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BLACK NARCISSUS

Of all night’s strange inhabitants,
The creature I fear worst

Never betrays the countenance
That makes my sleep accursed.

I flee and search, finding no place
His dark shape will not find,

Who lives in my own body’s space
And borrows my own mind.

Alfonz Wallace
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Preface

This book is not an intellectual history or popular summary of recent work on
consciousness in humans. Bernard Baars (1988), Edelman and Tononi (2000),
and many others, have written such, and done it well indeed. This book, rather,
brings the powerful analytic machinery of communication theory to bear on
the Global Neuronal Workspace (GNW) model of consciousness which Baars
introduced, and does so in a formal mathematical manner.

It is not the first such attempt. The philospher Fred Dretske (1981), indepen-
dent of Baars, long ago outlined how information theory might illuminate the
understanding of mind. Adapting his approach on the necessary conditions for
mental process, we apply a previously-developed information theory analysis
of interacting cognitive biological and social modules to Baars’ GNW, which
has become the principal candidate for a ‘standard model’ of consciousness.

Invoking an obvious canonical homology with statistical physics, the method,
when iterated in the spirit of the Hierarchical Linear Model of regression theory,
generates a fluctuating dynamic threshold for consciousness which is similar to
a tunable phase transition in a physical system. The phenomenon is, however,
constrained to a manifold/atlas structure analogous to a retina; an adaptable Rate
Distortion manifold, whose ‘topology’, in a large sense, reflects the hierarchy
of embedding constraints acting on consciousness. This view greatly extends
what Baars has characterized as ‘contexts.’

In sharp contrast with current neural network models, our ‘General Cogni-
tive Model’, and the tunable hierarchical extension which we see as the central
mechanism for consciousness, can be expanded in a straightforward manner to
include the influence of cognitive physiological modules like the immune sys-
tem, structured psychosocial stress, or the human epigenetic system of cultural
inheritance. These constraints act at a slower rate than neuronal function itself,
and their inclusion produces an empirically-testable ‘biopsychosociocultural’
model of consciousness that meets compelling objections raised within phi-
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losophy and cultural psychology to current brain-only or hyperindividualized
treatments.

The analysis can be applied to quantum systems via the quantum version
of the Shannon-McMillan Theorem. Contrary to recent speculations in the
physics literature, consciousness-as-we-know-it appears to be a purely classical
phenomenon, with typical quantum coherence times many orders of magnitude
less than the half-second which characterizes conscious behaviors. Indeed, our
work suggests that the consciousness possible to a low-temperature quantum
neural network would be to our own consciousness what a flask of superfluid
helium is to a glass of water or a hydrogen atom to a planetary system: strange
landscape indeed.

Much of the formal development has been published piecemeal elsewhere.
The basic application of statistical techniques to information sources appeared
in Wallace and Wallace (1998, 1999). There, renormalization at phase tran-
sition, and generalized Onsager relations away from it, were first used in the
context of evolutionary theory and a model of biocultural evolution done without
‘replicators.” The fundamental recognition that a class of cognitive processes
has a dual information source appeared in Wallace (2000), and application to
immune cognition was first made in Wallace and Wallace (2002) and Wallace
(2002a). Iteration of the basic model was done in Wallace et al. (2003), examin-
ing a tunable mutator for cancer affected by psychosocial stress, and continued
in Wallace and Wallace (2004) in terms of a contextually-tuned coevolutionary
conflict between immune system and adaptive pathogen.

Here these developments are synthesized, extending the arguments of Wal-
lace (2000) to second order in cognition, via punctuated universality class tun-
ing. This produces a manifold structure whose large-scale topology is con-
strained by a hierarchy of contexts beginning within an individual’s memory
and expanding outward to include the influence of the epigenetic system of cul-
tural heritage which so fully and completely determines the course of individual
human life (Richerson and Boyd, 2004).

Dretske’s necessary-condition technique is far more powerful than it may at
first seem. A crude analogy is as follows: We are interested in the exact value
some quantity a —analogous to consciousness — for which we have only the very
limited information that 0 < a. Suppose, however, we are able to determine
that there exists some quantity b > 0 — analogous to the limit theorems of
information theory — which we understand quite well and can indeed calculate,
and that ¢ < b. If we can know enough about b to conclude that 5 — 0 then, of
necessity, a = 0, without requiring detailed knowledge about the behavior of
a or its exact calculation: the fly-swatter argument.

As Dretske clearly saw, even ‘semantically meaningful’ phenomena are con-
strained by the asymptotic limit theorems of information theory. Here we show
in some detail how this is all that is really needed to develop a profound un-
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derstanding of cognitive process in general and consciousness in particular,
provided one is willing to expand the perspective beyond the isolated brain.

The recommended scientific background for this book is some familiarity
with the GNW model and its historical context at the level of Bernard Baars’ A
Cognitive Theory of Consciousness, as well as with current debate, for example
the special issue of Cognition cited in the opening paragraphs of Chapter 1. The
mathematical development is largely self-contained, and, for the most part, at
the advanced undergraduate or beginning graduate level. Chapter 2 provides
a fairly comprehensive introduction to information theory and related matters,
particularly if supplemented by the standard textbooks. Chapter 4 introduces
renormalization techniques in detail, and contains example calculations which
should indicate ways to actually analyze empirical data, the necessary — indeed,
the more important — partner to our model-driven theoretical speculations. The
section of chapter 5 exploring consciousness in quantum systems can be omitted
without loss of continuity.
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Chapter 1

WHAT IS CONSCIOUSNESS?

A recent, and quite remarkable, special issue of the academic journal Cogni-
tion (79(1-2), 2001)) summarizes much contemporary Western scientific work
on consciousness in humans, discussing in particular a principal candidate for
a new ‘standard model’ of the phenomenon which has been synthesized over
the last two decades: the global neuronal workspace. Sergeant and Dehaene
(2004) describe some of the implicit controversy as follows:

[A growing body of empirical study shows] large all-or-none changes in neural activ-
ity when a stimulus fails to be [consciously | reported as compared to when it is reported...
[A] qualitative difference between unconscious and conscious processing is generally
expected by theories that view recurrent interactions between distant brain areas as a
necessary condition for conscious perception... One of these theories has proposed
that consciousness is associated with the interconnection of multiple areas processing
a stimulus by a [dynamic] ‘neuronal workspace’ within which recurrent connections
allow long-distance communication and auto-amplification of the activation. Neuronal
network simulations... suggest the existence of a fluctuating dynamic threshold. If the
primary activation evoked by a stimulus exceeds this threshold, reverberation takes place
and stimulus information gains access, through the workspace, to a broad range of [other
brain] areas allowing, among other processes, verbal report, voluntary manipulation,
voluntary action and long-term memorization. Below this threshold, however, stimulus
information remains unavailable to these processes. Thus the global neuronal workspace
theory predicts an all-or-nothing transition between conscious and unconscious percep-
tion... More generally, many non-linear dynamical systems with self-amplification are
characterized by the presence of discontinuous transitions in internal state...

A similar review by Baars (2002) provides a slightly different perspective,
examining his own pioneering studies (Baars, 1983, 1988), along with the work
of Damasio (1989), Edelman (1989), Edelman and Tononi (2000), Freeman
(1991), Llinas et al. (1998), Tononi and Edelman (1998), and so on.

Baars and Franklin (2003) characterize the overall model as follows:
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(1) The brain can be viewed as a collection of distributed specialized networks
(processors).

(2) Consciousness is associated with a global workspace in the brain —a fleet-
ing memory capacity whose focal contents are widely distributed (*broadcast’)
to many unconscious specialized networks.

(3) Conversely, a global workspace can also serve to integrate many com-
peting and cooperating input networks.

(4) Some unconscious networks, called contexts, shape conscious contents,
for example unconscious parietal maps modulate visual feature cells that un-
derlie the perception of color in the ventral stream.

(5) Such contexts work together jointly to constrain conscious events.

(6) Motives and emotions can be viewed as goal contexts.

(7) Executive functions work as hierarchies of goal contexts.

Our particular extension of this perspective will be to introduce the idea of
a hierarchical structure for ‘context-of-contexts’, and to explore some impli-
cations of such an extension. We thus attempt to explicitly model the roles of
culture, individual developmental and community history, and embedding so-
cial network, in creating a further —and very powerful — hierarchy of constraints
to conscious events.

An already large and rapidly growing body of research on the interaction
of culture and individual psychology (e.g. as summarized by Markus and
Kitayama, 1991; Nisbett and Masuda, 2003; Heine, 2001), which has been
academically codified under the rubric of ‘cultural psychology’, suggests the
urgent necessity of such extension.

As Heine (2001) puts the matter,

...|Clultural psychology views the person as containing a set of biological potentials
interacting with particular situational contexts that constrain and afford the expression
of various constellations of traits and patterns of bechavior. Unlike much of personality
psychology, however, cultural psychology focuses on the constraints and affordances
inherent to the cultural environment that give shape to those biological potentials...
human nature is seen as emerging from participation in cultural worlds, and of adapting
onesclf to the imperatives of cultural directives...|meaning] that our nature is ultimately
that of a cultural being...

Cultural psychology does not view culture as a superficial wrapping of the sclf, or as
a framework within which selves interact, but as something that is intrinsic to the self.
It assumes that without culture there is no self, only a biological entity deprived of its
potential... Individual sclves are inextricably grounded in a configuration of consensual
understandings and behavioral customs particular to a given cultural and historical con-
text. Hence, understanding the self requires an understanding of the culture that sustains
it...

Cultural psychology maintains that the process of becoming a self is contingent on
individuals interacting with and seizing meanings from the cultural environment...

Somewhat chillingly, Heine (2001) asserts



What is consciousness? 3

The extreme nature of American individualism suggests that a psychology based
on late 20th century American research not only stands the risk of developing models
that are particular to that culture, but of developing an understanding of the self that is
peculiar in the context of the world’s cultures...

As Norenzayan and Heine (2004) point out, for the better part of a hundred
years, a considerable controversy has raged within anthropology regarding the
degree to which psychological and other human universals do, in fact, actually
exist independent of the particularities of culture (e.g. Benedict, 1934; Mead,
1975; Geertz, 1973).

Formal application of such perspectives to theories of consciousness requires
bringing together two other related strains of research on mental function and
cognition taken, respectively, from physics and philosophy.

Global neuronal workspace theory has a roughly corresponding track within
the physics literature, involving adaptation of a highly mathematical statistical
mechanics formalism to explore observed phase transition-like behavior in the
brain. These efforts range from ‘bottom up’ treatments by Ingber (1982, 1992)
based on interacting neural network models, to the recent ‘top down’ mean-field
approach of Steyn-Ross et al. (2001, 2003) which seeks to explain empirically
observed all-or-nothing effects in general anesthesia.

Parallel to both the neuroscience and physics lines of research, but absent
invocation of either dynamic systems theory or statistical mechanics, is what
Adams (2003) has characterized as ‘the informational turn in philosophy’, that
is, the application of communication theory formalism and concepts to “pur-
posive behavior, learning, pattern recognition, and... the naturalization of mind
and meaning.” One of the first comprehensive attempts was that of Dretske
(1981, 1988, 1992, 1993, 1994), whose work Adams describes as follows:

1t is not uncommon to think that information is a commodity generated by things with
minds. Let’s say that a naturalized account puts matters the other way around, viz. it says
that minds are things that come into being by purcly natural causal means of exploiting

the information in their environments. This is the approach of Dretske as he tried

consciously to unite the cognitive sciences around the well-understood mathematical
theory of communication...

Dretske himself (1994) writes:

Communication theory can be interpreted as telling one something important about
the conditions that are needed for the transmission of information as ordinarily under-
stood, about what it takes for the transmission of semantic information. This has tempted
people... to exploit [information theory] in semantic and cognitive studies, and thus in
the philosophy of mind.

...Unless there is a statistically reliable channel of communication between [a source
and a receiver]... no signal can carry semantic information... [thus] the channel over
which the [semantic] signal arrives [must satisfy] the appropriate statistical constraints
of communication theory.

Here we redirect attention from the informational content or meaning of in-
dividual symbols, i.e. the province of semantics which so concerned Dretske,
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back to the statistical properties of long, internally-structured paths of sym-
bols emitted by an information source which is ‘dual’ to a cognitive process
in a particular sense. Application of a variety of tools adapted from statistical
physics produces a dynamically tunable punctuated or phase transition coupling
between interacting cognitive modules in a highly natural manner. As Dretske
so clearly saw, this approach allows scientific inference on the necessary condi-
tions for cognition, greatly illuminating the global neuronal workspace model
of consciousness without raising the 18th Century ghosts of noisy, distorted
mechanical clocks inherent to dynamic systems theory. The technique permits
extension far beyond what is possible from statistical mechanics treatments of
neural networks. Inessence the method broadly recapitulates the General Linear
Model (GLM) for independent or simple serially correlated observations, but on
the punctuated output of an information source, using the Shannon-McMillan
Theorem rather than the Central Limit Theorem. Punctuation becomes the
phenomenon of central interest, rather than linear (or time series) parameter
estimation.

Just as it proves fruitful to iterate the GLM, forming the Hierarchical Linear
Model (HLM) in regression theory, it is possible to iterate the argument on the
essential parameters of a cognitive system driving punctuation to produce the
tunable, dynamic threshold so characteristic of consciousness.

The technique opens the way for the global neuronal workspace to incor-
porate the effects of other cognitive modules, for example the immune sys-
tem, and embedding, highly structured, social or cultural contexts that may,
although acting at slower timescales, greatly affect individual consciousness.
These contexts-of-context function in realms beyond the brain-limited concept
defined by Baars and Franklin (2003). Such extension meets profound objec-
tions to brain-only models; for example the accusation of the ‘mereological
fallacy’ by Bennett and Hacker (2003), which we will consider in more detail
later.

Before entering the formal thicket, it is important to highlight several points.

First, information theory is notorious for providing existence theorems whose
representation, to use physics jargon, is arduous. For example, although the
Shannon Coding Theorem implied the possibility of highly efficient coding
schemes as early as 1949, it took more than forty years for practical ‘turbo
codes’ to actually be constructed. The research program we implicitly propose
here is unlikely to be any less difficult.

Second, the analysis invokes information theory variants of the fundamental
limit theorems of probability. These are independent of exact mechanisms,
but constrain the behavior of those mechanisms. For example, although not
all processes involve long sums of independent stochastic variables, those that
do, regardless of the individual variable distribution, collectively follow a Nor-
mal distribution as a consequence of the Central Limit Theorem. This has
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fundamental importance for estimating functional models describing relations
between independent or simple serially correlated data sets — the General Linear
Model and its stationary time series variants. Similarly, the games of chance in
a Las Vegas casino are all quite different, but nonetheless the possible success
of strategies for playing them is strongly and systematically constrained by the
Martingale Theorem, regardless of game details. Analogously, languages-on-
networks and languages-that-interact, as a consequence of the limit theorems
of information theory, will inherently be subject to characteristic dynamic reg-
ularities regardless of detailed mechanisms, as important as the latter may be.

Just as parametric statistics are imposed, at least as a first approximation, on
sometimes questionable experimental situations, relying on the robustness of
the Central Limit Theorem to carry through, we take a similar heuristic approach
here.

Third, this work invokes an obvious homology between information source
uncertainty and thermodynamic free energy density as justification for import-
ing renormalization and generalized Onsager relation formalism to the study
of cognitive process near and away from ‘critical points’ in the coupling of
cognitive submodules. The purpose is to create a ‘General Cognitive Model’
(GCM) for the punctuated behavior of cognitive phenomena constrained by the
Shannon-McMillan Theorem, a model which permits estimation of essential
system parameters from observational data.

The question of whether the analysis demonstrates the necessity of global
phase transitions for information-transmission networks or merely builds a sug-
gestive analogy with thermodynamics is, of course, ultimately empirical. Can
the model actually be used to analyze experimental or observational data? For
the microscopic case, however, Feynman (1996) has shown that the homology
we invoke is an identity, which is no small matter and indeed suggests that
behavior analogous to phase transitions in simple physical systems should be
ubiquitous for a very broad class of information systems.

Our work appears similar, in a certain sense, to Bohr’s treatment of the
atom, which attempted a simple substitution of quantized angular momentum
into a basically classical theory. Although incomplete, his analysis contributed
materially to the more comprehensive approach of quantum mechanics. In that
spirit, increasingly satisfactory models may follow from the interplay of our
work here and appropriate empirical studies.

In just this regard, it is worth reiterating the dire warnings of the mathemat-
ical ecologist E.C. Pielou on the place of mathematical models in studies of
complicated systems (Pielou, 1977, p. 106):

...{Mathematical] models are easy to devise; even though the assumptions of which
they are constructed may be hard to justify, the magic phrase ‘let us assume that..’
overrides objections temporarily. One is then confronted with a much harder task: How
is such a model to be tested? The correspondence between a model’s predictions and
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observed events is sometimes gratifyingly close but this cannot be taken to imply the
model’s simplifying assumptions are reasonable in the sensc that neglected complica-
tions are indeed negligible in their effects...

In my opinion the usefulness of models is great... [however] it consists not in answer-
ing questions but in raising them. Models can be used to inspire new field investigations
and these are the only source of new knowledge as opposed to new speculation.

We will use a mathematical model of the global neuronal workspace to
speculate in some detail on the relations between consciousness and social
and cultural contexts, speculation which hopefully will inspire new empirical
investigations and, through these, a new round of interaction between models
and experiments.

The next chapter recapitulates some facts and theorems from information
theory and related disciplines. The third gets down to the serious business of
describing cognitive process in terms of an information source, a kind of lan-
guage constrained by the Shannon-McMillan Theorem, and its Rate Distortion
or Joint Asymptotic Equipartition and other variants for interacting sources.
Subsequent chapters introduce phase transition formalism, and apply it to the
effects of social and cultural contexts on individual consciousness.



Chapter 2

INFORMATION THEORY

Suppose that the probability of interaction between individuals (or extended
families or other organizational nodes) linked in a network depends jointly
on their geographic and social locations, which we characterize as multidi-
mensional vector quantities X and Z respectively. These measures might be
determined, for example, from survey data on individuals or inferred from envi-
ronmental index data on groups. Thus for individual nodes j and k£ we assume
their probability of interaction P} ;, is given by

Py = Pj (X, Xy, Zj, Z)

where 0 < P < 1.

Itmay be possible toreduce P;  to a function of the differences X = X; — Xy,
and Z = Z; — Zy, or, perhaps, by using a multivariate method such as principal
components analysis, even to functions of their ‘length’ z = |X| and z = |Z
so that

L]

}Dj»k = ‘Pjyk‘(‘% Z)

One way to proceed is to impose a generalized distance 7> = z? + 22, and
explore the effects of various probability distributions which are functions of .
This is, in fact, done at some length in Chapter 4. Here, rather, we finesse the
argument and transform out of the space defined by = and z into the probability
space itself, defining a metric according to

L =log(1/Pjr)
2.1)
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where log is the logarithm to some base number. Note that it is the probability
distribution based on the generalized distance  which induces the transforma-
tion between ‘real’ space and probability space.

If it can be assumed for all nodes j, k&, [ within a sufficiently small network
patch, that

v

Py > PPy,

so that
1 1 1

I

Pii = Pjg Pry

and the strong ‘triangle’ inequality

log(1/Pj;) < log(1/Pjx) + log(1/Py)

holds, then L is a pseudometric, and various standard attacks are possible.

That somewhat draconian condition can, however, be considerably weakened
as follows:

Let AL; be the average ‘distance’ in probability space from the node j to all
other nodes, that is,

AL; =" Piglog(1/Pyy)
k

(2.2)

Suppose some fairly elaborate ‘message,” not otherwise characterized, is sent
along the sociogeographic network, and a traveling wave condition is imposed,
so that, for some time period At, the relation

AL,
N

(2.3)
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holds. C is, then, the mean fixed rate at which the message is sent from the
network to an embedded individual.

Wallace et al, (1996) show — not unexpectedly and probably not originally
— that the traveling wave assumption, on a fractal manifold, is equivalent to
the Aharony-Stauffer conjecture, which directly relates the fractal dimension
of the interior of an affected network to that of its growth surface. This gives
a simple and explicit expression for C, usually an arduous calculation. The
detailed derivation is left as an exercise.

By expanding equation (2.3) we obtain, taking At = 1,

- Z Pj,k log(Pj,k:) ~C
k

(2.4)

where (' is a transmission rate constant characteristic of the particular so-
ciogeographic network. We further assume that 3, P; » = 1, i.e., the network
is ‘tight’ in the sense that each node interacts with it as a whole with unit
probability. Hence P; is a legitimate probability distribution.

These are deep waters: For any probability distribution, 0 < P; < 1 such
that ) _; I’; = 1 the quantity

H=-) Pjlog(P)
J

(2.5)

is the distribution’s Shannon uncertainty, a fundamental quantity of classical
information theory.

Neglecting details explored below, the transfer of uncertainty represents the
transmission of information: The Shannon Coding Theorem, the first important
result of information theory, states that for any rate R < C', where C represents
the capacity of the information channel, it is possible to find a ‘coding scheme’
such that a sufficiently long message can be sent with arbitrarily small error.

This is surely one of the most striking conclusions of 20th Century applied
mathematics.
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1.  The Shannon Coding Theorem

Messages from a source, seen as symbols z ; from some alphabet, each having
probabilities P; associated with a random variable X, are ‘encoded’ into the
language of a ‘transmission channel’, a random variable ¥ with symbols y,
having probabilities P, possibly with error. Someone receiving the symbol yy,
then retranslates it (without error) into some x, which may or may not be the
same as the x; that was sent.

More formally, the message sent along the channel is characterized by a
random variable X having the distribution

P(X =a;)=P;,j=1,.., M.

The channel through which the message is sent is characterized by a second
random variable Y having the distribution

PY =y,) =P, k=1,..., L.
Let the joint probability distribution of X and Y be defined as
P(X =z;,Y =y) = P(rj,ye) = Py,
and the conditional probability of ¥ given X as
PY = plX = z;) = P(yk|z;).

Then the Shannon uncertainty of X and Y independently and the joint un-
certainty of X and Y together are defined respectively as

M
- Z P; log(P;)
j=1
L
H(Y) ==Y Pylog(P)
k=1
L
H(X,Y) Z > Py log(P,
j=1k=1

(2.6)
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The conditional uncertainty of Y given X is defined as

M L
HY|X) ==Y Pjilog[P(yklz;)]
j=1lk=1

2.7

For any two stochastic variates X and Y, H(Y) > H(Y'|X), as knowledge
of X generally gives some knowledge of Y. Equality occurs only in the case
of stochastic independence.

