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T
he theory of functions (what we now
call the theory of functions of a com-
plex variable) was one of the great
achievements of nineteenth century
mathematics. Its beauty and range of

applications were immense and immediate. The
desire to generalize to higher dimensions must
have been correspondingly irresistible. In this de-
sire to generalize, there were two ways to pro-
ceed. One was to focus on functions of several
complex variables as the generalization of func-
tions of one complex variable. The other was to
consider a function of one complex variable as
a map of a domain in C to another domain in
C and to study, as a generalization, maps of do-
mains in Cn. Both approaches immediately led
to surprises and both are still active and im-
portant. The study of real hypersurfaces arose
within these generalizations. This article sur-
veys some contemporary results about these
hypersurfaces and also briefly places the subject
in its historical context. We organize our survey
by considering separately these two roads to
generalization.

We start with a hypersurface M2n−1 of R2n

and consider it as a hypersurface of Cn, using
an identification of R2n with Cn. We call M a real
hypersurface of the complex space Cn to dis-
tinguish it from a complex hypersurface, that is,

a complex n− 1 dimensional submanifold of
Cn. This said, the dimensions in statements like 

M2n−1 ⊂ Cn

should not cause any concern. The best exam-
ple to keep in mind is the boundary of an open
subset of Cn (whenever this boundary is
smooth). Indeed, much of the excitement in the
study of real hypersurfaces comes from the in-
terplay between the domain and the boundary
and between the geometry and the analysis.

Functions
It is natural to begin by considering a function
on Cn as holomorphic if it is holomorphic in each
variable separately (that is, it is holomorphic
when restricted to each of the special complex
lines {z = (z1, ..., zn) ∈ Cn|zk fixed for all k ex-
cept for k = j and zj arbitrary}). For continuous
functions this coincides with any other reason-
able generalization (say by convergent power
series or by the solution of the Cauchy-Riemann
equations). Almost at once, we encounter a strik-
ing difference between functions of one and
more complex variables. (Contrast this to the the-
ory of functions of real variables, where one
must delve deeply before the dimension is rel-
evant.) For instance, consider the domain ob-
tained by poking a balloon gently with your fin-
ger, but in C2, of course. More concretely,
consider a domain in C2 that contains the set 

(1)
H = {|z| < 2, |w| < 1}⋃{

1
2
< |z| < 2, |w| < 2

}
.
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We show that every function holomorphic on this
set is also holomorphic on the larger set (see Fig-
ure 1) 

P = {|z| < 2, |w| < 2}.
It follows, by using an appropriate modification
of H, that every function holomorphic on the in-
terior of the poked balloon is also holomorphic
on a somewhat larger set (but perhaps not on all
of the interior of the original balloon). There is
no similar extension phenomenon for functions
of one complex variable.

It is very easy to prove that any function
holomorphic on H is also holomorphic on P. In
doing so, we see how the extra dimension is
used. Let f (z) be holomorphic on H and for
|z| < 1 set 

h(z,w ) =
1

2πi

∮
|ζ|=1

f (ζ , w )
z − ζ

dζ .

Then h is holomorphic on {|z| < 1, |w| < 2}.
Further, h agrees with f on {|z| < 1,
|w| < 1} and thus h agrees with f also on
{1

2 < |z| < 1, |w| < 2}. Hence h is the sought-
after extension of f to P.

In this way, we have “extended” the original
domain H and it becomes of interest to charac-
terize those domains that cannot be further ex-
tended. This leads to the main topics of several
complex variables: domains of holomorphy
(those domains which cannot be extended),
pseudoconvex domains, holomorphic convex-
ity, etc. Most of this theory developed without
consideration of the boundaries of the domains,
so it is not strictly about real hypersurfaces—
we skip over it in this survey.

E. E. Levi was apparently the first (1909) to try
to characterize those domains of holomorphy
that have smooth boundaries. It is easy to see
that a convex domain must be a domain of holo-
morphy. But convexity is not preserved under bi-
holomorphisms while the property of being a do-
main of holomorphy is so preserved. Levi
discovered the analog of convexity appropriate
for complex analysis. Let Ω ⊂ Cn have smooth
boundary M. Let r be any defining function forΩ ;  so, r ∈ C∞ in a neighborhood ofΩ, r < 0 in Ω , r = 0 on M, and dr (p) 6= 0 for
each p ∈M.

