Find the x-y plane intersection with the following two surfaces:

Pb. 1.15 Verify your answers to Pb. 1.14 with that which you would obtain
analytically for the shape of the intersection curves of the surfaces with the
x-y plane. Also, compute the coordinates of the point of intersection of the
two obtained curves. Verify your results graphically.

Pb. 1.16 Plot the surfaces that you have selected in your preparatory activ-
ity. Look in the help folder for the view command to learn how to view these
surfaces from different angles.

1.8 Polar Plots

MATLAB can also display polar plots. In the first example, we draw an
ellipse of the form r = 1 + ε cos(θ) in a polar plot; other shapes are given in the
other examples.

Example 1.16
Plot the ellipse in a polar plot.

Solution: The following sequence of commands plot the polar plot of an
ellipse with ε = 0.2:

th=0:2*pi/100:2*pi;

rho=1+.2*cos(th);

polar(th,rho)

The shape you obtain may be unfamiliar; but to verify that this is indeed an
ellipse, view the curve in a Cartesian graph. For that, you can use the MAT-
LAB polar to Cartesian converter pol2cart, as follows:

z x y

z x y

1

2

3

4 2 4

= + +

= − −
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[x,y]=pol2cart(th,rho);

plot(x,y)

axis equal

Example 1.17
Graph the polar plot of a spiral.

Solution: The equation of the spiral is given by:

r = aθ

Its polar plot can be viewed by executing the following script M-file (a = 3):

th=0:2*pi/100:2*pi;

rho=3*th;

polar(th,rho)

In-Class Exercises

Pb. 1.17 Prove that the polar equation r = 1 + ε cos(θ), where ε is always
between –1 and 1, results in an ellipse. (Hint: Relate ε to the ratio between the
semi-major and semi-minor axis.) It is worth noting that the planetary orbits
are usually described in this manner in most astronomy books.

Pb. 1.18 Plot the three curves described by the following polar equations:

Pb. 1.19 Plot:

r = sin(2θ) cos(2θ)

The above gives a flower-type curve with eight petals. How would you make
a flower with 16 petals?

Pb. 1.20 Plot:

r = sin2(θ)

This two-lobed structure shows the power distribution of a simple dipole
antenna. Note the directed nature of the radiation. Can you increase the
directivity further?

r r r= − = − =2 2 1 2 2 2sin( ),  sin( ),  sin( )θ θ θ
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Pb. 1.21 Acquaint yourself with the polar plots of the following curves:
(choose first a = 1, then experiment with other values).

a. Straight lines: 

b. Cissoid of Diocles: 

c. Strophoid: 

d. Folium of Descartes: 

1.9 Animation

A very powerful feature of MATLAB is its ability to render an animation. For
example, suppose that we want to visualize the oscillations of an ordinary
spring. What are the necessary steps to implement this objective?

1. Determine the parametric equations that describe the curve at a
fixed time. In this instance, it is the helix parametric equations as
given earlier in Example 1.14.

2. Introduce the time dependence in the appropriate curve parame-
ters. In this instance, make the helix pitch to be oscillatory in time.

3. Generate 3-D plots of the curve at different times. Make sure that
your axis definition includes all cases.

4. Use the movie commands to display consecutively the different
frames obtained in step 3.

The following script M-file implements the above workplan:

th=0:pi/60:32*pi;

a=1;

A=0.25;

w=2*pi/15;

M=moviein(16);

for t=1:16;

x=a*cos(th);

r
a

=
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≤ ≤1
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2cos( ) sin( )θ θ
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y=a*sin(th);

z=(1+A*cos(w*(t-1)))*th;

plot3(x,y,z,'r');

axis([-2 2 -2 2 0 40*pi]);

M(:,t)=getframe;

end

movie(M,15)

The statement M=moviein(16) creates the 2-D structure that stores in
each column the data corresponding to a frame at a specific time. The frames
themselves are generated within the for loop. The getframe function
returns a pixel image of the image of the different frames. The last command
plays the movie n-times (15, in this instance).

1.10 Histograms

The most convenient representation for data collected from experiments is in
the form of histograms. Typically, you collect data and want to sort it out in
different bins; the MATLAB command for this operation is hist. But prior to
getting to this point, let us introduce some array-related definitions and learn
the use of the MATLAB commands that compute them.

Let {yn} be a data set; it can be represented in MATLAB by an array. The
largest element of this array is obtained through the command max(y), and
the smallest element is obtained through the command min(y).

The mean value of the elements of the array is obtained through the com-
mand mean(y), and the standard deviation is obtained through the com-
mand std(y).

The definitions of the mean and of the standard deviation are, respectively,
given by:

where N is the dimension of the array.
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The data (i.e., the array) can be organized into a number of bins (nb) and
exhibited through the command [n,y]=hist(y,nb); the array n in the
output will be the number of elements in each of the bins.

Example 1.18
Find the mean and the standard deviation and draw the histogram, with 20
bins, for an array whose 10,000 elements are chosen from the MATLAB built-
in normal distribution with zero mean and standard deviation 1.

Solution: Edit and execute the following script M-file:

y=randn(1,10000);

meany=mean(y)

stdy=std(y)

nb=20;

hist(y,nb)

You will notice that the results obtained for the mean and the standard devi-
ation vary slightly from the theoretical results. This is due to the finite num-
ber of elements chosen for the array and the intrinsic limit in the built-in
algorithm used for generating random numbers.

NOTE The MATLAB command for generating an N-elements array of ran-
dom numbers generated uniformly from the interval [0, 1] is rand(1,N).

1.11 Printing and Saving Work in MATLAB

Printing a figure: Use the MATLAB print function to print a displayed figure
directly to your printer. Notice that the printed figure does not take up the
entire page. This is because the default orientation of the graph is in portrait
mode. To change these settings, try the following commands on an already
generated graphic window:

orient('landscape') %full horizontal layout

orient('tall') %full vertical layout

Printing a program file (script M-file): For both the Mac and PC, open the M-file
that you want to print. Go to the File pull-down menu, and select Print.

Saving and loading variables (data): You can use the MATLAB save function to
either save a particular variable or the entire MATLAB workspace. To do this,
follow the following example:
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x=1;y=2;

save 'user volume:x'

save 'user volume:workspace'

The first save command saved the variable x into a file x.mat. You can
change the name of the .mat file so it does not match the variable name, but
that would be confusing. The second command saves all variables (x and y)
in the workspace into workspace.mat.

To load x.mat and workspace.mat, enter MATLAB and use the MATLAB
load functions; note what you obtain if you entered the following commands:

load 'user volume:x'

x

load 'user volume:workspace'

y

After loading the variables, you can see a list of all the variables in your
workplace if you enter the MATLAB who command.

What would you obtain if you had typed and entered the who command at
this point?

Now, to clear the workspace of some or all variables, use the MATLAB
clear function.

clear x %clears variable x from the workspace

clear %clears all variables from workspace

1.12 MATLAB Commands Review

axis Sets the axis limits for both 2-D and 3-D plots. Axis
supports the arguments equal and square, which
makes the current graphs aspect ratio 1.

contour Plots contour lines of a surface.
clear Clears all variables from the workspace.
clf Clears figure.
for Runs a sequence of commands a given number of

times.
getframe Returns the pixel image of a movie frame.
help Online help.
hold on(off) Holds the plot axis with existing graphics on, so that

multiple figures can be plotted on the same graph
(release the hold of the axes).
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if Conditional evaluation.
length Gives the length of an array.
load Loads data or variable values from previous sessions

into current MATLAB session.
linspace Generates an array with a specified number of points

between two values.
meshgrid Makes a 2-D array of coordinate squares suitable for

plotting surface meshes.
mesh Plots a mesh surface of a surface stored in a matrix.
meshc The same as mesh, but also plots in the same figure

the contour plot.
min Finds the smallest element of an array.
max Finds the largest element of an array.
mean Finds the mean of the elements of an array.
moviein Creates the matrix that contains the frames of an ani-

mation.
movie Plays the movie described by a matrix M.
orient Orients the current graph to your needs.
plot Plots points or pairs of arrays on a 2-D graph.
plot3 Plots points or array triples on a 3-D graph.
polar Plots a polar plot on a polar grid.
pol2cart Polar to Cartesian conversion.
print Prints a figure to the default printer.
quit or exit Leave MATLAB program.
rand Generates an array with elements randomly chosen

from the uniform distribution over the interval [0, 1].
randn Generates an array with elements randomly chosen

from the normal distribution function with zero
mean and standard deviation 1.

subplot Partitions the graphics window into sub-windows.
save Saves MATLAB variables.
std Finds the standard deviation of the elements of an

array.
stem Plots the data sequence as stems from the x-axis ter-

minated with circles for the data value.
view Views 3-D graphics from different perspectives.
who Lists all variables in the workspace.
xlabel, ylabel,
zlabel, title

Labels the appropriate axes with text and title.

(x>=x1) Boolean function that is equal to 1 when the condition
inside the parenthesis is satisfied, and zero otherwise.
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2
Difference Equations

This chapter introduces difference equations and examines some simple but
important cases of their applications. We develop simple algorithms for their
numerical solutions and apply these techniques to the solution of some prob-
lems of interest to the engineering professional. In particular, it illustrates
each type of difference equation that is of widespread interest.

2.1 Simple Linear Forms

The following components are needed to define and solve a difference
equation:

1. An ordered array defining an index for the sequence of elements
2. An equation connecting the value of an element having a certain

index with the values of some of the elements having lower indices
(the order of the equation being defined by the number of lower
indices terms appearing in the difference equation)

3. A sufficient number of the values of the elements at the lowest
indices to act as seeds in the recursive generation of the higher
indexed elements.

For example, the Fibonacci numbers are defined as follows:

1. The ordered array is the set of positive integers
2. The defining difference equation is of second order and is given by:

F(k + 2) = F(k + 1) + F(k) (2.1)

3. The initial conditions are F(1) = F(2) = 1 (note that the required
number of initial conditions should be the same as the order of the
equation).
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From the above, it is then straightforward to compute the first few
Fibonacci numbers:

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, …

Example 2.1
Write a program for finding the first 20 Fibonacci numbers.

Solution: The following program fulfills this task:

N=18;

F(1)=1;

F(2)=1;

for k=1:N

F(k+2)=F(k)+F(k+1);

end

F

It should be noted that the value of the different elements of the sequence
depends on the values of the initial conditions, as illustrated in Pb. 2.1, which
follows.

In-Class Exercises

Pb. 2.1 Find the first 20 elements of the sequence that obeys the same recur-
sion relation as that of the Fibonacci numbers, but with the following initial
conditions:

F(1) = 0.5 and F(2) = 1

Pb. 2.2 Find the first 20 elements of the sequence generated by the follow-
ing difference equation:

F(k + 3) = F(k) + F(k + 1) + F(k + 2)

with the following boundary conditions:

F(1) = 1, F(2) = 2, and F(3) = 3

Why do we need to specify three initial conditions?
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2.2 Amortization

In this application of difference equations, we examine simple problems of
finance that are of major importance to every engineer, on both the personal
and professional levels. When the purchase of any capital equipment or real
estate is made on credit, the assumed debt is normally paid for by means of
a process known as amortization. Under this plan, a debt is repaid in a
sequence of periodic payments where a portion of each payment reduces the
outstanding principal, while the remaining portion is for interest on the loan.

Suppose that the original debt to be paid is C and that interest charges are
compounded at the rate r per payment period. Let y(k) be the outstanding
principal after the kth payment, and u(k) the amount of the kth payment.

After the kth payment period, the outstanding debt increased by the inter-
est due on the previous principal y(k – 1), and decreased by the amount of
payment u(k), this relation can be written in the following difference equa-
tion form:

y(k) = (1 + r) y(k –1) – u(k) (2.2)

We can simplify the problem and assume here that the bank wants its
money back in equal amounts over N periods (this can be in days, weeks,
months, or years; note, however, that whatever unit is used here should be
the same as used for the assignment of the value of the interest rate r). There-
fore, let

u(k) = p for k = 1, 2, 3, …, N (2.3)

Now, using Eq. (2.2), let us iterate the first few terms of the difference
equation:

y(1) = (1 + r)y(0) – p = (1 + r)C – p (2.4)

Since C is the original capital borrowed;

At k = 2, using Eq. (2.2) and Eq. (2.4), we obtain:

y(2) = (1 + r)y(1) – p = (1 + r)2C – p(1 + r) – p (2.5)

At k = 3, using Eq. (2.2), (2.4), and (2.5), we obtain:

y(3) = (1 + r)y(2) – p = (1 + r)3C – p(1 + r)2 – p(1 + r) – p (2.6)
etc. …

and for an arbitrary k, we can write, by induction, the general expression:
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(2.7)

Using the expression for the sum of a geometric series, from the appendix, the
expression for y(k) then reduces to:

(2.8)

At k = N, the debt is paid off and the bank is owed no further payment;
therefore:

(2.9)

From this equation, we can determine the amount of each of the (equal)
payments:

(2.10)

Question: What percentage of the first payment is going into retiring the
principal?

In-Class Exercises

Pb. 2.3 Given the principal, the number of periods and the interest rate, use
Eq. (2.10) to write a MATLAB program to find the amount of payment per
period, assuming the payment per period is the same for all periods.

Pb. 2.4 Use the same reasoning as for the amortization problem to write the
difference equation for an individual’s savings plan. Let y(k) be the savings
balance on the first day of the kth year and u(k) the amount of deposit made
in the kth year.

Write a MATLAB program to compute y(k) if the sequence u(k) and the inter-
est rate r are given. Specialize to the case where you deposit an amount that
increases by the rate of inflation i. Compute and plot the total value of the
savings as a function of k if the deposit in the first year is $1000, the yearly
interest rate is 6%, and the yearly rate of inflation is 3%. (Hint: For simplicity,
assume that the deposits are made on December 31 of each year, and that the
balance statement is issued on January 1 of each year.)
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2.3 An Iterative Geometric Construct: The Koch Curve

In your previous studies of 2-D geometry, you encountered classical geomet-
ric objects such as the circle, the triangle, the square, different polygons, etc.
These shapes only approximate the shapes that you observe in nature (e.g.,
the shapes of clouds, mountain ranges, rivers, coastlines, etc.). In a successful
effort to address the limitations of classical geometry, mathematicians have
developed, over the last century and more intensely over the last three
decades, a new geometry called fractal geometry. This geometry defines the
geometrical object through an iterative transformation applied an infinite
number of times on an initial simple geometrical object. We illustrate this
new concept in geometry by considering the Koch curve (see Figure 2.1).

The Koch curve has the following simple geometrical construction. Begin
with a straight line of length L. This initial object is called the initiator. Now
partition it into three equal parts. Then replace the middle line segment by an
equilateral triangle (the segment you removed is its base). This completes the
basic construction, which transformed the line segment into four non-colin-
ear smaller parts. This constructional prescription is called the generator. We
now repeat the transformation, taking each of the resulting line segments,
partitioning them into three equal parts, removing the middle section, etc.

FIGURE 2.1
The first few steps in the construction of the Koch curve.
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This process is repeated indefinitely. Figure 2.1 the first two steps of this con-
struction. It is interesting to observe that the Koch curve is an example of a
curve where there is no way to fit a tangent to any of its points. In a sense, it
is an example of a curve that is made out of corners everywhere.

The detailed study of these objects is covered in courses in fractal geometry,
chaos, dynamic systems, etc. We limit ourselves here to the simple problems
of determining the number of segments, the length of each segment, the
length of the curve, and the area bounded by the curve and the horizontal
axis, following the kth step:

1. After the first step, we are left with a curve made up of four line
segments of equal length; after the second step, we have (4 × 4)
segments; and the number of segments after k steps, is

n(k) = 4k (2.11)

2. If the initiator had length L, the length of the segment after the first
step is L/3, L/(3)2, after the second step and after k steps:

s(k) = L/(3)k (2.12)

3. Combining the results of Eqs. (2.11) and (2.12), we deduce that the
length of the curve after k steps:

(2.13)

4. The number of vertices in this curve, denoted by u(k), is equal to
the number of segments plus one:

u(k) = 4k + 1 (2.14)

5. The area enclosed by the Koch curve and the horizontal line can be
deduced from solving a difference equation: the area enclosed after
the kth step is equal to the area enclosed in the (k – 1)th step plus the
number of the added triangles multiplied by their individual area:

Number of new triangles = (2.15)

Area of the new equilateral triangle = (2.16)

P k L
k
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from which the difference equation for the area can be deduced:

(2.17)

The initial condition for this difference equation is:

(2.18)

Clearly, the solution of the above difference equation is the sum of a geo-
metric series, and can therefore be written analytically. For k → ∞, this area
has the limit:

(2.19)

However, if you did not notice the relationship of the above difference
equation with the sum of a geometric series, you can still solve this equation
numerically, using the following routine and assuming L = 1:

N=25;

A=zeros(N,1); %preallocating size of array speeds
% computation

m=1:N;

A(1)=(sqrt(3)/24)*(2/3);

for k=2:N

A(k)=A(k-1)+(sqrt(3)/24)*((2/3)^(2*k-1));

end

stem(m,A,'*')

The above plot shows the value of the area on the first 20 iterations of the
function, and as can be verified, the numerical limit of this area has the same
value as the analytical expression given in Eq. (2.19).

Before leaving the Koch curve, we note that although the area of the curve
goes to a finite limit as the index increases, the value of the length of the curve
[Eq. (2.13)] continues to increase. This is a feature not encountered in the clas-
sical geometric objects with which you are most familiar.
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In-Class Exercise

Pb. 2.5 Write a program to draw the Koch curve at the kth step. (Hint: Start-
ing with the farthest left vertex and going clockwise, write a difference equa-
tion relating the coordinates of a vertex with those of the preceding vertex,
the length of the segment, and the angle that the line connecting the two con-
secutive vertices makes with the x-axis.)

2.4 Solution of Linear Constant Coefficients Difference 
Equations

In Section 2.1, we explored the general numerical techniques for solving dif-
ference equations. In this section, we consider, some special techniques for
obtaining the analytical solutions for the class of linear constant coefficients
difference equations. The related physical problem is to determine, for a lin-
ear system, the output y(k), k > 0, given a specific input u(k) and a specific set
of initial conditions. We discuss, at this stage, the so-called direct method.

The general expression for this class of difference equation is given by:

(2.20)

The direct method assumes that the total solution of a linear difference equa-
tion is the sum of two parts — the homogeneous solution and the particular
solution:

y(k) = yhomog.(k) + ypartic.(k) (2.21)

The homogeneous solution is independent of the input u(k), and the RHS of
the difference equation is equated to zero; that is,

(2.22)

2.4.1 Homogeneous Solution

Assume that the solution is of the form:

a y k j b u k mj
j

N

m
m

M

( ) ( )− = −
= =
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0 0

a y k jj
j

N

( )− =
=
∑ 0

0
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yhomog.(k) = λk (2.23)

Substituting in the homogeneous equation, we obtain the following algebraic
equation:

(2.24)

or

(2.25)

The polynomial in parentheses is called the characteristic polynomial of the
system. The roots can be obtained analytically for all polynomials up to order
4; otherwise, they are obtained numerically. In MATLAB, they can be
obtained graphically when they are all real, or through the roots command
in the most general case. We introduce this command in Chapter 5. In all the
following examples in this chapter, we restrict ourselves to cases for which
the roots can be obtained analytically.

If we assume that the roots are all distinct, the general solution to the homo-
geneous difference equation is:

(2.26)

where λ1, λ2, λ3, …, λN are the roots of the characteristic polynomial.

Example 2.2
Find the homogeneous solution of the difference equation

y(k) – 3y(k – 1) – 4y(k – 2) = 0

Solution: The characteristic polynomial associated with this equation leads
to the quadratic equation:

λ2 – 3λ – 4 = 0

The roots of this equation are –1 and 4, respectively. Therefore, the solution of
the homogeneous equation is:

yhomog.(k) = C1(–1)k + C2(4)k

The constants C1 and C2 are determined from the initial conditions y(1) and
y(2). Substituting, we obtain:

aj
k j

j

N

λ −

=

=∑ 0
0

λ λ λ λ λk N N N N
N Na a a a a− − −
−+ + +…+ + =( )0 1

1
2

2
1 0

y k C C Ck k
N N

k
homog.( ) = + +…+1 1 2 2λ λ λ
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NOTE If the characteristic polynomial has roots of multiplicity m, then the
portion of the homogeneous solution corresponding to that root can be writ-
ten, instead of C1λk, as:

In-Class Exercises

Pb. 2.6 Find the homogeneous solution of the following second-order dif-
ference equation:

y(k) = 3y(k – 1) – 2y(k – 2)

with the initial conditions: y(0) = 1 and y(1) = 2. Then check your results
numerically.

Pb. 2.7 Find the homogeneous solution of the following second-order dif-
ference equation:

y(k) = [2 cos(θ)]y(k – 1) – y(k – 2)

with the initial conditions: y(–2) = 0 and y(–1) = 1. Check your results
numerically.

2.4.2 Particular Solution

The particular solution depends on the form of the input signal. The follow-
ing table summarizes the form of the particular solution of a linear equation
for some simple input functions:

For more complicated input signals, the z-transform technique provides the
simplest solution method. This technique is discussed in great detail in
courses on linear systems.

Input Signal Particular Solution

A (constant) B (constant)
AMk BMk

AkM B0kM + B1kM–1 + … + BM

{A cos(ω0k), A sin(ω0k)} B1 cos(ω0k) + B2 sin(ω0k)

C y
y

C
y y

1 2
4
5

1
2

5
1 2

20
= − + =

+
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( ) ( ) ( )
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C C k C kk k m m k
1
1

1
2

1
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In-Class Exercise

Pb. 2.8 Find the particular solution of the following second-order difference
equation:

y(k) – 3y(k – 1) + 2y(k – 2) = (3)k for k > 0

2.4.3 General Solution

The general solution of a linear difference equation is the sum of its homoge-
neous solution and its particular solution, with the constants adjusted, so as
to satisfy the initial conditions. We illustrate this general prescription with an
example.

Example 2.3
Find the complete solution of the first-order difference equation:

y(k + 1) + y(k) = k

with the initial condition y(0) = 0.

Solution: First, solve the homogeneous equation y(k + 1) + y(k) = 0. The char-
acteristic polynomial is λ + 1 = 0; therefore,

yhomog. = C(–1)k

The particular solution can be obtained from the above table. Noting that the
input signal has the functional form kM, with M = 1, then the particular solu-
tion is of the form:

ypartic. = B0k + B1 (2.27)

Substituting back into the original equation, and grouping the different pow-
ers of k, we deduce that:

B0 = 1/2 and B1 = –1/4

The complete solution of the difference equation is then:

y k C
kk( ) ( )= − + −

1
2 1

4
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The constant C is determined from the initial condition:

giving for the constant C the value 1/4.

In-Class Exercises

Pb. 2.9 Use the following program to model Example 2.3:

N=19;

y(1)=0;

for k=1:N

y(k+1)=k-y(k);

end

y

Verify the closed-form answer.

Pb. 2.10 Find, for k ≥ 2, the general solution of the second-order difference
equation:

y(k) – 3y(k – 1) – 4y(k – 2) = 4k + 2 × 4k–1

with the initial conditions y(0) = 1 and y(1) = 9. (Hint: When the functional
form of the homogeneous and particular solutions are the same, use the same
functional form for the solutions as in the case of multiple roots for the char-
acteristic polynomial.)

Answer:

Homework Problems

Pb. 2.11 Given the general geometric series y(k), where:

y(k) = 1 + a + a2 + … + ak

show that y(k) obeys the first-order equation:

y C( ) ( )
( )

0 0 1
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4
0= = − + −

y k kk k k( ) ( ) ( )= − − +
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y(k) = y(k – 1) + ak

Pb. 2.12 Show that the response of the system:

y(k) = (1 – a)u(k) + a y(k – 1)

to a step signal of amplitude c; that is, u(k) = c for all positive k, is given by:

y(k) = c(1 – ak+1) for k = 0, 1, 2, …

where the initial condition y(–1) = 0.

Pb. 2.13 Given the first-order difference equation:

y(k) = u(k) + y(k – 1) for k = 0, 1, 2, …

with the input signal u(k) = k, and the initial condition y(–1) = 0. Verify that
its solution also satisfies the second-order difference equation

y(k) = 2y(k – 1) – y(k – 2) + 1

with the initial conditions y(0) = 0 and y(–1) = 0.

Pb. 2.14 Verify that the response of the system governed by the first-order
difference equation:

y(k) = bu(k) + a y(k – 1)

to the alternating input: u(k) = (–1)k for k = 0, 1, 2, 3, … is given by:

if the initial condition is: y(–1) = 0.

Pb. 2.15 The impulse response of a system is the output from this system
when excited by an input signal δ(k) that is zero everywhere, except at k = 0,
where it is equal to 1. Using this definition and the general form of the solu-
tion of a difference equation, write the output of a linear system described by:

y(k) – 3y(k – 1) – 4y(k – 2) = δ(k) + 2δ(k – 1)

The initial conditions are: y(–2) = y(–1) = 0.

Answer:

y k
b
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Pb. 2.16 The expression for the National Income is given by:

y(k) = c(k) + i(k) + g(k)

where c is consumer expenditure, i is the induced private investment, g is the
government expenditure, and k is the accounting period, typically corre-
sponding to a particular quarter. Samuelson theory, introduced to many
engineers in Cadzow’s classic Discrete Time Systems (see reference list),
assumes the following properties for the above three components of the
National Income:

1. Consumer expenditure in any period k is proportional to the
National Income at the previous period:

c(k) = ay(k – 1)

2. Induced private investment in any period k is proportional to the
increase in consumer expenditure from the preceding period:

i(k) = b[c(k) – c(k – 1)] = ab[y(k – 1) – y(k – 2)]

3. Government expenditure is the same for all accounting periods:

g(k) = g

Combining the above equations, the National Income obeys the second-
order difference equation:

y(k) = g + a(1 + b) y(k – 1) – aby(k – 2) for k = 1, 2, 3, …

The initial conditions y(–1) and y(0) are to be specified.
Plot the National Income for the first 40 quarters of a new national entity,

assuming that: a = 1/6, b = 1, g = $10,000,000, y(–1) = $20,000,000, y(0) =
$30,000,000.

How would the National Income curve change if the marginal propensity to
consume (i.e., the constant a) is decreased to 1/8?

2.5 Convolution-Summation of a First-Order System with 
Constant Coefficients

The amortization problem in Section 2.2 was solved by obtaining the present
output, y(k), as a linear combination of the present and all past inputs, (u(k),
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u(k – 1), u(k – 2), …). This solution technique is referred to as the convolution-
summation representation:

(2.28)

where the w(i) is the weighting function (or weight). Usually, the infinite sum
is reduced to a finite sum because the inputs with negative indexes are usu-
ally assumed to be zeros.

On the other hand, in the difference equation formulation of this class of
problems, the present output y(k) is expressed as a linear combination of the
present and m most recent inputs and of the n most recent outputs, specifically:

y(k) = b0u(k) + b1u(k – 1) + … + bmu(k – m)
– a1y(k – 1) – a2y(k – 2) – … – any(k – n) (2.29)

where, of course, n is the order of the difference equation. Elementary tech-
niques for solving this class of equations were introduced in Section 2.4.
However, the most powerful technique to directly solve the linear difference
equation with constant coefficients is, as pointed out earlier, the z-transform
technique.

Each of the above formulations of the input-output problem has distinct
advantages in different circumstances. The direct difference equation formu-
lation is the most amenable to numerical computations because of lower
computer memory requirements, while the convolution-summation tech-
nique has the advantage of being suitable for developing mathematical
proofs and finding general features for the difference equation.

Relating the parameters of the two formulations of this problem is usually
cumbersome without the z-transform technique. However, for first-order dif-
ference equations, this task is rather simple.

Example 2.4
Relate, for a first-order difference equation with constant coefficients, the sets
{an} and {bn} with {wn}.

Solution: The first-order difference equation is given by:

y(k) = b0u(k) + b1u(k – 1) – a1y(k – 1)

where u(k) = 0 for all k negative. From the difference equation and the initial
conditions, we can directly write:

y(0) = b0u(0)

y k w i u k i
i

( ) ( ) ( )= −
=

∞

∑
0
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Similarly,

or, more generally, if:

y(k) = w(0)u(k) + w(1)u(k – 1) + … + w(k)u(0)

then,

In-Class Exercises

Pb. 2.17 Using the convolution-summation technique, find the closed form
solution for:

and the input function given by: 

Compare your analytical answer with the numerical solution.

Pb. 2.18 Show that the resultant weight functions for two systems are,
respectively:

w(k) = w1(k) + w2(k) if connected in parallel

if connected in cascade

for  ,
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2.6 General First-Order Linear Difference Equations*

Thus far, we have considered difference equations with constant coefficients.
Now we consider first-order difference equations with arbitrary functions as
coefficients:

y(k + 1) + A(k)y(k) = B(k) (2.30)

The homogeneous equation corresponding to this form satisfies the follow-
ing equation:

l(k + 1) + A(k)l(k) = 0 (2.31)

Its expression can be easily found:

(2.32)

Assuming that the general solution is of the form:

y(k) = l(k)v(k) (2.33)

let us find v(k). Substituting the above trial solution in the difference equa-
tion, we obtain:

l(k + 1)v(k + 1) + A(k)l(k)v(k) = B(k) (2.34)

Further, assuming that

v(k + 1) = v(k) + ∆v(k) (2.35)

substituting in the difference equation, and recalling that l(k) is the solution
of the homogeneous equation, we obtain:

(2.36)

Summing this over the variable k from 0 to k, we deduce that:
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(2.37)

where C is a constant.

Example 2.5
Find the general solution of the following first-order difference equation:

y(k + 1) – k2y(k) = 0

with y(1) = 1.

Solution:

Example 2.6
Find the general solution of the following first-order difference equation:

(k + 1)y(k + 1) – ky(k) = k2

with y(1) = 1.

Solution: Reducing this equation to the standard form, we have:

The homogeneous solution is given by:

The particular solution is given by:
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where we used the expression for the sum of the square of integers (see
Appendix).

The general solution is then:

From the initial condition y(1) = 1, we deduce that: C = 1.

In-Class Exercise

Pb. 2.19 Find the general solutions for the following difference equations,
assuming that y(1) = 1.

a. y(k + 1) – 3ky(k) = 3k.
b. y(k + 1) – ky(k) = k.

2.7 Nonlinear Difference Equations

In this and the following chapter section, we explore a number of nonlinear
difference equations that exhibit some general features typical of certain
classes of solutions and observe other instances with novel qualitative fea-
tures. Our exploration is purely experimental, in the sense that we restrict
our treatment to guided computer runs. The underlying theories of most of
the models presented are the subject of more advanced courses; however,
many educators, including this author, believe that there is virtue in expos-
ing students qualitatively early on to these fascinating and generally new
developments in mathematics.

2.7.1 Computing Irrational Numbers

In this model, we want to exhibit an example of a nonlinear difference equa-
tion whose solution is a sequence that approaches a specific limit, irrespec-
tive, within reasonable constraints, of the initial condition imposed on it. This
type of difference equation has been used to compute a class of irrational
numbers. For example, a well-defined approximation for computing  is
the feedback process:

(2.38)

This equation’s main features are explored in the following exercise.
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In-Class Exercise

Pb. 2.20 Using the difference equation given by Eq. (2.38):
a. Write down a routine to compute . As an initial guess, take the

initial value to be successively: 1, 1.5, 2; even consider 5, 10, and
20. What is the limit of each of the obtained sequences?

b. How many iterations are required to obtain  accurate to four
digits for each of the above initial conditions?

c. Would any of the above properties be different for a different choice
of A.

Now, having established that the above sequence goes to a limit, let us
prove that this limit is indeed . To prove the above assertion, let this limit
be denoted by ylim; that is, for large k, both y(k) and y(k + 1) ⇒ ylim, and the
above difference equation goes in the limit to:

(2.39)

Solving this equation, we obtain:

(2.40)

It should be noted that the above derivation is meaningful only when a
limit exists and is in the domain of definition of the sequence (in this case, the
real numbers). In Section 2.7.2, we encounter a sequence where, for some val-
ues of the parameters, there is no limit.

2.7.2 The Logistic Equation

Section 2.7.1 illustrated the case in which the solution of a nonlinear differ-
ence equation converges to a single limit for large values of the iteration
index. In this chapter subsection, we consider the case in which a succession
of iterates (called orbits) bifurcate, yielding orbits of period length 2, 4, 8, 16,
ad infinitum, ending in what is called a “chaotic” orbit of infinite period
length. We illustrate the prototype for this class of difference equations by
exploring the logistic difference equation.

The logistic equation was introduced by Verhulst to model the growth of
populations limited by finite resources (the name logistic was coined by the
French army under Napoleon when this equation was used for the planning
of “logement” of troops in camps). In more modern settings of ecology, the
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above model is used to simulate a population growth model. Specifically, in
an ecological or growth process, the normalized measure y(k + 1) of the next
generation of a specie (the number of animals, for example) is a linear func-
tion of the present measure y(k); that is,

y(k + 1) = ry(k) (2.41)

where r is the growth parameter. If unchecked, the growth of the specie fol-
lows a geometric series, which for r > 1 grows to infinity. But growth is often
limited by finite resources. In other words, the larger y(k), the smaller the
growth factor. The simplest way to model this decline in the growth factor is
to replace r by r(1 – y(k)), so that as y(k) approaches the theoretical limit (1 in
this case), the effective growth factor goes to zero. The difference equation
goes to:

y(k + 1) = r(1 – y(k))y(k) (2.42)

which is the standard form for the logistic equation.
In the next series of exercises, we explore the solution of Eq. (2.42) as we

vary the value of r. We find that qualitatively different classes of solutions
may appear for different values of r.

We start by writing the simple subroutine that models Eq. (2.42):

N=127; r= ; y(1)= ;

m=1:N+1;

for k=1:N

y(k+1)= r*(1-y(k))*y(k);

end

plot(m,y,'*')

x

The values of r and y(1) are to be keyed in for each of the specific cases under
consideration.

In-Class Exercises

In the following two problems, we take in the logistic equation r > 1 and
y(1) < 1.

Pb. 2.21 Consider the case that 1 < r < 3 and y(1) = 0.5.
a. Show that by running the above program for different values of r

and y(1) that the iteration of the logistic equation leads to the limit

y N
r

r
( ) .>> = −



1

1
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b. Does the value of this limit change if the value of y(1) is modified,
while r is kept fixed?

Pb. 2.22 Find the iterates of the logistic equation for the following values of
r: 3.1, 3.236068, 3.3, 3.498561699, 3.566667, and 3.569946, assuming the follow-
ing three initial conditions:

y(1) = 0.2, y(1) = 0.5, y(1) = 0.7

In particular, specify for each case:
a. The period of the orbit for large N, and the values of each of the

iterates.
b. Whether the orbit is super-stable (i.e., the periodicity is present for

all values of N).

This section provided a quick glimpse of two types of nonlinear difference
equations, one of which may not necessarily converge to one value. We dis-
covered that a great number of classes of solutions may exist for different
values of the equation’s parameters. In Section 2.8 we generalize to 2-D. Sec-
tion 2.8 illustrates nonlinear difference equations in 2-D geometry. The study
of these equations has led in the last few decades to various mathematical
discoveries in the branches of mathematics called Symbolic Dynamical the-
ory, Fractal Geometry, and Chaos theory, which have far-reaching implica-
tions in many fields of engineering. The interested student/reader is
encouraged to consult the References section of this book for a deeper
understanding of this subject.

2.8 Fractals and Computer Art

In Section 2.4, we introduced a fractal type having a priori well-defined and
apparent spatial symmetries, namely, the Koch curve. In Section 2.7, we dis-
covered that a certain type of 1-D nonlinear difference equation may lead, for
a certain range of parameters, to a sequence that may have different orbits.
Section 2.8.1 explores examples of 2-D fractals, generated by coupled differ-
ence equations, whose solution morphology can also be quite distinct due
solely to a minor change in one of the parameters of the difference equations.
Section 2.8.2 illustrates another possible feature observed in some types of
fractals. We show how the 2-D orbit representing the solution of a particular
nonlinear difference equation can also be substantially changed through a
minor variation in the initial conditions of the equation.
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2.8.1 Mira’s Model

The coordinates of the points on the Mira curve are generated iteratively
through the following system of nonlinear difference equations:

(2.43)

where

(2.44)

We illustrate the different morphologies of the solutions in two different
cases, and leave other cases as exercises for your fun and exploration.

FIGURE 2.2
Plot of the Mira curve for a = 0.99. The starting point coordinates are (4, 0). Top panel: b =
1, bottom panel: b = 0.98.
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Case 1 Here, a = –0.99, and we consider the cases b = 1 and b = 0.98. The
starting point coordinates are (4, 0). See Figure 2.2. This case can be viewed
by editing and executing the following script M-file:

for n=1:12000

a=-0.99;b1=1;b2=0.98;

x1(1)=4;y1(1)=0;x2(1)=4;y2(1)=0;

x1(n+1)=b1*y1(n)+a*x1(n)+2*(1-a)*(x1(n))^2/(1+
(x1(n)^2));

y1(n+1)=-x1(n)+a*x1(n+1)+2*(1-a)*(x1(n+1)^2)/(1+
(x1(n+1)^2));

x2(n+1)=b2*y2(n)+a*x2(n)+2*(1-a)*(x2(n))^2/(1+
(x2(n)^2));

y2(n+1)=-x2(n)+a*x2(n+1)+2*(1-a)*(x2(n+1)^2)/(1+
(x2(n+1)^2));

end

subplot(2,1,1); plot(x1,y1,'.')

title('a=-0.99 b=1')

subplot(2,1,2); plot(x2,y2,'.')

title('a=-0.99 b=0.98')

Case 2 Here, a = 0.7, and we consider the cases b = 1 and b = 0.9998. The
starting point coordinates are (0, 12.1). See Figure 2.3.

In-Class Exercise

Pb. 2.23 Manifest the computer artist inside yourself. Generate new geo-
metrical morphologies, in Mira’s model, by new choices of the parameters
(–1 < a < 1 and b ≈ 1) and of the starting point. You can start with:

a b b x y1 2 1 1

0 48 1 0 93 4 0
0 25 1 0 99 3 0
0 1 1 0 99 3 0
0 5 1 0 9998 3 0
0 99 1 0 9998 0 12

( , )
. . ( , )
. . ( , )
. . ( , )
. . ( , )
. . ( , )

−
−
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2.8.2 Hénon’s Model

The coordinates of the Hénon’s orbits are generated iteratively through the
following system of nonlinear difference equations:

(2.45)

where 
Executing the following script M-file illustrates the possibility of generating

two distinct orbits if the starting points of the iteration are slightly different
(here, a = 0.24), and the starting points are slightly different from each other.
The two cases initial point coordinates are given, respectively, by (0.5696,
0.1622) and (0.5650, 0.1650). See Figure 2.4.

a=0.24;

b=0.9708;

FIGURE 2.3
Plot of the Mira curve for a = 0.7. The starting point coordinates are (0, 12.1). Top panel: b
= 1, bottom panel: b = 0.9998.
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x1(1)=0.5696;y1(1)=0.1622;

x2(1)=0.5650;y2(1)=0.1650;

for n=1:120

x1(n+1)=a*x1(n)-b*(y1(n)-(x1(n))^2);

y1(n+1)=b*x1(n)+a*(y1(n)-(x1(n))^2);

x2(n+1)=a*x2(n)-b*(y2(n)-(x2(n))^2);

y2(n+1)=b*x2(n)+a*(y2(n)-(x2(n))^2);

end

plot(x1,y1,'ro',x2,y2,'bx')

2.8.2.1 Demonstration

Different orbits for Hénon’s model can be plotted if different starting points
are randomly chosen. Executing the following script M-file illustrates the a =
0.24 case, with random initial conditions. See Figure 2.5.

a=0.24;

b=sqrt(1-a^2);

rx=rand(1,40);

ry=rand(1,40);

FIGURE 2.4
Plot of two Hénon orbits having the same a = 0.25 but different starting points. (o) corre-
sponds to the orbit with starting point (0.5696, 0.1622), (x) corresponds to the orbit with
starting point (0.5650, 0.1650).
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for n=1:1500

for m=1:40

x(1,m)=-0.99+2*rx(m);

y(1,m)=-0.99+2*ry(m);

x(n+1,m)=a*x(n,m)-b*(y(n,m)-(x(n,m))^2);

y(n+1,m)=b*x(n,m)+a*(y(n,m)-(x(n,m))^2);

end

end

plot(x,y,'r.')

axis([-1 1 -1 1])

axis square

2.9 Generation of Special Functions from Their Recursion 
Relations*

In this section, we go back to more classical mathematics. We consider the
case of the special functions of mathematical physics. In this case, we need to

FIGURE 2.5
Plot of multiple Hénon orbits having the same a = 0.25 but random starting points.
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define the iterated quantities by two indices: the order of the function and the
value of the argument of the function.

In many electrical engineering problems, it is convenient to use a class of
polynomials called the orthogonal polynomials. For example, in filter design,
the set of Chebyshev polynomials are of particular interest.

The Chebyshev polynomials can be defined through recursion relations,
which are similar to difference equations and relate the value of a polynomial
of a certain order at a particular point to the values of the polynomials of
lower orders at the same point. These are defined through the following
recursion relation:

Tk(x) = 2xTk–1(x) – Tk–2(x) (2.46)

Now, instead of giving two values for the initial conditions as we would have
in difference equations, we need to give the explicit functions for two of the
lower-order polynomials. For example, the first- and second-order Cheby-
shev polynomials are

T1(x) = x (2.47)

T2(x) = 2x2 – 1 (2.48)

Example 2.7
Plot over the interval 0 ≤ x ≤ 1, the fifth-order Chebyshev polynomial.

Solution: The strategy to solve this problem is to build an array to represent
the x-interval, and then use the difference equation routine to find the value
of the Chebyshev polynomial at each value of the array, remembering that
the indexing should always be a positive integer.

The following program implements the above strategy:

N=5;

x1=1:101;

x=(x1-1)/100;

T(1,x1)=x;

T(2,x1)=2*x.^2-1;

for k=3:N

T(k,x1)=2.*x.*T(k-1,x1)-T(k-2,x1);

end

y=T(N,x1);

plot(x,y)
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In-Class Exercise

Pb. 2.24 By comparing their plots, verify that the above definition for the
Chebyshev polynomial gives the same graph as that obtained from the
closed-form expression:

TN(x) = cos(N cos–1(x)) for 0 ≤ x ≤ 1

In addition to the Chebyshev polynomials, you will encounter other
orthogonal polynomials in your engineering studies. In particular, the solu-
tions of a number of problems in electromagnetic theory and in quantum
mechanics (QM) call on the Legendre, Hermite, Laguerre polynomials, etc. In
the following exercises, we explore, in a preliminary manner, some of these
polynomials. We also explore another important type of the special functions:
the spherical Bessel function.

