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Chapter 1

Holomorphic functions of
several variables

1.1 Analysis in complex plane

The notation C is used for the domain of one complex variable z = x + 1y,
called also complex line, which is isomorphic to the real Euclidean plane with
the coordinates = Re z, y = Im z and the norm ||z]|* = ||(z,9)||* = 224>
The symbol 2 = /—1 means a choice of one of square roots of —1. The
tangent space T (C) = C is generated by the fields

o0 _1(0 9\ o 9 100 0
S0z 2\ox oy)' 9z 2\0x Oy

A function f : 2 — C defined in an open set Q2 C C, is called holomorphic if
af
o= =

This equation for f = u 4w is equivalent to the system

ou OJv Ou Ov

0

Ox 8y:3_y+8_x:0

For an arbitrary 1-differentiable function f we have

df = gdz + 6—{d}5, dz = dx +dy, dz = dx —dy
0z 0z
Therefore f is holomorphic, if and only if df = 0f/0z dz. Note that dzAdz =
2udz A dy.



Theorem 1 [Cauchy-Green]. For a bounded domain Q C C with piecewise
Ct-boundary and an arbitrary function f € C* (Q) and any point z € () the
equation holds

omf(z) = [ Lwdw [ O] dwndw

o0 W—Z Q0w w—z

(1.1)

PRrROOF. Denote by B the disc of small radius € centered at z and apply
the integral ” Stokes” formula (Gauss-Ostrogradski-Green-Stokes-Poincaré...)
to the form 6 (w) = (w — 2)~" f (w) dw and to the chain Q\B :

/ 0 — / 0= / 0= / do
o0 aB A(Q\B) O\B

We have df = (w — z)"" 0f/diwdw A div. On the other hand, we have in B,
fw) = f(2)+O(Jw—z[), hence

839:]—‘(2)/8 w_ [ o

pW—% OB

The first integral is equal to 272, the second tends to zero as € — 0. [
If the function f is holomorphic, the second terms vanishes; then (1.1) is
called Cauchy formula.

1.2 Holomorphic functions of several variables

n

——

One denotes C" = Cx... x C for an arbitrary integer n; it is a complex vector
space of dimension n. If we fix coordinates z; = z; +y;, 7 = 1,...,n in the
factors and get a coordinate system in C"complex space. It can be considered
as a real vector space of dimension 2n with the coordinates x,y where x =
(1, ooy Zn) , ¥y = (Y1, -, Yn) - The space C" is endowed with the structure of
Euclidean space, where (z,w), = Re ) zjw; = > xju; +y;v;, w; = u;+w;.
Definition. Let U C C” be an open set; a function f : U — C is called holo-
morphic, if it satisfies the system of differential equations (Cauchy-Riemann
system):

af (2) _9re) (1.2)
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We need not to fix a distinguished coordinate system, if we replace by another
coordinate system of the form w; = > afzk +cj, j=1,...,n, where aji, c; €
C are arbitrary such that the matrix {a?} is invertible, we turn C" to an
affine complex space. We have

—J 0
(9wj Z 85k

where {bi } is the inverse matrix. Therefore any function satisfying (1.2) is
holomorphic with respect to the affine coordinate system wn, ..., w,.
Example 1. Any polynomial is holomorphic function in C¥. The sum of a

power series
> e(z=¢)

J:(]l ----- jn)

is a holomorphic function in any open polydisc P = {|z; — (;| <¢;, 1 =1,...,n}
where this series converges.

Definition. A function f : U — C is called analytic at a point z € U, if
it is equal to the sum of a power series that converges in a polydisc P that
contains z.

Theorem 2 Any holomorphic function is analytic (and vice versa).

PrROOF. Assume for simplicity that n = 2. Take an arbitrary point
a = (a1,az) € U a bidisc P, C U and write by means of the Cauchy formula
for an arbitrary z = (21, 22) € P

d d
(27rz)2 [ (21, 22) = / =2 / 1 (o, wn) duy (wn, ws) duy
wg a2| =79 |’UJ1 all T1

Wo — 22 w — %

f wl,wg dwl/\dwg

wl —Zl w2 —22)

where T' = 0*°P = {w : |w; — a1| = r1, |wg — ag| =y} is the 2-chain in U,
which is called the skeleton of the bidisc P. We have |z; —a;| < r; =
|w; —a;|,7 = 1,2, hence the series

Z (21 —a1)”" (22 — ap)

§1>0,j2>0 (wl — al)lerl (w2 . a2)j2+1



converges to (w; — zl)_1 (wq — 22)_1 as z € P,. Apply it for the previous
formula:

f (wl, U)Q) dw1 A dw2
Jji+1 (

(2m1)° f (21, 22) = (21— ay)” (25 — ag)jz/ .

]12 T (w1 - CL1) Wy — az)jﬁl
Proposition 3 If f is a holomorphic function in a connected domain U and
f =0 1in a neighborhood of a point zo € U. Then f =0 in U.

If f = g+1his a holomorphic function, then g = g (z,y) and h = h (x,y)
are harmonic functions, i.e.

N 02 0P g 0
Bg=Ah=0. A=) pat 5 =25, 7,
j=1 J J 7=

The same is true for any antiholomorphic function, i.e. for a function f* such
that f* is holomorphic.

Corollary 4 If f is a holomorphic function in a connected domain U, then
the function | f| can not reach its mazximal value if f # const .

1.3 Hartogs’ phenomenon

Theorem 5 Let n > 1,U C C" be an open set and K be a compact subset
of U such that U\K is connected. Then an arbitrary holomorphic function f
in U\O has a unique holomorphic continuation to U.

SKETCH OF PROOF. Suppose for simplicity that n = 2. Take a complex
line L, = {23 = b} that does not meet ©. The function fj, (z1) = f (21,b) is
holomorphic in the domain L, N U of the complex line L;. We can move the
point b in an open set w C C which does not meet K. Take the maximal set
w such that this property holds; then there exists a point 3 € dw such that
Lz meet K. The intersection K, = Lg N K is a compact set; take a compact
V c U N L with smooth boundary that contains K,. Consider the integral
for an arbitrary integer k :

/ wlff (w1, b) dwy
v
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It vanishes for an arbitrary b € w; it is well defined and holomorphic in a
connected neighborhood w, of the point b,. It must vanish for b € w, since
the intersection w Nw, is non empty. This implies that the function f (z1,0)
has holomorphic continuation f to V for any b € w,. By Cauchy formula

d
omif (21, 2) /M

wy — 21

we see that f is holomorphic in V X w, too. The function f coincides with f
in the intersection U\K NV x w,, if this intersection is connected. It follows
that f is holomorphic in Q\K’, where K’ = K\V x w,. We can continue this
process of cutting out of the compact K. The condition of theorem implies
that we can go on until the set K disappears. [

Below we give a rigorous proof based on an integral formula.

1.4 Differential forms in C"

Let U be a domain in R™ and 27 (U), ¢ = 0, 1, ..., 2n be the space of smooth
differential forms in of degree ¢ in U. The exterior differential defines the
linear mappings d = d, : Q (U) — Q41 (U), ¢ =0, ..., 2n; d,,, = 0. such that
dg+1dy = 0. A form « is called closed, it do = 0 and ezact, if « = df3; the
form ( is called primitive of a. Any exact form is closed. The ¢-th de Rham
cohomology of U is the space

H7(U) = 2% (U) /B*(U)

where Z9(U) the space of closed forms in U and B? (U) is the space of exact
forms.

Owing to the complex structure of C* = R?", an arbitrary form a €
Q7 (U) can be written as follows

a=a® a4
where o™* € Q4 (U) is a form of type (r,s), r+s=¢q:

ans — Z iy oivijrge (T3 Y) dziy Ao Ndzy, NdZj Ao N dZy,

11<..<0p;51<...<Js

where a;, ;. (x,y) are smooth functions in U. Therefore there is isomorphism

Q7 (U) = Q% (U) & ... Q% (U)

5



where Q" (U) means the space of differential forms of type (r,s). In partic-
ular, we have Q2" (U) = Q™" (U) . We can write

df =of +0f, 0f = Z 5 L

and in general d = 8 + 0, where
d: Q™ (U) — Q" (U), 0% : Q" (U) — Q" (V)
Contraction. Given a differential form « of degree ¢ and a vector ¢ =
> t;0; + s;0;, the contraction is the form § of degree ¢ —1:
P

——
ﬁ:t"&:Z(—l)pt]‘ail 77777 Uriflyeees deZil /\...de..../\dZir/\d_Z_jl /\/\d_Z_jS

g
A

+ Z (-1)0 S5y, irsh1,e, jSlel-l VANPPRAN dZiT VAN d_Z_jl A \d_Z_j VAN d,_Z_jS

Lie-derivative of a form with respect to a vector field t =t (z,y) :

Lia=d(tda)+t-da (1.3)

1.5 Bochner-Martinelli formula

Define the form in C" of type (n,n):

. dz/\dz

H ,dz=dxn N...Ndz,, dz=dzy N... Ndz,
z

where |z|> = 3" z,Z;. It is homogeneous of degree 0. Take the antiholomorphic
Euler field e = )" 2;0/0%; and define the contraction

L (=1L
2m)" edp

It is called Bochner-Martinelli form. It is of type (n,n —1). Fix a point
¢ € C" and replace the argument z to z — ( in the form w. We get the form

—1)!
we = (n—1) Z(—l) | TJ dzy A .. dzj ANdz, Ndz




Properties:
1. Forn = 1,w = (2m (2 — ¢)) " dz is the Cauchy kernel.
2. The form we is closed in C™\ {C} ..i.e. dw; = 0.

o= Z iy, () dagy AN dag,, da = Z dai,. i, (x) Ndxy N ... Adx,

It can be checked by a straightforward calculation.
3. For the sphere S, = {|]z — (| = r} in C" we have

/ WC =1
Sr

Indeed, take ¢ = 0; since w is homogeneous of degree 0, we can take r = 1.
By ”Stokes” formula

/Slw: (7(12;@;,3! /Slw (d2 A dz)

_ (?2;2)12’ /B d(é - (d3 A d2))

n! diNdz =1
= — A =
<2m>"/B hdE=s

where B is the unit ball, since

d(e - (dzNdz)) =ndz Ndz=n(2)"dz Ady

and [ dx Ady =7"/nl.
4. For an arbitrary bounded domain U with smooth boundary 0U and a

point ( € U
/ We = 1
oU

ie. dwe = &JC = 0¢, where 0, is the delta-distribution in C".
5. Let U be a bounded domain with smooth boundary 0U in C™ and f be a
continuous function on OU. Then the integral

G(Q)= [ fu
ou

is a harmonic function in U. For a proof, we note that Aw; = §* 0w = 0. (If
n > 1, G (z) need not to be a holomorphic function.)
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6. For any j = 1,...,n the form awg/aéjis exact in C™\ {C}. This derivative

is equal to the derivative gng since w¢ only depends on ¢ — z. The last one
is, in fact, the Lie-derivative, which is defined by (1.3):

) B} B} B}
g :Léjw<:d<8j _|WC> +8j %dwg :d(a] _|wg)
¢
since of 4. This equation can, of course, be checked by direct calculation.
7. If n > 1, then for an arbitrary j = 1,...,n the form w, is exact in

C™"\{z; # ¢;}. Indeed, w = d (t; 4 w¢), where

2= 0
(n—1) (2 —¢) 9z

Theorem 6 [Bochner-Martinelli] Let U be a bounded domain in C" with
piecewise smooth boundary and f be a continuous function in U that is holo-
morphic in U. Then for arbitrary ¢ € U we have

f<<>:/anw<

PRrOOF. We have d(fw:) = df Nw¢ + fdwe = 040 in U\B¢, where B,
stands for a ball centered in ¢ of radius r. Therefore

G(C)Z/anWcZ/{)Bgf%—%(@/%(%:f(o

as r — 0, since f is a continuous function. [

tj:

1.6 Analytic continuation from boundary

Definition. A tangent vector t in C™ is called antiholomorphic, if t =
> .t;0/0z; for some t; € C. Let S be a real smooth submanifold in C".
We say that a function g € C'(S) satisfies the tangent Cauchy-Riemann
equation, if ¢ (f) = S.t;0;f = 0 for an arbitrary antiholomorphic tangent
vector ¢ to S.

This is equivalent to the equation df Adz = 0in T (S),if S is a manifold
of dimension 2n — 1.



Theorem 7 [Bochner-Severi] Let n > 1 and U be a bounded domain in C"
with smooth connected boundary OU. If a function f € C'(9U) satisfies the
tangent Cauchy-Riemann equation, then there exists a continuous function
F inU=UU0JdU that coincides with f on the boundary and is holomorphic
in U.

PROOF. (i) Show that the Bochner-Martinelli integral

F(Q)= [ fu
ouU

gives the continuation. First check, that F' is holomorphic in C™"\0U. By the
property 6, since ¢ € U

g_é_]::/aU ZCZC /fd 8 —|w4 / (féj_'wc>=0

We have d <f3j . w<> = fd <8J = w<> +df A <(3] = wg) , because of df Adz = 0
in OU

(11) Prove that F' = 0 in C"\U. Take a point ¢ € C"\K, where K is the
convex hull of U. Then for some j we have zj # (; for z € U. By 7 we find

FQ)= [ gat 4w = [dit ) =0

ou

Then F' = 0 in the connected open set (C”\IB by the uniqueness theorem.
(iii) Now we show that for an arbitrary point zo € U the function F' ()
tends to f (29) as ¢ — zo. Let x be the indicator function of U. We have

0= [ w

in virtue of (ii) and Bochner-Martinelli theorem. Therefore

FIO=Fex(©= [ 17D Gallec (2 (1.4
We have [f (2) — f (z0)]we (2) = O (|2 — 2| 2 dS) uniformly as ¢ — z
and the positive density |z — zo|72wr2 dS is integrable in the hypersurface
OU. Therefore (1.4) is a continuous function of ¢ according to Lebesgue’
convergence theorem. The left side vanishes in C"\U by (ii), hence F' (zo) =

X (20) f (20) = f (20) . O



Corollary 8 Let U be an open set in C"* and K C U such that U\K is con-
nected. Then any holomorphic function f : U\K — C has unique analytic
continuation to U.

For proof we choose an open set V with smooth boundary dV such that
K Cc V CcU. We have df A dz = 0 on the boundary since the function f is
holomorphic in V and continuous in the closure V together with first deriva-
tives. By Bochner-Severi theorem f has analytic continuation g : V — C.
Define the function F' in U that is equal to f in U\V and ¢ in V. Tt is
holomorphic in U\OV and continuous in any point of V. It is holomorphic
everywhere in U in virtue of Problem 1. The function F' coincides with
f in U\V and consequently in U\K because of the uniqueness property of
holomorphic functions.

1.7 Problems

1. Let f be a continuous function in an open set U C C" that is holomorphic
in U\S, where S is a C'-hypersurface. Show that f is holomorphic in U.

2. Let U be an open connected set in C" and a subset Z is given by the
equation {g = 0}, where g /=8 is a holomorphic function in U. Prove that
holomorphic function f in U\Z that is locally bounded in a neighborhood of
each point z € Z, has holomorphic continuation to U.

3. Show that any holomorphic function in C?*\R? has analytic continua-
tion to C2.

1.8 Leray’ formula

Definition. We call Leray map any C'-mapping A : U x 9U — C"such
that (A (2,(),( — z) # 0. Take another copy of C"and the differential form
m=e4dw =3 (-1 widw A c/lt\uj A dw,, in this space. Note the
following property:

8. If a(z) # 0 be a smooth function, then (az) = wy(z). For a proof we
show that 7 = wi'd (wa/wy) A ... Ad(w,/w) or that

w1 e Wy
1
o dot dwy ... dw,
(n—1)!
dw1 dwn

10



Theorem 9 [Leray-Fantappié] Let U be a bounded domain in C™ with piece-
wise smooth boundary and A be a Leray map. For any holomorphic function
f:U — C that is continuous up to the boundary, the following representa-

tion holds \
o= [ 1050 ( O(ff_))Z)n A d¢ (15)

Remark. If A = ¢ — Z, this formula turns to the Bochner-Martinelli
formula. On the other hand, if A is a holomorphic with respect to z the
kernel in (1.5) is a holomorphic in z too.

Problem 4. Show that for any bounded convexr U one can choose a
Leray map that does not depend on z.

PRrROOF. Fix z € U and consider the quadric Q = {(,w : (w,{ —2) =1} C
C™x C". This is a complex algebraic manifold of dimension 2n—1 (see Chap-

ter 2). The 2n — 1-cycle Wy = {w = </\(é\)(?fz>,g € 8[[}} is contained in @) as

well as the cycle Wy = {w = = s GU} . There is a 2n-chain

Ic—2*”

e AR (9 T
W—{(, 0w =t (1 t)K_Z’2}

whose image is contained in () such that OW = Wy—W;. The form e 4 dwAd(
is of type (2n — 1,0) and has holomorphic coefficients. Therefore it is closed
in Q. The form fe - dw A dC is closed too, since d(fe 4 dw Ad¢) = df A
d¢ A (e 4dw) =0 and df A d{ = 0 in the boundary 0U. By Stokes Theorem
we conclude that
/ frANdC = frmAdC
%% Wo
By 8 we have 7 (w) = (\,{ — 2) "7 ()\) in the left side, hence the left side is
equal to (1.4). The same arguments show that the right side coincides with
the Bochner-Martinelli formula.
References
[1] B.V.Shabat, Introduction to Complex Analysis, V.2
[2] Gunning, Introduction to holomorphic functions of several variables, V.III
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Chapter 2

Analytic manifolds

2.1 Submanifolds in C"

The set of all tangent vectors to the space C" = R?" with complex coefficients
at a point w is called the tangent space and denote T, (C™). It is generated
by the vectors 0/0x;,0,,, j =1,...,n or by the vectors

b0 _L(0 9N 5.0 1o 9
j_ﬁzj_Q 6mj 8yj ’ J_aij_Q axj ayj

A tangent vector t is called holomorphic, or antiholomorphic, if it is a linear
combination of vectors 0; and vectors @-, respectively. A C''-function f : U —
C is holomorphic, if it is annihilated by all antiholomorphic vectors. The
union 7' (C") = U{T, (C"),w € C"} is called the tangent bundle of the
space.

Define the linear operator J in T'(C") by

J (8%') = ayj? J (ayj) = —8%.

It is called the operator of complex structure. Obviously J (9;) = 10;, J (5]) =
—10;, J? = —1, hence the holomorphic and antiholomorphic vectors are eigen-
vectors of J with eigenvalues 2 and —1, respectively.
Reminder. Let U be an open subset of C", and S C U be the set given
by equations
hy (z,y) =...=hy(z,y) =0 (2.1)

1



where hy, ..., hy, are real smooth functions in S such that the Jacobian p x 2n-

matrix 4
e {7
a(xk‘vyk‘) k=1 n

.....

has rank p everywhere in S. It is a smooth manifold of dimension 2n — p. Let
w = u+w € 5; the space of real tangent vectors t = ) ¢,0/0x; + s,0/0y;
that annihilate the functions hq,..,h, is called the tangent space to S at
w and denoted T}, (S). The union T'(S) = U{T,, (S),w € S} is called the
tangent bundle to S. An arbitrary real submanifold S C U is a subset that
is locally of form (2.1).

Definition. A complex analytic manifold in U ¢ CV is a closed subset
Z C U such that for an arbitrary point w € Z there exist a neighbourhood
W of w and holomorphic functions fi, ..., f; in W such that

ZNW={z: fi(z)=..=f,(2) =0} (2.2)
and o
rank { agczg@ }j1 .......... ) =qforzeZ (2.3)

The space of tangent holomorphic vectors t = > ¢;0; such that t (fx) = 0
for k=1,...,q, 2 € Z is called the holomorphic tangent space; it is denoted
Te (Z).

If V is an open subset of U, then ZNV is analytic submanifold of V.

Example. The hypersurface Q = {p(z) =0} is called quadric in C"
(affine quadric) , if p is a polynomial of order 2.

