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Abstract

We review theory and applications of weak gravitationalsieg. After summarising
Friedmann-Lemaitre cosmological models, we presentairadlism of gravitational lens-
ing and light propagation in arbitrary space-times. We uischow weak-lensing effects
can be measured. The formalism is then applied to recomistngoof galaxy-cluster mass
distributions, gravitational lensing by large-scale miattistributions, QSO-galaxy corre-
lations induced by weak lensing, lensing of galaxies byxjeta and weak lensing of the
cosmic microwave background.
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1 Introduction

1.1 Gravitational Light Deflection

Light rays are deflected when they propagate through an iogeneous gravita-
tional field. Although several researchers had speculdiedtasuch an effect well
before the advent of General Relativity (see Schneider. 49812 for a historical
account), it was Einstein’s theory which elevated the dafiacmf light by masses
from a hypothesis to a firm prediction. Assuming light belsalike a stream of
particles, its deflection can be calculated within Newtonéory of gravitation, but
General Relativity predicts that the effect is twice asdaw light ray grazing the
surface of the Sun is deflected byrkarc seconds compared to th&8Darc sec-
onds predicted by Newton’s theory. The confirmation of thhgda value in 1919
was perhaps the most important step towards accepting @eRelativity as the
correct theory of gravity (Eddington 1920).

Cosmic bodies more distant, more massive, or more compactiie Sun can bend
light rays from a single source sufficiently strongly so thmatltiple light rays can
reach the observer. The observer sees an image in the dir@fteach ray arriv-
ing at their position, so that the source appears multiplgged. In the language
of General Relativity, there may exist more than one nulldgsic connecting the
world-line of a source with the observation event. Althopgédicted long before,
the first multiple-image system was discovered only in 19%8l¢h et al. 1979).
From then on, the field ajravitational lensingdeveloped into one of the most ac-
tive subjects of astrophysical research. Several dozemautiiply-imaged sources
have since been found. Their quantitative analysis prevatzurate masses of,
and in some cases detailed information on, the deflectorexample is shown in
Fig. 1.

Tidal gravitational fields lead to differential deflectiohlmht bundles. The size
and shape of their cross sections are therefore changex fimtons are neither
emitted nor absorbed in the process of gravitational ligdftedtion, the surface
brightness of lensed sources remains unchanged. Chargrgjze of the cross
section of a light bundle therefore changes the flux obsefneed a source. The
different images in multiple-image systems generally hdierent fluxes. The
images of extended sources, i.e. sources which can obieeraily be resolved, are
deformed by the gravitational tidal field. Since astronahgources like galaxies
are not intrinsically circular, this deformation is gerigraery difficult to identify
in individual images. In some cases, however, the distoristrong enough to be
readily recognised, most noticeably in the cas&fstein rings(see Fig. 2) and
arcsin galaxy clusters (Fig. 3).

If the light bundles from some sources are distorted so gtyaiat their images



Fig. 1. The gravitational lens system 2237305 consists of a nearby spiral galaxy at red-
shift zy = 0.039 and four images of a background quasar with redghift 1.69. It was
discovered by Huchra et al. (1985). The image was taken bydthsble Space Telescope
and shows only the innermost region of the lensing galaxg @dntral compact source is
the bright galaxy core, the other four compact sources argulsar images. They differ in
brightness because they are magnified by different amotihtsfour images roughly fall
on a circle concentric with the core of the lensing galaxye Wass inside this circle can be
determined with very high accuracy (Rix et al. 1992). Thegdat separation between the
images is 18”.

appear as giant luminous arcs, one may expect many moreescagbind a cluster
whose images are only weakly distorted. Although weak disitas in individual
images can hardly be recognised, the net distortion avdrager an ensemble of
images can still be detected. As we shall describe in Se&td2ep optical expo-
sures reveal a dense population of faint galaxies on the\itist of these galaxies
are at high redshift, thus distant, and their image shapebeatilised to probe the
tidal gravitational field of intervening mass concentraioindeed, the tidal gravi-
tational field can be reconstructed from the coherent distoapparent in images
of the faint galaxy population, and from that the densityfilg®f intervening clus-
ters of galaxies can be inferred (see Sect. 4).

1.2 Weak Gravitational Lensing

This review deals witlhweak gravitational lensingThere is no generally applica-
ble definition of weak lensing despite the fact that it cdngtis a flourishing area
of research. The common aspect of all studies of weak gteonta lensing is that

measurements of its effects are statistical in nature. ¢hdingle multiply-imaged
source provides information on the mass distribution ofdibiéector, weak lensing
effects show up only across ensembles of sources. One exavaplgiven above:



Fig. 2. The radio source MG 113D456 was discovered by Hewitt et al. (1988) as the
first example of a so-calleBinstein ring If a source and an axially symmetric lens are
co-aligned with the observer, the symmetry of the systenrmijterthe formation of a
ring-like image of the source centred on the lens. If the sytnyris broken (as expected for
all realistic lensing matter distributions), the ring idatened or broken up, typically into
four images (see Fig. 1). However, if the source is suffityeattended, ring-like images
can be formed even if the symmetry is imperfect. The 6 cm radip of MG 113340456
shows a closed ring, while the ring breaks up at higher frecies where the source is
smaller. The ring diameter is?'.

The shape distribution of an ensemble of galaxy images isggthclose to a mas-
sive galaxy cluster in the foreground, because the clisstigial field polarises the
images. We shall see later that the size distribution of g#ek@round galaxy pop-
ulation is also locally changed in the neighbourhood of agivasntervening mass
concentration.

Magnification and distortion effects due to weak lensing lsarused to probe the
statistical properties of the matter distribution betwasrand an ensemble of dis-
tant sources, provided some assumptions on the sourcerpespean be made.
For example, if astandard cand[é] at high redshift is identified, its flux can be

1 The termstandard candldés used for any class of astronomical objects whose intrin-
sic luminosity can be inferred independently of the obsgfl@x. In the simplest case, all
members of the class have the same luminosity. More tygjcdle luminosity depends
on some other known and observable parameters, such tHantirsity can be inferred
from them. The luminosity distance to any standard candiedgactly be inferred from the
square root of the ratio of source luminosity and observed fhince the luminosity dis-
tance depends on cosmological parameters, the geometrg btiverse can then directly
be investigated. Probably the best current candidateddodard candles are supernovae
of Type la. They can be observed to quite high redshifts, hod be utilised to estimate



Fig. 3. The cluster Abell 2218 hosts one of the most impressallections of arcs. This
HSTimage of the cluster’s central region shows a pattern ofigtyodistorted galaxy im-
ages tangentially aligned with respect to the cluster eenthich lies close to the bright
galaxy in the upper part of this image. The frame measurest&t x 160’

used to estimate the magnification along its line-of-sigthtan be assumed that
the orientation of faint distant galaxies is random. Thewy, @herent alignment of
images signals the presence of an intervening tidal gtawial field. As a third ex-
ample, the positions on the sky of cosmic objects at vastigreint distances from
us should be mutually independent. A statistical assariaif foreground objects
with background sources can therefore indicate the magtidic caused by the
foreground objects on the background sources.

All these effects are quite subtle, or weak, and many of thieeati challenges in
the field are observational in nature. A coherent alignméniages of distant
galaxiescanbe due to an intervening tidal gravitational field, batldalso be due
to propagation effects in the Earth’s atmosphere or in thes¢tepe. A variation
in the number density of background sources around a fonegrobjectcan be
due to a magnification effect, babuld also be due to non-uniform photometry or
obscuration effects. These potential systematic effeat® lbo be controlled at a
level well below the expected weak-lensing effects. Welshalrn to this essential
point at various places in this review.

1.3 Applications of Gravitational Lensing

Gravitational lensing has developed into a versatile toobbservational cosmol-
ogy. There are two main reasons:

cosmological parameters (e.g. Riess et al. 1998).



(1) The deflection angle of a light ray is determined by thevigational field of
the matter distribution along its path. According to Eingtetheory of Gen-
eral Relativity, the gravitational field is in turn deterradhby the stress-energy
tensor of the matter distribution. For the astrophysicalbyst relevant case of
non-relativistic matter, the latter is characterised by density distribution
alone. Hence, the gravitational field, and thus the deflectiogle, depend
neither on the nature of the matter nor on its physical staggt deflection
probes the total matter density, without distinguishinguaen ordinary (bary-
onic) matter or dark matter. In contrast to other dynamiaatirads for probing
gravitational fields, no assumption needs to be made on thendigal state of
the matter. For example, the interpretation of radial viljaneasurements in
terms of the gravitating mass requires the applicabilityhef virial theorem
(i.e., the physical system is assumed to be in virial equilih), or knowledge
of the orbits (such as the circular orbits in disk galaxieg)wever, as will be
discussed in Sect. 3, lensing measures only the mass dtstnlprojected
along the line-of-sight, and is therefore insensitive t® éxtent of the mass
distributionalong the light rays, as long as this extent is small compared to
the distances from the observer and the source to the defjentass. Keeping
this in mind, mass determinations by lensing do not deperahgrsymmetry
assumptions.

(2) Once the deflection angle as a function of impact paranieigiven, gravi-
tational lensing reduces to simple geometry. Since mostdgatems involve
sources (and lenses) at moderate or high redshift, lensingpobe the ge-
ometry of the Universe. This was noted by Refsdal (1964), phioted out
that lensing can be used to determine the Hubble constanthendosmic
density parameter. Although this turned out later to be nubifecult than
anticipated at the time, first measurements of the Hubblsteoh through
lensing have been obtained with detailed models of the mdistribution
in multiple-image lens systems and the difference in ligatel time along
the different light paths corresponding to different imagéthe source (e.g.,
Kundi€ et al. 1997; Schechter et al. 1997; Biggs et al. 199%)ce the vol-
ume element per unit redshift interval and unit solid andgé® alepends on
the geometry of space-time, so does the number of lensesrihelence, the
lensing probability for distant sources depends on the otsgical parame-
ters (e.g., Press & Gunn 1973). Unfortunately, in order tovdeconstraints
on the cosmological model with this method, one needs to kiln@evolu-
tion of the lens population with redshift. Neverthelesssome cases, sig-
nificant constraints on the cosmological parameters (Koekd 993, 1996;
Maoz & Rix 1993; Bartelmann et al. 1998; Falco et al. 1998} anthe evo-
lution of the lens population (Mao & Kochanek 1994) have béerived from
multiple-image and arc statistics.

The possibility to directly investigate the dark-mattestdbution led to sub-
stantial results over recent years. Constraints on the aizthe dark-matter
haloes of spiral galaxies were derived (e.g., Brainerd.€it36), the pres-



ence of dark-matter haloes in elliptical galaxies was destrated (e.g.,

Maoz & Rix 1993; Griffiths et al. 1996), and the projected tatass distribution in

many cluster of galaxies was mapped (e.g., Kneib et al. 11986kstra et al. 1998;
Kaiser et al. 1998). These results directly impact on oureusstdnding of structure
formation, supporting hierarchical structure formatiarcold dark matter (CDM)

models. Constraints on the nature of dark matter were alsaireunl. Compact
dark-matter objects, such as black holes or brown dwarfsmatabe very abun-
dant in the Universe, because otherwise they would lead gerghble lensing ef-
fects (e.g., Schneider 1993; Dalcanton et al. 1994). Galadtrolensing experi-
ments constrained the density and typical mass scale ofiveassnpact halo ob-
jects in our Galaxy (see Paczyhski 1996, Roulet & Mollera@h7 and Mao 2000
for reviews). We refer the reader to the reviews by Bland&idarayan (1992),

Schneider (1996a) and Narayan & Bartelmann (1997) for dlddtaccount of the
cosmological applications of gravitational lensing.

We shall concentrate almost entirely on weak gravitatideasing here. Hence,
the flourishing fields of multiple-image systems and theierpretation, Galactic
microlensing and its consequences for understanding theenaf dark matter in
the halo of our Galaxy, and the detailed investigations ef itiass distribution
in the inner parts of galaxy clusters through arcs, arcktsl, multiply imaged
background galaxies, will not be covered in this review. didition to the refer-

ences given above, we would like to point the reader to Re&&rdej (1994),

Fort & Mellier (1994), and Wu (1996) for more recent reviews\@arious aspects
of gravitational lensing, to Mellier (1998) for a very reteeview on weak lensing,
and to the monograph (Schneider et al. 1992) for a detailedust of the theory
and applications of gravitational lensing.

1.4 Structure of this Review

Many aspects of weak gravitational lensing are intimatelgated to the cosmo-
logical model and to the theory of structure formation in Yverse. We there-
fore start the review by giving some cosmological backgtbumSect. 2. After

summarising Friedmann-Lemaitre-Robertson-Walker nsydee sketch the the-
ory of structure formation, introduce astrophysical olgddke QSOs, galaxies,
and galaxy clusters, and finish the Section with a generaudgon of correla-
tion functions, power spectra, and their projections. @Gasional light deflection

in general is the subject of Sect. 3, and the specialisatiomeak lensing is de-
scribed in Sect. 4. One of the main aspects there is how waaklgeffects can be
guantified and measured. The following two sections desdtib theory of weak
lensing by galaxy clusters (Sect. 5) and cosmological mes$shilitions (Sect. 6).

Apparent correlations between background QSOs and faregrgalaxies due to
the magnification bias caused by large-scale matter disioits are the subject of
Sect. 7. Weak lensing effects of foreground galaxies on drackd galaxies are

10



reviewed in Sect. 8, and Sect. 9 finally deals with weak lemsirthe most distant
and most extended source possible, i.e. the Cosmic MicreBackground. We
present a brief summary and an outlook in Sect. 10.

We use standard astronomical units throughoM:, 1= 1 solar mass= 2 x 10%3g;
1Mpc= 1megaparsee 3.1 x 10?*cm.

11



2 Cosmological Background

We review in this section those aspects of the standard dogimal model which
are relevant for our further discussion of weak gravitaidansing. This standard
model consists of a description for the cosmological bamlgd which is a homo-
geneous and isotropic solution of the field equations of Gerieelativity, and a
theory for the formation of structure.

The background model is described by the Robertson-Walkestrien
(Robertson 1935; Walker 1935), in which hypersurfaces afstant time are
homogeneous and isotropic three-spaces, either flat oeduand change with
time according to a scale factor which depends on time orilg. dynamics of the
scale factor is determined by two equations which followfr&instein’s field

equations given the highly symmetric form of the metric.

Current theories of structure formation assume that stracgrows via gravita-
tional instability from initial seed perturbations whosggin is yet unclear. Most
common hypotheses lead to the prediction that the statisfithe seed fluctua-
tions is Gaussian. Their amplitude is low for most of theioletion so that lin-

ear perturbation theory is sufficient to describe their dghountil late stages. For
general references on the cosmological model and on theytloeéstructure for-

mation, cf. Weinberg (1972), Misner et al. (1973), Peehl€&80), Borner (1988),
Padmanabhan (1993), Peebles (1993), and Peacock (1999).

2.1 Friedmann-Leni#&re Cosmological Models

2.1.1 Metric
Two postulates are fundamental to the standard cosmolagmdel, which are:

(1) When averaged over sufficiently large scales, there existe@an motion of
radiation and matter in the Universe with respect to whichaaleraged ob-
servable properties are isotropic.

(2) All fundamental observers, i.e. imagined observers whatlo this mean
motion, experience the same history of the Universe, ieeséime averaged
observable properties, provided they set their clocksablyt Such a universe
is calledobserver-homogeneous.

General Relativity describes space-time as a four-dinoeasmanifold whose met-

ric tensorgqg is considered as a dynamical field. The dynamics of the metric
is governed by Einstein’s field equations, which relate tivestéin tensor to the
stress-energy tensor of the matter contained in space-fime events in space-
time with coordinates differing by)d are separated bysgwith ds? = Jop AX° ox®.

12



The eigentime(proper time) of an observer who travels by ahanges by 1ds,
Greek indices run over.0.3 and Latin indices run over the spatial indices.B
only.

The two postulates stated above considerably constraiadimessible form of the
metric tensor. Spatial coordinates which are constantfioddmental observers are
called comoving coordinates. In these coordinates, thexnrmedion is described by
dx' = 0, and hence & = ggodt2. If we require that theeigentimeof fundamental
observers equal the cosmic time, this impligs= c2.

Isotropy requires that clocks can be synchronised suchhbatpace-time compo-
nents of the metric tensor vanigy; = 0. If this was impossible, the components of
doi identified one particular direction in space-time, vialgtisotropy. The metric
can therefore be written

ds? = c?dt? + gij dx dx/ (2.1)

whereg;; is the metric of spatial hypersurfaces. In order not to \@iaotropy,

the spatial metric can only isotropically contract or exgbavith a scale function
a(t) which must be a function of time only, because otherwise tipaesion would

be different at different places, violating homogeneitgnde the metric further
simplifies to

ds? = c2dt? — a?(t)dl?, (2.2)

where d is the line element of the homogeneous and isotropic thpaees A spe-
cial case of the metric (2.2) is the Minkowski metric, for whid is the Euclidian
line element and(t) is a constant. Homogeneity also implies that all quantities
describing the matter content of the Universe, e.g. dersity pressure, can be
functions of time only.

The spatial hypersurfaces whose geometry is described%gyad either be flat or
curved. Isotropy only requires them to be spherically symime.e. spatial sur-
faces of constant distance from an arbitrary point need tiwbespheres. Homo-
geneity permits us to choose an arbitrary point as coorelimagin. We can then in-
troduce two angleB8, @ which uniquely identify positions on the unit sphere around
the origin, and a radial coordinate The most general admissible form for the
spatial line element is then

di? = dw? + fZ(w) (d¢? +sif8de?) = dw? + fZ(w) dw? . (2.3)

Homogeneity requires that the radial functi(w) is either a trigonometric, lin-
ear, or hyperbolic function ofl, depending on whether the curvatites positive,

13



zero, or negative. Specifically,

K~1/2sin(KY?w) ( )
fk(wW)=< w ( ) - (2.4)
(—K)~¥2sinh(—K)%/2u] (K < 0)

A A
v
o O

Note thatfx (w) and thugK|~%/2? have the dimension of a length. If we define the
radiusr of the two-spheres by (w) = r, the metric ¢? takes the alternative form

2 dr? 2
d¥= s+ dw? . (2.5)

2.1.2 Redshift

Due to the expansion of space, photons are redshifted wielegropagate from
the source to the observer. Consider a comoving sourceiegnétlight signal at
te which reaches a comoving observer at the coordinate owgin0 at timet,.
Since &= 0 for light, a backward-directed radial light ray propagaecording to
|cdt| = adw, from the metric. The (comoving) coordinate distance betwsource
and observer is constant by definition,

e to(te)
Weo = / dw = / ﬂ = constant (2.6)
o) te a

and thus in particular the derivative @k, with respect tde is zero. It then follows
from eq. (2.6)

dt,  a(to)
Ee B a(te) .

(2.7)
Identifying the inverse time intervalgite ) 1 with the emitted and observed light

frequenciese o, we can write

dte Ve Ao
e (2.8)

Since the redshittis defined as the relative change in wavelength, ez Ao\ L,
we find

1+z=

(2.9)

This shows that light is redshifted by the amount by which thnéverse has ex-
panded between emission and observation.

14



2.1.3 Expansion

To complete the description of space-time, we need to knawthe scale func-
tion a(t) depends on time, and how the curvatfrelepends on the matter which
fills space-time. That is, we ask for the dynamics of the syimse. Einstein’s field
equations relate the Einstein tens&y to the stress-energy tenshyp of the mat-
ter,

8nG

The second term proportional to the metric tenggy is a generalisation intro-
duced by Einstein to allow static cosmological solutionshaf field equations/\

is called the cosmological constant. For the highly symimétrm of the metric
given by (2.2) and (2.3), Einstein’s equations imply tfig{ has to have the form
of the stress-energy tensor of a homogeneous perfect flhidhvis characterised
by its densityp(t) and its pressure(t). Matter density and pressure can only de-
pend on time because of homogeneity. The field equationssihgslify to the two
independent equations

a 8nG Kc N
(a) “ 3P zt3 (2.11)
and
a_ 4 3p N

The scale factoa(t) is determined once its value at one instant of time is fixed. We
choosea= 1 at the present epoth Equation (2.11) is calleBriedmann’s equation
(Friedmann 1922, 1924). The two equations (2.11) and (242)e combined to
yield theadiabatic equation

" [@(t)p(t)c?] + p(t) da;(t) =0, (2.13)

which has an intuitive interpretation. The first teadp is proportional to the energy
contained in a fixed comoving volume, and hence the equatitessthat the change
in ‘internal’ energy equals the pressure times the changedper volume. Hence
eq. (2.13) is the first law of thermodynamics in the cosmaalgtontext.

A metric of the form given by egs. (2.2), (2.3), and (2.4) iezhthe Robertson-
Walker metric. If its scale factoa(t) obeys Friedmann’s equation (2.11) and the
adiabatic equation (2.13), it is called the Friedmann-Li&redRobertson-Walker
metric, or the Friedmann-Lemaitre metric for short. Ndtatteq. (2.12) can also
be derived from Newtonian gravity except for the pressunat@ (2.12) and the
cosmological constant. Unlike in Newtonian theory, pressacts as a source of
gravity in General Relativity.

15



2.1.4 Parameters

The relative expansion raga~! = H is called theHubble parameterand its value

at the present epoch-= t is theHubble constantH (tp) = Ho. It has the dimension
of aninverse time. The value bl is still uncertain. Current measurements roughly
fall into the rangeHp = (50— 80) km s~ Mpc—! (see Freedman 1996 for a review),
and the uncertainty itlg is commonly expressed & = 100hkm st Mpc—?,

with h= (0.5—0.8). Hence
Ho~3.2x 10 ¥¥hs 1~ 1.0x 10 Phyr 1. (2.14)

The time scale for the expansion of the Universe is the imvilitgbble constant, or
Ho !~ 10%n 1years.

The combination
3HZ
gnG ¢

is thecritical densityof the Universe, and the denspy in units ofpc, is thedensity
parameterQ,

~1.9x 10 2°ngem3 (2.15)

Qo= P (2.16)
Per
If the matter density in the universe is criticah = per or Qo = 1, and if the cos-
mological constant vanishes, = 0, spatial hypersurfaces are fl&t,= 0, which
follows from (2.11) and will become explicit in eq. (2.30)lbe. We further define

AN
Q= —5 . 2.17
Thedeceleration parameterygs defined by
aa
CJo = Y] (2.18)

att =to.

2.1.5 Matter Models

For a complete description of the expansion of the Univexseneed an equation
of statep = p(p), relating the pressure to the energy density of the mattein@ry
matter, which is frequently calletlistin this context, hap < pc?, while p= pc?/3
for radiation or other forms of relativistic matter. Inseg these expressions into
eg. (2.13), we find

p(t)=a"(t)po, (2.19)

16



with

3 fordust,p=0
n= . (2.20)
4 for relativistic matterp = pc?/3

The energy density of relativistic matter therefore dropwerrapidly with time
than that of ordinary matter.

2.1.6 Relativistic Matter Components

There are two obvious candidates for relativistic mattdato photons and neutri-
nos. The energy density contained in photons today is detethby the temper-
ature of the Cosmic Microwave Backgrounigys = 2.73K (Fixsen et al. 1996).
Since the CMB has an excellent black-body spectrum, itsggn@ensity is given

by the Stefan-Boltzmann law,

1 1 (kTems)* 34 3
X =P 4. 1 . 2.21
215 (ho)? 5x10 “"gcm ( )

PcmB =
In terms of the cosmic density paramef®s [eq. (2.16)], the cosmic density con-
tributed by the photon background is

Qcmpo=24x10"°h2. (2.22)

Like photons, neutrinos were produced in thermal equilitorin the hot early phase
of the Universe. Interacting weakly, they decoupled from¢bsmic plasma when
the temperature of the Universe was ~ 1 MeV because later the time-scale of
their leptonic interactions became larger than the expargine-scale of the Uni-
verse, so that equilibrium could no longer be maintainedekiVthe temperature
of the Universe dropped tkT ~ 0.5MeV, electron-positron pairs annihilated to
producey rays. The annihilation heated up the photons but not theinestwhich
had decoupled earlier. Hence the neutrino temperaturenisrithan the photon
temperature by an amount determined by entropy consenvatitee entropys. of
the electron-positron pairs was dumped completely inteetiteopy of the photon
backgrounds,. Hence,

(Se+ Sy)before= (Sy)after s (2.23)

where “before” and “after” refer to the annihilation timgnloring constant factors,
the entropy per particle species3€1 g T3, whereg is the statistical weight of
the species. For bosoms= 1, and for fermiongy = 7/8 per spin state. Before
annihilation, we thus hav@pefore= 4+ 7/8+ 2 = 11/2, while after the annihilation

17



g = 2 because only photons remain. From eq. (2.23),

3
Tafter ) 11
=—. 2.24
<Tbefore 4 ( )

After the annihilation, the neutrino temperature is thereflower than the photon
temperature by the factgd1/4)%/3. In particular, the neutrino temperature today
is

40\ 1/3
Tvo= <—) Tems = 1.95K . (2.25)

11
Although neutrinos have long been out of thermal equilisigheir distribution
function remained unchanged since they decoupled, exicaptheir temperature
gradually dropped in the course of cosmic expansion. Timeirgy density can thus
be computed from a Fermi-Dirac distribution with temperaily, and be converted
to the equivalent cosmic density parameter as for the plofidre result is

Qyo=28x10"°n"2 (2.26)
per neutrino species.

Assuming three relativistic neutrino species, the totakity parameter in relativis-
tic matter today is

Qro=Qcmo+3xQuo=32x10"°h"2, (2.27)

Since the energy density in relativistic matter is almos fivders of magnitude
less than the energy density of ordinary matter toda@gfis of order unity, the
expansion of the Universe today is matter-dominateg,-era—3(t)po. The energy
densities of ordinary and relativistic matter were equaéwthe scale factaa(t)
was

Q

Beq= Qioo —32x10°5Q;h 2, (2.28)

and the expansion was radiation-dominated at yet eartig@sjp = a—*po. The
epoch of equality of matter and radiation density will tumrt &0 be important for
the evolution of structure in the Universe discussed below.

2.1.7 Spatial Curvature and Expansion

With the parameters defined previously, Friedmann’s equg#.11) can be written

H2(t) = H3 a‘4(t)QR7o+a_3(t)Qo—a‘z(t)tl—czz-I—Q/\ : (2.29)
0
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SinceH (tg) = Ho, andQgr o < Qo, €q. (2.29) implies

2
K — (?) (Qo+Qn—1), (2.30)

and eq. (2.29) becomes
H2(t) = HE [ *(1)Qro+a 3(t)Qo+a 2(t)(1-Qo—Qn) +Qn] . (2.31)

The curvature of spatial hypersurfaces is therefore déteanby the sum of the
density contributions from matte€, and from the cosmological constagl,.

If Qo+ Qa =1, space is flat, and it is closed or hyperboli€§ + Qx is larger
or smaller than unity, respectively. The spatial hypeesas$ of a low-density uni-
verse are therefore hyperbolic, while those of a high-dgnsiiverse are closed
[cf. eq. (2.4)]. A Friedmann-Lemaitre model universe isslcharacterised by four
parameters: the expansion rate at present (or Hubble cijkig and the density
parameters in matter, radiation, and the cosmologicaltaahs

Dividing eq. (2.12) by eq. (2.11), using eq. (2.30), andisgtp = 0, we obtain for
the deceleration parametgy

="~ (2.32)

The age of the universe can be determined from eq. (2.319eSin= daa ! =
da(aH)~1, we have, ignorinr o,

1 1 -
to= — /0 da [a_lQo—l- (1-Qo—Qn) + azQ/\] 12 .

= (2.33)

It was assumed in this equation thpat 0 holds for all timed, while pressure is not
negligible at early times. The corresponding error, howdsevery small because
the universe spends only a very short time in the radiatmmidated phase where
p>0.

Figure 4 showsy in units ofHO’l as a function of2g, for QA = 0 (solid curve) and

Qa = 1— Qg (dashed curve). The model universe is older for lo@gtand higher

Qa because the deceleration decreases with decre&yrand the acceleration
increases with increasirgp.

In principle,Qa can have either sign. We have restricted ourselves in Fgndn-
negativeQ, because the cosmological constant is usually interpret¢ideeenergy
density of the vacuum, which is positive semi-definite.

The time evolution (2.31) of the Hubble functiét(t) allows one to determine the
dependence d andQa on the scale functioa. For a matter-dominated universe,
we find
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Fig. 4. Cosmic agédy in units of HO‘1 as a function 0K)q, for Qa = 0 (solid curve) and
Qp = 1— Qg (dashed curve).

8 5 Qo
@)= 31200 % " Tt o(l-a) ron@-a)
3
on@) A Qpa (2.34)

T 3H2a) atQo(l-a)+Qa(ad-a)’

These equations show that, whatever the valueQp&ndQ, are at the present
epoch,Q(a) — 1 andQa — 0 for a — 0. This implies that for sufficiently early
times, all matter-dominated Friedmann-Lemaitre modelarses can be described
by Einstein-de Sitter models, for whidh= 0 andQp = 0. Fora < 1, the right-
hand side of Friedmann’s equation (2.31) is therefore datetohby the matter and
radiation terms because they contain the strongest depeesiera—!. The Hubble
functionH (t) can then be approximated by

1/2

H(t) = Ho [Qroa *(t) + Qoa3(t)] (2.35)

Using the definition ofaeq, 8g4Qro = aeaQo [cf. eq. (2.28)], eq. (2.35) can be
written

1/2

H(t) = Ho0g *a /2 (1+229) (2.36)
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Hence,

1/2 _
12 | asfa? (a< aeq

H(t) = HoQ, : (2.37)
a3? (ag<a<l)
Likewise, the expression for the cosmic time reduces to
_ 2 412 32 deq Beq) 1/2 3/2
() = 37 Q0 {a (1-2 a) (1+ a) +2a3?| (2.38)
or
1,-1/2 2
1 5 a (ak
ta)= Lopy? ] 28 & @<y (2.39)
Ho 2a%2 (ag<a<l)

Equation (2.36) is called the Einstein-de Sitter limit ofe@imann’s equation.
Where not mentioned otherwise, we consider in the follovanty cosmic epochs
at times much later thaig, i.e., whena > agq, Where the Universe is dominated
by dust, so that the pressure can be neglegied.

2.1.8 Necessity of a Big Bang

Starting froma = 1 at the present epoch and integrating Friedmann’s equation
(2.11) back in time shows that there are combinations of tsenic parameters
such thata > 0 at all times. Such models would have no Big Bang. The neces-
sity of a Big Bang is usually inferred from the existence & tosmic microwave
background, which is most naturally explained by an eay,ghase of the Uni-
verse. Borner & Ehlers (1988) showed that two simple olztermal facts suffice

to show that the Universe must have gone through a Big Batitgsiproperly de-
scribed by the class of Friedmann-Lemaitre models. Indbedacts that there are
cosmological objects at redshifts> 4, and that the cosmic density parameter of
non-relativistic matter, as inferred from observed gadaxand clusters of galaxies

is Qo > 0.02, exclude models which hawgt) > 0 at all times. Therefore, if we
describe the Universe at large by Friedmann-Lemaitre tspde must assume a
Big Bang, ora= 0 at some time in the past.

2.1.9 Distances

The meaning of “distance” is no longer unique in a curved sgane. In contrast
to the situation in Euclidian space, distance definitiongeims of different mea-
surement prescriptions lead to different distances. Diganeasures are therefore
defined in analogy to relations between measurable quasititiEuclidian space.
We define here four different distance scales, the propé¢ardise, the comoving
distance, the angular-diameter distance, and the luntindisitance.

21



Distance measures relate an emission event and an obeareatnt on two sep-
arate geodesic lines which fall on a common light cone, eithe forward light
cone of the source or the backward light cone of the obsefvmy are therefore
characterised by the timésandt; of emission and observation respectively, and
by the structure of the light cone. These times can uniquelgxpressed by the
valuesay = a(tz) anda; = a(t;) of the scale factor, or by the redshifts andz
corresponding t@, anda;. We choose the latter parameterisation because red-
shifts are directly observable. We also assume that theradrsis at the origin of

the coordinate system.

The proper distance Rop(z1,22) is the distance measured by the travel time of
a light ray which propagates from a sourcezato an observer at; < z. It is
defined by ®prop= —cdt, hence @prop = —cdad ! = —cda(aH)~1. The minus
sign arises because, due to the choice of coordinates demirthe observer, dis-
tances increase away from the observer, while the tiraed the scale factoa
increase towards the observer. We get

C a(Z]_) . ~1/2
DprOp(Zl’ZZ):H_o/a(ZZ) [a1Qo+ (1 - Qo — Qn) +8%Qn] 2da. (2.40)

Thecomoving distance 8m(z1,22) is the distance on the spatial hypersurfaeey

between the worldlines of a source and an observer comovithgte cosmic flow.
Due to the choice of coordinates, it is the coordinate destdretween a source st
and an observer at, dD.om= dw. Since light rays propagate witrs & 0, we have
cdt = —adw from the metric, and thereforeDgom = —a ‘cdt = —cda(aa) ™! =

—cda(a®H)~L. Thus

c [aa) ~1/2
2

=W(z1,2) . (2.41)

The angular-diameter distance {3y(z1,2,) is defined in analogy to the relation in
Euclidian space between the physical cross se@wof an object aizy and the
solid angledw that it subtends for an observerzat Gongng: 0A. Hence,

0A ow

4Te?(20) f2[W(z1,22)] T (2.42)

wherea(z,) is the scale factor at emission time afgdw(z;,2,)] is the radial coor-
dinate distance between the observer and the source.dw®l|

1/2
Dang(21,22) = <§%) = a(z) fkW(z1,2)] . (2.43)
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According to the definition of the comoving distance, theldagdiameter distance
therefore is

Dang(Zl,Zz) = a(Zz) fK[Dcom(Zl,Zz)] . (2.44)

Theluminosity distance Rm(a1,a2) is defined by the relation in Euclidian space
between the luminosity of an object ak, and the fluxSreceived by an observer
atz;. Itis related to the angular-diameter distance through

a(z)?

a(z)

a(z1)

2
@) Dang(zl, )=

Dium(21,22) = ( f«[Deom(z.22)] . (2.45)

The first equality in (2.45), which is due to Etherington (383is valid in ar-
bitrary space-times. It is physically intuitive becauseofoims are redshifted by
a(z1)a(z2) 71, their arrival times are delayed by another facir;)a(z)~1, and
the area of the observer’'s sphere on which the photons arédied grows be-
tween emission and absorption in proportiora(z; )a(z,) ~1]2. This accounts for
a total factor ofa(z;)a(z) ~1]* in the flux, and hence for a factor [#(z;)a(z) ~1]?

in the distance relative to the angular-diameter distance.

We plot the four distanceSprop, Dcom, Dang @andDyym for z; = 0 as a function of
in Fig. 5.

The distances are larger for lower cosmic density and higb&mnological constant.
Evidently, they differ by a large amount at high redshiftr Bmall redshiftsz <« 1,
they all follow the Hubble law,

distance= % +0(2) . (2.46)
0

2.1.10 The Einstein-de Sitter Model

In order to illustrate some of the results obtained abovieusenow specialise
to a model universe with a critical density of du§g = 1 and p = 0, and
with zero cosmological constar®, = 0. Friedmann’s equation then reduces to
H(t) = Hoa /2, and the age of the Universe becorties 2(3Ho) 1. The distance
measures are
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Fig. 5. Four distance measures are plotted as a functionunfsaedshift for two cosmo-
logical models and an observer at redshift zero. These angréper distancBpop (1, solid
line), the comoving distancBcom (2, dotted line), the angular-diameter distafgq (3,
short-dashed line), and the luminosity distabgg, (4, long-dashed line).

Dprop(Z1,22) = 32_|_(|:0 [(1+ 2732 _ (14 22)—3/2] (2.47)
Deom(21,22) = f'—z [(14— 2) 2~ (14 22)_1/2]

Dang(21,22) = ,i—z 1j22 [(1+ 21) Y2 (1+ 22)71/2]

Dium(z1,22) = f'—z % [(1+21)*1/2 B (1+22)71/2} .

2.2 Density Perturbations

The standard model for the formation of structure in the Erse assumes that
there were small fluctuations at some very early initial timkich grew by gravi-

tational instability. Although the origin of the seed fluations is yet unclear, they
possibly originated from quantum fluctuations in the verglyebniverse, which

were blown up during a later inflationary phase. The fluctretiin this case are
uncorrelated and the distribution of their amplitudes isi€&an. Gravitational in-
stability leads to a growth of the amplitudes of the relatieasity fluctuations. As
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long as the relative density contrast of the matter fluotustis much smaller than
unity, they can be considered as small perturbations oftthereise homogeneous
and isotropic background density, and linear perturbat@ory suffices for their
description.

The linear theory of density perturbations in an expandingaerse is gener-
ally a complicated issue because it needs to be relativistiy. Lifshitz 1946;

Bardeen 1980). The reason is that perturbations on anyhestwgtie are compa-
rable to or larger than the size of the horigpat sufficiently early times, and
then Newtonian theory ceases to be applicable. In other syaidce the hori-
zon scale is comparable to the curvature radius of spaas-titewtonian theory
fails for larger-scale perturbations due to non-zero Sjiaeecurvature. The main
features can nevertheless be understood by fairly simplgoreng. We shall not
present a rigourous mathematical treatment here, but ardteghe results which
are relevant for our later purposes. For a detailed quiaktand quantitative dis-
cussion, we refer the reader to the excellent discussiohapter 4 of the book by
Padmanabhan (1993).

2.2.1 Horizon Size

The size of causally connected regions in the Universe lseddéhehorizon size

It is given by the distance by which a photon can travel in thiet since the Big
Bang. Since the appropriate time scale is provided by therga/Hubble parameter
H~1(a), the horizon size ig, = cH~1(a), and thecomovinghorizon size is

_ ¢ 1/2 1/2 8eq\ ~1/2
= ha) = HOQO (1+ ) : (2.48)

where we have inserted the Einstein-de Sitter limit (2.3&reedmann’s equation.
The lengthc HO’l = 3h~1Gpc is called theHubble radius We shall see later that
the horizon size aeq plays a very important role for structure formation. Insey
a= agqinto eq. (2.48), yields

dhi(aeq) = o 2 ag’ ~ 12(Qoh?) *Mpc, (2.49)

\fH

whereagq from eq. (2.28) has been inserted.

2.2.2 Linear Growth of Density Perturbations

We adopt the commonly held view that the density of the Usiges dominated
by weakly interacting dark matter at the relatively latedggmwhich are relevant for

2 |n this context, the size of the horizon is the distantby which light can travel in the
timet since the big bang.
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weak gravitational lensing,>> aeq. Dark-matter perturbations are characterised by
the density contrast
p(xv a) B 5(3.)

5(%,a) = s (2.50)

wherep = pga 2 is the average cosmic density. Relativistic and non-reic
perturbation theory shows that linear density fluctuatioms perturbations with
0« 1, grow like

a2 before
d(a)da" 2= % (2.51)
a afteraeq

as long as the Einstein-de Sitter limit holds. For later 8p@e> agq, When the
Einstein-de Sitter limit no longer appliesy # 1 or Qa # 0, the linear growth of
density perturbations is changed according to

o(a) = %ag:g =dpag(a), (2.52)

wheredy is the density contrast linearly extrapolated to the prespach, and the
density-dependent growth functigf(a) is accurately fit by (Carroll et al. 1992)

g'(a;,Q0,Qn) = gQ(a) Q%7(a) — Qa(a) + <1+ %) <1+ Q,\(a))} -’ .

2 70
(2.53)

The dependence d@ and Qa on the scale factoa is given in egs. (2.34). The
growth functionag(a; Qp, Qa) is shown in Fig. 6 for a variety of parametedy
andQp.

The cosmic microwave background reveals relative tempegdiuctuations of or-
der 10°° on large scales. By the Sachs-Wolfe effect (Sachs & Wolf&7),aBese
temperature fluctuations reflect density fluctuations oétimae order of magnitude.
The cosmic microwave background originatechaat 103 >> agq, Well after the
Universe became matter-dominated. Equation (2.51) th@hemthat the density
fluctuations today, expected from the temperature fluanatata ~ 10~2, should
only reach a level of 1. Instead, structures (e.g. galaxies) withs> 1 are ob-
served. How can this discrepancy be resolved? The cosmiowawe background
displays fluctuations in the baryonic matter component.dflthere is an addi-
tional matter component that only couples through weakaeteons, fluctuations
in that component could grow as soon as it decoupled fromdbkeni plasma, well
before photons decoupled from baryons to set the cosmicoméawe background
free. Such fluctuations could therefore easily reach thdiamdps observed today,
and thereby resolve the apparent mismatch between thetadgdi of the tem-
perature fluctuations in the cosmic microwave backgrountthe present cosmic
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Fig. 6. The growth functiorag(a) = ad(a)/d'(1) given in egs. (2.52) and (2.53) 62y
between @ and 10 in steps of ®. Top panelQa = 0; bottom panelQx = 1— Qq. The
growth rate is constant for the Einstein-de Sitter mofgl-£ 1, Qa = 0), while it is higher
for a< 1 and lower fora= 1 for low-Qp models. Consequently, structure forms earlier in
low- than in highQy models.

structures. This is one of the strongest arguments for tiséegrce of a dark matter
component in the Universe.

2.2.3 Suppression of Growth

It is convenient to decompose the density contéasito Fourier modes. In linear
perturbation theory, individual Fourier components egohdependently. A pertur-
bation of (comoving) wavelengthis said to “enter the horizon” whex= dy(a).

If A < dn(aeq), the perturbation enters the horizon while radiation i gdiminat-

ing the expansion. Untée, the expansion time-scalgyp = H ~1 is determined by
the radiation densitpg, which is shorter than the collapse time-scale of the dark
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mattertpm:

texp~ (GPr) /% < (Gppm) 2 ~ tou . (2.54)

In other words, the fast radiation-driven expansion préeveark-matter perturba-
tions from collapsing. Light can only cross regions thatsreller than the hori-
zon size. The suppression of growth due to radiation is fbereestricted to scales
smaller than the horizon, and larger-scale perturbatiensam unaffected. This
explains why the horizon size agq, dn(aeq), Sets an important scale for structure
growth.

0

/ (Oenter/oeq)2

/ «xq

x<@?

et N

a a a

enter eq

Fig. 7. Sketch illustrating the suppression of structurewdgh during the radia-
tion-dominated phase. The perturbation grawa? beforeaeq, andl a thereafter. If the
perturbation is smaller than the horizonagt, it enters the horizon @enter < aeq While
radiation is still dominating. The rapid radiation-driverpansion prevents the perturba-
tion from growing further. Hence it stalls untik,. By then, its amplitude is smaller by
fsup= (aemer/aeq)2 than it would be without suppression.

Figure 7 illustrates the growth of a perturbation wkh< dy(aeqg), that is small
enough to enter the horizon afnter < aeq. It can be read off from the figure that
such perturbations are suppressed by the factor

2
ae
fsup= < az;ef) . (2.55)

It remains to be evaluated at what timgera density perturbation with comoving
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wavelength\ enters the horizon. The condition is

C

_ . 2.56
AenterH (aenter) ( )

A =dy (aenter) =

Well in the Einstein-de Sitter regime, the Hubble paramistgiven by eq. (2.37).
Inserting that expression into (2.56) yields

2 (2.57)

AQ denter (aenter<< aeq)
Benter (Beq < Aenter< 1)

Let nowk = A~ be the wave number of the perturbation, &gd= dgl(aeq) the
wave number corresponding to the horizon sizgtThe suppression factor (2.55)

can then be written
2

From eq. (2.49),

ko ~ 0.083(Qoh?) Mpc ! ~ 250(Qoh) (Hubble radii) * . (2.59)

2.2.4 Density Power Spectrum

The assumed Gaussian density fluctuatidfg at the comoving positioX can
completely be characterised by their power spectRy(k), which can be defined
by (see Sect. 2.4)

(K8 (K)) = (219%8p (k—K) Ps(K) (2.60)

Whereg(R) is the Fourier transform ob, and the asterisk denotes complex con-
jugation. Strictly speaking, the Fourier decompositiowa$id only in flat space.
However, at early times space is flat in any cosmological maohel at late times
the interesting scalds ! of the density perturbations are much smaller than the
curvature radius of the Universe. Hence, we can apply Fodeeomposition here.

Consider now the primordial perturbation spectrum at soeng @arly timep (k) =
182(K)|. Since the density contrast grows &§] a"2 [eq. (2.51)], the spectrum

grows asPs(k) O a?"~2) At aenier the spectrum has therefore changed to

Pented(k) 0 @me) P(k) Ok 4R (k) . (2.61)

where eq. (2.57) was used flors> kp.
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It is commonly assumed that the total power of the densityditons atagnter
should be scale-invariant. This implik$Psnte( k) = const, or Pente(k) 0 k3. Ac-
cordingly, the primordial spectrum has to scale whtlas P (k) O k. This scale-
invariant spectrum is called thélarrison-Zel'dovichspectrum (Harrison 1970;
Peebles & Yu 1970; Zel'dovich 1972). Combining that with theppression of
small-scale modes (2.58), we arrive at

k fork< kg

Ps(k) O )
k=3 for k> kg

(2.62)

An additional complication arises when the dark matter st sf particles moving
with a velocity comparable to the speed of light. In orderdefx them gravitation-
ally bound, density perturbations then have to have a certanimum mass, or
equivalently a certain minimum size. All perturbations #erathan that size are
damped away by free streaming of particles. Consequeh#ydénsity perturba-
tion spectrum of such particles has an exponential cuttdérgek. This clarifies
the distinction betweehot andcold dark matter: Hot dark matter (HDM) consists
of fast particles that damp away small-scale perturbatismhde cold dark matter
(CDM) particles are slow enough to cause no significant dagipi

2.2.5 Normalisation of the Power Spectrum

Apart from the shape of the power spectrum, its normaligatias to be fixed.
Several methods are available which usually yield diffeegrswers:

(1) Normalisation by microwave-background anisotropitlse COBE satellite
has measured fluctuations in the temperature of the micglayat thems
level of AT /T ~ 1.3 x 107° at an angular scale ef 7° (Banday et al. 1997).
Adopting a shape for the power spectrum, these fluctuatiande translated
into an amplitude foP5(k). Due to the large angular scale of the measurement,
this kind of amplitude determination specifies the ampétod large physical
scales (smalk) only. In addition, microwave-background fluctuations mea
sure the amplitude of scalandtensor perturbation modes, while the growth
of density fluctuations is determined by the fluctuation atagé of scalar
modes only.

(2) Normalisation by the local variance of galaxy countspngiered by
Davis & Peebles (1983): Galaxies are supposed to be biasackrsr
of underlying dark-matter fluctuations (Kaiser 1984; Bamlet al. 1986;
White et al. 1987). By measuring the local variance of galesynts within
certain volumes, and assuming an expression for the biasanfplitude
of dark-matter fluctuations can be inferred. Conventignahe variance of
galaxy countig gajaxiesis measured within spheres of radius 8 Mpc, and
the result is7g gajaxies~ 1. The problem of finding the corresponding variance
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og of matter-density fluctuations is that the exact bias meishawf galaxy
formation is still under debate (e.g. Kauffmann et al. 1997)

(3) Normalisation by the local abundance of galaxy clus(évhite et al. 1993;
Eke et al. 1996; Viana & Liddle 1996): Galaxy clusters formdrgvitational
instability from dark-matter density perturbations. Triregatial number den-
sity reflects the amplitude of appropriate dark-matter tlations in a very
sensitive manner. It is therefore possible to determineathelitude of the
power spectrum by demanding that the local spatial numbesityeof galaxy
clusters be reproduced. Typical scales for dark-mattetulaions collapsing
to galaxy clusters are of order 0 Mpc, hence cluster normalisation deter-
mines the amplitude of the power spectrum on just that scale.

Since gravitational lensing by large-scale structure®igegally sensitive to scales
comparable tdxgl ~ 12(Qoh?)Mpc, cluster normalisation appears to be the most
appropriate normalisation method for the present purpd$essolid curve in Fig. 8
shows the CDM power spectrum, linearly and non-linearlyhes@ toz = 0 (or
a=1) in an Einstein-de Sitter universe with= 0.5, normalised to the local cluster
abundance.

linear
---------- nonlinear

-3 -2 -1 0
k [h Mpc™']

Fig. 8. CDM power spectrum, normalised to the local abundavfcgalaxy clusters, for
an Einstein-de Sitter universe with= 0.5. Two curves are displayed. The solid curve
shows the linear, the dashed curve the non-linear powetrspecWhile the linear power
spectrum asymptotically falls offl k=3, the non-linear power spectrum, according to
Peacock & Dodds (1996), illustrates the increased powenall scales due to non-linear
effects, at the expense of larger-scale structures.
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2.2.6 Non-Linear Evolution

At late stages of the evolution and on small scales, the dgraftdensity fluc-
tuations begins to depart from the linear behaviour of ep2R Density fluctu-
ations grow non-linear, and fluctuations of different siatefact. Generally, the
evolution of P(k) then becomes complicated and needs to be evaluated numeri-
cally. However, starting from the bolahsatzthat the two-point correlation func-
tions in the linear and non-linear regimes are related byreige scaling relation
(Hamilton et al. 1991), which turns out to hold remarkablyliwanalytic formu-
lae describing the non-linear behaviouRik) have been derived (Jain et al. 1995;
Peacock & Dodds 1996). It will turn out in subsequent chaptieat the non-linear
evolution of the density fluctuations is crucial for accehatcalculating weak-
lensing effects by large-scale structures. As an exampesivow as the dashed
curve in Fig. 8 the CDM power spectrum in an Einstein-de Bilteiverse with

h = 0.5, normalised to the local cluster abundance, non-lineartved toz = 0.
The non-linear effects are immediately apparent: Whilesiectrum remains un-
changed for large scalek « ko), the amplitude on small scalés ¥ ko) is sub-
stantially increased at the expense of scales just aboyeetile It should be noted
that non-linearly evolved density fluctuations are no larfglly characterised by
the power spectrum only, because then non-Gaussian featevelop.

2.2.7 Poisson’s Equation

Localised density perturbations which are much smaller thea horizon and whose
peculiar velocities relative to the mean motion in the Urseeare much smaller
than the speed of light, can be described by Newtonian graMieir gravitational
potential obeys Poisson’s equation,

070’ = 4nGp (2.63)

wherep = (1+0)p is the total matter density, ar is the sum of the potentials
of the smooth background and the potential of the perturbatigh The gradi-
entld, operates with respect to the physical, or proper, coordma&ince Poisson’s
equation is linear, we can subtract the background cortiib@?® = 4nGp. Intro-
ducing the gradient with respect to comoving coordinatgs- all;, we can write
eg. (2.63) in the form

2 = 4G &2 p3d . (2.64)

In the matter-dominated epoch= a3po. With the critical density (2.15), Pois-
son’s equation can be re-written as

3HG
D2 =20045. 2.65
X 2a 0 ( )
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2.3 Relevant Properties of Lenses and Sources

Individual reviews have been written on galaxies (e.g. F&@allagher 1979;
Binggeli et al. 1988; Giovanelli & Haynes 1991; Koo & Kron 189Ellis 1997),
clusters of galaxies (e.g. Bahcall 1977; Rood 1981; Formdoies 1982;
Bahcall 1988; Sarazin 1986), and active galactic nucleig. (eRees 1984;
Weedman 1986; Blandford et al. 1990; Hartwick & Schade 1990;
Warren & Hewett 1990; Antonucci 1993; Peterson 1997). A itkxta presen-
tation of these objects is not the purpose of this review.ufffiees here to
summarise those properties of these objects that are ntlémaunderstanding
the following discussion. Properties and peculiaritieghaividual objects are not
necessary to know; rather, we need to specify the objedistatally. This section
will therefore focus on a statistical description, leavsulptleties aside.

2.3.1 Galaxies

For the purposes of this review, we need to characterise ttiistgcal proper-

ties of galaxies as a class. Galaxies can broadly be grougediwo popula-

tions, dubbedkarly-typeandlate-typegalaxies, orellipticals and spirals respec-

tively. While spiral galaxies include disks structured bgnamor less pronounced
spiral arms, and approximately spherical bulges centrethendisk centre, el-
liptical galaxies exhibit amorphous projected light dlaitions with roughly el-

liptical isophotes. There are, of course, more elaboratgphadogical classifica-
tion schemes (e.g. de Vaucouleurs et al. 1991; Buta et adl; 198m et al. 1995a;

Naim et al. 1995b), but the broad distinction between etligls and spirals suffices
for this review.