Homework Problems

Pb. 2.25 Plot the function y defined, in each case:

a. Legendre polynomials: 

For 0 ≤ x ≤ 1, plot y = P5(x)
These polynomials describe the electric field distribution from a nonspherical
charge distribution.

b. Hermite polynomials: 

For

The function y describes the QM wave-function of the harmonic oscillator.
c. Laguerre polynomials:

For 0 ≤ x ≤ 6, plot y = exp(–x/2)L5(x)
The Laguerre polynomials figure in the solutions of the QM problem of
atoms and molecules.
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Pb. 2.26 The recursion relations can, in addition to defining orthogonal
polynomials, also define some special functions of mathematical physics. For
example, the spherical Bessel functions that play an important role in defin-
ing the modes of spherical cavities in electrodynamics and scattering ampli-
tudes in both classical and quantum physics are defined through the
following recursion relation:

With

Plot j5(x) over the interval 0 < x < 15.
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3
Elementary Functions and Some of Their Uses

The purpose of this chapter is to illustrate and build some practice in the use
of elementary functions in selected basic electrical engineering problems. We
also construct some simple signal functions that you will encounter in future
engineering analysis and design problems.

NOTE It is essential to review the Supplement at the end of this book in case
you want to refresh your memory on the particular elementary functions
covered in the different chapter sections.

3.1 Function Files

To analyze and graph functions using MATLAB, we have to be able to con-
struct functions that can be called from within the MATLAB environment. In
MATLAB, functions are made and stored in function M-files. We already used
one kind of M-file (script file) to store various executable commands in a rou-
tine. Function M-files differ from script M-files in that they have designated
input(s) and output(s).

The following is an example of a function. Type and save the following
function in a file named aline.m :

function y=aline(x)

% (x,y) is a point on a line that has slope 3

% and y-intercept -5

y=3*x-5;

NOTES
1. The word function at the beginning of the file makes it a function

rather than a script file.
2. The function name, aline, that appears in the first line of this file

should match the name that we assign to this file name when saving
it (i.e., aline.m).

Having created a function M-file in your user volume, move to the com-
mand window to learn how to call this function. There are two basic ways to
use a function file:
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1. To evaluate the function for a specified value x=x1, enter
aline(x1) to get the function value at this point; that is, y1 = 3x1 – 5.

2. To plot y1 = 3x1 – 5 for a range of x values, say [–2, 7], enter:

fplot('aline',[-2,7])

NOTE The above example illustrates a function with one input and one out-
put. The construction of a function M-file of a function having n inputs and m
outputs starts with:

function [y1,y2,...,ym]=funname(x1,x2,...,xn)

Above, using a function M-file, we showed a method to plot the defined
function aline on the interval (–2, 7) using the fplot command. An alter-
native method is, of course, to use arrays, in the manner specified in Chapter
1. Specifically, we could have plotted the 'aline' function in the following
alternate method:

x=-2:.01:7;

y=3*x-5;

plot(x,y)

To compare the two methods, we note that:

1. plot requires a user-supplied x-array (abscissa points) and a
constructed y-array (ordinate points), while fplot only requires
the name of the function file, defined previously and stored in a
function M-file and the endpoints of the interval.

2. The fplot automatically creates a sampled domain that is used
to plot the function, taking into account the type of function being
plotted and using enough points to make the display appear con-
tinuous. On the other hand, plot requires that you choose the
array length yourself.

Both methods, therefore, have their own advantages and it depends on the
particular problem whether to use plot or fplot.

We are now in position to explore the use of some of the most familiar func-
tions.

3.2 Examples with Affine Functions

The equation of an affine function is given by:
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y(x) = ax + b (3.1)

In-Class Exercises

Pb. 3.1 Generate four function M-files for the following four functions:

Pb. 3.2 Sketch the functions of Pb. 3.1 on the interval –5 < x < 5. What can
you say about the angle between each of the two lines’ pairs. (Did you
remember to make your aspect ratio = 1?)

Pb. 3.3 Read off the graphs the coordinates of the points of intersection of
the lines in Pb. 3.1. (Become familiar with the use and syntax of the zoom and
ginput commands for a more accurate reading of the coordinates of a point.)

Pb. 3.4 Write a function M-file for the line passing through a given point and
intersecting another given line at a given angle.

Application to a Simple Circuit
The purpose of this application is to show that:

1. The solution to a simple circuit problem can be viewed as the
simultaneous solution of two affine equations, or, equivalently, as
the intersection of two straight lines.

2. The variations in the circuit performance can be studied through
a knowledge of the affine functions, relating the voltages and the
current.

Consider the simple circuit shown in Figure 3.1. In the terminology of the
circuit engineer, the voltage source VS is called the input to the circuit, and the
current I and the voltage V are called the circuit outputs. Thus, this is an
example of a system with one input and two outputs. As you may have stud-
ied in high school physics courses, all of circuit analysis with resistors as ele-
ments can be accomplished using Kirchhoff’s current law, Kirchoff’s voltage
law, and Ohm’s law.

• Kirchoff’s voltage law: The sum of all voltage drops around a
closed loop is balanced by the sum of all voltage sources around
the same loop.
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• Kirchoff’s current law: The algebraic sum of all currents entering
(exiting) a circuit node must be zero. (Assign the + sign to those
currents that are entering the node, and the – sign to those current
exiting the node.)

• Ohm’s law: The ratio of the voltage drop across a resistor to the
current passing through the resistor is a constant, defined as the

resistance of the element; that is, 

The quantities we are looking for include (1) the current I through the cir-
cuit, and (2) the voltage V across the load resistor R.

Using Kirchoff’s voltage law and Ohm’s law for resistance R1, we obtain:

Vs = V + V1 = V + IR1 (3.2)

while applying Ohm’s law for the load resistor gives:

V = IR (3.3)

These two equations can be rewritten in the form of affine functions of I as
functions of V:

(3.4)

(3.5)

FIGURE 3.1
A simple resistor circuit.
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If we know the value of Vs, R, and R1, then Eqs. (3.4) and (3.5) can be repre-
sented as lines drawn on a plane with ordinate I and abscissa V.

Suppose we are interested in finding the value of the current I and the volt-
age V when R1 = 100Ω, R = 100Ω, and Vs = 5 V. To solve this problem graphi-
cally, we plot each of the L1 and L2 functions on the same graph and find their
point of intersection.

The functions L1 and L2 are programmed as follows:

function I=L1(V)

R1=100;

R=100;

Vs=5;

I=(Vs-V)/R1;

function I=L2(V)

R1=100;

R=100;

Vs=5;

I=V/R;

Because the voltage V is smaller than the source potential, due to losses in the
resistor, a suitable domain for V would be [0, 5]. We now plot the two lines on
the same graph:

fplot('L1',[0,5])

hold on

fplot('L2',[0,5])

hold off

In-Class Exercise

Pb. 3.5 Verify that the two lines L1 and L2 intersect at the point: (I = 0.025, V
= 2.5).

In the above analysis, we had to declare the numerical values of the param-
eters R1 and R in the definition of each of the two functions. This can, at best,
be tedious if you are dealing with more than two function M-files or two
parameters; or worse, can lead to errors if you overlook changing the values
of the parameters in any of the relevant function M-files when you decide to
modify them. To avoid these types of problems, it is good practice to call all
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functions from a single script M-file and link the parameters’ values together
so that you only need to edit the calling script M-file. To link the values of
parameters to all functions in use, you can use the MATLAB global com-
mand. To see how this works, rewrite the above function M-files as follows:

function I=L1(V)

global R1 R % global statement

Vs=5;

I=(Vs-V)/R1;

function I=L2(V)

global R1 R % global statement

Vs=5;

I=V/R;

The calling script M-file now reads:

global R1 R %global statement

R1=100; %set global resistance values

R=100;

V=0:.01:5; %set the voltage range

I1=L1(V); %evaluate I1

I2=L2(V); %evaluate I2

plot(V,I1,V,I2,'-') %plot the two curves

In-Class Exercise

Pb. 3.6 In the above script M-file, we used arrays and the plot command.
Rewrite this script file such that you make use of the fplot command.

Further Consideration of Figure 3.1
Calculating the circuit values for fixed resistor values is important, but we
can also ask about the behavior of the circuit as we vary the resistor values.
Suppose we keep R1 = 100Ω and Vs = 5 V fixed, but vary the value that R can
take. To this end, an analytic solution would be useful because it would give
us the circuit responses for a range of values of the circuit parameters R1, R,
Vs. However, a plot of the lines L1 and L2 for different values of R can also pro-
vide a great deal of qualitative information regarding how the simultaneous
solution to L1 and L2 changes as the value of R changes.
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The following problem serves to give you a better qualitative idea as to
how the circuit outputs vary as different values are chosen for the resistor R.

In-Class Exercise

Pb. 3.7 This problem still refers to the circuit of Figure 3.1.
a. Redraw the lines L1 and L2, using the previous values for the circuit

parameters.
b. Holding the graph for the case R = 100Ω, sketch L1 and L2 again

for R = 50Ω and R = 500Ω. How do the values of the voltage and
the current change as R increases; and decreases?

c. Determine the largest values of the current and voltage that can
exist in this circuit when R varies over non-negative values.

d. The usual nomenclature for the circuit conditions is as follows: the
circuit is called an open circuit when R = ∞, while it is called a
short circuit when R = 0. What are the (V, I) solutions for these two
cases? Can you generalize your statement?

Now, to validate the qualitative results obtained in Pb. 3.7, let us solve
analytically the L1 and L2 system. Solving this system of two linear equations
in two unknowns gives, for the current and the voltage, the following
expressions:

(3.6)

(3.7)

Note that the above analytic expressions for V and I are neither linear nor
affine functions in the value of the resistance.

In-Class Exercise

Pb. 3.8 This problem still refers to the circuit of Figure 3.1.
a. Keeping the values of Vs and R1 fixed, sketch the functions V(R)

and I(R) for this circuit, and verify that the solutions you found
previously in Pbs. 3.7 and 3.8, for the various values of R, agree
with those found here.
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b. Given that the power lost in a resistive element is the product of
the voltage across the resistor multiplied by the current through
the resistor, plot the power through the variable resistor as a func-
tion of R.

c. Determine the value of R such that the power lost in this resistor
is maximized.

d. Find, in general, the relation between R and R1 that ensures that
the power lost in the load resistance is maximized. (This general
result is called Thevenin’s theorem.)

3.3 Examples with Quadratic Functions

A quadratic function is of the form:

y(x) = ax2 + bx + c (3.8)

Preparatory Exercises

Pb. 3.9 Find the coordinates of the vertex of the parabola described by Eq.
(3.8) as functions of the a, b, c parameters.

Pb. 3.10 If a = 1, show that the quadratic Eq. (3.8) can be factored as:

y(x) = (x – x+)(x – x–)

where x± are the roots of the quadratic equation. Further, show that, for arbi-

trary a, the product of the roots is and their sum is 

In-Class Exercises

Pb. 3.11 Develop a function M-file that inputs the two real roots of a second-
degree equation and returns the value of this function for an arbitrary x. Is
this function unique?

Pb. 3.12 In your elementary mechanics course, you learned that the trajec-
tory of a projectile in a gravitational field (oriented in the –y direction) with

c
a

,
−b
a

.
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an initial velocity v0, x in the x-direction and v0, y in the y-direction satisfies the
following parametric equations:

where t is time and the origin of the axis was chosen to correspond to the
position of the particle at t = 0 and g = 9.8 ms–2

a. By eliminating the time t, show that the projectile trajectory y(x) is
a parabola.

b. Noting that the components of the initial velocity can be written
as function of the projectile initial speed and its angle of inclination:

v0, y = v0 sin(φ) and v0, x = v0 cos(φ)

show that, for a given initial speed, the maximum range for the
projectile is achieved when the inclination angle of the initial veloc-
ity is 45°.

c. Plot the range for a fixed inclination angle as a function of the initial
speed.

3.4 Examples with Polynomial Functions

As pointed out in the Supplement, a polynomial function is an expression of
the form:

(3.9)

where an ≠ 0 for an nth-degree polynomial. In MATLAB, we can represent the
polynomial function as an array:

(3.10)

Example 3.1
You are given the array of coefficients of the polynomial. Write a function M-
file for this polynomial using array operations. Let p = [1 3 2 1 0 3]:

Solution:

function y=polfct(x)

p=[1 3 2 1 0 3];

x v t y gt v tx y= = − +0
2

0
1
2, ,and

p x a x a x a x an
n

n
n( ) = + +…+ +−
−

1
1

1 0

p a a an n= …−[ ]1 0
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L=length(p);

v=x.^[(L-1):-1:0];

y=sum(p.*v);

In-Class Exercises

Pb. 3.13 Show that, for the polynomial p defined by Eq. (3.9), the product of

the roots is  and the sum of the roots is 

Pb. 3.14 Find graphically the real roots of the polynomial p = [1 3 2
1 0 3].

3.5 Examples with the Trigonometric Functions

A time-dependent cosine function of the form:

(3.11)

appears often in many applications of electrical engineering: a is called the
amplitude, ω the angular frequency, and φ the phase. Note that we do not
have to have a separate discussion of the sine function because the sine func-
tion, as shown in the Supplement, differs from the cosine function by a con-
stant phase. Therefore, by suitably changing only the value of the phase
parameter, it is possible to transform the sine function into a cosine function.

In the following example, we examine the period of the different powers of
the cosine function; your preparatory task is to predict analytically the rela-
tionship between the periods of the two curves given in Example 3.2 and then
verify your answer numerically.

Example 3.2
Plot simultaneously, x1(t) = cos3(t) and x2 = cos(t) on t ∈ [0, 6π].

Solution: To implement this task, edit and execute the following script M-file:

t=0:.2:6*pi; % t-array

a=1;w=1; % desired parameters

x1=a*(cos(w*t))^3; % x1-array constructed

( ) ,−1 0n

n

a
a

− −a
a
n

n

1 .

x a t= +cos( )ω φ
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x2=a*cos(w*t); % x2-array constructed

plot(t,x1,t,x2,'--')

In-Class Exercises

Pb. 3.15 Determine the phase relation between the sine and cosine func-
tions of the same argument.

Pb. 3.16 The meaning of amplitude, angular frequency, and phase can be
better understood using MATLAB to obtain graphs of the cosine function for
a family of a values, ω values, and φ values.

a. With ω = 1 and φ = π/3, plot the cosine curves corresponding to
a = 1:0.1:2.

b. With a = 1 and ω = 1, plot the cosine curves corresponding to
φ = 0:π/10:π.

c. With a = 1 and φ = π/4, plot the cosine curves corresponding to
ω = 1:0.1:2.

Homework Problem

Pb. 3.17 Find the period of the function obtained by summing the following
three cosine functions:

Verify your result graphically.

3.6 Examples with the Logarithmic Function

3.6.1 Ideal Coaxial Capacitor

An ideal capacitor can be loosely defined as two metallic plates separated by
an insulator. If a potential is established between the plates, for example
through the means of connecting the two plates to the different terminals of
a battery, the plates will be charged by equal and opposite charges, with the
battery serving as a pump to move the charges around. The capacitance of a

x t x t x t1 2 33 3 3
1
3

3
2

= + = + = +



cos( / / ),  cos( ),  cos ( )π π π
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capacitor is defined as the ratio of the magnitude of the charge accumulated
on either of the plates divided by the potential difference across the plates.

Using the Gauss law of electrostatics, it can be shown that the capacitance
per unit length of an infinitely long coaxial cable is:

(3.12)

where a and b are the radius of the internal and external conductors, respec-
tively, and ε is the permittivity of the dielectric material sandwiched between
the conductors. (The permittivity of vacuum is approximately ε0 = 8.85 ×
10–12, while that of oil, polystyrene, glass, quartz, bakelite, and mica are,
respectively, 2.1, 2.6, 4.5–10, 3.8–5, 5, and 5.4-6 larger.)

In-Class Exercise

Pb. 3.18 Find the ratio of the capacitance of two coaxial cables with the
same dielectric material for, respectively: b/a = 5 and 50.

3.6.2 The Decibel Scale

In the SI units used by electrical engineers, the unit of power is the Watt.
However, in a number of applications, it is convenient to express the power
as a ratio of its value to a reference value. Because the value of this ratio can
vary over several orders of magnitude, it is often more convenient to repre-
sent this ratio on a logarithmic scale, called the decibel scale:

(3.13)

where the function log is the logarithm to base 10. The table below converts
the power ratio to its value in decibels (dB):

P/Pref dB values
(10n) (10 n)

4 6
2 3
1 0
0.5 –3
0.25 –6
0.1 –10

10–3 –30

C
l b a
= 2πε

ln( / )

G
P

Pref

[ ] logdB = 





10
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In-Class Exercise

Pb. 3.19 In a measurement of two power values, P1 and P2, it was deter-
mined that:

G1 = 9 dB and G2 = –11 dB

Using the above table, determine the value of the ratio P1/P2.

3.6.3 Entropy

Given a random variable X (such as the number of spots on the face of a
thrown die) whose possible outcomes are x1, x2, x3, …, and such that the
probability for each outcome is, respectively, p(x1), p(x2), p(x3), … then, the
entropy for this system described by the outcome of one random variable is
defined by:

(3.14)

where N is the number of possible outcomes, and the logarithm is to base 2.
The entropy is a measure of the uncertainty in the value of the random vari-

able. In Information Theory, it will be shown that the entropy, so defined, is
the number of bits, on average, required to describe the random variable X.

In-Class Exercises

Pb. 3.20 In each of the following cases, find the entropy:

a. N = 32 and for all i

b. N = 8 and 

c. N = 4 and 

d. N = 4 and 

H X p x p xi i
i

N

( ) ( ) log ( ( ))= −
=
∑ 2

1
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Pb. 3.21 Assume that you have two dices (die), one red and the other blue.
Tabulate all possible outcomes that you can obtain by throwing these die
together. Now assume that all you care about is the sum of spots on the two
die. Find the entropy of the outcome.

Homework Problem

Pb. 3.22 A so-called A-law compander (compressor followed by an
expander) uses a compressor that relates output to input voltages by:

Here, the + sign applies when x is positive and the – sign when x is negative.
x = vi/V and y = vo/V, where vi and vo are the input and output voltages. The
range of allowable voltages is –V to V. The parameter A determines the
degree of compression.

For a value of A = 87.6, plot y vs. x in the interval [–1, 1].

3.7 Examples with the Exponential Function

Take a few minutes to review the section on the exponential function in the
Supplement before proceeding further.

(Recall that exp(1) = e.)

In-Class Exercises

Pb. 3.23 Plot the function y(x) = (x13 + x9 + x5 + x2 + 1) exp(–4x) over the inter-
val [0,10].

Pb. 3.24 Plot the function y(x) = cos(5x) exp(–x/2)) over the interval [0, 10].

Pb. 3.25 From the results of Pbs. 3.23 and 3.24, what can you deduce about
the behavior of a function at infinity if one of its factors is an exponentially
decreasing function of x, while the other factor is a polynomial or trigonomet-

y
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x A
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A x
A A

x
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ric function of x? What modification to the curve is observed if the degree of
the polynomial is increased?

Application to a Simple RC Circuit
The solution giving the voltage across the capacitor in Figure 3.2 following
the closing of the switch can be written in the following form:

(3.15)

Vc(t) is called the time response of the RC circuit, or the circuit output result-
ing from the constant input Vs. The time constant RC of the circuit has the
units of seconds and, as you will observe in the present analysis and other
problems in subsequent chapters, its ratio to the characteristic time of a given
input potential determines qualitatively the output of the system.

In-Class Exercise

Pb. 3.26 A circuit designer can produce outputs of various shapes by select-
ing specific values for the circuit time constant RC. In the following simula-
tions, you can examine the influence of this time constant on the response of
the circuit of Figure 3.2.

Using Vc(0) = 3 volts, Vs = 10 volts (capacitor charging process), and RC = 1 s:
a. Sketch a graph of Vc(t). What is the asymptotic value of the solu-

tion? How long does it take the capacitor voltage to reach the value
of 9 volts?

b. Produce an M-file that will plot several curves of Vc(t) correspond-
ing to:

FIGURE 3.2
The circuit used in charging a capacitor.
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(i) RC = 1
(ii) RC = 5

(iii) RC = 10
Which of these time constants results in the fastest approach of Vc(t) toward Vs?

c. Repeat the above simulations for the case Vs = 0 (capacitor dis-
charge)?

d. What would you expect to occur if Vc(0) = Vs?

Homework Problem

Pb. 3.27 The Fermi-Dirac distribution, which gives the average population
of electrons in a state with energy ε, neglecting the electron spin for the
moment, is given by:

where µ is the Fermi (or chemical) potential and Θ is proportional to the abso-
lute (or Kelvin) temperature.

a. Plot the function f(ε) as function of ε, for the following cases:
(i) µ = 1 and Θ = 0.002

(ii) µ = 0.03 and Θ = 0.025
(iii) µ = 0.01 and Θ = 0.025
(iv) µ = 0.001 and Θ = 0.001

b. What is the value of f(ε) when ε = µ?
c. Determine the condition under which we can approximate the

Fermi-Dirac distribution function by:

f(ε) ≈ exp[(µ – ε)/Θ]

3.8 Examples with the Hyperbolic Functions and Their 
Inverses

3.8.1 Capacitance of Two Parallel Wires

The capacitance per unit length of two parallel wires, each of radius a and
having their axis separated by distance D, is given by:

f( )
exp[( )/ ]

ε
ε µ

=
− +

1
1Θ
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(3.16)

where ε0 is the permittivity of air (taken to be that of vacuum) = 8.854 × 10–12

Farad/m.

Question: Write this expression in a different form using the logarithmic
function.

In-Class Exercises

Pb. 3.28 Find the capacitance per unit length of two wires of radii 1 cm sep-
arated by a distance of 1 m. Express your answer using the most appropriate
of the following sub-units:

Pb. 3.29 Assume that you have two capacitors, one consisting of a coaxial
cable (radii a and b) and the other of two parallel wires, separated by the dis-
tance D. Further assume that the radius of the wires is equal to the radius of

the inner cylinder of the coaxial cable. Plot the ratio  as a function of 

if we desire the two geometrical configurations for the capacitor to end up

having the same value for the capacitance. 

3.9 Commonly Used Signal Processing Functions

In studying signals and systems, you will also encounter, inter alia, the fol-
lowing functions (or variation thereof), in addition to the functions discussed
previously in this chapter:

• Unit step function
• Unit slope ramp function
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• Unit area rectangle pulse
• Unit slope right angle triangle function
• Equilateral triangle function
• Periodic traces

These functions are plotted in Figure 3.3, and the corresponding function M-
files are (x is everywhere a scalar):

A. Unit Step function
function y=stepf(x)

global astep

if x<astep

y=0;

else

y=1;

end

FIGURE 3.3
Various useful signal processing functions.
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B. Unit Slope Ramp function
function y=rampf(x)

global aramp

if x<aramp

y=0;

else

y=x-aramp;

end

C. Unit Area Rectangle function
function y=rectf(x)

global lrect hrect

if x<lrect

y=0

elseif lrect<x & x<hrect

y=1/(hrect-lrect);

else

y=0;

end

D. Unit Slope Right Angle Triangle function
function y=sawtf(x)

global lsawt hsawt

if x<lsawt

y=0;

elseif lsawt<x & x<hsawt

y=x-lsawt;

else

y=0;

end

E. Equilateral Triangle function
function y=triaf(x)

global ltria htria

if x<ltria

y=0;

elseif ltra<x & x<(ltria+htria)/2
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y=sqrt(3)*(x-ltria);

elseif (ltria+htria)/2=<x & x<htria

y=sqrt(3)*(-x+htria);

else

y=0

end

F. Periodic functions
It is often necessary to represent a periodic signal train where the elementary
representation on one cycle can easily be written. The technique is to use the
modulo arithmetic to map the whole of the x-axis over a finite domain. This
is, of course, possible because the function is periodic. For example, consider
the rectified sine function train. Its function M-file is

function y=psinef(x)

s=rem(x,2*pi)

if s>0 & s=<pi

y=sin(s);

elseif s>pi & s=<2*pi

y=0;

else

y=0

end

In-Class Exercises

Pb. 3.30 In the above definition of all the special shape functions, we used
the if-else-end form. Write each of the function M-files to define these same
functions using only Boolean expressions.

Pb. 3.31 An adder is a device that adds the input signals to give an output
signal equal to the sum of the inputs. Using the functions previously obtained
in this section, write the function M-file for the signal in Figure 3.4.

Pb. 3.32 A multiplier is a device that multiplies two inputs. Find the prod-
uct of the inputs given in Figures 3.5 and 3.6.

Homework Problems

The first three problems in this set are a brief introduction to the different ana-
log modulation schemes of communication theory.
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Pb. 3.33 In DSB-AM (double-sideband amplitude modulation), the ampli-
tude of the modulated signal is proportional to the message signal, which
means that the time domain representation of the modulated signal is given by:

uDSB(t) = Acm(t) cos(2πfct)

where the carrier-wave shape is

c(t) = Ac cos(2πfct)

and the message signal is m(t).

FIGURE 3.4
Profile of the signal of Pb. 3.31.

FIGURE 3.5
Profile of the first input to Pb. 3.32.
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For a message signal given by:

a. Write the expression for the modulated signal using the unit area
rectangle and the trigonometric functions.

b. Plot the modulated signal as function of time. (Let fc = 200 and t0

= 0.01.)

Pb. 3.34 In conventional AM, m(t) in the DSB-AM expression for the mod-
ulated signal is replaced by [1 + amn(t)], where mn(t) is the normalized mes-

sage signal (i.e.,  and a is the index of modulation (0 ≤ a ≤

1). The modulated signal expression is then given by:

For the same message as that of Pb. 3.33 and the same carrier frequency, and
assuming the modulation index a = 0.85:

a. Write the expression for the modulated signal.
b. Plot the modulated signal.

FIGURE 3.6
Profile of the second input to Pb. 3.32.
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Pb. 3.35 The angle modulation scheme, which includes frequency modula-
tion (FM) and phase modulation (PM), has the modulated signal given by:

Assuming the same message as in Pb. 3.33:
a. Write the expression for the modulated signal in both schemes.
b. Plot the modulated signal in both schemes. Let kp = kf = 100.

Pb. 3.36 If f(x) = f(–x) for all x, then the graph of f(x) is symmetric with
respect to the y-axis, and the function f(x) is called an even function. If f(x) =
–f(–x) for all x, the graph of f(x) is anti-symmetric with respect to the origin,
and we call such a function an odd function.

a. Show that any function can be written as the sum of an odd func-
tion plus an even function. List as many even and odd functions
as you can.

b. State what conditions must be true for a polynomial to be even, or
to be odd.

c. Show that the product of two even functions is even; the product
of two odd functions is even; and the product of an odd and even
function is odd.

d. Replace in c above the word product by either quotient or power
and deduce the parity of the resulting function.

e. Deduce from the above results that the sign/parity of a function
follows algebraic rules.

f. Find the even and odd parts of the following functions:
(i) f(x) = x7 + 3x4 + 6x + 2

(ii) f(x) = (sin(x) + 3) sinh2(x) exp(–x2)

Pb. 3.37 Decompose the signal shown in Figure 3.7 into its even and odd
parts:

Pb. 3.38 Plot the function y defined through:

and find its even and odd parts.
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3.10 Animation of a Moving Rectangular Pulse

You might often want to plot the time development of one of the above signal
processing functions if its defining parameters are changing in time. Take, for
example, a theatrical spotlight of constant intensity density across its cross-
section, but assume that its position varies with time. The light spot size can
be represented by a rectangular pulse (e.g., of width 2 m and height 1 m) that
is moving to the right with a constant speed of 1 m/s. Assume that the center
of the spot is originally at x = 1 m, and that its final position is at x = 8 m. We
want to write a program that will illustrate its time development, and then
play the resulting movie.

To illustrate the use of other commands not often utilized in this chapter,
we can, instead of the if-else-end syntax used in the previous section, use the
Boolean syntax, and define the array by the linspace command.

Edit and execute the following script M-file:

lrect=0;hrect=2;

x=linspace(0,10,200);

t=linspace(0,8,40);

M=moviein(40);

for m=1:40

y=(x>=lrect+t(m)).*(x<=hrect+t(m));

plot(x,y,'r')

FIGURE 3.7
Profile of the signal of Pb. 3.37.
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axis([-2 12 0 1.2]);

M(:,m)=getframe;

end

movie(M,3)

Question: How would you modify the above program if the speed of the
light beam is not 1?

3.11 MATLAB Commands Review

fplot Plots a specified function over a specified interval.
ginput Mouse-controlling command to read off coordinates of a

point in a graph.
global Allows variables to share their values in multiple programs.
zoom Zooms in and out on a 2-D plot.
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4
Numerical Differentiation, Integration, and 
Solutions of Ordinary Differential Equations

This chapter discusses the basic methods for numerically finding the value of
the limit of an indeterminate form, the value of a derivative, the value of a
convergent infinite sum, and the value of a definite integral. Using an
improved form of the differentiator, we also present first-order iterator tech-
niques for solving ordinary first-order and second-order linear differential
equations. The Runge-Kutta technique for solving ordinary differential equa-
tions (ODE) is briefly discussed. The mode of use of some of the MATLAB
packages to perform each of the previous tasks is also described in each
instance of interest.

4.1 Limits of Indeterminate Forms

DEFINITION If  the quotient u(x)/v(x) is said to have

an indeterminate form of the 0/0 kind.

• If  the quotient u(x)/v(x) is said to have an

indeterminate form of the ∞/∞ kind.

In your elementary calculus course, you learned that the standard tech-
nique for solving this kind of problem is through the use of L’Hopital’s Rule,
which states that:

if: (4.1)

then: (4.2)

lim ( ) lim ( ) ,
x x x x

u x v x
→ →

= =
0 0

0

lim ( ) lim ( ) ,
x x x x
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In this section, we discuss a simple algorithm to obtain this limit using
MATLAB. The method consists of the following steps:

1. Construct a sequence of points whose limit is x0. In the examples

below, consider the sequence Recall in this regard

that as n

 

→

 

∞, the nth power of any number whose magnitude is
smaller than one goes to zero.

2. Construct the sequence of function values corresponding to the x-
sequence, and find its limit.

Example 4.1
Compute numerically the 

Solution: Enter the following instructions in your MATLAB command
window:

N=20; n=1:N;

x0=0;

dxn=-(1/2).^n;

xn=x0+dxn;

yn=sin(xn)./xn;

plot(xn,yn)

The limit of the yn sequence is clearly equal to 1. The deviation of the
sequence of the yn from the value of the limit can be obtained by entering:

dyn=yn-1;

semilogy(n,dyn)

The last command plots the curve with the ordinate y expressed logarithmi-
cally. This mode of display is the most convenient in this case because the
ordinate spans many decades of values.

In-Class Exercises

Find the limits of the following functions at the indicated points:

Pb. 4.1

Pb. 4.2

x xn

n

= − 
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1
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lim
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Pb. 4.3

Pb. 4.4

Pb. 4.5

4.2 Derivative of a Function

DEFINITION The derivative of a certain function at a particular point is
defined as:

(4.3)

Numerically, the derivative is computed at the point x0 as follows:

1. Construct an x-sequence that approaches x0.
2. Compute a sequence of the function values corresponding to the

x-sequence.
3. Evaluate the sequence of the ratio, appearing in the definition of

the derivative in Eq. (4.3).
4. Read off the limit of this ratio sequence. This will be the value of

the derivative at the point x0.

Example 4.2
Find numerically the derivative of the function ln(1 + x) at x = 0.

Solution: Edit and execute the following script M-file:

N=20;n=1:N;

x0=0;

dxn=(1/2).^[1:N];

xn=x0+dxn;

yn=log(1+xn);

dyn=yn-log(1+x0);

( cot( ))  x x xat → 0

( cos( ))1 2
02

− →x
x

xat

sin( )cot( )  2 3 0x x xat →

′ =
−
−→

f x
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deryn=dyn./dxn;

plot(n,deryn)

The limit of the deryn’s sequence is clearly equal to 1, the value of this func-
tion derivative at 0.

NOTE The choice of N should always be such that dxn is larger than the
machine precision; that is, N < 53, since (1/2)53

 

≈ 10–16.

In-Class Exercises

Find numerically, to one part per 10,000 accuracy, the derivatives of the fol-
lowing functions at the indicated points:

Pb. 4.6

Pb. 4.7

Pb. 4.8

Pb. 4.9

Pb. 4.10

Example 4.3
Plot the derivative of the function x2 sin(x) over the interval 0 

 

≤ x

 

≤ 2

 

π.

Solution: Edit and execute the following script M-file:

dx=10^(-4);

x=0:dx:2*pi+dx;

df=diff(sin(x).*x.^2)/dx;

plot(0:dx:2+pi,df)

where diff is a MATLAB command, which when acting on an array X, gives
the new array [X(2) – X(1)X(3) – X(2) … X(n) – X(n – 1)], whose length is one
unit shorter than the array X.

The accuracy of the above algorithm depends on the choice of dx. Ideally,
the smaller it is, the more accurate the result. However, using any computer,
we should always choose a dx that is larger than the machine precision, while

x x x x4 3 2(cos ( ) sin( ))  − →at π
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still much smaller than the value of the variation of x over which the function
changes appreciably.

For a systematic method to choose an upper limit on dx, you might want
to follow these simple steps:

1. Plot the function on the given interval and identify the point where
the derivative is largest.

2. Compute the derivative at that point using the sequence method
of Example 4.2, and determine the dx that would satisfy the desired
tolerance; then go ahead and use this value of dx in the above
routine to evaluate the derivative throughout the given interval.

In-Class Exercises

Plot the derivatives of the following functions on the indicated intervals:

Pb. 4.11

Pb. 4.12

Pb. 4.13

Pb. 4.14

Pb. 4.15

4.3 Infinite Sums

An infinite series is denoted by the symbol It is important not to con-

fuse the series with the sequence {an}. The sequence is a list of terms, while the
series is a sum of these terms. A sequence is convergent if the term an

approaches a finite limit; however, convergence of a series requires that the

sequence of partial sums  approaches a finite limit. There are

ln  
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x

x
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+

< <1
1

2 3on
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1 1

1 2
2+ + < <x

x
xon
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cases where the sequence may approach a limit, while the series is divergent.

The classical example is that of the sequence  this sequence approaches

the limit zero, while the corresponding series is divergent.
In any numerical calculation, we cannot perform the operation of adding

an infinite number of terms. We can only add a finite number of terms. The
infinite sum of a convergent series is the limit of the partial sums SN.

You will study in your calculus course the different tests for checking the
convergence of a series. We summarize below the most useful of these tests.

• The Ratio Test, which is very useful for series with terms that
contain factorials and/or nth power of a constant, states that:

• The Root Test stipulates that for an > 0, the series  is conver-
gent if

• For an alternating series, the series is convergent if it satisfies the
conditions that

Now look at the numerical routines for evaluating the limit of the partial
sums when they exist.

Example 4.4
Compute the sum of the geometrical series 

Solution: Edit and execute the following script M-file:

for N=1:20

n=N:-1:1;

fn=(1/2).^n;

Sn(N)=sum(fn);

end

NN=1:20;

plot(NN,Sn)

1
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You will observe that this partial sum converges to 1.

NOTE The above summation was performed backwards because this
scheme will ensure a more accurate result and will keep all the significant
digits of the smallest term of the sum.

In-Class Exercises

Compute the following infinite sums:

Pb. 4.16

Pb. 4.17

Pb. 4.18

Pb. 4.19

Pb. 4.20

4.4 Numerical Integration

The algorithm for integration discussed in this section is the second simplest
available (the trapezoid rule being the simplest, beyond the trivial, is given
at the end of this section as a problem). It has been generalized to become
more accurate and efficient through other approximations, including Simp-
son’s rule, the Newton-Cotes rule, the Gaussian-Laguerre rule, etc. Simp-
son’s rule is derived in Section 4.6, while other advanced techniques are left
to more advanced numerical methods courses.

Here, we perform numerical integration through the means of a Rieman
sum: we subdivide the interval of integration into many subintervals. Then
we take the area of each strip to be the value of the function at the midpoint
of the subinterval multiplied by the length of the subinterval, and we add the

1
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strip areas to obtain the value of the integral. This technique is referred to as
the midpoint rule.

We can justify the above algorithm by recalling the Mean Value Theorem of
Calculus, which states that:

(4.4)

where c ∈ [a, b]. Thus, if we divide the interval of integration into narrow sub-
intervals, then the total integral can be written as the sum of the integrals over
the subintervals, and we approximate the location of c in a particular sub-
interval by the midpoint between its boundaries.

Example 4.5
Use the above algorithm to compute the value of the definite integral of the
function sin(x) from 0 to π.

Solution: Edit and execute the following program:

dx=pi/200;

x=0:dx:pi-dx;

xshift=x+dx/2;

yshift=sin(xshift);

Int=dx*sum(yshift)

You get for the above integral a result that is within 1/1000 error from the
analytical result.

In-Class Exercises

Find numerically, to a 1/10,000 accuracy, the values of the following definite
integrals:

Pb. 4.21

Pb. 4.22

Pb. 4.23

f x dx b a f c
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Pb. 4.24

Example 4.6

Plot the value of the indefinite integral  as a function of x, where f(x)

is the function sin(x) over the interval [0, π].

Solution: We solve this problem for the general function f(x) by noting that:

(4.5)

where we are dividing the x-interval into subintervals and discretizing x to
correspond to the coordinates of the boundaries of these subintervals. An
array {xk} represents these discrete points, and the above equation is then
reduced to a difference equation:

Integral(xk) = Integral(xk–1) + f(Shifted(xk–1))∆x (4.6)

where

Shifted(xk–1) = xk–1 + ∆x/2 (4.7)

and the initial condition is Integral(x1) = 0.
The above algorithm can then be programmed, for the above specific func-

tion, as follows:

a=0;

b=pi;

dx=0.001;

x=a:dx:b-dx;

N=length(x);

xshift=x+dx/2;

yshift=sin(xshift);

Int=zeros(1,N+1);

Int(1)=0;

for k=2:N+1

Int(k)=Int(k-1)+yshift(k-1)*dx;

2
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end

plot([x b],Int)

It may be useful to remind the reader, at this point, that the algorithm in
Example 4.6 can be generalized to any arbitrary function. However, it should
be noted that the key to the numerical calculation accuracy is a good choice
for the increment dx. A very rough prescription for the estimation of this
quantity, for an oscillating function, can be obtained as follows:

1. Plot the function inside the integral (i.e., the integrand) over the
desired interval domain.

2. Verify that the function does not blow-out (i.e., goes to infinity)
anywhere inside this interval.

3. Choose dx conservatively, such that at least 30 subintervals are
included in any period of oscillation of the function (see Section
6.8 for more details).

In-Class Exercises

Plot the following indefinite integrals as function of x over the indicated
interval:

Pb. 4.25

Pb. 4.26

Pb. 4.27

Pb. 4.28

Pb. 4.29

Homework Problem

Pb. 4.30 Another simpler algorithm than the midpoint rule for evaluating a
definite integral is the Trapezoid rule: the area of the slice is approximated by
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the area of the trapezoid with vertices having the following coordinates: (x(k),
0); (x(k + 1), 0); (x(k + 1), y(k + 1)); (x(k), y(k)); giving for this trapezoid area
the value:

thus leading to the following iterative expression for the Trapezoid integrator:

The initial condition is: IT(1) = 0.
a. Evaluate the integrals of Pbs. 4.25 through 4.29 using the Trapezoid

rule.
b. Compare for the same values of ∆x, the accuracy of the Trapezoid

rule with that of the midpoint rule.
c. Give a geometrical interpretation for the difference in accuracy

obtained using the two integration schemes.

NOTE MATLAB has a built-in command for evaluating the integral by the
Trapezoid rule. If the sequence of the sampling points and of the function val-
ues are given, trapz(x,y) gives the desired result.

4.5 A Better Numerical Differentiator

In Section 4.2, for the numerical differentiator, we used the simple expression:

(4.8)

Our goal in this section is to find a more accurate expression for the differen-
tiator. We shall use the difference equation for the Trapezoid rule to derive
this improved differentiator, which we shall denote by D(k).

The derivation of the difference equation for D(k) hinges on the basic obser-
vation that differentiating the integral of a function gives back the original
function. We say that the numerical differentiator is the inverse of the numer-
ical integrator. We shall use the convolution-summation representation of the
solution of a difference equation to find the iterative expression for D(k).

Denoting the weighting sequence representations of the identity operation,
the numerical integrator, and the numerical differentiator by {w}, {w1}, and
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{w2}, respectively, and using the notation and results of Section 2.5, we have
for the identity operation the following weights:

w(0) = 1 (4.9a)

w(i) = 0 for i = 1, 2, 3, … (4.9b)

The Trapezoid numerical integrator, as given in Pb. 4.25, is a first-order sys-
tem with the following parameters:

(4.10a)

(4.10b)

(4.10c)

giving for its weight sequence, as per Example 2.4, the values:

(4.11a)

(4.11b)

The improved numerical differentiator ’s weight sequence can now be
directly obtained by noting, as noted above, that if we successively cascade
integration with differentiation, we are back to the original function. Using
the results of Pb. 2.18, we can write:

(4.12)

Combining the above values for w(k) and w1(k), we can deduce the following
equalities:

(4.13a)

(4.13b)
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(4.13c)

from which we can directly deduce the following expressions for the weight-
ing sequence {w2}:

(4.14a)

(4.14b)

From these weights we can compute, as per the results of Example 2.4, the
parameters of the difference equation for the improved numerical differenti-
ator, namely:

(4.15a)

(4.15b)

(4.15c)

giving for D(k) the following defining difference equation:

(4.16)

In Pb. 4.32 and in other cases, you can verify that indeed this is an
improved numerical differentiator. We shall, later in the chapter, use the
above expression for D(k) in the numerical solution of ordinary differential
equations.

In-Class Exercises

Pb. 4.31 Find the inverse system corresponding to the discrete system gov-
erned by the difference equation:
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Pb. 4.32 Compute numerically the derivative of the function

y = x3 + 2x2 + 5 in the interval 0 ≤ x ≤ 1

using the difference equations for both d(k) and D(k) for different values of
∆x. Comparing the numerical results with the analytic results, compute the
errors in both methods.

Application
In this application, we make use of the improved differentiator and corre-
sponding integrator (Trapezoid rule) for modeling FM modulation and
demodulation. The goal is to show that we retrieve back a good copy of the
original message, using the first-order iterators, thus validating the use of
these expressions in other communication engineering problems, where reli-
able numerical algorithms for differentiation and integration are needed in
the simulation of different modulation-demodulation schemes.

As pointed out in Pb. 3.35, the FM modulated signal is given by:

(4.17)

The following script M-file details the steps in the FM modulation, if the signal
in some normalized unit is given by the expression:

(4.18)

Assuming that in the same units, we have fc = kf = 25.
The second part of the program follows the demodulation process: the

phase of the modulated signal is unwrapped, and the demodulated signal is
obtained by differentiating this phase, while subtracting the carrier phase,
which is linear in time.

fc=25;kf=25;tlowb=-1;tupb=1;

t=tlowb:0.0001:tupb;

p=length(t);

dt=(tupb-tlowb)/(p-1);

m=sinc(10*t);

subplot(2,2,1)

plot(t,m)

title('Message')

u t A f t k m dFM c c f

t

( ) cos ( )= +



−∞∫2 2π π τ τ

m t t( ) ( )= sinc 10
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intm=zeros(1,p);

for k=1:p-1

intm(k+1)=intm(k)+0.5*dt*(m(k+1)+m(k));

end

subplot(2,2,2)

plot(t,intm)

title('Modulation Phase')

uc=exp(j*(2*pi*fc*t+2*pi*kf*intm));

u=real(uc);

phase=unwrap(angle(uc))-2*pi*fc*t;

subplot(2,2,3)

plot(t,u)

axis([-0.15 0.15 -1 1])

title('Modulated Signal')

Dphase(1)=0;

for k=1:p-1

Dphase(k+1)=(2/dt)*(phase(k+1)-phase(k))-...
Dphase(k);

end

md=Dphase/(2*pi*kf);

subplot(2,2,4)

plot(t,md)

title('Reconstructed Message')

As can be observed by examining Figure 4.1, the results of the simulation
are very good, giving confidence in the expressions of the iterators used.

