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COMPLEX ANALYSIS

1 The complex numbers

Proposition 1.1 The complex conjugation has the

following properties:

(a) z+w=Z+w,

(b) zw=zw,

@ Tl @) -2

(d) z=2

(e) z+7Z=2Re(z), and z — Z = 2ilm(z).
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Proposition 1.2 The absolute value satisfies:

z4+w| < |z|+ |w|, (triangle inequality).

Proposition 1.3 A subset A C C is closed iff for every
sequence (a,) in A that converges in C the limit
a = lim,_, a, also belongs to A.

We say that A contains all its limit points.
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Proposition 1.4 Let O denote the system of all open sets
in C. Then

(a) e, CeO,

(bh) A, BeO = ANBeO,

(c) A; € O forevery i€ [ implies | J,.; 4 € O.

Proposition 1.5 For a subset K C C the following are
equivalent:
(a) K is compact.

(b) Every sequence (z,) in K has a convergent subsequence
with limit in K.
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Theorem 1.6 Let S C C be compact and f: S — C be

continuous. Then

(a) f(S) is compact, and

(b) there are 21, 29 € S such that for every z € S,

[f(z)] < [f(2)] < [f(z)].
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2 Holomorphy

Proposition 2.1 Let D C C be open. If f, g are
holomorphic in D, then so are A\f for A € C, f + ¢, and fg.
We have

M) = A (f+9) = f+4,

(f9)' = flg+fq.
Let f be holomorphic on D and g be holomorphic on E,
where f(D) C E. Then g o f is holomorphic on D and

(go f)(2) = d(f(2)f (2).

Finally, if f is holomorphic on D and f(z) # 0 for every

z € D, then 1 is holomorphic on D with

f
Lo e
(36 =~
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Theorem 2.2 (Cauchy-Riemann Equations)
Let f = u 4+ 1v be complex differentiable at z = x 4+ t7y. Then

the partial derivatives u,, u,, v,, v, all exist and satisty

’U;x — Uy7 Uy — _vx-

Proposition 2.3 Suppose f is holomorphic on a disk D.

(a) If f/=01in D, then f is constant.

(b) If |f] is constant, then f is constant.
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3 Power Series

Proposition 3.1 Let (a,) be a sequence of complex

numbers.

(a) Suppose that ) a, converges. Then the sequence (a,,)

tends to zero. In particular, the sequence (a,,) is bounded.

(b) If > |ay| converges, then > a,, converges. In this case we

say that ) a, converges absolutely.

(¢c) If the series ) b, converges with b, > 0 and if there is an
a > 0 such that b, > ala,|, then the series ) a,

converges absolutely.



COMPLEX ANALYSIS 10

Proposition 3.2 If a powers series » | ¢,2" converges for
some z = zg, then it converges absolutely for every z € C
with |z| < |zg]. Consequently, there is an element R of the

interval [0, oo] such that
(a) for every |z| < R the series > ¢,z converges absolutely,
and
(b) for every |z| > R the series > ¢,2" is divergent.
The number R is called the radius of convergence of the
power series Y ¢,2".

For every 0 < r < R the series converges uniformly on the
closed disk D,(0).

Lemma 3.3 The power series Y ¢,2" and Y ¢,nz""!

have the same radius of convergence.
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Theorem 3.4 Let ) c¢,2" have radius of convergence
R > 0. Define f by

f(z) = chz", z| < R.
n=0
Then f is holomorphic on the disk Dy (0) and
f'(z) = chnz”_l, z| < R.
n=0

Proposition 3.5 Every rational function E g, p,q € C|z],

can be written as a convergent power series around zy € C it

q(z9) # 0.

Lemma 3.6 There are polynomials g1, ... g, with

n

1 B 9;(2)
[Tz =A)m 2 (2= XA)m

J=1
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Theorem 3.7

(a) €* is holomorphic in C and

a z z
—e* = ¢~
0z
(b) For all z,w € C we have
€z+w — efeV

(c) €*#0forevery z € C and e* > 0 if z is real.

(d) |e?| = eR*®) 5o in particular |e?| = 1.

