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It is demonstrated that hidden variables of a certain type follow logically from a certain locality
requirement (“Bell Locality”) and the empirically well-supported predictions of quantum theory for
the standard EPR-Bell setup. The required hidden variables are precisely those assumed in the
derivation of the Bell Inequalities. We thus refute the widespread view that empirical violations of
Bell Inequalities leave open a choice of whether to reject (i) locality or (ii) hidden variables. Both
principles are indeed assumed in the derivation of the inequalities, but since, as we demonstrate
here, (ii) actually follows from (i), there is no choice but to blame the violation of Bell’s Inequality
on (i). Our main conclusion is thus that no Bell Local theory can be consistent with what is known
from experiment about the correlations exhibited by separated particles. Aside from our conclusion
being based on a different sense of locality this conclusion resembles one that has been advocated
recently by H.P. Stapp. We therefore also carefully analyze the relation of the argument presented
here to that proposed by Stapp.

I. INTRODUCTION

Bell’s Theorem [1] has given rise to a unique situa-
tion in science. Despite being hailed from all quarters
as fundamentally important (“the most profound discov-
ery of science,” says H. P. Stapp [2]), the meaning of
the theorem – what, exactly, it proves – remains widely
and hotly contested. There are (at least) two camps. In
the first camp are those who believe that Bell’s Theorem
proves that non-locality is a fact of nature, which must
be reflected in any adequate theory. [1, 3, 4, 5, 6] Then
there are, in the second camp, those who believe that
Bell’s Theorem proves only the impossibility of empiri-
cally viable local “hidden variable” alternatives to ortho-
dox quantum theory. [7, 8]

This debate is important because the life or death of
the hidden variables program (advocated by those such
as Einstein, Bohm, and Bell who were dissatisfied with
the Copenhagen quantum theory) hangs in the balance.
Those in the first camp tend to argue that, since non-
locality is a real fact about the physical world, physicists
should remain open to explicitly non-local alternatives
to orthodox quantum theory such as Bohmian Mechan-
ics. [9] On the other hand, those in the second camp use
Bell’s Theorem against the hidden variables program, by
arguing that any such alternatives to orthodox theory
must conflict with relativity and hence needn’t be seri-
ously considered.

The dispute centers on this question: what, precisely,
are the assumptions from which Bell derived the famous
inequality (which appears to be empirically violated)?

The standard argument of the second camp against the
first is clearly articulated by H. P. Stapp. Contrary to the
view of those in the first camp, he writes, Bell’s Theorem
“shows only that if certain predictions of quantum theory
are correct, and if a certain hidden-variable assumption
is valid, then a locality condition must fail. This local-
ity condition expresses the physical idea, suggested by

the theory of relativity, that what an experimenter freely
chooses to measure in one spacetime region can have no
effect of any kind in a second region situated spacelike
relative to the first.” Therefore, “the most natural con-
clusion to draw [from the empirical violation of Bell’s
Inequality] is not that locality fails, but rather that the
hidden-variable assumption is false.” After all: “Bell’s
hidden-variable assumption was an ad hoc assumption
that had no foundation in the quantum precepts. Indeed
it directly contradicted the quantum precepts.” [10]

This is a widely held view whose implications for
the hidden-variables debate were eloquently captured by
N. David Mermin: “To those for whom nonlocality is
anathema, Bell’s Theorem finally spells the death of the
hidden-variables program.” [8]

In an interesting recent series of papers, however, H.
P. Stapp has questioned the reasoning behind this con-
clusion. [10, 11, 12] Stapp’s re-thinking is based on
his attempt to prove a stronger version of Bell’s The-
orem which dispenses altogether with the assumption of
hidden-variables. (Actually, Stapp’s argument is based
on Hardy’s scenario [13] in which a simple logical con-
tradiction – rather than an inequality – is deduced from
the assumption of local hidden variables and quantum
theory’s probabilistic predictions. But this distinction is
not relevant here.)

Using a certain locality principle, the predictions of
quantum theory for the Hardy scenario, and an assump-
tion about which experiment was freely chosen in the left
(L) wing of the experiment, Stapp establishes the truth
of a certain statement (call it S) which refers to possi-
ble measurements and their outcomes on the right (R).
He then proves that, had the experimenter in region L

made a different free choice, S would cease to be true.
Therefore, the truth status of a statement pertaining ex-
clusively to region R depends on a free choice made in
region L, which we may assume to be space-like sepa-
rated from R. According to Stapp, this constitutes a
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kind of non-local action at a distance, and thus estab-
lishes that not merely empirically viable hidden-variable
theories but, rather, any theory in agreement with quan-
tum theory’s predictions, must violate locality. It estab-
lishes, says Stapp, the ineliminable non-local character of
quantum theory itself.

Stapp’s argument, however, has been roundly criti-
cized. The trouble pertains to Stapp’s definition of lo-
cality, which William Unruh tersely summarizes as fol-
lows: “the truth of a statement pertaining exclusively to
possible events in region R cannot depend on which free
choice is to be made by the experimenter in region L.”
[14] As Mermin has clarified, this definition encompasses
two very different “locality” ideas: first, that what an ex-
perimenter on one side chooses to measure can have no
influence on the actual outcome of an actually-performed
measurement on the other side; and second, that what
an experimenter on one side chooses to measure can have
no influence on what can be validly inferred about what
would have happened had some other choice been made
on the other side. [17] Violation of the first sort of local-
ity would indeed appear to be in conflict with relativity’s
prohibition on superluminal causation; but it is only the
latter (which seems unproblematic from the point of view
of relativistic causality) that is established by Stapp’s ar-
gument. For Stapp’s statement S is not merely a state-
ment about the actual result of an actual experiment in
R; it is rather a counterfactual conditional asserting that
a certain outcome would have been obtained had a dif-
ferent measurement been made, given that, in fact, the
actual experiment was performed and had a certain par-
ticular outcome.

