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Preface

This book was born out of the lingering suspicion that the theory and practice
of dynamical systems had reached a plateau of development and that someone
had to ask the question ‘Where do we go from here?’ The idea is not to look
back warmly at ‘chaos theory’, give the main protagonists a slap on the back,
and suggest how the mathematical state of the art can be tinkered with. Instead
each invited contributor was asked to reflect on what has been learnt from the
phenomenal rise in nonlinear dynamics and, more importantly, to address the
question of what still needs to be learnt. Thanks to the efforts of our authors,
we now have a plethora of suggestions, but the over-riding message is clear: if
dynamical systems theory is to make a significant long-term impact, it needs to
get smart, because most systems are ill-defined through either stochasticity, delay,
spatial extent and inhomogeneity or the finite-time nature of real-world data.

How did we get here?

Since the pioneering works of Lorenz (1963)1 and May (1976)2, enormous
mathematical strides have been taken3, and almost every scientific field has
been swamped by computations of nonlinear differential equations and maps.
Most of the existing theory and its relation to applications lies in systems of
low dimension. This is significant because the theoretical underpinning is often
geometric in nature as many systems lend themselves to representation in three
dimensions or less.

However, most systems of practical importance are of much higher
dimension. Chemical systems can involve hundreds of coupled nonlinear ordinary
differential equations, realistic neural systems are several orders of magnitude
larger, and the partial differential equations involved in fluid mechanics are

1 Lorenz E N 1963 Deterministic non-periodic flow J. Atmos. Sci. 20 130–41
2 May R M 1976 Simple mathematical models with very complicated dynamics Nature 261 459–67
3 For more introductory reading see, for example; Gleick J 1987 Chaos—Making a New Science
(New York: Viking Penguin), Mullin T 1993 The Nature of Chaos (Oxford: Oxford University Press),
Cvitanovic P (ed) 1989 Universality in Chaos (Bristol: Institute of Physics Publishing), Ruelle D
1991 Chance & Chaos (Princeton, NJ: Princeton University Press) and Stewart I 1990 Does God Play
Dice? The New Mathematics of Chaos (Oxford: Blackwell).
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x Preface

infinite-dimensional; even the numerical representation of fluid mechanics by
finite element or finite difference codes has dimensions running into many
thousands. In these areas, theory advances understanding either by system
reduction methods leading to low-dimensional systems4 or by approaches
involving lengthy numerical computations.

However, most large systems cannot be reduced simply, and numerical
computation with many free parameters seldom leads to an understanding of the
system under investigation. It is this general situation we felt must be addressed.
However, it is not clear what the future problems should be, still less how they
should be solved.

Hence we brought together theoreticians, experimentalists and the next
generation of nonlinear scientists, so that they could together define an agenda
for future research directions.

Thus our unique meeting ‘Nonlinear dynamics and chaos: where do we
go from here?’ was held in Bristol in June 2001. Over three gloriously
sunny and rain-free days, 70 scientists from over a dozen countries enjoyed the
Victorian grandeur of Burwalls, a University of Bristol dedicated conference
centre. Whether playing croquet, eating in the oak-panelled dining room, or
looking out of the window at Brunel’s majestic suspension bridge next door,
the participants enjoyed a stimulating atmosphere that genuinely addressed the
conference title’s question. In addition to 14 invited speakers, the meeting was
shaped by the contributions of a large number of graduate students and young
researchers.

Where do we go from here?

This question is central to all 13 chapters of this book. Each chapter represents
a write-up of an invited lecture, which has been edited (and in some cases
transcribed) by us.

We recognized at the outset that the future directions and challenges for the
theory of nonlinear dynamics are far too many and varied to be covered in one
book. Therefore three broad inter-related themes have been selected:

(i) neural and biological systems,
(ii) spatially extended systems and
(iii) experimentation in the physical sciences.

It was a pleasant surprise to us that many of the resulting chapters of this book
address two or more of these themes. As you will see, other synergies also
emerge. Each author has offered suggestions as to what they see as the way
forward, and each individual chapter gives an overview of its particular field and
raises many specific and more general questions for future research.

4 See, for example, Carr J 1981 Applications of Centre Manifold Theory (Applied Math. Sci. 35)
(New York: Springer).
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The chapters that follow are grouped together to approximately address
(i)–(iii) thematically. But as already stated, there is a far greater degree of
connectivity between chapters than would be suggested by any simple linear
ordering. We shall not attempt to spell out that connectivity here, but encourage
the reader to dip into the non-technical introduction section of each chapter. In
fact each chapter can be read independently of the others and represents an essay
in its own right, addressing the individual author’s perspective on the question
‘Where do we go from here?’ Viewed in its entirety, this book presents a unique
snapshot of current thinking on the challenges facing dynamical systems theory.
We hope that you get from this book as much pleasure as we did in organizing
and attending the meeting on which it is based.

Acknowledgments

This book is the result of a combined effort of a large number of people. We
are very grateful to the authors for the enthusiasm and considerable effort that
they invested in this project. We were very impressed how positively all invited
speakers responded to the challenge of transforming their presentations into a
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Chapter 1

Bifurcation and degenerate decomposition
in multiple time scale dynamical systems

John Guckenheimer
Cornell University

In keeping with the spirit of the Colston conference on Nonlinear Dynamics and
Chaos, this chapter emphasizes ideas more than details, describing my vision of
how the bifurcation theory of multiple time scale systems will unfold. Multiple
time scale dynamical systems arise in modelling diverse phenomena. Examples
include equations of chemical reactors, models of boundary layer phenomena in
PDE, physical systems such as electrical circuits and lasers, and models within
the life sciences. My work has been motivated especially by Hodgkin–Huxley-
type models of neural systems [17]. In this setting, the time constants for gating
different membrane channels vary by orders of magnitude. Individual neurons, as
well as networks, display a rich variety of rhythms. Modelling the generation and
modulation of these rhythmic behaviours is a substantial challenge that brings to
the fore questions about the bifurcations of multiple time scale systems.

The analysis of dynamical systems with multiple time scales is a subject
whose history interweaves three different viewpoints: non-standard analysis [6],
classical asymptotics [27] and geometric singular perturbation theory [18]. These
varied approaches reflect the complexity of the phenomena being studied. Slow–
fast systems (defined later) give the simplest representation of multiple time scale
systems. Nonetheless, the singular limits of ε → 0 are awkward objects. The
limits of families of solutions to the system as ε → 0 do not converge to solutions
of either form of the singular limit. Description of these limits requires a language
that goes beyond the terminology used to describe solutions to systems of ordinary
differential equations. Moreover, existence and uniqueness of solutions in the
singular limit is problematic. Nonstandard analysis introduces a systematic
way to describe all of this through the introduction of infinitesmal quantities.
Computation of solutions is as problematic as their description. ‘Exponentially
small’ quantities of magnitude exp(−c/ε) or smaller are prevalent, so the use of

1



2 John Guckenheimer

regular asymptotic series does not take one very far in solving slow–fast systems.
This is also reflected in the development of numerical methods for solving initial
value problems for ‘stiff’ equations. These are adapted to dealing with fast motion
that is stable, giving transients that die rapidly and lead to motion on a lower
dimensional slow manifold. In the phenomena we shall discuss, there is also
unstable fast motion. Geometric methods enable the qualitative analysis of what
types of solutions are robust to perturbation of initial conditions and perturbation
of the system. Thus the different viewpoints emphasize different aspects of the
subject. Nonetheless, it is difficult to sort one’s way through the literature since
few attempts seem to have been made to amalgamate or survey results coming
from the different approaches. Moreover, I suggest that there is a paucity of
examples and that the subject of multiple time scale dynamics has a richer plethora
of phenomena than is readily found in its literature.

My perspective here is decidedly geometric. The success of dynamical
systems theory in elucidating patterns of bifurcation in generic systems with a
single time scale motivates the goal here, namely to extend this bifurcation theory
to systems with two time scales. There are substantial obstacles to realizing this
objective, both theoretical and computational. Consequently, the final shape that
the theory will take is still fuzzy.

It may seem strange to talk about computational barriers to a mathematical
theory, so I give some explanation for this. Much of the progress in dynamical
systems theory throughout its history has been inspired by close examination of
examples. This has been the case even before the widespread use of computers to
study dynamical systems. As an early instance of an example involving multiple
time scales, the concept of relaxation oscillations was introduced by Van der
Pol [32] in the context of the equation that bears his name today. Although the
analysis in his paper is restricted to this single system, there is a clear statement
that the idea of relaxation oscillation applies to a broad class of multiple time
scale systems. In recent decades, computer studies of models have been one of
the foundations for the creation of new theory. Computer simulation and analysis
enables extensive studies of model systems. Work on such systems as quadratic
maps, the Hénon mapping [15], the standard map [22], the Lorenz system [25]
and Duffing’s equation [14] has been crucial in developing intuition about general
properties of dynamical systems. General theory has been based upon what has
been learned from these examples, in some cases incorporating computer proofs
to establish facts that are not readily proved otherwise.

In the realm of multiple time scale systems, the strategy of working from
computer studies has been less prevalent than in other areas of dynamical systems
theory. This is due partly to the failure of ‘standard’ numerical integration
algorithms to resolve important qualitative properties of multiple time scale
systems. This failure is not only a consequence of the long times required to
resolve the slow time scales in a system with two time scales, but also of the
extreme instability and disparity of scales in the phase and parameter spaces
that we encounter when studying these systems. Asymptotic analysis of local
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phenomena in multiple time scale systems demonstrates that the theory is subtle,
frequently involving quantities that scale exponentially with the ratio of time
scales. Consequently, our understanding of the phenomenology of multiple time
scale systems is not yet at the level of our understanding of other important classes
of dynamical systems. For example, much less is known about bifurcations
of the forced Van der Pol equation than the bifurcations of the Lorenz system,
even though the Van der Pol system has a much older heritage, including the
monumental work of Cartwright and Littlewood [4, 5, 23, 24] that established the
existence of chaotic dynamics in dissipative dynamical systems. Thus, I suggest
that the development of better computational methods for studying multiple time
scale systems is needed to help create more mathematical theory.

Bifurcation theory of dynamical systems classifies bifurcations by
codimension and describes their unfoldings; see [1, 14] as general references.
The primary objects of interest are families of Cr vector fields that depend upon
k parameters. The theory examines dynamical phenomena that are persistent,
meaning that Cs , s ≤ r perturbations of the family exhibit the same phenomenon.
If a phenomenon occurs persistently in a k-parameter family but not in (k − 1)-
parameter families, then we say that it has codimension k. This definition
generalizes the usage of codimension in singularity theory but is imprecise in this
setting. Since formal definitions of the concept of codimension are complicated, I
shall focus upon phenomenology here. We want to have a good understanding of
a rich set of examples before attempting to formulate a comprehensive, rigorous
theory. In the simplest cases, codimension-k bifurcations occur on a manifold
of codimension k in the space of Cr vector fields. Equivalently, in these cases
there will be a set of k defining equations for the bifurcations (if they are local
bifurcations) [10].

An unfolding of a codimension-k bifurcation is a k-parameter family that
contains the codimension-k bifurcation in a persistent way. The term unfolding
also refers to a description of the dynamics within such a k-parameter family.
The usefulness of bifurcation theory is due in part to the structural stability
properties of unfoldings. However, those results come after our main task here
of determining the unfoldings themselves. The local structure and existence
of normal forms for multiple time scale systems has been studied both using
asymptotic [11, 27] and geometric methods [1, 18]. Apart from the analysis
of canards in the Van der Pol model [7], little attention has been given to
bifurcation in this analysis. We emphasize here periodic orbits, especially
relaxation oscillations in which the periodic motions include segments that
alternately evolve on the slow and fast time scales. Bifurcations of relaxation
oscillations add a new set of issues to those that have been addressed for multiple
time scale systems. Theory formulated for systems with a single time scale is
still valid, but there are enormous distortions in the unfoldings of systems with
two time scales compared to those of single time scale systems. As we remarked
earlier, this distortion can be sufficiently extreme that software designed for single
time scale systems is unable to compute important qualitative aspects of these
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unfoldings. Instead of tackling the bifurcations of relaxation oscillations directly,
we concentrate on the slow–fast decomposition of trajectories. Analysing this
decomposition in terms of transversality properties enables us to gain insight into
the bifurcations.

1.1 Definitions and background

We study slow–fast systems in this paper that are written in the form

εẋ = f (x, y)

ẏ = g(x, y)
(1.1)

or

x ′ = f (x, y)

y ′ = εg(x, y).
(1.2)

Here x ∈ Rm are the fast variables and y ∈ Rn are the slow variables. In the
limit ε = 0, system (1.1) becomes a system of differential algebraic equations
(called the reduced system) on the slow time scale and system (1.2) becomes a
parametrized family of differential equations (called the layer equations) on the
fast time scale. For fixed y, the equations ẋ = f (x, y) are a fast subsystem. We
limit our attention in this chapter to systems in which the attractors of the fast
subsystems are all equilibria. In this case, we say that the slow–fast system has
no rapid oscillations. The critical manifold of the slow–fast system is the set of
solutions of f (x, y) = 0 in Rm+n ; see figure 1.1 for a one-dimensional example.

In slow–fast systems with no rapid oscillations, trajectories approach an ε-
neighbourhood of the critical manifold on the fast time scale, and then move
inside this neighbourhood on the slow time scale. This leads us to expect that
as ε → 0 the limit of a trajectory with a specified initial condition will be a
finite union of trajectories of fast subsystems and curves that lie on the critical
manifold. The curves on the critical manifold are themselves trajectories of a
system of differential equations called the slow flow of the system. This image
is made more explicit by several general theorems about the dynamics of slow–
fast systems near their critical manifolds. We recall some of these results here,
omitting details; see, e.g., [1, 18, 27, 28].

The first result is that the critical manifolds of generic slow–fast systems are
indeed manifolds. This is a corollary of the Morse–Sard theorem, stating that the
regular values of a a Cn mapping f : Rm+n → Rm form a residual set and are
therefore dense in Rm [16]. For generic systems (1.1), zero is a regular value of
f and its inverse image for f is a manifold of dimension n. However, note that
generic one-parameter families of slow–fast systems may encounter parameters
for which there are singularities of the critical manifold since the rank deficient
linear maps A : Rm+n → Rm form a subset of codimension n + 1.
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Figure 1.1. The flow in a neighbourhood of the origin for the system (1.3) with ε = 0.01.
The critical manifold is the parabola drawn with a bold line.

Projection πs of the critical manifold onto the space of slow variables plays
a special role in the theory. At regular points of πs , we can solve the equation
f (x, y) = 0 implicitly to obtain a locally defined function x(y) whose graph
is an open region of the critical manifold. The equation ẏ = g(x(y), y) then
defines a vector field on the critical manifold that is called the slow flow of
the slow–fast system. While the slow–fast system is not tangent to the critical
manifold, the slow flow often yields an approximation to the flow on a nearby
invariant manifold, called a slow manifold (or true slow manifold). Existence of
the slow manifold and convergence of trajectories of the slow–fast system on the
slow manifold to those of the slow flow on the critical manifold was proved by
Tikhonov (see [27]) in the case of attracting slow manifolds and by Fenichel [8]
in the hyperbolic case. The slow manifolds are not unique, but rather consist of
a collection of slow manifolds that lie within a distance that is O(e−c/ε) from
one another. The distance between the slow manifolds and the critical manifold
is O(ε).

At singular points of the projection πs of the critical manifold, we cannot
expect the slow flow to be defined. Consider the following system with one slow
and one fast variable that is a standard example (see figure 1.1 and [1]) of a slow–
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fast system with a fold in its critical manifold:

εẋ = y − x2

ẏ = −1.
(1.3)

At the fold point (x, y) = (0, 0), the equation ẏ = −1 is incompatible with
the algebraic equation y = x2 obtained by setting ε = 0. This is annoying,
but does not seem like a big obstacle to understanding the reduced system.
However, when the critical manifold of a slow–fast system is two-dimensional,
new phenomena occur that prompt further analysis. This is illustrated by the
system

εẋ = y + x2

ẏ = ax + bz

ż = 1.

(1.4)

Here the critical manifold is defined by y = −x2 and the fold curve is defined
by x = y = 0. At points where bz < 0, the slow flow is pointing toward the
fold curve on the two sheets of the slow manifold. Where bz > 0, the slow flow
is pointing away from the fold curve on the two sheets of the slow manifold. At
the origin, there is a transition. To study this transition more carefully, we rescale
the slow flow so that it has a continuous extension across the fold curve. We can
use (x, z) as a regular system of coordinates near the fold. We differentiate the
algebraic expression y + x2 appearing in the reduced system of (1.4) to obtain
ẏ = −2x ẋ for motion of the reduced system on the critical manifold. We then
replace ẏ by −2x ẋ in the slow flow equations. Rescaling the resulting equations
by −2x yields the system

ẋ = ax + bz

ż = −2x .
(1.5)

This rescaled slow flow is clearly defined across the fold curve. It has the same
trajectories as the slow flow except that their parametrizations are different and
the direction of the trajectories is reversed in the half-plane x > 0. The origin is
an equilibrium point of this system, called a folded equilibrium. Folded equilibria
occur at the transition for motion in the slow flow toward a fold to motion away
from the fold. Folded equilibria in systems with two-dimensional slow manifolds
are classified by the type of equilibrium in the rescaled system, so that we speak
of folded nodes, foci and saddles.

In the case of folds for the system (1.3) with one slow and one fast variable,
the geometry of the slow–fast system for ε > 0 is evident: when trajectories reach
the fold, they jump along a fast segment. With the scaling of variables

x = ε
1
3 X y = ε

2
3 Y t = ε

2
3 T (1.6)
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ε disappears from the system (1.3). Thus, the geometry of the flows for different
values of ε are all qualitatively the same, with features that scale as indicated by
the coordinate transformation (1.6). Solutions of the equivalent Riccati equation
ẋ = t + x2 have been studied in terms of special functions [27]. There is a single
solution that remains close to the parabola y − x2 = 0 with x > 0 for all time
t < 0. Figure 1.1 shows a phase portrait of the flow past the origin in system (1.3).

With two slow variables, the geometry of the solutions of (1.4) that pass near
a folded singularity is much more complicated than that of system (1.3). In the
case of a folded saddle, Benoı̂t [3] proved that there are two algebraic solutions of
(1.4) that remain close to the critical manifold for all time. These solutions have
a hyperbolic structure and, hence, stable and unstable manifolds that divide the
phase space into regions with similar asymptotic properties. It is noteworthy that
one of the algebraic solutions passes from the stable sheet of the slow manifold to
the unstable sheet. There are solutions in the unstable manifold of this trajectory
that flow along the unstable sheet of the slow manifold and then leave the slow
manifold, with a fast segment that either ends back at the stable sheet of the
slow manifold or goes to infinity in finite time. Solutions that flow along the
unstable sheet for a finite period on the slow time scale are called canards. (The
name, the French word for duck, was chosen because of the shape of canard
solutions in the Van der Pol equations [6].) Typically, the regions of initial
conditions near the stable sheet of the slow manifold that give rise to canards
are exponentially thin; i.e. of width O(e−c/ε) for a suitable positive constant c
that is independent of ε. The reason for this behaviour is the fast instability of the
slow manifold. This instability is also an impediment to numerical computation
of canards. Deviations from the slow manifold are amplified exponentially on the
fast time scale. Consequently, even tiny perturbations on the order of round-off
errors are quickly magnified so much that numerically computed trajectories are
very far from the canards.

Part of our message in this exposition is that canards play a central role in
the bifurcations of relaxation oscillations. In the singular limit, changes in generic
families of periodic orbits appear to be discontinuous. In many of these situations,
canards form the ‘connecting glue’ that spans these discontinuities. There are
several mechanisms that lead to the formation of periodic orbits in generic one-
parameter families of slow–fast systems. In the next two sections, we discuss
some of these, illustrating how the slow–fast decompositions of trajectories gives
a starting point for the analysis of periodic orbits with canards. We end this section
with comments about two open problems.

The characterization of canards that are associated with folded nodes in
systems with two-dimensional critical manifolds has not been carried out fully.
Benoı̂t [3] proved the existence of canards near folded nodes, but he was unable
to determine fully what the set of canard trajectories is in this case. Folded
nodes present another problem for the general theory of relaxation oscillations
in addition to the question of characterizing the canards. On the critical manifold,
there is an entire open region of trajectories that flow to the folded node under the
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slow flow. Since the subsequent evolution of these trajectories from the folded
node may involve canards beginning at the folded node, it is possible that there
may be open regions of relaxation oscillations possessing canards in systems with
two slow variables that do not collapse in the singular limit. I do not know of
any examples that have been studied carefully to determine the properties of the
trajectories that pass through regions with folded nodes. Relaxation oscillations
passing through a folded node occur in the forced Van der Pol system (described
in section 1.4) but the parameter regions and scale on which the relevant dynamics
occur may make this a difficult example to analyse numerically.

I am unaware of any systematic studies of the slow–fast dynamics in sys-
tems with n > 2 slow variables. The critical manifolds of such systems are n-
dimensional and the folds of their critical manifolds are (n− 1)-dimensional, that
is, at least of dimension two. Using singularity theory, we can introduce coordi-
nates so that a regular fold is given by the equations y1+ x2

1 = 0; xi = 0, 1 < i ≤
m. Following the argument described earlier, we use coordinates (x1, y2, . . . , yn)

near the fold and use the relation ẏ1 = −2x1ẋ1 to obtain the slow flow in this coor-
dinate system. Rescaling the system by the factor 2x1, we obtain a rescaled vector
field on the critical manifold that has equilibria along the (n−2)-dimensional sub-
manifold defined by x1 = g1(0, y) = 0, where g1 is the right-hand side of the
equation for y1 in these coordinates. What happens near the folds of these generic
slow–fast systems? I believe that little is known about such systems.

1.2 Slow–fast decompositions

Let γε be a continuous family of trajectories in Rm+n for system (1.1) defined
for ε ≥ 0 small. For ε = 0, we understand that a trajectory is a union of
trajectories of fast subsystems and the slow flow. A slow–fast decomposition of
γ is defined by a partition of γ that depends continuously on ε with the property
that γ0 is partitioned into segments that lie in the critical manifold and segments
that lie in its complement. To discuss the decomposition, we introduce some more
terminology. First, we will continue to use the term trajectory to refer to a family
of the type described earlier: a trajectory of a slow–fast system is a continuous
family γε that is (1) smooth for each ε > 0 and (2) solves the slow–fast equations
when ε > 0. The reduced trajectory is the restriction of a trajectory to ε = 0. We
partition a reduced trajectory into slow segments that lie on the critical manifold
and fast segments on which the limiting differential-algebraic equation does not
vanish; see figure 1.2 for examples. Without additional assumptions, there is
little reason to believe that trajectories with finite slow–fast decompositions will
exist. We approach this issue by seeking to characterize the settings in which we
find stable relaxation oscillations whose slow–fast decomposition is stable under
perturbation.

When a trajectory arrives at a fold that terminates a slow segment, the fold
point is a non-hyperbolic equilibrium point of the fast subsystem. The fast
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Figure 1.2. Schematic representation of a system having a periodic orbit with a degenerate
slow–fast decomposition of the type in-fold → out-fold.

segment originating at this equilibrium will lie in its (weak) unstable manifold.
The only circumstance in which we expect there to be a unique trajectory of the
fast subsystem with this equilibrium point as its α-limit set is the case in which
the fold point is a non-degenerate saddle-node with spectrum in the (closed) left
half-plane. (I am unaware of any systematic study of examples of relaxation
oscillations in which the fold points have higher dimensional unstable manifolds.)
So we confine ourselves to this setting. We shall call a relaxation oscillation
satisfying the following criteria ((i)–(iii)) a simple relaxation oscillation.

(i) The ends of the slow segments are fold points of the critical manifold with
eigenvalues for the fast subsystem that are non-positive. These points are not
folded singularities.

(ii) The ends of the fast segments are regular points of a stable sheet of the
critical manifold.

To formulate the third property we need a new concept. Property (i) implies
that the fold points near the trajectory are saddle-nodes of their fast subsystems
with one-dimensional weakly unstable manifolds. From each of these fold points,
there is a unique trajectory with the fold point as its α-limit set. We call the ω-
limit sets of these points the umbra of the fold. The umbra is a codimension-one
submanifold of the critical manifold since we assume that the ω-limit sets of all
trajectories are equilibrium points of the fast subsystems.

(iii) The slow flow is transverse to the umbra of the fold.

If the slow flow is tangent to the fold, we shall say that there is an umbral tangency.
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The following theorem is an immediate consequence of results of Levinson
[20] analysing the properties of trajectories that jump at regular fold points.

Theorem 1.1. Hyperbolic periodic orbits that are simple relaxation oscillations
have slow–fast decompositions that vary continuously with perturbation.

For trajectories that satisfy properties (i) and (ii), we can augment the slow
flow of system (1.1) to obtain a hybrid system that represents the limit behaviour
of trajectories as ε = 0. Hybrid dynamical systems [2] are ones in which there
are

• a discrete set of bounded manifolds and flows on these manifolds; and
• mappings from the manifold boundaries into the manifolds.

Here the transition maps from the manifold boundaries will be the projection of
a fold along the fast subsystem to its umbra. So the hybrid system that we obtain
consists of the stable sheets of the critical manifold with its slow flow together
with the maps of regular folds on the boundary to their umbra. The definition of
this hybrid system will break down at folded equilibria, at trajectories whose fast
segments do not end in the interior of a stable sheet of the critical manifold, and
at boundary points more complicated than a fold. Return maps for this hybrid
system need not be locally invertible in the neighbourhood of trajectories with
umbral tangencies. In section 1.4 we illustrate these ideas with the forced Van der
Pol system as a model example.

1.3 Degenerate decomposition and bifurcation

This section examines generic mechanisms by which a one-parameter family
of stable, simple relaxation oscillations can reach a parameter value where
its slow–fast decomposition becomes degenerate. We examine the slow–fast
decomposition of the reduced periodic orbit and use transversality theory to
determine the types of degeneracies that will persist with smooth perturbations
of a one-parameter family. Persistence implies that the reduced orbits have at
most one degeneracy in their slow–fast decomposition. Degeneracies that may
occur include the following:

(A) A fast segment ends at a regular fold point. (There are two cases that differ
as to whether the slow flow approaches or leaves the fold near this point.)

(B) A slow segment ends at a folded saddle.
(C) A fast segment encounters a saddle-point of the fast subsystem.
(D) There is a point of Hopf bifurcation at a fold.
(E) A slow segment ends at a cusp.
(F) The reduced system has a quadratic umbral tangency.

This list is incomplete, for example omitting cases with reduced trajectories
that contain folded nodes. We leave as an open question the formulation of a
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classification of codimension-one degenerate decompositions that contains all of
the degeneracies that occur in generic families of simple relaxation oscillations.
For each of the cases on the list, we want to determine what the presence of a
degenerate decomposition implies about nearby canards and bifurcations and to
analyse the asymptotic properties of the families of periodic orbits related to the
degenerate decomposition. There are several levels on which this analysis can
be performed. The least precise level is to introduce specific models for portions
of the flow and base the analysis upon these models. Elementary descriptions
of homoclinic ‘Shilnikov’ bifurcation are a well-known example of this type of
analysis [14]. Our ultimate goal is to give a rigorous analysis. In the case of Hopf
bifurcation at a fold, Dumortier and Roussarie [7] have given a thorough analysis
of one version of the Van der Pol system.

Kathleen Hoffman, Warren Weckesser and I have begun to formulate
analyses for some of the cases on this list. I give here the barest sketch of
the case in which there is a fast segment that begins at a fold and ends at a
fold with slow trajectories flowing away from the fold. This type of degenerate
decomposition occurs in a model of reciprocal inhibition of a pair of neurons
studied by Guckenheimer et al [12].

Figure 1.2 is a three-dimensional plot of the slow manifold and two periodic
orbits of the family we now describe; see (1.7). We work with a system
that has two slow variables and one fast variable. We assume that the critical
manifold, shown shaded in the figure, has three non-intersecting fold curves and
is independent of the parameter in the family. The fold curves are labelled Fold 1
to Fold 3 and plotted as dotted lines. The fast variable is x ; the axes are labelled
in the figure. The projections of Fold 1 and Fold 3 onto the y–z plane intersect
transversally. Cross-sections of the critical manifold orthogonal to the z-axis are
quartic curves with two local maxima (on Fold 1 and Fold 3) and a local minimum
(on Fold 2). The fast flow is assumed to be in the negative x direction for points
above the critical manifold and in the positive x direction for points below the
critical manifold. Fold 2 and Fold 3 are in-folds with trajectories of the slow flow
moving into the folds, while Fold 1 is an out-fold with trajectories of the slow flow
leaving the fold. The fold curves partition the critical manifold into four sheets,
that are labelled Sheet a to Sheet d with increasing x . Sheet b and Sheet d of the
critical manifold are stable, sheets Sheet a and Sheet c are unstable. The slow
flow on Sheet a and Sheet b is downwards, the slow flow on Sheet d is upwards,
and the slow flow on Sheet c changes direction from downwards along Fold 2 to
upwards along Fold 3.

Assume that at an initial value of the parameter, there is a stable periodic
orbit with two slow segments on sheets Sheet b and Sheet d and two fast segments,
the first from Fold 3 to Sheet b and the second from Fold 2 to Sheet d. In figure 1.2,
this is the smaller closed curve A drawn with full lines. The orbit is drawn so
that the slow flow is parallel to the (x, y)-plane. Assume further that, with the
changing parameter, the orbits move in the direction of decreasing z. At a critical
value of the parameter, the fast segment beginning on Fold 3 hits Fold 1 instead
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of the interior of Sheet b. This is the location of a degenerate decomposition. The
continuation of the family from the degenerate decomposition will have periodic
orbits with canards lying on Sheet a. The longer closed curve in figure 1.2 shows
one of these. The canard B that is shown terminates at a fast segment that connects
Sheet a with Sheet b. In the periodic orbit, the canard is followed by a slow
segment along Sheet b, a fast segment from Fold 2 to Sheet d, a slow segment on
Sheet d and, finally, the fast segment from Fold 3 to Fold 1.

Using models for different portions of the flow, we describe approximations
of the return maps for the canard periodic orbits in this family. The return map
is a composition of transition maps along slow and fast segments. Introduce
uniformizing coordinates near Fold 1 at the end of the fast segment from Fold 3
to Fold 1:

εẋ = y − x2

ẏ = 1

ż = x .

(1.7)

(Here, (x, y, z) are different coordinates from those depicted in the figure, but x
is still the direction of fast motion.) In these coordinates, model the trajectories
originating at Fold 3 as the plane parametrized by (v, u, au). This set of
trajectories has umbra on Sheet b along the curve (x, y, z) = (

√
u, u, au), u > 0.

In (x, z) coordinates on the critical manifold, z = x2/a on the curve of incoming
trajectories from Fold 3. The slow trajectories of the model system (1.7) lie along
curves z = 2

3 x3+c for varying c. For points (
√

u, au) we have c(u) = au− 2
3 u3/2.

On the critical manifold, these points reach x = 1 along the slow flow with
z = 2

3 + au − u3/2. The leading order term is regular, but the map is not C2.
The orbit with a degenerate slow–fast decomposition may still be stable.

The canards for this family occur along Sheet a, extending the slow flow
trajectory with z = 2

3 x3. If a canard jumps back to Sheet b with x = −xd > −1,
then the value of z along the jump is zd = − 2

3 x3
d and the value of c is cd = − 4

3 x3
d .

This arrival point on Sheet b reaches x = 1 with z = 2
3 − 2

3 x3
d . Depending

upon the sign of a, the intersections of the trajectories initiated by these canards
overlaps the set of trajectories originating at (x, y, z) = (

√
u, u, au), u > 0 or is

disjoint from this set of trajectories.
Beyond the ‘scaling region’ of the model equations (1.7), trajectories that

remain near the canard to reach x = xd come from an ‘exponentially thin slab’
along Sheet a of the critical manifold that flows across Fold 3. Let y = yc give
the intersection of the infinite canards of the model system (1.7) with x = 1.
(This is a set parallel to the z-axis since the normal form equations for ẋ and ẏ
are independent of z.) Denoting t j = O(1) the time of a jump from the canard
starting near Fold 1, the difference of its y coordinate from yc is yp ≈ exp(−L/ε)
where L is given by an integral of the fast eigenvalue along the canard trajectory
to the terminal time of the canard. The phase space coordinates of the end
point of the canard are estimated by y j = yc + yp − ε

L ln yp , x j = √
y j and
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zc = (− ε
L ln yp)

3/2. The derivative of (x j , y j , z j ) with respect to yp has order
ε/yp = ε exp(−L/ε) whose magnitude is large. Thus the formation of the
canards leads to violent stretching of the return map for the cycles.

Assuming that the orbit with a degenerate decomposition is stable, there are
now four cases to analyse. These are determined by the sign of a and orientation
(o+ for orientable and o− for non-orientable) of the reduced return map for
the periodic orbit with degenerate decomposition. The case (a+, o+) yields a
monotone return map with a single saddle-node and the case (a+, o−) yields a
single period doubling. The case (a−, o−) yields a period doubling cascade and
chaotic invariant sets. The final case (a−, o+) begins with a stable, orientation-
reversing return map at the degenerate orbit but then changes orientation as the
canards develop and there is a saddle-node bifurcation. In all of these cases, the
bifurcations of the original periodic orbit occur as the canards begin to develop,
not with the O(ε) separation found in the case of Hopf bifurcation and the canard
formation in the Van der Pol system [7].

This sketch of how relaxation oscillations bifurcate close to a degenerate
decomposition with a fast segment joining two folds is far from a complete or
rigorous analysis. Filling in the details of this analysis is a continuing objective
for us. Some of the other cases on the list of degenerate decompositions have
already been studied [28], but there is hardly a coherent theory of codimension-
one bifurcation of stable relaxation oscillations analogous to what we know about
bifurcations of systems with a single time scale. The cases of periodic orbits
passing through a folded saddle and umbral tangencies occur in the forced Van
der Pol system, described in the next section. Our discussion of this example
gives the flavour of how the study of the reduced systems and degeneracies in the
slow–fast decompositions of their trajectories gives new insight into the dynamics
of multiple time scale dynamical systems.

1.4 The forced Van der Pol equation

The forced Van der Pol equation can be written in the form

εẋ = y + x − 1
3 x3

ẏ = −x + a sin(2πθ)

θ̇ = ω.

(1.8)

Here θ is a cyclic variable on the circle S1 that is normalized to have length 1
and we restrict our attention to the regime in which ε > 0 is small. This system
was introduced and studied by Van der Pol in the 1920s. He introduced the term
relaxation oscillations to describe the solutions of the unforced system [32]. A
generalization of the Van der Pol equation, the FitzHugh–Nagumo system [29],
has been widely studied as a model of nerve impulses; see also chapter 11 by
Bressloff and Cowan. The literature on the dynamics of the forced Van der
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Pol system is dominated by the work of Cartwright and Littlewood during the
period approximately 1940–55 [4, 5, 23, 24]. Levinson [21] and Levi [19] studied
piecewise linear simplifications of system (1.8), establishing the existence of
chaotic dynamics. Recently, Kathleen Hoffman, Warren Weckesser and I have
begun to study this system further [13], using the conceptual framework described
in the previous sections. In particular, we are interested in characterizing the
bifurcations of periodic orbits and other invariant sets that take place in this
system. Apart from a couple of numerical studies [9, 26] at values of ε that are
large enough to make tracking canards feasible with initial value solvers and the
work of Rand and Storti on a piecewise linear system [31], little has been done
in this direction. Earlier work has primarily been based upon analysis of the
return map to a section of constant θ . In contrast, we focus upon the slow–fast
decomposition of trajectories. These are readily determined since the fold curves
are given by x = ±1, y = ∓2/3 and the fast subsystems flow parallel to the
x-axis. Fast segments beginning at the fold with x = ±1 return to the critical
manifold at x = ∓2. In our view, the slow flow provides a scaffolding that will
enable a comprehensive understanding of the dynamics for the system.

The rescaled slow flow on the critical manifold y = x3/3 − x has a global
representation in (x, θ) coordinates as

x ′ = −x + a sin(2πθ)

θ ′ = ω(x2 − 1).
(1.9)

The equilibrium points of this system can be easily determined and its phase
portraits produced numerically. Figure 1.3 shows a representative phase portrait
for parameter values a = 4, ω = 1.55. When 0 < a < 1, the slow flow has
no folded singularities. When a > 1, there are four folded singularities, two on
each circle of the fold curve. The limits of the simplest relaxation oscillations
in the system correspond to closed curves obtained from initial conditions that
begin on the circle x = 2, flow to x = 1, connect to x = −2 along a segment
θ = const, flow from there to x = −1 and then connect to the initial point with
another segment θ = const. (There are also simple relaxation oscillations for
some parameter values that have more than two slow segments and more than two
fast segments.) All of these relaxation oscillations are stable in the fast directions
of the flow; some are also stable along the slow manifold and some are unstable
along the slow manifold.

We investigate the simple relaxation oscillations in more detail by
constructing the return map to x = 2 for the reduced system. The analysis is
made easier by exploiting the symmetry S(x, y, θ) = (−x,−y, θ + 0.5) of the
slow–fast system and its restriction to the critical manifold and rescaled slow flow.
The half return map H is defined by following the slow flow from x = 2 to x = 1,
jumping from x = 1 to x = −2 and applying the symmetry. If (2, θ0) flows to
(1, θ1) under the slow flow, then H (θ0) = θ1 + 0.5 (mod 1). When a > 1, the
map H is discontinuous at points lying in the stable manifold of the folded saddle.
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Figure 1.3. The phase portrait of the rescaled slow equation for the forced Van der Pol
equation with a = 4 and ω = 1.55. The stable and unstable manifolds of the folded
saddles are drawn in the region |x| < 2. The folded foci are drawn as triangles.

The limit values of H at the two sides of the discontuity are θs + 0.5 and θu + 0.5
where the folded saddle has (x, θ) coordinates (1, θs), and (1, θu) is the (first)
intersection of the unstable manifold of the folded saddle with x = 1. The map
H has one local maximum and one local minimum when a > 2. These occur
at the points of umbral tangency (2, 1

2π sin−1(2/a)) and (2, 0.5− 1
2π sin−1(2/a))

where ẋ = 0 in the slow flow.

Fixed points of H correspond to trajectories with two fast and two slow
segments, the fast and slow segments each forming a symmetric pair. Our
investigations of these fixed points show two primary types of bifurcations:
saddle-nodes and ‘homoclinic’ bifurcations where the fixed points approach a
discontinuity of H . The saddle-node bifurcations do not involve degenerate
decomposition of periodic orbits in a direct way. They correspond to saddle-nodes
of periodic orbits in which a stable and unstable periodic orbit of the reduced
system coalesce. The second type of bifurcation occurs when the periodic orbits
in the slow flow approach heteroclinic orbits that connect the two folded saddles
with two connecting segments that are related by the symmetry. There are two
forms of heteroclinic orbit that differ as to whether the connecting orbits contain
a segment that follows the unstable manifolds of the folded saddles or not. The
periodic orbits that contain segments lying close to the unstable manifolds of the
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Figure 1.4. Information about canards in the forced Van der Pol equation with a = 4 and
ω = 1.55. Canard trajectories at the upper folded saddle follow the dotted stable manifold
down to the right and jump vertically up or down to one of the two other dotted curves.
The unstable manifold of the upper folded saddle and its prolongation after jumping from
x = 1 to x = −2 is drawn as a dash-dotted curve. Branches of both folded saddles are
drawn as dashed curves. The solid curves in the lower half of the figure begin at the ends
of the canard umbra shown as the lower dotted curve.

folded saddle occur to the right of the stable manifolds of the folded saddle. There
are additional distinctions that can be made that reflect the types of branches of
the half return map that contain points from the homoclinic orbits.

Analysis of the half return map H does not address directly the issues
of canards and bifurcations associated with degenerate decompositions that we
discussed in previous sections. The discovery of chaotic dynamics in the forced
Van der Pol system by Cartwright and Littlewood was a seminal event in the
history of dynamical systems [4]. Their discovery was based upon results of
Birkhoff in the case that there are two fixed points of H whose orbits in the
reduced system have different periods. The subsequent analysis of Littlewood
[23, 24] makes it evident that the chaotic trajectories involve canards.

We have begun to extend our analysis of the reduced system and its half
return map to take account of the limiting behaviour of canard solutions in the
forced Van der Pol system. Figure 1.4 shows a plot (a = 4, ω = 1.55) that allows
us to determine the limiting position of canards as ε → 0 and the subsequent



Bifurcation in multiple time scale systems 17

trajectories to their next return(s) with the circle x = 2. Trajectories that reach
the folded saddle at x = 1 along its stable manifold (dashed line) can continue
past the folded saddle along the stable manifold (dotted line) to smaller values of
x . (Recall that our rescaling of the slow flow reversed time in the strip |x | < 1.)
In the three-dimensional phase space, the canard trajectories follow the unstable
sheet of the critical manifold, from which they can then jump to one of the two
stable sheets of the critical manifold. The jumps are parallel to the x-axis, and
their images on the two stable sheets are also drawn as dotted lines. These
images act like the umbra of fold curves in that they are the initial points for
slow segments of the trajectories that begin on the canards. The canards that
jump up to x > 1 have trajectories that next reach the circle x = 1 in the interval
between θu (at the end point of the dash-dotted unstable manifold of the folded
saddle in figure 1.4) and the intersection point of the stable manifold with x = 1.
From x = 1, these trajectories jump to x = −2. One of them lands in the stable
manifold of the lower folded saddle (dashed line in the lower half of figure 1.4).
The extension of the trajectory jumping from the unstable manifold of the (upper)
folded saddle is shown as a dash-dotted line. The canards that jump down to
x < −1 initiate slow segments that flow to x = −1 and then jump back to x = 2.
One of these trajectories lands in the stable manifold of the upper folded saddle
at its third intersection with the circle x = 2. The trajectories at the endpoints of
the umbra from the canards that jump down are plotted as full curves.

Figure 1.5 plots the value of θ at returns of the canards to x = 2, as described
in the previous paragraph. The dotted line is at an (integer translated) value of the
third intersection of the stable manifold of the folded saddle with x = 2. Its
intersection with the full curve comes from a canard that jumps down, flows to
x = −1 and then jumps to a point in the stable manifold of the upper folded
saddle. The vertical segment of the graph comes from the canard that jumps up,
flows to x = 1 and then jumps to x = −2, landing in the stable manifold of
the lower folded saddle. The points in this region will follow canards symmetric
to the ones described earlier. In particular, there will be one canard that jumps
down, flows to x = −1 and then jumps to x = 2, landing in a point of the stable
manifold of the upper saddle. This description of the evolution of canards leads
to the identification of the solenoid [30] (suspension of a horseshoe) discovered
by Cartwright and Littlewood. A cross section to the stable manifold of the
folded saddle will first flow along the slow manifold becoming compressed in
the transverse direction to the slow manifold. A small portion will then follow
canards and the evolution described earlier, the transverse direction to the vector
field inside the slow manifold being stretched along the canards. Two portions of
these canards will return to the upper sheet of the slow manifold, passing through
the original cross section to the stable manifold of the folded saddle. The return
map of this cross section appears to have a horseshoe.

We end with a conjecture and a question about this description of chaotic
dynamics in the forced Van der Pol equation:
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Figure 1.5. The θ coordinate of returns of canard trajectories to the circle x = 2 are plotted
as a function of their initial θ coordinate. There is a discontinuity where the trajectories
contain segments of the stable manifold of the lower folded saddle. The dotted line gives
the θ coordinate for an intersection of the stable manifold of the upper folded saddle with
x = 2. The extreme point at the right of the curve corresponds to the ‘maximal’ canard, the
trajectory that follows the stable manifold of the folded saddle all the way to its intersection
with x = 1 before jumping to x = −2.

Conjecture 1.2. For the parameter values a = 4, ω = 1.55 and ε > 0 sufficiently
small, the non-wandering set of the forced Van der Pol equation (1.8) consists
precisely of two stable periodic orbits and a hyperbolic solenoid that is the
suspension of a full shift map on two symbols.

Question 1.3. What are the bifurcations that lead to the creation and destruction
of the chaotic trajectories in the forced Van der Pol system?
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Chapter 2

Many-body quantum mechanics

Robert S MacKay
University of Warwick

Nonlinear Dynamics and Chaos: Where do we go from here? is the title of this
book. My answer for a proposed direction is many-body quantum mechanics. In
keeping with the informal spirit of the presentation on which this chapter is based,
I will pose several questions, though they vary in status from ill-defined to those
for which I have a fairly complete answer.

I should start with some preliminaries about quantum mechanics. The
experienced reader may find some of what I write to be naı̈ve or even
misconceived, so I would be grateful for feedback and I ask the inexperienced
reader to take everything with a pinch of salt. In addition, I do not propose to give
a scholarly account, so some of my references and credits will be a bit haphazard.

The traditional dogma is that quantum mechanics is linear, so there is no
nonlinearity and a fortiori there is no chaos. Thus, it looks as if my proposal is a
backwards step!

I believe that view of quantum mechanics is superficial, however. Any
dynamical system, written in terms of its flow map

φ : � × M → M (t, x) 	→ φt (x)

on a state space M , can be viewed as linear via its action on functions F : M →
�,

(φ∗t F)(x) = F(φt x) (2.1)

(evaluation along trajectories) or, equivalently, its inverse

(φ∗,t F)(x) = F(φ−t x)

(advection of passive scalars). In the common case that M is a manifold and the
dynamical system comes from a vector field

ẋ = v(x)

21
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then (2.1) can alternatively be written as the linear partial differential equation
(PDE)

∂F

∂ t
= DFv = v · ∇F (2.2)

for how functions F evolve. For the special case of Hamiltonian vector fields v,
those arising from frictionless classical mechanics, there is another way to write
(2.2): its right-hand side is the Poisson bracket {H, F},

{H, F} =
d∑

j=1

∂H

∂q j

∂F

∂p j
− ∂H

∂p j

∂F

∂q j

in canonical coordinates (p, q), where H is the Hamiltonian function and d is the
number of degrees of freedom. So (2.2) can be written as

∂F

∂ t
= {H, F} (2.3)

which is one of the standard formulations of Hamiltonian mechanics. In
particular, from this point of view, Hamiltonian mechanics is linear. Nonetheless,
all the nonlinear and chaotic phenomena are still present.

Quantum mechanics can be expressed in a similar form to (2.3), actually two
alternative forms. The first is the Schrödinger form

i�ψ̇ = Hψ

for the evolution of a wavefunction ψ in some complex Hilbert space U , where H
is a Hermitian operator and � is Planck’s constant h divided by 2π . The second is
the Heisenberg form (or maybe one should say Jordan–Born–Heisenberg form)

Ȧ = − i

�
[H, A]

for the evolution of any linear operator A on U , where [H, A] denotes the
commutator

[H, A] = H A − AH.

These are linear evolutions for ψ and A. The two are related: if every
wavefunction evolves by Schrödinger’s equation then for all ψ , i�(Aψ)t =
H (Aψ), so i�Atψ = H Aψ − i�Aψt = [H, A]ψ . Conversely, if every operator
evolves by Heisenberg’s equation, then in particular the rank-1 projections P =
ψη, where ψ ∈ U and η ∈ U∗ (the dual space, consisting of linear forms on U ),
evolve this way, so ψ̇η + ψη̇ = − i

�
(Hψη − ψηH ) for all ψ, η, and the only

solution is i�ψ̇ = Hψ , −i�η̇ = ηH .
In particular, the Heisenberg form is closely analogous to (2.3), because

{H, F} and [H, A] are ‘derivations’ on functions F and operators A, respectively,
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that is, they are linear and satisfy Leibniz’ rule [H, AB] = A[H, B] + [H, A]B
(and similar for {H, FG}).

So we are not really justified in stating that quantum mechanics has no
nonlinearity, because we know that in the case of (2.3) there is, in general, an
underlying nonlinearity in the vector field. Who is to say that there is not some
analogous underlying nonlinear vector field in the quantum case?

Indeed, the theory of non-commutative manifolds (e.g. [14]) provides a
way of thinking about Heisenberg’s equation as coming from an underlying
vector field, but on a non-commutative manifold; see, e.g., [6]. Here is a rapid
introduction to the subject (which is also known as quantum geometry). Consider
the algebra C(M) of (smooth) functions F : M → � on a normal manifold M ,
with the usual operations of pointwise addition and multiplication and complex
conjugation. For each point x ∈ M we can define a linear functional evx

on C(M), namely the evaluation map evx(F) = F(x). It has properties that
algebraists call a Hermitian character, namely evx (FG) = evx(F)evx (G) and
evx (F∗) = (evx (F))∗, where ∗ represents complex conjugation. Remarkably,
every Hermitian character on C(M) can be proved to be the evaluation map
at some point x ∈ M . So one can think of M as being the set of Hermitian
characters on C(M). Now C(M) is commutative, that is, FG = G F for all
F and G ∈ C(M). It turns out that every commutative algebra � satisfying
suitable properties (to get the smooth structure) is C(M) for some M . The
wonderful idea is to define a non-commutative manifold to be the set of Hermitian
characters of a non-commutative algebra (with suitable smoothness properties).
The basic example of a non-commutative algebra is the algebra of linear operators
on a Hilbert space, with the operations of addition, multiplication and Hermitian
conjugation. There are variations on the theme, using prime ideals of the
algebra, or its irreducible representations. An unfortunate obstacle is that for
even the simplest example of a quantum mechanical algebra, that generated by
position x and momentum p operators for a one-dimensional (1D) oscillator, with
[p, x] = i�, there are no characters (nor finite-dimensional representations) and
only one prime ideal. However, this does not seem to be regarded as serious by
its proponents.

There is a growing literature on non-commutative manifolds, but I am
not aware yet of anyone having tried to develop an analogue of the theory of
dynamical systems for them, and this is in my opinion very important as it
underlies quantum mechanics. So I am ready to pose my first question.

Question 2.1. Can a theory of dynamics on non-commutative manifolds be
developed?

The first step is to define a vector field on a non-commutative manifold. This
is easy. On an ordinary manifold M , one way of thinking of a vector field v is
as a Hermitian derivation Lv on C(M), defined by Lv F = DFv (the right-hand
side of (2.2)). Any Hermitian derivation L on C(M) induces a vector field vL on
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E

ω

Figure 2.1. Frequency ω versus energy E for the ideal pendulum.

M , namely the unique v such that L F = DFv for all F . So it is natural to define
a vector field on a non-commutative manifold to be a Hermitian derivation on its
algebra. The right-hand side of Heisenberg’s equation is an example.

The next step is not so obvious. One might wish to analyse the initial value
problem and derive a local flow, as for ordinary (Lipschitz) vector fields. But
I do not know if this makes sense in the non-commutative case. An alternative
could be to mimic the theory of uniformly hyperbolic systems, which can be
formulated entirely in functional analytic terms, so it does not require solution
of the initial value problem. Another promising direction would be to mimic the
spectral theory of measure-preserving transformations; see, e.g., [3]. In any case,
there is lots of room for work on this question.

2.1 Signs of nonlinearity in quantum mechanics

I am now going to move to a different approach, which is to look for signs of
nonlinearity in quantum mechanics.

The basic nonlinearity in Hamiltonian mechanics is anharmonicity (which
is better called non-isochronicity). An oscillator is said to be anharmonic if the
frequency ω of oscillation varies non-trivially with the energy E . For example, a
pendulum’s frequency decreases until one reaches the energy when it can go over
the top, as all bell-ringers know; see figure 2.1. Equivalently, when expressed in
terms of the action variable I , the Hamiltonian H (I ) is not affine, since ω = ∂H

∂ I .
Note, however, that there are oscillators other than the harmonic oscillator for
which the frequency is constant [11]!

We will say that a 1D quantum oscillator is anharmonic if its energy levels
are not equally spaced. This is because neighbouring energy levels are thought of
as corresponding to actions differing by �, so the energy difference divided by �

is a discretization of ∂H
∂ I . Most quantum oscillators (except for the harmonic one)

have non-constant energy level spacing, so we see that in this sense nonlinearity
is common in quantum mechanics.

To take this to more degrees of freedom, a classical Hamiltonian system is
linear (in a coordinate system for which the Poisson brackets are constant) if and
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only if the Hamiltonian is a homogeneous quadratic in the coordinates (plus a
constant). Similarly, we can say that a quantum system is linear (with respect to
a generating set of operators whose commutators are constants) if the Hermitian
operator H is a homogeneous quadratic (plus a constant) when expressed in this
basis of operators. For example, if H is Hermitian and quadratic in operators a j

and their Hermitian conjugates a†
j , satisfying commutation relations [a j , ak] =

0, [a j , a†
k ] = δ j k, then there is a unitary change of generators to a set α j , α

†
j

satisfying the same commutation relations, such that H takes the form
∑

j λ j N j

for some real numbers λ j , where N j = α
†
jα j . Each N j is called a number

operator because its spectrum is precisely the non-negative integers �+. They
commute, so it follows that H commutes with them and hence the spectrum of H
is {∑ j λ j n j : n j ∈ �+}.

My next question is to make this more general.

Question 2.2. How far can one generalize the previous example of a linear
quantum system (e.g. fermionic operators are all right too), and when can a new
generating set be chosen to make the system linear (cf Sternberg’s linearization
theorem near an equilibrium of a classical vector field [4])?

We can go a bit further in our translations of properties from classical to
quantum. A classical system is integrable if the Hamiltonian is a function only
of a Poisson commuting set of integrals (conserved quantities), whose derivatives
are linearly independent almost everywhere. It follows that its motion can be
solved virtually explicitly and the dynamics fully comprehended (equivalent to
constant velocity motion on tori). Similarly, a quantum system can be said to
be integrable if the Hermitian operator H is a function only of some commuting
and independent set of operators. This is the case in the previous linear example.
Again, it allows one to solve the dynamics virtually explicitly. The only problem
with this definition is that it is not yet agreed what counts as independent, but
there is a large literature on quantum integrable systems; see, e.g., [30].

One can go still further. Many Hamiltonian systems, even if not exactly
integrable, turn out to be close to integrable in certain parameter regimes or
regions of the state space. For example, near a non-resonant equilibrium of a
classical Hamiltonian system one can find canonical coordinate systems—here I
have chosen complex coordinates z j , z∗j —to put H into the form

‘integrable’ + ‘remainder’

H ((|z j |2) j ) + O(‖z‖2N )

for arbitrary N , the so-called Birkhoff normal form. Similarly, in many quantum
systems one can apply unitary transformations to put them into Birkhoff normal
form, in the sense of a function only of a commuting set of operators, plus
some ‘high-order’ remainder (Bogoliubov transformations, e.g. as rediscovered
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by [22]). Note that there are also quantum analogues of KAM theory (e.g. [15])
and Nekhoroshev theory (e.g. [10]).

In classical mechanics, Poincaré made the really important discovery that
there are obstacles to integrability. Before his discovery the hope was that
for every Hamiltonian system one could perform coordinate changes to bring
them closer to integrable, and eventually push the remainder to zero, so every
Hamiltonian system would be integrable. Poincaré realized that there is an
obstacle, a very simple one: classical integrable systems of more than one
degree of freedom generically have rational tori, a dense set of them in fact. He
showed that they are fragile under general perturbation of the Hamiltonian. So
the conclusion is that most Hamiltonian systems are not integrable. There is an
analogue of this for quantum systems: if you have an integrable quantum system
then degeneracy of energy levels is a codimension-one phenomenon—typically
there are no degeneracies. However, in one-parameter families of integrable
systems of more than one degree of freedom, energy levels can cross each other as
the parameter varies, typically transversely, and so degeneracies occur at isolated
parameter values and they are typically unremovable by small change in the
family, preserving integrability. For general real symmetric quantum systems,
however, Wigner pointed out that degeneracy is a codimension-two phenomenon,
and it is of codimension three for general Hermitian ones: there is generically a
repulsion of energy levels, leading to avoided crossings.

I regard this as a direct analogue of Poincaré’s observation. It shows
that most quantum systems are not integrable or, strictly speaking, most one-
parameter families of quantum systems are not integrable. Actually, the
latter comment highlights a subtle distinction between classical and quantum
mechanics. I feel that in order to talk about nonlinearity in quantum mechanics
it is probably usually necessary to think in terms of one-parameter families. A
natural parameter might be Planck’s constant or some equivalent scale of action,
but it could be other parameters. There is a huge literature on the distribution of
spacings of energy levels, in particular on the repulsion of energy levels as a sign
of non-integrability, people at Bristol being key players; see, e.g., [8].

Poincaré went much further than just saying that most classical systems are
not integrable—he showed what dynamics is substituted for the rational tori in a
near integrable system, and he found the notion of homoclinic chaos that we are
all familiar with. So my next question is:

Question 2.3. Is there a quantum analogue of homoclinic chaos?

Of course, one can answer that avoided crossings take the place of crossings,
but I have a feeling that there should be some consequences of non-integrability
of a more dynamical nature. For a snapshot of some views on this, see [7]. One
avenue that I consider promising is adiabatic theory: on varying the parameter
slowly a quantum system can switch energy levels near an avoided crossing, best
described probabilistically (e.g. [28]), which recalls probabilistic interpretations
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of transitions across a separatrix in classical mechanics; see, e.g., [41]. In both
cases the transition rate is very small for small perturbation from integrable
(exponentially so for analytic systems).

OK, that is all by way of introduction. For an interesting source of
other directions in the dynamics of simple quantum systems, see [42]. Now
I want to concentrate on the many-body case of quantum mechanics. I am
going to discuss in detail one particular phenomenon in many-body quantum
mechanics—quantum discrete breathers—but before I begin on that I should
say that there are many well-known approximations in many-body quantum
mechanics that produce obviously nonlinear equations. Hartree–Fock theory is a
basic example, where a many-electron problem is replaced by some effective one-
electron problem which is determined by a nonlinear self-consistency condition
(e.g. [47]). It is the basis for understanding the periodic table of the elements, for
example, though its validity is questionable. Another example is Bose–Einstein
condensates, where the Gross–Pitaevskii equation (the nonlinear Schrödinger
equation in an external potential) is derived for the wavefunction that is supposed
to describe the condensate [33]. Thus, many-body problems, if you make certain
approximations, can boil down to nonlinear few-body problems.

Another direction one could pursue in many-body quantum mechanics is
another type of answer to Question 2.3. Arbitrarily small perturbation of some
quantum many-body problems can produce qualitatively new effects, an example
being superconductivity when electron–phonon interactions are added. The
effects even have the property of being exponentially small in the perturbation
parameter.

But these are not the directions in which I wish to go. I want to pursue the
anharmonicity idea, as we did not have to do anything fancy to see that there is
anharmonicity in quantum mechanics, but its implications for many-body systems
are less obvious.

2.2 Discrete breathers

First I should tell you what discrete breathers are classically; for one survey
see [35]. A classical discrete breather (DB) is a time-periodic spatially localized
vibration in a Hamiltonian network of oscillators. There are dissipative analogues,
but I am going to concentrate entirely on the Hamiltonian case. Imagine that we
have some network—it could be sites in a crystal lattice or it could be some
amorphous thing like a globular protein, and at each site we have a classical
oscillator with Hamiltonian

H (xs, ps) =
∑
s∈S

(
1

2
p2

s + V (xs)

)
+ ε

2

∑
r,s∈S

�rs(xr − xs)
2 (2.4)

for some network S, local potential V , coupling strength ε and coupling matrix
�. We will suppose that the potential V is not harmonic, as is generically the
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Figure 2.2. The crystal structure of orthotropic H2 at less than 3 K. Reproduced from
I F Silvera, The solid molecular hydrogens in the condensed phase: fundamentals and
static properties, 1980 Rev. Mod. Phys. 52 393–452 c©1980 by the American Physical
Society.

case, and that the coupling is relatively weak and satisfies some decay condition
like

|�rs | ≤ Ce−λd(r,s)

or even some summable power law. Many other forms of coupling can also be
considered. To avoid confusion let us just think of the case of linear nearest-
neighbour coupling.

Such models are proposed for vibrations of molecular crystals and I want
to mention a few examples here. First, figure 2.2 shows a molecular hydrogen
crystal, solid H2, where the molecules arrange themselves in a lattice and orient
themselves along the four main diagonals. Now, what is the degree of freedom
that I wish to consider here? I am thinking of the stretch of the molecule. The
stretches in nearby molecules are coupled by Van der Waals and quadruple–
quadruple interactions. Of course, stretch of one molecule also makes forces
which shift the centre of mass and change the orientation of nearby molecules,
but we will ignore that for present purposes.

Another example, sketched in figure 2.3, is potassium bicarbonate KHCO3.
The bicarbonates pair up by hydrogen bonding and one gets a degree of freedom
where the protons can switch sides simultaneously between configurations (a)
and (b) in figure 2.3 [26] (though there is now evidence in similar materials for
four-well dynamics [21]).

A third example is 4-methylpyridine; see figure 2.4. This is a crystal of a
molecule that has pyridine rings, like benzene but with nitrogen at the bottom, and
a methyl group attached to the top. The methyl groups are relatively free to rotate,
so it is that rotation that is the degree of freedom here [17]. But each methyl group
has another one facing it and they interact quite strongly (along the dotted lines
in figure 2.4(b)), so really we have to consider two-degree-of-freedom quantum
units consisting of such pairs of methyl groups. Methyl groups in neighbouring
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Figure 2.3. The two configurations (a) and (b) of the potassium bicarbonate dimers.

pairs interact with each other (e.g. via the dashed lines in the figure, but also along
similar lines in the b direction), linking the pairs in a 3D lattice.

The final example is a platinum chloride material, Pt(en)2Cl2 Pt(en)2 (ClO4)4
where en stands for ethylenediamine, which contains long chains of alternate plat-
inum and chloride ions. The chains dimerize (meaning that instead of the Pt and
Cl being equally spaced along these chains, the equilibrium position of the nth
Cl is displaced by (−)nδ, and δ is relatively large for this material). This is be-
cause the electrons reduce their energy by doing so, more than the energy required
to move the Cl ions (Peierls’ instability). Essentially one ends up with alternate
‘molecules’ of PtCl2(en)2 and Pt(en)2; see figure 2.5 and [46] for more details.
The degree of freedom that is relevant here is the symmetric stretch of the Cl2
in the PtCl2(en)2 molecules, though the interaction with neighbours forces one
to include at least the antisymmetric stretch as well. So again the units have two
degrees of freedom.

Now if we suppose that the potential for the local degree of freedom in solid
H2 or the PtCl material, say, is harmonic, meaning a pure parabola,

V (x) = 1
2ω

2
0x2

and we suppose the system has crystal periodicity, so the coupling is translation
invariant, then there are no DBs for any positive coupling because, as is well
known, any localized initial condition will disperse. For example, if you look at
the dispersion relation for a 1D nearest-neighbour-coupled chain

ω2 = ω2
0 + 4ε sin2 k

2

it is non-trivial (meaning ∂ω/∂k is not constant) and so any localized initial
condition will spread out. Therefore, one never gets any time-periodic spatially
localized solutions.
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(a)

(b)

Figure 2.4. Two views of the crystal structure of 4-methylpyridine: the 3D
structure (a) (reprinted with permission from N Le Calvé, B Pasquier, G Braathen,
L Soulard and F Fillaux 1986 Molecular mechanism determining phase transitions in the
4-methylpyridine crystal J. Phys. C 19 6695–715 c©1986 American Chemical Society),
and a section (b) (reproduced from F Fillaux, C J Carlile and G J Kearley 1991 Inelastic
neutron scattering study at low temperature of the quantum sine-Gordon breather in
4-methylpyridine with partially deuterated methyl groups, Phys. Rev. B 44 12 280–93
c©1991 by the American Physical Society).

Real molecules are anharmonic; frequency does vary with amplitude. Morse
found that the so-called Morse potential

V (x) = 1
2 (1 − e−x )2

gives a good fit to a lot of spectroscopic data. See, for example, figure 2.6 for
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Figure 2.5. The ‘molecules’ involved in the platinum chloride example. Reproduced
from B I Swanson, J A Brozik, S P Love, G F Strouse, A P Shreve, A R Bishop,
W-Z Wang and M I Salkola 1999 Observation of intrinsically localized modes in a discrete
low-dimensional material Phys. Rev. Lett. 82 3288–91 c©1999 by the American Physical
Society.

Figure 2.6. The effective potential and the 15 vibration levels of stretch of an H2 molecule.
The arrow indicates the classical turning point in level 14 which is not shown. Reproduced
from J van Kranendonk 1983 Solid Hydrogen Plenum c©1983 by Plenum Publishing
Corporation.
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Table 2.1. Anharmonicities of some diatomic molecules in gas phase.

Molecule ω (cm−1) Anharmonicity x (%)

H2 4401.21 2.757
HD 3813.1 2.404
D2 3115.5 1.984
H 35Cl 2990.946 1.766
O2 1580.19 0.758
CO 2169.81 0.612
N2 2358.03 0.599
35Cl2 599.71 0.482
Br2 323.07 0.361
I2 214.50 0.268

the case of solid hydrogen. Table 2.1 indicates the amount of anharmonicity, of
certain gas-phase diatomic molecules (from [25, 45]). These figures are obtained
by fitting spectroscopic data to a formula of the form

E = (n + 1
2 )�ω − x(n + 1

2 )
2
�ω + · · · .

From my results with Aubry [38], if V in (2.4) is anharmonic and the
coupling is weak enough compared with the anharmonicity, i.e. ε < ε0 for
some ε0 > 0, then we have proved the existence of DBs in the classical
system (extended to multi-degree-of-freedom oscillators in [43]). If the coupling
is nearest neighbour or exponentially decaying then the amplitude of the DBs
decays exponentially in space [43]. (Similarly, if the coupling is a (summable)
power law, we obtain power-law localization of the DB [9].) The existence
proof is very constructive—we just continue from the uncoupled case using the
implicit function theorem, and that means that the proof can essentially be used
numerically. Furthermore, the DBs are stable in a sense: if ε is small enough,
ε < ε1 (where maybe ε1 is smaller than ε0), then the DBs are l2-linearly stable,
i.e. stable under the linearized evolution of finite energy perturbations [39]. This
is the best form of stability one could hope for. So it suggests they could be
physically observable.

But real molecules are quantum mechanical. Just to give an illustration, look
again at figure 2.6 showing the effective potential for the stretch of a hydrogen
molecule. Classically, any energy of vibration between the minimum and the
dissociation energy is possible. But spectroscopists observe only 15 energy
levels, labelled from 0 . . . 14. (Actually they observe transitions between them
and infer the levels.) So real molecules are highly quantum mechanical and we
cannot ignore quantum mechanics in trying to understand vibrations in molecular
crystals. Note also the anharmonicity in figure 2.6: the spacing between levels is
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Figure 2.7. Raman scattering results on Pt35 Cl. Reproduced from B I Swanson,
J A Brozik, S P Love, G F Strouse, A P Shreve, A R Bishop, W-Z Wang and M I Salkola
1999 Observation of intrinsically localized modes in a discrete low-dimensional material,
Phys. Rev. Lett. 82 3288–91 c©1999 by the American Physical Society.

relatively large at the bottom and shrinks as we go up. The question that poses
itself, and the key question to be addressed in this chapter is:

Question 2.4. Is there a quantum analogue of discrete breathers?

2.3 Experimental evidence for quantum discrete breathers

Experiments suggest that the answer is yes. Figure 2.7 shows the experimental
results of Swanson et al [46] on the platinum-chloride material that was
represented in figure 2.5.

What they do is fire in photons from a laser and have a look for any photons
that come out with less energy; the idea is that if they have lost energy they have
created a vibration in the crystal. This is called Raman scattering. Spectroscopists
measure energy in cm−1! Sorry about that but it is just units. We see that they
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(a) (b)

Figure 2.8. Pressure-induced bi-vibron bound–unbound transition of D2; shown are
Raman spectra of D2 in the overtone region as a function of pressure (a), and a comparison
between experimental results and theoretical calculations (b). Reproduced from J H Eggert,
H-K Mao and R J Hemley 1993 Observation of a two-vibron bound-to-unbound transition
in solid deuterium at high pressure Phys. Rev. Lett. 70 2301–4 c©1993 by the American
Physical Society.

can create an excitation at 312 cm−1, and they can also create one at nearly twice
that. To see the difference, they cut up the energy axis and align the pieces above,
shifted by multiples of 312 cm−1. The second panel from the bottom shows a
peak at slightly less than twice the original, the third panel up shows a peak at
yet less than three times, the next even less than four times, and so on. So they
say ‘Ah-ha! we are creating some anharmonic vibration here, because we are
seeing successive levels of some anharmonic vibration’. They assume that it is
a localized PtCl2 symmetric stretch. The PtCl2 symmetric stretch assumption is
fine because for the chosen material that is the only Raman active mode in that
range of energies. But the localization inference is not justified in my opinion.
They do not observe spatial localization at all; they just say that their results
are consistent with one molecule that is anharmonic and is picking up various
amounts of energy.

I think it would be really interesting to do an experiment to observe the
spatial structure of the created excitations. In principle, one could do this by
scattering neutrons, instead of photons, because their energy can be chosen
to make their de Broglie wavelength comparable to or shorter than the lattice
spacing. So I tried it [37], but it turned out that the neutrons excited far too many
other modes in the same energy range to even see the PtCl2 stretch.

Another experiment that I like is the one by Eggert, Mao and Hemley [16] on
solid deuterium D2, the results of which are depicted in figure 2.8. The great thing
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about solid deuterium (and solid hydrogen) is that one can compress it relatively
easily, and thereby change the coupling strength between the molecules. This is
really fun. What they do is change the pressure, from 12.7 GPa (gigapascals) to
36.4 GPa (for reference, atmospheric pressure is about 0.1 MPa). At 12.7 GPa,
they can create an excitation that they call a bi-vibron, and a continuum of
excitations with a range of slightly higher energies. They interpret the bi-vibron
as a second excited state of one deuterium molecule and the continuum as the
formation of a pair of first excited molecules but where the excitations propagate
in opposite directions. As they increase the pressure, the bi-vibron peak merges
into the continuum; see figure 2.8(a). In figure 2.8(b) the continuum is depicted
above the bi-vibron, but as the pressure increases one can see the bi-vibron energy
decreases slightly and then it is absorbed into the continuum. This is nice because
this shows that just as in the classical case some localized excitation exists,
provided that coupling strength is smaller than or the same order of magnitude
as a measure of the anharmonicity. In fact, in the appropriate dimensionless units,
which are plotted on the lower horizontal scale of figure 2.8(b), the threshold is at
about 1.2. Note again, however, that the experiment did not measure the spatial
structure of the excitation. This material would be much better adapted than PtCl
to the inference of spatial structure by neutron scattering and I would very much
like to find someone willing to try it. The only problem is that solid deuterium
is much harder to handle than PtCl because one needs to keep it cold and under
pressure.

These experiments (and others, for example bi-vibrons were reported in solid
hydrogen in 1957 [23]!) suggest that there is a quantum analogue of the classical
discrete breather concept. But we need a mathematical formulation.

2.4 Towards a mathematical theory of quantum discrete
breathers

A quantum system is specified by a Hermitian operator H on a Hilbert space U . A
large part of the game, though not all, is to find the eigenvalues and eigenvectors
of this operator. For example, if we had a single degree of freedom x , like stretch
of a hydrogen molecule, then our Hilbert space would be L2 functions of one
variable and our operator would be the standard Schrödinger operator

Hψ = − �
2

2m

d2ψ

dx2 + V (x)ψ for ψ ∈ U = L2(�, � ).

A typical spectrum would consist of a ground-state energy (which, without loss
of generality, I will choose to be the origin of energy), first excited energy etc, as
depicted in figure 2.9. In practice, there would be a continuum corresponding
to dissociation for higher energies, but I am not really interested in the high
excitations and, to avoid technicalities to do with unbounded operators (or even
with infinite-dimensional bounded ones), I will simplify by supposing that my
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Figure 2.9. A typical spectrum of a one-degree-of-freedom quantum system.

Hilbert spaces are finite-dimensional. The important thing is that typically these
spectra have softening anharmonicity as we saw earlier. So the gaps between the
eigenvalues decrease as you go up the spectrum.

Now, how do we describe quantum mechanically the whole molecular
crystal? Mathematically, the Hilbert space for N molecules is the tensor product
of the individual spaces,

U1 ⊗U2 ⊗ · · · ⊗UN .

It is defined to be the set of multilinear mapsψ from U∗
1×U∗

2×· · ·U∗
N to � (where

U∗ is the dual of U ), but the easiest way to think about a tensor product is to
describe a basis for it. A natural basis is given by states of the form |n1, . . . , nN 〉,
which represents that molecule 1 is in its n1 state, molecule 2 in its n2 state etc,
and is defined by

|n1, . . . , nN 〉 on 〈m1|〈m2| . . . 〈mN | gives
∏

s

δmsns .

(This ignores the degrees of freedom describing the relative positions and
orientations of the molecules; including these is a project which goes beyond
my present thinking, though approximate theory features in many books and it
has been treated rigorously in the classical case [2, 36].)

The mathematical difficulties in many-body quantum mechanics come about
because the dimension of a tensor product is the product of the dimensions rather
than the sum, that is

dim(×sUs) =
∑

s

dim Us

but
dim⊗sUs =

∏
s

dim Us .
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Figure 2.10. Multiplicity of the spectrum of an uncoupled N-unit network.

Actually, related difficulties occur in probability theory of large networks, so I
am developing a parallel theory there. We will see where this difficulty starts to
play a role in a moment, but if we think just of an uncoupled network then the
Hamiltonian is just the sum of the individual Hamiltonian operators

H 0 =
∑

s

‘Hs’,

where a superscript ‘0’ corresponds to ‘uncoupled’ and ‘Hs’ is defined on ⊗Us

by
‘Hs’ψ(ψ∗

1 , . . . ) = ψ(ψ∗
1 , . . . , Hsψ

∗
s , . . . ).

Hence the eigenvalues of H 0 are just sums of eigenvalues of Hs , taking one for
each unit.

So what do we get for the spectrum of the uncoupled network? We get a
ground state where each molecule is in its ground state. We get a first excited
subspace where one molecule is first excited and the rest are in their ground state.
But, of course, there are N ways of choosing which molecule is first excited so
this has dimension N . There is a second excited subspace where one molecule is
second excited and the rest are in their ground state, and again that has dimension
N . Then there is a subspace where two molecules are first excited and the rest
are in their ground state, and that has dimension N(N − 1)/2; see figure 2.10.
You can go up as far as you want but this is going to be enough for our present
purposes.

Let me give names to the spectral projections corresponding to these
subspaces; P(0), P(1), P(2), P(1,1) and so on, as indicated in figure 2.10. Just to
remind you, a spectral projection P (for a finite-dimensional Hermitian operator)



38 Robert S MacKay

P

P

P

P

E 1

...

..

E

2E

2E

3

1

ε

ε

ε

ε

ε0

(1)P

ε
(0)

(2)

(1,1)

(3)

Figure 2.11. The spectrum of the N-unit quantum system for weak coupling ε.

is the orthogonal projection onto the span of eigenvectors corresponding to an
isolated part of the spectrum. The question that I want to ask is:

Question 2.5. What happens to the spectrum of H 0 when one adds some coupling
operator, i.e. H ε = H 0 + ε�?

We will suppose the coupling operator takes the form

� =
∑

r,s∈S

�rs

together with some decay property, as in the classical case.
Now if the size ε‖�‖ of the coupling (measured using the Hilbert norm,

i.e. the largest eigenvalue in absolute value) is small, then standard perturbation
theory tells one that the spectral projections move smoothly and the spectral gaps
cannot change dramatically in size; in particular they can shrink by at most 2ε‖�‖
if at all. So as we turn on coupling we should get a situation such as those sketched
in figure 2.11.

The ground-state energy may move but will do so smoothly and it will remain
non-degenerate. The first excited subspace, in general, splits into a variety of
energy levels. However, the spectral projection corresponding to the subspace
still moves smoothly, and we keep a nice gap of almost the same size between
these N states and the ground state. Similarly, there is a gap between this family
and the family of states emerging from the energy of the second excited state, etc.

Here is a nice proof of the smooth persistence of spectral projections, which
so far I have not seen in the literature anywhere. (If someone has then please let
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me know.) It is this strategy of proof that will be useful to me in what follows. The
idea is that P is a spectral projection for H if and only if it is a non-degenerate
equilibrium for the vector field

F(P) = i[H, P]
on the manifold M of orthogonal projections (P = P2 = P†). (It is a manifold,
called Grassmannian, though it has connected components of many different
dimensions.) It is simple to check that F(P) is indeed tangent to M at P and
that the amount of non-degeneracy of an equilibrium is inversely proportional to
the spectral gap g, that is, the shortest distance to the rest of the spectrum. In fact,
using the operator norm (induced by the Hilbert norm) on DF , which takes an
infinitesimal change in P on M to a change in the tangent vector to M , we have
precisely that

‖DF−1‖ = 1/g.

What we are faced with is just the question of the persistence of a non-degenerate
equilibrium P0. If you are a dynamical systems person, then you know that that is
easy to answer. By the implicit function theorem, the non-degenerate equilibrium
persists under small changes of vector field F , in particular, if we change the
Hamiltonian so that

Fε(P) = i[H ε, P].
So we get a continued spectral projection, Pε for H ε and, in fact, we can continue
it as long as the equilibrium remains non-degenerate, that is, DFε = ∂F/∂P
remains invertible. By the chain rule

d

dε
DF−1

ε = −DF−1 d

dε
DF DF−1.