4.6 A Better Numerical Integrator: Simpson’s Rule

Prior to discussing Simpson’s rule for integration, we shall derive, for a sim-
ple case, an important geometrical result.

THEOREM
The area of a parabolic segment is equal to 2/3 of the area of the circumscribed paral-
lelogram.
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PROOF We prove this general theorem in a specialized case, for the purpose
of making the derivation simple; however, the result is true for the most gen-
eral case. Referring to Figure 4.2, we want to show that the area bounded by
the x-axis and the parabola is equal to 2/3 the area of the ABCD rectangle.
Now the details:

The parabola in Figure 4.2 is described by the equation:

y = ax2 + b (4.19)

It intersects the x-axis at the points (–(–b/a)1/2, 0) and ((–b/a)1/2, 0), and the
y-axis at the point (0, b). The area bounded by the x-axis and the parabola is
then simply the following integral:

(4.20)

The area of the ABCD rectangle is:  which establishes
the theorem.

FIGURE 4.1
Simulation of the modulation and demodulation of an FM signal.
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FIGURE 4.2
A parabolic segment and its circumscribed parallelogram.

FIGURE 4.3
The first two slices in the Simpson’s rule construct. AH = HG = ∆x.
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Simpson’s Algorithm: We shall assume that the interval of integration is sam-
pled at an odd number of points (2N + 1), so that we have an even number of
intervals. The algorithm groups the intervals in pairs.

Referring to Figure 4.3, the points A, H, and G are the first three points in
the sampled x-interval. The assumption underlying Simpson’s rule is that the
curve passing through the points B, D, and F, on the curve of the integrand,
can have their locations approximated by a parabola. The line CDE is tangent
to this parabola at the point D.

Under the above approximation, the value of the integral of the y-function
between the points A and G is then simply the sum of the area of the trape-
zoid ABFG plus 2/3 the area of the parallelogram BCEF, namely:

(4.21)

In a similar fashion, we can find the area of the third and fourth slices,

(4.22)

Continuing for each successive pair of slices, we obtain for the total integral,
or total area of all slices, the expression:

(4.23)

that is, the weights are equal to 1 for the first and last elements, equal to 4 for
even elements, and equal to 2 for odd elements.

Example 4.7
Using Simpson’s rule, compute the integral of sin(x) over the interval 0 ≤ x ≤ π.

Solution: Edit and execute the following script M-file:

a=0;b=pi;N=4;

x=linspace(a,b,2*N+1);

y=sin(x);

for k=1:2*N+1

if k==1 | k==2*N+1

w(k)=1;

Area of the first two slices = + + −
+
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elseif rem(k,2)==0

w(k)=4;

else

w(k)=2;

end

end

Intsimp=((b-a)/(3*(length(x)-1)))*sum(y.*w)

Now compare the above answer with the one you obtain if you use the Trap-
ezoid rule, by entering the command: Inttrapz=trapz(x,y).

In-Class Exercise

Pb. 4.33 In the above derivation of Simpson’s method, we constructed the
algorithm by determining the weights sequence. Reformulate this algorithm
into an equivalent iterator format.

Homework Problems

In this chapter, we surveyed three numerical techniques for computing the
integral of a function. We observed that the different methods lead to differ-
ent levels of accuracy. In Section 6.8, we derive formulas for estimating the
accuracy of the different methods discussed here. However, and as noted pre-
viously, more accurate techniques than those presented here exist for calcu-
lating integrals numerically; many of these are in the MATLAB library and
are covered in numerical analysis courses. In particular, familiarize yourself,
using the help folder, with the commands quad and quad8.

Pb. 4.34 The goal of this problem, using the quad8 command, is to develop
a function M-file for the Gaussian distribution function of probability theory.

The Gaussian probability density function is given by:

where –∞ < aX < ∞, 0 < σX are constants, and are equal to the mean and the
square root of the variance of x, respectively.

The Gaussian probability distribution function is defined as:

f x
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Through a change of variable (specify it!), the Gaussian probability distribu-
tion function can be written as a function of the normalized distribution
function,

where

a. Develop the function M-file for the normal distribution function.
b. Show that for negative values of x, we have:

F(–x) = 1 – F(x)

c. Plot the normalized distribution function for values of x in the
interval 0 ≤ x ≤ 5.

Pb. 4.35 The computation of the arc length of a curve can be reduced to a
one-dimensional integration. Specifically, if the curve is described parametri-
cally, then the arc length between the adjacent points (x(t), y(t), z(t)) and the
point (x(t + ∆t), y(t + ∆t), z(t + ∆t)) is given by:

giving immediately for the arc length from t0 to t1, the expression:

a. Calculate the arc length of the curve described by: x = t2 and y =
t3 between the points: t = 0 and t = 3.

b. Assuming that a 2-D curve is given in polar coordinates by r = f(θ),
and then noting that:

x = f(θ) cos(θ) and y = f(θ) sin(θ)

use the above expression for the arc length (here the parameter is
θ) to derive the formula for the arc length in polar coordinates to be
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c. Use the result of (b) above to derive the length of the cardioid r =
a(1 + cos(θ)) between the angles 0 and π.

Pb. 4.36 In Pb. 3.27, you plotted the Fermi-Dirac distribution. This curve
represents the average population of fermions in a state with energy ε (ignore
for the moment the internal quantum numbers of the fermions). As you would
have noticed, this quantity is always smaller or equal to one. This is a mani-
festation of Pauli’s exclusion principle, which states that no two fermions can
be simultaneously in the same state. This, of course, means that even at zero
absolute temperature, the momentum of almost all fermions is not zero; that
is, we cannot freeze the thermal motion of all electrons at absolute zero. This
fact is fundamental to our understanding of metals and semiconductors, and
will be the subject of detailed studies in courses on physical electronics.

In nature, on the other hand, there is another family of particles that
behaves quite the opposite; they are called Bosons. These particles are not
averse to occupying the same state; moreover, they have a strong affinity,
under the proper conditions, to aggregate in the lowest energy state avail-
able. When this happens, we say that the particles formed a Bose condensate.
This phenomenon has been predicted theoretically to occur both on the labo-
ratory scale and in some astrophysical objects (called neutron stars). The phe-
nomena of superconductivity, superfluidity, and pion condensation, which
occur in condensed or supercondensed matter, are manifestations of Bose
condensates; however, it was only recently that this phenomenon has been
observed to also occur experimentally in gaseous systems of atoms that were
cooled in a process called laser cooling. The details of the cooling mechanism
do not concern us at the moment, but what we seek to achieve in this problem
is an understanding of the fashion in which the number density (i.e., the
number per unit volume) of the condensate can become macroscopic. To
achieve this goal, we shall use the skills that you have developed in numeri-
cally integrating and differentiating functions.

The starting point of the analysis is a formula that you will derive in future
courses in statistical physics; it states that the number of particles in the con-
densate (i.e., the atoms in the gas that have momentum zero) can be written,
for a noninteracting Bosons system, as:

where λT is a quantity proportional to T–1/2, n is the total number density, and
the second term on the RHS of the equation represents the number density of
the particles not in the condensate (i.e., those particles whose momentum is
not zero). The function g3/2(z) is defined such that:
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where

and z, for physical reasons, always remains in the interval 0 < z ≤ 1.
a. Plot g5/2(z) as a function of z over the interval 0 < z ≤ 1.
b. Plot g3/2(z) over the same interval and find its maximum value.
c. As n increases or T decreases, the second term on the rhs of the

population equation keeps adjusting the value of z so that the
two terms on the RHS cancel each other, thus keeping ncondensate =
0. However, at some point, z reaches the value 1, which is its
maximum value and the second term on the RHS cannot increase
further. At this point, ncondensate starts building up with any increase
in the total number density. The value of the total density at
which this starts happening is called the threshold value for the
condensate formation. Prove that this threshold is given by:

4.7 Numerical Solutions of Ordinary Differential Equations

Ordinary linear differential equations are of the form:

(4.24)

The a’s are called the coefficients and u(t) is called the source (or input) term.
Ordinary differential equations (ODEs) show up in many problems of elec-

trical engineering, particularly in circuit problems where, depending on the
circuit element, the potential across it may depend on the deposited charge,
the current (which is the time derivative of the charge), or the derivative of
the current (i.e., the second time derivative of the charge); that is, in the same
equation, we may have a function and its first- and second-order derivatives.
To focus this discussion, let us start by writing the potential difference across
the passive elements of circuit theory. Specifically, the voltage drops across a
resistor, capacitor, or inductor are given as follows:
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1. The voltage across a resistor is given, using Ohm’s law, by:

VR(t) = RI(t) (4.25)

where R is the resistance, I is the current, and where R is measured
in Ohms.

2. The voltage across a capacitor is proportional to the magnitude of
the charge that accumulates on either plate, that is:

(4.26)

The second equality reflects the relation of the current to the charge.
C is the capacitance and, as previously pointed out, is measured
in Farads.

3. The voltage across an inductor can be deduced from Lenz’s law,
which stipulates that the voltage across an inductor is proportional
to the time derivative of the current going through it:

(4.27)

where L is the inductance and is measured in Henrys.
From these expressions for the voltage drop across each of the passive ele-

ments in a circuit, and using the Kirchoff voltage law, it is then an easy matter
to write down the differential equations describing, for example, a series RC
or an RLC circuit.

RC Circuit: Referring to the RC circuit diagram in Figure 4.4, the differential
equation describing the voltage across the capacitor is given by:

(4.28)

FIGURE 4.4
RC circuit with an ac source.
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RLC Circuit: Referring to the RLC circuit in Figure 4.5, the voltage across the
capacitor is described by the ODE:

(4.29)

Numerically solving these and other types of ODEs will be the subject of
the remainder of this section. In Section 4.7.1, we consider first-order iterators
to represent the different-order derivatives, apply this algorithm to solve the
above types of problems, and conclude by pointing out some of the limita-
tions of this algorithm. In Section 4.7.2, we discuss higher-order iterators,
particularly the Runge-Kutta technique. In Section 4.7.3, we familiarize our-
selves with the use of standard MATLAB solvers for ODEs.

4.7.1 First-Order Iterator

In Section 4.5, we found an improved expression for the numerical differen-
tiator, D(k):

(4.16)

which functionally corresponded to the inverse of the Trapezoid rule for inte-
gration. (Note that the independent variable here is t, and not x.)

Applying this first-order differentiator in cascade leads to an expression for
the second-order differentiator, namely:

(4.30)

FIGURE 4.5
RLC circuit with ac source.
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Example 4.8
Find the first-order iterative scheme to solve the first-order differential equa-
tion given by:

(4.31)

with the initial condition y(t1) specified.

Solution: Substituting Eq. (4.16) for the numerical differentiator in the dif-
ferential equation, we deduce the following first-order difference equation
for y(k):

(4.32)

to which we should add, in the numerical subroutine, the expression for the
first-order differentiator D(k) as given by Eq. (4.16). The initial condition for
the function at the origin of time, specify the first elements of the y and D
arrays:

Application
To illustrate the use of the above algorithm, let us solve, over the interval 0 ≤
t ≤ 6, for the potential across the capacitor in an RC circuit with an ac source;
that is,

(4.33)

where a = RC and y(t = 0) = 0.

Solution: Edit and execute the following script M-file, for a = 1/(2π):

tin=0;

tfin=6;

t=linspace(tin,tfin,3000);

N=length(t);

y=zeros(1,N);
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dt=(tfin-tin)/(N-1);

u=sin(t);

a=(1/(2*pi))*ones(1,N);

b=ones(1,N);

y(1)=0;

D(1)=(1/a(1))*(u(1)-b(1)*y(1));

for k=2:N

y(k)=((2*a(k)/dt+b(k))^(-1))*...

(2*a(k)*y(k-1)/dt+a(k)D(k-1)+u(k));

D(k)=(2/dt)*(y(k)-y(k-1))-D(k-1);

end

plot(t,y,t,u,'--')

In-Class Exercise

Pb. 4.37 Plot the amplitude of y, and its dephasing from u, as a function of
a for large t.

Example 4.9
Find the first-order iterative scheme to solve the second-order differential
equation given by:

(4.34)

Solution: Substituting the above first-order expression of the iterators for the
first-order and second-order numerical differentiators [respectively Eqs.
(4.16) and (4.30), into Eq. (4.34)], we deduce the following iterative equation
for y(k):

(4.35)
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This difference equation will be supplemented in the ODE numerical
solver routine with the iterative equations for D(k) and D2(k), as given respec-
tively by Eqs. (4.16) and (4.30), and with the initial conditions for the function
and its derivative. The first elements for the y, D, and D2 arrays are given by:

Application 1
To illustrate the use of the first-order iterator algorithm in solving a second-
order ordinary differential equation, let us find, over the interval 0 ≤ t ≤ 16π,
the voltage across the capacitance in an RLC circuit, with an ac voltage
source. This reduces to solve the following ODE:

(4.36)

where a = LC, b = RC, c = 1. Choose in some normalized units, a = 1, b = 3,
ω = 1, and let y(t = 0) = y′(t = 0) = 0.

Solution: Edit and execute the following script M-file:

tin=0;

tfin=16*pi;

t=linspace(tin,tfin,2000);

a=1;

b=3;

c=1;

w=1;

N=length(t);

y=zeros(1,N);

dt=(tfin-tin)/(N-1);

u=sin(w*t);

y(1)=0;

D(1)=0;

D2(1)=(1/a)*(-b*D(1)-c*y(1)+u(1));

for k=2:N

y y t

D
dy
dt
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y(k)=((4*a/dt^2+2*b/dt+c)^(-1))*...

(y(k-1)*(4*a/dt^2+2*b/dt)+D(k-1)*(4*a/dt+b)+...

+a*D2(k-1)+u(k));

D(k)=(2/dt)*(y(k)-y(k-1))-D(k-1);

D2(k)=(4/dt^2)*(y(k)-y(k-1))-(4/dt)*D(k-1)-D2
(k-1);

end

plot(t,y,t,u,'--')

The dashed curve is the temporal profile of the source term.

In-Class Exercise

Pb. 4.38 Plot the amplitude of y and its dephasing from u as function of a
for large t, for 0.1 < a < 5.

Application 2
Solve, over the interval 0 < t < 1, the following second-order differential
equation:

(4.37)

with the initial conditions: y(t = 0) = 3/8 and y′(t = 0) = 0.
Then, compare your numerical result with the analytical solution to this

problem:

(4.38)

Solution: Edit and execute the following script M-file:

tin=0;

tfin=1;

t=linspace(tin,tfin,2000);

N=length(t);

a=1-t.^2;
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b=-2*t;

c=20*ones(1,N);

y=zeros(1,N);

D=zeros(1,N);

dt=(tfin-tin)/(N-1);

u=zeros(1,N);

y(1)=3/8;

D(1)=0;

D2(1)=(1/a(1))*(-b(1)*D(1)-c(1)*y(1)+u(1));

for k=2:N

y(k)=((4*a(k)/dt^2+2*b(k)/dt+c(k))^(-1))*...

(y(k-1)*(4*a(k)/dt^2+2*b(k)/dt)+D(k-1)...
*(4*a(k)/dt+b(k))+a(k)*D2(k-1)+u(k));

D(k)=(2/dt)*(y(k)-y(k-1))-D(k-1);

D2(k)=(4/dt^2)*(y(k)-y(k-1))-(4/dt)*D(k-1)-...
D2(k-1);

end

yanal=(35*t.^4-30*t.^2+3)/8;

plot(t,y,t,yanal,'--')

As you will observe upon running this program, the numerical solution and
the analytical solution agree very well.

NOTE The above ODE is that of the Legendre polynomial of order l = 4,
encountered earlier in Chapter 2, in Pb. 2.25.

(4.39)

where

(4.40)

Homework Problem

Pb. 4.39 The above algorithms assume that the source function is continu-
ous. If it is not, we may encounter problems upon applying this algorithm
over a transition region, as will be illustrated in the following problem.
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Solve, over the interval 0 ≤ t ≤ 20, the following first-order differential equa-
tion for a = 2 and a = 0.5:

where y(0) = 0. (Physically, this would correspond to the charging of a capac-
itor from a dc source connected suddenly to the battery at time zero. Here, y
is the voltage across the capacitor, and a = RC.)

NOTE The analytic solution to this problem is y = 1 – exp(–t/a).

4.7.2 Higher-Order Iterators: The Runge-Kutta Method*

In this subsection, we want to explore the possibility that if we sampled the
function n-times per step, we will obtain a more accurate solution to the ODE
than that obtained from the first-order iterator for the same value of ∆t.

To focus the discussion, consider the ODE:

y′(t) = f(t, y(t)) (4.41)

Higher-order ODEs can be reduced, as will be shown at the end of the sub-
section, to a system of equations having the same functional form as Eq.
(4.41). The derivation of a technique using higher-order iterators will be
shown below in detail for two evaluations per step. Higher-order recipes can
be found in most books on numerical methods for ODE.

The key to the Runge-Kutta method is to properly arrange each of the eval-
uations in a particular step to depend on the previous evaluations in the
same step.

In the second-order model:

if: (4.42)

then: (4.43)

and (4.44)

where a, b, α, and β are unknown parameters to be determined. They should
be chosen such that Eq. (4.44) is correct to order (∆t)3.

To find a, b, α, and β, let us compute y(t(n + 1)) in two different ways. First,
Taylor expanding the function y(t(n + 1)) to order (∆t)2, we obtain:

a
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(4.45)

Recalling Eq. (4.41) and the total derivative expression of a function in two
variables as function of the partial derivatives, we have:

(4.46)

(4.47)

Combining Eqs. (4.45) to (4.47), it follows that to second order in (∆t):

(4.48)

Next, let us Taylor expand k2 to second order in (∆t). This results in:

(4.49)

Combining Eqs. (4.42), (4.44), and (4.49), we get the other expression for
y(t(n + 1)), correct to second order in (∆t):

(4.50)

Now, comparing Eqs. (4.48) and (4.50), we obtain the following equalities:
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We have three equations in four unknowns; the usual convention is to fix a
= 1/2, giving for the other quantities:

(4.52)

finally leading to the following expressions for the second-order iterator and
its parameters:

(4.53a)

(4.53b)

(4.53c)

Next, we give, without proof, the famous fourth-order iterator Runge-
Kutta expression, one of the most widely used algorithms for solving ODEs
in the different fields of science and engineering:

k1 = f(t(n), y(n))(∆t) (4.54a)

(4.54b)

(4.54c)

(4.54d)

(4.54e)

The last point that we need to address before leaving this subsection is
what to do in case we have an ODE with higher derivatives than the first. The
answer is that we reduce the nth-order ODE to a system of n first-order ODEs.

Example 4.10
Reduce the following second-order differential equation into two first-order
differential equations:

ay″ + by′ + cy = sin(t) (4.55)

with the initial conditions: y(t = 0) = 0 and y′(t = 0) = 0
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(where the prime and double primes superscripted functions refer, respec-
tively, to the first and second derivative of this function).

Solution: Introduce the two-dimensional array z, and define

z(1) = y (4.56a)

z(2) = y′ (4.56b)

The system of first-order equations now reads:

z′(1) = z(2) (4.57a)

z′(2) = (1/a)(sin(t) – bz(2) – cz(1)) (4.57b)

Example 4.11
Using the fourth-order Runge-Kutta iterator, numerically solve the same
problem as in Application 1 following Example 4.9.

Solution: Edit and save the following function M-files:

function zp=zprime(t,z)

a=1; b=3; c=1;

zp(1,1)=z(2,1);

zp(2,1)=(1/a)*(sin(t)-b*z(2,1)-c*z(1,1));

The above file specifies the system of ODE that we are trying to solve.
Next, in another function M-file, we edit and save the fourth-order Runge-

Kutta algorithm, specifically:

function zn=prk4(t,z,dt)

k1=dt*zprime(t,z);

k2=dt*zprime(t+dt/2,z+k1/2);

k3=dt*zprime(t+dt/2,z+k2/2);

k4=dt*zprime(t+dt,z+k3);

zn=z+(k1+2*k2+2*k3+k4)/6;

Finally, edit and execute the following script M-file:

yinit=0;

ypinit=0;

z=[yinit;ypinit];
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tinit=0;

tfin=16*pi;

N=1001;

t=linspace(tinit,tfin,N);

dt=(tfin-tinit)/(N-1);

for k=1:N-1

z(:,k+1)=prk4(t(k),z(:,k),dt);

end

plot(t,z(1,:),t,sin(t),'--')

In the above plot, we are comparing the temporal profiles of the voltage dif-
ference across the capacitor with that of the source voltage.

4.7.3 MATLAB ODE Solvers

MATLAB has many ODE solvers, ODE23 and ODE45 being most commonly
used. ODE23 is based on a pair of second-order and third-order Runge-Kutta
methods running simultaneously to solve the ODE. The program automati-
cally corrects for the step size if the answers from the two methods have a dis-
crepancy at any stage of the calculation that will lead to a larger error than the
allowed tolerance.

To use this solver, we start by creating a function M-file that includes the sys-
tem of equations under consideration. This function is then called from the
command window with the ODE23 or ODE45 command.

Example 4.12
Using the MATLAB ODE solver, find the voltage across the capacitor in the
RLC circuit of Example 4.11, and compare it to the source potential time-profile.

Solution: Edit and save the following function M-file:

function zp=RLC11(t,z)

a=1;

b=3;

c=1;

zp(1,1)=z(2,1);

zp(2,1)=(1/a)*(sin(t)-b*z(2,1)-c*z(1,1));

Next, edit and execute the following script M-file:

tspan=[0 16*pi];
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zin=[0;0];

[t,z]=ode23('RLC11',tspan,zin);

plot(t,z(:,1),t,sin(t))

xlabel('Normalized Time')

The results are plotted in Figure 4.6. Note the phase shift between the two
potential differences.

Example 4.13
Using the MATLAB ODE solver, solve the problem of relaxation oscillations
in lasers.

Solution: Because many readers may not be familiar with the statement of
the problem, let us first introduce the physical background to the problem.

A simple gas laser consists of two parallel mirrors sandwiching a tube with
a gas, selected for having two excitation levels separated in energy by an
amount equal to the energy of the photon quantum that we are attempting to
have the laser system produce. In a laser (light amplification by stimulated
emission radiation), a pumping mechanism takes the atom to the upper
excited level. However, the atom does not stay in this level; it decays to lower
levels, including the lower excited level, which is of interest for two reasons:
(1) the finite lifetime of all excited states of atoms; and (2) stimulated emission,
a quantum mechanical phenomenon, associated with the statistics of the pho-

FIGURE 4.6
The potential differences across the source (dashed line) and the capacitor (solid line) in an
RLC circuit with an ac source. [LC = 1, RC = 3, and Vs = sin(t)].
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tons (photons are bosons), which predicts that in the presence of an electro-
magnetic field having a frequency close to that of the frequency of the photon
emitted in the transition between the upper excited and lower excited state,
the atom emission rate is enhanced and this enhancement is larger, the more
photons that are present in its vicinity. On the other hand, the rate of change
of the number of photons is equal to the rate generated from the decay of the
atoms due to stimulated emission, minus the decay due to the finite lifetime
of the photon in the resonating cavity. Putting all this together, one is led, in
the simplest approximation, to write what are called the rate equations for the
number of atoms in the excited state and for the photon numbers in the cavity.
These coupled equations, in their simplest forms, are given by:

(4.58)

(4.59)

where N is the normalized number of atoms in the atom’s upper excited state,
n is the normalized number of photons present, P is the pumping rate, τdecay is
the atomic decay time from the upper excited state, due to all effects except
that of stimulated emission, τcavity is the lifetime of the photon in the resonant
cavity, and B is the Einstein coefficient for stimulated emission.

These nonlinear differential equations describe the dynamics of laser oper-
ation. Now come back to relaxation oscillations in lasers, which is the prob-
lem at hand. Physically, this is an interplay between N and n. An increase in
the photon number causes an increase in stimulated emission, which causes
a decrease in the population of the higher excited level. This, in turn, causes
a reduction in the photon gain, which tends to decrease the number of pho-
tons present, and in turn, decreases stimulated emission. This leads to the
build-up of the higher excited state population, which increases the rate of
change of photons, with the cycle resuming but such that at each new cycle
the amplitude of the oscillations is dampened as compared with the cycle just
before it, until finally the system reaches a steady state.

To compute the dynamics of the problem, we proceed into two steps. First,
we generate the function M-file that contains the rate equations, and then pro-
ceed to solve these ODEs by calling the MATLAB ODE solver. We use typical
numbers for gas lasers.

Specifically the function M-file representing the laser rate equations is
given by:

function yp=laser1(t,y)

p=30; %pumping rate

gamma=10^(-2); %inverse natural lifetime

dN
dt

P
N

BnN
decay

= − −
τ

dn
dt

n
BnN

cavity

= − +
τ
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B=3; %stimulated emission coefficient

c=30; %inverse lifetime of photon in cavity

yp(1,1)=p-gamma*y(1,1)-B*y(1,1)*y(2,1);

yp(2,1)=-c*y(2,1)+B*y(1,1)*y(2,1);

The script M-file to compute the laser dynamics and thus simulate the relax-
ation oscillations is:

tspan=[0 3];

yin=[1 1];

[t,y]=ode23('laser1',tspan,yin);

subplot(3,1,1)

plot(t,y(:,1))

xlabel('Normalized Time')

ylabel('N')

subplot(3,1,2);

plot(t,y(:,2))

xlabel('Normalized Time')

ylabel('n')

subplot(3,1,3);

plot(y(:,1),y(:,2))

xlabel('N')

ylabel('n')

As can be observed in Figure 4.7, the oscillations, as predicted, damp-out
after a while and the dynamical variables reach a steady state. The phase dia-
gram, shown in the bottom panel, is an alternate method to show how the
population of the atomic higher excited state and the photon number density
reach the steady state.

Question: Compute analytically from Eqs. (4.58) and (4.59), the steady-state
values for the higher excited state population and for the photon number,
and compare with the numerically obtained asymptotic values.

In-Class Exercise

Pb. 4.40 By changing the values of the appropriate parameters in the above
programs, find separately the effects of increasing or decreasing the value of
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tcavity , and the effect of the pumping rate on the magnitude and the persistence
of the oscillation.

Example 4.14
Using the rate equations developed in Example 4.13, simulate the Q-switch-
ing of a laser.

Solution: First, an explanation of the statement of the problem. In Example
4.13, we showed how, following an initial transient period whereby one
observes relaxation oscillations, a laser, in the presence of steady pumping,
reaches steady-state operation after a while. This is referred to as continuous
wave (cw) operation of the laser. In this example, we shall explore the other
mode of laser operation, the so-called pulsed mode. In this regime, the exper-
imentalist, through a temporary modification in the absorption properties of
the laser resonator, prevents the laser from oscillating, thus leading the
higher excited state of the atom to keep building up its population to a very
high level before it is allowed to emit any photons. Then, at the desired

FIGURE 4.7
The dynamics of a laser in the relaxation oscillations regime. Top panel: Plot of the higher
excited level atoms population as a function of the normalized time. Middle panel: Plot of
the number of photons as a function of the normalized time. Bottom panel: Phase diagram
of the photons number vs. the higher excited level atoms population.
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moment, the laser resonator is allowed back to a state where the optical losses
of the resonator are small, thus triggering the excited atoms to dump their
stored energy into a short burst of photons. It is this regime that we propose
to study in this example.

The laser dynamics are, of course, still described by the rate equations [i.e.,
Eqs. (4.58) and (4.59)]. What we need to modify from the previous problem are
the initial conditions for the system of coupled ODE. At the origin of time [i.e.,
t = 0 or the triggering time, N(0)], the initial value of the population of the
higher excited state of the atom is in this instance (because of the induced
build-up) much larger than that of the corresponding photon population n(0).
Figure 4.8 shows the ensuing dynamics for the photon population for different
values of N(0). We assumed in these simulations the following values for the
parameters in the laser1 function M-file (p=0; B=3; c=100; gamma=0.01).

In examining Figure 4.8, we observe that as N(0) increases, the pulse’s total
energy increases — as it should since more energy is stored in the excited
atoms. Furthermore, the duration of the produced pulse (i.e., the width of the
pulse temporal profile) narrows, and the delay in the position of its peak from
the trigger time gets to be smaller as the number of the initial higher excited
level atoms increases.

FIGURE 4.8
The temporal profile of the photon burst emitted in a Q-switched laser for different initial
values of the excited level atoms population. Top panel: N(0) = 50. Middle panel: N(0) =
100. Botton panel: N(0) = 300.
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In-Class Exercise

Pb. 4.41 Investigate how changes in the values of τcavity and τdecay modify the
duration of the produced pulse. Plot the Q-switched pulse duration as func-
tion of each of these variables.

4.8 MATLAB Commands Review

diff Takes the difference between consecutive elements in an
array.

ode23 and Ordinary Differential Equations solvers.
ode45

prod Finds the product of all the elements belonging to an
array.

quad and Integrate a function between fixed limits.
quad8

semilogy Plot a graph with the abscissa in linear scale, while the
ordinate is in a logarithmic scale.

sum Sums all the elements of an array.
trapz Finds the integral using the Trapezoid rule.



0-8493-????-?/00/$0.00+$.50
© 2000 by CRC Press LLC
© 2001 by CRC Press LLC

5
Root Solving and Optimization Methods

In this chapter, we first learn some elementary numerical techniques and the
use of the fsolve and fzero commands from the MATLAB library to
obtain the real roots (or zeros) of an arbitrary function. Then, we discuss the
use of the MATLAB command roots for finding all roots of a polynomial.
Following this, we consider the Golden Section method and the fmin and
fmins MATLAB commands for optimizing (finding the minimum or maxi-
mum value of a function) over an interval. Our discussions pertain exclu-
sively to problems with one and two variables (input) and do not include the
important problem of optimization with constraints.

5.1 Finding the Real Roots of a Function

This section explores the different categories of techniques for finding the real
roots (zeros) of an arbitrary function. We outline the required steps for com-
puting the zeros using the graphical commands, the numerical techniques
known as the Direct Iterative and the Newton-Raphson methods, and the
built-in fsolve and fzero functions of MATLAB.

5.1.1 Graphical Method

In the graphical method, we find the zeros of a single variable function by
implementing the following steps:

1. Plot the particular function over a suitable domain.
2. Identify the neighborhoods where the curve crosses the x-axis

(there may be more than one point); and at each such point, the
following steps should be independently implemented.

3. Zoom in on the neighborhood of each intersection point by
repeated application of the MATLAB axis or zoom commands.
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4. Use the crosshair of the ginput command to read the coordinates
of the intersection.

In problems where we desire to find the zeros of a function that depends
on two input variables, we follow (conceptually) the same steps above, but
use 3-D graphics.

In-Class Exercises

Pb. 5.1 Find graphically the two points in the x-y plane where the two sur-
faces, given below, intersect:

(Hint: Use the techniques of surface and contour renderings, detailed in
Chapter 1, to plot the zero height contours for both surfaces; then read off the
intersections of the resulting curves.)

Pb. 5.2 Verify your graphical answer to Pb. 5.1 with that you would obtain
analytically.

5.1.2 Numerical Methods

This chapter subsection briefly discusses two techniques for finding the zeros
of a function in one variable, namely the Direct Iterative and the Newton-
Raphson techniques. We do not concern ourselves too much, at this point,
with an optimization of the routine execution time, nor with the inherent lim-
its of each of the methods, except in the most general way. Furthermore, to
avoid the inherent limits of these techniques in some pathological cases, we
assume that we plot each function under consideration, verify that it crosses
the x-axis, and satisfy ourselves in an empirical way that there does not seem
to be any pathology around the intersection point before we embark on the
application of the following algorithms. These statements will be made more
rigorous to you in future courses in numerical analysis.

5.1.2.1 The Direct Iterative Method

This is a particularly useful technique when the equation f(x) = 0 can be cast
in the form:

x = F(x) (5.1)

z x y

z x y

1
2 2

2

7 25

4 2 4

= − + +

= − −
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F(x) is then called an iteration function, and it can be used for the generation
of the sequence:

xk+1 = F(xk) (5.2)

To guarantee that this method gives accurate results in a specific case, the
function should be continuous and it should satisfy the contraction condition:

(5.3)

where 0 

 

≤ s < 1; that is, the changes in the value of the function are smaller
than the changes in the value of the arguments. To prove that under these
conditions, the iterative function possesses a fixed point (i.e., that ultimately
the difference between two successive iterations can be arbitrarily small) that
can be immediately obtained from the above contraction condition [Eq. (5.3)].

PROOF Let the xguess be the first term in the iteration, then:

(5.4)

but since

(5.5)

then

(5.6)

Similarly,

(5.7)

translates into

(5.8)

The argument can be extended to the (m + 1)-iteration, where we can assert
that:

(5.9)

F x F x s x xn m n m( ) ( )− ≤ −

F x F x s x xguess guess( ) ( )1 1− ≤ −

F x x F x xguess( ) ( )= =1 1 2and

x x s x xguess2 1 1− ≤ −

F x F x s x x( ) ( )2 1 2 1− ≤ −

x x s x x s x xguess3 2 2 1
2

1− ≤ − ≤ −

x x s x xm m
m

guess+ − ≤ −1 1
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but, because s is a non-negative number smaller than 1, the right-hand-side of
the inequality in Eq. (5.9) can be made, for large enough value of m, arbitrarily
small, and the above iterative procedure does indeed converge to a fixed point.

Example 5.1
Find the zero of the function:

y = x – sin(x) – 1 (5.10)

Solution: At the zero, the iterative form can be written as:

x(k) = sin(x(k – 1)) + 1 (5.11)

The contraction property, required for the application of this method, is valid
in this case because the difference between two sines is always smaller than
the difference between their arguments. The fixed point can then be obtained
by the following MATLAB program:

x(1)=1; %value of the initial guess

for k=2:20

x(k)=sin(x(k-1))+1;

end

If we display the successive values of x, we obtain:

x

Ans

1.0000 1.8415 1.9636 1.9238 1.9383 1.9332 1.9350

1.9344 1.9346 1.9345 1.9346 1.9346 1.9346 1.9346

1.9346 1.9346 1.9346 1.9346 1.9346 1.9346

As can be noticed from the above printout, about 11 iterations were required
to get the value of the fixed point accurate to one part per 10,000.

NOTE A more efficient technique to find the answer within a proscribed
error tolerance is to write the program with the while command, where we
can specify the tolerance level desired.

5.1.2.2 The Newton-Raphson Method

This method requires a knowledge of both the function and its derivative.
The method makes use of the geometrical interpretation of the derivative
being the tangent at a particular point, and that the tangent is the limit of the
chord between two close points on the curve. It is based on the fact that if f(x1)
and f(x2) have opposite signs and the function f is continuous on the interval
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[x1, x2], we know from the Intermediate Value theorem of calculus that there
is at least one value xc between x1 and x2, such that f(xc) = 0. A sufficient con-
dition for this method to work is that f

 

′(x) and f

 

″(x) have constant sign on an
open interval that contains the solution f (x) = 0; in that case, any starting
point that is close enough to the solution will give successive Newton’s
approximations that converge to the solution.

Let xguess and x have the same meaning as in the iterative method; therefore,
f(x) = 0, and the definition of the derivative results in the equation:

(5.12)

This relation can now be the basis of an iterative function given by:

(5.13)

The fixed point can be obtained, in general, for the same initial guess and tol-
erance, in a smaller number of iterations in the Newton-Raphson method
than in the Direct Iteration method.

In-Class Exercise

Pb. 5.3 Write a routine to find the zero of the function y = x – sin(x) – 1 using
the Newton-Raphson algorithm.

Pb. 5.4 Compare the answers from the present algorithm with that of the
Direct Iterative method, at each iteration step, in the search for the zeros of
the function y = x – sin(x) – 1, and comment on which of the two methods
appears to be more effective and converges faster.

Example 5.2
Apply the Newton-Raphson method to find the voltage-current relation in a
diode circuit with an ac voltage source.

Solution: The diode is a nonlinear semiconductor electronics device with a
voltage current curve that is described, for voltage values larger than the
reverse breakdown potential (a negative quantity), by:

(5.14)

where Is is the reverse saturation current (which is typically on the order of
10–6 mA), and kT is the average thermal energy of an electron divided by its

x x
f x

f xguess
guess

guess

= −
′

( )

( )

x k x k
f x k
f x k

( ) ( )
( ( ))
( ( ))

= − −
−

′ −
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1
1
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charge at the diode operating temperature (equal to 1/40 V at room temper-
ature). An important application of this device is to use it as a rectifier (a
device that passes the current in one direction only). (Can you think of a prac-
tical application for this device?)

The problem we want to solve is to find the current through the circuit
(shown in Figure 5.1) as a function of time if we are given a sinusoidal time-
dependent source potential.

The other equation, in addition to Eq. (5.14) that we need in order to set the
problem, is Ohm’s law across R. This law, as previously noted, states that the
current passing through a resistor is equal to the potential difference across
the resistor, divided by the value of the resistance:

(5.15)

Eliminating the current from Eqs. (5.14) and (5.15), we obtain a nonlinear
equation in the potential across the diode. Solving this problem is then
reduced to finding the roots of the function f defined as:

(5.16)

where the potential across the diode is the unknown.
In the Newton-Raphson method, we also need for our iteration the deriva-

tive of this function:

(5.17)

For a particular value of Vs, we need to determine v and, from this value
of the potential across the diode, we can determine the current in the cir-
cuit. However, because we are interested in obtaining the current through

FIGURE 5.1
The diode semi-rectifier circuit.
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the diode for a source potential that is a function of time, we need to repeat
the Newton-Raphson iteration for each of the different source voltage val-
ues at the different times. The sequence of the computation would proceed
as follows:

1. Generate the time array.
2. Generate the source potential for the different elements in the time

array.
3. For each time array entry, find the potential across the diode using

the Newton-Raphson method.
4. Obtain the current array from the potential array.
5. Plot the source potential and the current arrays as a function of the

time array.

Assuming that the source potential is given by:

Vs = V0 sin(2πft) (5.18)

and that f = 60 Hz, V0 = 5 V, kT = 0.025 V, R = 500 Ω, and the saturation current
Is is 10–6 mA; the following script M-file finds the current in this circuit:

Is=10^(-9);

R=500;

kT=1/40;

f=60;

V0=5;

t=linspace(0,2/f,600);

L=length(t);

K=200;

Vs=(V0*sin(2*pi*t*f))'*ones(1,K);

v=zeros(L,K);

i=zeros(L,K);

for k=1:K-1

v(:,k+1)=v(:,k)-(Is*(exp((1/kT)*v(:,k))-1)-...

(1/R)*(Vs(:,k)-v(:,k)))./...

((1/kT)*Is*exp((1/kT)*v(:,k))+1/R);

i(:,k+1)=(Vs(:,k+1)-v(:,k+1))/R;

end

plot(t,1000*i(:,K),'b',t,Vs(:,K),'g')



© 2001 by CRC Press LLC

The current (expressed in mA) and the voltage (in V) of the source will
appear in your graph window when you execute this program.

Homework Problem

Pb. 5.5 The apparent simplicity of the Newton-Raphson method is very
misleading, suffice it to say that some of the original work on fractals started
with examples from this model.

a. State, to the best of your ability, the conditions that the function,
its derivative, and/or the original guess should satisfy so that this
iterate converges to the correct limit. Supplement your arguments
with geometric sketches that illustrate each of the pathologies.

b. Show that the Newton-Raphson method iterates cannot find the
zero of the function:

c. Illustrate, with a simple sketch, the reason that this method does
not work in part (b).

5.1.3 MATLAB fsolve and fzero Built-in Functions

Next, we investigate the use of the MATLAB command fsolve for finding
the zeros of any function. We start with a function of one variable.

The recommended sequence of steps for finding the zeros of a function is
as follows:

1. Edit a function M-file for the function under consideration.
2. Plot the curve of the function over the appropriate domain, and

estimate the values of the zeros.
3. Using each of the estimates found in (2) above as an initial “guess,”

use the command fsolve to accurately find each of the roots. The
syntax is as follows:

xroot=fsolve('funname',xguess)

NOTE Actually, the MATLAB command fzero is quite suitable for finding
the zero of a function of one variable. However, we used fsolve in the text
above because it can only be used for the two-variables problem.

y x= − 3
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In the following application, we use the command fzero to find the zeros
of a Bessel function, and learn in the process some important facts about this
often-used special function of applied mathematics.

Application
Bessel functions are solutions to Bessel’s differential equations of order n,
given by:

(5.19)

There are special types of Bessel functions referred to as “of the first, second,
and third kinds.” Bessel functions of integer order appear, inter alia, in the
expression of the radiation field in cylindrically shaped resonant cavities, and
in light diffraction from a circular hole. Bessel functions of half-integer indices
(see Pb. 2.26) appear in problems of spherical cavities and scattering of elec-
tromagnetic waves. Airy functions, a member of the Bessel functions family,
appear in a number of important problems of optics and quantum mechanics.

The recursion formula that relates the Bessel function of any kind of a cer-
tain order with those of the same kind of adjacent orders is

2nZn(x) = xZn–1(x) + xZn+1(x) (5.20)

where Zn(x) is the generic designation for all kinds of Bessel functions.
In this application, we concern ourselves only with the Bessel function of

the first kind, usually denoted by Jn(x). Its MATLAB call command is
besselj(n,x). In the present problem, we are interested in the root struc-
ture of the Bessel function of the first kind and of zero order.

In the program that follows, we call the Bessel function from the MATLAB
library; however, we could have generated it ourselves using the techniques
of Section 4.7 because we know the ODE that it satisfies, and its value and
that of its derivative at x = 0, namely:

The problem that we want to solve is to find the zeros of J0(x) and compare
to these exact values those obtained from the approximate expression:

(5.21)

To implement this task, edit and execute the following script M-file:

for k=1:10

p(k)=4*k-1;

x
d y
dx

x
dy
dx

x n y2
2

2 0+ + − =( )

J x J x0 00 1 0 0( ) ( )= = ′ = =and

x k
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x0(k)=fzero('besselj(0,x)',(pi/4)*p(k));

x0approx(k)=(pi/4)*p(k)+(1/(2*pi))*(p(k)^(-1))-...

(31/6)*(1/pi^3)*(p(k)^(-3))+...

(3779/15)*(1/pi^5)*(p(k)^(-5));

end

kk=1:10;

subplot(2,1,1);

plot(kk,x0,'o')

title('Zeros of Zero Order BesselJ Function')

subplot(2,1,2);

semilogy(kk,x0-x0approx,'o')

title('Error in Approximate Values of the Zeros')

As you can easily observe by examining Figure 5.2, the approximate series is
suitable for calculating all (except the smallest) zeros of the function J0(x) cor-
rectly to at least five digits.

FIGURE 5.2
The first ten zeros of the Bessel function J0(x). Top panel: The values of the successive zeros
(roots) of J0(x). Bottom panel: Deviation in the values of these zeros between their exact
expressions and their approximate values as given in Eq. (5.21).
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In-Class Exercises

In each of the following problems, find the zeros of the following functions
over the interval [0, 5].

