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Preface

I am frequently asked questions such as ‘What are fractals?’, ‘What is fractal
dimension?’, ‘How can one find the dimension of a fractal and what does it
tell us anyway?’ or ‘How can mathematics be applied to fractals?’ This book
endeavours to answer some of these questions.

The main aim of the book is to provide a treatment of the mathematics asso-
ciated with fractals and dimensions at a level which is reasonably accessible to
those who encounter fractals in mathematics or science. Although basically a
mathematics book, it attempts to provide an intuitive as well as a mathematical
insight into the subject.

The book falls naturally into two parts. Part I is concerned with the general
theory of fractals and their geometry. Firstly, various notions of dimension and
methods for their calculation are introduced. Then geometrical properties of frac-
tals are investigated in much the same way as one might study the geometry of
classical figures such as circles or ellipses: locally a circle may be approximated
by a line segment, the projection or ‘shadow’ of a circle is generally an ellipse,
a circle typically intersects a straight line segment in two points (if at all), and
so on. There are fractal analogues of such properties, usually with dimension
playing a key rôle. Thus we consider, for example, the local form of fractals,
and projections and intersections of fractals.

Part II of the book contains examples of fractals, to which the theory of the
first part may be applied, drawn from a wide variety of areas of mathematics
and physics. Topics include self-similar and self-affine sets, graphs of functions,
examples from number theory and pure mathematics, dynamical systems, Julia
sets, random fractals and some physical applications.

There are many diagrams in the text and frequent illustrative examples. Com-
puter drawings of a variety of fractals are included, and it is hoped that enough
information is provided to enable readers with a knowledge of programming to
produce further drawings for themselves.

It is hoped that the book will be a useful reference for researchers, providing
an accessible development of the mathematics underlying fractals and showing
how it may be applied in particular cases. The book covers a wide variety of
mathematical ideas that may be related to fractals, and, particularly in Part II,
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x Preface

provides a flavour of what is available rather than exploring any one subject
in too much detail. The selection of topics is to some extent at the author’s
whim—there are certainly some important applications that are not included.
Some of the material dates back to early in the twentieth century whilst some is
very recent.

Notes and references are provided at the end of each chapter. The references
are by no means exhaustive, indeed complete references on the variety of topics
covered would fill a large volume. However, it is hoped that enough information
is included to enable those who wish to do so to pursue any topic further.

It would be possible to use the book as a basis for a course on the mathe-
matics of fractals, at postgraduate or, perhaps, final-year undergraduate level, and
exercises are included at the end of each chapter to facilitate this. Harder sections
and proofs are marked with an asterisk, and may be omitted without interrupting
the development.

An effort has been made to keep the mathematics to a level that can be under-
stood by a mathematics or physics graduate, and, for the most part, by a diligent
final-year undergraduate. In particular, measure theoretic ideas have been kept to
a minimum, and the reader is encouraged to think of measures as ‘mass distribu-
tions’ on sets. Provided that it is accepted that measures with certain (intuitively
almost obvious) properties exist, there is little need for technical measure theory
in our development.

Results are always stated precisely to avoid the confusion which would other-
wise result. Our approach is generally rigorous, but some of the harder or more
technical proofs are either just sketched or omitted altogether. (However, a few
harder proofs that are not available in that form elsewhere have been included, in
particular those on sets with large intersection and on random fractals.) Suitable
diagrams can be a help in understanding the proofs, many of which are of a
geometric nature. Some diagrams are included in the book; the reader may find
it helpful to draw others.

Chapter 1 begins with a rapid survey of some basic mathematical concepts
and notation, for example, from the theory of sets and functions, that are used
throughout the book. It also includes an introductory section on measure theory
and mass distributions which, it is hoped, will be found adequate. The section
on probability theory may be helpful for the chapters on random fractals and
Brownian motion.

With the wide variety of topics covered it is impossible to be entirely consistent
in use of notation and inevitably there sometimes has to be a compromise between
consistency within the book and standard usage.

In the last few years fractals have become enormously popular as an art form,
with the advent of computer graphics, and as a model of a wide variety of physical
phenomena. Whilst it is possible in some ways to appreciate fractals with little or
no knowledge of their mathematics, an understanding of the mathematics that can
be applied to such a diversity of objects certainly enhances one’s appreciation.
The phrase ‘the beauty of fractals’ is often heard—it is the author’s belief that
much of their beauty is to be found in their mathematics.
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Preface to the second edition

It is thirteen years since Fractal Geometry—Mathematical Foundations and Appli-
cations was first published. In the meantime, the mathematics and applications of
fractals have advanced enormously, with an ever-widening interest in the subject
at all levels. The book was originally written for those working in mathematics
and science who wished to know more about fractal mathematics. Over the past
few years, with changing interests and approaches to mathematics teaching, many
universities have introduced undergraduate and postgraduate courses on fractal
geometry, and a considerable number have been based on parts of this book.

Thus, this new edition has two main aims. First, it indicates some recent devel-
opments in the subject, with updated notes and suggestions for further reading.
Secondly, more attention is given to the needs of students using the book as a
course text, with extra details to help understanding, along with the inclusion of
further exercises.

Parts of the book have been rewritten. In particular, multifractal theory has
advanced considerably since the first edition was published, so the chapter on
‘Multifractal Measures’ has been completely rewritten. The notes and references
have been updated. Numerous minor changes, corrections and additions have
been incorporated, and some of the notation and terminology has been changed to
conform with what has become standard usage. Many of the diagrams have been
replaced to take advantage of the more sophisticated computer technology now
available. Where possible, the numbering of sections, equations and figures has
been left as in the first edition, so that earlier references to the book remain valid.

Further exercises have been added at the end of the chapters. Solutions to these
exercises and additional supplementary material may be found on the world wide
web at

http://www.wileyeurope.com/fractal
In 1997 a sequel, Techniques in Fractal Geometry, was published, presenting

a variety of techniques and ideas current in fractal research. Readers wishing
to study fractal mathematics beyond the bounds of this book may find the
sequel helpful.

I am most grateful to all who have made constructive suggestions on the text. In
particular I am indebted to Carmen Fernández, Gwyneth Stallard and Alex Cain
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for help with this revision. I am also very grateful for the continuing support
given to the book by the staff of John Wiley & Sons, and in particular to Rob
Calver and Lucy Bryan, for overseeing the production of this second edition and
John O’Connor and Louise Page for the cover design.

Kenneth J. Falconer
St Andrews, January 2003



Course suggestions

There is far too much material in this book for a standard length course on
fractal geometry. Depending on the emphasis required, appropriate sections may
be selected as a basis for an undergraduate or postgraduate course.

A course for mathematics students could be based on the following sections.

(a) Mathematical background
1.1 Basic set theory; 1.2 Functions and limits; 1.3 Measures and mass
distributions.

(b) Box-counting dimensions
3.1 Box-counting dimensions; 3.2 Properties of box-counting dimensions.

(c) Hausdorff measures and dimension
2.1 Hausdorff measure; 2.2 Hausdorff dimension; 2.3 Calculation of Haus-
dorff dimension; 4.1 Basic methods of calculating dimensions.

(d) Iterated function systems
9.1 Iterated function systems; 9.2 Dimensions of self-similar sets; 9.3 Some
variations; 10.2 Continued fraction examples.

(e) Graphs of functions
11.1 Dimensions of graphs, the Weierstrass function and self-affine graphs.

(f) Dynamical systems
13.1 Repellers and iterated function systems; 13.2 The logistic map.

(g) Iteration of complex functions
14.1 Sketch of general theory of Julia sets; 14.2 The Mandelbrot set; 14.3
Julia sets of quadratic functions.

xv



Introduction

In the past, mathematics has been concerned largely with sets and functions to
which the methods of classical calculus can be applied. Sets or functions that
are not sufficiently smooth or regular have tended to be ignored as ‘pathological’
and not worthy of study. Certainly, they were regarded as individual curiosities
and only rarely were thought of as a class to which a general theory might be
applicable.

In recent years this attitude has changed. It has been realized that a great deal
can be said, and is worth saying, about the mathematics of non-smooth objects.
Moreover, irregular sets provide a much better representation of many natural
phenomena than do the figures of classical geometry. Fractal geometry provides
a general framework for the study of such irregular sets.

We begin by looking briefly at a number of simple examples of fractals, and
note some of their features.

The middle third Cantor set is one of the best known and most easily con-
structed fractals; nevertheless it displays many typical fractal characteristics. It
is constructed from a unit interval by a sequence of deletion operations; see
figure 0.1. Let E0 be the interval [0, 1]. (Recall that [a, b] denotes the set of real
numbers x such that a � x � b.) Let E1 be the set obtained by deleting the mid-
dle third of E0, so that E1 consists of the two intervals [0, 1

3 ] and [ 2
3 , 1]. Deleting

the middle thirds of these intervals gives E2; thus E2 comprises the four intervals
[0, 1

9 ], [ 2
9 , 1

3 ], [ 2
3 , 7

9 ], [ 8
9 , 1]. We continue in this way, with Ek obtained by delet-

ing the middle third of each interval in Ek−1. Thus Ek consists of 2k intervals
each of length 3−k. The middle third Cantor set F consists of the numbers that
are in Ek for all k ; mathematically, F is the intersection

⋂∞
k=0 Ek. The Cantor

set F may be thought of as the limit of the sequence of sets Ek as k tends to
infinity. It is obviously impossible to draw the set F itself, with its infinitesimal
detail, so ‘pictures of F ’ tend to be pictures of one of the Ek, which are a good
approximation to F when k is reasonably large; see figure 0.1.

At first glance it might appear that we have removed so much of the interval
[0, 1] during the construction of F , that nothing remains. In fact, F is an infinite
(and indeed uncountable) set, which contains infinitely many numbers in every
neighbourhood of each of its points. The middle third Cantor set F consists

xvii
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0 1 E0
E1
E2
E3
E4
E5

F
FL FR

1
3

2
3

..
.

Figure 0.1 Construction of the middle third Cantor set F , by repeated removal of the
middle third of intervals. Note that FL and FR, the left and right parts of F , are copies
of F scaled by a factor 1

3

precisely of those numbers in [0, 1] whose base-3 expansion does not contain
the digit 1, i.e. all numbers a13−1 + a23−2 + a33−3 + · · · with ai = 0 or 2 for
each i. To see this, note that to get E1 from E0 we remove those numbers with
a1 = 1, to get E2 from E1 we remove those numbers with a2 = 1, and so on.

We list some of the features of the middle third Cantor set F ; as we shall see,
similar features are found in many fractals.

(i) F is self-similar. It is clear that the part of F in the interval [0, 1
3 ] and the

part of F in [ 2
3 , 1] are both geometrically similar to F , scaled by a factor

1
3 . Again, the parts of F in each of the four intervals of E2 are similar to
F but scaled by a factor 1

9 , and so on. The Cantor set contains copies of
itself at many different scales.

(ii) The set F has a ‘fine structure’; that is, it contains detail at arbitrarily
small scales. The more we enlarge the picture of the Cantor set, the more
gaps become apparent to the eye.

(iii) Although F has an intricate detailed structure, the actual definition of F

is very straightforward.
(iv) F is obtained by a recursive procedure. Our construction consisted of

repeatedly removing the middle thirds of intervals. Successive steps give
increasingly good approximations Ek to the set F .

(v) The geometry of F is not easily described in classical terms: it is not the
locus of the points that satisfy some simple geometric condition, nor is it
the set of solutions of any simple equation.

(vi) It is awkward to describe the local geometry of F —near each of its points
are a large number of other points, separated by gaps of varying lengths.

(vii) Although F is in some ways quite a large set (it is uncountably infinite),
its size is not quantified by the usual measures such as length—by any
reasonable definition F has length zero.

Our second example, the von Koch curve, will also be familiar to many readers;
see figure 0.2. We let E0 be a line segment of unit length. The set E1 consists of
the four segments obtained by removing the middle third of E0 and replacing it
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E0

E1

E2

F

E3

(a)

(b)

Figure 0.2 (a) Construction of the von Koch curve F . At each stage, the middle third of
each interval is replaced by the other two sides of an equilateral triangle. (b) Three von
Koch curves fitted together to form a snowflake curve

by the other two sides of the equilateral triangle based on the removed segment.
We construct E2 by applying the same procedure to each of the segments in E1,
and so on. Thus Ek comes from replacing the middle third of each straight line
segment of Ek−1 by the other two sides of an equilateral triangle. When k is
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large, the curves Ek−1 and Ek differ only in fine detail and as k tends to infinity,
the sequence of polygonal curves Ek approaches a limiting curve F , called the
von Koch curve.

The von Koch curve has features in many ways similar to those listed for
the middle third Cantor set. It is made up of four ‘quarters’ each similar to the
whole, but scaled by a factor 1

3 . The fine structure is reflected in the irregularities
at all scales; nevertheless, this intricate structure stems from a basically simple
construction. Whilst it is reasonable to call F a curve, it is much too irregular
to have tangents in the classical sense. A simple calculation shows that Ek is of
length

(
4
3

)k
; letting k tend to infinity implies that F has infinite length. On the

other hand, F occupies zero area in the plane, so neither length nor area provides
a very useful description of the size of F.

Many other sets may be constructed using such recursive procedures. For
example, the Sierpiński triangle or gasket is obtained by repeatedly removing
(inverted) equilateral triangles from an initial equilateral triangle of unit side-
length; see figure 0.3. (For many purposes, it is better to think of this procedure
as repeatedly replacing an equilateral triangle by three triangles of half the height.)
A plane analogue of the Cantor set, a ‘Cantor dust’, is illustrated in figure 0.4. At
each stage each remaining square is divided into 16 smaller squares of which four
are kept and the rest discarded. (Of course, other arrangements or numbers of
squares could be used to get different sets.) It should be clear that such examples
have properties similar to those mentioned in connection with the Cantor set and
the von Koch curve. The example depicted in figure 0.5 is constructed using two
different similarity ratios.

There are many other types of construction, some of which will be discussed
in detail later in the book, that also lead to sets with these sorts of properties.

E0 E1

F

E2

Figure 0.3 Construction of the Sierpiński triangle (dimHF = dimBF = log 3/ log 2)
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E0 E1

F

E2

Figure 0.4 Construction of a ‘Cantor dust’ (dimHF = dimBF = 1)

E0 E1

F

E2

Figure 0.5 Construction of a self-similar fractal with two different similarity ratios
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The highly intricate structure of the Julia set illustrated in figure 0.6 stems from
the single quadratic function f (z) = z2 + c for a suitable constant c. Although
the set is not strictly self-similar in the sense that the Cantor set and von Koch
curve are, it is ‘quasi-self-similar’ in that arbitrarily small portions of the set can
be magnified and then distorted smoothly to coincide with a large part of the set.

Figure 0.7 shows the graph of the function f (t) = ∑∞
k=0(

3
2 )−k/2 sin(( 3

2 )kt); the
infinite summation leads to the graph having a fine structure, rather than being a
smooth curve to which classical calculus is applicable.

Some of these constructions may be ‘randomized’. Figure 0.8 shows a ‘random
von Koch curve’—a coin was tossed at each step in the construction to determine
on which side of the curve to place the new pair of line segments. This random
curve certainly has a fine structure, but the strict self-similarity of the von Koch
curve has been replaced by a ‘statistical self-similarity’.

These are all examples of sets that are commonly referred to as fractals. (The
word ‘fractal’ was coined by Mandelbrot in his fundamental essay from the Latin
fractus, meaning broken, to describe objects that were too irregular to fit into a
traditional geometrical setting.) Properties such as those listed for the Cantor set
are characteristic of fractals, and it is sets with such properties that we will have
in mind throughout the book. Certainly, any fractal worthy of the name will
have a fine structure, i.e. detail at all scales. Many fractals have some degree of
self-similarity—they are made up of parts that resemble the whole in some way.
Sometimes, the resemblance may be weaker than strict geometrical similarity;
for example, the similarity may be approximate or statistical.

Methods of classical geometry and calculus are unsuited to studying frac-
tals and we need alternative techniques. The main tool of fractal geometry
is dimension in its many forms. We are familiar enough with the idea that a

Figure 0.6 A Julia set
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3f (t )

2

1

0

−1

−2

−3
0 1 2 3 4 5 6

t

Figure 0.7 Graph of f (t) = ∑∞
k=0(

3
2 )−k/2 sin(( 3

2 )kt)

(smooth) curve is a 1-dimensional object and a surface is 2-dimensional. It is
less clear that, for many purposes, the Cantor set should be regarded as having
dimension log 2/ log 3 = 0.631 . . . and the von Koch curve as having dimen-
sion log 4/ log 3 = 1.262 . . . . This latter number is, at least, consistent with the
von Koch curve being ‘larger than 1-dimensional’ (having infinite length) and
‘smaller than 2-dimensional’ (having zero area).

Figure 0.8 A random version of the von Koch curve
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(a)

(b)

(c)

(d )

Figure 0.9 Division of certain sets into four parts. The parts are similar to the whole with
ratios: 1

4 for line segment (a); 1
2 for square (b); 1

9 for middle third Cantor set (c); 1
3 for

von Koch curve (d )

The following argument gives one (rather crude) interpretation of the meaning
of these ‘dimensions’ indicating how they reflect scaling properties and self-
similarity. As figure 0.9 indicates, a line segment is made up of four copies of
itself, scaled by a factor 1

4 . The segment has dimension − log 4/ log 1
4 = 1. A

square, however, is made up of four copies of itself scaled by a factor 1
2 (i.e.

with half the side length) and has dimension − log 4/ log 1
2 = 2. In the same way,

the von Koch curve is made up of four copies of itself scaled by a factor 1
3 , and

has dimension − log 4/ log 1
3 = log 4/ log 3, and the Cantor set may be regarded

as comprising four copies of itself scaled by a factor 1
9 and having dimension

− log 4/ log 1
9 = log 2/ log 3. In general, a set made up of m copies of itself scaled

by a factor r might be thought of as having dimension − log m/ log r . The number
obtained in this way is usually referred to as the similarity dimension of the set.

Unfortunately, similarity dimension is meaningful only for a relatively small
class of strictly self-similar sets. Nevertheless, there are other definitions of
dimension that are much more widely applicable. For example, Hausdorff dimen-
sion and the box-counting dimensions may be defined for any sets, and, in
these four examples, may be shown to equal the similarity dimension. The early
chapters of the book are concerned with the definition and properties of Hausdorff
and other dimensions, along with methods for their calculation. Very roughly, a
dimension provides a description of how much space a set fills. It is a measure of
the prominence of the irregularities of a set when viewed at very small scales. A
dimension contains much information about the geometrical properties of a set.

A word of warning is appropriate at this point. It is possible to define the
‘dimension’ of a set in many ways, some satisfactory and others less so. It
is important to realize that different definitions may give different values of



Introduction xxv

dimension for the same set, and may also have very different properties. Incon-
sistent usage has sometimes led to considerable confusion. In particular, warning
lights flash in my mind (as in the minds of other mathematicians) whenever the
term ‘fractal dimension’ is seen. Though some authors attach a precise meaning
to this, I have known others interpret it inconsistently in a single piece of work.
The reader should always be aware of the definition in use in any discussion.

In his original essay, Mandelbrot defined a fractal to be a set with Haus-
dorff dimension strictly greater than its topological dimension. (The topological
dimension of a set is always an integer and is 0 if it is totally disconnected, 1 if
each point has arbitrarily small neighbourhoods with boundary of dimension 0,
and so on.) This definition proved to be unsatisfactory in that it excluded a num-
ber of sets that clearly ought to be regarded as fractals. Various other definitions
have been proposed, but they all seem to have this same drawback.

My personal feeling is that the definition of a ‘fractal’ should be regarded in
the same way as a biologist regards the definition of ‘life’. There is no hard and
fast definition, but just a list of properties characteristic of a living thing, such
as the ability to reproduce or to move or to exist to some extent independently
of the environment. Most living things have most of the characteristics on the
list, though there are living objects that are exceptions to each of them. In the
same way, it seems best to regard a fractal as a set that has properties such
as those listed below, rather than to look for a precise definition which will
almost certainly exclude some interesting cases. From the mathematician’s point
of view, this approach is no bad thing. It is difficult to avoid developing properties
of dimension other than in a way that applies to ‘fractal’ and ‘non-fractal’ sets
alike. For ‘non-fractals’, however, such properties are of little interest—they are
generally almost obvious and could be obtained more easily by other methods.

When we refer to a set F as a fractal, therefore, we will typically have the
following in mind.

(i) F has a fine structure, i.e. detail on arbitrarily small scales.
(ii) F is too irregular to be described in traditional geometrical language, both

locally and globally.
(iii) Often F has some form of self-similarity, perhaps approximate or statis-

tical.
(iv) Usually, the ‘fractal dimension’ of F (defined in some way) is greater

than its topological dimension.
(v) In most cases of interest F is defined in a very simple way, perhaps

recursively.

What can we say about the geometry of as diverse a class of objects as frac-
tals? Classical geometry gives us a clue. In Part I of this book we study certain
analogues of familiar geometrical properties in the fractal situation. The orthog-
onal projection, or ‘shadow’ of a circle in space onto a plane is, in general, an
ellipse. The fractal projection theorems tell us about the ‘shadows’ of a fractal.
For many purposes, a tangent provides a good local approximation to a circle.
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Though fractals do tend not to have tangents in any sense, it is often possi-
ble to say a surprising amount about their local form. Two circles in the plane
in ‘general position’ either intersect in two points or not at all (we regard the
case of mutual tangents as ‘exceptional’). Using dimension, we can make sim-
ilar statements about the intersection of fractals. Moving a circle perpendicular
to its plane sweeps out a cylinder, with properties that are related to those of
the original circle. Similar, and indeed more general, constructions are possible
with fractals.

Although classical geometry is of considerable intrinsic interest, it is also called
upon widely in other areas of mathematics. For example, circles or parabolae
occur as the solution curves of certain differential equations, and a knowledge of
the geometrical properties of such curves aids our understanding of the differential
equations. In the same way, the general theory of fractal geometry can be applied
to the many branches of mathematics in which fractals occur. Various examples
of this are given in Part II of the book.

Historically, interest in geometry has been stimulated by its applications to
nature. The ellipse assumed importance as the shape of planetary orbits, as did
the sphere as the shape of the earth. The geometry of the ellipse and sphere can
be applied to these physical situations. Of course, orbits are not quite elliptical,
and the earth is not actually spherical, but for many purposes, such as the pre-
diction of planetary motion or the study of the earth’s gravitational field, these
approximations may be perfectly adequate.

A similar situation pertains with fractals. A glance at the recent physics liter-
ature shows the variety of natural objects that are described as fractals—cloud
boundaries, topographical surfaces, coastlines, turbulence in fluids, and so on.
None of these are actual fractals—their fractal features disappear if they are
viewed at sufficiently small scales. Nevertheless, over certain ranges of scale
they appear very much like fractals, and at such scales may usefully be regarded
as such. The distinction between ‘natural fractals’ and the mathematical ‘frac-
tal sets’ that might be used to describe them was emphasized in Mandelbrot’s
original essay, but this distinction seems to have become somewhat blurred.
There are no true fractals in nature. (There are no true straight lines or cir-
cles either!)

If the mathematics of fractal geometry is to be really worthwhile, then it
should be applicable to physical situations. Considerable progress is being made
in this direction and some examples are given towards the end of this book.
Although there are natural phenomena that have been explained in terms of fractal
mathematics (Brownian motion is a good example), many applications tend to
be descriptive rather than predictive. Much of the basic mathematics used in the
study of fractals is not particularly new, though much recent mathematics has
been specifically geared to fractals. For further progress to be made, development
and application of appropriate mathematics remain a high priority.
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Notes and references

Unlike the rest of the book, which consists of fairly solid mathematics, this
introduction contains some of the author’s opinions and prejudices, which may
well not be shared by other workers on fractals. Caveat emptor!

The foundational treatise on fractals, which may be appreciated at many levels,
is the scientific, philosophical and pictorial essay of Mandelbrot (1982) (devel-
oped from the original 1975 version), containing a great diversity of natural and
mathematical examples. This essay has been the inspiration for much of the work
that has been done on fractals.

Many other books have been written on diverse aspects of fractals, and these
are cited at the end of the appropriate chapters. Here we mention a selection with a
broad coverage. Introductory treatments include Schroeder (1991), Moon (1992),
Kaye (1994), Addison (1997) and Lesmoir-Gordon, Rood and Edney (2000).
The volume by Peitgen, Jürgens and Saupe (1992) is profusely illustrated with
diagrams and examples, and the essays collated by Frame and Mandelbrot (2002)
address the role of fractals in mathematics and science education.

The books by Edgar (1990, 1998), Peitgen, Jürgens and Saupe (1992) and Le
Méhauté (1991) provide basic mathematical treatments. Falconer (1985a), Mat-
tila (1995), Federer (1996) and Morgan (2000) concentrate on geometric measure
theory, Rogers (1998) addresses the general theory of Hausdorff measures, and
Wicks (1991) approaches the subject from the standpoint of non-standard anal-
ysis. Books with a computational emphasis include Peitgen and Saupe (1988),
Devaney and Keen (1989), Hoggar (1992) and Pickover (1998). The sequel to
this book, Falconer (1997), contains more advanced mathematical techniques for
studying fractals.

Much of interest may be found in proceedings of conferences on fractal mathe-
matics, for example in the volumes edited by Cherbit (1991), Evertsz, Peitgen and
Voss (1995) and Novak (1998, 2000). The proceedings edited by Bandt, Graf and
Zähle (1995, 2000) concern fractals and probability, those by Lévy Véhel, Lutton
and Tricot (1997), Dekking, Lévy Véhel, Lutton and Tricot (1999) address engi-
neering applications. Mandelbrot’s ‘Selecta’ (1997, 1999, 2002) present a wide
range of papers with commentaries which provide a fascinating insight into the
development and current state of fractal mathematics and science. Edgar (1993)
brings together a collection of classic papers on fractal mathematics.

Papers on fractals appear in many journals; in particular the journal Fractals
covers a wide range of theory and applications.
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Chapter 1 Mathematical background

This chapter reviews some of the basic mathematical ideas and notation that will
be used throughout the book. Sections 1.1 on set theory and 1.2 on functions are
rather concise; readers unfamiliar with this type of material are advised to consult
a more detailed text on mathematical analysis. Measures and mass distributions
play an important part in the theory of fractals. A treatment adequate for our
needs is given in Section 1.3. By asking the reader to take on trust the existence
of certain measures, we can avoid many of the technical difficulties usually
associated with measure theory. Some notes on probability theory are given in
Section 1.4; an understanding of this is needed in Chapters 15 and 16.

1.1 Basic set theory

In this section we recall some basic notions from set theory and point set topology.
We generally work in n-dimensional Euclidean space, �n, where �1 = � is

just the set of real numbers or the ‘real line’, and �2 is the (Euclidean) plane.
Points in �n will generally be denoted by lower case letters x, y, etc., and we will
occasionally use the coordinate form x = (x1, . . . , xn), y = (y1, . . . , yn). Addi-
tion and scalar multiplication are defined in the usual manner, so that x + y =
(x1 + y1, . . . , xn + yn) and λx = (λx1, . . . , λxn), where λ is a real scalar. We use
the usual Euclidean distance or metric on �n. So if x, y are points of �n, the dis-
tance between them is |x − y| = (∑n

i=1 |xi − yi |2
)1/2

. In particular, we have the
triangle inequality |x + y| � |x| + |y|, the reverse triangle inequality |x − y| �∣
∣∣|x| − |y|

∣
∣∣, and the metric triangle inequality |x − y| � |x − z| + |z − y|, for all

x, y, z ∈ �n.
Sets, which will generally be subsets of �n, are denoted by capital letters E,

F , U , etc. In the usual way, x ∈ E means that the point x belongs to the set E,
and E ⊂ F means that E is a subset of the set F . We write {x : condition} for
the set of x for which ‘condition’ is true. Certain frequently occurring sets have a
special notation. The empty set, which contains no elements, is written as Ø. The
integers are denoted by � and the rational numbers by �. We use a superscript
+ to denote the positive elements of a set; thus �+ are the positive real numbers,
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4 Mathematical background

and �+ are the positive integers. Occasionally we refer to the complex numbers
�, which for many purposes may be identified with the plane �2, with x1 + ix2

corresponding to the point (x1, x2).
The closed ball of centre x and radius r is defined by B(x, r) = {y : |y − x|

� r}. Similarly the open ball is Bo(x, r) = {y : |y − x| < r}. Thus the closed
ball contains its bounding sphere, but the open ball does not. Of course in �2 a
ball is a disc and in �1 a ball is just an interval. If a < b we write [a, b] for the
closed interval {x : a � x � b} and (a, b) for the open interval {x : a < x < b}.
Similarly [a, b) denotes the half-open interval {x : a � x < b}, etc.

The coordinate cube of side 2r and centre x = (x1, . . . , xn) is the set {y =
(y1, . . . , yn) : |yi − xi | � r for all i = 1, . . . , n}. (A cube in �2 is just a square
and in �1 is an interval.)

From time to time we refer to the δ-neighbourhood or δ-parallel body, Aδ , of
a set A, that is the set of points within distance δ of A; thus Aδ = {x : |x − y| �
δ for some y in A}; see figure 1.1.

We write A ∪ B for the union of the sets A and B, i.e. the set of points belong-
ing to either A or B, or both. Similarly, we write A ∩ B for their intersection,
the points in both A and B. More generally,

⋃
α Aα denotes the union of an

arbitrary collection of sets {Aα}, i.e. those points in at least one of the sets Aα ,
and

⋂
α Aα denotes their intersection, consisting of the set of points common to

all of the Aα . A collection of sets is disjoint if the intersection of any pair is the
empty set. The difference A\B of A and B consists of the points in A but not
B. The set �n\A is termed the complement of A.

The set of all ordered pairs {(a, b) : a ∈ A and b ∈ B} is called the (Cartesian)
product of A and B and is denoted by A × B. If A ⊂ �n and B ⊂ �m then
A × B ⊂ �n+m.

If A and B are subsets of �n and λ is a real number, we define the vector
sum of the sets as A + B = {x + y : x ∈ A and y ∈ B} and we define the scalar
multiple λA = {λx : x ∈ A}.

An infinite set A is countable if its elements can be listed in the form x1, x2, . . .

with every element of A appearing at a specific place in the list; otherwise the

d

Ad

A

Figure 1.1 A set A and its δ-neighbourhood Aδ
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set is uncountable. The sets � and � are countable but � is uncountable. Note
that a countable union of countable sets is countable.

If A is any non-empty set of real numbers then the supremum sup A is the
least number m such that x � m for every x in A, or is ∞ if no such number
exists. Similarly, the infimum inf A is the greatest number m such that m � x for
all x in A, or is −∞. Intuitively the supremum and infimum are thought of as the
maximum and minimum of the set, though it is important to realize that sup A

and inf A need not be members of the set A itself. For example, sup(0, 1) = 1,
but 1 /∈ (0, 1). We write supx∈B( ) for the supremum of the quantity in brackets,
which may depend on x, as x ranges over the set B.

We define the diameter |A| of a (non-empty) subset of �n as the greatest
distance apart of pairs of points in A. Thus |A| = sup{|x − y| : x, y ∈ A}. In �n

a ball of radius r has diameter 2r , and a cube of side length δ has diameter δ
√

n.
A set A is bounded if it has finite diameter, or, equivalently, if A is contained
in some (sufficiently large) ball.

Convergence of sequences is defined in the usual way. A sequence {xk} in
�n converges to a point x of �n as k → ∞ if, given ε > 0, there exists a
number K such that |xk − x| < ε whenever k > K , that is if |xk − x| converges
to 0. The number x is called the limit of the sequence, and we write xk → x or
limk→∞ xk = x.

The ideas of ‘open’ and ‘closed’ that have been mentioned in connection with
balls apply to much more general sets. Intuitively, a set is closed if it contains
its boundary and open if it contains none of its boundary points. More precisely,
a subset A of �n is open if, for all points x in A there is some ball B(x, r),
centred at x and of positive radius, that is contained in A. A set is closed if,
whenever {xk} is a sequence of points of A converging to a point x of �n, then
x is in A; see figure 1.2. The empty set Ø and �n are regarded as both open
and closed.

It may be shown that a set is open if and only if its complement is closed. The
union of any collection of open sets is open, as is the intersection of any finite
number of open sets. The intersection of any collection of closed sets is closed,
as is the union of any finite number of closed sets, see Exercise 1.6.

A set A is called a neighbourhood of a point x if there is some (small) ball
B(x, r) centred at x and contained in A.

(a) (b) (c)

Figure 1.2 (a) An open set—there is a ball contained in the set centred at each point of
the set. (b) A closed set—the limit of any convergent sequence of points from the set
lies in the set. (c) The boundary of the set in (a) or (b)
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The intersection of all the closed sets containing a set A is called the closure
of A, written A. The union of all the open sets contained in A is the interior
int(A) of A. The closure of A is thought of as the smallest closed set containing
A, and the interior as the largest open set contained in A. The boundary ∂A of A

is given by ∂A = A\int(A), thus x ∈ ∂A if and only if the ball B(x, r) intersects
both A and its complement for all r > 0.

A set B is a dense subset of A if B ⊂ A ⊂ B, i.e. if there are points of B

arbitrarily close to each point of A.
A set A is compact if any collection of open sets which covers A (i.e. with

union containing A) has a finite subcollection which also covers A. Technically,
compactness is an extremely useful property that enables infinite sets of condi-
tions to be reduced to finitely many. However, as far as most of this book is
concerned, it is enough to take the definition of a compact subset of �n as one
that is both closed and bounded.

The intersection of any collection of compact sets is compact. It may be shown
that if A1 ⊃ A2 ⊃ · · · is a decreasing sequence of compact sets then the intersec-
tion

⋂∞
i=1 Ai is non-empty, see Exercise 1.7. Moreover, if

⋂∞
i=1 Ai is contained

in V for some open set V , then the finite intersection
⋂k

i=1 Ai is contained in V

for some k.
A subset A of �n is connected if there do not exist open sets U and V such that

U ∪ V contains A with A ∩ U and A ∩ V disjoint and non-empty. Intuitively,
we think of a set A as connected if it consists of just one ‘piece’. The largest
connected subset of A containing a point x is called the connected component
of x. The set A is totally disconnected if the connected component of each point
consists of just that point. This will certainly be so if for every pair of points x

and y in A we can find disjoint open sets U and V such that x ∈ U, y ∈ V and
A ⊂ U ∪ V .

There is one further class of set that must be mentioned though its precise
definition is indirect and should not concern the reader unduly. The class of Borel
sets is the smallest collection of subsets of �n with the following properties:

(a) every open set and every closed set is a Borel set;
(b) the union of every finite or countable collection of Borel sets is a Borel

set, and the intersection of every finite or countable collection of Borel
sets is a Borel set.

Throughout this book, virtually all of the subsets of �n that will be of any
interest to us will be Borel sets. Any set that can be constructed using a sequence
of countable unions or intersections starting with the open sets or closed sets will
certainly be Borel. The reader will not go far wrong in work of the sort described
in this book by assuming that all the sets encountered are Borel sets.

1.2 Functions and limits

Let X and Y be any sets. A mapping, function or transformation f from X to Y

is a rule or formula that associates a point f (x) of Y with each point x of X.



Functions and limits 7

We write f : X → Y to denote this situation; X is called the domain of f and
Y is called the codomain. If A is any subset of X we write f (A) for the image
of A, given by {f (x) : x ∈ A}. If B is a subset of Y , we write f −1(B) for the
inverse image or pre-image of B, i.e. the set {x ∈ X : f (x) ∈ B}; note that in
this context the inverse image of a single point can contain many points.

A function f : X → Y is called an injection or a one-to-one function if
f (x) 	= f (y) whenever x 	= y, i.e. different elements of X are mapped to dif-
ferent elements of Y . The function is called a surjection or an onto function
if, for every y in Y , there is an element x in X with f (x) = y, i.e. every ele-
ment of Y is the image of some point in X. A function that is both an injection
and a surjection is called a bijection or one-to-one correspondence between X

and Y . If f : X → Y is a bijection then we may define the inverse function
f −1 : Y → X by taking f −1(y) as the unique element of X such that f (x) = y.
In this situation, f −1(f (x)) = x for x in X and f (f −1(y)) = y for y in Y .

The composition of the functions f : X → Y and g : Y → Z is the func-
tion g◦f : X → Z given by (g◦f )(x) = g(f (x)). This definition extends to the
composition of any finite number of functions in the obvious way.

Certain functions from �n to �n have a particular geometric significance; often
in this context they are referred to as transformations and are denoted by capital
letters. Their effects are shown in figure 1.3. The transformation S : �n → �n is
called a congruence or isometry if it preserves distances, i.e. if |S(x) − S(y)| =
|x − y| for x, y in �n. Congruences also preserve angles, and transform sets
into geometrically congruent ones. Special cases include translations, which are

A

Direct congruence
or rigid motion

(Indirect) congruence

Similarities

Affinities

Figure 1.3 The effect of various transformations on a set A
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of the form S(x) = x + a and have the effect of shifting points parallel to the
vector a, rotations which have a centre a such that |S(x) − a| = |x − a| for all
x (for convenience we also regard the identity transformation given by I (x) = x

as a rotation) and reflections which map points to their mirror images in some
(n − 1)-dimensional plane. A congruence that may be achieved by a combination
of a rotation and a translation, i.e. does not involve reflection, is called a rigid
motion or direct congruence. A transformation S : �n → �n is a similarity of
ratio or scale c > 0 if |S(x) − S(y)| = c|x − y| for all x, y in �n. A similarity
transforms sets into geometrically similar ones with all lengths multiplied by the
factor c.

A transformation T : �n → �n is linear if T (x + y) = T (x) + T (y) and
T (λx) = λT (x) for all x, y ∈ �n and λ ∈ �; linear transformations may be
represented by matrices in the usual way. Such a linear transformation is non-
singular if T (x) = 0 if and only if x = 0. If S : �n → �n is of the form
S(x) = T (x) + a, where T is a non-singular linear transformation and a is a
point in �n, then S is called an affine transformation or an affinity. An affinity
may be thought of as a shearing transformation; its contracting or expanding effect
need not be the same in every direction. However, if T is orthonormal, then S

is a congruence, and if T is a scalar multiple or an orthonormal transformation
then T is a similarity.

It is worth pointing out that such classes of transformation form groups under
composition of mappings. For example, the composition of two translations is a
translation, the identity transformation is trivially a translation, and the inverse of
a translation is a translation. Finally, the associative law S◦(T ◦U) = (S◦T )◦U
holds for all translations S, T , U . Similar group properties hold for the congru-
ences, the rigid motions, the similarities and the affinities.

A function f : X → Y is called a Hölder function of exponent α if

|f (x) − f (y)| � c|x − y|α (x, y ∈ X)

for some constant c � 0. The function f is called a Lipschitz function if α may
be taken to be equal to 1, that is if

|f (x) − f (y)| � c|x − y| (x, y ∈ X)

and a bi-Lipschitz function if

c1|x − y| � |f (x) − f (y)| � c2|x − y| (x, y ∈ X)

for 0 < c1 � c2 < ∞, in which case both f and f −1 : f (X) → X are Lipschitz
functions.

We next remind readers of the basic ideas of limits and continuity of functions.
Let X and Y be subsets of �n and �m respectively, let f : X → Y be a function,
and let a be a point of X. We say that f (x) has limit y (or tends to y, or converges
to y) as x tends to a, if, given ε > 0, there exists δ > 0 such that |f (x) − y| < ε

for all x ∈ X with |x − a| < δ. We denote this by writing f (x) → y as x → a
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or by limx→a f (x) = y. For a function f : X → � we say that f (x) tends to
infinity (written f (x) → ∞) as x → a if, given M , there exists δ > 0 such that
f (x) > M whenever |x − a| < δ. The definition of f (x) → −∞ is similar.

Suppose, now, that f : �+ → �. We shall frequently be interested in the
values of such functions for small positive values of x. Note that if f (x) is
increasing as x decreases, then limx→0 f (x) exists either as a finite limit or as
∞, and if f (x) is decreasing as x decreases then limx→0 f (x) exists and is finite
or −∞. Of course, f (x) can fluctuate wildly for small x and limx→0 f (x) need
not exist at all. We use lower and upper limits to describe such fluctuations. We
define the lower limit as

lim
x→0

f (x) ≡ lim
r→0

(inf{f (x) : 0 < x < r}).

Since inf{f (x) : 0 < x < r} is either −∞ for all positive r or else increases as
r decreases, limx→0f (x) always exists. Similarly, the upper limit is defined as

lim
x→0

f (x) ≡ lim
r→0

(sup{f (x) : 0 < x < r}).

The lower and upper limits exist (as real numbers or −∞ or ∞) for every function
f , and are indicative of the variation in values of f for x close to 0; see figure 1.4.
Clearly, limx→0f (x) � limx→0f (x); if the lower and upper limits are equal, then
limx→0 f (x) exists and equals this common value. Note that if f (x) � g(x) for
x > 0 then limx→0f (x) � limx→0g(x) and limx→0f (x) � limx→0g(x). In the
same way, it is possible to define lower and upper limits as x → a for functions
f : X → � where X is a subset of �n with a in X.

We often need to compare two functions f, g : �+ → � for small values.
We write f (x) ∼ g(x) to mean that f (x)/g(x) → 1 as x → 0. We will often

f (x )
f (x )

f (x )

0 x

lim
x→0

lim
x→0

Figure 1.4 The upper and lower limits of a function
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have that f (x) ∼ xs ; in other words that f obeys an approximate power law of
exponent s when x is small. We use the notation f (x)  g(x) more loosely, to
mean that f (x) and g(x) are approximately equal in some sense, to be specified
in the particular circumstances.

Recall that function f : X → Y is continuous at a point a of X if f (x) → f (a)

as x → a, and is continuous on X if it is continuous at all points of X. In
particular, Lipschitz and Hölder mappings are continuous. If f : X → Y is a
continuous bijection with continuous inverse f −1 : Y → X then f is called a
homeomorphism, and X and Y are termed homeomorphic sets. Congruences,
similarities and affine transformations on �n are examples of homeomorphisms.

The function f : � → � is differentiable at x with the number f ′(x) as deriva-
tive if

lim
h→0

f (x + h) − f (x)

h
= f ′(x).

In particular, the mean value theorem applies: given a < b and f differentiable
on [a, b] there exists c with a < c < b such that

f (b) − f (a)

b − a
= f ′(c)

(intuitively, any chord of the graph of f is parallel to the slope of f at some inter-
mediate point). A function f is continuously differentiable if f ′(x) is continuous
in x.

More generally, if f : �n → �n, we say that f is differentiable at x with
derivative the linear mapping f ′(x) : �n → �n if

lim
|h|→0

|f (x + h) − f (x) − f ′(x)h|
|h| = 0.

Occasionally, we shall be interested in the convergence of a sequence of
functions fk : X → Y where X and Y are subsets of Euclidean spaces. We
say that functions fk converge pointwise to a function f : X → Y if fk(x) → f (x)

as k → ∞ for each x in X. We say that the convergence is uniform if
supx∈X |fk(x) − f (x)| → 0 as k → ∞. Uniform convergence is a rather stronger
property than pointwise convergence; the rate at which the limit is approached
is uniform across X. If the functions fk are continuous and converge uniformly
to f , then f is continuous.

Finally, we remark that logarithms will always be to base e. Recall that, for
a, b > 0, we have that log ab = log a + log b, and that log ac = c log a for real
numbers c. The identity ac = bc log a/ log b will often be used. The logarithm is the
inverse of the exponential function, so that elog x = x, for x > 0, and log ey = y

for y ∈ �.
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1.3 Measures and mass distributions

Anyone studying the mathematics of fractals will not get far before encountering
measures in some form or other. Many people are put off by the seemingly
technical nature of measure theory—often unnecessarily so, since for most fractal
applications only a few basic ideas are needed. Moreover, these ideas are often
already familiar in the guise of the mass or charge distributions encountered in
basic physics.

We need only be concerned with measures on subsets of �n. Basically a
measure is just a way of ascribing a numerical ‘size’ to sets, such that if a set
is decomposed into a finite or countable number of pieces in a reasonable way,
then the size of the whole is the sum of the sizes of the pieces.

We call µ a measure on �n if µ assigns a non-negative number, possibly ∞,
to each subset of �n such that:

(a) µ(Ø) = 0; (1.1)
(b) µ(A) � µ(B) if A ⊂ B; (1.2)
(c) if A1, A2, . . . is a countable (or finite) sequence of sets then

µ

( ∞⋃

i=1

Ai

)

�
∞∑

i=1

µ(Ai) (1.3)

with equality in (1.3), i.e.

µ

( ∞⋃

i=1

Ai

)

=
∞∑

i=1

µ(Ai), (1.4)

if the Ai are disjoint Borel sets.
We call µ(A) the measure of the set A, and think of µ(A) as the size of A

measured in some way. Condition (a) says that the empty set has zero measure,
condition (b) says ‘the larger the set, the larger the measure’ and (c) says that if
a set is a union of a countable number of pieces (which may overlap) then the
sum of the measure of the pieces is at least equal to the measure of the whole.
If a set is decomposed into a countable number of disjoint Borel sets then the
total measure of the pieces equals the measure of the whole.

Technical note. For the measures that we shall encounter, (1.4) generally holds
for a much wider class of sets than just the Borel sets, in particular for all
images of Borel sets under continuous functions. However, for reasons that need
not concern us here, we cannot in general require that (1.4) holds for every
countable collection of disjoint sets Ai . The reader who is familiar with measure
theory will realize that our definition of a measure on �n is the definition of
what would normally be termed ‘an outer measure on �n for which the Borel
sets are measurable’. However, to save frequent referral to ‘measurable sets’ it
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is convenient to have µ(A) defined for every set A, and, since we are usually
interested in measures of Borel sets, it is enough to have (1.4) holding for Borel
sets rather than for a larger class. If µ is defined and satisfies (1.1)–(1.4) for
the Borel sets, the definition of µ may be extended to an outer measure on all
sets in such a way that (1.1)–(1.3) hold, so our definition is consistent with the
usual one.

If A ⊃ B then A may be expressed as a disjoint union A = B ∪ (A\B), so it
is immediate from (1.4) that, if A and B are Borel sets,

µ(A\B) = µ(A) − µ(B). (1.5)

Similarly, if A1 ⊂ A2 ⊂ · · · is an increasing sequence of Borel sets then

lim
i→∞ µ(Ai) = µ

( ∞⋃

i=1

Ai

)

. (1.6)

To see this, note that
⋃∞

i=1 Ai = A1 ∪ (A2\A1) ∪ (A3\A2) ∪ . . ., with this union
disjoint, so that

µ

( ∞⋃

i=1

Ai

)

= µ(A1) +
∞∑

i=1

(µ(Ai+1) − µ(Ai))

= µ(A1) + lim
k→∞

k∑

i=1

(µ(Ai+1) − µ(Ai))

= lim
k→∞

µ(Ak).

More generally, it can be shown that if, for δ > 0, Aδ are Borel sets that are
increasing as δ decreases, i.e. Aδ′ ⊂ Aδ for 0 < δ < δ′, then

lim
δ→0

µ(Aδ) = µ

(
⋃

δ>0

Aδ

)

. (1.7)

We think of the support of a measure as the set on which the measure is
concentrated. Formally, the support of µ, written spt µ, is the smallest closed set
X such that µ(�n\X) = 0. The support of a measure is always closed and x is
in the support if and only if µ(B(x, r)) > 0 for all positive radii r . We say that
µ is a measure on a set A if A contains the support of µ.

A measure on a bounded subset of �n for which 0 < µ(�n) < ∞ will be
called a mass distribution, and we think of µ(A) as the mass of the set A. We
often think of this intuitively: we take a finite mass and spread it in some way
across a set X to get a mass distribution on X; the conditions for a measure will
then be satisfied.
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We give some examples of measures and mass distributions. In general, we
omit the proofs that measures with the stated properties exist. Much of technical
measure theory concerns the existence of such measures, but, as far as applica-
tions go, their existence is intuitively reasonable, and can be taken on trust.

Example 1.1. The counting measure

For each subset A of �n let µ(A) be the number of points in A if A is finite,
and ∞ otherwise. Then µ is a measure on �n.

Example 1.2. Point mass

Let a be a point in �n and define µ(A) to be 1 if A contains a, and 0 otherwise.
Then µ is a mass distribution, thought of as a point mass concentrated at a.

Example 1.3. Lebesgue measure on �

Lebesgue measure L1 extends the idea of ‘length’ to a large collection of sub-
sets of � that includes the Borel sets. For open and closed intervals, we take
L1(a, b) = L1[a, b] = b − a. If A = ⋃

i[ai, bi] is a finite or countable union of
disjoint intervals, we let L1(A) = ∑

(bi − ai) be the length of A thought of as the
sum of the length of the intervals. This leads us to the definition of the Lebesgue
measure L1(A) of an arbitrary set A. We define

L1(A) = inf

{ ∞∑

i=1

(bi − ai) : A ⊂
∞⋃

i=1

[ai, bi]

}

,

that is, we look at all coverings of A by countable collections of intervals, and
take the smallest total interval length possible. It is not hard to see that (1.1)–(1.3)
hold; it is rather harder to show that (1.4) holds for disjoint Borel sets Ai , and
we avoid this question here. (In fact, (1.4) holds for a much larger class of sets
than the Borel sets, ‘the Lebesgue measurable sets’, but not for all subsets of �.)
Lebesgue measure on � is generally thought of as ‘length’, and we often write
length (A) for L1(A) when we wish to emphasize this intuitive meaning.

Example 1.4. Lebesgue measure on �n

If A = {(x1, . . . , xn) ∈ �n : ai � xi � bi} is a ‘coordinate parallelepiped’ in �n,
the n-dimensional volume of A is given by

voln(A) = (b1 − a1)(b2 − a2) · · · (bn − an).

(Of course, vol1 is length, as in Example 1.3, vol2 is area and vol3 is the usual 3-
dimensional volume.) Then n-dimensional Lebesgue measure Ln may be thought
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of as the extension of n-dimensional volume to a large class of sets. Just as in
Example 1.3, we obtain a measure on �n by defining

Ln(A) = inf

{ ∞∑

i=1

voln(Ai) : A ⊂
∞⋃

i=1

Ai

}

where the infimum is taken over all coverings of A by coordinate parallelepipeds
Ai . We get that Ln(A) = voln(A) if A is a coordinate parallelepiped or, indeed,
any set for which the volume can be determined by the usual rules of mensuration.
Again, to aid intuition, we sometimes write area (A) in place of L2(A), vol(A)
for L3(A) and voln(A) for Ln(A).

Sometimes, we need to define ‘k-dimensional’ volume on a k-dimensional
plane X in �n; this may be done by identifying X with �k and using Lk on
subsets of X in the obvious way.

Example 1.5. Uniform mass distribution on a line segment

Let L be a line segment of unit length in the plane. Define µ(A) = L1(L ∩ A)

i.e. the ‘length’ of intersection of A with L. Then µ is a mass distribution with
support L, since µ(A) = 0 if A ∩ L = Ø. We may think of µ as unit mass spread
evenly along the line segment L.

Example 1.6. Restriction of a measure

Let µ be a measure on �n and E a Borel subset of �n. We may define a measure
ν on �n, called the restriction of µ to E, by ν(A) = µ(E ∩ A) for every set A.
Then ν is a measure on �n with support contained in E.

As far as this book is concerned, the most important measures we shall meet are
the s-dimensional Hausdorff measures Hs on subsets of �n, where 0 � s � n.
These measures, which are introduced in Section 2.1, are a generalization of
Lebesgue measures to dimensions that are not necessarily integral.

The following method is often used to construct a mass distribution on a subset
of �n. It involves repeated subdivision of a mass between parts of a bounded
Borel set E. Let E0 consist of the single set E. For k = 1, 2, . . . we let Ek be a
collection of disjoint Borel subsets of E such that each set U in Ek is contained
in one of the sets of Ek−1 and contains a finite number of the sets in Ek+1. We
assume that the maximum diameter of the sets in Ek tends to 0 as k → ∞. We
define a mass distribution on E by repeated subdivision; see figure 1.5. We let
µ(E) satisfy 0 < µ(E) < ∞, and we split this mass between the sets U1, . . . , Um

in E1 by defining µ(Ui) in such a way that
∑m

i=1 µ(Ui) = µ(E). Similarly, we
assign masses to the sets of E2 so that if U1, . . . , Um are the sets of E2 contained
in a set U of E1, then

∑m
i=1 µ(Ui) = µ(U). In general, we assign masses so that

∑

i

µ(Ui) = µ(U) (1.8)
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U

E0

E1

E2U1 U2

Figure 1.5 Steps in the construction of a mass distribution µ by repeated subdivision.
The mass on the sets of Ek is divided between the sets of Ek+1; so, for example,
µ(U) = µ(U1) + µ(U2)

for each set U of Ek, where the {Ui} are the disjoint sets in Ek+1 contained in U .
For each k, we let Ek be the union of the sets in Ek, and we define µ(A) = 0 for
all A with A ∩ Ek = Ø.

Let E denote the collection of sets that belong to Ek for some k together with
the subsets of �n\Ek. The above procedure defines the mass µ(A) of every set A

in E, and it should seem reasonable that, by building up sets from the sets in E, it
specifies enough about the distribution of the mass µ across E to determine µ(A)

for any (Borel) set A. This is indeed the case, as the following proposition states.

Proposition 1.7

Let µ be defined on a collection of sets E as above. Then the definition of µ

may be extended to all subsets of �n so that µ becomes a measure. The value of
µ(A) is uniquely determined if A is a Borel set. The support of µ is contained in⋂∞

k=1 Ek .

Note on Proof. If A is any subset of �n, let

µ(A) = inf

{
∑

i

µ(Ui) : A ⊂
⋃

i

Ui and Ui ∈ E
}

. (1.9)



16 Mathematical background

(Thus we take the smallest value we can of
∑∞

i=1 µ(Ui) where the sets Ui are in
E and cover A; we have already defined µ(Ui) for such Ui .) It is not difficult to
see that if A is one of the sets in E, then (1.9) reduces to the mass µ(A) specified
in the construction. The complete proof that µ satisfies all the conditions of a
measure and that its values on the sets of E determine its values on the Borel
sets is quite involved, and need not concern us here. Since µ(�n\Ek) = 0, we
have µ(A) = 0 if A is an open set that does not intersect Ek for some k, so the
support of µ is in Ek for all k. �

Example 1.8
Let Ek denote the collection of ‘binary intervals’ of length 2−k of the form
[r2−k, (r + 1)2−k) where 0 � r � 2k − 1. If we take µ[r2−k, (r + 1)2−k) = 2−k

in the above construction, we get that µ is Lebesgue measure on [0, 1].

Note on calculation. Clearly, if I is an interval in Ek of length 2−k and I1, I2 are
the two subintervals of I in Ek+1 of length 2−k−1, we have µ(I) = µ(I1) + µ(I2)

which is (1.8). By Proposition 1.7 µ extends to a mass distribution on [0, 1]. We
have µ(I) = length (I ) for I in E, and it may be shown that this implies that µ

coincides with Lebesgue measure on any set. �

We say that a property holds for almost all x, or almost everywhere (with
respect to a measure µ) if the set for which the property fails has µ-measure
zero. For example, we might say that almost all real numbers are irrational with
respect to Lebesgue measure. The rational numbers � are countable; they may
be listed as x1, x2, . . ., say, so that L1(�) = ∑∞

i=1 L1{xi} = 0.
Although we shall usually be interested in measures in their own right, we

shall sometimes need to integrate functions with respect to measures. There are
technical difficulties concerning which functions can be integrated. We may get
around these difficulties by assuming that, for f : D → � a function defined on
a Borel subset D of �n, the set f −1(−∞, a] = {x ∈ D : f (x) � a} is a Borel
set for all real numbers a. A very large class of functions satisfies this condition,
including all continuous functions (for which f −1(−∞, a] is closed and therefore
a Borel set). We make the assumption throughout this book that all functions to
be integrated satisfy this condition; certainly this is true of functions that are
likely to be encountered in practice.

To define integration we first suppose that f : D → � is a simple function,
i.e. one that takes only finitely many values a1, . . . , ak. We define the integral
with respect to the measure µ of a non-negative simple function f as

∫
f dµ =

k∑

i=1

aiµ{x : f (x) = ai}.

The integral of more general functions is defined using approximation by simple
functions. If f : D → � is a non-negative function, we define its integral as

∫
f dµ = sup

{∫
g dµ : g is simple, 0 � g � f

}
.
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To complete the definition, if f takes both positive and negative values, we
let f+(x) = max{f (x), 0} and f−(x) = max{−f (x), 0}, so that f = f+ − f−,
and define ∫

f dµ =
∫

f+dµ −
∫

f− dµ

provided that
∫

f+ dµ and
∫

f− dµ are both finite.
All the usual properties hold for integrals, for example,

∫
(f + g)dµ =

∫
f dµ +

∫
g dµ

and ∫
λf dµ = λ

∫
f dµ

if λ is a scalar. We also have the monotone convergence theorem, that if
fk : D → � is an increasing sequence of non-negative functions converging
(pointwise) to f , then

lim
k→∞

∫
fkdµ =

∫
f dµ.

If A is a Borel subset of D, we define integration over the set A by

∫

A

f dµ =
∫

f χAdµ

where χA : �n → � is the ‘indicator function’ such that χA(x) = 1 if x is in A

and χA(x) = 0 otherwise.
Note that, if f (x) � 0 and

∫
f dµ = 0, then f (x) = 0 for µ-almost all x.

As usual, integration is denoted in various ways, such as
∫

f dµ,
∫

f or∫
f (x)dµ(x), depending on the emphasis required. When µ is n-dimensional

Lebesgue measure Ln, we usually write
∫

f dx or
∫

f (x)dx in place of
∫

f dLn.
On a couple of occasions we shall need to use Egoroff’s theorem. Let D be

a Borel subset of �n and µ a measure with µ(D) < ∞. Let f1, f2, . . . and f

be functions from D to � such that fk(x) → f (x) for each x in D. Egoroff’s
theorem states that for any δ > 0, there is a Borel subset E of D such that
µ(D\E) < δ and such that the sequence {fk} converges uniformly to f on E,
i.e. with supx∈E |fk(x) − f (x)| → 0 as k → ∞. For the measures that we shall
be concerned with, it may be shown that we can always take the set E to
be compact.

1.4 Notes on probability theory

For an understanding of some of the later chapters of the book, a basic knowledge
of probability theory is necessary. We give a brief survey of the concepts needed.
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Probability theory starts with the idea of an experiment or trial ; that is, an
action whose outcome is, for all practical purposes, not predetermined. Mathe-
matically, such an experiment is described by a probability space, which has three
components: the set of all possible outcomes of the experiment, the list of all the
events that may occur as consequences of the experiment, and an assessment of
likelihood of these events. For example, if a die is thrown, the possible outcomes
are {1, 2, 3, 4, 5, 6}, the list of events includes ‘a 3 is thrown’, ‘an even number
is thrown’, and ‘at least a 4 is thrown’. For a ‘fair die’ it may be reasonable to
assess the six possible outcomes as equally likely.

The set of all possible outcomes of an experiment is called the sample space,
denoted by �. Questions of interest concerning the outcome of an experiment
can always be phrased in terms of subsets of �; in the above example ‘is an
odd number thrown?’ asks ‘is the outcome in the subset {1, 3, 5}?’ Associat-
ing events dependent on the outcome of the experiment with subsets of � in
this way, it is natural to think of the union A ∪ B as ‘either A or B occurs’,
the intersection A ∩ B as ‘both A and B occur’, and the complement �\A as
the event ‘A does not occur’, for any events A and B. In general, there is a
collection F of subsets of � that particularly interest us, which we call events.
In the example of the die, F would normally be the collection of all subsets
of �, but in more complicated situations a relatively small collection of sub-
sets might be relevant. Usually, F satisfies certain conditions; for example, if
the occurrence of an event interests us, then so does its non-occurrence, so
if A is in F, we would expect the complement �\A also to be in F. We
call a (non-empty) collection F of subsets of the sample space � an event
space if

�\A ∈ F whenever A ∈ F (1.10)

and
∞⋃

i=1

Ai ∈ F whenever Ai ∈ F (1 � i < ∞). (1.11)

It follows from these conditions that Ø and � are in F, and that A\B and⋂∞
i=1 Ai are in F whenever A, B and Ai are in F. As far as our applications

are concerned, we do not, in general, specify F precisely—this avoids technical
difficulties connected with the existence of suitable event spaces.

Next, we associate probabilities with the events of F, with P(A) thought of as
the probability, or likelihood, that the event A occurs. We call P a probability
or probability measure if P assigns a number P(A) to each A in F, such that the
following conditions hold:

0 � P(A) � 1 for all A ∈ F (1.12)

P(Ø) = 0 and P(�) = 1 (1.13)
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and, if A1, A2, . . . are disjoint events in F,

P

( ∞⋃

i=1

Ai

)

=
∞∑

i=1

P(Ai). (1.14)

It should seem natural for any definition of probability to satisfy these conditions.
We call a triple (�,F, P) a probability space if F is an event space of subsets

of � and P is a probability measure defined on the sets of F.
For the die-throwing experiment we might have � = {1, 2, 3, 4, 5, 6} with the

event space consisting of all subsets of �, and with P(A) = 1
6 × number of ele-

ments in A. This describes the ‘fair die’ situation with each outcome equally
likely.

Often, � is an infinite set. For example we might have � = [0, 1] and think
of a random number drawn from [0, 1] with the probability of the number in a
set A as P(A) = length (A). Here the event space might be the Borel subsets of
[0, 1].

The resemblance of the definition of probability to the definition of a measure
in (1.1)–(1.4) and the use of the term probability measure is no coincidence. Prob-
abilities and measures may be put into the same context, with � corresponding
to �n and with the event space corresponding to the Borel sets.

In our applications later on in the book, we shall be particularly interested in
events (on rather large sample spaces) that are virtually certain to occur. We say
that an event A occurs with probability 1 or almost surely if P(A) = 1.

Sometimes, we may possess partial information about the outcome of an exper-
iment; for example, we might be told that the number showing on the die is even.
This leads us to reassess the probabilities of the various events. If A and B are in
F with P(B) > 0, the conditional probability of A given B, denoted by P(A|B),
is defined by

P(A|B) = P(A ∩ B)

P(B)
. (1.15)

This is thought of as the probability of A given that the event B is known to
occur; as would be expected P(B|B) = 1. It is easy to show that (�,F, P′) is a
probability space, where P′(A) = P(A|B). We also have the partition formula: if
B1, B2, . . . are disjoint events with

⋃
i Bi = � and P(Bi) > 0 for all i, then, for

an event A,
P(A) =

∑

i

P(A|Bi)P(Bi). (1.16)

In the case of the ‘fair die’ experiment, if B1 is the event ‘an even number is
thrown’, B2 is ‘an odd number is thrown’ and A is ‘at least 4 is thrown’, then

P(A|B1) = P(4 or 6 is thrown)/P(2, 4 or 6 is thrown) = 2
6/ 3

6 = 2
3 .

P(A|B2) = P(5 is thrown)/P(1, 3 or 5 is thrown) = 1
6/ 3

6 = 1
3

from which (1.16) is easily verified.



20 Mathematical background

We think of two events as independent if the occurrence of one does not affect
the probability that the other occurs, i.e. if P(A|B) = P(A) and P(B|A) = P(B).
Using (1.15), we are led to make the definition that two events A and B in a
probability space are independent if

P(A ∩ B) = P(A)P(B). (1.17)

More generally, an arbitrary collection of events is independent if for every finite
subcollection {Ak : k ∈ J } we have

P

(
⋂

k∈J

Ak

)

=
∏

k∈J

P(Ak). (1.18)

In the die example, it is easy to see that ‘a throw of at least 5’ and ‘an even
number is thrown’ are independent events, but ‘a throw of at least 4’ and ‘an
even number is thrown’ are not.

The idea of a random variable and its expectation (or average or mean) is
fundamental to probability theory. Essentially, a random variable X is a real-
valued function on a sample space. In the die example, X might represent the
score on the die. Alternatively it might represent the reward for throwing a
particular number, for example X(ω) = 0 if ω = 1, 2, 3, or 4, X(5) = 1 and
X(6) = 2. The outcome of an experiment determines a value of the random
variable. The expectation of the random variable is the average of these values
weighted according to the likelihood of each outcome.

The precise definition of a random variable requires a little care. We say that X

is a random variable on a probability space (�,F, P) if X : � → � is a function
such that X−1((−∞, a]) is an event in F for each real number a; in other words,
the set of ω in � with X(ω) � a is in the event space. This condition is equivalent
to saying that X−1(E) is in F for any Borel set E. In particular, for any such E the
probability that the random variable X takes a value in E, i.e. P({ω : X(ω) ∈ E}),
is defined. It may be shown that P({ω : X(ω) ∈ E}) is determined for all Borel
sets E from a knowledge of P({ω : X(ω) � a}) for each real number a. Note that
it is usual to abbreviate expressions such as P({ω : X(ω) ∈ E}) to P(X ∈ E).

It is not difficult to show that if X and Y are random variables on (�,F, P)

and λ is a real number, then X + Y,X − Y, XY and λX are all random variables
(these are defined in the obvious way, for example (X + Y )(ω) = X(ω) + Y (ω)

for each ω ∈ �). Moreover, if X1, X2, . . . is a sequence of random variables with
Xk(ω) increasing and bounded for each ω, then limk→∞ Xk is a random variable.

A collection of random variables {Xk} is independent if, for any Borel sets
Ek, the events {(X ∈ Ek)} are independent in the sense of (1.18); that is if, for
every finite set of indices J ,

P(Xk ∈ Ek for all k ∈ J ) =
∏

k∈J

P(Xk ∈ Ek).
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Intuitively, X and Y are independent if the probability of Y taking any par-
ticular value is unaffected by a knowledge of the value of X. Consider the
probability space representing two successive throws of a die, with sample space
{(x, y) : x, y = 1, 2, . . . , 6} and probability measure P defined by P{(x, y)} = 1

36
for each pair (x, y). If X and Y are the random variables given by the scores
on successive throws, then X and Y are independent, modelling the assumption
that one throw does not affect the other. However, X and X + Y are not inde-
pendent—this reflects that the bigger the score for the first throw, the greater the
chance of a high total score.

The formal definition of the expectation of a random variable is analogous
to the definition of the integral of a function; indeed, expectation is really the
integral of the random variable with respect to the probability measure. Let X be
a random variable on a probability space (�,F, P). First suppose that X(ω) � 0
for all ω in � and that X takes only finitely many values x1, . . . , xk; we call such
a random variable simple. We define the expectation, mean or average E(X) of
X as

E(X) =
k∑

i=1

xiP(X = xi). (1.19)

The expectation of an arbitrary random variable is defined using approximation
by simple random variables. Thus for a non-negative random variable X

E(X) = sup{E(Y ) : Y is a simple random variable

with 0 � Y (ω) � X(ω) for all ω ∈ �}.
Lastly, if X takes both positive and negative values, we let X+ = max{X, 0} and
X− = max{−X, 0}, so that X = X+ − X−, and define

E(X) = E(X+) − E(X−)

provided that both E(X+) < ∞ and E(X−) < ∞.
The random variable X representing the score of a fair die is a simple random

variable, since X(ω) takes just the values 1, . . . , 6. Thus

E(X) =
6∑

i=1

i × 1
6 = 3 1

2 .

Expectation satisfies certain basic properties, analogous to those for the inte-
gral. If X1, X2, . . . are random variables then

E(X1 + X2) = E(X1) + E(X2)

and, more generally,

E

(
k∑

i=1

Xi

)

=
k∑

i=1

E(Xi).
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If λ is a constant
E(λX) = λE(X)

and if the sequence of non-negative random variables X1, X2, . . . is increasing
with X = limk→∞ Xk a (finite) random variable, then

lim
k→∞ E(Xk) = E(X).

Provided that X1 and X2 are independent, we also have

E(X1X2) = E(X1)E(X2).

Thus if Xi represents that kth throw of a fair die in a sequence of throws,
the expectation of the sum of the first k throws is E(X1 + · · · + Xk) = E(X1) +
· · · + E(Xk) = 3 1

2 × k.
We define the conditional expectation E(X|B) of X given an event B with

P(B) > 0 in a similar way, but starting with

E(X|B) =
k∑

i=1

xiP(X = xi |B) (1.20)

in place of (1.19). We get a partition formula resembling (1.16)

E(X) =
∑

i

E(X|Bi)P(Bi) (1.21)

where B1, B2, . . . are disjoint events with
⋃

i Bi = � and P(Bi) > 0.
It is often useful to have an indication of the fluctuation of a random variable

across a sample space. Thus we introduce the variance of the random variable
X as

var(X) = E((X − E(X))2)

= E(X2) − E(X)2

by a simple calculation. Using the properties of expectation, we get

var(λX) = λ2 var(X)

for any real number λ, and

var(X + Y ) = var(X) + var(Y )

provided that X and Y are independent.
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If the probability distribution of a random variable is given by an integral, i.e.

P(X � x) =
∫ x

−∞
f (u)du (1.22)

the function f is called the probability density function for X. It may be shown
from the definition of expectation that

E(X) =
∫ ∞

−∞
uf (u)du

and

E(X2) =
∫ ∞

−∞
u2f (u)du

which allows var(X) = E(X2) − E(X)2 to be calculated.
Note that the density function tells us about the distribution of the random

variable X without reference to the underlying probability space, which, for
many purposes, is irrelevant. We may express the probability that X belongs to
any Borel set E in terms of the density function as

P(X ∈ E) =
∫

E

f (u)du.

We say that a random variable X has uniform distribution on the interval
[a, b] if

P(X � x) = 1

b − a

∫ x

a

du (a < x < b). (1.23)

Thus the probability of X lying in a subinterval of [a, b] is proportional to the
length of the interval. In this case, we get that E(X) = 1

2 (a + b) and var(X) =
1

12 (b − a)2.
A random variable X has normal or Gaussian distribution of mean m and

variance σ 2 if

P(X � x) = 1

σ
√

2π

∫ x

−∞
exp

(−(u − m)2

2σ 2

)
du. (1.24)

It may be verified by integration that E(X) = m and var(X) = σ 2. If X1 and X2

are independent normally distributed random variables of means m1 and m2 and
variances σ 2

1 and σ 2
2 respectively, then X1 + X2 is normal with mean m1 + m2

and variance σ 2
1 + σ 2

2 , and λX1 is normal with mean λm1 and variance λ2σ 2
1 , for

any real number λ.
If we throw a fair die a large number of times, we might expect the average

score thrown to be very close to 3 1
2 , the expectation or mean outcome of each

throw. Moreover, the larger the number of throws, the closer the average should
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be to the mean. This ‘law of averages’ is made precise as the strong law of
large numbers.

Let (�,F, P) be a probability space. Let X1,X2, . . . be random variables that
are independent and that have identical distribution (i.e. for every set E, P(Xi ∈ E)

is the same for all i), with expectation m and variance σ 2, both assumed finite.
For each k we may form the random variable Sk = X1 + · · · + Xk , so that the
random variable (1/k)Sk is the average of the first k trials. The strong law of
large numbers states that, with probability 1,

lim
k→∞

1

k
Sk = m. (1.25)

We can also say a surprising amount about the distribution of the random
variable Sk when k is large. It may be shown that Sk has approximately the
normal distribution with mean km and variance kσ 2. This is the content of the
central limit theorem, which states that, for every real number x,

P
(

Sk − km

σ
√

k
� x

)
→

∫ x

−∞
1√
2π

exp(− 1
2u2)du as k → ∞. (1.26)

An important aspect of the normal distribution now becomes clear—it is the form
of distribution approached by sums of a large number of independent identically
distributed random variables.

We may apply these results to the experiment consisting of an infinite sequence
of die throws. Let � be the set of all infinite sequences {ω = (ω1, ω2, . . .) :
ωi = 1, 2, . . . , 6} (we think of ωi as the outcome of the kth throw). It is possible
to define an event space F and probability measure P in such a way that for any
given k and sequence ω1, . . . , ωk (ωi = 1, 2, . . . , 6), the event ‘the first k throws
are ω1, . . . , ωk’ is in F and has probability ( 1

6 )−k . Let Xk be the random variable
given by the outcome of the kth throw, so that Xk(ω) = ωk . It is easy to see
that the Xk are independent and identically distributed, with mean m = 3 1

2 and
variance 2 11

12 . The strong law of large numbers tells us that, with probability 1, the
average of the first k throws, Sk/k converges to 3 1

2 as k tends to infinity, and the
central limit theorem tells us that, when k is large, the sum Sk is approximately
normally distributed, with mean 3 1

2 × k and variance 2 11
12 × k. Thus if we repeat

the experiment of throwing k dice a large number of times, the sum of the k

throws will have a distribution close to the normal distribution, in the sense
of (1.26).

1.5 Notes and references

The material outlined in this chapter is covered at various levels of sophistication
in numerous undergraduate mathematical texts. Almost any book on mathematical
analysis, for example Rudin (1964) or Apostol (1974), contains the basic theory
of sets and functions. A thorough treatment of measure and probability theory
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may be found in Kingman and Taylor (1966), Billingsley (1995) and Edgar
(1998). For probability theory, the book by Grimmett and Stirzaker (1992) may
be found helpful.

Exercises

The following exercises do no more than emphasize some of the many facts that have
been mentioned in this chapter.

1.1 Verify that for x, y, z ∈ �n, (i) |x + y| � |x| + |y|, (ii) |x − y| �
∣∣
∣|x| − |y|

∣∣
∣,

(iii) |x − y| � |x − z| + |z − y|.
1.2 Show from the definition of δ-neighbourhood that Aδ+δ′ = (Aδ)δ′ .

1.3 Show that a (non-empty) set is bounded if and only if it is contained in some ball
B(0, r) with centre the origin.

1.4 Determine which of the following sets are open and which are closed. In each
case determine the interior and closure of the set. (i) A non-empty finite set A,
(ii) the interval (0, 1), (iii) the interval [0, 1], (iv) the interval [0, 1), (v) the set
{0, 1, 1

2 , 1
3 , 1

4 , . . .}.
1.5 Show that the middle third Cantor set, figure 0.1, is compact and totally discon-

nected. What is its interior, closure and boundary?

1.6 Show that the union of any collection of open subsets of �n is open and that the
intersection of any finite collection of open sets is open. Show that a subset of �n

is closed if and only if its complement is open and hence deduce the corresponding
result for unions and intersections of closed sets.

1.7 Show that if A1 ⊃ A2 ⊃ · · · is a decreasing sequence of non-empty compact subsets
of �n then

⋂∞
k=1 Ak is a non-empty compact set.

1.8 Show that the half-open interval {x ∈ � : 0 � x < 1} is a Borel subset of �.

1.9 Let F be the set of numbers in [0, 1] whose decimal expansions contain the digit 5
infinitely many times. Show that F is a Borel set.

1.10 Show that the coordinate transformation of the plane

(
x1
x2

)
�→

(
c cos θ −c sin θ
c sin θ c cos θ

)(
x1
x2

)
+

(
a1
a2

)

is a similarity of ratio c, and describe the transformation geometrically.

1.11 Find limx→0f (x) and limx→0f (x) where f : �+ → � is given by: (i) sin(x);
(ii) sin(1/x); (iii) x2 + (3 + x) sin(1/x).

1.12 Let f, g : [0, 1] → � be Lipschitz functions. Show that the functions defined on
[0, 1] by f (x) + g(x) and f (x)g(x) are also Lipschitz.

1.13 Let f : � → � be differentiable with |f ′(x)| � c for all x. Show, using the mean
value theorem, that f is a Lipschitz function.

1.14 Show that every Lipschitz function f : � → � is continuous.

1.15 Let f : � → � be given by f (x) = x2 + x. Find (i) f −1(2), (ii) f −1(−2),
(iii) f −1([2, 6]).
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1.16 Show that f (x) = x2 is Lipschitz on [0, 2], bi-Lipschitz on [1, 2], and not Lipschitz
on �.

1.17 Show that if E is a compact subset of �n and f : E → �n is continuous, then f (E)

is compact.

1.18 Let A1, A2, . . ., be a decreasing sequence of Borel subsets of �n and let A =⋂∞
k=1 Ak . If µ is a measure on �n with µ(A1) < ∞, show using (1.6) that µ(Ak) →

µ(A) as k → ∞.

1.19 Show that the point mass concentrated at a (see Example 1.2) is a measure.

1.20 Show how to define a mass distribution on the middle third Cantor set, figure 0.1,
in as uniform a way as possible.

1.21 Verify that Lebesgue measure satisfies (1.1), (1.2) and (1.3).

1.22 Let f : [0, 1] → � be a continuous function. For A a subset of �2 define µ(A) =
L{x : (x, f (x)) ∈ A}, where L is Lebesgue measure. Show that µ is a mass distri-
bution on �2 supported by the graph of f .

1.23 Let D be a Borel subset of �n and let µ be a measure on D with µ(D) < ∞. Let
fk : D → � be a sequence of functions such that fk(x) → f (x) for all x in D.
Prove Egoroff’s theorem: that given ε > 0 there exists a Borel subset A of D with
µ(D\A) < ε such that fk(x) converges to f (x) uniformly for x in A.

1.24 Prove that if µ is a measure on D and f : D → � satisfies f (x) � 0 for all x in
D and

∫
D

f dµ = 0 then f (x) = 0 for µ-almost all x.

1.25 If X is a random variable show that E((X − E(X))2) = E(X2) − E(X)2 (these num-
bers equalling the variance of X).

1.26 Verify that if X has the uniform distribution on [a, b] (see (1.23)) then E(X) =
1
2 (a + b) and var(X) = (b − a)2/12.

1.27 Let A1, A2, . . . be a sequence of independent events in some probability space such
that P(Ak) = p for all k, where 0 < p < 1. Let Nk be the random variable defined
by taking Nk(ω) to equal the number of i with 1 � i � k for which ω ∈ Ai . Use
the strong law of large numbers to show that, with probability 1, Nk/k → p as
k → ∞. Deduce that the proportion of successes in a sequence of independent trials
converges to the probability of success of each trial.

1.28 A fair die is thrown 6000 times. Use the central limit theorem to estimate the
probability that at least 1050 sixes are thrown. (A numerical method will be needed
if the integral obtained is to be evaluated.)



Chapter 2 Hausdorff measure
and dimension

The notion of dimension is central to fractal geometry. Roughly, dimension indi-
cates how much space a set occupies near to each of its points. Of the wide variety
of ‘fractal dimensions’ in use, the definition of Hausdorff, based on a construc-
tion of Carathéodory, is the oldest and probably the most important. Hausdorff
dimension has the advantage of being defined for any set, and is mathematically
convenient, as it is based on measures, which are relatively easy to manipulate.
A major disadvantage is that in many cases it is hard to calculate or to estimate
by computational methods. However, for an understanding of the mathematics
of fractals, familiarity with Hausdorff measure and dimension is essential.

2.1 Hausdorff measure

Recall that if U is any non-empty subset of n-dimensional Euclidean space, �n,
the diameter of U is defined as |U | = sup{|x − y| : x, y ∈ U }, i.e. the greatest
distance apart of any pair of points in U . If {Ui} is a countable (or finite) collection
of sets of diameter at most δ that cover F , i.e. F ⊂ ⋃∞

i=1 Ui with 0 � |Ui | � δ

for each i, we say that {Ui} is a δ-cover of F .
Suppose that F is a subset of �n and s is a non-negative number. For any

δ > 0 we define

Hs
δ(F ) = inf

{ ∞∑

i=1

|Ui|s : {Ui} is a δ-cover of F

}

. (2.1)

Thus we look at all covers of F by sets of diameter at most δ and seek to minimize
the sum of the sth powers of the diameters (figure 2.1). As δ decreases, the class
of permissible covers of F in (2.1) is reduced. Therefore, the infimum Hs

δ(F )

increases, and so approaches a limit as δ → 0. We write

Hs(F ) = lim
δ→0

Hs
δ(F ). (2.2)
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F

d

Figure 2.1 A set F and two possible δ-covers for F . The infimum of �|Ui |s over all
such δ-covers {Ui} gives Hs

δ(F )

This limit exists for any subset F of �n, though the limiting value can be
(and usually is) 0 or ∞. We call Hs(F ) the s-dimensional Hausdorff measure
of F .

With a certain amount of effort, Hs may be shown to be a measure; see
section 1.3. It is straightforward to show that Hs(Ø) = 0, that if E is con-
tained in F then Hs(E) � Hs(F ), and that if {Fi} is any countable collection of
sets, then

Hs

( ∞⋃

i=1

Fi

)

�
∞∑

i=1

Hs(Fi). (2.3)

It is rather harder to show that there is equality in (2.3) if the {Fi} are disjoint
Borel sets.

Hausdorff measures generalize the familiar ideas of length, area, volume,
etc. It may be shown that, for subsets of �n, n-dimensional Hausdorff mea-
sure is, to within a constant multiple, just n-dimensional Lebesgue measure,
i.e. the usual n-dimensional volume. More precisely, if F is a Borel subset of
�n, then

Hn(F ) = c−1
n voln(F ) (2.4)

where cn is the volume of an n-dimensional ball of diameter 1, so that cn =
πn/2/2n(n/2)! if n is even and cn = π(n−1)/2((n − 1)/2)!/n! if n is odd. Similarly,
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Length × l

Area × l2

Hs × ls

Figure 2.2 Scaling sets by a factor λ increases length by a factor λ, area by a factor λ2,
and s-dimensional Hausdorff measure by a factor λs

for ‘nice’ lower-dimensional subsets of �n, we have that H0(F ) is the number
of points in F ; H1(F ) gives the length of a smooth curve F ; H2(F ) = (4/π) ×
area (F ) if F is a smooth surface; H3(F ) = (6/π) × vol(F ); and Hm(F ) =
c−1
m × volm(F ) if F is a smooth m-dimensional submanifold of �n (i.e. an m-

dimensional surface in the classical sense).
The scaling properties of length, area and volume are well known. On magni-

fication by a factor λ, the length of a curve is multiplied by λ, the area of a plane
region is multiplied by λ2 and the volume of a 3-dimensional object is multiplied
by λ3. As might be anticipated, s-dimensional Hausdorff measure scales with
a factor λs (figure 2.2). Such scaling properties are fundamental to the theory
of fractals.

Scaling property 2.1

Let S be a similarity transformation of scale factor λ > 0. If F ⊂ �n, then

Hs(S(F )) = λsHs(F ). (2.5)
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Proof. If {Ui} is a δ-cover of F then {S(Ui)} is a λδ-cover of S(F ), so

�|S(Ui)|s = λs�|Ui|s

so
Hs

λδ(S(F )) � λsHs
δ(F )

on taking the infimum. Letting δ → 0 gives that Hs(S(F )) � λsHs(F ). Replacing
S by S−1, and so λ by 1/λ, and F by S(F ) gives the opposite inequality required.

�

A similar argument gives the following basic estimate of the effect of more
general transformations on the Hausdorff measures of sets.