Proposition. Any complex analytic submanifold Z is a real submanifold
of dimension 2n—2q. The operator of complex structure J acts in the tangent

bundle T (Z) .
PROOF. Write fi = gi + thy, the system (2.2) is equivalent to

=1,...,



has rank 2¢q in each point w € Z. Indeed, assume the opposite; then we have

q
ﬁgk 8hk
+b = 2.4
2 gy, + gy, =0 (24)
0 Ohy,
+b =0forj=1,..
A —=~— ay] k™ ay] or j ey T

for some real coefficients such that > |ax| + |bx| # 0. Take the sum of the
first equation (2.4) and of the second with the factor —z: the result can be
written in the form

Ogk 3hk gy Ohy,
R —g) | =—+1=——1=—+—|] =0
ez e = 1Ok <8J:J Gx] Z@y] * (9yj>

Taking in account the Cauchy-Riemann equations

Ohy, 8gk Ohy, o agk

dx; Oy Dy Ou;
we find that also Im ) (ax — 1by) (...) = 0. Both relations together give

Z (ak — Zbk) (%fk =0
k

which contradicts (2.3). Therefore Z is a smooth manifold of dimension 2n —
2¢ (or codimension 2¢q). The analytic tangent bundle T¢ (Z) is generated by
the holomorphic fields of the form t = ¢,0;+...+t,0,, where > t;0f,/0z; =0
for k = 1,...,p. The holomorphic functions fj satisfy the equation ¢ (f;) =
0. Therefore the space T¢ (Z) is contained in T (Z), hence the direct sum
Te (Z) ®Te (Z) is contained in the space T (Z) . Both spaces are of complex
dimension 2n — 2q, consequently, they coincide. We have J (t) = it and J
transform the bundle T'(Z) to itself.

Definition. The number m = n — ¢ is called complex dimension of Z,
dim¢ Z = m. The real dimension of Z, dimg Z is equal to 2m.

Now we formulate the inverse statement:

Theorem 1 Let S C U C C" be a real submanifold such that the operator
J acts in T (Z). Then S is a complex analytic submanifold of U.

Problem. To prove this theorem. Hint: suppose that n = 2,m =
1; write S in the form z; = F (z1,y1) and check that the function F' is
holomorphic.



2.2 Simplectic structure in C"

Definitions. The differential form

Ll — B}
o=z jg_l dzj Ndz; = g dx; A dy;
is closed do = 0 and the n-th power

= <Z dz; N dyj>/\n = (—1)"(n_1)/2 nldzAdy, dr = dxA...Ndx,, dy = ...
(2.5)
is a non vanishing volume form in C". Therefore the form o defines a sim-
plectic structure in C". A submanifold S C C" is called isotropic, if o|S = 0;
it is called Lagrangian, if it is isotropic and dim S = n.
Examples. The subspaces R",1R"™ are Lagrangian, but no complex linear
subspace is Lagrangian.

Exercise. Check that for any holomorphic (or antiholomorphic) tangent
vector ¢ the equations hold o (¢,J (t)) =0, o (¢,J (f)) = It]* .

Proposition 2 If Z is a complex analytic submanifold in C™ of dimension
m, K C Z is a compact set, the 2m-volume of K can be calculated by means
of the simplectic form

Vol (i) = ™7 / o/ (2.6)

m!

Proor. It is sufficient to check this equation for an arbitrary complex
linear subspace L, since any tangent space Ty, (Z) is complex linear too. Use a
coordinate change w = Uz, where U is an unitary n X n-matrix, i.e. a matrix
whose entries are complex numbers, such that UU=UU =1 , where [ is
the unit matrix. This generates an orthogonal transformation of C* = R?"
and does not change the FEuclidean metric. Indeed, the interior product in
the Euclidean space R?" can be written in the form

(z,() = Re Z zjzj
We have

(Uz,U¢) =Re Y (Uz),(UC), =Re Y (U’Uz> G =Red 2 = (2.0)

J
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By a choice of U we can make L = {w,_py1 = ... = w, = 0}, hence w; =
uj +w;,j = 1,...,m are complex coordinates in L. Then we have

VOZQm (K) =

/ dui A ...du, Advp A ... A dv,,
K

On the other hand, by (2.5) "™ = (—1)™™ V2 ml duy A ..duy, Advy A ... A
dv,,. This proves (2.6).

Corollary 3 The volume of K is equal to the sum of volumes of projections
of K to all the coordinate subspaces of C" of dimension m.

PROOF. In terms of the coordinate system z we have

o\ = (—1)’”(7”_1)/2 m! Z dxj, A ..dxj;, Ndy; N...Ady;,,
1< <Jm

which yields
VOlQm (K) - Z / dl’jl AN ...d!L’jm N dyjl VANPTRVAN dyjm
1< <fim T

and the integral in the right side equals to the integral of the same form over
the projection of K to the coordinate subspace spanned by z;,, ..., 2;

m*

Theorem 4 [Wirtinger| Let S be a real submanifold of U C C™ of dimension
2m. Then the inequality

1
Voloy, (K) > — '/ o\
m! |k

holds for an arbitrary compact set K C S. The inequality turns to the equa-
tion for any K, if and only, if S is a complex analytic submanifold.

See a proof in the book B.Shabat, Chapter II, Sec.6.
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2.3 Analytic manifolds

Definition. A structure of complex analytic manifold in a metric space M
is give by a complex analytic atlas { M, ¢o, @ € A}. An element of the atlas
is a chart ( M,, ¢.), where ¢, : M, — C" is a homeomorphism of an open
subset M, C M onto an open subset U, C C". The maps ¢, are consistent in
the following sense: for any «, 3 € A such that M, N Mgz # 0 the connecting
mapping
Ppat 9o (Ma) — ¢5(Mp)
N N
U, Ug

¢ (i.e.0paP0 = ¢p) is holomorphic with respect to complex coordinates in
C™. The number n = n,may depend on «; if the space M is connected, n,,
is constant. It is called dimension of M. Any other atlas {M 5 95,0 €B }
in M defines the same analytic structure, if the union {M,, ¢, } U {M 5 ¢’B}
is an analytic atlas in M.

Definition. Let M, N be analytic manifolds. A continuous mapping F' :
M — N is called analytic, if for any chart (M,,¢,) in M and any chart
(Ns,13) in N the mapping

Fpa o (Mo N F~H (Ng)) — 93 (Np)

such that Fg,¢, = 13, is holomorphic. Composition of analytic mappings
is again an analytic mapping. An analytic mapping F' is called invertible or
isomorphism if F~! is defined and is also analytic. A mapping A: M — M
is called endomorphism; A is called automorphism if it is a isomorphism.

2.4 Examples

1. Riemann sphere, Riemann surfaces.

2. Tori. Take A € C such that ImA > 0. The numbers 1, A\ generates
the subgroup Ly = {n +mA\, n,m € Z} of the additive group C; it is called
lattice. A coset of this subgroup is a set of the form z + L. The quotient
Ty = C/L, is the set of all cosets. This a metric space homeomorphic to
the topological torus. It has the structure of complex analytic manifold of
dimension 1 such that the natural mapping C — C/L, = T, is analytic.

This structure depends on \. If u = Z;\Is for some integers a, b, ¢, d such that
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ad — bc = £1, we have an analytic isomorphism 7}, = T}, since L, = L.
Otherwise there is no analytic isomorphism of the tori.

3. Complex projective space CP". This is the (metric) space M of all
1-dimensional subspaces of C". Let (zo, ..., z,) be system of linear coordi-
nates in C**!. The analytic structure in M is defined by means of the atlas
{M;,¢;, =0,...,n}, where M; is the set of lines L that do not belong to the
coordinate subspace {z; = 0} . The chart ¢, : M; — C" is defined as follows:
¢; (L) = (Wo, .., Wj—1, Wi, Wjt1, ..., Wy ) , Where (wo, ..., wj—1, L, Wjt1, ..., wy,) €
L. The point ¢, (L) is uniquely defined, since the line L can not contain
two different points with j-th coordinate equal 1. Check that each connect-
ing mapping ¢;; k # j is holomorphic. According to the construction,
we have ¢, (L) = (ug,.., Uk, ..., up), where (ug,..,ux_1,1,Ugs1...,u,) € L.
The points in the same line are proportional: (wy, ..., wj_1, 1, Wji1, ..., wy,) =
A (ug, .., Ug—1, 1, Ugsq..., Up) , which implies

~1 A I .|
A=, wp =y, #E gk wg = ug

ie.
~ I -1 -1
Dt (U oy Uky ooy Up) = UQUS ™ ooy U5 oo, U U

The mapping ¢, is obviously holomorphic.



Chapter 3

Division of holomorphic
functions

3.1 Weierstrass’ theorems

Weierstrass’ theorem is an analogue for holomorphic functions of the Eu-
clides’ division algorithm. Let f be a holomorphic function defined in a nbd
U of a point a € C", L be a complex line through this point. We say that L
is suitable for f, if f does not vanish identically near the point @ in UNL. We
say that a coordinate system z1, 29, ..., 2z, in C" is suitable for f in a, if the
line L = {z' = 2/ (a)} is suitable for f, where 2’ = (29,...,2,). In a suitable
coordinate system there exists a natural number k such that

fla)=0uf(a)=..= 01" f(a) = 0,01 f (a) # 0

Proposition 1 For an arbitrary holomorphic f that is not identically zero
in a nbd of a point a there exists a suitable system of coordinates. Moreover,
the set of suitable coordinate systems is open and dense in the set of all linear
coordinate systems.

PROOF. Find k > 0 such that f (a) = d'f (a) = ... = d* ' f (a) = 0, but
d*f (a) # 0. Take for L any line such that d*f (a)|L # 0. e

Theorem 2 [Weierstrass] If a coordinate system zi, ..., z, is suitable for f in
a then
(i) [factorization] there exists a function

p(z) = (21 — al)k +p1(2) (21 — al)k_1 + .o+ pr (2)
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where py (2'),...,pr (2) are holomorphic functions defined in a nbd of the
point b = 2’ (a) € C*! that vanish in this point and

J=0op

where ¢ is holomorphic function in a nbd of a. The functions p and ¢ are
uniquely defined.
(11) [division] For an arbitrary function g holomorphic in a nbd of a we have

g=qf +r
where again q,r are holomorphic functions in a nbd of a and
r(2) =710 () Fr ()2 L (2)

where the functions r; are holomorphic in a nbd of b. These functions are
uniquely defined.

Remark. We have ¢ (a) = (k))"" 0% f (a) # 0; therefore the function ¢
is invertible in a nbd of a.
Definition. A function of the form ¢ (2) = qo (') 24 +q1 (2/) 25 4.+ (7))
is called pseudopolynomial (pp) in z;. The pseudopolynomial is called unitary
if go = 1; it is called distinguished at a point a € C", if it is unitary and
0 (7 (0) = . = i (' (a) = 0.

According to (i), p is a distinguished polynomial at a.

Reminder. Let V' C C be a bounded set with smooth boundary 0V and
¢ be a Lifschitz function on 9V, i.e. |¢ (z) — ¢ (2)| < C'|z — 2/|* for arbitrary
z,2" € OV and some positive a, C. The Cauchy integral

N ¢ (w) dw
Fz) = 2m Joy w —z

with the standard orientation of the boundary 0V is well defined and holo-
morphic in the complement.

Theorem 3 [Sokhozky-Plemelj] The function F is continuous up to OV from
inside of V' and from outside and ¢ = F, —F_, where F',, F_ are the boundary
values of F.



PROOF. (i) Assume for simplicity that a = 0 and k& > 0. Take a small disc
D C L centered at the origin such that there are no roots of f in the closure
of D except for the origin, which is root of multiplicity k. There exists a ball
B C C"! centered in 0 = 2/ (0) such that f(21,2') # 0 for z; € D, 2’ € B.
Consider the function h (2) = 2" f (2); the logarithm In A is well defined in
a nbd of D x B. Write the Cauchy integral

Hoe = L [ o
’ _27TZ oD Zl—)\

It is holomorphic for A € C\0D and 2z’ € B and has boundary values in 9D
from both sides; denote the boundary values H,, H_ from inside and outside
of the disc D, respectively. We have

Inh(z)=Hy(z) — H_(2)

for z; € OD. Set hy = exp(H,); this function is holomorphic and does
not vanish in D x B and continuous in the boundary 0D x B. The function
h_ = exp (—H_) is holomorphic, does not vanish in C\D x B and tends to
1 as z; — oo. We have hyh_ = h = z7"f (2), consequently the function
p = 2Fh_ = f/h, has holomorphic continuation to I x B. Therefore p =
p(z1,2") is a polynomial in z;. For 2/ = 0 we have the function h (z,0) is
holomorphic in D, hence H_ = 0 and h_ = 1 and p (21, 0) = 2¥. The equation
f = phy completes the proof of (i).
(ii) We can replace f by p in virtue of (i). Write for 2z’ € B

A, 2") dA g\ ) p (N2 —p(2,2)
2mg (21, 7) = z,z’/ 9\ +/ ’ 7 2 d\
P =P | A0 Jprn) Ao a

The functions

0 (20, 2)) = 1 /p(g(/\,z’)d)\

T 2m A2 (A= 2)
A g()‘azl)p<)‘7 Z/>_p(2172,)
r(zl,z)—/pw,) . d\

are holomorphic in a nbd of the origin and r is obviously a polynomial in z;
of order < k.

Exercise. By Rouché Theorem for each 2z’ € B the function f (-, 2’) has
precisely k roots in D (counted with multiplicities), say (i ('), ..., (27).
Show that p (z1,2") = (21 — G1 (2')) - (21 — G (&)

3



Definition. For a point a € C" we denote by O = O, (C") the algebra of
convergent power series

a(z) = Z a; (z—a) = Z iy (21— @)™ o (2 — @)™

Any holomorphic function f defined in a nbd of a defines an element of OF.
Two functions f, g defines the same element if f = ¢ in a nbd of a. Thus
O7 is the C-algebra of germs of holomorphic functions at a. The algebra O}
has only one maximal ideal m,; this is the ideal of series with zero free term:
apg = 0.

3.2 Stabilization and finiteness properties

Definition. A commutative algebra A is called Notherian, if any ascending
chain of ideals
LchLhc..cl,c..CA (3.1)

stabilizes, i.e. it is constant for sufficiently large k.

This is equivalent to the following property. An A-module M is called
finitely generated, if there exists a finite set mq,...,m; € M such that an
arbitrary element m € M can be written as the sum m = aymq + ... + agmy
with some coefficients ay, ..., ar € A (the coefficients need not to be unique).

Proposition 4 A commutative algebra A with unit is Notherian, if and only
if

(*) for any finitely generated module M any submodule N C M 1is also finitely
generated.

PRrROOF. First we check that the property (*) implies stabilization of
(3.1). Note that the algebra A is generated by the unit element. Consider
the union I = UI}. This is an ideal in A, hence is generated by a finite set
of elements by, ..., b, since of (*). These elements are contained in [ for
sufficiently large k, hence I, = I, for any [ > k.

Show that the stabilization property implies that NV is finitely generated.
We use an induction with respect to the minimal number £ of generators of
the module M. If £k = 0, M = 0 and the statement is trivial. Suppose that
k > 0 and mq, ..., my is a set of generators. Consider the mappingp: A — M
given by a + —am;. Then p(A) is a submodule in M and p(A) N N is a
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submodule in N. The quotient N’ = N/N Np(A) is a submodule in M' =
M/p(A). The module M’ is generated by k — 1 elements which are images of
ma, ..., mg. By induction the submodule N’ is finitely generated. Let nf,...,n;
be generators of N’ and ny,...,n; € N some elements whose images in N’ are
ny,...,n;. Consider the subset I C A of elements a such that p (a) € N. This
is an ideal, hence it is generated by some elements i1, ..., 4,. The submodule
NnNp(A) is generated by p(i1),...,p (i,) . Now we claim that N is generated
by ny,...,n;p(i1),...,p (i) . Indeed, for an arbitrary n € N the image in
N’ can be written as ajn} + ... + aynj, whence b = n —ajny — ... — aqyny is
contained in NNp (A). It equals byp (i1) + ... + b,p (i,) for some by, ..., b, € A.
This completes the induction.

Theorem 5 The algebra O} is Notherian.

ProoOF. We can assume that a = 0 and use induction in n. We have
O = C and our statement is trivial for n = 0. Now we suppose that n > 0.
Let I be an ideal in O™. If I # 0 there exists a non trivial germ f € I. Choose
a suitable coordinate system and write f = ¢p for a pseudopolynomial p of
order k£ and invertible element h € O". Take an arbitrary g € I and apply
Weierstrass division theorem: ¢ = ¢p + r. The remainder r is a uniquely
defined pseudopolynomial of order < k; the vector of coefficients of r belongs
to the set M = [O" 1. The latter is a module over the algebra O"~! and
the union {r} is a submodule N C M. The algebra O™ ! is Notherian by the
inductive assumption, hence N is generated by a finite set of elements. Let
ry, ..., be the pseudopolynomials that correspond to these elements. That
the set {f,r1,...,r} generates I. ]

Example 1. The maximal ideal m, in Oy is generated by the linear functions
21—y, ..., 2n — Gp. The ideal m¥ is generated by polynomials (2 — a), |i| = k.

Theorem 6 [Hilbert] If A is a Néotherian algebra, then the polynomial algebra
A [x] is Notherian.

Problem. To prove this theorem.



Chapter 4

Analytic sets

4.1 Analytic sets and germs

Definition. Let U C C" be an open set. A closed subset Z C U is called
complex analytic set, if for any point w € U there exists a nbd W of w and
holomorphic functions fi, ..., f, in W such that ZNnW ={f, () = ... = f, () = 0}.
(No assumption on the Jacobian matrix!) If ¢ = 1, this set is called hyper-
surface. If M is an analytic manifold, a subset Z C M is called analytic,
if ¢ (Z) is analytic subset of U for any any chart ¢ : M’ — U C C" in the
analytic structure of M.

Any analytic submanifold is, of course, an analytic set; it is called reqular
analytic set. Otherwise Z is called singular analytic set.

Example 1. If py, ..., py are polynomials C", theset Z = {p1 (2) = ... = p. (2) =
is an affine algebraic variety.

Example 2. If py, ..., pi. are homogeneous polynomials, Z is a cone. The
set of (complex) lines P (Z) of Z is analytic subset of the projective space
PC,,_1; it is called a projective algebraic variety.

Proposition 1 Any finite union of analytic sets is an analytic set. Any
intersection of analytic sets is again an analytic set.

Example 3. The union of coordinate lines in C? is an analytic set. It is
given by the equations 2120 = 2923 = 2321 = 0.

Definition. Two analytic sets Z,W C M define the same germ at a
point a € M if there exists a nbd U of a such that Z N"U =W NU. This is
an equivalence relation. Any equivalence class is called analytic germ. The

1
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class containing 7 is called the germ of Z at a. The set of gems of analytic
functions f € O, that vanishes in Z is an ideal, denoted I (7).

Definition. A complex analytic set (or germ) Z is called reducible, if it
can be represented as an union Z; U Zy of analytic sets (germs) such that
Z; / ;. Otherwise Z is called irreducible.

Proposition 2 A germ Z at a point a to be irreducible if and only if the
ideal I = I(Z) is prime, i.e. the inclusion fg € I implies that f € I or
gel.

Example 4. The set Z C C?, given by the equation 2® + v — 3zy =
0,(Decartes’ leaf) is irreducible, but the germ of Z at the origin is reducible.
The intersection Z N {y < b} is reducible, if and only if b < 31/3.

Proposition 3 An arbitrary analytic germ Z at point a € C™ can be repre-
sented in the form
Z=7,U..UZ, (4.1)

where Zy, ..., Z. are irreducible analytic germs. These germs are uniquely
defined, if the representation is minimal, i.e. no term Z; can be excluded.

PROOF. Suppose that in an arbitrary minimal representation like (4.1)
one of the germs 71, ..., Z, is reducible, for instance, Z; = W U W’ | where
W and W' are smaller than Z,.. Then we get another representation

Z=WUW'UZyU..UZ,

It may be not minimal, but then one of the germs W or W' is not contained
in Zo U...UZ,.. If W is not contained, we have the minimal representation
Z =WUZyU..UZ,.. If W or W’ is reducible, we apply the same arguments to
it and so on. Then we apply these arguments to the germ Z5 and so on. The
result is a strictly decreasing tree-graph of germs {Z,} by inclusion. The
corresponding ideals I (Z,) form a strictly increasing tree. Any ascending
chain of ideals I (Z;) C I (W) C ... in this tree stabilizes, since the algebra
O, is Notherian. Therefore any chain is finite. Therefore the three is finite
too. The last elements in this tree are irreducible. This proves the existence
of (1).

We say that a prime ideal J is associated to [ if there exists an element
f € O, such that J =1 : O,, i.e. J is just the set of elements g of the
algebra such that gf € I. If the representation (1) is minimal, than an ideal
J is associated to I if J = I (Z},) for some k and vice versa. This proves the
uniqueness.



Theorem 4 Let Z be an irreducible analytic set in U. There exists an ana-
lytic subset Sing (Z) C Z such that

(i) Z is an analytic submanifold in a nbd of a point w, if and only if w €
7\ Sing ()

(11) Sing (Z) is nowhere dense in Z;

(111) Z\ Sing (Z) is locally and globally connected and dense in Z.

Corollary 5 If Z is a irreducible analytic set in U and the germ of Z at a
point a € U coincides with the germ of an analytic set W, then Z C W.

