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1 The complex numbers

Proposition 1.1 The complex conjugation has the

following properties:

(a) z + w = z + w,

(b) zw = z w,

(c) z−1 = z−1, or
(

z
w

)

= z
w ,

(d) z = z,

(e) z + z = 2Re(z), and z − z = 2iIm(z).
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Proposition 1.2 The absolute value satisfies:

(a) |z| = 0 ⇔ z = 0,

(b) |zw| = |z||w|,

(c) |z| = |z|,

(d) |z−1| = |z|−1,

(e) |z + w| ≤ |z|+ |w|, (triangle inequality).

Proposition 1.3 A subset A ⊂ C is closed iff for every

sequence (an) in A that converges in C the limit

a = limn→∞ an also belongs to A.

We say that A contains all its limit points.
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Proposition 1.4 Let O denote the system of all open sets

in C. Then

(a) ∅ ∈ O, C ∈ O,

(b) A, B ∈ O ⇒ A ∩B ∈ O,

(c) Ai ∈ O for every i ∈ I implies
⋃

i∈I Ai ∈ O.

Proposition 1.5 For a subset K ⊂ C the following are

equivalent:

(a) K is compact.

(b) Every sequence (zn) in K has a convergent subsequence

with limit in K.
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Theorem 1.6 Let S ⊂ C be compact and f : S → C be

continuous. Then

(a) f(S) is compact, and

(b) there are z1, z2 ∈ S such that for every z ∈ S,

|f(z1)| ≤ |f(z)| ≤ |f(z2)|.



COMPLEX ANALYSIS 7

2 Holomorphy

Proposition 2.1 Let D ⊂ C be open. If f, g are

holomorphic in D, then so are λf for λ ∈ C, f + g, and fg.

We have

(λf)′ = λf ′, (f + g)′ = f ′ + g′,

(fg)′ = f ′g + fg′.

Let f be holomorphic on D and g be holomorphic on E,

where f(D) ⊂ E. Then g ◦ f is holomorphic on D and

(g ◦ f)′(z) = g′(f(z))f ′(z).

Finally, if f is holomorphic on D and f(z) 6= 0 for every

z ∈ D, then 1
f

is holomorphic on D with

(
1

f
)′(z) = −

f ′(z)

f(z)2
.
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Theorem 2.2 (Cauchy-Riemann Equations)

Let f = u + iv be complex differentiable at z = x + iy. Then

the partial derivatives ux, uy, vx, vy all exist and satisfy

ux = vy, uy = −vx.

Proposition 2.3 Suppose f is holomorphic on a disk D.

(a) If f ′ = 0 in D, then f is constant.

(b) If |f | is constant, then f is constant.
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3 Power Series

Proposition 3.1 Let (an) be a sequence of complex

numbers.

(a) Suppose that
∑

an converges. Then the sequence (an)

tends to zero. In particular, the sequence (an) is bounded.

(b) If
∑

|an| converges, then
∑

an converges. In this case we

say that
∑

an converges absolutely.

(c) If the series
∑

bn converges with bn ≥ 0 and if there is an

α > 0 such that bn ≥ α|an|, then the series
∑

an

converges absolutely.
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Proposition 3.2 If a powers series
∑

cnz
n converges for

some z = z0, then it converges absolutely for every z ∈ C

with |z| < |z0|. Consequently, there is an element R of the

interval [0,∞] such that

(a) for every |z| < R the series
∑

cnz
n converges absolutely,

and

(b) for every |z| > R the series
∑

cnz
n is divergent.

The number R is called the radius of convergence of the

power series
∑

cnz
n.

For every 0 ≤ r < R the series converges uniformly on the

closed disk Dr(0).

Lemma 3.3 The power series
∑

n cnz
n and

∑

n cnnzn−1

have the same radius of convergence.
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Theorem 3.4 Let
∑

n cnz
n have radius of convergence

R > 0. Define f by

f(z) =
∞

∑

n=0

cnz
n, |z| < R.

Then f is holomorphic on the disk DR(0) and

f ′(z) =
∞

∑

n=0

cnnzn−1, |z| < R.

Proposition 3.5 Every rational function p(z)
q(z), p, q ∈ C[z],

can be written as a convergent power series around z0 ∈ C if

q(z0) 6= 0.