The main objection of Mermin and others is not sim-
ply that the statement S is a counter-factual conditional
and hence not directly observable. The critics accept the
validity of such counterfactual statements, but point out
that, although the counterfactual statement S may ap-
pear superficially to “pertain exclusively to region R”, it
nevertheless refers implicitly to region L via the fact that
our grounds for accepting S include statements explicitly
pertaining to L. (The precise sense in which the meaning
of S includes implicit reference to regionL is made partic-
ularly clear in the essays of Shimony and Stein. [15, 16] )
As Mermin explains, Stapp’s conclusion “does not mean
... that a choice made [on the left] can influence events
[on the right]. What it does mean is that a choice made
[on the left] can influence statements about events [on
the right] that might have happened but did not.... The
choice of experiment on the left cannot affect what actu-
ally happened ... on the right. But it can affect the kinds
of inferences one can make about hypothetical behavior
on the right.” [17] And elsewhere: “because the influence
[which Stapp’s argument actually establishes] is only on
the possibility of satisfying Stapp’s criterion for the valid
use of counterfactuals, it is inappropriately characterized
as ... ‘non-local’.” [18]

We believe the various criticisms of Stapp’s arguments
are correct. Nevertheless, we also believe that Stapp’s

conclusion is correct: empirical violation of Bell’s in-
equalities demonstrates the non-locality of nature, not
merely of viable hidden-variable theories. Our goal in
the present paper is thus to present an alternative proof
for this conclusion. [19]

The argument to be presented is different from Stapp’s
in several important ways. First, instead of trying to ar-
rive at an empirically testable inequality (or a logical
contradiction) without assuming the existence of hidden
variables, we show that hidden variables (of a certain
specific character to be identified) must exist under the
assumption of locality. Then, it is non-controversial to
point out that Bell’s Theorem (in its original form) ren-
ders any hidden-variables theory of this type inconsistent
with experiment. Our argument is thus not a different
(“stronger”) version of Bell’s Theorem; it is not a “Bell’s
Theorem without hidden-variables.” [20] Rather, it is a
proof that the hidden-variable and locality assumptions
needed to derive Bell’s Inequality are not on an equal
logical footing in the overall argument. The hidden vari-
ables posited by Bell are not an “ad hoc assumption”
but, rather, a logical implication of locality.

Second, our locality criterion differs somewhat from
the various senses of locality utilized by Stapp. We
present and then use a straightforward mathematical lo-
cal causality condition introduced and advocated by J.
S. Bell.

Third, where Stapp (and his critics) focus on specific
(possible) measurement outcomes, our emphasis is in-
stead on theories. In particular, the question from which
our derivation proceeds is: What properties must a the-
ory possess if it is to satisfy Bell Locality and agree with
certain empirical facts? This emphasis on the structure
of theories will be seen to follow in a natural way from
Bell’s locality condition, elaborated in Section II.

The upshot of these differences is that our proof is im-
mune to the kinds of objections given against Stapp by
(for example) Mermin, Unruh, Shimony and Stein. The
argument presented here thus supplements Bell’s Theo-
rem in just the way needed to conclusively establish the
following (Stapp-like) conclusion: no Bell Local theory
can be consistent with the predictions of quantum me-
chanics, i.e., with the empirical facts. Note in particular
that the conclusion is not restricted to hidden-variable
theories, deterministic theories, or any other class. It ap-
plies to all theories, orthodox quantum theory very much
included. Finally, given that no Bell Local theory can be
empirically viable, it follows that Nature does not respect
Bell Locality. This is the conclusion that is meant to be
conveyed by the paper’s title.

II. BELL LOCALITY

Perhaps the single greatest source of confusion over
what, exactly, Bell’s Theorem proves is confusion and
ambiguity over the meaning of “locality.” Many differ-
ent senses of locality have been defined in the literature.
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[3, 21] Our purpose here is not to review this literature,
nor to present a conclusive argument for the appropri-
ateness of any specific definition. Rather, we will simply
pick a particular definition of locality and show that an
interesting conclusion follows from it.

The one in question is (what we shall call) Bell Lo-
cality. This is essentially the locality criterion that was
used, ever since his initial 1964 paper, in Bell’s deriva-
tions of the famous inequality. His most detailed discus-
sion of this locality concept may be found in the article
“La Nouvelle Cuisine.” [1, pages 232-48] Here we shall
simply state the condition and then make a few clarifying
remarks.

The following is Bell’s description of the locality con-
dition, along with his accompanying figure:

“A theory will be said to be locally causal
[i.e., what we are calling Bell Local] if the
probabilities attached to values of local be-
ables in a space-time region 1 are unaltered
by specification of values of local beables in
a space-like separated region 2, when what
happens in the backward light cone of 1 is al-
ready sufficiently specified, for example by a
full specification of local beables in a space-
time region 3.” [1, page 240]

FIG. 1: “Full specification of what happens in 3 makes events
in 2 irrelevant for predictions about 1 in a locally causal [i.e.,
Bell Local] theory.” (Figure and caption are from [1, pg.
240].)