PROOF. We have Z\ Sing (Z) C W by analytic continuation; Sing (Z) C
W since W is closed.

Definition. It follows that Z\ Sing (Z) is a submanifold, whose complex
dimension m is the same in any point z. This number is called the dimension
of the analytic set Z. If Z is an arbitrary analytic set and a € Z, then
the dimension of Z in a in by definition the maximal of dimensions of the
irreducible components 71, ..., Z, that contain a.

Theorem 6 If the germ of an analytic set Z is irreducible at z, then the set
Z N U is irreducible for any sufficiently small ball U with the centre in z.

We postpone the proofs.

4.2 Resultant

Let A be a commutative ring. Take two polynomials of one variable ¢ with
coefficients in A :

p=ag+ ait+ ..+ an,t"™; g=>by+ b1t + ... + b,t"

The determinant of the (n + m)-matrix

ag ai ... Qp-1 Gy 0 0

0 ap aq Am—1  Qam 0

0

R O (O

S (P> q) = bO bn—l bn O O
0 by bn-1 b X

0

0 0 by bn1 bn



is called Sylvester resultant of the polynomials: R (p,q) = det S (p,q). It
is an irreducible polynomial of coefficients ay, ..., amn, bo, ..., b, with integer
coefficients.

Proposition 7 If A is a field, then R(p,q) = 0 if and only if there exist
polynomials u,v € Alt] such that uv # 0 and up + vqg = 0 degu < n,
degv < m.

Proposition 8 If the field A is algebraically closed, then R (p,q) =0 if and
only if there exists, at least, one common root of p and q in A or at infinity.

Proposition 9 Suppose that a;, @ = 1,...,m and 8,7 = 1,...,n are roots in
A of p and q, respectively. Then

R(p.q) = apb TL 0= 8) = (0™ 0 [Tp(8) = a [ a @)

1,J

Properties

1. Homogeneity: R (ag, Aay, ..., NG, b, by, ..., N'byp) = A™ R (ag, ..., Gm, bo, ...

2. Multiplicativity: R (pip2,q) = R (p1,q) R (p2,q) -
3. Projective covariance: Take an arbitrary non-degenerate matrix u =

le 512 and define the projective transformation of the polynomials
21 U2

. m upt +u
u (p):(U21t+U22) p(u>

Ut + Ugo

We have
R(u”(p),u" (q)) = (detw)™ R (p,q)

4. Bezout-Cayley formula: If m = n, consider the polynomial

r(ts) = PDEE) —p()a(®) Z tis?

t—s =
4,7=0

Then R (p,q) = det [|ry;]| -
5. R = pu+ qu where u,v € A[t].
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4.3 Discriminant

Sylvester discriminant of a polynomial p is the resultant of p and p/ :

Disc (p) = R (p,p’) = det S (p,p)

apg ai ... A1 QAm 0 0
0 ay a A1 Am 0
0
) 0 ... 0 aop ay A
Disc (p) = det a . . (Mm—1)ay, ma, 0 0
0 a .. (m—1)am_1 may 0
0
0 .. O a; e (m=1)au_1 mapy

Proposition 10 If a;,i = 1,...,m are roots of p, then

Disc (p) = (=1)"" V2 a2 2 T (o — o) (4.2)
i<j
Explicit formulae:For n = 2, p = ast? + a;t + ag we have Disc (p) =
4a*c — ab® = ay (dagag — a?)
Forp=t3+at+b

1 0 a b O
01 0 a b
S=]1003 0 a
03 0wa 0
30 a 00

Disc(p) = —4a® — 270
Example 2. p =t* +at’> + bt +c¢

10 a b ¢ 0 O
01 0 a b ¢ O
00 1 0 a b c
S=100 0 4 0 2a b
00 4 0 2a¢ b 0
04 0 22 b 0 0
40 2 b 0 0 0

Disc(p) = —4ab* — 27b* + 16a’c + 144ab’c — 128a?c? + 256¢3.




Proposition 11 If A is an algebraically closed field, D (p) = 0 if and only
if p has a multiple root in A or at infinity.

Write the Sylvester matrix in a different way:

0..00apaq ... ap,
0..0apay...a,0

agai ... a,, 000...0
aj 2as ... (m—1)au_1 ma,00..0
0ay2ay ... (m—1)am—1 may,0..0

00..0aj2ay ... (m—1)a,_1 ma,

We have the sequence of submatrices S1, S5, ..., where Sy is of size 2m + 1 —
2k x 2m — 1.

Proposition 12 A polynomial p of order m has common divisor of order
> k with the derivative p'if and only if rank Sy, (p) < 2m + 1 — 2k.

Let Sj,j = 1,... are all higher minors of Si. The condition means that
Sij (p) = 0 for all j.

4.4 Hypersurfaces

Now we prove Theorem 1 for germs of hypersurfaces.

Take a holomorphic function f in a nbd of a point a € C" and consider
the hypersurface Z = {f = 0} . Choose a suitable coordinate system (z1, z’)
for this point and function f. We call a nbd V of a = (ay,d’) suitable if
V =D x B, where D = {|z; —a;] <r} and B is a closed connected nbd of
the point o’ and f is defined in V. The number » and B are so small that
(i) f(z1,2") #0 for 2/ € B and 2, € 9D and
(ii) f (21,a’) has only one root z; = a; in . Let m be the multiplicity of this
root. We study the analytic set

Z={f(z)=0,2¢€V}
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By Weierstrass Lemma we have f = ¢P where ¢ is holomorphic and does
not vanish in V and P is a distinguished pseudopolynomial (pp) of order m
at a for 2/ € B which means that

P(z,2) = (21— a)™ + Ap1 (2) (21 —a)" 4 ..+ A (2)

and A,,—1 (') = ... = Ap (¢’) = 0. The function P is a polynomial with coeffi-
cients in the algebra O (B) of holomorphic functions in B. Substitute the pp P
in the Sylvester minors; we obtain the sequence of functions S (P), S, (P), Ss; (P), ... €

O (B).

Theorem 13 Let k be the minimal number such that Sy; (P) /8 for some
J and B be a suitable nbd of a’ for Sy;. Then
(i) we have in V

p=pPm.. pm (4.3)

where Py, ..., Py are irreducible distinguished pp-s in' V. and maxm; = k.
(i1) For each j =1,...,q the analytic set Z; = {P; = 0} is irreducible,

(111) the set Sing (Z;) is analytic set of dimension < n—1 and Z;\ Sing (Z;)
is a connected analytic manifold of dimension n — 1 which is dense in Z;.

PROOF. Assume, first, that & = 1. We call A = {S;(P) =0,z € B}
the discriminant set of P. The complement B\A is connected. Note that
the set Z\P~! (A) is an analytic manifold of dimension n — 1. Fix a point
b € B\A and consider the fundamental group m (B\A) of loops through b.
The polynomial P (z1,b) has m different roots aq, ..., o, in D since of (4.2).
Take a loop v C B\A and construct analytic continuation a; (2'), ..., auy, (2)
along this loop. To the end of v we return to the point b and obtain the order
set of roots o, ..., . They are different; hence this set is a substitution of
the order set ay,...,a,,. Thus, the loop v defines a substitution o of the
ordered set [1,...,m]. This is a group morphism

pem (B\A) — Sy, (4.4)

called the monodromy; S,, is the group of substitutions.

Suppose that the monodromy is irreducible, i.e. is no subset of [1, ..., m]
invariant with respect of the action of 7y (B\z) . This means that if we start
with the root oy and take analytic continuation along all loops, we can obtain
any of the roots as, ..., vy, for z/ = b and arbitrary root 3 of the polynomial
P (z,2") for any 2/ € B. The continuation of a; defines a curve in the set

7



Z\P71(A) where p : D x B — B is the projection. This set is connected,
since we can reach any point (3, z') by a curve from (aq,b) . It is dense in Z
since B\ A is dense in V. The set Sing (Z) of singular points of Z is given by

the system
p=f_ 0
0z 0zn
It is contained in Z N P! (A). Therefore the set Z\ Sing (Z) is connected
too and dense in Z. This proves Lemma for the case ¢ = m; = 1.

Consider the opposite case: the monodromy is reducible, i.e. there exists
an irreducible subset, say aq, ..., of roots of P (z1,b) that stays invariant
under the action of the monodromy. Take an arbitrary point 2z’ € B\A
a curve v C B\A that joins b and 2’ and denote by [ (), ..., 5 (') the

analytic continuations of ag, ..., ; along this curve. Set

0

Q=.2) =] (=1 =5 (z)) (4.5)

If we choose another curve ' instead of v we come to the same set of roots
with, may different order. This does not effect the function @) since it is
symmetric in 31, ..., 3. Therefore the function is well defined an holomor-
phic in C x B\A. It is bounded since |§;| < r for any j. Therefore @ is a
distinguished pp of order [ at a. The same true for the pp
Q' (21,2) =] (21 =5 ()
I+1

and we have P = QQ)'. Hence P is reducible. We apply the same arguments
to @, Q" and so on. We come eventually to the representation (4.3) with
mi = ... = mg = 1 and irreducible P, ..., P;.

Now we consider the case k > 1. Let B be a suitable nbd of a’ for the
function D = Si; (P) Now we call A = {D = 0} the discriminant set of P.
Choose a point b € B\A; there exists a root, say «; of multiplicity exactly k
of the polynomial P (z1,b). Choose a curve v C B\ A that joins b and a point
2" and construct analytic continuation of a; along . Denote by (1, ..., ; all
the roots of P (z1,2’) that can be obtained in this way. Then we define the
pp @ as in (4.5) and @' by taking the product of binomials z; — (; over all
other roots in the point z’. We have then P = Q*Q’ and the factor Q is an
irreducible distinguished pp. Then we apply the same arguments to Q" and
SO on.



Corollary 14 We have

Sing (Z) = U; Sing (Z;) U Uiy, (Z: N Z;)

4.5 Geometry of irreducible germs

4.5.1 Suitable neighbourhoods

Let Z be an irreducible germ of analytic set at a point a € C". We say that a
linear subspace L is suitable for Z if LNZ = {a} and no other subspace L' O L
satisfies this condition. Choose a coordinate system z = zi,..., 2, in C" in
such a way that L = {z441 = ... = z, = 0} for some d. We shall see later that
the number n —d is equal to dim Z. The subspace B = {z; = ... = 2z = 0} is
complementary, i.e. the mappings 7, (2) = (z1, ..., 24,0,...,0) and 7p (2) =
(0,...,0, Zg41, ..., 2n) define the analytic isomorphism C" = L& B. We denote
by Z a representative of the germ. We call a nbd V of a suitable for 7 if
V=D x B where D C L is a nbd of a such that DNZ = {a} and B CB is a
compact connected nbd of a such that the mapping

mg: ZNV —B (4.6)

is proper (i.e. the pull back of an arbitrary compact set K C B is a compact
set) and
I;=1(Z)Nn0O(B)=/{0} (4.7)

Proposition 15 For an arbitrary nbd U of a and arbitrary suitable subspace
L through a there exists a suitable nbd V CU. Moreover, the projection (6) is
open, finite (i.e. the set w5 (b) is finite for any b € B) and surjective.

PROOF. Let L be a subspace through a that satisfies (4.7) of max-

imal dimension. Choose a coordinate system z = zi,...,2, in C" such
that L = {2/ =0} where 2’ = (2441, ..., 2») . The complementary space is
given by B = {21 = ... = zg = 0} . Choose small discs Dy, ...,D; and a ball

B CB such that the set 0 (D) x B has no common point with Z where
D=1D; x ... x Dy. Fix an integer j,1 < j < d and consider the subspace
L; = {2j = 2441 = ... = z, = 0} and the complementary space B; spanned
by B and the z;-axis. Let m; : C" — B; be the coordinate projection. We
claim that the set 7; (Z N'V) is a hypersurface in V; = D; x B if D; and B are

9



sufficiently small. Indeed, there is a function f € I;\ {0} ,where [; = I (Z)
NO (V;) otherwise Ly is not a maximal subspace that fulfils (4.7). By
Weierstrass Lemma 1 we can replace f by a pp p with respect to a suitable
coordinate system. Apply the previous Theorem; one of the factors belongs
to I (Z) because of this ideal is prime. We can assume that p is irreducible.
This pp generates the ideal I;. Indeed, if g € I}, applying Weierstrass Lemma
(ii) we reduce g to a pp ¢. The resultant R (p,q) belongs to I; and does not
vanish identically. This contradicts the maximality of dimension of L. The
polynomial ¢ is multiple of p because of p is irreducible. This that the ideal
I; is principal and moreover the coordinate system z;; 2 is suitable for a gen-
erator of this ideal. Therefore there we can take a distinguished pp p; as a
generator. It is irreducible pp, consequently the discriminant D; = D, (%)
does not vanish identically. Consider the analytic set
P ={p1(21;2) = p2(22;2) = ... = pa(2a; 2') = 0}

It contains Z because of (iii). Now we see that the projection 7y is finite
for a suitable choice of Dy, ...,D; and B. We only need to check that 7, is a
surjection. Suppose the opposite: take a point w’ € B\m; (Z). No point of
the form ¢ (w') = (21, ..., zg; w") € P belongs to Z because of the assumption.
There are no more then m,...my such points. Therefore there exists a function
g € I(Z) that does not vanish in any such point ¢ (w’). Apply Weierstrass
Lemma (ii) to g and p; and obtain the remainder ¢ (z1;2); it also does
not vanish in the points ¢ (w’). Consider the resultant go = R (p1,g1) with
respect to the variable z;. It belongs to I (Z), does not depend on z; and
vanish in no point ¢ (w). We apply Weierstrass Lemma to g, and ps and so
on. To the end we obtain a function g4 (2) € I (Z) that does not vanish in w’.
This contradicts to the previous construction and proves surjectivity of .
The set P is proper and finite over B, since of the choice of discs Dy, ..., Dy.
Therefore Z C P is also proper since of the continuity property of the set
root of a polynomial.

4.5.2 Geometry of irreducible analytic sets

Let L4, By be the suitable linear subspace as above. The set A" = {D’ = 0}
is a hypersurface in B where D’ = D;...D,. Take a point w € Byz\A’ and
denote by (i (w), ..., (m (w) all the points of the set Z such that 74 ({) = w.
Choose a linear function [ =1 (zy,...,24) in Ly in such a way that the values

[(¢ (W), ey L (¢ (w)) are different (4.8)

10



By changing the coordinate system we can take [ = z4. Let m be the order
of the pp p = pg and D = D (Z') be the discriminant of p. It does vanish
identically because of the order m is minimal; we denote A = {D = 0}.

Theorem 16 Let V be a suitable nbd for Z. For any 7 = 1,...,d — 1 there
exists a pp qj (zq;2") or order < m in C x B such that the set

p(z4,2')=0; Dz; —q;=0,7=1,..,d—1,2" € B
is contained in Z NV and contains Z NV \m;' (A).

PRrROOF. Fix j < d and consider the function
hj (Zd> Z/) = Zj (Wc;—ll (Zd7 Z/))

defined on the root set Z (p) = {p (24, 2") = 0, D’ (¢') # 0} . It is well-defined
because of (4.8) and is analytic. There are m roots ¢y (2') ..., ¢ (2/) in Z (p).
Take the interpolating pp for Dh;

Hl;ﬁk (24 — G (2'))
[l (G (2) = G (2)

The sum is a pp and is equal h; (Cx) as zg = (i, consequently the pp ¢
coincides with Dz; in the set Z (p). It is a pp with coefficients that are
analytic in B4\A. The coefficients are bounded because of the formula D =
const IT (¢ — ¢)° . Therefore the coefficients of ¢ are analytic in B,.

4 (z0,2) = D (') Y hy (G ()

4.5.3 Continuity of roots of a polynomial

Definition. Let (M, r) be a metric space, C' (M) the set of compact subsets
of M. The Hausdorf distance in C' (M) is defined as follows

dist (X,Y) = i i
ist (X,Y) maX{glgryrgy(x,y),r?ggggr(fﬂ,y)}

Proposition 17 Let Z (p) be the set of roots of an wunitary polynomial
p(t) = t" + ait" ' + ...+ a,_1t + a, in C. This set as a function of the
point (ay,...,a,) € C" is a Lipschitz function of order 1/n. Moreover, we
have

max <n max |a; 13 4.9
nax|¢] < n max [o)] (49)

11



PrOOF. It is sufficient to prove (4.9). By scaling it is reduced to the
case max|aj]1/j = 1. Therefore we can assume that |a;| < 1 for all j. The
polynomial does not vanish if [t| > n, because of [¢t"| /n > |a;t"7| for all
j > 0. Therefore |¢| < n for all its roots.

12



Chapter 5

Analytic and polynomial
algebras

5.1 Local and global algebras

Our basic field will be always C. Here are some classes of commutative C-
algebras:

1.The algebra of polynomials C [z, ..., z,,| of transcendent elements z1, ..., z,.
On the other hand a polynomial p = p(z) can be considered as a holomor-
phic function in C". Vice versa, a holomorphic function f with polynomial
growth rate f(z) = O(|z|?) at infinity is a polynomial of order < ¢. This
algebra is Notherian by Hilbert’s theorem. For any point a € C" the set m,
of polynomials that vanishes in @ is a maximal ideal in C [z1, ..., z,] . We shall
prove that an arbitrary maximal ideal is of this form.

2.For an arbitrary open set U C C" the algebra O (U) of holomorphic
functions in U.

3.We use the notation O for the algebra of germs of holomorphic func-
tions at a point a € C" and O" = Oj. If we fix a coordinate system in C”,
it is isomorphic to the algebra of convergent power series

FR) =) fuin (1 —a)" o (zn—an)" =Y filz—a) (5.1)

with complex coefficients f;. The condition of convergence is the polidisc
{lzj —aj| <rj,j=1,..,n} is fulfilling of the estimate
[ firyin] < Oy

.....

1



for some constant C. The estimate |f;| < Cr=ll, |i| =4, + ..._i, is equivalent
for ry = ... = r, = r. We have obviously for any point a, O, = O, =
C{z1, .y 20}

Definition. An analytic algebra is an algebra of the form A = O"/I,
where O™ = O (C") = C{z, ..., 2, } is the algebra of convergent power series,
and [ is an ideal in this algebra. It is local, i.e. there is only one maximal
ideal m = m (A). It is equal to the image of the maximal ideal m (O™) under
the surjection p : O™ — A. The canonical mapping A — A/m(A) = C is
called the residue morphism.

The number n is not an invariant of the algebra A; for example the field
C admits the surjection O" — C for arbitrary n. The minimal number n
is called embedding dimension emdim A of the analytic algebra A. For any
analytic algebra A and ideal I in A the residue algebra A/I is also an analytic
algebra.

Any analytic algebra is Notherian, since O™ is Notherian (Ch.3).

4.The algebra F, of formal power series (5.1); no assumptions on growth
of coefficients. It is a local algebra.

Problem 1. To prove that the algebra F, is Notherian. Hint: to check
Weierstrass Lemma for formal series.

Definition. Let A be a commutative algebra. The (Krull) dimension
dim A is the largest length d of strictly ascending chains of prime ideals

PoCP1 CpaC...CpgCA

Theorem 1 The dimension of an analytic algebra A = O™/I is equal to
dime Z where Z = Z (I) is the set of common roots of elements a € I.

Example 1. A = O3/ (2129, 2223, 2321) , emdim A = 3 and dim A = 1;
Po = (21722) Cpr=mcCA

5.2 Primary decomposition

Definition. Let A be a commutative ring, I is an ideal in A. The radical
rad I of and ideal I is the set of elements a € A such that a* € I for some
natural k. The radical is always an ideal: if a* € I, € I, then (a + b)"""' e
I.



An ideal I C A is called primary if the inclusion ab € I implies either
a € I or b € rad I. The radical of a primary ideal I is always a prime ideal.
The inverse is not true. The prime ideal rad I is called associated to the
primary ideal .

Example 2. Consider the ideal I C O* generated by the entries of the

matrix )
Z1 22 _ Z% + 2923 Z9 (21 + 24)
23 24 23 (21 +24) 2023 + 23
The set Z (I) of roots is given by {z1 + z4 = 2124 — 2223 = 0} . The ideal

J = (21 4 24, 2124 — 2923) is prime and [ # J is primary associated to J.

Proposition 2 If I, I5 are primary ideals associated to a prime ideal p,
then I = I, N I is again a primary ideal associated to p.

PRrOOF. Ifab € I, but a /&, thena /&, (or a /d;) and b € rad [; = p.0]

Theorem 3 In any commutative Notherian algebra every irreducible ideal
1S primary.