Outside galaxy clusters, the galaxy population consisébofit 34 spiral galaxies
and 1/4 elliptical galaxies, while the fraction of ellipticalsdreases towards clus-
ter centres. Elliptical galaxies are typically more masshan spirals. They contain
little gas, and their stellar population is older, and thregltler’, than in spiral galax-
ies. In spirals, there is a substantial amount of gas in tkle groviding the material
for ongoing formation of new stars. Likewise, there is dittlust in ellipticals, but
possibly large amounts of dust are associated with the ggsrnals.

Massive galaxies have of order‘fGolar masses, or:2 10**g within their visible
radius. Such galaxies have luminosities of ordel’ltnes the solar luminosity.
The kinematics of the stars, gas and molecular clouds irxigalaas revealed by
spectroscopy, indicate that there is a relation betweeichheacteristic velocities
inside galaxies and their luminosity (Faber & Jackson 1908y & Fisher 1977);
brighter galaxies tend to have larger masses.

The differential luminosity distribution of galaxies caery well be described by
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the functional form

dL L7V L\ dL
®(L) T~ =Po (L—) exp(—L—)L—, (2.66)

proposed by Schechter (1976). The parameters have beenneg&s be
vall, L,~11x10°., ®,~15x102h*Mpc3 (2.67)

(e.g. Efstathiou et al. 1988; Marzke et al. 1994a; Marzke. ét994b). This distri-
bution means that there is essentially a sharp cut-off ig#t@xy population above
luminosities of~ L,, and the mean separation betwdengalaxies is of order

~ ;Y2 ~ ah~1Mpc.

The stars in elliptical galaxies have randomly orientedterlwhile by far the most
stars in spirals have orbits roughly coplanar with the gadatisks. Stellar veloc-
ities are therefore characterised by a velocity dispersipm ellipticals, and by
an asymptotic circular velocity. in spiralsf®] These characteristic velocities are
related to galaxy luminosities by laws of the form

1/a
O _ <£) = Y (2.68)

- )
Ov « L. Ve, «

where a ranges around 3 4. For spirals, eq. (2.68) is called Tully-
Fisher  (Tully & Fisher 1977)  relation, for ellipticals Fab#ackson
(Faber & Jackson 1976) relation. Both velocity scatgs. and vc, are of or-
der 220kms?. Sincev; = v/20,, ellipticals with the same luminosity are more
massive than spirals.

Most relevant for weak gravitational lensing is a populatd faint galaxies emit-
ting bluer light than local galaxies, the so-calldht blue galaxiegTyson 1988;
see Ellis 1997 for a review). There are of order-380 such galaxies per square
arc minute on the sky which can be mapped with current grdaased optical tele-
scopes, i.e. there are20,000— 40,000 such galaxies on the area of the full moon.
The picture that the sky is covered with a ‘wall paper’ of thésnt and presumably
distant blue galaxies is therefore justified. It is this fgrained pattern on the sky
that makes many weak-lensing studies possible in the fissepbecause it allows
the detection of the coherent distortions imprinted by gasional lensing on the
images of the faint blue galaxy population.

Due to their faintness, redshifts of the faint blue galaxaes hard to mea-
sure spectroscopically. The following picture, howevereras to be reason-

3 The circular velocity of stars and gas in spiral galaxieaswut to be fairly independent
of radius, except close to their centre. These flat rotattamges cannot be caused by the
observable matter in these galaxies, but provide strordgace for the presence of a dark
halo, with density profile I r~2 at large radii.
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ably secure. It has emerged from increasingly deep and leétaibserva-
tions (see, e.g. Broadhurst etal. 1988; Colless et al. 19=dljess et al. 1993,
Lilly et al. 1991; Lilly 1993; Crampton et al. 1995; and alsbet reviews by
Koo & Kron 1992 and Ellis 1997). The redshift distribution faint galaxies has
been found to agree fairly well with that expected for a neoh&ng comoving
number density. While the galaxy number counts in blue ligfet substantially
above an extrapolation of the local counts down to increggifaint magnitudes,
those in the red spectral bands agree fairly well with exti@gons from local num-
ber densities. Further, while there is significant evolubbthe luminosity function
in the blue, in that the luminosity scdlg of a Schechter-type fit increases with red-
shift, the luminosity function of the galaxies in the red wsisdittle sign of evolu-
tion. Highly resolved images of faint blue galaxies obtdimath theHubble Space
Telescopeare now becoming available. In red light, they reveal mostlyinary
spiral galaxies, while their substantial emission in bigét is more concentrated
to either spiral arms or bulges. Spectra exhibit emissiogslicharacteristic of star
formation.

These findings support the view that the galaxy evolutiorarols higher redshifts
apparent in blue light results from enhanced star-formagictivity taking place

in a population of galaxies which, apart from that, may remaichanged even
out to redshifts ok > 1. The redshift distribution of the faint blue galaxies isrth

sufficiently well described by

p(z)dz= %22 exp [— (%)B] dz. (2.69)

This expression is normalised to<0z < o« and provides a good fit to the observed
redshift distribution (e.g. Smail et al. 1995b). The meatstsft (z) is proportional

to zg9, and the parametdt describes how steeply the distribution falls off beyond
2. Forp=1.5, (z) ~ 1.5zy. The parametery depends on the magnitude cutoff and
the colour selection of the galaxy sample.

Background galaxies would be ideal tracers of distorticmssed by gravitational
lensing if they were intrinsically circular. Then, any meeed ellipticity would di-
rectly reflect the action of the gravitational tidal field bttlenses. Unfortunately,
this is not the case. To first approximation, galaxies hawensically elliptical
shapes, but the ellipses are randomly oriented. The iitrelspticities introduce
noise into the inference of the tidal field from observedéltities, and it is impor-
tant for the quantification of the noise to know the intrinsilgpticity distribution.
Let |¢| be the ellipticity of a galaxy image, defined such that for kipse with axes
aandb < a,

_a-b
T a+b’

|€] (2.70)

Ellipses have an orientation, hence the ellipticity has bemponents; , with
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le| = (2 +€2)Y/2. It turns out empirically that a Gaussian is a good desaniptdr
the ellipticity distribution,

exp(—|e[*/c?)
€1,€2)de1der = dep de 2.71
Pe(€1,€2) de1 de2 10?1 exp(—1/0) 1€z, (2.71)
with a characteristic width ofo; ~ 0.2 (e.g. Miralda-Escudé 1991b;
Tyson & Seitzer 1988; Brainerd et al. 1996). We will later ¢6e4.2) define
galaxy ellipticities for the general situation where thepbkotes are not ellipses.
This completes our summary of galaxy properties as reqhieee.

2.3.2 Groups and Clusters of Galaxies

Galaxies are not randomly distributed in the sky. Their pass are correlated, and
there are areas in the sky where the galaxy density is nblicéggher or lower
than average (cf. the galaxy count map in Fig. 9). There avapgy consisting of
a few galaxies, and there actusters of galaxiegn which some hundred up to a
thousand galaxies appear very close together.

Fig. 9. The Lick galaxy counts within 30radius around the North Galactic pole
(Seldner et al. 1977). The galaxy number density is highetteablack and lowest at the
white regions on the map. The picture illustrates struatutie distribution of fairly nearby
galaxies, viz. under-dense regions, long extended filasnand clusters of galaxies.

The most prominent galaxy cluster in the sky covers a huga eeatred on the
Virgo constellation. Its central region has a diameter afdly’, and its main body
extends over roughly I5< 40°. It was already noted by Sir William Herschel in
the 18th century that the entire Virgo cluster covers abg8th of the sky, while
containing about A3rd of the galaxies observable at that time.
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Zwicky

noted in 1933 that the galaxies in the Coma cluster and oittteclusters move so
fast that the clusters required about ten to 100 times moss tokeep the galaxies
bound than could be accounted for by the luminous galaxess$klves. This was
the earliest indication that there is invisible mass, okdaatter, in at least some
objects in the Universe.

Several thousands of galaxy clusters are known today. Al{&®58) cluster cat-
alog lists 2712 clusters north of20° declination and away from the Galac-
tic plane. Employing a less restrictive definition of galestysters, the catalog
by Zwicky et al. (1968) identifies 9134 clusters north-e8° declination. Clus-
ter masses can exceed?§g or 5x 10“M., and they have typical radii of
~ 5x 10%*cm or~ 1.5Mpc.

N
. | o 4
.-l
-
- .
. A
l. '
1 & . L o.

F P 5
f*l"”"d
- *
L] [ .
-

Fig. 10. The galaxy cluster Abell 370, in which the first gtationally lensed arc was
detected (Lynds & Petrosian 1986; Soucail et al. 1987a,ldP87Tost of the bright galaxies
seen are cluster memberszat 0.37, whereas the arc, i.e. the highly elongated feature, is
the image of a galaxy at redshift= 0.724 (Soucail et al. 1988).

When X-ray telescopes became available after 1966, it va®wered that clus-
ters are powerful X—ray emitters. Their X—ray luminositfe#i within (10*3 —
10*°) ergst, rendering galaxy clusters the most luminous X—ray souicebe
sky. Improved X-ray telescopes revealed that the source-dyXemission in clus-
ters is extended rather than point-like, and that the X—pagia are best explained
by thermabremsstrahlungfree-free radiation) from a hot, dilute plasma with tem-
peratures in the rangd0’ — 10%)K and densities ofv 1073 particles per cri
Based on the assumption that this intra-cluster gas is imdsyatic equilibrium
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with a spherically symmetric gravitational potential oéttotal cluster matter, the
X—ray temperature and flux can be used to estimate the clogtss. Typical re-
sultsapproximately(i.e. up to a factor of- 2) agree with the mass estimates from
the kinematics of cluster galaxies employing the virialotteen. The mass of the
intra-cluster gas amounts to about 10% of the total clusessnThe X—ray emis-
sion thus independently confirms the existence of dark mattgalaxy clusters.
Sarazin (1986) reviews clusters of galaxies focusing om ¥xeray emission.

Later, luminous arc-like features were discovered in twdaxa clusters
(Lynds & Petrosian 1986; Soucail et al. 1987a, 1987b; seeIy Their light is
typically bluer than that from the cluster galaxies, andrtleagth is comparable to
the size of the central cluster region. Paczyhski (198@yested that thesgcsare
images of galaxies in the background of the clusters whiels&ongly distorted by
the gravitational tidal field close to the cluster centrasisTexplanation was gen-
erally accepted when spectroscopy revealed that the soafdbe arcs are much
more distant than the clusters in which they appear (Soatail 1988).

Large arcs require special alignment of the arc source wighlénsing clus-
ter. At larger distance from the cluster centre, images akgeound galaxies
are only weakly deformed, and they are referred tamsdets (Fort et al. 1988;
Tyson et al. 1990). The high number density of faint arcléi®ans one to mea-
sure the coherent distortion caused by the tidal gravitatibeld of the cluster out
to fairly large radii. One of the main applications of weakgtational lensing is
to reconstruct the (projected) mass distribution of galelagters from their mea-
surable tidal fields. Consequently, the correspondingrtheonstitutes one of the
largest sections of this review.

Such strong and weak gravitational lens effects offer tresibdity to detect and
measure the entire cluster mass, dark and luminous, witlkeferring to any equi-
librium or symmetry assumptions like those required forrigess estimates from
galactic kinematics or X—ray emission. For a review on aras aclets in galaxy
clusters see Fort & Mellier (1994).

Apart from being spectacular objects in their own right,stéus are also of par-
ticular interest for cosmology. Being the largest graiataally bound entities in
the cosmos, they represent the high-mass end of collapseduses. Their num-
ber density, their individual properties, and their sgatiatribution constrain the
power spectrum of the density fluctuations from which thedtrre in the uni-
verse is believed to have originated (e.g. Viana & Liddle@;98ke et al. 1996).
Their formation history is sensitive to the parameters tieermine the geometry
of the universe as a whole. If the matter density in the uswes high, clusters
tend to form later in cosmic history than if the matter denstlow (first noted by
Richstone et al. 1992). This is due to the behaviour of thevtirdactor shown in
Fig. 6, combined with the Gaussian nature of the initial dgrisictuations. Conse-
guently, the compactness and the morphology of clusteesctdfie cosmic matter
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density, and this has various observable implications. @ea#hod to normalise the
density-perturbation power spectrum fixes its overall aimgé such that the local
spatial number density of galaxy clusters is reproduced Miethod, calledluster
normalisationand pioneered by White et al. (1993), will frequently be uipeithis
review.

In summary, clusters are not only regions of higher galaxsnioer density in
the sky, but they are gravitationally bound bodies whose be¥ngalaxies con-
tribute only a small fraction of their mass. About 80% of thmiass is dark, and
roughly 10% is in the form of the diffuse, X—ray emitting gasead throughout
the cluster. Mass estimates inferred from galaxy kinemmake-ray emission, and
gravitational-lensing effects generally agree to withoat a factor of two, typi-
cally arriving at masses of orden510™ solar masses, or $8g. Typical sizes of
galaxy clusters are of order several megaparsecsxd®*cm. In addition, there
are smaller objects, calleghlaxy groupswhich contain fewer galaxies and have
typical masses of order 3®solar masses.

2.3.3 Active Galactic Nuclei

The term *active galactic nuclei’ (AGNS) is applied to gaksxwhich show signs of
non-stellar radiation in their centres. Whereas the ensisom ‘normal’ galaxies
like our own is completely dominated by radiation from stansl their remnants,
the emission from AGNSs is a combination of stellar light and#thermal emission
from their nuclei. In fact, the most prominent class of AGti® quasi-stellar radio
sources, or quasars, have their names derived from thén&tdhieir optical appear-
ance is point-like. The nuclear emission almost completatghines the extended
stellar light of its host galaxy.

AGNs do not form a homogeneous class of objects. Insteay aifeegrouped into
several types. The main classes are: quasars, quasi-stgkats (QSOs), Seyfert
galaxies, BL Lacertae objects (BL Lacs), and radio galaxiékat unifies them
is the non-thermal emission from their nucleus, which nesif itself in various
ways: (1) radio emission which, owing to its spectrum andapsétion, is inter-
preted as synchrotron radiation from a power-law distrdsudf relativistic elec-
trons; (2) strong ultraviolet and optical emission linemfrhighly ionised species,
which in some cases can be extremely broad, correspondingppler velocities
up to~ 20,000km s, thus indicating the presence of semi-relativistic velesiin
the emission region; (3) a flat ultraviolet-to-optical daoum spectrum, often ac-
companied by polarisation of the optical light, which canmaturally be explained
by a superposition of stellar (Planck) spectra; (4) strorga} emission with a
hard power-law spectrum, which can be interpreted as iev€mmnpton radiation
by a population of relativistic electrons with a power-lameegy distribution; (5)
strong gamma-ray emission; (6) variability at all wavelirsg from the radio to
the gamma-ray regime. Not all these phenomena occur at the kvel in all
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the classes of AGNs. QSOs, for example, can roughly be grbunpe radio-quiet
QSOs and quasars, the latter emitting strongly at radio lwagéns.

Since substantial variability cannot occur on timescahester than the light-travel
time across the emitting region, the variability providesgourous constraint on
the compactness of the region emitting the bulk of the nuckeiation. In fact, this
causality argument based on light-travel time can mildlywiztated if relativistic
velocities are present in the emitting region. Direct emiziefor this comes from the
observation of the so-called superluminal motion, whedsorgource components
exhibit apparent velocities in excess®fe.g. Zensus & Pearson 1987). This can
be understood as a projection effect, combining velocitiese to (but of course
smaller than) the velocity of light with a velocity directiclose to the line-of-sight
to the observer. Observations of superluminal motion exdichat bulk velocities
of the radio-emitting plasma components can have Lorentoifaof order 10, i.e.,
they move at- 0.99c.

The standard picture for the origin of this nuclear activéiythat a supermassive
black hole (or order 1¥M.,), situated in the centre of the host galaxy, accretes
gas from the host. In this process, gravitational bindingrgy is released, part of
which can be transformed into radiation. The appearanca &GN then depends
on the black-hole mass and angular momentum, the accretienthe efficiency of
the transformation of binding energy into radiation, andfmorientation relative
to the line-of-sight. The understanding of the physical n@isms in AGNs, and
how they are related to their phenomenology, is still ratheomplete. We refer
the reader to the books and articles by Begelman et al. (198d¢dman (1986),
Blandford et al. (1990), Peterson (1997), and Krolik (1998) references therein,
for an overview of the phenomena in AGNs, and of our curreaeagdon their in-
terpretation. For the current review, we only make use ofgaréicular property of
AGNs:

QSOs can be extremely luminous. Their optical luminosity oesach a factor of
thousand or more times the luminosity of normal galaxiegréfore, their nuclear
activity completely outshines that of the host galaxy, dredtuclear sources appear
point-like on optical images. Furthermore, the high lunsitypimplies that QSOs
can be seen to very large distances, and in fact, until a fansyego QSOs held the
redshift record. In addition, the comoving number densit®80s evolves rapidly
with redshift. It was larger than today by a factor~ofl00 at redshifts between 2
and 3. Taken together, these two facts imply that a flux-echgample of QSOs has
a very broad redshift distribution, in particular, verytdist objects are abundant in
such a sample.

However, it is quite difficult to obtain a ‘complete’ flux-limed sample of QSOs.
Of all point-like objects at optical wavelengths, QSOs d¢ivate only a tiny frac-

tion, most being stars. Hence, morphology alone does néitsub obtain a can-
didate QSO sample which can be verified spectroscopicatiyweder, QSOs are
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found to have very blue optical colours, by which they carciffitly be selected.
Colour selection typically yields equal numbers of whiteadis and QSOs with
redshifts below~ 2.3. For higher-redshift QSOs, the strongoLgmission line
moves from the U-band filter into the B-band, yielding reddefB colours. For
these higher-redshift QSOs, multi-colour or emissiom-lgelection criteria must
be used (cf. Fan et al. 1999). In contrast to optical selecti&sNs are quite ef-
ficiently selected in radio surveys. The majority of soursekected at centimeter
wavelengths are AGNSs. A flux-limited sample of radio-seddcAGNs also has a
very broad redshift distribution. The large fraction oftdist objects in these sam-
ples make AGNs patrticularly promising sources for the dedivinal lensing effect,
as the probability of finding an intervening mass conceiatnatlose to the line-of-
sight increases with the source distance. In fact, mosteokiiown multiple-image
gravitational lens systems have AGN sources.

In addition to their high redshifts, the number counts of AGNe important for
lensing. For bright QSOs with apparent B-band magniti®igsl 9, the differential
source counts can be approximated by a powertié®), 1S (@1 wheren(S) dS
is the number density of QSOs per unit solid angle with fluwhwitdSof S, anda ~
2.6. At fainter magnitudes, the differential source counts&ao be approximated
by a power law in flux, but with a much flatter indexaf 0.5. The source counts
at radio wavelengths are also quite steep for the highestd|uend flatten as the
flux decreases. The steepness of the source counts will liketigve property of
AGNSs for the magnification bias, which will be discussed ictS6.

2.4 Correlation Functions, Power Spectra, and their Prajecs

2.4.1 Definitions; Homogeneous and Isotropic Random Fields

In this subsection, we define the correlation function amdpbwer spectrum of a
random field, which will be used extensively in later secsiddne example already
occurred above, namely the power spectiyof the density fluctuation field.

Consider a random field(X) whose expectation value is zero everywhere. This
means that an average over many realisations of the randwhsheuld vanish,
(9(X)) =0, for allX. This is not an important restriction, for if that was not tase,

we could consider the field(X) — (g(X)) instead, which would have the desired
property. Spatial positiori§ haven dimensions, and the field can be either real or
complex.

A random fieldg(X) is calledhomogeneousit cannot statistically be distinguished
from the fieldg(X+ V), wherey is an arbitrary translation vector. Similarly, a ran-
dom field g(X) is calledisotropicif it has the same statistical properties as the
random fieldg(® X), whereg is an arbitrary rotation matrix in dimensions. Re-
stricting our attention to homogeneous and isotropic randields, we note that
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thetwo-point correlation function

(9X)g"(¥)) = Cog(IX—¥1) (2.72)

can only depend on the absolute value of the difference véetveen the two
pointsX andy. Note thatCgyq is real, even ifg is complex. This can be seen by
taking the complex conjugate of (2.72), which is equivaterihterchangin and

y, leaving the right-hand-side unaffected.

We define the Fourier-transform pair@fas

(gn‘)(ng(ﬁ) e Xk (2.73)

—
~

o) = [ xgR s g = [

RN

We now calculate the correlation function in Fourier space,

ORg (K) = [ dwe® | dxe ™ ¥gmgx). (@274

Using (2.72) and substituting = X+, this becomes

R K) = [ dxd™® | dye %% eyl

~ (2n"5o(k—K) [ d've TEco ()
= (21)"8p (k—K') Py([K|) - (2.75)

In the final step, we defined tipwer spectrunof the homogeneous and isotropic
random fieldg,

Py(lK) = [ d've T Cyg(l). 2.76)

which is the Fourier transform of the two-point correlatfunctign. Isotropy of the
random field implies tha®y can only depend on the moduluslof

Gaussian random fieldsre characterised by the property that the probability dis-
tribution of any linear combination of the random figjX) is Gaussian. More gen-
erally, the joint probability distribution of a numb&f of linear combinations of
the random variablg(X;) is a multivariate Gaussian. This is equivalent to requiring
that the Fourier componen@?} are mutually statistically independent, and that
the probability densities for thg(K) are Gaussian with dispersi@@(|ﬁ|). Thus, a
Gaussian random field is fully characterised by its powecspm.
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2.4.2 Projections; Limber’s Equation

We now derive a relation between the power spectrum (or theledion function)
of a homogeneous isotropic random field in three dimensiang,its projection
onto two dimensions. Specifically, for the three-dimenaldield, we consider the
density contrasd|fx (w)8,w], where® is a two-dimensional vector, which could
be an angular position on the sky. Hencfga(w)é andw form a local comov-
ing isotropic Cartesian coordinate system. We define twiemiht projections of
0 along the backward-directed light cone of the observerat0,t = to,

/dwq (W)8,w] (2.77)

fori =1,2. Theqi(w) are weight functions, and the integral extends from 0 to
the horizonw = wy. Sinced is a homogeneous and isotropic random field, so is its
projection. Consider now the correlation function

C12=(01(8)g2(¥)
- / oW (W / oW (W) (3] fic (W)B, W] B[ fic (W8, W]) . (2.78)

We assume that there is no power in the density fluctuatiorssales larger than a
coherence scaleon. This is justified because the power spectiggleclines] k
ask — 0; see (2.62). This implies that the correlation functiontioa right-hand
side of eq. (2.78) vanishes fary > |w—W| = Lcon Althoughd evolves cosmo-
logically, it can be considered constant over a time scalevbith light travels
across a comoving distantégy,. We note that the second argumentdogimul-
taneously denotes the third local spatial dimension ancctisenological epoch,
related through the light-cone conditigndt| = adw. Furthermore, we assume that
the weight functiongjj(w) do not vary appreciably over a scdlev < L¢on. Con-
sequently|lw —w| < L¢on Over the scale wher€gs is non-zero, and we can set
fk (W) = fk (w) andgz(wW) = g2(w) to obtain

Cuf®) = [ dwentwiaztw) | oo Cos (/282 - (aww) . 279)

The second argument Qs now denotes the dependence of the correlation func-
tion on cosmic epoch. Equation (2.79) is one form of Limbét853) equation,
which relates the two-point correlation of tpeojectedfield to that of thethree-
dimensionafield.

Another very useful form of this equation relates the prigddwo-point correla-

tion function to the power spectrum of the three-dimenditakl. The easiest way
to derive this relation is by replacing tis in (2.78) by their Fourier transforms,
where upon
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ok oK’
x (3(k,w) & (K, w)) ek, 8 W)k, & g-ihanglig (2.80)

RL is the two-dimensional wave vector perpendicular to the-biftsight. The cor-
relator can be replaced by the power spectfgnusing (2.75). This introduces a
Dirac delta functiordp (k—K'), which allows us to carry out tHé-integration. Un-
der the same assumptions on the spatial variatiap(ef) and fx (w) as before, we
find

d3k - i k .(B—® i
Ciz= / dw a1 (W)qz(w) / —(Zn)3P5(|k|,w) g kWk.(6-6) gikaw

x/dV\/ej"S"‘/. (2.81)
The final integral yields 2p(ks), indicating that only such modes contribute to

the projected correlation function whose wave-vectorsiithe plane of the sky
(Blandford et al. 1991). Finally, carrying out the trivig-integration yields

2 .
Clz(e):/dwa(w)qz(w)/% (K|, w) e fk(wk.-6 (2.82)
= [ dwaswap(w) [ X POw) Bl fc(w) 8K (2.83)

The definition (2.73) of the Fourier transform, and the relat(2.76) between
power spectrum and correlation function allow us to write tbross) power spec-
trumPio(1) as

2
— [ dwen(wiaat) | 5 Pl (2ol fwk.
W) (]
_/dw 7o P5<fK(W>,W), (2.84)

which is Limber’s equation in Fourier space (Kaiser 199298)9 We shall make
extensive use of these relations in later sections.
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3 Gravitational Light Deflection

In this section, we summarise the theoretical basis for #seption of light de-
flection by gravitational fields. Granted the validity of EBiain’s Theory of General
Relativity, light propagates on the null geodesics of thacegtime metric. How-
ever, most astrophysically relevant situations permit @&msimpler approximate
description of light rays, which is called gravitationah$theory; we first describe
this theory in Sect. 3.1. It is sufficient for the treatmentesfsing by galaxy clus-
ters in Sect. 5, where the deflecting mass is localised inianmegmall compared
to the distance between source and deflector, and betweectdeind observer.
In contrast, mass distributions on a cosmic scale causd Bgtdldeflections all
along the path from the source to the observer. The magmificahd shear effects
resulting therefrom require a more general description¢clvive shall develop in
Sect. 3.2. In particular, we outline how the gravitatiomsid approximation derives
from this more general description.

3.1 Gravitational Lens Theory

-*

Source plane

|
|
|
|
: Dds
|
|
|
|
|
| Ds
Lens plane
[
1 B: 5
: d
H)

Observer

Fig. 11. Sketch of a typical gravitational lens system.
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A typical situation considered in gravitational lensingketched in Fig. 11, where
a mass concentration at redstgft(or angular diameter distané®;) deflects the
light rays from a source at redshif (or angular diameter distand®;). If there
are no other deflectors close to the line-of-sight, and ifetktent of the deflecting
mass along the line-of-sight is very much smaller than ldaghand the angular
diameter distancBgys from the deflector to the sour@gthe actual light rays which
are smoothly curved in the neighbourhood of the deflectotbeareplaced by two
straight rays with a kink near the deflector. The magnitud® direction of this
kink is described by thdeflection angléi, which depends on the mass distribution
of the deflector and the impact vector of the light ray.

3.1.1 The Deflection Angle

Consider first the deflection by a point mads If the light ray does not prop-
agate through the strong gravitational field close to thazbar that is, if its
impact parameteg is much larger than the Schwarzschild radius of the lens,
£ > Rs = 2GMc 2, then General Relativity predicts that the deflection arigle
is

. 4GM

A= ——. 3.1
This is just twice the value obtained in Newtonian gravitggghe historical re-
marks in Schneider et al. 1992). According to the condi§on Rs, the deflection
angle is smallg < 1.

The field equations of General Relativity can be lineari$é¢ia gravitational field

is weak. The deflection angle of an ensemble of point masslesnghe (vectorial)
sum of the deflections due to individual lenses. Consider athree-dimensional
mass distribution with volume densip(r). We can divide it into cells of size\
and mass oh= p(F) dV. Let a light ray pass this mass distribution, and describe
its spatial trajectory by&1(A),&2(A),r3(A)), where the coordinates are chosen such
that the incoming lightray (i.e. far from the deflecting mdssribution) propagates
alongrs. The actual light ray is deflected, but if the deflection angtemall, it can

be approximated as a straight line in the neighbourhood efdéflecting mass.
ThIS corresponds to the Born approximation in atomic anderauqahysms Then,
E( ) = E independent of the affine paramederNote thatE = (&1,€&2) is a two-
dimensional vector. The impact vector of the light ray ligkato the mass element
dmatr = (&],&5,r5) is then —&’, independent of}, and the total deflection angle
is

4 This condition is very well satisfied in most astrophysidalations. A cluster of galax-
ies, for instance, has a typical size of a few Mpc, whereasdligtancedyq, Ds, andDys are
fair fractions of the Hubble lengtbH, * = 3h~1 x 10°Mpc.
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G(6)=23 5 am( Qﬁw@é ;
2 E-¢
=g [ e et o, (32)

which is also a two-dimensional vector. Since the last facteeq. (3.2) is inde-
pendent ofr}, therj-integration can be carried out by defining therface mass
density

f)= / drap(E1,E2,13) | (3.3)

which is the mass density projected onto a plane perperatitalthe incoming
light ray. Then, the deflection angle finally becomes

—“»_’_4G 2¢c/ < /T/ g_g/
Q@) -5 [ dez@) FRT (3.4)

This expression is valid as long as the deviation of the adiglat ray from a
straight (undeflected) line within the mass distributiorsmsall compared to the
scale on which the mass distribution changes significafklis condition is satis-
fied in virtually all astrophysically relevant situatiorie( lensing by galaxies and
clusters of galaxies), unless the deflecting mass extehtthealay from the source
to the observer (a case which will be dealt with in Sect. 8htiuld also be noted
that in a lensing situation such as displayed in Fig. 11, tte®ming light rays
are not mutually parallel, but fall within a beam with opegengle approximately
equal to the angle which the mass distribution subtends erslly. This angle,
however, is typicallywerysmall (in the case of cluster lensing, the relevant angular
scales are of order 1 arc min2.9 x 107%).

3.1.2 The Lens Equation

We now require an equation which relates the true positiothefsource to its
observed position on the sky. As sketched in Fig. 11, thecgoamd lens planes are
defined as planes perpendicular to a straight line (theaptids) from the observer
to the lens at the distance of the source and of the lens, atbsgg. The exact
definition of the optical axis does not matter because of thallsess of angles
involved in a typical lens situation, and the distance tdéms is well defined for a
geometrically-thin matter distribution. L&t denote the two-dimensional position
of the source on the source plane. Recalling the definitidgh@fangular-diameter
distance, we can read off Fig. 11

§=—28—Dgd(E). (3.5)
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Introducing angular coordinates hy = Dsr3 andz = DgB, we can transform
eg. (3.5)to

B=6-——2G(D40)=6—c(8), (3.6)

where we defined the scaled deflection am@) in the last step. The interpretation

of the lens equation (3.6) is that a source with true posil_ﬁman be seen by an
observer at angular posmoﬁsatlsfylng (3.6). If (3.6) has more than one solution
for fixed B a source aB has images at several positions on the sky, i.e. the lens
produces multiple images. For this to happen, the lens nmeu&tiong’. This can

be quantified by the dimension-less surface mass density

> (D48 D
(Bdd)  ith Ser = ¢ S
or 4nG Dg4Dgs ’

K(8) = (3.7)
whereZ, is called the critical surface mass density (which dependb® redshifts

of source and lens). A mass distribution which kas 1 somewhere, i.e > X,
produces multiple images for some source posn(ﬁ)msee Schneider et al. 1992,
Sect. 5.4.3). Henc&,, is a characteristic value for the surface mass density which
distinguishes between ‘weak’ and ‘strong’ lenses. Notékha 1 is sufficient but

not necessary for producing multiple images. In termg,ahe scaled deflection
angle reads

o1 6@
ae:—/dw K@) 22 3.8
)= L) @38)

Equation (3.8) implies that the deflection angle can be &mi#ts the gradient of the
deflection potential

—

W(B) = /dw K@) In6—9, (3.9)

ast = Oy. The potentialp(6) is the two-dimensional analogue of the Newtonian
gravitational potential and satisfies the Poisson equatfan8) = 2« (6).

3.1.3 Magnification and Distortion

The solutionsh of the lens equation yield the angular positions of the irsagfe

a source aﬁ. The shapes of the images will differ from the shape of the@ou
because light bundles are deflected differentially. Thetmisthle consequence of
this distortion is the occurrence of giant luminous arcsatagy clusters. In gen-
eral, the shape of the images must be determined by solvenlgtis equation for
all points within an extended source. Liouville’s theorend éhe absence of emis-
sion and absorption of photons in gravitational light deftecimply that lensing
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conserves surface brightness (or specific intensity). bl,eiht(s)(ﬁ) is the surface
brightness distribution in the source plane, the obserueidae brightness distri-
bution in the lens plane is

-

1(8) =19[3(8)] . (3.10)

If a source is much smaller than the angular scale on whicHethe properties
change, the lens mapping can locally be linearised. Thertish of images is then
described by the Jacobian matrix

B (. Pu®))\ [l-k-v1 -V
ﬂ(e)—ﬁ— (6” — aeiaej> = ( ) , (3.11)

Y2 1-K+v1

where we have introduced the components of the sheay; + iy, = |y|e??,

1
VL= é(wﬂl— P22), Y2=W12, (3.12)

andk is related tap through Poisson’s equation. Hencefifis a point within an
image, corresponding to the pofig= B(éo) within the source, we find from (3.10)
using the locally linearised lens equation

1(8) =19 [Bo+ 2 (8o) - (é—éo)] . (3.13)

According to this equation, the images of a circular soureeHipses. The ratios of
the semi-axes of such an ellipse to the radius of the souecgiaen by the inverse
of the eigenvalues of (8p), which are 1- k + |y|, and the ratio of the solid angles
subtended by an image and the unlensed source is the infeéhsedeterminant of
4. The fluxes observed from the image and from the unlensed¢s@ue given as
integrals over the brightness distributiolr(é) and| (S)(ﬁ), respectively, and their
ratio is themagnification |i). From (3.13), we find

1 1
M= detn ~ (1—w)2— |y

(3.14)

The images are thus distorted in shape and size. The shapetidisis due to
the tidal gravitational field, described by the shgawhereas the magnification
is caused by both isotropic focusing caused by the localanaknsityk and
anisotropic focusing caused by shear.

Since the shear is defined by the trace-free part of the synodacobian matrix

4, it has two independent components. There exists a onagayapping from
symmetric, trace-free 2 matrices onto complex numbers, and we shall exten-
sively use complex notation. Note that the shear transfas®? under rotations

of the coordinate frame, and is therefore not a vector. kgusi(3.9) and (3.12)
imply that the complex shear can be written
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V) =~ » d’0' D (6-0)k(®),
_ 03— 62-2i0,0, -1
with 2 () = i 01-16,)2 (3.15)

3.1.4 Critical Curves and Caustics

Points in the lens plane where the Jacobfiis singular, i.e. where det = 0,
form closed curves, theritical curves Their image curves in the source plane
are calledcaustics Equation (3.14) predicts that sources on caustics ardtaifin
magnified; however, infinite magnification does not occuraality, for two rea-
sons. First, each astrophysical source is extended, anthgsification (given by
the surface brightness-weighted point-source magnifisadcross its solid angle)
remains finite. Second, even point sources would be magrbifeal finite value
since for them, the geometrical-optics approximationsfaiear critical curves,
and a wave-optics description leads to a finite magnifica@g. Ohanian 1983;
Schneider et al. 1992, Chap. 7). For the purposes of thiswevhe first effect al-
ways dominates. Nevertheless, images near critical curalese magnified and
distorted substantially, as is demonstrated by the giamidaus arcs which are
formed from source galaxies close to caustics. (Point)cg®avhich move across a
caustic have their number of images changed-Byand the two additional images
appear or disappear at the corresponding critical curveendns plane. Hence,
only sources inside a caustic are multiply imaged.

3.1.5 An lllustrative Example: Isothermal Spheres

The rotation curves of spiral galaxies are observed to becappately flat out to
the largest radii where they can be measured. If the magsbdisdn in a spiral
galaxy followed the light distribution, the rotation cusaould have to decrease at
large radii in roughly Keplerian fashion. Flat rotation ees thus provide the clear-
est evidence for dark matter on galactic scales. They camtberstood if galactic
disks are embedded in a dark halo with density prggilé r—2 for larger. The
projected mass density then behaves Bké. Such density profiles are obtained
by assuming that the velocity dispersion of the dark mateetigles is spatially
constant. They are therefore also called isothermal psofile shall describe some
simple properties of a gravitational lens with an isothdrmass profile, which
shall later serve as a reference.

The projected surface mass density asirggular isothermal sphernis

ay

2(€) = 2GE (3.16)

where oy is the line-of-sight velocity dispersion of the ‘particlde.g. stars in
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galaxies, or galaxies in clusters of galaxies) in the gediabal potential of the
mass distribution, assuming that they are in virial eqtitliim. The corresponding
dimensionless surface mass density is

? Das
Ds

K(e):% where 95:411(@)

5 - (3.17)

is called theEinstein deflection angléAs can easily be verified from (3.8), the
magnitude of the scaled deflection angle is constant fomtlaiss profile|d| = 6,
and the deflection potential i = 6g|6|. From that, the shear is obtained using

(3.12[9],

9 — ——_.92'4) , 318
v(6) 26 (3.18)
and the magnification is
a 6]
NCIES . (3.19)
6] —Be

This shows thal| = 8 defines a critical curve, which is called tRnstein circle
The corresponding caustic, obtained by mapping the Emsietle back into the
source plane under the lens equation, degenerates to a pwigk atr3 = 0. Such
degenerate caustics require highly symmetric lenses. &nybation of the mass
distribution breaks the degeneracy and expands the singailestic point into a
caustic curve (see Chapter 6 in Schneider et al. 1992 for aleléttreatment of
critical curves and caustics). The lens (3.17) producesitaages with angular
separation @ for a source withﬁ| < 1, and one image otherwise.

The mass distribution (3.17) has two unsatisfactory prigeerThe surface mass
density diverges fot] — 0, and the total mass of the lens is infinite. Clearly,
both of these properties will not match real mass distrdngi Despite this fact,
the singular isothermal sphere fits many of the observeddgsiems fairly well.

In order to construct a somewhat more realistic lens mod®, @an cut off the
distribution at small and large distances, e.g. by

B 6
2\/[62+62  2/[6[2+07

«(8) = (3.20)

which has a core radiug;, and a truncation radiug:. For 8. < \§| < 6, this
mass distribution behaves lilge. This lens can produce three images, but only

5 For axially-symmetric projected mass profiles, the magieitof the shear can be cal-
culated from|y|(0) = k(8) — k(B), wherek(8) is the mean surface mass density inside a
circle of radiust from the lens centre. Accordingly, the magnitude of the défie angle

is |d| = 6K (0).
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if 8.0 (8:+ 6;) ! < B/2. One of the three images occurs near the centre of the
lens and is strongly de-magnifieddf < 6g. In most of the multiple-image QSO
lens systems, there is no indication for a third central imy@mposing strict upper
bounds orf;, whereas for some arc systems in clusters, a finite coressizguired
when a lens model like (3.20) is assumed.

3.2 Light Propagation in Arbitrary Spacetimes

We now turn to a more rigourous description of the propagatidight rays, based
on the theory of geometrical optics in General Relativitye Wen specialise the
resulting propagation equations to the case of weak gtawiia fields and metric
perturbations to the background of an expanding univeisesd& equations contain
the gravitational lens equation discussed previously aeeal case. We shall keep
the discussion brief and follow closely the work of Schnekteal. (1992, Chaps. 3
& 4), and Seitz et al. (1994), where further references caioted.

3.2.1 Propagation of Light Bundles

In Sect. 3.1.2, we have derived the lens equation (3.5) inuwigte way. A
rigourous derivation in an arbitrary spacetime must actfounhe fact that distance
vectors between null geodesics are four-vectors. NeVedhgeby choosing an ap-
propriate coordinate system, the separation transvelithe iine-of-sight between
two neighbouring light rays can effectively be describedltyo-dimensional vec-
torz. We outline this operation in the following two paragraphs.

We first consider the propagation of infinitesimally thinhlidpeams in an arbitrary
space-time, characterised by the metric teggarThe propagation of a fiducial ray
Vo of the bundle is determined by the geodesic equation (e.gndiet al. 1973;
Weinberg 1972). We are interested here in the evolution@stiape of the bundle
as a function of the affine parameter along the fiducial raypstter an observer
O with four-velocityUg), satisfyingU5Ug, = 1. The physical wave vectdt of a
photon depends on the light frequency. We defthe: —c~ 1w, k" as a past-directed
dimensionless wave vector which is independent of the &aquw, measured by
the observer. We choose an affine paramgtef the rays passing through O such
that (1)A = O at the observer, (2) increases along the backward light cone of O,
and (3)Usk, = —1 at O. Then, with the definition &, it follows thatk" = dx*/ dA,
and thatA measures the proper distance along light rays for everge ¢to0.

Let y¥(8,)\) characterise the rays of a light beam with vertex at O, suah@h
is the angle between a ray and the fiducial ray wii\) = y¥(0,A). Further, let

YH(B,A) = W(B,A) —y¥(0,A) = [0y*(8, ) /08, ]6x denote the vector connecting the
ray characterised b@with the fiducial ray at the same affine parametewhere
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we assumed sufficiently smaB| so thatY* can be linearised i. We can then
decomposer* as follows. At O, the vectordld' andk” define a two-dimensional
plane perpendicular to both} andk™. This plane is tangent to the sphere of di-
rections seen by the observer. Now choose orthonormal entbxsE; andE; to
span that plane. HencE}'Ezy = 0, EfEy, = —1, ELk, = E{Uqu = 0, fork = 1,2.
Transporting the four vectoks', U§, E{, andE} parallel along the fiducial ray de-
fines avierbeinat each event along the fiducial ray. The deviation vectortican
be decomposed into

YH(B,A) = —E1(B,\) EY —E2(8,\) EL — Eo(B,\) KM, (3.21)

Thus, the two-dimensional vectéfé,)\) with componentg »(6,)) describes the
transverse separation of two light rays at affine paramet@hereas allows for a
deviation component along the beam direction. Due to theslisation introduced
aboveg depends linearly of, and the choice of assures that%j’ dA\(A =0) =6.
Hence, we can write the linear propagation equation

EAN)=D(N\)6. (3.22)

The 2x 2 matrix » satisfies the Jacobi differential equation

d?o (A
R vk T(AN)D(N), (3.23)
with initial conditions
p(0)=0 and z—f(m —7. (3.24)

Theoptical tidal matrix7 (A) is symmetric,

T(A)<K(A)+D[?(A)] Ol () ) 225

S\ OFo R -0F )]

and its components depend on the curvature of the mét(iz. and[J(z) denote
the real and imaginary parts of the complex nunb&pecifically,

£ (0) = —ZRaWROR ) (3.26)

whereRy () is the Ricci tensor agh(A). The complex quantityr () is more
complicated and depends on the Weyl curvature tens@?\ai Thesource of con-
vergenceg (M) leads to an isotropic focusing of light bundles, in that auar light
beam continues to have a circular cross section. In conaasbn-zerasource of
shear# (A) causes an anisotropic focusing, changing the shape ofiebundle.
For a similar set of equations, see, e.g. Blandford et ab11and Peebles (1993).
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To summarise this subsection, the transverse separatd:cbnr‘ieof two infinitesi-
mally close light rays, enclosing an an@lat the observer, depends linearly &n
The matrix which describes this linear mapping is obtaimechfthe Jacobi differ-
ential equation (3.23). The optical tidal matrixcan be calculated from the metric.
This exact result from General Relativity is of course nalilgaapplied to practical
calculations in general space-times, as one first has tolaédcthe null geodesic
vh(A), and from that the components of the tidal matrix have to Herdened.
However, as we shall show next, the equations attain rathgsle forms in the
case of weak gravitational fields.

3.2.2 Specialisation to Weak Gravitational Fields

We shall now specialise the transport equation (3.23) tcsthuation of a homo-
geneous and isotropic universe, and to weak gravitatioglalsfi In a metric of the
Robertson-Walker type (2.2, page 13), the source of sfiearust vanish identi-
cally because of isotropy; otherwise preferred directinsld exist. Initially cir-
cular light bundles therefore remain circular. Hence, thecal tidal matrix7 is
proportional to the unit matrixz (A\) = % (A) 1, and the solution of (3.23) must be
of the form® (A\) = D(A) 1. According to (3.22), the functioD(A) is the angular-
diameter distance as a function of the affine parameter. Ashaé demonstrate
next, this function indeed agrees with the angular diamdittance as defined in
(2.43, page 22).

To do so, we first have to fing (A). The Ricci tensor deviates from the Einstein
tensor by two terms proportional to the metric tenggt, one involving the Ricci
scalar, the other containing the cosmological constargs&lwo terms do not con-
tribute to (3.26), sinc&! is a null vector. We can thus replace the Ricci tensor in
(3.26) by the energy-momentum tensor according to Ein'stiéhd equation. Since

K® = ¢l = (1+2)c two, we havek® = —(1+2), and the spatial components of
kM are described by a direction and the constraint kHas a null vector. Then, us-
ing the energy-momentum tensor of a perfect fluid with dgnsiand pressure,
(3.26) becomes

R () = —g (p+ C_p2> (1+2)?2. (3.27)

Specialising to a universe filled with dust, ig= 0, we find from (2.16, page 16)
and (2.19, page 16)

(?) i Qo(1+2)°. (3.28)



The transport equation (3.23) then transforms to

@D 3 [Hp\?
F2="3 <?°) Qo(1+2)°D. (3.29)

In order to show that the solution of (3.29) with initial catiohsD = 0 and d =
dA atA = 0 is equivalent to (2.43, page 22), we proceed as followst le note
that (2.43) forzy = 0 can be written as an initial-value problem,

d? Dang Dang
el =K :
e (%) - (52). 630
with Dang(0) = 0 and dang= dw atw = 0, because of the properties of the func-
tion fi; cf. (2.4, page 14). Next, we need a relation betwgeandw. The null

component of the photon geodesiods= c(tg —t). Then, from o = ktdA, we
obtain d\ = —acdt. Using ¢ = a 1da, we find

a a
da_—ad)\, or dz_gd)\. (3.32)

Sincec dt = —a dw for null rays, we haver~!da = dt = —ac~!dw, which can be
combined with (3.31) to yield

d\ =a®dw. (3.32)

We can now calculate the analogous expression of (3.3@),for

o? D 2d 2d D 3N/ 2 .0
W<g)_aa[aa<g)}_aD—aaD, (3.33)

where a prime denotes differentiation with respectAtoFrom (3.31),a =
—(ac)~14, and

"2 22 2
a,,_}d(a) . 1d (a)_ 1 dH (3.34)

"2 da  22dal\a?) 2c2 da ’
with H given in (2.31, page 19). Substituting (3.29) into the fiestrt on the right-
hand side of (3.33), and (3.34) into the second term, we inetelgt see thaD

satisfies the differential equation (3.30). Sizdas the same initial conditions as
Dang they indeed agree.

For computational convenience, we can also transform Y3r28 a differential
equation forD(z). Using (3.31) and (2.31), one finds

(1+2) [(1-1—902)—9,\(1_ 1 )} d?D

(1+2?2)] dz2
7 Qo 2 db 3
-Q — -Q - || —4+=0QpoD=0. .
+{2 oZ+ 5 +3 /\(3 (1—|—Z)2)} dZ+2 0 0 (3.35)
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We next turn to the case of a weak isolated mass inhomogemittity spatial extent
small compared to the Hubble distam}éo’l, like galaxies or clusters of galaxies.
In that case, the metric can locally be approximated by trst-ptnkowskian line

element
ds® = <1+ @) cdt? — (1— @) dx? (3.36)
C C

where o is the line element of Euclidian three-space, a@nds the Newtonian
gravitational potential which is assumed to be wetikg ¢?. Calculating the cur-
vature tensor of the metric (3.36), and using Poisson’steguéor ®, we find that
for a light ray which propagates into the three-directitie, sources of convergence
and shear are

4nG 1 :
R=——gP, and 7 =—5(P1-P2+2iP ). (3.37)

Now the question is raised as to how an isolated inhomogeoait be combined
with the background model of an expanding universe. Thermisxact solution
of Einstein’s field equations which describes a universé wénsity fluctuations,
with the exception of a few very special cases such as thesSBheese model
(Einstein & Strauss 1945). We therefore have to resort tacqmation methods
which start from identifying ‘small’ parameters of the pheim, and expanding the
relevant quantities into a Taylor series in these pararselethe length scales of
density inhomogeneities are much smaller than the HubbmHE:Hal, the asso-
ciated Newtonian gravitational potenti@l< ¢ (note that this does not imply that
the relative density fluctuations are small'), and the pgacwklocitiesv < ¢, then
an approximate metric is

ds? = a2(1) Kl-l— i—f) c?dr? — <1— Zc—cf> (dw?+ fE(w)dw?) | ,  (3.38)

where d =a1dt is the conformal time element, adusatisfies Poisson’s equation
with sourceAp, the density enhancement or reduction relative to the meamic
density (Futamase 1989; Futamase & Sasaki 1989; Jacobsl60a)).

In the case of weak metric perturbations, the sources oferxgemce and shear of
the background metric and the perturbations can be addedliRg that bothg.
and ¥ are quadratic irk" 00 (14 z), so that the expressions in (3.37) have to be
multiplied by (14 z)?, we find for the optical tidal matrix

3 /Ho\? 1+7)2
Tij(A) = —3 <?°> QO(1+Z)55ij—( C2> (20 +&jP3z3) ,  (3.39)

where we have assumed that the local Cartesian coordingehasen such that
the light ray propagates i-direction. The same result is obtained from the metric
(3.38).
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The lens equation as discussed in Sect. 3.1 can now be déowethe previous re-
lations. To do so, one has to assume a geometrically thirendisttribution, i.e. one
approximates the density perturbatidp by a distribution which is infinitely thin

in the direction of photon propagation. It is then charasgsf by its surface mass
densityZ(z). The corresponding Newtonian potentialcan then be inserted into
(3.39). The integration oveP 33 along the light ray vanishes, and (3.23) can be
employed to calculate the change ab ddA across the thin matter sheet (the lens
plane), whereas the componentszoffar from the lens plane are given by a lin-
ear combination of solutions of the transport equation9B.2ontinuity and the
change of derivative aty, corresponding to the lens redstift then uniquely fix
the solution. Ifo (8, \s) denotes the solution at redshiff then® (8, \s) = i /90

in the notation of Sect. 3.1. Line integration of this redatihen leads to the lens
equation (3.2). See Seitz et al. (1994) for details, and ByBekinshaw (1996)
for an alternative derivation.
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4 Principles of Weak Gravitational Lensing

4.1 Introduction

If the faint, and presumably distant, galaxy populatiortiserved through the grav-
itational field of a deflector, the appearance of the galaisiehanged. The tidal
component of the gravitational field distorts thigapesf galaxy images, and the
magnification associated with gravitational light deflentchanges their apparent
brightnesslIf all galaxies were intrinsically circular, any galaxy age would im-
mediately provide information on the local tidal gravitatal field. With galaxies
being intrinsically elliptical, the extraction of signifiat information from individ-
ual images is impossible, except fgiant luminous arcgsee Fig. 10, page 37, for
an example) whose distortion is so extreme that it can ebsilyetermined.

However, assuming that the galaxies are intrinsically oanlgt orientedf], the
strength of the tidal gravitational field can be inferrednfra sample of galaxy
images, provided its net ellipticity surmounts the Poissoise caused by the finite
number of galaxy images in the sample and by the intrinsigtdity distribution.

Since lensing conserves surface brightness, magnificaticneases the size of
galaxy images at a fixed surface-brightness level. Thetraguflux enhancement

enables galaxies to be seen down to fainter intrinsic mades#, and consequently
the local number density of galaxy images above a certaintfiteshold can be

altered by lensing.

In this section, we introduce the principles of weak graiotzal lensing. In
Sect. 4.2, we present the laws of the transformation betweence and image
ellipticities and sizes, and in particular we introduce avamient definition of the
ellipticity of irregularly-shaped objects. Sect. 4.3 focuses on theraation of
the local tidal gravitational field from an ensemble of gglaxages. We derive
practical estimators for the shear and compare their velatierits. The effects of
magnification on the observed galaxy images are discuss8edh 4.4. We de-
rive an estimate for the detectability of a deflector fromwisak-lensing imprint
on galaxy-image ellipticities in Sect. 4.5, and the finalsadiion 4.6 is concerned
with practical aspects of the measurement of galaxy atiijgs.