Since P(xj,yx) = P(x;)P(yr|x;), we have

H(X|Y)=H(X,Y) - H(Y)

The information transmitted by translating the variable X into the channel
transmission variable Y — possibly with error — and then retranslating without
error the transmitted Y back into X is defined as

I(X|Y)= H(X) - HX|Y) = H(X)+ HY) - HX,Y)
(2.8)

See, for example, Ash (1990), Khinchine (1957) or Cover and Thomas (1991)
for details. The essential point is that if there is no uncertainty in X given the
channel Y, then there is no loss of information through transmission.

In general this will not be true, and herein lies the essence of the theory.

Given a fixed vocabulary for the transmitted variable X, and a fixed vocabu-
lary and probability distribution for the channel Y, we may vary the probability
distribution of X in such a way as to maximize the information sent. The
capacity of the channel is defined as

C = max I(X]|Y)
P(x)
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(2.9)

subject to the subsidiary condition that - P(X) = 1.

The critical trick of the Shannon Coding Theorem for sending a message with
arbitrarily small error along the channel ¥ at any rate R < C'is to encode it in
longer and longer ‘typical’ sequences of the variable X ; that is, those sequences
whose distribution of symbols approximates the probability distribution P(X)
above which maximizes C.

If S(n) is the number of such ‘typical’ sequences of length n, then

log[S(n)] = nH(X)

where H(X) is the uncertainty of the stochastic variable defined above.
Some consideration shows that S(n) is much less than the total number of pos-
sible messages of length n. Thus, as n — oo, only a vanishingly small fraction
of all possible messages is meaningful in this sense. This observation, after
some considerable development, is what allows the Coding Theorem to work
so well. In sum, the prescription is to encode messages in typical sequences,
which are sent at very nearly the capacity of the channel. As the encoded
messages become longer and longer, their maximum possible rate of transmis-
sion without error approaches channel capacity as a limit. Again, Ash (1990),
Khinchine (1957) and Cover and Thomas (1991) provide details.

2.  More heuristics: a ‘tuning theorem’

Telephone lines, optical wave guides and the tenuous plasma through which
a planetary probe transmits data to earth may all be viewed in traditional
information-theoretic terms as a noisy channel around which we must structure
a message $o as to attain an optimal error-free transmission rate.

Telephone lines, wave guides and interplanetary plasmas are, relatively speak-
ing, fixed on the timescale of most messages, as are most sociogeographic
networks. Indeed, the capacity of a channel, according to equation (2.9), is
defined by varying the probability distribution of the ‘message’ process X so
as to maximize [(X|Y).

Suppose there is some message X so critical that its probability distribution
must remain fixed. The trick is to fix the distribution P(x) but modify the
channel —i.e. tune it — so as to maximize 7(X|Y"). The dual channel capacity
C* can be defined as

C*= max I(X]Y)
P(Y),P(Y]X)
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(2.10)
But
C*= max I(Y|X)
P(Y),P(Y|X)
since

I(X|Y)=H(X)+H(Y) - H(X,Y) = I(Y|X).

Thus, in a purely formal mathematical sense, the message transmits the
channel, and there will indeed be, according to the Coding Theorem, a channel
distribution P(Y") which maximizes C*.

One may do better than this, however, by modifying the channel matrix
P(Y|X). Since

M
P(y;) =Y Plz:)Py;|z),
i=1

P(Y) is entirely defined by the channel matrix P(Y'|X) for fixed P(X) and

C*= max I(Y|X)= max I(Y|X).
PY),P(Y]X) PY]X)

Calculating C* requires maximizing the complicated expression
IX|Y)=HX)+HY)-H(X,)Y)

which contains products of terms and their logs, subject to constraints that
the sums of probabilities are 1 and each probability is itself between 0 and 1.
Maximization is done by varying the channel matrix terms P(y;|z;) within
the constraints. This is a difficult problem in nonlinear optimization. See
Parker et al. (2003) for a comprehensive treatment, using traditional Lagrange
multiplier methods. However, for the special case M = L, C* may be found
by inspection:

If M = L, then choose

Pyjlzi) = 65,
where d; ; is 1 if ¢ = j and O otherwise. For this special case

C* = H(X)
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with P(yr) = P(xy) for all k. Information is thus transmitted without
error when the channel becomes ‘typical’ with respect to the fixed message
distribution P(X).

If M < L matters reduce to this case, but for L < M information must be
lost, leading to ‘Rate Distortion” arguments explored more fully below.

Thus modifying the channel may be a far more efficient means of ensuring
transmission of an important message than encoding that message in a ‘natural’
language which maximizes the rate of transmission of information on a fixed
channel.

We have examined the two limits in which either the distributions of P(Y") or
of P(X) are kept fixed. The first provides the usual Shannon Coding Theorem,
and the second, hopefully, a tuning theorem variant. It seems likely, however,
than for many important systems P(X) and P(Y) will ‘interpenetrate,’ to use
Richard Levins’ terminology. That is, P(X) and P(Y) will affect each other
in characteristic ways, so that some form of mutual tuning may be the most
effective strategy.

3.  The Shannon-McMillan Theorem

Not all statements — sequences of the random variable X — are equivalent.
According to the structure of the underlying language of which the message
is a particular expression, some messages are more ‘meaningful’ than others,
that is, in accord with the grammar and syntax of the language. The other
principal result from information theory, the Shannon-McMillan or Asymptotic
Equipartition Theorem, describes how messages themselves are to be classified.

Suppose along sequence of symbols is chosen, using the output of the random
variable X above, so that an output sequence of length n, with the form

Tn = (a()?ala ~~7an-—l)

has joint and conditional probabilities

P(Xo=a0, X1 =0a1,..., X1 = 1)

P(Xn = aniXO = g, oy X1 = an—l)-

(2.11)

Using these probabilities we may calculate the conditional uncertainty
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H(XTL{X07 Xla ""Xn—l)'

The uncertainty of the information source, H[X], is defined as

H[X] = lim H(X,,,‘X(),Xl,...,Xn_l)‘

n—o0

(2.12)

In general
H(Xn|X0~, X1> EEE) anl) < H(Xn)-

Only if the random variables X are all stochastically independent does
equality hold. If there is a maximum n such that, forall m > 0

H(Xn+7711X0a cers Xn-‘f-m—l) = H(Xn}XOa ceey Xn—l),
then the source is said to be of order n. It is easy to show that

H(Xy,.. X,
HIX] = i, S0

In general the outputs of the X;,7 = 0,1,...,n are dependent. That is,
the output of the communication process at step n depends on previous steps.
Such serial correlation, in fact, is the very structure which enables most of what
follows in this book.

Here, however, the processes are all assumed stationary in time, that is, the
serial correlations do not change in time, and the system is memoryless.

A very broad class of such self-correlated, memoryless, information sources,
the so-called ergodic sources for which the long-run relative frequency of a
sequence converges stochastically to the probability assigned to it, have a par-
ticularly interesting property:

It is possible, in the limit of large n, to divide all sequences of outputs of an er-
godic information source into two distinct sets, 51 and Sy, having, respectively,
very high and very low probabilities of occurrence, with the source uncertainty
providing the splitting criterion. In particular the Shannon-McMillan Theorem
states that, for a (long) sequence having n (serially correlated) elements, the
number of ‘meaningful’ sequences, N(n) — those belonging to set S; — will
satisfy the relation



16 CONSCIOUSNESS

log[N(n)] HIX]
n '
2.13)
More formally,
nlggo l_Og[_]Z(ﬁ_)l = H[X]

= lim H(X,.|X0,..., Xn_1)

n—oc

o H o X)
= lim —————~,
n—00 n+1

(2.14)

The Shannon Coding theorem, by means of an analogous splitting argument,
shows that for any rate R < C, where C is the channel capacity, a message may
be sent without error, using the probability distribution for X which maximizes
I(X|Y) as the coding scheme. Using the internal structures of the information
source permits limiting attention only to meaningful sequences of symbols. This
restriction can greatly raise the maximum possible rate at which information
can be transmitted with arbitrarily small error: if there are M possible symbols
and the uncertainty of the source is H[X], then the effective capacity of the
channel C, using this ‘source coding,” becomes (Ash, 1990)

log(M)
H[X]

Cg=C

(2.15)



Information theory 17

As H[X] < log(M), with equality only for stochastically independent,
uniformly distributed random variables,

(2.16)

Note that, for a given channel capacity, the condition
HX]<C

always holds.
Source uncertainty has a very important heuristic interpretation. As Ash
(1990) puts it,

...[Wle may regard a portion of text in a particular language as being produced
by an information source. The probabilities P[X, = an|Xo = ao, ..., Xn_1 =
&n—1) may be estimated from the available data about the language; in this way we can
estimate the uncertainty associated with the language. A large uncertainty means, by
the {Shannon-McMillan Theorem], a large number of ‘meaningful’ sequences. Thus
given two languages with uncertainties H; and H> respectively, if H1 > Ha, then in
the absence of noise it is easier to communicate in the first language; more can be said in
the same amount of time. On the other hand, it will be easier to reconstruct a scrambled
portion of text in the second language, since fewer of the possible sequences of length
n are meaningf{ul.

It is possible to significantly generalize this heuristic picture in such a way
as to characterize the interaction between different ‘languages,” something at
the core of the development.

4. The Rate Distortion Theorem

The Shannon-McMillan Theorem can be expressed as the ‘zero error limit’
of something called the Rate Distortion Theorem (Dembo and Zeitouni, 1998;
Cover and Thomas, 1991), which defines a splitting criterion that identifies high
probability pairs of sequences. We follow closely the treatment of Cover and
Thomas (1991).

The origin of the problem is the question of representing one information
source by a simpler one in such a way that the least information is lost. For
example we might have a continuous variate between 0 and 100, and wish to
represent it in terms of a small set of integers in a way that minimizes the
inevitable distortion that process creates. Typically, for example, an analog
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audio signal will be replaced by a ‘digital’ one. The problem is to do this in a
way which least distorts the reconstructed audio waveform.

Suppose the original memoryless, ergodic information source Y with output
from a particular alphabet generates sequences of the form

n
Y =Y Yn.
These are ‘digitized,” in some sense, producing a chain of ‘digitized values’
‘3
b =by, ..., by,

where the b-alphabet is much more restricted than the y-alphabet.

b™ is, in turn, deterministically retranslated into a reproduction of the original
signal 4. That is, each " is mapped on to a unique n-length y-sequence in
the alphabet of the information source Y':

7 AT ~ -~
b —Y =Y, Yn-

Note, however, that many y" sequences may be mapped onto the same re-
translation sequence ", so that information will, in general, be lost.

The central problem is to explicitly minimize that loss.

The retranslation process defines a new memoryless, ergodic information
source, Y.

The next step is to define a distortion measure, d(y, §), which compares the
original to the retranslated path. For example the Hamming distortion is

dly,9) =Ly #7

2.17)

For continuous variates the Squared error distortion is

(2.18)
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Possibilities abound.
The distortion between paths y™ and §” is defined as

1n
nAn_EZ y]yj

(2.19)

Suppose that with each path 3" and b™-path retranslation into the y-language
and denoted y", there are associated individual, joint, and conditional proba-
bility distributions

p(y™),p(@"), p(y"15")

The average distortion is defined as

(2.20)

It is possible, using the distributions given above, to define the information
transmitted from the incoming Y to the outgoing Y process in the usual manner,
using the Shannon source uncertainty of the strings:

IY,Y)=H(Y) - H(Y|Y) = H(Y)+ H(Y) — H(Y,Y).

If there is no uncertainty in Y given the retranslation Y, then no information
is lost.

In general, this will not be true.

The information rate distortion function R{D) for a source Y with a distor-
tion measure d(y, ) is defined as
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R(D) = min I(Y,Y).
P 0 POP@ID)A(y.9) <D

21

The minimization is over all conditional distributions p(y|) for which the
jointdistribution p(y, §) = p(y)p(y|y) satisfies the average distortion constraint
(i.e. average distortion < D),

The Rate Distortion Theorem states that R(D) is the maximum achievable
rate of information transmission which does not exceed the distortion D. Cover
and Thomas (1991) or Dembo and Zeitouni (1998) provide details, and Parker
et al. (2003) formalize a comprehensive attack.

More to the point, however, is the following: Pairs of sequences (y™,9™)
can be defined as distortion typical; that is, for a given average distortion D,
defined in terms of a particular measure, pairs of sequences can be divided
into two sets, a high probability one containing a relatively small number of
(matched) pairs with d(y™, §") < D, and a low probability one containing most
pairs. As n — oo, the smaller set approaches unit probability, and, for those
pairs,

p(y™) = p(i™y™) expl-nI (Y, V).

(2.22)

Thus, roughly speaking, I(Y, Y) embodies the splitting criterion between
high and low probability pairs of paths.

For the theory of interacting information sources, then, 7(Y, f/) can play the
role of H in the dynamic treatment that follows.

The rate distortion function of eq. 2.21 can actually be calculated in many
cases by using a Lagrange multiplier method — see Section 13.7 of Cover and
Thomas (1991).

At various points in the development we will suggest using s = d(&,x) as a
metric in a geometry of information sources, e.g. when simple ergodicity fails,
and H(z) # H(&) for high probability paths £ and x. See eq. (3.2).
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5.  Large Deviations

The use of information source uncertainty above as a splitting criterion be-
tween high and low probability sequences (or pairs of them) displays the fun-
damental characteristic of a growing body of work in applied probability often
termed the ‘Large Deviations Program,” (LDP) which seeks to unite informa-
tion theory, statistical mechanics and the theory of fluctuations under a single
umbrella. It serves as a convenient starting point for further developments.

We can begin to place information theory in the context of the LDP as follows
(Dembo and Zeitouni, 1998, p.2):

Let X, Xa,...X,, be a sequence of independent, standard Normal, real-
valued random variables and let

(2.23)

Since S), is again a Normal random variable with zero mean and variance
1/n,forallé > 0

lim P(|Sy| >4d) =0,

n—oc

(2.24)

where P is the probability that the absolute value of S, is greater or equal
to 6. Some manipulation, however, gives

PS> 6 =1— L ™ (a2
n| Z = _E/-é\/ﬁcxp - Z,

(2.25)
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so that

(2.26)

This can be rewritten for large n as

P(ISul 2 6) & exp(—nd?/2).

(2.27)

That is, for large n, the probability of a large deviation in S,, follows some-
thing much like equation (2.13), i.e. that meaningful paths of length n all have
approximately the same probability P(n) « exp(—nH[X]).

Our questions about ‘meaningful paths’ appear suddenly as formally iso-
morphic to the central argument of the LDP which encompasses statistical
mechanics, fluctuation theory, and information theory into a single structure
(Dembo and Zeitouni, 1998).

A cardinal tenet of large deviation theory is that the ‘rate function’ —§2/2 in
equation (2.26) can, under proper circumnstances, be expressed as a mathemat-
ical ‘entropy’ having the standard form

= > prlogp,
k

(2.28)

for some set of probabilities py. This striking result goes under various names
at various levels of approximation — Sanov’s Theorem, Cramer’s Theorem, the
Gartner-Ellis Theorem, the Shannon-McMillan Theorem, and so on (Dembo
and Zeitouni, 1998).
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6. Fluctuations

The standard treatment of “fluctuations’ (Onsager and Machlup, 1953; Fredlin
and Wentzell, 1998) in physical systems is the principal foundation for much
current study of stochastic resonance and related phenomena and also serves as
a useful reference point.

The macroscopic behavior of a complicated physical system in time is as-
sumed to be described by the phenomenological Onsager relations giving large-
scale fluxes as

Z Ri,,deyj/dt = (95/5](7,
%

(2.29)

where the R, ; are appropriate constants, S is the system entropy and the K
are the generalized coordinates which parametize the system’s free energy.

Entropy is defined from free energy F' by a Legendre transform — more of
which follows below:

S=F-) K;0F/0K;,
J

where the K; are appropriate system parameters.
Neglecting volume problems (which will become quite important later), free
energy can be defined from the system’s partition function Z as

F(K) = log2(K)).
The partition function Z, in turn, is defined from the system Hamiltonian —
defining the energy states — as
Z(K) = _exp[-KE}j],
J

where K is an inverse temperature or other parameter and the £ are the
energy states.
Inverting the Onsager relations gives

dK;/dt = L; j0S/0K; = Li(K1, ..., Km,t) = Li(K,t).
i
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(2.30)

The terms 0S/0K; are macroscopic driving ‘forces’ dependent on the en-
tropy gradient.
Let a white Brownian ‘noise’ €(t) perturb the system, so that

dK/dt =" L j05/0K; + €(t)
J
= L;(K,1) +€(t),
(2.31)

where the time averages of ¢ are < e(t) >= 0 and < €(t)e(0) >= D4(t).
&(t) is the Dirac delta function, and we take K as a vector in the K;.

Following Luchinsky (1997), if the probability that the system starts at some
initial macroscopic parameter state K at time ¢ = 0 and gets to the state K ()
at time ¢ is P{K, t), then a somewhat subtle development (e.g. Feller, 1971)
gives the forward Fokker-Planck equation for P:

OP(K,t))0t = =V - (L(K,t)P(K,t)) + (D/2)V?P(K,t).

(2.32)

In the limit of weak noise intensity this can be solved using the WKB, i.e.
the eikonal, approximation, as follows: take

P(K,t) = z2(K,t) exp(—s(K,t)/D).
(2.33)
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2(K,t)isaprefactor and s( X, t) is a classical action satisfying the Hamilton-
Jacobi equation, which can be solved by integrating the Hamiltonian equations
of motion. The equation reexpresses P(K, t) in the usual parametized negative
exponential format.

Let p = Vs. Substituting equation (2.33) in equation (2.32) and collecting
terms of similar order in D gives

dK/dt = p+ L,dp/dt = —OL/OKp

2
—8s/0t = h(K,p,t) = pL(K,t) + %7

with h( K, t) the ‘Hamiltonian’ for appropriate boundary conditions.

Again following Luchinsky (1997), these ‘Hamiltonian’ equations have two
different types of solution, depending on p. For p = 0,dK/dt = L(K,t)
which describes the system in the absence of noise. We expect that with finite
noise intensity the system will give rise to a distribution about this deterministic
path. Solutions for which p # 0 correspond to optimal paths along which the
system will move with overwhelming probability.

This is a formulation of fluctuation theory which has particular attraction for
physicists, few of whom can resist the nearly magical appearance of a Hamil-
tonian. These results can, however, again be directly derived as a special case
of a Large Deviation Principle based on ‘generalized ‘entropies’ mathemati-
cally similar to Shannon’s uncertainty from information theory, bypassing the
‘Hamiltonian’ formulation entirely (Dembo and Zeitouni, 1998).

For languages, of course, there is no possibility of a Hamiltonian, but the
generalized entropy or splitting criterion treatment still works. The trick will
be to do with entropies what is most often done with Hamiltonians:

Here we will be concerned, not with a random Brownian distortion of simple
physical systems, but with acomplex ‘behavioral’ structure, in the largest sense,
composed of quasi-independent ‘actors’ for which

[1] the usual Onsager relations of equations (2.29) and (2.30) may be too
simple,

[2] the ‘noise’ may not be either small or random, and, most critically,

[3] the meaningful/optimal paths have extremely structured serial correla-
tion, amounting to a grammar and syntax, precisely the fact which allows defini-
tion of an information source and enables the use of the very sparse equipartition
of the Shannon-McMillan and Rate Distortion Theorems. The sparseness and
equipartition, in fact, permit solution of the problems we will address.
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In sum, to again paraphrase Luchinsky (1997), large fluctuations, although
infrequent, are fundamental in a broad range of processes, and it was recog-
nized by Onsager and Machlup (1953) that insight into the problem could be
gained from studying the distribution of fluctuational paths along which the
system moves to a given state. This distribution is a fundamental characteristic
of the fluctuational dynamics, and its understanding leads toward controt of
fluctuations. Fluctuational motion from the vicinity of a stable state may oc-
cur along different paths. For large fluctuations, the distribution of these paths
peaks sharply along an optimal, most probable, path. In the theory of large
fluctuations, the pattern of optimal paths plays a role similar to that of the phase
portrait in nonlinear dynamics.

In this development ‘meaningful’ paths play the role of ‘optimal’ paths in
the theory of large fluctuations, but without benefit of a ‘Hamiltonian.’

7.  The fundamental homology

Section 5 above gives something of the flavor of the LDP which tries to
unify statistical mechanics, large fluctuations and information theory. This
opens a methodological Pandora’s Box: the LDP provides justification for a
massive transfer of superstructure from statistical mechanics to information
theory, including real-space renormalization for address of phase transition,
thermodynamics and an equation of state, generalized Onsager relations, and
so on. From fluctuation theory and nonlinear dynamics come phase space,
domains of attraction and related matters.

Several particulars distinguish this approach.

First is a draconian simplification which seeks to employ information theory
concepts only as they directly relate to the basic limit theorems of the subject.
That is, message uncertainty and information source uncertainty are interesting
only because they obey the Coding, Source Coding, Rate Distortion, and related
theorems. ‘Information Theory’ treatments which do not sufficiently center on
these theorems are, from this view, far off the mark. Thus most discussion of
‘complexity,” ‘entropy maximization,” different definitions of ‘entropy,” and so
forth, just does not appear on the horizon. In the words of William of Occam,
“Entities ought not be multiplied without necessity.”

The second matter is somewhat more complicated: Rojdestvenski and Cot-
tam (2000, p.44), following Wallace and Wallace (1998), see the linkage be-
tween information theory and statistical mechanics as a characteristic

...lhomological] mapping... between... unrelated... problems that share the same
mathematical basis... [whose] similarities in mathematical formalisms...become pow-
erful tools for [solving]... traditional problems.

The possible relation of information theory to biological and social process,
both of which can involve agency, appears very sharply constrained, involving:
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(1) a ‘linguistic’ equipartition of sets of probable paths consistent with the
Shannon-McMillan, Rate Distortion, or related theorems which serves as the
formal connection with nonlinear mechanics and fluctuation theory, and

(2) a homological correspondence between information source uncertainty
and statistical mechanical free energy density, not statistical mechanical entropy.

In this latter regard, the definition of the free energy density of a parametized
physical system is

log|Z(Ky, ..., Km, V
F(K1>-~-,I{m) = ‘}Tloc Og[ ( 17V ) )]

(2.34)

where the K; are parameters, V' is the system volume, and Z is, again, the
partition function.