PROOF. Suppose that an ideal I is not primary. Then there exists ele-
ments a,b € A such that

abel,a /&, b /€dl (5.2)

If ¢ € A we denote by (I : ¢) the ideal of elements e such that ec € I. Consider
the ascending chain of ideals

(I:b)c ([:b°)C...C(I:V)C..

It stabilizes for some k, which means that (I:b*) = (I:0F). We assert
that
I=(I,a)N (1,b%) (5.3)

Both ideals (1, a) and (I , bk) are strictly larger than I and our assertion will
imply that I is reducible. To check (5.3) we show that any element ¢ of the
right side belongs to I. We have ¢ = i + ub® for some i € I and u € A. On
the other hand, ¢ € (I, a); therefore cb € I because of (5.2). This implies

ib+ubttt =cbe I, wttel

consequently u € (I : b"*1) = (I:0F)!and ub* € I, c=i+ub* € I, q.e.d. O

3



Corollary 4 An arbitrary ideal in a Notherian algebra is equal to intersec-
tion of primary ideals.

PRrROOF. By the method of Proposition of Sec.4.1 we prove that I can be
written as intersection of irreducible ideals

I=Ln..NnI (5.4)

Each ideal I, is primary according to the previous Theorem.[]

This statement can be made sharper. A representation (5.4) is called
irredundant if there is no ideal [, in (5.4) that contains the intersection
of other ideals. The following result is due to Emanuil Lasker and Emmy
Nother:

Theorem 5 [Main decomposition theorem] Every ideal I in a Nétherian al-
gebra admits an irredundant representation (5.4) where all the ideals I, are
primary and the associated prime ideals are distinct.

PROOF. Take a representation (5.4), remove some ideals if it is redundant,
then take intersection of primary ideals with equal radicals.

Primary decomposition is not unique!

Example 3. Take the ideal I = (zw,w?) C O? (the line with the ” thick”
point at the origin). It has the primary decomposition for an arbitrary ¢t € C :

I = (z +tw,w?*) N (w)
Note that the associated prime ideals m and (w) are uniquely defined.

Theorem 6 [Uniqueness 1] The set of prime ideals p1, ..., ps associated to the
primary components of a irredundant decomposition (5.4) is uniquely defined.

PrROOF. Ass(I) = {p;}. We show that a prime ideal p is associated to
I if and only if there exists an element a € A such that (I : a) = p. Check,
first, that any of ideals p; possesses this property. Let j = 1; take an element
be I,N..NI\I and consider the largest natural k such that bp* /. Take
an element a € bp*F\I; we have ap C I, i.e. (I :a) D p; on the other hand
(I : a) C p since [ is primary associated to p. Therefore (I : a) = p.

Inversely, suppose that (I : a) is equal to a prime ideal p. Show that p
coincides with one of the ideals pq,...,p,. If it is not the case, we can find

4



elements b; € p;\p, and natural numbers k;,j = 1,..., s such that p?j C ;.
Then b8*...b%a € I, but .05 /@. This is a contradiction. (]

A component [; of (5.4) is called embedded, if the corresponding ideal p;
contains another ideal pj # p;.

Theorem 7 [Uniqueness 2] All non embedded components of (5.4) are uniquely
defined.

These results are generalized for arbitrary A-module E of finite type
instead of @ and an arbitrary submodule F' of E.

5.3 Complete intersection ideals

Definition. Anideal I C O" is called complete intersection ideal (c.i.i.) if it
possesses a system of generators f, ..., fs such that s = codim I =n —dim /.

Examples 4. Any principal ideal is c.i.i.

5. The maximal ideal m in O" is c.i.i.

6. The ideal (2129, 2023, 2321) C O? is not a c.i.i.

Problem 2. If (fi, ..., f5) is a complete intersection ideal, then (fi, ..., f)
is so for any r < s.

Problem 3. If I = (f1,...,fs) is an arbitrary ideal in O", then s >
n—dim/.

Theorem 8 [Lasker-Macaulay-Cohen] If I is c.i.i. of dimension d, all prime
ideals associated to I are of the same dimension.

Example 7. The ideal (fi, f2) C O3 is c.ii. if f; is a linear and f, is
non-singular quadratic function. It is primary if the plane f; = 0 is tangent
to the cone fy = 0. Otherwise, (f1, fo) = 1(Z1) N1 (Z;), where I (Z;2) are
prime ideals; Z; o are lines.

5.4 Zero-dimensional ideals

Definition. An analytic algebra A is called Artinian algebra if dim¢ A < oc.
If I is an ideal in an analytic algebra A; the residue algebra A/I is Artinian
if and only if I is has finite index in A.

The maximal ideal m (A) is of index 1; any power m* (A) is also of finite
index. Therefore any ideal I of Krull dimension 0 is of finite index, because
it contains a power of the maximal ideal. The inverse is also true:

5



Proposition 9 Any ideal I of finite index in an analytic algebra A is pri-
mary and is associated to the mazimal ideal m (A) .

In other terms any ideal of finite index is dimension zero and vice versa.
A local is ring is a commutative ring A with unit 1 that possesses only one
maximal ideal m. Any element of the form a = 1 + m, m € m is invertible
since it does not belong to any maximal ideal.

Lemma 10 [Nakayama's Lemma] Let B be a commutative local ring with the
mazximal ideal m and F be a finitely generated B-module such that mF = F.
Then F = 0.

PRrROOF OF LEMMA. Let fi,..., fs be a set of generators of F'; by the
condition for any 7 = 1, ..., s there exist elements m,;; € m such that

fi = Zmi]’fj,i = 1, .y S

This system of equation can be written as follows (F — M) f = 0 for the
column f = (f1,..., fs) unit matrix £ and the matrix M = {m,;} . We have
det (E — M) = 1+ m where m € m, which implies that the matrix £ — M
is invertible over B. This implies f = 0. [J

PROOF OF PROPOSITION. From ab € I, a /d follows that b € m(A).
Consider the descending chain of ideals m7 (B), j = 0,1, .... in the analytic
algebra B = A/I. Suppose it stabilizes for j = k, i.e. m* (B) = m**! (B). By
Nakayama’s lemma we conclude that m* (B) = 0 which implies the inclusion
m¥ (A) C I. This completes the proof.

Problem 4. Show that always m* (A) C I holds for k = dim¢ A/I.

5.5 Classical theory of polynomial ideals

This theory shows the relation between ideals in the algebra C [z, ..., z,] and
algebraic varieties Z C C"™.

Theorem 11 If the set Z of common roots of elements of an ideal I is
empty, then I contains the unit element.

ProoF. Take a system of generators py, ..., ps of I. They have no common
root. We wish to show that there exist polynomials ¢4, ..., gs such that g;p; +
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... + gsps = 1. We use induction in n. For n = 0 the statement is trivial. For
n > 0 we choose a coordinate system in such a way that all the highest power
of z, in p; has constant coefficient for all j. Take the resultants R (p;, p;) with
respect to z,. They belong to the algebra C [z, ..., z,—1] . It is easy to check
that they have no common root in C"~!. By inductive assumption the ideal
generated by the resultants contains 1. On the other hand each resultant
belongs to I (see property 5, Ch.4). Therefore 1 € I. [

Theorem 12 [Hilbert's Nullstellensatz] For an arbitrary polynomial ideal I

there exists a number k such that p* € I for an arbitrary polynomial p that
vanishes in Z (I).

PRrROOF. We use arguments of A.Rabinowitsch. Let pq, ..., ps be a set of
generators of I. Consider the polynomial algebra B = C [2y, ..., 2,, w] , where
w is a transcendent element. The polynomials py, ..., ps, 1 — wp belong to B
and does not vanish simultaneously. By the previous Theorem there exist
91, -, 3gs, g € B such that

Gip1+ .+ gsps +g (1 —wp) =1

Substitute w = p~! and remove the resulting dominators multiplying by p*

for k equal the maximal of orders of g1, ..., g,. [
More precise description of zero-dimensional ideals is given by

Theorem 13 [M.Néther, Macaulay, E.Lasker| Let I be an ideal in the algebra
A =Clz, ..., zn) such that dim Z (I) = 0. Than a polynomial f belongs to I
if and only if for each point a € Z (I) the local condition

fel+mh(A) (5.5)
is satisfied, where k is the minimal number such that mk (A) C I+mk+1(A).

The condition (5.5) is called Max Nother condition. It contains a finite
number of scalar equations since the algebra A, = O,/mF is an Artin algebra
and the set Z (I) is finite.

For the general case a description can be done by means of infinite number
of conditions:

Theorem 14 [Artin-Riess] Let I be an arbitrary ideal in the algebra O,. A
germ f € O, belongs to I if f € I +wmF(A) for any k. For an ideal I in
the polynomial algebra C |z, ..., z,| the inclusion f € I holds if the above
conditions is fulfilled for each point a € C™.

7



This condition is consistent only if z € Z (I) and is obviously necessary. It
can be formulated as follows: f belongs to the ideal I, in the formal algebra
F. generated by elements of I. The last ideal is called localization of I at z.
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Chapter 6

Nother operators, residue and
bases

6.1 Differential operators in modules

Definition. Let A be a commutative algebra, £, F be A-modules, [ > 0 is
an integer; a differential operator q : £ — JF of order < [ is a linear operator
such that for an arbitrary a € A

(ada)q = aq — qa

is a differential of order < [ — 1. A differential operator of order 0 is, by
definition, an A-morphism.
If ¢ is A-differential operator of order [ and zy,...,2, € A, then for an
arbitrary ¢ € N the mapping ¢ : &€ — F
(adz)'q = (adz)" ... (ad z,)"™ ¢
is a d.o. of order <[ —|i|. (Note that the operations ad @ and ad b commute

for any a,b € A.) The kernel of a d.o. need not to be a submodule of £.
Example 1. A partial differential operator

1(zD) =Y g(2) D, D = (a%) ((%) (6.1)

li]<m

in a domain U C C" with holomorphic coefficients ¢; (z) defines for any point
z € U a O,-differential operator ¢, : O, — O, of order m. The function

¢(28) =) a(x)€, & =68

1



is called symbol of the operator ¢. Denote by ¢ (z, D) d.o. with the symbol
0 (2,€) = Dig(2,€).

Problem 1. Show the inverse: any O,-differential operator in O,, can
be written in the form (6.1) and ¢ = (ad 2)’ .

Proposition 1 The generalized Leibniz formula holds for arbitray a,b € O

0(=.D) (ah) = 3" 20 (. D)

A proof is left to reader.
Definition. A A-differential operator g : £ — F is called operator of Néther
type, if for any element a € A there exists a A-morphism b : F — F such
that ga = bq.

If g is of Nother type then S = Ker g is a submodule of £ :if e € Kergq, a €
A, then g (ae) = bg (e) = 0. The operator q is called Nither operator for S.

Problem 2. Let qy,...,q € C[, ..., &,] and

q: fv @ (01,...,0,) f(0), i=1,...1; 0; = 0/0z,

is a d.o. g : Op — C! The operator ¢ is of Néther type if and only if
the polynomial d¢;/0¢; belongs to the linear span of ¢, ...,q for any ¢ and
j=1,..n.

Problem 3. Let A be an Artin C-algebra. Show that any linear bijection

qg: A—C!

is a A-operator of Nother type.
This fact is generalized as follows:

Theorem 2 Let Z be a primary ideal in O™ associated to a prime ideal p.
Then there exists an integer | and a Nother differential operator q : O™ —

0" /]! forT.

Corollary 3 LetZ be an arbitrary ideal in O™, T =Z1N...NZLg be a primary
decomposition and pi,....,ps be the associated prime ideals. Then we have
NKerq, =7 where

gr: 0" —[0"/p,]'")

1s a Nother operator for I.,r =1,...,s.
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For a proof we take a primary decomposition of | and apply the above
Theorem to each component. This theory is generalized for arbitrary modules
of finite type.

Theorem 4 Let M be an arbitrary O™-module of finite type, N is a sub-
module

N:Nlﬂ...ﬂ,/\/s

be a primary decomposition and py, ...,ps are associated prime ideals. For each
j there exists an integer I; and an O"-differential operator q; : M — [O™/p]"
of Naéther type such that NKerq; = N.

See [2] for a proof.

Problem 4. Let F : [0"]® — [0"]' be a morphism of O"-modules. Show
that the submodule Ker F' is primary associated to p= 0 and F' is a Nother
operator for this submodule.

6.2 Polynomial ideals revisited

A similar statement are true also for the some nonlocal algebras, in particular,
for the polynomial algebra.

Theorem 5 Let Z be a primary ideal in A= C [z, ..., 2,] and P the associ-
ated prime ideal. Then there exists an integer | and a A-differential operator
q: A— [A/P]" of Néther type such that Kerq = T.

This is a generalization of the M.No6ther-Macaulay-Lasker theorem as
above.
Example 2. If |= ( fk) where f is a nonzero element of A, then | is primary
associated to p= (f). Let the z;-axis is suitable for f; then the differential
operator
q¢:A—[A/p]", qa = [a, O1a, ...,8{“’1@] (mod p)

is of Nother type and Ker ¢ =I.
Example 3. The ideal |= (23,23, 25 + 2123) CA= C |21, 29, 23] is a primary
ideal associated to p= (z2, z3) . The operator

q:A— [A/p]” qa = [a, (85 — 218) o] (modp)
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is a Nother operator for |. This operator can be defined in the analytic algebra
O3. Tt is again an operator of Nother type and his kernel coincides with the

ideal Z =103.
Problem 5. Show that the operator

q:Clz1, ..., 20 — C"2 qga = [a(0),d] (0),...,a, (0),Aa (0)]

is of Nother type. Find a finite system of generators of the ideal Ker q.
Problem 6. Let | be the ideal in A= C [z, ..., z,] or in A= O™ generated
by the basic symmetric polynomials si, ..., s, of 21, ..., z,. Show

(i) Z (1) = {0};
(ii) dimA/I= n!;
(iii) Show that the d.o.

q:A—CN, fi $J(D,)f(0),|a] <nl—n}

is a Nother operator for I, where

a (51 (6) y ey Sn (5))
9 (&1, --,6n)
J@ (&) =DgJ ()

J(§) = det

) €: 517 af?’w

6.3 Residue

Fix a coordinate system z1, ..., z, in C"; let U C C" be an open set and w € U.
Let f1,..., fn be holomorphic functions in U that vanishes at the only point w
that define a zero dimensional ideal Z C O ie. Z={fi=..=f, =0} =
{w} . Take positive numbers €1, ..., £, and consider the variety

Fe) =i =er, [fu(2)] = n, 2 € U}

It is compact if the numbers ¢4, ..., &, are sufficiently small. The set singu-
lar set I (¢) N Z (J) is of real codimension > 1 in I' (¢) where Z (J) is the
hypersurface of roots of the Jacobian

O(f1y ey fr)

J = det
R TEN

The set I' (¢) \Z (J)is a smooth real manifold of dimension n. It is orientated
by the form
d =d(arg f1) A ... ANd(arg fn)
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Let a be an arbitrary holomorphic function in U. The integral

adz
Resw = (2m _”/ —
( ) I'(e) flfn

is called the (multiple) residue of the form w = (fy...f,) " adz.

Properties:

1. The integral does not depend on €y, ..., €,. The form w is holomorphic and
therefore closed in U\Z (f1..fn) -

2. The residue vanishes for g € Z,, = (f1,..., fn) C Oy. Indeed, for g =
af;, a €0, we take ¢; — 0 and check that the integral tends to zero. It
follows that the residue is defined on the Artin algebra A = O,,/Z,

,dz=dzxn N... Ndz,

Proposition 6 We have

o Jadz wa
fifn s

Theorem 7 For an arbitrary non zero element g € A there exists an element
h € A such that B (g,h) = 1.

R

(w), p=dimA

Corollary 8 The bilinear form

ghdz
frofn

defined on the Artin algebra A is non degenerated.

B (g,h) = Res

Corollary 9 The linear functional q : A — C defined by

q(a) = Res (fi...f,) " adz
15 a differential operator of order < m. The operator
Q:A—C", Qa)={q¢"(a),li| <m}
is a Nother operator for Z,,.

Problem 7. Suppose that g; = a{fj,i =1,...,n where a{ € O, and the
matrix a = {a]} is invertible. Show that for any b € O,

(deta) bdz bdz
s————— = Res

Re
gi...gn flfn




6.4 Linear bases in ideals

Let | be an ideal in the C-algebra (or R-algebra) F of formal power series of
n independent z1,...,z,. We wish to choose a dense linear free system in I.
Take, first the monomials

i in s (s - n
2t =zt 0= (i1, i) €N

where N is the set of naturals (i.e. of nonnegative integers). The monomials
are linearly free and the span is equal to the subalgebra of polynomials. It is
dense in F in the sense that an arbitrary series a is equal to a polynomial up
to an element of m* for arbitrary k. Introduce the grad-lezicographic order
in N : we say that ¢ follows (after) j and write ¢ > j if either |i| > |j]| or

li| = |j] and i1 = J1,92 = J25 s b1 = Jm—1,%m > Jjm for some m,1 <m <mn

This makes a complete ordering in the set N" i.e. for any two different
elements we have either ¢ > j or ¢ < j. Note the property: if ¢, 7, k € N" are
arbitrary, then ¢ > j is equivalent to i + k > j + k.

Now for an arbitrary i € N™ the subspace F(i) CF of series that contains
only monomials 27 for j = 4, is an ideal in F. Consider the quotient

Qi) =[INF@E) +F(")] /F (i)

where it is the next to ¢ vector. The dimension of @ () is equal to 0 or 1. Now
we run from ¢ = 0 in ascending order of vector ¢ € N” and distinguish some
of vectors. We skip if dim @ (i) = 0, or of ¢ € j + N"™ for some distinguished
vector j. If it is not the case, we distinguish an element f; €INF(i) whose
class in @ (7) is not zero. As the result, we get a sequence of elements

fi(1)> fi(2)> EERS) fz(m)7 .. el
with the following properties:
Proposition 10 The set V = {i(m)} C N" is finite.

Proor. The algebra F is Notherian. [
Denote for convenience f,, = fim),m =1,...;s.
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Proposition 11 The elements f1,..., fs generate the ideal I, moreover for
any i € N an arbitrary element a €INF(i) can be written in the form

a = a1f1 + ...+ asfs
where for each j =1,...,s we have a;f; €INF(i;) where i; > i.

Denote B = V + N" and by Fp the space of formal power series whose
coefficients ¢, vanish for b € B. Let fi,..., fs be generators of the ideal I.
Consider the morphism of F-modules

¢:F—=F:(g1,..,95)" nfi+..+0sfs

Theorem 12 The spaces | and Fg are complementary, moreover there exist
linear operators

D:F—Fg, G:F—F
such that

(1)

E=D+¢G, (6.2)
where E means the identity operator in F,
(i1) D wvanishes in | and G vanishes in Fg.
(i) If f1,....fs € O, then D : O — Op, G : O — O°, which imply the
equation (6.2) in O.

Examples 3. Let a = 0, |= (f) where f € m* and
)=+ () () 2= (22,..., 2n)

By the above algorithm we get V' = {(k,0,...,0)}.
Example 4. Let f1 = 2", ..., fx = z;* and |= (fi, ..., fr) . Then V consists
of vectors i (1) = (m4,0,...,0),....,7 (k) = (0, ..., my, 0, ..., 0) .

Problem 8. Let | be a complete intersection ideal generated by homo-
geneous polynomials, such that dim A/l= 0. Then the set I' = N™\ B is sym-
metric in the following sense: there exists an integer ¢ such that #I', = #I',_,
for p =0, ...,¢q where I, is the set of elements ¢ € I',|i| = p and I';, = 0 for
k>q.

Problem 9. Is it true that for an arbitrary complete intersection ideal |
in O™ of dimension d the set B is generated by n — d vertices?



6.5 Bases and division in a module

Let A be a commutative Notherian algebra with a unit element, M be a
A-module of finite type. Then there exists a surjection (epimorphism) of
A-modules p : A" — M. The kernel Ker p is a submodule of A’; it is again
a module of finite type and there exists a morphism ¢ : A% — A’ such
that Im ¢ = Ker . This means that Coker¢ = A"/Im¢ = M. If we write
elements of A! as columns, the morphism ¢ can be written by a ¢ x s-matrix
whose entries belong to A.

Now let A =F; construct a grad-lexicographic order in F'. For this we
choose the standard basis eq, ..., e; of this F-module where e, ..., e; are rows
(or columns) of the unit ¢ x t-matrix E. The monomials z'e;,i € N, j =
1,...,t form a dense free system in F!. We write z'e, = 27¢; if i = j or
i = j and k > [. For each pair (k,i) we denote by F(i, k) the subspace of
F? spanned by monomials that follow or equal to z‘ej. Denote G= Im ¢ and
take the vector space

Q(i,k) = GNF(i,k) /F((i,k)")

where (4, k)" means the pair that follow immediately to (i, k) . This is a space
of dimension lor 0. We repeat the construction of the previous section and get
a finite distinguised system fy1y, fo(2), ... where b (m) € [N"] which possesses
the properties to the above Propositions. This basis is called "standard” or
”Grobner” basis. Also the result of the previous section is generalized as
follows. Denote by Fp the subspace of F! of columns

a = Z c(@k)ziek
where c; 1) # 0 only if (i, k) € B.