As Bell explains, “It is important that region 3 com-
pletely shields off from 1 the overlap of the backward
light cones of 1 and 2. Otherwise the traces in region 2
of causes of events in 1 could well supplement whatever
else was being used for calculating probabilities about 1.
The hypothesis is that any such information about 2 be-
comes redundant when 3 is specified completely.”[1, pg.
240]

Let us now apply this to the standard EPR-Bell setup
in which a particle source emits pairs of oppositely-
directed neutral spin-1/2 particles in (what orthodox
quantum theory would describe as) a spin singlet state.
Two experimenters, Alice and Bob, are located at some
distance from the source; each possesses a Stern-Gerlach
type device which allows them to measure the component
of the spin of their particles (along, respectively, the di-

rections â and b̂), yielding outcomesA = ±1 andB = ±1.

Note that we consider â and b̂ to be free variables – not
in any way affecting, dependent on, or correlated with
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FIG. 2: A pair of neutral spin-1/2 particles is created,
with the individual particles heading to the left and right,
where Alice and Bob freely choose an axis (respectively â and

b̂) along which to measure their particle’s spin component.
The outcomes of those experiments are given by A = ±1
and B = ±1. The symbol λ denotes a complete specifica-
tion of the state of the particle pair (and, if necessary, the
pre-measurement state of the detection apparatuses) across
some space-like hypersurface satisfying (for both measure-
ment events) the constraints Bell describes for his region 3
from Figure 1.

one another or with the prior state of the particle pair,
whose complete description on the space-like hypersur-
face indicated in Figure 2 we denote λ. (In principle, a
theory might assert that the outcome of the experiments

depends not just on the settings â and b̂ and the state
of the particle pair, but also on some other facts about
the measuring apparatus; we may always include such
facts in our definition of λ without affecting the argu-
ment. Thus, throughout the following, the phrase “state
of the particle pair” should be read as “state of the par-
ticle pair, detection apparatuses, and anything else – ex-

cluding of course â and b̂ – upon which the theory in
question claims the outcomes depend.”) We shall also
assume that the space-time regions of Alice’s and Bob’s
measurements (indicated by the circles in Figure 2) are
space-like separated (as shown in the Figure).

Bell Locality then entails the following: once we spec-
ify a complete description of the pre-measurement state
of the particle pair, the probability for Alice to obtain
a certain outcome A for a measurement along a certain

direction â is independent of the setting (b̂) and outcome
(B) of Bob’s experiment. In particular, the probability
in question does not change depending on whether we
do or do not specify this information about Bob’s experi-
ment. In Bell’s words, that information about the distant
experiment “becomes redundant” when the state of the
particle pair is specified completely. Formally:

P (A|â, b̂, B, λ) = P (A|â, λ) (1)

where P (X |Y ) means the conditional probability of X
given Y . Bell Locality of course also requires the same
condition for Bob’s outcomes:

P (B|â, b̂, A, λ) = P (B|b̂, λ). (2)

There are several key points here:
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• The symbol λ appearing in the definition of Bell
Locality refers to a complete description of the state
of the particle pair (and, as needed, facts about the
experimental apparatuses – other than the freely-
choosable settings – on which the probabilities may
depend) along the space-like hypersurface shown in
Figure 2.

• In principle, only some particular candidate theory
can tell us what λ consists of. The probabilities
about which Bell Locality speaks thus refer not to
empirical frequencies of given outcomes, but rather
to probabilities as assigned by the fundamental dy-
namics of some particular theory. Thus, in the pri-
mary sense, what Bell Locality constrains is the-
ories. [22] Given some candidate theory, we may
ask: Does this theory respect Equation (1), or not?
That is: Is this theory Bell Local, or not? This is
the source of the theory-emphasis (as opposed to
experimental-outcome-emphasis) mentioned in the
introduction.

• Given this need to focus on theories, it is neces-
sary to clarify what we mean by a theory. We will
stipulate just what is required to permit an unam-
biguous determination of whether or not a theory
satisfies Bell Locality. Thus: a theory must provide
some particular account of λ. It must tell us what
a complete description of the state of the particle
pair consists of. And it must provide, on that basis,
a definite formal structure by which the probabili-
ties for the relevant possible experimental outcomes
can be calculated.

One important logical implication of Bell Locality is
that it requires joint probabilities for space-like separated
events to factorize:

P (A,B|â, b̂, λ) = P (A|B, â, b̂, λ) × P (B|â, b̂, λ)
= P (A|â, λ) × P (B|b̂, λ). (3)

The first line merely expresses the joint probability in
terms of a conditional probability, while the move to the
second line involves a trivial application of Equations (1)
and (2). As Bell remarks, “Very often such factorizability
is taken as the starting point of the analysis. Here we
have preferred to see it not as the formulation of ‘local
causality’, but as a consequence thereof.” [1, pg 243]

In principle, nothing more about Bell Locality need
be said. It is a straightforward mathematical condition
that permits an unambiguous answer to the question: Is
Theory X Bell Local? However, some additional remarks
may help clarify the condition and motivate the subse-
quent derivation.