Pb. 5.6 f(x) = x2 + 1. (Alert: Applying fsolve blindly could lead you into
trouble!)

Pb. 5.7 f(x) = sin2(x) – 1/2. Compare your answer with the analytical result.

Pb. 5.8 f(x) = 2 sin2(x) – x2

Pb. 5.9 f(x) = x – tan(x)

Zeros of a Function in Two Variables
As previously noted, the power of the MATLAB fsolve function really
shines in evaluating the roots of multivariable functions.

Example 5.3
Find the intersection in the x-y plane of the parabaloid and the plane given in
Pb. 5.1.

Solution: We follow these steps:

1. Use the contour command to estimate the coordinates of the
points of intersection of the surfaces in the x-y plane.

2. Construct the function M-file for two functions (z1, z2) having two
inputs (x, y):

function farray=funname(array)

x=array(1);

y=array(2);

farray(1)=7-sqrt(25+x.^2+y.^2);

farray(2)=4-2*x-4*y;

3. Use the approximate value found in step 1 as the value for the
guess array; for example:

xyguess=[4 -1];

4. Finally, use the fsolve command to accurately find the root. The
syntax is:
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xyroots=fsolve('funname',xyguess)

xyroots =

4.7081 -1.3541

5. To find the second root, use the second value of xyguess, which
is the estimate of the other root, obtained from an examination of
the contour plot in step 1 of the fsolve command:

xyguess=[-4 2];

xyroots=fsolve('funname',xyguess)

xyroots =

-3.9081 2.9541

This method can be extended to any number of variables and nonlinear equa-
tions, but the estimate of the roots becomes much more difficult and we will
not go into further details here.

In-Class Exercises

Find the values of x and y that simultaneously satisfy each pair of the follow-
ing equations:

Pb. 5.10

Pb. 5.11

Pb. 5.12

Pb. 5.13

5.2 Roots of a Polynomial

While the analytical expressions for the roots of quadratic, cubic, and quartic
equations are known, in general, the roots of higher-order polynomials can-
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not be found analytically. MATLAB has a built-in command that finds all the
roots (real and complex) for any polynomial equation. As previously noted,
the MATLAB command for finding the polynomial roots is roots:

r=roots(p)

In interpreting the results from this command, recall the Fundamental Theo-
rem of Algebra, which states the root properties of a polynomial of degree n
with real coefficients:

1. The nth polynomial admits n complex roots.
2. Complex roots come in conjugate pairs. [If you are not familiar

with complex numbers and with the term complex conjugate (the
latter term should pique your curiosity), be a little patient. Help is
on the way; Chapter 6 covers the topic of complex numbers].

Inversely, knowing the roots, we can reassemble the polynomial. The com-
mand is poly.

poly(r)

In-Class Exercise

Pb. 5.14 Find the roots of the polynomial p = [1 3 2 1 0 3], and com-
pute their sum and product.

Pb. 5.15 Consider the two polynomials:

p1 = [1 3 2 1 0 3] and p2 = [3 2 1]

Find the value(s) of x at which the curves representing these polynomials
would intersect.

Pb. 5.16 Find the constants A, B, C, D, and a, b, c, d that permits the follow-
ing expansion in partial fractions:

5.3 Optimization Methods

Many design problems call for the maximization or minimization (optimiza-
tion) of a particular function belonging to a particular domain. (Recall the

1
25 1444 2x x

A
x a

B
x b

C
x c

D
x d− +

=
−

+
−

+
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resistor circuit [Figure 3.1] in which we wanted to find the maximum power
delivered to a load resistor.) In this section, we will learn the simple Golden
Section rule and the use of the fmin command to solve the simplest forms
of this problem. The important class of problems related to optimizing a
function, while satisfying a number of constraints, will be left to more
advanced courses.

Let us start by reminding ourselves of some terms definitions: The domain
is the set of elements to which a function assigns values. The range is the set
of values thus obtained.

DEFINITION Let I, the domain of the function f(x), contain the point c. We
say that:

1. f(c) is the maximum value of the function on I if f(c) ≥ f(x) for all x ∈ I.
2. f(c) is the minimum value of the function on I if f(c) ≤ f(x) for all x ∈ I.
3. An extremum is the common designation for either the maximum

value or the minimum value.

Using the above definitions, we note that the maximum (minimum) may
appear at an endpoint of the interval I, or possibly in the interior of the
interval:

• If a maximum (minimum) appears at an endpoint, we describe this
extreme point as an endpoint maximum (minimum).

• If a maximum (minimum) appears in the interior of the interval,
we describe this extreme point as a local maximum (minimum).

• The largest (smallest) value among the maximum (minimum) val-
ues (either endpoint or local) is called the global maximum (min-
imum) and is the object of our search.

We note, in passing, the equivalence of finding the local extremum of a func-
tion with finding the zeros of the derivative of this function. The following
methods are suitable when this direct method is not suitable due to a number
of practical complications.

As with finding the zeros of a function, in this instance we will also explore
the graphical method, the simple numerical method, and the MATLAB built-
in commands for finding the extremum.

5.3.1 Graphical Method

In the graphical method, in steps very similar to those described in Section
5.1.1 for finding the zeros of a single variable function, we follow these steps:
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1. Plot the particular function over the defined domain.
2. Examine the plot to determine whether the extremum is an end-

point extremum or a local extremum.
3. Zoom in on the neighborhood of the so-identified extremum by

repeated application of the MATLAB axis or zoom commands.
4. Use the cross hair of the ginput command to read the coordinates

of the extremum. [Be especially careful here. Extra caution is
prompted by the fact that the curve is flat (its tangent is parallel
to the x-axis) at a local extremum; thus, you may need to re-plot
the curve in the neighborhood of this extremum to find, through
visual means, accurate results for the coordinates of the extremum.
There may be too few points in the original plot for the zooming
technique to provide more than a very rough approximation.]

In-Class Exercises

Find, graphically, for each of the following exercises, the coordinates of the
global maximum and the global minimum for the following curves in the
indicated intervals. Specify the nature of the extremum.

Pb. 5.17 y = f(x) = exp(–x2) on –4 < x < 4

Pb. 5.18 y = f(x) = exp(–x2) sin2(x) on –4 < x < 4

Pb. 5.19 y = f(x) = exp(–x2) [x3 + 2x + 3] on –4 < x < 4

Pb. 5.20 y = f(x) = 2 sin(x) – x on 0 < x < 2π

Pb. 5.21

5.3.2 Numerical Methods

We discuss now the Golden Section method for evaluating the position of the
local minimum of a function and its value at this minimum. We assume that
we have plotted the function and have established that such a local minimum
exists. Our goal at this point is to accurately pinpoint the position and value
of this minimum. We detail the derivation of an elementary technique for this
search: the Golden Section method. More accurate and efficient techniques
for this task have been developed. These are incorporated in the built-in com-
mand fmin; the mode of use is discussed in Section 5.3.3.

y f x x x= = + < <( ) sin( )1 0 2 on π
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5.3.2.1 Golden Section Method

Assume that, by examining the graph of the function under consideration,
you have established the local minimum xmin ∈ [a, b]. This means that the
curve of the function is strictly decreasing in the interval [a, xmin] and is
strictly increasing in the interval [xmin, b]. Next, choose a number r < 1/2, but
whose precise value will be determined later, and define the internal points c
and d such that:

c = a + r(b – a) (5.22)

d = a + (1 – r)(b – a) (5.23)

and such that a < c < d < b. Next, evaluate the values of the function at c and
d. If we find that f(c) ≥ f(d), we can assert that xmin ∈ [c, b]; that is, we narrowed
the external bounds of the interval. (If the inequality was in the other sense,
we could have instead narrowed the outer limit from the right.) If in the sec-
ond iteration, we fix the new internal points such that the new value of c is the
old value of d, then all we have to compute at this step is the new value of d.
If we repeat the same iteration k-times, until the separation between c and d is
smaller than the desired tolerance, then at that point we can assert that:

(5.24)

Now, let us determine the value of r that will allow the above iteration to
proceed as described. Translating the above statements into equations, we
desire that:

(5.25)

(5.26)

(5.27)

Now, replacing the values of a(2) and b(2) from Eqs. (5.26) and (5.27) into Eq.
(5.25), we are led to a second-degree equation in r:

r2 – 3r + 1 = 0 (5.28)

The desired root is the value of the Golden ratio:

x
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(5.29)

and hence, the name of the method.
The following function M-file implements the above algorithm:

function [xmin,ymin]=goldensection(funname,a,b,
tolerance)

r=(3-sqrt(5))/2;

c=a+r*(b-a);

fc=feval(funname,c);

d=a+(1-r)*(b-a);

fd=feval(funname,d);

while d-c>tolerance

if fc>=fd

dnew=c+(1-r)*(b-c);

a=c;

c=d;

fc=fd;

d=dnew;

fd=feval(funname,dnew);

else

cnew=a+r*(d-a);

b=d;

d=c;

fd=fc;

c=cnew;

fc=feval(funname,cnew);

end

end

xmin=(c+d)/2;

ymin=feval(funname,xmin);

For example, if we wanted to find the position of the minimum of the
cosine function and its value in the interval 3 < x < 3.5, accurate to 10–4, we
would enter in the command window, after having saved the above function
M-file, the following command:

r = −3 5
2
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[xmin,ymin]=goldensection('cos',3,3.5,10^(-4))

5.3.3 MATLAB fmin and fmins Built-in Function

Following methodically the same steps using fzero to find the zeros of any
function, we can use the fmin command to find the minimum of a function
of one variable on a given interval. The recommended sequence of steps is as
follows:

1. Edit a function M-file for the function under consideration.
2. Plot the curve of the function over the desired domain, to overview

the function shape and have an estimate of the position of the
minimum.

3. Use the command fmin to accurately find the minimum. The syn-
tax is as follows:

xmin=fmin('funname',a,b) % [a,b] is the interval

The local maximum of a function f(x) on an interval can be computed by
noting that this quantity can be deduced from knowing the values of the
coordinates of the local minimum of –f(x). The implementation of this task
consists of creating a file for the negative of this function (call it n-funname)
and entering the following commands in the command window:

xmax=fmin('n-funname',xi,xf)

fmax=-1*feval('n-funname',xmax)

Homework Problems

Pb. 5.22 We have two posts of height 6 m and 8 m, and separated by a dis-
tance of 21 m. A line is to run from the top of one post to the ground between
the posts and then to the top of the other post (Figure 5.3). Find the configu-
ration that minimizes the length of the line.

Pb. 5.23 Fermat’s principle states that light going from Point A to Point B
selects the path which requires the least amount of travel time. Consider the
situation in which an engineer in a submarine wants to communicate, using
a laser-like pointer, with a detector at the top of the mast of another boat. At
what angle θ to the vertical should he point his beam? Assume that the detec-
tor is 50 ft above the water surface, the submarine transmitter is 30 ft under
the surface, the horizontal distance separating the boat from the submarine is
100 ft, and the velocity of light in water is 3/4 of its velocity in air (Figure 5.4).
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FIGURE 5.3
Schematics for Pb. 5.22. (ACB is the line whose length we want to minimize.)

FIGURE 5.4
Schematics for Pb. 5.23. A is the location of the detector at the top of the mast, B is the
location of the emitter in the submarine, and BOA is the optical path of the ray of light.
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Minimum of a Function of Two Variables
To find the local minimum of a multivariable function, we use the MATLAB
fmins function. Finding the maximum can be handled by the same tech-
nique as outlined for the one variable case.

Example 5.4
Find the position of the minimum of the surface f(x, y) = x2 + y2.

Solution:
1. First, make a function file and save it as fname.m.

function f=fname(array)

x=array(1); % x is stored in first element of array

y=array(2); % y is stored in second element of
%array

f=x.^2+y.^2; % function stored in f

2. Graph the contour plot for the surface; and from it, estimate the
coordinates of the minimum:

arrayguess=[.1 .1];

The arrayguess holds the initial guess for both coordinates at
the minimum. That is,

arrayguess=[xguess yguess];

3. The coordinates of the minimum are then obtained by entering the
following commands in the command window:

arraymin=fmins('fname',arrayguess)

fmin=feval('fname',arraymin)

Homework Problem

Pb. 5.24 In this problem we propose to apply the above optimization tech-
niques to the important problem of the optical narrow band transmission fil-
ter. This filter, in very wide use in optics, consists of two parallel semi-
reflective surfaces (i.e., mirrors) with reflection coatings R1 and R2 and sepa-
rated by a distance L. Assuming that the material between the mirrors has an
index of refraction n and that the incoming beam of light has frequency ω and
is making an angle θi with the normal to the semi-reflective surfaces, then the
ratio of the transmitted light intensity to the incident intensity is
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where and θt is the angle that the trans-

mitted light makes with the normal to the mirror surfaces.
In the following activities, we want to understand how the above transmis-

sion filter responds as a function of the specified parameters. Choose the fol-
lowing parameters:

a. Plot T vs. ω/ω0 for the above frequency range.
b. At what frequencies does the transmission reach a maximum? A

minimum?
c. Devise two methods by which you can tune the filter so that the

maximum of the filter transmission is centered around a particular
physical frequency.

d. How sharp is the filter? By sharp, we mean: what is the width of
the transmission band that allows through at least 50% of the
incident light? Define the width relative to ω0.

e. Answer question (d) with the values of the reflection coatings given
now by:

Does the sharpness of the filter increase or decrease with an
increase of the reflection coefficients of the coating surfaces for the
two mirrors?

f. Choosing ω = ω0, plot a 3-D mesh of T as a function of the reflection
coefficients R1 and R2. Show, both graphically and numerically,
that the best performance occurs when the reflection coatings are
the same.

g. Plot the contrast function defined as  as a function of the

reflection coefficients R1 and R2. How should you choose your
mirrors for maximum contrast?
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h. For ω = ω0, plot the variation of the transmission coefficient as
function of θi.

i. Repeat (h), but now investigate the variation in the transmission
coefficient as a function of L.

5.4 MATLAB Commands Review

besselj The built-in BesselJ function.
fmin Finds the minimum value of a single variable function or

a restricted domain.
fmins Finds the local minimum of a multivariable function.
fsolve Finds a root to a system of nonlinear equations assuming

an initial guess.
fzero Finds the zero of a single variable function assuming an

initial guess.
roots Finds the roots of a polynomial if the polynomial coeffi-

cients are given.
poly Assembles a polynomial from its roots.
zoom Zooms in and out on a 2-D plot.
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6
Complex Numbers

6.1 Introduction

Since x2 > 0 for all real numbers x, the equation x2 = –1 admits no real number
as a solution. To deal with this problem, mathematicians in the 18th century
introduced the imaginary number  (So as not to confuse the usual
symbol for a current with this quantity, electrical engineers prefer the use of
the j symbol. MATLAB accepts either symbol, but always gives the answer
with the symbol i).

Expressions of the form:

z = a + jb (6.1)

where a and b are real numbers called complex numbers. As illustrated in
Section 6.2, this representation has properties similar to that of an ordered
pair (a, b), which is represented by a point in the 2-D plane.

The real number a is called the real part of z, and the real number b is called
the imaginary part of z. These numbers are referred to by the symbols a =
Re(z) and b = Im(z).

When complex numbers are represented geometrically in the x-y coordi-
nate system, the x-axis is called the real axis, the y-axis is called the imaginary
axis, and the plane is called the complex plane.

6.2 The Basics

In this section, you will learn how, using MATLAB, you can represent a com-
plex number in the complex plane. It also shows how the addition (or sub-
traction) of two complex numbers, or the multiplication of a complex number
by a real number or by j, can be interpreted geometrically.

i j= − =1 .
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Example 6.1
Plot in the complex plane, the three points (P1, P2, P3) representing the com-
plex numbers: z1 = 1, z2 = j, z3 = –1.

Solution: Enter and execute the following commands in the command
window:

z1=1;

z2=j;

z3=-1;

plot(z1,'*')

axis([-2 2 -2 2])

axis('square')

hold on

plot(z2,'o')

plot(z3,'*')

hold off

that is, a complex number in the plot command is interpreted by MATLAB
to mean: take the real part of the complex number to be the x-coordinate and
the imaginary part of the complex number to be the y-coordinate.

6.2.1 Addition

Next, we define addition for complex numbers. The rule can be directly
deduced from analogy of addition of two vectors in a plane: the x-component
of the sum of two vectors is the sum of the x-components of each of the vec-
tors, and similarly for the y-component. Therefore:

If: z1 = a1 + jb1 (6.2)

and z2 = a2 + jb2 (6.3)

Then: z1 + z2 = (a1 + a2) + j(b1 + b2) (6.4)

The addition or subtraction rules for complex numbers are geometrically
translated through the parallelogram rules for the addition and subtraction
of vectors.

Example 6.2
Find the sum and difference of the complex numbers



© 2001 by CRC Press LLC

z1 = 1 + 2j and z2 = 2 + j

Solution: Grouping the real and imaginary parts separately, we obtain:

z1 + z2 = + 3j

and

z1 – z2 = –1 + j

Preparatory Exercise

Pb. 6.1 Given the complex numbers z1, z2, and z3 corresponding to the ver-
tices P1, P2, and P3 of a parallelogram, find z4 corresponding to the fourth ver-
tex P4. (Assume that P4 and P2 are opposite vertices of the parallelogram).
Verify your answer graphically for the case:

6.2.2 Multiplication by a Real or Imaginary Number

If we multiply the complex number z = a + jb by a real number k, the resultant
complex number is given by:

(6.5)

What happens when we multiply by j?
Let us, for a moment, return to Example 6.1. We note the following proper-

ties for the three points P1, P2, and P3:

1. The three points are equally distant from the origin of the axis.
2. The point P2 is obtained from the point P1 by a 

 

π/2 counter-
clockwise rotation.

3. The point P3 is obtained from the point P2 through another 

 

π/2
counterclockwise rotation.

We also note, by examining the algebraic forms of z1, z2, z3 that:

z j z j z j1 2 32 1 2 4 3= + = + = +, ,

k z k a jb ka jkb× = × + = +( )

z jz z jz j z z2 1 3 2
2

1 1= = = = −and
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That is, multiplying by j is geometrically equivalent to a counterclockwise
rotation by an angle of π/2.

6.2.3 Multiplication of Two Complex Numbers

The multiplication of two complex numbers follows the same rules of algebra
for real numbers, but considers j2 = –1. This yields:

If: (6.6)

Preparatory Exercises

Solve the following problems analytically.

Pb. 6.2 Find  for the following pairs:

a.

b.

c.

d.

Pb. 6.3 Find the real quantities m and n in each of the following equations:
a. mj + n(1 + j) = 3 – 2j
b. m(2 + 3j) + n(1 – 4j) = 7 + 5j

(Hint: Two complex numbers are equal if separately the real and imaginary
parts are equal.)

Pb. 6.4 Write the answers in standard form: (i.e., a + jb)
a. (3 – 2j)2 – (3 + 2j)2

b. (7 + 14j)7

c.

d. j(1 + 7j) – 3j(4 + 2j)

Pb. 6.5 Show that for all complex numbers z1, z2, z3, we have the following
properties:

z1z2 = z2z1 (commutativity property)

z1(z2 + z3) = z1z2 + z1z3 (distributivity property)

z a jb z a jb1 1 1 2 2 2= + = +and

⇒ = − + +z z a a b b j a b b a1 2 1 2 1 2 1 2 1 2( ) ( )

z z z z1 2 1
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Pb. 6.6 Consider the triangle ∆(ABC), in which D is the midpoint of the BC

segment, and let the point G be defined such that  Assuming

that zA, zB, zC are the complex numbers representing the points (A, B, C):
a. Find the complex number zG that represents the point G.

b. Show that  and that F is the midpoint of the segment

(AB).

6.3 Complex Conjugation and Division

DEFINITION The complex conjugate of a complex number z, which is
denoted by , is given by:

FIGURE 6.1
The center of mass of a triangle. (Refer to Pb. 6.6).

( ) ( ).GD AD= 1
3

( ) ( )CG CF= 2
3

z
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(6.7)

That is,  is obtained from z by reversing the sign of Im(z). Geometrically, z
and  form a pair of symmetric points with respect to the real axis (x-axis) in
the complex plane.

In MATLAB, complex conjugation is written as conj(z).

DEFINITION The modulus of a complex number z = a + jb, denoted by , is
given by:

(6.8)

Geometrically, it represents the distance between the origin and the point
representing the complex number z in the complex plane, which by
Pythagorean theorem is given by the same quantity.

In MATLAB, the modulus of z is denoted by abs(z).

THEOREM
For any complex number z, we have the result that:

(6.9)

PROOF Using the above two definitions for the complex conjugate and the
norm, we can write:

In-Class Exercise

Solve the problem analytically, and then use MATLAB to verify your
answers.

Pb. 6.7 Let z = 3 + 4j. Find  Verify the above theorem.

6.3.1 Division

Using the above definitions and theorem, we now want to define the inverse
of a complex number with respect to the multiplication operation. We write
the results in standard form.

z a jb z a jb= − = +if

z
z

z

z a b= +2 2

z zz2 =

zz a jb a jb a b z= − + = + =( )( ) 2 2 2

z z zz, , .and



© 2001 by CRC Press LLC

(6.10)

from which we deduce that:

(6.11)

and

(6.12)

To summarize the above results, and to help you build your syntax for the
quantities defined in this section, edit the following script M-file and execute it:

z=3+4*j

zbar=conj(z)

modulz=abs(z)

modul2z=z*conj(z)

invz=1/z

reinvz=real(1/z)

iminvz=imag(1/z)

In-Class Exercises

Pb. 6.8 Analytically and numerically, obtain in the standard form an
expression for each of the following quantities:

Pb. 6.9 For any pair of complex numbers z1 and z2, show that:
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6.4 Polar Form of Complex Numbers

If we use polar coordinates, we can write the real and imaginary parts of a
complex number z = a + jb in terms of the modulus of z and the polar angle θ:

(6.13)

(6.14)

and the complex number z can then be written in polar form as:

(6.15)

The angle θ is called the argument of z and is usually evaluated in the interval
–π ≤ θ ≤ π. However, we still have the same complex number if we added to
the value of θ an integer multiple of 2π.

(6.16)

From the above results, it is obvious that the argument of the complex con-
jugate of a complex number is equal to minus the argument of this complex
number.

In MATLAB, the convention for arg(z) is angle(z).

In-Class Exercise

Pb. 6.10 Find the modulus and argument for each of the following complex
numbers:

Plot these points. Can you detect any geometrical pattern? Generalize.

The main advantage of writing complex numbers in polar form is that it
makes the multiplication and division operations more transparent, and pro-
vides a simple geometric interpretation to these operations, as shown below.

a r z= =cos( ) cos( )θ θ

b r z= =sin( ) sin( )θ θ

z z j z z j= + = +cos( ) sin( ) (cos( ) sin( ))θ θ θ θ

θ

θ

=

=

arg( )

tan( )

z

b
a

z j z j z j z j z j1 2 3 4 51 2 2 1 2 1 2 1 2= + = + = − = − + = − −; ; ; ;
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6.4.1 New Insights into Multiplication and Division of Complex Numbers

Consider the two complex numbers z1 and z2 written in polar form:

(6.17)

(6.18)

Their product z1z2 is given by:

(6.19)

But using the trigonometric identities for the sine and cosine of the sum of
two angles:

(6.20)

(6.21)

the product of two complex numbers can then be written in the simpler form:

(6.22)

That is, when multiplying two complex numbers, the modulus of the product
is the product of the moduli, while the argument is the sum of arguments:

(6.23)

(6.24)

The above result can be generalized to the product of n complex numbers
and the result is:

(6.25)

(6.26)

A particular form of this expression is the De Moivre theorem, which states
that:

z z j1 1 1 1= +(cos( ) sin( ))θ θ

z z j2 2 2 2= +(cos( ) sin( ))θ θ

z z z z
j

1 2 1 2

1 2 1 2

1 2 1 2

=
−

+ +













(cos( )cos( ) sin( )sin( ))

(sin( )cos( ) cos( )sin( ))

θ θ θ θ

θ θ θ θ

cos( ) cos( )cos( ) sin( )sin( )θ θ θ θ θ θ1 2 1 2 1 2+ = −

sin( ) sin( )cos( ) cos( )sin( )θ θ θ θ θ θ1 2 1 2 1 2+ = +

z z z z j1 2 1 2 1 2 1 2= + + +[cos( ) sin( )]θ θ θ θ

z z z z1 2 1 2=

arg( ) arg( ) arg( )z z z z1 2 1 2= +

z z z z z zn n1 2 1 2… = …

arg( ) arg( ) arg( ) ( )z z z z z zn n1 2 1 2… = + + … +
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(6.27)

The above results suggest that the polar form of a complex number may be
written as a function of an exponential function because of the additivity of
the arguments upon multiplication. We revisit this issue later.

In-Class Exercises

Pb. 6.11 Show that .

Pb. 6.12 Explain, using the above results, why multiplication of any com-
plex number by j is equivalent to a rotation of the point representing this
number in the complex plane by π/2.

Pb. 6.13 By what angle must we rotate the point P(3, 4) to transform it to the
point P′(4, 3)?

Pb. 6.14 The points z1 = 1 + 2j and z2 = 2 + j are adjacent vertices of a regular
hexagon. Find the vertex z3 that is also a vertex of the same hexagon and that
is adjacent to z2 (z3 ≠ z1).

Pb. 6.15 Show that the points A, B, C representing the complex numbers zA,
zB, zC in the complex plane lie on the same straight line if and only if:

Pb. 6.16 Determine the coordinates of the P′ point obtained from the point

P(2, 4) through a reflection around the line 

Pb. 6.17 Consider two points A and B representing, in the complex plane,
the complex numbers z1 and  Let P be any point on the circle of radius
1 and centered at the origin (the unit circle). Show that the ratio of the length
of the line segments PA and PB is the same, regardless of the position of point
P on the unit circle.

Pb. 6.18 Find the polar form of each of the following quantities:

(cos( ) sin( )) cos( ) sin( )θ θ θ θ+ = +j n j nn

z
z

z

z
j1

2

1

2
1 2 1 2= − + −[cos( ) sin( )]θ θ θ θ

z z
z z

A c

B c

−
−

is real.

y
x= +
2

2.

1 1/ .z

( )
( )

, ( )( ), ( )
1
1

1 2 1
15

9
2 3 99+

−
− + + + + +

j
j

j j j j j
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6.4.2 Roots of Complex Numbers

Given the value of the complex number z, we are interested here in finding
the solutions of the equation:

vn = z (6.28)

Let us write both the solutions and z in polar forms,

(6.29)

(6.30)

From the De Moivre theorem, the expression for vn = z can be written as:

(6.31)

Comparing the moduli of both sides, we deduce by inspection that:

(6.32)

The treatment of the argument should be done with great care. Recalling
that two angles have the same cosine and sine if they are equal or differ from
each other by an integer multiple of 2π, we can then deduce that:

(6.33)

Therefore, the general expression for the roots is:

(6.34)

Note that the roots reproduce themselves outside the range: k = 0, 1, 2, …,
(n – 1).

In-Class Exercises

Pb. 6.19 Calculate the roots of the equation z5 – 32 = 0, and plot them in the
complex plane.

v j= +ρ α α(cos( ) sin( ))

z r j= +(cos( ) sin( ))θ θ

ρ α α θ θn n j n r j(cos( ) sin( )) (cos( ) sin( ))+ = +

ρ = rn

n k kα θ π= + = ± ± ± …2 0 1 2 3, , , ,

z r
n

k
n

j
n

k
n

k n

n n1 1 2 2

0 1 2 1

/ / cos sin

, , , , ( )

= +



 + +











= … −

θ π θ π

with
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a. What geometric shape does the polygon with the solutions as ver-
tices form?

b. What is the sum of these roots? (Derive your answer both algebra-
ically and geometrically.)

6.4.3 The Function y = ejθθθθ

As alluded to previously, the expression cos(θ) + j sin(θ) behaves very much
as if it was an exponential; because of the additivity of the arguments of each
term in the argument of the product, we denote this quantity by:

ej θ = cos(θ) + j sin(θ) (6.35)

PROOF Compute the Taylor expansion for both sides of the above equation.
The series expansion for ejθ is obtained by evaluating Taylor’s formula at x =
jθ, giving (see appendix):

(6.36)

When this series expansion for ej θ is written in terms of its even part and odd
part, we have the result:

(6.37)

However, since j2 = –1, this last equation can also be written as:

(6.38)

which, by inspection, can be verified to be the sum of the Taylor expansions
for the cosine and sine functions.

In this notation, the product of two complex numbers 
It is then a simple matter to show that:

If: (6.39)

Then: (6.40)
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and

(6.41)

from which we can deduce Euler’s equations:

(6.42)

and

(6.43)

Example 6.3
Use MATLAB to generate the graph of the unit circle in the complex plane.

Solution: Because all points on the unit circle are equidistant from the origin
and their distance to the origin (their modulus) is equal to 1, we can generate
the circle by plotting the N-roots of unity, taking a very large value for N. This
can be implemented by executing the following script M-file.

N=720;

z=exp(j*2*pi*[1:N]./N);

plot(z)

axis square

In-Class Exercises

Pb. 6.20 Using the exponential form of the n-roots of unity, and the expres-
sion for the sum of a geometric series (given in the appendix), show that the
sum of these roots is zero.

Pb. 6.21 Compute the following sums:
a. 1 + cos(x) + cos(2x) + … + cos(nx)
b. sin(x) + sin(2x) + … + sin(nx)
c. cos(α) + cos(α + β) + … + cos(α + nβ)
d. sin(α) + sin(α + β) + … + sin(α + nβ)

Pb. 6.22 Verify numerically that for z = x + jy:

z
r

j− = −1 1
exp( )θ

cos( )
exp( ) exp( )

θ
θ θ

=
+ −j j
2

sin( )
exp( ) exp( )

θ
θ θ

=
− −j j

j2
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For what values of y is this quantity pure imaginary?

Homework Problems

Pb. 6.23 Plot the curves determined by the following parametric represen-
tations:

a. z = 1 – jt 0 ≤ t ≤ 2
b. z = t + jt2 –∞ < t < ∞

c. z = 2(cos(t) + j sin(t))

d. z = 3(t + j – j exp(–jt)) 0 < t < ∞

Pb. 6.24 Find the expression y = f(x) and plot the families of curves defined
by each of the corresponding equations:

a. b.

c. d.

e. f.

g. h.

Pb. 6.25 Find the image of the line Re(z) = 1 upon the transformation z′ = z2

+ z. (First obtain the result analytically, and then verify it graphically.)

Pb. 6.26 Consider the following bilinear transformation: 

Show how with proper choices of the constants a, b, c, d, we can generate all
transformations of planar geometry (i.e., scaling, rotation, translation, and
inversion).

Pb. 6.27 Plot the curves C′ generated by the points P′ that are the images of
points on the circle centered at (3, 4) and of radius 5 under the transformation
of the preceding problem, with the following parameters:

Case 1: a = exp(jπ/4), b = 0, c = 0, d = 1
Case 2: a = 1, b = 3, c = 0, d = 1
Case 3: a = 0, b = 1, c = 1, d = 0

lim exp( )(cos( ) sin( ))
n

nz
n

x y j y
→∞

+



 = +1

π π
2
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2

< <t
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2
z
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3 4
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6.5 Analytical Solutions of Constant Coefficients ODE

Finding the solutions of an ODE with constant coefficients is conceptually
very similar to solving the linear difference equation with constant coeffi-
cients. We repeat the exercise here for its pedagogical benefits and to bring
out some of the finer technical details peculiar to the ODEs of particular inter-
est for later discussions.

The linear differential equation of interest is given by:

(6.44)

In this section, we find the solutions of this ODE for the cases that u(t) = 0 and
u(t) = A cos(ωt).

The solutions for the first case are referred to as the homogeneous solu-
tions. By substitution, it is a trivial matter to verify that if y1(t) and y2(t) are
solutions, then c1y1(t) + c2y2(t), where c1 and c2 are constants, is also a solution.
This is, as previously mentioned, referred to as the superposition principle
for linear systems.

If u(t) ≠ 0, the general solution of the ODE will be the sum of the corre-
sponding homogeneous solution and the particular solution peculiar to the
specific details of u(t). Furthermore, by inspection, it is clear that if the source
can be decomposed into many components, then the particular solution can
be written as the sum of the particular solutions for the different components
and with the same weights as in the source. This property characterizes a lin-
ear system.

DEFINITION A system L is considered linear if:

(6.45)

where the c’s are constants and the u’s are time-dependent source signals.

6.5.1 Transient Solutions

To obtain the homogeneous solutions, we set u(t) = 0. We guess that the solu-
tion to this homogeneous differential equation is y = exp(st). You may won-
der why we made this guess; the secret is in the property of the exponential
function, whose derivative is proportional to the function itself. That is:

(6.46)

a
d y
dt

a
d y
dt

a
dy
dt

a y u tn

n

n n

n

n+ + … + + =−

−

−1

1

1 1 0 ( )

L c u t c u t c u t c L u t c L u t c L u tn n n n( ( ) ( ) ( )) ( ( )) ( ( )) ( ( ))1 1 2 2 1 1 2 2+ + … + = + + … +

d st
dt
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(exp( ))

exp( )=
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Through this substitution, the above ODE reduces to an algebraic equation,
and the solution of this algebraic equation then reduces to finding the roots
of the polynomial:

(6.47)

We learned in Chapter 5 the MATLAB command for finding these roots,
when needed. Now, using the superposition principle, and assuming all the
roots are distinct, the general solution of the homogeneous differential equa-
tion is given by:

(6.48)

where s1, s2, …, sn are the above roots and c1, c2, …, cn are constant determined
from the initial conditions of the solution and all its derivatives to order n – 1.

NOTE In the case that two or more of the roots are equal, it is easy to verify
that the solution of the homogeneous ODE includes, instead of a constant
multiplied by the exponential term corresponding to that root, a polynomial
multiplying the exponential function. The degree of this polynomial is (m – 1)
if m is the degeneracy of the root in question.

Example 6.4
Find the transient solutions to the second-order differential equation.

(6.49)

Solution: The characteristic polynomial associated with this ODE is the sec-
ond-degree equation given by:

(6.50)

The roots of this equation are 

The nature of the solutions is very dependent on the sign of the descriminant
(b2 – 4ac):

• If b2 – 4ac > 0, the two roots are distinct and real. Call these roots
α1 and α2; the solution is then:

(6.51)

a s a s a s an
n

n
n+ + … + + =−

−
1

1
1 0 0

y c s t c s t c s tn nhomog. = + + … +1 1 2 2exp( ) exp( ) exp( )

a
d y
dt

b
dy
dt

cy
2

2 0+ + =

as bs c2 0+ + =

s
b b ac

a± = − ± −2 4
2

y c t c thomog. exp( ) exp( )= +1 1 2 2α α
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In many physical problems of interest, we desire solutions that are zero at
infinity, that is, decay over a finite time. This requires that both α1 and α2 be
negative; or if only one of them is negative, that the c coefficient of the expo-
nentially increasing solution be zero. This class of solutions is called the over-
damped class.

• If b2 – 4ac = 0, the two roots are equal, and we call this root αdegen..
The solution to the differential equation is

(6.52)

The polynomial, multiplying the exponential function, is of degree one here
because the degeneracy of the root is of degree two. This class of solutions is
referred to as the critically damped class.

• If b2 – 4ac < 0, the two roots are complex conjugates of each other,
and their real part is negative for physically interesting cases. If we
denote these roots by s± = –α ± jβ, the solutions to the homogeneous
differential equations take the form:

yhomog. = exp(–αt)(c1 cos(βt) + c2 sin(βt)) (6.53)

This class of solutions is referred to as the under-damped class.

In-Class Exercises

Find and plot the transient solutions to the following homogeneous equa-
tions, using the indicated initial conditions:

Pb. 6.28 a = 1, b = 3, c = 2 y(t = 0) = 1 y′(t = 0) = –3/2

Pb. 6.29 a = 1, b = 2, c = 1 y(t = 0) = 1 y′(t = 0) = 2

Pb. 6.30 a = 1, b = 5, c = 6 y(t = 0) = 1 y′(t = 0) = 0

6.5.2 Steady-State Solutions

In this subsection, we find the particular solutions of the ODEs when the
driving force is a single-term sinusoidal.

As pointed out previously, because of the superposition principle, it is also
possible to write the steady-state solution for any combination of such inputs.
This, combined with the Fourier series techniques (briefly discussed in Chap-
ter 7), will also allow you to write the solution for any periodic function.

y c c t thomog. degen.( )exp( )= +1 2 α
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We discuss in detail the particular solution for the first-order and the sec-
ond-order differential equations because these represent, as previously
shown in Section 4.7, important cases in circuit analysis.

Example 6.5
Find the particular solution to the first-order differential equation:

(6.54)

Solution: We guess that the particular solution of this ODE is a sinusoidal of
the form:

(6.55)

Our task now is to find Bc and Bs that would force Eq. (6.55) to be the solution
of Eq. (6.54). Therefore, we substitute this trial solution in the differential
equation and require that, separately, the coefficients of sin(ωt) and cos(ωt)
terms match on both sides of the resulting equation. These requirements are
necessary for the trial solution to be valid at all times. The resulting condi-
tions are

(6.56)

from which we can also deduce the polar form of the solution, giving:

(6.57)

Example 6.6
Find the particular solution to the second-order differential equation:

(6.58)

Solution: Again, take the trial particular solution to be of the form:

a
dy
dt

by A t+ = cos( )ω

y t B t B t t

B t B tc s

partic.( ) cos( ) [cos( )cos( ) sin( )sin( )]
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= +
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B B
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=
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φ ω
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(6.59)

Repeating the same steps as in Example 6.5, we find:

(6.60)

(6.61)

6.5.3 Applications to Circuit Analysis

An important application of the above forms for the particular solutions is in
circuit analysis with inductors, resistors, and capacitors as elements. We
describe later a more efficient analytical method (phasor representation) for
solving this kind of problem; however, we believe that it is important that
you also become familiar with the present technique.

6.5.3.1 RC Circuit

Referring to the RC circuit shown in Figure 4.4, we derived the differential
equation that the potential difference across the capacitor must satisfy;
namely:

(6.62)

This is a first-order differential equation, the particular solution of which is
given in Example 6.5 if we were to identify the coefficients in the ODE as fol-
lows: a = RC, b = 1, A = V0.

6.5.3.2 RLC Circuit

Referring to the circuit, shown in Figure 4.5, the voltage across the capacitor
satisfies the following ODE:

(6.63)

This equation can be identified with that given in Example 6.6 if the ODE
coefficients are specified as follows: a = LC, b = RC, c = 1, A = V0.
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In-Class Exercises

Pb. 6.31 This problem pertains to the RC circuit:
a. Write the output signal VC in the amplitude-phase representation.
b. Plot the gain response as a function of a normalized frequency that

you will have to select. (The gain of a circuit is defined as the ratio
of the amplitude of the output signal over the amplitude of the
input signal.)

c. Determine the phase response of the system (i.e., the relative phase
of the output signal to that of the input signal as function of the
frequency) also as function of the normalized frequency.

d. Can this circuit be used as a filter (i.e., a device that lets through only
a specified frequency band)? Specify the parameters of this band.

Pb. 6.32 This problem pertains to the RLC circuit:
a. Write the output signal VC in the amplitude-phase representation.

b. Defining the resonance frequency of this circuit as:  find

at which frequency the gain is maximum, and find the width of
the gain curve.

c. Plot the gain curve and the phase curve for the following cases:

.

d. Can you think of a possible application for this circuit?

Pb. 6.33 Can you think of a mechanical analog to the RLC circuit? Identify
in that case the physical parameters in the corresponding ODE.

Pb. 6.34 Assume that the source potential in the RLC circuit has five fre-
quency components at ω, 2ω, …, 5ω of equal amplitude. Plot the input and
output potentials as a function of time over the interval 0 < ωt < 2π. Assume

that

6.6 Phasors

A technique in widespread use to compute the steady-state solutions of sys-
tems with sinusoidal input is the method of phasors. In this and the following
two chapter sections, we define phasors, learn how to use them to add two or

ω0
1=
LC

,

ω0L
R

= 0.1,  1,  10

ω ω
ω

= = =0
01

1
LC

L
R

 and .
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more signals having the same frequency, and how to find the particular solu-
tion of an ODE with a sinusoidal driving function.

There are two key ideas behind the phasor representation of a signal:

1. A real, sinusoidal time-varying signal may be represented by a
complex time-varying signal.

2. This complex signal can be represented as the product of a complex
number that is independent of time and a complex signal that is
dependent on time.

Example 6.7
Decompose the signal V = A cos(ωt + φ) according to the above prescription.

Solution: This signal can, using the polar representation of complex num-
bers, also be written as:

(6.64)

where the phasor, denoted with a tilde on top of its corresponding signal
symbol, is given by:

(6.65)

(Warning: Do not mix the tilde symbol that we use here, to indicate a phasor,
with the overbar that denotes complex conjugation.)

Having achieved the above goal of separating the time-independent part of
the complex number from its time-dependent part, we now learn how to
manipulate these objects. A lot of insight can be immediately gained if we
note that this form of the phasor is exactly in the polar form of a complex
number, with clear geometric interpretation for its magnitude and phase.

6.6.1 Phasor of Two Added Signals

The sum of two signals with common frequencies but different amplitudes
and phases is

(6.66)

To write the above result in phasor notation, note that the above sum can also
be written as follows:

(6.67)
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= +
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and where

(6.68)

Preparatory Exercise

Pb. 6.35 Write the analytical expression for Atot. and φtot. in Eq. (6.68) as func-
tions of the amplitudes and phases of signals 1 and 2.

The above result can, of course, be generalized to the sum of many signals;
specifically:

(6.69)

and

(6.70)

(6.71)

(6.72)

That is, the resultant field can be obtained through the simple operation of
adding all the complex numbers (phasors) that represent each of the individ-
ual signals.

Example 6.8

Given ten signals, the phasor of each of the form  where the ampli-

tude and phase for each have the functional forms  write

a MATLAB program to compute the resultant sum phasor.
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Solution: Edit and execute the following script M-file:

N=10;

n=1:N;

amplituden=1./n;

phasen=n.^2;

phasorn=amplituden.*exp(j.*phasen);

phasortot=sum(phasorn);

amplitudetot=abs(phasortot)

phasetot=angle(phasortot)

In-Class Exercises

Pb. 6.36 Could you have estimated the answer to Example 6.8? Justify your
reasoning.

Pb. 6.37 Show that if you add N signals with the same magnitude and fre-
quency but with phases equally distributed over the [0, 2π] interval, the
resultant phasor will be zero. (Hint: Remember the result for the sum of the
roots of unity.)

Pb. 6.38 Show that the resultant signal from adding N signals having the
same frequency has the largest amplitude when all the individual signals are
in phase (this situation is referred to as maximal constructive interference).

Pb. 6.39 In this problem, we consider what happens if the frequency and
amplitude of N different signals are still equal, but the different phases of the
signals are randomly distributed over the [0, 2π] interval. Find the amplitude
of the resultant signal if N = 1000, and compare it with the maximal construc-
tive interference result. (Hint: Recall that the rand(1,N) command gener-
ates a 1-D array of N random numbers from the interval [0, 1].)

Pb. 6.40 The service provided to your home by the electric utility company
is a two-phase service. This means that two 110-V/60-Hz hot lines plus a neu-
tral (ground) line terminate in your panel. The hot lines are π out of phase.

a. Which signal would you use to drive your clock radio or your
toaster?

b. What configuration will you use to drive your oven or your dryer?