Theorem 13 The spaces G and Fg are complementary, moreover there exist
linear operators
D:F—Fg G:F—=F

such that
(i)
E =D+ ¢G, (6.3)
where E means the identity operator in F,
(i) D vanishes in | and G vanishes in Fp.



To get more details on (6.3) we consider the family of functionals 0; , :F* —
C; d;x (2'ex) = 1 and &; 4 (27¢;) = 0 otherwise.

Theorem 14 [continuation] (iii) If ¢ € O3, there exist number numbers
Kk, C such that

8;,D (2'ex) =0 for |j] < i
0;,G (Z'er) =0 for [j| < |i| + &

and
‘(%JD (ziek)| + ‘6j,lG (ziek)| S CmiliHH

It follows that D : O — Opg, G : O — O, which imply the equation (6.3) in
O,

This is a generalization of the Weierstrass division theorem. See [1] for a
proof.

References
[1] V.P.Palamodov, Linear differential operators with constant coefficients,
Ch.2,Sec.4, 1967 (Russian), 1970 (English)
[2] V.P.Palamodov, Differential operators on coherent analytic sheaves, Math.Sb.
77(119) (1968), N3, 390-422



Chapter 7

Sheaves

7.1 Categories and functors

Definition. A category C is a class of objects and "morphisms” of objects
with the following properties:

(1) for any objects X,Y all morphisms f : X — Y form a set denoted
homcg (X,Y);

(2) for any object X an element idy € home (X, X) is distinguished; it
is called the identity morphism;

(3) for arbitrary objects X, Y, Z the set mapping is defined

home (X,Y) X home (Y, Z) — home (X, Z)

For morphisms g € homcg (X,Y),h € homc (Y, Z) the image of the pair
(g, h) is called the composition; it is denoted hg. The composition operation
is associative.

(4) for any h € home (X,Y) we have idy f = fidx = f.

A morphism f is called isomorphism if there exists a morphism g €
homc (Y, X) such that gf =idx, fg =1idy .

For an arbitrary category C the dual category C* is defined in the fol-
lowing way: the objects are the same, but home: (X,Y) = homce (Y, X)
(inversion of all arrows).

Examples 1. A class of sets and set mappings is a category.

2. A class of topological spaces and continuous mappings.

3. For a topological space X the set Top (X) of all open subsets and
inclusions V C U is a category.



4. A class of vector spaces and linear mappings over a field K.

5. A class of modules and morphisms over an algebra A.

6. The category of analytic algebras and so on.

Definition. Let C;, Cy be categories; a covariant functor F : C; — C,
is a class mapping that transforms objects to objects and morphisms to
morphisms preserving compositions and identity morphisms:

F (idx) = idF(X);F (9f) =F(9)F(f)

A contravariant functor F : C; — Cs is, by definition, a covariant functor
C, — Cs.

Functor morphism ¢ : F = G is a mapping ¢ : C; — hom (C,) such
that for any object X € C; we have ¢ (X) € hom (F (X),G (X)) and for
any morphism f: X — Y of category C;the relation holds

¢(Y)F(X)=F(Y)o(X)

Definition. Given two objects X,Y of a category C, the direct product
X xY in C is defined as an object X x Y together with some morphisms
px to X and py to Y that satisfies the following condition: for any object U
and morphisms f : U — X, g : U — Y there exists and is unique a morphism
U — X X Y such that the diagram commutes

U — 'Y
! N Tox
X ¥ Xxvy

The k-th direct power X x ... x X is denoted X* or [X]".

A more general notion is given below:
Definition. The fibre product of morphisms f: X — Zand g:Y — Z in
a category C (shortly, the fibre product of X and Y over Z) is an object,
denoted f Xz g or X Xz Y, together with morphisms f’ to Y and ¢’ to X
that commute with f and ¢ :

Xx, v L vy
g lg
X N

that possesses the following property. For any object U and morphisms
U — X and U — Y that commute with f and g there exists and is unique
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a morphism A : U — X Xz Y such that the diagram commutes:

uv - - — Y
h f!
N a
| XXZY |

g/
7 ly
X - - R

The fibre product over an object Z is the direct product in the relative
category Cz where the objects are morphisms X — Z and morphisms are
corresponding triangle commutative diagrams. The fibre product need not
to exists in an arbitrary category.

By inverting arrows we come to the notion of fibre coproduct (amalga-
mated sum).

Examples 6. The fibre product exists in the category of topological
spaces.

7. The fibre product does not exists in the category C of smooth (or of
complex analytic) manifolds. For example, take the mappings f : R? — R,
f(z,y) =zyand g : R — R, g (2) = 0. The fibre product f xg g must be the
singular curve {xy = 0} x R which does not present in C.

8. We shall show later that the fibre product exists in the category of
complex analytic spaces. This is one of the reasons to introduce this category.

7.2 Abelian categories

Definition. Let C be a category with the following property (A;) each
set hom (X,Y’) has a structure of abelian (i.e. commutative) group such
that the composition operation is bi-additive. We assume also there exists
a zero object 0, i.e. such an object that the group hom (0,0) is trivial. For
a morphism f : E — F an object Ker f of C together with a morphism
k : Ker f — FE is called the kernel of f if fk = 0 and for any morphism
g : K — E in C such that fg = 0 there exists and is unique a morphism
g : G — Ker f such that g = kg’ :

K
gl
gl
Kerf % B L F



The standard notation is ker f = k. By inversion all arrows, i.e. by replacing
C by the dual category C* we get the notion of cokernel; the standard
notation

cok f: FF— Cok f

Any morphism h : F' — L such that hf = 0 can be lifted to the kernel, i.e.
there exists and unique a morphism A’ : Cok f — L such that h'cok f = h :

L

h/
Th N\

g L F % coky

We assume further that the condition (A,) is fulfilled: in the category C each
morphism has kernel and cokernel. A morphism with zero kernel or cokernel
is called injective, respectively, surjective. A bijection is a injective and
surjective morphism. Another standard constructions are Im ¢ = Ker cok ¢
and Coim ¢ = Cok ker ¢. There exists a canonical morphism ¢ : Coim ¢ —
Im ¢. It is a bijection. A category is called Abelian if also the condition (Aj)
is fulfilled: gg is always an isomorphism. Sometimes it is also assumed that
the direct products and coproducts (direct sum) are always defined.
A sequence of morphisms

elrta (7.1)

is semiexact if gf = 0. If the kernels and cokernels are defined in Ab, then
there exist morphisms

f'+E—Kerg, ¢ :Cokf— G

and the morphism

i: Cok f" — Kerg' (7.2)

All of them are uniquely defined. If ¢ is an isomorphism; the object (7.2)
is called the homology of (7.1). This is always true for arbitrary Abelian
category.

A morphism f of Ab is called monomorphism (injective morphism) if
Ker f exists and is equal to the trivial group (zero group). If Cok f exists
and is equal to zero, f is called epimorphism (surjective).
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7.3 Sheaves

Definition. Let X be a topological space and C be a category whose objects
are sets; a contravariant functor F :T'op (X) — C is called presheaf on X with
values in C. For V.C U €Top (X) the morphism F (U) — F (V) is called
restriction mapping. A sheaf with values in C is an arbitrary presheaf that
satisfies the condition (sheaf axiom):

(*)if V=U4V,,V, € Top(X) and elements f, € F(V,),a € A are such
that for arbitrary o, 8 € A,

fa|Va[3 = f@|Vag where Va@ = Va N Vﬁ,

then there exists and unique an element f € F (V) such that f|V, = f, for
each a € A.

An element of F (V) is called section of the sheaf over V. The sheaf axiom
means that sections can be glued together.

The bundle of a sheaf F is the mapping ¢ :FF— X where

¢t (r)=F, = lieerF (U)

The space F, is called the stalk of F at x. For an element f € F (U) its
image f, €F, is called the germ of f in x. The topology in F' is defined as
follows: for each f € F(U) the set {f,,z € U} CF is open. An arbitrary
open set is a union of sets of this form.

Properties: 1. The mapping ¢ is locally a homeomorphism of topologi-
cal spaces. This is a characteristic property of sheaves. Indeed, let ¢ :FF— X
be a continuous mapping that is locally a homeomorphism. For an open
U c X we consider the set F (U) of all continuous sections, i.e. of continuous
mappings s : U — F such that ¢s = idy . The functor U =F (U) is a presheaf
which satisfies the sheaf axiom.

2. Any functor morphism F = G generates a continuous mapping of
bundles ¢ :F— G such that the diagram commutes

It is called sheaf morphism (mapping).
3. Given a sheaf m :F— Y and a continuous mapping f : X — Y of
topological spaces, the fibre product 7 Xy f is a topological space denoted
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f*(F) together with a continuous mapping f* (7) : f* (F') — X. This map-
ping is locally a homeomorphism, consequently f* (F') is a sheaf. It is called
the inverse image (or pull back) of the sheaf 7.

Examples 1. Let X be a topological space; for any open U C X we
consider the space C (U) of continuous functions f : U — C. For VC U
the restriction mapping C' (U) — C (V) : f+ —|V is defined. This is a
contravariant functor from Top (X) to the category of C-vector spaces. This
functor is a sheaf, denoted C (X).

2. Let M be a complex analytic manifold. The sheaf of (germs) holomor-
phic functions is defined on M; we use the notation O (M) .

3. Let A be a commutative ring and Spec (A) be the set of all prime
ideals of A. This set is endowed with the Zariski topology: for an element
a € A the set U(a) of all prime ideals p that does not contain a is Zariski
open. A set in Spec(A) is open if it is a union of sets U(a), a € A. The
topological space Spec (A4) is supplied with the presheaf A : by definition
A (U (a)) = A, where A, is the localization of A with respect to a, i.e. the
algebra of quotients f/a*, f € A, k is a natural number. If b = ac for some
¢ € A, we have U(b) C U(a); and a morphism A(U(a)) — A(U(b)) is
canonically defined. The presheaf A satisfies the sheaf axiom, i.e. is a sheaf.
The space Spec (A) with the sheaf A is called the affine scheme of the ring
A.



Chapter 8

Coherent analytic sheaves and
analytic spaces

8.1 Analytic sheaves

Definition. Let U be an open set in C*, O = O (U) be the sheaf of holo-
morphic functions in U. An analytic sheaf M in U (or O-sheaf) is a sheaf
of C-vector spaces where a continuous action of O is defined, i.e. for any
point z € U the stalk M, has a structure of module over the algebra O,
and the mapping M x O — M is continuous. In other words, for arbitrary
open V C U the space M (V) has structure of module over O (V) which is
compatible with the restriction mappings, i.e. the diagram is commutative
for arbitrary open W C V :

MV) x OF) — M(V)

il ! !
MW) x OW) — M(W)

A morphism of analytic sheaves is any morphism of sheaves of vector spaces
¢ : M — N that is compatible with the action of the sheaf O. For a mor-
phism ¢ the kernel Ker ¢ and cokernel Cok ¢ are defined as O-sheaves. Direct
sums and products of O-sheaves are well defined.

A sequence of O-morphisms

LEMEN

is called ezxact if Imy = Ker ¢.



Definition. Let M be an analytic sheaf in U, it is called O-sheaf of
finite type, if there exists a surjection 7w : O°*— M for some natural s. An
exact sequence of O-sheaves

ot % 08 I M =0

is called finite representation of the O-sheaf M if s, ¢ are some natural num-
bers. An analytic sheaf M is called coherent if it has locally a finite rep-
resentation, i.e. if any point z has a nbd V such that M|V is has a finite
representation.

The support supp M of the analytic sheaf is the set of points z such that
M, # 0. The support of an arbitrary coherent sheaf in U is a closed analytic
subset Z C U.

Examples 1. For an arbitrary point w € C" the sheaf C,, is coherent
whose stalk at the point w is equal to C and to zero otherwise.

2. For an arbitrary morphism of O-sheaves

¢: 0O — O° (8.1)

the sheaf Cok ¢ is coherent by definition. We shall show that Ker ¢ is coherent
too. This sheaf is called the syzygy of ¢.
3. For a point w € C" consider the sheaf O, whose stalk at z = w is
equal to O,, and to 0 otherwise. This is an analytic, but not coherent, sheaf.
Problem. To prove this assertion.

Theorem 1 The sheaf Ker ¢ is locally of finite type.

Lemma 2 Letp a pseudopolynomial of order m in a suitable domain U = C x V C
C" that is distinguished in a point w = (wy,w'). Then Weierstrass’ Lemma

(ii) holds also locally in U, i.e. for the sheaves O = O™|U and O’ = O"1|V.

Proor or LEMMA. We show that for any z € U and a germ g € O, the
equation holds g = ph + r, where h € O, and r is a pp. of order < m in
zy. This is obviously true if p (z) # 0 with » = 0. In the case p(z) = 0, let
k be the first number such that (8/9z1)" p (z) # 0; we have always k < m.
We apply Weierstrass Lemma (i) to p at z which yields p = bg, where ¢ is
a distinguished pp. of order k in z and b € O,, b(z) # 0. Then we apply
Lemma (ii) and get g = gh’' + 1’ where b’ € O, and 7’ is a pp. of order < k.
This gives g = ph + ' where h = b~'h’ and our Lemma follows. [J
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PrROOF OF THEOREM. First we prove that the syzygy sheaf Ker ¢ is
locally of finite type for any morphism of the form (8.1). We use induction
in n and in s. The case n = 0 is trivial. Assume that n > 0. Consider the
case s = 1. Write ¢ (a) = fia; + ...+ fia; and take an arbitrary point w € U.
Suppose that the germ of function f; at w is not zero. Choose a suitable
coordinate system (z1,2') in a nbd of w and write f; = gp by Weierstrass’
Lemma, where g (w) # 0 and p is a distinguished pseudopolynomial of order
m in z;. By the same Lemma we can write g~ f; = g;p + hj,where h;,j =
2,...,t is pp. of order < m. The equation ¢ (a) = 0 is equivalent to

pdl + hgag + ...+ htat =0

in a nbd of w where a; = a; + gsas + ... + gsa;. Apply Weierstrass Lemma
again and get a; = c¢;p + b; where b; is a pp. of order < m. Rewrite the
syzygy relation in the form

pb1 =h= —hgbg — .. — htbt, bl = 51,1 + CQhQ + ...+ Ctht (82)

The right side is a pp. of order < 2m — 2. The function by is a pp. of order
< m — 2. Indeed, we can blow up the circle D in the formula

1 h(\ 2) dA
b / - 9
= F) =g /aD pOn ) (A —21)

Therefore it is easy to see that b; = O (|zl|m_2) for large |z1|. Let B; be the
m-row of coefficients of the pp. b;,7 = 1,2,...,t. Joining these rows, we get
a row B of length mt of elements of the sheaf O’ = O"!|V. Equation (8.2)
means that B belongs to the kernel of a O’-morphism

P [O/]mt - [O/]2m—l

in a nbd of w' = 2’/ (w). By the inductive assumption the sheaf Ker P is
finitely generated in a nbd W’ of this point, which means that there ex-
ist sections BM, .., B") of this sheaf in W that generate the syzygy. The
corresponding rows of pp.-s

(bgn, ...,bg”) <b§7"), ...,by))

generate the solutions of the equation (8.2) over the sheaf O and moreover
the sheaf O. Returning back, we see that

(@1,a9,...;a;) = c2(—g2,0,0...,0) + ... + ¢, (—4,0,...,0,p) + (b1, ..., by)
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which means that the left side belongs to O-span of t — 1 4 r sections of the
sheaf [O]". The same true for the kernel of (8.1) where s = 1.

Now we suppose that the kernel any mapping (8.1) with the rank s — 1
instead of s is of finite type. We show this for ¢. Consider the truncated
mapping

¢/ . Ot N Osfl
where the first row of the matrix ¢ is omitted. By induction Ker ¢’ is locally of
finite type, i.e. there exists a nbd W of w and a O-morphism ¢ : O" — O in
W such that Im1p = Ker ¢'|W. Take the first row ¢; of ¢ and consider the
mapping

o 0" — O
The sheaf Ker ¢19 is generated by some sections (1, ..., 3, of O" in a nbd W’
of w. The the sections ¥ (1) , ..., (8,) generate Ker ¢. [J

Theorem 3 For an arbitrary morphism of coherent analytic sheaves in U C C"
o M—=N
the sheaves Cok ¢ and Ker ¢ are coherent too.

ProoOF. The first assertion follows directly from the definition. Take
a point z € U, some representations of the sheaves in a nbd V of z and
construct a commutative diagram

Ker(fxr) — O¥ % Ker¢ — 0

i Tl !
O Loos &M ~ 0
Bl a ¢l
OV g o0 4 N — 0
N
Cok ¢

To construct the mapping «, we define, first, the values of a on the free
generators ey, ..., e, of the sheaf O°, keeping the relation pa (e;) = ¢ (e;);
then we extend a on the O-span by the obvious rule

o' (Z ajej) = Zaja (ej),a; € O

4



We construct (§ in a similar way. It is easy to see that sequence
O x 0 O — Cok ¢p—0 (8.3)

is exact. It follows that Cok ¢ is coherent.

By the previous Theorem the sheaf Ker g @ «v in (8.3) is finitely generated
in a nbd W of z, i.e. there exists a O-morphism R = (r,r") : OV — OV x O°
such that Im R = Ker g x a. We have ¢nr’ = par’ = —pgr = 0, consequently
there exists a O-morphism ¢ which makes the diagram commute. It is easy
to check that o is surjective. Now we only need to check that Kero is of
finite type. For this we consider the mapping

fxr:0%xO — O

The kernel is locally of finite type by the previous Theorem. On the other
hand the sequence

Ker (f x7) — 0" % Ker¢ — 0

is exact. This completes the proof. [
Problem 1. Let f : M — N be a morphism of coherent sheaves such
that Ker f = 0, Cok f = 0. Show that f is a isomorphism.

Corollary 4 The category of coherent analytic sheaves on an arbitrary com-
plex analytic manifold is Abelian.

Problem 2. Let ¢ : M — N be a morphism of coherent sheave in an
open set U such that the morphism of O,-modules ¢, : M, — N, is injective
(bijective) for a point z € U. Show that there exists a nbd V of z such that
¢|V is injective (bijective).

8.2 Coherent sheaves of ideals

Theorem 5 [H.CARTAN] For an arbitrary closed analytic set Z C U CC"
the sheaf I (Z) if germs of holomorphic functions vanishing in Z is coherent.

Theorem 6 Let I be an ideal in the algebra A= Oy, pr = [ (Z1),....pr =
I (Z,) be associated prime ideals and ¢, ..., q. be corresponding Néther oper-
ators. Then the sheaf T of germs of holomorphic functions a satisfying the
differential equations

qalZ, =0,...,q.a|Z. =0
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is coherent analytic sheaf in a nbd of the point w. The stalk of T in w coincides
with 1.

Cartan’s Theorem is the particular case, if we take irreducible components
of Z for Z; and the canonical morphisms A—A/p; for the Nother operators.

q,7=1,...,7.

8.3 Category of analytic algebras

Consider the category A of analytic algebras; let A,B be analytic algebras
a morphism in the category A is a morphism of C-algebras § :B—A i.e. a
morphism of rings such that the diagram commutes

where 7, 7" are the residue morphisms. It follows that 3 (m (B)) Cm(A).

Let Ae A; we have A=07"/1 where [ is an ideal in the algebra O of
germs of analytic functions in (C™,a). Let B=0}/J be another analytic
algebra. Consider a holomorphic mapping

w=f(2):wr=fi(21,2m) sy Wn = fr (21,0, Zm) : (C",a) — C"

defined in a nbd of a such that f (a) = b. It generates a morphism of analytic
algebras in the usual way:

[P0y = 07 g(w)r w(f(2)

If f*(J) CI this mapping defines also a morphism of C-algebras § :B—A.
Problem 3. Show that an arbitrary morphism in the category A can be
obtained by means of the above construction.

8.4 Complex analytic spaces

Definition. A model complex analytic space is a closed analytic set Z C
U C C" together with a coherent sheaf A of analytic algebras in U such that
supp A = Z.



An arbitrary (complex) analytic space is a topological space X endowed
with a sheaf Ox of C-algebras such that the pair (X, Ox) is locally isomorphic
to a model complex analytic space, i.e. for an arbitrary z € X there exists a
nbd Y and an isomorphism of sheaves of C-algebras

(Y, 0x|Y) = (Z,A)

The space X is called the support of the analytic space, the sheaf O is
called the structure sheaf of the space.