Hence,
d

dε
‖DF−1‖−1 ≤ 2‖�‖

as long as it is defined, and so

gε ≥ g0 − 2ε‖�‖
as long as this remains positive, i.e. for ε < g0/2‖�‖. This ends the proof.

2.5 Obstructions to the theory

You might say ‘well that is great, persistence of spectral projections explains
those Eggert et al results in figure 2.11’. The bi-vibron would be the zero
momentum part (because photons contribute negligible momentum compared
with their energy) of the second excited spectral projection, and the continuum
band would be that for the P(1,1) spectral projection. We see that they continue
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for some range of ε, namely up to 1.2. So you might say ‘that is OK, it just
means that we started with a gap larger than 2.4 times the size of the coupling’.
But the big problem is that if one works out the Hilbert norm of the coupling
operator, it grows like the system size: it is of the order of N E , where E is the
energy change to a single unit due to coupling to the rest. This is because the
quantum mechanics of a product system is a tensor product not a direct product.
So the standard persistence result of the last section gives a result only for ε up to
g0/(2N E), which is useless if we have N ≈ 1023 molecules in our crystal.

Question 2.6. Can this persistence of spectral projections result be extended up
to ε = O(1)?

Well actually, there are some genuine obstructions to extending the result.

(i) The first is that a typical coupling operator � changes all energies by order
Nε. The easy way to see this is to take the trivial coupling operator

�rs =
{

I r = s

0 r �= s

that just adds the identity at each site. That shifts all the energy levels of each
unit. Then we add up our sums of energy levels, one per unit, and the whole
energies are going to shift by Nε. If all the energies are moving roughly by
Nε then it looks very dubious that we would keep any gaps. It is certainly
not going to be an easy argument to show that we keep any gaps for ε greater
than O(1/N) because some might move slightly faster with ε than others.

(ii) Another obstruction is that typical coupling turns the ground state through
O(45◦) as soon as ε ∼ 1/

√
N , and nearly 90◦ as soon as it becomes

significantly bigger than 1/
√

N . So this means we cannot expect spectral
projections to move uniformly smoothly in the standard Hilbert norm, that
is, uniformly in system size, because we go from 0–45◦ in O(1/

√
N ), which

is non-uniform in system size. An easy example of this problem is a set of
spin- 1

2 particles in a magnetic field at angle ε, which have a ground state φε

that is always aligned with the field. So we can work out that the overlap
with the unperturbed ground state is

〈φ0|φε〉 = (cos ε)N

which tends to zero as soon as ε is significantly bigger than 1/
√

N .
(iii) Furthermore, there are examples, admittedly with a degenerate ground state

(unlike the molecular crystals I am talking about), for which spectral gaps are
indeed lost for ε ≈ 1/

√
N . For example, if you take a half-filled 1D Hubbard

model (e.g. [40]), you lose spectral gaps between the ground-state band and
the first excited-state band when the coupling ε reaches the Hubbard constant
U divided by

√
N ; see figure 2.12.
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Figure 2.12. Spectrum for the half-filled Hubbard model, indicating typical states in the
t = 0 limit.

So there are real obstacles to extending the result to one that is uniform in
system size. However, there is one result which partially extends it: Kennedy and
Tasaki [29] proved persistence of a non-degenerate ground state, with its spectral
gap, uniformly in system size. But they did not claim any smoothness for how
their ground state moves (fortunately, because it is probably false!). Nor does
their method (cluster expansions of e−βH ) look easy to extend to higher spectral
projections. If you like, in figure 2.12 the Kennedy and Tasaki result tells you
that the ground state persists as a non-degenerate ground state and that the gap
between it and the rest of the spectrum remains roughly of the same order. But
to understand the Eggert et al results and the PtCl work I am interested in higher
spectral gaps.

2.6 A proposed solution

My proposed solution is to introduce new norms on tangent vectors to the
manifold M of projections on⊗s∈SUs , instead of using the standard Hilbert norm.
We will find we also need to introduce something I have called a domination
condition on the coupling in order to rule out systems like the half-filled Hubbard
model. So here is the idea. I have to call it an ‘idea’ because I have to still fill in
a couple of details in the proof. I am hoping they are just technical details but I
never get around to them so I apologise to those who have seen this before and
you must think it is about time I finished it.

The idea goes as follows.

• We start by taking the manifold M of orthogonal projections on our tensor
product

P : ⊗s∈SUs → ⊗s∈SUs

and we might as well restrict attention to the component of this manifold
composed of projections which have the same rank as the unperturbed case
P0.
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M

Figure 2.13. The typical dynamics on M .

• As I said earlier, we have a vector field FH on M

Ṗ = FH (P) = i[H, P] ∈ TP M.

• P is a spectral projection if and only if it is a non-degenerate zero of FH .
I should say that the typical dynamics is that a spectral projection is an
equilibrium and nearby projections rotate around it as depicted in figure 2.13.
They rotate at angular rates equal to the differences between eigenvalues
corresponding to the spectral projection and its complement, as is easy to
see by going into an eigenbasis of H .

• We want to get results that are uniform in system size. We are going to need
to quantify things so we are going to need find norms (and a condition on �)
such that this vector field is C1 in our parameter and state space. That is, we
require

F is C1 in (ε, P)

DFH0,P0 is invertible

}
uniformly in N.

Note that I use the notation DF for the derivative of F with respect to P ,
and I will use ∂F/∂ε for the derivative with respect to ε.

• Then we just invoke the implicit function theorem, with whatever these
norms might be, to obtain that P0 persists uniformly in N with respect to
ε.

Now, to quantify F being C1 we have to come up with

(a) the norms and
(b) a coordinate chart around P0 in M .

2.6.1 Norms

Choosing new norms is the key idea. This means assigning a length to each
tangent vector π to the manifold M of projections on⊗s∈SUs . For tangent vectors
π at P ∈ M , we write π ∈ TP M . First we define, for every subset � ⊂ S of
our molecular crystal, an operator π� on ⊗s∈�Us , which I call the density matrix
of π on �. This is a standard thing in physics—one just takes the trace over the
complementary sites:

π� = TrS\� π : ⊗s∈�Us →⊗s∈�Us .
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The only difference is that usually density matrices are defined only for operators
π which are non-negative and have Trπ = 1. It turns out that I need to define
two norms.

• I define the 0-norm of a tangent vector π to be the supremum over non-empty
choices of the subset � of the standard Hilbert norm of the density matrix,
divided by the size of the subset

|π |0 := sup
φ �=�⊂S

‖π�‖
|�| .

This is sensible. For example, take the spin- 1
2 particles in the magnetic field

at angle ε, and take π to be the rate of change of the projection onto the
ground state with ε, which corresponds to simultaneously rotating the state
space for each spin. If one works out the Hilbert norm of the density matrix
of π for a subset � of spins, it turns out to be precisely equal to the size of
�. So if we take the ratio, we get a nice supremum of 1. This means that the
0-norm in this example—which is of the size of the rate at which the ground
state actually moves—is uniform in the system size. This is very promising.

• The 1-norm is just the 0-norm of the commutator with the unperturbed
Hamiltonian

|π |1 := |i[H0, π]|0.
One can check that it is a norm on TP M , because it is at least as big as the gap
multiplied by the 0-norm. Why do I need the 1-norm? It is because F takes a
P and gives us i[H, P], but the commutator with H is like taking a derivative
(it is a derivation, as we saw near the beginning of this chapter). Also, if we
think about the proof that Aubry and I did for the classical case [38], then
what we had to do was to take a loop, that is a candidate for a periodic orbit,
and evaluate the equations of motion on it, which should give zero if it is a
periodic orbit. But evaluating equations of motion involves looking at ẋ , so
it means taking a derivative. If our loops are in C1 then we have to take our
tangent loops in C0, so there is a loss of one derivative. It is exactly the same
here, you have to think of a commutator with H like taking a derivative, and
so regard F as taking M with the 1-norm to T M with the 0-norm.

2.6.2 Chart

The next thing is that, unfortunately, M is a nonlinear manifold, so if we are
going to quantify F being C1 then we are going to have to do something like use
a coordinate chart. There is an alternative, namely to embed M into a linear space
by adding the equation P2 = P , but the chart route is the one I will take here.
Figure 2.14 shows a chart around P0 in M , which is constructed as follows.
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Figure 2.14. The chart.

• First define J to be the difference between P0 and its complementary
projection Q0 = I − P0,

J := Q0 − P0.

• We note that if π is in TP0 M , then eJπ is a unitary operator.
• Now we define � to be a not too large ball with respect to the 1-norm:

� := {π ∈ TP0 M : |π |1 ≤ δ}.
• Then we introduce coordinates on P within this ball by writing

P : �→ M

π 	→ eJπ P0e−Jπ .

2.6.3 The formulation

Having defined appropriate norms and a coordinate chart, we can now return to a
formulation of the continuation problem. If you express the continuation problem
in the chart it turns into this: find zeros of

G H : �(1) × � 	→ TP0 M(0) (2.5)

(π, ε) 	→ i[Aπ(H ε), P0] (2.6)

where
Aπ(H ) := e−Jπ H eJπ. (2.7)

Here the subscripts (0) and (1) are used to stress that we have to consider the
left-hand side as being in the space of the 1-norm and the right-hand side as being
in the space of the 0-norm. Now, if you take a tangent vector at P0 and you work
out the right-hand side of (2.6), then to get the uniform persistence of the spectral
projection P it will be enough to show that

G is C1 in (ε, π)

DG is invertible at (0, 0)

}
uniformly in N. (2.8)

There are several steps to showing this, I checked most of the things—well the
easy parts—which can be summarized as follows:
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2.6.4 Part of a proof of (2.8)

Here is a formula for DG:

DG(σ ) = i[[Aπ(H ), Bπ(σ )], P0]
where

Bπ(σ ) =
∫ 1

0
Atπ(Jσ) dt .

Let us see what we need.

• First of all, DG is invertible, and both it and its inverse are bounded, that is,
at ε = π = 0,

DG(σ ) = i[[H0, Jσ ], P0] = i[H0, σ ]
so |DG|1→0 = |DG−1|0→1 = 1 where again the subscripts refer to the
appropriate norms.

• If we assume that the coupling is uniformly summable:

sup
r∈S

∑
s∈S

‖�rs‖ ≤ K

then the rate of change of G with the coupling parameter is bounded
uniformly in system size, at least at the unperturbed projection

∂G(π)

∂ε
= i[Aπ(�), P0], so

∣∣∣∣∂G(0)

∂ε

∣∣∣∣
0
≤ K at π = 0.

• The next thing is that we have to show that the derivative is continuous,
because for the implicit function theorem it is not enough just to show that
F is differentiable, we have to show it is C1. Furthermore, to obtain uniform
results we have to show this uniformly in system size, which means showing
a uniform module of continuity for the derivative. The easiest way to do that
is to bound the second derivative. First consider the mixed second derivative

∂

∂ε
DG(σ ) = i[[Aπ(�), Bπ(σ )], P0].

If we assume a ‘domination’ condition:

|i[[�,σ ], P0]|0 ≤ K

g
|i[H0, σ ]|0 (2.9)

where K is as before and g is the unperturbed spectral gap, which I
convinced myself once is satisfied for low-lying spectral projections of
molecular crystal models with units having non-degenerate groundstate
(though I cannot reconstruct the proof now!), then we obtain∣∣∣∣ ∂∂ε DG

∣∣∣∣ ≤ K

g
at π = 0.
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Interestingly, the domination condition is not satisfied for the ground state of
the half-filled Hubbard model, for which we know the result cannot apply,
so it is nice to see where it gets excluded. But really I need a bound like this
in a uniform neighbourhood, that is an estimate of the form:∣∣∣∣∂DG

∂ε

∣∣∣∣
0
≤ f (|π |1)|σ |1 for some function f . (2.10)

I have not yet obtained such an estimate, but I think it is very likely to be
possible.

• Similarly, we had better check the second derivative D2G:

D2G(σ, τ ) = i[[[Aπ(H ), Bπ(τ )], Bπ(σ )], P0]
+
[[

Aπ(H ),

∫ 1

0
[Atπ(Jσ ), Btπ(τ )] dt

]
, P0

]
.

It is zero at the unperturbed case, that is, at π = ε = 0,

D2G(σ, τ ) = i[[L H0, Jσ ], Jτ ], P] = 0.

But we have to show that it remains uniformly small in some neighbourhood.
That is, we would like to obtain

|D2G(σ, τ )|0 ≤ h(|π |1, ε)|σ |1|τ |1 (2.11)

for some function h. Again, I have not yet done this.

So if we were to obtain the estimates (2.10) and (2.11) (and check that the
domination condition really holds) then the implicit function theorem would give
the persistence of a spectral projection from P0 uniformly in the system size N .

Question 2.7. Can one prove estimates of the forms (2.10) and (2.11)?

If so, I could explain why we should expect the Eggert et al result to happen
up to 1.2 rather than just 1.2 × 10−23, and similarly why we should expect the
Swanson et al results for PtCl, as follows.

2.6.5 Application to quantum discrete breathers

Here is the application to quantum discrete breathers (QDBs). I will define a
first excited QDB to be any element of the range of the continued first spectral
projection, and so on thus:

first excited QDB = elements of Range P(1)
ε

second excited QDB = elements of Range P(2)
ε

(1, 1) multi QDB = elements of Range P(1,1)
ε

etc.
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Many might say ‘Well OK, that is great, I have got some analogue of the continued
periodic orbits that we had in the classical case. But in the classical case we also
got that the amplitude decays exponentially in space away from some site, which
leads to ask whether we get a localization result for quantum discrete breathers.’

There is a standard dogma in quantum mechanics that says that in a periodic
crystal nothing is localized, therefore it is ridiculous even trying to prove a general
localization result because it would have to include the periodic case. Well
again, that is based on a total misconception. It is true that the eigenfunctions
in a periodic crystal are, without loss of generality, Bloch waves, so they
are not localized. However, there are very strong localization results, not of
wavefunctions about a particular molecule, but a spatial decorrelation for the
spectral projections; see, e.g., [24, 27].

Here is a weak localization result for QDBs. One can look at the density
matrix for a pair of states {r, s}

P(1)
ε

{r,s} =


N − 2 0 0 0

0 1 0 0
0 0 1 0
0 0 0 0

+ O(2ε) in basis

|0r 0s〉
|1r 0s〉
|0r 1s〉

the rest.

This means that the probability to see {r, s} in state |0r 0s〉 is approximately
1 − (2/N), in state |1r 0s〉 is ∼ 1/N , in state |0r 1s〉 is ∼ 1/N , and in state |1r 1s〉
is ∼ ε/N .

Hence, the spectral projections indeed have some localization properties.
One should also note that the total probability is 1, so the spatial correlation
function is summable with respect to distance between sites, which implies a
weak form of decay. But one could hope for a stronger result if the coupling
decays suitably in space, a feature that we have not used so far.

Question 2.8. Can we prove that the spatial correlation decays exponentially
with the distance between r and s if the coupling �rs does?

An analogue of the method in [5] could perhaps be developed.

2.7 A tentative application to 4-methylpyridine

Before I wrap up I would like to say some final words about 4-methylpyridine.

Question 2.9. Could quantum discrete breathers explain experimental results on
4-methylpyridine?

I think so, if for the quantum units one takes coupled pairs of rotors.
Independent coupled pairs of rotors have successfully explained experiments on
lithium acetate [13], but this was dismissed as a possible explanation for 4-
methylpyridine in [17], mainly because the effects in isotopic mixtures (with a
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Figure 2.15. Observed transition energies (measured in cm−1) for 4-methylpyridine,
mostly at 5 K (a), where N stands for neutron scattering (from [1, 17]), R for Raman
scattering and IR for infrared absorption (from [32]). Approximate energy levels for a pair
of CH3 rotors coupled by a potential 1

2 W (1+ cos 3δ), scaled to the rotation constant B for
a single methyl group (b) (reproduced from S Clough, A Heidemann, A H Horsewill and
M N J Paley 1984 Coupled tunnelling motion of a pair of methyl groups in Lithium acetate
studied by inelastic neutron scattering, Z. Phys. B 55 1–6 c©1984 by Springer Verlag). The
different line styles correspond to different symmetry types of excitation.

proportion p of CH3 groups replaced by CD3) do not fit. However, I think that
it is possible that the continuation of the excitations of a single coupled pair of
rotors to QDBs, when coupling between neighbouring pairs of rotors is taken into
account, could lead to a good explanation. On the other hand, Fillaux recently
showed me some very interesting further experimental results on this material
that cast doubt on my interpretation, so this section should be taken with a large
dose of salt (or better, with a molecular crystal).
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Figure 2.15 shows a summary of various observations of transition energies
for 4-methylpyridine, by three different methods, mainly at 5 K. Next to this, I
show an approximate spectrum for a pair of methyl rotors coupled by a potential
1
2 W (1 + cos 3δ), where δ is the angle between a chosen arm in each rotor
(from [13]). One could obtain a much more accurate spectrum by separating the
Schrödinger equation into mean and relative coordinates (θ, δ), which reduces
to a free rotor in θ and a standard Mathieu problem in δ though one must be
careful with the boundary conditions. However, the picture from [13] will do
for present purposes. The energy scale B is the rotation constant �2/2I ≈
5.6 cm−1, for a single methyl group of moment of inertia I . Calculations of
[17] using an empirical proton-proton potential suggest that W ≈ 4.1 cm−1,
thus the appropriate value of W/B to look at is 0.73. It looks to me as if the
spectrum is in the right ballpark to interpret all the observed transition energies as
excitation energies from the ground state. (One could also allow some transitions
from the first excited state, however, as in [1, 17], since 5 K corresponds to a
thermal energy of 3.3 cm−1, a 4.1 cm−1 excited state would have a 30% thermal
population. Furthermore, one should pay attention to the selection rules governing
which types of transitions between symmetry classes are possible via the three
spectroscopic methods.)

To make a more precise comparison with experiments, there are several
further steps that would be required. First, one should probably add to the pair of
rotors a potential V (θ, δ) = α sin 6θ sin 3δ + γ cos 12θ cos 6δ, representing the
effects of the pyridine rings. This form is dictated by symmetry considerations,
which I think make all lower harmonics cancel. But because we are left with only
relatively high harmonics, one can expect the amplitudes to be of relative order
e−12C for some order one constant C , by analyticity arguments, and thus they will
probably not be very important.

Much more importantly, one should include the effect of coupling between
different pairs. This is estimated ab initio to have an energy barrier of 6.6 cm−1

in [17], so it is highly significant. But I hope that it is not too large compared
with anharmonicity (for which a reasonable measure would be B ≈ 5.6 cm−1)
so that my continuation theory still applies. (Remember that the theory appears
to apply to solid deuterium up to a dimensionless coupling of 1.2.) Thus, one
would obtain QDBs which continue each of the low-lying excitations of a single
pair of methyl rotors. These would have a significant width in space, however,
so their energies would be affected significantly by the choices of isotopes in the
four neighbouring methyl pairs. In particular, I suggest that the ‘smooth’ shift of
a transition energy from 516 µeV = 4.1 cm−1 to 350 µeV observed in neutron
scattering in [17,20] as the deuterated proportion p increases from 0 towards 1, is
an effect created by populating a spectrum of discrete energies corresponding to
(CH3)2 and CH3CD3 rotors in the full range of environments (e.g. the four nearest
neighbours are all (CH3)2 or one or more is a CH3CD3 or a (CD3)2 etc.), weighted
by the appropriate binomial coefficients, which of course vary significantly with
p.
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Finally, the splitting of the 4.1 cm−1 transition into three distinct energies
(around 3.8, 4.1 and 4.3 cm−1) can be explained by the crystal point group.
There are four pairs of rotors per unit cell, and from an examination of the crystal
structure given in [12] (which differs little from that of figure 1.4, though in [32]
it is mentioned that there might be a phase transition at around 100 K between
the two cases), I believe it has D4 as its point group symmetry, generated by a
1/4 screw rotation and inversion in a point not on the screw rotation axis (not the
C4h symmetry claimed in [17]). The three distinct transitions could correspond to
the three different symmetry types contained in the relevant representation of D4,
so-called Ag , Bu and E, though a calculation would be required to assign them
and to explain the splitting ratio. Similar splitting should presumably occur for
every excitation, but perhaps the splitting is less for higher excitations or some of
the symmetry types are less visible.

But the whole of my interpretation may be wrong. The preferred
interpretation of [17] is in terms of moving breathers in the quantum sine-Gordon
model

H =
∫

dx
p2

2I L
+ n2Vc L

4
θ2

x −
V0

2L
cos nθ

with commutation relation [p(x), θ(x ′)] = i�Lδ(x − x ′) (one can scale p by L
to obtain the standard commutation relation if one replaces the first term in H by
p2L/2I ). This is a continuum model (for n = 1, think of a heavy elastic band
with one edge fixed along a horizontal wire, though free to rotate around it) for the
angles of a 1D chain of rotors of moment of inertia I with n = 3 arms in a cosine
potential with barrier energy V0, and coupled to nearest neighbours with lattice
spacing L by a cosine force with barrier energy Vc. Classically, it has breather
(and kink) solutions, and the model is Lorentz invariant (with respect to the
relevant sound speed c, c2 = Vc L2n2/2I ) so they can move too. For the quantum
version, it is convenient to introduce the rotational constant B = �

2/2I , the
dimensionless quantum parameter β = √

2n(B/Vc)
1/4 and associated quantity

Z = 8π/β2 − 1, and the energy λ = √
nV0/2(Vc B)1/4. If Z > 0 it is

proved [34] that the quantum model has elementary excitations analogous to the
classical breathers and kinks, but the quantum breathers are restricted to having
rest energies Ek = (2βλZ/π) sin(πk/2Z), for k = 1, . . . , Nb , where Nb is
the integer part of Z (and the kink rest energy is βλZ/π). A breather moving

with linear momentum P has energy
√

E2
k + c2 P2. Fillaux and Carlile proposed

in [17] that the principal effect of spatial discreteness is to quantize the momentum
P to the values j/L, j ∈ � (actually, I think they intended h j/L), and interpreted
the transition energy of 4.1 cm−1 as corresponding to exciting a pre-existing k = 1
breather from j = 0 to j = 1 (though they interpret the transition energies at 3.8
and 4.3 cm−1 as the extremes of the tunnelling band).

I think their interpretation has fundamental problems. First, where does
the quantisation rule come from (e.g. electrons in metals are not restricted to
such values of momentum)? Second, they make a parameter fit which is a
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factor seven out from their prior estimates of the interaction energies of methyl
groups. Third, they compute breather energies based on an assumption that the
quantum parameter β = 3, but I think this is due to a misunderstanding of the
theoretical papers, most of which use scaled versions of the sine-Gordon model
like H = ∫ dX 1

2 (P2 +U2
X )− λ2 cosβU with [P(X),U(X ′)] = iδ(X − X ′) and

which admittedly do not explain how to get to this from physical variables; the
fitted parameter values of [17] would give a value of β = 1.46; the difference is
huge because Nb for the former is 1, whereas for the latter it is 10. Fourth, using
their parameters, the rest energy of a k = 1 breather would be 45.7 cm−1, so its
thermal population at 5 K would be only 10−6, so it is surprising that transitions
between its momentum states would be observable (in their favour, Fillaux et
al do observe that the strength of the transition decays on a timescale of about
70 hr after cooling [18]). Fifth, the chains of methyl groups in the a-direction are
strongly coupled to those in the b-direction, and thus all together (including in the
c-direction), so it is doubtful that a 1D model would suffice, a point acknowledged
in [17]. Indeed they would have liked to use a theory that allowed for a 3D
network of interactions but none was available at the time: hopefully mine will
provide what is required, though I would be the first to admit that it is not yet
sufficiently mature to provide quantitative predictions.

Nonetheless, further experimental results that Fillaux showed me just after I
presented this material at the workshop in June 2001 lend very strong support to
the idea that the 4.1 cm−1 transition energy does correspond to setting something
in motion along the a- or b-directions, so the problem is still wide open! Perhaps
I have to generalize my theory to moving QDB.

Question 2.10. Can one generalize QDB to mobile QDB?

This may not be too hard, as the range of the spectral projection P(2), for
example, already contains combinations (Bloch waves) that have any desired
(pseudo-) momentum, and I guess one gets true momentum by usual group
velocity analysis of the dispersion relation.

2.8 Conclusion

Now, I will conclude. Modulo checking a couple of technicalities, I think I have
a proof of existence (which provides a definition as well) of QDBs in models
of molecular crystals, provided the coupling strength is sufficiently less than the
anharmonicity. I think this will make a firm foundation for the interpretation
of many experiments like the two mentioned in section 2.3, and maybe the
methylpyridine that I have just attempted to explain and KHCO3 which I have
not started to analyse (Fillaux tells me the interaction between different dimers is
very weak, but this would make my theory all the more applicable). Furthermore,
I think the mathematical approach will have many other applications to quantum
many-body problems. There is a huge number of quantum many-body problems,
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e.g. spins, bipolarons, excitons, etc, where what theoretical physicists do currently
is work out some power series and then chop things off, despite the fact that the
terms grow like powers of N . I think the new norms I have introduced will sort
out what is going on there and justify the procedures . . . or maybe not always
justify them? It would be interesting if discrepancies arise!
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Chapter 3

Unfolding complexity: hereditary
dynamical systems—new bifurcation
schemes and high dimensional chaos

Uwe an der Heiden
University of Witten/Herdecke

The world of difference equations, which has been almost hidden up to
now, begins to open in all its richness.

A N Sharkovsky

In this chapter we discuss some dynamical systems that are a paradigm for
complexity. More specifically, we are concerned with systems where the future
is not only determined by their present state, but by part of their history. Such
systems can be formally described by seemingly simple difference-differential
equations. They not only play an important role in applications, e.g those
featuring nonlinear delayed feedback, but are also very suitable objects for
a numerical and substantial analytical discussion giving insight into complex
dynamics. This includes new types of bifurcation patterns, multi-stability of
highly structured periodic orbits, and high dimensional strange attractors. The
aim of the present paper is two-fold: first, to briefly give the state of the art in the
field and problems that have remained unanswered until now and, second, to open
the way to the discovery of new kinds of complex dynamics.

3.1 Hereditary systems

Recent decades have shown the discovery of complexity in low-dimensional
dynamical systems. Complexity can be seen as phenomena like multiple steady
states, limit cycles and extensive bifurcation patterns, including period-doubling
bifurcations and deterministic chaos (strange attractors). Well-known examples

55
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are the Lorenz attractor, chaos in the discrete logistic equation, the Hénon
attractor, the motions of coupled pendula and the Mandelbrot set; see [3, 33, 36]
and further references therein.

In spite of the ongoing difficulties in analysing them [36], these systems are
‘simple’ in the sense that in the real world there are only very few processes that
can adequately be described by two, three or four ordinary differential equations,
or by one- or two-dimensional maps. For example, the phenomenon of turbulence
is generally not yet understood via low-dimensional deterministic chaos and still
forms a major challenge to theoretical physicists and mathematicians; see also
chapter 7 by Mullin.

It is often believed that the now well-known bifurcation schemes or
scenarios, such as pitchfork, saddle-node and Hopf bifurcation, period-doubling
bifurcation or bifurcations to chaos from quasi-periodic motion, are generic in the
sense that essentially no other bifurcation patterns usually occur. However, we
will indicate that this is far from true when one considers hereditary systems that
depend not only on their present state but also on their history. This opens the
way to more possibilities of explaining complex phenomena.

Furthermore, delays appear naturally in many models arising in applications.
Examples are lasers subject to optical feedback, as discussed in the chapter by
Roy, and many biological systems; see [10] and the chapters by Ermentrout and
Bressloff and Cowan. An example from economics is given in [24]; indeed an
open-minded person will find delayed interactions in essentially all disciplines
and areas.

Systems with delays are very suitable for making steps toward understanding
complexity in higher-dimensional systems since, in a certain sense, they lie
between low-dimensional ordinary differential equations and systems that must be
described by partial differential equations. This may be illustrated by the concrete
example of the hyperbolic system

is + Cvt = 0 vs + Lis = 0

with boundary conditions

v(0, t) = 0 v(s, 0) = v0(s)

i(l, t) = g(v(l, t)+ E) i(s, 0) = i0(s)

modelling an electric medium with a tunnel diode which has a nonlinear voltage–
current characteristic g; for details see [33]. This system can be transformed into
the seemingly simple single equation

x(t) = f (x(t − τ )) t ≥ 0, (3.1)

i.e. a so called difference equation with continuous argument or a functional
difference equation [33]. The positive constant τ denotes the time needed by a
signal to travel from one end of the medium to the other.
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Equation (3.1) appears to be nearly the same as the difference equation

xn = f (xn−1) n ∈ � (3.2)

where f : I → I is a map defined on some interval I ⊂ �. However, solutions
to (3.2) and (3.1) are drastically different. Equation (3.2) may have a strange
attractor, the fractal dimension of which, however, is bounded from above by
one. The reason is that the state space, i.e. the space of initial conditions, is some
subset of � and, thus, at most one-dimensional. A concrete example is the famous
logistic equation

f (ξ) = λξ(1 − ξ) (3.3)

for a constant parameter λ ∈ [0, 4] with the interval [0,1] as its state space. For
λ = 4 there is a strange attractor with a fractal dimension exactly equal to one;
this attractor is dense in the whole state space [0,1].

In contrast, for (3.1) an initial condition is an arbitrary function ϕ :
[−τ, 0) → I . Therefore, the state space is C−1([−τ, 0), I ), i.e. the space of all
functions with domain [−τ, 0) and range I . Taking in (3.1) again the quadratic
function (3.3) with λ = 4 there exists a strange strange attractor, which in fact has
dimension infinity!

Before going into details with respect to the aforementioned equations, we
address another ‘closely related’ type of equation that has complicated behaviour:
equations (3.1) and (3.2) have been considered as singular perturbation problems
in the context of delay differential equations of the type

ε
dx

dt
(t)+ x(t) = f (x(t − 1)) (3.4)

in the formal limit ε → 0.
Equation (3.4), the so-called Mackey–Glass equation, has found many

applications in physics, biology and economics; see, e.g., [5, 28]. The reason
for the importance of this equation in applications is that it falls under the general
scheme where the rate of change dx/dt of some time-dependent quantity x(t) is
the net effect of two factors: a productive factor p and a destructive factor q [16]:

dx

dt
(t) = p − q.

When there is feedback, both p and q may depend on the quantity x itself. Often,
the production needs considerable time, e.g., in commodity markets (in particular
agricultural ones [24]), in population growth, or in hormonal systems. In such
situations the production p may be a functional p(t) = P(xt ) of the history
xt : (a, 0)→ �, xt (s) := x(t+ s) of the variable x , where the constant a is either
a negative number or −∞. Similarly one obtains a functional q = qt .

Thus, the most general approach would be to write

x(t) = F(xt ).
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For most applications the dependence on the past may be made explicit by
an integral equation of the type

x(t) =
∫ t

−∞
f (x(t ′ − τ ))g(t − t ′) dt ′ (3.5)

where t ≥ 0, f : I → I , τ is a constant delay, and g : [0,∞) → [0,∞) denotes
a weight function (or more generally a distribution) [13, 16].

Taking for g the δ-distribution, (3.5) becomes (3.1) which thus appears as an
extreme case of (3.5).

In applications and for analytical reasons it is useful to consider weight
functions g = gk of the type

gk(t) := αtk−1e−αt/(k − 1)!
for k ∈ �. With such a weight function (3.5) can be transformed into a system of
differential equations. Define

xi(t) :=
∫ t

−∞
f (x(t ′ − τ ))gi (t − t ′) dt ′ for i = 1, 2, . . . , k, (3.6)

x0(t) := α−1 f (x(t − τ )).

Then, because of

dxi (t)/dt = αxi−1(t)− αxi (t) for i = 1, 2, . . . , k

we arrive at the system

dx1(t)/dt = f (xk(t − τ ))− αx1(t)

dxi(t)/dt = αxi−1(t)− αxi (t) for i = 2, 3, . . . (3.7)

Since g = gk (3.5) together with (3.6) implies xk = x and, thus, x obeys system
(3.7). Vice versa, (3.5) can be retrieved from (3.7) by successively integrating the
i th equation, i = k, k − 1, . . . , 1.

We note that system (3.7) represents a feedback model for the regulation of
protein synthesis introduced by [6]. In this context, system (3.7) has been studied
intensively in recent years; for a review in the case τ = 0 see [30]. In particular, it
has been proved that in the case of negative feedback, i.e. if the feedback function
f is monotone decreasing, system (3.7) has non-constant periodic solutions
provided that f is bounded and differentiable and the equilibrium is unstable.
This result can be generalized to arbitrary τ ≥ 0; for the case k = 1 see [7], for
the case k = 2 see [9], and for the case of arbitrary k ∈ � see [8, 25].

By forming the kth derivative of xk(t) and using (3.6), one can show that
system (3.7), and thus also (3.5) with g = gk , is equivalent to the kth order delay
differential equation

k∑
i=0

(
k

i

)
αi x (k−i)(t) = αk f (x(t − τ )) (3.8)
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where x (i) denotes the i th derivative of x .
Equation (3.8) is a special case of the very interesting class of kth order

delay-differential equations [12] of the form

k∑
i=0

ai d
i x(t)/dt i = f (x(t − τ )) ai ∈ �. (3.9)

Note that (3.1) is obtained from (3.9) by choosing k = 0, and (3.4) by choosing k
= 1. Formally (3.9) is in the ‘vicinity’ of (3.1), and thus also indirectly connected
to (3.2), if ai = εi are small numbers for i = 1, 2, . . . , k; see [8,13]. In particular,
the kth-order equation

ε dkx(t)/dtk + x(t) = f (x(t − τ )) (3.10)

formally approaches (3.1) as ε → 0.
There is a striking contrast between equations (3.2) and (3.1) on the one

hand, and equations (3.4) and (3.10) on the other, concerning what we know about
the complex behaviour of solutions and bifurcation patterns. To cite a statement
of A N Sharkovsky from 1986: ‘In spite of the apparent simplicity of (3.4), the
investigation of it is not an easy task’. For any sufficiently small ε, this equation
can no longer possess solutions of the turbulent type, because

ε|dkx(t)/dtk | ≤ 1

ε
| − x(t)+ f (x(t − τ ))|.

Thus, we arrive here at the principal question that still has no answer: What
happens with these solutions when ε > 0 and t → ∞ ? The remark by
Sharkovsky [33] that ‘unfortunately our understanding of this process leaves
much to be desired’ still holds even in view of the recent great progress in
the analysis of equations like (3.4); compare [4, 19, 20, 38, 39]. The detailed
knowledge of difference equations cannot simply be extended by continuity
arguments to differential equations, in spite of the formal limit transition ε →
0 between these two classes of equations. This impossibility has become
evident from the work of Mallet-Paret, Nussbaum, and the Russian group around
Sharkovsky, who showed that there is a ‘bifurcation gap’ between the two
classes and that they differ drastically in the asymptotic behaviour of solutions;
see [18, 27, 29]. An important reason for the mathematical difficulties is the
tremendous difference in the dynamics between (3.1) and (3.2), as we have
already mentioned in the beginning and will describe in more detail later on.

In the following sections the reader is invited to travel along a pathway of
increasing rank and complexity of equations, like wandering through a landscape
of different levels with different perspectives and different scenarios. By pointing
to areas where until now there has been little insight, we would like to stimulate
the reader’s interest in the field of hereditary systems.
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3.2 Difference equations with continuous argument: idealized
turbulence

In this section we briefly recall recent results by Sharkovsky and co-workers
concerning equations of type (3.1): the so-called difference equations with
continuous argument [33, 35]. The character of their solutions is very different
from that of the difference equation (3.2), in spite of the strict relationship

x(t + nτ ) = f n(x(t)) for all n ∈ �
which means that for each fixed t ∈ [−τ,∞) the sequence (x(t + nτ ))n∈� is a
solution of (3.2).

A striking difference can already be seen with the simple example of the
sigmoid function f : � → �, f (ξ) = arctan(αξ) with a constant α > 1. With
this nonlinearity, (3.2) has two attracting fixed points (say ā and a) and no periodic
solutions, whereas (3.1) has infinitely many periodic solutions (though it also has
two attracting constant solutions). Namely, e.g., for each m ∈ �, m even, the
initial condition ϕm : [−1, 0] → � (we assume τ = 1 here!) gives rise to a
periodic solution xϕm with minimal period 2/m if ϕm is given as follows:

For 0 ≤ i ≤ m − 1 and t ∈ [−1+ i
m ,−1 + i+1

m ) define

ϕ(t) =
{

ā if i is even

a if i is odd.

Of course, these periodic solutions are discontinuous which seems to be a
consequence of the fact that equation-type (3.1) is still, in some sense, near to
equation-type (3.2).

In general, and following the classification in Sharkovsky et al [33], (3.1)
has two main types of solution:

(a) relaxation type: smooth, bounded solutions, converging, as t → ∞, to
discontinuous periodic solutions with finitely many discontinuity points per
period.

(b) turbulent type: smooth, bounded solutions, converging, as t → ∞, to
‘limiting generalized solutions’ having infinitely many discontinuities per
unit time interval. The frequency of the oscillations on the time interval
[nτ, (n + 1)τ ] increases towards infinity as n → ∞. (One may observe
something of this sort at a smoothly shaped ocean beach when a smooth
wave is breaking.)

Which type of solution occurs, with given nonlinearity f : I → J , depends
on the so-called separator set D( f ) := {ξ ∈ I : f i (ξ), i = 1, 2, . . . , is an
unstable trajectory of (3.2)}. Note that the closure of D( f ) is the Julia set of f . A
solution of (3.1) corresponding to a continuous initial condition ϕ : [−τ, 0) → I
is of relaxation type if T := ϕ−1(D( f )) is finite, and it is of turbulent type if T is
infinite.
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Following [33], one can distinguish between three subclasses of (b):

(b1) the pre-turbulent type where T is countable,
(b2) the turbulent type where T is uncountable but nowhere dense in I (that is, T

is a Cantor set) and
(b3) the strong turbulent type where T contains cyclic intervals with absolutely

continuous invariant measures with respect to the map f .

In the pre-turbulent case (b1) the number of oscillations (alternating increase
and decrease of x(t)) on the time interval [nτ, (n + 1)τ ] increases according to a
power law as n → ∞. However in the turbulent cases (b2) and (b3) it increases
exponentially. Moreover, on the shift sets nT = {nt : t ∈ T } the slopes of the
solutions tend to infinity (in modulus).

Thus, the classification into (a), (b1), (b2), and (b3) is an indication of the
enormous richness of the solution structures inherent in the deceptively simple
equation (3.1); for more details see [34,35]. Of course, such an equation is still an
extreme caricature of real processes. However, the fact that its attractors may be
of arbitrary high dimension makes them more suitable for discussing the inherent
properties of turbulence than the well-known low-dimensional strange attractors.
It remains a challenge to study these phenomena in detail [35].

There are two intimately related unrealistic features in (3.1). First, as
t →∞, the solutions become arbitrarily steep on arbitrarily small intervals, such
that, asymptotically, the solutions become discontinuous. Second, there is no
dissipative or friction term in (3.1). Both of these deficits are overcome (at least
theoretically) by introducing the friction term ε dx

dt (t), thus arriving at (3.4).

3.3 First-order difference-differential equations: a singular
perturbation problem with bifurcation gaps

There are some results which support the belief that for small ε the solutions
of (3.4) should be very close to the solutions of (3.1). For example, if x̄ is an
attracting or repelling fixed point of f , then x(t) = x̄ is an attracting or repelling
constant solution of both (3.1) and (3.4), respectively. The following result states
that solutions to (3.1) and (3.4) can stay arbitrarily close together for arbitrarily
long, but finite times, provided ε is small enough.

Proposition 3.1. (Continuous dependence of solutions on the parameter ε for
finite time intervals; [18]) Let f : I → I be continuous on the closed interval I
and let ϕ : [−τ, 0] → � be continuous. Then for each T > 0 and for each δ > 0
there is a positive number ε∗ = ε∗(T, ϕ, δ) such that the solution x0

ϕ of (3.1) and
the solution xε

ϕ of (3.4) corresponding to the initial condition ϕ obey

‖xε
ϕ(t)− x0

ϕ(t)‖ < δ for all t < T whenever ε < ε∗.
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We note that this proposition can be generalized to piecewise continuous f
if the number of jumps is finite. However, proposition 3.1 cannot be generalized
to hold for T = ∞. Although solutions to (3.4) and (3.1) with the same
initial condition may stay close to each other for a very long but finite time,
asymptotically they can differ substantially. For example, one may converge to
a constant, while the other converges to a non-constant periodic solution with an
amplitude independent of ε.

Solutions to (3.10) can be both simpler and more complicated compared with
those of (3.1) and also to those of (3.2) as will turn out in the following discussion.

Example 3.2. Let the function f : � → � be defined by

f (ξ) =
{

a if ξ < �

b if ξ > �
(3.11)

where a, b,� ∈ � are constant parameters and a �= b.

Note that non-smooth nonlinearities like those in this example occur in
dynamical systems where one of the variables can only attain a finite number
of discrete values. Examples are heating or cooling machines which are either
‘on’ or ‘off’, electric circuits with relays which are ‘open’ or ‘closed’ or neurons
which are either ‘fire’ or are ‘silent’. In fact, in some types of artificial neural
networks equation (3.4) with f given by (3.11) is used to model neurons [31].
Another reason for studying systems with non-smooth nonlinearities is that they
often allow for much more and much easier mathematical analysis and provable
results than is the case for smooth nonlinearities. Often solutions can be explicitly
and exactly calculated as compositions of piecewise solutions of linear systems.

Proposition 3.3. (Infinitely many unstable high-frequency periodic solutions;
[1, 18]) Consider (3.4) with ε > 0 and f given by (3.11) with a �= b. Without
loss of generality assume � = 0. Then (3.4) has infinitely many periodic
solutions with pairwise different minimal periods. The countable set of periods
can be written as a sequence converging to zero. In the case a < 0 < b
of positive feedback all of these periodic solutions are unstable. In the case
b < 0 < a of negative feedback the periodic orbit with the largest minimal period
is asymptotically orbitally stable, while all other periodic orbits are unstable.

A proof of this proposition 3.3 was given in [1]; see also [4,18]. In [1] it was
not only shown that most of the periodic solutions are unstable but also that the
asymptotic behaviour of almost all solutions is very simple:

Proposition 3.4. [1, 18] Let the assumptions of proposition 3.3 be satisfied.

(i) Let a < 0 < b. Then almost all solutions of (3.4) satisfy limt→∞ x(t) = a
or limt→∞ x(t) = b.
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(ii) Let b < 0 < a. Then (3.4) has an asymptotically stable periodic solution
(with period > 2τ ) and almost all solutions converge towards this periodic
solution (in the sense of orbital convergence).

Here ‘almost all’ means that the corresponding set of initial conditions
is open and dense in the state space C([−1, 0],�). A result similar to
proposition 3.4 has been obtained in [38] for the equation

dx(t)/dt = f (x(t − 1)) (3.12)

for a rather general class of continuous functions f satisfying the condition
x f (x) < 0 if x �= 0.

In contrast to proposition 3.4, which states that (3.4) possesses at most two
stable orbits, (3.1) with the nonlinearity f satisfying (3.11) has infinitely many
asymptotically stable periodic solutions with pairwise different minimal periods.
Note, however, that the corresponding stable orbits lie in PC([−τ, 0), I ), the
extended state space of piecewise constant functions ϕ : [−τ, 0) → I .

3.3.1 Mixed feedback and chaos

In the case of monotone feedback functions f the phenomenon of deterministic
chaos seems to be excluded. This is apparent for difference equations like (3.2)
and has been shown for first-order difference-differential equations in [26]. There
is a long history of investigations concerning the chaotic behaviour of solutions
of difference equations (3.2) if f is non-monotone, e.g., the discrete logistic
equation (3.3). If one tries to prove the existence of chaos for systems of ordinary
differential equation or for difference-differential equations like (3.4), then results
are not easily obtained. One of the earliest successes was presented in [16,17,37]
under the simplifying assumption that f is piecewise constant, or smooth but
close to a piecewise constant function. Recently the existence of chaos was also
proved for smooth nonlinearities [19, 20], for equations of type (3.12). Here we
only summarize some results with respect to non-smooth functions f defined as
follows:

f (ξ) =


0 if ξ < 1

c if 1 < ξ < �

d if ξ > �

(3.13)

where the constants are assumed to obey

c > 0 � > 1 d < c. (3.14)

We introduce the following notion of chaos which is adapted from the
definition in [22] for difference equations.

Definition 3.5. A difference-differential equation of type (3.9) is called chaotic
in the sense of Li and Yorke [22] if
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(i) there are countably many periodic solutions with pairwise different
minimal periods; and

(ii) there is an uncountable set S of aperiodic solutions such that

(a) if x is a periodic solution and x̃ ∈ S then lim supt→∞ ‖xt − x̃t‖ > 0
(b) if x, x̃ ∈ S and x �= x̃ then lim inft→∞ ‖xt − x̃t‖ = 0 and

lim supt→∞ ‖xt − x̃t‖ > 0.

Here, as usual, xt : [−τ, 0] → � is the shift function defined by xt(s) = x(t+ s),
and ‖xt‖ := sup{|xt (s)| : s ∈ [−τ, 0]}.

The following theorem has been proved in [16] after the earlier work in [17]
where a more complicated f (with three discontinuities) had been used.

Theorem 3.6. [16] Let the function f be defined by (3.13) with the parameters
c, � and d obeying (3.14). Assume, moreover, that ε and c satisfy

c/(c − 1)2 + z < 1

where z is the positive root of the quadratic

z2 − (c − r − c2)z − cr = 0

with r := (c − 1) exp(−1/ε).
Then there are positive numbers µ = µ(c, ε) and d∗ = d∗(c, ε) such that

(3.4) is chaotic in the sense of Li and Yorke whenever � and d satisfy

(c − z)/(c − 1) < � < (c − z)/(c + 1)+ µ and d ≤ d∗.

It is worth noting that with f given by (3.13), neither (3.2), nor (3.1) (which
is the limiting case of (3.4) for ε = 0), exhibits this kind of chaos. In contrast, in
(3.4) this chaos may occur for arbitrarily small ε > 0. For further results about
chaos in first-order differential delay equations see [11, 18–21].

3.4 Prime number dynamics of a retarded difference equation

If one tries to solve the difference equation with continuous argument (3.1) with
the help of a digital computer, the simplest way would be to discretize time t into
discrete values tn = nh, n ∈ � with some fixed positive step size h. If one takes
h = τ/k then the resulting discretization of (3.1) is (see [13]):

xn := x(tn) = f (x(tn − τ )) = f (x(nh − kh) = f (x((n − k)h)) = f (xn−k)

leading to the difference equation

xn = f (xn−k). (3.15)



Unfolding complexity: hereditary dynamical systems 65

Note that the discrete approximation (3.15) is independent of the value of τ ,
corresponding to the fact that without loss of generality in (3.1) one can assume
τ = 1.

When k > 1 (3.15) is called a retarded difference equation. Of course, with
k = 1 we arrive again at (3.2) which, viewed this way, is a crude discretization of
(3.1).

While (3.15) lies somehow in between (3.2) and (3.1), it is of interest to
consider the relation of (3.15) to equations of the form of (3.1), (3.2) and (3.4).
Before we come back to this question we show first that the structure of the
solutions of (3.15) may be considerably more complex in the case k > 1 than
in the case k = 1.

The following result by A N Sharkovsky, which includes the famous period-
doubling bifurcation and the statement ‘period three implies chaos’, is one of the
deepest concerning the case k = 1.

Theorem 3.7. [32] Let f : I → � be a continuous function defined on some
interval I ⊆ �. Let the set � of natural numbers be ordered in the following way

3 � 5 � · · · � 2 · 3 � 2 · 5 � · · · � 22 · 3 � 22 · 5 � · · · � 22 � 2 � 1. (3.16)

If the equation xn = f (xn−1) has a periodic orbit of period p then it also has
periodic orbits with period p′ for all p′ positioned to the right of p in the ordering
(3.16).

In the ordering (3.16), generally referred to as the Sharkovsky ordering, each
natural number appears exactly once. Since the number three is the left-most
number, theorem 3.7 implies that if there is a periodic solution of period 3, then
there is a periodic solution of period p for every p ∈ �; cf [22].

We generalized theorem 3.7 to cover (3.15) for all k ∈ � [15], and this
will be discussed now. For arbitrary k ∈ � the state space of (3.15) is the k-
dimensional cube I k (recall that f : I → I ) and an initial condition is a vector
x (0) = (x−k, x−k+1, . . . , x−1) ∈ I k . A solution of (3.15) corresponding to the
initial condition x (0) is a sequence (xn) with n ∈ � ∪ {−k + 1, . . . , 0}, satisfying
(3.15) for all n ∈ � and obeying (x−k+1, . . . , x0) = x0. A solution (xn) of (3.15)
is called periodic with period p ∈ � if

xn+p = xn for all n ∈ �.

Theorem 3.8. [15] Let f : I → � be a continuous function defined on some
interval I ⊂ �. Let k ∈ �. If the difference equation

xn = f (xn−1)

has a periodic orbit of minimal period p then the difference equation

xn = f (xn−k) (3.17)
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has periodic orbits with minimal period p′ for all numbers p′ ∈ Sk(m) whenever
Sk(m) is either equal to Sk(p) or to the right of Sk(p) in the Sharkovsky ordering
of order k defined by

Sk(3) � Sk(5) � · · · � Sk(2 · 3) � Sk(2 · 5) � · · · � Sk(2
2 · 3) � Sk(2

2 · 5) �
� · · · � Sk(22) � Sk(2) � Sk(1).

Here Sk(p) denotes the set given by

Sk(p) :=
{
{1} for p = 1

{l · p | l ∈ �, l divides k and ( k
l , p) coprime} for p ∈ �\{1}.

If f has more than one fixed point then (3.17) also has periodic orbits with
minimal period p′ for all p′ ∈ Sk(∗) := {l | 2 ≤ l ≤ k, l divides k}.

Recall that a pair (m, n) of natural numbers is called coprime if 1 is the only
common divisor of m and n. For illustration of this theorem we give the following
example.

Example 3.9. Let k ∈ � be a prime number. Then l divides k if and only if l = 1
or l = k; moreover ( k

l , p) is coprime if and only if p is not a multiple of k. Thus
for p ∈ �, p > 1 we have

Sk(p) =
{
{kp} if p is a multiple of k

{p, kp} if p is not a multiple of k.

As an example, the Sharkovsky sequence of order k = 11 is

{3, 33} � {5, 55} � · · · � {9, 99} � {111} � {13, 143} � · · · � {2 · 3, 2 · 3 · 11}
� · · · � {4, 44} � {2, 22} � {1, 11}.

It follows from this ordering that if xn = f (xn−1) has, say, a 4-periodic orbit,
then xn = f (xn−11) has periodic orbits with minimal periods 1, 11, 2, 22, 4, and
44.

The following theorem tells us something about the number of periodic orbits
of (3.17).

Theorem 3.10. [15] Let M, N ⊂ �, f : M → N, and let S = {s1, . . . , sp} be a
periodic orbit of minimal period p of the difference equation xn = f (xn−1). Let
k ∈ �\{1}. Then the number� (p, k) of pairwise different periodic orbits (xn) of
the difference equation

xn = f (xn−k)



Unfolding complexity: hereditary dynamical systems 67

which obey xn ∈ S for all n ∈ � is given by

� (p, k) = 1

p

∑
i∈A(p)

k

pi

i
ϒ(

k

i
)

where A(p)
k := {i ∈ � | i divides k, and (k/ i, p) coprime} and

ϒ(m) :=


1 if m = 1
κ∏

ι=1

mι − 1

mι

if m ∈ �\{1}, and {m1, . . . ,mκ} is the set of

pairwise different prime factors of m.

Example 3.11. Let k = 11 and xn = f (xn−1) have a 4-periodic orbit
{s1, s2, s3, s4}. Then A(p)

k = A(4)
11 = {i ∈ � : i divides 11, and

( 11
i , 4) coprime} = {1, 11}. Thus

� (p, k) = � (4, 11) = 1

4
(ϒ(11)+ 411

11
ϒ(1)) = 10

11
+ 410

11
= 95 326 = (number of periodic orbits of xn = f (xn−11)

with xn ∈ {s1, s2, s3, s4} for all n ∈ �).

Some further interesting applications to the theory of prime numbers can be
found in [23].

Proposition 3.12. Let the equation xn = f (xn−1) have a strange attractor with
Hausdorff dimension H . Then for each k ∈ � the equation xn = f (xn−k) has a
strange attractor with Hausdorff dimension k · H .

Proof. Let A ⊂ � be a strange attractor of xn = f (xn−1). Then Ak ⊂ �
k is a

strange attractor of xn = f (xn−k). �

3.5 Second-order non-smooth difference-differential
equations

We now turn to the case k = 2 of (3.10):

d2x(t)

dt2
= f (x(t − τ ))− αx(t) (3.18)

where α > 0.
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Without loss of generality we assume α = 1. Then (3.18) can be transformed
into the system

dx

dt
(t) = y(t)

dy

dt
(t) = f (x(t − τ ))− x(t).

(3.19)

Let us first consider the situation of non-smooth feedback with f defined
by (3.11). Without loss of generality we take a = 1

2 and b = − 1
2 , thus, there

remain just the two parameters τ and �. An initial condition of (3.19) is a pair
(ϕ, y0) ∈ C1([−τ, 0],�)×� such that ϕ′(0) = y0. Solutions (x(t)), y(t)), t ≥ 0,
of (3.19) can be represented as continuous trajectories t → (x(t), y(t)) in the
(x, y)-plane, that is, in �

2 . If f is of type (3.11) and if, moreover, the set
{t : ϕ(t) = �} is finite then these trajectories are composed piecewise of
arcs (or sectors) of circles having their centres at either (a, 0) or (b, 0). For
example, the centre is (a, 0) for all t ∈ [t1, t2] if for all t ∈ (t1 − τ, t2 − τ ) the
inequality x(t) < � is satisfied. Note that the angular length of the arc associated
with [t1, t2] is just t2 − t1, because the angular velocity of the trajectory point
(x(t), y(t)) is always one, independent of the varying radii of the arcs which
make up the trajectory. For the situation of negative feedback the following
theorem, whose proof can be found in [2], shows that for k = 2 in (3.10) there are
substantially more periodic solutions than in the case k = 1 in (3.10).

Theorem 3.13. [2] Let f be given by (3.11) and let a = 1
2 and b = − 1

2 (which
can be assumed without loss of generality whenever b < a). Let � ∈ [0, 1

2 ]. Then

(i) for each n ∈ � and for each τ ∈ (0, 2nπ) system (3.19) (and thus also
(3.18)) has a periodic solution with minimal period τ/n; and

(ii) for each n ∈ �, n odd, and for each τ ∈ (nπ, 2nπ) system (3.19) (and
thus also (3.18)) has periodic solutions with minimal period 2τ/n.

Figure 3.1 illustrates the bifurcation diagram for these periodic solutions [2].
By distinguishing between stable and unstable orbits, figure 3.1 also illustrates
that, contrary to the first-order case (k = 1) in (3.10), there may coexist more
than one asymptotically orbitally stable periodic orbit for fixed values of the
parameters τ and �.

3.5.1 Chaos

We still consider (3.19), however now with a mixed feedback nonlinearity given
by

f (ξ) =


a if ξ < �1

b if �1 < ξ < �2

c if ξ > �2

(3.20)
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τ

y

Figure 3.1. Bifurcation diagram for the second-order differential equation system (3.19),
with assumptions on f and parameters as in theorem 3.13. The bifurcation parameter is
τ (plotted horizontally), while y measures the diameter of the periodic orbits which are
identified by their shape in the (x, y)-plane. Filled symbols denote stable orbits and open
symbols denote unstable orbits. For this bifurcation diagram the parameter � is positive
and not too large; other bifurcation diagrams can be obtained for different values of �.
Reproduced from W Bayer and U an der Heiden 1998 Oscillation types and bifurcations
of nonlinear second order differential-difference equations J. Dynam. Diff. Eqs 10 303–26
c©1998 by Plenum Publishing Corporation.

with constants �1 < �2, a < b, c < b. Without loss of generality we assume
that

α = 1 �1 = 0 a = − 1
2 b = 1

2 c < 1
2 . (3.21)

Hence, the only free parameters are τ,�2, and c. A proof of the following
theorem can be found in [14].

Theorem 3.14. Let the function f be given by (3.20). Without loss of generality
let the parameters α, �1, a, b and c satisfy (3.21). Moreover, let the parameters
τ and �2 obey the conditions

0 < τ < π/2

(1 + cos 1
2τ )/2 < �2 < 1

1 + (2�2 − 1) cos τ > 2
√
�2(1 −�2)

√
sin2 τ + 1 − cos τ

1 + cos τ
.
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Then there are numbers c1 = c1(τ,�2) and c2 = c2(τ,�2), c1 < c2, such that
(3.18) is chaotic in the sense of Li and Yorke whenever the parameter c satisfies
c1 < c ≤ c2.

In conclusion, we have learned that equation (3.4) displays different types of
behaviour for k = 0, 1, and 2, no matter how large ε is. For k > 2 almost nothing
is known.

3.6 Outlook

We have not covered all of the literature about the types of equations considered
here. Nevertheless, we hope that the reader has got the impression that the
pathway we followed opens the perspective to many further and very interesting
investigations. The promise is that, in the spirit of Sharkovsky’s quote at the
beginning of this chapter, there is still an even richer realm of fascinating
phenomena to be discovered. In particular, these include many new forms of
bifurcation patterns and high-dimensional strange attractors.
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Anal., Theory, Meth. Appl. 5 775–88

[38] Walther H O 1981 Density of slowly oscillating solutions of ẋ(t) = − f (x(t − 1)) J.
Math. Anal. Appl. 79 127–40

[39] Walther H O 1995 The 2-Dimensional Attractor of x ′(t) = −µx(t) + f (x(t − 1))
(Mem. Am. Math. Soc. 113) no 544 (Providence, RI: American Mathematical
Sociecty)



Chapter 4

Creating stability out of instability

Christopher K R T Jones
Brown University

It is a compelling idea to conjure a stable, or robust, state out of an unstable state
or combination of unstable states. In a natural way, this can be formulated as
a problem in control theory: how can an instability be controlled to produce a
stable state? A well-known example is the inverted pendulum. Kapitza (see [12])
showed that a vertically oscillating pivot can produce a stable pendulum that is
upside down. This control strategy can be construed as placing the pendulum in
a stable state (the vertical acceleration can overcome gravity on the way down)
for part of the time. The pendulum is thus switching between a stable and an
unstable state and the stable state wins. This suggests an interesting question: can
switching between unstable states induce stability? This question can be answered
positively with a system that jumps between two saddles, in a time-dependent
way, in such a way that the saddles switch stable and unstable directions. As soon
as the system moves off in the unstable direction, the switch makes that direction
stable and so on. This can be implemented as a control strategy but it remains
another question whether this mechanism is found in specific applications.

A related question occurs in wave propagation. A pulse can often be
decomposed into phases: up and down. Suppose that either, or both, of the phases
is intrinsically unstable, is it then possible that the full pulse itself is stable? In
the same way as the system that oscillates between unstable states, the two phases
would compensate for the instabilities in the other phase with a dampening effect
that would come from their own stable directions.

Two quite different situations will be explored in this chapter. Both involve
wave propagation and give examples of naturally occurring versions of this
surprising phenomenon of switching between unstable states leading to a stable
state. The first case comes from nonlinear optical pulse propagation. The
current preferred technique of pulse propagation on optical fibres involves a
technique called dispersion compensation through which chromatic dispersion is
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counteracted by reverse dispersion in a systematic fashion along the fibre. The
mathematical explanation of the resulting stabilization is given in [25], where it
is shown that this idea can be realized in the critical limit. This latter case can be
construed as an example of switching between unstable states rendering a stable
object. Despite its involving wave propagation, the stabilization due to dispersion
compensation is actually an effect that involves switching in time. The second
example will exhibit a case in which the spatial distribution of unstable phases, as
described earlier, can lead to a stable pulse.

A number of fundamental questions are raised by the subjects covered here
and Aside sections will be regularly placed throughout this chapter where these
issues are explored.

4.1 Nonlinear optical fibres

The infrastructure of optical fibres is now the key component in the global
communication system. Most systems run on a format based on the assumption
that the fibres in use respond linearly to impinging light. If the amplitude is
large enough, and the size needed depends on the material used in the fibre, then
the response will become nonlinear. The inherent nonlinearity in fibres can be
exploited to advantage through the use of optical solitons acting as carriers of
‘bits’ of information. This was first suggested by Hasegawa and Tappert [8] and
later realized experimentally by Mollenauer et al [15]. The soliton exists by virtue
of a balance between nonlinearity and dispersion. The fundamental equation is
the nonlinear Schrödinger equation (NLS)

i
∂q

∂z
= α

∂2q

∂z2
+ |q|2q

where q is the amplitude of the envelope of the electric field. Note that the
evolution is spatial and not temporal. Although this is, for a mathematician,
counter-intuitive it is natural and correct from the physical standpoint. If a
communication (e.g. a phone call) is being made then a time-trace is being
imposed on the fibre at a fixed location. The communication is received at another
location (down the fibre) as a time-trace that should faithfully reflect the input
time-trace. The initialization is thus a function of time at a fixed spatial location
and the output, at a place further down the fibre, is also a function of time. The
evolution is therefore a function of time along the fibre.

4.1.1 Dispersion management

The current ‘hot’ approach to combating instabilities in optical fibres is through
dispersion compensation. The idea is simple. The most significant destabilizing
influence to any structure (pulse or front of on/off switch) is chromatic dispersion:
the tendency of frequencies near to a carrier frequency to disperse and cause
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pulse broadening. Dispersion compensation counteracts this effect by a reversal
of dispersion. This amounts to effectively running the equations backwards and is
essentially a linear strategy. If a wave is evolving under the influence of the linear
equation

iuz + uT T = 0

then the idea is to subject it to the influence of the equation

iuz − uT T = 0

to the extent that the first equation will make waves with nearby frequencies
separate, the second equation will bring them back together.

The amazing fact is that fibres can actually be constructed that have
juxtaposed pieces of opposite frequency. This was first suggested by Lin et al [13]
as a strategy for stabilizing linear systems but was later adapted to nonlinear
systems.

For nonlinear systems, i.e. those in which the amplitudes are large enough to
excite the nonlinearities, the equations will have the form

iuz ± uT T + ε|u|2u = 0

where the ± will switch with the alternating fibre pieces. Smith et al [21]
first found numerical pulses in the nonlinear regime. Gabitov and Turitsyn [5]
developed an averaged equation for these dispersion-managed nonlinear fibres
and Ablowitz and Biondini [1] numerically computed pulse solutions for the
Gabitov–Turitsyn equations.

The dispersion management approach has met with astounding success.
Leguen et al [9] reported at the 1999 Optical Fiber Communications Meeting that
they had developed a dispersion-managed system with a capacity of over 1 Tbit/s
over 1000 km. Subsequently, Mollenauer et al [16] reported system performance
at 0.5 Tbit/s over 10 000 km. These involved increases of around 103 bit/s over
previous systems.

The profile of varying dispersion along the fibre is called the dispersion map.
It is usually taken to be piecewise constant with a fixed period. A key observation
is that the intervals over which the map is positive and negative do not have to be
equal, as long as the average dispersion over a period is balanced; see figure 4.1.
The most advantageous situation is when the average (residual) dispersion is close
to zero while the absolute dispersion of the individual parts remains large. A piece
of positive dispersion fibre covering most of the period could then be balanced by
a short piece of negative dispersion. This leads to the technologically attractive
suggestion that an existing fibre could be converted to a dispersion-managed fibre
by placing a piece of (strongly) negative dispersion fibre into the line at convenient
locations, for instance, at amplifier stations; see again figure 4.1.
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Figure 4.1. Dispersion management of fibre transmission.

4.1.2 Aside: linear versus nonlinear

The two main approaches to optical communications are identified respectively
with linear and nonlinear theories. The dominant mode of information
propagation on an optical fibre is the so-called Non-Return-to-Zero (NRZ) format.
In this format a string of binary values is represented by On (1) or Off (0) and
between two 1s the value does not return to 0. The string thus looks as in
figure 4.2(a). It is assumed that the On state is of small amplitude so that the
response of the medium can be assumed to be linear. It should be noted that the
exact value of the amplitude is immaterial due to the linearity.

In this NRZ scenario, nonlinear effects are undesirable and thus the signal
needs to be kept at as low a power as possible. This can cause a problem for long-
haul transmission as losses on the fibre necessarily degrade the signal. Although
this is compensated to some extent by periodic amplification, the case remains for
taking nonlinearities in the fibre into account. Under a linear strategy, competing
signals pass through each other unaffected by their interaction. Since multiple
channels are carried by the same fibre, competing signals are interacting with
great frequency and this gives a linear strategy a definite advantage. Ironically,
however, during the interaction itself the amplitude of the signal will increase
thus exciting the nonlinear properties of the fibre.

The nonlinear approach is based on a fundamentally different format in
which information is encoded in pulses. The basic pulse is an optical soliton
which is the soliton solution of the cubic nonlinear Schrödinger equation, as
discovered by Zakharov and Shabat [24]. The idea of using optical solitons as
information carriers was first suggested by Hasegawa and Tappert [8]. Each
time window will either contain a pulse (1) or no pulse (0). Between 1 values
the system returns to rest, as is sketched in figure 4.2(b), and the contrast with
the NRZ format is thus clear. Pulse-based systems are now often referred to as
Return-to-Zero (RZ). An advantage of the nonlinear system is that the amplitude
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Figure 4.2. Non-Return-to-Zero (a) and Return-to-Zero (b) format for information
propagation on an optical fibre.

is naturally restricted by the properties of the solitons. Since the nonlinearity
is already being taken into account, the amplitude of the pulse can be larger.
The interactions of pulses are less predictable. Provided the cubic NLS is a
faithful approximation, the rules for soliton interactions coming from inverse
scattering will hold. Perturbations of the cubic NLS will, however, be introduced
by amplifiers and other adjustments to the basic fibre, such as those introduced to
compensate the destabilizing effect of the amplification.

The area of optical communications presents an interesting context in which
to evaluate the debate between linear and nonlinear strategies. Despite the
excitement around nonlinear phenomena, such as those which are manifest in
chaotic dynamics, I believe it is fair to say that most of the applied scientific and
engineering world leans preferentially toward linear techniques. Nonlinear effects
are generally viewed with some suspicion and the comfort of well-understood
linear methods are sufficiently alluring that most users of mathematical techniques
will try to mould a given system of interest into a linear regime. This raises a basic
question which may seem simplistic from the theoreticians’ point of view, but is,
in view of current practice, quite important.

Question 4.1. Should ‘nonlinearity’ be the object of damage control or a key
component of the theory?

There is a curious coming together of the linear and nonlinear approaches
in optical communications. For long-distance transmission, the RZ format is
becoming the preferred mode. The NRZ community refers to the pulses used in
the RZ format as ‘quasi-linear pulses’ in reluctant recognition that nonlinearity is
playing some role. Furthermore, with the advent of dispersion-managed systems,
the possibility arises of converting existing systems, as described earlier, by
inserting pieces of compensating fibre at convenient locations. It is then possible
that erstwhile NRZ fibres could operate in a pulse format as RZ fibres and the
nonlinearity be effectively harnessed.
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4.1.3 Efficacy of dispersion management

On a dispersion-managed fibre, a pulse pulsates as it propagates. Over the
negative dispersion piece, it will tend to broaden due to chromatic dispersion
and then tighten in the focusing regime of the positive dispersion piece. This
broadening and narrowing continues as it moves along the fibre giving the pulse
an oscillating profile, with oscillations corresponding to the changes in dispersion
characteristics of the fibre. If the dispersion map is periodic, then the expectation
is that this pulse will also be periodic. This oscillating pulse, or its counterpart
in the rapidly varying dispersion map limit, is called the Dispersion-Managed
Soliton (DMS).

All of the evidence indicates that the DMS is a very stable object. Our goal
in the work [25] was to explain this phenomenon mathematically. The natural
approach is to use the averaged system as derived by Gabitov and Turitsyn [5]
and to show that it carries a stable pulse solution. In this averaged limit, we
would expect the pulse to be steady as the periodic variation of the DMS seen in
the real systems corresponds to the different phases as it passes over the pieces
of, respectively, negative and positive dispersion. It would be natural to show that
the real system carried a periodic orbit that is a perturbation of the stable pulse
of the averaged system. Since the underlying phase space is infinite-dimensional,
this is not a realistic hope, as discussed later. The usual results that underscore the
validity of the averaging procedure do, however, show that solutions of the full
system starting near to the pulse will stay looking like it for long times. The two
key points are thus the following elements:

(i) Validity of averaging. The main result shows that solutions of the dispersion-
managed NLS (DMNLS) stay close to the corresponding solutions of the
averaged equations for long times. This mimics the classical averaging result
of ODEs.

(ii) Stable pulse. The averaged equation is shown to have a stable pulse by
proving that a steady-state solution can be found that is a constrained
minimum of the energy subject to constant charge (in the L2-norm).

As a corollary of combining these two results, solutions of DMNLS with the
appropriate initial shape stay pulse-like for long periods of time.

4.1.4 Averaging out dispersion variation

We start with the DMNLS written in the form

iεuz +
(

d
( z

ε

)
+ εα

)
utt + ε|u|2u = 0 (4.1)

or, scaling z,

iuζ + d(ζ )+ ε(αutt + |u|2u) = 0. (4.2)
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Performing the Van der Pol transformation on (4.2) based on the evolution
operator for the linear dispersion-managed equation

iuζ + d(ζ )utt = 0

which we write as u(ζ, t) = T (ζ )u(0, t), i.e. setting v = T (−ζ )u, we obtain

ivζ + ε(αvt t + Qε(v, v, v)) = 0

where

Qε(v, v, v) = T (−ζ )|T (ζ )v|2T (−ζ )v.

Now averaging over a dispersion map period (say 0 to 1)

ivζ + ε(αvt t + Q(v, v, v)) = 0 (4.3)

where

Q(v, v, v) =
∫ 1

0
T (−ζ )|T (ζ )v|2T (−ζ )v dζ.

Or, in original z variables,

ivz + αvt t + Q(v, v, v) = 0. (4.4)

The averaging result should compare solutions of (4.1) to those of (4.4), or,
equivalently, the solutions of (4.2) with those of (4.3). To that end, we have the
following result.

Theorem 4.2. If the residual dispersion α > 0, v satisfies (4.1) and v̂ satisfies
(4.4), with the same initial data in H s, s � 4, then

‖v(ζ, t) − v̂(ζ, t)‖Hs−3 = O(ε)

for 0 ≤ ζ ≤ c
ε
, for some constant c.

This result can be viewed as a classical averaging result along the lines of
the original work by Bogoluibov and Mitroploskii (see [7]), save for the fact that
the underlying norms are appropriate for PDEs. It should be noted that a loss of
derivatives occurs due to the presence of the Schrödinger evolution operator in
the integral Q. The averaged equation (4.4) is equivalent to the Gabitov–Turitsyn
equation but expressed in a new formulation in the real time domain, rather than
the Fourier domain. The proof of this theorem, however, is carried out in the
Fourier domain.
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4.1.5 DMNLS pulse

To show that there is a base pulse for the DMNLS, we find a minimizer for the
Hamiltonian associated with the averaged equation (4.3). In the following, it will
be assumed throughout that the residual dispersion α > 0. The case α = 0 is
particularly interesting as dispersion-managed systems are often run with small
averaged dispersion, but serious technical complications prevent the proofs from
going through. For the case of negative residual dispersion, it is shown in [25]
that no minimum exists.

The equation (4.3) possesses a Hamiltonian given by

Hα(v) =
∫ 1

0

∫ +∞

−∞
(α|vt |2 − |v∗Q|) dt dζ

=
∫ 1

0

∫ +∞

−∞
(α|vt |2 − |T (−ζ )v|4) dt dζ.

The charge (or power) is conserved, so that a ‘ground state’ is a minimizer of
Hα(v) subject to fixed

P(v) =
∫ +∞

−∞
|v|2 dt = λ.

If we set
Cλ = inf{Hα(v) : v ∈ H 1, P(v) = λ}

it can be seen that λ > 0 implies that Cλ < 0. This is a great help in the
minimization procedure as it prevents a minimizing sequence from converging
to 0. The standard strategy is to find a minimizing sequence {vk} and show that it
converges strongly vk → v with Hα(v) = Cλ and P(v) = λ. From the Alaoglu
theorem, it follows that vk ⇀ v (converges weakly). The theory of concentration-
compactness, due to Lions [14], tells us that there are now three possibilities:

(i) strong convergence: vk → v

(ii) vanishing: vk → 0 and
(iii) splitting: vk → v1 + v2.

If possibilities (ii) and (iii) can be ruled out then the sequence must converge
strongly (possibility (i)). The key result is a lemma due to Zharnitsky that shows
localization cannot occur in the linear Schrödinger equation. For instance, to rule
out vanishing, from looking at the energy, and using the fact that Cλ < 0, it
suffices to show that vk → 0 implies that∫ 1

0

∫ +∞

−∞
|T (−ζ )vk |4 dt dζ → 0.

Zharnitsky’s localization lemma shows that this cannot occur. It is a statement
about the linear Schrödinger equation not being able to localize mass since T (ζ )
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is its evolution operator. It would seem that this fact should be well known but all
the standard estimates for the linear Schrödinger equation fall short of implying
it.

4.1.6 Aside: averaging in PDEs

Let us review what we can conclude from the previous analysis. We have the
standard averaging theorem, albeit with some loss of derivatives, from which we
know that the averaged and original solutions are O(ε) close for times (or, in the
optics case, distance down the fibre) of O( 1

ε
). Since we also know that there is

a ground-state solution, we can conclude that with the ground-state set as initial
data for the full DMNLS the resulting solutions will stay close for long periods
of time (or distance down the fibre). The fact that the ground state is a steady
state, let alone that it is stable, is not used at all in reaching this conclusion.
There is information thus not being used that should strengthen the result that
any pulse-like initial data will stay that way. In the context of ODEs there are
standard results that afford conclusions about the existence of periodic orbits of
the original system near to critical points of the averaged system; for instance,
see [25]. It would be tempting to anticipate such a result in this context also. In
particular, for the dispersion management problem it would follow that a pulsating
orbit would exist for DMNLS (4.2) that tracks the ground state of the averaged
equations. This basic result does not, however, go through for the PDE case. The
impediment derives from the possible presence of infinitely many resonances.
This raises the following question.

Question 4.3. What is the analogue of the periodic orbit theorem for averaging
in PDEs?

Bambusi and Nekhoroshev [3] discuss this issue and suggest that the result
should be an increased length of time, such as exponentially long, over which the
averaged solution is a good approximation if that averaged solution is a stable
state. Their work is in the context of nonlinear wave equations. An interesting
and important issue is whether this can be extended to a wider class of problems.

4.1.7 Extending dispersion management stabilization of unstable states

Dispersion management has been shown to render stable pulses. This analysis
is analogous to that for the NLS. In other words, the DMS has been shown to
enjoy the same stability properties as the standard soliton of NLS. The expectation
is, however, that the DMS is somehow more stable. This is corroborated by
numerical calculations that show that even instabilities caused by numerical
approximations (which might reasonably be viewed as reflecting instabilities due
to losses in the system) are more effectively damped in DMNLS than in NLS;
see [25].
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A way to push dispersion management further is to apply it in cases that have
only unstable steady states for the associated NLS, even in the case of positive
(focusing) dispersion. A natural case is supplied by critical nonlinearities: quintic
in one-dimension and cubic in two dimensions. The relevant equations in their
pure NLS form are

iuz + αutt + |u|4u = 0 (4.5)

iuz + α�Tu + |u|2u = 0

where

�T = ∂2

∂x2 +
∂2

∂y2 .

We will not endow these equations with any particular physical interpretation in
optics, but have written them in the usual optics form for the sake of consistency.
In this interpretation �T should be construed as the transverse Laplacian, i.e.
where x and y are spatial variables transverse to the distance down the fibre z.

Even with positive dispersion (α > 0) these equations possess no stable
ground states, as was shown by Weinstein [22]. There are bound states, but they
are all unstable, even the pulse-like ground state. Blow-up in finite time for some
initial data in these critical NLS systems arbitrarily close to the pulse was proved
by Weinstein [22]. This is clearly then a very unstable pulse and the question
we addressed in [25] was whether this pulse could be stabilized by dispersion
management. In other words, if we set

α = d
( z

ε

)
in (4.5) and average, as in the previous section, do we obtain a ground-state pulse?
It should be clearly noted that there is no particular physical problem associated
with this procedure, it is just a mathematical test of the stabilization of dispersion
management.

It turns out, as is shown in [25], that the analysis proceeds just as before: the
averaging procedure is valid, i.e. theorem 4.2 holds, and there is a ground state.
Given the drastic instability, as evidenced by the blow-up result of Weinstein,
in these critical cases, this is a striking result. To return to the theme at the
beginning of this chapter, namely the possibility of a stable state resulting from a
jump between unstable states, we can see that exactly such an effect is occurring
here. The jump is between a positive dispersion part and the negative dispersion
part. In the latter part, there is no steady state at all, while in the former part, the
state is unstable. Thus this dispersion-managed version of critical NLS (4.5) can
reasonably be construed as jumping between a stable and an unstable state.

