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Foreword

Electromagnetism has been studied and applied to science and technology for the
past century. It is mature field with a well developed theory and a myriad of
applications. Understanding of electromagnetism at a deep level is important for
core understanding of physics and engineering fields and is an asset in related fields
of chemistry and biology. The passing of the knowledge of electromagnetism and
the skills in application of electromagnetic theory is usually done in university
classrooms.

Despite the well developed literature and existing texts there is a need for a volume
that can introduce electromagnetism to students in the early mid portion of their
university training, typically in their second or third year. This requires bringing
together many pieces of mathematics and physics knowledge and having the
students understand how to integrate this information and apply the information and
concepts to problems.

André Moliton has written a very clear account of electromagnetic radiation
generation, and its propagation in free space and various dielectric and conducting
media of limited and also infinite dimensions. Absorption and reflection of
radiation is also described. The book begins by reminding the reader in an
approachable way of the mathematics necessary to understand and apply
electromagnetic theory. Thus chapter one refreshes the reader’s knowledge of
operators and gradients in an understandable and concise manner. The figures,
summaries of important formulas, and schematic illustrations throughout the text are
very useful aids to the reader. Coulomb’s law describing the force between two
charges separated by a distance » and the concept of electric field produced at a
distance from a charge are introduced. The scalar potential, Gauss’s theorem, and
Poisson’s equation are introduced using figures that provide clarity to the concepts.
The application of these concepts for a number of different geometries,
dimensionalities and conditions is particularly useful in cementing the reader’s
understanding. Similarly in chapter one, Ohm’s law, Drude model, and drift
velocity of charges are clearly introduced. Ohm’s law and its limits at high
frequency are described. The author’s comments provide a useful perspective for
the reader.



vi  Basic electromagnetism and materials

The introduction of magnetostatics and the relationships between current flow,
magnetic fields, and vector potential, and Ampere’s theorem are also introduced in
chapter one. Again the figures, summaries of important formulas, and author’s
comments are particularly helpful. The questions and detailed answers are useful
for retaining and deepening understanding of the knowledge gained.

Chapter two provides a useful and practical introduction to dielectrics. The roles of
dipolar charges, discontinuities, space charges, and free charges as well as homo-
and hetero-charges are illustrated in Figure 2.2. The applications of the formulas
introduced in chapter one and the corresponding problems and solutions complete
this chapter. Similarly magnetic properties of materials are introduced in chapter
three. Dielectric and magnetic materials are introduced in Figure 3. The properties
of magnetic dielectric materials are described in Figure 4 together with a number of
useful figures, summaries, problems, and solutions.

Maxwell’s equations together with oscillating electromagnetic fields propagating in
materials of limited dimensions are introduced and described in chapters five
through seven. Propagation of oscillating electromagnetic waves in plasmas, and
dielectric, magnetic, and metallic materials is described in chapter eight. The
problems and solutions at the end of each chapter will be particularly helpful.

The generation of electromagnetic radiation by dipole antennae is described in
chapter nine, with emphasis on electric dipole emission. Absorption and emission of
radiation from materials follow in chapters ten and eleven. Chapter twelve
concludes with propagation of electromagnetic radiation in confined dimensions
such as coaxial cables and rectangular waveguides.

In sum, I recommend this book for those interested in the field of electromagnetic
radiation and its interaction with matter. The presentation of mathematical
derivations combined with comments, figures, descriptions, problems, and solutions
results in a refreshing approach to a difficult subject. Both students and researchers
will find this book useful and enlightening.

Arthur J. Epstein

Distinguished University Professor
The Ohio State University
Columbus, Ohio

October 2006



Preface

This volume deals with the course work and problems that are common to basic
electromagnetism teaching at the second- and third-year university level. The
subjects covered will be of use to students who will go on to study the physical
sciences, including materials science, chemistry, electronics and applied electronics,
automated technologies, and engineering.

Throughout the book full use has been made of constructive exercises and
problems, designed to reassure the student of the reliability of the results. Above all,
we have tried to demystify the physical origins of electromagnetism such as
polarization charges and displacement and Amperian currents (“equivalent” to
magnetization).