12
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Proposition 3.8 The power series
2n+1

- n Z2n . - n <
Cosz = nz:%(—l) on)l sinz = nz:%(—l) on 11

converge for every z € C. We have

0 . o .
—COoSz = —s8inz, —sinz = cosz
0z ' 0z ’
as well as
e” = cosz+isinz,
1 12 —12 : 1 12 —12
cosz ==(e“+e ), sinz = —(e” —e ).
2 21
Proposition 3.9 We have
€z+2m —
and consequently,
cos(z +2m) = cosz, sin(z+27w) = sinz

13

for every z € C. Further, et = ¢€* holds for every z € C iff

it holds for one z € C iff a € 2miZ.
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4 Path Integrals

Theorem 4.1 Let v be a path and let v be a

reparametrization of . Then

L flz)dz = L f(2)dz.

Theorem 4.2 (Fundamental Theorem of Calculus)
Suppose that 7 : [a,b] — D is a path and F' is holomorphic

on D, and that F’ is continuous. Then

/ Fl(z)dz = F((b)) — F(1(a))
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Proposition 4.3 Let v : |a,b] — C be a path and
f :Im(vy) — C continuous. Then

b
[ 1 < [ 6o ol

In particular, if |f(2)] < M for some M > 0, then
‘f7 f(z)dz‘ < Mlength(7).

Theorem 4.4 Let v be a path and let fi, fo,... be
continuous on v*. Assume that the sequence f, converges

uniformly to f. Then

QAh@MZH AﬂdM-

Proposition 4.5 Let D C C be open. Then D is

connected iff it is path connected.
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Proposition 4.6 Let f : D — C be holomorphic where D

is a region. If f/ =0, then f is constant.
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5 Cauchy’s Theorem

Proposition 5.1 Let v be a path. Let o be a path with the
same image but with reversed orientation. Let f be

continuous on v*. Then

/Of(z)dz = —Lf(z)dz.

Theorem 5.2 (Cauchy’s Theorem for triangles)
Let v be a triangle and let f be holomorphic on an open set

that contains v and the interior of . Then

Lf(z)dz = 0.
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Theorem 5.3 (Fundamental theorem of Calculus 11)
Let f be holomorphic on the star shaped region D. Let zy be
a central point of D. Define

Flz) = / O,

where the integral is the path integral along the line segment

20, z]. Then F' is holomorphic on D and
F' = 7

Theorem 5.4 (Cauchy’s Theorem for x-shaped D)
Let D be star shaped and let f be holomorphic on D. Then

for every closed path v in D we have

L f(z)dz = 0.
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6 Homotopy

Theorem 6.1 Let D be a region and f holomorphic on D.
If v and v are homotopic closed paths in D, then

L flz)dz = L f(2)dz.

Theorem 6.2 (Cauchy’s Theorem)
Let D be a simply connected region and f holomorphic on

D. Then for every closed path v in D we have

L f(z)dz = 0.
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Theorem 6.3 Let D be a simply connected region and let
f be holomorphic on D. Then f has a primitive, i.e., there is
F' € Hol(D) such that

F' = f

Theorem 6.4 Let D be a simply connected region that
does not contain zero. Then there is a function f € Hol(D)
such that e/(z) = 2 for each z € D and

/Zldw = f(2) — f(z), z,20€ D.

0 w

The function f is uniquely determined up to adding 2wk for
some k € Z. Every such function is called a holomorphic

logarithm for D.
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Theorem 6.5 Let D be simply connected and let g be
holomorphic on D. [Assume that also the derivative ¢’ is
holomorphic on D.] Suppose that g has no zeros in D. Then
there exists f € Hol(D) such that

g = ¢

The function f is uniquely determined up to adding a
constant of the form 2mik for some k£ € Z. Every such

function f is called a holomorphic logarithm of g.

Proposition 6.6 Let D be a region and g € Hol(D). Let
f: D — C be continuous with e/ = ¢. then f is

holomorphic, indeed it is a holomorphic logarithm for g.
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Proposition 6.7 (standard branch of the logarithm)

The function
log(z) = log(re") = logg(r) + i,

where > 0, logg is the real logarithm and —m < 6 < 7, is a
holomorphic logarithm for C \ (—o0,0]. The same formula

for, say, 0 < 6 < 27 gives a holomorphic logarithm for
C\ [0, 00).

More generally, for any simply connected D that does not

contain zero any holomorphic logarithm is of the form

logp(z) = logg(lz]) +i0(2),

where 6 is a continuous function on D with 6(z) € arg(z).
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Proposition 6.8 For |z| < 1 we have

log(1l —2) = Z—

or, for |w — 1] < 1 we have

log(w EOO:

n=1

Theorem 6.9 Let 7 : [a,b] — C be a closed path with
0 ¢ v*. Then n(v,0) is an integer.

