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Foreword

Electromagnetism has been studied and applied to science and technology for the 
past century.  It is mature field with a well developed theory and a myriad of 
applications.  Understanding of electromagnetism at a deep level is important for 
core understanding of physics and engineering fields and is an asset in related fields 
of chemistry and biology.  The passing of the knowledge of electromagnetism and 
the skills in application of electromagnetic theory is usually done in university 
classrooms. 

Despite the well developed literature and existing texts there is a need for a volume 
that can introduce electromagnetism to students in the early mid portion of their 
university training, typically in their second or third year.  This requires bringing 
together many pieces of mathematics and physics knowledge and having the 
students understand how to integrate this information and apply the information and 
concepts to problems.   

André Moliton has written a very clear account of electromagnetic radiation 
generation, and its propagation in free space and various dielectric and conducting 
media of limited and also infinite dimensions.  Absorption and reflection of 
radiation is also described. The book begins by reminding the reader in an 
approachable way of the mathematics necessary to understand and apply 
electromagnetic theory.  Thus chapter one refreshes the reader’s knowledge of 
operators and gradients in an understandable and concise manner.  The figures, 
summaries of important formulas, and schematic illustrations throughout the text are 
very useful aids to the reader.  Coulomb’s law describing the force between two 
charges separated by a distance r and the concept of electric field produced at a 
distance from a charge are introduced.  The scalar potential, Gauss’s theorem, and 
Poisson’s equation are introduced using figures that provide clarity to the concepts.  
The application of these concepts for a number of different geometries, 
dimensionalities and conditions is particularly useful in cementing the reader’s 
understanding.  Similarly in chapter one, Ohm’s law, Drude model, and drift 
velocity of charges are clearly introduced.  Ohm’s law and its limits at high 
frequency are described.  The author’s comments provide a useful perspective for 
the reader. 
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The introduction of magnetostatics and the relationships between current flow,
magnetic fields, and vector potential, and Ampère’s theorem are also introduced in
chapter one.  Again the figures, summaries of important formulas, and author’s
comments are particularly helpful.  The questions and detailed answers are useful
for retaining and deepening understanding of the knowledge gained.

Chapter two provides a useful and practical introduction to dielectrics.  The roles of 
dipolar charges, discontinuities, space charges, and free charges as well as homo-
and hetero-charges are illustrated in Figure 2.2.  The applications of the formulas
introduced in chapter one and the corresponding problems and solutions complete
this chapter. Similarly magnetic properties of materials are introduced in chapter
three.  Dielectric and magnetic materials are introduced in Figure 3.  The properties
of magnetic dielectric materials are described in Figure 4 together with a number of 
useful figures, summaries, problems, and solutions.

Maxwell’s equations together with oscillating electromagnetic fields propagating in
materials of limited dimensions are introduced and described in chapters five
through seven.  Propagation of oscillating electromagnetic waves in plasmas, and 
dielectric, magnetic, and metallic materials is described in chapter eight.  The
problems and solutions at the end of each chapter will be particularly helpful. 

The generation of electromagnetic radiation by dipole antennae is described in
chapter nine, with emphasis on electric dipole emission.  Absorption and emission of
radiation from materials follow in chapters ten and eleven.  Chapter twelve 
concludes with propagation of electromagnetic radiation in confined dimensions
such as coaxial cables and rectangular waveguides.

In sum, I recommend this book for those interested in the field of electromagnetic
radiation and its interaction with matter.  The presentation of mathematical
derivations combined with comments, figures, descriptions, problems, and solutions
results in a refreshing approach to a difficult subject.  Both students and researchers 
will find this book useful and enlightening. 

Arthur J. Epstein 
Distinguished University Professor 
The Ohio State University 
Columbus, Ohio
October 2006



Preface

This volume deals with the course work and problems that are common to basic 
electromagnetism teaching at the second- and third-year university level. The
subjects covered will be of use to students who will go on to study the physical 
sciences, including materials science, chemistry, electronics and applied electronics, 
automated technologies, and engineering. 

Throughout the book full use has been made of constructive exercises and 
problems, designed to reassure the student of the reliability of the results. Above all, 
we have tried to demystify the physical origins of electromagnetism such as 
polarization charges and displacement and Amperian currents (“equivalent” to 
magnetization). 

In concrete terms, the volume starts with a chapter recalling the basics of 
electromagnetism in a vacuum, so as to give all students the same high level at the 
start of the course. The formalism of the operators used in vectorial analysis is 
immediately broached and applied so as to help all students be well familiarized 
with this tool.  

The definitions and basic theories of electrostatics and magnetostatics then are 
established. Gauss’s and Ampère’s theories permit the calculation—by a simple 
route—of the electric and magnetic fields in a material. The calculations for charges 
due to polarization and Amperian currents caused by magnetization are detailed, 
with attention paid to their physical origins, and the polarization and magnetization 
intensity vectors, respectively. 

A chapter is dedicated to the description of dielectric and magnetic media such 
as insulators, electrets, piezoelectrets, ferroelectrics, diamagnets, paramagnets, 
ferromagnets, antiferromagnets, and ferrimagnets. 

Oscillating environments are then described. As is the tradition, slowly 
oscillating systems—which approximate to quasistationary states—are distinguished 
from higher-frequency systems. The physical origin of displacement currents are 
detailed and the Maxwell equations for media are established. The general properties 
of electromagnetic waves are presented following a study of their propagation in a 
vacuum. Particular attention has been paid to two different types of notation—used 
by dielectricians and opticians—to describe what in effect is the same wave. The 
properties of waves propagating in infinitely large materials are then described along 
with the description of a general method allowing determination of dynamic 
polarization in a material that disperses and absorbs the waves. The Poynting vector 
and its use in determining the energy of an electromagnetic wave is then detailed, 
followed by the behavior of waves in the more widely encountered materials such as 
dielectrics, plasmas, metals, and uncharged magnetic materials.  
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The following two chapters are dedicated to the analysis of electromagnetic field 
sources. An initial development of the equations used to describe dipole radiation in
a vacuum is made. The interaction of radiation with electrons in a material is
detailed in terms of the processes of diffusion, notably Rayleigh diffusion, and
absorption. From this the diffusion of radiation by charged particles is used to
explain the different colors of the sky at midday and sunset. Rutherford diffusion
along with the various origins of radiation also are presented. The theory for
absorption is derived using a semiquantic approximation based on the quantification
of a material but not the applied electromagnetic field. This part, which is rather
outside a normal first-degree course, can be left out on a first reading by
undergraduate students (even given its importance in materials science). It ends with
an introduction to spectroscopy based on absorption phenomena of electromagnetic
waves, which also is presented in a more classic format in a forthcoming volume
entitled Applied Electromagnetism and Materials.

The last two chapters look at the propagation of waves in media of limited
dimensions. The study of reflection and refraction of waves at interfaces between 
materials is dominated by the optical point of view. Fresnel’s relations are
established in detail along with classic applications such as frustrated total internal
reflection and the Malus law. Reflection by an absorbing medium, in particular
metallic reflections, is treated along with studies of reflection at magnetic layers and
in antiradar structures. Guided propagation is introduced with an example of a
coaxial structure; then, along with total reflection, both metallic wave guides and
optical guides are studied. The use of limiting conditions allows the equations of 
propagation of electromagnetic waves to be elaborated. Modal solutions are 
presented for a symmetrical guide.  The problem of signal attenuation, i.e., signal
losses, is related finally to a material’s infrared and optical spectral characteristics.

I would like to offer my special thanks to the translator of this text, Dr. Roger C. 
Hiorns. Dr. Hiorns is following post-doctorial studies into the synthesis of polymers
for electroluminescent and photovoltaic applications at the Laboratoire de Physico-
Chimie des Polymères (Université de Pau et des Pays de l’Adour, France). 
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Chapter 1 

Introduction to the Fundamental Equations of 
Electrostatics and Magnetostatics in vacuums 

and Conductors 

1.1.  Vectorial Analysis

1.1.1.  Operators

1.1.1.1.  Gradients

A gradient is the vectorial magnitude of a scalar. For example, the scalar ( ) which 
at point P has coordinates x,y,z, takes on a value (x,y,z). By definition, at the point
P (see Figure 1.1), the gradient of  is given by a vectorial magnitude, as in:

which is such thatPG(P)  grad (x, y, z), Pgrad i j k
x y z

y

z

P(x,y,z)

x

Figure 1.1 Coordinates of the point P. 
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1.1.1.2. Divergence

A divergence is an operator that is a scalar magnitude of a vector, for example, ,
and indicates its tendency. Here A

A
x(x,y,z), Ay(x,y,z) and Az(x,y,z) are the 

components of this vector. By definition, the divergence at the point P of  is given

by:

A
yx z

p
AA A

div A
x y z

 . 

1.1.1.3. Rotational

A rotational operator is a vectorial magnitude of a vector. By denoting the
components of  by AA x, Ay, and Az, the rotational for A  for P is by definition:

y yz x z
P

A AA A A
rot  A i - j  - k -

y z z x x y
xA

=

i j   k

x y
Ax   Ay  Az

z

1.1.1.4. Laplacian

The Laplacian, a differential operator, is a scalar magnitude of a scalar, and by 
definition the Laplacian of the scalar (x,y,z)  is given by the scalar for a point P as 

² ² ²
x² y² z²

.

1.1.1.5. Laplacian vector

The Laplacian vector is a vector magnitude operating on a vector. By definition the
Laplacian vector of A  with components Ax, Ay, and Az is given by:

x yA i A j A k Az .

1.1.1.6. Comment

These definitions can be used for all types of coordinates, whether cylindrical or
spherical. For example, the cylindrical coordinates such that r zOP  r e  z e ,
and with p being defined by the projection of a point P onto a flat surface Oxy so 
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that , , andr = Op z = pP rOx ,  e as detailed in Figure 2.1, the components

of the gradient vector are: 

y

P(x,y,z)

z

re

e

p

O

ze

x

for re :
r

,

for
1

e :
r

,

and for ze :
z

.

Figure 1.2. Cylindrical coordinates. 

Using the unit vectors ,re e  and e defined in Figure 1.3, the similar spherical
coordinates are given by (with ):r = OP

for re :
r

,

for
1

e :
r

,

and for 
1

e :
r sin

.

P(x,y,z)

z

e

p

O

e

re

y

x

Figure 1.3. Spherical coordinates. 

Given the coordinates r, , and  in Figure 1.3, the total volume of a sphere of 
radius R can be defined using the limits of r [0, R], of  [0, ], and of  [0, 2 ]. If 
were to be defined by , then its limits would be [- /2, /2], in which

case the gradient component for 

Op,OP

e  is 
1

r cos
.
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1.1.2.  Important formulae

The gradient, divergence, and rotational operators all bring into action differentials
so that if  is a constant, then

( V) V
x x

 ,

and if u and v are functions of x, then

(uv) v u
 u   v

x x x

grad ( )  grad  grad

div (aA ) = a divA+ ( grad a).A

div (A B ) = (rotA ).B - A.(rot B )

rot a A  = arotA + grad a A .

The schematization below can help in memorizing these important formulae:

grad

A          div

          rot A

(  )div grad

 (grad ) 0rot
(  A) 0div rot

(div A) A rot (rot A)grad

1.1.3.   Vectorial integrations

1.1.3.1. Vector  circulation or “curl”

By definition, the circulation of a vector denoted F  around an open curve (C) is

given by (see Figure 1.4a): T
P

(C)
M

F.dl F.dl .
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P
F

dl
(C)

M

F

dl
(C)

M P(a) (b)

Figure 1.4.  circulating around (a) an open curve and (b) a closed curve. F

For a closed curve, as shown in Figure 1.4b, the same circulation is given by
.(C)T F.dl

)

If  is a gradient, i.e.,  for example, then F F grad

P

M
T grad . dl (P) (M  . 

A simple verification of this result can be performed in one dimension (1D). For a
given axis (Ox) that defines the single dimension, the unit vector can be denoted as

 so that:i

grad i
x

 and dl i dx

and hence 

P P P

M M M
T .grad . dl i . idx d (P) - (M)

x

In three dimensions (3D), the definition for a scalar product directly yields
, which is in effect the same result.grad . dl d

From this can be derived directly that the curl of a gradient around a closed curve is
zero, as M P (see Figure 1.4b), so that (P) = (M) , from which T = .0
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1.1.3.2. The flux of the vector A

The flux of A through an open surface (S) that is not limited by a certain volume is 
given by , where 

S
A.dS dS dS n  with n  being the normal external to an

element of the surface described by dS. 

dS

Evacuated part of a form much like an 
emptied half egg shell

Figure 1.5a. Flux through an open surface. 

The flux of A  through a closed surface (S), delimited by a certain volume, is given 
by

S
A.dS  where dS dS n , and n  is the normal external to an element of

the surface denoted dS. 

dS
(S)

Closed surface, much like a whole egg shell which has 
a limited volume (V) equal to its contents 

Figure 1.5b. Flux through a closed surface. 

1.1.3.3. Integrated transformations

In most courses concerning vectorial analysis, the following are encountered:
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1. Ostrogradsky's theory M (
V S fermée

div  A d A .dSm) (Figure 1.6a) 

(S)

m describes the surface of the volume limited by S 

point M in V limited by S 

Figure 1.6a.  Points m and M relating to the surface and volume integrals. 

2. Stokes' theorem M(m)
C closed S

A .dl rot A.dS       (Figure 1.6b) 

m describes the closed curve C(C)

(S) M described by S sitting on C 

Figure 1.6b. Points m and M relating to the curvilinear and surface integrations. 

3. Gradient formula give by
V S

grad d dS ; and 

4. The rotational formula for the rotational, used in magnetism when determining the
expression for Ampèrian currents, as in

V S
rot A d dS A .

1.1.4. Terminology

1. A  is said to be derived from scalar potential if there is a scalar ( ) such that 
. By consequence, ifA -grad A -grad , then:

 as grad dl 0 , then A.dl 0  as an integral property of a vector derived
from a scalar potential; and
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 as M(m)
C closed S

A .dl rot A.dS (Stokes' theorem), then for the same conditions,

in a localized property of vectors derived from a scalar potentials. This
can also be understood by considering that if A
rot A = 0

 is derived from a scalar potential,
its rotational is zero. This property can be directly obtained from the general
formula, .rot(grad ) 0

2. The vector  is said to be derived from a potential vector if there is a vector ( )
such that it is possible to state 

B A
B rotA . As a consequence, if B rotA  then:

 Ostrogradsky's theorem makes it possible to state that 
B.dS div B d div(rot A) d 0 . In addition to which, if the vector

is derived from a vector potential, then the flux is conserved (as

B

B.dS O  is 
verified). This is an inherent property of vectors derived from vector potentials.

 generally speaking, from div(rot A) = 0 , then in this case, div B 0  , showing
the localized property of vectors derived from a vector potential.

1.2.  Electrostatics and Vacuums 

1.2.1.  Coulomb's law

FP

r MP P (q1)

MPu
 M (q)

Figure 1.7.   Coulomb's law. 

This is an empirical law that describes that when two charges interact they exert on 
each other a force. For a charge (q1) situated at a point (P) and another charge (q) 
situated at another point (M), and by making r MP  as shown in Figure 1.7, the
force exerted on q1 by the presence of q is given with Coulomb's law as:

1 1
P MF P

0 0

1 q q r 1 q q
u

4 r² r 4 r²
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where  is the unit vector in the direction MP, which is directed from q
toward q

MPu u

1 and  is the dielectric permittivity given by0

-12
0 9

1
SI 8.854 10

36 10
 F m-1 , 

or in other terms, 9

0

1
= 9 x 10 SI

4
.

1.2.2.  The electric field: local properties and its integral
1.2.2.1. Form of the electric field
The force  can be written as PF PF 1q E , where 

3
0

q  r
 E =

4 r

is the electric field generated at P by the charge q at M.

Additionally, on recalling that P 3
1

grad
r r

r
, it is possible to equate E   in the

form: PP P
0 0

q 1 q
E= - grad = - grad = - grad V

4 r 4 r
 where

0

q
V =

4 r

appears as the scalar potential from which is derived the electric field E  (see also 
the terminology introduced in Section 1.1.4). 

1.2.2.1. Local and integral properties of an electric field

As the electric field is derived from a scalar potential, it is possible to state that:

   which is an integral property of E . If the curve C is not 
Closed

E.dl = 0 

     closed, then ; and 
B B

A
A A

E.dl= - grad V.dl= V - VB

E .    is a local property of rot E = 0
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1.2.3. Gauss's theorem 
1.2.3.1. The solid angle
In simple terms, a plane angle ( )  is defined in two dimensions by  =  /R , as 
shown in Figure 1.8a. 

O

 y

x
R

dS = 2  R² sin  d

d

S

(b)(a)

y

O R
x

Figure 1.8. (a) Plane and (b) solid angles. 

Similarly, in three dimensions, a solid angle ( ) can be represented as an angle
generated by a plane angle ( ) when it rotates in space around an axis Oy. By

definition, and as shown in Figure 1.8b, 
S

=
R²

, where S represents the surface at

the interception of a half angle cone at the vertex  on a sphere of radius R. 

With , the expression for the half angle

cone at the vertex , which defines the solid angle, is given by
0

S = 2  R² sin  d = 2  R² (1 - cos )

= 2  (1 - cos ) .

d

P
0dS

dS

O u

Figure 1.9. Solid angle where there is a surface dS. 

In more general terms, we can look for the solid angle (d ) through which
from a point O can be seen the surface element dS  such that at a point P is

as in Figure 1.9. If dSr = OP, 0 represents at P a straight section of the cone, and 
given the preceding definition, we should arrive at
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0dS
d  =

r²
. From this it is possible to state that

dS . cos u.dS
d  =

r² r²
 ,

where  denotes the unit vector in the direction OP. The solid angle through which
all space can be seen is 4  steradians, as 

u

0
space

all space 0

u.dS dS
= d 2 sin d 4

r² r²
.

1.2.3.2. Flux created by an electric field generated by a charge outside of a given
closed surface 

In general terms, an electric field generated by a charge (q) at a point (M) on another

point (P) such that r MP= r u  is given by
0

1 q
E u

4 r²

n ’ dS’
M

       q P u

dS n

P’ u ’
|d | = |d ’|

(S)

Figure 1.10a Calculation of the flux generated by a charge outside of a surface. 

In order to calculate the electric field generated by such a charge through a
closed surface (S) which itself contains no charge, it is possible to associate opposite 
elements of S as seen from the point M, as shown in Figure 1.10a. In other words,
the elements of the form and dS'dS  are associated. The corresponding flux
elements are: 

through ,dS
0 0

q u.dS q
d E.dS d

4 r² 4
;  and 

through ,dS'
0 0

q u '.dS' q
d ' E'.dS' d '

4 r ' ² 4

0

q
= - d

4
 . 
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In effect, the negative sign is introduced because the angle '= (u ', n ')  is greater 
than /2; in other terms cos ' < 0 . Thus d ’ is negative as d d ' , while
d ' = - d .

The total flux for the two elements therefore is given by Td  = d  + d ' = 0 ,
and the resultant flux through the whole of S therefore is also zero. 

1.2.3.3. Electric field flux generated by a charge inside a given closed surface

’ dS’n

u ’ P’
M

       q P u

dS n
dd ’

(S)

Figure 1.10b Calculation of the flux generated by a charge inside a closed surface.

The fundamental expressions for flux remain

0 0

q u.dS q
d E.dS d

4 r² 4
 and 

0 0

q u '.dS' q
d ' E'.dS' d '

4 r ' ² 4
,

but here, as shown in Figure 1.10b, ’ < /2. The two flux elements no longer
cancel each other out and the total flux can be simply given by 

all space 0 all space 0

q q
 = d = d

4
.

1.2.3.4.  The integrated form of Gauss's general theorem

1.2.3.4.1 Classic or “standard” form
For a distribution of charges, only those that contribute to a flux from the inside of a 

surface are considered. Each internal charge (qi) will contribute i

0

q
 to the resultant

flux ( ), which can be described by:T
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i
T

iS 0

q
 = E. dS

where qi represents the charges inside the closed surface (S). 
If the system of charges is distributed in a continuous manner, with a

charge volume density denoted by , then 

T
S 0 V

1 Q
 = E. dS d

0

where Q represents the resultant charge inside a volume (V) delimited by S for a 
uniform spread of charges. 

1.2.3.4.2. The merit of the integrated form of Gauss's theorem
The integrated form is of particular use in determining the electric fields inside 
symmetrical systems. For example, if E constant  on a surface, the flux through

the surface is simple to calculate, as = ES , and it can be expressed as a direct 
function of E. 

1.2.3.4.3. The particular case of a surface charge distribution 
If the charges under examination are superficial ones at S, the solid angle through
which a charge given by dq =  dS can see the surface dS is equal to 2 , due to its 
view being through a half space of the surface dS, as shown in Figure 1.11. From

this, therefore,
0

 dS
d  = 2

4
 , so that s

S 0

1 Q
 = E. dS dS

2 2 0
  . 

Qs carried over 
all surface 

(S)

dS

Figure 1.11. Solid angle observed by charges at a surface. 

1.2.3.5. Local form of Gauss's theorem
This can be obtained via Ostrogradsky's theorem, which makes it possible to state

that . As above detailed,T
S V

 = E. dS= div E d T
0 V

1
= d , and 

therefore:
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0
divE  . 

It is worth noting that this equation concerns only the point P around which the
divergence is calculated, so symmetry is no longer part of the problem.

1.2.4. The Laplace and Poisson equations
1.2.4.1.  Laplace's equation
1.2.4.1.1. Mathematical form

In a vacuum in which there are no electrical charges distributed so that = 0 , for a 

point P, Gauss's local theorem makes it possible to state that . As 

, it is possible to derive that
Pdiv E 0

PE= -grad V

P V = 0  , 

 which is the Laplace equation for a vacuum.

A similar formula can be obtained for an electric field. In order to do this,
the notable equation, , is used. As in a vacuum,

, and in electrostatics, 

E grad (div E) rot (rot E)

pdiv E 0 rot E= 0 , we immediately find

E= 0    .

1.2.4.1.2.  The consequence: flux conservation throughout the length of a “tubular”
    electric field 

Before going any further, it can be noted that the lines of an electric field are defined
at each point P in space by a curve that is tangential to the electric field vector at that 
point. The equation for the field lines is thus given by dl E= 0 (see Figure 1.12). 
As  is collinear to  and the gradient vector is normal to the equipotentials
(as between 2 points denoted A and B there is an equipotential given by

 so that

E Pgrad V

B

A
grad V.ds= V(B) - V(A) = 0 gradV ds ), E  is perpendicular to the

equipotentials and directed toward decreasing potentials.

A collection of field lines acting on a closed contour constitute a field tube, as 
described in Figure 1.12. The contour denoted C1 goes onto become C2. 
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Figure 1.12. A tube of electric field. 

The electric field flux through the closed surface formed by the field tube 
(lateral surface) and the two surfaces denoted as S1 (delimited by C1) and S2
(delimited by C2) is of the form:

1 2

1 2 1
S lateral S S

= E.dS E.dS E.dS = 0 + s   + s2 ,

where s1  and s2 denote the fields exiting from the surfaces S1 and S2,
respectively.

Figure 1.10 shows that 1s  < 0 [as 1 1/2 < (n ,E )< ] while s2 > 0 . Given

that the flux traversing S1 is given by
1 1

1 1 1
S S

r  = E.(- n )dS= - E.dS = - s1 , it is 

possible to directly derive s2 r1 =  - .

From the integrated form of Gauss's theorem and given that here that , it 
can be deduced that  , from which it can be stated in more general terms for
a vacuum that . In effect, the flux entering by one side (

= 0
= 0

r = s r) of the field tube
is the same as that leaving by the other ( s).

1.2.4.2. Poisson's equation
In the presence of a volume charge distribution ( 0 ), carrying forward 

 into the local Gauss theorem (PE grad V P
0

div E= ) directly yields

P
0

V + = 0     . 

electric field line 

1n

2E
1E

(C1)

(C2)V = 
Cte

2n

decreasing potentials

dl

ds
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1.3.  The Current Density Vector:  Conducting Media and Electric Currents 
1.3.1.  The current density vector
1.3.1.1. Current through a section
Figure 1.13a shows a conducting wire with an elementary section given by d ;
and  denote the density of mobile charges contained therein and their average
velocity, respectively.

S
v

(b)

dS n

j

V

v .dt

dS

(a)

v

Figure 1.13. Current flowing through (a) a section  and (b) through a closed surface. 

During an interval of time (dt) between the time (t) and t + dt, the quantity of
mobile charge (dqm) that traverses the surface dS initially can be found in the 
volume given by . Therefore, d = dS.v dt mdq  =  d = v dt.dS .

By definition, the current density vector ( j ) is j v  . 

This relationship indicates that the quantity of charge traversing the surface 
in the time dt = 1 second is

dS

m dt =1(dq )  = j.dS . The elementary intensity is thus

mdq
dI = j.dS

dt
, and 

S
I = j.dS  therefore represents the quantity of charge that

traverses S per unit time and is the intensity of electric current across the S.
This last equation shows that the intensity appears as a flux of j  through S. 

1.3.1.2. Comment
The density that is used above corresponds to the algebraic volume mobile charge 
density ( m) and is different from the total volume density ( T), which is generally
zero in a conductor. Thus, T m= + f , where m is typically the (mobile)
electron volume density and f is the volume density of ions sitting at fixed nodes in
a lattice. As these ions only vibrate around their equilibrium positions due to
thermal energy (phonons), their average velocity (vf) is such that , and the
corresponding current (j

fv  = 0

f) is .fj  = 0
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1.3.1.3. Current traversing a closed surface
For a volume (V) delimited by a closed surface ( S ), and yet orientated toward the
exterior as shown in Figure 1.13(b), the total charge (Q) of V is not necessarily
constant and can a priori change with the flux traversing S .

Therefore, if dQm represents the quantity of mobile charges traversing
toward the exterior during the period t to t + dt, then

S

m

S S

dQ
I = j.dS j.ndS

dt
.

If dQm exits the volume V, the conservation of charge implies that the total charge in

V varies as . ThusmdQ = - dQ mdQ dQ
I

dt dt
, which can be rewritten as 

dQ
I + = 0

dt
, where dQ is the variation in internal charge during the given period of 

time. This equation means that there is no accumulation of charge at certain points 
in a circuit.

1.3.2.   Equation for conservation of local charge 
Thus

S
I = j.dS div j d

dQ d d
= -  d  = - d

dt dt dt

with Q =  d

div j d 0
t

, so that div j 0
t

This formula is called the continuity equation and also represents a conservation of 
charge.

1.3.3.   Stationary regimes

The title of this section indicates time-independent regimes, where the distribution

of charge and current is time independent and 0
t

. The condition  0
t

implies that  = constant , so that the charge contained in V is renewed (and 
maintained) by the passage of current (continuously produced by a generator) in a
circuit that maintains a constant charge.
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1.3.3.1. Current lines and tubes
j

2dS

1dS

Figure 1.14.  Current lines and tube.

By definition, a current line is at a tangent at all points to the vector j  shown in
Figure 1.14. For its part, a current tube is the surface generated by lines of current
applied to a closed contour.

1.3.3.2. Flux due to  under stationary regimesj

As a consequence of the stationary regime, the flux provided by j  through the
lateral faces of a current tube is zero (Figure 1.14), and Slateral = 0 .

In addition, the continuity equation can be reduced to  and 

Ostrogradsky's theorem permits

div j= 0

= j.ndS= 0 . Thus, we find

withSlateral S1 S2 = +  +  = 0 S1 1
S1

= j.dS as the flux leaving S1, and 

likewise for S2. From this it is determined that S1 S2- = and the flux entering S1

is equal to r1 1 S1
S1

 = j.  - dS = - ; therefore it can be concluded that the flux

entering a section of a current tube is equal to that leaving by another section. In
other terms, under a stationary regime, the current intensity is the same throughout 
all sections of the current tube.

1.3.3.3. Properties of  under a stationary state j
At the interface between two media, there is conservation of the normal component
(jN ) of . In effect, by denotingj 1j  and 2j  as the vector j  in media 1 and 2, 
respectively, we have:

1 2 2 1
S1 S2 Slateral

j.ndS= 0 = j .n dS + j .n dS j.dS   , where 

Slateral
j.dS  0 .
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[If the problem is considered simply in terms of the opposing sides of the interface 
(Figure 1.15), then the extensions A1 A2 and Slateral  are made].

We now arrive at 1 2 2 1
S1 S2

j .n dS j .n dS 0 . By making 1n n n2 , and by

noting that for the two parts on either side of the interface, that , it can
be written that:

1 2S  = S  = S

2 1 2 1
S S S

j .n dS - j .n dS= ( j .n - j .n)dS=0  , so that

1n 2nj  = j

where the components of  and 1j 2j  at the normal n  are continued at the interface 
between the two materials.

medium 1 n2

lateral surface Slateral

medium 2 1n = n

A2

A1

S2

 S1

12 1 2n n n n

Figure 1.15. Vector j at an interface.

If one of the materials is an insulators, take for example here medium 1, then
 and j1j 0 1n is also zero. The continuity equation given above details that in the 

second medium the value for j2n is also zero. From this can be deduced that in a 
conductor in the neighborhood of an insulator, jn is zero. The current density vector
( j ) can therefore only be at a tangent to the dividing surface. As a consequence, 

inside the conductor, T
T

j
E  = 0 , where  is the conductivity to be recalled in the 

definition given in Section 1.3.4 below. As there is continuity in the tangential
component (ET) at the interface between the conductor and the insulator, the external 
field no longer is normal to the conductor as otherwise would be found at
equilibrium, i.e., when there is no current.
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1.3.3.4. Comments
Under a quasistationary regime,  varies with time but sufficiently little so that it 

can be assumed that div j
t

. Hence, once again div j= 0  (as found for 

sinusoidal currents at low frequencies).

Under a rapidly varying regime,  varies rapidly with time, so that
t

is

no longer negligible with respect to div j . Therefore, j  is no longer a conservative

flux but accords to div j 0
t

, and the current lines do not fold in on 

themselves.  We find therefore that 1
S1

j.dS  constant, and after one cycle

differs from that traversing S

j

1.

1.3.4.  Ohm's law and its limits 

1.3.4.1. The model (Drude)

E (b)(a)

Figure 1.16.  Trajectory of a carrier (a) in the absence and (b) in the presence

of an electric field. 

In the absence of an applied field, free charges collide and the average (Brownian)
displacement is zero, so that v 0 , and as there is no current, j 0 . It is worth 
noting that the instantaneous velocity is non-zero and that it corresponds to the 
thermal velocity (vth), that is very high.

In the presence of an electric field, the trajectories are deformed and an 
average derivation occurs; thus charges are transported and a current appears. 

1.3.4.2. Determination of conductivity ( )

In the presence of an electric field ( E ), the applied dynamic fundamental formula
for a charge (q), which is typically an electron so that q = - e, is given by

dv
m qE

dt
.
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The differential equation,
qE

dv dt
m

, can be integrated from between the 

initial instant when and a time t. By assuming that0t = 0 E  is uniform and 

therefore constant between these two times, then
qE

v(t) v(0) (t - 0)
m

 where 

 is the initial velocity of the carrier andv(0) v(t)  is the carrier velocity at the later
time t. Between two successive collisions, the average value of the velocity is given

by:
qE

<v> = <v(0)> +  <t>
m

where <t>, denoted below more simply as , is the

average time between two successive collisions. Given that the impacts are random,
the initial velocity of an electron is zero, although this average can be over a high 
number of electrons and unless of course if the collisions are orientated, which can
result in a high average velocity under a strong field.

So, with (called the relaxation time) and<t> = <v(0)> = 0 , we finally have:

d
qE

<v> =  = µ E= v
m

by convention, this velocity is denoted 
dv  and is termed “drift velocity”

with
q

µ =
m

 as the charge mobility expressed in  cm² V-1 sec-1.

In addition, by introducing the value of velocity into the formula for current 
density, , where n is the carrier density, we obtain:j  v = nq v

nq²
j E =

m
E , where 

nq²
 = 

m
 is the conductivity in units -1 m-1.

1.3.4.3. Order of scale
For copper, the conductivity  6 x 107 -1m-1 (6 x 105 -1cm-1) and the carrier 

density
a

n = 
M

 is approximately 8.5 x 1028 electrons m-3 where N is Avogadro's

number and Ma is the atomic mass. From this can be determined that
-14m

 =  2 x 10  s
nq²

. Given a value of j 10 A/mm² , then 

and the mobility µdv  = j/  0.3 mm/s = q /m 35 cm²/V.s .
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1.3.4.4. Limits to Ohm's law

For an intense field, the velocities d
qE

<v >
m

 are relatively high and alter the

character of impacts. It is no longer possible to state therefore that . For
fields that are extremely intense, the impacts are orientated in the sense of the field, 
so that the trajectory is practically parallel to the field and the velocities approach
the thermal velocity (v

0<v > = 0

th) as indicated in Figure 1.17. 
In addition, if  is very intense, then ionization phenomena can occur, 

resulting in a non-Ohmic avalanche.
E

vd
vth

Figure 1.17. Variation of velocity with electric field intensity. 

dv  = µ.E

E

If  varies too rapidly, then the integration of the differential equation in
Section 1.3.4.2 between two instants (start of impact) and

E
0t  = 0 t = (statistical

end of impact, equal to the average time between successive impacts) assumes that 
 is constant during the interval . The frequency of E E  therefore must be below 

, a frequency that corresponds to that of an electromagnetic
wave with wavelength given by

13= 1/  5 x 10 Hz
= c 6 µm  (infrared). As a consequence, 

Ohm's law is valid in metals for electrotechnical and radioelectrical frequencies but
not optical frequencies where .15(  10 Hz)

1.3.4.5. Macroscopic form of Ohm's law

A       B 
dS

Figure 1.18. Cross section of a current tube. 

Given a conductor with a cross section (dS) perpendicular to the current lines. The 
intensity of the current traversing dS is given by dI = j dS = E dS , so that 
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1 dI
E = 

dS
.  Between two points A and B along a current line, we thus have:

B B B

A A A

1 dI
dV  E.dl dl

dS
. By making

B

A

1 dl
r

dS
, we find that (with dI

being a constant between A and B under a stationary state):
B

A B
A

1 dl
V - V  = dI

dS
,

so that A BV V
dI = 

r
.

Making
1

R = 
1
r

, it is possible to state that A B A B

S S

V V V V
I = dI

r R
.

Therefore .A BV - V  = RI

1.3.5.  Relaxation of a conductor

On introducing the relation j E  into the general equation of charge

conservation, div j 0
t

, we find div E = 0
t

.

Using the local form of Gauss's theorem gives
0

0
t

.

By making 0= , we obtain - t/
0= e .

In the volume charge density of a conductor, there are both interventions due to
free electron charges and charges associated with ions. Under a field effect, the 
electronic charges and the ions are separated and a localized charge can appear, 
given by the volume density , which thus includes electron and ion charges 
( T ).

Nevertheless, the integration of the differential equation shows that for periods
of the order of several ,  tends toward zero. Physically, this result can be
understood if there is a localized excess of charge appearing in the conductor,
returning electric forces act between opposite charges and if the material is
sufficiently conducting, a return to electrical neutrality will occur quickly. With

, we have . However, given the use of Ohm's law
here, the result is unacceptable for periods below 10

7 -1 -1 10  m -18 10  s
-14 s, and in practical terms,

inside a homogeneous conductor, the total volume charge density can be assumed to
be zero across all Hertzian frequency domains; that is to say from the stationary state 
to the infrared.
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1.3.6.  Comment:  definition of surface current (current sheet) 

sj

dl

A

B
sj

v dl
dS

j

= n dS n

Figure 1.19.  (a) volume and (b) surface current densities. 

It has been noted above that the elementary intensity (dI) of current (with mdQ
I

dt
)

traversing a section (dS) of a volume (dV), as in Figure 1.19, is given by
2

md Q v.dt.dS
dI = v.dS j.dS

dt dt
. If we flatten the cylinder, as in Figure 

1.19b, dI is an intensity that no longer crosses dS but dl where dl is perpendicular to
the current lines ( ). Crosses sj sj is therefore defined by s sj = v   where s

represents the surface density of free charge. Thus, sdI = j .n dl , so that s
dI

j n
dl

where  is normal to dl, and dI is the intensity traversing the segment dl
perpendicular to the current lines. Considering that the line AB perpendicular at all

points to , the current across the flat sheet is defined by

n

sj
B B

s
A A

I = j .n dl= j .dls .  As 

js  is uniform, we find that s
I

|j | = 
AB

,  which has units     A m-1.

1.4.  Magnetostatics
By definition, magnetostatics is the study of magnetic fields due to steady current
distributions, or in other terms, a spread of volume, surface, or wire currents 
independent of time. The circuits through which the current circulates continuously
also are assumed to be fixed.

In fact, magnetostatics is not a study of statics in the strictest sense, as the
electrons, or holes, are mobile, but what is steady (or stationary and independent of 
time) is the spread of charges. As a consequence, we always find = constant with

respect to time, and therefore 0
t

.

The equation for the conservation of charge therefore can be reduced in
magnetostatics to d . According to Ostrogradsky's theorem, it can beiv j 0
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deduced that j.dS div j d 0 , indicating that the incoming flux is equal to
the outgoing flux, and that the intensity is constant across sections of the current
tube.

1.4.1.  Magnetic field formed by a current

(C)

M

P
dldB r

I

Figure 1.20. Magnetic field produced by a circuit (C).

Figure 1.20 shows a circuit (C) through which runs a current (I). The charges 
moving at a velocity ( ) through the wire interact with other charges (q). The action
of I on q at a point P is given by Laplace's equation in the form

v
F qv B . The 

vector  thus generated by the circuit is called the magnetic field (or even the
magnetic induction). Historically, it is the vector

B
H  that is given by ,

which was first called the magnetic field vector, even though it is simpler to say the
“ B  vector” or the “  vector” to denote them. µ is the magnetic

permeability of a vacuum, and

0B H

H -7
0  = 4  10  MKS

B  is expressed in Tesla or in Weber m-².

For the various types of current, whether in a wire, a surface, or a volume, the
expression for the element  at a point P situated at MPdB r  with respect to the
point M which defines an element of the circuit, whether it be dl, dS, or d , is given
by the Biot-Savart empirical law: 

-for a current in a wire
0

3
µ r

I dl
4 r

dB   (elementary field produced by dl ), and
C

B dB ;

- for a surface current 0
s 3

µ r
dB (j dS)

4 r
    , and 

S
B = dB ;  and 

- for a volume current 0
3

µ r
dB ( j d )

4 r
 , and 

V
B dB .
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1.4.2. Vector potential
For a wire circuit, we have: 

0 0
P3

C C

I r I 1
B dl grad

4 4 rr
dl .

As P P P P
dl 1 1 1

rot rot dl grad dl grad dl
r r r r

, it is possible to

state: = 0 as dl is fixed independently of P 

0
P

C

I d
B rot

4 r
l

.

By making 0

C

I dl
A

4 r
, we can write that PB rot A . The vector  is thus

derived from the vector potential

B

A , as given above. 

0 s

S

j  dS
A

4 r
For a surface circuit, we obtain

For a volume surface 0

V

j d
A

4 r
  . 

1.4.3.   Local properties and the integral of B
Local property: as B r , we have Pot A PP Pdiv  B div rot  A = 0 , so that in 
general terms:

div B 0    . 

Integral property: as B. dS div B d 0 , we have B. dS= 0    . 

1.4.4.   Poisson's equation for the vector potential
Here we will use the same reasoning as that for electrostatic formulas. While this 
does not constitute a very rigorous approach, it does at least limit the need for long-
winded procedures. 

First, compare the form of the electrostatic potential, V =
0

1
d

4 r
, with

that of the Ox component of the potential vector A , as in 0 x
x

j d
A  =

4 r
.
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The forms of Ax (along with Ay and Az too) and of V are the same, with the 
exception of µ0, which corresponds to 1/ 0 and jx to . We can write then for Ax a 
Poisson's equation in the form x 0 xA  + µ j  = 0 . The three equations for the three 
components then can be condensed into a single equation, as in

0A  µ j  0      . 

1.4.5.   Properties of the vector potential A

1.4.5.1. In magnetostatics, divP A 0
In magnetostatics, we have Mdiv  j 0 , where M is a point on a circuit through

which  moves. Recalling that at the surface separating a conductor and an 

insulator, by conservation of j

j

N (which is zero in an insulator), j  can only be at a 
tangent to the interface. 

In addition, with 0 j d
A

4 r
, and by calculating

divP
0

P
V

j
A div

4 r
d , and using the fact that

PP P
j 1 1 1

Piv  div j j.grad j.grad
r r

d ,   and therefore: 
r r

0 0
P P M

V V

1 1
div A j. grad d = - j. grad d

4 r 4 r
.

= 0 as  depends only on the coordinates of M points 
on the circuit and not those of P (see Figure 1.20). 

j

On again using the identity (but only for a point M):

MM M
j 1 1

di   , and the fact that  (magnetostatic)

,   gives 

v div j j.grad
r r r

Mdiv j 0 MM
j 1

div j.grad
r r

.

By moving this result into the expression for divP A , finally:

0 0
P M

V S

j j
div  A= - div  d  = - dS

4 r 4 r
  . 
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Given that the vector j  is at a tangent to the surface of the conductor it is normal to 

, which means thatdS
A 0Pdiv  . 

1.4.5.2. Indeterminability of the vector potential

The vector potential A  is defined simply by the relationship PB rot A , which 
only defines the derivatives of A  so that in reality we can find an infinite number of

 vectors each different fromA ' A  and fitting into PB rot  A' .
Therefore , which shows that (Prot  (A' - A) = 0 A' - A)  is derived from a 

scalar potential. It is possible therefore to take (A' - A)  in the form

, so that:P(A' - A) = grad

PA'  A + grad .

As Pdiv  A 0  (just as Pdiv  A 0 ), then P PPdiv grad  =  = 0  must be
true where the  potentials are such that = 0 and are called the Newtonian 

potentials. Finally, the  vectors are such that: A

PA' A + grad ,  with .p = 0 

1.4.6.   The Maxwell-Ampere relation
1.4.6.1. Localized forms and the integral of Ampere's theorem
By using the following relationships

P P PP PPA grad div  A - rot rot  A = - rot B

(as Pdiv  A 0  and PB rot  A )

0A - µ j

it is possible to deduce that in a vacuum P 0rot  B = µ j , so that in turn:

 the local form of Ampère's theorem is give by Prot  H = j    ; and 

 the integral form of Ampère's theorem is 
P

S S C
I = j.dS rot  H. dS H . ds  = I ,

   where ds  is an element in the curve (C) as shown in Figure 1.21. 
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1.4.6.2. Simple example of the use of Ampère's theorem

Consider a wire circuit perpendicular to the plane of Figure 1.21 through which runs 
I.  Here we shall calculate the H  vector at a point P anywhere in space. 

The sense and direction of H are given by Ampère's right-hand rule (which
results from the vectorial product dl r  introduced into the Biot-Savart law with

; here  is perpendicular to the plane of Figure 1.21 and runs across the
plane as the intensity (I) given by the symbol ).
r MP dl

In order to calculate H, the integral form of Ampere's theorem may be used,
given also that H is a constant at a distance r from M. In the plane of Figure 1.21, the 
length of the circle C, which has radius r = MP, we find that H = constant. In
addition, H  is a tangent to all points on the circle and

, from which 
C C C

I = H .ds H.ds H .ds 2 r H (P)
I

H  =
2 r

.

(C)

P

M  ( I )

H

B

ds

Figure 1.21. H  field due to C through which moves I. 

In terms of vectors, we can write that
I

H
2 r

u , where I Mu u u P

(where is the unit vector carried by the conducting wire in the same sense as the

intensity I, and u  is the unit vector of
Iu

MP r MP ).
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1.4.6.3. Physical significance of rotation

I

B

B

B

A

Prot A = B

dl

I

Figure 1.22.  Rotational sense of B  lines for (a) a rectilinear current  and
(b) a twisting current. 

In the simple example treated above in Section 1.4.6.2, the potential vector

0

C

I dl
A

4 r
is carried by the conducting wire ( A // dl ). As B  and 

, we can see in Figures 1.21 and 1.22a that the vector

// H

PB rot A Prot  A  turns
around the vector .A

For its part, the vector B (or H ) exhibits a twisting character. The rotational
sense of the B (or ) lines with respect to I is given by Stokes' integral, as shown in
Figure 1.22b. 

H
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1.5    Problems
1.5.1. Calculations.  A vector given by r = MP  has components:

This vector is such that:

1 1 2 2 3 3

1 2 3

1 2 3

r² = (x  - m )² +(x  - m )² +(x  - m )²
 = u(x , x , x ) if the calculation for the operator is for point P
 = u(m , m , m ) if the calculation for the operator is for point M

Verify the following results:

P M
r

grad r grad r
r

 , 

P M 3
1 1 r

grad
r r r

grad   , 

P Mdiv r= - div r= 3   (3D space) , 

M or Prot  r= 0 ,
1

0
r

, and

3
r

div( ) = 0
r

;   what can be said about the flux of the vector 3
r

r
 ? 

Answers
1.

1

P
2

3

r
x
r

grad (r)
x
r

x

1/2
-1/21 2 3 1 1

1 1
1 1

2 2 3 3

2 3

P

r u (x ,x ,x ) 1 (x - m )
u  2(x - m )

x x 2
r (x - m ) r (x - m )

Similarly, and .
x r x r

r
grad r  = 

r

r

1/2 ur =

 x1 - m1

MP r        x2 - m2
                     x3 - m3

x1
P         x2
           x3

m1
M      m2
          m3
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2.

1

P
2

3

 1
x r

1 1
grad ( )

r x r
r 1

x r

We have 
1

-1/2
-3/2 '1 2 3

x
1 1

1 u (x ,x ,x ) 1
 - u u

x r x 2

with   and
1

'
x 1u 2(x - m1) -3/2 -3u r

-3 1 1
1 1 3

1

1 1 x - m
= - r  2(x  - m ) = - 

x r 2 r

1 1
3

1

2 2
P 3

2

3 3
3

3

1 x  - m

)

= -
x r r

1 1 x  - m
grad ( = -

r x r r
r 1 x  - m

= -
x r r

P 3
1 r

grad ( ) = -
r r

Finally

And also

1 1

-3/2 ' '1 1
m m 13

1

2 2
M 3

2

3 3
3

3

1 1 x  - m
1= - u u = as u = 2(x - m )(-1)

m r 2 r
1 1 x  - m

grad ( =
r m r r

r 1 x  - m
=

m r r

)
M 3

1 r
grad ( ) = 

r r

3. P 1 1 2 2 3 3
1 2 3

div r (x - m ) + (x  - m ) + (x - m ) = 1 + 1 + 1 = 3
x x x

M 1 1 2 2 3 3
1 2 3

div r (x  - m ) + (x - m ) + (x  - m ) = - 1  - 1 - 1 = - 3
m m m

4. M or P P 3 3 2 2x1 2 3
rot r 0 as, for example, rot r (x  - m ) (x  - m ) = 0

x x
.
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5. P 2 2 2
1 2 3

1 ² 1 ² 1 ² 1
r r r rx x x

 so that following a rather long

calculation, we find:

2
1 1

2 3 5
1

² 1 1 3(x - m )
+

rx r r

2 2 2
P 1 1 2 2 3 33 5 3 5

1 3 3 3 3 r²
+ (x - m ) (x - m ) +(x - m ) +

r r r r r
0 .

As P 3
1

 grad ( ) = -
r r

r
, then P P PP3

r 1 1
v = - div grad ( )= - 0

r rr
di  meaning that

3
r

r
 is a stationary flux.

1.5.2. Field and potential generated inside and outside of a charged sphere 
For a sphere with a center denoted by O and of radius r, uniformly charged in its
volume (charge volume density denoted by ):

1. Show that the field at a point (P) outside the sphere ( ) is in the formOP = r > R
3

ext OP2
0

.R
E = u

3 r
.

2. Show that for a point P inside the sphere ( ) we have OP < R int OP
0

r
E = u

3
.

3.  Plot the curve .E = f(r)

4. Show that when , the equation for the electric potential isr > R
3

ext
0

.R
V =

3 r
.

Similarly, show that when , we have r < R int
0

R² r²
V = 1

2 3R²
 and 

plot .V = f(r)

5. Show how the calculation for the potential can also be made using Poisson's
equation.
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Answers
1. Given that the charge is spread symmetrically, the resulting electric field also will
have the same symmetry, as at any point P in a given sphere with radius r = OP
(point Pe or Pi shown in Figure 1) and in space there is the same charge distribution. 
Thus, for a sphere with a radius denoted by r, the modulus of the field (E) is
independent of P on the sphere; that is to say the angles  and  given to define P in
terms of spherical coordinates (Figure 2). The E is therefore only dependent on r, so 
that it is possible to write in terms of modulus that . In terms of vectors,

and again due to symmetry,  is parallel to

E = E(r)

E re , a unit vector of the radial direction
under consideration, which corresponds to the normal ( n ) outside of the sphere (for 

). > 0

dS = 

p

re n
P

2

0

d²S 2 r² sin d

r

  O
d²S = r² sin  d
dO

Eint

extE

Pi

Pe

R
O

Ein

Pi

RR

Figure 2 Figure 1 

Gaussian surface.  For the calculation of the field E at P, which is at a 
distance from O given by , the sphere with radius r around the center O is
called the Gaussian surface, for which E is independent of P or in other terms, E is a
constant for a given value of r.

r = OP

The electric field flux ( ) through a Gaussian surface is represented by a sphere 
with a radius given by r, and thus is

, ,
= E.d²S E.d²S

as  are with respect to the external normal, in thatE and d²S rn e .
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With d²S , we have:= r² sin  d  d
2

, 0 =0
= r² E sin d d = r² E sin d d = 4  r² E 

The calculation of the field denoted Eext at Pe, which is such that
may be performed using Gauss's theorem, which gives here 

eOP  = r > R

2r R

r 0 0 0int
ext

i 0 0

d
Q

 = 4 r²E =  ,

so that with = Cte and , then d = r² sin  dr d d

3
ext

0

4
 = 4 r²E R

3
 . From this can be deduced that

3

ext r
0

R
E  e

3r²
.

With 34
Q

3
R , we also can write that

ext r
0

Q
E  e

4 r²
and the electric field corresponds to that of a charge (Q) placed at O at a distance

from Per = OP e . In other words, the electric field generated at Pe can be 
considered due to a point charge at O. 

2. For a point denoted Pi inside a charged sphere, which is such that ,
Gauss's theorem gives: 

iOP = r < R

ir OP 2

r 0 0 0 3 3int
int i

i 0 0 0

d
Q 4

 = 4 r²E =  OP  r
3 3 0

4
,

from which can be determined that

int r
0

r
E  e

3
.

3. The plot of is given in Figure 3. E = f(r)
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V

R
Figure 4 

r

0

R²
3

0

R²
2

rR

0

R
3

E

Figure 3 

4. With the electric field being radial, it is possible to state that:
, and that outside the sphere, we have:dV E.dr E.dr

3 3

ext ext
0 0

R dr R
V E dr

3 r² 3 r
C . The integral constant (C) can be

determined using the limiting condition , from which andextV (r ) 0 C = 0
3

ext
0

R
V

3 r
.

Inside, int int
0 0

r²
V E dr r dr

3 6
D . The constant denoted D is

determined using the continuous potential condition for r = R, so that 

 and ext intV  (R) = V (R)
3

0 0

R R²
D

3 R 6
, from which 

0

R²
D

2
. Finally, 

int
0

R² r²
V 1

2 3R²
.

 The plot of is shown in Figure 4. V = g(r)

5. Poisson's equation, written in the form
0

V 0 , is written in spherical

coordinates for a function, which is independent of the variables  and ; thus

0

1 ²(rV)
r r²

, so that:
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  when ext
ext

1 ²(rV )
r R,  with = 0 : 0 rV Ar B,

r r²
so that

2
ext 1

A
V = A +

r
; the condition gives , from which extV (r ) 0 1A  = 0

2
ext

A
V =

r
;

 when int int

0 0

1 ²(rV ) ²(rV ) r
r R,  with "  = 0" ,

r r² r²
 so that:

nt
1

0

(rV ) r²
B

r² 2
 .  The result is that:

3 2
2

int 1 2 int 1
0 0

r r
rV B r B V B

6 6
B
r

 .

In physical terms, the former potential retains a finite value and cannot diverge
from , from which .r = 0 2B  = 0

The determination of the two constants denoted A2 and B1 necessitates two
equations with two unknowns, which can be contained by writing the continuity, for 
r = R, in terms of the potential (V), as in , and in terms of the electric 
field (E), as in .

ext int r=R(V =V )
E = - dV/dr

From these can be determined that
3 2

2 1
0 0

R R
A  and  B

6 2
,

from which the same forms as those of Vext and Vint.



Chapter 2 

Electrostatics of Dielectric Materials

2.1. Introduction: Dielectrics and Their Polarization
2.1.1. Definition of a dielectric and the nature of the charges
A dielectric is effectively an insulator, meaning that a priori it does not have free 
and mobile charges. Nevertheless, different types of charges can be found, as shown 
in Figure 2.1. They are: 
1. Dipolar charges, which are attached to a molecule that makes up the dielectric; 
examples are the dipoles attached to HCl molecules where the center of negative 
electronic charge is displaced towards the Cl atom, while the H has an excess 
positive charge, thus giving rise to the dipole H+Cl-. These charges are inseparable, 
tied to the bonded H and Cl, and are called bound charges.
2. Charges due to discontinuities such as interfaces between aggregates. Where the 
solid dielectrics exhibit defaults, charges can accumulate giving rise to particular 
electronic phenomena, such as the Maxwell-Wagner-Sillars effect at low 
frequencies. 
3. Homocharges, which have the same sign as the electrodes to which they are 
adjacent.
4. Heterocharges, which have the opposite sign to the electrode at which they are 
near.
5. Space charges, which are charges localised within a region of space. 
6. Free charges, in principle, are little or not present in dielectrics. They can appear, 
however, when there is a breakdown caused the application of an electric field and a 
sudden loss in the ability of the material to insulate. When the current is relatively 
weak it is called a leak current and it can be due to a wide range of causes, such as 
impurities in the dielectric and so forth. 
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electrode charges, which 
polarise the dielectric 

+ + + + + + + + + + + + + + + + + 

+

+

+

heterocharges
(possibly free) 

homocharges
(possibly free) 

+

+

+

+

+

+

+

+

+

+

+

+

compensation charges 
(opposite facing bound charges) 

++

charges at discontinuities
(interface of aggregate shown 

by dotted line)

space charges

dipolar
bound

charges

Figure 2.1.  Various types of charges in a dielectric. 

2.1.2. Characteristics of dipoles
2.1.2.1. Electric potential produced by an electric dipole
If two charges bound to an electric dipole, detailed in Figure 2.2a, are placed at 
A (-q) and at B (+q) so that  (in the sense going from the negative to the
positive charge), the dipolar moment is by definition

AB dl

dµ qdl

To calculate the potential (dV) for a point (P) produced by the dipole that
has a center at M, the following equation can be directly obtained:

A B

0 B A 0 A B 0

1 q q q (r  r ) q dl cos
dV  -

4 r r 4 r r 4 r²
.

Accordingly:

3
0

1 r
dV dµ

4 r
    . 



Chapter 2. Electrostatics of dielectric materials 41

f qB E

E
B  + q

Af -q E

E

A - q

dl

A(- q)    M      B(+q) dµ qdl

r rA - rB rB

rA

P

(a) (b)
Figure 2.2.  (a) Electric dipole;  and (b) force couple. 

2.1.2.2. Energy of an electric dipole in a uniform electric field ( E )
It is worth recalling here that an electric charge placed at a point N at an electric 
potential (VN) takes on a potential energy (Ep)  The energy 

associated with a dipole placed as detailed in Figure 2.2, with –q at A and +q at B, is 
therefore In addition, it is possible to write 

that:

pE  = W(q) = q V .N

B ApE  = - q V(A) + q V(B) = q (V - V ).
A A

B A
B B

V  - V  = dV E.dl , so that with E  being uniform (over a space ),dl

A
B A

B
V  - V  =E dl E OA - OB = -E.AB .

Then with dµ  we obtain:qdl= q AB

p B AE  = q (V  - V ) = - qAB.E - dµ.E . For a dipole with a moment µ ,

then

q l

= - µ. EPE

2.1.2.3. Electric couple
This section refers to Figure 2.2(b). The moment of the couple of forces 
( ) is by definition:A B Af , f f BC  AB f AB qE= q AB E , so that

with  q AB ,

C µ E
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2.1.3.  Dielectric in a condenser
2.1.3.1. Study of a condenser with a vacuum between the armatures
Figure 2.3 shows a condenser that has armatures carrying the charges +Q and –Q:
The potential gradient is therefore only between the armatures that have a known 
surface area (S), outside of which the electric field can be considered zero. Gauss's
theorem, applied across the surface , gives rise to

(assuming that 
S

E.dS E.dS= E S E and dS  are collinear)

0 0

Q S
    where  is the superficial charge density at the electrodes, 

from which can be determined : 
0

E =    . 

- - - - Q      - - -

+ + + +Q
0

d

S

( )

 Figure 2.3. Vacuum-based condenser. 

2.1.3.2. The presence of a depolarizing field in the dielectric

+
(a)

+
+
+
+
+
+
+     +     +     +

    +     +     +
    +     +     +

    +     +     +

Mutually cancelled 
internal charges

Dielectric surface
charges

(b)

E 0
E 0

Figure 2.4. Dipole orientation: (a) without field and (b) with an applied field. 
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If a dielectric is inserted into an unpolarized condenser (zero field between the
armatures), as schematized in Figure 2.4a, then the dipoles associated with the 
molecules of the dielectric are randomly distributed. Statistically, the opposite
charges cancel each other out and the material is electrically neutral overall. 

If the dielectric is inserted into an electric field, as shown in Figure 2.4b,
then the positive charges are pulled in on direction and the negative charges in the
other. The dipoles dµ  are aligned in parallel in such a way that their potential

energy (Ep) is minimized, as in PE  = - d .E . As the bonded charges cannot move,
the result is a chain of dipoles in the volume; however, at the surface of the
dielectric, charges opposite to that of the armatures appear. 

If an applied external field ( extE ) is in the sense indicated in Figure 2.4c,
given the presence of surface dielectric charges, then an opposing field appears 
called the depolarizing field ( dE ). The result is an effective field, which can more
precisely be termed an external effective field, and is such that: 

a extE E Ed .

As is antiparallel to , the field dE extE aE  is less than the external applied field

.extE

E
+
+
+
+
+
+
+

+
+

+
+

Dielectric surface charges
caused by its polarization 

d depolarisingE : E

Figure 2.4(c).  The action of a depolarizing field. 

2.1.4.  The polarization vector 
In a dielectric sits a small element with volume d , length dl, and cross section dS, 
such that it is parallel to the surface of the armatures, as shown in Figure 2.5. If the 
volume of this element is equivalent to that of a dipole, with respect to the
armatures, then it is possible to consider that the elementary charges (q) of the 
dipoles are such that , where Pq = dS P represents the superficial charge density 
compared with the armature and therefore the superficial polarization charge 
density.
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The moment of dipoles compared to the armatures can be written as 

Pdµ q dl dS dl , and as Pdµ =  d , we can state that P
dµ
d

 .

The magnitude of the dielectric polarization is used to define the

polarization vector ( ), which is such thatP P
dµ

P
d

, and has as apparent

modulus the dipolar moment of the unit volume. In terms of vectors

dµ
P

d
    .

As  or , we also have extdµ // E aE extP // E or aE . Accordingly, when we speak of 

the electric field ( ) without any further precision, it is the effective field which
is the subject of discussion.

E aE

    +

dS
dµ

+
+
+
+
+
+
+
+

extE

aE

  dl 

Figure 2.5. Dipolar polarization and orientation. 

2.2. Polarization Equivalent Charges 
2.2.1. Calculation for charges equivalent to the polarization
2.2.1.1. The potential generated at P by a finite volume of polarized dielectric
The above figures indicate that a polarized dielectric can be represented by a 
vacuum, of permitivity 0, in which is placed dipoles orientated by an applied field.
So, to calculate the potential generated at a point (P) by a volume (V) of a dielectric,
as shown in Figure 2.6, it suffices to calculate the potential generated in a vacuum
by the orientated dipoles ( dµ ) occupying a fraction (d ) of V and then to integrate
over the total volume V. 
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(S)
(V) M µd

d

P

Figure 2.6.  Calculation of charges equivalent to a polarization.

Thus, the element of volume d  taken from around a point M forms at P a potential

3
0

1 r
dV dµ

4 r
 (result obtained in Section 2.1.2.1) which also can be written as: 

M M
0 0

1 1 1 1
dV grad dµ grad  Pd

4 r 4 r
.

The potential V(P) formed at P by the total volume V is therefore:

M
0 V

1 1
V(P) = grad .Pd

4 r
.

Now using the notable equation div (a A) = a div A + A . grad a , for which here 

anda = 1/r A P  , we arrive at:

M MM
1 P 1

grad  .P = div - div P . 
r r r

Substituting this into V(P), we have

M M
0 V V

1 P 1
V(P) = div d  - div P d

4 r r
, and by using the Ostrogradsky

equation on the first triple integral, we obtain:

M
0 S V

1 P.dS 1
V(P) =  - div P d

4 r r

M

.

If we make P N P= P.n P  and = - div P  , we finally arrive at: 
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P P

0 S V

1
V(P) = dS +  d

4 r r
 . 

2.2.1.2. Polarization equivalent charges
We can conclude by stating that a volume V of polarized dielectric is equal to the
sum in V of a volume distribution of charge density P M= - div P  along with a

surface charge density P P. n PN over the total surface (S) of the dielectric, 
with all charges distributed in a vacuum.

The volume ( P) and surface ( P) densities thus appear as charges equivalent to
the polarization, with the condition that they are in a vacuum! There is nothing
imaginary about them and are in complete contrast to the term “imaginary charges” 
which has been used to describe them. In other words, a polarized material which
takes up a space (E) can be represented as taking up the equivalent vacuum space 
(E) in which are distributed volume and surface charge densities P and P,
respectively, which represent the polarization effect of the dipoles making up the
material, evidently from an electrical point of view. 

If additional (real) charges with a volume density  and surface density
 are added to the dielectric, the potential at a point P and that generated by the

polarized dielectric can be termed in the generality:

P P

0 S V

1
V(P) = dS +  d

4 r r
    . 

2.2.2. Physical characteristics of polarization and polarization charge 
distribution

Up to now, the equivalence of polarization and polarization charge distributions has 
been essentially mathematical because the determination of P and P requires 
particularly long and abstract calculations.

2.2.2.1. Preliminary comments: charge displacement and the corresponding charge
polarizations

Comment 1:  How moving a charge qi over i  is the same as applying

(superimposing) a dipole moment i iµ q i
To verify the proposition, a schematic verification can be used to show how the two 
transformations are equivalent in that going from the same initial state (qi at O) both
arrive at the same final state (qi at O’, which is such that iOO' ).
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First transformation displacement of qi by i :

 O       O’(qi i ) 
final state:  qi at O’ such that 

iOO '

O (qi ) i  O’ 
initial state:  qi at O

1st transformation:  movement of 
qi by i

Second transformation superposition on starting system of a dipole of moment

i i iµ q

2nd transformation:  superposition 
of starting system of a dipole of 

moment i i q  iµ

i

- qi il    + qi

:

O i      O’(qi ) 
final state:  qi at

O’ such that

i'OO

O (qi ) i  O’ 
initial state:  qi at O 

Comment 2. Calculation of the polarization associated with a charge displacement
To arrive at a solution to this problem, it suffices to calculate the dipole moment per
unit volume which is apparent following the displacement of qi through i . If the 
number of qi per unit volume is ni, the polarization that would come about following
the displacement by i  of only the qi charges would be ni qi i , which is the dipolar
moment per unit volume due to the charge displacement.

If in the dielectric there are several types of charge (qi) such as q1, q2, q
and so on, then the dipolar moment per unit volume that would appear following a 
movement of all the charges, i.e. q1 being moved by 1, q  by  and so on, is

i i i
i

n  q P , which is the system polarization and is the dipole moment per unit

volume.

2.2.2.2. The corollary of charge movement:  Number of charges entering and
leaving the dielectric volume following polarization and the volume charge 
density equal to the polarization

dS
i

i
(b)

D

q           +q 
(  q )       (  q+)

(a)

Figure 2.7. (a) Characteristics of the electric charges and (b) their displacement. 
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A neutral zone (D) in a dielectric contains various type qi charges, where in reality 
each charge (q- =-q, and q+ = + q, with identical densities n- and n+) meets at each 
dipole, as shown in Figure 2.7, with n- and n+ so that D is definitely neutral.

In the absence of an electric field and also therefore a polarization, qi are 
not moved i( 0) and the polarization i i i

i
P n q is zero.

Under the effect of an applied electric field, qi are moved (by  0), and 

the polarization vector becomes
i

i i i i i i
i i  - ,

P n  q ( n q ) as the 

summation is performed over all charges q  (  q) and q+ (  + q). 
The algebraic flux for qi traversing a part ( dS ) of the surface following the

algebraic displacements ( ) indicated in Figure 2.7(b) is equal to the number of

carriers contained in a cylinder with base 
i

dS  and length i , and therefore a volume

= . . The number of carriers therefore is equal to i dS i i idN  = n dS , and the

corresponding amount of charge is i i i idQ  =q n dS .
With respect to the various charges qi, which include both q- and q+, the 

total algebraic charge traversing the surface element dS  thus is
. The algebraic charge Q crossing the closed

surface S therefore is 

i i i
i  - ,

dQ = n q dS P dS

S
Q dQ P.dS and the zone D, which initially was

neutral, now contains after the polarization a total charge (QP) opposite to Q. In 
order to calculate the number of charges gained by entering into D, the reentrant
surface -dS  can be used. 

The final result is that P
S

Q  = - P.dS , so that P
D

Q = - div P d .

We thus have shown that on a macroscopic scale, polarization is equal to a 
volume density of charge P = - div P , which is indeed the same result as that
obtained from the calculation for a potential generated by a polarized dielectric. 

2.2.2.3. Surface charges
Following a polarization there is an accumulation of charges at a surface, as detailed
in Section 2.1.4 and described in Figure 2.8.
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 On calculating
d

P n n
d

with Pd q dl  dS dl , we find

. Once again, this time for surface polarization charges, the result is
equivalent to that for the charge generated by a polarized dielectric. 

P P n

+
+
+
+
+
+
+     +     +     +

    +     +     +
    +     +     +

    +     +     +

internal charges which 
cancel each other out 

surface charges with
density P

E 0

n

dS

Figure 2.8. Surface polarization charges. 

2.2.2.4. Conclusion
The physical evidence for polarization charges shows that the densities P and P are 
not associated with imaginary charges or simple mathematical equivalent, but are 
the result of localized excesses in bound charges, real excesses caused by
polarization.

    +Q 
P

P P

P divP 0

(divP 0)

P

P

Figure 2.9. Schematization of the divergence operator. 

As shown in Figure 2.9, when a dielectric is not deliberately charged in its
volume (with real charges), the resultant for bound charges over the volume is zero
and P = 0. So that P becomes nonzero, the divergence polarization vector also is
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nonzero (as ). In the presence of real charges in the volume, the charge
+Q indicated in Figure 2.9, which gives a physical representation of the divergence
operator, localized polarization charges appear, so that 

P  = - div P

P = - div P 0 .
If the material is neutral prior to polarization it must remain neutral

following polarization as it is only the existing, bound charges which are displaced. 
This property can be verified by considering a volume (V) of dielectric delimited by
a surface (S). Here, the total of polarized charges is given by: 

P P
V S V S S S

 dV dS  div P dV P.n dS P. dS P. dS 0

The equation shows how the algebraic sum of the charges equals zero. We also can
see in Figure 2.8, where and the surface polarization negative charges of 
density

P 0

P facing the positive electrode are exactly compensated for by the surface 
polarization, positive charges facing the negative electrode.

2.2.3. Important comment:  Under dynamic regimes the polarization charges
are the origin of polarization currents

Even though this section deals with static states, it is worth making the occasional
sortie into dynamic systems.

In effect, for the results obtained from static systems to be acceptable for 
their dynamic counterparts, with polarization values in particular, the variations in
magnitude should be negligible with respect to a given macroscopic domain. A 
reasonable estimate for this is to assume, for example, that a polarization is constant 
over a distance (d) of around 10 nm (the “atomic” dimensions being of an order of 
less than 1 nm). So if the length of a polarization signal wave ( ) is such that

> 10d, we can assume that for a “macroscopic” domain of size d the signal
remains more or less constant and therefore definable. Figure 2.10 gives an example

of this where the frequency (v) under consideration is 15c
< 3 x 10 Hz

100 nm
.

O
x

Polarization

d

P  cte 

Figure 2.10. Distance d over which P remains more or less constant. 

Above a frequency of this order, it is necessary to take into account the 
variation with time for a polarization in the macroscopic domain. If the bound 
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charge carriers (qi) are vibrated with an average velocity i i
d

v (
dt

) , there is a 

corresponding current termed a “polarization current”, which has a density
. The average resultant current density is given byi i ij  n  q vi

i
P i i i i i

i i

d
J n  q  v n q

dt
, so that with i i i

i
P n q ,

PJ
P
T

This current density is of a macroscopic scale and represents an average 
over the microscopic currents associated with the slight displacements of bound 
charges. The current therefore is not imaginary and gives rise to the same magnetic
effects as conduction currents. Its specificity is that it cannot leave the dielectric
material since it is tied to bound charges and therefore cannot be measured or used 
in an external circuit. 

2.3. Vectors for an Electric field ( E )  and an Electric Displacement ( ) : 
Characteristics at Interfaces 

D

Section 2.2.1.1 showed that the potential formed at a point (P) in space by a
polarized dielectric is given by an equation that brings in charge densities. The
electric field at P can be determined by the often used equation PE - grad V .
The inconvenience though is that it is assumed that the polarization vector is known.

In a more classic method from the Anglo-Saxon school of thought, it is
interesting to reason in terms of an electric field in a vacuum on which is imposed a
limiting law in order to take into account the characteristics of bound charges 
associated with a dielectric medium.

2.3.1 Vectors for an electric field ( E )  and an electric displacement ( ):D
electric potentials

2.3.1.1 Coulomb's law applied to dielectrics
In general terms, if q and q' are two electric charges placed in a linear, homogeneous
and isotropic (l.h.i.) dielectric at two points M and P, which are such that ,
the force that should appear between the two charges is given by Coulomb's law,
i.e.:

r MP

P
q’

3
0 r

q q' r
F

4 r
. rM

q
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where r is the relative dielectric permittivity characteristic to each dielectric 
material. The quantity given by 0 r is the absolute dielectric permittivity and
in the electrostatic system unity (e.s.u.), 0 = 1, so that r= and is the magnitude
generally called the dielectric constant.
2.3.1.2 Electric field
In simple terms an electric field can be defined over all points P, each defined in 
respect to M, where there is a charge q by r MP , just as if there were a force 
exerted on the charge unit (unit here is q' = 1), which is assumed here to be very
small, such that its dimensions tend toward zero in order to limit the singularity at P.
This gives:

3
0 r

q r
E(P)

4 r
   . 

For a group of charges (qi), we have i
i 3

i0 r i

1 r
E(P) q

4 r
.

2.3.1.3. Electrical potential 
Just as for the system in a vacuum, detailed in Section 1.2.2.1, the potential (V) is
always such that . Therefore, for a dielectric,E gradV

0 r

q
V = 

4  r
.

2.3.1.4. Electric displacement vector
By definition, the vector, which is also termed electrical induction, is given by:

0 rD E E

and for a linear homogeneous and isotropic (lhi) is dielectric, as detailed in Section
2.4.3.1.

2.3.2. Gauss's theorem 
The calculation is identical as that carried out for a vacuum, with the exception that
here the absolute permittivity of the medium 0 r(  = )  is substituted in place of 
that of a vacuum ( 0). We therefore have: 
1. for a discrete distribution of charges, where qi represents the internal real charges 
at the surface S: 

i
i

S 0

q
E . dS

r
   ; 
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2. for a continuous distribution of charges with a volume density ( ) of 
deliberately added free charges 

S 0 r V V

1 1
E . dS d d     . 

Use of Ostrogradsky's theory, 
S

E . dS div E d , gives rise to a 

localized Gauss's theorem:

0 r
divE =  . 

With , we also have: D E

divD   . 

For its part, the integral form of Gauss's theorem with respect to the flux from
is written:

D

1. for a discrete distribution of charges, D i
iS

D.dS q

 d

   and 

2.  for a continuous distribution D D.dS
S

  . 

2.3.3. Conditions under which E and D  move between two dielectric materials

2.3.3.1. The continuity of potential

A1  x
x A2

medium 1 

medium 2 

Figure 2.11. Potential at an interface. 
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Figure 2.11 details two points (A1 and A2) each situated in, respectively, medium 1 
and medium 2 and both close to the interface. If these two points are sufficiently 
close to one another so that  is a constant between them, thenE

2

1

A

A1 A2 1 2
A

V V E.dl E. A A

At the immediate neighborhood of the interface, A1 tends toward A2 so that 
, and therefore so that the potential can be known at the

interface.
1 2A A 0

1A AV V
2

2.3.3.2. Continuity of the tangential component of E
For two trajectories, A1B1 (in medium 1) and A2B2 (in medium 2), which are equal
neighbors around the interface surface (S) described in Figure 2.12a, given the 
continuity of the potential at the interface, we have:  so that 

. From also knowing that
1 1 2A B A BV V V V

2

1t 1 1 2t 2 2E A B E A B 1 1 2 2A B A B  , we can determine
that:

1t 2tE E .