Proposition 2.2

Let F ⊂ �n and f : F → �m be a mapping such that

|f (x) − f (y)| � c|x − y|α (x, y ∈ F) (2.6)

for constants c > 0 and α > 0. Then for each s

Hs/α(f (F )) � cs/αHs(F ). (2.7)

Proof. If {Ui} is a δ-cover of F , then, since |f (F ∩ Ui)| � c|F ∩ Ui |α � c|Ui |α , it
follows that {f (F ∩ Ui)} is an ε-cover of f (F ), where ε = cδα . Thus∑

i |f (F ∩ Ui)|s/α � cs/α
∑

i |Ui|s , so that Hs/α
ε (f (F )) � cs/αHs

δ(F ). As δ → 0,
so ε → 0, giving (2.7). �

Condition (2.6) is known as a Hölder condition of exponent α; such a condition
implies that f is continuous. Particularly important is the case α = 1, i.e.

|f (x) − f (y)| � c|x − y| (x, y ∈ F) (2.8)

when f is called a Lipschitz mapping, and

Hs(f (F )) � csHs(F ). (2.9)

In particular (2.9) holds for any differentiable function with bounded derivative;
such a function is necessarily Lipschitz as a consequence of the mean value
theorem. If f is an isometry, i.e. |f (x) − f (y)| = |x − y|, then Hs(f (F )) =
Hs(F ). Thus, Hausdorff measures are translation invariant (i.e. Hs(F + z) =
Hs(F ), where F + z = {x + z : x ∈ F }), and rotation invariant, as would
certainly be expected.
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2.2 Hausdorff dimension

Returning to equation (2.1) it is clear that for any given set F ⊂ �n and δ < 1,
Hs

δ(F ) is non-increasing with s, so by (2.2) Hs(F ) is also non-increasing. In
fact, rather more is true: if t > s and {Ui} is a δ-cover of F we have

∑

i

|Ui |t �
∑

i

|Ui|t−s |Ui |s � δt−s
∑

i

|Ui |s (2.10)

so, taking infima, Ht
δ(F ) � δt−sHs

δ(F ). Letting δ → 0 we see that if Hs(F ) < ∞
then Ht (F ) = 0 for t > s. Thus a graph of Hs(F ) against s (figure 2.3) shows
that there is a critical value of s at which Hs(F ) ‘jumps’ from ∞ to 0. This
critical value is called the Hausdorff dimension of F , and written dimHF ; it is
defined for any set F ⊂ �n. (Note that some authors refer to Hausdorff dimension
as Hausdorff–Besicovitch dimension.) Formally

dimHF = inf{s � 0 : Hs(F ) = 0} = sup{s : Hs(F ) = ∞} (2.11)

(taking the supremum of the empty set to be 0), so that

Hs(F ) =
{∞ if 0 � s < dimHF

0 if s > dimHF.
(2.12)

If s = dimHF , then Hs(F ) may be zero or infinite, or may satisfy

0 < Hs(F ) < ∞.

Hs (F )

∞

0
0 dimH F n

s

Figure 2.3 Graph of Hs (F ) against s for a set F . The Hausdorff dimension is the value
of s at which the ‘jump’ from ∞ to 0 occurs
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A Borel set satisfying this last condition is called an s-set. Mathematically,
s-sets are by far the most convenient sets to study, and fortunately they occur
surprisingly often.

For a very simple example, let F be a flat disc of unit radius in �3. From
familiar properties of length, area and volume, H1(F ) = length (F ) = ∞,
0 < H2(F ) = (4/π) × area (F ) = 4 < ∞ and H3(F ) = (6/π) × vol(F ) = 0.
Thus dimHF = 2, with Hs(F ) = ∞ if s < 2 and Hs(F ) = 0 if s > 2.

Hausdorff dimension satisfies the following properties (which might well be
expected to hold for any reasonable definition of dimension).

Monotonicity. If E ⊂ F then dimHE � dimHF . This is immediate from the
measure property that Hs(E) � Hs(F ) for each s.

Countable stability. If F1, F2, . . . is a (countable) sequence of sets then
dimH

⋃∞
i=1 Fi = sup1�i<∞{dimHFi}. Certainly, dimH

⋃∞
i=1 Fi � dimHFj for each

j from the monotonicity property. On the other hand, if s > dimHFi for all i,
then Hs(Fi) = 0, so that Hs(

⋃∞
i=1 Fi) = 0, giving the opposite inequality.

Countable sets. If F is countable then dimHF = 0. For if Fi is a single point,
H0(Fi) = 1 and dimHFi = 0, so by countable stability dimH

⋃∞
i=1 Fi = 0.

Open sets. If F ⊂ �n is open, then dimHF = n. For since F contains a ball of
positive n-dimensional volume, dimHF � n, but since F is contained in countably
many balls, dimHF � n using countable stability and monotonicity.

Smooth sets. If F is a smooth (i.e. continuously differentiable) m-dimensional
submanifold (i.e. m-dimensional surface) of �n then dimHF = m. In particu-
lar smooth curves have dimension 1 and smooth surfaces have dimension 2.
Essentially, this may be deduced from the relationship between Hausdorff and
Lebesgue measures, see also Exercise 2.7.

The transformation properties of Hausdorff dimension follow immediately
from the corresponding ones for Hausdorff measures given in Proposition 2.2.

Proposition 2.3

Let F ⊂ �n and suppose that f : F → �m satisfies a Hölder condition

|f (x) − f (y)| � c|x − y|α (x, y ∈ F).

Then dimHf (F ) � (1/α)dimHF .

Proof. If s > dimHF then by Proposition 2.2 Hs/α(f (F )) � cs/αHs(F ) = 0,
implying that dimHf (F ) � s/α for all s > dimHF . �

Corollary 2.4

(a) If f : F → �m is a Lipschitz transformation (see (2.8)) then dimHf (F ) �
dimHF .

(b) If f : F → �m is a bi-Lipschitz transformation, i.e.
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c1|x − y| � |f (x) − f (y)| � c2|x − y| (x, y ∈ F) (2.13)

where 0 < c1 � c2 < ∞, then dimHf (F ) = dimHF .

Proof. Part (a) follows from Proposition 2.3 taking α = 1. Applying this to f −1 :
f (F ) → F gives the other inequality required for (b). �

This corollary reveals a fundamental property of Hausdorff dimension: Haus-
dorff dimension is invariant under bi-Lipschitz transformations. Thus if two sets
have different dimensions there cannot be a bi-Lipschitz mapping from one onto
the other. This is reminiscent of the situation in topology where various ‘invari-
ants’ (such as homotopy or homology groups) are set up to distinguish between
sets that are not homeomorphic: if the topological invariants of two sets differ
then there cannot be a homeomorphism (continuous one-to-one mapping with
continuous inverse) between the two sets.

In topology two sets are regarded as ‘the same’ if there is a homeomor-
phism between them. One approach to fractal geometry is to regard two sets
as ‘the same’ if there is a bi-Lipschitz mapping between them. Just as topo-
logical invariants are used to distinguish between non-homeomorphic sets, we
may seek parameters, including dimension, to distinguish between sets that are
not bi-Lipschitz equivalent. Since bi-Lipschitz transformations (2.13) are neces-
sarily homeomorphisms, topological parameters provide a start in this direction,
and Hausdorff dimension (and other definitions of dimension) provide further
distinguishing characteristics between fractals.

In general, the dimension of a set alone tells us little about its topological
properties. However, any set of dimension less than 1 is necessarily so sparse
as to be totally disconnected; that is, no two of its points lie in the same con-
nected component.

Proposition 2.5

A set F ⊂ �n with dimHF < 1 is totally disconnected.

Proof. Let x and y be distinct points of F . Define a mapping f : �n → [0,∞)

by f (z) = |z − x|. Since f does not increase distances, as |f (z) − f (w)| =∣
∣∣|z − x| − |w − x|

∣
∣∣ � |(z − x) − (w − x)| = |z − w|, we have from Corollary

2.4(a) that dimHf (F ) � dimHF < 1. Thus f (F ) is a subset of � of H1-measure
or length zero, and so has a dense complement. Choosing r with r /∈ f (F ) and
0 < r < f (y) it follows that

F = {z ∈ F : |z − x| < r} ∪ {z ∈ F : |z − x| > r}.

Thus F is contained in two disjoint open sets with x in one set and y in the
other, so that x and y lie in different connected components of F . �
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2.3 Calculation of Hausdorff dimension—simple examples

This section indicates how to calculate the Hausdorff dimension of some simple
fractals such as some of those mentioned in the Introduction. Other methods will
be encountered throughout the book. It is important to note that most dimension
calculations involve an upper estimate and a lower estimate, which are hopefully
equal. Each of these estimates usually involves a geometric observation followed
by a calculation.

Example 2.6

Let F be the Cantor dust constructed from the unit square as in figure 0.4. (At
each stage of the construction the squares are divided into 16 squares with a
quarter of the side length, of which the same pattern of four squares is retained.)
Then 1 � H1(F ) � √

2, so dimHF = 1.

Calculation. Observe that Ek, the kth stage of the construction, consists of 4k

squares of side 4−k and thus of diameter 4−k
√

2. Taking the squares of Ek as a
δ-cover of F where δ = 4−k

√
2, we get an estimate H1

δ(F ) � 4k4−k
√

2 for the
infimum in (2.1). As k → ∞ so δ → 0 giving H1(F ) � √

2.
For the lower estimate, let proj denote orthogonal projection onto the x-axis.

Orthogonal projection does not increase distances, i.e. |proj x − proj y| � |x − y|
if x, y ∈ �2, so proj is a Lipschitz mapping. By virtue of the construction of F ,
the projection or ‘shadow’ of F on the x-axis, proj F , is the unit interval [0, 1].
Using (2.9)

1 = length [0, 1] = H1([0, 1]) = H1(proj F) � H1(F ). �

Note that the same argument and result hold for a set obtained by repeated
division of squares into m2 squares of side length 1/m of which one square in
each column is retained.

This trick of using orthogonal projection to get a lower estimate of Hausdorff
measure only works in special circumstances and is not the basis of a more
general method. Usually we need to work rather harder!

Example 2.7

Let F be the middle third Cantor set (see figure 0.1). If s = log 2/ log 3 =
0.6309 . . . then dimHF = s and 1

2 � Hs(F ) � 1.

Heuristic calculation. The Cantor set F splits into a left part FL = F ∩ [0, 1
3 ] and

a right part FR = F ∩ [ 2
3 , 1]. Clearly both parts are geometrically similar to F

but scaled by a ratio 1
3 , and F = FL ∪ FR with this union disjoint. Thus for any s

Hs(F ) = Hs(FL) + Hs(FR) = ( 1
3 )sHs(F ) + ( 1

3 )sHs(F )
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by the scaling property 2.1 of Hausdorff measures. Assuming that at the critical
value s = dimHF we have 0 < Hs(F ) < ∞ (a big assumption, but one that can
be justified) we may divide by Hs(F ) to get 1 = 2( 1

3 )s or s = log 2/ log 3.

Rigorous calculation. We call the intervals that make up the sets Ek in the con-
struction of F level-k intervals. Thus Ek consists of 2k level-k intervals each of
length 3−k .

Taking the intervals of Ek as a 3−k-cover of F gives that Hs
3−k (F ) � 2k3−ks

= 1 if s = log 2/ log 3. Letting k → ∞ gives Hs(F ) � 1.
To prove that Hs(F ) � 1

2 we show that

∑
|Ui |s � 1

2 = 3−s (2.14)

for any cover {Ui} of F . Clearly, it is enough to assume that the {Ui} are intervals,
and by expanding them slightly and using the compactness of F , we need only
verify (2.14) if {Ui} is a finite collection of closed subintervals of [0, 1]. For each
Ui , let k be the integer such that

3−(k+1) � |Ui | < 3−k. (2.15)

Then Ui can intersect at most one level-k interval since the separation of these
level-k intervals is at least 3−k. If j � k then, by construction, Ui intersects
at most 2j−k = 2j 3−sk � 2j 3s |Ui |s level-j intervals of Ej , using (2.15). If we
choose j large enough so that 3−(j+1) � |Ui | for all Ui , then, since the {Ui}
intersect all 2j basic intervals of length 3−j , counting intervals gives 2j �∑

i 2j 3s |Ui |s , which reduces to (2.14). �

With extra effort, the calculation can be adapted to show that Hs(F ) = 1.
It is already becoming apparent that calculation of Hausdorff measures and

dimensions can be a little involved, even for simple sets. Usually it is the lower
estimate that is awkward to obtain.

The ‘heuristic’ method of calculation used in Example 2.7 gives the right
answer for the dimension of many self-similar sets. For example, the von Koch
curve is made up of four copies of itself scaled by a factor 1

3 , and hence has
dimension log 4/ log 3. More generally, if F = ⋃m

i=1 Fi , where each Fi is geo-
metrically similar to F but scaled by a factor ci then, provided that the Fi

do not overlap ‘too much’, the heuristic argument gives dimHF as the num-
ber s satisfying

∑m
i=1 cs

i = 1. The validity of this formula is discussed fully in
Chapter 9.

*2.4 Equivalent definitions of Hausdorff dimension

It is worth pointing out that there are other classes of covering set that define
measures leading to Hausdorff dimension. For example, we could use coverings
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by spherical balls: letting

Bs
δ(F ) = inf{�|Bi|s : {Bi} is a δ-cover of F by balls} (2.16)

we obtain a measure Bs(F ) = limδ→0 Bs
δ(F ) and a ‘dimension’ at which Bs(F )

jumps from ∞ to 0. Clearly Hs
δ(F ) � Bs

δ(F ) since any δ-cover of F by balls
is a permissible covering in the definition of Hs

δ . Also, if {Ui} is a δ-cover of
F , then {Bi} is a 2δ-cover, where, for each i, Bi is chosen to be some ball
containing Ui and of radius |Ui | � δ. Thus �|Bi|s � �(2|Ui|)s = 2s�|Ui|s , and
taking infima gives Bs

2δ(F ) � 2sHs
δ(F ). Letting δ → 0 it follows that Hs(F ) �

Bs(F ) � 2sHs(F ). In particular, this implies that the values of s at which Hs

and Bs jump from ∞ to 0 are the same, so that the dimensions defined by the
two measures are equal.

It is easy to check that we get the same values for Hausdorff measure and
dimension if in (2.1) we use δ-covers of just open sets or just closed sets. More-
over, if F is compact, then, by expanding the covering sets slightly to open
sets, and taking a finite subcover, we get the same value of Hs(F ) if we merely
consider δ-covers by finite collections of sets.

Net measures are another useful variant. For the sake of simplicity let F

be a subset of the interval [0, 1). A binary interval is an interval of the form
[r2−k, (r + 1)2−k) where k = 0, 1, 2, . . . and r = 0, 1, . . . , 2k − 1. We define

Ms
δ(F ) = inf{�|Ui|s : {Ui} is a δ-cover of F by binary intervals} (2.17)

leading to the net measures

Ms(F ) = lim
δ→0

Ms
δ(F ). (2.18)

Since any interval U ⊂ [0, 1) is contained in two consecutive binary intervals
each of length at most 2|U | we see, in just the same way as for the measure
Bs , that

Hs(F ) � Ms(F ) � 2s+1Hs(F ). (2.19)

It follows that the value of s at which Ms(F ) jumps from ∞ to 0 equals the Haus-
dorff dimension of F , i.e. both definitions of measure give the same dimension.

For certain purposes net measures are much more convenient than Hausdorff
measures. This is because two binary intervals are either disjoint or one of them
is contained in the other, allowing any cover of binary intervals to be reduced to
a cover of disjoint binary intervals.

*2.5 Finer definitions of dimension

It is sometimes desirable to have a sharper indication of dimension than just a
number. To achieve this let h : �+ → �+ be a function that is increasing and
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continuous, which we call a dimension function or gauge function. Analogously
to (2.1) we define

Hh
δ (F ) = inf{�h(|Ui|) : {Ui} is a δ-cover of F } (2.20)

for F a subset of �n. This leads to a measure, taking Hh(F ) = limδ→0 Hh
δ (F ).

(If h(t) = t s this is the usual definition of s-dimensional Hausdorff measure.) If
h and g are dimension functions such that h(t)/g(t) → 0 as t → 0 then, by an
argument similar to (2.10), we get that Hh(F ) = 0 whenever Hg(F ) < ∞. Thus
partitioning the dimension functions into those for which Hh is finite and those
for which it is infinite gives a more precise indication of the ‘dimension’ of F

than just the number dimHF .
An important example of this is Brownian motion in �3 (see Chapter 16

for further details). It may be shown that (with probability 1) a Brownian path
has Hausdorff dimension 2 but with H2-measure equal to 0. More refined cal-
culations show that such a path has positive and finite Hh-measure, where
h(t) = t2 log log(1/t). Although Brownian paths have dimension 2, the dimen-
sion is, in a sense, logarithmically smaller than 2.

2.6 Notes and references

The idea of defining measures using covers of sets was introduced by
Carathéodory (1914). Hausdorff (1919) used this method to define the measures
that now bear his name, and showed that the middle third Cantor set has positive
and finite measure of dimension log 2/ log 3. Properties of Hausdorff measures
have been developed ever since, not least by Besicovitch and his students.

Technical aspects of Hausdorff measures and dimensions are discussed in rather
more detail in Falconer (1985a), and in greater generality in the books of Rogers
(1998), Federer (1996) and Mattila (1995). Merzenich and Staiger (1994) relate
Hausdorff dimension to formal languages and automata theory.

Exercises

2.1 Verify that the value of Hs (F ) is unaltered if, in (2.1), we only consider δ-covers
by sets {Ui} that are all closed.

2.2 Show that H0(F ) equals the number of points in the set F .

2.3 Verify from the definition that Hs(Ø) = 0, that Hs (E) ⊂ Hs (F ) if E ⊂ F , and that
Hs (

⋃∞
i=1 Fi) �

∑∞
i=1 Hs(Fi).

2.4 Let F be the closed interval [0, 1]. Show that Hs (F ) = ∞ if 0 � s < 1, that
Hs (F ) = 0 if s > 1, and that 0 < H1(F ) < ∞.

2.5 Let f : � → � be a differentiable function with continuous derivative. Show that
dimHf (F ) � dimHF for any set F . (Consider the case of F bounded first and show
that f is Lipschitz on F .)
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2.6 Let f : � → � be the function f (x) = x2, and let F be any subset of �. Show that
dimHf (F ) = dimHF .

2.7 Let f : [0, 1] → � be a Lipschitz function. Writing graph f = {(x, f (x)) : 0 � x

� 1}, show that dimHgraph f = 1. Note, in particular, that this is true if f is con-
tinuously differentiable, see Exercise 1.13.

2.8 What is the Hausdorff dimension of the sets {0, 1, 2, 3, . . .} and {0, 1, 1
2 , 1

3 , 1
4 , . . .}

in �?

2.9 Let F be the set consisting of the numbers between 0 and 1 whose decimal expan-
sions do not contain the digit 5. Use a ‘heuristic’ argument to show that dimHF =
log 9/ log 10. Can you prove this by a rigorous argument? Generalize this result.

2.10 Let F consist of the points (x, y) ∈ �2 such that the decimal expansions of nei-
ther x or y contain the digit 5. Use a ‘heuristic’ argument to show that dimHF =
2 log 9/ log 10.

2.11 Use a ‘heuristic’ argument to show that the Hausdorff dimension of the set depicted
in figure 0.5 is given by the solution of the equation 4( 1

4 )s + ( 1
2 )s = 1. By solving

a quadratic equation in ( 1
2 )s , find an explicit expression for s.

2.12 Let F be the set of real numbers with base-3 expansion bmbm−1 · · · b1 · a1a2 · · · with
none of the digits bi or ai equal to 1. (Thus F is constructed by a Cantor-like process
extending outwards as well as inwards.) What is the Hausdorff dimension of F ?

2.13 What is the Hausdorff dimension of the set of numbers x with base-3 expansion
0 · a1a2 · · · for which there is a positive integer k (which may depend on x) such
that ai �= 1 for all i � k?

2.14 Let F be the middle-λ Cantor set (obtained by removing a proportion 0 < λ < 1
from the middle of intervals). Use a ‘heuristic argument’ to show that dimHF =
log 2/ log(2/(1 − λ)). Now let E = F × F ⊂ �2. Show in the same way that
dimHE = 2 log 2/ log(2/(1 − λ)).

2.15 Show that there is a totally disconnected subset of the plane of Hausdorff dimension
s for every 0 � s � 2. (Modify the construction of the Cantor dust in figure 0.4.)

2.16 Let S be the unit circle in the plane, with points on S parameterized by the angle θ

subtended at the centre with a fixed axis, so that θ1 and θ2 represent the same point if
and only if θ1 and θ2 differ by a multiple of 2π , in the usual way. Let F = {θ ∈ S :
0 � 3kθ � π(mod 2π) for all k = 1, 2, . . .}. Show that dimHF = log 2/ log 3.

2.17 Show that if h and g are dimension functions such that h(t)/g(t) → 0 as t → 0
then Hh(F ) = 0 whenever Hg(F ) < ∞.



Chapter 3 Alternative definitions
of dimension

Hausdorff dimension, discussed in the last chapter, is the principal definition of
dimension that we shall work with. However, other definitions are in widespread
use, and it is appropriate to examine some of these and their inter-relationship. Not
all definitions are generally applicable—some only describe particular classes of
set, such as curves.

Fundamental to most definitions of dimension is the idea of ‘measurement at
scale δ’. For each δ, we measure a set in a way that ignores irregularities of size
less than δ, and we see how these measurements behave as δ → 0. For example,
if F is a plane curve, then our measurement, Mδ(F ), might be the number of
steps required by a pair of dividers set at length δ to traverse F . A dimension of
F is then determined by the power law (if any) obeyed by Mδ(F ) as δ → 0. If

Mδ(F ) ∼ cδ−s (3.1)

for constants c and s, we might say that F has ‘divider dimension’ s, with c

regarded as the ‘s-dimensional length’ of F . Taking logarithms

log Mδ(F ) � log c − s log δ (3.2)

in the sense that the difference of the two sides tends to 0 with δ, and

s = lim
δ→0

log Mδ(F )

− log δ
. (3.3)

These formulae are appealing for computational or experimental purposes, since s

can be estimated as minus the gradient of a log–log graph plotted over a suitable
range of δ; see figure 3.1. Of course, for real phenomena, we can only work
with a finite range of δ; theory and experiment diverge before an atomic scale is
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log d

log Md (F )

log c

Figure 3.1 Empirical estimation of a dimension of a set F , on the power-law assumption
Mδ(F ) ∼ cδ−s

reached. For example, if F is the coastline of Britain, plotting a log–log graph
for δ between 20 m and 200 km gives the divider dimension of F about 1.2.

There may be no exact power law for Mδ(F ), and the closest we can get to
(3.3) are the lower and upper limits.

For the value of s given by (3.1) to behave like a dimension, the method of
measurement needs to scale with the set, so that doubling the size of F and at
the same time doubling the scale at which measurement takes place does not
affect the answer; that is, we require Mδ(δF ) = M1(F ) for all δ. If we modify
our example and redefine Mδ(F ) to be the sum of the divider step lengths then
Mδ(F ) is homogeneous of degree 1, i.e. Mδ(δF ) = δ1M1(F ) for δ > 0, and this
must be taken into account when defining the dimension. In general, if Mδ(F ) is
homogeneous of degree d , that is Mδ(δF ) = δdM1(F ), then a power law of the
form Mδ(F ) ∼ cδd−s corresponds to a dimension s.

There are no hard and fast rules for deciding whether a quantity may reasonably
be regarded as a dimension. There are many definitions that do not fit exactly into
the above, rather simplified, scenario. The factors that determine the acceptability
of a definition of a dimension are recognized largely by experience and intuition.
In general one looks for some sort of scaling behaviour, a naturalness of the
definition in the particular context and properties typical of dimensions such as
those discussed below.

A word of warning: as we shall see, apparently similar definitions of dimen-
sion can have widely differing properties. It should not be assumed that different
definitions give the same value of dimension, even for ‘nice’ sets. Such assump-
tions have led to major misconceptions and confusion in the past. It is necessary
to derive the properties of any ‘dimension’ from its definition. The properties of
Hausdorff dimension (on which we shall largely concentrate in the later chapters
of this book) do not necessarily all hold for other definitions.
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What are the desirable properties of a ‘dimension’? Those derived in the last
chapter for Hausdorff dimension are fairly typical.

Monotonicity. If E ⊂ F then dimHE � dimHF .
Stability. dimH(E ∪ F) = max(dimHE, dimHF).
Countable stability. dimH

(⋃∞
i=1 Fi

) = sup1�i<∞ dimHFi .
Geometric invariance. dimHf (F ) = dimHF if f is a transformation of �n

such as a translation, rotation, similarity or affinity.
Lipschitz invariance. dimHf (F ) = dimHF if f is a bi-Lipschitz transforma-

tion.
Countable sets. dimHF = 0 if F is finite or countable.
Open sets. If F is an open subset of �n then dimHF = n.
Smooth manifolds. dimHF = m if F is a smooth m-dimensional manifold

(curve, surface, etc.).
All definitions of dimension are monotonic, most are stable, but, as we shall

see, some common definitions fail to exhibit countable stability and may have
countable sets of positive dimension. All the usual dimensions are Lipschitz
invariant, and, therefore, geometrically invariant. The ‘open sets’ and ‘smooth
manifolds’ properties ensure that the dimension is an extension of the classi-
cal definition. Note that different definitions of dimension can provide different
information about which sets are Lipschitz equivalent.

3.1 Box-counting dimensions

Box-counting or box dimension is one of the most widely used dimensions.
Its popularity is largely due to its relative ease of mathematical calculation and
empirical estimation. The definition goes back at least to the 1930s and it has been
variously termed Kolmogorov entropy, entropy dimension, capacity dimension (a
term best avoided in view of potential theoretic associations), metric dimension,
logarithmic density and information dimension. We shall always refer to box or
box-counting dimension to avoid confusion.

Let F be any non-empty bounded subset of �n and let Nδ(F ) be the smallest
number of sets of diameter at most δ which can cover F . The lower and upper
box-counting dimensions of F respectively are defined as

dimBF = lim
δ→0

log Nδ(F )

− log δ
(3.4)

dimBF = lim
δ→0

log Nδ(F )

− log δ
. (3.5)

If these are equal we refer to the common value as the box-counting dimension
or box dimension of F

dimBF = lim
δ→0

log Nδ(F )

− log δ
. (3.6)
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Here, and throughout the book, we assume that δ > 0 is sufficiently small to
ensure that − log δ and similar quantities are strictly positive. To avoid problems
with ‘log 0’ or ‘log ∞’ we generally consider box dimension only for non-empty
bounded sets. In developing the general theory of box dimensions we assume
that sets considered are non-empty and bounded.

There are several equivalent definitions of box dimension that are sometimes
more convenient to use. Consider the collection of cubes in the δ-coordinate
mesh of �n, i.e. cubes of the form

[m1δ, (m1 + 1)δ] × · · · × [mnδ, (mn + 1)δ]

where m1, . . . , mn are integers. (Recall that a ‘cube’ is an interval in �1 and a
square in �2.) Let N ′

δ(F ) be the number of δ-mesh cubes that intersect F . They
obviously provide a collection of N ′

δ(F ) sets of diameter δ
√

n that cover F , so

Nδ
√

n(F ) � N ′
δ(F ).

If δ
√

n < 1 then
log Nδ

√
n(F )

− log(δ
√

n)
� log N ′

δ(F )

− log
√

n − log δ

so taking limits as δ → 0

dimBF � lim
δ→0

log N ′
δ(F )

− log δ
(3.7)

and

dimBF � lim
δ→0

log N ′
δ(F )

− log δ
. (3.8)

On the other hand, any set of diameter at most δ is contained in 3n mesh cubes
of side δ (by choosing a cube containing some point of the set together with its
neighbouring cubes). Thus

N ′
δ(F ) � 3nNδ(F )

and taking logarithms and limits as δ → 0 leads to the opposite inequalities to
(3.7) and (3.8). Hence to find the box dimensions (3.4)–(3.6), we can equally
well take Nδ(F ) to be the number of mesh cubes of side δ that intersect F .

This version of the definitions is widely used empirically. To find the box dimen-
sion of a plane set F we draw a mesh of squares or boxes of side δ and count the num-
ber Nδ(F ) that overlap the set for various small δ (hence the name ‘box-counting’).
The dimension is the logarithmic rate at which Nδ(F ) increases as δ → 0, and may
be estimated by the gradient of the graph of log Nδ(F ) against − log δ.

This definition gives an interpretation of the meaning of box dimension. The
number of mesh cubes of side δ that intersect a set is an indication of how spread
out or irregular the set is when examined at scale δ. The dimension reflects how
rapidly the irregularities develop as δ → 0.
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Another frequently used definition of box dimension is obtained by taking
Nδ(F ) in (3.4)–(3.6) to be the smallest number of arbitrary cubes of side δ

required to cover F . The equivalence of this definition follows as in the mesh
cube case, noting that any cube of side δ has diameter δ

√
n, and that any set of

diameter of at most δ is contained in a cube of side δ.
Similarly, we get exactly the same values if in (3.4)–(3.6) we take Nδ(F ) as

the smallest number of closed balls of radius δ that cover F .
A less obviously equivalent formulation of box dimension has the largest

number of disjoint balls of radius δ with centres in F . Let this number be N ′
δ(F ),

and let B1, . . . , BN ′
δ
(F ) be disjoint balls centred in F and of radius δ. If x belongs

to F then x must be within distance δ of one of the Bi , otherwise the ball of centre
x and radius δ can be added to form a larger collection of disjoint balls. Thus the
N ′

δ(F ) balls concentric with the Bi but of radius 2δ (diameter 4δ) cover F , giving

N4δ(F ) � N ′
δ(F ). (3.9)

Suppose also that B1, . . . , BN ′
δ
(F ) are disjoint balls of radii δ with centres in F .

Let U1, . . . , Uk be any collection of sets of diameter at most δ which cover F .
Since the Uj must cover the centres of the Bi , each Bi must contain at least one
of the Uj . As the Bi are disjoint there are at least as many Uj as Bi . Hence

N ′
δ(F ) � Nδ(F ). (3.10)

Taking logarithms and limits of (3.9) and (3.10) shows that the values of (3.4)–
(3.6) are unaltered if Nδ(F ) is replaced by this N ′

δ(F ).
These various definitions are summarized below and in figure 3.2.

Equivalent definitions 3.1

The lower and upper box-counting dimensions of a subset F of �n are given by

dimBF = lim
δ→0

log Nδ(F )

− log δ
(3.11)

dimBF = lim
δ→0

log Nδ(F )

− log δ
(3.12)

and the box-counting dimension of F by

dimBF = lim
δ→0

log Nδ(F )

− log δ
(3.13)

(if this limit exists), where Nδ(F ) is any of the following :

(i) the smallest number of closed balls of radius δ that cover F ;
(ii) the smallest number of cubes of side δ that cover F ;

(iii) the number of δ-mesh cubes that intersect F ;
(iv) the smallest number of sets of diameter at most δ that cover F ;
(v) the largest number of disjoint balls of radius δ with centres in F.



44 Alternative definitions of dimension

F

(i)

(ii) (iii)

(iv) (v)d

Figure 3.2 Five ways of finding the box dimension of F ; see Equivalent definitions 3.1.
The number Nδ(F ) is taken to be: (i) the least number of closed balls of radius δ that
cover F ; (ii) the least number of cubes of side δ that cover F ; (iii) the number of δ-mesh
cubes that intersect F ; (iv) the least number of sets of diameter at most δ that cover F ;
(v) the greatest number of disjoint balls of radius δ with centres in F

This list could be extended further; in practice one adopts the definition most
convenient for a particular application.

It is worth noting that, in (3.11)–(3.13), it is enough to consider limits as δ

tends to 0 through any decreasing sequence δk such that δk+1 � cδk for some
constant 0 < c < 1; in particular for δk = ck. To see this, note that if δk+1 � δ <

δk, then, with Nδ(F ) the least number of sets in a δ-cover of F ,

log Nδ(F )

− log δ
� log Nδk+1(F )

− log δk

= log Nδk+1(F )

− log δk+1 + log(δk+1/δk)
� log Nδk+1(F )

− log δk+1 + log c
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and so

lim
δ→0

log Nδ(F )

− log δ
� lim

k→∞
log Nδk

(F )

− log δk

. (3.14)

The opposite inequality is trivial; the case of lower limits may be dealt with in
the same way.

There is an equivalent definition of box dimension of a rather different form
that is worth mentioning. Recall that the δ-neighbourhood Fδ of a subset F of
�n is

Fδ = {x ∈ �n : |x − y| � δ for some y ∈ F } (3.15)

i.e. the set of points within distance δ of F . We consider the rate at which the
n-dimensional volume of Fδ shrinks as δ → 0. In �3, if F is a single point
then Fδ is a ball with vol(Fδ) = 4

3πδ3, if F is a segment of length l then Fδ is
‘sausage-like’ with vol(Fδ) ∼ πlδ2, and if F is a flat set of area a then Fδ is
essentially a thickening of F with vol(Fδ) ∼ 2aδ. In each case, vol(Fδ) ∼ cδ3−s

where the integer s is the dimension of F , so that exponent of δ is indicative of
the dimension. The coefficient c of δ3−s , known as the Minkowski content of F ,
is a measure of the length, area or volume of the set as appropriate.

This idea extends to fractional dimensions. If F is a subset of �n and, for some
s, voln(Fδ)/δ

n−s tends to a positive finite limit as δ → 0 where voln denotes n-
dimensional volume, then it makes sense to regard F as s-dimensional. The
limiting value is called the s-dimensional content of F —a concept of slightly
restricted use since it is not necessarily additive on disjoint subsets, i.e. is not a
measure. Even if this limit does not exist, we may be able to extract the critical
exponent of δ and this turns out to be related to the box dimension.

Proposition 3.2

If F is a subset of �n, then

dimBF = n − lim
δ→0

log voln(Fδ)

log δ

dimBF = n − lim
δ→0

log voln(Fδ)

log δ

where Fδ is the δ-neighbourhood of F.

Proof. If F can be covered by Nδ(F ) balls of radius δ < 1 then Fδ can be covered
by the concentric balls of radius 2δ. Hence

voln(Fδ) � Nδ(F )cn(2δ)n
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where cn is the volume of the unit ball in �n. Taking logarithms,

log voln(Fδ)

− log δ
� log 2ncn + n log δ + log Nδ(F )

− log δ
,

so

lim
δ→0

log voln(Fδ)

− log δ
� −n + dimBF (3.16)

with a similar inequality for the upper limits. On the other hand if there are
Nδ(F ) disjoint balls of radius δ with centres in F , then by adding their volumes,

Nδ(F )cnδ
n � voln(Fδ).

Taking logarithms and letting δ → 0 gives the opposite inequality to (3.16), using
Equivalent definition 3.1(v). �

In the context of Proposition 3.2, box dimension is sometimes referred to as
Minkowski dimension or Minkowski–Bouligand dimension.

It is important to understand the relationship between box-counting dimension
and Hausdorff dimension. If F can be covered by Nδ(F ) sets of diameter δ, then,
from definition (2.1),

Hs
δ(F ) � Nδ(F )δs.

If 1 < Hs(F ) = limδ→0 Hs
δ(F ) then log Nδ(F ) + s log δ > 0 if δ is sufficiently

small. Thus s � limδ→0 log Nδ(F )/− log δ so

dimHF � dimBF � dimBF (3.17)

for every F ⊂ �n. We do not in general get equality here. Although Hausdorff
and box dimensions are equal for many ‘reasonably regular’ sets, there are plenty
of examples where this inequality is strict.

Roughly speaking (3.6) says that Nδ(F ) � δ−s for small δ, where s = dimBF .
More precisely, it says that

Nδ(F )δs → ∞ if s < dimBF

and
Nδ(F )δs → 0 if s > dimBF.

But

Nδ(F )δs = inf

{
∑

i

δs : {Ui} is a (finite) δ-cover of F

}

,
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which should be compared with

Hs
δ(F ) = inf

{
∑

i

|Ui |s : {Ui} is a δ-cover of F

}

,

which occurs in the definitions of Hausdorff measure and dimension. In calculat-
ing Hausdorff dimension, we assign different weights |Ui|s to the covering sets
Ui , whereas for the box dimensions we use the same weight δs for each covering
set. Box dimensions may be thought of as indicating the efficiency with which
a set may be covered by small sets of equal size, whereas Hausdorff dimension
involves coverings by sets of small but perhaps widely varying size.

There is a temptation to introduce the quantity v(F ) = limδ→0Nδ(F )δs , but
this does not give a measure on subsets of �n. As we shall see, one consequence
of this is that box dimensions have a number of unfortunate properties, and can
be awkward to handle mathematically.

Since box dimensions are determined by coverings by sets of equal size they
tend to be easier to calculate than Hausdorff dimensions. Just as with Hausdorff
dimension, calculations of box dimension usually involve finding a lower bound
and an upper bound separately, each bound depending on a geometric observation
followed by an algebraic estimate.

Example 3.3

Let F be the middle third Cantor set (figure 0.1). Then dimBF = dimBF =
log 2/ log 3.

Calculation. The obvious covering by the 2k level-k intervals of Ek of length 3−k

gives that Nδ(F ) � 2k if 3−k < δ � 3−k+1. From (3.5)

dimBF = lim
δ→0

log Nδ(F )

− log δ
� lim

k→∞
log 2k

log 3k−1
= log 2

log 3
.

On the other hand, any interval of length δ with 3−k−1 � δ < 3−k intersects at
most one of the level-k intervals of length 3−k used in the construction of F .
There are 2k such intervals so at least 2k intervals of length δ are required to
cover F . Hence Nδ(F ) � 2k leading to dimBF � log 2/ log 3. �

Thus, at least for the Cantor set, dimHF = dimBF .

3.2 Properties and problems of box-counting dimension

The following elementary properties of box dimension mirror those of Hausdorff
dimension, and may be verified in much the same way.
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(i) A smooth m-dimensional submanifold of �n has dimBF = m.
(ii) dimB and dimB are monotonic.

(iii) dimB is finitely stable, i.e.

dimB(E ∪ F) = max {dimBE, dimBF };
the corresponding identity does not hold for dimB.

(iv) dimB and dimB are bi-Lipschitz invariant. This is so because, if |f (x) −
f (y)| � c|x − y| and F can be covered by Nδ(F ) sets of diameter at most
δ, then the Nδ(F ) images of these sets under f form a cover of f (F )

by sets of diameter at most cδ, thus dimBf (F ) � dimBF . Similarly, box
dimensions behave just like Hausdorff dimensions under bi-Lipschitz and
Hölder transformations.

We now start to encounter the disadvantages of box-counting dimension. The
next proposition is at first appealing, but has undesirable consequences.

Proposition 3.4

Let F denote the closure of F (i.e. the smallest closed subset of �n containing
F ). Then

dimBF = dimBF

and
dimBF = dimBF.

Proof. Let B1, . . . , Bk be a finite collection of closed balls of radii δ. If the closed
set

⋃k
i=1 Bi contains F , it also contains F . Hence the smallest number of closed

balls of radius δ that cover F equals the smallest number required to cover the
larger set F . The result follows. �

An immediate consequence of this is that if F is a dense subset of an open
region of �n then dimBF = dimBF = n. For example, let F be the (countable) set
of rational numbers between 0 and 1. Then F is the entire interval [0, 1], so that
dimBF = dimBF = 1. Thus countable sets can have non-zero box dimension.
Moreover, the box-counting dimension of each rational number regarded as a
one-point set is clearly zero, but the countable union of these singleton sets
has dimension 1. Consequently, it is not generally true that dimB

⋃∞
i=1 Fi =

supi dimBFi .
This severely limits the usefulness of box dimension—introducing a small, i.e.

countable, set of points can play havoc with the dimension. We might hope to sal-
vage something by restricting attention to closed sets, but difficulties still remain.

Example 3.5

F = {0, 1, 1
2 , 1

3 , . . .} is a compact set with dimBF = 1
2 .
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Calculation. Let 0 < δ < 1
2 and let k be the integer satisfying 1/(k − 1)k > δ �

1/k(k + 1). If |U | � δ, then U can cover at most one of the points {1, 1
2 , . . . , 1/k}

since 1/(k − 1) − 1/k = 1/(k − 1)k > δ. Thus at least k sets of diameter δ are
required to cover F , so Nδ(F ) � k giving

log Nδ(F )

− log δ
� log k

log k(k + 1)
.

Letting δ → 0 so k → ∞ gives dimBF � 1
2 . On the other hand, if 1

2 > δ > 0,
take k such that 1/(k − 1)k > δ � 1/k(k + 1). Then (k + 1) intervals of length
δ cover [0, 1/k], leaving k − 1 points of F which can be covered by another
k − 1 intervals. Thus Nδ(F ) � 2k, so

log Nδ(F )

− log δ
� log(2k)

log k(k − 1)

giving
dimBF � 1

2 . �

No-one would regard this set, with all but one of its points isolated, as a fractal,
yet it has large box dimension.

Nevertheless, as well as being convenient in practice, box dimensions are very
useful in theory. If, as often happens, it can be shown that a set has equal box
and Hausdorff dimensions, the interplay between these definitions can be used
to powerful effect.

*3.3 Modified box-counting dimensions

There are ways of overcoming the difficulties of box dimension outlined in the
last section. However, they may not at first seem appealing since they re-introduce
all the difficulties of calculation associated with Hausdorff dimension and more.

For F a subset of �n we can try to decompose F into a countable number of
pieces F1, F2, . . . in such a way that the largest piece has as small a dimension
as possible. This idea leads to the following modified box-counting dimensions:

dimMBF = inf

{

sup
i

dimBFi : F ⊂
∞⋃

i=1

Fi

}

(3.18)

dimMBF = inf

{

sup
i

dimBFi : F ⊂
∞⋃

i=1

Fi

}

. (3.19)

(In both cases the infimum is over all possible countable covers {Fi} of F .)
Clearly dimMBF � dimBF and dimMBF � dimBF . However, we now have that
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dimMBF = dimMBF = 0 if F is countable—just take the Fi to be one-point sets.
Moreover, for any subset F of �n,

0 � dimHF � dimMBF � dimMBF � dimBF � n. (3.20)

It is easy to see that dimMB and dimMB recover all the desirable properties of
a dimension, but they can be hard to calculate. However, there is a useful test
for compact sets to have equal box and modified box dimensions. It applies to
sets that might be described as ‘dimensionally homogeneous’.

Proposition 3.6

Let F ⊂ �n be compact. Suppose that

dimB(F ∩ V ) = dimBF (3.21)

for all open sets V that intersect F. Then dimBF = dimMBF . A similar result
holds for lower box-counting dimensions.

Proof. Let F ⊂ ⋃∞
i=1 Fi with each Fi closed. A version of Baire’s category theo-

rem (which may be found in any text on basic general topology, and which we
quote without proof) states that there is an index i and an open set V ⊂ �n such
that F ∩ V ⊂ Fi . For this i, dimBFi = dimBF . Using (3.19) and Proposition 3.4

dimMBF = inf

{

sup dimBFi : F ⊂
∞⋃

i=1

Fi where the Fi are closed sets

}

� dimBF.

The opposite inequality is contained in (3.20). A similar argument deals with
the lower dimensions. �

For an application, let F be a compact set with a high degree of self-similarity,
for instance the middle third Cantor set or von Koch curve. If V is any open set
that intersects F , then F ∩ V contains a geometrically similar copy of F which
must have upper box dimension equal to that of F , so that (3.21) holds, leading
to equal box and modified box dimensions.

*3.4 Packing measures and dimensions

Unlike Hausdorff dimension, neither the box dimensions or modified box dimen-
sions are defined in terms of measures, and this can present difficulties in their
theoretical development. Nevertheless, the circle of ideas in the last section may
be completed in a way that is, at least mathematically, elegant. Recall that Haus-
dorff dimension may be defined using economical coverings by small balls (2.16)
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whilst dimB may be defined using economical coverings by small balls of equal
radius (Equivalent definition 3.1(i)). On the other hand dimB may be thought of
as a dimension that depends on packings by disjoint balls of equal radius that
are as dense as possible (Equivalent definition 3.1(v)). Coverings and packings
play a dual role in many areas of mathematics and it is therefore natural to try to
look for a dimension that is defined in terms of dense packings by disjoint balls
of differing small radii.

We try to follow the pattern of definition of Hausdorff measure and dimension.
For s � 0 and δ > 0, let

P s
δ (F ) = sup

{
∑

i

|Bi|s : {Bi} is a collection of disjoint balls of radii at

most δ with centres in F

}

. (3.22)

Since P s
δ (F ) decreases with δ, the limit

P s
0 (F ) = lim

δ→0
P s

δ (F ) (3.23)

exists. At this point we meet the problems encountered with box-counting dimen-
sions. By considering countable dense sets it is easy to see that P s

0 (F ) is not a
measure. Hence we modify the definition to

P s (F ) = inf

{
∑

i

P s
0 (Fi) : F ⊂

∞⋃

i=1

Fi

}

. (3.24)

It may be shown that P s (F ) is a measure on �n, known as the s-dimensional
packing measure. We may define the packing dimension in the natural way:

dimPF = sup{s : P s(F ) = ∞} = inf{s : P s(F ) = 0}. (3.25)

The underlying measure structure immediately implies monotonicity: that
dimPE � dimPF if E ⊂ F . Moreover, for a countable collection of sets {Fi},

dimP

( ∞⋃

i=1

Fi

)

= sup
i

dimPFi, (3.26)

since if s > dimPFi for all i, then P s(
⋃

i Fi) �
∑

i P s(Fi) = 0 implying
dimP

(⋃
i Fi

)
� s.

We now investigate the relationship of packing dimension with other definitions
of dimension and verify the surprising fact that packing dimension is just the same
as the modified upper box dimension.
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Lemma 3.7

dimPF � dimBF. (3.27)

Proof. If dimPF = 0, the result is obvious. Otherwise choose any t and s with
0 < t < s < dimPF . Then P s(F ) = ∞, so P s

0 (F ) = ∞. Thus, given 0 < δ � 1,
there are disjoint balls {Bi}, of radii at most δ with centres in F , such that
1 < �∞

i=1|Bi|s . Suppose that, for each k, exactly nk of these balls satisfy 2−k−1 <

|Bi| � 2−k; then

1 <

∞∑

k=0

nk2−ks . (3.28)

There must be some k with nk > 2kt (1 − 2t−s), otherwise the sum in (3.28) is
at most �∞

k=02kt−ks(1 − 2t−s) = 1, by summing the geometric series. These nk

balls all contain balls of radii 2−k−2 � δ centred in F . Hence if Nδ(F ) denotes
the greatest number of disjoint balls of radius δ with centres in F , then

N2−k−2(F )(2−k−2)t � nk(2
−k−2)t > 2−2t (1 − 2t−s)

where 2−k−2 < δ. It follows that limδ→0Nδ(F )δt > 0, so that dimBF � t

using Equivalent definition 3.1(v). This is true for any 0 < t < dimPF so
(3.27) follows. �

Proposition 3.8

If F ⊂ �n then dimPF = dimMBF .

Proof. If F ⊂ ⋃∞
i=1 Fi then, by (3.26) and (3.27),

dimPF � sup
i

dimPFi � sup
i

dimBFi.

Definition (3.19) now gives that dimPF � dimMBF .
Conversely, if s > dimPF then P s(F ) = 0, so that F ⊂ ⋃

i Fi for a collection
of sets Fi with P s

0 (Fi) < ∞ for each i, by (3.24). Hence, for each i, if δ is small
enough, then P s

δ (Fi) < ∞, so by (3.22) Nδ(Fi)δ
s is bounded as δ → 0, where

Nδ(Fi) is the largest number of disjoint balls of radius δ with centres in Fi . By
Equivalent definition 3.1(v) dimBFi � s for each i, giving that dimMBF � s by
(3.19), as required. �

We have established the following relations:

dimHF � dimMBF � dimMBF = dimPF � dimBF. (3.29)

Suitable examples show that none of the inequalities can be replaced by equality.
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As with Hausdorff dimension, packing dimension permits the use of powerful
measure theoretic techniques in its study. The introduction of packing measures
(remarkably some 60 years after Hausdorff measures) has led to a greater under-
standing of the geometric measure theory of fractals, with packing measures
behaving in a way that is ‘dual’ to Hausdorff measures in many respects. Indeed
corresponding results for Hausdorff and packing measures are often presented
side by side. Nevertheless, one cannot pretend that packing measures and dimen-
sions are easy to work with or to calculate; the extra step (3.24) in their definition
makes them more awkward to use than the Hausdorff analogues.

This situation is improved slightly by the equality of packing dimension and
the modified upper box dimension. It is improved considerably for compact sets
with ‘local’ dimension constant throughout—a situation that occurs frequently
in practice, in particular in sets with some kind of self-similarity.

Corollary 3.9

Let F ⊂ �n be compact and such that

dimB(F ∩ V ) = dimBF (3.30)

for all open sets V that intersect F. Then dimPF = dimBF .

Proof. This is immediate from Propositions 3.6 and 3.8. �

The nicest case, of course, is of fractals with equal Hausdorff and upper box
dimensions, in which case equality holds throughout (3.29)—we shall see many
such examples later on. However, even the much weaker condition dimHF =
dimPF , though sometimes hard to prove, eases analysis of F .

3.5 Some other definitions of dimension

A wide variety of other definitions of dimension have been introduced, many of
them only of limited applicability, but nonetheless useful in their context.

The special form of curves gives rise to the several definitions of dimension.
We define a curve or Jordan curve C to be the image of an interval [a, b] under a
continuous bijection f : [a, b] → �n. (Thus, we restrict attention to curves that
are non-self-intersecting.) If C is a curve and δ > 0, we define Mδ(C) to be the
maximum number of points x0, x1, . . . , xm, on the curve C, in that order, such
that |xk − xk−1| = δ for k = 1, 2, . . . , m. Thus (Mδ(C) − 1)δ may be thought of
as the ‘length’ of the curve C measured using a pair of dividers with points set
at a distance δ apart. The divider dimension is defined as

lim
δ→0

log Mδ(C)

− log δ
(3.31)
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assuming the limit exists (otherwise we may define upper and lower divider
dimensions using upper and lower limits). It is easy to see that the divider dimen-
sion of a curve is at least equal to the box dimension (assuming that they both
exist) and in simple self-similar examples, such as the von Koch curve, they
are equal. The assertion that the coastline of Britain has dimension 1.2 is usu-
ally made with the divider dimension in mind—this empirical value comes from
estimating the ratio in (3.31) for values of δ between about 20 m and 200 km.

A variant of Hausdorff dimension may be defined for curves by using intervals
of the curves themselves as covering sets. Thus we look at inf

{∑m
i=1 |f [ti−1, ti]|s

}

where the infimum is over all dissections a = t0 < t1 < · · · < tm = b such that
the diameters |f ([ti−1, ti])| are all at most δ. We let δ tend to 0 and deem the value
of s at which this limit jumps from ∞ to 0 to be the dimension. For self-similar
examples such as the von Koch curve, this equals the Hausdorff dimension, but
for ‘squeezed’ curves, such as graphs of certain functions (see Chapter 11) we
may get a somewhat larger value.

Sometimes, we are interested in the dimension of a fractal F that is the bound-
ary of a set A. We can define the box dimension of F in the usual way, but
sometimes it is useful to take special account of the distinction between A and
its complement. Thus the following variation of the ‘s-dimensional content’ def-
inition of box dimension, in which we take the volume of the set of points
within distance δ of F that are contained in A is sometimes useful. We define
the one-sided dimension of the boundary F of a set A in �n as

n − lim
δ→0

log voln(Fδ ∩ A)

log δ
(3.32)

where Fδ is the δ-neighbourhood of F (compare Proposition 3.2). This definition
has applications to the surface physics of solids where it is the volume very
close to the surface that is important and also to partial differential equations in
domains with fractal boundaries.

It is sometimes possible to define dimension in terms of the complement of a
set. Suppose F is obtained by removal of a sequence of intervals I1, I2, . . . from,
say, the unit interval [0, 1], as, for example, in the Cantor set construction. We
may define a dimension as the number s0 such that the series

∞∑

j=1

|Ij |s converges if s < s0 and diverges if s > s0; (3.33)

the number s0 is called the critical exponent of the series. For the middle third
Cantor set, this series is

∑∞
k=1 2k−13−ks , giving s0 = log 2/ log 3, equal to the

Hausdorff and box dimensions in this case. In general, s0 equals the upper box
dimension of F .

Dimension prints provide an interesting variation on Hausdorff dimension of
a rather different nature. Dimension prints may be thought of as a sort of ‘fin-
gerprint’ that enables sets with differing characteristics to be distinguished, even
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though they may have the same Hausdorff dimension. In particular they reflect
non-isotropic features of a set.

We restrict attention to subsets of the plane, in which case the dimension print
will also be planar. The definition of dimension prints is very similar to that
of Hausdorff dimension but coverings by rectangles are used with side lengths
replacing diameters. Let U be a rectangle (the sides need not be parallel to the
coordinate axes) and let a(U) � b(U) be the lengths of the sides of U . Let s, t

be non-negative numbers. For F a subset of �2, let

Hs,t
δ (F ) = inf

{
∑

i

a(Ui)
sb(Ui)

t : {Ui} is a δ-cover of F by rectangles

}

.

In the usual way, we get measures of ‘Hausdorff type’, Hs,t , by letting δ → 0:

Hs,t (F ) = lim
δ→0

Hs,t
δ (F ).

(Note that Hs,0 is just a minor variant of s-dimensional Hausdorff measure where
only rectangles are allowed in the δ-covers.) The dimension print, print F , of F

is defined to be the set of non-negative pairs (s, t) for which Hs,t (F ) > 0.
Using standard properties of measures, it is easy to see that we have mono-

tonicity
print F1 ⊂ print F2 if F1 ⊂ F2 (3.34)

and countable stability

print

( ∞⋃

i=1

Fi

)

=
∞⋃

i=1

print Fi. (3.35)

Moreover, if (s, t) is a point in print F and (s ′, t ′) satisfies

s ′ + t ′ � s + t

t ′ � t (3.36)

then (s ′, t ′) is also in print F .
Unfortunately, dimension prints are not particularly easy to calculate. We dis-

play a few known examples in figure 3.3. Notice that the Hausdorff dimension
of a set is given by the point where the edge of its print intersects the x-axis.

Dimension prints are a useful and appealing extension of the idea of Haus-
dorff dimension. Notice how the prints in the last two cases distinguish between
two sets of Hausdorff (or box) dimension 1 1

2 , one of which is dust-like, the
other stratified.

One disadvantage of dimension prints defined in this way is that they are not
Lipschitz invariants. The straight line segment and smooth convex curve are bi-
Lipschitz equivalent, but their prints are different. In the latter case the dimension
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Figure 3.3 A selection of dimension prints of plane sets

print takes into account the curvature. It would be possible to avoid this difficulty
by redefining print F as the set of (s, t) such that Hs,t (F ′) > 0 for all bi-Lipschitz
images F ′ of F . This would restore Lipschitz invariance of the prints, but would
add further complications to their calculation.
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Of course, it would be possible to define dimension prints by analogy with box
dimensions rather than Hausdorff dimensions, using covers by equal rectangles.
Calculations still seem awkward.

3.6 Notes and references

Many different definitions of ‘fractal dimension’ are scattered throughout the
mathematical literature. The origin of box dimension seems hard to trace—it
seems certain that it must have been considered by the pioneers of Hausdorff
measure and dimension, and was probably rejected as being less satisfactory
from a mathematical viewpoint. Bouligand adapted the Minkowski content to
non-integral dimensions in 1928, and the more usual definition of box dimension
was given by Pontrjagin and Schnirelman in 1932.

Packing measures and dimensions are much more recent, introduced by Tricot
(1982). Their similarities and contrasts to Hausdorff measures and dimensions
have proved an important theoretical tool. Packing measures and box and packing
dimensions are discussed in Mattila (1995) and Edgar (1998). Dimensions of
curves are considered by Tricot (1995).

Dimension prints are an innovation of Rogers (1988, 1998).

Exercises

3.1 Let f : F → �n be a Lipschitz function. Show that dimBf (F ) � dimBF and
dimBf (F ) � dimBF . More generally, show that if f satisfies a Hölder condition
|f (x) − f (y)| � c|x − y|α where c > 0 and 0 < α � 1 then dimBf (F ) �
1
α

dimBf (F ).

3.2 Verify directly from the definitions that Equivalent definitions 3.1(i) and (iii) give
the same values for box dimension.

3.3 Let F consist of those numbers in [0, 1] whose decimal expansions do not contain
the digit 5. Find dimBF , showing that this box dimension exists.

3.4 Verify that the Cantor dust depicted in figure 0.4 has box dimension 1 (take E0 to
have side length 1).

3.5 Use Equivalent definition 3.1(iv) to check that the upper box dimension of the von
Koch curve is at most log 4/ log 3 and 3.1(v) to check that the lower box dimension
is at least this value.

3.6 Use convenient parts of Equivalent definition 3.1 to find the box dimension of the
Sierpiński triangle in figure 0.3.

3.7 Let F be the middle third Cantor set. For 0 < δ < 1, find the length of the δ-
neighbourhood Fδ of F , and hence find the box dimension of F using Proposi-
tion 3.2.

3.8 Construct a set F for which dimBF < dimBF . (Hint: let kn = 10n, and adapt the
Cantor set construction by deleting, at the kth stage, the middle 1

3 of intervals if
k2n < k � k2n+1, but the middle 3

5 of intervals if k2n−1 < k � k2n.)

3.9 Verify that dimB(E ∪ F) = max{dimBE, dimBF } for bounded E, F ⊂ �.
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3.10 Find subsets E and F of � such that dimB(E ∪ F) > max{dimBE, dimBF }. (Hint:
consider two sets of the form indicated in Exercise 3.8.)

3.11 What are the Hausdorff and box dimensions of the set
{
0, 1, 1

4 , 1
9 , 1

16 , . . .
}
?

3.12 Find two disjoint Borel subsets E and F of � such that P s
0 (E ∪ F) �= P s

0 (E) +
P s

0 (F ).

3.13 What is the packing dimension of the von Koch curve?

3.14 Find the divider dimension (3.31) of the von Koch curve.

3.15 Show that the divider dimension (3.31) of a curve is greater than or equal to its box
dimension, assuming that they both exist.

3.16 Let 0 < λ < 1 and let F be the ‘middle λ Cantor set’ obtained by repeated removal
of the middle proportion λ from intervals. Show that the dimension of F defined
by (3.33) in terms of removed intervals equals the Hausdorff and box dimensions
of F .

3.17 Verify properties (3.34)–(3.36) of dimension prints. Given an example of a set with
a non-convex dimension print.



Chapter 4 Techniques for calculating
dimensions

A direct attempt at calculating the dimensions, in particular the Hausdorff dimen-
sion, of almost any set will convince the reader of the practical limitations of
working from the definitions. Rigorous dimension calculations often involve
pages of complicated manipulations and estimates that provide little intuitive
enlightenment.

In this chapter we bring together some of the basic techniques that are available
for dimension calculations. Other methods, that are applicable in more specific
cases, will be found throughout the book.

4.1 Basic methods

As a general rule, we get upper bounds for Hausdorff measures and dimensions by
finding effective coverings by small sets, and lower bounds by putting measures
or mass distributions on the set. For most fractals ‘obvious’ upper estimates of
dimension may be obtained using natural coverings by small sets.

Proposition 4.1

Suppose F can be covered by nk sets of diameter at most δk with δk → 0 as
k → ∞. Then

dimHF � dimBF � lim
k→∞

log nk

− log δk

.

Moreover, if nkδ
s
k remains bounded as k → ∞, then Hs(F ) < ∞. If δk → 0

but δk+1 � cδk for some 0 < c < 1, then

dimBF � lim
k→∞

log nk

− log δk

.

Proof. The inequalities for the box-counting dimension are immediate from the
definitions and the remark at (3.14). That dimHF � dimBF is in (3.17), and if
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nkδ
s
k is bounded then Hs

δk
(F ) � nkδ

s
k , so Hs

δk
(F ) tends to a finite limit Hs(F ) as

k → ∞. �

Thus, as we have seen already (Example 2.7), in the case of the middle third
Cantor set the natural coverings by 2k intervals of length 3−k give dimHF �
dimBF � dimBF � log 2/ log 3.

Surprisingly often, the ‘obvious’ upper bound for the Hausdorff dimension
of a set turns out to be the actual value. However, demonstrating this can be
difficult. To obtain an upper bound it is enough to evaluate sums of the form∑ |Ui |s for specific coverings {Ui} of F , whereas for a lower bound we must
show that

∑ |Ui|s is greater than some positive constant for all δ-coverings of F .
Clearly an enormous number of such coverings are available. In particular, when
working with Hausdorff dimension as opposed to box dimension, consideration
must be given to covers where some of the Ui are very small and others have
relatively large diameter—this prohibits sweeping estimates for

∑ |Ui |s such as
those available for upper bounds.

One way of getting around these difficulties is to show that no individual set
U can cover too much of F compared with its size measured as |U |s . Then if
{Ui} covers the whole of F the sum

∑ |Ui |s cannot be too small. The usual way
to do this is to concentrate a suitable mass distribution µ on F and compare the
mass µ(U) covered by U with |U |s for each U . (Recall that a mass distribution
on F is a measure with support contained in F such that 0 < µ(F) < ∞, see
Section 1.3.)

Mass distribution principle 4.2

Let µ be a mass distribution on F and suppose that for some s there are numbers
c > 0 and ε > 0 such that

µ(U) � c|U |s (4.1)

for all sets U with |U | � ε. Then Hs(F ) � µ(F )/c and

s � dimHF � dimBF � dimBF.

Proof. If {Ui} is any cover of F then

0 < µ(F) � µ

(
⋃

i

Ui

)

�
∑

i

µ(Ui) � c
∑

i

|Ui |s (4.2)

using properties of a measure and (4.1).
Taking infima, Hs

δ(F ) � µ(F )/c if δ is small enough, so Hs(F ) � µ(F )/c.
Since µ(F ) > 0 we get dimHF � s. �

Notice that the conclusion Hs(F ) � µ(F )/c remains true if µ is a mass dis-
tribution on �n and F is any subset.
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The Mass distribution principle 4.2 gives a quick lower estimate for the Haus-
dorff dimension of the middle third Cantor set F (figure 0.1). Let µ be the natural
mass distribution on F , so that each of the 2k kth level intervals of length 3−k

in Ek in the construction of F carry a mass 2−k . (We imagine that we start with
unit mass on E0 and repeatedly divide the mass on each interval of Ek between
its two subintervals in Ek+1; see Proposition 1.7.) Let U be a set with |U | < 1
and let k be the integer such that 3−(k+1) � |U | < 3−k. Then U can intersect at
most one of the intervals of Ek, so

µ(U) � 2−k = (3log 2/ log 3)−k = (3−k)log 2/ log 3 � (3|U |)log 2/ log 3

and hence Hlog 2/ log 3(F ) � 3− log 2/ log 3 = 1
2 by the mass distribution principle,

giving dimHF � log 2/ log 3.

Example 4.3

Let F1 = F × [0, 1] ⊂ �2 be the product of the middle third Cantor set F and the
unit interval. Then, setting s = 1 + log 2/ log 3, we have dimBF1 = dimHF1 = s,
with 0 < Hs(F1) < ∞.

Calculation. For each k, there is a covering of F by 2k intervals of length 3−k. A
column of 3k squares of side 3−k (diameter 3−k

√
2) covers the part of F1 above each

such interval, so taking these all together, F1 may be covered by 2k3k squares of
side 3−k. Thus Hs

3−k
√

2(F1) � 3k2k(3−k
√

2)s = (3 · 2 · 3−1−log 2/ log 3)k2s/2 = 2s/2,

so Hs(F1) � 2s/2 and dimHF1 � dimBF1 � dimBF1 � s.
We define a mass distribution µ on F1 by taking the natural mass distribution

on F described above (each kth level interval of F of side 3−k having mass
2−k) and ‘spreading it’ uniformly along the intervals above F . Thus if U is a
rectangle, with sides parallel to the coordinate axes, of height h � 1, above a kth
level interval of F , then µ(U) = h2−k. Any set U is contained in a square of
side |U | with sides parallel to the coordinate axes. If 3−(k+1) � |U | < 3−k then
U lies above at most one kth level interval of F of side 3−k, so

µ(U) � |U |2−k � |U |3−k log 2/ log 3 � |U |(3|U |)log 2/ log 3 = 3log 2/ log 3|U |s = 2|U |s .

By the Mass distribution principle 4.2, Hs(F1) > 1
2 . �

Note that the method of Examples 4.2 and 4.3 extends to a wide variety of
self-similar sets. Indeed, Theorem 9.3 may be regarded as a generalization of this
calculation.

Notice that in this example the dimension of the product of two sets equals the
sum of the dimensions of the sets. We study this in greater depth in Chapter 7.

The following general construction of a subset of � may be thought of as a
generalization of the Cantor set construction. Let [0, 1] = E0 ⊃ E1 ⊃ E2 ⊃ . . .

be a decreasing sequence of sets, with each Ek a union of a finite number of
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disjoint closed intervals (called kth level basic intervals), with each interval of
Ek containing at least two intervals of Ek+1, and the maximum length of kth
level intervals tending to 0 as k → ∞. Then the set

F =
∞⋂

k=0

Ek (4.3)

is a totally disconnected subset of [0, 1] which is generally a fractal (figure 4.1).
Obvious upper bounds for the dimension of F are available by taking the

intervals of Ek as covering intervals, for each k, but, as usual, lower bounds
are harder to find. Note that, in the following examples, the upper estimates for
dimHF depend on the number and size of the basic intervals, whilst the lower
estimates depend on their spacing. For these to be equal, the (k + 1)th level
intervals must be ‘nearly uniformly distributed’ inside the kth level intervals.

Example 4.4

Let s be a number strictly between 0 and 1. Assume that in the general construc-
tion (4.3) for each kth level interval I, the (k + 1)th level intervals I1, . . . , Im

(m � 2) contained in I are of equal length and equally spaced, the lengths being
given by

|Ii|s = 1

m
|I |s (1 � i � m) (4.4)

with the left-hand ends of I1 and I coinciding, and the right-hand ends of Im

and I coinciding. Then dimHF = s and 0 < Hs(F ) < ∞. (Notice that m may be
different for different intervals I in the construction, so that the kth level intervals
may have widely differing lengths.)

Calculation. With I , Ii , as above,

|I |s =
m∑

i=1

|Ii |s . (4.5)

Applying this inductively to the kth level intervals for successive k, we have,
for each k, that 1 = ∑ |Ii |s , where the sum is over all the kth level intervals Ii .

E0

E1

E2

E3···
F = ∩     Ekk=0

∞

Figure 4.1 An example of the general construction of a subset of �
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The kth level intervals cover F ; since the maximum interval length tends to 0 as
k → ∞, we have Hs

δ(F ) � 1 for sufficiently small δ, giving Hs(F ) � 1.
Now distribute a mass µ on F in such a way that µ(I) = |I |s whenever I

is any level k interval. Thus, starting with unit mass on [0, 1] we divide this
equally between each level 1 interval, the mass on each of these intervals being
divided equally between each level 2 subinterval, and so on; see Proposition 1.7.
Equation (4.5) ensures that we get a mass distribution on F with µ(I) = |I |s
for every basic interval. We estimate µ(U) for an interval U with endpoints in
F . Let I be the smallest basic interval that contains U ; suppose that I is a kth
level interval, and let Ii, . . . , Im be the (k + 1)th level intervals contained in I .
Then U intersects a number j � 2 of the Ii , otherwise U would be contained in
a smaller basic interval. The spacing between consecutive Ii is

(|I | − m|Ii |)/(m − 1) = |I |(1 − m|Ii|/|I |)/(m − 1)

= |I |(1 − m1−1/s)/(m − 1)

� cs |I |/m

using (4.4) and that m � 2 and 0 < s < 1, where cs = (1 − 21−1/s). Thus

|U | � j − 1

m
cs |I | � j

2m
cs |I |.

By (4.4)

µ(U) � jµ(Ii) = j |Ii |s = j

m
|I |s

� 2sc−s
s

(
j

m

)1−s

|U |s � 2sc−s
s |U |s. (4.6)

This is true for any interval U with endpoints in F , and so for any set U (by
applying (4.6) to the smallest interval containing U ∩ F ). By the Mass distribu-
tion principle 4.2, Hs(F ) > 0. �

A more careful estimate of µ(U) in Example 4.4 leads to Hs(F ) = 1.
We call the sets obtained when m is kept constant throughout the construction

of Example 4.4 uniform Cantor sets ; see figure 4.2. These provide a natural
generalization of the middle third Cantor set.

Example 4.5. Uniform Cantor sets

Let m � 2 be an integer and 0 < r < 1/m. Let F be the set obtained by the
construction in which each basic interval I is replaced by m equally spaced subin-
tervals of lengths r|I |, the ends of I coinciding with the ends of the extreme subin-
tervals. Then dimHF = dimBF = log m/− log r , and 0 < Hlog m/− log r (F ) < ∞.
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E0

E1

E2

E3

E4

F

···

Figure 4.2 A uniform Cantor set (Example 4.5) with m = 3, r = 4
15 , dimHF = dimBF =

log 3/− log 4
15 = 0.831 . . .

Calculation. The set F is obtained on taking m constant and s = log m/(− log r)

in Example 4.4. Equation (4.4) becomes (r|I |)s = (1/m)|I |s , which is satisfied
identically, so dimHF = s. For the box dimension, note that F is covered by the
mk kth level intervals of length r−k for each k, leading to dimBF � log m/− log r

in the usual way. �

The middle λ Cantor set is obtained by repeatedly removing a proportion
0 < λ < 1 from the middle of intervals, starting with the unit interval. This is a
special case of a uniform Cantor set, having m = 2 and r = 1

2 (1 − λ) and thus
Hausdorff and box dimensions log 2/ log(2/(1 − λ)).

The next example is another case of the general construction.

Example 4.6

Suppose in the general construction (4.3) each (k − 1)th level interval contains
at least mk � 2 kth level intervals (k = 1, 2, . . .) which are separated by gaps of
at least εk , where 0 < εk+1 < εk for each k. Then

dimHF � lim
k→∞

log(m1 · · ·mk−1)

− log(mkεk)
. (4.7)

Calculation. We may assume that the right hand side of (4.7) is positive, otherwise
(4.7) is obvious. We may assume that each (k − 1)th level interval contains
exactly mk kth level intervals; if not we may throw out excess intervals to get
smaller sets Ek and F for which this is so. We may define a mass distribution
µ on F by assigning a mass of (m1 · · · mk)

−1 to each of the m1 · · ·mk kth
level intervals.

Let U be an interval with 0 < |U | < ε1; we estimate µ(U). Let k be the integer
such that εk � |U | < εk−1. The number of kth level intervals that intersect U is

(i) at most mk since U intersects at most one (k − 1)th level interval
(ii) at most (|U |/εk) + 1 � 2|U |/εk since the kth level intervals have gaps of

at least εk between them.



Basic methods 65

Each kth level interval supports mass (m1 · · · mk)
−1 so that

µ(U) � (m1 · · · mk)
−1 min{2|U |/εk,mk}

� (m1 · · · mk)
−1(2|U |/εk)

sm1−s
k

for every 0 � s � 1.
Hence

µ(U)

|U |s � 2s

(m1 · · ·mk−1)m
s
kε

s
k

.

If
s < lim

k→∞
log(m1 · · · mk−1)/− log(mkεk)

then (m1 · · · mk−1)m
s
kε

s
k > 1 for large k, so µ(U) � 2s |U |s , and dimHF � s by

Principle 4.2, giving (4.7). �

Now suppose that in Example 4.6 the kth level intervals are all of length δk ,
and that each (k − 1)th level interval contains exactly mk kth level intervals,
which are ‘roughly equally spaced’ in the sense that mkεk � cδk−1, where c > 0
is a constant. Then (4.7) becomes

dimHF � lim
k→∞

log(m1 · · · mk−1)

− log c − log δk−1
= lim

k→∞
log(m1 · · · mk−1)

− log δk−1
.

But Ek−1 comprises m1 · · · mk−1 intervals of length δk−1, so this expression equals
the upper bound for dimHF given by Proposition 4.1. Thus in the situation where
the intervals are well spaced, we get equality in (4.7).

Examples of the following form occur in number theory; see Section 10.3.

Example 4.7

Fix 0 < s < 1 and let n0, n1, n2, . . . be a rapidly increasing sequence of integers,
say nk+1 � max {nk

k, 4n
1/s

k } for each k. For each k let Hk ⊂ � consist of equally
spaced equal intervals of lengths n

−1/s

k with the midpoints of consecutive intervals
distance n−1

k apart. Then writing F = ⋂∞
k=1 Hk , we have dimHF = s.

Calculation. Since F ⊂ Hk for each k, the set F ∩ [0, 1] is contained in at most
nk + 1 intervals of length n

−1/s

k , so Proposition 4.1 gives dimH(F ∩ [0, 1]) �
limk→∞ log(nk + 1)/− log n

−1/s

k = s. Similarly, dimH(F ∩ [n, n + 1]) � s for
all n ∈ �, so dimHF � s as a countable union of such sets.

Now let E0 = [0, 1] and, for k � 1, let Ek consist of the intervals of Hk that
are completely contained in Ek−1. Then each interval I of Ek−1 contains at least
nk|I | − 2 � nkn

−1/s

k−1 − 2 � 2 intervals of Ek, which are separated by gaps of at
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least n−1
k − n

−1/s

k � 1
2n−1

k if k is large enough. Using Example 4.6, and noting
that setting mk = nkn

−1/s

k−1 rather than mk = nkn
−1/s

k−1 − 2 does not affect the limit,

dimH(F ∩ [0, 1]) � dimH

∞⋂

k=1

Ek � lim
k→∞

log((n1 · · · nk−2)
1−1/snk−1)

− log(nkn
−1/s

k−1
1
2n−1

k )

= lim
k→∞

log(n1 · · · nk−2)
1−1/s + log nk−1

log 2 + (log nk−1)/s
.

Provided that nk is sufficiently rapidly increasing, the terms in log nk−1 in the
numerator and denominator of this expression are dominant, so that dimHF �
dimH(F ∩ [0, 1]) � s, as required. �

Although the Mass distribution principle 4.2 is based on a simple idea, we
have seen that it can be very useful in finding Hausdorff and box dimensions.
We now develop some important variations of the method.

It is enough for condition (4.1) to hold just for sufficiently small balls centred
at each point of F . This is expressed in Proposition 4.9(a). Although mass dis-
tribution methods for upper bounds are required far less frequently, we include
part (b) because it is, in a sense, dual to (a). Note that density expressions, such
as limr→0 µ(B(x, r))/rs play a major role in the study of local properties of
fractals—see Chapter 5. (Recall that B(x, r) is the closed ball of centre x and
radius r .)

We require the following covering lemma in the proof of Proposition 4.9(b).

Covering lemma 4.8

Let C be a family of balls contained in some bounded region of �n. Then there
is a (finite or countable) disjoint subcollection {Bi} such that

⋃

B∈C
B ⊂

⋃

i

B̃i (4.8)

where B̃i is the closed ball concentric with Bi and of four times the radius.

Proof. For simplicity, we give the proof when C is a finite family; the basic idea
is the same in the general case. We select the {Bi} inductively. Let B1 be a
ball in C of maximum radius. Suppose that B1, . . . , Bk−1 have been chosen. We
take Bk to be the largest ball in C (or one of the largest) that does not intersect
B1, . . . , Bk−1. The process terminates when no such ball remains. Clearly the
balls selected are disjoint; we must check that (4.8) holds. If B ∈ C, then either
B = Bi for some i, or B intersects one of the Bi with |Bi | � |B|; if this were
not the case, then B would have been chosen instead of the first ball Bk with
|Bk| < |B|. Either way, B ⊂ B̃i , so we have (4.8). (It is easy to see that the
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result remains true taking B̃i as the ball concentric with Bi and of 3 + ε times
the radius, for any ε > 0; if C is finite we may take ε = 0.) �

Proposition 4.9

Let µ be a mass distribution on �n, let F ⊂ �n be a Borel set and let 0 < c < ∞
be a constant.

(a) If limr→0µ(B(x, r))/rs < c for all x ∈ F then Hs(F ) � µ(F )/c

(b) If limr→0µ(B(x, r))/rs > c for all x ∈ F then Hs(F ) � 2sµ(�n)/c.

Proof

(a) For each δ > 0 let

Fδ = {x ∈ F : µ(B(x, r)) < crs for all 0 < r � δ}.

Let {Ui} be a δ-cover of F and thus of Fδ . For each Ui containing a point
x of Fδ , the ball B with centre x and radius |Ui | certainly contains Ui . By
definition of Fδ ,

µ(Ui) � µ(B) < c|Ui|s

so that

µ(Fδ) �
∑

i

{µ(Ui) : Ui intersects Fδ} � c
∑

i

|Ui |s .

Since {Ui} is any δ-cover of F , it follows that µ(Fδ)�cHs
δ(F )�cHs(F ).

But Fδ increases to F as δ decreases to 0, so µ(F ) � cHs(F ) by (1.7).
(b) For simplicity, we prove a weaker version of (b) with 2s replaced by 8s ,

but the basic idea is similar. Suppose first that F is bounded. Fix δ > 0
and let C be the collection of balls

{B(x, r) : x ∈ F, 0 < r � δ and µ(B(x, r)) > crs}.

Then by the hypothesis of (b) F ⊂ ⋃
B∈C B. Applying the Covering

lemma 4.8 to the collection C, there is a sequence of disjoint balls Bi ∈ C
such that

⋃
B∈C B ⊂ ⋃

i B̃i where B̃i is the ball concentric with Bi but of
four times the radius. Thus {B̃i} is an 8δ-cover of F , so

Hs
8δ(F ) �

∑

i

|B̃i|s � 4s
∑

i

|Bi|s

� 8sc−1
∑

i

µ(Bi) � 8sc−1µ(�n).
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Letting δ → 0, we get Hs(F ) � 8sc−1µ(�n) < ∞. Finally, if F is un-
bounded and Hs(F ) > 8sc−1µ(�n), the Hs-measure of some bounded
subset of F will also exceed this value, contrary to the above. �

Note that it is immediate from Proposition 4.9 that if limr→0 log µ(B(x, r))/

log r = s for all x ∈ F then dimHF = s.
Applications of Proposition 4.9 will occur throughout the book.
We conclude this section by a reminder that these calculations can be used

in conjunction with the basic properties of dimensions discussed in Chapters 2
and 3. For example, since f (x) = x2 is Lipschitz on [0, 1] and bi-Lipschitz on
[ 2

3 , 1], it follows that dimH{x2 : x ∈ C} = dimHf (C) = log 2/ log 3, where C is
the middle third Cantor set.

4.2 Subsets of finite measure

This section may seem out of place in a chapter about finding dimensions. How-
ever, Theorem 4.10 is required for the important potential theoretic methods
developed in the following section. Sets of infinite measure can be awkward to
work with, and reducing them to sets of positive finite measure can be a very
useful simplification.

Theorem 4.10 guarantees that any (Borel) set F with Hs(F ) = ∞ contains a
subset E with 0 < Hs(E) < ∞ (i.e. with E an s-set). At first, this might seem
obvious—just shave pieces off F until what remains has positive finite measure.
Unfortunately it is not quite this simple—it is possible to jump from infinite
measure to zero measure without passing through any intermediate value. Stating
this in mathematical terms, it is possible to have a decreasing sequence of sets
E1 ⊃ E2 ⊃ . . . with Hs(Ek) = ∞ for all k, but with Hs(

⋂∞
k=1 Ek) = 0. (For a

simple example, take Ek = [0, 1/k] ⊂ � and 0 < s < 1.) To prove the theorem
we need to look rather more closely at the structure of Hausdorff measures.
Readers mainly concerned with applications may prefer to omit the proof!

Theorem 4.10

Let F be a Borel subset of �n with 0 < Hs(F ) � ∞. Then there is a compact
set E ⊂ F such that 0 < Hs(E) < ∞.

∗Sketch of proof. The complete proof of this is complicated. We indicate the ideas
involved in the case where F is a compact subset of [0, 1) ⊂ � and 0 < s < 1.

We work with the net measures Ms which are defined in (2.17)–(2.18) using
the binary intervals [r2−k, (r + 1)2−k) and are related to Hausdorff measure by
(2.19). We define inductively a decreasing sequence E0 ⊃ E1 ⊃ E2 ⊃ . . . of com-
pact subsets of F . Let E0 = F . For k � 0 we define Ek+1 by specifying its
intersection with each binary interval I of length 2−k. If Ms

2−(k+1) (Ek ∩ I ) � 2−sk

we let Ek+1 ∩ I = Ek ∩ I . Then

Ms
2−(k+1) (Ek+1 ∩ I ) = Ms

2−k (Ek ∩ I ) (4.9)
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since using I itself as a covering interval in calculating Ms
2−k gives an esti-

mate at least as large as using shorter binary intervals. On the other hand, if
Ms

2−(k+1) (Ek+1 ∩ I ) > 2−sk we take Ek+1 ∩ I to be a compact subset of Ek ∩ I

with Ms
2−(k+1) (Ek+1 ∩ I ) = 2−sk . Such a subset exists since Ms

2−(k+1) (Ek ∩ I ∩
[0, u]) is finite and continuous in u. (This is why we need to work with the Ms

δ

rather than Ms .) Since Ms
2−k (Ek ∩ I ) = 2−sk , (4.9) again holds. Summing (4.9)

over all binary intervals of length 2−k we get

Ms
2−(k+1) (Ek+1) = Ms

2−k (Ek). (4.10)

Repeated application of (4.10) gives Ms
2−k (Ek) = Ms

1(E0) for all k. Let E be
the compact set

⋂∞
k=0 Ek. Taking the limit as k → ∞ gives Ms (E) = Ms

1(E0)

(this step needs some justification). The covering of E0 = F by the single
interval [0, 1) gives Ms(E) = Ms

1(E0) � 1. Since Ms(E0) � Hs(E0) > 0 we
have Ms

2−k (E0) > 0 if k is large enough. Thus either Ms (E) = Ms
1(E0) � 2−ks ,

or Ms
1(E0) < 2−ks in which case Ms(E) = Ms

1(E0) = Ms
2−k (E0) > 0. Thus

0 < Ms(E) < ∞, and the theorem follows from (2.19). �

A number of results, for example those in Chapter 5, apply only to s-sets,
i.e. sets with 0 < Hs(F ) < ∞. One way of approaching s-dimensional sets with
Hs(F ) = ∞ is to use Theorem 4.10 to extract a subset of positive finite measure,
to study its properties as an s-set, and then to interpret these properties in the
context of the larger set F . Similarly, if 0 < s < t , any set F of Hausdorff
dimension t has Hs(F ) = ∞ and so contains an s-set.

The following proposition which follows from Proposition 4.9, leads to an
extension of Theorem 4.10.

Proposition 4.11

Let F be a Borel set satisfying 0 < Hs(F ) < ∞. There is a constant b and a
compact set E ⊂ F with Hs(E) > 0 such that

Hs(E ∩ B(x, r)) � brs (4.11)

for all x ∈ �n and r > 0.

Proof. In Proposition 4.9(b) take µ as the restriction of Hs to F , i.e. µ(A) =
Hs(F ∩ A). Then, if

F1 =
{
x ∈ �n : lim

r→0
Hs(F ∩ B(x, r))/rs > 21+s

}

it follows that Hs(F1)�2s2−(1+s)µ(F ) = 1
2Hs(F ). Thus Hs(F\F1)� 1

2Hs(F )

> 0, so if E1 = F\F1 thenHs(E1) > 0 and limr→0Hs(F ∩ B(x, r))/rs � 21+s for
x ∈ E1. By Egoroff’s theorem (see also Section 1.3) it follows that there is a com-
pact set E ⊂ E1 with Hs(E) > 0 and a number r0 > 0 such that
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Hs(F ∩ B(x, r))/rs � 22+s for all x ∈ E and all 0 < r � r0. However, we
have that Hs(F ∩ B(x, r))/rs � Hs(F )/rs

0 if r � r0 so (4.11) holds for all
r > 0. �

Corollary 4.12

Let F be a Borel subset of �n with 0 < Hs(F ) � ∞. Then there is a compact
set E ⊂ F such that 0 < Hs(E) < ∞ and a constant b such that

Hs(E ∩ B(x, r)) � brs

for all x ∈ �n and r > 0.