23
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Theorem 6.10 Let D be a region. The following are

equivalent:

(a) D is simply connected,
(b) n(y,z) =0 for every z & D, ~y closed path in D,

(¢) fv f(z)dz = 0 for every closed path ~ in D and every
f € Hol(D),

(d) every f € Hol(D) has a primitive,

(e) every f € Hol(D) without zeros has a holomorphic

logarithm.
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7 Cauchy’s Integral Formula

Theorem 7.1 (Cauchy’s integral formula)

Let D be an open disk an let f be holomorphic in a
neighbourhood of the closure D. Then for every z € D we
have

1) = 5 [ T

2T Jop W — 2

dw.

Theorem 7.2 (Liouville’s theorem)
Let f be holomorphic and bounded on C. Then f is constant.

Theorem 7.3 (Fundamental theorem of algebra)
Every non-constant polynomial with complex coefficients has

a zero in C.
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Theorem 7.4 Let D be a disk and f holomorphic in a
neighbourhood of D. Let z € D. Then all higher derivatives
() exist and satisfy

oy = 2 [ I g

2mi Jop (w — z)ntt

Corollary 7.5 Suppose f is holomorphic in an open set D.

Then f has holomorphic derivatives of all orders.

Theorem 7.6 (Morera’s Theorem)
Suppose f is continuous on the open set D C C and that

f A (w)dw = 0 for every triangle /A which together with its
interior lies in D. Then f € Hol(D).
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Theorem 7.7 Let a € C. Let f be holomorphic in the disk
D = Dg(a) for some R > 0. Then there exist ¢,, € C such
that for z € D the function f can be represented by the

following convergent power series,

©. 9]

f(z) = ch(z —a)".

n=0

The constants ¢,, are given by

Lo L flw) . _ ")

21 Jop,(a) (W — @)™ n!

Y

for every 0 < r < R.
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Proposition 7.8 Let f(z) =Y ,a,2" and
g(z) = >~ 4 b,z" be complex power series with radii of

convergence Ry, Ry. Then the power series

©.¢) n

h(z) = chz", where ¢, = Zakbn_k

n=0 k=0
has radius of convergence at least R = min(Ry, Ry) and

h(z) = f(z)g(z) for |z] < R.

28
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Theorem 7.9 (Identity theorem for power series)

Let f(z) = > " gca(z — 20)" be a power series with radius of
convergence R > 0. Suppose that there is a sequence z; € C
with 0 < |z;] < R and z; — 25 as j — 00, as well as

f(z;) = 0. Then ¢, = 0 for every n > 0.

Corollary 7.10 (Identity theorem for holomorphic
functions)

Let D be a region. If two holomorphic functions f, g on D
coincide on a set A C D that has a limit point in D, then

=9
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Theorem 7.11 (Local maximum principle)
Let f be holomorphic on the disk D = Dg(a), a € C, R > 0.

If |f(2)| <|f(a)| for every z € D, then f is constant.

“A holomorphic function has no proper local maximum.”

Theorem 7.12 (Global maximum principle)
Let f be holomorphic on the bounded region D and

continuous on D. Then |f| attains its maximum on the
boundary 0D = D \ D.
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8 Singularities

Theorem 8.1 (Laurent expansion)
Let a € C,0 < R < S and let

A={{2eC:R<|z—a|l <S5}

Let f € Hol(A). For z € A we have the absolutely

convergent expansion (Laurent series):

©.¢)

1) = 3 alz—a,

n=——oo

1
c, = — fw) dw
210 Jop, (o) (W — @)™

for every R <r < §S.

where
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Proposition 8.2 et a € C, 0 < R < S and let
A={2eC:R<|z—a|l <S5}

Let f € Hol(A) and assume that

Then b, = ¢, for all n, where ¢, is as in Theorem 8.1.

32
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Theorem 8.3

(a) Let f € Hol(D,(a)). Then f has a zero of order k at a iff

lim(z —a) " f(z) = ¢

Z—a

where ¢ # 0.
(b) Let f € Hol(D!(a)). Then f has a pole of order k at a iff

lim(z — a)"f(2) = d,

Z—a

where d # 0.