1n = 12n  n

A1                          B1

A2   B2

1

2
medium 2 

medium 1 
2n = - 1  - nn

 medium 2: 2D Slateral(a) (b)

medium 1: 1D

Figure 2.12. Setup to study continuity of (a) Et  and (b) Dn.

2.3.3.3. Continuity of the normal component of D
2.3.3.3.1. No real charges at the interface
The construction of a small parallelepipedal element around the interface with 
infinitely small lateral sides makes it possible to study the properties of the
displacement vector in the neighborhood of the interface where SD lateral  0. For 
this system shown in Figure 2.12, we have 

.
parallelepiped

D
S

D . dS  . d

As there are no real charges inside the parallelepiped, we have:
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parallelepiped

D
S

D . dS 0

 .
Ssuperior Sinf erior S lateral

D . dS D . dS D . dS

2

With the upper and lower faces being opposite one another and identical, we 
have .  In addition, Ssuperior inferior siS  = S  = S lateral  0. 

By making , and by stating that the displacement vectors are 

such that  is in medium 1, and 
1n  n  - n

1D 2D  is in medium 2, we then have:

si si

D
Ssuperior Sinf erior

2 1 2 1
S S

 = D . dS D . dS

(D .ndS  D .( n)dS) (D .n  D .n)dS 0

where is normal to the exterior of medium 1 and 1n 2n  is normal exterior to

medium 2. From this can be determined that 2 1D .n D .n 0 , and thus

1n 2nD D  . 

2.3.3.3.2.  Polarization charges and no real charges at the interface 
There are not always real charges in the Gaussian volume (the parallelepiped),
which means that  and that the preceding result, D 0 1n 2nD D , again is valid.

2.3.3.3.3. Distribution ( ) of real charges at the interface (surface layer of real

   charges)
For Gauss's theorem applied in Figure 2.12, there now is a parallelepiped that
contains a total interior charge , which can be written as:

interfaceS
dS

si i nterface

D 2 1 1 2
S S

(D .n dS D .n dS) dS  . 

Where , and with the same notations as above,interface siS = S

si si

2 1
S S

(D .n D .n )dS dS

D

,  which is to say

   . 2n 1nD
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2.3.4. Refraction of field or induction lines

medium 2

n
1

2

1E

2E

1 2D   DD1n = D2n

E1t = E2t

Figure 2.13. Field and induction lines refracted. 
medium 1

It is assumed here that there are no real charges at the interface, so that we can go on 
to write the two equations of continuity (Figure 2.13):

1t 2tE E ,  so that 1 1 2E sin E sin 2   (1) 

1n 2nD D , so that 1 1 2D cos D cos 2  (2) 

Dividing Eq. (1) by Eq. (2) we obtain 1 2
1

1 2

E E
tan  tan

D D 2 , which also gives:

1 1

2 2

tan
tan

  , 

and with , we find also that 1 < 2 1 2< .

2.4.  Relations between Displacement and Polarization Vectors 
2.4.1. Coulomb's theorem
The theorem concerns the conductor-dielectric interface. A condenser with an
armature of a known surface (S) carries a total charge (QT) so that 
(Figure 2.14). 

T TQ S

medium 2,
(dielectric)

 medium , QT = T S 
+ + + + + + + + + + + +

T

- - - - - - - - - - - - - - - 
 medium 1, -QT = - T S 

- T

Figure 2.14. Configuration used to establish Coulomb's theorem.
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With the condenser in equilibrium, on the inside of its metallic electrodes, which as 
such are equipotential, we have:

1E 0 0  and 1 metal 1D E .

At the interface between the two materials, we have 2n 1n TD D , so that here, 

with ,  which also can be written as 1D 0 2n TD T
2nE  . 

The continuity of the tangential component of the electric field allows us to
see that 2tE 0  (as ), so that in the dielectric the field is normal to the
armature of the condenser. The field that acts between the armatures (effective field)
therefore is equal to

1tE 0

T    .   (3)aE

2.4.2. Representation of the dielectric-armature system and 0 aP ( )E
As previously mentioned in this text, a material with a dielectric permittivity ( ) can 
also be seen (on a microscopic scale) as a vacuum in which dipolar charges  sit
(attached to atoms making up the material). Therefore, regarding the armatures, the 
surface density of dipolar charges ( P), detailed in Section 2.1.4, annihilate an 
equivalent number of charges (with an opposing sign P)  carried by the armature
surfaces, as shown in Figure 2.15a. Charges belonging to the upper armature not 
canceled out by the dipolar charges thus have a density 0 such that

T P 0    (4). 

The resulting problem with respect to the charges shown in Figure 2.15b is that
of a condenser with arms carrying charges of density 0, while there is a vacuum
with a permittivity 0 separating the armatures. The effective electric field between 
the armatures therefore is: 

0
a

0
E      (5). 

From Eqs. (3) and (4), we have T P 0 Ea , as from Eq. (5), 
, we also find that 0 0Ea

P T 0 a 0 a 0P E E ( a)E .

In terms of vectors and for aP // E  (detailed in Section 2.1.4) we arrive at

0 aP ( )E   . 
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Figure 2.15. Microscopic analysis of charges in (a) a polarized dielectric and

0

- P

P

- T

vacuum 0

self-cancelling chargesP
0

0

0
aE .

- 0

vacuum 0

 (b) a vacuum. 

2.4.3. Linear, homogeneous, and isotropic dielectrics and the relation

0 aD  E  P
2.4.3.1. Lhi dielectrics
A lhi dielectric is one that gives a response to either a displacement ( ) or 
polarization ( ) vector in which the excitation of an effective electric field ( )
can be described by a relation:

D
P aE

1. where  is a real number in a linear system and the dielectric can be 
called perfect, which is to say it has no dielectric losses associated with leak currents 
through the material (as detailed later on, when there are losses,  becomes a 
complex number);

aD E

2. which is true at any point in the dielectric, i.e. it is homogeneous; and 
3. which is verifiable in all directions throughout the dielectric (isotropic).
This restates the working hypothesis set out in Section 2.3.1.4 with the notation

.
E

aE

The relation between P  and aE  is 0 aP ( )E , and this can be 
rewritten as:

, which makes:0 a 0 r aP ( )E ( 1)E

)d r( 1
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where  is the dielectric susceptibility, and leads to:d

0 d aP E     . 

2.4.3.2. The relation 0 aD =  E P

aStarting from , we can write0 aP ( )E a 0 a 0P E E D E

P

, so that:

0 aD E  . 

2.4.4. Comments
Comment 1. As indicated in Section 2.1.4 and recalled in Section 2.4.3.1, when an
electric field ( E ) is denoted without any further precision, it is the effective field
which is under discussion.
In addition, we have ,D E 0 dP E , and 0D  E  P .

Comment 2. The latter relationship ( D 0  E  P ) shows how the electric 

induction comes from the polarization ( P ) of the dielectric, on which is 
superimposed an effect ( ) of the corresponding space vacuum, which would 
mean that a vacuum can be seen as a dielectric with zero polarization.

0E

Comment 3. Poisson's equation and dielectrics

On substituting  intoE grad V divE , we directly have V 0 . By 

replacing 0 by , we have the same relation for a vacuum.

Comment 4. Gauss's equation and dielectric media without real volume charges 
where 0
Gauss's theorem, which was written for a dielectric of permittivity  containing a
distribution of real charges ( )  in the form

S
E . dS div E d  d . This can be rewritten to take into account 

the equivalence of a dielectric to a vacuum in which the volume densities of real 
charges ( ) with a polarization P are found distributed so that

P

S 0

div P
E . dS div E d d  d

0
 . 

 The localized form can be written as
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0

 div P
divE =        . 

However, if the dielectric does not contain real polarization charges, then: 

1. div E 0 (if )0

2.  and 
0 0

 div P  div P
div E  (if 0 )

div P 0   if 0 .

As P divP , therefore  when P 0 0 , and we return to the result already
given in Section 2.2.2.4. The volume charges equivalent to the polarization are zero
when the dielectric contains no real volume charges, and so polarization charges 
exist only at the surface of the dielectric n n( P ) .

2.4.5. Linear, inhomogeneous, and nonisotropic dielectrics
For this particular case, within a Cartesian framework, the Dx, Dy, and Dz
components of , and the Ex, Ey, and Ez components ofD E  are all related by the
relation:

xx xy xzx x

y yx yy yz y

z zx zy zz z

D E
D E

D E

The matrix for permittivities is symmetric in that ij ji , so the matrix is 

diagonal for a system with axes OX, OY and OZ, which are the electric axes for the
media, making it possible to state that: D EX XX X Y, Y YYD E  and

.Z ZZD EZ
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2.5. Problems: Lorentz field 
2.5.1. Dielectric sphere

A uniform external field ( ) is applied on a dielectric sphere with absolute
permittivity . The sphere is assumed to be of small dimensions with respect to the
distance between the armatures producing

extE

extE , so it is worth noting that the above 
scheme is not to scale.
1.  Determine the charges equivalent to the polarization.

2.  Show that at the center (O) of the sphere, the depolarizing field is d
0

P
E  -

3
.

3.  Calculate the resultant field at O. Give the expression for the polarization vector.

1.  The polarization vector ( P ) is parallel to extE , and the surface polarization 
charge densities on the upper half of the sphere are  as in this zonep P cos  > 0

0 <  < 
2

. On the lower half, < <
2

  and .p < 0

+

+

+
+
+

+

+

+

+

extE

P
nP > 0 

P < 0 

+

+

+

dS

vacuum: 0

dielectric ( )

P

n

d²S’d²S’’

d²Ed’’d²Ed’

O y

d²Ed

++++

z

These signs are evidently in accordance with the orientation of the dipoles due to the 
electric field. 

2.  The field produced by these polarization charges, placed in a vacuum, at O can
be calculated by considering an element of the surface (d²S’) giving rise to an 
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elementary field ' P
d

0

 d²S'
d²E  = 

4 R²
, while an element of a symmetric surface d²S’’

results in a elementary field '' P
d

0

 d²S''
d²E  = 

4 R²
(see figure). Given the symmetry of

the problem, the resultant contribution is directed along Oz. The effective
contribution ( ) of an elementary contribution such that  is directed along
Oz is such that:

dd²E '
dd²E

' P
d d

0 0 0

 cos  d²S' P cos²  d²S' P cos²  sin  d  d
d²E =d²E  cos  = =

4 R² 4 R² 4
(with

d²S' = R² sin d  d )  so that 

2
d 0

0 0

P cos²  sin  d  P cos²  sin  d
dE d

4 2
.

Finally, we reach 

= = =0
d d0 0

0 0

P cos²  sin  d  P cos²  d(cos ) P
E dE

2 2 3 0
  and given

the orientations indicated in the Figure ( dd²E  and therefore also dE antiparallel to

), we have:P

d
0

P
E

3
.

3)  The active field resulting locally at O is: 

al ext
0

P
E  E

3
.

2.5.2. Empty spherical cavity
Into a dielectric of permittivity  is placed a spherical cavity that has a center O and 
a radius R. The cavity is subject to a field ( aE ) which acts in the dielectric, which is 
assumed to be uniformly polarized.
1.  Calculate the field created at O by the polarization charges, which is the Lorentz

field : L
0

P
E

3
.
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2.  Determine the resulting field ( alE ) at the center of the cavity which can be 

expressed as a function of r and aE .

+

+

+

+
+
+

+

+

+

a

ext d

E

E E

n

P < 0 

P > 0 

+

+

+

dielectric ( )

P
n

 O

d²Ed

P

vacuum: 0

y

z

1. Considering the sphere surrounded by dielectric material, the polarization charges 
appear at the exterior of the sphere (and also near the armatures). As shown in the 
scheme above, the sign of these polarization charges is inverted with respect to the
preceding problem and the normals being external to the dielectric are now directed
toward the interior of the sphere, which causes a variation in the values of

.P,n dd²E  and therefore also dE  are parallel P , and d L
0

P
E E

3
.

2.  The expression for the resulting field at O is therefore: 

0 r r
al a a a a

0 0

P ( 1) 2
E E E

3 3 3
E  E .

The problem above is repeated using a parallelepipedal cavity at the end of this
chapter.

2.6.  Mechanism of Dielectric Polarization:  Response to a Static Electric Field 
2.6.1. Induced polarization and orientation
2.6.1.1. Induced polarization
When a field is applied to a dielectric, it acts on the charges attached to the atoms
making up the molecules of the material. The positive and negative electric charges
are then displaced so that the initially unpolarized molecules become polarized, and 
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those that were polarized have their polarization modified. As shown in Figure 2.16,
different types of polarization are possible.

2.6.1.1.1. Electronic and atomic polarizations
Under the action of an electric field, the charges in an atom—electrons and 
nucleus—can be moved. Initially their center of gravities coincide in a nonpolar 
molecule, but following the application of an electric field, they are no longer the
same.

As a first approximation (linear regime), the dipole moment ( ), which 

appears once the electric field is applied, is proportional to the field (
iµ

alE ) locally

acting on the molecules, so that i mµ alE  where iµ  is the induced dipole moment
and  is the polarizability of the molecule that is particular to the molecule and
expresses its ability to deform to yield

m

iµ . In fact, m  can be considered a 
composite of two essential terms, such that m e N  where: 

is the electronic polarizability expressing the capability of the electronic
cloud to deform when exposed to an electric field;  and 

e

is the nucleus polarizability, which also is often inappropriately termed the
atomic polarizability, and translates the ability of a nucleus to move under the 
effect of an electric field. 

N

All atoms can undergo this type of polarization, which occurs in a very short
period, corresponding to high frequencies from around 1012 Hz for nuclei 
polarizations up to around 1015 Hz for the electron polarizations, which also are 
called optical polarizations as these frequencies are of the order of the optical
domain.

2.6.1.1.2. Ionic polarizability
Ionic polarizability ( ionic), found in ionic crystals, results from the opposing
movements of opposite charges. With ions being relatively difficult to move, as they
are part of a lattice, this polarization occurs over longer time frames than those
mentioned above, compatible with frequencies from the hyperfrequencies to the
infra-red.

2.6.1.1.3. Interface polarizability ( interface)
Interface polarizability is the result of an applied field on residual charges found in
macroscopic domains in a dielectric, which can be found, for example, in
heterogeneous dielectrics, which have joints between aggregates, in domains
associated with dislocation defaults or even in particulates near interfaces. With the 
charge carriers being rather slow, as dielectrics are poor conductors, the polarization
also is slow in being established—taking up to several minutes—so in general

 Hz. -210
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Polarization E 0 E 0

Electronic and 
atomic

s orbital
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nucleus
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        ion 
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Figure 2.16.  Mechanisms for polarization by induction. 

2.6.1.2.  Orientation polarization
Generally speaking, a molecule formed from several different atoms has a 
spontaneous dipole moment, also commonly called permanent ( p ), which exists

even in the absence of an applied electric field. Nevertheless, and as we have seen,
these particular moments generally are orientated in a random manner due to
thermal vibrations so that there is no observable macroscopic polarization. However,
in the presence of a field, these moments tend to orientate themselves in the
direction of the field. An equilibrium is then struck up between the concurrent
effects of thermal disorientation and field orientation. This phenomenon, termed
polarization by orientation, can be observed at frequencies typically between 1 kHz
and 1 MHz (for materials in the liquid state, these frequencies can be higher).
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2.6.1.3. Conclusion
Different types of polarization may be observed depending on what the dielectric is.
In addition, with a weak polar molecule exhibiting a permanent moment the induced
polarization is not necessarily negligible with respect to p . In all cases, the 
resulting moment is the sum of all the possible dipole moments, whatever their
origin.

 2.6.2. Study of the polarization induced in a molecule
We have seen that for a molecule, which here will be assumed to be nonpolar, the 
induced polarization is of the form: µi m alE . The local field that acts upon the

molecule denoted by is different from the applied external field from the 
armatures. Using Debye's approximation, we can assume that each molecule can be 
thought of as in a small spherical cavity of free space. The polarization charges
appear on the surface of this cavity and result in the so – called Lorentz local field 
( ) at the center where it is assumed the molecule lies. From Section 2.4.6.2, we 

have

alE

LE

L
0

P
E

3
. This field is superimposed over the external applied field, an 

effective field that as elsewhere is denoted Ea , is the resultant of the external and the
depolarizing fields, and is the actual field measured coming from the charges 
exhibited on the armatures of the condenser. We therefore have:

al a
0

P
E E

3
For a certain number (n) of nonpolar molecules per unit volume, we have:

i m a m a
0

P
P nµ n E n (E )

3

0 aP ( )E

0 a
m a 0 a

0

[  - ] E
n (E ) ( )E

3
, from which can be determined that

0 0
m 0

0

3 [  - ]
n ( ) (

3
)  so that 

0 r
m

r

3 1
n 2

.
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If
a

N
n N

V M
 where N is Avogadro's number, V the molar volume,  the

volume mass, and  the atomic mass, then:aM

m a r
M

0 r

N M 1
P

3 2
  . 

where  is the induced molar polarizability.MP

The above relation is called the Clausius-Mossotti equation and relates 
the microscopic polarizability m( )  of a molecule with the macroscopic
characteristic of permittivity ( r), which is measured via a capacitance ratio 

r
0

C
C

, where  and are capacities of the dielectric and of a vacuum,

respectively.

C 0C

2.6.3.  Study of polarization by orientation
2.6.3.1.   The principle and the result
For a polar molecule with a permanent dipole ( p )  placed in an electric field, the 

whole molecule turns so that its dipole is in the same sense as the field. Thermal
vibrations though limit the effectiveness of the orientation. If the applied field is
constant, then the phenomenon is added to that of induced polarization and the
molar polarizability is then such that:

2
pa r

M m
r 0 0

µM 1 N N
m or2 3 3kT 3

P

where
2
p

0r
µ

3kT
.

A demonstration of the above equation is given below. If an alternating
field is applied, the dipoles oscillate and rub against each other, resulting in 
dielectric losses. This phenomenon will be described in more detail in the second 
volume under the subject of wave-dielectric interactions.
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2.6.3.2. The Langevin function

x

alE

O

Figure 2.17. Relative position of an applied field and a solid angle in which 
are distributed dipoles. 

A collection of identical polar molecules, with moment pµ q l , prior to any

application of an electric field, are randomly distributed by thermal agitation so that
overall they give rise to a zero resultant moment. Once the field is applied, each
molecule is subject to a localized effective field ( alE ), which tends to orientate the
dipole associated with the molecule in the same direction and sense. For each 
molecule to have a minimum energy (Ep), then the following relation also must
reach a minimum:

,p al p alEp = - µ E - µ  E  cos

where . The alignment of the dipoles along the sense of the applied field
nevertheless is limited by thermal agitation so that the orientation angle  described
in Figure 2.17 is nonzero. It is interesting therefore to determine the contribution of
each dipolar moment (

0 (2 )

p ) to the resultant polarization.

The number of molecules (dN) with moments belonging to a given solid angle
(d ) is such that dN , i.e., the greater = A' d d  is, the more molecules present. 
With Boltzmann's distribution law, the coefficient A' is such that:

PE
A ' , so thatA exp( )

KT
p alµ E  cos

dN A exp( )d
kT

.

Given that the space  has Ox as an axis of symmetry, the resultant dipolar
moment for each molecule in that space with respect to  is µ

d
Ox p cos . The 

contribution of dN molecules situated in d  with respect to the same axis is
therefore:

pdm µ  cos dN .
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The resultant dipolar moment along Ox for the molecules thus can be written as: 

p
0

M dm µ  cos  dN .

As each dipole makes a contribution, we then have: 
p al

p al

µ E cos
kTp p

0 0
µ E cos

kT
0 0

µ cos dN µ cos A e d
M

µ
N

dN A e d

.

With , or rather d == 2 (1 - cos )  2  sin  d , we have:

p al

p al

µ E cos
kTp

0
pµ E cos

kT

0

µ cos   e sin d
µ µ <cos >.

 e sin d

By making , so thatx cos dx= - sin  d  and p alµ E

kT
,  we have: 

x 1
x

x 1
p p x 1

x

x 1

x e dx
µ µ <cos > µ

e dx
 .          (1) 

The integration in parts of the numerator gives (making u x  and ):xdv = e dx
1xx 1 1

x x

x 1 11

xe 1 1 1
x e dx e dx e e e e

²

The denominator directly gives:
x 1

x

x 1

1
 e dx e e ,

from which can be determined that
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1
(e e ) (e e )

1
<cos > coth L( )

(e e )
,

where L is Langevin's function.

 If  is large ( ) ,
1

0 , then:

2 2

2 2
e e e 1 e

<cos > coth 1
e e e 1 e

. The upshot is that as ,

.L( ) 1
 If  is small , using the following relation obtained from Eq. (1):( 0)

x 1
x

x 1
x 1

x

x 1

x e dx
<c  , we can write thatos >

 e dx
xxe 1 , so that 

13x 1

x 1 1
x 1 1

x 1 1

x² x 2x (1 x) dx 2 3 3<cos >
2 3x² (1 x) dx x

2

 . 

Accordingly, as ,0 p alµ E
L( ) <cos >

3 3kT
.

slope:
1/3

     1 

L( )

0

Figure 2.18. Representation of Langevin's function L( ).
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2.6.3.3. Molar polarizability
In practical terms and under normal conditions,  10-2. This gives

2
p al

p p
µ E

µ µ <cos > µ
3 3kT

.

The orientation polarization (dipolar moment per unit volume) is thus:
2
p al

or
µ E

P = n µ n
3kT

. This is superimposed on the induced polarization,

, and the resultant polarization for a polar molecules isi mP = n  Eal
2
p

T m
µ

P = n( )E
3kT al  (this equation also can be written in terms of vectors).

The molar polarization therefore can be written as :
2
pa r

M m
r 0

µM 1 N
P

2 3 3kT
   (Debye's formula),

and is the summation of the induced molar and orientation polarizations.

2.6.3.4. Application: determination of permanent moments and the polarizability m

03
mN

1/T

PM

slope = 
2

09
pNµ

k

Figure 2.19.   Determination of  µp and m using the Clausius-Mossotti equation. 

On knowing , , and  (by capacitance measurements), it is possible to trace aM r

M
1

P f (
T

)  which gives a straight line, as it is of the form M
1

P A( )
T

B , and 

then determine from the point where the ordinate crosses the y axis the value of
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m

0

N
B

3
, and hence the value of m . From the slope, as indicated in Figure 2.19,

which has the value
2
p

0

Nµ
A

9 k
, one can determine the value of pµ .

The commonly used unit for the dipole moment is the Debye (equal to 3 x 10-30

MKS) and is equivalent to a unit charge of 1 u.e.s and a distance of 0.1 nm (1 Å)
apart. The dipole moment of HCl thus is 1.1 Debye.

2.7. Problems
2.7.1. Electric field in a small cubic cavity found within a dielectric 
Using a large flat condenser, a uniform electric field ( E ) is generated in a dielectric 
with permittivity ( ) which is placed between its electrodes so that E Oz . A small
empty cubic cavity is placed in the dielectric so that it presents both its upper and 
lower surfaces, shown in the figure below, parallel to the electrodes. 

E
vacuum

1
(a) Indicate the direction and sense of the polarization vector.
(b) Algebraically calculate the charge densities equivalent to the polarization, and
schematically show the position in space of these charges. 
2 The origin (O) of the trihedral is at the center of gravity of the cavity, and the
electric field ( ) due to the polarization charges may be calculated at that point.PE
(a)  Given the symmetry of the problem, indicate the sense and direction of the
resultant field by considering in succession the effect of polarization charges at 
the lower and then upper interfaces. 

PE

(b)  For an element (dSP) of the flat surface of one of the interfaces, indicate the 
expression of the electric field produced by dSP, specifying the useful component  of 
the electric field as a function of a solid angle from which the point O can be 
observed dSp.
(c)  Give the value of the solid angle through which all the space is observed, and 
then from this determine the value of the solid angle through which one may observe
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one and then two faces of the cube. Give the modulus of the electric field generated 
by the charges equivalent to the polarization.

(d)  Give the vectorial expression for the resultant PE  at O produced by charges 
equivalent to the polarization.

Answers

1.

n

+ + + n facelowerext

faceupperext

P  EE

y’

y

                  Mi
M’i

O
x

z

ze

M
  M’

M’i Mi

z

pdE y’

scheme in the plane Oy’z

(a) The external electric field ( E ) is assumed to be uniform outside of the cavity,
which is supposed to be of negligible size with respect to the size of the armatures of
the condenser. Given the geometry of the exercise, we have E Oz . For its part, the
electric field ( ) inside the cavity is also assumed to be uniform. The
polarization vector in the dielectric (outside of the cavity) is defined by

, and therefore is directed in the same sense and direction as the field

, with  > 

cavE

0P E

E 0.
(b)   The polarization charges can be of two types: volume ( P ) or surface ( ). As 

, so that 
P

P divP P 0( - )div E , with E and the localized form of Gauss's

theorem, divE , we have 0
P

( - )
, so that P 0 , as the volume

density of real charges in the dielectric ( ) is zero. 



Basic electromagnetism and materials74

The surface charges, P eP.n xt , use external normals to the dielectric. 
Given the directions they follow, which are Oy at the two lateral interfaces of the 
cavity (parallel to the Oxz plane) and Ox at the two sides behind and in front
(parallel to the plane Oyz), only surface charge densities at the upper and lower 
sides (parallel to the plane Oxy with normals along Oz, in the direction of the
polarization) are zero. Therefore:
• on the upper face, ; and P ext  upper face zP.n P.( e ) - P < 0

• on the lower side .P ext  lower face zP.n P.(e ) P > 0

2
(a) Any point M on either the upper or lower side can be associated with a 
symmetrically equivalent point M' through Oz. The components following Oy' for
an electric field ( ) generated by the polarization charges at these two points are
opposed so that the resultant component of the electric field is directed along Oz. In
addition, given the sign of the polarization charges, the sense of the electric field is
the same as 

PdE

Oz
z

whether the points are respectively on upper or lower sides. As a 
result, we have .PE O

(b)  We have P P
p

0

1 dS
dE

4 r²
, for which the projection along Oz is:

z PdE dE  cos . With | | , we also find: P = P P
z

0

1 P cos  dS
dE

4 r²
.

O

PdE
'
PdE

M’ M  dSP

dS

As the solid angle through which a surface element dS of the sphere is
dS

d
r²

 where  and are such that dS PdS PdS dS cos , from which 

z
0 0

1 P dS P
dE d

4 r² 4
 and PdS dS cos

r² r²
d  represents the solid angle

through which the surface dSp is seen from O. 
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Finally, we have Z
0

P
E

4
d  where the integral must be taken over 

the solid angles that cover the charge-carrying upper and lower sides of the cavity
seen from O. 
(c)   The solid angle through which the whole of the cube can be seen from the point
O, and therefore all of its six sides, and is a solid angle through all space is 4
steradians. With the six sides all being equivalent, 1 side can be seen through the

solid angle
4
6

, and two sides thus are seen through
4

2
6 3

4
 steradians. We

therefore find that Z
0 0

P P 4
E d

4 4 3 0

P
3

.

(d)  In terms of vectors, and given the answers in 2 (a) and (b), we can state that:

z z
0 0

P P
E e

3 3
.

2.7.2. Polarization of a dielectric strip

extE
dielectric strip 

vacuum 0

y
O

z

A thin dielectric strip with an absolute dielectric permittivity equal to  is placed 
parallel to and in between condenser armatures which generate an uniform
“external” field denoted , as shown in the figure above. It is assumed that the
dielectric, like the armatures, has infinite dimensions and a center of gravity called
O. Its thickness is such that the field external to the strip is not modified by
polarization charges, and that the field inside the strip is uniform.

extE

1.  Algebraically indicate the value of the polarization charges and indicate their 
position on a figure. The value of the charges should be expressed as a function of
the dielectric polarization (P). 
2.   With the help of an equation for the continuity for the dielectric strip-vacuum
interface and as a function of extE and r, directly find the expression for the
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resultant field in the strip ( LE ) and then that of the depolarising field and 
polarization vector.

Answers
1.  The polarization vector is in the same direction and sense as the electric field and 
follows Oz. The external normal at the upper face of the strip goes along Oz, but at 
the lower face goes along –Oz. The result is that the superficial charge density 
equivalent to the polarization P = extP.n  is positive on the upper side and negative 
on the bottom. These polarities are realized simply by considering the orientation of
the permanent dipoles in the strip when subject to an external field. 

With the strip not being charged in its volume, then P 0 .

z

dielectric strip 

vacuum 0

+ + + + 

 O
+ + + + + + + + + + + + + +

extn

extn
ext PP n 0

ext PP n 0
P

- - - - 

extE

y

2.  By taking the upper interface as an example, the continuity of the component
normal to the electric (displacement) induction can be used. As there is no real
charge surface density ( ), we have  where 
(induction in the dielectric for a field denoted ) and 

0 n n0D  - D  = 0 n LD E

LE n0 0 extD E . The result
is , and given the same sense of the two fields,L 0 extE E 0

0 e
L ext

r

E
E E xt .

The depolarizing field ( dE ) is such that L extE E Ed , where 

r
d e

r

1
E E xt . When , we have r > 1 r

r

1
< 0  and it is confirmed that

is antiparallel to . In the dielectric strip, the polarization vector given by

 is such that the effective fieldE L

dE extE

0 aP aE E , so that ext
a

r

E
E  and 

0 r
ext

r

1
P E .
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2.7.3. Dielectric planes and charge distribution (electric images)
In a trihedral about Oxyz, the plane xOz separates a vacuum (permittivity 0) in the
region y > 0 from a dielectric (permittivity ) which extends through the lower half
of the space where y < 0. At S, which has the coordinates (0, a, 0), there is a charge 
(q). An additional point of reference is S' which is symmetrical to S about O and 
therefore has the coordinates (0, -a, 0); we also have r = SP and r’ = S’P. This
problem concerns the Oxy plane and a point P with coordinates (x, y, 0) from an
electrical point of view.

           y 

         S
0           P (x, y,0) 

         z 
O     x 

         S’ 

1. In order to deal with this problem, it is worth showing that at the point P (x, y, 0), 
the scalar potential (V) is such that:

• when y >0 : 1
1

0

1 q q
V (P)

4 r r '

• when y < 0 : 2
2

1 q
V (P)

4 r
where q1 and q2 are constants.

   (a) What do the potentials
0

1 q
4 r

, 1

0

1 q
4 r '

, 21 q
4 r

represent? What actual 

physical origin might they have?
(b) Calculate as a function of x and y the Cartesian components for the field

vectors  and  which are derived from V1E (P) 2E (P) 1(P) and V2(P), respectively.
   (c)  Determine the two constant q1 and q2.

2.
(a)  Show that the charges equivalent to the polarization are only at the surface. 
(b) Determine the density of the surface charges and the total charge through the
plane xOz, noting that the distribution is around the axis Oy.
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Answers
1.

(a) (1)

0

1 q
V

4 r
 represents the potential generated at P by the charge q at S. The

dielectric in the region y < 0 is polarized by q. The overall polarization of the
dielectric can be taken into account by using an intermediate charge (q1), which 

remains to be determined, at S'. The potential (1) 1

0

1 q
V' =

4 r '
is a representation of 

the problem using a reflected electric image for which q1 must be determined. This
representation is more acceptable when seen as an analogy of an optical system,
where it is possible to imagine a mirror, for example, reflecting an image of an 
object of a similar size and shape to q to give q1, much as a fisherman might see his
float (F) dangling in the air taking on the form F1 as 
an image in the water. The total potential in the
vacuum is therefore: 

(1) (1) 1
1

0

1 q q
V (P) V V '

4 r r '
.

This equation also can be interpreted by imagining
the fisherman sitting on the bank in the air
(permittivity equal to 0), and him being able to see
B + B1, both his float and its reflection.

The potential (2) 21 q
V

4 r
 represents the 

potential at point P (which is in the dielectric), 
generated by a charge (q2) at S. Carrying on with the analogy, here it is as if the
charge q at S is being observed in the shape of q2 by the fisherman who has dived
into the water to be at P (y < 0). Once again though, this representative is only valid
if q2 can be determined.

x

S       q 

P

S’     q1

SPu

'S Pu

0

y

(b) Bringing in the unit vectors SPu  and S'Pu  in the directions SP and S’P gives:

SP

x
r
(y-a)SP

u
rSP

0

    and

'

S'P '

x

r
(y a)S'P

u
rS'P

0
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The result is that the fields and1E 2E are from the same charges generating V1(P)
and V2(P) and are such that: 

1
3 3

0

1
1 3 3

0

x q q
4 r r '

q y a q y a1E
4 r r '

0

         and

2
3

2
2 3

1 q x
4 r

q y a1E
4 r

0

(c)  There remain two constants to determine, namely q1 and q2. To do this we need
two equations with two unknowns, and these can be derived from the limiting
conditions at the interface y = 0. At this plane there is the continuity of the tangential 
component of the electric field, and in the absence of a real superficial charge a
continuity of the component normal to D. At the interface where r = r’, y = 0, and 
'x = x', we thus have:

1x 2xE  = E and , which give, respectively:0 1y 2yE  = E

1 2
3 3 3

0

x q q 1 q
4 4r r r

x
   and 1 2

3 3 3
1 q a q  a 1 q  a

4 4r r r
.

From which we also find:

1

0

q q q2 q and q q .1 2

From this can be deduced that 0
1

0
q q , and    that 2

0

2
q q .

2
(a) There are no volume charges in a
dielectric, so with the result that

 (see course work).
0

n

P 0
Only surface charges equivalent to the 
polarization can be present. 

(b) We have  where P P.n  is the
normal outside of the dielectric as shown in
the figure. The result is that

.P Pcos (  - ) = - P cos

y

x

S

P

x

n

a
r

0
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To calculate the polarization, 0 2P E  wherein the term 2E  intervenes as 
the field in the dielectric.

Deriving the potential, 2
2

1 q
V (P)

4 r
, we have for the field 2E ,

2 2 3 3
0

1 r 1 1
E q q

4 2r r

r

from which 
0

3
0

1 r
P q

2 r
.

From this can be derived 0
P 2

0

q 1
=- P cos cos

2 r
, and with

a
cos

r

from which
1 cos ²
r² a²

.  By making 0

0
A q  , we find that

3
P

A
cos

2 a²
.

 plane
 Oxz

dS = 2  R dR

R

y

In the Oxz plane, the resultant of charges equivalent to the polarization is:

p P
planOxz

q dS , where dS = 2  R dR , and R= a tan  and 
a

dR d
cos ²

.

This gives
/ 2

0
p

0 0
q A sin  d A q .

The angle  in the figure varies from 0 to /2 so as to cover the whole 
surface when integrating over the whole surface of the Oxz plane. 
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2.7.4. Atomic polarizability using J.J. Thomson's model
To represent an atom of hydrogen, J.J. Thomson used the following model. A fixed
sphere with a radius R, a center O contains a charge (+q) uniformly spread 
throughout its volume. The electron charge (-q) is thought of as a point charge and 
moves in the sphere, assuring the overall neutrality of the atom. All charges are
considered to be moving in a vacuum.
1. Calculate the internal electric field ( intE ) generated by +q  for a point M inside

the sphere and located by the vector rOM = r = r e .
2. Determine the attractive force between +q and the electron (-q) at M. Detail the
equilibrium position of minimum energy for the electron.
3.  An external field ( ) is now applied alongextE re  to the system. Determine the

value of  which  must take so that the system is in equilibrium.d  r
4.   For the equilibrium position, derive the equation for the dipole moment induced
by  and then from this the polarizability of the atom.extE

Answers
1.  Gauss's theorem applied to sphere with radius r (Gaussian
surface) gives: 

Volumeint
int érieur0

1
E .dS d , from which

3
int

0

4
4  r² E  = r

3
.  Then with 3

q

4 / 3 R
, we can 

derive that int 3
0

q r
E

4 R
, and as q > 0, in terms of vectors gives:

int r3
0

q r
E e

4 R
 where r

r
e

r
.

O r

R

2. The force exerted on an electron at M, such that rOM = r = r e , is given by

int r3
0

q² r
F qE e

4 R
. The energy of the electron ( ) is such that

, so that 

W(r)

F gradW
r r

0 0
dW F.dr , from which can be deduced that

3
0

q²r²
W(r)

8 R
+ constant. Thus  is at a minimum when r = 0, and therefore

also the force is canceled out at this position, which would make it an equilibrium
position for the electron.

W(r)

F
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3.  In the presence of  applied alongextE re , the resultant force on the electron is 

. The equilibrium position, the value ofT int eF q E E xt r  equal to d , again 

corresponds to when  in thatTF 0 int extr d
E E . From this can be

determined that
3

0
ext

4 R
d

q
E  and that d  is antiparallel to extE .

4.  moves –q by . This in return induces a dipole moment, which can be 

defined by
extE d

3
i 0q d 4 R Eext . The polarizability ( ), as given by the relation

, therefore has a value of .i  Eext
3

04 R

2.7.5. The field in a molecular- sized cavity
Preliminary comments 
Debye's theory
The calculation for the effective localized field in a spherical cavity above was
carried out with the assumption that the field was the result of a superposition of the
applied external field and Lorentz's field, the latter being generated by polarization
charges at the surface of a dielectric. Assuming that inside the cavity the molecules
are distributed with a symmetry such that the local field they generate is zero, then 
the resultant field in the cavity experienced by the molecules is the Debye field 

( ), given byDE D ext
0

P
E E

3
.

Onsager's theory 
Onsager's theory was introduced to account for localised interactions between
molecules. The method used is to superimpose two steps to give the result,
respectively, given below in 1, 2, and 3. 

1. Internal field ( ) formed by external field in a small cavity (G E 0  and )0
An external field is applied to a small, molecule-sized cavity that does not contain
molecules. First the internal field (G) in the cavity is calculated assuming that it is of
the same form as the external field except modified by refraction at the dielectric 
interface.

A molecular-sized spherical cavity, of radius a and a center that is taken as 
the origin, filled with a dielectric of known absolute permittivity ( 1), is placed in a 
dielectric medium, with an absolute permittivity denoted by 2. If a field ( ) is 
applied such that it is parallel to the Oz axis and far from the cavity, as shown in the

E
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figure, the sphere distorts the field lines in its neighboring volume. As there is a 
symmetry around the axis Oz, the problem is not reliant on an azimuthal angle .
Given this symmetry, for a point P with spherical coordinates [r, , ], we can use the
Oxz plane where = 0 so that the potential can be written
as:
• in the volume outside of the cavity ((r > a), 

2
A cos

V = - E r cos  +
r²

; and 

E

1

z

r

P

 O 
x

2

• in the cavity (r < a), 1V  = B r cos ,
where A and B are constants.

(a) Give a physical justification for the form of the two
potentials.
(b)  Determine the constants A and B. 
(c) Give an expression for the internal electric field ( G ),

which can be expressed as a function of E  and 2
r

1
.

N.B. It also is given that r
dV

(gradV)
dr

   and 
1 dV

(gradV)
r d

2. Reaction field ( ) in the absence of an external field, due to polarization charges
induced by dipole in the cavity (

R
E=0 , dipole moment (µ) is non zero)

A pinpoint dipole with an axis in the direction Oz is now at the point O. This dipole
causes a polarization of the spherical surface. It is supposed that the potentials are 
similar to those found in Section 1 just above. 

(a)  Show how the potentials now can be described by:

• outside the cavity (r > a), 2
C cos

U
r²

; and 

• in the cavity (r < a), 1
D 'cos

U = D r cos  + 
r²

where C, D and D' are constants to be determined.
(b)  By using the limiting conditions of the interface, determine C and D as a 
function of D'. Considering a limiting case, give D' as a function of the total moment
(µ). Give the final form of U1 and U2.
(c)  Given that the reaction field ( R ) is that which is induced by a dipole at the
surface of the cavity, find R  in terms of the corresponding component of U1 . 
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3. Onsager's field
(a)  Show how the internal field acting on the molecule (Onsager's field) takes on

the form o
3

r µ
F gE

a
. Detail the constants g and ro as a function of r and 1 (often 

assumed equal to 0).
(b)  Formulate the expression of the resulting  dipole moment (µ ) for the molecule
located at the center of the cavity that exhibits a permanent moment ( m ) and a 
polarizability ( ) in the presence of the electric field E .

Answers
1. (a)  Given the direction of E , it can be supposed that
the polarization charges at the interface of the two media
will give rise to dipoles with a resultant directed along 
Oz. As the sphere is of molecular dimensions, the
distance between dipoles is around the same as that as the
dimension of a molecule—which well generates dipoles.
In effect, any given dipole (µ1) will have a symmetrical
equivalent (µ2) so that combined their resultant (µr) will 
follow Oz, as shown in the adjacent figure. The sense of 
direction of the dipoles will depend in the polarity of the
polarization charges, and hence also the respective values
of 1 and 2. By consequence, for a point P outside of the

cavity, the potential due to E  is such that
P

P O
O

V V E.dl E.OP= - E r cos ,

so that  (at potentials with respect to the origin O), to which must be
added the potential due to the resultant dipole µ

PV = - E r cos
r which is of the form:

2

E

z

r

P

+

µr
µ1
µ2

+ +

x

r r
dP r P 3 3

2 2 2

1 1 1 .r 1 r
V .grad

4 r 4 4r r

cos
 , with 

r

2
A

4 dP 2
A cos

V
r

.

The resultant potential in the medium outside the cavity with permittivity 2 is 
therefore:

2 P dP 2
A cos

V  = V  + V = - E r cos
r

 ( Q.E.D.).

In the cavity the field E is modified by the refraction of field lines so that 
form of the first term for V2 is modified to become B r cos  where B is unknown 
for the present moment. The second term will disappear inside the cavity:  If it were 
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kept, when r  0 the term would diverge and so that this does not happen A has to
go to zero, thus removing the component. In the cavity (permittivity 1), the 
potential is thus in the form 1V  = Br cos .

(b) The two equations of continuity for the electric field and induction can be used
to find the unknown constant A and B. For r = a, the equations are  and 

. The “tangential” and “normal” directions following, respectively,
and , can be described by

1t 2tE E

1n 2nD  = D e

re 1 2 r(E E ) a  and 1r 2r r a(D D ) , so that

1 2

r a r a

1 V 1 V
a a

 and 1 2
1 2

r a r a

V V
r r

.

From these can be determined that

3
A

B
a

E    and 2
3

1 1

2
B E

a
2 A  so that

31 2

1 2
A a

2
E   and 2

1 2

3
B E

2
.

Therefore, the potentials V1 and V2 are: 
2

1
1 2

3
V Er co

2
s , and 32 1

2 2
1 2

E cos
V Er cos

2 r
a .

  (c) The field in the cavity is such thatG 1G gradV , where , so 

that with  we have . The result is that the only component of 
is:

1V  = Br cos

z = r cos 1V = B z G

1
z

1 2

V 3
G B

z 2
2 E , which in terms of vectors gives

r

r

3
G E

2 1
.

2. (a)  In general terms, the potentials can be written as:

2 2
Ccos

U = -Er cos
r

,

so that with E = 0, we have 2 2
Ccos

U
r

.
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And 1 2
D 'cos

U = D r cos
r

 where O is a singularity (a pinpoint dipole with zero 

moment) so that r can no longer go towards zero. 

(b) The limiting conditions

1 2

r a r a

1 U 1 U
a a

 and 1 2
1 2

r a r a

U U
r r

give

1

2 1

3
C D

2
'    and 2 1

3
2 1

2( ) D '
D

2 a
.

The potentials are therefore:

2 1
1 3

2 1

2( ) D 'r cos D 'cos
U

2 a r2   and 1
2 2

2 1

3 D 'cos
U

2 r
.

If it is proposed that the surface of the spherical surface can become quite 
large, the potential (U1) will be that generated by an isolated dipole of total moment
µ in a medium of permittivity 1, with a value at a coordinate point (r, ) given by

d 2
1

µcos
U

4 r
 so that when the surface increases, and 1/a² 0, we have

2

d 1 12 01 a

µcos D 'cos
U (U )

4 r r2 , from which by identification
1

µ
D'

4
.

Finally, 2 1
1 3 2

1 2 1 1

µ 2( ) r cos µcos
U

4 2 a 4 r
,

and

2 2
2 1

3 µcos
U

2 4 r
.

(c) In the equation for U1, the potential inside the sphere, the second term is simply
due to the dipole itself and the first term is the potential caused by charges at the
surface of the sphere induced by the dipole. The resulting field is the reaction field 
( ).R
 With z = , can be derived from the potential r cos R
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2 1
3

1 2 1

µ 2( ) z
U

4 2 a
, so that 2 1

3
2 1 1

U 2( ) µ
R

z 2 4 a
  and in

terms of vectors, 2 1 r
3 3

2 1 r1 1

2( ) µ 2( 1) µ
R

2 2 14 a 4 a
.

3.
(a)  The internal field acting on the molecule is given by F G R , and thus

r r
3

r r 1

3 2( 1) µ
F E

2 1 2 1 4 a
.

This can be written then as o
3

r µ
F gE

a
, where 

r

r

3
g

2 1
 and r

o
1 r

1 2( 1)
r

4 2 1
.

(b) The total moment (µ ) of the molecule is the sum of its permanent moment ( )

and its induced moment ( ), so that 

m

F o
3

r µ
µ m F m gE

a
, from which 

we have 
o

3

m gE
µ

r
1

a

.

This equation shows how the reaction field modifies the molecule's moment.



Chapter 3 

Magnetic Properties of Materials 

3.1.  Magnetic Moment 
3.1.1. Preliminary remarks on how a magnetic field cannot be derived from a 

uniform scalar  potential
Ampere's theorem written for a vacuum, P 0rot  B  µ j , shows how is
only zero at points (P) which are without current, and therefore is nonzero 
elsewhere. The  therefore cannot be derived from a uniform scalar potential (V), 
and in effect, if we could write for all P that

Prot  B 

B

PB grad V , we will end up with

, which is not true as we have just seen. Nevertheless, we can define a

pseudoscalar potential (V*) such that 
Prot  B = 0

DB grad V  where D represents points 

without current, as at these points Drot  B  0  (a pseudoscalar is a scalar that is
defined by its being limited to certain points).

3.1.2. The vector potential and magnetic field at a long distance from a closed
circuit

3.1.2.1. Form of the vector potential
Here we will calculate the vector potential A and the induction B  at a distance Mr
far from a current in a closed coil that is considerably smaller than the distance
shown in Figure 3.1. For a point P in a vacuum, for which Mr MP , the vector 
given by the coil (C) in which a current of intensity i moves is given by:

A

0

M

i dl
A

4 r
.

This also is referred to in Section 1.4.2. 
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(C)

(S)

(i)
M

dl

Mr = MP
Mu

 N’ uN
N

   P 

Figure 3.1. Coiled current. 

If for M we consider a unit vector ( Mu ) such that Mu constant u  whatever 

the position used, the scalar 0 M
M

M

i u
u .A dl

4 r
 can correspond to the circulation

around C of the vector 0 M
M

M

i u
G

4 r
.

Stokes theory written for the vector MG  gives:

NM M N
C S

u .A G  . dl rot G .dS  , 

where N is on the surface (S) through C. 

So now with 0 N
N

N

i u
G

4 r
 and Nr NP , we find 

0 0
N NN N N

N N

µ i µ i
rot  G rot u grad  u

4 r 4 r N .

Yet with the vector (detailed in Figure 3.1), the componentsNu

(xN’ – xN), (yN’ – yN), (zN’ – zN), which allow Nu 1, are such that N Nrot  u 0

(as for example N ' N

N

(z  - z )
0

y
 ). 

We therefore have: 

0
NM N N

S S N

µ i 1
u .A rot  G .dS grad  u .dS

4 r N
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0
M NN

N

µ i 1
u .A dS grad .u

4 r

0
N N

N

µ i 1
u . dS grad

4 r
.

From  it can be inferred thatM Nu .A u .A A cos (u,A) A  can be written as: 

0
N

S N

µ i 1
A dS grad

4 r
. (1)

3.1.2.2. The approximation  r >> C and the magnetic moment

3.1.2.2.1. The nature of the approximation
We can justify the approximation by recognizing that in real applications the coils
through which the current passes are extremely small with respect to the distances
over which the magnetic effects can be dealt with. More specifically, the

approximation states that N
N

1
gr  is constant for each and every  point (N) over

the surface S, which can be whatever size, although it depends directly on the size of 
C, and that

ad
r

Nr NP constant, with respect to the position of point N. In other
words, from a position P outside of the coil, we would see that any part of the coil
would be a distance r away, and indeed, the coil would seem miniscule from P. We
also can see that there is an analogy with the electric doublet considered in the
section on electrostatics, in which it is also supposed that r  constant.

3.1.2.2.2. Magnetic moment

M iS

  (C)
 i

Figure 3.2. The magnetic moment from a circular current.

The magnetic moment is introduced by definition as a vector:

S
M i dS            (2) 
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thus giving it its name – spin angular magnetic moment – as schematized in Figure
3.2. Given that only C has been determined and that S is dependent on C, the
magnitude of Eq. (2) results from Eq. (1). 

Taking into account Stokes relation, the magnetic moment therefore depends
only on the size of C. If C is a flat coil, then S can be simply that defined by the coil
C, and in which case M  is normal to the plan of the circuit so that its modulus is iS.
The direction of is defined by the corkscrew rule, which gives the rotational
direction of i through the coil. (Stokes theory states S

M
 that the direction is given by

that of the current i .)dl

Carrying Eq. (2) into Eq. (1), we can write (when N
N

1
grad

r
 constant

N
1

grad
r

) that 

0
N

µ 1
A  M grad

4 r
.

This expression can be turned around:

0
P

µ 1
A  M grad

4 r
.       (3) 

Given that the circuit is fixed in space, and that Prot  M = 0 as M  is independent of 
P:

0 0 0 0
P P P P

1 1 1
rot  M rot M grad M M grad

r 4 r 4 4 r 4 r
1

.

 we therefore arrive at: 

0
P

M
A rot

4 r
.      (4) 

3.1.2.2.3. Magnetic field

We know that B , for a point P, is given by 0
P P P

M
B rot  A rot rot

4 r
,

so  (with rot rot grad div - ) we have 0
P PP

M M
B grad  div  -

4 r r
.
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 However, with M  fixed and independent from P, we find that:

yx z
P P P P

MM M M
i j k

r r r r

x y z P
1

i  M j M k M
r

,

so, with P
1

0
r

, then P
M

0
r

.

This finally gives us:

0
PP

M
B grad  div

4 r
. (5)

Therefore, at a large distance from a coil through which moves i, the vector  is 
derived from a (pseudo) scalar potential ( ) and that

B
*V

* 0
P

M
V div

4 r
. (6)

The vector B is such that
*

PB - grad V . (7) 

3.1.3. The analogy of the magnetic moment to the (dipolar) electric moment  and 
the justification of the term magnetic doublet for

S
M I dS

We can recall briefly that the scalar potential generated by an electric dipole of 
moment µ  is such thatq l

V = - P
0

1
. grad

4 r
1

. (8)

On comparing Eqs. (3) and (8), we rapidly can see that the potentials take on the
same form, the scalar product (in the expression for the scalar potential) can be
substituted by the vectorial product (in the expression for the potential vector ),
and the vector  can take the place of the electric dipolar moment ( ).

Therefore, by analogy, the term M

A

S
M i dS µ

 is called the magnetic dipole moment.
At the level of the pseudoscalar potential given by Eq. (6), it also is possible to

write:
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* 0 0 0 0
P P P P

M 1 1
V div  div M M. grad M. grad

4 r 4 r 4 r 4 r
1

 (6’), 

because ( is independent of P). We can see in the expression for the
magnetic pseudoscalar a resemblance to the relationship for electric potential when 

exchanging

Pdiv  M 0 M

M for . There also is the coefficient, µ 0

4
to change to

0

1
4

for the 

electrostatic potential, and µ0 which takes on the role of
0

1
 (as detailed in Chapter 1

in the formulation of Poisson's equation). This equivalence again justifies calling
the magnetic dipole moment.M
To conclude this section, we have seen that for a very small coil with respect to

the distance r  to where the magnetic effects are observed, the vector potential, the
pseudoscalar potential, and the magnetic field are given by expressions such as Eqs. 
(3), (6) or (6’), and (7). These relationships are analogous to those found in
dielectrics—which are supposed as vacuums in which “sit” electrostatic dipoles
(Section 2.2.1.1). Similarly, a small closed circuit can be associated with a magnetic
dipole, and outside of the volume defined by the circuit the magnetic effects can be 
described by potentials expressed with the help of the magnetic moment

. This study is carried over to Section 3.2.2. 
S

M i dS

Interestingly enough, in material, the same closed currents can be tied to
the movement of electrons in their orbitals.

3.1.4.  Characteristics of magnetic moments
S

M i dS

3.1.4.1. “The right hand rule”: magnetic moments are positive when the rotational 
sense of the current corresponds to the north pole

For electrons in their orbitals, = - ne, and as i v  where  < 0, we find

antiparallel to , so that from the “north face”, as defined in Figure 3.3(a), // Oz ,

while the kinetic moment

i

v M

l r mv  is such that l is antiparallel to Oz , and 

therefore M  is antiparallel to l .
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M i dS
S

dS

r
v

i

 r mvl

O

z

i
plan
north

Figure 3.3(a).  Northern plan and the direction of the magnetic moment. 

With respect to the “south face” shown in Figure 3.3(b), M is antiparallel to
Oz , although M remains antiparallel to l .

M i dS
S

i

z

O

dS r
v

 r mvl

 i 

south
face

Figure 3.3(b).  South face and the direction of the magnetic moment.

3.1.4.2. The energy of a magnetic dipole in a magnetic field

B

M iS

i

Figure 3.4. Magnetic dipole in a magnetic field. 
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If the dipole is very small, then it can be assumed that B  is constant with
respect to the rest of the dipole, a supposition that indeed is correct if B  is uniform.
If is the surface of the dipole, the flux fromS B going through the dipole is:

S S
= B.dS B dS .

From , we can carry forward 
S

M i dS
S

M
dS

i
 into  to obtain

M
B

i
.

In addition, the potential energy of the closed loop circuit (magnetic dipole)
traversed by i and placed within the flux  is pE  = - i , so that with the

preceding expression for , we have 

pE  = - M.B .

3.1.4.3. Forces and couples active on M  placed in B
3.1.4.3.1. Forces
In general terms, we have pF - grad E , so that more specifically

F grad M.B .

3.1.4.3.2. Couples
While moving through  of a dipole, ifdl, d F  and  are the elements of reduction 
around O for the torsor of forces acting upon the dipole, we have 

pdW dE M dB Bd M .

Performing the calculation 
B B B

M dB M dx dy dy
x y y

,

recognizing that M is independent of the position of the dipole, means that

M dB M.B dx M.B dy M.B dz grad M.B .dl
x y z

.

It is also possible to derive the expression B.d M B. d M d .(M B) ,

given that d  is defined by d M d M .
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Finally, from pdW dE M dB Bd M grad M.B .dl (M B).d

F.dl d ,
which by identity gives

F grad M.B and M B   . 

Comment:  If B  is uniform, then F 0  and M B . In effect, the dipole is 
subject to a single couple with moment M B .

3.1.5.  Magnetic moments in materials

3.1.5.1. Introduction to the elementary terms

The kinetic moment ( ) of a particle with a known mass (m) is the moment of a 
known movement such that r mv r p .

The moment of a force is defined by: r F .

The theory for kinetic moment states that 
d dr dp

p r r F
dt dt dt

, and 

therefore if ,  is constant.

3.1.5.2. Atomic magnetic moments

For every kinetic moment there is an associated magnetic moment. Similarly, for 
each orbital kinetic moment there is an orbital magnetic moment, and for a spin 
kinetic moment a spin magnetic moment.

Concerning the orbital kinetic and magnetic moments, the orbital kinetic
moment is given by l  r  mv  and the related magnetic moment is lµ iS , as 
schematized in Figure 3.4. 

i

l

v

r
lµ

Figure 3.5. Kinetic moment and the atomic orbital.
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The current intensity is given by i = -ne where n is the number or orbital
rotations (about a radius r) made by an electron of charge –e and speed v.  This then

gives
v

n = 
2 r

, and 2
l

v r
µ = - e  r =-e

2 r 2
v

 , so that in terms of vectors, 

l
r × m v e

µ = - e = - l
2 m 2 m

.

If we make B
e

µ
2m

, where µB is the Bohr magneton, we have:

lµ  - l .
Concerning the spin kinetic and magnetic moments, the same reasoning can be 

repeated; however, the speed of the system is so much greater as the distance 
involved is so considerably smaller that the calculation must be carried out using
relativity. So, in relativistic quantum mechanics, the resulting spin magnetic moment
( ) is µ  = , where  is the spin kinetic moment.sµ s - 2  s s

For the atomic magnetic moment then, the resulting moment is 

Tµ  - ( l  2 s) .
For an atom with more than one peripheral electron and within the spin-orbit

coupling approximation we have:

Tµ - (L  2 S) .

3.1.6.  Precession and magnetic moments

3.1.6.1. A magnetic field and the gyroscopic effect and the Larmor precession

B

l

l dl

lµ l

v

L

electron
rotating in its 
orbital

Figure 3.6. Magnetic field effect in a magnetic moment. 
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A field  acting on the movement of an electron in its orbital can be schematized as 
in Figure 3.6 as a moment couple due to

B
B  on lµ .

So l
d l

µ B
dt

L
dl

B l  l ,
dtl B B l

and then placing L
e

B
2m

B   where L  is the rotational vector, here

collinear to B .
So the vector undergoes a rotation around l B with an angular frequency, or 

rather a Larmor frequency given by L
eB

B
2m

.

The movement of an electron in the plane of its orbit is not altered by (asB l

remains constant during the rotation), but the plane of the orbit goes through a 
rotation, with a rotational vector L , around B  in what is called the Larmor
precession. The movement of precession resembles that of a gyroscope.

Comment  If we multiply the equation L
dl

l
dt

 by , the direct result is

l
L

dµ
µ

dt l . In effect, the moment lµ  also goes through a rotation about ,

characterized by the same rotational vector

B

L
e

B B
2m

.

3.1.6.2. Precession and the coupling L,S : internal precession

2
Sµ

2
Sµ

S

2
Sµ

Tµ

Jµ

L

Lµ
J

µ

Figure 3.7. Precession of the couple L,S.
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When there is a couple such as L,S , first the orbital kinetic moments are coupled,
then the spin moments; this gives rise to a resultant kinetic moment of J L S . In 

the absence of an external field, 
dJ

µ B 0
dt

 and J  is a constant of 

movement, so that a fixed direction is retained in space, as shown in Figure 3.7. The 
figure also shows the kinetic and magnetic moments as, by design, -1 , so that 
we also can see .L L

However,  and  display an interaction of energyLµ Sµ E L.S cos(L,S) .

At a given energy, must be constant and cos(L,S) L and S  can only conduct one 

precession movement (their direction may change) about J , which retains a fixed
direction in the absence of an external field. The result of this is that

T
e

µ (L
2m

2S) , which is invariably tied to the triangle (L,S,J), which also goes

through a precession about .J
In addition, can be broken down into a componentTµ Jµ  along , and a 

perpendicular component µ that turns around 

J

J  at the precession rate of motion. If 
we consider the average value of µ over an interval of time much greater than the
time required for one rotation, it is actually zero and the effect of Tµ is the same as 
that of (the apparent magnetic moment).Jµ

It is possible then to write J
e

µ gJ
2m

gJ  where g is the Landé 

factor. We also can state that 
e

g
2m

, where the factor , such that Jµ J  is 

called, for its part, the gyromagnetic ratio.
The factor g can be calculated easily. For example, by calculating Jµ  and J , we 

obtain:
J(J 1) S(S 1) L(L 1)

g 1
2J(J 1)

  . 

3.2.  Magnetic Fields in Materials

3.2.1.  Magnetization intensity 
Here we suppose that there is a bar of material of a volume d  that is equivalent to
having a volume of atoms and/or molecules sitting in a vacuum each having an 
elementary magnetic moment associated with the movement of electrons in their
orbits. This setup is comparable to that used for dielectrics. 
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A priori, the moments are randomly orientated by thermal agitation when there
is no external applied field. The dipoles, however, will tend to orientate themselves
along the lines of an applied field ( B ) so that they assume a minimum potential
energy. This will confer on each element in the volume of the material a nonzero 
dipole moment equal to d . In addition, this corresponds to the hypothesis given
by Ampere for molecular currents. 

M

By analogy with dielectrics, where the polarization vector is defined

by
dµ

P
d

, we define the vector for the magnetization intensity at a point in the

magnetic medium such that:
d M

I
d

 . 

This is quite often termed a vector of “magnetic polarization”.

3.2.2.  Potential vector due to a piece of magnetic material (magnetized and 
characterized by ) and Amperian currentsI

P

V

d M

Figure 3.8. Calculation for a potential vector through P. 

In physical terms, the potential vector is the sum of all the potential vectors
generated by the electronic atomic or molecular currents in a vacuum that give rise 
to a magnetization intensity ( I ) from the points (M) in the volume (M). In other
words, the potential vector at a point P is the sum over all the elementary potentials
( ) due to the elementary magnetic moments ( ddA M Id ) carried by the elements
in the volume d . Using Eq. (3) in Section 3.1.2. we can state that:

0 0 0
M M

1 d M 1 1
Md M grad grad  d I grad  d

4 r 4 d r 4 r
dA ,

from which can be determined that expression for the resultant potential vector ( ):A
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0
M

V

1
A I grad

4 r
 d .

Again using the relationship rot (aT) a rot T (grad a) T where now a = 1/r 

and , we can say that T I M M M
I 1

rot ( )  rot  I  I (grad )
r r

1
r

, from which 

can be derived:

0 0
M M

V V

1 I
A rot I  d rot  d

4 r 4 r
.

Taking into account the equation for a rotational in Section 1.1, 
, the second integral of the equation giving  can be 

transformed with

V S
rot T d dS T A

I
T

r
, so that 0 0

M
V S

1 d
A rot I  d

4 r 4 r
S I

 , giving

0 0
M

V S

1 I
A rot I  d

4 r 4 r
n

dS  . 

Figure 3.9. Equivalence of magnetized material to Amperian current densities

Vacuum
in which is a 

volume
MaJ  rot I

with surface 

 aj  = I×n

Magnetized
material

characterized
by I

sitting in a vacuum. 

To conclude, the preceding equation shows how the potential vector due to a 
volume V of magnetized material, characterized by a magnetization intensity vector

, is equal to the potential vector formed in a vacuum by so-called Amperian (or
molecular) currents distributed—as also shown in Figure 3.9—so that:
I

  there is one part characterized by the volume current density vector, such that
MaJ  rot I ;
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  there is another paper at the surface (limited of course by V) characterized by the 
superficial (or surface) current density vector, such that 

 aj I n .

These calculations can be used to determine the internal or external vector 
potential due to the magnetized material.

Example:  Determine the Amperian currents equivalent to a uniformly magnetized
cylinder and then the magnetization intensity through its axis, as shown in Figure
3.10.

aj

n

I

Figure 3.10. Cylinder magnetized along its axis. 

We have  (as  is uniform throughout the volume).aJ rot I = 0 I

 at the ends,  and I n  are parallel, and aj I n 0 ;

aj  on the sides,  and I n  are perpendicular, and aj I n Ie ,  where 
e  is at a tangent to the surface of the cylinder and normal to its axis. 

3.2.3. Physical representation of the magnetization of material and the Amperian
currents

The Amperian currents, defined above, are sometimes simply called magnetization
currents. However, as they are the indirect result of a calculation, and therefore seem
to have little bearing in reality, they are also often called imaginary currents. In
effect, they cannot really be termed macroscopic and in addition are not associated
with the movement of charge through a material, as is the case for a current density
vector. Amperian currents are not then what one would call “your normal type of
current”.

Yet they are not fictional, as for example in orbital magnetism (spin magnetism
is even more complex) they are the charge carriers tied to their nuclei, which give 
rise to localized, individual currents that generate the magnetic moments and result

in
d M

I
d

.
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We can use two simple examples with geometrical representations to show how 
Amperian currents can be seen as averages over space of individual current 
densities, which also qualify as microscopic currents.

3.2.3.1. A uniformly magnetized material perpendicular to the plane zI I

cu
rr

en
ts

 c
an

ce
l e

ac
h 

ot
he

r o
u t

x

I

yz
(a)

      uniform I

0aJ

I n
0aj(b)

(S)

Figure 3.11. Equivalence of (a) a uniformly magnetized material and
(b) a material crossed by surface Amperian currents.

In a parallelepipedal volume uniformly magnetized along Oz and in a plane
perpendicular to the Oz axis, there are ring currents associated with the movement of
electron orbitals. In order to detail these currents in geometrical terms, the orbitals
are assimilated into rectangular trajectories as indicated in Figure 3.11 a. It can be 
observed in the figure that, given the direction that the currents take, they cancel one
another out in the volume of the material but not on the surface, and hence the 
representation of the overall current in Figure 3.11b. This result is in perfect
agreement with the calculation of the density of Amperian volume currents
( as is uniform and independent of the points M in the material).

For its part, the calculation
MaJ rot I = 0

n

I

aj I  indicates the correct direction and sense of 
the resultant current, already seen using the geometrical argument detailed above. 
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3.2.3.2. A nonuniformly magnetized material with I along Oz and such that
I

0
y

.

z

x

y

I

(b)

(S)

I n

aj

non-uniform I : 0y
I

(a)

Figure 3.12. Equivalence of (a) a nonuniformly magnetized material and
(b) a material crossed by surface and volume Amperian currents. 

For a nonuniform I crossing toward positive values of y as shown in Figure 3.12(a), 
the geometric resultant of the volume currents is along Ox as detailed in Figure
3.12 b. The calculations for the Amperian volume currents, however, give the same
result, as: 

a

x y z
J rotI

0 0 I

I
0 : selon Ox

y
I

0 : selon Oy
x

0 selon Oz0 along Oz

- 0y
I  along Oy

0y
I  along Ox

=

The geometric result of the Amperian surface currents also is reported in
Figure 3.12 b, where the nonuniform density, the direction, and the sense of  are 

all in agreement with the calculation
aj

aj I n .
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3.2.4.  Definition of vectors B and H  in materials

3.2.4.1. Definition of B

The vector B  is defined by the relation B rot A , as detailed in Section 3.1.2.2.3. 
From this definition, the result is: 

divB 0   ,

and therefore in a vacuum, as in the medium of a magnetic material, the flux vector
 retains the same value (through conservation of flux).B

For its part, the vector A can be calculated as if in a vacuum and subject to 
magnetic forces, with the proviso that all currents be brought into play, notably the
volume ( and surface (aJ rot I ) naj I ) density molecular currents.

Assuming that a certain volume of magnetic material is identical to the same
volume of Amperian currents (and real currents when present) distributed in a 
vacuum, Ampere's theory can be written for the magnetic material as 

0 Trot B  µ J ,

under which classic form only the volume currents ( J ) appear, so that here 

T aJ =J + J  , 

where is the volume density of real currents (that is to say free currents,
deliberately applied in the material).

J

3.2.4.2. Definition of the excitation vector H
The relation 0 T 0 arot B  µ J µ (J + J )  equally can be written:

T a
0

B
rot  J J + J =J + rot I

µ
, so also, 

0

B
rot - I J

µ
.

Finally, the introduction of the vector
0

B
H  -

µ
I

gives
rot H = J .

This last equation shows us that the real current density ( J )  (deliberately 

applied) is the source current for the vector H , generally called the magnetic
excitation vector. For this vector, Ampere's theory is identical whether for a a 
vacuum or a material, which is rot H = J .



 Chapter 3. Magnetic properties of materials 107

In the material then, we have

0B µ H I ,

(while in a vacuum, ).0B µ H

3.2.5.  Conditions imposed on moving between two magnetic media

3.2.5.1. Continuity of the normal component of B

1n

medium 2

12 1 2n n n n

medium 1
2n

Figure 3.13.  Continuity of Bn at the interface between two magnetic media. 

In order to simplify the calculation, a cylindrical form is used of which the volume
(V) is made up of two halves called medium 1 and medium 2. The height of the
cylinder is infinitely small so that we can concentrate on the characteristics of the
region about the interface—the sides are negligible in size with respect to the base of
the volume.

 With ,12 1 2n n n n B can be written as: 

S V
B.dS div B d 0

2 1
Sbase S lower base Sside 0 Sbase
superior

B.dS B.dS B.dS B .n B .( n) dS

, which is stated as1 2B .n B .n

1n 2nB B .

This result indicates that there is a continuity of the normal component of B in the 
region of separating surfaces between the two media.
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3.2.5.2. Relation between the tangential components of the vector H crossing a layer
of current traversed by a superficial current of surface density sj

z

y

D C

E

A

sj F

B
12n n

x
medium 1 

medium 2 

Figure 3.14. Study of the continuities across a layer of current ( sj ).

Figure 3.14 describes the outline of the form ABCDA drawn at the vicinity of an
interface that contains a superficial current sj , which is perpendicular to the plane of 
the figure (intersection between ABCDA and the layer of current gives EF then
traversed by the current ).sj

Ampere's theory may be written as s y s
ABCDA

H.dl I j .e EF j EF ,

because by construction sj ey .  Therefore, with AD = BC  0 and by designating

the component of tangential to the current layer as , then

.

H tH

t2 t1 sH .AB H .CD j EF

 If  is the component of tH H  perpendicular to sj  and collinear with the

vector  (itself perpendicular toAB sj ), then with AB CD  we have 
. As t2 t1 sH H AB j EF AB EF , we can immediately see that 

.t2 t1 sH H j

In effect, this relation can be written in the very general vectorial form,

t2 t1 s 12H  - H j n .

If , the formula simplifies to H Hsj 0 t2 t1 .

Comment:  In the same way in which the current J , which appears in Ampere's

theory ( rot H=J ), is a real current (deliberately applied), the superficial current 

( ), which is such that  and introduced above, also is a real current
(deliberately applied) and in no circumstances contains the Amperian current 
component due to the Amperian surface current density ( ).

sj sI j EF

aj
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3.2.6.  Linear, homogeneous, and isotropic (l.h.i) magnetic media

3.2.6.1. Definition

These materials are such that at any point in the magnetic media (is therefore 
homogeneous) and in whatever direction (therefore isotropic) there is a linear
relationship between the excitation ( H ) and the response, which takes on the form

mI H

where is the magnetic susceptibility of the medium.m

The upshot is that

0 0 mB  µ H I µ 1 H =µH

with  and0 m µ=µ 1 r m
0

µ
 = 1

µ
, where r  is relative permittivity and

µ is the (magnetic) absolute permittivity.

3.2.6.2. Result 1 
From Ampere's theorem, rotH J , we can determine that with B µH :

rotB J  , 

so that J rotrotA graddivA A  and, finally, as divA 0 :

A+ µJ 0 .

3.2.6.3.  Result 2
If the deliberately applied current density J 0 , the result is that the volume

density of the Amperian volumes AJ = 0 . In effect, as rot H = J , if ,

, so that with  we have 

J 0

rot H = 0 mI H
m

1
rot I = 0 AJ = rot I = 0 .

3.2.7. Comment on the analogy between dielectric and magnetic media,  terms for 
andH B , and magnetic masses defined as calculable equivalents

3.2.7.1. The well-used analogy based on the equations 0D = E + P and

B H H0 0 0µ ( I)= µ µ I
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The direct transposition from the above equations would seem to correspond D with
,  withB E H , and  withP 0µ I . As D  is called the electric induction vector,   is

generally called the magnetic induction vector. With

B

E  being the electric field 
vector, in the same way,  is called the electric field vector. H

3.2.7.2. Analogy based on the “source” equations of Gauss's and Ampere's theories

These equations are: 
divD    and rotH J ; and 

P

0

+
divE     and 0 arot B  µ (J J ) .

In this case, it is the vector H  that generally is termed the magnetic excitation
(or induction) vector by analogy with the electric excitation (or induction) vector ,
as the two cases share the same type of real source (deliberately applied). 

D

The vector  really should be called the magnetic field vector through an 
analogy with the electric field vector (

B
E ), as the sources in both cases are both real 

and equivalent to the polarization/magnetization, all placed in a vacuum (of 
permittivity 0 or permeability µ0, which intervene in the Gaussian or Amperian
equations).

3.2.7.3. Conclusion
These two arguments driving toward two different sets of names cannot be anything
but admissible and it seems reasonable to accept both terms. In order to make the 
problem easier, it seems nevertheless more simple to call the two magnitudes
“vector H” for and “vector B” for H B . In any case, in mathematical terms,  just
like  corresponds to a field of vectors each determined by their three components
in the trihedral reference grid.

H
B

3.2.7.4. Comment. Magnetic masses as intermediates in calculations for permanent
magnets

As ,  , where B rotA 0divB 0 div(H I) divH divI .
By analogy with electrostatics, where the charge volume density for 

polarization is , in magnetism the volume density of magnetic masses

equivalent to the magnetization can expressed as

p divP
* divI . Similarly, the surface 

density of magnetic mass can be characterized through *
nI (by analogy 

with ).p nP
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So we have . The result is that*divH divI

H H.dS div H d *d ,
which is Gauss's theory for magnetism, and is a relation that is equivalent to Gauss's
theory for electrostatics: 

E
1

E.dS d .

Placing , we also find*m *d *
H H.dS m  (the flux calculated over

all space, that is  = 4 ), and for a solid angle d , the elementary flux is: 

H
m * m * dS.u

d d
4 4 r²

H.dS , where by identification 
1 m *

H u
4 r²

 and is

the magnetic field due to a magnetic mass m*.
It is worth noting that the magnetic masses introduced here are only

equivalents used in calculations and as such are not physically real, in contrast to the
Amperian currents. Experience tells us that the negative and positive masses cannot 
be separated; indeed, the two poles are “inseparable” and can be physically attached
only to two faces, north and south, of a closed current, as in Amperian currents. 