For an ergodic information source the equivalent relation associates the
source uncertainty with the number of ‘meaningful’ statements N (n) of length
n, in the limit,

This can be parametized in various manners to obtain the crucial expression
on which all else is built:

H[K, oo, K, X] = lim Log N (K, ooy Komy )]

n—00 n

(2.35)

At first glance, Shannon uncertainty has the algebraic form of the entropy
of a physical system, o< 3", Py log(Py), where the P, constitute a probability
distribution. This is deceptive. In the absence of a ‘distinguishing two-form’
which defines a ‘symplectic geometry’, that is, in the absence of a second order
Hamiltonian defining energy, Shannon uncertainty cannot be the ‘entropy’ of a
system, even if it has the same mathematical form. See Arnold (1989) for an
explanation of the ‘symplectic’ jargon, but the basic point is that the concept
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of entropy is directly derived from ideas of work and heat, while Shannon
uncertainty has its origin in the process of sending a message.

While it is sometimes possible to impose a distinguishing two-form on a
contact manifold, to symplectify it by artificially constructing an analog to a
Hamiltonian (Arnold, 1989), such logical convolutions are not really needed.
In any event, when such a ‘duality’ is invoked, Shannon uncertainty does not
become the analog of thermodynamic entropy: resolution of a famous paradox
in physics requires an identification of Shannon uncertainty with free energy
density. As Elitzur (1996, p. 179) puts it

Recall ... the lesson of Maxwell’s Demon: Information, when applied under the
appropriate circumstances, can save work.

Bennett (1988, p. 230), as quoted by Elitzur (1996) states

...[TThe value of a message is the amount of mathematical or other work plausibly
done by its originator, which the receiver is saved from having to repeat.

* Similarly, Feynman (1996) provides a formal example, showing that, for
a certain class of microscopic systems, transmission of information can be
interpreted as exchange of free energy.

This, then, is the essential ‘homology’ linking information theory to the
technology of statistical mechanics and related disciplines. Only for very simple
systems —e.g. Bennett’s microscopically reversible computing machinery — can
the homology be an identity. In general this will not be the case, as individual
‘agency’ increasingly imposes behavioral regularities which are not simply
mechanistic: Thus the ‘Hamiltonian’ goes away, but an ‘entropy’ treatment
using source uncertainties, remains possible.

That is, for mesoscale or ‘behavioral’ systems, infinite-volume-based or
Hamiltonian-driven thermodynamic treatments familiar from physics are in-
appropriate since either the usual forms of the ergodic theorem break down
(e.g. Bar-Yam, 1997), or there is simply no underlying scalar function to max-
imize or minimize. It is possible to regain something much like the ergodic
theorem for such phenomena by imposing the grammar and syntax inherent
in the Shannon-McMillan or the Rate Distortion Theorems through the limit
relations defining the splitting between high and low probability sequences,

o 08NV ()]

HX] =

In the context of an appropriate parametization, a kind of thermodynamic
formalism can, then, also be imposed, but the results will usually have little
relation to ordinary thermodynamics, particularly for the usual energetically
open systems of most interest.

The next task is to reexamine cognitive process from an information theory
perspective.
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COGNITION AS GENERALIZED LANGUAGE

1.  Theory

Atlan and Cohen (1998) and Cohen (2000) argue that the essence of cognitive
function involves comparison of a perceived signal with an internal, learned
picture of the world, and then, upon that comparison, choice of one response
from a much larger repertorie of possible responses. Their analysis is in a long
tradition of speculation regarding immune cognition (e.g. Grossman, 1989;
Tauber, 1998). Taking the approach of Wallace (2000, 2002a), we make a
‘weak’, and hence very general, model of that process, which will be illustrated
by two neural network examples.

Cognitive pattern recognition-and-response, from this perspective, proceeds
by convoluting an incoming external sensory signal with an internal ongoing
activity — the learned picture of the world — and triggering an appropriate action
based on a decision that the pattern of sensory activity requires a response. We
will, fulfilling Atlan and Cohen’s (1998) criterion of meaning-from-response,
define a language’s contextual meaning entirely in terms of system output,
neglecting, for the moment, the question of how such a pattern recognition
system is trained, a matter for Rate Distortion Theory.

A pattern of sensory input is, then, mixed in an unspecified but systematic
manner with an internal ‘ongoing’ activity to create a path of convoluted signals
z = (ag, a1, ..., n, -..). Each ay, thus represents some algorithmic or functional
composition of ‘internal’ and ‘external’ signals.

This path is fed into a highly nonlinear, but otherwise similarly unspecified,
decision oscillator which generates an output h(z) that is an element of one of
two (presumably) disjoint sets By and B of possible system responses. Let

BO = bg, ...,bk,



30 CONSCIOUSNESS

By =bgiq, ... by
Assume a graded response, supposing that if
h(z) € By
the pattern is not recognized, and if
h(z) € B,

the pattern is recognized and some action b;, k& + 1 < j < m takes place.

The principal objects of interest are paths  which trigger pattern recognition-
and-response exactly once. That is, given a fixed initial state ag, such that
h(ag) € By, we examine all possible subsequent paths z beginning with ag
and leading exactly once to the event h(z) € By. Thus h(ag, ..., a;) € By for
all j < m, but A(ag, ..., an) € By.

For each positive integer 7, let N (n) be the number of high probability ‘gram-
matical’ and ‘syntactical’ paths of length n which begin with some particular
ag having h(ag) € By and lead to the condition h(z) € By. Call such paths
‘meaningful’, assuming, not unreasonably, N{n) to be considerably less than
the number of all possible paths of length n leading from ag to the condition
h($) € B.

While convolution algorithm, the form of the nonlinear oscillator, and the
details of grammar and syntax, may all be unspecified in this model, the critical
assumption which permits inference on necessary conditions is that the finite
limit

H = lim —log{N(n)}

n-—00 n

3.1)

both exists and is independent of the path x.

We will — not surprisingly — call such a pattern recognition-and-response
cognitive process ergodic. Not all cognitive processes are likely to be ergodic,
implying that H, if it indeed exists at all, is path dependent, although extension
to ‘nearly’ ergodic processes is straightforward.

Invoking the spirit of the Shannon-McMillan Theorem, it is now possible to
define an ergodic information source X associated with stochastic variates X ;
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having joint and conditional probabilities P(ag, ..., an) and P(ayp|ag, ..., Gn-1)
such that appropriate joint and conditional Shannon uncertainties satisfy the
refations
log| N
H[X] = lim log[N(n)] _

n—oC n

lim H(Xn[X(), ceey Xnﬁl) =

Nn—>00

H(Xo, ..., Xp)

n—oa n

This information source is defined as dual to the underlying ergodic cognitive
process.

The Shannon uncertainties H{...), to reiterate, are cross-sectional law-of-
large-numbers sums of the form — Y, Py log[Py], where the P constitute a
probability distribution. See Ash (1990) or Cover and Thomas (1991) for the
full details, some of which are given in Chapter 2.

The argument constructs a statistical model of simple cognition which, in
a somewhat counterintuitive fashion, is similar in spirit to the General Linear
Model (GLM) so familiar to researchers. The base, however, is the Shannon-
McMillan, rather than the Central Limit, Theorem. As with the GLM, not all
phenomena of interest are going to fit.

Treatment of dynamic threshold behavior in consciousness requires iterating
the model in much the same sense that a hierarchical linear model represents
an iteration of simple or multiple regression (Byrk and Raudenbusch, 2001).

Again, for non-ergodic information sources, a function, h(x,,), of each path
z, — x, may be defined, such that imy,_,oo h{x,) = h(z), but A will not in
general be given by the simple cross-sectional laws-of-large numbers analogs
above.

Let s = d(z, %) for high probability paths x and &, where d is a distortion
measure. For ‘nearly’ ergodic systems one might use something of the form

h(z) = h(z) + sdh/ds|s—0

for s sufficiently small. Loosely speaking, the idea is to take a distortion
measure as a kind of Finsler metric, imposing a resulting ‘global’ structure
over an appropriate class of non-ergodic information sources. One possible
interesting theorem, then, obviously revolves around what properties are metric-
independent, in much the same manner as the Rate Distortion Theorem.

This heuristic sketch can be made more precise as follows:

Take a set of ‘high probability’ paths z, — z.
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Suppose, for all such z, there is an open set, U, containing x, on which the
following conditions hold:

(i) For all paths £, — % € U, a distortion measure s, = dy(zp,, £») exists.

(ii) For each path z,, — x in U there exists a pathwise invariant function
h(z,) — h(z), in the sense of Khinchin (1957, p.72). While such a function
will almost always exist, only in the case of an ergodic information source can
it be identified as an ‘entropy’ in the usual sense.

(iii) A function Fy;(s,,n) = fn, — f exists, for example,

F,, = sp,log[s,)/n, s,/n, and so on.

(iv) The limit

Wzy) — h(Zy)

n

lim
n—oo

= VFhla:

(3.2)

exists and is finite.

Under such conditions, various nontrivial standard global atlas/manifold con-
structions are possible. To reiterate,  is not simply given by the expressions
of eq. (2.14) if the source is not ergodic, and the phase transition development
of subsequent chapters may be correspondingly more complicated. Restriction
to high probability paths simplifies matters considerably, although precisely
characterizing them may be difficult, requiring a nontrivial extension of the
Shannon-McMillan Theorem.

Different language-analogs will, of course, be defined by different divisions
of the total universe of possible responses into different pairs of sets By and B,
or by requiring more than one response in By along a path. However, like the
use of different distortion measures in the Rate Distortion Theorem, it seems
obvious that the underlying dynamics will all be qualitatively similar.

Similar but not identical, and herein lies the first of several essential mat-
ters: dividing the full set of possible responses into sets By and B; may itself
require higher order cognitive decisions by another module or modules, sug-
gesting the necessity of ‘choice’ within a more or less broad set of possible
languages-of-thought. This would, in one way, reflect the need of the organism
to shift gears according to the different challenges it faces, leading to a model
for autocognitive disease when a normally excited state is recurrently (and in-
correctly) identified as a member of the ‘resting’ set By, a matter we explore at
some length in the last chapter.

A critical complication is that the B-structure is highly extensible, since
consciousness is well understood to enable an active cognitive learning which
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expands the possible behavioral repertoire. Think of learning to ride a bicycle:
the first few times on the machine require concentrated, conscious attention for
every moment and movement, until the skills become unconscious and ‘auto-
matic,” at which time the conscious/cognitive decision becomes ‘where will 1
ride today?,” a higher order process. Thus the B-world is itself hierarchical, ex-
tensible, and open-ended, an important matter we cannot yet pursue adequately.

Another possible source of structure, however, lies at the input rather than the
output end of the model: i.e. the classification of paths instead of outputs. It is
possible to define equivalence classes in convolutional ‘path space’ according
to whether a state «; can be connected by a path with some originating state
apr: in turn, set each possible state to an ag, and define other states as formally
equivalent to it if they can be reached from that (now variable) agp = ap; by some
real path. That is, a state which can be reached by a legitimate grammatical and
syntactical path from ay is taken as equivalent to it.

Path space can, then, be divided into (ordinarily) disjoint sets of equivalence
classes. Each equivalence class defines its own language-of-thought: disjoint
cognitive modules, possibly associated with an embedding equivalence class
algebra roughly analogous to the standard orbit equivalence construction for dy-
namical systems. Here, however, are the extraordinarily rich dynamics possible
to generalized languages rather than the constrained behavior of the usual dis-
torted, noisy, clock-like contrivances of dynamical systems theory. The image
which comes to mind is comparing the often contingent, site-specific genome-
environment interaction of evolutionary process with the Newtonian dynamics
of a planetary system.

The natural algebraic structure arising from this kind of decomposition is the
groupoid (Weinstein, 1996; Brown, 1987).

An open - and important — question is how path algebra structures might
relate to B-set structures, particularly given the expanding, hierarchical nature
of the latter, suggesting some kind of ‘dynamical groupoid’ process.

While meaningful paths — creating an inherent grammar and syntax — are de-
fined entirely in terms of system response, as Atlan and Cohen (1998) propose,
a critical task is to make these (relatively) disjoint cognitive modules interact,
and to examine the effects of that interaction on global properties. One way
this can be done is through measures of mutual information and their appro-
priate asymptotic limit theorems. Invoking the obvious homology with free
energy density of a physical system then gives punctuated phase transition in
the interaction between modules in what we claim to be a natural manner.

Glazebrook (personal communication) has remarked that this construction
can be pieced together up to a global holonomy Lie groupoid using the Aof-
Brown globalization theorem (Aof and Brown, 1992), a procedure which might
shed further light on the problem of interacting cognitive modules.
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The next step is to parametize the information source uncertainty of the dual
information source with respect to one or more variates, writing H[K], where
K = (K;, ..., K;) represents a vector in a parameter space. Let the vector K
follow some path in time, tracing out a generalized line or surface K(t). Fol-
lowing the argument of Wallace (2002b), assume that the probabilities defining
H, for the most part, closely track changes in K(¢), so that along a particular
‘piece’ of a path in parameter space the information source remains as close to
memoryless and ergodic as is needed for the mathematics to work. Between
pieces, the essential trick will be to impose phase transition characterized by a
renormalization symmetry, in the sense of Wilson (1971).

Such an information source will be called ‘adiabatically piecewise memory-
less ergodic’ (APME).

To anticipate the argument, iterating the analysis on paths of ‘tuned’ sets of
renormalization parameters gives a second order punctuation in the rate at which
primary interacting information sources representing cognitive submodules be-
come linked to each other: the shifting dynamic workspace of consciousness.
The resulting model is, then, to cognition what the HLM is to the GLM in
regression theory (Byrk and Raudenbusch, 2001).

Again, significant extension of the model, e.g. to ‘mildly’ non-ergodic cog-
nition, seems possible, using the atlas/manifold argument implicit to eq. (3.2).

2.  Two neural network examples

Next are two applications of the first order theory to neural networks.
First the simple Hopfield/Hebb stochastic neuron: A series of inputs v/, 7

1...m from m nearby neurons at time j is convoluted with ‘weights’ w!,i =
1...m, using an inner product

m

. j_E ot
(I,]—y WY = yiwi
1=1

(3.3)

in the context of a ‘transfer function” f(y’ - w/) such that the probability of
the neuron firing and having a discrete output 27 = 1is P(z7 = 1) = f(y?-w7).
Thus the probability that the neuron does not fire at time j is 1 — f(y7 - w?).

In the terminology of this chapter the m values yf constitute ‘sensory activity’
and the m weights wTJ the ‘ongoing activity’ at time j, with a; = y’/ - w? and
T = Qg, a1,y ...0n, .--
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A little more work leads to a fairly standard neural network model in which
the network is trained by appropriately varying the w through least squares or
other error minimization feedback. This can be shown to, essentially, replicate
rate distortion arguments, as we can use the error definition to define a distortion
function d(y, §) which measures the difference between the training pattern y
and the network output ¢ as a function of, for example, the inverse number of
training cycles, K. As discussed in some detail elsewhere (Wallace, 2002),
learning plateau behavior follows as a phase transition on the parameter K in
the mutual information I(Y,Y).

Park et al. (2000) treat the stochastic neural network in terms of a space
of related probability density functions [p(x,y; w)|w € R™]|, where x is the
input, y the output and w the parameter vector. The goal of learning is to find
an optimum w* which maximizes the log likelihood function. They define a
loss function of learning as

L(Xa y: W) = - 10gp<xv y,W),
34

and one can take as a learning paradigm the gradient relation

Wipl = Wi — Tlrf)L(Xsy;W)/(()W,

(3.5)

where 7 is a learning rate.

Park et al. (2000) attack this optimization problem by recognizing that the
space of p(x, y; w) is Riemannian with a metric given by the Fisher information
matrix

G(w) = //é)logp/@w[@10gp/0w]Tp(x,y;w)dydx,

(3.6)
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where 7 is the transpose operation. A Fisher-efficient on-line estimator is
then obtained by using the ‘natural’ gradient algorithm

Wit = wy — ,GTHOL(x,y; w) /Ow.
G.7)

Again, through the synergistic family of probability distributions p(x,y; w),
this can be viewed as a special case — a ‘representation’, to use physics jargon
— of the general ‘convolution argument’ given above.

It seems likely that a rate distortion analysis of the interaction between train-
ing language and network response language will nonetheless show the ubiquity
of learning plateaus, even in this special case.

Dimitrov and Miller (2001) provide a similar, and very elegant, information-
theoretic approach to neural coding and decoding, without, however, addressing
punctuation.

3. Interacting cognitive modules

Two (relatively) distinct cognitive submodules can be represented by two
distinct sequences of states, the convolutional paths x = zg,x1,... and y =
Yo.Y1,.... These paths are, however, both very highly structured and serially
correlated and have dual information sources X and Y. Since the modules, in
reality, interact through some kind of endless back-and-forth mutual crosstalk,
these sequences of states are not independent, but are jointly serially correlated.
We can, then, define a path of sequential pairs as z = (xo, y0), (z1,¥1), -... The
essential content of the Joint Asymptotic Equipartition Theorem (JAEPT), a
variant of the Shannon-McMillan Theorem, is that the set of joint paths z can be
partitioned into a relatively small set of high probability termed jointly typical,
and a much larger set of vanishingly small probability. Further, according to
the JAEPT, the splitting criterion between high and low probability sets of pairs
is the mutual information

I(X,Y) = H(X) - HX[Y)=H(X)+ HY) - HX,Y),

where H(X),H(Y), H(X|Y) and H(X,Y") are, respectively, the (cross-
sectional) Shannon uncertainties of X and Y, their conditional uncertainty, and
their joint uncertainty. See Cover and Thomas (1991) for mathematical details.
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Again, similar approaches to neural process have been recently adopted by
Dimitrov and Miller (2001).

Note that, using this asymptotic limit theorem approach, one need not model
the exact form or dynamics of the crosstalk feedback. Crushing algebraic
complexities can be postponed until a later stage of the argument. They will,
however, appear in due course with some vengeance.

The high probability pairs of paths are, in this formulation, all equiprobable,
and if N(n) is the number of jointly typical pairs of length n, then

1(X,Y) = Tim 8N
M-—00 n

Extending the earlier language-on-a-network models of Wallace and Wallace
(1998, 1999), we suppose there is a coupling parameter P representing the
degree of linkage between the modules, and set K = 1/P, following the
development of those earlier studies. Note that in a brain model! this parameter
represents the intensity of coupling between distant neural structures.

Then

IIK] = lim w

n—oo n

The essential ‘homology’ between information theory and statistical me-
chanics lies in the similarity of this expression with the infinite volume limit
of the free energy density. If Z(K) is the statistical mechanics partition func-
tion derived from the system’s Hamiltonian, then the free energy density is
determined by the relation

(3.8)

F' is the free energy density, V' the system volume and K = 1/T, where T
is the system temperature.

As described at the end of Chapter 2, imposition of this homology permits
importation of renormalization methods into information theory. Imposition
of invariance under renormalization on the mutual information splitting crite-
rion I{X,Y’) implies the existence of phase transitions analogous to learning
plateaus or punctuated evolutionary equilibria. The next chapter gives an ex-
tensive development.



38 CONSCIOUSNESS

The physiological details of mechanism, in this model, are captured by the
definitions of coupling parameter, renormalization symmetry, and, perhaps, the
distribution of the renormalization across agency, a matter we treat below.

Here, however, these changes are perhaps better described as ‘punctuated
interpenetration’ between interacting cognitive modules.

Detailed dynamics depend on the choice of renormalization symmetry and
distribution, which are likely to reflect particularities of mechanism — the man-
ner in which the dynamics of the forest are dependent on the physiology of
individual trees, albeit in a many-to-one manner. Renormalization in cognitive
structures is not likely to follow simple physical analogs, and may well be sub-
ject, in addition to complications of distribution, to the ‘tuning’ of universality
class parameters that are characteristically fixed for simple physical systems.
The algebra is straightforward if complicated, and given in the following chap-
ter.



Chapter 4

THE FLUCTUATING DYNAMIC THRESHOLD

1. Language-on-a-network models

Earlier work (Wallace and Wallace, 1998; 1999) addressed how a language,
in a large sense, ‘spoken’ on a network structure, responds as properties of
the network change. The language might be speech, pattern recognition, or
cognition. The network might be social, chemical, or neural. The properties of
interest were the magnitude of ‘strong’ or ‘weak’ ties which, respectively, either
disjointly partitioned the network or linked it across such partitioning. These
would be analogous to local and mean-field couplings in physical systems.

Fix the magnitude of strong ties — again, those which disjointly partition the
underlying network into cognitive or other submodules — but vary the index of
nondisjunctive weak ties, P, between components, taking K = 1/P.

Assume the piecewise, adiabatically memoryless ergodic information source
(or sources) dual to cognitive process depends on three parameters, two explicit
and one implicit. The explicit are K as above and, as a calculational device, an
‘external field strength’ analog J, which gives a ‘direction’ to the system. We
will, in the limit, set J = 0. Note that many other approaches may well be pos-
sible, since renormalization techniques are more philosophy than prescription.

The implicit parameter, r, is an inherent generalized ‘length’ characteristic of
the phenomenon, on which J and K are defined. That is, J and K are written as
functions of averages of the parameter r, which may be quite complex, having
nothing at all to do with conventional ideas of space. For example r may be
defined by the degree of niche partitioning in ecosystems or separation in social
structures.

For a given generalized language of interest having a well defined (adiabat-
ically, piecewise memoryless) ergodic source uncertainty, H = H[K, J, X].
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To summarize a long train of standard argument (Binney et al., 1986; Wilson,
1971), imposition of invariance of H under a renormalization transform in the
implicit parameter r leads to expectation of both a critical point in KX, written
K¢, reflecting a phase transition to or from collective behavior across the entire
array, and of power laws for system behavior near K. Addition of other
parameters to the system results in a ‘critical line’ or surface.

Let k = (K¢ — K)/K¢ and take y as the ‘correlation length’ defining
the average domain in r-space for which the information source is primarily
dominated by ‘strong’ ties. The first step is to average across 7-space in terms
of ‘clumps’ of length R =< r >, Then H[J, K, X| — H|[Jg, Kp, X].