Examples 1. Any complex analytic manifold M with the sheaf Oy of
germs of holomorphic functions is a complex analytic space.

2. The point 0 € C endowed by the algebra C is called simple point.
The same point supplied with the algebra D = C [z] / (2?) is again a complex
analytic space; it is called double point.

3. For an arbitrary analytic algebra A of embedding dimension n there
exists a nbd U of a point, say 0 € C", analytic subset Z C U and coherent
sheaf A|U of analytic algebras such that A, = A.

Definition. Let (X, Ox) be a complex analytic space, M be a O x-sheaf
in X. It is called coherent sheaf if the sheaf M|Z is a coherent Oz-sheaf
for any local model complex analytic space (U, Z, O). Let Z be a coherent
subsheaf of Ox, i.e. a coherent sheaf of ideals. The quotient sheaf 4 = Ox /T
is a coherent sheaf of analytic algebras. Let S C X be the support of the
sheaf A. The pair (5, .4) is again a complex analytic space. It is called closed
subspace of (X, Ox).

If Y € X is an open subset, then the pair (Y, Ox|Y') is an analytic space.
It is called open subspace of (X, Ox).

Definition. A morphism of complex analytic spaces F' : (X,0x) —
(Y,Oy) is a pair (f,¢), where f : X — Y is a continuous mapping of
topological spaces and

¢: " (Oy) — Ox

is morphism of sheaves of C-algebras. The last condition means that for any
point x € X the morphism ¢, : Oy ) — Ox belongs to the category A.

In particular, if (S, Og) is a subspace of (X, Ox), the embedding mapping
it (5,05) = (X,0x) is well defined: *(Ox,) — Og, is the canonical
morphism to the quoteint algebra.

Example 4. Let (X,0) be an arbitrary analytic space; a morphism
(f,¢): (0,D) — (X, 0) is defined by the point x = f (0) and by a morphism
¢ : Ox, — D. Take the functionional ¢ : D — C defined by ¢ (1) = 0,t (2) =1
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(the standard tangent vector). The composition 7 = t¢ : Ox, — Cis a
functional satisfying the Leibniz formula

7(ab) =7 (a)b(x) 4+ a(x) T (b)

i.e. T is a tangent vector in x. Vice versa, arbitrary tangent vector in (X, Q)
is defined by a morphism of the dual point to this space.

Theorem 7 For an arbitrary analytic algebra A there exists a model analytic
space (X, O) with a distinguished point z € X and a isomorphism O, = A
of C-algebras.

If there are two analytic spaces (X, z,0) (X', 2/, Q') , then there exist neigh-
bourhoods Y of z and Y' of 2" and an isomorphism (f,¢) : (Y,z,0Y) —
(Y 2/, O'|Y'") such that f(z) = 2’ and the diagram commutes

¢z
O;/ - -

N /
A

0.

The relation described in this Proposition is an equivalence relation in
the class of (complex) analytic spaces with distinguished points (X, z, O).
A class of equivalent analytic spaces is called germ of analytic spaces. Any
element of a class is called representative of this germ. The class of germs is
a category denoted G. Morphisms of germs are defined in a natural way. For
a germ represented by (X, z, O) the analytic algebra A =0, is well defined.
This makes a contravariant functor Al: G = A. We denote by G (A) the
class of equivalent analytic spaces constructed from an analytic algebra A.
Thus we have a contravariant functor Ge : A = G; A+ G (A). The functors
Al and Ge are inverse one to another. This makes the category A and G
dual one to another. Therefore the algebraic and geometric languages are
equivalent in this theory.

Definition. A morphism F' = (f, ¢) of complex analytic spaces is called
finite if f is proper and the sheaf Oy is locally of finite type over the sheaf
1 (Oy).

Example 5. Let f : U— C" be a holomorphic mapping defined in a
nbd U of the origin. If f(0) =0 and f~'(0) = {0} (i.e. the ideal (f1,..., f»)
is c.i.i.) then the mapping (f,¢) : (U, O) — (C™, O) is finite.

8



8.5 Fibre products

We shall prove

Theorem 8 The fibre product exists in the category of complex analytic
spaces.

First note the fibre product exists in the category Top of topological
spaces; the direct product in Top is denoted X x Y. For arbitrary continuous
mappings f: X — Z and g : Y — Z we define subset

XxzY ={(z,y); f(x)=9y)} CXxY

and endow it with the topology induced from the direct product.

We show that the fibre product is also defined in the category G of
germs of analytic spaces. This category is dual to the category A of analytic
algebras, where the corresponding construction is the fibre coproduct.

Theorem 9 The fibre coproduct is well defined in the category A.

PRrROOF. Given morphisms 3 and v in A, we need to define the commu-
tative diagram

Bou &
T T
B o4

which possesses the property of fibre coproduct, see Chapter 7. According
to the previous section the morphisms 3,7 can be constructed from some
holomorphic mappings f : (C",0) — (C™,0),g : (C?,0) — (C™,0) such that

fF(cJ,gI)cK, A=0™/I,B=0"/J,I = O"/K

Let z,..., 2z, be the coordinate functions in C™; the functions f*(z;) =
z; (f (w)) and g* (2;) = 2j (g (v)),j = 1, ..., m are holomorphic in (C",0) and
(CP,0), respectively. Take the algebra O™*? which corresponds to C" x CP
and consider the ideals (1), (J) generated by elements of I and of J. Define

Bl = 0"/ (I)+ (J)+ (f* (z1) = ¢" (21) s oes [ (2m) — " (2m))

This is an analytic algebra. The morphisms ' and 7' are defined in the
obvious way. We skip checking the universal property of fibre coproduct. [

9



Remark. The algebra BRI is called the tensor product of analytic
algebras. If one of the algebras B,I" is Artinian, this tensor product coincides
with the algebraic one.

PrOOF OF THEOREM. The fibre product of germs of analytic spaces
is the object dual to the coproduct of the corresponding analytic algebras.
This, in fact, gives a proof of Theorem for model analytic spaces. Indeed, let

(f,0): (X,0x) — (Z£,0z), (g,¢) : (Y,0y) — (Z,0z)

be morphisms of model spaces where ZC W and W is an open set in C™.
Let z, ..., z;, be the coordinates in C™. They are sections of the sheaf Oy =
O™ /K over Z. By shrinking X, Y and Z, we can suppose that the sections
¢ (z1), ..., ¢ (2m) are defined in an open nbd U C C" of X. We assume also
that the sections ¥ (21),...,% (z,,) are defined in an open nbd V C C" of Y.
We have Ox = O"/Z, Oy = OP/J and take the sheaf

Op=0""/(1)+(J)+G

where (Z) the sheaf of ideals generated by the sheaf Z in O™*?; (J) has the
similar meaning; the sheaf G is generated by the functions

VY (z1) =0 (21) 5V (2m) — & (2m)

The sheaf Op is a coherent sheaf of analytic algebras supported by the ana-
lytic subset P = X x,Y C U x V, whence (P, Op) is a model complex space.
The morphisms of this space to (X,Ox) and to (Y, Oy) are defined in an
obvious way. The local constructions glue together to a global construction
that gives the fibre product of arbitrary complex analytic spaces. [J

Remark. The support of the fibre product of analytic spaces (X, Ox), (Y, Oy)
is the fibre product X x 7 Y of the supports.

The fibre product f Xz g is sometimes called the pull back of f by the
action of g.

Definition. Let f : X — Y be a morphism of analytic spaces, (y,C) € Y’
be a point. The fibre of f over z in the fibre product f Xx i(y), where
i(y):y — Y is the embedding.

Example 6. Let f : U— C be a holomorphic function in a connected
open set U C C. Consider f as a morphism of analytic spaces. For an arbi-
trary point w € C the fibre f x {w} is the subspace of U supported by the
set 7! (w). The structure sheaf equals O’ = Oy/G where G is the sheaf of
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ideals generated by the function w — f (2). If f /=w in U, we have for any
ac f(w)
O, =Cl]/((z—a)")

where m is the multiplicity of the root a of the function w — f (2), i.e.

Fla)—w=f(a) = ... = 7D (a) = 0, f (a) £ 0.

Note that dim¢ O/, = m.

11



Chapter 9

Elements of homological
algebra

9.1 Complexes and homology

Definition. Let C be a category with the properties (A;) and (Ay). A
complex in C is a semi-exact sequence of morphisms of C:

dy,_ d d
L ph S phtl T pRt2

We can represent a complex as a graded object E* = @, E* with the endo-
morphism d = @d, of degree 1 which satisfies the equation d? = dd = 0. It
is called differential in the complex. The (co)homology of the complex is the
graded object

H(E*) = oH" (E)

where H” (E) is the (co)homology at the k-th place; it is equal to the object
i: Cokd),_, — Kerd,
The morphisms
d,_,: E*' — Kerdy, d, : Cokdy_; — E*
follow from the equation dydy_; = 0. The complex E* is ezact if H* (E) = 0.

A morphism of complexes e : (E*,dg) — (F*,dr) is a sequence of mor-
phisms e* : E¥ — F* that commute with the differentials, which means
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that edg = dpe, i.e. dppi1ex = exr1dpy for each k& € N. Any morphism of
complexes induces the morphism of the homology:

H (") : H*(E) —» H"(F), k€N

Example 1. In the category Ab of abelian groups H (E) = Kerd/Imd.
Let A be a commutative ring; denote by C (A) the category of modules
over A.

Theorem 1 Let
0-ESFLaoo

be an exact sequence of complezes in C(A), i.e. it is exact in each grading.
Then there exist morphisms

§F: H*(G) — H* (E), ke N
such that the "long” sequence is exact
.= HY(G) S HY(E) — HY (F) = H*(G) > HMY(E) —> ... (9.1)
Lemma 2 [Snake Lemma] For an arbitrary commutative diagram

0O — Ey — F — Gy — 0

|« 1B L
0—>E1—>F1—>G1—>0

with exact lines there exists a morphism ¢ : Kery — Cok a which makes the
sequence exact

Kera — Ker 3 % Kervy < Cok a - Cok 3 — Cok (9.2)
PrOOF. Consider the diagram

Kera — Kerg — Kery —

! o ! N
Ey — Fo o Go— 0 7
s la 1B Ly
l 0— F - Fy 2 Gy
N L Ln |

Cokar Cokf — Coky



Take an element gy € Ker~ and find fy € Fj and e; € E; such that

9o =p(fo), B(fo) =1i(e1)

and set 0 (go) = £ (e1) . Check that this element is well defined; choose another
element f) such that p(fj) = go. We have p (fj— fo) = 0, therefore there
exists an element eq such that fi— fo =i (eo) . It follows that 5 (f])—03 (fo) =
Bi(eo) = ia(eg) and [ (ff) =i (e1 + a(eg)) . This choice leads to the element
€ (e1 + a(eg)) which coincides with & (e1) since of o = 0. This shows that
the element 6 (g) it does not depend on choice of es. It follows that ¢ is
homomorphism of modules.

We have (6 (g) = ¢ (£ (e1)) = ni(er) = npPi(er) = 0. On the other hand,
if g = k(f) for an element f € Ker 3, then g = p(f) for some f € Kerf
which implies that ¢ (¢) = 0. This implies that (1) is a complex.

Check that this complex is exact. Take an element in Ker (. Write this
element in the form £ (e;). We have ni(e;) = 0, which means that there
exists an element f; such that i (e;) = 5 (fy). We have vp (fo) = pB (fo) =
pi(e1) = 0 which means that p(fy) € Ker~y. Since d (p(fo)) = £ (e1), this
shows exactness in the term Cok a. We can check exactness in other terms
by similar arguments, which are called ”diagram chasing”.[]

Draw another snake diagram with exact rows and lines

0 0 0

| | !
E — F L G—0 H(E) — H(F) — H(G)
Lo Lo N / l | !
Kera 2 Kerg 5 Kery —1 % Coka 5 Cokp — Cok~y
L Lp | /! La” L g Ly
H(E) % H(F) - H(G 0— E 4 OF - G
! ! !
0 0 0

We show that the ”"snake” mapping makes the long line exact. First note
that the morphism 0 : Kery — Cok « vanishes on the image Ker 3. Indeed,
Im~" C Im k because of p is surjective. Therefore § can be lifted to a mapping
H (G) — Cok a. On the other hand, the image of this mapping is contained
in Ker o” because of the equation ia”0 = 3”(6 = 0 where i is injective. The
kernel of o is isomorphic to H (E), whence § makes the "snake” mapping
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from H (G) to H (F). Show that this morphism makes the sequence (9.1)
exact. Exactness in the terms H (E) and H (G) follows from exactness of
the middle line. Check exactness in the term H (F). Let h be an element
of the module Ker {H (F) — H (G)}. Take an element f € Ker  such that
p(f) = h and an element g € G such that v/ (g) = k(f). By surjectivity
of p we can find f € F such that p(f') = g. We have s (f — ' (f')) =
()= (p(f") =0. Wehave f— 3 (f') = A (e) for some e € Ker o because
of the middle line is exact. Then h = n (7 (e)), which completes the proof.
U

9.2 Exact functors

Definition. Let C be a category satisfying (A1,As) and Ab be the category
of abelian groups. Let F : C — Ab be a covariant functor. For any exact
sequence

0-xLy Lz
in C the sequence

0-FX)YrEy)

Wr(z) (9.3)
is semi-exact. This follows from the definition: F (¢)F (f) = F (g9f) =
F (0) = 0. The functor is called left exzact if (9.3) is always exact. It is
called right exact if for any exact sequence

X—=-Y—->272-0 (9.4)

the sequence
F(X)-FY)—=F(Z)—0

is exact. For a contravariant functor this definition is given by replacing the
category C by the dual category.

Example 2. The functors hy () = hom (V,-), hY (-) = hom (-, V) are
left exact for arbitrary object V € C.

Let C be an arbitrary category. For an arbitrary object X the mapping
hy (-) is defined as covariant functor from C to the category Sets of sets.
The mapping h¥ () is a contravariant functor in the same categories.
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Definition. Let F : C = Sets be a covariant functor. It is called repre-
sentable if there exist an object R of the category C and an element f € F (R)
such that the morphism of functors ¢ : hg = F given by

¢(a)=F(a)f, « € hg(X)=hom (R, X)

is an isomorphism.
A contravariant functor is called representable if it is representable as a
functor form the dual category C* to Sets.

9.3 Tensor product

Let C (A) be again a category of modules over a ring A; for arbitrary X,Y €
C the set homc (X,Y) has the structure of A-module.
Definition. Fix some objects E, F' of C and consider the functor B p in
C defined as follows. For X € C, Bg r (X) is the modules of all morphisms
f:ExF — X that are A-linear in both arguments. Another way to define
this module is
Bg r (X) = home (E, home (F, X))

Indeed, if we fix the first argument e € E, then f (e,-) is an A-morphism
in the second argument. Suppose that the functor B is representable by an
object T and a morphism b : E' x F' — T The object T is called the tensor
product of E and F' and is denoted

T=FE®cF

The standard notation for the morphism bis b (e, f) = e ® f.

The pair (7,b) is unique up to isomorphism. Tensor product depends, of
course, on the category C.

Example 3. The tensor product in the category A of analytic algebras
was defined in Chapter 7. Moreover for an analytic algebra A the category
A (A) of analytic algebras over A possesses the tensor product: for two ob-
jects B—A and C—A the tensor product is isomorphic to the analytic algebra
B®aC.

Let again A be a commutative ring with unit element 1, C(A) be the
category of all A-modules.

Proposition 3 In the category C (A) the tensor product is always defined.
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PRrROOF. For a set G we consider the free A-module A® generated by
elements of G. For arbitrary A-modules F, F', define the free A-module A®*¥
generated by the set £/ x F. Consider the submodule R generated by the
elements

(e+e,f)—(e,f)—(e,f),e,d €eE f,f'€eF (9.5)

(67f+f/) - (e7f) - (eaf,)7

(ae7f> _a(eaf)a (6,&f) _a<€7f)>a€ A
The quotient module T =Af*¥ / R is the tensor product E®¢F. The mapping
b: ExXxF — E®cF is obvious: (e, f) 1 *(e, f) (mod R) (here (e, f) is
considered as a generator of AE*¥"). Any A-bilinear morphism f : ExF — M
is extended to AF*F" as A-morphism. It vanishes on elements (9.5) and has

a unique lifting to the quotient AP*¥/R. O
The tensor product in this category is denoted E ®a F.

Proposition 4 The tensor product defines a covariant functor in C (A) in
each argument.

PROOF. Let f : ' — G be a morphism in the category. It generates a
morphism AE*E - AEXCG Obviously R (E, F) is mapped to R (E,G) whence
we get a morphism

APXE IR (E,F) — AP*Y/R(E, Q)

Problem. To prove this fact only using the abstract definition of tensor
product.

Proposition 5 We have for arbitrary A-modules E, F,G

E®sAXE, (9.6)
EQAF=FQ\E (9.7)
(Ex F)oaG = (E®aG) x (FeaG) (9.8)

PROOF. Any coset in AP*A (mod R) has a unique element (e, 1) where 1
is the unit element of A. This proves (9.6). The relations (9.7) and (9.8) can
be proved in the same way. [

Proposition 6 The tensor product functor in the category C (A) of A-modules
15 right exact in each of its arguments.
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PROOF. The functor hom is left exact and we have the isomorphism
hom (X ®a U, V) = hom (X, hom (U, V))

for arbitrary objects X, U,V of C (A). Therefore for any exact sequence (9.4)
the sequence

0 — hom (Z ®a U, V) 5 hom (Y @A U, V) = hom (X @, U, V) (9.9)

is also exact. From this we can conclude that the sequence

XOAUSY AU L Z@aU =0 (9.10)

is exact. It is semi-exact because of tensor product is a functor. Check
exactness; take V' = Cokn and denote m : Z ®p U — V the canonical
projection. The morphism 7n* () belongs to the middle term of (9.9) and
vanishes, whence m = 0 because of n* is injection. This implies that 7 is
surjective. Check exactness of (9.10) in the second term. Take V = Cok ¢ =
Y ®a U/Im¢ and consider the canonical projection p : Y ®a U — V. We
have £* (p) = 0, whence p = n* (¢) for a morphism o that belongs to the first
term of (9.9). This means that p = on consequently p vanishes on Kern and
therefore Im ¢ D Kern, q.e.d.

This proves right exactness with respect to the first argument and implies
exactness in the second argument because of the tensor product functor is
symmetric. [

9.4 Projective resolvents

Definition. Let C be a category with the properties (Aj,A;). An object P
is call
ed projective if for any surjective morphism p and morphism f in the
diagram
E F — 0

Ne T/f
)z

there exists a morphism e which makes it commutative, i.e. f = pe. It is
called lifting of f.



The direct sum of projective objects is projective. The zero object is
projective.

Example 4. In the category C (A) the ring A is a projective object. A
module of the form A™ where n is finite or not, is called free A-module. Each
free module of finite type is a projective object in the category C (A).

Definition. A projective resolvent of an object X is an exact sequence

..—>Pk%>Pk_1—>...—>P1—>P0—>X—>O

where Py, Py, ..., Py, ... are projective objects. We say that a category C has
many projective objects, if for any object X there exists a projective object
and a surjection P — X. If the category has many projective objects, then
any object has a projective resolvent.

Example 5. If A is a Notherian algebra, then any A-module M of finite
type has a projective resolvent.

Proposition 7 (1) For any morphism f : X — Y in C and arbitrary projec-
tive resolvent (P,d) — X, (Q,e) — Y there exists a morphism of complezes
i : P — Q which makes a commutative diagram with e.

(II) Any two morphisms i,j as in part (I) are homotopically equivalent, i.e.
there exists a morphism of graded objects h : P — @) of degree 1 such that

j—1=-eh+ hd

PrOOF. We construct the morphism ¢ to make the following diagram
commutative:

= Q= Q1 S Qe 2 Y =0
T o T T T (9.11)
.= P = P & p B x 0
Since eq is surjective, we can lift the morphism dy to a morphism ¢y such
that egig = fdy. We have egigd; = dod; = 0. Therefore the image of igd;
is contained in Kereqg = Ime;. We lift igd; to a morphism ; such that
e1t1 = ipdy and so on. The morphism j can be chosen in the same way.
Now consider the composition

Qg - 1 = Qo 2 Y —0
Tje—d2 Nhi Tjh—4 Nho TJjo—1t Tf
.= P ~ P o P, b x o



Consider the morphism kg = jo —io; we have egkg = fdy— fdy = 0. Therefore
there exists a morphism hq such that e;hy = ko. Take k; = j; — i1 — hody; we
have

erkr = e (jl - i1) - €1h0d1 = (jo - Z‘o) dy — kfod1 = k/’odl - kodl =0

Therefore there exists a morphism h; such that esh; = &k and so on. [



Chapter 10

Derived functors, Ext and Tor

10.1 Derived functors

Definition. [A.Grothendieck] Let C be an Abelina category with many pro-
jective objects and F : C = Ab be a covariant right exact functor (or con-
travariant left exact functor). The derived functors of F are:

X = Fp (X) = Hy (F(P.),k=0,1,... (10.1)

where P — X is an arbitrary projective resolvent of X and P, is considered
as the complex

P*:...—>Pki>Pk,1—>...—>P1@>P0—>O

Proposition 1 There is natural isomorphism Fo =F.