3.3. Problems

3.3.1. Magnetic moment associated with a surface charged sphere turning around 
its own axis

A sphere of radius R turns around its axis Oz at an angular velocity . The sphere is
uniformly charged at its surface with a charge density .
1.  Directly obtain the expression for the charge carried by an elementary part of the 
surface defined by dS . Calculate the intensity  equivalent to this
amount of charge rotating at the angular velocity .

2 R² sin d

2.  Given that the closed loop of current of radius R sin  is traversed by the above 
current , determine the magnetic moment of the rotating sphere. dI

Answers
1. The charge carried by the surface element dS 2 R² sin d  is 

. The intensity dI  can be thought of as the ratio of the quantity 
of charge that goes through the section dS with each complete turn of the sphere 
(i.e., dq) , over the time (dt) for the charge to pass through this section. This time is

that which the sphere takes to make one turn, which is 

dq 2 R² sin d

2
dt T . The result is 
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therefore
dq 2 R²sin d

dI = =  = R² sin d
dt 2 /

.

2.   The magnetic moment (dµ) that corresponds current ring crossed by  is by
definition such that , where S is the surface limited by the closed circuit. 
Given that the ring of current has a radius , its surface S is therefore: 

, where  . 

dI
d dI.S

Rsin
S = (R sin )² 4 3d dI.S R² sin d (R sin )² = R sin d

dS

O
 R 

Rsin

The resultant magnetic moment over the whole sphere is obtained by
summing over all the elementary magnetic moments associated with the circuits of
radius Rsin , where  varies from 0 to :

4 3 4 3

=0 =0 =0

4

=0

µ = dµ = R sin d  = R sin d

= R (1-cos² )d -cos

, where 

3
4 4

0
0

cos 4
µ = R -cos + = R

3 3
.

3.3.2 Magnetic field in a cavity deposited in
a magnetic medium

z

I

  µ

  µ0

O
 R 

Rsin
A magnetic medium with permeability µ and 
uniform magnetic intensity  parallel to Oz
contains an empty spherical cavity of radius
R.

I

1.  Determine the Amperian currents AJ and

 equivalent to the magnetization.Aj
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2.  Calculate the elementary induction dB at the center O of the cavity created by a 
coil of size  carrying a current  associated with a layer of surface current of 
density .

Rd dI

Aj
3.  From this, determine the total induction formed at O only by the magnetized
material. N.B. It is worth remembering that the field created by a coil of radius r 
carrying an intensity i at a point on the axis that observes the coil from an angle  is 

given by
3i sin

H
2r

.

Answers
1.  We have AJ rotI 0  as I  is 
uniform. In addition, we have 

, where  is the normal
external to the magnetic medium, as shown 
in the figure on the right. Therefore 

Aj I next extn

Aj  is 
perpendicular to the plane of the figure and 
corresponds to a surface current tangential 
to the sphere's surface, which can be seen as 
a layer of current. Its modulus is

.Aj I sin(  - ) = I sin

  µ

  µ0

next

I

Aj

O

z

r

M
z

N

H

h

2.  As noted in the question, for a coil with a radius r, the field
H formed at a point M at a distance z from the coil is directed 
along the axis of the coil and has a modulus of 

3

3/2
i r² i sin

H = =
2r2 r²+z²

.

A coil carrying a layer of current with current density
equal to  is traversed by the intensity

.
Aj

A Adi j dl j Rd R I sin d
The result is the formation at O of an
elementary induction  of sense opposite to

that of  and such that 

dB

I 30µ
dB .dIsin

2r
With , we have r = R sin

4 30 0µ µ I
dB = R I sin  d  = sin  d

2Rsin 2
.

z

  µ0

O
 R 

dl =Rd
di

  µ

I
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The total induction (B) is therefore:

30

=0

0 0

0

µ I
B = sin d

2

µ I µ I 4
 = (1-cos² )d(-cos ) = ,  that is to say:

2 2 3

0
2

B µ
3

I .

3.3.3. A cylinder carrying surface currents 

x

yO

Mz

a

A cylinder of radius a has a surface revolving around 
an axis Oz, a direction through which the cylinder is
infinitely long. The surface is carrying superficial 
currents that have a value for each current 
point  of the formM(a, ,z) 0 zk k sin e .

1.  Show that the distribution of the current is
equivalent to a uniformly magnetized cylinder with a 
magnetization intensity vector I  to be determined.
2.  Take the problem in the inverse direction and 
show that its resolution is actually faster.
N.B. For a cylinder, 

z r z
r z

rtI e e rI e
r z z r r r r
1 I I I I 1 1 I

ro .

Answers
1.   Given the equivalence of “magnetized material with a magnetization intensity

”, and “material traversed by currents of surface densityI k and volume density
”, we can write that K ak j I n  and K Ja rotI . As here, 0 zk k sin  e

and  (as no volume current is indicated in the question), the vector  should
verify on one hand 

K 0 I

0 zk sin  e I n , and on the other rotI 0 .
Given the symmetry of the problem, which would tend to invite the use of

cylindrical coordinates, we have 
r

z

0z

I 1 0 0
I I n 0 I  = k 0

0 kII sin
, where, by 
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identification, .
r

0

z

I ?
I I k sin

I 0

In order to determine , we are obliged to use the second equation, rrI otI 0 , for 
which the three components give three equations (taking into account that )

so

zI 0

r rI I 1 1 I
0,  0, rI 0

z z r r r
.

As (= constant with respect to r), the last equation gives0I k sin rII 0 ,

where r
0

I
I k sin , or rather r 0I =k cos .

Finally, 2 2 2
r 0I I I k cos ² sin ² k0 .

Ir

xe

n

I

  I

As
r

I
tan

I
, we have the geometrical

representation which details how xI // e  , where 

.0 xI k e

2. Turning question 1 on its head implies finding the Amperian currents equivalent
to a magnetic cylinder with a magnetization intensity of 0 xI k e . As this
magnetization intensity is uniform and has k0 = constant and an orientation at all
points following Ox, the volume Amperian currents are zero and all that remains to
determine are the surface Amperian currents aj I n . Taking into account that
is orientated following Ox, we are more than obliged to use Cartesian coordinates,
and thus directly find:

I

0 x

a y

0

k n cos 0
j I n 0 n sin 0

0 k0 sin
,

so that 

a 0j k sin  ez .

The resolution of the first question is greatly facilitated by using Cartesian
coordinates, rather than the cylindrical coordinates that the symmetry of the problem
otherwise would suggest when I  is unknown! 
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3.3.4 Virtual current

       y 

          S 
µ0

      P(x, y,0) 

         z  O                  x 

µ
         S’ 

In the trihedral indicated by Oxyz, the plane xOz separates a vacuum (of 
permeability µ0) corresponding to the region y > 0, from a magnetic medium (of 
permeability µ) that extends through the inferior part of the defined space where
y < 0. An infinitely long conducting wire, both rectilinear and parallel to Oz, is 
placed at S, which has coordinates (0, a, 0). A current of intensity I goes through the 
wire in sense , a unit vector along the Oz axis. An additional point, S' which is 
used in the problem, has coordinates (0, -a, 0).

u

It is possible to show that for any point P with coordinates (x, y, 0), the vector
B  is in the form

 when y > 0, 0
0

µ I r r'
B = u×( +K

2 r² r'²
); and

 when y < 0, 
µI Lr

B= u×
2 r²

,

noting that in both cases,  and r=SP r'=S'P . Also, K and L are two constant that are 

given by 0

0
K and 0

0

2
L , respectively. 

1.  Recall the method by which the constants K and L can be determined.
2.  Directly calculate the expression for the magnetizing field eH (P)  formed by the 

current I. 
3.  As a function of , give the expressions for:eH (P)

(a)  the field  in the medium (y < 0);H(P)



 Chapter 3. Magnetic properties of materials 117

(b)  the demagnetizing field dH (P) ; and 

(c)  the magnetization intensity vector J(P).

4.  Determine the Amperian currents equivalent to the magnetization.
5.  Calculate for the point S the expression for B  via two different routes:

(a)  directly from the above derived equations for B  expressed as a 
function

     of predetermined constants; and
(b)  by bringing in to bear on the calculation all the currents, both real and 
     Amperian.

Answers
1. Ampere's theory states that H 2 r I , so at point P,

I
H = u×

2 r²
r

, and in the medium with permeability µ :

µ I r
B = u×

2 r²
.

At a point P in the medium with permeability µ0,
the field results from the current of intensity I (in the medium where the
permeability is µ0) and the current KI (K remains to be determined) at S' (where the
permeability is µ). S' is symmetric to S about the origin and KI is the “reflected” 
(virtual) current.

S
I

P

r
H

B

When P is in the medium with permeability µ, the field to which it is subject is 
of a “perturbed” current—by the presence of the two different media—in the form
LI where L has yet to be determined.

The problem therefore is to find two unknowns, K and L, which can be
determined by introducing two equations, namely for the continuity at the interface
(plane xOz) of the tangential component of H which gives [ , and for the
normal component of B which gives

1 - K] = L

0 0K[ + ] = - .

2.  The calculation was performed in (1), where e
I r

H (P) = u× , with r = SP
2 r²

.

3.  for a point inside the material and given that the fields are:eH = H  + Hd

(a)  in the material e
B L I r

H = u× L H
µ 2 r²

 (b) d e eH = H - H (L-1) H = - K He

(c) B= 0 a µ H + I = µ H    where aI  is the magnetization intensity, we find
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0 0 0 0
a e

0 0 0 0

B - µ H µ - µ 2µ µ - µ
I H 2

µ µ µ + µ µ + µ e eH 2K H

(where r
a r e

r

µ 1
I =  H= µ - 1 L H  = 2 H

µ 1 e ).

4. , whileA a rJ = rot I = (µ -1) rot H rot H = j = 0  (no current source in the

material) AJ = 0 .

A a e
2KI KI

j = I × n=2K H n = u × r × n =  a u
2 r² r²

5. We have 

(a) 0
x

0

µ I L r 2µ I 1
B(r = 2a) = u× = e

2 r² µ+µ 2 2a
;

(b) AB = B(produced by I in vacuum) + B(produced by j  in vacuum) .

0µ I
B(produced in S' by I located in S in vacuum) =

4 a
.

0 A
ampérien

µ j dx
dB

2  r
; the relevant component, given its symmetry, is:

0 A
Amperian useful Amperian

µ j dx
(dB ) = dB cos cos

2  r
 (see Figure below).

With  and x a tan
a

cos
r

, we have:

Amperian
= /2 0 0
=- /2

µ KI µ KI
B = cos²  d  = 

2 a² 4 a
,

from which comes the same result for B as found in part (a). 

S

dx

S’

dBAmperian

(dBAmperian)relevant

dx’
a

x

a dB’Amperian



Chapter 4 

Dielectric and Magnetic Materials

4.1.  Dielectrics 
4.1.1. Definitions
Dielectrics are in effect electrical insulators. A scale of conductivity can be divided
into somewhat arbitrary but well recognized characteristics for each group of 
materials.
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There are certain characteristics that are specific to dielectrics. These include:

Dielectric withstand strength (Ec) (usually given in the units kV mm-1).  When the 
electric field E > Ec, the dielectric is no longer an insulator and an electrical
discharge is generated.

 Breakdown potential (Uc). When the potential applied is such that U > Uc, the
dielectric is no longer an insulator.

  Electrical discharge, which is the current passing through the dielectric when it
breaks down. The discharge is due to the formation of a highly conductive
passage between two electrodes.
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4.1.2.  Origins and types of breakdowns
4.1.2.1. Thermal breakdown
When a dielectric exhibits losses through dipolar absorptions or leak currents, a 
Joule effect ensues that generates heat. If the heat produced is greater than the heat 
given out by the insulator, the temperature rises and this can come about rapidly as 
dielectrics are often both good electrical and thermal insulators. As the conductivity

( ) is related to temperature by
GE

( )
kT0e , where EG is the band gap of the

insulator or semiconductor, the conductivity also increases with temperature to the
point where the material can no longer be termed an insulator.

4.1.2.2. Intrinsic breakdown
Such a breakdown is caused by a snowball effect rather than the Joule effect, which
no longer plays a role. Once the electric field is sufficiently high, a significant
number of electrons impact with and ionize the dielectric. Electron-hole pairs are 
then separated by the electric field, and holes (poorly mobile) tend to accumulate
near the cathode. The resulting space-charge reinforces the local electric field and 
contributes to an increase in the number of ionizations. Field effects also can give 
rise to additional emissions.

4.1.2.3. Ageing and changes in Ec with time
If a dielectric contains inhomogeneities such as cavities or imperfections due to 
foreign particles, partial discharges can develop around these defaults and an erosion
or even a localized melting of the dielectric can result. A network of more or less
conducting channels may then develop resembling so closely the branches on a tree
that the effect is indeed called treeing. An example is shown in Figure 4.1. 

Just as mechanical strains can generate cracks, humidity and ionizing
radiation, present in our everyday environment, can provoke similar disruptions in
certain polymers. In addition, the shape of the electrodes (or contacts) can play a 
central role, so that to limit localized breakdowns, bumps, and deformities are 
avoided. An important example of a way in which such effects are limited is the use 
of -conjugated polymers in the insulation of high tension cables, where they are 
used as an inner sheath around the copper core.

cracks initiating treeing

conducting
wire

insulating
sheath

Figure 4.1. Electric cable covered by an insulating sheath showing treeing.
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4.1.3  Insulators
4.1.3.1. Natural and inorganic insulators
Examples include: 

composites made from natural materials such as paper or cotton impregnated with
oil (paraffin) and wax;
electronegative gases, in particular those with halogen atoms, for example, SF6,
which have high electron affinities, and thus reduce discharges by reducing the
density of free charges; and 

  inorganic materials such as ceramics prepared at high temperatures and pressures 
(eliminating the need for binders) and engineering ceramics (containing titanium
resulting in a high permittivities) that are used in specific applications, for
example high value capacitors. Ceramics containing high amounts of aluminum
facilitate metal plating, a useful property when used as substrates for electrical 
circuits.

4.1.3.2. Synthetic organic insulators
For the most part, these materials are based on polymers, which consist of a chain of 
a high number of monomers (M). The principal types of polymers are:

linear homopolymer                 –M – M – M – M –

                                                                 M – M – M – M – M –
                                                                M – M – M

                                                                 M – M – M – M – M –

branched polymer

                                     – M – M – M – M – M –  M – M – M – M –

                              M                          M reticulated polymer

                                        M – M – M – M – M - M – M – M – M – 

             alternating copolymer                  – M1 – M2 – M1 – M2 –

The degree of crystallinity is defined by  volumesample
partecrystallinofvolume .

The most common examples are:

1. Polyethylene (PE), which is based on the structure:
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C

H

H

C

H

H

H C C H

H H

H H
and is prepared from ethylene, which has the chemical structure H2C = CH2. High-
density polyethylene (often indicated as HDPE) has a high level of crystallinity.

2. Poly(vinyl chloride) (PVC),  is based on the structure:

C

H

H

C

H

Cl

H C C

H

H H

Cl

and is prepared from vinyl chloride.

3. Polystyrene (PS) 

C

H

H

C

H

H C C

H

H

H

comes from the polymerization of styrene, which unlike the above-noted systems,
carries aromatic phenyl rings.

4. Polypropylene (PP) 

C

H

H

C

C

H

H C C

H

H C

H

HHH H HH
as its name indicates results from the polymerization of propylene.

5. Polytetrafluoroethylene (PTFE) is also known under its commercial name of 
Teflon, owned by DuPont. This is an amorphous polymer that, on carrying a 
“thermal history”, and having undergone mechanical treatment, does not tend
toward a crystalline state.
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C
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C

F

C C

F

F

F

FF

Dielectric characteristics of the polymers 

PE PVC PS PP PTFE
r  (50 Hz) 2.3 4 2.4 2.3 2

Tan  (1 MHz) < 5x10-4 10-1 10-4 <5.10-4 < 5.10-4

=1/  (  m) > 1014 109-104 > 1014 >1014 > 1013

Ec (kV mm-1) 17-28 11-32 16-28 20-26 17-24

4.1.4  Electrets
4.1.4.1. Definition and properties
Electrets are dielectric materials that carry a quasipermanent charge and are 
analogous to magnets. They have a permanent polarization; however, the charges
involved are relatively small. Under normal ambient conditions, ions in the
atmosphere, resulting from natural ionizing radiation, can neutralize the deposited
charges. In Figure 4.2, an example of the evolution of surface charge on an electret 
is given. Typically, after around 2 or 3 months, there is only 20 to 30 % of the initial
charge.

0

charge density at time t
charge density at time 0

0.2

t = 0

1

t
ca 2 months

Figure 4.2. Diminution of charge on an electret with time. 

4.1.4.2. Operational details of the voltammeter (devices which measure charge 
densities)
These devices operate on the principle of compensation. That is to say, that for a 
charged dielectric placed on the lower electrode, the following equation can be 
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written:
B

0 A B
A

V  = V V  = E.dl E s + E . s  (1) 

where  is the surface charge density of the dielectric, s is its thickness, and s' is the 
distance from the upper electrode. E and E' are the electric fields at the dielectric and
between the electret and the upper electrode, respectively.

Figure 4.3.  Schematization of the operating principles of an electrostatic voltammeter.

Imposing the condition of continuity on the component, normal to the
displacing vector gives:

n nD D' = ,  which in turn yields 0E E .      (2) 

V0 is adjusted until  (by using the compensation method), so that E' = 0 
(1)  gives (1’): ,0V = E s
(2)  gives (2’):  = E

Determining the ratio (2’)/(1’) directly gives 0V
s

.

4.1.4.3. Piezoelectrets
These dielectrics become polarized when subject to an applied force. Inversely,
when subject to a polarization and in the absence of any mechanical constraints, they
change their dimensions. The more common piezoelectrets are quartz (SiO2), barium
titanate (BaTiO3), and aluminum phosphate (AlPO4).

There is a linear relationship between the causal applied force and the resulting 
polarization, and elasticity theory can be used to describe the phenomenon.
Piezoelectricity is a property tied closely to the structure of a material. For it to exist,
the centers of gravity of positive and negative charges, which coincide in the
absence of any strain as shown in Figures 4.4a and 4.5a, are separated by
deformation. In Figure 4.4b, the dipolar moment remains at 0 because of symmetry,

electrodes

charged
dielectric

      s’      s 
0 A BV  - V

B
V  = A
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so the material is not piezoelectric; however, in Figure 4.5b, the deformation in Oy
leads to a nonsymmetry and a dipolar moment in the direction Ox. 

x

O y

- -+ +

-+ + -

- -+ +

-+ + -

(a) (b)

+ +- -

+- - +

+ +- -

+- - +

before deformation, i
i

p 0 after deformation (through Oy),
i

i
p 0  not piezoelectric 

Figure 4.4. Deformation yielding no piezoelectric effect. 

After deformation, (through Oy) : 
i x

i
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Before deformation, i
i

p 0

+

--

-

++

+ +

-

-

-

-
+

O y

x

--

++

(a)
(b)

-

-

-
+

+
-

+ +

-

px

distance
conservée

Décalage
sous
l’effet
de la
déformation

O

Figure 4.5. Deformation resulting in a piezoelectric effect (SiO2).
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4.1.5.  Ferroelectrics
4.1.5.1. Definition
Ferroelectric materials possess domains, called ferroelectric, inside which dipolar
moments are coupled with each other, thus giving rise to spontaneous polarizations. 
4.1.5.2. Properties
The dielectric permittivity ( r) of ferroelectric materials is very high and can reach 
values of around 103 to 104. It is for this reason that they are used in high-strength
capacitors. They are very sensitive to temperature: above the so-called Curie 
ferroelectric temperature, the ferroelectricity disappears. 

(a)

Orientation of the 
spontaneous polarisations

by an external applied 
field (E). When E=Em, all 

domains are aligned, as 
shown here.

Random
orientation of the 

spontaneous
polarisation due 
to ferroelectric

domains

E
(b)

    (c) 

   P 
  Ps

         Pr

-Em            O      Eco     Em    E 

(c)

1st
 p

ol
ar

is
at

io
n

pl
ot

Ferroelectric hysteresis cycle

Figure 4.6.  Ferroelectric domains and their  (a) random orientation;  (b) organization under 
an external field; and (c) hysteresis plot. 

A plot of polarization against the applied electric field resembles a normal cycle 
of hysteresis:

At the initial zero field strength, as in Figure 4.6a, the overall polarization of the
sample is zero even though each individual domain gives rise to a polarization. 
This polarization is due to the gradual coupling of dipolar moments up to the
limits of the domain, which are structural dislocations of various origin. As the
orientation of all the domains is completely random, the initial overall polarization 
is zero. 

 When an electric field is applied, a coupling energy tends to orientate the
ferroelectric domains in the directional sense of the field. This coupling energy 
(W) follows the equation

W = - p.E cos 
and is directly proportional to E. The disorientated polarized domains orientate
themselves to the field bit by bit with the increasing field, and this first 
polarization gives the plot shown in Figure 4.6b. Once the value Em is attained,
saturation occurs, i.e., P = Ps. 
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The completed cycle is shown in Figure 4.6c, where E is varied from –Em to +
Em. At E = 0, the permanent polarization (Pr) remains, so to return to P = 0, the
coercive field (Eco) needs to be applied.

4.1.5.3. Polarization with respect to temperature
4.1.5.3.1 Conditions for a spontaneous polarization (Ps 0)
At a temperature , the ferroelectric material can exhibit a nonzero 
spontaneous polarization (i.e., Ps  0 without an external field). To understand how
this can be brought about, we shall look at a highly polar ferroelectric material in
which the orientated polarization (P

cT <

or) dominates the other polarized components;
that is to say that .orP P

For this system, and from Sections 2.5.3.2-3, we have:

pP = n µ n <cos > = n L( )p   (1), 

where p alµ E

kT
 and Eal is such that al a

0

P
E E

3
.

In the absence of an applied field, the presence of P is such that Ea = 0 so that 

Eal = 
0

P
3

, p

0

µ P

3 kT
, and accordingly 0

P

3 kT
P

µ
(2).

Given that Eq. (1) = Eq. (2),  we find that 0
2
p

3 kT
L( )=

n µ
. This equation,

which contains the condition P 0  when , is in fact the straight slope due toaE = 0

0
2
p

3 kT
n µ

 . 

To find the solution, which corresponds to P 0  when , the line of

the equation

aE = 0

0
2
p

3 kT
n µ

 must intercept the Langevin function ( L( ) ), which is a 

tangent with a slope of 1/3 and has certain aspects detailed in Chapter 2. This means

that the slope of the equation 0
2
p

3 kT
n µ

 must be less that the slope of the tangent to

the origin, i.e., 0
2
p

3 kT 1
<

n 3µ
, which means that:

2
p

C
0

nµ
 T < =

9 k
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where C is the Curie ferroelectric temperature, below which point a spontaneous
polarisation can appear without an applied field.

Figure 4.7. Condition to obey to obtain a ferroelectric material. 

4.1.5.3.2. The Curie law

Given that al a
0

P
E E

3
, and for a strongly polar ferroelectric material

, withor pP  P = n L( ) L( )
3

,
2
p alµ E

P = n
3kT

. This can be used to deduce that

al a2
0p

3 k T P P
E = = E +

3n µ
, and thus a2

0p

3kT 1
P  - =

3nµ
E . The last equation can be 

rewritten as 
C

a
C

P 1-  = E
T T

where
2
p

C
0

n µ
 = 

9  k
  and

2
pn µ

C =
3 k

 (C is the Curie constant). Again, the equation

can be rewritten the form:

a C

P C
 = 

E T -
 . 

L( ) tangent of 
equation /3

line for 
3 0kT /nµp²

L( )

This last equation is an expression of the Curie law and shows that as T ,c

a

P
E

. As P has a finite maximum value—it cannot go above n µp—the
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relationship  (and cT
a

P
E

) can only be true when ; that is to say at 

the point at which the spontaneous polarization occurs. 

aE = 0

4.1.5.3.3. Conclusion
Ferroelectricity only occurs in small number of crystalline materials, an example of
which is perovskite. The property comes about when, at low temperatures ,
the localized dipole moments are sufficiently intense to induce a gradual alignment
of dipoles. As the temperature increases, thermal motions obliterate this established
order so that local polarizations are deformed, the dipolar moment is reduced to
nothing, and the ferroelectricity disappears.

c(T < )

4.2.  Magnetic Materials
4.2.1. Introduction
4.2.1.1. Field inside a bar (with permeability µ) placed in a magnetic field 0H

4.2.1.1.1. Field outside and parallel to the bar 0H
Given the conditions of continuity, it is possible to
write:

0 0tH  = H  = H1t

0

1H

0H

0n 1nB  = 0 = B .
As , the last two equations indicate
that .

1n 1nB = µ H

1nH 0

The result, from the first equation, is that 1 1tH = H H , where the field ( ) in 

the bar is equal to the field outside the bar ( H
1H

0 ) and H H1 0

0

.

In addition, it is possible to state that:

1 1 0 r 0 0 rB = µ H  µ H µ  µ H µ B   (if r 1 , 1 0B B ),
While the intensity of the magnet is be given by:

m 1 m 0 r 0I H H (µ - 1) H  (if r 1 , I 0 ; if r , I very large ).

4.2.1.1.2. Field exterior and perpendicular to the bar 0H

1H
0H

Continuity conditions make it possible to write that

0 0n 1B = B = B n ,  that 1t
0t 1t

B
H = 0 = H

µ
, and

with , we find1tB 0 01 1nB = B B .
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As , we have 1t H = 0 1n 0
1 1n

B B
H  =  H  =

µ µ
, where , so0 0B  = µ H0

0
1

r

H
H  =

µ
.

For the magnetic intensity,
r

m 1 r 1 0
r

µ 1
I H (µ  - 1) H H

µ
 , and if r 1 , I 0  ,

whereas if r , .0I H

In general terms

 If m > 0 , where , we haverµ > 1 0
1

r

H
H  = < H

µ 0 . On writing 1H  in the form

, the vector needs to be antiparallel to1 0H H h h 0H . Here, h  is said to be a 
demagnetizing field.

 If m < 0 , where , we haverµ < 1 0
1

r

H
H  = > H

µ 0

h

. Once again, writing  in the

form

1H

1 0H H , the vector h is now parallel to 0H , and h  is now a 
magnetizing field.

4.2.1.2. General properties
As we shall see, there are two main classes of magnetic materials.

4.2.1.2.1.  Linear materials
These materials have an diamagnetic intensity ( I ) that is proportional to the
magnetic field ( ), so that H mI H . When m < 0 , the material is diamagnetic,
and when m > 0 , it is paramagnetic. In fact, diamagnetism is a quite general
phenomenon and can be found in all materials, as it results from orbital magnetic
moments, while paramagnetism can be observed only in materials with a total,
resulting magnetic moment T 0 . Apart from the sign of m , its constancy or 
variation with temperature also can be used to indicate the type of magnetism one is
dealing with:  in the case of diamagnetism, m  is independent of temperature,

whereas in paramagnetism, m
1

(T)
T

. This relationship is observed for dilute

systems, which is detailed below.

4.2.1.2.2. Nonlinear materials (essentially the ferromagnets)
In this class, the relationship mI H  is still appropriate; however, m is now a 

function of H  such that m m (H) . Similarly, (H) , so that B (H) H .
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In addition,  and m  are now not only dependent on the strength of H at any
particular time t, but also on its anterior values: the system is now subject to
hysteresis.

4.2.2.  Diamagnetism and Langevin's theory
The Larmor precession, associated with the orbital moment, can be found even in
atoms where the resultant magnetic movement is zero (such as noble gases). To 
understand the effect of a resultant magnetic field on an intraatomic orbital, we
suppose that the field is applied as indicated by the Larmor precession (Section 
3.1.6), shown in Figure 4.8. 

Rotational
direction of an 
electron. The 
current flows in 
the opposite 
direction.

l

L Lµ i S

2l
e

µ l
m

B

 iL=- Le

L

Figure 4.8. Effect of magnetic field on the orbital magnetic moment. 

The frequency of the Larmor precession ( L
L 2

) forms a current (iL)

which is such that , where L Li  = - e L  is the number of rotations per second. We

also can write L
Li e

2
. With L B , where 

e
2m

, we find L
e²B

i
4 m

.

If ² is the average value of the square of the distance between the 
electron and the axis Oz through which the magnetic field is applied, then
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L L L
e²B

i S i ² ²
4m

.

Note that µL is in the opposite direction to B, just as µl is opposite to l. In addition, 

r² = x² +y² + z² <r²> = <x²> +<y²> +<z²> = 3<x²>
2 = x² +y²  < ²> = <x²> +<y²>  = 2<x²>

2
< ²>= <r²>

3
.

For a number n of atoms per volume, each containing z electrons, the 
magnetic moment per unit volume for the precession is . The magnetic

intensity ( ) therefore is such that 
Lnzµ

I

L
nze²

I nzµ B r²
6m

 .

Given that the magnetic material is represented as a vacuum through which currents
associated with orbiting electrons progress, and that the magnetic moments moving
in this vacuum are such that , we can write that0B = µ H

00
m

µ nze² r²I µ I
H B 6m

,

where m therefore is negative and temperature independent, and r²  can be 
calculated for atoms or ions using quantum mechanics.

Even when the orbital magnetic moments and the spin give a resultant
equal to zero, this susceptibility related only to the orbital magnetic moment is still 
apparent. This is because it is tied to the single Larmor precession. When the 
resultant is not equal to zero, then there is diamagnetism, however, its contribution
to the magnetic susceptibility is less intense than that of paramagnetism. Indeed, the
latter masks the former.

4.2.3.  Paramagnetism
Paramagnetism appears for atoms that carry a permanent magnetic moment, such 
that T 0 . The effect due to diamagnetism is less than that caused by
paramagnetism, and in atoms where T 0  paramagnetic effects dominate.

4.2.3.1.  Langevin's theory
Langevin's theory can be thought of as an analogy of the theory developed for 
dielectrics under an orientating polarization (which gives rise to Clausius Mossotti's
general formula). Here we consider in terms of magnetism the distribution of 
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magnetic dipoles, rather than the dielectric effect due to a distribution of dielectric
dipoles. In the presence of an external field ( B ) and at a certain temperature (T), the 
dipoles are subject to: 
  on one hand, an orientation due to B , for which the coupling energy in the stable
state is in the form p min T T T(E ) = - B - µ .B cos - µ .B , so that  = 0 

(2 ) gives ;  and T//B
on the other hand, a disorientation with respect to the direction OO' of the applied
field  due to a thermal agitation of energy kT, where k is Boltzmann's constant.B

x

B

O

 d

Figure 4.9. Spatial distribution of magnetic moments subject to B .

The number of atoms (dN) with a moment within the solid angle ( )
shown in Figure 4.9 is given by

d
dN = A' d . Given Boltzmann's distribution, we 

can write that

Tµ B cos
dN = A exp( + )d

kT
.

Taking into account the symmetry of the calculation around the axis Ox, the
resultant of the magnetic moments is with respect to the axis. The contribution of dN
atoms is therefore 

TdM = µ  cos dN .
The resultant of the dipolar moment from all the atoms together with respect to Ox
is thus

.T
0

M d M µ  cos  dN

As each “average” magnetic dipole makes a contribution, it is possible to state: 

T T T
M

µ = µ  cos = µ  L( )
N

where Tµ B
kT

 and 
1

L( ) = coth  - 
²

 . When  is 
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small (or B is not too intense) we find that L( )
3

. If we suppose that

B = 1 Wb m-2, T = 300 K, and , we find-22
Tµ 10 MKS 1/ 400 .

We thus arrive at the definitive equation:
2

T T
T T

µ µ B
µ = µ  L( ) =

3 3kT
.

For a given number (n) of atoms per unit volume, the magnetic moment per unit
volume is T Tn µ = n µ  L( ) ex , where xe is the unit vector in the direction Ox

through which the field  is applied. By definition, the magnetic intensity ( ),
which is the magnetic moment per unit volume, is precisely

B I

TI nµ , where 
2
Tnµ B

I
3kT

. As we have represented our magnetic material as a vacuum in which

bath magnetic atoms with magnetic moments equal to µT, we can write that
, and therefore 0B µ H

2
0 0

m
I µ I nµ  µ
H B 3kT

T .

The relationship
2

0 T
m

nµ  µ
3kT

is in the form m
C
T

, which is Curie's law, wherein C is Curie's constant that is 

defined by
2

0 Tnµ  µ
C

3k
.  This law shows m to be positive and to vary inversely

with temperature.

4.2.3.2. Correction required by quantum theory

Quantum theory gives the magnetic moment as T
e

µ
2m

gJ , so that

2
T

e²
µ g

4m²
²J² . Given the particular values for J², , and the

definition of Bohr magneton (µ

<J²> = ²J(J + 1)

B), B
e
2m

, the expression

2 2
T B

e²
µ g² <J²> = µ  g²J(J + 1)

4m²
 gives
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2
0 T

m

nµ µ

3kT
, or rather

2
0 B

m
n µ  J(J 1) g² µ

3kT
.

4.2.3.3. Paramagnetism and molecular fields:  the Curie-Weiss theory
In solid materials, molecules are not independent of one another and consequently
Boltzmann's law, so well adapted to gases, is no longer directly applicable.
Particularly when the applied magnetic field is weak and the temperature is low
enough to make thermal vibrations weak, the magnetic interactions of electrons and
thus neighboring atoms in condensed systems become nonnegligible. Then, atoms
subject to the action of an external field B  and also subject to an additional effect
due to a so-called molecular field that results from neighboring molecules or atoms.
Weiss hypothesized that this additional effect can be expressed in the
form and as such must be added to the external field ( ). This 
hypothesis, that the molecular field is proportional to each magnetic material, seems
reasonable as I  depends on the magnetic moment (µ

mH I H

T) of the very molecules or 
atoms that determine the intensity of the magnetic interactions between neighbors.

Thus with a resultant field of the form H I , we have 0B= µ (H I) .

Taking the equation given in Section 4.2.3.1, namely,
2
Tnµ B

I
3kT

, we now find that

2
0 Tnµ µ (H I) C

I (
3kT T

H I) ,

from which it can be deduced that
C C

I 1
T T

H
, so that 

m

C
I T

( C)H 1
T

, hence m
C

T C
.

Given that the Curie temperature ( ) is such that C , we find that  ism

m
C

T
 . 

This last equation, or law, accords well with experimental results and is a notable
characteristic of paramagnetism for condensed materials.

It is worth noting that in order that m > 0 , the temperature must be greater
than ; so that the temperature is real, it must be greater than zero, so that 
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with ,  is also greater than zero. AsC mH I mH, has the same sign 

as , and therefore the molecular field is positive.I

4.2.3.4. Comments
While the Curie-Weiss law is verifiable for most situations, there is a point at low
temperatures, notably for T , where a spontaneous ferromagnetism appears. On 
this and other related points three remarks can be made apparent:

  First, at low temperatures, the approximation
1

L( ) = coth
3

 is no longer

valid, as is no longer small. As detailed in Chapter 2, for higher values of ,
, andL( ) 1 T TTI = n = nµ L( )  nµ  = Is , where Is is termed a saturated

magnetization and is independent of the applied field. Qualitatively, this means
that at low temperatures, thermal agitation no longer limits dipole orientation or

the magnetism. More quantitatively, the approximation L( )
3

 is no longer

acceptable when ; that is to say at a temperature equal to or less than
T

Tµ B  > kT

c, where Tc is defined by the relationship  and is approximately
equal to .  is the field local to a molecule or atom. However, when T ,

c TkT  = µ B
B > Tc

L( )
3

, then the paramagnetism described above returns due to the creation of 

structural disorder by thermal agitation.

  Second, we have assumed that the molecular field mH I  appeared only in

the presence of the magnetism I originating itself from the effect of orientation
by an applied field . Therefore, the above-established Curie law will no longer 
apply to materials that already have a molecular field in the absence of an external 
field. This molecular field also can orientate the magnetic moments parallel to one
another. There is in effect a premagnetism, or spontaneous magnetism, that
corresponds to ferromagnetism.

B

The Curie law also is not observed by antiferromagnets, such as MnO and 
Cr2O3. While there is still spontaneous magnetism, it is such that particles 
compensate one another (compensated premagnetization).

  Third, paramagnetism also may be caused by electron spin and is in this case
called spin paramagnetism, or Pauli's paramagnetism. Free unpaired electrons, by
way of their spin and the resulting spin magnetic moment, can couple with a 

magnetic field of intensity B. For a spin s
e

µ
m

s  the coupling energy is
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p sE  = - µ .B . The orbital movement of the electron is not taken into account,

otherwise a factor of ½ would have to be introduced into the general theory
developed by Thomas who used a frame of reference appropriately tied to the
composite spin and orbital movements.
If Oz is the direction along which B is applied, then

z
e

|Ep| = B <s >
m

, which gives s
e

|Ep| = B  m
m

. With s
1

m  =
2

, two different

values for energy are obtained, namely, , whereBEp = ±µ  B B
e
2m

. Two 

calculations then can be carried out: 
 One with a Boltzmann distribution of the different energy electrons, so that with

Bµ B
x

kT
, we find where n- + B BI = (n  - n )µ  = nµ  thx - and n+ are the number of 

electrons per unit volume with spins parallel or antiparallel to the field B,

respectively. With , we arrive atthx x
2

0 0µ I nµ µ
B kT

B  , and this law is of the

same type as Curie's law. It is worth noting though that this law is poorly verified for 
the Pauli paramagnetism or nonferromagnetic metals due to the small susceptibilities 
and temperature independence of such systems.

 Two, with a Fermi-Dirac distribution, which is better adapted to electron

distributions. The calculation results in finding
2

0 B

F

3 µ µ
2 kT

, where TF is the Fermi

temperature defined by . This result was established by Pauli in 1927 and
is applicable to free electrons in metals.

FE = kTF

4.2.4. Ferromagnetism
4.2.4.1. The orientation of a ferromagnetic bar in a magnetic field
As we saw in Section 4.2.1.1, when a bar is placed in a magnetic field ( 0H ) and is: 

In a longitudinal position, parallel to the field, so that 0 LH H , we have 

. The result of this is that1 0H H HL LL m L rI I H (µ  - 1) H , and if

the susceptibility ( ) is large, thenm LI  is also large.

1H

0 LH H
L m LI H

1 0 LH H H
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  In a transverse position perpendicular to the field so that 0H HT , we have

1 TB  = B  = B0 . From this

1 0
1

0 0

B B
H I I

µ µ 1 0H H I =, so T H I .

In addition, r
T T

r

µ 1
I I H H

µ T , 1H
0 TH HTI TH

1H = 0H I
if µ , and consequently , are large.r m

In general terms, a bar of any shape placed in an external field H0 , within the

limiting values of  detailed above, then1H

1 0H H f  I

d

where f is a form factor that should take on in the above limiting situations the 
values:

0H

 f = 0 (where );0 LH H

 f = 1 (where ).0 TH H
The value of f decreases as the ellipsoid flattens out.

In addition, if  is considered in the form1H 1 0H H h  I, then dh f ; in
other words the field is demagnetizing.

With respect to the resultant magnetization intensity, we have:

L T m LI I I H HT .

0H

0H

I

 IL = HL

HT = IT

HL

Figure 4.10. Orientation of I with respect to the excitation 0H .
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From this we can go on to draw Figure 4.10, where the resultant magnetization

intensity (
dµ

I
d

, where   is the magnetic moment of a bar of any shape such as

an iron filing) does not have the same direction as the external field ( ). A 

coupling appears that tends to orientate the filing in such a way that

dµ

0H

0I  //  H . The 

potential energy of the system, P 0E dµ.B I.B0d , is at a minimum when

 and 0I  // B 0I  //  H .

4.2.4.2.  Ferromagnets and magnetization plots
4.2.4.2.1. Plot of the primary magnetization

Fl
ux

m
et

er

Figure 4.11.  Set up used to plot the first magnetization.

The device shown in Figure 4.11 shows how the first magnetization can be plotted.
There is a large torus that is cut at a cross section so that there is a small gap into
which a coil can be placed, which is in turn connected to a fluxmeter. The large iron 
torus is covered with N turns per unit length, through which flows a current I. For
this, , which gives , where is the field in the torus iron.H.dl I H = NI H

Given that the component normal to B does not change throughout, the field inside
the torus is the same as that in the air gap, which can be measured using the
fluxmeter. Thus knowing both H and B, we can find out the magnetization intensity

in the torus from
0

B
I = - H

µ
 and then plot .I = f(H)

For a sample that has been demagnetized, H is increased from zero and the first
magnetization plot shows three main zones, which can be divided as shown in
Figure 4.12 a:
  zone 1, which exhibits an essentially linear increase;
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  zone 2, in which there is a considerable increase in I with H; and
 zone 3, where the magnetization reaches its saturation point (Is). The latter is 
specific to the material under study and is dependent on purity and temperature.

Bo =µ0Is

H

)IH(µB s0

µi (b)
O

P

slope =
µmax

zone 1 

H

ma

i

zone 2 

zone 3 

(a)

I

 Is
B

H

(c)

  µ 

µmax

µi

µ0

Figure 4.12. The plots for  (a) I(H);  (b) B(H);  and (c) µ(H).

As , the plot showing in Figure 4.12(b) is the result of 
plotting  [from the plot in (a) with the homothetic ratio µ

0B µ (H I) B(H)

0I = f(H) 0] following an
insertion of the linear variation 0H . At higher values of H, the plot tends toward

an oblique asymptote such that 0B µ (H I )s  and for which the coordinate of the
origin at H = 0 is .o 0B  = µ Is

Given the plot B such that , we can plot the line in Figure

4.12(c) which shows µ . Geometrically speaking, µ is the slope of the line
OP in Figure 4.12(b). For hardened iron,

(H) (H)B = µ .H

= g(H)

r max(µ ) 100 , and this value can reach 
around 80000 for certain alloys such as Mumetal™.
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4.2.4.2.2. Magnetization at the point of saturation

T

paramagnetism,
where

 = C/(T- )1

Tf

T

Is(0)

  Is

Tf

ferromagnetism at 
low temperature

Figure 4.13. Plots of  (a) Is = f(T) and (b) 1/  = f(T)

The Is is temperature (T) dependent. As shown in Figure 4.13(a), as T rises from
absolute zero, Is diminishes quite regularly and then quite quickly before reaching 
zero at a temperature , which is called Curie's ferromagnetic temperature. Above

the material is not ferromagnetic but paramagnetic, as indicated in Figure
4.13(b). At temperatures considerably greater than , the value of

fT

fT

fT  follows the

Curie-Weiss law where 
C

T
, in which  is slightly above . In the case of 

iron,  and .

fT

fT  = 1043 K 1101 K

4.2.4.2.3. Hysteresis loop and magnetic state

A hysteresis loop can appear on having increased H from 0 to a maximum value
(Hmax) at saturation and then on decreasing H, finding that the current is below that

described by the first magnetization plot, shown in Figure 4.14(a). As
0

B
I H

µ
,

this phenomenon results in a delay in B, which is the effect called hysteresis.

By varying H between Hm and –Hm, the current follows a closed loop, otherwise
known as the hysteresis loop. There are two notable points:
 the remanence magnetization (Ir) remains when H = 0;  and 
 the coercive field (Hc) is the value of the opposing field H which needs to be 
applied to remove the magnetization.
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           I 

         Ir

    - Hmax     Hc   Hmax   H

(a)            I 

’
’’    I1

            hd ’  H0        H 
’’

      H0
H0 = H

H0 = 0 

(b)

Figure 4.14. (a) Hysteresis loop  and (b) operation. 

For a material with a well-defined hysteresis and a form factor f, its 
magnetic state can be determined from both:
  its participation in the plot , which is characteristic of the hysteresis of a 

material;  and
I = f(H)

 its part in the slope 0H H
I

f f
(equation I directly deduced from

).

 = D(H)

0H H f I

The line has a slope of 
1
f

 and is such that I 0  if 0H = H [so that  is at the

intersection of the line I  with the abscissas].

0H

 = D(H)
The hysteresis intervenes at two points in Figure 4.14(b) where at the

intersection, for a hysteresis along the line :I = f(H) I = D(H)
 at  when H is increasing along with I;
 at  when H is decreasing, as is I. 

When the external field  changes, the line moves but retains its slope0H
1
f

.

If , the plot is simplified to0H = 0
H

I
f

and goes through the origin. The points

of intervention are now ’’ and ’’. Given that 0H H hd  and that here ,0H  = 0
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we now find that . The intensity of the magnetization, hen

, is the actual remanence magnetization.
dH h 1 (H = hdI  = I ,) w

0H  = 0
If ,0H = H I 0  and the point at which the hysteresis functions is ’ (the equation

 demonstrates that for this scenario, 0H H hd dh 0 ).

4.2.4.2.4. Energy loss by hysteresis

For the experimental setup shown in Figure 4.15—which also may be used to
study hysteresis loops—Ohm's law also can be written as: 

u + e = Ri , or rather,
d

u - Ri
dt

.

R

  i 

                  +   - 
                   u 

Figure 4.15. Experimental setup to study hysteresis.

Multiplying both sides by idt, we have:
u i dt - i d = Ri² dt .

On integrating this differential equation between the points  and ,
and , and  and , we find 

t = 0 t = T i = 0
i = i 0

T T T

0 0 0
uidt id Ri²dt , which also gives

T T T

0 0 0
uidt Ri²dt id .

 (1)       (2)         (3) 

Term (1) represents the energy 
T

G
0

W  = uidt supplied by the generator of fem u, so 

that with
dq

i
dt

, we have , if when and

when .

T
G

0
W  = udq Qu q = 0 t = 0 q= Q 

t = T
Term (2) represents the energy lost through the Joule effect between t and

 which is associated with the resistance of the solenoid. 
= 0

t = T
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Term (3), which should be written in the form
0

id , represents the energy lost 

through hysteresis and it is this term that is detailed below.

If we suppose that the solenoid is infinitely long and has N turns each with a
surface area S over the solenoid length l, then  and H = N i B N l S . In turn, 

excusing the pun, we have , so that .d = N l S dB
0 0

id NlSidB

With , where V is the volume of the solenoid, and , we have:V = l S H = N i

0

B

B'
id V HdB ,

where B' is the field at the initial instant t = 0 and while B is the field at the last
instant t = T. 

In terms of the coordinates (B,H), the hysteresis takes on the form described in
Figure 4.16; H dB is indicated by the hatched surface dS where H is increasing in 
the first quadrant. When H decreases, H dB is given by an area dS', associated with a 
value H' < H and such that dS' < dS. 

B
  dS’

    dS 

                H’   H 

Figure 4.16.  B(H) coordinates of the hysteresis loop. 

Schematized in Figures 4.17(a) and 4.17(b), respectively, are the hatched
areas swept in the first quadrant when H increases and decrease. The difference 
between  and  corresponds to the area (A) of the hysteresis loop.  As H

increases, the system gains energy (if 

dS dS'

H ,  and H ) , and when H
decreases, the system releases energy (if H , d

dB 0 dB 0
B 0  and HdB 0 ) . 
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As , the released energy is less than that received, and the energy 
absorbed through one complete cycle can be written as: 

dS' dS

0

B

B'
id V HdB V [S - S'] = V.A .

The higher the value of A, the greater the energy absorbed. 

  B 

  H

(a)

  B 

  H

(b)

Figure 4.17.  Areas covered in the first quadrant when (a) H increases;
 and (b) H decreases. 

4.2.4.3. Soft and hard ferromagnets
4.2.4.3.1. Soft ferromagnets
Soft ferromagnets are characterized by their weak coercive field, where 

. They magnetization therefore is relatively easy to change. Given
that with a low value of H

-1
cH < 100 A.m

c hysteresis is small, and energy losses are also small,
these materials often are used in transformers, electromagnets, relays, and telephone
loud speakers. Examples include Permalloy™ (Fe = 21.5 %, Ni = 78.5 %) and 
Mumetal™ (Fe = 16%, Ni = 77%, Cu = 5%, Cr = 2%). 

4.2.4.3.2. Hard ferromagnets
These magnets exhibit values for nd their remanence is relatively
difficult to remove. They are generally used as permanent magnets. Examples
include steels with around 1% carbon, or even with Co, Mn, or W. More recently, 
alloys have been prepared such as the Alnico™ series, which includes Alnico 5 
based on Fe 51.5%, Al = 8%, Ni = 13.5%, Co = 24%, and Cu = 3%, or alloys with
titanium such as Ticonal™.

3 -
cH > 10  A.m a1

4.2.4.4. Aspects of the theory of ferromagnetism
4.2.4.4.1. Theoretical conditions required for spontaneous magnetisation to appear:

influence of temperature
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It is worth trying to find that conditions required at which a paramagnetic substance
remains magnetic  simply by its molecular field (H(I 0 ) m) and without any
external field. 

The relationship that defines Hm : mH I , or rather mH
I , can be 

multiplied by T above and below the line to give mT H
I

T
. In the absence of an 

applied field, H is due only to the molecular field. In the representation
H

I = f
T

,

the magnetization state therefore is shown as a straight line (D) with slope
T

. As 

detailed in Section 4.2.3.1, the magnetization in the presence of magnetic moments
(µT) can be given as:

T TI = n µ n µ  L( ) where T 0 Tµ B µ µ H
kT kT

. Therefore 

0 T
T

µ µ  H
I = n µ  L

kT
.

For a material to be spontaneously magnetized, simply by its own molecular field,
its magnetization state should be represented by the point A that is both on the line
D and on the curve TI = n µ  L( ) , as presented in Figure 4.18. 

A

line D (slope T/ )
Is
IA     slope
      nµ0µT

2/3k
         curve nµTL( )

H/T

Figure 4.18. Plots of  I = f(H/T) (labeled line D) and I = nµTL( ).
Note: plots are for a given temperature. 
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Given that at the origin [  0] L( )  tends toward a straight line with an

equation
3

, the function I tends [also when 0] toward a straight line written by

2 2
0 T 0 T

T
nµ µ H nµ µ H

I = nµ
3 3kT 3k T

, for which 
H

I = f
T

 has a slope equal to

2
0 Tnµ µ
3k

; for a point A to exist, the slope of D must be less than the slope of the

tangent to the origin of I, which is represented by a line of slope
2

0 Tnµ µ
3k

 . This 

condition is more concisely given by
2

0 TT nµ µ
3k

, or rather

2
0 Tnµ µ

T
3k

.

In order to have T positive, the Curie temperature ( ) must also be positive. This in
turn requires that the molecular field must be positive ( 0  ). 

The conclusion therefore is that a paramagnetic material with a positive
molecular field is susceptible to being spontaneously magnetized—in the absence of
an external field—at a temperature below .

Comment 1. It should be noted that low temperatures enable spontaneous order, and 

therefore Tµ B
kT

 must be relatively high, even if the approximation made by

L( )
3

is not accurate under such conditions. In reality, it is sufficient that the 

slope (
T

) of the line D is less than
2

0 Tnµ µ
P

3k
, that is to say that

2
0 T

f
nµ µ

T < P = T <
3k

, where Tf is the ferromagnetic temperature. As

noted elsewhere in this chapter, representative values given for iron are Tf and 
equal, respectively, 1043 and 1101 K. 

Comment 2. Tf separates the two temperature domains above which a disordered
phase reigns resulting in paramagnetism and below which the temperature is 
sufficiently low for an ordered regime to result in ferromagnetism (see also 
Comment 1 of Section 4.2.3.4). 
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 4.2.4.4.2. Weiss domains and the Barkhausen effect
Associated with the point A, which represented the ferromagnetic state, is a 
magnetization intensity (IA). In the absence of an external field, the intensity is no
more than that which is found in small domains, called Weiss domains, which are
around a micron cubed in size (Figure 4.19). With respect to the larger macroscopic
volumes, the spontaneous magnetization is zero in the absence of an applied field
and because of the random domain orientation. 

Hexternal=0 Hexternal weak and increasing

Iaverage = 0 

Iaverage  0 

Figure 4.19. Evolution of Weiss domains with a growing magnetic field. 

Once an external field (H) is applied, and while H is relatively weak, the walls
between the Weiss domains deform to the point where domains facing in the same
or nearest direction as H become greater in number than their neighbors. While the
displacements (distortions) are relatively small in the weak field, they are also 
reversible and give rise to the smooth change observed for I(H) in Figure 4.20.

I
IA

Hzo
ne

 1
 

Figure 4.20. The Barkhausen effect. 
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Under a strong field the changes in domain orientation become abrupt so
that the magnetization curve becomes discontinuous and resembles a stairway, each 
step corresponding to the orientation of a single domain in what is known as the
Barkhausen effect (Figure 4.20). 

The origin of hysteresis can be identified in the movement of these
domains. As the displacements required are nonnegligible, they are susceptible to 
being stopped by obstacles such as impurities and defaults, and the phenomenon is 
therefore irreversible and nonlinear. The effect of the field becomes delayed and the
domain orientation continues, for example, even when the field has disappeared,
hence hysteresis. When all the domains are orientated in the direction of the field H,
then the average magnetization for all domains tends toward the individual domain
value of spontaneous magnetization (IA).

What now remains in is an explanation of the physical origin of IA for each 
domain in the absence of an external magnetic field, that is to say the reason for the
existence of an internal field in the absence of an external field. This is opposed to
the supposition expressed earlier on paramagnetism where the molecular field
appeared due to the generation of order by an external field.

4.2.4.4.3. Origin of the spontaneous magnetization of domains
Ferromagnetism only occurs with elements that have their internal electronic layers 
incomplete, as is the case with iron which has an incomplete 3d orbital. The
unpaired electrons from these inner layers are coupled through spin, with interaction
or so-called “exchange” energies being of the form

e e 1W  = - 2 J s .s2 .

In this equation, Heisenberg's theory, Je is the exchange integral and varies with 
the overlapping wavefunctions of the electrons. A positive Je favors an alignment of 
same-sense spins and spin magnetic moments and little by little we can see that an
order can be imposed upon the material through the spin magnetic moments. While
for individual atoms Je is determined by the way in which the different orbitals are 
filled which follow Hund's rules whereby spins are organized so that S is at a 
maximum, in a metal Hund's rule is no longer applicable as the atoms contribute to
valence bonds. Indeed, the interactions of the 3d orbitals from the atoms placed 
together result in the formation of the half bands 3d+ and 3d-, which correspond, 
respectively, to the parallel or antiparallel alignment of spins. A small shift in the
energies of these two bands results in a considerable separation of the two
populations, in turn resulting in a large spontaneous magnetization. If the bands are 
very different, for example, if 3d+ is more populous than 3d-, then there can be an 
intense magnetization caused by a high proportion of parallel spins ordering the
magnetic moments.
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individual free atom
Fe 3d 4s

metal
    3d 4s

3d- band

3d+ band

3d- band

3d+ band

 Mn 

Figure 4.21. Electronic structure of the transition elements iron (ferromagnetic) and 
manganese (antiferromagnetic) in both free and metallic states. 

4.2.5.  Antiferromagnetism and ferrimagnetism
4.2.5.1. Antiferromagnetism 
In the case of chromium or manganese, the 3d+ and 3d- bands are pretty well equally
populated, so that the average spin magnetic moments are antiparallel and there is no 
longer any spontaneous magnetization as the spin magnetic moments cancel each 
other out. Above a certain temperature, the Néel temperature (TN), this ordered state

disappears and  follows a law of the type
C

T
.  When T increases, 

decreases so that  goes through a maximum at , in a behavior
characteristic of antiferromagnets. For chromium, .

T = TN
NT  = 475 K

(a) (b)

Figure 4.22. (a) Organization of spin magnetic moments due to antiferromagnetism;
and (b) distribution of spin magnetic moments, of alternating value, in

ferrimagnetism.

4.2.5.2. Ferrimagnetism
For materials based on a mixture of two types of atoms, exchange interactions can 
orientate all similar atoms in one sense and all the other different atoms in another
sense. The overall effect is a nonzero spontaneous magnetization, which can be 
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strong, but not as strong as ferromagnetism. Ferrites make up the main class of
ferrimagnets and are based on iron(III) oxides mixed with metals such as Ni, Al, Zn, 
Mn, and Co in their secondary oxidation states (II). An example is that of Fe2O3,
MO.

There are soft ferrites, based on mixtures of manganese and zinc, which are 
of considerable commercial interest. They are insulators (  < 1  m) and exhibit
limited losses through Foucault currents, hence their use in high-frequency
transformers. Hard ferrites containing barium, are normally prepared with high
temperatures and pressures, and are used as permanent magnets.

4.3. Problems
Dielectrics, electrets, magnets, and the gap in spherical armatures
1.  A lhi dielectric of absolute permittivity  is placed between the electrodes of a 
spherical capacitor which is defined by spheres of radius a and b centered about O.
If +Q and –Q are the charges on the electrodes, where a < b, then:
(a)  Determine the vectors E  for a point M situated at a distance r
from O ( a ) as well as the potential difference between the two

electrodes, where .

(M), D(M), P(M)
< r < b a bV  - V

r OM
(b) Calculate the surface and volume densities equivalent to the polarizations a, b,
and P.
(c) Calculate the total quantity of these charges due to the polarizations in the
dielectric. What remarks can be made on the results?

2. After having discharged the capacitor used in the pervious problem, the dielectric
is changed for an electret, which has a permanent polarization expressed as 

3
r

P
4 r

(where and  is a constant). The spheres, of radius a and b, do 

not carry real charges. 

a < r < b

(a)  Calculate the charge densities equivalent to the surface polarizations ’a, and 
’b,  and the volume polarization ’P.

(b)  Use the preceding result to find the vectors E  and D  for when r . > a

3.  Now the same capacitor has, in place of an electret, a magnet with a permanent

magnetization intensity  which is such thatI 3
r

I
4 r

( where , and  is a 

constant).

a < r < b

(a)  Calculate the Ampere surface and volume current densities identical to the
magnetization.
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(b) (i) Calculate the imaginary surface ( *a and *b) and volume ( *) magnetic
mass densities.

(ii) From the preceding result, calculate the total magnetic mass carried by the
material with respect to an armature of radius a, and then of radius b. Conclude.
(c)  The notion of magnetic mass is used as an intermediate in calculations of the
magnetic field at point M located by the vector r  (where a ). < r < b
 (i)  Recalling that at a distance r from a magnetic mass m*, the field is given by:

3
1

H(r) m *
4 r

r
.  Give the form of Gauss's theory for H .

 (ii) Determine  when , and then findH(r) a < r < b  B .

Answers
1.
(a)  When , Gauss's theory states that: a < r < b

Q
 = 4 r²E = , so that as the field is radial, 

3
1 r

E Q
4 r

 .

a

O
r

M

'an
A’ Q

+Q

A- + - +

b
bn

Therefore,

3
1 r

D E Q
4 r

and
0

0 3
( )

P ( )E Q
4 r

r
.

b b
a b

a a

Q dr Q 1 1
V  - V  = E.dr

4 r² 4 a b
.

(b)  As = 0, the localized form of Gauss's theory states that P = 0 . Equally
valid, a direct calculation can be made when the polarization vector is known:

0
P M M 3

0 0
M MM

( ) r
(M) = - div P Q div

4 r
( ) 1 ( ) 1

Qdiv grad Q 0.
4 r 4 r
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 When M is at a point A such that r a , we have 
0

a a 3
( ) Q

P(A).n a.n
4 a

a  . With a  antiparallel at an  so that

, we find aa. n = - a 0
a 2

( )
4 a

Q
;

a is indeed negative as can be discerned by inspection of the orientation of the
dipoles influenced by the polarization (due to the polarization charge +Q on the
electrode with radius a) and shown in the figure above. 

 In the same way, when M is at the point B, so that r b , we have:
0

b b b3
( ) Q

P(B).n b.n
4 b

bb nwith , so bb.n b , and we find that

0
b 2

( )
4

Q

b
, where b 0  (again see the figure above). 

(c)  If Qa and Qb designate the total polarization charges with respect to the
armatures with radii a and b, we have a a bQ = 4 a²  et Q  = 4 b² b , so that 

0 0
T a b

( ) ( )
Q  = Q + Q = Q Q 0 .

To conclude, the dielectric material is overall electrically neutral and the
polarization has the effect of simply displacing the charges to give localized charge 
surpluses.

2.

(a) As 3
r

P
4 r

:

 With A such that r a  and a  antiparallel at , then an

a a a3 2P(A).n a.n
4 a 4 a

.

 With B such that r b , we have bb n , then 

b b b3 2P(B).n b.n
4 b 4 b

.

In addition, P M M 3
r

' (M) = - div P div 0
r

 where means proportional to,

and as elsewhere we can also state that = 0, so that in the localized form of 
Gauss's theory, ’P =0. 
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(b)  Writing Gauss's theory for charges sitting in a vacuum thus gives:

 when ,a < r < b 
int

all charges a

0 0

Q
Q '

(M) E.dS 4 r²E  .

With , we have in terms of vectorsaQ' = 4 a² 'a = - 3
0

r
E

4 r
.

 when r , we have  > b int a bQ = 4 a² '  + 4 b² '  = - 0 , in which .E 0

With respect to induction,

 when a < r < b: 0 3 3
r r

D E P
4 4r r

0 ; and 

 for r , as  and are zero,  > a E P D  is also zero. 

3.

(a)  We have 3
r

I
4 r

 when so we can state that the Ampere currents are 

such that:

a < r < b

 volume current: M Ma M3
r 1

J (M) rotI rot rot grad 0
4 4r r

; and 

 surface current: on an electrode of radius a we have: 

a r a a a3
a

j ) I n n 0
4 a

 as asin(a,n ) sin 0 .

Similarly, a r b b b3
b

j ) I n n 0
4 a

 as bsin(a,n ) sin 2 0 .

(b)(i) For the imaginary magnetic masses equivalent to the magnetization, we have:

 for the volume densities: M M
1 1

*(M) = - divI(M) div grad 0
4 r 4 r

 for the surface densities: 

- for A: a a3
a

(A) I(A).n .n
4 a²4 a

 as a  antiparallel at ,an

- for B : b b3
b

(B) I(B).n .n
4 b²4 b

 as ab n .

The upshot is that the total magnetic masses with respect to the armatures of radii a 
and b are, respectively, m*a = 4 a2 *a = -  and m*b = 4 a2 *b = .

We can conclude by verifying that the resulting magnetic mass from the two
faces of the magnet is . This result is analogous to that found R a bm* = m* +m* = 0
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in answer 1(b), in that localized excesses in the positive (m*a) and negative (m*b)
magnetic masses appear in the calculation so as to take into account the 
magnetization.

(b)(ii)

With 3
1 r 1

H(r) m * m *
4 4r r2

u
, we can write that

H
m * u.dS

H.dS
4 r²

,

so that with
u.dS

d
r²

 and d 4  we arrive at H m , where m* is such 

that  and represents the sum of magnetic masses inside the Gaussian 
surface in the form of Gauss's magnetic theory. If we then consider a point M such 
that a < r < b, with a Gaussian surface being a sphere of radius a, then 

m * d

H H.dS 4 r²H m , where 3
1 r

H
4 r

.

From this can be deduced 0 0 3 3
r r

B (H I) µ
4 4r r

0 .

Comment: In nonlinear magnetic materials, the relationship between B  and  is 
nonlinear and so that the only usable relationship is 

H
B =µ(H) H 0B (H I) . To 

be more explicit, it is worth remembering to not write B = µ H , from which can 
arise  = 0 and = 0, which would be completely wrong, as we can see in this
example!

B H



Chapter 5 

Time-Varying Electromagnetic Fields 
 and Maxwell’s Equations 

5.1.  Variable Slow Rates and the Rate Approximation of Quasistatic States 
(RAQSS)

5.1.1.  Definition
In this region of frequencies, the applied field varies sufficiently slowly with time so 
that it is possible to state that at a given instant the current intensity is the same
throughout all parts of a closed circuit. Given then that for any value of S,

implies that the current density flux (
S

I = j.dS = constant j ) across a current 

“tube” (which delimits a closed surface) is zero, as in j.dS 0  (see also Chapter 

1). Following on from Ostrogradsky's theory, it would indicate that di , and 

the conservation of charge therefore would give

v j 0

0
t

. This hypothesis indeed

could be used as a starting point in defining quasistatic states.

5.1.2.  Propagation
Concentrating on systems where the intensity is the same in all parts at a given time
means neglecting propagation phenomena that would appear if the intensity were to
vary rapidly with time. Once the intensity of the electrical configuration starts to
vary, its effects felt at a distance will be delayed related to the velocity of signal
propagation (which is the speed of light in a vacuum). When the phenomenon varies
periodically, at a frequency , a pair of closest neighboring points undergoing the
same vibrational state are at a distance of one spatial period, that is to say one 

wavelength, which is defined by
c

= . If the length (L) of the circuit is very small

with respect to , i.e., L <<  that happens for large  (that is to say for low :
variable slow rates), it is possible to make the first approximation that all points in
the circuit are in the same vibrational state, as schematized in Figure 5.1. 
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Figure 5.1.  Respective proportions of L and , where L <<  and I(x)  constant 
over L.

5.1.3.   Basics of electromagnetic induction
Mobil charges in a circuit gain energy if subject to a variable magnetic flux, thus
giving rise to an electromotive force (emf). If the variation in flux is not due to a
displacement by the circuit itself, then magnetostatics cannot explain the problem, as
in effect the magnetic force that operates on the charges, given by mF q v B ,
has a direction perpendicular to the velocity of the displacement, and therefore does 
not participate. An electric induction field (E

V

i) must be added to the electrostatic 
field in order to account for the induced emf, and as the former acts as an
electromotive field, it is not derived from a potential. The relation E grad ,

where  is the total field is no longer useful, and by consequence,
neither is of any value.

E rot E 0

5.1.4. Electric circuit subject to a slowly varying rate 
5.1.4.1.  A conductor without interruption nor capacitance
As detailed in Section 1.3.5, even for very short periods (as little as 10-14 sec), 

. For slowly varied systems, up to around , the relation

 holds true. It is only on reaching frequencies above 10

0 14 10 Hz

div j 0 14 Hz, nearing the 

optical region, that the equation div j 0  is no longer acceptable. 

5.1.4.2. A conductor with a break, and the effect of capacitance
For the current intensity at the level of the surface S at the break (at the capacitor), 
the superficial charge density ( ) carried by the surface, such that , we 
have

Q = S

nI j.dS = j .S
dQ d

 =  = S
dt dt

      I(x)

 I0

L /2       x 

n
d

j  =
dt

.
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By imposing the hypothesis of slowly varying frequencies, we suppose that
d

 0
dt

, so that , which again permitsnj  = 0 div j 0  (see Section 1.3.3.). 

5.1.4.3. Conclusion: electrical characteristics of a circuit subject to low frequencies
In order to calculate the currents subject to RAQSS:
  the duration of the signal is not considered and the intensity of the current is
assumed to be the same for all parts of the circuit;

  an electromotive field is added to the applied field when the circuit is placed in a 
varying flux; and 

 it is assumed that the capacitance effects are localized at the surface of the 
electrodes and that only the capacitance C which introduces the dpp V=Q/C at the
terminals of the capacitor is taken into account. Charge variations with time
( ) are neglected and as detailed in the following Section 5.2 under a 
regime of higher frequency fluxes, this effect corresponds to a current (called the
“displacement current”) which contributes to the magnetic field. 

d /dt = 0

5.1.5.   The Maxwell-Faraday relation
5.1.5.1. Lenz's law
For a circuit in a variable flux, either because the circuit is moving or the magnetic
field is changing, there is an induction fem due to the electromotive induction field
( ) which is such thatiE iE grad V . Lenz's law states that in such a case,

i
S

d B
e = E .dl= - = - .dS

dt t
.

5.1.5.2.  Form of the resulting electric field
This results in:

i i
S

S

e = E .dl= rotE dS

d B
= - = - dS

dt t

i
B

rot E
t

.

By defining the vector potential A  by the often encountered equation B rot A ,

it becomes i
A

rot E rotA rot
t t

 where i
A

E
t

. In a space in 

which there also is an electrostatic field, the electric field therefore is written as: 
A

E grad V
t
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5.1.5.3. Maxwell-Faraday's relation
From the preceding equation, we end up with: 

B
rot E rot(grad V) (rot A) = -

t t
  where 

B
rot E

t
and it is this which is the Maxwell-Faraday relation.

5.1.5.4. Comment: Poisson's equation
Given the equation for , we have:E

div E= - div (gradV) - divA
t

.

Just as for a RAQSS, where div j 0 , we have div A 0  (see Section 1.4.5.). The 

result is that , and by using Gauss's theorem, which remains valid (see

Section 5.3.1.1 for a more explicit usage), then

div E= - V

div E , and we finally obtain

Poisson's equation:

V + = 0

5.2.  Systems under Frequencies ( div j 0 ) and the Maxwell – Ampere 
Relation

5.2.1.  The shortfall of rot H j   (first form of Ampere's theorem for static 
regimes)

As opposed to quasistatic regimes, the rapidly varying regimes are such that at a 
given instant, the intensity differs in different sections of the current cylinder, which

also correspond to  0
t

.

Such regimes therefore are characterized by the relation 

div j 0  (1). 

If Ampere's theorem were to be still valid under its original form,
, where is the conduction current density due to a current deliberately

applied to the circuit, then by taking the divergence of the two parts the result would
be div . This result is no longer acceptable for rapidly varying regimes, and 
therefore Ampere's theorem should be modified.

rot H j j

j = 0
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5.2.2. The Maxwell-Ampere relation
5.2.2.1. By intervention of vectors H and D
In order to take into account the reality of Eq. (1), Ampere's relation is written in the 
form:

rot H j + X , (2)

where  is a vector to be determined. Taking the divergence of the two parts in
Eq. (2), we have: 

X

div j = - divX . (3)

The introduction of the equation for the conservation of charge, coupled with the
localized form of Gauss's theorem divD  where  is the volume density of 

free charges deliberately contributed, gives first div j = 0
t

 and then with

Gauss's theorem:
D

div j div
t

. (4)

The comparison of Eqs. (3) and (4)  would indicate that a vector in X is 
D

X
t

.

Equation (2) is thus written:

D
rot H j +

t
  . (5)

It is important to note that the vectors H  and D  detailed above and also
described in Section 3.2.7.2. have the same origin with respect to their sources, 
respectively, magnetic and electric, but both real. 

5.2.2.2. The intervention of vectors B  and E

5.2.2.2.1. The intervention of magnetic permeability (µ) and dielectric permittivity
( ) of the material.

On using
B

H  and , we obtain directly from Eq. (5): D E

E
rot B µ j

t
.          (6) 
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5.2.2.2.2. The intervention of absolute magnetic permeability (µ0) and absolute
dielectric permittivity ( 0) in a vacuum

With
0

B
H  - I  and D 0E P substituted into Eq. (5) we have

0
0

B E
rot ( - I) j

µ t t
P

.

As , we finally have:AJ  rot I

0 0
E P

rot B µ j  rot I
t t

  ,   (7) 

and equally, 0 0
E P

rot B µ j J
t t A . (7’) 

By making

D 0
D E

J
t t

P
t

,       (8) 

the displacement current in the medium under consideration, then we can also write: 

0 D Arot B µ j  J  J        (9)

5.2.2.2.3. Conclusion
We have seen that Ampere's theorem for a vacuum, 0rot B µ  j , must be 
fulfilled in the case of materials under a regime of high-frequency flux. The current
density that intervenes is the density of the total current, T DJ j J JA ,
wherein all the currents in a vacuum intervene (with the permeability µ0 a factor), 
i.e., the conduction ( ), displacement (Jj D), and Amperian (JA) currents. We can 
therefore also write that 

0 Trot B µ  J   , (10)

where T DJ j J JA .

5.2.3. Physical interpretation of the displacement currents
5.2.3.1. Recalling the relation for an electric field in a condenser as a function of the

superficial charge densities carried by the armatures
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Two methodologies with respect to a condenser with electrodes carrying superficial
charges were detailed in Chapter 2.T 0 P= +
5.2.3.1.1. Dielectric material and its equivalent
A dielectric material can be considered equivalent to a vacuum in which “sit”
polarized charges, as shown in Figure 5.2, and from which we can write:

0

0
E . (11)

This is possible because in the volume, the dipolar charges cancel each other out 
while the surface charges zero out a certain density ( P) of charge on the electrodes 
such that only the density 0 contributes to the generation of an electric field in the 
vacuum.

0 P 0

0

0

P

dipolar charges zero each 
out in the volume 

Figure 5.2. Dielectric material considered as a vacuum in which sit polarization charges. 

5.2.3.1.2. Dielectric material is characterized by a macroscopic absolute dielectric
permittivity

Permittivity is indeed a macroscopic characteristic and an overall property of a
dielectric, as it can be measured through the use of capacitors with dielectrics (C)
and with a vacuum (C0), such that r = C/C0  where  = r 0.

Gauss's theorem can be used here, as indicated in Figure 5.3, as in Eq. (12):
T 0E = P . (12)

0   + P

 for a dielectric medium

0   + P

Figure 5.3. Dielectric material characterized by its permittivity.
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5.2.3.2. Current density on a capacitor
At the level of the electrodes of a capacitor, the current intensity can be written as: 

nI = j.dS j.S= J .S , (13)

where S is the surface of the electrodes, and with  being the current density along

the normal
nj

n  to that of the electrode surface S .