Let V0 ⊂ C⊗ TCn consist of all tangent vec-
tors of the form 

L =
n∑
j=1

αj
∂
∂z̄j

and let 
V = (C⊗ TM)

⋂
V0.

Definition. The Levi form is the hermitian form
L : V × V̄ → C given by 

L(L, L̄) =
∂2r

∂z̄j∂zk
αjᾱk

for L =
∑
αj ∂

∂z̄j ∈ V.

The derivatives are computed according to the
rules 

∂
∂z
f =

1
2

(
∂f
∂x
− i ∂f
∂y

)
∂
∂z̄
f =

1
2

(
∂f
∂x

+ i
∂f
∂y

)
.

(note that in this notation the Cauchy-Riemann
equations are just ∂f∂z̄ = 0). L depends upon the
choice of the defining function r in that it is mul-
tiplied by a positive function when r is replaced
by another defining function for Ω. Since L is
hermitian, its eigenvalues are real and the num-
bers of positive, negative, and zero eigenvalues
do not depend on the choice of r . These num-
bers are also unchanged under a holomorphic
change of coordinates z → ζ(z).

Levi’s Theorem. If Ω is a domain of holomor-
phy, then L is positive semi-definite (L (L, L̄) ≥ 0
for all L ∈ Vp and all p ∈M) .

We abbreviate the conclusion as L ≥ 0 and say
that Ω is pseudoconvex if this condition holds
at all boundary points. If instead we have that L
is positive definite, L > 0, at all boundary points,
we say that Ω is strictly pseudoconvex.

2

1

1 2 Z1/2

The point (a, b) represents the torus {IzI = a, IwI = b}

Figure 1
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To see that this condition generalizes con-
vexity, recall that X = {r = 0} is a convex hy-
persurface in Rn if ∑

j,k

∂2r
∂xj∂xk

ajak > 0

for all vectors 

∑
aj

∂
∂xj

tangent to X.
We have already seen an example of Levi’s the-

orem. The sphere is strictly pseudoconvex. The
“poked” sphere has points where L < 0. Given
F holomorphic on the poked sphere, we can
place a domain like (1) right near the poke and
extend F to a somewhat larger open set. This is
how Levi’s Theorem is proved; the geometry for
any open set at points where L < 0 is similar to
that of the poked sphere.

The Levi problem is to prove the converse of
this theorem. It is easy to show where the diffi-
culty arises. Early work on the problem, by math-
ematicians such as Behnke, H. Cartan, Stein, and
Thullen, show it is enough to prove that if Ω is
strictly pseudoconvex, then for each p ∈ bound-
ary Ω there exists a function F holomorphic onΩ with |F (z)| → ∞ as z → p. Given p, with L > 0
at p, there is an open neighborhood U of p and
a function holomorphic on U ∩Ω that blows
up at p. This function is given explicitly in terms
of the defining function of the domain. For the
unit sphere and p = (0,1),

F =
1

1−w
works, where a point in C2 is designated (z,w ).
The entire difficulty in general is to go from F
holomorphic on U ∩Ω to some other function
G holomorphic on all of Ω in such a way that
|G| still blows up at p. (Of course, for the sphere,

1
1−w does work globally.) What is needed is a way
to patch local analytic information to end up with
a global analytic object. This can be done in two
general ways; the mantras are “sheaf theory”
and “partial differential equations”. Note that ifΩ is convex, then an explicit F works globally,
just as in the case of the sphere. But strictly
pseudoconvex domains definitely do not have to
be convex. For instance, see [11, page 110] for a
strictly pseudoconvex solid torus.

The Levi problem was solved in 1953 by Oka.
Thus, pseudoconvexity characterizes domains of
holomorphy. An immediate corollary is that
pseudoconvexity is of basic importance. We shall
see this again below, when we investigate its re-
lation to partial differential equations.