Pb. 6.41 In most industrial environments, electric power is delivered in
what is called a three-phase service. This consists of three 110-V/60-Hz lines
with phases given by (0, 2π/3, 4π/3). What is the maximum voltage that you
can obtain from any combination of two of these signals?

Pb. 6.42 Two- and three-phase power can be extended to N-phase power. In
such a scheme, the N-110-V/60-Hz signals are given by:
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While the sum of the voltage of all the lines is zero, the instantaneous power
is not. Find the total power, assuming that the power from each line is pro-
portional to the square of its time-dependent expression. (Hint: Use the dou-
ble angle formula for the cosine function.)

NOTE Another designation in use for a 110-V line is an rms value of 110, and
not the value of the maximum amplitude as used above.

6.7 Interference and Diffraction of Electromagnetic Waves

6.7.1 The Electromagnetic Wave

Electromagnetic waves (em waves) are manifest as radio and TV broadcast
signals, microwave communication signals, light of any color, X-rays, γ-rays,
etc. While these waves have different sources and methods of generation and
require different kinds of detectors, they do share some general characteris-
tics. They differ from each other only in the value of their frequencies. Indeed,
it was one of the greatest intellectual achievements of the 19th century when
Maxwell developed the system of equations, now named in his honor, to
describe these waves’ commonality. The most important of these properties
is that they all travel in a vacuum with, what is called, the speed of light c (c
= 3 × 108 m/s). The detailed study of these waves is the subject of many elec-
trophysics subspecialties.

Electromagnetic waves are traveling waves. To understand their mathe-
matical nature, consider a typical expression for the electric field associated
with such waves:

E(z, t) = E0 cos[kz – ωt] (6.73)

Here, E0 is the amplitude of the wave, z is the spatial coordinate parallel to
the direction of propagation of the wave, and k is the wavenumber.
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Note that if we plot the field for a fixed time, for example, at t = 0, the field
takes the shape of a sinusoidal function in space:

E(z, t = 0) = E0 cos[kz] (6.74)

From the above equation, one deduces that the wavenumber k = 2π/λ, where
λ is the wavelength of the wave (i.e., the length after which the wave shape
reproduces itself).

Now let us look at the field when an observer, located at z = 0, would mea-
sure it as a function of time. Then:

E(z = 0, t) = E0 cos[ωt] (6.75)

The temporal period, that is, the time after which the wave shape reproduces

itself, is  where ω is the angular frequency of the wave.

Next, we want to relate the wavenumber to the angular frequency. To do
that, consider an observer located at z = 0. The observer measures the field at
t = 0 to be E0. At time ∆t later, he should measure the same field, whether he
uses Eq. (6.74) or (6.75) if he takes ∆z = c∆t, the distance that the wave crest
has moved, and where c is the speed of propagation of the wave. From this,
one deduces that the wavenumber and the angular frequency are related by
kc = ω. This relation holds true for all electromagnetic waves; that is, as the
frequency increases, the wavelength decreases.

If two traveling waves have the same amplitude and frequency, but one is
traveling to the right while the other is traveling to the left, the result is a
standing wave. The following program permits visualization of this standing
wave.

x=0:0.01:5;

a=1;

k=2*pi;

w=2*pi;

t=0:0.05:2;

M=moviein(41);

for m=1:41;

z1=cos(k*x-w*t(m));

z2=cos(k*x+w*t(m));

z=z1+z2;

plot(x,z,'r');

axis([0 5 -3 3]);

T = 2π
ω

,
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M(:,m)=getframe;

end

movie(M,20)

Compare the spatio-temporal profile of the resultant to that for a single wave
(i.e., set x2 = 0).

6.7.2 Addition of Two Electromagnetic Waves

In many practical instances, we are faced with the problem that two em
waves originating from the same source, but following different spatial
paths, meet again at a certain position. We want to find the total field at this
position resulting from adding the two waves. We first note that, in the sim-
plest case where the amplitude of the two fields are kept equal, the effect of
the different paths is only to dephase one of the waves from the other by an
amount: ∆φ = k∆l, where ∆l is the path difference. In effect, the total field is
given by:

(6.76)

where ∆φ = φ1 – φ2. This form is similar to those studied in the addition of two
phasors and we will hence describe the problem in this language.

The resultant phasor is

(6.77)

Preparatory Exercise

Pb. 6.43 Find the modulus and the argument of the resultant phasor given
in Eq. (6.74) as a function of E0 and ∆φ. From this expression, deduce the rela-
tion that relates the path difference corresponding to when the resultant pha-
sor has maximum magnitude and that when its magnitude is a minimum.
The curve describing the modulus square of the resultant phasor is what is
commonly referred to as the interference pattern of two waves.

6.7.3 Generalization to N-waves

The addition of electromagnetic waves can be generalized to N-waves.

E t E t E ttot. ( ) cos[ ] cos[ ]= + + +0 1 0 2ω φ ω φ

˜ ˜ ˜
.E E Etot = +1 2
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Example 6.9
Find the resultant field of equal-amplitude N-waves, each phase-shifted from
the preceding by the same ∆φ.

Solution: The problem consists of computing an expression of the following
kind:

(6.78)

We have encountered such an expression previously. This sum is that corre-
sponding to the sum of a geometric series. Computing this sum, the modulus
square of the resultant phasor is

(6.79)

Because the source is the same for each of the components, the modulus of
each phasor is related to the source amplitude by E0 = Esource/N. It is usually
as function of the source field that the results are expressed.

In-Class Exercises

Pb. 6.44 Plot the normalized square modulus of the resultant of N-waves as
a function of ∆φ for different values of N (5, 50, and 500) over the interval –π
< ∆φ < π.

Pb. 6.45 Find the dependence of the central peak value of Eq. (6.79) on N.

Pb. 6.46 Find the phase shift that corresponds to the position of the first
minimum of Eq. (6.79).

Pb. 6.47 Find in Eq. (6.79) the relative height of the first maximum (i.e., the
one following the central maximum) to that of the central maximum as a
function of N.

Pb. 6.48 In an antenna array with the field representing N aligned, equally
spaced individual antennae excited by the same source is given by Eq. (6.78).
If the line connecting the point of observation to the center of the array is

making an angle θ with the antenna array, the phase shift is 
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where λ is the wavelength of radiation and d is the spacing between two con-
secutive antennae. Draw the polar plot of the total intensity as function of the
angle θ for a spacing d = λ/2 for different values of N (2, 4, 6, and 10).

Pb. 6.49 Do the results of Pb. 6.48 suggest to you a strategy for designing a
multi-antenna system with sharp directivity? Can you think of a method,
short of moving the antennae around, that permits this array to sweep a
range of angles with maximum directivity?

Pb. 6.50 The following program simulates a 25-element array-swept radar
beam.

th=0:0.01:pi;

t=-0.5*sqrt(3):0.05*sqrt(3):0.5*sqrt(3);

N=25;

M=moviein(21);

for m=1:21;

I=(1/N^2)*(sin(N*((pi/4)*cos(th)+(pi/4)*t(m)))...
^2)./((sin((pi/4)*cos(th)+(pi/4)*t(m))).^2);

polar(th,I);

M(:,m)=getframe;

end

movie(M,10)

a. Determine the range of the sweeping angle.
b. Can you think of an electronic method for implementing this task?

6.8 Solving ac Circuits with Phasors: The Impedance Method

In Section 6.5, we examined the conventional technique for solving some sim-
ple ac circuits problems. We suggested that using phasors may speed up the
determination of the solution. This is the subject of this chapter section.

We will treat, using this technique, the simple RLC circuit already solved
through other means in order to give you a measure of the simplifications
that can be achieved in circuit analysis through this technique. We then pro-
ceed to use the phasor technique to investigate another circuit configuration:
the infinite LC ladder. The power of the phasor technique will also be put to
use when we, topologically, solve much more difficult circuit problems than
the one-loop category encountered thus far. Essentially, a straightforward
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algebraic technique can give the voltages and currents for any circuit. We
illustrate this latter case in Chapter 8.

Recalling that the voltage drops across resistors, inductors, and capacitors
can all be expressed as function of the current, its derivative, and its integral,
our goal is to find a technique to replace these operators by simple algebraic
operations. The key to achieving this goal is to realize that:

If: (6.80)

Then: (6.81)

and

(6.82)

From Eqs. (4.25) to (4.27) and Eqs. (6.80) to (6.82), we can deduce that the pha-
sors representing the voltages across resistors, inductors, and capacitors can
be written as follows:

(6.83)

(6.84)

(6.85)

The terms multiplying the current phasor on the RHS of each of the above
equations are called the resistor, the inductor, and the capacitor impedances,
respectively.

6.8.1 RLC Circuit Phasor Analysis

Let us revisit this problem first discussed in Section 4.7. Using Kirchoff’s volt-
age law and Eqs. (6.83) to (6.85), we can write the following relation between
the phasor of the current and that of the source potential:

(6.86)
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That is, we can immediately compute the modulus and the argument of the
phasor of the current if we know the values of the circuit components, the
source voltage phasor, and the frequency of the source.

In-Class Exercises

Using the expression for the circuit resonance frequency ω0 previously intro-
duced in Pb. 6.32, for the RLC circuit:

Pb. 6.51 Show that the system’s total impedance can be written as:

Pb. 6.52 Show that  and from this result, deduce the value
of ν at which the impedance is entirely real.

Pb. 6.53 Find the magnitude and the phase of the total impedance.

Pb. 6.54 Selecting for the values of the circuit elements LC = 1, RC = 3, and
ω = 1, compare the results that you obtain through the phasor analytical
method with the numerical results for the voltage across the capacitor in an
RLC circuit that you found while solving Eq. (4.36).

The Transfer Function

As you would have discovered solving Pb. 6.54, the ratio of the phasor of the
potential difference across the capacitor with that of the ac source can be
directly calculated once the value of the current phasor is known. This ratio
is called the Transfer Function for this circuit if the voltage across the capaci-
tor is taken as the output of this circuit. It is obtained by combining Eqs. (6.85)
and (6.86) and is given by:

(6.87)

The Transfer Function concept can be generalized to any ac circuit. It refers
to the ratio of the output voltage phasor to the input voltage phasor. It incor-
porates all the relevant information on the details of the circuit. It is the stan-
dard form for representing the response of a circuit to a single sinusoidal
function input.
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Homework Problem

Pb. 6.55 Plot the magnitude and the phase of theTransfer Function given in
Eq. (6.87) as a function of ω, for LC = 1, RC = 3.

6.8.2 The Infinite LC Ladder

The LC ladder consists of an infinite repetition of the basic elements shown in
Figure 6.2.

Using the definition of impedances, the phasors of the n and (n + 1) voltages
and currents are related through:

(6.88)

(6.89)

From Eq. (6.88), we deduce the following expressions for 

(6.90)

(6.91)

Substituting these values for the currents in Eq. (6.89), we deduce a second-
order difference equation for the voltage phasor:

(6.92)

FIGURE 6.2
The circuit of an infinite LC ladder.
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The solution of this difference equation can be directly obtained by the
techniques discussed in Chapter 2 for obtaining solutions of homogeneous
difference equations. The physically meaningful solution is given by:

(6.93)

and the voltage phasor at node n is then given by:

(6.94)

We consider the model where Z1 = jωL and Z2 = 1/(jωC), respectively, for an
inductor and a capacitor. The expression for λ then takes the following form:

(6.95)

where the normalized frequency is defined by  We plot in
Figure 6.3 the magnitude and the phase of the root λ as function of the nor-
malized frequency.

As can be directly observed from an examination of Figure 6.3, the magni-
tude of λ is equal to 1 (i.e., the magnitude of  is also 1) for υ < υcutoff = 2, while
it drops precipitously after that, with the dropoff in the potential much
steeper with increasing node number. Physically, this represents extremely
short penetration through the ladder for signals with frequencies larger than
the cutoff frequency. Furthermore, note that for υ < υcutoff = 2, the phase of 
increases linearly with the index n; and because it is negative, it corresponds
to a delay in the signal as it propagates down the ladder, which corresponds
to a finite velocity of propagation for the signal.

Before we leave this ladder circuit, it is worth addressing a practical con-
cern. While it is impossible to realize an infinite-dimensional ladder, the
above conclusions do not change by much if we replace the infinite ladder by
a finite ladder and we terminate it after awhile by a resistor with resistance
equal to 

In-Class Exercise

Pb. 6.56 Repeat the analysis given above for the LC ladder circuit, if instead
we were to:

a. Interchange the positions of the inductors and the capacitors in the
ladder circuit. Based on this result and the above LC result, can
you design a bandpass filter with a flat response?
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b. Interchange the inductor elements by resistors. In particular, com-
pute the input impedance of this circuit.

6.9 Transfer Function for a Difference Equation with 
Constant Coefficients*

In Section 6.8.1, we found the Transfer Function for what essentially was a
simple ODE. In this section, we generalize the technique to find the Transfer
Function of a difference equation with constant coefficients. The form of the
difference equation is given by:

(6.96)

Along the same route that we followed in the phasor treatment of ODE,
assume that both the input and output are of the form:

FIGURE 6.3
The magnitude (left panel) and the phase (right panel) of the characteristic root of the infinite
LC ladder.
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(6.97)

where Ω is a normalized frequency; typically, in electrical engineering appli-
cations, the real frequency multiplied by the sampling time. Replacing these
expressions in the difference equation, we obtain:

(6.98)

where, by convention, z = ejΩ.

Example 6.10
Find the Transfer Function of the following difference equation:

(6.99)

Solution: By direct substitution into Eq. (6.98), we find:

(6.100)

It is to be noted that the Transfer Function is a ratio of two polynomials. The
zeros of the numerator are called the zeros of the Transfer Function, while the
zeros of the denominator are called its poles. If the coefficients of the differ-
ence equations are real, then by the Fundamental Theorem of Algebra, the
zeros and the poles are either real or are pairs of complex conjugate numbers.

The Transfer Function fully describes any linear system. As will be shown
in linear systems courses, the z-transform of the Transfer Function gives the
weights for the solution of the difference equation, while the values of the
poles of the Transfer Function determine what are called the system modes
of the solution. These are the modes intrinsic to the circuit, and they do not
depend on the specific form of the input function.

Furthermore, it is worth noting that the study of recursive filters, the back-
bone of digital signal processing, can be simply reduced to a study of the
Transfer Function under different configurations. In Applications 2 and 3 that
follow, we briefly illustrate two particular digital filters in wide use.
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Application 1
Using the Transfer Function formalism, we want to estimate the accuracy of
the three integrating schemes discussed in Chapter 4. We want to compare
the Transfer Function of each of those algorithms to that of the exact result,
obtained upon integrating exactly the function ejωt.

The exact result for integrating the function ejωt is, of course,  thus giv-

ing for the exact Transfer Function for integration the expression:

(6.101)

Before proceeding with the computation of the transfer function for the dif-
ferent numerical schemes, let us pause for a moment and consider what we
are actually doing when we numerically integrate a function. We go through
the following steps:

1. We discretize the time interval over which we integrate; that is, we
define the sampling time ∆t, such that the discrete points abscissa
are given by k(∆t), where k is an integer.

2. We write a difference equation for the integral relating its values
at the discrete points with its values and that of the integrand at
discrete points with equal or smaller indices.

3. We obtain the value of the integral by iterating the defining differ-
ence equation.

The test function used for the estimation of the integration methods accu-
racy is written at the discrete points as:

(6.102)

The difference equations associated with each of the numerical integration
schemes are:

(6.103)

(6.104)

(6.105)

leading to the following expressions for the respective Transfer Functions:
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(6.106)

(6.107)

(6.108)

The measures of accuracy of the integration scheme are the ratios of these
Transfer Functions to that of the exact expression. These are given, respec-
tively, by:

(6.109)

(6.110)

(6.111)

Table 6.1 gives the value of this ratio as a function of the number of sam-
pling points, per oscillation period, selected in implementing the different
integration subroutines:

As can be noted, the error is less than 1% for any of the discussed methods as
long as the number of points in one oscillation period is larger than 20,
although the degree of accuracy is best, as we expected based on geometrical
arguments, for Simpson’s rule.

In a particular application, where a finite number of frequencies are simul-
taneously present, the choice of (∆t) for achieving a specified level of accuracy

TABLE 6.1

Accuracy of the Different Elementary Numerical Integrating Methods

Number of Sampling  Points in a Period RT RMP RS

100 0.9997 1.0002 1.0000
50 0.9986 1.0007 1.0000
40 0.9978 1.0011 1.0000
30 0.9961 1.0020 1.0000
20 0.9909 1.0046 1.0001
10 0.9591 1.0206 1.0014

5 0.7854 1.1107 1.0472
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in the integration subroutine should ideally be determined using the shortest
of the periods present in the integrand.

Application 2
As mentioned earlier, the Transfer Function technique is the prime tool for
the analysis and design of digital filters. In this and the following application,
we illustrate its use in the design of a low-pass digital filter and a digital pro-
totype bandpass filter.

The low-pass filter, as its name indicates, filters out the high-frequency
components from a signal.

Its defining difference equation is given by:

(6.112)

giving for its Transfer Function the expression:

(6.113)

Written as a function of the normalized frequency, it is given by:

(6.114)

We plot, in Figure 6.4, the magnitude and the phase of the transfer function
as a function of the normalized frequency for the value of a = 0.1. Note that
the gain is equal to 1 for Ω = 0, and decreases monotonically thereafter.

To appreciate the operation of this filter, consider a sinusoidal signal that has
been contaminated by the addition of noise. We can simulate the noise by add-
ing to the original signal an array consisting of random numbers with maxi-
mum amplitude equal to 20% of the original signal. The top panel of Figure
6.5 represents the contaminated signal. If we pass this signal through a low-
pass filter, the lower panel of Figure 6.5 shows the outputted filtered signal.

As can be observed, the noise, which is a high-frequency signal, has been
filtered out and the signal shape has been almost restored to its original shape
before that noise was added.

The following script M-file simulates the above operations:

t=linspace(0,4*pi,300);

N=length(t);

s=sin(t);

n=0.3*rand(1,N);

u=s+n;
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FIGURE 6.4
The gain (top panel) and phase (bottom panel) responses of a low-pass filter as a function
of the frequency.

FIGURE 6.5
The action of a low-pass filter. Top panel: Profile of the signal contaminated by noise. Bottom
panel: Profile of the filtered signal.
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y(1)=u(1);

for k=2:N

y(k)=+0.9*y(k-1)+0.1*u(k);

end

subplot(2,1,1)

plot(t,u)

axis([0 4*pi -1.5 1.5]);

title('Noisy Signal')

subplot(2,1,2)

plot(t,y)

title('Filtered Signal')

axis([0 4*pi -1.5 1.5]);

Application 3
The digital prototype bandpass filter ideally filters out from a signal all fre-
quencies lower than a given frequency and higher than another frequency. In
practice, the cutoffs are not so sharp and the lower and higher cut-off frequen-
cies of the bandpass are defined as those at which the gain curve (i.e., the mag-
nitude of the Transfer Function as function of the frequency) is at  its
maximum value.

The difference equation that describes this prototype filter is

(6.115)

where Ω0 is the normalized frequency with maximum gain and r is a number
close to 1.

The purpose of the following analysis is, given the lower and higher cutoff
normalized frequencies, to find the quantities Ω0 and r in the above difference
equation.

The Transfer Function for the above difference equation is given by:

(6.116)

where

(6.117)

( / )1 2

y k r r r u k

r y k r y k

( ) {( ) cos( ) } ( )

cos( ) ( ) ( )

= − − +

+ − − −

1 1 2 2

2 1 2

0
2

0
2

Ω

Ω

H z
g z

z r z r
( )

cos( )
=

− +
0

2

2
0

22 Ω

g r r r0 0
21 1 2 2= − − +( ) cos( )Ω



© 2001 by CRC Press LLC

and

z = ejΩ

The gain of this filter, or equivalently the magnitude of the Transfer Function, is

(6.118)

where

(6.119)

(6.120)

The lower and upper cutoff frequencies are defined, as previously noted, by
the condition:

(6.121)

Substituting condition (6.121) in the gain expression (6.118) leads to the con-
clusion that the cutoff frequencies are obtained from the solutions of the fol-
lowing quadratic equation:

(6.122)

Adding and subtracting the roots of this equation, we deduce after some
straightforward algebra, the following determining equations for Ω0 and r:

1. r is the root in the interval [0, 1] of the following eighth-degree
polynomial:

(6.123)

where

(6.124)
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(6.125)

2. Ω0 is given by:

(6.126)

Example 6.12
Write a program to determine the parameters r and Ω0 of a prototype band-
pass filter if the cutoff frequencies and the sampling time are given.

Solution: The following script M-file implements the above target:

f1= ; %enter the lower cutoff

f2= ; %enter the upper cutoff

tau= ; %enter the sampling time

w1=2*pi*f1*tau;

w2=2*pi*f2*tau;

a=(cos(w1)+cos(w2))^2;

b=(cos(w1)-cos(w2))^2;

p=[1 0 a-b -8*a 14*a-2*b-2 -8*a a-b 0 1];

rr=roots(p);

r=rr(find(rr>0 & rr<1 & imag(rr)==0))

w0=acos((r*a^(1/2))/(1+r^2));

f0=(1/(2*pi*tau))*w0

In Figure 6.6, we show the gain and phase response for this filter, for the
case that the cutoff frequencies are chosen to be 1000 Hz and 1200 Hz, and the
sampling rate is 10 µs.

To test the action of this filter, we input into it a signal that consists of a mix-
ture of a sinusoid having a frequency at the frequency of the maximum gain
of this filter and a number of its harmonics; for example,

(6.127)

We show in Figure 6.7 the input and the filtered signals. As expected from
an analysis of the gain curve, only the fundamental frequency signal has sur-
vived. The amplitude of the filtered signal settles to that of the fundamental
frequency signal following a short transient period.

NOTE Before leaving this topic, it is worth noting that the above prototype
bandpass filter can have sharper cutoff features (i.e., decreasing the value of
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FIGURE 6.6
The transfer function of a prototype bandpass filter. Top panel: Plot of the gain curve as
function of the normalized frequency. Bottom panel: Plot of the phase curve as function of
the normalized frequency.

FIGURE 6.7
The filtering action of a prototype bandpass filter. Top panel: Input signal consists of a
combination of a fundamental frequency signal (equal to the frequency corresponding to
the filter maximum gain) and two of its harmonics. Bottom panel: Filtered signal.
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the gain curve for frequencies below the lower cutoff and higher than the
upper cutoff) through having many of these prototype filters in cascade. This
will be a topic of study in future linear system or filter design courses.

In-Class Exercises

Pb. 6.59 Work out the missing algebraic steps in the derivation leading to
Eqs. (6.123) through (6.126).

Pb. 6.60 Given the following values for the lower and upper cutoff frequen-
cies and the sampling time:

f1 = 200 Hz; f2 = 400 Hz; τ = 10–5 s

find f0 and plot the gain curve as function of the normalized frequency for the
bandpass prototype filter.

6.10 MATLAB Commands Review

abs Computes the modulus of a complex number.
angle Computes the argument of a complex number.
conj Computes the complex conjugate of a complex number.
find Finds the locations of elements in an array that satifies certain

specified conditions.
imag Computes the imaginary part of a complex number.
real Computes the real part of a complex number.
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7
Vectors

7.1 Vectors in Two Dimensions (2-D)

A vector in 2-D is defined by its length and the angle it makes with a reference
axis (usually the x-axis). This vector is represented graphically by an arrow.
The tail of the arrow is called the initial point of the vector and the tip of the
arrow is the terminal point. Two vectors are equal when both their length and
angle with a reference axis are equal.

7.1.1 Addition

The sum of two vectors  is a vector constructed graphically as fol-
lows. At the tip of the first vector, draw a vector equal to the second vector,
such that its tail coincides with the tip of the first vector. The resultant vector
has as its tail that of the first vector, and as its tip, the tip of the just-drawn
second vector (the Parallelogram Rule) (see Figure 7.1).

The negative of a vector is that vector whose tip and tail have been
exchanged from those of the vector. This leads to the conclusion that the dif-
ference of two vectors is the other diagonal in the parallelogram (Figure 7.2).

7.1.2 Multiplication of a Vector by a Real Number

If we multiply a vector  by a real number k, the result is a vector whose
length is k times the length of , and whose direction is that of  if k is pos-
itive, and opposite if k is negative.

7.1.3 Cartesian Representation

It is most convenient for a vector to be described by its projections on the
x-axis and on the y-axis, respectively; these are denoted by (v1, v2) or (vx, vy).
In this representation:

r r r
u v w+ =

r
v r

v
r
v
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(7.1)

where ê1 and ê2 are the unit vectors (length is 1) parallel to the x-axis and
y-axis, respectively. In terms of this representation, we can write the zero vec-
tor, the sum of two vectors, and the multiplication of a vector by a real num-
ber as follows:

FIGURE 7.1
Sum of two vectors.

FIGURE 7.2
Difference of two vectors.

r
u u u u ê u ê= = +( , ) ( ) ( )1 2 1 1 2 2
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(7.2)

(7.3)

(7.4)

Preparatory Exercise

Pb. 7.1 Using the above definitions and properties, prove the following
identities:

The norm of a vector is the length of this vector. Using the Pythagorean the-
orem, its square is:

(7.5)

and therefore the unit vector in the  direction, denoted by êu, is given by:

(7.6)

All of the above can be generalized to 3-D, or for that matter to n-dimensions.
For example:

(7.7)
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7.1.4 MATLAB Representation of the Above Results

MATLAB distinguishes between two kinds of vectors: the column vector and
the row vector. As long as the components of the vectors are all real, the dif-
ference between the two is in the structure of the array. In the column vector
case, the array representation is vertical and in the row vector case, the array
representation is horizontal. This distinction is made for the purpose of
including in a consistent structure the formulation of the dot product and the
definition of matrix multiplication.

Example 7.1
Type and execute the following commands, while interpreting the output at
each step:

V=[1 3 5 7]

W=[1;3;5;7]

V'

U=3*V

Z=U+V

Y=V+W %you cannot add a row vector and a column
%vector

You would have observed that:

1. The difference in the representation of the column and row vectors
is in the manner they are separated inside the square brackets.

2. The single quotation mark following a vector with real components
changes that vector from being a column vector to a row vector,
and vice versa.

3. Multiplying a vector by a scalar simply multiplies each component
of this vector by this scalar.

4. You can add two vectors of the same kind and the components
would be adding by pairs.

5. You cannot add two vectors of different kinds; the computer will
give you an error message alerting you that you are adding two
quantities of different dimensions.

The MATLAB command for obtaining the norm of a vector is norm. Using
this notation, it is a simple matter to define the unit vector in the same direc-
tion as a given vector.

Example 7.2
Find the length of the vector and the unit vector u = [1 5 3 2] and the unit
vector parallel to it.
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u=[1 5 3 2]

lengthu=norm(u) %length of vector u

unitu=u/(norm(u)) %unit vector parallel to u

lengthunitu=norm(unitu) %verify length of unit vector

7.2 Dot (or Scalar) Product

If the angle between the vectors  and  is 

 

θ, then the dot product of the two
vectors is:

(7.8)

The dot product can also be expressed as a function of the vectors compo-
nents. Referring to Figure 7.3, we know from trigonometry the relation relat-
ing the length of one side of a triangle with the length of the other two sides
and the cosine of the angle between the other two sides. This relation is the
generalized Pythagorean theorem. Referring to Figure 7.3, this gives:

(7.9)

but since:

FIGURE 7.3
The geometry of the generalized Pythagorean theorem.

r
u

r
v

r r r r
u v u v⋅ = cos( )θ

PQ u v u v2 2 2
2= + −

r r r r
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(7.10)

(7.11)

and the dot product can be written as:

(7.12)

In an n-dimensional space, the above expression is generalized to:

(7.13)

and the norm square of the vector can be written as the dot product of the
vector with itself; that is,

(7.14)

Example 7.3
Parallelism and orthogonality of two vectors in a plane. Let the vectors 
and  be given by:  What is the value of a
if the vectors are parallel, and if the vectors are orthogonal?

Solution:
Case 1: If the vectors are parallel, this means that they make the same angle
with the x-axis. The tangent of this angle is equal to the ratio of the vector
x-component to its y-component. This means that:

Case 2: If the vectors are orthogonal, this means that the angle between them
is 90°, and their dot product will be zero because the cosine for that angle is
zero. This implies that:

Example 7.4
Find the unit vector in 2-D that is perpendicular to the line ax + by + c = 0.
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Solution: Choose two arbitrary points on this line. Denote their coordinates
by (x1, y1) and (x2, y2); being on the line, they satisfy the equation of the line:

Substracting the first equation from the second equation, we obtain:

which means that  and the unit vector perpendicular
to the line is:

Example 7.5
Find the angle that the lines 3x + 2y + 2 = 0 and 2x – y + 1 = 0 and make
together.

Solution: The angle between two lines is equal to the angle between their nor-
mal unit vectors. The unit vectors normal to each of the lines are, respectively:

Having the two orthogonal unit vectors, it is a simple matter to compute the
angle between them:

7.2.1 MATLAB Representation of the Dot Product

The dot product is written as the product of a row vector by a column vector
of the same length.

Example 7.6
Find the dot product of the vectors:

ax by c

ax by c
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u = [1 5 3 7] and v = [2 4 6 8]

Solution: Type and execute each of the following commands, while interpret-
ing each output:

u=[1 5 3 7]

v=[2 4 6 8]

u*v'

v'*u

u*v %you cannot multiply two rows

u'*v

u*u'

(norm(u))^2

As observed from the above results, in MATLAB, the dot product can be
obtained only by the multiplication of a row on the left and a column of the
same length on the right. If the order of a row and column are exchanged, we
obtain a two-dimensional array structure (i.e., a matrix, the subject of Chap-
ter 8). On the other hand, if we multiply two rows, MATLAB gives an error
message about the non-matching of dimensions.

Observe further, as pointed out previously, the relation between the length
of a vector and its dot product with itself.

In-Class Exercises

Pb. 7.2 Generalize the analytical technique, as previously used in Example
7.4 for finding the normal to a line in 2-D, to find the unit vector in 3-D that
is perpendicular to the plane:

ax + by + cz + d = 0

(Hint: A vector is perpendicular to a plane if it is perpendicular to two non-
collinear vectors in that plane.)

Pb. 7.3 Find, in 2-D, the distance of the point P(x0, y0) from the line ax + by
+ c = 0. (Hint: Remember the geometric definition of the dot product.)

Pb. 7.4 Prove the following identities:

r r r r r r r r r r r r r r r
u v v u u v w u v u w k u v ku v⋅ = ⋅ ⋅ + = ⋅ + ⋅ ⋅ ⋅ = ⋅, ( ) , ( ) ( )
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7.3 Components, Direction Cosines, and Projections

7.3.1 Components

The components of a vector are the values of each element in the defining
n-tuplet representation. For example, consider the vector  = [1 5 3 7]
in real 4-D. We say that its first, second, third, and fourth components are 1,
5, 3, and 7, respectively. (We are maintaining, in this section, the arrow nota-
tion for the vectors, irrespective of the dimension of the space.)

The simplest basis of a n-dimensional vector space is the collection of n unit
vectors, each having only one of their components that is non-zero and such
that the location of this non-zero element is different for each of these basis
vectors. This basis is not unique.

For example, in 4-D space, the canonical four-unit orthonormal basis vec-
tors are given, respectively, by:

ê1 = [1 0 0 0] (7.15)

ê2 = [0 1 0 0] (7.16)

ê3 = [0 0 1 0] (7.17)

ê4 = [0 0 0 1] (7.18)

and the vector  can be written as a linear combination of the basis vectors:

(7.19)

The basis vectors are chosen to be orthonormal, which means that in addi-
tion to requiring each one of them to have unit length, they are also orthogonal
two by two to each other. These properties of the basis vectors leads us to the
following important result: the mth component of a vector is obtained by tak-
ing the dot product of the vector with the corresponding unit vector, that is,

(7.20)

7.3.2 Direction Cosines

The direction cosines are defined by:
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(7.21)

In 2-D or 3-D, these quantities have the geometrical interpretation of being
the cosine of the angles that the vector  makes with the x, y, and z axes.

7.3.3 Projections

The projection of a vector  over a vector  is a vector whose magnitude is
the dot product of the vector  with the unit vector in the direction of ,
denoted by êa, and whose orientation is in the direction of êa:

(7.22)

The component of  that is perpendicular to  is obtained by subtracting
from  the projection vector of  over .

MATLAB Example
Assume that we have the vector  = ê1 + 5ê2 + 3ê3 + 7ê4 and the vector  = 2ê1

+ 3ê2 + ê3 + 4ê4. We desire to obtain the components of each vector, the projec-
tion of  over , and the component of  orthogonal to .

Type, execute, and interpret at each step, each of the following commands
using the above definitions:

u=[1 5 3 7]

a=[2 3 1 4]

u(1)

a(2)

prjuovera=((u*a')/(norm(a)^2))*a

orthoutoa=u-prjuovera

prjuovera*orthoutoa'

The last command should give you an answer that is zero, up to machine
round-up errors because the projection of  over  and the component of 
orthogonal to  are perpendicular.

7.4 The Dirac Notation and Some General Theorems*

Thus far, we have established some key practical results in real finite dimen-
sional vector spaces; namely:
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1. A vector can be decomposed into a linear combination of the basis
vectors.

2. The dot product of two vectors can be written as the multiplication
of a row vector by a column vector, each of whose elements are
the components of the respective vectors.

3. The norm of a vector, a non-negative quantity, is the square root
of the dot product of the vector with itself.

4. The unit vector parallel to a specific vector is that vector divided
by its norm.

5. The projection of a vector on another can be deduced from the dot
product of the two vectors.

To facilitate the statement of these results in a notation that will be suitable
for infinite-dimensional vector spaces (which is very briefly introduced in
Section 7.7), Dirac in his elegant formulation of quantum mechanics intro-
duced a simple notation that we now present.

The Dirac notation represents the row vector by what he called the “bra-
vector” and the column vector by what he called the “ket-vector,” such that
when a dot product is obtained by joining the two vectors, the result will be
the scalar “bra-ket” quantity. Specifically:

(7.23)

(7.24)

(7.25)

The orthonormality of the basis vectors is written as:

(7.26)

where the basis vectors are referred to by their indices, and where δm,n is the
Kroenecker delta, equal to 1 when its indices are equal, and zero otherwise.

The norm of a vector, a non-negative quantity, is given by:

(7.27)

The Decomposition rule is written as:

(7.28)

where the components are obtained by multiplying Eq. (7.28) on the left by
 Using Eq. (7.26), we deduce:

Column vector
r
u u⇒

Row vector
r
v v⇒

Dot product
r r
v u v u⋅ ⇒

m n m n= δ ,
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(7.29)

Next, using the Dirac notation, we present the proofs of two key theorems
of vector algebra: the Cauchy-Schwartz inequality and the triangle inequality.

7.4.1 Cauchy-Schwartz Inequality

Let  be any non-zero vectors; then:

(7.30)

PROOF Let ε = ±1, (ε2 = 1); then

(7.31)

Now, consider the ket  its norm is always non-negative. Computing
this norm square, we obtain:

(7.32)

The RHS of this quantity is a positive quadratic polynomial in t, and can be
written in the standard form:

at2 + bt + c ≥ 0 (7.33)

The non-negativity of this quadratic polynomial means that it can have at most
one real root. This means that the descriminant must satisfy the inequality:

b2 – 4ac ≤ 0 (7.34)

Replacing a, b, c by their values from Eq. (7.32), we obtain:

(7.35)
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which is the desired result. Note that the equality holds if and only if the two
vectors are linearly dependent (i.e., one vector is equal to a scalar multiplied
by the other vector).

Example 7.7
Show that for any three non-zero numbers, u1, u2, and u3, the following ine-
quality always holds:

(7.37)

PROOF Choose the vectors  such that:

(7.38)

(7.39)

then:

(7.40)

(7.41)

(7.42)

Applying the Cauchy-Schwartz inequality in Eq. (7.36) establishes the
desired result. The above inequality can be trivially generalized to n-ele-
ments, which leads to the following important result for the equivalent resis-
tance for resistors all in series or all in parallel.

Application
The equivalent resistance of n-resistors all in series and the equivalent resis-
tance of the same n-resistors all in parallel obey the relation:

(7.43)
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PROOF The proof is straightforward. Using Eq. (7.37) and recalling Ohm’s
law for n resistors {R1, R2, …, Rn}, the equivalent resistances for this combina-
tion, when all resistors are in series or are all in parallel, are given respec-
tively by:

(7.44)

and

(7.45)

Question: Can you derive a similar theorem for capacitors all in series and all
in parallel? (Remember that the equivalent capacitance law is different for
capacitors than for resistors.)

7.4.2 Triangle Inequality

This is, as the name implies, a generalization of a theorem from Euclidean
geometry in 2-D that states that the length of one side of a triangle is smaller
or equal to the sum of the the other two sides. Its generalization is

(7.46)

PROOF Using the relation between the norm and the dot product, we have:

(7.47)

Using the Cauchy-Schwartz inequality for the dot product appearing in the
previous inequality, we deduce that:

(7.48)

which establishes the theorem.

Homework Problems

Pb. 7.5 Using the Dirac notation, generalize to n-dimensions the 2-D geom-
etry Parallelogram theorem, which states that: The sum of the squares of the diag-
onals of a parallelogram is equal to twice the sum of the squares of the side; or that:

R R R Rseries n= + + … +1 2

1 1 1 1

1 2R R R Rparallel n

= + + … +

u v u v+ ≤ +

u v u v u v u v u v v v

u u v v u u v v

+ = + + = + +

= + + ≤ + +

2

2 2 2 2

2

2 2

u v u u v v u v+ ≤ + + = +( )2 2 2 2
2
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Pb. 7.6 Referring to the inequality of Eq. (7.43), which relates the equivalent
resistances of n-resistors in series and in parallel, under what conditions does
the equality hold?

7.5 Cross Product and Scalar Triple Product*

In this section and in Sections 7.6 and 7.7, we restrict our discussions to vectors
in a 3-D space, and use the more familiar conventional vector notation.

7.5.1 Cross Product

DEFINITION If two vectors are given by 
then their cross product, denoted by  is a vector given by:

(7.49)

By simple substitution, we can infer the following properties for the cross
product as summarized in the preparatory exercises below.

Preparatory Exercises

Pb. 7.7 Show, using the above definition for the cross product, that:

a.

b.

c.

d.

e.

f.

g.

Pb. 7.8 Verify the following relations for the basis unit vectors:

r r r r r r
u v u v u v+ + − = +2 2 2 2

2 2

r r
u u u u v v v v= =( ) and 1 2 3 1 2 3, , ( , , )r r

u v× ,

r r
u v u v u v u v u v u v u v× = − − −( , , )2 3 3 2 3 1 1 3 1 2 2 1

r r r r r r r r r r
u u v v u v u v u v⋅ × = ⋅ × = ⇒ ×( ) ( ) 0  is orthogonal to both and

r r r r r r
u v u v u v× = − ⋅2 2 2 2( ) Called the Lagrange Identity
r r r r
u v v u× = − ×( ) Noncommutativity
r r r r r r r
u v w u v u w× + = × + ×( ) Distributive property

k u v ku v u kv( ) ( ) ( )
r r r r r r

× = × = ×
r r r
u × =0 0
r r r
u u× = 0
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Pb. 7.9 Ask your instructor to show you how the Right Hand rule is used to
determine the direction of a vector equal to the cross product of two other
vectors.

7.5.2 Geometric Interpretation of the Cross Product

As noted in Pb. 7.7a, the cross product is a vector that is perpendicular to its
two constituents. This determines the resultant vector’s direction. To deter-
mine its magnitude, consider the Lagrange Identity. If the angle between 
and  is θ, then:

(7.50)

and

(7.51)

that is, the magnitude of the cross product of two vectors is the area of the
parallelogram formed by these vectors.

7.5.3 Scalar Triple Product

DEFINITION If  are vectors in 3-D, then  is called the
scalar triple product of 

PROPERTY

(7.52)

This property can be trivially proven by writing out the components expan-
sions of the three quantities.

7.5.3.1 Geometric Interpretation of the Scalar Triple Product

If the vectors’  original points are brought to the same origin, these
three vectors define a parallelepiped. The absolute value of the scalar triple
product can then be interpreted as the volume of this parallelepiped. We have
shown earlier that  is a vector that is perpendicular to both  and ,

ê ê ê ê ê ê ê ê ê1 2 3 2 3 1 3 1 2× = × = × =; ;

r
ur

v

r r r r r r
u v u v u v× = −2 2 2 2 2 2cos ( )θ

r r r r
u v u v× = sin( )θ

r r r
u v w, , and

r r r
u v w⋅ ×( )r r r

u v w, , .and

r r r r r r r r r
u v w v w u w u v⋅ × = ⋅ × = ⋅ ×( ) ( ) ( )

r r r
u v w, , and

r r
v w×

r
v

r
w
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and whose magnitude is the area of the base parallelogram. From the defini-
tion of the scalar product, dotting this vector with  will give a scalar that is
the product of the area of the parallelepiped base multiplied by the parallel-
epiped height, whose magnitude is exactly the volume of the parallelepiped.

The circular permutation property of Eq. (7.52) then has a very simple geo-
metric interpretation: in computing the volume of a parallelepiped, it does
not matter which surface we call base.

MATLAB Representation
The cross product of the vectors  is found
using the cross(u,v) command.

The triple scalar product of the vectors  is found through the
det([u;v;w]) command. Make sure that the vectors defined as arguments
of these functions are defined as 3-D vectors, so that the commands work and
the results make sense.

Example 7.8
Given the vectors  = (2, 1, 0),  = (0, 3, 0),  = (1, 2, 3), find the cross prod-
uct of the separate pairs of these vectors, and the volume of the parallelepi-
ped formed by the three vectors.

Solution: Type, execute, and interpret at each step, each of the following com-
mands, using the above definitions:

u=[2 1 0]

v=[0 3 0]

w=[1 2 3]

ucrossv=cross(u,v)

ucrossw=cross(u,w)

vcrossw=cross(v,w)

paralvol=abs(det([u;v;w]))

paralvol2=abs(cross(u,v)*w')

Question: Verify that the last command is an alternate way of writing the vol-
ume of the parallelepiped expression.

In-Class Exercises

Pb. 7.10 Compute the shortest distance from New York to London. (Hint:
(1) A great circle is the shortest path between two points on a sphere; (2) the
angle between the radial unit vectors passing through each of the cities can
be obtained from their respective latitude and longitude.)

r
u

r r
u u u u v v v v= =( ) and 1 2 3 1 2 3, , ( , , )

r r r
u v w, , and

r
u

r
v

r
w
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Pb. 7.11 Find two unit vectors that are orthogonal to both vectors given by:

Pb. 7.12 Find the area of the triangle with vertices at the points:

Pb. 7.13 Find the volume of the parallelepiped formed by the three vectors:

Pb. 7.14 Determine the equation of a plane that passes through the point
(1, 1, 1) and is normal to the vector (2, 1, 2).

Pb. 7.15 Find the angle of intersection of the planes:

Pb. 7.16 Find the distance between the point (3, 1, –2) and the plane z = 2x
– 3y.

Pb. 7.17 Find the equation of the line that contains the point (3, 2, 1) and is
perpendicular to the plane x + 2y – 2z = 2. Write the parametric equation for
this line.