We can equally write 
dQ

I =
dt

, so that with T T 0 PQ = Q  =  S = (  + ).S  we 

obtain

0 P
d

I = S ( )
dt

, (14) 

By identification of Eqs. (13) and (14):

0
n

d d
J  =

dt dt
P    .    (15) 

From Eq. (11), and0 0 = E P N= P  = P (as the polarization vector is parallel to
the electric field itself normal to the electrodes), we arrive at: 

0D E P
0 P

n 0 D0 P
d d dE dP D

J  = = = J  + J J
dt dt dt dt t D  , (15’)

with:
0

D0 0
d

J  = =
dt dt

dE
as the vacuum displacement current which is a product of 

the evolution with time of the charges of density 0 carried by the electrodes and 
are free charges located on the electrodes with a vacuum on the opposite facing
side (Figure 5.2);

P
P

d d
 J  = =

dt dt
P

 is the displacement current of polarization charges (also more

succinctly called polarization current) which is associated with the current 
resulting from the cycling of dipolar charges distributed within the dielectric
created by the rapidly varying electric field. The displacement current, associated 
with changes in time in the charge densities 0 and P, is therefore very similar to
Eq. (8): 

(15 ')
0

D 0 n
dE dP d d

J  = + j
dt dt dt dt

P  .       (16) 
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5.2.3.3. Comment: alternative methods to realizing the expression for displacement
currents

By using both Eq. (12), which makes it possible to state that 0 P( + ) =  E , and 

Eq. (15’), D 0
d

J  = ( )
dt P , one can also deduce that: 

D
dE

J  =
dt

.        (17) 

As , therefore Eq. (8) is rediscovered:0E = D =  E + P

D 0
dD dE dP

J  = =
dt dt dt

 . 

An alternative route to Eq. (17) also can be find. 

Starting with

nI = j.S  J S
dQ dV S dV

= C
dt dt e dt

(where e and S represent the thickness and the surface of the capacitor, respectively) 

and with
V

E = 
e

, one directly obtains Eq. (17) :

n D
dE

j = =J
dt

5.2.4.  Conclusion

The displacement current is composed of two terms. They are: 
0

D0 0
d

J  =  =
dt dt

dE
, which relates to empty space and is an imaginary current in 

the sense that it does not cycle between the electrodes of the condenser; and 
P

P
d d

J  =
dt dt

P
, which corresponds to the movement of charges tied to the

polarization of the dielectric with time such that
dP

0
dt

.
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The variable field (E(t)) results in a current of density DJ  in the dielectric, which 
itself then forms a magnetic field in what is a phenomenon similar and
complementary to induction processes. The use of what is a displacement current
permits the application of Ampere's theorem, by which we must bring into play the
total current which is the sum of the conduction ( j ) and displacement ( )
currents.

DJ

DJ  =
dD
dt

Figure 5.4. Schematization of displacement current, which appears as an extension of an 
external current.

The displacement current, as indicated in Figure 5.4, appears much like an
extension of the external current. The imaginary character, that is to say a 
component that only makes an appearance in mathematical calculations, only comes

about in the component 0
0

d d
=

dt dt
E

. This corresponds to the displacement

current in a vacuum, where there would be no material intervening between the
electrodes of the device and is due only to the variation in the surface density of free 
charges ( 0) with time to a variation with time which are not dipolar charges at the 
armatures resulting from capacitance. 

The part 
dP
dt

, for the polarization current, is due to the presence of charges in

the dielectric which follow the frequency of E(t), albeit out of phase which can 
result in leak currents when under alternating systems.

In terms of vectors, the displacement current, being normal to the electrodes 

[Eq. (13)], as was the case for D , E  and P , permits us to write Eq. (8) as: 

D 0
dD dE dP

J  = =
dt dt dt

.
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5.3.  Maxwell's Equations
5.3.1.   Forms of   and div E div B under varying regimes
5.3.1.1. The Gauss-Maxwell relation
The equation that ties volume density of polarized charges to the polarization vector,

, remains valid under varying regimes because it brings to bear with 
respect to these two terms only spatial considerations, independent of time. It is
possible to write a localized form,

P  = - div P

0div ( E) = + P , which with 0D E P ,

we have divD . By going further and introducing D E , it is found that:

P

0
div E .

5.3.1.2. Equation for div B

Just as for the variable regime, we can write B rotA , and here again we have 
.div B 0

5.3.2.   Summary of Maxwell's equations.

Maxwell's equation are brought together below.

P

0
div E     (1) 

div B 0       (2)
B

rotE 0
t

     (3) 

0 0
E E P

rot B µ j µ j rot I
t t t

        (4) 

Equations (1) and (4) rewritten for the vectors D  and H , respectively, give:

     (1’) 
D

rot H j
t

         (4’) div D
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Comment: As di , Eq. (4’) results in v(rotH) 0

D
div j 0

t
,

and this equation follows a conservation in flux of the vector ,D
D

J j
t

.

The same result can be found using div D , from which can be derived

D
div

t t
, which substituted into the equation for the conservation of charge,

div j 0
t

,  gives
D

div j 0
t

.

Comment 2: In the absence of a conduction current we find that  and j 0

D
rot H

t
 which is in a sense an equation for the production of the field  in

the absence of a conduction current.

H

5.3.3.  The Maxwell equations and conditions at the interface of two media
5.3.3.1. Continuity of Dn with = 0

Given that Eq. (1’) is identical in form for static regimes, it therefore also can give:

1n 2nD - D  =   . 

where  is the surface density of real charges, deliberately contributed to the 
interface. If = 0 , there is of course continuity in the normal component of D, so
that:

.1n 2nD = D

5.3.3.2. Continuity in Bn

As Eq. (2) is identical to the equation used for static regimes, and as we have already

shown that

1n 2nB  = B ,

the equation remains valid for a regime of variation.
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5.3.3.3. Continuity in Et

Under static condition, Eq. (3) can be reduced to rotE 0 , which brings

rotEdS E.dl 0  from which can be deduced that . However, under 

a varying regime, one must write that:

1t 2tE  = E

B
rotEdS dS 0

t
, so that 

B
E.dl= - dS

t
. The surface considered in the latter integral is in the form

and is such that, as shown in Figure 5.5, in the neighborhood
of the interface . Assuming that this region is finite about the interface 

1 1 1 2dS= (A B ).(B B )

1 2(B B ) 0

B
t

, we can consider that 
B

dS  0
t

, and from which can be derived ,

so that 

E.dl= 0

1t 2tE  = E .

Figure 5.5. Calculation for the circulation of E near the interface. 

5.3.3.4. Continuity of Ht with j = 0

When , Eq. (4’) can be written as j = 0
D

rot H
t

 so that it has the same form as

Eq. (3). Permitting to take on the role of EH , in the same way the following

equation is derived:

                                 H1t = H2t  (where = 0)   . j

A2                       B2
                interface 

A1                       B1

If j , the equation for real surface currents intervenes, as is also the 

case for static regimes.

0
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5.4. Problem

Values for conduction and displacement currents in various media
Copper is a good example of a good conductor. As long as the frequency ( ) is such 
that , it can be assumed that the conductivity ( ) remains constant
with respect to its value under continuous current, that is . The 
dielectric permittivity can be treated as if in a vacuum, i.e.,

 < 100 GHz
7 -1 -1

0  6.10 m

0.
Poor conductors, such as the rare earths or that otherwise known as

lanthanides, have conductivities of the order of and permittivities
close to that of a vacuum.

-4 -1 -1 10 m

Nonconductors, or rather good insulators, include the dielectric “plastic”
poly(vinyl chloride) (PVC) which is used in electrical goods and has

and . Another very good insulator is Teflon with

 and .

-7 -1 -14 x 10 m r 4
-14 -1 -1 2 x 10 m r 2

(a) Give the expression for conduction ( ) and displacement (jj D) currents for a 
material with conductivity ( ) and absolute dielectric permittivity ( ). Also give the

value of the ratio R for the moduli of jD and , i.e., j DjR
j

, using the ratio in the

form rR N  where N is a numerical value to be estimated.

(b)  Show for copper that while the frequency < 100 GHz , the displacement
current is negligible with respect to the conduction current.
(c) For a weak conductor, estimate the frequency ( e) at which Dj j . Write the
approximate form for the current density at e.

(d)  For insulators, estimate for the two examples the value of the frequency ( i) at 
which the conduction current can be neglected.
(e)   Summarize the preceding results by writing the approximate form for the
Maxwell-Ampere equation for these materials for e .

Answers
(a)  For an alternating field i t

0E =E e , on one hand we have j = E  and on the

other D
D E

j i
t t

E . Thus, D r 0j i E 2
R

j E
, and 

with -12
0 9

1
 = ( 8.85 x 10  F/m)

36 10
, we obtain -11 rR 5.5 10 .
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(b)  For copper, , where-8
r /  1.7 x 10 -18R 10  when so that 

, a value well below unity, so that one can certainly state that for good
conductors around this frequency domain, the displacement currents are negligible; 

.

11< 10  Hz
-7R < 10

Tj j

(c)  For a poor conductor, with  and-4 -1 -1 10 m r 1 , we have:
-7R 5.5 x 10 and  when Dj j R 1, so that e 2 MHz .

Thus,  2  2 jTj j + jD
j

j D.
(When  >> e,  R >> 1 and  . For  << Dj e, .)Dj j

(d)  With PVC, and-7 -1 -14 10 m r 4 , from which R  5.5 x 10-4 . In 
order to neglect the conduction current, R must be such that , so 
that .

R >>1
3

i > 2 x 10 Hz = 2 kHz

For Teflon, we have  and -14 -1 -12 10 m r 2 , so that 3R 5.5 x 10 .

When , . For this material, a high-quality insulator,
the conduction currents are a priori practically negligible with respect to
displacement currents throughout the electromagnetic spectrum.

-4
i>  2 x 10 Hz R >> 1 

(e)  When = e  2 MHz, we have:
 conducting medium:  and Dj  << j Tj j 0 0rotB µ j µ E

 poorly conducting medium: Dj j and T Dj j + j

0 D 0
E

rotB µ ( j j ) µ ( E )
t

  insulating medium  and Dj >> j Tj jD 0 D 0 0 r
E

rotB µ j µ
t

.

The following scheme can be presented as a summary of the results:

Dj j Dj j

ConductorInsulator

101110-3 (Hz)



Chapter 6 

General Properties of Electromagnetic Waves 
and Their Propagation through Vacuums 

6.1.  Introduction: Equations for Wave Propagation in Vacuums
6.1.1. Maxwell's equations for vacuums:  = 0  and  j  = 0 
From the title, we can state that in this case 

    (1)div E 0
B

rotE
t

         (3) 

di     (2) vB 0 0 0
E

rot B µ
t

        (4) 

6.1.2. Equations of wave propagation
We can eliminate for example B  in Eqs. (3) and (4), by taking the rotation of 
Eq. (3): 

0 0
²E

rot(rot E) (rot B)  - µ
t t²

 [using Eq. (4)]

  [using Eq. (1)]grad(divE) E E

With 0 0
1
c²

, we can write that 2
1 ²E

E
t²c

0    .     (5)

Similarly, we can eliminate E  by calculating the rotation of Eq. (4):

0 0
²B

B
t² 2

1 ²B
B 0

t²c
, from which is deduced that .       (6) 

0 0
²E

E
t²

Equation (5) and (6) give rise to six equations based on:



Basic electromagnetism and materials174

1 ²
0

c² t²
   .         (7) 

where  = (x,y,z,t) is equal to one of the six components Ex, Ey, Ez, Bx By, Bz such 
that each depends on the same variables (x,y,z,t), so that for example Ex = Ex
(x,y,z,t).

6.1.3. Solutions for wave propagation equations such that E  and B depend on 
one spatial coordinate (z) and time (t)

6.1.3.1.  Forms of the solutions
In this particular case, we have (z, t) , and Eq. (7) results in 

² 1 ²
0

z² c² t²
. (7’) 

In order in integrate Eq. (7'), the variable should be changed so that:
z

t
c .(z, t) ( , )
z

t
c

The calculation based on partial derivatives, common enough in the first year but
nevertheless extremely tedious, yields:

² ( , )
0    .     (8)

An initial integration with respect to  gives f ( ) , a second with respect

to  gives where( , ) F( ) G( ) F( )  is the primitive of f ( ) .
Returning to the initial parameters z and t, we have:

z z
(t,z)= F(t + ) + G (t -   )

c c
.

6.1.3.2. Physical significance of the solutions
z

G (t - )
c

 and 
z

F (t + )
c

The function
z

G (t - )
c

 represents the propagation along points where z > 0 for a 

velocity c. The phenomenon can be examined by studying the position in space of
the signal G at times t1 and t2, as shown in Figure 6.1. 
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G (t - 
c
z

)

 z’1    z1 z2=z1 + z
= z1 + c t

G (t1 – z’1/c)

P

P’

z’2

P

P’

z

   G (t1 – z1/c)

t1 t2 (= t1 + t = t1 + z/c)

Figure 6.1. Signal displacement between the times t1 and t2.

The signal represented by the function G (t1 – z1/c) at a point (P) on the
abscissa (z1) and at time t1, will be such that at a following moment in time (t2)

where , it can be represented by the function2 1t  = t + t 2
2

z
G (t  - )

c
 where z2 is 

the place on the abscissa where P has reached by the time t2. The signal is assumed
to be the same at t1 and t2, and indeed for all the points P, so we have 

1
1 2

z
G (t  -   ) = G (t  -   )

c c
2z

, and if 1
1 2

z z
t  - = t -

c c
2 we find that

, which can also be written as 2 1 2 1z  - z  = c (t  - t ) z c t .

As the result above is valid for all the points denoted P, it also can be 
supposed that it is valid for all the points moving in the signal following the same
law, that is: 

z c t .

This indicates that the signal itself, given by the function
z

G (t -   )
c

, undergoes a 

propagation along z > 0 at a velocity c. 

For its part, the function
z

F(t +  )
c

 represents the propagation of the

signal following a law such that z = - c t, derived from the condition
1

1 2
z

t  +  = t  + 
c c

2z
, which indicates that the signal is still moving at a velocity c, 

but along a point where z < 0:  the F function represents a retrograde wave.
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6.2. Different wave types 
6.2.1. Transverse and longitudinal waves
6.2.1.1. Transverse signals
A transverse wave is one that has a movement (of its signal in the most general
terms) that is perpendicular to the direction of its propagation.  An example is a 
signal that moves perpendicularly along a stretched rope. 

      propagation 

z

di
sp

la
ce

m
en

t

Figure 6.2. Transverse signal. 

6.2.1.2. Longitudinal signal
A longitudinal wave is one that has a displacement parallel to the direction of the 
propagation. An example of this is a compression signal applied parallel to and
along the length of a spring.

  propagation 

    displacement

Figure 6.3. Longitudinal signal. 

6.2.2. Planar waves
6.2.2.1. Definition
A vector ( ) is said to be propagated by a planar wave if at a given moment A  is 
the same at all points in a plane —called the wave plane—parallel to a given plane
(

A

0) that is perpendicular to the propagation direction (Oz) of the signal. This is
schematized in Figure 6.4. 
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z0 z1

0

0( , )A z t

1( , )A z t

1( ,

 y 

  x 

0( , )A z t

t

1

)A z t

 z

Figure 6.4.  Planar wave at a given point in time (t).

6.2.2.2. The implication of a planar wave
The signal represented by the vector A depends only on z and t, so that

. The solutions looked for in Section 6.1.3 forA A(z, t) E  and B  also correspond 

to planar waves, as their solution components were in the form (z, t) . In effect, 

and  propagate as planar waves, so it can be said that we have an electromagnetic
planar wave (EMPW).

E

B

6.2.2.3.  Planar waves in practice
In strict terms, in order to have a system of planar waves, all points should be within
an infinite plane represented as an example by the vectors 1A(z )  in an infinite plane
denoted 1. In practical terms that is not possible; nevertheless, at a sufficient 
distance from a source, identical A  vectors can be determined within a large enough 
dimension to be considered a planar wave. 

6.2.3. Spherical waves
While for a planar wave it is supposed that only one direction of propagation is used 
(Oz in the above example), for a spherical wave the propagation is isotropic in
space. The field components ( ) depend only on the distance (r) from the
observation point of the wave. Thus (r, t) , and the Laplacian is now reduced to 

1 ²
(r )

r r²
and the propagation equation becomes

1 ²
0

c² t²
, which in

turn gives
² 1 ²(r )

(r ) 0
r² c² t²

. The solutions for this are in the form

+ -r r
r = g (t- ) + f (t+ )

c c
, so that 
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+ -1 r 1
= g (t-  ) +  f (t+ )

r c r
r
c

.

The solution +1 r
g (t-  )

r c
represents the propagation of a wave of speed c for when 

r is positive, with an attenuation of the wave as r increases.

6.2.4. Progressive waves
6.2.4.1. Progressive planar waves (PPW)

As an example, if the function 
z

G (t -  ) 
c

represents a signal that progresses toward

z > 0 at a speed c, then the sense and direction of the wave are perfectly defined and 
we can say that it is a progressive wave (and is also called a “direct” wave given its

propagation toward z > 0). Similarly,
z

F(t +  ) 
c

is a progressive wave that goes 

toward the points z < 0 also at a speed c. When in addition these progressive waves
are one dimensional, and are only dependent on one component in space, such as the 
waves given by or , then they are progressive planar waves that have 
wave planes defined by z = constant.

G(z,t) F(z,t)

6.2.4.2.  Monochromatic progressive planar waves (MPPW)
Additionally, if the waves have sinusoidal signals, then the following can be stated:

z z
G (t -  ) = a cos  (t -  ) 

c c
z z

F(t +  )  = a cos (t +  ) +
c c

By introducing the period
2

T , it is possible to say that:

z t
G (t -  ) = G(z,t) = a cos 2  .

c T
z

cT
And then by introducing the wavelength = cT , we have:

t z
G(z,t) = a cos 2

T
  . 

With the introduction of the wavenumber, defined by k
c

, the wave can be 

written in the form:
  . G(z,t) = a cos ( t - kz)

G and F waves have been 
attributed with the same
amplitude and that F is out of 
phase with G by .

For its part, the wave vector  is defined by the relation:k
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k = k u u
c

  , 

where  is the unit vector of the direction of the propagation (here u zu e ).
As shown graphically in Figure 6.5, it is possible to see that this function

presents both temporal and spatial periodicities.

Figure 6.5. (a) Temporal and (b) spatial periodicity. 

6.2.5. Stationary waves

A stationary wave would require that
z

S(z,t) = G (t -  ) + F(t +  )
c c

z
. Following a 

simple, direct calculation, we have for a monochromatic wave:
z

S(z,t)= 2 a cos .cos t =A(z).cos t =A(z)C(t)
c 2 2 2

.

in which the term C(t) is the same over all points at any given instant, so that the
signal [S(z,t)] is in the same phase at any point. Only the amplitude [A(z)] changes 
with respect to the abscissa of the point in question, and there is no propagation
term. Signals with the form S are stationary waves and give rise to
nodes at the abscissa where z is such that

(z,t)=A(z)C(t)
t :  (and also ).A(z)=0 S(z,t)=0

Standing modes 

(b)

G(z,t)

O

z
LO

S(z,t)
t = T/4... 

    t = 0, T/2 

t = 3T/4... 

(a)

O

G(z,t)

   T 

t z

Figure 6.6. A stationary wave exhibiting nodes at extremities O and L.



Basic electromagnetism and materials180

In order to simplify the calculations, additionally we can assume that  =

so that:
z z

S(z,t) = 2a sin( ).sin ( t) = 2a (sin 2 ) (sin t)
c

.

It can be seen immediately that when z = 0, S(  and that
represents a node at the origin that is repeated at points on the abscissa where 

z,t) = 0 S(z,t)

z = m
2

. For the moment the nodes (and likewise the antinodes) can occur at any

value of , and it can be stated that the number of normal vibrational modes is
infinite, a characteristic of continuous media.

If a second node is now imposed on the other end of the signal at z = L,
where the signal can be imagined as, for example, a cord now fixed at either 
extremity or an electric field crossing between two conductors which are such that at
their interface Etangential = 0, then as shown in Figure 6.6 we have two conditions:
condition (1), S(z = 0, t) = 0;  and
condition (2), S(z = L, t) = 0.

Given the form of 
z

S(z,t) = 2a (sin 2 ) (sin t) , condition (1) is always

fulfilled; however, in order for condition (2) to be fulfilled, it is required that

sin
L

2 0 , so that 
L

2 n , and that  must be such that 
2L
n

. The 

frequency (vn ) is restricted now to n
c

(n)
2L

 and that of the angular frequency

( n) is: 

n
c

(n)
L

.

These conditions define the standing (stationary) modes and limit their number, as 
they give rise to discrete values for each of n whole number.

6.3. General Properties of Progressive Planar Electromagnetic Waves
(PPEMW) in Vacuums with  = 0 and j  = 0 

With the electromagnetic waves being planar, E and B  only depend on a single
spatial coordinate (z) and time (t) in that E E(z,t) , B B(z,t) . In this section we
consider a direct progressive wave that follows a propagation along z > 0 and as

solutions for its components has E  and B  in the form
z

G (t - ).
c
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6.3.1. andE B perpendicular to the propagation: transverse electromagnetic waves

Equation (3), 
B

rotE
t

, taken along Oz, yields

yz xE (z, t)B (z, t) E (z, t)
0

t x y
.

 The result is that Bz must be independent from t.

Equation (2), di , makes it possible to state that:vB 0
yx zB (z, t)B (z, t) B (z, t) B (z, t)

0z
z z

 ,
x y

  = 0   = 0 

with the result that Bz should be independent of z. Therefore Bz must be independent
of z and t and can be only constant. However, this solution does not represent a 
propagation and cannot be acceptable, and we therefore must simply consider that 
Bz = 0. The same is true for Ez (Ez = 0), as Eqs. (4) and (1) have the same structure
as Eqs. (3) and (1).

The  and  therefore have the nonzero components EE B x, Ey, Bx, and By. The 
fields  and are definitely perpendicular to the direction of the propagation and 
the electromagnetic wave, by consequence, is termed a transverse electromagnetic
(TEM) wave. 

E B

6.3.2.  The relation between E and B

For example, E

while the following remain as yet unknown B

x 1
z

E (z, t) G (t )
c

y 2
z

E (z, t) G (t )
c

zE (z, t) 0

xB (z,t)

yB (z, t)

zB (z, t) 0

(9)

Equation (3), 
B

rotE
t

, gives:
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 with respect to Ox, y xE B
z t

(10);  and 

 with respect to Oy, yx BE
z t

. (11)

Similarly,  Eq. (4), 
1 E

rot B 
c² t

, gives:

 in part y xB 1 E
z c² t

. (12)

 along with yx EB 1
z c² t

. (13)

So from : 

Eq. (10), y 'x
2

EB 1 z
G (t

t z c
te

x 2
1 z

(t ) [C  wrt
c c

)
c

B G  t]

Eq. (13), y 'x
22

EB 1 1 z
G (t )

z c² t cc
te

x 2
1 z

B G (t ) [C wr
c c

t z]

x 2
1 z

B G (t )
c c

.

(Note: wrt means “with respect to”.) Similarly, from Eqs. (11) and (12) we can 

determine that y 1
1 z

B G (t
c c

) .

y
x 2

E1 z
B G (t )

c c c
Finally we have  such that B B

x
y 1

1 z E
(t )

c c c
B G .

derived with respect to
(t – z/c) 

(14)

The following minor sections give the conclusions to this part.

6.3.2.1.  and B  are perpendicular to one anotherE

If the calculation  is made, we find thatE B y x
x y

E E
E B E E 0

c c
, and as 

both E and B  are perpendicular to the direction of propagation and in the plane Oxy,
the configuration shown in Figure 6.7 arises.
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z

B

E
zu e

  y 

x

Figure 6.7. Structure of a progressive planar electromagnetic wave. 

6.3.2.2. Equation for E and B 
In fact we have:

E
c

B

where 2
xE E E2

y  and
2 2
y xE E

B
c² c²

, and hence the result.

6.3.2.3. Involving the unit vector
Bringing in the unit vector zu e for the Oz axis gives rise to two properties that
can be condensed into the same equation:

E c B u  . (15)

6.3.3. Breakdown of a planar progressive electromagnetic wave (PPEMW) to a
superposition of two planar progressive EM waves polarised rectilinearly

6.3.3.1. Preliminary definition: rectilinear polarized wave
A wave can be termed rectilinearly polarized when the vector E  stays over all 
points and instants parallel to a given direction in the plane of the wave. This
direction is the direction of polarization.

6.3.3.2 .  Breakdown of E and B
Equations (9) and (14) show that E  and B  can be considered as vectors in the form

1E E E2 2and in which the vectors1B B B 1E  , 2E , 1B , and  are 
necessarily such that:

2B
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1E 1B

E 2 2B
2xE 0

2y 2E G

2x 2
1

B G
c

2yB 0

(16)

x
x

1B

1E

y
z

zu e

wave 1 polarised // Ox

2B
2E

  y
z

zu e

wave 2 polarised // Oy

zu e

z

E

B

x

1xB 0

1y 1
1

B G
c

1x 1E G

1yE 0

y

Figure 6.8. Breakdown of a direct PPEMW in to two rectilinearly polarized PPEMWs. 

As schematized in Figure 6.8, the direct PPEMW ( E , B ) is such that
 and , can appear thus as a superposition of:E E(z, t) B B(z, t)

 “wave 1” polarized along Ox, as 1 1
z

E G (t )e
c x ;  and

 “wave 2” polarized along Oy, as 2 2
z

E G (t )e
c y .

6.3.4.  Representation and spectral breakdown of rectilinearly polarized PPEMWs
The first wave polarized along Ox can be studied in three-dimensional space and as 
a function of time.
It is defined by the function

1x 1
z

E G (t
c

) .
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6.3.4.1. Spatial representation
To have a spatial representation, a given instant, t = 0, is chosen. The signal then

progresses at a speed c, so that 1x 1x 1
z

E (z, t) E (z,0) G ( )
c

. We then have the

spatial representation shown in Figure 6.9, where throughout E  and B  are normal
to each other and u .

1E =E1x xe  = G1(–z/c) xe  x 

y
1B

u
z

Figure 6.9. Spatial presence of a rectilinearly polarized PPEMW.

6.3.4.2. Representation with respect to time
At a given point, z = 0, 1x 1x 1E (z, t) E (0, t) G (t) . The same signal can be 

observed at any point on the abscissa (z1) shifted in time by
z

t
c

. The observed 

amplitude observed at z = 0 and t = 0 then will be seen after an interval of time at z1

and t1 such that 1
1

z z
t t

c c
 (see Figure 6.10 a). 

   signal at z = 0 

(a)

  G1(t)  G1(t)

 t  t 
t = 0 t1 = z1/c

   signal at z = z1

h( )

0

(b)

Figure 6.10. Representations of  a rectilinearly polarized PPEMW 
 (a) v.s. time ;  and (b) a component centered about 0 .
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6.3.4.3. Spectral breakdown
If the wave under study is not monochromatic, then it corresponds to a collection of
waves that can be seen as the superposition of an infinite number of waves with a
distribution of frequencies spread about an average value ( 0) as shown in Figure
6.10 b. It thus is possible to express the function G1(t) as a Fourier integral:

i t
1G (t) h( ) e d ,

where h( ) represents a distribution of the amplitude as a function of  and is such 

that the reciprocal Fourier transformation gives i t
1

1
h( ) G (t)e dt

2
.

In effect, it is possible that all progressive planar waves can be broken 
down into an infinite number of monochromatic and rectilinearly polarized 
progressive planar waves. 

6.4. Properties of Monochromatic Planar Progressive Electromagnetic Waves
(MPPEMW)

6.4.1.  The polarization
Given the above results, a MPPEMW can be seen as a superposition of two
monochromatic, rectilinearly polarized, planar progressive waves detailed by the 
collection of equations denoted (16). The G1 and G2 functions can be written in a 
more general form that takes into account any possible dephasing between G1 and 
G2 in that:

1 1
z z

G (t ) a cos (t )
c c

,    and 

2 2
z z

G (t ) a cos (t )
c c

.

Here the amplitudes can be denoted as 1 1x mxa  = E  E  and again, by denotation,
. Additionally, the signals are reproduced at each point in space 

identical to themselves, with a delay of

2 2y ma  = E  E y

z
c

, so that the study can be limited to the

point z = 0, the origin in space, where the resultant electric field ( E ) is such that
. The evolution of the vector1 2 1x 2E E E E E y E  as a function of time is

given for a point M(x,y,z) at the extremity of the vector OM E  such that:

1 mxx G (t) E cos t

EOM 2 myy G (t) E cos( t ) . (17)
z 0
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6.4.1.1. When  = 0 (waves “1” and “2” are in phase)

We have my

mx

Ey
tg

x E
 and this ratio, equal to that of the amplitudes, is constant

like the angle . The M denotes a line in the 1st or 3rd quadrants my

mx

E
(tg ( ) > 0)

E

and the resultant wave ( ) is rectilinearly polarized along a diagonal, schematized
in Figure 6.11 a. 

E

(a)

M

 = 0

 y

Emx

  Emy

 x
(b)

 = 

 y
 Emy

Emx
 x

Figure 6. 11. Rectilinearly polarized wave when (a)  = 0;  and (b) when  =  . 

6.4.1.2. When  =   (waves “1” and “2” are out of phase)

We have my

mx

Ey
tg

x E
and this ratio is again constant just like the introduced

angle . The M this time denotes a line through 2nd or 4th quadrants
my

mx

E
(tg ( )  <  0)

E
, and E  thus is rectilinearly polarized along the other 

diagonal, as shown in Figure 6.11 b. 

6.4.1.3. When 
2

 (waves “1” and “2” in quadrature): circular polarization

or elliptic lines (straight ellipse)

If
2

,
2

 and the components x, y, z are:

1 mxx G (t) E cos t

OM E 2 my myy G (t) E cos( t ) E sin t
2

,

z 0

the calculation directly gives:
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2 2
mx my

x² y²
1

E E
 . 

This is the equation for a straight ellipse (elliptical polarization) with a larger axis
denoted Emx and a smaller axis denoted Emy. The ellipse becomes a circle when the
amplitudes are equal, i.e., (see Figure 6.12 a for circular polarization).

We also have 

mx myE E

my

mx

Ey
tan t  r tan t tan (t)

x E
. The + in front of r is for 

when
2

 and the – sign is for when 
2

n, while my

mx

E
r >

E
0 (ratio of real 

amplitudes) is constant.

We thus have:

d 1 d 1 d( t)
tan r r

dt cos ² dt cos ² t dt cos ² t
 . 

(b)  = + /2: elliptical
anticlockwise polarisation

(t)
 x

  Emy

Emx

 y

M

(c)  = - /2:  elliptical
clockwise polarisation

 x
(t)

  Emy

Emx

 y

M

(a)

 = - /2 , Emx = Emy
 clockwise circular 

polarisation

 = + /2 , Emx = Emy
 anticlockwise circular 

polarisation

Figure 6.12. (a) Circular; (b) anticlockwise elliptical; and (c) clockwise elliptical 
polarizations.
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For the first quadrant (Figure 6.12 b and c), (t) changes in the same sense as 
(t), it can be determined that when:

2
, we have 

d
tan r > 0

dt cos ² t
, and also

d
> 0

dt
. The point M

describes an ellipse (or circle) in the trigonometric sense and we have an 
anticlockwise polarization, as in Figure 6.12 b.

2
, we have 

d
tan r <0

dt cos ² t
 , and

d
< 0

dt
. The point M

describes a ellipse (or circle) in the opposite direction to the trigonometric sense 
and we have a clockwise polarization, as in Figure 6.12 c. 

6.4.1.4. When   takes on any value 
We have my myy E cos( t ) E cos t cos sin t sin , so that:

my

y
cos t cos sin t sin

E
.

With

mx

x
cos t

E
1/ 2

2 2
2
mx

x²
sin t 1 cos t,  from which sin t = 1-

E
,

and then by substitution of the values for cos t and sin t into the previous relation : 

1/ 2

2
my mx mx

y x x²
cos sin 1

E E E .

Squaring all round, we have:

2
2 2

mx mymx my

x² y² 2xy
cos sin

E EE E
,

which is the equation for an ellipse.

The component of the wave denoted by 1 mxx G (t) E cos t  is at a 
maximum when t = 0, and is such that mxx E . This is detailed by point A in
Figure 6.13 a. At the same time, and according to Eq. (17), the point A has 
coordinates along Oy that are myy E cos .
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For this instant when t = 0, we can state that:

mx t 0
dx

E sin t 0
dt

my t 0 my
dy

[ E sin( t )] E sin
dt

t 0

dE
dt

= my yE sin e .

The sense of direction in which the movement A  M is given by the sign of sin .

If 0, ,  and sin  > 0 y
y

dE
//e

dt
, then the sense in which M moves is 

the trigonometric sense and an anticlockwise elliptical polarization, as in 
Figure 6.13 a, b, and c; and 

if , 2 ,  and sin  < 0 ydE

dt
 is antiparallel to ye , then M moves in a 

direction opposite to the trigonometric sense and undergoes a clockwise
elliptical polarization, as in Figure 6.13 d, e, and f. 

It is worth noting that in Figure 6.13 (a), the point A' is such that

is at a maximum. This gives t =  , while the coordinates for A' in terms of Ox
are .

myy E

mx mxx E cos t E cos

0 <  < /2

x

y

 A 

(a)   Emx

Emycos
A’  Emy

Emxcos

A
nt

ic
lo

ck
w
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e
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(c)(b)

/2 <  <  = /2
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(d)
(f)(e)

 = - /2-  <  < - /2 - /2 <  < 0 

Figure 6.13. The various polarizations as a function of .
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6.4.2. Mathematical expression for a monochromatic planar wave propagating in
a direction OH 

6.4.2.1. Rectilinearly polarized wave
6.4.2.1.1. Classic system and derivation
If we denote the amplitude of a rectilinearly polarized wave as E0 and that

so the planar monochromatic wave propagates through OH in the direct
sense as indicated in Figure 6.14, then it is possible to write that

0E OH

0
h

E(h, t) E cos[ (t )]
c

,  where OH h .

z

h

u
k

O

B

H

M

r

E

  y

 x 

Figure 6.14. Waves propagating in any direction OH .

The field at a point M located in space by the vector r OM can be found 
using the following method. In Figure 6.14 we see that h r.u  where u  is the unit
vector in the direction of propagation. Given that M is in the same wave plane as H,
we thus have:

(notation)
0

r.u
E(h, t) E(r, t) E E cos[ (t )]

c
.

On introducing the wave vector:

k u
c

  , 

for the fields E  and we have:B

0E = E  cos t - k r

0B = B cos  t - k r   .   (18) 
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6.4.2.1.2. Complex system and derivation
 Using the normal notation for electrokinetics and dielectrics, where  is the unit

of reference for pulsation
The goal of this method is to arrive at an expression for E  that contains the classic 
electrokinetic term . As is the tradition, we will omit the symbol R for the
“real part” of the waves. A complex system can be given to the waves under 
consideration, so that for example the direct wave can be written as

, and in turn:

exp(+i t)

0E E cos[ t k.r]

0 0 0E E expi[ t k.r] E exp( ik.r) exp(i t) E (r) exp(i t) ,

where 0 0E (r) E exp( ik.r)  for the complex amplitude of the direct wave. 

Really it should be written that 0 0E E exp(i[ t - k.r]) =E (r)exp(i t) , so that 
a complex number is in both the left- and right-hand sides of the equation; however, 
as only the real part ( ) of E E  has a physical presence, by notational simplification
the waves are often written as presented.

For the retrograde wave, 0E E cos[ t k.r]  and the corresponding complex

form is: 0 0 0E E expi[ t k.r] E exp(ik.r) exp(i t) E (r)exp(i t)  where 

0 0E (r) E exp( ik.r)   is the complex amplitude of a retrograde wave. 

 Using the normal notation for optics, where the unit of reference is the wave
vector ( )k
The goal now in the equations is to bring out the term exp(+i k.r) in the direct wave 

and the term in the retrograde wave. As cos ( ) = cos (- ), we can write 

 for the direct wave, so that the complex
form also can be written:

exp(- i k.r)

0 0E E cos[ t k.r] E cos[k.r t]

0 0 0E E expi[k.r t] E exp(ik.r) exp( i t) E (r) exp( i t) ,

  where 0 0E (r) E exp( ik.r) is the complex amplitude of the direct wave. 

(19’)

(19)

For the wave in retrograde, we can write that:
, from which: 0 0E E cos[ t k.r] E cos( [ t k.r])

0 0 0E E exp( i[ t k.r]) E exp( ik.r) exp( i t) E (r)exp( i t) , where 

0 0E (r) E exp( ik.r)  is the complex amplitude of the retrograde wave.
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It is worth noting that for whatever notation used, in the two exponentials in the
equations for , the sign that appears must be different for the direct wave, but is
the same sign that intervenes in the two exponentials for the retrograde wave. 

E

6.4.2.2. Wave polarized in any sense 

1e

2e

u

z

y

x
Figure 6.15.  A polarized wave seen as the superposition of two rectilinear waves 

 polarized in 1e and 2e .

As we have already seen for a more general case, a wave can be considered to be the 
resultant of two waves rectilinearly polarized in the directions 1e and

perpendicular to the plan of the wave. This gives
2e

1E E E2  with (for a direct 
wave):

1 m1 1E E e cos( t k.r) ;  and 

2 m2 2E E e cos( t k.r ) .
The complex form thus can be written:

1 2 m mE E E E exp[i( t k.r)] E exp[ ik.r)]exp[i t]

where m m1 1 m2E ( E e E exp[-i ]e2 )  is a complex vector for an elliptical

polarization. By again writing E  in the form 0E E (r) exp(i t) , we have:

0 mE (r) E exp[ ik.r)]       (20),

where m 0E E (0).

In this case, mE E0 , while for a rectilinearly polarized wave

m 0E E Em  (actual magnitude).
In this general case, we therefore have in complex notation for the direct wave 

mE E exp[-ik.r)]exp(i t)  ,
so that also: 

mE E exp[i( t - k.r)] , ori tion,n electrokinetic nota

in optical notation, mE E exp[i(k.r - t)] .
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6.4.3.  The speed of wave propagation and spatial periodicity

r

E C
h

u

k

  y

z

x
O

H E C

H’
 M

Figure 6.16. Propagation speed for the wave plane. 

For a monochromatic rectilinear plane polarized electromagnetic wave 
(MRPPEW) of the form 0E E expi[ t kr] , the phase of the wave is given by

. As time varies, the plane of the wave defined

by , where 

t k.r

0E E expi[ t k.r] C C  is a constant vector, moves in such a way

that where K is a constant and as shown in Figure 6.16. 
For this,  d  must equal zero so that 

t k.r t- kh = K
( dt - k dh) = 0 , from which we find: 

dh
v

dt k
 . 

The point H, and therefore the signal E C , moves at a speed v
k

, which is 

the speed of the wave phase, and also therefore the speed of the propagation of the
wave plane.

In a vacuum, where k
c

,  we have v c .

At a given instant t, E C  is repeated at intervals in space, equivalent to ,
along the plane of the wave such that cos( t - k.r) = cos( t - k.r - k ) , and so that

, from which we rediscover the physical significance of k 2
2
k

 as the 

spatial period.
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6.5.   Jones's Representation

6.5.1. Complex expression for a monochromatic planar wave propagating in the
direction Oz 

A given monochromatic planar wave propagating in a given direction Oz can be
seen in the most general of cases, and as detailed in Section 6.3.3.2, as the resultant
of two waves rectilinearly polarized in two directions xe  and ye  (classically taken as 
Ox and Oy)  perpendicular to the plane of the wave, as shown in Figure 6.17.

x

zeu
ye

xe
z

y

Figure 6.17. Planar monochromatic EM wave propagating along Oz. 

In general terms, and without considering the origin of the phases on the
wave  otherwise x = 0 as supposed in Section  6.4.1, xE

xE E Ey

)

, where 

x mx x xE E e cos( t k.z

y my y yE E e cos( t k.z ) .
The wave can be written under the form:

0E(z) E (z)exp(i t) ,

with 0 mE (z) E exp[ ik.z)] , where mE  is a complex vector such that (relation
also noted in Section 6.4.2.2):

0 mE (0) E     Eq. (1). 
In addition:

x y0E(0) = E (0)exp(i t) E (0) E (0)

mx x x my y y= (E exp -j e E exp -j e )exp(i t) ,

so that:

mx x x my y y0E (0) = (E exp -j e E exp -j e )     Eq. (2). 

By comparing Eqs. (1) and (2), we can directly determine that:

mx x x my y y mx x my ymE = (E exp -j e E exp -j e ) = E e + E e .
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By making mx mx x my my yE = E exp -j  and E =E exp -j , the complex vector 

mE  appears as the vectors for the (complex) components mxE and myE . To sum
up then, the wave can be represented in the plane of the wave z = 0 by the vector 

 (by notation) such thatE(0) E

mE E exp(i t)

where m 0E E (0) is a complex vector with components:

mx mx xE =E exp -j

mE my my yE =E exp -j .

             0 

The ratio defined by the complex number,
my my

y x
mxmx

E E
r exp i[

E E
] , is such that its modulus is my

mx

E
r r , and its

argument is:
E

x yArg r ( ) .

It is worth noting that once again a common abuse of notation has
intervened, for example, mE E exp(i t) would be, in a more rigorous notation,

mE E exp(i t) . The lapse in notation though is because we are simply looking for 

the physical solution E R .(E)

6.5.2. Representation by way of Jones's matrix
The state of a wave at z = 0, given by mE E exp(i t) , can be simply written using
a column matrix (Jones's notation):

mx xmx
mx x

my ymy

E E exp( i ) 1
E exp( i )E E exp( i ) r exp(i )

By choosing the origin of the phases so that x = 0, one can also write that:

mxmx
mx

my ymy

E E 1
EE E exp( i ) r exp(i )
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 y

 x

  Emy

Emx

E0

Figure 6.18. Definition of Emx and Emy.

By making   andmx 0E E cos my 0E E sin , as in Figure 6.18, and still with

x = 0, we have:

mx mx 0E E E cos

mE

my my y 0 yE =E exp -j E sin  exp -j

so that:

y y

0mxmx
0i imy ymy 0

E cos cosE E
EE E exp( i ) E sin e sin e

 .

For a rectilinear polarization, we can take y = 0, and the Jones's vector
representing the wave is, by notation

0
0m

0

E cos cos
E E

E sin sin
, and the normalized Jones's vector is such that:

m

0

cosE
sinE

.

A rectilinear polarization through Ox corresponds to 0 , so that 
and , from which 

cos 1
sin 0

0 0m x

1
E E E (e

0 h )

 where  is represented by the column matrix (e .he h
1

)
0

Similarly, a rectilinear polarization along Oy corresponds to  = /2 so that
cos  = 0 and sin  = 1, from which
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0 0m y

0
E E E (e

1 v )

where  is represented by the column matrix .ve v
0

(e )
1

For a clockwise polarized wave,

4
 , so that mx 0 0

2
E E cos E

2
 and my 0 0

2
E E sin E

2

y 2
, from which, with y

ii 2e e i , we have:

0
0m d

2
1E 22E E
i22

i
2

For an anticlockwise polarized wave, 
4

 and y 2
, from which: 

0
0m g

2
1E 22E E
i22

i
2

.

These waves can be represented by a linear combination of ( he ) and ( ), so 
for example,

ve

0 0 0 0 0
h vm d

1 1 0E 2 E 2 E 2 E 2 E 2
E (

i 0 i2 2 2 2 2
e ) i (e ) .

Inversely, the wave obtained by a superposition of the clockwise (negative) and 
anticlockwise (positive) waves is a rectilinear polarized wave because we have 

0 0
0 0m md g

1 1 1E 2 E 2
E E E 2 E 2(

i i 02 2 he ) ,

 where the wave is polarized rectilinearly with respect to Ox.
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6.6. Problems

6.6.1. Breakdown in real notation of a rectilinear wave into two opposing circular 
waves

A rectilinearly polarized, monochromatic plane electromagnetic wave propagates 
along Oz in the form 0E E cos t kz  and is such that E Oxy  makes an
angle  with the axis Ox.

B E

x

y

Show that this wave can be seen as a superposition of two planar waves circularly
polarized in the opposite sense. 

Answers
The components Ex and Ey of E  on Ox and Oy are, {with

1 1
cos a cos b = [cos(a + b) + cos(a - b)] and cos a sin b =  [sin(a + b) - sin(a - b)]}

2 2

0 0
x 0

0 0
y 0

E E
E E cos t kz cos cos( t kz ) cos( t kz )

2 2
E E

E E cos t kz sin sin( t kz ) sin( t kz ).
2 2

This wave can be seen as the superposition of two following waves with the
components

x

y

cG 0

cG 0

E
E cos( t kz )

2
E

E sin( t kz )
2

   anticlockwise circularly polarized wave;  and 

x

y

cD 0

cD 0

E
E cos( t kz )

2
E

E sin( t kz
2

)
   clockwise polarized wave. 
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Comment: It is worth remembering that a wave with the components

x m

y m

E E cos t
E E cos t

is one that has an anticlockwise polarization when 
2

,  which means that the 

components of this anticlockwise polarized wave are:

x m

y m m m

E E cos t

E E cos t E cos t E sin
2

t

Similarly, a wave which is polarized clockwise corresponds to
2

, and has 

components
x m

y m m m

E E cos t

E cos t E cos t E sin t
2

  E

6.6.2. The particular case of an anisotropic medium and the example of a phase-
retarding strip

Neutral lines in an anisotropic strip are such that rectilinear polarized waves along 
the two directions of these neutral lines, which are perpendicular to another, retain
their polarization during their propagation. It is supposed that xe  and  are the 
vectors locating the directions of the neutral lines.

ye

1. In a phase-retarding strip, the rectilinearly polarized waves along  and 
each propagate as if in an isotropic media but with different indices, which are nx for 

 and ny for e , and we will suppose that ny > nx. The components of the incident
wave in the plane z = 0 are:

xe ye

xe y

E e

0

j t
mx

j( t )
my

E e

E

Give the form of the wave emerging from the side plane where z = e, and 
determine the additional difference in phase caused by the wave's propagation



Chapter 6. General properties of electromagnetic waves 201

between the two components with respect to Ox and Oy through the strip of 
thickness e. Express the result as a function of the additional differences in optical
pathways ( L) between the two components of the wave under consideration created
by the strip.

2.  Under consideration is a half-wave strip such that L 2
. Study the effect of 

such a strip on an incident rectilinear polarized wave ( 0) .

Answers
1. Phase delay. For the waves polarized rectilinearly with respect to the directions

 and , if we suppose that , we have xe ye yn  > nx x y
x y

c
v > v =

n n
c

. The axis 

with respect to  is termed the fast axis, while the axis alongxe ye is the slow axis.
The two components Emx and  Emy of the emerging wave from the strip do not have
the same dephasing to that which exists between the two same components of the
incident wave.
So the components of the incident wave in the side plane z = 0 are:

j t
mx

j( t )
my

E e

E E e

0

,

and the emerging wave, from the side plane z = e, has the components:
x

y

j( t k e)
mx

j( t k e )
my

E e

E E e

0

.

The additional phase difference, due to the propagation of the wave through
a strip of thickness e, between two components with respect to Ox and Oy, is
therefore:

y x y x
2

= (k e - k e) = (n n )e L
2

 where L represents the difference in the 

additional optical pathway generated by the strip between the two components of the
wave under consideration.

When
2

, we have L = 
4

 and the strip is called a quarter wave strip.

When  = , we have L 2
 and the strip is called a half wave strip. In fact, the

strip is not a true half wave strip unless .L y x2  = 2 (n  - n ) e
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2.   Effect of a half wave strip on a rectilinearly polarized wave ( 0) . For the
incident rectilinearly polarized wave, we can take (at z = 0):

j t
0

j t
0

E cos e

E E sin e
0

E sin e
0

sin e
0

E sin e
0

The emergent wave is such that (with z = e) :

x

y

j( t k e)
0

j( t k e)
0

E cos e

E

By changing the origin of times by taking for the temporal origin a value that
ensures a zero dephasing of kx e with respect to the x components, the emerging
wave can be written as: 

y x

j t
0

j( t k e k e)
0

E cos e

, so that

j t
0

j( t )
0

E cos e

1

E E E

With  (for the half wave strip) and je , we reach: 

 .

j t
0

j t
0

E cos e

E E sin e
0

The emergent wave remains rectilinearly polarized and is symmetric to the incident
wave with respect to the x axis.

Note: Effect of the quarter wave strip. Similarly, we can show that a quarter wave 
strip can transform an elliptical vibration into a rectilinear vibration if the axes of the
ellipse coincide with the neutral axes of the strip. All circularly polarized waves are 
transformed into rectilinearly polarized waves by a quarter wave strip.

6.6.3. Jones's matrix based representation of polarization

In the representation demonstrated by Jones, the effect of a polarizer can be given by
a matrix ( P )  such that:
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mx mx
m

my myexit entrance

E E
E ( P )E E

The representation  directed along Ox is that of a projection type operator:

X
1 0

( P )=
0 0

.

With respect to the action of a strip that introduces a delay equal to y between the 
components Emx and Emy of the field, it can be represented by a matrix such as: 

yi

1 0
( L ) = 

0 e
.

1.   Indicate the form of the matrix ( Py ) that can be associated with a polarizer
directed along Oy so that the matrix is associated with a rotation .
2. Use Jones's formalism to study the effect of a half wave strip on a rectilinearly
polarized wave. 
3.    Give the product matrix that can be associated with an effect of two crossed
polarizers between which sits at 45 ° a quartz strip on an incident light.

Answers

1.   The action of a polarizer directed along Oy is represented by y
0 0

( P ) = 
0 1

.

For its part, the rotation ( ) of an element (strip, polarizer) is represented by the 

rotational matrix:
cos sin

R( )
sin cos

.

Finally, the state of polarization on leaving the system can be obtained by
bringing together the successive orientational effects subjected on the incident wave.
The resultant effect thus is written as a product of the matrices associated with the 
transformations.

2  The effect of a half wave on a rectilinearly polarized wave.
Using Jones's notation and two dimensions, the incident wave is:

m 0 0inc

1 0
E E cos E sin

0 1
.

The transformation associated with a half wave strip is given by the matrix:
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y
y= i i

1 0 1 0 1 0
( L )

0 10 e0 e
, and 

m y= m 0 0exit inc

1 0 1 1 0 0
E ( L ) E E cos E sin

0 1 0 0 1 1
,

so that:

m 0 0 0 0exit

1 0 1
E E cos E sin E cos E sin

0 1 0
0
1

 .

We rediscover of course (see preceding problem) the conclusion that the emerging
wave is symmetrical to the incident wave with respect to the x axis.

3.   The effect on a incident wave by two crossed polarizes between which is
inserted  a  strip  of  quartz  at  45 °  is obtained directly from the product of the
following matrices:

mx mx
y x

=my myexit entrance2

E E
( P  ) R(45 ) ( L ) ( P )E E .



Chapter 7 

Electromagnetic Waves in Absorbent and 
Dispersing Infinite Materials and the

Poynting Vector 

7.1. Propagation of Electromagnetic Waves in an Unlimited and Uncharged 
Material for Which = 0 and  j  = 0. Expression for the Dispersion of
Electromagnetic Waves 

7.1.1. Aide mémoire: the Maxwell equation for a material where 0  and 
j 0

These equations are: divE 0    (1)
B

rotE
t

     (3) 

divB 0        (2) 
E

rot B µ
t

  (4)

7.1.2. General equations for propagation
Just as in a vacuum, we can eliminate B  between Eqs. (3) and (4) by calculating the 
rotational of Eq. (3):

(4) ²E
rot(rotE) (rotB) =  - µ

t t²
   (using Eq. (4)) 

  (using Eq. (1)) 
(1)

grad(divE) E E

0 r 0 r
²E ²E

E = µ
t² t²

(5’)
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With 0 0 2
1

µ  =
c

 , we can then go on to write:

r r ²E
E 0

c² t²
           (5) 

And similarly:

r r ²B
B 0

c² t²
        (6) 

7.1.3. A monochromatic electromagnetic wave in a linear, homogeneous, and 
isotropic material

For a monochromatic electromagnetic (EM) wave in a linear, homogeneous, and
isotropic (lhi) material, E  and D  are directly related by D ( ) E  where ( ),
dependent on , has for most materials (i.e., imperfect ones), a complex magnitude
given by ( ) .

C = rC0 if

V0ei t

Figure 7.1. A leak current ( if) in a real dielectric.

The electrical behavior of an imperfect dielectric, otherwise called a real 
dielectric, does not resemble that of a single capacitor as the presence of leak
currents (if), caused for example by residual charges, gives rise to a component due
to resistance (Figure 7.1). Therefore, ( ) needs to be written in a complex form in
order to give a correct Fresnel diagram for the real dielectric. This means that the 
current intensity (I) should simultaneously present a component due to a dephasing

by
2

with respect to the applied tension (capacitive component) and a component

in phase with the tension due to the resistance associated—in this example—with
leak currents.
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With j t
0 0rQ = CV = C V e  where r  is the complex relative dielectric permittivity

(given by r rr  = ' - j ''  and r
0 0

C
= =

C
, where is the capacitance of a

capacitor in a vacuum), it is possible to directly obtain I in terms of two these two
components (capacitive and resistive components), as

0C

r 0 r 0 R C
dQ

I = = '' C V + j ' C V = I + jI
dt

.

It is just worth noting that, as detailed in Chapter 2 of the second volume
in this series, C is complex, and to be strictly correct we should write in the
preceding equations for r that r = C/C0.

Given that the waves are monochromatic, the fields E , , and 
can be given by:

D B

0E(r,t) = E (r)exp(+j t)

0D(r, t) = D (r)exp(+j t)

0B(r, t) = B (r)exp(+j t)

Following simplification of the two members by exp(+j t), and given that
derivation with respect to time is the same as multiplying by j , i.e.,

t
 multiplication  by j , the Maxwell Eqs. (1) to (4) take on the form:

0divE (r) 0       (1’) 0 0rotE (r)= - j B (r) (3’)

0divB (r) 0       (2’) 0 0rotB (r)= j µE (r) (4’)

Similarly, Eq. (5') for propagation yields:

2
0 0E (r) µE (r) 0 (7)

If the medium is simply a nonmagnetic one ( ), thenrµ =1

r
0 0rµ = µ =

c²
and Eq. (7) then becomes:

0 0r
²

E (r) E (r) 0
c²

(7’)
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Alternatively, multiplying by exp[j t]  the equation can be given as:

r
²

E(r) E(r) 0
c²

         (7’’) 

The relationship ( )  (or r r ( ) ) accounts for the fact that in a 
vacuum waves of different frequencies do not propagate at the same velocity due to
a dispersion phenomenon. Just as was justified above for a real dielectric, ( ) is
normally complex, resulting in absorption phenomena associated with its imaginary
component.

7.1.4. A case specific to monochromatic planar progressive electromagnetic waves 
(or MPPEM wave for short)

The complex amplitude of a MPPEM wave is in the form [see Eq. (20) in Chapter 
6], that is: 

0 mE (r) E exp(- jk.r)     (8) 

In this case the material can absorb, so in the same way as we made  = , k is 
used in its complex form: k = k .

7.1.4.1. Structure of a MPPEM wave
First, Eq. (1') gives us 0divE (r) 0

3 3 jk.r
mxi 1 2 3 mxi 0x1 x2 x3 xi

i 1 i 1

d
E exp[ j(k x k x k x = - j k E e =-j k.E (r)

dxi

The result,

0 0divE (r)= - j k.E (r) (9)

is of a general form and concerns the action of the divergence operator on a wave 
determined by Eq. (8). By using Eq. (1), we can determine that 0k.E (r)= 0 , so that 

simplification with exp(- jk.r)  yields:

mk.E = 0           (10) 

Second,  Eq. (2') similarly gains 0 0divB (r)= - j k.B (r) = 0 , from which we find: 

mk.B = 0       (11) 
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Third, Eq. (3’), 0rot E (r)= - j B (r)0 , demands a calculation around 0rot E (r) .

Therefore,
jk.r jk.r jk.r jk.r

0 x mz my mz z myy
d d

[rot E (r)] = (E e ) (E e )= - jk E e + jk E e
dy dz

from which yields:

0 x 0 x
[rot E (r)] = -j k E (r) .

The general result of the action of the rotational of Eq. (8) finally ends up with

0 0rot E (r) = -j k E (r)   .     (12) 

With the help of Eq. (3’), we find that the relation 0 0k E (r) =  B (r) , which is 

simplified on using exp(- jk.r) , gives

m mk E B  . (13)

Fourth,  Eq. (4’) is such that we also find: 

0 0

0

rotB (r) j k B (r)

  = j µ E (r)

Therefore, as µ  = ,r 1 0 r = and simplification of the above equation

with exp( jk.r)  gives us

m 0 m rk B -  µ E = - E
c² m   .         (14) 

Fifth, the MPPEM in a material has a planar progressive structure that is in direct 
relationship with the trihedral (E, B, k) .

7.1.4.2. General equation for dispersion
The calculation of the Laplacian vector for the wave's complex amplitude given in
Eq. (8) directly gives:

0 0E (r) = - k².E (r)    .     (15) 
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By identification with the value given by 0E (r) from Eq. (7'), as in

0 r
²

E (r)= - E (r)
c² 0  and the additional division by exp(- jk.r) , the result is:

mr
²

k² ( ) E 0
c²

.

With mE 0 , the general form of the so-called dispersion equation is:

r
²

k² ( )
c²

    . (16)

7.2.  The Different Types of Media 
7.2.1. No absorbing media and indices
For nonabsorbent materials with real values for r( ), Eq. (16) indicates that k is
also real, within the constraints of r( ) > 0, as otherwise r( ) would correspond to
an evanescent wave for which k = k = - ik'' (see Chapter 9). According Eq. (16) can 
be written more simply as: 

rk = ( )
c

. (16’)

The velocity of the phase of a MPPEM wave with frequency  is now given by:

r

c
v

k ( )
        .   (17) 

For its part, the group velocity of the wave is now:

g
d

v =
dk

    . (18)

7.2.1.1. In a vacuum 
Now and therefore from Eq. (17) gives  (the velocity of the phase is

constant with respect to  and equal to c). As
r  =1 v = c

= c k , Eq. (18) shows us that
, so that in a vacuum there is .gv = c gv = v = c

7.2.1.2. In a nondispersing medium
Now r is independent of the frequency and accordingly from Eq. (17): 
v A , where A is a constant. In addition, as indicated in the plot shown in
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Figure 7.2, = A k .  Indeed, g
d

v = A
dk

, so that for nondispersing media,

.gv = v

slope A = 
r

c
= v  =vg

k
Figure 7.2. Plot of  = f(k) for nondispersing media. 

7.2.1.3. Normal dispersing media
Now we find that if  increases, then r( ) also increases. However, Eq. (17) 

indicates that v decreases, so that 2 1v  < v  and the tangent (
d
dk

) to the

dispersion curve is above the curve, and therefore gv  < v , as shown in Figure 7.3a. 

k2k1

 v  2

v  1

vg1 = d /dk

k

(b)

k

(a)

v  2

v  1

vg1 = d /dk

k2k1

2 2

1

1

Normal dispersing medium Abnormally dispersing medium 

Figure 7.3.  Dispersion curves showing =f(k) for (a) normal dispersion medium;  and (b)
abnormal dispersion medium. 

8.2.1.4. Abnormally dispersing media
Now as  increases, then r( ) decreases, and Eq. (17) indicates that v  also 

increases so that and the tangent (2v  > v 1
d
dk

) is below the dispersion curve and 

,  as shown in Figure 7.3b. gv  > v
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7.2.1.5. Indices

An index (n) is defined by:
c

n
v

(19)

and as Eq. (17) points out v v ( ) , it is also possible to state that .n = n( )

Placing Eq. (17) into Eq. (19) gives:

rn( )= ( ) (19’)

from which through Eq. (16') we gain

0k n k
c

n .       (20) 

where 0k
c

 and is the wavenumber in a vacuum. As the wavelength in a

medium can be determined by
c 2 2

v T
n k

, if we introduce 0
2 c

(wavelength in vacuo) we arrive at: 

0

n( )
 . (21)

7.2.1.6. Comment
It is possible also to use Eq. (13') by multiplying the two members by
expi[ t k.r]  so that k E B  which gives in terms of moduli kE B . With

k
c

n , the equation yields:

E c
v

B n
 . (19’’)

7.2.2.   Absorbent media  and complex indices
7.2.2.1. Absorbent media (dielectric permittivity and wavevector both complex)
7.2.2.1.1. Equation for dielectric permittivity
As above detailed, absorbing materials means that ( ) is complex, and by
notation, ( ) . Dielectric losses caused by Joule effects from the resistive 
component are absorbed by the dielectric—hence the name absorbent. More
precisely, and depending on notational convention, complex permittivity can be 
defined in terms of:
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electrokinetics, where ( ) ' j ''        (22) or
wave optics, where ( ) ' j '' (22’)

Whether a minus or positive sign is chosen in the above equations (and as 
detailed below in equations for k ) is relative to the final expression used for the
wave, wherein its application to dielectric media signifies an absorption and not a
(spontaneous) amplification of the wave, the latter of which would be unrealistic.

Staying with dielectrics, in Section 7.1.3 the calculation of 
dQ

I =
dt

 was 

performed using an electrokinetic notation, i.e., 0V = V  exp(+j t)  from which with
' j ''  from Eq. (22') it can be determined that r 0 r 0I = '' C V + j ' C V .

The term due to resistance (IR) which is such that R r 0I = + '' C V is in phase with
the tension; however, if the term  had been taken into Eq. (22'), then the result
would have been , indicating an unphysical dephasing of the
intensity and the tension by  at the resistance terminals. Inversely, if the optical
notation were used so that  V = V

R r 0I = - '' C V

0 exp(-j t), then Eq. (22') must be used to obtain a
physically acceptable result, as in R rI = + '' C V0 .

7.2.2.1.2. Equation for the wavenumber and the MPPEM wave 
In optical terms, according to Eq. (16) for dispersion, the complex form of 
indicates that k also must be complex (k k). As detailed below, the optical wave
can be absorbed during its propagation, and therefore k should be written in the
form:
k = k' - j k''  (electrokinetic notation) (23)  and 
k = k' + j k''  (optical notation)         (23’) 

Again following from Eq. (16), with a  sign given for both possibilities,

we have: ''
r r

²
k² k ' ² k '' ² 2 jk 'k '' ( ' j )

c²
,

so that by identification of the real and imaginary parts,

r
²

k'² - k''² = ( ) '
c²

r
²

2 k' k'' = ( ) ''
c²

.

With (dielectric absorption) and (propagation in the sense z > 0), the
second relation indicates that and is an optical absorption.

r '' > 0 k' > 0
k'' > 0
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The MPPEM wave along Oz therefore is such that:

m

m

E E exp( j[ t kz])

E exp( k ''z) exp( j[ t k 'z])
    (using electrokinetic notation)

m mE E exp( j[kz t]) E exp( k ''z)exp( j[k 'z t])    (by optical notation).

The term e  represents the exponential absorption—also called
attenuation in optics—of the wave during its propagation. It is worth noting that the
wrong choice of sign in Eqs. (23) and (23') would mean instead of representing an
attenuation of the signal as it propagates that the signal would be progressively
amplified, a physical impossibility.

xp( k ''z)

7.2.2.2. Complex index
In turn, the index also must be complex given that the defining equation, as an
extension to Eqs. (19') and (20) where k is complex, is:

rn² = ( )   where k = n
c

(24)

Wherein:
(electrokinetic notation) (25)n = n' - jn''

n = n' + jn'' (optical notation) (25’)

where the negative sign is correctly used to represent the absorption in electrokinetic
notation and the positive sign is correct in optical terms. Identification of the real
and imaginary parts gives:

rn'² - n''² = ' k' = n'
c

r2 n' n'' = '' k'' = n''
c

The progressive wave along Oz therefore can be represented by:
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m m

m

E E exp( j[ t kz]) E exp( j[ t nz])
c

E exp( n '' z) exp( j[ t n ' z])
c c

  (electrokinetic notation)

         (26) 

m m

m

E E exp( j[kz t]) E exp( j[ nz t])
c

E exp( n '' z) exp( j[n ' z t])
c c

(optical notation)

The term for absorption and attenuation is thus in the form exp(- n'' z)
c

 where the

component  for the index is called the extinction index while n' is the refraction
index associated with the passage of the wave through an additional medium.

n''

7.3.   The Energy of an Electromagnetic Plane Wave and the Poynting Vector
7.3.1. Definition and physical significance for media of absolute permittivity ( ),

magnetic permeability (µ), and subject to a conduction current (j  )
7.3.1.1. Definition
The following two Maxwell equations are used for the titled material:

B
rotE

t
(3)    [ Eq. (3) multiplied by

B
µ

]

B (
rot j

µ t
E)

(4’’)             [ Eq. (4’’) multiplied by [-E] ]

Following multiplication of the two members of each equation, as above, the 
addition of respective members yields: 

B B B B ( E)
rot E - E rot  = -  - E j  .E .

µ µ µ t t

On using div a b =b rot a - a rot b  , the equation is changed to:

B E² B²
div E = - j .E

µ t 2 2µ
 . (27’)



Basic electromagnetism and materials216

By definition then, the Poynting vector is:
B

S E
µ

. (27)

7.3.1.2. Physical significance

By introducing the Poynting vector into Eq. (27'), it is found that:

E² B²
div S= - j .E

t 2 2µ
 . 

For a volume (V) with a surface limited to , we can state that: 

-
E² B²

div S d =  d j .E d
t 2 2µ

,  which also yields 

E² B²
- S.d  d

t 2 2µ
j .E d   .

       (1) (2)

7.3.1.2.1. Physical significance of term (1) 
It is well known (at least in vacuum, where we have 0 and µ0 instead of  and µ) 
that the volume density of electrical and magnetic energies are, respectively, equal 

to edw  E²
d 2

 and mdw B²
d 2µ

. In all, the energy is equal to e mdw dw
w = +

d d
.

Term (1) can be written in the form
dw

d
dt

and represents the power (for a total 

volume of the material) in electrical and magnetic energies created by the 
electromagnetic field in the

7.3.1.2.2. Physical significance of term (2) 
Simplification using d = d .dr  permits the equation

Jj .E d  = j .d E.dr= I.V = P , which represents the electrical power given by
the charges in the system, which typically correspond to the power dissipated by the
Joule effect caused by .j

To conclude, the Poynting vector flux ( S ) through a surface ( ) is equal
to the power which gives rise to the electromagnetic field through  of the material
under consideration.
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7.3.2.  Propagation velocity of energy in a vacuum
For this calculation we suppose that  and that the energy is being carried by a 
plane progressive wave, for which the Poynting vector is directed in the same sense
as the propagation given by the vector denoted

j = 0

u  (with the direct trihedral ).
In a vacuum, where the components for the vectors E

E,B,u
 and B  are given by Eqs. (13) 

and (14) of Chapter 6, we have:

z x y
0 0z

2 2 2 2
1 2 0 1 2

0

B 1
S S E (E B E B )

µ µ

1
(G G ) c (G G ).

µ c

y x

  (28) 

With respect to a unit surface normal to the direction of the EM wave 
propagation, it therefore can be written with the power (P) transmitted by the EM 
field through a surface unit ( ) that:= 1

2 2
z z 0 1 2

1
P = S d = S = c (G G ).          (29) 

Additionally, with  = 0, the volume density of the energy associated with the EM 
wave (w) is equal to:

j

2 2 2 2 2 20
0 1 2 1 1 0 1 2

0 0

E² B² 1 1
w = = (G G )+ (G G )= (G G ).         (30). 

2 2µ 2 2µ c²

From Eqs. (28) and (30), we can determine that S cw,  which in terms of vectors
gives

S c w u     . (31)

Given P through  and w, with the help of Eqs. (29) and (30), we find the
relationship:

=1

 . (32)P = c w

l = 1

L =ve

 = 1 

Figure 7.4. Power transmitted through .
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As shown in Figure 7.4., P transmitted as energy per unit time through 
corresponds to the energy contained within the volume (V) given by

where  and in which  is the energy propagation
velocity. As the energy density (w) represents the energy in the unit volume
(surface  and length l ), we therefore can state that .

= 1

=1V = .L

e t=1L = v  ( t) = ve eV = v ev

=1  =1 eP = v  w
As above noted, P = , we can directly find:c w

ev  = c
which indicates that the energy propagates at the velocity of light in a vacuum.

7.3.3.  Complex notation
Calculations for the Poynting vector or the energy cannot be directly performed
using the complex values of the fields E  or B  as the real part of the resulting 
product is not equal to the product of the real parts. Such a problem has been found
for or w given by Eqs. (27) and (30) which are not linear with respect to  or .
However, it is possible to obtain the average values of S

S E B
 or w. 

Given the following expressions for the fields E  or B

0E E exp(i t) ,

where a rigorous treatment would mean writing:

0E= R(E exp(i t)) ,

where E= R(E)  and 0E=E exp(i t)  . 

As z denotes a complex number, as in z = a + ib , we find that 
z z *

R(z) = a = 
2

,

where z* is the conjugated complex of z .

Given the above, the Poynting vector can be calculated with µ being real by:
B 1 1

S E = E B = R(E) R(B)
µ µ µ

0 0 0 0
1

= { [E exp(i t) E exp( i t) ] [B exp(i t) B exp( i t) ]}
4µ

0 0 0 00 0 0 0
1

= {[E B ] + [E B ]+[E B exp(2i t)]+[E B exp( 2i t)]}
4µ

.

The first two terms are conjugated complexes and their total value is twice their real 
parts. The third and fourth terms vary as functions of 2  so that their average value 
over a period is equal to zero. This leaves us with
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0 0
1

S = R(E B )
2µ

.     (33) 

For a planar progressive wave along u , we have 0 mE =E exp[ ik.r)] , which yields:

mm
1

S = R(E B )
2µ

.       (33’) 

In a vacuum, where ,0µ = µ 0 0µ c² = 1 , and m
m

E
B

c
:

0 mm
c

S = E E u
2

 . 

In the more specific case of a rectilinear plane wave, where mE E0 , we have:

20
0

c
S = E u

2
.

This result can be obtained directly from
0

B
S E

µ
 [Eq. (27) written for a vacuum

where  µ = µ0].

7.3.4. The Poynting vector and the average power for a MPPEM wave in a 
nonabsorbent (k and n are real) and nonmagnetic (µr = 1, so that µ = µ0)
medium

From Eq. (13), 
1

B k E  and k n
c

u , we have 

0 0

B n
S E E (u E)

µ cµ
.

By using the equation for a paired vector, a (b c) a.c b a.b c , we obtain

2
0 0S= nc [(E.E).u (E.u)E]= nc E u   . 

By taking an average value over a given period, for the power transmitted (P) by the
EM wave, 

2
z 0

1
<P> = <S > = nc E

2 0 .

7.3.5. Poynting vector for a MPPEM wave in an absorbent dielectric such that µ 
is real

Using the optical notation given in Section 7.2.2.1, 
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mE E exp( k ''z)exp( j[k 'z t])

and
k n

B u E u
c

E .

According to Eq. (33), established for a real value of µ , we find that

z 0 0
1

<S > = R(E B )
2µ

, where 0 mE E exp( k ''z)exp( jk 'z)

0 0
n

B u E
c

Therefore

0 0 0 00 0 0
n n n

0E u E E u E E u E
c c c

E B

0 0 m
n n

E .E u E ² exp( 2k ''z)
c c

 , from which 

z 0 0 m
1 1 n '

<S > = R(E B ) E ² exp( 2k ''z)
2µ 2µ c

,

so that for a nonmagnetic medium (µ = µ0)
0

z m
cn '

<S > = E ² exp( 2k ''z)
2

.

The power transmitted by the electromagnetic field exponentially decreases with the

distance traversed. The extinction coefficient for this is given by 2k'' = 2n''
c

.

7.4. Problem

Poynting vector 
It is worth recalling that the physical magnitude of flux represents an amount
associated with a physical magnitude which traverses a unit surface per unit time.

1. The analogy between the charge current density and the energy current
density vectors

(a)  Here  denotes the charge current density vector and j  the volume charge 

density. The flux of the vector j  through a surface d is dI = j d . What does j 
alone represent? Give the equation for the conservation of charge for a rapidly
varying  regime in an isolated system.
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(b)  By analogy, the energy flux (which thus exhibits a power per unit surface)
through the surface d  is defined by a relationship of the type dP = S .d  in which

 represents the energy current density, otherwise termed the Poynting vector.
What does S alone represent? By introducing the magnitude , which represents
the volume density of the total energy, give an equation for the conservation of
energy analogous to that for the conservation of charge (

S
Tw

S  plays the role of  and 
that of

j

Tw ).

2.  The total volume density of energy  can be considered as the sum of two 
terms, one being due to the density of kinetic energy ( ) and the other due to the
energy density ( ), which will be detailed below.

Tw

cw

emw
(a)  The theorem for kinetic energy makes it possible to state that the variation in
kinetic energy is equal to the work of the applied forces. A variation in the kinetic
energy density (for a unit volume containing a charge ) is given by

with
cdw F. v dt

F q E v B   when charges with volume density  and velocity  are 

placed in an electromagnetic field characterized by the fields 

v

E  and B . Determine
from the equation for the conservation of energy the value of the expression

dwemdivS + E.j +
dt

.

(b)  Give the Maxwell-Faraday (M-F) relationship (M-F which gives rot E ) and the

Maxwell-Ampere (M-A) relationship (M-A which gives
B

rot
µ0

) for a non-

magnetic medium traversed by a real current ( j ). By multiplying M-F by [
B

µ0
] and 

M-A by [ ], calculate .-E E. j

(c) Determine the expressions for S  and by identification between the results
of 2a and 2b. Conclude.

emw

3.
(a)  It is worth recalling here that the real part of a product of two complex numbers
is different from the product of the real parts of two complex numbers. Show how,
in a similar way, the complex amplitude of the product of two complexes is different
from the complex amplitude of these two complexes. What is under consideration
when dealing with the vectorial products in place of the simple products?
(b) If 0E  and 0B  are the complex amplitudes of a complex field, then the complex
electric field and the complex magnetic field:
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notation
E E (r)exp(i t) = E exp(i t)0 0  and B B exp(i t)0 , are such that: 

E Re(E) and B Re(B).

From the calculation for
1

S [Re(E) Re(B)]
µ0

, show that the average value of 

is of the form:

S

E B1 0 0S Re
2 µ0

,

 where B 0  is the complex conjugated with B0 .