Proof. Theorem 4.10 provides us with a compact subset F1 of F of positive finite
measure, and applying Proposition 4.11 to F1 gives the result. �

Corollary 4.12, which may be regarded as a converse of the Mass distribution
principle 4.2, is often called ‘Frostman’s lemma’.

4.3 Potential theoretic methods

In this section we introduce a technique for calculating Hausdorff dimensions
that is widely used both in theory and in practice. This replaces the need for
estimating the mass of a large number of small sets, as in the Mass distribution
principle, by a single check for the convergence of a certain integral.

The ideas of potential and energy will be familiar to readers with a knowledge
of gravitation or electrostatics. For s � 0 the s-potential at a point x of �n due
to the mass distribution µ on �n is defined as

φs(x) =
∫

dµ(y)

|x − y|s . (4.12)

(If we are working in �3 and s = 1 then this is essentially the familiar Newtonian
gravitational potential.) The s-energy of µ is

Is(µ) =
∫

φs(x)dµ(x) =
∫∫

dµ(x)dµ(y)

|x − y|s . (4.13)

The following theorem relates Hausdorff dimension to seemingly unconnected
potential theoretic ideas. Particularly useful is part (a): if there is a mass distri-
bution on a set F which has finite s-energy, then F has dimension at least s.

Theorem 4.13

Let F be a subset of �n.

(a) If there is a mass distribution µ on F with Is(µ) < ∞ then Hs(F ) = ∞
and dimHF � s.
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(b) If F is a Borel set with Hs(F ) > 0 then there exists a mass distribution µ

on F with It (µ) < ∞ for all 0 < t < s.

Proof
(a) Suppose that Is(µ) < ∞ for some mass distribution µ with support con-

tained in F . Define

F1 =
{
x ∈ F : lim

r→0
µ(B(x, r))/rs > 0

}
.

If x ∈ F1 we may find ε > 0 and a sequence of numbers {ri} decreasing to
0 such that µ(B(x, ri)) � εrs

i . Since µ({x}) = 0 (otherwise Is(µ) = ∞)
it follows from the continuity of µ that, by taking qi (0 < qi < ri) small
enough, we get µ(Ai) � 1

4εrs
i (i = 1, 2, . . .), where Ai is the annulus

B(x, ri)\B(x, qi). Taking subsequences if necessary, we may assume that
ri+1 < qi for all i, so that the Ai are disjoint annuli centred on x. Hence
for all x ∈ F1

φs(x) =
∫

dµ(y)

|x − y|s �
∞∑

i=1

∫

Ai

dµ(y)

|x − y|s

�
∞∑

i=1

1
4εrs

i r
−s
i = ∞

since |x − y|−s � r−s
i on Ai . But Is(µ) = ∫

φs(x)dµ(x) < ∞, so
φs(x) < ∞ for µ-almost all x. We conclude that µ(F1) = 0. Since
limr→0µ(B(x, r))/rs = 0 if x ∈ F\F1, Proposition 4.9(a) tells us that,
for all c > 0, we have

Hs(F ) � Hs(F\F1) � µ(F\F1)/c � (µ(F ) − µ(F1))/c = µ(F )/c.

Hence Hs(F ) = ∞.
(b) Suppose that Hs(F ) > 0. We use Hs to construct a mass distribution µ

on F with It (µ) < ∞ for every t < s.
By Corollary 4.12 there exist a compact set E ⊂ F with 0 < Hs(E) <

∞ and a constant b such that

Hs(E ∩ B(x, r)) � brs

for all x ∈ �n and r > 0. Let µ be the restriction of Hs to E, so that
µ(A) = Hs(E ∩ A); then µ is a mass distribution on F . Fix x ∈ �n

and write

m(r) = µ(B(x, r)) = Hs(E ∩ B(x, r)) � brs. (4.14)



72 Techniques for calculating dimensions

Then, if 0 < t < s

φt (x) =
∫

|x−y|�1

dµ(y)

|x − y|t +
∫

|x−y|>1

dµ(y)

|x − y|t

�
∫ 1

0
r−tdm(r) + µ(�n)

= [r−tm(r)]1
0+ + t

∫ 1

0
r−(t+1)m(r)dr + µ(�n)

� b + bt

∫ 1

0
rs−t−1dr + µ(�n)

= b

(
1 + t

s − t

)
+ Hs(F ) = c,

say, after integrating by parts and using (4.14). Thus φt(x) � c for all
x ∈ �n, so that It (µ) = ∫

φt (x)dµ(x) � cµ(�n) < ∞. �

Important applications of Theorem 4.13 will be given later in the book, for
example, in the proof of the projection theorems in Chapter 6 and in the deter-
mination of the dimension of Brownian paths in Chapter 16. The theorem is often
used to find the dimension of fractals Fθ which depend on a parameter θ . There
may be a natural way to define a mass distribution µθ on Fθ for each θ . If we
can show, that for some s,

∫
Is(µθ )dθ =

∫∫∫
dµθ(x)dµθ(y)dθ

|x − y|s < ∞,

then Is(µθ ) < ∞ for almost all θ , so that dimHFθ � s for almost all θ .
Readers familiar with potential theory will have encountered the definition of

the s-capacity of a set F :

Cs(F ) = sup
µ

{1/Is(µ) : µ is a mass distribution on F with µ(F ) = 1}

(with the convention that 1/∞ = 0). Thus another way of expressing Theo-
rem 4.13 is

dimHF = inf{s � 0 : Cs(F ) = 0} = sup{s � 0 : Cs(F ) > 0}.

Whilst this is reminiscent of the definition (2.11) of Hausdorff dimension in terms
of Hausdorff measures, it should be noted that capacities behave very differently
from measures. In particular, they are not generally additive.
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*4.4 Fourier transform methods

In this section, we do no more than indicate that Fourier transforms can be a
powerful tool for analysing dimensions.

The n-dimensional Fourier transforms of an integrable function f and a mass
distribution µ on �n are defined by

f̂ (u) =
∫

�n

f (x) exp(ix · u)dx (u ∈ �n) (4.15)

µ̂(u) =
∫

�n

exp(ix · u)dµ(x) (u ∈ �n) (4.16)

where x · u represents the usual scalar product. (Fourier transformation extends
to a much wider class of function using the theory of distributions.)

The s-potential (4.12) of a mass distribution µ is just the convolution

φs(x) = (| · |−s ∗ µ)(x) ≡
∫

|x − y|−sdµ(y).

Formally, the transform of |x|−s may be shown to be c|u|s−n, where c depends
on n and s, so the convolution theorem, which states that the transform of the
convolution of two functions equals the product of the transforms of the func-
tions, gives

φ̂s(u) = c|u|s−nµ̂(u).

Parseval’s theorem tells us that
∫

φs(x)dµ(x) = (2π)n
∫

φ̂s(u)µ̂(u)du

where the bar denotes complex conjugation, so

Is(µ) = (2π)nc

∫
|u|s−n|µ̂(u)|2du. (4.17)

This expression for Is(µ), which may be established rather more rigorously, is
sometimes a convenient way of expressing the energy (4.13) required in Theo-
rem 4.13. Thus if there is a mass distribution µ on a set F for which the integral
(4.17) is finite, then dimHF � s. In particular, if

|µ̂(u)| � b|u|−t/2 (4.18)

for some constant b, then, noting that, by (4.16), |µ̂(u)| � µ(�n) for all u, we
have from (4.17) that

Is(µ) � c1

∫

|u|�1
|u|s−ndu + c2

∫

|u|>1
|u|s−n|u|−tdu
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which is finite if 0 < s < t . Thus if (4.18) holds, any set F which supports µ has
Hausdorff dimension at least t . The greatest value of t for which there is a mass
distribution µ on F satisfying (4.18) is sometimes called the Fourier dimension
of F , which never exceeds the Hausdorff dimension.

4.5 Notes and references

Many papers are devoted to calculating dimensions of various classes of fractal,
for example the papers of Eggleston (1952), Beardon (1965) and Peyrière (1977)
discuss fairly general constructions.

The potential theoretic approach was, essentially, due to Frostman (1935);
see Taylor (1961), Hayman and Kennedy (1976), Carleson (1967) or Kahane
(1985) for more recent accounts. For an introduction to Fourier transforms see
Papoulis (1962).

The work on subsets of finite measure originates from Besicovitch (1952)
and a very general treatment is given in Rogers (1998). Complete proofs of
Theorem 4.10 may be found in Falconer (1985a) and Mattila (1995).

Subsets of finite positive packing measure are investigated by Joyce and
Preiss (1995).

Exercises

4.1 What is the Hausdorff dimension of the ‘Cantor tartan’ given by {(x, y) ∈ �2 :
either x ∈ F or y ∈ F } where F is the middle third Cantor set?

4.2 Use the mass distribution principle and a natural upper bound to show that the set of
numbers in [0, 1] containing only even digits has Hausdorff dimension log 5/ log 10.

4.3 Use the mass distribution method to show that the ‘Cantor dust’ depicted in figure 0.4
has Hausdorff dimension 1. (Hint: note that, taking the square E0 to have side 1,
any two squares in the set Ek of the construction are separated by a distance of at
least 4−k .)

4.4 Fix 0 < λ � 1
2 , and let F be the set of real numbers

F =
{ ∞∑

k=1

akλ
k : ak = 0 or 1 for k = 1, 2, . . .

}

.

Find the Hausdorff and box dimensions of F .

4.5 What is the Hausdorff dimension of F × F ⊂ �2, where F is the middle third
Cantor set?

4.6 Let F be the middle third Cantor set. What is the Hausdorff dimension of the plane
set given by {(x, y) ∈ �2 : x ∈ F and 0 � y � x2}?

4.7 Use a mass distribution method to obtain the result of Example 4.5 directly rather
than via Example 4.4.
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4.8 Show that every number x � 0 may be expressed in the form

x = m + a2

2!
+ a3

3!
+ · · ·

where m � 0 is an integer and ak is an integer with 0 � ak � k − 1 for each k. Let
F = {x � 0 : m = 0 and ak is even for k = 2, 3, . . .}. Find dimHF .

4.9 Show that there is a compact subset F of [0, 1] of Hausdorff dimension 1 but
with H1(F ) = 0. (Hint: try a ‘Cantor set’ construction, but reduce the proportion of
intervals removed at each stage.)

4.10 Deduce from Theorem 4.10 that if F is a Borel subset of �n with Hs (F ) = ∞ and
c is a positive number, then there is a Borel subset E of F with Hs (E) = c.

4.11 Let µ be the natural mass distribution on the middle third Cantor set F (see after
Principle 4.2). Estimate the s-energy of µ for s < log 2/ log 3 and deduce from
Theorem 4.13 that dimHF � log 2/ log 3.



Chapter 5 Local structure of fractals

Classical calculus involves finding local approximations to curves and surfaces
by tangent lines and planes. Viewed on a large scale the neighbourhood of a
point on a smooth curve appears close to a line segment. Can we say anything
about the local structure of as diverse a class of objects as fractals? Surprisingly,
the answer in many cases is yes. We can go some way to establishing the form
of fractals in a neighbourhood of a general point. In particular, we can study the
concentration of fractals about typical points; in other words, their local densities,
and the directional distribution of fractals around points including the question
of whether tangents exist. A knowledge of the local form of a fractal is useful
both in developing theory and in applications.

In order to realize the power of Hausdorff measures, it is necessary to
restrict attention to s-sets, i.e. Borel sets of Hausdorff dimension s with positive
finite s-dimensional Hausdorff measure. (More generally, it is possible to work
with s-sets of positive finite Hh-measure for some dimension function h;
see Section 2.5—we do not consider this generalization here.) This is not so
restrictive as it first appears. Many fractals encountered in practice are s-sets,
but even if Hs(F ) = ∞ then, by Theorem 4.10, F has subsets that are s-sets
to which this theory can be applied. Alternatively, it sometimes happens that a
set F of dimension s is a countable union of s-sets, and the properties of these
component sets can often be transferred to F .

The material outlined in this chapter lies at the heart of geometric measure
theory, a subject where rigorous proofs are often intricate and difficult. We omit
the harder proofs here; it is hoped that those included will be found instructive
and will give the flavour of the subject. We generally restrict attention to subsets
of the plane—the higher-dimensional analogues, though valid, are often an order
of magnitude harder.

5.1 Densities

Let F be a subset of the plane. The density of F at x is

lim
r→0

area (F ∩ B(x, r))

area (B(x, r))
= lim

r→0

area (F ∩ B(x, r))

πr2
(5.1)
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where B(x, r) is the closed disc of radius r and centre x. The classical Lebesgue
density theorem tells us that, for a Borel set F , this limit exists and equals 1
when x ∈ F and 0 when x /∈ F , except for a set of x of area 0. In other words,
for a typical point x of F , small discs centred at x are almost entirely filled by
F , but if x is outside F then small discs centred at x generally contain very little
of F ; see figure 5.1.

Similarly, if F is a smooth curve in the plane and x is a point of F (other than
an endpoint), then F ∩ B(x, r) is close to a diameter of B(x, r) for small r and

lim
r→0

length (F ∩ B(x, r))

2r
= 1.

If x /∈ F then this limit is clearly 0.
Density theorems such as these tell us how much of the set F , in the sense of

area or length, is concentrated near x. In the same way it is natural to investigate
densities of fractals—if F has dimension s, how does the s-dimensional Haus-
dorff measure of F ∩ B(x, r) behave as r → 0? We look at this question when
F is an s-set in �2 with 0 < s < 2 (0-sets are just finite sets of points, and there
is little to say, and H2 is essentially area, so if s = 2 we are in the Lebesgue
density situation (5.1)).

We define the lower and upper densities of an s-set F at a point x ∈ �n as

Ds(F, x) = lim
r→0

Hs(F ∩ B(x, r))

(2r)s
(5.2)

and

D
s
(F, x) = lim

r→0

Hs(F ∩ B(x, r))

(2r)s
(5.3)

x

y

F

x

Figure 5.1 The Lebesgue density theorem. The point x is in F , and area (F ∩ B(x, r))/
area (B(x, r)) is close to 1 if r is small. The point y is outside F , and area (F ∩ B(y, r))/
area (B(y, r)) is close to 0 if r is small
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respectively (note that |B(x, r)| = 2r). If Ds(F, x) = D
s
(F, x) we say that the

density of F at x exists and we write Ds(F, x) for the common value.
A point x at which Ds(F, x) = D

s
(F, x) = 1 is called a regular point of F ,

otherwise x is an irregular point. An s-set is termed regular if Hs-almost all of
its points (i.e. all of its points except for a set of Hs-measure 0) are regular, and
irregular if Hs-almost all of its points are irregular. (Here ‘irregular’ does not
mean ‘not regular’!) As we shall see, a fundamental result is that an s-set F must
be irregular unless s is an integer. However, if s is integral an s-set decomposes
into a regular and an irregular part. Roughly speaking, a regular 1-set consists of
portions of rectifiable curves of finite length, whereas an irregular 1-set is totally
disconnected and dust-like, and typically of fractal form.

By definition, a regular set is one for which the direct analogue of the Lebesgue
density theorem holds. However, even the densities of irregular sets cannot
behave too erratically.

Proposition 5.1

Let F be an s-set in �n. Then

(a) Ds(F, x) = D
s
(F, x) = 0 for Hs-almost all x /∈ F

(b) 2−s � D
s
(F, x) � 1 for Hs-almost all x ∈ F .

Partial proof

(a) If F is closed and x /∈ F , then B(x, r) ∩ F = Ø if r is small enough.
Hence limr→0 Hs(F ∩ B(x, r))/(2r)s = 0. If F is not closed the proof is
a little more involved and we omit it here.

(b) This follows quickly from Proposition 4.9(a) by taking µ as the restriction
of Hs to F , i.e. µ(A) = Hs(F ∩ A): if

F1 =
{
x ∈ F : D

s
(F, x) = lim

r→0

Hs(F ∩ B(x, r))

(2r)s
< 2−sc

}

then Hs(F1) � Hs(F )/c � Hs(F1)/c. If 0 < c < 1 this is only possible if
Hs(F1) = 0; thus for almost all x ∈ F we have D

s
(F, x) � 2−s . The upper

bound follows in essentially the same way using Proposition 4.9(b). �

Note that an immediate consequence of Proposition 5.1(b) is that an irregular
set has a lower density which is strictly less than 1 almost everywhere.

We will sometimes need to relate the densities of a set to those of certain
subsets. Let F be an s-set and let E be a Borel subset of F . Then

Hs(F ∩ B(x, r))

(2r)s
= Hs(E ∩ B(x, r))

(2r)s
+ Hs((F\E) ∩ B(x, r))

(2r)s
.
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For almost all x in E, we have

Hs((F\E) ∩ B(x, r))

(2r)s
→ 0 as r → 0

by Proposition 5.1(a), so letting r → 0 gives

Ds(F, x) = Ds(E, x); D
s
(F, x) = D

s
(E, x) (5.4)

for Hs-almost all x in E. Thus, from the definitions of regularity, if E is a subset
of an s-set F with Hs(E) > 0, then E is regular if F is regular and E is irregular
if F is irregular. In particular, the intersection of a regular and an irregular set,
being a subset of both, has measure zero.

Estimates for lower densities are altogether harder to obtain, and we do not
pursue them here.

In general it is quite involved to show that s-sets of non-integral dimension are
irregular, but in the case 0 < s < 1 the following ‘annulus’ proof is appealing.

Theorem 5.2

Let F be an s-set in �2. Then F is irregular unless s is an integer.

Partial proof. We show that F is irregular if 0 < s < 1 by showing that the density
Ds(F, x) fails to exist almost everywhere in F . Suppose to the contrary: then
there is a set F1 ⊂ F of positive measure where the density exists and therefore
where 1

2 < 2−s � Ds(F, x), by Proposition 5.1(b). By Egoroff’s theorem (see
Section 1.3) we may find r0 > 0 and a Borel set E ⊂ F1 ⊂ F with Hs(E) > 0
such that

Hs(F ∩ B(x, r)) > 1
2 (2r)s (5.5)

for all x ∈ E and r < r0. Let y ∈ E be a cluster point of E (i.e. a point y with
other points of E arbitrarily close). Let η be a number with 0 < η < 1 and let
Ar,η be the annulus B(y, r(1 + η))\B(y, r(1 − η)); see figure 5.2. Then

(2r)−sHs(F ∩ Ar,η) = (2r)−sHs(F ∩ B(y, r(1 + η)))

− (2r)−sHs(F ∩ B(y, r(1 − η)))

→ Ds(F, y)((1 + η)s − (1 − η)s) (5.6)

as r → 0. For a sequence of values of r tending to 0, we may find x ∈ E with
|x − y| = r . Then B(x, 1

2rη) ⊂ Ar,η so by (5.5)

1
2rsηs < Hs(F ∩ B(x, 1

2 rη)) � Hs(F ∩ Ar,η).
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Ar,h+ +y

E

B(x, rh/2)

Figure 5.2 The ‘annulus’ proof of Theorem 5.2

Combining with (5.6) this implies that

2−s−1ηs � Ds(F, y)((1 + η)s − (1 − η)s)

= Ds(F, y)(2sη + terms in η2 or higher).

Letting η → 0 we see that this is impossible when 0 < s < 1 and the result
follows by contradiction. �

5.2 Structure of 1-sets

As we have pointed out, sets of non-integral dimension must be irregular. The
situation for sets of integral dimension is more complicated. The following
decomposition theorem, indicated in figure 5.3, enables us to split a 1-set into
a regular and an irregular part, so that we can analyse each separately, and
recombine them without affecting density properties.

Decomposition theorem 5.3

Let F be a 1-set. The set of regular points of F forms a regular set, the set of
irregular points forms an irregular set.
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F

Figure 5.3 Decomposition of a 1-set into a regular ‘curve-like’ part and an irregular
‘curve-free’ part

Proof. This is immediate from (5.4), taking E as the set of regular and irregular
points respectively. �

Examples of regular and irregular 1-sets abound. Smooth curves are regular,
and provide us with the shapes of classical geometry such as the perimeters of
circles or ellipses. On the other hand the iterated construction of figure 0.4 gives
an irregular 1-set which is a totally disconnected fractal. This is typical—as we
shall see, regular 1-sets are made up from pieces of curve, whereas irregular
1-sets are dust-like and ‘curve-free’, i.e. intersect any (finite length) curve in
length zero.

To study 1-sets we need a few facts about curves. For our purposes a curve
or Jordan curve C is the image of a continuous injection (one-to-one function)
ψ : [a, b] → �2, where [a, b] ⊂ � is a proper closed interval. According to our
definition, curves are not self-intersecting, have two ends, and are compact con-
nected subsets of the plane. The length L(C) of the curve C is given by polygonal
approximation:

L(C) = sup
m∑

i=1

|xi − xi−1|

where the supremum is taken over all dissections of C by points x0, x1, . . . , xm

in that order along the curve. If the length L(C) is positive and finite we call C

a rectifiable curve.
As one might expect, the length of a curve equals its 1-dimensional Haus-

dorff measure.
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Lemma 5.4

If C is a rectifiable curve then H1(C) = L(C).

Proof. For x, y ∈ C, let Cx,y denote that part of C between x and y. Since orthog-
onal projection onto the line through x and y does not increase distances, (2.9)
gives H1(Cx,y) � H1[x, y] = |x − y|, where [x, y] is the straight-line segment
joining x to y. Hence for any dissection x0, x1, . . . , xm of C,

m∑

i=1

|xi − xi−1| �
m∑

i=1

H1(Cxi ,xi−1) � H1(C)

so that L(C) � H1(C). On the other hand, let f : [0,L(C)] → C be the mapping
that takes t to the point on C at distance t along the curve from one of its ends.
Clearly |f (t) − f (u)| � |t − u| for 0 � t, u � L(C), that is f is Lipschitz and
H1(C) � H1[0,L(C)] = L(C) by (2.9) as required. �

It is straightforward to show that rectifiable curves are regular.

Lemma 5.5

A rectifiable curve is a regular 1-set.

Proof. If C is rectifiable, L(C) < ∞, and since C has distinct endpoints p and q,
we get L(C) � |p − q| > 0. By Lemma 5.4, 0 < H1(C) < ∞, so C is a 1-set.

A point x of C that is not an endpoint, divides C into two parts Cp,x and
Cx,q . If r is sufficiently small, then moving away from x along the curve Cx,q

we reach a first point y on C with |x − y| = r . Then Cx,y ⊂ B(x, r) and

r = |x − y| � L(Cx,y) = H1(Cx,y) � H1(Cx,q ∩ B(x, r)).

Similarly, r � H1(Cp,x ∩ B(x, r)), so, adding, 2r � H1(C ∩ B(x, r)), if r is
small enough. Thus

D1(C, x) = lim
r→0

H1(C ∩ B(x, r))

2r
� 1.

By Proposition 5.1(b) D1(C, x) � D
1
(C, x) � 1, so D1(C, x) exists and equals

1 for all x ∈ C other than the two endpoints, so C is regular. �

Other regular sets are easily constructed. By (5.4), subsets of regular sets, and
unions of regular sets should also be regular. With this in mind we define a 1-set
to be curve-like if it is contained in a countable union of rectifiable curves.

Proposition 5.6

A curve-like 1-set is a regular 1-set.
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Proof. If F is a curve-like 1-set then F ⊂ ⋃∞
i=1 Ci where the Ci are rectifiable

curves. For each i and H1-almost all x ∈ F ∩ Ci we have, using Lemma 5.5 and
equation (5.4),

1 = D1(Ci, x) = D1(F ∩ Ci, x) � D1(F, x)

and hence 1 � D1(F, x) for almost all x ∈ F . But for almost all x ∈ F we
have D1(F, x) � D

1
(F, x) � 1 by Proposition 5.1, so D1(F, x) = 1 almost

everywhere, and F is regular. �

It is natural to introduce a complementary definition: a 1-set is called curve-free
if its intersection with every rectifiable curve has H1-measure-zero.

Proposition 5.7

An irregular 1-set is curve-free.

Proof. If F is irregular and C is a rectifiable curve then F ∩ C is a subset of
both a regular and an irregular set, so has zero H1-measure. �

These two propositions begin to suggest that regular and irregular sets might be
characterized as curve-like and curve-free respectively. This is indeed the case,
but it is far from easy to prove. The crux of the matter is the following lower-
density estimate, which depends on an intricate investigation of the properties of
curves and connected sets and some ingenious geometrical arguments.

Proposition 5.8

Let F be a curve-free 1-set in �2. Then D1(F, x) � 3
4 at almost all x ∈ F .

Proof. Omitted. �

Assuming this proposition, a complete characterization of regular and irregular
sets is relatively easy.

Theorem 5.9

(a) A 1-set in �2 is irregular if and only if it is curve-free.
(b) A 1-set in �2 is regular if and only if it is the union of a curve-like set and

a set of H1-measure zero.

Proof

(a) A curve-free set must be irregular by Proposition 5.8. Proposition 5.7 pro-
vides the converse implication.

(b) By Proposition 5.6 a curve-like set is regular, and adding in a set of
measure zero does not affect densities or, therefore, regularity.
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If F is regular, then any Borel subset E of positive measure is regular with
D1(E, x) = 1 for almost all x ∈ E. By Proposition 5.8 the set E cannot
be curve-free, so some rectifiable curve intersects E in a set of positive
length. We use this fact to define inductively a sequence of rectifiable
curves {Ci}. We choose C1 to cover a reasonably large part of F , say

H1(F ∩ C1) � 1
2 sup {H1(F ∩ C) : C is rectifiable} > 0.

If C1, . . . , Ck have been selected and Fk = F\⋃k
i=1 Ci has positive mea-

sure, let Ck+1 be a rectifiable curve for which

H1(Fk ∩ Ck+1) � 1
2 sup {H1(Fk ∩ C) : C is rectifiable} > 0. (5.7)

If the process terminates then for some k the curves C1, . . . , Ck cover
almost all of F and F is curve-like. Otherwise,

∞ > H1(F ) �
∑

k

H1(Fk ∩ Ck+1)

since the Fk ∩ Ck+1 are disjoint, so that H1(Fk ∩ Ck+1) → 0 as k → ∞.
If H1(F\ ⋃∞

i=1 Ci) > 0 there is a rectifiable curve C such that H1((F\⋃∞
i=1 Ci) ∩ C) = d for some d > 0. But H1(Fk ∩ Ck+1) < 1

2d for some
k, so, according to (5.7), C would have been selected in preference to
Ck+1. Hence H1(F\⋃∞

i=1 Ci) = 0, and F consists of the curve-like set
F ∩ ⋃∞

i=1 Ci together with F\⋃∞
i=1 Ci , which is of measure zero. �

Thus regular 1-sets are essentially unions of subsets of rectifiable curves, but
irregular 1-sets contain no pieces of rectifiable curves at all. This dichotomy is
remarkable in that the definition of regularity is purely in terms of densities and
makes no reference to curves. Propositions 5.6 and 5.8 provide a further contrast.
Almost everywhere, a regular set has lower density 1, whereas an irregular set
has lower density at most 3

4 . Thus in any 1-set F the set of points for which
3
4 < D1(F, x) < 1 has H1-measure zero.

Regular 1-sets may be connected but, like sets of dimension less than 1, irreg-
ular 1-sets must be totally disconnected. We know at least that distinct points
cannot be joined by a rectifiable curve in an irregular set, and further investigation
shows that no two points can lie in the same connected component.

Further differences between regular and irregular sets include the existence of
tangents (see Section 5.3) and projection properties (see Chapter 6). In all these
ways, the classes of regular and irregular 1-sets are distanced from each other.
For the special case of 1-sets, it would make sense mathematically to define
fractals to be those sets which are irregular.

5.3 Tangents to s-sets

Suppose that a smooth curve C has a tangent (in the classical sense) at x. This
means that close to x the set C is concentrated in two diametrically opposite



Tangents to s-sets 85

directions. What can be said about the directional distribution of an s-set about a
typical point? Is there a meaningful definition of a tangent to an s-set, and when
do such tangents exist?

Any generalization of the definition of tangents should reflect the local direc-
tional distribution of sets of positive measure—for sets of the complexity that
we have in mind, there is no hope of a definition involving all nearby points;
we must be content with a condition on almost all points. We say that an s-set
F in �n has a tangent at x in direction θ (θ a unit vector) if

D
s
(F, x) > 0 (5.8)

and, for every angle ϕ > 0,

lim
r→0

r−sHs(F ∩ (B(x, r)\S(x, θ , ϕ))) = 0 (5.9)

where S(x, θ , ϕ) is the double sector with vertex x, consisting of those y such
that the line segment [x, y] makes an angle at most ϕ with θ or −θ ; see figure 5.4.
Thus, for a tangent in direction θ , (5.8) requires that a significant part of F lies
near x, of which, by (5.9), a negligible amount close to x lies outside any double
sector S(x, θ , ϕ); see figure 5.5.

We first discuss tangents to regular 1-sets in the plane, a situation not far
removed from the classical calculus of curves.

Proposition 5.10

A rectifiable curve C has a tangent at almost all of its points.

Proof. By Lemma 5.5 the upper density D
1
(C, x) = 1 > 0 for almost all x ∈

C. We may reparametrize the defining function of C by arc length, so that

q

jj

x

Figure 5.4 The double sector S(x, θ , ϕ)
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S(x, q, j) B(x, r )

F

x

q

Figure 5.5 For F to have a tangent in direction θ at x, there must be a negligible part
of F in B(x, r)\S(x, θ , ϕ) (shaded) for small r

ψ : [0,L(C)] → �2 gives ψ(t) as the point distance t along C from the end-
point ψ(0). To say that L(C) < ∞ simply means that ψ has bounded variation,
in other words sup

∑m
i=1 |ψ(ti) − ψ(ti−1)| < ∞ where the supremum is over

dissections 0 = t0 < t1 < · · · < tm = L(C). We quote a standard result from the
theory of functions, that functions of bounded variation are differentiable almost
everywhere, so ψ ′(t) exists as a vector for almost all t . Because of the arc-
length parametrization, |ψ ′(t)| = 1 for such t . Hence at almost all points ψ(t)

on C, there exists a unit vector θ such that limu→t (ψ(u) − ψ(t))/(u − t) = θ .
Thus, given ϕ > 0, there is a number ε > 0 such that ψ(u) ∈ S(ψ(t), θ , ϕ)

whenever |u − t | < ε. Since C has no double points we may find r such that
ψ(u) /∈ B(ψ(t), r) if |u − t | � ε, so C ∩ (B(ψ(t), r)\S(ψ(t), θ , ϕ)) is empty.
By the definitions (5.8) and (5.9), the curve C has a tangent at ψ(t). Such points
account for almost all points on C. �

Just as with densities, we can transfer tangency properties from curves to
curve-like sets.

Proposition 5.11

A regular 1-set F in �2 has a tangent at almost all of its points.

Proof. By definition of regularity, D
1
(F, x) = 1 > 0 at almost all x ∈ F .

If C is any rectifiable curve, then for almost all x in C there exists θ such that
if ϕ > 0

lim
r→0

r−1H1((F ∩ C) ∩ (B(x, r)\S(x, θ , ϕ)))

� lim
r→0

r−1H1(C ∩ (B(x, r)\S(x, θ , ϕ))) = 0
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by Proposition 5.10. Moreover

lim
r→0

r−1H1((F\C) ∩ (B(x, r)\S(x, θ , ϕ)))

� lim
r→0

r−1H1((F\C) ∩ B(x, r)) = 0

for almost all x ∈ C by Property 5.1(a). Adding these inequalities

lim
r→0

r−1H1(F ∩ (B(x, r)\S(x, θ , ϕ))) = 0

for almost all x ∈ C and so for almost all x ∈ F ∩ C. Since a countable collection
of such curves covers almost all of F , the result follows. �

In contrast to regular sets, irregular 1-sets do not generally support tangents.

Proposition 5.12

At almost all points of an irregular 1-set, no tangent exists.

Proof. The proof, which depends on the characterization of irregular sets as curve-
free sets, is too involved to include here. �

We turn now to s-sets in �2 for non-integral s, which, as we have seen,
are necessarily irregular. For 0 < s < 1 tangency questions are not particularly
interesting, since any set contained in a smooth curve will automatically satisfy
(5.9) with θ the direction of the tangent to the curve at x. For example, the middle
third Cantor set F regarded as a subset of the plane is a (log 2/ log 3)-set that
satisfies (5.8) and (5.9) for all x in F and ϕ > 0, where θ is a vector pointing
along the set. On the other hand, if F , say, is a Cartesian product of two uniform
Cantor sets, each formed by repeated removal of a proportion α > 1

2 from the
centre of intervals, then a little calculation (see Chapter 7) shows that F is an
s-set with s = 2 log 2/ log(2/(1 − α)) < 1 with no tangents at any of its points.

It is at least plausible that s-sets in �2 with 1 < s < 2 do not have tan-
gents—such sets are so large that they radiate in many directions from a typical
point, so that (5.9) cannot hold. This is made precise in the following proposition.

Proposition 5.12

If F is an s-set in �2 with 1 < s < 2, then at almost all points of F, no tan-
gent exists.

Proof. For r0 > 0 let

E = {y ∈ F : Hs(F ∩ B(y, r)) < 2(2r)s for all r < r0}. (5.10)
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For each x ∈ E, each unit vector θ and each angle ϕ with 0 < ϕ < 1
2π , we

estimate how much of E lies in B(x, r) ∩ S(x, θ , ϕ). For r < r0/20 and i =
1, 2, . . . let Ai be the intersection of the annulus and the double sector given by

Ai = (B(x, irϕ)\B(x, (i − 1)rϕ)) ∩ S(x, θ , ϕ).

Then B(x, r) ∩ S(x, θ , ϕ) ⊂ ⋃m
i=1 Ai ∪ {x} for some integer m < 2/ϕ. Each Ai

comprises two parts, both of diameter at most 10rϕ < r0, so applying (5.10) to
the parts that contain points of E, and summing,

Hs(E ∩ B(x, r) ∩ S(x, θ , ϕ)) � 2m2(20rϕ)s � (4ϕ−1)2(20rϕ)s

so that
(2r)−sHs(E ∩ B(x, r) ∩ S(x, θ , ϕ)) � 8.10sϕs−1 (5.11)

if r < r0/20.
Now, almost all x ∈ E satisfy D

s
(F\E, x) = 0 by Proposition 5.1(a). Decom-

posing F ∩ B(x, r) into three parts we get

Hs(F ∩ B(x, r)) = Hs((F\E) ∩ B(x, r)) + Hs(E ∩ B(x, r) ∩ S(x, θ , ϕ))

+ Hs(E ∩ (B(x, r)\S(x, θ , ϕ))).

Dividing by (2r)s and taking upper limits as r → 0,

D
s
(F, x) � 0 + 8.10sϕs−1 + lim

r→0
(2r)−sHs(F ∩ (B(x, r)\S(x, θ , ϕ)))

for almost all x ∈ E, using (5.11). Choosing ϕ sufficiently small, it follows that
for all θ (5.8) and (5.9) cannot both hold, so no tangent exists at such x. To
complete the proof, we note that almost all x ∈ F belong to the set E defined in
(5.10) for some r0 > 0, by Proposition 5.1(b). �

The results of this chapter begin to provide a local picture of fractals that
are s-sets. By taking these methods rather further, it is possible to obtain much
more precise estimates of densities and also of the directional distributions of
s-sets about typical points. For example, it may be shown that if s > 1, almost
every line through Hs-almost every point of an s-set F intersects F in a set of
dimension s − 1.

Recently, packing measures (see Section 3.4) have been employed in the study
of local properties, and it has been shown that regularity of a set corresponds
closely to the equality of its packing measure and (slightly modified) Haus-
dorff measure.

These ideas extend, albeit with considerable effort, to higher dimensions. Reg-
ular s-sets in �n may be defined using densities and, again, s-sets can only be
regular if s is an integer. Regular s-sets have tangents almost everywhere, and are
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‘s-dimensional-surface-like’ in the sense that, except for a subset of Hs-measure
zero, they may be covered by a countable collection of Lipschitz images of
subsets of �s .

5.4 Notes and references

This chapter touches the surface of a deep area of mathematics known as geomet-
ric measure theory. It has its origins in the fundamental papers of Besicovitch
(1928, 1938) which contain a remarkably complete analysis of 1-sets in the
plane. The results on s-sets in the plane for non-integral s are due to Marstrand
(1954a). A succession of writers have extended this work to subsets of higher-
dimensional space, culminating in the paper of Preiss (1987) which solved many
of the outstanding problems. More detailed discussions of regular and irregu-
lar sets may be found in Falconer (1985a), Mattila (1995) and Federer (1996).
Modern approaches use tangent measures, introduced by Preiss (1987), which
are described in Mattila (1995) and Falconer (1997). It is widely believed that
the ‘ 3

4 ’ in Proposition 5.8 can be replaced by ‘ 1
2 ’. Farag (2002) has shown this

in many cases, and Preiss and Tiser (1992) obtain (2 + √
46)/12 = 0.732 . . . in

general.

Exercises

5.1 By applying Proposition 5.1 with s = n = 2, deduce the Lebesgue density theo-
rem (5.1).

5.2 Let f : � → � be a continuously differentiable function such that 0 < c1 � f ′(x) �
c2 for all x. Show that, if F is an s-set in �, then Ds(f (F ), f (x)) = Ds(F, x) for
all x in �, with a similar result for upper densities.

5.3 Let F be the middle third Cantor set. Show that Ds(F, x) � 2−s for all x, where
s = log 2/ log 3. Deduce that F is irregular.

5.4 Estimate the upper and lower densities at points of the 1-set depicted in figure 0.4
and show that it is irregular.

5.5 Adapt the proof of Theorem 5.2 to show that if F is an s-set with 0 < s < 1, then
Ds(F, x) � (1 + 2s/(s−1))s−1 for almost all x.

5.6 Construct a regular 1-set that is totally disconnected. (Hint: start with an interval.)

5.7 Let E and F be s-sets in �2 such that for every disc B(x, r) we have that
Hs (B(x, r) ∩ E) � Hs (B(x, r) ∩ F). Show that Hs(E\F) = 0. Need we have
E ⊂ F ?

5.8 Let F1, F2, . . . be 1-sets in the plane such that F = ⋃∞
k=1 Fk is a 1-set. Show that

if Fk is regular for all k then F is regular, and if Fk is irregular for all k then F

is irregular.

5.9 Show that if E is a regular 1-set and F an irregular 1-set then H1(E ∩ F) = 0.



Chapter 6 Projections of fractals

In this chapter we consider the orthogonal projection or ‘shadow’ of fractals in �n

onto lower-dimensional subspaces. A smooth (1-dimensional) curve in �3 gener-
ally has a (1-dimensional) curve as its shadow on a plane, but a (2-dimensional)
surface or (3-dimensional) solid object generally has a 2-dimensional shadow, as
in the upper part of figure 6.1. We examine analogues of this for fractals. Intui-
tively, one would expect a set F in �3 to have plane projections of dimension
2 if dimHF > 2 and of dimension dimHF if dimHF < 2, as in the lower part
of figure 6.1. Roughly speaking this is correct, but a precise formulation of the
projection properties requires some care.

We prove the projection theorems in the simplest case, for projection of subsets
of the plane onto lines, and then state the higher-dimensional analogues.

6.1 Projections of arbitrary sets

Let Lθ be the line through the origin of �2 that makes an angle θ with the
horizontal axis. We denote orthogonal projection onto Lθ by projθ , so that if F is
a subset of �2, then projθF is the projection of F onto Lθ ; see figure 6.2. Clearly,
|projθx − projθy| � |x − y| if x, y ∈ �2, i.e. projθ is a Lipschitz mapping. Thus

dimH(projθF ) � min{dimHF, 1} (6.1)

for any F and θ , by Corollary 2.4(a). (As projθF is a subset of the line Lθ ,
its dimension cannot be more than 1.) The interesting question is whether the
opposite inequality is valid. The projection theorems tell us that this is so for
almost all θ ∈ [0, π); that is, the exceptional values of θ for which inequality
(6.1) is strict form a set of zero length (1-dimensional Lebesgue measure).

Projection theorem 6.1

Let F ⊂ �2 be a Borel set.

(a) If dimHF � 1 then dimH(projθF ) = dimHF for almost all θ ∈ [0, π).
(b) If dimHF > 1 then projθF has positive length (as a subset of Lθ ) and so

has dimension 1 for almost all θ ∈ [0, π).
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F1 F2

Figure 6.1 Top: projections of classical sets onto a plane—a curve ‘typically’ has pro-
jection of dimension 1, but the surface and cube have projections of dimension 2 and
of positive area. Bottom: projections of fractal sets onto a plane. If dimHF1 < 1 and
dimHF2 > 1 then ‘typically’ the projection of F1 has dimension equal to dimHF1 (and
zero area) and the projection of F2 has dimension 2 and positive area

q

F

L q

proj qF

Figure 6.2 Projection of a set F onto a line Lθ
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Proof. We give a proof that uses the potential theoretic characterization of Haus-
dorff dimension in a very effective way. If s < dimHF � 1 then by Theo-
rem 4.13(b) there exists a mass distribution µ on (a compact subset of) F with
0 < µ(F) < ∞ and ∫

F

∫

F

dµ(x)dµ(y)

|x − y|s < ∞. (6.2)

For each θ we ‘project’ the mass distribution µ onto the line Lθ to get a mass
distribution µθ on projθF . Thus µθ is defined by the requirement that

µθ([a, b]) = µ{x : a � x · θ � b}

for each interval [a, b], or equivalently,

∫ ∞

−∞
f (t)dµθ(t) =

∫

F

f (x · θ)dµ(x)

for each non-negative function f . (Here θ is the unit vector in the direction θ ,
with x identified with its position vector and x · θ the usual scalar product.) Then

∫ π

0

[∫ ∞

−∞

∫ ∞

−∞
dµθ(u)dµθ(v)

|u − v|s
]

dθ =
∫ π

0

[∫

F

∫

F

dµ(x)dµ(y)

|x · θ − y · θ |s
]

dθ

=
∫ π

0

[∫

F

∫

F

dµ(x)dµ(y)

|(x − y) · θ |s
]

dθ

=
∫ π

0

dθ

|τ · θ |s
∫

F

∫

F

dµ(x)dµ(y)

|x − y|s (6.3)

for any fixed unit vector τ . (Note that the integral of |(x − y) · θ |−s with respect
to θ depends only on |x − y|.) If s < 1 then (6.3) is finite by virtue of (6.2)
and that ∫ π

0

dθ

|τ · θ |s =
∫ π

0

dθ

| cos(τ − θ)|s < ∞.

Hence ∫

F

∫

F

dµθ(u)dµθ(v)

|u − v|s < ∞

for almost all θ ∈ [0, π). By Theorem 4.13(a) the existence of such a mass
distribution µθ on projθF implies that dimH(projθF ) � s. This is true for all
s < dimHF , so part (a) of the result follows.

The proof of (b) follows similar lines, though Fourier transforms need to be
introduced to show that the projections have positive length. �

These projection theorems generalize to higher dimensions in the natural way.
Let Gn,k be the set of k-dimensional subspaces or ‘k-planes through the origin’ in
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�n. These subspaces are naturally parametrized by k(n − k) coordinates (‘gen-
eralized direction cosines’) so that we may refer to ‘almost all’ subspaces in a
consistent way in terms of k(n − k)-dimensional Lebesgue measure. We write
proj� for orthogonal projection onto the k-plane �.

Theorem 6.2. Higher-dimensional projection theorem

Let F ⊂ �n be a Borel set.

(a) If dimHF � k then dimH(proj�F) = dimHF for almost all � ∈ Gn,k

(b) If dimHF > k then proj�F has positive k-dimensional measure and so has
dimension k for almost all � ∈ Gn,k .

Proof. The proof of Theorem 6.1 extends to higher dimensions without diffi-
culty. �

Thus if F is a subset of �3, the plane projections of F are, in general, of
dimension min{2, dimHF }. This result has important practical implications. We
can estimate the dimension of an object in space by estimating the dimension
of a photograph taken from a random direction. Provided this is less than 2,
it may be assumed to equal the dimension of the object. Such a reduction can
make dimension estimates of spatial objects tractable—box-counting methods
are difficult to apply in 3 dimensions but can be applied with reasonable success
in the plane.

6.2 Projections of s-sets of integral dimension

If a subset F of �2 has Hausdorff dimension exactly 1, then Theorem 6.1 tells us
that the projections of F onto almost every Lθ have dimension 1. However, in this
critical case, no information is given as to whether these projections have zero or
positive length. In the special case where F is a 1-set, i.e. with 0 < Hs(F ) < ∞,
an analysis is possible. Recall from Theorem 5.3 that a 1-set may be decomposed
into a regular curve-like part and an irregular dust-like part. The following two
theorems provide another sharp contrast between these types of set.

Theorem 6.3

Let F be a regular 1-set in �2. Then projθF has positive length except for at
most one θ ∈ [0, π).

Sketch of proof. By Theorem 5.9(b) it is enough to prove the result if F is a subset
of positive length of a rectifiable curve C. Using the Lebesgue density theorem
to approximate to such an F by short continuous subcurves of C, essentially all
we need to consider is the case when F is itself a rectifiable curve C1 joining
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distinct points x and y. But clearly, the projection onto Lθ of such a curve is an
interval of positive length, except possibly for the one value of θ for which Lθ

is perpendicular to the straight line through x and y. �

(In general projθF will have positive length for all θ ; there is an exceptional
value of θ only if F is contained in a set of parallel line segments.)

Theorem 6.4

Let F be an irregular 1-set in �2. Then projθF has length zero for almost all
θ ∈ [0, π).

Proof. The proof is complicated, depending on the intricate density and angular
density structure of irregular sets. We omit it! �

These theorems may be combined in several ways.

Corollary 6.5

Let F be a 1-set in �2. If the regular part of F has H1-measure zero, then projθF
has length zero for almost all θ ; otherwise it has positive length for all but at
most one value of θ .

The following characterization of irregular sets is also useful.

Corollary 6.6

A 1-set in �2 is irregular if and only if it has projections of zero length in at least
two directions.

Example 6.7

The Cantor dust F of figure 0.4 is an irregular 1-set.

Calculation. In Example 2.6 we showed that F is a 1-set. It is easy to see that the
projections of F onto lines Lθ with tan θ = 1

2 and tan θ = −2 have zero length
(look at the first few iterations), so F is irregular by Corollary 6.6. �

The results of this section have been stated for sets for which 0 < H1(F ) < ∞,
which is rather a strong property for 1-dimensional sets to have, although one
which occurs surprisingly often. However, the theorems can be applied rather
more widely. If F is any set that intersects some rectifiable curve in a set of
positive length, so that F contains a regular subset, then projθF has positive
length for almost all θ . Again, if F is a σ -finite irregular set, i.e. one which may
be expressed as a countable union of irregular 1-sets each of finite measure, then
projθF has zero length for almost all θ ; this follows by taking countable unions
of the projections of these component 1-sets.
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For the record, we state the higher-dimensional analogue of Theorems 6.3 and
6.4, though the proofs are even more complicated than in the plane case.

Theorem 6.8

Let F be a k-set in �n, where k is an integer.

(a) If F is regular then proj�F has positive k-dimensional measure for almost
all � ∈ Gn,k .

(b) If F is irregular then proj�F has zero k-dimensional measure for almost
all � ∈ Gn,k .

6.3 Projections of arbitrary sets of integral dimension

The theorems of the last section, although mathematically elegant and sophisti-
cated, do not provide a complete answer to the question of whether projections
of plane sets onto lines have zero or positive length. A subset F of �2 of Haus-
dorff dimension 1 need not be a 1-set or even be of σ -finite H1-measure (i.e. a
countable union of sets of finite H1-measure). Moreover there need not be any
dimension function h (see Section 2.5) for which 0 < Hh(F ) < ∞, in which
case mathematical analysis is extremely difficult. What can be said about the
projections of such sets? The surprising answer is that, by working in this rather
delicate zone of sets of Hausdorff dimension 1 but of non-σ -finite H1-measure,
we can construct sets with projections more or less what we please. For example,
there is a set F in �2 such that projθF contains an interval of length 1 for almost
all θ with 0 � θ < 1

2π but with projθF of length zero for 1
2π � θ < π . More

generally, we have the following result which says that there exist sets for which
the projections in almost all directions are, to within length zero, anything that
we care to prescribe. The measurability condition in square brackets is included
for completeness, but is best ignored by non-specialists!

Theorem 6.9

Let Gθ be a subset of Lθ for each θ ∈ [0, π) [such that the set
⋃

0�θ<π Gθ is
plane Lebesgue measurable]. Then there exists a Borel set F ⊂ �2 such that

(a) projθF ⊃ Gθ for all θ , and
(b) length (projθF\Gθ) = 0 for almost all θ .

In particular, for almost all θ , the set of points of Lθ belonging to either Gθ or
projθF , but not both, has zero length.

Idea of proof. Without going into much detail, we indicate the basic building block
for such sets, which has been termed the ‘iterated Venetian blind’ construction.
This is shown in figure 6.3. Let E be a line segment of length λ. Let ε be a
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(a)

Projections
of small
length

Projections
large

(b)

E

E1

E2

Figure 6.3 (a) The ‘iterated Venetian blind’ construction. (b) Projections in certain bands
of directions have large lengths, whilst projections in other bands of directions have very
small lengths

small angle and k a large number. We replace E by k line segments of lengths
roughly λ/k, each at an angle ε to E and with endpoints equally spaced along E

to form a new set, E1. We repeat this process with each segment of E1 to form
a set E2 consisting of k2 line segments all of lengths about λ/k2 and at angle
2ε to E. We continue in this way, to get Er , a set of kr segments all of lengths
about λ/kr and at angle rε to E. We stop when r is such that rε is, say, about
1
4π . Comparing the projections of Er with that of the original line segment E,
we see that if 0 � θ < 1

2π then projθE and projθEr are nearly the same (since
lines perpendicular to Lθ that cut E also cut Er). However, if − 1

4π < θ < 0
then projθEr will have very small length, since most lines perpendicular to Lθ

will pass straight between appropriately angled ‘slats’ of the construction. Thus
the projections of Er are very similar to those of E in certain directions, but are
almost negligible in other directions. This idea may be adapted to obtain sets
with projections very close to Gθ in a narrow band of directions but with almost
null projections in other directions. Taking unions of such sets for various small
bands of directions gives a set with approximately the required property. Taking
a limit of a sequence of sets which give increasingly accurate approximations
leads to a set with the properties stated. �

This construction may be extended to higher dimensions: there exists a set F

in �n such that almost all projections of F onto k-dimensional subspaces differ
from prescribed sets by zero k-dimensional measure. In particular there exists a
set in 3-dimensional space with almost all of its plane shadows anything we care
to prescribe to within zero area. By specifying the shadows to be the thickened
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Set of dimension 2

Shadow that
          changes as the
      sun moves round
    to give different
projections

Figure 6.4 A digital sundial

digits of the time when the sun is shining from a perpendicular direction, we
obtain, at least in theory, a digital sundial; see figure 6.4. As the sun moves
across the sky we get different projections of the set. The notion of a digital
sundial was introduced to provide an intuitive view of this result, rather than as a
feasible method of chronography, but, amazingly, working digital sundials have
recently been manufactured, albeit depending on a different principle!

6.4 Notes and references

A geometric proof of the projection theorems for arbitrary subsets of the plane
was given by Marstrand (1954a); the potential theoretic proof was due to Kauf-
man (1968). Mattila (1975) obtained various generalizations including extensions
to higher dimensions. The projection results for regular and irregular 1-sets in
the plane are, surprisingly, rather older, dating back to Besicovitch (1939), with
the analogous results for s-sets in �n in the mammoth paper of Federer (1947).
More detailed accounts of the projection theorems are in Falconer (1985a) and
Mattila (1995). Projection results for box and packing dimensions are more sub-
tle, see Falconer and Howroyd (1997) and Howroyd (2001). A dual version of
Theorem 6.9 was given by Davies (1952) and a direct proof, with the higher-
dimensional generalizations, by Falconer (1986a).

Exercises

6.1 Let E = F × F ⊂ �2 where F is the middle λ Cantor set. (E has Hausdorff dimen-
sion 2 log 2/ log(2/(1 − λ)), see Examples 4.5 and 7.6.) What is dimHprojθE (a) for
a typical θ and (b) for θ = 0 and θ = π/2?
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6.2 Let E be the ‘circular Cantor set’ given in complex number form by E = {e2πiϕ :
ϕ ∈ F } where F is the middle third Cantor set. What is dimHprojθE for each θ?

6.3 For 0 < s < 1, give an example of an s-set F in �2 such that projθF is an s-set for
all θ .

6.4 Let E and F be subsets of � with Hausdorff dimension strictly between 0 and
1. You are given that the subset E × F of �2 has Hausdorff dimension at least
dimHE + dimHF (see Chapter 7). Show that the projections of E × F onto the
coordinate axes are always ‘exceptional’ as far Projection theorem 6.1 is concerned.

6.5 Show that dimHprojθF � dimHF − 1 for all F ⊂ �2 and all θ .

6.6 Let F be an irregular 1-set in the plane. Deduce from Theorem 6.4 that F is totally
disconnected.

6.7 Let F be a connected subset of �2 containing more than one point. Show that projθF
has positive length for all except possibly one value of θ . (Thus the projection
theorems in the plane are only really of interest for sets that are not connected.)

6.8 Let E and F be subsets of �. Show that, for almost all real numbers
λ, dimH(E + λF) = min{1, dimH(E × F)}, where E + λF denotes the set of real
numbers {x + λy : x ∈ E, y ∈ F }.

6.9 Show that the conclusion of Theorem 6.4 remains true if F is a countable union of
irregular 1-sets.

6.10 Let E and F be any subsets of � of length (1-dimensional Lebesgue measure)
0. Show that any rectifiable curve in �2 intersects the product E × F in a set of
length 0.

6.11 If F is a set and x is a point in �2, the projection of F at x, denoted by projxF , is
defined as the set of θ in [0, 2π) such that the half-line emanating from x in direction
θ intersects F . Let L be a line. Show that if dimHF � 1 then dimHprojxF = dimHF

for almost all x on L (in the sense of Lebesgue measure) and if dimHF > 1 then
projxF has positive length for almost all x on L. (Hint: consider a sphere tangential
to the plane and a transformation that maps a point x on the plane to the point on
the sphere intersected by the line joining x to the centre of the sphere.)

6.12 Let F ⊂ �2. Show that for all θ , dimB projθF � dimBF , dimB projθF � dimBF

and dimP projθF � dimPF . Show that dimP projθF = dimPF for almost all θ if
dimPF = dimHF .



Chapter 7 Products of fractals

One way of constructing ‘new fractals from old’ is by forming Cartesian products.
Indeed, many fractals that occur in practice, for example as attractors of certain
dynamical systems, are products or, at least, are locally product-like. In this
chapter we develop dimension formulae for products.

7.1 Product formulae

Recall that if E is a subset of �n and F is a subset of �m, the Cartesian product,
or just product, E × F is defined as the set of points with first coordinate in E

and second coordinate in F , i.e.

E × F = {(x, y) ∈ �n+m : x ∈ E, y ∈ F }. (7.1)

Thus if E is a unit interval in �, and F is a unit interval in �2, then E × F is
a unit square in �3 (figure 7.1). Again, if F is the middle third Cantor set, then
F × F is the ‘Cantor product’ (figure 7.2) consisting of those points in the plane
with both coordinates in F .

In the first example above it is obvious that

dim(E × F) = dimE + dimF

using the classical definition of dimension. This holds more generally, in the
‘smooth’ situation, where E and F are smooth curves, surfaces or higher-dimen-
sional manifolds. Unfortunately, this equation is not always valid for ‘fractal’
dimensions. For Hausdorff dimensions the best general result possible is an
inequality dimH(E × F) � dimHE + dimHF . Nevertheless, as we shall see, in
many situations equality does hold.

The proof of the product rule uses the Hausdorff measures on E and F to
define a mass distribution µ on E × F . Density bounds on E and F lead to
estimates for µ suitable for a mass distribution method.
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E × F

E

F
2

E × F

E

F

Figure 7.1 The Cartesian product of a unit interval in � and a unit interval in �2

Proposition 7.1

If E ⊂ �n, F ⊂ �m are Borel sets with Hs(E),Ht (F ) < ∞, then

Hs+t (E × F) � cHs(E)Ht (F ) (7.2)

where c > 0 depends only on s and t.

Proof. For simplicity we assume that E,F ⊂ �, so that E × F ⊂ �2; the general
proof is almost identical. If either Hs(E) or Ht (F ) is zero, then (7.2) is trivial,

Figure 7.2 The product F × F , where F is the middle third Cantor set. In this case,
dimHF × F = 2 dimHF = 2 log 2/ log 3
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so suppose that E is an s-set and F is a t-set, i.e. 0 < Hs(E),Ht (F ) < ∞. We
may define a mass distribution µ on E × F by utilizing the ‘product measure’
of Hs and Ht . Thus if I, J ⊂ �, we define µ on the ‘rectangle’ I × J by

µ(I × J ) = Hs(E ∩ I )Ht (F ∩ J ). (7.3)

It may be shown that this defines a mass distribution µ on E × F with µ(�2) =
Hs(E)Ht (F ).

By the density estimate Proposition 5.1(b) we have that

lim
r→0

Hs(E ∩ B(x, r))(2r)−s � 1 (7.4)

for Hs-almost all x ∈ E and

lim
r→0

Ht (F ∩ B(y, r))(2r)−t � 1 (7.5)

for Ht -almost all y ∈ F . (Of course, since we are concerned with subsets of �,
the ‘ball’ B(x, r) is just the interval of length 2r with midpoint x.) From the
definition of µ, both (7.4) and (7.5) hold for µ-almost all (x, y) in E × F . Since
the disc B((x, y), r) is contained in the square B(x, r) × B(y, r) we have that

µ(B((x, y), r)) � µ(B(x, r) × B(y, r)) = Hs(E ∩ B(x, r))Ht (F ∩ B(y, r))

so
µ(B((x, y), r))

(2r)s+t
� Hs(E ∩ B(x, r))

(2r)s

Ht (F ∩ B(y, r))

(2r)t
.

It follows, using (7.4) and (7.5), that limr→0 µ(B((x, y), r))(2r)−(s+t) � 1 for
µ-almost all (x, y) ∈ E × F . By Proposition 4.9(a)

Hs(E × F) � 2−(s+t)µ(E × F) = 2−(s+t)Hs(E)Ht (F ). �

Product formula 7.2

If E ⊂ �n, F ⊂ �m are Borel sets then

dimH(E × F) � dimHE + dimHF. (7.6)

Proof. If s, t are any numbers with s < dimHE and t < dimHF , then Hs(E) =
Ht (F ) = ∞. Theorem 4.10 implies that there are Borel sets E0 ⊂ E and F0 ⊂ F

with 0 < Hs(E0),Ht (F0) < ∞. By Proposition 7.1 Hs+t (E× F)�Hs+t (E0 ×
F0)�cHs(E0)Ht (F0) > 0. Hence dimH(E × F) � s + t . By choosing s and t

arbitrarily close to dimHE and dimHF , (7.6) follows. �

Proposition 7.1 and Formula 7.2 are in fact valid for arbitrary (non-Borel) sets.
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It follows immediately from (7.6) that the ‘Cantor product’ F × F , where F is
the middle third Cantor set, has Hausdorff dimension at least 2 log 2/ log 3 (see
figure 7.2).

In general, inequality (7.6) cannot be reversed; see Example 7.8. However, if,
as often happens, either E or F is ‘reasonably regular’ in the sense of having
equal Hausdorff and upper box dimensions, then we do get equality.

Product formula 7.3

For any sets E ⊂ �n and F ⊂ �m

dimH(E × F) � dimHE + dimBF. (7.7)

Proof. For simplicity take E ⊂ � and F ⊂ �. Choose numbers s > dimHE and
t > dimBF . Then there is a number δ0 > 0 such that F may be covered by
Nδ(F ) � δ−t intervals of length δ for all δ � δ0. Let {Ui} be any δ-cover of E

by intervals with
∑

i |Ui |s < 1. For each i, let Ui,j be a cover of F by N|Ui |(F )

intervals of length |Ui|. Then Ui × F is covered by N|Ui |(F ) squares {Ui × Ui,j }
of side |Ui |. Thus E × F ⊂ ⋃

i

⋃
j (Ui × Ui,j ), so that

Hs+t
δ
√

2(E × F) �
∑

i

∑

j

|Ui × Ui,j |s+t �
∑

i

N|Ui |(F )2(s+t)/2|Ui |s+t

� 2(s+t)/2
∑

i

|Ui |−t |Ui |s+t < 2(s+t)/2.

Letting δ → 0 gives Hs+t (E × F) < ∞ whenever s > dimHE and t > dimBF ,
so dimH(E × F) � s + t . �

Corollary 7.4

If dimHF = dimBF then

dimH(E × F) = dimHE + dimHF.

Proof. Note that combining Product formulae 7.2 and 7.3 gives

dimHE + dimHF � dimH(E × F) � dimHE + dimBF. � (7.8)

It is worth noting that the basic product inequality for upper box dimensions
is opposite to that for Hausdorff dimensions.

Product formula 7.5

For any sets E ⊂ �n and F ⊂ �m

dimB(E × F) � dimBE + dimBF. (7.9)
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Proof. This is left as Exercise 7.5. The idea is just as in Formula 7.3—note that if
E and F can be covered by Nδ(E) and Nδ(F ) intervals of side δ, then E × F is
covered by the Nδ(E)Nδ(F ) squares formed by products of these intervals. �

Example 7.6. Product with uniform Cantor sets

Let E, F be subsets of � with F a uniform Cantor set (see Example 4.5). Then
dimH(E × F) = dimHE + dimHF .

Calculation. Example 4.5 shows that uniform Cantor sets have equal Hausdorff
and upper box dimensions, so the result follows from Corollary 7.4. �

Thus the ‘Cantor product’ of the middle third Cantor set with itself has Haus-
dorff and box dimensions exactly 2 log 2/ log 3. Similarly, if E is a subset of �
and F is a straight line segment, then dimH(E × F) = dimHE + 1.

Many fractals encountered in practice are not actually products, but are locally
product-like. For example, the Hénon attractor (see (13.5)) looks locally like a
product of a line segment and a Cantor-like set F . More precisely, there are
smooth bijections from [0, 1] × F to small neighbourhoods of the attractor. Such
sets may be analysed as the image of a product under a suitable Lipschitz trans-
formation.

Example 7.7

The ‘Cantor target’ is the plane set given in polar coordinates by F ′ = {(r, θ) :
r ∈ F, 0 � θ � 2π} where F is the middle third Cantor set; see figure 7.3. Then
dimHF ′ = 1 + log 2/ log 3.

Calculation. Let f : �2 → �2 be given by f (x, y) = (x cos y, x sin y). It is easy
to see that f is a Lipschitz mapping and F ′ = f (F × [0, 2π]). Thus

dimHF ′ = dimHf (F × [0, 2π]) � dimH(F × [0, 2π])

= dimHF + dimH[0, 2π] = (log 2/ log 3) + 1

by Corollary 2.4(a) and Example 7.6. On the other hand, if we restrict f to
[ 2

3 , 1] × [0, π] then f is a bi-Lipschitz function on this domain. Since F ′ ⊃
f ((F ∩ [ 2

3 , 1]) × [0, π]) we have

dimHF ′ � dimHf ((F ∩ [ 2
3 , 1]) × [0, π])

= dimH((F ∩ [ 2
3 , 1]) × [0, π])

= dimH(F ∩ [ 2
3 , 1]) + dimH[0, π]

= (log 2/ log 3) + 1
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Figure 7.3 The ‘Cantor target’—the set swept out by rotating the middle third Cantor
set about an endpoint

by Corollary 2.4(b) and Example 7.6. This argument requires only minor modi-
fication to show that F ′ is an s-set for s = 1 + log 2/ log 3. �

The following example demonstrates that we do not in general get equality in
the product formula (7.6) for Hausdorff measures.

Example 7.8

There exist sets E,F ⊂ � with dimHE = dimHF = 0 and dimH(E × F) � 1.

Calculation. Let 0 = m0 < m1 < · · · be a rapidly increasing sequence of integers
satisfying a condition to be specified below. Let E consist of those numbers
in [0, 1] with a zero in the rth decimal place whenever mk + 1 � r � mk+1

and k is even, and let F consist of those numbers with zero in the rth deci-
mal place if mk + 1 � r � mk+1 and k is odd. Looking at the first mk+1 deci-
mal places for even k, there is an obvious cover of E by 10jk intervals of
length 10−mk+1 , where jk = (m2 − m1) + (m4 − m3) + · · · + (mk − mk−1). Then
log 10jk / − log 10−mk+1 = jk/mk+1 which tends to 0 as k → ∞ provided that
the mk are chosen to increase sufficiently rapidly. By Proposition 4.1 dimHE �
dimBE = 0. Similarly, dimHF = 0.

If 0 < w < 1 then we can write w = x + y where x ∈ E and y ∈ F ; just take
the rth decimal digit of w from E if mk + 1 � r � mk+1 and k is odd and from
F if k is even. The mapping f : �2 → � given by f (x, y) = x + y is easily
seen to be Lipschitz, so

dimH(E × F) � dimHf (E × F) � dimH(0, 1) = 1

by Corollary 2.4(a). �
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A useful generalization of the product formula relates the dimension of a set
to the dimensions of parallel sections. We work in the (x, y)-plane and let Lx

denote the line parallel to the y-axis through the point (x, 0).

Proposition 7.9

Let F be a Borel subset of �2. If 1 � s � 2 then

∫ ∞

−∞
Hs−1(F ∩ Lx)dx � Hs(F ). (7.10)

Proof. Given ε > 0, let {Ui} be a δ-cover of F such that

∑

i

|Ui|s � Hs
δ(F ) + ε.

Each Ui is contained in a square Si of side |Ui| with sides parallel to the coor-
dinate axes.

Let χi be the indicator function of Si (i.e. χi(x, y) = 1 if (x, y) ∈ Si and
χi(x, y) = 0 if (x, y) /∈ Si). For each x, the sets {Si ∩ Lx} form a δ-cover of
F ∩ Lx , so

Hs−1
δ (F ∩ Lx) �

∑

i

|Si ∩ Lx |s−1

=
∑

i

|Ui |s−2|Si ∩ Lx |

=
∑

i

|Ui |s−2
∫

χi(x, y)dy.

Hence

∫
Hs−1

δ (F ∩ Lx)dx �
∑

i

|Ui|s−2
∫∫

χi(x, y)dxdy

=
∑

i

|Ui |s

� Hs
δ(F ) + ε.

Since ε > 0 is arbitrary,
∫ Hs−1

δ (F ∩ Lx)dx � Hs
δ(F ). Letting δ → 0 gives

(7.10). �
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Corollary 7.10

Let F be a Borel subset of �2. Then, for almost all x (in the sense of 1-dimensional
Lebesgue measure), dimH(F ∩ Lx) � max{0, dimHF − 1}.
Proof. Take s > dimHF , so that Hs(F ) = 0. If s > 1, formula (7.10) gives
Hs−1(F ∩ Lx) = 0 and so dimH(F ∩ Lx) � s − 1, for almost all x. �

We state, without proof, a further useful generalization.

Proposition 7.11

Let F be any subset of �2, and let E be any subset of the x-axis. Suppose that
there is a constant c such that Ht (F ∩ Lx) � c for all x ∈ E. Then

Hs+t (F ) � bcHs(E) (7.11)

where b > 0 depends only on s and t.

This result may be phrased in terms of dimensions.

Corollary 7.12

Let F be any subset of �2, and let E be a subset of the x-axis. If dimH(F ∩ Lx) � t

for all x ∈ E, then dimHF � t + dimHE.

The obvious higher-dimensional analogues of these results are all valid.
The following illustration of Proposition 7.9 is an example of a self-affine set,

a class of sets which will be discussed in more detail in Section 9.4.

Example 7.13. A self-affine set

Let F be the set with iterated construction indicated in figure 7.4. (At the kth stage
each rectangle of Ek is replaced with an affine copy of the rectangles in E1. Thus
the contraction is greater in the ‘y’ direction than in the ‘x’ direction, with the
width to height ratio of the rectangles in Ek tending to infinity as k → ∞.) Then
dimHF = dimBF = 1 1

2 .

Calculation. Ek consists of 6k rectangles of size 3−k × 4−k. Each of these rect-
angles may be covered by at most (4/3)k + 1 squares of side 4−k, by dividing
the rectangles using a series of vertical cuts. Hence Ek may be covered by
6k × 2 × 4k × 3−k = 2 × 8k squares of diameter 4−k

√
2. In the usual way this

gives dimHF � dimBF � 1 1
2 .

On the other hand, except for x of the form j3−k where j and k are integers, we
have that Ek ∩ Lx consists of 2k intervals of length 4−k. A standard application
of the mass distribution method shows that H1/2(Ek ∩ Lx) � 1

2 for each such x.
By Proposition 7.9, H3/2(F ) � 1

2 . Hence dimHF = dimBF = 1 1
2 . �
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E0 E1

F

E2

Figure 7.4 Construction of a self-affine set, dimHF = 1 1
2

7.2 Notes and references

Versions of the basic product formula date from Besicovitch and Moran (1945). A
very general result, proved using net measures, was given by Marstrand (1954b).
For packing dimensions of products, see Tricot (1982) and Howroyd (1996).

Exercises

7.1 Show that for every set F ⊂ [0, 1], we have dimH(F × [0, 1]) = 1 + dimHF .

7.2 Let Fλ denote the middle λ Cantor set (see Example 4.5). What are the box and
Hausdorff dimensions of Fλ × Fµ for 0 < λ, µ < 1?

7.3 Let F be any subset of [0, ∞) and let F ′ be the ‘target’ in �2 given in polar
coordinates by {(r, θ) : r ∈ F, 0 � θ < 2π}. Show that dimHF ′ = 1 + dimHF .

7.4 Show that there is a subset F of �2 of Hausdorff dimension 2 with projections onto
both coordinate axes of length 0. (Hint: see Exercise 4.9.) Deduce that any 1-set
contained in F is irregular, and that any rectifiable curve intersects F in a set of
length 0.

7.5 Derive Product formula 7.5.

7.6 What are the Hausdorff and box dimensions of the plane set {(x, y) ∈ �2 : x + y ∈
F and x − y ∈ F }, where F is the middle third Cantor set?

7.7 Let F ⊂ � have equal Hausdorff and upper box dimensions. Let D be the
set {x − y : x, y ∈ F }, known as the difference set of F . Show that dimHD �
min{1, 2dimHF }. (Hint: consider the set F × F .)

7.8 Sketch the plane set {(x, y) : y − x2 ∈ F } where F is the middle third Cantor set,
and find its Hausdorff and box dimensions.

7.9 Let Lx be as in Proposition 7.9. Let F be a subset of �2 and let Es = {x ∈ � :
dimH(F ∩ Lx) � s} for 0 � s � 1. Show that dimHF � sup0�s�1{s + dimHEs}.
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7.10 Divide the unit square E0 into a three column, five row array of rectangles of sides 1
3

and 1
5 , and let E1 be a set obtained by choosing some four of the five rectangles from

each column. Let F be the self-affine set formed by repeatedly replacing rectangles
by affine copies of E1 (compare Example 7.13). Adapt the method of Example 7.13
to show that dimHF = 1 + log 4/ log 5.

7.11 Modify the construction of the previous exercise so that E1 contains four rectangles
from each of the first and third columns but none from the middle column. Show
that dimHF = log 2/ log 3 + log 4/ log 5.



Chapter 8 Intersections of fractals

The intersection of two fractals is often a fractal; it is natural to try to relate the
dimension of this intersection to that of the original sets. It is immediately appar-
ent that we can say almost nothing in the general case. For if F is bounded, there
is a congruent copy F1 of F such that dimH(F ∩ F1) = dimHF (take
F1 = F) and another congruent copy with dimH(F ∩ F1) = Ø (take F and F1

disjoint). However, we can say rather more provided we consider the intersection
of F and a congruent copy in a ‘typical’ relative position.

To illustrate this, let F and F1 be unit line segments in the plane. Then F ∩ F1

can be a line segment, but only in the exceptional situation when F and F1 are
collinear. If F and F1 cross at an angle, then F ∩ F1 is a single point, but now
F ∩ F1 remains a single point if F1 is replaced by a nearby congruent copy.
Thus, whilst ‘in general’ F ∩ F1 contains at most one point, this situation occurs
‘frequently’.

We can make this rather more precise. Recall that a rigid motion or direct
congruence transformation σ of the plane transforms any set E to a congruent
copy σ(E) without reflection. The rigid motions may be parametrized by three
coordinates (x, y, θ) where the origin is transformed to (x, y) and θ is the angle
of rotation. Such a parametrization provides a natural measure on the space of
rigid motions, with the measure of a set A of rigid motions given by the 3-
dimensional Lebesgue measure of the (x, y, θ) parametrizing the motions in A.
For example, the set of all rigid motions which map the origin to a point of the
rectangle [1, 2] × [0, 3] has measure 1 × 3 × 2π .

In the example with F a unit line segment, the set of transformations σ for
which F ∩ σ(F ) is a line segment has measure 0. However, F ∩ σ(F ) is a single
point for a set of transformations of positive measure, in fact a set of measure 4.

Similar ideas hold in higher dimensions. In �3, ‘typically’, two surfaces inter-
sect in a curve, a surface and a curve intersect in a point and two curves are
disjoint. In �n, if smooth manifolds E and F intersect at all, then ‘in general’
they intersect in a submanifold of dimension max{0, dim E + dim F − n}. More
precisely, if dim E + dim F − n > 0 then dim (E ∩ σ(F )) = dim E + dim F − n

for a set of rigid motions σ of positive measure, and is 0 for almost all other
σ . (Of course, σ is now measured using the 1

2n(n + 1) parameters required to
specify a rigid transformation of �n.)
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8.1 Intersection formulae for fractals

Are there analogues of these formulae if E and F are fractals and we use Haus-
dorff dimension? In particular, is it true that ‘in general’

dimH(E ∩ σ(F )) � max{0, dimHE + dimHF − n} (8.1)

and ‘often’

dimH(E ∩ σ(F )) � dimHE + dimHF − n (8.2)

as σ ranges over a group G of transformations, such as the group of translations,
congruences or similarities (see figure 8.1)? Of course ‘in general’ means ‘for
almost all σ ’ and ‘often’ means ‘for a set of σ of positive measure’ with respect to
a natural measure on the transformations in G. Generally, G can be parametrized
by m coordinates in a straightforward way for some integer m and we can use
Lebesgue measure on the parameter space �m.

We may obtain upper bounds for dimH(E ∩ σ(F )) when G is the group of
translations; these bounds hold automatically for the larger groups of congruences
and similarities. We have already proved (8.1) in the special case in the plane
where one of the sets is a straight line; this is essentially Corollary 7.10. The
general result is easily deduced from this special case. Recall that F + x =
{x + y : y ∈ F } denotes the translation of F by the vector x.

E

F
s (F )

Figure 8.1 The intersection of a ‘dust-like’ set E with various congruent copies σ(F ) of
a curve F . We are interested in the dimension of E ∩ σ(F ) for ‘typical’ σ
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Theorem 8.1

If E, F are Borel subsets of �n then

dimH(E ∩ (F + x)) � max{0, dimH(E × F) − n} (8.3)

for almost all x ∈ �n.

Proof. We prove this when n = 1; the proof for n > 1 is similar, using a higher-
dimensional analogue of Corollary 7.10. Let Lc be the line in the (x, y)-plane with
equation x = y + c. Assuming that dimH(E × F) > 1, it follows from Corollary
7.10 (rotating the lines through 45◦ and changing notation slightly) that

dimH((E × F) ∩ Lc) � dimH(E × F) − 1 (8.4)

for almost all c ∈ �. But a point (x, x − c) ∈ (E × F) ∩ Lc if and only if
x ∈ E ∩ (F + c). Thus, for each c, the projection onto the x-axis of (E × F) ∩ Lc

is the set E ∩ (F + c). In particular, dimH(E ∩ (F + c)) = dimH((E × F) ∩ Lc),
so the result follows from (8.4). �

Theorem 8.1 is some way from (8.1), but examples show that it is the best
that we can hope to achieve, even if the group of translations is replaced by the
group of all rigid motions. Unfortunately, inequality (7.6) is the opposite to what
would be needed to deduce (8.1) from (8.3). Nevertheless, in many instances,
we do have dimH(E × F) = dimHE + dimHF ; for example, if dimHF = dimBF ;
see Corollary 7.4. Under such circumstances we recover (8.1), with σ(F ) as the
translate F + x.

Lower bounds for dimH(E ∩ σ(F )) of the form (8.2) are rather harder to
obtain. The main known results are contained in the following theorem.

Theorem 8.2

Let E,F ⊂ �n be Borel sets, and let G be a group of transformations on �n.
Then

dimH(E ∩ σ(F )) � dimHE + dimHF − n (8.5)

for a set of motions σ ∈ G of positive measure in the following cases:

(a) G is the group of similarities and E and F are arbitrary sets
(b) G is the group of rigid motions, E is arbitrary and F is a rectifiable curve,

surface, or manifold.
(c) G is the group of rigid motions and E and F are arbitrary, with either

dimHE > 1
2 (n + 1) or dimHF > 1

2 (n + 1).

*Outline of proof. The proof uses the potential theoretic methods of Section 4.3. In
many ways, the argument resembles that of Projection theorem 6.1, but various
technical difficulties make it much more complicated.
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Briefly, if s < dimHE and t < dimHF , there are mass distributions µ on E and
ν on F with the energies Is(µ) and It (ν) both finite. If ν happened to be absolutely
continuous with respect to n-dimensional Lebesgue measure, i.e. if there were a
function f such that ν(A) = ∫

A
f (x)dx for each set A, then it would be natural

to define a mass distribution ησ on E ∩ σ(F ) by ησ (A) = ∫
A

f (σ−1(x))dµ(x).
If we could show that Is+t−n(ησ ) < ∞ for almost all σ , Theorem 4.13(a) would
imply that dimH(E ∩ σ(F )) � s + t − n if ησ (�n) > 0. Unfortunately, when F

is a fractal, ν is supported by a set of zero n-dimensional volume, so is anything
but absolutely continuous. To get around this difficulty, we can approximate ν by
absolutely continuous mass distributions νδ supported by the δ-neighbourhood of
F . Then, if νδ(A) = ∫

A
fδ(x)dx and ησ,δ = ∫

A
fδ(σ

−1(x))dµ(x), we can estimate
Is+t−n(ησ,δ) and take the limit as δ → 0. Simplifying the integral

∫
Is+t−n(ησ,δ)dσ

isolates a term

ϕδ(w) =
∫

G0

∫

�n

νδ(y)νδ(y + σ(w))dydσ

where integration with respect to σ is now over the subgroup G0 of F which
fixes the origin. Provided that

ϕδ(w) � constant|w|t−n (8.6)

for all w and δ, it may be shown that
∫

Is+t−n(ησ,δ)dσ < c < ∞, where c is inde-
pendent of δ. Letting δ → 0, the measures ησ,δ ‘converge’ to measures ησ on E ∩
σ(F ), where

∫
Is+t−n(ησ ) dσ < c. Thus Is+t−n(ησ ) < ∞ for almost all σ , so, by

Theorem 4.13(a), dimH(E ∩ σ(F )) � s + t − n whenever ησ (E ∩ σ(F )) > 0,
which happens on a set of positive measure.

It may be shown that (8.6) holds if It (ν) < ∞ in the cases (a), (b) and (c)
listed. This is relatively easy to show for (a) and (b). Case (c) is more awkward,
requiring Fourier transform theory. �

The condition that dimHE or dimHF > 1
2 (n + 1) in case (c) is a curious con-

sequence of the use of Fourier transforms. It is not known whether the theorem
remains valid for the group of congruences if n � 2 and 1

2n < dimHE, dimHF �
1
2 (n + 1).

Example 8.3

Let F ⊂ � be the middle third Cantor set. For λ, x ∈ � write λF + x = {λy +
x : y ∈ F }. Then dimH(F ∩ (F + x)) � 2(log 2/ log 3) − 1 for almost all x ∈
�, and dimH(F ∩ (λF + x)) = 2(log 2/ log 3) − 1 for a set of (x, λ) ∈ �2 of
positive plane Lebesgue measure.

Calculation. We showed in Example 7.6 that dimH(F × F) = 2(log 2/ log 3), so
the stated dimensions follow from Theorems 8.1 and 8.2(a). �
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The box and packing dimensions of intersections of sets can behave very
irregularly, with the dimensions of intersections often being ‘unexpectedly small’,
see Exercise 8.7.

*8.2 Sets with large intersection

We have seen that (8.1) need not always hold; in this section we examine a class
of sets for which it fails dramatically. We construct a large class Cs of subsets
of � of Hausdorff dimension at least s with the property that the intersection of
any countable collection of sets in Cs still has dimension at least s. Sets of this
type occur naturally in number theory; see Section 10.3.

The class Cs is defined in terms of the sums (2.1) used in the definition of
Hausdorff measures. For any subset F of � we define

Hs
∞(F ) = inf

{ ∞∑

i=1

|Ui |s :
∞⋃

i=1

Ui is any cover of F

}

.

Thus Hs∞(F ) is defined using covers of F without any diameter restriction. This
ensures that Hs∞(I ) is finite if I is a bounded interval, which would not be the
case if we used Hs . It is easy to see that Hs∞(F1 ∪ F2) � Hs∞(F1) + Hs∞(F2)

and that Hs∞(F1) � Hs∞(F2) if F1 ⊂ F2.
Recall that limk→∞Ek = ⋂∞

i=1

⋃∞
k=i Ek is the set of points that belong to

infinitely many Ek; such sets are termed lim sup sets. Let 0 < s < 1 and let
[a, b] ⊂ � be a proper closed interval. We say that a subset F of [a, b] is a
member of the class Cs[a, b] if

F ⊃ lim
k→∞Ek (8.7)

where {Ek} is a sequence of subsets of [a, b], such that

(i) each Ek is a finite union of disjoint closed intervals, and

(ii) limk→∞ Hs∞(I ∩ Ek) = |I |s (8.8)

for every bounded closed interval I .

(Of course, we always have Hs∞(I ∩ Ek) � |I |s .) We define Cs(−∞, ∞) by say-
ing that F is in Cs (−∞,∞) if F ∩ I ∈ Cs[a, b] for every bounded interval [a, b].
The results below extend easily from Cs[a, b] to Cs(−∞,∞).

As an example of the sets we have in mind, we might take Ek = {x :
|x − p/k| < k−3 for some integer p}, so that F = limk→∞Ek consists of the
numbers which satisfy the inequality |x − p/k| < k−3 for some p for infinitely
many positive integers k. As we shall see, F ∈ C1/3(−∞, ∞).

Any set in Cs[a, b] must be dense in [a, b]; for if F is in Cs[a, b] and I is a
closed interval, then I ∩ Ek1 contains a closed interval I1 if k1 is large enough,
by (8.8). Similarly, I1 ∩ Ek2 contains a closed interval I2 for some k2 > k1.
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Proceeding in this way, we get a sequence of closed intervals I ⊃ I1 ⊃ I2 ⊃ · · ·
with Ir ⊂ Ekr

for each r . Thus the non-empty set
⋂∞

r=1 Ir is contained in infinitely
many Ek, so is contained in F ∩ I .