Corollary 8.4 Suppose f is holomorphic in a disk D, (a).
Then f has a zero of order k£ at a if and only if % has a pole

of order k at a.
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9 The Residue Theorem

Lemma 9.1 Let D be simply connected and bounded. Let
a € D and let f be holomorphic in D \ {a}. Assume that f

extends continuously to 0D. Let
@)

f) = ) clz—a)

n=——oo

be the Laurent expansion of f around a. Then

f(z)dz = 2mi c_;.
oD

Theorem 9.2 (Residue Theorem)
Let D be simply connected and bounded. Let f be
holomorphic on D except for finitely many points

ai,...,a, € D. Assume that f extends continuously to dD.
Then

n

f(z)dz = 2mi Z res;—q, f(2) = 2mi Z res, f(z).

oD =1 2eD
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Proposition 9.3 Let f(z) = %, where p, g are

polynomials. Assume that ¢ has no zero on R and that
1+ degp < degg. Then

/OO f(x)dx = 2mi Z res, f(z).

z:Im(2)>0

Theorem 9.4 (Counting zeros and poles)
Let D be simply connected and bounded. Let f be
holomorphic in a neighbourhood of D, except for finitely
many poles in D. Suppose that f is non-zero on dD. Then
1 /
— / (Z>dz = Zordzf(z) = N - P,

2mi Jop f(Z) D

where N is the number of zeros of f, counted with

multiplicity, and P is the number of poles of f, counted with
multiplicity:.
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Theorem 9.5 (Rouché)

Let D be simply connected and bounded. Let f, g be
holomorphic in D and suppose that | f(2)] > |g(z)| on dD.
Then f and f + g have the same number of zeros in D,

counted with multiplicities.

Lemma 9.6 If f has a simple pole at z, then

res,, f(z) = lim (2 — 20)f(2).

2—2))

If f has a pole at zy of order £ > 1. then
1

reSZOf(Z> — (]C . 1>|g(k_1)(20>7

where g(2) = (z — 2)* f(2).
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Lemma 9.7 Let f have a simple pole at z; of residue c. For

e > 0 let
V.(t) = zp+ee’, tE [t o,

where 0 < t; < t5 < 27. Then

lim / F()dz = iclty — 1)),

E—O0
Ve

Proposition 9.8

w .
S1N T v
dr = —.
0 €T 2



COMPLEX ANALYSIS 38

10 Construction of functions

Lemma 10.1 If [, z; exists and is not zero, then 2, — 1.

Proposition 10.2 The product || ; Zj converges to a
non-zero number z € C if and only if the sum } 7% log

converges. In that case we have

exp( zoo:logzj = sz = 2.
=1

J

Proposition 10.3 The sum ) _ logz, converges absolutely
if and only if the sum ) (z, — 1) converges absolutely.
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Lemma 10.4 If |z| < 1 and p > 0 then

Ey(z)— 1] < |2+

Theorem 10.5 Let (a,,) be a sequence of complex numbers
such that |a,| — 0o as n — oo and a,, # 0 for all n. If p,, is
a sequence of integers > 0 such that

()

> () <

n=1 |CLn‘

for every » > 0, then

f(z) = ﬁE (—)

converges and is an entire function (=holomorphic on entire
C) with zeros exactly at the points a,. The order of a zero at

a equals the number of times a occurs as one of the a,,.
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Corollary 10.6 Let (a,) be a sequence in C that tends to
infinity. Then there exists an entire function that has zeros

exactly at the a,,.
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Theorem 10.7 (Weierstrafl Factorization Theorem)
Let f be an entire function. Let a,, be the sequence of zeros
repeated with multiplicity. Then there is an entire function g

and a sequence p,, > 0 such that

_ meg(?) =z
f(z) = 2"e IZIEPH (an).

Theorem 10.8 Let D be a region and let (a;) be a
sequence in D with no limit point in D. then there is a
holomorphic function f on D whose zeros are precisely the a;

with the multiplicities of the occurrence.

Theorem 10.9 For every principal parts distribution (h;,)
on C there is a meromorphic function f on C with the given

principal parts.
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Theorem 10.10 Let f € Mer(C) with principal parts (hy,).

then there are polynomials p,, such that
f = g"‘Z(hn — Pn)

for some entire function g.
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Theorem 10.11 For every z € C we have

1 /(1 1
cotmz = —+ -
e Z nz;<z—l—n z—n)

R 2z
B ;+;<22—n2>

and the sum converges locally uniformly in C \ Z.

Lemma 10.12 If f € Hol(D) for a region D and if

f(z) = 1] fa(2),

where the product converges locally uniformly, then
Fe) _ )
flz) = falz)

and the sum converges locally uniformly in D \ {zeros of f}.
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Theorem 10.13

SIN T2

44
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11 Gamma & Zeta

Proposition 11.1 The Gamma function extends to a
holomorphic function on C\ {0, —1,—2,...}. At z = —k it
has a simple pole of residue (—1)*/k!.