4.1.8 Aside: stability questions

There are some very important open stability questions related to nonlinear optical
pulse propagation. One of the most fundamental of these concerns the possibility
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of multiple pulses that are stable. A multiple pulse is one in which the base pulse
is repeated and the different pulses are well separated from each other. It has long
been folklore in nonlinear optics that a multi-pulse will, of necessity, be unstable.
The first full result is due to Yew et al [23] who exhibit instability of multiple
pulses in coupled NLS systems. A novel mechanism for stable pulses that can be
viewed as multi-pulses is given in Ostrovskaya et al [18]. These states become
unstable, however, as the pulses separate from each other. The overall problem
then remains open.

Question 4.4. Are there stable multiple pulses in nonlinear optical systems?

An affirmative answer to this question could have some important physical
implications. For instance, it is conceivable that a multi-bit format could be used
for message encoding. This would significantly multiply the amount that could
be transmitted on a given fibre. This is explored in the context of phase-sensitive
amplified fibres in [17].

Even if multiple pulses that have a stable spectrum, i.e. a spectrum lying
entirely on the imaginary axis, are found, it is not known whether this implies
stability relative to the full system, which is often called nonlinear stability. The
main condition used to guarantee stability is the one used in this chapter, namely
that a given state is a constrained minimum. The case that is likely to occur for
multiple pulses with stable spectrum is that the Hamiltonian is indefinite.

Question 4.5. Is a steady state with its linearization possessing an indefinite
Hamiltonian but with no unstable eigenvalues, stable?

This is not an easy question as it appears to be related to Arnol’d diffusion,
which is not even well understood in finite dimensions.

The role of dispersion management, as can be seen clearly from the analysis
of the preceding section, is as a stabilizing mechanism. Such mechanisms could
be viewed in terms of wave control strategies. There are other interesting cases
of wave stabilization as in, for instance, the work of Doelman et al [4]. In their
work a strongly stable background shelf can be used to stabilize an unstable spike.
They find this effect occurring in the Gray–Scott reaction–diffusion system.

Question 4.6. Are wave stabilization mechanisms common? And can they be
implemented as wave control strategies?

An extremely important problem in optical pulse propagation concerns
pulse–pulse interaction. A given fibre will usually be required to carry pulses
of many frequencies. These are viewed as different channels that should co-exist
on the fibre without interference. Due to the nonlinearity, however, they will
inevitably interact and the effect of these interactions is not well understood.

Question 4.7. Can we get an effective calculus of pulse–pulse interactions in
nonlinear optical systems?
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Figure 4.3. A pulse with a prolonged refractory period (a) can be viewed as a
concatenation of a generalized front (b) and a generalized back (c). Reproduced from
M M Romeo and C K R T Jones 2001 Stability of neuronal pulses composed of two
concatenated unstable kinks Phys. Rev. E 63 011904 c©2001 by the American Physical
Society.

4.2 Can two unstable waves make a stable pulse?

The second scenario for creating stability out of instability was raised as a
potential concatenation of unstable pulses to create a stable pulse. This is a
spatial juxtaposition of unstable states. The idea has to be similar to the temporal
juxtaposition of unstable states in that the stabilizing influence of each must act
on the other to damp out their instabilities. How this will occur in this case of
spatial distribution is mysterious.

A first observation is that the instability of the constituent waves cannot be
through point spectrum. Indeed, according to Alexander et al [2], any unstable
eigenvalues of these pieces would manifest themselves in corresponding unstable
eigenvalues of the full pulse. It follows that any instability would have to be
associated with the presence of the essential spectrum in the right half-plane.
The essential spectrum in these wave problems comes from the far-field, or
asymptotic, states. The concatenation of waves into a pulse involves a quiescent
phase between the two constituent waves. This phase is an asymptotic state of
each of the constituent waves, at minus and plus infinity for the front and back
respectively. In the full pulse, it appears as a shelf that elongates as the separation
between the waves increases; see figure 4.3. There will be an essential spectrum
associated with this shelf that is manifest in the spectrum of the front and the back
but not in the full wave itself. In the limit in which this intermediate, quiescent
phase elongates, the question is whether there is any residual instability from the
essential spectrum that pops out for the limiting profiles.

On the level of the travelling wave equations, the bifurcation of the pulse out
of the two constituent waves is a homoclinic bifurcation that is called a T-point, a
term originally coined by Glendinning and Sparrow [6].

We construct a specific example that exposes this extraordinary phenomenon
in which a stable pulse bifurcates out of unstable fronts and backs.
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4.2.1 The ultra-refractory FitzHugh–Nagumo equations

The FitzHugh–Nagumo equations were originally formulated as a simplification
to the Hodgkin–Huxley model of nerve impulse propagation. They are formed by
a diffusive equation for the voltage across a nerve membrane and an ODE for a
lumped variable that governs the recovery of the nerve fibre.

ut = ux x + f1(u, w)

wt = f2(u, w, γ ).

In the original FitzHugh–Nagumo system

f1(u, w) = f (u)−w

f2(u, w, γ ) = ε(γ u − w)

where f (u) = u(u − a)(1 − u) and 0 < a < 1
2 , which is the usual cubic that

occurs in the bistable system. We shall replace f2 = ε(γ u − w) by a more
general term that we shall write as g(u, w, p) where p is a parameter. We shall
also focus on travelling waves, which are steady solutions in a moving frame.
Setting ξ = x − ct , the reaction–diffusion system of interest will then be

ut = uξξ + cuξ + f (u)− w (4.6)

wt = cwξ + g(u, w, p). (4.7)

The ODEs for a travelling wave are then

u′ = v (4.8)

v′ = −cv − f (u)+w (4.9)

w′ = −1

c
g(u, w, p). (4.10)

The scenario of interest is where a pulse bifurcates out of a concatenated front
and back at a parameter value p = p0; see figure 4.3. In the phase space of
(4.8)–(4.10) this is a homoclinic orbit bifurcating out of a heteroclinic loop; see
figure 4.4.

To study the stability of a given wave, we consider the linearization of the
PDE, equations (4.6) and (4.7), at the wave: (u(ξ), v(ξ)), which is

qt = qξξ + cqξ + Du f (u, w)q + Dw f (u, w)s

st = csξ + Du g(u, w)q + Dwg(u, w)s.

The right-hand side is a linear operator and so we write it as L(q, s). This may be
evaluated at the front, the back or the pulse.

From previous considerations, the scenario that will interest us is when LF
(the linearization at the front), and LB (correspondingly at the back) have essential
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Figure 4.4. A homoclinic orbit corresponding to a pulse solution of the ultra-refractory
FitzHugh–Nagumo system. Reproduced from M M Romeo and C K R T Jones 2001
Stability of neuronal pulses composed of two concatenated unstable kinks Phys. Rev. E 63
011904 c©2001 by the American Physical Society.

spectrum in the right half-plane but for which LP (at the pulse) has its essential
spectrum contained entirely in the left half-plane. This situation pertains in the
example considered later. The question raised by this situation is whether there is
a residue from the essential spectrum in σ(LP).

The surprising fact was discovered simultaneously by Romeo and Jones [19]
and Sandstede and Scheel [20] that there could, in fact, be no residue from the
essential spectrum and the pulse could end up being stable, even though the
constituent waves were unstable. Sandstede and Scheel [20] developed a general
theory and numerically verified the hypotheses of their stability result for an
example similar to that given here. In [19], we showed analytically that a stable
pulse exists which bifurcates from a T-point.

The example in [19] is based on a quadratic representation of g(u, w, p). In
that representation, the null-cline g = 0 intersects w = f (u) in more than one
place to create a second rest state. As p varies, this rest state can interrupt the
travelling wave; see figure 4.5. When ε is turned on, this leads to the bifurcation
of a homoclinic orbit out of a heteroclinic loop. The heteroclinic loop is exactly
of the T -point form.

What is shown in [19] is that for ε > 0 but sufficiently small, there is a p∗(ε)
for which a heteroclinic loop is present and that is p > p∗(ε) there is an orbit
homoclinic to rest. An analysis of the rest point shows that an unstable essential
spectrum is present for the constituent waves (front and back). It can easily be
shown, however, that the homoclinic orbit to rest is stable by invoking the result
of [10] and observing that the changes in g do not affect the proof.

In [19], we also corroborate this stability result with careful numerical
calculations. The computations are quite delicate in that the domain of attraction
apparently shrinks as the bifurcation point is approached. The stability of the
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Figure 4.5. Lengthening of the quescient state with p for two fixed values of ε. As
ε decreases, there is a longer disparity between slow and fast phases in addition to
lengthening latent states. Reproduced from M M Romeo and C K R T Jones 2001 Stability
of neuronal pulses composed of two concatenated unstable kinks Phys. Rev. E 63 011904
c©2001 by the American Physical Society.

pulse is, however, still evident if the initial conditions are carefully set. A
key point in the strategy is to continually reset the initial condition as the
parameter is advanced. The new initial condition is taken to be the output pulse
of the numerical experiment at the previous parameter setting. Progressively
smaller steps in the parameter advance are also necessary. The results are rather
convincing; see again figure 4.5.

As this work developed, I noticed that an interesting shift in my own
perspective had occurred in the recent past. I really did feel that I needed the
corroboration of the computational experiments to be convinced of this surprising
phenomenon. As a mathematician, I know that a proof is the real arbiter of
the truth, but as an applied mathematician, I crave numerical verification! As
a tongue-in-cheek reflection of this dilemma, I pose the following question.

Question 4.8. Do proofs validate numerical computations; or do numerical
computations verify proofs?
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4.3 Some predictions, suggestions and questions

By way of conclusion, I would like to pose and discuss some basic questions
concerning the future role of nonlinear dynamics.

Question 4.9. Will the future of nonlinear dynamics be application driven?

The subject of dynamical systems is, by now, mature. There is a certain
mindset that is common to most practitioners of the subject, and many of the
major problems have now been solved. It is, however, not yet clear how
this material will be adapted to real-world applications. Much of the analytic
development has been achieved in the context of simple models and the demands
of realistic models take the entrenched ideas to their snapping point. The strength
of dynamical systems lies in its adaptability, but much of the adaptation has not
yet taken place. One area in which this can be seen is in the handling of numerical
models. In areas involving geophysical fluid dynamics, such as oceanography
or atmospheric science, any moderately realistic model is formulated as the
numerical solution of a partial differential equation. Unless this model enjoys
some magical source of periodicity, it will necessarily extend over only finite time
and the concepts of dynamical systems, in so far as they are based on asymptotic
conditions, need significant adaptation.

The relation of dynamical systems to computations and large data sets
deserves singling out.

Question 4.10. Will computations and data play a central role in the further
development of dynamical systems?

The answer to this seems to me to be inevitably: ‘yes’. We cannot avoid
the fact that data, both observational and computational, will proliferate in the
future. Moreover, the sets of data will pertain to physical situations that cannot
be captured by simple models and, hence, techniques will be needed that can
incorporate ideas of dynamical systems into the analysis of data sets. This is
dynamical systems without equations.

Question 4.11. Is the main distinction between linear and nonlinear or between
local and global?

The fascination with the phenomena exposed by dynamical systems, such as
chaotic motion, for the applied scientist has often been characterized as nonlinear.
The techniques of physics and engineering are largely based on linear analysis
and such exotic effects are prevented from occurring. It was therefore natural
to view ‘nonlinearity’ as being responsible. However, this is misleading. The
driving force of chaos, for instance, is the elementary linear effect of exponential
stretching near a saddle-point. Nonlinearity merely supplies the recurrence
needed to have the dynamics repeatedly experience the saddle effect. I address
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this point quite extensively in the article [11] and suggest that the Smale school
were correct in using the term ‘global dynamics’ as it is the global effects that will
be most challenging to us in the future.
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Chapter 5

Signal or noise? A nonlinear dynamics
approach to spatio-temporal
communication
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Communication with electromagnetic radiation has taken many guises and forms
over the centuries. Recently, there have been efforts to utilize irregular waveforms
output by chaotic lasers for encoding information. We explore the scientific basis
for two such techniques that utilize polarization and spatio-temporal wavefronts
and discuss possible future applications.

Our fascination with telecommunication has lead to the development of
techniques that have increased the rate of information transmission at an
exponential rate over the past century and a half [12]. Our focus has been
on utilization of the amplitude or intensity of the radiation for this purpose,
while harnessing the wavelength range available in the source (or sources) for
multiplexing separate messages. At present we can communicate several Gbits/s
over optical fibre communication channels, and have developed a sophisticated
set of protocols for encoding and decoding the information. However there
are still intriguing general questions: What is the maximum possible rate
of communication of information (in bits/s) with a source of electromagnetic
radiation, given the constraint that there is only a certain amount of power
available? What would the spectrum of this radiation be?
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On the basis of very general assumptions, Lachmann and colleagues [27]
calculate the spectrum of this radiation source and arrive at an explicit expression
for the maximum number of bits/s that could be transmitted as an information-
carrying signal within prescribed constraints. They conclude that the spectrum
of the source would be that of black body radiation, and emphasize that the
radiation carrying the encoded message would appear as noise to anyone unable to
decode the information. The characteristic temperature of the black body source
would be determined by the power available, and the transmitter would utilize
timing, energy, polarization and direction of the radiation; i.e. its spatio-temporal
distribution, for encoding the message. If the spatio-temporal properties are not
utilized, the information transmission rate possible drops by several orders of
magnitude.

In this discussion, we focus on two new directions, attempting to utilize
the properties of electromagnetic radiation more fully for communications. The
first is the possibility of encoding and decoding information in the polarization
fluctuations of a light source that is widespread in telecommunications—the
erbium-doped fibre laser or EDFRL. Here, we use the vector property of light,
its polarization, as a means for encoding and decoding information. We note
that the polarization of light is possibly utilized for concealed intra-species
communication by cuttlefish [40] and for inter-species communication by aliens
[37]. The second direction concerns extending information coding and recovery
to the spatio-temporal properties of the light waves. The emphasis will be on the
use of wavefronts to transfer information in parallel, not in a bit-by-bit sequence.

Both ideas involve the use of nonlinear dynamical laser systems with time
delays. Most laser cavities are of the order of or less than a metre in length
and their operation can be described quite adequately by ordinary differential
equations. The laser sources we discuss here are fibre oscillators with long
cavities so that the time taken by light to go around is often several hundred
nanoseconds—much longer than conventional systems. Such lasers generate
signals with high-dimensional dynamics, and require delay-differential equations
to model their behaviour. These models [1, 2, 48] will not be discussed in detail
here; we will present their essential aspects and describe the main concepts
involved and the experimental schemes through which they can be used for optical
communication.

Traditional communication methods have used sine waves as carriers of
information. A part of the receiver (the ‘tuner’) enables it to synchronize to the
centre frequency of the carrier. The rest of the receiver is engaged with the task
of recovering the information conveyed by the modulations of the amplitude or
frequency of the carrier waveform.

It is natural to consider a generalization of the carrier to waveforms that
are non-sinusoidal, and possibly irregular or chaotic. Over the past decade two
developments have occurred that make it feasible to consider such methods of
communication. The first is the realization that what are often considered unstable
lasers, regarded as unsuitable for traditional communication techniques, emit light
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waves that are irregular and chaotic on very fast time scales and possess large
bandwidths. The second is the extension of the concept of synchronization to
signals that are spatio-temporally chaotic.

The study of chaos and nonlinear dynamics has made us realize that there are
interesting deterministic dynamical phenomena to observe and measure that are
highly irregular in time and space. Such systems have been discovered in every
discipline and have lead to a plethora of studies that charted routes to chaos and
developed quantitative mathematical measurements for characterizing the various
signatures of nonlinear dynamical systems. The emphasis in the future will surely
be to discover novel and interesting applications of such systems and to decipher
how they may already be employed in biological contexts.

Though the synchronization of clocks (periodic systems) has been studied
with great care over centuries, it was the surprising discovery of temporal
synchronization between two chaotic systems [3, 16, 36] that initiated the field of
‘chaotic communication’. Following the original implementation of this approach
in electronic circuits [11, 23], a suggestion to use optical systems was made
[10]. Optical chaotic systems offer the possibility of high-speed data transfer
as shown in simulations of numerical models that include realistic operational
characteristics of the transmitter, receiver and communication channel [34].
Recent work has shown that EDFRLs [31, 48] and semiconductor laser diodes
[14] are capable of generating light waves that possess irregular and chaotic
intensity fluctuations on very fast time scales. Abarbanel and coworkers [2]
have developed a detailed delay-differential model for these EDFRL intensity
dynamics. Numerical simulations of the model are able to reproduce many
aspects of the experimentally observed dynamics. Also in recent work, a
novel type of communication was demonstrated in which the chaotic intensity
fluctuations generated by an EDFRL were used either to mask or carry a message
[42–44]. Similar concepts were used to demonstrate optical communication using
the chaotic wavelength fluctuation output from a diode laser [18]. Optical chaotic
communication has also been demonstrated for semiconductor lasers with time-
delayed optical feedback [15, 41].

In the rest of this chapter, we will outline two new directions:

(i) the exploration of the use of dynamical fluctuations of the polarization of
light for fibre-optic communications (as detailed in section 1.2); and

(ii) a proposal for optical communications through free space using
synchronization of broad area wavefronts that takes advantage of the
parallelism of information transfer by spatio-temporal systems (as detailed
in section 1.3).

These proposals utilize a general technique of time-delayed detection and
recovery of signals, based on the fact that the transmitter itself is a dynamical
system with a time delay (for a comprehensive introduction, see [44]). The
message to be transmitted is encoded as a perturbation to the transmitter by a
modulator that can change the amplitude, frequency or polarization of the light.
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The signal from the transmitter is then sent over the communication channel,
split into half and detected in two versions, one time delayed with respect to
the other by the same time delay that is present in the transmitter. One of the
halves may also be processed by passage through a generalized filter—a bandpass
filter, polarization controller, nonlinear amplifier with specified gain spectrum, or
other device, depending on the configuration and geometry of the transmitter.
Dynamical changes introduced during one round-trip are compared to the signal
from the previous round-trip and compared for synchronization. To recover the
encoded message, the two halves are then combined through subtraction, division
or other mathematical operation. Many examples of message encoding and
recovery using amplitude modulation of the transmitter are given in our earlier
work [44], which we extend here to dynamical modulation of the polarization
state and spatio-temporal state of the field.

5.1 Communication with dynamically fluctuating states of
light polarization

Information for communication can be encoded on the amplitude, frequency
(phase) or polarization of a light wave. While the first two options have
been explored extensively for decades [4], techniques to encode information on
the polarization state of light have been developed only recently. Techniques
in which the state-of-polarization (SOP) of light is used to carry information
include multiplexing [13] and polarization-shift keying [7, 8]. In polarization
multiplexing, a particular state of polarization is assigned to a given channel
of information. The number of messages that can be multiplexed in this way
depends on the precision with which one can identify different polarization states
and maintain them in transmission through a fibre. Polarization-shift keying is
the term used when one assigns a binary or multi-level digital coding to different
states of polarization. In the case of a binary code, for example, left- and right-
handed circularly polarized light could serve as zeros and ones.

The method described here is different [46]; there is no one-to-one
correspondence between the SOP of the lightwave detected in the receiver and
the value of the binary message bit that it carries. Instead, the binary message is
used to modulate parameters of a dynamical laser system; in this case, an EDFRL
laser. The modulation generates output light from the laser with fast, irregular
polarization fluctuations. This light propagates through a communication channel
to a suitable receiver, which is able to detect changes in the transmitter’s
polarization dynamics caused by the message signal and ultimately recover the
message from the irregular polarization fluctuations of the transmitted light.

Here, we show that concepts related to those introduced by Van Wiggeren
and Roy [42] and by Goedgebuer and colleagues [18] can be used to demonstrate
communication using the irregular polarization-state fluctuations of light output
by an EDFRL. When we began to study polarization fluctuations in the EDFRL
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Figure 5.1. Polarization analyser apparatus. During the calibration process, light from
the tunable diode laser (TDL) is transmitted to the apparatus. Once calibrated, light
from an EDFRL is sent to the apparatus for measurement of the Stokes parameters. The
variable attenuators (VATs) placed before the photodiodes prevent signal saturation. The
polarization controllers (PCs) consist of a sequence of three waveplates and allow light
from any input polarization to be adjusted to any output polarization state. The polarizers
(Pol.) ensure that the photodiodes measure only one component of the light. All of these
free space components are placed between gradient index (GRIN) lenses which allow the
light to be coupled out of and back into the fibre. The digital sampling oscilloscope (DSO)
records the intensities measured by the photodiodes. Reprinted from G D Van Wiggeren
and R Roy High-speed fiber-optic polarization analyser: measurements of the polarization
dynamics of an erbium doped fiber ring laser Opt. Commun. 164 107–20 c©1999, with
permission from Elsevier Science.

output some years ago, we did not find any available instruments to measure
polarization-state fluctuations on a nanosecond time scale. To quantitatively
specify the polarization state of light, one has to measure the Stokes parameters
for the beam [6]. A novel high-speed fibre-optic polarization analyser shown
in figure 5.1 was then constructed for this purpose by Greg Van Wiggeren
[45]. The basic concept was to divide the light to be measured into four parts
with matched time delays (accurate to a small fraction of a nanosecond) and
send these beams through appropriate polarizing elements before measuring the
intensities. We must then calibrate the system with suitable known sources of
monochromatic polarized light and polarization controllers in order to compute
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Figure 5.2. These measurements illustrate the accuracy of the polarization analyser
in determining the state of polarization (SOP) of light produced by the EDFRL which
possesses rapid intensity and polarization fluctuations. A polarizer at 45◦ has been
placed in the calibration area. Thus the ideal measurement of the SOP should, in
spite of the intensity fluctuations evident in panel (c), give �s = (1, 0, 1, 0). The
experimental measurement, as indicated by panels (d)–(f ), is very close to this ideal. DOP
represents the degree of polarization, which can be calculated according to the formula
DOP = s2

1 + s2
2 + s2

3 . The DOP shown in panel (b) is close to 100% as one would expect
for light that passes through a polarizer. Reprinted from G D Van Wiggeren and R Roy
High-speed fiber-optic polarization analyser: measurements of the polarization dynamics
of an erbium doped fiber ring laser Opt. Commun. 164 107–20 c©1999, with permission
from Elsevier Science.
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the polarization state of an unspecified light beam. Using this procedure, we
were able to determine the Stokes parameters for the light beam from the
EDFRL with a resolution of a couple of nanoseconds, limited in speed only
by our detection electronics and digital sampling oscilloscope. The precision
of the polarization analyser depends largely on the calibration process and
electronics used. Figure 5.2 shows the Stokes parameters measured for light
from the EDFRL after it was passed through a linear polarizer, and is therefore a
calibration measurement for the apparatus. The size of the spot on the Poincaré
sphere shows clearly the limits of precision for operation of the polarization
analyser. The significance of the polarization fluctuations is shown in figure 5.3,
which represents typical polarization fluctuations output from the EDFRL. The
measurements were made in terms of normalized Stokes parameters which are
plotted on the surface of the Poincaré sphere in figures 5.2 and 5.3. As is evident
from figure 5.3, the polarization dynamics are quite irregular, and they are also
localized on one side of the Poincaré sphere. The localization results from small
levels of polarization-dependent loss (PDL) within the EDFRL itself, which tends
to polarize the light output of the EDFRL due to differential net gain of certain
polarization states in the system. The EDFRL model proposed by Abarbanel and
colleagues [2] also displays similar behaviour for small levels of PDL.

The experimental apparatus used to demonstrate optical communication with
dynamically fluctuating polarization states is shown in figure 5.4. The transmitter
consists of a unidirectional EDFRL with a mandrel-type polarization controller
(PC) and a phase modulator within the ring. The polarization controller consists
of loops of fibre that can be twisted to alter their net birefringence. The phase
modulator comprises a titanium in-diffused LiNbO3 strip waveguide. Electrodes
on either side of the waveguide induce a difference in the index of refraction
between the TE and TM modes of the waveguide. In this way, it can also be used
to alter the net birefringence in the ring. The length of the ring is about 50 m,
which corresponds to a round-trip time for light in the ring of roughly 240 ns.
This time delay in circulation of the light makes the dynamics observed in this
type of laser quite different from those of more conventional cavities. A 70/30
output coupler directs roughly 30% of the light in the coupler into a fibre-optic
communication channel while the remaining 70% continues circulating around
the ring.

The communication channel, consisting of several metres of standard single
mode fibre, transports the light to a receiver comprising two branches. Such a
fibre does not maintain the polarization of the input light. Instead, due to random
changes in birefringence along the length of the fibre, the polarization state of
the input light evolves during its journey. The receiver is designed to divide
the transmitted light into two branches. Light in the first branch of the receiver
passes through a polarizer before being detected by photodiode A (125 MHz
bandwidth). Light in the other branch passes through a polarization controller
before it is incident on a polarizer. After passing through the polarizer, the light
is measured by photodiode B (also 125 MHz bandwidth). Signals from these
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Figure 5.3. The polarization fluctuations of light generated by an EDFRL laser are shown
plotted on the Poincaré sphere. (a) clearly shows that the fluctuations are somewhat
localized about an elliptic SOP and the relatively low DOP in (b) indicates that these
fluctuations are actually faster than can be observed even with the apparatus used here.

photodiodes are recorded by a digital oscilloscope at a 1 GS/s rate. A crucial
element of the receiver operation is the time delay between the signals arriving at
the photodiodes, which is equal to the round-trip time of the light in the transmitter
laser. It is this dual detection with a time delay that allows us to differentially
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Figure 5.4. The apparatus for communication with dynamically fluctuating states of
polarization. The transmitter consists of an EDFA, a polarization controller and a phase
modulator. A time delay is present between the two photodiodes that is equal to the
round-trip time for the light in the transmitter cavity. Reproduced from G D Van Wiggeren
and R Roy 2002 Communication with dynamically fluctuating states of light polarization
Phys. Rev. Lett. to appear c©2002 by the American Physical Society.

detect the dynamical changes that occur in the transmitter ring and recover the
sequence of perturbations that constitute the digital message.

The electric field amplitude of a light wave located just before the output
coupler in the transmitter EDFRL (see figure 5.4) at time t is given by the vector
field E(t). As light propagates around the ring, the net action of the birefringence
of the single mode fibre of the ring and other elements can be represented by
a single unitary 2 × 2 JT , the so-called Jones matrix, with complex elements.
Therefore,

E(t + τr) = Jt E(t) (5.1)
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where τr is the time for a single round-trip. It is assumed that the light field is
not influenced significantly by noise or nonlinearities in the fibre or amplifier in a
single round-trip, and that the PDL is negligible.

The elements of JT can be changed by varying the voltage applied to the
phase modulator in the EDFRL. In these experiments on communication, a data
generator converts a binary message into a two-level voltage signal that is applied
to the phase modulator. Thus, JT can take on two different values,

JT = J0 or JT = J1 (5.2)

depending on whether a ‘0’ or a ‘1’ bit is to be transmitted. In this way, the phase
modulator drives the polarization dynamics of the EDFRL transmitter.

A fraction (30% in this experiment) of the light in the transmitter ring is
coupled into a communication channel, which can be either free-space or fibre-
optic. As mentioned previously, we chose a standard single mode fibre for
our communication channel. There are variations of briefringence in this fibre
which change the polarization state of the input light significantly even over short
distances of a few metres. The effect of this birefringence is represented by a
Jones matrix JC which is assumed to be a unitary matrix with complex elements.

In the receiver, half of the light is directed toward photodiode B. Before
it is measured by the photodiode, it propagates through the fibre, a polarization
controller and a polarizer. The net effect of the birefringence in the fibre and the
polarization controller can be represented by the unitary Jones matrix JB . The
elements of JB are completely controllable (with the constraint that the matrix is
unitary) using the polarization controller. The effect of the polarizer is represented
using another Jones matrix P, though this matrix is non-unitary. Thus, the light
actually measured by the photodiode in the arm B of the receiver can be written
as a concatenation of Jones matrices:

PJBJCE(t). (5.3)

However, the length of this arm is shorter to ensure that photodiode A measures a
component of E(t+τr) at the same time that photodiode B measures a component
of E(t). Put another way, the light measured at photodiode A is the output from
the transmitter one round-trip time after the light that is simultaneously measured
by photodiode B. Thus, the field measured by photodiode A is

PJAJCE(t + τr) = PJAJCJT E(t). (5.4)

As mentioned earlier, when a ‘0’ bit is to be communicated, the transmitter’s
Jones matrix, JT , is set equal to J0 by applying the proper voltage to the
phase modulator. When JT = J0, synchronization of the signals measured by
photodiodes A and B can be observed, provided that JB is set properly using the
polarization controller in that arm of the receiver. Synchronization in this situation
occurs when

JBJC = JAJCJ0. (5.5)
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It can be shown mathematically that this condition can always be satisfied by
a proper adjustment of JB . For this proper setting of JB , synchronization is lost
when the voltage applied to the phase modulator is switched so that JT is set equal
to J1 for communication of a ‘1’ bit. Thus, by applying a binary voltage to the
phase modulator in the transmitter, the signals measured by the photodiodes can
be made to either synchronize or lose synchronization. The receiver interprets
synchronized photodiode signals as ‘0’ bits and unsynchronized signals as ‘1’
bits.

Communication using this technique offers an unanticipated benefit
compared with polarization shift keying, i.e. using one polarization direction for
each bit. In fibre-optic communication channels, variations in temperature or
stress in the channel induce fluctuations in the local birefringence of the channel
that ultimately cause the channel Jones matrix, JC , to evolve in time. The
evolution of JC in typical commercial channels has been observed over tenths
of seconds. Using the polarization shift keying technique, this evolution leads
to ambiguity at the receiver which is harmful to accurate message recovery. In
other words, the receiver cannot precisely determine the transmitted SOP from the
received SOP. Complicated electronic tracking algorithms have been developed to
compensate for this channel evolution in polarization-shift keying schemes.

In the technique presented here, no such complicated algorithms are
necessary. If the transmitter Jones matrix for a ‘0’ bit is chosen to be equal
to the identity matrix, it can easily be shown that a proper choice of JB can
recover the message perfectly even when it is evolving in time. In this way,
information can be transmitted through a channel with fluctuating birefringence,
and a receiver can recover the information without any compensation for the
channel’s fluctuating birefringence. Conceptually, this is possible because,
as previously mentioned, there is no one-to-one correspondence between the
polarization state of the transmitted lightwave and the value of the binary message
that it carries. In the method presented here, the message is encoded in the
polarization dynamics (driven by the phase modulator) rather than in particular
polarization states. Figure 5.5 shows experimental results demonstrating the
communication technique described in this report. The message, the binary
voltage signal shown in figure 5.5(a), drives the phase modulator as described
earlier. It consists of a repeating sequence of 16 bits transmitted at 80 Mbits/s.
At this rate, roughly 19 bits can be transmitted during the time light takes to
complete one circuit around the ring. A completely random and non-repeating
sequence of bits can also be transmitted successfully, but the repetitive message
signal shown here provides some additional insights into the dynamics of the
transmitter. Figure 5.5(b) shows the signal IA measured by photodiode A in
the receiver. Despite the repeating nature of the message, the measured signal
does not show the same periodicity. Figure 5.5(c) shows the signal IB measured
simultaneously by photodiode B. As mentioned above, photodiode B measures
the intensity, with a time delay, of a different polarization component of the
same signal measured by photodiode A. A subtraction of IB from IA is shown
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Figure 5.5. Demonstration of message recovery using dynamical fluctuations of SOP.
Shown are the modulation voltage applied to the phase modulator (a); the transmitted
signal measured by photodiode A (b); the time delayed signal measured by photodiode
B (c); the message recovered (d) by subtraction of the data in (c) from that in (b).
Loss of synchronization corresponds to ‘1’ bits, while synchronization represents ‘0’ bits.
Reproduced from G D Van Wiggeren and R Roy 2002 Communication with dynamically
fluctuating states of light polarization Phys. Rev. Lett. to appear c©2002 by the American
Physical Society.

in figure 5.5(d). A ‘0’ bit is interpreted when the subtracted signal is roughly zero
because this value corresponds to synchronization of the signals measured by the
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Figure 5.6. Measured polarization dynamics during message transmission are shown:
the polarization dynamics of the transmitter are plotted on a Poincaré sphere (a); the
degree-of-polarization (DOP) of the light output from the tranmsitter (b); the normalized
Stokes parameters showing fluctuations in the SOP of the transmitted light (d)–(f ).
Reproduced from G D Van Wiggeren and R Roy 2002 Communication with dynamically
fluctuating states of light polarization Phys. Rev. Lett. to appear c©2002 by the American
Physical Society.

two photodiodes. A ‘1’ bit is interpreted when the difference signal is non-zero.
We find that the transmitted message bits are accurately recovered by the receiver.
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Figure 5.7. Schematic representation of the evolution of the SOP as message bits are
encoded by the phase modulator in the transmitter. The ellipses display the SOP changes
as measured every 4 ns by the polarization analyser. Flips from left- to right-handed
polarization are seen to occur sometimes.

Figure 5.5(d) shows consistently positive values for the difference signal
when a ‘1’ is transmitted. This consistency can be attributed to the effect of
the small amount of uncompensated PDL in the transmitter. With adjustments to
the transmitter and receiver parameters, the difference signal could have been
consistently negative, or even both positive and negative during a single ‘1’
bit. While the message described in figure 5.5 was being communicated, the
polarization analyser described earlier was used to measure the polarization
dynamics of the transmitted signal. Figure 5.6 shows the results of this
measurement. Figure 5.6(a) shows that the SOP of the transmitted light is
localized in one region of the Poincaré sphere. This localization is, again, due to
the small amount of PDL that remains in the transmitter. Figure 5.6(b) shows the
calculated degree-of-polarization (DOP) of the light output from the transmitter.
Figure 5.6(c) shows the total intensity of the light output from the transmitter. It
shows a repetition with a period equal to the round-trip time for light in the ring.
This same irregular, though nearly periodic, intensity behaviour is observed even
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when no message is being transmitted. Figure 5.6(d)–(f ) shows the normalized
Stokes parameters that were measured. The Stokes parameters reveal an imperfect
periodicity of 200 ns. This is precisely the same period as the repeating 16-bit
message. Although the message periodicity is revealed by the Stokes parameters,
the message itself is not obviously disclosed. This periodicity may disappear if
the PDL in the transmitter is further reduced. Figure 5.6 also illustrates one of the
unique aspects of this communication technique. Previous discussion explained
that in polarization-shift keying, a one-to-one correspondence exists between the
polarization state of the light wave and the value of the message bit carried by
the light wave. Figure 5.6 shows that this is certainly not true for the technique
described here. It proves that the polarization state of the light is not simply
alternating between two points on the Poincaré sphere as would be the case for
polarization-shift keying. Instead, the polarization state fluctuates irregularly and
evolves on time scales much shorter than the bit rate. This is schematically
depicted in figure 5.7 where the ellipses show the state of polarization of the light
as certain bits of information are transmitted. The polarization state occasionally
flips from above the equator of the Poincaré sphere, to below it and vice versa. The
direction of the arrows on the ellipse switch from clockwise to counterclockwise
rotation of the field vector when this occurs.

The bit rate is limited only by the bandwidth of the detection apparatus.
Measurements with a polarization analyser clearly show the irregular polarization
and intensity dynamics of the transmitted light waves. This technique
demonstrates the use of vector properties of a dynamical system, driven by the
message, for optical communication.

5.2 Spatio-temporal communication with synchronized
optical chaos

Our second example highlights the possibility of using chaotic signals as
broadband carriers of spatio-temporal information. One of the most interesting
recent realizations is that spatio-temporal waveforms display synchronization in
nonlinear dynamical systems, and that the concept of synchronization needs to
be generalized from the obvious one of identical synchronization to other less
constrained forms [26], particularly in biological systems. We do not pretend
to understand more than the most basic elements of the dynamics of coupled
biological systems (in the eyes, ears, heart, brain or respiratory system, for
example) at present; see also chapter 11 by Cowan and Bressloff, chapter 12
by Ermentrout and Osan and chapter 13 by Ditto. However, it is clear that
experiments on physical spatio-temporal systems will be of great relevance to
develop our understanding of spatio-temporal signal processing in biological
ones.

In most optical realizations of communications with chaos, the message
to be encoded drives the nonlinear transmitter, so that the message and carrier
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Figure 5.8. Scheme for communicating spatio-temporal information using optical
chaos. CM is a coupling mirror. Reproduced from J Garcia-Ojalvo and R Roy 2001
Spatiotemporal communication with synchronized optical chaos Phys. Rev. Lett. 86
5204–7 c©2001 by the American Physical Society.

become mixed in a non-trivial way. The resulting output is injected into a receiver,
which, upon synchronization to the transmitter, allows for recovery of the original
signal. The optical schemes developed so far have used purely temporal chaotic
signals as information carriers. Here, we review a very recent proposal [17]
for a nonlinear optical device exhibiting spatio-temporal chaos as the basis of
a communication system capable of transmitting information in space and time.
Spatio-temporal communication utilizes the inherent large-scale parallelism of
information transfer that is possible with broad-area optical wave fronts.

Our scheme requires the existence of synchronization between transmitter
and receiver and is a generalization of the model of synchronized ring cavities
introduced by Abarbanel and Kennel [1]. Synchronization of spatio-temporal
chaos was investigated extensively in previous years, but most studies were
restricted to nonlinear oscillator arrays [24], coupled map lattices [49], and model
partial differential equations [5, 9, 25]. Our system, however, is represented
by an infinite-dimensional map spatially coupled in a continuous way by
light diffraction. The experimental set-up proposed is shown schematically in
figure 5.8. Two optical ring cavities are unidirectionally coupled by a light
beam extracted from the left ring (the transmitter) and partially injected into the
right ring (the receiver). Each cavity contains a broad-area nonlinear absorbing
medium, and is subject to a continuously injected plane wave Ai . Light diffraction
will be taken into account during propagation through the medium, in such a way
that a non-uniform distribution of light in the plane transverse to the propagation
direction may appear. In fact, an infinite number of transverse modes will, in
principle, be allowed to oscillate within the cavity. A spatio-temporal message µ
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can be introduced into the transmitter’s cavity and recovered as µ′ in the receiver,
as explained later.

If no message is introduced and the receiver is absent, the transmitter is
a standard nonlinear ring cavity, well known to exhibit temporal optical chaos
[20, 21]. When transverse effects due to light diffraction are taken into account,
a rich variety of spatio-temporal instabilities appear [33], giving rise to solitary
waves [32,35], period-doubling bifurcations [19], spatial patterns [28], and spatio-
temporal chaos [29, 38]. This latter behaviour is the one in which we are
interested, since such chaotic waveforms will be used as information carriers
in our set-up. The propagation of light through the nonlinear medium can be
described by the following equation for the slowly varying complex envelope
En(xr , t) of the electric field (assumed to be linearly polarized) in the nth passage
through the resonator [38, 39]:

∂E(xr , z)

∂z
= i

2k
∇2 En(x

r , z)− α(1 + i�)

1 + 4|En|2 En(x
r , z). (5.6)

The first term on the right-hand side of (5.6) describes diffraction and the
second describes saturable absorption. The propagation direction is denoted by
z, whereas xr is a vector in the plane orthogonal to the propagation direction.
Equation (5.6) obeys the boundary condition

En(x
r , 0) = √

T A + Reikl En−1(x
r , l) (5.7)

which corresponds to the infinite-dimensional map that is the object of our
analysis. The space point z = 0 in equation (5.7) denotes the input of the
nonlinear medium, which has length l. The total length of the cavity is L.
Other parameters of the model are the absorption coefficient α of the medium,
the detuning � between the atomic transition and cavity resonance frequencies,
the transmittivity T of the input mirror, and the total return coefficient R of the
cavity (fraction of light intensity remaining in the cavity after one round-trip). The
injected signal, with amplitude A and wavenumber k, is taken to be in resonance
with a longitudinal cavity mode.

Previous studies have shown that for � < 0, the model systems represented
by equations (5.6) and (5.7) exhibit irregular dynamics in both space and time for
large enough A [38, 39]. This spatio-temporally chaotic behaviour can become
synchronized to that of a second cavity, also operating in a chaotic regime,
coupled to the first one, as shown in figure 5.8. The coupling mechanism can
be modelled in the following form [1]:

E (t)
n (xr , 0) = M(t)[E (t)

n−1(x
r , 1)] (5.8)

E (r)
n (xr , 0) = M(r)[(1 − c)E (r)

n−1(x
r , 1)+ cE (t)

n−1(x
r , 1)]

where the application of M(t,r) represents the action of the map in equation (5.7)
in every round-trip of the transmitter or receiver as specified by the superscript.
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The coupling coefficient c is given by the transmittivity of the coupling mirror
(CM) (figure 5.8). Earlier studies have shown that local sensor coupling is enough
to achieve synchronization of spatio-temporal chaos in continuum models [22].
In our optical model, however, the whole spatial domain can be coupled to the
receiver in a natural way. To estimate the synchronization efficiency of the earlier
scheme, we have evaluated the synchronization error [25]

en =
√

1

S

∫
S
|E (t)

n (xr , 1)− E (r)
n (xr , 0)|2 dxr (5.9)

where S is the size of the system. This quantity has been computed for increasing
values of the coupling coefficient c, by numerically integrating equation (5.6)
with boundary condition (5.7) for both the transmitter and receiver operating in a
regime of spatio-temporal chaos, and using the coupling scheme in equation (5.9).
Simulations were performed in a 1D lattice of 1000 cells of size dx = 0.1 spatial
units, using a pseudospectral code for the propagation equation (5.6). Similar
parameter values to those of Sauer and Kaiser [38,39] are used here. The initially
uncoupled systems evolve in time, starting from arbitrary initial conditions,
and after 100 round-trips, when their unsynchronized chaotic dynamics is fully
developed, the coupling is switched on. The synchronization error en is measured
100 round-trips later. The results are shown in figure 5.9(a), which plots the
value of en for increasing coupling strengths. According to these results, a high
degree of synchronization can be obtained for couplings as low as 40%. Another
important issue to address at this point is how sensitive synchronization is to
differences between the two cavities. We have extensively analysed the effect
of different parameter mismatches on the synchronization error en . Our results
indicate that parameters such as the absorption coefficient α, the detuning �, and
the nonlinear medium length can be varied as much as 50% and still keep en

below 10−2. More sensitive parameters are the total length L of the cavity (due to
its appearance in the phase-change term of equation (5.7)) and the amplitude A of
the injected signal. Since the two cavity lengths can be matched experimentally,
we now examine in detail the effect of a mismatch in A. This parameter could
be controlled in real time if necessary and, hence, act as a control parameter for
synchronization. The variation of en versus relative mismatch of A is shown
in figure 5.9(b). It can be seen that the synchronization is quickly degraded
as the two injected amplitudes differ, with en increasing well above 10−2 for
mismatches of the order of 1%. Therefore, the value of A is critical for obtaining
synchronization in the system.

We now use the synchronizing system described earlier to encode and decode
information in space and time using the spatio-temporal chaotic carrier. We
modify equations (5.9) according to figure 5.8 by inclusion of the message, which
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Figure 5.9. Synchronization error en versus coupling coefficient (a) and
injected-amplitude mismatch (b). Parameters common to the two cavities are α = 100.0,
� = −10.0, R = 0.9, T = 0.1, k = 100.0, l = 0.01, and L = 0.015. In (a), the common
value of A is 7.0, which is also the value used for the transmitter in (b). Reproduced from
J Garcia-Ojalvo and R Roy 2001 Spatiotemporal communication with synchronized optical
chaos Phys. Rev. Lett. 86 5204–7 c©2001 by the American Physical Society.

Figure 5.10. Transmission of 1D spatio-temporal data. Input spectrogram (a), real
part of transmitted signal (b), and recovered data (c). Parameters are the same as
shown in figure 5.9(a), and c = 0.9. Reproduced from J Garcia-Ojalvo and R Roy
2001 Spatiotemporal communication with synchronized optical chaos Phys. Rev. Lett. 86
5204–7 c©2001 by the American Physical Society.

leads to

E (t)
n (xr , 0) = M(t)[E (t)

n−1(x
r , 1)+ µn−1(x

r )] (5.10)

E (r)
n (xr , 0) = M(r)[(1− c)E (r)

n−1(x
r , 1)+ c(E (t)

n−1(x
r , 1)+ µn−1(x

r ))].
If synchronization between transmitter and receiver is achieved, it will be
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possible to decode the signal by simply subtracting the transmitted signal and the
one in the receiver:

µ′n(xr ) = E (t)
n (xr , 1)+ µn(x

r )− E (r)
n (xr , 1). (5.11)

In the case of no mismatch, it can be seen analytically in a straightforward way
that, as the coupling coefficient c tends to 1, the difference

|E (t)
n − E (r)

n | → 0 for all xr (5.12)

which corresponds to perfect synchronization and, hence, to perfect spatio-
temporal message recovery. It should be noted that the message is not merely
added to the chaotic carrier, but rather the former drives the nonlinear transmitter
itself. Therefore, as we will see in what follows, the amplitude of the message
need not be much smaller than that of the chaotic signal to provide good masking
of the information. The scheme described here was tested by encoding an analog
1D signal with complex evolution in space and time. The sample signal chosen is
the spectrogram of a sample of speech. Chaotic systems have been used in the past
to encode speech waveforms [1,11], but the information that such signals provide
is insufficient for voice-recognition purposes. Spectrograms, however, contain
information on a broad range of frequencies as time evolves. Figure 5.10(a) shows
a grey scale spectrogram of the word ‘compute’, with frequency components in
the horizontal axis and time evolving from bottom to top. We will encode the
frequency information in the 1D transverse direction of our set-up. The real
part of the transmitted signal is shown in figure 5.10(b) for a message amplitude
maximum of 0.5. This value should be compared to the maximum intensity of
the chaotic carrier, which oscillates between 1 and 10, approximately, for the
parameters chosen. The spatio-temporal chaotic state of the signal can be clearly
observed. Finally, figure 5.10(c) shows the detected message, for a 90% coupling
between transmitter and receiver. Figure 5.10 qualitatively shows that, even
though coupling between transmitter and receiver is not complete, information
varying in time and space can be successfully transmitted and recovered with the
set-up sketched in figure 5.8. In order to have a quantitative measure of this effect,
we have estimated the mutual information between input and output message
signals, and its dependence on several system parameters. To that end, we
discretize the values of µ and µ′ in spacetime points, and compute the probability
distributions p(x), p(y) and the joint probability p(x, y) where x and y are the
different values that µ and µ′ may take, respectively. A measure of the mutual
information between the two sets of data is given by

I =
∑
x,y

p(x, y) ln

[
p(x)p(y)

p(x, y)

]
(5.13)

where the sums run over all possible values µ and µ′. This mutual information
function I is 0 for completely independent data sets, and equal to the entropy of
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the common signal,

H = −
∑

x

p(x) ln p(x) (5.14)

when the two messages are identical. Figure 5.11(a) shows the value of the
mutual information I , for the message encoded in figure 5.10, versus the coupling
coefficient c. It can be seen that, as c increases, I grows from 0 to perfect recovery,
corresponding to the entropy of the input image, given by the horizontal dashed
line in the figure. This result shows that, even though good synchronization is
obtained for c � 0.4, satisfactory message recovery requires coupling coefficients
closer to unity. This can also be seen by examining the behaviour of the entropy H
of the recovered image, plotted as empty squares in figure 5.11(a): for values of c
substantially smaller than 1, the entropy of the recovered data is appreciably larger
than that of the input message, indicating a higher degree of randomness in the
former. Finally, the behaviour of the mutual information in the presence of noise is
shown as empty diamonds in figure 5.11(a). Uncorrelated, uniformly distributed
noise is added continuously to the communication channel, with an amplitude of
1% that of the message. The results show that the scheme is reasonably robust, in
agreement with previous studies [47]. We also examined the effect of parameter
mismatch on the efficiency of message recovery. As in the synchronization
characterization, we concentrated on the influence of the most sensitive parameter,
namely, the amplitude A of the injected signal. The data plotted in figure 5.11(b)
show that a slight mismatch in the value of A will degrade recovery, by leading to
values of I much smaller that the entropy of the input message and leading to a
recovered message with substantially larger entropy than the original. Finally, we
should note that our set-up is also suitable for the transmission of two-dimensional
information. To illustrate this, we have chosen to encode a static 2D image with
the same mechanism discussed earlier. Figure 5.12 shows the results obtained
in this case. As in figure 5.12, the left-hand plot depicts the input message, the
middle plot the real part of the transmitted signal (a snapshot of it, in this case),
and the right-hand plot the recovered data. The message amplitude maximum is
now 0.01. Simulations are now performed on a square array with 256×256 pixels
of width dx = 1.0. The image is clearly recognizable even though the coupling
coefficient is now as low as 0.7.

In summary, we have proposed a nonlinear optical model system that allows
encoding and decoding information in space and time by means of spatio-
temporal chaos synchronization. Synchronization occurs for a wide range of
coupling values and system parameters. Spatiotemporal information can be
successfully recovered for large enough coupling between the transmitter and
receiver, and for small enough parameter mismatches. An infinite-dimensional
map is required in this case for spatio-temporal communication with light
wave fronts. The proposed set-up could be experimentally implemented upon
identification of a suitable broad-area nonlinear medium such as a liquid crystal
spatial light modulator.
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Figure 5.11. Information measures corresponding to the message encoding of figure 5.10:
full circles, mutual information I ; open squares, entropy H of the recovered data;
horizontal dashed line, entropy of the original image. Empty diamonds are the values of I
in the presence of noise (see text). Parameters are the same as in figure 5.9. Reproduced
from J Garcia-Ojalvo and R Roy 2001 Spatiotemporal communication with synchronized
optical chaos Phys. Rev. Lett. 86 5204–7 c©2001 by the American Physical Society.

(a) (b) (c)

Figure 5.12. Transmission of a 2D static image. Input image (a), real part of the
transmitted signal at a certain time (b), and recovered data (c). Parameters are the same
as those in figure 5.9(a), and c = 0.7. Reproduced from J Garcia-Ojalvo and R Roy
2001 Spatiotemporal communication with synchronized optical chaos Phys. Rev. Lett. 86
5204–7 c©2001 by the American Physical Society.

5.3 Conclusions

Some of the most challenging and interesting problems for scientists and
engineers lie in the application of the concepts of nonlinear dynamics and the
mathematical tools that have emerged over the last four decades to practical
problems and to enhancing our understanding of the dynamics of biological
systems. We are as yet nowhere near achieving the limits of communication
theoretically possible with electromagnetic radiation. It would be of great interest
to learn whether nonlinear dynamical concepts and tools can help us to approach
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these limits through suitable encoding processes and carrier waveforms and help
us to develop more robust schemes for communication. It is clear that biological
systems process vast amounts of information more efficiently and more flexibly
than we have learned to do so far.
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Chapter 6

Outstanding problems in the theory of
pattern formation

Edgar Knobloch
University of Leeds

Many systems of interest in physics, chemistry and the biological sciences exhibit
spontaneous symmetry-breaking instabilities that form structures that we may call
patterns [14, 54]. The appearance of convection cells in a fluid layer heated
from below [81] or of vortex structures in the flow between two independently
rotating cylinders [22, 81] are familiar examples from fluid mechanics. But
there are many other systems that form patterns. Recently studied examples of
spatially periodic structures include the Turing instability [110] and the Faraday
system [83, 101]. Vertically vibrated granular media exhibit similar pattern-
forming instabilities [99, 124]. Related instabilities have been identified in the
primary visual cortex and may be responsible for hallucinations (see chapter 11
by Bressloff and Cowan). Other systems form spiral waves or target patterns,
emanating from apparently random locations, perhaps triggered by impurities
or specks of dust [61]. A remarkable recent discovery is that of oscillons, or
localized oscillations, in vertically vibrated granular media [156]. These oscillons
may form ‘bound states’ that have been called dimers. Certain chemical systems
break up into spots which grow, and fission into new spots or disappear depending
on the density of spots around them [88,112]. Such pattern-forming systems thus
behave almost like a colony of living organisms.

The problems these experiments and simulations raise are fundamental.
These range from the particular to the general. Typical of the former are
studies of specific systems, which attempt to identify pattern-forming instabilities
and their subsequent evolution using the (known) field equations describing
the system. This approach may use analytical techniques (stability theory,
perturbation methods) but often revolves around direct numerical simulation
of the system. Significantly, the experiments and simulations often show that
different systems behave in an almost identical fashion, regardless of the specific
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equations governing the system and the physical mechanism behind the pattern-
forming instability. For this reason I focus here on the universal aspects of pattern
formation—those aspects that are independent of the details of the governing
equations. Indeed, even when the governing field equations are known, detailed
quantitative comparisons with experiments have only rarely been attempted.
Often a theory is only tested against measurements of linear stability thresholds.
Such tests, while valuable, cannot be taken as confirming the theory. In general it
is difficult to integrate the three-dimensional field equations describing a system,
particularly if it is spatially extended. In such circumstances one resorts to
simplifying assumptions which are believed to retain the essence of the system.
These simplified formulations yield a great deal of valuable information, but often
preclude detailed quantitative comparisons. This is regrettable, since a qualitative
agreement between experiment and theory may in fact be fortuitous. The recent
study of binary fluid convection by Batiste et al [8] shows just how difficult
it is to perform quantitative comparisons even with very carefully documented
experiments.

In the remainder of this section I mention a number of outstanding issues in
the theory of pattern formation that are of particular personal interest. The list
is not intended to be exhaustive, but rather to stimulate interest in certain topics,
some longstanding, some new, where progress is needed, and to summarize both
the state of the field and formulate the right questions. Some of these are then
explored in greater detail in sections 6.1–6.5.

For simplicity the discussion is divided into two subsections, loosely called
‘weakly nonlinear theory’ and ‘fully nonlinear theory’. To some extent this is an
artificial division, and there is much overlap between the two sets of topics. A
relatively recent review of the subject may be found in [32].

6.0.1 Weakly nonlinear theory

• Applicability and rigorous justification of envelope equations
• Boundary conditions for envelope equations
• Pattern formation via non-local envelope equations
• Dynamics of weakly damped driven systems
• Applicability of integrable PDEs to physical systems
• Quasi-patterns

Within weakly nonlinear theory we know very well how to deal with
bounded systems undergoing a pattern-forming instability. Such systems have a
spectral gap between any marginally unstable eigenvalue and the remaining stable
eigenvalues. When there are no zero eigenvalues related to continuous symmetries
such as rotational invariance, centre manifold reduction shows that the dynamics
of the stable modes are slaved to the slow evolution of the near marginal mode (or
modes). A systematic procedure has been developed for dealing with problems of
this type. First, the critical parameter value(s) is (are) identified at which one or
more modes are neutrally stable; these modes have eigenvalues on the imaginary
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axis and are called centre modes. Centre manifold reduction is performed on the
system (ODEs or PDEs) to obtain the equations governing the (slow) evolution
of the system on the centre manifold. Since the centre manifold is, in general,
low-dimensional this procedure amounts to a dramatic reduction in the number of
degrees of freedom of the system.

Next, near-identity nonlinear coordinate changes are performed to put the
resulting equations into a simple form, called a normal form, subject to the
requirement that they preserve the dynamics of the system. Consequently the
stability properties of the various fixed points and limit cycles are unaffected by
this simplification. The structure of the resulting normal form depends only on
the linear problem and any symmetries (or degeneracies) that may also be present.
Hence the same normal form finds application in a large variety of circumstances.

These normal forms must then be ‘unfolded’ by including the terms
generated by small changes of the parameter(s) away from critical. In many
cases these normal forms and their unfoldings have been worked out, and their
dynamics are well understood. Different systems that reduce to the same normal
form differ only in the values of the coefficients of the nonlinear terms in these
equations. Separate techniques exist for the computation of these coefficients,
and typically employ symbolic manipulation routines. It is sufficient usually to
compute these coefficients for the critical parameter value(s). This approach has
seen (and will continue to see) a large number of applications [29].

The main theoretical issue which remains unsolved concerns the truncation
of the normal forms and conditions for the adequacy of the suggested unfoldings.
In practice one does not know whether the complete (local) behaviour of the
system is captured by any finite truncation of the normal form or how many
unfolding parameters are required. In other words, one does not know whether the
codimension of the problem is finite. These questions have only been answered
for steady-state bifurcation problems where a general procedure for answering
these questions exists [56], at least in simple cases. Most problems, however,
involve dynamics and it appears unlikely that a corresponding theory can be
developed for such cases. In practice, the pragmatic approach of truncating the
unfolded normal form at various orders and comparing the results works well.
Often the inclusion of higher order terms and/or the full parameter dependence
of the nonlinear terms enlarges the range of applicability (in parameter space) of
the theory, sometimes dramatically [161]. Liapunov–Schmidt reduction [56] can
be used to establish rigorous results about solutions of simple type (steady states,
relative equilibria or periodic orbits) even when other more complicated solutions
are present.

Symmetry, if present, usually plays a paradoxical role. On the one hand it
may increase the (geometric) multiplicity of the critical eigenvalue, leading to
a higher-dimensional centre manifold and typically multiple solution branches.
In particular if the centre manifold is at least three-dimensional, complex
dynamics may be present near the bifurcation [2]. However, the presence of
the symmetry can be exploited to solve these higher-dimensional equations, and
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hence allows one to understand behaviour that would be difficult to understand
in generic systems [29]. For example, the action of the symmetry on an unstable
eigenfunction may generate a linearly independent unstable eigenfunction with
the same eigenvalue. This is the case if the instability breaks the symmetry
of the problem and the symmetry acts absolutely irreducibly on the space of
eigenfunctions. In contrast, continuous symmetries such as SO(2) which do not
act absolutely irreducibly [57] do not generically admit steady-state symmetry-
breaking bifurcations at all: in SO(2) invariant systems the generic symmetry-
breaking bifurcation is a Hopf bifurcation producing a rotating wave [48].

In unbounded systems the situation is much less well understood. Here
there is usually no spectral gap and the stable eigenvalues accumulate on the
imaginary axis. In addition in two or more spatial dimensions there is often
an orientational degeneracy. This is so, for example, in spatially isotropic
systems. In such systems the linear stability theory predicts the wavenumber
of the marginally stable modes but not their direction. Both problems can be
traced to the presence of a non-compact symmetry group, the Euclidean group in
two or three dimensions. Two techniques have been developed to deal with these
problems. Envelope equations employ a slowly spatially varying envelope to take
into account wavevectors near a particular marginal wavevector, but because they
focus on the behaviour of modes of a certain type they are unable to capture
significant changes in the magnitude and direction of the dominant wavevector
[106]. The derivation of the corresponding equations is formal and, until recently,
there were no rigorous results about the validity of the commonly used envelope
equations. In one dimension the first such results were given by Van Harten [158]
and Schneider [137]. These authors show that solutions of the Ginzburg–Landau
equation track solutions of the original PDE on O(ε−1) length scales for O(ε−2)

times. The most complete results on the validity and universality of the Ginzburg–
Landau equation are given by Melbourne [97, 98] who discusses in detail the
significance of higher order terms that depend on the fast spatial variable, and the
way these terms lock the envelope to the underlying pattern.

Both these problems can be avoided by posing the PDE on a lattice, i.e.
by imposing periodic boundary conditions in the unbounded directions. The
translations then form a compact symmetry group (circle or torus group), and
the allowed wavevectors become discrete. Problems of this type are amenable
to straightforward analysis, and have now been worked out for both steady-
state and Hopf bifurcations in two and, in some cases, three dimensions. This
approach has had a number of successes, both in the theory of convection
[58] and in the Faraday system [27, 140, 155]. The main reason is that the
amplitude equations are easy to generate using group-theoretic techniques that
utilize the symmetry properties of the chosen lattice, and that their solutions
can be analysed and their stability properties determined in the abstract. Even
without coefficient calculation the results from this approach often provide a
qualitative understanding of the behaviour of the system. For some of the higher-
dimensional representations the corresponding analysis may be quite involved and



Outstanding problems in the theory of pattern formation 121

techniques from computer algebra (Gröbner bases etc) prove invaluable [16]. A
brief review of these techniques is provided in section 6.1. Although there are still
a number of cases that have not been worked out, the main theoretical interest
undoubtedly centres on finding ways to relax the periodic boundary conditions
and thereby make the analysis applicable to a broader class of problems. Attempts
to do this include extensions of the Newell–Whitehead formalism to two- and
three-dimensional patterns [18, 60, 69, 145] but are neither rigorous nor entirely
convincing.

Although the use of envelope or amplitude equations is common they are
typically used as model equations. This is the case when the equations are
not derived via a rational expansion and hence still depend on the expansion
parameter; in other cases the small parameter is retained in the boundary
conditions imposed on the envelope equation. However, it is even more common
to replace the boundary conditions by periodic ones, and to argue that the resulting
solutions apply to systems in large domains. This approach is, in general,
dangerous, and is no substitute for deriving the correct boundary conditions at the
same time as the envelope equation. Unfortunately this often entails matching the
solutions of the envelope equation to boundary layers computed from the original
field equations, and is quite involved. In fact, the correct boundary conditions
for the Hopf bifurcation in extended domains, hitherto treated heuristically [31],
have only been derived recently [93, 94], while those for steady-state bifurcation
are discussed in [122]. In this connection it is important to emphasize that,
however large the domain sufficiently close to onset, the dynamics are inevitably
strongly effected by the boundaries. This is simply because the primary instability
corresponds to the excitation of a global eigenmode of the system, and centre
manifold reduction guarantees that the behaviour near onset resembles this mode.
Thus the system is large, in the sense that other modes participate in the dynamics
in addition to the eigenmode, only when εL � 1. Here L is the dimensionless
domain length and ε2 ≡ |R − Rc|/Rc measures the distance from onset. This
scaling is the reason why low-dimensional descriptions of nominally extended
systems can still be successful—provided they are employed in the regime ε �
L−1, cf [8].

In many cases the formal asymptotic methods lead to non-local amplitude
or envelope equations. This is typically a consequence of the presence of some
constraints such as mass conservation or the presence of multiple time scales.
In catalysis, pressure effects are often responsible for the presence of non-local
(global) coupling [72, 100]. Charge density waves in n-type semiconductors
produced by the Gunn instability are described by a local equation subject to a
non-local constraint due to an imposed voltage bias across the system [66]. In
other cases, non-local terms are present due to the excitation of near marginal
large scale modes, such as mean flows. These cases are examined in more detail
in sections 6.3 and 6.4.

A great deal of effort has been devoted to the derivation of envelope
or long-wave equations for ideal (i.e. non-dissipative) systems, such as ideal
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fluid flow. Water wave theory has led to several much studied equations of
this type, the nonlinear Schrödinger equation, and the Korteweg–de Vries and
Davey–Stewartson equations. All three are examples of integrable equations and
admit localized structures called solitons that interact in a particle-like manner.
However, real fluids are dissipative and the solitons must be sustained against
dissipation by weak forcing. For example, in optical transmission lines solitons
require periodic (spatial) pumping to restore their amplitude and compensate
losses. The resulting system is no longer completely integrable; indeed, it is
not even conservative. Equations of this type possess attractors which describe
the asymptotically stable structures. These no longer interact in a particle-like
manner and are called solitary waves. It should be mentioned that even solitons
may be shown to be stable if small perturbations to their shape relax back to the
original shape by radiating energy to infinity [113]. The analysis is delicate and
requires coming to grips with eigenvalues embedded in a continuous spectrum,
once again a consequence of an unbounded domain.

The relation between the behaviour of integrable systems and the dynamics
of the corresponding weakly damped driven system constitutes a major challenge
to research. While it is true that the dissipation and forcing ‘select’ a subset of the
solutions of the integrable system, much more can (and does) happen, particularly
in the regime in which the dissipation, forcing and nonlinearity are all comparable.
A particularly simple example of what may happen is provided by recent work
of Higuera et al [67] on the damped driven non-local Schrödinger equation. In
this work several global bifurcations are identified that are responsible for the
presence of complex dynamics. Different global bifurcations are responsible for
multi-pulse homoclinic orbits when the damping is small relative to the other two
terms, as discussed in detail by Haller and Wiggins [63–65].

The final topic under the heading of weakly nonlinear theory that I wish to
mention is the issue of quasi-patterns. Such patterns are well known in physics,
and have been generated in pattern-forming systems such as the Faraday system
[49]. Of course a true quasi-pattern has structure over the whole plane, but the
Fourier spectra of the observed patterns resemble those of true quasi-patterns.
Such patterns are not periodic in space and, in general, form as a result of the
presence of two or more incommensurate wavenumbers or wavevectors. Because
these wavevectors are incommensurate there are, strictly speaking, no spatial
resonances. As a result, formal asymptotic theory reveals no resonant terms and
the amplitude equations that result contain to all orders only terms generated by
self-interaction. The stability properties of the states that result are degenerate,
since they possess zero eigenvalues that are not forced by symmetry. Most likely
what is happening is the following: the near resonances lead to large values of the
coefficients of (some of) the higher-order terms; and this fact reduces the range
of validity of the amplitude equation: the higher the order of the equation the
smaller the region of validity. To my knowledge even the simplest problem on the
real line, the interaction between wavenumber 1 and an irrational wavenumber
q is unsolved. What is necessary is to approximate q via its continued fraction
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expansion approximations, rn/sn , and examine the radius of convergence of the
resulting amplitude equations as sn →∞. One can think of this type of theory as
an extension of KAM theory (see, e.g., [73] and references therein), well studied
in the context of temporal resonance, into the spatial domain.

6.0.2 Fully nonlinear theory

• Dynamics of fronts and defects, and their interaction
• Existence and stability of spatially localized structures
• Classification of instabilities of nonlinear structures
• Wavelength selection close to and far from onset
• Relation between discrete and continuum systems
• Relation between unbounded and large but bounded systems
• Frequency selection in open systems
• Transition to spatio-temporal chaos close to and far from onset

In the context of fully nonlinear theory there is a number of interesting and
important topics, many of which also arise in the context of the amplitude or
envelope equations derived within weakly nonlinear theory, now considered as
field theories in their own right. These concern the basic mechanism for the
selection of the speed of a front (these may be linear [32] or nonlinear [9]), and
existence and interaction of defects, such as spiral waves in reaction–diffusion
systems. Many excitable systems exhibit spirals that are initiated by a finite
amplitude perturbation. How such spiral structures are related to bifurcation from
the trivial state remains unknown. The existence of spirals in a plane was proved
by Scheel [132] but such theorems do not provide much information about the
structure of the spiral (frequency, wavenumber and amplitude). It is of interest
that observed spirals do not resemble the eigenfunctions associated with a Hopf
bifurcation in planar systems described by polar coordinates. These either decay
as r−1/2 if the wavenumber is real or grow (or decay) exponentially if it is
complex. Golubitsky et al [53] suggest that the latter case in fact provides a
description of the core of the spiral, and that the constant amplitude wave seen
outside the core is a consequence of nonlinearities that affect the solutions as
r → ∞ arbitrarily close to onset. In their view the core–spiral interface is a
nonlinear front whose location is fixed by the imaginary part of the wavenumber
selected by the Hopf frequency. This wavenumber is complex because in polar
coordinates waves propagate preferentially in one direction (either outwards
or inwards), so that the wavenumber is selected by the requirement that the
instability be absolute [150]. This approach also appears to explain the breakup of
spiral waves into ‘chemical turbulence’ far from the core [129, 150], as observed
in some experiments [109]. These ideas await confirmation through quantitative
studies of the relation between the spiral frequency and the core profile. It should
be noted that spirals can also undergo a core instability [7, 129].

Localized structures come in a variety of forms. Perhaps the most interesting
are the oscillons observed in granular media vibrated up and down [156]. These
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localized oscillations leave the rest of the system undisturbed, and may form
‘bound’ states that have been called dimers. These localized structures are
believed to form as a consequence of a subcritical instability, essentially by
the mechanism identified by Thual and Fauve [149]. However, there is no
convincing explanation for their presence, largely because of an almost complete
lack of understanding of the equations of motion governing granular media.
There are many other systems where a subcritical bifurcation is responsible
for the formation of steady localized states, including the recent discovery of
’convectons’, that is, localized regions of field-free convection in a fluid layer with
a uniform vertical magnetic field imposed across it [11], and related structures
in reaction–diffusion systems [107]. These states can all be thought of as
homoclinic connections from the trivial state back to itself. For the stability
of the resulting state it is essential that the state at x → ±∞ (i.e. the trivial
state) be stable. It follows that such localized states can only be present for
µ < 0, where µ = 0 denotes the primary bifurcation threshold. The situation is
more interesting in systems undergoing a Hopf bifurcation since here homoclinic
connections to the origin may be stable even for µ > 0, cf [117,138]. Homoclinic
connections can also describe localized wavenumber and amplitude changes that
may propagate, without change of profile, through a travelling wave-train, as
in the examples computed by Spina et al [141]. Recent theory, based on the
coupled complex Ginzburg–Landau equations (see section 6.4) indicates that such
‘homoclinic holes’ should be unstable [159], although this is clearly not always
the case. Evidently the predictions of the theory, for example concerning the
speed of propagation of such structures, should be checked against both numerical
experiments using model equations and other field equations, and against actual
experiments. It is likely that there are many such solitary wave solutions, although
most are presumably unstable [131, 159], so that mechanisms that stabilize these
structures need to be identified. Evans’ function techniques are invaluable for
studies of the stability properties of these states [51, 148].

The question of stability of finite amplitude structures, be they periodic or
localized, and their bifurcation is a major topic that requires new insights. The
theory for the former requires developments of a theory describing bifurcation
from group orbits of solutions while the latter requires a theory for the
bifurcation that results when an unstable eigenvalue emerges from the continuum.
Bifurcations from a group orbit often produce drifts along the group orbit [22,
82, 126], resulting in unexpected dynamics arising from steady-state bifurcations
[82]. The best known example of this bifurcation is the so-called parity-breaking
bifurcation. This is a bifurcation from a circle of reflection-symmetric equilibria.
At the bifurcation (at µ = 0, say) there is a zero eigenvalue whose eigenvector
breaks the reflection symmetry of the equilibrium. This zero eigenvalue is in
addition to the zero eigenvalue due to rotation invariance, and together they are
responsible for the ensuing drift of the solution along the group orbit, either
clockwise or counterclockwise; the drift speed vanishes as µ1/2 as µ ↓ 0.
Figure 6.1 shows some of the more complicated patterns that can be created in
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secondary bifurcations from a group orbit, this time from a pattern of standing
hexagonal oscillations [127].

Bifurcations involving the continuum are also non-standard but in a different
way, and lead to a saturation amplitude that scales like µ2 instead of the more
usual µ1/2, where µ > 0 is now the growth rate of the instability. This is the
case, for example, in the beam–plasma instability [26]. Related phenomena arise
in ideal hydrodynamics. In particular, instability of a vorticity defect in inviscid
plane Couette flow is described by a non-local evolution equation closely related
to the Vlasov equation [5], with related non-local equations, obtained by matching
across a critical layer, describing the evolution of long wavelength perturbations
of marginally stable shear flows [6]. Such flows are prepared by deforming
the shear profile until the necessary and sufficient conditions for instability are
satisfied, in the same way that a beam–plasma instability is triggered by a bump
on the tail of the particle distribution in plasma physics. Similar phenomena also
arise in the theory of phase-coupled oscillators [25, 142]. Much remains to be
learnt about these systems.

A major unsolved problem that has attracted attention at least since the 1960s
is the problem of wavelength selection in extended or unbounded systems. Linear
theory identifies the wavelength of the first unstable disturbance. However, in
the nonlinear regime the observed wavelength usually differs. Analysis, initiated
by Busse [13], revealed that above the neutral stability curve µ = µ(k) there
is usually an interval of stable wavenumbers k, limited by various secondary
instabilities, such as the Eckhaus, skewed varicose, oscillatory, and zigzag
instabilities. In most cases these instabilities leave a region of stable wavenumbers
in the (µ, k)-plane, nowadays called the Busse balloon, but do not select a unique
wavenumber. Yet experiments usually follow a unique path through this region,
as discussed in the context of Rayleigh–Bénard convection by Koschmieder
[81]. Thus although this problem has led to profound developments such as the
introduction of phase equations (e.g., the Kuramoto–Sivashinsky equation) into
the theory of pattern formation, and the notion of sideband (Eckhaus, Benjamin–
Feir) instabilities, the original problem remains unsolved. In fact, the phase
description is the appropriate description of finite amplitude patterns [105, 111].
This approach goes beyond envelope equations and has served to highlight the
role played by focusing instabilities in wavelength selection. Unfortunately, the
description breaks down at defects where the phase of the pattern is, by definition,
undefined.

In many cases one supposes that a discretized version of a completely
integrable PDE will behave the same way as the PDE. However, the discrete
system may not be integrable and one needs to understand in detail how the
integrals of motion appear as the continuum limit is approached; and indeed
how the dynamics of the discrete system approach those of the integrable system.
These issues have a profound significance for accurate numerical simulation of
integrable PDEs.

One is often tempted to suppose that distant boundaries have a negligible
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Figure 6.1. Experimental and reconstructed surface wave patterns in silicone oil with
two-frequency temporal forcing ( f1 : f2 = 2 : 3) arising from secondary instabilities
of a small-scale hexagonal pattern: (a) hexagonal pattern on two scales; (b) pattern
with instantaneous triangular symmetry; and (c), (d) theoretical reconstruction of (a),
(b). Reproduced from A M Rucklidge, M Silber and J Fineberg Secondary instabilities
of hexagons: a bifurcation analysis of experimentally observed Faraday wave patterns
Bifurcation, Symmetry and Patterns ed J Buescu, S Castro, A P Dias and I Labouriau,
to appear c©2002 by Birkhäuser Verlag.
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effect on the process of pattern selection. While this may be so for steady-
state pattern-forming instabilities for which the boundaries shift the threshold
for primary instability by O(L−2) where L measures the domain size [19], and
modify the pattern substantially only near the boundary where matching to the
boundary conditions is effected, systems supporting propagating waves behave
quite differently. In such systems the wave is always in contact with the boundary,
and the boundaries may exert profound influence. This is especially so when
the waves have a preferred direction of propagation, as already mentioned in
the context of our discussion of spiral waves. Since such waves cannot be
reflected (all reflected waves are evanescent) the downstream boundary acts like
an absorbing boundary. To overcome this dissipation the threshold for instability
is shifted to µ = µf > 0. It turns out that µf is related to the threshold µa
for absolute instability [70] in the unbounded system: µf = µa + O(L−2). For
values of µ between the convective instability threshold in an unbounded system,
µ = 0, and µf, a disturbance originating at the upstream boundary grows as it
propagates towards the downstream boundary, and piles up against it, increasing
its wavenumber to such an extent that it ultimately decays. Thus in systems
with broken reflection symmetry the presence of boundaries, however distant,
changes the threshold for instability by an O(1) amount! Of course an O(L)
transient is present before the presence of the downstream boundary manifests
itself, a property of the system that can be traced to the non-normality of the
linear stability problem [152, 153]. This system therefore demonstrates that the
mere existence of boundaries may have a fundamentally important effect, and thus
represents a situation in which the boundaries cannot be treated perturbatively,
however far apart they may be. Additional consequences of boundaries in this
system are discussed in section 6.5.

In problems of this type the upstream boundary serves as a ‘pacemaker’: this
boundary selects the frequency which then determines the downstream amplitude
and wavenumber from a nonlinear dispersion relation. If the amplitude at the
upstream boundary is sufficiently small this frequency will be close to the linear
theory frequency (and hence the frequency ωa predicted by the global instability
condition); in other cases the frequency solves a nonlinear eigenvalue problem
and must be computed numerically [151]. As discussed in section 6.5 much
remains poorly understood about these systems, particularly in cases with phase
slips at the front that separates the upstream and downstream parts of the solution.
Once again, we may think of the upstream part as the core of a spiral, and the
downstream part as the fully developed (visible) spiral.

The final topic on the list is the transition to complex spatio-temporal
behaviour in extended systems. While a certain number of routes to temporal
chaos in low-dimensional dynamical systems have been identified and analysed
[59, 108], the situation in spatially extended systems is much more complex.
These systems are plagued by very long transients (in fluid systems one typically
has to wait several horizontal diffusion times before transients die out) and there
is even the possibility that the characteristic time on which the system relaxes may
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effectively diverge at some scale L, such that for scales � > L the system ‘never’
finds a stable equilibrium even though one (or more) may be present. Loosely
speaking one can think of an ‘energy landscape’ that has so many (steady) states,
most of which are non-stable, that the system spends forever wandering in this
‘landscape’. Analogies with annealing problems come to mind. Schmiegel and
Eckhardt [134,135] have explored some of the consequences of this picture in the
context of shear flow instability.