Levi’s theorem gives an extension theorem. If
L is not positive semi-definite at some point p ∈
boundary Ω, then Ω is not a domain of holo-
morphy and, as for our poked balloon, any func-
tion holomorphic on Ω is also holomorphic onΩ∪U where U is a neighborhood of p. This is
a local result. That is, if f is holomorphic on someΩ∩U where U is a neighborhood of p, and
Lp < 0, then f is also holomorphic on Ω∪ V
where V is a (perhaps smaller) neighborhood of
p. There is also a global extension result of Har-
togs (also around 1909). This does not depend
on pseudoconvexity.

Hartogs’s Extension Theorem. Let Ω be any
open set in Cn and let K be a compact subset
of Ω such that Ω−K is connected. Then any
function holomorphic on Ω−K is the restriction
of a function holomorphic on Ω.

This theorem is the most compelling evidence
that function theory in Cn is not just a straight-
forward generalization of that in C1. In partic-
ular, it implies that only in C1 can holomorphic
functions have isolated singularities.

There is a version of Hartogs’s theorem that
focuses on real hypersurfaces. Let us return to 

V = (C⊗ TM)
⋂
V0.

Geometrically, V at a point p ∈M is the set of
those vectors of the form 

L =
∑
j
αj

∂
∂z̄j

that are tangent to the boundary of Ω at p (in
the sense that ReL and ImL are tangent to the
boundary M of Ω at p). From the viewpoint of
analysis, it is more natural to consider L as a
first-order partial differential operator acting
on functions.

Recall that F is holomorphic if ∂F∂z̄j = 0 for all
j, since these are just the Cauchy-Riemann equa-
tions in each variable. Since L ∈ Vp is a combi-
nation of the operators ∂∂z̄j , LF = 0. On the other
hand, L is tangential and so operates on func-
tions defined on M. Thus, L annihilates the re-
striction of F to M. This is true even if F is only
holomorphic on one side of M, and smooth up
to M.

So Lf = 0 is a necessary condition for a func-
tion f on M to extend to a function holomorphic
in a possibly one-sided neighborhood of M.

Definition. A C1 function f on M is called a CR
function if Lf = 0 for all L ∈ V.

CR stands for Cauchy-Riemann and signifies
that f satisfies the induced Cauchy-Riemann

jacobowitz.qxp  8/27/98 8:20 AM  Page 1482



DECEMBER 1995 NOTICES OF THE AMS 1483

equations (those equations induced on M by
the Cauchy-Riemann equations on Cn).

Theorem (Bochner). Let Ω be a bounded open
set in Cn with smooth boundary M2n−1 and
connected complement. For each CR function f
on M there is some function F , necessarily
unique, holomorphic on Ω, and differentiable up
to the boundary M, such that f = F|M.

What about a local version of this extension
theorem? We have seen that if F is holomorphic
in a neighborhood of p ∈M, then f = F|M is an-
nihilated by each L ∈ V. The converse is true
when M and f are real analytic (but not in gen-
eral) and can be proved by complexifying Mand
f.

Theorem. Let M be a real analytic hypersurface
in Cn and let f be a real analytic CR function
on M. Then there exists an open neighborhood
U of M and a function F , holomorphic on U,
such that F = f on M.

However, a C∞ CR function need not be the
restriction of a holomorphic function, even if M
is real analytic. For example, consider 

M = {(z,w ) ∈ C2 : Imw = 0}
= {(x, y, u,0) ∈ R4}.

Here V is spanned by 

L =
∂
∂z̄
.

So any function f = f (u) is a CR function on M.
But such an f can be extended as a holomorphic
function only if f (u) is real analytic, and can be
extended as a holomorphic function to one side
of M only if f (u) is the boundary value of a
holomorphic function of one variable.

Now we come to two extremely important
and influential results of Hans Lewy. The first
brings to completion the study of extensions
for definite Levi forms. The second, only four
pages long, revolutionized the study of partial
differential equations.

Lewy Extension Theorem. [13] Let M be a strictly
pseudoconvex real hypersurface in Cn and let f
be a CR function on M. For each p ∈M there
exists a ball U, centered at p and open in Cn,
such that f extends to a holomorphic function
on the pseudoconvex component of U −M .

The ideas in the proof can be seen by letting
M be a piece of the unit sphere S3 in C2. Let p
be any point of M . Consider a complex line,
close to the complex tangent line at p, inter-
secting M nontangentially. This intersection is
a circle and the values of f on this circle deter-
mine a holomorphic function on the disc

bounded by this circle. We have to show that this
holomorphic function takes on the boundary
values f and that the collection of holomorphic
functions agree and give a well-defined holo-
morphic function on some open subset of the
ball containing M in its boundary. The CR equa-
tions are used to establish both of these facts.
(Lewy actually only considered n = 2.)