6 This assumption is not seriously challenged. Whereas galan a cluster may have
non-random orientations relative to the cluster centrgains of galaxies may be aligned
due to mutual tidal interaction, the faint galaxies usedlémsing studies are distributed
over a large volume enclosed by a narrow cone with openinpaadected by the angular
resolution of the mass reconstruction (see below) and heaginparable to the Hubble
radius, since the redshift distribution of faint galaxiggairly broad. Thus, the faint galaxies
typically have large spatial separations, which is alsceotéid by their weak two-point
angular auto-correlation (Brainerd et al. 1995; Villumseml. 1997).
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4.2 Galaxy Shapes and Sizes, and their Transformation

If a galaxy had elliptical isophotes, its shape and sizeasirhply be defined in
terms of axis ratio and area enclosed by a boundary isopHoteever, the shapes
of faint galaxies can be quite irregular and not well appreated by ellipses. In ad-
dition, observed galaxy images are given in terms of pixigiHiness on CCDs. We
therefore require a definition of size and shape which adsdon the irregularity
of images, and which is well adapted to observational data.

Letl (é) be the surface brightness of a galaxy image at angular po§itiwe first
assume that the galaxy image is isolated, soltikah be measured to large angular

separations from the centeof the image,

5_ Jd8ai(®)8
Jd?8a[1(0)]
whereq (1) is a suitably chosen weight function. For instancey {f) = H(l — I)
is the Heaviside step functioB, is the centre of the area enclosed by a limiting
isophotel = ly,. Alternatively, ifq (1) =1, 8 is the centre of light. As a third ex-

ample, ifqi (1) = TH(I — l), 8 is the centre of light within the limiting isophote
| = lth. Having chosem (1), we define the tensor of second brightness moments,

) (4.1)

— _

_ JPeaI(6)](8i—6) (8] —6))
Jd*0ai[1(0)]

(e.g. Blandford et al. 1991). In writing (4.1) and (4.2), weplicitly assumed that

qi () is chosen such that the integrals converge. We can now défirsizeof an

image in terms of the two invariants of the symmetric terf@oFor example, we
can define the size by

Qij

, 1,je{1,2}, 4.2)

w= (QuQ22— Q%) Y2 : (4.3)

so that it is proportional to the solid angle enclosed by itmétihg isophote ifg(l)
is a step function. We quantify trehapeof the image by theomplex ellipticity

Q11— Q22+ 2iQ12
Qi1+ Q22 '

If the image has elliptical isophotes with axis ratie< 1, theny = (1 —r?)(1+
r?)~lexp(2i9), where the phase of is twice the position anglé of the major
axis. This definition assures that the complex elliptickyinchanged if the galaxy
image is rotated by, for this rotation leaves an ellipse unchanged.

X = (4.4)

If we define the centre of the souréeand the tensor of second brightness moments
Qi(js) of the source in complete analogy to that of the image, i.th WQ) replaced
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byl (S)(fS) in egs. (4.1) and (4.2), and employ the conservation of sarf@ightness
(3.10, page 49) and the linearised lens equation (3.13, p@gewve find that the
tensors of second brightness moments of source and imagelated through

Q®¥=420Q4a"=2Q24a, (4.5)

—

wherea = 4 (0) is the Jacobian matrix of the lens equation at posifiobefining
further the complex ellipticity of the sourgg® in analogy to (4.4) in terms @,
ellipticities transform according to

9 _  X—29+¢X’
1+1g/?—20(gx*)

X (4.6)

(Schneider & Seitz 1995; similar transformation formulasrevpreviously derived
by Kochanek 1990 and Miralda-Escudé 1991b), where theisistéenotes com-
plex conjugation, and is thereduced shear

y(©)

9= @

4.7)

The inverse transformation is obtained by interchangijrandx(® and replacing
g by —gin (4.6). Equation (4.6) shows that the transformation cdige elliptici-
ties depends only on the reduced shear, and not on the shietreasurface mass
density individually. Hence, the reduced shear or funditrereof are the only
guantities accessible through measurements of imagditigs. This can also
immediately be seen by writing as

4=(1-K) (1_91 % ) . (4.8)
-0 1+;

The pre-factor1 — k) only affects the size, but not the shape of the images. From
(4.5) and (4.3), we immediately see that the sizes of sourderaage are related
through

w=pB) " . (4.9)

We point out that the dimension-less surface mass dersignd therefore also
the shear, depend not only on the redshift of the lens, but also on thshié
of the sources, because the critical surface mass density{&ge 48) involves
the source redshift. More precisely, for fixed lens redshifthe lens strength is
proportional to the distance ratidys/Ds. This implies that the transformation (4.6)
generally also depends on source redshift. We shall retutimetse redshift effects
in Sect. 4.3, and assume for now that the lens redghigtsufficiently small so that
the ratioDgys/Ds is approximately the same for all faint galaxy images.
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Instead of x, we can define different ellipticity parameters (see
Bonnet & Mellier 1995). One of these definitions turns out te Quite use-
ful, namely

Q11— Q22+ 2iQ12
Q11+ Qo2+ 2(Q11Q — Q2,)1/2”

which we shall also catomplex ellipticity (Since we shall use the notatigrand
€ consistently throughout this article, there should be ndesion from using the
same name for two different quantitieshas the same phaseygsand for elliptical
isophotes with axis ratio< 1, |g| = (1—r)(1+4r)~L. € andy are related through

£E=

(4.10)

X 2
1+ (1 x2%2 X7 T4

(4.11)

The transformation between source and image ellipticitgims ofe is given by

<
1 g¢ for |g/<1
el® = (4.12)
1—ge*
P for |g/>1

(Seitz & Schneider 1997), and the inverse transformatioobtained by inter-
changinge ande(® and replacingy by —gin (4.12). Although the transformation of
€ appears more complicated because of the case distinctioshall see in the next
subsection that it is often useful to work in termseafather thary; cf. eq. (4.17)
below.

For the case of weak lensing, which we define for the purpogs$ection bk <«
1,|yl < 1, and thusg| < 1, (4.12) becomes~ (9 +g, providede| ~ |9 < 1/2.
Likewise, eq. (4.6) simplifies tg ~ x( + 2g in this case.

4.3 Local Determination of the Distortion

As mentioned earlier, the observed ellipticity of a singdagy image provides
only little information about the local tidal gravitation@eld of the deflector, for
the intrinsic ellipticity of the source is unknown. HoweMeased on the assumption
that the sources are randomly oriented, information ondbelltidal field can be
inferred from a local ensemble of images. Consider for exargalaxy images at
positions6; close enough to a fiducial poiBtso that the local lens properties
andy do not change appreciably over the region encompassing faaxies. The
expectation value of their corresponding source ellipésiis assumed to vanish,

E(x¥)=0=E(EY). (4.13)
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4.3.1 All Sources at the Same Redshift

We first consider the case that all sources are at the samigfteden, as men-
tioned following eq. (3.13, page 49), the ellipticity of aailar source determines
the ratio of the local eigenvalues of the Jacobian matrix his also holds for the
net image ellipticity of an ensemble of sources with vamgmet ellipticity. From
(3.11, page 49), we find for the ratio of the eigenvalues af terms of the reduced
shearg

179

== 4,14
=g (4.14)

Interestingly, if we replacg by 1/g*, r switches sign, bufr| and the phase of
remain unchanged. The signo€annot be determined observationally, and hence
measurements cannot distinguish betwgemd 1/g*. This is calledocal degen-
eracy. Writing deta = (1—k)2(1—|g|?), we see that the degeneracy betwgen
and 1/g* means that we cannot distinguish between observed imasjdg ia crit-

ical curve (so that det < 0 and|g| > 1) or outside. Therefore, only functions @f
which are invariant undey — 1/g* are accessible to (local) measurements, as for
instance theomplex distortion

29
5= 22
1+|9?

(4.15)

Replacing the expectation value in (4.13) by the average avecal ensemble
of image ellipticities,(x®) ~ E(x(¥) = 0, Schneider & Seitz (1995) showed that
(x\9) = 0'is equivalent to

=0, (4.16)

where they; are weight factors depending ¢§1 — §| which can give larger weight
to galaxies closer to the fiducial point. Additionally, tbecan be chosen such
as to account for measurement uncertainties in the imagsi@ties by giving
less weight to images with larger measurement error. Egquédi. 16) has a unique
solutiond, so that the distortion can locally be determined. It is ilgasblved by a
quickly converging iteration starting frod= (X).

Thed obtained from (4.16) is an unbiased estimate of the distortis dispersion
about the true value depends on the dispersipof the intrinsic ellipticity distri-
bution, and on the number of galaxy images. A fairly accuestemate of thems
error ofdis a5 ~ oy N—1/2, whereN is the effective number of galaxies used for the

local averageN = (¥ ui)? (> uiz)_l. This overestimates the error for large values
of |8| (Schneider & Seitz 1995). It is important to note that theestation value of
X is not &, but differs from it by a factor which depends both |@hand the intrin-
sic ellipticity distribution of the sources. In contrastttat, it follows from (4.13)
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and (4.12) that the expectation value of the complex etlifytic of the imagess
the reduced shear or its inversggfE= g if |g| < 1 and Ee) = 1/g" if |g| > 1
(Schramm & Kayser 1995; Seitz & Schneider 1997). Hence,

(g) — 21U (4.17)
2iUi

is an unbiased local estimate f@or 1/g*. The ellipticity parameteg is useful ex-
actly because of this property. If one deals with sub-@altienses (i.e. lenses which
are not dense enough to have critical curves, so that (cﬁz)t> 0 everywhere), or
with the region outside the critical curves in critical lessthe degeneracy between
g and 1/g* does not occur, an¢) is a convenient estimate for the local reduced
shear. Theams error of this estimate is approximatetyy ~ g (1 — |g|?) N~/2
(Schneider et al. 1999), wheeg is the dispersion of the intrinsic source ellipticity
(9. As we shall see in a moment,is the more convenient ellipticity parameter
when the sources are distributed in redshift.

The estimates fod and g discussed above can be derived without knowing the
intrinsic ellipticity distribution. If, however, the intmsic ellipticity distribution is
known (e.g. from deeplubble Space Telescopmages), we can exploit this addi-
tional information and determin® (or g) through a maximum-likelihood method
(Gould 1995; Lombardi & Bertin 1998a). Depending on the ghafthe intrinsic
ellipticity distribution, this approach can yield estiraatof the distortion which
have a smallermserror than the estimates discussed above. However, if the-in
sic ellipticity distribution is approximately Gaussiahetrmserrors of both meth-
ods are identical. It should be noted that the intrinsipadtity distribution is likely

to depend on the apparent magnitude of the galaxies, pgssiltheir redshifts, and
on the wavelength at which they are observed, so that thiskdison is not easily
determined observationally. Knowledge of the intrinsigoékity distribution can
also be used to determiddrom the orientation of the images (that is, the phase of
X) only (Kochanek 1990; Schneider & Seitz 1995; Deiser 198published). This
may provide a useful alternative to the method above sireerientation of images

is much less affected by seeing than the modulug. Mve return to the practical
estimate of the image ellipticities and the correspondisgpdion in Sect. 4.5.

In the case of weak lensing, defined by« 1 and|y| < 1, implying |[g| < 1, we
find from (4.11-4.16) that

~(e) ~ X (4.18)

VR g >

Nl o1

4.3.2 Sources Distributed in Redshift

So far, we assumed that all source galaxies are at the sast@dftedr more pre-
cisely, that the rati®ys/Ds between the lens-source and observer-source distances
is the same for all sources. This ratio enters into the sg4Brn/, page 48) of the
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physical surface mass denskyto the dimension-less convergenceThe deflec-
tion angle, the deflection potential, and the shear areradhli ink, so that the dis-
tance ratioDgys/Ds is sufficient to specify the lens strength as a function ofseu
redshift. Providedzg < 0.2, this ratio is fairly constant for sources with redshift
Zs 2 0.8, so that the approximation used so far applies to relgtiog-redshift de-
flectors. However, for higher-redshift lenses, the redststribution of the sources
must explicitly be taken into account.

For a fixed lens redshifty, the dimension-less surface mass density and the shear
depend on the source redshift. We define

limz e Zer(2d, 2)
>er(z4,2) H(z—z)

_ fkw(za,2)] fk[W(0,)]
fk [W(0,2)] fk[W(zZg, )]

using the notation of Sect. 2.1 (page 12). The Heaviside fstegtion accounts
for the fact that sources closer than the deflector are neetériThenk(8,z) =
Z(2)k(8), andy(8,z) = Z(2)y(6) for a source ar, andk andy refer to a fictitious
source at redshift infinity. The functiofi(z) is readily evaluated for any cosmo-
logical model using (2.41, page 22) and (2.4, page 14). WeAylp for various
cosmologies and lens redshifts in Fig. 12.

Z(2)

H(z—z) , (4.19)

The expectation value for the ellipticity of images with sadt znow becomes

(_Z(2)y
2% for p(z) >0
Ele(2)] = , (4.20)
1; é)(\zf)k " for w2 <0

wherep(z) is the magnification as a function of source redshift,

W2 = {[1-Z@K2- 222} . (4.21)

We refer tosub-criticallensing ifu(z) > 0 for all redshifts, which is equivalent to
1-k—|y|>0.

Without redshift information, only the mean ellipticity @aged over all redshifts
can be observed. We first consider this case, for which theesaadshift distribu-
tion is assumed to be known. We define the probabgjty) dzthat a galaxy image
(in the selected magnitude range) has a redshift witziofd. The image redshift
distribution will in general be different from the sourcealsift distribution since
magnified sources can be seen to higher redshifts than @demses. Therefore,
the redshift distribution will depend on the local lens paeterx andythrough the
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Fig. 12. The functionZ(z) defined in eq. (4.19) describes the relative lens strength as
function of source redshift. We showZ(z) for three cosmological models as indicated
in the figure, and for three values for the lens redshift= 0.2,0.5,0.8. By definition,
Z(z) — 0 asz— z4, andZ(z) — 1 asz — oo. For sources close to the deflectd(z) varies
strongly in a way depending relatively weakly on cosmology.

magnification (4.21). If, however, the magnification is simad if the redshift dis-

tribution depends only weakly on the flux, the simplificat@indentifying the two

redshift distributions is justified. We shall drop it lat&iven p,(z), the expectation
value of the image ellipticity becomes the weighted average

Ee) = [ zp@EE@) =y[X()+ M YY) (422)
with
_ 2(z)
Xe= [, e nE g
Y(K,Y)= /u(z)<0 dz p(2) %Z()Z)K , (4.23)

and the integration boundaries depend on the valuesaoid|y| through the mag-
nification.

If the lens is sub-criticalli(z) > O for all z. ThenY = 0, and only the first term in
(4.22) remains. AlsoX no longer depends opin this case, and ) = yX(K).
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An accurate approximation foX(k), valid for k < 0.6, has been derived in
Seitz & Schneider (1997),

_EE®) (2
Y= 7 (1 K) , (4.24)

where(Z") = [ dz p,(z) Z".

Specialising further to the weak-lensing regime, the etqigm value of the image
ellipticity is simply

E(e) ~ (Z)y. (4.25)

Thus, in the weak-lensing case, a source redshift distabuian be collapsed on a
single redshifizs satisfyingZ(zs) = (Z).

We now drop the simplification introduced above and defifi&S, z) dSdz as the
number of galaxy images per unit solid angle with flux withi@ad Sand redshift
within dz of zin the absence of lensing. At a poi@ﬂwith surface mass density
and sheay, the number density can be changed by magnification. Imdgefix@d
set of sources are distributed over a larger solid angleciad the number density
by a factorpu—1(z). On the other hand, the magnification allows the observation
fainter sources. In total, the expected number densityrbeso

n(Sz = u%(z) No (%,z) , (4.26)

with p(z) given in (4.21). This yields the redshift distribution

. B no [H1(2)S.Z]
PESIY = o) T az w2z ol 128 2]

(4.27)

which depends on the flu$ and the local lens parametatsandy through the
magnification. This function can now be substitutedgdg(z) in eq. (4.22).

4.3.3 Practical Estimates of the Shear

We saw before thafe) = S uigj/ 5 uj is an unbiased estimate of the local reduced
shearg if all sources are at the same redshift. We now generaliserésult for
sources distributed in redshift. Then, the expectationesafe is no longer a simple
function ofk andy, and therefore estimates ypfor an assumed value ferwill be
derived.

We first assume that redshifts for individual galaxies araaiable, but that only
the normalised redshift distributign(z) is known, or the distribution in eq. (4.27).
Replacing the expectation value of the image ellipticitytbg mean, eq. (4.22)

66



implies that the solutiog of

v=[X(06Y) + V2 (6p)] e (4.28)

provides an unbiased estimator for the shegaFhis is not a particularly explicit
expression for the shear estimate, but it is still extrenoslgful, as we shall see in
the next section. The shear estimate considerably singlifi#e assume a sub-
critical lens. Then,

1s0 _ -1 ~ <i> _ @
yt (e)XY(k) 2 (1 @ K), (4.29)

where we used eq. (4.24) in the second step. Specialisittiefuio weak lensing,
the shear estimate simplifies to

Yy = (e) (z)7t. (4.30)

Next, we assume that the redshifts of all galaxy images apgvRnAt first sight,
this appears entirely unrealistic, because the galaxyesage so faint that a com-
plete spectroscopic survey at the interesting magnitudesliseems to be out of
reach. However, it has become clear in recent years thatateaedshift estimates,
the so-called photometric redshifts, can be obtained framtivoolour photome-
try alone (see, e.g., Connolly et al. 1995). The accuracyhotgmetric redshifts
depends on the number of wave bands for which photometryaitade, the pho-
tometric accuracy, and the galaxy type; typical errorsfare 0.1 for faint, high-
redshift galaxies. This uncertainty is small compared ®rmge over which the
functionZ(z) varies appreciably, so that photometric redshifts aredatjras good
as precise spectroscopic redshifts for our purposes.

If the redshiftsz of the galaxies are known, more precise shear estimates than
before can be derived. Consider the weighted &umy; u; |€i — E(&;)|?, where the
expectation value is given by eq. (4.20), éhe Z = Z(z). For an assumed value

of K, an unbiased estimate pis given by they® minimisingF. Due to the case
distinction in eq. (4.20), this estimator is complicatedmate down analytically,

but can easily be calculated numerically.

This case distinction is no longer necessary in the sukzaritase, for which the
resulting estimator reads

2,50 _ YiUiZi€i (1_ ZiK>71
LT e @3y

In the case of weak lensing, this becomes

owl) _ 2iUiZEi
W) = S (4.32)
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We now compare the accuracy of the shear estimates with ghdwtiredshift in-
formation of the individual galaxies. For simplicity, wesasne sub-critical lens-
ing and set aII weight factors to unityy = 1. The dispersion of the estimate
y(1s9 15i&i for N galaxy images is

52 (y(Lsc)) _ E(|V<1’SC)\ ) MZ (Z g€ ) — ‘y|2. (4.33)

The expectation value in the final expression can be estthmating that the image
ellipticity is to first order given by, = si(s) +v, and that the intrinsic ellipticities
are uncorrelated. If we further assume that the redshiftsngftwo galaxies are
uncorrelated, we find

o) A 4z 2 5.2
=)= (Tzma—zig) W50
= X2(K)|V|?+&ij (0% V|2 +02) , (4.34)

where we used the definition (4.23)%fk), and define@? (k) = (Z?(1—Zk)~2) —
X2. Angular brackets denote averages over the redshift loligioin p,. Inserting
(4.34) into (4.33) yields

0%|y|? + o?
0-2 (V(l,SC)) — X|Iz|| X2 € ) (435)

Likewise, the dispersion of the estimatés9 is

51 ZZi(1-ZzK) "Y1 - ZjK)1E <si s]f)
2 (250 _ _|v|?
o (v2*) (51 22(1— ZiK) 2] v

02 02

TS Z2(1-7K) 2 NX(K)+ 0% ()]

(4.36)

We used eq. (4.34), but noted thzats now no longer a statistical variable, so that
we can puio = 0 in (4.34). In the final step, we have replaced the denominato
by its expectation value under ensemble averaging. We thdrliie ratio of the
dispersions,

02 y(17sc) 02 2
() () e

We thus see that the relative accuracy of these two estirdaefgnds on the frac-
tional width of the distribution oZ /(1 — Zk), and on the ratio between the disper-
sion of this quantity and the ellipticity dispersion. Thgbuits explicit dependence
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on|y|?, and through the dependencesgfandX onk, the relative accuracy also de-
pends on the lens parameters. Quantitative estimates3if)(dre given in Fig. 13.
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Fig. 13. The fractional accuracy gain in the shear estimaie t the knowledge of
the source redshifts is plotted, more precisely the denatif the square root of (4.37)
from unity in per cent. The four curves shown correspond to dlifferent values of the
mean source redshift, and to the cases without lensing 0 = y), and with lensing
(k=0.3=1y]), labelled NL and L, respectively. We assumed the redsksftidution (2.69)
with 3 = 3/2, and an Einstein-de Sitter cosmology. As expected, thieehithe lens red-
shift zy, the more substantially is the shear estimate improveddshié information, since
for low values ofzy, the functionZ(z) is nearly constant. Furthermore, the lower the mean
redshift of the source distribution, the more importantkhewledge of individual redshifts
becomes, for example to distinguish between foregroundankiground galaxies. Finally,
redshift information is relatively more important for l@mgens strength.

The figure shows that the accuracy of the shear estimateiteabty improved, in
particular once the lens redshift becomes a fair fractidh@mean source redshift.
The dependence of the lens strength on the deflector redwsipiies that the lens
signal will become smaller for increasing deflector redslsib that the accuracy
gained by redshift information becomes significant. In &ddj the assumptions
used to derive (4.35) were quite optimistic, since we hagei@ed in (4.34) that
the sample of galaxies over which the average is taken ig adjpresentation of
the galaxy redshift distributiop,(z). Given that these galaxies come from a small
area (small enough to assume thandy are constant across this area), and that
the redshift distribution of observed galaxies in pencdfne shows strong correla-
tions (see, e.g., Broadhurst et al. 1990, Steidel et al., 1888en et al. 1999), this
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assumption is not very realistic. Indeed, the strong ctugjeof galaxy redshifts
means that the effectivex will be considerably larger than the analytical estimate
used above. In any case, redshift information on the souataxigs will substan-
tially improve the accuracy of weak lensing results.

4.4 Magnification Effects

In addition to the distortion of imagehapesby which the (reduced) shear can be
measured locally, gravitational light deflection also mégs the images, leaving
the surface brightness invariant. The magnification chatige size, and therefore
the flux, of individual galaxy images. Moreover, for a fixetlgesources, the num-
ber density of images decreases by a faptas the sky is locally stretched. Com-
bining the latter effect with the flux magnification, the ledsand unlensed source
counts are changed according to (4.26). Two strategies &sune the magnifica-
tion effect have been suggested in the literature, nam#igreihrough the change
in the local source counts, perhaps combined with the assacchange (4.27) in
the redshift distribution (Broadhurst et al. 1995), or thgh the change of image
sizes at fixed surface brightness (Bartelmann & Narayan)1995

4.4.1 Number Density Effect

Let no(> S z)dz be the unlensed number density of galaxies with redshittiwit
dzof zand v!ith flux larger thai®. Then, at an angular positicﬁwhere the magni-
fication isp(0, z), the number counts are changed according to (4.26),

1 S
n(>Sz = u(é,z) No <> u(é,z)’z> ) (4.38)

Accordingly, magnification can either increase or decréasécal number counts,
depending on the shape of the unlensed number-count fandilus change of
number counts is callethagnification biasand is a very important effect for grav-
itational lensing of QSOs (see Schneider et al. 1992 foreefzes]’|

Magnification allows the observation of fainter sourcesic8ithe flux from the
sources is correlated with their redshift, the redshiftrdbation is changed accord-

” Bright QSOs have a very steep number-count function, andedlix enhancement
of the sources outweighs the number reduction due to thelsing of the sky by a large
margin. Whereas the lensing probability even for a higrsinftl QSO is probably too small
to affect the overall sources counts significantly, thetfosmcof multiply-imaged QSOs in
flux-limited samples is increased through the magnificabias by a substantial factor over
the probability that any individual QSO is multiply imageské, e.g. Turner et al. 1984;
Narayan & Wallington 1993 and references therein).

70



ingly,

no [> 1 (2)S,7]
JaZpt(Z)no[> uH(Z)S z]’
in analogy to the redshift distribution (4.27) at fixed fl8xSince the objects of

interest here are very faint, spectroscopic redshift méttion is in general difficult
to obtain, and so one can only observe the redshift-intedradunts

(4.39)

P(z>SK,y) = e

n(>S) :/dzﬁ no (> *(2S2) . (4.40)

The number counts of faint galaxies are observed to verebidsllow a power
law over a wide range of fluxes, and so we write the unlensedte@s

no(>Sz)=aS " p(z9), (4.41)

where the exponentt depends on the wave band of the observation
(e.g. Smail etal. 1995a), anph(z S) is the redshift probability distribution of
galaxies with flux> S. Whereas this redshift distribution is fairly well knownrfo
brighter galaxies which are accessible to current spempys little is known about
the faint galaxies of interest here. The ratio of the lenseblenlensed source counts
is then found by inserting (4.41) into (4.40),

r']:f;ss)) = [d @ m(zit@s) (4.42)

We should note that the lensed counts do not strictly follgpoaer law inS, for
po depends oz. Since the redshift distributiopg(z, S) is currently unknown, the
change of the number counts due to the magnification canrwelokécted. For very
faint flux thresholds, however, the redshift distributisrikely to be dominated by
galaxies at relatively high redshift. For lenses at fairhedl redshift (sayy < 0.3),
we can approximate the redshift-dependent magnificaiiprby the magnification
p of a fiducial source at infinity, in which case

n(> ) a—1

o> 9 = (4.43)

Thus, a local estimate of the magnification can be obtaineditfih (4.43) and from
a measurement of the local change of the number density gfamadf the slope of
the source counts is unity, = 1, there will be no magnification bias, while it will
cause a decrease of the local number density for flatter sl&@yeadhurst (1995)
pointed out that one can immediately obtain (for sub-altiensing, i.e. det > 0)

an estimate for the local surface mass density from a measumteof the local mag-
nification and the local reduced shegk = 1 — [u(1— |g|?)]~Y/2. In the absence
of shape information, (4.43) can be used in the weak lenginmig) wherek <« 1,
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ly| < 1, so thap~ (1+ 2k)] to obtain an estimate of the surface mass density,

N> -n(> 1
no(>9S) 2(a—-1)"

(4.44)

4.4.2 Size Effect

Since lensing conserves surface brightness, the magitfiazn be obtained from
the change in galaxy-image sizes at fixed surface brighthess be some conve-

nient measure of the surface brightness. For examplejsfthe solid angle of an

image, defined by the determinant of the tensor of secondhtinegs moments as
in (4.3), one can sdt=S/w.

Denoting byn(w, |, z) dw the number density of images with surface brightrless
redshiftz, and solid angle within @ of w, the relation between the lensed and the
unlensed number density can be written

n(oo,l,z):éno <C—:,I,z> ) (4.45)

For simplicity, we only consider the case of a moderatelylklieras redshift, so that
the magnification can be assumed to be locally constantlfonages, irrespective
of galaxy redshift. We can then drop the variakleere. The mean image size
(w)(I) at fixed surface brightnesdss then related to the mean image s{z&o(|)

in the absence of lensing through

(W) (1) = mw)o(l) - (4.46)

If the mean image size in the absence of lensing can be meb&ie by deep
HST exposures of blank fields), the local valu®f the magnification can there-
fore be determined by comparing the observed image sizdwsetin the blank
fields. This method has been discussed in detail in BarteimlaNarayan (1995).
For instance, if we assume that the logarithm of the image isidistributed as a
Gaussian with meatinw)o(l) and dispersiomw(l), we obtain an estimate for the
local magnification from a set ™ galaxy images,

N Inwy — (Inw)o(li) (N 1 -
Inp= (;—> . (4.47)

& o?(l;) o?(l;)

A typical value for the dispersion i3(1) ~ 0.5 (Bartelmann & Narayan 1995).

4.4.3 Relative Merits of Shear and Magnification Effect

It is interesting to compare the prospects of measuringrséueeh magnification
caused by a deflector. We consider a small patch of the skpicomg an expected
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numberN of galaxy images (in the absence of lensing), which is seffitty small
so that the lens parametersindy can be assumed to be constant. We also restrict
the discussion to weak lensing case.

The dispersion of a shear estimate from averaging over galkigticities iso2 /N,
so that the signal-to-noise ratio is

(§> _MUN. (4.48)
shear

N O¢

According to (4.44), the expected change in galaxy numbenisds|AN| = 2k|a —
1|N. Assuming Poissonian noise, the signal-to-noise ratibigdase is

<§) = 2k|a —1]VN. (4.49)
N counts
Finally, the signal-to-noise ratio for the magnificationieste (4.47) is
S 2K
=) ===VN, (4.50)
( N ) size G(I )

assuming alb(l) are equal.

Comparing the three methods, we find

(S/N>shear _ M 1 (S/N>counts:
(S/N)counts K 20¢ja—1|’ (S/N)size

20(1)a—1]. (4.51)

If the lens situation is such that ~ |y| as for isothermal spheres, the first of
egs. (4.51) implies that the signal-to-noise of the sheassmement is consid-
erably larger than that of the magnification. Even for nurdmmt slopes as flat
asa ~ 0.5, this ratio is larger than five, wittg ~ 0.2. The second of eqgs. (4.51)
shows that the size effect yields a somewhat larger signabtse ratio than the
number-density effect. We therefore conclude from thessiderations that shear
measurements should yield more significant results thamifiegtion measure-
ments.

This, however, is not the end of the story. Several additiooasiderations come
into play when these three methods of measuring lensingtseffe compared.
First, the shear measurement is the only one for which we kmewisely what

to expect in the absence of lensing, whereas the other twoaudgtheed to com-
pare the measurements with calibration fields void of lansiinese comparisons
require very accurate photometry. Second, eq. (4.49) stigrates the signal-to-
noise ratio since we assumed Poissonian errors, while edakigs are known to
cluster even at very faint magnitudes (e.g., Villumsen e1997), and so the er-
ror is substantially underestimated. Third, as we shaliudis in Sect. 4.6, obser-
vational effects such as atmospheric seeing affect thereddsle ellipticities and
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sizes of galaxy images, whereas the observed flux of galesmasch less affected.
Hence, the shear and size measurements require betteg seeiditions than the
number-count method. Both the number counts and the sizeureraents (at fixed
surface brightness) require accurate photometry, whicttisery important for the
shear measurements. As we shall see in the course of tltig amiost weak-lensing
measurements have indeed been obtained from galaxy @tligsi

4.5 Minimum Lens Strength for its Weak Lensing Detection

After our detailed discussion of shear estimates and sigrabise ratios for local
lensing measurements, it is interesting to ask how strongflaaling mass distri-
bution needs to be for a weak lensing measurement to re@gn@ur simplified
consideration here suffices to gain insight into the depecel®n the lens mass
of the signal-to-noise ratio for a lens detection, and onrdushifts of lens and
sources.

We model the deflector as a singular isothermal sphere (s#e3g.5, page 50).
Let there beN galaxy images with ellipticities; in an annulus centred on the lens
and bounded by angular radii, < 6; < Bot. For simplicity, we restrict ourselves
to weak lensing, so that(E) ~ y. For an axially-symmetric mass distribution, the
shear is always tangentially oriented relative to the dioedowards the mass cen-
tre, which is expressed by eq. (3.18) on page 51. We theretorsider the ellip-
ticity component projected onto the tangential directibms formally defined by

g = —0(se2?), whereg is the polar angle of the galaxy position relative to the
lens centre [see (3.18), page 51]. We now define an estin@ttihé lens strength

by
N
X=Y ag;. (4.52)
2,

The factorsy, = a(6;) are arbitrary at this point, and will be chosen later sucloas t
maximise the signal-to-noise ratio of the estimator (4.8@)e that the expectation
value ofX is zero in the absence of lensing, so that a significant nom\zdue of

X signifies the presence of a lens. The expectation value fesathermal sphere
is E(X) =6 y;a/(26;), where we used (3.18, page 51), and

EXY) = S aa Elege) = [EXOP+ S 22 453
( )_mz_lalaj (&i&tj) = [E(X)] +§i;ai- (4.53)

We employed Egiigtj) = Yi(6i)vi(8;) + 8i;02/2 here, and the factor two is due to

the fact that the ellipticity dispersion only refers to omenponent of the ellipticity,
while o¢ is defined as the dispersion of the two-component elligtidiherefore,
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the signal-to-noise ratio for a detection of the lens is

B Jiaf
V20; \/ 2 |

Differentiating (S/N) with respect ta;, we find that (S/N) is maximised if the
a; are choseril 81, Inserting this choice into (4.54) yields/S = 2-%20g0; ?

(4.54)

S
N

1/2 :
<Zi 6(2) . We now replace the sum by its ensemble average over thewannul

<zi e;2> — N(672) = 2n71In(Byt/Bin), Where we used = rm(62,,— 62 ), with
the number density of galaxy imagas Substituting this result into (4.54), and

using the definition of the Einstein radius (3.17, page 31 ,signal-to-noise ratio
becomes

% = g—i \/ﬁ V |n(eout/ein) (4.55)

1/2 1 2
127 (%) <$> (Ll)
30arc min 0.2 600kms

(el (5.

As expected, the signal-to-noise ratio is proportionaldipgare root of the number
density of galaxies and the inverse of the intrinsic eltifyi dispersion. Further-
more, it is proportional to the square of the velocity disp@no,. Assuming the
fiducial values given in eq. (4.55) and a typical value(Dfis/Ds) ~ 0.5, lenses
with velocity dispersion in excess of 600kms* can be detected with a signal-
to-noise> 6. This shows that galaxy clusters will yield a significaniakéensing
signal, and explains why clusters have been the main taogetdéak-lensing re-
search up to now. Individual galaxies with ~ 200kms* cannot be detected with
weak-lensing techniques. If one is interested in the sitzdigproperties of the mass
distribution of galaxies, the lensing effectsf, galaxies need to be statistically
superposed, increasing (S/N) by a factor,@Nya1. Thus, it is necessary to super-
pose several hundred galaxies to obtain a significant gajalgxy lensing signal.
We shall return to this topic in Sect. 7 on page 156.

We finally note that (4.55) also demonstrates that the detecf lenses will be-
come increasingly difficult with increasing lens redshafs,the last factor is a sen-
sitive function ofzy. Therefore, most lenses so far investigated with weakitgns
techniques have redshifts belowbOHigh-redshift clusters have only recently be-
come the target of detailed lensing studies.
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4.6 Practical Consideration for Measuring Image Shapes

4.6.1 General Discussion

Real astronomical data used for weak lensing are supplicd@y images. The
steps from a CCD image to a set of galaxy images with measliipticities are
highly non-trivial and cannot be explained in any detailia frame of this review.
Nevertheless, we want to mention some of the problems tegetith the solutions
which were suggested and applied.

The steps from CCD frames to image ellipticities can broaealgrouped into four
categories; data reduction, image detection, shape detion, and corrections
for the point-spread function. The data-reduction processore or less standard,
involving de-biasing, flat-fielding, and removal of cosmays and bad pixels. For
the latter purpose, it is essential to have several framélseofame field, slightly
shifted in position. This also allows the the flat field to beedeined from the
images themselves (a nice description of these steps is givdould et al. 1994).
To account for telescope and instrumental distortionsjrit&idual frames have
to be re-mapped before being combined into a final image. dieroto do this,
the geometric distortion has to be either known or stabl¢hénlatter case, it can
be determined by measuring the positions and shapes @rstakges (e.g., from
a globular cluster). In Mould et al. (1994), the classicalicgd aberrations were
determined and found to be in good agreement with the systep&cifications
obtained from ray-tracing analysis.

With the individual frames stacked together in the combimeage, the next step
is to detect galaxies and to measure their shapes. This np@aapimple, butis in
fact not quite as straightforward, for several reasonsaxdaimages are not neces-
sarily isolated on the image, but they can overlap, e.g. wikier galaxies. Since
weak-lensing observations require a large number densialaxy images, such
merged images are not rare. The question then arises wizedetected object is a
single galaxy, or a merged pair, and depending on the choamenthe measured
ellipticities will be much different. Second, the image @3y because of the finite
number of photons per pixel and the noise intrinsic to the @Gatronics. Thus,
a local enhancement of counts needs to be classified as stistdly significant
source detection, and a conservative signal-to-noisstibtd reduces the number
of galaxy images. Third, galaxy images have to be distifgdsrom stars. This is
not a severe problem, in particular if the field studied idifam the Galactic plane
where the number density of stars is small.

Several data-analysis software packages exist, such as A$OC
(Jarvis & Tyson 1981) and SExtractor (Bertin & Arnouts 1996)hey pro-
vide routines, based on algorithms developed from expegi@and simulated data,
for objective selection of objects and measuring their rceas, their multipole
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moments, their magnitudes, and classify them as stars @n@etl objects.
Kaiser et al. (1995) developed their own object detectigorthm. It is based
on convolving the CCD image with two-dimensional Mexicart-slaaped filter
functions of variable widtl®s. For each value ofs, the maxima of the smoothed
intensity map are localised. Varyirfly, these maxima form curves in the three-
dimensional space spannedbgnd6s. Along each such curve, the significance of
a source detection is calculated, and the maximum of thefisigince is defined as
the locatiord of an object with corresponding sife.

Once an object is found, the quadrupole moments can in ptenbe obtained from
(4.2). In practice, however, this is not necessarily thetrpactical definition of the
moment tensor. The functiam (1) in (4.2) should be chosen such that it vanishes
for surface brightnesses close to and smaller than the sghthess; otherwise,
one would sample too much noise. On the other hangl, ig cut off at too bright
values ofl, the area within which the quadrupole moments are meas@euhies
too small, and the effects of seeing (see below) become tvtming. Also, with

a too conservative cut-off, many galaxy images would be eéisassume, for in-
stance, thaty (1) = I H(I — I). One would then choodg, such that it is close to,
but a fewoneise above the sky background, and the quadrupole moments would
then be measured inside the resulting limiting isophotecéthis isophote is close
to the sky background, its shape is affected by sky noises intplies that the mea-
sured quadrupole moments will depend highly non-lineanlyhe brightness on the
CCD; in patrticular, the effect of noise will enter the measLellipticities in a non-
linear fashion. A more robust measurement of the quadrupolaents is obtained
by replacing the weight functiog [I (6)] in (4.2) byIW(é), WhereW(é) explicitly
depends 0. Kaiser et al. (1995) use a Gaussian of $izas their weight function

W, i.e., the size of theiw is the scale on which the object was detected at high-
est significance. It should be noted that the quadrupole mtsrabtained with a
weight functionW(é) do not obey the transformation law (4.5), and therefore, the
expectation value of the ellipticity,(E), will be different from the reduced shegr

We return to this issue further below.

Another severe difficulty for the determination of the losakar is atmospheric
seeing. Due to atmospheric turbulence, a point-like sowittdoe seen from the
ground as an extended image; the source is smeared-outeiatically, this can

be described as a convolution.l(fé) is the surface brightness before passing the
Earth’s atmosphere, the observed brightness distriblt?8#(6) is

| (053 (§) — / 91(5)PB—F), (4.56)

—

whereP(0) is thepoint-spread functioifPSF) which describes the brightness dis-
tribution of a point source on the CCIP(6) is normalised to unity and centred
on 0. The characteristic width of the PSF is called the size efsteeing disc. The
smaller it is, the less smeared the images are. A seeing @lelvidl arc second is
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required for weak-lensing observations, and there are aigindful of telescope
sites where such seeing conditions are regularly met. Tasorefor this strong
requirement on the data quality lies in the fact that wealsileg studies require a
high number density of galaxy images, i.e., the observati@ve to be extended to
faint magnitudes. But the characteristic angular sizeiot fgalaxies is below larc
second. If the seeing is larger than that, the shape infoomat diluted or erased.

The PSF includes not only the effects of the Earth’s atmagphit also pointing
errors of the telescope (e.g., caused by wind shake). Torerehe PSF will in gen-
eral be slightly anisotropic. Thus, seeing has two impar#ects on the observed
image ellipticities: Small elliptical images become roandand the anisotropy of
the PSF introduces a systematic, spurious image elliptitite PSF can be deter-
mined directly from the CCD once a number of isolated stetteages are identi-
fied. The shape of the stars (which serve as point sourcesttethe PSF. Note
that the PSF is not necessarily constant across the CCDe lidimber density of
stellar images is sufficiently large, one can empiricallgatée the PSF variation
across the field by a low-order polynomial. An additionalguatal difficulty is the
chromaticity of the PSF, i.e. the dependence of the PSF aspibhetral energy distri-
bution of the radiation. The PSF as measured from stellag@®né not necessarily
the same as the PSF which applies to galaxies, due to thfgratt spectra. The
difference of the PSFs is larger for broader filters. Howees assumed that the
PSF measured from stellar images adequately represer®Sthéor galaxies.

In the idealised case, in which the quadrupole moments direedievith the weight
functionqi (1) = I, the effect of the PSF on the observed image ellipticitias ca
easily be described. IR; denotes the quadrupole tensor of the PSF, defined in

complete analogy to (4.2), then the observed quadrupom)té)ﬁjobs) is related to

the true one b)Qi(jObS) = Rj + Qij (see Valdes et al. 1983). The ellipticigythen
transforms like

y(0b9 _ X+ Tx PSP

4.57
1+T 7 (4.57)

where

- PutPe o psp_ Pu—P+2iP2

== 4.58
Q11+ Q2 Pr1+ P22 ( )

Thus, T expresses the ratio of the PSF size to the image size befawelation,
andx(PSP is the PSF ellipticity. It is evident from (4.57) that the dleaT, the
lessx(°bS deviates frony. In the limit of very largeT, x(°°9 approacheg (PSP,

In principle, the relation (4.57) could be inverted to ohtgi from x(°°9. How-
ever, this inversion is unstable unlégss sufficiently small, in the sense that noise
affecting the measurement pf°?9 is amplified by the inversion process. Unfortu-
nately, these simple transformation laws only apply forgpecific choice of the
weight function. For weighting schemes that can be apptieddl data, the result-
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ing transformation becomes much more complicated.

If a galaxy image features a bright compact core which ensiguificant fraction
of the galaxy’s light, this core will be smeared out by the P8Rhat casey(°9
may be dominated by the core and thus contain little infolmmebout the galaxy
ellipticity. This fact motivated Bonnet & Mellier (1995) tdefine the quadrupole
moments with a weight functioW(é) which not only cuts off at large angular
separations, but which is also small n€ax 0. Hence, their weight functiog is
significantly non-zero in an annulus with radius and widtkthdeeing of the order

of the size of the PSF.

The difficulties mentioned above prohibit the determinatod the local reduced
shear by straight averaging over the directly measuredensdigpticities. This av-
erage is affected by the use of a angle-dependent weightidond/ in the prac-
tical definition of the quadrupole moments, by the finite sstehe PSF and its
anisotropy, and by noise. Bonnet & Mellier (1995) have penied detailed simula-
tions of CCD frames which resemble real observations ag@spossible, includ-
ing an anisotropic PSF. With these simulations, the effayesf object detection,
the accuracy of their centre positions, and the relatiowéen true and measured
image ellipticities can be investigated in detail, and sortiation between mean el-
lipticity and (reduced) shear can approximately be caldmtawilson et al. (1996)
followed a very similar approach, except that the analybth@ir simulated CCD
frames was performed with FOCAS. Assuming an isotropic B&Fmean image
ellipticity is proportional to the reduced shearr f(€), with a correction fac-
tor f depending on the limiting galaxy magnitude, the photoraedepth of the
image, and the size of the seeing disk. For a seeind' 8f Bonnet & Mellier ob-
tained a correction factofr ~ 6, whereas the correction factor in Wilson et al. for
the same seeing i6 ~ 1.5. This large difference is not a discrepancy, but due to
the different definitions of the quadrupole tensor. Althlouge correction factor
is much larger for the Bonnet & Mellier method, they show ttiegir measured
(and calibrated) shear estimate is more accurate than bit@ned with FOCAS.
Kaiser et al. (1995) used CCD frames taken with WFPC2 on bid&@which are
unaffected by atmospheric seeing, sheared them, and aepthd resulting im-
ages by a PSF typical for ground-based images and by addisg.no this way,
they calibrated their shear measurement and tested tineavisd of an anisotropic
contribution of the PSF.

However, calibrations relying on simulated images are nly fsatisfactory
since the results will depend on the assumptions underljtiegsimulations.
Kaiser et al. (1995) and Luppino & Kaiser (1997) presentedegupbative ap-
proach for correcting the observed image ellipticities R8F effects, with ad-
ditional modifications made by Hoekstra et al. (1998) and dducet al. (1998).
Since the measurement of ellipticities lies at the heartedkensing studies, we
shall present this approach in the next subsection, daspiieing highly technical.
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4.6.2 The KSB Method

Closely following the work by Kaiser et al. (1995), this sabson provides a re-
lation between the observed image ellipticity and a souligaieity known to be
isotropically distributed. The relation corrects for P$fesring and its anisotropy,
and it also takes into account that the transformation ({@o3pnger applies if the
weight factor explicitly depends o

We consider the quadrupole tensor

Q= [ Po(6—8)(8;—8)IOW (B-8F/0?) .  (459)

whereW contains a typical scale, and8 is defined as in (4.1), but with the new
weight function. Note that, in contrast to the definitior2)4this tensor is no longer
normalised by the flux, but this does not affect the defini{d) of the complex
ellipticity.

The relation between the observed surface brighth®$8) and the true sur-
face brightness$ is given by (4.56). We assume in the following thats nearly
isotropic, so that the anisotropic part Bfis small. Then, we define the isotropic
part P's° of P as the azimuthal average overand decompose into an isotropic
and an anisotropic part as

P(©) = [ Ca(®) P -9). (4.60)

which definesq uniquely. In generalg($) will be an almost singular function,
but we shall show later that it has well-behaved momentsh BSP and g are
normalised to unity and have vanishing first moments. W8, we define the
brightness profiles

1%9(8) = [ 01()P(6-9)
198) = / P 15(§) POB— 8) . (4.61)

The first of these would be observed if the true image was sdeamly with an
isotropic PSF, and the second is the unlensed source smeiheB's°. Both of

these brightness profiles are unobservable, but conveoiethie following discus-
sion. For each of them, we can define a quadrupole tensor 45@)( From each
guadrupole tensor, we define the complex elliptigity= X1 + iX2, in analogy to
(4.4).

If we define the centres of images including a spatial weightfion, the property
that the centre of the image is mapped onto the centre of thieasdhrough the
lens equation is no longer strictly true. However, the diwes are expected to be

80



very small in general and will be neglected in the followiltgnce, we choose

coordinates such th&= 0, and approximate the other centres to be at the origin
as well.

According to our fundamental assumption that the intriredlipticities are ran-
domly oriented, this property is shared by the ellipticiti® defined in terms of°
[see (4.61)], because it is unaffected by an isotropic PB&ré&fore, we can replace
(4.13) by EX°) = 0 in the determination aj. The task is then to relate the observed
image ellipticityx°PSto x°. We break it into several steps.

From x'° to x°°S.  We first look into the effect of an anisotropic PSF on the ob-
served ellipticity. According to (4.60) and (4.61),

1°58) = [ 98- 8)1*(3). (462

Let f(8) be an arbitrary function, and consider

[ 0 1(8)1°%8) = [ o1) [ &3 1(3+5)a(d)
24 1iSO 1 24 1iSO azf 2
= [ POV@) 1®) + 0 [ POICE) 5o+l (4.69)

We used the fact thatis normalised and has zero mean, and defined

qu:/d2¢q(¢)¢a¢j, QL=0u1—022, O2=2q12. (4.64)

The tenso;; is trace-lessqi; = —Qg2, following from (4.60). We consider in the
following only terms up to linear order ig. To that order, we can repla¢&® by
1°bS in the final term in (4.63), since the difference would yielteam O 0 ().
Hence,

0% f
0d0d;

Settingoiso = Ogbs= O in thg definition of the quadrupole tensdp§° and Q°PS,
and choosind (8) = 8;0;W(|6]?/0?), yields

[ orso@) 1®)~ [ Po1(©)1°%6) - a4 [ 1) (4.65)

Qo =qQPP® Z| ki Okl (4.66)

where the Einstein summation convention was adopted, aedewh

s (1o ()] o
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This then yields

tr(Q°) = tr(Q°"S) — X ,
(leo leo> (Qobs 825) N XlaCch 7 and
2Q = 2Q85°— Xou Ol , (4.68)

where the sums run over= 1, 2[%] Up to linear order irgq,
Xe® = Xo °—Papds » (4.69)

with the definitions

ng] trQObS (XGB XObSXB)
W/ W/l
Xap= [ FO18) | (W-+ 285 ) dop+ @@ |
_ 2 4 | Obs ZWH
o= [ 01w na(@) (S BR ) @.70)
and
N1(6) =67—05; na2(B) =20:6;. (4.71)

P§E1 was dubbedmear polarisabilityin Kaiser et al. (1995). It describes the (lin-
ear) response of the ellipticity to a PSF anisotropy. No&t I’P@E1 depends on the

observed brightness profile. In particular, its size desgedor larger images, as
expected: The ellipticities of larger images are less &by a PSF anisotropy
than those of smaller images.

The determination of 4. Equation (4.69) provides a relation between the el-
lipticities of an observed image and a hypothetical imageased by an isotropic
PSF. In order to apply this relation, the anisotropy tegmeeds to be known. It
can be determined from the shape of stellar images.

Since stars are point-like and unaffected by lensing, tisetropically smeared
images have zero ellipticity*'S° = 0. Hence, from (4.69),

sk * b
o = (P g Xz (4.72)

8 We use Greek instead of Latin indicesp = 1,2 to denote that they are not tensor
indices. In particular, the componentsypflo not transform like a vector, but like the trace-
less part of a symmetric tensor.
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In general, the PSF varies with the position of an image.iff #ariation is suffi-
ciently smoothg can be measured for a set of stars, and approximated by a low-
order polynomial across the data field. As pointed out by KStrelet al. (1998), the
scale sizeo in the measurement af is best chosen to be the same as that of the
galaxy image under consideration. Hence, for each value sfich a polynomial

fit is constructed. This approach works well and provides stimate ofq at the
position of all galaxies, which can then be used in the tiamsétion (4.69).

From x° to x'S°.  We now relatex's° to the ellipticity x° of a hypothetical image
obtained from isotropic smearing of the source. To do so, see(4.61) and (3.10)
in the forml (68) =15(26), and consider

1596) = [ E15(29)P=(6 )
= oy [ FUOPRE- 271 = i(a8). @73

The second step is merely a transformation of the integratawiable, and in the
final step we defined the brightness moment

©) = [ Po1°®)PE-8) with ﬁ(é)zﬁpisom—léy (4.74)

The functionP is normalised and has zero mean. It can be interpreted as a PSF
relatingl to I°. The presence of shear rendEranisotropic.

We next seek to find a relation between the ellipticities®fand|"

- o 2
Gi= dZBBiBjuB)vv('B‘ )

62

. B2 8
—deta 24 / dzeeke||'5°(e)w<‘e| 2‘;”““”) . (4.75)

The relation between the two filter scales is giverdBy= (1—k)?(1+|g|?)o?, and
dis the distortion (4.15). For small we can employ a first-order Taylor expansion
of the weight functionV in the previous equation. This results in the following
relation betweerg andyx's°:

X%~ RXa = CopJg - (4.76)

where
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o 2
CGB = 260‘3 - 2XI§ IBSO"‘ tr(QiSO) Xa LB - tr(QiSO) BO‘B )

201150/ A ! |_é|2 1 A ra
Bup =~ | BICOW (5 | —5na(®)ng(®)
1 — o 2 —
Lq:—/d26|§\zl'5°(6)w’ <ﬂ> éna(e). 4.77)

C is theshear polarisabilityof Kaiser et al. (1995). Where&sis defined in terms
of 1'S°, owing to the assumed smallnesgypthe difference of calculated witH 's°
and!1°PSwould cause a second-order change in (4.76) and is neglectetat we
can calculat€ directly from the observed brightness profile.