Pb. 7.18 Find the point of intersection of the plane 2x – 3y + z = 6 and the line

Pb. 7.19 Show that the points (1, 5), (3, 11), and (5, 17) are collinear.

Pb. 7.20 Show that the three vectors  are coplanar:

Pb. 7.21 Find the unit vector normal to the plane determined by the points
(0, 0, 1), (0, 1, 0), and (1, 0, 0).

Homework Problem

Pb. 7.22 Determine the tetrahedron with the largest surface area whose ver-
tices P0, P1, P2, and P3 are on the unit sphere x2 + y2 + z2 = 1.

r r
a b= − = −( , , ) ( , , )2 1 2 1 2 3and

A B C( , , ), ( , , ), ( , , )0 1 1 3 1 0 2 0 2− −and

r r r
u v w= = =( , , ) ( , , ), ( , , )1 2 0 0 3 0 1 2 3,

x y z x y z+ − = − + − =0 3 1 0and

x y z− =
+

= −1
3

1
1

2
2

r r r
u v w, , and

r r r
u v w= = =( , , ); ( , , ); ( , , )2 3 5 2 8 1 8 22 12
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(Hints: (1) Designate the point P0 as north pole and confine P1 to the zero
meridian. With this choice, the coordinates of the vertices are given by:

(2) From symmetry, the optimal tetrahedron will have a base (P1, P2, P3) that
is an equilateral triangle in a plane parallel to the equatorial plane. The lati-
tude of (P1, P2, P3) is θ, while their longitudes are (0, 2π/3, –2π/3), respec-
tively. (3) The area of the tetrahedron is the sum of the areas of the four
triangles (012), (023), (031), (123), where we are indicating each point by its
subscript. (4) Express the area as function of θ. Find the value of θ that maxi-
mizes this quantity.)

7.6 Vector Valued Functions

As you may recall, in Chapter 1 we described curves in 2-D and 3-D by para-
metric equations. Essentially, we gave each of the coordinates as a function of
a parameter. In effect, we generated a vector valued function because the
position of the point describing the curve can be written as:

(7.53)

If the parameter t was chosen to be time, then the tip of the vector  would
be the position of a point on that curve as a function of time. In mechanics,
finding  is ultimately the goal of any problem in the dynamics of a point
particle. In many problems of electrical engineering design of tubes and other
microwave engineering devices, we need to determine the position of elec-
trons whose motion we control by a variety of electrical and magnetic fields
geometries. The following are the kinematics variables of the problem. The
dynamics form the subject of mechanics courses.

To help visualize the shape of a curve generated by the tip of the position
vector , we introduce the tangent vector and the normal vector to the
curve and the curvature of the curve.

The velocity vector field associated with the above position vector is
defined through:

P

P

P

P

0 0 0

1 1 1

2 2 2

3 3 3

2 0

0

= = =

= =

=

=

( / , )

( , )
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( , )

θ π φ

θ φ

θ φ

θ φ

r
R t x t ê y t ê z t ê( ) ( ) ( ) ( )= + +1 2 3

r
R t( )

r
R t( )
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(7.54)

and the unit vector tangent to the curve is given by:

(7.55)

This is, of course, the unit vector that is always in the direction of the velocity
of the particle.

LEMMA
If a vector valued function  has a constant value, then its derivative  is
orthogonal to it.

PROOF The proof of this lemma is straightforward. If the length of the vector

is constant, then its dot product with itself is a constant; that is, 

Differentiating both sides of this equation gives  and the

orthogonality between the two vectors is thus established.
The tangential unit vector  is, by definition, constructed to have unit

length. We construct the norm to the curve by taking the unit vector in the
direction of the time-derivative of the tangential vector; that is,

(7.56)

The curvature of the curve is

(7.57)

dR t
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dx t
dt

ê
dy t

dt
ê

dz t
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ê

r
( ) ( ) ( ) ( )= + +1 2 3
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Example 7.9
Find the tangent, normal, and curvature of the trajectory of a particle moving
in uniform circular motion of radius a and with angular frequency ω.

Solution: The parametric equation of motion is

The velocity vector is

and its magnitude is aω.
The tangent vector is therefore:

The normal vector is

The radius of curvature is

Homework Problems

Pb. 7.23 Show that in 2-D the radius of curvature can be written as:

where the prime refers to the first derivative with respect to time, and the
double-prime refers to the second derivative with respect to time.

r
R t a t ê a t ê( ) cos( ) sin( )= +ω ω1 2

dR t
dt

a t ê a t ê

r
( )

sin( ) cos( )= − +ω ω ω ω1 2

ˆ( ) sin( ) cos( )T t t ê t ê= − +ω ω1 2

ˆ ( ) cos( ) sin( )N t t ê t ê= − −ω ω1 2

κ
ω ω ω ω
ω ω ω ω
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t
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Pb. 7.24 Using the parametric equations for an ellipse given in Example
1.13, find the curvature of the ellipse as function of t.

a. At what points is the curvature a minimum, and at what points is
it a maximum?

b. What does the velocity do at the points of minimum and maximum
curvature?

c. On what dates of the year does the planet Earth pass through these
points on its trajectory around the sun?

7.7 Line Integral

As you may have already learned in an elementary physics course: if a force
 is applied to a particle that moves by an infinitesimal distance  then the

infinitesimal work done by the force on the particle is the scalar product of
the force by the displacement; that is,

(7.58)

Now, to calculate the work done when the particle moves along a curve C,
located in a plane, we need to define the concept of a line integral.

Suppose that the curve is described parametrically [i.e., x(t) and y(t) are
given]. Furthermore, suppose that the vector field representing the force is
given by:

(7.59)

The displacement element is given by:

(7.60)

The infinitesimal element of work, which is the dot product of the above two
quantities, can then be written as:

(7.61)

This expression can be simplified if the curve is written in parametric form.
Assuming the parameter is t, then ∆W can be written as a function of the sin-
gle parameter t:

r
F ∆

r
l ,

∆ ∆W F l= ⋅
r r

r
F P x y ê Q x y êx y= +( , ) ( , )

∆ ∆ ∆l xê yêx y= +

∆ ∆ ∆W P x Q y= +
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(7.62)

and the total work can be written as an integral over the single variable t:

(7.63)

Homework Problems

Pb. 7.25 How much work is done in moving the particle from the point
(0, 0) to the point (3, 9) in the presence of the force  along the following two
different paths?

a. The parabola y = x2.
b. The line y = 3x.

The force is given by:

Pb. 7.26 Let  = yêx + xêy . Calculate the work moving from (0, 0) to (1, 1)
along each of the following curves:

a. The straight line y = x.
b. The parabola y = x2.
c. The curve C described by the parametric equations:

A vector field such as the present one, whose line integral is independent
of the path chosen between fixed initial and final points, is said to be conser-
vative. In your vector calculus course, you will establish the necessary and
sufficient conditions for a vector field to be conservative. The importance of
conservative fields lies in the ability of their derivation from a scalar poten-
tial. More about this topic will be discussed in electromagnetic courses.

7.8 Infinite Dimensional Vector Spaces*

This chapter section introduces some preliminary ideas on infinite-dimen-
sional vector spaces. We assume that the components of this vector space are

∆ ∆ ∆ ∆W P t
dx
dt

t Q t
dy
dt

t P t
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dt

Q t
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dt

t= + = +
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complex numbers rather than real numbers, as we have restricted ourselves
thus far. Using these ideas, we discuss, in a very preliminary fashion, Fourier
series and Legendre polynomials.

We use the Dirac notation to stress the commonalties that unite the finite-
and infinite-dimensional vector spaces. We, at this level, sacrifice the mathe-
matical rigor for the sake of simplicity, and even commit a few sins in our
treatment of limits. A more formal and rigorous treatment of this subject can
be found in many books on functional analysis, to which we refer the inter-
ested reader for further details.

A Hilbert space is much the same type of mathematical object as the vector
spaces that you have been introduced to in the preceding sections of this
chapter. Its elements are functions, instead of n-dimensional vectors. It is infi-
nite-dimensional because the function has a value, say a component, at each
point in space, and space is continuous with an infinite number of points.

The Hilbert space has the following properties:

1. The space is linear under the two conditions that:
a. If a is a constant and  is any element in the space, then a

is also an element of the space; and
b. If a and b are constants, and  and are elements belonging

to the space, then  is also an element of the space.
2. There is an inner (dot) product for any two elements in the space.

The definition adopted here for this inner product for functions
defined in the interval tmin ≤ t ≤ tmax is:

(7.64)

3. Any element of the space has a norm (“length”) that is positive
and related to the inner product as follows:

(7.65)

Note that the requirement for the positivity of a norm is that
which necessitated the complex conjugation in the definition of
the bra-vector.

4. The Hilbert space is complete; or loosely speaking, the Hilbert
space contains all its limit points. This condition is too technical
and will not be further discussed here.

In this Hilbert space, we define similar concepts to those in finite-dimen-
sional vector spaces:

ϕ ψ

ϕ ψ
a bϕ ψ+

ψ ϕ ψ ϕ= ∫ ( ) ( )
min

max

t t dt
t

t

ϕ ϕ ϕ ϕ ϕ2 = = ∫ ( ) ( )
min

max

t t dt
t

t
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• Orthogonality. Two vectors are orthogonal if:

(7.66)

• Basis vectors. Any function in Hilbert space can be expanded in a
linear combination of the basis vectors {un}, such that:

(7.67)

and such that the elements of the basis vectors obey the orthonor-
mality relations:

(7.68)

• Decomposition rule. To find the cn’s, we follow the same procedure
adopted for finite-dimensional vector spaces; that is, take the inner
product of the expansion in Eq. (7.67) with the bra  We obtain,
using the orthonormality relations [Eq. (7.68)], the following:

(7.69)

Said differently, cm is the projection of the ket  onto the bra 
• The norm as a function of the components. The norm of a vector can

be expressed as a function of its components. Using Eqs. (7.67) and
(7.68), we obtain:

(7.70)

Said differently, the norm square of a vector is equal to the sum of
the magnitude square of the components.

Application 1: The Fourier Series
The theory of Fourier series, as covered in your calculus course, states that a
function that is periodic, with period equal to 1, in some normalized units can
be expanded as a linear combination of the sequence {exp(j2πnt)}, where n is
an integer that goes from minus infinity to plus infinity. The purpose here is
to recast the familiar Fourier series results within the language and notations
of the above formalism.
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Basis:

(7.71)

Orthonormality of the basis vectors:

(7.72)

Decomposition rule:

(7.73)

where

(7.74)

Parseval’s identity:

(7.75)

Example 7.9
Derive the analytic expression for the potential difference across the capacitor
in the RLC circuit of Figure 4.5 if the temporal profile of the source potential
is a periodic function, of period 1, in some normalized units.

Solution:
1. Because the potential is periodic with period 1, it can be expanded using
Eq. (7.73) in a Fourier series with basis functions {ej2πnt}:

(7.76)

where  is the phasor associated with the frequency mode (2πn). (Note that
n in the expressions for the phasors is a superscript and not a power.)
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2. We find , the capacitor response phasor associated with the  excita-
tion. This can be found by noting that the voltage across the capacitor is equal
to the capacitor impedance multiplied by the current phasor, giving:

(7.77)

where from the results of Section 6.8, particularly Eqs. (6.83) through (6.85),
we have:

(7.78)

(7.79)

(7.80)

3. Finally, we use the linearity of the ODE system and write the solution as
the linear superposition of the solutions corresponding to the response to
each of the basis functions; that is,

(7.81)

leading to the expression:

(7.82)

Homework Problem

Pb. 7.27 Consider the RLC circuit. Assuming the same notation as in Section
6.5.3, but now assume that the source potential is given by:

a. Find analytically the potential difference across the capacitance.
(Hint: Write the power of the trigonometric function as function of
the different multiples of the angle.)
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b. Find numerically the steady-state solution to this problem using
the techniques of Chapter 4, and assume for some normalized units
the following values for the parameters:

LC = 1, RC = 1, ω = 2π

c. Compare your numerical results with the analytical results.

Application 2: The Legendre Polynomials
We propose to show that the Legendre polynomials are an orthonormal basis
for all functions of compact support over the interval –1 ≤ x ≤ 1. Thus far, we
have encountered the Legendre polynomials twice before. They were defined
through their recursion relations in Pb. 2.25, and in Section 4.7.1 through their
defining ODE. In this application, we define the Legendre polynomials
through their generating function; show how their definitions through their
recursion relation, or through their ODE, can be deduced from their defini-
tion through their generating function; and show that they constitute an
orthonormal basis for functions defined on the interval –1 ≤ x ≤ 1.

1. The generating function for the Legendre polynomials is given by
the simple form:

(7.83)

2. The lowest orders of Pl(x) can be obtained from the small t-expan-
sion of G(x, t); therefore, expanding Eq. (7.83) to first order in t gives:

(7.84)

from which, we can deduce that:

(7.85)

(7.86)

3. By inspection, it is straightforward to verify by substitution that
the generating function satisfies the equation:

(7.87)
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Because power series can be differentiated term by term, Eq. (7.87)
gives:

(7.88)

Since this equation should hold true for all values of t, this means
that all coefficients of any power of t should be zero; therefore:

(7.89)

or collecting terms, this can be written as:

(7.90)

This is the recursion relation of Pb. 2.25.
4. By substitution in the explicit expression of the generating function,

we can also verify that:

(7.91)

which leads to:

(7.92)

Again, looking at the coefficients of the same power of t permits
us to obtain another recursion relation:

(7.93)

Differentiating Eq. (7.90), we first eliminate  and then

 from the resulting equation, and use Eq. (7.93) to obtain

two new recursion relations:
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(7.94)

and

(7.95)

Adding Eqs. (7.94) and (7.95), we obtain the more symmetric formula:

(7.96)

Replacing l by l – 1 in Eq. (7.94) and eliminating  from Eq.
(7.95), we find that:

(7.97)

Differentiating Eq. (7.97) and using Eq. (7.95), we obtain:

(7.98a)

which can be written in the equivalent form:

(7.98b)

which is the ODE for the Legendre polynomial, as previously
pointed out in Section 4.7.1.

5. Next, we want to show that if l ≠ m, we have the orthogonality
between any two elements (with different indices) of the basis;
that is

(7.99)

To show this relation, we multiply Eq. (7.98) on the left by Pm(x)
and integrate to obtain:
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(7.100)

Integrating the first term by parts, we obtain:

(7.101)

Similarly, we can write the ODE for Pm(x), and multiply on the left
by Pl(x); this results in the equation:

(7.102)

Now, subtracting Eq. (7.102) from Eq. (7.101), we obtain:

(7.103)

But because l ≠ m, this can only be satisfied if the integral is zero,
which is the result that we are after.

6. Finally, we compute the normalization of the basis functions; that
is, compute:

(7.104)

From Eq. (7.90), we can write:

(7.105)

If we multiply this equation by (2l + 1)Pl(x) and subtract from it
Eq. (7.90), which we multiplied by (2l + 1)Pl–1(x), we obtain:

(7.106)

Now integrate over the interval [–1, 1] and using Eq. (7.103), we
obtain, for l = 2, 3, …:
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(7.107)

Repeated applications of this formula and the use of Eq. (7.86)
yields:

(7.108)

Direct calculations show that this is also valid for l = 0 and l = 1.
Therefore, the orthonormal basis functions are given by:

(7.109)

The general theorem that summarizes the decomposition of a function into
the Legendre polynomials basis states:

THEOREM
If the real function f(x) defined over the interval [–1, 1] is piecewise smooth and if the

integral  then the series:

(7.110)

where

(7.111)

converges to f(x) at every continuity point of the function.

The proof of this theorem is not given here.

Example 7.10
Find the decomposition into Legendre polynomials of the following function:

(7.112)

P x dx
l
l

P x dxl l
2

1

1

1
2

1

12 1
2 1

( )
( )
( )

( )
−

−
−∫ ∫= −

+

P x dx
l

P x dx
ll

2

1

1

1
2

1

13
2 1

2
2 1

( )
( )

( )
( )− −∫ ∫=

+
=

+

u l P xl l= + 1
2

( )

f x dx2

1

1

( ) ,< ∞
−∫

f x c P xl
l

l( ) ( )=
=

∞

∑
0

c l f x P x dxl l= +



 −∫

1
2 1

1

( ) ( )

f x
x a

a x
( ) =

− ≤ ≤

< ≤







0 1

1 1

for

for



© 2001 by CRC Press LLC

Solution: The conditions for the above theorem are satisfied, and

(7.113)

From Eq. (7.96), and noting that Pl(1) = 1, we find that:

(7.114)

and

(7.115)

We show in Figure 7.4 the sum of the truncated decomposition for Example
7.10 for different values of lmax.

FIGURE 7.4
The plot of the truncated Legendre polynomials expansion of the discontinuous function
given by Eq. (7.112), for a = 0.25. Top panel: lmax = 4. Middle panel: lmax = 8. Bottom panel:
lmax = 16.
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1= −( )

c P a P al l l= − −+ −
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7.9 MATLAB Commands Review

' Transposition (i.e., for vectors with real components, this
changes a row into a column).

norm Computes the Euclidean length of a vector.
cross Calculates the cross product of two 3-D vectors.
det Determinant; used here to compute the triple scalar product.
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8
Matrices

8.1 Setting up Matrices

DEFINITION A matrix is a collection of numbers arranged in a two-dimen-
sional (2-D) array structure. Each element of the matrix, call it Mi,j, occupies
the ith row and jth column.

(8.1)

We say that M is an (m ⊗ n) matrix, which means that it has m rows and n
columns. If m = n, we call the matrix square. If m = 1, the matrix is a row vec-
tor; and if n = 1, the matrix is a column vector.

8.1.1 Creating Matrices in MATLAB

8.1.1.1 Entering the Elements

In this method, the different elements of the matrix are keyed in; for example:

M=[1 3 5 7 11; 13 17 19 23 29; 31 37 41 47 53]

gives

M =

1  3 5 7 11

13 17 19 23 29

31 37 41 47 53

M =



















M M M M

M M M M

M M M M

n

n

m m m mn

11 12 13 1

21 22 23 2

1 2 3

L

L

M M M O M

L
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To find the size of the matrix (i.e., the number of rows and columns), enter:

size(M)

gives

ans =

3 5

To view a particular element, for example, the (2, 4) element, enter:

M(2,4)

gives

ans =

23

To view a particular row such as the 3rd row, enter:

M(3,:)

gives

ans =

31 37 41 47 53

To view a particular column such as the 4th column, enter:

M(:,4)

gives

ans =

7

23

47

If we wanted to construct a submatrix of the original matrix, for example,
one that includes the block from the 2nd to 3rd row (included) and from the 2nd

column to the 4th column (included), enter:

M(2:3,2:4)
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gives

ans =

17 19 23

37 41 47

8.1.1.2 Retrieving Special Matrices from the MATLAB Library

MATLAB has some commonly used specialized matrices in its library that
can be called as needed. For example:

• The matrix of size (m

 

⊗ n) with all elements being zero is
M=zeros(m,n);

For example:

M=zeros(3,4)

gives

M =

0 0 0 0

0 0 0 0

0 0 0 0

• The matrix of size (m

 

⊗ n) with all elements equal to 1 is
N=ones(m,n):

For example:

N=ones(4,3)

produces

N =

1 1 1

1 1 1

1 1 1

1 1 1

• The matrix of size (n

 

⊗ n) with only the diagonal elements equal
to one, otherwise zero, is P=eye(n,n):

For example:
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P=eye(4,4)

gives

P =

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

• The matrix of size (n

 

⊗ n) with elements randomly chosen from
the interval [0, 1], such as:

Q=rand(4,4)

gives, in one instance:

Q =

• We can select to extract the upper triangular part of the Q matrix,
but assign to all the lower triangle elements the value zero:

upQ=triu(Q)

produces

upQ =

or extract the lower triangular part of the Q matrix, but assign to all the upper
triangle elements the value zero:

loQ=tril(Q)

produces

loQ =

0.9708 0.4983 0.9601 0.2679

0.9901 0.2140 0.7266 0.4399

0.7889 0.6435 0.4120 0.9334

0.4387 0.3200 0.7446 0.6833

0.9708 0.4983 0.9601 0.2679

0 0.2140 0.7266 0.4399

0 0 0.4120 0.9334

0 0 0 0.6833
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• The single quotation mark (‘) after the name of a matrix changes
the matrix rows into becoming its columns, and vice versa, if the
elements are all real. If the matrix has complex numbers as ele-
ments, it also takes their complex conjugate in addition to the
transposition.

• Other specialized matrices, including the whole family of sparse
matrices, are also included in the MATLAB library. You can find
more information about them in the help documentation.

8.1.1.3 Functional Construction of Matrices

The third method for generating matrices is to give, if it exists, an algorithm
that generates each element of the matrix. For example, suppose we want to
generate the Hilbert matrix of size (n

 

⊗ n), where n = 4 and the functional

form of the elements are:  The routine for generating this

matrix will be as follows:

M=zeros(4,4);

for m=1:4

for n=1:4

M(m,n)=1/(m+n);

end

end

M

• We can also create new matrices by appending known matrices.
For example:

Let the matrices A and B be given by:

A=[1 2 3 4];

B=[5 6 7 8];

We want to expand the matrix A by the matrix B along the horizontal (this is
allowed only if both matrices have the same number of rows). Enter:

C=[A B]

0.9708 0 0 0

0.9901 0.2140 0 0

0.7889 0.6435 0.4120 0

0.4387 0.3200 0.7446 0.6833

M
m nmn =

+
1

.
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gives

C =

1 2 3 4 5 6 7 8

Or, we may want to expand A by stacking it on top of B (this is allowed only
if both matrices have the same number of columns). Enter:

D=[A;B]

produces

D =

1 2 3 4

5 6 7 8

We illustrate the appending operations for larger matrices: define E as the
(2 ⊗ 3) matrix with one for all its elements, and we desire to append it hori-
zontally to D. This is allowed because both have the same number of rows
(= 2). Enter:

E=ones(2,3)

produces

E =

1 1 1

1 1 1

Enter:

F=[D E]

produces

F =

1 2 3 4 1 1 1

5 6 7 8 1 1 1

Or, we may want to stack two matrices in a vertical configuration. This
requires that the two matrices have the same number of columns. Enter:

G=ones(2,4)
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gives

G =

1 1 1 1

1 1 1 1

Enter

H=[D;G]

produces

H =

1 2 3 4

5 6 7 8

1 1 1 1

1 1 1 1

Finally, the command sum applied to a matrix gives a row in which m-ele-
ment is the sum of all the elements of the mth column in the original matrix.
For example, entering:

sum(H)

produces

ans =

8 10 12 14

8.2 Adding Matrices

Adding two matrices is only possible if they have equal numbers of rows and
equal numbers of columns; or, said differently, they both have the same size.

The addition operation is the obvious one. That is, the (m, n) element of the
sum (A+B) is the sum of the (m, n) elements of respectively A and B:

(8.2)

Entering

( )A B+ = +mn mn mnA B
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A=[1 2 3 4];

B=[5 6 7 8];

A+B

produces

ans =

6 8 10 12

If we had subtraction of two matrices, it would be the same syntax as above
but using the minus sign between the matrices.

8.3 Multiplying a Matrix by a Scalar

If we multiply a matrix by a number, each element of the matrix is multiplied
by that number.

Entering:

3*A

produces

ans =

3 6 9 12

Entering:

3*(A+B)

produces

ans =

18 24 30 36

8.4 Multiplying Matrices

Two matrices A(m ⊗ n) and B(r ⊗ s) can be multiplied only if n = r. The size
of the product matrix is (m ⊗ s). An element of the product matrix is obtained
from those of the constitutent matrices through the following rule:
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(8.3)

This result can be also interpreted by observing that the (k, l) element of the
product is the dot product of the k-row of A and the l-column of B.

In MATLAB, we denote the product of the matrices A and B by A*B.

Example 8.1
Write the different routines for performing the matrix multiplication from the
different definitions of the matrix product.

Solution: Edit and execute the following script M-file:

D=[1 2 3; 4 5 6];

E=[3 6 9 12; 4 8 12 16; 5 10 15 20];

F=D*E

F1=zeros(2,4);

for i=1:2

for j=1:4

for k=1:3

F1(i,j)=F1(i,j)+D(i,k)*E(k,j);

end

end

end

F1

F2=zeros(2,4);

for i=1:2

for j=1:4

F2(i,j)=D(i,:)*E(:,j);

end

end

F2

The result F is the one obtained using the MATLAB built-in matrix multipli-
cation; the result F1 is that obtained from Eq. (8.3) and F2 is the answer
obtained by performing, for each element of the matrix product, the dot
product of the appropriate row from the first matrix with the appropriate col-

( )AB kl kh
h

hlA B= ∑
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umn from the second matrix. Of course, all three results should give the same
answer, which they do.

8.5 Inverse of a Matrix

In this section, we assume that we are dealing with square matrices (n ⊗ n)
because these are the only class of matrices for which we can define an
inverse.

DEFINITION A matrix M–1 is called the inverse of matrix M if the following
conditions are satisfied:

(8.4)

(The identity matrix is the (n ⊗ n) matrix with ones on the diagonal and zero
everywhere else; the matrix eye(n,n)in MATLAB.)

EXISTENCE The existence of an inverse of a matrix hinges on the condition
that the determinant of this matrix is non-zero [det(M) in MATLAB]. We leave
the proof of this theorem to future courses in linear algebra. For now, the for-
mula for generating the value of the determinant is given here.

• The determinant of a square matrix M, of size (n ⊗ n), is a number
equal to:

(8.5)

where P is the n! permutation of the first n-integers. The sign in front of each
term is positive if the number of transpositions relating

is even, while the sign is negative otherwise.

Example 8.2
Using the definition for a determinant, as given in Eq. (8.5), find the expres-
sion for the determinant of a (2 ⊗ 2) and a (3 ⊗ 3) matrix.

MM M M I− −= =1 1

det( ) ( )M = − …∑ 1 1 2 31 2 3
P

P

k k k nkM M M M
n

1 2 3 1 2 3, , , , , , , ,…( ) …( )n k k k knand
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Solution:
a. If n = 2, there are only two possibilities for permuting these two

numbers, giving the following: (1, 2) and (2, 1). In the first permu-
tation, no transposition was necessary; that is, the multiplying
factor in Eq. (8.5) is 1. In the second term, one transposition is
needed; that is, the multiplying factor in Eq. (8.5) is –1, giving for
the determinant the value:

(8.6)

b. If n = 3, there are only six permutations for the sequence (1, 2, 3):
namely, (1, 2, 3), (2, 3, 1), and (3, 1, 2), each of which is an even
permutation and (3, 2, 1), (2, 1, 3), and (1, 3, 2), which are odd
permutations, thereby giving for the determinant the value:

(8.7)

MATLAB Representation
Compute the determinant and the inverse of the matrices M and N, as keyed
below:

M=[1 3 5; 7 11 13; 17 19 23];

detM=det(M)

invM=inv(M)

gives

detM=

-84

invM=

-0.0714 -0.3095 -0.1905

-0.7143 -0.7381 -0.2619

-0.6429 -0.3810 -0.1190

On the other hand, entering:

N=[2 4 6; 3 5 7; 5 9 13];

detN=det(N)

invN=inv(N)

∆ = −M M M M11 22 12 21

∆ = + +

− + +

M M M M M M M M M

M M M M M M M M M

11 22 33 12 23 31 13 21 32

13 22 31 12 21 33 11 23 32( )
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produces

detN =

0

invN

Warning: Matrix is close to singular or badly
scaled.

Homework Problems

Pb. 8.1 As earlier defined, a square matrix in which all elements above
(below) the diagonal are zeros is called a lower (upper) triangular matrix.
Show that the determinant of a triangular n ⊗ n matrix is

det(T) = T11T22T33 … Tnn

Pb. 8.2 If M is an n ⊗ n matrix and k is a constant, show that:

det(kM) = kn det(M)

Pb. 8.3 Assuming the following result, which will be proven to you in linear
algebra courses:

det(MN) = det(M) × det(N)

Prove that if the inverse of the matrix M exists, then:

8.6 Solving a System of Linear Equations

Let us assume that we have a system of n linear equations in n unknowns that
we want to solve:

(8.8)

det( )
det( )

M
M

− =1 1

M x M x M x M x b

M x M x M x M x b

M x M x M x M x b

n n

n n

n n n nn n n

11 1 12 2 13 3 1 1

21 1 22 2 23 3 2 2

1 1 2 2 3 3

+ + + … + =

+ + + … + =

+ + + … + =

M
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The above equations can be readily written in matrix notation:

(8.9)

or

MX = B (8.10)

where the column of b’ s and x’ s are denoted by B and X. Multiplying, on the
left, both sides of this matrix equation by M–1, we find that:

X = M–1B (8.11)

As pointed out previously, remember that the condition for the existence of
solutions is a non-zero value for the determinant of M.

Example 8.3
Use MATLAB to solve the system of equations given by:

Solution: Edit and execute the following script M-file:

M=[1 3 5; 7 11 -13; 17 19 -23];

B=[22;-10;-14];

detM=det(M);

invM=inv(M);

X=inv(M)*B.

Verify that the vector X could also have been obtained using the left slash
notation: X=M\B.

NOTE In this and the immediately preceding chapter sections, we said very
little about the algorithm used for computing essentially the inverse of a
matrix. This is a subject that will be amply covered in your linear algebra
courses. What the interested reader needs to know at this stage is that the
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M M M M

M M M M

x

x

x

b

b

b

n

n

n n n nn n n

11 12 13 1

21 22 23 2

1 2 3

1

2

1

2

L

L

M M M O M

M M M L M

L

M

M

M

M













































=























x x x

x x x

x x x

1 2 3

1 2 3

1 2 3

3 5 22

7 11 13 10

17 19 23 14

+ + =

+ − = −

+ − = −



© 2001 by CRC Press LLC

Gaussian elimination technique (and its different refinements) is essentially
the numerical method of choice for the built-in algorithms of numerical soft-
wares, including MATLAB. The following two examples are essential build-
ing blocks in such constructions.

Example 8.4
Without using the MATLAB inverse command, solve the system of equations:

LX = B (8.12)

where L is a lower triangular matrix.

Solution: In matrix form, the system of equations to be solved is

(8.13)

The solution of this system can be directly obtained if we proceed iteratively.
That is, we find in the following order: x1, x2, …, xn, obtaining:

(8.14)

The above solution can be implemented by executing the following script
M-file:

L=[ ]; % enter the L matrix

b=[ ]; % enter the B column

n=length(b);

x=zeros(n,1);
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x(1)=b(1)/L(1,1);

for k=2:n

x(k)=(b(k)-L(k,1:k-1)*x(1:k-1))/L(k,k);

end

x

Example 8.5
Solve the system of equations: UX = B, where U is an upper triangular matrix.

Solution: The matrix form of the problem becomes:

(8.15)

In this case, the solution of this system can also be directly obtained if we pro-
ceed iteratively, but this time in the backward order xn, xn–1, …, x1 , obtaining:

(8.16)

The corresponding script M-file is

U=[ ]; % enter the U matrix

b=[ ]; % enter the B column

n=length(b);

x=zeros(n,1);

x(n)=b(n)/U(n,n);

for k=n-1:-1:1
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x(k)=(b(k)-U(k,k+1:n)*x(k+1:n))/U(k,k);

end

x

8.7 Application of Matrix Methods

This section provides seven representative applications that illustrate the
immense power that matrix formulation and tools can provide to diverse
problems of common interest in electrical engineering.

8.7.1 dc Circuit Analysis

Example 8.6
Find the voltages and currents for the circuit given in Figure 8.1.

Solution: Using Kirchoff’s current and voltage laws and Ohm’s law, we can
write the following equations for the voltages and currents in the circuit,
assuming that RL = 2Ω:

FIGURE 8.1
Circuit of Example 8.6.
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NOTE These equations can be greatly simplified if we use the method of
elimination of variables. This is essentially the method of nodes analysis cov-
ered in circuit theory courses. At this time, our purpose is to show a direct
numerical method for obtaining the solutions.

If we form column vector VI, the top three components referring to the
voltages V1, V2, V3, and the bottom three components referring to the cur-
rents I1, I2, I3, then the following script M-file provides the solution to the
above circuit:

M=[1 0 0 0 0 0;1 -1 0 -50 0 0;0 1 -1 0 -100 0;...

0 1 0 0 0 -300;0 0 1 0 -2 0;0 0 0 1 -1 -1];

Vs=[5;0;0;0;0;0];

VI=M\Vs

In-Class Exercise

Pb. 8.4 Use the same technique as shown in Example 8.6 to solve for the
potentials and currents in the circuit given in Figure 8.2.

8.7.2 dc Circuit Design

In design problems, we are usually faced with the reverse problem of the
direct analysis problem, such as the one solved in Section 8.7.1.

Example 8.7
Find the value of the lamp resistor in Figure 8.1, so that the current flowing
through it is given, a priori.

Solution: We approach this problem by defining a function file for the rele-
vant current. In this case, it is

FIGURE 8.2
Circuit of Pb. 8.4.
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function ilamp=circuit872(RL)

M=[1 0 0 0 0 0;1 -1 0 -50 0 0;0 1 -1 0 -100 0;...

0 1 0 0 0 -300;0 0 1 0 -RL 0;0 0 0 1 -1 -1];

Vs=[5;0;0;0;0;0];

VI=M\Vs;

ilamp=VI(5);

Then, from the command window, we proceed by calling this function and
plotting the current in the lamp as a function of the resistance. Then we
graphically read for the value of RL, which gives the desired current value.

In-Class Exercise

Pb. 8.5 For the circuit of Figure 8.1, find RL that gives a 22-mA current in the
lamp. (Hint: Plot the current as function of the load resistor.)

8.7.3 ac Circuit Analysis

Conceptually, there is no difference between performing an ac steady-state
analysis of a circuit with purely resistive elements, as was done in Subsection
8.7.1, and performing the analysis for a circuit that includes capacitors and
inductors, if we adopt the tool of impedance introduced in Section 6.8, and
we write the circuit equations instead with phasors. The only modification
from an all-resistors circuit is that matrices now have complex numbers as
elements, and the impedances have frequency dependence. For convenience,
we illustrate again the relationships of the voltage-current phasors across
resistors, inductors, and capacitors:

(8.17)

(8.18)

(8.19)

and restate Kirchoff’s laws again:

• Kirchoff’s voltage law: The sum of all voltage drops around a
closed loop is balanced by the sum of all voltage sources around
the same loop.

˜ ˜V IRR =

˜ ˜( )V I j LL = ω

˜
˜

( )
V

I
j CC =
ω
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• Kirchoff’s current law: The algebraic sum of all currents entering
(exiting) a circuit node must be zero.

In-Class Exercise

Pb. 8.6 In a bridged-T filter, the voltage Vs(t) is the input voltage, and the out-
put voltage is that across the load resistor RL. The circuit is given in Figure 8.3.

Assuming that R1 = R2 = 3 Ω, RL = 2 Ω, C = 0.25 F, and L = 1 H:
a. Write the equations for the phasors of the voltages and currents.
b. Form the matrix representation for the equations found in part (a).

c. Plot the magnitude and phase of  as a function of the frequency.

d. Compare the results obtained in part (c) with the analytical results
of the problem, given by:

FIGURE 8.3
Bridged-T filter. Circuit of Pb. 8.6.
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8.7.4 Accuracy of a Truncated Taylor Series

In this subsection and subection 8.7.5, we illustrate the use of matrices as a
convenient constructional tool to state and manipulate problems with two
indices. In this application, we desire to verify the accuracy of the truncated

Taylor series  as an approximation to the function y = exp(x), over

the interval 0 ≤ x < 1.
Because this application’s purpose is to illustrate a constructional scheme,

we write the code lines as we are proceeding with the different computa-
tional steps:

1. We start by dividing the (0, 1) interval into equally spaced seg-
ments. This array is given by:

x=[0:0.01:1];

M=length(x);

2. Assume that we are truncating the series at the value N = 10:

N=10;

3. Construct the matrix W having the following form:

(8.20)

Specify the size of W, and then give the induction rule to go from
one column to the next:

(8.21)
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This is implemented in the code as follows:

W=ones(M,N);

for i=1:M

for j=2:N

W(i,j)=x(i)*W(i,j-1)/(j-1);

end

end

4. The value of the truncated series at a specific point is the sum of
the row elements corresponding to its index; however since MAT-
LAB command sum acting on a matrix adds the column elements,
we take the sum of the adjoint (the matrix obtained, for real ele-
ments, by changing the rows to columns and vice versa) of W to
obtain our result. Consequently, add to the code:

serexp=sum(W');

5. Finally, compare the values of the truncated series with that of the
exponential function

y=exp(x);

plot(x,serexp,x,y,'--")

In examining the plot resulting from executing the above instructions, we
observe that the truncated series give a very good approximation to the expo-
nential over the whole interval.

If you would also like to check the error of the approximation as a function
of x, enter:

dy=abs(y-serexp);

semilogy(x,dy)

Examining the output graph, you will find, as expected, that the error
increases with an increase in the value of x. However, the approximation of
the exponential by the partial sum of the first ten elements of the truncated
Taylor series is accurate over the whole domain considered, to an accuracy of
better than one part per million.

Question: Could you have estimated the maximum error in the above com-
puted value of dy by evaluating the first neglected term in the Taylor’s series
at x = 1?
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In-Class Exercise

Pb. 8.7 Verify the accuracy of truncating at the fifth element the following
Taylor series, in a domain that you need to specify, so the error is everywhere
less than one part in 10,000:

a.

b.

c.

8.7.5 Reconstructing a Function from Its Fourier Components

From the results of Section 7.9, where we discussed the Fourier series, it is a
simple matter to show that any even periodic function with period 2π can be
written in the form of a cosine series, and that an odd periodic function can
be written in the form of a sine series of the fundamental frequency and its
higher harmonics.

Knowing the coefficients of its Fourier series, we would like to plot the
function over a period. The purpose of the following example is two-fold:

1. On the mechanistic side, to illustrate again the setting up of a two
indices problem in a matrix form.

2. On the mathematical contents side, examining the effects of trun-
cating a Fourier series on the resulting curve.

Example 8.8

Plot  if  Choose successively for M the val-

ues 5, 20, and 40.

Solution: Edit and execute the following script M-file:

M= ;

p=500;

k=1:M;
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n=0:p;

x=(2*pi/p)*n;

a=cos((2*pi/p)*n'*k);

c=((-1).^k)./(k.^2+1);

y=a*c';

plot(x,y)

axis([0 2*pi -1 1.2])

Draw in your notebook the approximate shape of the resulting curve for dif-
ferent values of M.

In-Class Exercises

Pb. 8.8 For different values of the cutoff, plot the resulting curves for the
functions given by the following Fourier series:

Pb. 8.9 The purpose of this problem is to explore the Gibbs phenomenon.
This phenomenon occurs as a result of truncating the Fourier series of a dis-
continuous function. Examine, for example, this phenomenon in detail for
the function y3(x) given in Pb. 8.8.

The function under consideration is given analytically by:

a. Find the value where the truncated Fourier series overshoots the
value of 0.5. (Answer: The limiting value of this first maximum is
0.58949).

b. Find the limiting value of the first local minimum. (Answer: The
limiting value of this first minimum is 0.45142).
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c. Derive, from first principles, the answers to parts (a) and (b). (Hint:
Look up in a standard integral table the sine integral function.)

NOTE An important goal of filter theory is to find methods to smooth these
kinds of oscillations.

8.7.6 Interpolating the Coefficients of an (n – 1)-degree Polynomial from 
n Points

The problem at hand can be posed as follows:

Given the coordinates of n points: (x1, y1), (x2, y2), …, (xn, yn), we want to find
the polynomial of degree (n – 1), denoted by pn–1(x), whose curve passes
through these points.

Let us assume that the polynomial has the following form:

(8.22)

From a knowledge of the column vectors X and Y, we can formulate this prob-
lem in the standard linear system form. In particular, in matrix form, we can
write:

(8.23)

Knowing the matrix V and the column Y, it is then a trivial matter to deduce
the column A:

(8.24)

What remains to be done is to generate in an efficient manner the matrix V
using the column vector X as input. We note the following recursion relation
for the elements of V:

V(k, j) = x(k) * V(k, j – 1) (8.25)

Furthermore, the first column of V has all its elements equal to 1.
The following routine computes A:
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X=[x1;x2;x3;.......;xn];

Y=[y1;y2;y3;.......;yn];

n=length(X);

V=ones(n,n);

for j=2:n

V(:,j)=X.*V(:,j-1);

end

A=V\Y

In-Class Exercises

Find the polynomials that are defined through:

Pb. 8.10 The points (1, 5), (2, 11), and (3, 19).

Pb. 8.11 The points (1, 8), (2, 39), (3, 130), (4, 341), and (5, 756).

8.7.7 Least Square Fit of Data

In Section 8.7.6, we found the polynomial of degree (n – 1) that was uniquely
determined by the coordinates of n points on its curve. However, when data
fitting is the tool used by experimentalists to verify a theoretical prediction,
many more points than the minimum are measured in order to minimize the
effects of random errors generated in the acquisition of the data. But this
over-determination in the system parameters faces us with the dilemma of
what confidence level one gives to the accuracy of specific data points, and
which data points to accept or reject. A priori, one takes all data points, and
resorts to a determination of the vector A whose corresponding polynomial
comes closest to all the experimental points. Closeness is defined through the
Euclidean distance between the experimental points and the predicted curve.
This method for minimizing the sum of the square of the Euclidean distance
between the optimal curve and the experimental points is referred to as the
least-square fit of the data.

To have a geometrical understanding of what we are attempting to do, con-
sider the conceptually analogous problem in 3-D of having to find the plane
with the least total square distance from five given data points. So what do
we do? Using the projection procedure derived in Chapter 7, we deduce each
point’s distance from the plane; then we go ahead and adjust the parameters
of the plane equation to obtain the smallest total square distance between the
points and the plane. In linear algebra courses, using generalized optimiza-
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tion techniques, you will be shown that the best fit to A (i.e., the one called
least-square fit) is given (using the rotation of the previous subsection) by:

AN = (VTV)–1VTY (8.26)

A MATLAB routine to fit a number of (n) points to a polynomial of order
(m – 1) now reads:

X=[x1;x2;x3;.......;xn];

Y=[y1;y2;y3;.......;yn];

n=length(X);

m= %(m-1) is the degree of the polynomial

V=ones(n,m);

for j=2:m

V(:,j)=X.*V(:,j-1);

end

AN=inv(V'*V)*(V'*Y)

MATLAB also has a built-in command to achieve the least-square fit of data.
Look up the polyfit function in your help documentation, and learn its use
and point out what difference exists between its notation and that of the
above routine.

In-Class Exercise

Pb. 8.12 Find the second-degree polynomials that best fit the data points: (1,
8.1), (2, 24.8), (3, 52.5), (4, 88.5), (5, 135.8), and (6, 193.4).

8.8 Eigenvalues and Eigenvectors*

DEFINITION If M is a square n ⊗ n matrix, then a vector  is called an
eigenvector and λ, a scalar, is called an eigenvalue, if they satisfy the relation:

(8.27)

that is, the vector  is a scalar multiplied by the vector .

v

M v v= λ

M v v
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8.8.1 Finding the Eigenvalues of a Matrix

To find the eigenvalues, note that the above definition of eigenvectors and
eigenvalues can be rewritten in the following form:

(8.28)

where I is the identity n ⊗ n matrix. The above set of homogeneous equations
admits a solution only if the determinant of the matrix multiplying the vector

 is zero. Therefore, the eigenvalues are the roots of the polynomial p(λ),
defined as follows:

(8.29)

This equation is called the characteristic equation of the matrix M. It is of
degree n in λ. (This last assertion can be proven by noting that the contribu-
tion to the determinant of (M – λI), coming from the product of the diagonal
elements of this matrix, contributes a factor of λn to the expression of the
determinant.)