Taking Wilson’s (1971) analysis as a starting point — not the only way to
proceed — the ‘renormalization relations’ used here are:

H[KR,Jp,X] = f(R)H[K, J, X]

X(K, J)

X(KR7JR) = R )

4.

with f(1) = 1 and J; = J, K7 = K. The first equation significantly ex-
tends Wilson’s treatment. It states that ‘processing capacity,” as indexed by the
source uncertainty of the system, representing the ‘richness’ of the generalized
language, grows monotonically as f(R), which must itself be a dimension-
less function in R, since both H|[K g, Jp] and H[K, J] are themselves dimen-
sionless. Most simply, this requires replacing R by R/Ry, where Ry is the
‘characteristic length’ for the system over which renormalization procedures
are reasonable, then setting Ry = 1, hence measuring length in units of Ry.

Wilson’s original analysis focused on free energy density. Under ‘clumping,’
densities must remain the same, so that if F[Kpg, Jg] is the free energy of the
clumped system, and F'[K, J] is the free energy density before clumping, then
Wilson’s equation (4) is F[K, J| = R3F[Kg, Jg),

F[Kpg,Jg] = R*F[K, J).

Remarkably, the renormalization equations are solvable for a broad class of
functions f(R), or more precisely, f(R/Rg), Ry = 1.
The second equation just states that the correlation length simply scales as

R.
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Again, the central feature of renormalization in this context is the assumption
that, at criticality, the system looks the same at all scales, that is, it is invariant
under renormalization at the critical point. All else flows from this.

There is no unique renormalization procedure for information sources: other,
very subtle, symmetry relations — not necessarily based on the elementary phys-
ical analog we use here — may well be possible. For example, McCauley (1993,
p-168) describes the highly counterintuitive renormalizations needed to under-
stand phase transition in simple ‘chaotic’ systems. This is important, since
biological or social systems may well alter their renormalization properties —
equivalent to tuning their phase transition dynamics — in response to external
signals. We will make much use of a simple version of this possibility, termed
‘universality class tuning,’ below.

To begin, following Wilson, take f(R) = R?, d some real number d > 0, and
restrict K to near the ‘critical value’ K. If J — 0, a simple series expansion
and some clever algebra (Wilson, 1971; Binney et al., 1986) gives

H = Hyr®

X0
kS’

4.2)

where a, s are positive constants. More biologically relevant examples ap-
pear below.

As Dimitrov pointed out in reviewing an early version of this book, crit-
ical behavior in information systems has been studied elsewhere. Both the
information bottleneck work of Tishby et al. (1999) and the generalization by
Parker et al. (2003, fig. 1) observe bifurcations which Tishby et al. (1999)
in fact describe as “[bifurcating] at some finite (critical) [parameter], through
a second-order phase transition... [forming] a hierarchy of relevant quantiza-
tions...” Both groups treat such phenomena as sidelights to an optimization
calculation, while here we take them as central to the enterprise.

Further from the critical point, matters are more complicated, appearing to
involve Generalized Onsager Relations and a kind of thermodynamics associ-
ated with a Legendre transform of H: S = H — KdH/dK (Wallace, 2002a).
Although this extension is quite important to describing behaviors away from
criticality, the mathematical detail is cumbersome. A more detailed discussion
appears at the end of this chapter.
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An essential insight is that regardless of the particular renormalization prop-
erties, sudden critical point transition is possible in the opposite direction for
this model. That is, going from a number of independent, isolated and frag-
mented systems operating individually and more or less at random, into a single
large, interlocked, coherent structure, once the parameter /(, the inverse strength
of weak ties, falls below threshold, or, conversely, once the strength of weak
ties parameter P = 1/K becomes large enough.

Thus, increasing nondisjunctive weak ties between them can bind several
different cognitive ‘language’ functions into a single, embedding hierarchical
metalanguage containing each as a linked subdialect, and do so in an inherently
punctuated manner. This could be a dynamic process, creating a shifting, ever-
changing pattern of linked cognitive submodules, according to the challenges
or opportunities faced by the organism.

This heuristic insight can be made more exact using a rate distortion argu-
ment (or, more generally, using the Joint Asymptotic Equipartition Theorem)
as follows (Wallace, 2002a, b):

Suppose that two ergodic information sources Y and B begin to interact, to
‘talk’ to each other, to influence each other in some way so that it is possible, for
example, to look at the output of B — strings b — and infer something about the
behavior of Y from it—strings y. We suppose it possible to define a retranslation
from the B-language into the Y-language through a deterministic code book,
and call Y the translated information source, as mirrored by B.

Define some distortion measure comparing paths y to paths ¢, d(y, ¢). In-
voke the Rate Distortion Theorem’s mutual information I(Y,Y), which is the
splitting criterion between high and low probability pairs of paths. Impose,
now, a parametization by an inverse coupling strength K, and a renormaliza-
tion representing the global structure of the system coupling. This may be much
different from the renormalization behavior of the individual components. If
K < K¢, where K¢ is acritical point (or surface), the two information sources
will be closely coupled enough to be characterized as condensed.

In the absence of a distortion measure, the Joint Asymptotic Equipartition
Theorem gives a similar result.

Detailed coupling mechanisms will be sharply constrained through regular-
ities of grammar and syntax imposed by limit theorems associated with phase
transition.

Wallace and Wallace (1998, 1999) and Wallace (2002) use this approach to
address certain evolutionary processes in a relatively unified fashion. These
papers, and those of Wallace and Fullilove (1999) and Wallace (2002a), further
describe how biological or social systems might respond to gradients in infor-
mation source uncertainty and related quantities when the system is away from
phase transition. Language-on-network systems, as opposed to physical sys-
tems, appear to diffuse away from concentrations of an ‘instability’ construct
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related to a Legendre transform of information source uncertainty, in much the
same way entropy is the Legendre transform of free energy density in a physical
system.

Simple thermodynamics addresses physical systems held at or near equi-
librium. Treatment of nonequilibrium, for example highly dynamic, systems
requires significant extension of thermodynamic theory. The most direct ap-
proach has been the first-order phenomenological theory of Onsager, which
involves relating first order rate changes in system parameters K; to gradients
in physical entropy S, involving ‘Onsager relation’ equations of the form

> Ry jdK;/dt = 0S/0K;,
k

where the Ry, ; are characteristic constants of a particular system and S’ is
defined to be the Legendre transform of free energy density £

S F =Y K;0F/0K;.
J

The entropy-analog for an information system is, then, the dimensionless
quantity

S=H-Y K;0H/0K;,
J

or a similar equation in the mutual information /.

Note that in this treatment / or H play the role of free energy, not entropy,
and that their Legendre transform plays the role of physical entropy. This is a
key matter.

For information systems, a parametized ‘instability’, Q[K] = S — H, is
defined from the principal splitting criterion by the relations

QK] = —KdH|[K]/dK
QK] = —KdI|K]/dK,

(4.3)

where H[K] and I[K] are, respectively, information source uncertainty or
mutual information in the Asymptotic Equipartition, Rate Distortion, or Joint
Asymptotic Equipartition Theorems.
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Extension of thermodynamic theory to information systems involves a first
order system of phenomenological equations analogous to the Onsager rela-
tions, but possibly having very complicated behavior in the R; ;.. These will not
necessarily produce simple diffusion toward peaks in S, as would be expected
for a simple physical system. For example, as discussed, there is evidence that
social network structures are affected by diffusion away from concentrations
in the S-analog. Thus the phenomenological relations affecting the dynamics
of information networks, which are inherently open systems, may not be gov-
erned simply by mechanistic diffusion toward ‘peaks in entropy’, but may, in
first order, display far more complicated behavior. We will return to this point
repeatedly.

2.  ‘Biological’ phase transitions

Now the mathematical detail concealed by the invocation of the asymptotic
limit theorems emerges with a vengeance. Equation (4.1) states that the in-
formation source and the correlation length, the degree of coherence on the
underlying network, scale under renormalization clustering in chunks of size R
as

H|Kp, Jr)/ /(R) = H[J, K|

X[Kg, Jr|R = x(K,J),
with f(1) = 1, Ky = K, J; = J, where we have slightly rearranged terms.
Differentiating these two equations with respect to R, so that the right hand

sides are zero, and solving for dKr/dR and dJg/dR gives, after some con-
solidation, expressions of the form

dKpr/dR = uidlog(f)/dR + us/ R

dJr/dR = v1Jpdlog(f)/dR + %JR.

(4.4)

The u;, v;,¢ = 1, 2 are functions of K, Jg, but not explicitly of I? itseif.
We expand these equations about the critical value Kp = K¢ and about
Jr = 0, obtaining
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dKp/dR = (K — K¢)ydlog(f)/dR + (Kr — K¢)z/R

dJr/dR = wigdlog(f)/dR + zJg/R.

(4.5)

Theterms y = du1 /dKR|kp=kc, 2 = dug/dKp|kp=ko,w = (K, 0), 2z =
ve( K¢, 0) are constants.
Solving the first of these equations gives

Kr= K¢+ (K - Kc¢)R*f(R)Y,

(4.6)

again remembering that K| = K, J; = J, f(1) = 1.

Wilson’s essential trick is to iterate on this relation, which is supposed to
converge rapidly near the critical point (Binney et al., 1986), assuming that for
K g near K¢, we have

Kc/2~ Ko + (K — Ke)R* f(R)Y.

4.7)

We iterate in two steps, first solving this for f(R) in terms of known values,
and then solving for I?, finding a value R that we then substitute into the
first of equations (4.1) to obtain an expression for H[K, 0] in terms of known
functions and parameter values.

The first step gives the general result
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[Ke/(Kc - K'Y

Re) ~
f( C’) 21/yRZC/y

(4.8)

Solving this for R and substituting into the first expression of equation (4.1)
gives, as a first iteration of a far more general procedure (Shirkov and Kovalev,
2001), the result

NH[KC/Q,O}_ Hy
HIE O~ =Ry~ TRy

x(K,0) = x(K¢/2,0)Re = xolRc,

(4.9)

which are the essential relationships.

Note that a power law of the form f(R) = R™,m = 3, which is the direct
physical analog, may not be biologically reasonable, since it says that ‘language
richness’ can grow very rapidly as a function of increased network size. Such
rapid growth is simply not observed.

Taking the biologically realistic example of non-integral ‘fractal’ exponential
growth,

(4.10)

where ¢ > 0 is a real number which may be quite small, equation (4.8) can
be solved for IR, obtaining
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 [Ke/(Ke — K))/ Gy+2)]
o 91/ (dy+=2)

Ro

.10

for K near K. Note that, for a given value of y, one might characterize the
relation o = §y + z = constant as a ‘tunable universality class relation’ in the
sense of Albert and Barabasi (2002).

Substituting this value for R back into equation (4.8) gives a somewhat
more complex expression for H than equation (4.1), having three parameters:
o,y 2.

A more biologically interesting choice for f(R) is a logarithmic curve that
‘tops out’, for example

f(R) =mlog(R) + 1.
(4.12)

Again f(1) = 1.
Using Mathematica 4.2 or above to solve equation (4.8) for R¢ gives

Q 31/z7

fio = [LambertW[Q exp(z/my)]

(4.13)

where
Q= (2/my)2 VKo /(Ko — K)MY.
The transcendental function LambertW(x) is defined by the relation
LambertW (z) exp(LambertW (z)) = x.

It arises in the theory of random networks and in renormalization strategies
for quantum field theories.
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An asymptotic relation for f(R) would be of particular biological interest,
implying that ‘language richness’ increases to a limiting value with population
growth. Such a pattern is broadly consistent with calculations of the degree of
allelic heterozygosity as a function of population size under a balance between
genetic drift and neutral mutation (Hartl and Clark, 1997; Ridley, 1996). Taking

F(R) = explm(R — 1)/R]
(4.14)

gives asystem which begins at 1 when R = 1, and approaches the asymptotic
limit exp(m) as R — oo. Mathematica 4.2 finds

my/z

Re = LambertW [A]’

(4.15)

where
A = (my/z) exp(my/2)[2YY Ko /(Ko — K)] 71V

These developments indicate the possibility of taking the theory significantly
beyond arguments by abduction from simple physical models, although the
notorious difficulty of implementing information theory existence arguments
will undoubtedly persist.

3.  Universality class distribution

Physical systems undergoing phase transition usually have relatively pure
renormalization properties, with quite different systems clumped into the same
‘universality class,” having fixed exponents at transition (Binney et al., 1986).
Biological and social phenomena may be far more complicated:

If the system of interest is a mix of subgroups with ditferent values of some
significant renormalization parameter m in the expression for f(R,m), ac-
cording to a distribution p(m), then the first expression in equation (4.1) should
generalize, at least to first order, as
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H[KR,JR] =< f(R,m) > H[I(, J}

= H[K,J] / f(R, m)p(m)dm.

(4.16)

If f(R) =1+ mlog(R) then, given any distribution for m,

< f(R) >= 14+ < m > log(R)

@.17)

where < m > is simply the mean of m over that distribution.

Other forms of f(R) having more complicated dependencies on the distrib-
uted parameter or parameters, like the power law R?, do not produce such a
simple result. Taking p(4) as a normal distribution, for example, gives

< R’ >= R<" exp|(1/2)(log(R"))?,

4.18)

where o2 is the distribution variance. The renormalization properties of this
function can be determined from equation (4.8), and the calculation is left to
the reader as an exercise, best done in Mathematica 4.2 or above.

Thus the information dynamic phase transition properties of mixed systems
will not in general be simply related to those of a single subcomponent, a matter
of possible empirical importance: If sets of relevant parameters defining renor-
malization universality classes are indeed distributed, experiments observing
pure phase changes may be very difficult. Tuning among different possible
renormalization strategies in response to external signals would result in even
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greater ambiguity in recognizing and classifying information dynamic phase
transitions.

Important aspects of mechanism may be reflected in the combination of
renormalization properties and the details of their distribution across subsys-
tems.

In sum, real biological, social, or interacting biopsychosocial systems are
likely to have very rich patterns of phase transition which may not display the
simplistic, indeed, literally elemental, purity familiar to physicists. Overall
mechanisms will, however, still remain significantly constrained by the theory,
in the general sense of probability limit theorems.

4. Punctuated universality class tuning

The next step is to iterate the general argument onto the process of phase tran-
sition itself, producing a model of consciousness as a tunable neural workspace
subject to inherent punctuated detection of external events.

As described above, an essential character of physical systems subject to
phase transition is that they belong to particular ‘universality classes’. Again,
this means that the exponents of power laws describing behavior at phase tran-
sition will be the same for large groups of markedly different systems, with
‘natural” aggregations representing fundamental class properties (Binney et al.,
1986).

It appears that biological or social systems undergoing phase transition
analogs need not be constrained to such classes, and that ‘universality class
tuning’, meaning the strategic alteration of parameters characterizing the renor-
malization properties of punctuation, might well be possible. Here we focus
on the tuning of parameters within a single, given, renormalization relation.
Clearly, however, wholesale shifts of renormalization properties must ultimately
be considered as well, a matter for future work.

Universality class tuning has been observed in models of ‘real world’ net-
works. As Albert and Barabasi (2002) put it,

The inseparability of the topology and dynamics of evolving networks is shown by
the fact that [the exponents defining universality class] are related by [a] scaling rela-
tion..., underlying the fact that a network’s assembly uniquely determines its topology.
However, in no case are these exponents unique. They can be tuned continuously...

Suppose that a structured external environment, itself an appropriately regu-
lar information source Y, ‘engages’ a modifiable cognitive system. The envi-
ronment begins to write an image of itself on the cognitive system in a distorted
manner permitting definition of a mutual information I[K] splitting criterion
according to the Rate Distortion or Joint Asymptotic Equipartition Theorems.
K is an inverse coupling parameter between system and environment (Wallace,
2002a, b). At punctuation — near some critical point K¢ — the systems begin to
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interact very strongly indeed, and, near K¢, using the simple physical model
of equation (4.2),

Ko - K

T[] = ol =

]

For a physical system « is fixed, determined by the underlying ‘universality
class.’” Here we will allow « to vary, and, in the section below, to itself respond
explicitly to signals.

Normalizing K¢ and [y to 1,

1K) ~ (1 — K)~.

(4.19)

The horizontal line I[K] = 1 corresponds to & = 0, while « = 1 gives
a declining straight line with unit slope which passes through 0 at K = 1.
Consideration shows there are progressively sharper transitions between the
necessary zero value at K = 1 and the values defined by this relation for
0 < K,«a < 1. The rapidly rising slope of transition with declining « is of
considerable significance:

The instability associated with the splitting criterion I[K] is defined by

QK| = —KdI[K]/dK = aK(1 — K)*1,

(4.20)

andis singularat K = K¢ = 1for(0 < o < 1. Following earlier work (Wal-
lace and Wallace, 1998, 1999; Wallace and Fullilove, 1999; Wallace, 2002a),
we interpret this to mean that values of 0 < o < 1 are highly unlikely for
real systems, since Q[K], in this model, represents a kind of barrier for ‘social’
information systems, in particular interacting neural network modules, a matter
explored further below.

On the other hand, smaller values of o mean that the system is far more
efficient at responding to the adaptive demands imposed by the embedding
structured environment, since the mutual information which tracks the matching
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of internal response to external demands, I[K], rises more and more quickly
toward the maximum for smaller and smaller « as the inverse coupling parameter
K declines below Ko = 1. That is, systems able to attain smaller « are
more responsive to external signals than those characterized by larger values,
in this model, but smaller values will be harder to reach, probably only at some
considerable physiological or opportunity cost. Focused conscious action takes
resources, of one form or another.

A subsequent chapter makes these considerations explicit, modeling the role
of contextual and energy constraints on the relations between @, I, and other
system properties.

The more biologically realistic renormalization strategies given above pro-
duce sets of several parameters defining the universality class, whose tuning
gives behavior much like that of «v in this simple example.

Formal iteration of the phase transition argument on this calculation gives
tunable consciousness, focusing on paths of universality class parameters.

Suppose the renormalization properties of a language-on-a network system at
some ‘time’ k are characterized by a set of parameters Ay, = a’f, s aﬁ’n. Fixed
parameter values define a particular universality class for the renormalization.
We suppose that, over a sequence of ‘times,” the universality class properties
can be characterized by a path x,, = Ag, A1, ..., A,—1 having significant ser-
ial correlations which, in fact, permit definition of an adiabatically piecewise
memoryless ergodic information source associated with the paths z,,. We call
that source X.

Suppose also, in the now-usual manner, that the set of external (or internal,
systemic) signals impinging on consciousness is also highly structured and
forms another information source Y which interacts not only with the system
of interest globally, but specifically with its universality class propertics as
characterized by X. Y is necessarily associated with a set of paths y,.

Pair the two sets of paths into a joint path, z, = (xn,yy) and invoke an
inverse coupling parameter, K, between the information sources and their paths.
This leads, by the arguments above, to phase transition punctuation of I[K],
the mutual information between X and Y, under either the Joint Asymptotic
Equipartition Theorem or under limitation by a distortion measure, through
the Rate Distortion Theorem. The essential point is that I[K] is a splitting
criterion under these theorems, and thus partakes of the homology with free
energy density which we have invoked above.

Activation of universality class tuning, the model’s version of attentional
focusing, then becomes itself a punctuated event in response to increasing link-
age between the organism and an external structured signal or some particular
system of internal events.
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This iterated argument exactly parallels the extension of the General Lin-
ear Model to the Hierarchical Linear Model in regression theory (Byrk and
Raudenbusch, 2001).

Another path to the fluctuating dynamic threshold might be through a second
order iteration similar to that just above, but focused on the parameters defining
the universality class distributions of section 4.3.

Following recent arguments of Gillooly et al. (2004) showing metabolic
rate can calibrate the molecular clock of evolutionary process, and taking into
account the crude analogy between punctuated equilibrium in evolutionary, and
learning plateaus in cognitive, systems (Wallace, 2002b), it seems likely that
the generalized Onsager relation arguments used above can be iterated as well.
As we will show in Chapter 5, such iteration must take place in the context of
competing energy constraints defined at different levels of organization.

The question becomes, as in the study of the idiotypic networks of immune
function, the rate of convergence of the iterative process. It seems likely that
a small number of iterations will suffice to explain most current controlled
experiments.

More generally, the development of Wallace (2003) suggests the possibility
of one or more tunable internal ‘retinas’ for cognitive process which could be
adjusted to accelerate convergence. This idea has certain interesting implica-
tions, which are explored in the next chapter.

S.  Dynamics far from criticality

Attention has thus far primarily focused on the dynamic properties of a
parametized information source near a critical surface. We now ask in more
detail how a parametized information source behaves ‘normally’, far from such
a surface.

To reiterate, according to the Shannon-McMillan Theorem, the number N (n)
of meaningful paths of length n emitted by an information source satisfies
H[X] = lim,—,00 log[N(n)]/n, where H[X] is the source uncertainty defined
from the joint and conditional probabilities of the paths x.

For a physical system the free energy density is defined by the analogous
relation:

loglZ(K1, . Ko,
F(K1, oy Km) = Jim og[Z( 1,V,Km V)]

where V is the system volume, K71, ..., K, are other system-widc parameters,
and Z(K7, ..., K, V) is the partition function defined from system energy
states, and Ky is an inverse temperature.

Previously, this homology was used to impose renormalization symmetries
relating ‘phase change’ to underlying architecture for parametized information
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sources. Here, further use of it, far from critical points or surfaces, connects
architecture and dynamics, in a large sense.

Parametize the information source uncertainty of interest, so that H =
H[K,,...,Kp,X] = H[K,X] where now K as the inverse of the ‘strength
of weak ties’ across some structure.

For a physical system the equation of state which describes the macroscopic
behavior of the system emerges through imposition of a Legendre transform on
free energy. The Legendre transform of a well-behaved function f(K7, ..., Kpp,)
is defined by

g=1-S Kdf /oK,

i=1

=f-> KQ,

i=1
4.21)

so that Q; = 8f/0K;, and is invertible provided 9 f /0K is well behaved.
Then

F=9->Qidg/oQ:.

i=1

(4.22)

The generalization when f is not well-behaved is through a variational argu-
ment (Fredlin and Wentzell, 1998; Dembo and Zeitouni, 1998) rather than this
tangent plane argument.

In a physical system for which F' is the free energy density, the Legendre
transform defines the macroscopic entropy as

S=F-> KJF/0K;.
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(4.23)

The associated generalized forces constituting the equation(s) of state are
then

Q; = OF/0K;.

The analogous argument generates a series of macroscopic equations of state
for a system characterized by a parametized information source uncertainty
HIK;X]:

S=H-)Y K9H/0K;=H-K-V|gH

Qi = 8H/8K1,
(4.24)

where S is now defined as the macroscopic disorder and 2 = S — H the
instability.
If the rates of change of the K; have independent effect, then we would write

S=H-(KK) VH|y g

and similarly generalize the definition of the ¢);.