In concrete terms, the volume starts with a chapter recalling the basics of
electromagnetism in a vacuum, so as to give all students the same high level at the
start of the course. The formalism of the operators used in vectorial analysis is
immediately broached and applied so as to help all students be well familiarized
with this tool.

The definitions and basic theories of electrostatics and magnetostatics then are
established. Gauss’s and Ampere’s theories permit the calculation—by a simple
route—of the electric and magnetic fields in a material. The calculations for charges
due to polarization and Amperian currents caused by magnetization are detailed,
with attention paid to their physical origins, and the polarization and magnetization
intensity vectors, respectively.

A chapter is dedicated to the description of dielectric and magnetic media such
as insulators, electrets, piezoelectrets, ferroelectrics, diamagnets, paramagnets,
ferromagnets, antiferromagnets, and ferrimagnets.

Oscillating environments are then described. As is the tradition, slowly
oscillating systems—which approximate to quasistationary states—are distinguished
from higher-frequency systems. The physical origin of displacement currents are
detailed and the Maxwell equations for media are established. The general properties
of electromagnetic waves are presented following a study of their propagation in a
vacuum. Particular attention has been paid to two different types of notation—used
by dielectricians and opticians—to describe what in effect is the same wave. The
properties of waves propagating in infinitely large materials are then described along
with the description of a general method allowing determination of dynamic
polarization in a material that disperses and absorbs the waves. The Poynting vector
and its use in determining the energy of an electromagnetic wave is then detailed,
followed by the behavior of waves in the more widely encountered materials such as
dielectrics, plasmas, metals, and uncharged magnetic materials.
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The following two chapters are dedicated to the analysis of electromagnetic field
sources. An initial development of the equations used to describe dipole radiation in
a vacuum is made. The interaction of radiation with electrons in a material is
detailed in terms of the processes of diffusion, notably Rayleigh diffusion, and
absorption. From this the diffusion of radiation by charged particles is used to
explain the different colors of the sky at midday and sunset. Rutherford diffusion
along with the various origins of radiation also are presented. The theory for
absorption is derived using a semiquantic approximation based on the quantification
of a material but not the applied electromagnetic field. This part, which is rather
outside a normal first-degree course, can be left out on a first reading by
undergraduate students (even given its importance in materials science). It ends with
an introduction to spectroscopy based on absorption phenomena of electromagnetic
waves, which also is presented in a more classic format in a forthcoming volume
entitled Applied Electromagnetism and Materials.

The last two chapters look at the propagation of waves in media of limited
dimensions. The study of reflection and refraction of waves at interfaces between
materials is dominated by the optical point of view. Fresnel’s relations are
established in detail along with classic applications such as frustrated total internal
reflection and the Malus law. Reflection by an absorbing medium, in particular
metallic reflections, is treated along with studies of reflection at magnetic layers and
in antiradar structures. Guided propagation is introduced with an example of a
coaxial structure; then, along with total reflection, both metallic wave guides and
optical guides are studied. The use of limiting conditions allows the equations of
propagation of electromagnetic waves to be elaborated. Modal solutions are
presented for a symmetrical guide. The problem of signal attenuation, i.e., signal
losses, is related finally to a material’s infrared and optical spectral characteristics.

I would like to offer my special thanks to the translator of this text, Dr. Roger C.
Hiorns. Dr. Hiorns is following post-doctorial studies into the synthesis of polymers
for electroluminescent and photovoltaic applications at the Laboratoire de Physico-
Chimie des Polymeéres (Université de Pau et des Pays de 1’Adour, France).
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Chapter 1
Introduction to the Fundamental Equations of
Electrostatics and Magnetostatics in vacuums
and Conductors

1.1. Vectorial Analysis
1.1.1. Operators

1.1.1.1. Gradients

A gradient is the vectorial magnitude of a scalar. For example, the scalar (@) which
at point P has coordinates x,y,z, takes on a value ®(x,y,z). By definition, at the point
P (see Figure 1.1), the gradient of ® is given by a vectorial magnitude, as in:

~ — — 0D 0D 00
G(P) = gradp ®D(X,y,z), which is such that gradp ® = i—+ j— +k—
ox Oy 0z

P(x,y,z)

Figure 1.1 Coordinates of the point P.
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1.1.1.2. Divergence

A divergence is an operator that is a scalar magnitude of a vector, for example, A,
and indicates its tendency. Here A(X,y,z), A(X,y,z) and A,X,y,z) are the
components of this vector. By definition, the divergence at the point P of A is given

—0A, OAy 0A
by: divyA =—*+—L +
ox oy oz

Y4

1.1.1.3. Rotational

A rotational operator is a vectorial magnitude of a vector. By denoting the
components of A by Ay, Ay, and A,, the rotational for A for P is by definition:

— - -[0A, OA — (oA A - [ OA A
rotpAzi{a—Z- y]+j(ax_5_zj +k[—y-a—xj

oy 0z 0z ox ox oy
i j k
| Yox Toy Yo
Ax Ay Az

1.1.1.4. Laplacian

The Laplacian, a differential operator, is a scalar magnitude of a scalar, and by
definition the Laplacian of the scalar ®(x,y,z) is given by the scalar for a point P as
o0*d 00 020

+ + .
aXZ 8y2 aZZ

AD =

1.1.1.5. Laplacian vector
The Laplacian vector is a vector magnitude operating on a vector. By definition the

Laplacian vector of A with components Ay, Ay, and A, is given by:

AR = TAA, +jAA, + KAA,.

1.1.1.6. Comment

These definitions can be used for all types of coordinates, whether cylindrical or
spherical. For example, the cylindrical coordinates such that OP = r a + z 5,
and with p being defined by the projection of a point P onto a flat surface Oxy so
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that r=Op, z=pP,and 6 = (&, a) as detailed in Figure 2.1, the components

of the gradient vector are:

— 0D
for er:a—,
or
— 100
for eez—a—,
r 00

— 00
and for e, : —.
0z

Figure 1.2. Cylindrical coordinates.

Using the unit vectors a , % and % defined in Figure 1.3, the similar spherical

coordinates are given by (with r=OP ):

— 00
for e, : —,
— 100
for eg : —,
r 00
— o
and for ¢ : —.
r sin@ O

Figure 1.3. Spherical coordinates.

Given the coordinates », 6 and ¢ in Figure 1.3, the total volume of a sphere of
radius R can be defined using the limits of » [0, R], of 80, «], and of ¢ [0, 2x]. If

were to be defined by 0 = (o—p,@) , then its limits would be [-7/2, ©/2], in which

. — 1 od
case the gradient component for e, is —

r cosb o¢ '
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1.1.2. Important formulae

The gradient, divergence, and rotational operators all bring into action differentials
so that if A is a constant, then
o(AvV) 2 ov

Ox Ox

B

and if u and v are functions of x, then

o(uv) ov ou
=u— + v—
ox ox ox

grad (PY) = @ grad ¥ + ¥ grad @
div (aA ) =a divA+ ( grad a).A

div (A x B ) = (rotA ).B - A.(rot B)
E(ag)=arotx+grjaxx.

The schematization below can help in memorizing these important formulae:

grad @
div(grad ©) = AD grad (divA) = AA + rot (rot A)
—— div A
rot (grad @) = 0 div(;(; A) o
rot A

1.1.3. Vectorial integrations

1.1.3.1. Vector circulation or “curl”
By definition, the circulation of a vector denoted F around an open curve (C) is

— P o —
given by (see Figure 1.4a): T = LC) Fdl= [Fdl.
M
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F

ol

&)
© dl

dl
M (a) m=p  (b)

Figure 1.4. F circulating around (a) an open curve and (b) a closed curve.

For a closed curve, as shown in Figure 1.4b, the same circulation is given by
T =d, Fdl.