First, Bell intended this mathematical locality con-
dition as a precise statement of relativity’s prohibition
on superluminal causation. The idea here is that the
causes of a given event should be exclusively in that
event’s past light cone. Any causal dependence of a

given event on other events outside the past light cone
would involve superluminal (or reverse-temporal) influ-
ence – something that is supposed to be ruled out by
the space-time structure of relativity (and common-sense
ideas about the meaning of cause and effect). Bell’s idea
was that stochastic dependence implies a kind of under-
lying causal dependence, so relativity’s prohibition on
superluminal causation requires that the probability of
a given event (Alice’s outcome, say) shouldn’t depend

on either the setting of Bob’s apparatus (b̂) or on the
outcome of his experiment (B). As Bell explains, such
information should (according to relativity) be redundant
(or perhaps just irrelevant).

This must be understood before the apparent reason-
ableness of Bell Locality (as a mathematical specification
of relativistic causality) can be appreciated. According
to relativity, information pertaining to a space-like sepa-
rated region ought to be causally irrelevant to the event
in question. This does not necessarily mean, however,
that such information is statistically irrelevant; correla-
tion between variables which are not directly causally
related is certainly possible. They could be correlated,
for example, by virtue of their being both effects of some
other, earlier shared cause. But such an earlier shared
cause would evidently have to be included in our (by hy-
pothesis) complete specification of the state of the par-
ticle pair, λ. For a given event (such as A), λ already
includes all the information (other than â) that can be
causally relevant to that event. And therefore, the prob-
ability assigned to that event under condition λ, will not
(in a Bell Local theory) depend on additional information
pertaining to a space-like separated region. The event in
question may turn out to be correlated with some such
additional information at the level of relative frequencies,
but its probability should not depend on that information
at the level of the fundamental theoretical dynamics.

To all appearances, Bell Locality seems to be exactly
what is required by relativity’s prohibition on superlumi-
nal causation. Any theory which violates Bell Locality
necessarily posits a causal influence between space-like
separated regions of space-time.

There is bound to be some disagreement over this
claim, and our intention here is not to assert that Bell Lo-
cality is the only possible reasonable mathematical spec-
ification of relativistic causality. We wish to stress, how-
ever, that Bell Locality is prima facie reasonable in this
role. There is excellent reason to think that a genuinely
relativistic theory must respect Bell Locality. From the
standard point of view according to which relativity the-
ory is accepted as an established fact, it would be a sur-
prise to find that Bell Locality could not be maintained.
Yet this is just what we shall establish.

Before moving on to the proof, let us stress here sev-
eral things which are not presupposed by Bell Locality.
First, Bell Locality does not assume or require determin-
ism; the condition is stated in terms of the probabilities
assigned to various events by a given theory’s dynami-
cal laws. Determinism is of course included as a special



5

case (in which all the probabilities assume exclusively the
values one or zero), but we do not impose this as an as-
sumption. Second, the formulation of Bell Locality in no
way assumes or requires the existence of hidden-variables.
The condition is stated in terms of a complete state de-
scription (λ) for the particle pair, but there is nothing
in the definition of Bell Locality which requires λ to in-
clude anything more than the quantum mechanical wave
function (which, according to orthodox quantum theory,
provides already a complete description of the state of
the particle pair). Indeed, it need not even include that.
We make no assumptions at all about the content of λ,
i.e., we in no way restrict the class of theories to which
we are (initially) open. Bell Locality simply permits us
to easily assess whether a given theory (of any type, so
long as it satisfies the criteria stated above, i.e., so long
as it proposes some definite candidate λ and permits one
to calculate probabilities on that basis) is or is not locally
causal.

The twist, to be utilized in Section III, is that we
may infer something about the nature of λ from the re-
quirements that Bell Locality – and certain empirically-
supported facts – be respected.

III. HIDDEN VARIABLES

Having clarified the definition and meaning of Bell Lo-
cality, let us now turn to the main topic: What features
must a Bell Local theory possess in order to account for
certain empirically-observed facts?

The empirical fact that will concern us is the follow-
ing: if the particle pair is prepared in (what orthodox
quantum theory describes as) the spin singlet state

|ψ〉 =
1√
2

(| + 1〉| − 1〉 − | − 1〉| + 1〉) (4)

and if Alice and Bob happen to choose to measure along

the same axis (â = b̂), the outcomes will be perfectly
anti-correlated : either A = +1 and B = −1, or A = −1
and B = +1. Can a Bell Local theory account for this
empirical fact, and if so, how?

To begin, we must explain what is meant by “prepar-
ing the particle pair in the spin singlet state.” What
this means experimentally and operationally is clear, but
what does it mean in terms of the (as yet completely un-
specified) theory which will (we hope) be able to account
for the results? Evidently the preparation procedure cre-
ates or selects one specific state out of a class of possible
states consistent with the preparation procedure. Let us
denote this class Λψ. Thus, a particular instance of the
preparation will result in some particular λ ∈ Λψ. (We
consider the set Λψ to consist of those states which can
be produced with nonzero probability. Also note that we
of course leave open the possibility that Λψ is a set with
only one element, e.g., the wave function itself. That is,
we leave open, for now, the possibility that the orthodox
quantum state description is complete.)

Consider now the joint probability for outcomes A =
+1, B = +1 when Alice and Bob both measure along the
direction n̂1. In a Bell Local theory, this joint probability
must factor into a product as follows:

P (A = +1, B = +1|n̂1, n̂1, λ)

= P (A = +1|n̂1, λ) × P (B = +1|n̂1, λ). (5)

We are taking it as given (because it is known from exper-
iment) that this joint probability vanishes for all λ ∈ Λψ.
If there were some λ that could, with nonzero probabil-
ity, be produced by the singlet preparation procedure,
and for which the joint probability above were other than
zero, Alice and Bob would sometimes get identical out-
comes even though they measured along the same axis.
Since in fact this never happens, we constrain the theo-
ries accordingly.