Next we consider the simplest real hypersur-
face in C2 with definite Levi form. It is, as could
be guessed, the sphere S3. However, in order to
write it in an especially useful way, we need to
let one point go to infinity. We obtain the hy-
perquadric: 

Q = {(z,w )|Imw = |z|2}.
(There exists a biholomorphism defined in a
neighborhood of S3 - {one point} taking S to
Q .)

For Q , V has complex dimension one and is
generated by 

L =
∂
∂z̄
− iz ∂

∂u

where u = Rew. We can think of L as a partial
differential operator on R3 and try to solve the
equation Lu = f. Here f is a C∞ function in a
neighborhood of the origin and we seek a func-
tion u, say u ∈ C1, satisfying this equation in a
perhaps smaller neighborhood of the origin.
This is one equation with one unknown. The
simplest partial differential equations, those
with constant coefficients, are always solvable.
Since the coefficients of L, while not constant,
are merely linear, this is an example of the next
simplest type of equation. Further, when f is real
analytic, there is a real analytic solution u.

Lewy Nonsolvability Theorem. [14] There ex-
ists a C∞ function f defined on all of R3 such
that there do not exist (p,U, u) where p is a
point of R3, U is an open neighborhood of p, and
u is a C1 function with Lu = f on U.

The idea that a differential equation might not
even have local solutions was extremely sur-
prising, and Lewy’s example had an enormous
effect. Consider this convincing testimonial [22]:

Allow me to insert a personal anec-
dote: in 1955 I was given the follow-
ing thesis problem: prove that every
linear partial differential equation
with smooth coefficients, not van-
ishing identically at some point, is
locally solvable at that point. My the-
sis director was, and still is, a lead-
ing analyst; his suggestion simply
shows that, at the time, nobody had
any inkling of the structure underly-
ing the local solvability problem, as
it is now gradually revealed.
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We conclude our discussion of extension the-
orems with Trepreau’s condition of extendabil-
ity. This necessary and sufficient condition leaves
unanswered a curious question. So again, let M
be a real hypersurface in Cn and p a point on
M. Assume there is one side of M, call it Ω+, such
that every CR function on M in a neighborhood
of p extends to some Bε ∩Ω+, where Bε is the
ball of radius ε centered at p. The Baire Cate-
gory Theorem then can be used to show that
there is one such ball B with the property that
each CR function extends to B ∩Ω+. But no such
B can exist if M contains a complex hypersur-
face {f (z) = 0}, for then f (z)− λ is nonzero on
M for various values of λ converging to zero,
and the reciprocal functions are not holomorphic
on a common one-sided neighborhood of p.
Thus if M contains a complex hypersurface,
then there exist CR functions that do not extend
to either side. In [21] it is shown that if there is
no such complex hypersurface, then there is
one side of M to which all such CR functions
extend as holomorphic functions. The question
left unanswered is to use the defining equation
for M to determine to which side the extensions
are possible.

Mappings
A function f (z) holomorphic on a domain Ω ⊂ C
can be thought of as a mapping of Ω to some
other domain in C. Indeed, as every graduate stu-
dent knows, f preserves angles at all points
where f ′ 6= 0, and so the theory of holomorphic
functions coincides, more or less, with the the-
ory of conformal maps. How should this be gen-
eralized to higher dimensions? We could look at
maps of domains in Cn that preserve angles. But
then the connection to complex variables is de-
stroyed and we end up by generalizing complex
analysis to R3 and its finite dimensional group
of conformal transformations.

It is more fruitful to look at maps Φ : O1 → O2
of domains in Cn with Φ = (f1, . . . , fn) and each
fj is holomorphic. Thus we are again using holo-
morphic functions of several variables but now
we are focusing on the mapping Φ rather than
on the individual functions. Note that Φ pre-
serves some angles but not others. Classically
such maps were called “pseudo-conformal” fol-
lowing Severi and Segre.