Note in particular that each hierarchical ordering relation will add a new
‘strength of weak ties’ parameter to the thermodynamics.

For physical systems the ‘Onsager relations’ define the system’s response to
entropy. These assume that time rates of change of the defining parameters, the
K, are in direct proportion to ‘thermodynamic forces’ defined as gradients in
the entropy with respect to the characteristic parameters:

d;/dt = Li j0S/0K;.
J
Next we treat the opposite case in more detail; that is, similar to the usual

physics treatment, with one significant change. Assume there is an internal
‘social’ structure across the coupled assembly that indeed responds to gradients
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in the disorder construct S, but with opposite sign to that of a physical system:
A ‘social’ system is seen to move away from concentrations of ‘disorder’ rather
than towards it. Thus we have, for the m parameters of H|[K, Ka, ...K;pn, X],
m equations of a ‘generalized Onsager relation’

dK;/dt = —~LdS/0K;,
(4.25)

where L is positive. Next, adjust the system to some initial reference con-
figuration Ko = K, Ko, ...K,, such that dK /dt|g, = —LV S|k, = 0.

Deviations from this reference configuration, 0 K = K — Ky, in first order,
obey the relation

dSK;/dt ~ =L (0°S/0K;0K |k, )0 K;.
j=1

(4.26)

In matrix form, writing U; ; = 9*S/0K;0K; = Uj ;, this becomes

d6K /dt = —LUGSK.
4.27)

Assume the appropriate regularity conditions on S and U and expand the
deviations vector d K in terms of the eigenvectors of the symmetric matrix U,
m-dimensional vectors ¢; such that Ue; = A;e;, so that

m

0K = Z 5(11'61'.

i=1



The Fluctuating Dynamic Threshold 57

(4.28)

Equation (4.27) then has the solution

SK(t) = Z da;exp(—LA;t)e;.

i=1

(4.29)

Clearly any eigenconfiguration e; having a negative eigenvalue, A; < 0, will
be amplified exponentially in time until the network goes into precisely the sud-
den epileptiform phase transition studied in Wallace (2000). Clearly, for a given
reference configuration Ky, different e; with different negative eigenvalues will
lead to slightly different forms of epileptiform detection transitions.

This approach, organized around a ‘tunable reference configuration Ky, will
be formalized in the next chapter as a generalized (tunable) retina.

Continuing the theoretical development another step, let d6 K; /dt = §V;, and
rewrite the first order approximation to obtain an expression for the magnitude
of (§V)%:

(6V)? = L2231 U jUk 10K 0 K.
ij k

(4.30)

Defining

g = L?/2> (0°S/0K;0K)(0*S/ 0K IK;)
k

4.31)
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produces something much like the fundamental relation of a Riemannian
differential geometry:

dv? =" g ;(K)dK;dK;.
]

(4.32)

A geodesic represents, in this configuration, not a minimization of V' along
some path in K -space, but rather its maximization, equivalent to a minimization
of the time-of-flight. The model is of a ball bearing rolling down a hill. A
quasi-stochastic extension would see a Brownian fuzz around optimal paths.
Not unexpectedly, the argument has recovered something much like the results
of the purely physical treatment, albeit with reversed sign.



Chapter 5

EXTENDING THE MODEL

1.  The simplest tunable retina

The iterated development of the Section 4.4 — analogous to expanding the
GLM to the HLM - which involved paths in renormalization-parameter space,
can itself be significantly extended. This produces a generalized tunable retina
model which can be interpreted as a ‘Rate Distortion manifold,” a concept which
further opens the way for import of a vast array of tools from geometry and
topology.

Suppose, now, that threshold behavior in conscious reaction requires some
elaborate system of nonlinear relationships defining the set of renormalization
parameters Ay, = a¥, ..., o above. The critical assumption is that there is a
tunable ‘zero order state,” and that changes about that state are, in first order,
relatively small, although their effects on punctuated process may not be at all
small. Thus, given an initial 7n-dimensional vector Ay, the parameter vector at
time k + 1, Agy1, can, in first order, be written as

Ap1 =~ Ry Ay,

5.1

where Ry 1 is an m x m matrix, having m? components.
If the initial parameter vector at time k& = 0 is Ag, then at time &
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Ay = RyRy ;... Ry Ao.
(5.2)

The interesting correlates of consciousness are, in this development, now
represented by an information-theoretic path defined by the sequence of opera-
tors Ry, each member having m? components. The grammar and syntax of the
path defined by these operators is associated with a dual information source, in
the usual manner.

The effect of an information source of external signals, Y in the discussion
above, is now seen in terms of more complex joint paths in Y and R-space
whose behavior is, again, governed by a mutual information splitting criterion
according to the JAEPT.

The complex sequence in m?-dimensional R-space has, by this construction,
been projected down onto a parallel path, the smaller set of m-dimensional a-
parameter vectors Ay, ..., Ag.

If the punctuated tuning of consciousness is now characterized by a ‘higher’
dual information source — an embedding generalized language — so that the
paths of the operators R, are autocorrelated, then the autocorrelated paths in Ay
represent output of a parallel information source which is, given Rate Distortion
limitations, apparently a grossly simplified, and hence highly distorted, picture
of the ‘higher’ conscious process represented by the R-operators, having m as
opposed to m X m components.

High levels of distortion may not necessarily be the case for such a structure.

Let us examine a single iteration in more detail, assuming now there is a
(tunable) zero reference state, Ry, for the sequence of operators Ry, and that

Agi1 = (Ro + 0Rgt1) Ak,
5.3

where dR, is ‘small’” in some sense compared to Ry.

Note that in this analysis the operators Ry are, implicitly, determined by
linear regression. We thus can invoke a quasi-diagonalization in terms of Ry.
Let Q be the matrix of eigenvectors which Jordan-block-diagonalizes Rg. Then
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QAks1 = (QRoQ ™ + QIR.1Q M QA
(5.4)

If QA is an eigenvector of Ry, say Y; with eigenvalue A, it is possible to
rewrite this equation as a generalized spectral expansion

Virr = (3 +0J541)Y; = NY 4 0V

= )\]Y; + Zain-

i=1

(5.5)

J is a block-diagonal matrix, 6J;.1 = QRy4.1Q ™!, and §Yy,, has been
expanded in terms of a spectrum of the eigenvectors of Rg, with

lai| < [Nz, laiea] << aql.

(5.6)

The point is that, provided R has been ‘tuned’ so that this condition is true,
the first few terms in the spectrum of this iteration of the eigenstate will contain
most of the essential information about §Ry1. This appears quite similar to
the detection of color in the retina, where three overlapping non-orthogonal
‘eigenmodes’ of response are sufficient to characterize a huge plethora of color
sensation. Here, if such a spectral expansion is possible, a very small number
of observed eigenmodes would suffice to permit identification of a vast range
of changes, so that the rate-distortion constraints become quite modest. That
is, there will not be much distortion in the reduction from paths in R-space to
paths in A-space.

Reflection suggests that, if consciousness indeed has something like a tunable
retina — crudely, if ‘the eye of the mind’ has a fovea ~ then appropriately chosen
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observable correlates of consciousness may, at a particular time and under
particular circumstances, actually provide very good local characterization of
conscious process. Large-scale global processes are, of course, another matter.

Detailed reconsideration of the base paradigm — the visual retina — seems of
interest.

2.  The visual system

The tunable retina is, in fact, quite an old idea, as is the information-theoretic
approach, which Schawbe and Obermayer (2002) describe as follows:

Adaptation is a widespread phenomenon in nervous systems, and it happens on
multiple time-scales, i.c. the activity-dependent refinement cortical maps (weeks), per-
ceptual learning (hours and days) or contrast adaptation (seconds) in the primary visual
cortex. Itis reasonable to hypothesize that the functional role of these adaptation mech-
anisms is to provide flexibility to function under varying external conditions. Using
concepts from information theory the specific idea that neuronal codes constitute effi-
cient representations of the sensory world has been formulated (Attneave, 1954; Barlow,
1959; Atick, 1992). Subsequently the adaptation processes were mainly viewed as a
signature of an ongoing optimization of sensory systems to changing environments as
characterized by their statistical properties, i.e. as an optimization of the information
transfer between the ensemble of stimuli and the neuronal responses.

Brenner et al. (2000) put it thus:

One of the major problems in processing the complex dynamic signals that occur
in the natural environment is providing an efficient representation of these data. More
than 40 years ago, Attneave (1954) and Barlow (1961) suggested that steps in the neural
processing of information could be understood as solutions to this problem of efficient
representation. This idea was later developed by many groups, especially in the context
of the visual system. Efficient representation requires a matching of the coding strategy
to the statistical structure of incoming signals...

The mean tight level, for example, changes by orders of magnitude as we leave a
sunny region and enter a forest. Adaptation to mean light level ensures that our visual
responses are matched to the average signal in real time, thus maintaining sensitivity to
the fluctuations around this mean.

The mechanism of light level tuning for the visual retina involves a shift from
a band pass Fourier spatial frequency filter at elevated levels of luminance,
where noise is not a major concern and high frequency spatial data can be
processed, to a low frequency pass spatial frequency filter at low luminance,
a regime where quantum noise dominates. Here, large shapes, without color,
become the objects of attention. As Atick (1992) shows elegantly, quantum
noise considerations can predict visual retina spatial filter performance from
first principles, without much parameter fitting.

The model of section 5.1, which focused on altering operator spectral prop-
erties to determine Rate Distortion behavior, is roughly analogous. Rate Distor-
tion arguments, unlike Atick’s (1992) energy functional-analog minimization,



Extending the model 63

are independent of the particular distortion measure chosen, butin a complicated
€ - 6 sense, which we briefly explore below.

For internal retinas like the one we propose for consciousness (or, elsewhere,
for immune cognition; Wallace, 2003), generalized noise is not likely to have a
simple quantum structure, and optimizations may not be at all straightforward.

The argument is as follows: suppose that the version of the ‘real world’ to
be perceived by the internal retina has a high dimensional, and extremely com-
plicated, alphabet, which is projected by that retina onto a simpler —e.g. lower
dimensional, alphabet, so that information will inevitably be lost. Suppose that
the full (internal) world can be characterized by an information source X and its
retinal projection by a simpler information source Y such that paths of signals
generated by X, of the form x = x¢, 23, ..., Zn, ..., are mapped by some many-
to-one operator R onto paths y. Use any distortion metric d(x,y) = d(z, Rz)
which measures the average deviation of x from y.

The Rate Distortion Theorem states that for any chosen maximum average
distortion such that d(z, Rz) < e there is a maximum possible transmission
rate & such that if X is mapped by R onto Y at a transmission rate (i.e. channel
capacity) C' < ¢, then the average distortion will be less than e. The mutual
information between X and Y = RX provides the essential splitting criterion.

If the organism has much time, then the retina operator R can indeed remain
fixed, and its rate of operation simply slowed down until the e constraint on
error is matched.

This is clearly not an option for animals who are hunted (or hunt) in the
night. The rate of signal recognition becomes very important, hence the change
from spatial band pass to low pass filtering, as a means of maintaining trans-
mission rate at the expense of perceived detail: tunable coarse-graining. See
the Appendix for a brief example of coarse graining.

If consciousness has, as we all believe, quintessential survival value, then
spectral tuning of I? to optimize both € and § under changing conditions becomes
likewise a priority, but the constraints may not be simply defined by quantum
noise, as in the visual retina, and the elegant calculation of Atick and Redlich
(1990) is not sufficient. Indeed, like biological universality class tuning, there
appear to be whole sets of monotonic relations between € and ¢ which are
subject to tuning.

There are further complications: tunable internal retina arguments can be in-
verted to produce global structures in much the same way local tangent spaces
can be linked together by an atlas structure to create a larger-scale differen-
tial geometry (e.g. Sternberg, 1964). That is, following our development, the
fovea of the mind’s eye is, in fact, a local projection of a high order or complex
alphabet information source onto a lower order, simpler alphabet, information
source, done in a manner to locally optimize certain rate-distortion factors. An
algebraic geometer at this point can invoke any number of globalization theo-
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rems to canonically construct a larger embedding manifold with very interesting
properties.

Such larger structures, however, are not unique, and not at all likely to be
simple. We examine in more detail the argument-by-abduction from differential
geometry.

3.  The torus and the sphere

The tunable retina atlas we have proposed for dual information sources of
cognitive processes is taken in concept from differential geometry, and an ex-
ample can help show where this approach is leading.

Consider the two-dimensional torus and sphere within three dimensional
space. The sphere is most simply defined as the set of points a fixed distance
from some given point of origin. The torus is a little more complicated: take a
2-square in three dimensional space. Roll it so the top meets the bottom, then
stretch the resulting cylinder until the ends meet. More directly, identify top
and bottom edges of the square, and then identify the left and right edges.

These are fundamentally different constructions: Any closed one dimen-
sional loop on the surface of a sphere may be continuously shrunk to a point.
This is not true for the torus, since a closed loop which rings the torus cannot
be shrunk down to a point, but is limited to size of the torus itself.

On the other hand, both structures are two dimensional surfaces in three-
space. At any point on either a sphere or a torus, a ‘small enough’ patch con-
taining that point can be mapped exactly onto a two dimensional tangent plane
tuned to that point, without doing violence to the essential difference between
the surfaces. This is analogous to our elementary tunable retina construction
which locally maps a path of operators having m? components each onto a path
of vectors having only m components, with minimal loss of information and
maximal transmission rate.

The analogy with differential geometry is limited at best. We are quite
definitely not proposing a pseudoriemannian geometry based on the ‘Fisher-
information metric’. Rather, the underlying manifold is an information source
producing complex symbolic strings, and the R-projection onto a lower di-
mensional or coarse-grained information source is done by means of a local
tuning which jointly minimizes distortion and maximizes transmission, subject
to some embedding constraint structure defining the relation between them,
which may itself be tunable. Distortion can be measured by any number of
appropriate measures, according to the Rate Distortion Theorem. The result is
far more like a stochastic version of a Finsler, rather than a Riemannian, system.

Such structure might well be called a Rate Distortion manifold, instantiated
through a locally-tuned coarse graining which has a larger scale Rate Distortion
topology.
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Thus, while the tunable retina is postulated to be a local coarse-grained con-
struction for cognitive processes like the tangent space in differential geometry,
so that the ‘redness of red’ may well be empirically indistinguishable between
individuals having normal vision, the threshold at which the red signal becomes
conscious, its meaning once it becomes conscious, and the possible and likely
responses of the individual to it, are conditioned by larger global - i.e. topo-
logical - structures. These structures reflect the interaction of constraints of
individual development and learning with the embedding culture which condi-
tions them, matters which will determine larger global properties. These are
the cognitive and conscious analogs of the difference between the torus and the
sphere.

It is possible to make these considerations explicit.

4. Expanding the workspace

The Rate Distortion and Joint Asymptotic Equipartition Theorems are gen-
eralizations of the Shannon-McMillan Theorem which examine the interaction
of two information sources, with and without the constraint of a fixed average
distortion or some particular transmission rate target. We conduct one more
iteration, and require a generalization of the SMT in terms of the splitting cri-
terion for triplets as opposed to single or double stranded patterns. The tool
for this is at the core of what is termed network information theory (Cover and
Thomas, 1991, Theorem 14.2.3).

Suppose there are three (piecewise adiabatically memoryless) ergodic infor-
mation sources, Y;,Ys and Yy, Assume Y5 constitutes a critical embedding
context for Y} and Y so that, given three sequences of length 7, the probability
of a particular triplet of sequences is determined by conditional probabilities
with respect to Ys:

PY1=uy1,Yo=1,Ys=13) =

I (vl ysd) p(yzilysi)p(ysi)-
(57)

That is, Y7 and Y5 are, in some measure, driven by their interaction with Y.

Then, in analogy with previous analyses, triplets of sequences can be divided
by a splitting criterion into two sets, having high and low probabilities respec-
tively. For large n the number of triplet sequences in the high probability set
will be determined by the relation (Cover and Thomas, 1992, p. 387)
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N(n) x exp[nl(Y];Ys|Y3)],
(5.8)

where splitting criterion is given by

I(Y1; Ya|Y3) =

H(Y3) + H(Y1|Y3) + H(Y2|Y3) — H(Y1,Y2,Y3).

We can then examine mixed cognitive/adaptive phase transitions analogous to
learning plateaus (Wallace, 2002b) in the splitting criterion (Y7, Y5|Y3), which
characterizes the synergistic interaction between Y3, taken as an embedding
context, and the cognitive processes characterized by Y; and Ys. Again, the
results are similar to the Gould-Eldredge model of evolutionary punctuated
equilibrium.

Clearly the model can be expanded to any number of interacting information
sources, Y], Y, ..., Y, conditional on an external context Z in terms of a splitting
criterion defined by

(5.9

where the conditional Shannon uncertainties 1 (Y;|Z) are determined by the
appropriate direct and conditional probabilities.

This simple-seeming extension opens another Pandora’s box in the study of
‘mind-body interaction’ and the impacts of culture and history on individual
cognition. It provides a new tool for examining the interpenetration of a broad
range of cognitive physiological, psychological, and social submodules — not
just neural substructures — with each other and with embedding contextual
cultural language so characteristic of human hypersociality, all within the further
context of structured psychosocial stress. Chapter 6 explores the implications
for understanding comorbid mind/body dysfunction, and provides a laundry list
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of physiological, psychological, and social cognitive modules associated with
health and disease.

Bennett and Hacker (2003) define the ‘mereological fallacy’ in neuroscience
as the assignment, to parts of an animal — here the brain — of those characteristics
which are properties of the whole. Humans, through both their embedding in
cognitive social networks, and their secondary epigenetic inheritance system of
culture, are even more than ‘simply’ individual animals. Equation (5.9) implies
the possibility of extending the global neuronal workspace model of conscious-
ness to include both internal cognitive physiological systems and embedding
cognitive and other structures, providing a natural approach to evading that
fallacy.

Equation (5.9) is itself subject to significant generalization. The single infor-
mation source Z is seen here as invariant, not affected by, but affecting, cross
talk with the information sources for which it serves as the driving context.
Suppose there is an interacting system of contexts, acting more slowly than
the global neuronal workspace, but communicating within itself. It should be
possible, at first order, to divide the full system into two sections, one ‘fast,’
containing the Y}, and the other ‘slow,” containing the series of information
sources Z. The fast system instantiates the conscious neuronal workspace,
including crosstalk, while the slow system constitutes an embedding context
for the fast, but one which engages in its own pattern of crosstalk. Then the
extended splitting criterion, which we write as

I(Yi, ., Y| Z1, s Z),

(5.10)

becomes something far more complicated than equation (5.9). This must be
expressed in terms of sums of appropriate Shannon uncertainties, a complex
task which will be individually contingent on the particular forms of context
and their interrelations.

This approach, while arguably more general than dynamic systems theory,
can incorporate a subset of dynamic systems models through an appropriate
coarse graining, a standard construction described at more length in Appendix
A.

Again, the essential trick is to show that a system has a ‘high frequency limit’
so that an appropriate coarse graining catches the dynamics of fundamental
importance, while filtering out ‘high frequency noise’.
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Taking this analysis into consideration, the model of equation (5.10) con-
stitutes a ‘double coarse-graining’ in which the Zj represent a ‘slow’ system
which serves as a driving conditional context for the ‘fast’ Y; of the global
neuronal workspace.

It is possible to envision a ‘multi’ (or even distributed) coarse graining in
which, for example, low, medium, and high, frequency phenomena can affect
each other. The mathematics of such extension appears straightforward but is
exponentially complicated. In essence one must give meaning to the notation

[(}/17 "'7}/.}|X1,"'7Xk}Z17 "'7Z!])a
.11

where the Y; represent the fast-acting cognitive modules of the global neu-
ronal workspace, the X}, are intermediate rate effects such as emotional struc-
ture, long-term goals, immune and local social network function, and the like,
and the Z, are even slower-changing factors such as cultural structure, embed-
ding patterns of psychosocial stress, the legacy of personal developmental and
community history, and so on.

Such analysis is consistent with, but clearly extends, the ‘standard model” of
global neuronal workspace theory.

Ultimately, culture, developmental history, and structured stress serve as es-
sential contexts-of-context, in the sense of Baars and Franklin (2003), defining
a further hierarchy of externally-imposed constraints to the functioning of indi-
vidual consciousness. Equation 5.11 suggests a means of explicitly modeling
those constraints.

5. Energy efficiency and consciousness
5.1  Simple neural modules

A pioneering study by Levy and Baxter (1996) explores the energy costs of
neural coding strategies, a matter which will prove to be of some interest here.
To paraphrase Laughlin and Sejnowski (2003), detailed analysis comparing the
representational capacity of signals distributed across a population of neurons
with the costs involved suggests sparse coding schemes, in which a small pro-
portion of cells signal at any one time, use little energy for signaling but have a
high representational capacity because there are many different ways in which
a small number of signals can be distributed among a large number of neurons.
This is mitigated by the energetic cost of maintaining a large number of neu-
rons, if they rarely signal. Thus there is an optimum proportion of active cells
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which depends on the ratio between the cost of maintaining a neuron at rest and
the extra cost of sending a signal. When signals are relatively expensive, it is
best to distribute a few of them among a large number of cells. When cells are
expensive, it is more efficient to use few of them and to get all of them signaling.

A simplified version of the Levy and Baxter argument is as follows:

Suppose there are n binary neurons, taking an active value of 1 with proba-
bility p and an inactive value of 0 with probability 1 —p, 0 < p < 1. Classically,
each binary neuron has a ‘channel capacity’ given by

h(p) = —plog(p) — (1 — p)log(1l — p).
(5.12)

See Ash (1990) or Cover and Thomas (1991) for details.
The maximum possible channel capacity of n such neurons would be the
sum of n independent channels, so that

H(p) < nh(p).

(5.13)

If an active neuron has r times the energy requirements of an inactive one,
then the average energy consumed by an active fraction p of n total neurons is
just

E(p,r) =npr + n(1 — p) = n(1 + p(r — 1)),

(5.14)

where, again, energy units are measured in terms of an inactive neuron.
The ratio of maximum possible channel capacity to energy consumption is,
then,
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H(p)/E(p,r) < f(p,r) = h(p)/(1 + p(r — 1)),

(5.15)

independent of n.