Thus ∀ λ ∈ Λψ, either

P (A = +1|n̂1, λ) = 0 (6)

or

P (B = +1|n̂1, λ) = 0. (7)

Now consider the joint probability for outcomes A =
−1, B = −1 when (again) Alice and Bob both measure
along the direction n̂1. As above, we must have that
∀ λ ∈ Λψ either

P (A = −1|n̂1, λ) = 0 (8)

or

P (B = −1|n̂1, λ) = 0. (9)

Note that the two conditions – (6) or (7), on the one
hand, and, on the other, (8) or (9) – must be satisfied
simultaneously for all λ ∈ Λψ.

Further, for any particular λ, a statement of the form

P (A = +1|n̂1, λ) = 0 (10)

implies one of the form

P (A = −1|n̂1, λ) = 1 (11)

since the outcomes are bivalent: if, for a given λ and a
given measurement direction, a certain outcome is impos-
sible, then, since there are only two possible outcomes,
the opposite outcome is required. Recall too that the
probabilities here are not empirical relative frequencies,
but probabilities as assigned by the fundamental dynam-
ics of a theory. The assertion here is that if a given the-
ory assigns zero probability to a certain outcome (under
specified conditions), then it must assign unit probabil-
ity to the (here only) alternative outcome. This suggests
a shorthand notation in which we substitute, e.g., for
Equation (11) the simpler statement

A(n̂1, λ) = −1 (12)
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and similarly for the other possibilities.
The reader may worry that we are here violating

Wheeler’s famous statement of the orthodox quantum
philosophy: “No elementary phenomenon is a phe-
nomenon until it is a registered (observed) phenomenon”
[23] – i.e., it is invalid to attribute particular outcomes
to experiments which haven’t, in fact, been performed.
This worry is partly justified. We are not, however, as-
serting that an un-performed measurement has an actual,
particular outcome; this would be literal nonsense, and is
the grain of truth in Wheeler’s dictum. Strictly speaking,
our statement isn’t even about Alice’s measurement – it
is about the state λ and the theory in which that state
assignment is embedded. The real meaning of Equation
(12) is simply this: for the state λ, the theory in ques-
tion assigns unit probability to the outcome A = −1 un-
der the condition that Alice measures along direction n̂1.
The theory must attribute sufficient structure to λ (and
possess the necessary dynamical laws) such that, should
Alice choose to measure along n̂1, the outcome A = −1 is
guaranteed. In this sense, we may say that the theory in
question encodes the outcome A = −1 (for measurement
along n̂1) in the state λ.

Crucially, we must not forget that this kind of state-
ment is simply forced on us by the logical development
to this point: given that we only consider Bell Local
theories, and given that the theories must be capable
of making the correct predictions for the (possible) case

â = b̂ = n̂1, the theory must posit this sort of structure.
Thus, to whatever extent the required theoretical struc-
ture conflicts with Wheeler’s dictum, we must evidently
conclude that this orthodox philosophy is excluded by
our premises (Bell Locality and perfect anti-correlation).

Summarizing the results so far, we must have that,
∀ λ ∈ Λψ

A(n̂1, λ) = −1 or B(n̂1, λ) = −1 (13)

and

A(n̂1, λ) = +1 or B(n̂1, λ) = +1. (14)

Since we cannot have both A(n̂1, λ) = −1 and A(n̂1, λ) =
+1 for the same λ (and likewise for B), Equations (13)
and (14) are logically equivalent to the following: either

A(n̂1, λ) = −1 and B(n̂1, λ) = +1 (15)

or

A(n̂1, λ) = +1 and B(n̂1, λ) = −1. (16)

In other words, the requirements mentioned in Equations
(6) - (9) will be satisfied if and only if the states λ ∈ Λψ
divide into two mutually exclusive and jointly exhaustive
classes: those (call them Λn̂1+−

ψ ) for which A(n̂1, λ) = +1

and B(n̂1, λ) = −1 ; and those (call them Λn̂1−+

ψ ) for

which A(n̂1, λ) = −1 andB(n̂1, λ) = +1. The two classes

( Λn̂1+−

ψ and Λn̂1−+

ψ ) are jointly exhaustive because any λ

which, with nonzero probability, allows for identical out-
comes on the two sides, will necessarily spoil the theory’s
ability to predict perfect anti-correlation. Any such λ is
by definition excluded from Λψ to begin with.

In a Bell Local theory, the probability for a given out-
come on one side (conditionalized on a complete spec-
ification of the state of the particles) may not depend
on goings-on at the distant location. Given the empir-
ically observed fact of perfect anti-correlation, we have
shown that a Bell Local theory must attribute outcome-
determining properties to the particle pair. Putting the
same point another way, we have proved that there is
no such thing as a Bell Local theory which accounts
for the perfect anti-correlation without positing deter-
ministic hidden variables (“hidden” because these vari-
ables evidently go beyond the quantum state descrip-
tion). All Bell Local theories which successfully pre-
dict perfect anti-correlation (under the appropriate cir-
cumstances) must posit that the individual outcomes are
determined, in advance of the actual measurements, by
structure encoded in λ. Notice too that the proof that
this kind of theoretical structure is required (for a Bell
Local theory) in no way assumes the actual performance

of measurements along â = b̂ = n̂1. The mere fact that
such measurements may be later chosen – combined with
the requirement that the theory must be capable of gener-
ating the appropriate sorts of outcomes should this even-
tuality arise – leads to the conditions described above.