From the viewpoint of maps, the Riemann
Mapping Theorem is the fundamental result in
the study of one complex variable. The unit ball
in C1, which acts as the source domain for the
mappings, can reasonably be generalized to ei-
ther the unit ball in C2

{(z,w ) : |z|2 + |w|2 < 1}

or to the polydisc 

{(z,w ) : |z| < 1, |w| < 1}.
In a profound paper in 1907, Poincaré com-
puted, among many other results, the group of
biholomorphic self-mappings of the ball [17]. By
comparing this group to the more easily com-
puted corresponding group of the polydisc, it fol-
lows that these two domains are not biholo-
morphically equivalent. Thus the Riemann
Mapping Theorem does not hold for several
complex variables and, moreover, fails for the
two “simplest” domains. (Actually, we have al-
ready seen earlier in this article a failure of the
Riemann Mapping Theorem. If one domain can
be “extended” and the other cannot, then the two
domains are not biholomorphically equivalent.
This can be seen using relatively simple prop-
erties of holomorphic convexity.) Further, Poin-
caré provided a wonderful counting argument
to indicate the extent to which the Riemann
Mapping Theorem fails to hold. He did this by
asking this question: Given two real hypersur-
faces M1 and M2 in C2 and points p ∈M1 and
q ∈M2, when do there exist open sets U and V
in C2, with p ∈ U and q ∈ V and a biholomor-
phism Φ : U → V such that Φ(p) = q andΦ(M1 ∩U ) =M2 ∩ V?

More particularly, Poincaré asked: What are
the invariants of a real hypersurface M? That is,
what are the quantities preserved when M is
mapped by a biholomorphism? We already know
one invariant. The Levi form for a real hyper-
surface in C2 is a number and it is necessary,
in order that Φ exists, that the Levi forms at p
and q both are zero or both are nonzero.

There are infinitely many other invariants. A
consequence is that there is a zero probability
that two randomly given real hypersurfaces are
equivalent. Here is the counting argument used
by Poincaré to show this. How many real hy-
persurfaces are there and how many local bi-
holomorphisms? There are (

N + k
k

)
coefficients in the Taylor series expansion, to
order N, of a function of k variables. So, we see
that there are (

N + 3
3

)
N -jets of hypersurfaces of the form
v = f (x, y, u).

Similarly, there are (
N + 2

2

)
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N-jets of a holomorphic function F (z,w ) but
these coefficients are complex, so there are 

2
(
N + 2

2

)
real N -jets. Finally, for a mapΦ = (F (z,w, ), G(z,w )), there are 

4
(
N + 2

2

)
real N-jets. Thus, since (

N + 3
3

)
is eventually greater than 

4
(
N + 2

2

)
,

there are more real hypersurfaces than local bi-
holomorphisms. From this, we see that there
should be an infinite number of invariants.

Poincaré outlined a method of producing
these invariants. Given two hypersurfaces s and
S written as graphs over the (x, y, u) plane, the
coefficients of the Taylor series must be related
in certain ways in order for there to exist a bi-
holomorphism under which S becomes tangent
to s to some order n at a particular point. Hav-
ing made this observation, Poincaré implied that
there would be no difficulty in actually finding
the invariants:

These relations express the fact that
the two surfaces S and s can be
transformed so as to have nth order
contact. If s is given, then the coef-
ficients of S satisfy N conditions,
that is to say, N functions of the co-
efficients, which we call the invariants
of nth order of our surface S , have
the appropriate values; I do not dwell
on the details of the proof, which
ought to be done as in all analogous
problems.

Here Poincaré somewhat underestimated the
difficulties involved and perhaps would have
been surprised by the geometric structure, de-
scribed below, underlying these invariants.

In 1932, Cartan found these invariants by a
new and completely different method, namely
as an application of his method of equivalences.
Starting with the real hypersurface M in C2,
Cartan constructed a bundle B of dimension
eight along with independent differential 1-
forms ω1, . . . ,ω8 defined on the bundle. He did
this using only information derivable from the
complex structure of C2. Thus there is a bi-

holomorphism of open sets in C2 taking M1 to
M2 only if there is a map Φ : B1 → B2 such thatΦ∗(ω2

j ) =ω1
j . Conversely, any real analytic mapΦ : B1 → B2 such that Φ∗(ω2

j ) =ω1
j arises from

such a biholomorphism. (This is stated loosely;
to be more precise, one would have to specify
points and neighborhoods.) So, one can find
properties of a hypersurface that are invariant
under the infinite pseudogroup of local biholo-
morphisms by studying a finite dimensional
structure bundle.