Lemma 3.6 There are polynomials g1, . . . gn with

1
∏n

j=1(z − λj)
nj

=
n

∑

j=1

gj(z)

(z − λj)
nj

.
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Theorem 3.7

(a) ez is holomorphic in C and

∂

∂z
ez = ez.

(b) For all z, w ∈ C we have

ez+w = ezew.

(c) ez 6= 0 for every z ∈ C and ez > 0 if z is real.

(d) |ez| = eRe(z), so in particular |eiy| = 1.
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Proposition 3.8 The power series

cos z =
∞

∑

n=0

(−1)n
z2n

(2n)!
, sin z =

∞
∑

n=0

(−1)n
z2n+1

(2n + 1)!

converge for every z ∈ C. We have

∂

∂z
cos z = − sin z,

∂

∂z
sin z = cos z,

as well as

eiz = cos z + i sin z,

cos z =
1

2
(eiz + e−iz), sin z =

1

2i
(eiz − e−iz).

Proposition 3.9 We have

ez+2πi = ez

and consequently,

cos(z + 2π) = cos z, sin(z + 2π) = sin z

for every z ∈ C. Further, ez+α = ez holds for every z ∈ C iff

it holds for one z ∈ C iff α ∈ 2πiZ.
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4 Path Integrals

Theorem 4.1 Let γ be a path and let γ̃ be a

reparametrization of γ. Then
∫

γ

f(z)dz =

∫

γ̃

f(z)dz.

Theorem 4.2 (Fundamental Theorem of Calculus)

Suppose that γ : [a, b] → D is a path and F is holomorphic

on D, and that F ′ is continuous. Then
∫

γ

F ′(z)dz = F (γ(b))− F (γ(a)).
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Proposition 4.3 Let γ : [a, b] → C be a path and

f : Im(γ) → C continuous. Then
∣

∣

∣

∣

∫

γ

f(z)dz

∣

∣

∣

∣

≤

∫ b

a

|f(γ(t))γ′(t)| dt.

In particular, if |f(z)| ≤ M for some M > 0, then
∣

∣

∣

∫

γ f(z)dz
∣

∣

∣
≤ M length(γ).

Theorem 4.4 Let γ be a path and let f1, f2, . . . be

continuous on γ∗. Assume that the sequence fn converges

uniformly to f . Then
∫

γ

fn(z)dz →

∫

γ

f(z)dz.

Proposition 4.5 Let D ⊂ C be open. Then D is

connected iff it is path connected.
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Proposition 4.6 Let f : D → C be holomorphic where D

is a region. If f ′ = 0, then f is constant.
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5 Cauchy’s Theorem

Proposition 5.1 Let γ be a path. Let σ be a path with the

same image but with reversed orientation. Let f be

continuous on γ∗. Then
∫

σ

f(z)dz = −

∫

γ

f(z)dz.

Theorem 5.2 (Cauchy’s Theorem for triangles)

Let γ be a triangle and let f be holomorphic on an open set

that contains γ and the interior of γ. Then
∫

γ

f(z)dz = 0.
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Theorem 5.3 (Fundamental theorem of Calculus II)

Let f be holomorphic on the star shaped region D. Let z0 be

a central point of D. Define

F (z) =

∫ z

z0

f(ζ)dζ,

where the integral is the path integral along the line segment

[z0, z]. Then F is holomorphic on D and

F ′ = f.

Theorem 5.4 (Cauchy’s Theorem for ?-shaped D)

Let D be star shaped and let f be holomorphic on D. Then

for every closed path γ in D we have
∫

γ

f(z)dz = 0.



COMPLEX ANALYSIS 19

6 Homotopy

Theorem 6.1 Let D be a region and f holomorphic on D.

If γ and γ̃ are homotopic closed paths in D, then
∫

γ

f(z)dz =

∫

γ̃

f(z)dz.

Theorem 6.2 (Cauchy’s Theorem)

Let D be a simply connected region and f holomorphic on

D. Then for every closed path γ in D we have
∫

γ

f(z)dz = 0.
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Theorem 6.3 Let D be a simply connected region and let

f be holomorphic on D. Then f has a primitive, i.e., there is

F ∈ Hol(D) such that

F ′ = f.