A key point is now the generalizability of this result to
measurements along different axes, say n̂2 and n̂3. Fol-
lowing exactly the logic of the above paragraphs, we may
argue that the states λ ∈ Λψ must divide into classes

Λn̂2+−

ψ and Λn̂2−+

ψ , such that, respectively,

A(n̂2, λ) = +1 and B(n̂2, λ) = −1 (17)

and

A(n̂2, λ) = −1 and B(n̂2, λ) = +1. (18)

And similarly for n̂3.
Are we, however, going beyond what is required if we

insist on dividing the class Λψ using the three measure-
ment directions simultaneously? That is, are we permit-
ted to deduce (from the fact of perfect anti-correlation
along each of the three directions {n̂1, n̂2, n̂3} and the re-
quirement of Bell Locality) that a theory must posit eight
mutually exclusive and jointly exhaustive sub-classes of

Λψ – for example, the class Λn̂1+−,n̂2+−,n̂3+−

ψ such that

∀ λ ∈ Λn̂1+−,n̂2+−,n̂3+−

ψ







A(n̂1, λ) = +1 , B(n̂1, λ) = −1
A(n̂2, λ) = +1 , B(n̂2, λ) = −1
A(n̂3, λ) = +1 , B(n̂3, λ) = −1







(19)

and similarly for the other seven possible combina-
tions? This is of course tantamount to assigning pre-
measurement values to the spin components of each par-
ticle along all three considered measurement directions
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(and, in principle, along the continuous infinity of possi-
ble measurement directions).

Such an assignment is obviously in conflict with the
orthodox quantum philosophy, which expressly forbids
assigning values to unmeasured observables (not to men-
tion assigning values simultaneously to non-commuting
observables!). But that is not the relevant issue. What
concerns us here is simply this: is such an assignment re-
quired by Bell Locality? That is, must a Bell Local the-
ory predicting perfect anti-correlation (along all of the
three considered measurement axes) posit this detailed
structure in the state descriptions?

The answer is unambiguously yes. A Bell Local theory
(which predicts successfully the perfect anti-correlation)
must posit this structure, must posit enough detailed
content to λ that the outcome of the measurement of
any spin component on either particle is determined, as,
for example, in Equation (19). The reason is simple: we

are treating the measurement axes â and b̂ as free vari-
ables which can, in principle, be set randomly (or by a
free-will choice) after the pair’s state λ is fixed. Thus, by
precisely the reasoning detailed above, the states λ ∈ Λψ
must be so as to produce perfect anti-correlation should
Alice and Bob happen to both measure along any of the
three considered directions. This requirement alone does
not necessitate the kind of detailed structure contained in
Equation (19). When combined with the requirement of
Bell Locality, however, this detailed structure – these de-
terministic hidden variables – are required. A theory (like
orthodox quantum mechanics) which posits less struc-
ture for λ can successfully predict perfect anti-correlation
along any of the three considered directions – but only
at the price of violating Bell Locality.

IV. DISCUSSION

The main result proved in Section III is the follow-
ing: All theories respecting a certain locality condition
(Bell Locality) must, in order to successfully reproduce
a certain class of empirically well-confirmed correlations,
posit that the outcomes of all possible spin-component
measurements to be made on the particles are encoded
in the pre-measurement state of the particles, such that
the outcome in one wing of the experiment is determined,
once the state of the particle pair and the orientation of
the nearby apparatus are specified. [24] In rough terms,
the particles must carry “instruction sets” [25] which pre-
determine the outcomes of spin measurements. Since in-
cluding such “instruction sets” in the state specification
goes beyond what is attributed to the states by orthodox
quantum theory, the kind of theory we have argued for
may be termed a hidden-variable theory. What is crucial
here is that the relevant hidden variables have not been
assumed, but rather derived – in particular, derived from
the logical conjunction of (1) a certain class of empirically
tested correlations and (2) Bell Locality.

It is of course well known that a hidden-variable theory

of this type cannot account for another class of empiri-
cally tested correlations, and is therefore not empirically
viable. [26] This is Bell’s Theorem. It would be a logical
fallacy, however, to conclude from this that the argu-
ments presented in Section III are flawed. This would
involve an equivocation between the conclusion of an ar-
gument, and the validity of the argument itself. What
we have established here is that hidden variables of a
particular variety are required if one insists on respect-
ing Bell Locality. Since such hidden variable theories are
evidently not viable, the proper conclusion to draw is
that Bell Locality cannot be maintained – i.e., no theory
respecting Bell Locality can account for the entire class
of empirically observed correlations between distant par-
ticles.

The logic here was expressed clearly by Bell:

“The EPRB correlations are such that the
result of the experiment on one side imme-
diately foretells that on the other, whenever
the analyzers happen to be parallel. If we do
not accept the intervention on one side as a
causal influence on the other, we seem obliged
to admit that the results on both sides are de-
termined in advance anyway, independently
of the intervention on the other side, by sig-
nals from the source and by the local magnet
setting. But this has implications for the non-
parallel settings which conflict with those of
quantum mechanics. So we cannot dismiss
intervention on one side as a causal influence
on the other.” [1, pg 149-50]

The same basic argument has also been advocated by a
number of other authors, for example those in the first of
the “camps” described in Section I. The present paper
adds two notable features: first, a precise mathematical
clarification of Bell’s phrase “if we do not accept the in-
tervention on one side as a causal influence on the other”
and, second, a rigorous mathematical derivation of what
Bell merely says “we seem obliged to admit.”