Taking a typical value for r, say + = 100, so that a working binary neuron
consumes 100 times the energy of a resting one (e.g. Lennie, 2003), then
numerically solving the extremum problem

df (p,100)/dp = 0

for p gives p = p* ~ 0.0334, so that the most energy efficient neural system,
in this model, will have only about three percent of its neurons active at any
one time, a startling ‘sparse code’ result.

The peak of f(p,r) as a function of p for even large fixed r is actually
very broad, having a significant full width at half maximum (FWHM). In the
example for f(p, 100), half-maximum is met at p = 0.0034, 0.3864, so that
FWHM= 0.3830, which is not inconsiderable.

Levy and Baxter (1996) examine a more complicated model which has,
comparatively, a narrower peak than the simple binary neuron, but this too has
a rather large FWHM, suggesting that the maximization of efficiency is at best
highly approximate: large fractions of neurons may, apparently, be mobilized
for short times, dependent on the ability to meet the energy demand.

Balasubramanian et al. (2001) examine more general metrics of neural effi-
ciency, and the role of noise, using both a Lagrange multiplicr and a complicated
iterative Arimoto-Blahut optimization strategy, making empirical application
to the distribution of burst sizes in the visual retina.

5.2  Interacting modules: the global workspace

Alternative — and perhaps competing — metrics may apply at higher levels of
organization, in particular to the global neuronal workspace itself.

Figures 1 and 2 show the results of a simple calculation at a level more
complicated than that represented by equations (5.13) and (5.14). Suppose
that neural modules interact within themselves according to what might be
characterized as ‘strong ties’, i.e. those which disjointly partition a structure
according
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H(K)

En(K)

1
K=1/P
Figure 1. Channel capacity-source uncertainty and energy consumption of a system of inter-
acting neural modules as a function of the inverse probability of weak ties coupling the modules,

K = 1/, H is taken as proportional to an error function in X, and encrgy consumption as a
Iinear function in I, 1.¢. Inverse in K.

H(K)/En(K)

-KdH/dK/En(K)

K=1/P

Figure 2. Source uncertainty per unit energy and disorder (Q = [~ KdH/dK] per unit
energy, according to the model of Figure 1. We assume that, for “social’ systems, cognitive
encrgy efficicncy is 1o be maximized, while the experience of disorder is to be minimized, which
are competing requirements. Clearly, two stable regimes are possible to this model: conscious,
or unconscious/sleeping, depending on the relative weighting of the optimization, which may,
indeed, change according to resource availability: when tired, one falls asleep.
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to some equivalence class relationship, indeed permitting the identification of
modules which individually follow something like equations (5.13) and (5.14).
To attain consciousness, however, these modules must interact with each other
according to a ‘weak’ tie structure which does not disjointly partition into
equivalence classes. Call the average probability of weak tie coupling across
neural modules P and set K = 1/P.

Let the ‘channel capacity’ of the coupling across neural modules be a reverse
S-shaped curve, as a function of K = 1/ P, taken here as proportional to an Error
Function. Since the source uncertainty of any information source - cognitive or
otherwise - is constrained to be less than or equal to channel capacity, in figure
1, H(K) has the same functional dependence. Assume the energy consumed
by consciousness is, as in the Levy and Baxter model, proportional to P, hence
to 1/K in figure 1. Note that both curves have been adjusted to similar maxima.

Figure 2 shows, respectively, the ratios of H and QQ = — KdH /dK to energy,
as a function of K, for this model. Here, again, P = 1 is assumed to consume
100 times the energy of P = 0. The plots have also been adjusted to similar
maxima.

Again, for a complex ‘social’ construction, as opposed to the individual
elementary structures which compose it, while attempting to maximize H/FE,
the system attempts to minimize the experience of disorder, i.e. to minimize
Q/E =[-KdH/dK]/E.

In terms of avoiding disorder, two regimes of figure 2 are ‘stable’: to the left
and the right of the peak in )/E. On the other hand, H/F is at a maximum
for some P < 1 to the left of the peak in @/ E. Thus the peak in Q/E =
[-KdH/dK]/E serves to ‘lock in’ the system to either a state in which there
is much cross-talk between interacting neural modules - consciousness - or a
state in which there is little cross-talk —unconsciousness or sleep. The transition
between the two states should be highly punctuated, according to this model,
as the system overcomes the barrier defined by Q/E.

This interpretation is consistent with recent work by Lopez-Ruizet al. (2004),
who found a bistable waking/sleeping bifurcation in complex networks defined
by mean-field multiplicative coupling among first-neighbor nodes.

Clearly the second order universality class tuning of section 4.4, which we
use to define the fluctuating dynamic threshold of consciousness, makes the
most sense on the left hand side of figure 2, as a function of the waking state.

Questions of energy use vs. functional optimization for cognitive/conscious
processes require further study, particularly as regards the impacts of multiple
parallel or hierarchical organization levels. The difference between these two
examples — the efficiency of neural modules vs. that of assemblies of interacting
cognitive modules — might be seen as analogous to the contrast between the
interest of individuals within an organization, who may wish to optimize their
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personal income per unit effort, vs. the interest of the organization itself, which
is attempting to maximize its ‘market share’. These are not at all the same
goals, and the organizational priorities will likely be at considerable odds with
the individual interests of the employees. Under a hierarchy, then, optimization
may become a matter of conflict between competing levels. The FWHM of the
different optimizations may represent the solution to mitigating that conflict.

As the calculation at the end of Chapter 4 indicates, these matters may rapidly
become quite complicated mathematically.

5.3 Reconsidering fMRI

Recently Shulman et al. (2003) reexamined functional magnetic resonance
imaging (fMRI) from the perspective of global workspace theory. They find that
the high energy consumption of the brain at rest and its quantitative usage for
neurotransmission reflect a high level of neuronal activity for the non-stimulated
brain. This high activity, in their view, supports a reinterpretation of functional
imaging data; e.g., where the large baseline signal has commonly been dis-
carded. Independent measurements of energy consumption obtained from cali-
brated fMRI equaled percentage changes in neuronal spiking rate measured by
electrodes during sensory stimulation at two depths of anesthesia. These quan-
titative biophysical relationships between energy consumption and neuronal
activity, they claim, provide novel insights into the nature of brain function.
They propose the high resting brain activity includes the global interactions
constituting the subjective aspects of consciousness. Anesthesia, by lowering
the total firing rates, correlates with the loss of consciousness. Shulman et al.
conclude that these results, which measure localized neuronal response and dis-
tinguish inputs of peripheral neurons from inputs of neurons from other brain
regions, fit comfortably into the global neuronal workspace model of Dehaene,
Changeux, and others.

One is tempted to interpret the ‘large baseline signal” in terms of the operator
R of equation (5.3), and the fMRI-measured differences in terms of that equa-
tion’s 6Ry1, leading ‘naturally’ into the tunable retina arguments associated
with the Rate Distortion manifold/atlas topologies discussed above.

A second temptation is to reformulate the parametization of the conscious-
ness phase transition itself in terms of baseline energy consumption, possibly
producing a series of punctuated changes corresponding to different levels of
consciousness, much as shown in figures | and 2.

These questions remain to be studied.
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6. Quantum systems
6.1 Quantum neural networks and information theory

A recent spate of publications suggests that microtubule structures within
neuronal cells might be the site of an exotic physics making possible the
classical-scale operation of a brain-wide quantum coherence producing con-
sciousness (Hameroff, 2001; Penrose, 2001; Hameroff et al., 2002). Such
speculations were scathingly analyzed by Tegmark (2000), who, based on a
calculation of neural decoherence rates, argued that the degrees of freedom of
the human brain that relate to cognitive processes should be thought of as a
classical rather than a quantum system. There is, in Tegmark’s view, noth-
ing fundamentally wrong with the current classical approach to, for example,
neural network simulation. Tegmark found that the decoherence time scales,
10713 — 10720 sec., are typically much shorter than the relevant dynamical time
scales (= 1073 — 107! sec.), both for regular neuron firing and for kinklike
polarization excitations in microtubules. Tegmark’s result thus disagrees with
suggestions by Penrose and others that the brain acts as a quantum computer,
and that quantum coherence is related to consciousness in a fundamental way.

Suppose, however, a large quantum neural network is held at a few micro
or mille degrees Kelvin, 1076 — 1073 degrees Centigrade above absolute zero.
Quantum decoherence times typically scale exponentially with temperature,
and, cold enough (and/or with sufficient error correction machinery), dynamical
time scales in Tegmark’s range of 10~% — 107! sec. might well be possible
across fairly large structures. Could these, then, become conscious, in the sense
of the formal treatment of global neuronal workspace theory given here?

The answer does not seem entirely straightforward, since the analysis de-
pends on a homology between the information source uncertainty dual to a
cognitive process and free energy density on the one hand, and on a further,
i.e. second order, extension of that treatment to universality class tuning of
phase transitions associated with the first process — some version of a fluctuat-
ing dynamic threshold. This is a difficult enough sequence in a purely classical
structure, and the information dynamics of quantum systems are not particularly
well characterized: In spite of much physics literature Sturm und Drang, there
are few mathematically rigorous quantum generalizations of the fundamental
results of information theory.

One recent attempt was the quantum extension of the Shannon-McMillan
Theorem by King and Lesniewski (1998) (KL), which serves as an interesting
starting point. We paraphrase results from that paper, recapitulating as well as
some standard material on quantum information sources.

The fundamental object of interest in KL is a quantum system whose state
space is a tensor product of many copies of one fundamental spacc M. The
source produces a signal which is encoded by a state in M, and the ensemble of
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possible states is represented by a density operator p on M. An extended source
corresponds to a sequence of such states, which is interpreted as a message. The
probabilistic nature of the message is contained in the density operator on the
tensor product of copies of M. If that operator is the product p®...Q p, there are
no correlations between signals in the message, the ‘quantum Bernoulli’ source
which was the focus of Schumacher’s work (Schumacher, 1995, 1996). A more
useful quantum information source is one in which there are correlations on all
time scales between signals in the message. The density operator then becomes
a much more complex object.

For purely classical signals, the Shannon-McMillan Theorem permits the
splitting of all possible signals into two classes, a relatively small number of
‘meaningful’ ones with significant probabilities, and a much larger number with
vanishingly small probability. The criterion for splitting is the uncertainty of
the information source. The quantum result is a splitting of the state space
into relevant and irrelevant subspaces, with the Von Neumann entropy as the
criterion.

KL derive an estimate for the dimension of the relevant subspace by com-
puting the entropy of a classical source obtained by taking measurements on
the quantum system. For the case of a quantum source emitting orthogonal
states, the Von Neumann entropy is the same as the uncertainty of the associ-
ated classical information source, since the density operators all commute, and
the Shannon-McMillan Theorem is recovered exactly. Non-orthogonal sources
are more complicated, and their result only provides somewhat loose limits on
the dimensionality of the relevant space.

The quantum source sends a series of signals, each of which is a vector in a
finite dimensional Hilbert space H. The source is taken as discrete, with each
signal an element of a finite set S = |11 >, ..., |1)s > of normalized vectors
in H. We take H as spanned by S, so that H is of dimension d < s. Unlike
the classical case, this system can entertain a superposition of states. Let p;
be the given probability of the state [1/; > being sent. The density matrix
corresponding to the ensemble of signals S is then

p=3 pilty ><pyl,

1<j<s

(5.16)

with tr(p) = 1, where ¢tr is the trace operator. While S and the distribution
of p; uniquely determine the density matrix, each such matrix corresponds to
an infinite number of possiblc sets of states.
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The observables associated with quantum signals are d x d hermitian matri-
ces, the elements of a C*-algebra A = L(H) of linear observables on . The
state on the algebra of observables A associated with the density matrix p is,
for any given A € A,

T (A4) = tr(4dp) = Z p; < YilAl; > .

1<j<s

(5.17)

Appropriate generalizations can be given for infinite dimensional tensor
products, and ergodic quantum information sources can be defined.

The density matrix of order n becomes, in terms of the states t; which span
S,

Hn = Z p]’lq«-yjnl,(?/}jl >< w]l' ® o ® |w]n >< q/)]n|

Igjlwn;jnfs

(5.18)

The entropy associated with a sequence of n signals is defined as

H, (1T} = —tryea (I, log I, ).
(5.19)

Some development gives

Hm+n(H) < Hm(H) + Hn(ﬂ)a

so that the limit



Extending the model 77

h(Il) = lim

n—oo  n

(5.20)

exists. We call A(II) the entropy of the quantum source. For a Bernoulli
source 1T, = p ® ... ® p and h(II) = —try(plogp). General sources with
internal serial correlations have far more complex expressions for h.

Let A = [Ay,..., A}, < oc be a family of observables on H such that
A; > 0forall j, and

Ar+ ...+ A =1,
(5.2

where [ is the identity. We call the set Yo = [1, ..., 7] the classical alphabet
associated with A, and denote by X%’ the space of all infinite messages over
the alphabet x o. In this way we can associate a classical information source
with each quantum information source.

Let H®™ be the space of all signals of length n for an ergodic quantum
information source. According to the KL version of the quantum Shannon-
McMillan Theorem, it can be factored into two orthogonal subspaces

HE = S, @ S,
(5.22)

whose relative dimensions are constrained by the uncertainty of the classical
information source h s associated with the quantum source in a precise manner.
If the |+; > are orthogonal, 24 is just the Von Neumann entropy of the source,
since the density operators all commute.

Let Ps, be the orthogonal projection onto the relatively small subspace S,,.

Let C be an observable C ¢ L'(H®”), where the signal is of length n. Then,
according to the KL form of the quantum Shannon-McMillan Theorem, the
difference
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[7(CPs,) —7(C)|

can be made arbitrarily small as n increases without limit. Here 7 is an
appropriate infinite-dimensional generalization of 7; above, in terms of the
complicated density matrices I1.

Again paraphrasing KL, in the case where the |1; > are orthogonal, there is
a direct correspondence with the classical Shannon-McMillan theorem, and the
quantum theory is simply arestatement of the classical result, with the associated
classical source uncertainty A, (which constrains the dimensionality of the
significant space S,,), given by the Von Neumann entropy.

The KL version of the quantum SMT is deficient in that it does not provide an
exact parallel to the asymptotic equipartition property (AEP), and KLs relevant
subspace can be shown not to be minimal in general, although it is so for the
Bernoulli case. This is discussed in the more recent work of Bjelakovic et al.
(2003, 2004), who do, in fact establish the quantum AEP under very general
conditions. They proceed, following the work of Hiai and Petz (1994), from the
fact that a classical subsystem — the maximal abelian subalgebra of the entire
non-commutative algebra of observables — has Shannon entropy equal to the
von Neumann entropy of the full n-block quantum state.

Restricting the given quantum state to an appropriate classical lattice system
produces a classical system related to the original system, and one can build
further from this. The essential contribution of Bjelakovic et al. is to show
that, only requiring simple ergodicity, the asymptotic limit on the dimension
of a typical subspace is, in fact, for an n- block, given by exp[ns] where s
is the mean von Neumann entropy. This gives an appropriate quantum SMT
which addresses the failings of the KL approach and produces the asymptotic
equipartition property which we find so useful in modeling the global neuronal
workspace.

Although there may not yet be fully adequate quantum forms of the Shannon
Coding Theorem, or its ‘Learning Theorem’ and Rate Distortion variants, these
considerations nonetheless suggest a possible correspondence principle gener-
alization of the classical neural network results given in the earlier sections:
Parametization of the quantum information source corresponding to a QNN
must reflect the underlying structural hierarchy of the system, incorporated in
the renormalization symmetry and other inherent properties of the informa-
tion source. Measurement must give an appropriately parametized classical
information source with appropriate renormalization and generalized Onsager
properties.

The parametization of the quantum information source might well be com-
plicated, for example simultaneously involving both quantized and unquantized
physical quantities. One imagines simultaneously macroscopic external signals
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and an array of quantum oscillators coupled by some kind of quantized field -
phonons, photons, etc.

Since a quantum information source is still a ‘language,” in the sense of
the earlier sections of this work, its renormalization and generalized Onsager
properties may not be simple extensions or reflections of commonly understood
physical systems, but characterize, in no small part, the patterns of internal
correlations defining that language — the jointly defined grammar and syntax of
the coupling of sensory signal, neural weights and array of nonlinear oscillators
constituting the system: Neural networks, quantum or classical, are defined by
their ‘meaning’ even more than by their physical structure.

Some version of the various ‘natural’ relations between network architec-
ture, learning paradigms, renormalization symmetry and generalized Onsager
relations which applied to classical systems would seem appropriate to the pure
quantum case as well. These extensions will not likely much resemble the
classical case, however, no more than the quantum hydrogen atom resembles a
planetary system, or superfluid helium resembles liquid water, a matter we will
return to below.

6.2  Density matrix and path integral

Rojdestvenski and Cottam (2000), in their application of the results of Wal-
lace and Wallace (1998) to physical processes, conclude with the following
observation:

If one takes an ‘evolution’ equation of any system..., it may always be written in the
following differential form
Pt +dt) = (1 4+ Edt)y(t),

where E is called the ‘cvolution operator.” If the evolution has different ‘channels,
i.c.

i=1

then [the first equation] takes the following recursive form:
Yt +mdt) = (1 + Edt(...(1 + Edt(1 + Edt(1 + Edt)))..))(t) =

m

D @)™y K(CH[Es, By (),
Cy

r=1

and again we deal with the ‘sentence’ representation. In acertain sense, any temporal
evolution, il only it is describable by equations, is a message [from some information
source] in its own right.

Behrman etal. (1996) open their description of a quantum dot neural network
in a similar manner:
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In most artificial neural network implementations, the neurons receive inputs from
other processors via weighted connections and calculate an output which is passed on
to other neurons. The calculated output... of the i*" neuron [is determined from] the
signals from the other ncurons in the network... Similarly we can write the expression
for the time evolution of the quantum mechanical state of a system:

W(xe, T) >= Glzy,T;x0,0)|¢(x0,0) > ...

Here |t)(20,0) > isthe inputstate, the initial state of the quantum system. | (z,,T") >
is the output state, the state of the system at ¢ = 7. G is the Green’s function, which
propagates the system forward in time, from initial position x¢ at time { = 0 to final
position zy attime ¢ = T. [G can be expressed] in the Feynman path integral formu-
lation of quantum mechanics (Feynman, 1965), in which G is thought of as the infinite
sum over all possible paths that the system could possibly take to get from o to x§...
Each path is weighted by the complex exponential of the phase contributed by that path,
given by the classical action for that path;... Each of the NV [quantum] neurons’ different
possible states contribute to the final measured state; the amount it contributes can be
adjusted by changing the potential energy...

Those paths with higher weighting thus have higher probability (and are
‘meaningful,’ in our terminology), than the others. For an ‘ergodic’ information
source such paths would be equiprobable.

Using this formalism, Behrman et al. (1996) conclude that

Potentially, a quantum neural network would be an extremely powerful computa-
tional tool... capable, at least in principle, of performing computations that cannot be
done, classically... an actual working quantum neural net would likely want to take
advantage of the greater multiplicity and connectivity inherent in an entire array of

quantum dot molecules, by placing molecules physically close enough to each other
that nearest neighbors can interact directly...

The path integral formulation of quantum density matrices (Feynman, 1998)
thus seems to constitute the natural linkage between quantum mechanics and
quantum information theory in much the same way that the Large Deviations
Program of applied probability connects statistical mechanics, fluctuations and
information theory in classical systems. Imposition of appropriate renormaliza-
tion symmetry on the ergodic quantum information source dual to the QNN, in
the context of a similarly appropriate ‘generalized Onsager relation’ and asso-
ciated algebras, would indeed seem to be the most natural means of expressing
the unique architecture of the network, hierarchical or otherwise.

By analogy, it seems that a Landau-like ‘two fluid’ model of superconduc-
tivity and superfluidity might apply to the general QNN, with a classical infor-
mation source uncertainty playing the role of a ‘phonon gas excitation’ of the
purely quantum QNN (Feynman, 1998).

6.3  Speculations

The development of King and Lesniewski (1998), successfully generalized
by Bjelakovic et al. (2003, 2004), is an attempt to rigorously extend thc
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Shannon-McMillan Theorem to quantum systems. In conjunction with the
material described elsewhere in this work, the approach suggests a direction for
development of a purely quantum neural network formalism, in contrast, for
example, with the quasi-classical results of Toth et al. (1996). Quantum neural
networks, like their classical counterparts, should be reducible to the convo-
lution of external ‘sensory’ activity, internal ongoing activity ‘neural weights’
and an array of nonlinear components into a single quantum information source
parametized by continuous or quantized variates. ‘Tuning’ the parameters and
the ‘ongoing activity’ should, as for classical systems, result in highly effi-
cient pattern recognition, depending on the inherent grammar and syntax of
the associated quantum information source: data consistent with the system’s
linguistic rules are recognized and acted on, others are not. The inherently
parallel nature of pure quantum computation should provide some significant
advantages over classical neural network pattern recognition. Quantum neural
architecture should, as in the classical case, express itself in the renormalization
symmetry of the dual quantum information source, its ‘generalized Onsager re-
lations,” and the algebraic structure of the underlying state space. Thus, for a
certain class of QNN, high probability paths will define a quantum information
source having grammar, syntax and higher order structures which will define
the characteristics of the system for pattern recognition.

A kind of quantum linguistics — the extended algebra of II operators corre-
sponding to quantized neural networks — seems likely to be of some considerable
interest.

Rigorous extension of such a theory to the second order tunable universality
class effects needed for operation of a global neuronal workspace — the basis
for consciousness — may not, however, be at all straightforward for quantum
systems. In fact, if such extension is indeed possible, the kind of consciousness
available to quantum structures is highly unlikely to at all resemble that of clas-
sical systems, putting yet another nail in the coffin of the Penrose treatment.
This is because the differences with the classical case may far transcend the
question of a half-second quantum coherence time: Even ‘rapid’ quantum con-
sciousness may diverge appreciably from the classical variety with which we
are all so intimately familiar, much as most quantum systems differ appreciably
from their classical analogs.

The picture which comes to mind is the difference between a cryogenic flask
of superfluid helium and a glass of water. The latter is often of considerable
utility, while the former is usually only of academic interest.

More precisely, consideration suggests that, given an underlying QNN in-
stantiating a quantum cognitive process, the information source associated with
a second-order fluctuating dynamic threshold defined by universality class tun-
ing might well itself be classical or semi-classical, producing a theory roughly
analogous to what we have described here, although having a quantum base.
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A far more challenging circumstance would arise if that second order tuning
were itself associated with a fully quantum information source, for which the
theory we have presented is wholly insufficient. It is a matter of conjecture,
at this point, whether any such development is indeed possible. In the event
it is, one might well be inclined to some quite odd astrobiological and other
speculations.