The structure (M,B,ω) is an example of a
Cartan connection. When this connection has
zero curvature, M locally maps by a biholo-
morphism to the hyperquadric Q (and so also
to the sphere S3, but, in this context, it is much
easier to work with Q ). So we obtain a geome-
try based on Q in the same way that Riemann-
ian geometry is based on the Euclidean structure
of Rn. In particular, there is a distinguished
family of curves, called chains by Cartan, that
play the role of geodesics, and projective pa-
rametrizations of these chains, that play the
role of arc length. The two papers [6] develop-
ing this theory are still relatively difficult going,
even after Cartan’s approach to geometry has be-
come part of the mathematical language. They
were quite demanding at the time he wrote them.
The theorems of Hans Lewy are one surprising
consequence of this difficulty; Professor Lewy re-
marked to the present author that he became in-
terested in the CR vector fields as partial dif-
ferential operators as he struggled to understand
Cartan’s papers.

In about 1974, Moser determined the invari-
ants explicitly in the manner indicated by Poin-
caré. Moser first considered this problem fol-
lowing a question in a seminar talk. He was not
discouraged by Poincaré’s opinion that the de-
termination would be routine (and the inference
that it would be uninteresting) because he was,
fortunately, unaware of Poincaré’s paper. (How-
ever, once Moser became interested in this ques-
tion, it is not a coincidence that he rediscovered
Poincaré’s approach, since Moser had learned
similar techniques from Poincaré’s work in ce-
lestial mechanics.)

As we indicated above, the determination of
the invariants proceeds from a study of order
of contact of biholomorphic images of the given
hypersurface with a standard hypersurface. Here
is the basic result.

Theorem (Moser Normal Form). Let p be a
point on M3 ⊂ C2 at which the Levi form is
nonzero. There exists a local biholomorphism Φ
taking p to 0 such that Φ(M) is given by 

v = |z|2 + 2Re(F42(u)z4z̄2) +
∑

j+k≥7
j≥2,k≥2

Fjk(u)zj z̄k
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where (z,w ) are the coordinates for C2, with
w=u+iv.

There is an eight parameter family of local bi-
holomorphisms taking M3 to Moser Normal
Form. Thus F42 and the higher order coefficients
are not true invariants. To decide if a hypersur-
face M1 can be mapped onto another hyper-
surface M2 by a local biholomorphism, we
choose one mapping of M1 to normal form and
ask if this normal form belongs to the eight pa-
rameter set of normal forms associated to M2.
This should remind us of Cartan’s reduction to
a finite dimensional structure bundle, also of di-
mension eight.

This is actually only part of the story, and not
even the most interesting part. To obtain this nor-
mal form, Moser discovered and exploited a rich
geometric structure. Let L = α1

∂
∂z̄1

+α2
∂
∂z̄2

be-
long to C⊗ TM, i.e., let L generate the one-di-
mensional bundle V , and set H = linear span
{ReL, ImL}. So, H is a 2-plane distribution on
M. For each direction Γ transverse to H at some
point q, there exist a curve γ in the direction Γ
and a projective parametrization of γ that are
invariant under biholomorphisms. Further, any
vector in Hq has an invariantly defined parallel
transport along γ. These are precisely the geo-
metric structures found by Cartan!

Moser’s work was a second solution to the
problem of invariants and quite different in
method and spirit from Cartan’s. Chern and
Moser [7] then generalized the results of Cartan
and of Moser to higher dimensions. In [7], the
problem of invariants is solved twice (once using
Cartan’s approach and once using Moser’s) for
hypersurfaces with nondegenerate Levi form.
All the geometric properties discovered by Car-
tan and by Moser carry over to higher dimen-
sions. (In [9], it is shown how to directly use the
Moser normal form for M2n−1 and the trivial Car-
tan connection on Q to obtain the Cartan con-
nection (M,B,ω) . In [19] and [20] two other
methods of generalizing Cartan’s work to higher
dimensions are given; however, these apply to
a somewhat restricted class of hypersurfaces.) 