By Proposition 3.4 any set in Cs[a, b] has box-counting dimension 1. We
now show that these sets have Hausdorff dimension at least s. Moreover the
intersection of any countable collection of sets in Cs[a, b] is also in Cs[a, b]
and so has dimension at least s. Furthermore f (F ) is in Cs[f (a), f (b)] if F

is in Cs[a, b], for a large class of functions f . The proofs below are somewhat
technical and might well be omitted on a first reading. We require the following
lemma which extends (8.8) to unions of closed intervals and which is the key to
these properties.

Lemma 8.4

Let {Ek} be a sequence of closed subsets of � such that

lim
k→∞Hs

∞(I ∩ Ek) = |I |s (8.9)

for every bounded closed interval I. Then, if A is a bounded set made up of a finite
union of closed intervals,

lim
k→∞

Hs
∞(A ∩ Ek) = Hs

∞(A). (8.10)

Proof. Suppose that A consists of m disjoint intervals with minimum separation
d > 0. Given ε > 0 we may, using (8.9), choose kε such that if k � kε

Hs
∞(I ∩ Ek) > (1 − ε)|I |s (8.11)

whenever |I | � εd and I ⊂ A. (Since Hs∞(Ek ∩ I ) varies continuously with I

in the obvious sense, we may find a kε such that (8.11) holds simultaneously
for all such I .) To estimate Hs∞(A ∩ Ek) let {Ui} be a cover of A ∩ Ek. We
may assume that this cover is finite, since A ∩ Ek is compact (see Section 2.4)
and also that the Ui are closed intervals with endpoints in A, which are disjoint
except possibly at endpoints. We divide the sets Ui into two batches according to
whether |Ui | � d or |Ui | < d . The set A \ ⋃

|Ui |�d Ui consists of disjoint intervals
V1, . . . , Vr where r � m, and

A ⊂
⋃

|Ui |�d

Ui ∪
⋃

j

Vj . (8.12)

Observe that any Ui with |Ui | < d is contained in an interval of A, and so in
one of the Vj . For each j the sets Ui contained in Vj cover Vj ∩ Ek, so

∑

{i:Ui⊂Vj }
|Ui |s � Hs

∞(Vj ∩ Ek) > (1 − ε)|Vj |s
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if |Vj | � εd , by (8.11). Hence

∑

i

|Ui |s �
∑

|Ui |�d

|Ui |s +
∑

|Vj |�εd

∑

Ui⊂Vj

|Ui |s �
∑

|Ui |�d

|Ui |s +
∑

|Vj |�εd

(1 − ε)|Vj |s . (8.13)

From (8.12)

Hs
∞(A) �

∑

|Ui |�d

|Ui |s +
∑

|Vj |�εd

|Vj |s +
∑

|Vj |<εd

|Vj |s �
∑

|Ui |�d

|Ui |s +
∑

|Vj |�εd

|Vj |s + (εd)sm.

Combining with (8.13) we see that

Hs
∞(A) � (1 − ε)−1

∑

i

|Ui|s + (εd)sm

for any cover {Ui} of A ∩ Ek. Thus

Hs
∞(A) � (1 − ε)−1Hs

∞(A ∩ Ek) + (εd)sm

if k � kε, which implies (8.10). �

Repeated application of this Lemma now gives the dimension estimate we
require.

Proposition 8.5

If F ∈ Cs[a, b] then Hs(F ) > 0, and in particular dimHF � s.

Proof. For simplicity of notation assume that [a, b] = [0, 1]. Suppose limk→∞Ek

⊂ F ⊂ ⋃
i Ui where the Ui are open sets. Taking I = [0, 1] in (8.8) we may

find a number k1 such that Hs∞(Ek1) > 1
2 . Since Ek1 is a finite union of closed

intervals, Lemma 8.4 implies there is a number k2 > k1 such that Hs∞(Ek1 ∩ Ek2)

> 1
2 . Proceeding in this way, we get a sequence k1 < k2 < · · · such that

Hs∞(Ek1 ∩ · · · ∩ Ekr
) > 1

2 for all r . We have
⋂∞

i=1 Eki
⊂ F ⊂ ⋃

i Ui ; since Ek1 ∩
· · · ∩ Ekr

is a decreasing sequence of compact (i.e. closed and bounded) sets and⋃
i Ui is open, there is an integer r such that Ek1 ∩ · · · ∩ Ekr

⊂ ⋃
i Ui . It follows

that
∑

i |Ui|s � Hs∞(Ek1 ∩ · · · ∩ Ekr
) > 1

2 for every cover of F by open sets, so
Hs(F ) � 1

2 . �

Proposition 8.6

Let Fj ∈ Cs[a, b] for j = 1, 2, . . . . Then
⋂∞

j=1 Fj ∈ Cs[a, b].
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Proof. For each j there is a sequence of sets Ej,k , each a finite union of closed
intervals, such that Fj ⊃ limk→∞Ej,k , where limk→∞ Hs∞(I ∩ Ej,k) = Hs∞(I )

for every interval I . By Lemma 8.4

lim
k→∞Hs

∞(A ∩ Ej,k) = Hs
∞(A) (8.14)

for any finite union of closed intervals A. There are countably many intervals
[c, d] ⊂ [a, b] with c and d both rational: let I1, I2, . . . be an enumeration of all
such intervals.

For each r we define a set Gr as follows. Using (8.14) we may choose k1 � r

large enough to make

Hs
∞(Im ∩ E1,k1) > Hs

∞(Im) − 1/r

simultaneously for m = 1, . . . , r . Using (8.14) again, taking A = Im ∩ E1,k1 , we
may find k2 � r such that

Hs
∞(Im ∩ E1,k1 ∩ E2,k2) > Hs

∞(Im) − 1/r

for m = 1, . . . , r . Continuing in this way, we get k1, . . . , kr � r such that

Hs
∞

(

Im ∩
r⋂

j=1

Ej,kj

)

> Hs
∞(Im) − 1/r (8.15)

for all m = 1, . . . , r . For each r , let Gr be the finite union of closed intervals

Gr =
r⋂

j=1

Ej,kj
. (8.16)

Let I ⊂ [a, b] be any closed interval. Given ε > 0, there is an interval Im ⊂
I such that Hs∞(Im) > Hs∞(I ) − ε/2. If r � m and r > 2/ε, (8.15) gives that
Hs∞(I ∩ Gr) � Hs∞(Im ∩ Gr) > Hs∞(Im) − 1/r > Hs∞(I ) − ε, so

lim
r→∞Hs

∞(I ∩ Gr) = Hs
∞(I ).

Let j be any positive integer. If r > j and x ∈ Gr , then x ∈ Ej,kj
, by (8.16). Thus

if x ∈ limr→∞Gr , then x ∈ Ej,kj
for infinitely many kj , so x ∈ limi→∞Ej,i ⊂ Fj .

Hence limr→∞Gr ⊂ Fj for each j , so
⋂∞

i=1 Fi ∈ Cs[a, b]. �

Corollary 8.7

Let Fj ∈ Cs[a, b] for j = 1, 2, . . . . Then dimH
⋂∞

j=1 Fj � s.
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Proof. This is immediate from Propositions 8.5 and 8.6. �

Clearly, if F is in Cs (−∞,∞) then so is the translate F + x. Hence, given a set
F in Cs(−∞, ∞) and a sequence of numbers x1, x2, . . ., we have

⋂∞
i=1(F + xi)

a member of Cs(−∞, ∞), so that this intersection has dimension at least s. The
same idea may be applied using more general transformations of F .

Proposition 8.8

Let f : [a, b] → � be a mapping with a continuous derivative such that |f ′(x)| > c

for some constant c > 0. If F ∈ Cs[a, b], then f (F ) ∈ Cs[f (a), f (b)].

Proof. This may be proved in the same sort of way as Proposition 8.4. We omit
the (rather tedious) details. �

In a typical Cs set the Ek are made up of intervals which have lengths and
spacings tending to 0 as k → ∞.

Example 8.9

Fix α > 2. Let Ek = {x : |x − p/k| � k−α for some integer p}, so that Ek is
a union of equally spaced intervals of length 2k−α. Then F = limk→∞Ek is a
member of Cs(−∞, ∞) for all s < 1/α.

Proof. Take 0 < s < 1/α and a bounded closed interval I . We must show that

lim
k→∞Hs

∞(I ∩ Ek) = |I |s . (8.17)

The interval I contains m complete intervals of Ek, each of length 2k−α, where
m � k|I | − 2. Let µ be the mass distribution on I ∩ Ek obtained by distributing
a mass 1/m uniformly across each complete interval of Ek contained in I . To
estimate Hs∞(I ∩ Ek), let U be a set in a covering of I ∩ Ek; we may assume
that U is a closed interval and that the ends of U are points of I ∩ Ek. Then U

intersects at most k|U | + 2 intervals of I ∩ Ek. If 1/2k � |U | � |I | then

µ(U) � (k|U | + 2)/m � (k|U | + 2)/(k|I | − 2) = (|U | + 2k−1)/(|I | − 2k−1)

= |U |s(|U |1−s + 2k−1|U |−s)/(|I | − 2k−1)

� |U |s(|U |1−s + 2s+1ks−1)/(|I | − 2k−1)

= |U |s
|I |s

(|U |1−s |I |s−1 + 2s+1ks−1|I |s−1)

(1 − 2k−1|I |−1)

� |U |s
|I |s

(1 + 2s+1ks−1|I |s−1)

(1 − 2k−1|I |−1)
. (8.18)
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On the other hand, if k is large enough and |U | < 1/2k, then U can intersect just
one interval of Ek so |U | � 2k−α , since the endpoints of U are in Ek. A mass
of 1/m is distributed evenly across this interval of length 2k−α , so

µ(U) � |U |/(2k−αm) = |U |s |U |1−s/(2k−αm) � |U |s(2k−α)1−s/(2k−α(k|I | − 2))

� |U |s2−sksα−1/(|I | − 2k−1). (8.19)

With I and ε > 0 given, then, provided k is sufficiently large,

µ(U) � (1 + ε)|U |s/|I |s

for all covering intervals U , using (8.18) and (8.19). Hence if I ∩ Ek ⊂ ⋃
i Ui

then
1 = µ(I ∩ Ek) �

∑

i

µ(Ui) � (1 + ε)|I |−s
∑

i

|Ui |s

so Hs∞(I ∩ Ek) � |I |s/(1 + ε), from which (8.17) follows. �

In this example, F belongs to Cs(−∞,∞) if s < 1/α, so dimHF � 1/α, by
Proposition 8.5. Moreover, it is clear that the translate F + x is in Cs(−∞, ∞) for
any real number x, so by Proposition 8.6

⋂∞
i=1(F + xi) belongs to Cs(−∞, ∞)

for any countable set x1, x2, . . ., implying that dimH
⋂∞

i=1 (F + xi) � 1/α. More
generally, f (F ) is in Cs(−∞, ∞) for all ‘reasonable’ functions f by Proposition
8.8, and this generates a large stock of Cs sets, countable intersections of which
also have dimension at least 1/α.

In Section 10.3 we shall indicate how Example 8.9 may be improved to give F

in Cs(−∞, ∞) for all s < 2/α, with corresponding consequences for dimensions.

8.3 Notes and references

The study of intersections of sets as they are moved relative to one another is part
of a subject known as integral geometry. A full account in the classical setting is
given by Santaló (1976). The main references for the fractal intersection formula
of Section 8.1 are Kahane (1986) and Mattila (1984, 1985, 1995).

For the strange properties of packing dimension of intersections of sets, see
Falconer, Järvenpää and Mattila (1999) and Csörnyei (2001).

There are several definitions of classes of sets with large intersections, such
as those given by Baker and Schmidt (1970) and Falconer (1985b). An impor-
tant class of ‘ubiquitous’ systems of sets was introduced by Dodson, Rynne
and Vickers (1990), see also Bernik and Dodson (1999), and their ‘Ubiquity
theorem’ provides a powerful technique for finding dimensions of lim sup sets.
Rynne (1992) compares different definitions of large intersection classes. Fal-
coner (1994) gives a general theory of large intersection sets and also considers
their packing dimensions.
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Exercises

8.1 Let E and F be rectifiable curves in �2 and let σ be a rigid motion. Prove Poincaré’s
formula of classical integral geometry

4 × length (E) length (F ) =
∫

(number of points in (E ∩ σ(F )))dσ

where integration is with respect to the natural measure on the set of rigid motions.
(Hint: show this first when E and F are line segments, then for polygons, and obtain
the general result by approximation.)

8.2 Show that if a curve C bounds a (compact) convex set in the plane, then the length
of C is given by

1

2

∫ 2π

θ=0
length (projθC)dθ.

(Hint: take E as C and F as a long line segment in the result of Exercise 8.1.)

8.3 In the plane, let E be the product of two middle third Cantor sets and let F be (i) a
circle, (ii) the von Koch curve and (iii) a congruent copy of E. In each case, what can
be said about the Hausdorff dimension of E ∩ σ(F ) for congruence transformations
σ?

8.4 Show that the conclusion of Theorem 8.1 may be extended to give that E ∩ (F + x)

is empty for almost all x if dimH(E × F) < n.

8.5 By taking E as a suitable set dense in a region of �2 and F as a unit line segment,
show that (8.5) fails if Hausdorff dimension is replaced by box dimensions, even for
the group of similarities.

8.6 Let 1 < s < 2. Construct a plane s-set F in the unit disc B such that if E is any
straight line segment of length 2 that intersects the interior of B then E ∩ F is an
(s − 1)-set.

8.7 Let E be the set of parallel line segments

E = {(0, 0)} ∪
∞⋃

n=1

{(x, n−1/2) : 0 � x � n−1/2}.

Show that dimBE � 4/3, but that dimB(L ∩ E) = 0 for all lines L that do not pass
through the origin. (Hint: see Example 3.5.)

8.8 Let Ek be the set of real numbers with base-3 expansion m · a1a2 · · · such that ak = 0
or 2. Show that F = limk→∞Ek is in class Cs(−∞,∞) for all 0 < s < 1. (Note that F

is the set of numbers with infinitely many base-3 digits different from 1.) Deduce that
dimHF = 1 and that dimH(

⋂∞
i=1(F + xi)) = 1 for any countable sequence x1, x2, . . . .
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Chapter 9 Iterated function
systems—self-similar
and self-affine sets

9.1 Iterated function systems

Many fractals are made up of parts that are, in some way, similar to the whole.
For example, the middle third Cantor set is the union of two similar copies of
itself, and the von Koch curve is made up of four similar copies. These self-
similarities are not only properties of the fractals: they may actually be used to
define them. Iterated function systems do this in a unified way and, moreover,
often lead to a simple way of finding dimensions.

Let D be a closed subset of �n, often D = �n. A mapping S : D → D is
called a contraction on D if there is a number c with 0 < c < 1 such that
|S(x) − S(y)| � c|x − y| for all x, y ∈ D. Clearly any contraction is continuous.
If equality holds, i.e. if |S(x) − S(y)| = c|x − y|, then S transforms sets into
geometrically similar sets, and we call S a contracting similarity.

A finite family of contractions {S1, S2, . . . , Sm}, with m � 2, is called an iter-
ated function system or IFS. We call a non-empty compact subset F of D an
attractor (or invariant set) for the IFS if

F =
m⋃

i=1

Si(F ).

The fundamental property of an iterated function system is that it determines a
unique attractor, which is usually a fractal. For a simple example, take F to be
the middle third Cantor set. Let S1, S2 : � → � be given by

S1(x) = 1
3x; S2(x) = 1

3x + 2
3 .

Then S1(F ) and S2(F ) are just the left and right ‘halves’ of F , so that F =
S1(F ) ∪ S2(F ); thus F is an attractor of the IFS consisting of the contractions
{S1, S2}, the two mappings, which represent the basic self-similarities of the
Cantor set.
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Bd

B

Ad

A

Figure 9.1 The Hausdorff distance between the sets A and B is the least δ > 0 such that
the δ-neighbourhood Aδ of A contains B and the δ-neighbourhood Bδ of B contains A

We shall prove the fundamental property that an IFS has a unique (non-empty
compact, i.e. closed and bounded) attractor. This means, for example, that the
middle third Cantor set is completely specified as the attractor of the mappings
{S1, S2} given above.

To this end, we define a metric or distance d between subsets of D. Let S denote
the class of all non-empty compact subsets of D. Recall that the δ-neighbourhood
of a set A is the set of points within distance δ of A, i.e. Aδ = {x ∈ D : |x − a| �
δ for some a ∈ A}. We make S into a metric space by defining the distance
between two sets A and B to be the least δ such that the δ-neighbourhood of A

contains B and vice versa:

d(A, B) = inf{δ : A ⊂ Bδ and B ⊂ Aδ}
(see figure 9.1). A simple check shows that d is a metric or distance function, that
is, satisfies the three requirements (i) d(A, B) � 0 with equality if and only if A =
B, (ii) d(A,B) = d(B,A), (iii) d(A, B) � d(A, C) + d(C, B) for all A, B,C ∈
S. The metric d is known as the Hausdorff metric on S. In particular, if d(A, B)

is small, then A and B are close to each other as sets.
We give two proofs of the fundamental result on IFSs. The first depends on

Banach’s contraction mapping theorem, and the second is direct and elementary.

Theorem 9.1

Consider the iterated function system given by the contractions {S1, . . . , Sm} on
D ⊂ �n, so that

|Si(x) − Si(y)| � ci |x − y| (x, y) ∈ D (9.1)

with ci < 1 for each i. Then there is a unique attractor F, i.e. a non-empty compact
set such that

F =
m⋃

i=1

Si(F ). (9.2)
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Moreover, if we define a transformation S on the class S of non-empty compact
sets by

S(E) =
m⋃

i=1

Si(E) (9.3)

for E ∈ S, and write Sk for the kth iterate of S (so S0(E) = E and Sk(E) =
S(Sk−1(E)) for k � 1), then

F =
∞⋂

k=0

Sk(E) (9.4)

for every set E ∈ S such that Si(E) ⊂ E for all i.

First proof. Note that sets in S are transformed by S into other sets of S. If
A, B ∈ S then

d(S(A), S(B)) = d

(
m⋃

i=1

Si(A),

m⋃

i=1

Si(B)

)

� max
1�i�m

d(Si(A), Si(B))

using the definition of the metric d and noting that if the δ-neighbourhood
(Si(A))δ contains Si(B) for all i then (

⋃m
i=1 Si(A))δ contains

⋃m
i=1 Si(B), and

vice versa. By (9.1)

d(S(A), S(B)) � ( max
1�i�m

ci)d(A, B). (9.5)

It may be shown that d is a complete metric on S, that is every Cauchy sequence
of sets in S is convergent to a set in S. Since 0 < max1�i�m ci < 1, (9.5) states that
S is a contraction on the complete metric space (S, d). By Banach’s contraction
mapping theorem, S has a unique fixed point, that is there is a unique set F ∈ S
such that S(F ) = F , which is (9.2), and moreover Sk(E) → F as k → ∞. In
particular, if Si(E) ⊂ E for all i then S(E) ⊂ E, so that Sk(E) is a decreasing
sequence of non-empty compact sets containing F with intersection

⋂∞
k=0 Sk(E)

which must equal F . �

Second proof. Let E be any set in S such that Si(E) ⊂ E for all i; for example
E = D ∩ B(0, r) will do provided r is sufficiently large. Then Sk(E) ⊂ Sk−1(E),
so that Sk(E) is a decreasing sequence of non-empty compact sets, which nec-
essarily have non-empty compact intersection F = ⋂∞

k=1 Sk(E). Since Sk(E) is
a decreasing sequence of sets, it follows that S(F ) = F , so F satisfies (9.2) and
is an attractor of the IFS.

To see that the attractor is unique, we derive (9.5) exactly as in the first proof.
Suppose A and B are both attractors, so that S(A) = A and S(B) = B. Since 0 <

max1�i�m ci < 1 it follows from (9.5) that d(A, B) = 0, implying A = B. �
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There are two main problems that arise in connection with iterated function
systems. The first problem is to represent or ‘code’ a given set as the attractor
of some IFS, and the second is to ‘decode’ the IFS by displaying its attractor.
In both cases, we may wish to go on to analyse the structure and dimensions of
the attractor, and the IFS can be a great aid in doing this.

Finding an IFS that has a given F as its unique attractor can often be done
by inspection, at least if F is self-similar or self-affine. For example, the Cantor
dust (figure 0.4) is easily seen to be the attractor of the four similarities which
give the basic self-similarities of the set:

S1(x, y) = ( 1
4x, 1

4y + 1
2 ), S2(x, y) = ( 1

4x + 1
4 , 1

4y),

S3(x, y) = ( 1
4x + 1

2 , 1
4y + 3

4 ), S4(x, y) = ( 1
4x + 3

4 , 1
4y + 1

4 ).

In general it may not be possible to find an IFS with a given set as attractor, but
we can normally find one with an attractor that is a close approximation to the
required set. This question of representing general objects by IFSs is considered
in Section 9.5.

The transformation S introduced in Theorem 9.1 is the key to computing the
attractor of an IFS; indeed (9.4) already provides a method for doing so. In
fact, the sequence of iterates Sk(E) converges to the attractor F for any ini-
tial set E in S, in the sense that d(Sk(E), F ) → 0. This follows since (9.5)
implies that d(S(E), F ) = d(S(E), S(F )) � cd(E,F ), so that d(Sk(E), F ) �
ckd(E, F ), where c = max1�i�m ci < 1. Thus the Sk(E) provide increasingly
good approximations to F . If F is a fractal, these approximations are sometimes
called pre-fractals for F .

For each k

Sk(E) =
⋃

Ik

Si1
◦ · · · ◦Sik (E) =

⋃

Ik

Si1(Si2(· · · (Sik (E)) · · ·)) (9.6)

where the union is over the set Ik of all k-term sequences (i1, . . . , ik) with
1 � ij � m; see figure 9.2. (Recall that Si1

◦ · · · ◦Sik denotes the composition of
mappings, so that (Si1

◦ · · · ◦Sik )(x) = Si1(Si2(· · · (Sik (x)) · · ·)).) If Si(E) is con-
tained in E for each i and x is a point of F , it follows from (9.4) that there is
a (not necessarily unique) sequence (i1, i2, . . .) such that x ∈ Si1

◦ · · · ◦Sik (E) for
all k. This sequence provides a natural coding for x, with

x = xi1,i2,... =
∞⋂

k=1

Si1
◦ · · · ◦Sik (E), (9.7)

so that F = ⋃{xi1,i2,...}.
This expression for xi1,i2,... is independent of E provided that Si(E) is contained

in E for all i.
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S1(S1(E ))

S1(E )

E

S2(E )

S1(S2(E ))
S2(S1(E ))

S2(S2(E ))

Figure 9.2 Construction of the attractor F for contractions S1 and S2 which map the large
ellipse E onto the ellipses S1(E) and S2(E). The sets Sk(E) = ⋃

ii=1,2 Si1
◦ · · · ◦ Sik (E)

give increasingly good approximations to F

Notice that if the union in (9.2) is disjoint then F must be totally disconnected
(provided the Si are injections), since if xi1,i2,... �= xi ′1,i

′
2,...

we may find k such
that (i1, . . . , ik) �= (i′1, . . . , i

′
k) so that the disjoint closed sets Si1

◦ · · · ◦Sik (F ) and
Si ′1

◦ · · · ◦Si ′
k
(F ) disconnect the two points.

Again this may be illustrated by S1(x) = 1
3x, S2(x) = 1

3x + 2
3 and F the Cantor

set. If E = [0, 1] then Sk(E) = Ek, the set of 2k basic intervals of length 3−k

obtained at the kth stage of the usual Cantor set construction; see figure 0.1.
Moreover, xi1,i2,... is the point of the Cantor set with base-3 expansion 0 · a1a2 . . . ,
where ak = 0 if ik = 1 and ak = 2 if ik = 2. The pre-fractals Sk(E) provide
the usual construction of many fractals for a suitably chosen initial set E; the
Si1

◦ · · · ◦Sik (E) are called the level-k sets of the construction.
This theory provides us with two methods for computer drawing of IFS attrac-

tors in the plane, as indicated in figure 9.3. For the first method, take any initial
set E (such as a square) and draw the kth approximation Sk(E) to F given by
(9.6) for a suitable value of k. The set Sk(E) is made up of mk small sets—either
these can be drawn in full, or a representative point of each can be plotted. If
E can be chosen as a line segment in such a way that S1(E), . . . , Sm(E) join
up to form a polygonal curve with endpoints the same as those of E, then the
sequence of polygonal curves Sk(E) provides increasingly good approximations
to the fractal curve F . Taking E as the initial interval in the von Koch curve
construction is an example of this, with Sk(E) just the kth step of the construc-
tion (Ek in figure 0.2). Careful recursive programming is helpful when using
this method.
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S1(E )

E

F

S2(E )

S3(E )

(a)

(b)

Figure 9.3 Two ways of computer drawing the attractor F of the IFS consisting of the
three affine transformations S1, S2 and S3 which map the square onto the rectangles.
In method (a) the 3k parallelograms Si1(Si2 (· · · (Sik (E)) · · ·)) for ij = 1, 2, 3 are drawn
(k = 6 here). In method (b) the sequence of points xk is plotted by choosing Sik at random
from S1, S2 and S3 for successive k and letting xk = Sik (xk−1)

For the second method, take x0 as any initial point, select a contraction Si1

from S1, . . . , Sm at random, and let x1 = Si1(x0). Continue in this way, choos-
ing Sik from S1, . . . , Sm at random (with equal probability, say) and letting
xk = Sik (xk−1) for k = 1, 2, . . . . For large enough k, the points xk will be indis-
tinguishably close to F , with xk close to Sik

◦ · · · ◦Si1(F ), so the sequence {xk}
will appear randomly distributed across F . A plot of the sequence {xk} from,
say, the hundredth term onwards may give a good impression of F . (It is a con-
sequence of ergodic theory that, with probability 1, this sequence of points will
fill F , in a manner that approximates a certain measure on F .)

9.2 Dimensions of self-similar sets

One of the advantages of using an iterated function system is that the dimension of
the attractor is often relatively easy to calculate or estimate in terms of the defining
contractions. In this section we discuss the case where S1, . . . , Sm : �n → �n are
similarities, i.e. with

|Si(x) − Si(y)| = ci |x − y| (x, y ∈ �n) (9.8)

where 0 < ci < 1 (ci is called the ratio of Si). Thus each Si transforms sub-
sets of �n into geometrically similar sets. The attractor of such a collection of
similarities is called a (strictly) self-similar set, being a union of a number of



Dimensions of self-similar sets 129

smaller similar copies of itself. Standard examples include the middle third Can-
tor set, the Sierpiński triangle and the von Koch curve, see figures 0.1–0.5. We
show that, under certain conditions, a self-similar set F has Hausdorff and box
dimensions equal to the value of s satisfying

m∑

i=1

cs
i = 1 (9.9)

and further that F has positive and finite Hs-measure. A calculation similar to the
‘heuristic calculation’ of Example 2.7 indicates that the value given by (9.9) is at
least plausible. If F = ⋃m

i=1 Si(F ) with the union ‘nearly disjoint’, we have that

Hs(F ) =
m∑

i=1

Hs(Si(F )) =
m∑

i=1

cs
iHs(F ) (9.10)

using (9.8) and Scaling property 2.1. On the assumption that 0 < Hs(F ) < ∞ at
the ‘jump’ value s = dimHF , we get that s satisfies (9.9).

For this argument to give the right answer, we require a condition that ensures
that the components Si(F ) of F do no overlap ‘too much’. We say that the Si

satisfy the open set condition if there exists a non-empty bounded open set V

such that

V ⊃
m⋃

i=1

Si(V ) (9.11)

with the union disjoint. (In the middle third Cantor set example, the open set
condition holds for S1 and S2 with V as the open interval (0, 1).) We show that,
provided that the similarities Si satisfy the open set condition, the Hausdorff
dimension of the attractor is given by (9.9).

We require the following geometrical result.

Lemma 9.2

Let {Vi} be a collection of disjoint open subsets of �n such that each Vi contains
a ball of radius a1r and is contained in a ball of radius a2r . Then any ball B of
radius r intersects at most (1 + 2a2)

na−n
1 of the closures V i .

Proof. If V i meets B, then V i is contained in the ball concentric with B of
radius (1 + 2a2)r . Suppose that q of the sets V i intersect B. Then, summing the
volumes of the corresponding interior balls of radii a1r , it follows that q(a1r)

n �
(1 + 2a2)

nrn, giving the stated bound for q. �

The derivation of the lower bound in the following theorem is a little awk-
ward. The reader may find it helpful to follow through the proof with the
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middle third Cantor set in mind, or by referring to the ‘general example’ of
figure 9.2. Alternatively, the proof of Proposition 9.7 covers the case when the
sets S1(F ), . . . , Sm(F ) are disjoint, and is rather simpler.

Theorem 9.3

Suppose that the open set condition (9.11) holds for the similarities Si on �n with
ratios 0 < ci < 1 for 1 � i � m. If F is the attractor of the IFS {S1, . . . , Sm},
that is

F =
m⋃

i=1

Si(F ), (9.12)

then dimHF = dimBF = s, where s is given by

m∑

i=1

cs
i = 1. (9.13)

Moreover, for this value of s, 0 < Hs(F ) < ∞.

Proof. Let s satisfy (9.13). LetIk denote the set of all k-term sequences (i1, . . . , ik)

with 1 � ij � m. For any set A and (i1, . . . , ik) ∈ Ik we write Ai1,...,ik =
Si1

◦ . . . ◦Sik (A). It follows, by using (9.12) repeatedly, that

F =
⋃

Ik

Fi1,...,ik .

We check that these covers of F provide a suitable upper estimate for the Haus-
dorff measure. Since the mapping Si1

◦ · · · ◦Sik is a similarity of ratio ci1 · · · cik ,
then

∑

Ik

|Fi1,...,ik |s =
∑

Ik

(ci1 · · · cik )
s |F |s =

(
∑

i1

cs
i1

)

· · ·
(

∑

ik

cs
ik

)

|F |s = |F |s

(9.14)

by (9.13). For any δ > 0, we may choose k such that |Fi1,...,ik | � (maxi ci)
k|F | �

δ, so Hs
δ(F ) � |F |s and hence Hs(F ) � |F |s .

The lower bound is more awkward. Let I be the set of all infinite sequences I =
{(i1, i2, . . .) : 1 � ij � m}, and let Ii1,...,ik = {(i1, . . . , ik, qk+1, . . .) : 1 � qj � m}
be the ‘cylinder’ consisting of those sequences in I with initial terms (i1, . . . , ik).
We may put a mass distribution µ on I such that µ(Ii1,...,ik ) = (ci1 · · · cik )

s . Since
(ci1 · · · cik )

s = ∑m
i=1(ci1 · · · cik ci)

s , i.e. µ(Ii1,...,ik ) = ∑m
i=1 µ(Ii1,...,ik,i ), it follows

that µ is indeed a mass distribution on subsets of I with µ(I) = 1. We
may transfer µ to a mass distribution µ̃ on F in a natural way by defining
µ̃(A) = µ{(i1, i2, . . .) : xi1,i2,... ∈ A} for subsets A of F . (Recall that xi1,i2,... =



Dimensions of self-similar sets 131

⋂∞
k=1 Fi1,...,ik .) Thus the µ̃-mass of a set is the µ-mass of the corresponding

sequences. It is easily checked that µ̃(F ) = 1.
We show that µ̃ satisfies the conditions of the Mass distribution principle 4.2.

Let V be the open set of (9.11). Since V ⊃ S(V ) = ⋃m
i=1 Si(V ), the decreas-

ing sequence of iterates Sk(V ) converges to F ; see (9.4). In particular V ⊃ F

and V i1,...,ik ⊃ Fi1,...,ik for each finite sequence (i1, . . . , ik). Let B be any ball of
radius r < 1. We estimate µ̃(B) by considering the sets Vi1,...,ik with diameters
comparable with that of B and with closures intersecting F ∩ B.

We curtail each infinite sequence (i1, i2, . . .) ∈ I after the first term ik for which
(

min
1�i�m

ci

)
r � ci1ci2 · · · cik � r (9.15)

and let Q denote the finite set of all (finite) sequences obtained in this way.
Then for every infinite sequence (i1, i2, . . .) ∈ I there is exactly one value of k

with (i1, . . . , ik) ∈ Q. Since V1, . . . , Vm are disjoint, so are Vi1,...,ik ,1, . . . , Vi1,...,ik ,m

for each (i1, . . . , ik). Using this in a nested way, it follows that the collection
of open sets {Vi1,...,ik : (i1, . . . , ik) ∈ Q} is disjoint. Similarly F ⊂ ⋃

Q Fi1,...,ik ⊂⋃
Q V i1,...,ik .
We choose a1 and a2 so that V contains a ball of radius a1 and is contained in

a ball of radius a2. Then, for all (i1, . . . , ik) ∈ Q, the set Vi1,...,ik contains a ball
of radius ci1 · · · cika1 and therefore one of radius (mini ci)a1r , and is contained
in a ball of radius ci1 · · · cika2 and hence in a ball of radius a2r . Let Q1 denote
those sequences (i1, . . . , ik) in Q such that B intersects V i1,...,ik . By Lemma 9.2
there are at most q = (1 + 2a2)

na−n
1 (mini ci)

−n sequences in Q1. Then

µ̃(B) = µ̃(F ∩ B) = µ{(i1, i2, . . .) : xi1,i2,... ∈ F ∩ B}

� µ

{
⋃

Q1

Ii1,...,ik

}

since, if xi1,i2,... ∈ F ∩ B ⊂ ⋃
Q1

V i1,...,ik , then there is an integer k such that
(i1, . . . , ik) ∈ Q1. Thus

µ̃(B) �
∑

Q1

µ(Ii1,...,ik )

=
∑

Q1

(ci1 · · · cik )
s �

∑

Q1

rs � rsq

using (9.15). Since any set U is contained in a ball of radius |U |, we have
µ̃(U) � |U |sq, so the Mass distribution principle 4.2 gives Hs(F ) � q−1 > 0,
and dimHF = s.

If Q is any set of finite sequences such that for every (i1, i2, . . .) ∈ I there
is exactly one integer k with (i1, . . . , ik) ∈ Q, it follows inductively from (9.13)
that

∑
Q(ci1ci2 · · · cik )

s = 1. Thus, if Q is chosen as in (9.15), Q contains at
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most (mini ci)
−sr−s sequences. For each sequence (i1, . . . , ik) ∈ Q we have

|V i1,...,ik | = ci1 · · · cik |V | � r|V |, so F may be covered by (mini ci)
−sr−s sets

of diameter r|V | for each r < 1. It follows from Equivalent definition 3.1(iv)
that dimBF � s; noting that s = dimHF � dimBF � dimBF � s, using (3.17),
completes the proof. �

If the open set condition is not assumed in Theorem 9.3, it may be shown that
we still have dimHF = dimBF though this value may be less than s.

Theorem 9.3 enables us to find the dimension of many self-similar fractals.

Example 9.4. Sierpiński triangle

The Sierpiński triangle or gasket F is constructed from an equilateral triangle by
repeatedly removing inverted equilateral triangles; see figure 0.3. Then dimHF =
dimBF = log 3/ log 2.

Calculation. The set F is the attractor of the three obvious similarities of ratios
1
2 which map the triangle E0 onto the triangles of E1. The open set condition
holds, taking V as the interior of E0. Thus, by Theorem 9.3, dimHF = dimBF =
log 3/ log 2, which is the solution of 3( 1

2 )s = ∑3
1(

1
2 )s = 1. �

The next example involves similarity transformations of more than one ratio.

Generator

E1

E2

E3

E4

E5
~ F

Figure 9.4 Construction of a modified von Koch curve—see Example 9.5
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Example 9.5. Modified von Koch curve

Fix 0 < a � 1
3 and construct a curve F by repeatedly replacing the middle pro-

portion a of each interval by the other two sides of an equilateral triangle; see
figure 9.4. Then dimHF = dimBF is the solution of 2as + 2( 1

2 (1 − a))s = 1.

Calculation. The curve F is the attractor of the similarities that map the unit
interval onto each of the four intervals in E1. The open set condition holds,

Generator

E1

E2

E3

E4 ~− F

Figure 9.5 Stages in the construction of a fractal curve from a generator. The lengths of
the segments in the generator are 1

3 , 1
4 , 1

3 , 1
4 , 1

3 , and the Hausdorff and box dimensions of
F are given by 3( 1

3 )s + 2( 1
4 )s = 1 or s = 1.34 . . .
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Figure 9.6 A fractal curve and its generator. The Hausdorff and box dimensions of the
curve are equal to log 8/ log 4 = 1 1

2

taking V as the interior of the isosceles triangle of base length 1 and height
1
2a

√
3, so Theorem 9.3 gives the dimension stated. �

There is a convenient method of specifying certain self-similar sets diagram-
matically, in particular self-similar curves such as Example 9.5. A generator

Figure 9.7 A tree-like fractal and its generator. The Hausdorff and box dimensions are
equal to log 5/ log 3 = 1.465 . . .
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consists of a number of straight line segments and two points specially identi-
fied. We associate with each line segment the similarity that maps the two special
points onto the endpoints of the segment. A sequence of sets approximating to the
self-similar attractor may be built up by iterating the process of replacing each
line segment by a similar copy of the generator; see figures 9.5–9.7 for some
examples. Note that the similarities are defined by the generator only to within
reflection and 180◦ rotation but the orientation may be specified by displaying
the first step of the construction.

9.3 Some variations

The calculations underlying Theorem 9.3 may be adapted to estimate the dimen-
sion of the attractor F of an IFS consisting of contractions that are not similarities.

Proposition 9.6

Let F be the attractor of an IFS consisting of contractions {S1, . . . , Sm} on a
closed subset D of �n such that

|Si(x) − Si(y)| � ci |x − y| (x, y ∈ D)

with 0 < ci < 1 for each i. Then dimHF � s and dimBF � s, where
∑m

i=1 cs
i = 1.

Proof. These estimates are essentially those of the first and last paragraphs of the
proof of Theorem 9.3, noting that we have the inequality |Ai1,...,ik | � ci1 · · · cik |A|
for each set A, rather than equality. �

We next obtain a lower bound for dimension in the case where the components
Si(F ) of F are disjoint. Note that this will certainly be the case if there is some
non-empty compact set E with Si(E) ⊂ E for all i and with the Si(E) disjoint.

Proposition 9.7

Consider the IFS consisting of contractions {S1, . . . , Sm} on a closed subset D of
�n such that

bi |x − y| � |Si(x) − Si(y)| (x, y ∈ D) (9.16)

with 0 < bi < 1 for each i. Assume that the (non-empty compact) attractor
F satisfies

F =
m⋃

i=1

Si(F ), (9.17)
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with this union disjoint. Then F is totally disconnected and dimHF � s where

m∑

i=1

bs
i = 1. (9.18)

Proof. Let d > 0 be the minimum distance between any pair of the disjoint com-
pact sets S1(F ), . . . , Sm(F ), i.e. d = mini �=j inf{|x − y| : x ∈ Si(F ), y ∈ Sj (F )}.
Let Fi1,...,ik = Si1

◦ · · · ◦Sik (F ) and define µ by µ(Fii,...ik ) = (bi1 · · · bik )
s . Since

m∑

i=1

µ(Fi1,...,ik,i ) =
m∑

i=1

(bi1 · · · bikbi)
s

= (bi1 · · · bik )
s = µ(Fi1,...,ik )

= µ

(
k⋃

i=1

Fi1,...,ik ,i

)

it follows that µ defines a mass distribution on F with µ(F ) = 1.
If x ∈ F , there is a unique infinite sequence i1, i2, . . . such that x ∈ Fi1,...,ik for

each k. For 0 < r < d let k be the least integer such that

bi1 · · · bikd � r < bi1 · · · bik−1d.

If i′1, . . . , i
′
k is distinct from i1, . . . , ik , the sets Fi1,...,ik and Fi ′1,...,i

′
k

are disjoint and
separated by a gap of at least bi1 · · · bik−1d > r . (To see this, note that if j is the
least integer such that ij �= i′j then Fij ,...,ik ⊂ Fij and Fi ′

j
,...,i ′

k
⊂ Fi ′

j
are separated

by d , so Fi1,...,ik and Fi ′1,...,i
′
k

are separated by at least bi1 · · · bij−1d .) It follows that
F ∩ B(x, r) ⊂ Fi1,...,ik so

µ(F ∩ B(x, r)) � µ(Fi1,...,ik ) = (bi1 . . . bik )
s � d−srs .

If U intersects F , then U ⊂ B(x, r) for some x ∈ F with r = |U |. Thus µ(U) �
d−s |U |s , so by the Mass distribution principle 4.2 Hs(F ) > 0 and dimHF � s.

The separation indicated above implies that F is totally disconnected. �

Example 9.8. ‘Non-linear’ Cantor set

Let D =
[

1
2 (1 + √

3), (1 + √
3)

]
and let S1, S2 : D → D be given by

S1(x) = 1 + 1/x, S2(x) = 2 + 1/x. Then 0.44 < dimHF � dimBF � dimBF <

0.66 where F is the attractor of {S1, S2}. (This example arises in connection with
number theory ; see Section 10.2.)

Calculation. We note that S1(D) =
[

1
2 (1 + √

3),
√

3
]

and S2(D) =
[

1
2 (3 + √

3) ,

1 + √
3
]

so we can use Propositions 9.6 and 9.7 to estimate dimHF . By
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the mean value theorem (see Section 1.2) if x, y ∈ D are distinct points then
(Si(x) − Si(y))/(x − y) = S ′

i (zi) for some zi ∈ D. Thus for i = 1, 2,

inf
x∈D

|S ′
i (x)| � |Si(x) − Si(y)|

|x − y| � sup
x∈D

|S ′
i (x)|.

Since S ′
1(x) = S ′

2(x) = −1/x2 it follows that

1
2 (2 − √

3) = (1 + √
3)−2 � |Si(x) − Si(y)|

|x − y| � ( 1
2 (1 + √

3))−2 = 2(2 − √
3)

for both i = 1 and i = 2. According to Propositions 9.6 and 9.7 lower and
upper bounds for the dimensions are given by the solutions of 2( 1

2 (2 −√
3))s = 1 and 2(2(2 − √

3))s = 1 which are s = log 2/ log(2(2 + √
3)) = 0.34

and log 2/ log( 1
2 (2 + √

3)) = 1.11 respectively.
For a subset of the real line, an upper bound greater than 1 is not of much

interest. One way of getting better estimates is to note that F is also the attractor
of the four mappings on [0, 1]

Si◦Sj = i + 1/(j + 1/x) = i + x/(jx + 1) (i, j = 1, 2).

By calculating derivatives and using the mean-value theorem as before, we
get that

(Si◦Sj )
′(x) = (jx + 1)−2

so

(j (1 + √
3) + 1)−2|x − y| � |Si◦Sj (x) − Si◦Sj (y)| � ( 1

2j (1 + √
3) + 1)−2|x − y|.

Lower and upper bounds for the dimensions are now given by the solutions
of 2(2 + √

3)−2s + 2(3 + 2
√

3)−2s = 1 and 2( 1
2 (3 + √

3))−2s + 2(2 + √
3)−2s =

1, giving 0.44 < dimHF < 0.66, a considerable improvement on the previous
estimates. In fact dimHF = 0.531, a value that may be obtained by looking at
yet higher-order iterates of the Si . �

*[The rest of this subsection may be omitted.]

The technique used in Example 9.8 to improve the dimension estimates is
often useful for attractors of transformations that are not strict similarities. If
F is the attractor for the IFS {S1, . . . , Sm} on D then F is also the attractor
for the IFS consisting of the mk transformations {Si1

◦ · · · ◦Sik } for each k. If
the Si are, say, twice differentiable on an open set containing F , it may be
shown that when k is large, the contractions Si1

◦ · · · ◦Sik are in a sense, close
to similarities on D. In particular, for transformations on a subset D of �, if
b = infx∈D |(Si1

◦ · · · ◦Sik )
′(x)| and c = supx∈D |(Si1

◦ · · · ◦Sik )
′(x)|, then

b|x − y| � |Si1
◦ · · · ◦Sik (x) − Si1

◦ · · · ◦Sik (y)| � c|x − y| (x, y ∈ D)



138 Iterated function systems—self-similar and self-affine sets

If k is large then b/c will be close to 1, and applying Propositions 9.6 and 9.7
to the mk transformations Si1

◦ · · · ◦Sik gives good upper and lower estimates for
the dimensions of F .

We may take this further. If the Si are twice differentiable on a subset D of �,

|Si1
◦ · · · ◦Sik (x) − Si1

◦ · · · ◦Sik (y)|
|x − y| ∼ |(Si1

◦ · · · ◦Sik )
′(w)|

for large k, where x, y and w are any points of D. The composition of mappings
Si1

◦ · · · ◦Sik is close to a similarity on D, so by comparison with Theorem 9.3
we would expect the dimension of the attractor F to be close to the value of s

for which ∑

Ik

|(Si1
◦ · · · ◦Sik )

′(w)|s = 1 (9.19)

where the sum is over the set Ik of all k-term sequences. This expectation moti-
vates the following theorem.

Theorem 9.9

Let V ⊂ � be an open interval. Let S1, . . . , Sm be contractions on V that are
twice differentiable on V with a � |S ′

i (w)| � c for all i and w ∈ V , where 0 <

a � c < 1 are constants. Suppose that the Si satisfy the open set condition (9.11)
with open set V. Then the limit

lim
k→∞




∑

Ik

|(Si1
◦ · · · ◦Sik )

′(w)|s




1/k

= ϕ(s) (9.20)

exists for each s > 0, is independent of w ∈ V , and is decreasing in s. If F is
the attractor of {S1, . . . , Sm} then dimHF = dimBF is the solution of ϕ(s) = 1,
and F is an s-set, i.e. 0 < Hs(F ) < ∞ for this value of s.

Note on Proof. The main difficulty is to show that the limit (9.20) exists—this
depends on the differentiability condition on the Si . Given this, the argument
outlined above may be used to show that the value of s satisfying (9.19) is a
good approximation to the dimension when k is large; letting k → ∞ then gives
the result.

Similar ideas, but involving the rate of convergence to the limit in (9.20), are
needed to show that 0 < Hs(F ) < ∞. �

There are higher-dimensional analogues of Theorem 9.9. Suppose that the con-
tractions S1, . . . , Sm on a domain D in the complex plane are complex analytic
mappings. Then the Si are conformal, or in other words are locally like similarity
transformations, contracting at the same rate in every direction. We have

Si(z) = Si(z0) + S ′
i (z0)(z − z0) + terms in (z − z0)

2 and higher powers
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so that if z − z0 is small

Si(z)  Si(z0) + S ′
i (z0)(z − z0) (9.21)

where S ′
i (z0) is a complex number with |S ′

i (z0)| < 1. But the right-hand side of
(9.21) is just a similarity expressed in complex notation. In this setting, Theo-
rem 9.9 holds, by the same sort of argument as in the 1-dimensional case.

Results such as these are part of the ‘thermodynamic formalism’, a body of
theory that leads to dimension formulae for many attractors.

9.4 Self-affine sets

Self-affine sets form an important class of sets, which include self-similar sets as
a particular case. An affine transformation S : �n → �n is a transformation of
the form

S(x) = T (x) + b

where T is a linear transformation on �n (representable by an n × n matrix)
and b is a vector in �n. Thus an affine transformation S is a combination of
a translation, rotation, dilation and, perhaps, a reflection. In particular, S maps
spheres to ellipsoids, squares to parallelograms, etc. Unlike similarities, affine
transformations contract with differing ratios in different directions.

If an IFS consists of affine contractions {S1, . . . , Sm} on �n, the attractor F

guaranteed by Theorem 9.1 is termed a self-affine set. An example is given in
figure 9.8: S1, S2 and S3 are defined as the transformations that map the square
E onto the three rectangles in the obvious way. (In the figure the attractor F

is represented as the aggregate of Si1
◦ · · · ◦Sik (E) over all sequences (i1, . . . , ik)

with ij = 1, 2, 3 for suitably large k. Clearly F is made up of the three affine
copies of itself: S1(F ), S2(F ) and S3(F ).)

It is natural to look for a formula for the dimension of self-affine sets that gen-
eralizes formula (9.13) for self-similar sets. We would hope that the dimension
depends on the affine transformations in a reasonably simple way, easily express-
ible in terms of the matrices and vectors that represent the affine transformation.
Unfortunately, the situation is much more complicated than this—the following
example shows that if the affine transformations are varied in a continuous way,
the dimension of the self-affine set need not change continuously.

Example 9.10

Let S1, S2 be the affine contractions on �2 that map the unit square onto the
rectangles R1 and R2 of sides 1

2 and ε where 0 < ε < 1
2 , as in figure 9.9. The

rectangle R1 abuts the y-axis, but the end of R2 is distance 0 � λ � 1
2 from the

y-axis. If F is the attractor of {S1, S2}, we have dimHF � 1 when λ > 0, but
dimHF = log 2/ − log ε < 1 when λ = 0.
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S1(F )

S1(E )

S2(F )

S3(F )

S2(E )

S3(E )

E

Figure 9.8 A self-affine set which is the attractor of the affine transformations that map
the square E onto the rectangles shown

R1 E ER1

R2 e eR2

1
2

1
2

1
2

1
2

λ

Proj F

(a) (b)

e e

F

Figure 9.9 Discontinuity of the dimension of self-affine sets. The affine mappings S1 and
S2 map the unit square E onto R1 and R2. In (a) λ > 0 and dimHF � dimH proj F = 1,
but in (b) λ = 0, and dimHF = log 2/ − log ε < 1
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Calculation. Suppose λ > 0 (figure 9.9(a)). Then the kth stage of the construction
Ek = ⋃

Si1
◦ · · · ◦Sik (E) consists of 2k rectangles of sides 2−k and εk with the

projection of Ek onto the x-axis, proj Ek, containing the interval [0, 2λ]. Since
F = ⋂∞

i=1 Ek it follows that proj F contains the interval [0, 2λ]. (Another way
of seeing this is by noting that proj F is the attractor of S̃1, S̃2 : � → � given by
S̃1(x) = 1

2x, S̃2(x) = 1
2x + λ, which has as attractor the interval [0, 2λ].) Thus

dimHF � dimHproj F = dimH[0, 2λ] = 1.
If λ = 0, the situation changes (figure 9.9(b)). Ek consists of 2k rectangles of

sides 2−k and εk which all have their left-hand ends abutting the y-axis, with
Ek contained in the strip {(x, y) : 0 � x � 2−k}. Letting k → ∞ we see that
F is a uniform Cantor set contained in the y-axis, which may be obtained by
repeatedly removing a proportion 1 − 2ε from the centre of each interval. Thus
dimHF = log 2/ − log ε < 1 (see Example 4.5). �

With such discontinuous behaviour, which becomes even worse for more
involved sets of affine transformations, it is likely to be difficult to obtain a
general expression for the dimension of self-affine sets. However, one situation
which has been completely analysed is the self-affine set obtained by the follow-
ing recursive construction; a specific case is illustrated in figures 9.10 and 9.11.

Example 9.11

Let the unit square E0 be divided into a p × q array of rectangles of sides 1/p

and 1/q where p and q are positive integers with p < q. Select a subcollection of
these rectangles to form E1, and let Nj denote the number of rectangles selected
from the jth column for 1 � j � p; see figure 9.10. Iterate this construction in
the usual way, with each rectangle replaced by an affine copy of E1, and let F
be the limiting set obtained. Then

dimHF = log




p∑

j=1

N
log p/ log q

j



 1

log p

and

dimBF = log p1

log p
+ log



 1

p1

p∑

j=1

Nj



 1

log q

where p1 is the number of columns containing at least one rectangle of E1.

Calculation. Omitted. �

Notice in this example that the dimension depends not only on the number of
rectangles selected at each stage, but also on their relative positions. Moreover
dimHF and dimBF are not, in general, equal.

*[The rest of this subsection may be omitted.]
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N1 Np

1/q

1/p

•  •  •

Figure 9.10 Data for the self-affine set of Example 9.11. The affine transformations map
the square onto selected 1/p × 1/q rectangles from the p × q array

The above example is rather specific in that the affine transformations are
all translates of each other. Obtaining a dimension formula for general self-
affine sets is an intractable problem. We briefly outline an approach which leads
to an expression for the dimension of the attractor of the affine contractions
Si(x) = Ti(x) + bi(1 � i � m) for almost all sequences of vectors b1, . . . , bm.

Let T : �n → �n be a linear mapping that is contracting and non-singular.
The singular values 1 > α1 � α2 � · · · � αn > 0 of T may be defined in two
ways: they are the lengths of the principal semi-axes of the ellipsoid T (B) where

E0 E1

F

E2

Figure 9.11 Construction of a self-affine set of the type considered in Example 9.11.
Such sets may have different Hausdorff and box dimensions
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B is the unit ball in �n, and they are the positive square roots of the eigenvalues
of T ∗T , where T ∗ is the adjoint of T . Thus the singular values reflect the con-
tractive effect of T in different directions. For 0 � s � n we define the singular
value function

ϕs(T ) = α1α2 · · ·αr−1α
s−r+1
r (9.22)

where r is the integer for which r − 1 < s � r . Then ϕs(T ) is continuous and
strictly decreasing in s. Moreover, for fixed s, ϕs may be shown to be submul-
tiplicative, i.e.

ϕs(T U) � ϕs(T )ϕs(U)

for any linear mappings T and U . We introduce the kth level sums �s
k ≡∑

Ik
ϕs(Ti1

◦ · · · ◦Tik ) where Ik denotes the set of all k-term sequences (i1, . . . , ik)

with 1 � ij � m. For fixed s

�s
k+q =

∑

Ik+q

ϕs(Ti1
◦ · · · ◦Tik+q

)

�
∑

Ik+q

ϕs(Ti1
◦ · · · ◦Tik )ϕ

s(Tik+1
◦ · · · ◦Tik+q

)

=



∑

Ik

ϕs(Ti1
◦ · · · ◦Tik )








∑

Iq

ϕs(Ti1
◦ · · · ◦Tiq )



 = �s
k�

s
q

i.e. the sequence �s
k is submultiplicative in k. By a standard property of submul-

tiplicative sequences, (�s
k)

1/k converges to a number �s∞ as k → ∞. Since ϕs is
decreasing in s, so is �s∞. Provided that �n∞ � 1, there is a unique s, which we
denote by d(T1, . . . , Tm), such that 1 = �s∞ = limk→∞

(∑
Ik

ϕs(Ti1
◦ · · · ◦Tik )

)1/k
.

Equivalently

d(T1, . . . , Tm) = inf

{

s :
∞∑

k=1

∑

Ik

ϕs(Ti1
◦ · · · ◦Tik ) < ∞

}

. (9.23)

Theorem 9.12

Let T1, . . . , Tm be linear contractions and let y1, . . . , ym ∈ �n be vectors. If F is
the self-affine set satisfying

F =
m⋃

i=1

(Ti(F ) + yi)

then dimHF = dimBF � d(T1, . . . , Tm). If |Ti(x) − Ti(y)| � c|x − y| for all i
where 0 < c < 1

2 , then equality holds for almost all (y1, . . . , ym) ∈ �nm in the
sense of nm-dimensional Lebesgue measure.
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Figure 9.12 Each of the fractals depicted above is the attractor of the set of transforma-
tions that map the square onto the three rectangles. The affine transformations for each
fractal differ only by translations, so by Theorem 9.12 the three fractals all have the same
dimension (unless we have been very unlucky in our positioning!). A computation gives
this common value of Hausdorff and box dimension as about 1.42

Partial proof. We show that dimHF � d(T1, . . . , Tm) for all y1, . . . , ym. Write
Si for the contracting affine transformation Si(x) = Ti(x) + yi . Let B be a
large ball so that Si(B) ⊂ B for all i. Given δ > 0 we may choose k large
enough to get |Si1

◦ · · · ◦Sik (B)| < δ for every k-term sequence (i1, . . . , ik) ∈ Ik.
By (9.6) F ⊂ ⋃

Ik
Si1

◦ · · · ◦Sik (B). But Si1
◦ · · · ◦Sik (B) is a translate of the

ellipsoid Ti1
◦ · · · ◦Tik (B) which has principal axes of lengths α1|B|, . . . , αn|B|,

where α1, . . . , αn are the singular values of Ti1
◦ · · · ◦Tik . Thus Si1

◦ · · · ◦Sik (B) is
contained in a rectangular parallelepiped P of side lengths α1|B|, . . . , αn|B|. If
0 � s � n and r is the least integer greater than or equal to s, we may divide P

into at most

(
2α1

αr

)(
2α2

αr

)
· · ·

(
2αr−1

αr

)
� 2nα1 · · · αr−1α

1−r
r
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cubes of side αr |B| < δ. Hence Si1
◦ · · · ◦Sik (B) may be covered by a collection

of cubes Ui with |Ui | < δ
√

n such that

∑

i

|Ui|s � 2nα1 · · · αr−1α
1−r
r αs

r |B|s

� 2n|B|sϕs(Ti1
◦ · · · ◦Tik ).

Taking such a cover of Si1
◦ · · · ◦Sik (B) for each (i1, . . . , ik) ∈ Ik it follows that

Hs
δ
√

n(F ) � 2n|B|s
∑

Ik

ϕs(Ti1
◦ · · · ◦Tik ).

But k → ∞ as δ → 0, so by (9.23), Hs(F ) = 0 if s > d(T1, . . . , Tm). Thus
dimHF � d(T1, . . . , Tm).

The lower estimate for dimHF may be obtained using the potential theoretic
techniques of Section 4.3. We omit the somewhat involved details. �

One consequence of this theorem is that, unless we have been unfortunate
enough to hit on an exceptional set of parameters, the fractals in figure 9.12 all
have the same dimension, estimated at about 1.42.

9.5 Applications to encoding images

In this chapter, we have seen how a small number of contractions can deter-
mine objects of a highly intricate fractal structure. This has applications to data
compression—if a complicated picture can be encoded by a small amount of
information, then the picture can be transmitted or stored very efficiently.

It is desirable to know which objects can be represented as, or approximated
by, attractors of an iterated function system, and also how to find contractions that
lead to a good representation of a given object. Clearly, the possibilities using,
say, three or four transformations are limited by the small number of parameters
at our disposal. Such sets are also likely to have a highly repetitive structure.

However, a little experimentation drawing self-affine sets on a computer (see
end of Section 9.1) can produce surprisingly good pictures of naturally occurring
objects such as ferns, grasses, trees, clouds, etc. The fern and tree in figure 9.13
are the attractors of just four and six affine transformations, respectively. Self-
similarity and self-affinity are indeed present in nature.

The following theorem, sometimes known as the collage theorem, gives an
idea of how good an approximation a set is to the attractor of an IFS.

Theorem 9.13

Let {S1, . . . , Sm} be an IFS and suppose that |Si(x) − Si(y)| � c|x − y| for
all x, y ∈ �n and all i, where c < 1. Let E ⊂ �n be any non-empty compact
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(a) (b)

Figure 9.13 The fern (a) and tree (b) are the attractors of just four and six affine trans-
formations, respectively

set. Then

d(E,F ) � d

(

E,

m⋃

i=1

Si(E)

)
1

(1 − c)
(9.24)

where F is the attractor for the IFS, and d is the Hausdorff metric.

Proof. Using the triangle inequality for the Hausdorff metric followed by the
definition (9.2) of the attractor

d(E,F ) � d

(

E,

m⋃

i=1

Si(E)

)

+ d

(
m⋃

i=1

Si(E), F

)

= d

(

E,

m⋃

i=1

Si(E)

)

+ d

(
m⋃

i=1

Si(E),

m⋃

i=1

Si(F )

)

� d

(

E,

m⋃

i=1

Si(E)

)

+ cd(E, F )

by (9.5), as required. �

A consequence of Theorem 9.13 is that any compact subset of �n can be
approximated arbitrarily closely by a self-similar set.
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Corollary 9.14

Let E be a non-empty compact subset of �n. Given δ > 0 there exist contracting
similarities S1, . . . , Sm with attractor F satisfying d(E,F ) < δ.

Proof. Let B1, . . . , Bm be a collection of balls that cover E and which have
centres in E and radii at most 1

4δ. Then E ⊂ ⋃m
i=1 Bi ⊂ Eδ/4, where Eδ/4 is

the 1
4δ-neighbourhood of E. For each i, let Si be any contracting similarity

of ratio less than 1
2 that maps E into Bi . Then Si(E) ⊂ Bi ⊂ (Si(E))δ/2, so

(
⋃m

i=1 Si(E)) ⊂ Eδ/4 and E ⊂ ⋃m
i=1(Si(E))δ/2. By definition of the Hausdorff

metric, d(E,
⋃m

i=1 Si(E)) � 1
2δ. It follows from (9.24) that d(E,F ) < δ where

F is the attractor. �

The approximation by the IFS attractor given by the above proof is rather
coarse—it is likely to yield a very large number of contractions that take little
account of the fine structure of E. A rather more subtle approach is required to
obtain convincing images with a small number of transformations. One method
which often gives good results is to draw a rough outline of the object and
then cover it, as closely as possible, by a number of smaller similar (or affine)
copies. The similarities (or affinities) thus determined may be used to compute an
attractor which may be compared with the object being modelled. Theorem 9.13
guarantees that the attractor will be a good approximation if the union of the
smaller copies is close to the object. A trial and error process allows modification
and improvements to the picture.

More complex objects may be built up by superposition of the invariant sets
of several different sets of transformations.

Ideally, it would be desirable to have a ‘camera’ which could be pointed at an
object to produce a ‘photograph’ consisting of a specified number of affine trans-
formations whose attractor is a good approximation to the object. Obviously, the
technical problems involved are considerable. One approach is to scan the object
to estimate various geometric parameters, and use these to impose restrictions on
the transformations.

For example, for a ‘natural fractal’ such as a fern, we might estimate the dimen-
sion by a box-counting method. The assumption that the similarities or affinities
sought must provide an attractor of this dimension gives, at least theoretical,
restrictions on the possible set of contractions, using results such as Theorem 9.3
or 9.12. In practice, however, such information is rather hard to utilize, and we
certainly need many further parameters for it to be of much use.

Very often, attractors in the plane that provide good pictures of physical objects
will have positive area, so will not be fractals in the usual sense. Nevertheless,
such sets may well be bounded by fractal curves, a feature that adds realism to
pictures of natural objects. However, fractal properties of boundaries of invariant
sets seem hard to analyse.

These ideas may be extended to provide shaded or coloured images, by
assigning a probability pi to each of the contractions Si , where 0 < pi < 1 and∑m

i=1 pi = 1. Without going into details, these data define a mass distribution
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µ on the attractor F such that µ(A) = ∑m
i=1 piµ(S−1

i (A)), and the set may be
shaded, or even coloured, according to the local density of µ.

This leads to the following modification of the second method of drawing
attractors mentioned at the end of Section 9.1. Let x0 be any initial point. We
choose Sj1 from S1, · · · , Sm at random in such a way that the probability of
choosing Si is pi , and let x1 = Sj1(x0). We continue in this way, so that xk =
Sjk

(xk−1) where Sjk
equals Si with probability pi . Plotting the sequence {xk}

(after omitting the first 100 terms, say) gives a rendering of the attractor F , but
in such a way that a proportion pi1 · · · piq of the points tends to lie in the part
Si1

◦ · · · ◦Siq (F ) for each i1, . . . , iq . This variable point density provides a direct
shading of F . Alternatively, the colour of a point of F can be determined by
some rule, which depends on the number of {xk} falling close to each point. The
computer artist may care to experiment with the endless possibilities that this
method provides—certainly, some very impressive colour pictures have been
produced using relatively few transformations.

It is perhaps appropriate to end this section with some of the ‘pros and cons’
of representing images using iterated function systems. By utilizing the self-
similarity and repetition in nature, and, indeed, in man-made objects, the method
often enables scenes to be described by a small number (perhaps fewer than
100) of contractions and probabilities in an effective manner. This represents an
enormous compression of information compared, for example, with that required
to detail the colour in each square of a fine mesh. The corresponding disadvan-
tage is that there is a high correlation between different parts of the picture—the
method is excellent for giving an overall picture of a tree, but is no use if the
exact arrangement of the leaves on different branches is important. Given a set of
affine contractions, reproduction of the image is computationally straightforward,
is well-suited to parallel computation, and is stable—small changes in the con-
tractions lead to small changes in the attractor. The contractions define the image
at arbitrarily small scales, and it is easy to produce a close-up of a small region.
At present, the main disadvantage of the method is the difficulty of obtaining a
set of contractions to represent a given object or picture.

9.6 Notes and references

The first systematic account of what are now known as iterated function sys-
tems is that of Hutchinson (1981), though similar ideas were around earlier. The
derivation of the formula for the dimension of self-similar sets was essentially
given by Moran (1946). Computer pictures of self-similar sets and attractors of
other IFSs are widespread, the works of Mandelbrot (1982), Dekking (1982),
Peitgen, Jürgens and Saupe (1992) and Barnsley (1993) contain many interesting
and beautiful examples.

For details of the thermodynamic formalism and material relating to Theo-
rem 9.9, see Ruelle (1983), Bedford (1991), Beck and Schlögl (1993), Falconer
(1997) and Pesin (1997).
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A discussion of self-affine sets is given by Mandelbrot (1986) and a survey
on their dimension properties by Peres and Solomyak (2000). Full details of
Example 9.11 are given by McMullen (1984) and of Theorem 9.12 by Falconer
(1988) and Solomyak (1998).

These ideas have been extended in many directions: for example, for IFSs with
infinitely many transformations see Mauldin and Urbański (1996, 1999), and for
graph directed constructions see Mauldin and Williams (1988).

Applications to image compression and encoding are described by Barnsley
(1993), Barnsley and Hurd (1993) and Fisher (1995).

Exercises
9.1 Verify that the Hausdorff metric satisfies the conditions for a metric.

9.2 Find a pair of similarity transformations on � for which the interval [0, 1] is the
attractor. Now find infinitely many such pairs of transformations.

9.3 Find sets of (i) four and (ii) three similarity transformations on � for which the
middle third Cantor set is the attractor. Check that (9.13) has solution log 2/ log 3
in each case.

9.4 Write down (using matrix notation) the four basic similarity transformations that
define the von Koch curve (figure 0.2). Find an open set for which the open set
condition holds and deduce from Theorem 9.3 that the von Koch curve does indeed
have box and Hausdorff dimension of log 4/ log 3.

9.5 Find an IFS for the set depicted in figure 0.5 and deduce that it has Hausdorff and
box dimensions given by 4( 1

4 )s + ( 1
2 )s = 1.

9.6 Sketch the first few steps in the construction of a self-similar set with generator
. What are the Hausdorff and box dimensions of this fractal? (The stem of

the T is one quarter of the total length of the top.)

9.7 Let F be the set obtained by a Cantor-type construction in which each interval is
replaced by two intervals, one of a quarter of the length at the left-hand end, and one
of half the length at the right-hand end. Thus E0 is the interval [0, 1], E1 consists
of the intervals [0, 1

4 ] and [ 1
2 , 1], etc. Find an IFS with attractor F , and thus find the

Hausdorff and box dimensions of F .

9.8 Describe the attractors of the following IFSs on �.

(i) S1(x) = 1
4 x, S2(x) = 1

4 x + 3
4 ;

(ii) S1(x) = 1
2 x, S2(x) = 1

2 x + 1
2 ;

(iii) S1(x) = 2
3 x, S2(x) = 2

3 x + 1
3 .

9.9 Divide the unit square E0 into p2 squares of side 1/p in the obvious way and choose
some m of these squares to form E1. Let Si(1 � i � m) be similarity transformations
that map E0 onto each of these squares. Show that the attractor F of the IFS so
defined has dimHF = dimBF = log m/ log p.

9.10 Let S1, S2 : [0, 1] → [0, 1] be given by S1(x) = x/(2 + x) and S2(x) = 2/(2 + x).
Show that the attractor F of this IFS satisfies 0.52 < dimHF < 0.81.

9.11 Show that any self-similar set F satisfying the conditions of Theorem 9.3 has c1 �
D(F, x) � D(F, x) � c2 for all x ∈ F , where c1 and c2 are positive constants. (See
equations (5.2) and (5.3) for the definition of the densities.)
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9.12 Let S1, . . . , Sm be bi-Lipschitz contractions on a subset D of �n and let F be the
attractor satisfying (9.2). Show that, if V is any open set intersecting F , then F

and F ∩ V have equal Hausdorff, equal upper box and equal lower box dimensions.
Deduce from Corollary 3.9 that dimPF = dimBF .

9.13 Verify the Hausdorff dimension formula in Example 9.11 in the cases (a) where
Nj = N for 1 � j � p and (b) where Nj = N or 0 for 1 � j � p, where N is an
integer with 1 < N < q. (Hint: see Example 7.13.)

9.14 Find the Hausdorff and box dimensions of the set in figure 9.11.

9.15 Write a computer program to draw self-similar sets in the plane, given a generator
of the set.

9.16 Write a computer program to draw the attractor of a given collection of contractions
of a plane region (see the end of Section 9.1). Examine the attractors of similarities,
affinities and try some non-linear transformations. If you are feeling really enter-
prising, you might write a program to estimate the dimension of these sets using a
box-counting method.



Chapter 10 Examples from number
theory

Fractals can often be defined in number theoretic terms; for instance, the middle
third Cantor set consists of the numbers between 0 and 1 which have a base-3
expansion containing only the digits 0 and 2. We examine three classes of fractals
that occur in classical number theory—these examples serve to illustrate some
of the ideas encountered earlier in the book.

10.1 Distribution of digits of numbers

In this section we consider base-m expansions of real numbers, where m � 2
is a fixed integer. Let p0, p1, . . . , pm−1 be ‘proportions’ summing to 1, so that
0 < pi < 1 and

∑m−1
i=0 pi = 1. Let F(p0, . . . , pm−1) be the set of numbers x in

[0, 1) with base-m expansions containing the digits 0, 1, . . . , m − 1 in proportions
p0, . . . , pm−1 respectively. More precisely, if nj (x|k) denotes the number of times
the digit j occurs in the first k places of the base-m expansion of x, then

F(p0, . . . , pm−1) = {x ∈ [0, 1) : lim
k→∞ nj (x|k)/k = pj for all j = 0, . . . , m − 1}.

(10.1)

Thus we think of F( 1
3 , 2

3 ) as the set of numbers with ‘two thirds’ of their base-2
digits being 1 and the rest being 0.

It is well-known that almost all numbers (in the sense of Lebesgue measure) are
normal to all bases; that is, they have base-m expansions containing equal pro-
portions of the digits 0, 1, . . . , m − 1 for all m. In our notation, F(m−1, . . . , m−1)

has Lebesgue measure 1, and therefore dimension 1, for all m. Paradoxically, no
specific example of a number that is normal to all bases has ever been exhibited.
We may use Hausdorff dimension to describe the size of the sets F(p0, . . . , pm−1)

when the pj are not all equal. (Such sets are dense in [0, 1) so have box dimen-
sion 1.)

A mass distribution technique is used in the following proof—the mass dis-
tribution occurs naturally as a probability measure. Note that we adopt the usual
convention that 0 × log 0 = 0.
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Proposition 10.1

With F = F(p0, . . . , pm−1) as above,

dimHF = − 1

log m

m−1∑

i=0

pi log pi.

Proof. The proof is best thought of probabilistically. We imagine that base-m
numbers x = 0.i1i2 . . . are selected at random in such a way that the kth digit ik
takes the value j with probability pj , independently for each k. Thus we take
[0, 1) as our sample space and define a probability measure P on subsets of [0, 1)

such that if Ii1,...,ik is the kth level basic interval containing the numbers with
base-m expansion beginning 0.i1 · · · ik then the probability of a number being in
this interval is

P(Ii1,...,ik ) = pi1 · · · pik . (10.2)

Given j , the events ‘the kth digit of x is a j ’ are independent for k = 1, 2, . . . .
A consequence of the strong law of large numbers (see Exercise 1.27) is that,
with probability 1, the proportion of occurrences of an event in a number of
repeated independent trials tends to the probability of the event occurring. Thus,
with probability 1,

1

k
nj (x|k) = 1

k
(number of occurrences of j in the first k digits) → pj

as k → ∞ for all j . Hence P(F ) = 1. We write Ik(x) = Ii1,...,ik for the kth level
interval (of length m−k) to which x belongs. For a fixed y, the probability that
x ∈ Ik(y) is given by

log P(Ik(y)) = n0(y|k) log p0 + · · · + nm−1(y|k) log pm−1

by taking logarithms of (10.2). If y ∈ F then nj (y|k)/k → pj as k → ∞ for
each j , so

1

k
log

P(Ik(y))

|Ik(y)|s = 1

k
log P(Ik(y)) − 1

k
log m−ks

→
m−1∑

i=0

pi log pi + s log m.

Hence, for all y in F , the ‘interval density’

lim
k→∞

P(Ik(y))

|Ik(y)|s =
{

0 if s < θ

∞ if s > θ

where

θ = − 1

log m

m−1∑

i=0

pi log pi.
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We are now virtually in the situation of Proposition 4.9. The same results hold and
may be proved in the same way, if the ‘spherical densities’ limr→0 µ(B(x, r))/rs

are replaced by these interval densities. Thus Hs(F ) = ∞ if s < θ and Hs(F ) =
0 if s > θ , as required. �

10.2 Continued fractions

Instead of defining sets of numbers in terms of base-m expansions, we may
use continued fraction expansions. Any number x that is not an integer may be
written as

x = a0 + 1/x1

where a0 is an integer and x1 > 1. Similarly, if x1 is not an integer, then

x1 = a1 + 1/x2

with x2 > 1, so
x = a0 + 1/(a1 + 1/x2).

Proceeding in this way,

x = a0 + 1/(a1 + 1/(a2 + 1/(· · · + 1/(ak−1 + 1/xk))))

for each k, provided that at no stage is xk an integer. We call the sequence of
integers a0, a1, a2, . . . the partial quotients of x, and write

x = a0 + 1

a1+
1

a2+
1

a3 + · · ·
for the continued fraction expansion of x. This expansion terminates if and only
if x is rational, otherwise taking a finite number of terms,

a0 + 1/(a1 + 1/(a2 + 1/(· · · + 1/ak)))

provides a sequence of rational approximations to x which converge to x as k →
∞. (Continued fractions are, in fact, closely allied to the theory of Diophantine
approximation; see Section 10.3.)

Examples of continued fractions include

√
2 = 1 + 1

2+
1

2+
1

2 + · · ·
√

3 = 1 + 1

1+
1

2+
1

1+
1

2 + · · · .

More generally, any quadratic surd (i.e. root of a quadratic equation with integer
coefficients) has eventually periodic partial quotients.
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Sets of numbers defined by conditions on their partial quotients may be thought
of as fractal attractors of certain iterated function systems, as the following
example illustrates.

Example 10.2

Let F be the set of positive real numbers x with non-terminating continued fraction
expressions which have all partial quotients equal to 1 or 2. Then F is a fractal
with 0.44 < dimHF < 0.66.

Proof. It is easy to see that F is closed (since its complement is open) and
bounded (since F ⊂ [1, 3]). Moreover, x ∈ F precisely when x = 1 + 1/y or
x = 2 + 1/y with y ∈ F . Letting S1(x) = 1 + 1/x and S2(x) = 2 + 1/x, it fol-
lows that F = S1(F ) ∪ S2(F ); in other words, F is the attractor of the iterated
function system {S1, S2} in the sense of (9.2). In fact F is just the set analysed
in Example 9.8 which we showed to have Hausdorff dimension between 0.44
and 0.66. �

Computational methods have been developed that enable dimensions of sets
defined in terms of continued fraction expansions to be found very accurately.
The set F of Example 10.2 has Hausdorff dimension 0.531280506 . . . .

Obviously, varying the conditions on the partial quotients will lead to other
fractals that are the attractors of certain transformations.

10.3 Diophantine approximation

How closely can a given irrational number x be approximated by a rational p/q
with denominator q no larger than q0? Diophantine approximation is the study of
such problems, which can crop up in quite practical situations (see Section 13.6).
A classical theorem of Dirichlet (see Exercise 10.8) states that for every real
number x, there are infinitely many positive integers q such that

∣∣∣∣x − p

q

∣∣∣∣ � 1

q2

for some integer p; such p/q are ‘good’ rational approximations to x. Equiva-
lently,

||qx|| � q−1

for infinitely many q, where ||y|| = minm∈� |y − m| denotes the distance from y

to the nearest integer.
There are variations on Dirichlet’s result that apply to almost all numbers x.

It may be shown that if ψ(q) is a decreasing function of q with 0 � ψ(q) then

||qx|| � ψ(q) (10.3)
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is satisfied by infinitely many q for almost all x or almost no x (in the sense of
1-dimensional Lebesgue measure) according to whether

∑∞
q=1 ψ(q) diverges or

converges. In the latter case, the set of x for which (10.3) does have infinitely
many solutions not only has Lebesgue measure 0, but is often a fractal.

We speak of a number x such that

||qx|| � q1−α (10.4)

for infinitely many positive integers q as being α-well approximable. It is natural
to ask how large this set of numbers is when α > 2, and, indeed, whether such
irrational numbers exist at all. We prove Jarnı́k’s theorem, that the set of α-well
approximable numbers has Hausdorff dimension 2/α.

It is almost immediate from Example 4.7 (check!) that the set of α-well approx-
imable numbers has dimension at least 1/α. An extra subtlety is required to obtain
a value of 2/α. The idea is as follows. Let Gq be the set of x ∈ [0, 1] satisfying
(10.4). A factorization argument shows that, if n is large and p1, p2 are primes
with n < p1, p2 � 2n, then Gp1 and Gp2 are disjoint (except for points very close
to 0 or 1). Thus the set

Hn =
⋃

p prime
n<p�2n

Gp

consists of, roughly,
∑

n<p�2n 1/p � n2/ log n reasonably regularly spaced inter-
vals of lengths at least 2(2n)−α . We then show that if nk is a rapidly increasing
sequence, the intersection

⋂∞
k=1 Hnk

has dimension at least 2/α, and note that
any number in this intersection lies in infinitely many Gp and so is α-well
approximable.

Jarnı́k’s theorem 10.3

Suppose α > 2. Let F be the set of real numbers x ∈ [0, 1] for which the inequal-
ity

||qx|| � q1−α (10.5)

is satisfied by infinitely many positive integers q. Then dimHF = 2/α.

∗Proof. For each q let Gq denote the set of x ∈ [0, 1] satisfying (10.5). Then Gq

consists of q − 1 intervals of length 2q−α and two ‘end’ intervals of length q−α .
Clearly, F ⊂ ⋃∞

q=k Gq for each k, so taking the intervals of Gq for q � k as
a cover of F gives that Hs

δ(F ) �
∑∞

q=k(q + 1)(2q−α)s if 2k−α � δ. If s > 2/α

the series
∑∞

q=1(q + 1)(2q−α)s converges, so limk→∞
∑∞

q=k(q + 1)(2q−α)s = 0
and Hs(F ) = 0. Hence dimHF � 2/α.

Let G′
q be the set of x ∈ (q−α, 1 − q−α) satisfying (10.5), so that G′

q is just Gq

with the end intervals removed. Let n be a positive integer, and suppose p1 and
p2 are prime numbers satisfying n < p1 < p2 � 2n. We show that G′

p1
and G′

p2
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are disjoint and reasonably well separated. For if 1 � r1 < p1 and 1 � r2 < p2,
then p1r2 
= p2r1 since p1 and p2 are prime. Thus

∣∣∣∣
r1

p1
− r2

p2

∣∣∣∣ = 1

p1p2
|p2r1 − p1r2| � 1

p1p2
� 1

4n2

that is, the distance between the centres of any pairs of intervals from G′
p1

and
G′

p2
is at least 1/4n2. Since these intervals have lengths at most 2n−α , the distance

between any point of G′
p1

and any point of G′
p2

is at least 1
4n−2 − 2n−α � 1

8n−2

provided that n � n0 for some sufficiently large n0. For such n the set

Hn =
⋃

p prime
n<p�2n

G′
p

is a disjoint union of the intervals in the G′
p, so Hn is made up of intervals of

lengths at least (2n)−α which are separated by gaps of lengths at least 1
8n−2.

If I ⊂ [0, 1] is any interval with 3/|I | < n < p � 2n then at least p|I |/3 �
n|I |/3 of the intervals of G′

p are completely contained in I . A version of the
prime number theorem states that the number of primes between 2 and n is
asymptotically n/ log n, so there are at least n/(2 log n) primes in the range
(n, 2n] if n � n1, for some large n1 � n0. Thus at least

n2|I |
6 log n

(10.6)

intervals of Hn are contained in I provided that n � n1 and |I | � 3/n.
To complete the proof, we use Example 4.6. With n1 as above, let nk =

max{nk
k−1, 3 × 2ana

k−1}, for k = 2, 3, . . ., where a > α is an integer. Let E0 =
[0, 1] and for k = 1, 2, . . . let Ek consist of those intervals of Hnk

that are com-
pletely contained in Ek−1. The intervals of Ek are of lengths at least (2nk)

−α and
are separated by gaps of at least εk = 1

8n−2
k . Using (10.6), each interval of Ek−1

contains at least mk intervals of Ek, where

mk = n2
k(2nk−1)

−α

6 log nk

= cn2
kn

−α
k−1

log nk

if k � 2, where c = 2−α/6. (We take m1 = 1.) By (4.7)

dimH

( ∞⋂

k=1

Ek

)

� lim
k→∞

log[ck−2n−α
1 (n2 · · · nk−2)

2−αn2
k−1(log n2)

−1 · · · (log nk−1)
−1]

− log[cn−α
k−1(8 log nk)

−1]



Diophantine approximation 157

= lim
k→∞

log[ck−2n−α
1 (n2 · · ·nk−2)

2−α(log n2)
−1 · · · (log nk−1)

−1] + 2 log nk−1

− log(c/8) + log k(log nk−1) + α log nk−1

= 2/α

since the dominant terms in numerator and denominator are those in log nk−1.
(Note that log nk = k log nk−1 so log nk = ck! for k sufficiently large.) If x ∈
Ek ⊂ Hnk

for all k, then x lies in infinitely many of the G′
p and so x ∈ F . Hence

dimHF � 2/α. �

*[The rest of this section may be omitted.]

Obviously, the set F of Jarnı́k’s theorem is dense in [0, 1], with dimH(F ∩ I ) =
2/α for any interval I . However, considerably more than this is true, F is a ‘set
of large intersection’ of the type discussed in Section 8.2, and this has some
surprising consequences. For the definition of Cs , in the following proposition,
see (8.7) and (8.8).

Proposition 10.4

Suppose α > 2. If F is the set of positive numbers such that ||qx|| � q1−α for
infinitely many q, then F ∈ Cs[0, ∞) for all s < 2/α.