If F is a gradient, i.c., F= grad @ for example, then

P
T = [grad ®. dl = ®(P) - D(M) .
M

A simple verification of this result can be performed in one dimension (1D). For a

given axis (Ox) that defines the single dimension, the unit vector can be denoted as

1 so that:
. ~ 0D -
grad ® = i— and dl = idx
ox
and hence

P . P_op- P
T= [grad ®.dl= [i—.idx = [dD = ®(P)-DM).
M M OXx M

In three dimensions (3D), the definition for a scalar product directly yields
@ ®.di = d®, which is in effect the same result.

From this can be derived directly that the curl of a gradient around a closed curve is
zero,as M = P (see Figure 1.4b), so that ®(P) = ®(M), from which T=0.



6  Basic electromagnetism and materials

1.1.3.2. The flux of the vector A

The flux of A through an open surface (S) that is not limited by a certain volume is

given by ¢ = [[AdS, where dS = dSi#i with fi being the normal external to an
S

element of the surface described by dS.

ds

Evacuated part of a form much like an
emptied half egg shell

Figure 1.5a. Flux through an open surface.

The flux of A through a closed surface (S), delimited by a certain volume, is given

by ¢ = @ A.dS where dS = dSii, and fi is the normal external to an element of
S

the surface denoted dS.

ds

Closed surface, much like a whole egg shell which has
a limited volume (V) equal to its contents

Figure 1.5b. Flux through a closed surface.

1.1.3.3. Integrated transformations

In most courses concerning vectorial analysis, the following are encountered:
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1. Ostrogradsky's theory [[[divyy Adt= df Ay, dS  (Figure 1.6a)
\%

S fermée

)

m describes the surface of the volume limited by S

point M in V limited by S

Figure 1.6a. Points m and M relating to the surface and volume integrals.

2. Stokes' theorem c_f A(m).al = j'.[r—otMA.d—S (Figure 1.6b)

C closed S
) M described by S sitting on C
© m describes the closed curve C

Figure 1.6b. Points m and M relating to the curvilinear and surface integrations.

3. Gradient formula give by [[[grad @ dt = f® dS; and
\'% S

4. The rotational formula for the rotational, used in magnetism when determining the

expression for Ampérian currents, asin  [[[rot A dt = ffdSx A
\'% S

1.1.4. Terminology
1. A is said to be derived from scalar potential if there is a scalar (®) such that

A= —gr?i(l) . By consequence, if A= -gr?lcl) , then:

e as qf grad @ di =0, then cf Adl =0 as an integral property of a vector derived
from a scalar potential; and
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eas ¢ f&(m) dl = [[rotMmA.dS (Stokes' theorem), then for the same conditions,
C closed S

rot A=0 in a localized property of vectors derived from a scalar potentials. This

can also be understood by considering that if A is derived from a scalar potential,
its rotational is zero. This property can be directly obtained from the general

formula, E)?(grad ®) = 0.
2. The vector B is said to be derived from a potential vector if there is a vector (A )
such that it is possible to state B =rofA . Asa consequence, if B = rotA then:

e  Ostrogradsky's  theorem  makes it  possible to  state  that
§fB.dS = [[[div B dt = [[[div(rot A) dt = 0. In addition to which, if the vector B

is derived from a vector potential, then the flux is conserved (as Cﬁﬁ.ﬁ =0 is

verified). This is an inherent property of vectors derived from vector potentials.

e generally speaking, from div(ﬁ A) =0, then in this case, divB =0 , showing

the localized property of vectors derived from a vector potential.

1.2. Electrostatics and Vacuums

1.2.1. Coulomb's law

M (@)

Figure 1.7. Coulomb's law.

