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Introduction

A major issue in consciousness research has to do with the nature of first person
experience. Experience of mathematics and mathematical objects is an aspect of
this. How can people do mathematics? What internal cognitive structures and
processes provide a foundation for mathematical thought? What is the ontologi-
cal status of the objects of such thought?

George Lakoff and Rafael Núñez (henceforth L&N) consider mathematical
abilities from the perspective of linguistics (Lakoff’s specialty) and cognitive
science (Núñez’s specialty). In a stimulating, provocative, and ultimately flawed
book they seek to establish that mathematical ability is based on metaphors that
allow conceptualization of abstract mathematical ideas in terms of the inferential
structure of more concrete sensory and motor images. By locating the basis of
mathematical ability in metaphors that are neurally embodied, they locate math-
ematical experiences with all other (supposed) neural correlates of conscious-
ness. Their book is, however, frustrating. There are two reasons for this. The first
is the number of mathematical errors. The second is the authors’ underlying hos-
tility to views of mathematics other than their own. Similar criticisms have been
made by a number of mathematical reviewers of the book (Gold, 2001;
Auslander, 2001; Paulos, 2001; Goldin, 2001; Henderson, 2002).

L&N’s view of mathematics is consistent with that taken by Ruben Hersh
(1997) as well as with the social constructivism of Paul Ernest (1998). The stron-
gest emphasis, however, is placed on the idea of neural embodiment. Indeed,
L&N call their view ‘embodied mathematics’. They assert, ‘Mathematics as we
know it is limited and structured by the human brain and human mental
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capacities. The only mathematics we know or can know is a brain-and-mind-
based mathematics.’ With their next step, however, they enter slippery philo-
sophical territory by proclaiming that, ‘There is no way to know whether
theorems proved by human mathematicians have any objective truth, external to
human beings or any other beings.’

Summary of the Book

The first two chapters provide necessary background concepts from cognitive
science. The basic point is that humans have an innate capacity to recognize
small numbers of objects, to remember short lists, to estimate, to use symbols,
and to repeat actions.2 L&N’s thesis is that more complex mathematical thought
and practice is grounded in these basic cognitive capacities through metaphoric
elaboration and conceptual blending.3

Most important are ‘grounding metaphors’, which allow projections ‘from
everyday experience (like putting things into piles) onto abstract concepts (like
addition)’ and ‘linking metaphors’, that make connections between different
branches of mathematics. An example of a grounding metaphor is: ‘Sets Are
Containers’, while an example of a linking metaphor is ‘Lines Are Collections of
Points’. An important linking and grounding metaphor is the ‘Basic Metaphor of
Infinity’ (BMI). All the mathematical uses of infinity are supposed to arise from
‘a single general conceptual metaphor in which processes that go on indefinitely
are conceptualized as having an end and an ultimate result’.

It is important to understand that the word metaphor is used in a technical
sense as, ‘a grounded inference-preserving cross-domain mapping — a neural
mechanism that allows us to use the inferential structure of one conceptual
domain (say, geometry) to reason about another (say arithmetic)’.

While it is possible to question some of the metaphors that are proposed,4 and
to criticize the lack of appeal to other facets of cognitive science that may have
equal relevance (Goldin, 2001), this book makes an important contribution.
Unfortunately, L&N do not restrict themselves to the cognitive basis of mathe-
matical ability and it is at this point that they go astray. With apparent ideological
motives, they try to discredit what they call the ‘Romance of Mathematics’. As
defined by them, this is a straw man, combining an extreme version of mathemat-
ical Platonism with an elitist view of mathematics as the ultimate science, and
mathematicians as the ultimate experts on rationality.5
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[2] Research on this apparently innate ‘number sense’ is described in detail in an excellent book by
Debaene (1997).

[3] For a review of research on conceptual blending see Fauconnier & Turner (2002).

[4] Henderson (2002) suggests an alternate metaphor of infinity, for example.

[5] This criticism is not new. The Islamic theologian Abu Hamid al Ghazali (1058–1111), in his Confes-
sions, criticizes the notorious impiety of mathematicians, whose status as experts on rationality, so he
asserts, sets a bad example that can lead the true believer astray.