Example 8.9
Find the eigenvalues and the eigenvectors of the matrix M, defined as follows:

Solution: The characteristic polynomial for this matrix is given by:

The roots of this polynomial (i.e., the eigenvalues of the matrix) are,
respectively,

λ1 = 1 and λ2 = 4

To find the eigenvectors corresponding to the above eigenvalues, which we
shall denote respectively by  we must satisfy the following two
equations separately:

and
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From the first set of equations, we deduce that: b = –a/4; and from the second
set of equations that d = c/2, thus giving for the eigenvectors  the
following expressions:

It is common to give the eigenvectors in the normalized form (that is, fix a and
c to make  thus giving for  the normalized
values:

8.8.2 Finding the Eigenvalues and Eigenvectors Using MATLAB

Given a matrix M, the MATLAB command to find the eigenvectors and
eigenvalues is given by [V,D]=eig(M); the columns of V are the eigen-
vectors and D is a diagonal matrix whose elements are the eigenvalues. Enter-
ing the matrix M and the eigensystem commands gives:

V =

-0.9701 -0.8944

-0.2425 -0.4472

D =

1 0

0 4

Finding the matrices V and D is referred to as diagonalizing the matrix M. It
should be noted that this is not always possible. For example, the matrix is
not diagonalizable when one or more of the roots of the characteristic poly-
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nomial is zero. In courses of linear algebra, you will study the necessary and
sufficient conditions for M to be diagonalizable.

In-Class Exercises

Pb. 8.13 Show that if  That is, the eigen-
values of Mn are λn; however, the eigenvectors ‘s remain the same as those
of M.

Verify this theorem using the choice in Example 8.9 for the matrix M.

Pb. 8.14 Find the eigenvalues of the upper triangular matrix:

Generalize your result to prove analytically that the eigenvalues of any trian-
gular matrix are its diagonal elements. (Hint: Use the previously derived
result in Pb. 8.1 for the expression of the determinant of a triangular matrix.)

Pb. 8.15 A general theorem, which will be proven to you in linear algebra
courses, states that if a matrix is diagonalizable, then, using the above notation:

VDV–1 = M

Verify this theorem for the matrix M of Example 8.9.
a. Using this theorem, show that:

b. Also show that:

VDnV–1 = Mn

c. Apply this theorem to compute the matrix M5, for the matrix M of
Example 8.9.

Pb. 8.16 Find the non-zero eigenvalues of the 2 ⊗ 2 matrix A that satisfies
the equation:

A = A3

M Mv v v vn n= =λ λ,  then .
v

T = −
−















1 4 0 0
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2 3 1

/
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n
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Homework Problems

The function of a matrix can formally be defined through a Taylor series
expansion. For example, the exponential of a matrix M can be defined through:

Pb. 8.17 Use the results from Pb. 8.15 to show that:

exp(M) = V exp(D)V–1

where, for any diagonal matrix:

Pb. 8.18 Using the results from Pb. 8.17, we deduce a direct technique for
solving the initial value problem for any system of coupled linear ODEs with
constant coefficients.

Find and plot the solutions in the interval 0 ≤ t ≤ 1 for the following set of
ODEs:

with the initial conditions: x1(0) = 1 and x2(0) = 3. (Hint: The solution of

 where X is a time-dependent vector and A is

a time-independent matrix.)

Pb. 8.19 MATLAB has a shortcut for computing the exponential of a matrix.
While the command exp(M) takes the exponential of each element of the
matrix, the command expm(M) computes the matrix exponential. Verify
your results for Pb. 8.18 using this built-in function.
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8.9 The Cayley-Hamilton and Other Analytical Techniques*

In Section 8.8, we presented the general techniques for computing the eigen-
values and eigenvectors of square matrices, and showed their power in solv-
ing systems of coupled linear differential equations. In this section, we add to
our analytical tools arsenal some techniques that are particularly powerful
when elegant solutions are desired in low-dimensional problems. We start
with the Cayley-Hamilton theorem.

8.9.1 Cayley-Hamilton Theorem

The matrix M satisfies its own characteristic equation.

PROOF As per Eq. (8.29), the characteristic equation for a matrix is given by:

(8.30)

Let us now form the polynomial of the matrix M having the same coefficients
as that of the characteristic equation, p(M). Using the result from Pb. 8.15, and
assuming that the matix is diagonalizable, we can write for this polynomial:

p(M) = Vp(D)V–1 (8.31)

where

(8.32)

However, we know that λ1, λ2, …, λn–1, λn are all roots of the characteristic
equation. Therefore,

(8.33)
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Example 8.10
Using the Cayley-Hamilton theorem, find the inverse of the matrix M given
in Example 8.9.

Solution: The characteristic equation for this matrix is given by:

p(M) = M2 – 5M + 4I = 0

Now multiply this equation by M–1 to obtain:

M – 5I + 4M–1 = 0

and

Example 8.11
Reduce the following fourth-order polynomial in M, where M is given in
Example 8.9, to a first-order polynomial in M:

P(M) = M4 + M3 + M2 + M + I

Solution: From the results of Example 8.10 , we have:

Verify the answer numerically using MATLAB.

8.9.2 Solution of Equations of the Form 

We sketched a technique in Pb. 8.17 that uses the eigenvectors matrix and
solves this equation. In Example 8.12, we solve the same problem using the
Cayley-Hamilton technique.
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Example 8.12
Using the Cayley-Hamilton technique, solve the system of equations:

with the initial conditions: x1(0) = 1 and x2(0) = 3

Solution: The matrix A for this system is given by:

and the solution of this system is given by:

X(t) = eAtX(0)

Given that A is a 2 ⊗ 2 matrix, we know from the Cayley-Hamilton result
that the exponential function of A can be written as a first-order polynomial
in A; thus:

P(A) = eAt = aI + bA

To determine a and b, we note that the polynomial equation holds as well for
the eigenvalues of A, which are equal to –3 and 2; therefore:
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Therefore, the solution of the system of equations is

8.9.3 Solution of Equations of the Form 

Multiplying this equation on the left by e–At, we obtain:

(8.36)

Rearranging terms, we write this equation as:

(8.37)

We note that the LHS of this equation is the derivative of e–AtX. Therefore, we
can now write Eq. (8.37) as:

(8.38)

This can be directly integrated to give:

(8.39)

or, written differently as:

(8.40a)

which leads to the standard form of the solution:
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(8.40b)

We illustrate the use of this solution in finding the classical motion of an
electron in the presence of both an electric field and a magnetic flux density.

Example 8.13
Find the motion of an electron in the presence of a constant electric field and
a constant magnetic flux density that are parallel.

Solution: Let the electric field and the magnetic flux density be given by:

Newton’s equation of motion in the presence of both an electric field and a
magnetic flux density is written as:

where  is the velocity of the electron, and m and q are its mass and charge,
respectively. Writing this equation in component form, it reduces to the fol-
lowing matrix equation:

where 

This equation can be put in the above standard form for an inhomogeneous
first-order equation if we make the following identifications:

First, we note that the matrix A is block diagonalizable; that is, all off-diag-
onal elements with 3 as either the row or column index are zero, and therefore
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we can separately do the exponentiation of the third component giving e0 = 1;
the exponentiation of the top block can be performed along the same steps,
using the Cayley-Hamilton techniques from Example 8.12 , giving finally:

Therefore, we can write the solutions for the electron’s velocity components
as follows:

or equivalently:

In-Class Exercises

Pb. 8.20 Plot the 3-D curve, with time as parameter, for the tip of the velocity
vector of an electron with an initial velocity v = v0ê1, where v0 = 105 m/s, enter-
ing a region of space where a constant electric field and a constant magnetic
flux density are present and are described by:  = E0ê3, where E0 = –104 V/m,
and  = B0ê3, where B0 = 10–2 Wb/m2. The mass of the electron is me = 9.1094
× 10–31 kg, and the magnitude of the electron charge is e = 1.6022 × 10–19 C.

Pb. 8.21 Integrate the expression of the velocity vector in Pb. 8.20 to find the
parametric equations of the electron position vector for the preceding prob-
lem configuration, and plot its 3-D curve. Let the origin of the axis be fixed to
where the electron enters the region of the electric and magnetic fields.

Pb. 8.22 Find the parametric equations for the electron velocity if the electric
field and the magnetic flux density are still parallel, the magnetic flux density
is still constant, but the electric field is now described by  = E0 cos(ωt)ê3.
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Example 8.14
Find the motion of an electron in the presence of a constant electric field and
a constant magnetic flux density perpendicular to it.

Solution: Let the electric field and the magnetic flux density be given by:

The matrix A is given in this instance by:

while the vector B is still given by:

The matrix eAt is now given by:

and the solution for the velocity vector is for this configuration given, using
Eq. (8.40), by:

leading to the following parametric representation for the velocity vector:
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Homework Problems

Pb. 8.23 Plot the 3-D curve, with time as parameter, for the tip of the veloc-

ity vector of an electron with an initial velocity  where

v0 = 105 m/s, entering a region of space where the electric field and the mag-

netic flux density are constant and described by  = E0ê3, where E0 = –104

V/m; and  = B0ê1, where B0 = 10–2 Wb/m2.

Pb. 8.24 Find the parametric equations for the position vector for Pb. 8.23,
assuming that the origin of the axis is where the electron enters the region of
the force fields. Plot the 3-D curve that describes the position of the electron.

8.9.4 Pauli Spinors

We have shown thus far in this section the power of the Cayley-Hamilton the-
orem in helping us avoid the explicit computation of the eigenvectors while
still analytically solving a number of problems of linear algebra where the
dimension of the matrices was essentially 2 ⊗ 2, or in some special cases 3 ⊗
3. In this subsection, we discuss another analytical technique for matrix
manipulation, one that is based on a generalized underlying abstract alge-
braic structure: the Pauli spin matrices. This is the prototype and precursor to
more advanced computational techniques from a field of mathematics called
Group Theory. The Pauli matrices are 2 ⊗ 2 matrices given by:

(8.41a)

(8.41b)

(8.41c)
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These matrices have the following properties, which can be easily verified by
inspection:

Property 1: (8.42)

where I is the 2 ⊗ 2 identity matrix.

Property 2: (8.43)

Property 3: (8.44)

If we define the quantity  to mean:

(8.45)

that is,  = (v1, v2, v3), where the parameters v1, v2, v3 are represented as the
components of a vector, the following theorem is valid.

THEOREM

(8.46)

where the vectors’ dot and cross products have the standard definition.

PROOF The left side of this equation can be expanded as follows:

(8.47)

Using property 1 of the Pauli’s matrices, the first parenthesis on the RHS of
Eq. (8.47) can be written as:

(8.48)

Using properties 2 and 3 of the Pauli’s matrices, the second, third, and
fourth parentheses on the RHS of Eq. (8.47) can respectively be written as:

(8.49)
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(8.50)

(8.51)

Recalling that the cross product of two vectors  can be written from
Eq. (7.49) in components form as:

the second, third, and fourth parentheses on the RHS of Eq. (8.47) can be com-
bined to give  thus completing the proof of the theorem.

COROLLARY
If ê is a unit vector, then:

(8.52)

PROOF Using Eq. (8.46), we have:

where, in the last step, we used the fact that the norm of a unit vector is one
and that the cross product of any vector with itself is zero.

A direct result of this corollary is that:

(8.53)

and

(8.54)

From the above results, we are led to the theorem:

THEOREM

(8.55)

PROOF If we Taylor expand the exponential function, we obtain:
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(8.56)

Now separating the even power and odd power terms, using the just derived
result for the odd and even powers of  and Taylor expansions of the
cosine and sine functions, we obtain the desired result.

Example 8.15
Find the time development of the spin state of an electron in a constant mag-
netic flux density.

Solution: [For readers not interested in the physical background of this prob-
lem, they can immediately jump to the paragraph following Eq. (8.59).]

Physical Background: In addition to the spatio-temporal dynamics, the elec-
tron and all other elementary particles of nature also have internal degrees of
freedom; which means that even if the particle has no translational motion,
its state may still evolve in time. The spin of a particle is such an internal
degree of freedom. The electron spin internal degree of freedom requires for
its representation a two-dimensional vector, that is, two fundamental states
are possible. As may be familiar to you from your elementary chemistry
courses, the up and down states of the electron are required to satisfactorily
describe the number of electrons in the different orbitals of the atoms. For the
up state, the eigenvalue of the spin matrix is positive; while for the down
state, the eigenvalue is negative (respectively h/2 and –h/2, where h = 1.0546
× 10–34 J.s = h/(2π), and h is Planck’s constant).

Due to spin, the quantum mechanical dynamics of an electron in a mag-
netic flux density does not only include quantum mechanically the time
development equivalent to the classical motion that we described in Exam-
ples 8.13 and 8.14; it also includes precession of the spin around the external
magnetic flux density, similar to that experienced by a small magnet dipole
in the presence of a magnetic flux density.

The magnetic dipole moment due to the spin internal degree of freedom of
an electron is proportional to the Pauli’s spin matrix; specifically:

(8.57)

where µB = 0.927 × 10–23 J/Tesla.
In the same notation, the electron spin angular momentum is given by:

(8.58)
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The electron magnetic dipole, due to spin, interaction with the magnetic flux
density is described by the potential:

(8.59)

and the dynamics of the electron spin state in the magnetic flux density is
described by Schrodinger’s equation:

(8.60)

where, as previously mentioned, the Dirac ket-vector is two-dimensional.

Mathematical Problem: To put the problem in purely mathematical form, we
are asked to find the time development of the two-dimensional vector  if
this vector obeys the system of equations:

(8.61)

where  and is called the Larmor frequency, and the magnetic flux

density is given by  The solution of Eq. (8.61) can be immediately
written because the magnetic flux density is constant. The solution at an arbi-
trary time is related to the state at the origin of time through:

(8.62)

which from Eq. (8.55) can be simplified to read:

(8.63)

If we choose the magnetic flux density to point in the z-direction, then the
solution takes the very simple form:

(8.64)
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Physically, the above result can be interpreted as the precession of the elec-
tron around the direction of the magnetic flux density. To understand this
statement, let us find the eigenvectors of the σσσσx and σσσσy matrices. These are
given by:

(8.65a)

(8.65b)

The eigenvalues of σσσσx and σσσσy corresponding to the eigenvectors αααα are equal to
1, while those corresponding to the eigenvectors ββββ are equal to –1.

Now, assume that the electron was initially in the state ααααx:

(8.66)

By substitution in Eq. (8.64), we can compute the electron spin state at differ-
ent times. Thus, for the time indicated, the electron spin state is given by the
second column in the list below:

(8.67)

(8.68)

(8.69)

(8.70)

In examining the above results, we note that, up to an overall phase, the
electron spin state returns to its original state following a cycle. During this
cycle, the electron “pointed” successively in the positive x-axis, the positive
y-axis, the negative x-axis, and the negative y-axis before returning again to
the positive x-axis, thus mimicking the hand of a clock moving in the coun-
terclockwise direction. It is this “motion” that is referred to as the electron
spin precession around the direction of the magnetic flux density.
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In-Class Exercises

Pb. 8.25 Find the Larmor frequency for an electron in a magnetic flux den-
sity of 100 Gauss (10–2 Tesla).

Pb. 8.26 Similar to the electron, the proton and the neutron also have spin
as one of their internal degrees of freedom, and similarly attached to this
spin, both the proton and the neutron each have a magnetic moment. The
magnetic moment attached to the proton and neutron have, respectively, the
values µn = –1.91 µN and µp = 2.79 µN, where µN is called the nuclear magneton
and is equal to µN = 0.505 × 10–26 Joule/Tesla.

Find the precession frequency of the proton spin if the proton is in the pres-
ence of a magnetic flux density of strength 1 Tesla.

Homework Problem

Pb. 8.27 Magnetic resonance imaging (MRI) is one of the most accurate
techniques in biomedical imaging. Its principle of operation is as follows. A
strong dc magnetic flux density aligns in one of two possible orientations the
spins of the protons of the hydrogen nuclei in the water of the tissues (we say
that it polarizes them). The other molecules in the system have zero magnetic
moments and are therefore not affected. In thermal equilibrium and at room
temperature, there are slightly more protons aligned parallel to the magnetic
flux density because this is the lowest energy level in this case. A weaker
rotating ac transverse flux density attempts to flip these aligned spins. The
energy of the transverse field absorbed by the biological system, which is pro-
portional to the number of spin flips, is the quantity measured in an MRI scan.
It is a function of the density of the polarized particles present in that specific
region of the image, and of the frequency of the ac transverse flux density.

In this problem, we want to find the frequency of the transverse field that
will induce the maximum number of spin flips.

The ODE describing the spin system dynamics in this case is given by:

where  µp is given in Pb. 8.26, and the magnetic flux

density is given by

d
dt
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Assume for simplicity the initial state  and denote the state

of the system at time 

a. Find numerically at which frequency ω the magnitude of b(t) is
maximum.

b. Once you have determined the optimal ω, go back and examine
what strategy you should adopt in the choice of Ω⊥ to ensure
maximum resolution.

c. Verify your numerical answers with the analytical solution of this
problem, which is given by:

where .

8.10 Special Classes of Matrices*

8.10.1 Hermitian Matrices

Hermitian matrices of finite or infinite dimensions (operators) play a key role
in quantum mechanics, the primary tool for understanding and solving phys-
ical problems at the atomic and subatomic scales. In this section, we define
these matrices and find key properties of their eigenvalues and eigenvectors.

DEFINITION The Hermitian adjoint of a matrix M, denoted by M† is equal to
the complex conjugate of its transpose:

(8.71)

For example, in complex vector spaces, the bra-vector will be the Hermitian
adjoint of the corresponding ket-vector:

(8.72)
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LEMMA

(8.73)

PROOF From the definition of matrix multiplication and Hermitian adjoint,
we have:

DEFINITION A matrix is Hermitian if it is equal to its Hermitian adjoint;
that is

H† = H (8.74)

THEOREM 1
The eigenvalues of a Hermitian matrix are real.

PROOF Let λm be an eigenvalue of H and let  be the corresponding
eigenvector; then:

(8.75)

Taking the Hermitian adjoints of both sides, using the above lemma, and
remembering that H is Hermitian, we successively obtain:

(8.76)

Now multiply (in an inner-product sense) Eq. (8.75) on the left with the bra
 and Eq. (8.76) on the right by the ket-vector , we obtain:

(8.77)

THEOREM 2
The eigenvectors of a Hermitian matrix corresponding to different eigenvalues are
orthogonal; that is, given that:
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(8.78)

(8.79)

and

(8.80)

then:

(8.81)

PROOF Because the eigenvalues are real, we can write:

(8.82)

Dot this quantity on the right by the ket  to obtain:

(8.83)

On the other hand, if we dotted Eq. (8.78) on the left with the bra-vector ,
we obtain:

(8.84)

Now compare Eqs. (8.83) and (8.84). They are equal, or that:

(8.85)

However, because λm ≠ λn, this equality can only be satisfied if 
which is the desired result.

In-Class Exercises

Pb. 8.28 Show that any Hermitian 2 ⊗ 2 matrix has a unique decomposition
into the Pauli spin matrices and the identity matrix.
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Pb. 8.29 Find the multiplication rule for two 2 ⊗ 2 Hermitian matrices that
have been decomposed into the Pauli spin matrices and the identity matrix;
that is

If: M = a0I + a1σσσσ1 + a2σσσσ2 + a3σσσσ3

and N = b0I + b1σσσσ1 + b2σσσσ2 + b3σσσσ3

Find: the p-components in: P = MN = p0I + p1σσσσ1 + p2σσσσ2 + p3σσσσ3

Homework Problem

Pb. 8.30 The Calogero and Perelomov matrices of dimensions n ⊗ n are
given by:

a. Verify that their eigenvalues are given by:

λs = 2s – n – 1

where s = 1, 2, 3, …, n.

b. Verify that their eigenvectors matrices are given by:

c. Use the above results to derive the Diophantine summation rule:

where s = 1, 2, 3, …, n – 1.

8.10.2 Unitary Matrices

DEFINITION A unitary matrix has the property that its Hermitian adjoint is
equal to its inverse:
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(8.86)

An example of a unitary matrix would be the matrix ejHt, if H was Hermitian.

THEOREM 1
The eigenvalues of a unitary matrix all have magnitude one.

PROOF The eigenvalues and eigenvectors of the unitary matrix satisfy the
usual equations for these quantities; that is:

(8.87)

Taking the Hermitian conjugate of this equation, we obtain:

(8.88)

Multiplying Eq. (8.87) on the left by Eq. (8.88), we obtain:

(8.89)

from which we deduce the desired result that: 
A direct corollary of the above theorem is that  This can be

proven directly if we remember the result of Pb. 8.15, which states that the
determinant of any diagonalizable matrix is the product of its eigenvalues,
and the above theorem that proved that each of these eigenvalues has unit
magnitude.

THEOREM 2
A transformation represented by a unitary matrix keeps invariant the scalar (dot, or
inner) product of two vectors.

PROOF The matrix U acting on the vectors  results in two new
vectors, denoted by  and such that:

(8.90)

(8.91)

Taking the Hermitian adjoint of Eq. (8.90), we obtain:

(8.92)

U U† = −1

U v vn n n= λ

v v vn n n nU U† = =−1 λ

v v v v v vn n n n n n nU U− = =1 2
λ

λn

2
1= .
det( ) .U = 1

ϕ ψand
ϕ ψ' 'and

′ =ϕ ϕU

′ =ψ ψU

′ = = −ϕ ϕ ϕU U† 1
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Multiplying Eq. (8.91) on the left by Eq. (8.92), we obtain:

(8.93)

which is the result that we are after. In particular, note that the norm of the
vector under this matrix multiplication remains invariant. We will have the
opportunity to study a number of examples of such transformations in
Chapter 9.

8.10.3 Unimodular Matrices

DEFINITION A unimodular matrix has the defining property that its deter-
minant is equal to one. In the remainder of this section, we restrict our discus-
sion to 2 ⊗ 2 unimodular matrices, as these form the tools for the matrix
formulation of ray optics and Gaussian optics, which are two of the major
sub-fields of photonics engineering.

Example 8.16
Find the eigenvalues and eigenvectors of the 2 ⊗ 2 unimodular matrix.

Solution: Let the matrix M be given by the following expression:

(8.94)

The unimodularity condition is then written as:

(8.95)

Using Eq. (8.95), the eigenvalues of this matrix are given by:

(8.96)

Depending on the value of (a + d), these eigenvalues can be parameterized in
a simple expression. We choose, here, the range –2 ≤ (a + d) ≤ 2 for illustrative
purposes. Under this constraint, the following parameterization is conve-
nient:

(8.97)

′ ′ = =−ϕ ψ ϕ ψ ϕ ψU U1

M =






a b

c d
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(For the ranges below –2 and above 2, the hyperbolic cosine function will be
more appropriate and similar steps to the ones that we will follow can be
repeated.)

Having found the eigenvalues, which can now be expressed in the simple
form:

(8.98)

let us proceed to find the matrix V, defined as:

(8.99)

and where D is the diagonal matrix of the eigenvalues. By direct substitution,
in the matrix equation defining V, Eq. (8.99), the following relations can be
directly obtained:

(8.100)

and

(8.101)

If we choose for convenience V11 = V22 = c (which is always possible because
each eigenvector can have the value of one of its components arbitrary cho-
sen with the other components expressed as functions of it), the matrix V can
be written as:

(8.102)

and the matrix M can be then written as:

(8.103)
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Homework Problem

Pb. 8.31 Use the decomposition given by Eq. (8.103) and the results of
Pb. 8.15 to prove the Sylvester theorem for the unimodular matrix, which
states that:

where θ is defined in Equation 8.97.

Application: Dynamics of the Trapping of an Optical Ray
in an Optical Fiber
Optical fibers, the main waveguides of land-based optical broadband net-
works are hair-thin glass fibers that transmit light pulses over very long dis-
tances with very small losses. Their waveguiding property is due to a
quadratic index of refraction radial profile built into the fiber. This profile is
implemented in the fiber manufacturing process, through doping the glass
with different concentrations of impurities at different radial distances.

The purpose of this application is to explain how waveguiding can be
achieved if the index of refraction inside the fiber has the following profile:

(8.104)

where r is the radial distance from the fiber axis and  is a number smaller
than 0.01 everywhere inside the fiber.

This problem can, of course, be solved by finding the solution of Maxwell
equations, or the differential equation of geometrical optics for ray propaga-
tion in a non-uniform medium. However, we will not do this in this applica-
tion. Here, we use only Snell’s law of refraction (see Figure 8.4), which states
that at the boundary between two transparent materials with two different
indices of refraction, light refracts such that the product of the index of refrac-
tion of each medium multiplied by the sine of the angle that the ray makes
with the normal to the interface in each medium is constant, and Sylvester’s
theorem derived in Pb. 8.31.

Let us describe a light ray going through the fiber at any point z along its
length, by the distance r that the ray is displaced from the fiber axis, and by
the small angle α that the ray’s direction makes with the fiber axis. Now con-
sider two points on the fiber axis separated by the small distance δz. We want
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to find r(z + δz) and α(z + δz), knowing r(z) and α(z). We are looking for the
iteration relation that successive applications will permit us to find the ray
displacement r and α slope at any point inside the fiber if we knew their val-
ues at the fiber entrance plane.

We solve the problem in two steps. We first assume that there was no bend-
ing in the ray, and then find the ray transverse displacement following a
small displacement. This is straightforward from the definition of the slope
of the ray:

δr = α(z)δz (8.105)

Because the angle α is small, we approximated the tangent of the angle by the
value of the angle in radians.

Therefore, if we represent the position and slope of the ray as a column
matrix, Eq. (8.105) can be represented by the following matrix representation:

(8.106)

Next, we want to find the bending experienced by the ray in advancing
through the distance δz. Because the angles that should be used in Snell’s law
are the complementary angles to those that the ray forms with the axis of the
fiber, and recalling that the glass index of refraction is changing only in the
radial direction, we deduce from Snell’s law that:

FIGURE 8.4
Parameters of Snell’s law of refraction.
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(8.107)

Now, taking the leading terms of a Taylor expansion of the LHS of this equa-
tion leads us to:

(8.108)

Further simplification of this equation gives to first order in the variations:

(8.109)

which can be expressed in matrix form as:

(8.110)

The total variation in the values of the position and slope of the ray can be
obtained by taking the product of the two matrices in Eqs. (8.106) and (8.110),
giving:

(8.111)

Equation (8.111) provides us with the required recursion relation to numeri-
cally iterate the progress of the ray inside the fiber. Thus, the ray distance
from the fiber axis and the angle that it makes with this axis can be computed
at any z in the fiber if we know the values of the ray transverse coordinate and
its slope at the entrance plane.

The problem can also be solved analytically if we note that the determinant
of this matrix is 1 (the matrix is unimodular). Sylvester’s theorem provides
the means to obtain the following result:

(8.112)

Homework Problems

Pb. 8.32 Consider an optical fiber of radius a = 30µ, n0 = 4/3, and n2 =
103 m–1. Three ray enters this fiber parallel to the fiber axis at distances of 5µ,
10µ, and 15µ from the fiber’s axis.
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a. Write a MATLAB program to follow the progress of the rays
through the fiber, properly choosing the δz increment.

b. Trace these rays going through the fiber.
Figure 8.5 shows the answer that you should obtain for a fiber length of

3 cm.

Pb. 8.33 Using Sylvester’s theorem, derive Eq. (8.112). (Hint: Define the

angle θ, such that  and recall that while δz goes to zero, its

product with the number of iterations is finite and is equal to the distance of
propagation inside the fiber.)

Pb. 8.34 Find the maximum angle that an incoming ray can have so that it
does not escape from the fiber. (Remember to include the refraction at the
entrance of the fiber.)

8.11 MATLAB Commands Review

det Compute the determinant of a matrix.
expm Computes the matrix exponential.

FIGURE 8.5
Traces of rays, originally parallel to the fiber’s axis, when propagating inside an optical fiber.

sin ,
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eye Identity matrix.
inv Find the inverse of a matrix.
ones Matrix with all elements equal to 1.
polyfit Fit polynomial to data.
triu Extract upper triangle of a matrix.
tril Extract lower triangle of a matrix.
zeros Matrix with all elements equal to zero.
[V,D]=eig(M) Finds the eigenvalues and eigenvectors of a matrix.
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9
Transformations

The theory of transformations concerns itself with changes in the coordinates
and shapes of objects upon the action of geometrical operations, dynamical
boosts, or other operators. In this chapter, we deal only with linear transfor-
mations, using examples from both plane geometry and relativistic dynamics
(space-time geometry). We also show how transformation techniques play an
important role in image processing. We formulate both the problems and
their solutions in the language of matrices. Matrices are still denoted by bold-
face type and matrix multiplication by an asterisk.

9.1 Two-Dimensional (2-D) Geometric Transformations

We first concern ourselves with the operations of inversion about the origin
of axes, reflection about the coordinate axes, rotation around the origin, scal-
ing, and translation. But prior to going into the details of these transforma-
tions, we need to learn how to draw closed polygonal figures in MATLAB so
that we can implement and graph the different cases.

9.1.1 Polygonal Figures Construction

Consider a polygonal figure whose vertices are located at the points:

The polygonal figure can then be thought off as line segments (edges) con-
necting the vertices in a given order, including the edge connecting the last
point to the initial point to ensure that we obtain a closed figure. The imple-
mentation of the steps leading to the drawing of the figure follows:

1. Label all vertex points.
2. Label the path you follow.

( , ),  ( , ),  ,  ( , )x y x y x yn n1 1 2 2 …
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3. Construct a (2 ⊗ (n + 1) matrix, the G matrix, where the elements
of the first row consist of the ordered (n + 1)-tuplet, (x1, x2, x3, …,
xn, x1), and those of the second row consists of the corresponding
y coordinates (n + 1)-tuplet.

4. Plot the second row of G as function of its first row.

Example 9.1
Plot the trapezoid whose vertices are located at the points (2, 1), (6, 1), (5, 3),
and (3, 3).

Solution: Enter and execute the following commands:

G=[2 6 5 3 2; 1 1 3 3 1];

plot(G(1,:),G(2,:))

To ensure that the exact geometrical shape is properly reproduced, remember
to instruct your computer to choose the axes such that you have equal
x-range and y-range and an aspect ratio of 1. If you would like to add any text
anywhere in the figure, use the command gtext.

9.1.2 Inversion about the Origin and Reflection about the Coordinate 
Axes

We concern ourselves here with inversion with respect to the origin and with
reflection about the x- or y-axis. Inversion about other points or reflection
about other than the coordinate axes can be deduced from a composition of
the present transformations and those discussed later.

• The inversion about the origin changes the coordinates as follows:

(9.1)

In matrix form, this transformation can be represented by:

(9.2)

• For the reflection about the x-axis, denoted by Px, and the reflection
about the y-axis, denoted by Py , the transformation matrices are
given by:

′ = −

′ = −

x x

y y

P =
−

−










1 0
0 1
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(9.3)

(9.4)

In-Class Exercise

Pb. 9.1 Using the trapezoid of Example 9.1, obtain all the transformed G’s
as a result of the action of each of the three transformations defined in Eqs.
(9.2) through (9.4), and plot the transformed figures on the same graph.

Pb. 9.2 In drawing the original trapezoid, we followed the counterclock-
wise direction in the sequencing of the different vertices. What is the sequenc-
ing of the respective points in each of the transformed G’s?

Pb. 9.3 Show that the quantity (x2 + y2) is invariant under separately the
action of Px, Py, or P.

9.1.3 Rotation around the Origin

The new coordinates of a point in the x-y plane rotated by an angle 

 

θ around
the z-axis can be directly derived through some elementary trigonometry.
Here, instead, we derive the new coordinates using results from the complex
numbers chapter (Chapter 6). Recall that every point in a 2-D plane repre-
sents a complex number, and multiplication by a complex number of modu-
lus 1 and argument 

 

θ results in a rotation of angle 

 

θ of the original point.
Therefore:

(9.5)

Equating separately the real parts and the imaginary parts, we deduce the
action of rotation on the coordinates of a point:

(9.6)
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The above transformation can also be written in matrix form. That is, if the
point is represented by a size 2 column vector, then the new vector is related
to the old one through the following transformation:

(9.7)

The convention for the sign of the angle is the same as that used in Chapter 6,
namely that it is measured positive when in the counterclockwise direction.

Preparatory Exercises

Using the above form for the rotation matrix, verify the following properties:

Pb. 9.4 Its determinant is equal to 1.

Pb. 9.5 R(–

 

θ) = [R(

 

θ)]–1 = [R(

 

θ)]T

Pb. 9.6 R(

 

θ1)

 

∗ R(

 

θ2) = R(

 

θ1 + 

 

θ2) = R(

 

θ2)

 

∗ R(

 

θ1)

Pb. 9.7 (x

 

′)2 + (y

 

′)2 = x2 + y2

Pb. 9.8 Show that P = R(

 

θ = 

 

π). Also show that there is no rotation that can
reproduce Px or Py .

In-Class Exercises

Pb. 9.9 Find the coordinates of the image of the point (x, y) obtained by
reflection about the line y = x. Test your results using MATLAB.

Pb. 9.10 Find the transformation matrix corresponding to a rotation of
–

 

π/3, followed by an inversion around the origin. Solve the problem in two
different ways.

Pb. 9.11 By what angle should you rotate the trapezoid so that point (6, 1)
of the trapezoid of Example 9.1 is now on the y-axis?

9.1.4 Scaling

If the x-coordinate of each point in the plane is multiplied by a positive con-
stant sx , then the effect of this transformation is to expand or compress each
plane figure in the x-direction. If 0 < sx < 1, the result is a compression; and if
sx  > 1, the result is an expansion. The same can also be done along the y-axis.
This class of transformations is called scaling.
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The matrices corresponding to these transformations, in 2-D, are
respectively:

(9.8)

(9.9)

In-Class Exercises

Pb. 9.12 Find the transformation matrix for simultaneously compressing
the x-coordinate by a factor of 2, while expanding the y-coordinate by a fac-
tor of 2. Apply this transformation to the trapezoid of Example 9.1 and plot
the result.

Pb. 9.13 Find the inverse matrices for Sx and Sy.

9.1.5 Translation

A translation is defined by a vector  and the transformation of the
coordinates is given simply by:

(9.10)

or, written in matrix form as:

(9.11)

The effect of translation over the matrix G is described by the relation:

(9.12)

where n is the number of points being translated.
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In-Class Exercise

Pb. 9.14 Translate the trapezoid of Example 9.1 by a vector of length 5 that
is making an angle of 30° with the x-axis.

9.2 Homogeneous Coordinates

As we have seen in Section 9.1, inversion about the origin, reflection about the
coordinate axes, rotation, and scaling are operations that can be represented by
a multiplicative matrix, and therefore the composite operation of acting succes-
sively on a figure by one or more of these operations can be described by a prod-
uct of matrices. The translation operation, on the other hand, is represented by
an addition, and thus cannot be incorporated, as yet, into the matrix multiplica-
tion scheme; and consequently, the expression for composite operations
becomes less tractable. We illustrate this situation with the following example:

Example 9.2
Find the new G that results from rotating the trapezoid of Example 9.1 by a
π/4 angle around the point Q (–5, 5).

Solution: Because we have thus far defined the rotation matrix only around
the origin, our task here is to generalize this result. We solve the problem by
reducing it to a combination of elementary operations thus far defined. The
strategy for solving the problem goes as follows:

1. Perform a translation to place Q at the origin of a new coordinate
system.

2. Perform a π/4 rotation around the new origin, using the above
form for rotation.

3. Translate back the origin to its initial location.

Written in matrix form, the above operations can be written sequentially as
follows:

1. (9.13)

where (9.14)

and n = 4.

G G T ones1 = + +* ( , )1 1n

T =
5
5−
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2. (9.15)

3. (9.16)

and the final result can be written as:

(9.17)

We can implement the above sequence of transformations through the fol-
lowing script M-file:

plot(-5,5,'*')

hold on

G=[2 6 5 3 2; 1 1 3 3 1];

plot(G(1,:),G(2,:),'b')

T=[5;-5];

G1=G+T*ones(1,5);

plot(G1(1,:),G1(2,:), 'r')

R=[cos(pi/4) -sin(pi/4);sin(pi/4) cos(pi/4)];

G2=R*G1;

plot(G2(1,:),G2(2,:),'g')

G3=G2-T*ones(1,5);

plot(G3(1,:),G3(2,:),'k')

axis([-12 12 -12 12])

axis square

Although the above formulation of the problem is absolutely correct, the
number of terms in the final expression for the image can wind up, in more
involved problems, being large and cumbersome because of the existence of
sums and products in the intermediate steps. Thus, the question becomes:
can we incorporate all the transformations discussed thus far into only mul-
tiplicative matrices?

The answer comes from an old trick that mapmakers have used success-
fully; namely, the technique of homogeneous coordinates. In this technique,
as applied to the present case, we append to any column vector the row with
value 1, that is, the point (xm, ym) is now represented by the column vector:

(9.18)

G R( / ) G2 1= ∗π 4

G G T ones3 2= − +* ( , )1 1n
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Similarly in the definition of G, we should append to the old definition, a row
with all elements being 1.

In this coordinate representation, the different transformations thus far dis-
cussed are now multiplicative and take the following forms:

(9.19)

(9.20)

(9.21)

(9.22)

(9.23)

(9.24)

The composite matrix of any two transformations can now be written as
the product of the matrices representing the constituent transformations. Of
course, this economizes on the writing of expressions and makes the calcu-
lations less prone to trivial errors originating in the expansion of products
of sums.

Example 9.3
Repeat Example 9.2, but now use the homogeneous coordinates.

Solution: The following script M-file implements the required task:
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plot(-5,5,'*')

hold on

G=[2 6 5 3 2; 1 1 3 3 1;1 1 1 1 1];

plot(G(1,:),G(2,:),'b')

T=[1 0 5;0 1 -5;0 0 1];

G1=T*G;

plot(G1(1,:),G1(2,:), 'r')

R=[cos(pi/4) -sin(pi/4) 0;sin(pi/4) cos(pi/4) 0;...
0 0 1];

G2=R*G1;

plot(G2(1,:),G2(2,:),'g')

G3=inv(T)*G2;

plot(G3(1,:),G3(2,:),'k')

axis([-12 12 -12 12])

axis square

hold off

9.3 Manipulation of 2-D Images

Currently more and more images are being stored or transmitted in digital
form. What does this mean?

To simplify the discussion, consider a black and white image and assume
that it has a square boundary. The digital image is constructed by the optics
of the detecting system (i.e., the camera) to form on a plane containing a 2-D
array of detectors, instead of the traditional photographic film. Each of these
detectors, called a pixel (picture element), measures the intensity of light fall-
ing on it. The image is then represented by a matrix having the same size as
the detectors’ 2-D array structure, and such that the value of each of the
matrix elements is proportional to the intensity of the light falling on the
associated detector element. Of course, the resolution of the picture increases
as the number of arrays increases.

9.3.1 Geometrical Manipulation of Images

Having the image represented by a matrix, it is now possible to perform all
kinds of manipulations on it in MATLAB. For example, we could flip it in
the left/right directions (fliplr), or in the up/down direction (flipud),
or rotate it by 90° (rot90), or for that matter transform it by any matrix
transformation. In the remainder of this section, we explore some of the
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techniques commonly employed in the handling and manipulation of digi-
tal images.

Let us explore and observe the structure of a matrix subjected to the above
elementary trasformations. For this purpose, execute and observe the out-
puts from each of the following commands:

M=(1/25)*[1 2 3 4 5;6 7 8 9 10;11 12 13 14 15;16
17 18 19 20;21 22 23 24 25]

lrM=fliplr(M)

udM=flipud(M)

Mr90=rot90(M)

A careful examination of the resulting matrix elements will indicate the gen-
eral features of each of these transformations. You can also see in a visually
more suggestive form how each of the transformations changed the image of
the original matrix, if we render the image of M and its transform in false col-
ors, that is, we assign a color to each number.

To perform this task, choose the colormap(hot) command to obtain the
images. In this mapping, the program assigns a color to each pixel, varying
from black-red-yellow-white, depending on the magnitude of the intensity at
the corresponding detector.

Enter, in the following sequence, each of the following commands and at
each step note the color distributions of the image:

colormap(hot)

imagesc(M,[0 1])

imagesc(lrM,[0 1])

imagesc(udM,[0 1])

imagesc(Mr90,[0 1])

The command imagesc produces an intensity image of a data matrix that
spans a given range of values.

9.3.2 Digital Image Processing

A typical problem in digital image processing involves the analysis of the
raw data of an image that was subject, during acquisition, to a blur due to the
movement of the camera or to other sources of noise. An example of this sit-
uation occurs in the analysis of aerial images; the images are blurred due,
inter alia, to the motion of the plane while the camera shutter is open. The
question is, can we do anything to obtain a crisper image from the raw data
if we know the speed and altitude of the plane when it took the photograph?

The answer is affirmative. We consider for our example the photograph of
a rectangular board. Construct this image by entering:
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N=64;

A=zeros(N,N);

A(15:35,15:45)=1;

colormap(gray);

imagesc(A,[0 1])

where (N N) is the size of the image (here, N = 64).
Now assume that the camera that took the image had moved while the

shutter was open by a distance that would correspond in the image plane to
L pixels. What will the image look like now? (See Figure 9.1.)

The blurring operation was modeled here by the matrix B. The blurred
image is simulated through the matrix product:

A1 = A * B (9.25)

where B, the blurring matrix, is given by the following Toeplitz matrix:

L=9;

B=toeplitz([ones(L,1);zeros(N-L,1)],[1;zeros(N-
1,1)])/L;

FIGURE 9.1
The raw and processed images of a rectangular board photographed from a moving plane.
Top panel: Raw (blurred) image. Bottom panel: Processed image.
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Here, the blur length was L = 9, and the blurred image A1 was obtained by
executing the following commands:

A1=A*B;

imagesc(A1,[0 1])

To bring back the unblurred picture, simply multiply the matrix A1 on the
right by inv(B) and obtain the original image.

In practice, one is given the blurred image and asked to reconstruct it while
correcting for the blur. What to do?

1. Compute the blur length from the plane speed and height.
2. Construct the Toeplitz matrix, and take its inverse.
3. Apply the inverse of the Toeplitz matrix to the blurred image

matrix, obtaining the processed image.

9.3.3 Encrypting an Image

If for any reason, two individuals desire to exchange an image but want to
keep its contents only to themselves, they may agree beforehand on a scram-
bling matrix that the first individual applies to scramble the sent image, while
the second individual applies the inverse of the scramble matrix to unscram-
ble the received image.

Given that an average quality image currently has a minimum size of about
(1000×1000) pixels, reconstructing the scrambling matrix, if chosen cleverly,
would be inaccessible except to the most powerful and specialized computers.

The purpose of the following problems is to illustrate an efficient method
for building a scrambling matrix.

In-Class Exercises

Assume for simplicity that the 2-D array size is (10×10), and that the scram-
bling matrix is chosen such that each row has one element equal to 1, while
the others are 0, and no two rows are equal.