In analogy to (4.60), we can decompd3mmto an isotropic and an anisotropic part,
the latter one being small due to the assumed smallness shéa,

5(0) = [ 2oP=($)d(6-9). (4.79)

Defining the brightness profiLe which would be otgtained framearing the source
with the isotropic PSP'S°, [°(8) = [ d?¢ 15(¢) P'S°(8 — &), one finds

®) = [ Por@)a6-9). (4.79)

Thus, the relation betwedrandi® is the same as that betweis and1s°, and we
can write

Xa = Xa —P3g 0 - (4.80)

Note thatPS™ should in principle be calculated by usihinstead ofi®Sin (4.69).
However, due to the assumed smallnesg ahdq, the differences betwed®s

10 andi are small, namely of first order ig andq. Sinceqis of orderg [as is
obvious from its definition, and will be shown explicitly id4.82)], this difference

in the calculation oP*™would be of second order in (4.80) and is neglected here.

EliminatingX from (4.76) and (4.80), we obtain
X° = X9 +Capdp + P - (4.81)

Now, for stellar objects, botR® andx® vanish, which implies a relation between
d andg,

G = —(P°™) o3 Cpy Oy - (4.82)

where the asterisk indicates thi&t" andC are to be calculated from stellar images.
Whereas the result should in principle not depend on thecehafithe scale length
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in the weight function, it does so in practice. As argued irekiira et al. (1998),
one should use the same scale lengtRSft* andC* as for the galaxy object for
which the ellipticities are measured. Defining now

PSs = Cap — PV (P"™) 5 Cag » (4.83)
and combining (4.69) and (4.81), we finally obtain
PR —Pgpds - (4.84)

This equation relates the observed ellipticity to that & source smeared by an
isotropic PSF, using the PSF anisotropy and the reduced gh&ince the ex-
pectation value of? is zero, (4.84) yields an estimate @f The two tensor®s™
andP? can be calculated from the brightness profile of the imagdserdas the
treatment has been confined to first order in the PSF anisoaingd the shear,
the simulations in Kaiser et al. (1995) and Hoekstra et &98) show that the re-
sulting equations can be applied even for moderately lahgars A numerical
implementation of these relations, thecat software, is provided by N. Kaiser
(seehttp://www.ifa.hawaii.edu/~kaiser). We also note that modifications
of this scheme were recently suggested (Rhodes et al. 13891K1999), as well
as a completely different approach to shear measuremeunig&ék 1999).

obs

%=X
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5 Weak Lensing by Galaxy Clusters
5.1 Introduction

So far, weak gravitational lensing has chiefly been appledetermine the mass
distribution of medium-redshift galaxy clusters. The mesason for this can be
seen from eq. (4.55): Clusters are massive enough to bedundiy detected by
weak lensing. More traditional methods to infer the matistrdbution in clusters
are (a) dynamical methods, in which the observed line-giftsvelocity distribu-
tion of cluster galaxies is used in conjunction with thealitheorem, and (b) the
investigation of the diffuse X—ray emission from the het{0’ K) intra-cluster gas
residing in the cluster potential well (see, e.g., Saragi8c6).

Both of these methods are based on rather strong assumgtmmihe dynamical
method to be reliable, the cluster must be in or near viriallégayium, which is not
guaranteed because the typical dynamical time scale osteclis not much shorter
than the Hubble timédg?, and the substructure abundantly observed in clusters
indicates that an appreciable fraction of them is still ia gfrocess of formation.
Projection effects and the anisotropy of galaxy orbits ustérs further affect the
mass determination by dynamical methods. On the other bamrdy analyses rely
on the assumption that the intra-cluster gas is in hydrostguilibrium. Owing
to the finite spatial and energy resolution of existing X-regstruments, one often
has to conjecture the temperature profile of the gas. Heoe,the influence of
projection effects is difficult to assess.

Whereas these traditional methods have provided invatuigibrmation on the
physics of galaxy clusters, and will continue to do so, gedional lensing offers a
welcome alternative approach, for it determines the ptegemass distribution of
a cluster independent of the physical state and nature ahtteer. In particular,
it can be used to calibrate the other two methods, espedallglusters showing
evidence of recent merger events, for which the equilib@ssumptions are likely
to fail. Finally, as we shall show below, the determinatidrclaster mass profiles
by lensing is theoretically simple, and recent results shmat the observational
challenges can also be met with modern telescopes andrirestits.

Both shear and magnification effects have been observed umdber of galaxy

clusters. In this chapter, we discuss the methods by whiglptbjected mass dis-
tribution in clusters can be determined from the observesitey effects, and show
some results of mass reconstructions, together with adisetission of their astro-
physical relevance. Sect. 5.2 presents the principlesust&l mass reconstruction
from estimates of the (reduced) shear obtained from imdigieties. In contrast

to the two-dimensional mass maps generated by these reactis, the aperture
mass methods discussed in Sect. 5.3 determine a single ntorty&racterise the
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bulk properties of the cluster mass. Observational reaudtpresented in Sect. 5.4.
We outline further developments in the final section, inolgdhe combined anal-
ysis of shear and magnification effects, maximum-likelithazethods for the mass
reconstruction, and a method for measuring local lens patens from the extra-
galactic background noise.

5.2 Cluster Mass Reconstruction from Image Distortions

We discussed in detail in Sect. 4 how the distortion of imdwggses can be used
to determine the local tidal gravitational field of a clusterthis section, we de-
scribe how this information can be used to construct twoetlisional mass maps
of clusters.

Shortly after the discovery of giant luminous arcs (Souetdl. 1987a;

Lynds & Petrosian 1989), Fort et al. (1988) detected a nurnbdistorted galaxy

images in the cluster A 370. They also interpreted tlasketsas distorted back-
ground galaxy images, but on a weaker level than the gianinlous arc in the

same cluster. The redshift determination of one arclet bijidtet al. (1991) pro-

vided early support for this interpretation. Tyson et a@9Q) discovered a coher-
ent distortion of faint galaxy images in the clusters A 1688 & 1409+52, and

constrained their (dark) mass profiles from the observeeashKochanek (1990)
and Miralda-Escudé (1991b) studied in detail how parariseté mass models for
clusters can be constrained from such distortion measuntsme

The field began to flourish after Kaiser & Squires (1993) fotirat the distortions
can be used for parameter-free reconstructions of clustéace mass densities.
Their method, and several variants of it, will be describedhis section. It has
so far been applied to about 15 clusters, and this numberisndly limited by
the number of available dark nights with good observing dooms at the large
telescopes which are required for observations of weakrigns

5.2.1 Linear Inversion of Shear Maps

Equation (3.15, page 50) shows that the slyeésia convolution of the surface mass
densityk with the kernel®. This relation is easily inverted in Fourier space to
return the surface mass density in terms of a linear funatiohthe shear. Hence,
if the shear can be observed from image distortions, thasennass density can
directly be obtained. Let the Fourier transformkg) be

k(I = » d?0k (8) exp(iB-1) . (5.1)
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The Fourier transform of the complex kerreldefined in (3.15, page 50) is

2 2
50— (7 ||IJ‘;2||1|2) 52)

Usmg the convolution theorem, eqg. (3.15, page 50) can betamrly(l)
™ a)(l) () for I' £ 0. Multiplying both sides of this equation with* and us-
ing ® * = TP gives

— = —

RO =m YD) p*1) for T+£0, (5.3)

and the convolution theorem leads to the final result

K(6) —ko= =y a0’ 0*(6— ') y(@)
_1 20/ A \ue
_n/deGD[fD B-8)y(@) (5.4)

(Kaiser & Squires 1993). The constaqin (5.4) appears because a constant sur-
face mass density does not cause any shear and is thus uagwsbyy. The two
expressions in (5.4) are equivalent becauée *y) = 0, as can be shown from the
Fourier transforms of equations (3.12, page 49). In apipting, the second form
of (5.4) should be used to ensure tkas real. Relation (5.4) can either be applied
to a case where all the sources are at the same redshift, ainwhse< andy are
defined as in egs. (3.7) and (3.12), or where the sourcesstrébdted in redshift,
becausa& andy are interpreted as convergence and shear for a hypothstigade

at infinite redshift, as discussed in Sect. 4.3.2.

In the case of a weak leng & 1,
observations, cf. (5.16). When inserted into (5.4), thigprpeovides a parameter-
free reconstruction of the surface mass density, apart &omverall additive con-
stant. The importance of this result is obvious, as it presids with a novel and
simple method to infer the mass distribution in galaxy @ust

There are two basic ways to apply (5.4) to observational @atlaer, one can derive
a shear map from averaging over galaxy images by calculétmdpcal shear on
a grid inB-space, as described in Sect. 4.3; or, one can replace dugahin (5.4)
by a sum over galaxy images at positidhs

K(B) = =

— 50 [Q)*(é—éi)si} . (5.5)

Unfortunately, this estimate @fhas infinite noise (Kaiser & Squires 1993) because
of the noisy sampling of the shear at the discrete backgr@ataxy positions.
Smoothing is therefore necessary to obtain estimatokswith finite noise. The
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form of eq. (5.5) is preserved by smoothing, but the keznéd modified to another
kernelD. In particular, Gaussian smoothing with smoothing lertijtreads to

D (6) = [1— <1+ ‘2—22> exp(‘g—f)] D (0) (5.6)

(Seitz & Schneider 1995a). Thems error of the resultingk map is of order
o:N~1/2, whereN is the number of galaxy images per smoothing windiivw-
nm®2. However, the errors will be strongly spatially correlatédhereas the esti-
mate (5.5) witho replaced byp uses the observational data more directly than by
first constructing a smoothed shear map and applying (5i4)itéurns out that the
latter method yields a mass map which is less noisy than thmeae obtained from
(5.5), because (5.5) contains the ‘shot noise’ from the sandngular position of
the galaxy images (Seitz & Schneider 1995a).

A lower bound to the smoothing leng8 follows from the spatial number density
of background galaxies, i.e. their mean separation. Malksteally, a smoothing
window needs to encompass several galaxies. In regionsarsfgsshear signals,
N ~ 10 may suffice, whereas mass maps in the outskirts of clusteese the shear
is small may be dominated by noise unléks- 100. These remarks illustrate that
a single smoothing scale across a whole cluster may be a podarec We shall
return to this issue in Sect. 5.5.1, where improvementsheililiscussed.

Before applying the mass reconstruction formula (5.4) & data, one should be
aware of the following difficulties:

(1) Theintegralin (5.4) extends ov@g#, while real data fields are relatively small
(most of the applications shown in Sect. 5.4 are based on G@ibsside
lengths of about 7 arc min). Since there is no informationhenshear outside
the data field, the integration has to be restricted to the,fwhich is equiva-
lent to settingy = 0 outside. This is done explicitly in (5.5). This cut-off imet
integration leads to boundary artefacts in the mass recartigtn. Depending
on the strength of the lens, its angular size relative todhtite data field, and
its location within the data field, these boundary artefaats be more or less
severe. They are less important if the cluster is weak, scoatipared to the
data field, and centred on it.

(2) The shear is an approximate observable only in the limiteak lensing. The
surface mass density obtained by (5.4) is biased low in thealeregion of
the cluster where the weak lensing assumption may not hold gaes not
hold in those clusters which show giant arcs). Thus, if tlrelision method is
to be applied also to the inner parts of a cluster, the reldiegtweery and the
observabl& has to be taken into account.

(3) The surface mass density is determined by (5.4) only ugntadditive con-
stant. We demonstrate in the next subsection that theressexsdightly differ-
ent general invariance transformation which is presenll imass reconstruc-
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tions based solely on image shapes. However, this invaigaasformation
can be broken by including the magnification effect.

In the next three subsections, we shall consider pointsd)2). In particular, we
show that the first two problems can easily be cured. The rfiagtion effects will
be treated in Sect. 5.4.

5.2.2 Non-Linear Generalisation of the Inversion, and avahlmance Transfor-
mation

In this section, we generalise the inversion equation {6.4)so account for strong
lensing, i.e. we shall drop the assumptiog 1 and|y| < 1. In this case, the shear
yis no longer a direct observable, but at best the reduced gherin general the
distortiond. In this case, the relation betwerrand the observable becomes non-
linear. Furthermore, we shall assume here that all soureestahe same redshift,
so that the reduced shear is well-defined.

Consider first the case that the cluster is sub-criticalyaviere, i.e. det > 0 for
all 8, which implies|g(6)| < 1. Then, the mean image ellipticityis an unbiased
estimate of the local reduced shear, so that

V®) = [1-k(®)] (6)(8). (5.7)

where the fields)(6) is determined by the local averaging procedure described in

—

Sect. 4.3.1. Inserting this into (5.4) leads to an integyakion fork(0),

K(B) — Ko = % /R #O[1-k@)]0[0'@-0) @], 68

(Seitz & Schneider 1995a), which is readily solved by iteratStarting fronk =
0, afirst estimate af(0) is obtained from (5.8), which after insertion into the right
hand side of (5.7) yields an update \b), etc. This iteration process converges

quickly to the unique solution.

The situation becomes only slightly more complicated ifical clusters are in-
cluded. We only need to keep track of detvhile iterating, becausg must be

derived from ¥ (€)* rather than from(e) where detz < 0. Hence, the local invari-
ance betweeg and 1/g* is broken due to non-local effects: A local jump fram
to 1/g* cannot be generated by any smooth surface mass density.

After a minor modificatioff], this iteration process converges quickly. See
Seitz & Schneider (1995a) for more details on this methodfandumerical tests

9 At points wherek = 1, 1/g* = 0 andE(g) = 0, while y remains finite. During the
iteration, there will be point¥ where the fieldk is very close to unity, but where
(€) is not necessarily small. This leads to large valuesy,ofvhich render the itera-
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done with a cluster mass distribution produced by a cosnicably-body simula-
tion. It should have become clear that the non-linear ingargrocess poses hardly
any additional problem to the mass reconstruction comp@artte linear inversion
(5.4).

This non-linear inversion still contains the constiagtand so the result will depend
on this unconstrained constant. However, in contrast tditiear (weak lensing)
case, this constant does not correspond to adding a sheatsthat surface mass
density. In fact, as can be seen from (5.8), the transfoonati

-

K(8) — K'(8) =Ak(B)+(1—A) or

[1— K’(e)] = [1— K(éﬂ (5.9)
leads to another solution of the inverse problem for anyevafi = 0. Another and
more general way to see this is that the transformatienk’ changes to \/(é) =
)\y(é), cf. (3.15, page 50). Hence, the reduced sleary(1— k)1 is invariant
under the transformation (5.9), so that the relation betwieginsic and observed
ellipticity is unchanged under thevariance transformatio(b.9). This is the mass-
sheet degeneracy pointed out by Falco et al. (1985) in ardiffecontext. We thus
conclude that the degeneracy due to the invariance tranafan (5.9) cannot be
lifted if only image shapes are used. However, the magnidicatansforms like

W(B) =A"2u(®), (5.10)

so that the degeneracy can be lifted if magnification effactstaken into account
(see Sect. 4.4).

The invariance transformation leaves the critical curviethe lens mapping in-
variant. Therefore, even the location of giant luminousambhich roughly trace
the critical curves does not determine the scaling conatantaddition, the curve
K = 1 is invariant under (5.9). However, there are at least twgswa constrair.
First, it is reasonable to expect that on the whole the senfaass density in clus-
ters decreases with increasing separation from the clicgetre’, so that > 0.
Second, since the surface mass densifg non-negative, upper limits ok are
obtained by enforcing this condition.

5.2.3 Finite—Field Inversion Techniques

We shall now turn to the problem that the inversion (5.4) imgiple requires data
on the whole sky, whereas the available data field is finitémfoke solution of this

tion unstable. However, this instability can easily be reewif a damping factor like
<1+|y2(é')|) exp<—|y2(é')|) is included in (5.4). This modification leads to fast con-
vergence and affects the result of the iteration only vagh#.

91



problem has been attempted by Seitz & Schneider (1995ay. @kteapolated the
measured shear field on the finite regranoutside the data field, using a param-
eterised form for the radial decrease of the shear. From @lsamh numerically
generated cluster mass profiles, Bartelmann (1995a) shihaethis extrapolation
yields fairly accurate mass distributions. However, irsthstudies the cluster was
always assumed to be isolated and placed close to the cdrttre data field. If
these two conditions are not met, the extrapolation canym®desults which are
significantly off. In order to remove the boundary artefactserent in applying
(5.4) to a finite field, one should therefore aim at constngctin unbiased finite-
field inversion method.

The basis of most finite-field inversions is a result first dedli by Kaiser (1995).
Equation (3.12, page 49) shows that shear and surface masisyd&re both given
as second partial derivatives of the deflection potertigifter partially differenti-
ating (3.12, page 49) and combining suitable terms we find

Ok = <y1’1+y2’2) =,(8). (5.11)

Y2,1—VY1,2

The gradient of the surface mass density can thus be exprbgdbe first deriva-
tives of the shear, hene&B) can be determined, up to an additive constant, by in-
tegrating (5.11) along appropriately selected curvess €an be done in the weak
lensing case where the observed smoothed ellipticity felfB) can be identified

with y, andtiy(8) can be constructed by finite differencing. If we inse#t (1-K)g
into (5.11), we find after some manipulations

. -1 1-091 —o O11+022
DK(G):ﬁ
—01-% \ - 1+0; 921—012

=0y(0), (5.12)
where
K(8) = In[1—k(6)]. (5.13)

Hence, using the smoothed ellipticity figle) () as an unbiased estimator fy(©),
and assuming a sub-critical cluster, one can obtain thewéetd Uy(0) by finite
differencing, and thus determiig8) up to an additive constant from line integra-

tion, or, equivalently, - k(6) up to an overall multiplicative constant. This is again
the invariance transformation (5.9).

In principle, it is now straightforward to obtaiq(8) from the vector field:iy(é), or
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K (8) from Tg(8), simply by a line integration of the type

—

—

L ; I
K(8.80) = k(Bo) + | di"ty(T) (5.14)
0

wherel is a smooth curve connectiffignith 8. If Ty is a gradient field, as it ideally

is, the resulting surface mass density is independent oflbize of the curvek
However, sincely is obtained from noisy data (at least the noise resulting filoe
intrinsic ellipticity distribution), it will in general nobbe a gradient field, so that
(5.11) has no solution. Therefore, the various line integnaschemes proposed
(Schneider 1995, Kaiser et al. 1994, Bartelmann 1995a) vidferent results.

Realising that eq. (5.11) has no exact solution for an olesefreldty,, we wish to

—

find a mass distributior(6) which satisfies (5.11) ‘best’. In general,can be split
into a gradient field and a curl component, but this decontiposis not unique.
However, as pointed out in Seitz & Schneider (1996), sinesdinl component
is due to noise, its mean over the data field is expected tshaimposing this
condition, which determines the decomposition uniquélgytshowed that

K(®) —K = / PO H @, 8)0,@) . (5.15)

wherek is the average of(8) over the data field:, and the kerneH is the gra-

dient of a scalar function which is determined through a veumMann bound-
ary value problem, with singular source term. This problean be solved ana-
lytically for circular and rectangular data fields, as dethiin the Appendix of

Seitz & Schneider (1996). If the data field has a more com@icgeometry, an
analytic solution is no longer possible, and the boundahyevproblem with a sin-
gular source term cannot be solved numerically.

An alternative method starts with taking the divergencesoil) and leads to the
new boundary value problem,

0’k =0-0, with A-Ok=n-Gy, on du, (5.16)

where i is the outward-directed normal on the boundarytof As shown in

Seitz & Schneider (1998), egs. (5.15) and (5.16) are eqeivahn alternative and
very elegant way to derive (5.16) has been found by Lombar@eg&tin (1998b).

They noticed that the ‘best’ approximation to a solution ®fLl) minimises the
‘action’

/ 620 |k (8) — 0,(8) 2. (5.17)
u
Euler’'s equations of the variational principle immedigte#produce (5.16). This

von Neumann boundary problem is readily solved numerica#iing standard nu-
merically techniques (see Sect. 19.5 of Press et al. 1986).
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A comparison between these different finite-field inversemuations was per-
formed in Seitz & Schneider (1996) and in Squires & Kaise®©@)9by numeri-
cal simulations. Of all the inversions tested, the invergi6.16) performs best
on all scales (Seitz & Schneider 1996; Fig. 6 of Squires & Kai996). Indeed,
Lombardi & Bertin (1998b) showed analytically that the gmin of eq. (5.16) pro-
vides the best unbiased estimate of the surface mass defsityelations (5.14)
through (5.17) can be generalised to the non-weak case acnegk with K and
dy with Ty.

5.2.4 Accounting for a redshift distribution of the sources

We now describe how the preceding mass reconstructionslmeusibdified if the
sources have a broad redshift distribution. In fact, onlpanimodifications are
needed. The relatio(e) = g for a single source redshift is replaced by eq. (4.28),
which gives an estimate for the shear in terms of the meaneraiipticities and
the surface mass density. This relation can be appliediiteha

Begin withk© = 0; then, eq. (4.28) yields a first guess for the sh&H(8) by
settingy = 0 on the right-hand side. From (5.15), or equivalently bysaj (5.16),
the corresponding surface mass denglfy(8) is obtained. Inserting? andy?
on the right-hand side of eq. (4.28), a new estin\yé@eéé) for the shear is obtained,
and so forth.

This iteration process quickly converges. Indeed, theddiltiy mentioned in foot-
note 9 (page 90) no longer occurs since the critical curvdstacurve(sk = 1 are
effectively smeared out by the redshift distribution, andtse iteration converges
even faster than in the case of a single source redshift.

Sincek(™ is determined only up to an additive constant for &y, the solution

of the iteration depends on the choice of this constant. Eleoce can obtain a
one-parameter family of mass reconstructions, like in)(3#@wever, the resulting
mass-sheet degeneracy can no longer be expressed atiglgieato the complex
dependence of (4.28) anandy. In the case of weak lensing, it corresponds to
adding a constant, as before. An approximate invariancesfisemation can also
be obtained explicitly for mildly non-linear clusters wikh< 0.7 and dezz > 0
everywhere. In that case, eq. (4.29) holds approximatety,can be used to show
(Seitz & Schneider 1997) that the invariance transfornmeties the form

- (1—A){w) .

K(8) — K'(8) = Ak(8) + (5.18)

In case of a single redshift, such thatv(zs) = (w), this transformation reduces to
(5.9) for (W)k.

We point out that the invariance transformation (5.18) m¢hse of a redshift dis-
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tribution of sources is of different nature than that for mgée source redshift. In
the latter case, the reduced shg{a@) is invariant under the transformation (5.9).
Therefore, the probability distribution of the observetbgs ellipticities is invari-
ant, since it involves only the intrinsic ellipticity digbution andg. For a redshift
distribution, the invariance transformation keeps themugage ellipticities invari-
ant, but the probability distributions are changed. Sé\strategies were explored
in Seitz & Schneider (1997) to utilise this fact for breakiting invariance trans-
formation. While possible in principle, the correspondeftect on the observed
ellipticity distribution is too small for this approach te easible with existing
data.

5.2.5 Breaking the Mass-Sheet Degeneracy

Equation (5.10) shows that the invariance transformatto®) (affects the magni-
fication. Hence, the degeneracy can be lifted with magnifinanformation. As
discussed in Sect. 4.4, two methods to obtain magnificatifammation have been
proposed. Detections of the number-density effect havardaefen reported for two
clusters (C1 0024+16, Fort et al. 1997; Abell 1689, Tayloalett998). Whereas the
information provided by the number density effect is le$gieiht than shear mea-
surements (see Sect. 4.4.3), these two clusters appeamtadstve enough to al-
low a significant detection. In fact, Taylor et al. (1998)ahed a two-dimensional
mass reconstruction of the cluster A 1689 from magnificadiata.

In the case of weak lensing, and thus small magnificatiomsirtagnification can
locally be translated into a surface mass density — see)dd4eneral, the re-
lation betweery andk is non-local, sinceu also depends on the shear. Various
attempts to account for this non-locality have been publisfvan Kampen 1998,
Dye & Taylor 1998). However, it must be noted that the surfaeess density can-
not be obtained from magnification alone since the magnibfinatlso depends on
the shear caused by matter outside the data field. In pradtitee data field is
sufficiently large and no mass concentration lies close tobtside the data field,
the mass reconstruction obtained from magnification carulie gccurate.

In order to break the mass-sheet degeneracy, it sufficesncipple to measure one
value of the magnification: Either the magnification at ormatmn in the cluster,
or the average magnification over a region. We shall see ilat8ect. 5.5.1 how
local magnification information can be combined with sheaasurements. Doing
it the naive way, expressirgin terms oft andy, is a big waste of information:
Since there is only one independent scalar field (namelyeHeation potentialp)
describing the lens, one can make much better use of the neeasnts ofy and
K than just combining them locally; the relation between trsdmauld be used to
reduce the error oR.
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5.3 Aperture Mass and Multipole Measures

Having reconstructed the mass distribution, we can estith&tlocal dispersion of
K (e.g., Lombardi & Bertin 1998b). However, the errors atetént points will be
strongly correlated, and so it makes little sense to atta@rr@r bar to each point of
the mass map. Although mass maps contain valuable infasmatiis sometimes
preferable to reduce them to a small set of numbers such asabe-to-light ratio,
or the correlation coefficient between the mass map anddhedistribution. One
of the quantities of interest is the total mass inside a gregion. As became clear
in the last section, this quantity by itself cannot be deteed from observed image
ellipticities due to the invariance transformation. ButLeaqtity related to it,

J— %

0(6;91,9,) =k(6;91) —k(6;91,9,), (5.19)

the difference between the mean surface mass densitiesiile of radiusd,
around® and in an annulus of inner and outer raflii and 95, respectively, can
be determined in the weak-lensing case, since then theiamear transformation
corresponds to an additive constankiwhich drops out of (5.19). We show in this
section that quantities like (5.19) can directly be obtdifrem the image elliptic-
ities without the need for a two-dimensional mass map. Ir.Se8.1, we derive a
generalised version of (5.19), whereas we consider therditation of mass mul-
tipoles in Sect. 5.3.2. The prime advantage of all thesetagemeasures is that the
error analysis is relatively straightforward.

5.3.1 Aperture Mass Measures

Generally, aperture mass measures are weighted intedthks local surface mass
density,

Map(B0) = / oK (8)U (B—Bo) , (5.20)

-

with weight functionU (6). Assume now that the weight function is constant on
self-similar concentric curves. For example, thstatistics (5.19), introduced by
Kaiser (1995), is of the form (5.20), with a weight functidmat is constant on
circles,U(8) = (192) "1 for 0< 9 <81, U(8) = [m(83—-92] L for 91 < 9 < 95,
and zero otherwise.

Let the shape of the aperture be described by a closed CikyeA € |, where
| is a finite interval, such that x €= c1¢; — cx¢; > 0 for all A € 1. We can then
uniquely define a new coordinate systdmh) by choosing a centréy and defining
6 = 8o+ b&()). The weight function should be constant on the cui(@s$ so that
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it depends only ot. In the new coordinate system, (5.20) reads
Map(Bo) = / db bU(b) 7{ o\ € x eK[Bo+ bS] (5.21)
0 [

where the factob¢ x ¢ is the Jacobian determinant of the coordinate transforma-
tion. Equation (5.21) can now be transformed in three stigs, by a partial inte-
gration with respect tb; second, by replacing partial derivativestowith partial
derivatives ofy using eq. (5.11); and third by removing partial derivatieéy in
another partial integration. In carrying out these stepsagsume that the weight
function is compensated,

/dbbU(b) _0. (5.22)

Introducing

b
Q(b) = é/o db'b'U (/) — U (b) (5.23)

and writing the curve& in complex notationC(A) = c1(A) +ica(A), leads to the
final result (Schneider & Bartelmann 1997)

Cly(6)cC’]

oa (5.24)

Map(B0) = [ ?OQIb(E)

where the argumentof C is to be evaluated at positigh= 8o+ bc(A) [* The nu-
merator in the final term of (5.24) projects out a particulamponent of the shear,
whereas the denominator is part of the Jacobian of the cuateltransformation.
The constraint (5.22) assures that an additive constantioes not affecMap. The
expression (5.24) has several nice properties which rahdseful:

(1) Ifthe functionU (b) is chosen such that it vanishes for by, then from (5.22)
and (5.23)Q(b) = 0 for b > b,. Thus, the aperture mass can be derived from
the shear in a finite region.

(2) If U(b) = const for 0< b < by, thenQ(b) = 0 in that interval. This means
that the aperture mass can be determined solely from the shaa annulus
b1 < b < by. This has two advantages which are relevant in practicst,Fir
if the aperture is centred on a cluster, the bright centradter galaxies may
prevent the detection of a large number of faint backgrouasldxges there,
so that the shear in the central part of the cluster may beudliftio measure.
In that case it is still possible to determine the total massde the cluster
core using (5.24) with an appropriately chosen weight fiomct). Second,
although in general the shear cannot be determined dir&otly the image

10 There are of course other ways to derive (5.24), e.g. bytinge(5.4) into (5.20). See
Squires & Kaiser (1996) for a different approach using Gauas..
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ellipticities [but only the reduced shegil — k)], we can choose the size
b; of the inner boundary of the annulus sufficiently large that 1 in the
annulus, and they = g is an accurate approximation. Hence, in that case
the mean image ellipticity directly yields an estimate o #hear. Then, the
integral (5.24) can be transformed into a sum over galaxygasdying in the
annulus, yieldindV5p directly in terms of the observables. This in turn has the
great advantage that an error analysid/g is fairly simple.

We consider circular apertures as an example, for wibich) = (8,¢) andC(¢) =
exp(i¢p). Then,O(C*C) =1, and

O(YC'C*) = vu(8;80) := — [y1.co5(29) + y2sin(29)] = —O[y(8+ Bo)e 2?] ,
(5.25)

where we have defined tit@ngential componen of the shear relative to the point
8. Hence, for circular apertures (5.24) becomes

Map(B0) = | P0QU(8) v:(B: o) (5.26)

(Kaiser et al. 1994; Schneider 1996b). Thestatistics (5.19) is obtained from
(5.26) by settingQ(8) = 9562 [n(ﬁ%—ﬁ%)}fl for 81 <8 <9, andQ(8) =0
otherwise, so that

- 92 v:(6; 6
1(60;81782) = Wisi)]/dze t(|_e,|20) y (5.27)

where the integral is taken over the annuiys< 6 < 9.

For practical purposes, the integral in (5.26) is transkmfnmto a sum over galaxy
images. Recalling thatis an estimator foy in the weak-lensing case, and that the
weight function can be chosen to avoid the strong-lensigore, we can write

Map(Bo) = 5 QU[8; ~ Bol) i (Bo) (5.28)

where we have defined, in analogyytothg tangential componeg§ of the ellip-
ticity of an image ab; relative to the poin6g by

g = —(ee 2%y (5.29)

 is the polar angle 0 — 8y, andn is the number density of galaxy images. The
rms dispersiona(Map) of Map in the case of no lensing is found from the (two-
dimensional) dispersioog of the intrinsic ellipticity of galaxies,

1/2
0(Map) = zﬁin [z Q%(/6; —éo|>] : (5.30)
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Thermsdispersion in the presence of lensing will deviate only viplrlom o(Map)
as long as the assumption of weak lensing in the annulusséisdt Henceg(Map)
can be used as an error estimate for the aperture mass anceasrate for the
signal-to-noise ratio of a mass measurement.

This opens the interesting possibility to search for (darkls concentrations using
the aperture mass (Schneider 1996b). Consider a weighidari¢ with the shape
of a Mexican hat, and a data fietd on which apertures of angular siBecan be
placed. For each aperture position, one can calciigieand the dispersion. The
dispersion can be obtained either from the analytical féanb.30), or it can be
obtained directly from the data, by randomising the posiaagles of all galaxy
images within the aperture. The dispersion can be obtanoad fhany realisations
of this randomisation process. Large valued/gf, will be obtained for mass con-
centrations whose characteristic size and shape is clabatof the chosen filter
functionU. Thus, by varying the siz@ of the filter, different mass concentrations
will preferentially be selected. The aperture mass is isis@e to mass concentra-
tions of much smaller and much larger angular scales thafiltibresize.

We have considered in Sect. 4.5 the signal-to-noise ratithBodetection of a sin-
gular isothermal sphere from its weak lensing effect. Thenedge (4.54) was ob-
tained by an optimal weighting scheme for this particulassndistribution. Since
real mass concentrations will deviate from this profile, alsb from the assumed
symmetry, the filter functiob) should have a more generic shape. In that case, the
S/N will have the same functional behaviour as in (4.54) thetprefactor depends

on the exact shape &f. For the filter function used in Schneider (1996b), S/N is
about 25% smaller than in (4.54). Nevertheless, one expeatshe aperture-mass
method will be sensitive to search for intermediate-refti$laloes with character-
istic velocity dispersions above 600kms ™.

This expectation has been verified by numerical simulatishéch also contained
larger and smaller scale mass perturbations. In additicietailed strong-lensing
investigation of the cluster MS 15452 has shown that its velocity dispersion is
very close to~ 600kms™®, and it can be seen from the weak-lensing image dis-
tortion alone with very high significance (Seitz et al. 199&upporting the fore-
going quantitative prediction. Thus, this method appearbket a very promising
way to obtain amass-selectedample of haloes which would be of great cosmo-
logical interest (cf. Reblinsky & Bartelmann 1999). We $helfurn to this issue in
Sect. 6.7.2.

5.3.2 Aperture Multipole Moments
Since it is possible to express the weighted mass within amtaye as an in-

tegral over the shear, with the advantage that in the weaingrregime this
integral can be replaced by a sum over galaxy ellipticitiess natural to ask
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whether a similar result holds for multipole moments of thassr As shown in
Schneider & Bartelmann (1997), this is indeed possible,vaadhall briefly out-
line the method and the result.

Consider a circular apertyf§ centred on a poirfly. LetU (|6|) be a radial weight
function, and define thie-th multipole moment by

00 2n . N —
QN = / dee™Lu () / d €' k(8o + 6) . (5.31)
0 0

This can be replaced by an integral oyen two ways: (5.31) can be integrated by
parts with respect t¢ (for n # 0), or with respect t®, again utilising (5.11). The
resulting expressions are assumed to contain no boundang,tevhich restricts
the choice for the weight functidd (8). The remaining integrals then contain par-
tial derivatives ofk with respect tap and®6, respectively. Writing (5.11) in polar
coordinates, these partial derivatives can be replacedalijapderivatives of the
shear components with respectft@nd®. Integrating those by parts with respect
to the appropriate coordinate, and enforcing vanishinghdaty terms, we find two
different expressions for th@(":

ng)e = / dzquj)e(é) ¥(80+8) . (5.32)

The two expressions fai™ are formally very different, although it can be shown
that the resulting two expressions f0f" are equivalent. The two very different

equations for the same result are due to the fact that thedmpaonents of the shear

y are not mutually independent, which was not used in the atoiv of (5.32).

We now have substantial freedom to choose the weight fumetinal to select one
of the two expressions f@", or even to take a linear combination of them. We
note the following interesting examples:

(1) The weight functiorJ (8) can be chosen to vanish outside an annulus, to be
piece-wise differentiable, and to be zero on the inner artdrcaoundary of
the annulus. Th@" for n £ 0 can then be expressed as integrals of the shear
over the annulus, with no further restrictions dn In particular,U (6) does
not need to be a compensated weight function.

(2) U(B) can be a piece-wise differentiable weight function whicbdastant for
B < 01, and decreases smoothly to zer®at 8, > 81. Again, Q™ forn# 0
can be expressed as an integral of the shear in the arywiu8 < 6,. Hence,
as for the aperture mass, multipole moments in the inneleatian be probed
with the shear in the surrounding annulus.

(3) One can choose, far> 2, a piece-wise differentiable weight functith(0)
which behaves liké®—2" for 8 > 6, and decreases to zero &t 6; < 6.

11 The method is not restricted to circular apertures, butdage will be most relevant for
measuring multipole moments.
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In that case, the multipole moments of the matter outsidenanlas can be
probed with data inside the annulus.

For practical applications, the integral in (5.32) is regeld by a sum over galaxy
ellipticities. The dispersion of this sum is easily obtaime the absence of lensing,
with an expression analogous to (5.30). Therefore, theasignnoise ratio for the
multipole moments is easily defined, and thus also the sggmiéie of a multipole-
moment detection.

5.4 Application to Observed Clusters

Soon after the parameter-free two-dimensional mass re&catisn was suggested
by Kaiser & Squires (1993), their method was applied to thester MS 1224
(Fahlman et al. 1994). Since then, several groups have ttgeihier the mass pro-
files of clusters. In parallel to this, several methods haenldeveloped to measure
the shear from CCD data, accounting for PSF smearing andteopy, image dis-
tortion by the telescope, noise, blending etc. — see theistison in Sect. 4.6. We
will now summarise and discuss several of these obsenatiesults.

Tyson et al. (1990)

made the first attempt to constrain the mass distributionadfister from a weak-
lensing analysis. They discovered a statistically sigaifidcangential alignment of
faint galaxy images relative to the centre of the cluster®89land Cl 1409-52.
Their “lens distortion map” obtained from the image ellgities yields an estimate
of the mass distribution in these clusters. A detailed asislgf their method is
given in Kaiser & Squires (1993). From a comparison with ntioa simulations,
Tyson et al. showed that the best isothermal sphere modeidaiusters has a typ-
ical velocity dispersion 06, ~ 1300+ 200kms* for both clusters. In particular,
their analysis showed that diffuse dark matter in the cluséatres is needed to
account for the observed image distortions.

The inversion method developed by Kaiser & Squires (1998yided a systematic
approach to reconstruct the mass distribution in clusténsas first applied to
the cluster MS 122420 (Fahiman et al. 1994) at redsh#ff = 0.33, which had
been selected for its high X-ray luminosity. Their squaredild with side-length
~ 14 was composed of several exposures, most of them with erteléeing.
They estimated the shear from image ellipticities, coa@dbr the PSF anisotropy,
and applied a correction factdras defined in Sect. 4.6.1. They foufd- 1.5 in
simulations, in very good agreement with Wilson et al. (1)99®e resulting shear
pattern, obtained from 2147 galaxy images, clearly shovsalar pattern around
the cluster centre as defined by the centroid of the optichD&nay light. Using
the Kaiser & Squires reconstruction method (5.7), Fahlntah eoroduced maps
of the dimension-less surface mass denls(@ﬁ, both by taking all galaxy images
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into account, and after splitting the galaxy sample into rigliter’ and ‘fainter’
sample of roughly equal size. Although differing in detthik resulting mass show
an overall similarity. In particular, the position of the ssacentre is very similar in
all maps.

Fahlman et al.

applied the aperture mass method to determine the clustes maee (5.20) and
(5.28) —in an annulus centred on the cluster centre withriratkusd; = 2/76 and
an outer radius such that the annulus nearly fits into théa fileld. The lower limit
to the mean surface mass density in the annulu$d&6) > { = 0.06+0.013. To
convert this into an estimate of the physical surface massityeand the total mass
inside the aperture, the mean distance rtjg/ Ds for the galaxy population has to
be estimated, or equivalently the mean valuvafs defined in (5.34).

While the redshift distribution is known statistically ftlne brighter sub-sample
from redshift surveys, the use of the fainter galaxies megan extrapolation of the
galaxy redshifts. From that, Fahlman et al. estimated the&smathin a cylinder of
radius91 = 2/76, corresponding to.88h~1 Mpc for an Einstein-de Sitter cosmol-
ogy, to be~ 3.5 x 10*h~1M.,. This corresponds to a mass-to-light ratio (in solar
units) of M /L ~ 800h. Carlberg et al. (1994) obtained 75 redshifts of galaxies in
the cluster field, of which 30 are cluster members. From tlivegrof-sight veloc-

ity dispersion, the cluster mass can be estimated by a ainalysis. The resulting
mass is lower by a factor 3 than the weak-lensing estimate. The mass-to-light
ratio from the virial analysis is much closer to typical wdun lower-redshift clus-
ters like Coma, which hasl /L ~ 270h~1. The high mass estimate of this cluster
was recently confirmed in a completely independent studyisghier (1999).

The origin of this large apparent discrepancy is not wellarstbod yet, and sev-
eral possibilities are discussed in Kaiser et al. (1994hduld be pointed out that
lensing measures the total mass inside a cone, weightecelbedshift-dependent
factor DgDgs/Ds, and hence the lensing mass estimate possibly includesasubs
tial foreground and background material. While this mayseaan overestimate
of the mass, it is quite unlikely to cause an overestimatdefrhass-to-light ra-
tio of the total material inside the cone. Foreground matevill contribute much
more strongly to the light than to the measured mass, andiewlai matter be-
hind the cluster will not be very efficient as a lens. The utaiety in the redshift
distribution of the faint galaxies translates into an utaiety in the mass. How-
ever, all background galaxies would have to be put at a réédshd to explain
the mass discrepancy, while redshift surveys show thatrigater sub-sample of
Fahlman et al. has a mean redshift below unity. The mass &tiis only weakly
dependent on the assumed cosmological model. On the othdr tiee light dis-
tribution of the cluster MS 1224 is not circular, and it cabbe excluded that this
cluster is not in virial equilibrium.

Squires et al. (1996a)
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compared the mass profiles derived from weak lensing datdahen-ray emis-
sion of the cluster A 2218. Under the assumption that the h@yXemitting intra-
cluster gas is in hydrostatic equilibrium between gravitgd ghermal pressure sup-
port, the mass profile of the cluster can be constrained. &benstructed mass
map qualitatively agrees with the optical and X-ray lighgtdbutions. Using the
aperture mass estimate, a mass-to-light ratiMgt = (440+ 80) h in solar units
is found. The radial mass profile appears to be flatter thahesmal. Within the
error bars, it agrees with the mass profile obtained from tay<analysis, with a
slight indication that at large radii the lensing mass igéaithan the mass inferred
from X-rays.

Abell 2218 also contains a large number of arcs and muliiplgged galaxies
which have been used by Kneib et al. (1996) to construct aleétmmass model
of the cluster’s central region. In addition to the main mamscentration, there is
a secondary clump of cluster galaxies whose effects on tsisiclearly visible.
The separation of these two mass centres’is\@hereas the resolution of the weak
lensing mass map as obtained by Squires et al. is not suffitigaveal a distinct
secondary peak, the elongation of the central density cositextend towards the
secondary galaxy clump.

General agreement between the reconstructed mass map eadéstitibution of
cluster galaxies and X-ray emission has also been foundhi®rtwo clusters
Cl 1455+22 (z= 0.26) and Cl 0016-16 (z= 0.55) by Smail et al. (1995a). Both
are highly X-ray luminous clusters in thHgnsteinExtended Medium Sensitivity
Survey (EMSS; Stocke et al. 1991). The orientation and tedlty of the central
mass peak is in striking agreement with those of the galastyidution and the X-
ray map. However, the authors find some indication that thesrnsamore centrally
condensed than the other two distributions. In additiovegthe finite angular res-
olution of the mass map, the core size derived from weak hgnisi most likely
only an upper bound to the true value, and in both clustersiéhived core size
is significantly larger than found in clusters with giant mous arcs (see, e.g.,
Fort & Mellier 1994).

The mass-to-light ratios for the two clusters ar&a000h and~ 740h, respectively.
However, at least for Cl 001616, the mass scale is fairly uncertain, owing to the
high cluster redshift and the unknown redshift distribntd the faint galaxies. The
mean value oD4s/Ds must be estimated from an assumed distribupica).

The unprecedented imaging quality of the refurbiskble Space Telescope
(HST) can be used profitably for weak lensing analyses. Isagleen with the
Wide Field Planetary Camera@VFPC2) have an angular resolution of ordéi0
limited by the pixel size. Because of this superb resolutiod the lower sky back-
ground, the number density of galaxy images for which a shapeeliably be mea-
sured is considerably larger than from the ground, so tlgtidriresolution mass
maps can be determined. The drawback is the small field cdvsréhe WFPC2,
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which consists of 3 CCD chips with 8Gide-length each. Using the first publicly
available deep image of a cluster obtained with the WFPCRz 8eal. (1996)
have constructed a mass map of the cluster Cl @939(z = 0.41). Figure 14
clearly shows a mass peak near the left boundary of the fréwm&rs This max-
imum coincides with the cluster centre as determined froendluster galaxies
(Dressler & Gunn 1992). Furthermore, a secondary maximuctearly visible in
the mass map, as well as a pronounced minimum. When compatkd bptical
image, a clear correlation with the bright (cluster) gataxs obvious. In particular,
the secondary maximum and the minimum correspond to the &sahees in the
bright galaxy distribution. A formal correlation test caniis this similarity. Apply-
ing the maximum-likelihood mass reconstruction techni(fedtz et al. 1998c; see
Sect. 5.4) to the same HST image, Geiger & Schneider (1998}teated a higher-
resolution map of this cluster. The angular resolution @atdl is much higher in
the cluster centre, predicting a region in which strongilem&ffects may occur.
Indeed, Trager et al. (1997) reported on a highly elongateduad a triple image,
with both source galaxies having a redshift 3.97.

Fig. 14.Left panel:WFPC2 image of the cluster CI0939713 (A 851); North is at the bot-
tom, East to the right. The cluster centre is located at ath@utipper left corner of the left
CCD, a secondary maximum of the bright (cluster) galaxisgen close to the interface of
the two lower CCDs, and a minimum in the cluster light is atititerface between the two
right CCDs. In the lensing analysis, the data from the sm@lDCGthe Planetary Camera)
were not usedRight panel:The reconstructed mass distribution of A 851, assuming aamea
redshift of theN = 295 galaxies with 24 R< 255 of (z) = 1.

The X-ray map of this cluster (Schindler & Wambsganss 198@ws that the two
mass peaks are also close to two X-ray components. The de&tiom of the total
mass inside the WFPC2 frame is difficult, for two reasonsstfFthe high redshift
of the cluster implies that the mean valuelnfs/Ds depends quite sensitively on
the assumed redshift distribution of the background gakaxsecond, the small
field of the WFPC2 precludes the measurement of the surfase demsity at large
distance where& tends to zero, and thus the mass-sheet degeneracy imphes a ¢
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siderable uncertainty in the mass scale. Attempting tthdtmass sheet degeneracy
with the number-density effect — see 4.4.1 —, a mass-td-tafio of ~ 250h was
derived within the WFPC2 aperture. This value is also affédiy the unknown
fraction of cluster members in the catalog of faint galaxtesitz et al. (1996) as-
sumed that the spatial distribution of faint cluster gadaxiollows that of brighter
cluster galaxies. The striking difference between MhA ratios for this and the
other clusters described above may be related to the facCth2939+47 is the
highest-redshift cluster in the Abell catalog (A 851). Henit was selected by its
high optical luminosity, whereas the previously mentiowagsters are all X-ray
selected. The X-ray luminosity of Cl 093917 is fairly small for such a rich clus-
ter (Schindler & Wambsganss 1996). Since X-ray luminosity eluster mass are
generally well correlated, the smafll/L-ratio found from the weak lensing analy-
sis is in agreement with the expectations based on the hitabflux and the low
X-ray flux. Note that the large spread of mass-to-light atie found by the exist-
ing cluster mass reconstructions is unexpected in the figfrheerarchical models
of structure formation and thus poses an interesting asypal problem.
Hoekstra et al. (1998)

reconstructed the mass distribution in the cluster MS 338Bfrom a mosaic

of HST images, so that their data field in substantially larp@an for a single
HST pointing (about 8x 8'). This work uses the correction method presented in
Sect. 4.6.2, thus accounting for the relatively strong P88&adropy at the edges of
each WFPC2 chip. A weak-lensing signal out t6 Mpc is found. The X-ray mass

is found to be slightly lower than the dynamical mass es@naiit seems to agree
well with the lensing mass determination.

Luppino & Kaiser (1997)

found a surprisingly strong weak-lensing signal in the fiefdhe high-redshift
cluster MS 1054-03 (z= 0.83). This implies that the sheared galaxies must have
an appreciably higher redshift than the cluster, thus gtyoronstraining their red-
shift distribution. In fact, unless the characteristicsieift of these faint background
galaxies is> 1.5, this cluster would have an unrealistically large massvds
also found that the lensing signal from the bluer galaxiestienger than from
the redder ones, indicating that the characteristic rédshthe bluer sample is
higher. In fact, the mass estimated assuminy = 1.5 agrees well with results
from analyses of the X—ray emission (Donahue et al. 1998)gataixy kinemat-
ics (Tran et al. 1999). Clowe et al. (1998) derived weak legsnaps for two addi-
tional clusters ax ~ 0.8, namely MS 113766 atz= 0.783 and RXJ 171667 at
z=0.813.

The mass distribution in the supercluster MS 08QZ atz = 0.42 was recon-
structed by Kaiser et al. (1998) in a wide-field image of siZ&0'. The supercluster
consists of three clusters which are very close togethehesky and in redshift.
The image contains about 30,000 galaxies from which a steabe measured.
This shear was found to correlate strongly with the distrdyuof the early-type

105



(foreground) galaxies in the field, provided that the ouderass-to-light ratio is
about 25M0. Each of the three clusters, which are also seen in X-raygciav-
ered in the mass map. The ratios between mass and light oy ®nngssion differ
slightly across the three clusters, but the differencesatéighly significant.

A magnification effect was detected from the depletion ofrtbenber counts (see
Sect. 4.4.1) in two clusters. Fort et al. (1997) discovehad the number density
of very faint galaxies drops dramatically near the criticakve of the cluster
Cl 0024+16, and remains considerably lower than the mean numbertyens
to about twice the Einstein radius. This is seen in photomé#ta with two filters.
Fort et al. (1997) interpret this broad depletion curve mmig of a broad redshift
distribution of the background galaxies, so that the lacatf the critical curve of
the cluster varies over a large angular scale. A spatiayeddent number deple-
tion was detected in the cluster A 1689 by Taylor et al. (1998)

These examples should suffice to illustrate the currenustat weak lensing
cluster mass reconstructions. For additional results, Sedres et al. (1996b),
Squires et al. (1997), Fischer et al. (1997), Fischer & Ty4®97). Many of the
difficulties have been overcome; e.g., the method present8dct. 4.6.2 appears
to provide an accurate correction method for PSF effects.dUantitative results,
for example for theM /L-ratios, are somewhat uncertain due to the lack of suffi-
cient knowledge on the source redshift distribution, whagiplies in particular to
the high-redshift clusters.

Further large-format HST mosaic images either are alreadyilbsoon become
available, e.g. for the clusters A 2218, A 1689, and MS 1083. Their analysis
will substantially increase the accuracy of cluster magsrdenations from weak
lensing compared to ground-based imaging.

5.5 Outlook

We have seen in the preceding subsection that first resuttseomass distribution
in clusters were derived with the methods described eaBerause weak lensing
is now widely regarded as the most reliable method to detegrtiie mass distri-
bution of clusters, since it does not rely on assumptionsherphysical state and
symmetries of the matter distribution, further attemptismgdroving the method are
in progress, and some of them will briefly be outlined below.

In particular, we describe a method which simultaneoustpants for shear and
magnification information, and which can incorporate caasts from strong-
lensing features (such as arcs and multiple images of bachkdr sources). A
method for the determination of the local shear is descriid which does not
rely on the detection and the quadrupole measurement ofidhudil galaxies, and
instead makes use of the light from very faint galaxies wimeéd not be individu-
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ally detected. We will finally consider the potential of wdaksing for determining
the redshift distribution of galaxies which are too faint® investigated spectro-
scopically, and report on first results.

5.5.1 Maximum-Likelihood Cluster Reconstructions

The mass reconstruction method described above is a dirtioot The locally
averaged observed image ellipticitiés are inserted into an inversion equation
such as (5.9) to find the mass me@). The beauty of this method is its simplicity
and computational speed. Mass reconstructions from theredd image elliptici-
ties are performed in a few CPU seconds.

The drawback of this method is its lack of flexibility. No atidhal information can
be incorporated into the inversion process. For examp#rahg-lensing features
like giant arcs or multiple galaxy images are observed, #ieuld be included in
the mass reconstruction. Since such strong-lensing tsatypically occur in the
innermost parts of the clusters (§t30” from cluster centres), they strongly con-
strain the mass distribution in cluster cores which can lgard probed by weak
lensing alone due to its finite angular resolution. A furtiseample is the incorpora-
tion of magnification information, as described in Sect, &Hich can in principle
not only be used to lift the mass-sheet degeneracy, but adstides local informa-
tion on the shape of the mass distribution.