Theorem 6.4 Let D be a simply connected region that

does not contain zero. Then there is a function f ∈ Hol(D)

such that ef(z) = z for each z ∈ D and
∫ z

z0

1

w
dw = f(z)− f(z0), z, z0 ∈ D.

The function f is uniquely determined up to adding 2πik for

some k ∈ Z. Every such function is called a holomorphic

logarithm for D.
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Theorem 6.5 Let D be simply connected and let g be

holomorphic on D. [Assume that also the derivative g′ is

holomorphic on D.] Suppose that g has no zeros in D. Then

there exists f ∈ Hol(D) such that

g = ef .

The function f is uniquely determined up to adding a

constant of the form 2πik for some k ∈ Z. Every such

function f is called a holomorphic logarithm of g.

Proposition 6.6 Let D be a region and g ∈ Hol(D). Let

f : D → C be continuous with ef = g. then f is

holomorphic, indeed it is a holomorphic logarithm for g.
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Proposition 6.7 (standard branch of the logarithm)

The function

log(z) = log(reiθ) = logR(r) + iθ,

where r > 0, logR is the real logarithm and −π < θ < π, is a

holomorphic logarithm for C \ (−∞, 0]. The same formula

for, say, 0 < θ < 2π gives a holomorphic logarithm for

C \ [0,∞).

More generally, for any simply connected D that does not

contain zero any holomorphic logarithm is of the form

logD(z) = logR(|z|) + iθ(z),

where θ is a continuous function on D with θ(z) ∈ arg(z).
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Proposition 6.8 For |z| < 1 we have

log(1− z) = −
∞

∑

n=1

zn

n
,

or, for |w − 1| < 1 we have

log(w) = −
∞

∑

n=1

(1− w)n

n
.

Theorem 6.9 Let γ : [a, b] → C be a closed path with

0 /∈ γ∗. Then n(γ, 0) is an integer.



COMPLEX ANALYSIS 24

Theorem 6.10 Let D be a region. The following are

equivalent:

(a) D is simply connected,

(b) n(γ, z) = 0 for every z /∈ D, γ closed path in D,

(c)
∫

γ f(z)dz = 0 for every closed path γ in D and every

f ∈ Hol(D),

(d) every f ∈ Hol(D) has a primitive,

(e) every f ∈ Hol(D) without zeros has a holomorphic

logarithm.
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7 Cauchy’s Integral Formula

Theorem 7.1 (Cauchy’s integral formula)

Let D be an open disk an let f be holomorphic in a

neighbourhood of the closure D̄. Then for every z ∈ D we

have

f(z) =
1

2πi

∫

∂D

f(w)

w − z
dw.

Theorem 7.2 (Liouville’s theorem)

Let f be holomorphic and bounded on C. Then f is constant.

Theorem 7.3 (Fundamental theorem of algebra)

Every non-constant polynomial with complex coefficients has

a zero in C.
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Theorem 7.4 Let D be a disk and f holomorphic in a

neighbourhood of D̄. Let z ∈ D. Then all higher derivatives

f (n)(z) exist and satisfy

f (n)(z) =
n!

2πi

∫

∂D

f(w)

(w − z)n+1
dw.

Corollary 7.5 Suppose f is holomorphic in an open set D.

Then f has holomorphic derivatives of all orders.

Theorem 7.6 (Morera’s Theorem)

Suppose f is continuous on the open set D ⊂ C and that
∫

4 f(w)dw = 0 for every triangle 4 which together with its

interior lies in D. Then f ∈ Hol(D).
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Theorem 7.7 Let a ∈ C. Let f be holomorphic in the disk

D = DR(a) for some R > 0. Then there exist cn ∈ C such

that for z ∈ D the function f can be represented by the

following convergent power series,

f(z) =
∞

∑

n=0

cn(z − a)n.

The constants cn are given by

cn =
1

2πi

∫

∂Dr(a)

f(w)

(w − a)n+1
dw =

f (n)(a)

n!
,

for every 0 < r < R.
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Proposition 7.8 Let f(z) =
∑∞

n=0 anz
n and

g(z) =
∑∞

n=0 bnz
n be complex power series with radii of

convergence R1, R2. Then the power series

h(z) =
∞

∑

n=0

cnz
n, where cn =

n
∑

k=0

akbn−k

has radius of convergence at least R = min(R1, R2) and

h(z) = f(z)g(z) for |z| < R.
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Theorem 7.9 (Identity theorem for power series)

Let f(z) =
∑∞

n=0 cn(z − z0)
n be a power series with radius of

convergence R > 0. Suppose that there is a sequence zj ∈ C

with 0 < |zj| < R and zj → z0 as j →∞, as well as

f(zj) = 0. Then cn = 0 for every n ≥ 0.