Pb. 9.15 For the (10×10) matrix dimension, how many possible scrambling
matrices S, constructed as per the above prescription, are there? If the matrix
size is (1000×1000), how many such scrambling matrices will there be?

Pb. 9.16 An original figure was scrambled by the scrambling matrix S to
obtain the image shown in Figure 9.2. The matrix S is (10×10) and has all its
elements equal to zero, except S(1, 6) = S(2, 3) = S(3, 2) = S(4, 1) = S(5, 9) =
S(6, 4) = S(7, 10) = S(8, 7) = S(9, 8) = S(10, 5) = 1. Find the original image.
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9.4 Lorentz Transformation*

9.4.1 Space-Time Coordinates

Einstein’s theory of special relativity studies the relationship of the dynamics
of a system, if described in two coordinate systems moving with constant
speed one from the other. The theory of special relativity does not assume, as
classical mechanics does, that there exists an absolute time common to all
coordinate systems. It associates with each coordinate system a four-dimen-
sional space (three space coordinates and one time coordinate). The theory of
special relativity associates a space-time transformation to go between two
coordinate systems moving uniformily with respect to each other. Each real
point event (e.g., the arrival of a light flash on a screen) will be measured in
both systems. If we distinguish by primes the data of the second observer
from those of the first, then the first observer will ascribe to the event the
coordinates (x, y, z, t), while the second observer will ascribe to it the coordi-
nates (x′, y′, z′, t′); that is, there is no absolute time. The Lorentz transforma-
tion gives the rules for going from one coordinate system to the other.

Assuming that the velocity v between the two systems has the same direc-
tion as the positive x-axis and where the x-axis direction continuously coin-

FIGURE 9.2
Scrambled image of Pb. 9.16.
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cides with that of the x′-axis; and furthermore, that the origin of the spatial
coordinates of one system at time t = 0 coincides with the origin of the other
system at time t′ = 0, Einstein, on the basis of two postulates, derived the fol-
lowing transformation relating the coordinates of the two systems:

(9.26)

where c is the velocity of light in vacuum. The derivation of these formulae
are detailed for you in electromagnetic theory or modern physics courses and
are not the subject of discussions here. Our purpose here is to show that
knowing the above transformations, we can deduce many interesting physi-
cal observations as a result thereof.

Preparatory Exercise

Pb. 9.17 Show that, upon a Lorentz transformation, we have the equality:

This is referred to as the Lorentz invariance of the norm of the space-time
four-vectors. What is the equivalent invariant in 3-D Euclidean geometry?

If we rename our coordinates such that:

(9.27)

the Lorentz transformation takes the following matricial form:

(9.28)

where  and the relations that were given earlier relating the primed

and unprimed coordinates can be summarized by:
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(9.29)

In-Class Exercises

Pb. 9.18 Write the above transformation for the case that the two coordinate
systems are moving from each other at half the speed of light, and find (x′, y′,
z′, t′) if

x = 2, y = 3, z = 4, ct = 3

Pb. 9.19 Find the determinant of Lβ.

Pb. 9.20 Find the multiplicative inverse of Lβ, and compare it to the transpose.

Pb. 9.21 Find the approximate expression of Lβ for β << 1. Give a physical
interpretation to your result using Newtonian mechanics.

9.4.2 Addition Theorem for Velocities

The physical problem of interest here is: assuming that a point mass is mov-
ing in the primed system in the x′-y′ plane with uniform speed u′ and its tra-
jectory is making an angle θ′ with the x′-axis, what is the speed of this
particle, as viewed in the unprimed system, and what is the angle that its tra-
jectory makes with the x-axis, as observed in the unprimed system?

In the unprimed and primed systems, respectively, the parametric equa-
tions for the point particle motion are given by:

(9.30)

(9.31)

where u and u′ are the speeds of the particle in the unprimed and primed sys-
tems, respectively. Note that if the prime system moves with velocity v with
respect to the unprimed system, then the unprimed system moves with a
velocity –v with respect to the primed system, and using the Lorentz trans-
formation, we can write the following equalities:
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(9.32)

(9.33)

(9.34)

Dividing Eqs. (9.32) and (9.33) by Eq. (9.34), we obtain:

(9.35)

(9.36)

From this we can deduce the magnitude and direction of the velocity of the
particle, as measured in the unprimed system:

(9.37)

(9.38)

Preparatory Exercises

Pb. 9.22 Find the velocity of a photon (the quantum of light) in the
unprimed system if its velocity in the primed system is u′ = c.

(Note the constancy of the velocity of light, if measured from either the
primed or the unprimed system. As previously mentioned, this constituted
one of only two postulates in Einstein’s formulation of the theory of special
relativity, which determined uniquely the form of the dynamical boost trans-
formation.)

Pb. 9.23 Show that if u′ is parallel to the x′-axis, then the velocity addition
formula takes the following simple form:
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Pb. 9.24 Find the approximate form of the above expression for u when
β << 1, and show that it reduces to the expression of velocity addition in
Newtonian mechanics.

In-Class Exercises

Pb. 9.25 Find the angle θ, if 

Pb. 9.26 Plot the angle θ as a function of θ′ when v/c = 0.99 and u′/c = 1.

Pb. 9.27 Let the variable φ be defined such that tanh(φ) = β. Write the
Lorentz transformation matrix as function of φ. Can you give the Lorentz
transformation a geometric interpretation in non-Euclidean geometry?

Pb. 9.28 Using the result of Pb. 9.27, write the resultant transformation from
a boost with parameter φ1, followed by another boost with parameter φ2. Does
this rule for composition of Lorentz transformations remind you of a similar
transformation that you studied previously in this chapter?

9.5 MATLAB Commands Review

colormap Control the color mix of an image.
fliplr Flip a matrix left to right.
flipud Flip a matrix in the up-to-down direction.
imagesc Create a pixel intensity map from data stored in a matrix.
load Import data files from outside MATLAB.
rot90 Rotate a matrix by 90°.
toeplitz Specialized matrix constructor that describes, inter alia,

the operation of a blur in an image.

′ = ′ = =θ π
2 2

 and u v
c

.
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10
A Taste of Probability Theory*

10.1 Introduction

In addition to its everyday use in all aspects of our public, personal, and lei-
sure lives, probability plays an important role in electrical engineering prac-
tice in at least three important aspects. It is the mathematical tool to deal with
three broad areas:

1. The problems associated with the inherent uncertainty in the input of
certain systems. The random arrival time of certain inputs to a
system cannot be predetermined; for example, the log-on and the
log-off times of terminals and workstations connected to a com-
puter network, or the data packets’ arrival time to a computer
network node.

2. The problems associated with the distortion of a signal due to noise. The
effects of noise have to be dealt with satisfactorily at each stage of
a communication system from the generation, to the transmission,
to the detection phases. The source of this noise may be due to
either fluctuations inherent in the physics of the problem (e.g.,
quantum effects and thermal effects) or due to random distortions
due to externally generated uncontrollable parameters (e.g.,
weather, geography, etc.).

3. The problems associated with inherent human and computing machine
limitations while solving very complex systems. Individual treatment
of the dynamics of very large number of molecules in a material,
in which more than 1022 molecules may exist in a quart-size con-
tainer, is not possible at this time, and we have to rely on statistical
averages when describing the behavior of such systems. This is the
field of statistical physics and thermodynamics.

Furthermore, probability theory provides the necessary mathematical tools
for error analysis in all experimental sciences. It permits estimation of the
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error bars and the confidence level for any experimentally obtained result,
through a methodical analysis and reduction of the raw data.

In future courses in probability, random variables, stochastic processes
(which is random variables theory with time as a parameter), information
theory, and statistical physics, you will study techniques and solutions to the
different types of problems from the above list. In this very brief introduction
to the subject, we introduce only the very fundamental ideas and results —
where more advanced courses seem to almost always start.

10.2 Basics

Probability theory is best developed mathematically based on a set of axioms
from which a well-defined deductive theory can be constructed. This is
referred to as the axiomatic approach. We concentrate, in this section, on
developing the basics of probability theory, using a physical description of
the underlying concepts of probability and related simple examples, to lead
us intuitively to what is usually the starting point of the set theoretic axiom-
atic approach.

Assume that we conduct n independent trials under identical conditions,
in each of which, depending on chance, a particular event A of particular
interest either occurs or does not occur. Let  n(A) be the number of experi-
ments in which A occurs. Then, the ratio n(A)/n, called the relative frequency
of the event A to occur in a series of experiments, clusters for n → ∞ about
some constant. This constant is called the probability of the event A, and is
denoted by:

(10.1)

From this definition, we know specifically what is meant by the statement
that the probability for obtaining a head in the flip of a fair coin is 1/2.

Let us consider the rolling of a single die as our prototype experiment :

1. The possible outcomes of this experiment are elements belonging
to the set:

(10.2)

If the die is fair, the probability for each of the elementary elements
of this set to occur in the roll of a die is equal to:

(10.3)

P A
n A

nn
( ) lim

( )=
→∞

S = { }1 2 3 4 5 6, , , , ,

P P P P P P( ) ( ) ( ) ( ) ( ) ( )1 2 3 4 5 6
1
6

= = = = = =
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2. The observer may be interested not only in the elementary elements
occurrence, but in finding the probability of a certain event which
may consist of a set of elementary outcomes; for example:
a. An event may consist of “obtaining an even number of spots on

the upward face of a randomly rolled die.” This event then
consists of all successful trials having as experimental outcomes
any member of the set:

(10.4)

b. Another event may consist of “obtaining three or more spots”
(hence, we will use this form of abbreviated statement, and not
keep repeating: on the upward face of a randomly rolled die).
Then, this event consists of all successful trials having experi-
mental outcomes any member of the set:

(10.5)

Note that, in general, events may have overlapping elementary
elements.

For a fair die, using the definition of the probability as the limit of a relative
frequency, it is possible to conclude, based on experimental trials, that:

(10.6)

while

(10.7)

and

(10.8)

The last equation [Eq. (10.8)] is the mathematical expression for the statement
that the probability of the event that includes all possible elementary out-
comes is 1 (i.e., certainty).

It should be noted that if we define the events O and C to mean the events
of “obtaining an odd number” and “obtaining a number smaller than 3,”
respectively, we can obtain these events’ probabilities by enumerating the
elements of the subsets of S that represent these events; namely:

(10.9)

E = { , , }2 4 6

B = { , , , }3 4 5 6

P E P P P( ) ( ) ( ) ( )= + + =2 4 6
1
2

P B P P P P( ) ( ) ( ) ( ) ( )= + + + =3 4 5 6
2
3

P S( ) = 1

P O P P P( ) ( ) ( ) ( )= + + =1 3 5
1
2
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(10.10)

However, we also could have obtained these same results by noting that the
events E and O (B and C) are disjoint and that their union spanned the set S.
Therefore, the probabilities for events O and C could have been deduced, as
well, through the relations:

P(O) = 1 – P(E) (10.11)

P(C) = 1 – P(B) (10.12)

From the above and similar observations, it would be a satisfactory repre-
sentation of the physical world if the above results were codified and ele-
vated to the status of axioms for a formal theory of probability. However, the
question becomes how many of these basic results (the axioms) one really
needs to assume, such that it will be possible to derive all other results of the
theory from this seed. This is the starting point for the formal approach to the
probability theory.

The following axioms were proven to be a satisfactory starting point.
Assign to each event A, consisting of elementary occurrences from the set S,
a number P(A), which is designated as the probability of the event A, and
such that:

1. 0 

 

≤ P(A) (10.13)

2. P(S) = 1 (10.14)

3. If: A

 

∩ B = 

 

∅, where 

 

∅ is the empty set (10.15)
Then: P(A

 

∪ B) = P(A) + P(B)

In the following examples, we illustrate some common techniques for find-
ing the probabilities for certain events. Look around, and you will find
plenty more.

Example 10.1
Find the probability for getting three sixes in a roll of three dice.

Solution: First, compute the number of elements in the total sample space.
We can describe each roll of the dice by a 3-tuplet (a, b, c), where a, b, and c
can take the values 1, 2, 3, 4, 5, 6. There are 63 = 216 possible 3-tuplets. The
event that we are seeking is realized only in the single elementary occurrence
when the 3-tuplet (6, 6, 6) is obtained; therefore, the probability for this event,
for fair dice, is

P C P P( ) ( ) ( )= + =1 2
1
3
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Example 10.2
Find the probability of getting only two sixes in a roll of three dice.

Solution: The event in this case consists of all elementary occurrences having
the following forms:

(a, 6, 6), (6, b, 6), (6, 6, c)

where a = 1, …, 5; b = 1, …, 5; and c = 1, …, 5. Therefore, the event  A consists
of elements corresponding to 15 elementary occurrences, and its probability is

Example 10.3
Find the probability that, if three individuals are asked to guess a number
from 1 to 10, their guesses will be different numbers.

Solution: There are 1000 distinct equiprobable 3-tuplets (a, b, c), where each
component of the 3-tuplet can have any value from 1 to 10. The event A
occurs when all components have unequal values. Therefore, while a can
have any of 10 possible values, b can have only 9, and c can have only 8.
Therefore, n(A) = 8 

 

× 9 

 

× 10, and the probability for the event A is

Example 10.4
An inspector checks a batch of 100 microprocessors, 5 of which are defective.
He examines ten items selected at random. If none of the ten items is defec-
tive, he accepts the batch. What is the probability that he will accept the batch?

Solution: The number of ways of selecting 10 items from a batch of 100 items is:

where  is the binomial coefficient and represents the number of combina-
tions of n objects taken k at a time without regard to order. It is equal to

 All these combinations are equally probable.

P A( ) = 1
216

P A( ) = 15
216

P A( ) .= × × =8 9 10
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If the event A is that where the batch is accepted by the inspector, then A
occurs when all ten items selected belong to the set of acceptable quality
units. The number of elements in A is

and the probability for the event A is

In-Class Exercises

Pb. 10.1 A cube whose faces are colored is split into 125 smaller cubes of
equal size.

a. Find the probability that a cube drawn at random from the batch
of randomly mixed smaller cubes will have three colored faces.

b. Find the probability that a cube drawn from this batch will have
two colored faces.

Pb. 10.2 An urn has three blue balls and six red balls. One ball was ran-
domly drawn from the urn and then a second ball, which was blue. What is
the probability that the first ball drawn was blue?

Pb. 10.3 Find the probability that the last two digits of the cube of a random
integer are 1. Solve the problem analytically, and then compare your result to
a numerical experiment that you will conduct and where you compute the
cubes of all numbers from 1 to 1000.

Pb. 10.4 From a lot of n resistors, p are defective. Find the probability that k
resistors out of a sample of m selected at random are found defective.

Pb. 10.5 Three cards are drawn from a deck of cards.
a. Find the probability that these cards are the Ace, the King, and the

Queen of Hearts.
b. Would the answer change if the statement of the problem was “an

Ace, a King, and a Queen”?

Pb. 10.6 Show that:

where  , the complement of A, are all events in S having no element in com-
mon with A.

N A C( )
!

! !
= =95

10 85 10
95

P A
C
C

( ) .= = × × × ×
× × × ×

=10
95

10
100

86 87 88 89 90
96 97 98 99 100

0 5837

P A P A( ) ( )= −1

A
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NOTE In solving certain category of probability problems, it is often conve-
nient to solve for P(A) by computing the probability of its complement and
then applying the above relation.

Pb. 10.7 Show that if A1, A2, …, An are mutually exclusive events, then:

(Hint: Use mathematical induction and Eq. (10.15).)

10.3 Addition Laws for Probabilities

We start by reminding the reader of the key results of elementary set theory:

• The Commutative law states that:

(10.16)

(10.17)

• The Distributive laws are written as:

(10.18)

(10.19)

• The Associative laws are written as:

(10.20)

(10.21)

• De Morgan’s laws are

(10.22)

(10.23)

P A A A P A P A P An n( ) ( ) ( ) ( )1 2 1 2∪ ∪…∪ = + + … +

A B B A∩ = ∩

A B B A∪ = ∪

A B C A B A C∩ ∪ = ∩ ∪ ∩( ) ( ) ( )

A B C A B A C∪ ∩ = ∪ ∩ ∪( ) ( ) ( )

( ) ( )A B C A B C A B C∪ ∪ = ∪ ∪ = ∪ ∪

( ) ( )A B C A B C A B C∩ ∩ = ∩ ∩ = ∩ ∩

( )A B A B∪ = ∩

( )A B A B∩ = ∪
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• The Duality principle states that: If in an identity, we replace unions
by intersections, intersections by unions, S by ∅, and ∅ by S, then
the identity is preserved.

THEOREM 1
If we define the difference of two events A1 – A2 to mean the events in which
A1 occurs but not A2, the following equalities are valid:

(10.24)

(10.25)

(10.26)

PROOF From the basic set theory algebra results, we can deduce the follow-
ing equalities:

(10.27)

(10.28)

(10.29)

Further note that the events (A1 – A2), (A2 – A1), and (A1 ∩ A2) are mutually
exclusive. Using the results from Pb. 10.7, Eqs. (10.27) and (10.28), and the
preceding comment, we can write:

(10.30)

(10.31)

which establish Eqs. (10.24) and (10.25). Next, consider Eq. (10.29); because of
the mutual exclusivity of each event represented by each of the parenthesis
on its LHS, we can use the results of Pb. 10.7, to write:

(10.32)

using Eqs. (10.30) and (10.31), this can be reduced to Eq. (10.26).

THEOREM 2
Given any n events A1, A2, …, An and defining P1, P2, P3, …, Pn to mean:

P A A P A P A A( ) ( ) ( )1 2 1 1 2− = − ∩

P A A P A P A A( ) ( ) ( )2 1 2 1 2− = − ∩

P A A P A P A P A A( ) ( ) ( ) ( )1 2 1 2 1 2∪ = + − ∩

A A A A A1 1 2 1 2= − ∪ ∩( ) ( )

A A A A A2 2 1 1 2= − ∪ ∩( ) ( )

A A A A A A A A1 2 1 2 2 1 1 2∪ = − ∪ − ∪ ∩( ) ( ) ( )

P A P A A P A A( ) ( ) ( )1 1 2 1 2= − + ∩

P A P A A P A A( ) ( ) ( )2 2 1 1 2= − + ∩

P A A P A A P A A P A A( ) ( ) ( ) ( )1 2 1 2 2 1 1 2∪ = − + − + ∩
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(10.33)

(10.34)

(10.35)

etc. …, then:

(10.36)

This theorem can be proven by mathematical induction (we do not give the
details of this proof here).

Example 10.5
Using the events E, O, B, C as defined in Section 10.1, use Eq. (10.36) to show
that: P(E ∪ O ∪ B ∪ C) = 1.

Solution: Using Eq. (10.36), we can write:

Example 10.6
Show that for any n events A1, A2, …, An , the following inequality holds:

Solution: We prove this result by mathematical induction:
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• For n = 2, the result holds because by Eq. (10.26) we have:

and since any probability is a non-negative number, this leads to
the inequality:

• Assume that the theorem is true for (n – 1) events, then we can write:

• Using associativity, Eq. (10.26), the result for (n – 1) events, and the
non-negativity of the probability, we can write:

which is the desired result.

In-Class Exercises

Pb. 10.8 Show that if the events A1, A2, …, An are such that:

then:

Pb. 10.9 Show that if the events A1, A2, …, An are such that:
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then:

Pb. 10.10 Find the probability that a positive integer randomly selected will
be non-divisible by:

a. 2 and 3.
b. 2 or 3.

Pb. 10.11 Show that the expression for Eq. (10.36) simplifies to:

when the probability for the intersection of any number of events is indepen-
dent of the indices.

Pb. 10.12 A filing stack has n drawers, and a secretary randomly files m-let-
ters in these drawers.

a. Assuming that m > n, find the probability that there will be at least
one letter in each drawer.

b. Plot this probability for n = 12, and 15 ≤ m ≤ 50.
(Hint: Take the event Aj to mean that no letter is filed in the jth drawer and

use the result of Pb. 10.11.)

10.4 Conditional Probability

The conditional probability of an event A assuming C and denoted by 
is, by definition, the ratio:

(10.37)

Example 10.7
Considering the events E, O, B, C as defined in Section 10.2 and the above def-
inition for conditional probability, find the probability that the number of
spots showing on the die is even, assuming that it is equal to or greater than 3.
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Solution: In the above notation, we are asked to find the quantity 
Using Eq. (10.37), this is equal to:

In this case,  When this happens, we say that the two events  E
and B are independent.

Example 10.8
Find the probability that the number of spots showing on the die is even,
assuming that it is larger than 3.

Solution: Call D the event of having the number of spots larger than 3. Using
Eq. (10.37),  is equal to:

In this case,  and thus the two events E and D are not
independent.

Example 10.9
Find the probability of picking a blue ball first, then a red ball from an urn
that contains five red balls and four blue balls.

Solution: From the definition of conditional probability [Eq. (10.37)], we can
write:

The probability of picking a blue ball first is

The conditional probability is given by:

P E B( ).
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giving:

10.4.1 Total Probability and Bayes Theorems

TOTAL PROBABILITY THEOREM
If  [A1, A2, …, An] is a partition of the total elementary occurrences set S, that is,

and B is an arbitrary event, then:

(10.38)

PROOF From the algebra of sets, and the definition of a partition, we can
write the following equalities:

(10.39)

Since the events  and  are mutually exclusive for i ≠ j,
then using the results of Pb. 10.7, we can deduce that:

(10.40)

Now, using the conditional probability definition [Eq. (10.38)], Eq. (10.40) can
be written as:

(10.41)

This result is known as the Total Probability theorem.
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BAYES THEOREM

(10.42)

PROOF From the definition of the conditional probability [Eq. (10.37)], we
can write:

(10.43)

Again, using Eqs. (10.37) and (10.43), we have:

(10.44)

Now, substituting Eq. (10.41) in the denominator of Eq. (10.44), we obtain Eq.
(10.42).

Example 10.10
A digital communication channel transmits the signal as a collection of ones
(1s) and zeros (0s). Assume (statistically) that 40% of the 1s and 33% of the 0s
are changed upon transmission. Suppose that, in a message, the ratio
between the transmitted 1 and the transmitted 0 was 5/3. What is the proba-
bility that the received signal is the same as the transmitted signal if:

a. The received signal was a 1?
b. The received signal was a 0?

Solution: Let O be the event that 1 was received, and Z be the event that 0 was
received. If H1 is the hypothesis that 1 was received and H0 is the hypothesis
that 0 was received, then from the statement of the problem, we know that:

giving:

Furthermore, from the text of the problem, we know that:
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From the total probability result [Eq. (10.41)], we obtain:

and

The probability that the received signal is 1 if the transmitted signal was 1
from Bayes theorem:

Similarly, we can obtain the probability that the received signal is 0 if the
transmitted signal is 0:

In-Class Exercises

Pb. 10.13 Show that when two events A and B are independent, the addi-
tion law for probability becomes:
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Pb. 10.14 Consider four boxes, each containing 1000 resistors. Box 1 con-
tains 100 defective items; Box 2 contains 400 defective items; Box 3 contains
50 defective items; and Box 4 contains 80 defective items.

a. What is the probability that a resistor chosen at random from any
of the boxes is defective?

b. What is the probability that if the resistor is found defective, it
came from Box 2?

(Hint: The randomness in the selection of the box means that: P(B1) = P(B2)
= P(B3) = P(B4) = 0.25.)

10.5 Repeated Trials

Bernoulli trials refer to identical, successive, and independent trials, in which
an elementary event A can occur with probability:

p = P(A) (10.45)

or fail to occur with probability:

q = 1 – p (10.46)

In the case of n consecutive Bernoulli trials, each elementary event can be
described by a sequence of 0s and 1s, such as in the following:

(10.47)

where n is the number of trials, k is the number of successes, and (n – k) is the
number of failures. Because the trials are independent, the probability for the
above single occurrence is:

(10.48)

The total probability for the event with k successes in n trials is going to be
the probability of the single event multiplied by the number of configurations
with a given number of digits and a given number of 1s. The number of such
configurations is given by the binomial coefficient  Therefore:

ω = …
−

1 0 0 0 1 0 1
n digits k ones

1 244 344

P p qk n k( )ω = −

Ck
n .
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(10.49)

Example 10.11
Find the probability that the number 3 will appear twice in five independent
rolls of a die.

Solution: In a single trial, the probability of success (i.e., 3 showing up) is

Therefore, the probability that it appears twice in five independent rolls will be

Example 10.12
Find the probability that in a roll of two dice, three occurrences of snake-eyes
(one spot on each die) are obtained in ten rolls of the two dice.

Solution: The space S of the roll of two dice consists of 36 elementary elements
(6 × 6), only one of which results in a snake-eyes configuration; therefore:

p = 1/36; k = 3; n = 10

and

In-Class Exercises

Pb. 10.15 Assuming that a batch of manufactured components has an 80%
chance of passing an inspection, what is the chance that at least 16 batches in
a lot of 20 would pass the inspection?

Pb. 10.16 In an experiment, we keep rolling a fair die until it comes up
showing three spots. What are the probabilities that this will take:

a. Exactly four rolls?
b. At least four rolls?
c. At most four rolls?
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Pb. 10.17 Let X be the number of successes in a Bernoulli trials experiment
with n trials and the probability of success p in each trial. If the mean number
of successes m, also called average value  and expectation value E(X), is
defined as:

and the variance is defined as:

show that:

10.5.1 Generalization of Bernoulli Trials

In the above Bernoulli trials, we considered the case of whether or not a single
event A was successful (i.e., two choices). This was the simplest partition of
the set S.

In cases where we partition the set S in r subsets: S = {A1, A2, …, Ar}, and
the probabilities for these single events are, respectively: {p1, p2, …, pr}, where
p1 + p2 + … + pr = 1, it can be easily proven that the probability in n indepen-
dent trials for the event A1 to occur k1 times, the event A2 to occur k1 times,
etc., is given by:

(10.50)

where k1 + k2 + … + kr = n

Example 10.13
Consider the sum of the spots in a roll of two dice. We partition the set of out-
comes {2, 3, …, 11, 12} into the three events A1 = {2, 3, 4, 5}, A2 = {6, 7}, A3 = {8,
9, 10, 11, 12}. Find P(1, 7, 2; 10).

Solution: The probabilities for each of the events are, respectively:
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and

10.6 The Poisson and the Normal Distributions

In this section, we obtain approximate expressions for the binomial distribu-
tion in different limits. We start by considering the expression for the proba-
bility of k successes in n Bernoulli trials with two choices for outputs; that is,
Eq. (10.49).

10.6.1 The Poisson Distribution

Consider the limit when p << 1, but np ≡ a ≈ O(1). Then:

(10.51)

But in the limit n → ∞,

(10.52)

giving:

(10.53)

Now consider P(k = 1); it is equal to:

(10.54)

For P(k = 2), we obtain:

(10.55)
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Similarly,

(10.56)

We compare in Figure 10.1 the exact with the approximate expression for
the probability distribution, in the region of validity of the Poisson approx-
imation.

Example 10.14
A massive parallel computer system contains 1000 processors. Each proces-
sor fails independently of all others and the probability of its failure is 0.002
over a year. Find the probability that the system has no failures during one
year of operation.

Solution: This is a problem of Bernoulli trials with n = 1000 and p = 0.002:

or, using the Poisson approximate formula, with a = np = 2:

FIGURE 10.1
The Poisson distribution.
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Example 10.15
Due to the random vibrations affecting its supporting platform, a recording
head introduces glitches on the recording medium at the rate of n = 100
glitches per minute. What is the probability that k = 3 glitches are introduced
in the recording over any interval of time ∆t = 1s?

Solution: If we choose an interval of time equal to 1 minute, the probability
for an elementary event to occur in the subinterval ∆t in this 1 minute inter-
val is

The problem reduces to finding the probability of k = 3 in n = 100 trials.
The Poisson formula gives this probability as:

where a = 100/60. (For comparison purposes, the exact value for this proba-
bility, obtained using the binomial distribution expression, is 0.1466.)

Homework Problem

Pb. 10.18 Let A1, A2, …, Am+1 be a partition of the set S, and let p1, p2, …, pm+1

be the probabilities associated with each of these events. Assuming that n
Bernoulli trials are repeated, show, using Eq. (10.50), that the probability that
the event A1 occurs k1 times, the event A2 occurs k2 times, etc., is given in the
limit n → ∞ by:

where ai = npi .

10.6.2 The Normal Distribution

Prior to considering the derivation of the normal distribution, let us recall
Sterling’s formula, which is the approximation of n! when n → ∞:

(10.57)
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We seek the approximate form of the binomial distribution in the limit of very
large n and npq >> 1. Using Eq. (10.57), the expression for the probability
given in Eq. (10.49), reduces to:

(10.58)

Now examine this expression in the neighborhood of the mean (see
Pb. 10.17). We define the distance from this mean, normalized to the square
root of the variance, as:

(10.59)

Using the leading two terms of the power expansion of (ln(1 + ε) = ε – ε2/2 +
…), the natural logarithm of the two parentheses on the RHS of Eq. (10.58)
can be approximated by:

(10.60)

(10.61)

Adding Eqs. (10.61) and (10.62), we deduce that:

(10.62)

Furthermore, we can approximate the square root term on the RHS of Eq.
(10.58) by its value at the mean; that is

(10.63)

Combining Eqs. (10.62) and (10.63), we can approximate Eq. (10.58), in this
limit, by the Gaussian distribution:
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(10.64)

This result is known as the De Moivre-Laplace theorem. We compare in Fig-
ure 10.2 the binomial distribution and its Gaussian approximation in the
region of the validity of the approximation.

Example 10.16
A fair die is rolled 400 times. Find the probability that an even number of
spots show up 200 times, 210 times, 220 times, and 230 times.

Solution: In this case, n = 400; p = 0.5; np = 200; and 

Using Eq. (10.65), we get: 

Homework Problems

Pb. 10.19 Using the results of Pb. 4.34, relate in the region of validity of the
Gaussian approximation the quantity:

FIGURE 10.2
The normal (Gaussian) distribution.

P k n
npq

k np
npq

( exp
( )

successes in trials) = −
−









1
2 2

2

π

0 10 20 30 40 50 60 70 80 90 100
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

k

P
 (

 k
 )

Gaussian  Distribution :  n = 100 ;  p = 0.5

Stems  :  Exact  Distribution

Asterisks : Gaussian  Approximation

npq = 10.

P P

P P

( . ; ( .

( . ; ( .

200 0 03989 210 0 02419

220 0 00540 230 4 43 10 4

even) even)

even) even)

= =

= = ×






−



© 2001 by CRC Press LLC

to the Gaussian integral, specifying each of the parameters appearing in your
expression. (Hint: First show that in this limit, the summation can be approx-
imated by an integration.)

Pb. 10.20 Let A1, A2, …, Ar be a partition of the set S, and let p1, p2, …, pr be
the probabilities associated with each of these events. Assuming n Bernoulli
trials are repeated, show that, in the limit n → ∞ and where ki are in the vicin-
ity of npi >> 1, the following approximation is valid:
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Supplement: Review of Elementary Functions

In this supplement, we review the basic features and characteristics of the
simple elementary functions.

S.1 Affine Functions

By an affine function, we mean an expression of the form

y(x) = ax + b (S.1)

In the special case where b = 0, we say that y is a linear function of x.
We can interpret the parameters in the above function as representing the

slope-intercept form of a straight line. Here, a is the slope, which is a measure
of the steepness of a line; and b is the y-intercept (i.e., the line intersects the
y-axis at the point (0, b)).

The following cases illustrate the different possibilities:

1. a = 0: this specifies a horizontal line at a height b above the x-axis
and that has zero slope.

2. a > 0: the height of a point on the line (i.e., the y-value) increases
as the value of x increases.

3. a < 0: the height of the line decreases as the value of x increases.
4. b > 0: the line y-intercept is positive.
5. b < 0: the line y-intercept is negative.
6. x = k: this function represents a vertical line passing through the

point (k, 0).

It should be noted that:

• If two lines have the same slope, they are parallel.
• Two nonvertical lines are perpendicular if and only if their slopes

are negative reciprocals of each other. (It is easy to deduce this
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property if you remember the relationship that you learned in
trigonometry relating the sine and cosine of two angles that differ
by

 

π/2.) See Section S.4 for more details.

S.2 Quadratic Functions

Parabola

A quadratic parabolic function is an expression of the form:

y(x) = ax2 + bx + c where a

 

≠ 0 (S.2)

Any x for which ax2 + bx + c = 0 is called a root or a zero of the quadratic func-
tion. The graphs of quadratic functions are called parabolas.

If we plot these parabolas, we note the following characteristics:

1. For a > 0, the parabola opens up (convex curve) as shown in
Figure S.2.

2. For a < 0, the parabola opens down (concave curve) as shown in
Figure S.2.

FIGURE S.1
Graph of the line y = ax + b (a = 2, b = 5).
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3. The parabola does not always intersect the x-axis; but where it
does, this point’s abscissa is a real root of the quadratic equation.

A parabola can cross the x-axis in either 0 or 2 points, or the x-axis can be
tangent to it at one point. If the vertex of the parabola is above the x-axis and
the parabola opens up, there is no intersection, and hence, no real roots. If, on
the other hand, the parabola opens down, the curve will intersect at two val-
ues of x equidistant from the vertex position. If the vertex is below the x-axis,
we reverse the convexity conditions for the existence of two real roots. We
recall that the roots of a quadratic equation are given by:

(S.3)

When b2 – 4ac < 0, the parabola does not intersect the x-axis. There are no
real roots; the roots are said to be complex conjugates. When b2 – 4ac = 0, the
x-axis is tangent to the parabola and we have one double root.

Geometrical Description of a Parabola

The parabola can also be described through the following geometric con-
struction: a parabola is the locus of all points P in a plane that are equidistant
from a fixed line (called the directrix) and a fixed point (called the focus) not
situated on the line.

FIGURE S.2
Graph of a quadratic parabolic (second-order polynomial) function with 0 or 2 roots.
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d1 = d2 (S.4)

The algebraic expression for the parabola, using the above geometric
parameters, can be obtained by specifically writing and equating the expres-
sions for the distances of a point on the parabola from the focus and from the
directrix:

(S.5)

Squaring both sides of this equation, this equality reduces to:

(S.6)

or in standard form, it can be written:

(S.7)

FIGURE S.3
Graph of a parabola defined through geometric parameters. (Parameter values: h = 2, k =
2, p = 1.)
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Ellipse

The standard form of the equation describing an ellipse is given by:

(S.8)

The ellipse’s center is located at (h, k), and assuming a > b, the major axis
length is equal to 2a, the minor axis length is equal to 2b, the foci are located
at (h – c, k) and (h + c, k), and those of the vertices at (h – a, k) and (h + a, k);
where

c2 = a2 – b2 (S.9)

Geometric Definition of an Ellipse

An ellipse is the locus of all points P such that the sum of the distance
between P and two distinct points (called the foci) is constant and greater
than the distance between the two foci.

d1 + d2 = 2a (S.10)

The center of the ellipse is the midpoint between foci, and the two points of
intersection of the line through the foci and the ellipse are called the vertices.

The eccentricity of an ellipse is the ratio of the distance between the center
and a focus over the distance between the center and a vertex; that is

 

ε = c/a (S.11)

FIGURE S.4
Graph of an ellipse defined through geometric parameters. (Parameter values: h = 2, k = 2,
a = 3, b = 2.)
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Hyperbola

The standard form of the equation describing a hyperbola is given by:

(S.12)

The center of the hyperbola is located at (h, k), and assuming a > b, the major
axis length is equal to 2a, the minor axis length is equal to 2b, the foci are
located at (h – c, k) and (h + c, k), and those of the vertices at (h – a, k) and (h +
a, k). In this case, c > a > 0 and c > b > 0 and

(S.13)

Geometric Definition of a Hyperbola

A hyperbola is the locus of all points P in a plane such that the absolute value
of the difference of the distances between P and the two foci is constant and
is less than the distance between the two foci; that is

(S.14)

FIGURE S.5
Graph of a hyperbola defined through geometric parameters. (Parameter values: h = 2, k =
2, a = 1, b = 3.)
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The center of the hyperbola is the midpoint between foci, and the two points
of intersection of the line through the foci and the hyperbola are called the
vertices.

S.3 Polynomial Functions

A polynomial function is an expression of the form:

(S.15)

where an ≠ 0 for an nth degree polynomial.
The Fundamental Theorem of Algebra states that, for the above polyno-

mial, there are exactly n complex roots; furthermore, if all the polynomial
coefficients are real, then the complex roots always come in pairs consisting
of a complex number and its complex conjugate.

S.4 Trigonometric Functions

The trigonometric circle is defined as the circle with center at the origin of the
coordinates axes and having radius 1.

The trigonometric functions are defined as functions of the components of
a point P on the trigonometric circle. Specifically, if we define the angle θ as
the angle between the x-axis and the line OP, then:

• cos(θ) is is the x-component of the point P.
• sin(θ) is the y-component of the point P.

Using the Pythagorean theorem in the right angle triangle OQP, one
deduces that:

(S.16)

Using the above definitions for the sine and cosine functions and elementary
geometry, it is easy to note the following properties for the trigonometric
functions:

(S.17)

(S.18)

p x a x a x a x an
n

n
n( ) = + + … + +−

−
1

1
1 0

sin ( ) cos ( )2 2 1θ θ+ =

sin( ) sin( ) cos( ) cos( )− = − − =θ θ θ θand

sin( ) sin( ) cos( ) cos( )θ π θ θ π θ+ = − + = −and



© 2001 by CRC Press LLC

(S.19)

(S.20)

The tangent and cotangent functions are defined as:

(S.21)

Other important trigonometric relations relate the angles and sides of a tri-
angle. These are the so-called Law of Cosines and Law of Sines in a triangle:

(S.22)

(S.23)

where the sides of the triangle are a, b, c, and the angles opposite, respectively,
of each of these sides are denoted by α, β, γ.

FIGURE S.6
The trigonometric circle.
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S.5 Inverse Trigonometric Functions

The inverse of a function y = f(x) is a function, denoted by x = f –1(y), having
the property that y = f(f –1(y)). It is important to note that a function f(x) that
is single-valued (i.e., to each element x in its domain, there corresponds one,
and only one, element y in its range) may have an inverse that is multi-valued
(i.e., many x values may correspond to the same y). Typical examples of
multi-valued inverse functions are the inverse trigonometric functions. In
such instances, a single-valued inverse function can be defined if the range of
the inverse function is defined on a more limited region of space. For exam-
ple, the cos–1 function (called arc cosine) is single-valued if 0 ≤ x ≤ π.

Note that the above notation for the inverse of a function should not be con-
fused with the negative-one power of the function f(x), which should be writ-
ten as:

(f(x))–1 or 1/f(x)

Also note that because the inverse function reverses the role of the x- and
y-coordinates, the graphs of y = f(x) and y = f–1(x) are symmetric with respect
to the line y = x (i.e., the first bisector of the coordinate axes).

S.6 The Natural Logarithmic Function

The natural logarithmic function is defined by the following integral:

(S.24)

The following properties of the logarithm can be directly deduced from the
above definition:

(S.25)

(S.26)

(S.27)

(S.28)
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To illustrate the technique for deriving any of the above relations, let us
consider the first of them:

(S.29)

The first term on the RHS is ln(a), while the second term through the substi-
tution u = t/a reduces to the definition of ln(b).

Note that:

(S.30)

(S.31)

where e = 2.71828.

S.7 The Exponential Function

The exponential function is defined as the inverse function of the natural log-
arithmic function; that is

exp(ln(x)) = x for all x > 0 (S.32)

ln(exp(y)) = y for all y (S.33)

The following properties of the exponential function hold for all real numbers:

(S.34)

(S.35)

(S.36)

(S.37)

It should be pointed out that any of the above properties can be directly
obtained from the definition of the exponential function and the properties of

ln( )ab
t

dt
t

dt
t

dt
ab

a

aba

= = +∫ ∫∫1 1 1
1 1

ln( )1 0=

ln( )e = 1

exp( )exp( ) exp( )a b a b= +

(exp( )) exp( )a abb =

exp( )
exp( )

− =a
a

1

exp( )
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exp( )
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the logarithmic function. For example, the first of these relations can be
derived as follows:

(S.38)

Taking the exponential of both sides of this equation, we obtain:

(S.39)

which is the desired result.

Useful Features of the Exponential Function

If the exponential function is written in the form:

(S.40)

the following features are apparent:

1. If b > 0, then the function is convergent at (+ infinity) and goes to
zero there.

2. If b < 0, then the function blows up at (+ infinity).
3. If b = 0, then the function is everywhere equal to a constant y = 1.
4. The exponential functions are monotonically increasing for b < 0,

and monotonically decreasing for b > 0.
5. If b1 > b2 > 0, then everywhere on the positive x-axis, y1(x) < y2(x).
6. The exponential function has no roots.
7. For b > 0, the product of the exponential function with any poly-

nomial goes to zero at (+ infinity).

We plot in Figures S.7 and S.8 examples of the exponential function for dif-
ferent values of the parameters. The first six properties above are clearly
exhibited in these figures.

S.8 The Hyperbolic Functions

The hyperbolic cosine function is defined by:

(S.41)

ln(exp( )exp( )) ln(exp( )) ln(exp( ))a b a b a b= + = +

exp(ln(exp( )exp( ))) exp( )exp( ) exp( )a b a b a b= = +

y x bx( ) exp( )= −

cosh( )
exp( ) exp( )

x
x x

=
+ −
2
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FIGURE S.7
The graph of the function y = exp(–bx), for different positive values of b.

FIGURE S.8
The graph of the function y = exp(–bx), for different negative values of b.
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and the hyperbolic sine function is defined by:

(S.42)

Using the above definitions, it is straightforward to derive the following
relations:

(S.43)

(S.44)

S.9 The Inverse Hyperbolic Functions

(S.45)

Using the definition of the hyperbolic functions, we can write the inverse
hyperbolic functions in terms of logarithmic functions. For example, consid-
ering the inverse hyperbolic sine function from above, we obtain:

(S.46)

multiplying by ey everywhere, we obtain a second-degree equation in ey:

(S.47)

Solving this quadratic equation, and choosing the plus term in front of the
discriminant, since ey is everywhere positive, we obtain:

(S.48)

giving, for the inverse hyperbolic sine function, the expression:

(S.49)

In a similar manner, one can show the following other identities:

(S.50)

sinh( )
exp( ) exp( )

x
x x

=
− −
2

cosh ( ) sinh ( )2 2 1x x− =

1 2 2− =tan ( ) ( )x xsech

y x x y= =−sinh ( ) sinh( )1 if

e x ey y− − =−2 0

e xey y2 2 1 0− − =

e x xy = + +2 1

y x x x= = + +−sinh ( ) ln( )1 2 1

cosh ( ) ln( )− = + −1 2 1x x x



© 2001 by CRC Press LLC

(S.51)

(S.52)

tanh ( ) ln− = +
−







1 1
2

1
1

x
x
x

sech− = + −





1
21

2
1 1

( ) lnx
x

x



0-8493-????-?/00/$0.00+$.50
© 2000 by CRC Press LLC
© 2001 by CRC Press LLC

Appendix: Some Useful Formulae

Sum of Integers and Their Powers
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Arithmetic Series

Geometric Series

Arithmo-Geometric Series

Taylor’s Series
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Trigonometric Functional Relations

Relation of Trigonometric and Hyperbolic Functions
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Expansion of Elementary Functions in Power Series
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