An additional problem of direct inversion techniques is¢heice of the smoothing
scale which enters the weight factaxsn (5.15). We have not given a guideline on
how this scale should be chosen. Ideally, it should be addptihe data. In regions
of strong shear, the signal-to-noise ratio of a shear measemt for a fixed number
of galaxy images is larger than in regions of weak shear, atldessmoothing scale
can be smaller there.

Recently, these problems have been attacked with inversigone Suppose the
mass distribution of a cluster is parameterised by a set aeiparametergy.
These model parameters could then be varied until the liesgfmodel for the
observables is found. Considering for example the obsamade ellipticitiese;
and assuming a non-critical cluster, the expectation valieis the reduced shear
g at the image position, and the dispersion is determinedn(gjaby the intrinsic
dispersion of galaxy ellipticitiegs. Hence, one can definexd-function

2 & —9(6i)]
=V = 27/ 5.33
X'=3 "2 (5.33)

and minimise it with respect to tha. A satisfactory model is obtained £ is of
orderNg at its minimum, as long as the number of parameters is muchesrttaan
Ngy. If the chosen parameterisation does not achieve this roimivalue, another
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one must be tried. However, the resulting mass model wilkddmpn the parameter-
isation which is a serious drawback relative to the pararsfege inversion methods
discussed before.

This problem can be avoided with ‘generic’ mass models. stance, the
deflection potentiaw(é) can be composed of a finite sum of Fourier modes
(Squires & Kaiser 1996), whose amplitudes are the parampiét?] The number

of Fourier modes can be chosen such that the resy{finer degree of freedom is
approximately unity. Additional modes would then start tdHe noise in the data.

Alternatively, the values of the deflection potentjalon a (regular) grid can be
used as thgy. Bartelmann et al. (1996) employed the locally averagedyeral-
lipticities and the size ratio&w) /(w)o — see (4.47) — on a grid. The correspond-
ing expectation values of these quantities, the reducear ghend the magnifica-
tion |, were calculated by finite differencing of the discretisedlettion poten-
tial Y. Since bothy andk, and thusy, are unchanged under the transformation
W(B) — Y(B) + Yo+ 4a- B, the deflection potential has to be kept fixed at three grid
points. If no magnification information is used, the massesldegeneracy allows a
further transformation of) which leaves the expected image ellipticities invariant,
and the potential has to be kept fixed at four grid points.

A x?-function was defined using the local dispersion of the imeltjeticities and
image sizes relative to unlensed sizes of galaxies withaheessurface brightness,
and it was minimised with respect to the valuespobn the grid points. The grid
spacing was chosen such that the resulting minirgéiimas approximately the cor-
rect value. Tests with synthetic data sets, using a nunigrgenerated cluster mass
distribution, showed that this method reconstructs vetigfsatory mass maps, and
the total mass of the cluster was accurately reproduced.

If a finer grid is used, the model for the deflection potentidl k@produce noise
features in the data. On the other hand, the choice of avelatoarse grid which
yields a satisfactory? implies that the resolution of the mass map is constant
over the data field. Given that the signal increases towdweséntre of the clus-
ter, one would like to use a finer grid there. To avoid ovemfiftof noise, the
maximume-likelihood method can be complemented by a repaithon term (see
Press et al. 1986, Chap. 18). As shown by Seitz et al. (1988ugximum-entropy
regularisation (Narayan & Nityananda 1986) is well suitethie problem at hand.
As in maximum-entropy image restoration (e.g., Lucy 1984)rior is used in the
entropy term which is a smoothed version of the current defisid, and thus is

121t is important to note that the deflection potentlatather than the surface mass density
K (as in Squires & Kaiser (1996)) should be parameterisediusershear and surface mass
density depend on the local behaviourdafwhile the sheacannotbe obtained from the
local k, and not even fronk on a finite field. In addition, the local dependencex@ndy

on y is computationally much more efficient than calculatinigy integrating ovek as in
Bridle et al. (1998).
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being adapted during the minimisation. The relative wegftthe entropy term is
adjusted such that the resulting minimy#is of order unity per degree of freedom.

In this scheme, the expectation values and dispersionseofnttividual image
ellipticities and sizes are found by bi-linear interpadatiof K andy on the grid
which themselves are obtained by finite differencing of tbteptial. When tested
on synthetic data sets, this refined maximume-likelihoodhoétproduces mass
maps with considerably higher resolution near the clusesitre without over-
fitting the noise at larger cluster-centric distances. Treetgcal implementation
of this method is somewhat complicated. In particular, ifical clusters are stud-
ied, some modifications have to be included to allow the misétion algorithm to
move critical curves across galaxy images in the lens pldoeiever, the quality
of the reconstruction justifies the additional effort, esally if high-quality data
from HST images are available. A first application of this hoet is presented by
Geiger & Schneider (1999).

Inverse methods such as the ones described here are likbgctome the stan-
dard tool for cluster mass profile reconstruction, owinguirtflexibility. As men-
tioned before, additional constraints from strong lensiggatures such as arcs and
multiply-imaged sources, can straightforwardly be incogted into these meth-
ods. The additional numerical effort is negligible comphi@the efforts needed to
gain the observational data. Direct inversion methodsaaittainly retain an impor-
tant role in this field, to obtain quick mass maps during tHexgaimage-selection
process (e.g., cuts in colour and brightness can be apphést), a mass map ob-
tained by a direct method as a starting model in the inverdbads reduces the
computational effort.

5.5.2 The Auto-Correlation Function of the ExtragalactadRground Light

So far, we described how shear can be determined from eitips of individual
galaxy images on a CCD. In that context, a galaxy image ig@stally significant
flux enhancement on the CCD covering several contiguousspael being more
extended than the PSF as determined from stars. Reducirtgréshold for the
signal-to-noise per object, the number density of detegtddxies increases, but
so does the fraction of misidentifications. Furthermore,rtteasured ellipticity of
faint galaxies has larger errors than that of brighter argblamages. The detection
threshold therefore is a compromise between high numbesityest images and
significance per individual object.

Even the faintest galaxy images whose ellipticity cannatieasured reliably still
contain information on the lens distortion. It is therefptausible to use this in-
formation, by ‘adding up’ the faintest galaxies statidticd-or instance, one could
co-add their brightness profiles and measure the shear afottndined profiled.
This procedure, however, is affected by the uncertaintiegefining the centres of
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the faint galaxies. Any error in the position of the centre dafined in (5.1), will
affect the resulting ellipticity.

To avoid this difficulty, and also the problem of faint objatgfinition at all,
Van Waerbeke et al. (1997) have suggested considering tbecatrelation func-
tion (ACF) of the ‘background’ light. Most of the sky brighgss is due to atmo-
spheric scattering, but this contribution is uniform. Fliations of the brightness on
the scale of arc seconds is supposedly mainly due to verygalaxies. Therefore,
these fluctuations should intrinsically be isotropic. & tight from the faint galax-
ies propagates through a tidal gravitational field, therggmt will be perturbed, and
this provides a possibility to measure this tidal field.

-

Specifically, ifl (8) denotes the brightness distribution as measured on a C@D, an
| is the brightness ayeraged over the CCD (or a part of it, semvipethe auto-
correlation functior,(0) of the brightness is defined as

£(8) = <(| (5)-@ (|(§+é)—|)>§, (5.34)

where the average is performed over all pairs of pixels vuiaqhasationé. From

the invariance of surface brightness (3.10, page 49) antbtadly linearised lens
mapping) (8) =1 (28), one finds that the observed ACF is related to the intrinsic
ACF £09, defined in complete analogy to (5.34), by

—

£(6) =20 (a6). (5.35)

Thus the transformation from intrinsic to observed ACF Hassame functional
form as the transformation of surface brightness. In anaioghe definition of the
guadrupole tensd® for galaxy images — see (5.2) — the tensor of second moments
of the ACF is defined as

202 (8) 0.0
ij = NL(G)?IGJ . (5.36)
J d?0&(6)
The transformation between the observed quadrupole teisand the intrinsic
one, (9, is the same as for the moment tensor of image elliptici(&s), ar (9 =
auM 4. As shown by Van Waerbeke et al. (1997), the termgodirectly determines
the distortiond,

_ M11— Moo+ 2iM1p
M1+ Moo '

)

(5.37)

Hence,d is related tonr in the same way as the complex ellipticiyis related to
Q. In some sense, the ACF plays the role of a single ‘equivaleage from which
the distortion can be determined, instead of an ensemblagee®ver individual
galaxy ellipticities.
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Working with the ACF has several advantages. First, cemtrgglaxy images do
not need to be determined, which avoids a potential souregrof. Second, the
ACF can be used with substantial flexibility. For instanaee @an use all galaxy
images which are detected with high significance, deterre# ellipticity, and
obtain an estimate @ from them. Sufficiently large circles containing these gala
ies can be cut out of the data frame, so that the remainingefiameminiscent of
a Swiss cheese. The ACF on this frame provides another dstimhd, which is
independent information and can statistically be combingh the estimate from
galaxy ellipticities. Or one can use the ACF only on galaxag®es detected within
a certain magnitude range, still avoiding the need to determwentres.

Third, on sufficiently deep images with the brighter objettsout as just described,
one might assume that the intrinsic ACF is due to a very langmbrer of faint
galaxies, so that the intrinsic ACF becomes a universaltioncThis function can
in principle be determined from deep HST images. In that,case also knows the
width of the intrinsic ACF, as measured by the trace or deteant of 4/ , and can
determine the magnification from the width of the observed=A¢ry similar to
the method discussed in Sect. 4.4.2, but with the advanfadgating with a single
‘universal source’.

If this universal intrinsic ACF does exist, corrections betmeasuredy for a
PSF considerably simplify compared to the case of indiMidnage ellipticities,
as shown by Van Waerbeke et al. (1997). They performed deesta on synthetic
data to demonstrate the potential of the ACF method for tbevexry of the shear
applied to the simulated images. Van Waerbeke et al. datexdrshear fields of two
clusters, with several magnitude thresholds for the imagpsh were punched out.
A comparison of these shear fields with those obtained frarstAndard method
using galaxy ellipticities clearly shows that the ACF metlimat least competitive,
but since it provides additional information from thosetpaosf the CCD which
are unused by the standard method, it should in be employeckse. The optimal
combination of standard method and ACF still needs to besiiyated, but detailed
numerical experiments indicate that the ACF may be the be#tad for measuring
very weak shear amplitudes (L. van Waerbeke & Y. Mellieryae communica-
tion).

5.5.3 The Redshift Distribution of Very Faint Galaxies

Galaxy redshifts are usually determined spectroscopicallsuccessful redshift
measurement depends on the magnitude of the galaxy, thewepime, and the
spectral type of the galaxy. If it shows strong emission @oaption lines, as star-
forming galaxies do, a redshift can much easier be detedrtiman in absence of
strong spectral features. The recently completed Candelimch Redshift Sur-
vey (CFRS) selected 730 galaxies in the magnitude intef& 4 | < 22.5 (see

Lilly et al. 1995 and references therein). For 591 of them%@1redshifts were
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secured with multi-slit spectroscopy on a 3.6m telescopdHD) with a typical ex-
posure time of- 8 hours. Whereas the upcoming 10m-class telescopes willlbe a
to perform redshift surveys to somewhat fainter magnituahéd, it will be diffi-
cult to secure fairly complete redshift information of a flimited galaxy sample
fainter thanl ~ 24. In addition, it can be expected that many galaxies in a flux
limited sample with fainter threshold will have redshifestWween~ 1.2 and~ 2.2,
where the cleanest spectral features, the Oll emissioratine= 3727 nm and the

A =400 nm break are shifted beyond the region where spectrps@apeasily be
done from the ground.

As we have seen, the calibration of cluster mass distribataepends on the as-
sumed redshift distribution of the background galaxiessiMi the galaxies used
for the reconstruction are considerably fainter than thosgnitude limits for
which complete redshift samples are available, so thatrtfass calibration re-
quires an extrapolation of the redshift distribution fromghter galaxy samples.
The fact that lensing is sensitive to the redshift distiidmuis not only a source of
uncertainty, but also offers the opportunity to investgate redshift distribution of
galaxies too faint to be investigated spectroscopicabyefal approaches towards
a redshift estimate of faint galaxies by lensing have be@gested, and some of
them have already shown spectacular success, as will besdist next.

First of all, a strongly lensed galaxy (e.g. a giant luminarg is highly magnified,
and so the gravitational lens effect allows to obtain speatiobjects which would
be too faint for a spectroscopic investigation without legsit was possible in this
way to measure the redshifts of several arcs, e.g., thegiam A 370 az=0.724
(Soucail et al. 1988), the arclet A5 in A 370zt 1.305 (Mellier et al. 1991), the
giant arc in Cl 224402 atz= 2.237 (Mellier et al. 1991), and the ‘straight arc’ in
A 2390 atz= 0.913. In the latter case, even the rotation curve of the sayataxy
was determined (Pello et al. 1991). For a more complete fistoredshifts, see
Fort & Mellier (1994). If the cluster contains several stgaensing features, the
mass model can be sufficiently well constrained to deterthi@arc magnifications
(if they are resolved in width, which has become possiblg &oim imaging with
the refurbished HST), and thus to determine the unlenseditoag of the source
galaxies, some of which are fainter thgat- 25.

Some clusters, such as A 370 and A 2218, were observed indgtltboth from
the ground and with HST, and show a large number of strongigdd images.
They can be used to construct very detailed mass models ofusker centre (e.g.,
Kneib et al. 1993; Kneib et al. 1996). An example is A 2218, imah at least five
multiply imaged systems were detected (Kneib et al. 199&),several giant arcs
were clearly seen. Refining the mass model for A 2218 cortstiufcom ground-
based data (Kneib et al. 1995) with the newly discovered oficoed strong lens-
ing features on the WFPC2 image, a strongly constrained madsl for the clus-
ter can be computed and calibrated by two arc redshifts (arfiage system at
z=0.702, and az = 1.034).
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Visual inspection of the WFPC2 image immediately shows gelarumber of ar-
clets in A 2218, which surround the cluster centre in a ngaelfect circular pat-
tern. These arclets have very small axis ratios, and mokeat eare therefore highly
distorted. The strength of the distortion depends on thehiéicof the correspond-
ing galaxy. Assuming that the sources have a considerabdyleanellipticity than
the observed images, one can then estimate a redshift ratige galaxy.

To be more specific, lgh® (¢(9) be the probability density of the intrinsic source
ellipticity, assumed for simplicity to be independent adskift. The corresponding
probability distribution for the image ellipticity is then

p(e) = p® (s(s)(s)) det(a;f) : (5.38)

where the transformaticrds)(s) is given by eq. (4.12, page 61), and the final term
is the Jacobian of this transformation. For each arclet theacluster centre where
the mass profile is well constrained, the value of the redsbedr is determined
up to the unknown redshift of the source — see eq. (5.35).

One can now try to maximisp(g) with respect to the source redshift, and in that
way find the most likely redshift for the af€] Depending on the ellipticity of the
arclet and the local values of shear and surface mass ddhs#g cases have to be
distinguished: (1) the arclet has the ‘wrong’ orientatietative to the local shear,
i.e., if the source lies behind the cluster, it must be evenenadliptical than the
observed arclet. For the arclets in A 2218, this case is \&®/ (2) The most prob-
able redshift is ‘at infinity’, i.e., even if the source is pdal at very high redshift,
the maximum ofp(g) is not reached. (3)(¢) attains a maximum at a finite redshift.
This is by far the most common case in A 2218.

This method, first applied to A 370 (Kneib et al. 1994), wasduseestimate the
redshifts of~ 80 arclets in A 2218 brighter thaR ~ 25. Their typical redshifts
are estimated to be of order unity, with the fainter sub-dan2g < R < 25 ex-
tending to somewhat higher redshifts. For one of them, ahiédsinge 26 <

z < 3.3 was estimated, and a spectroscopic redshift 6f2.515 was later mea-
sured (Ebbels et al. 1996), providing spectacular suppmortHis method. Addi-
tional spectroscopic observations of arclets in A 2218 weralucted and further
confirmed the reliability of the method for the redshift esites of individual ar-
clets (Ebbels et al. 1998).

Another success of this arclet redshift estimate was rgcaahieved in the cluster
A 2390, which can also be modelled in great detail from HSTad@here, two
arclets with very strong elongation did not fit into the cirstnass model unless

13 This simplified treatment neglects the magnification bias the fact that at locations of
high magnification the redshift probability distributicmchanged — see Sect. 4.3.2.
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they are at very high redshift. Spectroscopic redshiftg €f4.05 were recently
measured for these two arclets (Frye & Broadhurst 19980 Rekl. 1999).

However, several issues should be kept in mind. First, tloéetar for which
a reliable estimate of the redshift can be obtained are Igleaagnified, and
thus the sample is magnification biased. Since it is well kmolat the galaxy
number counts are considerable steeper in the blue thareimeth (see, e.g.,
Smail et al. 1995a), blue galaxies are preferentially setbas arclets — see
eg. (4.42). This might also provide the explanation why nodshe giant arcs are
blue (Broadhurst 1995). Therefore, the arclets represeatigbly a biased sample
of faint galaxies. Second, the redshift dependencg(ef enters through the ratio
Dgs/Ds. For a cluster at relatively low redshift, such as A 2228 0.175), this
ratio does not vary strongly with redshift once the sourasingt is larger than
~ 1. Hence, to gain more accurate redshift estimates for redkhift galaxies, a
moderately-high redshift cluster should be used.

The method just described is not a real ‘weak lensing’ appiba, but lies on the
borderline between strong and weak lensing. With weak hgnghe redshifts of
individual galaxy images cannot be determined, but some statistidahif¢ esti-
mates can be obtained. Suppose the mass profile of a clusteeba reconstructed
using the methods described in Sect. 5.2 or Sect. 5.5.1, iwchwgalaxy images
in a certain magnitude range were used. If the cluster com&trong-lensing fea-
tures with spectroscopic information (such as a giant lwmsnarc with measured
redshift), then the overall mass calibration can be deteethii.e., the factofw) —
see Sect. 4.3.2 — can be estimated, which provides a firgralteonstraint on the
redshift distribution.

Repeating this analysis with several such clusters atrdifteredshifts, further esti-
mates of(w) with differentDq are obtained, and thus additional constraints on the
redshift distribution. In addition, one can group the fagataxy images into sub-
samples, e.g., according to their apparent magnitude riggndor simplicity the
magnification bias (which can safely be done in the outespdrtiusters), one can
determine(w) for each magnitude bin. Restricting our treatment to théoregjof
weak lensing only, such thf| < 1,k < 1, the expectation value of the ellipticity

&; of a galaxy at positio®; is (W)y(6;), and so an estimate @#) for the galaxy
sub-sample under consideration is

>0 (v(@e)
_c 5.39
S TG 639

In complete analogy, Bartelmann & Narayan (1995) suggettedlens parallax
method’, an algorithm for determining mean redshifts folagg sub-samples at
fixed surface brightness, using the magnification effectegsiibed in Sect. 4.4.2.
Since the surface brightnekss most likely much more strongly correlated with
galaxy redshift than the apparent magnitude (due t¢1hez) —* decrease of bolo-
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metric surface brightness with redshift), a narrow bihwill probably correspond
to a fairly narrow distribution in redshift, allowing to ek (w) of a surface bright-
ness bin fairly directly to a mean redshift in that bin, whiy@ in magnitude bins
can only be translated into redshift information with a paeterised model of the
redshift distribution. On the other hand, apparent magleisiare easier to measure
than surface brightness and are much less affected by seeing

Even if a cluster without strong lensing features is congidgthe two methods just
described can be applied. The mass reconstruction thes thigenass distribution
up to an overall multiplicative constant. We assume heretfieemass-sheet degen-
eracy can be lifted, either using the magnification effeaiescribed in Sect. 5.4,
or by extending the observations so sufficiently large dista so thak ~ 0 near
the boundary of the data field. The mass scale can then be fyxeahisidering the
brightest sub-sample of galaxy images for which a shealatigrdetected if they
are sufficiently bright for their redshift probability digiution to be known from
spectroscopic redshift surveys (Bartelmann & Narayan 1995

Whereas these methods have not yet rigourously been apthleze is one obser-
vational result which indicates that the faint galaxy pepioin has a relatively high
median redshift. In a sequence of clusters with increasadghift, more and more
of the faint galaxies will lie in the foreground or very cldsehind the cluster and
therefore be unlensed. The dependence of the observeddesiggngth of clusters
on their redshift can thus be used as a rough indication afigdian redshift of the
faint galaxies. This idea was put forward by Smail et al. @9%ho observed three
clusters with redshiftz = 0.26, z= 0.55 andz = 0.89. In the two lower-redshift
clusters, a significant weak lensing signal was detectedjdogignificant signal in

the high-redshift cluster. From the detection, modelstierredshift distribution of

faint1 <25 can be ruled out which predict a large fraction to be dwalfxjes at

low redshift. The non-detection in the high-redshift carstannot easily be inter-
preted since little information (e.g., from X-ray maps) v&iable for this cluster,

and thus the absence of a lensing signal may be due to therdhgshg not massive
enough.

However, the detection of a strong shear signal in the alugt® 1054-03 at
z= 0.83 (Luppino & Kaiser 1997) implies that a large fraction oflagaes with

| <255 must lie at redshifts larger thar~ 1.5. They split their galaxy sample
into red and blue sub-samples, as well as into brighter antefesub-samples, and
found that the shear signal is mainly due to the fainter aedthe galaxies. If all
the faint blue galaxies have a redshift= 1.5, the mass-to-light ratio of this cluster
is estimated to b&1/L ~ 580h, and if they all lie at redshifts = 1, M/L exceeds
~ 1000h. This observational result, which is complemented by sehaxtditional
shear detections in high-redshift clusters, one of them-at0.82 (G. Luppino,
private communication), provides the strongest evideacéte high-redshift pop-
ulation of faint galaxies. In addition, it strongly constracosmological models; an
Qo = 1 cosmological model predicts the formation of massivetehssonly at rel-
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atively low redshifts (e.g., Richstone et al. 1992; Barmhm et al. 1993) and has
difficulties to explain the presence of strong lensing dustt redshift ~ 0.8.

Recently, Lombardi & Bertin (1999) and Gautret et al. (1998)gested that weak
lensing by galaxy clusters can be used to constrain the dogital parameterQg
andQn. Both of these two different methods assume that the redstibckground
galaxies can be estimated, e.g. with sufficiently precisgqrhetric-redshift tech-
niques. Owing to the dependence of the lensing strengtheangular-diameter
distance ratidys/Ds, sufficiently detailed knowledge of the mass distribution i
the lens and of the source redshifts can be employed to eam$ilese cosmologi-
cal parameters. Such a determination through purely geamalehethods would be
very valuable, although the observational requirementapplying these methods
appear fairly demanding at present.
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6 Weak Cosmological Lensing

In this section, we review how weak density perturbationstimerwise homoge-

neous and isotropic Friedmann-Lemaitre model univerffestahe propagation

of light. We first describe how light propagates in the honmagris and isotropic

background models, and then discuss how local density iolgemeities can be

taken into account. The result is a propagation equatiothitransverse separa-
tion between the light rays of a thin light bundle.

The solution of this equation leads to the deflection amglef weakly deflected
light rays. In close analogy to the thin-lens situationf lilaé divergence of the
deflection angle can be identified with an effective surfax@ss densitkeg. The
power spectrum e is closely related to the power spectrum of the matter fluctu-
ations, and it forms the central physical object of the ferttiiscussion. Any two-
point statistics of cosmic magnification and cosmic sheartban be expressed in

a fairly simple manner in terms of the effective-convergepower spectrum.

We discuss several applications, among which are the werin brightness de-
terminations of cosmologically distant objects due to cdesmagnification, and
several measures for cosmic shear, one of which is pantigidaited for deter-
mining the effective-convergence power spectrum. At the @fnthis chapter, we
turn to higher-order statistical measures of cosmic lensffects, which reflect the
non-Gaussian nature of the non-linearly evolved densitjupgations.

When we give numerical examples, we generally employ foifierdint model uni-
verses. All have the CDM power spectrum for density fluctuadj but different
values for the cosmological parameters. They are sumnaansiab. 1. We choose
two Einstein-de Sitter models, SCDM am€ DM, normalised either to the local
abundance of rich clusters or &g = 1, respectively, and two low-density models,
OCDM andACDM, which are cluster normalised and either open or sppfiat,
respectively.

Table 1
Cosmological models and their parameters used for nunhesieaples

Model | Qo Qa h Normalisation o3y
SCDM | 1.0 00 05 cluster 05)
oCDM |10 00 05 og 10
OCDM | 0.3 00 07 cluster 085
ACDM | 0.3 07 0.7 cluster 0]

Light propagation in inhomogeneous model universes has kibe sub-
ject of numerous studies. Among them are Zel'dovich & YaBRg4),
Dashevskii et al. (1965), Kristian & Sachs (1966), Gunn @96
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Jaroszynski et al. (1990), Babul & Lee (1991), Bartelmannc&rgider (1991),
Blandford et al. (1991), Miralda-Escudé (1991a), and &®a{$992). Non-linear
effects were included analytically by Jain & Seljak (199%jo also considered
statistical effects of higher than second order, as did &elenu et al. (1997).
A particularly suitable measure for cosmic shear was intced by
Schneider et al. (1998a).

6.1 Light Propagation; Choice of Coordinates

As outlined in Sect. 3.2.1 (page 52), the governing equdtiothe propagation of
thin light bundles through arbitrary space times is the &quaf geodesic devia-
tion (e.g. Misner et al. 1973,11; Schneider et al. 1992,3.5), or Jacobi equation
(3.23, page 53). This equation implies that the transvengsipal separatioﬁ be-
tween neighbouring rays in a thin light bundle is describgdh® second-order
differential equation

% -
v TE, (6.1)
whereT is theoptical tidal matrix(3.25, page 53) which describes the influence
of space-time curvature on the propagation of light. Thenaffiarametek has to

be chosen such that it locally reproduces the proper distand increases with
decreasing time, hence\ & —cadt. The elements of the matrix then have the
dimension [length}?.

We already discussed in Sect. 3.2.1 that the optical tidatixnia proportional to
the unit matrix in a Friedmann-Lemaitre universe,

T=R1T, (6.2)

where the factor is determined by the Ricci tensor as in eq. (3.26, page 53). Fo
a model universe filled with a perfect pressure-less flgid;an be written in the
form (3.28, page 54).

It will prove convenient for the following discussion to tape the affine parameter

A in eq. (6.1) by the comoving distanee which was defined in eq. (2.3, page 13)
before. This can be achieved using egs. (3.31) and (3.32jtegwith the defini-
tion of Hubble’s parameteH (a) = aa~!. Additionally, we introduce theomoving
separation vectot= a‘lg. These substitutions leave the propagation equation (6.1)
in the exceptionally simple form

d?x
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whereK is the spatial curvature given in eq. (2.30, page 19). Eqoa.3) has
the form of an oscillator equation, hence its solutions egohometric or hyper-
bolic functions, depending on whetheris positive or negative. In the special case
of spatial flatnessK = 0, the comoving separation between light rays is a linear
function of distance.

6.2 Light Deflection

We now proceed by introducing density perturbations in®glhopagation equa-
tion (6.3). We assume throughout that the Newtonian patkitof these inhomo-
geneities is small®P| < ¢?, that they move with velocities much smaller than the
speed of light, and that they are localised, i.e. that thee&}scales over whickb
changes appreciably are much smaller than the curvatule acthe background
Friedmann-Lemaitre model. Then, there exists a localhteigrhood around each
density perturbation which is large enough to contain théupleation completely
and still small enough to be considered flat. Under thesermistances, the metric
is well approximated by the first post-Newtonian order of ki@kowski metric
(3.36, page 56). It then follows from eq. (3.36) that the @ffee local index of
refraction in the neighbourhood of the perturbation is

—=n=1——. (6.4)

Fermat’s principle (e.g. Blandford & Narayan 1986; Scheeitb85) demands that
the light travel time along actual light paths is stationdgnce the variation of
J ndl must vanish. This condition implies that light rays are deéd locally ac-
cording to

d2x 2

In weakly perturbed Minkowski space, this equation desxihow aractuallight
ray is curved away from a straight line in unperturbed Mink&irgpace. It is there-
fore appropriate for describing light propagation throegip the Solar system and
other well-localised mass inhomogeneities.

This interpretation needs to be generalised for largeescass inhomogeneities
embedded in an expanding cosmological background, sineemianing of a
“straight” fiducial ray is then no longer obvious. In geneaty physical fiducial
ray will also be deflected by potential gradients along ity.\Wae can, however,
interpretX as the comoving separation vector between an arbitraridgeh fidu-
cial light ray and a closely neighbouring light ray. The tigfand side of eq. (6.5)
must then contain thdifferenceA(]; ®) of the perpendicular potential gradients
between the two rays to account for tie¢ative deflection of the two rays.
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Letus therefore imagine a fiducial ray starting at the olegv= 0) into dirﬁection
6=0, and aﬁneighbouring ray starting at the same point but imeection 6 £ O.
Let furtherX(6, w) describe the comoving separation between these two lighita
comoving distancev. Combining the cosmological contribution given in eq. §6.3
with the modified local contribution (6.5) leads to the prgg@on equation

X 2 2

W#—KX:—?A{DLCD[X(G,W),W]}. (6.6)
The notation on the right-hand side indicates that the iffee of the perpendic-
ular potential gradients has to be evaluated between théghirays which have
comoving separatior(6, w) at comoving distance from the observer.

Linearising the right-hand side of eq. (6.6)Xnmmediately returns the geodesic
deviation equation (6.1) with the full optical tidal matrikhich combines the ho-
mogeneous cosmological contribution (3.28, page 54) withdontributions of
local perturbations (3.37, page 56).

Strictly speaking, the comoving distanegor the affine parametey, are changed
in the presence of density perturbations. Here, we assuahéhihglobal properties
of the weakly perturbed Friedmann-Lemaitre models renfagnsame as in the
homogeneous and isotropic case, and under this assumipgicntnoving distance
w remains the same as in the unperturbed model.

To solve eq. (6.6), we first construct a Green'’s funct®gw,w), which has to
be a suitable linear combination of either trigonometrichgperbolic functions
since the homogeneous equation (6.6) is an oscillator iequat/e further have to
specify two boundary conditions. According to the situatiee have in mind, these
boundary conditions read

X
X=0, — =6 (6.7)

atw = 0. The first condition states that the two light rays stamfithe same point,
so that their initial separation is zero, and the second itondndicates that they
set out into directions which differ bg.

The Green'’s function is then uniquely determined by
fk(w—w) for w>w
Guw) =] M) , (6.8)
0 otherwise

with fk (w) given in eq. (2.4, page 14). As a function of distamcehe comoving
separation between the two light rays is thus

—

(8, w) fK(w)é—C—z2 /OW dw fc(w—w)a {0, 0@ wW)w]} . (6.9)
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The perpendicular gradients of the Newtonian potentiat@aige evaluated along
the true paths of the two light rays. In its exact form, eq9)6s therefore quite
involved.

Assuming that the change of the comoving separation vetbmtween the two
actualrays due to light deflection is small compared to the comosgjaration of
unperturbedays,

X©.w) = k(W8 o (6.10)

| fi ()8
we can replac&(8,w) by fx(W)6 in the integrand to arrive at a much simpler
expression which corresponds to the Born approximatiomadlisangle scattering.
The Born approximation allows us to replace the differenicthe perpendicular
potential gradients with the perpendicular gradient ofgbeential difference. Tak-
ing the potential difference then amounts to adding a terthegootential which
depends on the comoving distangefrom the observer only. For notational sim-
plicity, we can therefore rename the potential differeAdebetween the two rays
to .

It is an important consequence of the Born approximationttiteaJacobian matrix
of the lens mapping (3.11, page 49; 6.28 below) remains syrnoreven in the
case of cosmological weak lensing. In a general multipls-gane situation, this
is not the case (Schneider et al. 1992, chapter 9).

If the two light rays propagated through unperturbed spiwe; their comoving
separation at distaneewould simply bex (8, w) = fi (w)8, which is the first term
on the right-hand side of eq. (6.9). The net deflection angtkstancew between
the two rays is the difference betwe®nand¥X, divided by the angular diameter
distance taw, hence

O, d[fx(W)0,w]. (6.11)

o fk(W)B—XB,w) 2 W fx(w—w)
G(w) = S I /O W

Again, this is the deflection angle of a light ray that starnis at the observer
into direction® relative to a nearby fiducial ray. Absolute deflection anglas-
not be measured. All measurable effects of light deflecti@mefore only depend
onderivativesof the deflection angle (6.11), so that the choice of the falualy is
irrelevant for practical purposes. For simplicity, we cﬁa(lﬁ, w) the deflection angle
at distancew of a light ray starting into directio on the observer’s sky, bearing
in mind that it is the deflection angle relative to an arbityathosen fiducial ray,
so thatdi (6, w) is far from unique.

In an Einstein-de Sitter universg (w) = w. Definingy =w /w, eq. (6.11) simpli-
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fies to

—

1 o
Q@ = 55 [ dy(1—y) 0. owy). (6.12)

Clearly, the deflection anglk depends on the directidhon the sky into which the
light rays start to propagate, and on the comoving distantmethe sources.

Recall the various approximations adopted in the derivadioeq. (6.11): (i) The
density perturbations are well localised in an otherwisabgeneous and isotropic
background, i.e. each perturbation can be surrounded batekyp flat neighbour-
hood which can be chosen small compared to the curvaturasradithe back-
ground model, and yet large enough to encompass the enttrelpeion. In other
words, the largest scale on which the density fluctuatioctspen Ps(k) has appre-
ciable power must be much smaller than the Hubble raditi#y. (i) The Newto-
nian potential of the perturbations is smail< ¢, and typical velocities are much
smaller than the speed of light. (iii) Relative deflectiomi@s between neighbour-
ing light rays are small enough so that the difference of taasverse potential
gradient can be evaluated at the unperturbed path sepafatie)0 rather than the
actual one. Reassuringly, these approximations are venjartably satisfied even
under fairly extreme conditions. The curvature radius ef thmiverse is of order
cHy 1 — 3000h~1Mpc and therefore much larger than perturbations of eveeraév
tens of Mpc's in size. Typical velocities in galaxy clustare of order 18kms™?,
much smaller than the speed of light, and typical Newton@temtials are of order
®<10°°¢2.

6.3 Effective Convergence

6.3.1 Definition and Derivation

In the thin-lens approximation, convergencand deflection anglé are related by

1 _ - 1000
((8) = 5o-3(8) = 5 2

(6.13)

where summation overis implied. In exact analogy, an effective convergence
Keff(W) can be defined for cosmological weak lensing,

1 —
Keff(e,W) = é De G(G,W)
. 1 w fK(W—V\/) fK(V\/) 62 =
=2/ W o) o OlfkW)BW] . (6.14)
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Had we not replaced(8,w) by fx(w)6 following eq. (6.9), eq. (6.14) would
have contained second and higher-order terms in the patel@rivatives. Since
eg. (6.9) is a Volterra integral equation of the second kitsdsolution (and deriva-
tives thereof) can be expanded in a series, of which the éomggexpression for
Keff IS the first term. Equation (6.16) below shows that this tesnofithe order
of the line-of-sight average of the density contradstThe next higher-order term,
explicitly written down in the Appendix of Schneider et d908a), is determined
by the producd(w')d(w”’), averaged along the line-of-sight ower< w”. Analo-
gous estimates apply to higher-order terms. Whereas th&tdemontrast may be
large for individual density perturbations passed by atligly, the average dj is
small compared to unity for most rays, hengg < 1, and higher-order terms are
accordingly negligible.

The effective convergenegy in eq. (6.14) involves the two-dimensional Laplacian
of the potential. We can augment it B§?®/dx2) which involves only derivatives
along the light path, because these average to zero in thietdinvhich we are
working. The three-dimensional Laplacian of the potertdal then be replaced by
the density contrast via Poisson’s equation (2.65, page 32)

3H Qo
AP = 23 o (6.15)
Hence, we find for the effective convergence,
5  3H2Qq fK(w w) 8] f (W)8, W]
Ken(B,w) = =25 / WAL W ) (619

The effective convergence along a light ray is thereforentggral over the density
contrast along the (unperturbed) light path, weighted bymalzination of comoving
angular-diameter distance factors, and the scale factbhe amplitude oKes is
proportional to the cosmic density parameiy.

Expression (6.16) gives the effective convergence for afsairce redshift corre-
sponding to the comoving source distaneé/Vhen the sources are distributed in
comoving diStanCeKeff(_é,W) needs to be averaged over the (normalised) source-
distance distributioi(w),

Ke() = [ dwGLw)Ken(B.m) (6.17)

whereG(w) dw = p,(z) dz. Suitably re-arranging the integration limits, we can then
write the source-distance weighted effective convergesce

_ 3H2Qo

er(8) = =503 Al

a(w)

/0 ™ W (W) i (W) , (6.18)
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where the weighting functiow/(w) is now

W(w) = WW” oW G(w) % .

The upper integration boundamy is the horizon distance, defined as the comoving
distance obtained for infinite redshift. In fact, it is egshown that the effective
convergence can be written as

(6.19)

4T[GD Dgs dD
ot = [ dz"y — 0 SR () (6.20)

and the weighting functiolV is the distance rati@Dys/Ds), averaged over the
source distances at fixed lens distance. Naively generglibie definition of the
dimension-less surface-mass density (3.7, page 48) teea-ttimensional matter
distribution would therefore directly have led to the cosogically correct expres-
sion for the effective convergence.

6.4 Effective-Convergence Power Spectrum

6.4.1 The Power Spectrum from Limber’s Equation

Here, we are interested in the statistical properties oétfeetive convergence.y,
especially its power spectruRk (). We refer the reader to Sect. 2.4 (page 41) for
the definition of the power spectrum. We also note that theesgon fon?eﬁ(é) is

of the form (2.77, page 43), and so the power specthJ(h) is given in terms of
Ps(k) by eq. (2.84, page 44), if one sets

3 H fK (W)

(W) = 6o (W) = 52 QoW(w) . (6:21)
We therefore obtain
_9HJQZ W2 (w) |
P(l) = 4((3:40 A dw 2(W) P5<fK(W),W), (6.22)

with the weighting functionV given in eq. (6.19). This power spectrum is the
central quantity for the discussion in the remainder of thigpter.

Figure 15 shows(l) for five different realisations of the CDM cosmogony.
These are the four models whose parameters are detailedbinlTaall with
non-linearly evolving density power spectruf, using the prescription of
Peacock & Dodds (1996), plus the SCDM model with linearlylevm Ps. Sources
are assumed to be at redshift= 1. Curves 1 and 2 (solid and dotted; SCDM with
linear and non-linear evolution, respectively) illuserahe impact of non-linear
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density evolution in an Einstein-de Sitter universe witlistér-normalised density
fluctuations. Non-linear effects set in on angular scalésviba few times 1Q and
increase the amplitude & (1) by more than an order of magnitude on scales of
~ 1. Curve 3 (short-dashediCDM), obtained for CDM normalised tog = 1
rather than the cluster abundance, demonstrates the jbtefitence of different
choices for the power-spectrum normalisation. Curves 45aftthshed-dotted and
long-dashed; OCDM andCDM, respectively) show(I) for cluster-normalised
CDM in an open universe)p = 0.3, QA = 0) and in a spatially flat, low-density
universe Qo = 0.3, Qa = 0.7). It is a consequence of the normalisation to the
local cluster abundance that the variéugl ) are very similar for the different cos-
mologies on angular scales of a few arc minutes. For the lemsidy universes, the
difference between the cluster- and thg normalisation is substantially smaller
than for the Einstein-de Sitter model.

Figure 16 gives another representation of the curves in F3g.There, we plot
I2P«(1), i.e. the total power in the effective convergence per litiganic | inter-
val. This representation demonstrates that density fltiongon angular scales
smaller thanx 10 contribute most strongly to weak gravitational lensing drge-
scale structures. On angular scales smaller thdf the curves level off and then
decrease very gradually. The solid curve in Fig 16 shows thilaén linear den-
sity evolution is assumed, most power is contributed bycstines on scales above
10, emphasising that it is crucial to take non-linear evoluiitto account to avoid
misleading conclusions.

6.4.2 Special Cases

In the approximation of linear density evolution, applilsabn large angular scales
2 30, the density contrast grows in proportion witlgy(a), as described following
eg. (2.52) on page 26. The power spectrum of the density asintinen evolves
0 a®g?(a). Inserting this into eq. (6.22), the squared scale faafow) cancels,
and we find

402 rwy _
PK(l)zg'lfo 5 dw g [a(w)| W?(w) P9 (ﬁ) (6.23)

Here, Pg(k) is the density-contrast power spectrum linearly extragoldo the
present epoch.

In an Einstein-de Sitter universe, the growth functgga) is unity sincePs grows
like the squared scale factor. In that special case, theesgjan for the power spec-
trum of Keg further reduces to

_9Hg v

Pell) = 8 |

" GWW2(w) P (V'—v) , (6.24)
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Fig. 15. Five effective-convergence power spe&d) are shown as functions of the an-
gular scale &1, expressed in arc minutes. All sources were assumed to lig=atl.
The five curves represent the four realisations of the CDNinoggpony listed in Tab. 1, all
with non-linearly evolving density-perturbation poweespaPs, plus the SCDM model
with linearly evolvingPs. Solid curve (1): Linearly evolving SCDM model; dotted cerv
(2): non-linearly evolving SCDM; short-dashed curve (ndinearly evolvingcCDM;
dashed-dotted and long-dashed curves (4 and 5): nondirmarving OCDM and\CDM,
respectively.

and the weight functiokv simplifies to

W(w) = / ™ o W) (1—%) . (6.25)

w

In some situations, the distance distribution of the s@icae be approximated by
a delta peak at some distaneg G(w) = dp(W—Ws). A typical example is weak
lensing of the Cosmic Microwave Background, where the soigthe surface of
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Fig. 16. Different representation of the curves in Fig. 18 ot herd? P (1), representing
the total power in the effective convergence per logarithhinterval. See the caption of
Fig. 15 for the meaning of the different line types. The figdegnonstrates that the total
power increases monotonically towards small angular saateen non-linear evolution is
taken into account (i.e. with the exception of the solid edr®n angular scales still smaller
than~ 1, the curves level off and decrease very slowly. This shoaseak lensing by
cosmological mass distributions is mostly sensitive tocttires smaller thary 10.

last scattering at redshift ~ 1000. Under such circumstances,

W(w) — <1— ﬂ) H(Ws — W) , (6.26)

Ws

where the Heaviside step functionH expresses the fact that sourcesvatare
only lensed by mass distributions at smaller distamncEor this specific case, the
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effective-convergence power spectrum reads

F>|—9H51 " ay(1—y)2e0 (- 6.27
()= 8w [ dya-y2e8 (o) 627
wherey = w/ws is the distance ratio between lenses and sources. Thisi@guat
illustrates that all density-perturbation modes whoseenavmbers are larger than
Kmin = wgll contribute taP (1), or whose wavelengths are smaller thgpx = wsb.
For example, the power spectrum of weak lensing on anguidesofo ~ 10 on
sources at redshiftag; ~ 2 originates from all density perturbations smaller than
~ 7h~1Mpc. This result immediately illustrates the limitationthe foregoing
approximations. Density perturbations on scales smdiken &2 few Mpc become
non-linear even at moderate redshifts, and the assumgtimear evolution breaks
down.

6.5 Magnification and Shear

In analogy to the Jacobian matrix of the conventional lens equation (3.11,
page 49), we now form the matrix

- 0 (6, w) 1 ox(8,w)
a@w =1— ——" = o 6.28
(6w) 00 fk(w) 98 (6.28)

The magnification is the inverse of the determinantiofsee eq. 3.14, page 49).
To first order in the perturbations, we obtain for the magatfan of a source at
distancew seen in directio®

. 1 . .
W) =—5— ~1+0g-0(0,w) = 1+ 2Kes(0,W
H(B, w) deta B.w) o-G(6,W) eff(6, W)

=1+3u(6,w) . (6.29)

In the weak-lensing approximation, the magnification flattndpis simply twice
the effective convergenaey, just as in the thin-lens approximation.

We emphasise again that the approximations made implyhbanhatrixa is sym-
metric. In general, when higher-order terms in the Newtomatential are con-
sidered,z attains an asymmetric contribution. Jain et al. (1999) usgetracing
simulations through the density distribution of the Unsecomputed in very high
resolutionN-body simulations to show that the symmetryis satisfied to very
high accuracy. Only for those light rays which happen to pgate close to more
than one strong deflector can the deviation from symmetrypgpeegiable. Fur-
ther estimates of the validity of the various approximagitiave been carried out
analytically by Bernardeau et al. (1997) and Schneider.€18D8a).
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Therefore, as in the single lens-plane situation, the #émipic deformation, or
shear, of a light bundle is determined by the trace-free paithe matrix 2

(cf. eq. 3.11, page 49). As explained there, the shear médlkatscal images from
circular sources. Led andb be the major and minor axes of the image ellipse of a
circular source, respectively, then the ellipticity is

a2 — b2

Xl = ~2lyl, (6.30)

a2 +b?
where the latter approximation is valid for weak lensing,< 1; cf. eq. (4.18).
The quantity ¥ was sometimes calledpolarisation in the literature
(Blandford et al. 1991, Miralda-Escudé 1991a, Kaiser 3992

In the limit of weak lensing which is relevant here, the twair statistical prop-
erties ofdp and of 27 are identical (e.g. Blandford et al. 1991). To see this, v fir
note that the first derivatives of the deflection angle odngrin egs. (6.29) can be
written as second derivatives of an effective deflectiorptal P which is defined
in terms of the effective surface mass dengity in the same way as in the sin-
gle lens-plane case; see (3.9, page 48). We then imaginétlzatdy are Fourier
transformed, whereupon the derivatives with respe6t toe replaced by multipli-
cations with components of the wave vedfanonjugate td. In Fourier space, the
expressions for the averaged quantiti&s’) and 4(|y|?) differ only by the combi-
nations ofl; andl, which appear under the average. We have

2 o
2412)" =14 for (Sp?)

2 o
(2-12)°+412Z=1* for 4(y) =4(F+3)

and hence the two-point statistical propertiedand 2y agree identically. There-
fore, the power spectra of effective convergence and slhygaea

(6.31)

—

(Rer(DRen(I") = FOT() = Bcll)=PRl). (6.32)

Thus we can concentrate on the statistics of either the rfiegion fluctuations or
the shear only. Sincéu = 2Kk, the magnification power spectruR is 4P, and
we can immediately employ the convergence power spedgum

6.6 Second-Order Statistical Measures

We aim at the statistical properties of the magnificationtélatton and the shear. In
particular, we are interested in the amplitude of these gfissand their angular
coherence. Both can be described by their angular autelation functions, or
other second-order statistical measures that will turnt@be more practical later.
As long as the density fluctuation fiebdremains Gaussian, the probability distri-
butions ofdu andy are also Gaussians with mean zero, and two-point statistica
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measures are sufficient for their complete statistical rilgsan. When non-linear
evolution of the density contrast sets in, non-Gaussiamhéyelops, and higher-
order statistical measures become important.

6.6.1 Angular Auto-Correlation Function

The angular autocorrelation functidgy(g) of some isotropic quantityq(é) is
the Fourier transform of the power spectruyl) of q(8). In particular, the
auto-correlation function of the magnification fluctuatigp(¢), is related to the
effective-convergence power spectréqil ) through

—

Eu(®) = <5H(§)5u(é +9)) = 4(Kef(B)kerr(B -+ 9)) = 4(y(B)y (8 +¢))

—4/ dz' 1) exp(—il-¢) = 4/°°@F>K ) 3(10) (6.33)

where@is a vector with normyp. The factor four in front of the integral accounts for
the fact thadu = 2kef in the weak-lensing approximation. For the last equality in
(6.33), we integrated over the angle encloseﬂdwd?p, leading to the zeroth-order
Bessel function of the first kindg(x). Equation (6.33) shows that the magnification
(or shear) auto-correlation function is an integral over power spectrum of the
effective convergenceg, filtered by the Bessel functioy(X). Since the latter is

a broad-band filter, the magnification auto-correlationctiom is not well suited
for extracting information o . It would be desirable to replaég(¢) by another
measurable quantity which involves a narrow-band filter.

Nonetheless, inserting eq. (6.22) into eq. (6.33), we alitae expression for the
magnification auto-correlation function,

2 _
£u(0) = 2520 [ aw 20 WP wya 2w
K P w) o[ i (ke (6.34)

The magnification autocorrelation function therefore suwnt to be an integral over
the density-fluctuation power spectrum weighted bi-apace window function
which selects the contributing density perturbation modes

6.6.2 Special Cases and Qualitative Expectations

In order to gain some insight into the expected behavioun®fitagnification auto-
correlation functiorg,(¢), we now make a number of simplifying assumptions.
Let us first specialise to linear density evolution in an Ensde Sitter universe,
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and assume sources are at a single distagc&quation (6.34) then immediately
simplifies to

1 0
£u(@) = 2 wd [ ayy(i-y)? | KK PO(K) Do) (6.35)

2rt 0
with y = wg tw.

We now introduce two model specl?g(k), one of which has an exponential cut-off
above some wave numbley, while the other falls off likek—3 for k > kg. For smalll

k, both spectra increase lilke They approximately describe two extreme cases of
popular cosmogonies, the HDM and the CDM model. We chooséutietional
forms

k 9
P o = Akexp(—%) , Pcom= Akﬁ , (6.36)
whereA is the normalising amplitude of the power spectra. The nigakcoeffi-
cients in the CDM model spectrum are chosen such that bottirapeeak at the
same wave numbder= kg. Inserting these model spectra into eq. (6.35), perform-
ing thek integration, and expanding the result in a power serieg we obtain
(Bartelmann 1995b)

3A oA
Euriom () = 2o (Wko)° — o2 (Wko) P+ 0 (¢).
£ucon(® = 222 (k)2 - 272 (i) g+ 0(e?) 637)

whereA’ = (Hoc™1)*A. We see from eq. (6.37) that the magnification correlation
function for the HDM spectrum is flat to first order@ while it decreases linearly
with @for the CDM spectrum. This demonstrates that the shape of#gmification
autocorrelation functiogy, (@) reflects the shape of the dark-matter power spectrum.
Motivated by the result of a large number of cosmologicatiss showing that
HDM models have the severe problem of structure on smaksdatming at times
much later than observed (see e.g. Peacock 1999), we noechdgt HDM model
and focus on the CDM power spectrum only.

We can then exped,(9) to increase linearly witlp as@ goes to zero. Although
we assumed linear evolution of the power spectrum to achieseesult, this qual-
itative behaviour remains valid when non-linear evolui®assumed, because for
large wave numbers the non-linear CDM power spectra also asymptotically fall
off O k3 for largek.

Although the model spectra (6.36) are of limited validitye wan extract some
useful information from the small-angle approximationgegi in eq. (6.37). First,
the correlation amplitud&,(0) scales with the comoving distance to the sources
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ws aswW2. In the Einstein-de Sitter case, for which eq. (6.37) wasvedyws =
(2c/Ho) [1— (14 z5)~%?]. For low source redshiftss < 1, Ws ~ (¢/Hg) zs, SO
that &,(0) O Z. For zs>> 1, ws — (2¢/Ho), and&,(0) becomes independent of
source redshift. For intermediate source redshifts, gsgcan be made by defining
(s = In(z) and expanding Iw[exp({s)] in a power series ifs. The result is an
approximate power-law expression(zs) 0 Z, valid in the vicinity of the zero
point of the expansion. The exponenthanges from= 0.6 atzs ~ 1 to ~ 0.38 at
Zs~ 3.

Second, typical source distances are of order 2 Gpc. &nethe wave number
corresponding to the horizon size when relativistic and-redativistic matter had
equal densitiesty* = dy(8eq) ~ 12(Qoh?)~*Mpc. Thereforewskg ~ 150. Typi-
cally, the spectral amplitud® ranges between 16-10°. A rough estimate for
the correlation amplitudg,(0) thus ranges between 19-10-3 for ‘typical’ source
redshiftszs > 1.