Corollary 7.10 (Identity theorem for holomorphic

functions)

Let D be a region. If two holomorphic functions f, g on D

coincide on a set A ⊂ D that has a limit point in D, then

f = g.
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Theorem 7.11 (Local maximum principle)

Let f be holomorphic on the disk D = DR(a), a ∈ C, R > 0.

If |f(z)| ≤ |f(a)| for every z ∈ D, then f is constant.

“A holomorphic function has no proper local maximum.”

Theorem 7.12 (Global maximum principle)

Let f be holomorphic on the bounded region D and

continuous on D̄. Then |f | attains its maximum on the

boundary ∂D = D̄ \D.
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8 Singularities

Theorem 8.1 (Laurent expansion)

Let a ∈ C, 0 < R < S and let

A = {z ∈ C : R < |z − a| < S}.

Let f ∈ Hol(A). For z ∈ A we have the absolutely

convergent expansion (Laurent series):

f(z) =

∞
∑

n=−∞

cn(z − a)n,

where

cn =
1

2πi

∫

∂Dr(a)

f(w)

(w − a)n+1
dw

for every R < r < S.
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Proposition 8.2 Let a ∈ C, 0 < R < S and let

A = {z ∈ C : R < |z − a| < S}.

Let f ∈ Hol(A) and assume that

f(z) =
∞

∑

n=−∞

bn(z − a)n.

Then bn = cn for all n, where cn is as in Theorem 8.1.
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Theorem 8.3

(a) Let f ∈ Hol(Dr(a)). Then f has a zero of order k at a iff

lim
z→a

(z − a)−kf(z) = c,

where c 6= 0.

(b) Let f ∈ Hol(D′
r(a)). Then f has a pole of order k at a iff

lim
z→a

(z − a)kf(z) = d,

where d 6= 0.

Corollary 8.4 Suppose f is holomorphic in a disk Dr(a).

Then f has a zero of order k at a if and only if 1
f

has a pole

of order k at a.
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9 The Residue Theorem

Lemma 9.1 Let D be simply connected and bounded. Let

a ∈ D and let f be holomorphic in D \ {a}. Assume that f

extends continuously to ∂D. Let

f(z) =
∞

∑

n=−∞

cn(z − a)n

be the Laurent expansion of f around a. Then
∫

∂D

f(z)dz = 2πi c−1.

Theorem 9.2 (Residue Theorem)

Let D be simply connected and bounded. Let f be

holomorphic on D except for finitely many points

a1, . . . , an ∈ D. Assume that f extends continuously to ∂D.

Then
∫

∂D

f(z)dz = 2πi

n
∑

k=1

resz=ak
f(z) = 2πi

∑

z∈D

reszf(z).
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Proposition 9.3 Let f(z) = p(z)
q(z)

, where p, q are

polynomials. Assume that q has no zero on R and that

1 + deg p < deg q. Then
∫ ∞

−∞

f(x)dx = 2πi
∑

z:Im(z)>0

reszf(z).

Theorem 9.4 (Counting zeros and poles)

Let D be simply connected and bounded. Let f be

holomorphic in a neighbourhood of D̄, except for finitely

many poles in D. Suppose that f is non-zero on ∂D. Then

1

2πi

∫

∂D

f ′(z)

f(z)
dz =

∑

z∈D

ordzf(z) = N − P,

where N is the number of zeros of f , counted with

multiplicity, and P is the number of poles of f , counted with

multiplicity.
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Theorem 9.5 (Rouché)

Let D be simply connected and bounded. Let f, g be

holomorphic in D̄ and suppose that |f(z)| > |g(z)| on ∂D.

Then f and f + g have the same number of zeros in D,

counted with multiplicities.

Lemma 9.6 If f has a simple pole at z0, then

resz0f(z) = lim
z→z0

(z − z0)f(z).