This is an empirical law that describes that when two charges interact they exert on
each other a force. For a charge (q;) situated at a point (P) and another charge (q)
situated at another point (M), and by making 7 = MP as shown in Figure 1.7, the
force exerted on q; by the presence of q is given with Coulomb's law as:

- 1 T
F, = qqi f _ a9 -

4reg >t 4neg 1

MP
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where U = Uyp is the unit vector in the direction MP, which is directed from q
toward q; and g is the dielectric permittivity given by
1

g9 = —— SI ~ 8.854 x 102 Fm?,
361 10

—9x 10’ SI.

or in other terms,
4TC€0

1.2.2. The electric field: local properties and its integral
1.2.2.1. Form of the electric field
The force Fp can be written as Fp = q; E , where

q
4meg 1

[ =

E=

w

is the electric field generated at P by the charge q at M.

-1 -
Additionally, on recalling that gradp — = —% , it is possible to equate E in the
r T

form: E= - =- gr?ip V where

— 1
gradp —= - gradp
r

4me 4megr

q
4megyr

V=

appears as the scalar potential from which is derived the electric field E (see also
the terminology introduced in Section 1.1.4).

1.2.2.1. Local and integral properties of an electric field

As the electric field is derived from a scalar potential, it is possible to state that:

. C.F Edl=0 |which is an integral property of E . If the curve C is not

B . B__ = _
closed, then IE.dlZ - jgrad V.dl=V, -Vg;and
A A

¢| rot E=0 | isalocal property of E .
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1.2.3.  Gauss's theorem

1.2.3.1. The solid angle
In simple terms, a plane angle (0) is defined in two dimensions by 6 =/ /R, as
shown in Figure 1.8a.

Y A dS =2n R?sin o do

Figure 1.8. (a) Plane and (b) solid angles.

Similarly, in three dimensions, a solid angle (€2) can be represented as an angle
generated by a plane angle (8) when it rotates in space around an axis Oy. By

S

definition, and as shown in Figure 1.8b, Q = — where S represents the surface at
R

the interception of a half angle cone at the vertex 6 on a sphere of radius R.

0
With S = IZE R?sin o da=2m R? (1 - cos 0), the expression for the half angle
0
cone at the vertex 0, which defines the solid angle, is given by Q =2mn (1 - cos 0) .

Figure 1.9. Solid angle where there is a surface dS.

In more general terms, we can look for the solid angle (dQ2) through which

from a point O can be seen the surface element dS such that at a point P is
r=0P,as in Figure 1.9. If dS, represents at P a straight section of the cone, and

given the preceding definition, we should arrive at
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dQ = 45y . From this it is possible to state that dQ = dS.cosa _ udS ,
r? r? r?
where U denotes the unit vector in the direction OP. The solid angle through which
all space can be seen is 47 steradians, as
adS  .dS,

-]

r? 2

=n
_[ 2nsin© dO = 4w.
=0

Q [ dQ=|

all space

0
space =
0

1.2.3.2. Flux created by an electric field generated by a charge outside of a given

closed surface
In general terms, an electric field generated by a charge (q) at a point (M) on another
. - 1
point (P) suchthat T = MP=r1 isgivenby E = 4 u
4meg 12

Figure 1.10a Calculation of the flux generated by a charge outside of a surface.

In order to calculate the electric field generated by such a charge through a
closed surface (S) which itself contains no charge, it is possible to associate opposite
elements of S as seen from the point M, as shown in Figure 1.10a. In other words,

the elements of the form dSand dS are associated. The corresponding flux
elements are:

— - i.dS
o through dS, do = EdS = — 3 " _ 9 40. and
4mey r? 4meg
- - i3S
o through dS, d®' = EdS = 2B 9 4o
4ngy 12 4me
.4 40,

4T580
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In effect, the negative sign is introduced because the angle 6'=(i',n') is greater
than n/2; in other terms cos 6'<0. Thus dQ’ is negative as |dQ| = |dQ'| , while

do'= - do.
The total flux for the two elements therefore is given by d®p =d® +dd'=0,
and the resultant flux through the whole of S therefore is also zero.

1.2.3.3. Electric field flux generated by a charge inside a given closed surface

Figure 1.10b Calculation of the flux generated by a charge inside a closed surface.