Third, an estimate for the angular scggof the magnification correlation is ob-
tained by determining the angle whefg¢) has dropped to half its maximum.
From the small-angle approximation (6.37), we figd= 11v/3(12wsko) 2. Insert-
ing as beforawskg ~ 150, we obtainpy ~ 10, decreasingwith increasing source
redshift.

Summarising, we expeéf,(¢@) in a CDM universe to

(1) startat 10°-102 at@= 0 for source redshiftss ~ 1;
(2) decrease linearly for smaglon an angular scale g ~ 10; and
(3) increase with source redshift roughly@g2® aroundzs = 1.

6.6.3 Realistic Cases

After this digression, we now return to realistic CDM powpestra normalised to
fit observational constraints. Some representative esunét shown in Fig. 17 for
the model parameter sets listed in Tab. 1.

The figure shows that typical values ﬁf]/z(cp) in cluster-normalised CDM models
with non-linear density evolution are 6% at@~ 1, quite independent of the cos-
mological model. The effects of non-linear evolution aresiderable. Non-linear
evolution increases tl‘ﬁaﬁ/z by factors of three to four. The uncertainty in the nor-
malisation is illustrated by the two curves for the EinstdeSitter model, one of
which was calculated with the cluster-, the other one widoif§i= 1 normalisation,
which yields about a factor of two larger results E(ﬁ/z For the other cosmolog-
ical models (OCDM and\CDM), the effects of different normalisations (cluster
vs. COBE) are substantially smaller.
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Fig. 17. Four pairs of magnification auto-correlation fumas are shown for the cosmo-
logical model parameter sets listed in Tab. 1, and for anmaedusource redshift; = 1.
For each pair, plotted with the same line type, the curve lpitker amplitude at small an-
gular scale was calculated assuming linear, and the otleenam-linear density evolution.
Solid curves: SCDM,; dotted curvesCDM; short-dashed curve: OCDM; and long-dashed
curve: ACDM. Non-linear evolution increases the amplitudeiafz((p) on small angular
scales by factors of three to four. The results for the ciusbtemalised models differ fairly

little. At @~ 1/, Eﬁ/z((p) ~ 6% for non-linear density evolution. For the Einstein-d&esi
models, the difference between cluster- agd= 1 normalisation amounts to about a factor
of two in Eﬁ/z((p).

6.6.4 Application: Magnification Fluctuations

At zero lag, the magnification autocorrelation functiondea

£(0) = < (@) - 1}2> = (81) . (6.38)

which is the variance of the magnification fluctuatiqpn Consequently, thems
magnification fluctuation is

Sims = (B12) 2 = £/(0). (6.39)

Figure 18 showsmsas a function of source redshift for four different realisas
of the CDM cosmogony. For cluster-normalised CDM models rths magnifica-
tion fluctuation is of ordedums ~ 20% for sources ats ~ 2, and increases to
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Oms ~ 25% for zs =~ 3. The strongest effect occurs for open CDM (OCDM) be-
cause there non-linear evolution sets in at the higheshiisls
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Fig. 18. Theemsmagnification fluctuatio®y,ms is shown as a function of source redshift
for non-linearly evolving density fluctuations in the foufferent realisations of the CDM
cosmogony detailed in Tab. 1. Solid curve: SCDM; dotted eusCDM; short-dashed
curve: OCDM; and long-dashed curveCDM. Except for theaCDM model, typicalrms
magnification fluctuations are of order 20%zat= 2, and 25% fozs = 3.

The results shown in Fig. 18 indicate that for any cosmolalgsource, gravita-
tional lensing causes a statistical uncertainty of its lingss. In magnitudes, a
typical effect atzs ~ 2 is dm = 2.5 x log(1.2) ~ 0.2. This can be important for
e.g. high-redshift supernovae of type la, which are usedoasological stan-
dard candles. Their intrinsic magnitude scatter is of odar~ 0.1 — 0.2 mag-
nitudes (e.g. Phillips 1993; Riess et al. 1995, 1996; Hantay.d996). There-
fore, the lensing-induced brightness fluctuation is coralplarto the intrinsic un-
certainty at redshiftgs = 2 (Frieman 1996; Wambsganss et al. 1997; Holz 1998;
Metcalf & Silk 1999).

Since the magnification probability can be highly skewed,rnttost probableob-
served flux of a high-redshift supernova can deviate fromnteanflux at given
redshift, even if the intrinsic luminosity distributionsymmetric. This means that
particular care needs to be taken in the analysis of futuge &N surveys. How-
ever, if SNe la are quasi standard candles also at high fegiskith an intrinsic
scatter ofAL = 41D, . (2)AS(z) around the mean luminosity = 41DZ, (2)So(2),

lum
then it is possible to obtawolume-limited samplgg contrast to flux-limited sam-
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ples) of them.

If, for a given redshift, the sensitivity limit is chosen te Bin < pmin (So — 3AS),

one can be sure to find all SNe la at the redshift consideretk, Hgin is the
minimum magnification of a source at the considered redsBiifice no source can
be more de-magnified than one that is placed behind a hyjpcahempty cone (see
Dyer & Roder 1973 and the discussion in Sect. 4.5 of Schneidalr 1992) Umin

is not much smaller than unity. Flux conservation (e.g. \Werg 1976) implies
that the mean magnification of all sources at given redssitinity, (u(z)) = 1,
and so the expectation value of the observed flux at giverhids the unlensed
flux, (S(2)) = S(2). It should be pointed out here that a similar relation for the
magnitudes doesot hold, since magnitude is a logarithmic measure of the flux,
and so(m(z)) # my(z). This led to some confusing conclusions in the literature
claiming that lensing introduces a bias in cosmologicaapaater estimates from
lensing, but this is not true: One just has to work in terms awkdk rather than
magnitudes.

However, a broad magnification probability distributiorcieases the confidence
contours forQp and Qa (e.g. Holz 1998). If the probability distribution was
known, more sensitive estimators of the cosmological mtukeh the mean flux
at given redshift could be constructed. Furthermore, if iteinsic luminos-
ity distribution of the SNe was known, the normalisation b€ tpower spec-
trum as a function ofQgy and Qa could be inferred from the broadened ob-
served flux distribution (Metcalf 1999). If the dark matterim the form of com-
pact objects with masg 10?M., these objects can individually magnify a SN
(Schneider & Wagoner 1987), additionally broadening thgmifecation probabil-
ity distribution and thus enabling the nature of dark mattdye tested through SN
observations (Metcalf & Silk 1999, Seljak & Holz 1999).

6.6.5 Shearin Apertures

We mentioned below eq. (6.33) that measures of cosmic meagtifn or
shear other than the angular auto-correlation functiorciwfiiiter the effective-
convergence power spectria with a function narrower than the Bessel function
Jo(x) would be desirable. In practice, a convenient measure wueilthe variance
of the effective convergence within a circular apertureasfius@. Within such an
aperture, the averaged effective convergence and shear are

® 2op_ - 0 g2 .
al®) = [~ Ren(@ . Val®)= [ V@, (6.40)
and their variance is
0 g2 8 g2 L
0G0 = [ 8 [ S (Ke@ken@) = (vl (®).  (6.4)
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Theﬂ reLnaining average is the effective-convergence amt@lation function

&k (|o— d|), which can be expressed in terms of the power specBurthe final
equality follows froméyx = &,. Inserting (6.41) and performing the angular integrals
yields

00 2
wa@ =zn[1an) 20| —(mie), 642

where J(X) is the first-order Bessel function of the first kind. Resuttistherms
shear in apertures of varying size are shown in Fig. 19 (ein@ford et al. 1991).
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Fig. 19. Therms sheary;ms(0) in circular apertures of radiudis plotted as a function of
0 for the four different realisations of the CDM cosmogonyailed in Tab. 1, where all
sources are assumed to be at redghift 1. A pair of curves is plotted for each realisation,
where for each pair the curve with lower amplitude at sréad for linearly, the other one
for non-linearly evolving density fluctuations. Solid casz SCDM; dotted curvesCDM,;
short-dashed curves: OCDM; and long-dashed cuk€PDM. For the cluster-normalised
models, typicarms shear values arer 3% for 6 ~ 1'. Non-linear evolution increases the
amplitude by about a factor of two @t~ 1’ over linear evolution.
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6.6.6 Aperture Mass

Another measure for the effects of weak lensing, tperture mass Ih(0)
(cf. Sect. 5.3.1), was introduced for cosmic shear by Sclemeit al. (1998a) as

6 —
Map(8) = /0 d?QU (¢) Kert(@) , (6.43)

where the weight functiobl (¢) satisfies the criterion

0
/O odeU (¢) — 0. (6.44)

In other wordsU (@) is taken to be aompensatethdial weight function across the
aperture. For such weight functions, the aperture massearressed in terms of
the tangential component of the observable shear relatitreetaperture centre,

9 -
Maol8) = [~ PoQUOM(@ . (6.45)

whereQ() is related tdJ (@) by (5.23).Mgpis a scalar quantity directly measurable
in terms of the shear. The varianceMf, reads

P 0 2
(M2))(8) = 21 /0 IdIPK(I)UO cpdcpuap)Jo(lcp)} . (6.46)

Equations (6.42) and (6.46) provide alternative obsee/ghbhntities which are re-
lated to the effective-convergence power spectRrthrough narrower filters than

the auto-correlation functiof. TheMgp statistic in particular permits one to tune
the filter function through different choices 0f(¢@) within the constraint (6.44).

It is important thatMa, can also be expressed in terms of the shear [see eq. (5.26,
page 98)], so tha¥l,p can directly be obtained from the observed galaxy elliptici
ties.

Schneider et al. (1998a)

suggested a family of radial filter functiobl @), the simplest of which is

U0 -z 19 (3-9) . QO- PR, (647

wherex8 = . With this choice, the variaon§p>(6) becomes

(MZ)(8) = 2n/0°°| di P (1) J2(18) . (6.48)
with the filter function
i) = T;—Zzh(n) | (6.49)



where J(n) is the fourth-order Bessel function of the first kind. Exaegpfor the
rmsaperture masaprms(8) = (M3,)%/2(8), are shown in Fig. 20.
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Fig. 20. Therms aperture massylaprms(8), is shown in dependence of aperture radius
0 for the four different realisations of the CDM cosmogonyailed in Tab. 1 where all
sources are assumed to be at redghift 1. For each realisation, a pair of curves is plotted;
one curve with lower amplitude for linear, and the secondredor non-linear density
evolution. Solid curves: SCDM; dotted curvesZDM; short-dashed curves: OCDM; and
long-dashed curvegsCDM. Non-linear evolution has a pronounced effect: The dmungx

is approximately doubled, and the peak shifts from degeard-minute scales.

The curves look substantially different from those showhigs. 17 and 19. Unlike
there, the aperture mass does not increase monotonically-a®, but reaches a
maximum at finited and drops for smaller angles. When non-linear evolutiohef t
density fluctuations is assumed, the maximum occurs at muelliex 6 than for
linear evolution: Linear evolution predicts the peak atlaagf order one degree,
non-linear evolution around’ 1 The amplitude 0fMapms(8) reaches~ 1% for
cluster-normalised models, quite independent of the ctmyital parameters.

Some insight into the expected amplitude and shaﬁé/lé@(e) can be gained by
noting thatJ?(n) is well approximated by a Gaussian,

n-no|

2(n) ~
J (ﬂ)NAeXp{— 252

(6.50)

with meanng ~ 4.11, amplitudeA ~ 4.52 x 10-3, and widtho ~ 1.24. At aperture
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radii of 8 ~ 1/, the pealg ~ 4.11 corresponds to angular scales of 2! ~ 1.6/,
where the total powdrPy (1) in the effective convergence is close to its broad max-
imum (cf. Fig. 16). The filter functiod?(n) is therefore fairly narrow. Its relative
width corresponds to drrange ofdl /I ~ 6/no ~ 0.3. Thus, the contributing range
of moded in the integral (6.48) is very small. Crudely approximatihg Gaussian
by a delta distribution,

J?(n) =~ AV21o3p(n —No) , (6.51)

we are led to

- 2m3/2Ac 2
(M2)) ~ (Mi2)) = % (%) P (%) ~2.15% 10 212P(lp), (6.52)

with 1g = no®@~1. Hence, the mean-square aperture mass is expected toydirect
yield the total power in the effective-convergence powecsmum, scaled down by

a factor of~ 2.15x 1072, We saw in Fig. 16 thdfPx(1) ~ 3 x 103 for 2~ ~ 1/

in cluster-normalised CDM models, so that

(MZ2)Y2~08% at 6~1 (6.53)

for sources at redshift unity. We compal,nms(6) and the approximation
l\7|amms(6) in Fig. 21. Obviously, the approximation is excellent fbp> 10, but
even for smaller aperture radii ef 1’ the relative deviation is less than5%. At
this point, the prime virtue of the narrow filter functid(n) shows up most promi-
nently. Up to relatively small errors of a few per cent, thesaperture mass very
accurately reflects the effective-convergence power sp@ad® (1). Observations
of Mapms(0) are therefore most suitable to obtain information on theeng@ower
spectrum (cf. Bartelmann & Schneider 1999).

6.6.7 Power Spectrum and Filter Functions

The three statistical measures discussed above, the ntagjoifi (or, equivalently,
the shear) auto-correlation functi@p, the mean-square shear in apertufgs,
and the mean-square aperture n1(a$§p), are related to the effective-convergence
power spectrunPy in very similar ways. According to eqgs. (6.33), (6.42), and
(6.48), they can all be written in the form

Q(8) = 2n/0°° L dI P (1) F (1), (6.54)
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Fig. 21. Therms aperture masdlanms(6) is shown together with the approximation
Maprms(e) of eq. (6.52). The three curves correspond to the threeattustrmalised cosmo-
logical models (SCDM, OCDM andCDM) introduced in Tab. 1 for non-linearly evolving
matter perturbations. All sources were assumed to be ahifeds= 1. Clearly, therms
aperture mass is very accurately approximated?layrms on angular scale8 > 10, and
even for smaller aperture sizes of orderl’ the deviation between the curves is smaller
than~ 5%. The observablemsaperture mass therefore provides a very direct measure for
the effective-convergence power spectrBe(l ).

where the filter function& (n) are given by

fJo.’-([g) 2 for Q:Ep.
F(n) = {Jlrﬁm for Q=(va) . (6.55)
2
\[12;‘%(2”)} for Q= (M%)

Figure 22 shows these three filter functions as functiong ef 10. Firstly, the
curves illustrate that the amplitude gf; is largest (owing to the factor of four
relative to the definition ofy), and that of<M§p> is smallest because the amplitudes
of the filter functions themselves decrease. Secondly,coimes evident that, for
given 6, the range of modes of the effective-convergence power spectRith)
convolved into the weak-lensing estimator is larges&fpand smallest fo(M§p>.
Thirdly, the envelope of the filter functions for largedecreases most slowly for
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Fig. 22. The three filter functions(n) defined in eq. (6.55) are shown as functions of
n = 16. They occur in the expressions for the magnification autoetation function,§,
(solid curve), the mean-square shear in apertyésdotted curve), and the mean-square
aperture massMz,) (dashed curve).

&u and most rapidly fo(Mgp). Although the aperture mass has the smallest signal
amplitude, it is a much better probe for the effective-cogeace power spectrum
Px(I) than the other measures because it picks up the smallestodhmodes and
most strongly suppresses theodes smaller or larger than its peak location.

We can therefore conclude that, while the strongest weaing signal is picked
up by the magnification auto-correlation functi@p, the aperture mass is the
weak-lensing estimator most suitable for extracting imfation on the effective-
convergence power spectrum.

6.6.8 Signal-to-Noise Estimate of Aperture-Mass Measens

The question then arises whether the aperture mass can Iseime@avith suffi-
cient significance in upcoming wide-field imaging surveysptactice Map is de-
rived from observations of image distortions of faint backgd galaxies, using
eg. (5.26, page 98) and replacing the integral by a sum ovaxyallipticities.
If we considerNy, independent apertures witly galaxies in the-th aperture, an
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unbiased estimator @3, is

T[92 2 Nap

Ni
= ii QikEtii Etik 6.56
Nap ZiNl 1) j;{QI]QIk t,i] et ik ( )

whereQjj is the value of the weight function at the position of thtéh galaxy in
thei-th aperture, ane,; is defined accordingly.

The noise properties of this estimator were investigat&timeider et al. (1998a).
One source of noise comes from the fact that galaxies arentiotdically circular,
but rather have an intrinsic ellipticity distribution. A@ed contribution to the
noise is due to the random galaxy positions, and a third onegmic (or sampling)
variance. Under the assumptions that the number of galdkiesthe apertures is
large,N; > 1, it turns out that the second of these contributions candggented
compared to the other two. For this case, and assuming fqlisity that allN; are
equal,N; = N, the signal-to-noise of the estimatar becomes

-1

2
P — Nap® |+ <W+L‘g>> , (6.57)

whereog ~ 0.2 (e.g. Hudson et al. 1998) is the dispersion of the intrigsilaxy
ellipticities, andus = (M3,)/(M3,)? — 3 is the curtosis oMap, Which vanishes for

a Gaussian distribution. The two terms of (6.57) in paresgkaepresent the noise
contributions from Gaussian sampling variance and thénsitr ellipticity distri-
bution, respectively, angy accounts for sampling variance in excess of that for
a Gaussian distribution. On angular scales of a few arc m&ahd smaller, the
intrinsic ellipticities dominate the noise, while the casmariance dominates on
larger scales.

Another convenient and useful property of the aperture nvagsfollows from

its filter function being narrow, namely thal,, is a well localised measure
of cosmic weak lensing. This implies thit,, measurements in neighbouring
apertures are almost uncorrelated even if the aperturageselare very close
(Schneider et al. 1998a). It is therefore possible to gaargel number of (almost)
independenM,p measurements from a single large data field by covering the fie
densely with apertures. This is a significant advantage theother two measures
for weak lensing discussed above, whose broad filter funsitilsiroduce consider-
able correlation between neighbouring measurementsyingpthat for their mea-
surement imaging data on widely separated fields are needestre statistical
independence. Therefore, a meaningful strategy to meassmic shear consists
in taking a large data field, covering it densely with apesuof varying radius
6, and determininQM§p> in them via the ellipticities of galaxy images. Figure 23
shows an example for the signal-to-noise ratio of such a umeagent that can be
expected as a function of aperture radius
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Fig. 23. The signal-to-noise ratig/B(8) of measurements of mean-square aperture masses
<M§p> is plotted as a function of aperture rad@i$or an experimental setup as described
in the text. The curtosis was set to zero here. The four cuavedor the four different
realisations of the CDM cosmogony listed in Tab. 1. SolidveurSCDM; dotted curve:
oCDM; short-dashed curve: OCDM; and long-dashed cuf@DM. Quite independently

of the cosmological parameters, the signal-to-noise 1Bt reaches values af 10 on
scales o1 — 2.

Computing the curves in Fig. 23, we assumed that a data fietizef5 x 5° is
available which is densely covered by apertures of raéljuseence the number of
(almost) independent aperturedNg, = (300/26)2. The number density of galax-
ies was taken as 30 arcmif) and the intrinsic ellipticity dispersion was assumed to
be o, = 0.2. Evidently, high signal-to-noise ratios of 10 are reached on angular
scales ot 1’ in cluster-normalised universes quite independent of tdsenmlog-
ical parameters. The decline of I$ for large 6 is due to the decreasing number
of independent apertures on the data field, whereas thenddoli small@ is due

to the decrease of the sign(&ylgp>, as seen in Fig. 20. We also note that for cal-
culating the curves in Fig. 23, we have put= 0. This is likely to be an overly
optimistic assumption for small angular scales where thesithe field is highly
non-linear. Unfortunatelyy cannot easily be estimated analytically. It was numer-
ically derived from ray-tracing througN-body simulations of large-scale matter
distributions by Reblinsky et al. (1999). The curtosis ed=unity even on scales
as large as Ipdemonstrating the highly non-Gaussian nature of the mmatly
developed density perturbations.
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Although the aperture mass is a very convenient measuresaficshear and pro-
vides a localised estimate of the projected power specByi) [see (6.52)], it is
by no means clear that it is an optimal measure for the prgegower spectrum.
Kaiser (1998) considered the case of a square-shaped ddtarfieemployed the
Fourier-transformed Kaiser & Squires inversion formulq, €&.3, page 88). The
Fourier transform of the shear is then replaced by a sum alaxgellipticitiesg;,
so thaie(1) is expressed directly in terms of the The squaréker (1) |2 yields an
estimate for the power spectrum which allows a simple detextion of the noise
coming from the intrinsic ellipticity distribution. As Kaer (1998) pointed out that,
while this noise is very small for angular scales much smétlan the size of the
data field, the sampling variance is much larger, so tha¢mifft sampling strate-
gies should be explored. For example, he suggests to usese saanpling strategy.
Seljak (1998) developed an estimator for the power spectvhich achieves mini-
mum variance in the case of a Gaussian field. Since the powetrsmP (1) devi-
ates significantly from its linear prediction on angularilesdelow one degree, one
expects that the field attains significant non-Gaussiamfeaton smaller angular
scales, so that this estimator does no longer need to haveuarmvariance.

6.7 Higher-Order Statistical Measures

6.7.1 The Skewness

As the density perturbation fiellgrows with time, it develops non-Gaussian fea-
tures. In particula) is bounded by-1 from below and unbounded from above, and
therefore the distribution ob is progressively skewed while evolution proceeds.
The same then applies to quantities like the effective cgareekes derived from

0 (cf. Jain & Seljak 1997; Bernardeau et al. 1997; Schneidat.1998a). Skew-
ness of the effective convergence can be quantified by meatie dhree-point
correlator ofkeg. In order to compute that, we use expression (6.18), Fotreas-
form it, and also express the density cont@ash terms of its Fourier transform.
Additionally, we employ the same approximation used in\deg Limber’s equa-
tion in Fourier space, namely that correlations of the dgr=intrastalong the
line-of-sight are negligibly small. After carrying out ghiengthy but straightfor-
ward procedure, the three-point correlator of the Founangform ofkes reads
(suppressing the subscript ‘eff’ for brevity)

>
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Hats on symbols denote Fourier transforms. Note the faldgecanalogy between
(6.58) and (6.22): The three-point correlatoriofs a distance-weighted integral
over the three-point correlator of the Fourier-transfadndensity contrasbd. The
fact that the three-componegt of the wave vectok appears only in the first factor
o reflects the approximation mentioned above, i.e. that @droes ofd along the
line-of-sight are negligible.

Suppose now that the density contrésis expanded in a perturbation series,
5=y 8 such thaAﬁ(i) = 0([8M]", and truncated after the second order. The three-
point correlator o8 vanishes becauseemains Gaussian to first perturbation or-
der. The lowest-order, non yanlshlng three-point cotoelaf & can therefore sym-
bolically be written(3V813(2)), plus two permutations of that expression. The
second-order density perturbation is related to the firdeiothrough (Fry 1984;
Goroff et al. 1986; Bouchet et al. 1992)

S(2) Bk s oz e e T T
6(2)(k,w):Dﬁ(w)/W6(g)(k’) WK-K)FKKk—K), (6.59)
Whereégl) is the first-order density perturbation linearly extrapeteto the present

epoch, andD, (w) is the linear growth factoD (w) = a(w)g[a(w)] with g(a)
defined in eq. (2.52) on page 26. The functioX,y) is given by

5 1/1 1 2 (X-y)?
F&Y) = (mz |V|2) AR (65.60)

Relation (6.59) implies that the lowest-order three-patrelator (51 &(13(2))
involves four-point correlators @Y. For Gaussian fields lik&2, four-point cor-
relators can be decomposed into sums of products of twa-pomelators, which
can be expressed in terms of the linearly extrapolated tygpsiver spectrun?éo).
This leads to

A

(30 (ky)8Y (k2)8?) (Ks)) = 2(2)° D% (w) P (ko) PL (ko)
x 8p (K1 + ka2 +ka) F (K, ko) . (6.61)

The complete lowest-order three-point correlatordof a sum of three terms,
namely the left-hand side of (6.61) and two permutationssibie Each permutation
yields the same result, so that the complete correlatoréethmes the right-hand
side of (6.61). We can now work our way back, inserting the¢hpoint density
correlator into eq. (6.58) and Fourier-transforming theutewith respect td_)»l?z?g.
The three-point correlator of the effective convergencelsained can then in a
final step be used to compute the third moment of the apertassnThe result is
(Schneider et al. 1998a)
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x / d2|2P§°)< )JZ(IZG)J2(|T1+TZ\6)F(rl,rg), (6.62)

with the filter functionJ(n) defined in eq. (6.49). Commonly, third-order moments
are expressed in terms of the skewness,

(M3:(6))
(M2(6))%’

Where<M§p(6)> is calculated with the linearly evolved power spectrum. Aers
earlier in eq. (6.48)<M§p) scales with the amplitude of the power spectrum, while
(M§p> scales with the square of it. In this approximation, the skesgs (0) is
therefore independent of the normalisation of the powectspe, removing that
major uncertainty and leaving cosmological parametersiasapy degrees of free-
dom. For instance, the skewneg®) is expected to scale approximately wma—l.
Figure 24 shows three examples.

P)
fK (W)

5(9)

(6.63)

As expected, lower values @ yield larger skewness, and the skewness is re-
duced wherQ, is increased keepinQo fixed. Despite the sensitivity of (0) to

the cosmological parameters, it should be noted that theesoedshift distribu-
tion [entering througW(w)] needs to be known sufficiently well before attempts
can be made at constraining cosmological parameters throegasurements of
the aperture-mass skewness. However, photometric rédshihates are expected
to produce sufficiently well-constrained redshift disttions in the near future
(Connolly et al. 1995; Gwyn & Hartwick 1996; Hogg et al. 1998)

We have confined the discussion of the skewness to the apenass sinchlpis a
scalar measure of the cosmic shear which can directly beesged in terms of the
observed image ellipticities. One can of course also censite skewness directly
in terms ofk, sincek can be obtained from the observed image ellipticities thhou
a mass reconstruction algorithm as described in Sect. Sy#ea and numeri-
cal results for this skewness have been presented in, @maRleau et al. (1997),
van Waerbeke et al. (1999), Jain et al. (1999) and Reblins&ly €1999). We shall
discuss some of their results in Sect. 6.9.1.

6.7.2 Number density of (dark) haloes

In Sect. 5.3.1, we discussed the possibility to detect massentrations by their
weak lensing effects on background galaxies by means ofpgbduae mass. The
number density of mass concentrations that can be deteteedigen threshold
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Fig. 24. The skewness(0) of the aperture masda,(0) is shown as a function of aperture
radius® for three of the realisations of the cluster-normalised CBddmogony listed in
Tab. 1: SCDM (solid curve); OCDM (dotted curve); ah@DM (dashed curve). The source
redshift was assumed to be= 1.

of Map depends on the cosmological model. Fixing the normalisaifdhe power
spectrum so that the the local abundance of massive clusteeproduced, the
evolution of the density field proceeds differently in difat cosmologies, and so
the abundances will differ at redshifts- 0.3 where the aperture-mass method is
most sensitive.

The number density of haloes above a given thresholgf(6) can be esti-
mated analytically, using two ingredients. First, the gpatumber density of
haloes at redshifz with massM can be described by the Press-Schechter the-
ory (Press & Schechter 1974), which numerical simulatidrzséy & Cole 1993,
Lacey & Cole 1994) have shown to be a fairly accurate appration. Second, in

a series of very largdl-body simulations, Navarro et al. (1996, 1997) found that
dark matter haloes have a universal density profile whichbeadescribed by two
parameters, the halo mass and a characteristic scale Jevigtth depends on the
cosmological model and the redshift. Combining these tveolte from cosmol-
ogy, Kruse & Schneider (1999b) calculated the number dgn$ihaloes exceed-
ing Map. Using the signal-to-noise estimate eq. (6.57), a threshalue ofMap
can be directly translated into a signal-to-noise thresBgl For an assumed num-
ber density ofn = 30arcmin? and an ellipticity dispersiow; = 0.2, one finds
S~ 0.016(6/1arcminMap(8).
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For the redshift distribution (2.69, page 35) wh= 3/2 andz = 1, the number
density of haloes witls; > 5 exceeds 10 per square degree for cluster-normalised
cosmologies, across angular scales ® < 10, and these haloes have a broad red-
shift distribution which peaks & ~ 0.3. This implies that a wide-field imaging
survey should be able to detect a statistically interestargple of medium redshift
haloes, thus allowing the definition ofraass-selectedample of haloes. Such a
sample will be of utmost interest for cosmology, since thie ladundance is con-
sidered to be one of the most sensitive cosmological prahgs Eke et al. 1996,
Bahcall & Fan 1998). Current attempts to apply this tool ampered by the fact
that haloes are selected either by the X-ray properties dahdiy galaxy content.
These properties are much more difficult to predict than #rk thatter distribution
of haloes which can directly be determined from cosmolddichody simulations.
Thus, these mass-selected haloes will provide a much diogeio cosmological
predictions than currently possible. Kruse & Schneide®@lf) estimated that an
imaging survey of several square degrees will allow onegtirdjuish between the
cosmological models given in Table 1, owing to the differentmber density of
haloes that they predict. Using the aperture-mass statjgrben et al. (1999) re-
cently detected a highly significant matter concentratiotveo independent wide-
field images centred on the galaxy cluster A 1942. This mateicentration 7
South of A 1942 is not associated with an overdensity of lrigireground galax-
ies, which sets strong lower limits on the mass-to-lighbraf this putative cluster.

6.8 Cosmic Shear and Biasing

Up to now, we have only considered the mass properties oétiyedscale structure
and tried to measure them with weak lensing techniques. farasting question
arises when the luminous constituents of the Universe &emtimto account. Most
importantly, the galaxies are supposed to be strongly tiethé distribution of
dark matter. In fact, this assumption underlies all attenptdetermine the power
spectrum of cosmic density fluctuations from the observsttidution of galaxies.
The relation between the galaxy and dark-matter distiamstis parameterised by
the so-called biasing facttr(Kaiser 1984), which is defined such that the relative
fluctuations in the spatial number density of galaxiedenmes the relative density
fluctuationsd,

X _ g 6.64
© (¥). (6.64)

where(n) denotes the mean spatial number density of galaxies attha ggdshift.
The bias factob is not really a single number, but generally depends on r#dsh
the spatial scale, and on the galaxy type (see, e.g., Eftiai®96, Peacock 1997,
Kauffmann et al. 1997, Coles et al. 1998). Typical valuegHerbias factor are as-
sumed to béo ~ 1 — 2 at the current epoch, but can increase towards higher red-
shifts. The clustering properties of UV dropout galaxietei@l et al. 1998) indi-
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cate thab can be as large as 5 at redshits 3, depending on the cosmology.

The projected surface mass densm'g)f(é) should therefore be correlated with the
number density of (foreground) galaxies in that directioet Gg(w) be the distri-
bution function of a suitably chosen population of galaxiesomoving distance
(which can be readily converted to a redshift probabilistdibution). Then, assum-
ing thatb is independent of scale and redshift, the number densitgeogalaxies
is

ng(8) = (ng) [1+ b / dw Gg (W) &( fix (W)B,w) | | (6.65)

where (ng) is the mean number density of the galaxy population. Theiblist
tion functionGg(w) depends on the selection of galaxies. For example, for a flux-
limited sample it may be of the form (2.69). Narrower diastibn functions can

be achieved by selecting galaxies in multi-colour spacegighotometric redshift
techniques. The correlation function betweweyi6) andKeﬁ(é) can directly be ob-
tained from eq. (2.83) by identifying; (W) = 3HZQoW(w) fx (W) /[2c%a(w)] [see

eq. (6.18)], andp(w) = (ng)bGg(w). It reads

£ox(0) = (noke) (B) = 02 [ W I(W) Wf Ge(w
x / gpé(k w) Jo fic (W)BK) . (6.66)

Similar equations were derived by, e.g., Kaiser (1992), t&arann (1995b),
Dolag & Bartelmann (1997), Sanz et al. (1997).

One way to study the correlation between foreground gadaarel the projected
density field consists in correlating the aperture mdgg(8) with a similarly fil-
tered galaxy number density, defined as

:/dza U(18)ne(®) , (6.67)

with the same filter functiotJ as inMap. The correlation betweeN,p(8) and
AL () then becomes

£(6)= (Map(8)2( (8)) = [ 0 U(19]) [ &8 U (18" Eec(S - "))  (6.68)

:311('10) Qob(ne /dw \‘/’Vvi‘?\(/‘:)’ /dIIP5< )J2(|e),

where we used eq. (2.83) for the correlation funcfggrin the final step. The filter
functionJ is defined in eq. (6.49). Note that this correlation funcfidiers out the
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power spectruniPs at redshifts where the foreground galaxies are situateds,Th
by selecting galaxy populations with narrow redshift disttion, one can study the
cosmological evolution of the power spectrum or, more aately, the product of
the power spectrum and the bias factor.

The convenient property of this correlation function istthae can define an unbi-
ased estimator fdf in terms of observables. N, galaxies are found in an aperture
of radiusb at positions3; with tangential ellipticitye, andN foreground galaxies
at positions;, then

~ 192 No . Nt
&(0) = N—bi;Q(WiDﬁti kZlU(M)kD (6.69)

is an unbiased estimator f@(6). Schneider (1998) calculated the noise proper-
ties of this estimator, concentrating on an Einstein-deeSihodel and a linearly
evolving power spectrum which can locally be approximatga lpower law ink.
A more general and thorough treatment is given in Van Waerlj£898), where
various cosmological models and the non-linear power syectaire considered.
Van Waerbeke (1998) assumed a broad redshift distribubortife background
galaxies, but a relatively narrow redshift distributiom the foreground galaxies,
with 8z4/z4 ~ 0.3. For an open model wito = 0.3, &(0) declines much faster
with 6 than for flat models, implying that open models have relativeore power
on small scales at intermediate redshift. This is a consespuef the behaviour of
the growth factoD (w); see Fig. 6 on page 27. For foreground redslztg 0.2,
the signal-to-noise ratio of the estimator (6.69) for a kragperture is roughly con-
stant for@ > 5, and relatively independent of the exact valuepbver a broad
redshift interval, with a characteristic value©f0.4.

Van Waerbeke (1998)

also considered the ratio

(6.70)

and found that it is nearly independent 6f This result was shown in
Schneider (1998) to hold for linearly evolving power spaetith power-law shape,
but surprisingly it also holds for the fully non-linear povgpectrum. Indeed, vary-
ing 6 between 1and 100, R varies by less than 2% for the models considered in
Van Waerbeke (1998). This is an extremely important regulihat any observed
variation ofR with angular scale indicates a corresponding scale deperdd the
bias factorb. A direct observation of this variation would provide vaile con-
straints on the models for the formation and evolution oégs.
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6.9 Numerical Approach to Cosmic Shear, Cosmological PatamEstimates,
and Observations

6.9.1 Cosmic Shear Predictions from Cosmological Simaohesti

So far, we have treated the lensing effect of the large-staleture with analytic

means. This was possible because of two assumptions i sgnsidered only the
lowest-order lensing effect, by employing the Born appmation and neglecting
lens-lens coupling in going from eq. (6.9) to eq. (6.11).d%&L we used the pre-
scription for the non-linear power spectrum as given by Pela& Dodds (1996),

assuming that it is a sufficiently accurate approximatioothBof these approxi-
mations may become less accurate on small angular scatesdifg a two-point

guantity, the analytic approximation Bf is applicable only for two-point statistical
measures of cosmic shear. In addition, the error introdwgtdthese approxima-
tions cannot be controlled, i.e., we cannot attach ‘erros’ia the analytic results.

A practical way to avoid these approximations is to studypgrapagation of light
in a model universe which is generated by cosmological stragformation simu-
lations. They typically provide the three-dimensional mdsstribution at different
redshifts in a cube whose side-length is much smaller thamtibble radius. The
mass distribution along a line-of-sight can be generated@¢digbining adjacent
cubes from a sequence of redshifts. The cubes at differdshifes should either
be taken from different realisations of the initial conalits, or, if this requires too
much computing time, they should be translated and rotateld as to avoid pe-
riodicity along the line-of-sight. The mass distributioneach cube can then be
projected along the line-of-sight, yielding a surface mdsssity distribution at
that redshift. Finally, by employing the multiple lens+péaequations, which are a
discretisation of the propagation equation (6.9; Seit.€t%94), shear and magni-
fication can be calculated along light rays within a cone wetgize is determined by
the side length of the numerical cube. This approach wasvied by many authors
(e.g., Jaroszynskiet al. 1990, Jaroszynski 1991, Bartelir8aSchneider 1991,
Blandford et al. 1991, Waxman & Miralda-Escudé 1995), bheé trapid devel-
opment of N-body simulations of the cosmological dark matter disttidou
render the more recent studies particularly useful (Wambsget al. 1998,
van Waerbeke et al. 1999, Jain et al. 1999).

As mentioned below eq. (6.30), the Jacobian mafrixs generally asymmet-
ric when the propagation equation is not simplified to (6.Thjerefore, the de-
gree of asymmetry afi provides one test for the accuracy of this approximation.
Jain et al. (1999) found that the power spectrum of the asymuerEsmponent is

at least three orders of magnitude smaller than that.gf For a second test, we
have seen that the power spectrunk gf should equal that of the shear in the frame
of our approximations. This analytic prediction is very a@tely satisfied in the
numerical simulations.
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Jain et al. (1999)

and Reblinsky et al. (1999) found that analytic predictiohghe dispersions of
K and Myp respectively, are very accurate when compared to numenesailts.
For both cosmic shear measures, however, the analyticqbiets of the skew-
ness are not satisfactory on angular scales belal®. This discrepancy reflects
the limited accuracy of the second-order Eulerian pertiwshaheory employed in
deriving the analytic results. Hui (1999) showed that theusacy of the analytic
predictions can be much increased by using a prescriptiothéhighly-nonlinear
three-point correlation function of the cosmic density tcast, as developed by
Scoccimarro & Frieman (1999).

The signal-to-noise ratio of the dispersion of the cosmieashgiven explicitly
for Map in eq. (6.57), is determined by the intrinsic ellipticitysgersion of galax-
ies and the sampling variance, expressed in terms of thesisirtAs shown in
van Waerbeke et al. (1999) and Reblinsky et al. (1999), tnitosis is remarkably
large. For instance, the curtosis of the aperture mass ésee®ty even on scales
larger than 1Q revealing non-Gaussianity on such large scales. Unfatély this
large sampling variance implies not only that the area oveickvcosmic shear
needs to be measured to achieve a given accuracy for itsrgispenust be con-
siderably larger than estimated for a Gaussian density, fielichlso that numerical
estimates of cosmic shear quantities need to cover largkaujles for an accurate
numerical determination of the relevant quantities.

From such numerical simulations, one can not only determmienents of the
shear distribution, but also consider its full probabiliigtribution. For example,
the predictions for the number density of dark matter hatbas can be detected
through highly significant peaks dfl;p — see Sect. 6.7.2 — have been found by
Reblinsky et al. (1999) to be fairly accurate, perhaps ssirgly so, given the as-
sumptions entering the analytic results. Similarly, thexe tail (say more than

5 standard deviations from the mean) of the probabilityridistion for Map, cal-
culated analytically in Kruse & Schneider (1999a), doe®agrith the numerical
results; it decreases exponentially.

6.9.2 Cosmological Parameter Estimates

Since the cosmic shear described in this section directipgs the total matter
content of the universe, i.e., without any reference to éegtion between mass and
luminosity, it provides an ideal tool to investigate thegkuscale structure of the
cosmological density field. Assuming the dominance of c@kdnatter, the sta-
tistical properties of the cosmic mass distribution areedained by a few param-
eters, the most important of which a®), Qa, the shape parameter of the power
spectrum/[’, and the normalisation of the power spectrum expressednmstef
og. For each set of these parameters, the corresponding cebeat signals can
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be predicted, and a comparison with observations then@nsthe cosmological
parameters.

Several approaches to this parameter estimation have bseumssed in the lit-
erature. For example, van Waerbeke et al. (1999) used ncaheimulations to
generate synthetic cosmic shear data, fixing the normiairsaf the density fluc-
tuations toog Qo = 0.6, which is essentially the normalisation by cluster abun-
dance. A moderately wide and deep weak-lensing surveyyricmy25 square de-
grees and reaching a number density of 30 galaxies per aonith charac-
teristic redshiftzs ~ 1, will enable the distinction between an Einstein-de Sit-
ter model and an open universe wiily = 0.3 at the 6o level, though each of
these models is degenerate in g vs. Qa plane. For this conclusion, only the
skewness of the reconstructed effective surface masstgemshe aperture mass
was used. Kruse & Schneider (1999a) instead consideredghly/mon-Gaussian
tail of the aperture mass statistics to constrain cosmocédgiarameters, whereas
Kruse & Schneider (1999b) considered the abundance ofyhgjghificant peaks
of Map as a probe of the cosmological models. The peak statistiecohstructed
surface density maps (Jain & van Waerbeke 1999) also prewdaluable means
to distinguish between various cosmological models.

Future work will also involve additional information on tihedshifts of the back-

ground galaxies. Hu (1999) pointed out that splitting up dglaéaxy sample into

several redshift bins substantially increases the aliditgonstrain cosmological

parameters. He considered the power spectrum of the pedjéeemnsity and found

that the accuracy of the corresponding cosmological paesenmproves by a fac-

tor of ~ 7 for Qa, and by a factor of 3 for Qg, estimated for a median redshift of
unity.

All of the quoted work concentrated mainly on one particufegasure of cosmic
shear. One goal of future theoretical investigations walitainly be the construc-
tion of a method which combines the various measures intdadadj statistics,

designed to minimise the volume of parameter space allowddédata of future
observational weak lensing surveys. Future, larger-saaieerical simulations will

guide the search for such a statistics and allow one to makeate predictions.

In addition to a pure cosmic shear investigation, cosmi@shkenstraints can be
used in conjunction with other measures of cosmologicampaters. One impres-
sive example has been given by Hu & Tegmark (1999), who shdhatdeven a

relatively small weak lensing survey could dramaticallyphove the accuracy of
cosmological parameters measured by future Cosmic MicresBackground mis-

sions.
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6.9.3 Observations

We are not aware of any convincing and cosmologically usehdasure-
ment of cosmic shear yet obtained. One of the first attempts neported in
Mould et al. (1994), where the mean shear was investigateossca field of
9/6 x 9/6, observed with the Hale 5-meter Telescope. The image Jsdesp and
has good quality (i.e., a seeing of& FWHM). It is the same data as used by
Brainerd et al. (1996) for the first detection of galaxy-g&léensing (see Sect. 8).
The mean ellipticity of the 4363 galaxies within a circle 68 4adius with magni-
tudes 23 r <26 was found to b€0.54+0.5)%. A later, less conservative reanalysis
of these data by Villumsen (unpublished), where an attengst mvade to account
for the seeing effects, yielded ad3detection of a non-vanishing mean ellipticity.

Following the suggestion that the observed large-angle -@Q&@xy associations
are due to weak lensing by the large-scale structure in whietioreground galax-

ies are embedded (see Sect. 7), Fort et al. (1996) searchetidar around five
luminous radio quasars. In one of the fields, the number tenfistars was so
high that no reasonable shear measurement on faint bacidygalaxies could be
performed® In the remaining four QSO fields, they found a shear signal on a
scale of~ 1’ for three of the QSOs (those which were observed with SUSiGhvh
has a field-of-view ofv 2/2), and on a somewhat larger angular scale for the fourth
QSO. Taken at face value, these observations support tigestign of magnifica-
tion bias caused by the large-scale structure. A reanatystse three SUSI fields

by Schneider et al. (1998b), considering thes shear over the fields, produced a
positive value for(|y|?) at the 99% significance level, as determined by numerous
simulations randomising the orientation angles of the>xgadlipticities. The am-
plitude of thermsshear, when corrected for the dilution by seeing, is of theesa
magnitude as expected from cluster-normalised models.edexyif the magnifi-
cation bias hypothesis is true, these three lines-of-sighhot randomly selected,
and therefore this measurement is of no cosmological use.

Of course, one or a few narrow-angle fields cannot be usefuh fmeasurement
of cosmic shear, owing to cosmic variance. Therefore, a mgarn measurement
of cosmic shear must either include many small fields, or rhastbtained from

a wide-field survey. Using the first strategy, several pitsjece under way: The
Hubble Space Telescope has been carrying out so-calletlgbaarveys, where

one or more of the instruments not used for primary obsematare switched on
to obtain data of a field located a few arc minutes away fronptiteary pointing.

Over the past few years, a considerable database of sudlepdeda sets has ac-
cumulated. Two teams are currently analysing parallel siettaken with WFPC2
and STIS, respectively (see Seitz et al. 1998a, RhodesEa20). In addition, a
cosmic-shear survey is currently under way, in which rangaelected areas of

14 This field was subsequently used to demonstrate the supedpinuality of the SUSI
instrument on the ESO NTT.
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the sky are mapped with the FORS instrumen®(7 x 6/7) on the VLT. Some of
these areas include the fields from the STIS parallel survey.

The alternative approach is to map big areas and measur@sheicshear on a
wide range of scales. The wide-field cameras currently bdagloped and in-
stalled are ideally suited for this purpose, and severalggare actively engaged
in this work (see the proceedings of the Boston lens condexeduly 1999). At
present, no conclusive results are available, which isgmrmot too surprising
given the smallness of the expected effect, the infancyefdésearch area, and the
relatively small amount of high-quality data collected amhlysed so far. Never-
theless, upper limits on the cosmic shear have been derwseMeral groups which
apparently exclude a COBE-normalised SCDM model.

There is nothing special about weak lensing being carrigdpcedominantly in
the optical wavelength regime, except that the optical skyli of faint extended
sources, whereas the radio sky is relatively empty. The FIR#8io survey covers
at present about 4200 square degrees and contaidi§sources, i.e., the number
density is smaller by about a facter1000 than in deep optical images. However,
this radio survey covers a much larger solid angle than ntimeforeseeabldeep
optical surveys. As discussed in Refregier et al. (19983, shrvey may vyield a
significant measurement of the two-point correlation fiorcof image ellipticities
on angular scaleg 10. On smaller angular scales, sources with intrinsic double-
lobe structure cannot be separated from individual indéeetsources. The Square
Kilometer Array (van Haarlem & van der Hulst 1999) currenbging discussed
will yield such a tremendous increase in sensitivity for aavelength radio astron-
omy that the radio sky will then be as crowded as the curretitalpsky. Finally,
the recently commissioned Sloan telescope will map a quaftthe sky in five
colours. Although the imaging survey will be much shallowean current weak-
lensing imaging, the huge area surveyed can compensatedoetiuced galaxy
number density and their smaller mean redshift Stebbink €396). Indeed, first
weak-lensing results were already reported at the Bostwirlg conference (July
1999) from commissioning data of the telescope (see alshé&iet al. 1999).
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7 QSO Magnification Bias and Large-Scale Structure

7.1 Introduction

Magnification by gravitational lenses is a purely geomatrghenomenon. The
solid angle spanned by the source is enlarged, or equiglgravitational focus-
ing directs a larger fraction of the energy radiated by th&r@®to the observer.
Sources that would have been too faint without magnificateontherefore be seen
in a flux-limited sample. However, these sources are nowilliged over a larger
patch of the sky because the solid angle is stretched by isede that the number
density of the sources on the sky is reduced. The net effetit@number density
depends on how many sources are added to the sample becauapytkar brighter.
If the number density of sources increases steeply withedsang flux, many more
sources appear due to a given magnification, and the sinegltesdilution can be
compensated or outweighed.

This magnification bias was described in Sect. 4.4.1 (page@® quantified in
eg. (4.38). As introduced there, Ip¢§) denote the magnification into directién

on the sky, andip(> S) the intrinsic counts of sources with observed flux exceed-
ing S In the limit of weak Iensingu(é) 21, and the flux will not change by a
large factor, so that it is sufficient to know the behavioumef> S) in a small
neighbourhood of. Without loss of generality, we can assume the number-count
function to be a power law in that neighbourhoogd(> S) 0 S . We can safely
ignore any redshift dependence of the intrinsic source touere because we aim
at lensing effects of moderate-redshift mass distribstimm high-redshift sources.
Equation (4.43, page 71) then applies, which relates theutative source counts
n(> S, 6) observed in directio to the intrinsic source counts,

n(>S6) = t@)no(>9). (7.1)

Hence, ifa > 1, the observed number density of objects is increased singrand
reduced ifa < 1. This effect is callednagnification bia®r magnification anti-bias
(e.g. Schneider et al. 1992).

The intrinsic number-count function of QSOs is well fit by aken power law with

a slope ofa ~ 0.64 for QSOs fainter thar 19th blue magnitude, and a steeper
slope ofa ~ 2.52 for brighter QSOs (Boyle et al. 1988; Hartwick & Schade ;99
Pei 1995). Faint QSOs are therefore anti-biased by lensimgj,bright QSOs are
biased. In the neighbourhood of gravitational lenses, threbrer density of bright
QSOs is thus expected to be higher than average, in otheswomte bright QSOs
should be observed close to foreground lenses than expedtezlt lensing. Ac-
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cording to eq. (7.1), the overdensity factor is

q(®) = % @) (7.2)

If the lenses are individual galaxies, the magnificaﬂt()é) drops rapidly with in-
creasing distance from the lens. The natural scale for thalanseparation is the
Einstein radius, which is of order an arc second for galaxiberefore, individ-
ual galaxies are expected to increase the number densityghit QQSOs only in a
region of radius a few arc seconds around them.

Fugmann (1990)

reported an observation which apparently contradictsdhkpgectation. He corre-
lated bright, radio-loud QSOs at moderate and high redshith galaxies from the
Lick catalogue (Seldner et al. 1977) and found that thersigraficant overdensity
of galaxies around the QSOs of some of his sub-samples.§imiiguing because
the Lick catalogue contains the counts of galaxies brigtman~ 19th magnitude
in square-shaped cells with’1€lde length. Galaxies gf 19th magnitude are typ-
ically at much lower redshifts than the QSQ@s; 0.1 — 0.2, so that the QSOs with
redshiftsz > 0.5— 1 are in the distant background of the galaxies, with the two
samples separated by hundreds of megaparsecs. Physiedhtions between the
QSOs and the galaxies are clearly ruled out. Can the obsemgrdensity be ex-
pected from gravitational lensing? By construction, thguar resolution of the
Lick catalogue is of order Ipexceeding the Einstein radii of individual galaxies
by more than two orders of magnitude. The result that Lickgek are correlated
with bright QSOs can thus neither be explained by physicaletations nor by
gravitational lensing due to individual galaxies.

On the other hand, the angular scale-ofQ is on the right order of magnitude for
lensing by large-scale structures. The question therefises whether the magnifi-
cation due to lensing by large-scale structures is suffit@oause a magnification
bias in flux-limited QSO samples which is large enough to &xpthe observed
QSO-galaxy correlation. The idea is that QSOs are then ¢xgec appear more
abundantly behind matter overdensities. More galaxiesxgected where the mat-
ter density is higher than on average, and so the galaxiefvagtias tracers for
the dark material responsible for the lensing magnificafidns could then cause
foreground galaxies to be overdense around background Q3@sexciting pos-
sibility clearly deserves detailed investigation.

Even earlier than Fugmann, Tyson (1986) had inferred tHakges apparently un-
derwent strong luminosity evolution from a detection ofngfigant galaxy over-
densities on scales of 3@round 42 QSOs with redshifts<1 z < 1.5, assuming
that the excess galaxies were at the QSO redshifts. In thiedfdater observations
and theoretical studies, he probably was the first to deteetkvensing induced
associations of distant sources with foreground galaxies.
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7.2 Expected Magnification Bias from Cosmological Denséstibations

To estimate the magnitude of the effect, we now calculateathgular cross-
correlation functionéog(¢) between background QSOs and foreground galax-
ies expected from weak lensing due to large-scale struci{idartelmann 1995b;
Dolag & Bartelmann 1997; Sanz etal. 1997). We employ a singi¢ure for
the relation between the number density of galaxies and #resity contrast
of dark matter, the linear biasing scheme (e.g. Kaiser 1824deen et al. 1986;
White et al. 1987). Within this picture, and assuming weaisieg, we shall im-
mediately see that the desired correlation functigg is proportional to the cross-
correlation functiort, s between magnification and density contragt The latter
correlation can straightforwardly be computed with thénteques developed pre-
viously.