6.1 Pattern selection on lattices

As an example of the type of results that may be obtained when pattern selection
problems are posed on lattices, we describe briefly the results for the Hopf
bifurcation on a square lattice [139]. We take an isotropic, spatially homogeneous
system in a plane, with a trivial state �(x1, x2) = 0, and suppose that this
state loses stability to a symmetry-breaking Hopf bifurcation at µ = 0. The
linear stability theory predicts the associated Hopf frequency ωc, and the critical
wavenumber kc = |k|, assumed to be non-zero. In the following we impose
periodic boundary conditions in two orthogonal directions, hereafter x1, x2, with
period 2π/kc. This assumption reduces the symmetry group of the problem
from E(2), the Euclidean group of rotations and translations in two dimensions,
to the group D4+̇T 2, the semi-direct product of the symmetry of a square and
a two-torus of translations, and selects the four wavevectors k1 = kc(1, 0),
k2 = kc(0, 1), k3 = kc(−1, 0), k4 = kc(0,−1) from the circle of marginally
stable wavevectors. We may therefore write the most general marginally stable
eigenfunction in the form

�(x1, x2) = (v1(t)eikcx1 + v2(t)eikc x2 +w1(t)e−ikcx1 +w2(t)e−ikc x2) f (y) (6.1)

where y ≡ x3 denotes any transverse variables (if present). In the following
we assume that the linear stability problem takes the form ż = µ(λ)z, where
z ≡ (v1, v2, w1, w2) ∈ � 4 , and µ(0) = iωc, Re(µ′(0)) > 0. Here λ is the
bifurcation parameter. It follows that the quantities (|v1|, |w1|) and (|v2|, |w2|)
represent amplitudes of left- and right-travelling waves in the (x1, x2) directions,
respectively.

The group D4 is generated by counterclockwise rotations by 90◦ (hereafter
ρπ/2) and reflections x1 →−x1. These symmetries act on z ∈ � 4 as follows:

ρπ/2 : (v1, v2, w1, w2) → (w2, v1, v2, w1) ρπ/2 ∈ D4 (6.2)

κ : (v1, v2, w1, w2) → (w1, v2, v1, w2) κ ∈ D4. (6.3)

In addition spatial translations (x1, x2) → (x1 + θ1/kc, x2 + θ2/kc) act by

(θ1, θ2) : (v1, v2, w1, w2) → (eiθ1v1, eiθ2v2, e−iθ1w1, e−iθ2w2)

(θ1, θ2) ∈ T 2. (6.4)
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Table 6.1. Fixed point subspaces corresponding to the different isotropy subgroups � of
�. The coordinates specifying each Fix(�) are given in terms of z = (z1, z2, z3, z4) with
each v j ∈ � , j = 1, 2.

Name Fix(�) �

0. Trivial solution (T) z = (0, 0, 0, 0) �

I. Travelling rolls (TR) z = (v1, 0, 0, 0) SO(2)× S̃O(2)
II. Standing rolls (SR) z = (v1, 0, v1, 0) Z2 × SO(2)
III. Standing squares (SS) z = (v1, v1, v1, v1) SO(2)
IV. Alternating rolls (AR) z = (v1, iv1, v1, iv1) SO(2)
V. Standing cross-rolls (SCR) z = (v1, v2, v1, v2) Z2

Finally, in normal form the dynamical equations will commute with an S1 phase
shift symmetry in time acting by

φ̂ : z → eiφz φ ∈ S1. (6.5)

As a result the full symmetry group of the dynamical equations near λ = 0
is � ≡ D4+̇T 2 × S1. An examination of the action of � on z ∈ �

4 shows
that there are four axial isotropy subgroups of � with two-dimensional fixed
points subspaces. The equivariant Hopf theorem [57] guarantees the existence
of primary branches of solutions with the symmetries of these subgroups. These
solutions, listed in table 6.1, are called standing squares (SS), and travelling (TR),
standing (SR) and alternating rolls (AR). However, in the present example there
is, in open regions of parameter space, a fifth primary solution branch whose
existence is not revealed by the abstract theory. Such branches are sometimes
called submaximal; in the present case the submaximal branch corresponds to
standing cross-rolls (SCR). At present the only way of locating submaximal
branches is by explicit calculation.

For this purpose we write down the most general set of equations commuting
with these symmetries, truncated at third order [139]

v̇1 = µv1 + (a|v1|2 + b|w1|2 + c|v2|2 + c|w2|2)v1 + dv2w2w̄1 (6.6)

v̇2 = µv2 + (a|v2|2 + b|w2|2 + c|w1|2 + c|v1|2)v2 + dv1w1w̄2 (6.7)

ẇ1 = µw1 + (a|w1|2 + b|v1|2 + c|w2|2 + c|v2|2)w1 + dv2w2v̄1 (6.8)

ẇ2 = µw2 + (a|w2|2 + b|v2|2 + c|v1|2 + c|w1|2)w2 + dv1w1v̄2. (6.9)

The construction of these equations is algorithmic, and requires first the
construction of the Hilbert basis of invariant functions and then the Hilbert basis
of equivariant vector fields [16, 139]. These results can be used to generate
the required amplitude equations to any desired order, via a procedure that can
be automated. These equations can be used not only to compute the five non-
trivial primary branches, but also to determine their stability properties with
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respect to perturbations on the chosen lattice, i.e. with respect to perturbations
in (v1, v2, w1, w2) ∈ � 4 . At present there are no techniques for the a priori
exclusion of submaximal primary branches, a fact that serves as an obstruction to
a completely group-theoretic analysis of the primary bifurcation. In the present
case the submaximal branch exists in an open region in coefficient space, and
is always unstable [139, 146], although in other problems no restrictions on the
existence and stability properties of the submaximal solutions are present [36].

The corresponding results for the steady-state bifurcation on a square lattice
were first obtained by Swift [146], see also [55, 157], while those for the
hexagonal lattice were obtained by Golubitsky et al [58]. The former case
describes the competition between rolls and squares and shows that at most one
of these states can be stable near onset and that the stable state is the one with
the larger amplitude. On the hexagonal lattice the generic situation leads to
a primary bifurcation with no (locally) stable branches. Hexagonal solutions
bifurcate transcritically but are unstable on both sides of µ = 0; rolls are either
supercritical or subcritical but in either case are also unstable. This result is an
example of a general result: primary branches in amplitude equations possessing
quadratic equivariants are unstable whenever these equivariants do not vanish in
the corresponding fixed point subspace. The hexagons on either side of µ = 0
differ. In the convection context we speak of H±, with H+ representing hexagons
with rising fluid in the centre, while H− denotes hexagons in which the fluid
descends in the centre. Of these the subcritical one usually gains stability at a
secondary saddle-node bifurcation. This, and secondary bifurcations to a branch
of triangles, can be studied by looking at systems with a weakly broken mid-
plane reflection symmetry [58]. It is important that hexagons and triangles not be
confused. Unfortunately, these solutions are distinguished unambiguously only if
the basic instability wavelength is known.

The Hopf bifurcation on a line is a special case of the Hopf bifurcation in a
plane just discussed (set v2 = w2 = 0) and in amplitude-phase variables reduces
to the steady-state bifurcation with D4 symmetry [146], with travelling (rotating)
waves taking the place of rolls, and standing waves taking the place of squares.
Consequently here too at most one of these states can be stable near onset, and
the stable state is the one with the larger amplitude. The corresponding results
for the hexagonal lattice were worked out by Roberts et al [125], who computed
the 11 primary branches guaranteed by the equivariant branching lemma together
with their stability properties. Rotating lattices have also been analysed. A large
number of applications of these results have now been worked out (e.g. [23]), but
a major unsolved problem remains: there is no rigorous theory that would allow
us to establish the stability of squares with respect to hexagonal perturbations
and vice versa, essentially because there is no spatially periodic lattice that
accommodates both solution types. Only in systems described by a potential can
one compare the extrema of the potential corresponding to these states, and hence
determine which of these states is stable (or metastable if both correspond to
minima). It should be noted that certain sufficiently low-order truncations of the
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amplitude equations for steady-state bifurcations do yield gradient vector fields.
This is, however, an artifact of the truncation and amplitude equations do not, in
general, possess variational structure.

A possible approach to the vexed problem of the competition between
squares and hexagons is based on higher-dimensional representations of the
symmetry groups of planar lattices. In the case of the square lattice such a
representation arises when periodic boundary conditions with a larger period are
employed. For example, the reciprocal square lattice can intersect the circle of
marginally stable wavevectors in eight instead of four places. These wavevectors
are parametrized by two relatively prime integers α > 0, β > 0, with the critical
wavevectors given by K1 = αk1 + βk2, K2 = −βk1 + αk2, K3 = βk1 + αk2,
K4 = −αk1 + βk2, where k1 = (1, 0)kc, k2 = (0, 1)kc, and produce a countably
infinite number of eight-dimensional representations of D4+̇T 2. Group-theoretic
results show that in this case there are six axial isotropy subgroups [40]; the
new patterns that are possible include super-squares, anti-squares and two types
of rectangular patterns. A similar theory for the 12-dimensional representation
of D6+̇T 2 is available, and the stability properties of all the primary branches
on both lattices have been worked out [41]. Of the potentially stable solutions
super-triangles have been observed in the Faraday system [84, 140], while
stable super-squares and anti-squares have been located in systems of reaction–
diffusion equations [75], indicating that these higher-dimensional representations
are indeed relevant to the problem of pattern formation. The abstract stability
results enable one to compute the stability of hexagons with respect to rectangular
patterns that are almost square [41]. However, the relevance of these results to
the ultimate question of relative stability between hexagons and squares remains
unclear. Related results for the Hopf bifurcation on the square super-lattice are
given by Dawes [35].

Certain of the possible three-dimensional lattices have also been considered.
The steady-state bifurcations on the simple cubic, face-centred cubic and
body-centred cubic lattices are analysed by Callahan and Knobloch [16]. At
µ = 0 these bifurcations have a zero eigenvalue of multiplicity 6, 8 and 12,
respectively, resulting from the selection of 6, 8 or 12 wavevectors from the
sphere of marginally stable wavevectors. Except for the simple cubic case
(which corresponds to a wreath product group) the remaining two cases are
plagued by submaximal branches which greatly complicate the analysis of these
bifurcations. The corresponding calculations for the Hopf bifurcation on the
simple cubic lattice were performed by Dias [38] exploiting its wreath product
structure, and for the face-centred cubic lattice by Callahan [15]. None of the
higher-dimensional representations of the cubic lattices have been considered, and
neither have the remaining lattices except to identify the axial isotropy subgroups
[40], and hence the primary solutions guaranteed by the equivariant branching
lemma [39].
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6.2 Imperfection sensitivity

The results of equivariant bifurcation theory depend, of course, on the presence of
the assumed symmetry. This symmetry may represent the result of an idealization
of a physical system, or it may be the consequence of imposed periodic boundary
conditions as in the examples described earlier. In either case a natural question
arises concerning the robustness of the results when the assumed symmetry is
broken. Forced symmetry breaking is almost inevitable in physical situations,
and while the dynamics of highly symmetric systems may be of interest in their
own right, applications demand that one attempts to identify those aspects of
equivariant dynamics that persist under (small) perturbations of the assumed
symmetry. This point of view is not only relevant to pattern formation problems,
where boundary conditions may destroy the assumed spatial periodicity, or a
small feed gradient may destroy the assumed homogeneity (and isotropy) of the
system, but also in structural engineering, where attempts to build redundancy
into a system require understanding the consequences of the loss of a particular
strut or support beam [71]. At present there is no general theory that allows one to
identify the consequences of such symmetry-breaking imperfections. The basic
idea is simple: one seeks to embed the equivariant dynamical system in a larger
class of vector fields with smaller symmetry. For the pitchfork bifurcation this
notion leads to the universal unfolding of the pitchfork [56], and shows that the
effects of all possible imperfections that break reflection symmetry are captured
by just two unfolding parameters. A general formulation of problems of this type
is given by Lauterbach and Roberts [87]; Callahan and Knobloch [17] introduce
the notion of co-equivariance and use it to generate the most general isotropy-
breaking contributions to the equations describing a steady-state bifurcation on
the hexagonal lattice. Certain other examples have been worked out rigorously.
Of these the best known is the behaviour of a steady-state symmetry-breaking
bifurcation with D4 symmetry under perturbations that reduce the symmetry to
D2. This situation arises naturally in pattern selection problems in containers of
square and nearly square (rectangular) cross section [10], and in the normal form
describing a symmetry-breaking Hopf bifurcation with O(2) symmetry when the
O(2) symmetry is broken down to SO(2) [28,157]. A related but distinct example
of this type of problem arises in systems with Neumann boundary conditions
on a square domain. Such problems can be embedded in the corresponding
problem on the square lattice, an embedding that is destroyed when the shape
of the domain becomes non-square even though it may retain D4 symmetry. The
resulting breakup of the primary bifurcation is discussed by Crawford [24] and
confirmed experimentally by Crawford et al [27].

In the absence of a general theory a reasonable approach appears to be to
include only the dominant symmetry-breaking terms. While this approach may
not capture all possible effects of the loss of symmetry it seems plausible that it
provides a good guide to the robustness of the results with the full symmetry. This
approach is especially enlightening when it comes to problems with continuous
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symmetries. Continuous symmetries allow simple types of dynamics, such as
rotating waves, because the phase of the wave decouples from the equation for its
amplitude. When the translation invariance is broken (by spatial inhomogeneity
or the presence of boundaries) the spatial phase couples to the amplitude, thereby
raising the order of the dynamical system. This coupling in turn is often
responsible for the introduction of global bifurcations into the dynamics [79], and
these are often associated with the presence of chaotic dynamics. Thus symmetry-
breaking imperfections can produce complex dynamics in systems that would
otherwise behave in a simple fashion. Several examples of this type of behaviour
have been worked out, for the Hopf bifurcation with O(2) symmetry broken down
to Z2 [33, 68], and for the Hopf bifurcation with D4 symmetry broken down to
D2 [102, 103]. We describe here the latter case. This example is believed to be
relevant to experiments on convection in 3He/4He mixtures in a finite but extended
container in which the convective heat transport immediately above threshold
(ε2 ≡ (R − Rc)/Rc = 3 × 10−4) may take place in a sequence of irregular
bursts of large dynamic range despite constant heat input [144].

Numerical simulations of the two-dimensional equations in a container of
aspect ratio L = 16 suggest that these bursts involve the interaction between the
first two modes of the system [8,74]. These have opposite parity and, because the
neutral stability curve for the unbounded system has a parabolic minimum, set in
in close succession as the bifurcation parameter is increased. Near threshold the
perturbation from the trivial state then takes the form

�(x, y, t) = ε Re{z+ f+(x, y)+ z− f−(x, y)} + O(ε2) (6.10)

where ε � 1, f±(−x, y) = ± f±(x, y), and y again denotes transverse variables.
The complex amplitudes z±(t) then satisfy the normal form equations [86]

ż± = [λ±�λ+i(ω±�ω)]z±+A(|z+|2+|z−|2)z±+B|z±|2z±+Cz̄±z2∓. (6.11)

In these equations the nonlinear terms have identical (complex) coefficients
because of an approximate interchange symmetry between the odd and even
modes when L � 1. When �λ = �ω = 0 the resulting equations coincide
with equations (6.6)–(6.9) in the standing wave subspace v1 = w1, v2 = w2, and
have D4 symmetry. This symmetry is weakly broken whenever �λ �= 0 and/or
�ω �= 0, a consequence of the finite aspect ratio of the system [86].

To identify the bursts we introduce the change of variables

z± = ρ−1/2 sin( 1
2θ + 1

4π ± 1
4π)e

i(±φ+ψ)/2

and a new time-like variable τ defined by dτ/dt = ρ−1. In terms of these
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variables equations (6.11) become

dρ

dτ
= −ρ[2AR + BR(1 + cos2 θ)+ CR sin2 θ cos 2φ] − 2(λ+�λ cos θ)ρ2

(6.12)

dθ

dτ
= sin θ [cos θ(−BR + CR cos 2φ)− CI sin 2φ] − 2�λρ sin θ (6.13)

dφ

dτ
= cos θ(BI − CI cos 2φ)− CR sin 2φ + 2�ωρ (6.14)

where A = AR + iAI, etc. There is also a decoupled equation for ψ(t) so that
the fixed points and periodic solutions of equations (6.12)–(6.14) correspond,
respectively, to periodic solutions and two-tori in equations (6.11). In the
following we measure the amplitude of the disturbance by r ≡ |z+|2 + |z−|2 =
ρ−1; thus ρ = 0 corresponds to infinite amplitude states. Equations (6.12)–
(6.14) show that the restriction to the invariant subspace � ≡ {ρ = 0} is
equivalent to taking �λ = �ω = 0 in (6.13)–(6.14). Since the resulting D4-
symmetric problem is a special case of equations (6.6)–(6.9) we may use table 6.1
to conclude that there are three generic types of fixed points [147]: SS solutions
with cos θ = 0, cos 2φ = 1; AR solutions with cos θ = 0, cos 2φ = −1; and SR
solutions with sin θ = 0. In the following we refer to these solutions as u, v, w,
respectively, to emphasize that their physical interpretation is now quite different.
In fact, in the binary fluid context these solutions represent, respectively, mixed-
parity travelling wave states localized near one of the container walls, mixed-
parity chevron states and pure even (θ = 0)- or odd (θ = π)-parity chevron
states. The chevron states consist of waves propagating outwards from the centre
of the container (or inwards from the boundaries) that are either in phase at the
boundaries (even parity) or out of phase (odd parity). In a finite container these
are the only states that bifurcate from the trivial (conduction) state. Depending
on A, B and C the subspace � may contain additional submaximal fixed points
(SCR) as well as limit cycles [147]. In our scenario, a burst occurs for λ > 0
when a trajectory follows the stable manifold of a fixed point (or a limit cycle)
P1 ∈ � that is unstable within �. The instability within � then kicks the
trajectory towards another fixed point (or limit cycle) P2 ∈ �. If this point has
an unstable ρ eigenvalue the trajectory escapes from � towards a finite amplitude
(ρ > 0) state, forming a burst. If �λ and/or �ω �= 0 this state may itself be
unstable to perturbations of type P1 and the process then repeats. This bursting
behaviour is thus associated with a codimension-one heteroclinic cycle between
the infinite amplitude solutions P1 and P2 [103].

For the heteroclinic cycle to form it is necessary that at least one of the
branches in the D4-symmetric system be subcritical (P1) and one be supercritical
(P2). For the parameters of figure 6.2 the u solutions are subcritical while v, w
are supercritical when �λ = �ω = 0 [102] and two of the resulting cycles are
shown in figure 6.2. In each case the trajectory reaches infinity in finite time
and the heteroclinic cycle therefore represents infinite amplitude bursts of finite
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Figure 6.2. Numerically obtained approximate heteroclinic cycles for �λ = 0.03,
�ω = 0.02, A = 1 − 1.5i , B = −2.8 + 5i , and (a) C = 1 + i , (b) C = 0.9 + i
present at (a) λ = 0.0974 and (b) λ = 0.08461. The + signs indicate infinite amplitude u
states responsible for the bursts, while the squares indicate infinite amplitude v states and
the diamonds finite amplitude states. Reproduced from E Knobloch and J Moehlis Bursting
mechanisms for hydrodynamical systems Pattern Formation in Continuous and Coupled
Systems ed M Golubitsky, D Luss and S H Strogatz, pp 157–74 c©1999 by Springer-Verlag.

duration [103]. Consequently the time-averaged amplitude 〈r〉 may be dominated
by the time spent near finite amplitude states, as in figure 6.3(a). Although neither
of these solutions is in fact stable, they (and others like them) are responsible
for the wealth of burst-like behaviour exhibited by this system. Figures 6.3(a)
and (b) are an attempt to summarize some of this complexity in the form of
bifurcation diagrams, but only the low period solutions have been followed. Much
of the complexity revealed in these diagrams can be traced to the Shil’nikov-like
properties of the dominant heteroclinic cycles [103].

The solutions shown in figure 6.2 are both (nearly) infinite period librations,
characterized by bounded φ. But periodic trajectories in the form of rotations
(φ increasing without bound) are also possible, and figure 6.4 shows an example
of chaotic bursts generated by a stable chaotic rotation. Figure 6.5 shows the
physical manifestation of the bursts arising from rotations and librations in the
form of spacetime plots using the approximate eigenfunctions

f±(x) = {e−γ x+ix ± eγ x−ix} cos
πx

L

where γ = 0.15+ 0.025i , L = 80 and − L
2 ≤ x ≤ L

2 . The bursts in figure 6.5(a)
are generated as a result of successive visits to different but symmetry-related
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Forced symmetry breaking as a mechanism for bursting Phys. Rev. Lett. 80 5329–32
c©1998 by the American Physical Society.
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Figure 6.5. The perturbation � from the trivial state represented in a spacetime plot
showing (a) a periodic blinking state (in which successive bursts occur at opposite sides of
the container) corresponding to a stable rotation at λ = 0.1, and (b) the periodic winking
state (in which successive bursts occur at the same side of the container) corresponding
to a stable libration at λ = 0.1253. Reproduced from J Moehlis and E Knobloch Forced
symmetry breaking as a mechanism for bursting Phys. Rev. Lett. 80 5329–32 c©1998 by
the American Physical Society.

infinite amplitude u solutions; in figure 6.5(b) the generating trajectory makes
repeated visits to the same infinite amplitude u solution. The former state
is typical of the blinking state identified in binary fluid and doubly diffusive
convection in rectangular containers [80, 118]. It is likely that the irregular bursts
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reported in [144] are due to such a state. The latter, a winking state, may be
stable but often coexists with stable chevron-like states which are more likely to
be observed in experiments in which the Rayleigh number is ramped upwards, cf
figure 6.3(a).

The bursts described here are the result of oscillations in amplitude between
two modes of opposite parity and ‘frozen’ spatial structure. Consequently this
burst mechanism applies in systems in which bursts occur very close to threshold.
This occurs not only in the convection experiments already mentioned but also
in the mathematically identical Taylor–Couette system where counterpropagating
spiral vortices play the same role as travelling waves in convection [1, 114].
In slender systems, such as the convection system described earlier or a long
Taylor–Couette apparatus, a large aspect ratio L is required for the presence of
the approximate D4 symmetry. If the size of the D4 symmetry-breaking terms
�λ, �ω is increased too much the bursts fade away and are replaced by smaller
amplitude, higher frequency states [103]. Indeed, if �ω � �λ averaging
eliminates the C terms responsible for the bursts. From these considerations,
we conclude that bursts will not be present if L is too small or ε too large.
It is possible that the burst amplitude can become large enough that secondary
instabilities not captured by ansatz (6.10) can be triggered. Such instabilities
could occur on very different scales and result in turbulent rather than just large
amplitude bursts. It should be emphasized that the physical amplitude of the
bursts is O(ε) and so approaches zero as ε ↓ 0, cf (6.10). Thus despite their large
dynamical range (i.e. the range of amplitudes during the bursts) the bursts are
fully and correctly described by the asymptotic expansion that leads to equations
(6.11). In particular, the mechanism is robust with respect to the inclusion of
higher-order terms [103].

6.3 Coupled Ginzburg–Landau equations

We consider a translation-invariant system on the real line with periodic boundary
conditions, undergoing a symmetry-breaking Hopf bifurcation from the trivial
state, i.e. kc �= 0. Traditionally, one writes

u(x, t) = εu(y)[A(X, T )ei(ωt+kcx) + B(X, T )ei(ωt−kcx) + c.c.] + · · · (6.15)

where ε � 1, X = εx , T = ε2t denote slow variables, and y denotes any
transverse variables. We can think of the parameter ε as specifying the distance
to the threshold of the primary instability, e.g., (R − Rc)/Rc = ε2µ as in
section 6.2. The asymptotic theory applies on scales L such that X = O(1),
i.e. L = O(ε−1). It follows, therefore, that the resulting theory applies whenever
(R − Rc)/Rc = O(L−2) � 1. With the above ansatz substituted into the field
equations, one recovers at leading order the linear stability problem for u = 0,
and hence determines kc and ωc, as well as Rc. From the remaining terms one
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obtains

AT + cg

ε
AX = (µ+ iω′)A + (a|A|2 + b|B|2)A + cAX X + O(ε) (6.16)

BT − cg

ε
BX = (µ+ iω′)B + (a|B|2 + b|A|2)B + cBX X + O(ε) (6.17)

where cg = dω/dk is the group velocity at k = kc, ω′ = ω(µ) − ωc and a, b and
c are (complex) constants. These equations are often used as models of systems
undergoing a symmetry-breaking Hopf bifurcation. However, when cg = O(1)
(the usual case) they are clearly inconsistent as ε → 0. For this reason one
typically has to assume that the system is near a codimension-two point such that
cg = O(ε). Only in this case do these equations make asymptotic sense. But
there is no reason why one needs to restrict attention to this case. More generally,
if cg = O(1) one sees that the advection term dominates the nonlinear terms,
indicating that the time scale for advection at the group velocity is much faster
than the time scale T on which the system equilibrates. We therefore introduce the
intermediate time scale τ = εt , and write A = A(X, τ, T ; ε) ≡ A0 + εA1 + · · · ,
B = B(X, τ, T ; ε) ≡ B0 + εB1 + · · · . At O(ε2) one now finds

A0τ + cg A0X = 0 B0τ − cg B0X = 0 (6.18)

indicating that A0 ≡ A0(ξ, T ), B0 ≡ B0(η, T ), where ξ ≡ X−cgτ , η ≡ X+cgτ ,
while at O(ε3) one obtains

A1τ + cg A1X = −A0T + (µ+ iω′)A0 + (a|A0|2 + b|B0|2)A0 + cA0ξξ (6.19)

B1τ − cg B1X = −B0T + (µ+ iω′)B0 + (a|B0|2 + b|A0|2)B0 + cB0ηη. (6.20)

The solvability condition for A1, guaranteeing that εA1 remains small relative to
A0 for T = O(1), yields the required evolution equation for A0:

A0T = (µ+ iω′)A0 + (a|A0|2 + b〈|B0|2〉η)A0 + cA0ξξ (6.21)

and, similarly,

B0T = (µ+ iω′)B0 + (a|B0|2 + b〈|A0|2〉ξ )B0 + cB0ηη. (6.22)

Here

〈|A0|2〉ξ = 1

P

∫ P

0
|A0|2 dξ 〈|B0|2〉η = 1

Q

∫ Q

0
|B0|2 dη (6.23)

where P and Q are the periods in ξ and η (perhaps infinite). Thus it is the presence
of the intermediate advection time scale that is responsible for the non-local
terms 〈. . . 〉 in the envelope equations (6.21)–(6.22). These equations, derived
by Knobloch and De Luca [77] for dissipative systems, and by Chikwendu and
Kevorkian [20], and Knobloch and Gibbon [78] for conservative systems, have
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been shown to be correct, in the sense that their solutions track those of the
original field equations for T = O(1) on spatial scales X = O(1) [116]. Detailed
stability results for these equations are given in [76, 96]. More recently, Riecke
and Kramer [123] have explored the relation between equations (6.16)–(6.17) and
the asymptotic equations (6.21)–(6.22), and showed that the solutions of the latter
are indeed correct as a limit of the former, but that they may only apply in a small
neighbourhood of R = Rc. Whether the local equations (6.16)–(6.17) have any
validity beyond qualitative outside of this neighbourhood remains, at present, a
matter of conjecture. Of course, non-local equations are harder to work with but
it should be clear that they admit a larger class of solutions than local equations,
and are of interest therefore for this reason alone.

Duan et al [47] have proved the existence of a finite-dimensional inertial
manifold for the single non-local complex Ginzburg–Landau equation

CT = µC + (a|C|2 + b〈|C|2〉)C + cCX X (6.24)

that describes the dynamics of the system (6.21)–(6.22) in the invariant subspace
A0 = B0 ≡ C . Equations of this type also arise as a result of pressure effects in
incompressible flows [62] and in chemical kinetics [72] or of mass conservation
[115], as well as describing ferromagnetic instabilities [50]. However, as already
mentioned, existing derivations of such equations all ignore the presence of
boundaries, and additional work must be carried out to derive the correct boundary
conditions appropriate to specific applications. For the Hopf bifurcation in one
spatial dimension two boundary conditions must be imposed at each boundary
[93]. These boundaries do more than simply break translation invariance, since
waves can also be reflected from them suffering a phase shift, in addition to losing
energy.

It is important to remark that there is another way of rationalizing the
expansion (6.16)–(6.17). This is to choose instead (R−Rc)/Rc = εµ = O(L−1),
where L again measures the domain size. In this case the wave amplifies and
interacts with the boundaries on the time scale τ and reaches a larger amplitude
u = O(ε1/2). One now obtains a pair of hyperbolic equations of the form

Aτ + cg AX = (µ+ iω′)A + (a|A|2 + b|B|2)A + O(ε) (6.25)

Bτ − cg BX = (µ+ iω′)B + (a|B|2 + b|A|2)B + O(ε). (6.26)

This time only two boundary conditions are required, and these are given by

A(0, t) = r B(0, t) B(L, t) = r A(L, t). (6.27)

Here r is a (calculable) complex reflection coefficient [93]. The resulting
equations can be written as a pair of coupled equations for the real amplitudes
|A|, |B|; their solutions describe not only waves that propagate from one end of
the container to the other, but also waves that ‘blink’, i.e. bounce back and forth
between them [94]. Waves of this type have been seen in numerical simulations
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of doubly diffusive convection [37] and in experiments on both the oscillatory
instability of convection rolls [30] and in binary fluid convection [80]. In the latter
the subcritical nature of the instability complicates the dynamics substantially [8].

These equations represent the effects of a global non-locality: the global
coupling does not fall off with distance. Yet in many cases (for example, in
fluids that are not strictly incompressible) we would expect the finite speed of
propagation of pressure waves to introduce a kernel with a cut-off into equations
of this type. Equations with this weaker type of global coupling arise naturally
in coupled oscillator systems as discussed in chapter 9 by Kuramoto. The
introduction of the new length scale, the effective range of the global coupling,
has interesting and non-trivial consequences for the dynamics of these systems. A
related equation arises as a singular limit of a pair of coupled reaction–diffusion
equations with disparate time scales [121].

6.4 The nearly-inviscid Faraday system

The nearly inviscid Faraday system provides another example of a system
described by non-local amplitude equations. In this system a container of liquid
is vibrated vertically; when the amplitude of the acceleration of the container
exceeds a threshold value, the flat surface breaks up into a pattern of standing
waves [52, 83, 101]. In the absence of forcing such surface gravity–capillary
waves decay of an O(C−1/2) time scale, where C = ν/(gh3 + T h/ρ)1/2 � 1,
while hydrodynamic (i.e. viscous) modes decay yet more slowly, on an O(C−1)

time scale [91]. Here g is the gravitational acceleration, T is the coefficient
of surface tension, ρ is the density and ν is the kinematic viscosity. Since the
viscous modes decay so slowly they are easily excited by the vertical vibration;
this excitation takes the form of a mean flow. In periodic domains in which the
length of the domain is large relative to the wavelength of the instability this
mean flow contains both viscous and inviscid contributions, and both couple
to the amplitude equations for the surface waves. Traditionally such amplitude
equations are derived using a velocity potential formulation. However, this
formulation implicitly excludes large-scale streaming flows that may be driven
by the time-averaged Reynolds stress in the oscillatory boundary layers at the
container walls or at the free surface. Recently a systematic asymptotic technique
has been developed that includes such flows in a self-consistent manner [160], and
leads to a new class of (non-local) pattern-forming amplitude equations. These
developments are summarized later.

We consider a container in the form of a right cylinder with horizontal cross
section � filled level with the brim at z = 0. In this geometry the contact
line is pinned at the lateral boundary and complications associated with contact
line dynamics are reduced. The governing equations, non-dimensionalized using
the unperturbed depth h as the unit of length and the gravity–capillary time
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[g/h + T/(ρh3)]−1/2 as the unit of time, are

∂v/∂ t − v × (∇ × v) = −∇!+ C�v ∇ · v = 0 if (x, y) ∈ �, −1 < z < f

v = 0 if z = −1 or (x, y) ∈ ∂� f = 0 if (x, y) ∈ ∂�

v · n = (∂ f/∂ t)(ez · n) [(∇v +∇v") · n] × n = 0 at z = f

!− |v|2/2 − (1 − S) f + S∇ · [∇ f/(1 + |∇ f |2)1/2]
= C[(∇v +∇v") · n] · n− 4µω2 f cos 2ωt at z = f

where v is the velocity, f is the associated vertical deflection of the free surface
(constrained by volume conservation),! = p+|v|2/2+(1−S)z−4µω2z cos 2ωt
is the hydrostatic stagnation pressure, n is the outward unit normal to the free
surface, ez is the upward unit vector, and ∂� denotes the boundary of the cross
section � (i.e. the lateral walls). The real parameters µ > 0 and 2ω denote
the amplitude and frequency of the forcing, and S = T/(T + ρgh2) is the
gravity–capillary balance parameter. Thus 0 ≤ S ≤ 1 with S = 0 and S = 1
corresponding to the purely gravitational limit (T = 0) and the purely capillary
limit (g = 0), respectively.

In the (nearly inviscid, nearly resonant, weakly nonlinear) regime

C � 1 |ω −"| � 1 µ � 1 (6.28)

where " is an inviscid eigenfrequency of the linearized problem around the flat
state, the vorticity contamination of the bulk from the boundary layers at the walls
and the free surface remains negligible for times that are not too long, and the flow
in the bulk is correctly described by an inviscid formulation but with boundary
conditions determined by a boundary layer analysis. In general this flow consists
of an inviscid part and a viscous part.

In this regime it is possible to perform a multi-scale analysis of the governing
equations using C , L−1 and µ as unrelated small parameters. Here L is the
dimensionless length of the container. The problem is simplest in two dimensions
where we can use a stream function formulation, i.e. we write v = (−ψz, 0, ψx ).
We focus on two well-separated scales in both space (x ∼ 1 and x � 1) and time
(t ∼ 1 and t � 1), and derive equations for small, slowly varying amplitudes A
and B of left- and right-propagating waves defined by

f = eiωt (Aeikx + Be−ikx)+ γ1 AB̄e2ikx + γ2e2iωt (A2e2ikx + B2e−2ikx)

+ f +eiωt+ikx + f −eiωt−ikx + c.c.+ f m + N RT

with similar expressions for the remaining fields. The quantities f ± and f m

represent resonant second-order terms, while N RT denotes non-resonant terms.
The superscript m denotes terms associated with the mean flow; f m depends
weakly on time but may depend strongly on x . A systematic expansion procedure
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[160] now leads to the equations

At − cg Ax = iαAx x − (δ + id)A + i(α3|A|2 − α4|B|2)A

+ iα5µB̄ + iα6

∫ 0

−1
g(z)〈ψm

z 〉x dz A + iα7〈 f m〉x A (6.29)

Bt + cg Bx = iαBx x − (δ + id)B + i(α3|B|2 − α4|A|2)B

+ iα5µ Ā − iα6

∫ 0

−1
g(z)〈ψm

z 〉x dz B + iα7〈 f m〉x B (6.30)

A(x + L, t) ≡ A(x, t) B(x + L, t) ≡ B(x, t). (6.31)

The first seven terms in these equations, accounting for inertia, propagation at
the group velocity cg, dispersion, damping, detuning, cubic nonlinearity and
parametric forcing, are familiar from weakly nonlinear, nearly inviscid theories.
These theories lead to the expressions

cg = ω′(k) α = −ω′′(k)/2 δ = α1C1/2
g + α2Cg

α1 = k(ω/2)1/2

sinh 2k
α2 = k2

4σ 2 (1+ 8σ 2 − σ 4)

α3 = ωk2[(1− S)(9 − σ 2)(1 − σ 2)+ Sk2(7 − σ 2)(3 − σ 2)]
4σ 2[(1 − S)σ 2 − Sk2(3 − σ 2)]

+ ωk2[8(1− S)+ 5Sk2]
4(1− S + Sk2)

α4 = ωk2

2

[
(1 − S + Sk2)(1 + σ 2)2

(1− S + 4Sk2)σ 2 + 4(1 − S)+ 7Sk2

1 − S + Sk2

]
α5 = ωkσ

where ω(k) = [(1−S+Sk2)kσ ]1/2 is the dispersion relation and σ ≡ tanh k. The
coefficient α3 diverges at (excluded) resonant wavenumbers satisfying ω(2k) =
2ω(k). The detuning d is given by

d = α1C1/2 − (2πN L−1 − k)cg N = integer

where the last term represents the mismatch between the wavelength 2π/k
selected by the forcing frequency 2ω and the domain length L. The last two
terms in equations (6.29)–(6.30) describe the coupling to the mean flow in the
bulk (be it viscous or inviscid in origin) in terms of (a local average 〈·〉x of) the
stream function ψm for this flow and the associated free surface elevation f m.
The coefficients of these terms and the function g are given by

α6 = kσ/2ω α7 = ωk(1− σ 2)/2σ g(z) = 2ωk cosh[2k(z + 1)]/ sinh2 k
(6.32)

and are real. The new terms are therefore conservative, implying that at leading
order the mean flow does not extract energy from the system.
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The mean flow variables in the bulk depend weakly on time but strongly on
both x and z, and evolve according to the equations

"m
t − [ψm

z + (|A|2 − |B|2)g(z)]"m
x + ψm

x "m
z = C("m

x x +"m
zz) (6.33)

where "m = ψm
x x + ψm

zz , subject to

ψm
x − f m

t = β1(|B|2 − |A|2)x ψm
zz = β2(|A|2 − |B|2)

(1 − S) f m
x − S f m

x x x − ψm
zt + C(ψm

zzz + 3ψm
x xz) = −β3(|A|2 + |B|2)x

at z = 0 (6.34)

and

ψm
z = − β4[iAB̄e2ikx + c.c.+ |B|2 − |A|2]

∫ L

0
"m

z dx = ψm = 0

at z = −1. (6.35)

In addition ψm(x + L, z, t) ≡ ψm(x, z, t), f m(x + L, t) ≡ f m(x, t), subject to∫ L
0 f m(x, t) dx = 0, due to mass conservation. Here β1 = 2ω/σ , β2 = 8ωk2/σ ,
β3 = (1−σ 2)ω2/σ 2, β4 = 3(1−σ 2)ωk/σ 2. Thus the mean flow is forced by the
surface waves in two ways. The right-hand sides of the first and third boundary
conditions of (6.34) provide a normal forcing mechanism; this mechanism is the
only one present in strictly inviscid theory [34, 115] and does not appear unless
the aspect ratio is large. The right-hand sides of the second boundary condition of
(6.34) and the first of (6.35) describe two shear forcing mechanisms, a tangential
stress at the free surface [89] and a tangential velocity at the bottom wall [133].
Note that neither of these forcing terms vanishes in the limit of small viscosity
(i.e. as C → 0). The shear nature of these forcing terms leads us to retain the
viscous term in equation (6.33) even when C is quite small. In fact, when C is
very small, the effective Reynolds number of the mean flow is quite large. Thus
the mean flow itself generates additional boundary layers near the top and bottom
of the container, and these must be thicker than the original boundary layers for
the validity of the analysis. This puts an additional restriction on the validity of
the equations [160]. There is a third, less effective but inviscid, volumetric forcing
mechanism associated with the second term in the vorticity equation (6.33), which
looks like a horizontal force (|A|2 − |B|2)g(z)"m and is sometimes called the
vortex force. Although this term vanishes in the absence of mean flow, it can
change the stability properties of the flow and enhance or limit the effect of the
remaining forcing terms.

Equations (6.29)–(6.31) and (6.33)–(6.35) may be referred to as the general
coupled amplitude-mean-flow (GCAMF) equations. Like the equations derived
in section 6.3 they are non-local, this time because the parametrically excited
waves drive a whole spectrum of almost marginal large scale modes. The
GCAMF equations differ from the exact equations forming the starting point for
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the analysis in three essential simplifications: the fast oscillations associated with
the surface waves have been filtered out, the effect of the thin primary viscous
boundary layers is replaced by effective boundary conditions on the flow in the
bulk, namely the second condition of (6.34) and the first condition of (6.35), and
the surface boundary conditions are applied at the unperturbed location of the
free surface, namely z = 0. Thus only the much broader (secondary) boundary
layers associated with the (slowly varying) mean flow need to be resolved in any
numerical simulation.

The GCAMF equations describe small amplitude slowly varying wave-trains
whenever the parameters C , L−1 and µ are small, but otherwise unrelated to one
another. However, in the distinguished limit

δL2/α = � ∼ 1 d L2/α = D ∼ 1 µL2/α ≡ M ∼ 1 (6.36)

with k = O(1) and | ln C| = O(1) they can be simplified further, and their
relation to the non-local equations of section 6.3 be brought out. These simplified
equations are formally valid for 1 � L � C−1/2 if k ∼ 1, assuming that
1 − S ∼ 1. Using x and t as fast variables and

X = x/L τ = t/L T = t/L2 (6.37)

as slow variables, we write

ψm(x, z, X, τ, T ) = ψv(x, z, X, T )+ ψ i(x, z, X, τ, T )

"m(x, z, X, τ, T ) = "v(x, z, X, T )+"i(x, z, X, τ, T )

f m(x, X, τ, T ) = f v(x, X, T )+ f i(x, X, τ, T ) (6.38)

and demand that integrals over τ of ψ i
x , ψ i

X , ψ i
z , "i and f i be bounded as

τ → ∞, i.e. that the nearly inviscid mean flow is purely oscillatory on the time
scale τ . In terms of these variables the local horizontal average 〈·〉x becomes
an average over the fast variable x . Since its frequency is of order L−1 (see
equation (6.37)), which is large compared with C , the inertial term for this flow
is large in comparison with the viscous terms (see equation (6.33)), except in two
secondary boundary layers, of thickness of order (C L)1/2 (� 1), attached to the
bottom plate and the free surface. Note that, as required for the consistency of
the analysis, these boundary layers are much thicker than the primary boundary
layers associated with the surface waves, which provide the boundary conditions
(6.34)–(6.35) for the mean flow. Moreover, the width of these secondary boundary
layers remains small as τ →∞ and (to leading order) the vorticity of this nearly
inviscid mean flow remains confined to these boundary layers. It is possible to
check that these boundary layers do not modify the boundary conditions (6.34)–
(6.35) on the nearly inviscid bulk flow.

The complex amplitudes and the flow variables associated with the nearly
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inviscid bulk flow may be expanded as

(A, B) = L−1(A0, B0)+ L−2(A1, B1)+ · · ·
(ψv,"v, f v) = L−2(φv

0 , W v
0 , 0)+ L−3(φv

1 , W v
1 , Fv

0 )+ · · ·
(ψ i,"i, f i) = L−2(φi

0, 0, F i
0)+ L−3(φi

1, W i
0, F i

1)+ · · · . (6.39)

Substitution of (6.36)–(6.39) into (6.29)–(6.35) leads to the following results:
(i) From (6.33)–(6.35), at leading order,

φi
0x x + φi

0zz = 0 in − 1 < z < 0 φi
0 = 0 at z = −1 φi

0x = 0 at z = 0

together with F i
0x = 0. Thus

φi
0 = (z + 1)#i

0(X, τ, T ) F i
0 = F i

0(X, τ, T ).

At second order, the first and third boundary conditions of (6.34) yield

φi
1x(x, 0, X, τ, T ) = F i

0τ −#i
0X + β1(|B0|2 − |A0|2)X

(1 − S)F i
1x − SF i

1x x x = #i
0τ − (1 − S)F i

0X − β3(|A0|2 + |B0|2)X

at z = 0. Since the right-hand sides of these two equations are independent of the
fast variable x and both φi

1 and F i
1 must be bounded in x , it follows that

#i
0X−F i

0τ = β1(|B0|2−|A0|2)X #i
0τ−c2

p F i
0X = β3(|A0|2+|B0|2)X (6.40)

where
cp = (1 − S)1/2 (6.41)

is the phase velocity of long wavelength surface gravity waves. Equations (6.40)
must be integrated with the following additional conditions

#i
0(X + 1, τ, T ) ≡ #i

0(X, τ, T ) F i
0(X + 1, τ, T ) ≡ F i

0(X, τ, T )

and the requirements that integrals over τ of #i
0X and F i

0 remain bounded as

τ →∞, with
∫ 1

0 F i
0 dX = 0.

(ii) The leading-order contributions to equations (6.29)–(6.30) yield A0τ −
cg A0X = B0τ + cg B0X = 0. Thus A0 = A0(ξ, T ), B0 = B0(η, T ), where
ξ = X + cgτ and η = X − cgτ are again the characteristic variables, and
A0(ξ + 1, T ) ≡ A0(ξ, T ), B0(η + 1, T ) ≡ B0(η, T ). Substitution of these
expressions into (6.40) followed by integration of the resulting equations yields

#i
0 =

β1c2
p + β3cg

c2
g − c2

p
[|A0|2 − |B0|2 − 〈|A0|2 − |B0|2〉X ]

+ cp[F+(X + cpτ, T )− F−(X − cpτ, T )] (6.42)

F i
0 =

β1cg + β3

c2
g − c2

p
[|A0|2 + |B0|2 − 〈|A0|2 + |B0|2〉X ]

+ F+(X + cpτ, T )+ F−(X − cpτ, T )] (6.43)
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where 〈·〉X denotes the mean value in the slow spatial variable X , and the
functions F± are such that

F±(X + 1 ± cpτ, T ) ≡ F±(X ± cpτ, T ) 〈F±〉X = 0. (6.44)

The particular solution (6.42)–(6.43) yields the usual inviscid mean flow included
in nearly inviscid theories [115]; the averaged terms are a consequence of volume
conservation [115] and the requirement that the nearly inviscid mean flow has a
zero mean on the time scale τ ; the latter condition is never imposed in strictly
inviscid theories but is essential in the limit we are considering, as previously
explained. To avoid breakdown of the solution (6.42)–(6.43) at cp = cg we
assume that

|cp − cg| ∼ 1. (6.45)

(iii) The evolution equations for A0 and B0 on the time scale T are readily
obtained from equations (6.29)–(6.31), invoking (6.36), (6.38) and (6.42)–(6.44),
and eliminating secular terms (i.e. requiring |A1| and |B1| to be bounded on the
time scale τ ):

A0T = iαA0ξξ − (�+ iD)A0 + i[(α3 + α8)|A0|2 − α8〈|A0|2〉ξ

− α4〈|B0|2〉η]A0 + iα5 M〈B0〉η + iα6

∫ 0

−1
g(z)〈〈φv

0z〉x 〉X dz A0

B0T = iαB0ηη − (�+ iD)B0 + i [(α3 + α8)|B0|2 − α8〈|B0|2〉η

− α4〈|A0|2〉ξ ]B0 + iα5 M〈A0〉ξ − iα6

∫ 0

−1
g(z)〈〈φv

0z〉x 〉X dz B0. (6.46)

Here 〈·〉x , 〈·〉X , 〈·〉ξ and 〈·〉η denote mean values over the variables x , X , ξ and η,
respectively, and

α8 = [α6(2ω/σ)(β1c2
p + β3cg)+ α7(β1cg + β3)]/(c2

g − c2
p).

Equations (6.46) are independent of F± because of the second condition in (6.44).
When � > 0, 〈|A0|2 − |B0|2〉τ = 〈|A0|2〉ξ − 〈|B0|2〉η → 0 as T →∞, and

equations (6.33)–(6.35) become

W v
0T − φv

0z W v
0x + φv

0x W v
0z = Re−1(W v

0x x + W v
0zz) W v

0 = φv
0x x + φv

0zz

in − 1 < z < 0 (6.47)

φv
0x = φv

0zz = 0 at z = 0 (6.48)

〈〈W v
0z〉x 〉X = φv

0 = 0 φv
0z = −β4[i〈A0 B0〉τ e2ikx + c.c.] at z = −1

(6.49)

φv
0(x + L, X + 1, z, T ) ≡ φv

0(x, X, z, T ) (6.50)

where
Re = 1/(C L2) (6.51)
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is the effective Reynolds number of the viscous mean flow. Note that Re =
O(C−1/2) if k ∼ 1.

Some remarks about these equations and boundary conditions are now in
order.

First, the viscous mean flow is driven by the short gravity–capillary waves
through the inhomogeneous term in the third boundary condition of (6.49), i.e.
at the lower boundary. Since 〈A0 B0〉τ depends on both X and T (unless either
A0 or B0 is spatially uniform) the boundary condition implies that φv

0 (and hence
W v

0 ) depends on both the fast and slow horizontal spatial variables x and X . This
dependence cannot be obtained in closed form and one must therefore resort to
numerical computations for realistically large values of L. Note, however, that
in fully three-dimensional situations [46] in which lateral walls are included a
viscous mean flow will be present even when k � 1 because the forcing of the
mean flow in the oscillatory boundary layers along these walls remains.

Second, the change of variables

A0 = Ã0e−ikθ B0 = B̃0eikθ (6.52)

where

θ ′(T ) = −α6k−1
∫ 0

−1
g(z)〈〈φv

0z〉x 〉X dz (6.53)

reduces equations (6.46) to the much simpler form

Ã0T = iα Ã0ξξ − (�+ iD) Ã0 + i[(α3 + α8)| Ã0|2
− (α4 + α8)〈|B̃0|2〉η] Ã0 + iα5 M〈B̃0〉η

B̃0T = iα B̃0ηη − (�+ iD)B̃0 + i[(α3 + α8)|B̃0|2
− (α4 + α8)〈| Ã0|2〉ξ ]B̃0 + iα5 M〈Ã0〉ξ

Ã0(ξ + 1, T ) ≡ Ã0(ξ, T ) B̃0(η + 1, T ) ≡ B̃0(η, T ) (6.54)

from which the mean flow is absent. This decoupling is a special property of the
regime (6.36), but is not unique to it. The resulting equations provide perhaps the
simplest description of the Faraday system at large aspect ratio and it is for this
reason that they have been extensively studied [67,92]. Except for the presence of
the parametric forcing term M they are of the same form as the coupled non-local
CGL equations derived in section 6.3. Tracing back through the derivation one
can see that the non-local terms in both sets of equations have identical origin:
dynamics occuring on two distinct slow time scales.

In short domains, however, with L = O(1) only two time scales are present,
and the resulting coupled amplitude–mean flow equations are considerably
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simpler:

At = − (δ + id)A + i(α3|A|2 − α4|B|2)A + iα5µB̄

− iα6 L−1
∫ 0

−1

∫ L

0
g(z)uv dx dz A

Bt = − (δ + id)B + i(α3|B|2 − α4|A|2)B + iα5µ Ā

+ iα6 L−1
∫ 0

−1

∫ L

0
g(z)uv dx dz B (6.55)

with A and B spatially constant and the coefficients given by expressions that are
identical to those in (6.29)–(6.30). Here t denotes a slow time whose magnitude
is determined by the damping δ > 0 and the detuning d , both assumed to be of the
same order as the forcing amplitude µ; in the long time limit |A|2 = |B|2 ≡ R2.
It follows that the mean flow (uv(x, z, t),wv(x, z, t)) is now entirely viscous in
origin, and obeys a two-dimensional Navier–Stokes equation of the form (6.47).
If we absorb the standing wave amplitude R (and some other constants) in the
definition of the Reynolds number,

Re ≡ 2β4 R2/Cg (6.56)

this equation is to be solved subject to the boundary conditions

uv = − sin[2k(x − θ)] wv = 0 at z = −1

uv
z = 0 wv = 0 at z = 0. (6.57)

Because the structure of equations (6.55) is identical to that of equations (6.46)
the change of variables (6.52) leads to a decoupling of the amplitudes from the
spatial phase θ which now satisfies the equation

θt = α6

kL

∫ 0

−1

∫ L

0
g(z)uv(x, z, t) dx dz. (6.58)

Martı́n et al [95] solve the resulting equations numerically with periodic boundary
conditions (corresponding to an annular domain of length L) and demonstrate that
a basic pattern of subharmonic standing waves can indeed lose stability at finite
amplitude through the excitation of a viscous mean flow. This may happen in one
of two ways, either at a parity-breaking steady-state bifurcation or at a reflection
symmetry-breaking Hopf bifurcation. The former results in a steady drift of the
pattern while the latter produces a state that has been called a direction-reversing
wave [85].

6.5 Nonlinear waves in extended systems with broken
reflection symmetry

The effects of distant boundaries on the onset of travelling wave instabilities
in systems with broken reflection symmetry differ remarkably from the
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corresponding steady-state situation in reflection-symmetric systems. In the latter
case the imposition of boundary conditions at the ends of a domain of aspect ratio
L leads to a correction to the instability threshold of O(L−2) when L is large.
However, as already mentioned in the introduction, in systems that lack reflection
symmetry the primary instability is always a Hopf bifurcation to travelling waves
with a preferred direction of propagation, and in this case the imposition of similar
boundary conditions results in an O(1) change to the threshold for instability.
Moreover, the initial eigenfunction at the onset is a wall mode rather than wave-
like, and the frequency of this mode differs substantially from that of the most
unstable, spatially periodic solution. With increasing values of the instability
parameter µ a front forms, separating an exponentially small wave-train near
the upstream boundary from a fully developed one downstream, with a well-
defined wavenumber, frequency and amplitude, whose location moves further
and further upstream as µ continues to increase. Both the spatial wavenumber
and the amplitude are controlled by the temporal frequency, which, in turn, is
controlled by µ, and in the fully nonlinear regime by the boundary conditions as
well. The resulting changes in the frequency may trigger secondary transitions
to quasi-periodic and/or chaotic states. These phenomena have been described
in a recent paper by Tobias et al [151] (see also [21]), and the criterion for the
presence of a global unstable mode was found to be closely related to that for
absolute instability of the basic state in an unbounded domain [128, 151]. The
secondary transitions are likewise related to the absolute instability of the primary
wave-train.

The simplest model of this set of phenomena is provided by the complex
Ginzburg–Landau equation with drift:

∂A

∂ t
= cg

∂A

∂x
+ µA + a|A|2 A + λ

∂2 A

∂x2 0 ≤ x ≤ L (6.59)

subject to the boundary conditions

A(0) = A(L) = 0. (6.60)

Here cg > 0 represents the drift term (and is the group velocity dω/dk if A(x, t)
is the complex amplitude of a wave-train with frequency ω(k)) and λ = 1 + iλI,
a = −1 + iaI. In the following we take cg to be of order unity, so that
reflection symmetry is broken strongly. In figure 6.6 we show a solution of
equations (6.59)–(6.60) obtained numerically for µ > µa ≡ c2

g/[4(1 + λ2
I )] and

cg = 1. The figure is in the form of a spacetime diagram, with time increasing
upwards. Infinitesimal disturbances travel to the left from x = L and grow as
they do so, evolving into a stationary primary front, separating a small amplitude
upstream wave (barely visible) from a fully developed downstream wave with
O(1) amplitude. For µ not too large this wave-train persists until almost x = 0,
where there is a boundary layer within which A drops to zero. However, for
larger µ a remarkable phenomenon appears. The wave-train develops a secondary
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Figure 6.6. Grey scale spacetime plots obtained for the CGL equation (6.59) subject to
the boundary conditions (6.60) with L = 60.0, cg = 1.0, λI = 0.45, AI = 2.0 and
(a) µ = 0.3, (b) µ = 1.5. The domain (0, L) lies along the horizontal axis, with time
increasing upward. In (a) the waves change their direction of propagation as they pass
through the primary front; in (b) a secondary front signals the transition to spatio-temporal
chaos. Reproduced from S Tobias, M R E Proctor and E Knobloch Convective and absolute
instabilities of fluid flows in finite geometry Physica D 113 43–72 c©1998 by Elsevier
Science.

front prior to x = 0 separating the laminar O(1) wave-train from a new wave-
train in the region adjacent to x = 0. In the example shown this wave-train is
chaotic or ‘turbulent’. As a result the position of the secondary front fluctuates
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but nonetheless has a well-defined mean. For other parameter values one may find
a secondary front between two periodic wave-trains, with different amplitudes and
wavenumbers, and if there are phase slips along the front, different frequencies as
well. Figure 6.7 shows another example, this time computed from the equations
describing the mean field dynamo [119],

∂A

∂ t
= DB

1 + B2
+ ∂2 A

∂x2
− A

∂B

∂ t
= ∂A

∂x
+ ∂2 B

∂x2
− B. (6.61)

Here D > 0 is a bifurcation parameter analogous to µ, and A and B are
the poloidal field potential and the toroidal field itself. Both are real-valued
functions. This model has the merit of describing a real magnetic field as opposed
to the CGL equation, which only describes the evolution of a slowly varying
envelope of a short-wave, high-frequency wave-train. The figure is computed for
(a) D = 8.75 and (b) D = 15.0, subject to the boundary conditions Ax = B = 0
at x = 0 and A = B = 0 at x = L. Figure 6.7(a) shows a single front
near the right-hand boundary separating a stationary fully developed but laminar
wave-train from a region with an exponentially small state near x = L. In
contrast, figure 6.7(b) shows two fully developed wave-trains with well-defined
wavenumbers, amplitudes and frequencies separated by a secondary front in the
left half of the container. Both wave-trains are laminar and are separated by a
more-or-less stationary secondary front. It is tempting to think of these fronts
as shock-like structures, across which there is finite jump in three quantities:
amplitude, wavenumber and perhaps frequency as well. These shocks are of
considerable mathematical interest since the underlying equations are neither
hyperbolic nor conservative. As a result there are no obvious candidates for the
type of jump conditions familiar from gas dynamics. The a priori prediction of the
location of these shocks, and of the associated jump conditions as a function of µ
constitutes an interesting and important problem for future research. Analysis of
the CGL equation (6.59) shows that these secondary fronts form once the primary
wave train loses stability to a secondary absolute Benjamin–Feir instability [151].
As already mentioned the resulting scenario also arises in attempts to explain the
far-field breakup of spiral waves in reaction–diffusion systems [150].

As is well known, systems that are only convectively unstable (but absolutely
stable) act as efficient noise amplifiers [42]. This property manifests itself in
extended but finite domains as well, as discussed by Proctor et al [120]. Figure 6.8
summarizes the effects of injecting small amplitude noise at the upstream
boundary in the two cases of interest: for Benjamin–Feir stable (λIaI < 1) and
Benjamin–Feir unstable (λIaI > 1) regimes. In the former case the spatially
uniform Stokes solution of (6.59) is stable with respect to long wavelength
perturbations; this is not the case in the Benjamin–Feir unstable regime [143]. As
a result any non-trivial dynamics present in the system must be a consequence
of the boundaries. Little changes if the noise is injected instead throughout
the domain 0 < x < L, since the dynamics are primarily determined by the
perturbations that have travelled farthest, and hence grew the most.
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Figure 6.7. Grey scale spacetime plots obtained for the dynamo equations (6.61) with
L = 300.0 and (a) D = 8.75, (b) D = 15.0. The domain (0, L) lies along the horizontal
axis, with time increasing upward. In (a) the primary front selects the amplitude and
wavenumber of the finite amplitude dynamo waves; in (b) a secondary front separates the
primary wave-train on the right from the secondary wave-train on the left. Reproduced
from S Tobias, M R E Proctor and E Knobloch Convective and absolute instabilities of
fluid flows in finite geometry Physica D 113 43–72 c©1998 by Elsevier Science.

If the trivial state A = 0 is completely stable, then all such disturbances
decay at every location, and so have little effect. However, if the trivial state is
convectively unstable, there are disturbances that grow in an appropriately moving
reference frame, even though at fixed location all disturbances eventually decay.
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Figure 6.8. Schematic diagram of the possible roles of noise in the CGL equation (6.59).
The two scenarios presented are for (a) Benjamin–Feir stable parameter values (λIaI < 1)
and (b) Benjamin–Feir unstable parameter values (λIaI > 1). In (a) the role of the
noise depends critically on the value of the bifurcation parameter, while in (b) the
noise-induced primary wave-train is always susceptible to noise-induced disruption as
discussed by Deissler [43]. Reproduced from M R E Proctor, S M Tobias and E Knobloch
Noise-sustained structures due to convective instability in finite domains Physica D
145191–206 c©2000 by Elsevier Science.

In these circumstances the continued injection of disturbances at an upstream
location can produce persistent noise-sustained structures downstream [42]. Such
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structures have been studied in experiments [3, 4, 154], and in various model
problems based on the CGL equation [12, 42–45, 90, 104, 130]. In fact, the
addition of noise can lead to the destabilization not only of the trivial state but
also of the primary wave-train (figure 6.8). Moreover the travelling wave nature
of the transient instability that is sustained by noise injection leads to a powerful
frequency selection effect, which determines the spatio-temporal properties of
the resulting noise-sustained structures. This mechanism, identified in [120] in
the context of the CGL equation (6.59), is believed to have general applicability.
Briefly, the system selects the frequency ωmax that maximizes the smallest spatial
growth rate in the downstream direction. This frequency selection mechanism
differs from the intuitive (but incorrect) idea that one wishes to maximize the
downstream spatial growth rate on the grounds that the mode growing most
rapidly to the left would be the one observed. This is a consequence of the
downstream boundary condition. Because of this boundary the solution of the
linear problem on 0 < x < L consists of a linear combination of exponentials
involving the (complex) roots of the dispersion relation. At the left-hand (or
downstream) boundary the amplitudes of all the component modes are in general
of the same order; for each value of the frequency ω the mode seen far from the
boundary is then the one that decays least rapidly to the right. One seeks therefore
the frequency ωmax that maximizes this least decay rate. Figure 6.9 provides
a confirmation of this idea for the dynamo equations (6.61). Thus once again
the mere fact that there is a downstream boundary has a profound effect on the
behaviour of the system: open (i.e. semi-infinite) systems without a downstream
boundary behave very differently, and for these the intuitive argument is correct.
It is worth mentioning that in the absence of noise a semi-infinite system without
a downstream boundary only generates structure above the absolute instability
threshold. In contrast a semi-infinite system without an upstream boundary is
already unstable above the convective instability threshold µ = 0 [162].

The linear theory just described predicts [120] that the noise-sustained
structure will be present in x < xfront, where

xfront ≡ L − κ−1
max| ln ε|. (6.62)

Here κmax is the maximum value of the least spatial growth rate determined by
the previously described procedure, and ε is a measure of the amplitude of the
noise injected at x = L, assumed to be uniformly distributed in [−ε, ε]. For
(6.59) ωmax = µλI and the resulting noise-sustained structure has a well-defined
wavenumber and amplitude, given by

k = 1

2(aI + λI)

(
cg −

√
c2

g − 4µ(λ2
I − a2

I )

)
|A0|2 = 1

2(aI + λI)2

(
4µλI(aI + λI)− c2

g + cg

√
c2

g − 4µ(λ2
I − a2

I )

)
. (6.63)

As shown in [120], this solution can, in turn, be convectively unstable, and
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Figure 6.9. Noise-sustained dynamo waves computed from equations (6.61): selected
frequency ω as a function of the dynamo number D in the convectively unstable regime
Dc < D < Da. The full curve is the boundary of the region in which wave-trains
occur. The broken line shows the theoretical prediction. The symbols show the results
of numerical simulations with different values of D and noise level ε. Dotted lines show
thresholds for convective and absolute instability of the trivial state. Reproduced from
M R E Proctor, S M Tobias and E Knobloch Noise-sustained structures due to convective
instability in finite domains Physica D 145191–206 c©2000 by Elsevier Science.

so support secondary noise-induced structures or be absolutely unstable (cf
figure 6.8).

The phenomenon of a noise-sustained secondary instability is perhaps of
greatest interest. We consider therefore the case of a primary wave-train when
µf < µsec

c < µ < µsec
a , i.e. when this wave-train is convectively unstable. The

primary wave-train is unaffected by noise injection at the upstream boundary
because it is a global mode (µ > µf = µa + O(L−2)). In the absence of
noise the secondary convective instability has no effect, provided that the group
velocity associated with this instability is leftward. The argument is the same
as for the primary instability: perturbations are advected towards the boundary
at x = 0 where they are dissipated, and the instability will produce secondary
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Figure 6.10. Noise-sustained secondary structures in the CGL equation (6.59). Spacetime
plot of Re(A) for µ = 1.0, ε = 10−4, λI = 0.45 and aI = 2.0 with x increasing to the
right and time increasing upwards. The irregular phase at the left of the picture is sustained
by noise injection at the right boundary, and decays away in its absence. Reproduced from
M R E Proctor, S M Tobias and E Knobloch Noise-sustained structures due to convective
instability in finite domains Physica D 145 191–206 c©2000 by Elsevier Science.

structures only when the threshold for secondary absolute instability is exceeded.
However, in the presence of noise a noise-sustained secondary structure will
form. This structure appears first at the left-hand boundary, and with increasing µ

extends further and further to the right, separated from the primary wave-train by
a secondary front. Figure 6.10 shows an example computed from equation (6.59)
for µ = 1.0, ε = 10−4, λI = 0.45, aI = 2.0 and cg = 1.0. For these parameters
the secondary instability boundary in the absence of noise is at µsec

a ≈ 1.5,
and indeed the chaotic structure present near the left boundary in figure 6.10
decays away when ε is set to zero. Guided by the discussion of the primary
instability we expect that, in its linear phase, the secondary mode has a well-
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defined spatial growth rate, wavenumber and temporal frequency and that these
are determined by a criterion similar to that for the primary noise-sustained mode.
This expectation is borne out by an investigation of the linear instability of the
primary wave-train along the lines of [151].

It should be noted that even in systems that are ’small’ the breaking of
reflection symmetry may have quite unexpected consequences, such as the
appearance of a Hopf bifurcation ’by frustrated drifts’ in the Rayleigh–Bénard
problem between out-of-phase wavy boundaries [136].

6.6 Summary and conclusions

In this chapter I have pointed to a number of issues in the general area of pattern
formation which remain unsolved, and attempted to indicate why I believe they
are important. The problems mentioned range from the mathematical (extension
of KAM theory into the spatial domain) to the practical, such as confronting
the predictions of model equations with experimental data, or at least data
obtained from accurate numerical simulations of the governing field equations. I
discussed various techniques for generating such model equations, including both
rigorous derivations and symmetry-based methods. In each case I discussed the
assumptions required and their appropriateness for the physical problem at hand.
In many cases these equations provide us with a good but partial understanding;
in some problems, such as the oscillons in granular media, this may be as much
as we can expect, while in others much more can, in principle, be done. This
is because in the former case we know only the microscopic interactions but
lack effective constitutive relations for a macroscopic theory, while in other areas
the correct field equations are well known. Many pattern-forming systems, for
example chemical systems, fall in between these two extremes. These systems are
governed by an ever growing variety of model equations whose structure depends
sensitively on the assumptions made about the spatial and temporal scales in the
system, both intrinsic and externally imposed. In this chapter I have emphasized
systems that are described by fundamentally non-local equations and explained
the reasons for this fact. These equations provide new classes of pattern-forming
equations and their behaviour is only just beginning to be understood. Traditional
equivariant theory is of much less use in these systems because of its implicit
assumptions that all interactions are local, that is, local in both space and time,
and in phase space. As a result the derivations may appear to be involved, but at
present this is unavoidable. I have also emphasized the importance of considering
the applicability or relevance of the solutions of these model equations to the
underlying physical system. These questions raise additional mathematical issues,
some well known from the theory of averaging, but others such as imperfection
sensitivity of equivariant dynamics still poorly understood.

I expect substantial progress on a number of the issues raised here over
ensuing several years, although I will not risk making any predictions. The field
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of pattern formations is a lively one, and this article will have succeeded if it
stimulates both new work and new ideas in this area.
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Chapter 7

Is chaos relevant to fluid mechanics?

Tom Mullin
The University of Manchester

My objective is to provide a resumé of experience gained by research into the role
of ideas from low-dimensional dynamical systems applied to the understanding
of complicated motions in fluid flows. When I began working in this area
the words turbulence and chaos were used synonymously in conference titles.
Now we have apparently reached the stage where low-dimensional chaos is
completely ‘understood’ and still the problem of turbulence remains as deep and
mysterious as ever. It therefore seems natural to enquire whether the important
ideas encompassed within finite-dimensional dynamical systems have shed much
light on disordered fluid motion.

The work that I will discuss has been carried out over a period of 20 years
with a wide variety of collaborators. The person who was most influential in
the early part of this research was Brooke Benjamin, and there are many other
collaborators listed at the end of this chapter, among whom Andrew Cliffe and
Gerd Pfister have had the greatest influence on my thinking. All my collaborators
have helped me gain some understanding of the apparently simple problem that
has occupied my thoughts over this period. The problem which will be central to
the discussion is Taylor–Couette flow between concentric rotating cylinders. This
is outlined in the next section. Insights gained from detailed investigations of this
particular flow have subsequently been used to shed light on other flows and these
will be commented on.

7.1 Taylor–Couette flow

Taylor–Couette flow is concerned with flow between concentric rotating
cylinders. It has a long and interesting history dating from the original work
of Taylor [36] in the 1920s with over 1000 papers written on the topic, many
of which are reviewed by DiPrima and Swinney [8] and Tagg [34]. We will
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Figure 7.1. A schematic diagram of the Taylor–Couette apparatus.

concentrate on a particularly simple version of the problem where the inner
cylinder rotates and the outer is held fixed. A schematic diagram of the set-up is
shown in figure 7.1. The principal dynamical parameter is the Reynolds number
Re, which is defined as

Re = r1ωd

ν
(7.1)

where r1 is the radius of the inner cylinder, ω is the angular rotation speed of that
cylinder, d = r2 − r1 is the width of the gap between the cylinders and ν is the
kinematic viscosity of the fluid. There are also two geometrical parameters. The
aspect ratio � is defined as

� = l

d
(7.2)

where l is the distance between the two horizontal end plates. The radius ratio η

is defined as
η = r1

r2
(7.3)

where r2 is the radius of the stationary outer cylinder. In any single study η is held
fixed and so the problem can be treated as a two-parameter problem in practice.
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Unlike many other outstanding problems in physics, the equations of motion
of fluid flows, the Navier–Stokes equations, are generally accepted as being a
good model which ought to be able to describe the observed behaviour. The
principal difficulty arises in obtaining solutions to these equations for situations
appropriate to realistic flows. A distinct advantage of the Taylor–Couette system
is that modern numerical methods can be used to obtain solutions to the equations
set on physically relevant boundary conditions. Quantitative comparison can
then be made between the numerical predictions and observations from carefully
controlled experiments. Namely, the only free parameter available is the viscosity
of the fluid which can be determined independently. Hence, this approach
provides an interesting challenge since the opportunity for absolute quantitative
comparison between calculation on the full equations of motion and experiment
is quite rare in fluid mechanics.

Taylor–Couette flow is often cited as a typical example of transition to
turbulence via the Ruelle, Takens, Newhouse (RTN) route where disordered
motion arises in the form of a strange attractor after a finite number of Hopf
bifurcations as Re is increased [30, 31]. This is by way of contrast with Landau’s
ideas [19] of transition via an infinite sequence of Hopf bifurcations which arise
sequentially over a finite range of Re so that a continuum of modes are excited.
The idea that a few modes could be responsible for turbulence was revolutionary
and created significant impact. The important work of Gollub and Swinney [12]
on Taylor–Couette flow provided evidence to support this finite-dimensional idea
which, in many ways, is more appealing than the continuum approach. However,
I have never been able to convince myself of the merit of Taylor–Couette flow as
an exemplar of the RTN transition to chaos since our experimental investigations
suggested that the temporal behaviour may contain some non-generic features
[25] that are discussed later. As with many things in research, it is relatively easy
to be negative and express what you believe to be not so. It has taken me twenty
years to try and understand what is actually going on and to make a more positive
statement.

Our approach has been to treat the Taylor–Couette flow as a laboratory
model of the Navier–Stokes equations. As an experimentalist it is comforting
that one can always relate back to these equations and, in particular, compare
them with the results of numerical calculations. What we focus on primarily in
our work is seeking codimension-two points where paths of qualitatively different
bifurcations meet in control parameter space [14]. These special points mark the
creation of centres of global homoclinic bifurcations that result in robust chaos
of the type commonly found in ODE models. In practical terms, if a complex
dynamical landscape is encountered it is prudent to identify the waymarkers, and
codimension-two points provide them. The objective is to seek organizing centres
in the underpinning solution structure which pull together the various strands of
behaviour such as period-doubling and intermittency. An attempt may then be
made to draw a connection between the PDEs operating in the experiment and
the ODE models via the discretized equations of motion used in the numerical
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(a) (b)

Figure 7.2. Front view of Taylor–Couette flow, when Re is below the range at which
cells appear (a), and visualization of Taylor cells (b). Reprinted by permission of Oxford
University Press from T Mullin 1993 The Nature of Chaos (Oxford: Oxford University
Press).

investigations. As long as the appropriate physically relevant symmetries are
taken into account in the models, they can be used to great effect in interpreting
and understanding the observations.

7.2 Preliminary observations

Demonstration of the basic features of Taylor–Couette flow is very easy to carry
out in practice. In fact, some years ago Cowels [7], while still at school, produced
some impressive pictures of the flow field between a pair of rotating test tubes
after he read an article of mine [21] in New Scientist. So what is typically
seen? Starting at small Reynolds number the flow is basically featureless as
shown in figure 7.2(a). Increasing Re gives rise to the striking pattern shown
in figure 7.2(b). The fluid used in the photographs contains small anisotropic
platelets that reflect the incident light and thereby highlight the Taylor vortices
which are wrapped around the inner cylinder. If a cross-sectional view is taken
as shown in figure 7.3 secondary vortices are seen in the cylindrical gap. The
main flow travels round with the inner cylinder; superposed on top of this are
the secondary flows, so that a series of toroidal vortices lie stacked upon one
another along the length of the cylinder. Numerical calculations can be carried
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(a) (b)

Figure 7.3. A cross-sectional view of Taylor cells (a) shown in comparison with calculated
streamlines (b). Reprinted by permission of Oxford University Press from T Mullin 1993
The Nature of Chaos (Oxford: Oxford University Press).

out on this flow, and a comparison of a typical streamline and flow visualization
pattern is shown in figure 7.3. The vortices are approximately square in cross
section when Re is increased smoothly. However, the flow exhibits multiplicity
or non-uniqueness and many other stable steady states exist, each of which may
be created by discontinous jumps in Re as discussed in [4].

When the Reynolds number is increased above a critical value, travelling
waves appear as shown in figure 7.4(a). The waves travel at a fixed ratio of
the rotation rate of the inner cylinder and, as for the steady flows, there is non-
uniqueness in the number and speed ratios of the waves. Further increase in Re
leads to the flow becoming quasi-periodic as shown in figure 7.4(b). Now there are
two incommensurate frequencies present and the snapshot shown in figure 7.4(b)
has been chosen to represent this state. A more complicated flow state then arises
at higher Re, which appears to be irregular as shown in figure 7.5. In practice, the
Taylor vortex structure is very evident but the small-scale disordered motion can
be revealed in short time exposure photographs such as figure 7.5.

These alluring images give a vivid impression of an apparently simple
sequence of the breakdown from order to disorder as the Reynolds number
is increased. It may perhaps reasonably be thought that one only needs to
establish whether the sequence of Hopf bifurcations which gives rise to the
waves is finite or not. However, significant difficulties arise when taking Taylor–
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(a) (b)

Figure 7.4. Front view of Taylor–Couette flow with travelling waves (a), and visualization
of a quasi-periodic flow (b). Reprinted by permission of Oxford University Press from
T Mullin 1993 The Nature of Chaos (Oxford: Oxford University Press).

Couette flow from this demonstration level to a scientific experiment from which
repeatable quantitative measurements may be made. It is an enormous technical
challenge where all length scales, temperatures, speeds etc must be accurately
controlled. Equally important, the rich tapestry of static and dynamic states must
be appreciated since both the number of fixed points and complicated dynamical
attractors increase rapidly with Re, so that exacting control of the experiment is
vital.

Our observations [25] suggested that the sequence highlighted in these
photographs was rather special. The waves were observed to appear and disappear
over ranges of Reynolds number with the characteristics of sequences of resonant-
type behaviour. This is a consequence of SO(2)-symmetry in the azimuthal
direction around the annular gap. The stability of a prescribed steady cellular
state may be tested by increasing Re until travelling waves appear at a defined
critical value. The process can then be repeated over the range of aspect ratios for
which the particular steady mode exists and the resulting stability limits are found
to be typically of the form shown in figure 7.6 for four different steady states [24].
They have the appearance of a set of resonance curves and have been calculated
numerically for other parameter ranges [18]. Hence we claim that the waves are
special features of the geometry so that the dynamics associated with them are
non-generic.
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Figure 7.5. Disordered motion in Taylor–Couette flow. Reprinted by permission of Oxford
University Press from T Mullin 1993 The Nature of Chaos (Oxford: Oxford University
Press).

7.3 Symmetry considerations

In my view the most important symmetry in this flow is mirror-plane �2-
symmetry as illustrated in figure 7.7 where we show a pair of asymmetric four-cell
states that break the mirror plane symmetry of the end boundaries. Any model
that is to be used to describe an aspect of Taylor–Couette flow ought to contain
this simple discrete symmetry since it is the breaking of this which appears to
control the important dynamics. Even cell non-trivial cellular states break this
symmetry through pitchfork bifurcations. At these bifurcation points, initially
symmetric flows break the midplane symmetry when Re is varied to form pairs
of asymmetric states. In practice, the bifurcations are disconnected by small
imperfections in the experiment which is generally observed to be at the level of a
few percent. There are many other examples of �2-symmetry breaking pitchfork
bifurcations in fluid flows, including open flows [9,32]. It has been my experience
that whenever a simple symmetry is present in a fluid flow, the tendency will be
for the motion to break the symmetry in the nonlinear regime, that is, asymmetric
states are more commonly found than symmetric ones.
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Figure 7.6. The experimentally determined critical Reynolds numbers for the onset
of travelling waves plotted as a function of aspect ratio for four different steady
modes. Reprinted by permission from T Mullin and T B Benjamin 1980 The transition
to oscillatory motion in the Taylor experiment Nature 288 567–9 c©1980 Macmillan
Publishers Ltd.

Figure 7.7. A pair of asymmetric four-cell states that break the midplane mirror symmetry.