Note on proof. This follows the proof of Jarnı́k’s Theorem 10.3 up to the def-
inition of Hn. Then a combination of the method of Example 8.9 and prime
number theorem estimates are used to show that limn→∞ Hs∞(I ∩ Hn) = Hs∞(I ).
Slightly different methods are required to estimate the number of intervals of
Hn that can intersect a covering interval U , depending on whether |I | < 1/n or
|I | � 1/n. �

The first deduction from Proposition 10.4 is that dimHF = 2/α, which we
know already from Jarnı́k’s Theorem. However, Proposition 8.8 tells us that
smooth bijective images of F are also in Cs . Thus if s < 2/α then f (F ∩ [a, b])
is in Cs[f (a), f (b)] for any continuously differentiable function f : [a, b] → �
with |f ′(x)| > c > 0. Taking the functions given by fm(x) = x1/m we have that
fm(F ) ∩ [1, 2] is in Cs[1, 2] for s < 2/α. It follows from Proposition 8.6 that⋂∞

m=1 fm(F ) ∩ [1, 2] is in Cs[1, 2], so

dimH

( ∞⋂

m=1

fm(F )

)

= 2/α.

But
fm(F ) = {x : ||qxm|| � q1−α for infinitely many q}

so we have shown that the set of x for which all positive integral powers are
α-well-approximable has Hausdorff dimension 2/α.

Clearly, many variations are possible using different sequences of functions fm.
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10.4 Notes and references

There are many introductory books on number theory, of which the classic by
Hardy and Wright (1979) is hard to beat.

The dimensional analysis of the distribution of base-m digits is given in
Billingsley (1978). Continued fractions are discussed in most basic texts in num-
ber theory. Rogers (1998) and Bumby (1985) discuss dimensional aspects, and
Mauldin and Urbański (1999) consider them in the context of IFSs with infinitely
many mappings. Hensley (1996) has calculated the Hausdorff dimension of var-
ious sets of numbers defined by continued fractions to many decimal places.

Full accounts of Diophantine approximation are to be found in the books of
Cassels (1957) and Schmidt (1980). Various proofs of Jarnı́k’s theorem have
been given by Jarnı́k (1931), Besicovitch (1934), Eggleston (1952) and Kaufman
(1981). The book by Bernik and Dodson (1999) discusses many dimensional
aspects of Diophantine approximation.

Some novel relations between fractals and number theory may be found in
Lapidus and van Frankenhuysen (2000).

Exercises

10.1 Find an IFS of similarities on � with attractor F consisting of those numbers in
[0, 1] whose decimal expansions contain only even digits. Show that dimHF =
log 5/ log 10.

10.2 Show that the set F(p0, . . . , pm−1) in (10.1) is the attractor of a set of m similarity
transformations in the sense of (9.2). (It is not, of course, compact.)

10.3 Find the Hausdorff dimension of the set of numbers whose base-3 expansions
have ‘twice as many 2s as 1s’ (i.e. those x such that 2 limk→∞ n1(x|k)/k =
limk→∞ n2(x|k)/k with both these limits existing).

10.4 Find the continued fraction representations of (i) 41/9 and (ii)
√

5.

10.5 What number has continued fraction representation

1 + 1

1+
1

1+
1

1 + · · ·?

10.6 Use the continued fraction representation of
√

2 (with partial quotients 1, 2, 2,
2, . . .) to obtain some good rational approximations to

√
2. (In fact, the number

obtained by curtailing a partial fraction at the kth partial quotient gives the best
rational approximation by any number with equal or smaller denominator.)

10.7 Find an iterated function system whose attractor is the set of positive numbers with
infinite continued fraction expansions that have partial quotients containing only
the digits 2 and 3. Thus obtain estimates for the Hausdorff and box dimensions of
this set.

10.8 Let x be a real number and Q a positive integer. By considering the set of numbers
{rx(mod1) : r = 0, 1, . . . ,Q}, prove Dirichlet’s theorem: i.e. that there is an integer
q with 0 � q � Q such that ||qx|| � Q−1. Deduce that there are infinitely many
positive integers q such that ||qx|| � q−1.
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10.9 Let n and d be positive integers. Show that if the Diophantine equation xn − dyn = 1
has infinitely many solutions (x, y) with x and y positive integers, then d1/n must
be n-well-approximable.

10.10 Fix α > 3, let F be the set of (x, y) in �2 such that ||qx|| � q1−α and ||qy|| � q1−α

are satisfied simultaneously for infinitely many positive integers q. Show, in a
similar way to the first part of the proof of Theorem 10.3, that dimHF � 3/α. (In
fact, it may be shown, using a generalization of the remainder of the proof, that
dimHF = 3/α.)

10.11 Show that the set of real numbers x, such that (x + m)2 is α-well-approximable
for all integers m, has Hausdorff dimension 2/α.



Chapter 11 Graphs of functions

A variety of interesting fractals, both of theoretical and practical importance,
occur as graphs of functions. Indeed, many phenomena display fractal features
when plotted as functions of time. Examples include wind speed, levels of reser-
voirs, population data and prices on the stock market, at least when recorded
over fairly long time spans.

11.1 Dimensions of graphs

We consider functions f : [a, b] → �. Under certain circumstances the graph

graph f = {(t, f (t)) : a � t � b}
regarded as a subset of the (t, x)-coordinate plane may be a fractal. (Note that
we work with coordinates (t, x) rather than (x, y) for consistency with the rest
of the book, and because the independent variable is frequently time.) If f has
a continuous derivative, then it is not difficult to see that graph f has dimension
1 and, indeed, is a regular 1-set, see Section 5.1. The same is true if f is of
bounded variation; that is, if

∑m−1
i=0 |f (ti) − f (ti+1)| � constant for all dissections

0 = t0 < t1 < · · · < tm = 1. However, it is possible for a continuous function to
be sufficiently irregular to have a graph of dimension strictly greater than 1.
Perhaps the best known example is

f (t) =
∞∑

k=1

λ(s−2)k sin(λkt)

where 1 < s < 2 and λ > 1. This function, essentially Weierstrass’s example of
a continuous function that is nowhere differentiable, has box dimension s, and is
believed to have Hausdorff dimension s.

We first derive some simple but widely applicable estimates for the box dimen-
sion of graphs. Given a function f and an interval [t1, t2], we write Rf for the
maximum range of f over an interval,

Rf [t1, t2] = sup
t1�t,u�t2

|f (t) − f (u)|.

160
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Proposition 11.1

Let f : [0, 1] → � be continuous. Suppose that 0 < δ < 1, and m is the least
integer greater than or equal to 1/δ. Then, if Nδ is the number of squares of the
δ-mesh that intersect graph f ,

δ−1
m−1∑

i=0

Rf [iδ, (i + 1)δ] � Nδ � 2m + δ−1
m−1∑

i=0

Rf [iδ, (i + 1)δ]. (11.1)

Proof. The number of mesh squares of side δ in the column above the interval
[iδ, (i + 1)δ] that intersect graph f is at least Rf [iδ, (i + 1)δ]/δ and at most 2 +
Rf [iδ, (i + 1)δ]/δ, using that f is continuous. Summing over all such intervals
gives (11.1). This is illustrated in figure 11.1. �

This proposition may be applied immediately to functions satisfying a
Hölder condition.

Corollary 11.2

Let f : [0, 1] → � be a continuous function.

(a) Suppose
|f (t) − f (u)| � c|t − u|2−s (0 � t, u � 1) (11.2)

where c > 0 and 1 � s � 2. Then Hs(graph f ) < ∞ and dimH graph f �
dimB graph f � dimB graph f � s. This remains true provided (11.2) holds
when |t − u| < δ for some δ > 0.

x

x = f (t)

td

Figure 11.1 The number of δ-mesh squares in a column above an interval of width δ

that intersect graph f is approximately the range of f over that interval divided by δ.
Summing these numbers gives estimates for the box dimension of graph f
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(b) Suppose that there are numbers c > 0, δ0 > 0 and 1 � s < 2 with the fol-
lowing property : for each t ∈ [0, 1] and 0 < δ � δ0 there exists u such
that |t − u| � δ and

|f (t) − f (u)| � cδ2−s . (11.3)

Then s � dimB graph f .

Proof

(a) It is immediate from (11.2) that Rf [t1, t2] � c|t1 − t2|2−s for 0 � t1, t2 � 1.
With notation as in Proposition 11.1, m < (1 + δ−1) so by (11.1)

Nδ � 2m + δ−1mcδ2−s � (1 + δ−1)(2 + cδ−1δ2−s) � c1δ
−s

where c1 is independent of δ. The result now follows from Proposition 4.1.
(b) In the same way, (11.3) implies that Rf [t1, t2] � c|t1 − t2|2−s . Since δ−1 �

m, we have from (11.1) that

Nδ � δ−1mcδ2−s � hδ−1δ−1cδ2−s = cδ−s

so Equivalent definition 3.1(iii) gives s � dimB graph f . �

Unfortunately, lower bounds for the Hausdorff dimension of graphs are gen-
erally very much more awkward to find than box dimensions.

Example 11.3. The Weierstrass function

Fix λ > 1 and 1 < s < 2. Define f : [0, 1] → � by

f (t) =
∞∑

k=1

λ(s−2)k sin(λkt). (11.4)

Then, provided λ is large enough, dimB graph f = s.

Calculation. Given 0 < h < λ−1, let N be the integer such that

λ−(N+1) � h < λ−N . (11.5)

Then

|f (t + h) − f (t)| �
N∑

k=1

λ(s−2)k| sin(λk(t + h)) − sin(λkt)|

+
∞∑

k=N+1

λ(s−2)k| sin(λk(t + h)) − sin(λkt)|

�
N∑

k=1

λ(s−2)kλkh +
∞∑

k=N+1

2λ(s−2)k
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using that | sin u − sin v| � |u − v| (a consequence of the mean-value theorem)
on the first N terms of the sum, and that | sin u| � 1 on the remaining terms.
Summing these geometric series,

|f (t + h) − f (t)| � hλ(s−1)N

1 − λ1−s
+ 2λ(s−2)(N+1)

1 − λs−2

� ch2−s

where c is independent of h, using (11.5). Corollary 11.2(a) now gives that
dimB graph f � s.

In the same way, but splitting the sum into three parts—the first N − 1 terms,
the N th term, and the rest—we get that

|f (t + h) − f (t) − λ(s−2)N (sin λN(t + h) − sin λNt)|

� λ(s−2)N−s+1

1 − λ1−s
+ 2λ(s−2)(N+1)

1 − λs−2
(11.6)

if λ−(N+1) � h < λ−N .
Suppose λ > 2 is large enough for the right-hand side of (11.6) to be less than

1
20λ(s−2)N for all N . For δ < λ−1, take N such that λ−N � δ < λ−(N−1). For each
t , we may choose h with λ−(N+1) � h < λ−N < δ such that | sin λN(t + h) −
sin λNt | > 1

10 , so by (11.6)

|f (t + h) − f (t)| � 1
10λ(s−2)N − 1

20λ(s−2)N = 1
20λ(s−2)N � 1

20λs−2δ2−s .

It follows from Corollary 11.2(b) that dimB graph f � s. �

Various cases of the Weierstrass function are shown in figure 11.2.
It is immediate from the above estimate that the Hausdorff dimension of the

graph of the Weierstrass function (11.4) is at most s. It is widely believed
that it equals s, at least for ‘most’ values of λ. This has not yet been proved
rigorously—it could be that there are coverings of the graph of the function
by sets of widely varying sizes that give a smaller value. Even to show that
dimH graph f > 1 is not trivial. The known lower bounds come from mass dis-
tribution methods depending on estimates for L{t : (t, f (t)) ∈ B} where B is a
disc and L is Lebesgue measure. The rapid small-scale oscillation of f ensures
that the graph is inside B relatively rarely, so that this measure is small. In this
way it is possible to show that there is a constant c such that

s � dimH graph f � s − c/ log λ

so when λ is large the Hausdorff dimension cannot be much less than the con-
jectured value.
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Figure 11.2 The Weierstrass function f (t) = ∑∞
k=0 λ(s−2)k sin(λkt) with λ = 1.5 and (a)

s = 1.1, (b) s = 1.3, (c) s = 1.5, (d) s = 1.7
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Figure 11.2 Continued
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The Weierstrass function (11.4) is representative of a much wider class of
functions to which these methods apply. If g is a suitable periodic function, a
similar method can often show that

f (t) =
∞∑

k=1

λ(s−2)kg(λkt) (11.7)

has dimB graph f = s. At first such functions seem rather contrived, but their
occurrence as repellers in certain dynamical systems (see Exercise 13.9) gives
them a new significance.

In Section 9.4 we saw that self-affine sets defined by iterated function systems
are often fractals; by a suitable choice of affine transformations, they can also
be graphs of functions. Let {Si, . . . , Sm} be affine transformations represented in
matrix notation with respect to (t, x) coordinates by

Si

[
t

x

]
=

[
1/m 0
ai ci

] [
t

x

]
+

[
(i − 1)/m

bi

]
. (11.8)

that is
Si(t, x) = (t/m + (i − 1)/m, ait + cix + bi).

Thus the Si transform vertical lines to vertical lines, with the vertical strip 0 �
t � 1 mapped onto the strip (i − 1)/m � t � i/m. We suppose that

1/m < ci < 1 (11.9)

so that contraction in the t direction is stronger than in the x direction.
Let p1 = (0, b1/(1 − c1)) and pm = (1, (am + bm)/(1 − cm)) be the fixed

points of S1 and Sm. We assume that the matrix entries have been chosen so that

Si(pm) = Si+1(p1) (1 � i � m − 1) (11.10)

so that the segments [Si(p1), Si(pm)] join up to form a polygonal curve E1. To
avoid trivial cases, we assume that the points S1(p1), . . . , Sm(p1), pm are not all
collinear. The attractor F of the iterated function system {Si, . . . , Sm} (see (9.2))
may be constructed by repeatedly replacing line segments by affine images of
the ‘generator’ E1; see figures 11.3 and 11.4. Condition (11.10) ensures that the
segments join up with the result that F is the graph of some continuous function
f : [0, 1] → �. Note that these conditions do not necessarily imply that the Si

are contractions with respect to Euclidean distance. However, it is possible to
redefine distance in the (x, t) plane in such a way that the Si become contractions,
and in this context the IFS theory guarantees a unique attractor.

Example 11.4. Self-affine curves

Let F = graph f be the self-affine curve described above. Then dimBF = 1 +
log(c1 + · · · + cm)/ log m.
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E3

E2

E1

E0

q1 q2

p

p1 p2

Figure 11.3 Stages in the construction of a self-affine curve F . The affine transforma-
tions S1 and S2 map the generating triangle p1pp2 onto the triangles p1q1p and pq2p2,
respectively, and transform vertical lines to vertical lines. The rising sequence of polyg-
onal curves E0, E1, . . . are given by Ek+1 = S1(Ek) ∪ S2(Ek) and provide increasingly
good approximations to F (shown in figure 11.4(a) for this case)

Calculation. Let Ti be the ‘linear part’ of Si , represented by the matrix

[
1/m 0
ai ci

]
.

Let Ii1,...,ik be the interval of the t-axis consisting of those t with base-m expansion
beginning 0.i′1 · · · i′k where i′j = ij − 1. Then the part of F above Ii1,...,ik is the
affine image Si1

◦ · · · ◦Sik (F ), which is a translate of Ti1
◦ · · · ◦ Tik (F ). The matrix

representing Ti1
◦ · · · ◦ Tik is easily seen by induction to be

[
m−k 0

m1−kai1 + m2−kci1ai2 + · · · + ci1ci2 · · · cik−1aik ci1ci2 · · · cik

]
.

This is a shear transformation, contracting vertical lines by a factor ci1ci2 · · · cik .
Observe that the bottom left-hand entry is bounded by

|m1−ka + m2−kci1a + · · · + ci1 · · · cik−1a|
� ((mc)1−k + (mc)2−k + · · · + 1)ci1 · · · cik−1a

� rci1 · · · cik−1

where a = max |ai |, c = min{ci} > 1/m and r = a/(1 − (mc)−1) from summing
the geometric series. Thus the image Ti1

◦ · · · ◦ Tik (F ) is contained in a rectangle
of height (r + h)ci1 · · · cik where h is the height of F . On the other hand, if
q1, q2, q3 are three non-collinear points chosen from S1(p1), . . . , Sm(p1), pm,
then Ti1

◦ · · · ◦ Tik (F ) contains the points Ti1
◦ · · · ◦ Tik (qj )(j = 1, 2, 3). The height
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q1 q2

q1 q2

p

p

p1 p2

(a)

p1 p2

(b)

Figure 11.4 Self-affine curves defined by the two affine transformations that map the
triangle p1pp2 onto p1q1p and pq2p2 respectively. In (a) the vertical contraction of both
transformations is 0.7 giving dimB graph f = 1.49, and in (b) the vertical contraction of
both transformations is 0.8, giving dimB graph f = 1.68
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of the triangle with these vertices is at least ci1 · · · cikd where d is the vertical
distance from q2 to the segment [q1, q3]. Thus the range of the function f over
Ii1,...,ik satisfies

dci1 · · · cik � Rf [Ii1,...,ik ] � r1ci1 · · · cik

where r1 = r + h.
For fixed k, we sum this over the mk intervals Ii1,...,ik of lengths m−k to get,

using Proposition 11.1,

mkd
∑

ci1 · · · cik � Nm−k (F ) � 2mk + mkr1

∑
ci1 · · · cik

where Nm−k (F ) is the number of mesh squares of side m−k that intersect F . For
each j the number cij ranges through the values c1, . . . , cm, so that

∑
ci1 · · · cik =

(c1 + · · · + cm)k. Thus

dmk(c1 + · · · + cm)k � Nm−k (F ) � 2mk + r1m
k(c1 + · · · + cm)k.

Taking logarithms and using Equivalent definition 3.1(iii) of box dimension gives
the value stated. �

Self-affine functions are useful for fractal interpolation. Suppose we wish to
find a fractal curve of a given dimension passing through the points (i/m, xi) for
i = 0, 1, . . . , m. By choosing transformations (11.8) in such a way that Si maps
the segment [p1, pm] onto the segment [((i − 1)/m, xi−1), (i/m, xi)] for each i,
the construction described above gives a self-affine function with graph passing
through the given points. By adjusting the values of the matrix entries we can
ensure that the curve has the required box dimension; there is also some freedom
to vary the appearance of the curve in other ways. Fractal interpolation has been
used very effectively to picture mountain skylines.

Of course, self-affine functions can be generalized so that the Si do not all have
the same contraction ratio in the t direction. This leads to fractal interpolation of
points that are not equally spaced. With additional effort, the box dimension of
such curves may be found.

One example of fractal interpolation is illustrated in figure 11.5.

∗11.2 Autocorrelation of fractal functions

As we have remarked, quantities varying with time often turn out to have fractal
graphs. One way in which their fractal nature is often manifested is by a power-
law behaviour of the correlation between measurements separated by time h. In
this section we merely outline the ideas involved; we make no attempt to be
rigorous. In particular, the limits used are all assumed to exist.

For convenience of analysis, we assume that f : � → � is a continuous
bounded function and we consider the average behaviour of f over long periods
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(a) (b)

(c) (d)

Figure 11.5 Fractal interpolation on the northern and southern halves of a map of South-
West England, using the vertices of the polygon in figure (a) as data points. The dimen-
sions of the self-affine curves fitted to these data points are (b) 1.1, (c) 1.2 and (d) 1.3

[−T , T ]. (Similar ideas hold if f is just defined on [0,∞), or on a finite interval,
by extending f to � in a periodic manner). We write f for the average value of
f , i.e.

f = lim
T →∞

1

2T

∫ T

−T

f (t)dt.

A measure of the correlation between f at times separated by h is provided by
the autocorrelation function

C(h) = lim
T →∞

1

2T

∫ T

−T

(f (t + h) − f )(f (t) − f )dt (11.11)

= lim
T →∞

1

2T

∫ T

−T

f (t + h)f (t)dt − (f )2. (11.12)

From (11.11) we see that C(h) is positive if f (t + h) − f and f (t) − f tend to
have the same sign, and is negative if they tend to have opposite signs. If there
is no correlation, C(h) = 0. Since

∫
(f (t + h) − f (t))2dt =

∫
f (t + h)2dt +

∫
f (t)2dt − 2

∫
f (t + h)f (t)dt
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we have

C(h) = f 2 − (f )2 − 1

2
lim

T →∞
1

2T

∫ T

−T

(f (t + h) − f (t))2dt

= C(0) − 1

2
lim

T →∞
1

2T

∫ T

−T

(f (t + h) − f (t))2dt (11.13)

where

f 2 = lim
T →∞

1

2T

∫ T

−T

f (t)2dt

is the mean square of f , assumed to be positive and finite. With C(h) in the form
(11.13) we can infer a plausible relationship between the autocorrelation function
of f and the dimension of graph f . The clue is in Corollary 11.2. Suppose that f

is a function satisfying (11.2) and also satisfying (11.3) in a ‘reasonably uniform
way’. Then, there are constants c1 and c2 such that

c1h
4−2s � 1

2T

∫ T

−T

(f (t + h) − f (t))2dt � c2h
4−2s (11.14)

for small h. Obviously, this is not directly equivalent to (11.2) and (11.3), but in
many reasonably ‘time-homogeneous’ situations, the conditions do correspond.
Thus if the autocorrelation function of f satisfies

C(0) − C(h) � ch4−2s

for small h, it is reasonable to expect the box dimension of graph f to equal s.
The autocorrelation function is closely connected with the power spectrum of

f , defined by

S(ω) = lim
T →∞

1

2T

∣∣∣
∣

∫ T

−T

f (t)eitωdt

∣∣∣
∣

2

. (11.15)

For functions with any degree of long-term regularity, S(ω) is likely to exist.
The power spectrum reflects the strength of the frequency ω in the harmonic
decomposition of f .

We show that the power spectrum is the Fourier transform of the autocorrelation
function. By working with f (t) − f we may assume that f has zero mean. Let
fT (t) be given by f (t) if |t | � T and be 0 otherwise, and define

CT (h) = 1

2T

∫ ∞

−∞
fT (t + h)fT (t)dt

= 1

2T
f −

T ∗ fT (−h)
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where f −
T (t) = fT (−t) and ∗ denotes convolution. By the convolution theorem

for Fourier transforms (see Section 4.4) this equation transforms to

ĈT (ω) = 1

2T
f̂ −

T (ω)f̂T (ω)

= 1

2T
|f̂T (ω)|2

where ĈT (ω) = ∫ ∞
−∞ CT (t)eitωdt and f̂T (ω) = ∫ ∞

−∞ fT (t)eitωdt are the usual
Fourier transforms. (Note that we cannot work with the transform of f itself,
since the integral would diverge.) Letting T → ∞ we see that CT (h) → C(h)

for each h and ĈT (ω) → S(ω) for each ω. It may be shown that this implies that

Ĉ(ω) = S(ω).

Clearly S and C are both real and even functions, so the transforms are cosine
transforms. Thus

S(ω) =
∫ ∞

−∞
C(t)eitωdt =

∫ ∞

−∞
C(t) cos(ωt)dt (11.16)

and, by the inversion formula for Fourier transforms,

C(h) = 1

2π

∫ ∞

−∞
S(ω)e−ihωdω = 1

2π

∫ ∞

−∞
S(ω) cos(ωh)dω. (11.17)

In this analysis we have not gone into questions of convergence of the integrals
too carefully, but in most practical situations the argument can be justified.

Autocorrelations provide us with several methods of estimating the dimension
of the graph of a function or ‘signal’ f . We may compute the autocorrelation
function C(h) or equivalently, the mean-square change in signal in time h over
a long period, so from (11.13)

2[C(0) − C(h)] � 1

2T

∫ T

−T

(f (t + h) − f (t))2dt. (11.18)

If the power-law behaviour

C(0) − C(h) � ch4−2s (11.19)

is observed for small h, we might expect the box dimension of graph f to be s.
In other words,

dimB graph f = 2 − lim
h→0

log(C(0) − C(h))

2 log h
(11.20)
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if this limit exists. We might then seek functions with graphs known to have
this dimension, such as those of Examples 11.3 and 11.4 or the fractional Brow-
nian functions of Section 16.2 to provide simulations of signals with similar
characteristics.

Alternatively, we can work from the power spectrum S(ω) and use (11.17) to
find the autocorrelation function. We need to know about C(0) − C(h) for small
h; typically this depends on the behaviour of its transform S(ω) when ω is large.
The situation of greatest interest is when the power spectrum obeys a power law
S(ω) ∼ c/ωα for large ω, in which case

C(0) − C(h) ∼ bhα−1 (11.21)

for small h, for some constant b. To see this formally note that from (11.17)

π(C(0) − C(h)) =
∫ ∞

0
S(ω)(1 − cos(ωh))dω = 2

∫ ∞

0
S(ω) sin2

(
1
2ωh

)
dω

and taking S(ω) = ω−α gives

1
2π(C(0) − C(h)) =

∫ ∞

0
ω−α sin2 1

2ωh dω = hα−1
∫ ∞

0
u−α sin2 1

2u du

having substituted u = ωh. It may be shown that (11.21) also holds if S is
any sufficiently smooth function such that S(ω) ∼ cω−α as ω → ∞. Comparing
(11.19) and (11.21) suggests that graph f has box dimension s where 4 − 2s =
α − 1, or s = 1

2 (5 − α). Thus it is reasonable to expect a signal with a 1/ωα

power spectrum to have a graph of dimension 1
2 (5 − α) for 1 < α < 3.

In practice, curves of dimension 1
2 (5 − α) often provide good simulations and

display similar characteristics to signals observed to have 1/ωα power spectra.

11.3 Notes and references

The dimension of fractal graphs was first studied by Besicovitch and Ursell
(1937). For more recent work on Weierstrass-type curves see Berry and Lewis
(1980), Mauldin and Williams (1986b) and Hunt (1998). Self-affine curves are
the theme of a book by Massopust (1994), and self-affine curves are discussed in
Bedford (1989). The theory of autocorrelation functions is given in most books
on time series analysis, for example Papoulis (1962).

Exercises

11.1 Verify that if f : [0, 1] → � has a continuous derivative then graph f is a regular
1-set, see Section 5.1.
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11.2 Let f, g : [0, 1] → � be continuous functions and define the sum function f + g

by (f + g)(t) = f (t) + g(t). Suppose that f is a Lipschitz function. By setting
up a Lipschitz mapping between graph (f + g) and graph g, show that
dimH graph (f + g) = dimH graph g, with a similar result for box dimensions.

11.3 Let f, g : [0, 1] → � be continuous functions such that the box dimension of
their graphs exist. Use Proposition 11.1 to show that dimB graph (f + g) equals
the greater of dimB graph f and dimB graph g, provided that these dimensions are
unequal. Give an example to show that this proviso is necessary.

11.4 Show that any function satisfying the conditions of Corollary 11.2(b) with 1 < s �
2 must be nowhere differentiable. Deduce that the Weierstrass function of Example
11.3 and the self-affine curves of Example 11.4, are nowhere differentiable.

11.5 For λ > 1 and 1 < s < 2 let f : [0, 1] → � be a Weierstrass function modified to
include ‘phases’ θk :

f (t) =
∞∑

k=1

λ(s−2)k sin(λkt + θk).

Show that dimB graph f = s, provided that λ is large enough.

11.6 Let g : � → � be the ‘zig-zag’ function of period 4 given by

g(4k + t) =





t (0 � t < 1)

2 − t (1 � t < 3)

t − 4 (3 � t < 4)

where k is an integer and 0 � t < 4. Let 1 < s < 2 and λ > 1 and let f : � → �
be given by

f (t) =
∞∑

k=1

λ(s−2)kg(λkt).

Show that dimB graph f = s, provided that λ is sufficiently large.

11.7 Suppose that the function f : [0, 1] → � satisfies the Hölder condition (11.2). Let
F be a subset of [0, 1]. Obtain an estimate for dimHf (F ) in terms of dimHF .

11.8 Let f : [0, 1] → � be a function. Suppose that

∫ 1

0

∫ 1

0
[|f (t) − f (u)|2 + |t − u|2]−s/2dt du < ∞

for some s with 1 < s < 2. Show, using Theorem 4.13, that dimH graph f � s.

11.9 Let D be the unit square [0, 1] × [0, 1] and let f : D → � be a continuous function
such that

|f (x) − f (y)| � c|x − y|3−s (x, y ∈ D).

Show that the surface {(x, f (x)) : x ∈ D} has box dimension at most s. Similarly,
find a surface analogue to part (b) of Corollary 11.2.
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11.10 Consider the affine maps S1(t, x) = ( 1
2 t, 1

4 t + 5
6x), S2(t, x) = ( 1

2 t + 1
2 ,− 1

4 t +
5
6x + 1

4 ). Show that the attractor of {S1, S2} is the graph of a self-affine func-
tion on [0, 1]. Sketch the first three stages in the construction of the graph, and
find its box dimension.

11.11 Answer the same question as 11.10 with the three affine maps S1(t, x) = ( 1
3 t, 1

3 t +
1
2x), S2(t, x) = ( 1

3 t + 1
3 ,− 2

3 t + 1
2 x + 1

3 ), S3(t, x) = ( 1
3 t + 2

3 , 1
3 t + 1

2 x − 1
3 ).

11.12 Estimate C(0) − C(h) where C(h) is the autocorrelation function of the Weierstrass
function (11.4).

11.13 Investigate the graphs of Weierstrass-type functions (11.7) using a computer. Exam-
ine the effect of varying s and λ, and experiment with various functions g.

11.14 Write a computer program to draw self-affine curves given by (11.8). Investigate
the effect of varying the values of the ci .



Chapter 12 Examples from pure
mathematics

Fractal constructions have provided counterexamples, and sometimes solutions,
to a variety of problems where more regular constructions have failed. In this
chapter we look at several simple but elegant instances from differing areas of
pure mathematics.

12.1 Duality and the Kakeya problem

The method of duality converts sets of points in the plane to sets of lines and
may be used to create new fractals from old. The techniques can be applied to
construct sets with particular properties; for example, to construct a plane set of
zero area that contains a line running in every direction.

For each point (a, b) of �2, we let L(a, b) denote the set of points on the
line y = a + bx, see figure 12.1. If F is any subset of �2 we define the line
set L(F ) to be the union of the lines corresponding to the points of F , i.e.
L(F ) = ⋃{L(a, b) : (a, b) ∈ F }. Writing Lc for the vertical line x = c, we have

L(a, b) ∩ Lc = (c, a + bc) = (c, (a, b)·(1, c)),

where ‘·’ is the usual scalar product in �2; thus for a subset F of �2

L(F ) ∩ Lc = {(c, (a, b)·(1, c)) : (a, b) ∈ F }.

Taking a scalar product with the vector (1, c) may be interpreted geometrically
as projecting onto the line in the direction of (1, c) and stretching by a factor
(1 + c2)1/2. Thus the set L(F ) ∩ Lc is a similar copy of projθF scaled by (1 +
c2)1/2, where projθ denotes orthogonal projection onto the line through the origin
at angle θ to the x-axis, where c = tan θ . In particular,

dimH(L(F ) ∩ Lc) = dimH(projθF ) (12.1)
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Figure 12.1 The duality principle: (a) the point (a, b) corresponds to the line y = a + bx;
(b) the set F corresponds to the line set L(F); (c) the projection projθF is geometrically
similar to L(F) ∩ Lc, where c = tan θ

and
L(L(F ) ∩ Lc) = 0 if and only if L(projθF ) = 0 (12.2)

where L denotes 1-dimensional Lebesgue measure, i.e. length. In this way, duality
relates the projections of F (for which we have the theory of Chapter 6) to the
intersections of the line set L(F ) with vertical lines.

Projection onto the y-axis also has an interpretation. The gradient of the line
L(a, b) is just b = projπ/2(a, b), so, for any F , the set of gradients of the lines
in the line set L(F ) is given by projπ/2F .
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If F is a fractal its line set L(F ) often has a fractal structure, albeit a highly
fibrous one. (In fact, L(F ) need not be a Borel set if F is Borel, though it will be
if F is compact. We ignore the minor technical difficulties that this introduces.)
We have the following dimensional relationship.

Proposition 12.1

Let L(F ) be the line set of a Borel set F ⊂ �2. Then

(a) dimHL(F ) � min{2, 1 + dimHF }, and
(b) if F is a 1-set then area(L(F )) = 0 if and only if F is irregular.

Proof.
(a) By the Projection theorem 6.1, dimH(projθF ) = min{1, dimHF } for almost

all θ ∈ [0, π), so from (12.1) dimH(L(F ) ∩ Lc) = min{1, dimHF } for
almost all −∞ < c < ∞. Part (a) now follows from Corollary 7.10.

(b) Let F be a 1-set. Corollary 6.5 tells us that if F is irregular then
L(projθF ) = 0 for almost all θ , otherwise L(projθF ) > 0 for almost all θ .
Using (12.2) we get the dual statement that if F is irregular then L(L(F ) ∩
Lc) = 0 for almost all c, otherwise L(L(F ) ∩ Lc) > 0 for almost all c.
Since area(L(F )) = ∫ ∞

−∞ L(L(F ) ∩ Lc)dc, part (b) follows. �

In 1917 Kakeya posed the problem of finding the plane set of least area
inside which a unit line segment could be reversed, i.e. manoeuvred continu-
ously without leaving the set to reach its original position but rotated through
180◦. Essentially, this problem reduces to that of finding the smallest region that
contains a unit line segment in every direction; certainly any set in which a seg-
ment can be reversed must have this property. By 1928 Besicovitch had found
a surprising construction of a set of arbitrarily small area inside which a unit
segment could be reversed. Only many years later did he realize that the method
of duality gave a short and elegant solution to the problem.

Proposition 12.2

There is a plane set of zero area which contains a line in every direction. Any
Borel set with this property must have Hausdorff dimension 2.

Proof. Let F be any irregular 1-set such that the projection of F onto the y-axis,
projπ/2F , contains the interval [0, 1]. (The set of figure 0.4, see Examples 2.6 and
6.7, certainly meets this requirement.) Since F is irregular, L(F ) has zero area,
by Proposition 12.1(b). However, since [0, 1] ⊂ projπ/2F , the set L(F ) contains
lines that cut the x-axis at all angles between 0 and π/4. Taking L(F ), together
with copies rotated through π/4, π/2 and 3π/4, gives a set of area 0 containing
a line in every direction.
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For the second part, suppose that E contains a line in every direction. If

F = {(a, b) : L(a, b) ⊂ E}

then projπ/2F is the entire y-axis. Projection does not increase dimension (see
(6.1)), so dimHF � 1. By Proposition 12.1(a) dimHL(F ) = 2; since L(F ) ⊂ E

it follows that dimHE = 2. �

A set in �n that contains a line segment in every direction is called a Besicov-
itch set. Proposition 12.2 shows that Besicovitch sets exist in �2, and taking a
product with �n−2 gives a Besicovitch set in �n. A long-standing conjecture is
that every Besicovitch set in �n has dimension n; we have shown this if n = 2.

Sets of this type have important applications in functional analysis. For a
simple example, let g : �2 → � and write G(θ, t) for the integral of g along
the line making angle θ with the x-axis and perpendicular distance t from the
origin. Let F be a set of zero area containing a line in every direction, and let
g(x, y) = 1 if (x, y) is a point of F and g(x, y) = 0 otherwise. It is clear that
G(θ, t) is not continuous in t for any fixed value of θ . This example becomes
significant when contrasted with the 3-dimensional situation. If g : D → � is a
bounded function on a bounded domain D in �3, and G(θ, t) is the integral of
g over the plane perpendicular to the unit vector θ and perpendicular distance t

from the origin, it may be shown that G(θ, t) must be continuous in t for almost
all unit vectors θ .

The Besicovitch construction may be thought of as a packing of lines in all
directions into a set of area zero. Similar problems may be considered for pack-
ings of other collections of curves. For example, there are sets of zero area that
contain the circumference of a circle of every radius, see Exercises 12.1 and
12.2. However, every set that contains some circle circumference centred at each
point in the plane necessarily has positive area.

12.2 Vitushkin’s conjecture

A long-standing conjecture of Vitushkin in complex potential theory was dis-
proved using a fractal construction. For geometrical purposes we identify the
complex plane � with the Euclidean plane �2.

Let F be a compact subset of �. We say that F is a removable set if, given
any bounded open domain V containing F and any bounded analytic (i.e. differ-
entiable in the complex sense) function f on the complement V \F , then f has
an analytic extension to the whole of V . Thus the functions that are bounded and
analytic on V are essentially the same as those that are bounded and analytic on
V \F ; removing F makes no difference.

The problem of providing a geometrical characterization of removable sets
dates back many years. The removability, or otherwise, of F has now been
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established in the following cases:

Removable Not Removable

dimHF < 1 dimHF > 1
0 < H1(F ) < ∞ and F not irregular 0 < H1(F ) < ∞ and F not irregular

This table should remind the reader of the projection theorems of Chapter 6.
According to Theorem 6.1 and Corollary 6.5, if dimHF < 1 then the projection
projθF has length 0 for almost all θ , but if dimHF > 1 or if F is a 1-set that is
not irregular, projθF has positive length for almost all θ . This correspondence
between removability and almost all projections having length 0, together with
a considerable amount of further evidence makes Vitushkin’s conjecture seem
very natural: F is removable if and only if length (projθF ) = 0 for almost all
θ ∈ [0, π).

A fractal construction shows that Vitushkin’s conjecture cannot be true. Let
V be an open domain in � and let φ : V → φ(V ) be a conformal mapping (i.e.
an analytic bijection) on V that is not linear, so that straight lines are typically
mapped onto (non-straight) curves; V as the unit disc and φ(z) = (z + 2)2 would
certainly be suitable. It is possible to construct a compact subset F of V such
that projθF has zero length for almost all θ but projθφ(F ) has positive length for
almost all θ . This may be achieved using a version of the ‘iterated Venetian blind’
construction, outlined in the proof of Theorem 6.9—it may be shown that the
‘slats’ can be arranged so that they generally miss straight lines in V , but tend to
intersect the inverse images under φ of straight lines in φ(V ) (see figure 12.2). It
follows that the property ‘projθF has zero length for almost all θ ’ is not invariant
under conformal transformations, since it can hold for F but not φ(F ). However,
removability is conformally invariant since the function f (z) is analytic on φ(V )

(respectively on φ(V \ F)) if and only if f (φ(z)) is analytic on V (respectively
on V \ F ). Therefore, the property of having almost all projections of zero length
cannot be equivalent to removability.

V

F

proj qF proj qf (F )

f(F )

f(V )

f

Figure 12.2 φ is an analytic mapping such that projθF has zero length for almost all θ

but projθϕ(F ) has positive length for almost all θ
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One of the curious features of this particular argument is that it leaves us none
the wiser as to whether sets with almost all projections of zero length must be
removable or vice versa. All we can deduce is that both cannot be true.

Subsequently, a non-removable set with almost all projections of zero length
was obtained using an iterated construction.

12.3 Convex functions

A continuous function f : �2 → � is convex if

f (λx + (1 − λ)y) � λf (x) + (1 − λ)f (y)

for all x, y ∈ �2 and 0 � λ � 1. Geometrically, if S = {(x, f (x)) : x ∈ �2} is
the surface in �3 representing the graph of f , then f is convex if the line segment
joining any two points of S lies in or above S.

A convex function f need not be particularly smooth—there may be points
where f is not differentiable. However, convexity implies that the set of such
‘singular’ points cannot be too big, in the sense of dimension. Note that if f is
not differentiable at x then the surface S supports more than one tangent plane at
(x, f (x)). Also notice that if P1 and P2 are distinct tangent planes at (x, f (x))

then there is a continuum of tangent planes through this point, namely those
planes ‘between P1 and P2’ that contain the line P1 ∩ P2.

Theorem 12.3

Let f : �2 → � be a convex function. Then the set of points at which f is not dif-
ferentiable is contained in a countable union of rectifiable curves, so in particular
has Hausdorff dimension at most 1.

Proof. Without loss of generality, we may assume that the minimum value of
f is strictly positive. Let S be the surface given by the graph of f and let
g : �2 → S be the ‘nearest point’ mapping, so that if x ∈ �2 then g(x) is that
point of S for which the distance |g(x) − x| is least, see figure 12.3. Convexity
of f guarantees that this point is unique. If x, y ∈ �2 then the angles of the
(possibly skew) quadrilateral x, g(x), g(y), y at g(x) and g(y) must both be at
least π/2; otherwise the segment (g(x), g(y)) will contain a point on or above
S that is nearer to x or y. It follows that g is distance decreasing, i.e.

|g(x) − g(y)| � |x − y| (x, y ∈ �2). (12.3)

If f fails to be differentiable at x, then S supports more than one tangent plane
at (x, f (x)). Thus g−1(x, f (x)), the subset of the coordinate plane �2 mapped
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z

z = f (x)
g(x) g(y)

x
y

2

Figure 12.3 The ‘nearest point mapping’ g from �2 to the surface z = f (x) of a convex
function is distance decreasing

to this point by g, is the intersection of �2 with the normals to the tangent planes
to S at (x, f (x)) and so contains a straight line segment. Let {L1, L2, . . .} be the
(countable) collection of line segments in �2 with endpoints having rational coor-
dinates. If f is not differentiable at x then g−1(x, f (x)) contains a segment which
must cut at least one of the Li . Thus if F = {(x, f (x)) : f is not differentiable
at x} then

⋃∞
i=1 g(Li) ⊃ F . Using (12.3) it follows that g(Li) is either a point or a

rectifiable curve with H1(g(Li)) � length (Li) < ∞; see (2.9). Then
⋃∞

i=1 g(Li)

is a countable union of rectifiable curves containing F , which in particular has
dimension at most 1.

Since |x − y| � |(x, f (x)) − (y, f (y))| for x, y ∈ �2, the set of points x at
which f is non-differentiable is also of dimension at most 1 and is contained in
a countable collection of rectifiable curves; again see (2.9). �

Hausdorff dimension has been used in various other ways to quantify the
irregularity of surfaces. For example, a convex surface may contain line segments;
however, the set of directions of such line segments may be shown to have
dimension at most 1.

12.4 Groups and rings of fractional dimension

A subset F of � is a subgroup of the real numbers under the operation of
addition if

(i) 0 ∈ F ,
(ii) x + y ∈ F whenever x ∈ F and y ∈ F , and

(iii) −x ∈ F whenever x ∈ F .
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The set F is a subring of � under addition and multiplication if, also,

(iv) xy ∈ F whenever x ∈ F and y ∈ F .

There are many simple examples of such structures: the integers, the rationals
and the set of numbers {r + s

√
2 : r, s ∈ �} are all subrings (and therefore sub-

groups) of �. These examples are countable sets and therefore have Hausdorff
dimension 0. Do there exist subgroups and subrings of � of Hausdorff dimension
s if 0 < s < 1?

It is relatively easy to modify the earlier Example 4.7 to obtain a subgroup of
any given dimension.

Example 12.4

Fix 0 < s < 1. Let n0, n1, n2, . . . be a rapidly increasing sequence of integers,
say with nk+1 � max{nk

k, 4n
1/s

k } for each k. For r = 1, 2, . . . let

Fr = {x ∈ � : |x − p/nk| � rn
−1/s

k for some integer p, for all k}
and let F = ⋃∞

r=1 Fr . Then dimHF = s, and F is a subgroup of � under addition.

Calculation. Fr is essentially the set of Example 4.7, so dimHFr = s for all r

(it is easy to see that the value of r does not affect the dimension). Taking a
countable union, dimHF = s.

Clearly 0 ∈ F1 ⊂ F . If x, y ∈ F then x, y ∈ Fr for some r , noting that Fr ′ ⊂
Fr if r � r ′. Thus, for each k, there are integers p, q such that

|x − p/nk| � rn
−1/s

k |y − q/nk| � rn
−1/s

k .

Adding,
|x + y − (p + q)/nk| � 2rn

−1/s

k

so x + y ∈ F2r ⊂ F . Clearly, if x ∈ Fr then −x ∈ Fr , so F satisfies conditions
(i)–(iii) above. �

Subrings are rather harder to analyse. One geometrical approach depends on
estimating the dimension of the set of distances realized by a plane set. If E is
a subset of �2, we define the distance set of E by

D(E) = {|x − y| : x, y ∈ E} ⊂ �.

Theorem 12.5

Let E ⊂ �2 be a Borel set. Then

dimHD(E) � min{1, dimHE − 1
2 }. (12.4)
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Note on proof. The potential theoretic proof of this theorem is a little complicated.
Fourier transforms and the convolution theorem are used to examine the circles
with centres in E that intersect E. It is unlikely that (12.4) is the best inequality
possible. �

Assuming this theorem, it is not difficult to obtain a partial solution to the
subrings problem.

Theorem 12.6

Let F be a subring of � under addition and multiplication. If F is a Borel set
then either dimHF = 0 or F = �.

Partial proof. We use a geometrical method to show there are no subrings of
dimension between 1

2 and 1. Using (x, y) coordinates in �2, if (x1, y1), (x2, y2) ∈
F × F ⊂ �2, then |(x1, y1) − (x2, y2)|2 = (x1 − x2)

2 + (y1 − y2)
2 ∈ F , since F

is a subring. Thus, if D2(F × F) denotes the set of squares of distances between
points of F × F , we have D2(F × F) ⊂ F . Since the mapping t → t2 preserves
Hausdorff dimension (see Exercise 2.6) we have

dimHF � dimHD2(F × F) = dimHD(F × F)

� min{1, dimH(F × F) − 1
2 }

� min{1, 2dimHF − 1
2 }

using Theorem 12.5 and Product formula 7.2. This inequality is satisfied if and
only if dimHF = 1 or dimHF � 1

2 . �

12.5 Notes and references

More detailed accounts of the Kakeya problem and its variants are given in Besi-
covitch (1963), Cunningham (1974) and Falconer (1985a) and the dual approach
was introduced by Besicovitch (1964). For recent surveys see Wolff (1999) and
Katz and Tao (2000). The book by Stein (1993) includes applications of Kakeya
sets to functional and harmonic analysis.

For discussions on Vitushkin’s conjecture, see Mattila (1995), Murai (1988)
and David (1999). The construction outlined is due to Mattila (1986) and the
non-removable set with projections of lengths zero is due to Jones and Murai
(1988). David (1999) showed that irregular 1-sets are removable.

For general information on convex geometry see Gruber and Wills (1993). The
result given here is due to Anderson and Klee (1952). For other results involving
Hausdorff dimension and convexity, see Dalla and Larman (1980) and the survey
of Schneider (1993).
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Examples of groups of fractional dimension were given by Erdös and Volk-
mann (1966) who raised the question of dimensions of rings. Falconer (1985c)
used Fourier transform methods to show that Borel rings could not have dimen-
sion between 1

2 and 1, see also Mattila (1995). The complete proof of Theo-
rem 12.6 is due to Edgar and Miller (2003).

Exercises

12.1 Construct a plane set of zero area that contains a line at every perpendicular dis-
tance from the origin between 0 and 1. (Hint: consider the image of the set F in
Proposition 12.2 under the transformation (a, b) → (a(1 + b2)1/2, b).)

12.2 By transforming the set obtained in the previous exercise by the mapping given in
polar coordinates by (r, θ) → (1/r, θ), show that there exists a plane set of zero
area that contains a circle of radius r for all r > 0.

12.3 Show that there is a subset of the plane of area 0 that contains a different straight
line through every point on the x-axis.

12.4 Let A be a (Borel) subset of [0, π). Let F be a subset of the plane that contains a
line running in direction θ for every θ ∈ A. Show that dimHF � 1 + dimHA.

12.5 Dualize Theorem 6.9 to show that any Borel set of finite area a may be completely
covered by a collection of straight lines of total area a.

12.6 Show that if a compact subset F of � supports a mass distribution µ such that
f (z) = ∫F (z − w)−1dµ(w) is bounded then F is not removable in the sense of
Section 12.2. Show that this is the case if 1 < dimHF � 2. (Hint: see the proof of
Theorem 4.13(b).)

12.7 Show that every finite set is removable. Show that the unit circle is not removable.

12.8 Let f : � → � be a convex function. Show that the set of points at which f is
not differentiable is finite or countable.

12.9 Find a convex f : �2 → � such that the set of points of non-differentiability has
Hausdorff dimension 1. Find a (non-convex) f : �2 → � such that the set of points
of non-differentiability has Hausdorff dimension 2.

12.10 Show that any subgroup of � under addition has box dimension 0 or 1.

12.11 Show that, for all 0 < s < 2, there is a subgroup of �2 under vector addition with
Hausdorff dimension 2. (Hint: consider a product of subgroups of �.)



Chapter 13 Dynamical systems

Dynamical systems continue to be intensively studied, both from theoretical and
applied viewpoints. The availability of powerful computers has allowed numeri-
cal investigation to complement theoretical analysis. Moreover, ‘topological’
methods for studying the qualitative behaviour of systems augment the more
traditional quantitative approach. The subject is stimulated by an increasingly
diverse range of applications—dynamical systems are now used to model phe-
nomena in biology, geography, economics and internet traffic as well as in the
traditional disciplines of engineering and physics. Volumes have been written
on dynamical systems and chaos. We make no attempt to provide a general
account, which would require excursions into ergodic theory, bifurcation theory
and many other areas, but we illustrate various ways in which fractals can occur
in dynamical systems.

Let D be a subset of �n (often �n itself), and let f : D → D be a continuous
mapping. As usual, f k denotes the kth iterate of f , so that f 0(x) = x, f 1(x) =
f (x), f 2(x) = f (f (x)), etc. Clearly f k(x) is in D for all k if x is a point
of D. Typically, x, f (x), f 2(x), . . . are the values of some quantity at times
0, 1, 2, . . . . Thus the value at time k + 1 is given in terms of the value at time k

by the function f . For example, f k(x) might represent the size after k years of
a biological population or the value of an investment subject to certain interest
and tax conditions.

An iterative scheme {f k} is called a discrete dynamical system. We are inter-
ested in the behaviour of the sequence of iterates, or orbits, {f k(x)}∞k=1 for various
initial points x ∈ D, particularly for large k. For example, if f (x) = cos x, the
sequence f k(x) converges to 0.739 . . . as k → ∞ for any initial x: try repeatedly
pressing the cosine button on a calculator and see! Sometimes the distribution
of iterates appears almost random. Alternatively, f k(x) may converge to a fixed
point w, i.e. a point of D with f (w) = w. More generally, f k(x) may converge
to an orbit of period-p points {w, f (w), . . . , f p−1(w)}, where p is the least posi-
tive integer with f p(w) = w, in the sense that |f k(x) − f k(w)| → 0 as k → ∞.
Sometimes, however, f k(x) may appear to move about at random, but always
remaining close to a certain set, which may be a fractal. In this chapter we
examine several ways in which such ‘fractal attractors’ or ‘strange attractors’
can occur.
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Roughly speaking, an attractor is a set to which all nearby orbits converge.
However, as frequently happens in dynamical systems theory, the precise def-
inition varies between authors. We shall call a subset F of D an attractor for
f if F is a closed set that is invariant under f (i.e. with f (F ) = F ) such that
the distance from f k(x) to F converges to zero as k tends to infinity for all x

in an open set V containing F . The largest such open set V is called the basin
of attraction of F . It is usual to require that F is minimal in the sense that it
has no proper subset satisfying these conditions. Similarly, a closed invariant set
F from which all nearby points not in F are iterated away is called a repeller ;
this is roughly equivalent to F being an ‘attractor’ for the (perhaps multivalued)
inverse f −1. An attractor or repeller may just be a single point or a period-p
orbit. However, even relatively simple maps f can have fractal attractors.

Note that f (D) ⊂ D so that f k(D) ⊂ f k−1(D) ⊂ . . . ⊂ f (D) ⊂ D, so⋂k
i=1 f i(D) = f k(D). Thus the set F = ⋂∞

k=1 f k(D) is invariant under f . Since
f k(x) ∈ ⋂k

i=1 f i(D) for all x ∈ D, the iterates f k(x) approach F as k → ∞,
and F is often an attractor of f .

Very often, if f has a fractal attractor or repeller F , then f exhibits ‘chaotic’
behaviour on F . There are various definitions of chaos; f would certainly be
regarded as chaotic on F if the following are all true:

(i) The orbit {f k(x)} is dense in F for some x ∈ F .
(ii) The periodic points of f in F (points for which f p(x) = x for some

positive integer p) are dense in F .
(iii) f has sensitive dependence on initial conditions; that is, there is a number

δ > 0 such that for every x in F there are points y in F arbitrarily close to
x such that |f k(x) − f k(y)| � δ for some k. Thus points that are initially
close to each other do not remain close under iterates of f .

Condition (i) implies that F cannot be decomposed into smaller closed invari-
ant sets, (ii) suggests a skeleton of regularity in the structure of F , and (iii)
reflects the unpredictability of iterates of points on F . In particular, (iii) implies
that accurate long-term numerical approximation to orbits of f is impossible,
since a tiny numerical error will be magnified under iteration. Often conditions
that give rise to fractal attractors also lead to chaotic behaviour.

Dynamical systems are naturally suited to computer investigation. Roughly
speaking, attractors are the sets that are seen when orbits are plotted on a com-
puter. For some initial point x one plots, say, 10,000 iterates f k(x), starting at
k = 101, say, to ensure that they are indistinguishable from any attractor. If an
attractor appears fractal, a ‘box-counting’ method can be used to estimate its
dimension. However, computer pictures can be misleading, in that the distribu-
tion of f k(x) across an attractor can be very uneven, with certain parts of the
attractor visited very rarely.

13.1 Repellers and iterated function systems
Under certain circumstances, a repeller in a dynamical system coincides with the
attractor of a related iterated function system. This is best seen by an example.
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The mapping f : � → � given by

f (x) = 3
2 (1 − |2x − 1|)

is called the tent map because of the form of its graph; see figure 13.1. Clearly,
f maps � in a two-to-one manner onto (−∞, 3

2 ). Defining an iterated function
system S1, S2 : [0, 1] → [0, 1] by the contractions

S1(x) = 1
3x S2(x) = 1 − 1

3x

we see that
f (S1(x)) = f (S2(x)) = x (0 � x � 1).

Thus S1 and S2 are the two branches of f −1. Theorem 9.1 implies that there is
a unique non-empty compact attractor F ⊂ [0, 1] satisfying

F = S1(F ) ∪ S2(F ) (13.1)

1.5

1.0

0.5

0
0 0.5 1.0

f (x) =      (1 − |2x − 1|)3
2

F

Figure 13.1 The tent map f . Notice that the middle third Cantor set F is mapped onto
itself by f and is an invariant repeller. Notice, also, the chaotic nature of f on F : the
iterates of a point are indicated by the arrows
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which is given by F = ⋂∞
k=0 Sk([0, 1]) (writing S(E) = S1(E) ∪ S2(E) for any

set E). Clearly the attractor F is the middle third Cantor set, with Hausdorff and
box dimensions log 2/ log 3.

It follows from (13.1) that f (F ) = F . To see that F is a repeller, observe
that if x < 0 then f (x) = 3x, so f k(x) = 3kx → −∞ as k → ∞. If x > 1
then f (x) < 0 and again f k(x) → −∞. If x ∈ [0, 1]\F then for some k, we
have x /∈ Sk[0, 1] = ∪{Si1

◦ · · · ◦Sik [0, 1] : ij = 1, 2} so f k(x) /∈ [0, 1], and again
f k(x) → −∞ as k → ∞. All points outside F are iterated to −∞ so F is
a repeller.

With the notation of Section 9.1, the chaotic nature of f on F is readily
apparent. Denoting the points of F by xi1,i2,... with ij = 1, 2, as in (9.7),
|xi1,i2,... − xi ′1,i

′
2,...

| � 3−k if i1 = i′1, . . . , ik = i′k . Since xi1,i2,... = Si1(xi2,i3,...), it
follows that f (xi1,i2,...) = xi2,i3,.... Suppose that (i1, i2, . . .) is an infinite sequence
with every finite sequence of 1s and 2s appearing as a consecutive block of terms;
for example,

(1, 2, 1,1, 1,2, 2,1, 2,2, 1,1,1, 1,1,2, . . .)

where the spacing is just to indicate the form of the sequence. For each point
xi ′1,i

′
2,...

in F and each integer q, we may find k such that (i′1, i
′
2, . . . , i

′
q) =

(ik+1, . . . , ik+q). Then |xik+1,ik+2,... − xi ′1,i
′
2,...

| < 3−q , so the iterates f k(xi1,i2,...) =
xik+1,ik+2,... come arbitrarily close to each point of F for suitable large k, so
that f has dense orbits in F . Similarly, since xi1,...,ik ,i1,...,ik ,i1,... is a periodic
point of period k, the periodic points of f are dense in F . The iterates have
sensitive dependence on initial conditions, since f k(xi1,...,ik ,1,...) ∈ [0, 1

3 ] but
f k(xi1,...,ik,2,...) ∈ [ 2

3 , 1]. We conclude that F is a chaotic repeller for f . (The
study of f by its effect on points of F represented by sequences (i1, i2, . . .) is
known as symbolic dynamics.)

In exactly the same way, the attractors of general iterated function systems
correspond to repellers of functions. If S1, . . . , Sm is a set of bijective contractions
on a domain D with attractor F such that S1(F ), . . . , Sm(F ) are disjoint, then F

is a repeller for any mapping f such that f (x) = S−1
i (x) when x is near Si(F ).

Again, by examining the effect of f on the point xi1,i2,..., it may be shown that
f acts chaotically on F . Indeed, for many dynamical systems f , it is possible
to decompose the domain D into parts (called a Markov partition) such that the
branches of f −1 on each part look rather like an iterated function system. See
Theorem 14.15 for an example in the complex plane.

13.2 The logistic map

The logistic map f : � → � is given by

fλ(x) = λx(1 − x) (13.2)
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where λ is a positive constant. This mapping was introduced to model the popu-
lation development of certain species—if the (normalized) population is x at the
end of a given year, it is assumed to be fλ(x) at the end of the following year.
Nowadays the logistic map is studied intensively as an archetypal 1-dimensional
dynamical system. We content ourselves here with an analysis when λ is large,
and a brief discussion when λ is small.

For λ > 2 + √
5 = 4.236 . . . we get a nonlinear version of the tent map

repeller of Section 13.1. Write a = 1
2 −

√
1
4 − 1/λ and 1 − a = 1

2 +
√

1
4 − 1/λ

for the roots of fλ(x) = 1. Each of the intervals [0, a] and [1 − a, 1] is mapped
bijectively onto [0, 1] by fλ. The mappings S1 : [0, 1] → [0, a] and S2 : [0, 1] →
[1 − a, 1] given by

S1(x) = 1
2 −

√
1
4 − x/λ S2(x) = 1

2 +
√

1
4 − x/λ

are the values of the inverse f −1
λ in [0, a] and [1 − a, 1], with fλ(S1(x)) =

fλ(S2(x)) = x for each x in [0, 1]. For i = 1, 2 we have

|S ′
i (x)| = 1

2λ
( 1

4 − x/λ)−1/2

so
1

λ
� |S ′

i (x)| � 1

2λ
( 1

4 − 1/λ)−1/2 = 1
2 (λ2/4 − λ)−1/2

if 0 � x � 1. By the mean-value theorem

1

λ
|x − y| � |Si(x) − Si(y)| � 1

2 (λ2/4 − λ)−1/2|x − y| (0 � x, y � 1).

(13.3)

Thus, if λ > 2 + √
5 the mappings S1 and S2 are contractions on [0, 1], so by The-

orem 9.1 the iterated function system {S1, S2} has a unique (non-empty compact)
attractor F ⊂ [0, 1] satisfying

F = S1(F ) ∪ S2(F ),

and it follows that fλ(F ) = F . Since this union is disjoint, F is totally dis-
connected. In exactly the same way as for the tent map, F is a repeller, with
f k

λ (x) → −∞ if x /∈ F , and f is chaotic on F .
To estimate the dimension of F we proceed as in Example 9.8. Using Propo-

sitions 9.6 and 9.7 it follows from (13.3) that

log 2

log λ
� dimHF � dimBF � dimBF � log 2

log(λ(1 − 4/λ)1/2)
.

Thus, if λ is large, the dimension of F is close to log 2/ log λ.
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For smaller values of λ, the dynamics of the logistic map (13.2) are subtle. If
0 < λ � 4, the function fλ maps [0, 1] into itself, and we can restrict attention
to the interval [0, 1]. If x is a period-p point of f , i.e. f p(x) = x and p is
the least positive integer with this property, we say that x is stable or unstable
according to whether |(f p)′(x)| < 1 or > 1. Stable periodic points attract nearby
orbits, unstable periodic points repel them. If 0 < λ � 1, then fλ has a fixed
point at 0 which is attractive, in the sense that f k

λ (x) → 0 for all x ∈ [0, 1]. For
1 < λ < 3, the function fλ has an unstable fixed point 0, and a stable fixed point
1 − 1/λ, so f k

λ (x) → 1 − 1/λ for all x ∈ (0, 1). As λ increases through the value
λ1 = 3, the fixed point at 1 − 1/λ becomes unstable, splitting into a stable orbit
of period 2 to which all but countably many points of (0, 1) are attracted (see
figure 13.2). When λ reaches λ2 = 1 + √

6, the period-2 orbit becomes unstable
and is replaced by a stable period-4 orbit. As λ is increased further, this period
doubling continues with a stable orbit of period 2q appearing at λ = λq ; this orbit
attracts all but countably many initial points in (0, 1).

One of the surprising features of this process is that the period doubling occurs
more and more frequently as λ increases, and q → ∞ as λ → λ∞ where λ∞ 	
3.570. As λ approaches λ∞, the repeated splitting of stable orbits of period 2q

into nearby stable orbits of period 2q+1 provides a sequence of attracting orbits
which approximate to a Cantor set; see figure 13.3.

When λ = λ∞ the attractor F actually is a set of Cantor type. Then F is invari-
ant under fλ∞ with all except a countable number of points of [0, 1] approaching

f
l
(x )

y = x

0

1

0 x1 x2 1

Figure 13.2 The logistic map fλ(x) = λx(1 − x) for λ = 3.38. Note the period-2 orbit
x1, x2 with fλ(x1) = x2 and fλ(x2) = x1
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Figure 13.3 For each λ the iterates f k
λ (x) are plotted for k between 150 and 300, for

a suitable initial x. The intersection of the plot with vertical lines shows the periodic
attractors for λ < λ∞. As λ approaches λ∞, repeated splitting of the periodic orbits results
in an attractor of Cantor set form at λ = λ∞

F under iteration by fλ∞ (the exceptional points are those that iterate onto the
unstable periodic orbits). The effect of fλ∞ on F can be analysed by extrapolat-
ing from the periodic orbits of fλq

when q is large. There are dense orbits but
no sensitive dependence on initial conditions. It is possible to show that F is the
attractor in the sense of (9.2) of a certain iterated function system, and, using the
method of Example 9.8, the Hausdorff dimension may be estimated as 0.538 . . . .
A complete analysis of the structure of this fractal attractor is beyond the scope
of this book.

For λ∞ < λ < 4 several types of behaviour occur. There is a set of parameters
K such that if λ ∈ K then fλ has a truly chaotic attractor of positive length.
Moreover, K itself has positive Lebesgue measure. However, in the gaps or
‘windows’ of K , period doubling again occurs. For example, when λ 	 3.83
there is a stable period-3 orbit; as λ increases it splits first into a stable period-6
orbit, then into a stable period-12 orbit, and so on. When λ reaches about 3.855
the ‘limit’ of these stable orbits gives a Cantor-like attractor. Similarly there are
other windows where period doubling commences with a 5-cycle, a 7-cycle and
so on.

One of the most fascinating features of this period doubling is its universal-
ity: the behaviour of the logistic map as λ increases is qualitatively the same
as that of any family of transformations of an interval fλ(x) = λf (x), pro-
vided that f is unimodal, i.e. has a single maximum at c say, with f ′′(c) < 0.
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Although the values λ1, λ2, . . . at which period doubling occurs depend on f , the
rate at which these values approach λ∞ is universal, i.e. λ∞ − λk 	 cδ−k where
δ = 4.6692 . . . is the Feigenbaum constant and c depends on f . Moreover, the
Hausdorff dimension of the fractal attractor of fλ∞ is 0.538 . . . , this same value
occurring for any differentiable and unimodal f .

Mappings which have been used to model biological populations and which
exhibit similar features include the following:

fλ(x) = λ sin πx

fλ(x) = x exp λ(1 − x)

fλ(x) = x(1 + λ(1 − x))

fλ(x) = λx/(1 + ax)5.

13.3 Stretching and folding transformations

One of the simplest planar dynamical systems with a fractal attractor is the
‘baker’s’ transformation, so-called because it resembles the process of repeatedly
stretching a piece of dough and folding it in two. Let E = [0, 1] × [0, 1] be the
unit square. For fixed 0 < λ < 1

2 we define the baker’s transformation f : E →
E by

f (x, y) =
{

(2x, λy) (0 � x � 1
2 )

(2x − 1, λy + 1
2 ) ( 1

2 < x � 1).
(13.4)

This transformation may be thought of as stretching E into a 2 × λ rectangle,
cutting it into two 1 × λ rectangles and placing these above each other with a gap
of 1

2 − λ in between; see figure 13.4. Then Ek = f k(E) is a decreasing sequence
of sets, with Ek comprising 2k horizontal strips of height λk separated by gaps of
at least ( 1

2 − λ)λk−1. Since f (Ek) = Ek+1, the compact limit set F = ⋂∞
k=0 Ek

satisfies f (F ) = F . (Strictly speaking, f (F ) does not include part of F in the
left edge of the square E, a consequence of f being discontinuous. However, this
has little effect on our study.) If (x, y) ∈ E then f k(x, y) ∈ Ek, so f k(x, y) lies
within distance λk of F . Thus all points of E are attracted to F under iteration
by f .

If the initial point (x, y) has x = 0.a1a2 . . . in base 2, and x 
= 1
2 , 1 then it is

easily checked that
f k(x, y) = (0.ak+1ak+2 . . . , yk)

where yk is some point in the strip of Ek numbered akak−1 . . . a1 (base 2) counting
from the bottom with the bottom strip numbered 0. Thus when k is large the
position of f k(x, y) depends largely on the base-2 digits ai of x with i close
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(a)

(b)

Figure 13.4 The baker’s transformation: (a) its effect on the unit square; (b) its attractor

to k. By choosing an x with base 2 expansion containing all finite sequences, we
can arrange for f k(x, y) to be dense in F for certain initial (x, y), just as in the
case of the tent map.

Further analysis along these lines shows that f has sensitive dependence on
initial conditions, and that the periodic points of f are dense in F , so that
F is a chaotic attractor for f . Certainly F is a fractal—it is essentially the
product [0, 1] × F1, where F1 is a Cantor set that is the IFS attractor of S1(x) =
λx, S2(x) = 1

2 + λx. Theorem 9.3 gives dimHF1 = dimBF1 = log 2/ − log λ, so
dimHF = 1 + log 2/ − log λ, using Corollary 7.4.

The baker’s transformation is rather artificial, being piecewise linear and dis-
continuous. However, it does serve to illustrate how the ‘stretching and cutting’
procedure results in a fractal attractor.

The closely related process of ‘stretching and folding’ can occur for continuous
functions on plane regions. Let E = [0, 1] × [0, 1] and suppose that f maps E

in a one-to-one manner onto a horseshoe-shaped region f (E) contained in E.
Then f may be thought of as stretching E into a long thin rectangle which is
then bent in the middle. This figure is repeatedly stretched and bent by f so that
f k(E) consists of an increasing number of side-by-side strips; see figure 13.5. We
have E ⊃ f (E) ⊃ f 2(E) ⊃ · · ·, and the compact set F = ⋂∞

k=1 f k(E) attracts
all points of E. Locally, F looks like the product of a Cantor set and an interval.
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A variation on this construction gives a transformation with rather different
characteristics; see figure 13.6. If D is a plane domain containing the unit square
E and f : D → D is such that f (E) is a horseshoe with ‘ends’ and ‘arch’ lying
in a part of D outside E that is never iterated back into E, then almost all points of
the square E (in the sense of plane measure) are eventually iterated outside E by
f . If f k(x, y) ∈ E for all positive k, then (x, y) ∈ ⋂∞

k=1 f −k(E). With f suitably
defined, f −1(E) consists of two horizontal bars across E, so

⋂∞
k=1 f −k(E) is the

product of [0, 1] and a Cantor set. The set F = ⋂∞
k=−∞ f k(E) = ⋂∞

k=0 f k(E) ∩⋂∞
k=1 f −k(E) is compact and invariant for f , and is the product of two Cantor

sets. However, F is not an attractor, since points arbitrarily close to F are iterated
outside E.

(a)

(b)

c d

Ef (E)

f (E) f 2(E) f 3(E)

b

b′ a′ d ′ c′

a

Figure 13.5 A horseshoe map. (a) The square E is transformed, by stretching and bend-
ing, to the horseshoe f (E), with a, b, c, d mapped to a′, b′, c′, d ′, respectively. (b) The
iterates of E under f form a set that is locally a product of a line segment and a
Cantor set
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(a)

(b)

c d

Ef (E)

b

b′ a′ d ′ c′

a

f −k(E)
k = 1
∞⊃ f k(E)

k = 0
∞⊃ f k(t) ∩ F =

k = 0
∞⊃ f −k(E)

k = 1
∞⊃

Figure 13.6 An alternative horseshoe map. (a) The square E is transformed so that the
‘arch’ and ‘ends’ of f (E) lie outside E. (b) The sets

⋂∞
k=1 f −k(E) and

⋂∞
k=0 f k(E)

are both products of a Cantor set and a unit interval. Their intersection F is an unstable
invariant set for f

A specific example of a ‘stretching and folding’ transformation is the Hénon
map f : �2 → �2

f (x, y) = (y + 1 − ax2, bx) (13.5)

where a and b are constants. (The values a = 1.4 and b = 0.3 are usually chosen
for study. For these values there is a quadrilateral D for which f (D) ⊂ D to
which we can restrict attention.) This mapping has Jacobian −b for all (x, y),
so it contracts area at a constant rate throughout �2; to within a linear change
of coordinates, (13.5) is the most general quadratic mapping with this property.
The transformation (13.5) may be decomposed into an (area-preserving) bend, a
contraction, and a reflection, the net effect being ‘horseshoe-like’; see figure 13.7.
This leads us to expect f to have a fractal attractor, and this is borne out by
computer pictures, figure 13.8. Detailed pictures show banding indicative of a
set that is locally the product of a line segment and a Cantor-like set. Numerical
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y

y1

y2

y3

x

x1

x2

x3

Area-preserving bend
(x1, y1) = (x, 1 − ax2 + y)

Contraction in x direction
(x2, y2) = (bx1, y1)

Reflection in the line y = x
(x3, y3) = (y2, x2)

Figure 13.7 The Hénon map may be decomposed into an area-preserving bend, followed
by a contraction, followed by a reflection in the line y = x. The diagrams show the effect
of these successive transformations on a rectangle

estimates suggest that the attractor has box dimension of about 1.26 when a = 1.4
and b = 0.3.

Detailed analysis of the dynamics of the Hénon map is complicated. In par-
ticular the qualitative changes in behaviour (bifurcations) that occur as a and b

vary are highly intricate.
Many other types of ‘stretching and folding’ are possible. Transformations can

fold several times or even be many-to-one; for example the ends of a horseshoe
might cross. Such transformations often have fractal attractors, but their analysis
tends to be difficult.
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0.5

0 0.5−0.5−1.0 1.0

−0.5

Figure 13.8 Iterates of a point under the Hénon map (13.5) showing the form of the
attractor. Banding is apparent in the enlarged portion in the inset

13.4 The solenoid

Our next example is of a transformation of a 3-dimensional region—a solid torus.
If a unit disc B is rotated through 360◦ about an axis L in the plane of, but not
intersecting, B, a solid torus D is swept out. The torus D may be thought of as
the product of the circle C, of radius r > 1, obtained by rotating the centre of B

around L, and B. This gives a convenient parametrization of D as

{(φ, w) ∈ C × B : 0 � φ < 2π, |w| � 1}

where the angle φ specifies a point on C, and where w is a position vector
relative to the centre of B; see figure 13.9.

Fix 0 < a < 1
4 and define f : D → D by

f (φ, w) = (2φ(mod 2π), aw + 1
2 φ̂) (13.6)
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w

B

D

f

L

Figure 13.9 Parametrization of the torus D

where φ̂ is the unit vector in B at angle φ to the outwards axis. Then f maps
D onto a solid tube of radius a that traverses D twice, see figure 13.10. Note
that (φ, w) and (φ + π,w) are mapped to points in the same ‘slice’ of D, that is
the same half-plane bounded by L. The second iterate f 2(D) is a tube of radius
a2 going round f (D) twice, so around D four times; f 3(D) traverses D eight
times, etc. The intersection F = ⋂∞

k=1 f k(D) is highly fibrous—locally it looks
like a bundle of line segments that cut any cross section of D in a Cantor-like
set. The set F , called a solenoid, is invariant under f , and attracts all points
of D.

We may find the dimension of F by routine methods. Let Pφ be the half-
plane bounded by L and cutting C at φ. Observe that f k(C) is a smooth
closed curve traversing the torus 2k times, with total length at most 2kc where
c is independent of k (f k(C) cannot oscillate too wildly—the angle between
every curve f k(C) and every half-plane Pφ has a positive lower bound). The
set f k(D) is a ‘fattening’ of the curve f k(C) to a tube of radius ak, so it
may be covered by a collection of balls of radius 2ak spaced at intervals of
ak along f k(C). Clearly, 2 × 2kca−k balls will suffice, so applying Proposi-
tion 4.1 in the usual way we get dimHF � dimBF � s and Hs(F ) < ∞ for
s = 1 + log 2/ − log a.

To get a lower estimate for the dimension, we examine the sections F ∩ Pφ for
each φ. The set f (D) ∩ Pφ consists of two discs of radius a situated diametrically
opposite each other with centres 1

2 apart inside D ∩ Pφ . Each of these discs
contains two discs of f 2(D) ∩ Pφ of radius a2 and with centres 1

2a apart, and so
on. We may place a mass distribution µ on F ∩ Pφ in such a way that each of
the 2k discs of f k(D) ∩ Pφ has mass 2−k . If U ⊂ Pφ satisfies

ak( 1
2 − 2a) � |U | < ak−1( 1

2 − 2a)
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f(D )

f (D )

f 2(D )

D

D

(a)

(b)

Figure 13.10 The solenoid. (a) The torus D and its image under f . (b) A plane section
through D intersects F in a Cantor-like set

for some positive integer k, then U intersects at most one disc of f k(D) ∩ Pφ , so

µ(U) � 2−k = ak(log 2/−log a) � c1|U |log 2/−log a

where c1 is independent of |U |. It follows from the Mass distribution principle
4.2 that

Hlog 2/−log a(F ∩ Pφ) � c−1
1 .

Since F is built up from sections F ∩ Pφ (0 � φ < 2π), a higher-dimensional
modification of Proposition 7.9 implies Hs(F ) > 0, where s = 1 + log 2/ − log a.
We conclude that dimHF = dimBF = s, and that 0 < Hs(F ) < ∞.

If φ/2π = 0 · a1a2 . . . to base 2, it follows from (13.6) that f k(φ, w) = (φk, vk)

where φk/2π = 0 · ak+1ak+2 . . . and where the integer with base-2 representation
akak−1 · · · ak−d+1 determines which of the 2d discs of f d(D) ∩ Pφk

the point vk

belongs to for d � k. Just as in previous examples, suitable choice of the digits
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a1, a2, . . . leads to initial points (φ, w) with f k(φ, w) dense in F , or alternatively
to periodic orbits, so that f is chaotic on F .

13.5 Continuous dynamical systems

A discrete dynamical system may be thought of as a formula relating the value of
a quantity at successive discrete time intervals. If the time interval is allowed to
tend to 0, then the formula becomes a differential equation in the usual way. Thus
it is natural to regard an autonomous (time-independent) differential equation as
a continuous dynamical system.

Let D be a domain in �n and let f : D → �n be a smooth function. The
differential equation

ẋ = dx

dt
= f (x) (13.7)

has a family of solution curves or trajectories which fill D. If an initial point x(0)
is given, the solution x(t) remains on the unique trajectory that passes through
x(0) for all time t ; the behaviour of x(t) as t → ±∞ may be found by follow-
ing the trajectory. Given reasonable conditions on f , no two trajectories cross;
otherwise the equations (13.7) would not determine the motion of x. Moreover,
the trajectories vary smoothly across D except at points where ẋ = f (x) = 0
and the trajectories are single points.

As in the discrete case, continuous dynamical systems give rise to attractors
and repellers. A closed subset F of D might be termed an attractor with basin
of attraction V containing F if, for all initial points x(0) in the open set V , the
trajectory x(t) through x(0) approaches F as t tends to infinity. Of course, we
require F to be invariant, so that if x(0) is a point of F then x(t) is in F for
−∞ < t < ∞ implying that F is a union of trajectories. We also require F to
be minimal, in the sense that there is some point x(0) such that x(t) is dense
in F .

When D is a plane domain, the range of attractors for continuous systems
is rather limited. The only attractors possible are isolated points (x for which
f (x) = 0 in (13.7)) or closed loops. More complicated attractors cannot occur.
To demonstrate this, suppose that x(t) is a dense trajectory in an attractor and
that for t near t2 it runs close to, but distinct from, its path when t is near t1.
Assuming that the trajectories vary smoothly, the directions of x(t) at t1 and
t2 are almost parallel (see figure 13.11). Thus for t > t2 the trajectory x(t) is
‘blocked’ from ever getting too close to x(t1) so that x(t1) cannot in fact be
a point on an attractor. (The precise formulation of this fact is known as the
Poincaré–Bendixson theorem.)

Consequently, to find continuous dynamical systems with fractal attractors we
need to look at systems in 3 or more dimensions. Linear differential equations
(with f (x) a linear function of x in (13.7)) can essentially be solved completely
by classical methods, the solutions involving periodic or exponential terms. How-
ever, even simple non-linear terms can lead to trajectories of a highly intricate



202 Dynamical systems

x(t1)

x(t2)

x(t )

Figure 13.11 A trajectory of a continuous dynamical system in the plane. Assuming that
the trajectories vary smoothly, the trajectory shown is ‘cut off’ from returning too close
to x(t1) any time after t2

form. Non-linear differential equations, particularly in higher dimensions, are
notoriously difficult to analyse, requiring a combination of qualitative mathe-
matical analysis and numerical study. One standard approach is to reduce a
3-dimensional continuous system to a 2-dimensional discrete system by looking
at plane cross sections or Poincaré sections as they are called. If P is a plane
region transverse to the trajectories, we may define the first return map g : P → P

by taking g(x) as the point at which the trajectory through x next intersects P ;
see figure 13.12. Then g is a discrete dynamical system on P . If g has an attrac-
tor E in P it follows that the union of trajectories through the points of E is an
attractor F of f . Locally F looks like a product of E and a line segment, and
typically dimHF = 1 + dimHE, by a variation on Corollary 7.4.

Perhaps the best known example of a continuous dynamical system with a frac-
tal attractor is the Lorenz system of equations. Lorenz studied thermal convection
of a horizontal layer of fluid heated from below: the warm fluid may rise owing to

x

g(x)

x( t )
P

Figure 13.12 A continuous dynamical system in �3 induces a discrete dynamical system
on the plane P by the ‘first return’ map g
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Cool upper boundary

Warm lower boundary

Figure 13.13 The Lorenz equations describe the behaviour of one of the rotating cylin-
drical rolls of heat-conducting viscous fluid

its buoyancy and circulate in cylindrical rolls. Under certain conditions these cells
are a series of parallel rotating cylindrical rolls; see figure 13.13. Lorenz used the
continuity equation and Navier–Stokes equations from fluid dynamics, together
with the heat conduction equation to describe the behaviour of one of these rolls.
A series of approximations and simplifications lead to the Lorenz equations

ẋ = σ(y − x)

ẏ = rx − y − xz (13.8)

ż = xy − bz.

The term x represents the rate of rotation of the cylinder, z represents the
deviation from a linear vertical temperature gradient, and y corresponds to the
difference in temperature at opposite sides of the cylinder. The constant σ is
the Prandtl number of the air (the Prandtl number involves the viscosity and
thermal conductivity), b depends on the width-to-height ratio of the layer, and r

is a control parameter representing the fixed temperature difference between the
bottom and top of the system. The non-linearity in the second and third equations
results from the non-linearity of the equations of flow.

Working in (x, y, z)-space, the first thing to notice is that the system (13.8)
contracts volumes at a constant rate. The differences in velocity between pairs
of opposite faces of a small coordinate box of side δ are approximately
δ(∂ẋ/∂x), δ(∂ẏ/∂y), δ(∂ż/∂z), so the rate of change of volume of the box
is δ3((∂ẋ/∂x) + (∂ẏ/∂y) + (∂ż/∂z)) = −(σ + b + 1)δ3 < 0. Nevertheless, with
σ = 10, b = 8

3 , r = 28 (the values usually chosen for study) the trajectories are
concentrated onto an attractor of a highly complex form. This Lorenz attractor
consists of two ‘discs’ each made up of spiralling trajectories (figure 13.14).
Certain trajectories leave each of the discs almost perpendicularly and flow into
the other disc. If a trajectory x(t) is computed, the following behaviour is typical.
As t increases, x(t) circles around one of the discs a number of times and then
‘flips’ over to the other disc. After a few loops round this second disc, it flips
back to the original disc. This pattern continues, with an apparently random
number of circuits before leaving each disc. The motion seems to be chaotic; in
particular points that are initially close together soon have completely different



204 Dynamical systems

Figure 13.14 A view of the Lorenz attractor for σ = 10, b = 8
3 , r = 28. Note the

spiralling round the two discs and the ‘jumps’ from one disc to the other

patterns of residence in the two discs of the attractor. One interpretation of this
sensitive dependence on initial conditions is that long-term weather prediction
is impossible.

The Lorenz attractor appears to be a fractal with numerical estimates suggesting
a dimension of 2.06 when σ = 10, b = 8

3 , r = 28.
Other systems of differential equations also have fractal attractors. The

equations

ẋ = −y − z

ẏ = x + ay

ż = b + z(x − c)

were studied by Rössler. Fixing suitable b and c, the nature of the attractor
changes as a is varied. When a is small the attractor is a simple closed curve,
but on increasing a this splits into a double loop, then a quadruple loop, and so
on. Thus a type of period doubling takes place, and when a reaches a critical
value there is a fractal attractor in the form of a band (figure 13.15). The band
has a twist in it, rather like a Möbius strip.

Figure 13.15 A view of the Rössler band attractor for a = 0.173, b = 0.4, c = 8.5. Note
the banding, suggestive of a set that is locally the product of a Cantor set and a line segment
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To a large extent, each continuous dynamical system must be studied individ-
ually; there is little general theory available. Attractors of continuous systems are
well suited to computer study, and mathematicians are frequently challenged to
explain ‘strange’ attractors that are observed on computer screens.

*13.6 Small divisor theory

There are a number of important dynamical systems dependent on a parameter
ω, which are, in some sense, stable provided that ω is ‘not too close to a rational
number’, in other words if ω is badly approximable in the sense of Section 10.3.
By Jarnı́k’s theorem 10.3 the well-approximable numbers form fractal sets, so
the stable parameters lie in sets with fractal complement.

The following simple example indicates how badly approximable parameters
can result in stable systems.

Let C be the infinite cylinder of unit radius {(θ, y) : 0 � θ < 2π, −∞ < y <

∞}. Fix ω ∈ � and define a discrete dynamical system f : C → C by

f (θ, y) = (θ + 2πω(mod 2π), y). (13.9)

Clearly, f just rotates points on the cylinder through an angle 2πω, and the
circles y = constant are invariant under f . It is natural to ask if these invariant
curves are stable—if the transformation (13.9) is perturbed slightly, will the
cylinder still be covered by a family of invariant closed curves (figure 13.16)?

q

(a) (b)

y

Figure 13.16 (a) Invariant circles for the mapping f (θ, y) = (θ + 2πω(mod 2π), y).
(b) If ω is not ‘too rational’, a small perturbation of the mapping to f (θ, y) = (θ +
2πω(mod 2π), y + g(θ)) distorts the circles to a family of smooth invariant curves
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The surprising thing is that this depends on the nature of the number ω: if ω is
‘sufficiently irrational’ then invariant curves remain.