(c)   Calculate  for a monochromatic plane progressive wave propagating in the
direction of the unit vector  in a medium where the wave vector 

S
uz k  is real. 

Answers
1.
(a) By definition, j represents the flux of electric
charges, also termed the charge current density. This
flux therefore represents the amount of electrical
charges that traverse a unit surface per unit time.
Quantitatively, we can say that this quantity of
charges is localized within a cylinder (or
parallelepiped) with a cross-sectional unit area = 1  and length (l) given by

, where v is the velocity of the charges. If t = 1l = (v t)  = v = n q , is the volume
charge density where n is the charge density, i.e., the number of charges per unit
volume, then the quantity of charge found in the volume (V) given by 

 is such that=1 t = 1V = ( )  (v t)  = v =1 t = 1j = n q ( )  (v t) =  v .

l = (v t) t = 1 = v 

 = 1 

  The vector j  is defined by j v . For its part, the equation for the
conservation of charge is written

divj 0
t

. (1) 

(b)  Similarly, if S  represents the energy current density vector, S represents the
quantity of energy that traverses a unit surface in a unit time. S therefore can be seen 
as the electrical power through a unit surface. 

If w represents the total energy, the equation for the conservation of 
energy can be written by analogy to the equation for the conservation of charge as: 

T
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Tw
divS 0

t
.   (2) 

2.

(a) Therefore, , andT c ew  = w + w m
T c edw dw dw

dt dt dt
m . (3) 

In addition, the theorem for the kinetic energy allows the equation  so 

that by taking into account the form of 
cdw  = F. v dt

F , we have:
cdw

= F. v = [ E + v B] v = E v = j . E
dt

. (4) 

By moving this expression into Eq. (3), we find T edw dw
j. E

dt dt
m  . By

introducing this equation into Eq. (2) for the conservation of energy, we arrive at
emdw

divS j. E 0
dt

. (5) 

(b)  We have:

(M-F)
B

rot E = -
t

   (equation multiplied by
B
µ

)

(M-A)
0

B (
rot j

µ t
E)

   (equation multiplied by  [ -E ]).

Following multiplication of the two members of each equation as indicated, we find 
by addition that:

0 0 0

B B B B ( E)
rotE - E rot = -  - E j.E

µ µ µ t t
.

Using the relation div a b =b rot a - a rot b  , the above equation becomes

0 0

B E² B²
div E = - j.E

µ t 2 2µ
 which can also be written as 

0 0

B E² B²
div E +j.E + 0

µ t 2 2µ
. (6)

(c) By identification with Eq. (5), it can be determined that
0

B
S E

µ
 which is 

the Poynting vector, and that
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em
0

E² B²
w

2 2µ
is the density of electromagnetic energy in the form:

, withem e mw w w e m
0

E² B²
w  and  w

2 2µ

n

2

 . 

These two expressions are for the electrical and magnetic energy densities under a 
stationary regime and they prove that they are still valid for variable regimes.

3.
(a)  The use of complex numbers needs to take into account (with ):n nz = a + i b

if the real part of the sum of two complex numbers is actually equal to the sum of 
the real parts of the two complex numbers, as in

;  and 1 2 1 2 1R(z + z ) = R(z ) + R(z ) = a  +a
or if the real part of the two complex numbers is not equal to the product of the
two real parts of the two complex numbers, as in

1 2 1 1 2 2 1 1 2 2 1 2 2 1

1 1 2 2 1 1 1 2

R(z z ) = R([a  + i b ] [a + i b ]) = R (a b  - a b  +i[a b  + a b ])
 = a b - a b  a b = R(z )R(z ).

Similarly, if the product (P) of the complexes is P = A.B , then its complex

amplitude is such that (with i t
0A = A e and i t

0B = B e ):
i t i t i2 t i t

0 0 0 0 0 P = A e  B e = A .B e = P e ,  from which
iwt

0 0 0 0 0P  = A .B  e A .B .

The complex amplitude of the product of two complexes appears different from the
product of the complex amplitude of two complexes. Similarly, the vectorial 
product, which brings in the components of the products, differs from the simple
products, for example:

R(E B) R(E) R(B) , so that here
0

1
R(S) R(E B)

µ
 . 

(b)   However, if E E exp(i t)0  and B = B exp(i t)0 , we have:

E B1 0 0S Re
2 µ0

.

In effect, 
0 0 0

1 1 1
S E B= R(E) R(B) R(E B)

µ µ µ
 . 

With E E exp(i t)= A + iB0 , we have:
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** i t i t
0E e E eE E

R(E)= A =
2 2

 , from which 

0 0 0 0
0

1
S  [E exp(i t) E exp( i t)] [B exp(i t) B exp( i t)]

4µ

0 0 0 00 0 0 0
0

1
[E B ] + [E B ]+[E B exp(2i t)]+[E B exp( 2i t)]

4µ
.

The first two terms are conjugated complexes and their sum is equal to twice their
real parts [as 1 1 1 1 11 1z  + z * = (a  + i b ) + (a  - i b ) = 2 a ) ]. The third and fourth terms
each vary as a function of 2  so that they have average values over a half period,
and therefore also a full period, equal to zero. Therefore: 

0 0
0

1
S R(E

2µ
B ) .

(c) If the plane wave progresses along Oz, then the electrical field can be supposed,
for example, to be moving with respect to Ox. Therefore,

notation ik.r ik.r
x0 0 m mE E (r) E e E e u .

Similarly, for a magnetic field moving through Oy, we have 
notation ik.r ik.r

y0 0 m mB B (r) B e B e u .

Therefore:
* *

0 x y0 m m m m
0 0 0

1 1 1
S R(E B ) R(E .B  u u ) = R(E .B  u )

2µ 2µ 2µ z .

Given that mE  v Bm  in a material (or mE c Bm  if in a vacuum), we have:

2 2* 0
z z zm m m m

0 0

1 n
S R(E .E  u ) = E u nc E

2µ v 2µ c 2
u   . 

If the MPPEM  wave is polarized rectilinearly, so that 0mE = E is real, then

20
0S nc E

2 z u   . 



Chapter 8 

Waves in Plasmas and Dielectric, Metallic, 
and Magnetic Materials

8.1.  Interactions between Electromagnetic Wave and Materials

8.1.1. Parameters under consideration
So that geometrical considerations do not become a problem, this chapter will look
at the interactions of electromagnetic (EM) waves with materials that have infinite
dimensions. Materials with limited forms will be looked at, most notably, in
Chapters 11 and 12.

The propagation of EM waves can be studied by considering:
a description of the EM wave in the material with Maxwell's equations;  and 
a representation of the material as a collection of electronic and ionic charges that
interact with the electromagnetic field through the Lorentzian force, which can be 
written as: 

dv
m qE qv

dt
B .

In terms of moduli, the ratio of magnetic and electronic contributions are given by
m

e

F qvB vB
F qE E

  . 

For a plane EM wave, the E = and the ratiov B m

e

F v
F v

. As , the 

magnetic force (F

v << v  c

m) is negligible with respect to the electrical force (Fe). With the
magnetic force being weak, generally it is stated that the magnetization intensity ( )
is approximately equal to zero, so that

I

0B µ H  and ArotI J 0 .
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Different types of forces can be involved, depending on the response of the
material under the deformation caused by the incident EM wave. 

8.1.2. The various forces involved in conventionally studied materials
8.1.2.1. Dielectric materials 
The various movements and polarizations which can come about depends on
whether it is electrons, ions, or permanent dipoles that are submitted to Fe.

8.1.2.1.1. Electronic polarization
Much like a spring, valence electrons displaced by Fe are returned to the equilibrium
position about their respective atoms by a force (fr) given by .
In addition, if the electrons move within a very dense medium, they can be thought
of as being subject to a friction force (f

r 0f = - k r = - m ² re

t ) which gives rise to a Joule effect and has 

an intensity proportional to their velocity, so that t
m

f v  where  is the

relaxation time of the system and has the dimension of time (so that the equation is
dimensionally correct).

8.1.2.1.2. Ionic polarization
The movement of ions under an electric field approximately resembles that of 
electrons. Their returning force is fr = -Mnucleus 0i

2 r where, due to the greater mass
of ions and their relative inertia, their ionic pulsations ( 0i ) are much smaller than
the equivalent electronic movements ( 0e). This is detailed further in Chapter 3 of
Volume 2. 

8.1.2.1.3. Polarization and dipole orientation
It is assumed that dipoles subject to a varying electrical force are predominantly
subject to a friction force associated with their rotational movement. Given that they
are relatively large due to the chemical association of atoms, they present a high
degree of inertia toward excitation by an electric field. The dipoles can only
follow—with a dephasing—relatively low frequencies, but tend to contribute
considerably to dielectric absorption at such frequencies (see also Chapters 1 and 3
of Volume 2). 

8.1.2.2. In plasma
In a plasma, which has a low density and is electrically neutral, it is assumed that
electrons make up an electronic gas. Any displacement of the electrons from their
equilibrium position by a perturbation resulting in a compression or dilation of the
electron gas can be considered the result of the application of a sinusoidal electric
field, which has an plasma oscillation pulse ( p) due to the returning force of ions in
the medium that are assumed to be immobile. Given the assumption that the
electrons move freely, we can ignore friction and mechanical returning forces so that

p is automatically stabilized by the longitudinal electric field associated with the
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permanent returning force (thus  directly related to this electric field). The

corresponding frequency is therefore p
p =

2
, and as detailed further in this

chapter, can appear as a breaking or “drag” frequency for EM waves. 

8.1.2.3. Metals
The electrons that interact most easily with EM waves are those external to atomic
or molecular orbitals, in other words conduction electrons. These electrons are in
effect free, or semifree, depending on the degree of approximation, and belong to no 
specific atom, so that any returning mechanical forces are equal to zero. The 
medium, however, is sufficiently dense to make friction forces nonzero and it is
these forces that result in Joule effects in metals, more specifically due to collisions
between electrons. The exact nature of these collisions generally is only considered
in solid physics along with collisions in a network (phonons) and with impurities.

8.2. Interactions of EM Waves with Linear, Homogeneous and Isotropic (lhi)
Dielectric Materials: Electronic Polarization, Dispersion and Resonance 
Absorption

Electronic polarizations gives rise to resonance frequencies ( 0e , which is more
succinctly denoted 0 below) in an absorbing and dispersing material, and this
section is limited to studying the plots of these interactions. These interactions can
be understood using the question-based tutorial below, which has answers detailed
in Sections 8.2.1 through to 8.2.8. 

The polarization of a linear, homogeneous, and isotropic (lhi) material is the
result of a total number (N) of electrons per unit volume (ne) (N =  ne) each having a 
charge (–q) being subject to the following forces:

a Coulombic force induced by the alternating field which can be described in the
complex form by 0E E exp(i t) ;

a returning force given by 2
rF m 0 r , where me is the mass of a electron; 

frictional forces given by: t
dr m dr

F m = -
dt dt

 . 

1.  Under a forced regime, find the expression for the displacement of electrons
based on the complex form 0r r exp(i t) . Determine 0r .
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2. Give the complex expression for the electronic polarization. From this determine
the real and imaginary parts of the dielectric susceptibility ( e'  and e'' ,
respectively) given in electrical notation by e e e= ' - i '' . The result should be 

expressed in terms of e
p

0

n q²
²  = ( )

m
.

3.  Now the study turns to the functions e’ and e’’ in terms of  at two points:
when , and then when 0 0 . Parts a, b, and c of this question consider the
former .0
(a) give the sign associated with e'  when 0  or  when 0 ;
(b) for which value of , e’’ is a maximum;
(c) the width at half-peak height of the function e’’( ) corresponds to angular

frequencies 1 and 2, which are such that e max
e 1 e 2

''
''( ) = ''( ) =

2
. Determine

1 and 2 and show that for these values e’( ) is at an extreme  point. Determine
the values for e’( 1) and for e’( 2);  and 
(d)  give the limiting values for e’ and e’’ ( ). Plot e’( ) et e’’( ).

4.  This question concerns a regime far off the resonance position 0 ; indeed, it 
is now the hypothesis that becomes relevant. Give the
corresponding representations for 

0² ² << ( ²  - ²)²

e’( ) and e’’( ).

5. Staying with the hypothesis presented in question 4 [ 0 and 
], show that there is a value0² ² << ( ²  - ²)²  (to be determined) for  which

is such that the real part of the relative dielectric permittivity ( r’) is zero at this
pulsation. Show that for the value of  given by  the magnetic field is zero
and that the electric field is longitudinal.

6.   Plane, progressive, and traversing EM waves that can be written in the form

mE E exp[i( t kr)] and angular frequencies between but not including 0 and
 (outside of the resonance and ) are considered in this question. From the

general equation for the dispersion of waves, give the form (real, complex, or purely
imaginary) of the wave vector in this domain of angular frequencies while also
determining the type of wave involved.

7.  Outside of the absorption and the interval [ 0, ] : 
(a)  give the explicit relation between  and j using the expression for the relative
permittivity (equation involving term expressed as 4);
(b)  from the real solutions to this equation, give the relations between  and k;  and 
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(c) With respect to the limiting case, give the general shape of the curves 
representing = f(k) for dispersion due to electronic polarization.

8.  Find for 0 <<  the equation (for dispersion) that ties the optical index to the

wavelength on a vacuum 0
2 c

= .

8.2.1. The Drude Lorentz model: a representation of a dielectric using an electron 
gas and a study of the electron movement

8.2.1.1.  The Drude-Lorentz model
In the Drude-Lorentz model, a dielectric material is represented by a group of atoms
(Na) per unit volume distributed in a vacuum. The atoms are surrounded by a field of
electrons that are themselves assumed to move in a vacuum around the atoms to
which they are attached. When subjected to a sinusoidal electric field, the electrons 
move from their positions and then tend to return to their original position through
the influence of two forces : 

a frictional force given by t
dr m dr

F m = -
dt dt

, which takes into account the

viscosity of the medium and results in a dephasing between the excitation and the
electronic response. In this case,  is the relaxation time that represents the time
required to establish the electronic polarization following application of the field.
In the Drude-Lorentz model, which results in an expression for conductivity and
Ohm's law,  represents the average time in between two successive collisions;
and
an elastic force, given by 2

rF m 0 r , due to the recall of electrons to their
particular bonds. Physically, this force resembles that of a returning force exerted
by a spring tying together an electron and its nucleus. For each type of electron, be 
they internal or external layer electrons, the elastic force varies along with the
corresponding value for 0.

It is worth noting that for metals, which have electronic properties determined by
free conduction electrons, the returning or recall force is not brought into account 
because the energy required (thermal energy) to remove an electron from its original
atom is extremely small. As detailed in Section 8.1.2.3, only Ft is assumed to be
exerted.

8.2.1.2. Equation for the movement of electrons
Here the charge of an electron is represented by –e. With respect to the direction ,
parallel to the applied field (

r
E ), the fundamental equation for the dynamic of the

displacement of electrons is: 
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2
applied r t Coulomb 0

d²r m dr
m F = F F F = m r -

dt² dt
eE , so that:

2
0

d²r 1 dr e
r= - E

dt² dt m
.          (1) 

Given a cosinusoidal field of the form i t
0E E e , the required solution for the

forced regime subject to an alternating field, particular to the equation with a second 
term, is in the form 0r r exp(i t) .

With r i r  and r ²r , the solution given in Eq. (1) gives, following

simplification of the two terms using i te ,
2
00 0 0

e
- ²r i r r = - E

m 0           (1’), from which

0 0
2 2
0

e
r E

m i
. (1’’)

8.2.2. The form of the polarization, the susceptibility, and the dielectric
permittivity

8.2.2.1. Expression for electronic polarization
Moving a charge (q) by  is the same as applying a moment dipole , and 
likewise, moving an electronic charge ( q ) is the same as applying a dipole 
moment (see Chapter 2, section 2.2.2). The polarization for

r = qr
= -e

= - er

eN = n electrons per unit volume therefore is given by:

i t i te
e e e 0 0

2 2
0

n e²
P n = -e n r= -e n r e = E e

m i
. (2)

8.2.2.2. Expressions for susceptibility and dielectric permittivity (electronic 
component)

Given that i t i t
0 0 00 0re eP  = E E e = (  - 1) E e (3),

from Eqs. (2) and (3) it is possible to directly determine that:

e
e 2 20

0

n q² 1
 = 

m i
. (4)
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Given that 2 e
p

0

n q²
=

m
, the result is 2

pe 2 2
0

1
=

i
. (4’)

From this can be determined that
2 2
0

2
p ee 22 2

0

i
 = = ' - i ''

²
²

e . (5)

By identification of the real and imaginary parts, and with
rre  = (  - 1) = ( ' - 1 - i '')r , it is possible to determine that:

2 2 2 2
0 02 2

e r p p2 22 2 2 2
0 0

' = ( ' - 1) =
²

² ²
²

(6)

2 2
e r p p2 22 2 2 2

0 0

'' = '' = =
²

² ²
²

. (7)

Eq. (6) can be used to define that
2
p e

e 2 2
00 0

1 n q²
'(0) = =

m
      (8).

Following this, the introduction of e’(0) into Eqs. (4), (6), and (7) yields: 
2
0

ee 2 2
0

 = '(0)
i

. (9)

In turn, this gives:
2 2
02

e e 0 22 2
0

' = '(0)
² ²

(6’)  and 

2
e r e 0 22 2

0

'' = '' = '(0)
² ²

.        (7’) 

8.2.2.3. Limiting cases 
8.2.2.2.1. Low frequencies where 0<< ( 0)
According to Eqs. (6) and (7),
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2
p

e e 2
0

' '(0) =  and 
2
p

r r 2
0

' '(0) = 1 + (10),  and 

e e'' ''(0) = 0 and r r'' ''(0) = 0 .
The upshot is that in this frequency domain, rr '(0) . With e being real and 

positive, according to Eq. (3), there is no dephasing between P  and E .

8.2.2.2.2. At frequencies where 0=
Here,

, so that e 0'( ) = 0 r 0'( ) = 1
2
p

e 0
0

''( ) =

2
p

0 e 0e
0

( ) = -i ''( ) = -i . As 
i
2- i = e , P  and E  are in quadrature. 

8.2.2.2.3. High frequencies for which 0  ( )
According to Eq. (6) and (7), e'( ) 0 and e''( ) 0 . More precisely, with the
help of Eq. (9), by neglecting the  term but not the ² term (as ) from the 

denominator,
2
0

ee 2- '(0) (11).  As i- 1 = e , P  and E  have opposing

phases.

8.2.2.4.  Comment concerning the Lorentz correction
The Lorentz correction replaces in Eq. (1) the field ( E ) by the locally effective field 

given by al
0

P
E E

3
.  With eP= -e n r  Eq. (1') now becomes

2 e
0 0 0 0 0

0

n q² e
- ² r i r + r - r = - E

3m m 0 . This results in a change in the expressions

for e and   of the term  to2
0

2 2 e
0 0

0

n q²
' = -

3m
.

8.2.3. Study of the curves e’( ) and e’’( ) for 0 (of the order of the
absorption zone) 

In this section, the approximations 0 0 0 0 0² - ² = ( - )( + ) 2 ( - )  and 
 are made.0
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8.2.3.1. Expression for e’
From Eq. (6), for e’:

0 02
e ( 0) p 22 2

0 0 0

2
'

4 ²
, so that dividing above and below by

4  gives:2
0

2
p 0 00 e

e ( 0) 2 22 20
0 0

'(0)
' =

2 2

2 2

. (12)

It is noteworthy that e’ changes sign with ( 0 - ). e’ is out of step with respect to
 and0( - ) e ( 0)' 0 .

Also, it is possible to state that the function e’ is: 
positive on the left hand side of 0. Here - 0= - (where >0) , from which 

 and ; and 0 - - =  > 0 e -'( ) > 0
negative on the right hand side of 0 so that + 0= + , from which 

, and .0 +- =- < 0 e +'( ) 0

8.2.3.2. Expression for e’’
Similarly to that in the previous section, from Eq. (7), e’’ can be found in:

0

2
p2 0

e ( ) p 2 22 2 0 20 0 0
0

2'' =
24 ²

2

.      (13) 

For its part, e’’ is at a maximum when the dominator is at a minimum, that is 
to say when 0 - = 0 , so that 0= .  Thus:

2
p

e 0 e max
0

1
''( ) = ''  = . (14)

By substituting this expression in Eq. (13):

0

2

e ( ) e 0 e 02 22
020

12'' ''( ) = ''( )
4

1
2

.      (13’)
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e’’( 0) is a function paired with 0( - ) , and therefore is symmetrical with 
respect to . This type of curve is termed a Lorentzian curve, and as  is 

separated from
0=

0,  increases and 2
0( - ) e’’( )  0. 

8.2.3.3. Evolution of e’( ) and e’’( ) when 0
The functions e’( ) and e’’( ) when 0  evolve as shown in Figures 8.1 and 
8.2.

The halfpeak width (hpw) of the curve representing e’’( ) gives the pulsations
1 and 2 such that . From Eq. (13’), pulsationse 1 e 2 e 0''( ) = ''( ) = ''( )/2 i

(where i = 1 or 2) should accord to: 

e i e 0 e 02
0 i2

1 1
''( ) = ''( ) ''( )

4 21
.

From which the following equation can de determined:
2

0 i
²

( - )
4

, so that i 0= ±
2

.

These equations finally give:

1 0 = -
2

2 0 = +
2

The hpw thus is equal to (15).2 1=  -  = = 1/
In addition, it is possible to see that the angular frequencies i ( 1 and 2) give

rise to the extreme limiting values of e’( ). To verify this, it suffices that 
e

i

d '
= 0

d
, a relatively simple calculation.

According to Eq. (12), the corresponding values for e’( i) are: 

0 e 0 e 0
e i e2 2

'(0) '(0)2'( ) = = = ± '(0)
2 2

2 2

2
 . 

Therefore:
0 0

e 1 e e

0 0
e 2 e e

'( ) = '(0)= '(0)
2 2

'( ) = '(0)= - '(0).
2 2

(16)
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e’= r’-1
,0 (0)

2 e

 = 
1

0

0 1 2

- ,0 (0)
2 e 0

Figure 8.1. Plot of e’= f( ) when 0 . 

e’’( 0)  =
2

,
0

0
(0)p

e

''
0( )

2
e

1 0 2

=1/

e’’

Figure 8.2. Plot of e’’= f( ) when 0 . 
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8.2.4. Study of the curves of e’( ) and e’’( ) when 0 (well outside of an
absorption zone) 

Far from an absorption zone, the oscillation can be assumed to undergo only a very 
weak dragging force. This small force is such that it can be assumed that

.0² ² << ( ² - ²)²

8.2.4.1. Form of e’( )

Following Eq. (6'),
2
0

e e 2 2
0

'( ) '(0) . (17)

The limiting values can be given accordingly: 
when ,0 << 

2
'0 0

e e e e
00 0 0

'( ) '(0) '(0) (0) ;      (18) 

when :0
22 (8) p0

e e 2 2'( ) '(0)  - 0    (19);  and 

(when-
e'( ) 0 -

e
1

, '( ) 0 ).

8.2.4.2. Form of e’’( )
According to Eq. (7),

2
e p 22 2

0

''( ) 0 ''r .

A consequence of this equation is that there is no absorption in this zone, and  and 
  are real such that, for example, 0P = E  or D E . There is no dephasing

between the response and the excitation, and it is only the real parts, ( ) or ( ),
which vary with . The medium gives rise to dispersion and is nonabsorbent, which
in effect means that it is also transparent. 

8.2.4.3. Graphical representation
Figure 8.3 gives a graphical representation of e’( ) far from the resonance 
frequency ( 0). This representation gives the electrical component, as at low
frequencies it is an ionic or dipolar relaxation contribution that appears. 
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In general terms, r' ( ) = 1 + '( )e . As e'( ) 0 , then 
, and the curve representingr'( ) 1 r’( ) takes on the shape shown in

Figure 8.4. The analytical form for ’r( ) at points far from the resonance value is
directly obtained from Eq. (17):

2
p

r 2 2
0

' ( ) = 1 + . (17’)

e’( )

e’(0)
2

2
0

p

 0 0

Figure 8.3. Curve of ’e( ) when 0 .

r’( )

r’(0) = 1 + e’(0)

   0 0

1

Figure 8.4. Curve of ’r( ) when 0 . 
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8.2.5.  The (zero) pole of the dielectric function, and longitudinal electric waves 
An angular frequency ( ), which corresponds to the (zero) pole of a dielectric
function, is such that  is different to 0 , must be such that the following equation
is true:

2
p

r 2 2
0

' ( ) = 1 + 0  , 

the solution of which gives rise to:
2 2

p 0
2 .

This also shows that (see Figure 8.4), which by consequences means that
, and justifies the use of Eq. (17') to determine

0>

0 .
In order to show that the angular frequency  is due to a wave that has a

longitudinal structure, the following may be considered. As 0 , then ,

and
r'' 0

is real (  = ). Gauss's equation, which is written 0 0div D =  div E 0 , has 
in reality two solutions, which are either:

0div E 0  giving for a progressive planar wave, 0ik.E = 0 , in other terms

0k E  so that the wave presents a transversal structure;  or 
which corresponds to an angular frequency value such that

and the solution corresponds to the (zero) pole of the dielectric

function, which is thus such that

( ) = 0
 ( ) = 0

div E 0 .
In this case, it remains true that:

0div B 0

0 0 0
D

rotB µ i µ E
t r , so that r0 0rotB = i E = 0

c²
when

with ik.r
0 mB = B e  (form given for a progressive sinusoidal wave), these two

equations give rise to, respectively:

0i k.B 0

0i k B 0

The Maxwell-Faraday equation makes it possible to state that:

0B  = 0 and therefore the wave is completely electric. 

B
rotE 0

t
, so that 0 0rotE j B 0 .  With 0B  = 0 , then 0rotE 0 , and 

0i k E 0 . This in turn means that 0E // k  .

The wave is said to have a longitudinal structure as E  is directed along the wave
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vector  (while for the transversal wave,k 0E k ).

8.2.6. Behavior of a transverse plane progressive EM wave which is sinusoidal
and has a pulsation between 0 and  sufficiently far from 0 so that
’’  0 

A monochromatic planar progressive electromagnetic (MPPEM) wave that is
sinusoidal can be written as:

mE E exp[i( t k.r)] .

When , Figure 8.4 indicates how0  < < r'( ) < 0 , while r''( ) = 0  at points
far from 0. Therefore r r rr  = '( ) - j ''( ) = '( ) which is a real negative, and
thus rr  = ' < 0 .

The equation for the dispersion of transverse MPPEM waves is given by
2 2

r r2 2k² =  = '  < 0
c c

, which in turn imposes that k = - ik'' = - i n ''
c

 where k is

a purely imaginary number.
The MPPEM wave thus takes on the form given by

mE E exp[ k '' r] exp[i t] . In effect, there is no wave propagation; the wave is
simply attenuated without undergoing absorption (as 0 ). There is no 
propagation for the wave in the medium (because ), and the wave is termed
evanescent.

k' = 0

When 0, , the material can be considered a perfect reflector. 

8.2.7.  Study of an MPPEM wave both outside the absorption zone ( 0) and 
the range [ 0, ]

8.2.7.1. Relationship between  and k 
The sections above considered an MPPEM was within the range 0 , . This 
section will look at a wave outside this range with 0<< and > .

In these two domains, , andr''( ) = 0 rr = ' > 0 (see Figure 8.4, noting that
when , and when 0 < r'  > 1 > , r0 < '  < 1 ). Thus, the dispersion equation

takes on the form
2 2

rr2 2k² =  = '  > 0
c c

, from which k = k' = k .

With ’r( ) given when 0  by Eq. (17’), then
22
p

2 2
0

k² = 1
c 2 .        (20) 
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By developing this further, it is possible to obtain:
4 2

0 p 0- ²(k²c² + ² + ²) + k²c² 0  . 

8.2.7.2. The relation  = f(k)
The preceding equation is a “bi-squared” equation of the type ,

which has solutions in the form

4x  + b x² + c = 0
b b² 4c

x² = -
2 2

, so that it can be stated that: 

1/ 222 2 2 2
0 p 0 p2 2

0
k²c² k²c²

k²c²
2 2

.       (21) 

8.2.7.3. Shape of the dispersion curve 
When and , then0 <<  > 

2

r2k² = '
c

,

where
2
p

r 2 2
0

' ( ) = 1 +

It is worth considering the two limiting values of k:
k  0

according to the equation for dispersion, there are two possible solutions. These
are either: 
o , which corresponds to the solution0 -= , [which also can be directly 

checked by introducing k = 0 into Eq. (21), giving a solution for - as
]; or-  = 0

o , in which case when r' ( ) 0 , such that 2 2
p

2
0 , the

solution for + is , [which again can be found by direct substitution
of k = 0 into Eq. (21)].

+  = 

k   where once again two solutions are possible: 

o
c

 and k
c

for a solution to +. The introduction into Eq. (21) of

so that k 0k²c² >> ² or pk²c² >> ² , gives + = ck ; or

o , from which r' ( )
2
p

2 2
0

(1 + ) , and in other words means

 that 0 , hence the solution to -
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A representation of  = f(k) therefore shows two branched curves associated 
with the transversal EM waves (T branches) corresponding to the two solutions +

and - The curves are separated by a zone, or band, into which propagation of the
EM waves cannot occur. The value at which =  shown in Figure 8.5
corresponds for its part to the longitudinal electric wave (L).

Figure 8.5. Dispersion curves indicated by T.

0

   L
zone unavailable to propagation: reflection zone

T

O k

-

T

+

 = ck 

The scheme presented below gives a résumé of the different behaviors of a 
dielectric undergoing electric polarizations at different frequencies (and pulsations).

propagation  with
dispersion

Absorption

r’ < 0 0 < r’ < 1 r’ > 1 

no propagation,
evanescent wave

propagation, and when , r’  1,
Behavior analogous to that in a vacuum, 

the e- cannot follow these high frequencies

0

8.2.8. Equation for dispersion n = f( 0) when  << 0
8.2.8.1. Maxwell's equation for the visible region

When , then 0 < rr  = ' > 1 , and the relation for dispersion r
²

k² =
c²

 gives,

for a real r, rk = k =
c

. This region is where  < 0 is in the visible range and 

therefore is nonabsorbing and transparent. More precisely, the conditions on  can 



   Basic electromagnetism and materials244

be written i  <  < 0e , where i is the resonance pulsation related to the
displacement of ions, and in the near infrared, 0e is the pulsation resonance noted
for the most part above as 0 and related to the displacement of electrons and 
therefore also the electric polarization.

Given the equation for the dispersion, the velocity of the y phase can be written

r

c
v  = =

k
. As elsewhere, the index (n) is defined by

c
n = 

v
; then it can be

written that rn = ( ) . This is the Maxwell equation valid for the visible region.
It can be simplified further by stating that with a real value for r, the index n
defined by rn² = is also real, so that rn = n = .

As here  (region ),r  > 1 0e< rn = ( ) > 1 , and 
r

c
v  = < c ;

the result is that, with 0k  =
c

:

0
0

0

2 2
= < 

k k n n
,

where 0
2 c

 =  and is the wavelength associated with  in a vacuum.

8.2.8.2. Dispersion equation for 0e< and Cauchy's formula
In the region , is given by Eq. (17’), so that with

the resulting equation is: 
0e < r r( ) = '( )

0 0e = 
2 2
p p

r e2 2 2
0e 0e

2 2
0e 0e

e 2
0e

1 1
( ) = 1 + = 1 + = 1 + (0)

² ²
1 1

²
= 1 + (0) 1 ...

With andrn² = ( )
0

2 c
 it is possible to say that:

22e e
e e2 2

0e 0e 0

(0) (0) 1
n² 1 + (0)+ = 1 + (0)+ 2 c 2  . 

By making , and2
e rA =  1 + (0) = (0) = n0

2 e
2
0e

(0)
B = 2 c , then 2

0

B
n² = A + .



            Chapter 8.  Waves in plasmas and dielectric, metallic, and magnetic materials 245

From this can be determined that
1/ 2

1 2 1 2
2 2
0 0

B B
n A 1 A 1 ...

A 2A
,

so that by making 1/ 2
B

C =
2A

, it can be stated that 

0 2
0

C
n n  +       . (22)

Equation (22), called Cauchy's equation, shows that the index varies with the
wavelength.

8.2.8.3. The Rayleigh relation and group and phase velocities 

The group velocity is given by g
d d d

v  = = - ²
dk d(1/ ) d

. In addition,

0
2 c c

 =   and 0 c
 =

n n
, so therefore 

c
 =

n
. The result is: 

g

1
d

d(1/ n ) 1 1 1 c 1 dnnv  =  - c ² = - c ² = c
d n ² d n n² d

 . 

With
c

v  =
n

, it is possible to obtain:

g
dn

v  = v 1
n d

 .    (23) 

8.2.8.4. Comment: normal and abnormal dispersions
In Sections 7.2.1.3 and 7.2.1.4 normal and abnormal dispersions were defined. In 
dielectrics, as shown in Figure 8.4 and as a general rule, r’( ) increases with .
However, as indicated in Figure 8.1, when 0 ,  the function r’( ) decreases as 

 increases, describing a behavior in the abnormal dispersion zone. 

8.3.  Propagation of a MPPEM Wave in a Plasma (or the Dielectric Response of 
an Electronic Gas) 

8.3.1.  Plasma oscillations and pulsations
8.3.1.1. Definition of a plasma
Overall a plasma is neutral and is made up of ions, assumed to be in fixed positions
(due to their high mass which accords them considerable inertia), and by electrons,
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assumed to be highly mobile. All of this is in a vacuum. At equilibrium (rest state), 
the ion volume densities (n0) and the electron volume densities (ne) are identical. 
However, following a Coulombic interaction, if the perturbation obliges an electron
to move from its equilibrium position, then it will have a tendency to return to
original position due to a returning electrical force. Below, electron and ion charges
are denoted by –e and +e, respectively. 

8.3.1.2. Study of the displacement of electrons in a plasma subject to a mechanical
perturbation

S u(x,t) u(x+dx,t)

x + dxx x

Figure 8.6. Moving a “slice” of plasma.

Supposing that under the influence of a mechanical perturbation, for example,
an acoustic effect, the electrons shown in Figure 8.6 are moved together along the
Ox axis by a small distance u(x,t). The thermal agitation and weights involved are
negligible, much as the frictional or mechanical recall forces, as the electrons are not 
tied to any specific atom as is the case for dielectrics. 

To start there is a “slice” of electron “fluid” which has a cross-sectional area S
and is placed between x and x + dx at its rest state. The initial corresponding volume
of the slice is .0V  = S dx

Under the effect of a perturbation, the deformed fluid moves in such a way that
its limits move to and . Therefore its volume also
changes to : 

x + u(x,t) x + dx + u(x + dx, t)

lossV  = S [dx + u(x +dx, t) - u(x, t)] .

With
u

u(x +dx, t) = u(x) + dx
x

, then loss
u

V  = S [dx + dx ]
x

, and the final

variation in volume can be considered as :

pert 0
u

V = V - V = S dx
x

.

By denoting the concentration of the charge following perturbation by ne + ne,
the conservation of charge in the occupied volume before and after the perturbation
can be described by:

e 0 e e pertn V = (n  + n ) V , or in other words, 

e e e
u

n  S dx = (n + n ) S [dx + dx ]
x

, from which comes



            Chapter 8.  Waves in plasmas and dielectric, metallic, and magnetic materials 247

e e
u u

n + n 1 =
x x

0 .  With
u

<< 1 
x

, we obtain:

e
u

ne n
x

.

With the ions assumed to be fixed, their density (n0) is unchanged and the total
charge density therefore is given by

0 e e= n e - (n + n )e .

With , then0n = ne e e
u

= - n  e = n  e 
x

.

Poisson's equation (
0

div E ) makes it possible to write e

0

E n e u
x x

. With the

limiting condition that whenE 0 u 0 , the equation yields
e

0

n e
E(x, t) u(x, t) .

This relation ties together the displacement ( u(x,t) ) of the electrons to the field ( )
generated by the same displacement. This field is a longitudinal one, as it is parallel 
to the displacement x.

E

On applying the dynamic fundamental relation to the electrons (electrons
localized in the slice of the fluid) we have:

d²u
m = - e E(x, t

dt²
) , so that e

0

d²u n e²
u 0

dt² m
.

The introduction of a pulsation to the plasma, defined by e
p

0

n e²
 = 

m
, gives

pi tu = A e .
The latter relationship indicates that the electrons undergo an oscillatory movement
at the “plasma pulsation” p.

Numerical application
(ionosphere)6 -3 12 -

en  = 10 cm  = 10 m 3
p = 8.97 MHz (decimeter waves). 

 (dense gas discharge)15 3 21 -3
en = 10 cm = 10  m

p = 1.75 x 1012 Hz (millimeter waves)
 (metal) (UV visible)29 -3

en 10 cm 16
P =  10 Hz

To sum, in a plasma the mechanical perturbation that moves electrons forms a 
longitudinal field (which has a direction depending on the induced displacement).
The electric field in turn produces an electronic returning force and therefore a 
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displacement. This can be verified by studying the behavior of a plasma subject to 
an electric field of a form given by i t

0E = E  e .

8.3.2.  The dielectric response of an electronic gas 
As before, the medium is assumed to be neutral overall and consisting of fixed ions
and mobile electrons all in a vacuum. In the rest state the ion volume density (n0)
and the electron volume density (ne) are identical i.e. . As above, electron
charges are denoted by –e.

0n = ne

An electric field, acting as the recalling force, ( i t
0E E e ) is applied to

the medium along Ox. It is assumed that there are no frictional forces involved.

Now, this study treats the problem by dealing with the following questions:
1.   Looking for the abscissa x, which defines the position of an electron and is a 
solution to the permanent regime of form i t

0x x e , gives 0x  with the help of a 
fundamental dynamics equation.
2. Give the expression for the polarization due to the displacement of the electrons. 
3. By determining the expression for the relative dielectric permittivity [ r( )], also 

called the dielectric function, given in the form
2
p

r 2( ) = 1 - , detail what p is. 

4. The electric field ( ) now under consideration is that of a plane sinusoidal EM 
wave with pulsation denoted by and rectilinearly transverse polarized along Ox. It 
propagates toward increasing values of z and is such that

E

i( t k.r ) i( t k.r ) i( t k.z) i t
m m x m x 0E E e E e u E e u = E e .

(a) What is the dispersion equation for transversal plane EM waves? Give this
relation with the notations and results of the question.
(b)   When , state the exact form and type of the corresponding waves. p<

(c) When , detail the form (progressive or not) of the waves associated with

the angular frequency and plot the dispersion curve [
p > 

= f(ck) where k is the wave
vector module and c the speed of light] for these conditions.
(d) In the light of the results conclude about the plasma transparency.

5.  The value of p for alkali metals is around 300 nm ( p
p

2 c
 = ). If it can be 

assumed that they can be represented by the electronic gas model, are they 
transparent to UV light?

6. Study the (zero) pole of the dielectric function which corresponds to an angular
frequency given by L (which is such that L( ) = 0 ). Is it possible to demonstrate
that the associated waves are longitudinal?
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Answers

1. According to the dynamic fundamental equation,
d²x

m e
dt²

E , into which

substituting i t
0x = x e gives i² ²m x = - e E , so that 

eE
x = 

m ²
 and 0

0
eE

x  =
m ²

.

A field moving along Ox given by i t
0E = E e results in an oscillating movement

given by i t0eE
x = .e

m ²
2.  The movement of a charge (-e) by x is the same as generating a dipole moment
by p = -e x. The corresponding polarization (dipole moment per unit volume) is

therefore e
e e

n e²
P = n p = - n  e x = - E

m ²
.

3.  The dielectric function r( ) is such that 0 rD( ) = ( ) E( )

0=  E( ) + P( )

r
0

P( )
( ) = 1 +

E( )
so that e

rr
0

n e²
( ) = 1 - = ( )

m ²
. With e

p
0

n e²
² = 

m
, then:

2
p

r ( ) = 1 -
²

.

4.
(a)  The equation for the dispersion of progressive plane EM waves with transverse
structures, as here with  following Oz, can be written ask rk²c² = ² ( ) . In this
case, r is real. By taking the previous expression for r( ) into the equation for
dispersion, we find:

2
p²

k² = 1
c² ²

,

which is the equation for the dispersion of EM transversal waves in a plasma.

Comment:  The above relationship can be obtained more directly from the Maxwell 
equations, detailed as Eqs. (10), (11), and (13) in Chapter 7, as in:

0k.E 0  (1) 0k.B 0 (2) 0 0Bk E . (3)
The equations show by themselves that the EM wave is obligatorily transversal. For
its part, the Maxwell-Ampere equation is written in the form:

0 0
E

rot B µ ( j )
t

, with, in this case, j v  being the current associated 

with the displacement of electrons influenced by the oscillating field. As  = -nee
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and
dx

v
dt

, so with i t0eE
x = e

m ²
 it is possible to state that i t

0
ie

v E e
m

, from

which can be obtained en e²
j i

m
E . We can remark also this same current can be 

seen as the polarization current P
P

j
t

, and thus with

i te e
0

n e² n e²
P = - E  - E e

m ² m ²
, we found again : e

P
n e²

j i E
m

j  . 

Finally the Maxwell-Ampere relation gives e
0 0

n e²
rot B µ i i E

m
,

from which can be determined that e
0 00 0

n e²
i(k B )=µ i i E

m
 .

By substituting 0B  from Eq. (3) into the last equation:

e
0 00 0

k² n e²
i E  µ i i E

m
, from which e

0 0 0 0
0

n e²
k² = µ ² - µ

m
, and then:

2
p²

k² = 1
c² ²

.

(b)  When p < , then in turn
2
p
2 > 1, and r ( ) < 0  just as k² < 0 . k is

therefore purely imaginary. Using the electrokinetic notation where k = k' - i k'' ,

then k = -ik'' ; the wave can be written in the form i( t-kz) -k''z i t
m mE E e =E e e .

The upshot is that the wave is no longer propagating but is stationary with an
angular frequency ( ). The wave resembles a evanescent wave that has an amplitude
that decrease exponentially with x.

(c)   When , then p>
2
p
21 > , and r ( ) > 0 and k² > 0 . k is therefore real, so

k = k' , and the wave has the form i( t-kz) i( t-k'z)
m mE=E e E e .  The wave thus is

progressive and does not exhibit a term for absorption ( k ). The dispersion

equation thus can be written, with the more simple , as

'' = 0

k' = k 2
p= c²k²  . 

The curve due to this equation is shown in Figure 8.7. The slope of the dispersion

curve, g
d

v  =
dk

 , gives vg which is the group velocity. Note that the slope is less 

than the slope of the plot and therefore less than the speed of light.  = ck
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Figure 8.7. Dispersion curve for a plasma.

r < 0 : 
 evanescent wave 

 = 2
p c²k² r > 0

propagation

 < p

 > p

ck

 = c k 

p

(d) To conclude, the plasma (or electron gas) acts much as a high band filter toward
incident waves. As indicated in Figure 8.8, the gas is only transparent when 

; that is to say whenr ( ) > 0 p> . However, when p< , a component due 
to attenuation by e-k’’z  without a term for propagation, appears. 

5.

r( )     1 

      0
        O            0.5             1         1.5 / p

'drag' region        region for propagation
 < p

     vacuum vacuum
>
plasma plasma

 > p

p

p

 > p

 < p

(µm)

Figure 8.8. High band filtering characteristics of a plasma.
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Given that p corresponds to when p< , waves with lengths less than p

can propagate with , that is without attenuation or in other terms absorption,
through the medium under consideration. Thus the alkali metals should be 
transparent to radiation with wavelengths below 300 nm, and this includes UV
radiation.

k'' = 0

6. The condition makes it possible to determine
L(  = )  = 0 L, which in turn

should be such that
2
p

L 2
L

( ) = 1 - = 0  and that L = p . The (zeros) poles of the

dielectric function therefore are equal to the plasma frequency, that is to say the
frequency at which the electron gas undergoes a longitudinal oscillation. The cutoff 
frequency (  = p) of the transversal EM waves corresponds to the longitudinal
oscillation mode of the electron gas. The electrons are subject to displacement
pulsations, in a direction along that of the associated field ( i t

0E = E  e ), that is to
say in the longitudinal direction of the field and along the line of electron
displacement.

8.4.  Propagation of an EM Wave in a Metallic Material (Frictional Forces)
A study of the complex conductivity and the dispersion of waves within a metal can 
be carried out by resolving the following question, which considers the velocity (v) 
of electrons subject to a Coulombic force generated by an applied alternating field
given by 0E E exp(i t) .

The question given in Sections 8.2 and 8.3 is revived here except of course the
electrons are now considered to be in a metallic environment so that the volume
density for electron charge is given by e= - n  e  and the electrons are subject to a 

frictional force which is in the form t
m

f  = - v , where  and  are the conduction 

velocity and relaxation time, respectively. It is assumed that these conduction
electrons are not subject to returning forces and that their movement can be studied
in one dimension.

1. Give the equation for the movement of each electron and from this determine that 
the velocity when i t

0v = v e .

2.  The material is thought of as a vacuum in which the characteristic conduction
electrons are spread. In the following order, calculate:
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(a)  the conduction current density j  = v = E  and express as a function 

of e
p

0

n e²
² = 

m
, and also as a function of the conductivity ( 0) for a stationary 

regime, i.e., when ;= 0
(b)  the current density associated with movement through vacuum (jD0); and 
(c)  from (b) derive the total current density (jT) and the conductivity ( ), which 
appears in its complex form.

3. This question concerns << 1 . In copper, , when 
, we find that .

-1410  s

c < 100 GHz -210  << 1
(a)  What form does  take on?

(b) Calculate the ratio D0j

j
 for copper where . What

conclusion can be drawn from the result?

7 -1 -1
0 6 10 m

4.  The metallic medium is now considered in its entirety, and therefore the
characteristic used is that of its complex relative dielectric permittivity ( r). Give the 
form of the displacement current in this medium with r. By giving the equality
between two forms of complex conductivities, each obtained by the two
representations found in questions 2(c) and 4, determine r, which is defined within
the terms of this question by the relation 0 rD = E .

5.  Here the field under consideration is that of a monochromatic planar progressive
electromagnetic (MPPEM) wave which propagates in the same sense as increasing
values of z.
(a)  Give the relation for the dispersion of these waves. 
(b)  For , give the expression for>> 1 r comparable to that obtained in question
3 above. From the result, draw a conclusion about the nature of the MPPEM wave. 
(c)  Here, . Calculate 1 r and indicate the form of the associated wave. 

Answers
1.  The fundamental dynamic equation along the direction of the velocity is:

dv m
F = m f eE v

dt
 , from which the complex terms derived are:

dv m
m v

dt
eE
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With E in the form i t
0E = E e , a solution for v in the form i t

0v = v e  is required.

By substitution into the differential equation, and with
dv

i v
dt

, it is possible to

obtain:
m

im v + v eE , so that following division by i te , the equation

becomes 00 0
m

im v  + v eE .

From this can be derived:
0

0
eE

v  = -
m(1 i )

.

2.
(a)  Ohm's law gives the conduction current associated with the volume density of
electrons (ne), as in:

i te e
e 0

n e² n e²
j  = v = - n  e v = E e E= E

m(1 i ) m(1 i )
, so that 

en e²
 = 

m(1 i )
 . 

By introducing e
p

0

n e²
² = 

m
 into , then

2
0 p =

1 i
.

When (i.e., under a stationary regime),= 0 2
(  = 0) 0 0 p= = , so that it is 

possible to also state that:

0
1

 =
1 i

.

(b)  The displacement current associated with a vacuum, given that in a vacuum
i t

0 0D = E e  , is

D0 0
D

j  = = i E
t

.

(c)  The total current density is therefore:
2

0 p
T D0 0j  = j  + j = ( + i )E = E

1 i
,  from which 

2
p

0= i
1 i

.
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3.

(a)  With 0
1

 = 
1 i

 and with << 1 , we have 0 .

(b) We have D0 0 0

0 0

j E

Ej
, so that for copper and when << 1  (and for

), the calculation gives: c <  = 100 GHz
11

D0 -50 0
7 14

0 0

j 10
<< 10

j 6.10 10
.

As a consequence, as long as the frequencies are not too high, i.e.,
, the displacement current in a vacuum is negligible with respect 

to the internal metal conduction current.
c <  = 100 GHz

In this frequency range, we therefore find that

0 0
1

 = 
1 i

.

4.  With 0 rD = E , it is possible to directly find D 0 rj  = i E , so here 

0 r= i .
Equalizing the two expressions obtained for  (in 2(c) and just above in this

answer) gives:
2 2 2
p p p

r
( i

 = 1 + = 1 - = 1 -
i (1 i ) ( i) (1 ² ²)

)
.

5.
(a)  For a transverse MPPEM wave, the dispersion equation can be written with
permittivity in its complex form ( r) as 

rk²c² = ² ( ).
(b) When , the expression for  >> 1 r (obtained in answer 4) becomes

2
p

rr 2= 1 - = (in its real form). Once again we find the expression previously

given in answer 3 for a problem treated in Section 8.3.2 concerning a plasma
wherein the electrons are assumed to undergo negligible frictional forces. The
MPPEM waves therefore have the same form as those written above such that when

 they are progressive and when p > p  they are evanescent. 
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(c)  When  << 1, then from the answer to question 4, r is given by
2
p

r = 1 - i .

The permittivity is complex and the dispersion equation, k²c² = ² r ( ), which also 

can be written as r
²

k² = ( )
c²

, shows that k is complex in that k = k' - i k'' . The

wave therefore can be given in the form:
i( t kz) k '' z i( t k 'z) e = e e

term for attenuation     propagation term

8.5. Uncharged Magnetic Media
8.5.1. Dispersion equation in conducting magnetic media
For the medium under consideration,  represents the dielectric permittivity, its

magnetic permeability , and its conductivity is such that0µ µ
notation

. With
the material being electrically neutral in its natural state, then = 0  and Maxwell's
equations from Section 5.3 can be written as:

div E 0       (1) 
B

rotE + 0
t

     (3) 

div B 0        (2)
E E

rot B  µ j µ E
t t

         (4) 

For MPPEM waves with the form mE = E  exp[i( t - kr)] , Eqs. (1), (2), and (3)
respectively give:
k.E 0   (1’) k.B 0   (2’) k E B    (3’). 
These relationships were derived from calculations shown in Section 7.1.4 from
which the results were equally applicable to amplitudes (with index m) as complex
vectors, as all that was necessary was to multiply, or divide, the two terms by
exp[i( t - kr)] .

Once again, the structure of the MPPEM wave is the same as if in a vacuum
(transverse wave). Equation (4) details this more specifically, in that
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E
- i k B µ j

t
, so that with Eq. (3’), it is possible to state that

k
- i k E µ E i E . Using the formula for the double vectorial

product given by , and witha×(b×c)= ac b- (ab) c k E , from eqn (1’), then: 

k²
i E = iµ 1 + E

i
, from which comes the dispersion equation, as in:

k² = µ ² 1 - i . (5)

8.5.2.  Impedance characteristics (when k is real)
When the magnetic permeability (µ) is real, B and H  are in phase. Similarly, when 

k is real, B  and E  are related by 
k E

B =  and also are in phase. Thus

 µ
E = B = H

k k
, so that  withE = Z H

 µ
Z =

k
 . 

Therefore,
E

Z =
H

, and as E is expressed in V m-1 and H in A m-1, Z has the 

dimensions V A-1. The Z corresponds to an impedance that is characteristic of the
medium under study and is dependent on .

In addition, when k, µ, and  are real, according to the preceding equation, 
we find that k = µ , and therefore Z also is real and has a value 

µ
Z = .     (6) 

On setting 0
0

0

µ
Z  = = 377 (the characteristic impedance of a vacuum), the 

characteristic impedance of a medium is given by 0 r

0 r

µ µ µ
Z = =  , so that

r
0

r

µ
Z = Z .          (7) 

In general terms, the complex index is defined by k = n
c

, so k' - i k'' = (n' - in'')
c

.
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With a medium assumed to be nonabsorbent, then k" = 0. Therefore, k = k' is real

and , so that . Under these conditions,n'' = 0 n = n' k = n
c

, and with 

0 r r r0k = µ= µ µ µ
c r , it is possible to derive: r rn = µ .

As r
0 0

r r r

µ µ
Z = Z = Z

µ
r , the final calculation gives:

r
0

µ
Z = Z

n
. (8)

8.6. Problems

8.6.1. The complex forms for polarization and dielectric permittivity

This question concerns a dielectric that is linear, homogeneous, and isotropic (lhi)
and contains N identical molecules per unit volume. Each molecule exhibits in its
periphery a free electron with a charge denoted by –e. The dielectric is subject to an 
electric field applied along the Ox axis, and the polarization of the medium also is
studied along that axis while considering that each peripheral electron is subject to a 
Coulombic force. This force moves the electron from its equilibrium position, to
which it tends to return due to a returning force (fr) given by f  =r 0- m ² x , where 

0 is homogeneous and of constant angular frequency, and also due to a frictional

force (ft) which tends to brake the movement and is given by t
dx

f = - m
dt

, where 

is a homogenous constant that is inverse with respect to time. The movement of the
ions is assumed to be negligible given that their mass is considerably greater than
that of the electrons.

1.  Calculations for real positions:
(a)  With the electric field being given by E(t 0) = E  cos t , write the fundamental
dynamic equation.
(b)   From the above equation determine the differential equation that describes the
displacement in x of each electron. 
(c)   Under a forced regime, which corresponds to the particular solution obtained
from the second term of the differential equation, the solution is of the form

. Determine x0x(t) = x  cos( t - ) 0 and . Note that in order to carry this out, it is 
possible to associate complex numbers to x(t) and E(t) such that

0 0x = x  exp(-j ) exp(j t) = x  exp(j t) , with 00x = x  exp(-j )  as the complex
amplitude and 0E(t) = E  exp(j t) .
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(d)  Give the formula of the dipole moment induced in each individual molecule
(which are assumed to not have mutual interactions). From this derive the real
polarization given by P(t).
(e) Is this expression an equation of instantaneous proportionality between the 
response of the system [P(t)] and its excitation [E(t)]? Give a conclusion concerning
the dephasing between the establishment of the polarization and the application of 
the electric field. 

2.  Calculation of the complex polarization (P) and the complex induction (D):
(a)  With the help of the results gained from question 1, give P along with its
complex amplitude P0.
(b)   Recall the defining relationship between the complex susceptibility from which
can be given the expression for ( ).
(c)  Give the relation that brings together the complex induction and the complex
electric field and which permits a definition of the complex permittivity ( r). From
this, derive the expression for r( ).

3.   Calculation for the real electric induction (when 0 r = ):
(a)  With  = ' - j ''  give the expression for the real part of the electric induction.
(b) Show how the real electric induction gives rise to a dephasing with respect to
the real electric field. Express this dephasing as a function of ’ and ’’.

Answers
1.
(a)   The fundamental dynamic equation appliedF = m , makes it possible to state 
that through Ox, FCoulomb + Fr + Ff = m d2x/dt2 so that

0
dx d²x

- e E(t) - m ²x - m = m
dt dt²

.

(b) The differential equation that describes the movement, with ,

therefore is given by

0E(t) = E  cos t

0 0
d²x dx e

+ + ²x = - E  cos t
dt² dt m

.

(c)   In order to resolve a differential equation of the second order the solution can be 
found by adding to a general solution a second term specific to the equation with the
second term.

Under a permanent regime, that is when there are forcing oscillations
(produced by a Coulombic force given by cos t) applied over a long period of time,
the movement is dominated by a specific solution given by:

0x(t) = x  cos( t - ) .
By associating with x(t) and E(t) the complex numbers,
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0 0x = x  exp(-j ) exp(j t) = x  exp(j t) , where 00x = x  exp(-j )  is the complex

amplitude, so 0E(t) = E  exp(j t)] , and hence 
dx

j x,
dt

 and 
d²x

²x
dt²

.

The differential equation then becomes 0
e

- ²x + j x + ²x = - E
m

. By dividing

the two terms by  ej t, the result is: 

00 0 0
e

0²x  + j x  + ²x = - E
m

- , so that 

-j
0 00 2 2

0

e
x = - E = x  e

m[( ) j ]
.

From 0 0
c

z  = - x  =
a ib

, where 0
e

c = ,E
m 0a = ( ² - ²) , and b = , it is 

possible to derive j
00

ac ibc
z  = = u - iv = e  = |z | e

a² b²
-j .  Then 

0 02 2
0

c e
|z | = = u²+v² = = E

a² b² m[ ( )² ² ² ]
, from which we find 

that:

0 02 2
0

e
x  = - E

m[ ( )² ² ² ]

(in which it can be algebraically verified if E0 moves according to positive values of
x, and thereby if the electrons move toward negative values of x, as detailed in the
figure below);

xO

+ E
displacement of –e
toward  x < 0

displacement of –e
towards x > 0

       + 
E
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and also that 
u

tan  = = tan(- ) = - tan
v

, so that:

2
0

u b
 = Arc tan = Arc tan = Arc tan

v a ²
.

To conclude, the movement of an oscillator is cosinusoidal and undergoes the 
same pulsation ( ) as the excitation force, given by CF  = - e E cos t , the same
amplitude (x0) and the same dephasing ( ) with respect to E. The resonance 
pulsation is such that x0 is at a maximum. If = 0 , then the oscillator is unrestricted
and x0 is at a maximum when 0= .

(d)  Moving a charge (q) by a distance (x) is the same as applying to the system a
dipole moment given by µ = qx (as detailed in Section 2.2.2.1.). Similarly, moving
an electronic charge (-e) by x is the same as applying a dipole moment µ = - e x, so
that:

0 02 2
0

e²
µ = - e x cos ( t - ) = E cos ( t - )

m[ ( )² ² ² ]
.

The polarization can be written as , and hencei i i
i

P = n q P = N µ = - e N x

02 2
0

Ne² 1
P = E  cos ( t - )

m [ ( )² ² ² ]
.

(e)  With the applied field being given by cos t, there is no proportionality between
the instantaneous polarization, given by 0P(t) = P  cos ( t- )  and the instantaneous
field, given by 0E(t) = E  cos t . The polarization is established with a phase delay
( ) with respect to the applied electric field. 

2.
(a)  The complex polarization is: 

0 0 0P = - N e x = - N e x exp(-j ) exp(j t) = - N e x  exp(j t) = P exp(j t) , from
which

-j
0 00 0 2 2

0

Ne²
P  = - N e x exp(-j )= - N e x E = P  e

m[( ) j ]
0 , with

0 02 2
0

Ne² 1
P  = E

m [ ( )² ² ² ]
 and 

2
0

= Arc tan
²

.
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(b)  The complex susceptibility is defined by 0P = E , which means that

0 0 00 0P  exp(-j t) = E exp(j t) =  E exp(j t) .
From this can be immediately derived that:

00 0P  = E

02 2
0

Ne²
= E

m[( ) j ]
2 2

0 0

Ne²
 = 

m [( ) j ]

(c)   Here 
0D = E + P

= E

So r 2 2
0 0

Ne²
 = 1 +  = 1 +

m [( ) j ]
, and by making p

0

Ne²
² = 

m
 , we find

that:
2
p

r 2 2
0

= 1 + 
[( ) j ]

.

0 0 0 0 0 r
P

=  + = +  =  (1 + ) =
E

.

3.
(a)   With = ' - j '' , D =  E = ( ' - j '') E  and 

0 0 0E = E  exp(j t) = E  cos t + j E  sin t

0 0 0 0D = '(E  cos t + j E  sin t) - j '' E  cos t + '' E  sin t , and

0D = R(D) = ( 'cos t + ''sin t) E , or: 
D = Acos t + Bsin t , with A = 'E0 and B = "E0 .

(b)  D therefore is given by D = A cos t + B sin t , which can be changed to
D = C cos ( t - ) . In effect, if we make:

A = C cos
C =  and A² B²

B
tg =

A
, then B = C sin

D = A cos t + B sin t = C cos  cos t + C sin  sin t = C cos ( t - ) .

Consequently, the real induction is

D = C cos ( t - ) , with 0C = A² B² = E ' ² '' ² ,
B '

tg =
A '

'
.

Finally, this can be written as: 

0D = C cos ( t - ) = E ' ² '' ² cos ( t - ) , with
''

= Arc tan
'

.
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8.6.2. A study of the electrical properties of a metal using the displacement law of 
electrons by x and the form of the induced electronic polarization (based on 
Section 8.4) 
This exercise concerns the polarization, conductivity, and optical properties of a 
metal assumed to consist of a collection of N fixed ions (per unit volume) with N (N
= ne) free electrons, there being one free electron for each atom, of mass and charge
denoted, respectively, by m and –e. All are assumed to be in a vacuum with a
permittivity denoted by 0. The electronic gas is subjected to the following forces:

a Coulombic force induced by an alternating field (applied along Ox) that is given
in its complex form as 0E E exp(i t) ;  and 

  a frictional force given by t
m dx

F
dt

.

The metal of choice for this problem is copper, which has a relaxation time ( )
of  10-14 sec. Its conductivity is denoted by (0) and is approximately equal to 6 x 
107 -1 m-1. The plasma angular frequency ( p) is defined by the relationship

2
p

0

Nq²
m

 and typically is of the order of 1016 rad sec-1.

1.  Under a forcing regime, we are looking for the expression for displacement in the 
form 0x x exp(i t)  (complex expression). Determine 0x .

2.  Give the expression for the complex polarization ( P ) as a function of 
1

1 i
.

3.  The complex conductivity ( ) is defined in the general equation:
D

j E
t

.

(a)  By giving D as a function notably of polarization, give the equation for  that
will then be used to give the static conductivity [ (0)] which describes the 
conductivity when the frequency is zero and can be given as a function of N, q, ,
and m.
(b)  Give the physical significance of the two terms that appear in the equation for .
(c)  Express (0) and then r  as a function of p².

Answers
1.  The dynamic fundamental solution given for appliedF m  moving along Ox 

gives
m dx d²x

eE m
dt dt²

, so that 



   Basic electromagnetism and materials264

d²x 1 dx e
E

dt² dt m
.

The solution for this differential equation, under a forcing regime where
0E = E exp(i t) , is required in the form 0x = x exp(i t) . With x i x  and 

x ²x  substituted into the differential equation, it is possible to obtain

0 0
e

- ²x  + i x  = E
m 0 , following division of the two terms by exp(i t), and 

hence :

0 0
e e

x  = E = E
im [1 i ]m ² i

0 .

2.  The electronic polarization is such that for each individual electron (of charge –e) 
is displaced by x by the electric field and generates a dipole moment given by
µ = - ex. Denoting the electron density by ne, the corresponding polarization is given

by je
e 0

n e² 1
P = - n  e x = E e

im [1 i ]
. It is interesting to note that by

introducing e
p

0

n e²
² = 

m
, it is possible to write that:

2
p 0 j

0P = E e
i [1 i ]

.

3.
(a)  With 0D = E + P , it is possible to state that

e
0 0

D E P n e² 1
j = E = = + = i E E

t t t im 1 i
. It is possible to

immediately derive the relationship
e

0
n e² 1

 = i  + = ( )
m [1 i ]

.

From this, when ,= 0 en e²
 = (0) =

m
, and finally,

0
(0)

 = i  +
[1 i ]

.

(b) The first term given as i 0 corresponds to 0
E
t

. This term can be considered 

as being tied to the displacement current through a vacuum, as in vide 0= i . The 
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second term,
(0)

[1 i ]
, corresponds to

P
t

, meaning the current due to the volume

polarization of the material (that is to say inside the material). This conductivity is
an internal conductivity

internal
(0)

 = 
[1 i ]

.

(c)  With 0 rD = E , we have 0 r
D E

j = E = = = i E
t t 0 r , from which 

0 r = i .

By equalizing the preceding expression for conductivity, 0
(0)

 = i  +
[1 i ]

, it is 

possible to obtain r
0 0

1 (0) i (0)
= 1 + = 1 -

i [1 i ] [1 i ]
.

(d)  With en e²
(0) =

m
e

p
0

n e²
² = 

m

p 0(0) = ² , and
2 2
p p

r
[ i]

= 1 - i (= 1 - )
[1 i ] [1 ² ²]

.



Chapter 9 
Electromagnetic Field Sources,

Dipolar Radiation, and Antennae 

9.1.  Introduction
Until now the properties of electromagnetic (EM) waves have been covered without 
considering the mechanisms for their production or destruction. In fact, the laws of 
electromagnetism and classic mechanics applied to quasipoint charges such as 
electrons gives rise to a theory for wave emission, the principal result of which is
that when a particle undergoes an acceleration, an EM wave may be emitted. In this 
chapter, it will be shown how the sinusoidal oscillation of an electric dipole can
yield an EM wave. Electric dipolar radiation can be obtained by either sinusoidally
oscillating the distance between dipolar charges or the actual dipolar charges
themselves, as long as the dipolar moment is in the form j t

0p = p e . This 
configuration is used in antennae, the principal types of which are detailed below
with particular attention being paid to the half-wave antenna.

A preliminary determination of V and A  potentials, associated with the 
dipoles, is required to calculate the EM radiation field. In addition, this calculation
requires the solutions to Poisson's equations, which guide the propagation of
potentials, generally called “retarded potentials”.

In this chapter we will limit ourselves to the study of radiation in a vacuum,
while in next chapters (Chapter 10 among others) we will look at interactions 
between EM waves and materials.

Complex notation: It is worth noting that if a signal is in the form

mg = G  cos( t - ) , the complex notation is j t -j
mg = R(G e e ) , and that by

convention we can write more simply j t -j
mg = G  e  e . In this case, the complex

amplitude is - j
mG = G  e , which makes it possible to state that j tg = G e . Strictly 

speaking, and as mentioned in Chapter 6, it is best to write g with an underline so 
that the equation becomes j tg = G e ; however, the simplified if criticized notation

also is used. If g and Gm are the vectors g  and mG , G becomes a complex vector 
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denoted by G , which generally has the components Gx, Gy, and Gz. We thus have 
for the differentiation or integration operations of g = G ej t with respect to time, the
following:

j tdg
 = j G e  = j g

dt
,

j tdg dG
 = e

dt dt
, so by identification

dG
 = j G

dt
 (= ); and -j

mj  G  e

j t1 1
gdt = G e g

j j
,

j tgdt=( Gdt)e , and 
1

Gdt = G
j

.

9.2.  The Lorentz Gauge and Retarded Potentials 
9.2.1. Lorentz's gauge 
9.2.1.1. Poisson's equations for potentials within an approximation of

quasistationary states
In a homogeneous dielectric media, and under a regime of an approximation of
quasistationary states (AQSS), we have:

A
E grad V

t
(1) B rot A  (2) 

The V and A  potentials are expressed as a function of the deliberately applied and
acting charge ( ) and current ( )  densities, as in:j

1
V = 

4 r
d

 (3) 
j d

A
4 r

 (4) 

Under an AQSS regime, 0
t

, and the equation for the conservation of charge

gives , from which can be deduced that didiv j = 0 v A = 0  (see Section 1.4.5). In 
addition, the potentials follow the Poisson equations, so that:

V + 0 (5) A µj 0 (6)
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9.2.1.2.  Under rapidly changing regimes
For systems subject to rapid variations, the displacement current must be considered 

by adding in D
D

j
t

 to the conduction current j E , so that he current density

which now intervenes is: 

Dj j j .

The V and A  potentials are instantaneous potentials calculated in Eqs.
(3) and (4) for a time t at a certain point (r) from charges and currents at the same t. 
Propagation does not intervene in these equations for the potentials. The 
instantaneous potentials V and A  thus appear as intermediates in the calculation of

 and , having brought in a term for the displacement currents rather than the 
propagation. In effect, in Eq. (4), where 
E B

Dj j j  now  takes the place of ,

is bound to the derivative of D

j A

 (in terms of D
D

j
t

) and is not an intermediate in

the simple calculation of E  in Eq. (1) and D , because knowledge of supposes
that the magnitude of , or rather the derivative of 

A
D D , is known. 

In order to resolve the problem more simply, the displacement currents 
are ignored and other potentials are used, such as those defined and denoted below
as Vr and , to represent the propagation.rA

9.2.1.3.  Lorentz's gauge

In Maxwell's equations, div B 0  so that B  is still derived from a potential vector
( ), such that:rA

rB rotA . (7)

The equation
B

rotE
t

 becomes rA
rot E 0

t
, which indicates that 

rA
E

t
 is derived from a scalar potential (Vr) such that:

r
r

A
E gradV

t
. (8)

In a homogeneous media, possibly charged, the Poisson equation, div E , can 

be written as: 
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r r- V - (divA )
t

. (9)

In addition, Ampere's theorem given by
E

rotB µ j
t

, brings us to:

r
E

rotB rotrotA µ j
t

. (10)

With rot rot grad div , and by bringing Eq. (8) into Eq. (10), we have:

r r
r r

V ²A
grad divA A = µ j grad

t t²
. (11)

Equations (9) and (10) can be rewritten in the following form to give Poisson's
equations for a rapidly varying regime:

r r
r r

²V V
V  - (divA µ )

t² t t
   (9’) 

r r
r r

²A V
A - µ + µ j =grad(divA µ )

t² t
    (11’) 

In addition, Eq. (7), rB rotA , can define only rA  to the closest gradient, as 

 when'
rrotA rotAr f'

r rA A grad .

For its part, Vr can be determined only to within
f
r

, as '
r rA = A gradf

substituted into Eq. (8) gives:
'
r

r
A f

E grad V grad
t t

'
r

r
f A

grad V
t t

'
' r
r

A
= gradV

t
, with '

r r
f

V V
t

.

The change of ( , ) to ( ,rV rA '
rV '

rA ) is called a gauge transformation, as in:

'
r r r

f
V V V

t



                                              Chapter 9. Sources, dipolar radiation, and antennae 271

'
r r rA A = A +gradf .

The determination of the potentials is carried out by imposing a measuring
condition so as to find  and rV rA ; f is an arbitrary function called a gauge 

function or simply a gauge. The invariance of E  and B  is termed the EM field
gauge invariance.

The most convenient method to determine the potentials therefore is to
impose on rA  and  a condition that simplifies Eqs. (9) and (11) by removing in
both cases the terms in parentheses. This condition,

rV

r
r

V
divA µ 0

t
, (12)

is called Lorentz's gauge, noting when in addition
V

0
t

 it takes the place of the 

condition di  for stationary regimes.v A 0
Equations (9’) and (10’) therefore yield:

r
r

²V
V - 0

t²
 (13) 

r
r

²A
A -  µ + µ j = 0

t²
 (14) 

In these equations,  and  are decoupled, in contrast to Eqs. (9’) and (11’), and 
follow Eqs. (13) and (14) if f satisfies the wave equations discussed in Comment 3 
below. Equations (13) and (14) generalize Eqs. (5) and (6) to rapidly varying
regimes.

rV rA

Comment 1: We have 0 0 r r r r
1

µ = µ  µ =  µ
c²

, where 

(with , we again find Maxwell's equation,

r r µ  = n²

rµ  = 1 r = n² ), so that 
n² 1

 µ =
c² v²

.

Equations (13) and (14) can also be written as:
r

r
1 ²V

V  - 0
v² t²

r
r

1 ²A
A - + µ j  = 0

v² t²
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Comment 2: In a vacuum without charge or  current, Eqs. (13)  and (14)  reduce 
to:

r
r

1 ²V
V  - 0

c² t²
and r

r
1 ²A

A - = 0
c² t²

.

By convention, the following operators are noted thus:
1 ²

 - 
c² t²

 ,    called the d'Alembertian, rV  = 0

1 ²
-

c² t²
      ,  called the d'Alembertian vector .rA = 0

Comment 3: A Lorentz condition is imposed on the gauge function, in which case,

we still find that r
r

V
divA µ = 0 

t
.

With  and'
r rA = A +gradf '

r r
f

V V
t

 we also have:

'
r rdiv A = div A + divgradf    (a);  and

'
r rV V

µ µ µ
t t

²f
t²

    (b). 

By adding each successive member in (a) and (b), we obtain 
'

' r r
r r

V V
0  div A + µ = div A + µ  + div gradf µ

t t
²f
t²

= 0 as the Lorentzian gauge

²f
divgradf µ = 0

t²
1 ²f

f  - = 0
v² t²

Finally, Lorentz's gauge condition requires that  satisfies a wave 
equation.

f

Comment 4: This additional remark concerns Coulomb's gauge. If there are no 
charges or currents, then Eq. (9) becomes:

r rV  + (divA ) 0
t
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 If Vr is chosen so that rV 0  (Coulomb's gauge), we than have 

 as in the stationary regime.rdiv A = 0

9.2.2. Equation for the propagation of potentials and retarded potentials

 M x  d
    q(t) 

r

Figure 9.1.  Potential generated by a charge [q(t)] throughout d .

Equations (13) and (14) are the equations for propagation and they can be integrated
by hypothesizing that at a given instant (t), a charge [q(t)] is in an elementary
volume (d ), which is assumed to be spherical given the symmetry caused by the
isotopic propagation and is situated at a point (M) as described in Figure 9.1. The
action of the charge depends only on the distance (r) from which its effect is studied. 
Within the spherical symmetry of the problem, the Laplacian of Vr is in the form:

r
r

² rV1
V  =

r r²
,

And Eq. (13) gives:
r r² rV ² V1 1

0
r r² v² t²

(13’)

Outside of the element d , the singularity of which can be considered to be a 
quasipoint, we have  = 0, and therefore can write for the outside that:

r r² rV ² V1 1
- 0

r r² v² t²
r r² rV ² rV1

-
r² v² t²

= 0 .    (15) 

Equation (15) is for propagation, and the function rVr at t and r has a solution in
the form:

r
r r

rV (r, t) G(t - ) F (t )
v v

.