7.4 Codimension-two bifurcations

Here we provide a brief outline of experimental and numerical evidence of
codimension-two bifurcations. The central idea is to seek organizing centres [14]
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Figure 7.8. Experimental and numerical bifurcation set for the symmetry breaking
saddle-node interaction. The solid curves are numerically calculated and the points are
all experimental. ADE is the path of axisymmetric Hopf bifurcations, FD the path of Hopf
bifurcations to wavy oscillations, AB and AC the paths of pitchfork and saddle-nodes,
respectively. The further set of experimental points in the centre of the figure are torus
bifurcations. Reproduced from T Mullin, K A Cliffe and G Pfister 1987 Phys. Rev. Lett.
58 2212–15 c©1987 by the American Physical Society.

for the dynamics to see whether the underpinning solution structure can provide
indications of the type of behaviour one might expect by appealing to relevant
ODE models. Indeed, a long-term goal was to perform a centre manifold
reduction on the discretized equations of motion to attempt to make a connection
between the PDEs and ODE models. After all, there exists a zoo of different types
of dynamics in these problems over very small parameter ranges. What hope is
there for understanding such problems if, every time an experiment is performed,
different sorts of behaviour are observed? A reductionist view would suggest that
there may be a unifying structure and the tools of experiment, numerics and ODE
models are available to help uncover it.

The two parameters which may be varied most usefully in Taylor–Couette
flow are the aspect ratio �, and the Reynolds number Re. The example we have
chosen is the interaction between a symmetry breaking pitchfork and saddle-
node bifurcation which results in the necessary creation of a path of Hopf
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Figure 7.9. Schematic bifurcation diagram of saddle-node pitchfork interaction.

bifurcations [26]. The bifurcation set for the interaction is shown in figure 7.8
where excellent quantitative agreement between experimental and numerical
results can be seen. The set consists of a curve of saddle-nodes AB and a curve
of pitchforks AC, and the two curves meet at the codimension-two point near
the point labelled A in figure 7.8. Variation of the control parameters moves the
pitchfork from the stable to the unstable side of the saddle-node. The branches
that originate at the pitchfork on the stable surface are stable to both symmetric
and antisymmetric perturbations as indicated in the schematic bifurcation diagram
in figure 7.9. However, when the pitchfork moves on to the unstable surface the
branches will both become doubly unstable.

Following an argument from Guckenheimer [13] these branches may be
restabilized through a Hopf bifurcation as shown schematically in figure 7.9.
This prediction from the model is borne out by the experimental and numerical
results from the Navier–Stokes equations as shown in figure 7.8, where ADE is
the path of predicted Hopf bifurcations. The oscillations which arise at these Hopf
bifurcations are interesting in that they are axisymmetric and their frequency goes
to zero at the codimension-two point. There are also secondary Hopf bifurcations
to travelling waves and they interact with the axisymmetric oscillation producing
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a curve of torus bifurcations in the experiment. However, the essential issue is that
the mechanism based on ideas from an ODE model correctly predicts the creation
of a curve of Hopf bifurcations at which novel axisymmetric oscillations originate
in the experiment.

The axisymmetric oscillations discussed here turn out to be rather common
in Taylor–Couette flows and their variants. The most recognizable characteristic,
which makes it relatively easy to differentiate between them and the standard
travelling waves, is their very low frequency. This has led to them being called
a very-low-frequency or VLF-mode by Pfister et al [5]. These oscillations are
important in that they can lead to global bifurcations that are known to play an
important role in organizing the dynamics originating in the local bifurcation
structure of dynamical systems [14]. Specifically we will first consider the case
where a periodic orbit merges with a saddle point as a parameter of the system
is varied. In the simple planar case, the amplitude of the orbit may grow as a
parameter is increased and its period will tend to infinity as the distance between
the orbit and the saddle point diminishes. A more complex bifurcation structure
can arise in the case of three and more dimensions [33]. Depending on the
eigenvalues of the saddle point a Sil’nikov wiggle involving period doubling
sequences, folds and chaotic attractors can form around the homoclinic orbit
[11, 16, 23]. It has been found that homoclinic orbits act as organizing centres
for the low-dimensional dynamics of physical systems. Examples of these have
been observed in lasers [2], chemical oscillators [3,15] electronic circuits [16,17]
and fluid flows [28].

The particular case we will focus on here is for the interaction between an
axisymmetric oscillation created by the mechanism outlined earlier which then
interacts with a saddle-node. The flow configuration is Taylor–Couette flow where
both ends are also made to rotate forming a rotating annulus; details may be found
in [35]. A three-dimensional model that is appropriate for such interactions has
been produced and studied numerically [20]. It is

Ẋ = X Z − WY

Ẏ = XW + Y Z

Ż = P + Z − 1
3 Z3 − (X2 + Y 2)(1 + QX + E Z)

where W = 10, E = 0.5, Q = 0.7 and P is the bifurcation parameter. The
parameter values have been chosen with guidance from the experiments. A
prediction of models of this type is that low-dimensional chaos will arise through
period-doubling [20] after the torus has become locked. This sequence has indeed
been observed in the vicinity of the respective codimension-two point and details
can be found in [22]. We show an example of a chaotic attractor formed at the
end of such a sequence in figure 7.10. In principle, it is possible to produce such a
model by applying Lyapunov–Schmidt reduction to the discretized Navier–Stokes
equations used in the numerical study. This has been performed by Cliffe [6] who
found behaviour consistent with the experiment. Unfortunately, the parameters
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Figure 7.10. A reconstructed attractor from the rotating annulus experiment at
Re = 132.7, � = 4.25 showing near-homoclinic chaos. Reproduced from T Mullin
1991 Finite dimensional dynamics in Taylor–Couette flow IMA J. Appl. Math. 46 109–19
by permission of the Institute of Mathematics and its Applications.

of the model are nonlinear combinations of Re and � and so establishing a
connection between the models, numerics and experiment remains an outstanding
challenge.

The robustness of Sil’nikov dynamics is illustrated in figure 7.11 where we
show reconstructed attractors from two other fluid flows: electrohydrodynamic
convection in a nematic liquid crystal [29] and convection in a liquid metal
with an applied magnetic field [27]. The bifurcation structure that underpins
the illustrated dynamics has been studied using the combined numerical and
experimental approach developed for the Taylor–Couette problem, and it is
encouraging that this has led to the uncovering of robust homoclinic dynamics.

The results of an experimental investigation of the dynamical behaviour in
the vicinity of a pair of codimension-two points in the rotating annulus flow is
shown in figure 7.12. The paths of experimental points consist of primary and
secondary Hopf bifurcations together with boundaries of chaotic behaviour. The
details are unimportant here and the principal point of interest is the existence
of qualitatively different dynamical behaviour in neighbouring ranges of control
parameter space. These are torus-doubling, homoclinicity and intermittency
which all emanate from the codimension-two points showing that the global
behaviour is controlled by the local bifurcation structure.

These observations give rise to interesting questions concerning the system
size. If the experiment is made very large, presumably the number of such
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(a) (b)

Figure 7.11. Sil’nikov chaos in electrohydrodynamic convection in a nematic liquid
crystal (a), and in convection in liquid gallium in the presence of a magnetic field (b); see
also colour plate 2. Reproduced from T Mullin, A Juel and T Peacock 2001 Sil’nikov chaos
in fluid flows Intermittency in Turbulent flows ed C Vaccilicos (Cambridge: Cambridge
University Press) c©2001 by Cambridge University Press.

Figure 7.12. Experimental data measured in the vicinity of the Hopf/saddle-node
codimension-two points. The approximate locations of three different routes to chaos
(homoclinic, torus doubling and intermittency) are indicated.

codimension-two points and associated dynamical behaviour will grow rapidly.
Hence, the observed dynamics which is apparently high-dimensional may result
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0

1

10

Figure 7.13. Gluing of two periodic orbits to form a single large orbit as a parameter is
varied. Reproduced from J Abshagen, G Pfister and T Mullin 2001 Phys. Rev. Lett. 87
224501 c©2001 by the Americal Physical Society.

from overlapping low-dimensional attractors, each of which contains qualitatively
different dynamical behaviour. Alternatively, it is not clear whether all types of
low-dimensional dynamics will persist in large systems. It is this aspect that we
will comment on next.

7.5 Imperfect gluing bifurcations

Gluing bifurcations commonly arise in systems that undergo pitchfork symmetry-
breaking bifurcations followed by pairs of Hopf bifurcations on each of the
asymmetric branches. The resulting periodic orbits can grow and glue together
via a homoclinic orbit to form a single large orbit when the bifurcation parameter
is varied as shown in figure 7.13. This example is taken from experiments on an
nonlinear electronic oscillator [10]. The period of the two individual orbits, which
are labelled 0 and 1 in figure 7.13, will approach infinity at the gluing bifurcation
and the period of the large-scale orbit will decrease from infinity. Simple gluing
such as this is valid for a system with perfect symmetry but this ideal symmetry
never exists in an experiment. We have a reasonable approximation to the
ideal case in the oscillator experiment in some parameter ranges. However,
imperfections are always present and the effects of imperfections on gluing
bifurcations are discussed in [10].

Taylor–Couette flows have reflectional �2-symmetry and are thus prime
candidates for exhibiting this behaviour. The particular example we have studied
is standard Taylor–Couette flow with an aspect ratio of 8. Details may be found
in [1]. The flow comprises of 10 Taylor vortices and our earlier results [4] suggests
that there may be up to 25 fixed points available to the system. These will not all
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0

10

1

(a)

(b)

Figure 7.14. Phase portraits for the axisymmetric period orbits: separate orbits 1 and 0
at Re = 378.3 (a), and a large orbit 10 together with a separate orbit 0 at Re = 400.8
(b). Reproduced from J Abshagen, G Pfister and T Mullin 2001 Phys. Rev. Lett. 87 224501
c©2001 by the Americal Physical Society.

be stable, of course, but with so many fixed points in the vicinity one might expect
the flow to be rather complicated. Further complications are expected since our
investigation was performed in the dynamical regime where many attractors will
co-exist.

Note that the Reynolds numbers are far in excess of those used in the study
of the low-dimensional dynamics. The gluing process was studied in the presence
of travelling waves of the type discussed earlier. In practice, we found that they
played no role in the dynamics and so we simply filtered this component out of
the time series. The gluing process involves the axisymmetric oscillation alone
and this appears to ride on top of the travelling wave without interacting with
it. The axisymmetric oscillation has the same characteristics as those described
previously which were created at the pitchfork/saddle-node interaction. Examples
of the orbits 0, 1 and 10 are shown in figure 7.14.

At a slightly greater value of � the gluing process involves chaotic motion
as shown in figure 7.15. According to the theory [10], when imperfections
are present the gluing process will involve irregular orbits in parameter ranges
between the individual and glued orbits. This is indeed the case and, moreover,
we also observed complicated periodic orbits such as 100 as shown in figure 7.15.
The overall agreement between theory and experiment is good and includes the
creation of extra complicated periodic orbits in intervening parameter ranges. The
fact that we can observe the details of this procedure suggests that it is robust,
and it is interesting that it should be realizable in a system where many other
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Figure 7.15. The sequence of dynamical states for � = 8.2: periodic orbit 0 at Re = 459.9
(a) chaos at Re = 460.7 (b), and orbit 100 at Re = 462.4 (c). Reproduced from
J Abshagen, G Pfister and T Mullin 2001 Phys. Rev. Lett. 87 224501 c©2001 by the
Americal Physical Society.

possibilities are available. Therefore, we suggest that it may have relevance to a
wider class of fluid flows.

7.6 Conclusion

The principal conclusion to be drawn is that global bifurcations are robust and
apply to a variety of different flows over a range of length scales, that is, in both
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Figure 7.16. Turbulent motion in a box.

small and large boxes. Indeed, I have used many of the ideas outlined here to
help industrialists with some practical flows. Notions from dynamical systems
theory certainly have been helpful in gaining understanding of complicated fluid
flows provided the models contain the appropriate symmetries. A physically
relevant example is mirror-plane �2-symmetry which many fluid flows contain.
The mathematical difficulty is that the breaking of this symmetry often takes place
on non-trivial flows so that it is difficult to justify the application of the theory.
Despite this, progress can be made with non-trivial complicated flows.

The ideas of low-dimensional dynamics and, in particular, chaos has not shed
much light on what has often been called the last unresolved problem of classical
physics: turbulence. Flows such as the example shown in figure 7.16 remain
largely mysterious at least from a dynamical systems perspective. This is more a
measure of the depth of the problem which will probably require a combination
of innovative ideas for a significant breakthrough to be made. I remain convinced
that an essential ingredient of this will be based in nonlinear dynamical systems.
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Chapter 8

Time-reversed acoustics and chaos

Mathias Fink
Laboratoire Ondes et Acoustique

It is well known that the acoustic wave equation, in a non-dissipative
heterogeneous medium, is invariant under a time-reversal operation. Indeed,
it contains only a second-order time derivative operator. Therefore, for every
burst of sound p(�r , t) diverging from a source—and possibly reflected, refracted
or scattered by any heterogeneous media—there exists, in theory, a set of
waves p(�r ,−t) that precisely retrace all of these complex paths and converge
in synchrony at the original source as if time were going backwards. Here,
p(�r , t) ∈ � is a function of space and time. In this chapter, we take r ∈ �

3 ,
but the time-reversal symmetry is still valid if the space dimension is one or two.
This gives the basic idea of time-reversal acoustics.

Taking advantage of these two properties, the concept of a time-reversal
mirror (TRM) has been developed and several devices have been built to illustrate
the efficiency of this concept [10–12]. In such a device, an acoustic source,
located inside a lossless medium, radiates a brief transient pulse that propagates
and is distorted by the medium. If the acoustic field can be measured at every point
of a closed surface surrounding the medium (an acoustic retina), and retransmitted
through the medium in a time-reversed chronology, then the wave will travel back
to its source and recover its original shape. Note that it requires both time-reversal
invariance and spatial reciprocity [13] to reconstruct the exact time-reversed wave
in the whole volume by means of a two-dimensional time-reversal operation.
From an experimental point of view, a closed TRM consists of a two-dimensional
piezoelectric transducer array that samples the wave field over a closed surface.
An array pitch of the order of 1

2λ, where λ is the smallest wavelength of the
pressure field, is needed to ensure the recording of all the information on the
wave field. Each transducer is connected to its own electronic circuitry that
consists of a receiving amplifier, an A/D converter, a storage memory and a
programmable transmitter able to synthesize a time-reversed version of the stored
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signal. Unfortunately, closed TRMs are difficult to realize in practice and the TR
operation is usually performed on a limited angular area, thus limiting reversal
and focusing quality. A TRM typically consists of some hundred elements or
time-reversal channels.

We will discuss two types of time-reversal experiments conducted with
TRMs. It will be shown that the wave reversibility is improved if the wave
traverses a random multiple-scattering medium before arriving at the transducer
array. The multiple-scattering processes allow redirection of parts of the initial
wave towards the TRM that would normally miss the transducer array. After
the time-reversal operation, the whole multiple-scattering medium behaves as a
coherent focusing source, with a large angular aperture for enhanced resolution.
As a consequence, in multiple-scattering media, one is able to reduce the size and
the complexity of the TRM. The same kind of improvement may be obtained
for waves propagating in highly reverberant media such as closed cavities or
waveguides. Multiple reflections along the medium boundaries significantly
increase the apparent aperture of the TRM, as will be shown by a set of
experiments conducted in chaotic cavities. We will see that for a reflecting cavity
with chaotic boundaries, a one-channel TRM is sufficient to ensure reversibility
and optimal focusing.

8.1 Time-reversal mirrors

The basic theory employs a scalar wave formulation p(�r, t). Hence, this theory
is strictly applicable to acoustic or ultrasonic propagation in fluid. However, the
basic ingredients and conclusions apply equally well to elastic waves in solids and
to electromagnetic fields.

In any propagation experiment, the solution p(�r , t) in the fluid is uniquely
determined by the acoustic sources and the boundary conditions. The goal, in
time-reversal experiments, is to modify the initial conditions in order to generate
the dual solution p(�r , T − t), where T is a delay due to causality requirements.
Cassereau and Fink [2] and Jackson and Dowling [13] performed a theoretical
study of the conditions necessary to ensure the generation of p(�r , T − t) in the
entire volume of interest.

Although reversible acoustic retinas usually consist of discrete elements, it
is convenient to examine the behaviour of idealized continuous retinas, defined by
two-dimensional surfaces. In the case of a time-reversal cavity, we assume that the
retina completely surrounds the source. The formalism of a basic time-reversal
experiment can be described by the following two-step process.

In the first step, a point-like source located at �r0 inside a volume V
surrounded by the retina surface S, emits a pulse at t = t0 ≥ 0. The wave
equation in a medium of density ρ(�r) and compressibility κ(�r) is given by

(Lr + Lt )p(�r , t) = −Aδ(�r − �r0)δ(t − t0) (8.1)
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with

Lr = �∇ ·
(

1

ρ(�r) �∇
)

and Lt = −κ(�r)δt t .

Here, A is a dimensional constant that ensures the compatibility of physical units
between the two sides of the equation; for simplicity, this constant will be omitted
in the following. The solution to (8.1) reduces to Green’s function G(�r, t | �r0, t0).
Classically, G(�r , t | �r0, t0) is written as a diverging spherical wave (homogeneous
and free-space case) with additional terms that describe the interaction of the field
itself with the inhomogeneities (multiple scattering) and the boundaries.

We assume that we are able to measure the pressure field and its normal
derivative at any point on the surface S during the interval [0, T ]. As time-
reversal experiments are based on a two-step process, the measurement step must
be limited in time by a parameter T . In all that follows, we suppose that the
contribution of multiple scattering decreases with time, and that T is chosen such
that the information loss can be considered as negligible inside the volume V .

During the second step of the time-reversal process, the initial source at �r0 is
removed and we create monopole and dipole sources on the surface of the cavity
that correspond to the time-reversal of those same components measured during
the first step. The time-reversal operation is described by the transformation
t → T − t and the secondary sources are{

ps(�r , t) = G(�r , T − t | �r0, t0)

∂n ps(�r , t) = ∂n G(�r, T − t | �r0, t0).

In this equation, ∂n is the normal derivative operator with respect to the normal
direction �n to S, oriented outward. Due to these secondary sources on S, a time-
reversed pressure field ptr(�r1, t1) propagates inside the cavity. It can be calculated
using a modified version of the Helmholtz–Kirchhoff integral

ptr(�r1, t1) =
∫ ∞

−∞
dt
∫ ∫

S
[G(�r1, t1 | �r , t)∂n ps(�r , t)

− ps(�r , t)∂n G(�r1, t1 | �r , t)] d2�r
ρ(�r ) .

Spatial reciprocity and time-reversal invariance of the wave equation (8.1) yield
the following expression:

ptr(�r1, t1) = G(�r1, T − t1 | �r0, t0)− G(�r1, t1 | �r0, T − t0). (8.2)

This equation can be interpreted as the superposition of incoming and outgoing
spherical waves, centred at the initial source position. The incoming wave
collapses at the origin and is always followed by a diverging wave. Thus the
time-reversed field, observed as a function of time, from any location in the cavity,
shows two wavefronts, where the second one is the exact replica of the first one,
multiplied by −1.
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If we assume that the retina does not perturb the propagation of the field
(free-space assumption) and that the acoustic field propagates in a homogeneous
fluid, the free-space Green function G reduces to a diverging spherical impulse
wave that propagates with a sound speed c. Introducing its expression in (8.2)
yields the following formulation of the time-reversed field:

ptr(�r1, t1) = K (�r1 − �r0, t1 − T + t0)

where K (�r, t) is the kernel distribution (the propagator), given by

K (�r, t) = 1

4π |�r |δ
(

t + |�r |
c

)
− 1

4π |�r |δ
(

t − |�r |
c

)
. (8.3)

The kernel distribution corresponds to the difference between two spherical
impulse waves. One of these converges to the origin of the spatial coordinate
system, that is, the location of the initial source, and the other diverges from
it. Due to this superposition, the pressure field remains finite for all time
throughout the cavity, although the converging and diverging spherical waves
show a singularity at the origin.

If we now consider a wide-band excitation function instead of a Dirac
distribution δt , then the two wavefronts overlap near the focal point, resulting
in a temporal distortion of the initial acoustic signal which leads to a temporal
derivation exactly at the focal point. If one considers a monochromatic excitation
of pulsation ω, then the time-reversed field has an amplitude given by the Fourier
transform of (8.3) over the time variable t :

K̃ (�r , ω) = 1

2iπ

sin (ω|�r |/c)

|�r | = 1

iλ

sin (k|�r |)
k|�r |

where λ and k are the wavelength and wavenumber respectively. As a
consequence, the time-reversal process results in a pressure field that is effectively
focused on the initial source position, but with a focal spot size limited to half the
wavelength.

The apparent failure of the time-reversed operation that leads to diffraction
limitation can be interpreted in the following way. The second step described
here is not strictly the time-reversal of the first step—during the second step of an
ideal time-reversed experiment, the initial active source (that injects some energy
into the system) must be replaced by a sink (the time-reversal of a source). An
acoustic sink is a device that absorbs all arriving energy without reflecting it.
Taking into account the source term in the wave equation, reversing time leads
to the transformation of sources into sinks. Therefore, (8.1) which describes the
wave equation with a source term, is transformed in the time-reversal operation to

(Lr + Lt )p(�r,−t) = −Aδ(�r − �r0)δ(t − t0).

To achieve a perfect time reversal experimentally, the field on the surface of the
cavity has to be time-reversed, and the source has to be transformed into a sink.
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Only in this way may one achieve time-reversed focusing below the diffraction
limit. The role of the new source term δ(�r − �r0) is to transmit a diverging wave
that exactly cancels the usual outgoing spherical wave.

Taking into account the evanescent waves concept, one can explain the
necessity of replacing a source by a sink in the complete time-reversed operation
as follows. In the first step a point-like source of size quite smaller than the
transmitted wavelengths radiates a field whose angular spectrum contains both
propagating and evanescent waves. The evanescent wave components are lost
after propagation over some wavelengths. Hence, the time-reversed field that
is retransmitted by the surface of the cavity in the time-reversed step, does not
contain evanescent components. The role of the sink is to be a source modulated
by δ(−t − t0) that exactly radiates, with the appropriate timing, the evanescent
waves that have been lost during the first step. This way the resulting field
contains the evanescent part that is needed to focus below diffraction limits. With
De Rosny, we recently built such a sink in our laboratory and we observed focal
spot sizes well below diffraction limits (typically of the order λ/20) [17].

This theoretical model of the closed time-reversal cavity (TRC) is
interesting, because it offers an understanding of the basic limitations of the time-
reversed self-focusing process. However, it has several limitations, particularly in
comparison with the classical experimental set-up which usually works without
an acoustic sink:

• It can be proven that it is not necessary to measure and time-reverse both
the scalar field (acoustic pressure) and its normal derivative on the cavity
surface: measuring the pressure field and re-emitting the time-reversed field
in the backward direction yield the same results, provided the evanescent
parts of the acoustic fields have vanished (propagation along several
wavelengths) [3]. This comes from the fact that each transducer element
of the cavity records the incoming field from the forward direction, and
retransmits it (after the time-reversal operation) in the backward direction
(and not in the forward direction). The change between the forward and the
backward direction replaces the measurement and the time-reversal of the
normal derivative.

• From an experimental point of view, it is not possible to measure and re-emit
the pressure field at any point of a two-dimensional surface: experiments
are carried out with transducer arrays that spatially sample the receiving and
emitting surface. The spatial sampling of the TRC by a set of transducers
may introduce grating lobes. These lobes can be avoided by using an array
pitch smaller than 1

2λmin, where λmin is the smallest wavelength of the
transient pressure field. If this is the case, then each transducer senses all
the wavevectors of the incident field.

• The temporal sampling of the data recorded and transmitted by the TRC has
to be at least of the order of 1

8 Tmin, with Tmin the minimal period, to avoid
secondary lobes [14].
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• In general, it is difficult to use acoustic arrays that completely surround the
area of interest and the closed TRM is usually replaced by a finite angular
aperture TRM. As a result, the size of the focal spot, which is usually
related to the mirror angular aperture observed from the source, increases
substantially.

8.2 Time-reversal experiments

8.2.1 Time reversal through random media

Derode et al [4] carried out the first experimental demonstration of the
reversibility of an acoustic wave propagating through a random collection of
scatterers with strong multiple-scattering contributions. In an experiment such
as the one depicted in figure 8.1, a multiple-scattering sample is placed between
the source and an array made of 128 elements. The whole set-up is in a water tank.
The scattering medium consists of a set of 2000 randomly distributed parallel steel
rods (diameter 0.8 mm). The sample thickness is L = 40 mm, and the average
distance between rods is 2.3 mm. The source is 30 cm away from the TRM and
transmits a short (1 µs) ultrasonic pulse (3 cycles of 3.5 MHz).

Figure 8.2(a) shows the signal received by one of the TRM elements when
the source radiates a 1 µs signal through water. Figure 8.2(b) shows the new
waveform received by the element when a scattering medium is introduced
between the source and the TRM. The signal spreads over more than 200 ms,
i.e. roughly 200 times the initial pulse duration. After the arrival of a first
wavefront corresponding to the ballistic wave, a long incoherent wave is observed,
which results from the multiply scattered contribution. In the second step of the
experiment, all 128 signals are time-reversed and transmitted. A hydrophone
measures the time-reversed wave around the source location. Two different
aspects of this problem have been studied: the property of the signal recreated
at the source location (time compression) and the spatial property of the time-
reversed wave around the source location (spatial focusing).

The time-reversed wave traverses the rods back to the source, and the signal
received at the source is represented in figure 8.2(c). An impressive compression
is observed, because the received signal lasts about 1 µs, as opposed to over
200 µs for the scattered signals. The pressure field is also measured around
the source in order to get the directivity pattern of the beam emerging from the
rods after time-reversal; see figure 8.3. Surprisingly, multiple scattering has not
degraded the resolution of the system. Indeed, the resolution is found to be
six times finer (bold line) than the classical diffraction limit (thin line)! This
effect does not contradict the laws of diffraction, though. The intersection of the
incoming wavefront with the sample has a typical size D. After time reversal, the
waves travel back along the same scattering paths and focus at the source as if
they were passing through a converging lens with size D. The angular aperture
of this pseudo-lens is much wider than that of the array alone, which implies an
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TRM array

source

TRM

hydrophone

Figure 8.1. Sketch of the multiple-scattering experiment.

improvement in resolution. In other words, because of the scattering sample, the
array is able to detect higher spatial frequencies than in a purely homogeneous
medium. High spatial frequencies that would have been lost otherwise are
redirected towards the array, due to the presence of the scatterers in a large area.

This experiment also shows that the acoustic time-reversal experiments
are surprisingly stable. The recorded signals were sampled with 8-bit analog-
to-digital converters, which introduce discretization errors, but the focusing
process still works. One can compare this with time-reversal experiments
involving particles moving like balls on an elastic billiard of the same geometry.
Computation of the direct and reversed particle trajectories moving in a plane
among a fixed array of some thousand convex obstacles (a Lorentz gas) shows that
the complete trajectory is irreversible. Indeed, such a Lorentz gas is a well-known
example of a chaotic system that is highly sensitive to initial conditions. The finite
precision of the computer leads to an error in the trajectory of the time-reversed
particle that grows exponentially with the number of scattering encounters.



194 Mathias Fink

(a)

(b)

(c)

Figure 8.2. Signal transmitted in water and received at transducer 64 (a). Signal
transmitted through the multiple-scattering sample and received at transducer 64 (b).
Time-reversed signal at the source (c).

Snieder and Scales [19] performed numerical simulations to point out the
fundamental difference between waves and particles in the presence of multiple
scattering by random scatterers. In fact, they used time reversal as a diagnostic
of wave and particle chaos: in a time-reversal experiment, a complete focusing
on the source will only take place if the velocity and positions are known exactly.
The degree δ to which errors in these quantities destroy the quality of focusing
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Figure 8.3. Directivity patters of the time-reversed field.

is a diagnostic of the stability of the wave or particle propagation. Intuitively,
the consequences of a slight deviation δ in the trajectory of a billiard ball will
become more and more pronounced as time goes on, and as the ball undergoes
more and more collisions. Waves are much less sensitive to initial conditions
than particles. Specifically, in a multiple-scattering situation, the critical length
scale δ that causes a signification deviation at a particular time t in the future,
decreases exponentially with time in the case of particles, but it only decreases as
the square-root of time for waves in the same situation.

Waves and particles react in fundamentally different ways to perturbations
of the initial conditions. The physical reason for this is that each particle follows
a well-defined trajectory whereas waves travel along all possible trajectories,
visiting all the scatterers in all possible combinations. While a small error in the
initial velocity or position makes the particle miss one obstacle and completely
change its future trajectory, the wave amplitude is much more stable because it
results from the interference of all the possible trajectories and small errors in the
transducer operations will sum up in a linear way resulting in small perturbation.

8.2.2 Time-reversal as a matched-filter or time correlator

As with any linear and time-invariant process, wave propagation through a
multiple-scattering medium may be described as a linear system with different
impulse responses. If a source, located at �r0 sends a Dirac pulse δ(t), then the j th
transducer of the TRM will record the impulse response h j (t) that corresponds,
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for a point transducer, to the Green function G(�r , t | �r0, t0). Moreover, due to
reciprocity, h j (t) is also the impulse response describing the propagation of a
pulse from the j th transducer to the source. Thus, neglecting the causal time
delay T , the time-reversed signal at the source is equal to the convolution product
h j (t) ∗ h j (−t). This convolution product, in terms of signal analysis, is typical
of a matched filter. Given a signal as input, a matched filter is a linear filter
whose output is optimal in some sense. Whatever the impulse response h j (t), the
convolution h j (t) ∗ h j (−t) is maximal at time t = 0. This maximum is always
positive and equal to

∫
h2

j (t) dt , that is, the energy of the signal h j (t). This has
an important consequence. Indeed, with an N-element array, the time-reversed
signal recreated at the source can be written as a sum

ptr(�r0, t) =
j=N∑
j=1

h j (t) ∗ h j (−t).

Even if the h j (t)s are completely random and apparently uncorrelated signals,
each term in this sum reaches its maximum at time t = 0. Hence, all contributions
add constructively near t = 0, while at earlier or later times uncorrelated
contributions tend to destroy one another. Hence, the recreation of a sharp
peak after time-reversal on an N-element array can be viewed as an interference
process between the N outputs of N matched filters.

The robustness of the TRM can also be accounted for through the matched
filter approach. If, for some reason, the TRM does not exactly retransmit h j (−t),
but rather h j (−t) + n j (t), where n j (t) is an additional noise on channel j , then
the recreated signal becomes

j=N∑
j=1

h j (t) ∗ h j (−t)+
j=N∑
j=1

h j (t) ∗ n j (t).

The time-reversed signals h j (−t) are tailored to exactly match the medium
impulse response, which results in a sharp peak. Additional small noise is not
matched to the medium and, given the extremely long duration involved, it will
generate a low-level long-lasting background noise rather than a sharp peak.

8.2.3 Time reversal as a spatial correlator

Another way to consider the focusing properties of the time-reversed wave is to
follow the impulse response approach and treat the time-reversal process as a
spatial correlator. If we denote by h′j (t) the propagation impulse response from
the j th element of the array to an observation point (�r , r1) different from the
source location (�r , r0), then the signal recreated at (�r , r1) at time t1 = 0 is

ptr(�r1, 0) =
∫

h j (t)h
′
j (t) dt . (8.4)
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Figure 8.4. Directivity patterns with N = 122 transducer (thin line) and N = 1 transducer
(bold line).

Note that this expression can be used as a way to define the directivity pattern of
the time-reversed waves around the source. Now, due to reciprocity, the source
and the receiver can be exchanged, that is, h′j (t) is also the signal that would be
received at �r1 if the source were the j th element of the array. Therefore, we can
imagine this array element as being the source and the transmitted field as being
observed at the two points �r1 and �r0. The spatial correlation function of this wave
field would be the average 〈h j (t)h′j (t)〉 of the product of the impulse responses
over different realizations of the disorder. Therefore, equation (8.4) can be viewed
as an estimation of this spatial correlation function. Note that in one time-reversal
experiment we only have access to a single realization of the disorder. However,
the ensemble average can be replaced by a time average, by a frequency average
or by a spatial average on a set of transducers. As is quoted in [6]:

In that sense, the spatial resolution of the time-reversal mirror (i.e. the
−6 dB width of the directivity pattern) is simply an estimation of the
correlation length of the scattered wave field.

This has an important consequence. Indeed, if the resolution of the system
essentially depends on the correlation properties of the scattered wave field, it
should become independent of the array’s aperture. This is confirmed by the
experimental results. Figure 8.4 presents the directivity patterns obtained through
a 40 mm thick multiple-scattering sample, using either one array element or all
122 array elements as a TRM. In both cases, the spatial resolution at−6 dB is the
same, namely approximately 0.85 mm. In total contradiction with what happens
in a homogeneous medium, enlarging the aperture of the array does not change
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the −6 dB spatial resolution. However, even though the number N of active array
elements does not influence the typical width of the focal spot, it does have a
strong impact on the background level of the directivity pattern (approximately
−12 dB for N = 1 and approximately −28 dB for N = 122); see also figure 8.4.

Finally, the fundamental properties of time reversal in a random medium
come from the fact that it is both a space and a time correlator. The time-
reversed waves can be viewed as an estimate of the space and time autocorrelation
functions of the waves scattered by a random medium. The estimate becomes
better as the number of transducers in the mirror increases. Moreover, since the
addition of small noise to the scattered signals (e.g. by digitizing on a reduced
number of bits) may alter the noise level, but does not drastically change the
correlation time or the correlation length of the scattered waves, the system is not
sensitive to small perturbations. Even in the extreme case where the scattered
signals are digitized on a single bit, Derode has shown recently that the time and
space resolution of the TRM remain practically unchanged [5], which is striking
evidence for the robustness of wave time reversal in a random medium.

8.3 Time reversal in chaotic cavities

In the time-reversal cavity approach, the transducer array samples a closed surface
surrounding the acoustic source. In the previous section, we saw how the
multiple-scattering processes in a large sample widen the effective TRM aperture.
The same kind of improvement may be obtained for waves propagating in a
waveguide or in a cavity. Multiple reflections along the medium boundaries
significantly increase the apparent aperture of the TRM. The basic idea is to
replace one part of the TR cavity transducers by reflecting boundaries that redirect
one part of the incident wave towards the TRM aperture. Thus spatial information
is converted into the time domain and the reversal quality depends crucially on
the duration of the time-reversal window, i.e. the length of the recording to be
reversed.

Experiments conducted by Roux in rectangular ultrasonic waveguides show
the effectiveness of the time-reversal processing to compensate for multi-path
effects [18]. Impressive time compression has been observed that compensated
for reverberation and dispersion. Furthermore, similar to the multiple-scattering
experiment, the time reversal is focused on a spot that is much thinner than the
one observed in free water. This can be interpreted by the theory of images in a
medium bounded by two mirrors: for an observer located at the source point, the
TRM seems to be escorted by an infinite set of virtual images related to multi-path
propagation. This has lead to an effective aperture that was 10 times larger than
the real aperture.

Acoustic waveguides are currently also found in underwater acoustics,
especially in shallow water, and TRMs can compensate for the multi-path
propagation in oceans that limits the capacity of underwater communication
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systems. The problem arises because acoustic transmissions in shallow water
bounce off the ocean surface and floor, so that a transmitted pulse gives rise to
multiple copies of it that arrive at the receiver. Recently, underwater acoustic
experiments have been conducted by Kuperman and his group from San Diego
University in a 120 m-deep sea water channel, with a 24-element TRM working
at 500 Hz and 3.5 kHz. They observed focusing and multi-path compensation at
distances up to 30 km [15].

In this section, we are interested in another aspect of multiply-reflected
waves; namely, waves confined in closed reflecting cavities such as elastic waves
propagating in a silicon wafer. With such boundary conditions, no information
can escape from the system and a reverberant acoustic field is created. If,
moreover, the cavity satisfies ergodic and mixing properties, and absorption is
negligible, one may hope to collect all information at only one point.

Draeger and Fink [7–9] have shown experimentally and theoretically that, in
this particular case, a time reversal can be obtained using only one time-reversal
channel operating in a closed cavity. The field is measured at one point over
a long period of time and the time-reversed signal is re-emittted at the same
position. The experiment is two-dimensional and has been carried out using
elastic surface waves propagating along a monocrystalline silicon wafer whose
shape is a D-shape stadium. This geometry is chosen to avoid quasi-periodic
orbits. Silicon was selected for its weak absorption properties. The elastic waves
that propagate in such a plate are Lamb waves. An aluminium cone coupled to
a longitudinal transducer generates these waves at one point of the cavity. A
second transducer is used as a receiver. The central frequency of the transducers
is 1 MHz and its bandwidth is 100%. At this frequency, only three Lamb
modes are possible (one flexural and two extensional). The source is isotropic
and considered point-like because the cone tip is much smaller than the central
wavelength. A heterodyne laser interferometer measures the displacement field
as a function of time at different points in the cavity. Assuming that there are
hardly any mode conversions between the flexural mode and other modes at the
boundaries, we only need to deal with one field, namely the flexural-scalar field.

The experiment is again a two-step process as described above; see also
figure 8.5. In the first step, one of the transducers, located at point A, transmits
a short omni-directional signal of duration 0.5 µs into the wafer. Another
transducer, located at point B , observes a very long chaotic signal that results
from multiple reflections of the incident pulse along the edges of the cavity, and
which continues for more than 30 ms corresponding to some hundred reflections
along the boundaries. Then, a 2 ms portion of the signal is selected, time-reversed
and re-emitted at point B . Since the time-reversed wave is a flexural wave that
induces vertical displacements of the silicon surface, it can be observed using the
optical interferometer that scans the surface near point A; see figure 8.5.

One observes both an impressive time compression at point A and a
refocusing of the time-reversed wave around the origin, with a focal spot whose
radial dimension is equal to half the wavelength of the flexural wave; see
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A B

A B
Time reversal

~ 2 ms

Figure 8.5. Time-reversal experiment conducted in a chaotic cavity with flexural waves.
As a first step, a point transducer located at point A transmits a 1 µs long signal. The signal
is recorded at point B by the second transducer. The signal spreads over more than 30 ms
due to reverberation. In the second step of the experiment, a 2 ms portion of the recorded
signal is time-reversed and retransmitted back into the cavity.

figures 8.6(a) and (b). Using reflections at the boundaries, the time-reversed wave
field converges towards the origin from all directions and gives a circular spot,
like the one that could be obtained with a closed time-reversal cavity covered
with transducers. The 2 ms time-reversed waveform is the time sequence needed
to focus exactly on point A.

The success of this time-reversal experiment is particularly interesting for
the following two reasons. First, it proves again the feasibility of time reversal
in wave systems with chaotic ray dynamics. Paradoxically, in the case of one-
channel time reversal, chaotic dynamics is not just harmless, but it is even useful,
because it guarantees ergodicity and mixing. Second, using a source of vanishing
aperture, we obtain an almost perfect focusing quality. The procedure approaches
the performance of a closed TRM, which has an aperture of 360◦. Hence, a one-
point time reversal in a chaotic cavity produces better results than a TRM in an
open system. Using reflections at the edge, focusing quality is not limited to the
aperture and, in addition, the time-reversed collapsing wavefront approaches the
focal spot from all directions.
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Figure 8.6. Time-reversed signal observed at point A. The observed signal is 210 µs long
(a). Time-reversed wave field observed at different times around point A on a square of
15 mm × 15 mm (b).
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Although one obtains excellent focusing, a one-channel time reversal is
not perfect, because a weak noise level can be observed throughout the system.
Residual temporal and spatial side lobes persist even for time-reversal windows
of infinite size. These are due to multiple reflections passing through the locations
of the time-reversal transducers and have been expressed in closed form by
Draeger [8]. Using an eigenmode analysis of the wave field, he shows that, for
long time-reversal windows, there is a saturation regime that limits the signal-to-
noise ratio. The reason is the following: once the saturation regime is reached, all
the eigenmodes are well-resolved. However, A and B are always located at the
nodes of some eigenmodes and these eigenfrequencies cannot be transmitted or
received in the cavity.

8.3.1 Time reversal as a temporal correlator

If we neglect the acousto-electric responses of the transducers and take into
account the modal decomposition of the impulse response h AB (t) on the
eigenmodes �n(�x) of the cavity with eigenfrequency ωn , then we get

h AB (t) =
∑

n

�n(A)�n(B)
sin (ωnt)

ωn
(t > 0).

This signal is recorded at B and a part �T = [t1, t2] is time-reversed and re-
emitted as

h�T
AB (−t) =

{
h(−t) t ∈ [−t1,−t2],
0 otherwise.

Hence, the time-reversed signal at A reads:

p�T
tr (A, t) =

∫ t2

t1
h AB (tR + τ )h AB (τ ) dτ

=
[∑

n

1

ωn
�n(A)�n(B)

][∑
m

1

ωm
�m(A)�m(B)

]
Imn,

with Imn equal to

Imn =
∫ t2

t1
[sin (ωnτ ) sin (ωn[τ + t]) dτ

= 1
2 sin (ωnt)

∫ t2

t1
sin ([ωm − ωn]τ )+ sin ([ωm + ωn]τ ) dτ

+ 1
2 cos (ωnt)

∫ t2

t1
cos ([ωm − ωn]τ )+ cos ([ωm + ωn]τ ) dτ.
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The second term of each integral gives a contribution of order (ωm + ωn)
−1 �

�T , which can be neglected. Thus we obtain the approximation

Imn ≈



sin (ωnt)

2(ωm − ωn)
[− cos ((ωm − ωn)t2)+ cos ((ωm − ωn)t1)]

+ cos (ωnt)

2(ωm − ωn)
[sin ((ωm − ωn)t2)

− sin ((ωm − ωn)t1)] if ωm �= ωn
1
2�T cos (ωntR) if ωm = ωn .

If we assume that the eigenmodes are not degenerate, ωm = ωn ⇔ m = n and the
second term represents the diagonal elements of the sum over n and m. The first
term is only important if the difference ωm − ωn is small, i.e. for neighbouring
eigenfrequencies. In the case of a chaotic cavity, nearest neighbours tend to
repel each other. If the characteristic distance �ω is sufficiently large such that
�T � 1/�ω, then the non-diagonal terms of Imn will be negligible compared to
the diagonal contributions and one obtains

Imn = 1

2
δmn�T cos (ωnt)+ O

(
1

�ω

)
.

Hence, in the limit �T →∞, the time-reversed signal observed at A by a reversal
in B is given by

p�T
tr (A, t) = 1

2
�T

∑
n

1

ω2
n
�2

n (A)�2
n (B) cos (ωnt).

This expression gives a simple interpretation of the residual temporal lobes, which
are observed experimentally in figure 8.6. The time-reversed signal observed
at the origin cannot simply be reduced to a Dirac distribution δ(t). Even for
�T � 1/�ω, it is equal to another cross-correlation product, namely

C�T (t) = h AA(−t)
∗

(�T ) h B B(t)

=
∫ t2

t1
h B B(t + τ )h AA(τ ) dτ

=
[∑

n

1

ωn
�2

n (B)

][∑
m

1

ωm
�2

m(A)

]
Imn

where the impulse responses h AA and h B B describe the backscattering properties
of A and B due to the boundaries of the cavity. Each impulse response is
composed of a first peak at t = 0, followed by multiple reflections that pass over
the source point even after the excitation has ended. Hence, the signal observed
in A, after a Dirac excitation, can be described by h AA(t). Therefore, a perfect
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time-reversal operation (i.e. we simply count time backwards) would give at A
the signal h AA(−t), that is, some multiple reflections with a final peak at t = 0.
For the same reason, the reversed point B cannot exactly transmit a particular
waveform in the cavity. Due to the boundaries, a Dirac excitation at B will
also give rise to a transmitted signal h B B(t). Hence, in the limit as we increase
the length of the time-reversal windows, we get for a one-channel time-reversal
experiment the cavity formula deduced by Draeger [8]:

h AB (−t) ∗ h B A(t) = h AA(−t) ∗ h B B(t).

8.3.2 Time reversal as a spatial correlator

Similar to what was done for the multiple-scattering medium, the focusing
properties of the time-reversed wave can be calculated using the spatial correlator
approach. If we let h A′B(t) denote the propagation impulse response from point B
to an observation point A′ (with coordinates �r1), different from the source location
A, then the time-reversed signal recreated at A′ at time t1 = 0 is

ptr(�r1, t) =
∫

h AB (t)h A′B(t) dt .

Here we let the time interval �T tend to infinity. Hence, the directivity pattern
of the time-reversed wave field is given by the cross-correlation of the Green
functions that can be constructed from the eigenmodes of the cavity

ptr(�r1, 0) =
∑

n

1

ω2
n
�n(A)�n(�r1)�

2
n (B). (8.5)

Note that in a real experiment one has to take into account the limited bandwidth
of the transducers. This means that a spectral function F(ω) centred at frequency
ωc and with bandwidth�ω must be introduced. Then, we can write equation (8.5)
in the form

ptr(�r1, 0) =
∑

n

1

ω2
n
�n(A)�n(�r1)�

2
n (B)F(ωn). (8.6)

Thus the summation is limited to a finite number of modes, which in our
experiment is typically of the order of some hundreds. Since we do not know
the exact eigenmode distribution of each chaotic cavity, we cannot evaluate this
expression directly. However, one may use a statistical approach and consider
the average over different realizations, which consists of summing over different
cavity realizations. So we replace the product of the eigenmodes in equation (8.6)
with their expected values 〈. . . 〉. We also use a qualitative argument proposed by
Berry [1, 16, 20] to characterize irregular modes in a chaotic system. If chaotic
rays support an irregular mode, they can be considered as a superposition of a
large number of planar waves with random direction and phase. This implies that
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the amplitude of an eigenmode has a Gaussian distribution with 〈�2〉 = σ 2 and a
short-range isotropic correlation function given by a Bessel function of the form

〈�n(A)�n(�r1)〉 = J0

(
2π |�r1 − �r0|

λn

)
(8.7)

where λn is the wavelength corresponding to ωn . If A and A′ are sufficiently far
away from B such that they are not correlated with B , then

〈�n(A)�n(�r1)�
2
n (B)〉 = 〈�n(A)�n(�r1)〉〈�2

n (B)〉.
Then, one finally obtains

〈ptr(�r1, 0)〉 =
∑

n

1

ω2
n

J0

(
2π |�r1 − �r0|

λn

)
σ 2 F(ωn). (8.8)

The experimental results obtained in figure 8.6(b) agree with this prediction and
show that in a chaotic cavity the spatial resolution is independent from the time-
reversal mirror aperture. Indeed, with a one-channel time-reversal mirror, the
directivity patterns at t = 0 closely resemble the Bessel function J0(

2π
λc
|�r1 − �r0|)

that corresponds to the central frequency of the transducers.
In figure 8.6 one can also observe that a very good estimate of the eigenmode

correlation function is experimentally obtained with only one realization. A one-
channel omni-directional transducer is able to refocus a wave in a chaotic cavity,
and we did not average the data over different cavities or over different positions
of the transducer B .

8.3.3 Phase conjugation versus time reversal: self-averaging in the time
domain

This interesting result emphasizes the great interest of time-reversal experiments,
compared to phase-conjugated experiments. In phase conjugation, one only works
with monochromatic waves and not with broadband pulses. For example, if one
only works at frequency ωn , so that there is only one term in equation (8.7), then
one cannot refocus a wave on point A. An omni-directional transducer, located
at an arbitrary point B , that works in monochromatic mode, sends a diverging
wave into the cavity that has no reason to refocus on point A. The refocusing pro-
cess only works with broadband pulses, with a large number of eigenmodes in the
transducer bandwidth. Here, the averaging process that gives a good estimate of
the spatial correlation function is not obtained by summing over different realiza-
tions of the cavity, like in equation (8.8), but by a sum over ‘pseudo-realizations’
that correspond to different modes in the same cavity. This comes from the fact
that in a chaotic cavity we may assume a statistical de-correlation of the different
eigenmodes. As the number of eigenmodes available in the transducer bandwidth
increases, the refocusing quality becomes better and the focal spot pattern comes
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closer to the ideal Bessel function. Hence, the signal-to-noise level should in-
crease as the square-root of the number of modes in the transducer bandwidth.

A similar result has also been observed in the time-reversal experiment
conducted in a multiple-scattering medium. A clear refocusing was obtained
with only a single-array element; see figure 8.4. The focusing process works
with broadband pulses (the transducer centre frequency is 3.5 MHz with a 50%
bandwidth at −6 dB). For each individual frequency there is no focusing and the
estimate of the spatial correlation is very noisy. However, for a large bandwidth,
if we have statistical de-correlation of the wave fields for different frequencies,
the time-reversed field is self-averaging.

8.4 Conclusion

In this paper, we have shown how chaotic ray dynamics in random media and in
cavities enhances resolution in time-reversal experiments. Multiple reverberation
makes the effective size of the TRM much larger than its physical size. This
study proves the feasibility of acoustic time reversal in media with chaotic ray
dynamics. Paradoxically, chaotic dynamics is useful, because it reduces the
number of channels needed to ensure an accurate time-reversal experiment. This
result can easily be extended to electromagnetic propagation through random
and chaotic media. Perhaps one of the most spectacular future applications of
time-reversed technologies will be wireless communication, where the multi-
pathing may enhance the amount of information that can be transmitted between
antenna arrays in complex scattering environments like cities. From quantum
chaos to wireless communications, time-reversal symmetry plays an important
role and, contrary to long-held beliefs, chaotic scattering of acoustic or microwave
signals may strongly enhance the amount of independent information that can be
transmitted from an antenna array to a volume of arbitrary shape.
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Chapter 9

Reduction methods applied to non-locally
coupled oscillator systems

Yoshiki Kuramoto
Kyoto University

When we try to understand the qualitative dynamics of spatially extended
nonlinear systems through mathematical analysis, we require theoretical tools
to reduce the governing dynamical laws to simpler forms. Thus it is natural to
ask under what general conditions such model reduction can be achieved. A
possible answer is that the reduction is possible when the system involves a few
special degrees of freedom whose dynamics is distinctively slower, i.e. whose
characteristic time scales are far longer than those of the remaining degrees of
freedom: then those degrees of freedom with short time scales may either be
eliminated adiabatically or cancelled as a result of time-averaging of their rapid
changes. The existence of slow variables is thus crucial to the reduction. Here
‘slow’ implies that the stability is almost neutral, so that we may call such slow
degrees of freedom neutral modes.

A little consideration will tell us that there are at least three classes of neutral
modes in nature. They are:

(i) critical eigenmodes at bifurcation points,
(ii) phase modes, and
(iii) conserved quantities.

We now make some remarks concerning classes (ii) and (iii) of neutral modes.
First, in physics terminology, phase modes are referred to as Goldstone

modes and they exist when the current state breaks a continuous symmetry
possessed by the system itself. For example, the spatial oscillation of a Turing
pattern in an infinite homogeneous medium breaks the continuous symmetry
of spatial translation. Similarly, a limit-cycle oscillation in an autonomous
dynamical system breaks the temporal translational symmetry. In each case, there
is a special degree of freedom called the phase.

209
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Second, conserved quantities form a further important class of neutral
modes. They are neutral by definition; perturbations to conserved quantities are
preserved and they neither decay nor grow.

Reduction theories have been developed for each of the three classes of
neutral modes. For class (i), we have the so-called centre-manifold reduction
[11, 17, 25]. For class (ii), we have the so-called phase reduction [17] or phase
dynamics. However, it is uncertain whether there is any established name for the
reduction theories making use of neutral modes of class (iii). However, there are
important examples of such reduction, e.g., the beautiful and monumental work in
the statistical mechanics of irreversible processes, which is the Chapman–Enskog
theory by which the Boltzmann gas kinetic equation is reduced to the Navier–
Stokes equation [4]. Incidentally, the author was interested to note some time ago
that there is a parallel between Chapman–Enskog theory and phase dynamics [18].

Now, it may be that neutral modes from different classes coexist, in which
case the corresponding reduction theories may be combined. Such combined
forms of reduction have turned out to be instrumental to the understanding of
complex dynamics [5]. Similar situations may arise even within one of the three
neutral mode classes, as exemplified by the multiple bifurcation theories [10]
which are applied to the study of complex dynamics generated by an interplay
of different types of bifurcation modes.

Conserved quantities, in combination with other types of neutral mode, may
well have been important in, for example, fluid dynamics [33]. However, in
this chapter we will concentrate on the first two types of reduction schemes and
demonstrate how powerful these methods are in developing our understanding
of the dynamics of a particular class of systems, namely spatially extended
fields and large populations of coupled limit-cycle oscillators, on which the
author has worked over the past few decades [16, 17, 19, 22]. Actually, the
power of the centre-manifold and phase reductions applied to coupled oscillator
systems has been fully demonstrated in the past through numerous examples
[1, 6, 7, 9, 12–14, 32].

However, past studies have been concerned exclusively with two extreme
coupling types, namely locally and globally coupled systems. The natural
question is thus how we should deal with the intermediate case which we refer
to as non-locally coupled systems. In fact, non-local coupling generates a wide
range of unexpected behaviour. Some recent studies on an array of non-locally
coupled oscillators revealed the occurrence of a new type of turbulent behaviour
characterized by multi-scaling properties [23, 24]. In this chapter, I will discuss
two different classes of collective behaviour:

(i) rotating sprial waves without phase singularity and
(ii) coexisting patterns of coherent and incoherent oscillators.

In fact, these classes are not separate, and the first class may be regarded as a
special, but particularly important, subclass of the second. Some recent results
on these topics obtained by the author will be presented here. We now begin with
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preliminary considerations of non-local coupling itself from a rather general point
of view.

9.1 When coupling non-locality becomes crucial

When we speak of non-locally coupled systems, one point that we should bear
in mind is that locality or non-locality is a relative concept in the sense that it
depends on the level of description. This may be illustrated by the following
example:

Ȧ = F(A)+ K · B (9.1)

τ Ḃ = − B + D∇2 B + K ′ · A. (9.2)

This model constitutes a reaction–diffusion system that appears a little
unconventional. There are two subsystems, represented by the variables A and
B , between which linear cross-couplings K · B and K ′ · A are assumed. The
second subsystem has diffusion, whereas the first does not.

Now, suppose that the dynamical system Ȧ = F(A) represents a limit-
cycle oscillator. A possible physical interpretation of (9.1), (9.2) is as follows.
The first subsystem represents a large assembly of densely distributed oscillators.
There is no direct coupling among them, but each discrete oscillatory element is
locally coupled with a diffusive field represented by B . That is, the activity of
the discrete elements is influenced by the local concentration B of the diffusive
chemical, which obeys a simple linear law; it is diffusing, decaying at a constant
rate and has characteristic time scale τ . The coupling of B with A may arise if
the chemical is produced by the discrete elements, with the rate of production
depending on the elements’ state.

The system (9.1), (9.2) may look similar to a biological population of
oscillatory cells where direct mutual contact is absent, but where a chemical plays
the role of a coupling agent through its diffusive nature. Since the first subsystem
must involve two or more components, the system of (9.1) and (9.2) represents a
reaction–diffusion system involving at least three components. A model similar
to this was proposed for demonstrating the occurrence of an unconventional
type of spatio-temporal chaos with scaling properties [20], and also studied
independently by Nicola et al [28] in connection with propagating domains of
striped patterns.

It is commonly stated that diffusive coupling is a typical local coupling.
However, if we eliminate B by exploiting the linearity of (9.2), the effective
coupling of the oscillating field A becomes non-local and given by the general
form

Ȧ = F(A)+
∫

dt ′
∫

dr ′ Ĝ(r − r ′, t − t ′)A(r ′, t ′). (9.3)

Note here that the non-locality is both spatial and temporal.
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We now consider the conditions under which such effective non-locality can
or cannot be approximated by a local coupling. For this purpose, we consider the
more specific reaction–diffusion system

Ẋ = f (X,Y )+ K · (B − X) (9.4)

Ẏ = g(X,Y ) (9.5)

τ Ḃ = − B + D∂2
x B + X (9.6)

Here the individual oscillatory dynamics is given by a two-component vector
field.

To make the point of discussion as clear as possible, we simplify and
consider a one-dimensional case only, with the system length L tending to infinity,
and we also assume that the time scale of B is infinitesimally short by letting τ

tend to zero. Consequently, B is adiabatically eliminated and (9.4) becomes

Ẋ = f (X,Y )+ K

2
√

D

∫ ∞

−∞
dx ′ exp

(
−|x − x ′|√

D

)
[X (x ′)− X (x)]. (9.7)

Thus, the coupling is no longer non-local in time, and in space it is a simple
exponential with a coupling range given by

√
D. This equation combined with

(9.5) constitutes our system. Observe that if the spatial pattern has a sufficiently
long wavelength for its variation within the coupling range to be small, then the
coupling reduces to a diffusion coupling or

Ẋ = f (X,Y )+ D̃
∂2 X

∂x2
(9.8)

where the effective diffusion constant is given by

D̃ = K D. (9.9)

In this way, we recover an ordinary two-component oscillatory reaction–
diffusion system such as the FitzHugh–Nagumo nerve conduction equation [27],
Brusselator [29], Gray–Scott model [31] or Keener–Tyson model [15], each of
which includes diffusion. Since there is a large literature on such two-component
reaction–diffusion models, there is not much new to say here on this subject.

The consistency of the diffusion-coupling approximation or local-coupling
approximation may be checked by estimating the characteristic wavelength of the
pattern generated by the reduced reaction–diffusion equation thus obtained, and
comparing it with the effective coupling range. It is clear that the characteristic

wavelength lp scales like lp ∼
√

D̃ = √
K D, while the effective coupling range

is given by
√

D.
Thus, if the coupling K is sufficiently strong then lp becomes larger

than the effective coupling range, which is consistent with the local-coupling
approximation. In contrast, if K is sufficiently small, the pattern will exhibit
considerable spatial variation within the coupling range, which leads to a
contradiction with the local-coupling approximation. In the next section, we show
an example of the peculiar dynamics which occurs in the latter situation.
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9.2 Rotating spiral waves without phase singularity

Unusual types of spiral waves can appear in the reaction–diffusion system:

Ẋ = f (X,Y )+ K · (B − X) (9.10)

Ẏ = g(X,Y ) (9.11)

τ Ḃ = − B + D∇2 B + X (9.12)

where

f (X,Y ) = ε−1(X − X3 − Y ) (9.13)

g(X,Y ) = a X + b − cY (9.14)

and ∇2 is the two-dimensional Laplacian. These belong to the same class of
reaction–diffusion systems discussed in the preceding section except that the
spatial dimension is now two. The local oscillatory dynamics is given by a slightly
generalized form of the FitzHugh–Nagumo model called the Bonhoeffer–Van der
Pol model.

Before explaining the behaviour of this system, we recall a basic fact
concerning traditional spiral waves in oscillatory and excitable reaction–diffusion
media [39]. Suppose we have a two-dimensional rotating spiral pattern which
may be rotating rigidly and steadily, and which may or may not have a meandering
core [3, 34]. Figure 9.1(b) shows a schematic blow-up of the central core of the
spiral covered with an imaginary grid. At a given time, each grid point finds
itself to be in a certain state in the one-oscillator phase space. Thus, we have a
mapping between the two sets of points in the physical space of figure 9.1(b) and
the phase space of figure 9.1(c). The resulting grid in the phase space is nothing
but a smooth deformation of the regular grid in the physical space without any
topological change. If the grid points in the physical space are infinitely dense,
the corresponding object in the phase space gives a continuous membrane-like
object which is simply connected. If the phase-space dimension is higher than
two, one may imagine this two-dimensional object being suspended in that larger
space.

Now, our reaction–diffusion system (9.10)–(9.14) can also sustain spiral
waves whose overall pattern appears similar to the usual spiral waves discussed
earlier. However, if we look more closely at the core structure, we observe a
qualitative difference. In figure 9.2, we depict the mappings between the physical
and phase space for the reaction–diffusion system (9.10)–(9.14) under oscillatory
conditions, where the mapped grid points are projected onto the XY -plane and,
for reasons which shall become clear, all grid lines are deleted. Observe that when
the coupling is strong, we obtain the usual spiral wave picture, but as the coupling
becomes weaker, the grid points become more sparsely distributed in the inner
region of the phase-space picture.

Let us imagine a continuum limit. It is not clear from such a rough numerical
analysis, with relatively few grid points, whether or not there is a critical value in
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Figure 9.1. A small square area near the core of a two-dimensional spiral pattern,
schematically shown in (a), is covered with an imaginary grid (b). This imaginary grid is
then mapped onto the phase space giving a deformed grid as shown in (c). If the grid points
in (b) are infinitely dense, the corresponding deformed grid in the phase space becomes a
two-dimensional membrane which is simply connected unless the spatial continuity of the
pattern is lost.

Figure 9.2. Distribution of points in the (X,Y ) phase plane mapped from grid points in the
core region of a spiral pattern obtained from the reaction–diffusion model (9.10)–(9.14).
For sufficiently small coupling constant K , a hole appears in the central part of the
phase pictures, implying the occurrence of spatial discontinuity. The values of the other
parameters are fixed at a = 1.0, b = 0.2, c = 0, τ = 0.01.

the coupling strength below which a hole is created in the continuous membrane.
However, as we describe later, a theory based on centre-manifold reduction
predicts the creation of a hole. The existence of a hole implies that two points
which are infinitesimally close in physical space may no longer be close in the
phase space. In other words, the spatial continuity of the pattern has been lost. It
seems that loss of spatial continuity is something which can occur quite easily in
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non-locally coupled systems. In the previous discussion, we have assumed that
the local dynamics is self-oscillatory. However, the appearance of a hole in the
phase space can also be shown under non-oscillatory but excitable conditions.

We now apply centre-manifold reduction to reaction–diffusion system
(9.10)–(9.14), in order to provide a clearer perspective to the problem. The
standard technique is applied to the situation where the individual oscillators are
close to Hopf bifurcation, and their coupling with the diffusive field is weak, the
weakness here being proportional to the smallness of the bifurcation parameter.
Under these conditions, the reduced amplitude equation takes the form

Ȧ(r) = (1 + iω0)A − (1 + ib)|A|2 A + K · (1 + ia)(Z(r)− A(r)) (9.15)

where

Z(r) =
∫

dr ′ G(r − r ′)A(r ′). (9.16)

This equation has the form of a complex Ginzburg–Landau (CGL) equation with
non-local coupling. The coupling function G is assumed to be normalized, and its
long-distance behaviour is given by exponential decay. In some cases, it is useful
to regard the complex quantity Z as a given driving force acting commonly on the
individual oscillators. Of course, this forcing should ultimately be determined by
the dynamics of the individual A in a self-consistent manner, and we will soon
return to this issue. Note that the coupling constant K in (9.15) is not the original
K but is scaled with the bifurcation parameter, so that an O(1) value of the new
K corresponds to a very small value of the original K .

As for the reaction–diffusion system before reduction, we find that when K
is sufficiently large, the spatial scale of the pattern is longer than the coupling
range, making the diffusion-coupling approximation valid, so that we recover
the standard CGL. The corresponding spiral waves are thus standard. However,
we will now see how the core of the standard spiral wave collapses when K is
decreased.

Figure 9.3 is similar to figure 9.2 and illustrates the collapse of the spiral
core with a series of pictures, each depicting the distribution of the grid points
in the complex amplitude plane obtained by a mapping from the core region, in
the same manner as for the original reaction–diffusion system. For sufficiently
large K , the distribution appears to be standard, while for smaller K the central
part becomes void. The critical value of K appears to exist somewhere between
figure 9.3(b) and figure 9.3(c), and theoretically it is predicted to be one. The
reason is as follows. Suppose first that the coupling is sufficiently strong for the
spiral to be standard. Under suitable parameter values, the spiral rotates rigidly
with some frequency ω. Then, the radial profile of the modulus S of the complex
amplitude A across the centre of rotation has a profile as shown in figure 9.4(a). S
vanishes strictly at the centre. The internal forcing field (which will sometimes be
referred to as the mean field) Z has the same symmetry as A, so that its modulus R
shows a profile similar to S (see figure 9.4(b)), and is also vanishing at the centre
of rotation.
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Figure 9.3. Pictures similar to those in figure 9.2, but the model equation used here is the
non-locally coupled Ginzburg–Landau equation (9.15), (9.16). Parameter values are a = 0,
b = 1.0. The coupling function G(r) is given by the kernel of the integral representation
of the solution B of the equation −B + D∇2 B + X (r) = 0 with two-dimensional no-flux
boundary conditions.

0 0r r

S R

(a) (b)

S=0 R=0

Figure 9.4. (a) Radial profile of the modulus S of the complex amplitude A, and (b) that
of the internal field Z , each across the centre of rotation of a steadily rotating spiral pattern
genrerated by the non-locally coupled Ginzburg–Landau equation. Here the coupling
constant K is large enough for the spatial continuity of the pattern to be preserved.

If we interpret the situation in terms of the forced-oscillator picture
mentioned earlier, we may say that each local oscillator is completely
synchronized with the internal forcing. Our question now is under what condition
this synchrony is violated.

Actually, the loss of synchrony is initiated by the central oscillator. Since
the internal field is vanishing at the very centre, the oscillator there is free from
forcing and simply obeys

Ȧ = (1 − K − iω′0)A − (1 + ib)|A|2 A (9.17)

where ω′0 = ω0−aK . It is clear that if K is larger than 1, the vanishing amplitude
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0 r

S

Figure 9.5. Instantaneous radial profile of the modulus S of A across the approximate
centre of rotation of a spiral wave for K slightly less than Kc (a schematic diagram). A
small group of oscillators near the central core fails to be entrained by the oscillation of
the internal field Z , so that it forms a group of quasi-periodic oscillators with distributed
frequencies.

is stable, while if K is less than 1, the oscillator becomes Hopf unstable and starts
to oscillate with a frequency which is usually different from that of the forcing or
spiral rotation.

The oscillators which are near the centre are not entirely free of the internal
forcing: a small forcing term will appear additively on the right-hand side of
(9.17). On decreasing K further, these oscillators will successively become Hopf
unstable. Each such instability will produce a new frequency.

Therefore, for a given value of K less than one, there is a critical radius
rc such that inside the circle this radius the oscillators are Hopf unstable with a
second frequency" independent of the forcing frequency, while outside the circle
the oscillators remain synchronized with the forcing. Since the forcing amplitude
is space-dependent, the new frequencies thus produced in the inner region are
also space-dependent. This implies that the assembly of these quasi-periodic
oscillators will be phase-randomized. The corresponding situation is illustrated
in figure 9.5 which gives a schematic image of a snapshot of the amplitudes of the
individual oscillators for K slightly smaller than its critical value.

In the argument developed here, there is the implicit assumption that the
internal forcing remains strictly time-periodic even for K less than Kc (= 1),
even though the central group of oscillators would be random in phase. This time-
periodicity assumption may be valid near Kc where the incoherent region is small.
However, the assumption appears contradictory if we recall the self-consistency
relation required between forcing and the motion of the individual oscillators.
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9.3 Simpler case: coexistence of coherent and incoherent
domains

We now develop the discussion which concluded the previous section, concerning
the consistency of a periodic internal forcing and an incoherent assembly of
oscillators. To this end, it is appropriate to examine the problem from a wider
viewpoint. Suppose we are working with a class of non-locally coupled oscillator
systems governed by

Ȧ(r, t) = R(A)+ Z(r, t) (9.18)

Z(r, t) =
∫

dr ′ Ĝ(r − r ′)A(r ′, t) (9.19)

which includes our CGL-type dynamics as a special case. The coupling term
may be looked upon as a common forcing, as noted earlier. It may happen that
the forcing field Z is essentially time-periodic but has a certain spatial structure.
Then, in some parts of the system the forcing amplitude may be large enough to
entrain the individual oscillators, whilst in the remaining parts it is too weak for
entrainment. In this way, the whole space will be divided into domains each of
which is composed of all coherent or all incoherent oscillators. The spiral wave
case is just one such example, but it seems natural to look for simpler problems
which are more suited for detailed analysis.

In this vein, we consider the same CGL-type equation as (9.15) but with a
spatial dimension equal to one, so that the coupling function is given by a simple
exponential or

Z(x, t) = 1

2

∫
dx ′ exp(−κ |x − x ′|)A(x ′, t). (9.20)

Under periodic boundary conditions and with a suitable initial condition, the
system separates into coherent and incoherent domains. Figure 9.6 shows a
distribution of the phases of the complex amplitudes of the oscillators at a given
time. The basic structure of the distribution stays stable in a statistical sense.
In contrast to the spiral wave case, the incoherent domain appears dominant,
and therefore this example is a severe test of the hypothesis that an incoherent
subpopulation of oscillators can generate periodic internal forcing.

In fact, we may further simplify the situation if we apply phase reduction
to the amplitude equation. This can be done when the coupling is weak enough
for the modulus of the complex amplitude A to take almost its full value. The
result of reduction is a phase oscillator model with non-local coupling, and with
the phase-coupling function given by a simple sine function [17], i.e. we have

φ̇(x) = ω −
∫

dx ′ G(x − x ′) sin(φ(x)− φ(x ′)+ α) (9.21)

where G(x) = exp(−κx). This simple non-local model gives rise to patterns
similar to figure 9.6, as is shown in figure 9.7 [2]. We now try to develop a theory
of this model.
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Figure 9.6. Instantaneous spatial distribution of the phase of the complex amplitude
obtained from the non-locally coupled one-dimensional Ginzburg–Landau (9.15), (9.20).
The system length is one, and periodic boundary conditons are assumed. Parameter values
are a = −1.00, b = 0.88, κ = 4.0. Under these conditions, spatially uniform oscillation is
linearly stable. However, if we start with a suitable single-humped initial phase pattern, the
majority of the oscillators becomes strongly incoherent, although a small group of coherent
oscillators is left near the system boundaries.

Figure 9.7. The non-local phase equation (9.21) produces a quite similar pattern to that of
figure 9.6. Parameter values are α = 1.457, κ = 4.0. The system length is one.
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In the phase-oscillator limit, the definition of the internal field, given by
(9.20), reduces to

Z(x, t) =
∫

dx ′ G(x − x ′) exp(iφ(x ′))

≡ R(x, t) exp(i("t +�(x, t))). (9.22)

By separating the phase-drift term i"t from the definition of the phase of the
internal field, we are anticipating that the dominant motion of the internal forcing
is periodic with some frequency ", so that � gives a residual phase. By using R
and �, the non-local phase equation can be formally expressed in terms of forced
one-oscillator dynamics:

ψ̇(x, t) = ω −"− R(x, t) sin(ψ(x, t) + α −�(x, t)) (9.23)

where we have also used the residual phase ψ ≡ φ − "t for the individual
oscillators, rather than the original phase φ. At the same time, using ψ , our
definition of the forcing field simplifies a little:

R(x, t) exp(i�(x, t)) =
∫

dx ′ G(x − x ′) exp(iψ(x ′)). (9.24)

From a combination of (9.23) and (9.24), it is possible to develop a self-
consistent theory for finding the forcing field pattern. However, this can only be
done if R and � are time-independent, and numerical experiments indicate that
this is a good approximation. Partial evidence is presented in figure 9.8, which
shows the temporal evolution of the real part of the forcing field measured at the
midpoint of the system, where the effect of phase disorder would be maximal.
Actually, the fluctuations in the oscillator amplitude and phase look rather small.

However, R and � have pronounced spatial structure. For instance, the
(long-time average) spatial structure of R is depicted in figure 9.9. It can be seen
that near the system boundary where the forcing amplitude is large, the oscillators
are entrained to its periodic motion so that their frequencies, shown in figure 9.10,
have a flat profile there which is close to the forcing frequency ". However in the
inner region, where the forcing amplitude is relatively small, the oscillators are
not entrained and their frequencies are distributed.

Because R and � turned out to be approximately time-independent, we are
ready to develop a self-consistent theory. Note that there is a strong parallel
between the theory given here and that of collective synchronization of globally
coupled phase oscillators [16], which was developed by the author more than
a quarter century ago and inspired by the pioneering work of Art Winfree in
1967 [38].

First, we reiterate that although R and � are assumed to be time-
independent, they have spatial structure. We thus try to find the solution of (9.22)
for each local oscillator, as a function of the local values of R and �. However,
there are two possible types of solution depending on the local value of R. One is
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Figure 9.8. Temporal evolution of the real part of the forcing field Z(t) measured at the
midpoint of the system (x = 1

2 ). Although there are small fluctuations, the oscillation
is still quite regular, in contrast to the random phase distribution of the oscillators as
illustrated in figure 9.7.
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Figure 9.9. Spatial structure of the modulus R of the internal forcing Z , obtained from
long-time averages.

the stationary or phase-locked solution which occurs for larger R and the other is
the drifting solution which occurs for smaller R.

If the local solution is of the phase-locked type, the corresponding value of
ψ may be inserted directly into (9.23). If the solution is of the drifting type, there
is no fixed value of ψ to be inserted into (9.23), but instead we have a definite
invariant measure for ψ which is inversely proportional to the ψ-dependent drift
velocity, i.e. the right-hand side of (9.22). Further, one may evaluate the factor
exp(iψ) in (9.22) by replacing it with its statistical average calculated using this
invariant measure. In this way, (9.23) gives R and � as a function of R and �
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Figure 9.10. Frequency distribution of the oscillators obtained from a long-time average
of the instantaneous individual frequencies. A plateau is seen near each system boundary,
implying synchronization of the oscillators there with the internal forcing. However,
frequencies are distributed in the inner region, implying de-synchronization.
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Figure 9.11. Comparison of the theoretical curve for R, which is calculated from a
self-consistency equation for the internal field, with the simulation curve of figure 9.9.
The agreement is so good that the curves are indistinguishable.

themselves, i.e. a self-consistent equation. This represents a nonlinear eigenvalue
problem because the oscillation frequency " is still to be determined. In any
case, it is at least possible to solve this self-consistent equation numerically, and
this calculation was performed in [21].

Figure 9.11 shows a comparison between the theory and numerical
simulations for the spatial distributions of R and the actual oscillator frequencies.
They agree almost perfectly, comfirming the validity of the theory, and also
the power of the phase reduction. The distribution of the local frequencies can
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Figure 9.12. Comparison of the theoretical curve for the individual frequencies, which is
calculated from (9.23) using the solutions R and � of a self-consistency equation for the
internal field, with the simulation curve of figure 9.10.

also be calculated theoretically, and this also shows an excellent agreement with
numerical results: see figure 9.12.

An unsatisfactory aspect of this argument is that the phenomenon discussed
is peculiar to a finite-size system, and therefore may be of little interest from
a physical point of view. There is a slightly more interesting case which
occurs when the phase-coupling function is generalized by including the second
harmonic

φ̇(x) = ω +
∫

dx ′ G(x − x ′)�(φ(x)− φ(x ′)) (9.25)

where
�(y) = − sin(y + α) + r sin(2y). (9.26)

Otherwise, the model is the same as before. As a result of this modification, a
different type of coexistence of coherent and incoherent domains can appear, and
this is depicted in figure 9.13. The coexistent state here seems to remain stable
in arbitrarily large systems. For the most part, the system is coherent and has a
constant gradient phase, and the incoherent part is localized. Since for this model
incoherence produces higher frequency due to the decrease in the local amplitude
of the internal forcing, this localized assembly of oscillators behaves collectively
like a pacemaker.

Different possibilities have been proposed for the appearance of autonomous
or self-organized pacemakers in self-oscillatory media [8, 26, 30]. Our results
described here suggest a new mechanism arising from the non-locality in
coupling. However, beware that the non-locality could arise from the elimination
of a rapidly diffusing variable from a locally coupled system. In a manner similar
to the phase-coupling case without the second harmonic, a self-consistent theory
can be formulated, although this time we need two complex amplitudes for the
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Figure 9.13. Instantaneous spatial distribution of the phases obtained for the phase model
(9.25), (9.26), where G(x) = exp(−κx). Parameter values are α = 1.05, r = 0.25 and
κ = 32.0.

internal field, corresponding to the first and second harmonics in the phase-
coupling function.

9.4 Concluding remarks

In this chapter, I have tried to demonstrate the usefulness of reduction approaches
in nonlinear dynamics, by expounding a case study in a class of coupled oscillator
systems. The potential of the reduction concept for uncovering new behaviours in
coupled systems is still very great.

I would like to stress again the importance of non-locally coupled systems.
Non-local coupling is not merely an intermediate case between local and global
coupling, but in fact can give rise to its own new dynamics. In terms of the
characteristic length scales involved, this is because non-locally coupled systems
have a distinct asympototic regime clearly separated from those of systems with
purely local or purely global coupling. The key length scales are:

(i) the coupling radius rc,
(ii) the linear dimension of the system L (which was assumed to be infinite in

the previous discussion) and
(iii) the characteristic length scale lp of the generated pattern.

Global coupling implies rc � L, while local coupling implies lp � rc. The third
asymptotic regime corresponding to non-local coupling is given by L � rc � lp,
although near the boundary between the last two asymptotic regimes, i.e. lp $ rc,
types of behaviour peculiar to non-local coupling may also emerge. There may
be an additional length scale r0 which characterizes the ‘interatomic distance’ or
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‘lattice spacing’, which is the typical distance of a given dynamical element from
its nearest neighbours.

In this chapter we have worked with a continuum of limit-cycle oscillators
by letting r0 tend to zero. This idealization is allowed if rc � r0 and under such
a condition, the non-local coupling may be called ‘extremely long-ranged’. In
effect, we supposed that each dynamical element interacts with a large number of
other dynamical elements.