We modify transformation (13.9) to

f (θ, y) = (θ + 2πω(mod 2π), y + g(θ)) (13.10)

where g is a C∞ function (i.e. has continuous derivatives of all orders). It is
easy to show, using integration by parts, that a function is C∞ if and only if its
Fourier coefficients ak converge to 0 faster than any power of k. Thus, if

g(θ) =
∞∑

−∞
akeikθ

is the Fourier series of g, then for every positive integer m there is a constant c

such that for k 
= 0
|ak| � c|k|−m.

Suppose that y = y(θ) is an invariant curve under (13.10), and suppose that y

has Fourier series

y(θ) =
∞∑

−∞
bkeikθ .

The point (θ + 2πω(mod 2π), y(θ) + g(θ)) must lie on the curve whenever
(θ, y(θ)) does; hence

y(θ + 2πω(mod 2π)) = y(θ) + g(θ)

or ∞∑

−∞
bkeik(θ+2πω) =

∞∑

−∞
bkeikθ +

∞∑

−∞
akeikθ .

Equating terms in eikθ we get that a0 = 0 and b0 is arbitrary, and

bk = ak

e2π ikω − 1
(k 
= 0)

provided ω is irrational. Thus the invariant curves are given by

y(θ) = b0 +
∑

k 
=0

ak

e2π ikω − 1
eikθ (13.11)

provided that this Fourier series converges to a continuous function. This will
happen if the denominators e2π ikω − 1 are not ‘too small too often’. Suppose
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that ω is not α-well-approximable for some α > 2; see (10.4). Then there is a
constant c1 such that

|e2π ikω − 1| � min
m∈�

|kω − m| = ||kω|| � c1|k|1−α

for all k 
= 0, so
∣∣∣∣

ak

e2π ikω − 1

∣∣∣∣ � c−1
1

|ak|
|k|1−α

� cc−1
1 |k|−m−1+α

for some constant c for each m. Thus if g is a C∞ function and ω is not α-well-
approximable for some α > 2, the function y(θ) given by (13.11) is C∞, so that
f has a family of C∞ invariant curves. We saw in Theorem 10.3 that the set
of numbers that are α-well-approximable for all α > 2 has dimension 0, so for
‘most’ ω the invariant curves are stable.

The above example is a special case of a much more general class of trans-
formations of the cylinder known as twist maps. Define f : C → C by

f (θ, y) = (θ + 2πω(y)(mod2π), y). (13.12)

Again the circles y = constant are invariant, but this time the angle of rotation
ω(y) is allowed to vary smoothly with y. We perturb f to

f (θ, y) = (θ + 2πω(y) + εh(θ, y)(mod2π), y + εg(θ, y)) (13.13)

where h and g are smooth functions and ε is small, and ask if the invariant
curves round C are preserved. Moser’s twist theorem, a very deep result, roughly
says that the invariant circles y = constant of (13.12), for which ω(y) = ω, will
deform into differentiable closed invariant curves of (13.13) if ε is small enough,
provided that ||kω|| � c1|k|−3/2 for all k 
= 0 for some constant c1. Thus the
exceptional set of frequencies ω has dimension 4

5 , by Theorem 10.3. Typically
C is filled by invariant curves corresponding to badly approximable ω, where
the motion is regular, and regions in between where the motion is chaotic. The
chaotic regions grow as ε increases.

Perhaps the most important application of small divisor theory is to the sta-
bility of Hamiltonian systems. Consider a 4-dimensional space parametrized by
(θ1, θ2, j1, j2). A Hamiltonian function H(θ1, θ2, j1, j2) determines a conserva-
tive (volume-preserving) dynamical system according to the differential equations

θ̇1 = ∂H/∂j1 θ̇2 = ∂H/∂j2 j̇1 = −∂H/∂θ1 j̇2 = −∂H/∂θ2.

Thus if H(θ1, θ2, j1, j2) = H0(j1, j2) is independent of θ1, θ2, we get the solution

θ1 = ω1t + c1 θ2 = ω2t + c2 j1 = c3 j2 = c4
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where ω1 and ω2 are angular frequencies (which may depend on j1, j2) and
c1, . . . , c4 are constants. A trajectory of the system remains on the same 2-
dimensional torus, (j1, j2) = constant, for all time; such tori are called invariant.

It is important to know whether such invariant tori are stable under small
perturbations of the system. If the Hamiltonian is replaced by

H0(j1, j2) + εH1(θ1, θ2, j1, j2)

where ε is small, do the trajectories of this new system stay on new invariant
tori expressible as (j ′

1, j
′
2) = constant, after a suitable coordinate transformation

(θ1, θ2, j1, j2) → (θ ′
1, θ

′
2, j

′
1, j

′
2)? In other words, do the invariant tori of the orig-

inal system distort slightly to become invariant tori for the new system, or do
they break up altogether? The celebrated Kolmogorov–Arnold–Moser (KAM)
theorem gives an answer to this question—essentially a torus is stable under
sufficiently small perturbations provided that the frequency ratio ω1/ω2 is badly
approximable by rationals; more precisely it is stable if for some c > 0 we have
|(ω1/ω2) − (p/q)| � c/q5/2 for all positive integers p, q. The set of numbers that
fails to satisfy this condition is a fractal of dimension 4

5 by Theorem 10.3, so, in
particular, almost all frequency ratios (in the sense of Lebesgue measure) have
tori that are stable under sufficiently small perturbations. (In fact, the condition
can be weakened to |(ω1/ω2) − (p/q)| � c/qα for any α > 2.)

There is some astronomical evidence for small divisor theory. For example, the
angular frequencies ω of asteroids tend to avoid values for which the ratio ω/ωJ

is close to p/q where q is a small integer, where ωJ is the angular frequency
of Jupiter, the main perturbing influence. On the assumptions that orbits in the
solar system are stable (which, fortunately, seems to be the case) and that we can
consider a pair of orbiting bodies in isolation (a considerable oversimplification),
this avoidance of rational frequency ratios is predicted by KAM theory.

*13.7 Liapounov exponents and entropies

So far we have looked at attractors of dynamical systems largely from a geometric
point of view. However, a dynamical system f provides a much richer structure
than a purely geometric one. In this section we outline some properties of f that
often go hand in hand with fractal attractors.

The concept of invariant measures is fundamental in dynamical systems theory.
A measure µ on D is invariant for a mapping f : D → D if for every subset A

of D we have
µ(f −1(A)) = µ(A). (13.14)

We assume that µ has been normalized so that µ(D) = 1. Any attractor F sup-
ports at least one invariant measure: for fixed x in the basin of attraction of F

and A a Borel set, write

µ(A) = lim
m→∞

1

m
#{k : 1 � k � m andf k(x) ∈ A} (13.15)
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for the proportion of iterates in A. It may be shown using ergodic theory that
this limit exists and is the same for µ-almost all points in the basin of attraction
under very general circumstances. Clearly, µ(A ∪ B) = µ(A) + µ(B) if A and
B are disjoint, and f k(x) ∈ A if and only if f k−1(x) ∈ f −1(A), giving (13.14).
The measure (13.15) is concentrated on the set of points to which f k(x) comes
arbitrarily close infinitely often; thus µ is supported by an attractor of f . The
measure µ(A) reflects the proportion of the iterates that lie in A, and may be
thought of as the distribution that is seen when a large number of iterates f k(x)

are plotted on a computer screen. The intensity of the measure can vary widely
across the attractor A; this variation is often analysed using multifractal analysis
(see Chapter 17). As far as the size of an attractor is concerned, it is often the
dimension of the set occupied by the invariant measure µ that is relevant, rather
than the entire attractor. With this in mind, we define the Hausdorff dimension
of a measure µ for which µ(D) = 1 as

dimHµ = inf{dimHE : E is a Borel set with µ(E) > 0}. (13.16)

If µ is supported by F then clearly dimHµ � dimHF , but we may have strict
inequality; see Exercise 13.10. However, if there are numbers s > 0 and c > 0
such that for every set U

µ(U) � c|U |s (13.17)

then the Mass distribution principle 4.2 implies that for each set E with 0 < µ(E)

we have Hs(E) � µ(E)/c > 0, so that dimHE � s. Hence if (13.17) holds then

dimHµ � s. (13.18)

Once f is equipped with an invariant measure µ several other dynamical
constants may be defined. For simplicity, we assume that D is a domain in �2

and f : D → D is differentiable. The derivative (f k)′(x) is a linear mapping on
�2; we write ak(x) and bk(x) for the lengths of the major and minor semi-axes
of the ellipse (f k)′(x)(B) where B is the unit ball. Thus the image under f k of
a small ball of radius r and centre x approximates to an ellipse with semi-axes
of lengths rak(x) and rbk(x). We define the Liapounov exponents as the average
logarithmic rate of growth with k of these semi-axes:

λ1(x) = lim
k→∞

1

k
log ak(x) λ2(x) = lim

k→∞
1

k
log bk(x). (13.19)

Techniques from ergodic theory show that if µ is invariant for f , these exponents
exist and have the same values λ1, λ2 for µ-almost all x. Hence in a system with
an invariant measure, we refer to λ1 and λ2 as the Liapounov exponents of the
system. The Liapounov exponents represent the ‘average’ rates of expansion of
f . If B is a disc of small radius r , then f k(B) will ‘typically’ be close to an
ellipse with semi-axes of lengths reλ1k and reλ2k; see figure 13.17.

A related dynamical idea is the entropy of a mapping f : D → D. Write

V (x, ε, k) = {y ∈ D : |f i(x) − f i(y)| < ε for 0 � i � k} (13.20)
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Figure 13.17 The definition of the Liapounov exponents λ1 and λ2

for the set of points with their first k iterates within ε of those of x. If µ is an
invariant measure for f , we define the µ-entropy of f as

hµ(f ) = lim
ε→0

lim
k→∞

(
−1

k
log µ(V (x, ε, k))

)
. (13.21)

Under reasonable conditions, this limit exists and has a constant value for µ-
almost all x. The entropy hµ(f ) reflects the rate at which nearby points spread
out under iteration by f , or alternatively the amount of extra information about
an orbit {f k(x)}∞k=1 that is gained from knowing the position of an additional
point on the orbit.

The baker’s transformation (13.4) provides a simple illustration of these ideas
(the line of discontinuity makes little difference). There is a natural invariant
mass distribution µ on the attractor F such that each of the 2k strips of Ek has
mass 2−k, with this mass spread uniformly across the width of the E. Just as
in Example 4.3 we get that µ(U) � c|U |s where s = 1 + log 2/(− log λ) so by
(13.17) and (13.18) s � dimH µ � dimH F = s.

The Liapounov exponents are also easily found. The derivative of (13.4) is

f ′(x, y) =
[

2 0
0 λ

]
(provided x 
= 1

2 ) so (f k)′(x, y) =
[

2k 0
0 λk

]
(except where

x = p/2k for non-negative integers p and k). Hence ak(x, y) = 2k and bk(x, y) =
λk. By (13.19) λ1(x, y) = log 2, λ2(x, y) = log λ for µ-almost all (x, y), and the
Liapounov exponents of the system are λ1 = log 2 and λ2 = log λ.

Since f k stretches by a factor 2k horizontally and contracts by a factor λk

vertically, we get, using (13.20) and ignoring the ‘cutting’ effect of f , that
V ((x, y), ε, k) is approximately a rectangle with sides 2−kε and ε, which has
µ-measure approximately εs2−k, if (x, y) ∈ F . Thus

hµ(f ) = lim
ε→0

lim
k→∞

(
−1

k
log(εs2−k)

)
= log 2.
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The dimensions, Liapounov exponents and entropies of an invariant measure
of a given dynamical system can be estimated computationally or experimentally
and are often useful when comparing different systems. However, the very nature
of these quantities suggests that they may not be completely independent of each
other. One relationship that has been derived rigorously applies to a smooth bijec-
tive transformation f on a 2-dimensional surface. If µ is an invariant measure
for f with Liapounov exponents λ1 > 0 > λ2 then

dimH µ = hµ(f )

(
1

λ1
− 1

λ2

)
. (13.22)

It is easily seen that the exponents calculated for the baker’s transformation
satisfy this formula.

The following relationship holds in many cases: if f is a plane transformation
with attractor F and Liapounov exponents λ1 > 0 > λ2, then

dimBF � 1 − (λ1/λ2). (13.23)

An argument to support this runs as follows. Let Nδ(F ) be the least number of
discs of radius δ that can cover F . If {Ui} are Nδ(F ) such discs, then f k(F )

is covered by the Nδ(F ) sets f k(Ui) which are approximately elliptical with
semi-axis lengths δ exp(λ1k) and δ exp(λ2k). These ellipses may be covered by
about exp((λ1 − λ2)k) discs of radii δ exp(λ2k). Hence

Nδ exp(λ2k)(F ) � exp((λ1 − λ2)k)Nδ(F )

so

log Nδ exp(λ2k)(F )

− log(δ exp(λ2k))
� log(exp((λ1 − λ2)k)Nδ(F ))

− log(δ exp(λ2k))

= (λ1 − λ2)k + log Nδ(F )

−λ2k − log δ
.

Letting k → ∞ gives dimBF � 1 − (λ1/λ2). This argument can often be justi-
fied, but it assumes that the Liapounov exponents are constant across the domain
D, which need not be the case.

The relationships between these and other dynamical parameters are complex,
being closely interrelated with the chaotic properties of f and the fractal nature
of the attractor.

The theory of multifractal measures has been introduced to analyse mea-
sures such as the invariant measures of dynamical systems. This is discussed
in Chapter 17.

13.8 Notes and references

The literature on dynamical systems is vast. Broad accounts that relate to topics
discussed in this chapter may be found in the books by Guckenheimer and Holmes
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(1993), Schuster (1984), Thompson and Stewart (1986), Devaney (1989), Hale
and Koçak (1991), Peitgen, Jürgens and Saupe (1992), Drazin (1992) and Katok
and Hasselblatt (1995). More computational approaches are given by Stuart and
Humphries (1996) and Nusse and Yorke (1998). The collections of papers edited
by Cvitanović (1989), Holden (1986), Bedford and Swift (1988) and Ledrappier,
Lewowicz and Newhouse (1996) highlight a variety of related aspects.

For more details on symbolic dynamics, see Bedford, Keane and Series (1991),
Lind and Marcus (1995) and Pesin (1997). For accounts of the logistic map, see
May (1976), and most of the books mentioned above. The horseshoe attractor was
introduced in the fundamental paper by Smale (1967) and the Hénon attractor in
Hénon and Pomeau (1976). The book by Sparrow (1982) contains a full account
of the Lorenz equations.

The main theory and applications of small divisor theory are brought together
in the collected papers on Hamiltonian dynamical systems edited by MacKay
and Meiss (1987). For results relating Liapounov exponents to dimensions, see
the papers by Young (1982), Frederickson, Kaplan, Yorke and Yorke (1983), the
papers in Mayer-Kress (1986), and the books by Temam (1997) and Pesin (1997).

Exercises

13.1 Find a fractal invariant set F for the ‘tent-like’ map f : � → � given by f (x) =
2(1 − |2x − 1|). Show that F is a repeller for f and that f is chaotic on F . What
is dimHF ?

13.2 Let f : � → � be given by

f (x) =
{

5x (x � 1)
10 − 5x (1 < x < 2)
5x − 10 (x � 2)

Determine an IFS S1, S2, S3 : [0, 5] → [0, 5] such that f (Si(x)) = x for each i.
Show that the attractor F of this IFS is a repeller for f , and determine the Hausdorff
and box dimension of F .

13.3 Let fλ : [0, 1] → � be given by fλ(x) = λ sin πx. Show that for λ sufficiently
large, fλ has a repeller F , in the sense that if x /∈ F then f k

λ (x) /∈ [0, 1] for some
positive integer k. Find an IFS which has F as its attractor, and thus estimate
dimHF for large λ (see Example 9.8).

13.4 Investigate the iterates f k
λ (x) of x in [0, 1] under the logistic mapping (13.2) for

various values of λ and initial points x. Show that if the sequence of iterates
converges then it converges either to 0 or to 1 − 1/λ. Show that if λ = 1

2 then,
for all x in (0, 1), the iterates converge to 0, but that if λ = 2 they converge to
1
2 . Show that if λ = 4, then there are infinitely many values of x in (0, 1) such
that f k

λ (x) converges to 0, infinitely many x in (0, 1) for which f k
λ (x) converges

to 3
4 , and infinitely many x in (0, 1) for which f k

λ (x) does not converge. Use a
programmable calculator or computer to investigate the behaviour of the orbits for
other values of λ. Investigate other transformations listed at the end of Section 13.2
in a similar way.
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13.5 In the cases λ = 2 and λ = 4 it is possible to obtain a simple formula for the
iterates of the logistic map fλ on [0, 1]. For a given x = x0 we write xk = f k

λ (x).

(i) Show that if λ = 2 and a is chosen so that x = 1
2 (1 − exp a), then the iterates

are given by xk = 1
2 (1 − exp(2ka)).

(ii) Show that if λ = 4 and 0 � a < 1 is chosen so that x = sin2(πa), then xk =
sin2(2kπa). By writing a = 0 · a1a2 . . . in binary form, show that f4 has an
unstable orbit of period p for all positive integers p and also has a dense orbit.

13.6 Consider the modified baker’s transformation f : E → E, where E is the unit
square, given by

f (x, y) =
{

(2x, λy) (0 � x � 1
2 )

(2x − 1, µy + 1
2 ) ( 1

2 < x � 1)

where 0 < λ, µ < 1
2 . Show that there is a set F that attracts all points of E, and

find an expression for the Hausdorff dimension of F .

13.7 Consider the Hénon mapping (13.5) with a = 1.4 and b = 0.3. Show that
the quadrilateral D with vertices (1.32, 0.133), (−1.33, 0.42), (−1.06,−0.5) and
(1.245,−0.14) is mapped into itself by f . Use a computer to plot the iterates of a
typical point in D.

13.8 With notation as in Section 13.4 consider the transformation f of the solid torus
D given by

f (φ,w) = (3φ(mod 2π), aw + 1
2 φ̂)

where 0 < a < 1
10 . Show that f has an attractor F of Hausdorff and box dimensions

equal to 1 + log 3/ − log a, and verify that f is chaotic on F .

13.9 Let g : � → � be a differentiable bounded function, and let h : �2 → �2 be
given by

h(t, x) = (λt, λ2−s(x − g(t)))

where λ > 1 and 0 < s < 2. Show that graph f is a repeller for h, where f is
the function

f (t) =
∞∑

k=0

λ(s−2)kg(λkt).

Thus functions of Weierstrass type (see (11.7)) can occur as invariant sets in dynam-
ical systems.

13.10 Give an example of a mass distribution µ on [0, 1] for which dimHµ < dimHF ,
where F is the support of µ. (Hint: see Section 10.1.)

13.11 Consider the mapping f : E → E, where E is the unit square, given by

f (x, y) = (x + y(mod 1), x + 2y(mod 1)).

(This mapping has become known as Arnold’s cat map.) Show that plane Lebesgue
measure is invariant for f (i.e. f is area-preserving), and find the Liapounov
exponents of f .
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13.12 Write a computer program that plots the orbits of a point x under iteration by
a mapping of a region in the plane. Use it to study the attractors of the baker’s
transformation, the Hénon mapping and experiment with other functions.

13.13 Write a computer program to draw trajectories of the Lorenz equations (13.8). See
how the trajectories change as σ, r and b are varied. Do a similar study for the
Rössler equations.



Chapter 14 Iteration of complex
functions—Julia sets

Julia sets provide a most striking illustration of how an apparently simple pro-
cess can lead to highly intricate sets. Functions on the complex plane � as
simple as f (z) = z2 + c, with c a constant, can give rise to fractals of an exotic
appearance—look ahead to figure 14.7.

Julia sets arise in connection with the iteration of a function of a complex
variable f , so are related to the dynamical systems discussed in the previous
chapter—in general a Julia set is a dynamical repeller. However, by specializing
to functions that are analytic on the complex plane (i.e. differentiable in the sense
that f ′(z) = limw→0(f (z + w) − f (z))/w exists as a complex number, where
z, w ∈ �) we can use the powerful techniques of complex variable theory to
obtain much more detailed information about the structure of such repelling sets.

14.1 General theory of Julia sets

For convenience of exposition, we take f : � → � to be a polynomial of degree
n � 2 with complex coefficients, f (z) = anz

n + an−1z
n−1 + · · · + a0. Note that

with minor modifications the theory remains true if f is a rational function
f (z) = p(z)/q(z) (where p, q are polynomials) on the extended complex plane
� ∪ {∞}, and much of it holds if f is any meromorphic function (that is, a
function that is analytic on � except at isolated poles).

As usual we write f k for the k-fold composition f ◦ · · · ◦f of the function f ,
so that f k(w) is the kth iterate f (f (· · · (f (w)) · · ·)) of w.

Julia sets are defined in terms of the behaviour of the iterates f k(z) for large
k. First, we define the filled-in Julia set of the polynomial f ,

K(f ) = {z ∈ � : f k(z) �→ ∞}.

The Julia set of f is the boundary of the filled-in Julia set, J (f ) = ∂K(f ). (We
write K for K(f ) and J for J (f ) when the function is clear.) Thus z ∈ J (f )
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if in every neighbourhood of z there are points w and v with f k(w) → ∞ and
f k(v) �→ ∞.

The complement of the Julia set is called the Fatou set or stable set F(f ). This
chapter investigates the geometry and structure of the Julia sets of polynomials;
in particular J is usually a fractal.

For the simplest example, let f (z) = z2, so that f k(z) = z2k

. Clearly f k(z) → 0
as k → ∞ if |z| < 1 and f k(z) → ∞ if |z| > 1, but with f k(z) remaining on the
circle |z| = 1 for all k if |z| = 1. Thus, the filled-in Julia set k is the unit disc
|z| � 1, and the Julia set J is its boundary, the unit circle, |z| = 1. The Julia set J

is the boundary between the sets of points which iterate to 0 and ∞. Of course, in
this special case J is not a fractal.

Suppose that we modify this example slightly, taking f (z) = z2 + c where c

is a small complex number. It is easy to see that we still have f k(z) → w if z

is small, where w is the fixed point of f close to 0, and that f k(z) → ∞ if z is
large. Again, the Julia set is the boundary between these two types of behaviour,
but it turns out that now J is a fractal curve; see figure 14.1.

We shall need some terminology about fixed and periodic points of f . Recall
that if f (w) = w we call w a fixed point of f , and if f p(w) = w for some integer
p � 1 we call w a periodic point of f ; the least such p is called the period of
w. We call w, f (w), . . . , f p(w) a period p orbit. Let w be a periodic point of
period p, with (f p)′(w) = λ, where the prime denotes complex differentiation.
The point w is called attractive if 0 � |λ| < 1, in which case nearby points are
attracted to the orbit under iteration by f , and repelling if |λ| > 1, in which case
points close to the orbit move away. The study of sequences f k(z) for various
initial z is known as complex dynamics. The position of z relative to the Julia set
J (f ) is a key to this behaviour.

0 w

J J

(a) (b)

Figure 14.1 (a) The Julia set of f (z) = z2 is the circle |z| = 1, with the iterates f k(z) → 0
if z is inside J , and |f k(z)| → ∞ if z is outside J . (b) If f is perturbed to the function
f (z) = z2 + c for small c this picture distorts slightly, with a curve J separating those
points z for which f k(z) converges to the fixed point w of f near 0 from those points z

with |f k(z)| → ∞. The curve J is now a fractal
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The following lemma is extremely useful in determining whether a sequence
iterates to infinity, that is whether points are outside the filled-in Julia set.

Lemma 14.1

Given a polynomial f (z) = anz
n + an−1z

n−1 + · · · + a0 with an �= 0, there exists
a number r such that if |z| � r then |f (z)| � 2|z|. In particular, if |f m(z)| �
r for some m � 0 then f k(z) → ∞ as k → ∞. Thus either f k(z) → ∞ or
{f k(z) : k = 0, 1, 2, . . .} is a bounded set.

Proof. We may choose r sufficiently large to ensure that if |z| � r then 1
2 |an||z|n �

2|z| and (|an−1||z|n−1 + · · · + |a1||z| + |a0|) � 1
2 |an||z|n. Then if |z| � r ,

|f (z)| � |an||z|n − (|an−1||z|n−1 + · · · + |a1||z| + |a0|)
� 1

2
|an||z|n � 2|z|.

Furthermore, if |f m(z)| � r for some m, then, applying this inductively, we get
|f m+k(z)| � 2m|f k(z)| � r , so f k(z) → ∞. �

Some basic observations on the structure of the filled-in Julia set and the Julia
set follow easily.

Proposition 14.2

Let f (z) be a polynomial. Then the filled in Julia set K(f ) and the Julia set
J (f ) are non-empty and compact, with J (f ) ⊂ K(f ). Furthermore, J (f ) has
an empty interior.

Proof. With r given by Lemma 14.1, it is immediate from the lemma that K is
contained in the disc B(0, r) and so is bounded, as is its boundary J .

If z /∈ K , then f k(z) → ∞, so |f m(z)| > r for some integer m. By continuity
of f m, |f m(w)| > r for all w in a sufficiently small disc centred at z, so for such
w, f k(w) → ∞ by Lemma 14.1, giving that w /∈ K . Thus, the complement of
K is open, so K is closed. As the boundary of K , the Julia set J is closed and
contained in K . Thus K and J are closed and bounded, and so are compact.

The equation f (z) = z has at least one solution z0, say, so f k(z0) = z0 for all
k, so z0 ∈ K and K is non-empty. Let z1 ∈ �\K . Then the point λz0 + (1 − λ)z1

on the line joining z0 and z1 will lie on the boundary of K for some 0 � λ � 1;
taking λ as the infimum value for which λz0 + (1 − λ)z1 ∈ K will do. Thus,
J = ∂K is non-empty.

Finally, if U is a non-empty open subset of J ⊂ K , then U lies in the interior
of K and therefore has empty intersection with its boundary J , a contradic-
tion. �

Hardly surprisingly, J (f ) gets mapped onto itself by f and its inverse.
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Proposition 14.3

The Julia set J = J (f ) of f is forward and backward invariant under f, i.e. J =
f (J ) = f −1(J ).

Proof. Let z ∈ J . Then f k(z) �→ ∞, and we may find wn → z with f k(wn) →
∞ as k → ∞ for all n. Thus, f k(f (z)) �→ ∞ and f k(f (wn)) → ∞, where by
continuity of f , f (wn) can be chosen as close as we like to f (z). Thus f (z) ∈ J ,
so f (J ) ⊂ J which also implies J ⊂ f −1(f (J )) ⊂ f −1(J ).

Similarly, with z and wn as above, if f (z0) = z then we may find vn → z0 with
f (vn) = wn, by the mapping properties of polynomials on �. Hence, f k(z0) =
f k−1(z) �→ ∞ and f k(vn) = f k−1(wn) → ∞ as k → ∞, so z0 ∈ J . Thus,
f −1(J ) ⊂ J which implies J = f (f −1(J )) ⊂ f (J ). �

Proposition 14.4

J (f p) = J (f ) for every positive integer p.

Proof. It follows from Lemma 14.1 that f k(z) → ∞ if and only if (f p)k(z) =
f kp(z) → ∞. Thus f and f p have identical filled-in Julia sets and so identical
Julia sets. �

To develop the theory of Julia sets much further, we cannot avoid introducing
some technical tools from complex variable theory, in particular normal families
of analytic functions and Montel’s theorem.

[∗Readers who wish to omit the quite technical arguments involving complex
variable theory should skip to Summary 14.12.]

Let U be an open subset of �, and let gk : U → �, k = 1, 2, . . . be a family
of complex analytic functions (i.e. functions differentiable on U in the complex
sense). The family {gk} is said to be normal on U if every sequence of func-
tions selected from {gk} has a subsequence which converges uniformly on every
compact subset of U , either to a bounded analytic function or to ∞. Notice that
by standard complex variable theory, this means that the subsequence converges
either to a finite analytic function or to ∞ on each connected component of
U . In the former case, the derivatives of the subsequence must converge to the
derivative of the limit function. The family {gk} is normal at the point w of U if
there is some open subset V of U containing w such that {gk} is a normal family
on V . Observe that this is equivalent to there being a neighbourhood V of w on
which every sequence {gk} has a subsequence convergent to a bounded analytic
function or to ∞.

The key result which we will use repeatedly in our development of Julia sets
is the remarkable theorem of Montel, which asserts that non-normal families of
functions take virtually all complex values.
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Montel’s theorem 14.5

Let {gk} be a family of complex analytic functions on an open domain U. If {gk}
is not a normal family, then for all w ∈ � with at most one exception we have
gk(z) = w for some z ∈ U and some k.

Proof. Consult the literature on complex function theory. �

Montel’s theorem quickly leads to the following characterization of a Julia set,
which is often taken to be the definition in more advanced work, since it is more
widely applicable and lends itself to complex variable techniques.

Proposition 14.6

J (f ) = {z ∈ � : the family {f k} is not normal at z}. (14.1)

Proof. If z ∈ J , then in every neighbourhood V of z there are points w such that
f k(w) → ∞, whilst f k(z) remains bounded. Thus no subsequence of {f k} is
uniformly convergent on V , so that {f k} is not normal at z.

Suppose that z /∈ J . Either z ∈ intK , in which case, taking an open set V with
z ∈ V ⊂ intK , we have f k(w) ∈ K for all w ∈ V and all k, so by Montel’s the-
orem 14.5 {f k} is normal at w. Otherwise, z ∈ �\K , so |f k(z)| > r for some k,
where r is given by Lemma 14.1, so |f k(w)| > r for all w in some neighbour-
hood V of z, so by Lemma 14.1, f k(w) → ∞ uniformly on V , so again {f k} is
normal at w. �

The expression (14.1) is used as the definition of the Julia set for general
complex functions, such as rational functions or meromorphic functions. Taking
this as the definition, the theory developed from Montel’s theorem extends to a
wide class of complex functions. Note, however, that if f : � ∪ {∞} → � ∪ {∞}
is a rational function, then J must be closed, but need not be bounded. Indeed,
it is possible for J to be the whole complex plane; for example, if f (z) =
((z − 2)/z)2.

A main aim now is to obtain a further characterization of the Julia set J (f )

as the closure of the repelling periodic points of f . On the way we encounter
further interesting properties of Julia sets; for example, our next result tells that
f is ‘mixing’ near J (f ), that is neighbourhoods of points of J (f ) are spread
right across � by iterates of f .

Lemma 14.7

Let f be a polynomial, let w ∈ J (f ) and let U be any neighbourhood of w. Then
for each j = 1, 2, . . ., the set W ≡ ⋃∞

k=j f k(U) is the whole of �, except possi-
bly for a single point. Any such exceptional point is not in J (f ), and is independent
of w and U.

Proof. By Proposition 14.6, the family {f k}∞k=j is not normal at w, so the first
part is immediate from Montel’s theorem 14.5.
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Suppose v /∈ W . If f (z) = v, then, since f (W) ⊂ W , it follows that z /∈ W .
As �\W consists of at most one point, then z = v. Hence f is a polynomial of
degree n such that the only solution of f (z) − v = 0 is v, which implies that
f (z) − v = c(z − v)n for some constant c.

If z is sufficiently close to v, then f k(z) − v → 0 as k → ∞, convergence
being uniform on, say, {z : |z − v| < (2c)−1/(n−1)}. Thus {f k} is normal at v, so
the exceptional point v /∈ J (f ). Clearly v only depends on the polynomial f . (In
fact, if W omits a point v of �, then J (f ) is the circle with centre v and radius
c−1/(n−1).) �

The following corollary is the basis of many computer pictures of Julia sets;
see Section 14.3.

Corollary 14.8

(a) The following holds for all z ∈ � with at most one exception: if U is an
open set intersecting J (f ) then f −k(z) intersects U for infinitely many
values of k.

(b) If z ∈ J (f ) then J (f ) is the closure of
⋃∞

k=1 f −k(z).

Proof.

(a) Provided z is not the exceptional point of Lemma 14.7, z ∈ f k(U), and
thus f −k(z) intersects U , for infinitely many k.

(b) If z ∈ J (f ) then f −k(z) ⊂ J (f ), by Proposition 14.3, so that
⋃∞

k=1 f −k(z)

and, therefore, its closure is contained in the closed set J (f ). On the other
hand, if U is an open set containing z ∈ J (f ), then f −k(z) intersects U

for some k, by part (a); z cannot be the exceptional point by Lemma 14.7,
so z is in the closure of

⋃∞
k=1 f −k(z). �

Proposition 14.9

J (f ) is a perfect set (i.e. closed and with no isolated points) and is therefore
uncountable.

Proof. Let v ∈ J (f ) and let U be a neighbourhood of v. We must show that U

contains other points of J (f ). We consider three cases separately.

(i) v is not a fixed or periodic point of f . By Corollary 14.8(b) and Proposi-
tion 14.3, U contains a point of f −k(v) ⊂ J (f ) for some k � 1, and this
point must be different from v.

(ii) f (v) = v. If f (z) = v has no solution other than v, then, just as in the
proof of Lemma 14.7, v /∈ J (f ). Thus, there exists w �= v with f (w) = v.
By Corollary 14.8(b), U contains a point u of f −k(w) = f −k−1(v) for
some k � 1. Any such u is in J (f ) by backward invariance and is distinct
from v, since f k(v) = v �= w = f k(u).
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(iii) f p(v) = v for some p > 1. By Proposition 14.4, J (f ) = J (f p), so by
applying (ii) to f p we see that U contains points of J (f p) = J (f ) other
than v.

Thus J (f ) has no isolated points; since it is closed, it is perfect. Finally, every
perfect set is uncountable, see Exercise 14.1. �

We can now prove the main result of this section, that the Julia set J (f ) is
the closure of the repelling periodic points of f .

Theorem 14.10

If f is a polynomial, J (f ) is the closure of the repelling periodic points of f.

Proof. Let w be a repelling periodic point of f of period p, so w is a repelling
fixed point of g = f p. Suppose that {gk} is normal at w; then w has an open
neighbourhood V on which a subsequence {gki } converges to a finite analytic
function g0 (it cannot converge to ∞ since gk(w) = w for all k). By a standard
result from complex analysis, the derivatives also converge, (gki )′(z) → g′

0(z) if
z ∈ V . However, by the chain rule, |(gki )′(w)| = |(g′(w))ki | → ∞ since w is a
repelling fixed point and |g′(w)| > 1. This contradicts the finiteness of g′

0(w), so
{gk} cannot be normal at w. Thus w ∈ J (g) = J (f p) = J (f ), by Proposition
14.4. Since J (f ) is closed, it follows that the closure of the repelling periodic
points is in J (f ).

Let E = {w ∈ J (f ) such that there exists v �= w with f (v) = w and f ′(v) �= 0}.
Suppose that w ∈ E. Then there is an open neighbourhood V of w on which we
may find a local analytic inverse f −1 : V → �\V so that f −1(w) = v �= w (just
choose values of f −1(z) in a continuous manner). Define a family of analytic
functions {hk} on V by

hk(z) = (f k(z) − z)

(f −1(z) − z)
.

Let U be any open neighbourhood of w with U ⊂ V . Since w ∈ J (f ) the family
{f k} and thus, from the definition, the family {hk} is not normal on U . By
Montel’s theorem 14.5, hk(z) must take either the value 0 or 1 for some k and
z ∈ U . In the first case f k(z) = z for some z ∈ U ; in the second case f k(z) =
f −1(z) so f k+1(z) = z for some z ∈ U . Thus U contains a periodic point of f ,
so w is in the closure of the repelling periodic points for all w ∈ E.

Since f is a polynomial, E contains all of J (f ) except for a finite number of
points. Since J (f ) contains no isolated points, by Proposition 14.9, J (f ) ⊂ E

is a subset of the closure of the repelling periodic points. �

If w is an attractive fixed point of f , we write

A(w) = {z ∈ � : f k(z) → w as k → ∞} (14.2)
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for the basin of attraction of w. We define the basin of attraction of infinity,
A(∞), in the same way. Since w is attractive, there is an open set V containing
w in A(w) (if w = ∞, we may take {z : |z| > r}, for sufficiently large r). This
implies that A(w) is open, since if f k(z) ∈ V for some k, then z ∈ f −k(V ),
which is open. The following characterization of J as the boundary of any basin
of attraction is extremely useful in determining Julia sets. Recall the notation ∂A

for the boundary of the set A.

Lemma 14.11

Let w be an attractive fixed point of f. Then ∂A(w) = J (f ). The same is true if
w = ∞.

Proof. If z ∈ J (f ) then f k(z) ∈ J (f ) for all k so cannot converge to an attractive
fixed point, and z /∈ A(w). However, if U is any neighbourhood of z, the set
f k(U) contains points of A(w) for some k by Lemma 14.7, so there are points
arbitrarily close to z that iterate to w. Thus z ∈ A(w) and so z ∈ ∂A(w).

Suppose z ∈ ∂A(w) but z /∈ J (f ). Then z has a connected open neighbourhood
V on which {f k} has a subsequence convergent either to an analytic function or
to ∞. The subsequence converges to w on V ∩ A(w), which is open and non-
empty, and therefore on V , since an analytic function is constant on a connected
set if it is constant on any open subset. All points of V are mapped into A(w)

by iterates of f , so V ⊂ A(w), contradicting that z ∈ ∂A(w). �

For an example of this lemma, recall the case f (z) = z2. The Julia set is the
unit circle, which is the boundary of both A(0) and A(∞).

We collect together the main points of this section.

Summary 14.12

The Julia set J (f ) of the polynomial f is the boundary of the set of points z ∈ �
such that f k(z) → ∞. It is an uncountable non-empty compact set containing
no isolated points and is invariant under f and f −1, and J (f ) = J (f p) for each
positive integer p. If z ∈ J (f ), then J (f ) is the closure of

⋃∞
k=1 f −k(z). The

Julia set is the boundary of the basin of attraction of each attractive fixed point
of f, including ∞, and is the closure of the repelling periodic points of f.

Proof. This collects together the results of this section. �

It is possible to discover a great deal more about the dynamics of f on the Julia
set. It may be shown that ‘f acts chaotically on J ’ (see Chapter 13). Periodic
points of f are dense in J but, on the other hand, J contains points z with iterates
f k(z) that are dense in J . Moreover, f has ‘sensitive dependence on initial
conditions’ on J ; thus |f k(z) − f k(w)| will be large for certain k regardless of
how close z, w ∈ J are, making accurate computation of iterates impossible.
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14.2 Quadratic functions—the Mandelbrot set

We now specialize to the case of quadratic functions on �. We study Julia sets
of polynomials of the form

fc(z) = z2 + c. (14.3)

This is not as restrictive as it first appears: if h(z) = αz + β (α �= 0) then

h−1(fc(h(z))) = (α2z2 + 2αβz + β2 + c − β)/α.

By choosing appropriate values of α, β and c we can make this expression into
any quadratic function f that we please. Then h−1◦fc◦h = f , so h−1◦f k

c
◦h = f k

for all k. This means that the sequence of iterates {f k(z)} of a point z under f

is just the image under h−1 of the sequence of iterates {f k
c (h(z))} of the point

h(z) under fc. The mapping h transforms the dynamical picture of f to that of
fc. In particular, f k(z) → ∞ if and only if f k

c (z) → ∞; thus the Julia set of f

is the image under h−1 of the Julia set of fc.
The transformation h is called a conjugacy between f and fc. Any quadratic

function is conjugate to fc for some c, so by studying the Julia sets of fc for
c ∈ � we effectively study the Julia sets of all quadratic polynomials. Since
h is a similarity transformation, the Julia set of any quadratic polynomial is
geometrically similar to that of fc for some c ∈ �.

It should be borne in mind throughout this section that f −1
c (z) takes two distinct

values ±(z − c)1/2, called the two branches of f −1
c (z), except when z = c. Thus

if U is a small open set with c /∈ U , then the pre-image f −1
c (U) has two parts,

both of which are mapped bijectively and smoothly by fc onto U .
We define the Mandelbrot set M to be the set of parameters c for which the

Julia set of fc is connected

M = {c ∈ � : J (fc) is connected}. (14.4)

At first, M appears to relate to one rather specific property of J (fc). In fact, as
we shall see, M contains an enormous amount of information about the structure
of Julia sets.

The definition (14.4) is awkward for computational purposes. We derive an
equivalent definition that is much more useful for determining whether a param-
eter c lies in M and for investigating the extraordinarily intricate form of M; see
figure 14.2: we show that c ∈ M if and only if f k

c (0) �→ ∞.
To do this, we first need to know a little about the effect of the transformation

fc on smooth curves. For brevity, we term a smooth (i.e. differentiable), closed,
simple (i.e. non-self-intersecting) curve in the complex plane a loop. We refer
to the parts of � inside and outside such a curve as the interior and exterior
of the loop. A figure of eight is a smooth closed curve with a single point of
self-intersection.
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Figure 14.2 The Mandelbrot set M in the complex plane

Lemma 14.13

Let C be a loop in the complex plane.

(a) If c is inside C then f −1
c (C) is a loop, with the inverse image of the interior

of C as the interior of f −1
c (C).

(b) If c lies on C then f −1
c (C) is a figure of eight with self-intersection at

0, such that the inverse image of the interior of C is the interior of the
two loops.

(c) If c is outside C, then f −1
c (C) comprises two disjoint loops, with the inverse

image of the interior of C the interior of the two loops.

Proof. Note that f −1
c (z) = ±(z − c)1/2 and (f −1

c )′(z) = ± 1
2 (z − c)−1/2, which is

finite and non-zero if z �= c. Hence, if we select one of the two branches of f −1
c ,

the set f −1
c (C) is locally a smooth curve, provided c /∈ C.

(a) Suppose c is inside C. Take an initial point w on C and choose one of the
two values for f −1

c (w). Allowing f −1
c (z) to vary continuously as z moves

around C, the point f −1
c (z) traces out a smooth curve. When z returns to

w, however, f −1
c (w) takes its second value. As z traverses C again, f −1

c (z)

continues on its smooth path, which closes as z returns to w the second
time. Since c /∈ C, we have 0 /∈ f −1

c (C), so f ′
c(z) �= 0 on f −1

c (C). Thus



Quadratic functions—the Mandelbrot set 225

fc is locally a smooth bijective transformation near points on f −1
c (C). In

particular z ∈ f −1
c (C) cannot be a point of self-intersection of f −1

c (C),
otherwise fc(z) would be at a self-intersection of C, so f −1(C) is a loop.

Since fc is a continuous function that maps the loop f −1
c (C) and no

other points onto the loop C, the polynomial fc must map the interior and
exterior of f −1

c (C) into the interior and exterior of C respectively. Hence
f −1

c maps the interior of C to the interior of f −1
c (C).

(b) This is proved in a similar way to (a), noting that if C0 is a smooth piece
of curve through c, then f −1

c (C0) consists of two smooth pieces of curve
through 0 which cross at right angles, providing the self-intersection of the
figure of eight.

(c) This is similar to (a), noting that this time, f −1
c (z) can only pick up one

of the two values as z moves around C, so we get two loops. �

We now prove the ‘fundamental theorem of the Mandelbrot set’ which gives
an alternative characterization in terms of iterates of fc.

Theorem 14.14

M = {c ∈ � : {f k
c (0)}k�1 is bounded} (14.5)

= {c ∈ � : f k
c (0) �→ ∞ as k → ∞}. (14.6)

Proof. By Lemma 14.1 it is clear that f k
c (0) �→ ∞ if and only if {f k

c (0)} is
bounded, so (14.5) and (14.6) are equal.

(a) We first show that if {f k
c (0)} is bounded then J (fc) is connected. Let

C be a large circle in � such that all the points {f k
c (0)} lie inside C,

such that f −1
c (C) is interior to C and such that points outside C iterate

to ∞ under f k
c . Since c = fc(0) is inside C, Lemma 14.13(a) gives that

f −1
c (C) is a loop contained in the interior of C. Also, fc(c) = f 2

c (0) is
inside C and f −1

c maps the exterior of C onto the exterior of f −1
c (C), so

c is inside f −1
c (C). Applying Lemma 14.13(a) again, f −2

c (C) is a loop
contained in the interior of f −1

c (C). Proceeding in this way, we see that
{f −k

c (C)} consists of a sequence of loops, each containing the next in its
interior (figure 14.3(a)). Let K denote the closed set of points that are on
or inside the loops f −k

c (C) for all k. If z ∈ �\K some iterate f k
c (z) lies

outside C and so f k
c (z) → ∞. Thus

A(∞) = {z : f k
c (z) → ∞ as k → ∞} = �\K

so K is the filled in Julia set of fc. By Lemma 14.11 J (fc) is the boundary
of �\K which is, of course, the same as the boundary of K . But K is the
intersection of a decreasing sequence of closed simply connected sets (i.e.
sets that are connected and have connected complement), so, by a simple
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c

C
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−1(C )
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−2(C )
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−2(C )

0
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−p(C )

0

Figure 14.3 Inverse iterates of a circle c under fc, illustrating the two parts of the proof
of Theorem 14.14: (a) c = −0.3 + 0.3i; (b) c = −0.9 + 0.5i
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topological argument, K is simply connected and therefore has connected
boundary. Thus J (fc) is connected.

(b) The proof that J (fc) is not connected if {f k
c (0)} is unbounded is fairly

similar. Let C be a large circle such that f −1
c (C) is inside C, such that

all points outside C iterate to ∞, and such that for some p, the point
f

p−1
c (c) = f

p
c (0) ∈ C with f k

c (0) inside or outside C according as to
whether k is less than or greater than p. Just as in the first part of the
proof, we construct a series of loops {f −k

c (C)}, each containing the next
in its interior (figure 14.3(b)). However, the argument breaks down when
we get to the loop f

1−p
c (C), since c ∈ f

1−p
c (C) and Lemma 14.13(a) does

not apply. By Lemma 14.13(b) we get that E ≡ f −p(C) is a figure of eight
inside the loop f

1−p
c (C), with fc mapping the interior of each half of E

onto the interior of f
1−p
c (C). The Julia set J (fc) must lie in the interior

of the loops of E, since other points iterate to infinity. Since J (fc) is
invariant under f −1

c , parts of it must be contained in each of the loops of
E. Thus this figure of eight E disconnects J (fc). In fact, if we now apply
Lemma 14.13(c) in the same way, it is easy to see that J (fc) is totally
disconnected. �

The reason for considering iterates of the origin in (14.5) and (14.6) is that the
origin is the critical point of fc for each c, i.e. the point for which f ′

c(z) = 0. The
critical points are the points where fc fails to be a local bijection—a property
that was crucial in distinguishing the two cases in the proof of Theorem 14.14
and which is crucial in analysing the dynamics of any polynomial or meromor-
phic function.

The equivalent definition of M provided by (14.5) is the basis of computer
pictures of the Mandelbrot set. Choose numbers r > 2 and k0 of the order of 100,
say. For each c compute successive terms of the sequence {f k

c (0)} until either
|f k

c (0)| � r , in which case c is deemed to be outside M , noting Exercise 14.12,
or k = k0, in which case we take c ∈ M . Repeating this process for values of c

across a region enables a picture of M to be drawn. Often colours are assigned
to the complement of M according to the first integer k such that |f k

c (0)| � r .
Pictures of the Mandelbrot set (see figure 14.2) suggest that it has a highly

complicated form. It has certain obvious features: a main cardioid to which a
series of prominent circular ‘buds’ are attached. Each of these buds is surrounded
by further buds, and so on. However, this is not all. In addition, fine, branched
‘hairs’ grow outwards from the buds, and these hairs carry miniature copies of
the entire Mandelbrot set along their length. The Mandelbrot set is connected,
and its boundary has Hausdorff dimension 2, a reflection on its intricacy.

14.3 Julia sets of quadratic functions

In this section we will see a little of how the structure of the Julia set J (fc)

changes as the parameter c varies across the complex plane. In particular, the
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significance of the various parts of the Mandelbrot set will start to become
apparent.

The attractive periodic points of fc are crucial to the form of J (fc). It may
be shown (see Exercise 14.17) that if w �= ∞ is an attractive periodic point of a
polynomial f then there is a critical point z (a point with f ′(z) = 0) such that
f k(z) is attracted to the periodic orbit containing w. Since the only critical point
of fc is 0, fc can have at most one attractive periodic orbit. Moreover, if c /∈ M

then, by Theorem 14.14, f k
c (0) → ∞, so fc can have no attractive periodic orbit.

It is conjectured that the set of c for which fc has an attractive periodic orbit
fills the interior of M .

It is natural to categorize fc by the period p of the (finite) attractive orbit, if
any; the values of c corresponding to different p may be identified as different
regions of the Mandelbrot set M .

To begin with, suppose c lies outside M , so fc has no attractive periodic points.
By definition, J (fc) is not connected. In fact, J (fc) must be totally disconnected
and expressible as the disjoint union J = S1(J ) ∪ S2(J ), where S1 and S2 are
the two branches of f −1

c on J . This means that J is the attractor of the IFS
{S1, S2}, see (9.2). Basically, this follows from the second half of the proof of
Theorem 14.14—we get that fc maps the interior of each loop of a figure of eight
E onto a region D containing E. The mappings S1 and S2 may be taken as the
restrictions of f −1

c to the interior of each loop. Since S1(J ) and S2(J ) are interior
to the two halves of E, they are disjoint, so J must be totally disconnected; see
remarks after (9.7).

We look at this situation in more detail when c is large enough to allow some
simplifications to be made.

Theorem 14.15

Suppose |c| > 1
4 (5 + 2

√
6) = 2.475 . . . . Then J (fc) is totally disconnected, and

is the attractor (in the sense of (9.2)) of the contractions given by the two branches
of f −1

c (z) = ±(z − c)1/2 for z near J. When |c| is large

dimBJ (fc) = dimHJ (fc)  2 log 2/ log 4|c|.

Proof. Let C be the circle |z| = |c| and D its interior |z| < |c|. Then

f −1
c (C) = {(c eiθ − c)1/2 : 0 � θ � 4π}

which is a figure of eight with self-intersection point at 0, with the loops on either
side of a straight line through the origin (see Lemma 14.13 and figure 14.4).
Since |c| > 2 we have f −1

c (C) ⊂ D since if |z| > |c| then |fc(z)| � |z2| − |c| �
|c|2 − |c| > |c|. The interior of each of the loops of f −1

c (C) is mapped by fc in a
bijective manner onto D. If we define S1, S2 : D → D as the branches of f −1

c (z)

inside each loop, then S1(D) and S2(D) are the interiors of the two loops.
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S2(V )

S1(V )
f −1(C )

0

V
C

D

Figure 14.4 Proof of Theorem 14.15

Let V be the disc {z : |z| < |2c|1/2}. We have chosen the radius of V so that
V just contains f −1

c (C), so S1(D), S2(D) ⊂ V ⊂ D. Hence S1(V ), S2(V ) ⊂ V

with S1(V ) and S2(V ) disjoint. We have, for i = 1, 2,

|Si(z1) − Si(z2)| = |(z1 − c)1/2 − (z2 − c)1/2| = |z1 − z2|
|(z1 − c)1/2 + (z2 − c)1/2| .

Hence, if z1, z2 ∈ V , taking least and greatest values,

1
2 (|c| + |2c|1/2)−1/2 � |Si(z1) − Si(z2)|

|z1 − z2| � 1
2 (|c| − |2c|1/2)−1/2. (14.7)

The upper bound is less than 1 if |c| > 1
4 (5 + 2

√
6), in which case S1 and S2

are contractions on the disc V . By Theorem 9.1 there is a unique non-empty
compact attractor F ⊂ V satisfying

S1(F ) ∪ S2(F ) = F. (14.8)

Since S1(V ) and S2(V ) are disjoint, so are S1(F ) and S2(F ), implying that F is
totally disconnected.

Of course, F is none other than the Julia set J = J (fc). One way to see this is
to note that, since V contains at least one point z of J (for example, a repelling
fixed point of fc), we have J = closure (

⋃∞
k=1 f −k

c (z)) ⊂ V , since f −k
c (V ) ⊂ V .

Using further results from Summary 14.12, J is a non-empty compact subset of
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V satisfying J = f −1
c (J ) or, equivalently, J = S1(J ) ∪ S2(J ). Thus J = F , the

unique non-empty compact set satisfying (14.8).
Finally, we estimate the dimension of J (fc) = F . By Propositions 9.6 and

9.7 and (14.7), lower and upper bounds for dimHJ (fc) are provided by the
solutions of 2

(
1
2 (|c| ± |2c|1/2)−1/2

)s = 1, i.e. by s = 2 log 2/ log 4(|c| ± |2c|1/2),
which gives the stated asymptotic estimate. �

We next turn to the case where c is small. We know that if c = 0 then J (fc) is
the unit circle. If c is small and z is small enough, then f k

c (z) → w as k → ∞,
where w is the attractive fixed point 1

2

(
1 − √

1 − 4c
)

close to 0. On the other
hand, f k

c (z) → ∞ if z is large. It is not unreasonable to expect the circle to
‘distort’ into a simple closed curve (i.e. having no points of self-intersection)
separating these two types of behaviour as c moves away from 0.

In fact, this is the case provided that fc retains an attractive fixed point, i.e.
if |f ′

c(z)| < 1 at one of the roots of fc(z) = z. Simple algebra shows that this
happens if c lies inside the cardioid z = 1

2 eiθ
(
1 − 1

2 eiθ
)

(0 � θ � 2π)—this is
the main cardioid of the Mandelbrot set, see Exercise 14.15.

For convenience, we treat the case of |c| < 1
4 , but the proof is easily modified

if fc has any attractive fixed point.

Theorem 14.16

If |c| < 1
4 then J (fc) is a simple closed curve.

Proof. Let C0 be the curve |z| = 1
2 , which encloses both c and the attractive fixed

point w of fc. Then by direct calculation the inverse image f −1
c (C0) is a loop

C1 surrounding C0. We may fill the annular region A1 between C0 and C1 by a
continuum of curves, which we call ‘trajectories’, which leave C0 and reach C1

perpendicularly; see figure 14.5(a). For each θ let ψ1(θ) be the point on C1 at
the end of the trajectory leaving C0 at ψ0(θ) = 1

2 eiθ . The inverse image f −1
c (A1)

is an annular region A2 with outer boundary the loop C2 = f −1
c (C1) and inner

boundary C1, with fc mapping A2 onto A1 in a two-to-one manner. The inverse
image of the trajectories joining C0 to C1 provides a family of trajectories joining
C1 to C2. Let ψ2(θ) be the point on C2 at the end of the trajectory leaving C1 at
ψ1(θ). We continue in this way to get a sequence of loops Ck, each surrounding
its predecessor, and families of trajectories joining the points ψk(θ) on Ck to
ψk+1(θ) on Ck+1 for each k.

As k → ∞, the curves Ck approach the boundary of the basin of attraction of
w; by Lemma 14.11 this boundary is just the Julia set J (fc). Since |f ′

c(z)| > γ

for some γ > 1 outside C1, it follows that f −1
c is contracting near J . Thus the

length of the trajectory joining ψk(θ) to ψk+1(θ) converges to 0 at a geometric rate
as k → ∞. Consequently ψk(θ) converges uniformly to a continuous function
ψ(θ) as k → ∞, and J is the closed curve given by ψ(θ) (0 � θ � 2π).

It remains to show that ψ represents a simple curve. Suppose that ψ(θ1) =
ψ(θ2). Let D be the region bounded by C0 and the two trajectories joining
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y0(q1)

(a)

(b)

Figure 14.5 Proof of Theorem 14.16

ψ0(θ1) and ψ0(θ2) to this common point. The boundary of D remains bounded
under iterates of fc, so by the maximum modulus theorem (that the modulus of
an analytic function takes its maximum on the boundary point of a region) D

remains bounded under iteration of f . Thus D is a subset of the filled-in Julia
set, so the interior of D cannot contain any points of J . Thus the situation of
figure 14.5(b) cannot occur, so that ψ(θ) = ψ(θ1) = ψ(θ2) for all θ between θ1

and θ2. It follows that ψ(θ) has no point of self-intersection. �

By an extension of this argument, if c is in the main cardioid of M , then J (fc)

is a simple closed curve; such curves are sometimes referred to as quasi-circles.
Of course, J (fc) will be a fractal curve if c > 0. It may be shown that, for small
c, its dimension is given by

s = dimBJ (fc) = dimHJ (fc) = 1 + |c|2
4 log 2

+ terms in |c|3 and higher powers.

(14.9)
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Moreover, 0 < Hs (J ) < ∞, with dimBJ (fc) = dimHJ (fc) given by a real ana-
lytic function of c.

The next case to consider is when fc has an attractive periodic orbit of period
2. By a straightforward calculation this occurs if |c + 1| < 1

4 ; that is, if z lies in
the prominent circular disc of M abutting the cardioid, see Exercise 14.16.

Since f 2
c is a polynomial of degree 4, fc has two fixed points and two period-

2 points. Let w1 and w2 be the points of the attractive period-2 orbit. It may
be shown, as in the proof of Theorem 14.16, that the basin of attraction for wi

(i.e. {z : f 2k
c (z) → wi as k → ∞}) includes a region bounded by a simple closed

curve Ci surrounding wi , for i = 1, 2. By Lemma 14.11 and Proposition 14.4,
Ci ⊂ J (f 2

c ) = J (fc). The curves Ci are mapped onto themselves in a two-to-one
fashion by f 2

c , which implies that there is a fixed point of f 2
c on each Ci . The

period-2 points are strictly inside the Ci , so there is a fixed point of fc on each
Ci ; since the Ci are mapped onto each other by fc, the only possibility is for C1

and C2 to touch at one of the fixed points of fc. The inverse function f −1
c is two-

valued on C1. One of the inverse images is C2 (which encloses w2). However,
the other branch of f −1

c (C1) is a further simple closed curve enclosing the second
value of f −1

c (w1). We may continue to take inverse images in this way to find
that J (fc) is made up of infinitely many simple closed curves which enclose the
pre-images of w1 and w2 of all orders and touch each other in pairs at ‘pinch
points’—see figure 14.7(c). Thus we get fractal Julia sets that are topologically
much more complicated than in the previous cases.

It is possible to use such ideas to analyse the case when fc has an attractive
periodic orbit of period p > 2. The immediate neighbourhoods of the period-p
points that are drawn into the attractive orbits are bounded by simple closed
curves which touch each other at a common point. The Julia set consists of these
fractal curves together with all their pre-images under f k.

A variety of examples are shown in figures 14.6 and 14.7. The ‘buds’ on the
Mandelbrot set corresponding to attractive orbits of period p are indicated in
figure 14.8.

The Julia sets J (fc) that are most intricate, and are mathematically hardest to
analyse are at the ‘exceptional’ values of c on the boundary of M . If c is on the
boundary of the cardioid or a bud of M , then fc has an indifferent periodic point
(where |(f p)′(w)| = 1). If c is at a ‘neck’ where a bud touches a parent region,
then J (fc) includes a series of ‘tendrils’ joining its boundary to the indifferent
periodic points. For c elsewhere on the boundary of the cardioid the Julia set
may contain ‘Siegel discs’. The Julia set J (fc) consists of infinitely many curves
bounding open regions, with fc mapping each region into a ‘larger’ one, until
the region containing the fixed point is reached. Inside this Siegel disc, fc rotates
points on invariant loops around the fixed point.

There are still further possibilities. If c is on one of the ‘hairs’ of M then J (fc)

may be a dendrite, i.e. of tree-like form. This occurs if an iterate of the critical
point 0 is periodic, i.e. if f k

c (0) = f
k+q
c (0) for positive integers k and q.

We have mentioned that there are miniature copies of M located in the hairs
of M . If c belongs to one of these, then J (fc) will be of dendrite form, but with
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Figure 14.6 Julia sets J (fc) for c at various points in the Mandelbrot set. The Julia sets
are displayed in more detail in figure 14.7

small copies of the Julia set from the corresponding value of c in the main part
of M inserted at the ‘vertices’ of the dendrite.

A good way to explore the structure of Julia sets and, indeed, the Julia sets
of other functions, is using a computer. There are two usual methods of drawing
Julia sets, based on properties that we have discussed.

For the first method, we choose a repelling periodic point z. For suitable k, we
may compute the set of inverse images Jk = f −k(z). By Corollary 14.8(b) these
2k points are in J , and should fill J as k becomes large. A difficulty with picturing
J in this way is that the points of Jk need not be uniformly distributed across
J —they may tend to cluster in some parts of J and be sparse in other parts.
Consequently, even with k quite large, parts of J can be missed altogether. (This
tends to happen for fc with c close to the boundary of M .) There are various
ways of getting around this difficulty. For instance, with J0 = {z}, instead of
taking Jk = f −1(Jk−1) for each k, we can choose a subset Jk of f −1(Jk−1) by
ignoring all but one of the points in every ‘small’ cluster. This ensures that we
are working with a reasonably well distributed set of points of J at each step of
the iteration, and also reduces the calculation involved.

A second method is to test individual points to see if they are close to the
Julia set. Suppose, for example, that f has two or more attractive fixed points
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(a) (b)

(c) (d)

(e) (f )

(g) (h)

Figure 14.7 A selection of Julia sets of the quadratic function fc(z) = z2 + c. (a) c =
−0.1 + 0.1i; fc has an attractive fixed point, and J is a quasi-circle. (b) c = −0.5 + 0.5i;
fc has an attractive fixed point, and J is a quasi-circle. (c) c = −1 + 0.05i; fc has an
attractive period-2 orbit. (d) c = −0.2 + 0.75i, fc has an attractive period-3 orbit. (e)
c = 0.25 + 0.52i; fc has an attractive period-4 orbit. (f ) c = −0.5 + 0.55i; fc has an
attractive period-5 orbit. (g) c = 0.66i; fc has no attractive orbits and J is totally discon-
nected. (h) c = −i, f 2

c (0) is periodic and J is a dendrite
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No attractive orbits

1
quasi-circles2

3

3

5

5

4

4

4

Figure 14.8 The periods of the attractive orbits of fc for c in various parts of the Man-
delbrot set M . If c is in the main cardioid, fc has an attractive fixed point, and the Julia
set J (fc) is a quasi-circle. For c in the buds of M , fc has an attractive orbit with the
period p shown, with p regions inside the Julia set J (fc) meeting at each pinch point.
Outside M , the function fc has no attractive orbits and J (fc) is totally disconnected

(now including ∞ if f is a polynomial). If z is a point of J (f ) then there
are points arbitrarily close to z in the attractive basin of each attractive point
by Lemma 14.11. To find J we divide a region of � into a fine mesh. We
examine the ultimate destination under iteration by f of the four corners of each
mesh square. If two of the corners are attracted to different points, we deem the
mesh square to contain a point of J . Often, the other squares, the ‘Fatou set’,
are coloured according to which point the vertices of the square is attracted to,
perhaps with different shading according to how close the kth iterates are to the
attractive point for some fixed k.

Both of these methods can be awkward to use in certain cases. A knowledge
of the mathematical theory is likely to be beneficial in overcoming the difficulties
that can occur.

14.4 Characterization of quasi-circles by dimension

We saw in the previous section that, if c is in the main cardioid of the Mandelbrot
set, then the Julia set of fc(z) = z2 + c is a simple closed curve. By similar
arguments, the Julia set of f (z) = zn + c is a simple closed curve for any integer
n � 2 provided that c is small enough, and, indeed, the same is true for f (z) =
z2 + g(z) for a wide variety of analytic functions g that are ‘sufficiently small’
near the origin. Thus all these functions have Julia sets that are topologically the
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same—they are all homeomorphic to a circle. The surprising thing is that they
are essentially the same as fractals, in other words are bi-Lipschitz equivalent,
if and only if they have the same Hausdorff dimension. Of course, if two sets
have different dimensions they cannot be bi-Lipschitz equivalent (Corollary 2.4).
However, in this particular situation the converse is also true.

We term a set F a quasi-self-similar circle or quasi-circle if the following
conditions are satisfied:

(i) F is homeomorphic to a circle (i.e. F is a simple closed curve).
(ii) 0 < Hs(F ) < ∞ where s = dimHF .

(iii) There are constants a, b, r > 0 such that for any subset U of F with
|U | � r there is a mapping ϕ : U → F such that

a|x − y| � |U ||ϕ(x) − ϕ(y)| � b|x − y| (x, y ∈ F). (14.10)

The ‘quasi-self-similar’ condition (iii) says that arbitrarily small parts of F are
‘roughly similar’ to a large part of F .

The following theorem depends on using s-dimensional Hausdorff measure to
measure ‘distance’ round a quasi-circle.

Theorem 14.17

Quasi-circles E and F are bi-Lipschitz equivalent if and only if dimHE = dimHF .

Sketch of proof. If there is a bi-Lipschitz mapping between E and F then
dimHE = dimHF by Corollary 2.4(b).

Suppose that dimHE = dimHF . Let E(x, y) be the ‘arc’ of E between points
x, y ∈ E, taken in the clockwise sense, with a similar notation for arcs of F .
Conditions (ii) and (iii) imply that Hs(E(x, y)) is continuous in x, y ∈ E and is
positive if x �= y. We claim that there are constants c1, c2 > 0 such that

c1 � Hs(E(x, y))

|x − y|s � c2 (14.11)

whenever E(x, y) is the ‘shorter’ arc, i.e. Hs(E(x, y)) � Hs(E(y, x)). Assume
that ε > 0 is sufficiently small. If |x − y| � ε then (14.11) is true by a continuity
argument for suitable constants. If |x − y| < ε there is a mapping ϕ : E(x, y) →
E satisfying (14.10) such that |ϕ(x) − ϕ(y)| � ε. Inequalities (14.10), (2.8) and
(2.9) imply that the ratio (14.11) changes by a bounded amount if x and y are
replaced by ϕ(x) and ϕ(y), so (14.11) holds for suitable c1 and c2 for all x, y ∈ E.

Now choose base points p ∈ E, q ∈ F . Set γ = Hs(E)/Hs(F ) and define
ψ : E → F by taking ψ(x) to be the point of F such that

Hs(E(p, x)) = γHs(F (q, ψ(x)))

(see figure 14.9). Then ψ is a continuous bijection, and also

Hs(E(x, y)) = γHs (F (ψ(x), ψ(y))) (x, y ∈ E).
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E F

E (p, x)

p

x

y

y(x )

q = y(p)

= g Hs(E(p, x ))

Hs(F(q, y(x )))

Figure 14.9 Setting up a bi-Lipschitz mapping ψ between two quasi-circles of Hausdorff
dimension s

Using (14.11) together with similar inequalities for arcs of F , this gives

c3 � |ψ(x) − ψ(y)|
|x − y| � c4

if x �= y, so that ψ is bi-Lipschitz, as required. �

Corollary 14.18

Suppose that the Julia sets J1 and J2 of the polynomials f1 and f2 are simple
closed curves. Suppose that fi is strictly repelling on Ji (i.e. |f ′

i (z)| > 1 for i =
1, 2). Then J1 and J2 are bi-Lipschitz equivalent if and only if dimHJ1 = dimHJ2.

Proof. It may be shown that if a polynomial f is strictly repelling on its Julia set
J then 0 < Hs(J ) < ∞, where s = dimHJ . Moreover, given a subset U of J , we
may choose k so that f k(U) has diameter comparable with that of J itself, and
(14.10) holds taking ϕ = f k (this reflects the quasi-self-similarity of J ). Thus J1

and J2 are quasi-circles to which Theorem 14.17 may be applied. �

14.5 Newton’s method for solving polynomial equations

Anyone who has done any numerical analysis will have found roots of equations
using Newton’s method. Let p(x) be a function with continuous derivative.
If f (x) = x − p(x)/p′(x) then the iterates f k(x) converge to a solution of
p(x) = 0 provided that p′(x) �= 0 at the solution and that the initial value of x is
chosen appropriately. Cayley suggested investigating the method in the complex
plane, and in particular which initial points of � iterate to which zero of p.
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Let p : � → � be a polynomial with complex coefficients, and form the ratio-
nal function f : � ∪ {∞} → � ∪ {∞}

f (z) = z − p(z)/p′(z). (14.12)

Then the fixed points of f , given by p(z)/p′(z) = 0, are the zeros of p together
with ∞. Differentiating, we find that

f ′(z) = p(z)p′′(z)/p′(z)2 (14.13)

so a zero z of p is a superattractive fixed point of f , i.e. f ′(z) = 0, provided
that p′(z) �= 0. If |z| is large, f (z) ∼ z(1 − 1/n), where n is the degree of p, so
∞ is a repelling point of f . As usual, we write

A(w) = {z : f k(z) → w} (14.14)

for the basin of attraction of the zero w, i.e. the set of initial points which
converge to w under Newton iteration. Since the zeros are attractive, the basin
A(w) includes an open region containing w. We shall see, however, that A(w)

can be remarkably complicated further away from w.
The theory of Julia sets developed for polynomials in Section 14.1 is almost

the same for a rational function, provided that the point ∞ is included in the
natural way. The main differences are that if f is a rational function J (f ) need
not be bounded (though it must be closed) and it is possible for J (f ) to have
interior points, in which case J (f ) = � ∪ {∞}. However, Lemma 14.11 remains
true, so that J (f ) is the boundary of A(w) for each attractive fixed point w. Thus
J (f ) is likely to be important when analysing the domains of attraction of the
roots in Newton’s method.

A straightforward case is the quadratic polynomial

p(z) = z2 − c (c �= 0)

with zeros ± √
c (as before, more general quadratic polynomials can be reduced

to this form by a conjugacy). Newton’s formula (14.12) becomes

f (z) = (z2 + c)/2z.

Thus
f (z) ± √

c = (z ± √
c)2/2z

so
f (z) + √

c

f (z) − √
c

=
(

z + √
c

z − √
c

)2

. (14.15)

It follows immediately that if |z + √
c|/|z − √

c| < 1 then |f k(z) + √
c|/

|f k(z) − √
c| → 0 and also f k(z) → −√

c as k → ∞, and similarly if
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|z + √
c|/|z − √

c| > 1 then f k(z) → √
c. The Julia set J (f ) is the line |z + √

c|
= |z − √

c| (the perpendicular bisector of −√
c and

√
c) and A(−√

c) and
A(

√
c) are the half-planes on either side. (Letting h(z) = (z + √

c)/(z − √
c)

in (14.15) gives f (z) = h−1(h(z))2, so that f is conjugate to, and therefore has
similar dynamics to, the mapping g(z) = z2.) In this case the situation is very
regular—any initial point is iterated by f to the nearest zero of p.

The quadratic example might lead us to hope that the domains of attraction
under Newton iteration of the zeros of any polynomial are reasonably regular.
However, for higher-order polynomials the situation is fundamentally different.
Lemma 14.11 (which holds for rational functions, including Newton functions
of polynomials) provides a hint that something very strange happens. If p has
zeros z1, . . . , zn with p′(zi) �= 0, Lemma 14.11 tells us that the Julia set of f is
the boundary of the domain of the attraction of every zero:

J (f ) = ∂A(z1) = · · · = ∂A(zn).

A point on the boundary of any one of the domains of attraction must be on the
boundary of all of them; since J (f ) is uncountable, there are a great many such
multiple boundary points. An attempt to visualize three or more disjoint sets with
this property will convince the reader that they must be very complicated indeed.

Let us look at a specific example. The cubic polynomial

p(z) = z3 − 1

has zeros 1, ei2π/3, ei4π/3, and Newton function

f (z) = 2z3 + 1

3z2
.

The transformation ρ(z) = z ei2π/3 is a rotation of 120◦ about the origin. It is
easily checked that f (ρ(z)) = ρ(f (z)), in other words ρ is a conjugacy of f

to itself. It follows that a rotation of 120◦ about the origin maps A(w) onto
A(w ei2π/3) for each of the three zeros w, so that the Julia set has threefold sym-
metry about the origin. (Of course, these symmetries would be expected from
the symmetric disposition of the three zeros of p.) If z is real then f k(z) remains
real for all k, and, by elementary arguments, f k(z) converges to 1 except for
countably many real z. Thus A(1) contains the real axis except for a countable
number of points, and, by symmetry, A(ei2π/3) and A(ei4π/3) contain the lines
through the origin making 120◦ and 240◦ to the real axis, again except for count-
ably many points. We also know that each A(w) contains an open region round
w, that any point on the boundary of one of the A(w) is on the boundary of
all three, and that there are uncountably many such ‘triple points’. Most peo-
ple require the insight of a computer drawing to resolve this almost paradoxical
situation, see figure 14.10.

The domain A(1) is shown in black in figure 14.10(b); note that the basins
of attraction of the other two zeros, obtained by rotation of 120◦ and 240◦, key
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ei2p /3

ei4p /3

1

(a)

(b)

Figure 14.10 Newton’s method for p(z) = z3 − 1. The Julia set for the Newton function
f (z) = (2z3 + 1)/3z2 is shown in (a), and the domain of attraction of the zero z = 1 is
shown in black in (b)
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into the picture in a natural way. The Julia set shown in figure 14.10(a) is the
boundary of the three basins and is made up of three ‘chains’ leading away from
the origin. These fractal chains have a fine structure—arbitrarily close to each
point of J (f ) is a ‘slightly distorted’ copy of the picture at the origin with six
components of the A(w) meeting at a point. This reflects Corollary 14.8(b), again
valid for rational functions: J (f ) is the closure of

⋃∞
k=1 f −k(0), so that if z is

in J (f ) then there is a point w arbitrarily close to z, and an integer k, such
that f k(w) = 0. But f k is locally a conformal mapping, so that the local inverse
(f k)−1 maps a neighbourhood of 0 to an ‘almost similar’ neighbourhood of w.
The Julia set J (f ) exhibits quasi-self-similarity.

This, of course, is just the beginning. The domains of attraction of the zeros
of other polynomials of degree 3 or more and, indeed, other analytic functions,
may be investigated using a combination of theory and computer graphics. This
leads to a wealth of sets of a highly intricate form which raise many intriguing
mathematical questions.

In this chapter we have touched on what is a complicated and fascinating area
of mathematics in which fractals play a fundamental role. It is an area in which
computer experiments often lead the way with mathematical theory trying to keep
up. The variations are endless—we can investigate the Julia set of higher-order
polynomials and of other analytic functions such as exp z, as well as invariant
sets of non-analytic transformations of the plane. With the advent of high quality
colour computer graphics, these ideas have become the basis of much computer
art. A single function of simple form can lead to highly intricate yet regular
pictures—often very beautiful, sometimes almost weird.

14.6 Notes and references

Much of the basic theory of iteration of complex functions was developed by Julia
(1918) and Fatou (1919). For many years the subject lay almost dormant, until
computer graphics was sufficiently advanced to reveal the intricate form of Julia
sets. Recently, there has been an extraordinary interest in the subject, and drawing
Julia sets and the Mandelbrot set on computers has become a popular activity,
with the incredibly beautiful and intricate pictures that are easily produced.

For an account of basic complex variable theory, see Ahlfors (1979). The
books by Peitgen and Richter (1986), Becker and Dörfler (1989) and Peitgen,
Jürgens and Saupe (1992) provide well-illustrated accounts of complex iteration.
Other recommended accounts of complex dynamics include Blanchard (1984),
Saupe (1987), Devaney (1989), Beardon (1991), Carleson and Gamelin (1993),
McMullen (1994) and Milnor (1999). Mandelbrot (1980) introduced the set bear-
ing his name; the fundamental Theorem 14.14 is given by Brolin (1965). A col-
lection of papers on topics related to the Mandelbrot set was edited by Tan (2000).

The formula (14.9) for the dimension of J (fc) is due to Ruelle (1982), and
extensions are given by Collet, Dobbertin and Moussa (1992) and Abenda,
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Moussa and Osbaldestin (1999). For details of the characterization of quasi-
circles by dimension, see Falconer and Marsh (1989). Fractals associated with
Newton’s method are discussed in Peitgen and Richter (1986), Peitgen, Saupe
and von Haeseler (1984) and Curry, Garnett and Sullivan (1983).

Exercises

Throughout these exercises we write fc(z) = z2 + c.

14.1 Show that every perfect set E (i.e. every set that is closed and has no isolated
points) is uncountable. (Hint: Construct a ‘Cantor-like’ set inside E.) Deduce that
J (fc) is uncountable for all c.

14.2 Describe the Julia set of f (z) = z2 + 4z + 2. (Hint: Write z1 = z + 2.)

14.3 Let f (z) = z2 + 2iz + b. By considering the mapping h(z) = z + i, show that the
Julia set of f is connected if and only if b + 1 + i ∈ M .

14.4 Let |c| � 1
4 . Show that if |z| � 1

2 then |fc(z)| � 1
2 . Deduce that B(0, 1

4 ) ⊂ K(fc).
Also show that if |z| � 2 then |fc(z)| � 3

2 |z|. Deduce that K(fc) ⊂ B(0, 2). What
does this tell us about the location of J (fc)?

14.5 Let f (z) = z2 − 2. Find a repelling fixed point of f . Deduce from Corollary 14.8
that J (f ) is a subset of the real interval [−2, 2]. Use Theorem 14.14 to deduce
that J (f ) is connected, and hence that it is the interval [−2, 2].

14.6 Show that the Julia set J (fc) is symmetric about the origin (that is z ∈ J (fc) if
and only if −z ∈ J (fc)).

14.7 Show that if c is real with c > 1
4 then z /∈ J (fc) for all real numbers z. Deduce,

using Exercise 14.6, that if c > 1
4 then J (fc) is not connected, and so c /∈ M .

14.8 Show that if c is a non-real number with |c| < 1
4 and w = 1

2 (1 + (1 − 4c)−1/2) is
the repelling fixed point of fc(z) = z2 + c then f ′

c(w) is not real. Deduce that the
simple closed curve that forms the Julia set J (fc) cannot have a tangent at w.
Hence deduce that the curve contains no differentiable arcs.

14.9 Show that if |c| � 1
4 and |z| � 1

2 then |fc(z)| � 1
2 . Deduce that B(0, 1

4 ) ⊂ M .

14.10 Show that if |c + 1| � 1
20 and |z| � 1

10 then |fc(fc(z))| � 1
10 . Deduce that

B(−1, 1
20 ) ⊂ M .

14.11 Show that if ε > 0 and if |z| � max(2 + ε, |c|) then |fc(z)| � |z|(1 + ε). Deduce
that if |c| > 2 then c /∈ M .

14.12 Use Exercise 14.11 to show that M = {c : |f k
c (0)| > 2 for some k}.

14.13 Show that if |c| < 1 then the Julia set of f (z) = z3 + 3z is a simple closed curve.

14.14 Obtain an estimate for the dimension of the Julia set of f (z) = z3 + c when |c|
is large.

14.15 Show that fc has an attractive fixed point precisely when c lies inside the main
cardioid of the Mandelbrot set given by z = 1

2 eiθ
(
1 − 1

2 eiθ
)

for 0 � θ � 2π .

14.16 Show that f 2
c (z) − z = (z2 − z + c)(z2 + z + c + 1). Deduce that f has an attrac-

tive period-2 point just when |c + 1| < 1
4 (the large disc in M).

14.17 Show that if w is an attractive fixed point of fc then the attractive basin A(w) must
contain the point c. (Hint: Show that otherwise there is an open neighbourhood
of w on which the inverse iterates f −k of f can be uniquely defined and form
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a normal family, which is impossible since w is a repelling fixed point of f −1.)
Deduce that fc can have at most one attractive fixed point. Generalize this to show
that if w is an attractive fixed point of any polynomial f then A(w) contains a
point f (z) for some z with f ′(z) = 0.

14.18 Let f be a quadratic polynomial. Show by applying Exercise 14.17 to f p for
positive integers p, that f can have at most one attractive periodic orbit.

14.19 Write a computer program to draw Julia sets of functions (see the end of
Section 14.3). Try it out first on quadratic functions, then experiment with other
polynomials and rational functions, and then other functions such as exp z.

14.20 Use a computer to investigate the domains of attraction for the zeros of some other
polynomials under Newton’s method iteration; for example for p(z) = z4 − 1 or
p(z) = z3 − z.



Chapter 15 Random fractals

Many of the fractal constructions that have been encountered in this book have
random analogues. For example, in the von Koch curve construction, each time
we replace the middle third of an interval by the other two sides of an equilateral
triangle, we might toss a coin to determine whether to position the new part
‘above’ or ‘below’ the removed segment. After a few steps, we get a rather
irregular looking curve which nevertheless retains certain of the characteristics
of the von Koch curve; see figure 15.1.

The middle third Cantor set construction may be randomized in several ways,
as in figure 15.2. Each time we divide a segment into three parts we could, instead
of always removing the middle segment, throw a die to decide which parts to
remove. Alternatively, we might choose the interval lengths at each stage of the
construction at random, so that at the kth stage we are left with 2k intervals of
differing lengths, resulting in a rather irregular looking fractal.

Whilst such ‘random fractals’ do not have the self-similarity of their non-
random counterparts, their non-uniform appearance is often rather closer to nat-
ural phenomena such as coastlines, topographical surfaces or cloud boundaries.
Indeed, random fractal constructions are the basis of many impressive computer-
drawn landscapes or skyscapes.

Most fractals discussed in this book involve a sequence of approximations
Ek, each obtained from its predecessor by modification in increasingly fine
detail, with a fractal F as a limiting set. A random fractal worthy of the
name should display randomness at all scales, so it is appropriate to introduce
a random element at each stage of the construction. By relating the size of
the random variations to the scale, we can arrange for the fractal to be statis-
tically self-similar in the sense that enlargements of small parts have the same
statistical distribution as the whole set. This compares with (non-random) self-
similar sets (see Chapter 9) where enlargements of small parts are identical to
the whole.

In order to describe fractal constructions involving infinitely many random
steps with precision, we must use the language of probability theory, a brief
survey of which is given in Section 1.4.
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E0

F

E1

E2

E3

E4

Figure 15.1 Construction of a ‘random von Koch curve’. At each step a coin is tossed
to determine on which side of the removed segment to place the new pair of segments

0 1
E0
E1
E2
E3
E4

F
(a)

0 1
E0
E1
E2
E3
E4

F
(b)

Figure 15.2 Two random versions of the Cantor set. In (a) each interval is divided into
three equal parts from which some are selected at random. In (b) each interval is replaced
by two subintervals of random lengths
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15.1 A random Cantor set

We give a detailed analysis of a specific statistically self-similar construction.
It resembles that of the middle third Cantor set, except that the lengths of the
intervals at each stage are random. This analysis extends to much more general
random fractals.

Intuitively, we consider a construction F = ⋂∞
k=1 Ek, where [0, 1] = E0 ⊃

E1 ⊃ · · · is a decreasing sequence of closed sets, with Ek a union of 2k disjoint
closed kth level basic intervals. We assume that each kth level interval I contains
two (k + 1)th level intervals IL and IR, abutting the left- and right-hand ends of I

respectively. The lengths of the intervals are random, and we impose statistical
self-similarity by the requirement that the length ratios |IL|/|I | have independent
and identical probability distribution for every basic interval I of the construction,
and similarly for the ratios |IR|/|I |. This ‘random Cantor set’ F is statistically
self-similar, in that the distribution of the set F ∩ I is the same as that of F , but
scaled by a factor |I |, for each I .