Among these is the thought that conscious quantum neural networks engaged
in mission-critical tasks are likely to have very strange failure modes, analo-
gous, perhaps, to exotic mental disorders in humans. This problem may, in
fact, impose a serious limit on the practical utility of most forms of machine
consciousness, which have not had the benefit of several hundred million years
of variation and selection.



Chapter 6

WHERE DOES ALL THIS LEAD?

1.  Sociocultural context as selection pressure

The hierarchy of contexts is clearly able to write an image of itself on the
function of the global neuronal workspace of consciousness, but what, really,
are the mechanisms which instantiate equation (5.11)? A recent paper examines
the similarities and contrasts between ‘learning plateaus’ in neural networks and
punctuated equilibrium in evolutionary process from a perspective similar to
that presented here (Wallace, 2002b). The starting point for that discussion
was the information theory approach of Ademi et al. (2000) to evolutionary
process in which they concluded that genomic complexity can be identified with
the amount of information a gene sequence stores about its environment. This
storage often occurs in a punctuated manner analogous to a learning plateau in
a neural structure (e.g. Gould and Eldredge, 1977), although evolution is not
at all a cognitive process. Cognition requires the active selection of one out of
a complex repertory of possible responses to a sensory or other input, based on
comparison with a learned internal representation of the world. While genes do
indeed constitute a kind of memory of past interaction with the world, response
to selection pressure is not through direct comparison with that memory, but
rather through the reproductive success of a random variation constrained by
the path of evolutionary history.

This is not cognition, and there is no ‘intelligent purpose’ to adaptive or
evolutionary process per se. Nonetheless, selection pressures are most often
systematic patterns of interaction with an embedding and highly structured
ecosystem in which each species is itself manifest through interpenetration
(Lewontin 2000). Those ecosystems, acting as selection pressures, write images
of themselves on gene sequences through reproductive success.
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The slowly-acting factors of sociocultural structure and history in equation
(5.11) — the Z, — appear closely akin to selection pressures in the manner they
write images of themselves on the dynamic global neuronal workspace, the
fast-acting, linked, cognitive neural modules represented by the Y.

That is, given the Z,, those individuals who are able to limit their con-
sciousness, or at least their consciously-driven behaviors, to the selection filter
defined by the embedding sociocultural constraints, will be successful in their
life courses. That very success will, according to this perspective, virtually
sculpt their individual conscious lives, limiting — indeed, defining — both what
can be perceived and experienced and what can be carried out as voluntary
activity.

This effect, which should be very strong, seems largely masked by a highly
efficient form of perceptual completion.

Section 5.2 explored the widespread nature of adaptation, the refinement
of cortical maps, perceptual learning, and, in particular, contrast adaptation in
the retina. A similarly common phenomenon is perceptual completion, the
neural filling-in of ‘holes’ in perception. Blind-spots in the visual field seem to
disappear, rapid sequential blink is taken to be continuous motion, and the like
(e.g. Welchman and Harris, 2003; Zur and Ullman, 2004; Lerner, Harel, and
Malach, 2004). Arguing by abduction from these examples, it seems likely that
‘the fovea of the mind’s eye’ - consciousness as we have interpreted it, involving
a second order retina-like adaptive structure — may also engage in perceptual
completion. Thus the sociocultural sculpting of individual conscious life may
not be easily recognized by an individual. Not that consciousness itself is an
illusion, but rather the apparent seamless continuity of the ‘I-of-the-hurricane’
centrality of conscious experience and voluntary action is, in fact, largely a
projective construct, filling in around the holes inevitably left by sociocultural
conditioning and the path dependent outcome of individual development and
history.

The mathematics which intrudes here is precisely the tangent construction
of the sphere/torus example. Restricting study to the tangent plane at a point
on a torus, one cannot find the central hole, which is a higher order structure.
Indeed, points on the torus are all equally accessible to each other through paths
restricted to the torus surface. The dance of consciousness seems uninterrupted
to the dancer, yet whole realms of possibility are structurally inaccessible, a fact
which can only be determined by relatively sophisticated analysis, the analog of
trying to shrink loops on a torus to a point. We begin to require an understanding
of the large-scale topological properties of rate distortion manifolds.

These considerations have particular, and very disturbing, implications re-
garding the social induction of disorders of consciousness and cognitive process
such as psychopathy and sociopathy (Mealey, 1995), a matter explored at greater
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length below. We can, in fact, place discussions about the social induction of
pathology in a far more comprehensive context.

2.  Autocognitive developmental disorder

Consciousness is not the only cognitive physiological or psychological phe-
nomenon, and much of what we have done can be applied to other —interacting —
cognitive modules of interest. We begin with a brief listing of a few of them, and
then explore how structured psychosocial stress can impose an image of itself
upon human development, entraining not only consciousness, but other cog-
nitive modules into characteristic patterns of mind/body dysfunction in which
disorders of consciousness are part of a larger whole.

2.1 Immune function

Atlan and Cohen (1998) have proposed an information-theoretic cognitive
model of immune function and process, a paradigm incorporating cognitive
pattern recognition-and-response behaviors analogous to those of the central
nervous system. This work follows in a very long tradition of speculation on
the cognitive properties of the immune system (Tauber, 1998; Podolsky and
Tauber, 1998; Grossman, 1989, 1992, 1993a, b, 2000).

From the Atlan/Cohen perspective, the meaning of an antigen can be reduced
to the type of response the antigen generates. That is, the meaning of an antigen
is functionally defined by the response of the immune system. The meaning of
an antigen to the system is discernible in the type of immune response produced,
not merely whether or not the antigen is perceived by the receptor repertoire.
Because the meaning is defined by the type of response there is indeed aresponse
repertoire and not only a receptor repertoire.

To account for immune interpretation Cohen (1992, 2000) has reformulated
the cognitive paradigm for the immune system. The immune system can re-
spond to a given antigen in various ways. It has ‘options’. Thus the particular
response we observe is the outcome of internal processes of weighing and in-
tegrating information about the antigen.

In contrast to Burnet’s view of the immune response as a simple reflex,
it is seen to exercise cognition by the interpolation of a level of information
processing between the antigen stimulus and the immune response. A cognitive
immune system organizes the information borne by the antigen stimulus within a
given context and creates a format suitable for internal processing; the antigen
and its context are transcribed internally into the ‘chemical language’ of the
immune system.

The cognitive paradigm suggests a language metaphor to describe immune
communication by a string of chemical signals. This metaphor is apt because
the human and immune languages can be seen to manifest several similaritics
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such as syntax and abstraction. Syntax, for example, enhances both linguistic
and immune meaning.

Although individual words and even letters can have their own meanings, an
unconnected subject or an unconnected predicate will tend to mean less than
does the sentence generated by their connection.

The immune system creates a ‘language’ by linking two ontogenetically
different classes of molecules in a syntactical fashion. One class of molecules
are the T and B cell receptors for antigens. These molecules are not inherited,
but are somatically generated in each individual. The other class of molecules
responsible for internal information processing is encoded in the individual’s
germline.

Meaning, the chosen type of immune response, is the outcome of the concrete
connection between the antigen subject and the germline predicate signals.

The transcription of the antigens into processed peptides embedded in a
context of germline ancillary signals constitutes the functional ‘language’ of
the immune system. Despite the logic of clonal selection, the immune system
does not respond to antigens as they are, but to abstractions of antigens-in-
context.

2.2 Tumor control

Reflection shows the next cognitive submodule after the immune system is
necessarily a tumor control mechanism that may include ‘immune surveillance’,
but certainly transcends it. Nunney (1999) has explored cancer occurrence as a
function of animal size, suggesting that in larger animals, whose lifespan grows
as about the 4/10 power of their cell count, prevention of cancer in rapidly
proliferating tissues becomes more difficultin proportion to size. Cancer control
requires the development of additional mechanisms and systems to address
tumorigenesis as body size increases — a synergistic effect of cell number and
organism longevity. Nunney concludes

This pattern may represent a real barrier to the evolution of large, long-lived animals

and predicts that those that do evolve ... have recruited additional controls [over those
of smaller animals] to prevent cancer.

Different tissues may have evolved markedly different tumor control strate-
gies. All of these, however, are likely to be energetically expensive, permeated
with different complex signaling strategies, and subject to a multiplicity of re-
actions to signals, including those related to psychosocial stress. Forlenza and
Baum (2000) explore the effects of stress on the full spectrum of tumor control,
ranging from DNA damage and control, to apoptosis, immune surveillance, and
mutation rate. Elsewhere (Wallace et al., 2003) we argue that this elaborate tu-
mor control strategy, particularly in large animals, must be at least as cognitive
as the immune system itself, which is one of its components: some comparison
must be made with an internal picture of a ‘healthy’ cell, and a choice made as
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to response: none, attempt DNA repair, trigger programmed cell death, engage
in full-blown immune attack. This is, from the Atlan/Cohen perspective, the
essence of cognition.

2.3  The HPA axis

The hypothalamic-pituitary-adrenal (HPA) axis, the ‘flight-or-fight” system,
is cognitive in the Atlan/Cohen sense. Upon recognition of a new perturbation
in the surrounding environment, memory and brain or emotional cognition
evaluate and choose from several possible responses: no action needed, flight,
fight, helplessness (flight or fight needed, but not possible). Upon appropriate
conditioning, the HPA axis is able to accelerate the decision process, much as the
immune system has a more efficient response to second pathogenic challenge
once the initial infection has become encoded in immune memory. Certainly
‘hyperreactivity’ in the context of post-traumatic stress disorder (PTSD) is a
well known example. Chronic HPA axis activation is deeply implicated in
visceral obesity leading to diabetes and heart disease, via the leptin/cortisol
diurnal cycle (Bjorntorp, 2001).

2.4 Blood pressure regulation

Rau and Elbert (2001) review much of the literature on blood pressure regu-
lation, particularly the interaction between baroreceptor activation and central
nervous function. We paraphrase something of their analysis. The essential
point, of course, is that unregulated blood pressure would be quickly fatal in
any animal with a circulatory system, a matter as physiologically fundamen-
tal as tumor control. Much work over the years has elucidated some of the
mechanisms involved: increase in arterial blood pressure stimulates the arterial
baroreceptors which in turn elicit the baroreceptor reflex, causing a reduction
in cardiac output and in peripheral resistance, returning pressure to its origi-
nal level. The reflex, however, is not actually this simple: it may be inhibited
through peripheral processes, for example under conditions of high metabolic
demand. In addition, higher brain structures modulate this reflex arc, for in-
stance when threat is detected and fight or flight responses are being prepared.
Thus blood pressure control cannot be a simple reflex. It is, rather, a broad
and actively cognitive modular system which compares a set of incoming sig-
nals with an internal reference configuration, and then chooses an appropriate
physiological level of blood pressure from a large repertory of possible levels
— a cognitive process in the Atlan/Cohen sense. The baroreceptors and the
baroreceptor reflex are, from this perspective, only one set of a complex array
of components making up a larger and more comprehensive cognitive blood
pressure regulatory module.
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2.5 Emotion

Thayer and Lane (2000) summarize the case for what can be described as a
cognitive emotional process. Emotions, in their view, are an integrative index of
individual adjustment to changing environmental demands, an organismal re-
sponse to an environmental event that allows rapid mobilization of multiple sub-
systems. Emotions are the moment-to-moment output of a continuous sequence
of behavior, organized around biologically important functions. These ‘lawful’
sequences have been termed ‘behavioral systems’ by Timberlake (1994).

Emotions are self-regulatory responses that allow the efficient coordination of
the organism for goal-directed behavior. Specific emotions imply specific elic-
iting stimuli, specific action tendencies (including selective attention to relevant
stimuli), and specific reinforcers. When the system works properly, it allows
for flexible adaptation of the organism to changing environmental demands, so
that an emotional response represents a selection of an appropriate response
and the inhibition of other less appropriate responses from a more or less broad
behavioral repertoire of possible responses. Such ‘choice’ leads directly to
something closely analogous to the Atlan and Cohen language metaphor.

Damasio (1998) concludes that emotion is the most complex expression of
homeostatic regulatory systems. The results of emotion serve the purpose of
survival even in nonminded organisms, operating along dimensions of approach
or aversion, of appetition or withdrawal. Emotions protect the subject organism
by avoiding predators or scaring them away, or by leading the organism to food
and sex. Emotions often operate as a basic mechanism for making decisions
without the labors of reason; that is, without resorting to deliberated consider-
ations of facts, options, outcomes, and rules of logic. In humans learning can
pair emotion with facts which describe the premises of a situation, the option
taken relative to solving the problems inherent in a situation, and, perhaps most
importantly, the outcomes of choosing a certain option, both immediately and
in the future. The pairing of emotion and fact remains in memory in such a
way that when the facts are considered in deliberate reasoning when a similar
situation is revisited, the paired emotion or some aspect of it can be reactivated.
The recall, according to Damasio, allows emotion to exert its pairwise qualifi-
cation effect, either as a conscious signal or as nonconscious bias, or both. In
both types of action the emotions and the machinery underlying them play an
important regulatory role in the life of the organism. This higher order role for
emotion is still related to the needs of survival, albeit less apparently.

Thayer and Friedman (2002) argue, from a dynamic systems perspective,
that failure of what they term ‘inhibitory processes” which, among other things,
direct emotional responses to environmental signals, is an important aspect
of psychological and other disorder. Sensitization and inhibition, they claim,
*sculpt’ the behavior of an organism to meet changing environmental demands.
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When these inhibitory processes are dysfunctional — choice fails — pathology
appears at numerous levels of system function, from the cellular to the cognitive.

Thayer and Lane (2000) also take a dynamic systems perspective on emo-
tion and behavioral subsystems. In the service of goal-directed behavior and in
the context of a behavioral system, they see these organized into coordinated
assemblages that can be described by a small number of control parameters.
This is much like the factors of factor analysis, which reveal the latent structure
among a set of questionnaire items thereby reducing or mapping the higher
dimensional item space into a lower dimensional factor space. In their view,
emotions may represent preferred configurations in a larger ‘state-space’ of a
possible behavioral repertoire of the organism. From their perspective, disor-
ders of affect represent a condition in which the individual is unable to select
the appropriate response, or to inhibit the inappropriate response, so that the
response selection mechanism is somehow corrupted.

Gilbert (2001) suggests that a canonical form of such ‘corruption’ is the ex-
citation of modes that, in other circumstances, represent ‘normal’ evolutionary
adaptations, a matter to which we will return.

Panskepp (2003) has argued that emotion represents a primary form of con-
sciousness, based in early-evolved brain structures, which has become convo-
luted with what we here describe as a later-developed global neuronal workspace.
To anticipate the argument somewhat, we are going to suggest that the convolu-
tion with GNW consciousness involves quite a large number of other cognitive
biological and social submodules as well.

2.6  Sociocultural network

Humans are particularly noted for a hypersociality that inevitably enmeshes
us all in group processes of decision and a collective cognitive behavior within a
social network, tinged by an embedding shared culture. For humans, culture is
truly fundamental. Durham (1991) argues that genes and culture are two distinct
butinteracting systems of inheritance within human populations. Information of
both kinds has influence, actual or potential, over behaviors, which creates areal
and unambiguous symmetry between genes and phenotypes on the one hand,
and culture and phenotypes on the other. Genes and culture are best represented
as two parallel lines or tracks of hereditary influence on phenotypes.

Much of hominid evolution can be characterized as an interweaving of ge-
netic and cultural systems. Genes came to encode for increasing hypersocial-
ity, learning, and language skills. The most successful populations displayed
increasingly complex structures that better aided in buffering the local environ-
ment (e.g. Bonner, 1980).

Successful human populations seem to have a core of tool usage, sophisti-
cated language, oral tradition, mythology, music, and decision making skills
focused on relatively small family/extended family social network groupings.
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More complex social structures are built on the periphery of this basic object
(e.g. Richerson and Boyd, 1995, 2004). The human species’ very identity may
rest on its unique evolved capacities for social mediation and cultural transmis-
sion. These are particularly expressed through the cognitive decision making
of small groups facing changing patterns of threat and opportunity, processes
in which we are all embedded and all participate.

This listing, in concert with our gencral focus on consciousness, suggests
a more comprehensive picture of chronic mental and physical disorder than is
current.

2.7  Comorbidity

Chapter 3 discussed briefly the problem of dividing the full set of possible
responses of a cognitive process into resting and active sets, respectively labeled
By and B,. Like the ‘second order selection’ we proposed for the dynamic
threshold of consciousness, it seems likely that a higher order cognitive module
must act to define which states are to be labeled as resting and active. This is
because, depending on the patterns of threat or opportunity facing the organism,
different ‘languages of thought™ are appropriate at different times. Perceived
threat, for example, requires activation of the HPA axis as ‘normal’ for the
duration of that threat. This suggests existence of, in addition to consciousness
as a higher order function, a ‘zero mode identification’ cognitive module (ZMI),
whose dysfunction through improper identification of a typically excited mode
as a resting mode, can result in chronic disease. See R. Wallace (2003, 2004)
for an extended discussion.

The idea is, basically, a generalization of Gilbert’s (2001) mechanism for
emotional disorder, i.e. having some ‘normal’ evolutionary adaptation become
pathologically persistent or inappropriately activated. An example might be
long-lasting emergency hypervigilance in anxiety disorder. We suppose most
cognitive modules subject to similar problems, likely with mutually-reinforcing
‘crosstalk’ between them: comorbidity.

If Y represents the information source dual to ZMI in generalized cogni-
tion, and if Z is the information source characterizing ‘structured psychosocial
stress’, an embedding context, the mutual information between them I (Y'; Z) =
H(Y)—H(Y|Z), serves as a splitting criterion for pairs of linked paths of states.

Structured psychosocial stress is usually long-term, continually affecting
individuals, families, and communities at all stages of life. Certain physiolog-
ically excited modes are thus likely to be continually activated during the life
course, from gestation, birth, and growth, through senesence. A typical ex-
ample would be growing up or living under an Apartheid system, a Manichean
world, divided into ‘good’ and ‘bad’, ‘black’ and ‘white’ (Fanon, 1966; Massey
and Denton, 1998; Memmi, 1969). Other examples would include American-
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style ‘regulated poverty’, the British ‘class’ system, nonunionized workplaces,
prisons, the military during combat, and so on.

Parametize the coupling between these interacting information sources, writ-
ing I(Y; Z) = I[K], with structured psychosocial stress as the embedding
context.

Invocation of the mathematical homology of Section 2.7 permits imposition
of renormalization formalism resulting in punctuated phase transition depend-
ing on K.

Socioculturally constructed and structured psychosocial stress, in this model
having both ‘grammar’ and ‘syntax’, can be viewed as entraining the function
of zero mode identification when the coupling with stress exceeds a threshold.
More than one threshold appears likely, accounting, perhaps, for the often staged
nature of ‘environmentally caused’ disorders. These should result in a series
of collective, but highly systematic, ‘tuning failures’ in the Rate Distortion
sense, that represent a literal image of the structure of imposed psychosocial
stress written upon the ability of the ZMI system to characterize a ‘normal’
mode of excitation. This causes a mixed atypical and usually transient state to
become permanent, producing comorbid mental and chronic physical disorder.
The process may have both cross-sectional and longitudinal structure, with the
latter accounting for ‘critical periods’ in the onset of developmental disorders.

Coronary heart disease (CHD) is already understood as a disease of devel-
opment which begins in utero. Work by Barker and colleagues (Barker, 2000;
Barker et al., 2002; Eriksson et al., 2000; Godfrey and Barker, 2001; Osmond
and Barker, 2000) suggests that those who develop CHD grow differently from
others, both in utero and during childhood. Slow growth during fetal life and
infancy is followed by accelerated weight gain in childhood, setting a life his-
tory trajectory for CHD, type II diabetes, hypertension, and, of course, obesity.
Barker (2002) concludes that slow fetal growth might also heighten the body’s
stress responses and increase vulnerability to poor living conditions later in life.
Thus, in his view, CHD is a developmental disorder that originates through two
widespread biological phenomena, developmental plasticity and compensatory
growth, a conclusion consistent with the work of Smith et al. (1998), who
found that deprivation in childhood influences risk of mortality from CHD in
adulthood, although an additive influence of adult circumstances is seen in such
cases.

Much of the CHD work particularly implicates certain kinds of hypertension
as a developmental disorder. As Eriksson et al. (2000) put the matter,

The association between low birth weight and raised blood pressure in later life has
now been reported in more than 50 published studies of men, women, and children. It
has been shown to result from retarded fetal growth rather than premature birth. The
‘fetal origins” hypothesis proposes that the association reflects permanent resetting of
blood pressure by undernutrition in utero.
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Asthma fits within a similar perspective. Wright et al. (1998) describe how
prospective epidemiological studies show the newborn period is dominated by
Th2 reactivity in response to allergens. It is also evident that Th1 memory cells
selectively develop shortly after birth, and persist into adulthood in non-atopic
subjects. For most children who become allergic or asthmatic, the polarization
of their immune systems into an atopic phenotype probably occurs during early
childhood. It has been speculated that stress triggers hormones in the early
months of life which may influence Th2 cell predominance, perhaps through
a direct influence of stress hormones on the production of cytokines that are
thought to modulate the direction of immune cell differentiation. There is
evidence that parental reports of life stress are associated with subsequent onset
of wheezing in children between birth and one year.

Recent work by Collins et al. (2004) explores how the experience of racism
can express itself as very low birthweight among African-Americans. He con-
cludes that

Our study adds to the small but growing evidence of a relation between African Amer-
ican women’s exposure to interpersonal racial discrimination and pregnancy outcomes.
We found that African American mothers who delivered [very low birthweight] preterm
infants were more likely to report discrimination during their lifetime than African Amer-
ican mothers who delivered [normal birthweight] infants at term...the reported lifelong
accumulated experiences of interpersonal racial discrimination by African American
women constitute an independent risk factor for infant [very low birthweight].

Work by Hirsch (2003) suggests that obesity, which is also seriously epi-
demic in the USA, is a developmental disorder with roots in utero or early
childhood. Hirsch and others have developed a ‘set point’ or homeostatic the-
ory of body weight, finding that it is the process which determines that ‘set
point’ which needs examination, rather than the homeostasis itself, which is
now fairly well understood. Hirsch concludes that the truly relevant question is
not why obese people fail treatment, it is how their level of fat storage became
elevated, a matter, he concludes, is probably rooted in infancy and childhood,
when strong genetic determinants are shaping a still-plastic organism. In this
regard, Bjorntorp (2001) finds that embedding psychosocial stress is a principal
determinant of obesity at both the individual and population levels.