7.2.1 QSO-Galaxy Correlation Function

The angular cross-correlation functigac(¢) between galaxies and QSOs is de-
fined by

£0l®) = s ([0®) - (09)] [rs@+ D -ra)]) . 79)

where(ng ) are the mean number densities of QSOs and galaxies averaged o
the whole sky. Assuming isotrop§oc(®) does not depend on the direction of the
lag angle@. All number densities depend on flux (or galaxy magnitudaj,vie
leave out the corresponding arguments for brevity.

We saw in eq. (7.1) in the introduction thag(8) = p®(8) (ng). Since the mag-
nification expected from large-scale structures is srpa#, 1+ du with |d| < 1,
we can expan@®! ~ 1+ (a — 1)du. Hence, we can approximate

—

n —{(n ~
0O~ 10)  (a—1)8u(8) . (7.4)
(nQ)

so that the relative fluctuation of the QSO number densityrap@rtional to the
magnification fluctuation, and the factor of proportionatjuantifies the magnifi-
cation bias. Again, foo = 1, lensing has no effect on the number density.

The linear biasing model for the fluctuations in the galaxggiy asserts that the
relative fluctuations in the galaxy number counts are priogaal to the density
contras®,

=b5(6) , (7.5)

nc(®)—(ne) | =
(nG)
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whered(0) is the line-of-sight integrated density contrast, weightg the galaxy
redshift distribution, i.e. the-integral in eq. (6.65), page 149. The proportionality
factorb is the effective biasing factor appropriately averaged twve line-of-sight.
Typical values for the biasing factor are assumed tb Bel — 2. Both the relative
fluctuations in the galaxy number density and the densityrashare bounded by
—1 from below, so that the right-hand side should be replagechd{bd(8), —1]

in places Wheré(é) < —b~L. For simplicity we use (7.5), keeping this limitation
in mind.

Using egs. (7.4) and (7.5), the QSO-galaxy cross-coraglafiinction (7.3) be-
comes

Eac(®) = (a —1)b(3u(B)3(6+9)) . (7.6)

Hence, it is proportional to the cross-correlation funetigs between magnifica-
tion and density contrast, and the proportionality facsogiven by the steepness
of the intrinsic QSO number counts and the bias factor (Bagen 1995b). As
expected from the discussion of the magnification bias, tagmification bias is
ineffective fora = 1, and QSOs and galaxies are anti-correlatecofer 1. Fur-
thermore, if the number density of galaxies does not refleetdark-matter fluc-
tuations,b would vanish, and the correlation would disappear. In otddéind the
QSO-galaxy cross-correlation function, we therefore havevaluate the angular
cross-correlation function between magnification and itgnentrast.

7.2.2 Magnification-Density Correlation Function

We have seen in Sect. 6 that the magnification fluctuation isetthe effective
convergencép(6) = 2Keff<_é) in the limit of weak lensing, see eq. (6.29, page 128).
The latter is given by eq. (6.19, page 124), in which the aye@er the source-
distance distribution has already been performed. Thexefoe can immediately

write down the source-distance averaged magnificationufiicin as

_ o 3H2Qp W 5[ fic (W)8, W]
H(E) = =3, /0 g (w) fc(w) 2= (7.7)
Here,V\_/Q(W) is the modified QSO weight function
— _ W f (W —w)
Wo (W) = /W W Golw) L7 (7.8)

andGgq(w) is the normalised QSO distance distribution.

Both the average density contrasand the average magnification fluctuatidyn
are weighted projections of the density fluctuations aldrggline-of-sight, which
is assumed to be a homogeneous and isotropic random fielch #he iderivation
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of the effective-convergence power spectrum in Sect. 6,ameonice more employ
Limber’s equation in Fourier space to find the cross powectspe P,;5(1) for
projected magnification and density contrast,

3HZQo M . Wo(w)Gg(W) |
) =25 [ e e () 9

The cross-correlation function between magnification aewlsiy contrast is ob-
tained from eq. (7.9) via Fourier transformation, which barcarried out and sim-
plified to yield

2 WH —
£us(@) = 2520 [ o fc(w)Vi(W) Golw) 2w
% /Om ';—?Tkpa(k,m/)Jo[fK(mmk@ | (7.10)

Quite obviously, there is a strong similarity between tlgsaion and that for the
magnification autocorrelation function, eq. (6.34, page)18/e note that eq. (7.10)
automatically accounts for galaxy autocorrelations tgfothe matter power spec-
trum Ps(K).

7.2.3 Distance Distributions and Weight Functions

The QSO and galaxy weight functio@ c(w) are normalised representations of
their respective redshift distributions, where the refist@eds to be transformed to
comoving distancev.

The redshift distribution of QSOs has frequently been messand parameterised.
Using the functional form and the parameters determinedadby1®95), the mod-
ified QSO weight functiol\g(w) has the shape illustrated in the top panel of
Fig. 25. It is necessary for our present purposes to be abiegose a lower red-
shift limit on the QSO sample. Since we want to study lensinuyced correlations
between background QSOs and foreground galaxies, therebaus way to ex-
clude QSOs physically associated with galaxy overderssifiis is observation-
ally achieved by choosing a lower QSO redshift cut-off highegh to suppress any
redshift overlap between the QSO and galaxy samples. Thcedure must be re-
produced in theoretical calculations of the QSO-galaxgsfcorrelation function.
This can be achieved by cutting off the observed redshiftitligion Gg below
some redshifty, re-normalising it, and putting the result into eq. (7.8Jitml Wa.
The five curves shown in the top panel of Fig. 25 are for cuteafShiftszg increas-
ing from 0.0 (solid curve) to D in steps of (. Obviously, the peak ig shifts to
largerw for increasinggz.

Galaxy redshift distribution&g can be obtained by extrapolating local galaxy
samples to higher redshifts, adopting a constant comowvimgber density and a
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Fig. 25. QSO and galaxy weight functior\A_/Q(w) and Gg(w), respectively. Top panel:
Wo(w) for five different choices of the lower cut-off redshiff imposed on the QSO sam-
ple; zp increases from .0 (solid curve) to D in steps of . The peak iMg(w) shifts to
larger distances for increasizg. Bottom panelGg(w) for five different galaxy magnitude
limits my, increasing from 1% to 225 (solid curve) in steps of one magnitude. The peak in
the galaxy distance distribution shifts towards largetatises with increasingy, i.e. with
decreasing brightness of the galaxy sample.

Schechter-type luminosity function. For the present psegsothis is a safe proce-
dure because the galaxies to be correlated with the @8@ddbe at sufficiently
lower redshifts than the QSOs to avoid overlap between timples. Thus the ex-
trapolation from the local galaxy population is well jusdi In order to convert
galaxy luminosities to observed magnitudkes;orrections need to be taken into
account. Conveniently, the resulting weight functionsutidoe parameterised by
the brightness cut-off of the galaxy sample, in practice H®y maximum galaxy
magnitudemy (i.e. the minimum luminosity) required for a galaxy to entee
sample. The five representative curves@g(w) in the lower panel of Fig. 25 are

161



for mp increasing from 1& to 225 (solid curve) in steps of one magnitude.
band magnitudes are assumed. For increasing cut-off matpmt, i.e. for fainter
galaxy samples, the distributions broaden, as expecteslcdtrelation amplitude
as a function ofmy peaks ifmg is chosen such that the median distance to the
galaxies is roughly half the distance to the bulk of the QS@utation considered.

7.2.4 Simplifications

It turns out in practice that the exact shapes of the QSO dastyaeight functions

Wo(w) andGg(w) are of minor importance for the results. Allowing inaccuesac

of order 10%, we can replace the functiddg c(w) by delta distributions centred
on typical QSO and galaxy distanogg andwg < Wq. Then, from eq. (7.8),

~ o fk(wg—w)
Wo(w) = ~hepwg)

where HX) is the Heaviside step function, and the line-of-sight irdgign in
eq. (7.7) becomes trivial. It is obvious that matter fluatuad at redshifts higher
than the QSO redshift do not contribute to the cross-cdiogidunction & s(9):
Inserting (7.11) together witg = (W — W) into eq. (7.10), we find s(¢) =0
if wg > wq, as it should be.

H(wg —w), (7.11)

The expression for the magnification-density cross-catieh function further sim-
plifies if we specialise to a model universe with zero spatimatureK = 0, such
that fx (w) = w. Then,

Wo(w) = (1— WﬂQ) H(wg —Ww) , (7.12)

and the cross-correlation functi@ps(¢) reduces to

Epé((p) =

2 0
Moo _we (1 %) KK b (ko) b(weky)  (7.13)

2 awg) \© wo/Jo 2m

for wg > wg, and§5(@) = 0 otherwise.
7.3 Theoretical Expectations

7.3.1 Qualitative Behaviour

Before we evaluate the magnification-density cross-catigei function fully nu-
merically, we can gain some insight into its expected behavby inserting the
CDM and HDM model spectra defined in eq. (6.36, page 131) igtq&#10) and
expanding the result into a power seriespiiBartelmann 1995b). As in the case

162



of the magnification auto-correlation function before, ttve model spectra pro-
duce qualitatively different results. To first order @ &,5(¢) decreases linearly
with increasingp for CDM, while it is flat for HDM. The reason for this different
appearance is the lack of small-scale power in HDM, and thma@dnce thereof
in CDM. The two curves shown in Fig. 26 illustrate this for am$fein-de Sitter
universe with Hubble constaht= 0.5. The underlying density-perturbation power
spectra were normalised by the local abundance of richesisisand linear density
evolution was assumed.

0.003 -

0.002 -

€,5(9)

0.001 |-

P T H
0 0.5 1 1.5 2

¢[degrees]

Fig. 26. Cross-correlation functions between magnificaaod density contras,s(@),
are shown for an Einstein-de Sitter universe witk- 0.5, adopting CDM (solid curve)
and HDM (dotted curve) density fluctuation spectra. Bothcpeare normalised to the
local cluster abundance, and linear density evolutionssmgd. The lower cut-off redshift
of the QSOs iy = 0.3, the galaxy magnitude limit iy = 20.5. In agreement with the
expectation derived from the CDM and HDM model spectra (6f2@e 131), the CDM
cross-correlation function decreases linearly with insiegg for small@, while it is flat to
first order ing for HDM. The small-scale matter fluctuations in CDM comparetHDM
causeg (@) to increase more steeply @s- 0.

Thelinear correlation amplitudeg 5(0), for CDM is of order 3x 1073, and about
a factor of five smaller for HDM. The magnification-densitpss-correlation func-
tion for CDM drops to half its peak value within a few times 1@ aninutes. This,
and the monotonic increase §fs towards smaltp, indicate that density perturba-
tions on angular scales below’kbntribute predominantly t§, 5. At typical lens
redshifts, such angular scales correspond to physicascgl to a few Mpc. Ev-
idently therefore, the non-linear evolution of the dengigyturbations needs to be
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taken into account, and its effect is expected to be subatant

7.3.2 Results

Figure 27 confirms this expectation; it shows magnificatiensity cross-
correlation functions for the four cosmological modelsadet in Tab. 1 on
page 117. Two curves are shown for each model, one for linghtlee other for
non-linear density evolution. The two curves of each pareasily distinguished
because non-linear evolution increases the cross-cbaremplitude at smatpby
about an order of magnitude above linear evolution, quidep@endent of the cos-
mological model. At the same time, the angular cross-caticei scale is reduced
to a few arc minutes. At angular scal€s80, the non-linear cross-correlation func-
tions are above the linear results, falling below at largeles. The correlation
functions for the three cluster-normalised models (SCDNL,DM and ACDM;
see Tab. 1 on page 117) are very similar in shape and amplifirgecurve for
the cCDM model lies above the other curves by a factor of about o, for
low-density universes, the influence of different powesetpum normalisations are
much less prominent.

The main results to be extracted from Fig. 27 are that the it&undpl of the
magnification-density cross-correlation functidfs(0), reaches approximately
5x 102, and thaté s drops by an order of magnitude within about’.2This
behaviour is quite independent of the cosmological parareef the density-
fluctuation power spectrum is normalised by the local aboodaof rich galaxy
clusters. More detailed results can be found in Dolag & Berd®n (1997) and
Sanz et al. (1997).

7.3.3 Signal-to-Noise Estimate

The QSO-galaxy correlation functidiiyc(@) is larger thang 5(¢) by the factor

(a —1)b. The value of the bias factdris yet unclear, but it appears reasonable to
assume that it is between 1 and 2. For optically selected Q&@s2.5, so that

(a —1)b~ 2— 3. Combining this with the correlation amplitude for CDM deaff
from Fig. 27, we can expeéhg(0) < 0.1.

Given the meaning ofqg(@), the probability to find a foreground galaxy close to
a background QSO is increased by a factoflof oc(9)] < 1.1 above random.

In a small solid angle @ around a randomly selected background QSO, we thus
expect to find

NG ~ [1+Eqa(0)] (Ne) dPw = [1+&qa(0)] (Na) (7.14)

galaxies, wheréNg) is the average number of galaxies within a solid angle?os. d
In a sample ofNg fields around randomly selected QSOs, the signal-to-naise r
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Fig. 27. Angular magnification-density cross-correlationctionsg,s(¢@) are shown for the
four cosmological models specified in Table 1 on page 117.dwees are shown for each
cosmological model; those with the higher (lower) ampladp = O were calculated with
the non-linearly (linearly) evolving density-perturlmati power spectra, respectively. The
models are: SCDM (solid curvesyCDM (dotted curves), OCDM (short-dashed curves),
and/ACDM (long-dashed curves). Obviously, non-linear evolutims a substantial effect.
It increases the correlation amplitude by about an orderagfmitude. The Einstein-de Sit-
ter model normalised tog = 1 has a significantly larger cross-correlation amplitudenth
the cluster-normalised Einstein-de Sitter model. For tiediensity models, the difference
is much smaller. The curves for the cluster-normalised nsoate very similar, quite inde-
pendent of cosmological parameters.

for the detection of a galaxy overdensity is then

S __No(Ne—(Ng)) _
N~ e )~ el Peol0). (7.9

Typical surface number densities of reasonably brightxgaedaare of ordeng ~
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10 per square arc minute. Therefore, there should be of dhMigr~ 30 galaxies
within a randomly selected disk of one arc minute radius, hiicvthe QSO-galaxy
cross correlation is sufficiently strong. If we require atagr minimum signal-to-
noise ratio such that/8 > (S/N)o, the number of QSO fields to be observed in
order to meet this criterion is

2
No> (7). B0 e

- @Z (@ —1)b] ,5°(0) (Ne) *
oS [ (W) () o

where we have inserted typical numbers in the last step. d$tisnate demon-
strates that gravitational lensing by non-linearly evodylarge-scale structures in
cluster-normalised CDM can produce correlations betweskdround QSOs and
foreground galaxies at theo3evel on arc minute scales in samplesp20 QSOs.
The angular scale of the correlations is expected to be ardrdo 10 arc min-
utes. Equation (7.16) makes it explicit that more QSO fielglsdnto be observed
in order to establish the significance of the QSO-galaxystations if (i) the QSO
number count function is shallow (close to unity), and (ii) the galaxy bias factor
b is small. In particular, no correlations are expected i 1, because then the
dilution of the sources and the increase in QSO number gxeaticel. Numerical
simulations (Bartelmann 1995b) confirm the estimate (7.16)

Fugmann

's (1990) observation was also tested in a numerical modeétse based on the ad-
hesion approximation to structure formation (Bartelman8daneider 1992). This
model universe was populated with QSOs and galaxies, and@2&Qy correla-
tions on angular scales on the order-ofl0 were investigated using Spearman’s
rank-order correlation test (Bartelmann & Schneider 199B8ght propagation in
the model universe was described with the multiple lensglapproximation of
gravitational lensing. In agreement with the analyticaineate presented above, it
was found that lensing by large-scale structures can ingesalint for the observed
correlations between high-redshift QSOs and low-redsgfafaxies, provided the
QSO number-count function is steep. Lensing by individa#dgies was confirmed
to be entirely negligible.

7.3.4 Multiple-Waveband Magnification Bias

The magnification bias quantified by the number-count stopan be substantially
increased if QSOs are selected in two or more mutually uetaied wave bands
rather than one (Borgeest et al. 1991). To see why, suppasehically bright
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andradio-loud QSOs were selected, and that their fluxes in tbentawe bands are
uncorrelated. Le$, » be the flux thresholds in the optical and in the radio regimes,
respectively, anay » the corresponding number densities of either opticallghri

or radio-loud QSOs on the sky. As in the introduction, we assthatn; > can be
written as power laws i, , with exponentsiy ».

In a small solid angle 4o, the probability to find an optically brighar radio-loud
QSO s therp(S) = ni(S) d?w, and the joint probability to find an optically bright
andradio-loud QSO is the product of the individual probalel;j or

P(SLS) = Pu(S) P2(S2) = M(S) ()] PO S S, %2 dPw,  (7.17)

provided there is no correlation between the flu8esso that the two probabilities
are independent. Suppose now that lensing produces a ntagjoifi factofi across
d?w. The joint probability is then changed to

ay az 42
p’(sl,szm(%) (%) dTw:u“l*“le(sl,sz)- (7.18)

Therefore, the magnification bias in the optically brightd radio-loud QSO sam-
ple is as efficient as if the number-count function had a stdge= a1 + a».

More generally, the effective number-count slope for theyniication bias in a
QSO sample that is flux limited im mutually uncorrelated wave bands is

o= i aj, (7.19)

whereq; are the number-count slopes in the individual wave bandsn Tihe QSO-
galaxy cross-correlation function is

£a(P) = (i aj — 1) b&s(®) (7.20)

and can therefore be noticeably larger than for a QSO santptehvs flux limited
in one wave band only.

7.4 Observational Results

After this theoretical investigation, we turn to obsergas of QSO-galaxy cross-
correlations on large angular scales. The existence of @8&xy correlations was
tested and verified in several studies using some very difte@SO- and galaxy
samples.

Bartelmann & Schneider (1993b)
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repeated Fugmann’s analysis with a well-defined sample afkdraund

QSOs, namely the optically identified QSOs from the 1-Janskyalogue
(Kuhr et al. 1981; Stickel et al. 1993; Stickel & Kuihr 1993)ptically identified

QSOs with measured redshifts need to be bright enough fecteh and spec-
troscopy, hence the chosen sample is implicitly also camstd by an optical flux
limit. Optical and radio QSO fluxes are generally not strgrgirrelated, so that
the sample is affected by a double-waveband magnificatis) kihich can further
be strengthened by explicitly imposing an optical flux (orgmigude) limit.

Although detailed results differ from Fugmann’s, the preseof the correlation is
confirmed at the 98% confidence level for QSOs with redshif@s75 and brighter
than 18th magnitude. The number of QSOs matching theseiarise56. The cor-
relation significance decreases both for lower- and higbeéshift QSO samples,
and also for optically fainter ones. This is in accordancthwvain explanation in
terms of a (double-waveband) magnification bias due to tggwnal lensing. For
low-redshift QSOs, lensing is not efficient enough to preie correlations. For
high-redshift QSOs, the most efficient lenses are at higrashifts than the galax-
ies, so that thebservedyalaxies are uncorrelated with the structures which mag-
nify the QSOs. Hence, the correlation is expected to disapioe increasing QSO
redshifts. For an optically unconstrained QSO sample, ffexteve slope of the
number-count function is smaller, reducing the strengtthefmagnification bias
and therefore also the significance of the correlation.

With a similar correlation technique, correlations betwéee 1-Jansky QSO sam-
ple and IRAS galaxies (Bartelmann & Schneider 1994) andisiftX—ray emission
(Bartelmann et al. 1994) were investigated, leading toitaiadely similar results.
IRAS galaxies are correlated with optically bright, higidshiftz > 1.5 1-Jansky
sources at the 98% confidence level. The higher QSO redshift for which the cor
relation becomes significant can be understood if the IRA&@gaample is deeper
than the Lick galaxy sample, so that the structures resplenfair the lensing can
be traced to higher redshift.

Bartsch et al. (1997)

re-analysed the correlation between IRAS galaxies andngkyaQSOs using
a more advanced statistical technique which can be optimigethe correla-
tion function expected from lensing by large-scale strreguln agreement with
Bartelmann & Schneider (1994), they found significant datrens between the
QSOs and the IRAS galaxies on angular scales- &, but the correlation am-
plitude is higher than expected from large-scale struckemsing, assuming lin-
ear evolution of the density-perturbation power spectrimluding non-linear
evolution, however, the results by Bartsch et al. (1997) waHl be reproduced
(Dolag & Bartelmann 1997).

X—ray photons from the ROSAAII-Sky Surveye.g. Voges 1992) are correlated
with optically bright 1-Jansky sources both at lowq& z < 1.0) and at high red-

168



shifts (15 < z< 2.0), but there is no significant correlation with QSOs in theiin
mediate redshift regime. A plausible explanation for tkishiat the correlation of
X—ray photons with low-redshift 1-Jansky QSOs is due to fast ghich is phys-
ically associated with the QSOs, e.g. which resides in tret blusters of these
QSOs. Increasing the source redshift, the flux from thesgtaas falls below the
detection threshold of thall-Sky Surveyhence the correlation disappears. Upon
further increasing the QSO redshift, lensing by largeesstiuctures becomes effi-
cient, and the X—ray photons trace hot gas in the lenses.

Rodrigues-Williams & Hogan (1994)

found a highly significant correlation between opticalglexted, high-redshift
QSOs and Zwicky clusters. Their cluster sample was fairighir which indicates
that the clusters are in the foreground of the QSOs. This e that the clusters
are physically associated with the QSOs and thus exert@miental effects on
them which might lead to the observed association. RodsifMdliams & Hogan
discussed lensing as the most probable reason for the aiored, although
simple mass models for the clusters yield lower magnificatithan required
to explain the significance of the effect. Seitz & Schneid®96b) repeated
their analysis with the 1-Jansky sample of QSOs. They fougréeanent with
Rodrigues-Williams & Hogan'’s result for intermediate-sbadt (z ~ 1) QSOs, but
failed to detect significant correlations for higher-raftséources. In addition, a
significant under-density of low-redshift QSOs close to @wyiclusters was found,
for which environmental effects like dust absorption are mhost likely explana-
tion. A variability-selected QSO sample was correlatechvdtvicky clusters by
Rodrigues-Williams & Hawkins (1995). They detected a digant correlation be-
tween QSOs with @ < z < 2.2 with foreground Zwicky clusters (wittg) ~ 0.15)
and interpreted it in terms of gravitational lensing. Agaive implied average QSO
magnification is substantially larger than that inferremhirsimple lens models for
clusters with velocity dispersions ef 10° kms™. Wu & Han (1995) searched for
associations between distant 1-Jansky and 2-Jansky QSD®m@ground Abell
clusters. They found no correlations with the 1-Jansky csjrand a marginally
significant correlation with 2-Jansky sources. They argaélensing by individual
clusters is insufficient if cluster velocity dispersions af order 18 kms™, and
that lensing by large-scale structures provides a vialjdaeation.

Benitez & Martinez-Gonzalez (1995)

found an excess of red galaxies from the APM catalog with matderedshift
(z~ 1) 1-Jansky QSOs on angular scate§’ at the 991% significance level. Their
colour selection ensures that the galaxies are most likeldshifts 02 < z< 0.4,
well in the foreground of the QSOs. The amplitude and angdale of the excess
is compatible with its originating from lensing by largeage structures. The mea-
surements by Benitez & Martinez-Gonzalez (1995) arétquotogether with var-
ious theoretical QSO-galaxy cross-correlation functionkig. 28, which clearly
shows that the QSO-galaxy cross-correlation measureragneg quite well with
the cross-correlation functiodgc(®), but they fall above the range of theoretical
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Fig. 28. QSO-galaxy cross-correlation measurements atéegl together with theoreti-
cal cross-correlation function&gg(¢) for various cosmological models as indicated by
line type. The CDM density-perturbation power spectrum wiaster-normalised, and
non-linear evolution was taken into account. The figure shthat the measurements fall
above the theoretical predictions at small angular scgle$,2'. This excess can be at-
tributed to gravitational lensing by individual galaxy stars (see the text for more de-
tail). The theoretical curves depend on the Hubble constémtough the shape parameter
Ir = Qph, which determines the peak location of the power spectrum.

predictions at small angular scalgs< 2. This can be attributed to the magnifi-
cation bias due to gravitational lensing by individual ¢dss. Being based on the
weak-lensing approximation, our approach breaks down whemmagnification
becomes comparable to unify 1.5, say. This amount of magnification occurs for
QSOs closer than 3 Einstein radii to cluster cores. Depending on cosmoldgica
parameters, QSO and galaxy redshifts3 Einstein radii correspond te 1' — 2'.
Hence, weexpecthe theoretical expectations from lensing by large-sdaletires
alone to fall below the observations on angular scalgsl’ — 2'.
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Norman & Impey (1999)

took wide-field R-band images centred on a subsample of 4kya@SOs with
redshifts between 1 and 2. They searched for an excess afemia the magnitude
range 1% < R < 21 on angular scales gf 10 around these QSOs and found a
correlation at the 99% significance level. The redshiftriistion of the galaxies is
likely to peak around ~ 0.2. The angular cross-correlation function between the
QSOs and the galaxies agrees well with the theoretical ¢afi@cs, although the
error bars are fairly large.

All these results indicate that there are correlations betwbackground QSOs and
foreground ‘light’, with light either in the optical, thefirared, or the (soft) X-ray
wave bands. The angular scale of the correlations is cobipatith that expected
from lensing by large-scale structures, and the amplitad®ther consistent with
that explanation or somewhat larger. Wu & Fang (1996) disedsvhether the au-
tocorrelation of clusters modelled as singular isotherspaleres can produce suf-
ficient magnification to explain this result. They found ttias is not the case, and
argued that large-scale structures must contribute Sutirty.

If lensing is indeed responsible for the correlations detcother signatures of
lensing should be found in the vicinity of distant QSOs. kedieFort et al. (1996)
searched for the shear induced by weak lensing in the fields/@fluminous
QSOs withz ~ 1 and found coherent shear signals in four of them (see also
Schneider et al. 1998b). In addition, they detected galaryms in three of their
fields. Earlier, Bonnet et al. (1993) had found evidence &recent weak shear in
the field of the potentially multiply-imaged QSO 234607, which was later iden-
tified with a distant cluster (Mellier et al. 1994; Fischea&t1994).

Bower & Smail (1997)

searched for weak-lensing signals in fields around eighidoos radio sources

at redshifts ~ 1. They confirmed the coherent shear detected earlier by
Fort et al. (1996) around one of the sources (3C336 -at0.927), but failed to
find signatures of weak lensing in the combined remainingiséelds.

A cautionary note was recently added to this discussion by
Williams & Irwin (1998) and Norman & Williams (1999). Crosstrelating
LBQS and 1-Jansky quasars with APM galaxies, they claimguifstant galaxy
overdensities around QSOs on angular scales of order onmeedefys discussed
above, lensing by currently favoured models of large-se#iectures is not able

to explain such large correlation scales. Thus, if theselteekold up, they would
provide evidence that there is a fundamental difficulty vifte current models of
large-scale structure formation.
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7.5 Outlook

Cross correlations between distant QSOs and foregrouadigalon angular scales
of about ten arc minutes have been observed, and they carrieitat to the
magnification bias due to gravitational lensing by largalsstructures. Coherent
shear patterns have been detected around QSOs which aifecaigty correlated
with galaxies. The observations so far are in reasonabeagent with theoretical
expectations, except for the higher observed signal inrthermost few arc min-
utes, and the claimed correlation signal on degree scalbge \tthe excess cross-
correlation on small scales can be understood by the lemffagts of individual
galaxy clusters, correlations on degree scales pose aeganaiem for the lensing
explanation if they persist, because the lensing-inducesisecorrelation quickly
dies off beyond scales of approximately .10

QSO-galaxy cross-correlations have the substantial aadgarover other diagnos-
tics of weak lensing by large-scale structures that theyatgose any severe ob-
servational problems. In particular, it is not necessamnéasure either shapes or
sizes of faint background galaxies accurately, becausesitfficient to detect and
count comparatively bright foreground galaxies near Q${@svever, such count-
ing requires homogeneous photometry, which is difficultdioi@ve in particular on
photographic plates, and requires careful calibration.

Since the QSO-galaxy cross-correlation function involfitiering the density-
perturbation power spectrum with a fairly broad functidre zeroth-order Bessel
function $(x) [cf. eq. (7.10)], these correlations are not well suiteddonstrain-
ing the power spectrum. If the cluster normalisation is elwsthe correct one, the
QSO-galaxy cross-correlation function is also fairly insiéive to cosmological pa-
rameters.

Rather, QSO-galaxy cross correlations are primarily irtgrdrfor measuring the
bias parametdn. The rationale of future observations of QSO-galaxy catrehs
should therefore be to accurately measure the correlatigplitade on scales be-
tween a few and 10 arc minutes. On smaller scales, the infuehandividual
galaxy clusters sets in, and on larger scales, the cowalaignal is expected to be
weak. Once it becomes possible to reliably constrain theitlefluctuation power
spectrum, such observations can then be used to quantityidegparameter, and
thereby provide most valuable information for theoriesalbgy formation. A pos-
sible dependence of the bias parameter on scale and reckshidlso be extracted.

Sufficiently large data fields for this purpose will soon beeoavailable, in partic-
ular through wide-field surveys like the 2dF Survey (Coll#8988) and the Sloan
Digital Sky Survey (Gunn & Knapp 1993, Loveday & Pier 1998)tHerefore ap-
pears feasible that within a few years weak lensing by lagde structures will
be able to quantify the relation between the distributiohgataxies and the dark
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matter.
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8 Galaxy-Galaxy Lensing
8.1 Introduction

Whereas the weak lensing techniques described in Sect.d&latgiate to map the
projected matter distribution of galaxy clusters, indiwad galaxies are not suffi-
ciently massive to show up in the distortion of the imagesawiground galaxies.
From the signal-to-noise ratio (4.55, page 75) we see thtvidual isothermal
haloes with a velocity dispersion in excess~f600kms™® can be detected at
a high significance level with the currently achievable nemtbensities of faint
galaxy images. Galaxies have haloes of much lower velod#yedsion: The ve-
locity dispersion of arL, elliptical galaxy is~ 220kms™, that of anL, spiral
~ 145kmst,

However, if one is not interested in the mass propertiesaif’idual galaxies, but
instead in the statistical properties of massive haloespdulation of galaxies,
the weak lensing effects of several such galaxies can titatlg be superposed.
For example, if one considely identical foreground galaxies, the signal-to-noise
ratio of the combined weak lensing effect increaselslf]e/lé, so that for a typical ve-
locity dispersion for spiral galaxies of, ~ 160kms*, a few hundred foreground
galaxies are sufficient to detect the distortion they inducthe background galaxy
images.

Of course, detection alone does not yield new insight ineorttass properties of
galaxy haloes. A quantitative analysis of the lensing digmast account for the
fact that ‘identical’ foreground galaxies cannot be obedrvlherefore, the mass
properties of galaxies have to be parameterised in orddlole the joint analysis
of the foreground galaxy population. In particular, oneni®rested in the velocity
dispersion of a typicall(,, say) galaxy. Furthermore, the rotation curves of (spiral)
galaxies which have been observed outt80h~ kpc show no hint of a truncation
of the dark halo out to this distance. Owing to the lack of dyital tracers, with the
exception of satellite galaxies (Zaritsky & White 1994),igedt observation of the
extent of the dark halo towards large radii is not feasibkawonventional methods.
The method described in this section uses the light bundleaakground galaxies
as dynamical tracers, which are available at all distarroes the galaxies’ centres,
and are therefore able, at least in principle, to probe the @r the truncation
radius) of the haloes. Methods for a quantitative analykgataxy haloes will be
described in Sect. 8.2.

The first attempt at detecting this galaxy-galaxy lensirfgatfwas reported by
Tyson et al. (1984), but the use of photographic plates ancktlatively poor seeing
prevented them from observing a galaxy-galaxy lensingadigrhe first detection
was reported by Brainerd et al. (1996), and as will be desdnb Sect. 8.3, several
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further observational results have been derived.

Gravitational light deflection can also be used to study ik dnatter haloes of
galaxies in clusters. The potential influence of the envirent on the halo proper-
ties of galaxies can provide a strong hint on the formatiahldetimes of clusters.
One might expect that galaxy haloes are tidally strippedusters and therefore
physically smaller than those of field galaxies. In Sect, &d consider galaxy-
galaxy lensing in clusters, and report on some first results.

8.2 The Theory of Galaxy-Galaxy Lensing

A light bundle from a distant galaxy is affected by the tidaldiof many foreground
galaxies. Therefore, in order to describe the image distgrthe whole population
of foreground galaxies has to be taken into account. Butfiesshall consider the
simple case that the image shape is affected (mainly) bygéesiareground galaxy.
Throughout this section we assume that the shear is weakasave can replace
(4.12, page 61) by

e® =g—vy. (8.1)

Consider an axi-symmetric mass distribution for the fooemqd galaxy, and back-
ground images at separatiérfrom its centre. The expectation value of the image
ellipticity then is the shear & which is oriented tangentially. [i() andp(® (¢(9)
denote the probability distributions of the image and segltipticities, then ac-
cording to (8.1),

p(e) = p9 (e —y) = pO(e) —ya%p@(s) , 8.2)

where the second equality applies fgr< 1. If ¢ is the angle between the major
axis of the image ellipse and the line connecting source amsl ¢entre, one finds
the probability distribution o by integrating (8.2) over the modulus &f

p(9) = [ diellelp(e) = -~ vcos20) - [ el pO(e),  83)

where ¢ ranges within[0, 2r. Owing to the symmetry of the problem, we can
restrictd to within 0 andrt/2, so that the probability distribution becomes

p(0) = 21w (5 ) os2e)] 8.4

Tt

i.e., the probability distribution is skewed towards vallerger tharr/4, showing
preferentially a tangential alignment.
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Lensing by additional foreground galaxies close to the-bfigight to the back-
ground galaxy does not substantially change the probgabistribution (8.4). First
of all, since we assume weak lensing throughout, the effedhear acting on a
light bundle can well be approximated by the sum of the sheatributions from
the individual foreground galaxies. This follows eitheorfr the linearity of the
propagation equation in the mass distribution, or from tiveelst-order approxima-
tion of multiple-deflection gravitational lensing (e.glaBdford & Narayan 1986;
Seitz & Schneider 1992). Second, the additional lensingxg@s are placed at ran-
dom angles around the line-of-sight, so that the expectatgdue of their com-
bined shear averages to zero. Whereas they slightly inetbasdispersion of the
observed image ellipticities, this increase is negliggitece the dispersion of the
intrinsic ellipticity distribution is by far the dominantfect. However, if the lens
galaxy under consideration is part of a galaxy concentmasach as a cluster, the
surrounding galaxies are not isotropically distributaa ¢he foregoing argument
is invalid. We shall consider galaxy-galaxy lensing in tdus in Sect. 8.4, and as-
sume here that the galaxies are generally isolated.

For an ensemble of foreground-background pairs of galattiegprobability distri-
bution for the angl& simply reads

p(0) = 2| 1- 0 (5 ) cos2e)] ©5)
where(y;) is the mean tangential shear of all pairs considered. Thetibmp(¢) is
an observable. A significant deviation from a uniform disition signals the pres-
ence of galaxy-galaxy lensing. To obtain quantitative infation on the galaxy
haloes from the amplitude of the cosine term, one needs tw Kage®). It can
directly be derived from observations because the weak stssamed here does
not significantly change this average between source angerebipticities, from
a parameterised relation between observable galaxy gregeand from the mean
shear(y;). Although in principle fine binning in galaxy propertiesk@icolour, red-
shift, luminosity, morphology) and angular separation arefjround-background
pairs is possible in order to probe the shear as a functiongiilar distance from
a well-defined set of foreground galaxies and thus to obtaimadial mass pro-
file without any parameterisation, this approach is culyemnfeasible owing to
the relatively small fields across which observations oficieht image quality are
available.

A convenient parameterisation of the mass profile is thectited isothermal sphere
with surface mass density

ol g
Z(&) = 2GE (1— W) ) (8.6)

wheres is the truncation radius. This is a special case of the massidlition
(3.20, page 51). Brainerd et al. (1996) showed that this made corresponds to
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a physically realisable dark-matter particle distriboffy] The velocity dispersion
is assumed to scale with luminosity according to (2.68, [ggewhich is supported
by observations. A similar scaling sfwith luminosityL or velocity dispersiom,

is also assumed,
2 2/a
Oy L
— — _ 8.7
> S*<0v,*> S*<|—*> ’ 8.7)

where the choice of the exponent s largely arbitrary. Tladiisg in (8.7) is such that
the ratio of truncation radius and Einstein radius at fixethéft is independent of

L. If, in addition,a = 4, the total mass-to-light ratio is identical for all galei The
fiducial luminosityL, may depend on redshift. For instance, if the galaxies evolve
passively, their mass properties are unaffected, but agfitige stellar population
cause them to become fainter with decreasing redshift.&ffést may be important
for very deep observations, such as the Hubble Deep Fieldgbtuet al. 1998), in
which the distribution of lens galaxies extends to high h&its

The luminosityL of a lens galaxy can be inferred from the observed flux and-an as
sumed redshift. Since the scaling relation (2.68) apptieke luminosity measured

in a particular waveband, the calculation of the luminoBityn the apparent mag-
nitude in a specified filter needs to account for the k-colwactf data are avail-
able in a single waveband only, an approximate average recioon relation has

to be chosen. For multi-colour data, the k-correction caedignated for individ-

ual galaxies more reliably. In any case, one assumes aorelagitween luminosity,
apparent magnitude, and redshift,

L=L(mz2). (8.8)

The final aspect to be discussed here is the redshift of thexigal Given that
a galaxy-galaxy analysis involves at least several hunéisezground galaxies,
and even more background galaxies, one cannot expect that #iem have
spectroscopically determined redshifts. In a more favdleraituation, multi-
colour data are given, from which a redshift estimate canbiaioed, using the
photometric redshift method (e.g., Connolly et al. 1995;y@G\& Hartwick 1996;
Hogg et al. 1998). These redshift estimates are charaatatig accurate ta\z ~
0.1, depending on the photometric accuracy and the numbeteasflfiknds in which
photometric data are measured. For a single waveband ordycan still obtain a
redshift estimate, but a quite unprecise one. One then hasetohe redshift dis-
tribution of galaxies at that particular magnitude, obegirirom spectroscopic or
multi-colour redshift surveys in other fields. Hence, onguases that the redshift

151t is physically realisable in the sense that there exists@tnopic, non-negative particle
distribution function which gives rise to a spherical dénsiistribution corresponding to
(8.6).
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probability distributionp,(z;m) as a function of magnitudes is known sufficiently
accurately.

Suppose for a moment that all galaxy redshifts were knowenThbne can predict
the effective shear for each galaxy, caused by all the otllexges around it,

vi = vi (6 —8j,2,2;,m;) , (8.9)
]

whereyjj is the shear produced by theh galaxy on the-th galaxy image, which
depends on the angular separation and the mass propertiesjeth galaxy. From
its magnitude and redshift, the luminosity can be infermeanf (8.8), which fixes
oy and the halo size through the scaling relations (2.68) and (8.7). Of course, f
z <zj,Yij = 0. Although the sum in (8.9) should in principle extend overwhole
sky, the lensing effect of all foreground galaxies with aiaggeparation larger than
someBmax Will average to zero. Therefore, the sum can be restrictseparations
< Bmax- We shall discuss the value 6f,5« further below.

In the realistic case of unknown redshifts, but known praligbdistribution
pz(zzm), the sheary; cannot be determined. However, by averaging (8.9) over
pz(zzm), the mean and dispersiofy;) and oy, of the shear for the-th galaxy
can be calculated. Instead of performing the high-dimeradimtegration explic-
itly, this averaging can conveniently be done by a MontelCantegration. One
can generate multiple realisations of the redshift digtrdn by randomly drawing
redshifts from the probability density,(z; m). For each realisation, thg can be
calculated from (8.9). By averaging over the realisatitims, mean(y;) and disper-
sionoy,; of y; can be estimated.

8.3 Results

The first attempt at detecting galaxy-galaxy lensing was enaby
Tyson et al. (1984). They analysed a deep photographic pureasisting of
35 prime-focus plates with the 4-meter Mayall Telescopeititfeak. An area of
36 (arc min.§ on each plate was digitised. After object detectier, 2,000 ‘fore-
ground’ and~ 47,000 ‘background’ galaxies were selected by their magngude
such that the faintest object in the ‘foreground’ class wae magnitude brighter
than the brightest ‘background’ galaxy. This approach m&suthat the apparent
magnitude of an object provides a good indication for itssheft, which seems
to be valid, although the redshift distributions of ‘foregnd’ and ‘background’
galaxies will substantially overlap. There wexe28,000 foreground-background
pairs with AB < 63" in their sample, but no significant tangential alignment
could be measured. By comparing their observational esulih Monte-Carlo
simulations, Tyson et al. concluded that the characterigiocity dispersion of
a foreground galaxy in their sample must be smaller than tab®@dkms ™. This
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limit was later revised upwards te: 230kms* by Kovner & Milgrom (1987)
who noted that the assumption made in Tyson et al.’s analyatsall background
galaxies are at infinite distance (i.B4s/Ds = 1) was critical. This upper limit is
fully compatible with our knowledge of galaxy masses.

This null-detection of galaxy-galaxy lensing in a very kugample of objects ap-
parently discouraged other attempts for about a decadex. thie first weak-lensing
results on clusters became available, it was obvious tetritethod requires deep
data with superb image quality. In particular, the nondirty of photographic
plates and mediocre seeing conditions are probably fathktdetection of this ef-
fect, owing to its smallness. The shear’affdm anL. galaxy witho, = 160kms*

is less than 5%, and pairs with smaller separations are v#igutt to investigate
as the bright galaxy will affect the ellipticity measurerhenits close neighbour
on ground-based images.

Using a single % x 9/6 blank field, with a total exposure time of nearly seven
hours on the 5-meter Hale Telescope on Mount Palomar, Brhgteal. (1996)
reported the first detection of galaxy-galaxy lensing. Tlweradded image had
a seeing of 087 at FWHM, and the 97% completeness limit was 26. They
considered ‘foreground’ galaxies in the magnitude rangg 20< 23, and several
fainter bins for defining the ‘background’ population, andastigated the distribu-
tion functionp(¢) for pairs with separation”5< A8 < 34”. The most significant
deviation ofp(¢) from a flat distribution occurs for ‘background’ galaxiestire
range 23X r < 24. For fainter (and thus smaller) galaxies, the accuratlyeo$hape
determination deteriorates, as Brainerd et al. explisitigw. The number of ‘fore-
ground’ galaxies, ‘background’ galaxies, and pairsNis= 439, N, = 506, and
Npairs = 3202. The binned distribution for this ‘background’ samgeshown in
Fig. 29, together with a fit according to (8.5). A Kolmogor8mirnov test rejects
a uniform distribution ofp(¢) at the 99.9% level, thus providing the first detection
of galaxy-galaxy lensing.

Brainerd et al.

performed a large number of tests to check for possible syatte errors, including
null tests (e.g., replacing the positions of ‘foregrounalaxies by random points, or
stars), splitting the whole sample into various subsam(glgs, inner part vs. outer
part of the image, upper half vs. lower half etc.), and thesestwere passed satis-
factorily. Also a slight PSF anisotropy in the data, or comtaation of the ellipticity
measurement of faint galaxies by brighter neighbouringugak, cannot explain
the observed relative alignment, as tested with extensmalations, so that the
detection must be considered real.

Brainerd et al.

then quantitatively analysed their observed alignmennguthe model outlined in

Sect. 8.2, witha = 4. The predictions of the model were inferred from Montel@ar
simulations, in which galaxies were randomly distributethwhe observed number
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Fig. 29. The probability distributiorp(¢) for the 3202 foreground-background pairs
(20<r <23 and 23< r < 24, respectively) with 5< A8 < 34" in the sample used by

Brainerd et al. (1996), together with the best fit accordm@8t5). The observed distribu-

tion is incompatible with a flat distribution (dotted lind)aahigh confidence level of 99.9%

(Fig. 2a of Brainerd et al.).

density, and redshifts were assigned according to a prisyabstribution p,(z;m),
for which they used a slight extrapolation from existinggieidt surveys, together
with a simple prescription for the k-correction in (8.8) tes@n luminosities to
the galaxies. The ellipticity for each background galaxag® was then obtained
by randomly drawing an intrinsic ellipticity, adding shesarcording to (8.9). The
simulated probability distributiop(¢) was discretised into several bins in angular
separatiom\d, and compared to the observed orientation distributiomgug?-
minimisation with respect to the model parametays ands,. The result of this
analysis is shown in Fig. 30. The shape of #fecontours is characteristic in that
they form a valley which is relatively narrow in tlog, .-direction, but extends very
far out into thes,-direction. Thus, the velocity dispersia, can significantly be
constrained with these observations, while only a loweitlon s, can be derived.
Formal 90% confidence limits ooy are~ 100kms™* and~ 210kms?, with a
best-fitting value of about 160km$, whereas the 1- and @lower limits ons, are
25h~1 kpc and~ 10h~—1 kpc, respectively.

Finally, Brainerd et al. studied the dependence of the tensignal(y;) on the

colour of their ‘background’ sample, by splitting it into ad and a blue half.
The lensing signal of the former is compatible with zero drsahles, while the
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Fig. 30. Contours of constanf in theV,-hs. parameter plane, wheké = v/20,.., ob-
tained from a comparison of the observed tangential alignirig) with the distribution
found in Monte-Carlo simulations. The solid contours rafrgen 0.8 (innermost) to 8 per
degree of freedom; the dotted curve displafs= 1 per degree of freedom. (Fig. 7 of
Brainerd et al.).

blue sample reveals a strong signal which decreases witllarggparation as ex-
pected. This result is in accordance with that discusseceat. $.5.3, where the
blue galaxies showed a stronger lensing signal as wellGatidig that their redshift
distribution extends to larger distances.

We have discussed the work of Brainerd et al. (1996) in sont&ldgnce it pro-
vided the first detection of galaxy-galaxy lensing, and siitds so far remains
the only one obtained from the ground. Also, their carefallgsis exemplifies the
difficulties in deriving a convincing result.

Griffiths et al. (1996)

analysed the images from thdubble Space Telescopdedium Deep Survey
(MDS) in terms of galaxy-galaxy lensing. The MDS is an imagsurvey, us-
ing parallel data obtained with the WFPC2 camera on-board. HBey iden-
tified 1600 ‘foreground’ (15< | < 22) and 14000 ‘background’ (22 | < 26)
galaxies. Owing to the spatial resolution of the HST, a mokpgical classifi-
cation of the foreground galaxies could be performed, andhlspnd elliptical
galaxies could separately be analysed. They considerechéla@ orientation an-
gle (¢) = /4+ 10 1(y)(1/]€¥|) as a statistical variable, and scaled the truncation
radius in their mass models in proportion to the half-lighdius. They found that
Oy = 220km sland Oy = 160km stare compatible with their shear data for
elliptical and spiral galaxies, respectively. For theimgde of elliptical foreground
galaxies, they claim that the truncation radius must be rtiane ten times the half-
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light radius to fit their data, and that a de Vaucouleurs mas8l@ is excluded.
Unfortunately, no significance levels are quoted.

A variant of the method for a quantitative analysis of galg&jaxy lensing was
developed by Schneider & Rix (1997). Instead of%analysis of(y;) in angular
separation bins, they suggested a maximume-likelihoodyarsalusing the individ-
ual galaxy images. In their Monte-Carlo approach, the gafmsitions (and mag-
nitudes) are kept fixed, and only the redshifts of the gataaie drawn from their
respective probability distributiop,(z; m), as described at the end of Sect. 8.2. The
resulting log-likelihood function

(= z|22+ zm[ +0y|}, (8.10)

wherep is the dispersion of intrinsic ellipticity distributionghe assumed to be a
Gaussian, can then be maximised with respect to the modaineters, e.ggy.
ands,. Extensive simulations demonstrated that this approabichautilises all
of the information provided by observations, yields an asbd estimate of these
model parameters. Later, Erben (1997) showed that thisinsnvalid even if the
lens galaxies have elliptical projected mass profiles.

This method was applied to the deep multi-colour imagingadaf the
Hubble Deep Field (HDF; Williams et al. 1996) by Hudson e{&898), after
Dell’Antonio & Tyson (1996) detected a galaxy-galaxy lengsignal in the HDF
on an angular scale gf 5”. The availability of data in four wavebands allows
an estimate of photometric redshifts, a method demonsdttatde quite reliable
by spectroscopy of HDF galaxies (e.g., Hogg et al. 1998). d¢murate redshift
estimates, and the depth of the HDF, compensates for thd Betdiof-view of

~ 5arcmirf. A similar study of the HDF data was carried out by the Caltgaiup
(see Blandford et al. 1998).

In order to avoid k-corrections, using the multi-colour roetric data to relate all
magnitudes to the rest-frame B-band, Hudson et al. coreidens galaxies with
redshiftz < 0.85 only, leaving 208 galaxies. Only such source-lens pairg/hich
the estimated redshifts differ by at least 0.5 were incluidetthe analysis, giving
about 10 foreground-background pairs. They adopted the same pseesation
for the lens population as described in Sect. 8.2, exceptlieadepth of the HDF
suggests that the fiducial luminosity should be allowed to depend on redshift,
L. O (1+ 2)%. Assuming no evolution{ = 0, and a Tully-Fisher index of /b =
0.35, they foundo,. = (1604 30)kms™. Various control tests were performed
to demonstrate the robustness of this result, and poteysa¢matic effects were
shown to be negligible.

As in the previous studies, halo sizes could not be signifigaonstrained. The
lensing signal is dominated by spiral galaxies at a redshift~ 0.6. Comparing
the Tully-Fisher relation at this redshift to the local teda, the lensing results
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indicate that intermediate-redshift galaxies are faittian local spirals by * 0.6
magnitudes in the B-band, at fixed circular velocity.

Hence, all results reported so far yield compatible valdes,@, but do not allow
upper bounds on the halo size to be set. The flatness of tHéndke surface in
thes,-direction shows that a measuremensofequires much larger samples than
used before. We can understand the insensitivitg.ton the published analyses
at least qualitatively. The shear caused by a galaxy at ardistof, say, 100kpc
is very small, of order 1%. This implies that the differenceshear caused by
galaxies with truncation radius of 20kpc asé- 100kpc is very small indeed. In
addition, there are typically other galaxies closer to the-bf-sight to background
galaxies which produce a larger shear, making it more difftouprobe the shear
of widely separated foreground galaxies. Hence, to probédto size, many more
foreground-background pairs must be considered. In anigithe angular scale
Bmax Within which pairs are considered needs to be larger thaangelar scale of
the truncation radius at typical redshifts of the galaxaes] on the other han@y,ax
should be much smaller than the size of the data field availai¢nce, to probe
large scales of the halo, wide-field imaging data are needed.

There is a related problem which needs to be understood ategrdetail. Since

galaxies are clustered, and probably (biased) tracers ahdarlying dark matter
distribution (e.g., most galaxies may live in groups), ih evident whether the
shear caused by a galaxy at a spatial separation of, saypt@&aused mainly by
the dark matter halo of the galaxy itself, or rather by thé&eaatter halo associated
with the group. Here, numerical simulations of the dark erathay indicate to

which degree these two effects can be separated, and otiseaVatrategies for

this need to be developed.

8.4 Galaxy-Galaxy Lensing in Galaxy Clusters

An interesting extension of the work described above ainteatnvestigation of

the dark-matter halo properties of galaxies within galaxgters. In the hierarchi-
cal model for structure formation, clusters grow by mergéiess massive haloes,
which by themselves formed by merging of even smaller subgires. Tidal forces

in clusters, possible ram-pressure stripping by the ialuater medium, and close
encounters during the formation process, may affect theesabf galaxies, most
of which presumably formed at an early epoch. Therefores, uiriclear at present
whether the halo properties of galaxies in clusters ardaina those of field galax-

ies.