As the source is at M and it is only waves emitted toward r > 0 that have physical

solutions which are in the form
r

G( , we therefore find: t - )
v

r

r
G(t )

vV (r, t)
r

.   (16) 
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In order to determine G, a limiting scenario might be used where  and in

Eq. (13) we find that

r 0
1
r

 becomes very large, just as r² rV1
r r²

, which is such that:

r r² rV ² V1 1
>>

r r² v² t²
.

Equation (13') thus tends toward r² rV1
+

r r²
0 , so that :

rV  + = 0 . (13’’)

Equation (13') therefore tends toward the more usual Poisson equation, which
has a solution that is for r 0 (point charge at M):

r
q(t)

V (r,t) = 
4 r

, so that also, r r 0
q(t)

[r V (r,t)]  =
4

.

From this can be determined that

r r 0
r 0

r q(t)
G t [r V (r, t)]  = q(t)

G(t) = v 4
4

  = G(t)

.

And therefore, from Eq. (16), we find:

r

r
q(t )

vV (r,t) = 
4 r

. (17)

If in a volume (V) there is a distribution of charges q(t), then there is an 
accumulation of potentials from the elementary charges such that  and 
the general expression for the potential at t is: 

q(t) = (t) d

r

r
t

1 vV (r,t) = d
4 r

.     (18) 

In addition, Eq. (14) yields potential vector components similar to those of Eq. 
(13), with the condition that 1/  is replaced by µ. The components of the potential
vector thus have solutions of the type given by Eq. (18) in which 1/  must be
replaced by µ. These solutions can be brought together in a single equation:

r

r
j t

µ vA (r,t) = d
4 r

.  (19) 
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For a distribution of rectilinear currents, we have:

r

r
I t

µ vA (r,t) = dl
4 r

. (19’)

To conclude, we thus obtain as a function of the active charges and currents at an

instant
r

(t - )
v

 the potentials Vr  and rA  for t and r with a delay of
r
v

, which takes

into account the duration of the propagation. The potentials Vr  and rA  are delayed 

potentials and substituted into Eqs. (7) and (8) yield E  and B .

9.3.  Dipole Field at a Great Distance
9.3.1. Expression for the potential vector A  generated by a domain D
9.3.1.1. General formula

domain D

       Mi
qi

   d i    P

r
ri

u

O

Figure 9.2. Distribution of charges (qi) placed around O by i iOM .

Given an element, with a volume (d i) and an associated charge (qi) such that 
, which is within a domain (D) that has a distribution of qi iq  = d i charges placed 

around O by , we can associate with D a nonzero dipole moment given byiOM

i i
i

p q 0  where .ii OM

Of interest is the form of the potential vector A  at a point (P) located with 
respect to the origin (O) at the heart of D and the distribution of charges, by

. Given Eq. (19) and that the system is in a vacuum, with , its 
possible to write that:
OP r ru i ir  = M P

i
i

0
r i

i

r
j t

µ cA (r,t) =A(P,t) = d
4 r

.

It is possible to state that if iv (t) is the velocity of qi associated with d i in D,

with , we have ij vi i i i i i i i ij d v d v d v q , and can then write: 
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i
i i

0

i i

M P
q v (t )µ cA(P,t) =

4 M P
, (20)

where the summation is overall the charges within D.
In order to calculate the electromagnetic field that comes from this potential

vector, the space can be divided into three: 
 a zone defined by r << , inside which the field can be thought of as
quasistationary;

  an intermediate zone where r ;  and
  an external zone for which r >>  and where the radiation is the concern of this 
study.

9.3.1.2.  The form of  in the radiation zone A
In the outer zone, it can be assumed that ri = MiP  r, as all the points in D are, in 
practical terms, a distance r from P. From this, Eq. (20) can be rewritten so that

0
i i

i

µ r
A(P,t) = q v (t )

4 r c
. (21)

With i
i

dOM
v

dt
, we have i i

i
q v (t) p(t) , where p(t)  is the derivative with

respect to time of the resultant dipole moment due to all charges in D. This finally
gives:

0

r
p(t )µ cA(P,t) =

4 r
. (21’)

It is interesting to note that the form of A  therefore corresponds to a spherical wave, 
which at a great distance from D would be considered to be a source generating a 
plane wave (see Section 6.2.2.3). Indeed, at a great distance from the source, the 
surface of such a sphere can be associated with a tangential plane wave. With

r
 = t -

c
, and as 

d
1

dt
, it can also be noted that:

dp( ) d d d
= p( ) p(

dt d dt d
) .

The derivative therefore can be taken indifferently in respect of t or .
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9.3.2.  Expression for the electromagnetic field in the radiation zone (r >> )

With , and placing by notation,B rotA
r

p(t ) = p( ) = p
c

(which in effect 

means  placing into lower magnitudes with respect to the index ):

0 0

r
p(t )µ µcB(P, t) rot A(P, t)= rot rot

4 r 4
p
r

.

By using rot(aA) arotA grada A , it is possible to write:

0 0µ µ 1
B rotp + grad

4 r 4 r
p , the second term of which brings in

3
1 r

grad
r rr

u
²

, a term that varies with respect to 
1
r²

 and at a great distance 

becomes negligible with respect to the first term which only varies as 
1
r

. Therefore:

0µ
B rot

4 r
p .       (22) 

A quite involved calculation then gives
u

rotp =- p
c

, where 
²

p p( )
²

. In 

order to get this result, one can verify that:

 on the one hand, we have 
yz

x

yz

x

p ( )d p ( ) d
rotp =

dy dz
²p²p ²p( )

grad
² y ² z ²

so that by reproducing the calculation in three dimensions, we find:
²p( )

rotp grad
²

; and

 on the other hand, 
r u

grad
cr c

. This result can be obtained by calculating,

for example, that 1/ 2
x

1 x
[grad ]  = (x² y² z²)

x c x cr
, from which we

have:
1 r

grad [xi yj zk]
cr cr

.
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On taking the result
u

rotp p
c

 into Eq. (22), we finally reach: 

0µ p( ) u
B

4 c r
. (23)

In the plane wave approximation, for an electric field, E cB u , so that : 

0µ 1
E p( ) u

4 r
u . (24)

To conclude, if p( )= 0 , the Eqs. (23) and (24) show that the radiated
magnetic field is zero. By consequence, only accelerated charges radiate, as 

i
i

i

dv
p q

dt
 and the wave corresponding to p 0 is termed the “acceleration 

wave”.

9.3.3.  Power radiated by a dipole

In vacuum, the Poynting vector is defined as :
0

E B
S

µ
 (Chapter 7, Section 7.3.).

Staying with the planar wave approximation, so that E cB u , S can be written
as :

0

cB²
S u

µ
.

By taking Eq. (23) and substituting it into this equation, for an angle ( ) between 
p( ) and  as shown in Figure 9.3(a), we find:u

2
0µ p ( )

S sin
16 ²c r²

² u .  (25) 

If , then in other words if the radiation intensity is observed in the direction
of

 = 0
p  it would be found to be zero.

However, the radiation maximum is found when =
2

.
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(b)
 = -

2
 = +

2

 = 0 
SPp

r

(a)u

Figure 9.3. Definition of  (a) and the variation of S with   (b).

The variation in S as a function of  is represented in Figure 9.3.b, and it

can be seen that  is at a maximum when|S| = ±
2

, and S = 0 when = 0 .

Figure 9.4. Calculation of the flux ( S ) through a sphere ( ) with center O. 

S
n

O

d

The power radiated through a surface can be calculated from the flux of 
through the total surface (see Section 7.3.1.2). For the spherical surface under 
consideration, the total radiation is given by a calculation of the flux

S

S  across the 
sphere ( ) around a center O of radius r, as detailed in Figure 9.4. 

As S // n.d² ), we have P = S.d² . With d² = r²sin  d  d , so that also 

, we find thatd  = 2  r² sin  d

2 30

0 0

µ
P = S 2 r² sin  d = p ( ) sin  d

8 c
.

With:
cos 1

3 2

0 cos 1

4
sin  d sin  d(cos )

3
, we obtain the Larmor equation:

2 20
3

0

µ 1 2
P = p ( ) p ( )

6 c 4 3c
. (26)
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9.4. Antennas 
9.4.1. Principle: a short antenna where <<
9.4.1.1. Oscillating charge (or current) and oscillating dipole equivalency:  Hertz's

dipole

e

ure

  y

  M 

N

O

  P

r

  z

x

Figure 9.5. Positions taken up by an oscillating charge. 

A charge (Qm) is moved from a point (M) toward N, as shown in Figure 9.5. This
movement also means that in going from its initial position, through the middle
point (O), there is a dipole moment represented by:

m m m mp = Q MN Q s  (- Qm at M and Qm  at N). 

If we now impose upon Qm an oscillating elongation that is harmonic and linear 
represented by  (by convention the notation Re is omitted
in front of the complex term), then in a manner similar to the generation of a dipole
with an instantaneous moment, it can be considered that:

m ms = s cos t = s exp(j t)

m m m m mp(t) = Q s = Q s cos t = Q s exp(j t)

 = s

,           (27) 
where  is the sinusoidal electric
dipole moment created by charge oscillation. This dipole is called Hertz's dipole,
and given Eq. (27) describing its moment, it can also be seen as a two oscillating
charges, placed at M and N such that MN

m m m mp(t) =  Q s cos t = p cos t = p  exp(j t)

m , and with an instantaneous value
given by:

m mQ Q  cos t  = Q exp(j t) .

It also is possible therefore to think that between the two charges at M and N 
there is a alternating current, as shown in Figure 9.6, and of a value given by:

m m
dQ

I = = j Q exp(j t) = I  exp(j t)
dt

, (28)

where , and with j = exp[j /2] the dephasing of /2 is brought in.mI = j  Qm
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 Q 

I

- Qm

  -Q 

Q

  sm
 I 

   Q 
 Qm

tN

t

M t

Figure 9.6. Variations in charges and current with time (t).

Dividing Eq. (28) by (27), it is possible to form a relation between p(t) and I(t) , 
as in 

m ms js
p(t) = I(t) = - I(t)

j
. (29)

9.4.1.2.  Practical elements of a Hertzian dipole antenna
The left-hand side of Figure 9.6 means that in practical terms an antenna can be 

represented by two wires of length ms
2 2

 connected by a coaxial cable, as in

Figure 9.7, so that the resultant current is always zero. The antenna is traversed by a 
sinusoidal current given by I = Im exp(j t).

/2 = sm/2   I

Q

  -Q 

/2 = sm/2

Oscillator

   I

Figure 9.7. Hertzian dipole. 
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9.4.1.3. Radiation field due to a Hertzian dipole
Given that the two charges are separated by a small distance ( ), seen from P in the 
radiation zone, they can be assumed equivalent to a point charge. Evidently, Figure
9.5 is not to scale as in reality MN=  is much greater than OP = r. The two charges 
are in effect the same distance (r) from P and the wave is pretty much a plane wave 
at P. These assumptions were used in Section 9.3 to perform the calculations,
leading in particular to an expression for E  in Eq. (24). 

From Figures 9.5 and 9.7, m m m zp(t) = Q s exp(j t) =  Q  exp(j t) e , so we 
have

zp( ) = - ²p( ) = - ²p( ) e . (30)

In terms of spherical coordinates, and with r
OP r

u e =
OP r

 (from Figure 

9.5), the double vectorial product given in Eq. (24) is such that:

z r r

cos 1 1 0 1 0
e e e sin 0 0 0 0 sin sin  e

0 0 0 sin 0 0

From this can be deduced that:

0 0µ 1 µ ²
E p( ) u u p( )sin

4 r 4 r
e , (31)

so that in addition, with
0 0

k²
² k²c²

µ
, and 

2
k , we find: 

0 0

k²
E p( )sin  e p( )sin  e

4 r ²r
. (32)

It is possible to see that a field radiated by a Hertzian dipole has only one 
component with respect to , is inversely proportional to r, but also depends on r 
and t through the term p( ).

e

9.4.1.4. Radiation power of a Hertzian dipole when = sm << 
In supposing that = sm << , for any given moment the intensity (I) can be
assumed constant over the entire length ( ) of the dipole, which is itself considered
in practical terms much as a single point from the external position (P) situated
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outside the radiation zone, so that r >> . Larmor's formula given in Eq. (26), 
obtained by removing p  from the integral, therefore can be applied. Thus we find

that with Q = Qm cos t ,  and that
dQ

I =
dt

= -  Qm sin t = Im sin t,  then

mp =  Q cos t ,  and 2
mp= - Q cos t , from which  and 

we now have:

2 2 4 2
mp²= Q cos t

2 2 4
2 20 0 mµ µ Q

P = p ( ) c
6 c 6 c

os t .

By taking I²m = ²Q²m  and given that  <cos² t> = ½, we finally have:

2 2
20
m ray

µ 1
P  = I R  I

12 c 2
2
m . (33)

This relationship gives a definition of Rray, the so-called radiation resistance,
which has resistance as a dimension and is directly obtained from:

22
20 0

ray
µ 2 µ c

R  =
6 c 3

. (34)

With 0
0 0 0

00 0

1 µ
µ c = µ  =  = Z = 378

µ
, we can also write that:

2 2

ray 0
2

R  = Z 780
3

. (35)

9.4.2. General remarks on various antennae: half-wave and “whip” antennae
Antennae can be seen everywhere in modern day life. They can be found in portable
telephones, televisions, cars, and automatic doors, just to give a few examples.
According to Eq. (35), short antennae radiate poorly, and it is for this reason that
antennae with sizes of the order of the wavelength are preferred. The most basic
versions are still made up of a simple dipole, as shown in Figure 9.8a.

When the antenna is emitting, it is powered by an oscillator and parallel wire 
cables as detailed above (Section 9.4.1.2). If the antenna has a length /2 and 
establishes a stationary current so that there are nodes at the two ends and an anti-

node at the origin in the middle ( z
4

), then the current has the form:

I(t) = Im cos kz sin t.
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Each part along z with a length dz thus radiates as if it were a small dipole. This
concept is used in a problem at the end of the chapter. 

When the antenna is in the receptive mode, the electric field around it induces a 
current (see more precisely Section 12.3.3.3), which propagates through the cable up 
to the receiver. 

(a)

4(b)
2

Figure 9.8. (a) Half-wave antenna;  and (b) quarter wave or “whip” antenna.

One of the more common types of antennae are the “whip” antennae often seen 
on cars. They are electrical monopoles, as shown in Figure 7.8a, and form an
electrical image in the plane of the conductor so that a positive charge that moves
along the antenna toward the top produces a “reflected” image negative charge that
moves symmetrically toward the bottom. Typically, the length of an antenna is /4,
but its actual length needs to be determined quite precisely before determining its
exact radiation diagram. When its length is equal to /4, the quarter-wave length
antenna acts in effect as a half-wave antenna as it can generate its symmetrically
opposite image in the plane of the conductor.

There are many other types of antennae. To cite just a few:
 “disk” antennae formed from microstrips that are applied for example onto
airplane wings;
frame antennae, also called a magnetic dipole antenna, based on a ferrite iron core, 
which concentrates the magnetic field; 

 horn antennae (used with wave guides);  and 
 parabolic antennae that concentrate waves at a focal point where a horn antenna is
placed.



                                              Chapter 9. Sources, dipolar radiation, and antennae 285

9.5. Problem
Radiation from a half-wave antenna

For a half-wave antenna, that is with a length ( ) such that  = /2, and ignoring
any energy losses such as the radiation, it can be assumed that it carries a current (I) 
which can be written as: 

m m
2

I I cos kz exp j t I cos z exp j t .

Assuming that the radiation is isotropic, it is independent of the angular
coordinate ( ). This problem concerns the radiation zone where the radius or 
distance from the antenna (r) is such that r >> .
1.  Determine the expression for the electric field at a point (P), which is such that

, i.e., has spherical coordinates (r, ) and  = 0 in the plane of the paper. P P(r, )
2. Assuming that when r >> , the vectors E  and H  are orthogonal as in a plane

wave and are related in a vacuum by
E

c
B

. Given that 0
0

0

E µ
Z 378

H
,

calculate .H
3. Calculate the average Poynting vector.

Answers
1.

/4

   I 

/4 2

O Im cos
2

z

A

   z    M    dz
’ I(z) r

r’

P(r, )

z

B

It can be assumed that ’  at P in the radiation zone where r >> . The actual 
dipole can be considered to be a resultant of many small dipoles of a length dz 
centered on a point M such that MP = r’ = r – z cos , as schematized in the diagram
above.
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An elementary Hertzian dipole with a moment denoted by dp radiates, as 
detailed in Section 9.4.1.3, an elementary electric field dE  that follows the form:

0µ ²
dE = - dp( ) sin  e

4  r'
, where r' = MP, [see Eq. (31)]. 

From Eq. (29), we can also write that: 
0µ j  I( )

dE = dz sin  e
4  r'

, where  sm = dz, so that in this problem,

m
r' r '

I( ) = I t- I cos kz exp j t
c c

.

As r >> , and r >> , the denominator r' can be replaced by r. This cannot be 
said to be true for the numerator as the exponential phase varies rapidly with r'. So, 
integrating over the length of the antenna and using r’ = r – z cos  to clean up, we 
end up with:

/ 4
0

m
/ 4

µ r j z c
E j I exp j t sin cos kz exp dz e

4 r c c
os

.

By using
ikz ikze e

cos kz
2

  and 
2

k
c

, we obtain:

0 m

/ 4

/ 4

µ j I r
E exp j t sin

8 r c

exp jkz cos 1 exp jkz cos 1 dz e

The integral gives:
/ 4

/ 4
exp jkz cos 1 exp jkz cos 1 dz

=

2 2 2 2
j cos 1 j cos 1 j cos 1 j cos 1

4 4 4 41 e e e e
jk cos 1 cos 1 cos 1 cos 1

2jsin cos 1 2jsin cos 1
1 2 2
jk cos 1 cos 1
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With 0 m 0 m m

0

µ j I 2 µ j I c jI
 =  = 

8 r k 4 r 4 cr
, we obtain:

m

0

sin cos 1 sin cos 1
jI 2 2E sin exp j

4 cr cos 1 cos 1
e

As:

sin cos 1 cos cos
2 2

sin cos 1 cos cos
2 2

we have m

0

jI 2
E sin exp j cos cos e

4 cr sin ² 2
  so that finally:

m
0

cos cos
j 2E I e

2 cr sin
xp j e .

It is worth noting that this expression is indeterminate when sin = 0, i.e., when
 = 0 or  = .

2. Assuming that at great distance the wave still assumes a plane wave structure, the
vector  will be orthogonal toH E . So with the trihedral rE,H,e  where indicates

the direction and sense of propagation,
re

H  is collinear with e .

Therefore with 0 0H E /µ  we obtain

m

cos cos
j 2H I ex

2 r sin
p j e .

3.  By applying Eq. (33) of Section 7.3.3, we can write that
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*1
S Re E H

2
 where B = µ0 H,

from which can be obtained

2
2
m

2 2
0

2
2
eff

r2 2
0

2
2
eff

r2 2

cos cos
1 I2S  e

2sin2 r c

cos cos
1 1 I2= e

4 c sin r

cos cos
I29.5 e (S.I.), that is in W/m².

sin r

e

Integration over the sphere of radius r gives the total radiated power, much
as the same method used to obtain the Larmor relation given in Section 9.3.3. The 
result that can be obtained from the ensuing numerical calculation is  and 
gives a final radiation resistance for the half-wave antenna of the order of  73 .

2
effP 73 I



Chapter 10 

Interactions between Materials and 
Electromagnetic Waves, and

Diffusion and Absorption Processes 

10.1. Introduction 
Having looked at the way in which electromagnetic (EM) waves are emitted by a 
particle accelerating in a vacuum in Chapter 9, this chapter is concerned with how 
EM waves interact with materials, and in particular: 
 the form of wave emitted by a material subject to an incident EM wave (Rayleigh 
diffusion); 

  how EM waves are formed by charged particles interacting with a material as the 
so-called Rutherford or Bremsstrahlung (German for “braking radiation”) 
radiation; and 

 the absorption and emission phenomena of EM waves interacting with excited 
(more exactly “perturbed” as detailed below by the intervention of Hamiltonian 
perturbation) materials. The description used will be semiclassical, or possibly 
semiquantic, depending on whether the glass is half full or half empty with 
regards to a knowledge of quantum mechanics! That is to say that EM radiation 
can be written in a classic form while the material can be understood in quantic 
terms generally known by readers. The quantic terms used however, generally are 
for students following their first university degree course, and although Section 
10.4 details in the simplest terms this semiquantic theory, it can be skipped over 
during an initial read. The essential results have been set out in Section 10.5 and 
these can be compared in a second read with the results given in chapter 3 of the 
volume, “Applied Electromagnetism and Materials” (notably the last Figure of 
that chapter). 

10 .2. Diffusion Mechanisms  
10.2.1.  Rayleigh diffusion: radiation diffused by charged particles 
An electron with a charge denoted by q is subject to a monochromatic planar 
polarized electromagnetic (MPPEM) wave which is polarized along Ox (complex 
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amplitude of the incident wave given by incE //Ox ) and propagates along Oz, as

shown in Figure 10.1. The electric wave can be described by incE E exp(j t) .

P

q

incE

z

 y 
incB

x

Figure 10.1. MPPEM wave incident on an electron with charge denoted by q. 

If the electron is within a dense material, following its displacement along Ox by 
the electric field of the incident wave, it can be assumed that it will be subject to a
returning force in the direction of its equilibrium position and in the form

while simultaneously being subject to frictional forces of the form

rf  = - k x

t
dx

f = - f
dt

.

Rigorously speaking, the interactive force between the EM wave and the velocity
( ) of the electron is given byv emF q(E v B)

With
E

B
c

, we have 
E

vB v < E assuming that  v c
c

E

, so that the

electromagnetic force can be reduced simply to Coulomb's force, as in : 

em CF F q .

The fundamental dynamic equation, F m , given in terms of Ox thus gives:

j t
inc

dx d²x
qE e  - k x - f = m

dt dt²

The solution for a steady state can be looked for in the form j t
0x = x e , and 

the placing of this into the preceding fundamental equation gives: 
j t j tinc

0
qE

x e
k m ² j f

x  e .

The result is that q displaced by x generates a dipole moment:
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j t
0p(t) = q x(t) = q x  e

and radiates according to the result of Section 9.3.2 concerning an EM field such 
that  and E B  are expressed as a function of p( )= q x( )= q , so that

j
0p( )= - ²q x = - ²q x  e .

The power radiated and given by Eq. (26) of Section 1.3.3 is proportional to
2p ( ) , and thus j

0p( )= - ²q x e .
Two simple examples can now be considered. 

10.2.1.1.  Diffusion by bound electrons (valence electrons of the atmospheric 
molecules O2 and N2)

The electrons are well bound to the molecules, and at the level of the forces
involved, the constants introduced are such that k >> m ² and k >> f . The result
is that the dynamic fundamental equation, as in

j tincqE
x = e

k m ² j f
,

is reduced to j tincqE
x e

k
, so that inc

0
qE

x  =
k

, where 0x  thus appears 

independent of  . With j
0p( )= - ²q x  e , we have:

2 4p ( ) .

The radiated power is proportional to 2p ( ) and is in the form 4P , that is 
the power radiates to the fourth power of the angular frequency ( ).

sky

sun at zenith

Earth

(b) radiation with 
reduced blue
appears more orange 

average yellow 
radiation (a) maximum

diffusion is blue

Figure 10.2.  Observations made when the sun is at its zenith. 
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Given that it is radiation with a high angular frequency that dominates:
 When we look at the sky, but not at the sun, the sky appears blue as shown in
Figure 10.2 a. The power radiated, or rather diffused, by electrons in the
molecules that make up the atmosphere is at a maximum for the highest angular
frequencies, i.e., those that correspond to the color blue in the incident optical
radiation from the sun. 

 When we look at the sun when at its zenith (an observation worth avoiding due to
possible eye damage!) as shown in Figure 10.2 b, the sun appears on earth more
orange than the yellow observed by a satellite outside of earth's atmosphere. This
is because the transmitted light is equal to the incident light minus light lost to 
diffusion during its passage through the atmosphere. In effect, the light we see has
an “impoverished” blue region, especially if the sky is cloudy, resulting in an
apparent color shift toward red.

 When we see the setting sun, as shown in Figure 10.3, the observed waves have 
had to travel through a long distance in the atmosphere, much longer than that
when the sun is at its zenith, with the result that there is an greater
impoverishment of blue light diffused all along the light's pathway. This makes
the light look red as all other light has been diffused.

setting sun 

long pathway resulting 
in considerable
diffusion of blue light

earth

sky radiation in red due to
loss of blue

Figure 10.3.  Observation of the setting sun. 

10.2.1.2.  Diffusion by free electrons
This section looks at the study of free electrons using, for example, Laue type
diffusions in crystalline solids.

Free electrons, which are little or even not at all bound to atoms, are not subject 
to returning forces toward a given atomic nucleus. Thus, k = 0 and the frictional
forces are also negligible, so that f .= 0

The solution to the differential equation, j tincqE
x = e

k m ² j f
 thus is
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reduced to j tincqE
x = e

m ²
; j

0p( )= - ²q x  e  then gives

j
inc

q²
p( ) E e

m
.

In addition, according to Eq. (24) of Section 9.3.2, we have: 

0µ 1
E p( ) u

4 r
u

and as in Figure 10.4, we have xp // e .

 y 

 x 

 z 

                M 
p u p u u

e

up

Figure 10.4.  Orientation of the vectors used in the text. 

For a point (M) located by the direction of a vector ( u ), it can be written that
E Ee , so that in terms of moduli, E = E .

As p( ) u u p( ) u sin p( ) u psin
2

we have j0 0
inc

µ µ q²
E  = psin E sin e

4 r 4 r m
.

With
r

 = t -
c

, and incF = m  = q E , so that incqE
m

, finally we have 

r
j j t j tc

0
0

q sin
E = e e  = E  e

4 c² r
.
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The wave appears to be well proportional to the acceleration denoted by ;
hence the term “accelerating wave”. 

10.2.2. Radiation due to Rutherford diffusion
10.2.2.1. A general description of Rutherford diffusion
Here the incident particle is an electron denoted –e with a mass given by m that is a 
great distance from a proton that is assumed to be fixed and at a reference origin
(O). The trajectory of the electron is considered rectilinear with a velocity . If 
there are no forces acting on the incident electron, then it will have a trajectory given
by the straight line (D), as shown in Figure 10.5, which passes at a minimum
distance (b) from the target (b is called the impact parameter).

v

D

Figure 10.5.  Trajectory and the Rutherford diffusion. 

In reality, when an electron nears a proton, the Coulombic interactive force is no
longer negligible. The electron is subject to a Coulombic force ( f ) that is directed 
along the line between the proton and electron distance (R). If  denotes the
electron's kinetic moment, the theory of kinetic moment is written (with  and 
being collinear) as 

f R

d
R f 0

dt
.

The result is that  is a first integral of the movement where:R mv
 the direction of  is fixed and the movement is thus plane; and 
 the modulus ( ) of the vector  is a constant.

O

b
v

R
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With the electron being located in the plane of its movement by the polar angle
, it is possible to state that:

d
mRv mR²

dt
 , 

from which the surface law can be deduced, as in: 
d dS

R² 2 C
dt dt µ

.

By denoting the potential energy of an electron by Ep(R) and its total energy by
E, the application of the law of energy conservation results in the equation:

p

p

2 ²
mR² E E (R)

d dR m m
dR d2 ²

mr² E E (R)
m m²R²

²R²

The derivative
dR
d

 changes sign and R abruptly changes from a decreasing to an

increasing region, or the inverse, when the numerator of the last equation cancels out
so that for a value  for R is such that:

p
²

E ( ) E
2m ²

.

In addition, by taking the origin of the potential energies at infinity, it also is 
possible to write for the two constants for the movement that the kinetic moment ( )
and the energy (E) that

21
mbv   and   E mv

2
,

from which can be deduced for pE ( )  that
2

p
mv b²

E ( ) 1
2 ²

.

Here the interaction potential [ pE ( ) ] is negative and the equation shows that  < b. 

It is equally feasible to introduce a parameter ( ) that corresponds to a distance
between the two particles at which the Coulombic energy of the electron, given by

0

e²
4 R

, is equal to its mass energy as in mc2, so that
0

e²
4 mc

.
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10.2.2.2. Rutherford diffusion and radiation 
During the deviation caused by electrostatic interactions, the electron – proton pair
constitutes a dipole that has a dipole moment given by p e( R) , which varies

continuously, as  varies just as well in terms of direction as in terms of modulus.
The sign changes [in ] due to the fact that

R
( R) R  is orientated with respect to the

origin (the proton) toward the electron, while the dipole moment goes from the
negative (the electron) to the positive (the proton) charge.

The consequence of this is that the dipole radiates, which is assumed, to a first
approximation, to not modify the movement. It thus is possible to calculate the
electromagnetic field radiated at a point (P), which is in the radiation zone. Also, OP
>>  , where the origin of the dipole also is at O (by supposing that R/2 << OP = r). 

The field ( ) thus is given simply by Eq. (23) in Chapter 9, as inB

0µ p( ) u
B

4 c r
,

into which, here, p e( R) , so that p e( R) .

The field ( ) is given, for its part, by Eq. (24) in Chapter 9,  by supposing that
at a great distance from the radiation zone the wave is plane and is such that:

E

E cB u , where 
OP

u
r

.

Across a sphere with a given radius (r) the radiation power is given by Eq. (26) 
in Chapter 9, i.e., 

2
3

0

1 2 r
P(r,t) = p (t )

4 c3c
.

With  given by the fundamental dynamic relationship:R

R
0

e²
mR e

4 R²
, we have

3

R2
0

e
p e R e

4 mR
,

from which, it can deduced that: 
6

2
3 3 30 0

1 2 r e 2m
P(r,t) = p (t )

4 c3c 3R4 c m 4

so that with
r

R R(t )
c

, we have 

3 3

4
2 mc

P(r, t)
3 R

.
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To conclude, the electron and the associated dipole radiate essentially when the
electron passes with the neighborhood of the nucleus, at which point R  and thus p
vary the most both in terms of modulus and of direction. The expression for the
radiated power shows that as the electron distances itself from the proton (R 
increases), the power of the radiation decreases very rapidly, as it is proportional to

.4R

10.3. Radiation Produced by Accelerating Charges: Synchrotron Radiation and 
Bremsstrahlung

10.3.1. Synchrotron radiation
Spectroscopy is an essential method in “divining” materials when the most precise
structural representations are required. Sensitivity in these methods therefore is of
primary importance and can be addressed properly by increasing the signal to noise
ratio. This can be done by increasing the power of the radiation source, which also
permits a reduction in sampling time. Synchrotron radiation displays exactly this
advantage. It was first observed at the end of the 1940s and exhibited the additional 
benefit of being easily controlled. A considerable number of synchrotrons since have 
been constructed, and they remain in heavy demand.

An electron synchrotron is made up of a large vacuum chamber, in the form of 
an annular, into which are pulsed fast electrons that have undergone an acceleration 
in an electric field. Magnetic fields, resulting from magnets placed around the ring, 
oblige electrons to follow the ring's curve. 

At speeds close to light, the accelerating electrons emit, at a tangent to their 
trajectory, a fine beam of radiation. The modification of the acceleration field 
permits a wide variation in this so-called synchrotron radiation. This controllability
and sensitivity of the source has allowed a large number of experimental difficulties
to be overcome. Experimental techniques such as extended X-ray absorption fine
structure (EXAFS) spectroscopy were developed using synchrotron sources. 

10.3.2. Bremsstrahlung: electromagnetic stopping radiation
When electrons or ions penetrate a material, their movement is stopped by their
interaction with the constituent electrons or ions of the target material. The depth of 
penetration is governed by electronic and nuclear-stopping strengths. The 
deceleration of the particles results in an emission of radiation called 
Bremsstrahlung radiation, given in German to mean “braking radiation” and
signifying stopping radiation.

The loss in kinetic energy occurs progressively and is fractionated by the order
of successive interactions. The resulting electromagnetic radiation is polychromatic.
With total energy being conserved, the highest frequency radiation corresponds to a 
particle that has lost its energy in a single and unique interaction. An application of
this type of radiation is the production of polychromatic X-rays via X-ray tubes.
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10. 4. Process of Absorption or Emission of Electromagnetic Radiation by
Atoms or Molecules (to Approach as Part of a Second Reading)

10.4.1. The problem
The study here considers the interaction of an atom or a molecule, in terms of a 
quantic description that takes on board the discreet energy levels associated with the
positions of electrons in their orbitals, with an incident wave (here a luminous wave) 
assumed to be periodic and described in classical terms by a periodic vector
potential.

By using a Coulomb gauge (see comment 4 from Section 9.2.1.3), the vector
potential accords with the gauge condition, that is rdivA = 0 , and the associated 
scalar potential (U(r,t)) can be taken as zero, as in U(r,t) = 0. 

In order to deal with the problem, we will consider the effect of an incident wave 
as a perturbation to the state of an atom or molecule. This perturbation can be
characterized by a Hamiltonian that must first be evaluated to then show that it 
typically can be reduced to a electric dipole Hamiltonian. Finally, by applying the
theory of time-dependent perturbations, we will be brought to studying the electric
dipole transitions generated inside an atom that interact with the incident radiation.

10.4.2. Form of the interaction Hamiltonian
10.4.2.1. Hamiltonian in analytical mechanics: form for a particle interacting with a 

wave
In analytical mechanics (see also, for example, “Elements of analytical mechanics”
by J. W. Leech, Dunod 1961), it is simple enough to show that the Lagrangian 
associated with the movement of a particle, with a charge denoted by q and a mass
denoted by m placed in an electromagnetic field derived from a scalar potential (V) 
where V is the only potential (VCoul) generated by the atom, and the vector potential
( ) associated with the incident wave has the form:A

1
L = mv² + q v.A - V

2
. (1)

The limiting conditions of the integral I L dt give the movement equation
obtained from Eq. (2):

F = q E + v×B = m . (2)

This result can be obtained by using the fact that there is an equivalence between
with Euler's equation:I 0

i i

d L L
0

dt q q
 , (3)
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which gives rise to, for example, for the variable qi = x  [Eq. (4) identical to Eq. (2) 
depending on values of x]:

yx xAA V dy A dz A A
mx q q

t x dt x y dt z x
x z . (4)

With i
i

L
p

q
 (conjugate moment), we obtain with L given by Eq. (1) and in a 

Cartesian frame x xp mx qA , so that in terms of vectors 

p = mv + qA . (5)

Calculating then the Hamiltonian given by:

i i
i

H p q L (6)

where L is given by Eq. (1), an expression in which according to Eq. (5): 

221 1 1
mv² = mv p - qA

2 2m 2m
.

From this can be deduced that
1

v = p - qA
m

, so that Eq. (1) can be written:

2
Coul

Coul

1 q
L = p - qA + p - qA A - q V

2m m
p - qA

= p - qA + 2qA  - q V
2m

so that finally:

Coul Coul
p - qA p + qA p² - q²A²

L =  - q V  - q V
2m 2m

. (7)

In additional terms, from Eq. (5) we have: 

i i
i i i i

dq dq 1
 ip = m + qA = q p - qA

dt dt m
,
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which moved with Eq. (7) into Eq. (6) gives:

Coul

1
H = p p - qA  - L

m
1

= p - qA 2p - p - qA  + qV
2m

so that:

2
Coul

1
H = p - qA + qV

2m
. (8)

10.4.2.2. Hamiltonian operator and the perturbation Hamiltonian 

In terms of operators, p  corresponds to the operator p j , so that on 
development, we have as an operator associated with Eq. (8):

Coul
p² q q²A²

H = - pA + Ap + + qV
2m 2m 2m

(9)

To calculate the commutator p, f (r)  by applying the function (r)  we have:

p, f (r) (r) = j , f (r) (r) j f (r) (r) f (r) (r)

from which

p, f (r) (r) j f (r) . (r) + f (r) (r) f (r) (r)

j f (r) . (r).

So definitely:

p, f (r) j f (r) , (10)

and by making  take on the role of , we have:A f (r)

p, A j .A j   div A  , 
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so that with Coulomb's gauge, for which div A 0 :

p, A 0 . (11)

By using the result of Eq. (11) in Eq. (9), we have:

Coul
p² q q²A²

H = p A + +  qV
2m m 2m

,

which we can write in the form:

0 (
H = H  + H

1)

with

0
Coul

p²
H  =  + qV

2m

(1) q q²
H = p A +

m 2
A²
m

. (12)

The first term ( H ) is the atomic Hamiltonian that describes the particle (the
electron undergoing an interaction with the wave) in the presence of a Coulombic
potential in the atom.

0

For its part,  represents the interaction of the electron with the wave
characterized by the vector potential denoted as 

(1)
H

A .
In an approximation of the scale of the wavelengths (optical waves with

wavelengths of the order of 600 nm), we can assume that the wave is practically
uniform over all of the atom (which has a dimension of the order of Bohr's radius,
0.053 nm) or indeed of the molecule. Under such conditions, A  depends only on the
position ( ) of  the atom or molecule and the second term of the Hamiltonian

perturbation ( ) is a scalar, for which the atomic states between the two different 
states of the atom are zero. The result of this is that the second term cannot undergo
a transition and consequently is ignored in the following calculations. The 
perturbation Hamiltonian thus is reduced to (with q = -e as the charge of the
interacting electron)

ar
(1)

H
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(1) q e
H = p A = p A

m m
. (13)

This Hamiltonian sometimes is called the “ A.p  Hamiltonian” in which the
vector potential of the Coulomb gauge intervenes, evaluated for the atom's position.

10.4.3. Transition rules
10.4.3.1. Preliminary introduction to quantum mechanics (see also, for example, C.

Cohen-Tannoudji, Quantum Mechanics, Chapter XIII, Hermann, Paris, 
1973)

By looking at the course notes of most courses in quantum mechanics, we can see 
the expression for the probability of obtaining a state (m) from a state (n) after an
instant (t), where t = t – t0 and t0 = 0, for a particle subject to a time-dependent

perturbation ( ) . Thus found, the probability is in the form:
(1)

H

*
nm m mP a (t)a (t) (14)

where
t

(1)
m mn

0

1
a (t) H (t ')dt '

j
(15)

and equation in which:

0 0
m nE E

j t ' j t '(1) (1)(1) 0 0 0 0
mn m n m nH (t ') (t ') | H | (t ') =  e | H |  e .

10.4.3.2. Application to a wave perturbation
In the approximation of an electric dipole, the size of the atom is smaller than the 

wavelength of the luminous perturbation (
2

k.r r is low, whereas the value of 

is high) and the vector potential, which has the general form
, can be reduced to 0A(r, t) A cos( t k.r) 0A(t) A cos t .

(1)
H  given by Eq. (13) thus takes on the form

(1)
0 0

e e
H  = p A cos t j  A cos t

m m
. (16)
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By making

0
e

j A
m

(17)

definitively, we find that:

i t i t(1) e e
H cos t

2
. (18)

By making
notation0 0

mn m n| | m | | n  and by remarking that

is Hermitian and  time independent, we have according to Eq. (15): 

0 0
nm

jt E E t ' j t ' j tmn
m

0
a (t) e e e dt '

2 j
. (19)

With:

0 0
n m

0
E E

(20)

and following integration, Eq. (19) gives:

0 0j t j t
mn

m
0 0

e 1 e
a (t)

2 j
1

. (21)

This result indicates that is large only when the denominator tends toward
zero, that is when .

ma (t)

0

If , the first term is large with respect to the second, and Eq. (21) gives:0

0 0
*j t j t2

2 mn*
m m m 2

0

e 1 e 1
a (t) a (t)a (t)

4²

so that in addition,



    Basic electromagnetism and materials304

2
2 0mn

m 2
0

1 cos( )t
a (t)

2 ²
.     (22) 

The term shown in Eq. (22) represents the probability of finding a particle in the
state m at an instant t, and the probability of the transition  is defined by the

variation as a function of time of the probability
n mP

2
ma (t)  of finding the particle in

the final state m, as in: 
22 0

n m n
0

sin td 1
P a (t) m | |

dt 2 ²
n .

If we suppose that the time t is large with respect to the period of the
electromagnetic field, which is f the order of 10-15 sec in the optical domain, and if 
we make  x = 0 - , we obtain:

2
n m

t

1 s
P m | | n lim

2 ² x
in xt

.

Dirac's function is defined by

t

1 sin x
x lim

x
t

and the probability of the transition thus is written as 

2
n m 0P m | | n

2 ²

m

. (23)

This indicates that for the transition probability from one state n to another state
m is zero, then 

0 00  = .

Therefore, the angular frequency ( ) of the incident electromagnetic wave must
be such that:

0 0
0 nE E . (24)

This expression confirms in some way the principle of the conservation of energy
and can be considered as a “resonance condition”. 
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With , we have 0
0 0
n mE E  + . There is an absorption of energy ( )

by the atom.
If we had taken as the more important term in Eq. (21) that which corresponded

to , we would have obtained0
0 0
n mE E - . Therefore, there is an 

emission of an energy  induced by the perturbation.

10.4.3.3. Determination of the transition rule, and dipole transition moment 
The probability of transition between the state n and the state m is given by Eq. (23),
in which the resonance condition intervenes through the intermediary of Dirac's
function ( 0 ). With the resonance condition being fulfilled ( 0 ), the 

transition probability thus brings in the term
2

0P m | |
2 ²

n , which 

evaluated with the help of Eq. (17) is of the form:

2 22 2
0 0

e
P m | | n A m | |

2 ² 2 ² m
n . (25)

In order to evaluate the term m | | n the following mathematical term

(described in the problems at the end of this Chapter) can be used: 

m n m n n
²

| | | r | E E
m m . (26)

Under these condition, Eq. (25) which can be written as: 

*
2

0 04
²e ²e

P A m | | n m | | n
m m2

brings in the terms in the form (where µ er , the dipole moment)

m n n m mn n m
²e

m | | n | er | E E µ E E
m

.

To conclude, the probability of a transition is proportional to the transition dipole 
moment defined by:

*
mn m n m nµ | µ |  µ d (27)
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Once the resonance condition is established, it is the result of the calculation for
this integral that finally indicates the permitted transitions between the various
possible m and n atomic states.

10.5. Conclusion: Introduction to Atomic and Molecular Spectroscopy 
In this last part, which gives the most important results from Section 10.4 on the
semiclassic calculations for dipolar approximations, we will underline the 
importance of dipolar radiation and apply it to the description of the possible
different internal transitions (for absorption or emission) in atoms and molecules.

10.5.1. Result concerning the dipole approximation
In very general terms, the dipolar approximation, which states that the
electromagnetic field is practically constant at the level of an atom or a molecule,
means assuming that there is only a weak coupling between an electromagnetic field 
and an atom or a molecule. In effect, it is inefficient because its length is way below
that of the length of the electromagnetic waves. 

We thus can treat the effect of an electromagnetic field as that of a perturbation.
By carrying out a development of the interaction energy of the electromagnetic field
in terms of various contributions in an order of decreasing importance (analogous to
that of a distribution of charges at multipoles, with successive terms due to total
charge, dipole moment, quadripolar moment, etc.) we find that the term for the
electric dipole interaction is greater than the term for the magnetic dipole
interaction, which in turn is greater than the term for the quadripolar electric 
interaction and so on. 

In physical terms, the luminous perturbation, characterized by its electric field
( ) moves electrons through a coupling energy in the form W , where E µ.E

0
A

E A s
t

in t in the Coulombic gauge, where the scalar potential 

associated with the luminous wave field is zero (we can see that this coupling energy
intervenes in Eq. (25) taking Eq. (26) into account).

If the following electronic redistribution is symmetric, there is no overall
variation in the electric dipole and the transition is forbidden. Inversely, if the
redistribution is asymmetric, then the transition is possible even if the atom (or
molecule) showed no initial permanent dipole moment.

10.5.2. Different transitions possible in an electromagnetic spectrum
Various types of transitions (for emissions or absorptions) can be written, depending
on the wavelength of the electromagnetic field.
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10.5.2.1. Rotational transitions
A molecule with a permanent magnetic dipole can appear as a carrier of a variable
dipole moment when touring on its own axis (figure 10.6). Inversely, if the molecule
is symmetric (without a permanent moment), there is no apparent variation in the
dipole moment with rotation. Only molecules that possess a permanent electric
dipole can emit or absorb radiation (in the far infrared or microwave region) by
making a transition between rotational states.

+ +

Figure 10.6. Variation of the dipole moment of a rotating polar molecule. 

Figure 10.7a shows a rotating dipolar molecule, such as HCl, being influenced
by an alternating electric field (E) along Ox at an initial time t = 0. Figure 10.7b 
represents in the plane Oxy the rotation of the dipole at the various instant when t = 
0, t1, t2, t3 etc., and Figure 10.7c shows the variation of a component of the dipole in
the direction Ox with respect to time.

As shown in Figure 10.7b, the dipole periodically changes position with the
electric field due to the variation of the orientation of E and the variation in the
coupling energy, which is of the form W µE  and when t = 0,  as 
E is directed along Ox at the initial time. As a consequence, the component of the 
dipole in a given direction (shown for Ox in Figure 10.7c) fluctuates regularly, and 
thus the component µ

min xW µ E

x exhibits a fluctuation with a form resembling that of the
electric field from the electromagnetic wave. (In emission, the radiation would be of 
the same frequency as long as the rotation is not slowed by the interaction of the
dipole with neighboring molecules in the material.)
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t2
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t4
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  µx

   µx

(b)

(c)

t0
t2

t3  t4t1

Figure 10.7. Variation of (a) a component (Ex) of a varying electric field; (b) the position of a 
permanent dipole moment (µ) in the plane Oxy; and (c) the value of µx with time. 

10.2.2. Vibrational transitions

++

(a)

(b)

Figure 10.8. A vibration results in a stretching of the bond, and for (a) the nonpolar 
molecule shows no variation in dipole moment, but (b) a polar molecule exhibits a change in 

dipole moment due to the oscillation. 
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These transitions appear when there is a vibration associated with, for example, a 
stretching or a torsion of the bonds between the atoms of a molecule, resulting in a 
variation in the dipole moment of the molecule. Only those vibrations that are 
associated with a modification of the dipole moment of a molecule are accompanied
with an emission of absorption of electromagnetic radiation. Given the energies
brought into play, the mechanism is apparent in the infrared.

10.5.2.3. Electronic transitions
Electronic transitions are apparent if, following an electromagnetic excitation or
emission, the resulting redistribution of electrons changes the dipole moment of the
molecule. For this to happen, the redistribution must be asymmetric; if the
redistribution is symmetric, then the corresponding transition is forbidden. The 
energies brought into play are in the optical region.

10.5.3. Conclusion
This chapter has described different phenomena of absorption and emission of EM 
waves by materials. Absorption phenomena will be detailed further in Chapter 3 of
the second volume called “Applied Electromagnetism and Materials” using a more
phenomenological approach based simply on the interaction of electromagnetic
waves with molecules. The deformation that the molecules undergo will be 
described as a function of the region in which the frequency of the EM wave falls
and as part of a more classic mechanical treatment, as detailed in the last figure of
Chapter 3 of Volume 2.

It is worth adding that if the energies are of the order of radio frequencies, then it
is the magnetic spin moment that interacts with the electromagnetic wave. The
reversing magnetic spin dipole thus is at the origin of electronic paramagnetic
resonance (EPR) that follows the reversing electron spin. If the effect involves the
proton spin, then phenomena associated with nuclear magnetic resonance (NMR) 
are then observed. 

10.5. Problems
10.5.1. Diffusion due to bound electrons
This problem concerns a bound electron with a charge denoted by –q, which is
initially situated at the origin of a trihedral defined by Oxyz of an atom or molecule
subject to:
  a monochromatic plane polarized (along Ox) electromagnetic wave incident along
Oz and with an electric field in the form x0E E exp(i t) u ; and 

 and a returning force toward its equilibrium position of the form 0 xf -m ² x u .

It is assumed that the angular frequency ( ) of the incident wave is well below that
of . The atom or molecule thus is an oscillating dipole.0



    Basic electromagnetism and materials310

1. It is also assumed that the velocity acquired by the electron is negligible with
respect to that of the speed of light.
(a) Give the fundamental dynamic equation.
(b) From this deduce the solution for the permanent steady state along the x abscissa

of the electron. 
(c) What is the value of the dipole moment (p(t)) of the system?

2. The equation for an electromagnetic field radiated at a great distance by a dipole 
at a point (M) such that OM r  is:

0 r 0
r r

µ p( ) u µ 1
B   and  E (p( ) u ) u

4  c r 4 r
.

ru

p    z 

x

m

M

u

uu

u

What does  correspond to? Write the equation for p( ) . Thus calculate .B and E

3. If WE  and BW  are the complex amplitudes of the electric field and the magnetic

field, respectively, given by E E exp(i t)w  and B B exp(i t)w , in general

terms, the average value of the Poynting vector ( S ) is of the form

E B1 w wS Re
2 µ0

, where B w  is the conjugate complex of Bw .

Determine the average Poynting vector for the problem.

4. Determine from this the total power radiated by the electron and from the result
makes a conclusion.
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Answers
1.
(a)  The displacement with respect to Ox can be found by considering that for this 
axis:

em rappelF F m , so that

returnq E v B F m

With
E

B =
c

, we have 
v E

v B = << E
c

 if 
v

1
c

.

With respect to Ox, we therefore have i t 2
00

d²x
qE e m x m

dt²
.

(b) Under a permanent steady state, we are looking for a solution of the form:

i t
0x x e , that with

d²x
²x

dt²
 and by simplifying with i te , then 

2
00 0 0qE m x m ²x 0

0 2 2
0

qE
x

m
, so that with 0 >> , we find 

0
0 2

0

qE
x

m
, and finally

i t0
2
0

qE
x e

m

In terms of vectors,

i t
x x0x xu x e u

where  is the unit vector along Ox. xu

(c) Moving the charge –q is equivalent to applying a dipole moment of p = - q x, for 

which i t0
2
0

q²E
p(t) qx e

m
, so that in terms of vectors,
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i t0
x2

0

q²E
p(t) e u

m
.

2. We have 0 rµ p( ) u
B(M)

4  c r
, where 

r
t

c
(change in variable associated 

with the propagation) . With p( ) ²p( )  and 
r

i t
0 c

x2
0

q²E
p( ) e u

m
 , we find

that for B(M)

r
i t

i t0 0 c
w2

0

µ q² ²E
B(M) sin u  e B  e

4 crm
.

Similarly, with x ru u sin u  and rsin  u u sin  u , the equation for 

results in:

E

r
i t

i t0 0 c
w2

0

µ q² ²E
E(M) sin  u  e E  e

4 rm
.

3. The average Poynting vector thus is (where ru u u ) given by

4 2 2
20 0

r4
0

E B µ q E1 w wS Re sin  u
2 µ 32 ²r²m² c0

.

4.  The total power radiated is given by:

P = S d² .

With , we have:rd²  = r²sin d  d  u

4 2 2 4 2 2
3 30 0 0 0

4 4
, 00 0

µ q E µ q E
P r² sin d d 2 s

32 ²r²m² c 32 ²m² c
in d .
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With 3

0

4
sin d

3
, we finally obtain:

4 2 4
0 0

4
0

µ q E
P

12 m²c

Comment:  With
2 c

 and 0
0

2 c
, we also can write that:

4 2 4
0 0 0

4
µ q E

P
12 m²c

.

As detailed in the course, the smaller  (0.4 µm in the visible spectrum, that is 
blue light), the greater the power radiated (hence the blue color diffused by electrons
in molecules present in the sky).

10.5.2. Demonstration of the relationship between matrix elements
[see Eq. (26) of Section 10.4.3.3 as in

m n m n n
²

| | | r | E E
m m ]

For this, we will establish the following equation:

d A 1
A, H

dt i

which is a relative equation for the physical magnitude A, which is not explicitly
time dependent, so that the associated operator ( ) is Hermitian (proper real values)
and is such that 

A
A | A | .

Answers

Calculate
d A d d

| A | | A | | A |
dt dt dt dt

d
.

, for which 
d 1

H
dt j

.However, according to Schrödinger, 
d

H j
dt
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We thus obtain:

d A 1 1
H | A | | A | H

dt j j
1 1

 = - H | A | | A | H .
j j

H and A are Hermitian (being equal to their associated terms and are such that,
for example, | H | H | ), so we also find that:

d A 1
= | HA | | AH |

dt j
1 1 j

| A, H | A, H H,A .
j j

With A mr , in terms of operators we also can write that (see also, for 
example, E. Durand, Quantum Mechanics, Masson, p.69, 1970):

dr jm
m H

dt
, r .

As
dr

m
dt

 corresponds to an operator of a quantity of movement, j , we also 

have:
jm

j H, r ,  from which
²

r,H
m

.

Multiplication of the left side of the last expression by *
m  and the right side by

, and then carrying out with a scalar product gives:n

m n m n m n
²

| | | rH | | Hr |
m

.

H is Hermitian (just as is ), so that:r

* *
m n m n n m n| Hr | | H | r r | H | r H drm .
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Similarly, we obtain:

* *
m n m n n m m| rH | | r | H H | r r H drn .

The result is that:

* *
m n m n n m

²
| | r[ H H ]dr

m
.

As  and * *
m mH E m nn nH E , we have:

* *
m n m m n n m n

²
| | E r dr E r dr

m
,

and hence, the looked-for equation:

m n m n n
²

| | | r | E E
m m .



Chapter 11 

Reflection and Refraction of 
Electromagnetic Waves in

Absorbent Materials of Finite Dimensions 

11.1.  Introduction
In practical terms, electromagnetic (EM) waves in materials of limited dimensions
correspond to those in systems such as coaxial cables, optical fibers, and wave 
guides. It is by this process that signals, and therefore information, are transmitted
with as low a degree of attenuation and parasitic phenomena as possible.

This chapter will look at the influence of discontinuity, at the interface between
two materials, on the propagation of EM waves. Typically, the two materials are:

linear, homogeneous, and isotropic (lhi) dielectrics and not magnetic so that their
magnetization intensity can be written as I = 0 , so that 0B=µ H+I=µH ,

with ;
0µ = µ

I = 0
  uncharged, as in , and not traversed by real currents, as in0 j 0 ; and 
described by their complex dielectric permittivity as = ' - j ''  (electrokinetic

notation), or as  = ' + j ''  (optical notation).
In this chapter, and then in Chapter 12, which mostly looks at applications using

the optical region, the notation used is that classically used elsewhere in optics as in
sinusoidal planar progressive EM waves are written in the form (see also Section
6.4.2):

mE=E exp j[kr- t] . (1) 
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11.2.  Law of Reflection and Refraction at an Interface between Two Materials
11.2.1.  Representation of the system

m
ed

iu
m

 (2
) 

m
ed

iu
m

  (
1)

 

  O

  x 

  z 

ki

n =12 zn

   y

incident
plane

Figure 11.1. Interface between media (1) and (2).

As a general system, the volume under consideration is made up of two media,
denoted (1) and (2) which have permittivities 1  and 2 , respectively, and are 
separated by an interface on the plane Oxy. The incident wave has an angular 
frequency denoted by i, is written in the form i ii imE =E exp j[k r- t] , and thus by

notation for the incident wave m imE = E . In addition, by choosing the origin of 

phases on this wave such that 0 0
i iimE = E exp(j ) = Ei when i 0 , then it is 

possible to state: 
0
i iiE =E exp j[k r- t]i . (2)

The incident plan is defined by the plane that contains the incident wavevector ( )
as well as the normal to the interface (

ik

12 zn = n ). In order to simplify the
representations, the incident plane can be taken as Oxy in which consequently, is the
wavevector ik . Also, we will assume that the first material, medium (1), is

nonabsorbent so that  so that the modulus of 2
r1 1 = n ik  is i 1 0k = k  = k n1 .

At the reflection on the plane of the interface Oxy, the incident wave will
observe a modification in one part of its amplitude (which now will be denoted

), while the other part will be subject to a dephasing by a quantity denoted as r0E r.
The reflected wave then can be written in a general form where r designates the 
angular frequency following reflection:
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00
r r r r r rr rE =E exp(j )exp j[k r- t] E exp j[k r- t] .        (3) 

Similarly, for the transmitted wave, self-evident notations are used:
00

t t t t t tt tE =E exp(j )exp j[k r- t] E exp j[k r- t] . (4)

In these equations,  are the wavevector relating to the reflected and 

transmitted wave, respectively. As detailed below,
rk  and  kt

tk  can be a complex magnitude

(thus denoted tk ).

11.2.2. Conservation of angular frequency on reflection or transmission in linear
media

Two different types of reasoning can be used in this case: the first is by a physical
analysis of the problem, and the second via an equation using the conditions of 
continuity at an interface. 

11.2.2.1.  Physical reasoning
As shown in Chapter 10 dipoles associated with a displacement of charges inside a 
dielectric that are subject to an incident wave ( iE ) with a given angular frequency
( ), and within an approximation of a linear oscillator (returning force
proportional to the induced displacement), emit in turn a wave with the same angular
frequency as the incident wave. The result is that little by little, in media (1) and (2),
the incident wave with angular frequency is reemitted with the same angular 
frequency, so that

i  = 

i r t= =   = . (5) 

11.2.2.2.  Reasoning with the help of equations of continuity

By denoting ai, ar and at as the proper projections of 0
iE , 0

rE , and 0
tE  at the plane of 

the interface Oxy, the continuity condition of the tangential component of the 
electric field gives rise to: 

i i i r r r t t ta exp j[k r- t] a exp j[k r- t] a exp j[k r- t] . By multiplying the two

members by , we obtain:i iexp - j[k r- t]

t i t ir i r i j[(k - k )r-( - )t]j[(k - k )r-( - )t]
i r ta  + a e a e  . (6)

This equation must be true for all instants (t), and each term of the preceding 
equation should have the same temporal dependence, so that r i t0  -  = - i .
The same result is found as that given by Eq. (5), that is i r t= = = .
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11.2.3.  Form of the wavevectors with respect to the symmetry of the media 
Once again, the same two types of reasoning may be applied.

11.2.3.1.  Reasoning based on physics of the symmetry of a system
The EM field of the incident wavevector is given by:

ix

i iy

iz

k 0
  k k 0

k  0

Taking into account the disposition of the interface, which is such that the 
discontinuity only occurs in the direction Oz, the propagation in the directions x and 
y is not perturbed at the interface. This results in perturbation being only in the 
direction Oz, where the wavevector thus is modified on reflection and transmission.
Physically then we should have:

ix rx tx

iy ry ty

iz rz tz

k  = k = k  = 0
k = k  = k

k k k

          (7) 

11.2.3.2. Mathematically based reasoning and the use of the continuity equation
Again using the result given by Eq. (6) and also from the imposition of the condition
of continuity of the tangential component of the electric field, the equation is valid
only at the level of the interface where the vector ( r ) has the components given by

x 0
r y 0

z  = 0

i

tk

rk

t

i

t

r

  z

r

ik

y

Figure 11.2. Representation of the projected vectors ( ) at the interface. 
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By denoting , the projected vectors at the interface Oxy of the 

vectors , respectively,  we can state that they have components given by:
i r t, , and

i r tk , k , k

ix

i iy

k
k

 0

rx

r ry

k
k

0

tx

t ty

k
k

0

Eq. (6) for the vectors  located at the interface thus is in the form:r
t i t ir i r i j[( - )r-( - )t]j[( - )r-( - )t]

i r ta +a e a e . (6’)

This Eq. (6') should be true for all r  vectors at the interface, and we should find for 
each term in Eq. (6') the same spatial dependence, which can be written:

r i t i i r t0 = - r = - r, so that  =  = .

With  in the plane of the wave ik ixk 0 , it can be determined that:

ix rx txk  = k = k  = 0  and .  (7’) iy ry tyk  = k  = k

Following reflection and transmission of the EM wave at the level of the
interface, there remains only  and to be determined. This can be done only
through a use of the equations for the propagation in each of the media.

rzk tzk

11.2.4. Symmetry and linear properties of the media and the form of the related
field

11.2.4.1.  In medium (1)

medium (2)

medium (1)

A

Figure 11.3.  Representation of a wave at point A in medium 1. 

A wave at any point (A) in medium (1) is in fact a superposition of the incident and
reflected wave. Taking the results of Sections 11.2.2 and 11.2.3 into account, which
made it possible to state that r = , that and that , along
with that of the form of Eq. (2) for the incident wave, the resultant wave in medium
(1) therefore must be of the form:

rx ixk  = k  = 0 ry iyk  = k

0
iy1 1E (r,t) = E (z) exp j k y- t . (8)
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The exponential term contains the well-determined (and unchanged) part of the
wave, where the temporal variation is r =  and the spatial variation with respect
to x is given by and with respect to y by .rx ixk  = k = 0 ry iyk  = k

 The term 0
1 E (z) contains the behavior with respect to Oz, which remains for 

the moment unknown; the resolution of the propagation equation in medium (1) will

allow a determination of 0
1 E (z) and  krz  (as a function of kiz).

11.2.4.2.  In the medium (2)
Once again, t  =  and , while only kty iyk  = k tz remains unknown. In medium (2) 

the wave thus is in the form:
0

iy2 2E (r,t) = E (z) exp j k y- t .   (9) 

The exponential contains the known terms, while 0
2E (z)  encloses that which is 

unknown for the moment (behaviour with respect to Oz) and it is the resolution of
the propagation equation for medium (2) which will permit a determination of

0
2 E (z) and .tz 2zk k

11.2.5. Snell-Descartes law for the simple scenario where media (1) and (2) are 
nonabsorbent and k1 and k2 are real

11.2.5.1. The wavevectors associated with incident, reflected, and transmitted 
waves are all in the same plane (incidence plane)
The result given in the subtitle can be determined immediately from the fact that we
have from the first expressions of Eq. (7). The result is that the

wavevectors
ix rx txk = k = k = 0

i r tk , k , and k are all in the plane Oyx, which is their hypothetical plane
of incidence.

11.2.5.2.  Law of reflection: i r
The first equivalence of the second expression of the equations given in (7) is that

. Withry iyk  = k i 1 rk = n  and also  k = n
c c 1

r

, the relation , which

represents the equality of the projection of vectors

ry iyk  = k

ik  and k  with respect to Oy,

gives in moduli (see Figure 11.2) 1 i 1n  sin  = n  sin
c c r r, so that i , and if

we orientate the angles with respect to the normal, then 12 zn = n , and

i r .       (10)
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11.2.5.3.  Law of refraction: 1 i 2n  sin  = n sin t
Still with respect to the second of the expressions in Eq. (7), we also have 

. When the materials are nonabsorbing, the wavevectors are real just as

the optical indices. We thus have 

ty iyk  = k

i 1 tk = n  and  k = n
c c 2

t

and the relation

, which brings in a projection of the vectorsty iyk  = k ik  and k  with respect to Oy,

gives rise to (Figure 11.2) 1 i 2 tn  sin  = n sin  , 
c c

so that :

1 i 2n  sin = n  sin t . (11)

11.2.6.  Equation for the electric field in medium (1): the law of reflection
As above indicated, medium (1) is not magnetic or absorbent, n1 and 

i 1 0k = n = k n
c 1 are real, and the components of ik  are (0, iyk 0 and ).

In medium (1), the monochromatic wave is in accordance with the wave equation 
[Eq. (7") in Chapter 7]:

izk 0

2
11 1

²
E  +  n E = 0

c²
(12)

where 1E  is the form given by Eq. (8), as in
0

iy1 1E (r,t) = E (z) exp j k y- t .

By making , we have iyf(y)=exp j k y- t 0
1 1E (r,t)= E (z) f(y) , with the result

that

1 1x 1y 1z

0 0 0
1x 1y 1z

0 2 0 0 0
iy 1x 1y 1z1

E = i E + j E + k E

i E (z) f(y) j E (z) f(y) k E (z) f(y)

²
 = f(y) E (z)  + i² k i E +j E +k E f(y)

z²
0 02

iy iy1 1
²

E (z)-k E (z)  exp i k y- t .
z²

Following simplification of the two latter terms with the term
, Eq. (12) becomes:iyf(y)=exp j k y- t



Basic electromagnetism and materials324

0
02 21

1 iy 1
d²E (z) ²

 + n - k E (z) = 0
dz² c²

. (13)

By making 2 2
1z 1 iy

²
k  = n - k

c²
2 , then Eq. (13) can be written as 

0
021

1z 1
d²E (z)

+ k E (z) = 0
dz²

. (13’)

It is notable that:
2 2 2 2 2 2
i ix iy iz iy i

22 2
i 0 1 1

k = k + k + k = k + k

²
k k  n n

c²

z
2 2 2
iz 1 iy 1z

²
k = n - k = k

c²
2 .

Where  so that the incident propagation can occur for a positive value

of Oz, the general solution for 

iz 1zk = k > 0
0
1E (z)  is given by

0 0 0
1z 1z1 i rE (z)= E exp(i k  z)+E exp(- i k  z) .       (14) 

incident
propagation

reflected
propagation

By substituting 0
1E (  into Eq. (8), we obtain: z)

0
iy1 1

0 0
iy 1z iy 1zi r

i r

E (r,t) = E (z) exp j k y- t

E exp i k y + k z - t +E exp i k y - k z - t

E + E .   (15)

The first term details the incident wave for which the wavevector is given by:
ix

i

iz 1z

k  = 0
k kiy

k = k  > 0.

The second term represents the reflected wave at the level of the interface and is the
monochromatic plane progressive wave for which the vector rk  has the component:
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rx ix

r ry iy

rz 1z iz

k  = k  = 0
k k  = k  0

k   = - k  = - k < 0

From the relations and , we find once again the laws of 

reflection obtained in Section 11.2.5. The incident and reflected rays are in the
incident plane Oyz and . It is worth noting that these laws do not depend 
on the nature of medium (2), as no hypothesis has been formulated concerning it,
and it could be nonabsorbing or absorbent and even a perfect insulator or conductor.

rx ixk = k  = 0 ry iyk  = k

i r

11.2.7. The Snell-Descartes law for reflection a system where medium (2) can be 
absorbent:  n2 and k2 are complex

Here medium (1) is nonabsorbent and n1 and k1 are real. 

11.2.7.1.  Form of the field in medium (2)
Here medium (2) can be absorbent and is characterized by a complex dielectric 
permittivity, so that 2

2r2 n .

The wave equation in medium (2) is 2
2 2 2

²
E  + n E =0

c²
.

Into this the substitution of the form of 2E  given by Eq. (9),  i.e.,
0

iy2 2E (r,t) = E (z) exp j k y- t , gives

0
02 22

iy2 2
d²E ²

+ n - k E = 0
dz² c²

. (16)

By making 2 2 2
iy2z 2

²
k n - k

c²
, so that with , theniy 0 1 ik = k  n  sin

2 22 2
0 12z 2k = k  (n - n sin² )i . (17)

Then the equation for the propagation of the wave takes on its more normal form
[see for example Eq. (15) in Chapter 7]: 

0
022

2z 2
d²E

+ k  E = 0
dz²

.    (16’) 

The general solution is thus of the form:
0 0 0

t2 t 2z 2zE (z) = E  exp(ik z) + E '  exp(- ik z) . (18)
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Physically, in medium (2) there is no source of light and the only wave that
actually can be found is a wave transmitted and distancing itself from the interface. 
In this case, the second component of Eq. (18) must be equal to zero, as it represents
the effect due to a wave that nears the interface (the 0

tE '  also must be taken as equal
to zero in order that the condition is held). Only the first component of Eq. (18),
which clearly represents the effect of a wave leaving from the interface, can be 
retained on a physical basis, so that finally we have 

0 0
2 t 2zE (z) = E  exp(ik z) . (18’)

For its part, 2zk defined by Eq. (17), generally has a complex form and can be 
written using a notation in the form:

' '
tz tz2z tzk = k = k + ik ' .       (19) 

On substituting Eq. (18’) into Eq. (9), we obtain:
0 0

iy iy2 2 t 2zE (r,t) = E (z) exp i k y- t E  exp i k y + k - t , (20)

so that with Eq. (19):
0 '

iy tz2 tE (r,t) = E  exp i k y + k z - t''
tz( - k z) exp .   (21) 

propagation
term

attenuation term

11.2.7.2.  Form of the wavevector in the medium (2)
Equation (21) for the wave in medium (2) can be rewritten in the form:

0 '' '
t t2 tE (r,t) = E exp( - k r) exp i  k r - t

''
t

. (21’)

This relation defines the vectors '
tk  and k for which the components are given

from Eq. (21):

'
tx ixk = 0 (= k )

'
tk '

ty iy 0 1 ik = k = k n  sin
(19) (17) 1/22' 2

tz 0 1 i2z 2k =  R(k ) = k R n  - n sin²

(22)
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''
txk = 0

k =''
tk  0''

ty

19 (17) 1/22'' 2
tz 0 1 i2z 2k = Im(k ) =  k Im n  - n sin²

(23)

Finally, the wave can be written in the form:
0

2 t tE (r,t) = E (z)  exp i k r - t ,

where tk  is defined by ' '
tt

'
t k + ikk  = , such that: 

1/22' 2 '
t iy y 0 1 i z ty y tz z2

t 1/22'' 2
t 0 1 i z2

k  =k e  +  k R n - n sin² e k  e + k e
k

 k  = k Im n - n sin²  e .

'

(24)

Consequences: inhomogeneous and homogeneous waves 
Generally speaking, the wavevector for the transmitted wave can be written in
accord with Eq. (24) in the form:

' ' ''
ty y tz z tz ztk  =k e  +  k e + i (k e ) .  (25) 

According to Eq. (21), the propagation in medium (2), which is determined by

the real component of tk , is along Oy and Oz, while the attenuation associated with

the imaginary component of ''
tk is only in Oz. The directions of propagation and 

attenuation thus are different and the wave is termed inhomogeneous.
In the specific case where  we have

(normal incidence), we have:

' '
ty ty 1 1k = 0, so that when k = k  sin 1 0

' ''
tz z tz ztk = k e + i (k e )

and the propagation and attenuation are in the same direction (Oz), and thus the
wave is termed homogeneous.
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11.2.7.3.  First law of refraction

Here we have and , so that'
txk = 0 ''

txk = 0 t
x

k  = 0 . The tk has no component

along Ox and the transmitted wave is propagated in the plane of incidence, i.e., Oyz. 

11.2.7.4.  Second law of refraction
When '

tzk 0 , the transmitted wave effectively propagates in medium (2);

supposing , so that (see Figure 11.2). In addition, it

also is possible to state, from Eq. (22), that  which can 

written with  and by making

'
2 t 12 t= =(n ,k ) ' '

ty t 2k = k sin
'
ty iy 0 1 ik = k = k n  sin

1 0k = k n1 i1  by notation, that . As 

a consequence, we have the equation:

'
ty 1 1k = k sin

'
1 1 t 2k sin k  sin ,    (26) 

which can be rewritten using the notations introduced, as 

  .    (26’) '
i i t tk sin k  sin

11.2.7.4.1.  Case where tk  is real ''
tk  = 0

Here, according to Eq. (23), the term 2 2
1 i2n  - n sin² must have a positive and real 

magnitude: if it were negative, its square root would be purely imaginary and 
would be nonzero. Looking at the following conditions: 

''
tk

 first condition, 2 2
1 i2n  - n sin² has a real magnitude, imposes that 2

2n  is real, so 

that 2 2
2 r2n n 2  where r2 has a real magnitude. Medium (2) thus is intrinsically

[that is to say by itself without medium (1)] nonabsorbent as 2 2
2 2 r2

² ²
k  = n  =

c² c²
is real if r2r2 = is real (and positive)

2 2 2 2
1 1 2 12n - n sin² = n - n sin² 1 ;

 second condition, the term  has a positive magnitude if2 2
2 1 1n - n sin²

2 2
2 1 1n  > n sin²   .  (27) 
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This is the supplementary condition to 2
2n  being real [medium (2) nonabsorbent and 

r2 real] so that tk can be real ''
t( k  = 0) when medium (2) is in the presence of 

medium (1). 

 When k , we have , which is such that according to Eq. (22): ''
t 0 t

'
tk = k

2 '2 '2 '2 2 2 2 2 2 2 2 2
t t ty tz 0 1 1 0 2 1 1 0 2 2 2

²
k = k = k + k  = (k  n  sin ) +(k  [n - n  sin² ]) = k n  = n  = k

c²
.

Also, when , Eq. (26) is written as ''
tk 0 1 1 2 2k sin k  sin , so that in turn:

  .      (28) 1 1 2 2n sin n  sin

The conditions required so that n  >2 2 ''
2 1 1 tn sin²  ( k = 0)

 > n
 are: 

  by simple evidence, that n  (see also Figure 11.4);2 1
  or  where 2 1 1n < n  and  is defined by 1n  sin = n2 .     (29) 

In effect, so that 2 1 2n  n  we have 1 (Figure 11.5). The  cannot

exceed

2

2 2
 and also cannot exceed a limiting value given by 1  and 

such that 1 2n  sin  = n  sin 
2

. The limiting angle ( ) above which there can be

no refracted radiation is associated with the total reflection and thus is defined by the

equation 2

1

n
sin  = 

n
.

The condition 1   yields 2
1

1

n
sin  < sin  = 

n
, which otherwise can be 

stated as and corresponds well to Eq. (27), for which1 1n  sin < n2 tk  is real 

.''
t( k = 0)
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n1

tk

ik

1

2
n2

n2 > n1, 2 < 1.
if 1= ’1 = /2,

2 = ’2 such that
sin ’2 = n1/n2

1 = /2

’2

tk

1

2l= /2

2

n2 < n1, 2 > 1.
if 2 = 2  = /2, 1=

such that sin = n2/n1

n1

n2

n2 > n1 n2 < n1

Figure 11.4. Refraction when n2 > n1 .                   Figure 11.5. Refraction when  n2 < n1 .