Now we return to the theme of how the
boundary affects analysis on a domain. In the
first half of our survey, we have seen how the
theory of functions on a domain is influenced
by the boundary of the domain. Now, in turn, we
discuss how the boundary affects the mappings
of a domain. The starting point is a result of Fef-
ferman establishing that the boundary is indeed
potentially useful in studying biholomorphisms.
Let Ω and Ω′ be bounded strictly pseudoconvex
domains in Cn with C∞ boundaries.

Theorem. [8] If Φ : Ω→ Ω′ is a biholomorphism,
then Φ extends to a C∞ diffeomorphismΦ : Ω̄→ Ω̄′ of manifolds with boundary.

This theorem generalizes the fact that in C1

the Riemann mapping of the disk to a smoothly
bounded domain extends smoothly to a diffeo-
morphism of the closures.

It follows from Fefferman’s theorem that for
two strictly pseudoconvex domains to be bi-
holomorphically equivalent, it is necessary that
all of the infinite number of Cartan-Moser in-
variants match up. Burns, Schnider, and Wells
[4] used this to show that any strictly pseudo-
convex domain can be deformed by an arbi-
trarily small perturbation into a nonbiholomor-
phically equivalent domain. So here is another
failure of the Riemann Mapping Theorem. 

Now consider strictly pseudoconvex domainsΩ and Ω′ with real analytic boundaries. Once a
biholomorphism Φ is known to give a diffeo-
morphism of the boundaries (as in Fefferman’s
theorem), the extendability of Φ to a biholo-
morphism of larger domains is immediate. For
then Φ : boundary Ω→ boundary Ω′
preserves the Cartan connections and these con-
nections are real analytic. It follows that Φ is real
analytic. This in turn implies that Φ is holo-
morphic in a neighborhood of boundary Ω.

What can be said about real analytic hyper-
surfaces that need not be strictly pseudoconvex?
Let M be a (piece of a) real analytic surface in
Cn. (It does not even need to be of codimension
one.) Let Φ = (f1, . . . , fn) be holomorphic on some
open set Ω with 

M ⊂ boundary Ω
and let Φ extend differentiably to M and be a
diffeomorphism of M to Φ(M). Then, as long as
M (or Φ(M)) satisfies a very general condition
called “essentially finite”, Φ is holomorphic on
an open set containing M [2].

Thus, although a holomorphic function need
not extend across M, those holomorphic func-
tions that fit together to give a mapping Φ do
extend. Why should this be so? Clearly, it must
be because the components satisfy an equation. 

The simplest example of a surface that is not
“essentially finite”, and for which a one-sided bi-
holomorphism need not extend to the other
side, is 

M = {(z,w ) : Imw = 0}.
Here the defining function is not strong enough
to relate the components and their conjugates
by an appropriate equation.

The geometric concept of holomorphic non-
degeneracy, introduced in [18], is related to es-
sential finiteness and has been used to gener-
alize results from [2] ( see [3]).
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Abstract CR Structures and the
Realization Problem
Just as Riemannian manifolds abstract the in-
duced metric structure on a submanifold of Eu-
clidean space, we abstract the structure rele-
vant to a hypersurface in Cn+1. So recall the
bundle 

V = (C⊗ TM)
⋂
V0,

defined in section 1, where 

V0 = lin span
{ ∂
∂z̄1

...
∂

∂z̄n+1

}
.

This is to be our model. Thus, for the abstract
definition, we start with a manifold M and a sub-
bundle of the complexified tangent bundle of M.
Now what properties of V do we want to ab-
stract? Our first observation is that M should
have odd dimension, say 2n + 1, and that the
complex dimension of the fibers of V should be
n. So, this is our first assumption:

(1) M is a manifold of dimension 2n + 1 and
V is a subbundle of C⊗ TM with fibers of com-
plex dimension n.

The next key fact for hypersurfaces in Cn is
that none of the induced CR operators is a real
vector field. This gives us our second assump-
tion:

(2) V ∩ V̄ = {0}.
Our final assumption is a restriction on how

V varies from point to point. This restriction is
easily justified if we first discuss the realization
problem. We start with a pair (M,V ) satisfying
(1).