Somewhat less conclusively, a lively debate rages regarding various possible
subforms of psychopathy, a mental disorder characterized by a long history of
manipulative, impulsive, and callous antisocial ‘cheating’ behavior. Mealey
(1995) places the disorder in an evolutionary perspective as either a genetically
determined or an acquired ‘life history strategy’ very similar to Nunney’s (1999)
analysis of cancer, albeit at the social rather than cellular level of interaction.
Paris (1993) attempts to provide a comprehensive, integrative, biopsychosocial
perturbed ‘condition-development’ model for personality disorders. Lalumiere
et al. (2001), by contrast, find evidence for a strict life-history strategy model,
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concluding, as a result of studies on children and adolescents, that “If psychopa-
thy is a result of condition-development, the environmental triggers are likely to
operate very early”. Thereview by Herpertz et al. (2000) examines the hypothe-
sis that pathologically neglectful parenting and early social rejection contribute
to onset of the disorder, particularly in the context of ‘individualistic’ social
structures (Cooke, 1996). We speculate that it is possible to place the ‘social
cheating’ of psychopathy in the same context as Nunney’s cellular cheating for
cancer, consequently being subject to the standard pattern of gene-environment
‘norms of reaction’ emerging as structured psychosocial stress acts over the
course of child development, probably beginning in utero.

It almost goes without saying that the diagnosis of psychopathy (like other
‘personality disorders’) is very much concentrated in prison subpopulations.
These always have marked ethnic and ‘racial’ structure as a consequence of
formal patterns of discrimination, economic deprivation, and various forms
of Apartheid ~ all constituting structured psychosocial stressors which write
literal images of themselves upon their victims either through induction of
developmental disorders or as adaptation pressures.

Anxiety disorders have a long history of attribution to developmental fac-
tors and early childhood exposures (Bandelow et al., 2002). More generally,
Egle et al. (2002) find evidence that early biological and psychosocial stress
in childhood is associated with long-term vulnerability to various mental and
physical diseases. Research findings have, in their view, accumulated on those
emotional, behavioral and psychobiological factors responsible for the medi-
ation of lifelong consequences including increased risk of somatization and
other mental disorders such as anxiety, depression and personality disorders.
These often result in high-risk behaviors that are associated with physical dis-
ease — cardiovascular disorders, stroke, hepatitis C, type 2 diabetes, chronic
lung disease, as well as with aggressive behavior.

These case histories appear to present specific instances of a comprehensive
general phenomenon affecting the etiology of the larger spectrum of chronic
and comorbid mental and physical disorders, in the sense that structured psy-
chosocial stress can literally write an image of itself upon the developing child,
and if acute enough, on the adult, initiating trajectories to comorbid mental and
chronic physical disorder.

Such disorder must inevitably constitute a powerful context for individual
consciousness: mind-body dysfunction will always have profound impact on
conscious experience and the possibilities for voluntary action.

The next example suggests that such interactions may involve ‘second order’
as well as direct effects.
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2.8  Schizophrenia

Schizophrenia appears to fall broadly within the paradigm of a developmental
cognitive disorder (Lewis and Levitt, 2002; Allin and Murray, 2002). Within the
United Kingdom schizophrenia is, however, significantly more prevalent among
Afro-Caribbean immigrants subject to chronic unemployment, early separation
from parents, and perhaps racial discrimination, when compared with non-
migrants of either majority or minority ethnicity (Mallett et al., 2002). For the
U.S. there is some controversy as to the propensity of majority clinicians to over-
diagnose schizophrenia among minority patients, perhaps masking underlying
demographic patterns. As Gaughran et al. (2002) note, however, there is good
evidence of immune activation in schizophrenia. Up to a third of patients has an
autoimmune condition clinically unrelated to their psychiatric illness, and first
degree relatives of people with schizophrenia also have increased incidence of
autoimmune disease.

Torrey and Yolken (2001) note the similarities and contrasts between schizo-
phrenia and rheumatoid arthritis. Both are chronic, persistent diseases display-
ing lifelong prevalence and a relapsing and remitting course. Both are felt to
involve environmental insults occurring in genetically susceptible individuals,
and their diagnosis depends upon syndromal diagnostic criteria which have been
developed by committees and have changed over time. Many studies, however,
have observed a striking inverse correlation — an ‘anticomorbidity’ — between
the two diseases, although both are believed to run in families, with a popula-
tion prevalence of about one percent. That is, people with schizophrenia seem
less likely to suffer from rheumatoid arthritis, although perhaps more likely to
suffer autoimmune disease in general.

This begins to resemble the retinal ‘nonorthogonal eigenmode’ patterns dis-
cussed above.

Grossman et al. (2003) describe how the recent emphasis on schizophrenia as
a developmental disorder has focused on characterizing the role of non-genetic
factors in the development of symptom patterns. Certain prenatal and peri-
natal environmental exposures, including maternal stress and malnourishment,
and obstetric complications such as low birth weight, have been reported to be
associated with increased susceptibility to the disorder. Increased incidence
has also been reported in children born to mothers who experienced infec-
tion from influenza or rubella during the second trimester of pregnancy. Thus
early neurodevelopmental processes may be compromised, laying groundwork
for disorder when taxed by later developmental demands, for example those
associated with the stressful periods of social development in childhood and
adolescence.

Rothermundt et al. (2001) further summarize at some length the case for both
the infection and autoimmune hypotheses regarding onset of schizophrenia.
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Torrey and Yolken (2001) conclude that the negative association between
schizophrenia and rheumatoid arthritis may depend on the timing of some crit-
ical exposure, e.g. that exposure in utero or childhood produces schizophrenia,
while exposure in adulthood produces rheumatoid arthritis. A slightly dif-
ferent hypothesis, consistent with the mathematical exercises above, is that
rheumatoid arthritis and schizophrenia characterize different atypical mixed
eigenmodes falsely and recurrently identified as zero states by the progressive
failure of the ZMI module. Such would tend to be mutually exclusive, although
not absolutely so since the eigenmodes are not orthogonal.

A broadly similar pattern has been commented on by Karlsson et al. (2001),
who found homologous sequences of the HERV-W family of endogenous retro-
viruses in the cerebro-spinal fluid of newly-diagnosed individuals with schizo-
phrenia and in other subjects having multiple sclerosis. Karlsson et al. (2001)
speculate it is possible that individuals with schizophrenia and multiple scle-
rosis undergo the activation of similar retroviral sequences but differ in terms
of genetically determined responses to the retroviral activation. Schizophrenia
and multiple sclerosis are distinct clinical entities and have different patho-
logical manifestations, gender ratios, and clinical courses, but share a number
of epidemiological features including age of onset, seasons of birth, and ge-
ographic distributions. In addition, however, some patients display clinical
manifestations of both diseases.

Similarly, rigorous studies by Dupont et al. (1986), Gulbinat et al. (1992)
and Mortinsen (1989, 1994) followed large Danish and Dutch cohorts of pa-
tients with schizophrenia. When adjusted for smoking patterns, these showed
marked and highly significant reduction in a broad variety of cancers. More re-
cent work by Cohen et al. (2002) adjusted for age, race, gender, marital status,
education, net worth, smoking, and hospitalization in the year before death,
for a large US sample likewise found greatly reduced risk of cancer among
persons diagnosed with schizophrenia. Catts and Catts (2000) speculate that
such results are driven by hyperactivation of the p53 tumor suppressor/apoptosis
gene during neurodevelopment, causing long-term developmental dysfunction,
while Teunis et al. (2002) suggest, from animal model studies, that the hy-
perreactive dopaminergic system characteristic of schizophrenia inhibits tumor
vascularization.

These examples, again, strongly suggest a ‘nonorthogonal eigenmode’ pat-
tern in which the ZMI module, including both immune function and the larger
system of tumor control mechanisms within a unified and broadly cognitive
structure, fails in a systematic manner, producing characteristic spectra of co-
and antico- morbidities among different dysfunctions.

It appears that, at the population level, structured psychosocial stress can
also exert a ‘higher order eftect,’ producing different spectra of co- and antico-
morbidities between schizophrenia and other disorders within powerful and
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marginalized subgroups. This prediction, which extends the analysis of Section
2.7, should be empirically testable.

3.  The Hierarchical Cognitive Model

An essential characteristic of cognition in this formalism involves a function
h(z) which maps a (convolutional) path z = ag, a1, ..., Gn, ... ONto a member
of one of two disjoint sets, By or B;. Thus respectively, either (1) h(z) € By,
implying no action taken, or (2), h(x) € Bj, and some particular response is
chosen from a large repertoire of possible responses. The problem of defining
these two disjoint sets arises, and a ‘higher order cognitive module’ seems
needed to identify what constituted By (the set of ‘normal’ states), a matter
which may vary according to the challenges faced by the organism.

We suppose that higher order cognitive module, Zero Mode Identification,
interacts with an embedding language of structured psychosocial stress (or
other systemic perturbation) and, instantiating a Rate Distortion image of that
embedding stress, begins to include one or more members of the set B; into the
set By. Recurrent ‘hits” on that aberrant state would be experienced as episodes
of highly structured comorbid mind/body pathology.

Empirical tests of this hypothesis, however, all quickly lead into real-world
regression models or their time series variants, involving the interrelations of
measurable biomarkers, beliefs, behaviors, neural correlates, reported thoughts
and feelings, and so on. This has certain theoretical as well as practical conse-
quences, and a recapitulation of regression is in order, much in the spirit as was
consideration of the visual retina.

The General Linear Model so familiar to empirical researchers is based on
several critical assumptions. In the simplest case, following Snedecor and
Cochran (1979, p. 141), there are three essential restrictions on the relation
between independent and dependent variates X and Y:

1. For each selected X there is a Normal distribution of Y from which the
sample value of Y is drawn at random. If desired, more than one ¥ may be
drawn from each distribution.

2. The population of values of ¥ corresponding to a selected X has a mean
w that lies on the straight line

p=a+8(X —-X)=a+ gz,

where o and (3 are parameters to be estimated. X is the mean of X

3. In each population the standard deviation of ¥ about its mean « + Jx has
the same value, assumed constant as z varies.

The mathematical model is specified concisely by the equation

Y=a+p0z+e

where € is a random variable drawn from an appropriate Normal distribution.
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The central problem then becomes the statistical estimation of the parameters
« and 3 from observational data.

Variants of this model range from multiple regression, to canonical cotre-
lation, and, more recently, our own work on estimating system response to
external perturbation (D. Wallace and R. Wallace, 2000). Similar methods can,
of course, be used for more complicated ‘linearizable’ problems, for example
fitting to polynomials or exponentials in z.

A particularly important generalization of linear regression is the hierarchi-
cal linear model in which the parameters of a set of regressions conducted at
one scale are treated as variables in a regression conducted at a larger scale.
An example would be models relating health indices to income measures for
individuals which are each conducted at the Zip Code level across a set of Zip
Codes differing in some set of characteristic measures. Creating a hierarchical
model would involve a regression expressing the slope and intercept ‘constants’
of the individual-scale regressions as a function of the Zip Code characteristics.
Again, Byrk and Raudenbusch (2001) is the classic reference.

Indeed, as Anderson (1971) comments, many of the statistical techniques
used in time series analysis are actually those of regression analysis — classical
least squares theory — or adaptations or analogs of them, often translated from
time-domain to frequency domain via Fourier or related transforms.

All such methods are, however, organized around the Central Limit Theorem.

Languages, as information sources, are different, being much more highly
structured, and cannot be addressed in quite the same manner. Here we, in
effect, propose a General Cognitive Model for punctuation and other behavior
in cognitive systems based, not on the Central Limit Theorem, but rather on
the Shannon-McMillan Theorem, as modulated by the obvious homology with
free energy density. The trick is to associate a cognitive process with a dual
information source which is adiabatically piecewise memoryless ergodic, using
renormalization formalism at punctuation, and generalized Onsager relations
away from punctuation. The model may, itself, be iterated to higher order in
renormalization parameters, much as the HLLM generalizes the GLM.

The central problem of the General Cognitive Model or its hierarchical ex-
tension, the HCM, then becomes, in analogy with the GLLM and the HLM,
the estimation, from observational data, of the renormalization relation and its
‘universality class’ parameters, which may be both tunable and distributed, and,
away from punctuation, the gencralized Onsager relations. This must be done in
the context of possible complications resulting from second-order punctuation
which is the precise analog of the HLM.

The different possible renormalization schemes or Onsager relations for the

GCM or the HCM are analogous to different possible polynomial or exponential
fittings in the GLM or its hierarchical extension.
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Generalized parameter estimation for such models appears fiendishly diffi-
cult, except perhaps under very restricted experimental conditions. .

In defense of the proposed empirical technique, cognitive and conscious
processes are themselves fiendishly complicated, and what we have done may
well be as simple as things can realistically be made — the cognitive equivalent
of a straight line regression relation or simple time series analysis.

As is often true for the GLM, analysis of ‘residuals’ from fitting a GCM
or HCM might well provide critical scientific insight: the GCM could serve
as a compelling theoretical benchmark against which to compare real data.
However, the realities of experimental technique necessarily require a strong
interrelation between the proposed GCM and the standard GLM.

4. Evading the mereological fallacy

We have constructed a punctuated, information-dynamic statistical model
of the global neuronal workspace — the HCM — incorporating a second-order
and similarly punctuated universality class tuning linked to detection and inter-
pretation of structured external signals. The model, which features a ‘tunable
retina’ atlas/manifold topology, suggests that tuning the punctuated activation
of attention to those signals permits more rapid and appropriate response, but
at increased physiological or other opportunity cost: unconscious processing
is clearly more efficient, if the organism can get away with it. On the other
hand, if the environment is threatening, the organism cannot always get away
with it, suggesting a strong evolutionary imperative for a dynamic global neural
workspace.

Linkage across individual dynamic workspaces — human hypersociality in
the context of an embedding epigenetic system of cultural inheritance — would
be even more adaptationally efficient. Indeed, equations (5.9-5.11) suggest the
possibility of very strong linkage of individual consciousness and physiology
to embedding sociocultural network phenomena, ultimately producing an ex-
tended model of consciousness which does not fall victim to the mereological
fallacy.

In just this regard Nisbett et al. (2001), following in a long line of research
(Markus and Kitayama, 1991, and the summary by Heine, 2001), review an
extensive literature on empirical studies of basic cognitive differences between
individualsraised in what they call ‘East Asian’ and ‘Western’ cultural heritages,
which they characterize, respectively, as ‘holistic’ and ‘analytic.” They find:

1. Social organization directs attention to some aspects of the perceptual
field at the expense of others.

2. What is attended to influences metaphysics.

3. Metaphysics guides tacit epistemology, that is, beliefs about the nature of
the world and causality.
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4. Epistemology dictates the development and application of some cognitive
processes at the expense of others.

5. Social organization can directly affect the plausibility of metaphysical
assumptions, such as whether causality should be regarded as residing in the
field vs. in the object.

6. Social organization and social practice can directly influence the devel-
opment and use of cognitive processes such as dialectical vs. logical ones.

Nisbett et al. (2001) conclude that tools of thought embody a culture’s
intellectual history, that tools have theories built into them, and that users accept
these theories, albeit unknowingly, when they use these tools.

Individual consciousness — exemplified by the dynamic global neuronal
workspace model — appears to be profoundly affected by cultural, and perhaps
developmental, context, and, we aver, by patterns of embedding psychosocial
stress. These are all matters subject to a direct empirical study which may lead
to an extension of the concept particularly useful in understanding certain forms
of psychopathology.

Current dynamic systems models of neural networks, or their computer sim-
ulations, simply do not reflect the imperatives of Adams’ (2003) informational
turn in philosophy. Dynamic systems models based on differential equations,
or their difference equation realizations on computers, are pursued nonetheless
because they have a history of intense and continuous intellectual development
going back to Isaac Newton. Hence very little new mathematics needs to be
done, and one can look up most required results in the textbooks, which are
quite sophisticated by now. By contrast, rigorous probability theory is per-
haps a hundred years old, its information theory subset has seen barely a half
century, and the tunable retina atlas/manifold formalism is still under develop-
ment. Consequently the mathematics cannot always be looked up, and must
often be created de novo, with considerable difficulty. Relentless application
of the dynamic systems paradigm to consciousness reminds one, not originally,
of a drunk looking for his lost car keys under a street lamp ‘because the light is
better here’.

Nisbett’s caution that tools of thought embody a cultural history whose built-
in theories users implicitly adopt is no small matter: dynamical systems theory
carries with it more than just a whiff of the 18th Century mechanical clock,
while statistical mechanics models of neural networks cannot provide natural
linkage with the sociocultural contexts which carry the all-important human
epigenetic system of heritage (Richerson and Boyd, 2004).

Again, to paraphrase Heine (2001), the extreme nature of U.S. cultural in-
dividualism raises the specter that work based on late 20th Century American
research not only stands the risk of developing an understanding of conscious-
ness that is particular to that culture, but also of developing an understanding
of consciousness that is peculiar in the context of the world’s cultures.
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Even when going somewhat beyond dynamic systems theory, most current
applications of information theory to the global neuronal workspace appear to
have strayed far indeed from the draconian structural discipline imposed by the
asymptotic limit theorems of the subject. Information measures are of relatively
little interest in and of themselves, serving primarily as grist for the mills of
splitting criteria between high and low probability sets of behavioral paths. This
is the central mechanism whose extension, using a homology with free energy
density, permits exploration of tunable punctuation in a manner consistent with
the program described by Adams (2003).

According to the mathematical ecologist E.C. Pielou (1976, p.106), the le-
gitimate purpose of mathematical models is to raise questions for empirical
study, not to answer them, or, as one wag put it, “all models are wrong, but
some models are useful.”” The natural emergence of tunable punctuation in
our treatment, albeit at the expense of elaborate renormalization calculations at
transition, and generalized Onsager relations away from it, suggests the possi-
ble utility of the theory in future empirical studies of consciousness. The car
keys really may have been lost in the dark parking lot down the street, but here
is a new flashlight.

We have outlined an empirically-testable approach to modeling conscious-
ness which returns with a resounding thump to the classic asymptotic limit
theorems of communication theory, and suggests further the necessity of incor-
porating the effects of embedding structures of psychosocial stress and culture.
The theory suffers from a painful grandiosity, claiming to incorporate matters
of cognition, consciousness, social system, psychopathology, and culture into a
single all-encompassing model. To quote from a recent review of Bennett and
Hacker’s new book, (Patterson, 2003), however, contemporary neuroscience
itself may suffer a more pernicious and deadly form of that disorder for which
our approach is, in fact, the antidote:

[Bennett and Hacker] arguc that for some neuroscientists, the brain does all manner of
things: it believes (Crick); interprets (Edelman); knows (Blakemore); poses questions to
itself (Young); makes decisions (Damasio); contains symbols (Gregory) and represents
information (Marr). Implicit in these assertions is a philosophical mistake, insofar as it
unrcasonably inflates the conception of the ‘brain’ by assigning to it powers and activities
that are normally reserved for sentient beings... these claims are not false; rather they
are devoid of sense.

This is but one example of a swelling critical chorus which will grow markedly
in virulence and influence. Our development, or some related version, leads to-
ward explicit incorporation of the full ‘sentient being’ into observational studies
of consciousness. For humans, whose hypersociality is both glory and bane,
this particularly involves understanding the effects of the embedding social and
cultural system of epigenetic inheritance on immediate conscious experience —
searching for the torus and the sphere.
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The bottom line would seem to be, very much in the spirit of Pielou’s caution
regarding the utility of mathematical models, the urgent necessity of extending
the perspectives of Markus and Kitayama (1991) and Nisbett et al. (2001) to
brain imaging and other empirical studies of consciousness and its disorders, and
expanding the global neuronal workspace model accordingly, a matter which
our development here suggests is indeed possible, if not straightforward.

The evolutionary anthropologist Robert Boyd has commented that “Culture
is as much a part of human biology as the enamel on our teeth.” An appropriate
paraphrase might well read “Culture is as much a part of human consciousncss
as the neurons in our brains.”

Although we have left the intellectual history of these matters to Barrs and
others, another way of putting it is to say that William James’ stream of con-
sciousness has cultural riverbanks and historical shoals which define its speed,
depth, and possible directions.

The scientific mapping of that cultural hydrogeography is overdue.
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Appendix A
Coarse-Graining

We use a simplistic mathematical picture of an elementary predator/prey
ecosystem for illustration. Let X represent the appropriately scaled number of
predators, Y the scaled number of prey, ¢ the time, and w a parameter defining
the interaction of predator and prey. The model assumes that the system’s
‘keystone’ ecological process is direct interaction between predator and prey,
so that

dX/dt = wY

dY/dt = —wX.

Thus the predator populations grows proportionately to the prey population,
and the prey declines proportionately to the predator population.

After differentiating the first and using the second equation, we obtain the
differential equation

d*X/dt* + w? X =0,
having the solution
X(t) = sin(wt); Y(t) = cos{wt),
with
X(t)?2 +Y()? = sin®(wt) + cos*(wt) = 1.

Thus in the two dimensional ‘phase space’ defined by X (t) and Y (¢), the
system traces out an endless, circular trajectory in time, representing the out-
of-phase sinusoidal oscillations of the predator and prey populations.
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Divide the X — Y ‘phase space’ into two components — the simplest ‘coarse
graining’ - calling the halfplane to the left of the vertical Y-axis A and that to
the right 3. This system, over units of the period 1/(27w), traces out a stream
of A’s and B’s having a very precise ‘grammar’ and ‘syntax’:

ABABABAB...

Many other such ‘statements’ might be conceivable, for example,

AAAAA..,BBBBB..., AAABAAAB..., ABAABAAAB...,

and so on, but, of the obviously infinite number of possibilities, only one is
actually observed, is ‘grammatical’: ABABABAB....

Note that finer coarsegrainings are possible within a system, for example
dividing phase space in this simple model into quadrants, producing a single
‘gramatical’ statement of the form ABCDABCDABCD....

The obvious, and difficult, question is which coarsegraining will capture
the essential behaviors of interest without too much distracting high-frequency
‘noise’.

More complex dynamical system models, incorporating diffusional drift
around deterministic solutions, or even very elaborate systems of complicated
stochastic differential equations, having various ‘domains of attraction’, i.e. dif-
ferent sets of grammars, can be described by analogous ‘symbolic dynamics’
(e.g. Beck and Schlogl, 1993, Ch. 3).
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