An Important Error

It serves no purpose to list all the mathematical errors in the book, but one mis-
take is worth discussing because it illustrates a significant point. L&N claim to
have invented ‘granular numbers’. They do this through a construction that uses
the BMI to generate a ‘first infinitesimal number’ that is the basis for the granular
numbers. This is where they fall into error. As Gold (2001) points out, no such
‘first infinitesimal’ exists. L&N (2001) have not responded to this by accepting
that something must be wrong with their derivation. Instead, they say that they
have ‘invented the granulars by applying the BMI. This is overtly not a process
within formal mathematics. It is the use of a cognitive process for creating math-
ematical ideas.’ They go on to say that their ‘invention’ of the first infinitesimal
‘is not a mathematical result in the classic sense (i.e., it is not a result obtained by
proving a mathematical theorem). Therefore it is not a “mathematical error” to
say such a thing.’

This shows a profound misunderstanding of mathematics — both of what it is
and of how it is developed. Mathematical results are not just formal proofs. They
include, among other things, the formulation of new definitions — inventing,
creating, or discovering new mathematical ideas. L&N seem to think that this
creative aspect of mathematics is nothing more than a matter of the clever appli-
cation of conceptual metaphors. They say: ‘“The first infinitesimal” is a conse-
quence of the inferential structure of the BMI…. The fact that this infinitesimal
is the “first infinitesimal,” is an entailment of the metaphor….’ As it happens,
though, their concept is nonsense. The error lies in the definition. Omitting
details, it boils down to defining this purported object as a number having the
form 1/H where H is an integer greater than all real numbers. Since all integers
are real numbers, however, this definition is stating that H is an integer greater
than any integer. Use of the BMI has led to contradiction.6

Gold notes that application of the BMI requires bridging the gap between the
finite steps of an infinite, or infinitely repeated sequence, and the projected end-
point of this sequence. L&N say this is a misunderstanding on her part since the
BMI simply assumes that the sequence has a final end or result. They fail to get
the point. Her remark is about the transition from metaphoric entailment to math-
ematical definition. It is not enough to say that something is metaphorically
generated and therefore is a legitimate mathematical idea. It must also be demon-
strated that the idea generated is free of contradiction. Conceptual metaphors can
only be trusted so far — eventually there will be a point at which they break
down. Indeed, much of abstract mathematics begins at exactly the point where a
metaphor breaks down; where our expectations turn out to have led us astray.
When we come to that point, continued reliance on the metaphor leads to illu-
sion. Any further progress depends on pure abstraction.
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[6] More precisely, unreflective application of the BMI leads to a conclusion that suffers from the fallacy
of continuity — the assumption that the properties of the limit of an infinite sequence must be the
same as the properties of points in the sequence itself.



Is There a Transcendent Mathematical Reality?

Plato himself regarded mathematics as a bridge between the illusory world of the
senses and the true reality of ideal Forms. Mathematicians may require sensory
images, such as geometric diagrams, but the actual content of mathematics is
pure form; not a particular imperfect triangle, drawn in sand, but the idea of a
triangle. With training, the step from the sensory world of images to the abstract
world of pure Forms becomes easier and a person becomes capable of recogniz-
ing the higher Forms of Truth, Beauty, Justice, and finally, the Good.

Mathematical Platonism, however, is a modern term coined by Paul Bernays
(1935) to describe the folk psychology of most mathematicians. In various forms
it involves a belief that mathematics exists in a transcendent, mind-independent
reality; that mathematical objects are objectively real; and that mathematical
truth is certain, universal, and absolute.

In this Platonic view, mathematics is a pleroma that can never be exhausted by
finite human minds. Hence, a distinction is made between the world of transcen-
dental mathematics and the mathematics that is humanly comprehensible;
between what Gödel (1995) called objective and subjective mathematics. Human
mathematicians are in the position of explorers and mathematical results are dis-
coveries rather than inventions or human creations; reports on territory that
mathematicians have explored.7

L&N, however, reject the idea of transcendent mathematical reality as a
source of mathematical elitism. They mount a two-pronged attack.

Their first line of attack goes back to Aristotle, who inquired whether the Ideal
Triangle was equilateral or isosceles. The form of the argument is that if there is a
transcendent mathematics then the mathematical ideas it contains must be
unique. For example, there must be a unique transcendent idea of numbers,
something that numbers ‘really are’. But, L&N argue, numbers are ‘character-
ized in mathematics in ontologically inconsistent ways’. As an example of this
claim they point out that depending on the branch of mathematics, numbers can
be thought of as points on the number line, as sets, and as positional values in
combinatorial games. Each of these, however, excludes the other two. Sets are
not points on the number line, and neither of these are positions in combinatorial
games.