Galaxy-galaxy lensing offers an exciting opportunity tolpe the dark galaxy
haloes in clusters. There are several differences betweeimtestigation of field
and of cluster galaxies. First, the number of massive gasaixi a cluster is fairly

183



small, so the statistics for a single cluster will be limit&tis can be compensated
by investigating several clusters simultaneously. Secthedmage distortion is de-
termined by the reduced shegr=y/(1—K). For field galaxies, where the shear
and the surface mass density is small, one cam sel, but this approximation
no longer holds for galaxies in clusters, where the clustevidesk substantially
above zero. This implies that one needs to know the massaditstm of the cluster
before the statistical properties of the massive galaxgdsatan be investigated.
On the other hand, it magnifies the lensing signal from thexges$, so that fewer
cluster galaxies are needed to derive significant lensisgltsecompared to field
galaxies of similar mass. Third, most cluster galaxies &reaoy type, and thus
their o, . — and consequently, their lensing effect — is expected tatget than for
typical field galaxies.

In fact, the lensing effect of individual cluster galaxiesnceven be seen from
strong lensing. Modelling clusters with many strong-legsiconstraints (e.g.,
several arcs, multiple images of background galaxies),irtherporation of in-
dividual cluster galaxies turns out to be necessary (e.@ssklaetal. 1992;
Wallington et al. 1995; Kneib et al. 1996). However, the t@sg constraints are
relevant only for a few cluster galaxies which happen to leselto the strong-
lensing features, and mainly concern the mass of these igalaxithin ~
10h~ kpc.

The theory of galaxy-galaxy lensing in clusters was dewatopin
Natarajan & Kneib (1997) and Geiger & Schneider (1998), agisseveral dif-
ferent approaches. The simplest possibility is relatedhéceiperture mass method
discussed in Sect. 5.3.1. Measuring the tangential sheairvan annulus around
each cluster galaxy, perhaps including a weight functi@mmts a measurement
of the aperture mass, and thus to constrain the parametarsiass model for the
galaxies. Provided the scale of the aperture is sufficiesttigll, the tidal field of
the cluster averages out to first order, and the local infle@riche cluster occurs
through the local surface mass densityln particular, the scale of the aperture
should be small enough in order to exclude neighbouringefgalaxies.

A more sophisticated analysis starts from a mass model otlirger, as ob-
tained by one of the reconstruction techniques discuss&em. 5, or by a pa-
rameterised mass model constructed from strong-lensingti@nts. Then, pa-
rameterised galaxy models are added, again with a preseripimilar to that of
Sect. 8.2, and simultaneously the mass model of the clustewlitiplied by the
relative mass fraction in the smoothly distributed clustass (compared to the to-
tal mass). In other words, the mass added by inserting galamio the cluster is
subtracted from the smooth density profile. From the obskgataxy ellipticities,
a likelihood function can be defined and maximised with respethe parameters
(Ovx, Si) of the galaxy model.

Natarajan et al. (1998)
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applied this method to WFPC2 images of the cluster AC 144=0.31). They
concluded that most of the mass of a fidudialcluster galaxy is contained in a
radius of~ 15kpc, indicating that the halo size of galaxies in this ®@ugs smaller
than that of field galaxies.

Once the mass contained in the cluster galaxies is a sigmificection of the to-
tal mass of the cluster, this method was found to break dowmgive strongly
biased results. Geiger & Schneider (1999) modified this @ggr by performing
a maximume-likelihood cluster mass reconstruction for epatameter set of the
cluster galaxies, allowing the determination of the bestesentation of the global
underlying cluster component that is consistent with thesence of the cluster
galaxies and the observed image ellipticities of backgdayedaxies.

This method was then applied to the WFPC-2 image of the ¢l@0939+4713,
already described in Sect. 5.4. The entropy-regularisedmam-likelihood mass
reconstruction of the cluster is very similar to the one shawFig. 14 (page 104),
except that the cluster centre is much better resolved, avipeak very close to
the observed strong lensing features (Trager et al. 199u3t€? galaxies were se-
lected according to their magnitudes, and divided by mdaayointo two sub-
samples, viz. early-type galaxies and spirals. In Fig. 31shvew the likelihood
contours in thes,—oy. plane, for both subsets of cluster galaxies. Whereas there i
no statistically significant detection of lensing by spgalaxies, the lensing effect
of early-type galaxies is clearly detected. Although no finpper limit of the halo
sizes, can be derived from this analysis owing to the small angutdd Bf the im-
age (the maximum of the likelihood function occurs &t-8kpc, and a 1 upper
limit would be~ 50h~1kpc), the contours ‘close’ at smaller valuessptompared
to the results obtained from field galaxies. By statisticatimbining several cluster
images, a significant upper limit on the halo size can be drpec

It should be noted that the results presented above stilhooeome uncertainties,
most notably the unknown redshift distribution of the backmd galaxies and the
mass-sheet degeneracy, which becomes particularly sewarg to the small field-
of-view of WFPC2. Changing the assumed redshift distrdouéind the scaling pa-
rametem in (5.9, page 91) shifts the likelihood contours in Fig. 3longlown, i.e.,
the determination ody, .. is affected. As for galaxy-galaxy lensing of field galaxies,
the accuracy can be increased by using photometric redsdtifhates. Similarly,
the allowed range of the mass-sheet transformation canristramed by combin-
ing these small-scale images with larger scale groundebasages, or, if possible,
by using magnification information to break the degener@eytainly, these im-
provements of the method will be a field of active researchénmmediate future.
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Fig. 31. Results of applying the entropy-regularised maxmHikelihood method for
galaxy-galaxy lensing to the WFPC2 image of the cluster 8%21713. The upper and
lower panels correspond to early-type and spiral galaxespectively. The solid lines are
confidence contours at 68.3%, 95.4% and 99.7%, and the crags the maximum of the
likelihood function. Dashed lines correspond to galaxy eiedvith equal aperture mass
M.(< 8h~tkpc) = (0.1,0.5,1.0) x 10'*h~1 M. Similarly, the dotted lines connect mod-
els of constant total mass for &n-galaxy, ofM, = (0.1,0.5,1.0,5.0,10) x 10"*h=1 M,
which corresponds to a mass fraction contained in galaxi€®.©5,0.75,1.5,7.5,15)%,
respectively (from Geiger & Schneider 1999).
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9 The Impact of Weak Gravitational Light Deflection on the Microwave
Background Radiation

9.1 Introduction

The Cosmic Microwave Background originated in the hot phafter the Big
Bang, when photons were created in thermal equilibrium widtctromagneti-
cally interacting particles. While the Universe expandad aooled, the photons
remained in thermal equilibrium until the temperature waficently low for
electrons to combine with the newly formed nuclei of mainjydifogen and he-
lium. While the formation of atoms proceeded, the photorodpled from the
matter due to the rapidly decreasing abundance of charggdmyspproximately
300,000 years after the Big Bang, corresponding to a redsh#tol, 000, the uni-
verse became transparent for the radiation, which retaimedlanck spectrum it
had acquired while it was in thermal equilibrium, and the penature decreased
in proportion with the scale factor as the Universe expanddils relic radia-
tion, cooled toT = 2.73K, forms the Cosmic Microwave Background (hereafter
CMB). Penzias & Wilson (1965) detected it as an “excess a@d@amperature”,
and Fixsen et al. (1996) used the COBE-FIRAS instrument tvepiits perfect
black-body spectrum.

Had the Universe been ideally homogeneous and isotromcCWB would have
the intensity of black-body radiation atZB3K in all directions on the sky, and would
thus be featureless. Density perturbations in the earlyétse, however, imprinted
their signature on the CMB through various mechanisms, kvhie thoroughly
summarised and discussed in Hu (1995). Photons in poteveitd at the time of
decoupling had to climb out, thus losing energy and becorsligtly cooler than
the average CMB. This effect, now called tBachs-Wolfe effeatas originally
studied by Sachs & Wolfe (1967), who found that the tempeeatumisotropies in
the CMB trace the potential fluctuations on the ‘surface’ @fa@upling. CMB fluc-
tuations were first detected by the COBE-DMR experiment (@rebal. 1992) and
subsequently confirmed by numerous ground-based and bdllome experiments
(see Smoot 1997 for a review).

The interplay between gravity and radiation pressure itupeations of the cos-
mic ‘fluid’ before recombination gave rise to another impotteffect. Radiation
pressure is only effective in perturbations smaller thanhbrizon. Upon entering
the horizon, radiation pressure provides a restoring fagaanst gravity, leading
to acoustic oscillations in the tightly coupled fluid of pbos and charged parti-
cles, which cease only when radiation pressure drops wade&tion decouples.
Therefore, for each physical perturbation scale, the dmoascillations set in at
the same time, i.e. when the horizon size becomes equal the'lpion size, and
they end at the same time, i.e. when radiation decouplesxéd fphysical scale,
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these oscillations are therefore coherent, and they sh@s djstinct peaks (the so-
calledDoppler peakkand troughs in the power spectrum of the CMB fluctuations.
Perturbations large enough to enter the horizon after gdicmunever experience
these oscillations. Going through the CMB power spectruomftarge to small
scales, there should therefore be a ‘first’ Doppler peak atation determined by
the horizon scale at the time of decoupling.

A third important effect sets in on the smallest scales. leagity perturbation is
small enough, radiation pressure can blow it apart becdsseif-gravity is too
weak. This effect is comparable to the Jeans’ criterion li@r minimal mass re-
quired for a pressurised perturbation to collapse. It an®tma suppression of
small-scale fluctuations and is call&lk dampingleading to an exponential de-
cline at the small-scale end of the CMB fluctuation power spet.

Other effects arise between the ‘surface’ of decoupling &mel observer.
Rees & Sciama (1968) pointed out that large non-linear tepsirturbations be-
tween the last-scattering surface and us can lead to adisfifiect if those fluc-
tuations change while the photons traverse them. Fallitaytire potential wells,
they experience a stronger blue-shift than climbing ouhefit because expansion
makes the wells shallower in the meantime, thus giving asa het blue-shift of
photons. Later, this effect was re-examined in the framkwbthe ‘Swiss-Cheese’
(Dyer 1976) and ‘vacuole’ (Nottale 1984) models of denséytprbations in an ex-
panding background space-time. The masses of such pdrturbhave to be very
large for this effect to become larger than the Sunyaewdgglth effecE] due to
the hot gas contained in them; Dyer (1976) estimated thasesaseyond 10M,
would be necessary, a value four to five orders of magnitudgeiahan that of
typical galaxy clusters.

The gravitational lens effect of galaxy clusters movinghéerse to the line-of-
sight was investigated by Birkinshaw & Gull (1983) who fouhdt a cluster with
~ 10®M,, and a transverse velocity e 6000kms?* should change the CMB
temperature by 10-4K. Later, Gurvits & Mitrofanov (1986) re-investigated this
effect and found it to be about an order of magnitude smaller.

Cosmic strings as another class of rapidly moving graateti lenses were studied
by Kaiser & Stebbins (1984) who discussed that they woule gise to step-like
features in the CMB temperature pattern.

16 The (thermal) Sunyaev-Zel'dovich effect is due to Compipseattering of CMB pho-
tons by thermal electrons in the hot plasma in galaxy clast®ince the temperature of
the electrons is much higher than that of the photons, CMBautsoare effectively re-
distributed towards higher energies. At frequencies ldWwan~ 272 GHz, the CMB inten-
sity is thus decreased towards galaxy clusters; in effeey, tast shadows on the surface of
the CMB.
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9.2 Weak Lensing of the CMB

The introduction shows that the CMB is expected to displayinict features in
a hierarchical model of structure formation. The CMB powggcrum should be
featureless on large scales, then exhibit pronounced Bopphks at scales smaller
than the horizon at the time of decoupling, and an exponledéierease due to
Silk damping at the small-scale end. We now turn to invegtiganether and how
gravitational lensing by large-scale structures can #hiese features.

The literature on the subject is rich (see Blanchard & Saterel987,
Cayon et al. 1993b, Cayon et al. 1993a, Cole & Efstathid?919
Fukugita et al. 1992, Kashlinsky 1988, Linder 1988, Lind@®Qa,
Linder 1990b, Martinez-Gonzalez et al. 1990, Sasaki 1989omita 1989,
Watanabe & Tomita 1991), but different authors have soneddinarrived at
contradicting conclusions. Perhaps the most elegant watudf/ing weak lensing
of the CMB is the power-spectrum approach, which was mosnticadvocated
by Seljak (1994, 1996).

We should like to start our discussion by clearly stating tagis concerning the ef-
fect of lensing on fluctuations in the Cosmic Microwave Backmd which clarify
and resolve several apparently contradictory discussaodsresults in the litera-
ture.

(1) If the CMB was completely isotropic, gravitational lensiwguld have no
effect whatsoever because it conserves surface brighinehss case, lensing
would only magnify certain patches in the sky and de-magathers, but
since it would not alter the surface brightness in the magphir de-magnified
patches, the temperature remained unaffected. An analoglgdwe observers
facing an infinitely extended homogeneously coloured wakjng some parts
of it enlarged and others shrunk. Regardless of the magdficahey would
see the same colour everywhere, and so they would noticengathspite the
magnification.

(2) Itis not the absolute value of the light deflection due toilegsvhich matters,
but the relative deflection of neighbouring light raysagine a model uni-
verse in which all light rays are isotropically deflected hg same arbitrary
amount. The pattern of CMB anisotropies seen by an obsemeldthen be
coherently shifted relative to the intrinsic pattern, berhain unchanged oth-
erwise. It is thus merely thdispersionof deflection angles what is relevant
for the impact of lensing on the observed CMB fluctuationgratt
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9.3 CMB Temperature Fluctuations

In the absence of any lensing effects, we observe at the si«'yicpoé the intrin-

— —

sic CMB temperatur& (8). There are fluctuation&T (0) in the CMB temperature
about its average valugd') = 2.73K. We abbreviate the relative temperature fluc-
tuations by

= =1(8) (9.1)

in the following. They can statistically be described by ithangular auto-
correlation function

&r(9) = (1®) 160 +9)) . ©.2)

with the average extending over all positidhsDue to statistical isotropyT (¢)
depends neither on the positiémor on the direction o, but only on the absolute
separationp of the correlated points.

Commonly, CMB temperature fluctuations are also describeerims of the coef-
ficientsa, of an expansion into spherical harmonics,

o |
T(ev(p) = Z Z aImYIm(e7(p)7 (93)

I=0m=-—I

and the averaged expansion coefficients constitute thdamguwer spectrung;
of the CMB fluctuations,

Ci = (laml®) - (9.4)

It can then be shown that the correlation functiatie) is related to the power-
spectrum coefficientS; through

Tt
G = | dgsin(@)R (cosp) &r(9) (9.5)
with the Legendre function8 (cosyp).
9.4 Auto-Correlation Function of the Gravitationally LeatsCMB
9.4.1 Definitions
If there are any density inhomogeneities along the linsight towards the last-

scattering surface at~ 1,000 (the ‘source plane’ of the CMB), a light ray starting
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into direction® at the observer will intercept the last-scattering surfaicthe de-
flected position

B=0—ad(0), (9.6)

whered () is the (position-dependent) deflection angle experiengeth® light
ray. We will therefore observe, at positiBnthe temperature of the CMB at position

B, or

TR =T'(0)=T[6—d(0)]. (9.7)

The intrinsic temperature autocorrelation function isstbthanged by lensing to

— —

0—a(®)]T[(6+¢) —a

—~
[«n))

£r(9) = (1l +9)) - (9.8)
For simplicity of notation, we further abbreviaié8) = & anddi (6 + @) = d’ in the
following.

9.4.2 Evaluation

In this section we evaluate the modified correlation funct{®.8) and quantify
the lensing effects. For this purpose, it is convenient toodgose the relative
temperature fluctuation(8) into Fourier modes,

.
1(6) = /%f@ exp(il8) . 9.9)

The expansion of(8) into Fourier modes rather than into spherical harmonics is
permissible because we do not expect any weak-lensingtefbeclarge angular
scales, so that we can consid’e(lé) on a plane locally tangential to the sky rather
than on a sphere.

We insert the Fourier decomposition (9.9) into the expoes$or the correlation
function (9.8) and perform the average. We need to averageeansembles and
over the random angle between the wave velctdithe temperature modes and the
angular separatiop of the correlated points. The ensemble average corresponds
to averaging over realisations of the CMB temperature fatobas in a sample of
universes or, since we focus on small scales, over a largdeuai disconnected
regions on the sky. This average introduces the CMB fluainagpectrunPy (1),
which is defined by

~T)Pr(l). (9.10)
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Averaging over the angle betwekand the position anglegives rise to the zeroth-
order Bessel function of the first kinch(X). These manipulations leave eq. (9.8) in
the form

(@)= [ Pril) (exp[iT(@-)] ) %o (9.11)

The average over the exponential in eq. (9.11) remains telfermed. To do so,
we first expand the exponential into a power series,

<exp(ire'>a)> - i mr?ﬂ , (9.12)
DA

wheredd = d — d’ is the deflection-angle difference between neighbourigiat i
rays with initial angular separatiam We now assume that the deflection angles are
Gaussian random fields. This is reasonable because (i) tiefl@ngles are due to
Gaussian random fluctuations in the density-contrast feeldrag as the fluctuations
evolve linearly, and (ii) the assumption of linear evolatiwolds well for redshifts
where most of the deflection towards the last-scatterinfpasemccurs. Of course,
this makes use of the commonly held view that the initial dgrfkictuations are

of Gaussian nature. Under this condition, the odd momereq.i(9.12) all vanish.

It can then be shown that

(expliTan) ) = exp(—%lzoz((p)) (9.13)
holds exactly, where?(g) is the deflection-angle dispersion,

o?(¢) = (G —a")?) . (9.14)

Even if the assumption thadi is a Gaussian random field fails, eq. (9.13) still holds
approximately. To see this, we note that the CMB power spattalls sharply on
scaled > I =~ (10 Q(l)/z)‘l. The scald. is set by the width of the last-scattering
surface at redshift ~ 1,000. Smaller-scale fluctuations are efficiently damped by
acoustic oscillations of the coupled photon-baryon fluigi®al angular scalds *

in the CMB fluctuations are therefore considerably largantthe difference be-
tween gravitational deflection angles of neighbouring régs so thaﬂﬁ(a —a’)is

a small number. Hence, ignoring fourth-order termiin, the remaining exponen-
tial in (9.11) can bepproximatedy

<exp(i r66)> ~l1— %Izoz(cp) ~ exp[—%lz(fz(@

(9.15)

Therefore, the temperature auto-correlation functionifrextiby gravitational lens-
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ing can safely be written,

@ |dl

0= [ Pl o] 51%0%0) blle). (9.16)

This equation shows that the intrinsic temperature-flucdnagpower spectrum is
convolved with a Gaussian function in wave numbetth dispersioro—1(@). The
effect of lensing on the CMB temperature fluctuations is tusnooth fluctuations
on angular scales of order or smaller thwip).

9.4.3 Alternative Representations

Equation (9.16) relates the unlensed CMB power spectruiingdensed tempera-
ture auto-correlation function. Noting thig(l) is the Fourier transform dft (@),

— [ dEr(@) expl~iT9) = 2n [ gdgET(e) bllg) . 9.17)

we can substitute one for the other. Isotropy permitted petiorm the integration
over the (random) angle betwekandgin the last step of (9.17). Inserting (9.17)
into (9.16) leads to

- [agEr@)K(ed). (9.18)

The kerneK (@, @) is given by

/IdIJoI(p) (ch)exp[ ~120%(q)

N ¢+ og
=g Xp[ 202(@} 0| 52(g)

where b(x) is the modified zeroth-order Bessel function. Equation@8.8) of
Gradshteyn & Ryzhik (1994) was used in the last step. As vélishown below,
o(@) < 1, so that the argument of Is generally a very large number. Noting that
lo(X) &~ (2rx) ~1/2exp(x) for x — oo, we can write eq. (9.16) in the form

(w—d)z}
202(¢@) | -

Like eq. (9.16), this expression shows that lensing smaatie intrinsic temper-
ature auto-correlation functiofr (@) on angular scales ap~ o(@) and smaller.
Note in particular that, ib6(@) — 0, the exponential in (9.20) tends towards a Dirac
delta distribution,

1 (e—9)*] o
Ilrrl0 N )exp{ 207(0) } =3(p—¢), (9.21)

: (9.19)

(9.20)

Er(o) ~ [ 06 Erd) exo| -

(2rp) 1/20
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so that the lensed and unlensed temperature auto-caorelatnctions agree,

Er(9) = &7(0).

Likewise, one can Fourier back-transform eq. (9.16) to iobdarelation between
the lensed and the un-lensed CMB power spectra. To evahmatesulting integral,
it is convenient to assume(@) = €@, with € being either a constant or a slowly
varying function ofg. This assumption will be justified below. One then finds

PL(Y) = /Oms%'lpru) exp(—%) lo (%) . (9.22)

Fore <« 1, this expression can be simplified to

I di (|_|/>2
Pr1 = | ﬁpr(l)exp{— — } . (9.23)

9.5 Deflection-Angle Variance

9.5.1 Auto-Correlation Function of Deflection Angles

We proceed by evaluating the dispersiof(g) of the deflection angles. This is
conveniently derived from the deflection-angle auto-datren function,

&a(@) = (aad’) . (9.24)

Note that the correlation function dfis the sum of the correlation functions of the
components ofi,

& = (@) = (010a%) + (0205) = &g, +&q, - (9.25)

In terms of the autocorrelation function, the dispersifyp) can be written

o?(@) = ([d—0]?) = 2[&(0) ~&4(9)] - (9.26)

The deflection angle is given by eq. (6.11) on page 121 in teifrttse Newtonian
potential® of the density fluctuationd along the line-of-sight. For lensing of the
CMB, the line-of-sight integration extends along the (utymdoed) light ray from
the observer av = 0 to the last-scattering surfaceviz~ 1000); see the derivation
in Sect. 6.2 leading to eq. (6.11, page 121).

We introduced the effective convergence in (6.14, page a22glf the divergence
of the deflection angle. In Fourier space, this equation eamerted to yield the

194



Fourier transform of the deflection angle,

I 9.27
e (9.27)
The deflection-angle power spectrum can therefore be writse
4
Pa(®) = 13 Pl - (9.28)

The deflection-angle autocorrelation function is obtairiesm eq. (9.28) via
Fourier transformation. The result is

21
Ea((p):/(sl) Py (1) exp(—il@) = 2n/ 1dP() 7 (9.29)

similar to the form (6.58, page 144), but here the filter fiorctis no longer a
function of theproduct kp only, but ofl andg separately,

|(P (szOHP

F(,9 = (9.30)

We plot@2F (1, ) in Fig. 32. For fixedp, the filter function suppresses small-scale
fluctuations, and it tends towarésl, @) — (1d)~2for | — 0.

InsertingPx (1) into (9.29), we find the explicit expression for the defleatangle
auto-correlation function,

tal@ = 282 [ wweww)a 2w
X A Zi:(Pg,(kV\/)Jo[ kK(W)kq) . (9.31)

Despite the obvious similarity between this result and thegmification auto-
correlation function (6.34 on page 130), it is worth notimgptimportant differ-
ences. First, the weighting of the integrand along the difisight differs by a fac-
tor of f%(V\/ ) because we integrate deflection-angle components rathartkte
convergence, i.e. first rather than second-order dergsti the potentia®. Con-
sequently, structures near the observer are weighted moregly than for mag-
nification or shear effects. Secondly, the wave-numbegnatés weighted bk 1
rather thark, giving most weight to the largest-scale structures. Sthe& evolu-
tion remains linear up to the present, it is expected thatlimaar density evolution
is much less important for lensing of the CMB than it is for mis magnification
or shear.
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Fig. 32. The filter functiorF (I, @) as defined in eq. (9.30), divided lny, is shown as a
function oflg. Compare Fig. 22 on page 141. For fixgdthe filter function emphasises
large-scale projected density perturbations (i.e. atrestwith small).

9.5.2 Typical Angular Scale

A typical angular scalgy for the coherence of gravitational light deflection can be

obtained as

1 (1@ \]°
%E[zam)( o Loﬂ | 952

As eq. (9.31) shows, the deflection-angle auto-correldtimction depends op
only through the argument of the Bessel functig(xj. For small arguments, the
second-order derivative of thg(X) is approximatelyg’(x) ~ — Jy(x) /2. Differen-

tiating &5 (@) twice with respect tep, and comparing the result to the expression for

the magnification auto-correlation functigp(g) in eq. (6.34, page 130), we find

0% 1
2~ Sh, 933)
and thus
¢a(0)
~2 . 9.34
%~ 2%, 0) -39
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We shall estimatey later after giving a simple expression &(¢). The angleg,
gives an estimate of the scale over which gravitationat legtilection is coherent.

9.5.3 Special Cases and Qualitative Expectations

We mentioned before that it is less critical here to assumeali density evolu-
tion because large-scale density perturbations dominateiexpression fdig (@).
Specialising further to an Einstein-de Sitter universehstw ~ 2c/Ho, eq. (9.31)
simplifies to

dk

(0)
S PO Dwyk), (9:35)

OHZ
£a(0) = 0w [ dy(1-yy?
with wy=w.

Adopting the model spectra for HDM and CDM specified in eq3§6page 131)
and expandingg (@) in a power series i, we find, to second order ip,

()= A % 1—f(wko)2} for HDM 036
al@) =AW :
3\8/‘5’ [1—ﬁ 2} for CDM

Combining these expressions with egs. (9.34) and (6.3% pad), we find for the
deflection-angle coherence scelg

@y~ 3(wko) L. (9.37)

It is intuitively clear thatgy should be determined biwky) 2. Sincek,* is the
typical length scale of light-deflecting density perturbas, it subtends an angle
(wko)~ at distancew. Thus the coherence angle of light deflection is given by
the angle under which the deflecting density perturbatiqgucifly appears. The
source distance in the case of the CMB is the comoving distancezte 1,000.

In the Einstein-de Sitter case, = 2 in units of the Hubble length. Hence, with
kal ~ 12(Qoh?) Mpc [cf. eq. (2.49), page 25], we hawég ~ 500. Therefore, the
angular scale of the deflection-angle auto-correlatior aer

G 6x103~20. (9.38)
To lowest order inp, the deflection-angle dispersion (9.26) reads
0%(¢) O (who)* ¢ . (9.39)

The dispersiow () is plotted in Fig. 33 for the four cosmological models spedifi
in Tab. 1 on page 117 for linear and non-linear evolution efdansity fluctuations.

197



The behaviour ob (@) expressed in eq. (9.39) can qualitatively be understood de-
scribing the change in the transverse separation betwglehdaths as a random
walk. Consider two light paths separated by an amgéeich that their comoving
transverse separation at distamcis wg. Let k! be the typical scale of a potential
fluctuation®. We can then distinguish two different cases depending ogthven
wois larger or smaller thaki 2. If wg > k=1, the transverse separation between the
light paths is much larger than the typical potential flutitwas, and their deflection
will be incoherent. It will be coherent in the opposite case,if wp < k1.

When the light paths are coherently scattered passing atmdtuctuation, their
angular separation changes &g ~ w0, (2k—10, ®/c?), which is the change
in the deflection angle acrossp. If we replace the gradients by the inverse of the
typical scalek, we havedg; ~ 2wek®d/c?. Along a distancav, there areN ~ kw
such potential fluctuations, so that the total change inlangeparation is expected
to bedp~ N/25q;.

In case of incoherent scattering, the total deflection ohé@tt path is expected
to bedp~ N2 (2k-10, &/c?) ~ N/22d/c?, independent of. Therefore,

~ 2 3 -1
o2(g) ~ NO@? ~ (2 /c?)? (wk)3 ¢ for @< (Wk) | (9.40)

N(2d/c?)? ~ (2d/c?)? (wk) for @> (wk)~t
This illustrates that the dependenceas{@) on (wk)3¢? for small @ is merely a
consequence of the random coherent scattering of neigimgolight rays at po-
tential fluctuations. For large, o(¢@) becomes constant, and sep)@* — 0. As
Fig. 33 shows, the dispersiar{@) increases linearly witkp for smallg and flattens
gradually forg > @y ~ (10— 20)" as expected, becaugg divides coherent from
incoherent scattering.

9.5.4 Numerical Results

The previous results were obtained by specialising to tiegalution of the den-
sity contrast in an Einstein-de Sitter universe. For aabjtcosmological parame-
ters, the deflection-angle dispersion has to be computecncaily. We show in
Fig. 33 examples foo (@) numerically calculated for the four cosmological mod-
els detailed in Tab. 1 on page 117. Two curves are plotteddoh enodel. The
somewhat steeper curves were obtained for linear, thesotbenon-linear density
evolution.

Figure 33 shows that typical values for the deflection-anvgleance in cluster-
normalised model universes are of ordeK) ~ (0.03— 0.1)' on angular scales
betweenp= (1— 10)". While the results for different cosmological parametees a
fairly close for cluster-normalised CDMg(¢) is larger by about a factor of two
for CDM in an Einstein-de Sitter model normalisedag = 1. For the other cos-
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Fig. 33. The deflection-angle variancgg) is shown for the four cosmological models
specified in Tab. 1 on page 117. Two curves are shown for eadelmone for linear
and one for non-linear evolution of the density fluctuatidBslid curves: SCDM; dotted
curve:ocCDM,; short-dashed curves: OCDM; and long-dashed cu&k€HM. The some-
what steeper curves are for linear density evolution. Galyethe deflection-angle variance
increases linearly witkp for small @, and flattens gradually fap > 20. At @~ 10, o(o)
reachesv 0.1/, or ~ 0.01¢, for the cluster-normalised model universes (all excgpbDM;
dotted curves). As expected, the effect of non-linear dgmsiolution is fairly moderate,
and most pronounced on small angular scages,10.

mological models, the differences between different obmior the normalisation
are less pronounced. The curves shown in Fig. 33 confirm thkgative behaviour
estimated in the previous section: The variao¢e) increases approximately lin-
early with @ as long asp is small, and it gradually flattens off at angular scales
P> @y~ 20.

In earlier chapters, we saw that non-linear density evatulias a large impact on
weak gravitational lensing effects, e.g. on the magnificatiuto-correlation func-
tion &,,(@). As mentioned before, this is not the case for the defleciiugle auto-
correlation functiorfg (¢) and the variance (@) derived from it, because the filter
functionF (1, @) relevant here suppresses small-scale density fluctudtiomgich
the effect of non-linear evolution are strongest. Theefoon-linear evolution is
expected to have less impact here. Only on small angulagsgdhe filter function
extends into the sufficiently non-linear regime. The curveBig. 33 confirm and
quantify this expectation. Only on scales@f 10/, the non-linear evolution does
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have some effect. Obviously, non-linear evolution incesathe deflection-angle
variance in a manner quite independent of cosmology. Atlangcalesp~ 1/, the
increase amounts to roughly a factor of two above the linesults.

9.6 Change of CMB Temperature Fluctuations

9.6.1 Summary of Previous Results

We are now ready to justify assumptions and approximatioadarearlier, and to
guantify the impact of weak gravitational lensing on the @msMicrowave Back-
ground. The main assumptions were that (i) the deflectigleavariances(g) is
small, and (ii)o(@) =~ €@, with € a (small) constant or a function slowly varying
with @. The results obtained in the previous section show ti{a) is typically
about two orders of magnitude smaller thigreonfirminge < 1. Likewise, Fig. 33
shows that the assumptiarig) O @is valid on angular scales smaller than the co-
herence scale for the deflectiang @y ~ 20'. As we have seen, this proportionality
is a mere consequence of random coherent scattering ofbmighg light rays

in the fluctuating potential field. For angles larger thgno(¢) gradually levels
off to become constant, so that the ratio betweép) and@ tends to zero while
increases further beyor@. We can thus broadly summarise the numerical results
on the deflection-angle variance by

0.01p for @<20
o() ~ { (9.41)

0.7  for (p>>20’7

which is valid for cluster-normalised CDM quite indepentdehthe cosmological
model; in particularg(g) < 1’ ~ 3 x 10~*radians for alkp.

9.6.2 Simplifications

Accordingly, the argument of the exponential in eq. (9.5 truly small number.
Even for largd ~ 103, 1%0%(¢) < 1. We can thus safely expand the exponential into
a power series, keeping only the lowest-order terms. Ther(9el6) simplifies to

o |3
(@)= &r(0) - 0%@) [ o Prll) (1) (9.42)
0 TT

where we have used that the auto-correlation funciig(p) is the Fourier trans-
form of the power spectrun®r(l). Employing again the approximate relation
Jo” (x) &~ — J(x) /2 which holds for smalk, we notice that

© |34 _ 9%r(g)
e P Bllg) = —=2 o= (9.43)

0
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We can introduce a typical angular scaglefor the CMB temperature fluctuations
in the same manner as for light deflection in eq. (9.32). Wendef by

_ 1 0%1(9)
2 _
=— , 9.44
60 0 o 049
so that, up to second order@eq. (9.42) can be approximated as
2
o
gr(0) ~&r(0) - 2P gr(0) (9.45)

03

We saw earlier that (@) ~ €@ for @ < @. Equation (9.45) can then further be
simplified to read

&1 (@) ~ &r(9) —€%&7(0) % : (9.46)

In analogy to eq. (9.26), we can write the mean-square teatyrerfluctuations of
the CMB between two beams separated by an apgke

o3(9) = ([1(8) —1(B+))2) =2 [£(0) ~ &r(9)] - (9.47)
Weak gravitational lensing changes this relative varidonce
of =2[&7(0) — & (9)] - (9.48)
Using eg. (9.46), we see that the relative varianéedseasedoy the amount
A0%(9) = 0F(9) — 0F(9) ~ €2&7(0) g : (9.49)
(9

Now, the auto-correlation function at zero I&g(0), is the temperature-fluctuation
varianceg%. Hence, we have for thenschange in the temperature variation

(0% (9)] Y2 _ SOT% . (9.50)

Weak gravitational lensing thus changes the CMB tempezdluctuations only by
a very small amount, of order~ 10~2 for g~ .

9.6.3 The Lensed CMB Power Spectrum

However, we saw in eq. (9.23) that the gravitationally lehG& B power spectrum

is smoothed compared to the intrinsic power spectrum. Modemn angular scale
¢ are mixed with modes on angular scatges o(@), i.e. the relative broadening
o@/@ is of order 2(¢) /. For @ < @g ~ 20, this relative broadening is of order

201



2e ~ 2 x 1072, while it becomes negligible for substantially larger ssabecause
o(@) becomes constant. This effect is illustrated in Fig. 34, whee show the
unlensed and lensed CMB power spectra for CDM in an EingteiSitter universe.

unlensed

~
I

I(1+1)C, x 10

N
I

Fig. 34. The CMB power spectrum coefficiets+ 1)C; are shown as a function bfThe
solid line displays the intrinsic power spectrum, the dibtire the lensed power spectrum
for an Einstein-de Sitter universe filled with cold dark reatEvidently, lensing smoothes
the spectrum at small angular scales (ld)gevhile it has no visible effect on larger scales.
The curves were produced with th®¥Bfast code, see Zaldarriaga & Seljak (1998a).

The figure clearly shows that lensing smoothes the CMB powectsum on
small angular scales (largg, while it leaves large angular scales unaffected.
Lensing effects become visible B 500, corresponding to an angular scale of
¢ < (/500 rad ~ 20, corresponding to the scale where coherent gravitational
light deflection sets in. An important effect of lensing ieseat the higH-tail of the
power spectra, where the lensed power spectrum falls sgsitsatly above the un-
lensed one (Metcalf & Silk 1997). This happens because thes€ian convolution
kernel in eq. (9.23) becomes very broad for very ldrgso that the lensed power
spectrum at’ can be substantially increased by intrinsic power from ificantly
smallerl. In other words, lensing mixes power from larger angulatescato the
otherwise feature-less damping tailRf(1).
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9.7 Discussion

Several different approximations entered the precedinyateons. Firstly, the
deflection-angle variance(@) was generally assumed to be small, and for some
expressions to be proportional gowvith a small constant of proportionaligy The
numerical results showed that the first assumption is vety sa¢isfied, and the
second assumption is valid fgrs @, the latter being the coherence scale of grav-
itational light deflection.

We further assumed the deflection-angle field to be a Gausaratom field, the
justification being that the deflecting matter distributismlso a Gaussian random
field. While this fails to be exactly true at late stages of ¢bhemic evolution, we
have seen that the resulting expression can also be obtainexdo (@) is small
andd is not a Gaussian random field; hence, in practice this assoimis not a
limitation of validity.

A final approximation consists in the Born approximationisTséhould also be a
reasonable assumption at least in the case considerednieEne we focus osta-
tistical properties of light propagation. Even if the light rays webbk bent consid-
erably, the statistical properties of the potential gratiégdong their true trajectories
are the same as along the approximated unperturbed rays.

Having found all the assumptions made well justifiable, we canclude that the
random walk of light rays towards the surface of recomborateads to smoothing
of small-scale features in the CMB, while large-scale fesguemain unaffected.
The border line between small and large angular scalesesrdited by the angular
coherence scale of gravitational light deflection by lasgale matter distributions,
which we found to be of ordegy ~ 20, corresponding tdy = 2T[(p§1 ~ 1,000.
For the smallest angular scales, well into the damping faihe intrinsic CMB
power spectrum, this smoothing leads to a substantialstetalition of power,
which causes the lensed CMB power spectrum to fall systeaiBtiabove the
unlensed one dt> 2000, org < 2r ! ~ 10. Future space-bound CMB obser-
vations, e.g. by the Planck Surveyor satellite, will ackhiengular resolutions of
order> 5, so that the lensed regime of the CMB power spectrum will b age
cessible. Highly accurate analyses of the data of such omssvill therefore need
to take lensing effects by large-scale structures into@uco

One of the foremost goals of CMB observations is to derivemmegical param-
eters from the angular CMB power spectr@m Unfortunately, there exists a pa-
rameter degeneracy in the sense that for any given set ofatogioal parame-
ters fitting a given CMB spectrum, a whole family of cosmot@jimodels can
be found that will fit the spectrum (almost) equally well (@aifriaga et al. 1997).
Metcalf & Silk (1998) showed that the rise in the dampind-ganplitude due to
gravitational lensing of the CMB can be used to break thisdegacy once CMB
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observations with sufficiently high angular resolutiondiee available.

We discussed in Sect. 4.2 how shapes of galaxy images carabdfepd with the
tensorQjj of second surface-brightness moments. Techniques foretwnstruc-
tion of the intervening projected matter distribution anert based on (complex)
ellipticities constructed fron@jj, e.g. the quantity defined in (4.4). Similar re-
construction techniques can be developed by constructiagtdies comparable to
X from the CMB temperature fluctuation@). Two such quantities were suggested
in the literature, namely

14— 15+2i117, (9.51)
(Zaldarriaga & Seljak 1998b) and
T11—T22+2iT12 (9.52)

(Bernardeau 1997). As usual, comma-preceded indibesote differentiation with
respect td;.

Finally, it is worth noting that gravitational lensing midifferent types of CMB
polarisation (the “electric’ and “magnetic”, & andB modes, respectively) and
can thus creatB-type polarisation even when onl+type polarisation is intrinsi-
cally present (Zaldarriaga & Seljak 1998a). This effectybwer, is fairly small in
typical cosmological models and will only marginally afféature CMB polarisa-
tion measurements.
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10 Summary and Outlook

We have summarised the basic ideas, theoretical develdpyreerd first applica-
tions of weak gravitational lensing. In particular, we slkeohhow the projected
mass distribution of clusters can be reconstructed fromirttege distortion of
background galaxies, using parameter-free methods, hegtatistical mass distri-
bution of galaxies can be obtained from galaxy-galaxy legmsand how the larger-
scale mass distribution in the Universe affects obsemataf galaxy shapes and
fluxes of background sources, as well as the statisticalgpties of the CMB. Fur-
thermore, weak lensing can be used to construct a masseskteonple of clusters
of galaxies, making use only of their tidal gravitationaldievhich leaves an im-
print on the image shapes of background galaxies. We hawelmsussed how the
redshift distribution of these faint and distant galaxias te derived from lens-
ing itself, well beyond the magnitude limit which is currgnavailable through
spectroscopy.

Given that the first coherent image alignment of faint gaaxaround foreground
clusters was discovered only a decade ago (Fort et al. 198&)nTet al. 1990),
the field of weak lensing has undergone a rapid evolution énldéist few years,
for three main reasons: (i) Theoreticians have recognisedgotential power of
this new tool for observational cosmology, and have dewdogpecific statisti-
cal methods for extracting astrophysically and cosmokltiaelevant informa-
tion from astronomical images. (ii) Parallel to that effasbservers have devel-
oped new observing strategies and image analysis softwaveder to minimise
the influence of instrumental artefacts on the measuredeptiep of faint im-
ages, and to control as much as possible the point-spreadidnnof the re-
sulting image. It is interesting to note that several imagalysis methods, par-
ticularly aimed at shape measurements of very faint gadatoe weak gravi-
tational lensing, have been developed by a coherent effatfhemreticians and
observers (Bonnet & Mellier 1995; Kaiser et al. 1995; LumpshKaiser 1997,
Van Waerbeke et al. 1997; Kaiser 1999; Rhodes et al. 1999ké&uiL999), indi-
cating the need for a close interaction between these twapgravhich is imposed
by the research subject.

(iif) The third and perhaps major reason for the rapid evotuts the instrumen-
tal development that we are witnessing. Most spectacularthearefurbishment of
the Hubble Space Telescope (HST) in Dec. 1993, after whiishtéfescope pro-
duced astronomical images of angular resolution unprexteden optical astron-
omy. These images have not only been of extreme importanséudying multiple
images of galaxy-scale lens systems (where the angularadiEpeis of order one
arc second) and for detailed investigations of giant arcsranltiple galaxy im-
ages in clusters of galaxies, but also for several of the mbstesting results of
weak lensing. Owing to the lack of atmospheric smearing haddduced sky back-
ground from space, the shape of fainter and smaller galaag@scan be measured
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on HST images, increasing the useful number density of backgl galaxies, and
thus reducing the noise due to the intrinsic ellipticitytdizution. Two of the most
detailed mass maps of clusters have been derived from H&T{ 8eitz et al. 1996;
Hoekstra et al. 1998), and all but one published results daxgayalaxy lensing
are based on data taken with the HST. In parallel to this, gweldpment of as-
tronomical detectors has progressed quickly. The first wea&ing observations
were carried out with CCD detectors ef 1,000 pixels, covering a fairly small
field-of-view. A few years ago, the fir§BK)? camera was used for astronomical
imaging. Its 30x 30 field can be used to map the mass distribution of clusters at
large cluster-centric radii, to investigate the potergralsence of flaments between
neighbouring clusters (Kaiser et al. 1998), or simply taagbhigh-quality data on
a large area. Such data will be useful for galaxy-galaxyifgnshe search for
haloes using their lensing properties only, for the ingzdton of cosmic shear, and
for homogeneous galaxy number counts on large fields, ngedalotain a better
guantification of the statistical association of AGNs witihdground galaxies.

It is easy to foresee that the instrumental developmentsrarhain the driving
force for this research field. By now, several large-form&@DCcameras are ei-
ther being built or already installed, including three camsewith a one square
degree field-of-view and adequate sampling of the PSF (MEBRANE at CFHT,
MEGACAM at the refurbished MMT, and OMEGACAM at the newly BWLT
Support Telescope at Paranal; see the recent account offieidémaging instru-
ments in Arnaboldi et al. 1998). Within a few years, more thashozen 8- to 10-
meter telescopes will be operating, and many of them wilbtieeenely useful for
obtaining high-quality astronomical images, due to thensstivity, their imaging
properties and the high quality of the astronomical sitéatn, at least one of them
(SUBARU on Mauna Kea) will be equipped with a large-format@C€&mera. One
might hypothesise that weak gravitational lensing is on@@imain science drivers
to shift the emphasis of optical astronomers more towar@ging, in contrast to
spectroscopy. For example, the VLT Support Telescope wiliully dedicated to
imaging, and the fraction of time for wide-field imaging onegl other major tele-
scopes will be substantial. The Advanced Camera for Surf&®Ss) is planned to
be installed on the HST in 2001. Its larger field-of-view,tbesampling, and higher
guantum efficiency — compared to the current imaging camdf®®@2 — promises
to be particularly useful for weak lensing observations.

Even more ambitious ground-based imaging projects aresctlyrunder discus-
sion. Funding has been secured for the VISTA pr¢j8abf a 4 m telescope in
Chile with a field-of-view of at least one square degree. Aro#t mDark Matter
Telescopeawith a substantially larger field-of-view (nine square dezg) is being
discussed specifically for weak lensing. Kaiser et al. (J¥96posed a new strat-
egy for deep, wide-field optical imaging at high angular heson, based on an
array of relatively smalll@ ~ 1.5 m) telescopes with fast guiding capacity and a

17 seehttp://www-star.qmw.ac.uk/~jpe/vista/
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“rubber” focal plane.

Associated with this instrumental progress is the evotutb data-analysis ca-
pabilities. Whereas a small-format CCD image can be redaocedanalysed ‘by
hand’, this is no longer true for the large-format CCD imag®smi-automatic
data-reduction pipelines will become necessary to keepitliptiae data flow. These
pipelines, once properly developed and tested, can leadrora ‘objective’ data
analysis. In addition, specialised software, such as femtkeasurement of shapes
of faint galaxies, can be implemented, together with todigtvallow a correction
for PSF anisotropies and smearing.

Staying with instrumental developments for one more moirtiet two planned
CMB satellite missions (MAP and Planck Surveyor) will prdgimaps of the CMB
at an angular resolution and a signal-to-noise ratio whidimvost likely lead to the
detection of lensing by the large-scale structure on the CAdRlescribed in Sect. 9.
Last but not least, the currently planned Next Generatiac8delescope (NGST,
Kaldeich 1999), with a projected launch date of 2008, wit\pde a giant step in
many fields of observational astronomy, not the least fokieasing. It combines
a large aperture (of order eight meters) with a positionfamfEarth to reduce sky
background and with large-format imaging cameras. Evetadively short expo-
sure with the NGST, which will be optimised for observatiomghe near-infrared,
will return images with a number density of several hundrackiground galaxies
per square arc minute, for which a shape can be reliably medsonore accurate
estimates are presently not feasible due to the large etétamn into unknown
territory. Comparing this number with the currently aclailele number density in
ground-based observations of about 30 per square arc mMMGST will revolu-
tionise this field] In addition, the corresponding galaxies will be at much kigh
mean redshift than currently observable galaxy samplénTagether, these two
facts imply that one can detect massive haloes at mediunhifed@ith only half
the velocity dispersion currently necessary to detect théhnground-based data,
or that the investigations of the mass distribution of halcen be extended to much
higher redshifts than currently possible (see Schneiden&iK1998). The ACS
on board HST will provide an encouraging hint of the increaseapabilities that
NGST has to offer.

Progress may also come from somewhat unexpected directiWhereas the
Sloan Digital Sky Survey (SDSS; e.g. Szalay 1998) will beyvehallow com-
pared to more standard weak-lensing observations, its langelar coverage
may compensate for it (Stebbins 1996). The VLA-FIRST sumksadio sources

18 Whereas with the 8- to 10-meter class ground-based telesadgeper images can be
obtained, this does not drastically affect the ‘useful’ tnemdensity of faint galaxy images.

Since fainter galaxies also tend to become smaller, ané simeliable shape estimate of a
galaxy is feasible only if its size is not much smaller tham $ize of the seeing disk, very

much deeper images from the ground will not yield much largenber densities of galaxy

images which can be used for weak lensing.
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(White et al. 1997) suffers from the sparsely populatedaaty, but this is also

compensated by the huge sky coverage (Refregier et al. 1B88se of both sur-

veys for weak lensing will depend critically on the level doto which the sys-

tematics of the instrumental image distortion can be undedsand compensated
for.

Gravitational lensing has developed from a stand-alornearek field into a versa-
tile tool for observational cosmology, and this also apptie weak lensing. But,
whereas the usefulness of strong lensing is widely accdptetie astronomical
community, weak lensing is only beginning to reach thatllefevide apprecia-
tion. Part of this difference in attitude may be due to the that strong-lensing
effects, such as multiple images and giant arcs, can easgén on CCD images,
and their interpretation can readily be explained also @éatbn-expert. In contrast,
weak lensing effects are revealed only through thoroudisstal analysis of the
data. Furthermore, the number of people working on weakrgren the level of
data analysis is still quite small, and the methods usedtraeshear from CCD
data are rather intricate. However, the analysis of CMB gatartainly more com-
plicated than weak lensing analyses, but there are mordeé@ofhe latter field,
who checked and cross-checked their results; also, moggeevnplies that much
more development has gone into this field. Therefore, whagésled in weak lens-
ing is a detailed comparison of methods, preferably by s¢wedependent groups,
analysing the same data sets, together with extensive wodinoulated data to
investigate down to which level a very weak shear can be exeiiidfrom them. Up
to now, no show-stopper has been identified which prohibgsietection of shear
at the sub-percent level.

Weak-lensing results and techniques will increasingly bmlgined with other
methods. A few examples may suffice to illustrate this pdihe analysis of galaxy
clusters with (weak) lensing will be combined with resultsnmh X—ray measure-
ments of the clusters and their Sunyaev-Zel'dovich decren@nce these meth-
ods are better understood, in particular in terms of thestespatics, the question
will no longer be, “Are the masses derived with these methodsgreement?”,
but rather, “What can we learn from their comparison?” Fatance, while lens-
ing is insensitive to the distribution of matter along theeliof-sight, the X—ray
emission is, and thus their combination provides infororatin the depth of the
cluster (see, e.g., Zaroubi et al. 1998). One might expattdisters will continue
for some time to be main targets for weak-lensing studiesdutition to clusters
selected by their emission, mass concentrations seleotgthptheir weak-lensing
properties shall be investigated in great detail, both @ebper images to obtain a
more accurate measurement of the shear, and by X-ray, IRnsutand optical/IR
multi-colour techniques. It would be spectacular, and ebgjcosmological signif-
icance, to find mass concentrations of exceedingly high +tealght ratio (well in
excess of 1000 in solar units), and it is important to understand th&ridistion of
M/L for clusters. A first example may have been found by Erlead.€1999).
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As mentioned before, weak lensing is able to constrain thshié distribution
of very faint objects which do not allow spectroscopic inigegtion. Thus, lens-
ing can constrain extrapolations of tkelistribution, and the models for the red-
shift estimates obtained from multi-colour photometryh@pometric redshifts’).
On the other hand, photometric redshifts will play an insnegly important role
for weak lensing, as they will allow to increase the sigmahbise ratio of local
shear measurements. Furthermore, if source galaxies r@asingly higher red-
shifts are considered (as will be the case with the upcomiagtdelescopes,
cf. Clowe et al. 1998), the probability increases that mbantone deflector lies
between us and this distant screen of sources. To disestdrggtorresponding pro-
jection effects, the dependence of the lensing strengtheens and source red-
shift can be employed. Lenses at different redshifts caiffexeht source-redshift
dependences of the measured shear. Hence, photomettiftedsll play an in-
creasingly important role for weak lensing. Whereas a filige-dimensional mass
distribution will probably be difficult to obtain using threlatively weak redshift
dependence, a separation of the mass distribution into busamaber of lens planes
appears feasible.

Combining results from cosmic-shear measurements witlpoleer spectrum of
the cosmic density fluctuations as measured from the CMBaldw a sensitive
test of the gravitational instability picture for struatuiormation. As was pointed
out by Hu & Tegmark (1999), cosmic-shear measurements chastatially im-
prove the accuracy of the determination of cosmologicahipaters from CMB
experiments, in particular by breaking the degeneraciesrant in the latter (see
also Metcalf & Silk 1998). The comparison between observesinic shear and
theory will at least partly involve the increasingly deggilnumerical simulations
of cosmic structure evolution, from which predictions fensing observations can
directly be obtained. For example, if the dark matter haloése numerical simu-
lations are populated with galaxies, e.g., by using senpigoal theories of galaxy
evolution (Kauffmann et al. 1997), detailed prediction f@laxy-galaxy lensing
can be derived and compared with observations, thus camstyahese theories.
The same numerical results will predict the relation betwd#e measured shear
and the galaxy distribution on larger scales, which can mepayed with the ob-
servable correlation between these quantities to investidhe scale- and redshift
dependence of the bias factor.

The range of applications of weak lensing will grow in paghktb the new instru-
mental developments. Keeping in mind that many discovanigsavitational lens-
ing were not really expected (like the existence of Einstigigs, or giant luminous
arcs), it seems likely that the introduction and extensse of wide-field cameras
and giant telescopes will give rise to real surprises.
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