Theorem 11.2 The ['-function satisfies
e -

z) = “—JJa+2) e,

Z
=

Theorem 11.3

I 1 2
F<Z> B _fy_gjan;n(nJrz)'

©.¢)
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Theorem 11.4 The function {(s) extends to a
meromorphic function on C with a simple pole of residue 1 at

s = 1 and is holomorphic elsewhere.

Theorem 11.5 The Riemann zeta function satisfies
((s) = J] @=p)
P prime

We have the functional equation
s s
(1= 5) = (2m) oM ()((5)
((s) has no zeros in Re(s) > 1. It has zeros at
s = —2,—4,—0, ... called the trivial zeros. All other zeros

liein 0 < Re(s) < 1.
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12 The upper half plane

Theorem 12.1 Every biholomorphic automorphism of H is
of the form z — g.z for some g € SLy(R).

Lemma 12.2 (Schwarz’s Lemma)
Let D = D;(0) and let f € Hol(ID). Suppose that

(a) |f(z)] < 1forzeD,
(b) f(0)=0.

Then |f'(0)] < 1 and |f(2)| < |z| for every z € D. Moreover,
if |f/(0)] =1orif |f(2)] = |z| for some z € D, z # 0, then
there is a constant ¢, |¢| = 1 such that f(z) = cz for every

z € D.
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Proposition 12.3 If |a| < 1, then ¢, is a biholomorphic

map of D onto itself. It is self-inverse, i.e., ¢,0, = Id.

Theorem 12.4 Let f: D — ID be holomorphic and
bijective with f(a) = 0. Then there is a ¢ € C with |¢| =1
such that f = cg,.

Lemma 12.5 The map 7(z) = <% maps H

biholomorphically to . Its inverse is 77 (w) = 3.
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Proposition 12.6 F'is a fundamental domain for the

action of I' on H. This means

(a) For every z € H there is v € I' such that vz € F.

(b) If z,w € F, z # w and there is v € I with vz = w, then
z,w e OF.

Proposition 12.7 Let £ > 1. The Eisenstein series G(z)
is a modular form of weight 2k. We have G(o0) = 2((2k),

where ( is the Riemann zeta function.

Theorem 12.8 Let f = 0 be a modular form of weight 2k.
Then
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13 Conformal mappings

Theorem 13.1 Let D be a region and f: D — C a map.
Let zg € D. If f'(zy) exists and f'(29) # 0, then f preserves

angles at zj.

Lemma 13.2 If f € Hol(D) and 7 is defined on D x D by

fe)—fw) oy
Z,w) = Zmw ’
(U VE B

then 7 is continuous.



COMPLEX ANALYSIS 51

Theorem 13.3 Let f € Hol(D), zp € D and f'(2) # 0.
then D contains a neighbourhood V' of 2, such that

(a) f is injective on V|
(b) W = f(V) is open,

(¢) if g: W — V is defined by g(f(z)) = z, then
g € Hol(W).

Theorem 13.4 Let D be a region, f € Hol(D).
non-constant, zg € D and wy = f(zy). Let m be the order of

the zero of f(z) — wy at zo.
then there exists a neighbourhood V' of zy, V' C D, and

¢ € Hol(D), such that

(a) f(2) =20+ ()",
(b) " has no zero in V" and is an invertible mapping of V
onto a disk D,.(0).
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Theorem 13.5 Let D be a region, f € Hol(D), f injective.
Then for every z € D we have f'(z) # 0 and the inverse of f

is holomorphic.

Theorem 13.6 Let F C Hol(D) and assume that F is
uniformly bounded on every compact subset of D. Then F is

normal.

Theorem 13.7 (Riemann mapping theorem)
Every simply connected region D # C is conformally

equivalent to the unit disk ID.
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14 Simple connectedness

Theorem 14.1 Let D be a region. The following are

equivalent:

(2)
(b)
(c)
(d)

D is simply connected,
n(v,z) =0 for every z ¢ D, « closed path in D,
C\ D is connected,

For every f € Hol(D) there exists a sequence of

polynomials p,, that converges to f locally uniformly,

f(z)dz = 0 for every closed path v in D and every
gl
f € Hol(D),

every f € Hol(D) has a primitive,

every f € Hol(D) without zeros has a holomorphic

logarithm,

every f € Hol(D) without zeros has a holomorphic square

root,
either D = C or there is a biholomorphic map f: D — D,
D is homeomorphic to the unit disk D.