The statistical mechanics of spin systems, as well as other cooperative
systems in thermal equilibrium, and the theory of Vlasov plasma tell us that
under long-range coupling the mean-field picture gives a precise description of
the dynamics. An analogy between globally coupled oscillators and Vlasov
plasma was successfully used by Strogatz et al [35] to explain the order-parameter
damping in oscillator systems analogous to Landau damping. Also, for non-
locally coupled systems, we have taken full advantage of the mean-field picture,
and the corresponding concept of internal forcing has been very useful in the
analysis of our system and the interpretation of the results obtained.

Although non-locally coupled systems have been sidestepped in the past,
presumably because of anticipated mathematical difficulties as compared to local
and global coupling systems, such difficulties may, to a large extent, be resolved
through the application of mean-field dynamics which is valid for quasi-continua
of coupled dynamical elements.

Finally, we should mention two areas for future work in the field of non-
locally coupled oscillatory systems. First, it would be desirable to develop
experimental systems with similar structures to those in our models: for example,
see the recent work of Vanak and Epstein [36,37], which concerns the Belousov–
Zhabotinski (BZ) reaction with water-in-oil aerosol OT micro-emulsion. This
experimental system mimics a large population of micro-organisms with the use
of BZ oscillators in the water droplets, and these oscillators interact via diffusive
chemical components in the oil medium. By careful choice of the coupling
agent, such experiments could form an ideal test bed for the study of the pattern
dynamics peculiar to non-locally coupled systems.

Second, we should emphasize the application of non-local coupling to neural
field dynamics, where non-local coupling has a structural origin, in contrast to
the present study where effective non-locality arose from the elimination of a
rapidly changing diffusive component. In the near future, the rich variety of
spatio-temporal patterns observed in non-locally coupled oscillatory systems may
provide new interpretations of the dynamics of cortical neurons which have been
observed in physiological experiments.
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Chapter 10

A prime number of prime questions about
vortex dynamics in nonlinear media

Art Winfree
University of Arizona

People have been fascinated by fluid flows and turbulence at least since such time
as some neolithic ancestor, with a noisy wind in her ears may have marvelled
before the spectacle of immense ripples rolling across a field of grass. I
experienced just the same at Celtic Field in Clifton Down one afternoon during
the meeting reported in this book. On both scales of time and space—acoustic
noise and eddies of landscape proportions—an invisible continuum conserves
momentum and energy under simple rules, but the outcome seems lawless.
Fluid flow was also my own favorite mystery as an undergraduate engineer, in
part due to its resemblance to physiological processes: turbulent flows seem
almost ‘alive’. After a century of scientific study and half that duration of
mathematical and computational modelling, I think it is still safe to guess that
students of such spatio-temporal dynamics have most of their historic adventures
yet before them. This chapter relates one such adventure as a good prospect
for the discovery of unforeseen principles, in this case again in a transparent
three-dimensional continuum, but with rotating chemical and electrical patterns
replacing momentum eddies, and with a unique pattern time scale rather than one
that cascades from seconds to milliseconds.

The organizers of this symposium on ‘Nonlinear Dynamics and Chaos:
Where do we go from here?’ invited examples of topics that have not yet
benefited much from theory of nonlinear dynamics, with the special proviso that
if applied mathematicians and physicists would have a look at them, they would
probably make lots of discoveries. The topic I picked is the dynamics of phase
singularities in motionless uniform continua that support limit-cycle oscillations
or shock wave propagation. What ‘moves’ in such media is a pattern of chemical
concentrations or voltages, not the medium itself (quite unlike fluids). Such media
are simpler than fluids in that they constitute scalar rather than vector fields. They
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also have some qualities that prove indispensable for their unique behaviours
but have no analogy in fluids. Several years ago numerical exploration of this
kind of field equation turned up a dozen seemingly stable distinctive patterns
that seem parametrically robust. So it seems reasonable to expect the like in a
wide variety of excitable physiological and chemical media. To name just a few
with characteristic scale around 1 cm, there are the flickering glows of oxidizing
phosphorus vapor [43, p 301], oxidation waves in certain chemical gels [43,
ch 13], and electrical depolarization waves in thick muscle of the pregnant uterus
and in the ventricular muscle of the heart [43, ch 17] (figure 10.1). In the book you
now read, chapter 11 by Bressloff and Cowan and chapter 12 by Ermentrout bring
other biological examples involving the oscillations and waves in brain tissue.
Computational examples range from the complex Ginzburg–Landau field through
a wide variety of excitable media.

One might not expect such diverse media to have much in common. But in
2D they all do support a rotating spiral wave organized around a phase singularity.
(Note that ‘singularity’ always means ‘of the phase description’: there is no
discontinuity of any physical quantity.) In 3D this spiral becomes a scroll and
the phase singularity becomes a singular filament. The filament typically closes
in a ring. Rings typically link and knot. Thus we come to configurations of linked
and knotted rings, called ‘organizing centres’. This chapter addresses questions
about their stability or persistence on various time scales.

I am only going to talk about numerical experiments in this chapter,
experiments about a profoundly idealized excitable medium in the form of a
simple partial differential equation. Just this modest beginning presented more
mysteries than foreseen, almost all of which remain unsolved.

10.1 Stable organizing centres

By way of preview, figure 10.2 presents six of the ostensibly stable 3D
configurations of phase singularities in one numerical excitable medium that
supports propagation of shock-like waves. They are all wiggly vortex rings with
invariant topological characteristics. You see them reproduced here on a uniform
scale: the arrow shows the wavelength, λ0, of the 2D vortex, the product of its
rotation period and the shock propagation speed. The tubes bound regions of field
rotation around the singular filament, out of which a shock radiates in the form of
a spiral in 2D or a scroll in 3D. The tube drawn around each thin singular filament
may be thought of as a rough level contour for the amplitude of fluctuations, which
is of course zero right at the filament, the rotation centre. A contour could be
chosen with arbitrarily small girth around this pivot point; here it is chosen as λ0,
at which radius the amplitude is almost up to that of the propagating shock fronts
outside. The purpose of dressing the singular filament in such tubes is to show
how closely such vortex tubes fit together: they get no closer than 0.4λ0, a little
more than the tube diameter λ0/π . These topologically distinct ways that any
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Figure 10.1. In April 1997 Frank Witkowski and I did the experiments presented in
Nature [49, 50]. I took this snapshot from near the dog’s head just after we opened its
pericardium and just before removing the heart to Langendorff plumbing for observation.
The ventricles are at the ostensible top here, and white fat covers the left atrium. The heart
is 12 cm long, top-bottom. Its wall is only 1–2 cm thick, too thin to support such fanciful
objects as discussed in this chapter. Contemplation of excitability in heart muscle merely
initiated thinking about vortex rings; there is no reason to think closed rings are relevant to
cardiac electrophysiology.

given uniform excitable medium can stay persistently self-organized in space and
time are called ‘organizing centres’ because without them the medium becomes
uniformly quiescent, but if one of these things is created anywhere, it persists as
a source of roughly periodic shock waves that organize the reaction sequences
throughout the whole volume. These persistent vortex rings are alternative modes
of the same partial differential equation (PDE). Each such particle-like source of
periodic waves has its own distinctive self-consistent geometry. Very little is yet
understood about their dynamics.

Now let us back up and see where these pictures come from. Let us start
with the idealized medium, the FitzHugh–Nagumo (FHN) model for electrical
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Figure 10.2. All these objects are better described later in this chapter, one by one.
Here and in figures 10.8–10.13 the vortex tubes are all drawn with the same arbitrary
diameter = λ0/π . The drawings are adapted from the computations of Henze [11] using
FitzHugh–Nagumo kinetics at a particular parameter setting.

dynamics in nerve or heart cell membranes (figure 10.3). What ideas lead to this
sort of equation? A first idea is that the excitable tissue is an electrically resistive
continuum, like salt water, with a time-varying electrical potential, V , at each
point. So ∂V

∂t = D∇2V , where the potential diffusion coefficient D (cm2 s−1) is
the inverse product of intrinsic bulk resistivity (" cm) by capacitance per unit area
of cell membrane occupying the volume (farad cm−3). A second idea is that V
corresponds to a potential gradient as large as 100 000 V cm−1 across the thin cell
membrane, strong enough to deform the electrically charged parts of protein-built
ionic channels embedded in that membrane. According to the deformation, they
leak sodium and potassium ions into or out from the cell at various rates, adding
to the time derivative of V as shown. A third idea is the cubic rate function. It
comes from V not only changing sodium channel resistivity in a roughly quadratic
way, but also providing the driving force for ions through that channel. Finally, a
fourth idea: p here represents another ionic process, also involving protein pores
in the membrane, which transpires very much more slowly than the shock of V
depolarization. It entails potassium ions crossing the membrane in the opposite
direction to sodium, so they have an effect on ∂V

∂t opposite to that of V , eventually
effecting a recovery of excitability.

The literature presents many enormously elaborate dynamical equations of
this general form, meticulously tailored to the many ionic channels of each
particular kind of cell and to more realistic visions of how cells are electrically
connected together. I invoke here the simplest generic representative called the
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Figure 10.3. The reaction–diffusion equation (a scalar field equation) of a typical excitable
medium. The thumbnail sketch illustrates nullclines: loci of horizontal flow ∂V

∂t = 0 and

of vertical flow ∂p
∂t = 0 of the ODE part, the local kinetics without Laplacian coupling

to neighbours. The key feature is that all vectors lead to a unique steady state, but from
beyond a threshold distance away in the V direction (V for voltage) they first very rapidly
lead farther away (this part makes the shock front propagate), then slowly return from the p
direction (p for recovery process involving potassium protein pores). D∇2 can be written
as ∂2/∂(x/

√
D)2 etc, so we see that changing D changes nothing but the spatial scale

of the solutions, supposing initial conditions rescaled by
√

D and boundary conditions
likewise or remote.

FHN model [9]:

∂V

∂ t
= 1

ε
V (1 − V )(V − V0)− p (10.1)

∂p

∂ t
= V − gp (10.2)

where ε � 1, V0 is the threshold � 1 mentioned in figure 10.3, and g (ignored
in the figure) is O(1). The equation is written in this form for transparency, but
is actually computed from an equivalent version with more explicit parameters
given later (see equations (10.4), (10.5)). Note the cubic nonlinearity; everything
else is linear. The phase portrait of such an ordinary differential equation (ODE)
pair is represented in the thumbnail within figure 10.3. The cubic (V for voltage)
and linear (p for potassium protein pores) nullclines intersect in a globally
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attracting steady state (large dot) at the cell’s ‘resting potential’. A stimulus
that displaces it far enough vertically (‘depolarizing’ the membrane) puts the
system in a region of fast V increase (note the small ε in the rate equation) until
it is caught below the cubic’s upper nullcline branch. Then p evolves slowly
to the right until a catastrophic drop to the lower branch, just above which the
membrane leisurely recovers its excitability toward the unique steady state, and
patiently awaits another stimulus large enough to pull it out of the immediate
attracting neighbourhood of that large dot. Such stimuli can come from adjacent
excited cells, because cells are resistively coupled by ‘gap junctions’. Making
a continuum average over microscopic discrete cells, this coupling amounts to
adding a Laplacian operator to the V evolution equation (10.1); now we have the
PDE

∂V

∂ t
= D∇2V + 1

ε
V (1 − V )(V − V0) (10.3)

and if the parameters are in the physiological range, it propagates the pulse-like
excitation-recovery process as a shock at a characteristic speed on the order of√
(D/ε). With D on the order of 1 cm2 s−1 and ε on the order of (1000 s)−1,

this is roughly 30 cm s−1. Such an impulse may perpetually circulate on a long
enough ring of connected cells, which is to say the cells may circulate along the
indicated arrows on the phase portrait in figure 10.3 like circus elephants linked
trunk to tail. They do not just all pour, one after the other, into the attracting steady
state, because they are linked in a ring, so a cell already caught up in the fast
upward arrows will pull a neighbour up out of its immediate range of attraction,
whereupon it too streaks away vertically, and pulls up its next neighbour. Thus
such media are not just excitable, but also re-excitable after a sufficient interval.
This need not be as long as the time needed to follow the arrows back to the
neighbourhood of the attracting steady state: if ε is small so that the vertical
motion is swift then re-excitation can occur from the lower branch far to the right
of the steady state, and the drop down from the upper branch then tunnels through
that nullcline’s turn-around in the upper right with comparable prematurity. In this
way arises the possibility of rotating shocks and, in two- or three-dimensional
simply-connected continua, phase singularities (pivot points or curves) inside
them. Figure 10.4 illustrates one such situation in 2D. (See the PowerPoint
lecture from [51].) As illustrated, this pattern rotates rigidly, throwing out a
spiral shock like the magnetic field around a spinning neutron star, in the form
of an involute spiral with radial spacing equal to the circle’s perimeter. Inside
this evolute circle, called a ‘rotor’, ∇V is necessarily transverse to ∇ p, and iso-
V contours (contours of fixed V in this stopped-time snapshot) somewhere cross
perpendicularly through iso-p contours. But outside this little disk around the
pivot the V and p contours are both parallel to propagating wavefronts.

Another way to say this is that almost any chemical composition (V , p)
found in such a medium is found everywhere along a curve (or in 3D, a 2D
surface) behind the shock front that propagates forward at nearly uniform speed
in the form of an involute spiral (or corresponding scroll-like surface in 3D). The
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Figure 10.4. One frame from a FHN computation in 2D, from initial conditions arranged
to evolve a phase singularity inside the black circle. Its diameter is λ0/π of the involute
spiral shock you see radiating/rotating away. Rotor motion is typically more complex
than illustrated here: the zone circled typically ‘meanders’ quasi-periodically with at least
one additional discrete frequency. Quite a few others are shown on a vertical logarithmic
amplitude scale in the thumbnail (referring to a different medium, but quite like FHN.)
This is not yet well understood.

set of such compositions makes a closed ring in the (V , p) state space. But
compositions found well inside that locus in the state space instead correspond
to barely moving points (or 1D space curves in 3D). They are all bundled together
in the vortex core. In 3D this 1D space curve, being the intersection of an iso-V
surface with an independent iso- p surface, generically closes in a ring.

The simple equations of (10.2), (10.3) determine the rotor’s structure in
figure 10.4 and, at such parameters as those used, impel its asymptotically rigid
rotation. But it should be noted that at more typical parameters the grey rotor area
around the pivot not only rotates but also translates along a path whose curvature
is modulated with an additional frequency or collection of discrete frequencies.
The thumbnail insert in figure 10.4 depicts one such spectrum (from a different
excitable medium (see [43, p 463]) with richly coincidental relations between
its discrete spectral peaks. These remain today, after many years of study, still
unaccounted for.

This presents the first question of the ten invited by the organizers of the
Colston Research Symposium:

Question 10.1. How are we to understand the richness of these typical spectra?

Chapter 9 by Kuramoto, which concerns rotors without phase singularities in
non-excitable (oscillating) media, may provide a new approach to understanding
this richness. If I understood his presentation correctly, numerical grid points
near the centre of rotation become entrained to a newly bifurcated frequency,
typically higher than that of the pre-existing oscillations. Oscillators near the
centre become entrained to this new frequency because that is where its amplitude
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Figure 10.5. Here we see the scroll-like shock front sectored open to reveal its spiral cross
section. This is half of the iso-V surface, the other half (not pictured, in the wake of the
shock, where V is decreasing again) being a time-delayed version of the same. In 3D, the
2D centre of rotation or phase singularity necessarily becomes a vortex line or singular
filament. It is the intersection of a certain iso-V surface with a certain iso-p surface, thus
generically a closed ring, around each point of which the (V, p) field spins at (almost) the
characteristic frequency, ω0, of 2D rotors in figure 10.4. It will be seen naked again in
figures 10.14–10.17 but figures 10.2, 10.8–10.13, 10.20, and 10.21 clothe it in a tubular
sheath corresponding to the black circle at the source of the spiral in figure 10.4. This
encloses a disk of rotating transverse V and p gradients, drawn at girth equal to the outer
spiral wave spacing, λ0.

is greatest, while the basic limit cycle’s amplitude has a zero there. In excitable
media the local dynamics has no limit cycle and does not entrain, but it does
bifurcate a new frequency (‘meander’), whose amplitude is high only within a
couple rotor diameters from centre. Are these scenarios relatable? In chapter 9 by
Kuramoto, if the disorderly scattering of dots near the centre of rotation persists
in the continuum limit and somehow corresponds to a multi-frequency (hyper-)
meander, might it provide a way to begin understanding the peculiar spectra
observed in meanders?

The FHN equations without diffusion can be tuned to exhibit a limit cycle,
but that is not done in this chapter. Our local dynamics is excitable but has no limit
cycle. Moreover with diffusion added, the PDE supports rotors at a characteristic
frequency, and with a number of additional frequencies if parameters are pushed
across certain bifurcations. But that is not done, up to figure 10.14: all numerical
experiments represent the narrow parameter-space domain of single-frequency
rigid rotation. Only in figure 10.14 and beyond will we cross a supercritical
Hopf bifurcation locus in the medium’s parameter space to bring one additional
frequency of the 2D rotor up to large amplitude as a sort of ‘perturbation’. The
intent is that this should provide something like thermal agitation to slightly
expand the vortex rings and to prevent their hibernation into a comfortably
compact exact symmetry.
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Figure 10.6. Vortex rings may link and knot without violating any known constraint of
geometry, physical chemistry, etc. Each filament is given an orientation so that the direction
of wave rotation around the filament is given by the right-hand rule. Matrices of linkage
integers (positive and negative) are shown. Reprinted by permission from A T Winfree
1990 Stable particle-like solutions to the nonlinear wave equations of three-dimensional
excitable media SIAM Rev. 32 1–53.

Figure 10.5 extends figure 10.4 with cylindrical symmetry into 3D. The
phase singularity, while a vortex centre point in 2D, becomes a circular filament
in 3D. See the PowerPoint lecture from [51] for animation of these scroll waves.

Circular singular filaments have been known to exist in real chemical
excitable media since 1973 [33], and to shrink to nothing in time like
(initial radius)2/2D. It happens that only the fast variable, V , is diffusing in most
computations shown here; it makes little difference in practice, but shrinkage
can be derived analytically in the limit of huge radius (compared to λ0) if the
slow variable, p, diffuses at the same rate as the fast variable, V . Specifically,
the spontaneous rate of shrinkage of a sufficiently large ring would be close to
dr
dt = −D/r , i.e. the area enclosed would shrink at rate dA

dt = −2πD [24].
Another way to express this is to imagine the filament has a uniform, length-
independent tension proportional to D, which drives each curved arc segment
through an equivalent viscous medium at fixed speed D/r .

In practice even some small solitary rings do this very nearly in the
laboratory and in the computer unless the numerical medium be only marginally
excitable. But this law is not quite right for other cases. If the slow variable,
p, does not diffuse, as in computations shown here, the coefficient (of the other
variable) is not exactly D. And more importantly, if vortex rings are linked or
knotted (figure 10.6), then shrinkage typically stops when (inevitably) transverse
filaments get too close together (like the diameter of the nominal vortex tubes in
figure 10.2). This gives us the second question, which will recur in several forms:
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Figure 10.7. Labels for the essential quantities of a description of local filament motion in
terms of local curvature, k, and twist, w, supposing the rotating concentration field looks
the same, up to rotations, in every local normal plane near an elliptical filament. The two
fine circles are supposed to suggest rotation at angular velocity ω with phase graded at w
radians per unit distance, s.

Question 10.2. What stops the shrinkage of filaments?

This question leads to an interest in the ‘laws of motion’ of such singular
filaments. A natural guess is that local motion would be determined by the
local geometry of (V , p) distributed in normal planes everywhere along the
filament as in figures 10.4 and 10.5. The simplest description is then in terms
of k(s), the curvature of the filament as a function of arc length along it,
together with the phase of the concentration field’s rotation, in a snapshot at fixed
time. In figure 10.5 both are constant along the filament but they need not be
so (figure 10.7). Averaging over a rotation period, the absolute phase proves
unimportant, but its arc-length derivative, called its ‘twist’, w, remains important.
It has no analogy in hydrodynamic vortices; in reaction–diffusion media such
as those governed by equations (10.2), (10.3) it is real-valued and limited only
by the requirement that a circuit of the ring must restore the starting phase.
Then local filament motion is conveniently described in the filament’s Frenet
frame oriented by its tangent and its osculating circle. Resolving this motion
into a normal component of velocity, Vn , toward the local centre of curvature,
and a binormal component, Vb, we ignore any component along the tangent as
being unobservable in principle. (A caution: these subscripted V s mean velocity
components, not the local intensive variable, Voltage.) Then question 10.2 as
formulated in 1987 became: ‘How do local Vn and Vb depend on local k and
w?’ [45]. From symmetry considerations it would seem that twist could enter this
act only as an even function, and, as previously noted, argument from the form
of reaction–diffusion PDEs [24] said Vn = Dk when k is small, w = 0, and
all diffusion coefficients are equal (i.e. if equation (10.2) has an additional term
D∇2 p on its right-hand side, as it indeed does when we model excitability in
chemical solutions rather than in cell membranes). Question 10.2 then becomes:
‘Is that all?’

A surprising answer came from J P Keener [15] in a form abstract enough to
apply not only to such excitable media as figure 10.2, but even to fields of coupled
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limit cycle oscillators or harmonic oscillators such as the complex Ginzburg–
Landau PDE. Keener showed that k and w also affect the local frequency of
rotation, that dw

ds is an important causal factor and that in the limit of small k
and w this results in a dynamic that consists of three linear combinations of these
three quantities, with nine undetermined coefficients that are believed to depend
only on the local ODE and the diffusion matrix:

Vn = b2k + c2
dw

ds
− a2w

2

Vb = c3k + c4
dw

ds
− a3w

2 (10.4)

�ω = c1k + b1
dw

ds
− a1w

2

My efforts in 1988–91 to estimate these coefficients numerically gave
consistent results only for the three coefficients of k in the movement equations
and the coefficient of w2 in the spin-rate equation. The rest kept coming out
helter-skelter on both sides of zero, suggesting maybe they are zero in this
approximation and some other influences affect filament motion when twist and
curvature are larger in relation to spiral wavelength. Further pursuing Keener’s
ansatz analytically Biktashev et al [5] argued that five of the nine coefficients
must be zero in every case (with small k and w as usual), specifically the overlined
coefficients in (10.4), a2,3 and c1,2,4. Both Keener and Biktashev et al agree that
if all reactants (e.g. V and p in figure 10.3) diffuse equally, then coefficients
c1,3 must be zero, and two others, the underlined coefficients b1,2, are equal to
D. A surviving innovation in (10.4) is the idea that b1 is not zero. Note that in
equations (10.1), as amended in (10.3) and (10.2), and their numerical solutions
in figures 10.8–10.17, only V diffuses. But if both V and p diffuse equally, the
scheme (10.4) simplifies back to Vn = D/R (toward the centre of curvature R
space units distant), Vb = 0 (no drift perpendicular to the plane of the curve),
and �ω = (D dw

ds − a1w
2), where −a1 is O(D), with w expressed in radians

per space unit. So as far as filament motion is concerned, we are back to the
original formulation of Panfilov and Pertsov [24], in which twist was neglected or
implicitly supposed to affect only spin rate, at least for a solitary isolated filament.
Note also that in this equal diffusion case the law of motion plainly precludes
persistence of rings, because every arc always moves directly toward its local
centre of curvature, faster and faster as the ring shrinks and its curvature increases.
Presumably the meander frequency also depends on local geometry—in a similar
way?

Question 10.3. For the isolated barely curved and barely twisted filament
presupposed in (10.4), how to evaluate the single undetermined coefficient, a1
(and all the others, in case of general D matrix, e.g. with only the fast exciting
variable diffusing as in figure 10.2), short of empirical measurement?
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Some algebraic estimates of a1 are attempted in [41]. One is −QD/8π ,
where Q is the dimensionless ‘quality factor’ of any rotor, λ2

0ω0/(2πD). Here
subscript 0 denotes the unique 2D rotor and the spiral wave it radiates; in 3D
curvature and twist somewhat alter the corresponding values. And D means
the diffusion coefficient of the species with fast kinetics, which propagates the
excitation. For excitable media in which only the fast species is free to diffuse,
this Q has theoretical minimum value 6π and in the diverse laboratory examples
known (including many with multiple species diffusing) stays O(102) while
physical parameters range over a dozen orders of magnitude [43, p 278] (for
3D graphs see PowerPoint lectures from [51]). Exception: marginally excitable
media, in which Q goes to infinity as parameters are adjusted to make rotors
become inviable just before propagation also fails. This estimate of a1 is only
for small w, and only for media in which frequency times propagation speed
is constant, as is expected for small ε; the coefficient doubles for dispersion-
free media, as expected in marginal excitability. In a range of small ε called
the Fife regime Margerit and Barkley [20, 21] provide analytically exact answers
for arbitrary w at k = 0. Augment their coefficient by about half again
and you have the result determined in [41] using a numerical model of the
Belousov–Zhabotinsky medium; augment that by about half again and you have
my −QD/8π . The only estimate from laboratory experiments in the Belousov–
Zhabotinsky medium is about half the Margerit result, but it is uncertain by at
least that factor [41].

I usually prefer to rewrite the dynamics (10.4) in space units equal to λ0,
in time units equal to 2π/ω0, and in angle units of 2π rather than radians, and
to make the coefficients (here capitalized) likewise dimensionless by providing
appropriate multipliers that depend only on dimensionless Q:

QVn = B2k + 2π√
Q

C2
dw

ds
− 4π2

√
Q

A2w
2

QVb = C3k + 2π√
Q

C4
dw

ds
− 4π2

√
Q

A3w
2 (10.5)

Q�ω =
√

Q

2π
C1k + B1

dw

ds
− 2π A1w

2.

It is to be understood that the six variables here differ from those used in
(10.4) under the same names in that the units (and so the numerical values) are
different. As before, five of the nine coefficients (C1, C2, C4, A2 and A3) are
zero according to Biktashev, and in the case of equal diffusion coefficients so is
C3 while B1 = B2 = 1. In any case my approximate value for a1 becomes
here A1 = 1/8π . The original lower case dimensional coefficients are obtained
from these dimensionless uppercase ones by multiplying C1 by

√
(Dω0/2π), B1,

B2, C3 and A1 by D, and C2, C4, A2 and A3 by
√
(2πD3/ω0). Although no new

physics has entered here, the advantage of this mere translation is that (to whatever
extent such equations pertain to organizing centres) one can now think about
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filament dynamics as though organizing centres were all about the same size,
with waves propagating at unit speed, and rotors turning in unit time. I imagine
that the new upper case coefficients are also less sensitive to parameter variations
(they are completely independent of multipliers of diffusion, and of course of the
arbitrary choice of physical units), and that Q has become the principal parameter,
but this guess has not been tested.

Note that the computations reviewed here followed figure 10.3 in
suppressing diffusion of p, so, following Keener [15], the coefficient c1 of k of
(10.4) is not near zero. Biktashev et al [5] find it to be zero anyway, but this is only
for small k, w, not for the present case. It was in fact measured in the particular
medium of figures 10.8–10.13 [6] as −0.28 rad space-unit/time-unit, or in natural
units (turns, wavelengths, periods)1, close to shockspeed/Q, thus substantially
decreasing the spin rate.

Since 1986 numerical experiments on linked and knotted rings with
‘realistic’ k(s), w(s) and D matrix had been showing something unforeseen in
the small-(k, w) limit: they typically approach large stable k(s) and w(s) in a
compact arrangement of no-longer-shrinking rings. Something has arrested the
initial shrinkage expected and observed in arbitrarily large rings. We are back
to the original form of question 10.2: ‘What stops them?’ I think the culprit
is a violation of the assumption underlying (10.4), that the neighbourhood of
the filament in every normal plane to the filament looks like the middle part of
figure 10.4, so that 3D anatomy differs locally from 2D anatomy only in the
factors depicted in figure 10.7, namely the slight tilt, k, and rotational shear, w,
that transform one normal plane to the next. Rather, I think what is happening (but
it is hard to be entirely sure, as the old computations on record did not highlight
this feature) is that a distant segment of filament invariably intervenes in this tidy
geometry in a non-local way, as we will see later under topic ‘Dynamic B’.

Let us look at some of the stopped configurations. They are easily started
by seeding 3D computations of (10.1) plus Laplacian as in (10.3), and (10.2), or
similar reaction–diffusion PDEs, with appropriate initial conditions. Computation
for [6] and figures 10.8–10.13, used a slightly rearranged version of the FHN
model:

∂V

∂ t
= ∇2V + 3V − V 3 − 3 p

3µ1
(10.6)

d p

dt
= µ1

2
(2V − p + 2µ2) (10.7)

with parameters µ1 = 0.3 and µ2 = 0.7. Translated in terms of the original
format (10.2), (10.3), at these parameters ε = 0.01, V0 = 0.022 and g = 1.53.
This is a peculiar choice: µ1 (proportional to

√
ε) is so big that the medium is

only marginally excitable; the intersection of nullclines is so close to the knee

1 All the relations presented here benefit from such conversion but I leave them in basic units to
facilitate checking for dimensional consistency.
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of the cubic that a limit cycle is about to arise by Hopf bifurcation; the 2D rotor
repels from no-flux boundaries to a distance of about a half wavelength; there are
two possible kinds of stable rotor with quite different frequency and wavelength;
both rotate rigidly; and the link-free, knot-free 3D vortex ring shrinks only to a
certain size rather than shrinking faster and faster toward collapse as previously
indicated [6]. In figures 10.14–10.17, parameter µ1 is changed to 0.2 and µ2 is
changed to 0.9 to sample more generic behaviour [39]. The computations are
all done by explicit Euler integration in cubic arrays at least 3λ0 wide so the
Neumann boundary conditions demonstrably have no effect on rings shrinking
toward the middle. The volume is finely enough sampled by the numerical
grid so that shock waves propagate isotropically at close to the speed expected
analytically or from computation on finer 2D grids. The initial conditions (ICs)
are described analytically in terms of complex-valued functions with the right
symmetries (for details see [36, appendix A] and [43, ch 16] or papers cited there.)
The complex number then points to (V , p) values stored on the plane of a pre-
computed spiral wave [12]. It should be noted that these functions typically have
a number of perfect symmetries (though this is not necessary: slightly distorted
ICs still evolve toward similar asymptotic solutions), and so do the solutions
evolved from them unless the symmetry is unstable and some slight perturbation
is provided to nucleate the breaking of symmetry. This normally comes from the
coarseness of the numerical grid itself, but it is not provided in the special case
that the symmetry of the ICs coincides with that of the cubic grid.

In any case, symmetry seems stable in the next six figures. These are
the six panels of figure 10.2. They do not show the naked filament but rather
surround it by an octagon in the normal plane at each of 100 equispaced stations
along the filament where we constructed Frenet frames and quantified both local
geometry and local filament motions. The octagon may be thought of as roughly a
level contour of amplitude for V or p fluctuations near the zero-amplitude phase
singularity, the pivot for the locally rotating patterns. The station numbers are
indicated to show the orientation of the filament: forward means the rotation
ahead looks clockwise. The octagon’s perimeter is λ0; it is oriented so one corner
and the next are on the normal and binormal axes so the surface texture indicates
torsion of the Frenet frame. (Other publications have shown instead an iso-V
or iso-p level surface as in figure 10.5; for example, see the PowerPoint lecture
from [51] for a movie of the scroll waves surrounding a trefoil-knotted singular
filament. But the figures printed here merely show a nominal boundary of the
vortex core inside which the transverse concentration fields rotate and outside
which behaviour is better described as propagation at fixed speed normal to the
iso-V surface.)

Figures 10.8–10.11 show four configurations of compactly interacting vortex
rings that eventually (about 20 vortex rotation periods from our symmetric but
otherwise imperfect initial conditions) move like a rigid body with inertia. All are
centred in cubes with Neumann boundary conditions 3.1λ0 apart, wide enough
that we could neglect influences from the no-flux side walls. The floor and ceiling
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Figure 10.8. A pair of identical linked vortex tubes surround interior rings oriented (light
arrows) so the right hand rule indicates shock circulation direction (darker arrows). It
happens that isolated rings move two orders of magnitude slower than shock propagation
through the interior of the ring. So these two would soon collide, except that filaments
somehow repel and avoid one another, resulting in rigid rotation of the pair anticlockwise
while they comparably slowly approach the observer as indicated by the face-on arrowhead
superposed in the centre. After evolving through scores of rotation periods from initially
larger diameters, each ring stopped shrinking while still nearly circular, with perimeter
close to πλ0. The central hole is about twice the diameter needed to accommodate the
linking vortex tube. Both rings being linked once, each necessarily bears one cycle of left
twist [35, 46]. With either filament orientation reversed they would both be right-twisted
and the object would be the mirror-image of this one. With both reversed we get back again
the same object as viewed from the other side; there is no left-twist/right-twist pair [46].
Note that in mirror-imaged fields all the anatomy behaves as expected, and so do shock
propagation vectors, but filament orientation, being the cross-product of two gradients,
does not. Note also the stable ring’s diameter, λ0. It happens in this unique medium that
even the twist-free isolated circular ring with cylindrical symmetry stabilizes at a small
diameter, just under 0.5λ0. But all rings shown in this chapter are bigger than that, not just
because they must accommodate at least one threading tube and so must exceed diameter
(2/π)λ0; they actually exceed it by more because ring perimeter rather than area seems
proportional to the number in linking filaments (see later). So their mechanism of resisting
further shrinkage is different from that of the link-free, knot-free cylindrically symmetric
ring that, in this peculiar medium alone, stabilizes before shrinking to extinction. I imagine
that this link- or knot- dependent mechanism involves Dynamics A, B and C speculatively
presented later.

implement periodic boundary conditions and the observed glide of the organizing
centre is oriented by choice of initial conditions to exactly that direction.



244 Art Winfree

Figure 10.9. Like figure 10.8 but each ring is twice linked by the other, accordingly bears
two cycles of left twist, and is about twice as long (5.76 wavelengths of the 2D spiral, i.e.
5.76λ0), so it even more generously encloses the two vortex tubes. Its maximum local
twist, w(s), stays just below a certain threshold discussed later under ‘Dynamic A’. These
rings are conspicuously non-circular and non-planar, but have almost no Wr (as in all
linked rings in figures 10.8–10.11.) As in figure 10.8, there is also a mirror-image version
with opposite linkage, twist and writhing. There can also be distinct versions in which
one or the other ring’s orientation is reversed (these are mirror-images), thus reversing
linkages but leaving twist and writhing free to adjust in other ways. These have never been
computed.

Figure 10.10. Like figure 10.8 but each of three rings is twice linked by the other,
accordingly bears two cycles of left twist as in figure 10.9, and is only a little shorter
(4.95λ0) than in figure 10.9 (5.76λ0). The maximum w(s) in this and all such solutions
stays a bit under the sproing threshold. Three-fold symmetry persists despite its
incompatibility with the cubic numerical grid. These rings glide/precess about the z-axis.
Because they are tilted and well off centre, about one-third of each ring is moving opposite
to the positive Vb observed in isolated rings. As in figure 10.8, there is also a mirror-image
version and there is a distinct version in which two rings are linked by the others in opposite
directions, and so bear no total net twist, while the third ring bears two twists (and a
mirror-image of this). These also have never been computed.
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Figure 10.11. Like figure 10.10 but these three rings evolved from three flat 2:1 ellipses
configured as Borromean rings [52], so named from the crest of the Italian Borromeo
family. They are 6.7λ0 long and, while inextricably entangled, are not pairwise linked.
(In imagination remove the shaded one: now you can pull the other two free from
one another). Integration around any ring accordingly accumulates no total twist, Tw,
in one circuit (however w2 locally waxes and wanes even more extravagantly than in
figures 10.8–10.10). This object slowly glides/precesses as a rigid body along the long
arrow. As in figures 10.8–10.10, all three rings have evolved identically from their identical
initial conditions, to this asymptotically stable configuration. There is also a mirror-image
version. As in prior figures, these rings evolve from initially planar configuration without
increase of Wr , even though they do develop torsion out of the plane and are neither
mirror-symmetric nor inscribed on the surface of a sphere. No set of nine coefficients in
(10.4) describes the motion of figure 10.11, nor do coefficients fitted to figures 10.8–10.14
agree with one another.

Question 10.4. Is it really true that these solutions asymptotically approach a
unique shape that transforms in time by mere rotation and translation, at least in
media that support rigid rotation of the vortex in 2D?

Experience is limited. Computations have gone only up to about 100 vortex
rotation periods. While this generously exceeds collapse time for link-free knot-
free rings in the same medium, it falls far short of reaction–diffusion characteristic
time L2/D if L is taken to mean the perimeter of the knot. A knot’s perimeter
seems to be settling asymptotically in early computations [12, figure 6] but who
would dare predict the future in the absence of sound theory? And a skeptic
could reasonably argue that adding even a little persistent random noise to such
calculations might expose an instability. The possibility is also not excluded
that the final shape is, to some extent, determined by initial conditions or that
it deforms plastically under such perturbations as arise from transient encounter
with a wall or another travelling ring. Rebound to a preferred shape should be
tested in the medium of figures 10.8–10.13 by modestly shearing the numerical
grid then resuming calculations. Preliminary trials demonstrated rebound only
for the cylindrically symmetric twist-free solitary ring [6], which is unique in that
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its stability does not involve twist or the putative mechanisms mainly discussed
in this chapter. The only trial on a knotted filament (a decade ago, unpublished)
induced a lasting change of shape (!). This needs re-doing at longer duration.

Suppose (10.4) were as true of highly curved and twisted filaments as of
the cosmic-scale rings for which it was derived. Then any stable structure
must have �ω independent of s, with spiral shock waves outgoing at identical
frequency from every arc. They must then collide at internal collision interfaces
that nowhere touch the filament. These resemble a fusion of the tubes drawn
in figures 10.8–10.13. With all frequencies equal, is their position uniquely
determined? I suspect not. Moreover this required uniformity of �ω constrains
the linear combination of k, w, and dw

ds to two degrees of freedom. What
combinations are compatible, through the Vn and Vb equations (10.4), with
the observed asymptotically rigid glide/spin of a closed curve whose shape is
prescribed by k(s) and torsion τ (s)?

Note that torsion plays no role in (10.4), and in the ring integral of w(s)
there is an additional constraint involving torsion, namely that this integral must
be the linkage integer minus the writhing. Writhing, Wr , is a real-valued global
measure on a space curve, related to the arc-length integral of torsion or to the area
swept out on a unit sphere by the curve’s tangent vector [47]. Wr = 0 for closed
curves that are mirror-symmetric or confined to the surface of a sphere or plane.
If (10.4) had simplified to the ‘local induction approximation’ of fluid mechanics,
Vb = Dk, rather than to Vn = Dk as in equal-diffusion excitable media, then Wr
would have had more transparent importance as a quantity conserved under that
motion [18].

In figures 10.8–10.13 the organizing centre rigidly glides, two orders of
magnitude slower than waves propagate in this medium, along a straight path.
Meanwhile it precesses comparably slower than the rotor spins. The glide is
along the direction of periodic boundary conditions, toward the viewer, except
in Figure 10.11, where the spin/glide axis of helical progress is instead along the
cube’s body diagonal and the viewpoint is almost but not quite down that axis.
The arrangement of the pattern of figure 10.11 was initialized as perpendicular
ellipses, whereupon they started shrinking while slowly drifting in the direction
of shock propagation through the inside of each ring (apply the right-hand rule
to filament orientations indicated by the pale arrows). In the present view, this is
somewhat toward the viewer and somewhat anticlockwise. Then each encounters
a second ring, cross-braced by a third, bends it, and is bent by the cross-brace.
Shrinkage (Vn) stops and parts of the ring move with Vb > 0 while other
parts move with Vb < 0. These motions completely violate (10.4); there is no
combination of nine coefficients that comes close to connecting the quantitatively
observed rigid-body motions to the quantified local k, w2 and dw/ds [11]. This
brings us to the next question:

Question 10.5. What to do if twist cannot even be consistently defined? This
comes up because it turned out [12] that the rotation of concentration gradient
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Figure 10.12. Once again at the same parameters of the FHN model 10.6 and 10.7 as in
figures 10.8–10.11 and in the same generously sized box, the well-evolved compact left
trefoil knot (2:3 torus knot) has perimeter 8.9λ0. This is about 3λ0 per penetration, as
in figure 10.8. Tubes drawn at standard girth = λ0 are almost tangent at three places
but elsewhere have lots more ‘elbowroom’. As in the prior figures, the tube here is
embossed with equispaced station numbers 1 . . . 99 at which we evaluated differential
geometry and motion; they look oppositely oriented in [12] only because the left knot
in that different excitable medium is viewed from the other side. Its Wr , w(s), k(s),
and motions (normalized to λ0) are quite similar (contrary to the unaccountably mistaken
assertion in [43] near the bottom of page 486. [The next page, incidentally, notes the
beginnings what might be a long-term instability in this knot]). There is, of course, also a
right knot, e.g., see figure 10.21 from earlier computations using a piecewise-linear kinetics
rather than FHN.

vectors at many places along the filament is far from uniform during any one
cycle, and not the same for V and p! This again indicates the intervention of a
non-local influence.

Figures 10.12 and 10.13 present single rings that are knotted. They can
be shown [47] to necessarily have zero full turns of Wr + Tw (Tw being the
ring integral of local twist, w) and sure enough, each does. They also have
substantial, in fact equal and opposite, Wr ; figure 10.12 for example resembles
three planar semicircles connected by right-angle torsions, and resembles three
turns of a helix, with Wr = 3.3 × 2π rad and so necessarily with the opposite
(negative) amount of (left) twist, which is confirmed numerically. This twist is not
uniformly distributed, as figure 10.21 will show, and this turns out to be essential
for the dynamical stability of this knot. Figure 10.13 shows that more than one
kind of knot can shrink to a stable configuration. The methods of [36] and [25]
readily adapt to initializing every kind of torus knot, but I would love to know
how to make other kinds. So here is our next question:

Question 10.6. How can we write complex-valued IC functions for arbitrary
knots, and which ones (all?) will prove viable as persistent particle-like solutions
to the reaction–diffusion PDE of excitable media? The only two tried so far
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Figure 10.13. A stable left 2:5 torus knot, with perimeter 14.1λ0 (again approaching three
wavelengths per self-linkage) and equal and opposite Tw, Wr near 5.7 full turns. It is
slowly gliding toward you while precessing anticlockwise like all the foregoing. There is
also a mirror-image version. I express organizing centre sizes in terms of λ0 because of the
belief that they would be the same in those terms in any other medium characterized by the
same Q: equations (10.5) may not be pertinent to stable or persistent organizing centres,
but they do suggest a uniform scaling with Qλ0.

both persist and one persists in four rather different excitable media. But I only
know how to do m : n torus knots, and iterated torus knots (cable knots) [25].
Can ‘random’ initial conditions make links and knots, e.g. if the medium, while
propagating shocks without phase singularities, were stirred or were diced and
the cubes rotated at random or shuffled?

In the course of the studies that culminated in such pictures (1985–1994) my
students and I inadvertently used plenty of topologically correct but quantitatively
awkward initial conditions in a variety of distinct excitable media. In many such
cases evolution under the reaction–diffusion PDE did not preserve the topological
‘invariants’. Rather, bits of filament came too close together and cross-connected.
Here question 10.2, ‘What stops them?’, arises again to spawn our next question:

Question 10.7. What processes transpire if they do not stop? It has been known
for two decades that topology and geometry provide no constraints against
filaments joining to reconnect hyperbolically if pushed into contact [48] and that
they also can just pull through one another. In numerical excitable media both
have been observed to occur spontaneously. This leads back to Question 4: Are
these solutions really asymptotically stable?

10.2 Persistent organizing centres

Might the ostensible stability of the solutions shown in figures 10.8–10.13 be
deceptive, maybe a residue of symmetric initial conditions? Or might it be as
delicately dependent on peculiar parameters as the stability of the cylindrically
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symmetric scroll ring is known to be in the same medium [6]? To answer this
question I gradually changed the parameters of the FHN excitable medium (µ1
from 0.3 to 0.2, µ2 from 0.7 to 0.9) until the 2D vortex ceased to rigidly rotate,
but instead began to meander along a looped quasi-periodic path. The direction of
this extravagant looping reflects the changing phase difference between the two
frequencies. This difference and direction vary along the filament, partly because
both frequencies are somewhat affected by local curvature and twist [42]. This
would appear to test the stability of the formerly symmetric compact structures
of figures 10.8–10.13, much as thermal agitation might. However, there is one
important difference: a symmetric discrete computation is going to continue with
exactly the same symmetry even if unstable, unless seeded with at least a small
symmetry-breaking perturbation. This is generally provided by the discreteness
of the numerical grid, but not if the initial conditions have a compatible symmetry,
as they did in figures 10.9 and 10.11. Unless we invasively intrude by mapping all
concentrations into a new array through some rotation or distortion, or introduce
intermittent random noise2, the only symmetry-breaking factor comes from the
fact that the Laplacian is computed by a discrete algorithm that proceeds in
one fixed direction through the cube, irrespective of symmetries in the initial
conditions. Then the non-associativity of floating-point arithmetic in its terminal
bits (see [43, p 491] and my web site [51]) can, in principle, start mirror-image
computations diverging if their initial symmetry is unstable.

This peculiarity of floating-point arithmetic did not suffice to trigger
symmetry-breaking in the case of figure 10.14. This shows two twice-linked rings
started (at the parameters given in the caption, beyond the bifurcation to vortex
meander) from the same initial conditions as figure 10.9 (there at parameters
supporting only rigid rotation in 2D). These IC exactly replicate 3D blocks
of numbers at eight locations in the array, but translated and rotated through
multiples of 90 degrees. They would be handled identically but for the fact the
Laplacian algorithm encounters them from different sides. This slight discrepancy
did not trigger an instability in figure 10.9 and it evidently still does not at the
more provocative parameters of figure 10.14: each ring remains 180-degree-
symmetric through the vertical axis and the two rings remain the same but for
a 90◦ rotation. An object with this same topology and symmetry arose on another
occasion when I ineptly scaled the IC for a pair of rings mutually linked three
times (as in a Star of David). This had 180-degree rotational symmetry about the
z-axis. At two diametrically opposite points where these rings crossed at short
range, they fused. Then there were two wiggly rings, one twice the length of

2 Or massively perturb a short segment of the filament. I did this in [42] to test the notion that
symmetry was very ready to break, if only it could get started. It did not, so I concluded there,
incorrectly, that the even or odd number of rings is a decisive determinant of symmetry. My mistake
lay in applying the perturbation too locally and not waiting long enough for the perturbed computation
to diverge from the control, and in overlooking the preservation of symmetry in the three Borromean
rings before I rotated them from body diagonal to upright. I thank Peter Ashwin for inducing me to
reconsider this right after my talk.
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Figure 10.14. Like figure 10.9 but in a bigger box (3.6λ0 wide) and in stereo for eyes
crossed. (If you have difficulty fusing the two images, hold a pencil-point halfway between
nose-bridge and page, and focus on it: this should direct your left eye to the right image,
and right eye to left image. Adjust slightly so they snap into 3D fusion.) The computation
was done at FHN parameters precluding rigid rotation around a phase singularity. For
figures 10.14–10.17 parameter µ1 of (10.6), (10.7) and figures 10.8–10.13 changed from
0.3 to 0.2 and parameter µ2 changed from 0.7 to 0.9. Another difference: only the naked
vortex line is depicted here, not sheathed in tubes as in figures 10.8–10.13. It is the
intersection of a particular level surface of V with a particular level surface of p, though
here it is picked out computationally by a sharp peak in the magnitude of ∇V ×∇ p (which
vector also points along the ring’s tangent) [34]. One ring is distinguished by darkening.
Forty vortex periods after changing parameters, you see strange ring shapes still preserving
symmetries. A major perturbation of one ring did not quickly trigger symmetry-breaking
instabilities (but maybe a different perturbation would have; or was a longer wait needed?
Characteristic time L2/D is hundreds of rotation periods.) See the PowerPoint lecture
from [51] for a video. Reprinted from A T Winfree Persistent tangles of vortex rings in
excitable media Physica D 84 126–47 c©1995, with permission from Elsevier Science.

the other, mutually twice linked. Each preserved its perfect symmetry during
scores of vortex periods. I presume that by applying an asymmetrical distortion
or perturbation all along each ring, I could have induced this organizing centre
to spontaneously diverge from symmetry (but I didn’t think of it, 8 years ago).
Figure 10.8 was not subjected to the parameter change, but it would presumably
have had the same trouble relinquishing its initial symmetry.

In contrast, in figures 10.15, 10.16 and 10.17 the three rings have
spontaneously evolved to become asymmetric and in distinctive ways. All are
in cubes 3.6λ0 on edge; λ0 is somewhat longer at these parameters, and the box
was additionally relatively enlarged a bit because the wiggly rings take up more
normalized volume.

Question 10.8. Movies corresponding to figures 10.15–10.17 have been cited
in support of the impression that, while the linkage and knottedness ‘quantum
numbers’ seem to be constants of motion (apart from rare discrete transitions),
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Figure 10.15. From initial conditions like figure 10.10, but in a bigger box (3.6λ0 on edge)
and 40 rotation periods after crossing the bifurcation to meander, naked filaments of finite
thickness are colored red-green (see colour plate 1) across their diameter in the direction of
the V gradient in this snapshot. Along the perimeter of any ring two alternations of color
visible from any perspective reveal the two full twists required by co-oriented linkage
with two other rings. The three have evolved distinctive wiggliness. See the PowerPoint
from [51] for a video. Reprinted by permission from A T Winfree 1994 Persistent tangled
vortex rings in generic excitable media Nature 371 233–6 c©1994 Macmillan Magazines
Ltd.

no exact shape is seen again in the same or another ring. This seems plausible,
but is it strictly true, and if so how might it be interpreted? At each station s
along the filament the two frequencies (of 2D vortex rotation and of its meander)
are slightly modified in 3D by local k, w2, and dw/ds [42] but an un-checked
possibility is that the filament approaches an asymptotic shape in which the local
frequencies accordingly cease to change, and so local wiggliness is simply quasi-
periodic.

10.3 Igniting resistance to curvature-induced contraction

The remainder of this chapter summarizes a conjecture about a mechanism
that might be dominantly responsible for the persistence of these particle-like
solutions to the nonlinear reaction–diffusion equation. It could be checked
immediately by computation, but I have not done any since abandoning PDEs
completely in 1995 to try my hand instead at instrument design and construction
(and use) for observation of vortex filaments in chemical gels [44] and in heart
muscle [49, 50]. And someone more skillful than I could probably check this
notion by quantitative analytical modelling.
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Figure 10.16. As in figure 10.15, but from figure 10.11 (Borromean rings). As in
figures 10.9 and 10.14, the initial conditions had the same symmetry as the cubic numerical
grid (e.g. see the three Robinson sculptures outside the Newton Institute in Cambridge [53]
and they preserved that symmetry (while meandering) until I cut out a spherical region and
rotated it to reorient the former body diagonal along the new grid’s z-axis, interpolating
values to fit the new cubic grid. Then the solution’s three-fold rotation axis was no
longer aligned to the cube’s diagonal and three-fold axis, but to its edge and four-fold
axis: the solution’s identical parts thus became differently discretized, and the three rings
divergently evolved much as they did in figure 10.15 without any such provocation; see
also colour plate 1. Reprinted by permission from A T Winfree 1994 Persistent tangled
vortex rings in generic excitable media Nature 371 233–6 c©1994 Macmillan Magazines
Ltd.

I think the key factor is twist. There is nothing to be twisted3 in fluid vortex
rings, nor have the suggested initial conditions [36, pp 243–4] been implemented
in fluids, nor I think even in computations, to find out how they evolve. (This
could be question 10.9, were I not trying to stop at a prime number.) So this
story about linked and knotted vortex rings may apply only to the motionless
media addressed here. It is observed in numerical experiments that rings generally
do have non-uniform w(s), even if no twist is topologically required (e.g. if the
integer linking number, Lk is zero or if Lk = Wr or both, as in figure 10.11,
for example). Especially in linked or knotted rings, the ring integral of w(s),

3 There is in acoustic, electromagnetic, and quantum-mechanical vortex lines. Just as we do here,
Berry and Dennis [4] use the crossed-gradient criterion (caption 10.14) and the topological principle
connecting linkage and twist [35, 46] to infer an important role for twist in the acoustical and optical
wave fields. But one difference should be noted: such singularities are passive consequences of phase
circulation on a large scale, just as a tornado is a consequence of weather patterns, not their cause.
In contrast, the phase singularities we deal with here are shock wave sources and causal organizing
centres.
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Figure 10.17. Seventy vortex periods after gradually changing parameters as before, the
isolated trefoil has long ago quit changing its average shape, but its parts continue wiggling
asymmetrically as it glides and precesses through the medium on a time scale two orders
of magnitude more leisurely than shocks propagate and the vortex rotates in normal planes
along the filament. See the PowerPoint lecture from [51] for a video; see also colour plate
1. Reprinted by permission from A T Winfree 1994 Persistent tangled vortex rings in
generic excitable media Nature 371 233–6 c©1994 Macmillan Magazines Ltd.

Tw, seems seldom if ever zero. Note that Tw = Lk − Wr , both of which global
measures are size-independent if shape is conserved while a ring shrinks. Because
each filament arc moves toward its local centre of curvature, the ring does shrink
and so w2(s) generally increases along some arcs of the ring. Then three things
happen, which I call Dynamics A, B and C:

10.3.1 Dynamic A: sproing

When a threshold of local twist, w(s), is exceeded on a long enough arc of
straight, uniformly twisted filament, that arc ‘sproings’ into an expanding helix
with the same spatial periodicity (figure 10.18), just as observed in twisted elastic
rods and in magnetohydrodynamic filaments. This threshold seems between
0.15 and 0.175 radians per space unit, which is 0.5 to 0.6 turns per wavelength
at the parameters used in figures 10.8–10.13. This seems to be a maximum
beyond which w(s) as observed in all organizing centres depicted earlier never
transgresses. Similar behaviour has been observed in a variety of other such
media; the threshold is typically about 0.5 to 0.7 full turns per wavelength
distance along the filament (figure 10.18), possibly becoming arbitrarily large in
marginally excitable media with very large Q, and possibly going down to zero
in media with the smallest possible quality factor, Q = 6π . (These thresholds
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Figure 10.18. A perfectly circular vortex ring threaded by a single vortex line would
have a total twist of one full turn. (Note the units: radians are used in the text.) If
threaded perpendicularly, and distributing its local twist, w, uniformly, then w = 1 turn
per wavelength of perimeter (lower, smaller diagram). If the threading tube has the same
diameter = λ0/π , then w = 0.52π/(2πλ0) (upper, larger diagram). This is the sproing
threshold in the FHN medium used for figures 10.8–10.13. These diagrams suggest that
the sproing threshold of 0.5 turn per wavelength discovered on straight filaments is not too
high to be encountered on rings before they have shrunk to the minimum possible size. In
reality this much twist also develops on bigger rings because twist, never uniform, causes
gradients of spin rate and so causes increasing twist.

were measured on straight, uniformly twisted filaments; initially curved filaments
probably have a somewhat offset threshold.) In each of the seven4 topologically
distinct, twisted, compact organizing centres known in that medium |w(s)| comes
almost up to that value along their most twisted arcs. Beyond that, a helical
segment begins to expand and so opposes further curvature-induced contraction
while it converts some Tw to Wr .

Sproing at a comparable threshold was confirmed in chemical gels [22]
and in complex Ginzburg–Landau numerical fields [23, 28], where the transition
proves to be made through a supercritical Hopf bifurcation. A corresponding
derivation has not yet been attempted for excitable media, so we have our next
question:

Question 10.9. There is no theory of ‘sproing’ where first discovered, in excitable
but non-oscillatory media. Is it a supercritical Hopf bifurcation there too? If the
vortex meanders, so the twisted filament cannot be straight but must be initially
helical already, is the threshold lower? Can it be zero or less?
4 The seven distinct organizing centres are those of figure 10.2 and a Star-of-David pair mutually
thrice linked; there is also the cylindrically symmetric single circle but it has no twist, and the helix,
but it is not compact.
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For discussion of some beginnings of such theory, attempted in rapport
with numerical experiments on the Oregonator model of chemical excitability by
adding ad hoc nonlinear terms to the linear local theory of figure (10.4), see [16]
and [41, section 5].

In figure 10.11 the knot could be drawn tighter as in [13, 14] were only a
positive ‘tension’ of the filament acting against a hard tube, but that metaphor
is evidently inappropriate to this case. It seems noteworthy that the area inside
each ring threaded in figures 10.8–10.11 is at least several times the nominal
area of that many tubes of unit wavelength in girth, and the multiple varies from
case to case. It seems that the perimeter of the engirdling ring is not minimized
by a tension in connection with the number of tubes it must accommodate, but
has more to do with twist and sproing. Ring perimeter must accommodate a
topologically required total Tw determined by the manner of knotting and/or the
number and orientations of linking rings, while nowhere exceeding the sproing
threshold of 0.5 times 2π radians per wavelength. In figures 10.8–10.11 things
so arrange themselves that the average twist w(s) is 0.3 to 0.4 times 2π radians
per wavelength. This makes all linked or knotted rings much bigger than needed
to girdle the corresponding number of linking tubes. But what if a ring be linked
by an even number of filaments with opposite orientations, so the induced twists
cancel out to leave Tw = 0, as in the Borromean rings? It seems that where
each such filament passes close to the engirdling ring its rotary phase field does
impose a substantial twist on that nearby filament. Even though twist does sum
to zero along the full perimeter, it also does persist locally, guaranteeing a certain
minimum perimeter by the principle that sproing threshold is nowhere exceeded.

10.3.2 Dynamic B: non-local repulsion

The spin rate of the vortex depends on local twist, e.g. �ω = (QD/8π) w2 (plus
a much smaller b1

dw
ds with b1 = D in case of equal diffusion, plus another term,

c1k, with c1 < 0 for this medium and c1 = 0 in media with equal diffusion).
This means more twist, whether positive or negative, makes for higher-frequency
shock trains radiating from that arc of filament. No counterexamples are known
in any excitable medium, though it must be admitted that for the two FHN media
of figures 10.8–10.17 there has been no attempt to demonstrate it numerically
or analytically. Charging brazenly ahead anyway, the next essential observation
is that twist generally does not become uniform along the filament and tops out
somewhat under the nominal sproing threshold of π radians per wavelength. So
the radiation frequency (initially: see later) should differ between twist-free arcs
and maximally twisted arcs by no more than about �ω = (QD/8π) (π/λ0)

2,
with QD defined as λ2

0ω0/2π , so �ω = ω0/16. (Contributions from dw
ds are

typically an order of magnitude smaller, and those from k slightly decrease spin
rate.)

For every point along a closed-ring filament there must be another point
sufficiently far away, and a curve between them inside the ring, where their two
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Figure 10.19. In 2D, periodic sources of relatively low (lower left) and high (upper right)
frequency emit activation fronts that collide along the broken diagonal line. If speed were
independent of frequency then the next collision would clearly occur midway between the
next fronts in line to collide, thus on the side of the longer wavelength. For small frequency
difference and speed dependence, it moves in the same direction at speed = fractional
frequency difference × half the shock propagation speed. Something similar happens in
3D, between skew filament segments. The result is that shocks from the higher-frequency
source impact the slower rotor at intervals shorter than its rotation, phase-shifting it and
displacing it away from the source. With sources distributed along curves in 3D rather
than localized at points as in 2D, things are a bit trickier in that not all of the collision
interface’s velocity projects directly along the line connecting filament arcs of extreme
frequency.

radiations collide. Unlike the waves of linear physics, the shocks of nonlinear
excitable media propagate without attenuation (replenishing their energy by local
excitation like a foraging army or a grass fire), providing a distance-independent
coupling across the field. They also collide and extinguish one another like
grassfires. That collision interface inevitably moves away from the higher-
frequency source (figure 10.19) at speed proportional to the frequency difference,
δω: speed = shockspeed/2 × δω/ω0, which is the same thing as δω × λ0/4π .
It moves at least until it is directly slapping the lower-frequency source. When a
2D rotor is directly impacted by an excitation front, it is transiently disorganized,
then reforms with a slight phase shift, displaced slightly at some fixed angle to
the direction of propagation [19]. This leads to our next question:

Question 10.10. How far and in what direction is this recurrent displacement,
depending on the phase and spin rate differences, the 3D skew angle of attack,
and the nature of the medium? See [43, pp 328, 490–2] for starter references.

Each place s on a lower-frequency arc of filament is slapped outward by
the impact of an unattenuated shock front from some other place s′ on a higher-
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frequency arc. In 2D situations the displacement could be about a rotor diameter
once per rotor period times the fractional frequency difference, δω/ω0. This
happens to be 2/π of the collision interface speed, so I will estimate rotor
displacement speed as the collision interface speed in section 10.6. In 3D this
would suffice to oppose further curvature-induced contraction and so to keep skew
filaments apart unless they are extremely curved toward one another. I attempt to
quantify this under Dynamic C.

This Dynamic B is a bit peculiar. Previously [40,41] I called it ‘non-local’, in
the sense that happenings along some arc of filament directly, and in a distance-
independent way (but with a time delay proportional to distance, less than one
half rotor period in the case of known persistent organizing centres), affect only
some other disjoint arc of filament. This seems to be virgin territory for analytical
modelling.

The foregoing interpretations stand in some want of evidence in as much
as [11], from which figures 10.8–10.13 are adapted, contains no mention of
‘slapping’ nor of twist-dependent spin rates in that peculiar medium (but it is
not clear that as little as 1 part in 16, as previously estimated, would easily be
resolvable among radiations Doppler-shifted by filament motions observed to be
comparably fast relative to shock propagation speed). Both were clearly involved
in the rather different excitable medium used to make a stable knot [12] and the
one used to make persistent meandering organizing centres of diverse sorts in [42],
but these observations do not settle the question whether their involvement is
indispensable.

Observation of the Borromean rings may be pertinent. They need have no
twist, and because they are not linked, the arc-length integral of twist must be
zero (more accurately, equal and opposite to the writhing, but that happens to
be near zero). Yet the stable configuration develops as much twist (positive and
negative equally) as the other organizing centres. I imagine that if there were less,
the three rings would continue shrinking until they reconnect at symmetrically
disposed cross-overs, develop substantial writhing, and convert that writhing to
twist, ending perhaps as a stable trefoil knot.

Vinson [31, 32] confirmed both twist and slapping in a numerical model of
the chemically excitable BZ reaction, but only in twist-free symmetric vortex
rings, whose local spin rates differ not by twist but only because of an imposed
parameter gradient.

It may be relevant that, in some media, a symmetry-breaking instability
allows one of a pair of closely adjacent rotors to slap the other away at a steady
pace, despite there being no difference between their native frequencies before
recurrent slapping induces one by phase-shifting the slapped rotor. This continues
in exactly the same way even at an arbitrarily large distance (e.g., see [37] about
the expansion of helices by this mechanism, and [1, 29, 30]).

So, in short, I see the creation of persistent organizing centres as something
like the formation of stars by igniting thermonuclear reactions: curvature impels
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ever-faster contraction5 but only until the topologically locked-in total twist
becomes compressed enough to nucleate a countervailing expansion by Dynamics
A and/or B. Whether this is routinely followed on a longer time scale by
‘supernova’ has not yet been asked.

So we now have the first of three bonus questions, beyond the invited ten:

Question 10.11. Why should this balance of influences promote stability
(figures 10.8–10.13) or at least persistence (figures 10.14–10.17) of linked and/or
knotted rings?

First of all, it does not always. For example in the case of equal diffusion that
so simplifies (10.4) (to Vb = 0, Vn = D/R), an equal-diffusion trefoil knotted
ring blatantly violates that law by expanding without apparent limit after an initial
shrinkage to critical twist intensity (supernova) [42]. So why should (10.4) plus
Dynamics A and B sometimes promote persistence? I think mainly because the
slap–jump mechanism of filament repulsion suffices to prevent skew intersections
unless the segments involved have nearly the same spin frequency and sufficient
curvature or other local-geometry factors noted in (10.4) to overcome the slight
speed of slap–jump separation. This notion needs quantitative testing, which can
be undertaken in earnest only after question 10.10 is answered in the form of a
dynamical theory of slap–jump, and numerical means are created for observing
the motion of collision interfaces.

And this brings us finally to equally speculative Dynamic C, without which
also I think stabilization could not occur.

10.4 Dynamic C: synchronization

Rotors must eventually spin at the same pace all along every ring in any stable
organizing centre. As previously mentioned and according to (10.4) they might do
so if some fixed linear combination of curvature, twist and its arc-length derivative
were realized at every point. But it is not: when the numerically evolved rings are
plotted in (k, w2, dw

ds ) coordinates they do not lie on one plane, nor even near
similar curved surfaces. What may happen instead is that highly twisted filament
segments in the interior of the organizing centre come to be as close together as
possible (about 0.5λ0), then something like the volume-averaged magnitude of
concentration gradients is minimized by ‘meshing gears’ to synchrony. They no
longer spin independently. The less twisted outer lobes of nearby rings are more
widely spaced from nearest neighbours and might have become progressively
more twisted due to arc-length gradients of spin rate, but instead they are forced to
the same periodicity by recurrent shocks from the higher-frequency synchronous
interior. Does this conjecture find support in the limited available numerical
results?

5 Again, except in certain marginally excitable media.
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Figure 10.20. This is figure 10.2 with band-aids over the segments whose twist (whether
positive or negative) approaches the observed extremum, near the sproing threshold
measured on uniformly twisted straight filaments in this same medium. In three cases
the band-aids are where ‘expected’, on relatively straight inner segments imagined to
synchronize one another and drive more remote segments at this maximum frequency.
However, in three other cases the inner segments have less twist and/or more curvature
(which diminishes spin rate) than the outer arcs on which I therefore reluctantly place the
band-aids. I hope I have made some mistake here.

Figure 10.20 repeats figure 10.2 with dark overlays where I conjecture, based
on the w(s) and k(s) measured in [11], that the unmeasured spin rate would be
greatest. In the three with interior straight segments (from figures 10.9, 10.12 and
10.13) these are the most twisted segments, but in three others (from figures 10.8,
10.10 and 10.11) curved segments on the outer arcs are more twisted, and so
‘ought’ to have the highest frequency, at least if these numerical outcomes with
large w and k and no diffusion of p are anything like the equal-diffusion case
of small w and k as analytically approximated in (10.4). Spin rates were not
measured in these calculations of a decade ago, so we do not know whether
figure 10.20 or the guesswork that motivated its construction is more correct. But
if the sources of maximum-frequency shocks are really as far apart as they look
in three cases here, it is hard to see how perfect synchrony could be maintained,
and so hard to see how the structure could be stable. This conundrum might be
called:

Question 10.12. Is Dynamic C really an essential principle in stable organizing
centres?
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10.5 Ball-park estimation of pertinent quantities

Can we exclude the kind of interpretation proffered here on grounds that the
magnitudes of putatively balancing factors are necessarily orders of magnitude
different, or that any such balance must be unstable? Let us try some rough
estimates based on a simpler medium: with equal diffusion c1 = 0 and b1 = D
in (10.4). Then let us cheat by pretending that D dw

ds is relatively slight (as it is,
in fact, in all the organizing centres shown here), so w2 alone determines the
spin rate: �ω = (QD/8π)w2 radians per unit time with w given in radians per
unit distance. Suppose a non-circular ring bears non-uniform twist, w(s), that
sums to a constant Tw radians of topologically required total twist (implicitly
approximating writhing = 0). If we think of the most twisted segment as a
source of waves, and of some less twisted curved arc as being slapped by those
waves, then the balance between outward slapping and inward curvature-driven
contraction may appear to be unstable: if the curved arc is able to shrink then it
becomes more curved and shrinks faster; if not, it is slapped further outward and
becomes even less curved, and so is slapped away still faster.

But there is another way to think of it. Suppose these arcs are parts of one
ring. Imagine the whole ring expanding or contracting to scale, with scale factor
f . Total Tw remains unaffected but local twist w(s) becomes w( f s)/ f and local
radius of curvature R(s) = 1/k(s) becomes f R( f s). Suppose expansion or
contraction reflects a balance between an arc around s2 contracting inward at
inspeed = D/ f R(s2) while being slapped away by waves from f s1 at higher
frequency wmax. The collision interface moves from s1 toward s2 (maybe not
directly), eventually pushing arc s2, at outspeed = (�ω(s1) − �ω(s2))λ0/4π .
This makes sense only until the interface reaches s2 and starts slapping it away,
but let us suppose that s2 then backs off at that same speed. (If faster it would soon
desist; but [7] argues that it might retreat more slowly in marginally excitable
media.) And for simplicity take �ω(s2) = 0 as though s2 has no twist and
take �ω(s1) at the wmax along this particular ring, i.e. s2 is wherever (twist)2

is maximum. Inspeed and outspeed then balance if

D

f R
= QD

8π

(
wmax

f

)2
λ0

4π
.

If scale factor f fluctuates to enlarge the ring and dilute its twist then
contraction inspeed D/( f R) falls but the collision interface outspeed falls more,
so a contraction ensues: the balance at f = 1

1

R
= Q

32π2
w2

maxλ0

can be stable at least to fluctuations of overall scale. Note that like (10.5) this
again suggests that organizing centres should scale with λ0 for diverse excitable
media that all have the same quality factor, Q.6 Is this plausible, given what
6 In this connection I withdraw the jumbled sentence in [43, p 475, lines 9–12 from bottom].
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little we know? We know that dimensionless Q is 41.6 for the medium used in
figures 10.8–10.13 (and 51.4 in the next four figures) and that wmax cannot exceed
sproing threshold π/λ0 radians per space unit in that medium. We do not know
that wmax peaks up all the way to the sproing threshold, but it comes close in the
one medium for which extensive computations are available, so I adopt that value
here. Brashly plugging in these numbers we see that R = (32/Q)λ0 or 0.8λ0. In
fact, the radius of curvature typical in those figures is in the range of 2λ0 down to
0.4λ0 (nowhere near as tight as the theoretical minimum, λ0/2π), with some arc
in all of them as sharply curved as 0.6λ0. So this estimate seems not implausibly
outside the ball-park. Whether it has any other merit I do not yet know.

Simple as it is, this rough estimation has some testable implications. For
example, if the internal traffic of shock waves should be disturbed, e.g. by
interposing a slim barrier between two arcs of filament within a link, in the
big empty spaces between tubes, then the organizing centre must be expected
to rearrange itself dramatically. This would not occur were every arc of filament
moving according to local geometry rules. And any medium in which slapped
rotors jump toward the slapping source rather than away (as for example the
marginally excitable medium computed in [7]) should be incapable of supporting
stable organizing centres. Similarly, media with much larger dimensionless
quality factor, Q, e.g. marginally excitable media such as used in [7], would
either require shorter filament curvature radii than possible, and so not support
stable organizing centres or (which I doubt) have a lower threshold for sproing in
terms of turns per wavelength distance along the filament. Conversely, media with
Q = 6π , the theoretical minimum for single-diffusion excitable media, would
either have much larger organizing centres (in wavelength units) or exhibit higher
sproing thresholds (the opposite of my impression from a few examples.)

Next, some comparable first estimate should be cobbled together for the
two components of motion transverse to the movement of the collision interface,
hopefully suggesting an answer to the mystery that all this complicated geometry
ends up as a rigid-body precession and glide at fixed rates two orders of magnitude
below vortex spin rate and shock propagation speed, respectively.

Now the skeptic speaks: Such loose back-of-envelope reasoning neglects
many other degrees of freedom than mere scaling, f , of R(s) and w(s). And
if it turns out that twist accumulates all the way up to a glass ceiling at sproing
threshold, so that all organizing centres operate at the correspondingly shortened
spin rate, then slight changes of scale would not affect collision interface speed
and its stable balance against contraction speed would accordingly become an
instability. Were this so we would expect to see substantial arcs of filament pegged
at that twist rate, which is not the case: w(s) is smooth and typically peaks maybe
10% below threshold.

These are clearly only the roughest estimates, maybe even comically so, but
being also the first, they leave us every reason to hope for substantial refinements.
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Figure 10.21. In a different excitable medium a narrow octagonal tube around a trefoil
knot is oriented by the local gradient of one reactant (not by local filament curvature
vector as in figures 10.8–10.13): it shows that the twist, w(s), is not uniform in the
steady state of this solution. The less curved inner segments of filament are more twisted,
spinning slightly faster on that account, and so slapping away the outer lobes of the knot
which would otherwise continue their curvature-driven contraction. Filament orientation
and corresponding vortex rotation are indicated, and the two-orders-of-magnitude slower
rigid precession of the whole knot. (Adapted from figure 26 of a summer 1988 plenary
lecture [38].)

10.6 Passing in silence from 1994 to 2002

For a decade starting in 1985 I invested NSF support in (among other things)
a quixotic effort to discover how local geometry guides the motions of vortex
rings in excitable media. Even before (10.4) formalized a limiting case it was
already clear from such numerical spectacles as figure 10.21 that something
more is needed for understanding linked and knotted rings small enough to be
computed. While this has been understood for a long time, no attempt has yet been
made to record the evidence we now wish for in connection with an alternative
conjectural mechanism for preservation of topological invariants of particle-like
organizing centres in such media. Since 1994 there have been review articles but
little further investigation along these lines. The dozen questions given here still
seem speculations about imaginary objects, like medieval natural histories of the
unicorn. But computer speed has improved many fold in the interim, so the story
could at least be finished. And it now seems imaginable that laboratory research
reports using tomographic optics [44] could appear, illustrating such particle-
like organizing centres gliding through natural excitable media. If so, there
would probably also be observations upon the consequences of their collision
with a wall or even with other organizing centres. In general, fragmentation,
transmutation and scattering would seem likely aftermaths. And in these events
the two distinctively different arcs (twisted source arc, slapped expanding arc)
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of any ring would play distinctive roles. For example, the distant parts of an
organizing centre striking a wall or another filament with its slapped arc might be
little affected in parts remote from initial contact, but one striking with its high-
frequency arc would immediately feel the repercussions in all parts. But before
analysing any of those possibly complicated sequels, I should think it would be
important to first establish whether (question 10.4) any organizing centres actually
have a preferred shape to which they tend to rebound after modest perturbations.
Even this basic principle has yet to be established by numerical experiments
sufficiently prolonged after suitable perturbations or laboratory observation. None
of these patterns have yet been pursued even as far as 100 rotation periods
from their initial conditions. In equal-diffusion excitable media a cylindrically
symmetric scroll ring of initial perimeter P wavelengths is guaranteed to shrink
to nothing after (Q/8π2)P2 rotation periods, which in the examples shown is no
more than about 20 periods, and this is observed exactly in computations. So 100
periods might be generously sufficient for observing the asymptotic outcome of
other ring configurations of comparable diameter. But the slowest time constant
for relaxation of the modes of Burgers’ phase diffusion equation along a filament
of perimeter P wavelengths is (Q/π2)P2 periods, which, with P = nπd (n being
a few links or loops of a knot) is 8n2 greater. So it remains possible that, where
phase twist is importantly involved, asymptotic behaviour has not yet been fairly
appraised. And so finally:

Question 10.13. Is there any relation to the more recent apparition of linked and
knotted vortex rings in Lagrangian field theory?

Comparable numerical exploration of a soliton model of baryons starting
from similar initial condition polynomials, but in an energy-conserving field
rather than a dissipative reaction–diffusion field, reveals the possibility of stably
twisted, linked and knotted vortex rings [2, 8, 10]. Such Skyrmions in Bose–
Einstein condensates have also been computed [17]. Skyrmions are something
like Kelvin–Helmholtz ‘vortex atoms’ [43, p 300] implemented by the sine-
Gordon model. Rañada et al [26, 27] proposed knotted energy-minimizing
magnetic vortices as an interpretation of ball lightning. Berry [3] shows linked
and knotted singular filaments in the zeros of hydrogen atom wavefunctions. It
might be that insights derived from such different field equations may illuminate
the topologically similar solutions found in those of biological and chemical
excitable media.

These conjectural Dynamics A, B and C in excitable media admittedly
sound extravagantly fictional, too much like a Rube–Goldberg concatenation of
gimmicks. It is as though the gracious simplicity of Maxwell’s field equations had
evolved backwards to the discrete field lines and ethereal gearworks of his and
Michael Faraday’s time. This unraveling of the simple idea that vortex motion is
determined by local geometry was forced on us as early as 1987 [45] by numerical
experiments intended to reveal those laws of motion. This chapter’s explicit form
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of the alternative, however, arose only years after the last computations recorded
everything but the measurements pertinent for testing the alternative. But this
symposium was convened to address unanswered questions that offer the prospect
of engendering new principles of nonlinear dynamics. I think we have some here.

Acknowledgments

Data underlying these interpretations and questions came from my unpublished
notebooks of 1994, which are partly informed by an unpublished and
incompletely documented dissertation [11]. Conversation with Peter Ashwin at
Bristol altered my views on the maintenance of symmetry in some numerical
experiments. Jose Luis Trueba, also at the meeting, helpfully critiqued the
manuscript. I thank the US National Science Foundation for lifelong backing and
current grant 9974334, and the Colston Research Society of Bristol for hospitality
on a memorable early-summer weekend. I especially thank Alan Champneys and
John Hogan for patient editing.