If f has a pole at z0 of order k > 1. then

resz0f(z) =
1

(k − 1)!
g(k−1)(z0),

where g(z) = (z − z0)
kf(z).
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Lemma 9.7 Let f have a simple pole at z0 of residue c. For

ε > 0 let

γε(t) = z0 + εeit, t ∈ [t1, t2],

where 0 ≤ t1 < t2 ≤ 2π. Then

lim
ε→o

∫

γε

f(z)dz = ic(t2 − t1).

Proposition 9.8
∫ ∞

0

sin x

x
dx =

π

2
.
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10 Construction of functions

Lemma 10.1 If
∏

j zj exists and is not zero, then zn → 1.

Proposition 10.2 The product
∏

j zj converges to a

non-zero number z ∈ C if and only if the sum
∑∞

j=1 log zj

converges. In that case we have

exp(





∞
∑

j=1

log zj



 =
∏

j

zj = z.

Proposition 10.3 The sum
∑

n log zn converges absolutely

if and only if the sum
∑

n(zn − 1) converges absolutely.
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Lemma 10.4 If |z| ≤ 1 and p ≥ 0 then

|Ep(z)− 1| ≤ |z|p+1.

Theorem 10.5 Let (an) be a sequence of complex numbers

such that |an| → ∞ as n →∞ and an 6= 0 for all n. If pn is

a sequence of integers ≥ 0 such that
∞

∑

n=1

(

r

|an|

)pn+1

< ∞

for every r > 0, then

f(z) =
∞
∏

n=1

Epn

(

z

an

)

converges and is an entire function (=holomorphic on entire

C) with zeros exactly at the points an. The order of a zero at

a equals the number of times a occurs as one of the an.
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Corollary 10.6 Let (an) be a sequence in C that tends to

infinity. Then there exists an entire function that has zeros

exactly at the an.
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Theorem 10.7 (Weierstraß Factorization Theorem)

Let f be an entire function. Let an be the sequence of zeros

repeated with multiplicity. Then there is an entire function g

and a sequence pn ≥ 0 such that

f(z) = zmeg(z)
∏

n

Epn

(

z

an

)

.

Theorem 10.8 Let D be a region and let (aj) be a

sequence in D with no limit point in D. then there is a

holomorphic function f on D whose zeros are precisely the aj

with the multiplicities of the occurrence.

Theorem 10.9 For every principal parts distribution (hn)

on C there is a meromorphic function f on C with the given

principal parts.
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Theorem 10.10 Let f ∈ Mer(C) with principal parts (hn).

then there are polynomials pn such that

f = g +
∑

n

(hn − pn)

for some entire function g.



COMPLEX ANALYSIS 43

Theorem 10.11 For every z ∈ C we have

π cot πz =
1

z
+

∞
∑

n=1

(

1

z + n
+

1

z − n

)

=
1

z
+

∞
∑

n=1

(

2z

z2 − n2

)

and the sum converges locally uniformly in C \ Z.

Lemma 10.12 If f ∈ Hol(D) for a region D and if

f(z) =
∞
∏

n=1

fn(z),

where the product converges locally uniformly, then

f ′(z)

f(z)
=

∞
∑

n=1

f ′n(z)

fn(z)
,

and the sum converges locally uniformly in D \ {zeros of f}.
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Theorem 10.13

sin πz = πz

∞
∏

n=1

(

1−
z2

n2

)

.
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11 Gamma & Zeta

Proposition 11.1 The Gamma function extends to a

holomorphic function on C \ {0,−1,−2, . . . }. At z = −k it

has a simple pole of residue (−1)k/k!.

Theorem 11.2 The Γ-function satisfies

Γ(z) =
e−γz

z

∞
∏

j=1

(1 +
z

j
)−1ez/j.

Theorem 11.3

Γ′

Γ
(z) = −γ −

1

z
+

∞
∑

n=1

z

n(n + z)
.
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Theorem 11.4 The function ζ(s) extends to a

meromorphic function on C with a simple pole of residue 1 at

s = 1 and is holomorphic elsewhere.

Theorem 11.5 The Riemann zeta function satisfies

ζ(s) =
∏

p prime

(1− p−s)−1

We have the functional equation

ζ(1− s) = (2π)−s cos(
πs

2
)Γ(s)ζ(s).