11.2.7.4.2.  When tk  is complex: ''
tk 0

When tk  is complex, then ''
tzk 0  must be true. The attenuation occurs in the Oz 

direction. According to the third relation given in Eq. (23), the following must be
true:
 either 2

2 r2n =  is imaginary and medium (2) is absorbent; or
2

r22 r2n = =  is real [medium (2) is not absorbent] and 2 1 1n n  and
(which correspond to ).1 1 1n sin n  sin  = n2

We thus have 2 2
2 1 1n - n sin² 0 , so that and,

according to Eqs. (22) and (23), we can deduce that, respectively: 

2 2 2 2 2
2 1 1 1 1 2n - n sin² i ( n sin²  - n )

1/ 2' 2 2
tz 0 1 1 2

1/ 2 1/ 2'' 2 2 2 2
tz 0 1 1 2 0 1 1 2

k k  R i²(n sin²  - n ) 0

k k  Im  i²(n sin²  - n )  = k n sin²  - n 0.
(30)

So that the wave undergoes an exponential “braking”, Eq. (21) must have 
. As in medium (2), the positive solution from Eq. (30) for is

retained, and in terms of vectors, we have [from Eq. (24)]:

''
tzk z 0 z 0 ''

tzk
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'
t iy y 0 1 1 y

1/2'' 2 2
t 0 1 1 2 z

k  =k e =k  n sin  e  

 k = k n sin²  - n e
(30’)

  the wave is inhomogeneous. It is as shown in Figure 11.6. 

Figure 11.6. Inhomogeneous wave where ''
tk 0 , n2 < n1 and 1 > .

11.3.  Coefficients for Reflection and Transmission of a Monochromatic Plane
Progressive EM Wave at the Interface between Two Nonabsorbent lhi
Dielectrics (n1 and n2 are real), and the Fresnel Equations 

11.3.1.  Hypothesis and aim of the study
We thus can suppose that 2 2

r1 r21 2r1 r2n = =  are real, just as n = = . Once again it 
is assumed that the wave source imposes an angular frequency ( ) and that the state 
of the polarization of the incident wave, which is always a combination of two
orthogonal polarization states, is either such that:

is perpendicular to the plane of incidence0
iE 0

i(E )  in which case it is termed a 
transverse electric (TE) polarization, as the electric field is orthogonal to the plane of
incidence (it can also be stated that the wave is in an orthogonal polarization as in
Figure 11.7 a); or 

is parallel to the plane of incidence (0
iE 0

iE ) and in which case the term is one of
transverse magnetic (TM) polarization as the magnetic field thus is orthogonal to the
plane of incidence. Another term used is that of parallel polarization, as shown in
Figure 11.7b. 

1

ik

ik

1 > 

'
t 0 1k = k  n sin 1

y

n1

n2

k''
t

 n2 < n1

z
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t

   kt

ki

i

n12
x

0
iE

n2

n1

z

n1

t

x

    kt

ki

i

n12

0
iE

B0
i

n2

z

y y

Fig. 11.7(a). TE polarization. Fig. 11.7(b)  TM polarization. 

Given the incident wave, as in 0
i i i i iiE = E exp(j[k sin  y + k cos  z - t]) , it should

be possible to determine either the vectors 0
rE  and E0

t  for the reflected and 
transmitted waves, respectively, or the coefficients for the amplitudes of reflection
(r) and transmission (t) defined by:

00
tr

0 0
i i

EE
r =   and t=

E E
. (31)

The r and t are a priori complex magnitudes that can take into account any possible
dephasing between the reflection and the transmission.

We thus have two unknowns to determine, which can be done with the help of 
two equations established from the limiting conditions. With the media assumed to
be nonmagnetic, the following two relations for continuity at the interface are used:

and (as in nonmagnetic media
where ). The indices “1” and “2” denote the media with refractive indices n

1t 2tE  = E 1t 2tB  = B 1t 0 1t 0 2t 2tB = µ  H  = µ H = B

0µ = µ 1

and n2, respectively. Given that the study concerns monochromatic planar
progressive electromagnetic (MPPEM) waves, between E and B  there now is the

well-used equation
k E

B = .



                            Chapter 11.  Reflection and refraction in absorbent finite materials 333

11.3.2.  Fresnel equations for perpendicular polarizations (TE)

11.3.2.1.  When kt is real )2 1 2 1 1(n  n  or  n > n and

n2

n1
ik

kt

i

12n

t

E0
i

x

0
iB kr

0
tE

0
tB

0
rE

0
rB

r

ri

t

z

y

Figure 11.8 In TE mode where .2 1 2 1 1n > n  or  n < n  and  < 

By symmetry, the reflection and transmission fields conserve the same polarization
directions as the incident wave. It is supposed that the fields thus are placed as 
indicated in Figure 11.8. The eventual dephasing with respect to the reflection or the
transmission will be determined through an argument around the coefficients for 
reflection or transmission.

For the configuration then it is possible to write equations for the continuity at 
the interface: 
  with respect to Ox: 00

i rE + E = E0
t , so that on dividing the two members by

we have:

0
iE ,

1 + r = t          (32); 

 with respect to  Oy: 0 00
i i ir tB  cos - B cos = B cos t , so that also 

0 00i r t
i i ir t

k k k
E  cos - E cos =  E cos t

2

 from which with

 and division of two members byi r 0 1 t 0k  = k = k  n  and  k  = k n 0
iE :

1 1 21(1 - r ) n  cos  = t  n cos 2 . (33)
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By substituting r = t  - 1  from Eq. (32) into Eq. (33), and with

i r 1 t= = and = 2 , it can be immediately deduced that: 

1 1 1 1 2 2

1 1 2 2 1 1 2 2

2n cos n  cos - n  cos
t = and r =

n cos +n cos n  cos + n cos
.           (34) 

With the help of Eq. (28) ( 1 1 2 2n sin n  sin ), we can eliminate n1 and n2

from Eq. (34), and then by multiplying the top and bottom of the preceding 

equations by 2

1

sin
n

 yields:

2 1 2 1

1 2 1 2

2 sin cos sin( - )
t =   and r  =

sin( + ) sin( + )
.     (34’) 

The angles  and  vary at most between 0 and 1 2 2
, and 2sin  and 

are always positive just as is as also has a variation limited to
between 0 and . The 

1cos

1 2sin( + ) 1 2( + )
t  is in fact always real and positive here, and the transmitted

wave does not exhibit a dephasing with respect to the incident wave. 

10.3.2.1.1.  When 2 1n  > n
With kt being real, in agreement with the relation 1 1 2 2n sin n  sin , we have 

, and r2  < 1 is always real and negative as the maximum variation in is

given by

2 1(  - )

2 1-  < ( - ) < 0
2

. We can conclude therefore that a TE wave reflected by 

the more refractive material undergoes at the reflection a dephasing ( ) such that 
, so that:exp(j ) = -1

= (as  exp(j ) = cos  + j sin  = - 1).
In the limiting case, Eq. (34) shows that:

 for a normal incidence, 1 2
1

1 2

n -n
where = 0,  r = 0

n +n
,  so that in terms of moduli:

2 1

1 2

n -n
r =

n +n
     (35) 

 for a glancing incidence, where 1 then r 1
2

.

 As  increases, the modulus of 1 r  continuously increases from a value given
by Eq. (35) up to unity. Finally, we obtain the representation given in Figure 4.9 for
when .2 1n  > n
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0           90° 
1

n2 > n1

1

|r |

0                       90° 1

n2 > n1

Figure 11.9. Modulus and phase angle of the reflection coefficient as a function of the angle 
of incidence ( 1) for a TE wave with .2 1n  > n

11.3.2.1.2.  When 2 1 1 n n  and   (kt real)

According to Eq. (28), 2 1 2 1 2 1  and 0 ( ) so that sin( ) 0
2

,

and according to Eq. (34'), is real and positive, so that when medium (2) is less
refractive than medium (1) and when 

r

1 , the reflected wave rests in phase with 
the incident wave. According to Eq. (34), we can see that as 1 increases, the 

modulus of r steadily increases from a value given by 1 2

1 2

n -n
r = 0

n +n
, obtained

for a normal incident wave , up to the unit value given for the limit of

incidence ( ), as at this point  takes on the value

1( = 0)

1= 2 2
. Figure 11.10 gives a 

representation of this zone.

 0 
l

            90° 

n2 < n1

1

|r |

1 0
l

    90° 1

n2 < n1

-

 0 

Figure 11.10. Modulus and phase angle of the reflection coefficient as a function of the 
angle of incidence ( 1 ) for a TE wave and with .2 1n  n
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11.3.2.2.  When kt is complex )2 1 1(n n and , the wave is inhomogeneous
and is as shown in Figure 11.6

The relations for the continuity at the interface (Figure 11.8) give: 
  with respect to Ox, we again find Eq. (32); and 
  with respect to Oy, we have: 

0 000i r
i i i yr t t t ty z

k k 1 1
E  cos - E cos = k ×E e k k ×E eyt .

As 0
tE is directed along Ox (TE wave), the term on the right-hand side is reduced to

0
yt tz

1
k ×E e . With ''

tz zt z
k ik e and by simplifying with

0
iE

 the two

members of the continuity equation for Oy we have:
''

1 1 tz(1 - r ) k  cos = i k t ,

with according Eq. (30’) : 
1/ 2'' 2 2

tz 0 1 1 2k = k n sin²  - n . We thus obtain

''
1 1 1 1 tz

'' ''
1 1 tz 1 1 tz

2k cos k  cos - ik
t =   and r =

k cos +ik k  cos + ik
.       (36) 

For r , the numerator is the conjugate complex of the denominator, for which
r =1 . The angle for dephasing at the reflection thus is given by:

 = Arg (r )  tel que r  = |r | exp(i ) = exp(i ).

We therefore have 
z

r exp(i )
z

, and then by making

''
1 1 tzz =  k  cos + ik exp(i ) , we also find that 

z  exp(- i )
r  = exp(i ) = = exp(- i 2 )

z  exp(i )
, so that

''
tz

1 1

k
tan - tan

2 k  cos
.

By using  (which makes it possible to replace in Eq. (30’) by 

), we find that (in the shaded zone of Figure 11.10):
2 1 1n = n  sin 2

2n
2 2
1n sin

1/2
1

1

sin²  - sin²
tan = -

2 cos
.   (37) 

If 1 , 0 , and if 1 2
,

2 2
, thus  (see the plot on the

shaded part of Figure 11.10). 
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10.3.3. Fresnel's equations for parallel magnetic field polarizations
10.3.3.1.  When kt is real .2 1 2 1 1 (n n  or n n and )

1<

2

z

y
ik

tk

i

n12
t

x

0
iB rk

0
tE

0
tB

0
rE

0
rB

r
ri

t

E0
i

Figure 11.11.  TM wave with .2 1 2 1n > n  or  n < n , and

As detailed in Section 10.3.2, the fields retain the same polarization directions at
reflection or transmission through symmetry. We thus can assume that the fields,
once reflected and transmitted, are laid out as described in Figure 11.11. For this
configuration, the equations for continuity at the interface (still with

) give:i r 1 t| | = | | =  and

 with respect to  Ox: 00
i rB + B = B0

t , so in addition,
000

0 20 10 1 i tr k  n Ek  n Ek  n E
 from which can be deduced that:

1 || ||n (1 + r ) = n t2

2

    (38); and 

- with respect to Oy: , from which:0 0 0
i 1 r 1 t- E  cos  + E  cos  = - E  cos

1 2|| ||cos (1 - r ) = t  cos .     (39) 

From this can be deduced that:
2 1 1 2 1 1

2 1 1 2 2 1 1

n cos  - n  cos 2n  cos
r and t

n  cos  + n cos n  cos + n  cos 2
.   (40) 

By again using Eq. (28), it is possible to eliminate n1 and n2 from the above 
equations, so that they become:
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1 1 2 2 1 2 1 2 1 2

1 1 2 2 1 2 1 2 1 2

sin cos  - sin  cos sin2  - sin2 2 cos( + ) sin( - )
r

sin cos  + sin  cos sin2  + sin2 2 sin( + ) cos( - )
,

from which 1 2

1 2

tan( - )
r

tan( + )
.       (40’)

Similarly, we obtain 1 2

1 2 2 1

2 cos  sin
t

sin( + ) cos( - )
 . (40’’)

Using Eq. (40), it is immediately evident that t  is always real and positive as

 and  are both always positive (  and  being between 0 and 1cos 2cos 1 2 2
).

Hence the dephasing between the incident wave and the transmitted wave is always
zero.

With regard to the reflected wave, according to Eq. (40), it is possible to state 
that r r is a real magnitude and the dephasing of the reflected wave is dependent

on the sign of r|| , which in turn is such that:
|| 1 2 1 2sgn r = {sgn tan( - ) }x{sgn tan( + ) } .

11.3.3.1.1.  When :2n n1 kt is real and 2 1

For a normal incidence , according to Eq. (40) 1( 0 ) 2 1

2 1

n  - n
r 0

n   + n
 so that

r r is a magnitude that is both real and positive, and the dephasing || thus is

zero.
In general terms though,

2 1 1<  and 0, / 2 , 1 2( - ) 0, / 2 , 1 2  and  sgn tan( - ) always is

positive. The result is such that  changes sign with||{sgn r } 1 2{sgn tan( + ) }

and  goes from being positive to negative whenr 1 B  so that:

B 2( + ) =
2

.    (41) 

The angle of incidence, 1 B , is called Brewster's angle and is such that 

B 2 ||tan( + ) = tan ,   with  r = 0
2

.  The wave therefore is entirely 

transmitted.
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1 B 2 BWhen ,  so that =  -  , we have
2

1 B 2 2 2 B 2 B n  sin  = n  sin = n  sin ( - ) = n cos ,
2

from which: 

2
B

1

n
tan = .

n
(42)

At an air/water interface, we have B = Arc tan 1.5 57 ° .

1 ||With = 90°, we have r =-1 and |r | = 1 and = .

So, to display the results, the plots of || 1 || 1|r | = f( ) and  = g( ) are shown in

Figure 11.12. 

0 90°1

n2 > n1

 1 

B

|r|||

0 90°1B

n2 > n1

||

Figure 11.12. Modulus and phase angle for the reflection coefficient  as a function of  for 

a TM wave with 
1

2 1n  > n .

11.3.3.1.2.  When   (k2 1 1 n n  and t is real), thus here with 2 1

For a normal incident wave  according to Eq. (40)1( 0 )

2 1

2 1

n  - n
r 0 and

n   + n
r r is a real and negative magnitude. The dephasing ( ||)

thus is equal to .

When 2 1 1 2 1 2, ( - ) 0,  - / 2  and  sgn tan( - )  is always negative;

the  result  is  that r||  goes from  being negative to positive when 1 2tan( + )
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changes sign. This also happens when 1 B B 2 such that ( + ) =
2

.

Simultaneously, || goes from  to 0.

We still have 2
B

1

n
tan =

n
though, and also can state that B . In effect, 

2 B
B B

1 B

n sin
sin =  = tan > sin

n cos
, so that .B > 

A representation of this is given in Figure 11.13.

It is worth noting that for the example of air and water,  and .1n  = 1.5 2n  = 1

We therefore have 
1

 = Arc sin 42 °
1.5

 and B
1

= Arc tan 34 °
1.5

.

0                 90° 1B l

n2 < n1

||

0                    90°1

|r|||

B l

n2 < n1
1

Figure 11.13. Modulus and phase angle for the reflection coefficient as a function of 1 for a 
TM wave, with .2 1n  < n

11.3.3.2.  When kt is complex (  and 2n  < n1 1 > )
In this situation it is not an easy task to reuse the reasoning given in Section
11.3.2.2; the projections made demand a symmetry around the angle t 2 , which
has no real physical significance as the wave does not propagate only along the Oy
axis. Mathematically, we can check that 2 is not a real angle, as in effect, 

1
2 1

2

n si
sin  = sin  =

n si
1n

n
, so that with 1 > > 1 we have sin 2 .

In Fresnel's equations, in the place of the usual equation, 

2 2cos 1 sin ² , now with 2sin²  > 1 we must bring in for the term  cos 2 a 

purely  imaginary value given by 2 2i sin ² 1cos . The negative sign is
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required by the need to obtain at a later point an attenuation of the wave in medium

(2). We also can state that 1
2

sin ²
cos i 1

sin ²
, and with 2

1

n
sin

n
, Eq. (40) 

gives:

 1 1

 1 1

sin² cos  + j sin² sin ²
r

sin² cos  - j sin² sin ²
.        (43) 

Once again the numerator is the conjugate complex of the denominator, for which

. By writing  ||| r |² = 1 ||||
z

r  = exp(i ) = 
z

, and by making

 1 1z = sin² cos + j sin² sin ²  =  exp(i ) , we obtain:

||||
z  exp( i )

r = exp(i ) = = = exp( i 2 )
z  exp(- i )

, so that with tan = tan
2

:

1

1

sin² sin ²
tan =

2 cos  sin²
.        (44) 

If , then1 tan 0
2

 and . If || = 0 1 2
, then

1cos = 0 , tan =
2

, and || =  (see also the plot on the shaded area of 

Figure 11.13). 

11.3.3.3.  Comment

B

Figure 11.14. A Brewster angle incidence for a TM wave at an air/glass window.
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To ensure that a ray passes through a glass/air interface, as shown in Figure 11.14,
without loss by reflection, the wave should be TM polarized and undergo a Brewster
type incidence as (such as is used in Brewster lasers with a Brewster 

window).
1 B

r 0

11.3.4. Reflection coefficients and energy transmission
11.3.4.1.  Aide mémoire: energy flux through a surface
The energy flux, associated with the propagation of an electromagnetic field in a 
material, is equal to the flux traversing the surface given by the Poynting vector ( ).S

Equation (33’) of Chapter 7, Section 7.3.3, shows that for a MPPEM wave in
nonmagnetic materials the average value for the Poynting vector is given by

m m
0

1
S R(E B

2µ
) , so that with mB  = k×Em  [Eq. (13) of Chapter 7] we 

have
2

m
0

1
S = k E

2µ
, and with 0

0 0

1 c
=

µ k
, we can write that

2
0

m
0

c k
S

2 k
E . With our notations, and for incident, reflected, and transmitted

wave, the associated average value of the Poynting vector is, respectively:
200 i

i i
0

c k
S E

2 k
,

200 r
r r

0

c k
S E

2 k
,

200 t
t

0

c k
S = E

2 k
.

The energy flux across the surface  is the energy transmitted per unit time through
the surface. In effect, it also represents the power transmitted by the wave under 
consideration.

12n

1

2

1

h

n1

n2

x
y

  z 

Figure 11.15.  Reflection and transmission of an incident flux traversing  . 
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The radiated power of the wave traversing an interface with surface ( )
from a medium with an index denoted by n1 toward a medium with an index n2
(Figure 11.15) thus is given by:

2 20 00 i 0
i i 12 i 12 1 i

0

c k c
< P  > = S n  = E n = n E  cos

2 k 2 1

2 20 00 r 0
r r 12 12 1 1r r

0

c k c
< P > = S n E n n E  cos

2 k 2
(45)

'2 20 00 t 0 tz
t t 12 12t t

0 0

c k c k
< P > = S n E n E .

2 k 2 k

11.3.4.2.  Equation for the reflection(R) and transmission (T) coefficients: total 
energy

The titled coefficients are defined so as to give positive values, so that we have:
tr

i i

PP
R = -  and  T = 

P P
 . (46)

From this can be determined with the equations in Eq. (45) that:
2 20 0

' 'r t2 2tz tz
2 20 0 0 1 1 0 1 1i i

E E k
R =  = r   and T = = t

k  n cos k  n  cosE E

k
.          (47) 

It is notable that in the case of the transmitted power, T  | t  |² . This is due
to the fact that the way in which the power is transported depends on the different
cross sections, so that i = cos 1 for an incident wave and 

for a transmitted wave (while for incident and transmitted powers,
).

t  =  cos 2

1i r = =  cos

With respect to the sum of the energy, we can calculate this by using a closed 
surface, such as a parallelepiped of a given height (h) such that h  0, and then
drawn around the level of the surface (Figure 11.15). In physical terms, for an
isolated system, the incoming radiation power must be equal to that leaving, so:
  the incoming radiation power is that of the incident wave, such that

12 i i 12n :  <P > = S n .

  the outgoing power radiated has two components:
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power radiated by the reflected wave with respect to 12- n

r 12S n = - < Pr >

the power radiated by the transmitted wave with respect to 12n

t t 12 <P > = S n

We thus should have . Dividing through term by term by
we obtain:

i r<P > =  - < P > + < P >t

i<P >
     .        (48) R + T = 1

Comment: The transmission coefficient for a homogeneous transmitted wave
.1 2 1 2 1(n n or  n n   and )

In this case, tk is real and equal to '
tk . With '

tz 0 2 2k  k  n  cos , we have

2 2 2

1 1

n  cos
T t

n  cos
. (49)

11.3.4.3.  Representation of the reflection coefficient as a function of the angle of 
incidence

0 90°1

R

B

1

2
1 2

1 2

n - n
n + n

R

 R||

n2 > n1

0                   90° 1

R

B

1

2
1 2

1 2

n - n
n + n

R

 R||

l

Taking the equation 2R = r  into account, we can use the representations given in
Figure 11.15 for when , or n n .2n n1 1 2

Figure 11.16 b.
Factors in the reflection of energy:

as a function of 
|| ||R = |r |² and R = | r  |²

1,
for 2 1n n  ( with r and r||
from Figures 11.10 and  11.13).

B = 34 °  for an air/glass interface,

and = 42 ° .

Figure 11. 16 a. 
Factors in the reflection of energy:

|| ||R = |r |² and R = | r  |²

|n n  ( with r  and  r

as a function of

1, for |2 1
from Figures 11.9 and 11.12)

B  = 57 ° for the air/glass interface.
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For normal incidence,
2

1 2
1 2

1 2

n - n
 =  = 0,  and R

n + n
.

At the same time,
2

2 2 1 2 1 2
2

1 1 2 1 1 2

n  2n n 4n n
T t 1- R

n  n +n n n +n
.

It can be seen in the plots of Figure 11.16 that when  the reflection is2n n1
always partial and relatively weak, except in the neighborhood of the glancing angle

1( )
2

. This is the reason why the air/water interface is always transparent 

( except when there is a glancing angle, or under conditions of 
reflection.

2n 1.33)

Under a Brewster angle, only a wave polarized perpendicularly to the plane of 
incidence (TE waves) is partially reflected. At this incidence, the TM wave is
entirely transmitted || 1 B(R = 0 when  = ).

1st mirror

B

incident natural
light

2nd mirror with incidence 
plane normal to that of the

1st

B

Wave loss after 2nd

reflection at Brewster 
anglepolarized TM 

wave for 2nd

mirror

Figure 11.17. Malus's experiment.

Under natural light, the incident wave exhibits all polarization states, and for an 
incidence with the Brewster angle it is only waves polarized perpendicularly to the 
plane of incidence which is reflected (TE wave).  It is this result that explains
physically Malus's law, which demonstrates the polarization of light with the help of
two mirrors set at a Brewster angle, so that the planes of incidence are orthogonal.
The two successive reflections are at Brewster angles so that after the first reflection 
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of natural light there remains only a component that is polarized perpendicularly to
the plane of incidence of the first mirror (thus a TE wave for the first mirror). The 
incidence plane of the second mirror is perpendicular to that of the first, and the
incoming wave is seen as a TM wave. Following a reflection at the Brewster angle 
on the second mirror, there is a complete extinction of the wave.

11.3.5.  Total and frustrated total reflection

When ' '
1 2 1 tz t tyn n  and  > , we have  k = 0 and k = k e'

y ; there no longer is a 

propagation along Oz and only propagation along Oy persists.
As R , we have , while at the same time with

(see Eq. (36), for example).
= | r |² = 1 T = 1 - R = 0 t 0

1 > 

ik

Figure 11.18. The evanescent wave and frustrated total reflection. 

Therefore, even though there is a transmitted wave, as , the 
transmission coefficient for energy is zero. This is because the propagation through 
medium (2) can occur only at the interface (along 

t 0

ye ). The wave itself is 

evanescent (Figure 11.18 being the “completed” Figure 11.6) with wavevector
components ( ) given by  Eq. (30’). By substituting the value for the components
into Eq. (21), we find that the transmitted wave has the form:

tk

0 ''
tz iyt tE (r,t) = E exp( - k z) exp i k y  - t ,

with
2

'' 2 2 1/2 1/21
tz 0 1 1 2 0 2 12

2

n
 k = k (n sin² -n ) k n ( sin²  - 1)

n
 . 

The intensity of the transmitted wave, proportional to
2

tE (r,t) , is thus of the form:

1

'
t 0 1k = k  n sin 1

 y 

evanescent wave: 
- propagation along O
- atte

y
nuation for Oz 

''
tzk

n1
n2

 n2 < n1

z
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220 '' 1
t t tz t 1'' 2

0 2tz 2

2z 1 1 n
I (z)= E exp(-2k )= I (0) exp(- ) ,  with  =  = ( sin²  - 1)

k nk n
- 1/2

where  represents the degree of attenuation (when z =
2

, the wave intensity is 

divided by e).

The wavelength in medium (2) is given by 0
2

2
=

n
, so that also we have:

2
- 1/22 1

12
2

n
 = ( sin²  - 1)

2 n
. (50) 

If 1 increases, sin 1 also increases, as 
2
1

12
2

n
( sin²  - 1)

n
, while

2
-1/21

12
2

n
( sin²  - 1)

n
decreases with  and the evanescent wave penetrates less medium (2). 

Numerically, for the glass/air interface, and at what is practically a glancing 

angle, 1 2( ), we find that 0.14
2

.

air (n2)

glass (1) (n1)

glass (2) (n1)
  interface II 

interface I 
h

Figure 11.19. Experimental demonstration of frustrated total reflection. 

The presence of an electromagnetic wave in a thickness of the order of  of 
the second medium (such that T = 0) can be demonstrated by using the setup shown 
in Figure 11.19. At the level of the first interface (interface I) the wave penetrates to
a depth of the order of  and is then transmitted to the level of the second interface II 
that is such that its index [glass (2) with index n1] is higher than that of the first 
medium (air with index n2). In other terms, following its passage from interface I, 
the wave is attenuated over a depth of h  and what “remains”' at this depth is 
then transmitted to the level of the interface II, which in turn does not follow the 
conditions of total reflection. The result is that of frustrated total reflection.
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In order to carry out such an experiment, a total reflection prism can be used 
with angles equal to 45°, which is greater than the 42° required for the glass/air
interface ( ). By placing a second prism at a distance ho

1 = 45 > from the 
first, as described in Figure 11.20, a frustrated total reflection occurs exhibited by
the presence of part of the incident wave in the right-hand side.

However, as mentioned above, the two prisms must be placed a distance apart
given by 2h 0.14 , which means that h 0.1  µm for waves in the optical
domain. This requires extremely delicate handling and can be made easier by the use 
of waves with wavelengths of the order of centimeters thus requiring h  several 
millimeters (which is easy with paraffin prisms).

The results obtained for electromagnetic waves can be extended to waves 
associated with material particles. Frustrated total reflection can be considered that
of a tunneling effect, in this case applied to photons.

h
air

1 > 

glass wave after
frustrated total

reflection
incident
wave

Figure 11.20. A total reflection prism used to demonstrate frustrated
total reflection. 

11.4.  Reflection and Absorption by an Absorbing Medium

11.4.1.  Reflection coefficient for a wave at a normal incidence to an interface
between a nonabsorbent medium (1) (index of n1) and an absorbent
medium (2) (index of 2n )

The index of medium (2) is complex and given by ' '
22n = n + i n '

2 . For its part, the
incident wave is assumed to be normal to the interface so that

, and the wavevector of the transmitted wave thus can be

written, with
1 1= 0° and sin = 0

'
ty 0 1 1k = k  n  sin 0 , as: 
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1/22' 2
tz 0 1 1 0 22' ''

t t t z 1/22'' 2 ''
tz 0 1 1 0 22

k = k  R n - n sin² = k n
k = k + ik e , where

k = k  Im n - n sin² = k n

'

' ''
t 0 2 2 z 0 2so that  k = k n + n e k n ez .

The EM field associated with the transmitted wave t tE , B  thus is given by:

0 '' '
0 2 0 2t t

t t 2
zt t

E =E exp -k n z exp i[k n z - t]

k ×E n
B = = e ×E .

c

With the index 2n  being complex, tB  is no longer in phase with tE . Taking
into account the form of the fields, we can equally state that this MPPEM wave 

propagates along Oz with a phase velocity given by '
0 2 2

c
v = =

k n n'  and is

attenuated exponentially along Oz in the absorbent medium (2). 
The condition of continuity at the interface of the tangential components for the 

fields E  and B  results in the same values as those cited previously for reflection
and amplitude transmission coefficients, while nevertheless noting that n2 is in a 
complex form and that:

' ''
1 1 2 2 1 12

' '' ' '
1 21 2 2 1 2 21 2

n - n n - n - in 2n 2n
r =  = and t = =

n + nn + n + in n + n + inn + n ' .

The arguments with respect to r and t, respectively, give the dephasing of the
reflected and the transmitted wave with respect to the incident wave.

For the reflection and transmission coefficients in terms of energy, we also 
obtain:

2' ''2 '1 2 22 1 2
2 2' ''2 ' ''2

1 2 2 1 2 2

n - n + n 4 n  n
R= r =   and  T = 1 - R =

n + n + n n + n + n
.

11.4.2.  Optical properties of a metal: reflection and absorption at low and high
frequencies by a conductor 

See Problem 1 of the present chapter. 
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11.5.  The Antiecho Condition: Reflection from a Magnetic Layer; a Study of 
an Antiradar Structure; and a Dallenbach Layer 

11.5.1.  The antiecho condition:  reflection from a nonconducting magnetic layer

11.5.1.1.  Reflection from a magnetic layer
This follows on from the study in Section 11.3.2 on TE polarization by reflection at
an interface between media (1) and (2) with the difference that here the media have 
a permeability different to that of a vacuum such that media (1) and (2),
respectively, exhibit permeabilities µ1 and µ2.

It is assumed that the media are sufficiently insulating so that the density of free
charges is negligible so that = 0 and j = 0.

Under such conditions, the continuity conditions for the interface mean that 

1t 2t 1t 2tE E and H H and in turn 1t 2t

1 2

B B
µ µ

 with in addition as

specifically to this case 

1t 2tB  = B

1µ µ2 (see also the end of Section 11.3.1). Equation
(32) then becomes:
  along Ox: 00

i rE  + E  = E0
t  in an unchanged relation due to the conservation of the

continuity equation. By dividing the two terms by , we also find 0
iE

1 + r = t , (51) and 

  along Oy: 00 ti r
i i ir

1 1 2

kk k
E  cos - E cos =  E cos

µ µ µ
0

tt .       (52) 

With the media being nonconducting, i.e., 0, we can state that in each medium,
according to Eq. (5) of Section 8.5.1,

i r 1 1 t 2 2k  = k  = µ and   k = µ . The preceding equation with respect to 

Oy becomes: 0 001 1 2
i i ir t

1 1 2
E  cos - E cos =  E cos

µ µ µ t .

With Eq. (6) from Section 8.5.2, i.e., 1 2

1 1 2

1 1
, and

Z µ Z µ2
, we have:

0 0-1 0 -1 -1
1 i i 1 i 2 tr tZ E  cos - Z E  cos = Z E cos .

By dividing the two terms by , we obtain:0
iE -1 -1 -1

1 i 1 i 2Z cos - Z r cos = Z t cos t ,
so that with the same notations as those used in Section 11.3.1, 

-1 -1
1 1 2(1 - r ) Z cos = t Z  cos 2 ,         (52’) 
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From Eqs (51) and (52’), we can determine using a method analogous to that in
Section 11.3.2 (where was substituted for n-1

1Z 1 and for n-1
2Z 2):

1 2

1 2

1 2

1 2

cos cos
 - 

Z Z
r =

cos cos
 + 

Z Z

, so that following multiplication of top and bottom with

 we have:1 2Z Z

2 1 1

2 1 1

Z  cos - Z cos
r

Z  cos + Z  cos
2

2
, from which according to Eq. (47) we have:

2
2 1 1 2

2 1 1 2

Z  cos - Z cos
R =

Z  cos + Z cos
. (53) 

As the incidence is normal (with directions ik  and ze  being merged) the
notion of incidence plane loses its significance (otherwise defined by the vector
directions ), and we can state for the energy reflection factor for 
whatever polarization direction of the incident wave, that:

i 12k  and n ez

2
1 2

1 2

Z  - Z
R =

Z  + Z
. (54)

1.5.1.2.  The antiecho condition
Here the reflected wave is annulled so that R = 0. For this to occur, taking Eq. (54) 
into account being applicable for a great distance where the wave exhibits a normal

incidence on the target, it suffices that , that is, 1Z  = Z2
1

1 2µ µ
2 , and hence:

1r 2r

1r 2rµ µ
. (55) 

So that this condition is true, a specific sort of coating must be applied to
medium (2). If medium (1) is air, then Eq. (55) means that between the dielectric
permittivity and magnetic permeability of the second medium, there is a simple
equation given by

r r= µ . (55’)

Comment:  the antiecho condition for EM waves is just one part of the conditions
under research in optics in order to find a material that is completely anti-reflective.
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In such a case, the condition R = 0 means that
2

1 2

1 2

n  - n
R = 0

n  + n
, so that 

. This condition has no sense in itself, as it would mean that the media (1)
and (2) would be identical and that therefore there would be no interface.

1n = n2

2

One
method though is to insert between the two media a layer of a given thickness and 
index n such that and then find the conditions for which a destructive
interference is formed between the two reflected waves, one being at the interface of 
the materials with indices and the other being at the interface of the 
materials with interfaces .

1n < n < n

1n and n

2n and n

11.5.2.  The Dallenbach layer: an anti-radar structure
11.5.2.1.  The stealth concept

z

y

ik

iE

rk

rE

tk

tE

dielectric ( ) and/or magnetic
(µ) medium which is slightly
conducting, although not equal
to zero 

metal

 air ( 0, µ0)

O

d

Figure 11.21. Antiradar structure. 

Assuming that a wave with a frequency denoted by  has a normal incidence to a
metallic surface, the reflection is total. In order to make the metallic layer stealth- 
like, it is covered with a dielectric and/or magnetic material adapted so as to satisfy
the antiecho condition for an air/coating interface. In addition, the wave transmitted
in the layer also must be totally attenuated in order to suppress the total reflection
that would be produced by the metallic layer. The attenuation is obtained with a 
slightly conducting layer of sufficient thickness (d) as indicated in Figure 11.21. 
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11.5.2.2.  Condition (1): antiecho at the air/dielectric-magnetic interface
The classically used absorbent materials are generally composites based on carbon, 
iron carbonyls, or ferrites (see also Chapter 4, Section 4.2.5.2). These materials do,
however, suffer from certain inconveniences such as their weight or their
mechanical rigidity due to the high number of charges necessary to reach the 
required absorption. These composite materials are presently being replaced by 
conducting polymers, which can be acquired through doping a conductivity 
appropriate to the system.

11.5.2.2.1.  Equation for the reflection coefficient
In the system under study, the conductivity ( ) is such that 0  and in the layer

tk = k  so that from Eq. (5) of Chapter 8, Section 8.5.1, where “electrokinetic”
notation was used to establish the equation we have:

1/ 2

tk  = µ 1 - i . (56) 

Under normal incidences, the preceding Eq. (52) can be written for the air/layer 

interface (where for air i r 0k = k = k  =
c

):

000 0 t
i r

0 0

kk k
E  - E  = E

µ µ µ
0
t . By dividing the two terms by  it is determined that:0

iE

0 t

0

kk
1 - r  = t

µ µ
 , from which with the help of Eq. (51)  we determine that:

0 t

0

0 t

0

kk
 - 

µ µ
r

kk
+

µ µ

,  so that also
r t

0 0 t

0 0 t r t

µ  - kµk  - µ k cr
µk  + µ k µ  + k

c

. (57)

11.5.2.2.2.  Approximate calculation using  = 5 GHz, r = 15,
-1 -1 -1 -3 -1= 5  x 10 m  = 5 x 10  cm )

Figures 11.22a and b give a qualitative indication of the evolution of the
conductivity and dielectric permittivity of polyaniline films with varying levels of 
doping as a function of frequency. On going from A to D the plots are for increasing
levels of doping. It can be seen that for sufficiently high levels of doping, quite high 
values can be attained. 
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Figure 11.22. Evolution of  and r’ as a function of frequency for 
 doped polyanilines. 

Using the values given in Eq. (56) for tk , the term
-1

1
9 -12
5 x 10

= 1.2 x 10
2  x 5 x 10  x 15 x 8.85 x 10

is very much less than 1. With a 

limited development, from Eq. (56) for tk  we obtain tk µ 1 - i
2

.

By making
2

, we thus can write that:

r rtk µ 1 - i µ 1 - i
c

.    (56’) 

The reflection coefficient given by Eq. (57) then takes on the form:

r r r

r r r

µ  - µ (1 i )
r

µ + µ (1 i )
, so that finally

r

r

r

r

1 - (1 i )
µ

r
1+ (1 i )

µ

.

Numerically, as , and -110 << 1, we have (1 - i ) 1 r  can be reduced to: 
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r

r

r

r

1 -
µ

r
1+

µ

(58). The condition

2
r

r

r

r

1 -
µ

R 0
1+

µ

 thus gives r

r
= 1

µ
,

so that .r r = µ = 15
We once again find the condition of Eq. (55'), which is quite normal as the

numerical calculation lead us to neglect the component due to conductivity, just as
was assumed hypothetically in order to arrive at Eq. (55').

11.5.2.3.  Condition (2) to predict total reflection at a metal:  attenuation and depth
of penetration of the wave into the coating

The transmitted wave is given by itE = t E exp(i[ t - k z])t using electrokinetic

notation. According to Eq. (56’) kt is of the form tk  = -i ,  with r r = µ
c

and r r = µ
c

, so that:

r
r r

0 r

µ
 = µ =

c 2 2c
. With the preceding condition (1), that is, ,

we finally have 

r r = µ

02c
.  The wave is in the form:

itE = t E exp - z exp(i[ t - z]) , so that by making
1

 =  , we have 

it
z

E = t E exp - exp(i[ t - z]) .

The wave is attenuated little by little along its propagation through the coating. 
When  the wave amplitude is divided by .z = , e = 2.7

This attenuation is obtained at a penetration depth ( ) such that:
01 2c

 = ,

which here in numerical terms means that 1.3 cm .

11.5.2.4.  Conclusion
It is notable that the thickness calculated is for  measured at a given frequency,
while the law for the evolution of current as a function is frequency is typically of
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the form  (see also Figure 11.22 for a sufficiently doped material

such as curve C or D). The absorption thus is limited to a certain band width. In
order to absorb over a large enough band, a structure based on one single layer
(called the Dallenbach layer) has to be improved upon by using multi-layer
absorbing structures, in which each layer is optimized to obtain a minimum
reflection coefficient for a given band width. A final restriction is imposed by the
necessity of having thick enough layers to be practicable, to the extent that
absorbing paints might be used. 

s
(0)( ) =  + A

11.6 Problems
11.6.1. Reflection and absorption at low and high frequencies by a conductor
The optical properties of a metal are treated through a series of questions (and
answers!) as given below and follow on from the problem studied in Section 8.6.2,
concluding with a look at the optical properties of a metal as derived from the
relationships for dielectric permittivities as established in Section 8.6.2 from the
equation for electronic polarization.

Recalling Section 8.6.2, the equations for the complex dielectric permittivity of
a metal were:

r
0

i (0)
 =  1 -

[1 i ]
 [question 3(c)]   Eq.  (1);

2
p

r = 1 - i
[1 i ]

 [question 3(d)]  Eq.  (2). 

The metal under consideration is copper, and in the equations for r:
 is the relaxation time, which is such that ;-14= 10 s
(0) is the conductivity for a steady (DC) state, which will be taken equal to

6 x 107 -1m-1; and

 is the plasma angular frequency, that is defined by the equationp
2

p
0

Nq²
=

m
,

and is typically . It is worth noting that .16 -1
p 10 rad s -12

0 =8.85 x 10  MKS

The incident wave at medium (1) is a MPPEM wave polarized in parallel with
Ox in the form 00E = E exp(-ikz) in electrokinetic notation as the applied field was 

written in the form 0E E exp(i t) from the beginning of the problem in Chapter
8, Section 8.6.2. The propagation of the wave thus is much as usual, along positive
values of z. The wave is considered to arrive at a normal incidence, so  and 
the reflection is detailed at the air/metal interface where each, respectively, have 
indices n

1 = 0

1 such that n1= 1, or more simply n = n' - i n'' .
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1. This part considers the optical properties of a metal at low frequencies.

(a) This domain is defined by
1

<< . From Eq. (1) for r , give the simplified

form which r  takes.
(b) By using orders of magnitude of different parameters, show that the expression

for r  can be reduced to a single and explainable term.
(c)  Calculate the complex index for n n' - i n''
(d) Determine the reflection coefficient for the amplitude r  (which is thus in the

form 1

1

n -n
r =  following the preceding Section 11.4.1). Equally, evaluate the

reflection factor in terms of energy. 
n +n

(e)  Give k as a function of n inside the metal. Study the form of penetration of the
electric wave in the metal by writing the form of the wave in there as 

0
t 0t tE = E exp(i t) = E exp(i[ t-kz]) , where the complex amplitude 0tE  is 

thus of the form 0
0t tE E  exp(-ikz) . In order to do this, determine the depth

( ) of the penetration of the wave, which we will define here by using the term

for attenuation in the form
z

exp( ) .

(f)  Establish the form of the energy transmission factor (T). Give this as a function 
of n' or n", and then as a function of  (the so-called Hagen-Rubens equation).
Give a numerical value for and then also for T given that  = 1 GHz. From
this result, make a conclusion.

2. These questions now concern a zone of slightly higher frequencies which are

defined by
1

<< .

(a)  Using Eq. (1) for r , give the simplified form of r  in this domain.
(b)  When , determine the form ofp<< r  as well as that of the MPPEM wave

in the metal. Calculate the reflection coefficient for a normal incidence at an
air/metal interface.

(c)  When  (high frequencies), give the range of variation possible forp r .

Give a value for r  when p , as well as that of the reflection coefficient 

for an incidence normal to the air/metal interface. 

3. Give a recapitulative scheme of the reflection and transmission properties of a 
metal in the EM spectrum.
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Answers
1.

 Low frequencies
1

 <

(a) We use r
0

i (0)
= 1 -

[1 i ]
,

and with

r
0

(0)
<< 1 ,  i 0 (negligeable with respect to 1), we have = 1 - i .

<<1

i

1

(b)
7 -1 -1

14 -1 3
0

4
3

0 0i min i max

(0) = 6 x 10  m ,
1

<< = 10  s ,  << 10

(0) (0) (0)
= 6 x 10  >> 1 .

10

With
0

(0)
 always being greater than 1, in the low-frequency range we have:

r
0

(0)
- i .

(c) Given
i2 2

r
0 0

(0) (0)
n i e , from which we deduce that

i
4

0

(0)
n = n' - i n'' = e , so that with

i
4 1

e = cos - i sin = (1 - i)
4 4 2

 , we 

obtain:

0

(0)
n = n' - i n'' = (1 - i)

2
, from which

0

(0)
n' = n'' = 

2
.

(d) We have 
0 0i min

(0) (0)
>> 1 >> 1 and n' >> 1  just as .n'' >>1
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The result is that i1

1

n - n 1 - n' + in'' n' - in''
r = = - 1 e

n  + n 1 + n'- in'' n' - in''
 and on reflection

there is a dephasing by  while the reflecting power is in the neighborhood of 1, i.e.,
R = |r²| 1 .

The ability to reflect energy is given by

2' ''2 '2 ''2
2

2 '2 ''2' ''2

1- n + n n +n
R= r =  = 1

n +n1+ n + n

where .n' >>1

(e) With k = n = k' - i k''
c

, we have 
0 0

(0) 1 (0)
k'' n''

c c 2 c 2
 . 

A wave that propagates in the form 0i t ikz i t
t 0t tE E e E e e  can be written for

this frequency range as 0 i( t k 'z) k '' z
tE = E e e . The equation carries a term for the 

propagation as in , and a term for attenuation as in  that also can be

rewritten as 

i( t k 'z)e k ''ze
z

e  where 01 2
c

k '' (0)
. With representing the depth at

which the electric wave is attenuated by the ratio
1
e

, for distances greater than 

several , the wave is practically zero.

As 02
c

(0)
, we can see that as  increases,  decreases. For the 

highest frequencies in this region ( 141
10 Hz ) the EM waves are localized at

the surface of the conductors, in an effect called the skin effect. 

(f) The equation for T is deduced from that of R, as in 1
2 ''2

1

4n n'
T = 1 - R =

(n + n') + n
.

With , the result is that1n'' = n' = n >> n = 1
2

T
n

, so in addition  (as n >> 

1). In more precise terms, when , and with

T 0

n' = n' = n
1 c 1
k '' n''

, we have 

0
2

T 2
c

k , so that with 0
0

2 2
 c  

k
, we also have

0

4
T  , 

which is known as the Hagen-Rubens equation.
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The energy received by the metal is transmitted by carriers to the lattice that 
dissipates the energy through the Joule effect. So, the factor T is often called the
absorption power of the metal.

In numerical terms, for copper,
 so that 7 -1 -1 9 -12

0(0) = 6 x 10 m  , = 2  10 rad/s,  = 8.85 10  MKS

02
c 2.06 µm

(0)
 . 

As 0
c

0.3 m  (region of centimeter wavelengths), the Hagen-Rubens 

formula gives , to which- 5T 8 x 10 0 R 0.99990 1. Hence the use of 
microwave frequency radars for police use in determining car speeds! 

2.
(a) This part uses for r  the general formula (2) obtained from question 3(d) of
Section 8.6.2, for metals, as in:

2
p

r 1 i
[1 i ]

 .

When , we have>> 1
2 2
p p

r 1 i 1
i ² ² ²

.

(b) When , so that p<
2
p 1
²

, we have 
2
p

rr = " < 0
²

. For the index then

2 2
p2 2

r n i
² ²

p  must be true. The result is that pn = n' - i n'' = ± i  so 

that pn' = 0  and  n'' =  (only the positive solution is physically acceptable and it

represented the only available absorption of the wave in the medium).
With k , the wave defined by' = 0 0i t ikz i t

t 0t tE E e E e e  takes on he 

form 0 k ''z i t
t tE E e e , and as there is no longer a term for the propagation, in

effect the signal no longer propagates through the metal. The wave oscillates in a
standing position in the neighborhood of the interface, and in practical terms the 
wave is reflected, as shown in the following calculation.

In effect, 
1 + in''

r
1 - in''

( p1 with n' ' 1), which is such

that |r| =1, so R = |r²| =1.
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(c) If , so thatp > 
2
p < 1
²

, and with
2
p > 0
²

,  we can state more succinctly 

that
2
p

r0 < < 1 and 0 < < 1
²

, and  that r is positive, real, and between 0 and 1.

When , so that p

2
p 1
²

, we have rr = 1. Thus the metal behaves 

as if it is a vacuum without charges simply because the latter cannot follow such a
high frequency.

As r  = n² , we have n n 1 ; k' = n and n 0
c

 just as (no

absorption). So 

k''= 0

1

1

n  - n 1 1
r = 0,  and R = 0 and T = 1

n  + n 1 1
, and the transmission

is perfect. 

3. To sum up the characteristics of a metal:

14 -11
10  s

µ-waveRadio frequency  >> 1/   in the region of higher frequencies 

Question 1. 
1

 <<  so is near low

frequency region 
k' = k''  0 

For a good metal 

0( (0) >> )
dephases by  at reflection 
and . Transmitted
wave attenuated, and by

R 1

z (skin thick) is 
practically zero (more so
when  is high, as is µ-

wave).

2(c) p  THF region 

(high energy)

r 1 and the metal acts as
if a vacuum, with

R = 0, T = 1  and 
total transmission

1/ p<<  <<
2 (b) r < 0 : 

n'= 0 and k'= 0
a standing wave 

oscillates
without

propagation. Total 
reflection and 

R=1

IR
visible UV

 >
 

p
, 0

<
r<

1

same as plasma where friction is negligible

Frictional forces non-
negligible. Absorption 

and Joule effect transmits
energy through network. 

16
p= 10 rad/s
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11.6.2.  Limited penetration of Hertzian waves in sea water
Here the system is based on medium (1) which is air (which in electromagnetic
terms is assumed to be the same as a vacuum) separated by a horizontal plane (Oxy)
from medium (2) which is sea water. For Hertzian frequencies (the maximum of 
which is considered to be 100 MHz) we can take for the real parts of the dielectric
permittivity ( r) and the conductivity ( ) values measured for a continuous stationary
regime, as in  and . In addition, medium (2) has a 
permeability equal to µ

r  = 81 -1 -1= 4 m
0 and is assumed to be non-magnetic.

1. The Maxwell equations
(a) Give the equation for the total current in medium (2).
(b) Write the four “Maxwell equations” for medium (2). 
(c) Using a rapid calculation (resembling that used for a vacuum), establish from the
Maxwell equations the equation for the propagation of an electric field (equation of 
partial derivatives followed by the electric field).
(d) Toward which forms does this equation tend on going from a nonconducting
medium to a medium where conductivity predominates?

2. The question concerns the search for a solution to the electric field in the form of 
a MPPEM wave where 0E = E exp(i[ t - k r ])  and k  is the vector of the complex

wave.
(a)  With the help of the equation for propagation, establish the equation that brings
together 2k , .r , and
(b)  From the general equation that exists for wavenumber and index, give the
equation that ties 2n , .r , and

3. Numerically compare the value of two terms that intervene in 2n . From this
determine the approximate and literal form for n (the imaginary number which is

such that n = n' - i n'' ) that can be expressed as a function of 
1
20(  )

2
.

4. This question concerns, within the approximation of the preceding question, the 
propagation of a wave with an incidence normal to the air/sea interface. 
(a) Give the theoretical form of the electric field that can be expressed as a function

of the parameter:
1
2

0

c 2
= (  ) = ( )

n µ
.

(b) At which order of depth (when  = 1 MHz  and = 100 MHz ) does the wave 
penetrate the water. Give a conclusion from the result.
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(c) What is its phase velocity (literal expression given as a function of the frequency
 and then a numerical value for when  = 100 MHz = 100 MHz ).

Answers
1.
(a) Taking into account the data given for the problem, for the medium with a real
conductivity ( ) and a real dielectric permittivity ( r), we can state that the total 
current density in the medium is a sum of the conduction current and the

displacement current, so T c D 0 r
D E

J = J + J = E + E +
t t

.

(b)  Here, with ,0

divE = 0 (1), divB = 0           (3) 
B

rotE=-
t

(2), r
0 T 0

E
rot B= J = µ E +

c² t
 . (4)

(c)  The calculation of the rotational of Eq. (2) gives:

rot(rotE)=- rot B
t

, so that r
0

E ²E
E= µ  +

t c² t²
. (5)

(d) If the medium is a nonconductor, we immediately find (with  = 0) the classic 

d'Alembert equation, as in r ²E
E 0

c² t²
, where r = n²  (see the relation

obtained Section 7.2.1.5 for nonabsorbing materials)
If the term due to conductivity is dominant, i.e., the medium is well conducting,

the propagation equation takes on the form 0
E

E - µ  0
t

.

2.
(a) By looking for a solution to the general Eq. (5) of the form

0E = E  exp(i[k r - t]) , we end up with the following equation to verify

(where 2 2E = i²k E = - k E ,
E

i E
t

, and 2²E
E

t²
):

2 2r
0k  = - i  µ

c²
.

Accordingly, afterward it can be verified that k, just as 22k ( k = k k ) are
complex.
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(b) With the general equation introduced into that for absorbent media [Eq. (25) of 

Chapter 7] as in k = n
c

, we obtain

2 2
r

0

c²
n  = k =  - i

²
.

3. Numerically, and for each of the two terms:
 for the first term, ;r  = 81
 for the second term, the minimum value is obtained at a maximum value of 

given in the Hertzian domain, which is . Thus,8
max = 100 MHz = 10  Hz 

0 min

719 .

So numerically, r
0

and the conducting component is largely dominant, so

that in practical terms we can state that: 

0
n² - i , so that with

0
i exp - i , then n² exp - i

2 2
 from which

can be deduced that 

0 0 0
n exp - i cos - + i sin - (1 - i).

4 4 4 2
With n = n' - i n'' (using electrokinetic notations), we finally have:

0
n' = n''

2
.

Comment: The numerical condition, r
0

, is the same as neglecting the

displacement current with respect to the conduction current. The complex index (n)
which is tied to the complex relative permittivity by the equation rn² =  is 

therefore such that rr
0 0

n² =  =  - i - i . The complex relative

permittivity is practically purely imaginary as is the case for a conductor subject to 

low frequencies for which exactly
0

(0)
n' = n'' =

2
 is found [see also the preceding

exercise, questions 1(b) and (c) with concerning the notation: (0) ].
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4.
(a) For a normal incidence, i( = 0) , with n1 denoting the index of medium (1), we 
have for the transmitted wave:

'
ty 0 1 ik = k  n  sin = 0 ,

1
' 2 2tz 0 1 i 0k = k R(n²-n sin² )  k n'

1
'' 2 2tz 0 1 i 0k = k I(n²-n sin² ) k n''

By using electrokinetic notation, the wavevector for the wave transmitted in medium
(2) is thus ' ''

t t z 0 z 0 zt tk k = k - ik e = k  (n' - i n'')e = k n e = k ez .

By making
0 0

1 1
k n' k n''

, so that with
0

n' = n''
2

,

0

0

2
c

µ
, and t

1 i
k = - ; the form of the electric field in medium

(2) is therefore: 
0 0 0

t
z z

E = E exp(i[ t - k r ])= E  exp(i[ t - k z ])= E  exp (- ) exp(i[ t - ]) .

The depth of the penetration is of the order of . The z noted above is equal to
several  and the transmitted wave is practically zero.

(b) In terms of actual numbers, when  and 8= 100 MHz = 10 Hz
8

8
c 3.10

=  =  = 3 m
10

, we find that -20c = 2.52 10  m = 2.52 cm .

When , ( , we find = 1 MHz  = 300 m) = 25.2 cm .
To conclude, we can see that for a depth z of the order of several , being here 

at most a meter or so, the wave signal is practically all absorbed, and it therefore is
not possible to communicate using Hertzian waves with a submarine. In effect, 
underwater communications are established using sonar with acoustic waves. 

(c) The speed of the phase is given by
c

v
n'

, and with
0

1
n' = 

k
, we have 

0

4
v  = =

µ
. Thus, if  decreases, v decreases also, and we arrive at a 

dispersion of waves.

In numerical terms, when , we have .= 100 MHz 7v  = 1.6 x 10  m/s



Chapter 12 

Total Reflection and Guided Propagation of 
Electromagnetic Waves in

Materials of Finite Dimensions 

12.1.  Introduction
As described in Chapter 11, there are two forms of total reflection:

 a reflection at a vacuum/perfect conductor interface where p
1

 <  <  and  R = 1, 

with , so that R  1; and p <  and (0) >> 0

2 a reflection between two dielectrics such that and .1n  > n 1 > 

The superposition of the incident wave with its reflected wave can lead only to
propagation, on average, when parallel to the surface. The resulting wave is in effect 
guided. By having a second interface, as shown in Figure12.1a, the propagation can 
be channeled between the two surfaces and the system constitutes a wave guide.

(a)
(b)

Figure 12.1. Wave guides. 

Wave-guides can be made with different geometrical configurations:
 with a rectangular cross section as shown in Figure 12.1b formed of two parallel
metallic planes and generally used for guiding waves with wavelengths of the
order of centimeters;
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 with a circular cross section so that the signal propagates in a central dielectric 
core which is bound within a metal surface to give a coaxial cable;

 for the optical domain, the phenomenon of total internal reflection provided by two
dielectrics is used, so that the internal dielectric at the heart of the cable has an 
index higher than that of the external dielectric which makes up the gain. When
the cross section is circular the result is an optical fiber, and when the cross 
section is rectangular, the result is an optical guide. In the latter case, in order to
assure wave guiding, i.e., confinement of the optical wave, different geometries
are used such as the buried guide shown in Figure 12.2 a or the strip guide in
Figure 12.2 b. 

(a) (b)

Figure 12.2. (a) a buried guide;  and (b) a strip guide. 

If the extremities of the guides are closed, then we end up with resonance cavities
that are used in oscillators and lasers. 

This chapter will look first at the form of the electromagnetic (EM) wave 
between two conductors in a coaxial cable. In a second part it will then describe the 
metallic total reflection for a perfect conductor along with the generation of 
stationary waves. Following this there will be a study of the propagation of a wave
between two plane conductors which will then yield a more general description of
the properties of a wave guide, most notably those termed buried optical guides.

Generally, metallic wave guides are hollow and have constant cross-sectional
widths and are used for the propagation of EM energy of relatively high frequency,
such as microwaves with attenuations being less than those for wires. It is worth
noting that attenuation in wave guides is due to small imperfections in the
conducting walls or imperfect characteristics of the conductor and dielectric losses
in the insulator in the case of coaxial cables. These losses will not be covered in any
detail, although losses due to material characteristics in an optical wave guide will 
be discussed.
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12.2.  A Coaxial Line

12.2.1.  Form of transverse EM waves in a coaxial cable
Here the coaxial cable is assumed to have infinite length and has a structure, shown
in Figure 12.3 a, made up of two conducting surfaces (C1) and (C2) which are 
cylindrical and around the same axis Oz. The C1 has a radius denoted by a, and C2 is 
assumed to have walls thick enough so that its internal radius (b) and its external
radius (e) are . It also is assumed that the two conductors are separated by
a dielectric that exhibits no losses and has an absolute permittivity denoted by .

a < b < e

a by

x z  x 

y

re
e

M

di
el

ec
tri

c

e

Figure 12.3(a) Cross section of a coaxial cable. 

Following the application of a sinusoidal current—which circles in one sense 
with respect to Oz in the internal conductor (radius = a) and on passing to the
external conductor circles in the opposite sense—there is between the two
conductors a radial and symmetrical electric field that has a form given by

0 rE (r,z,t) = E (r) exp i[ t - kz] e .

It is supposed that the amplitude of the electric field at the surface of the
internal core is given by . Initially assuming that the two conductors are perfect 

and for a point (M) with cylindrical coordinates r, , z, we will look for forms of 
and , along with the intensity.

aE

E
B

12.2.1.1.  Form of 0E (r)

For a point M in a dielectric, where there is no real charge, the Maxwell-Gauss 
equation is written as div E 0 . Changing this to cylindrical coordinates, in that

r zErE E1 1
div E

r r r z
 with E  having components rE , E 0
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and , this equation can be reduced tozE 0 rrE1
0

r r
, so that 

(value of constant of r is r0r E (r) = constant = a Ea a ).
From this can be deduced that 

a
0

a E
E (r) = 

r
, and a

r
a E

E (r,z,t) = exp(i[ t - kz])e
r

. (1)

The amplitude of the electric field varies by 
1
r

 in the dielectric and passes, 

between the core and the gain, from the value toaE a
a

E
b

. From this can be

deduced the graphical representation given in Figure 12.3 b for perfect conductors
which exhibit internally .E= 0

a e  b

Ea

a
a

E
b

E0

r

Figure 12.3(b). Field within a coaxial cable. 

12.2.1.2.  Form of B

Here the Maxwell-Faraday equation, as in
B

rot E = -
t

, is used but with the

cylindrical coordinates:
z r z

r z
1 E E E E 1 rE E

rot E = e e e
r z z r r r

r  .

As , and is independent of , we have more simply:zE  = E  = 0 rE = E

r r z
r z

E B B B
e =- e - e - e

z t t t
. By identification according to the components

and following a simple integration, we obtain:

rB  = constant , .zB  = constant
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Solutions that do not represent propagation are rejected (see Section 6.3.1 of this
volume) and constants are assumed to be equal to zero, so that

r
0 0

E k
B = B  = - dt = jk E (r) expi( t-kz) dt=  E (r) exp(i[ t - kz])

z
.

In terms of vectors, we thus obtain:

a
a k

B = E exp i( t - kz) e
r

  . (2)

The B  field thus is orthoradial. In addition the E  and B  fields are in phase 

and orthogonal. The ratio of their amplitude is such that 
E

=
B k

, but as a difference 

of plane waves, their amplitude varies by
1
r

.

12.2.2. Form of the potential, the intensity, and the characteristic impedance of 
the cable 

12.2.2.1.  Form of the vector potential

The vector potential, denoted by A(r,z,t) and directed along Oz, is such that

, so that with respect toB = rot A e  it is given by
A

B = -
r

. By integrating with

respect to r, we have 

a
k d

A = - B dr = - a E exp i( t-kz)
r
r

, from which

a z
k

A(r,z,t) = - a E  Ln r + Cte exp i( t-kz)  e .

By taking the origin of the vector potentials as r = a (on the core of the central 

conductor), the constant can be fixed as: a
k

c ,  so that finally,onstant = a E  Ln a

a z
k a

A(r,z,t) =  a E  ln exp i( t-kz)  e
r

.
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12.2.2.2.  Form of the scalar potential

Along Oz the equation
A

E = - gradV -
t

 gives
V A

0 = - -
z t

, so that with the

equation for A, we have a
V A k a

= - = - j a E  ln exp i( t-kz)
z t r

. By 

integrating with respect to z and also by taking the origin of (scalar) potentials as r = 
a, then it is possible to state that:

a
a

V(r,z,t) = a E Ln exp i( t-kz)
r

   . 

12.2.2.3.  Form of the intensity
Ampère's theorem applied to a circular cross section of the cable and passing
through a point M is written as 

0 0 0 0
(C)

E
B.dl= µ j + µ d µ j + i µ E  d

t
. With E being radial

and  (section perpendicular to the plane of the circle), Ampère's theorem can
be written as

E

0 0
(C)

B.dl  = µ j d  = µ I .

The result is that
0

2  r B
I = . Given the expression for B, and with

µ

r

c c
v  = = =

k n
, we obtain

0 r aI = 2  a c  E exp i( t - kz) . (3)
Equation (3) also can be rewritten as 0I = I  exp(i[ t - kz]) , with

0 0I  = 2  a c Er a .    (3’) 

12.2.2.4.  Characteristic impedance (Zc)

We have a b a b
c

V -V V (a,z,t) -V (b,z,t)
Z =

I I
. By using the expressions for V and

for I we can directly obtain
a

c
0 r a

b
a E Ln

aZ =
2 c a  E

, so that c
0 r

b
Ln

aZ =
2 c

.   (4) 
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With 0 9
1

 = S.I.
36  10

, and , we have8c = 3 x 10 m/s 0
1

2 c
60

, from which

c
r

60 b
Z = Ln

a
. (4’)

12.2.3.  Electrical power transported by an EM wave

From Ampère's theorem we obtained 0µ
B = I

2 r
, so that from Eqs. (2) and (3'), it is 

possible to state that 0
0

µ
B= I  exp[i( t - kz)] e

2 r
.

Using an equation developed in Section 12.2.1.2, i.e.,
r

E c
= = v =

B k
,

we have 0

r r 0

c µ c 1
E = B = I = I

2 r 2 r  c r
, so that in vectors:

0

0 r

I
E =

2 r  c 
 . 

The Poynting vector therefore is in the form
0

E×B
S =

µ
, so that by taking the real

solutions for E  and  gives us B 2
0 z2

0 r

1
S I  cos²( t-kz) e

2 r c
.

The average value of with respect to time is cos²( t-kz)
1
2

, so that:

2
0 z

0 r

1
S I

8 ²r² c
. e .

The average power transported by the EM wave is given by the flux of the average 
Poynting vector through a ring composed of the circles with radii a and b. 

2 2
b0 0
a

0 r 0 r

I 2  rdr I b
P = S .d = = L n

r² a8 ² c 4 c
.
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12.2.4.  Conductor with an imperfect core that exhibits a resistance and the
attenuation length

Power dissipated along the length of an element (dz) of a cable with resistance given

by
1 dz

dR =
a²

 is , so that with Eq. (3’), we have dp = I²(z,t)dR

0
1 dz

dp = I ² cos²[ t - kz]
a²

. The average power loss with time for a length dz is

thus
2
01 1 I

dP = <dp> = dz
a² 2

.

The loss relative to the power is finally given by:
2
0

0 r
2
0

0 r

1 1 I
2 cdP a² 2 dz= dz

bP I b  a² LnL n aa4 c

.

By introducing Eq. (4) for the characteristic impedance we also have:

c

dP 1
dz

P a²  Z
. Integration with respect to z gives for the z abscissa

c

z
P(z) = P(0) exp -

a²Z
.

This equation is in the form
z

P(z) = P(0) exp -
L

, with where L is 

the attenuation length of the cable, i.e., the distance over which the power is divided
by e .

cL = a²Z

2.7
In numerical terms, with anda = 10 mm b = 40 mm , , and 

, we have 

7 -1 -1= 5 x 10 m
r  = 4

c
60

Z  = ln 4 42
2

, and L 660 km .

12.3.  Preliminary Study of the Normal Reflection of a Rectilinearly Polarized
MPPEM Wave on a Perfect Conductor, Stationary Waves, and Antennae

12.3.1.  Properties of a perfect conductor  and equations of continuity at the
surface

As shown in Chapter 11, problem 1, for relatively low frequencies, such that
1

 << , and with the condition that the continuous conductivity is sufficiently
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large so that 0(0) >> , and that within a range of frequencies that does not go
too high ( ), the reflection at a conductor can be assumed to be total, as in

, with as a consequence a dephasing equal to .
p<<

r - 1
A medium is assumed to be a perfect conductor if its conductivity is quasi-

infinite. The result is that Ohm's law for a volume of the conductor, written ,

shows how 

j = E

j  stays infinite as  (perfect conductor), and the field in the

conductor, which is here denoted by CE , can be equal to zero.
With respect to the magnetic field, the Maxwell-Faraday relation, which is 

written
B

rot E= -
t

, indicates that B = constant . A static magnetic field cannot

exist without a distribution of permanent currents, and in the absence of their
application (as is assumed here) the field in the conductor denoted CB  can be equal
only to zero. In other words, there is no magnetic field in a perfect conductor under a
varying regime. Finally, as  and CE  = 0 CB = 0 , the EM wave cannot penetrate into
a perfect conductor under a varying regime.

In addition, the volume of a perfect conductor can be assumed to be electrically
neutral. The charges are sufficiently mobile so that an excess in one given charge,
for example, positive, is immediately compensated for by the movement of opposing
charges. Further details can be found in Section 1.3.5. In very simple, and perhaps 
too simple terms, the charges can be assumed to be infinitely mobile (as ,
so if , then the mobility µ ), so that there can be an instantaneous
return to neutrality. Finally, any charges can only appear at a discontinuity such as a 
surface of the metal where from the point of view of a given charge, there cannot 
materially exist opposite charges in a vacuum (an excess of charges of a given type
thus is possible at the surface). The contents of the envelope of the conductor are 
electrically equivalent to a vacuum and the laws of continuity at the
vacuum/conductor interface only bring in the permittivity and permeability of a 
vacuum, along with the possible surface charge (

= qnµ

s) and surface current ( )
densities.

sj

By denoting as  (21n z-e as indicated in Figure 12.4) the normal that goes 
from medium (2) (the metal) to medium (1) (the vacuum or air), we can apply to the
vacuum/metal interface the following classic conditions of continuity (generally 
cited in the first years of university courses):

1t 2t

1n 2n

E = E

B = B

s
1n 2n 21

0

1t 2t 0 s 21

E - E = n

B - B = µ j ×n

C 2

C 2

, so with E  = E  = 0

, so with B  = B = 0

s
1n 21

0

1t 0 s 21

E = n

B = µ j ×n
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12.3.2.  Equation for the stationary wave following reflection
The system under study is that of a vacuum/metal interface in the presence of a 
monochromatic (with angular frequency denoted by ) EM wave undergoing a 
plane incidence (with respect to the normal at the interface so that ) and
progressing along Oz as shown in Figure 12.5 a with the incident wavevector

. The wave also is polarized rectilinearly along Ox and is assumed to be 

of the form

1 = 0 °

i 0k = k ez
0
i 0iE = E exp[i(k z - t)]  ex .

The wave reflected into the vacuum will have the same angular frequency as
the incident wave (due to the properties of the media) and the wavevector of the
reflected wave ( rE ) will have the same modulus ( ) as the incident wave. 
Following a reflection under a normal incidence, the wavevector of the reflected
wave is according to the first Snell-Descartes law given by k =

0k

r i 0 z- k = - k e . In 

addition, rdiv E = 0 , from which r rk E  = 0 , showing that the reflected wave also is 
transversal (parallel to Oxy). In the medium (1) (vacuum) the resultant wave thus is 

1 iE = E + Er

C

 and is parallel to Oxy (in a tangential plane).

x

y

iE

i

ik

B

rk

rE
rB

medium (1) 
vacuum

n21

medium (2) 
metal

z

Figure 12.4. Vacuum/metal interface. 

As mentioned above, with the conductor being perfect, the fields that have been 
denoted  in the conductor are zero. At (where

), we can state that
CE  and  B z = 0

2t CtE (z = 0) = E 0 1t 2tE = E = 0 , so that

1t i r0 = E (z = 0) = E (z = 0) + E (z = 0) , from which : 

r iE (z = 0)= -E (z = 0) .
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The reflected wave is polarized parallel to the incident wave, that is to say that along
 with an amplitude such that . Thus, the reflected wave has the form:xe 0

rE = - E0
i

0
i 0rE = - E exp[i(- k z - t)]  ex .

In medium (1) (vacuum), the resulting wave thus is given by:

1 i r
0
i 0 0

0
i 0 x

E E  E

  = E exp[i(k z - t)] - exp[i(-k z - t)] e

2i E sin k z exp[-i t] e

x .

t1

t2 > t1

signal

z

t2 > t1

signal
t1

z

(a) progressive wave (b) stationary wave 

Figure 12.5. (a) Progressive; and (b) stationary waves. 

The physical solution for the resultant wave in a vacuum thus is finally given by

0
1 i 01E  = R(E )= 2 E sink z sin t ex

where the spatial and temporal dependences are now separated. The phase velocity 
thus is zero, and the wave is stationary, as shown in Figure 12.5 b (see also Section
6.2.5).

12.3.3.  Study of the form of the surface charge densities and the current at the 
metal

12.3.3.1.  The surface charge density of zero 

The normal components of the electric field are zero in medium (1) ( x1E  // e ) as in 

medium (2) (where ), and the normal component of the electric field does 

not give rise to any discontinuity, so
CE  = 0

2n 1nE = E (= 0) , where s = 0 .



Basic electromagnetism and materials378

12.3.3.2.  Form of the surface current density

12.3.3.2.1. Equation for sj
As can be seen in Figure 12.4, which schematizes the results obtained for a reflected
wave, following reflection iB  and rB  remain in phase. In medium (1) the resultant
magnetic field thus is given by:

i r1 i r i r
1

B = B + B = k ×E + k ×E ,

so that with  andr i 0 z- k = k = k e 0 0
r x i x-E  e = E e  we have 

0z x
0 i 0 01

e ×e
B  = k E exp ik z +exp -ik z exp -i t .

With 0k  =
c

, we obtain for the physical solution for a vacuum

0
i

1 y 01
2E

B  = R(B ) = e  cos k z  cos t
c

 . 

The magnetic field thus is directed parallel to the interface. 

As in a metal  (andCB = 0 2tB = 0 ), the tangential component of the magnetic
field undergoes a discontinuity at the interface. Therefore, there must appear a 
surface current density ( ) at the interface so that the equation for continuity (end 
of preceding Section 11.3.1) 

sj

1t 0 s 21 0 s zz = 0
B = µ j ×n µ j × e , so that 

1t z=0
z s

0

B
e  × j .

By multiplying by vectors the right-hand side by ze  and on noting that ze sj , we 
obtain:

01t iz 0
s z x

0 0

B 2E
j = ×e = e cos t

µ c
.

Of note then is that  (s ij  // E x//e ) and the current density is collinear to the incident
electric field. Physically, the current density is the result of the polarization of the
metal by the electric field. 



                                                  Chapter 12.  Total reflection and guided propagation 379

12.3.3.2.2. Comment
As Figure 12.4 illustrates, the magnetic field vectors of the incident and reflected
waves are parallel to the interface. Their resultant normal component in medium (1) 
thus is zero, thus assuring the continuity of the normal component of B , as in 
medium (2) the magnetic field is zero ( CB = 0  implies that 2nB = 0 ).

12.3.3.3.  Applications
This property is the basis of the use of metallic antennae for detecting EM waves.
With the antenna lines parallel to the direction of polarization of the incident wave,
the current density detected is at a maximum and directly proportional to the
intensity of the incident electric field. If the lines of the antenna are not parallel to
the incident wave, then the detected current density is no longer proportional to the
intensity of the component of the electric field at a parallel incidence to the antenna
lines, as shown in Figure 12.6.

Figure 12.6. Relation between the disposition of the antenna lines and the detected current.

With a metal never being a perfect conductor, in effect the current circulates
over a thickness several times greater than the “skin” thickness ( ). If the thickness
(d) of the metal is such that d < , a part of the wave in fact can be transmitted.
However, if , the metal becomes a real obstacle to the propagation of the EM
wave and will create an electromagnetic shield.

d >>

0
ix

0
iyE

0
iE

detected current density
proportional to 0

ixE
E
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12.4.  Study of Propagation Guided between Two-Plane Conductors: Extension 
to Propagation through a Guide with a Rectangular Cross Section

12.4.1.  Wave form and equation for propagation between two conducting planes

        z 
                a 

y

y
 x 

O

Figure 12.7. Propagation between two-plane conductors. 

This section considers a wave propagated along Oy in a vacuum without attenuation
between two-plane and perfect conductors separated by a given distance (a) and 
assumed to be of great dimensions (with respect to a) in directions Oy and Ox. 