Addendum while in press

Shortly after the meeting reported in this book, Paul Sutcliffe undertook to
protract the reported computations from O(100) rotation periods to O(1000). The
reported plastic deformation after rebound from a collision and the spontaneous
‘ballooning’ of one lobe of some organizing centres [43, p 487] do not at all
seem to be ephemeral anomalies. Rather, they were the harbingers of longer-
term evolution now discovered on this generously prolonged time scale. Just as
with motions of the planets and the moon, organizing centre motions resemble
clockwork in the short term, but their long-term stability is far from evident. One
imaginable outcome of what we have seen so far is that, in general, one lobe
expands to become a large ring, slapped outward by volleys of waves from a more
compact centre of knotting and linking. But why just one? And will the extreme
twist in that compact centre itself diffuse outward along this long, little-curved
extension? If so then the centre may no longer radiate at a higher frequency than
the remote curved arc, and so no longer press a collision interface into intimate
contact with it. If the ballooned arc can then force the collision interface away,
it should resume contraction. The evolution of slight twist and slight curvature
on this ballooned arc may finally provide the setting for which analytical theory
(10.4) was designed so long ago.
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[26] Rañada A F, Soler M and Trueba J L 2000 Ball lightning as a force-free magnetic
knot Phys. Rev. E 62 7181–90
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Chapter 11

Spontaneous pattern formation in primary
visual cortex

Paul C Bressloff
University of Utah

Jack D Cowan
University of Chicago

The primary visual cortex (V1) is the first cortical area to receive visual
information transmitted by ganglion cells of the retina via the lateral geniculate
nucleus (LGN) of the thalmus to the back of the brain; see figure 11.1. A
fundamental property of the functional architecture of V1 is an orderly retinotopic
mapping of the visual field onto the surface of cortex, with the left and right halves
of visual field mapped onto the right and left cortices respectively. Except close
to the fovea (centre of the visual field), this map can be approximated by the
complex logarithm; see figure 11.2. Let rR = {rR, θR} be a point in the visual
field represented in polar coordinates and let r = {x, y} be the corresponding
point in the cortex given in Cartesian coordinates. Under the retino-cortical map,
r = {log rR, θR}. Evidently, if we introduce the complex representation of rR,
zR = rReiθR then z = log zR = log rR + iθR = x + iy generates the complex
cortical representation. One of the interesting properties of the retino-cortical
map is that the action of rotations and dilatations in the visual field correspond to
translations in the x and y directions, respectively, in the cortex.

Superimposed upon the retinotopic map are a number of additional feature
maps reflecting the fact that neurons respond preferentially to stimuli with
particular features [37, 42, 54]. For example, most cortical cells signal the
local orientation of a contrast edge or bar—they are tuned to a particular local
orientation [32]. Cells also show a left/right eye preference known as ocular
dominance and some are also direction selective. The latter is illustrated in
figure 11.1 where the response of a cell to a moving bar is shown. In recent
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Figure 11.1. The visual pathway.
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Figure 11.2. The retino-cortical map generated by the complex logarithm.

years much information has accumulated about the distribution of orientation
selective cells in V1 [26]. In figure 11.3 a typical arrangement of such cells,
obtained via microelectrodes implanted in cat V1, is given. The first panel
shows how orientation preferences rotate smoothly over the surface of V1, so that
approximately every 300 µm the same preference reappears, i.e. the distribution
is π-periodic in the orientation preference angle. The second panel shows the
receptive fields of the cells, and how they change with V1 location. The third
panel shows more clearly the rotation of such fields with translation across V1.
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Figure 11.3. Orientation tuned cells in layers of V1 which is shown in cross section. Note
the constancy of orientation preference at each cortical location (electrode tracks 1 and 3),
and the rotation of orientation preference as cortical location changes (electrode track 2).
Reprinted from C D Gilbert Horizontal integration and cortical dynamics Neuron 9 1–13
c©1992 with permission from Elsevier Science.

A more complete picture of the two–dimensional distribution1 of both
orientation preference and ocular dominance has been obtained using optical
imaging techniques [5–7]. The basic experimental procedure involves shining
light directly on to the surface of the cortex. The degree of light absorption within
each patch of cortex depends on the local level of activity. Thus, when an oriented

1 The cortex is, of course, three-dimensional since it has non-zero thickness with a distinctive layered
structure. However, one find that cells with similar feature preferences tend to arrange themselves in
vertical columns so that, to a first approximation, the layered structure of cortex can be ignored. For
example, electrode track 1 in figure 11.3 is a vertical penetration of the cortex that passes through a
single column of cells with the same orientation preference and ocular dominance.
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L

R

Figure 11.4. Iso-orientation contours in a hypercolumn. There are two ocular dominance
columns corresponding to left (L) and right (R) eye preference. Each ocular dominance
column contains two orientation singularities or pinwheels. A broken ring is drawn around
one orientation singularity.

image is presented across a large part of the visual field, the regions of cortex that
are particularly sensitive to that stimulus will be differentiated. (An example of
optical imaging data is shown in figure 11.5). The basic topography revealed by
these methods has a number of characteristic features [42]:

(i) Orientation preference changes continuously as a function of cortical
location except at singularities (or pinwheels).

(ii) There exist linear regions, approximately 800 µm × 800 µm in area (in
macaque monkeys), bounded by singularities, within which iso-orientation
regions form parallel slabs.

(iii) Iso-orientation slabs tend to cross the borders of ocular dominance stripes at
right angles.

Singularities tend to align with the centres of ocular dominance stripes. These
experimental findings suggest that there is an underlying periodicity in the
microstructure of V1 with a period of approximately 1 mm (in cats and primates).
The fundamental domain of this periodic tiling of the cortical plane is the
hypercolumn [33, 37], which contains two sets of orientation preferences φ ∈
[0, π), one for each eye, organized around a set of four singularities; see
figure 11.4.

Given the existence of a regularly repeating set of orientation and ocular
dominance maps, how does such a periodic structure manifest itself anatomically?
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Figure 11.5. Lateral connections made by a cells in Tree Shrew V1. A radioactive tracer
is used to show the locations of all terminating axons from cells in a central injection
site, superimposed on an orientation map obtained by optical imaging. (Patches with the
same coarse-grained orientation preference are shown in the same colour—this is purely
for visualization purposes). The patchy distribution of the lateral connections is clearly
seen, linking regions of like orientation preference along a particular visuotopic axis. The
local axonal field, however, is isotropic and connects all neurons within a neighbourhood
(≈0.7 mm) of the injection site; see also colour plate 4. Reproduced from W H Bosking,
Y Zhang, B Schofield and D Fitzpatrick 1997 Orientation selectivity and the arrangement
of horizontal connections in tree shrew striate cortex J. Neurosci. 17 2112–27 c©1997 by
the Society for Neuroscience.

Two cortical circuits have been fairly well characterized. There is a local
circuit operating at sub-hypercolumn dimensions in which cells make connections
with most of their neighbours in a roughly isotropic fashion [20]. The other
circuit operates between hypercolumns, connecting cells with similar functional
properties separated by several millimetres of cortical tissue. Optical imaging
combined with labelling techniques has generated considerable information
concerning the pattern of connections both within and between hypercolumns [5,
6,9,39,65]. A particularly striking result concerns the intrinsic lateral connections
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of V1. The axons of these connections make terminal arbors only every 0.7 mm or
so along their tracks [25,46], and they seem to connect mainly to cells with similar
orientation preferences [9, 39, 65]. In addition, as shown in figure 11.5, there is
a pronounced anisotropy of the pattern of such connections: its long axis runs
parallel to a patch’s preferred orientation [9, 25]. Thus differing iso-orientation
patches connect to patches in neighbouring hypercolumns in differing directions.
Ongoing studies of feedback connections from points in extrastriate areas back
to area V1 [1], show that these connectional fields are also distributed in highly
regular geometric patterns, having a topographic spread of up to 13 mm that is
significantly larger than the spread of intrinsic lateral connections. Stimulation of
a hypercolumn via lateral or feedback connections modulates rather than initiates
spiking activity [30, 56]. Thus this long-range connectivity is ideally structured
to provide local cortical processes with contextual information about the global
nature of stimuli. As a consequence the lateral connections have been invoked
to explain a wide variety of context-dependent visual processing phenomena
[16, 23, 27].

From the perspective of nonlinear dynamics, there are two very distinct
questions one can ask about the large-scale structure of cortex:

(i) How did the feature maps and connectivity patterns first develop?
(ii) What types of spontaneous and stimulus-driven spatio-temporal dynamics

arise in the mature cortex?

It appears that in both cases the Turing mechanism for spontaneous pattern
formation plays a crucial role.

11.1 The Turing mechanism and its role in cooperative
cortical dynamics

In 1952 Turing [57] introduced an important set of new ideas concerning
spontaneous pattern formation. The details are well known, but we will re-state
them here by way of providing a context for the rest of this chapter. Turing
considered the development of animal coat markings as a problem of pattern
formation. He started by introducing the idea that chemical markers in the skin
comprise a system of diffusion-coupled chemical reactions among substances
called morphogens. Turing introduced the following two-component reaction–
diffusion system:

∂c
∂ t

= f(c)+ D∇2c (11.1)

where c is a vector of morphogen concentrations, f is (in general) a nonlinear
vector function representing the reaction kinetics and D is the (diagonal) matrix
of positive diffusion coefficients. What Turing showed was that two different
reactions can exist such that in the absence of diffusion (D = 0), c tends to a
linearly stable homogeneous state, and when D �= 0, D1 �= D2, the homogeneous
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state becomes unstable and c tends to a spatially inhomogeneous state. This was
the now famous diffusion-driven instability.

Wilson and Cowan introduced exactly the same mechanism in a neural
context [63, 64]. Here we briefly summarize their formulation. Let aE(r, t) be
the activity of excitatory neurons in a given volume element of a slab of neural
tissue located at r ∈ �2 , and aI(r, t) the correspond activity of inhibitory neurons.
aE and aI can be interpreted as local spatio-temporal averages of the membrane
potentials or voltages of the relevant neural populations. In case neuron activation
rates are low they can be shown to satisfy nonlinear evolution equations of the
form:

τ
∂aE(r, t)

∂ t
= − aE(r, t)+ τ

∫
�2

wE E (r|r′)σE[aE(r′, t)] dr′

− τ

∫
�2

wE I (r|r′)σI[aI(r′, t)] dr′ + hE(r, t)

τ
∂aI(r, t)

∂ t
= − aI(r, t)+ τ

∫
�2

wI E (r|r′)σE[aE(r′, t)] dr′

− τ

∫
�2

wI I (r|r′)σI[aI(r′, t)] dr′ + hI(r, t) (11.2)

where wlm(r|r′) = wlm(|r− r′|) gives the weight per unit volume of all synapses
to the lth population from neurons of the mth population a distance |r− r′| away,
σE and σI are taken to be smooth output functions

σ(x) = 1

τ

1

1 + e−η(x−κ)
(11.3)

where η determines the slope or sensitivity of the input–output characteristics of
the population and κ is a threshold, hE and hI are external stimuli, and τ is the
membrane time constant.

Equations (11.2) can be rewritten in the more compact form:

τ
∂al(r, t)

∂ t
= − al(r, t) + τ

∑
m=E,I

∫
�2

wlm(|r − r′|)σ [am(r′, t)] dr′ + hl(r, t)

(11.4)

Note that wlE ≥ 0 and wlI ≤ 0.
In the case of a constant external input, hl(r) = h̄l , there exists at least one

fixed point solution al(r) = āl of equation (11.4), where

āl = τ
∑

m=E,I

Wlmσ(ām)+ h̄l (11.5)

and Wlm = ∫
�2 wlm(r) dr. If h̄l is sufficiently small relative to the threshold

κ then this fixed point is unique and stable. Under the change of coordinates
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al → al − h̄l , it can be seen that the effect of h̄l is to shift the threshold by the
amount −h̄l . Thus there are two ways to increase the excitability of the network
and thus destabilize the fixed point: either by increasing the external input h̄l

or reducing the threshold κ . The latter can occur through the action of drugs
on certain brain stem nuclei which, as we shall see, provides a mechanism for
generating geometric visual hallucinations [11, 12, 14, 21].

The local stability of (āE, āI) is found by linearization:

∂bl(r, t)

∂ t
= −bl(r, t)+ µ

∑
m=E,I

∫
�2

wlm(|r − r′|)bm(r′, t) dr′ (11.6)

where bl(r, t) = al(r, t) − āl and we have performed a rescaling of the local
weights τσ ′(āl)wlm → µwlm with µ a measure of the degree of network
excitability. We have also rescaled t in units of the membrane time constant
τ . Assuming solutions of the form bl(r, t) = bl(r)e−λt we are left with the
eigenvalue problem:

λbl(k) = −bl(k)+ µ
∑

m

Wlm (|k|2)bm(k) (11.7)

where bl(k) and Wlm(|k|2) are, respectively, the Fourier coefficients of bl(r) and
wlm(r). This leads to the matrix dispersion relation for λ as a function of q = |k|
given by solutions of the characteristic equation

det([λ+ 1]I − µW(q)) = 0 (11.8)

where W is the matrix of Fourier coefficients of the wlm . One can actually
simplify the formulation by reducing equations (11.4) to an equivalent one-
population model:

τ
∂a(r, t)

∂ t
= −al(r, t)+ τ

∫
�2

w(|r − r′|)σ [a(r′, t)] dr′ + h(r, t) (11.9)

from which we obtain the dispersion relation λ = −1 + µW (q) ≡ λ(q), with
W (q) the Fourier transform of w(r).

In either case it is relatively straightforward to set up the conditions under
which the homogeneous state first loses its stability at µ = µc and at a wavevector
with q = qc �= 0. In the case of equation (11.9) the condition is that W (q) be
bandpass. This can be achieved with the ‘Mexican hat’ function (see figure 11.6):

w(|r|) =
(

a+
σ+

)
e−r2/σ 2+ −

(
a−
σ−

)
e−r2/σ 2− (11.10)

the Fourier transform of which is:

W (q) = 1
2 (a+e−

1
4σ

2+q2 − a−e−
1
4σ

2−q2
). (11.11)
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1/µ

Figure 11.6. Neural basis of the Turing mechanism. Mexican hat interaction function
showing short-range excitation and long-range inhibition (a). Fourier transform W (q)
of Mexican hat function (b). There exists a critical parameter µc = W (qc)

−1 where
W (qc) = [maxq {W (q)}] such that for µc < µ < ∞ the homogeneous fixed point is
unstable.

Evidently W (0) = 1
2 (a+ − a−) and W (∞) = 0. It is simple to establish that

λ passes through zero at the critical value µc signalling the growth of spatially
periodic patterns with wavenumber qc, where W (qc) = maxq{W (q)}. Close to
the bifurcation point these patterns can be represented as linear combinations of
plane waves

b(r) =
∑

n

(cneikn ·r + c∗ne−ikn ·r)

where the sum is over all wavevectors with |kn| = qc and n can be bounded
by restricting the solutions to doubly-periodic patterns in �

2 . Depending on
the boundary conditions various patterns of stripes or spots can be obtained as
solutions. Figure 11.7 shows, for example, a late stage in the development of
stripes [61]. Amplitude equations for the coefficients cn can then be obtained in
the usual fashion to determine the linear stability of the various solutions. This
analysis of the Wilson–Cowan equations was first carried out by Ermentrout and
Cowan as part of their theory of visual hallucinations [21], and is an exact parallel
of Turing’s original analysis, although he did not develop amplitude equations for
the various solutions.

Essentially the same analysis can be applied to a variety of problems
concerning the neural development of the various feature maps and connectivity
patterns highlighted at the beginning of the chapter. Consider, for example,
the development of topographic maps from eye to brain [60, 62]. Such maps
develop by a process which involves both genetic and epigenetic factors. Thus
the actual growth and decay of connections is epigenetic, involving synaptic
plasticity. However, the final solution is constrained by genetic factors, which
act, so to speak, as boundary conditions. The key insight was provided by von
der Malsburg [59] who showed that pattern formation can occur in a developing
neural network whose synaptic connectivity or weight matrix is activity dependent
and modifiable, provided some form of competition is present. Thus Häussler and
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Figure 11.7. A late stage in the spontaneous formation of stripes of neural activity. See
text for details.

von der Malsburg [29] formulated the topographic mapping problem (in the case
of a one-dimensional cortex) as follows. Let wrs be the weight of connections
from the retinal point r to the cortical point s, and w the associated weight matrix.
An evolution equation for w embodying synaptic plasticity and competition can
then be written as

dw
dt

= αJ + βw · C(w)− w · B(αJ + βw · C(w)) (11.12)

where J is a matrix with all elements equal to unity, Crs (x) =∑r ′s ′ c(r − r ′, s −
s′)xr ′s ′ , and

Brs(x) = 1

2

(
1

N

∑
r ′

xr ′s + 1

N

∑
s ′

xrs ′
)
.

One can easily show that w = J is an unstable fixed point of equation (11.12).
Linearizing about this fixed point leads to the linear equation:

dv
dt

= αv + C(v)− B(v)− B[C(v)] (11.13)

where v = w − J. Since B and C are linear operators, we can rewrite
equation (11.13) in the form:

τ
dv
dt

= −v + τ (I − B)[(I + C)(v)] (11.14)

where the time constant τ = (1 − α)−1. It is not too difficult to see that the term
(I − B)[(I +C)(v)] is equivalent to the action of an effective convolution kernel
of the form:

w(r) = w+(r)−w−(r)
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Figure 11.8. Structure of the weight kernel w(r, s).

Figure 11.9. Stages in the development of an ordered retinotopic map. A single stripe
develops in the (r, s)-plane.

so that equation (11.14) can be rewritten in the familiar form:

τ
∂v(r, t)

∂ t
= −v(r, t)+ τ

∫
�2

w(r − r′)v(r′, t) dr′ (11.15)

where in this case r = {r, s} and v is a matrix. Once again there is a dispersion
relation of the form λ = −1 + µW (k) ≡ λ(k), where k = {k, l} and, as
in the previous examples, assuming appropriate boundary conditions—in this
case periodic—it is the Fourier transform W (k) that determines which of the
eigenmodes ∑

kl

ckl exp

(
i
2π

N
(kr + ls)

)
emerges at the critical wavenumber kc = {kc, lc}. Figure 11.8 shows the form
of w(r, s) in the (r, s)-plane. It will be seen that it is similar to the Mexican
Hat except that the inhibitory surround is in the form of a cross. This forces
the eigenmodes that emerge from the Turing instability to be diagonal in the
(r, s)-plane. If the wavenumber is selected so that only one wave is present, this
corresponds to an ordered retino-cortical map. Figure 11.9 shows details of the
emergence of the required mode.

A second example is to be found in models for the development of ocular
dominance maps [52]. Let nR(r, t) and nL(r, t) be, respectively, the (normalized)
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right and left eye densities of synaptic connections to the visual cortex modelled
as a two–dimensional sheet. Such densities are presumed to evolve according to
an evolution equation of the form:

∂ul(r, t)

∂ t
=

∑
m=R,L

∫
�2

wlm(|r − r′|)σ [um(r′, t)] dr′ (11.16)

where ul = log(nl/(1 − nl)) such that σ(ul) = nl and the coupling matrix w is
given by

w(r) = w(r)

(+1 −1
−1 +1

)
.

With the additional constraint nR + nL = 1, equation (11.16) reduces to the one-
dimensional form:

∂uR(r, t)

∂ t
= 2

∫
�2

w(|r − r′|)σ [uR(r′, t)] dr′ −
∫
�2

w(|r′|) dr′. (11.17)

which can be rewritten in terms of the variable nR(r, t) as:

∂nR(r, t)

∂ t
= nR(r, t)(1 − nR(r, t))

×
[

2
∫
�2

w(|r − r′|)nR(r′, t) dr′ −
∫
�2

w(|r′|) dr′
]
. (11.18)

The fixed points of this equation are easily seen to be nR(r) = 0, 1 and nR(r) = 1
2 .

The first two fixed points are stable. However, the third fixed point is unstable
to small perturbations. Linearizing about this fixed point we find the dispersion
relation λ = 1

2 W (|k|). Once again the Fourier transform of the interaction kernel
w(|r|) controls the emergence of the usual eigenmodes, in this case plane waves
of the form eik·r in the cortical plane. Note that the fixed point nR = nL = 1

2
corresponds to the fixed point uR = uL = 0 which is a point of reflection
symmetry for the function σ [u]. It is this additional symmetry which results in the
emergence of stripes rather than spots or blobs when the fixed point destabilizes.

There are many other examples of the role of the Turing instability in visual
neuroscience such as the Marr–Poggio model of stereopsis [40] and the Swindale
model for the development of iso-orientation patches [53]. However, all of
the neural models involve the same basic mechanism of competition between
excitation and inhibition (the Mexican hat form of interaction; see figure 11.6),
and most have some underlying symmetry that plays a crucial role in the selection
and stability of the resulting patterns. In what follows, we shall develop these
ideas further by considering in detail our own recent work on spontaneous
pattern formation in primary visual cortex [11, 12, 14]. In this work we have
investigated how correlations between the pattern of patchy lateral connections
and the underlying orientation map within V1 (as highlighted in the introduction
to the chapter) affect the large-scale dynamics of V1 idealized as a continuous
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two-dimensional sheet of interacting hypercolumns [11, 12, 14]. We have shown
that the patterns of lateral connection are invariant under the so-called shift-twist
action of the planar Euclidean group E(2) acting on the product space �2 × S1.
By virtue of the anisotropy of the lateral connections (see figure 11.5), this shift-
twist symmetry supports distinct scalar and pseudoscalar group representations of
E(2) [8], which characterize the type of cortical activity patterns that arise through
spontaneous symmetry breaking [11]. Following on from the original work of
Ermentrout and Cowan [21], we have used our continuum model to develop a
theory for the generation of geometric visual hallucinations, based on the idea that
some disturbance such as a drug or flickering light can destabilize V1 inducing a
spontaneous pattern of cortical activity that reflects the underlying architecture
of V1. These activity patterns are seen as hallucinatory images in the visual
field, whose spatial scale is determined by the range of lateral connections and
the cortical-retinotopic map. Four examples of common hallucinatory images
that are reproduced by our model [11] are shown in figure 11.10. Note the
contoured nature of the third and fourth images, which could not have been
generated in the original Ermentrout–Cowan model [21]. Our results suggest that
the circuits in V1 that are normally involved in the detection of oriented edges
and in the formation of contours, are also responsible for the generation of simple
hallucinations.

11.2 A continuum model of V1 and its intrinsic circuitry

Consider a local population of excitatory (E) and inhibitory (I ) cells at cortical
position r ∈ �

2 with orientation preference φ. We characterize the state of the
population at time t by the real-valued activity variable al(r, φ, t) with l = E, I .
As in section 11.1, V1 is treated as an (unbounded) continuous two-dimensional
sheet of nervous tissue with the additional simplifying assumption that φ and r are
independent variables—all possible orientations are represented at every position.
Hence, one interpretation of our model would be that it is a continuum version of
a lattice of hypercolumns. An argument for the validity of this continuum model
is to note that the separation of two points in the visual field—visual acuity—(at
a given retinal eccentricity of r◦), corresponds to hypercolumn spacing [33], and
so to each location in the visual field there corresponds a representation in V1 of
that location with finite resolution and all possible orientations. Our large-scale
model of V1 takes the form

∂al(r, φ, t)

∂ t
= − al(r, φ, t) + hl(r, φ, t)

+
∑

m≡E,I

∫
�2

∫ π

0
wlm (r, φ|r′, φ′)σ [am(r′, φ′, t)]dφ

′

π
dr′

(11.19)
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Figure 11.10. Hallucinatory form constants: funnel (I) and spiral images (II) seen
following ingestion of LSD; honeycomb generated by marihuana (III); and cobweb
petroglyph (IV). Reproduced from P C Bressloff, J D Cowan, M Golubitsky, P J Thomas
and M C Weiner Geometric visual hallucinations, Euclidean symmetry and the functional
architecture of striate cortex Phil. Trans. R. Soc. B 356 299–330 c© 2001 The Royal
Society.

which is a generalized version of the Wilson–Cowan equations of nerve tissue
introduced in section 11.1, with t measured in units of τ . The distribution
wlm(r, φ|r′, φ′) represents the strength or weight of connections from the iso-
orientation patch φ′ at cortical position r′ to the orientation patch φ at position r.

Motivated by experimental observations concerning the intrinsic circuitry
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of V1 (see the introduction to the chapter), we decompose w in terms of local
connections from elements within the same hypercolumn, and patchy excitatory
lateral connections from elements in other hypercolumns:

wlm (r, φ|r′, φ′) = wloc(φ|φ′)δ(r − r′)+ εwlat(r, φ|r′, φ′)δm,Eβl (11.20)

where ε is a parameter that measures the weight of lateral relative to local
connections. Observations in [30] suggest that ε is small and, therefore, that
the lateral connections modulate rather than drive V1 activity. Note that although
the lateral connections are excitatory [25,46], 20% of the connections in layers II
and III of V1 end on inhibitory interneurons, so the overall action of the lateral
connections can become inhibitory, especially at high levels of activity [30].
The relative strengths of the lateral inputs into local excitatory and inhibitory
populations are represented by the factors βl .

The local weight distribution is taken to be homogeneous, that is,

wloc(φ|φ′) = W (φ − φ′) (11.21)

for some π-periodic, even function W . It follows that an isolated hypercolumn
(zero lateral interactions) has internal O(2) symmetry corresponding to rotations
and reflections within the ring. In order to incorporate the anisotropic nature of
the lateral connections, we further decompose wlat as [12]

wlat(r, φ|r′, φ′) = J (T−φ(r − r′))δ(φ − φ′) (11.22)

where

J (r) =
∫ π/2

−π/2
p(η)

∫ ∞

−∞
g(s)δ(r − seη) ds dη (11.23)

with eη = (cos(η), sin(η)), p(−η) = p(η) and Tφ the rotation matrix

Tφ

(
x
y

)
=
(

cosφ − sinφ

sin φ cosφ

)(
x
y

)
.

Such a distribution links neurons with the same orientation and spatial frequency
label, with the function p(η) determining the degree of spatial spread (anisotropy)
in the pattern of connections relative to the direction of their common orientation
preference. The weighting function g(s) specifies how the strength of interaction
varies with the distance of separation. A simplified schematic representation of
the pattern of lateral connections is illustrated for our coupled hypercolumn model
in figure 11.11.

Substituting equations (11.20) and (11.22) back into equation (11.19) leads
to the evolution equation

∂al(r, φ, t)

∂ t
= − al(r, φ, t) +

∑
m

∫
Wlm(φ − φ′)σ [am(r′, φ′, t)]dφ

′

π

+ εβl

∫ π/2

−π/2
p(η)

∫ ∞

−∞
g(s)σ [aE(r + seη+φ, φ, t)] dη ds

+ hl (r, φ, t). (11.24)
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hypercolumn

Figure 11.11. Schematic diagram of a coupled hypercolumn model of V1. It is
assumed that there are isotropic local interactions within a hypercolumn, and anisotropic
lateral interactions between hypercolumns. The latter connect iso-orientation patches
located within some angular distance from the visuotopic axis parallel to their (common)
orientation preference (as illustrated for the shaded patches).

If p(η) = 1/π for all η then the weight distribution is isotropic and the
system (11.24) is equivariant with respect to E(2) × O(2), where E(2) denotes
the Euclidean group of translations, rotations and reflections in the cortex,
and O(2) is the internal symmetry group of an isolated hypercolumn. It is
important to emphasize that cortical rotations are distinct from rotations in the
visual field (which correspond to vertical translations in cortex), as well as from
internal rotations with respect to orientation. When p(η) is non-uniform, the
resulting anisotropy breaks both cortical and internal O(2) symmetries. However,
full Euclidean symmetry, E(2) = �

2+̇O(2), is recovered by considering the
combined Euclidean action on {r, φ}, which introduces a form of shift-twist
symmetry in the plane [11, 12, 17, 66]. More specifically, the anisotropic weight
distribution (11.22) is invariant with respect to the following action of the
Euclidean group:

s · (r, φ) = (r + s, φ) s ∈ �2

ξ · (r, φ) = (Tξr, φ + ξ) ξ ∈ S1

κ · (r, φ) = (κr,−φ)

(11.25)

where κ is the reflection (x1, x2) 	→ (x1,−x2). The corresponding group action
on a function a : �2 × S → � is given by

γ · a(P) = a(γ−1 · P) for all γ ∈ �2 +̇O(2) (11.26)
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and the invariance of wlat(P|P ′) is expressed as

γ ·wlat(P|P ′) = wlat(γ
−1 · P|γ−1 · P ′) = wlat(P|P ′).

It can be seen that the rotation operation comprises a translation or shift of the
orientation preference label φ to φ + ξ , together with a rotation or twist of the
position vector r by the angle ξ . Such an operation provides a novel way to
generate the Euclidean group E(2) of rigid motions in the plane. The fact that the
weighting functions are invariant with respect to this form of E(2) has important
consequences for the global dynamics of V1 in the presence of anisotropic lateral
connections [11, 12].

11.3 Orientation tuning and O(2) symmetry

In the absence of lateral connections (ε = 0) each hypercolumn is independently
described by the so-called ring model of orientation tuning [3, 4, 10, 41, 51], in
which the internal structure of a hypercolumn is idelaized as a ring of orientation
selective cells. That is, equation (11.19) reduces to

∂al

∂ t
= −al +

∑
m=E,I

Wlm ∗ σ(am)+ hl (11.27)

where ∗ indicates a convolution operation

W ∗ f (φ) =
∫ π/2

−π/2
W (φ − φ′) f (φ′)dφ′

π
. (11.28)

Just as in section 11.1 the local stability of (āE, āI) is found by linearization
about the fixed points āl :

∂bl

∂ t
= −bl + µ

∑
m

Wlm ∗ bm (11.29)

where bl(r, φ, t) = al(r, φ, t)− āl . Equation (11.29) has solutions of the form

bl(r, φ, t) = Ble
λt [z(r)e2inφ + z(r)e−2inφ ] (11.30)

where z(r) is an arbitrary (complex) amplitude with complex conjugate z̄(r), and
λ satisfies the eigenvalue equation

(1 + λ)B = µW̃(n)B. (11.31)

Here W̃lm(n) is the nth Fourier coefficient in the expansion of the π-periodic
weights kernels Wlm(φ):

Wlm (φ) = W̃lm(0)+ 2
∞∑

n=1

W̃lm(n) cos(2nφ) l,m ≡ E, I (11.32)
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Figure 11.12. Spectrum W+
n of local weight distribution with a maximum at n = 1 (tuning

mode) (a) and a maximum at n = 0 (bulk mode) (b).

It follows that
λ±n = −1 + µW±

n (11.33)

for integer n, where

W±
n = 1

2 [W̃E E (n)+ W̃I I (n)±�(n)] (11.34)

are the eigenvalues of the weight matrix with

�(n) =
√
[W̃E E (n)− W̃I I (n)]2 + 4W̃E I (n)W̃I E (n). (11.35)

The corresponding eigenvectors (up to an arbitrary normalization) are

B±
n =

( −W̃E I (n)
1
2 [W̃E E (n)− W̃I I (n)∓�(n)]

)
. (11.36)

Equation (11.33) implies that, for sufficiently small µ (low network excitability),
λ±n < 0 for all n and the homogeneous resting state is stable. However, as µ

increases an instability can occur leading to the spontaneous formation of an
orientation tuning curve.

For the sake of illustration, suppose that the Fourier coefficients are given by
the Gaussians

W̃lm(n) = αlme−n2ξ2
lm/2 (11.37)

with ξlm determining the range of the axonal fields of the excitatory and inhibitory
populations. We consider two particular cases.

Case A

If W̃E E (n) = W̃I E (n) and W̃I I (n) = W̃E I (n) for all n, then W−
n = 0 and

W+
n = αE E e−n2ξ2

E E/2 − αI I e−n2ξ2
I I /2 (11.38)
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Suppose that ξI I > ξE E and 0 < αI I < αE E . As we described in section 11.1
the resulting combination of short-range excitation and longer-range inhibition
generates a Turing instability. Of particular relevance to orientation tuning is the
case where W+

n has a unique (positive) maximum at n = 1; see figure 11.12(a).
The homogeneous state then destabilizes at the critical point µ = µc ≡ 1/W+

1
due to excitation of the eigenmodes b(r, φ, t) = Ba(r, φ, t) with B = (1, 1)T

and

a(r, φ, t) = z(r)e2iφ + z(r)e−2iφ = |z(r)| cos(2[φ − φ∗(r)]) (11.39)

with z(r) = |z(r)|e−2iφ∗(r). Since these modes have a single maximum in the
interval (−90◦, 90◦), each hypercolumn supports an activity profile consisting of
a solitary peak centred about φ∗(r) = arg z(r). It can be shown that the saturating
nonlinearities of the system stabilize the tuning curves beyond the critical point
µc [10, 22]; see also section 11.4.2. The location of the peak φ∗(r) of the tuning
curve at r is arbitrary in the presence of constant inputs, reflecting the hidden
O(2) symmetry of a hypercolumn. However, the inclusion of an additional small
amplitude input �hl(r, φ) ∼ cos[2(φ − #(r))] breaks this symmetry, and locks
the location of the tuning curve at each point r to the orientation corresponding
to the peak of the local stimulus, that is, φ∗(r) = #(r). As one moves further
away from the point of instability, the amplitude of the tuning curve increases and
sharpening occurs due to the nonlinear effects of the firing rate function (11.3).
This is illustrated in figure 11.13, where the input and output (normalized) firing
rate of the excitatory population of a single hypercolumn are shown. Thus the
local intracortical connections within a hypercolumn serve both to amplify and
sharpen a weakly oriented input signal from the LGN [4,51]. However, if the local
level of inhibition is reduced such that αI I � αE E , then W+

n is a monotonically
decreasing function of |n| (see figure 11.12(b)), and the homogeneous fixed point
undergoes a bulk instability resulting in broadening of the tuning curve. This is
consistent with experimental data demonstrating a loss of stable orientation tuning
in cats with blocking of intracortical inhibition [44]2.

Case B

If �(n) is pure imaginary, �(n) = i"(n), then

W±
n = αE E e−n2ξ2

E E /2 − αI I e−n2ξ2
I I /2 ± i"(n). (11.40)

Assume, as in case A, that the difference of Gaussians has a maximum at n = 1.
Then an instability will occur at the critical point µc = 1/Re(W+

1 ) due to
2 The idea that local cortical interactions play a role in orientation tuning is still controversial. The
classical model of Hubel and Wiesel [31] proposes a very different mechanism, in which both the
orientation preference and tuning of a cell arise primarily from the geometrical alignment of the
receptive fields of the LGN neurons projecting to it. This has also received recent experimental
support [24]. However, intracellular measurements indicate that direct inputs from the LGN to neurons
in layer 4 of V1 provide only a fraction of the total excitatory inputs relevant to orientation tuning [58].
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Figure 11.13. Sharp orientation tuning curve in a single hypercolumn. Local recurrent
excitation and inhibition amplifies a weakly modulated input from the LGN. The dotted
line is the base-line output without orientation tuning.

excitation of the oscillatory eigenmodes

b(r, φ, t) = [zL(r)ei("0t−2φ) + zR(r)ei("0t+2φ)]B+ c.c. (11.41)

where "0 = µc"(1) and B = B+
1 . It is then possible for rotating tuning curves

to be generated spontaneously within a hypercolumn [4].

11.4 Amplitude equation for interacting hypercolumns

An isolated hypercolumn exhibits spontaneous O(2) symmetry breaking leading
to the formation of an orientation tuning curve. How is this process modulated
by anisotropic lateral interactions between hypercolumns? In this section we use
perturbation theory to derive a dynamical equation for the complex amplitude
z(r) for orientation tuning in the presence of lateral interactions. We will then use
this amplitude equation to show how the lateral interactions induce correlations
between z(r) at different points in the cortex, leading to spatially periodic patterns
of activity across V1; see section 11.5. These patterns reproduce the commonly
found types of geometric visual hallucinations when mapped back into visual field
coordinates under the retino-cortical map of figure 11.2; see section 11.5.4. Our
basic assumptions in the derivation of the amplitude equation are as follows:

(i) each hypercolumn is close to a bifurcation point signalling the onset of sharp
orientation tuning; and

(ii) the interactions between hypercolumns are weak.
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11.4.1 Cubic amplitude equation: stationary case

Let us perform a Taylor expansion of equation (11.24) with bl(r, φ, t) =
al(r, φ, t) − āl :

∂bl

∂ t
= − bl +

∑
m=E,I

Wlm ∗ [µbm + γmb2
m + γ ′mb3

m + · · · ] +�hl

+ εβlwlat ◦ ([σ̄E + µbE + · · · ]) (11.42)

where �hl = hl − h̄l and µ = σ ′(āE), γl = σ ′′(āl)/2, γ ′l = σ ′′′(āl)/6. The
convolution operation ∗ is defined by equation (11.28)) and

[wlat ◦ f ](r, φ) =
∫ π/2

−π/2

∫ ∞

−∞
p(η)g(s) f (r + seη+φ, φ) ds dη (11.43)

for an arbitrary function f (r, φ) and wlat given by equation (11.22). Suppose that
the system is ε-close to the point of marginal stability of the homogeneous fixed
point associated with excitation of the modes e±2iφ . That is, take µ = µc + ε�µ

where µc = 1/W+
1 , see equation (11.33). Substitute into equation (11.42) the

perturbation expansion

bm = ε1/2b(1)
m + εb(2)

m + ε3/2b(3)
m + · · · . (11.44)

Finally, introduce a slow time scale τ = εt and collect terms with equal powers
of ε. This leads to a hierarchy of equations of the form (up to �(ε3/2))

[�b(1)]l = 0 (11.45)

[�b(2)]l = v
(2)
l

≡
∑

m≡E,I

γm Wlm ∗ [b(1)
m ]2 + βl σ̄Ewlat ◦ 1 (11.46)

[�b(3)]l = v
(3)
l

≡ − ∂b(1)
l

∂τ
+

∑
m≡E,I

Wlm ∗ [�µb(1)
m + γ ′m[b(1)

m ]3 + 2γmb(1)
m b(2)

m ]

+ µcβlwlat ◦ b(1)
E +�hl (11.47)

with the linear operator � defined according to

[�b]l = bl − µc

∑
m=E,I

Wlm ∗ bm . (11.48)

We have also assumed that the modulatory external input is �(ε3/2) and rescaled
�hl → ε3/2�hl



290 Paul C Bressloff and Jack D Cowan

The first equation in the hierarchy, equation (11.45), has solutions of the
form

b(1)(r, φ, τ ) = (z(r, τ )e2iφ + z(r, τ )e−2iφ)B (11.49)

with B ≡ B+
1 defined in equation (11.36). We obtain a dynamical equation for

the complex amplitude z(r, τ ) by deriving solvability conditions for the higher-
order equations. We proceed by taking the inner product of equations (11.46) and
(11.47) with the dual eigenmode b̃(φ) = e2iφB̃ where

B̃ =
(

WI E (1)
− 1

2 [WE E (1)− WI I (1)−�(1)]
)

(11.50)

so that
[�Tb̃]l ≡ b̃l − µc

∑
m≡E,I

Wml ∗ b̃m = 0.

The inner product of any two vector-valued functions of φ is defined as

〈u|v〉 =
∫ π

0
[uE(φ)vE(φ)+ uI(φ)vI(φ)]dφ

π
. (11.51)

With respect to this inner product, the linear operator � satisfies 〈̃b|�b〉 =
〈�Tb̃|b〉 = 0 for any b. Since �b(p) = v(p), we obtain a hierarchy of solvability
conditions 〈̃b|v(p)〉 = 0 for p = 2, 3, . . . .

It can be shown from equations (11.43), (11.46) and (11.49) that the
first solvability condition is identically satisfied (provided that the system is
bifurcating from a uniform state). The solvability condition 〈̃b|v(3)〉 = 0
generates a cubic amplitude equation for z(r, τ ). As a further simplification we
set γm = 0, since this does not alter the basic structure of the amplitude equation.
Using equations (11.43), (11.47) and (11.49) we then find that (after rescaling τ )

∂z(r, τ )
∂τ

= z(r, τ )(�µ− A|z(r, τ )|2)+ f (r)

+ β

∫ π

0
wlat ◦ [z(r, τ )+ z(r, τ )e−4iφ]dφ

π
(11.52)

where

f (r) = µc

∑
l≡E,I

B̃l

∫ π

0
e−2iφ�hl(r, φ)

dφ

π
(11.53)

and

β = µ2
c BE

B̃TB

∑
l≡E,I

βl B̃l A = − 3

B̃TB

∑
l≡E,I

B̃lγ
′
l B3

l . (11.54)

Equation (11.52) is our reduced model of weakly interacting hypercolumns. It
describes the effects of anisotropic lateral connections and modulatory inputs
from the LGN on the dynamics of the (complex) amplitude z(r, τ ). The latter



Spontaneous pattern formation in primary visual cortex 291

determines the response properties of the orientation tuning curve associated
with the hypercolumn at cortical position r. The coupling parameter β

is a linear combination of the relative strengths of the lateral connections
innervating excitatory neurons and those innervating inhibitory neurons with
DE, DI determined by the local weight distribution. Since DE > 0 and DI <

0, we see that the effective interactions between hypercolumns have both an
excitatory and an inhibitory component.

11.4.2 Orientation tuning revisited

In the absence of lateral interactions, equation (11.52) reduces to

∂z(r, τ )
∂τ

= z(r, τ )(�µ− A|z(r, τ )|2)+ f (r). (11.55)

For the nonlinear output function (11.3), we find that A > 0. Hence, if
f (r) = 0 then there exist (marginally) stable time-independent solutions of the
form z(r) = √

�µ/Ae−iφ(r) where φ(r) is an arbitrary phase that determines the
location of the peak of the tuning curve at position r. Now consider the effects
of a weakly biased input from the LGN hl(r, φ, τ ) = C(r) cos(2[φ − ωτ ]).
This represents a slowly rotating stimulus with angular velocity ω and contrast
C(r) = �(ε3/2). Equation (11.53) implies that f (r) = C(r)e−2iωτ . Writing
z = ve−2i(φ+ωτ) we obtain from (11.55) the pair of equations

v̇ = v(µ− µc + Av2)+ C cos(2φ)

φ̇ = − ω − C

2v
sin(2φ). (11.56)

Thus, provided that ω is sufficiently small, equation (11.56) will have a stable
fixed point solution {v∗(r), φ∗(r)} in which the peak of the tuning curve is
entrained to the signal. That is, writing b(1)(r, φ) = Ba(r, φ),

a(r, φ) = v∗(r) cos(2[φ − ωτ − φ∗(r)]) (11.57)

with φ∗(r) = 0 when ω = 0.
It is also possible to repeat our bifurcation analysis in the case where each

hypercolumn undergoes a bulk instability. This occurs, for example, when
the spectrum of local connections is as in figure 11.12(b). The amplitude
equation (11.52) now takes the form

∂a(r, τ )
∂τ

= a(r, τ )(�µ− Aa(r, τ )2)+ f0(r)+ β

∫ π

0
wlat ◦ a(r, τ )

dφ

π
(11.58)

with a real and f0 the φ-averaged LGN input. It follows that, in the absence of
lateral interactions, each hypercolumn bifurcates to a φ-independent state whose
amplitude a(r) is a root of the cubic

a(r)(�µ− Aa(r)2)+ f0(r) = 0. (11.59)
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11.4.3 Cubic amplitude equation: oscillatory case

In our derivation of the amplitude equation (11.52) we assumed that the local
cortical circuit generates a stationary orientation tuning curve. However, as shown
in section 11.3, it is possible for a time-periodic tuning curve to occur when
Im(W+

1 ) �= 0. Taylor expanding (11.24) as before leads to the hierarchy of
equations (11.45)–(11.47) except that the linear operator � → �t = � + ∂/∂ t .
The lowest-order solution (11.49) now takes the form

b(1)(r, φ, t, τ ) = [zL(r, τ )ei("0t−2φ) + zR(r, τ )ei("0t+2φ)]B+ c.c. (11.60)

where zL and zR represent the complex amplitudes for anticlockwise (L) and
clockwise (R) rotating waves (around the ring of a single hypercolumn), and
"0 = µc Im(�(1)). Introduce the generalized inner product

〈u|v〉 = lim
T→∞

1

T

∫ T/2

−T/2

∫ π

0
[uE(φ, t)vE(φ, t)+ uI(φ, t)vI(φ, t)]dφ

π
dt (11.61)

and the dual vectors b̃L = B̃ei("0t−2φ), b̃R = B̃ei("0t+2φ). Using the fact that
〈̃bL|�t b〉 = 〈̃bR|�t b〉 = 0 for arbitrary b we obtain the pair of solvability
conditions 〈̃bL|v(p)〉 = 〈̃bR|v(p)〉 = 0 for each p ≥ 2.

As in the stationary case, the p = 2 solvability conditions are identically
satisfied. The p = 3 solvability conditions then generate cubic amplitude
equations for zL, zR of the form

∂zL(r, τ )
∂τ

= (1 + i"0)zL(r, τ )(�µ− A|zL(r, τ )|2 − 2A|zR(r, τ )|2)

+ β

∫ π

0
wlat ◦ [zL(r, τ )+ zR(r, τ )e4iφ]dφ

π
(11.62)

and

∂zR(r, τ )
∂τ

= (1 + i"0)zR(r, τ )(�µ− A|zR(r, τ )|2 − 2A|zL(r, τ )|2)

+ β

∫ π

0
wlat ◦ [zR(r, τ )+ zL(r, τ )e−4iφ]dφ

π
(11.63)

where

f±(r) = lim
T→∞

µc

T

∫ T/2

−T/2

∫ π

0
e−i("0t±2φ)

∑
l≡E,I

B̃l�hl(r, φ, t)
dφ

π
dt . (11.64)

Note that the amplitudes only couple to time-dependent inputs from the LGN.

11.5 Cortical pattern formation and E(2) symmetry

We now use the amplitude equations derived in section 11.4 to investigate how
O(2) symmetry breaking within a hypercolumn is modified by the presence
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of anisotropic lateral interactions, and show how it leads to the formation of
spatially periodic activity patterns across the cortex that break the underlying E(2)
symmetry. We begin by considering the case of stationary patterns. Oscillatory
patterns will be considered in section 11.5.5.

11.5.1 Linear stability analysis

Since we are focusing on spontaneous pattern formation, we shall assume that
there are no inputs from the LGN, f (r) = 0. Equation (11.52) then has the trivial
solution z = 0. Linearizing about this solution gives

∂z(r, τ )
∂τ

= �µ z(r, τ )+ β

∫ π

0
wlat ◦ [z(r, τ )+ z(r, τ )e−4iφ]dφ

π
. (11.65)

If we ignore boundary effects by treating V1 as an unbounded two dimensional
sheet, then equation (11.65) has two classes of solution, z±, of the form

z+(r, τ ) = eλ+τ e−2iϕ[ceik·r + ce−ik·r] (11.66)

z−(r, τ ) = ieλ−τ e−2iϕ[ceik·r + ce−ik·r] (11.67)

where k = q(cos(ϕ), sin(ϕ)) and c is an arbitrary complex amplitude.
Substitution into equation (11.65) and using equation (11.43) leads to the
eigenvalue equation

λ± = �µ+ β

∫ π

0

[ ∫ ∞

−∞
g(s)eiqs cos(φ) ds

]
(1 ± χe−4iφ)

dφ

π
(11.68)

where

χ =
∫ π/2

−π/2
p(η)e−4iη dη. (11.69)

Using an expansion in terms of Bessel functions

eix cos(φ) =
∞∑

n=−∞
(−i)n Jn(x)e

inφ (11.70)

the eigenvalue equation reduces to the more compact form

λ± = �µ+ βG±(q) (11.71)

with
G±(q) = G0(q)± χG2(q) (11.72)

and

Gn(q) = (−1)n
∫ ∞

−∞
g(s)J2n(qs) ds. (11.73)
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Figure 11.14. Plot of functions G−(q) (full curve) and G+(q) (broken curve) in the
case χ = 1 (strong anisotropy) and g(s) defined by (11.74) for ξ = 1 and s0 = 1 (a).
The critical wavenumber for spontaneous pattern formation is q−. The marginally stable
eigenmodes are odd functions of φ. Similarly, with χ = sin 4η0/4η0 (b) with lateral spread
of width η0 = π/3. The marginally stable eigenmodes are now even functions of φ.

Before using equation (11.71) to determine how the lateral interactions
modify the condition for marginal stability, we need to specify the form of the
weight distribution g(s). From experimental data based on tracer injections it
appears that the patchy lateral connections extend several mm on either side of a
hypercolumn and the field of axon terminals within a patch tends to diminish in
size the further away it is from the injection site [25,39,46,65]. The total extent of
the connections depends on the particular species under study. In our continuum
model we assume that

g(s) = e−(s−s0)
2/2ξ2

�(s − s0) (11.74)

where ξ determines the range and s0 the minimum distance of the (non-local)
lateral connections. Recall that there is growing experimental evidence to suggest
that lateral connections tend to have an inhibitory effect in the presence of high-
contrast visual stimuli but an excitatory effect at low contrasts [27]. It is possible
that during the experience of hallucinations there are sufficient levels of activity
within V1 for the inhibitory effects of the lateral connections to predominate.
Many subjects who have taken LSD and similar hallucinogens report seeing
bright white light at the centre of the visual field which then explodes into a
hallucinatory image in about 3 s, corresponding to a propagation velocity in V1 of
about 2.5 cm s−1 suggestive of slowly moving epileptiform activity [49]. In light
of this, we assume that β < 0 during the experience of a visual hallucination.

In figure 11.14(a) we plot G±(q) as a function of q for the given weight
distribution (11.74) and the spread function p(η) = δ(η) for which χ = 1. It
can be seen that G±(q) has a unique minimum at q = q± �= 0 and G−(q−) <

G+(q+). Since β < 0 it follows that the homogeneous state z(r, τ ) = 0 becomes
marginally stable at the modified critical point µ′c = µc − εβG−(q−). The
corresponding marginally stable modes are given by combining equations (11.49)
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and (11.67) for λ− = 0. Writing b(1)(r, φ) = a(r, φ)B we have

a(r, φ) =
N∑

n=1

cneikn ·r sin(φ − ϕn)+ c.c. (11.75)

where kn = q−(cosϕn, sin ϕn) and cn is a complex amplitude. These modes will
be recognized as linear combinations of plane waves modulated by odd (phase-
shifted) π-periodic functions sin[2(φ−ϕn)]. The infinite degeneracy arising from
rotation invariance means that all modes lying on the circle |k| = q− become
marginally stable at the critical point. However, this can be reduced to a finite set
of modes by restricting solutions to be doubly periodic functions as explained in
section 11.5.2.

The solutions (11.75) are precisely the lowest-order odd eigenfunctions
derived using the perturbation methods of [11]3. It is also possible for even (+)

eigenmodes to destabilize first when there is a sufficient spread in the distribution
of lateral connections about the visuotopic axis as shown in figure 11.11. More
specifically, if we take p(η) = �(|η| − η0)/2η0, then

G±(q) = G0(q)± sin(4η0)

4η0
G2(q) (11.76)

such that G+(q+) < G−(q−) when η0 > π/4, which is illustrated in figure
11.14(b). It follows that the homogeneous state now becomes marginally stable
at the critical point µ′c = µc − εβG+(q+) due to excitation of the even modes
given by equations (11.49) and (11.66) for λ+ = 0:

a(r, φ) =
N∑

n=1

cneikn ·r cos(φ − ϕn)+ c.c. (11.77)

where kn = q+(cos(ϕn), sin(ϕn)).
A third class of solution can occur when each hypercolumn undergoes a

bulk instability, as described by the amplitude equation (11.58). Repeating the
previous linear analysis, we find that there are now only even eigenmodes, which
are φ-independent (to leading order), and take the form

a(r) =
N∑

n=1

[cneikn ·r + c̄ne−ikn ·r]. (11.78)

The corresponding eigenvalue equation is

λ = �µ+ G0(q) (11.79)
3 Note that in [11] we used a different perturbation scheme in which the strength of lateral connections
ε and the distance from the bifurcation point µ − µc were taken to be two independent parameters.
The linearized equations were first solved using a perturbation expansion in the coupling. Amplitude
equations for the linear modes were then derived by carrying out a Poincaré–Linstedt expansion with
respect to µ − µc. This approach is particularly suitable for studying the role of symmetries in the
spontaneous formation of cortical activity patterns underlying visual hallucinations.
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m = 0 m = 1, odd m = 1, even

π/qc

Figure 11.15. Three classes of rolls found in cortical pattern formation.

with G0(q) defined in equation (11.73). Thus |kn | = q0 where q0 is the minimum
of G0(q).

It follows from our analysis that there are three classes of eigenmode that
can bifurcate from the resting state. These are represented, respectively, by linear
combinations of one of the three classes of roll pattern shown in figure 11.15. The
m = 0 roll corresponds to modes of the form (11.78), and consists of alternating
regions of high and low cortical activity in which individual hypercolumns do
not amplify any particular orientation: the resulting patterns are said to be non-
contoured. The m = 1 rolls correspond to the odd- and even-oriented modes
of equations (11.75) and (11.77). These are constructed using a winner-takes-all
rule in which only the orientation with maximal response is shown at each point
in the cortex (after some coarse-graining). The resulting patterns are said to be
contoured. The particular class that is selected depends on the detailed structure
of the local and lateral weights. The m = 0 type will be selected when the local
inhibition within a hypercolumn is sufficiently weak, whereas the m = 1 type will
occur when there is strong local inhibition, with the degree of anisotropy in the
lateral connections determining whether the patterns are even or odd.

11.5.2 Doubly-periodic planforms

Rotation symmetry implies that the space of marginally stable modes is infinite-
dimensional. That is, all plane-waves with wavevectors k lying on the critical
circle |k| = qc are allowed, with qc = q− for odd modes and qc = q+ for even
modes. (For concreteness, we focus on the contoured eigenmodes.) However,
translation symmetry means that we can restrict the space of solutions to that
of doubly periodic functions corresponding to regular tilings of the plane. The
associated space of marginally stable eigenmodes is then finite-dimensional. A
finite set of specific functions can then be identified as candidate planforms in
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Table 11.1. Generators for the planar lattices and their dual lattices.

Lattice �1 �2 �̂1 �̂2

Square (1, 0) (0, 1) (1, 0) (0, 1)
Hexagonal (1, 1√

3
) (0, 2√

3
) (1, 0) 1

2 (−1,
√

3)

Rhombic (1,− cot η) (0, cosec η) (1, 0) (cos η, sin η)

the sense that they approximate time-independent solutions of equation (11.24)
sufficiently close to the critical point where the homogeneous state loses stability.
These planforms consist of finite linear combinations of one of the three types of
stripe pattern shown in figure 11.15.

Let � be a planar lattice; that is, choose two linearly independent vectors �1
and �2 and let

� = {2πm1�1 + 2πm2�2 : m1,m2 ∈ �}.
Note that � is a subgroup of the group of planar translations. A function f :→ �

is doubly periodic with respect to � if

f (x + �, φ) = f (x, φ)

for every � ∈ �. Let θ be the angle between the two basis vectors �1 and �2.
We can then distinguish three types of lattice according to the value of θ : square
lattice (θ = π/2), rhombic lattice (0 < θ < π/2, θ �= π/3) and hexagonal
(θ = π/3). After rotation, the generators of the planar lattices are given in
table 11.1. Also shown are the generators of the dual lattice satisfying �̂i .� j = δi, j

with |�̂i | = 1.
Imposing double periodicity means that the original Euclidean symmetry

group is restricted to the symmetry group �� of the lattice �. In particular, there
are only a finite number of shift-twists and reflections to consider for each lattice
(modulo an arbitrary rotation of the whole plane), which correspond to the so-
called holohedries of the plane; see figure 11.16. Consequently the corresponding
space of marginally stable modes is now finite-dimensional—we can only rotate
eigenfunctions through a finite set of angles (for example, multiples of π/2 for
the square lattice and multiples of π/3 for the hexagonal lattice). The marginally
stable modes for each of the lattices are given in table 11.2.

11.5.3 Selection and stability of patterns

It remains to determine the amplitudes cn of the doubly-periodic solutions that
bifurcate from the homogeneous state; see table 11.2. We proceed by applying
the perturbation method of section 11.4.1 to the amplitude equation (11.52).
First, introduce a small parameter ξ determining the distance from the point
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D6 D4 D2

Figure 11.16. Holohedries of the plane.

Table 11.2. Eigenmodes corresponding to shortest dual wavevectors ki = qc�̂i . Here
u(φ) = cos(2φ) for even modes and u(φ) = sin(2φ) for odd modes.

Lattice a(r, φ)

Square c1u(φ)eik1·r + c2u(φ − 1
2π)e

ik2·r + c.c.

Hexagonal c1u(φ)eik1·r + c2u(φ − 2
3π)e

ik2·r + c3u(φ + 2
3π)e

−i(k1+k2)·r + c.c.

Rhombic c1u(φ)eik1·r + c2u(φ − η)eik2·r + c.c.

of marginal stability according to �µ − �µc = ξ2 with �µc = −βG−(q−)
(�µc = −βG+(q+)) if odd (even) modes are marginally stable. Note that the
parameter ξ is independent of the coupling parameter ε. Also introduce a second
slow time scale τ̂ = ξ2τ . Next substitute the series expansion

z(r, τ̂ ) = ξz(1)(r, τ̂ )+ ξ2z(2)(r, τ̂ )+ ξ3z(3)(r, τ̂ )+ · · · (11.80)

into equation (11.52) and collect terms with equal powers of ξ . This generates a
hierarchy of equations of the form (up to �(ξ3))

�z(1) = 0 (11.81)

�z(2) = 0 (11.82)

�z(3) = z(1)[1− A|z(1)|2] − dz(1)

dτ̂
(11.83)

where, for any complex function z,

�z = −�µcz − β

∫ π

0
wlat ◦ [z + ze−4iφ]dφ

π
. (11.84)

The first equation in the hierarchy has solutions of the form

z(1)(r, τ̂ ) = �

N∑
n=1

e−2iϕn [cn(τ̂ )e
ikn·r + c̄n(τ̂ )e

−ikn ·r] (11.85)
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where � = 1 for even (+) modes and � = i for odd (−) modes (see
equations (11.66) and (11.67)). Here N = 2 for the square or rhombic lattice
and N = 3 for the hexagonal lattice. Also kn = qc�̂n for n = 1, 2 and
k3 = −k1 − k2. A dynamical equation for the amplitudes cn(τ ) can then be
obtained as a solvability condition for the third-order equation (11.83). Define
the inner product of two arbitrary doubly-periodic functions f (r) and g(r) by

〈 f |g〉 =
∫
�

f̄ (r)g(r) dr (11.86)

where � is a fundamental domain of the periodically tiled plane (whose area is
normalized to unity). Taking the inner product of the left-hand side of equation
(11.83) with f̃n(r) = eikn ·r leads to the following solvability condition

〈 f̃n |e2iϕn�z(3) + �2e−2iϕn�z(3)〉 = 0. (11.87)

The factor �2 = ±1 ensures that the appropriate marginal stability condition
λ± = 0 is satisfied by equation (11.71). Finally, we substitute for�z(3) using
the right-hand side of equation (11.83) to obtain an amplitude equation for cn ,
which turns out to be identical for both odd and even solutions:

dcn

dτ̂
= cn

[
1 − γ (0)|c1|2 − 2

∑
p �=n

γ (ϕn − ϕp)|cp|2
]

(11.88)

where
γ (ϕ) = [2+ cos(4ϕ)]A. (11.89)

We consider solutions of these amplitude equations for each of the basic lattices.

Square or rhombic lattice

First, consider planforms corresponding to a bimodal structure of the square or
rhombic type (N = 2). That is, take k1 = qc(1, 0) and k2 = qc(cos(θ), sin(θ)),
with θ = π/2 for the square lattice and 0 < θ < π/2, θ �= π/3 for a rhombic
lattice. The amplitudes evolve according to a pair of equations of the form

dc1

dτ̂
= c1[1− γ (0)|c1|2 − 2γ (θ)|c2|2] (11.90)

dc2

dτ̂
= c2[1− γ (0)|c2|2 − 2γ (θ)|c1|2]. (11.91)

Since γ (θ) > 0, three types of steady state are possible for arbitrary phases
ψ1, ψ2:

(i) the homogeneous state, c1 = c2 = 0;
(ii) rolls, c1 = √

1/γ (0)eiψ1 , c2 = 0 or c1 = 0, c2 = √
1/γ (0)eiψ2 ; and

(iii) squares or rhombics, cn = √
1/[γ (0)+ 2γ (θ)]eiψn , n = 1, 2.
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A standard linear stability analysis shows that if 2γ (θ) > γ (0) then rolls are
stable whereas the square or rhombic patterns are unstable. The opposite holds
if 2γ (θ) < γ (0). Note that here stability is defined with respect to perturbations
with the same lattice structure. Using equation (11.89) we deduce that, in the case
of a rhombic lattice of angle θ �= π/2, rolls are stable if cos(4θ) > −1/2 whereas
θ -rhombics are stable if cos(4θ) < − 1

2 , that is, if π/6 < θ < π/3; rolls are stable
and square patterns unstable on a square lattice.

Hexagonal lattice

Next consider planforms on a hexagonal lattice with N = 3, ϕ1 = 0, ϕ2 = 2π/3,
ϕ3 = −2π/3. The cubic amplitude equations take the form

dcn

dτ̂
= cn[1− γ (0)|cn|2 − 2γ (2π/3)(|cn+1|2 + |cn−1|2)] (11.92)

where n = 1, 2, 3 mod 3. Unfortunately, equation (11.92) is not sufficient to
determine the selection and stability of the steady-state solutions bifurcating from
the homogeneous state. One has to carry out an unfolding of the amplitude
equation that includes higher-order terms (quartic and quintic) in z, z̄. One could
calculate this explicitly by carrying out a double expansion in the parameters ε

and ξ , which is equivalent to the perturbation approach used by [11]. In addition
to generating higher-order terms, one finds that there is an �(ε) contribution to
the coefficients γ (ϕ) such that 2γ (2π/3)− γ (0) = �(ε) and, in the case of even
planforms, an �(ε) contribution to the right-hand side of equation (11.92) of the
form ηc̄n−1c̄n+1.

Considerable information about the bifurcating solutions can be obtained
using group-theoretic methods. First, one can use an important result from
bifurcation theory in the presence of symmetries, namely, the equivariant
branching lemma [28]: when a symmetric dynamical system goes unstable, new
solutions emerge that (generically) have symmetries corresponding to the axial
subgroups of the underlying symmetry group. A subgroup � is axial if the
dimension of the space of solutions that are fixed by � is equal to one. Thus
one can classify the bifurcating solutions by finding the axial subgroups of the
symmetry group of the lattice (up to conjugacy). This has been carried out
elsewhere for the particular shift-twist action of the Euclidean group described
at the end of section 11.2 [11, 12]. The results are listed in table 11.3.

It can be seen that major differences emerge between the even and odd
cases. Second, symmetry arguments can be used to determine the general form
of higher-order contributions to the amplitude equation (11.92) and this leads to
the bifurcation diagrams shown in figure 11.17 [11, 12]. It turns out that stability
depends crucially on the sign of the �(ε) coefficient 2γ (2π/3)− γ (0), which is
assumed to be positive in figure 11.17. The subcritical nature of the bifurcation to
hexagonal patterns in the case of even patterns is a consequence of an additional
quadratic term appearing on the right-hand side of (11.92).
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Table 11.3. Even and odd planforms for hexagonal lattice.

Even planform (c1, c2, c3) Odd planform (c1, c2, c3)

0-hexagon (1, 1, 1) Hexagon (1, 1, 1)
π-hexagon (1, 1,−1) Triangle (i, i, i)
Roll (1, 0, 0) Roll (1, 0, 0)

Patchwork quilt (0, 1, 1)

µc
µ

π-hexagons

0-hexagons

rolls
C

RA

µc
µ

R

C

PQ

H,T

(a) (b)

Figure 11.17. Bifurcation diagram showing the variation of the amplitude C with the
parameter µ for patterns on a hexagonal lattice. Full and broken curves indicate stable and
unstable solutions respectively. Even patterns (a): stable hexagonal patterns are the first
to appear (subcritically) beyond the bifurcation point. Subsequently the stable hexagonal
branch exchanges stability with an unstable branch of roll patterns due to a secondary
bifurcation that generates rectangular patterns RA. Higher-order terms in the amplitude
equation are needed to determine its stability. Odd patterns (b): Either hexagons (H)
or triangles (T) are stable (depending on higher-order terms in the amplitude equation)
whereas patchwork quilts (PQ) and rolls (R) are unstable. Secondary bifurcations (not
shown) may arise from higher-order terms.

11.5.4 From cortical patterns to geometric visual hallucinations

We have now identified the stable planforms that are generated as primary
bifurcations from a homogeneous, low-activity state of the continuum model
(11.24). These planforms consist of certain linear combinations of the roll
patterns shown in figure 11.15 and can thus be classified into non-contoured
(m = 0) and contoured (m = 1 even or odd) patterns. Given a particular activity
state in cortex, we can infer what the corresponding image in visual coordinates
is like by applying the inverse of the retino-cortical map shown in figure 11.2. (In
the case of contoured patterns, one actually has to specify the associated tangent
map as detailed in [11].) Some examples of stable V1 planforms are presented in
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Figure 11.18. V1 planforms: non-contoured roll (I), non-contoured hexagon (II), even
contoured hexagon (III) and even contoured square (IV).

figure 11.18 and the associated visual images are presented in figure 11.19. It will
be seen that the two non-contoured planforms correspond to the type (I) and (II)
Kluver form constants, as originally proposed by Ermentrout and Cowan [21],
whereas the two contoured planforms reproduce the type (III) and (IV) form
constants; see figure 11.10.

11.5.5 Oscillating patterns

It is also possible for the cortical model to spontaneously form oscillating patterns.
This will occur if, in the absence of any lateral connections, each hypercolumn
undergoes a Hopf bifurcation to a time-periodic tuning curve along the lines
described in section 11.4.3. (It is not possible for the lateral connections to induce
oscillations when the individual hypercolumns exhibit stationary tuning curves.
This is a consequence of the fact that the lateral connections are modulatory
and originate only from excitatory neurons.) Linearizing equations (11.62) and
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(I) (II)

(III) (IV)

Figure 11.19. Visual field images of V1 planforms shown in figure 11.18.

(11.63) about the zero state zR = zL = 0 (assuming zero inputs from the LGN)
gives

∂zL(r, τ )
∂τ

= �µ(1 + i"0)zL(r, τ )

+ β

∫ π

0
wlat ◦ [zL(r, τ )+ zR(r, τ )e4iφ]dφ

π
(11.93)

∂zR(r, τ )
∂τ

= �µ(1 + i"0)zR(r, τ )

+ β

∫ π

0
wlat ◦ [zR(r, τ )+ zL(r, τ )e−4iφ]dφ

π
. (11.94)

Equation (11.93) and (11.94) have solutions of the form

zL(r, τ ) = ueλτ e2iϕeik·r zR(r, τ ) = veλτ e−2iϕeik·r (11.95)



304 Paul C Bressloff and Jack D Cowan

where k = q(cos(ϕ), sin(ϕ)) and λ is determined by the eigenvalue equation

[λ−�µ(1+ i"0)]
(

cu
v

)
= β

(
G0(q) χG2(q)
χG2(q) G0(q)

)(
cu
v

)
(11.96)

with Gn(q) given by equation (11.73). Equation (11.96) has solutions of the form

λ± = �µ(1+ i"0)+ βG±(q) v = ±u (11.97)

for G±(q) defined by equation (11.72).
Hence, as in the case of stationary patterns, either odd or even time-periodic

patterns will bifurcate from the homogeneous state depending on the degree of
spread in the lateral connections. Close to the bifurcation point these patterns are
approximated by the eigenfunctions of the linear theory according to

a(r, φ, t) =
N∑

n=1

cos(2[φ − ϕn])[cnei("t+kn·r) + dnei("t−kn·r) + c.c.] (11.98)

with kn = q+(cosϕn, sin ϕn) for even solutions and

a(r, φ, t) =
N∑

n=1

sin(2[φ − ϕn])[cnei("t+kn·r) + dnei("t−kn·r) + c.c.] (11.99)

with kn = q−(cosϕn, sin ϕn) for odd solutions, and where " = "0(1 + ε�µ).
These should be compared with the corresponding solutions (11.75) and (11.77)
of the stationary case. An immediate consequence of our analysis is that the
oscillating patterns form standing waves within a single hypercolumn, that is,
with respect to the orientation label φ. However, it is possible for travelling
waves to propagate across V1 if there exist solutions for which cn �= 0, dn = 0 or
cn = 0, dn �= 0. In order to investigate this possibility, we carry out a perturbation
analysis of equations (11.62) and (11.63) along the lines of section 11.5.3 (after
the restriction to doubly periodic solutions).

First, introduce a second slow time variable τ̂ = ξ2τ where ξ2 = �µ−�µc
and take zL,R = zL,R(r, τ, τ̂ ). Next, substitute into equations (11.62) and (11.63)
the series expansions

zL,R = ξz(1)L,R + ξ2z(2)L,R + ξ3z(3)L,R + · · · (11.100)

and collect terms with equal powers of ξ . This generates a hierarchy of equations
of the form (up to �(ξ3))

[�τ z(p)]L = 0 [�τ z(p)]R = 0 (11.101)

for p = 1, 2 and

[�τz(3)]L = (1 + i"0)z
(1)
L [1 − A|z(1)L |2 − 2A|z(1)R |2] − ∂z(1)L

∂τ̂
(11.102)

[�τz(3)]R = (1 + i"0)z
(1)
R [1 − A|z(1)R |2 − 2A|z(1)L |2] − ∂z(1)R

∂τ̂
(11.103)
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where, for any z = (zL, zR),

[�τz]L = ∂zL

∂τ
− (1 + i"0)�µczL − β

∫ π

0
wlat ◦ [zL + zRe+4iφ]dφ

π

(11.104)

[�τz]R = ∂zL

∂τ
− (1 + i"0)�µczR − β

∫ π

0
wlat ◦ [zR + zLe−4iφ]dφ

π
.

(11.105)

The first equation in the hierarchy has solutions of the form

z(1)L (r, τ, τ̂ ) = eiδ"τ
N∑

n=1

e2iϕn [cn(τ̂ )eikn ·r + dn(τ̂ )e−ikn ·r] (11.106)

z(1)R (r, τ, τ̂ ) = �eiδ"τ
N∑

n=1

e−2iϕn [cn(τ̂ )eikn ·r + dn(τ̂ )e−ikn ·r] (11.107)

where � = 1 for even modes and � = −1 for odd modes (see equations
(11.95) and (11.97)), and δ" = "0�µc. As in the stationary case we restrict
ourselves to doubly-periodic solutions with N = 2 for the square or rhombic
lattice and N = 3 for the hexagonal lattice. A dynamical equation for the
complex amplitudes cn(τ̂ ) and dn(τ̂ ) can be obtained as a solvability condition
for the third-order equations (11.102) and (11.103). Define the inner product of
two arbitrary doubly-periodic vectors f(r, τ ) = ( fL(r, τ ), fR(r, τ )) and g(r, τ ) =
(gL(r, τ ), gR(r, τ )) by

〈f|g〉 = lim
T→∞

1

T

∫ T/2

−T/2

∫
�

[ fL(r, τ )gL(r, τ )+ fR(r, τ )gR(r, τ )] dr dτ (11.108)

where � is a fundamental domain of the periodically tiled plane (whose area is
normalized to unity). Taking the inner product of the left-hand side of equation
(11.83) with the vectors f̃n(r, τ ) = eikn ·reiδ"τ (e2iϕn , �e−2iϕn ) and g̃n(r, τ ) =
e−ikn ·reiδ"τ (e2iϕn , �e−2iϕn ) leads to the following pair of solvability conditions

〈f̃n |�τz(3)〉 = 0 〈g̃n|�τ z(3)〉 = 0. (11.109)

Finally, we substitute for�τ z(3) using equations (11.102) and (11.103) to obtain
amplitude equations for cn and dn (which at this level of approximation are the
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same for odd and even solutions):

dcn

dτ̂
= − 4(1 + i"0)d̄n

∑
p �=n

γ (ϕn − ϕp)cpdp + (1 + i"0)cn

×
[

1 − 2γ (0)(|cn|2 + 2|dn|2)− 4
∑
p �=n

γ (ϕn − ϕp)(|cp|2 + |dp|2)
]

(11.110)
ddn

dτ̂
= − 4(1 + i"0)c̄n

∑
p �=n

γ (ϕn − ϕp)cpdp + (1 + i"0)dn

×
[

1 − 2γ (0)(|dn|2 + 2|cn|2)− 4
∑
p �=n

γ (ϕn − ϕp)(|cp|2 + |dp|2)
]

(11.111)

with γ (ϕ) given by equation (11.89).
The analysis of the amplitude equations (11.110) and (11.111) is

considerably more involved than for the corresponding stationary problem. We
discuss only the square lattice here (N = 2) with k1 = qc(1, 0) and k2 = qc(0, 1).
The four complex amplitudes (c1, c2, d1, d2) evolve according to the set of
equations of the form

dc1

dτ̂
= (1 + i"0)(c1[1 − κ(|c1|2 + 2|d1|2)− 2κ(|c2|2 + |d2|2)] − 2κ d̄1c2d2)

(11.112)
dc2

dτ̂
= (1 + i"0)(c2[1 − κ(|c2|2 + 2|d2|2)− 2κ(|c1|2 + |d1|2)] − 2κ d̄2c1d1)

(11.113)
dd1

dτ̂
= (1 + i"0)(d1[1 − κ(|c1|2 + 2|d1|2)− 2κ(|c2|2 + |d2|2)] − 2κ c̄1c2d2)

(11.114)
dd2

dτ̂
= (1 + i"0)(d2[1 − κ(|c2|2 + 2|d2|2)− 2κ(|c1|2 + |d1|2)] − 2κ d̄2c1d1)

(11.115)

where κ = 6A. These equations have the same structure as the cubic equations
obtained for the standard Euclidean group action using group-theoretic methods
[50]. An identical set of equations has been obtained for oscillatory activity
patterns in the Ermentrout–Cowan model [55]. It can be shown that there exist
five possible classes of solution that can bifurcate from the homogeneous state.
We list examples from each class:

(i) travelling rolls (TR): c1 �= 0, c2 = d1 = d2 = 0 with |c1|2 = 1/κ ;
(ii) travelling squares (TS): c1 = c2 �= 0, d1 = d2 = 0 with |c1|2 = 1/3κ ;
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(iii) standing rolls (SR): c1 = d1, c2 = d2 = 0 with |c1|2 = 1/3κ ;
(iv) standing squares (SS): c1 = d1 = c2 = d2 with |c1|2 = 1/9κ ; and
(v) Aalternating rolls (AR): c1 = −ic2 = d1 = −id2 with |c1|2 = 1/5κ .

Up to arbitrary phase-shifts the corresponding planforms are

(TR) a(r, φ, t) = |c1|u(φ) cos("t + qcx);
(TS) a(r, φ, t) = |c1|[u(φ) cos("t + qcx)+ u(φ − π/2) cos("t + qcy)];
(SR) a(r, φ, t) = |c1|u(φ) cos("t) cos(qcx);
(SS) a(r, φ, t) = |c1| cos("t)[u(φ) cos(qcx)+ u(φ − π/2) cos(qcy)]; and

(AR) a(r, φ, t) = |c1|[cos("t)u(φ) cos(qcx)+ sin("t)u(φ − π/2) cos(qcy)].
(In contrast to the more general case considered in [50], our particular system
does not support standing cross-roll solutions of the form c1 = d1, c2 = d2 with
|c1| �= |c2|.)

Linear stability analysis shows that (to cubic order) the TR solution is stable,
the AR solution is marginally stable and the other solutions are unstable [50, 55].
In order to resolve the degeneracy of the AR solution one would need to carry
out a double expansion in the parameters ξ, ε and include higher-order terms in
the amplitude equation. The situation is even more complicated in the case of the
hexagonal lattice where such a double expansion is expected to yield additional
contributions to equations (11.110) and (11.111). As in the stationary case, group-
theoretic methods can be used to determine generic aspects of the bifurcating
solutions. First note that, as with other Hopf bifurcation problems, the amplitude
equations have an extra phase-shift symmetry in time that was not in the original
problem. This takes the form ψ : (cn, dn) → (eiψcn, eiψdn) for n = 1, . . . , N
with ψ ∈ S1. Thus the full spatio-temporal symmetry is ��×S1 for a given lattice
�. One can then appeal to the equivariant Hopf theorem [28] which guarantees
the existence of primary bifurcating branches that have symmetries corresponding
to the isotropy subgroups of ��×S1 with two-dimensional fixed-point subspaces.
(In the case of a square lattice this generates the five solutions listed earlier.) The
isotropy subgroups for the standard Euclidean group action have been calculated
elsewhere [19, 45, 50]. As in the stationary bifurcation problem, the isotropy
subgroups of the shift-twist action may differ in a non-trivial way. This particular
issue will be explored elsewhere.