This argument fails because it is based on confusion between an ideal and its
possible forms of representation — between the container and the content. The
various descriptions of numbers are not ‘ontologically inconsistent’ because the
representations used for numbers in each case are epistemological. They are how
numbers are known in the given system. It is precisely the fact that numbers
appear in such a great variety of contexts, defined in apparently inconsistent
ways, that prompts us to abstract the concept of number itself.

The second attack begins with the reasonable claim that all human capacities
must ‘be accounted for by neural and cognitive mechanisms’. Thus, mathemati-
cal ability must be grounded in cognitive capacities, their metaphoric extensions,
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[7] An excellent discussion of mathematical Platonism is given in Rucker (1982).



and in the neural mechanisms that underlie these. From this, L&N conclude that
even if there were some form of transcendent mathematics, we could never know
it and, while this existence cannot be disproved, it is irrelevant except in terms of
the negative social and cultural effects that it produces.8

This is a version of the only strong argument that has ever been raised against
the Platonic view of mathematics: there is no apparent way that the limited and
sensory bound human mind could ever have access to a mind-independent world
(see, e.g., Benacerraf & Putnam, 1983). The argument fails: the fact that human
mathematics is based in human cognitive capacities does not mean that these
capacities cannot provide recognition of transcendent mathematical truth. What
it does do is point to the well-known issue of qualia, and to the hard problem of
consciousness.

Kurt Gödel, an avowed Platonist, maintained that the question of the reality of
mathematical objects is no different from the question of the reality of sensory
objects. Perceptions of sensory objects are constructed in the mind by cognitive
operations on sensory intuitions. Perceptions of mathematical objects are con-
structed in the mind by cognitive operations on mathematical intuitions. There is
no reason, in principle, to privilege one set of perceptions over the other by
assigning it ‘true’ reality. What is more fruitful is to explore the nature of the
constructions.

It may seem that the perception of sensory objects is more objective because
there is a causal story — objects are assumed to exist and to have properties that
cause their perception. Light from an object falls on the retina exciting electro-
chemical impulses that travel along the optic nerve to visual areas in the brain
where the signals are processed into neural patterns of excitation that are the
neural correlates of the experience of seeing, for example, a tree. Where is the
equivalent causal story in mathematics?

One response is that when a mathematician ‘sees’ the truth of a theorem, the
neural activity that allows physical seeing, coupled to neural activity underlying
basic combinatorial operations on visually perceived symbols, allows a percep-
tion that a certain sequence of symbol manipulations is valid.9

This is not what most mathematicians mean, however, when they speak of
‘seeing’ a mathematical truth. It is a more direct recognition of something that is
experienced as mind-independent. Although they would be loath to admit it,
L&N point to a possible answer to the question of how such ‘seeing’ is possible.
We are caused to ‘see’ a mathematical object or a mathematical truth by the
neural activity involved in the employment of the cognitive metaphors used in
thinking about it, just as we are caused to ‘see’ a tree by the neural activity
involved in the sensory processing that results in the perceived image of a tree.
There is, in other words, a direct analogy between everyday sensory qualia such
as colours, and perceptions of abstract mathematical objects.
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[8] This form of argument goes back to the ancient sophist Gorgias (de Romilly, 1992): it doesn’t exist;
even if it did exist, nobody could know it; even if somebody could know it, they could never commu-
nicate their knowledge.

[9] This view characterizes the formalist school of mathematics.



As often formulated, the problem of access to mind-independent mathemati-
cal objects is misconceived. The mystery is not in the ability to perceive mathe-
matical objects, but in the ability to perceive any ‘object’ whatsoever.

Mathematics, as carried out by human beings, is embodied. It suffers all of the
slings and arrows that go along with that embodiment. In emphasizing this,
Lakoff & Núñez perform a valuable service. Ironically, however, their attempt to
give mathematics a more human face ignores what is perhaps the most signifi-
cant human aspect of mathematics. For the Platonist, it is the ability to have intu-
itive access to what is transcendent, whatever the mode of its existence, that is
uniquely human.
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