We describe this random construction in probabilistic terms. Let a, b be con-
stants with 0 < a � b < 1

2 . We let � denote the class of all decreasing sequences
of sets [0, 1] = E0 ⊃ E1 ⊃ E2 ⊃ · · · satisfying the following conditions. The set
Ek comprises 2k disjoint closed intervals Ii1,...,ik indexed by i1, . . . , ik , where
ij = 1 or 2 (1 � j � k); see figure 15.3. The interval Ii1,...,ik of Ek contains the
two intervals Ii1,...,ik,1 and Ii1,...,ik,2 of Ek+1, with the left-hand ends of Ii1,...,ik

and Ii1,...,ik ,1 and the right-hand ends of Ii1,...,ik and Ii1,...,ik,2 coinciding. We write
Ci1,...,ik = |Ii1,...,ik |/|Ii1,...,ik−1 |, and suppose that a � Ci1,...,ik � b for all i1, . . . , ik.
We thus define the random Cantor set F = ⋂∞

k=1 Ek.

0

I1

I1, 1

I1, 1, 1 I1, 1, 2 I1, 2, 1 I1, 2, 2 I2, 1, 1 I2, 1, 2 I2, 2, 1 I2, 2, 2

I1, 2 I2, 1 I2, 2

I2

1

E4

E3

E2

E1

F

E0

•

•
•

Figure 15.3 Construction of the random Cantor set analysed in Theorem 15.1. The length
ratios |Ii1,...,ik,1|/|Ii1,...,ik | have the same statistical distribution for each i1, . . . , ik , and
similarly for |Ii1,...,ik ,2|/|Ii1,...,ik |
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We take � to be our sample space, and assume that a probability measure P is
defined on a suitably large family F of subsets of �, such that the ratios Ci1,...,ik

are random variables. We impose statistical self-similarity on the construction by
requiring Ci1,...,ik,1 to have the same distribution as C1 = |I1|, and Ci1,...,ik,2 to
have the same distribution as C2 = |I2| for every sequence i1, . . . , ik . We assume
that the Ci1,...,ik are independent random variables, except that for each sequence
i1, . . . , ik we do not require Ci1,...,ik ,1 and Ci1,...,ik,2 to be independent. It may be
shown that dimHF is a random variable which may be expressed in terms of the
Ci1,...,ik .

The following result is a random version of Theorem 9.3.

Theorem 15.1

With probability 1, the random Cantor set F described above has dimHF = s,
where s is the solution of the expectation equation

E(Cs
1 + Cs

2) = 1. (15.1)

*Proof. It is easy to see that E(Cs
1 + Cs

2) is continuous and strictly decreasing in
s, and thus that (15.1) has a unique solution.

By slight abuse of notation, we write I ∈ Ek to mean that the interval I is a kth
level interval Ii1,...,ik of Ek. For such an interval I we write IL and IR for Ii1,...,ik,1

and Ii1,...,ik,2 respectively. We write E(X|Fk) for the conditional expectation of a
random variable X given a knowledge of the Ci1,...,ij for all sequences i1, .., ij
with j � k. (Intuitively, we imagine that E0, . . . , Ek have been constructed, and
we are analysing what happens thereafter.) Let Ii1,...,ik be an interval of Ek. Then
for s > 0

E((|Ii1,...,ik ,1|s + |Ii1,...,ik ,2|s)|Fk) = E(Cs
i1,...,ik,1 + Cs

i1,...,ik ,2)|Ii1,...,ik |s
= E(Cs

1 + Cs
2)|Ii1,...,ik |s

by virtue of the identical distribution. Summing over all the intervals in Ek,

E

(
∑

I∈Ek+1

|I |s
∣∣∣Fk

)

=
∑

I∈Ek

|I |sE(Cs
1 + Cs

2). (15.2)

It follows that the unconditional expectation satisfies

E

(
∑

I∈Ek+1

|I |s
)

= E

(
∑

I∈Ek

|I |s
)

E(Cs
1 + Cs

2). (15.3)

With s the solution of (15.1), equation (15.2) becomes

E

(
∑

I∈Ek+1

|I |s
∣∣∣Fk

)

=
∑

I∈Ek

|I |s . (15.4)
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Readers familiar with probability theory will recognize (15.4) as saying that the
sequence of random variables

Xk =
∑

I∈Ek

|I |s (15.5)

is a martingale with respect to Fk . Moreover, a routine calculation, see Exercise
15.7, shows that it is an L2-bounded martingale, that is there is a number c such
that E(X2

k) � c for all k. The crucial fact for our purposes, which we ask other
readers to take on trust, is that, in this situation, Xk converges with probability
1 as k → ∞ to a random variable X such that E(X) = E(X0) = E(1s) = 1. In
particular 0 � X < ∞ with probability 1, and X = 0 with probability q < 1.
But X = 0 if and only if

∑
I∈Ek∩I1

|I |s and
∑

I∈Ek∩I2
|I |s both converge to 0 as

k → ∞, where I1 and I2 are the intervals of E1, and this happens with probability
q2, by virtue of the self-similarity of the construction. Hence q = q2, so q = 0,
and we conclude that 0 < X < ∞ with probability 1. In particular, this implies
that with probability 1 there are (random) numbers M1, M2 such that

0 < M1 � Xk =
∑

I∈Ek

|I |s � M2 < ∞ (15.6)

for all k. We have |I | � 2−k for all I ∈ Ek, so, Hs
δ(F ) �

∑
I∈Ek

|I |s � M2 if
k � − log δ/ log 2, giving Hs(F ) � M2. Thus dimHF � s with probability 1.

We use the potential theoretic method of Section 4.3 to derive the almost sure
lower bound for dimHF . To do this we introduce a random mass distribution µ on
the random set F . Let s satisfy (15.1). For I ∈ Ek let µ(I) be the random variable

µ(I) = lim
j→∞

{∑
|J |s : J ∈ Ej and J ⊂ I

}
.

As with (15.5) this limit exists, and 0 < µ(I) < ∞ with probability 1. Further-
more, if I ∈ Ek,

E(µ(I)|Fk) = |I |s . (15.7)

If I ∈ Ek then µ(I) = µ(IL) + µ(IR) so µ is additive on the kth level sets for all
k, and so, µ extends to a mass distribution with support contained in

⋂∞
k=0 Ek =

F , see Proposition 1.7. (We ignore measure theoretic questions connected with
the definition of µ.)

We fix 0 < t < s and estimate the expectation of the t-energy of µ. If x, y ∈ F ,
there is a greatest integer k such that x and y belong to a common kth level
interval; denote this interval by x ∧ y. If I is a kth level interval, its (k + 1)th
level subintervals IL and IR are separated by a gap of at least d|I |, where d =
1 − 2b. Thus

∫∫

x∧y=I

|x − y|−tdµ(x)dµ(y) = 2
∫

x∈IL

∫

y∈IR

|x − y|−tdµ(x)dµ(y)

� 2d−t |I |−tµ(IL)µ(IR).
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If I ∈ Ek,

E
(∫∫

x∧y=I

|x − y|−tdµ(x)dµ(y)

∣∣∣Fk+1

)

� 2d−t |I |−tE(µ(IL)|Fk+1)E(µ(IR)|Fk+1)

� 2d−t |I |−t |IL|s |IR|s
� 2d−t |I |2s−t

using (15.7). Using a variation of (1.21) this gives an inequality for the uncon-
ditional expectation

E
(∫∫

x∧y=I

|x − y|−tdµ(x)dµ(y)

)
� 2d−tE(|I |2s−t ).

Summing over I ∈ Ek,

E

(
∑

I∈Ek

∫∫

x∧y=I

|x − y|−tdµ(x)dµ(y)

)

� 2d−tE

(
∑

I∈Ek

|I |2s−t

)

= 2d−tλk

where λ = E(C2s−t
1 + C2s−t

2 ) < 1, using (15.3) repeatedly. Then

E
(∫

F

∫

F

|x − y|−tdµ(x)dµ(y)

)
= E

( ∞∑

k=0

∑

I∈Ek

∫∫

x∧y=I

|x − y|−tdµ(x)dµ(y)

)

� 2d−t

∞∑

k=0

λk < ∞,

so that the t-energy of µ is finite, with probability 1. As we have noted,
0 < µ(F) = µ([0, 1]) < ∞ with probability 1, so dimHF � t by Theo-
rem 4.13(a). �

Note that the proof of Theorem 15.1 is typical of many random models, in
that the key to both upper and lower estimates is the estimation of the moments
E
( ∑

I∈Ek
|I |t) for certain t .

This theorem and proof generalize in many directions. Each interval in Ek

might give rise to a random number of intervals of random lengths in Ek+1. Of
course, the construction generalizes to �n, and the separation condition between
different component intervals can be relaxed, provided some sort of ‘open set
condition’ (see (9.11)) is satisfied. The following construction is a full random
analogue of the sets discussed in Section 9.2.

Let V be an open subset of �n with closure V , let m � 2 be an integer, and
let 0 < b < 1. We take � to be the class of all decreasing sequences V = E0 ⊃
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E1 ⊃ E2 ⊃ · · · of closed sets satisfying the following conditions. The set Ek is a
union of the mk closed sets V i1,...,ik where ij = 1, . . . , m (1 � j � k) and Vi1,...,ik

is either similar to V or is the empty set.
We assume that, for each i1, . . . , ik , the set Vi1,...,ik contains Vi1,...,ik ,i (1 � i � m)

and that these sets are disjoint; this is, essentially, equivalent to the open set
condition. If Vi1,...,ik is non-empty, we write Ci1,...,ik = |Vi1,...,ik |/|Vi1,...,ik−1 | for the
similarity ratio between successive sets and we take Ci1,...,ik = 0 if Vi1,...,ik is the
empty set. We define the random self-similar set F = ⋂∞

k=0 Ek.
Let P be a probability measure on a family of subsets of � such that the Ci1,...,ik

are random variables. Suppose that given Ci1,...,ik > 0, i.e. given that Vi1,...,ik is
non-empty, Ci1,...,ik ,i has identical distribution to Ci for each sequence i1, . . . , ik
and for 1 � i � m. We assume that the Ci1,...,ik are independent, except that,
for each sequence i1, . . . , ik , the random variables Ci1,...,ik ,1, . . . , Ci1,...,ik ,m need
not be independent. This defines a self-similar probability distribution on the
constructions in �. We write N for the (random) number of the C1, . . . , Ck that
are positive; that is, the number of the sets V1, . . . , Vk that are non-empty.

Theorem 15.2

The random set F described above has probability q of being empty, where t = q

is the smallest non-negative solution to the polynomial equation

f (t) ≡
m∑

j=0

P(N = j)tj = t. (15.8)

With probability 1 − q the set F has Hausdorff and box dimensions given by the
solution s of

E

(
m∑

j=0

Cs
i

)

= 1. (15.9)

*Note on proof. Basically, this is a combination of the probabilistic argument of
Theorem 15.1 and the geometric argument of Theorem 9.3. Note that, if there is
a positive probability that N = 0, then there is a positive probability that E1 = Ø
and therefore that F = Ø. This ‘extinction’ occurs if each of the basic sets in
E1 becomes extinct. By the self-similarity of the process, the probability q0 of
this happening is f (q0), so q0 = f (q0). If q is the least non-negative solution
of f (q) = q, then, using that f is increasing, an inductive argument shows
that P(Ek = Ø) = f (P(Ek−1 = Ø)) � f (q) = q for all k, so that q0 � q. Thus
q0 = q.

Observe that F has probability 0 of being empty, i.e. q = 0, if and only if N �
1 with probability 1. It is also not hard to show that F is empty with probability
1, i.e. q = 1, if and only if either E(N) < 1 or E(N) = 1 and P(N = 1) < 1.
(These extinction probabilities are closely related to the theory of branching
processes.) �
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Example 15.3. Random von Koch curve

Let C be a random variable with uniform distribution on the interval (0, 1
3 ). Let

E0 be a unit line segment in �2. We form E1 by removing a proportion C from
the middle of E0 and replacing it by the other two sides of an equilateral triangle
based on the removed interval. We repeat this for each of the four segments in
E1 independently and continue in this way to get a limiting curve F. Then with
probability 1, dimHF = dimBF = 1.144 . . . .

Calculation. This is a special case of Theorem 15.2. The set V may be taken as
the isosceles triangle based on E0 and of height 1

6

√
3. At each stage, a segment

of length L is replaced by four segments of lengths 1
2 (1 − C)L, CL, CL and

1
2 (1 − C)L, so we have m = 4 and C1 = C4 = 1

2 (1 − C) and C2 = C3 = C.
Since C is uniformly distributed on (0, 1

3 ), expression (15.9) becomes

1 = E
(
2( 1

2 (1 − C))s + 2Cs
) =

∫ 1/3

0
3 × 2[

(
1
2 (1 − c)

)s + cs] dc

or
s + 1 = 12 × 2−(s+1) − 6 × 3−(s+1)

giving the dimension stated. �

15.2 Fractal percolation

Random fractals can have complicated topological structure, for example they can
be highly multiply connected. We consider topological aspects of a statistically
self-similar construction known as ‘fractal percolation’. In particular, this exhibits
a ‘phase transition’, where the topological structure changes dramatically when
a continuously varying parameter increases through a critical value.

Let p be a number with 0 < p < 1. We divide the unit square E0 into 9
squares of side 1

3 in the obvious way. We select a subset of these squares to
form E1 in such a way that each square has independent probability p of being
selected. Similarly, each square of E1 is divided into 9 squares of side 1

9 , and
each of these has independent probability p of being chosen to be a square of
E2. We continue in this way, so that Ek is a random collection of kth level
squares of side 3−k . This procedure, which depends on the parameter p, defines
a random fractal Fp = ⋂∞

k=0 Ek; see figures 15.4 and 15.5. (It is not difficult to
describe this construction in precise probabilistic terms; for example, by taking
the possible nested sequences of squares Ek as the sample space.)

Proposition 15.4

Given p, let t = q be the least positive solution of the equation

t = (pt + 1 − p)9.
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Then Fp is empty with probability q. If p � 1
9 then q = 1. If 1

9 < p < 1 then
0 < q < 1 and, with probability 1 − q, dimHFp = dimBFp = log 9p/ log 3.

Proof. Let N be the (random) number of squares in E1. Then P(N = j) =(
9
j

)
pj(1 − p)9−j , where

(
n

r

)
= n!

r!(n − r)!
is the binomial coefficient, so the

probability that Fp = Ø is, by (15.8), the smallest positive solution of

t =
9∑

j=0

(
9
j

)
pj(1 − p)9−j tj = (pt + 1 − p)9.

Each square of E1 has side 1
3 , so (15.9) becomes

1 = E

(
N∑

j=0

Cs
i

)

= E

(
N∑

j=0

3−s

)

= 3−sE(N) = 3−s9p

(each of the nine squares of side 1
3 is selected with probability p, so the expected

number chosen is 9p). Thus by Theorem 15.2, the almost sure dimension of Fp,
given it is non-empty, is log 9p/ log 3. �

We now discuss briefly the qualitative way in which the random set Fp changes
as p increases from 0 to 1. We have already noted that Fp is almost surely empty

E0 E1

E2 E3

Figure 15.4 Steps in the construction of the random fractal discussed in Section 15.2
with p = 0.6. The fractal obtained is shown in figure 15.5(a)
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(a)

(b)

Figure 15.5 Random fractals realized by the percolation process discussed in Section 15.2
with (a) p = 0.6 and (b) p = 0.8



254 Random fractals

if 0 < p � 1
9 . If 1

9 < p < 1
3 we have, with probability 1, that either Fp = Ø or

dimHFp = log 9p/ log 3 < 1, so by Proposition 2.5 Fp is totally disconnected. At
the other extreme, if p is close to 1, it is plausible that such a high proportion of
the squares are retained at each stage of the construction that Fp will connect the
left and right sides of the square E0; when this happens we say that percolation
occurs between the sides. We show that this is the case at least if p is very close
to 1; the ridiculous bound 0.999 obtained can certainly be reduced considerably.

Proposition 15.5

Suppose that 0.999 < p < 1. Then there is a positive probability (in fact bigger
than 0.9999) that the random fractal Fp joins the left and right sides of E0.

*Proof. The proof depends on the observation that if I1 and I2 are abutting squares
in Ek and both I1 and I2 contain either 8 or 9 subsquares of Ek+1, then there is
a subsquare in I1 and one in I2 that abut, so that the squares of Ek+1 in I1 and
I2 form a connected unit.

We say that a square of Ek is full if it contains either 8 or 9 squares of Ek+1.
We say that a square of Ek is 2-full if it contains 8 or 9 full squares of Ek+1,
and, inductively, that a square of Ek is m-full if it contains either 8 or 9 squares
of Ek+1 that are (m − 1)-full. By the above remark, if E0 is m-full, then opposite
sides of E0 are joined by a sequence of abutting squares of Em.

The square E0 is m-full (m � 1) if either

(a) E1 contains 9 squares all of which are (m − 1)-full, or
(b) E1 contains 9 squares of which 8 are (m − 1)-full, or
(c) E1 contains 8 squares all of which are (m − 1)-full.

Thus, if pm is the probability that E0 is m-full, we get, summing the proba-
bilities of these three alternatives using (1.16), and using the self-similarity of
the process,

pm = p9p9
m−1 + p99p8

m−1(1 − pm−1) + 9p8(1 − p)p8
m−1

= 9p8p8
m−1 − 8p9p9

m−1 (15.10)

if m � 2. Furthermore, p1 = p9 + 9p8(1 − p) = 9p8 − 8p9, so we have a dis-
crete dynamical system defined by pm = f (pm−1) for m � 1, where p0 = 1 and

f (t) = 9p8t8 − 8p9t9. (15.11)

Suppose that p = 0.999. Then (15.11) becomes

f (t) = 8.928 2515t8 − 7.928 2874t9
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and a little calculation shows that t0 = 0.999 9613 is a fixed point of f which
is stable in the sense that 0 < f (t) − t0 � 1

2 (t − t0) if t0 < t � 1. It follows that
pm is decreasing and converges to t0 as m → ∞, so there is a probability t0 > 0
that E0 is m-full for all m. When this happens, opposite sides of E0 are joined
by a sequence of squares in Em for each m, so the intersection F = ⋂∞

k=0 Ek

joins opposite sides of E0. Thus, there is a positive probability of percolation
occurring if p = 0.999, and consequently for larger values of p. �

We have seen that if 0 < p < 1
3 then, with probability 1, Fp is empty or totally

disconnected. On the other hand, if p > 0.999 then there is a high probability of
percolation. The next theorem states that one or other of these situations pertains
for each value of p.

Theorem 15.6

There is a critical number pc with 0.333 < pc < 0.999 such that if 0 < p < pc

then Fp is totally disconnected with probability 1, but if pc < p < 1 then there
is positive probability that Fp connects the left and right sides of E0.

Idea of proof. Suppose p is such that there is a positive probability of Fp not
being totally disconnected. Then there is positive probability of some two distinct
points of F being joined by a path in F . This implies that there is a positive
probability of the path passing through opposite sides of one of the squares in Ek

for some k; by virtue of the statistical self-similarity of the construction, there
is a positive probability of a path crossing E0 from left to right. Clearly, if Fp

has probability 1 of being totally disconnected, the same is true of Fp′ if p′ < p.
Thus the critical probability pc is the supremum of those p such that Fp is totally
disconnected, and has the properties stated. �

Experiment suggests that 0.7 < pc < 0.8.
The change in form of Fp as p increases through pc is even more dramatic

than Theorem 15.6 suggests. Let F ′
p be a random set obtained by tiling the

plane with independent random copies of Fp. If p < pc then, almost surely, F ′
p

is totally disconnected. However, if p � pc then, with probability 1, F ′
p has a

single unbounded connected component. Thus as p increases through pc there is
a ‘phase transition’ as the isolated points of F ′

p suddenly coalesce to form what
is basically a single unit. The idea underlying the proof of this is that, if p > pc,
then given that parts of F ′

p lie in two disjoint discs of unit radius, there is a
positive probability of them being joined by a path in F ′

p. There are infinitely
many such discs in an unbounded component of F ′

p, so if F ′
p had two unbounded

components, there would be probability 1 of them being joined.

15.3 Notes and references

Various versions of the random fractal constructions of the type discussed
in Section 15.1 are presented in Mandelbrot (1974, 1982), Kahane (1974),
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Peyrière (1974), Falconer (1986b), Mauldin and Williams (1986a), Graf
(1987), Graf, Mauldin and Williams (1988), Olsen (1994) and Hutchinson and
Rüschendorf (2000).

An interesting construction for fractals by random deletion was introduced by
Mandelbrot (1972); see also Kahane (1985), Zähle (1984) and Falconer (1997).
For other applications of probability to fractals, see Stoyan and Stoyan (1994)
and Falconer (1997).

The fractal percolation model was suggested by Mandelbrot (1974). Chayes,
Chayes and Durrett (1988) analysed the phase transition in detail, and Dekking
and Meester (1990) highlighted other phase transitions of the model. Chayes
(1995) gives a clear survey on fractal percolation and its generalizations.

Much has been written on ‘discrete’ percolation, where points are selected at
random from a large square mesh (see Kesten (1982) and Grimmett (1999)), and
there are many relationships between this and the fractal case.

Exercises

15.1 Find the almost sure Hausdorff dimension of the random Cantor set constructed
by removing the middle third of each interval with probability 1

2 and the middle
two-thirds of the interval with probability 1

2 at each step of the construction.

15.2 Consider the following random version of the von Koch construction. We start with
a unit segment. With probability 1

2 we replace the middle third of the segment by the
other two sides of the (upwards pointing) equilateral triangle, and with probability 1

2
we remove the middle third altogether. We repeat this procedure with the segments
that remain, in the usual way. Show that, with probability 1, this random fractal has
Hausdorff dimension 1.

15.3 Show that the random von Koch curve depicted in figure 15.1 always has Hausdorff
dimension s = log 4/ log 3 and, indeed, is an s-set. (This is not typical of random
constructions.)

15.4 Let 0 < p < 1. We may randomize the construction of the Sierpiński gasket
(figure 0.3) by selecting each of the three equilateral subtriangles independently
with probability p at each step. (Thus we have a percolation process based on
the Sierpiński gasket.) Show that if p � 2

3 then the limiting set F is empty with
probability 1, but if 2

3 < p < 1 then there is a positive probability that F is non-
empty. Find an expression for this probability, and show that, given F is non-empty,
dimHF = log 3p/ log 2 with probability 1.

15.5 For the random Sierpiński gasket described in Exercise 15.4 show that F is totally
disconnected with probability 1 for every p < 1. (We regard two triangles as being
joined if they touch at a vertex.)

15.6 Consider the random Cantor set analysed in Theorem 15.1. With Hs∞(F ) denoting
the infimum of the sums in (2.1) over arbitrary coverings of F , show that

Hs
∞(F ) = min{1,Hs

∞(F ∩ I1) + Hs
∞(F ∩ I2)}

where s is the solution of (15.1). Use statistical self-similarity to deduce that, unless
P(Cs

1 + Cs
2 = 1) = 1, then, almost surely, Hs∞(F ) = 0, and thus Hs (F ) = 0.
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15.7 Show that the martingale Xk given by (15.5) is L2-bounded, that is E(X2
k ) � m for

all k, for some number m. (Hint: Show that E(X2
k+1|Fk) � X2

k + aγ k where γ =
E(C2s

1 + C2s
2 ) < 1 and a is a constant, and then take unconditional expectations.)

15.8 Consider the fractal percolation model F constructed with selection probability
p, where pc < p < 1. Show that with probability 1, either F = Ø or F contains
infinitely many non-trivial connected components. (Here non-trivial means contain-
ing at least two distinct points.)



Chapter 16 Brownian motion and
Brownian surfaces

In 1827 the botanist R. Brown noticed that minute particles suspended in a liquid
moved on highly irregular trails. This, and a similar phenomenon for smoke par-
ticles in air, was explained ultimately as resulting from molecular bombardment
of the particles. Einstein published a mathematical study of this motion, which
eventually led to Perrin’s Nobel Prize-winning calculation of Avogadro’s number.

In 1923 Wiener proposed a rigorous mathematical model that exhibited random
behaviour similar to that observed in Brownian motion. The paths described by
this ‘Wiener process’ in 3-dimensional space are so irregular as to have Hausdorff
dimension equal to 2. This is a good example of a natural phenomenon with a
fractal appearance that can be explained by a simple mathematical model.

A trail may be described by a function f : � → �n where f (t) is the position
of a particle at time t . We can study f from two differing viewpoints. Either
we can think of the trail or image f ([t1, t2]) = {f (t) : t1 � t � t2} as a subset
of �n with t regarded merely as a parameter, or we can consider the graph of
f , graph f = {(t, f (t)) : t1 � t � t2} ⊂ �n+1, as a record of the variation of f

with time. Brownian trails and their graphs are, in general, fractals.
In this chapter, our aim is to define a probability measure on a space of func-

tions, such that the trails likely to occur resemble observed Brownian motion.
We begin by investigating the fractal form of classical Brownian motion, and
then we examine some variants that have been used to model a wide variety
of phenomena, including polymer chains, stock market prices and topographi-
cal surfaces.

16.1 Brownian motion

We first define Brownian motion in one dimension, and then extend the definition
to the higher-dimensional cases.

To motivate the definition, let us consider a particle performing a random walk
on the real line. Suppose at small time intervals τ the particle jumps a small dis-
tance δ, randomly to the left or to the right. (This might be a reasonable descrip-
tion of a particle undergoing random molecular bombardment in one dimension.)
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Let Xτ (t) denote the position of the particle at time t . Then, given the position
Xτ (kτ) at time kτ , the position Xτ((k + 1)τ ) at time (k + 1)τ is equally likely
to be Xτ(kτ) + δ or Xτ(kτ) − δ. Assuming that the particle starts at the origin at
time 0, then for t > 0, the position at time t is described by the random variable

Xτ(t) = δ(Y1 + · · · + Y�t/τ�)

where Y1, Y2, . . . are independent random variables, each having probability 1
2

of equalling 1 and probability 1
2 of equalling −1. Here �t/τ� denotes the largest

integer less than or equal to t/τ . We normalize the step length by setting δ = √
τ

so that
Xτ (t) = √

τ(Y1 + · · · + Y�t/τ�). (16.1)

The central limit theorem (see (1.26)) tells us that, for fixed t , if τ is small
then the distribution of the random variable Xτ (t) is approximately normal with
mean 0 and variance τ�t/τ� � t , since the Yi have mean 0 and variance 1. In the
same way, if t and h are fixed, and τ is sufficiently small, then Xτ (t + h) − Xτ (t)

is approximately normal with mean 0 and variance h. We also note that,
if 0 � t1 � t2 � · · · � t2m, then the increments Xτ(t2) − Xτ(t1), Xτ (t4) −
Xτ (t3), . . . , Xτ (t2m) − Xτ(t2m−1) are independent random variables. We define
Brownian motion with the limit of the random walk Xτ (t) as τ → 0 in mind.

Let (�,F, P) be a probability space. For our purposes we call X a random
process or random function from [0,∞) to � if X(t) is a random variable for
each t with 0 � t < ∞. Sometimes, we consider random functions on a finite
interval [t1, t2] instead, in which case the development is similar. (In the formal
definition of a random process there is an additional ‘measurability’ condition,
which need not concern us here.) Of course, we think of X as defining a sample
function t �→ X(ω, t) for each point ω in the sample space �. Thus we think of
the points of � as parametrizing the functions X : [0, ∞) → �, and we think of
P as a probability measure on this class of functions.

We define Brownian motion or the Wiener process to be a random process X

such that:

(BM) (i) with probability 1, X(0) = 0 (i.e. the process starts at the origin)
and X(t) is a continuous function of t ;

(ii) for all t � 0 and h > 0 the increment X(t + h) − X(t) is normally
distributed with mean 0 and variance h, thus

P(X(t + h) − X(t) � x) = (2πh)−1/2
∫ x

−∞
exp

(−u2

2h

)
du;

(16.2)

(iii) if 0 � t1 � t2 � · · · � t2m, the increments X(t2) − X(t1), X(t4) −
X(t2), . . . , X(t2m) − X(t2m−1) are independent.

Note that it is immediate from (i) and (ii) that X(t) is itself normally distributed
with mean 0 and variance t for each t . Observe that the increments of X are
stationary ; that is, X(t + h) − X(t) has distribution independent of t .



260 Brownian motion and Brownian surfaces

The first question that arises is whether there actually is a random function
satisfying the conditions (BM). It is quite hard to show that Brownian motion
does exist, and we do not do so here. The proof uses the special properties
of the normal distribution. For example, given that X(t2) − X(t1) and X(t3) −
X(t2) are independent and normal with means 0 and variances t2 − t1 and t3 −
t2 respectively, the sum X(t3) − X(t1) is necessarily normal with mean 0 and
variance t3 − t1; see (1.24) et seq. This is essential for the definition (BM) to be
self-consistent. It should at least seem plausible that a continuous process X(t)

satisfying (BM) exists, if only as a limit of the random walks Xτ (t) as τ → 0.
Instead of proving existence, we mention three methods of simulating Brow-

nian sample functions, for example with a computer. Each method can, in fact,
be used as a basis for existence proofs. The first method uses the random walk
approximation (16.1). Values of 1 or −1 are assigned by ‘coin tossing’ to Yi

for 1 � i � m, where m is large, and Xτ(t) is plotted accordingly. If τ is small
compared with t , then this gives an accurate approximation to a Brownian sample
function.

The ‘random midpoint displacement’ method may be used to obtain a sample
function X : [0, 1] → �. We define the values of X(k2−j ) where 0 � k � 2j by
induction on j . We set X(0) = 0 and choose X(1) at random from a normal
distribution with mean 0 and variance 1. Next we select X( 1

2 ) from a normal
distribution with mean 1

2 (X(0) + X(1)) and variance 1
2 . At the next step X( 1

4 )

and X( 3
4 ) are chosen, and so on. At the j th stage the values X(k2−j ) for odd k

are chosen independently from a normal distribution with mean 1
2 (X((k − 1)2−j )

+ X((k + 1)2−j )) and variance 2−j . This procedure determines X(t) at all binary
points t = k2−j . Assuming that X is continuous, then X is completely deter-
mined. It may be shown, using properties of normal distributions, that the func-
tions thus generated have the distribution given by (BM).

Brownian motion on [0, π] has a Fourier series representation

X(t) = 1√
π

C0t +
√

2

π

∞∑

k=1

Ck

sin kt

k

where the Ck have independent normal distributions of mean 0 and variance 1.
Choosing the Ck at random and curtailing the series gives an approximation to
a sample function. The graph of a Brownian sample function is in figure 16.1.

It is easy to extend the definition of Brownian motion from � to �n: we just
define Brownian motion on �n so that the coordinate components are indepen-
dent 1-dimensional Brownian motions. Thus X : [0,∞) → �n given by X(t) =
(X1(t), . . . , Xn(t)) is an n-dimensional Brownian motion on some probability
space if the random process Xi(t) is a 1-dimensional Brownian motion for each
i, and X1(t1), . . . , Xn(tn) are independent for all sets of times t1, . . . , tn. A sample
trail of Brownian motion in �2 is shown in figure 16.2.

By definition, the projection of X(t) onto each of the coordinate axes is a
1-dimensional Brownian motion. However, the coordinate axes are not special
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Figure 16.1 Graph of a realization of Brownian motion

in this respect: n-dimensional Brownian motion is isotropic; that is, it has the
same characteristics in every direction. To see this, consider, for convenience, the
case of 2-dimensional Brownian motion X(t) = (X1(t), X2(t)). The projection
of X(t) onto the line Lθ at angle θ through the origin is X1(t) cos θ + X2(t) sin θ .
For t � 0 and h > 0 the random variables X1(t + h) − X1(t) and X2(t + h) −
X2(t) are independent and normally distributed with means 0 and variances h.
Thus the increments of the projection onto Lθ , given by

(X1(t + h) − X1(t)) cos θ + (X2(t + h) − X2(t)) sin θ,

are normally distributed with mean 0 and variance h cos2 θ + h sin2 θ = h; see
(1.24) et seq. In a similar way, the increments of the projection are independent,
so the projection of X(t) onto Lθ is 1-dimensional Brownian motion, for all
angles θ .

Figure 16.2 A simulation of a Brownian trail in �2
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If γ > 0, replacing h by γh and x by γ 1/2x does not alter the value of the
right-hand side of (16.2) (by substituting u1 = uγ −1/2 in the integral). Thus

P(Xi(t + h) − Xi(t) � xi) = P(Xi(γ t + γh) − Xi(γ t) � γ 1/2xi)

for all xi . It follows that X(t) and γ −1/2X(γ t) have the same distribution. Thus
changing the temporal scale by a factor γ and the spatial scale by a factor γ 1/2

gives a process indistinguishable from the original so we term Brownian motion
X(t) and its graph statistically self-affine. But we call Brownian trails statistically
self-similar, in that the spatial distribution of the trails {X(t) : 0 � t � T } and
{X(t) : 0 � t � γT } are indistinguishable except for a scale factor of γ 1/2.

Suppose that X(t) = (X1(t), . . . , Xn(t)) is n-dimensional Brownian motion.
Since Xi(t + h) − Xi(t) has independent normal distribution for each i, it follows
from (16.2) that if [ai, bi] are intervals, then

P(Xi(t + h) − Xi(t) ∈ [ai, bi]) = (2πh)−1/2
∫ bi

ai

exp

(
− x2

i

2h

)
dxi.

Hence if E is the coordinate parallelepiped [a1, b1] × · · · × [an, bn]

P(X(t + h) − X(t) ∈ E) =
n∏

i=1

[
(2πh)−1/2

∫ bi

ai

exp

(
− x2

i

2h

)
dxi

]

= (2πh)−n/2
∫

E

exp

(
−|x|2

2h

)
dx (16.3)

where x = (x1, . . . , xn). By approximating sets by unions of such parallelepipeds,
it follows that (16.3) holds for any Borel set E. Thus, taking E as the ball B(0, ρ),
and converting into polar coordinates,

P(|X(t + h) − X(t)| � ρ) = ch−n/2
∫ ρ

r=0
rn−1 exp

(
− r2

2h

)
dr (16.4)

where c = 2π−n/2an with an the (n − 1)-dimensional area of the surface of
B(0, 1).

A fundamental property of a Brownian motion is that, with probability 1, the
sample functions satisfy a Hölder condition of exponent λ for each λ < 1

2 .

Proposition 16.1

Suppose 0 < λ < 1
2 . With probability 1 the Brownian sample function

X : [0, 1] → �n satisfies

|X(t + h) − X(t)| � b|h|λ (|h| < H0) (16.5)

for some H0 > 0, where b depends only on λ.
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Proof. For h > 0 we have, by (16.4),

P(|X(t + h) − X(t)| > hλ) = ch−n/2
∫ ∞

hλ

rn−1 exp

(−r2

2h

)
dr

= c

∫ ∞

hλ−1/2
un−1 exp

(−u2

2

)
du

� c1

∫ ∞

hλ−1/2
exp(−u)du

= c1 exp(−hλ−1/2)

� c2h
−2 (16.6)

after a substitution u = rh−1/2 and some sweeping estimates, where c1 and c2 do
not depend on h or t . Taking [t, t + h] as the binary intervals [(m − 1)2−j , m2−j ]
we have

P(|X((m − 1)2−j ) − X(m2−j )| > 2−jλ for some j � k and 1 � m � 2j )

� c2

∞∑

j=k

2j 2−2j

= c22−k+1.

Thus with probability 1 there is an integer K such that

|X((m − 1)2−j ) − X(m2−j )| � 2−jλ (16.7)

for all j > K and 1 � m � 2j . If h < H0 = 2−K the interval [t, t + h] may,
except possibly for the endpoints, be expressed as a countable union of contiguous
binary intervals of the form [(m − 1)2−j , m2−j ] with 2−j � h and with no more
than two intervals of any one length. (Take all the binary intervals in [t, t + h]
not contained in any other such intervals.) Then, using the continuity of X, if k

is the least integer with 2−k � h,

|X(t) − X(t + h)| � 2
∞∑

j=k

2−jλ = 2−kλ2

(1 − 2−λ)
� 2hλ

(1 − 2−λ)
. �

Theorem 16.2

With probability 1, a Brownian trail in �n(n � 2) has Hausdorff dimension and
box dimension equal to 2.

Proof. For every λ < 1
2 , X : [0, 1] → �n satisfies a Hölder condition (16.5) with

probability 1, so by Proposition 2.3, dimHX([0, 1]) � (1/λ) dimH [0, 1] < 1/λ,
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with a similar inequality for box dimensions. Thus, almost surely, Brownian
trails have dimension at most 2.

For the lower bound we use the potential theoretic method. Take 1 < s < 2.
For given t and h let p(ρ) denote the expression in (16.4). Taking the expectation,
it follows that

E(|X(t + h) − X(t)|−s ) =
∫ ∞

0
r−sdp(r)

= ch−n/2
∫ ∞

0
r−s+n−1 exp

(−r2

2h

)
dr

= 1
2ch−s/2

∫ ∞

0
w(n−s−2)/2 exp

(−w

2

)
dw

= c1h
−s/2 (16.8)

after substituting w = r2/h, where c1 is independent of h and t . Then

E
(∫ 1

0

∫ 1

0
|X(t) − X(u)|−sdt du

)
=

∫ 1

0

∫ 1

0
E(|X(t) − X(u)|−s )dt du

=
∫ 1

0

∫ 1

0
c1|t − u|−s/2dt du

< ∞ (16.9)

since s < 2. There is a natural way of defining a mass distribution µf on a
trail f , with the mass of a set equal to the time the trail spends in the set,
i.e. µf (A) = L{t : 0 � t � 1 and f (t) ∈ A} where L is Lebesgue measure. Then∫

g(x)dµf (x) = ∫ 1
0 g(f (t))dt for any function g, so (16.9) becomes

E
(∫∫

|x − y|−sdµX(x)dµX(y)

)
< ∞.

Hence if s < 2 then
∫∫ |x − y|−sdµX(x)dµX(y) < ∞ with probability 1, where

µX is a mass distribution on X(t), so dimHX([0, 1]) � s by Theorem 4.13(a).
�

In fact, with probability 1, Brownian trails in �n(n � 2) have 2-dimensional
Hausdorff measure 0. More delicate arguments involving the finer definitions
of dimension given in Section 2.5 show that, with probability 1, the trails
X([0, 1]) have positive finite measure with respect to the function h(t) =
t2 log(1/t) log log log(1/t), if n = 2, and with respect to h(t) = t2 log log(1/t),
if n � 3. In this sense, Brownian trails have a dimension that is ‘logarithmically
smaller’ than 2.

An obvious qualitative question about Brownian trails is whether they are
simple curves, or whether they are self-intersecting. Given a function f , we
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say that x is a point of multiplicity k if f (t) = x for k distinct values of t .
Dimensional methods may be used to determine whether Brownian functions
have multiple points.

Theorem 16.3

With probability 1, a Brownian sample function X : [0, ∞) → �n has multiple
points as follows:
n = 2: there are points of multiplicity k for every positive integer k ;
n = 3: there are double points but no triple points;
n � 4: there are no multiple points.

Idea of proof. One approach is to use the intersection theorems of Chapter 8.
For the case n = 3, suppose that dimH(X([0, 1]) ∩ X([2, 3])) < 1 with prob-
ability 1. Using isotropy and scaling of Brownian motion it is not difficult
to see that this implies that dimH(X([0, 1]) ∩ σ(X([2, 3]))) < 1 with proba-
bility 1 for any similarity transformation σ . It follows that, with probability
1, dimH(X([0, 1]) ∩ σ(X([2, 3]))) < 1 for almost all similarities σ . Since, by
Theorem 16.2, dimH X([0, 1]) = dimBX([0, 1]) = 2 with probability 1, this con-
tradicts Theorem 8.2(a), and we conclude that dimH(X([0, 1]) ∩ X([2, 3])) = 1
with positive probability p, say. Using the statistical self-similarity of X(t) it
follows that dimH(X([t, t + δ]) ∩ X([t + 2δ, t + 3δ])) = 1 with probability p for
every t and δ, so, since the increments are independent, the set of double points
has Hausdorff dimension 1 with probability 1.

Similar techniques may be used to prove the other results. �

The derivation of the almost sure dimension of Brownian graphs is similar to
that for Brownian trails.

Theorem 16.4

With probability 1, the graph of a Brownian sample function X : [0, 1] → � has
Hausdorff and box dimension 1 1

2 .

Proof. From the Hölder condition (16.5) and Corollary 11.2(a) it is clear that,
with probability 1, graph X has Hausdorff dimension and upper box dimension
at most 2 − λ for every λ < 1

2 , so has dimensions at most 1 1
2 . For the lower

estimate, as in the proof of Theorem 16.2,

E((|X(t + h) − X(t)|2 + h2)−s/2) =
∫ ∞

0
(r2 + h2)−s/2dp(r)

= ch−1/2
∫ ∞

0
(r2 + h2)−s/2 exp

(−r2

2h

)
dr

= 1
2c

∫ ∞

0
(wh + h2)−s/2w−1/2 exp

(−w

2

)
dw
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� 1
2c

∫ h

0
(h2)−s/2w−1/2dw

+ 1
2c

∫ ∞

h

(wh)−s/2w−1/2dw

� c1h
1/2−s

on splitting the range of integration and estimating the integral in two ways.
We may lift Lebesgue measure from the t-axis to get a mass distribution µf on
the graph of a function f given by µf (A) = L{t : 0 � t � 1 and (t, f (t)) ∈ A}.
Using Pythagoras’ Theorem,

E
(∫∫

|x − y|−sdµX(x)dµX(y)

)

=
∫ 1

0

∫ 1

0
E((|X(t) − X(u)|2 + |t − u|2)−s/2)dt du

�
∫ 1

0

∫ 1

0
c1|t − u|1/2−sdt du

< ∞
if s < 1 1

2 . With probability 1, the mass distribution µX on graph X is posi-
tive and finite and has finite s-energy, so Theorem 4.13(a) gives dimHgraph X

� 1 1
2 . �

Since, with probability 1, the graph of X over any interval has dimension 1 1
2 ,

it is immediate that Brownian functions, though continuous, are not continu-
ously differentiable. In fact, with probability 1, a Brownian function is nowhere
differentiable.

As with Brownian trails, Brownian graphs have dimension logarithmically
smaller than 1 1

2 : with probability 1, the graph of X over the range [0, 1] has
positive finite measure with respect to the function h(t) = t3/2 log log(1/t).

The sets of times at which a Brownian sample function takes particular values
are often of interest. If f : [0, 1] → � is a function, we define the level sets
f −1(c) = {t : f (t) = c} for each value of c. The level sets are, essentially, the
intersections of the graph of f with lines parallel to the t-axis.

Proposition 16.5

With probability 1, a Brownian sample function X : [0, 1] → � satisfies
dimHX−1(c) � 1

2 for almost all c (in the sense of 1-dimensional Lebesgue
measure). Moreover, for any given c, dimHX−1(c) = 1

2 with positive probability.

Note on proof. With probability 1, we must have dimHX−1(c) = dimH((graph X)∩
Lc) � 1

2 for almost all c, where Lc is the line y = c; otherwise Corollary 7.10
would imply that dimH graph X > 1 1

2 , contradicting Theorem 16.4.
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It is much harder to show that dimHX−1(c) = 1
2 with positive probability. The

argument is not unlike that indicated for the proof of Theorem 8.2. �

16.2 Fractional Brownian motion

Brownian motion, although of central theoretical importance, is, for many pur-
poses, too restrictive. The graph of a Brownian sample function has dimension 1 1

2
almost surely but random functions with graphs of other dimensions are required
for a variety of modelling purposes.

Brownian motion X : [0, ∞) → � is a Gaussian process. This means that for
0 � t1 � t2 � · · · � tm and scalars λ1, . . . , λm, the random variable λ1X(t1) +
· · · + λmX(tm) is normal (we say that (X(t1), . . . , X(tm)) is multivariate normal ).
In fact Brownian motion is the unique probability distribution on functions which
has independent increments that are stationary and of finite variance. To obtain
sample functions with different characteristics it is necessary to relax one or more
of these conditions.

There are two usual variations. Fractional Brownian motion has increments
which are normally distributed but no longer independent. Lévy processes, on
the other hand, dispense with the normal distribution condition and this can lead
to discontinuous functions. For simplicity, we just discuss these processes in
the 1-dimensional case; analogous processes may be defined taking values in
n-dimensional space.

Fractional Brownian motion of index-α (0 < α < 1) is defined to be a Gaussian
process X : [0,∞) → � on some probability space such that:

(FBM) (i) with probability 1, X(t) is continuous and X(0) = 0;
(ii) for every t � 0 and h > 0 the increment X(t + h) − X(t) has

the normal distribution with mean zero and variance h2α , so that

P(X(t + h) − X(t) � x) = (2π)−1/2h−α

∫ x

−∞
exp(−u2/2h2α)du.

(16.10)

It may be shown that, for 0 < α < 1, a process satisfying (FBM) exists.
Figure 16.3 shows graphs of fractional Brownian motion for various α.

It is implicit in the above definition that the increments X(t + h) − X(t) are
stationary; that is, they have probability distribution independent of t . How-
ever, the distribution of functions specified by (FBM) cannot have independent
increments except in the Brownian case of α = 1

2 . By conditions (i) and (ii),
E(X(t)2) = t2α and

E((X(t + h) − X(t))2) = h2α

from which
E(X(t)X(t + h)) = 1

2 [t2α + (t + h)2α − h2α]
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so that

E(X(t)(X(t + h) − X(t))) = 1
2 [(t + h)2α − t2α − h2α] (16.11)

which is non-zero if α �= 1
2 . Hence E((X(t) − X(0))(X(t + h) − X(t))) is posi-

tive or negative according to whether α > 1
2 or α < 1

2 . Thus, the increments are
not independent—if α > 1

2 then X(t) − X(0) and X(t + h) − X(t) tend to be of
the same sign, so that X(t) tends to increase in the future if it has had an increas-
ing history. Similarly, if α < 1

2 then X(t) − X(0) and X(t + h) − X(t) tend to
be of opposite sign. Note also that (16.10) implies that the process is self-affine,
that is the scaled paths γ −αX(γ t) have the same statistical distribution as X(t)

for γ > 0.
The almost sure dimension of fractional Brownian graphs may be determined

in a similar way to the strict Brownian case.

Proposition 16.6

Suppose 0 < λ < α. With probability 1, an index-α Brownian sample function
X : [0, 1] → � satisfies

|X(t + h) − X(t)| � b|h|λ (16.12)

if |h| < H0, for some H0 > 0 and b > 0.

Note on proof. Provided that λ < 1
2 , the proof goes through as in Proposition

16.1, using (16.10) instead of (16.4). However, if α > λ � 1
2 this leads to an

estimate c2h
1/2−α in place of (16.6) and rather more sophisticated techniques

from probability theory are required to show that the Hölder condition (16.12) is
valid uniformly for all t . �

Theorem 16.7

With probability 1 the graph of an index-α Brownian sample function X : [0, 1] →
� has Hausdorff and box dimensions 2 − α.

Proof. Corollary 11.2(a) together with the Hölder condition (16.12) show that
the dimension is almost surely at most 2 − α. The lower bound is obtained as in
Theorem 16.4 using the probability distribution (16.10). �

The autocorrelation theory discussed in Section 11.2 may be applied to frac-
tional Brownian functions. It is convenient to assume that X is defined for all
time, i.e. X : (−∞, ∞) → �. This requires only trivial modification to the defi-
nition (FBM). Since the variance E(|X(t + h) − X(t)|2) tends to infinity with h,
we have

lim
T →∞ E

(
1

2T

∫ T

−T

X(t)2dt

)
= ∞
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Figure 16.3 Realizations of index-α fractional Brownian for α = 0.1, 0.3, 0.5, 0.7, 0.9

so the sample functions tend to have an infinite mean square. Nevertheless,

E
(

1

2T

∫ T

−T

(X(t + h) − X(t))2dt

)
= 1

2T

∫ T

−T

E(X(t + h) − X(t))2dt = h2α

It may be deduced that ‘on average’ the sample functions satisfy

1

2T

∫ T

−T

(X(t + h) − X(t))2dt � ch2α
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and, according to (11.18) and (11.19), this does indeed correspond to a graph of
dimension 2 − α. Taking this parallel further, we might expect X(t) to have a
power spectrum (11.15) approximately 1/ω1+2α .

Simulation of fractional Brownian motion is much more awkward than Brow-
nian motion, because the increments are not independent. However, with modern
computing power, exact simulation is possible. To get a realization of index-α
fractional Brownian motion X at points t1, . . . , tk , we recall that the covariances
of X are given by the covariance matrix

Ai,j = E(X(ti )X(tj )) = 1
2 (|ti |2α + |tj |2α − |ti − tj |2α).

Then, if M is a matrix such that MMT = A, where T denotes transpose, and
V = (V1, . . . , Vk) is a vector of independent random variables with normal dis-
tribution of mean 0 and variance 1, X = X(ti) = MV has the distribution of
index-α fractional Brownian motion at the points ti . To see this we check the
covariances, using matrix notation:

E(X(ti )X(tj )) = E(XXT ) = E(MV (MV )T )

= E(MV V T MT ) = ME(V V T )MT = MIMT = A.

Thus, by drawing a sequence of independent normally distributed random num-
bers for the Vi , the product X = MV gives a realization of index-α fractional
Brownian motion. Finding a matrix M such that A has ‘Choleski decomposi-
tion’ A = MMT is computationally intensive if k is large, and there are various
numerical approaches to facilitate this.

An alternative method of constructing functions with characteristics similar
to index-α Brownian functions is to randomize the Weierstrass function (11.4).
Consider the random function

X(t) =
∞∑

k=1

Ckλ
−αk sin (λkt + Ak) (16.13)

where λ > 1 and where the Ck are independent random variables with the normal
distribution of zero mean and variance one, and the ‘phases’ Ak are independent,
each having the uniform distribution on [0, 2π). Clearly E(X(t + h) − X(t)) = 0.
Furthermore, using the formula for the difference of two sines,

E(X(t + h) − X(t))2 = E

( ∞∑

k=1

Ckλ
−αk2 sin ( 1

2λkh) cos (λk(t + 1
2h) + Ak)

)2

= 2
∞∑

k=1

λ−2αk sin2 ( 1
2λkh)
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using that E(CkCj ) = 1 or 0 according as to whether k = j or not, and that the
mean of cos2(a + Ak) is 1

2 . Choosing N so that λ−(N+1) � h < λ−N , gives

E(X(t + h) − X(t))2 � 1
2

N∑

k=1

λ−2αkλ2kh2 + 2
∞∑

k=N+1

λ−2αk

� cλ−2αN

� ch2α

in the sense that 0 < c1 � E(X(t + h) − X(t))2/h2α � c2 < ∞ for h < 1. Thus
(16.13) has certain statistical characteristics resembling index-α fractional Brow-
nian motion, and provides a usable method for drawing random graphs of various
dimensions. Such functions are often used in fractal modelling. A value of
α = 0.8, corresponding to a graph of dimension 1.2, is about right for a ‘mountain
skyline’.

As might be expected, the level sets of index-α Brownian sample functions
are typically of dimension 1 − α. Proposition 16.5 generalizes to give that,
with probability 1, dimHX−1(c) � 1 − α for almost all c, and that, for given
c, dimHX−1(c) = 1 − α with positive probability.

A further generalization of fractional Brownian motion is multifractional
Brownian motion, which looks and behaves like index-α(t) fractional Brownian
motion close to t , where α : [0, ∞) → (0, 1) is a given continuous function.

16.3 Lévy stable processes

An alternative generalization of Brownian motion gives the Lévy stable processes.
A Lévy process is a random function X : [0, ∞) → � such that the increments
X(t + h) − X(t) are stationary, i.e. with distribution depending only on h, and
independent, i.e. with X(t2) − X(t1), . . . , X(t2m) − X(t2m−1) independent if 0 �
t1 � t2 · · · � t2m. However, except in very special cases such as Brownian motion,
Lévy processes have infinite variance and are discontinuous with probability 1.
A Lévy process is stable if a self-affinity condition holds, that is γ −1/αX(γ t)

and X(t) have the same distribution for all γ > 0, and some α.
It is not, in general, possible to specify the probability distribution of stable

processes directly. Fourier transforms are usually used to define such distribu-
tions, and analysis of the dimensions of graphs and trails of stable processes
requires Fourier transform methods.

The probability distribution of a random variable Y may be specified by its
characteristic function, i.e. the Fourier transform E(exp(iuY )) for u ∈ �. To
define a stable process, we take a suitable function ψ : � → � and require that
the increments X(t + h) − X(t) satisfy

E(exp(iu(X(t + h) − X(t)))) = exp(−hψ(u)) (16.14)

with X(t2) − X(t1), . . . , X(t2m) − X(t2m−1) independent if 0 � t1 � t2 � · · · �
t2m. Clearly the increments are stationary. This definition is, at least, consistent
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in the following sense. If t1 < t2 < t3, then, taking expectations and using
independence,

E(exp(iu(X(t3) − X(t1)))) = E(exp iu((X(t3) − X(t2)) + (X(t2) − X(t1))))

= E(exp iu(X(t3) − X(t2)))E(exp iu(X(t2) − X(t1)))

= exp(−(t3 − t2)ψ(u)) exp(−(t2 − t1)ψ(u))

= exp(−(t3 − t1)ψ(u)).

It may be shown that, for suitable ψ , stable processes do exist.
Taking ψ(u) = c|u|α with 0 < α � 2, gives the stable symmetric process of

index-α. Replacing h by γh and u by γ −1/αu leaves the right-hand side of
(16.14) unaltered, and it follows that γ −1/αX(γ t) has the same statistical dis-
tribution as X(t) so such processes are self-affine. The case α = 2 is standard
Brownian motion.

Theorem 16.8

With probability 1, the graph of the stable symmetric process of index-α has
Hausdorff and box dimension max{1, 2 − 1/α}.
Partial proof. We show that dimH graph X � dimB graph X � max{1, 2 − 1/α}.
Write Rf [t1, t2] = sup{|f (t) − f (u)| : t1 � t, u � t2} for the maximum range of
a function f over the interval [t1, t2]. By virtue of the self-affinity of the process
X, for any t and 0 < δ < 1

E(RX[t, t + δ]) = δ1/αE(RX[0, 1]).

If Nδ squares of the δ-coordinate mesh are intersected by graph X, it follows
from Proposition 11.1 that

E(Nδ) � 2m + δ−1
m−1∑

i=0

E(RX[iδ, (i + 1)δ])

= 2m + mδ−1δ1/αE(RX[0, 1])

where m is the least integer greater than or equal to 1/δ, so m � 2/δ. It may
be shown, and is at least plausible, that E(RX[0, 1]) < ∞, so there is a con-
stant c such that E(Nδδ

β) � c for all small δ, where β = max{1, 2 − 1/α}. Then
E(Nδδ

β+ε) � cδε if ε > 0, so that

E

( ∞∑

k=1

N2−k (2−k)β+ε

)

� c

∞∑

k=1

(2−k)ε < ∞.

It follows that, with probability 1,
∑∞

k=1 N2−k (2−k)β−ε < ∞. In particular,
Nδδ

β−ε → 0 as δ = 2−k → 0, so dimB graph X � β with probability 1 using
Proposition 4.1. �
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If α < 1 then almost surely dimHgraph X = 1, the smallest dimension pos-
sible for the graph of any function on [0, 1]. This reflects the fact that the
sample functions consist of ‘jumps’, with infinitely many jumps in every
positive time interval, though many such jumps are very small. The image
of X, that is {X(t) : 0 � t � 1}, has dimension α with probability 1, which
is indicative of the distribution of the jumps. It may be shown that the prob-
ability of there being k jumps of absolute value at least a in the interval
[t, t + h] is (ha−α)k exp(−ha−α)/k!, corresponding to a Poisson distribution
of mean ha−α.

If 1 < α < 2 the stable symmetric process combines a ‘continuous’ component
and a ‘jump’ component.

16.4 Fractional Brownian surfaces

We end this chapter with a brief discussion of fractional Brownian surfaces which
have been used very effectively in creating computer-generated landscapes.

We replace the time variable t by coordinates (x, y) so the random variable
X(x, y) may be thought of as the height of a surface at the point (x, y).

For 0 < α < 1 we define an index-α fractional Brownian function X : �2 → �
to be a Gaussian random function such that:

(FBS) (i) with probability 1, X(0, 0) = 0, and X(x, y) is a continuous func-
tion of (x, y);

(ii) for (x, y), (h, k) ∈ �2 the height increments X(x + h, y + k) −
X(x, y) have the normal distribution with mean zero and variance
(h2 + k2)α = |(h, k)|2α , thus

P(X(x + h, y + k) − X(x, y) � z)

= (2π)−1/2(h2 + k2)−α/2
∫ z

−∞
exp

( −r2

2(h2 + k2)α

)
dr. (16.15)

Some effort is required to demonstrate the existence of a process satisfying these
conditions. The correlations between the random variables X(x, y) at different
points are quite involved.

We term {(x, y, X(x, y)) : (x, y) ∈ �2)} an index-α fractional Brownian sur-
face. Some sample surfaces are depicted in figure 16.4.

Comparing (16.15) with the distribution (16.10) we see that the graph obtained
by intersecting X(x, y) with any vertical plane is that of a 1-dimensional index-α
Brownian function (after adding a constant to ensure X(0) = 0). We can often
gain information about surfaces by considering such vertical sections.

Theorem 16.9

With probability 1, an index-α Brownian sample surface has Hausdorff and box
dimensions equal to 3 − α.
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(a)

(b)

Figure 16.4 Index-α fractional Brownian surfaces: (a) α = 0.5, dimension = 2.5;
(b) α = 0.8, dimension = 2.2
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Proof. Using similar methods to Propositions 16.1 and 16.6, it may be shown
that if λ < α then, with probability 1, an index-α Brownian function X : [0, 1] ×
[0, 1] → � satisfies

|X(x + h, y + k) − X(x, y)| � b(h2 + k2)λ/2 = b|(h, k)|λ

provided that (h, k) is sufficiently small. The analogue of Corollary 11.2(a) for a
function of two variables (see Exercise 11.9) then gives 3 − λ as an upper bound
for the upper box dimension of the surface.

If we fix x0, then X(x0, y) − X(x0, 0) is an index-α Brownian function on
[0, 1], so by Theorem 16.7 X(x0, y) has graph of Hausdorff dimension 2 − α

with probability 1. Thus, with probability 1, the graph of X(x0, y) has dimension
2 − α for almost all 0 � x0 � 1. But these graphs are just parallel sections of the
surface given by X, so, by the obvious analogue of Corollary 7.10 in �3, the
surface has Hausdorff dimension at least (2 − α) + 1. �

The level sets X−1(c) = {(x, y) : X(x, y) = c} are the contours of the random
surface. Proposition 16.5 extends to index-α surfaces. It may be shown that, with
probability 1, dimHX−1(c) � 2 − α for almost all c (in the sense of 1-dimensional
measure), and that dimHX−1(c) = 2 − α with positive probability. Thus the con-
tours of index-α surfaces have, in general, dimension 2 − α.

The problems of generating sample surfaces for index-α Brownian functions
are considerable, and we do not go into details here. However, we remark that
an analogue of (16.13) for index-α surfaces is

X(x, y) =
∞∑

k=1

Ckλ
−αk sin (λk(x cos Bk + y sin Bk) + Ak)

where the Ck are independent with normal distribution of mean zero and vari-
ance 1, and the Ak and Bk are independent with uniform distribution on [0, 2π).
Such functions provide one possible approach to computer generation of ran-
dom surfaces.

The ideas in this chapter may be extended in many directions and combined
in many ways. Fractional Brownian motion and stable processes may be defined
from �n to �m for any n, m and there are many other variations. Questions
of level sets, multiple points, intersections with fixed sets, the images X(F)

for various fractals F , etc. arise in all these situations. Analysis of such prob-
lems often requires sophisticated probabilistic techniques alongside a variety of
geometrical arguments.

16.5 Notes and references

The probabilistic basis of Brownian motion is described in the books by Karlin
and Taylor (1975, 1981), Billingsley (1995) and Rogers and Williams (2000).

Fractional Brownian motion was introduced by Mandelbrot and Van Ness
(1968); see the papers in Mandelbrot (2002). The books by Adler (1981), Kahane



276 Brownian motion and Brownian surfaces

(1985), Samorodnitsky and Taqqu (1994) and Embrechts and Maejima (2002)
give detailed treatments of the mathematics of fractional Brownian functions and
surfaces, with the first two books including dimensional aspects and the latter
two emphasizing self-similarity. Multifractional Brownian motion is presented in
Ayache and Lévy Véhel (1999) and Ayache, Cohen and Lévy Véhel (2000).

Stable processes were introduced by Lévy (1948); see Samorodnitsky and
Taqqu (1994), Rogers and Williams (2000) and Mandelbrot (2002). The surveys
by Taylor (1973, 1986) mention many dimensional properties of these processes.

Computational methods for generating Brownian paths and surfaces are dis-
cussed, for example, in Voss (1985), Peitgen and Saupe (1988), Falconer and
Lévy Véhel (2000) and Embrechts and Maejima (2002).

Exercises

16.1 Use the statistical self-similarity of Brownian motion to show that, with probability
1, a Brownian trail in �3 has box dimension of at most 2.

16.2 Let X : [0, ∞) → �3 be usual Brownian motion. Show that, with probability 1,
the image X(F) of the middle third Cantor set F has Hausdorff dimension at most
log 4/ log 3. (Harder: show that it is almost surely equal to log 4/ log 3.) What is
the analogous result for index-α Brownian motion?

16.3 Let X : [0,∞) → �3 be usual Brownian motion, and let F be a compact subset of
�3. Use Theorem 8.2 to show that if dimHF > 1 then there is a positive probability
of the Brownian trail X(t) hitting F .

16.4 Let X(t) be Brownian motion, and c a constant. Show that the graph of the process
X(t) + ct has dimension 1 1

2 with probability 1. (This process is called Brownian
motion with drift.)

16.5 Show that, with probability 1, the Brownian sample function X : [0,∞) → � is
not monotonic on any interval [t, u].

16.6 Let X(t) be Brownian motion. Show that with probability 1, X(t) = 0 for some
t > 0. Use self-affinity to show that with probability 1, for every a > 0, X(t) = 0
for some t with 0 < t < a, and thus X(t) = 0 for infinitely many t with 0 < t < a.

16.7 Let X(t) be Brownian motion. Show that for q > 0, E(|X(t + h) − X(t)|q) = c|h|q
where c depends only on q.

16.8 Show that, if λ > α, then with probability 1 for almost all t the Hölder inequality
(16.12) fails.

16.9 Take 1
2 � α1 � α2 < 1 and let X1(t) and X2(t) be independent Brownian functions

from [0, 1] to � of indices α1 and α2 respectively. Show that, with probability 1, the
path in �2 given by {(X1(t), X2(t)) : 0 � t � 1} has Hausdorff and box dimensions
of (1 + α2 − α1)/α2.

16.10 Verify that for index-α fractional Brownian motion E((X(t) − X(0))(X(t + h) −
X(t)) = 1

2 [(t + h)2α − t2α − h2α]. Show that this is positive if 1
2 < α < 1 and neg-

ative if 0 < α < 1/2. What does this tell us about the sample functions?



Chapter 17 Multifractal measures

A mass distribution µ may be spread over a region in such a way that the
concentration of mass is highly irregular. Indeed, the set of points where the
local mass concentration obeys an index α power law, say µ(B(x, r)) � rα for
small r , may determine a different fractal for different values of α. Thus, a
whole range of fractals may arise from a single measure, and we may examine
the structure of these fractals and their inter-relationship. A measure µ with such
a rich structure is called a multifractal measure or just a multifractal. As with
fractals, a precise definition of ‘multifractal’ tends to be avoided.

Multifractal measures have been observed in many physical situations, for
example in fluid turbulence, rainfall distribution, mass distribution across the
universe, viscous fingering, neural networks, share prices, and in many other
phenomena.

An important class of multifractal occurs in dynamical systems, see Sec-
tion 13.7. If f : D → D is a mapping on a domain D, we can define a ‘residence
measure’ by

µ(A) = lim
m→∞

1

m
#{k : 1 � k � m andf k(x) ∈ A}

for subsets A of D, where x ∈ D is some initial point. Thus, µ(A) represents the
proportion of time that the iterates of x spend in A. We have seen that the support
of µ is often an attractor of f and may be a fractal. However, the non-uniformity
of µ across the attractor may highlight further dynamical structure which can be
recorded and analysed using multifractal theory.

Many ideas related to fractals have counterparts in multifractals, for example
projection of multifractal measures onto a line or plane may be considered in
an analogous manner to projection of fractals, though the calculations can be
considerably more awkward.

There are two basic approaches to multifractal analysis: fine theory, where we
examine the structure and dimensions of the fractals that arise themselves, and
coarse theory, where we consider the irregularities of distribution of the measure
of balls of small but positive radius r and then take a limit as r → 0. In many
ways, fine multifractal analysis parallels finding the Hausdorff dimension of sets,
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whilst coarse theory is related to box-counting dimension. The coarse approach is
usually more practicable when it comes to analysing physical examples or com-
puter experiments, but the fine theory may be more convenient for mathematical
analysis. There are many parallels between the fine and the coarse approaches,
and for many measures both approaches lead to the same ‘multifractal spectra’.

We outline coarse and fine multifractal theory, and then consider the special
case of self-similar measures in more detail, both to illustrate the theory and to
demonstrate central ideas such as Legendre transformation.

Throughout our discussion, we refer to the following example of a self-similar
multifractal measure on a Cantor set. Just as the middle third Cantor set illustrates
many features of fractal mathematics, this self-similar measure supported by the
Cantor set is typical of a large class of multifractal measures.

Example 17.1

Let p1, p2 > 0 be given, with p1 + p2 = 1. We construct a measure µ on the
middle third Cantor set F = ∩∞

k=0Ek by repeated subdivision. (Here Ek comprises
the 2k kth level intervals of length 3−k in the usual Cantor set construction see
figure 0.1.) Assign the left interval of E1 mass p1 and the right interval mass p2.
Divide the mass on each interval of E1 between its two subintervals of E2 in
the ratio p1 : p2. Continue in this way, so that the mass on each interval of Ek

is divided in ratio p1 : p2 between its two subintervals of Ek+1. This defines a
mass distribution on F, see Proposition 1.7.

It is easily seen that if I is a kth level interval of Ek then µ(I) = pr
1p

k−r
2 where,

in constructing I , a left-hand interval is taken r times and a right-hand interval
k − r times. If p1 �= p2 and k is large, the masses of the kth level intervals will
vary considerably, see figure 17.1, and this is a manifestation of multifractality.

17.1 Coarse multifractal analysis

Coarse multifractal analysis of a measure µ on �n with 0 < µ(�n) < ∞ is akin
to box-counting dimension, in that we count the number of mesh cubes C for
which µ(C) is roughly rα . (Recall that the r-mesh cubes in �n are the cubes of the
form [m1r, (m1 + 1)r] × · · · × [mnr, (mn + 1)r] where m1, . . . , mn are integers.)
For µ a finite measure on �n and α � 0 we write

Nr(α) = #{r-mesh cubes C with µ(C) � rα}, (17.1)

and define the coarse multifractal spectrum or coarse singularity spectrum of
µ as

fC(α) = lim
ε→0

lim
r→0

log+(Nr(α + ε) − Nr(α − ε))

− log r
(17.2)
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0 1
E0
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E4

•
•
•

Figure 17.1 Construction of the self-similar measure described in Example 17.1. The
mass on each interval of Ek in the construction of the Cantor set, indicated by the area
of the rectangle, is divided in the ratio p1 : p2 (in this case 1

3 : 2
3 ) between the two

subintervals of Ek+1. Continuing this process yields a self-similar measure on the Cantor
set

if the double limit exists. (We write log+ x ≡ max{0, log x}, which ensures fC(α)

� 0.) Definition (17.2) implies that if η > 0, and ε > 0 is small enough, then

r−fC(α)+η � Nr(α + ε) − Nr(α − ε) � r−fC(α)−η (17.3)

for all sufficiently small r . Roughly speaking −fC(α) is the power law exponent
for the number of r-mesh cubes C such that µ(C) � rα . Note that fC(α) is not
the box dimension of the set of x such that µ(C(x, r)) � rα as r → 0 where
C(x, r) is the r-mesh cube containing x; the coarse spectrum provides a global
overview of the fluctuations of µ at scale r , but gives no information about the
limiting behaviour of µ at any point.
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To allow for the possibility of the limit (17.2) not existing, we define the lower
and the upper coarse multifractal spectra of µ by

f
C
(α) = lim

ε→0
lim
r→0

log+(Nr(α + ε) − Nr(α − ε))

− log r
(17.4)

and

f C(α) = lim
ε→0

limr→0
log+(Nr(α + ε) − Nr(α − ε))

− log r
(17.5)

for α � 0.
It is usually awkward to calculate the coarse multifractal spectrum fC directly.

Continuation of Example 17.1. In this example, the set Ek is made up of 2k intervals

of length 3−k, and for each r , a number

(
k

r

)
of these have mass pr

1p
k−r
2 , where

(
k

r

)
is the usual binomial coefficient. Thus, assuming without loss of generality

that 0 < p1 < 1
2 , we have

N3−k (α) =
m∑

r=0

(
k

r

)
,

where m is the largest integer such that

pm
1 pk−m

2 � 3−kα, i.e. m � k(log p2 + α log 3)

log p2 − log p1
.

It is now possible, but tedious, to estimate N3−k (α) and thus examine its power
law exponent. However, we shortly encounter a better approach. �

Next, we introduce moment sums: for q ∈ � and r > 0 the qth power moment
sum of µ is given by

Mr(q) =
∑

Mr

µ(C)q, (17.6)

where the sum is over the set Mr of r-mesh cubes C for which µ(C) > 0.
(There is a problem of stability for negative q: if a cube C just clips the edge
of spt µ, then µ(C)q can be very large. There are ways around this difficulty,
for example by restricting the sums to cubes with a central portion intersecting
spt µ, but we do not pursue this here.) We identify the power law behaviour of
Mr(q) by defining

β(q) = lim
r→0

log Mr(q)

− log r
, (17.7)

assuming this limit exists.
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It is hardly surprising that these moment sums are related to the Nr(α). Using
(17.1), it follows that if q � 0 and α � 0

Mr(q) =
∑

Mr

µ(C)q � rqαNr(α), (17.8)

and if q < 0

Mr(q) =
∑

Mr

µ(C)q � rqα#{r-mesh cubes with 0 < µ(C) � rα}. (17.9)

These inequalities lead to a useful relationship between fc(α) and β(q) in
terms of Legendre transformation. The Legendre transform fL of β is defined
for α � 0 by

fL(α) = inf−∞<q<∞{β(q) + αq}, (17.10)

provided this is finite. There is a useful geometrical interpretation of the Legendre
transform. For those α for which the graph of β has under it a line of support Lα

of slope −α, the Legendre transform of β is given by the value of the intercept
of Lα with the vertical axis, see figure 17.2.

It is easy to see that the coarse spectrum is bounded above by the Legendre
transform of β.

Proposition 17.2
Let µ be a finite measure on �n, and assume that the limit in (17.7) exists. Then
for all α � 0,

f
C
(α) � f C(α) � fL(α) (17.11)

where fL is the Legendre transform of β.

b(q) curve

b(q) (q, b(q))

q

q

f (a) = b (q) + aq

La

b

tan−1a

Figure 17.2 The Legendre transform of β(q) is f (α), the intersection of the tangent Lα

of slope −α with the β-axis
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Proof. First take q � 0. Then given ε > 0, (17.8) and (17.5) imply that

Mr(q) � rq(α+ε)Nr(α + ε) � rq(α+ε)r−f C(α)+ε (17.12)

for arbitrarily small r . It follows from (17.7) that

−β(q) � q(α + ε) − f C(α) + ε,

so f C(α) � β(q) + αq by taking ε arbitrarily small. This inequality also holds
when q < 0 by a parallel argument, using (17.9) with α replaced by α − ε. �

The Legendre transform fL of β given by (17.10) is termed the Legendre
spectrum of µ. There are many measures for which the Legendre spectrum
equals the coarse multifractal spectrum, i.e. for which equality occurs in (17.11).

Continuation of Example 17.1. Recalling that in this example

(
k

r

)
of the kth level

intervals of lengths 3−k have mass pr
1p

k−r
2 , we get

M3−k (q) =
k∑

r=0

(
k

r

)
p

qr

1 p
q(k−r)

2 = (p
q

1 + p
q

2 )k.

Hence

β(q) = lim
r→0

log Mr(q)

− log r
= lim

k→∞
log M3−k (q)

− log 3−k
= log(p

q

1 + p
q

2 )

log 3
. (17.13)

(It is easy to see that it is enough to let r tend to 0 through the values 3−k,
compare (3.14).)

The Legendre spectrum of µ comes from taking the Legendre transform of β,
that is by minimizing β(q) + αq over q ∈ �. Elementary calculus gives that the
minimum occurs when q satisfies

α = −p
q

1 log p1 + p
q

2 log p2

(p
q

1 + p
q

2 ) log 3
.

The Legendre spectrum is the minimum value, which is given in terms of the
parameter q by

fL(α) = log(p
q

1 + p
q

2 )

log 3
− q(p

q

1 log p1 + p
q

2 log p2)

(p
q

1 + p
q

2 ) log 3
. (17.14)

The graph of fL(α) when p1 = 1
3 , p2 = 2

3 is displayed in figure 17.3. As we
shall see in Section 17.3, fL(α) = fC(α), i.e. the Legendre spectrum coincides
with the coarse multifractal spectrum. �
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Figure 17.3 The multifractal spectrum of Example 17.1 with p1 = 1
3 , p2 = 2

3

In practical situations, multifractal spectra are often awkward to estimate and
work with. One might hope to compute the coarse spectrum fC by ‘box-counting’.
For instance, if µ is a residence measure on the attractor of a dynamical system in
the plane, a count of the proportion of the iterates of an initial point that lie in each
r-mesh square C might be used to estimate the number of squares for which αi �
log µ(C)/ log r < αi+1, where 0 � α1 < · · · < αk . Examining this ‘histogram’
for various r enables the power law behaviour of Nr(α + ε) − Nr(α + ε) to be
studied and f (α) to be estimated. However, this histogram method tends to be
computationally slow and awkward.

In general, it is more satisfactory to use the method of moments for experimen-
tal determination of a multifractal spectrum. Thus, for a range of q, the moment
sums (17.6) are estimated for various small r and the power law behaviour
examined to estimate β(q) using (17.7). Legendre transformation of β gives a
Legendre spectrum of µ, and this is often taken to be the coarse spectrum. The
method of moments is usually more numerically manageable than the histogram
method.

17.2 Fine multifractal analysis

Fine multifractal analysis looks directly at the fractals determined by the local
intensity of a measure. Let µ be a measure on �n with 0 < µ(�n) < ∞. We
define the local dimension or Hölder exponent of µ at x by

dimlocµ(x) = lim
r→0

log µ(B(x, r))

log r
, (17.15)
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provided this limit exists. (More generally, one can work with upper and lower
local limits leading to upper and lower local dimensions, but we do not pursue
this here.) We study the sets of points x ∈ �n where the local dimension takes
particular values. For α � 0 we define

Fα = {x ∈ �n : dimlocµ(x) = α}
=

{
x ∈ �n : lim

r→0

log µ(B(x, r))

log r
= α

}
. (17.16)

Thus, Fα comprises those points where the local dimension exists and equals α.
In fine multifractal analysis we aim to find the dimensions of Fα for a range

of α. In most examples of interest Fα is dense in the support of µ so dimBFα =
dimBFα = dimB(spt µ) (and similarly for upper box dimensions) by Proposition
3.4, so box-counting dimensions are of little use in discriminating between the Fα.
Thus, we concentrate on the fine (Hausdorff) multifractal spectrum or singularity
spectrum of µ defined by

fH(α) = dimHFα. (17.17)

(We do not consider here the fine packing spectrum which has a similar definition
using packing dimension.)

Clearly, 0 � fH(α) � dimH(sptµ) for all α � 0, and it follows from Proposi-
tion 4.9(b) that

0 � fH(α) � α. (17.18)

Continuation of Example 17.1. We may code the points x of the Cantor set F as
(i1, i2, . . .) in the usual way, with ik = 1 if x is in the left sub-interval at the kth
stage of the Cantor set construction, and ik = 2 if x is in the right sub-interval.
Then, writing nj (x|k), j = 1, 2, for the number of occurrences of j in the first k

terms of the sequence coding x, we have µ(B(x, 3−k)) = p
n1(x|k)
1 p

n2(x|k)
2 , so that

log
µ(B(x, 3−k))

log 3−k
= −1

log 3

(
n1(x|k)

k
log p1 + n2(x|k)

k
log p2

)
.

Thus, if nj (x|k)/k → αj , j = 1, 2, then x ∈ Fα where α = −(α1 log p1 +
α2 log p2)/ log 3. In this instance, we could now calculate fH(α) = dimHFα as
in Proposition 10.1, and this gives a parametric expression equivalent to (17.14).
We defer a formal calculation until the next section, where it will be done in a
more general context. �

Just as the Hausdorff dimension of a set is never more than its box dimension,
there is a basic inequality between the fine and coarse spectra.
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Lemma 17.3

Let µ be a finite measure on �n. Then

fH(α) � f
C
(α) � f C(α) (17.19)

for all α � 0.

Proof. The right-hand inequality of (17.19) is obvious. We prove the left-hand
inequality in the case where µ is a measure on �; the proof is similar for n � 2
except that measures of balls and cubes have to be compared instead of measures
of intervals.

For fixed α � 0 write for brevity f ≡ fH(α) = dimHFα; we may assume
f > 0. Given 0 < ε < f then Hf −ε(Fα) = ∞. By (17.16) there is a set
F 0

α ⊂ Fα with Hf −ε(F 0
α ) > 1 and a number c0 > 0 such that

3rα+ε � µ(B(x, r)) < 2ε−αrα−ε (17.20)

for all x ∈ F 0
α and all 0 < r � c0, using Egoroff’s theorem. We may choose δ

with 0 < δ � 1
2c0 such that Hf −ε

δ (F 0
α ) � 1.

For each r � δ we consider r-mesh intervals (of the form [mr, (m + 1)r] with
m ∈ �) that intersect F 0

α . Such an interval I contains a point x of F 0
α , with

B(x, r) ⊂ I ∪ IL ∪ IR ⊂ B(x, 2r),

where IL and IR are the r-mesh intervals immediately to the left and right of I .
By (17.20)

3rα+ε � µ(B(x, r)) � µ(I ∪ IL ∪ IR) � µ(B(x, 2r)) < rα−ε,

so that
rα+ε � µ(I0) < rα−ε, (17.21)

where I0 is one of I , IL and IR . By definition of Hf −ε

δ there are at least
rε−fHf −ε

δ (F 0
α ) � rε−f distinct r-mesh intervals that intersect F 0

α , so there are at
least 1

3 rε−f distinct r-mesh intervals I0 that satisfy (17.21) (note that two inter-
vals I separated by 2r or more give rise to different intervals I0). We conclude
that for r � δ

Nr(α + ε) − Nr(α − ε) � 1
3rε−f ,

so from (17.4) f
C
(α) � f − ε; as this is true for all positive ε we conclude

f
C
(α) � f = fH(α). �
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Just as many fractals we have encountered have equal box and Hausdorff
dimensions, many common multifractal measures have equal coarse and fine
spectra, that is, equality in (17.19). In the next section, we shall show that this
is the case for self-similar measures.

By setting up Hausdorff-type measures tailored for multifractal purposes, we
can define a quantity β(q) playing a similar role in the fine theory to that of (17.7)
in the coarse theory. The Legendre transform of this β(q) gives an upper bound
for the fine multifractal spectrum, and again in many cases gives the actual value.

17.3 Self-similar multifractals

In this section we calculate the fine multifractal spectrum of a self-similar measure
on �, of which Example 17.1 is a specific case. Not only are self-similar measures
important in their own right, but also the methods to be described adapt to many
other classes of measures.

We consider a self-similar measure µ supported on a self-similar subset F

of �. Let S1, . . . , Sm : � → � be contracting similarities with ratios c1, . . . , cm.
As in Chapter 9, the iterated function system {S1, . . . , Sm} has a (unique non-
empty compact) attractor F ⊂ �. We assume that a strong separation condition
holds, that is there is a closed interval I such that Si(I ) ⊂ I for all i, and
Si(I ) ∩ Sj (I ) = Ø whenever i �= j .

As in Chapter 9, we index the intervals in the natural construction of F by
the finite sequences Ik = {(i1, . . . , ik) : 1 � i � m}, writing i = (i1, . . . , ik) for a
typical sequence of Ik. Thus

Ii = Ii1,...,ik = Si1
◦ · · · ◦Sik (I ). (17.22)

For convenience, we assume that |I | = 1, so for i = (i1, i2, . . . , ik) ∈ Ik we have

|Ii| = ci ≡ ci1ci2 · · · cik . (17.23)

We define a self-similar measure µ with support F by repeated subdivision.
Let p1, . . . , pm be ‘probabilities’ or ‘mass ratios’, that is pi > 0 for all i and∑m

i=1 pi = 1. Repeatedly dividing the mass on intervals Ii1,...,ik between subin-
tervals Ii1,...,ik,1, . . . , Ii1,...,ik ,m in the ratios p1 : · · · : pm defines a measure µ on
F , see Proposition 1.7. Thus

µ(Ii1,i2,...,ik ) = pi ≡ pi1pi2 · · · pik . (17.24)

It is easy to see that µ is a self-similar measure, in the sense that

µ(A) =
m∑

i=1

piµ(S−1
i (A)) (17.25)

for all sets A.
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Next, given a real number q, we define β = β(q) as the positive number satisfying

m∑

i=1

p
q

i c
β(q)

i = 1; (17.26)

since 0 < ci, pi < 1 such a number β(q) exists and is unique. Moreover
β : � → � is a decreasing function with

lim
q→−∞ β(q) = ∞ and lim

q→∞ β(q) = −∞. (17.27)

Differentiating (17.26) implicitly with respect to q gives

0 =
m∑

i=1

p
q

i c
β(q)

i

(
log pi + dβ

dq
log ci

)
, (17.28)

and differentiating again gives

0 =
m∑

i=1

p
q

i c
β(q)

i

(
d2β

dq2
log ci +

(
log pi + dβ

dq
log ci

)2
)

.

Thus, d2β/dq2 � 0, so β is convex in q. Provided log pi/ log ci is not the same
for all i = 1, . . . , m, then d2β/dq2 > 0 and β is strictly convex; we assume
henceforth that this holds to avoid degenerate cases.

We will show that the fine (Hausdorff) multifractal spectrum, fH (α) = dim Fα ,
is the Legendre transform of β, where, as before, the Legendre transform f of β

is defined by
f (α) = inf−∞<q<∞{β(q) + αq}, (17.29)

provided this is finite. Since β : � → � is a convex function, there is a range
of α, say α ∈ [αmin, αmax] for which the graph of β has a line of support Lα of
slope −α, and for such α this support line is unique (thus −αmin and −αmax are
the slopes of the asymptotes of the graph of β). Then the Legendre transform
of β is f : [αmin, αmax] → � given by the value of the intercept of Lα with the
vertical axis, again see figure 17.2. It is clear that f is continuous in α.