11.6 Spatial frequency tuning and SO(3) symmetry

One of the simplifications of our large-scale cortical model has been to treat
V1 as a continuum of interacting hypercolumns in which the internal structure
of each hypercolumn is idealized as a ring of orientation selective cells. This
reduction can be motivated in part by the fact that there exists a physical ring
of orientation domains around each pinwheel, as illustrated by the circle in
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νmin

(θ,ϕ)

orientation

spatial frequency

νmax

ν

φ

Figure 11.20. Spherical model of orientation and spatial frequency tuning.

figure 11.4. However, even if one restricts attention to the single eye case,
there still exist two pinwheels per ocular dominance column. Moreover, the ring
model does not take into account the fact that within each pinwheel region there
is a broad distribution of orientation preferences so that the average orientation
selectivity is weak. A fuller treatment of the two-dimensional structure of a
hypercolumn can be carried out by incorporating another internal degree of
freedom within the hypercolumn, which reflects the fact that cortical cells are also
selective to the spatial frequency of a stimulus. (In the case of a grating stimulus,
this would correspond to the inverse of the wavelength of the grating.) Indeed,
recent optical imaging data suggest that the two pinwheels per hypercolumn are
associated with high and low spatial frequencies respectively [7,35,36]. Recently,
we have proposed a generalization of the ring model that takes into account this
structure by incorporating a second internal degree of freedom corresponding to
(log) spatial frequency preference [15]. Here we show how this new model can be
used to extend our theory of cortical pattern formation to include both orientation
and spatial frequency preferences.

11.6.1 The spherical model of a hypercolumn

Each hypercolumn (when restricted to a single ocular dominance column) is now
represented by a sphere with the two orientation singularities identified as the
north and south poles respectively; see figure 11.20. Following recent optical
imaging results [7, 35, 36], the singularities are assumed to correspond to the two
extremes of (log) spatial frequency within the hypercolumn. In terms of spherical
polar coordinates (r, θ, ϕ) with r = 1, θ ∈ [0, π) and ϕ ∈ [0, 2π), we thus define
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the orientation preference φ and (log) spatial frequency ν according to

ν = νmin + θ

π
[νmax − νmin] φ = ϕ/2. (11.116)

Note that we consider ν = log p rather than spatial frequency p as a cortical label.
This is motivated by the observation that dilatations in visual field coordinates
correspond to horizontal translations in cortex; see the introduction of the chapter.
Using certain scaling arguments it can then be shown that all hypercolumns have
approximately the same bandwidth in ν even though there is broadening with
respect to lower spatial frequencies as one moves towards the periphery of the
visual field [15].

It is important to emphasize that the sphere describes the network topology
of the local weight distribution expressed in terms of the internal labels for
orientation and spatial frequency. It is not, therefore, expected to match the actual
spatial arrangement of cells within a hypercolumn. Given this spherical topology,
the natural internal symmetry of a hypercolumn is now SO(3) rather than O(2).
In particular, the local weight distribution is assumed to be SO(3) invariant.
Imposing such a symmetry is not just a mathematical convenience, but actually
reflects the anatomical observation that the pattern of local interactions within
a hypercolumn depends on cortical separation rather than feature separation
[18]. When the weight distribution is expressed in terms of cortical coordinates,
this naturally leads to Euclidean symmetry. However, we are describing the
interactions in terms of cortical labels for orientation and spatial frequency.
Hence, the natural measure of spatial separation is now in terms of geodesics
or great circles on the sphere, and the group that preserves geodesic separation is
SO(3).

Having introduced the spherical model of a single hypercolumn, it is
straightforward to write down a generalization of our large-scale cortical model
given by equation (11.19):

∂a(r, P, t)

∂ t
= − a(r, P, t) +

∫
w(P|P ′)σ [a(r, P ′, t)] dP ′

+ ε

∫
wlat(r, P|r′, P ′)σ [a(r′, P ′, t)] dr′ dP ′ + h(r, P, t)

(11.117)

where we have introduced the compact notation P = {θ, ϕ} and dP =
sin θ dθ dϕ. (For ease of notation, we consider here a one-population model
by identifying the states aE = aI. Note that such a state arose previously in
case A of section 11.3). In equation (11.117), w(P|P ′) denotes the distribution
of local connections within a hypercolumn, whereas wlat(r, P|r′, P ′) denotes the
distribution of horizontal connections between the hypercolumns at r and r′. In
the following we focus on the spontaneous dynamical behaviour of the model by
fixing h(r, P, t) = h0 such that a(r, P, t) = a0 is a homogeneous fixed-point
solution of equation (11.117).
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An SO(3) invariant local weight distribution can be constructed in terms of
spherical harmonics [15]:

w(θ, ϕ|θ ′, ϕ′) = µ

∞∑
n=0

Wn

n∑
m=−n

Y m
n (θ ′, ϕ′)Y m

n (θ, ϕ) (11.118)

with Wn real. The functions Y m
n (θ, ϕ) constitute the angular part of the solutions

of Laplace’s equation in three dimensions, and thus form a complete orthonormal
set. The orthogonality relation is∫ 2π

0

∫ π

0
Y m1

n1 (θ, ϕ)Y m2
n2

(θ, ϕ) sin θ dθ dϕ = δn1,n2δm1,m2 . (11.119)

The spherical harmonics are given explicitly by

Y m
n (θ, ϕ) = �

m
n (cos θ)eimϕ (11.120)

with

�
m
n (cos θ) = (−1)m

√
2n + 1

4π

(n − m)!
(n + m)! Pm

n (cos θ) (11.121)

for n ≥ 0 and−n ≤ m ≤ n, where Pm
n (cos θ) is an associated Legendre function.

The lowest-order spherical harmonics are

Y 0
0 (θ, ϕ) =

1√
4π

(11.122)

Y 0
1 (θ, ϕ) =

√
3

4π
cos θ Y±

1 (θ, ϕ) = ∓
√

3

8π
sin θe±iϕ. (11.123)

In figure 11.21 we show a contour plot of the SO(3) invariant weight distribution
for the particular case W0 = 1, W1 = 3 and Wn = 0 for n ≥ 2. The
contour plot represents the distribution joining neurons with the same spatial
frequency (same latitude on the sphere). It can be seen that away from the
pinwheels (poles of the sphere), cells with similar orientation excite each other
whereas those with dissimilar orientation inhibit each other. This is the standard
interaction assumption of the ring model; see section 11.3. However, around
the pinwheels, all orientations uniformly excite, which is consistent with the
experimental observation that local interactions depend on cortical separation
[18]. That is, although the cells around a pinwheel can differ greatly in their
orientation preference, they are physically close together within the hypercolumn.

How does the anisotropy in the lateral connections manifest itself when
spatial frequency is taken into account, so that the internal symmetry is SO(3)
rather than O(2)? The first point to make is that, unlike O(2), SO(3) does not
have a faithful representation in �

2 . Nevertheless, it is possible to generalize
equation (11.22) so that the weights are invariant with respect to the action of
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Figure 11.21. Plot of w(θ, ϕ|θ ′, ϕ′) given by the SO(3) invariant weight distribution
(11.118) with W0 = 1, W1 = 3 and Wn = 0 for n ≥ 2. Since w only depends on
the difference ϕ − ϕ′, we set ϕ′ = 0 and plot w as a function of θ and ϕ for θ ′ = θ .

�
2 +̇O(2) = E(2) on {r, θ, ϕ}. That is, we consider a lateral weight distribution

of the form

wlat(r, P|r′, P ′) = εJ (T−ϕ/2(r − r′)) 1

sin θ ′
δ(θ − θ ′)δ(ϕ − ϕ′) (11.124)

with J (r) defined by equation (11.23) and ε < 0 (inhibitory lateral interactions).
Such a distribution links neurons with the same orientation and spatial frequency
label, with the function p(η) again determining the degree of spatial spread
(anisotropy) in the pattern of connections relative to the direction of their common
orientation preference. An elegant feature of the spherical model is that it
naturally incorporates the fact that, at the population level, there is less selectivity
for orientation near pinwheels. In other words, any solution a(r, θ, ϕ) expanded
in terms of spherical harmonics is independent of ϕ at θ = 0, π . This constrains
the allowed structure of the spread function p(η), in the sense that the horizontal
weight distribution (11.124) has to be isotropic at the pinwheels. This follows
from equations (11.124) and (11.23), which show that∫

wlat(r, P|r′, P ′)a(r′, P ′) dP ′ =
∫ ∞

−∞
g(s)

∫ π/2

−π/2
p(η)a(r+srϕ/2+η, P) dη ds.

(11.125)
It is clear that the right-hand side of this equation will be independent of ϕ at
θ = 0, π if and only if p(η) = 1/π at the pinwheels. In order to incorporate
the known anisotropy away from the pinwheels, we conclude that the spread
function has to be θ -dependent, p = p(η|θ). An example of a spread function that
smoothly interpolates between isotropic connections at the pinwheels (high and
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low spatial frequencies) and strong anisotropy in the linear zones (intermediate
spatial frequencies) with degree of spread η0 is

p(η|θ) = cos2 θ

π
+ 1

2η0
�(η0 − |η|) sin2 θ. (11.126)

The anisotropic weight distribution (11.124) is invariant under the following
action of �2+̇O(2) = E(2) on {r, θ, ϕ}:

s · (r, θ, ϕ) = (r + s, θ, ϕ) s ∈ �2

ξ · (r, θ, ϕ) = (Tξ r, θ, ϕ + ξ) ξ ∈ S1

κ · (r, θ, ϕ) = (κr, θ,−ϕ)

(11.127)

where κ is the reflection (x1, x2) 	→ (x1,−x2).

11.6.2 Cortical patterns and spatial frequency tuning

A theory of spontaneous pattern formation in the coupled spherical model
(11.117) can be developed along similar lines to that of the coupled ring
model (11.24). Now each isolated hypercolumn generates a tuning surface for
orientation and spatial frequency through spontaneous SO(3) symmetry breaking.
The peak of this surface can be locked to a weakly biased stimulus from the LGN.
Moreover, lateral interactions induce correlations between the tuning surfaces
across the cortex leading to spatially periodic patterns of activity, which are
consistent with the hallucinatory images presented in section 11.5.4. Rather
than presenting the full nonlinear analysis here, we restrict ourselves to studying
the linear eigenmodes that are excited when a homogeneous fixed point of the
network becomes unstable.

First, we linearize equation (11.117) about the fixed-point solution
a(r, θ, ϕ, t) = a0. Setting a(r, θ, ϕ, t) = a0 + eλt u(θ, ϕ)eik·r generates the
eigenvalue equation

λu(P) = −u(P)+ µ

∫
w(P|P ′)u(P ′) dP ′ + ε J̃ (Tϕ/2k)u(P) (11.128)

where J̃(k) is the Fourier transform of J (r) and k = q(cos ζ, sin ζ ). Expanding
u(θ, ϕ) in terms of spherical harmonics

u(θ, ϕ) =
∑
n∈�

n∑
m=−n

e−imζ AnmY m
n (θ, ϕ) (11.129)

leads to the matrix eigenvalue equation

[λ+ 1 − µWn]Anm = ε
∑
n′∈�

n′∑
m′=−n′

Jnm,n′m′(q)An′m′ (11.130)
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with

Jnm,n′m′(q) =
∫ 2π

0

∫ π

0
Y m

n (θ, ϕ)Y m′
n′ (θ, ϕ)

×
[ ∫ π/2

π/2
p(η|θ)

∫ ∞

0
g(s) cos(sq cos[ϕ/2+ η]) dη ds

]
× sin θ dθ dϕ. (11.131)

We have included an additional phase-factor e−imζ in equation (11.129) that
simplifies the matrix equation (11.130) by eliminating any dependence on the
direction ζ of the wavevector k. Such a phase factor is equivalent to shifting ϕ,
since e−imζ Y m

n (θ, ϕ) = Y m
n (θ, ϕ − ζ ).

The matrix elements Jnm,n′m′(q) are evaluated by substituting the explicit
expression (11.120) for the spherical harmonics into equation (11.131):

Jnm,n′m′(q) = 2πGm−m′(q)�nm,n′m′ (11.132)

where Gm(q) satisfies equation (11.73) and

�nm,n′m′ =
∫ π

0
�

m
n (cos θ)�m′

n′ (cos θ)

[ ∫ π/2

−π/2
p(η|θ)e2i(m−m′)η dη

]
sin θ dθ.

(11.133)
For the spread function (11.126) we have

�nm,n′m′ =
∫ π

0
�

m
n (cos θ)�m′

n′ (cos θ)

×
[
δm−m′ cos2 θ + sin[2(m − m′)η0]

2(m − m′)η0
sin2 θ

]
sin θ dθ. (11.134)

In the absence of lateral interactions (ε = 0), each hypercolumn can
exhibit orientation and spatial frequency tuning through spontaneous symmetry
breaking of SO(3). This is a generalization of the O(2) symmetry-breaking
mechanism underlying orientation tuning in the ring model; see section 11.3.
The orthogonality relation (11.119) shows that the eigenmodes are spherical
harmonics with λ = λn ≡ −1 + µWn for u(θ, ϕ) = Y m

n (θ, ϕ), −n ≤ m ≤ n.
Since λ is k-independent, the full solution for the eigenmodes can be written in
the form

a(r, θ, ϕ)− a0 = c0(r)Y 0
n (θ, ϕ)+

n∑
m=1

[cm(r)Y m
n (θ, ϕ)+ c̄m(r)Y m

n (θ, ϕ)]
(11.135)

with the coefficients cm(r) arbitrary modulo the normalization condition

n∑
m=0

|cm(r)|2 = B (11.136)
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where B is fixed. This normalization condition reflects the fact that the associated
amplitude equations for the coefficients cm(r) are SO(3) equivariant [15].

Suppose that W1 > Wn for all n �= 1. The fixed point a = a0 then
destabilizes at a critical value of the coupling µc = 1/W1 due to excitation of
the first-order spherical harmonics. Sufficiently close to the bifurcation point, the
resulting activity profile can be written as

a(r, θ, ϕ) = a0 + c0(r)+
∑

m=0,±
cm(r) fm(θ, ϕ) (11.137)

for real coefficients c0(r), c±(r) with
∑

m=0,± cm(r)2 = B and

f0(θ, ϕ) = cos θ f+(θ, ϕ) = sin θ cosϕ f−(θ, ϕ) = sin θ sinϕ.

(11.138)
Equation (11.137) represents a tuning surface for orientation and spatial
frequency preferences for the hypercolumn at cortical position r, which consists
of a solitary peak whose location is determined by the values of the coefficients
(c0(r), c+(r), c−(r)). Such a solution spontaneously breaks the underlying SO(3)
symmetry. However, full spherical symmetry is recovered by noting that rotation
of the solution corresponds to an orthogonal transformation of the coefficients
c0, c±. Thus the action of SO(3) is to shift the location of the peak of the
activity profile on the sphere, that is, to change the particular orientation and
spatial frequency selected by the tuning surface. (This hidden SO(3) symmetry is
explicitly broken by external stimuli, along similar lines to section 11.4.2.)

The tuning surface generated by our spherical model has the important
property that it is not separable with respect to orientation and spatial frequency
– the activity profile cannot be written in the form u(θ, ϕ) = �(θ)#(ϕ).
Consequently, selectivity for orientation varies with spatial frequency. If c± = 0
then the activity profile is peaked at the pinwheel associated with high (c0 > 0)
or low (c0 < 0) spatial frequencies, and there is no selection for orientation.
However, if c0 = 0 then the activity profile is peaked at intermediate spatial
frequencies and there is strong selection for orientation. It is important to
emphasize that the tuning surface represents the activity profile of a population of
cells within a hypercolumn, rather than the tuning properties of an individual cell.
Thus the absence of orientation selectivity at pinwheels is an aggregate property
of the population. Indeed, it has been found experimentally that individual cells
around pinwheels are orientation selective, but there is a broad distribution of
orientation preferences within the pinwheel region so that the average response of
the population is not orientation selective.

In order to solve the eigenvalue equation (11.130) for non-zero ε, we exploit
the experimental observation that the lateral connections are weak relative to the
local connections, and carry out a perturbation expansion in the small parameter ε.
We show that there is a q-dependent splitting of the degenerate eigenvalue λ1 that
also separates out the first-order spherical harmonics. Denoting the characteristic
size of such a splitting by δλ = �(ε), we impose the condition that δλ � µ�W ,
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where �W = min{W1 − Wm ,m �= 1}. This ensures that the perturbation does
not excite states associated with other eigenvalues of the unperturbed problem,
and we can then restrict ourselves to calculating perturbative corrections to the
degenerate eigenvalue λ1 and its associated eigenfunctions. Thus, introduce the
perturbation expansions

λ = − 1 + µW1 + ελ(1) + ε2λ(2) + · · · (11.139)

Anm = cmδn,1 + εA(1)
nm + ε2 A(2)

nm + · · · (11.140)

and substitute these into the eigenvalue equation (11.130). We then systematically
solve the resulting hierarchy of equations to successive orders in ε, taking into
account the fact that the unperturbed problem is degenerate. Here we will only
describe the lowest-order corrections.

Setting n = 1 in equation (11.130) yields the O(ε) equations

1∑
m,m′=−1

Ĵmm′(q)cm′ = λ(1)cm

where Ĵmm′ (q) = J1m,1m′(q). Using equations (11.126), (11.132) and (11.134),
we find thatG0(q) 0 0

0 G0(q) 4χG2(q)/5
0 4χG2(q)/5 G0(q)

 c0
c1

c−1

 = λ(1)

 c0
c1

c−1

 (11.141)

where χ is given by equation (11.69). Equation (11.141) has solutions of the form

λ(1) = λ
(1)
0 (q) ≡ G0(q) (11.142)

with eigenmode c0 = 1, c± = 0 and

λ(1) = λ
(1)
± (q) ≡ G0(q)± 4

5χG2(q) (11.143)

with eigenmodes c0 = 0, c−1 = ±c1.
As a concrete example, suppose that g(s) is given by equation (11.74) and

χ = sin 4η0/4η0. Plotting Gm(q) for m = 0, 2 establishes that when there is
sufficiently strong anisotropy in the linear zones (η0 < π/4)

min
q
{λ(1)− (q)} < min

q
{λ(1)0 (q)} < min

q
{λ(1)+ (q)} (11.144)

and the marginally stables modes are of the form

a(r, θ, ϕ) =
∑

i

bi eiki ·r sin θ sin(ϕ − ζi ) (11.145)
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where ki = qc(cos ζi , sin ζi ) and qc is the wavenumber that minimizes λ
(1)
− (q).

However, when there is weaker anisotropy within the linear zones (η0 > π/4)

min
q
{λ(1)+ (q)} < min

q
{λ(1)0 (q)} < min

q
{λ(1)− (q)} (11.146)

and the marginally stables modes are now of the form

a(r, θ, ϕ) =
∑

i

bi e
iki ·r sin θ cos(ϕ − ζi ). (11.147)

In both cases, these are states in which each hypercolumn has a tuning surface
that peaks at intermediate frequencies. This regime is the one relevant to
contour formation, and thus we recover the basic contoured patterns presented
in section 11.5.4.

11.7 Future directions

There are many directions in which this work can be expanded. For example,
it is now clear that many different features are mapped onto the visual cortex
and beyond, in addition to retinal position, orientation and spatial frequency.
Thus ocularity, directional motion, binocular disparity, and colour seem to be
mapped [6, 34, 35, 38, 47]. It therefore remains to work out the symmetry groups
associated with these features and thence to apply the mathematical machinery
we have introduced here to compute the patterns which arise via spontaneous
symmetry breaking.

There is also the fact that the neuron model used to formulate
equations (11.4) is extremely simplified. It is nothing more than a low-pass RC
filter followed by a sigmoidal current–voltage characteristic. One can easily make
this model more complex and realistic by adding recovery variables in the style
of the FitzHugh–Nagumo equations [63], or one can simplify it still further by
using the well-known integrate-and-fire model [10]. Interestingly, in either case
the dynamics is richer, and a variety of oscillatory phenomena are immediately
apparent.

However, the most interesting new direction is to study, not spontaneous
but driven pattern formation in neural networks of the type we have introduced.
This amounts to studying the effects of external stimuli on such networks. In our
case this means studying the effects of visual stimuli. Depending on the order of
magnitude of such stimuli, various effects are possible. Thus external stimuli of
order O(1) couple to the fixed points of equation (11.4), stimuli of order O(ε1/2)

couple to the linearized equations (11.6), and O(ε3/2) stimuli couple directly to
amplitude equations such as those of equation (11.52) and effectively unfold any
bifurcation [10, 13]. The various effects produced by these and related stimuli
remain to be studied in detail.
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Chapter 12

Models for pattern formation in
development

Bard Ermentrout
University of Pittsburgh

Remus Osan
University of Pittsburgh

The visual system is one of the most thoroughly studied sensory regions in the
brain due to its importance to humans. (The standard reference for neuroscience
is [10] and in particular, chapter 27, but see also chapter 11 by Bressloff and
Cowan in this volume.) Indeed, unlike many other mammals, our understanding
of the outside world is through our eyes. The transformation of this limited range
in the electromagnetic spectrum into a conscious image is complex and involves
many different regions of the brain. The inputs to the visual system start at the eye.
Light enters the eye where it excites photoreceptors. These receptors connect to
several layers of neurons within the retina ultimately exciting the retinal ganglion
cells. Retinal ganglion cells respond best to spots of light. They are organized
topographically so that nearby ganglion cells respond to nearby points of light in
the visual field. The ganglion cells send axons into a region of the brain called
the lateral geniculate nucleus (LGN). Images presented on the left-hand side end
up projecting to the right LGN (see figure 12.1(A)) and vice versa. Topography
is maintained in the LGN as well; that is, nearby ganglion cells project to nearby
neurons in the LGN. The inputs remain segregated in different layers of the LGN
according to whether they come from the left or right eye. Like ganglion cells,
LGN neurons respond best to spots of light. LGN neurons then project to layer 4
of the visual cortex. Topography is maintained in the cortex but, additionally,
there are new forms of organization in the projections from the cortex to the
LGN. Inputs from the left and right eyes project to layer 4C of the cortex in
a regular periodic pattern; see figures 12.1(B) and 12.3. Unlike LGN neurons
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which respond best to spots of light, cortical neurons are excited by oriented bars.
Figure 12.1(C) shows the generally accepted mechanism. A bar of light excites
an array of LGN neurons which are connected to a cortical neuron. If the light bar
is of the appropriate orientation (in this case horizontal), then the cortical neuron
will fire at a maximal rate. Thus, the simple diagrams in figures 12.1(B) and (C)
suggest that if one records the activity in a cortical neuron, then whether it fires or
not depends on the properties of the stimulus: e.g. the position in the visual field
of the stimulus, the occularity (left or right eye), or the orientation. These tuned
cortical neurons are not randomly dispersed across the visual area. Rather, their
properties form well-ordered maps. There are at least three well-studied maps in
the mammalian visual system:

(i) the topographic map,
(ii) the orientation map, and
(iii) the occular dominance map.

In this chapter, we will take the topographic map for granted and assume that
it already exists. Each neuron in the cortex responds maximally to a particular
orientation and thus, one can project these preferred orientations on the two-
dimensional surface of the primary visual cortex. It is experimentally possible
to see this map; for example, figure 12.2 shows the orientation map from the tree
shrew. We point out several aspects of the map: (i) there are ‘singularities’ at
spatially periodic intervals and (ii) there are linear regions where the orientation
varies smoothly. The precise structure of the map is different in every animal so
that it is not ‘hardwired’ genetically but rather arises during development of the
visual system.

In addition to the topographic map and the orientation map, there is also
the occular dominance map. Any particular cortical neuron will respond more
strongly to stimuli presented to one eye than to the other. The mapping of
preferences across the cortex results in a striped pattern. The occular dominance
map can be seen experimentally by injecting a labelling agent into one eye and
then reading the label on the surface of the cortex; figure 12.3 shows an example
of such a map. The occular dominance map is very sensitive to environmental
influences; animals who have one eyelid sutured develop distorted maps in which
the uncovered eye occupies a much larger area. We emphasize that these maps are
not independent. Indeed, there are striking relationships between the orientation
and occular dominance maps. Figure 12.4 illustrates the relationship between the
iso-orientation lines and the borders between the occular dominance stripes. The
singularities tend to lie in the middle of the occular dominance stripes and the
iso-orientation lines cross the occular dominance borders at right angles.

The main theoretical question we wish to address is what sorts of
mechanisms underlie the formation of these maps. Mathematical models range
from abstract pattern formation (e.g. [14]) to detailed models involving biophysics
of single neurons [16]. Erwin and Miller [6] provide a nice review of the state
of the art on these models and a biological review of the evidence for activity
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Figure 12.1. A summary of the organization of the visual system up to the cortex. (A)
Mapping of the visual space into the eyes and onto the lateral geniculate nucleus (LGN).
(B) Projection of the LGN neurons to layer 4C of the visual cortex showing organization
of left–right inputs. (C) Orientation tuning begins in the cortex. A light bar (in this
case horizontal) excites LGN neurons which project in an organized fashion to give an
orientation-tuned cortical neuron.

dependence of orientation selectivity is given in [13].
We will briefly describe some of these models in the context of general

pattern formation principles. In all cases, the ultimate mechanism for the
formation of the periodicities is the Turing mechanism [18], whereby a band of
spatially periodic modes becomes unstable. Thus, the main differences between
models are how this instability is manifested and what determines the dominant
spatial frequency.

One can view a cortical map as a pattern of connections from the geniculate
to the cortex. Thus, when we look at a map we are actually looking at a
distribution of connectivities. Hebb [9] first suggested that connections between
neurons were made when the neurons fired together. This idea is called Hebbian
plasticity. The obvious problem with this rule is that eventually every neuron
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Figure 12.2. Orientation map for tree shrew. Reproduced from W H Bosking, Y Zhang,
B Schofield and D Fitzpatrick 1997 Orientation selectivity and the arrangement of
horizontal connections in tree shrew striate cortex J. Neurosci. 17 2112–27 c©1997 by
the Society for Neuroscience.

Figure 12.3. Occular dominance map. Reproduced from S LeVay, M Connolly, J Houde
and D C van Essen 1985 The complete pattern of occular dominance stripes in the striate
cortex and visual field of the macaque monkey J. Neurosci. 5 486–501 c©1985 by the
Society for Neuroscience.

will be connected to every other neuron and the growth of connections will
be unbounded. Thus, in addition to a growth rule, models of development
also incorporate some sort of decay of the connections. A typical method is
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Figure 12.4. Interaction between occular dominance and orientation maps. Reproduced
from K Obermayer and G G Blasdel 1993 Geometry of orientation and occular dominance
columns in monkey striate cortex J. Neurosci. 13 4114–29 c©1993 by the Society for
Neuroscience.

to use normalization of the weights between neurons. For example, the total
weights coming into a neuron is constrained to some fixed value. This sets up
a competition and it is the interaction of this negative feedback with the positive
Hebbian growth which determines the map.

The classes of models which have been studied can be reduced to two distinct
types: (i) weight-based models and (ii) feature-based models. In weight-based
models, one attempts to analyse the dynamics of functions, w(x, y, θ, z, t). Here
w is the strength of a connection between a cortical cell at x , with favoured
orientation, θ ∈ [0, π), occularity, z ∈ {L, R} and responding to a point y
in the visual field. Miller’s, Swindale’s and many other models are of this
form. They have the advantage of being more closely connected to biology. In
feature-based models, one instead studies the evolution of a vector of features,
[Y (x, t),�(x, t), Z(x, t)]. Here, for example, �(x, t) is the preferred orientation
of a cortical neuron at point x in the cortex. Kohonen’s self-organizing map [11]
and the elastic net by Durbin and Mitchison [4] are examples of such models.
These are more abstract but seem to capture the features of real maps better than
the more ‘realistic’ models [7].

These mechanisms share certain generic properties. In particular, we address
the periodicity of these maps and discuss how periodicity is imposed on the
models. Models of Swindale and older models of Miller imposed the periodicity
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through cortical–cortical interactions. However, the elastic map, the Kohonen
model and Dayan’s recent model (see section 12.4) all obtain the periodicity
through an interaction of the cortical interactions and the input correlations.
We want to show how and why these models differ and suggest some new
models that operate on the same principles but do not require any imposed
normalization. We begin in section 12.1 with a description of the mechanisms
that produce competition. This is illustrated by both simple models with global
constraints and models involving competition for some factor. Section 12.2
describes mechanisms that set the spatial scales. We show that a combination of
postsynaptic-dependent depression and Hebbian growth are sufficient to produce
a clustered pattern whose spatial scale is a function of the input correlations and
the intrinsic cortical connectivity. In section 12.3 we look at occular dominance
and orientation selectivity in the context of competition and spatial interactions.
We also consider joint development of both the occular dominance and orientation
patterns. In section 12.4 we discuss the so-called self-organized feature maps. We
reduce the question of orientation preference to a model which is similar to such
a self-organizing map. Our new models are put into context in section 12.5.

12.1 Competition

Consider a single neuron which receives inputs from two cells, say L and R. We
consider a linear neuron so that the output of the neuron is the weighted sum of
its inputs:

V = wL IL +wR IR .

Hebb’s rule states that the weights should grow in a manner proportional to the
product of the inputs and the outputs:

w′
L = K (wL)IL V

w′
R = K (wR)IR V .

If K is independent of the weights, then there is nothing to keep the weights
bounded (or even positive). Swindale solves this problem by letting K depend
on the weights, e.g. K (u) = ku(1 − u). This automatically keeps the weights
bounded between 0 and 1. If we assume that the inputs are correlated white noise,

IL = CSξ1 + CDξ2 IR = CSξ2 + CDξ1

then depending on whether or not CD is positive or negative, the weights will
either both grow to 1 or one will grow to 1 and the other to 0. If we assume that
the growth rate is slow compared to the rapidly changing random inputs, then we
can average the growth:

〈IL V 〉 = awL + bwR

〈IR V 〉 = awR + bwL
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where
a = C2

S + C2
D and b = 2CSCD .

Thus, on average, the weights satisfy

w′
L = K (wL)(awL + bwR) w′

R = K (wR)(awR + bwL).

Supposing for the moment that K is a constant, we see that the weights grow along
the eigenvectors, (1, 1) corresponding to the eigenvalue, a+b = (CS +CD)2 and
(1,−1) corresponding to the eigenvalue, a − b = (CS −CD)

2. If CS,CD are the
same sign, then the fastest growth is along the same eigenvector and there is no
competition; both weights go to their maximum. If CS,CD have opposite sign,
then the fastest growth is along the different eigenvector and one weight ‘wins’
the competition. Thus, for this simple model, in order to get competition, there
must be negative correlations between L and R. This is biologically unlikely, and
one question is how to get competition with positive correlations.

One way to solve this is to assume an active form of decay. Furthermore, in
order to keep everything bounded, we will assume a kind of Markovian or mass
action model for weight growth. The ‘kinetic’ approach to weight growth prevents
negative weights and separates the decay processes from the growth processes. It
has been successfully applied to synaptic and ion channel processes [3]. The
model is simple:

f
K+
�

K− w.

Here, f is the available pool of substance for the formation of the weight and w is
a fully formed weight. Thus, f +∑w = M where M is a constant which we can
set to 1 without loss of generality and the sum is over all weights which compete
for that particular pool. The weight satisfies:

w′ = K+
[

1 −
∑

w

]
− K−w.

In most of the models described in this paper, each synapse will compete for a
unique pool. However, there will be instances where several synapses compete.
Unless otherwise indicated, all synapses have their own pool and it is finite. Since
the rates, K± must be non-negative, this guarantees that the weights will always
lie between 0 and M > 0. For example, suppose that K+ is a function of the
Hebbian term I V while K− is a function of the postsynaptic activity only. Then,
after averaging, the model becomes:

w′
L = K+(awL + bwR)[1 −wL ] − K−(wL + wR)wL (12.1)

w′
R = K+(awR + bwL)[1 −wR] − K−(wL +wR)wR .

Here, we first averaged and then applied the function. This is not strictly correct
but is a useful approximation. Note that 〈V 〉 ≈ Ī (wL +wR), where Ī is the mean
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input strength. Note also that if the two synapses compete for the same pool,
then the terms, [1 − w j ] will be replaced by [1 − wL − wR]. This change will
not lead to substantial differences in the model’s behaviour. We assume that K±
are monotonic functions of their arguments. The parameters a, b characterize
the correlations of the left and right inputs. Clearly, one solution to (12.1) is
wL = wR = w where w is such that

0 = K+(cw)(1 −w)− K−(2w)w ≡ q(w).

and c = a + b. Since q(0) = K+(0) > 0 and q(1) = −K−(0) < 0 there
is at least one root in the interval (0, 1). Note that all weights remain bounded
in this interval and there is no need to normalize the weights. The easiest way
to check for competition is to show that there is a symmetry-breaking instability.
The linearization of (12.1) about the fixed point is

y ′L = AyL + ByR y ′R = AyR + ByL

where

A = aK+′
(cw)[1− w] − K+(cw)− K−(2w)− K−′

(2w)w

B = bK+′
(cw)[1− w] − K−′

(2w)w.

There are two eigenvalues corresponding to the eigenvectors (1, 1)T and
(1,−1)T , which are the symmetric and antisymmetric states. The symmetric
eigenvalue is

λs = A + B = (a + b)K+′
(cw)[1 −w] − K+(cw)− K−(2w)− 2K−′

(2w)w

and the antisymmetric eigenvalue is

λa = A − B = (a − b)K+′
(cw)[1− w] − K+(cw)− K−(2w).

We want the antisymmetric eigenvalue to become positive while the symmetric
one remains negative. There are two ways that this can happen since K±′ ≥ 0.
Either b < 0, which means that there are negative correlations between the eyes
or K−′

(2w) is large. We have already pointed out that negative correlations
between eyes is not biologically reasonable. Thus, we need to have a strong
activity-dependent synaptic depression as manifested by the dependence of the
decay rate K− on the total weights wL + wR . For example, we take c = 1,
K+(u) = 1/(1+ exp(−r(u − 0.5))) and K−(u) = 1/(1+ exp(−r(u/2− 0.5)))
so that w = 1

2 . We fix a > b = 1 − a > 0 so that there are positive
correlations between the eyes and choose, r as the bifurcation parameter. This
is the sharpness of the dependence of the rates on the activity. Figure 12.5(a)
shows the bifurcation diagram. As r increases, the symmetric state loses stability
at a subcritical pitchfork. This turns around, leading to a large amplitude branch
of asymmetric solutions in which one synapse dominates. There is a small region
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Figure 12.5. Simple competition between synapses: the bifurcation diagram shows the
bistability (a) and the phase-plane for a fixed parameter value in the bistable regime (b).
The points � are stable and × are saddle equilibria.

of bistability between the symmetric and antisymmetric states. Figure 12.5(b)
shows the nullclines and representative trajectories in the phase-plane for a value
of r in this bistable regime. We also show one side of the stable manifolds of the
two unstable asymmetric states. These accumulate onto the origin. Thus, there is
a very narrow range of initial conditions that converge to the binocular solution
in which both weights are equal.

Harris et al [8] introduced a model in which the competition between
synapses was implemented assuming that the formation of synapses required
neurotrophic factors. Adopting this approach, let nL , nR denote the amount of
neurotrophin available to form the synapse. Equation (12.1) is then replaced by

w′
L = (awL + bwR)n j (1 − wL)− β1(wL +wR)wL

τn′L = [N − (nL + nR)]wL − β2nL

and a pair of similar equations exists for (wR, nR). Here, the rate functions are all
linear so that β1 and β2 are both constants. The bifurcation parameter is N , the
total amount of neurotrophic factor available. If N is large, it is easy to show that
the weights converge to equal values. If N is very small, then no growth occurs
and both weights converge to zero. Finally, for intermediate values of N , there
is competition and one or the other weight dominates. If we let τ be small, then
the four-dimensional system can be reduced to a planar one and analysed easily.
Note that we still need the dependence of the decay on the total synaptic weight
in this model. Without this all solutions tend to the symmetric state.
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12.2 Spatial scales

In order to look at spatial pattern formation, we must move beyond a single neuron
and look at a population of neurons in the cortex. In this section, we derive spatial
models from the same general principles that we used earlier. Let w(x, y, t)
denote the synaptic weight from a visual field point y to a cortical location x
at time t . Let I (x, y, t) be the inputs from y to x at time t . Suppose that there are
weak cortical-cortical interactions ε J (x, x ′). Then the linear model for cortical
activity takes the form:

τc
dV (x, t)

dt
= −V (x, t)+ε

∫
J (x, x ′)V (x ′, t) dx ′ +

∫
w(x, y ′, t)I (x, y ′, t) dy.

We could solve for the steady states, but we would have to invert the linear
operator 1−ε J . If ε is small, we can approximate this inversion. Letting M(x, x ′)
be the inverse, we obtain

V (x) =
∫

M(x, x ′) dx ′
∫

w(x ′, y ′, t)I (x ′, y ′, t) dy ′ (12.2)

where M(x, x ′) ≈ δ(x − x ′) + ε J (x, x ′). Consider first the mean value of the
output over the input space. This becomes

〈V (x)〉 = Ī
∫

M(x, x ′) dx ′
∫

w(x ′, y ′, t) dy ′.

The Hebbian term is more complicated:

〈V (x)I (x, y)〉 =
∫

M(x, x ′) dx ′
∫

w(x ′, y ′, t)〈I (x ′, y ′, t)I (x, y, t)〉 dy′

=
∫ ∫

M(x, x ′)C(x − x ′, y − y ′)w(x ′, y ′) dx ′ dy ′

where C(·, ·) is the correlation function. Assuming that the growth model has the
same form as the previous section, namely

w′ = K+(Hebbian)(1− w)− K−(Activity)w

the model we look at has the following form:

∂w(x, y, t)

∂ t
= K+

[ ∫ ∫
M(x, x ′)C(x − x ′, y − y ′)w(x ′, y ′) dx ′ dy ′

]
× [1− w(x, y)] − K−

[
Ī
∫ ∫

M(x, x ′)w(x ′, y ′) dy ′ dx ′
]
.

(12.3)

We note that if there is a fixed resource pool at each spatial location x rather
than a fixed pool at each synapse, then the term [1 − w(x, y)] is replaced by
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[1 − ∫
y w(x, y) dy]. Finally, we assume homogeneity in the cortical–cortical

interactions so that M(x, x ′) = M(x − x ′). There are many possible types of
solutions that we could look for in this model. In fact, (12.3) is a very general
model in that the variable y appearing in I (x, y) is really nothing more than a
label which need not be space. For example, it could take on the two discrete
values, {L, R} representing the left and right cortices. Similarly, it could also just
represent orientations in which case it lies on the circle.

Let us first look at the case of spatial clustering. We will assume that the
topographic map is already set and it is near an identity map. Then we expect that
I (x, y) is a function of x alone and the correlations are only a function of x − x ′.
This implies that the weights are functions of their cortical locations only and that
they satisfy

∂w(x, t)

∂ t
= K+

[ ∫
M(x − x ′)C(x − x ′)w(x ′, t) dx ′

]
(1 −w(x, t)

− K−
[

I
∫

M(x − x ′)w(x ′, t) dx ′
]
w(x, t). (12.4)

We look for pattern formation in this system; in particular, steady-state patterns.
We assume that the system is homogeneous, and thus translation invariant, in
order to do the requisite linear analysis. This occurs, for example, if the domain
is infinite or periodic. Thus, the analysis should be regarded as an approximation
since a real cortical sheet is finite with non-periodic boundaries. Let Q(x) =
C(x)M(x) be the product of the input correlation and the cortical connectivity.
Suppose that

M =
∫

M(x ′) dx ′ and Q =
∫

Q(x ′) dx ′

are both positive and I = 1. Since K± are non-negative functions, there is at
least one constant solution to (12.4), say, w(x, t) = w. The stability is found by
linearizing about this constant solution. The linearized equation is:

∂w(x, t)

∂ t
= K+′

(Qw)(1 −w)Q % w − K−′
(Iw)wM % w

− [K+(Qw)+ K−(Iw)]w

where % is the convolution symbol. The assumption of translation invariance
implies that solutions to the linearized equations are:

w(x, t) = eλt eik·x

and that

λ(k) = A+Q̂(|k|)− A−M̂(|k|)− A0.
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Here,

A+ ≡ K+′
(Qw)(1 −w)

A− ≡ K−′
(Iw)w

A0 ≡ K+(Qw)+ K−(Iw)

and Q̂, M̂ are the Fourier transforms of the interaction functions.
First, consider the case in which there is no activity-dependent suppression

of the weights, that is, K− is constant, so A− = 0. Then the maximal eigenvalue
occurs at the maximum value of Q̂. If both the cortical interaction function and the
input correlation matrix are Gaussian, then so is their product and the transform
has a maximum at k = 0. This situation does not lead to pattern formation.
Suppose, instead, that the cortical interaction function M is of lateral-inhibitory
type so that the product with C is similar. Then the maximal wavenumber will
be non-zero in magnitude. Hence, if A+ is sufficiently large, we can force the
uniform state to lose stability at a non-zero wavenumber and pattern formation
will occur.

Now suppose that the suppression of weights is also activity dependent, i.e.
K−′ �= 0. Then, even with monotone cortical interactions M(x), it is still possible
to get pattern formation. To see why this is expected, recall that Q(x) is the
product of the stimulus correlations C(x) with the intracortical interactions M(x).
If both of these are Gaussians, then their product is also a Gaussian but with a
smaller variance than M(x). Therefore, Q̂(|k|) is broader than M̂(|k|) so that, if
K±′

are sufficiently large, λ(k) will be maximal and positive for a non-zero value
of k.

Therefore, in order to get pattern formation, we need either a ‘Mexican-hat’-
type interaction within the cortical network or activity-dependent suppression of
synaptic weights. As an example, consider the following:

Q(x) = 1

5.6
e−0.1x2

M(x) = 1

12.3
e−0.02x2

K±(u) = 1

1 + exp(−r±[u − 0.5]).
With these choices, w(x) = 0.5 is a constant solution, which is the solution where
all weights are equal. The coefficients are:

A± = 1
8r± A0 = 1.

The effective spatial kernel, Jeff(x) = A+Q(x)−A−M(x) is shown in figure 12.6
on the left. If we set r− = 1

2r+, for example, then there is only one parameter, r−,
which is the sharpness of the dependence of the rates on the interactions. It is not
hard to see that the uniform state loses stability as r+ increases. The right panel
in figure 12.6 shows the steady state values of the weights for a finite domain with
‘reflecting’ conditions at the end-points.



Models for pattern formation in development 333

0 5 10 15 20
i

−0.05

0

0.05

0.1

0.15

Jeff(i)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

W(i)

0 50 100 150 200
i

(a) (b)

Figure 12.6. Clustering model: the effective interaction function is a ‘Mexican hat’ (a);
and the final values of the weights for r+ = 12.5 and r− = 1

2r+ (b).

12.2.1 Occular dominance

We now turn to the more complicated issue of occular dominance (OD). Recall
(12.3) and that the second variable y codes the specific features such as retinal
location or occularity. Let us suppose that this is a discrete variable coding {L, R}
for the left and right eyes. Furthermore, we assume that C(x, y) = C1(x)C2(y),
where C2 is just a 2 × 2 matrix representing the correlations between the two
eyes. We assume that C2 is symmetric such that the diagonal terms are the same
eye correlations cs and the off-diagonal terms are the different eye correlations
cd . In the present formulation, there is no dependence on correlations for the
decay of the weights; this depends only on activity. The resulting model takes the
following form:

∂wL

∂ t
= K+[Q(x) % (βwL(x)+ (1− β)wR(x))][1−wL(x)− νwR(x)]

− K−[M(x) % ((1 − γ )wL(x)+ γwR(x))]wL(x) (12.5)
∂wR

∂ t
= K+[Q(x) % (βwR(x)+ (1 − β)wL(x))][1−wR(x)− νwL(x)]

− K−[M(x) % (γwL(x)+ (1 − γ )wR(x))]wR(x).

To simplify notation, we absorbed the mean input I into the function M(x). We
also introduced three additional parameters: cs and cd are replaced by a single
parameter β, using cs + cd = 1 without loss of generality, because they are both
positive. This means that β = 1

2 corresponds to no difference in the same eye and
different eye correlations. The parameter ν is zero when the synapses compete
for a local pool. If all synapses at the same spatial location must share some
substance, then ν = 1. The parameter γ is 1

2 if the decay terms depends only on
the total activity and there are no correlations in the decay. It can never be 1. Our
derivation of the equations is predicated on the idea that γ = 1

2 . When γ �= 1
2 ,
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we are dealing with a more abstract form of weight decay which is still Hebbian.
(Actually, if γ = 1

2 , the term in the decay is off from the derived term by a factor
of 2. This can be absorbed into the weight function M(x) as well.)

We now show that we need either Mexican hat interactions in the cortical
interactions in order to get OD patterns or correlations in the decay of the weights.
As in the cluster mode earlier, we note that there is a homogeneous steady-state
solution, wL(x) = wR(x) = w. The linearized equations have the form:

w′
L = A+Q(x) % [βwL + (1 − β)wR] − A−M(x) % [γwL + (1 − γ )wR]

− [A0wL + A1(wL + νwR)]
w′

R = A+Q(x) % [βwR + (1 − β)wL] − A−M(x) % [γwR + (1 − γ )wL]
− [A0wR + A1(wR + νwL)].

The constants A±, A0, A1 all have the obvious values. In particular, both A0, A1
are positive while A± ≥ 0 could vanish if the rates K± are independent of activity.
As before, we look for the solutions to the linearized equations. One major
difference is that there are two equations rather than a single scalar equation.
However, because of symmetry, we can decompose this into a pair of uncoupled
scalar equations corresponding to symmetric (1, 1) and anti-symmetric (1,−1)
perturbations of the weights (wL, wR). This means that there are two eigenvalues,
λs(k) and λa(k), for each wavevector k. In order to get occular dominance
patterns, we require that the maximum of these occur at |k| > 0 and that this
maximum be the antisymmetric case. The eigenvalues are:

λs(k) = A+ Q̂(k)− A−M̂(k)− A0 − A1(1 + ν)

λa(k) = A+ Q̂(k)(2β − 1)− A−M̂(k)(2γ − 1)− A0 − A1(1 − ν).

Several points are immediately clear. Suppose that there is no correlated decay
of the synaptic weights, i.e. γ = 1

2 . Then OD pattern formation can only
occur if Q̂ has a maximum at a non-zero k and β > 1. The former condition
implies that the cortical interactions are of Mexican-hat type and the latter implies
that the correlations between different eyes, cs = 1 − β are negative. These
conditions are found in some of the models of Swindale and Miller. The problem
with these assumptions is that they state that the activity in the left eye is
negatively correlated with the activity in the right eye. This seems to be somewhat
unrealistic. The problem with lateral inhibition in the cortical interactions is that
this implies that the spacing between stripes depends on the range of the lateral
inhibition rather than the correlations of the inputs.

Hence, we conclude that a strictly activity-dependent decay is not sufficient
and we require some correlated decay of the weights. Suppose that γ �= 1

2 . If
γ > 1

2 , then the decay is more sensitive to the same eye weights, while γ < 1
2

means it is more sensitive to different eye weights. Suppose also that the coupling
functions Q, M are Gaussians. If γ < 1

2 , then the asymmetric eigenvalue is larger
for all k since both k-dependent terms are positive. Furthermore, it is clear that
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Figure 12.7. Simulation of (12.5) with different parameters: (A) γ = 0.7, ν = 1 showing
OD stripes with a well-defined periodicity; (B) γ = 0.5 leading to OD columns with long
wave and ill-defined periodicity; (C) ν = 0 leading to symmetric periodic weights.

k = 0 will be maximal. Thus, if γ < 1
2 , the zero wavenumber will be the first

to bifurcate and it will be in the asymmetric state. The cortical network will be
completely right- or left-eye dominant.

Suppose, instead, that γ > 1
2 so that the weight decay depends more on

the same eye weight. Then, it is possible (although not guaranteed) to choose
parameters so that the maximal eigenvalue occurs at a non-zero k and in the
asymmetric state. If ν = 1, as would be the case if local left and right weights
compete for the same pool of weight-forming substance, then it is much easier
to find parameters that destabilize the asymmetric state. This is because the
symmetric eigenvalue has a stabilizing term −A1(1 + ν) when ν = 1.

Figure 12.7 shows the result of a one-dimensional simulation of (12.5) with

K±(u) = 1/(1 + exp(ρ±(u − 0.5)))

and Gaussian weights. Panel A shows the model with ν = 1, γ = 0.7 in the
parameter regime required for asymmetric pattern formation. Normal alternating
stripes of left and right dominance form. However, if we eliminate the side-
dependent differences in the weight decay (γ = 1

2 ) then patterns form but they
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Figure 12.8. Simulation of (12.5) in a two-dimensional domain with the same parameters
as in figure 12.7(A). Grey scales indicate the strengths of the weights: dark grey is large
and black is small. Left represents wL and right wR .

are irregular (panel B). Bifurcation theory predicts that homogeneous asymmetric
patterns will arise—that is, one of the two eyes is dominant. This behaves like a
discretely coupled symmetric bistable medium so that local domains form but
there is no spatial scale. Finally, if we keep γ > 1

2 , but eliminate ν, then
the dominant instability has spatial structure. However, there is insufficient
competition to separate the left and right weights and a symmetric clustered state
appears.

The one-dimensional model sheds insight into the general behaviour of
these models. However, in two dimensions there are still many questions about
what types of behaviour can be expected. In figure 12.8 we show the results
of a simulation of a 100 × 100 network with parameters identical to those in
figure 12.7(A) except that the space constants for the Gaussians are half as
large to compensate for the fact that there are 200 units in the one-dimensional
simulations. The pattern is complicated and is not dominated as much by stripes
as in the biological figure 12.3. However, there is a range of patterns found across
different species that vary from stripes to a more irregular pattern. Thus, the
simple model with positive correlations and non-negative cortical interactions is
able to capture the qualitative behaviour of these patterns.

12.3 Orientation maps and feature maps

The activity dependence of orientation maps is more controversial, because
experimental evidence is somewhat ambiguous on the post-natal activity
dependence of orientation maps. However, we can use essentially the same
formulation to derive equations for orientation preferences. As we did with the
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occular dominance equations, we will generalize (12.3) so that is includes both
local competition for weights and correlated decay of the weights. We will also
assume translation invariance. This leads to a generalized feature model:

∂w(x, y)

∂ t
= K+

[ ∫ ∫
Q+(x − x ′, y − y ′)w(x ′, y ′) dx ′ dy ′

]
×
(

1−
∫

w(x, y ′) dy ′
)

− K−
[ ∫ ∫

Q−(x − x ′, y − y ′)w(x ′, y ′) dx ′ dy ′
]
w(x, y).

(12.6)

Here, w(x, y) is the strength of the connection of feature y to the point x in the
cortex. One can think of w(x, y) as the probability of encountering feature y
at position x . If Q− is independent of y, then we recover the model in which
weight decay is depending only on the total activity at location x . The term
1 − ∫

w(x, y ′) dy ′ could be replaced by 1 − w(x, y) if the resource pool for
the formation of synapses is completely localized. The integral form specified
in (12.6) presumes that there is a shared pool for each location x . By making
the obvious assumptions about homogeneity, there will be a constant steady state
w(x, t) = w independent of both the feature and the spatial location, just as with
the OD models. Hence, we can again study the stability of this state by linearizing
about the constant fixed point and then performing bifurcation analysis. This is
very similar to the analysis of the OD model. Indeed, one would like to get
patterns which depend non-trivially on both the spatial and the feature variables.
To facilitate the analysis of the model, we assume that the functions Q±(x, y) are
products of two independent functions, that is,

Q±(x, y) = S±(x)�±(y).

We assume, without loss of generality, that all of these functions integrate to 1
over their respective domains. Let Q̂±(k), �̂±(�) denote the Fourier transforms
of the coupling and correlation functions, respectively. Then, as before, we
determine the stability of the constant state by linearizing and looking for
solutions to the linearized problem of the form

w(x, y, t) = eλteik·x e�y

and finding λ as a function of (k, �). The result of this calculation is

λ(k, 0) = A+ Q̂+(k)�̂+(0)− A− Q̂−(k)�̂−(0)− A−0 − A+0 N (12.7)

λ(k, �) = A+ Q̂+(k)�̂+(�)− A− Q̂−(k)�̂−(�)− A−0 (12.8)
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where

N =
∫

1 dy

A+ = K+′
(w̄)(1 − Nw̄)

A− = K−′
(w̄)w̄

A±0 = K±(w̄)

are all positive constants. Note that N is the measure of the total feature space
(e.g. π in the case of orientation). From (12.7) we can see that the effect of the
competition for a resource at the feature level is the additional stabilizing term
A+0 N . If this is large, then the most unstable mode will be � > 0 corresponding
to a pattern along the feature direction. As in the case of OD models, if there is
no feature-dependent decay of the weights, then

�−(y) = 1

and there will be no A− term in equation (12.8) since �̂(�) is 1 for � = 0
and zero otherwise. Thus, as with the OD model, the only way to get spatial
pattern formation in absence of feature-dependent weight decay is to have
Mexican-hat cortical connectivity. The maximal eigenvalue will correspond to
the most unstable mode of the spatial interaction function Q̂+(k) and the most
unstable non-zero mode of the function �̂+(�). The key here is that typically
all feature–feature correlations are non-negative so that the Perron–Frobenius
theorem implies that the maximal eigenvalue is zero. Thus, for a monotonically
decreasing function �(y) the most unstable non-zero mode is the first one. For
example, in the case of occular dominance, this is just the eigenvector (1,−1) and
in the case of orientation, it is cos (2y), a singly-peaked function on the interval
[0, π).

This implies that in any local spatial domain, each orientation is represented
exactly once. Indeed, it is interesting to note that this type of pattern occurring
in the activity models recently proposed by Cowan and Bressloff (see chapter 11)
for visual hypercolumns as well as related to the orientation-spatial models they
suggest for fine-structure hallucinations. If there is feature-dependent decay of
the weights, then it is possible to get spatial patterns in conjunction with feature
patterns. For example, suppose that �+(y) = �−(y) ≡ �(y). Then the
eigenvalues are

λ(k, 0) = �̂(0)[A+Q̂+(k)− A− Q̂−(k)] − A−0 − A+0 N

λ(k, �) = �̂(�)[A+ Q̂+(k)− A− Q̂−(k)] − A−0 .

Thus, the maximum will occur at the first mode of � and at the maximum of the
Mexican-hat-like function

R(k) ≡ A+ Q̂+(k)− A−Q̂−(k).
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However, if the competition for synapses is completely local, then the term
1 − ∫ w(x, y ′) dy ′ in (12.6) will be replaced by 1 − w(x, y). The eigenvalues
now become

λ(k, �) = �̂(�)[A+Q̂+(k)− A− Q̂−(k)] − (A−0 + A+0 ).

This has a maximum at � = 0 so that the only type of pattern observed will be
spatial clustering independent of features.

If we have feature competition and feature-dependent weight decay, then we
can get patterns that depend non-trivially on both features and spatial position. As
with all linearized analysis, all we can get is an overall picture of the periodicity.
One can apply a full bifurcation analysis to obtain the requisite normal form. If
the spatial system is on a periodic domain and the feature is orientation, then the
general form for the solutions is:

w(x, y, t) = w̄ + v−1 (t)ei(kx1−2y) + v+1 (t)ei(kx1+2y)

+ v−2 (t)ei(kx2 y) + v+2 (t)ei(kx1+2y) + c.c.

where k is the critical wavenumber. The normal form for this bifurcation consists
of four complex equations with real coefficients that have the form:

z′j = z j (ν − a j |v+1 |2 − b j |v−1 |2 − c j |v+2 |2 − d j |v−2 |2)
where z j is each of the four v±1,2 and ν is the bifurcation parameter.

Because of symmetry, the fixed points to this equation are quite easy to find.
Among the possible solutions are those in which all the vs are non-zero. This
leads to weights that have a modulation proportional to

cos (2y)[cos (kx1)+ cos (kx2)].
This solution is unsatisfactory since the orientation y = π/4 never has a
maximum. That is, there is no neuron whose tuning curve has π/4 as its
maximum. Another possibility is a solution with a single non-zero v leading
to a weight modulation:

cos (kx1 − 2y).

Each orientation is represented here but the orientation preference is independent
of the second spatial coordinate x2, which does not agree with the data. Finally,
there is a solution in which v+1 = v+2 = v and all others vanish. This leads to a
solution of the form:

cos (kx1 − 2y)+ cos (kx2 − 2y).

This solution is again unsuitable, because it leads to orientations that are constant
along the lines x1 ± x2 = K .

Hence, there appears to be no way to obtain the kinds of patchy solutions
seen in the data, at least near the bifurcation point. However, full simulations
indicate that it is possible to obtain patchy orientations, as is shown in figure 12.9.
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Figure 12.9. Development of orientation in a 64× 64 cell network with eight orientations.

12.3.1 Combined orientation and occular dominance models

While there have been numerous models for OD and also a number for orientation
maps, there are far fewer attempts at creating a combined map that has both
orientation and OD. Swindale developed a model for both maps and successfully
simulated it; see the review in [17]. However, his model was rather abstract and
it is hard to connect it with a mechanistic interpretation. Erwin and Miller [6]
have one of the most complete models. If the orientation and OD maps develop
sequentially, then they can explain most of the relevant experimental phenomena.
As with most models, they use a Mexican-hat connectivity function so that the
periodicity is built in through the cortical interactions. Our formulation, notably
(12.6) makes no assumptions about the nature or dimensionality of the feature
space y (although we did treat it as either discrete for OD or one-dimensional for
orientation). Thus, one can readily generalize the model to include both OD and
orientation development. Figure 12.10 shows the results of a simulation of the
joint development of the maps. Note that the ‘singularities’ lie in the centres of
the OD bands and the borders of the OD bands are orthogonal to the contours
of the orientation regions. A mathematical explanation for why this should be
expected remains to be discovered.
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Figure 12.10. Development of both occular dominance and orientation.

12.4 Kohonen maps and abstract feature models

The model described in the previous section as well as the models of Miller and
Swindale and their collaborators describe the evolution of weights w(x, y, t) that
code the fraction or strength of connections with feature y at cortical position x .
Experimental cortical maps for a particular feature generally produce a picture
showing the preferred value of that feature at each location x . That is, they depict
the value of y which maximizes w(x, y, t) at position x or the mean over the
feature space of the weights. For this reason, some modellers suggested more
abstract models in which one looks at the evolution of the preferred feature
in the cortical space. The so-called self-organized feature maps (SOFMs) that
were first proposed by Kohonen are best known; see [11] for a review. These
algorithms have been shown to reproduce the experimental results better than the
more biologically motivated models [7]. Another closely related class of models
is the elastic net [4]. In this section, we briefly describe the SOFM. Based on it,
we derive a continuum model and provide a stability analysis. We then show how
to take an equation such as (12.6) and reduce it to a model which is similar to the
SOFM. We apply this to orientation maps.
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12.4.1 SOFMs

Consider a vector of features denoted by �f (x). Each component is the preferred
value of that particular feature at spatial position x . In the model analysed
by Obermayer and Blasdel [15] there are five components (y1, y2, z, r, θ) to
the feature map, representing the retinal coordinates (y1, y2) ∈ � × �, the
occularity z ∈ [−1, 1], and the orientation preference as well as the degree of such
preference (θ, r) ∈ [0, π)×[0, 1], respectively. Note, that the occular dominance
takes values between −1 and 1, with −1 associated with left dominance and +1
with right. An occularity z = 0 corresponds to no preference.

The Kohonen algorithm is as follows. Randomly pick a vector from the
feature space �F . Find the cortical position x∗ for which | �F − �f (x)| is minimized.
Then, update all the features as:

�f (x) = �f (x)+ δH (|x − x∗|)( �F − �f (x)).
The function H is typically a Gaussian and δ is a small number. The idea is that all
feature vectors near the point x∗ will be pushed toward the input feature �F . This
algorithm does not lend itself to the usual types of dynamic stability analysis.
However, by ‘softening’ the winner-takes-all aspects of the model, we can apply
the usual types of stability analysis. To simplify things, we will assume that
the cortex and retina are both one-dimensional structures. We will also assume
that the retino-cortical map (the topographic map) is already set up and is the
identity. That is y(x) = x . Finally, we will only study the emergence of occular
dominance.

Suppose that we present a feature (Y, Z) corresponding to a retinal position
Y and occularity Z . The output of the cortical neuron at point x is

U(x) = HT (y(x)− Y )HO(z(x)− Z)

where H j is, for example, a Gaussian:

H (a) = e−a2/σ 2
j .

(Here T stands for topography and D stands for oscularity.) Thus, the output of
the neuron is largest for inputs that are closest to the input feature. The parameters
σT ,O describe the sharpness of the dependence on the feature. We normalize these
functions so that their integrals are 1 over their respective feature spaces.

To set up the competition, we divide the output by the output of every neuron
in the cortical domain:

Û(x) = U(x)∫
U(x ′) dx ′

.

Thus, for small values of σT ,O , the function Û(x) is sharply peaked at a point x∗
for which the feature at x is closest to the input feature. This is a softer version
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of the Kohonen competition. Finally, due to the cortical interactions, the actual
activity is

V (x; Z ,Y ) =
∫

J (x − x ′)Û(x ′) dx ′

where J is the cortical interaction function. We emphasize that this activity
depends on the input features. The equations for the occularity feature are now:

z(x) 	→ z(x)+ δV (x; Z ,Y )(Z − z(x)).

We average this over all possible features and proceed to continuous time to obtain
the following model:

dz

dt
=
∫ 1

−1

∫ [∫
J (x − x ′)HT (x ′ − Y )HO(z(x ′) dx ′ − Z)∫

HT (x ′ − Y )HO(z(x ′) dx ′ − Z)

]
(Z − z(x)) dY dZ .

(12.9)
For simplicity, all integrals with respect to x ′,Y are taken over the real line.

A model like this was analysed by Dayan [2]. We only sketch the stability
analysis. The parameter of interest is σO , the degree or sharpness of the occular
dominance tuning. Since the function H is symmetric in each of its arguments, it
follows that z(x) = 0 is a solution to (12.9). We linearize about this solution and
obtain the following linear problem:

dz

dt
= −2z + ν

∫
[J (x − x ′)− Q(x − x ′)]z(x ′) dx ′

where

ν =
∫ 1

−1
Z

H ′
O(Z)

HO(Z)
dZ

Q(x) =
∫

J (x − x ′)HT (x
′) dx ′.

If HO is a normalized Gaussian then ν = 4
3σ

−3, and if J is also a Gaussian
then Q is a Gaussian which is broader than J and normalized. Thus, J − Q is
a Mexican hat and for σO small enough, the z = 0 state loses stability such that
spontaneous patterns arise. The wavelength of these patterns depends both on the
cortical distance, say, σC and on the spatial input correlations σO . In fact, the
two relevant space scales are σC and σC + σO , the result of convolving the two
Gaussians. This contrasts with the models we described in section 12.3.1. There,
the relevant space scales are the cortical scale σC and the effective scale

σE ≡ σC√
1 + (σT /σC )2

due to the product of J with the input correlation. Note that σE is narrower than
σC so that SOFM predicts wider stripes than the model in (12.5).
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12.4.2 Reduction of kinetic-based models to SOFM-like models

We conclude this section with a reduction of a kinetic-based model to an abstract
feature map. To simplify the derivation, consider only a single feature instead of
a vector of features. Furthermore, we assume that Q±(x, y) = J±(x)C(y) in
(12.6), so that the correlations for weight growth and decay are the same. We
can view the weight w(x, y, t) as a tuning curve for the feature y. That is, at a
fixed point in time and at location x , the weight w(x, y, t) describes the output
of a neuron when presented with the feature y. We assume that this tuning has a
single peak at y = ŷ(x, t) and that it is stereotypical in shape. That is, we suppose
that

w(x, y, t) = W (ŷ − y(x, t))

where W is a Gaussian-like function. We define ŷ by the condition that
wy(x, y, t) = 0 at y = ŷ and, furthermore, that wyy(x, ŷ, t) < 0 so that ŷ is
a local maximum. Differentiate wy(x, ŷ(x, t), t) = 0 with respect to time to
obtain

wyy(x, ŷ(x, t), t)
∂ ŷ

∂ t
+wyt(x, ŷ, t) = 0. (12.10)

If we now differentiate (12.6) with respect to y and evaluate at ŷ, this leads to:

wyt = (1 − Wmax)K+′
(·)
∫ ∫

J+(x − x ′)C ′(ŷ(x, t)− y ′)

× W (ŷ(x ′, t)− y ′) dx ′ dy ′

− Wmax K−′
(·)
∫ ∫

J−(x − x ′)C ′(ŷ(x, t)− y ′)W (ŷ(x ′, t)− y ′) dx ′ dy ′.

Here Wmax is the maximum weight and we assume that it is constant across the
spatial domain so that all tuning cures look the same; only the maximum feature
differs. We can evaluate the integrals over y ′:∫

C ′(ŷ(x, t)− y ′)W (ŷ(x ′, t)− y ′) dy ′ =
∫

C ′(ŷ(x, t)− ŷ(x ′, t)− s)W (s) ds

=: H (ŷ(x ′, t)− ŷ(x, t)).

If the correlations and the tuning curve are even and peaked at the origin then H is
an odd function and H ′(0) > 0. Finally, since K±′

are positive, we approximate
them by constants and we also assume that wyy is a negative constant −α when
evaluated at the peak of the tuning curve. Combining these calculations and using
our approximations, we obtain:

α
∂ ŷ

∂ t
=
∫

J (x − x ′)H (ŷ(x)− ŷ(x ′)) dx ′ (12.11)

where
J (x) = (1 − Wmax)K+′

(·)J+(x)− Wmax K−′
(·)J−(x).
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Figure 12.11. Solution to (12.11) on a 100 × 100 grid; see also colour plate 5.

Equation (12.11) is identical in form to models of continuum phase oscillators
studied by numerous authors; for example, see [5] and references therein.
Suppose that the feature of interest in orientation. Then H is a π-periodic function
of its argument. As an example of the kinds of patterns found, we take

H (u) = sin (2u)+ 1
2 sin (4u)

and J (x) as a Mexican hat. An example output is shown in figure 12.11. This
compares favourably with figure 12.2. In contrast to SOFMs, the reduction to
(12.11) provides biological meaning to each of the terms.

12.5 Conclusions

We have looked at a number of models for the development of maps in visual
cortex. Our approach is equivalent to the law of mass action and constraints are
built in, so that there is never any problem with unbounded or negative solutions.
By assuming correlated decay of weights as well as growth, we are able to obtain
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pattern formation even if the cortical weights are positive and the correlations
between features are non-negative. Thus, our models share this aspect with the
SOFM which also assumes positive interactions. However, the growth of weights
and the interpretation of the weights is akin to the more biologically motivated
models by Miller and Swindale. As with many pattern formation problems,
notably animal coat markings (e.g. [14]), it is difficult to use the final patterns
obtained from a given model to distinguish between mechanisms. This is obvious
near instabilities, since all spatial models have the same normal form. Behaviour
may provide a means of distinguishing mechanisms far from equilibria, but based
on the results described here and in other work, this is unlikely. As certain
aspects of the biology remain controversial (such as whether or not activity—read
Hebbian models—is required at all for orientation), we will have to wait before a
definitive answer can be given for map formation in cortex.
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Chapter 13

Spatio-temporal nonlinear dynamics: a new
beginning

William L Ditto
University of Florida

Progress in nonlinear dynamics to date has been in the area of low-dimensional
systems with no spatial extent. The first column of table 13.1 shows a partial
list of commonly used analytical tools developed for this setting, that is, for the
study of temporal nonlinear dynamics. They have been applied with success and
led to novel applications of nonlinear dynamics. Representative applications are
listed in the second column of table 13.1. In particular, I would like to mention
communications (which is also the topic of chapter 5 by Van Wiggeren, Garcia-
Ojalvo and Roy), control and computation.

While the study of low-dimensional dynamical systems has been successful,
there are serious theoretical and practical problems in extending those studies
towards understanding dynamical systems that are noisy, non-stationary,
inhomogeneous and spatio-temporal. In my view, the key issue is the interplay
between temporal and spatial dynamics. As shown in the third column of
table 13.1, there are very few tools for understanding spatio-temporal nonlinear
dynamics. When we veer away from isolated complex systems into coupled
and continuous systems, or systems that demonstrate adaptation and evolution,
we encounter a world that is analytically intractable yet remarkably rich with
undiscovered concepts. In our ignorance, however, we remain unsuccessful in
developing new techniques to explore these concepts. Regardless of the difficulty,
spatio-temporal nonlinear dynamics is a new beginning; a new frontier that
requires a truly interdisciplinary approach. To navigate this frontier we need to
answer a central question.

Question 13.1. How do spatially extended nonlinear systems self organize and
why?

349
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Table 13.1. Tools for temporal dynamics and some areas of their application, contrasted
with the limited list of tools for spatio-temporal dynamics.

Temporal tools Temporal applications Spatio-temporal tools

Time series Communications Statistics
Phase space Controls Patterns
Dimensions Encryptions Information measures
Lyapunov exponents Encoding
Information measures Computing with chaos
Symbolic dynamics Synchronization
Statistics Signal detection
Unstable periodic orbits
Templates
Basins
Fractals
Intermittencies
Bifurcations
Surrogates

Let us explore this with two very different examples.

13.1 Fibrillation of the heart

Sudden cardiac death accounts for more than 300 000 deaths annually in North
America [15]. It is the leading cause of death in people aged 20 to 64 years, and
frequently attacks at the prime of life at a median age of only 59 years [7]. In one
sense, sudden cardiac death can be considered an electrical accident, representing
a tragic interplay between anatomic and functional substrates modulated by
the transient events that perturb the balance. Most such incidents involve
ventricular fibrillation (VF), which is a frenzied nonlinear dynamical state where
the electrical activity of the heart is very fast and very irregular (but not random!).
The events surrounding the onset of ventricular fibrillation in humans, even after
50 years of study, remain opaque. To understand ventricular fibrillation we need to
visualize and characterize the nonlinear behaviour of the cardiac electrical system.

Applications of nonlinear dynamical techniques to fibrillation have until
recently yielded contradictory results, primarily because of the inadequacies
of current techniques to resolve determinism in short and noisy temporal
datasets. Previous quantitative temporal measures for determinism, such as
Fourier spectra, fractal dimension and Lyapunov exponents, along with other
statistical techniques, have proven uniformly inadequate for characterizing VF.
This is compounded here by the fact that the heart is a spatio-temporal system.
Clearly, the following question arises.
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Figure 13.1. Single frame of a 60 000-frame movie of merging spiral waves of electrical
activity on the surface of a perfused in vitro porcine heart; see also colour plate 3.

Question 13.2. How much of the underlying spatio-temporal nature of the heart
does one need to know in order to properly interpret time series measured at
different locations of the heart?

It is now possible to measure electrical waves on the entire surface of the
heart, and we have recently performed such measurements. This is work we
started with the late Frank Witkowski. Frank was a genius who was an absolute
master of these techniques; see also chapter 10 by Winfree. Different dynamical
regimes can be identified as different types of electrical patterns travelling over
the surface of the heart. To measure these patterns experimentally, we perfused
a voltage-sensitive fluorescent dye through the ventricles of dog and pig hearts.
We measured the ongoing electrical activity by picking up the delta fluorescence
with a high-speed high-sensitivity video camera [14]. The particular camera used
in the most recent of these experiments has a resolution of 80× 80 pixels at 2000
frames per second. An example of an electrical wave on a fibrillating porcine
ventricle is shown in figure 13.1.

The key question is to make sense of the images we recorded and to develop
methods to bring unwanted and deadly dynamics under control. Much of this
imaging work was motivated by our previous experiments on real-time feedback
control of fibrillation in humans. While in humans it is too dangerous to perform
VF experiments, we could study the related condition atrial fibrillation (AF). We
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Figure 13.2. Interbeat interval versus interval number of human atrial fibrillation before,
during and after the applications of chaos control.

put the atria, the upper chambers of the human heart, into fibrillation by means
of an electrical stimulus in 27 test patients. As opposed to ventricular fibrillation,
atrial fibrillation is not immediately life-threatening in healthy humans, allowing
for our experiments. However, it is interesting in its own right, because long-
term atrial fibrillation is the leading cause of strokes in the USA according to the
American Heart Association.

Through the implementation of chaos control algorithms guiding small
electrical stimuli applied to the human atria, we were able to initiate control to
regularize and slow down the beating of the atria; this is shown in figure 13.2.
To demonstrate that we had achieved chaos control, we turned the controls off to
confirm a resumption of chaotic fast beating. We then turned the control back on
to demonstrate the reacquisition and efficacy of the control. Finally, the control
is discontinued, which (in this patient) led to a resumption of a fast but more
regular pattern that dynamically transitioned into a more normal, slow beating
pattern. The results from the full sequence of patients can be found in [3]. Another
demonstration of dynamical control in humans can be found in [2].

It is of great medical interest to be able to bring spatio-temporal phenomena,
such as the spiral wave of a fibrillating porcine heart in figure 13.1, under control
and suppress them. For practical reasons this control must be achieved by placing
probes on a small number of sites on the heart. This raises a profound general
question.

Question 13.3. Is it possible to develop a coherent control theory for spatio-
temporal systems that allows one to construct effective control strategies based
on a limited (hopefully tiny) number of measurement and control sites?
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To date, this question remains open! Until it is answered, thousands of
people a day will continue to succumb to sudden cardiac death.

13.2 Neuro computing

Existing computational paradigms do not approach the capabilities of even simple
organisms in terms of adaptability and real-time control. There are computational
mechanisms and network architectures in living neural systems that are missing
from even the most sophisticated artificial computing systems. This leads to
another central question.

Question 13.4. Are there alternative and better ways of building computers
inspired or extracted from biology, using spatially extended nonlinear dynamical
systems?

If only we could achieve the goal of reverse engineering the most efficient
and flexible computer known: the biological brain. It is an adaptable collection of
cells and tissue that learns, stores and processes information. While an enormous
amount of work has been performed to see how the brain behaves, from the
intracellular level to the whole brain, (see again chapters 11 and 12) it seems that
it performs its amazing computational feats through the use of coupled biological
elements and the dynamics of their interaction. Again spatio-temporal nonlinear
dynamics is the key concept.

A more moderate goal is to engineer biological systems to work as
computers. At present we are considering ideas from dynamical systems that
may provide a way for us to program neural tissue. We have been successful
in getting dynamical systems to self-organize and solve problems in a variety of
situations and simulations [9–12]. Ironically, these simulations were performed
on conventional computers utilizing conventional computational paradigms. To
avoid such irony we are now looking at hybrid systems that combine traditional
computing with living neurons.

Recent technological developments regarding the patterned growth of
neuronal cultures [1] and the long-term electrophysiological recording of cultured
neuronal signals [4, 6, 13] have inspired us to investigate methods to exploit
living neuronal networks specifically designed to encode and process information.
Recently we were able to show as an experimental proof-of-concept that analogue
operations and fundamental digital logic operations can be attained through the
use of living neurons (in this case, leech [Hirudo medicinalis] neurons) coupled
via an artificial excitatory synapse [8]. Details of our experiments can be found
in [5]. Figure 13.3(a) shows the dynamic clamp in the electrophysiology rig and
figure 13.3(b) is a blow-up of leech nerve cord and ganglia. We incrementally
increased the leak conductance via the dynamic clamp. This incremental increase
in depolarizing input resulted in an essentially linear relationship between
increasing leak conductance and firing frequency, which we exploited to perform
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Figure 13.3. Experimental set-up of dynamic clamp in leech neurons in the
electrophysiology rig (a), a blow-up of leech nerve cord and ganglia in our experimental
preparation (b), experimental schematic diagram (c) and the results of simple addition (d).
Each cell receives numeric input (as a change in leak conductance). The postsynaptic cell
firing frequency represents the sum of these two numeric integer inputs when the synapse
is active; for details see [5].
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the analogue and digital logic operations. Figure 13.3(c) shows the experimental
schematic diagram for the example of addition, the results of which are shown in
figure 13.3(d). The firing frequency of the first and second cells both represent 1.
After artificial synaptic coupling between the two cells is switched on, the firing
of the second cell now represents the answer: superimposed onto the number
initially represented in the firing of the second cell is now the influence from the
first cell. This experiment, while rudimentary, served as a warm-up for our future
experiments on living neuronal networks.

We have now embarked upon projects that will result in the development
of computational systems that incorporate both living neuronal networks and
circuitry. These hybrid neuronal systems will provide a platform for discovering,
exploring and using the computational dynamics of living neuronal networks to
perform real-time tasks in the physical world. Unlike brains in animals, in vitro
networks are amenable to detailed observation and manipulation of every cell in
the network. By embodying such hybrid networks with actuators and sensors,
we hope to map the spatio-temporal dynamical landscape of neuronal networks
under the conditions for which they evolved: continuous real-time feedback for
adaptive behavioural control.

13.3 Where do we go from here?

In the spirit of this book, I would like to speculate a little bit on the future of
the field. In my view the fibrillating heart in figure 13.1 is pointing the way, the
merging spiral waves spelling out S for spatio-temporal. Until we come to grips
with that S, we will be chained to problems we can solve rather than pressing on
with problems that need to be solved. We should move on from the world of linear
systems and those nonlinear systems that we can only get a glimpse of through the
narrow slits of statistical mechanics and temporal nonlinear dynamics. So where
do we go from here? I don’t know about you, but I will be staring at figure 13.1
for a very long time and dare to dream. . .
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Colour plate 5. See figure 12.11 for caption.

Colour plate 4. See figure 11.5 for caption. Reproduced from W H Bosking, Y Zhang,
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