Definition. An embedding Φ : M → CN is a re-
alization of (M,V ) if its differentialΦ∗ : C⊗ TM → C ⊗ TCN maps V into V0

Let Φ : M → CN be a realization of (M,V ) .
Note that condition (2) must hold for V since it
does for V0. Let p be a point of M. By using an
appropriate linear projection of CN into some
Cn+1, we obtain an embedding of a neighbor-
hood of p into Cn+1 that realizes (M,V ) in that
neighborhood. The image of this neighborhood
is now a real hypersurface. Thus, for local real-
izability, there is no loss of generality in taking
N = n + 1 in the definition.

The definition of a CR function given on page
1482 applies also to the present case. Just as the
restriction of a holomorphic function to a hy-
persurface M ⊂ Cn+1 gives a CR function, the
pull-back via a realization of any holomorphic
function to a function on the abstract manifold
M is also a CR function.

Applying this to the coordinate functions on
Cn+1, we see that each component Φi of Φ is a
CR function. Since these functions are indepen-
dent and vanish on V , their differentials dΦi

span the annihilator of V . Thus, a necessary
condition for there to be a local embedding is
that the annihilator of V has a basis of exact dif-
ferentials. This is the integrability condition, and
can be restated in the formally equivalent form:

(3) The space V of vector fields with values
in V is closed under brackets: [V ,V ] ⊂ V.

Note that in the case when V is a subbundle
of the tangent space of M (rather than the com-
plexified tangent space), condition (3) is just the
Frobenius condition and then M is foliated by
submanifolds that at each point have V for their
tangent space. There is no similar foliation when
(2) holds.

Definition. (M,V ) is called a CR structure if it
satisfies conditions (1), (2), and (3).

We emphasize that each real hypersurface in
a complex manifold satisfies these conditions
and so is a CR structure. The following result tells
us that we should be satisfied with these three
conditions and not seek to abstract other prop-
erties of real hypersurfaces.

Lemma. A real analytic CR structure is locally
realizable.

Proof: Complexify M and V . Then V becomes
a bundle of holomorphic tangent vectors and
condition (3) becomes the Frobenius condition
for a holomorphic foliation of the complexifi-
cation of M . Holomorphic functions parame-
trizing the leaves of this foliation restrict to CR
functions on M.

We know now what to take as the abstract CR
structure and we ask if every abstract CR struc-
ture can be realized locally as a real hypersur-
face. Because of our experience with the bound-
aries of open sets in Cn, it is natural to at first
limit ourselves to strictly pseudoconvex abstract
CR hypersurfaces. Lewy seems to be the first to
have posed this question [13]. Nirenberg was
certainly the first to answer [16]: There exists a
C∞ strictly pseudoconvex CR structure defined
in a neighborhood of 0 ∈ R3 such that the only
CR functions are the constants. Of course, this
rules out realizability.

Said another way, there is a complex vector
field L such that the only functions satisfying
Lf = 0 in a neighborhood of the origin are the
constant functions, and this vector field can be
constructed as a perturbation of the standard
Lewy operator. 

There are several reasons (having to do with
the technical structure of the partial differential
system) to conjecture that when we restrict at-
tention to strictly pseudoconvex structures coun-
terexamples such as the one of Nirenberg would
be possible only in dimension 3.

After attempts by many mathematicians, Ku-
ranishi showed in 1982 that a strictly pseudo-
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convex CR structure of dimension at least nine
is locally realizable. This was improved in 1987
by Akahori to include the case of dimension
seven. See [12] and [1]. The five dimensional
problem remains open. The technical reasons al-
luded to above suggest realizations are always
possible in this dimension; other reasons such
as the argument in [15] hint that it is not always
possible. A simpler proof of the known dimen-
sions was given in [23]. Recently, Catlin has
found a new proof that also includes many other
signatures of the Levi form [5]. However, there
is one special signature where realizability is
not always possible: Nirenberg’s counterexam-
ple was generalized in [10] to the so-called aber-
rant signature of one eigenvalue of a given sign
and the other eigenvalues all of the other sign.
Catlin’s results, together with these counterex-
amples, leave open the case of precisely two
eigenvalues of one sign. This includes, of course,
the strictly pseudoconvex CR manifolds of di-
mension five.
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