Since β is strictly convex, for a given α the infimum in (17.29) is attained at
a unique q = q(α). Equating the derivative of β(q) + αq to 0, this occurs when

α = −dβ

dq
(17.30)

so that

f (α) = αq + β(q) = −q
dβ

dq
+ β(q). (17.31)
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Note that if any one of q ∈ �, β ∈ � and α ∈ (αmin, αmax) is given, the other two
are determined by (17.26), (17.30) and (17.31). Using (17.30) and rearranging
(17.28) gives

α =
∑m

i=1 p
q

i c
β

i log pi
∑m

i=1 p
q

i c
β

i log ci

. (17.32)

On inspecting this expression, we see that

αmin = min
1�i�m

log pi/ log ci and αmax = max
1�i�m

log pi/ log ci (17.33)

which correspond to q approaching ∞ and −∞, respectively.
Provided that the numbers {log pi/ log ci}mi=1 are all different, f (αmin) =

f (αmax) = 0, see Exercise 17.8.
Differentiating (17.31) with respect to α and using (17.30),

df

dα
= α

dq

dα
+ q + dβ

dq

dq

dα
= q. (17.34)

Since q decreases as α increases, it follows that f is a concave function of α.
Some values of q are of special interest, see figure 17.4. If q = 0 then β(q) =

dimHF = dimH(sptµ), comparing (17.26) and the dimension formula for self-
similar sets (9.13). Moreover, by (17.34), q = 0 corresponds to the maximum of
f (α); hence, dimHF = dimH(spt µ) = maxα f (α).

When q = 1 (17.26) implies β(q) = 0 so f (α) = α by (17.31). Moreover,
df (α)/dα = q = 1, so that the f (α) curve lies under the line f = α and touches
it just at the point corresponding to q = 1. It will follow later that α(1) =
f (α(1)) = dimHµ, where

dimHµ = inf{dimHE : E is a Borel set with µ(E) > 0} (17.35)

is the Hausdorff dimension of the measure µ. Thus the dimension of µ is the
dimension of a set on which a significant part of µ is concentrated.

We can now state the main result on the fine multifractal spectrum of a
self-similar measure, that the Hausdorff multifractal spectrum is given by the
Legendre transform (17.29) of β(q) given by (17.26).

Theorem 17.4

Let µ be a self-similar measure as above and let

Fα = {x ∈ �n : dimlocµ(x) = α}.
If α /∈ [αmin, αmax] then Fα = Ø, and if α ∈ [αmin, αmax] then

fH (α) ≡ dimHFα = f (α), (17.36)

where f is the Legendre transform of β(q).
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Figure 17.4 Form of the multifractal functions for a typical self-similar measure. (a) The
β(q) curve, (b) the ‘multifractal spectrum’ f (α) = dimH Fα , which is the Legendre trans-
form of β(q)

We first give a simple partial proof, and then a slightly more involved full
proof of this theorem.

As is usual in this sort of work, it is convenient to redefine Fα in terms of the
component intervals Ii rather than the balls B(x, r). For x ∈ sptµ we write Ik(x)

for the kth level set Ii1,...,ik that contains x. We shall go back and forth between
the set Ik(x) and the ball B(x, r) where |Ik(x)| is comparable with r .
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Lemma 17.5

For all x ∈ F

dimlocµ(x) ≡ lim
r→0

log µ(B(x, r))

log r
= lim

k→∞
log µ(Ik(x))

log |Ik(x)| , (17.37)

with either both or neither of these limits existing. In particular

Fα =
{
x ∈ F : lim

k→∞
log µ(Ik(x))

log |Ik(x)| = α

}
. (17.38)

Proof. Let b = min1�i�m |Ii| and let d be the minimum gap between the intervals
I1, . . . , Im. Let x ∈ F and let 0 < r < 1, and let k be the integer such that

|Ik(x)| � r < |Ik−1(x)| � b−1|Ik(x)|.

Then Ik(x) ⊂ B(x, r) and B(x, dr) ∩ E ⊂ Ik(x) since the gap between Ik(x) and
any other kth level interval is at least d|Ik−1(x)| > dr . Then

µ(B(x, dr)) � µ(Ik(x)) � µ(B(x, r)).

Hence,

log µ(B(x, dr))

log(dr) − log d
= log µ(B(x, dr))

log r
� log µ(Ik(x))

log |Ik(x)| � log µ(B(x, r))

log br

= log µ(B(x, r))

log b + log r
.

Letting r → 0, that is k → ∞, gives the result. �

We now give a direct proof of the upper bound dimHFα � f (α); this is included
as it uses the idea of summing over a restricted class on intervals, a technique
which is used frequently in multifractal theory.

Partial proof of Theorem 17.4. We shall show that f (α) � β(q) + qα for q > 0.
The case of q � 0 is similar, but with sign changes, see Exercise 17.13, and
taking all values of q together gives dimHFα � f (α).

Take ε > 0. Let Qk denote those kth level sequences i = (i1, . . . , ik) ∈ Ik

such that
|Ii|α+ε � µ(Ii). (17.39)



Self-similar multifractals 291

Then:

∑

i∈Qk

|Ii|β+q(α+ε) �
∑

i∈Qk

|Ii|βµ(Ii)
q

�
∑

i∈Ik

|Ii|βµ(Ii)
q

=
∑

i1,...,ik

(ci1ci2 . . . cik )
β(pi1pi2 . . . pik )

q

=
(

m∑

i=1

p
q

i c
β

i

)k

= 1, (17.40)

using a multinomial expansion and (17.26).
For each integer K , write

F K = {x ∈ F : µ(Ik(x)) � |Ik(x)|α+ε for all k � K}.

Then, for all k � K , the set F K ⊂ ⋃
i∈Qk

Ii by (17.39), so by (17.40),

Hβ+q(α+ε)

ck (F K) � 1, since for a kth level interval, |Ii| � ck where c =
max1�i�m ci . Letting k → ∞ gives Hβ+q(α+ε)(F K) � 1, so that dimH(F K) �
β + q(α + ε). But Fα ⊂ ⋃∞

K=1 F K by (17.38), since if log µ(Ik(x))/ log |Ik(x)|
→ α then µ(Ik(x)) � |Ik(x)|α+ε for all k sufficiently large. Thus dimH(Fα) �
β + q(α + ε) for all ε > 0, giving dimH(Fα) � β + qα. �

[∗The rest of this section may be omitted.]
We now embark on a full proof of Theorem 17.4. Writing

�(q, β) =
m∑

i=1

p
q

i c
β

i (17.41)

for q, β ∈ �, β(q) is defined by �(q, β(q)) = 1, see (17.26). We require the
following estimate of � near (q, β(q)).

Lemma 17.6

For all ε > 0,
�(q + δ, β(q) + (−α + ε)δ) < 1 (17.42)

and
�(q − δ, β(q) + (α + ε)δ) < 1 (17.43)

for all sufficiently small δ > 0.
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Proof. Recalling that dβ/dq = −α, expansion about q gives

β(q + δ) = β(q) − αδ + O(δ2) < β(q) + (−α + ε)δ

if δ is small enough. Since �(q + δ, β(q + δ)) = 1 and � is decreasing in
its second argument, (17.42) follows. Inequality (17.43) is derived in a similar
way. �

To prove Theorem 17.4, for each α we concentrate a measure ν on Fα and
examine the power law behaviour of ν(B(x, r)) as r → 0, so that we can use
Proposition 4.9 to find the dimension of Fα . Given q ∈ � and β = β(q), (17.26)
enables us to define a probability measure ν on sptµ by repeated subdivision
such that

ν(Ii1,...,ik ) = (pi1pi2 · · · pik )
q(ci1ci2 · · · cik )

β, (17.44)

for each (i1, . . . , ik), and extending this to a measure on F in the usual way.
Together with (17.23) and (17.24) this gives three ways of quantifying the Ii:

|Ii| = ci, µ(Ii) = pi, ν(Ii) = p
q

i c
β

i (17.45)

for all i = (i1, . . . , ik).
The following proposition contains the crux of the multifractal spectrum cal-

culation.

Proposition 17.7

With q, β, α and f as above, and with ν determined by (17.44),

(a) ν(Fα) = 1,
(b) for all x ∈ Fα we have log ν(B(x, r))/ log r → f (α) as r → 0.

Proof. Let ε > 0 be given. Then for all δ > 0

ν{x : µ(Ik(x)) � |Ik(x)|α−ε} = ν{x : 1 � µ(Ik(x))δ |Ik(x)|(ε−α)δ}

�
∫

µ(Ik(x))δ |Ik(x)|(ε−α)δdν(x)

=
∑

i∈Ik

µ(Ii)
δ|Ii|(ε−α)δν(Ii)

=
∑

i∈Ik

p
q+δ

i c
β+(ε−α)δ

i

=
(

m∑

i=1

p
q+δ

i c
β+(ε−α)δ

i

)k

= [�(q + δ, β + (ε − α)δ)]k,
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where � is given by (17.41), using (17.45) and a multinomial expansion. Choos-
ing δ small enough and using (17.42) gives that

ν{x : µ(Ik(x)) � |Ik(x)|α−ε} � γ k (17.46)

where γ < 1 is independent of k. Thus

ν{x : µ(Ik(x)) � |Ik(x)|α−ε for some k � K} �
∞∑

k=K

γ k � γ K/(1 − γ ).

It follows that for ν-almost all x we have

lim
k→∞

log µ(Ik(x))

log |Ik(x)| � α − ε.

This is true for all ε > 0, so we get the left-hand inequality of

α � lim
k→∞

log µ(Ik(x))

log |Ik(x)| � lim
k→∞

log µ(Ik(x))

log |Ik(x)| � α.

The right-hand inequality follows in the same way, using (17.43) in estimating
ν{x : µ(Ik(I )) � |Ik(x)|α+ε}. From (17.37) we conclude that for ν-almost all x

dimlocµ(x) = lim
k→∞

log µ(Ik(x))

log |Ik(x)| = α

and it follows that ν(Fα) = ν(F ) = 1.
For (b) note that from (17.45)

log ν(Ik(x))

log |Ik(x)| = q
log µ(Ik(x))

log |Ik(x)| + β
log |Ik(x)|
log |Ik(x)| , (17.47)

so for all x ∈ Fα
log ν(Ik(x))

log |Ik(x)| → qα + β = f (17.48)

as k → ∞, using (17.31). Part (b) follows, applying (17.37) with ν replacing
µ. �

Our main Theorem 17.4 on the multifractal spectrum of self-similar measures
now follows easily.

Proof of Theorem 17.4. From (17.45)

log µ(Ii)

log |Ii| =
∑k

j=1 log pij
∑k

j=1 log cij
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where i = (i1, . . . , ik), so by (17.33) log µ(Ii)/ log |Ii| ∈ [αmin, αmax] for all i.
Thus the only possible limit points of log µ(Ii)/ log |Ii|, and so by (17.37) of
log B(x, r)/ log r , are in [αmin, αmax]. In particular, Fα = Ø if α /∈ [αmin, αmax].

If α ∈ (αmin, αmax) then by Proposition 17.7 there exists a measure ν concen-
trated on Fα with limr→0 log ν(B(x, r))/ log r = f (α) for all x ∈ Fα , so (17.36)
follows from Proposition 4.9. For the cases α = αmin and α = αmax, see Exercise
17.14. �

Thus, for a self-similar measure, the dimension of Fα may be calculated by
taking the Legendre transform of β(q) given by (17.26).

The dimensions of spt µ and of the measure µ, see (17.35), may easily be
found from the multifractal spectrum.

Proposition 17.8

Let µ be a self-similar measure as above. Regarding α = α(q) as a function of q,

(a) f (α) takes its maximum when α = α(0), with f (α(0)) = dimHsptµ.
(b) f (α(1)) = α(1) = dimHµ.

Proof. Part (a) and that f (α(1)) = α(1) were noted as a consequence of (17.34).
For the dimension of the measure µ, if q = 1 then β = 0 from (17.26), so by
(17.44) the measure ν is identical to µ. By Proposition 17.7 µ(Fα(1)) = 1 and
dimlocµ(x) = f (α(1)) for all x ∈ Fα(1), so by Proposition 4.9, dimHE = f (α(1))

for all E with µ(E) > 0. Thus (b) follows from the definition of the dimension
of a measure (17.35). �

Next we show that the coarse spectrum of a self-similar measure is also equal
to f (α), the Legendre transform of β.

Proposition 17.9

Let µ be a self-similar measure on � as above. Then

f
C
(α) = f C(α) = fH(α) = f (α) (17.49)

for all α = α(q) for which q � 0.

Proof. We first note that by Theorem 17.4 and Lemma 17.3 we have f (α) =
fH(α) � f

C
(α) � f C(α), where the coarse spectra are given by (17.4) and (17.5).

To prove the opposite inequality, let d be the minimum separation of Ii and Ij

for i �= j , and write a = 2/d . Given r < a−1, let Q be the set of all sequences
i = (i1, . . . , ik) ∈ Ik such that |Ii1,...,ik | � ar but |Ii1,...,ik−1 | > ar . Then

abr < |Ii| = ci � ar (17.50)
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if i ∈ Q, where b = min1�i�m ci . We note that each point of F lies in exactly
one set Ii with i ∈ Q, and also that for distinct i, j ∈ Q the sets Ii and Ij have
separation at least dar = 2r .

Suppose q > 0 and let β, α and f be the corresponding values given by
(17.26), (17.30) and (17.31). Then

#{i ∈ Q : µ(Ii) � a−α|Ii|α} = #{i ∈ Q : 1 � (aα|Ii|−αµ(Ii))
q}

= #{i ∈ Q : 1 � aαqp
q

i c
−αq

i }
� aαq

∑

i∈Q
p

q

i c
−αq

i

= aαq
∑

i∈Q
p

q

i c
β

i c
−β−αq

i

� aαq(abr)−β−αq
∑

i∈Q
p

q

i c
β

i

� aαq(ab)−f r−f ,

using (17.50), (17.31) and that
∑

i∈Q p
q

i c
β

i = 1, an identity that follows by repea-
ted substitution of

∑m
i=1 p

q

i,ic
β

i,i = p
q

i c
β

i in itself. Every r-mesh interval intersects
at most one of the sets Ii for i ∈ Q. With Nr(α) as in (17.1)

Nr(α) = #{r-mesh intervals C : µ(C) � rα}
� #{i ∈ Q : µ(Ii) � a−α|Ii|α}
� aαq(ab)−f (α)r−f (α),

using (17.50). It follows that there is a number c such that for sufficiently small
ε and r

Nr(α + ε) − Nr(α − ε) � Nr(α + ε) � cr−f (α+ε),

so, by (17.5), f C(α) � f (α + ε) for all ε > 0; since f is continuous f C(α) �
f (α). �

The coarse spectrum, as we have defined it, is not well-enough behaved to
give equality in (17.49) for α corresponding to q < 0.

Continuation of Example 17.1. Proposition 17.9 allows us to complete our
analysis of this example. With β(q) = log(p

q

1 + p
q

2 )/ log 3, the coarse and fine
multifractal spectra of µ are equal to the Legendre transform f (α) of β(q), that
is fC(α) = fH(α) = f (α) for α ∈ [αmin, αmax], where αmin = mini=1,2 log pi/

− log 3 and αmax = maxi=1,2 log pi/ − log 3. As before, this leads to the
parametric expression for f given in (17.14).

These methods generalize to many further multifractal measures. In particular,
the derivation of the multifractal spectrum for self-similar measures extends to
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self-similar measures on �n without difficulty, and the separation condition on
the intervals Si(I ) can be weakened to the open set condition.

17.4 Notes and references

A great deal has been written on multifractals, and multifractal spectra have been
calculated for many specific measures. We mention a small selection of references
where further details may be found.

The idea of studying measures from a fractal viewpoint is implicit in Mandel-
brot’s essay (1982); see also Mandelbrot (1974). Legendre transformation was
introduced into multifractal analysis in Frisch and Parisi (1985) and Halsey et al.
(1986). Various approaches at a fairly basic level are given by Evertsz and Man-
delbrot (1992), Falconer (1997), Feder (1988), McCauley (1993) and Tél (1988).
Mandelbrot’s ‘Selecta’ (1999) includes reprints of many papers, as well as a wide-
ranging survey and a comprehensive bibliography on multifractals. The book by
Harte (2001) gives a substantial treatment of the theory with many references,
and in particular addresses statistical estimation of spectra.

Measure theoretic approaches to multifractal theory, including use of measures
of Hausdorff type and the relationships between different types of spectra, are
given by Brown, Michon and Peyrière (1992), Olsen (1995) and Pesin (1997).
A careful treatment of the coarse theory is given by Riedi (1995).

Self-similar measures are analysed by Cawley and Mauldin (1992), and Edgar
and Mauldin (1992) and Olsen (1994) extend this to graph-directed construc-
tions of measures. For self-similar multifractals with infinitely many similarities,
see Mandelbrot and Riedi (1995) and Mauldin and Urbański (1996). Extensions
to random self-similar measures are considered by Mandelbrot (1974), Kahane
and Peyrière (1976) and Olsen (1994), to self-conformal measures and weaker
separation conditions by Patzschke (1997), and to vector-valued multifractals
by Falconer and O’Neil (1996). McCauley (1993), Simpelaere (1994) and Pesin
(1997) consider multifractal measures that occur in dynamical systems. Jaffard
(1997) discusses the local form of functions from a multifractal viewpoint.

There are many other interesting aspects of multifractal behaviour, such as the
interpretation of negative dimensions, see Mandelbrot (1991), and the geometrical
properties of multifractals, such as their behaviour under projections, intersections
or products, see Olsen (2000).

Exercises

17.1 Find the Legendre transform of β(q) = e−q .

17.2 Let µ1, µ2 be finite measures on �n with disjoint supports, and define ν = µ1 + µ2.
Show that f ν

H(α) = max{f 1
H(α), f 2

H(α)} where f ν
H, f 1

H and f 2
H are the Hausdorff

spectra of ν, µ1 and µ2. Deduce that fH(α) need not be concave over the range of
α for which it does not vanish.
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17.3 Let µ be a finite measure on �n and let g : �n → �n be a bi-Lipschitz function.
Define the image measure ν on �n by ν(A) = µ(g−1(A)). Show that the local
dimensions dimlocµ(x) and dimlocν(g(x)) are equal when either exists. Hence show
that fH(α) given by (17.17) is the same for both ν and µ.

17.4 Let µ be a self-similar measure supported by the ‘middle half’ Cantor set, so c1 =
c2 = 1

4 , with the mass repeatedly divided between the left and right parts in the ratio
p1 : p2, where p1 + p2 = 1 and p1 < p2. Show that β(q) = log(p

q

1 + p
q

2 )/ log 4,
and hence find α and f in terms of the parameter q.

17.5 Let µ be the measure on the middle half Cantor set of Exercise 17.4. For q � 0
estimate the moment sums (17.6). [Hint: consider the case where r = 4−k first.]
Hence show that β(q) given by (17.7) coincides with that defined by that stated in
Exercise 17.4.

17.6 Let µ be a self-similar measure constructed by repeated subdivision of the support
in the ratios c1 = 1

2 and c2 = 1
4 and of the measure in ratios p1 and p2. Obtain an

explicit formula for β(q).

17.7 Let µ be the measure of Example 17.1, with β given by (17.13). Show that β(q) −
β(−q) = q log(p1p2)/ log 3. Hence show the multifractal spectrum f (α) given by
the Legendre transform (17.10) is symmetrical about α = − log(p1p2)/2 log 3, that
is f (α) = f (− log(p1p2)/ log 3 − α).

17.8 Let µ be the measure of Example 17.1, with 0 < p1 < p2 < 1 and β given by
(17.13). Show that for large q, β(q) = q log p2/ log 3 + o(1) and obtain a similar
expression for q large negative. (Here o(1) means a function of q that tends to 0 as
q → ∞.) Deduce that the asymptotes of the graph of β(q) pass through the origin,
that αmin = − log p2/ log 3, αmax = − log p1/ log 3 and that f (αmin) = f (αmax) =
0.

17.9 For the self-similar measures discussed in Section 17.3, show that d2f/dα2 < 0
for αmin < α < αmax; thus the f (α) curve is strictly concave.

17.10 With β defined by (17.26), show that β(q) � 1 − q if 0 < q � 1 and
β(q) � 1 − q if q � 1. (Hint: recall Hölder’s inequality:

∑m
i=1 aibi �

(∑m
i=1 a

p

i

)1/p ( ∑m
i=1 b

p′
i

)1/p′
, where 1 < p < ∞ and 1/p + 1/p′ = 1.)

17.11 Let µ be a finite measure on �2 and let proj denote projection onto a given
line L. Define the projection of µ onto L by (proj µ)(A) = µ{x ∈ �2 : proj x ∈
A} for A ⊂ L. For x ∈ �2, show that limr→0 log((proj µ)(BL(proj x, r)))/ log r �
limr→0 log µ(B(x, r))/ log r , where BL(y, r) is the interval within L of centre y

and length 2r .

17.12 Adapt the ‘Partial proof of Theorem 17.4’ to show that dimHFα � β(q) + qα for
the case of α corresponding to q < 0. (Hint: consider

∑ |I |β+q(α−ε) for intervals
I with µ(I) � |I |α−ε .)

17.13 Extend the ‘Partial proof of Theorem 17.4’ to show that, for α corresponding to
q > 0,

dimH{x ∈ F : lim
k→∞

log µ(Ik(x))/ log |Ik(x)| � α} � f (α).

17.14 Prove (17.36) when α = αmin. (Hint: take α close to αmin, and note that Propo-
sition 17.7 remains true with (b) replaced by ‘for all x such that log µ(B(x, r))/

log r � α we have limr→0 log ν(B(x, r))/ log r � f (α)’.)



Chapter 18 Physical applications

Cloud boundaries, mountain skylines, coastlines, forked lightning, . . .; these, and
many other natural objects have a form much better described in fractal terms than
by the straight lines and smooth curves of classical geometry. Fractal mathematics
ought, therefore, to be well suited to modelling and making predictions about
such phenomena.

There are, however, considerable difficulties in applying the mathematics of
fractal geometry to real-life examples. We might estimate the box dimension of,
say, the coastline of Britain by counting the number Nδ of mesh squares of side δ

intersected by the coastline. For a range of δ between 20 m and 200 km the graph
of log Nδ against − log δ is closely matched by a straight line of slope about 1.2.
Thus the power law Nδ � constant × δ−1.2 is valid for such δ and it makes sense
to say that the coastline has dimension 1.2 over this range of scales. However,
as δ gets smaller, this power law first becomes inaccurate and then meaningless.
Similarly, with other physical examples, estimates of dimension using boxes of
side δ inevitably break down well before a molecular scale is reached.

The theory of fractals studied in Part I of this book depends on taking lim-
its as δ → 0, which cannot be achieved in reality. There are no true fractals
in nature—for that matter, there are no inextensible strings or frictionless pul-
leys either!

Nevertheless, it should be possible to apply the mathematical theory of ‘exact’
fractals to the ‘approximate’ fractals of nature, and this has been achieved con-
vincingly in many situations. This is analogous to the well established use of
classical geometry in science—for example, regarding the earth as spherical
provides a good enough approximation for many calculations involving its grav-
itational field.

Perhaps the most convincing example of a physical phenomenon with a fractal
model is that of Brownian motion; see Chapter 16. The underlying physical
assumption, that a particle subject to random molecular bombardment moves with
increments distributed according to a normal distribution, leads to the conclusion
that the particle trail has dimension 2. This can be checked experimentally using
box-counting methods. The motion can also be simulated on a computer, by
plotting a trail formed by a large number of small random increments. The
dimension of such computer realizations can also be estimated by box counting.
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Brownian motion, which may be observed in reality or on a computer, has a
fractal form predicted by a theoretical model. (It should, perhaps, be pointed
out that even Brownian paths fail to be described by fractals on a very small
scale, since infinite energy would be required for a particle to follow a nowhere-
differentiable path of dimension 2.) Linking up experiment, simulation and theory
must surely be the aim with other physical manifestations of fractals.

The study of fractals in nature thus proceeds on these three fronts: experiment,
simulation and theory. Physical objects are observed and measured, dimensions
and, perhaps, multifractal spectra are estimated over an appropriate range of
scales, and their dependence on various parameters noted. Theoretical techniques,
such as assuming the Projection theorem 6.1 to estimate the dimension of an
object from a photograph, are sometimes used here. Of course, for a dimension
to have any significance, repeating an experiment must lead to the same value.

Whilst a dimension may have some interest purely as a physical constant, it
is much more satisfying if fractal properties can be explained in physical terms.
Therefore, the next stage is to devise some sort of mechanism to explain the
natural phenomena. Computational simulation then permits evaluation of various
models by comparing characteristics, such as dimension, of the simulation and in
reality. Computational methods are always approximate; this can actually be an
advantage when modelling natural rather than exact fractals in that very small-
scale effects will be neglected.

It is desirable to have a theoretical model that is mathematically manage-
able, with basic physical features, such as the apparent dimension, derivable
from a mathematical argument. The model should account for the dependence of
these features on the various parameters, and, ideally, be predictive as well as
descriptive. Fractal phenomena in nature are often rather complicated to describe,
and various assumptions and approximations may be required in setting up and
analysing a mathematical model. Of course, the ability to do this in a way that pre-
serves the physical content is the mark of a good theoretical scientist! Sometimes
differential equations may describe a physical situation, and fractal attractors can
often result; see Section 13.5. On the other hand, analysis of differential equations
where the boundary or domain is fractal can present problems of an entirely
different nature.

There is a vast literature devoted to examining fractal phenomena in these
ways; often agreement of dimension between experiment, simulation and theory
is surprisingly good. Moreover, analysis of dimension has been used effectively to
isolate the dominant features underlying certain physical processes. Nevertheless,
there is still a long way to go. Questions such as ‘Why do projections of clouds
have perimeters of dimension 1.35 over a very wide range of scales?’, ‘How
does the dimension of the surface of a metal affect the physical properties such
as radiation of heat or the coefficient of friction?’ and ‘What are the geological
processes that lead to a landscape of dimension 2.2?’ should be answered in the
framework of fractal modelling.

For most experimental purposes, box-counting dimension has to be used. With
Nδ defined by one of the Equivalent Definitions 3.1, the dimension of an object
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is usually found by estimating the gradient of a graph of log Nδ against − log δ.
We often wish to estimate the dimension of a theoretical exact fractal F by
box counting on a physical approximation E. To do this, boxes that are large
compared with the accuracy of the approximation must be used. More precisely,
if d(E,F ) � ε where d denotes Hausdorff distance, and Nδ(E) and Nδ(F ) are
the number of balls of radius δ required to cover the sets, it is easy to see that

Nδ+ε(E) � Nδ(F ) � Nδ−ε(E)

for δ > ε, and this may be taken into account when estimating dimHF from
log–log plots of measurements of E. It is also worth remembering, as we
have indicated in various instances throughout the book, that there are often
theoretical reasons for supposing that exact fractals have equal box and Haus-
dorff dimensions.

Sometimes other quantities are more convenient to measure than dimension.
For example, in the case of a time-dependent signal, the autocorrelation func-
tion (see Section 11.2) might be measured, with equation (11.20) providing an
indication of the dimension.

We now examine in more detail some specific physical examples where fractal
analysis can aid understanding of physical processes.

18.1 Fractal growth

Many natural objects grow in an apparently fractal form, with branches repeatedly
splitting and begetting smaller side branches. When viewed at appropriate scales,
certain trees, root systems and plants (in particular more primitive ones such as
lichens, mosses and seaweeds) appear as fractals. Forked patterns of lightning
or other electrical discharges, and the ‘viscous fingering’ that occurs when water
is injected into a viscous liquid such as oil also have a branched fractal form.
During electrolysis of copper sulphate solution, the copper deposit at the cathode
grows in a fractal pattern.

The biological laws that govern plant growth are far too complex to be used as
a basis for a mathematical model. However, other phenomena may be modelled
by relatively simple growth laws and we examine some of these.

A simple experiment demonstrates fractal growth by electrolysis of copper
sulphate (CuSO4); see figure 18.1. The bottom of a circular dish is covered with
a little copper sulphate solution. A copper cathode is suspended in the centre of
the dish and a strip of copper is curved around the edge of the dish to form an
anode. If a potential of a few volts is applied between the electrodes, then, after
a few minutes, a deposit of copper starts to form around the cathode. After half
an hour or so the copper deposit will have extended into fractal fingers several
inches long.

The mechanism for this electrolysis is as follows. In solution, the copper sul-
phate splits into copper Cu2+ ions and sulphate SO4

2− ions which drift around
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Copper cathode

Deposition
of copper

Thin layer of
copper sulphate solution
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+

Figure 18.1 Electrolysis of copper sulphate leads to fractal-like deposits of copper grow-
ing outwards from the cathode

in a random manner. When the voltage is applied, the copper ions that hit the
cathode receive two electrons, and are deposited as copper. Copper ions that hit
any copper already formed are also deposited as copper, so the residue grows
away from the cathode. Assuming that the copper ions move in a sufficiently ran-
dom manner, for example following Brownian paths (see Chapter 16), ions are
more likely to hit the exposed finger ends than the earlier parts of the deposition
which tend to be ‘protected’ by subsequent growth. Thus it is at least plausible
that growth of the copper deposit will be in thin, branching fingers rather than
in a solid ‘block’ around the cathode.

In the experiment described, the Cu2+ ions follow a Brownian path with a drift
towards the cathode superimposed as a result of the electric field between cathode
and anode. Enriching the sulphate in the solution, for example, by addition of
sodium sulphate, screens the copper ions from the electric field. Fractal deposits
still occur, but this situation is more convenient for mathematical modelling since
the Cu2+ ions may be assumed to follow Brownian paths. A similar process
occurs in electrolysis of zinc sulphate (ZnSO4) with a zinc anode and carbon
cathode, with fingers of zinc growing out from the cathode.

The diffusion-limited aggregation (DLA) model provides a convincing simu-
lation of the growth. The model is based on a lattice of small squares. An initial
square is shaded to represent the cathode, and a large circle is drawn centred on
this square. A particle is released from a random point on the perimeter of the
circle, and allowed to follow a Brownian path until it either leaves the circle, or
reaches a square neighbouring a shaded one, in which case that square is also
shaded. As this process is repeated a large number of times, a connected set of
squares grows outward from the initial one. It is computationally more conve-
nient to let the particle follow a random walk (which gives an approximation to
a Brownian path), so when the particle is released, it moves, with probability 1

4
each, left, right, up or down to a neighbouring square, continuing until it leaves the
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a

b

Figure 18.2 The diffusion-limited aggregation (DLA) model. A particle is released from
a random point a on the circle and performs a random walk until it either leaves the circle
or reaches a square b next to one that has already been shaded, in which case this square
is also shaded

circle or occupies a square next to a shaded one; see figure 18.2. (There are ways
of shortening the computation required; for example, if the particle is k squares
away from the shaded part the particle might as well move k steps at once.)

Running the model for, say, 10,000 shaded squares gives a highly branched
picture (figure 18.3) that resembles the patterns in the electrolysis experiment.
Main branches radiate from the initial point and bifurcate as they grow, giving
rise to subsidiary side branches, all tending to grow outwards. It is natural to
use box-counting methods to estimate the dimension of these structures on scales
larger than a square side, and there is a remarkably close agreement between
the electrolysis experiment and the simulation, with a value for the dimension of
about 1.70, and 2.43 for the 3-dimensional analogue.

The DLA model may be thought of as a representation of a succession of ions
released from a distance one after another. Whilst this provides a good model for
the form of the deposit, it gives little idea of its development with time, which
depends on a large number of ions in simultaneous random motion that adhere
to the copper deposit on meeting it. Therefore, a ‘continuous’ version of this
‘discrete’ model is useful. Suppose that the large number of copper ions in the
solution have density u(x, t) at point x and time t , so that the number of ions in
a very small disc of area δx and centre x is u(x, t)δx. Assuming that the ions
follow independent Brownian paths, the ions that are in this small disc at time
t will have spread out to have density at point x ′ and time t + h given by the
2-dimensional normal distribution

δu(x ′, t + h) = (2π)−1h−1 exp

(
− (x − x ′)2

2h

)
u(x, t)δx
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Figure 18.3 A computer realization of diffusion-limited aggregation. The square was
divided into a 700 × 700 mesh from which 16,000 squares were selected using the
method described

(see (16.3)) and so

u(x ′, t + h) = (2π)−1h−1
∫

exp

(
− (x − x ′)2

2h

)
u(x, t)dx

where integration is across the fluid region. This assumes that h is small relative
to the distance of x ′ from the deposit and the boundary, so that the effect of
the introduction or removal of ions can be neglected. Differentiating under the
integral sign with respect to x ′ and h gives

∂u/∂t = 1
2∇2u (18.1)

as the differential equation governing the change of the ion density in the solution.
This is the well known diffusion equation or heat equation in two dimensions.

We need to specify the boundary conditions for this differential equation. At the
outer boundary, say a circle of radius r0, ions are supplied at a constant rate, so

u = u0 on |x| = r0. (18.2)
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Denote the boundary of the copper deposit at time t by Ft . Sufficiently close
to this boundary, virtually all the ions lose their charge, so

u = 0 (18.3)

on Ft . Since the discharged ions are deposited as metallic copper, the rate of
advance v of the boundary Ft is in a direction n normal to Ft , equal in magnitude
to the derivative of the concentration in a direction n normal to Ft . Thus, for a
constant k,

vn = kn · ∇u (18.4)

on Ft . (We are assuming that Ft is actually smooth on a very small scale.)
Provided that the growth remains a long way from the outer electrode, the

diffusion rate is, to a good approximation, time independent, so (18.1) may be
replaced by Laplace’s equation

∇2u = 0. (18.5)

Solving this with boundary conditions (18.2) and (18.3) allows the rate of
growth of the deposit to be found, using (18.4).

These equations alone are too idealized to provide an accurate model. First, to
prevent the equation being unstable with respect to surface irregularities, a short
scale ‘cut-off’ for the equations is required. This is provided in the square-lattice
DLA model—if a particle gets close enough, it sticks to the aggregate. Second,
our derivation of the differential equations assumed a continuously varying par-
ticle density, rather than a large number of discrete particles. It is the random
variation in motion of these individual particles that creates the irregularities that
are amplified into the branching fingers. Thus (18.4) needs to be modified to
include a random perturbation

vn = kn · ∇u + p (18.6)

where p may be thought of as a ‘noise’ term. Both of these features are present
in the square-lattice DLA model, which is consequently more suitable for simu-
lation of the growth form than direct numerical attempts to solve the differen-
tial equations.

One interpretation of the square-lattice DLA model is as providing a spatial
solution of equations (18.2)–(18.5) subject to a small random perturbation of the
boundary Ft . Surprisingly, the same differential equations and boundary condi-
tions describe several rather different physical phenomena. The DLA model may
therefore be expected to apply to some degree in these different cases.

The growth of viscous fingers in a fluid is an example. Suppose two glass
plates are fixed a small distance apart (perhaps 1

2 mm) and the region in between
is filled with a viscous liquid such as an oil. (This apparatus is called a Hele-Shaw
cell.) If a low-viscosity liquid such as water is injected through a small hole in
one of the plates, then, under certain conditions, the water spreads out into the
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oil in thin highly branched fingers. The patterns resemble closely the deposits of
copper in the electrolysis experiment.

Lubrication theory tells us that in this situation the velocity of flow v of the
oil is proportional to the pressure gradient.

v = −c∇p (18.7)

where p(x) is the pressure at a point x in the oil. The oil is assumed incom-
pressible, so the velocity has zero divergence ∇ · v = 0, giving

∇2p = 0

throughout the oil. If the viscosity of the water is negligible compared with that
of the oil, then the pressure throughout the water is effectively constant. Thus
we have the boundary conditions

p(x) = p0

at the fluid interface, and
p(x) = 0

at a large distance r0 from the point of injection. Thus the pressure difference
u(x) = p0 − p(x) satisfies the differential equation (18.5) and boundary con-
ditions (18.2) and (18.3) of the electrolysis example. Furthermore, at the fluid
interface, the pressure gradient in the oil is normal to the boundary (since the
pressure is constant on the boundary), so (18.4) gives the rate of advance of the
boundary, vn = −kn · ∇p, with short-range cut-off provided by surface tension
effects. The pressure is analogous to the ion density in the electrolysis example.

It is perhaps, therefore, not surprising that under certain conditions the viscous
fingers resemble the patterns produced by the square-lattice DLA model. Whilst
the element of randomness inherent in the electrolysis example is lacking, irreg-
ularities in the interface are nevertheless amplified to give the fingering effect.

A very similar situation pertains for fluid flow through a porous medium—
(18.7) is Darcy’s law governing such flow. Fractal fingering can also occur in
this situation.

Electrical discharge in a gas provides a further example. The electrostatic
potential u satisfies Laplace’s equation ∇2u = 0 away from the ionized region
of discharge. The ionized path conducts well enough to be regarded as being at
constant potential, so u satisfies the same boundary conditions as in the viscous
fingering example. The (questionable) assumption that the rate of breakdown is
proportional to the electric field gives equation (18.4). This is another example
with similar differential equations, for which the square-mesh DLA model pro-
vides a realistic picture.

Under suitable experimental conditions, the growth patterns in electrolysis, vis-
cous fingering and electrical discharge have a dimension of about 1.7 when esti-
mated over a suitable range of scales. This coincides with the value obtained from
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computer studies of square-mesh DLA. Although the theoretical explanations of
such phenomena are not always entirely satisfactory, the universality of this
dimension is very striking.

18.2 Singularities of electrostatic and gravitational potentials

The electrostatic potential at a point x due to a charge distribution µ or the
gravitational potential due to a mass distribution µ in �3 is given by

φ(x) =
∫

dµ(y)

|x − y| . (18.8)

We show that the dimension of the singularity set of the potential, i.e. the set of
x for which φ(x) = ∞, cannot be too large.

Proposition 18.1

Let µ be a mass distribution of bounded support on �3. Suppose that the potential
(18.8) has singularity set F = {x : φ(x) = ∞}. Then dimHF � 1.

Proof. Suppose s > 1. Let x ∈ �3 and write m(r) = µ(B(x, r)) for r > 0. Sup-
pose that there are numbers a > 0, c > 0 such that m(r) � crs for all 0 < r �
a. Then

φ(x) =
∫

|x−y|�a

dµ(x)

|x − y| +
∫

|x−y|>a

dµ(x)

|x − y|

�
∫ a

r=0

dm(r)

r
+

∫

|x−y|>a

dµ(x)

a

� [r−1m(r)]a0 +
∫ a

0
r−2m(r)dr + a−1µ(�3)

� c(1 + (s − 1)−1)as−1 + a−1µ(�3) < ∞,

after integrating by parts. So, if x ∈ F , we must have that limr→∞(µ(B(x, r))/rs)

� c for all c > 0. It follows from Proposition 4.9(b) that Hs(F ) = 0 for s > 1, as
required. �

Often µ is expressible in terms of a ‘density function’ f , so that µ(A) =∫
A

f (x)dx for Borel sets A, and (18.8) becomes

φ(x) =
∫

f (y)

|x − y|dy. (18.9)

Given certain conditions on f , for example if
∫ |f (x)|pdx < ∞ for some p > 1,

similar methods can be used to place further bounds on the dimension of the
singularity set, see Exercise 18.5.
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It is easily verified that, if f is a sufficiently smooth function, then (18.9) is
the solution of Poisson’s equation

∇2φ = −4πf

satisfying φ(x) → 0 as |x| → ∞. For a general integrable function f the poten-
tial φ need not be differentiable. Nevertheless (18.9) may be regarded as a weak
solution of Poisson’s equation in a sense that can be made precise using the
theory of distributions. This technique extends, in a non-trivial way, to give
bounds for the dimension of the singularity sets of weak solutions of other partial
differential equations.

18.3 Fluid dynamics and turbulence

Despite many years of intense study, turbulence in fluids is still not fully under-
stood. Slowly moving fluids tend to flow in a smooth unbroken manner, which
is described accurately by the Navier–Stokes equations—the fundamental dif-
ferential equations of fluid dynamics. Such smooth flow is termed laminar. At
higher speeds, the flow often becomes turbulent, with the fluid particles following
convoluted paths of rapidly varying velocity with eddies and irregularities at all
scales. Readers will no doubt be familiar with the change from laminar to turbu-
lent flow as a tap is turned from low to full. Although the exact form of turbulent
flow is irregular and unpredictable, its overall features are consistently present.

There is no uniformly accepted definition of turbulent flow—this has the
advantage that it can reasonably be identified with any convenient ‘singular fea-
ture’ of a flow description. We consider a model in which turbulence is manifested
by a significant local generation of heat due to viscosity, i.e. ‘fluid friction’, at
points of intense activity.

At reasonably small scales, turbulence may be regarded as isotropic, i.e. direc-
tion independent. Our intuitive understanding of isotropic turbulence stems largely
from the qualitative approach of Kolmogorov rather than from an analysis of dif-
ferential equations. Kolmogorov’s model is based on the idea that kinetic energy
is introduced into a fluid on a large scale, such as by stirring. However, kinetic
energy can only be dissipated (in the form of heat) on very small scales where the
effect of viscosity becomes important. At intermediate scales dissipation can be
neglected. If there are circulating eddies on all scales, then energy is transferred
by the motion of the fluid through a sequence of eddies of decreasing size, until it
reaches the small eddies at which dissipation occurs. If, as Kolmogorov assumed,
the fluid region is filled by eddies of all scales, then dissipation of energy as heat
should occur uniformly throughout the fluid.

Let ε(x) be the rate of dissipation per unit volume at the point x, so that the
heat generated in a small volume δV around x in time δt is ε(x)δV δt . Then, on
the assumption of uniform dissipation

ε(x) = ε for all x in D
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where ε is the rate of input of energy into the fluid region D, which is assumed
to have unit volume.

Although such ‘homogeneous’ turbulence is appealing in its simplicity, it
is not supported by experimental observations. Measurements using a hot-wire
anemometer show that in a turbulent fluid the rate of dissipation differs greatly in
different parts of the fluid. This is the phenomenon of intermittency. Dissipation
is high in some regions and very low in others, whereas the Kolmogorov model
requires it to be constant. This variation can be quantified using correlation func-
tions. For a small vector h the correlation of dissipation rates between points
distance h apart is given by

〈ε(x)ε(x + h)〉 (18.10)

where angle brackets denote the average over all x in D. If dissipation were con-
stant we would have 〈ε(x)ε(x + h)〉 = ε2. However, experiment indicates that

〈ε(x)ε(x + h)〉 � ε2|h|−d (18.11)

for a value of d between 0.4 and 0.5.
The Kolmogorov model can be modified to explain the intermittency by assum-

ing that, instead of the eddies at each scale filling space, the eddies fill a
successively smaller proportion of space as their size decreases. Kinetic energy
is introduced into the largest eddy and passed through eddies of decreasing size
until it is dissipated at the smallest scale. Now, however, the energy and dissi-
pation are concentrated on a small part of the fluid. The cascade of eddies may
be visualized as the first k stages Ei of the construction of a self-similar fractal
F (see Chapter 9) where k is quite large, with dissipation occurring across the
kth stage Ek. For convenience, we assume that each kth level basic set of Ei is
replaced by a constant number of sets of equal size to form Ei+1.

If A is a subset of D, we define µ(A) = ∫
A

ε(x)dx as the total rate of dis-
sipation of energy in the set A; thus µ(D) = ε, the rate of energy input. Then
µ has the properties of a mass distribution on D. Moreover, if we assume that
the rate of dissipation in each component of Ei is divided equally between the
equal-sized subcomponents in Ei+1, we have, as a simple consequence of F

being self-similar of Hausdorff or box dimension s, that

c1εr
s � µ(B(x, r)) � c2εr

s

if x ∈ F and 0 < r < r0, where c1 and c2 are positive constants (see Exercise
9.11). These inequalities hold for the limit F as the size of the dissipation eddies
tends to 0, but also for the physical approximation Ek, provided that r is larger
than the dissipation scale. Then

∫

|h|�r

〈ε(x)ε(x + h)〉dh =
∫

x∈D

∫

|h|�r

ε(x)ε(x + h)dhdx

=
∫

x∈D

ε(x)µ(B(x, r))dx

=
∫

x∈Ek

ε(x)µ(B(x, r))dx
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since dissipation is concentrated on Ek, so

c1ε
2rs �

∫

|h|�r

〈ε(x)ε(x + h)〉dh � c2ε
2rs . (18.12)

This may be achieved if the correlation satisfies a power law

〈ε(x)ε(x + h)〉 � ε2|h|s−3

for then the integral in (18.12) becomes

4π

∫ r

t=0
ε2t s−3t2dt = 4πε2rs/s.

Comparison with (18.11) suggests that s = 3 − d , so the hypothesis of ‘fractally
homogeneous turbulence’, that dissipation is concentrated on an approximate
fractal of dimension between 2.5 and 2.6, is consistent with experimental results.

It is natural to seek theoretical reasons for the turbulent region to have a
fractal form. One possible explanation is in terms of the vortex tubes in the fluid.
According to Kelvin’s circulation theorem, such tubes are preserved throughout
the motion, at least in the approximation of inviscid flow. However, the vortex
tubes are stretched by the fluid motion, and become long and thin. Repeated
folding is necessary to accommodate this length, so the tubes might assume an
approximate fractal form not unlike the horseshoe example in figure 13.5.

The behaviour of a (viscous) fluid should be predicted by the Navier–Stokes
equation

∂u

∂t
+ (u · ∇)u − ν∇2u + ∇p = f (18.13)

where u is the velocity, p is the pressure, ν is viscosity and f is the applied
force density. Deducing the existence of fractal regions of activity from the
Navier–Stokes equation is far from easy. Nevertheless, the method indicated in
Section 18.2 may be generalized beyond recognition to demonstrate rigorously
that, for example, the set on which a solution u(x, t) of (18.13) fails to be bounded
for all t has dimension at most 2 1

2 . Thus it is possible to show from the equations
of fluid flow that certain types of ‘intense activity’ must be concentrated on sets
of small dimension.

18.4 Fractal antennas

A remarkable application of fractals is their use as antennas in high frequency
radio and in particular in mobile telephones. There are two advantages of using
fractals. First, the ‘space-filling’ nature of some fractals, such as variations on
the von Koch curve, allow a high response fractal antenna to be fitted into a
relatively small space. Secondly, depending on their geometry, antennas can be
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multiband with resonant frequencies reflecting the self-similarities of the fractal,
or alternatively can have frequency independent response, for example in the
case of certain random fractal antennas.

Electrodynamics, and in particular the behaviour of radio waves, is governed
by Maxwell’s equations. Assume a time dependence of the electromagnetic quan-
tities proportional to eiωt , where ω is the frequency, so that the electric field at
the point x is eiωtE(x) and the magnetic field is eiωtH(x). Then Maxwell’s ‘curl’
equations in a vacuum reduce to

∇ × E = −iωµH

∇ × H = iωεE,

where ε is the permittivity and µ the permeability of space. It is immediate that
these equations are invariant under the pair of transformations

x 	→ λx and ω 	→ ω/λ,

for every (positive or negative) scalar λ, with both sides of the equations multi-
plied by 1/λ under the transformations.

If the antenna has a similar form when scaled by a factor λ, the boundary
conditions for Maxwell’s equations are similar under this scaling, so the radiation
properties might be expected to behave in a similar manner when the frequency
is scaled by 1/λ, that is when the wavelength is scaled by λ.

This is borne out in the Sierpiński dipole, a practical instance of a fractal
antenna, see figure 18.4. In one realization, two Sierpiński triangles are etched on

(a) (b)

(c)

Figure 18.4 Fractal antennas, showing feed lines. (a) Sierpiński dipole, (b) random tree
antenna, (c) von Koch dipole
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a printed circuit board, vertex to vertex (a fractal ‘bow-tie’), with the vertices fed
by a two-wire transmission line from a transmitter or receiver. The fundamental
frequency of the antenna corresponds to a wavelength comparable to the overall
diameter of the Sierpiński triangle. Sharp peaks are observed in the antenna
response at 1, 1

2 , 1
4 , 1

8 and 1
16 times this wavelength, these ratios corresponding to

the fundamental similarity ratios of the triangle, bearing out the above argument.
At each of these resonances the current density is concentrated on the pair of
similar copies of the Sierpiński triangle nearest to the feed point and at the
appropriate scale. Varying the construction parameters of the Sierpiński triangle
leads to antennas with other sequences of bands.

Random fractals can be used to construct antennas suitable for a continuous
range of frequencies. For example, tree antennas, which are statistical self-similar
at all scales (such as those generated by electrochemical deposition of the form
of figure 18.3), give a relatively constant response across a range of frequen-
cies. These compare well with traditional antennas designed for a continuous
frequency band.

18.5 Fractals in finance

Examination of graphs of share prices, exchange rates, etc., suggests some sort
of self-affine scaling, that is for a number 0 < α < 1, if X(t) is the share price
at time t then the increment X(γ t) − X(γ t0) has similar overall form to the
increment γ α(X(t) − X(t0)) for a range of t > t0 and γ > 0. This suggests that
a statistically self-affine process or even a deterministic self-affine function might
be appropriate for modelling prices. Moreover, the self-affinity assumption has
many consequences for features of the process modelled.

Because of its central place in stochastic processes, Brownian motion (see
Section 16.1) is the most natural statistically self-affine model to try. Together
with its variants, it is the basis for many financial models.

Let X be Brownian motion on [0,∞); we might think of a realization of X(t)

as the price, or perhaps the logarithm of the price, of some stock at time t . A
crucial feature of Brownian motion is the martingale or independent increment
property: given the process up to time t , the expected value of X(t + h) is just
X(t), for all h > 0, reflecting that the future value of the stock is unpredictable,
with a profit as likely as a loss.

If we now take X to be index-α fractional Brownian motion (Section 16.2),
the increments are no longer independent, but are correlated, i.e. E((X(t) −
X(0))(X(t + h) − X(t))) > 0 or < 0, according to whether α > 1

2 or α < 1
2 .

Moreover, if α > 1
2 the process has long range dependence, that is, for fixed

small h, the covariances of the increments

E((X(h) − X(0))(X(t + h) − X(t))) = 1

2
[(t + h)2α + (t − h)2α − 2t2α]

� α(2α − 1)t2α−2h2
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die away slowly as t increases, in the sense that
∑∞

k=0 E((X(h) − X(0))(X(k + h)

− X(k))) ∼ ∑∞
k=0 k2α−2 diverges. An interpretation might be that if, for some

α > 1
2 , index-α fractional Brownian motion provides a reasonable model of prices

then we may make inference on the future behaviour of share prices by studying
past variations.

Many further variants are possible, for example taking cX(t) + at where X is
index-α fractional Brownian motion and a and c are positive constants, adds a
‘drift’ to the process, with an underlying upward trend of rate a. Given financial
data over a range of t , statistical methods may be used to estimate appropriate
values of α, a and c.

At first sight, realizations of Brownian motion appear qualitatively similar to
share prices or exchange rates, but a more careful examination shows marked
differences, see figure 18.5(a) and (c). Brownian motion does not exhibit the
sudden jumps and periods of intense activity, or ‘volatility’, observed in prices.
This is exemplified by considering increments: for fixed small h > 0, the incre-
ment X(t + h) − X(t) regarded as a function of t appears as a ‘noise’ of fairly
constant amplitude if X is Brownian motion, figure 18.6(a), whereas for stock
prices it has very marked sharp peaks and dips rising above the ambient noise
level, corresponding to price jumps, figure 18.6(c).

One way this might arise is if X has a multifractal structure as a function,
that is with a relatively small set of times t where the local fluctuations are
exceptionally large. This may be made precise in terms of the dimensions of
the sets

Ea =
{
t : lim inf

h→0

log |X(t + h) − X(t)|
log |h| = a

}
;

thus, Ea comprises those t at which the Hölder exponent of X is a, an analogue
of (17.16) for functions. There are several ways of modelling these more extreme
fluctuations. A self-affine curve (Section 11.1) with a ‘generator’ that has several
different gradients, has fluctuating Hölder exponents and can yield graphs with
many of the features of share prices.

A more sophisticated approach uses multifractal time. The underlying idea is
that prices follow Brownian or fractional Brownian motion, but with respect to
rescaled or ‘warped’ time called trading time T (t). Thus, when the market is
volatile a short period in real time t is stretched to a long period of trading time
T , whilst at inactive periods, a long t period corresponds to a short T period,
figures 18.5(b) and 18.6(b).

Let µ be a measure on �+, typically a multifractal measure. For t � 0 we
define the trading time T (t) = µ[0, t] = ∫ t

0 dµ. Writing Bα for index-α Brownian
motion, we set X(t) = Bα(T (t)). Given T , then X(t) is a zero mean Gaussian
process with variance of increments given by

E(X(t + h) − X(t))2 = E(Bα(T (t + h)) − Bα(T (t)))2

= |T (t + h) − T (t)|2α = µ[t, t + h]2α ∼ |h|2γ α (18.14)
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Figure 18.5 (a) Brownian motion, (b) the same realization of Brownian motion with
respect to ‘trading time’ T , given by a multifractal ‘warp’ of real time t , (c) daily dol-
lar/pound exchange rates over 11 years. The combination of periods of low volatility
interspersed with periods of high activity is more reminiscent of (b) than of (a)
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Figure 18.6 (a) Increments of Brownian motion; (b) increments of Brownian motion
‘warped’ by multifractal time; (c) real data: increments of a stock price over period of
5 1

2 years. The character of (c) is closer to (b) than to (a)

if t ∈ Fγ , where

Fγ =
{
t : lim

h→0

log µ[t, t + h]

log h
= γ

}

is the set of times where µ has a local dimension γ . Thus, the volatility of X

at t depends on the local dimension of µ at t , and so the distribution of times
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of high and low activity in the share prices depends on the multifractal structure
of µ. If we develop the model to make µ a random multifractal measure, the
trading time T becomes a random process, so that the times of high and low
activity are random.

Statistical methods may be applied to real price data to estimate α and the
multifractal spectrum required for µ, which may be related to the ‘multifractal
spectrum of X’ given by dimHEα .

Fractality is a crucial feature in mathematical modelling of finance. Here we
have just indicated some simple models; more sophisticated techniques include
stochastic differential equations, where the fractal nature of the process is a
consequence of the modelling assumptions.

18.6 Notes and references

The literature on applications of fractals is enormous. A wide variety of applications
are described in the books by Mandelbrot (1982), Feder (1988), Hastings and Sugi-
hara (1993), Crilly, Earnshaw and Jones (1993), Gouyet (1996) and Meakin (1998).
General conference proceedings include those edited by Shlesinger, Mandelbrot
and Rubin (1984), Pietronero and Tosatti (1986), Pietronero (1989), Aharony and
Feder (1990), Fleischmann, Tildesley and Ball (1990), Takayasu (1990), Cherbit
(1991) and Novak (1998, 2000).

For fractal growth and DLA, refer to Stanley and Ostrowsky (1986, 1988),
Feder (1988) and Vicsek (1989).

For an introduction to the ideas of turbulence, see Leslie (1973). The homoge-
neous model of Kolmogorov (1941) was adapted to the fractally homogeneous
model by Mandelbrot (1974); see also Frisch, Sulem and Nelkin (1978). Collec-
tions of papers relevant to fractal aspects of turbulence include Temam (1976) and
Barenblatt, Iooss and Joseph (1983). The books by Temam (1983, 1997) discusses
the dimension of sets related to solutions of the Navier–Stokes equation.

For discussion of fractal antennas, see Puente, Romeu, Rous and Cardama
(1997), Jaggard (1997) and Hohlfeld and Cohen (1999).

Fractals in finance are discussed in the book by Peters (1994) and in Man-
delbrot’s (1997) ‘Selecta’ and the many references therein; multifractal time is
presented in Mandelbrot (1997) and Gonçalvès and Riedi (1999).

There are many books on other applications. For geophysics see Scholz and
Mandelbrot (1989), Xie (1993) and Turcotte (1997), and for fractal river basins
see Rodrı́guez-Iturbe and Rinaldo (1997). Applications to chemistry may be found
in Avinir (1989), to astronomy in Heck and Perdang (1991), to molecular bio-
physics in Dewey (1997), to physiology and medicine in West (1990) and to
engineering in Lévy Véhel, Lutton and Tricot (1997) and Dekking, Lévy Véhel,
Lutton and Tricot (1999). Surface growth is discussed by Barabsi and Stan-
ley (1995), and multifractal aspects of rainfall are considered by Lovejoy and
Schertzer (1995).
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Exercises

18.1 Suppose that the DLA square-lattice model is run for a large number of very small
squares. Suppose that the set obtained is an approximate fractal of dimension s.
What power law would you expect the number of shaded squares within distance r

of the initial square to obey? Assuming that during the process squares tend to be
added to parts of the set further away from the initial square, how would you expect
the ‘radius’ of the growth after k squares have been added to depend on k?

18.2 Let m(t) be the mass of copper that has been deposited and r(t) be the ‘radius’ of the
copper deposit after time t in the electrolysis experiment described in Section 18.1.
It may be shown that the current flowing, and thus, by Faraday’s law, the rate of
mass deposition, is proportional to r(t). On the assumption that the growth forms
an approximate fractal of dimension s, so that m(t) ∼ cr(t)s , give an argument to
suggest that r(t) ∼ c1t

1/(s−1).

18.3 Verify that u(x, t) in the DLA model satisfies the partial differential equation (18.1).

18.4 Verify that the potential in (18.9) satisfies Poisson’s equation if, say, f is a twice
continuously differentiable function with f (x) = 0 for all sufficiently large x.

18.5 Show that, if f (x) = 0 for all sufficiently large x and
∫ |f (x)|2 dx < ∞, then the

singularity set of φ, given by (18.9), is empty.

18.6 Show that the argument leading to (18.12) can be adapted to the case when, say, D

is the unit cube in �3 and F is the product of the Cantor dust of figure 0.4 and a
unit line segment L. (Dissipation is assumed to occur on the set Ek × L, where Ek

is the kth stage in the construction of the Cantor dust for some large k.)

18.7 For a fractal antenna made from a wire in the shape of a von Koch curve, if the
fundamental frequency is ω, what are the higher resonant frequencies?

18.8 Generalize (18.14) to show that E(|X(t + h) − X(t)|q) ∼ |h|qγ for t ∈ Fγ (see
Exercise 16.7).
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Falconer K. J., Järvenpää M. and Mattila P. (1999) Examples illustrating the instability
of packing dimensions of sections, Real Anal. Exchange, 25, 629–640.



References 321
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problems 48–49
properties 47–48
ways of finding 44, 47
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branching process theory 250
Brownian graph 266
Brownian motion 37, 258–267, 259,

261, 298, 299, 311–315
Fourier series representation 260
fractional 173, 267, 267–271, 269,

275
index-α fractional 267, 267–271, 269,

311
multifractional 271
n-dimensional 260

Brownian sample function 259, 261, 262
graph 265–266
index-α fractional 273
multiple points 265

Brownian surface, fractional 273–275
Brownian trail(s) 258, 261, 262,

264–265

Cantor dust xx, xxi, 94, 126
calculation of Hausdorff dimension 34
construction of xxi , 34

‘Cantor product’ 99, 100, 102, 103
Cantor set

as attractor 189, 192, 194
construction of 61–62
dimension of xxiii, 34–35, 47
middle λ 64
middle third xvii, xviii, xviii , 34–35,

47, 60, 61, 63–64, 87, 99, 100,
112, 123–124, 127, 129, 188, 189

non-linear 136–137, 154
random 245–246, 246–250, 256
uniform 63–64, 64, 103, 141
see also main entry: middle third

Cantor set
‘Cantor target’ 103–104, 104
(s-)capacity 72
capacity dimension 41
Cartesian product 4, 87, 99, 100
cat map 213
Cauchy sequence 125
central limit theorem 24, 259
chaos 189
chaotic attractor 189, 192
chaotic repeller 189
characteristic function 271
Choleski decomposition 270
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class Cs 113, 113–118, 157

member 113
closed ball 4, 66
closed interval 4
closed loop, as attractor 201
closed set 5, 5, 114, 201
closure of set 6
cloud boundaries 244, 298
coarse multifractal spectrum 278–279

lower 280
upper 280

coastline(s) 54, 244, 298
codomain 7
collage theorem 145
compact set 6, 48
complement of a set 4
complete metric 125
complex dynamics 216
composition of functions 7
computer drawings 127–128, 128,

145–148, 196, 227, 232, 233, 234,
239, 240, 244, 260, 269, 270–271,
275

conditional expectation 22
conditional probability 19
conformal mapping 138–139, 180, 241
congruence(s) 7, 7, 112

direct 8
conjugacy 223
connected component 6
connected set 6
content

Minkowski 45
s-dimensional 45

continued fraction(s) 153–154
examples 153

continued fraction expansion 153
continuity equation 203
continuous dynamical systems 201–205
continuous function 10
continuously differentiable function 10
contours 275
contracting similarity 123
contraction 123
contraction mapping theorem 124, 125
convergence 8

pointwise 10
of sequence 5
uniform 10, 17

convex function 181, 181–182, 287
convex surface 182
convolution theorem 73, 172
coordinate cube 4
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copper sulphate, electrolysis of
300–301, 302–304

correlation 169–173, 268, 311
countable set 4, 32, 41
countable stability

of dimension print 55
of Hausdorff dimension 32, 41

counting measure 13
covariance matrix 270
cover of a set 27, 28, 30, 35–36

see also (δ-)cover
covering lemma 66–67
critical exponent 54
critical point 227, 228
cross section 202
cube 4, 42
cubic polynomial, Newton’s method for

239–241, 240
curve 53, 81

fractal 133–134
Jordan 53, 81
rectifiable 81, 81–84, 85–86,

181–182
curve-free set 81, 83, 83–84
curve-like set 81, 82–83, 83–84

Darcy’s law 305
data compression 145–148
decomposition of 1-sets 80–81, 81
(delta-)/(δ-)cover 27, 28, 30, 36
(delta-)/(δ-)neighbourhood 4, 4, 45, 112,

124
(delta-)/(δ-)parallel body 4
dendrite 232
dense set 6
density 76, 76–80, 84, 88, 152

lower 77, 84
upper 77

density function 306
derivative 10
diameter of subset 5, 27
difference of sets 4
differentiability 10, 137–138, 160, 182

continuous 10
diffusion equation 303
diffusion limited aggregation (DLA)

model 301–306, 302, 303
digital sundial 96–97, 97
dimension xxii–xxv, xxiv

alternative definitions 39–58
approximations to 299, 305
of attractors and repellers 186–201
box(-counting) 41, 41–50, 43, 44, 60,

263, 265, 268, 272, 273, 299–300

calculation of 34–35, 59–75,
128–135

of Cantor set xxiii
capacity 41
characterization of quasi-circles by

235–237
divider 39, 53–54
entropy 41
experimental estimation of 39–40,

299–300
finer definitions 36–37
Fourier 74
of graphs of functions 160–169, 161
Hausdorff xxiv, 27, 31, 31–33,

35–36, 40, 54, 70, 92
Hausdorff–Besicovitch 31
Hausdorff dimension of a measure

209, 288
information 41
of intersections 109–118
local 283
lower box(-counting) 41, 43
of a measure 288
metric 41
Minkowski(–Bouligand) 46
modified box-counting 49, 49–50
one-sided 54
packing 50–53, 51
of products 99–107
of projections 90–97
of random sets 246–251, 259–275
of self-affine sets 106–107, 139–144,

166–169
of self-similar sets xxiv, 128–135
similarity xxiv
topological xxv
upper box(-counting) 41, 43
of von Koch curve xxiii
of (α-)well approximable number 155

dimension function 37
dimension print 54–57, 55, 56

disadvantages 55–56
examples 56

dimensionally homogeneous set 50
Diophantine approximation 153,

154–157, 205
direct congruence 8
Dirichlet’s theorem 154
discrete dynamical system 186, 186–201
disjoint binary intervals 36
disjoint collection of sets 4
distance set 183
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distribution
Gaussian 23
multidimensional normal 262
normal 23, 260
uniform 23

distribution of digits 151–153
divider dimension 39, 53–54
domain 7
double sector 85
duality method 176–179, 177
‘dust-like’ set 110
dynamical systems 186–212

continuous 201–205
discrete 186, 186–201

dynamics, complex 216

eddies 308
Egoroff’s theorem 17, 79
electrical discharge in gas 305
electrodynamics 310
electrolysis 300–301, 301, 302–304
electrostatic potential 70, 305, 306–307
(s-)energy 70
entropy 209–211, 210
entropy dimension 41
ergodic theory 128, 209
Euclidean distance or metric 3
Euclidean space 3
event 18

independence of 20
event space 18
exchange rate variation 311, 313
expectation 21

conditional 22
expectation equation 247, 250
experiment (probabilistic) 18
experimental approach to fractals 39–40,

299–300
exterior, of loop 223
extinction probability 250

Fatou set 216, 235
Feigenbaum constant 193
figure of eight 223, 228
filled-in Julia set 215
finance 186, 311–315
fine (Hausdorff) multifractal spectrum

284
fine multifractal analysis 277, 283–286
first return map 202, 202
fixed point 125, 186, 216
fluid dynamics 277, 307–309
forked lightning 298, 300

Fourier dimension 74
Fourier series 206
Fourier transform 73, 92

methods using 73–74, 112, 171–173,
260, 271

fractal, definition xxii, xxv
fractal curve 133–134 , 216
fractal growth 300–306
fractal interpolation 169, 170
fractal percolation 251–255
fractally homogeneous turbulence 309
fractional Brownian motion 173, 267,

269, 267–271
fractional Brownian surface(s) 273–275
fractions, continued 153–154
Frostman’s lemma 70
full square 254
function(s) 6, 6–7

continuous 10
convex 181, 181–182

functional analysis 179

gauge function 37
Gaussian distribution 23
Gaussian process 267
general construction 61–62, 62
generator 134–135

examples 132, 133, 134
geometric invariance 41
geometric measure theory 53, 76
graphs of functions 160, 160–169, 258,

266, 267
gravitational potential 70, 306–307
group(s) of fractional dimension

182–184
group of transformations 8, 110, 111
growth 300–306

Hamiltonian 207–208
Hamiltonian systems, stability of

207–208, 212
Hamilton’s equations 207
Hausdorff–Besicovitch dimension 31
Hausdorff dimension xxiv, 27, 31, 31–33,

31, 54
of attractor 192, 193
and box(-counting) dimension 46, 60
Brownian motion 263, 265
calculating 70–72, 92
equivalent definitions 35–36
fractional Brownian motion 268
fractional Brownian surface 273
Lévy stable process 272
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of a measure 209, 288
and packing dimension 53
and projections 90–93
properties 32
of self-affine set 140–144, 140, 144

Hausdorff distance 124, 124
Hausdorff measure 14, 27–30, 28

and intersections 113
and packing measure 53
and product rule 99
and quasi-circle 236

Hausdorff metric 124, 124, 145, 300
heat equation 303
Hele–Shaw cell 304
Hénon attractor/map 103, 196–197, 197,

198, 212, 213
heuristic calculation(s) 34–35, 129
histogram method, for multifractal

spectrum 279, 283
Hölder condition 30, 32, 262, 265, 268
Hölder exponent 283, 312
Hölder function 8, 10, 30, 161
Hölder’s inequality 297
homeomorphism 10, 33
homogeneous turbulence 308
horseshoe map 194–195, 195, 196, 212

image 7, 258, 275
image encoding 145–148
in general 109, 110
independence

of events 20
of random variables 20

independent increment 259, 268, 311
index-α fractional Brownian function

273
index-α fractional Brownian motion 267,

267–271, 269, 311–312
index-α fractional Brownian surface

273, 274
infimum 5
information dimension 41
injection 7
integral 16–17
integral geometry 118
interior 6

of loop 223
intermittency 308
interpolation 169, 170
intersection formulae 110–113
intersection(s) 4, 109–118, 110,

265–266, 275
large 113–118, 157

interval 4

interval density 152
invariance

geometric 41
Lipschitz 41, 48

invariant curves 205, 207
invariant measure 208, 208–211
invariant set 123, 123–129, 187, 218
invariant tori 208
inverse function 7
inverse image 7
investment calculations 186
irregular point 78
irregular set 78, 79–80, 94

examples xxi , 81, 180
isolated point, as attractor 201
isometry 7, 30
isotropic 261
isotropic turbulence 307
iterated construction(s) 95–96, 96,

180–181
iterated function system (IFS) 123,

123–128
advantages 128
attractor for 123, 123–129, 146–148,

194, 228
and repellers 187–189
variations 135–139

iterated Venetian blind construction
95–96, 96, 180

iteration 186–201, 215–242

Jarnı́k’s theorem 155–157, 205, 207
Jordan curve 53, 81
Julia set xxii, 215, 215–242, 219, 233,

234

Kakeya problem 176–179
Koch curve see von Koch curve
Kolmogorov–Arnold–Moser (KAM)

theorem 208
Kolmogorov entropy 41
Kolmogorov model of turbulence

307–309

laminar flow 307
landscapes 273
Laplace’s equation 304, 305
law of averages 23–24
Lebesgue density theorem 77, 77, 93
Lebesgue measure 13, 16, 112, 192, 264

n-dimensional 13, 17, 28, 112, 143,
266

Legendre spectrum 282



334 Index

Legendre transform 281, 281, 282, 287
length 13, 81

scaling of 29
level set 266, 275
level-k interval 35, 62, 152
level-k set 127
Lévy process 267, 271–273
Lévy stable process 271, 271–273
Liapounov exponents 208–211, 209,

210, 212
limit 8–9

lower 9
of sequence 5
upper 9

lim sup sets 113
line segment

dimension print 56
uniform mass distribution on 14

line set 176, 176–179
linear transformation 8
Lipschitz equivalence 236
Lipschitz function 8, 10, 30, 103
Lipschitz invariance 41, 48, 55, 56
Lipschitz transformation 30, 32, 34
local dimension 283
local product 103, 196, 202
local structure of fractals 76–89
logarithmic density 41
logarithms 10
logistic map 189–193, 191, 192, 212
long range dependence 311
loop 223, 224–225

closed 201
Lorenz attractor 203–204, 204
Lorenz equations 202–203
lower box(-counting) dimension 41
lower coarse multifractal spectrum 280
lower density 77, 84
lower limit 9
lubrication theory 305

Mandelbrot, Benoit xxii, xxv
Mandelbrot set 223, 223–227, 224, 230,

233, 235
mapping(s) 6, 8
Markov partition 189
martingale 248, 311
mass distribution 11, 12, 277

construction by repeated subdivision
14–15, 15

and distribution of digits 151–152
and product rule 99, 101
uniform, on line segment 14

mass distribution principle 60, 60–61,
131, 200

maximum modulus theorem 231
maximum range 160
Maxwell’s equations 310
mean 21
mean-value theorem 10, 137, 190
measure(s) 11, 11–17

counting 13
Hausdorff 14, 27–30, 28, 53, 99, 113
Hausdorff dimension of 209, 288
invariant 208, 208–211
Lebesgue 13, 16, 28, 112, 192
multifractal 211, 277–296
n-dimensional Lebesgue 13, 17, 112,

143
net 36, 68
packing 50–53, 51, 88
probability 19
restriction of 14
self-similar 278, 279, 280, 286
on a set 11
σ -finite 95
tangent 89

r-mesh cube 42, 278
method of moments, for multifractal

spectrum 280–281, 283
metric dimension 41
middle λ Cantor set 64
middle third Cantor set xvii, xviii

as attractor 189
box(-counting) dimension 47
construction of xviii , 127
features xviii, 123
generalization of 63–64
Hausdorff dimension 34–35, 60, 61
in intersections 112
product 99, 100
and repellers 188, 189
and self-similarity 123, 124, 129
and tangents 87

Minkowski content 45
Minkowski(-Bouligand) dimension 46
modified box(-counting) dimension 49,

49–50
upper, and packing dimension 51–52

modified von Koch curve 132, 133–134
moment sum 280, 281
monotonicity

of box(-)counting dimension 48
of dimension print 55
of Hausdorff dimension 32, 41
of packing dimension 51

Montel’s theorem 218–219, 221
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Moser’s twist theorem 207
mountain skyline 271, 298
multifractal(s) 211, 277–296

coarse analysis 277, 278–283
fine analysis 277, 283–286
self-similar 286–296

multifractal spectrum 277–286, 283,
289, 292–294, 315

multifractal time 312, 313, 314
multifractional Brownian motion 271
multiple points 265, 275
multivariate normal variable(s) 267

natural fractals xxvi, 146, 147, 298–300
natural logarithms 10
Navier–Stokes equations 203, 307, 309
‘nearest point mapping’ 181, 182
neighbourhood 4, 5, 45

see also (delta-)/(δ-)neighbourhood
net measure 36, 68
neural networks 277
Newton’s method 237–241
non-linear Cantor set 136–137, 154
non-removable set 180, 181
non-singular transformation 8
normal distribution 23, 260
normal family 218, 218–219

at a point 218
normal numbers 151
number theory 151–158

often 110
one-sided dimension 54
one-to-one correspondence 7
one-to-one function 7
onto function 7
open ball 4
open interval 4, 138
open set 5, 5, 32, 41, 187
open set condition 129, 130–134, 249
orbit 186, 189, 216, 228
orthogonal projection xxv, 34, 90–97, 91,

176, 177

packing dimension 50–53, 51, 284
and modified upper box dimension

51–52
packing measure 50–53, 51, 88

and Hausdorff measure 53
parallel body 4
Parseval’s theorem 73
partial quotient 153
percolation 251–255, 252, 253, 254

perfect set 220, 242
period 216
period doubling 191–193
period-p orbit 216, 232, 235
period-p point 186, 191
periodic orbit 228, 232
periodic point 216, 221
phase transition 251
physical applications xxvi, 298–316
pinch point 232
plane cross section 202
plant growth 300
Poincaré–Bendixson theorem 201, 202
Poincaré section 202
point mass 13
pointwise convergence 10
Poisson’s equation 307
polynomials, Newton’s method for

237–241
population dynamics 186, 190, 193
porous medium, flow through 305
(s-)potential 70
potential theoretic methods 70–72, 92,

111, 248–249
power spectrum 171, 270
Prandtl number 203
pre-fractal(s) 126, 127
pre-image 7
probability 18

conditional 19
probability density function 23
probability measure 18, 19
probability space 19
probability theory 17–24
product 99

Cartesian 4, 87, 99, 100
product formula 99–107
projection(s) 90–97, 91

of arbitrary sets 90–93
of arbitrary sets of integral dimension

95–97
of s-sets of integral dimension 93–95

projection theorems 90–93, 180
Pythagoras’s theorem 266

quadratic functions 223–235
quadratic polynomial, Newton’s method

for 238–239
quasi-circle(s) 231, 235–237, 236

radio antennas 309–311
rainfall distribution 277
random Cantor set 245, 246, 246–250,

256
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random fractal(s) 244–256
random function 259, 260, 270
random mid-point displacement method

260
random process 259
random variable 20

independence of 20–21
simple 21

random von Koch curve xxii, xxiii , 245,
251, 256

random walk 258–259
range, maximum 160
ratio of contraction 128
rational function 238
rectifiable curve 81, 81–84, 181–182

tangent 85–86
reflection 8
regular point 78
regular set 78, 80–89, 93–94

examples 81
tangent 86–87

removable set 179, 179–181
repeller 187, 187–189, 215
repelling point 216, 233

closure of 221
reservoir level variations 160
residence measure 208–209, 277, 283
restriction of a measure 14
rigid motion 8, 109, 111
ring(s) of fractional dimension 182–184
Rössler band 204, 204
rotation 8

sample function 259, 262, 265
sample space 18
scalar multiple 4
scaling property 29, 29
sections, parallel 105
sector, double 85
self-affine curve 166–169, 168, 312

construction of 166, 167
self-affine set 106–107, 107, 139,

139–145
as attractor 139, 140, 142, 144, 146
construction of 107, 142

self-similar fractal, with two different
similarity ratios xxi

self-similar measure 280, 286, 294
construction of 278, 279
multifractal spectrum 288, 293–296

self-similar multifractals xxiv, 286–296
self-similar set xxiv, 128–135, 128

similarity dimension xxiv

see also middle third Cantor set;
Sierpiński gasket; von Koch curve

self-similarity xxii
sensitive dependence on initial conditions

187, 194, 222
s-set 32, 69, 76

0-set 77
1-set 80–84, 86–87, 93–94
tangent to 84–88, 85

set theory 3–6
share prices 160, 258, 277, 311–315
Siegel disc 232
Sierpiński dipole 310–311
Sierpiński gasket or triangle xx, xx, 129,

132, 256
(sigma-)/σ -finite measure 95
similarity 7, 8, 29, 111, 128
similarity dimension xxiv
simple closed curve 230, 235
simple function 16
simple random variable 21
simulation 299
singular value(s) 142
singular value function 143
singularity set 306
singularity spectrum 284
small divisor theory 205–208
smooth manifold 41
smooth set 32
snowflake curve xix
solenoid 198–201, 199, 200
solid square, dimension print 56
solution curves 201
stability 41, 48

countable 32, 41, 55
stable point 191
stable process 271, 271–273, 275
stable set 216
stable symmetric process 272, 273
stationary increments 259, 267, 271
statistically self-affine set 262, 268, 311
statistically self-similar set 244, 246,

251, 262, 268
stock market prices 160, 258, 277,

311–315
strange attractor 186, 205
stretching and folding or cutting

transformations 193–197, 210
strong law of large numbers 24, 152
subgroup 182, 183
submanifold 29, 48
submultiplicative sequence 143
subring 183, 183–184

examples 183
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subset of finite measure 68–70
sundial, digital 96–97, 97
superattractive point 238
support of a measure 12
supremum 5
surface, convex 182
surjection 7
symbolic dynamics 189, 212

tangent xxv–xxvi, 84–89, 85, 86
tangent measure 89
tangent plane 182
tendril 232
tends to 8
tends to infinity 9
tent map 188, 188–189, 188
tent map repeller 188, 189, 190
thermal convection 202
topological dimension xxv
torus 198–201
totally disconnected set(s) 6, 33, 81, 84,

136, 228, 255
trading time 312
trail 258, 262, 264
trajectories 201–202
transformation(s) 6, 7–8

effects on a set 7
group of 110, 111
linear 8
stretching and folding or cutting

193–198, 210
translations 7–8
tree antenna 310, 311
trial 18
turbulence 307–309

fractally homogeneous 309
homogeneous 308
isotropic 307

turbulent flow 307
twist map 207

ubiquity theorem 118
uncountable set 5
uniform Cantor set 63–64, 64, 103
uniform convergence 10
uniform distribution 23
union of sets 4
unstable point 191
upper box(-counting) dimension 41
upper coarse multifractal spectrum 280
upper density of s-set 77
upper limit 9

variance 22
vector sum of sets 4
‘Venetian blind’ construction, iterated

95–96, 96, 180
viscous fingering 277, 300, 304–305
Vitushkin’s conjecture 179–181
volume 14, 45–46

scaling of 29
von Koch curve xviii–xx, xix

construction of xix , 127–128
dimension of xxiii
features xx, 35, 123
modified 132, 133–134
random xxii, xxiii , 245, 251, 256
as self-similar set 123, 129

von Koch dipole 310
von Koch snowflake xix
vortex tubes 309

weak solution 307
weather prediction 204
Weierstrass function xxiii, 160, 162–166,

164–165
random 270

(α-)well approximable number(s) 155,
155–157, 205, 207

Wiener process 258, 259


	EEn
	Front Cover
	Back Cover
	Copyright Info
	TOC
	Preface
	Preface to the second edition
	Course suggestions
	Introduction
	Notes and references

	Part I - Foundations
	Chapter 1 - Mathematical background
	1.1 Basic set theory
	1.2 Functions and limits
	1.3 Measures and mass distributions
	1.4 Notes on probability theory
	1.5 Notes and references
	Exercises

	Chapter 2 - Hausdorff measure and dimension
	2.1 Hausdorff measure
	2.2 Hausdorff dimension
	2.3 Calculation of Hausdorff dimension--simple examples
	*2.4 Equivalent definitions of Hausdorff dimension
	*2.5 Finer definitions of dimension
	2.6 Notes and references
	Exercises

	Chapter 3 - Alternative definitions of dimension
	3.1 Box-counting dimensions
	3.2 Properties and problems of box-counting dimension
	*3.3 Modified box-counting dimensions
	*3.4 Packing measures and dimensions
	3.5 Some other definitions of dimension
	3.6 Notes and references
	Exercises

	Chapter 4 - Techniques for calculating dimensions
	4.1 Basic methods
	4.2 Subsets of finite measure
	4.3 Potential theoretic methods
	*4.4 Fourier transform methods
	4.5 Notes and references
	Exercises

	Chapter 5 - Local structure of fractals
	5.1 Densities
	5.2 Structure of 1-sets
	5.3 Tangents of s-sets
	5.4 Notes and references
	Exercises

	Chapter 6 - Projections of fractals
	6.1 Projections of arbitrary sets
	6.2 Projections of s-sets of integral dimension
	6.3 Projections of arbitrary sets of integral dimension
	6.4 Notes and references
	Exercises

	Chapter 7 - Products of fractals
	7.1 Product formulae
	7.2 Notes and references
	Exercises

	Chapter 8 - Intersections of fractals
	8.1 Intersection formulae for fractals
	*8.2 Sets with large intersection
	8.3 Notes and references
	Exercises


	Part II - Applications and Examples
	Chapter 9 - Iterated function systems--self-similar and self-affine sets
	9.1 Iterated function systems
	9.2 Dimensions of self-similar sets
	9.3 Some variations
	9.4 Self-affine sets
	9.5 Applications to encoding images
	9.6 Notes and references
	Exercises

	Chapter 10 - Examples from number theory
	10.1 Distribution of digits of numbers
	10.2 Continued fractions
	10.3 Diophantine approximation
	10.4 Notes and references
	Exercises

	Chapter 11 - Graphs of functions
	11.1 Dimensions of graphs
	*11.2 Autocorrelation of fractal functions
	11.3 Notes and references
	Exercises

	Chapter 12 - Examples from pure mathematics
	12.1 Duality and the Kakeya problem
	12.2 Vitushkin's conjecture
	12.3 Convex functions
	12.4 Groups and rings of fractional dimension
	12.5 Notes and references
	Exercises

	Chapter 13 - Dynamical systems
	13.1 Repellers and iterated function systems
	13.2 The logistic map
	13.3 Stretching and folding transformations
	13.4 The solenoid
	13.5 Continuous dynamical systems
	*13.6 Small divisor theory
	*13.7 Liapounov exponents and entropies
	13.8 Notes and references
	Exercises

	Chapter 14 - Iteration of complex functions--Julia sets
	14.1 General theory of Julia sets
	14.2 Quadratic functions--the Mandelbrot set
	14.3 Julia sets of quadratic functions
	14.4 Characterization of quasi-circles by dimension
	14.5 Newton's method for solving polynomial equations
	14.6 Notes and references
	Exercises

	Chapter 15 - Random fractals
	15.1 A random Cantor set
	15.2 Fractal percolation
	15.3 Notes and references
	Exercises

	Chapter 16 - Brownian motion and Brownian surfaces
	16.1 Brownian motion
	16.2 Fractional Brownian motion
	16.3 Levy stable processes
	16.4 Fractional Brownian surfaces
	16.5 Notes and references
	Exercises

	Chapter 17 - Multifractal measures
	17.1 Coarse multifractal analysis
	17.2 Fine multifractal analysis
	17.3 Self-similar multifractals
	17.4 Notes and references
	Exercises

	Chapter 18 - Physical applications
	18.1 Fractal growth
	18.2 Singularities of electrostatic and gravitational potentials
	18.3 Fluid dynamics and turbulence
	18.4 Fractal antennas
	18.5 Fractals in finance
	18.6 Notes and references
	Exercises


	References
	Index