H. P. Stapp apparently agrees with Bell that one “can-
not dismiss intervention on one side as a causal influence
on the other.” But, as mentioned in the introduction,
Stapp’s argument for this conclusion is different from
that advocated by Bell. And since Stapp’s arguments
have been shown to suffer from several apparently fatal
flaws, it is worth clarifying in some detail how Bell’s ar-
gument (elaborated and sharpened in the present paper)
differs from Stapp’s.

First, let us emphasize the point about overall logi-
cal structure. Stapp has attempted to prove a “Bell-
type theorem without hidden variables” – i.e., to prove a
stronger version of Bell’s Theorem which dispenses with
one of the premises on which Bell’s own derivation rests.
By contrast, we retain the original (“weak”) version of
Bell’s Theorem, and supplement it by showing that the
two premises used in deriving the inequality – (i) locality
and (ii) hidden variables – are not logically unrelated ax-
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ioms. Rather, premise (ii) follows from premise (i) and
the empirical fact of perfect anti-correlation.

The criticisms made against Stapp by Mermin, Unruh,
Shimony, Stein, and others suggest that Bell’s Theorem
cannot be strengthened in the way that would be required
to validate Stapp’s route to our shared conclusion. One
simply cannot arrive at a Bell Inequality (or the corre-
sponding logical contradiction arrived at in the context
of Hardy’s Theorem) if one rules out any assumption of
hidden-variables or counterfactual-definiteness and thus
restricts the discussion to actual measurement results.

The reason such a restriction precludes a valid non-
locality proof is straightforward. In any particular run
of the experiment, only one measurement can actually
be performed in each wing. There are, thus, two and
only two actual measurement outcomes to work with.
But any such pair of outcomes can always and trivially
be accounted for locally – namely, by simply asserting
that the measurements revealed locally pre-existing val-
ues for the observables in question. Of course, one is then
no longer talking about orthodox quantum theory but,
rather, about some kind of local hidden-variable theory.
But if one has decided to focus exclusively on measure-
ment outcomes (and not on the specific theories which
predict those outcomes), this is a distinction without a
difference and no nonlocality can be established.

One might also allow talk of the relative frequencies
with which various outcomes appear. It would then be
possible to define locality by the insistence that the rel-
ative frequency of a given outcome on one side (say, B)
not be affected by the freely chosen setting (â) on the
other side. In our terminology, this condition would read

P (B|â, b̂) = P (B|â′, b̂) (20)

where

P (B|â, b̂) =
∑

λ∈Λψ

∑

A=±1

P (A,B|â, b̂, λ) Pψ(λ), (21)

â and â′ are two different possible (freely-choosable) set-
tings of the apparatus on the left, and Pψ(λ) is the prob-
ability that the preparation procedure produces the par-
ticular state λ. This condition is called Signal Locality
because its violation would permit Alice to send super-
luminal signals to Bob. It is well known that orthodox
quantum theory does not violate Signal Locality. [27]
Moreover, since the condition refers only to relative fre-
quencies of outcomes, all theories which share the same
empirical predictions as orthodox quantum theory (for
example, Bohmian Mechanics) also respect Signal Local-
ity.

Either way, so long as one restricts one’s analysis to
exclusively observable phenomena, there is no hope of
establishing nonlocality. And this is the deepest reason
that Stapp’s project fails. In his original paper, Stapp de-
fines locality as follows: “no free choice can influence ob-
servable phenomena lying outside its forward light cone”.
[11] But for the reasons just indicated, this definition

(which is apparently equivalent to Signal Locality) is too
weak. It is impossible to establish the reality of a viola-
tion of this sort of locality.

Stapp attempts to get around this difficulty by us-
ing, in his actual proof, a stronger definition of locality.
(Thus, he regards the fact that the truth of his state-
ment S depends on a distant free choice, as establishing
a violation of locality even though S – a counterfactual
conditional – is not an “observable phenomenon”.) And
this stronger definition of locality is precisely what his
critics have criticized: the stronger definition “can be in-
terpreted as assigning an unwarranted level of reality to
the value of certain quantum attributes.” [14] That is,
it doesn’t comport with the positivist or phenomenalist
approach of the orthodox quantum philosophy.

Stapp repeatedly stresses that “all the assumptions
used in [his] proof are elements of orthodox quantum phi-
losophy”. [28] At root, then, it is Stapp’s allegiance to
this philosophy which prevents him from constructing a
valid proof. The conclusion he wants to establish (which
is about causality, not merely the ability to send signals)
is, according to that positivist philosophy, off the table
from the very beginning.

The phenomenalist attitude of the orthodox quantum
philosophy also invites the identification of quantum the-
ory with any theory sharing its empirical predictions.
Stapp’s acceptance of this philosophy then leads to a
recurring confusion between two different goals: show-
ing that quantum theory itself is nonlocal, and showing
that any theory sharing quantum theory’s empirical pre-
dictions must be nonlocal. For example, despite appar-
ently attempting to show that some sort of nonlocality
is required by the quantum mechanical predictions (i.e.,
required of any theory which shares those predictions),
Stapp titles his paper “Nonlocal character of quantum
theory.”