With the system being invariant with respect to Ox, the field ( E ) does not
depend on x and it can be assumed that E  is a monochromatic wave in the form

gmE = E (z) exp[i(k y - t)] ,     (1) 

where kg is a positive constant.
Equation (1) is valid uniquely between the two-plane conductors. Above and 

below these planes, the electric field is zero (metallic planes inside which E= 0 ).
Additionally, in a plane normal to the direction of propagation, the wave is not
uniform and cannot be assumed to be planar.

Between the two plane conductors, dominated by a vacuum, the equation for

propagation is
1 ²E

E - = 0
c² t²

 [from Eq. (5) of Chapter 6]. Taking Eq. (1) into 

account and by making a calculation resembling that in Section 11.2.6, we have 

m
g m

d²E (z) ²
+  - k ² E (z) = 0

dz² c²
. (2)



                                                  Chapter 12.  Total reflection and guided propagation 381

The tangential component of the electric field, situated in a plane parallel to
Oxy, exhibits two components denoted Ex and Ey which are such that the limiting
conditions are [with mE (0) = 0  and mE (a) = 0 ]

mx myE (0) = E (0) = 0 , and mx myE (a) = E (a) = 0 . (3)

For its part, the continuity of the normal component of B  is 

mz mzB (0) = B (a) = 0 .  (4) 

12.4.2.  Study of transverse EM waves
Here the possibility of the transverse wave propagating at a velocity (c) along Oy 
with, on the one side (nondispersion solution as vv  = c  = constant), and on the

other
g

v =
k

 [equation for v in agreement with Eq. (1)], we have gk  =
c

.

We shall now determine the corresponding exact form of the electric and magnetic
fields.

12.4.2.1.  Form of the electric field (given by mE (z) )

Equation (2) for propagation thus is reduced to md²E (z)
= 0

dz²
. Two successive 

integrations with respect to z give m 1E (z)= C  z + C2 ,       (5)

where 1C  and C2  are two constant vectors. The conditions

mx myE (0) = 0 and E (0) = 0 , respectively, give:

2x 2yC  = 0 and C  = 0 

and similarly, from mx myE (a) = E (a) = 0  we can deduce that

1x 1yC = 0 and C  = 0 .

Finally the vectors 1C  and C2   only have components in the z direction, and are of 

the form z1 1zC  = C e  and z2 2zC  = C e .  Eq. (5) can therefore be rewritten as 

zm m1z 2zE (z)= C  z + C e = E (z) ez . (6)

Gauss's equation gives then for its part div E= 0 , where mdE (z)
= 0

dz
,

while Eq. (6) gives m
1z

dE (z)
= C

dz
. From this can be deduced that 1zC = 0 , such that

z zm m2zE (z) = C e  = E e



Basic electromagnetism and materials382

where mE is a constant. For this type of wave, mE (z)  is a constant vector parallel
to . The electric field, also parallel to ze ze , thus is in the form

gmE = E {exp[i(k y - t)]} ez .     (7) 

12.4.2.2.  Form of the magnetic field
With the wave assumed to be monochromatic, the Maxwell-Faraday equation makes

it possible to state that
B

rotE= - =- (- i B)
t

, from which can be deduced directly

that
i

B = - rotE .

From Eq. (7) for , we can deduce that: E

g x g gm mrotE = E exp[i(k y- t)] e ik E exp[i(k y- t)] e
y x  , with the result that

g
gm

i²k
B = - E exp[i(k y- t)] ex , so with gk  =

c
 we have 

m
g

E
B = exp[i(k y- t)]  e

c x . (8)

We can note that this result is identical to that which would be obtained had we

used the equation for plane waves as in gk ×E
B = , which a priori cannot be used 

here directly as the wave cannot be assumed to be completely planar. Nevertheless,
Eqs. (7) and (8) demonstrate that here again E  and B  are transverse, and hence the 
term “transverse electromagnetic wave” or TEM wave. 

12.4.2.3.  Comment: The rectangular cross-sectional wave guide
If we envisage that in a rectangular guide, as shown in Figure 12.1 b with an axis as 
in Figure 12.7, there is a wave that propagates at a given speed (c), then the limiting
conditions imposed on that wave are:
 in one part by the parallel metallic planes with sides and , which result
in the electric field taking on a form given by the equation (see also results from
Section 12.4.2.1):

z = 0 z = a

g zmE = E {exp[i(k y - t)]} e

where mE  is a constant and E  also is parallel to ze  (at whatever value of x); 



                                                  Chapter 12.  Total reflection and guided propagation 383

 and in another part, fixed by the second system of metallic planes parallel at the 
sides to and with respect to Ox (0 being on the side of the plane Oyz
and b on the side of the plane to which it is parallel), impose that for x  and 

,  so that 

x = 0 x = b
= 0

x = b E= 0 mE = 0 . This trivial solution is not a physical one, as the
possibility of propagation at the speed c along Oy is not available to a guide with a
rectangular cross section.

12.4.3.  Study of transverse electric waves (TE waves) 
Here we study the possibility of a wave propagating in the guide plane Oxy. The
wave is thus polarized in accord with the breakdown given by: 

xx yE = E e + E ey ,     (9) 

and has a form given by Eq. (1), as in gmE = E (z) exp[i(k y - t)] = E(y,z) .

12.4.3.1.  Polarization direction of the electric field
Under these conditions, Gauss's equation gives:
div E= 0

yx z
g y

dEdE dE
= + + = ik E

dx dy dz yE = 0

                = 0       = 0 
  (as x xE = E (y,z) )     (as zE = 0 )

Equation (9) thus is reduced to xxE = E e  and the electric field is polarized 
along Ox perpendicularly to the direction of propagation Oy. The wave is termed
“transverse electric” and denoted TE. The electric field can be written:

x g gmx mxE = E (z) e  exp[i(k y - t)] = E (z)exp[i(k y - t)] . (10)

12.4.3.2.  Solutions for the propagation equation
Equation (2) for propagation becomes:

mx
g mx

d²E (z) ²
+ - k ² E (z) =

dz² c²
0 . (11) 



Basic electromagnetism and materials384

12.4.3.2.1.  First case 

If g
²

- k ² = - ² < 0
c²

 (where is real), so that gk  >
c

, the solution to

Eq. (11) is:
mx 1 2E (z)= C exp( z) + C exp(- z) .

With mxE (0) = 0 and mxE (a) = 0 , we can deduce that, respectively,

1 2
1

1 2

C  = - C
2C sh a = 0

C exp( a) + C  exp(- a) = 0

With , we deduce that sh a 0 1 2C = - C = 0 , so that mxE (z)= 0 , and there is no 
possible physical solution in this case.

12.4.3.2.2.  Second case

If g
²

 - k ² = K² > 0 
c²

 (with K being real), then gk  <
c

and the solution to Eq.

(11) is given by

mx 1 2E (z)= C  exp(iKz) + C exp(-iKz) . (12)

The limiting conditions, mxE (0)= 0 and mxE (a)= 0 , respectively, give: 

1 2
1

1 2

C  = - C
2iC  sin ka = 0

C  exp(ika) + C  exp(-ika) = 0
,

so that
m

 K =
a

, with m being a whole nonzero number.

Substituting these results into Eq. (12), we gain:

mx 1
m

E (z)= 2 i C  sin z
a

. (13)

The electric field, according to Eq. (10), is of the form x gmxE = E e exp[i(k y - t)] ,

so that with Eq. (13), we find that y g1
m

E= 2 i C  sin z e exp[i(k y - t)]
a

.

By choosing the origin of the phases as being at at a time , then it isy = 0 t = 0
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imposed that 12 i C is real, as in 12 i C = E° , and we have 

x g
m

E= E° sin z e exp[i(k y - t)]
a

 . (14)

12.4.3.3.  Proper vibrational modes 

With
m

K =
a

, we thus have:

2
g

² m² ²
= k +

c² a²
 , (15)

from which 2
g

²
 = c k + m²

a²
. The equation  is not a linear relation and

the system undergoes dispersion.

g= f(k )

When m and ,= 1 gk 0 c
c

=
a

  (Figure 12.8).

For any value of m and ,gand k 0 m c
c

 = m  = m
a

.

4 c  = ck m = 4

m = 1

m = 2

m = 3

c
c

=
a

2 c

3 c

  k 2    k 1  k 3 kg

Figure 12.8. Dispersion plots for  = f(k).

For a given value of , there are many possible values of . They 

are associated with whole values of m which are of a limited number as in the
g 1 2 3k  : k , k , k
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second case, g
² m² ²

 - = k ² > 0
c² a²

, so that
m² ² ²

<
a² c²

, which is: 

c

a
m <  = 

c
.

For each value of m, or of kg, there is associated a solution of the electric field
that assures a propagation of the field without modification of its intensity along the

guide (for given values of m and z, the intensity is given by
m

E° sin z = Cte
a

,

). These are the guide modes, and the different values of  are 

called the proper modes of spatial vibration of the guide.

y g 1 2 3k  (k , k , k ...)

Only signals with angular frequencies higher than c
c

=
a

 (termed the cutoff 

frequency) can propagate in the guide.
This angular frequency corresponds to a wavelength in the vacuum given by

0c
c

2 c
= = 2a . The condition c  also can be written as 0 0c  = 2a .

12.4.3.4.  Form of B
The magnetic field can be taken from the electric field given in Eq. (14) with the

help of the Maxwell-Faraday relation,
B

rotE = - = i B
t

, so that:

0x
g

0x
g g

0
i -i E m m z

B = - rotE ( ) ( )=- i( ) E [cos ( )] exp[i(k y - t)]  .
z a a

-i - E m z
( ) ( )= - (k / ) E  [sin ( )] exp[i(k y - t)]

y a

(16)

The  is in phase with  and in the squared phase, or quadrature, of the

longitudinal component ;
xE = E zB

yB 0 B  therefore is not transverse and the wave is

simply a transverse electric wave and not a TEM.
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12.4.3.5.  Propagation of energy

With gmE = E exp(i[k y - t])  and gmB = B exp(i[k y- t]) , the average over time

for the Poynting vector is given by (see also Section 7.3.3) :

*
m m

0

1
S = R(E ×B )

2µ
.

Taking the form of the electric and magnetic fields into account, the direct

calculation of *
m mE ×B shows that the vector has a purely imaginary component

with respect to Oz. The associated average value, which corresponds to the real part,

is therefore zero. With respect to Oy, the component of *
m mE ×B , however is  real so 

that the propagation of the energy is through Oy, the direction of wave propagation.

12.4.3.6.  Phase and group velocities 
The phase of the wave is given by g(k y - t)  and its phase velocity is given by

g
v  =

k
. With 2

g
² m² ²

k = -
c² a²

, we have 1/ 2 v  =
² m² ²

-
c² a²

, and as c
c

 = 
a

,

therefore

2 2
c

2

c
v  = > c

m
1 -

   . 

For its part, the group velocity is g
d

v  =
dk

. By differentiating Eq. (15), we 

obtain g g2
2

d  = 2k dk
c

, from which:

g
g

g

kd c²
v  = = c² =

dk v
 . 

With , then while noting that  also is verified. v > c gv  < c gv  v  = c²
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TEM wave 

TE wave v

vg

c

c

v

Figure 12.9. Plots of vg = f( ) and v  = g( ).

Variations in vg and in  v   as a function of  are indicated in Figure 12.9 for 
. When , so that alsom = 1 c >> 0 << 2a , we have ck , and vg just as v

tends toward c. The wave guide is no longer dispersing. This is found in metallic
guides with “a” being of the order of a millimeter, the optical waves which are such 
that  is true propagate with the same speed as if in a vacuum (TEM wave).0  << 2a

12.4.4. Generalization of the study of TE wave propagation to a guide with a
rectangular cross section, and the physical origin of the form of solutions
for the electric wave 

12.4.4.1.  Generalization of the study of TE wave propagation to a guide with a
rectangular cross section

                    z 

                            a 

                                                         y 

       b 
 x 

O

kgE

Figure 12.10. Propagation in a guide with rectangular cross section. 
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In place of studying the propagation of a TE wave, polarized with respect to 
Ox, between only the metallic planes parallel to Oxy as noted above, here the
propagation is through a wave guide with a rectangular cross section so that it has
two supplementary metallic sides at 0 and b with respect to Ox and parallel to Oyz 
(Figure 12.10). 

The form of the preceding solutions (Section 12.4.3) is still, a priori, valid, as 
the conditions required for the continuity of the tangential component of the electric
field in the planes parallel to Oxy and on the sides z = 0 and z = a still should be 
true, so the solution given in Eq. (14), i.e.,

x g
m

E= E° sin( z) e  exp[i(k y - t)]
a

must still be a solution, and the procedure therefore is to simply find out the
consequences of the supplementary limiting conditions due to the presence of a
second system of metallic planes, as in: 

t tE (0) = E (b) = 0 ,
where Et represents the tangential composition of the electric field in the planes Oyz
of the sides and .x = 0 x = b

In effect, as the solution for the TE wave for E  is parallel to xe , the tangential
component of the electric field in the planes parallel to Oyz is zero, which accords to 
the new limiting conditions for whatever value of b. This latter dimension of the
guide therefore plays no role in the solutions for the electric field, which thus remain
unchanged.

Note: However, to state that the solutions for a system based on two parallel
planes also are solutions for a rectangular guide does not mean that in the latter
system there are not other solutions for transverse waves. To the contrary, we can 
show that the general solutions for the transverse electric waves (TE waves and as a 
consequence with yE = 0 and yB 0 ) give rise to components along Ox and 

Oz. For this, it would be correct to look for solutions for E  in the form:

gx mx

y

gz mz

E  =E (x,z) exp[i(k y - t)]

E E = 0

 E = E (x,z) exp[i(k y - t)]

(and thus with E // Oxz , the solutions would again correspond to those for a TE
wave).
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For the equation of propagation, we therefore look for solutions to a variable
separated such that, for example mxE (x,z) = f(x).g(z) . This can be done by
proceeding as was the case for the parallelepiped potential box. The rather long
calculations show that in general terms E  has the components:

gx x
z x

E = A sin m  cos n  exp[i(k y- t)]
a b

, and 

gz z
z x

E = A cos m  sin n  exp[i(k y- t)]
a b

,

where Ax and Az are complex constants. 

The corresponding wave is denoted TEmn  and Eq. (15) for the dispersion is replaced 
by :

2
g

² m² ² n² ²
= k +

c² a² b²
.      (15’) 

In even more general terms, if the vacuum in the guide is replaced by a 
dielectric without loss in permittivity ( ), then Eq. (15') would

become 2
0 g

m² ² n² ²
² µ = k +

a² b²
.

Thus Eq. (15’) shows that when b > a , the mode associated with the lowest
angular frequency is the wave TE01 (such that zE 0 while x yE  = E = 0 ).

When , the low frequency mode, also called the dominant mode, corresponds
to the TE

a > b
10 wave ( ), which is thus such thatm = 1, n = 0 z yE  = E  = 0 , and:

gx xE  = A  sin z  exp[i(k y- t)]
a

 . 

The latter equation is the form of the TE wave studied thus far, which we will
continue to use in its general form (TEm0 wave polarized with respect to Ox) as an
example solution in order to interpret the physical origin.

12.4.4.2.  Physical origin of the solution form of a TE wave: TEm0 wave given to 
support argument for a wave polarized with respect to Ox 

x g x gmx
m

E= E (z) e exp[i(k y - t)] = E° sin z e exp[i(k y - t)]
a

.
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Here we will study a monochromatic plane EM wave rectilinearly polarized with 
respect to Ox in a guide that is alternately reflected against the planes sides z = 0 and 
z = a parallel to the plane 0xy and as shown in Figure 12.11. 

 a 

z
M

P

 O
 x 

  Q 
i k

rk

y

Figure 12.11.  Propagation of a monochromatic plane EM wave with successive 
 reflections on plane sides  z = a and  z = 0. 

At any point (Q), the wave is the result of incident and reflected waves that
have fields in the form:

0
i i iE = E sin(k r - t)  ex  and 0

r r rE = E sin(k r - t)  ex .

In a vacuum, we have:

i r 0k = k = k =
c

, and Descartes first law gives i r= = , for which: 

i 0

0

0
k k  sin

k  cos
r 0

0

0
k  k  sin

- k  cos

The wavevector of the incident wave depends on the direction of the
incidence and belongs to a plane parallel to Oyz, and is by consequence normal to
the direction Ox of wave polarization. It is worth noting that in fact

ik

i 0k = k , and that

by denoting the wavevector of the oblique wave in the guide as 0k  , we can state 
that:

0 0 y 0k = k  sin e + k  cos ez ).

The dephasing by  of the reflection at the perfect conductor (due to the
limiting condition at the metallic plane, at z = 0 or z = a, where the resultant
tangential field must be equal to zero) gives:

0 0 j
r iE = E  e  = -E0

i .
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At the point Q, the resulting wave is thus:

i r
0 0
i 0 0 x i 0 0 x

E = E + E

= E [sin(y k  sin  + z k  cos  - t)]e - E  [sin(y k sin - z k  cos  - t)]e

With
p + q p - q

sin p - sin q = 2 cos  sin
2 2

, we obtain:

0
i 0 0E = 2 E {sin([k cos ] z)} {cos([k sin ]y - t)}ex . (17)

This form of the solution of the wave contains two parts:
 one part due to propagation and associated with the term ,
which shows that the propagation is carried out with a wavevector given by

0cos([k  sin ]y - t)

g 0k = k sin ey  (such that g 0k .r = y k sin ) where gk thus represents the 

definitive wavevector which “pilots” the wave guided along ye ; and 

 a part due to a stationary term given by 0sin([k  cos ]z ). This term corresponds to

a wavevector s 0k = k  cos  ez  and as such must verify s 0k .r = [k  cos ] z .

The wavevector 0 0 y 0k = k  sin e + k  cos ez  therefore is such that

.0 gk = k +ks

With respect to Oz, the presence of a node (E = 0) at z = a demands that
 so that  (0sin([k cos ]a) = 0 0[k cos ]a) = m , from which with  we 

have

0 sk cos  = k

s
m

k  =
a

. From this can be deduced that s 0
m

k = k  cos  = cos  =
c a

, so 

that in addition cc
cos  = m = m

a
 . This occurs for values of m of   such that:

c
m = Arc cos m . (18)

We also can state that following Pythagoras's law as shown in Figure 12.12,

that , which means that2 2
0 g sk = k + k2 2

g
² m ²

= k +
c² a²

²
,  which is an equation

identical to that of Eq. (15).
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 a 

z

0k

gk

sk

   O
 x y

Figure 12.12. Breakdown of the vector 0k  such that .2 2
0 gk = k + k2

s

With , we can deduce that for varying values of m there are 

corresponding different values of  which can be denoted by
g 0k = k  sin

m, and are such that: 

2
0 m

² ²
= k  sin² +

c² a²
m²

, so that in addition,
2
c

m 21 =  sin , hence the 

equation equivalent to Eq. (18), as in:

² + m²

2
c

m 2 = Arc sin 1 m² . (19)

In numerical terms, for a value of a of 3 cm, we can determine that
c

c
c

 =  = = 5 GHz
2 2a

. When = 12 GHz (which verifies c> ), we obtain

for when m that and when m , we have = 1 1 66 °  = 2 2 37 ° .

Finally, it is the angle of incidence (i') at the entrance of the guide that
determines the mode of propagation (detailed further on Section 12.5.2 and Figure
12.17).

12.4.4.3.  Physical representations

   O

  a 

z

P
gk

- sk

gk

sk
0 ik = k

rk
    x 

y

Figure 12.13. Geometrical representation of the k  vectors.
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12.4.4.3.1.  Wave breakdown
The superposition zones of the incident wave with the reflected wave on the metallic
planes give (see Figure 12.13):
 with respect to the Oy axis, a progressive wave with a doubled amplitude due to
the superposition of two progressive waves with the same amplitudes and both
with the same wavevectors given by gk , such that for the incident wave 

 and for the reflected wave g ik = |k | sin ey yg rk = |k | sin e ;  and 

with respect to the Oz axis, a stationary wave that by superposition of the two
progressive waves with the same amplitude but propagating in opposing senses 
such that the wavevector of the incident wave is sk  and for the reflected wave 

is .s- k

12.4.4.3.2.  Different speeds 

Figure 12.14. Definition of the points P, M, N, and H used to 

  a

z

N’
 O  x 

M

P
  Q ik

rk
 H 

N

y

 illustrate the various speeds.

Figure 12.14 shows an incident ray along PM which is a progressive wave such that
. We thus have:PM = c

g

0

kPM
= cos -  = sin  = 

NM 2 k
, so that with (see Section 12.4.3.6)

gk  =
v

, and 0k  =
c

 then:

PM c
= sin  =

NM v
. From this can be deduced that

PM c
NM = =

sin c/v
,

which in turn means that NM = v .

PH
= sin

PM
, from which PH = PM sin = NM sin² , so that

2

g
c c²

PH = (v ) =  = v
v v

.
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The three speeds, c, v , and vg, respectively, correspond to the following:

  c is the speed of point P on the zigzag trajectory of incident and reflected waves 

i r 0(k  = k = k  = )
c

;

 vg is the displacement speed from P to H, in other words the displacement of P
along a trajectory globally parallel to Oy, such that (the resultant speed

given by v
gv  < c

g of the point P on the resultant direction thus is inferior to the speed 
along the instantaneous zigzag trajectory); and 

 v is the speed of a point N with respect to the direction Oy. The N has no material
reality and as it physically represents none of the characteristics of a wave it is not 
subject to relativistic physical laws. To give an idea of what it represents, it can be
thought of as a “running shadow” on the line z = a of the point P following its
illumination from N'. This means that simply states that the immaterial

shadow is faster than the material point that moves at the speed c. 

v > c

12.4.4.3.3.  Representation of the resultant amplitude for the resultant progressive
wave

According to Eq. (14), the resultant wave is given by:
0

x g x x g
m

E= E° sin( z ) e exp[i(k y - t)] = E e  exp[i(k y - t)]
a

,

where 0
x

m
E = E° sin( z)

a
.

z

  y 
a

O

0
xE

(2
nd

 c
as

e)
 z

-a/2

+a/2

 O 

(1
st
 c

as
e)

 

m = 1 m = 2 m = 3 m = 4

Figure 12.15.  Representation of the amplitudes two axial systems where the
origin O can be taken on the lower metallic plane or as between the two metallic planes.

0
xE f (z) for
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Whatever the y point of the trajectory, the amplitude ( ) of the wave only
depends on z and the excited m mode (which is fixed by the choice of the incidence
angle).

0
xE

So, Figure 12.15 represents the form of the electric field amplitudes associated 
with the various possible modes, and  is represented in the plane Oxz on 
the y = 0 side. It is notable that the wave is polarized with respect to Ox, so for the
representation that has to be in the 0xz plane, the Oy axis is directed toward the back
of the figure.

0
xE = f(z)

Comment: Role of the choice of the origins for the guide planes with respect to
stationary solutions
In general terms, the propagation is given by Eq. (11) so that with

g
²

- k ²= K²
c²

and mx mE  = E (as ), thenE // Ox m
m

d²E (z)
+K² E (z) = 0

dz²
. The 

general solutions, which also can be written as mE (z) = A cos(Kz) + B sin(Kz) , can
be placed into one of the two following forms, depending on the how the guide 
planes parallel to Oxy are assumed to be placed:

z

 O x scenario 2 y

+ a/2

 - a/2

z
a

scenario 1 
O

0
 y 

x
(a) (b)

Figure 12.15. bis. The origin (O) placed (a) on a plane; or (b) midway between planes. 

1. At z as shown in Figure 12.15bis, scenario 1, which is the same as 
the representation used up till now, so that the limiting conditions are thus:

= 0 and z = a

mE (0) = 0 , for which , so thatA = 0 0
mE (z) = B sin(Kz) = E  sin(Kz) ,

with (constant); and 0B = E

mE (a) = 0 , for which , so that with

so

0E  sin(Ka) = 0 Ka = m

m = 1, 2, 3....,
m

K =
a

, and finally 0
m

m
E  = E sin z

a
  ( m means

that , which is a nonphysical solution).

= 0

mE = 0
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The form of the wave is thus:
0

m g g
m

E = E  exp[i(k y - t)]= E sin z exp[i(k y - t)]
a

),

which is what has been used until now.

2. At 
- a

z =
2

and
+a

z =
2

 (scenario 2 in Figure 12.15bis). The limiting conditions

thus are now:

m m
a a a a a

E ( ) = A cos(K ) + B sin(K ) = 0 = E (- ) = A cos(K ) - B sin(K
2 2 2 2 2

a)
2

;

Two solutions are possible for A and B, either:

and ( ) withB = 0 A 0 0A = constant denoted E
a

cos(K ) = 0
2

, so that

a
K = + n

2 2
, for which 

M
K = [1 + 2n] =

a a
 with odd M, and

0
m

M
E  = E  cos z

a
 with odd whole M; or 

( ) withA = 0 and B 0 0B = constant denoted  E
a

cos(K ) = 0
2

, so that 

a
K = n

2
, for which 

M
K = 2n =

a a
  with an even value of M. 

The form of the wave  thus is given by either:m gE = E  exp[i(k y - t])

0
g

M
E = E  cos z exp[i(k y - t])

a
 with a whole odd value for M;  or 

0
g

M
E = E  sin z exp[i(k y - t])

a
with M being whole and even. 

We can verify that the plots of Em(y) in scenario (1) where or
for scenario (2) with the two forms of solutions for even or odd values of M, where

, are identical, which is reassuring as the problem is the
same!  (This remark also can be made in terms of the quantum mechanics of wells
with symmetrical potentials, where the origin can be taken either as at an extremity
of the well where there is a potential wall, or at the center of the well.)

m = 1, 2, 3, 4...

M = 1, 2, 3, 4... ( m )
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12.4.4.4.  Multimodal fields 
It should be noted that it is not only the field corresponding to a given mode that can
be guided, meaning in other words those fields that have a transversal intensity (with
respect to Oz) independent of the axial position (with respect to Oy) as shown in
Figures 12.16 a and b corresponding, respectively, to the given modes (using
notation of scenario 1):

complex amplitude, with m = 1
0 0

i 0 1 0 11E = 2 E sin([k  cos ]z) exp(i[k  sin ]y) ,  so that its intensity is 
independent of y;  and 
complex amplitude, with m = 2

0 0
i 0 2 0 22E  = 2 E  sin([k cos ]z) exp(i[k  sin ]y) , so that its intensity is 

independent of y.

The fields simply have to verify the limiting conditions (E = 0 on metallic
planes) and thus can correspond to the superposition of several modes. Thus in the 
case given in Figure 12.16 c, taking into account the analytical forms of the fields, it
is possible to see that the transversal intensity (with respect to Oz) of the wave is
dependent on the axial position (with respect to Oy) in which it is placed. 

In effect, the complex amplitude of the wave 1,2E , as a superposition of the
modes and , is in the formm = 1 m = 2

0
i 0 1 0 1 0 2 0 22 E  sin([k  cos ]z) exp(i[k  sin ]y) + sin([k cos ]z) exp(i[k sin ]y)

2

,
and its intensity gives rise to a variation in its distribution with respect to Oy as

.0 1 0k  sin k  sin

y

  z  z

y

z

  y 

(a)  m = 1                        (b)  m = 2                     (c) mode m = 1 and mode m = 2 

Figure 12.16. (a and b) Guided waves corresponding to a mode; and
(c) without a mode. 

12.4.4.5.  Comment: TM modes
TM modes occur when it is the magnetic field that is applied with respect to Ox.
They can be studied in the same way as TE modes and as such can be guided. The 
electric thus has components with respect to Oy and Ox. 
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12.5.  Optical Guiding: General Principles and How Fibers Work 

12.5.1.  Principle
Optical fibers are used, by way of a support, to guide an incident luminous wave
from its point of injection at an entrance face to its exit point at the other. Typically,
there are two main types of fiber: fibers with a jump in indices and fibers with a
gradient in indices.

This text will limit itself to detailing the first type, which are constituted of
a core made from a material with a circular cross section and a given index (n) 
surrounded by a gain with an index denoted n1 such that . Generally, the
whole structure sits in air, which has an index given by

1n > n
n' 1.

The luminous wave injected at the entrance face of the fiber is under an angle i',
which is such that . This wave meets the core/gain interface at an

angle of incidence given by , such that 

n' sin i' = n sin i

i = i +  = 
2

. When >  where  is 

a limiting angle above which the phenomenon of total reflection occurs when
, the wave makes no penetration of the gain material and is guided along the

fiber in a zigzag trajectory associated with successive total reflections at the
core/gain interface, and as illustrated in Figure 12.17.

1n > n

The calculations carried out below in the plane of the longitudinal section of the
fiber are equally valid for the longitudinal plane section of a symmetrical rectangular
guide where the Or axis is simply replaced by a Oz axis. 

lost ray 

y

n1

i

r

’ guided ray

n (> n1)

n1

L

On’

i’

Figure 12.17. Trajectories when  > and ’ < .
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12.5.2.  Guiding conditions

12.5.2.1.  Condition on  i
The limiting angle  is defined by 1n sin  = n , wherein at the entry face an angle

i has a value given by i  = -
2

. A condition for the total reflection  is 

therefore . In addition, by movingi i = - i
2

  into 1n sin  = n , we directly

obtain 1n
cos i  =

n
.

This condition for wave guiding thus brings us to a condition for the incidence at the

entry face, which must be such that i i , so that 1n
cos i cos i  =

n
, which 

means that 1n
i i  = Arc cos

n
.

All rays with have at the core/gain interface an incidence such that 
. A fraction of the wave is transmitted toward the gain, and following several

successive reflections, the remaining fraction of the wave in the core becomes
smaller and smaller so finally it is extinguished along its journey.

i i
' <

In numerical terms, with  and , we obtainn = 1.50 1n = 1.49

1n
i  = Arc cos  = 6.62 °

n
 . 

When  and , we haven = 1.60 1n  = 1.50 1n
i  = Arc cos  = 20.36 °

n
.

12.5.2.2.  Condition on i’ (acceptance angle):  numerical aperture
The condition  makes it possible to state that:

2
1
2

n
cos cos  = 1 sin ² = 1

n
.

We also have i = -
2

, from which with n' sin i' = n sin i

 n' sin i' = n sin( - ) = n cos
2

, so that
n

sin i' = cos
n'

 and the preceding equation 

therefore leads to 
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1/21/ 2 2 22 2 11 1
2 2

n - nn n n n n n² - n
sin i' = cos cos 1

n' n' n' n' n'n n
, so that:

1/22 2
1n - n

sin i'
n'

.

To conclude, all rays introduced under an angle of incidence i' verify the
preceding inequality and therefore can propagate.

The quantity given by
1/22 2

1NA = n - n

is the numerical aperture of the system, which although here is an optical fiber, also
can be applied to a guide structure.

The acceptance angle is by definition: 
1/22 2

1n - n
i'  = Arc sin

n'
 . 

In numerical terms
.1n = 1.50 - n = 1.49   -   n' = 1, so the NA = 0.173, so that   i' = 9.96 °

When .1n = 1.6  -  n  = 1.5   -   n' = 1, and the NA = 0.557, so that  i'  = 33.83 °

12.5.3.  Increasing the signals
Once a luminous impulsion is injected into a fiber, various pathways can be 
followed, as in:
 the shortest trajectory which is along the pathway Oy and corresponds exactly to

the length (L) of the fiber. With the speed of propagation being given by
c

v  =
n

,

the pathway time (ty) is y
nL

t =
c

;

 zigzag trajectories which each have a given value for the angle i and have a 

pathway length (Li) given by i
L

L  = > L
cos i

. With the pathway speed still being

c
v  =

n
, the pathway times (ti) are now given by i

i y
L n L

t = = > t
v c cos i

(ti is

great when cos i is small, so that i is great).
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The difference in propagation times thus is given by:

i i y

i²
1 1n L 1 n L n L2t = t  - t  = 1 i²

i²c cos  i c 2 c1
2

.

In numerical terms, when iL = 1 km, n = 1.5  and   i = 6 ° < i , so that t  = 28 ns.
Therefore, an impulsion emitted at y = 0 at a time  over an interval of

time assumed to be will be emitted at  starting from the moment
(for the wave that takes the shortest pathway) up to the moment

where is the pathway time for the longest possible
trajectory. This latter value comes from the highest possible value of i, i.e., i .

The corresponding interval in time therefore is given by

0t = 0
t 0 y = L

0 yt + t  = ty

0 i max i maxt  + (t )  = (t ) i max(t )
= i

2
i

n L
t  = i

2 c
 where 

is the duration time of the emission at the exit.

it

The interval in time (T) between two impulsions at the entrance which is 
required so that they do not mix at the exit therefore must be such that T t ,
which is the same as stating that the frequency of the impulsions must be lower than

i

i
i

1
 = 

t
(we can state that we should have i

1
T = t  so that 

i
i

1
=

t
. and in terms of actual numbers, this means that for the

aforementioned values, ).i 30 MHz

12.6.  Electromagnetic Characteristics of a Symmetrical Monomodal Guide
Here we look at a buried guide, which for technological reasons is simplified to the
symmetrical structure shown in Figure 12.18. 

  n1

 z 

x

 y 

E

  n 

+ a/2 - a/2 

Figure 12.18. Buried guide. 



                                                  Chapter 12.  Total reflection and guided propagation 403

The propagation of an electromagnetic wave with an angular frequency given
by  is along Oy and is polarized with respect to Ox. The field is reflected at the
interface, between a medium with an index given by n and another medium with an 
index denoted by n1, along planes parallel to Oxy with the EM wave alternating its

reflection at the planes defined by
-a +a

z =  and z =
2 2

. This configuration has the

same geometry as that given in Section 12.4, and as that presented in Figure 12.19a,
making direct comparisons possible between systems that only differ by virtue of 
their planes of interface. The metallic planes, which are imposed as a limiting
condition where , are now replaced by dielectric diopters with the 
aforementioned index n

E= 0
1 where  (and as a consequence, with different

limiting conditions). In addition, the two dielectrics are assumed to be nonabsorbent.
In the zones (1), (2), and (3) the electric field can be written by notation as 

1n < n

1 2 3E , E , and E , respectively, and in a manner analogous to that of Section 12.4, 
taking into account the symmetry of the problem, the solutions for the TE wave
polarized with respect to Ox are looked for in each of the three zones in the form:

p p
x ypmxE =E (z) e exp[j(k y - t)]

where p = 1, 2, 3 characterizes the zone under consideration.

zone (1), index n1 < n, and field 1E

  z 

- a/2 

+a/2
zone (3), index n1 < n, and field 3E

 zone (2), index > n1, and field 2E
 i O x

y

Figure 12.19(a). Propagation in a symmetrical dielectric guide. 

12.6.1.  General form of the solutions
The equations for continuity of the tangential component for the different field

1 2 3E , E , and E directed exactly along Ox, true for all moments t and whatever
values of y, lead to [see also Section 11.2.3, concerning Eq. 

(7) or (7’) with respect to Oy].
y1 y2 y3 yk = k  = k  = k
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With the media being nonabsorbent, , we then have: rp p= n ²
p p2

p p
0 0 rp

nE
rot B = µ =

t c² t
E

. By taking the rotational of the two terms

of the equation
p

p B
rot E  = -

t
, and by using the preceding equation, we obtain 

an equation for propagation in a medium with an index denoted np [see Chapter 7, 
Eq. (5) this volume, and with ]rµ  = 1

p2p pn ²E
E  - = 0

c² t²
.

With the wave being monochromatic, we also can state, using Eq. (7") again from
Chapter 7,

p2p 2
p

²E
E  + n = 0

c² t²
.

Taking into account the form of the required solution, this equation gives [using a
calculation analogous to that yielding Eq. (11) of Section 12.4.3.2]:

p
p2mx

p y mx
d²E (z) ²

+ n  - k ² E (z) =
dz² c²

0 .

Making 2 2
p p

²
= n  - k ²

c² y , and as 2
p y

²
n  - k ²

c²
 can be, a priori, positive or

negative, and can be real or purely imaginary, under these conditions the

solutions are in the general form:
p

p
p pmxE (z)= A exp(j z) + B exp(-j  z) .

12.6.2.  Solutions for zone (2) with an index denoted by n 

k

ky

kz

 i

Figure 12.19 (b)  Geometrical component of k .
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In this zone, the wavenumber is given by
n

k = 
c

 and its projection along the axis

of propagation Oy is yk  = k sin  = k cos i (by notation) which is a constant

bound to the propagation phase. 

The result is that 2
2 y

²
² = n  - k ² = k² - k² cos²i = k²(1 - cos²i) = k²sin²i

c²
, so 

that . The sign is not important with respect to the general solution

given by
2 = ± k sin i

(2)
mxE (z) , which contains both signs as exponentials, so by notation we use

. This magnitude is finally tied to the amplitude of a 
stationary wave due to reflections at the interfaces (see the metallic guide in 
Sections 12.4.2 and 12.4.3).

2 = k sin i = k cos  = kz

Therefore, in the zone (2) we have, with = k sin i ,

2
1 2mxE (z)= D exp(j  z) + D  exp(-j z)

where D1 and D2  are the constants to be determined for the limiting conditions.
In fact, given the symmetry of the problem, we should have , so that

and  with
1D = ± D2

1D  = D 2D  = D = ±1 .  In effect, given this symmetry of the guide,
with respect to the z axis and for two points symmetrical placed about O located by 

and , the intensity of the wave should be the same (in quantum
mechanics, the probabilities of presence would be stated to be equal).

2z = z 2z = - z

Thus,
1 2 2 2 1 2 2| D exp(j  z ) + D  exp(-j z )|² = | D  exp(-j  z ) + D exp(j  z )|²2 ,

so that 
1 2 2 1 2 2| D + D  exp(-2j  z )|² = | D  exp(-2j  z ) + D |²,

 for which , and . Finally,1 2 |D |² = |D |² 1D = ± D2

2
x yE = D exp(j  z) +  D exp(-j  z) e exp[j(k y- t)] .

12.6.3.  Solutions for the zones (1) and (3) 

In the titled zones [zones (1) and (3)], we have
2
1

1 3 y
n ²

² = ² =  - k ²
c²

, where 

2 2 2 2
1 1 1n ² n n ² n

k²
c² n²c² n²

, so that  is always true. The result is thatyk = k cos i
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2
1

1 3
n

² = ² =k² cos ²i
n²

,

and as:

on the one hand, ,1n > n
2
1n

< 1
n²

,

and on the other, in order to guide the incident ray (i) to the entry face 
shown in Figure 12.19a, we should have i i  as a result of Section 
12.5.2.1 which uses the same geometry, so that

1n
cos i cos i  =

n

We have 
2
1n

cos ²i < 0
n²

, so that we can make:

2
1

1 3
n

² = ² =k² cos ²i = j² ² < 0
n²

, for which 1 3= = j , where:

2
1n

=  k cos²i - > 0
n²

.

In zone (1) we thus find that 1
1 1 3 1mxE (z)=C  exp(-j z) + C  exp(j  z) , and in

this zone where , so that the wave is evanescent (corresponding to the guiding
condition as in ), we should find  [If not, the component

yields for 

z < 0
 >  or i < i 3C = 0

3 1C  exp(j  z) 1E  a contribution of the form

3 3C  exp(j² z) = C  exp(-  z) ,
which will diverge when  to give the amplification term rather than the term
for attenuation as required].

z -

In zone (1), the solution thus is in the form 1
1 1mxE (z)= C  exp(-j  z) , so 

that:
1

1mxE (z)= C  exp( z) .

In the zone (1), the final expression for the wave is:

1
1 x yE = C  exp(  z) e exp[j(k y- t)] .

This wave is evanescent with respect to Oz and progressive with respect to Oy. It is 
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in effect an inhomogeneous MPP wave that has an amplitude that is dissimilar at 
different points along the plane of the wave defined by y = constant.

Similarly, in zone (3), we have:

3
1 3 3 3mxE (z)= C  exp(-j z) + C  exp(j z)

and in this zone where z > 0, the physically acceptable solution (yielding an
attenuation and not an amplification) is 3

3 3mxE (z)= C  exp(j  z) , so that:
3

3mxE (z)= C  exp(-  z) .

In zone (3) then, the final equation for the wave is given as 

3
3 x yE = C exp(-  z) e exp[j(k y- t)]

which also is an evanescent wave with respect to Oz and a progressive wave with
respect to Oy.

It is worth now looking at the relationship between C1 and C3 due to the
symmetry of the guide. With the problem being one of symmetry around O with
respect to the z axis, we should have the same wave intensity at two symmetrical
points, one located with  and in zone (1), and the other located with 

 and in zone (3). So, 
1z = z

3z = z  = - z1

3 1

1 1
1 3

3 3 z  = -z 3 1

|C  exp(  z )|²
C  = ± C

= {|C exp(-  z )|²}  = |C  exp( z )|²

By making 1 3C  = C  and  C  = C  with  = ± 1 , then we will have as solutions for
zone (1):

1
mxE (z)= C exp(  z) , and 1

x yE = C exp(  z) e exp[j(k y- t)]   . 

On zone (3), the solutions will be the same:

3
mxE (z)=  C exp(-  z), and 3

x yE =  C exp(-  z) e exp[j(k y- t)]   . 
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12.6.4.  Equations for the magnetic field

Zone (1)

From Maxwell-Faraday law, which states
(1)

(1) B
rot E = -

t
, we have :

(1) (1)(1)

(1)(1)
y

0

rot E = Ex / z  = E

- Ex / y=- jk E

  and 
(1)

(1)B
- = j B

t
(1) (1)

(1)
y

0
1

B = -j E

- k E

Zone (3)

(3) (1)(3)

(1)(3)
y

0

rot E = Ex / z  =- E

- Ex / y=- jk E

   and
(3)

(3)B
- = j B

t
(3) (3)

(3)
y

0
1

B = j E

- k E

Zone (2)

(2) (2)
y

(2)(2)
y

 0

rot E = Ex / z  =- j D exp(j  z) -  D exp(-j  z) exp[j(k y- t)]

- Ex / y=- jk E

and

(2)
(2)B

- = j B
t

(2)
y

(2)
y

0
1

B =  D exp(j  z) -  D exp(-j  z) exp[j(k y- t)]

- k E

12.6.5.  Use of the limiting conditions: determination of constants

Here we make
 a

 = exp
2

  and
 a

µ = exp j
2

.

The continuity of the tangential components of E at 
a

z =
2

are written:
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(3) (2)a a
E ( ) = E ( )

2 2
,

from which
a a

 C exp(- ) = D exp(j ) +  D exp(-j )
2 2

a
2

,

so that 
C

= D( µ + )
µ

. (1)

With the media being nonmagnetic, we can equally write that the continuity of 

the tangential components for B at
a

z =
2

are such that we have 

(3) (2)
y y

a
B ( ) = B (

2 2
a

) , from which

j C exp(- a/2) = D exp(j  a/2) -  D exp(-j  a/2) , so that:

j  C/  =  [µ - /µ] D . (2)

We thus obtain two linearly independent equations that allow a determination
of the unknowns C and D. The other equations of continuity give for their part
equations leading to the same relations as Eqs. (1) or (2). If the reasoning permitted
by the effect of symmetry had not been possible, then there would have been four 
constants, namely C1,C2, D1, and D2, which these additional equations would have 
permitted to determine.

For example, at 
a

z =-
2

, we have:

(1) (2)a a
E (- ) = E (- )

2 2
,

for which 
a a

C exp(- ) = D exp(-j ) +  D exp(j )
2 2

a
2

,

so that 
C D

 = + µD
µ

.

By multiplying by  we find Eq. (1). 
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12.6.6.  Modal equation

12.6.6.1.  Placing into equations
First, we write the Eqs. (1) and (2) for = +1 , as in:

C/ = ( µ + 1/µ) D         (1’)   the ratio (2’)/(1’) gives 
j C/ =  [µ - 1/µ] D (2’)

µ² - 1
j =

µ² + 1
, so that 

j a j a
2 2

j a j a
2 2

1 e  e  a
tan

j 2
e  e

, and therefore

 a
tan =

2
. (3)

Similarly, when , we obtain: = -1
- C/  = ( µ - 1/µ) D (1’’)   the ratio (2’’)/(1’’) gives 
- j  C/  =  [µ + 1/µ] D  (2’’) 

µ² + 1
j =

µ² - 1
, for which 

j a j a
2 2

j a j a
2 2

e  e -1
j

 a
t an

e  e 2

, so that 

 a
tan = -

2
.     (4) 

Equation (3) gives
a

= Arctan  + r
2

, where r is a whole number  0 as 

a
> 0

2
. So, we have

a
= - Arctan + r

2 2
, by using the equation

1
Arctan x + Arctan =

x 2
,  (

1
tan( - y) =

2 tan y
 gives

1
- y = Arctan

2 tan y
 by

making ). We deduce that:x = tan y

a
+ Arctan = (2r + 1)

2 2
[ r ] .           (5)  is an integer 0
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From Eq. (4) we pull out:
a

= - Arctan  + s
2

,     and with s asinteger > 0
a

> 0
2

 , we thus have 

2 sa
+ Arctan  =

2 2
. (6)

The solutions from Eqs. (5) and (6) can be regrouped into a single expression,
as in:

a q
+ Arctan =

2 2
,           (7) 

where q is an integer and  as q 1 r 0 and s > 0.

12.6.6.2.  General equation and solutions

In addition, we made , and = k sin i
2
1n

=  k cos²i -
n²

, with 1n
= cos i

n
. The 

left-hand side of Eq. (7) is by consequence a function of the angle i, and Eq. (7) can
be rewritten:

a sin i
f(i) = k sin i + Arctan q

2 2cos²i - cos²i
. (8)

Equation (8) is a modal equation that permits a determination of q when i .

For this interval, sin i and

[0, i ]
1

cos²i - cos²i
 are strictly increasing functions of i, just

like the arc tangent function. Indeed, f(i) is also a strictly incremental function, so
that for given values of a and q, there is a single value of i as a solution to f(i). The
maximum value of the function f(i) is obtained for the maximum acceptable value of 
i, that is i =  . For this value, we therefore have:i

max
a a

[f(i)] = k sin i + arc tan = k sin i  + = q
2 2 2 2

  . 

The solution therefore is always obtained, even when a , as it
suffices to take

q = 1 0
i i  as the arc tangent function tends toward /2.
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12.6.6.3.  Monomodal solution
To remain in a monomodal regime where q = 1, the solution q = 2 must remain
unattainable. For this to be true max[f(i)]  <  must be imposed, so that 

a
k sin i  <

2 2
, which means that 1a < a =

k sin i
. With 0

0

n 2
k = = n k  = n

c

and
2
1
2

n
sin i  = 1 cos ²i = 1

n
, we obtain:

0
1 2 2

1

a =
2 n - n

   . 

In numerical terms, with 0 = 1.3 µm  (a typical telecommunications
wavelength), . For the monomodal condition, where q = 1 
uniquely, the guide must have a width less than  a

1n = 1.50 and n = 1.49
1 = 3.76 µm.

When 0 1= 1.55 µm, n = 1.50  and  n  = 1, we obtain a  = 0.7  µm1 .

12.6.6.4.  Multimodal solutions 
When , the modal Eq. (8) in effect permits several different values of q as 
solutions. In order to find the general solution to Eq. (8), we can write that with

1a > a

2
k =  and cos²i - cos²i sin²i - sin²i , we have 

a sin i
sin i + Arctan q

2sin²i - sin²i
,

so that on applying
1

Arctan x + Arctan =
x 2

 , we find that

sin²i - sin²ia
 sin i - q-1 = Arctan

2 sin  i
.

By setting and as , m therefore is an integer such that
, and so on using the fact that , we have ,

and

m = (q - 1) q 1
m = 0, 1, 2, 3.... x = Arctan y y = tan x

1/2a sin²i
tan sin i - m =  - 1

2 sin²i
. (9)

The two terms in this equation are functions of the variable sin i, and the
solutions can be found at the intersection of the plots representing:
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  the function
a

g(sin i) = tan sin i - m
2

;  and 

  the function
1/2sin²i

h(sin i) =  - 1
sin²i

.

In reality, the function g(sin i) can be more simply seen as the function given
by:

1. 1
a

g (sin i) =  - cotan sin i  when m is odd (as

tan x - = - tan - x = - cotan x
2 2

);  and 

2. 2
a

g (sin i) = tan sin i  when m is even as tan x ± = tanx .

The resolution of Eq. (9) thus leads to plotting, as a function of sin i, the two
systems given by:

  the plots for 2 defined for when 
a

0 < sin i<
2

 when ,m = 0

a 3
 < sin i<

2
 when , etc..., so that m = 2

0 < sin i <
2a

 ( ),m = 0
3

< sin i <
a 2a

 ( ), and so on;  and m = 2

  the plots for 1 defined for when 
a

< sin i< 
2

 ( m ), = 1

3 a
< sin i< 2

2
 ( ), etc..., so that m = 3

< sin i <
2a a

m = 1  ( ),
3 2

< sin i <
2a a

 ( m ), and so on.  = 3

The solutions for sin i in each interval precisely defined by the value of m

(hence the notation sin mi  = m
2a

 for the solution), thus can be found as shown in

Figure 12.20 at the intersection with the plot of 
1/2sin²i

h(sin i) =  - 1
sin²i

, which is a 

function that decreases monotonically with sin i. When , this function cancels
out so that .

i = i
h(sin i  ) = 0
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Figure 12.20. Graphical solutions for the modal equations obtained by the 
intersection of the plots h(sin i) and g(sin i).

For given values of a, , n, and n1, for each value of m there is a corresponding 
value of I denoted Im and between 0 and . Associated with Ii m is the wavevector
with a component nk0 cos Im with respect to the axis of propagation along Oy.

 is the propagation constant. With respect to the axis Oz, the

component of the wavevector associated with I
m y 0 = k  = nk cos im

m

m is for its part given by
.z 0 mk  = nk  sin i

kz

  Q 

 = ky = n k0 cos i   nk0     n k0 cos i
l
= n1k0

   n k0 sin i3  m = 3 (q = 4) 

  m = 2 (q = 3) 

 m = 1 (q = 2) 

m = 0 (q = 1)  i3

n k0 cos i3

i
l

n1k0

   n k0 sin i
l

nk0

Figure 12.21. Determination of Im angles corresponding to m modes. 
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As  varies between 1 and mcos i 1n
cos i  =

n
, m varies between .

The i

0 1nk  and  n k0

m

m angles corresponding to the m modes, as well as the corresponding
components given by andy mk z k , are shown in Figure 12.21. 

12.6.6.5.  Number of nodes
From Figure 12.20, each interval associated with a mode has a width given by /2a,
which means that for a width defined by L as a function of sin i such that L = sin i ,
the number of possible modes (M) is equal to the first integer immediately above the

number given by the ratio
sin i

/2a
. By convention, we can write that

sin i
M

/2a
.

12.6.6.6.  Cutoff frequency
Returning to Eq. (8) and the reasoning used in Sections 12.6.6.2 and 12.6.6.3, for a

mode given by to not be affected, thenq (= m + 1) max[f(i)] < q = (m + 1)
2 2

must be true, so that
a

k sin i  < (m + 1)
2 2

, and from which with
0

2
k = n  and 

1n
= cos i  = 1 - sin²i

n
 included we can deduce that

2 2
1n n

sin i  =
n

 and 

0m 0mc 2 2
1

c (m + 1)
 > =

2a n - n
.

12.6.7.  Comments: alternative methodologies

12.6.7.1.  Comment 1: by analogy to solutions for potential wells
The type of mode, whether even or odd, can be apprehended directly through Eqs. 
(3) and (4) which are identical to those found in a resolution of potential wells with
the given width as a.

Considering Eq. (3), and by making
a

X = 
2

 and 
a

Y = 
2

 ;

Eq. (3) can be written as Y = X tan X

Similarly, Eq. (4) gives . This then yields:Y = - X cotan X
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2
1

2
2 21
0 1

a² a² n
X²+Y² = ² + ²  = k² sin²i + k² cos²i - k²

4 4

n a² a²
= k² 1 -  = k (n² - n ) .

n² 4 4

n²

For a given guide, with indices n and n1 and of dimension a, it is possible to
state that is a constant characteristic of the guide. The solutions for X
and Y can be found at the intersection of the plots of the preceding with a
circle of radius R. From these solutions can be determined, thus i, and then, as will
be detailed in Section 12.6.8, the distribution of the field that varies with cos z (for 
even modes corresponding to the solutions to the equation ) or with
sin z (for odd modes corresponding to solutions to the equation ).

X²+Y²= R²
Y = f(X)

Y = X.tan X
Y = - X cotan X

12.6.7.2.  Comment 2: methodology from principles of optics
We have assumed up till now that for a wave to be guided that (1) it has to undergo 
a reflection at an incidence such that >  at an interface between two dielectrics 
that make up the guide; and (2) the equation for the propagation should be verified
using the limiting conditions of the problem. It is by this route that we have selected
solutions corresponding to the modes. For a given mode, the solutions are such that
the transversal intensity of the wave is independent of the position in Oy of the
resultant direction of propagation.

The second condition can be directly replaced due to the fact that for the wave 
to propagate it must be part of the same system of plane waves, meaning that after
several reflections the planes of the waves orthogonal to the direction of propagation
are conserved. This is the same as saying that the dephasing between the wave that
propagates along AB (subject to dephasing of A and B on reflection at A and B) 
and the wave that propagates directly from A to C is a multiple of 2 , as shown in
Figure 12.22. Thus:

A B
2

k.AB - k.AC  +  +  = [AB - AC]+ 2 = 2 m . (10)

In effect, the two interfaces are identical (the same dielectrics with indices n 
and n1) and the wave is polarized perpendicularly to the plane of the figure so that 

, and therefore we either have A B=  = A B+ =2 ,  or  as 
determined in Section 11.3.2.2 with Eq. (37).

This with (i + ) = 
2

, gives:

1/2 1/ 2sin²  - sin² sin ²i
tan = - = - 1

2 cos sin ²i
.      (11) 
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dielectric with index = n1

A’

dielectric with

index = n
B

a

dielectric with index = n1 C

A  i
i

Figure 12.22. Conservation of wave planes in guided propagation.

With [AB - AC] = 2 a sin i  (classic dephasing calculated, for example, in

establishing Braggs law, so that here
a

AB =
sin i

and , to giveAC = AB cos 2i

a
AB - AC = [1 -cos 2i] = 2a sin i

sin i
),  then Eq. (10) gives:

2
2 a sin i + 2  = 2  m , which in turn yields:

a
sin i - m = -

2 2
.

By taking the tangent of this equation into which is also plugged in Eq. (11), we
obtain the preceding Eq. (9), as in:

1/2a sin²i
tan sin i - m =  - 1

2 sin²i
.

12.6.8.  Field distribution and solution parity
It is worth looking at the distribution of the electric field in each of the zones (1), 
(2), and (3) for the possible values of q. 
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+ a/2 
z q = 4 

m = 3
q = 3 
m = 2

q = 2 
m = 1

q = 1 
m = 0

y

- a/2 

Figure 12.23. Distribution of the electric field for various m modes. 

12.6.8.1. In zone (2)

The form of the field established from Section 12.6.2 is such that
2

q qmxE (z)= D exp(j  z) +  D exp(-j  z)  . 

12.6.8.1.1.  Even solutions (as cosines)
When , we have:= +1

2
q q qmxE (z)= D exp(j  z) + D exp(-j  z) cos  z = cos [(k sin i )z]q .

In addition,  = + 1 corresponds to Eq. (3) which leads to q = 2r+1 [Eq. (5)], with r
an integer 0. The r = 0 gives q = 1 so that  m = 0;  r = 1 gives q = 3 so that m = 2, 
while r = 2 gives q = 5 so that m = 4, and so on (see also Figure 12.21 and 12.23). 

12.6.8.1.2.  Odd solutions (as sins)
When  = -1, we have: 

2
q q qmxE (z) D exp(j  z) - D exp(-j  z)  sin  z = sin [(k sin i )z]q .

Here,  = - 1 corresponds to Eq. (4) which leads to q = 2s (Eq. (6)), with s being an
integer > 0, so that for s = 1, we have q = 2 and  m = 1, and when s = 2 we have 
q = 4 and  m = 3, and so on (see also Figures 12.21 and 12.23). 
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12.6.8.2.  In zone (1)

The form of the field established in Section 12.6.3 is such that when ,z < - a/2

1
mxE (z)= C exp(  z) ,

and with  as the extinction coefficient, we can state that:
2
1

0

0 0 1

n
 = k cos²i - = k n cos²i - cos²i

n²
cos²i cos²i

= k n cos i  - 1= k  n  - 1
cos²i cos²i

12.6.8.3.  In zone (3)

The form of the field established in Section 12.6.3 is such that when ,z > a/2

3
mxE (z)=  C exp(-  z) 

and  takes on the same form as above.

12.6.8.4. The Goos–Hänchen effect
We can note that in the presence of a dielectric (with an index = n1) in place of the 
plane conductors, the electric field no longer gives rise to nodes (E = 0) at z
(see Figure 12.23) and the penetration to a depth of the order of

 = ± a/2
1/  of the ray

undergoing a total reflection is called the Goos–Hänchen effect.

12.6.9. Guide characteristics

12.6.9.1.  Form of the signal leaving the guide
If , numerous values are possible for q, which results in discreet but close
values for the injection angle (i

a >>
q). The group of modes allows the guide to function

in multimode.
To each value of iq there is a different path length in the guide along with an

associated time (tq), and under multimodal regimes, there is a temporal increase of 
an impulsion leaving a wave with respect to that at the entrance, in what is an effect 
termed “intermodal dispersion” (Figure 12.24). 
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I

all modes

t
mode 3 

mode 2 

mode 1 

I

all modes

 t 

mode 2 

mode 3 

mode 1 

t t

at a given time (t) the exiting signal is
weaker than the starting signal 

at entrance to guide 

Figure 12.24. Comparing guide entrance and exit signals. 

In effect, for a given value of q, i is dependent on  [as 
n

k = 
c

 intervenes in

the modal Eq. (8)], and  thus is dependent on  just as is= k cos i g
d

v  =
d

.

The pathway time also is dependent on  (and hence also the wavelength), and 
hence the slight increase in the impulsions with each mode. This is termed the 
“intramodal effect”, which is superimposed on that of dispersion due to a variation
of the index with wavelength. The result is a chromatic dispersion.

12.6.9.2.  Nature of losses in a guide
Losses in a guide have various origins and can be organized into two main classes.
They are, first, characterized by a attenuation coefficient, or second, an attenuation
factor.

12.6.9.2.1.  Attenuation coefficient and the linear attenuation factor
The transmitted power (P) for a penetrated length (L) varies in accordance with the 
equation

P(L) = P(0) exp(- 2 L) .

P(0) is the power introduced at the entrance point, and  here represents the linear 
attenuation coefficient for the amplitude.
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For its part, the linear attenuation factor ( ) is defined with the help of the
expression:

- L/10P(L) = P(0)10 , so that 0
10

10 P
 = log

L P

where  is expressed in decibels per meter (dB m-1).
As an example, a fiber with km0.22 dB -1 transmits around 95 % of the energy

over 1 km.

12.6.9.2.2.  Losses due to the physical configuration of the guide
These losses can include: 

losses due to a defective guiding (in principle, these losses do not count for guided
modes);

 losses due to curves (unnatural losses due to deformations of the fiber) for 
example, when the radius of curvature is less than a centimeter, the higher modes
can be refracted within the gain;

 losses at joints, which in turn can be divided into two groups:
1. losses due to poor alignment of adjacent components;
2. Fresnel losses, associated with the reflection of the injection signal at the

entrance face (as in Figure 12.25). Under normal incidence, using classic 

experimental conditions, we have 
2

1

1

n - n
R = 

n + n
, so that with

1n = 1.5 and  n  = 1, we have R 0.04 = 4 % . Thus the losses by Fresnel
reflections are given by Fresnel 10= 10 log (1-R) =  - 0.18 dB .

injection

medium with index = n1
reflection

  guide with index = n

Figure 12.25.  Fresnel losses.

12.6.9.2.3.  Losses due to the material making up the guide
Losses due to the properties of the guide material can be divided into two physical
phenomena, absorption and diffusion.

First, the losses due to absorption (which also are further detailed in Chapter 10
of this volume, or Chapter 3 of the second volume entitled Applied
Electromagnetism and Materials) which can come about: 
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 in the visible domain (zone 3) due to electronic absorption;

 in the infrared domain (zone 4) due to network vibrations (vibrations of atoms or 
ions depending on the nature of the guide and/or fiber). In polymer based materials,
the wavelength for the fundamental absorption by the C-H group is approximately
3.3 µm and over distances of any consequence, the window of transparency is in fact
limited to 0.8 µm due to absorptions associated with harmonics. This phenomenon
resembles absorptions due to hydroxyl bonds (-O-H) that exhibit a transparency
window up to 2 µm, which includes in particular two transmission windows at 1.3 
and 1.55 µm used in optical telecommunications. The use of fluorinated polymers
permits an extension of this region of transparency;

 because of a wide number of impurities that present absorption characteristics, and 
hence the necessity of using highly purified materials. For silicon-based systems,
absorptions due to impurities including hydroxyl groups are situated around the 
above-mentioned windows at 1.3 and 1.55 µm. The improvement of manufacturing
techniques has meant that the presence of water has been reduced to less than 1 part
per 107 and accordingly the performances of silicon-based fibers have increased 
considerably to less than 0.2 dB km-1 at 1.55 µm. The use of fluorinated glasses can
extend the transparency window to 5 µm, and although the absorption bands are 
always present, they are well shifted to longer wavelengths.

1 1.5 2

peaks due to OH- ions

Rayleigh diffusion
increases at shorter 

 (dB km-1)

  10 infrared
absorption
(network

vibrations)
    1 

0.1

0.5 (µm)

Figure 12.26. Plot of  = f( ) showing the origin of losses in a silicon based fiber. 
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Second, losses due to diffusion that can be further separated into two groups:

extrinsic diffusion which itself can be due to two possible causes, the first being

tied to the possible inclusion of dust (of a size greater than
20

) and the second

being associated with the presence of microcrystallites. It is evident therefore that
there is an interest in using extremely clean and amorphous materials.

 intrinsic diffusion due to Rayleigh diffusion (see also Chapter 10) which is caused

by interactions of light with materials. It varies with respect to 4
1

 so that the

effect becomes more important at shorter wavelengths. Thus, at very short
wavelengths, there is a deviation in the plot of = f( )  due to an attenuation of 
the system (see Figure 12.26 for silicon fiber optics).

12.7. Problems
Monomodal conditions 
By way of recall, the total reflection at the interface between two dielectric media
brings into consideration two different and real indices denoted here as n and n1 and 
such that . We thus have 1n > n 1n  = n - n .

i0
n0

evanescent wave

guided wave
i

+a

O
- a

n1 = n - n

n

x

z

n1

y

c

The figure shows the configuration of injection and propagation of light in a
medium with an index denoted as n. When > , where  represents the limiting
angle (and  is the corresponding angle on the inside of the injection surface), 

electromagnetic theory tells us that the transmitted wave (

i

tE ) in the medium with
index n1 and for the zone defined by z , is in the form:> a/2
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0 1/2
y 0 1t tE =E exp(- z) exp(i[k  y - t]), avec  = k n (cos²i/cos²i ) - 1] .

1. Show that the intensity of the wave in the medium with index = n1 can be written

in the form t t
2z

I (z) = I (0) exp . Give an equation for , which then can be used

to give an approximate value, assuming that is sufficiently close to /2 to state 
that s .in² 1

2. Determine the condition for n that permits a weak penetration of a wave 
(evanescent) into the medium with an index =  n1.  The condition for weak
penetration is fixed using the condition c 3 1  (wavelength in a medium
with an index = n1).

In numerical terms, determine the condition on n when 1n n 1.5 .

3. Monomodal condition. In this chapter it is shown that: 0
1 2 2

1

a < a =
2 n -n

. With

n being very small, which can be verified later on, and with the same numerical
characteristics as given before in that 0 = 1.3 µm  and  a = 5 µm , give the
numerical condition that n must verify so that the guide is monomodal. Conclude.

Answers

1. We have 
22 0

t tt t
2z

I (z) = E = E exp(- 2 z) = I (0) exp  with

1/ 2

0 1

1 1 cos²i
 = = 1

k  n cos²i
.

Expressing
cos²i
cos²i

 as a function of , we have in one 

part, , and in the othercos i = cos ( /2 - ) = sin

1n
cos i = cos ( /2 - ) = sin  =

n
 , with the result that

1/ 2 1/ 22 2

2 2
0 1 0 11 1

1 n 1 n
 = sin² 1 1

k  n k  nn n
  .
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2. With 0 1 1k  n  = n
c

, gives rise to the condition:1 < 3

1/ 22
1

12
1

n
1 < 3

2 n
,  and the condition for weak penetration therefore is

1/ 22

2
1

1 n
1

6 n
, so that 

22 2
1

2 2
11 1

n n1 n 2 n
< 1= 1

6 nn n
.

We therefore have as a condition, finally,

1
2

n
n > 

72
.

In numerical terms with 1n  = 1.5, we have n > 0.0021 .

3. The monomodal condition can be written as
0 0

1 2 2 2 2
1 11 1

a < a  = =
2 n -n 2 2n n2 n + n  - n

0 , so that:

2
0

1

1
n < 

a²8n
.

In numerical terms, 1 0a = 5 µm, n  = 1.5, and  = 1.3 µm, we have n < 0.0056 .

To conclude, the two conditions brought together at n have a common
domain, namely . In this region, the conditions of weak
penetration and monomodal guiding are simultaneously true.

0.0021 < n <  0.0056



a
absorbent media 212, 317 
absorption (atom, molecules) 298 
absorption (conductor) 356 
absorption (zone) 234 
acceptance angle 400 
Ampere (theorem) 28 
Amperian currents 101 
antennas 280, 379 
antiecho condition 351 
antiferromagnetism 150
antiradar structure 352 
attenuation 215, 326, 355 
attenuation length 374, 420 

b
B (vector B) 106, 109 
Barkhausen effect 148 
bound charge 40 
breakdown potential 119 
bremmsstrahlung 297 
Brewster (angle) 341 
buried guide 368, 402 

c
cable (coaxial) 369, 371 
Cauchy (formula) 244 
cavity (cubic) 72 
cavity (molecular) 82 
cavity (spheric) 62, 112 
charges equivalent ( to a

polarization) 45 

Index

charges (nature) 40 
circular polarization 188 
Clausius-Mossotti equation 67, 71
coaxial line 369 
compensation charge 40 
complex notation 192, 268 
conductivity 20, 119, 254 
conservation of charge 17 
continuity (relations) 53, 107, 168, 

374
Coulomb (gauge) 272 
Coulomb (law) 8, 58 
Coulomb (theorem) 56 
cubic cavity 72 
Curie (ferroelectric temperature) 128 
Curie’s law 134 
Curie-Weiss 135 
curl 3 
current density 16 
current density at an interface 19 
current sheet 24, 378 
current (vitual) 116 
cylindrical coordonates 3 
cylinder (with surface currents) 114 

d
Dallenbach layer 350 
Debye (field) 82 
Debye (formula) 71 
decibel (dB attenuation) 421 
depolarizing field 42 
diamagnetism 131 



   Basic electromagnetism and materials428

dielectric (materials) 42, 119, 228 
dielectric characteristics 123 
dielectric function 240, 248 
dielectric withstand strength 119 
diffusion (by bound electrons) 291, 

309
diffusion (by free electrons) 292 
diffusion mechanisms 289 
dipolar charges 40 
dipolar radiation 267 
dipole transition moment 305 
dispersion  210, 242, 244, 251, 255, 

256, 385 
dispersing media (abnormally,

normal) 211 
displacement (electric, vector D) 51 
displacement current  162, 163, 170 
divergence 2, 49 
dipole field 275 
dipoles 40 
divergence 2, 49 
domain (ferroelectric) 126 
drift velocity 21
Drude model 20 
Drude-Lorentz 231 
dynamic systems 50 

e
effective field 43 
electret 123, 151 
electric displacement 52 
electric field (vector E) 9, 51 
electrical discharge 119 
electronic polarization 65, 228, 260, 

263
electronic transition 309 
electrostatics and vacuums 8 
electrostatics of dielectrics 39 
elliptical polarization 188 
emission 267, 298 
energy (EMPW) 215 
equation (of wave propagation) 173, 

206, 380 
equivalent charges 44 
evanescent wave 346 

excitation vector 106, 109 
external field 43 
extinction index 215 
extrinsic diffusion 423 

f
ferrimagnetism 150 
ferroelectrics 126 
ferromagnet (soft and hard) 145 
ferromagnetism 137, 145 
fibers 399 
field distribution  395, 418 
flux of current density 18 
flux of the vector 6 
Fresnel (equations) 331 
Fresnel losses 421 
frustrated total reflection 347 

g
Gauss theorem 10, 52 
gradient 1 
guide 368, 380, 420 
guide modes 386 
guided propagation 417 
guiding conditions 400 

h
H (vector) 106 
Hagen – Rubens (equation) 359 
half-wave antenna 283, 285 
heterocharge 40 
Hertzian dipole 281 
homocharge 40 
hysteresis (loop) 126, 142 

i
images (electric) 77 
impedance characteristics 257 
indices 212, 214 
induction 158 
insulator 121 
integrated transformations 6 
interaction (EMW-materials) 227 
interfacial polarization 65 
internal field 82 



 Index 429

intrinsic diffusion 423 
ionic polarization 65, 228 

j
Jones (representation) 195 

k
k (wave number) 178, 213 
k (wave vector) 179, 191

l
Langevin (function, theory) 67, 131 
Laplace (equation) 14 
laplacian 2 
laplacian vector 2 
Larmor equation 279 
Larmor (precession) 98 
leak current 206 
Lenz (law) 159 
linear materials 130, 319 
l.h.i. dielectrics 58, 229 
Lorentz gauge 268 
losses in a guide 420 

m
magnet 151 
magnetic doublet 93 
magnetic field 25, 82, 92 
magnetic (materials) 89, 119, 129, 

256
magnetic mass 110 
magnetic moment 89, 94, 97 
magnetization (primary) 139 
magnetization intensity 100 
magnetostatics (vacuum) 24 
Malus’s experiment 345 
mass (magnetic) 110 
Maxwell’s equation 167 
Maxwell-Ampere 28, 161 
Maxwell-Faraday 159 
metals 229, 252, 263 
modal equation 410, 414 
mode of propagation 393, 414 
modes (standing) 179, 386 
molar polarizability 67, 71

molecular field 135 
monomodal 402, 412 
MPPEMW 186 
multimodal 398, 412 

n
numerical aperture 400 

o
Ohm’s law  20 
Ohm’s law (limits) 22
Onsager (field) 82 
operators 1 
optical guiding 399 
oscillating charge 280 
Ostrogradsky theorem 7 

p
paramagnetism 132 
permittivity (dielectric) 52, 207, 213, 

232, 258 
piezoelectret 124 
plasma (medium) 228, 245 
Poisson’s equation 26, 160 
polarization (induced) 63, 66 
polarization (orientation) 65, 67, 228 
polarization (TE) 332 
polarization (TM) 332 
polarization (vector) 43, 57 
polarization charge distribution 46 
polarization current 50 
polarizability 64
polarized dielectrics 44, 258 
polymer 121 
potential (scalar) 7, 40, 274 
potential vector 8, 89, 101, 274 
potential well 415 
power 216, 373 
Poynting (vector) 216, 220 
PPEMW 180 
propagation 173, 206, 273 
propagation (guided) 367 
pseudo scalar potential 93 



   Basic electromagnetism and materials430

r
radiation power 219, 278, 282 
radiation zone 277 
RAQSS 157 
Rayleigh diffusion 289, 423 
reaction field 83 
reflection 317, 356 
reflection (coefficient) 331, 343 
reflection (total) 329, 367 
refraction 56, 317 
refraction index 215 
resonance 229 
retarded potentials 268, 273 
rotational 2, 30 
rotational transition 307 
Rutherford diffusion 294 

s
scalar potential 7, 40 
slowly varying rate 158 
Snell-Descartes law 322, 325 
solid angle 10 
solution parity 417 
space charge 40 
speed (group) 210, 387 
speed (wave phase) 194, 210, 387, 

394
sphere (charged) 33, 111 
sphere (dielectric) 61 
spherical cavity (empty) 62 
spherical coordinates 3 
stationary regimes 17 
Stokes’ theorem 7 
strip (dielectric) 75 
strip guide 368 
surface charge 42, 48 
surface current density 24, 378 
susceptibility (dielectric) 58, 222 
synchrotron radiation 297 

t
Thomson model 81 
transition rules 302 
transmission (coefficient) 331, 343 
treeing 120 

tube (of electric field) 15 

v
vacuum-metal interface 376 
variable slow rate 157 
vector circulation 3 
vector potential 8, 26, 27 
vectorial analysis 1 
vectorial integration 3
vibrational transition 308 
voltammeter (electrostatic) 123 

w
wave (direct) 175, 192 
wave guide 367, 403, 423 
wave (homogeneous) 327 
wave (inhomogeneous) 327 
wave (longitudinal) 176, 240 
wave (monochromatic) 178, 191 
wave number 178, 213 
wave penetration 355, 359, 362 
wave (planar) 176 
wave (planar progressive) 178 
wave polarized 186, 193 
wave (progressive) 178, 395 
wave (rectilinear polarized) 183, 199 
wave (retrograde) 175, 192 
wave (spherical) 177 
wave (stationary) 179, 377 
wave (transverse) 176, 181, 241, 381, 

383, 388 
wave TEM 193
wave vector 179, 191, 320 
Weiss (domains) 148 


	front-matter.pdf
	ch1.pdf
	ch2.pdf
	ch3.pdf
	ch4.pdf
	ch5.pdf
	ch6.pdf
	ch7.pdf
	ch8.pdf
	ch9.pdf
	ch10.pdf
	ch11.pdf
	ch12.pdf
	back-matter.pdf