PROOF. By definition Fy(X) = CokF (dy). On the other hand, the
sequence P, — Py — X — 0 is exact and the functor is right exact. Therefore
the sequence

F(P) " F () - F(X) =0

is exact too which means that F (X) = Cok F (dy) . O

Proposition 2 (I) The groups Hy (F (P)),k = 1,2, ... do not depend on the
choice of projective resolvent.
(II) The mappings (10.1) are covariant functors.
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PROOF. Let f: X — Y be morphism in C. Choose projective resolvents
P and Q and a morphism of complexes ¢z : P — () that makes the commu-
tative diagram (11) of Ch.9. Applying the functor we obtain the morphism
of complexes F (i) : F(P) — F(Q) which induces a morphism of homol-
ogy H.(F(P)) — H.(F(Q)). According to Ch.9, any other morphism of
complexes j : P — () that commutes with f is homotopic equivalent, i.e.
i —j = dgh + hdp. This implies

F (i) = F(j) = F (do) F (h) + F (h) F (dp)

The morphism F (dp) vanishes in H, (F (P)) and the contribution of Im F (dg)
in H, (F(Q)) is equal to zero. Therefore F (i) and F (j) induces the same
morphism in homology H, (F (X)) — H,(F(Y)). In particular, if f =
idy,and ¢ = idp this shows that F (5) is equal to the identity morphism of the
groups (10.1). This proves (I), which means that the graded groups F, (X)
are well define. For an arbitrary f the graded morphism F, (f) = F (i) of
graded objects F, (X) — F,(Y) does not depend on i. For an arbitrary
morphism ¢ : Y — Z we can choose a projective resolvent R and a related
morphism of complexes j : ) — R and so on. We get the equation

F.(¢f) =F (i) =F () F (i) = F. (9) F. (/)

which proves (II). O

Definition.[Continuation] A injective object in an Abelian category C
is defined as a projective object in the dual category. This means that [ is
injective if for any injective morphism ¢ : X — Y and arbitrary morphism
k : X — I there exists a morphism [ : Y — [ such that It = k. A category C
has many injective objects, if for an arbitrary object X there is an injective
morphism 7 : X — [ in an injective object I. An injective resolvent of X is
defined in the similar way:

0—-X—Ily—1 — ..

Let C be a category with many injective objects and F : C = Ab be
a covariant left exact functor (or contravariant right exact functor). The
derived functors are defined as follows:

F*(X)=HF(F(1),k=0,1,...

where X is an arbitrary object and [ is an arbitrary injective resolvent of X.
We have F* = F because this functor is left exact.



10.2 Examples

1. Ezt. Let A be a ring and C (A) be the category of modules over A. The
functor hom (-, ) is defined in C (A) which is left exact contravariant in the
first argument and covariant in the second one. The category C (A) has many
projective and injective objects. Therefore the derivatives of the functor hom
are well defined. They are denoted

N x M Bxth (N,M),,,k=0,1,2,...

1,27

~

(Ext=extension). These partial derivatives functors coincide: Ext (-,-),
Ext (-, -),.

2. Cohomology of a sheaf. Let Shx be the category of sheaves of abelian
groups on a topological space X. The functor I : 71 B(X,F) with values
in the category Ab is covariant and left exact. The Shx has many injective
objects. The derivatives H* (X, F), k = 0,1,2 are well defined and called
cohomology groups of the sheaf F.

3. Direct image of a sheaf. Let f : X — Y be a continuous mapping
of topological spaces, F € Shyx. Take an open set V' C Y and consider the
cohomology group H* (f~'(V),F). For any open W C V the restriction
homomorphism

H* (' (V),F) = H (f ' (W), F)

is defined, which means that R* (-, F) = H*(f~'(-),F) is a contravariant
functor Top (Y) = Ab, i.e. a presheaf on Y. The sheaf generated by this
presheaf is called dirived direct image (pull down) of the sheaf F; it is denoted
R} (F). We have R} (F) = H* (X, F), if Y is a point.

4. Tangent cohomology. Let A be a commutative algebra, M be a A-
module. A derivation t :A— M is a linear mapping that satisfies the Leibniz
formula ¢ (ab) = t (a)b + at (b) (which is a differential operator of order 1).
Let T (A,M) = Der (A,M) be the A-module of derivations valued in M. The
functor F :M + Ber (A,M) is covariant and left exact in the category C (A).
The derived functor T (A,M) is called tangent cohomology of the algebra
with values in M.

5. Tor. The functor of tensor product is covariant and right exact.
Applying this construction to the functors F (X,:) = X ®a - and F (-,Y) =
- ®a Y, the derivatives are defined

Tory (X,-), = Fp (X,-), Torp (,Y), =Fr (,Y) , k=0,1,2, ...

3



(Tor=torsion). They are, again, isomorphic: Tor (), = Tor (), .
Problem. To check this isomorphism for A=Z.

10.3 Exact sequence

Proposition 3 Let C be an Abelian category with many projective objects
and F : C — Ab be a covariant right exact functor. Then for any “short”
exact sequence

0—-X—-Y—>272-0 (10.2)

there is "long” exact sequence for derivatives of the functor
= P2 S FR X)) - FF(Y) - FF (2) — .
. HFl(Y) —>F1(Z) —-FX)-FY)—-F(Z)—-0

Proor. Construct a bicomplex

0 0 0 0
! ! ! !

...... - P - P - F —- X — 0
! ! ! !

..... - @y = Q1 = Q — Y — 0
! ! ! !

..... — Ry — R — Ry — Z — 0
! ! ! !
0 0 0 0

where the columns are exact and the lines are projective resolvents of X, Y, Z.
For this we take, first, arbitrary projective resolvents P of X and R of Z and
define the graded object Q = P® R. The morphisms P — () — R are canon-
ical; the differential in @) is to be defined to make this diagram commutative.
Then we replace the right column by zero objects and apply the functor F
to this bicomplex. We get another bicomplex where the columns are again
exact and apply Theorem 1 of Ch.9. [J

10.4 Properties of Tor

Proposition 4 There are canonical isomorphisms of functors

Tory (X,Y), = Tory (X,Y),,k=0,1,2, ...



PROOF. Take a free resolution P of X and a free resolution () of Y and
manufacture the tensor product P ®a ). The homology in the last row are
isomorphic to the homology of the right column. [

For an arbitrary exact sequence of modules (10.2) and a module E we
have the long exact sequence

.. — Torgy1 (Z, FE) — Torg (X, E) — Tory, (Y, E) — Tory (Z, FE) — ...
— Tory (Z, E) — Tory (X, E) — Tory (Y, E) —
—Tor (Z,F) = XQE—-Y®E—-ZFE—0

where we omit the low index A. The roles of arguments can be exchanged.
Example. Let A= 7Z be the ring of integers, £ = Z/pZ, F' = Z/qZ
where p, ¢ are some non zero integers. The sequence

07227 -FE -0

is exact. Therefore we have the exact sequence

0= Tor(Z,F) — Tor, (E,F) > F"2'F S E®F — 0

If the numbers p, ¢ are mutually prime, the mapping p ® F' is bijective and
we have

Tor, (E,F)=E®F =0

Otherwise,
E®F = Z/pZ + qZ = 7,)dZ, Tor, (E,F) = rZ/qZ = 7./dZ.

where d is the greatest common divisor of p and ¢; r = ¢/d.

Problem. Let J, K be ideals in A. Show that

Tor? (A/J,A/JK)=JNK/JK

10.5 Flat modules

Definition. A A-module M is called flat if Tory (M, E) =0 for k = 1,2, ...
and arbitrary A-module F.



Proposition 5 If M is a flat A-module and E = F L G s an arbitrary
exact sequence of A-modules, then the sequence

EoM—-FoM—-GoM (10.3)

1s also exact.

PRrROOF. Include the sequence in the commutative diagram

0 0 0
N\ N\ /
Kere Im f
N\ / N\
E - —— % F - ——— 1, g
N\ / N\
Coim e
/ N\
0 0

where all the lines are exact and apply the functor @ M to each one. The
tilted lines keep to be exact since M is flat. Therefore the horizontal line is
also exact. It coincides with (10.3). O

Proposition 6 Let E, M be A-modules and
oI —-F —>F—>FE—0

be an exact sequence of modules where all Fy are flat. Then there is an
1somorphism

Tor, (E,M) = H,(F® M) where F = ... - I, = F} — F; — 0

Theorem 7 Let A be a local Notherian C-algebra and M be a A-module of
finite type. Then the following conditions are equivalent

(1) M is free,

(1) M is projective,

(111) M is flat,

(iv) Tory (M, A/m (A)) = 0.

Cok f



PRrROOF. Obviously, (i) = (i1) = (iii) = (iv). Show that (iv) = (7). The
module A/m (A) is isomorphic to the basic field C and the module M ® C is
a vector space of finite dimension. Choose elements my,...,mg € M whose
images in M ® C make a basis and define the morphism p :A? — M such
that p (ex) = my, k = 1,...,d. From the exact sequence

0 — Kerp — A" % M — Cokp — 0 (10.4)

we find the exact sequence

AlRC" M®C — Cokp®C — 0

The mapping p ® C is an isomorphism according to the construction. There-
fore Cok p ® C = 0. By Nakayama Lemma this implies that Cok p = 0. From
(10.4) we now conclude that the sequence

OzTorl(M,C)—>Kerp®C—>Ad®Cp§(>CM®(C—>O

is exact. It follows that Kerp ® C = 0. The module Kerp is of finite type
because the algebra is Notherian. Again by Nakayama Lemma we find that
Kerp = 0. We see from (10.4) that p isomorphism which proves (i). O

Remark. The field C can be replaced by another field, for example, by
R.

10.5.1 Restriction and extension of scalars

Let ¢ :A—B be a homomorphism of commutative rings and M be a B-module.
It has also an A-module structure as follows: the action of an element a €A
in M is defined as follows: m 1+ -¢ (a) m. This operation is called restriction
of scalars.

If K be an A-module then the tensor product Kg =B®a K has structure of
B-module: by (by ® k) = b1bs ® k. The operation K = Kp is called extension
of scalars.

Proposition 8 If K is a flat A-module, then Kg is a flat B-module.

PRrROOF follows from isomorphisms for an arbitrary B-module F :

F®gKg= (E®gB)®a K= F®p K



10.6 Syzygy theorem
An analytic algebra A is called regular of dimension n, if AZ0™.

Theorem 9 For any reqular algebra A of dimension n and arbitrary A-
modules M, N we have Tory (M, N) =0 for k > n.

Proor. We assume for simplicity that M is of finite type. Take a free
resolvent .
Fj—J>ijl—>...—>Flﬂ>F0£>M—>O

We shall show that K,_; = Kerd,_; is a free module. Then we can write
the complete free resolvent of M as follows

0O—-K,1—F,1—..—mF—>F,—-M-—>0

Applying the functor ® N to this resolvent, we get a complex which vanishes
for degrees > n. The homology of this complex vanishes in the same degrees
which implies the Theorem.

Now set K; = Kerd;,j =1,2,...., Ko = Kerp, K_; = M. From the exact
sequence

d.
0—>KJ—>F} —J>Kj_1 —>0, j:—l,O,l,...
we find another sequence

0 = Torj41 (£}, C) — Torgyy (K;-1,C) — Tory, (K, C) — Tory (F;,C) =0

where k = 1,2, .... This implies Tory41 (K;_1,C) = Tory, (K, C), whence this
module only depends on k + 7, in particular,

Tory (K,-1,C) = Tor,,; (M,C)

The right side vanishes by the following Lemma which implies Tor; (K,,_1,C) =
0. By Theorem 7 this implies our statement. [J

Lemma 10 There exists a free A-resolvent of C of length n.

PRrROOF OF LEMMA. Let z,...,2, be generators of the maximal ideal
m (A) . Consider the free A-algebra K generated by n elements ey, ..., e, with
commutation relations
€je; = —€;ej, e? =0

8



(the Grassman algebra with n odd generators). It is free A-module of rank =
2™ generated by products

€1€4y---Cjp s 1< g2 < ... < 7Jg

It is graded if we set dega = 0 for a €A and dege;j ej,...e;, = k. Thus
we have K= ) K, where K ~ A (7). Define the endomorphism d in K by
d(ej) = zj,j =1,...,n and extend it to K by means of Leibniz formula with
alternating sign:

d(ab) = d(a) b+ (—1)"*“ ad (b)

i.e. dis a derivative of degree —1 in the graded commutative algebra K. The
morphism is a differential because of the formula

d2 (6iej) =d (d (€z> €; — Gid (ej)) = ZiZj — ZjRi = 0

The complex (K,d) is called Koszul complex:
0—A— A" - AG) o A0 5 AG%) o Ao 40
We have H, (K) = C.

Show that H; (K) = 0 for j > 0. This is obvious for n = 1. Apply induc-
tion in n. Let (L,d) be the Koszul complex over a regular algebra B of vari-
ables 2z’ = (23, ..., z,) . There is the natural injection L— K. Take an element
f of positive degree in the kernel of d. The vector ¢ (2') = f(0,2)|e; =0
belongs to kernel of §; by inductive assumption there exists an element v €L
such that ¢ = 0. The vector f' = f — di vanishes as z; = 0,e; = 0;
write f' = 219 + e1&,where g €K,£ € L. This implies that ¢ = 0 in the case
degé > 0 and £(0) = 0 if deg& = 0. Again by induction we have £ = Jn.
Write f” = f'+d (e1n) and have f” = z1¢',dg’ = 0. Define h = €14’ and have
dh = 219’ — erdg’ = f". Finally, f =d (Y +emn+h). O

Let A,B be analytic algebras. Consider the direct coproduct E=A®¢B
in the category of analytic algebras (see Chapter 8). Note that F® 4C = B.

Proposition 11 For arbitrary analytic algebras A and B the A-module E is
flat.

Remark. The B-module F is of course, flat too because the coproduct
is symmetric.



PRrROOF. We have the homomorphism of algebras A—FE by a+ -w®1. An
arbitrary morphism f :A°® — A" generates the morphism F' :F*® —E" which
operates as multiplication by the matrix f. We only need to check that for

any exact sequence

AL A5 B4 (10.5)
the sequence

PR S ol

is exact too. Assume for simplicity that the algebra B is regular B =0".
Then F is the algebra of convergent power series of some variables wy, ..., w,
with coefficients in A. Take an arbitrary e € Ker P and write

e= Z ejwj, e; € Kerp

j:(jlv"'7jn)

By exactness of (10.5) we have e; = qc; for each j and some ¢; €A'. We
have e = Qc where ¢ = Y c;w’ provided this series converges. We can
not guarantee convergence because the solution c¢; may be not unique. On
the other hand, any finite sum belongs to EY; therefore we know that e €
ImQ + m* (A)E* for any k. This implies e € Im @ in virtue of Artin-Rees
Theorem, Ch.5. [

10



Chapter 11

Deformation of complex spaces

11.1 Flat morphisms

Definition. Let (f,¢) : (X,0x) — (Y,Oy) be a morphism of complex
analytic spaces. It is called flat at a point z € X if the morphism ¢, :
Oy fz) — Ox, is flat. The morphism (f, ¢) is flat if it is so at each point.
We discuss now a criterium of flatness:

Theorem 1 Let ¢ :A— B be a morphism of analytic algebras and M be a
B-module of finite type. Then the following conditions are equivalent:
(i) M is a flat A-module,
(ii) Tor{ (M,C) = 0,C =A/m (A);
(111) If

E? B E B E M -0 (11.1)
is an ezxact sequence of A-modules where F=A®cR and R is an analytic
algebra, then the sequence

R* B RS Ro d; = D;@C (11.2)

18 ezact.
PrOOF. The implication (i) = (¢i) is obvious. The implication (i) =
(7i1) follows from Proposition 6, Ch.10. Assume (iii) and extend (11.1) to
the an infinite exact sequence of modules E'7,j5 = 3,4,....The A-modules

E" are flat by Proposition 10, Ch.10. By Proposition 6,Ch.10, the functor
Tor® (-,C) can be calculated by applying the functor C to this sequence.

1



Since FRC =R, we obtain a sequence of C-modules R" which fragment
is (11.2). Exactness of (11.2) gives (ii). The proof of (iii) = (i) is more
technical, see [2],Ch.IV,Sec.2. [

11.2 Examples

Example 1. Direct product: X =Y x Z, f : X — Y is the canonical
projection, and ¢ : Oy, — Ox y..) = Oyy ®c Oz, is given by ¢ (b) =b® 1.
This makes Ox ) a flat Oy,,-module by Proposition 9, Ch.10.

Example 2. A holomorphic function f : U — C defined in a connected
open set U C C" is a flat morphism, provided f is not a constant. Indeed,
consider the model complex analytic manifold V =T x C with coordinates
z,w, endowed by the sheaf of holomorphic functions Oy and sheaf Z of ideals
in Oy generated by the function a (z,w) = f (2) — w. We have the diagram

(V7 OV/I) = ([U7 OU)
Jl [l
(V? OV) i) (C7 O(C)

where j = (idy,n) and 7 : Oy — Oy/Z is canonical, ¢ is the canonical
projection to the direct factor. Therefore we have the exact sequence of
Oc-modules

0— 0y Y20y & 04T = 0y (11.3)

where the morphism (f — w) is multiplication by f —w . We have Oy (. .,) =
Ou. ®c Oc,w- By Theorem 1 we can check flatness of the morphism f in a
point a by observing the sequence

0— o= on

where b = f(a). This sequence is exact, because of f — b /=0 and this
function is not zero divisor in the algebra Oy,.

Example 3. Let f: U — C™ be a holomorphic mapping defined in U C C"
such that the analytic set f~! (0) is of dimension n —m. Then the morphism
f:(0,0") — (C,0™) is flat. Set V=T x C™ and follow the arguments of
Example 2. Instead of (11.3) we need to write a resolvent of the form

KOy, f—w)— Oy/IT —0 (11.4)
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where 7 is the sheaf of ideal generated by the functions f; —w;, j =1,...,m
where f = (f1,..., fm) and K (Oy, f —w) is the Koszul complex generated
over Oy by m elements ey, ..., e, and the differential is given by d(e;) =

fj —w; (see Ch.10).

Theorem 2 The Koszul complex K (O, g) is exact if and only if the ele-
ments gi, ..., gm form the complete intersection ideal in OF, i.e. dim Z (g1, ..., gm) =
n—m.

This is a corollary of the fact that the algebra O™ is a Cohen-Macaulay
module, see [1],Ch.IVB,Th.3 for a proof. Fix a point a € U and set w =
b= f(a)in (11.4). We get the Koszul complex K (OF, f —b); it is exact by
Theorem 2. The mapping f is flat by Theorem 1.

11.3 Pull back

Proposition 3 Let (f,¢) : X — Y be a flat morphism and g : Z — Y an
arbitrary morphism of analytic spaces. Then the morphism g* (f) in the fibre
product diagram is also flat

X «— XxyZ
fl L (f)
y & Z
PROOF. Set W = X Xy Z; we have
OW,(J:,Z) = OX,:E ®OY,y OZ,z

where ® means fibre coproduct in the category C of analytic algebras. We
apply Proposition 8, Ch.10 for the homomorphism ¢, : Oy, — Ox,. It
follows that the algebra Oy, .) is flat over Oy ..

11.4 Deformation of analytic spaces

We consider two classes of analytic objects: germs and compact spaces.
Definition. Let (Xy,a) be a germ of analytic space at the distinguished
point a. A deformation of the germ with a base (5, so) is an arbitrary flat

3



morphism of germs F : (X,b) — (S5, s0) together with an isomorphism i :
(Xo,a) = F~'(s9) where F~! (sq) is the fibre of F.