In fact, though, establishing the nonlocal character of
orthodox quantum theory is easy: once (an appropri-
ately strong sense of) locality is defined precisely (as in
Section II), it is a trivial observation that the orthodox
theory (where λ is simply ψ) fails to respect Equation
(3) and hence is not local. The difficult assignment is to
show not just that orthodox quantum theory is nonlocal,
but that this nonlocality is ineliminable – that no Bell
Local theory can share the quantum mechanical predic-
tions (or, equivalently, can match experiment). Stapp’s
allegiance to the orthodox quantum philosophy thus en-
sures in advance that his project cannot succeed: when
he inevitably slides over from the easy assignment to the
hard assignment, he necessarily goes beyond standard
quantum theory and thus leaves himself open to the ob-
jection that he is “assigning an unwarranted level of real-
ity to” certain things. Given his expressed premises, this
objection is unavoidable and completely fatal.

Stapp once described his project as follows: “The non-
locality that I claim to exhibit is completely compatible
with the locality properties of relativity theory, which, in
a quantum context, pertain only to features of our obser-
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vations, not to features of a putative underlying reality.”
[28] Since the empirical predictions of quantum theory
respect Signal Locality, there is no way to “exhibit” any
nonlocality at the level of “our observations.” It simply
cannot be done. But if, motivated by the orthodox quan-
tum philosophy, one excludes from the beginning any
talk about the “features of a putative underlying reality”,
then there is literally nothing else – that is, no other sense
of locality – to discuss. The vague anti-realism of the or-
thodox quantum philosophy thus seems to rule out the
very kind of talk that is absolutely required to show that
nature violates some locality condition – namely, talk of
nature! But orthodox quantum theory better commit to
a realistic description of something. Otherwise – that
is, if one retreats to an exclusively epistemological in-
terpretation of quantum theory in general and the wave
function in particular – one simply no longer has a theory
in the sense defined in Section II. It is then meaningless
to discuss whether the causal processes posited by the
“theory” respect relativity’s prohibitions on superlumi-
nal causation. A formalism which is not about any such
processes is neither local nor nonlocal. Both terms are
simply inapplicable. [29]

One can start to see the shiftiness of the orthodox
quantum philosophy which led Bell to describe it as “un-
professionally vague and ambiguous.”[1, pg 173] Ulti-
mately, it is Stapp’s acceptance of this philosophy which
undercuts his attempt to exhibit nonlocality. Specifically,
it prevents him from (a) clearly noting the nonlocality
that is already present in the orthodox theory, and (b)
from even considering the types of theories that might
have been thought to have provided a local explanation
of the correlations in question.

In the alternative to Stapp’s approach advocated by
Bell and elaborated here, we begin not with an arbitrary
allegiance to the orthodox quantum philosophy, but with
a straightforward, mathematically precise definition of
locality, motivated exclusively by relativity theory. We
then ask: is there a theory which respects this locality
condition and which is consistent with what we know
from experiment about the correlations between distant
particles (prepared in a certain way)? The answer turns
out to be no. To see this, it is helpful to break the ques-
tion into two stages:

1. What structure must a theory have if it is to respect
the locality condition and successfully match a cer-
tain set of empirical facts? The precise answer to
this question was provided in Section III above.

2. Is a theory with this structure consistent with all
of the other empirical facts? The answer to this

question is given by Bell’s Theorem in its original
version: no.

The main strength of this two-step approach is simply
that it permits an interesting, yet unambiguous, conclu-
sion: No Bell Local theory can be empirically viable.

Of course, one could always assert that the conclusion
isn’t, appearances to the contrary notwithstanding, all
that interesting, since Bell Locality isn’t a correct formal-
ization of relativity’s prohibition on superluminal causa-
tion. One possible argument for this view would be that
orthodox quantum theory violates Bell Locality: if one
insists on remaining faithful to the orthodox philosophy
(and ensuring that quantum theory doesn’t turn out to
be nonlocal) then Bell Locality can’t be the “right” defi-
nition of locality.

That argument is too obviously question-begging to
deserve attention. Is there some more reasonable ob-
jection that could be given against the apparent appro-
priateness of Bell Locality? Perhaps. But Bell’s case –
elaborated in Section II above – is, on its face, sufficiently
plausible that the burden of proof should lie with those
who reject this locality condition. If Bell Locality isn’t
a good formalization of “relativistic causality”, why not?
And what is?

Until and unless such questions can be answered, we
must evidently agree with Bell that there exists an “in-
compatibility, at the deepest level, between the two fun-
damental pillars of contemporary theory...” [1, pg 172]
No Bell Local theory can account for the empirically ver-
ified predictions of quantum theory. Nature is not Bell
Local.

And, to return to the question of the hidden variables
program with which we began, this surely means that the
use of Bell’s Theorem against Bohmian Mechanics (by
the “second camp”) is fundamentally misguided. First,
orthodox quantum theory itself violates Bell Locality, so
the fact that hidden variable theories like Bohm’s vio-
late it as well is no argument in support of the standard
theory. There simply is no Bell Local theory that is in
agreement with experiment, so it is ridiculous to reject
any one particular theory (which does agree with exper-
iment!) merely on the grounds that it violates Bell Lo-
cality. Second, and fundamentally, even leaving aside the
question of the appropriateness of Bell Locality (as a for-
malization of relativistic causality), it is an inescapable
(just, perhaps, uninteresting) fact that the failure of Bell
Locality is a real feature of the world. So it can hardly
be a valid objection against Bohmian Mechanics that it
feature this feature.
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