ζ(s) has no zeros in Re(s) > 1. It has zeros at

s = −2,−4,−6, . . . called the trivial zeros. All other zeros

lie in 0 ≤ Re(s) ≤ 1.
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12 The upper half plane

Theorem 12.1 Every biholomorphic automorphism of H is

of the form z 7→ g.z for some g ∈ SL2(R).

Lemma 12.2 (Schwarz’s Lemma)

Let D = D1(0) and let f ∈ Hol(D). Suppose that

(a) |f(z)| ≤ 1 for z ∈ D,

(b) f(0) = 0.

Then |f ′(0)| ≤ 1 and |f(z)| ≤ |z| for every z ∈ D. Moreover,

if |f ′(0)| = 1 or if |f(z)| = |z| for some z ∈ D, z 6= 0, then

there is a constant c, |c| = 1 such that f(z) = cz for every

z ∈ D.
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Proposition 12.3 If |a| < 1, then φa is a biholomorphic

map of D onto itself. It is self-inverse, i.e., φaφa = Id.

Theorem 12.4 Let f : D → D be holomorphic and

bijective with f(a) = 0. Then there is a c ∈ C with |c| = 1

such that f = cφa.

Lemma 12.5 The map τ (z) = z−i
z+i

maps H

biholomorphically to D. Its inverse is τ−1(w) = iw+1
w−1

.
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Proposition 12.6 F is a fundamental domain for the

action of Γ on H. This means

(a) For every z ∈ H there is γ ∈ Γ such that γz ∈ F .

(b) If z, w ∈ F , z 6= w and there is γ ∈ Γ with γz = w, then

z, w ∈ ∂F .

Proposition 12.7 Let k > 1. The Eisenstein series Gk(z)

is a modular form of weight 2k. We have Gk(∞) = 2ζ(2k),

where ζ is the Riemann zeta function.

Theorem 12.8 Let f 6= 0 be a modular form of weight 2k.

Then

v∞(f) +
∑

z∈Γ\H

1

ez
vz(f) =

k

6
.
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13 Conformal mappings

Theorem 13.1 Let D be a region and f : D → C a map.

Let z0 ∈ D. If f ′(z0) exists and f ′(z0) 6= 0, then f preserves

angles at z0.

Lemma 13.2 If f ∈ Hol(D) and η is defined on D ×D by

η(z, w) =

{

f(z)−f(w)
z−w

w 6= z,

f ′(z) w = z,

then η is continuous.
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Theorem 13.3 Let f ∈ Hol(D), z0 ∈ D and f ′(z0) 6= 0.

then D contains a neighbourhood V of z0 such that

(a) f is injective on V ,

(b) W = f(V ) is open,

(c) if g : W → V is defined by g(f(z)) = z, then

g ∈ Hol(W ).

Theorem 13.4 Let D be a region, f ∈ Hol(D).

non-constant, z0 ∈ D and w0 = f(z0). Let m be the order of

the zero of f(z)− w0 at z0.

then there exists a neighbourhood V of z0, V ⊂ D, and

ϕ ∈ Hol(D), such that

(a) f(z) = z0 + ϕ(z)m,

(b) ϕ′ has no zero in V and is an invertible mapping of V

onto a disk Dr(0).
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Theorem 13.5 Let D be a region, f ∈ Hol(D), f injective.

Then for every z ∈ D we have f ′(z) 6= 0 and the inverse of f

is holomorphic.

Theorem 13.6 Let F ⊂ Hol(D) and assume that F is

uniformly bounded on every compact subset of D. Then F is

normal.

Theorem 13.7 (Riemann mapping theorem)

Every simply connected region D 6= C is conformally

equivalent to the unit disk D.
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14 Simple connectedness

Theorem 14.1 Let D be a region. The following are

equivalent:

(a) D is simply connected,

(b) n(γ, z) = 0 for every z /∈ D, γ closed path in D,

(c) Ĉ \D is connected,

(d) For every f ∈ Hol(D) there exists a sequence of

polynomials pn that converges to f locally uniformly,

(e)
∫

γ f(z)dz = 0 for every closed path γ in D and every

f ∈ Hol(D),

(f) every f ∈ Hol(D) has a primitive,

(g) every f ∈ Hol(D) without zeros has a holomorphic

logarithm,

(h) every f ∈ Hol(D) without zeros has a holomorphic square

root,

(i) either D = C or there is a biholomorphic map f : D → D,

(j) D is homeomorphic to the unit disk D.