The mapping f in Example 3 generates a deformation (U,a) — (C™,b)
of the germ Z (f1 — b1, ..oy frn — b -
Definition. Let X, be a compact analytic space and (S, sg) be a germ of
analytic spaces. A deformation of Xy with the base (.9, s¢) is an arbitrary flat
proper morphism F : X — (S, sq) together with an isomorphism i : X 5
F-1 (SQ) .
Definition. The notion of isomorphism and pull back look similar in both
cases. Let FF' : X — S, F' : X’ — S be deformations of a space (germ)
Xo. They are isomorphic if there exist nbd Y of F~!(sy) and a nbd Y’ of
F'71(s9) and a commutative diagram

y - & Ly
F| N i |
] Xo ]
S === == === §

In virtue of Proposition 3 the pull back ¢* (f) of f by a morphism of germs
g : (T,ty) — (S,0),9(to) = so is a deformation of the same space (germ)
with the base (7, tp) .
Definition. Fix an analytic space (or germ) Xy; for an arbitrary germ of
analytic space S we consider the set Def (Xg,S) of isomorphism classes of
deformations of X, with the base S. The symbol Def (X, -) is a contravariant
functor from the category of germs to the category Sets (or a covariant
functor from the category of analytic algebras). For a morphism of germs
g : S — T the set morphism ¢* : Def (X, S) — Def (X, T') is given by the
pull back operation.
Definition. Let X, be a germ or a compact analytic space. A deformation
F: X — S of Xjis called versal if an arbitrary deformation G : Y — T of
Xp is isomorphic to the pull back A* (F') by a morphism of germs h : " — S.
A versal deformation is called minimal, if dim S takes its minimum. Any two
minimal versal deformations are isomorphic, but the isomorphism is need not
to be canonical. The deformation F' is called universal if the morphism h
is unique. The latter means that the functor Def (X, -) is representable by
(S, F).

This functor is representable in very seldom cases. In particular, any
compact complex analytic manifolds of dimension 1, i.e. Riemann surfaces
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X there exists a universal deformation. Its base S is a germ of C? where d
is equal to genus g of Xy for ¢ = 0,1 and d = 39 — 3 for g > 1. Moreover
some singular Riemann surfaces possesses universal deformation.

Example 4. Consider the family of elliptic curves X,; in CP; which are
given in affine coordinates by

wr=24az+0

The parameter p = a®b~2 € C takes equal values for isomorphic curves and
distinguishes non isomorphic ones. It defines the embedding of the set of
isomorphism classes to CP; if we set p = oo in the case b = 0,a # 0. The
point p = —27/4 is the image of the singular curve X_3, that can be written
by the equation w? = (z — 1)* (z + 2) . From geometrical point of view this is
a complex projective line with a point of transversal self-intersection. These
curves are fibres of a proper flat morphism X — CP;. This morphism is a
universal deformation of each fibre.

Example 5. Let X, be the point 0 € C with the Artin algebra C [2] / (2" .
The versal deformation of X is given by the morphism F' : Z — S where
S = ((Ck, 0) and Z is the subset of Cx S given by the equation

k1 k-1 k—2
p(z,8) = 2"+ 5 12" s 02" T+ L+ 812+ S0

where sg, s1, ..., Sp_1 are coordinate functions in S.

Example 6. Let X be the set given by ¢ (z) = 0 in C™ where ¢ is non singu-
lar quadratic form. The family X, = {¢(z) — s = 0} is a versal deformation
of X().
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Deformation of a quadratic cone

Example 7. Let X, be the germ given by the ideal I = (f1, f2, f3) in the
algebra (’)g’ where f1 = z923, fo = 2123, f3 = 2122. The support of Xj is the
union of three coordinate axis in C?. Set S = C3, sy = 0 and consider the
subspace X C C?® x S given by the equations I} = Fy, = F3 = 0 where

Fy = 2025 4+ s329 + 8389, [y = 2321 + 8123 + 5183, '3 = 2129 + 5221 + 51592

The structure sheaf of X is Ox =E/I, where E= O(C? x S) and I=
(Fy, By, F3) . Take the projection C* x S — S and consider its restriction
p: X — 5 ¢: 05 -E—F/I. We claim that (p,¢) is flat. Indeed, we have
the exact sequence

0-E—-EBSEBLE0r—0 (11.5)
where FFA = FlAl + F2A2 -+ F3A3,
GB = By (21 + 81, —22, —83) + Ba (=51, 22 + 82, —23) + B3 (—21, —52, 23 + 53)

Since Fy = O3@cA,A= Ogqy we can apply Theorem 1. Multiplying by C
over Og we get the sequence

A3 La



where fa = fia1 + faas + fsaz = 222301 + 232102 + 212003
gb = bl (Zl, —Z9, 0) -+ b2 (0, 29, —23) -+ b3 (—Zl, 0, 23) (116)

This sequence is obviously exact which implies flatness of (p, ).

Look at the fibres X of this morphism. If only one of coordinates s1, so, s3
is not zero, X, is union of three straight lines in C3 with two intersection
points. If only one of the coordinates vanishes, X is union of a plane hyper-
bola and a orthogonal line which meets this hyperbola. Finally, if sys955 # 0
the fibre is a smooth irreducible curve.

Theorem 4 For an arbitrary germ of complex analytic space (Xo,a) that is
a manifold except for the distinguished point a, there exists a minimal versal
deformation.

This means that there exists, essentially, only one minimal versal defor-
mation X — (5,0). The number emdim S can be calculated in advance in
algebraic terms: there exists a canonical isomorphism Ty (S) = T (X,) . Here
To (S) is the tangent space to S, i.e. the space of functionals ¢ : Og — C that
satisfy the Leibniz condition. The space T (Xj) is the first derived functor
of Der (AJA), A= Ox, (see Example 4 Ch.10). For example, any germ of
hypersurface Xo = {f () =0,z € C"} we have

T (Xo) = O3 (fo fosoos £1)
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This space has finite dimension if X, has the only singular point z = 0.

Theorem 5 For an arbitrary compact complex analytic space there exists a
mainimal versal deformation.
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Chapter 12

Finite morphisms

12.1 Direct image

Definition. A morphism f : X — Y of topological spaces is called finite if
it is proper and each fibre f~! (y),y € Y is a finite set.

Theorem 1 Let (f,¢): (X,0x) — (Y,Oy) be a finite morphism of complex
analytic spaces. The direct image Rf (Ox) is a coherent Oy -sheaf.

PRroor. This property is local with respect to Y and we can assume that
Y is a model analytic space in an open set V. C C" and Oy = Oy/J. Choose
a point yg € Y, say yo = 0, the set f~!(0) consists of n points. Since f is
proper we can choose a nbd Y’ of yy such that the space X’ = f~1(Y”) is
union of n disjoint components X1, ..., X,,. We have Rf (Ox) = ®Rf (Oxj) )
Therefore the statement of Theorem is reduced to the case of one component,
i.e. we can assume that X is a model space and the set f~! (0) contains only
one point, say, xo = 0.

Thus we have X C U, Ox = Oy/Z where U is an open nbd of the point z
in C™, 7 is a coherent subsheaf of Oy generated by some functions aq, ..., q;.
Let wy, ..., w, be coordinate functions in C" and f; = ¢ (w;),j = 1,....,n
are sections of Oy in a nbd of the origin. Shrinking nbd U we can assume
that these sections are defined in U. Let Z be the subspace of U x V with the
structure sheaf Oyyy /K, where K is the sheaf of ideal generated by functions
a; (z) and w; — f; (). We have X = Z and the commutative diagram of
morphisms of analytic spaces



X = Z c UxV
fl gl pl
0leY = Y Cc ¥V

where p is the canonical projection. Therefore we can replace f by g. The
support of Z is the closed analytic set in U x V and the intersection of
Z with the subspace L = {w = 0} contains only the origin z = 0. This
implies that the coordinate system (z, w) is convenient for Z and we can apply
Theorem 16, Ch.4. According this theorem, there exists for any j =1,...,m
a distinguished pp. p; (zj, w) in z; that vanishes in Z. By the decomposition
theorem (Ch.5) the pp. p;“ belongs to the ideal Ky for some natural &£ and
arbitrary j. We can assume that & = 1. Let d; be the order of p;,7 =1,...,m
and J C Z™ is the set of indices j = (ji, ..., jm) such that 0 < j, < dy, k =
1,...,m. The set J contains d = d;...d,, elements. Consider the morphism of
Oy -sheaves

0:0% — Rg. (0y),{a;,j € J} izjaj (w) (12.1)
7

Lemma 2 The morphism o is surjective in a neighborhood of the origin.

PrOOF OF LEMMA. We need to show that for a nbd V'C V of the origin
and for arbitrary wg € W C V' and a section S € T'(p~! (W), Oy) there
exists sections a; € I' (W', Oy ), j € J such that

S = szaj (mod K)
where W’ is a nbd of wgy. Consider the system of equations

p1(z1,w) = oo = Py (2, w) =0 (12.2)

For each w € V the number of solutions z = (; (w), ..., (4 (w) is equal to d
counting multiplicity. The set Z is contained in the set P given by (12.2). The
value S¢ of the section S in a point ¢ € g~! (w) belongs to Oz = Oyxy.¢ /K.
Choose an element s € Oyyy, in the coset S¢. If a point (¢, wy) € P does
not belong to g~* (wy) we set s; = 0. The germs s; define a holomorphic
function s (z,w) in a nbd of the set {{; (wy), ..., (4 (wo)} . We interpolate this
function by means of functions r (z, w) that are pp. with respect to z of order
< d; in z;. We call such functions truncated pp. In the case m = 1 we argue
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as in Ch.3 and set

e iy
b s (A, w) dA
q(zw) = 2 /8F p(Aw) (A —2)

where F' C U is an open nbd of the set {(; (wo), ..., (4 (wp)} with smooth
boundary such that the function s is holomorphic in the closure of F. The
function 7 is a pp. in z with coefficients that are holomorphic in a nbd of
wp, ¢ is holomorphic in F' x W' where W’ is a small nbd of wy. We have
s = pq + r; function p is a section of the sheaf IC, consequently the image of
rinT (p~' (W),0Oyz) coincides with o.

In the general case we need to apply the interpolation (12.3) m times. O

Now we only need to show that the kernel of ¢ is finitely generated. Since
the pseudopolynomials (12.2) are section of the sheaf IC, we can apply the
division Theorem 2(I),Ch.3 to a system of generators KC and replace them by
the remainders ¢y, ..., ¢ modulo the system (12.2) which are truncated pp..
Thus the pp. p1,...,04; q1, -, ¢ are generators of K. We can now write the
inclusion {a;} € Kero in the form

Z Ha;(w) = Z b (z,w) qx (z,w) + Z ¢ (z,w)p (z,w) (12.4)

where all b; are also truncated pp.-s. It follows that c; are truncated pp.
too (follow arguments of Lemma 2,Ch.8. Therefore both side of (12.4) are
truncated pp. of degree < 2d;, in z;. Equalizing coefficients at the monomials
27,0 < jp < 2dy, we get a finite system of linear equations for the a; and
coefficients of pp. by, ¢;; all these coefficients are elements of the algebra Oy, .
The coefficients of pp. ¢ and p; are entries of the system. By Theorem 1,
Ch.8 the sheaf of solutions of this system is finitely generated over Oy . [J

12.2 Multiplicity of flat morphisms

Theorem 3 If (f,¢) : (X,0x) — (Y,Oy) is an arbitrary finite morphism
of complex analytic spaces, then
(1) the function
i (y) = dime I’ (X, Ox,)
is upper semi-continuous where X, = [~ (y).
(II) If the morphism is flat, this function is locally constant.

3



Proor. We have for any y € Y and z € X,
OXy,a; = OX,.Z‘ ®Oy<y C

whence

I (X,,0x,) = Rf (X,0x), ®oy, C (12.5)
We apply the following Lemma to the sheaf 7 = Rf (Ox) which gives (I).

Lemma 4 For an arbitrary coherent O-sheaf F in C™ the function
d(z) = dimc F, ®0, C
1S upper semi-continuous.

PrOOF OF LEMMA. Take an exact sequence of O-sheaves O — O° —
F — 0 in an open set U. The first morphism is given by a holomorphic
s X t-matrix A. For any point z € U we have the exact sequence

0'®0.C - O*®o.C —- F®,C — 0
1= = 1=

Ct 4B s S FeC — 0

Therefore d (z) = s — rank A (z) and Lemma follows. [J

Now we prove (II). By Theorem 7,Ch.10 we have F, = Oy, for some
natural r. This implies that rank A = and d(z) = s —r in a nbd V’ of the
origin. [J
Definition. Let f: U — V C C" be a proper holomorphic mapping where
V C C" For any w € V the fibre f~!(w) is a finite set because it is a
compact analytic subset of U. We call multiplicity pf (2) of f in a point z
the dimension of the structure algebra of the fibre f~! (w),w = f (2) in this
points, i.e.

pr (2) = dime Oy / (fi —wa, ..., fro — wy)

Corollary 5 For any proper mapping f : U — V the sum of multiplicities
s (2) taken over a fibre f=1 (w) is locally constant.

Corollary 6 Any finite flat holomorphic mapping is open.

The general result is as follows



Theorem 7 [Remmert-Grauert] For an arbitrary proper morphism of ana-
lytic space f : X — Y and an arbitrary coherent Ox-sheaf F each direct
image sheaf R1f (F) is a Oy -coherent sheaf.

Corollary 8 [Cartan-Serre] For any compact complex space X and an ar-
bitrary coherent Ox-sheaf F the space H1(X,F) has finite dimension for
k> 0.

12.3 Example

Let Xy be a point with the structure algebra A= O2/m? where m is the
maximal ideal in @%. The ideal m? is generated by the monomials 22, zw, w?
where 2z, w are coordinates in C?. Consider the space Z = C* with coordinates
s,t,u,v and the subspace Y C C? x Z given by the equations F} = F, =
I35 =0 where

Fi=24sz+tw, Fry = 2w, F3 =w?+uz+vw

The projection C? x Z — Z induces the morphism p : Y — Z. It is not flat
because f.e. the syzygy relation w (2%) — z (2w) = 0 can not be extended to a
syzygy for Fy, Fy, F3. Now we restrict the morphism to the subspace S C Z
given by the ideal J C Oy, J = (tu, tv,us). The support of S is the union of
three planes

P={t=u=0},Ph={u=v=0},P,={s=t=0}

Let X =p 1 (S)=YN(C*x8); Ox =0(C?>x 2Z)/(Fy, Fy, Fs, tu,tv,us) .
We claim that the projection 7 : X — S is a flat morphism....

Let us count multiplicities. For the point s =t = u = v = 0 we have
py = 3. For a point in P the system of equations looks as follows 2% + sz =
2w = w? 4+ vw = 0. There are three solutions: (—s,0),(0,0), (0, —v). For a
point in P, the system is 22 + sz + tw = 2w = w? = 0. The solutions are the
points (—s,0) and (0,0) where @ = 2. The plane Pj is symmetric to P

12.4 Residue revisited

Now we proof properties of the residue functional Res mentioned in Sec.6.3.
Let f : U— C" be a holomorphic mapping defined in an open set U C C"

5



such that f~!(0) = {a} for the origin 0 € C". Denote A = O,/Z where T is
the ideal generated by fi, ..., f,..

Proposition 9 We have

o Jgdz g
frkn

R (@), p=dimA, g€ A (12.6)

Theorem 10 For an arbitrary non zero element g €A there exists an ele-
ment h €A such that
ghdz ]

* flfn B

ProoOF OoF PROPOSITION. If W is a sufficiently small nbd of the origin,
then the mapping f : U’ — W is finite and proper where U’ = UNnf~1 (W).
The number Let u (¢) be the multiplicity of f— f (¢) in z € U. For any point
w € W the sum of multiplicities pif (2) over is equal p (a) = p according to
Corollary 5. By Sard’s Theorem we conclude that there exists a zero measure
subset Z C W such that any point w € W\Z is non critical value of f, i.e.
m (z) = 1 for each point z € f~! (w). This implies that the fibre consists of
(t non critical points. Now we replace f; by f; — w;.in the construction of
the residue integral. We obtain the family of integrals

R

gdz _ (9" gdz
fl - wl) (fn - wn) - (2 2) /F(’wﬁ) (fl - wl) (fn - wn)

Res
(

where

['(w,e) ={|f1(2) —w1| = €1, ..., |fu (2) —wp| = €p, 2z € U}

which is defined and holomorphic for € > 0 and for w € W’ for sufficiently
small nbd W’ of the origin. Fix w € W\Z and make ¢ — 0. Since the
integral does not depend on ¢ we get

gJdz B
Res Fr—w1) . (o — ) = f(zz);wg(Z)

The left side is holomorphic as function of w; the number of terms is equal
p and each term tends to g (a) as w — 0. This implies (12.6). O
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Proor orF THEOREM. Take a system e of polynomials ey, ..., e, which
generates a linear basis in A and consider the p X p-matrix

pUo = {Res G5

The inequality det B # 0 will imply Theorem. We shall prove this inequality
by means of double induction with respect to numbers p and v = emdimA=
dimm (A) /m? (A). The case p = 1 coincides with the case v = 0; the state-
ment is trivial because Resgdz = ¢(a). Otherwise the statement can be
reduced to case n = v. Indeed, if n > v, we can change coordinates in V and
in U in such a way that the forms df, 1 (a), ..., df, (a) are independent. This
implies that OF/ (f,41, ..., fn) = O, whence A is a quotient of O”. The case
v = lis easy to treat by means of the explicit formula

-1
Res% = (%)“ (%) |2=a

Consider the case ¥ > 1 and construct a two dimensional deformation Fj
of the function Fy = f such that det B (F;) # 0 except for occasionally
s = 0. We shall see that the function b (s) = det B (F) is holomorphic. The
inequality b (s) # 0 for s # 0 shows that b(0) # 0 because of any theorem
on removing singularity (see Ch.1). This will imply our statement.

Now we construct the deformation Fy. Since v > 2, we can change coor-
dinates in U and V in such a way that fi, fo € m?(0,), and the functions
21 — ay, 29 — ag are linearly independent in m (O,) /m? (O,) +Z. We set

Fi(s,2) = fi(2)+s1 (21 —a1), Fa (s, 2) = fa(2)+82 (22 —an) , F3 = f3,.... Fu = fa

Take a small ball B centered in a. The function ) | fj|2 does not vanish
in 0B hence the function ) |F;| does not vanish too for sufficiently small
|s1| + |s2| . Therefore the set F~! (s,0) is finite and the morphism 7 : X —
S c C? given by the equations F; = ... = F, = 0 is proper for a nbd S
of the origin. It is flat y Theorem 1.Ch.11 because these functions form a
complete intersection ideal. Now we consider the point s € S\ {0} and the
fibre X, = F~!(s). We have the option: X, = 1 or #X, > 1. In the first
case a is the only point of the fibre. We have either s; # 0 or so # 0. In both
cases emdim O,/Z, s < n where Z,s = (Fi(s,-),...F, (s,-)). By inductive
assumption we conclude that b(s) # 0. In the second option the set X

7



consists of several points a1 = a,as,...,aq,q > 1. By Corollary 5 we have
p=>_ ur, (ar) where pup, (ay) > 0 and therefore pp, (ax) < p1f. By induction
we conclude that each local function b; (s) does not vanish.

Next we show that the matrix B (Fs) can be transformed to a block-
diagonal form. Take a polynomial basis {ex;,j =1,..., 1 (a;)} in the local
algebra Ay = O,, /Z,, s for each k = 1,...,q. Take a polynomial hj = hy (2)
that is equal to 1 in a; and belongs to Z,, ; for j # k. The system of poly-
nomials e = {hyey ;} contains bases for all points aj and the matrix B (Fj)
has block-diagonal form in this basis with the blocks B (Fy,ax) , k = 1,..,q.
This implies

det B (F,,¢') = [ [ det B (F,, a;) # 0
On the other hand, the system e generates the free sheaf Rm (Ox) in a nbd of
origin in S (Theorem 1). By (12.5) the image of e in the space I' (X5, O (X5))

is a linear basis. Therefore ¢/ = Le where L is a linear transformation and
det B (F,,¢') = (det L)* det B (F,, e) which implies that det B (Fy, e) # 0. O

12.5 Example

Consider the mapping f : C* — C” given by basic symmetric polynomials
fi=51(21,,20) s ooy Ju = Sn (21, .., 2n) . It is proper, py = dimA= n!. The
number of points in f~1 (w) equals n! if w does not belong to the discriminant
set of the polynomial t" +w;t" ' +... +w,_it+w,. The system of monomials

ej:zj,jkgk:—j,kzl,...,n

generates a basis in A= Oy/ (f1, ..., fn) . We have
T =TlE-2= 3 cmle)
i<j weS(n)
where e, = 27" 12072...2,_1 and S (n) is the permutation group of n elements,
e (m) = £ is the sign of the permutation. Therefore we have

e.dz

* flfn B

For any element e; there exists a unique element e, such that eje, = e,
whence Resejer/fi...fn = 1.

R 1
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