The fundamental expressions for flux remain

o = Bas = L BB 9 40 4
4ney 1? 4me)
g i'ds’
do' = Bas = 2= 4o,
ey r'? 4me

but here, as shown in Figure 1.10b, 0’ < /2. The two flux elements no longer
cancel each other out and the total flux can be simply given by

o= | do=—— | do--21,

all space 471:80 all space €9

1.2.3.4. The integrated form of Gauss's general theorem

1.2.3.4.1 Classic or “standard” form
For a distribution of charges, only those that contribute to a flux from the inside of a

surface are considered. Each internal charge (q;) will contribute qi to the resultant
€0
flux (@t ), which can be described by:
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®r =fE. dS=Y
S i€

where q; represents the charges inside the closed surface (S).
If the system of charges is distributed in a continuous manner, with a
charge volume density denoted by p, then

Op = gfE. B = [pdr=2
S € v €0

where Q represents the resultant charge inside a volume (V) delimited by S for a
uniform spread of charges.

1.2.3.4.2. The merit of the integrated form of Gauss's theorem
The integrated form is of particular use in determining the electric fields inside

symmetrical systems. For example, if |I:Z| = constant on a surface, the flux through

the surface is simple to calculate, as @ = ES, and it can be expressed as a direct
function of E.

1.2.3.4.3. The particular case of a surface charge distribution

If the charges under examination are superficial ones at S, the solid angle through
which a charge given by dq = & dS can see the surface dS is equal to 27, due to its
view being through a half space of the surface dS, as shown in Figure 1.11. From

ds B
O L so that & = JJE. & = [ ds = -
S 280 280

this, therefore, d® =
4me

S

s carried over
all surface

dS

Figure 1.11. Solid angle observed by charges at a surface.

1.2.3.5. Local form of Gauss's theorem
This can be obtained via Ostrogradsky's theorem, which makes it possible to state

that Op = Cf:f E. dS= mdiv Edt. As above detailed, O = L mp dt, and
S \ € v
therefore:
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dive = 2.
€q

It is worth noting that this equation concerns only the point P around which the
divergence is calculated, so symmetry is no longer part of the problem.

1.2.4. The Laplace and Poisson equations
1.2.4.1. Laplace's equation
1.2.4.1.1. Mathematical form

In a vacuum in which there are no electrical charges distributed so that p=0, for a
point P, Gauss's local theorem makes it possible to state that divpl:i =0. As

E= -gradp V, it is possible to derive that

AP V=0 5

which is the Laplace equation for a vacuum.
A similar formula can be obtained for an electric field. In order to do this,
the notable equation, AE = grad (divE) — rot (Tot E), is used. As in a vacuum,

dinE = 0, and in electrostatics, rot E=0 , we immediately find

AE=0

1.2.4.1.2. The consequence: flux conservation throughout the length of a “tubular”
electric field

Before going any further, it can be noted that the lines of an electric field are defined
at each point P in space by a curve that is tangential to the electric field vector at that
point. The equation for the field lines is thus given by dixE=0 (see Figure 1.12).
As E is collinear to @ap V and the gradient vector is normal to the equipotentials
(as between 2 points denoted A and B there is an equipotential given by
E}@ V.ds= V(B)-V(A)=0 so that gr?iV L &), E is perpendicular to the

A
equipotentials and directed toward decreasing potentials.

A collection of field lines acting on a closed contour constitute a field tube, as
described in Figure 1.12. The contour denoted C1 goes onto become C2.
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\ ' decreasing potentials

Figure 1.12. 4 tube of electric field.

The electric field flux through the closed surface formed by the field tube
(lateral surface) and the two surfaces denoted as S; (delimited by C1) and S,
(delimited by C2) is of the form:

®= [[ EdS+ [[EdS| + [[EdS,=0+®s; +®s, ,
S lateral S, S,

where ®@s; and ®s, denote the fields exiting from the surfaces S; and S,,
respectively.

Figure 1.10 shows that ®s; <0 [as ©/2 < (ﬁl,E1)< 7] while ®s2 > 0. Given
that the flux traversing S, is given by ®n = [[E.(-i;)dS=- [[E.dS;=- ®s,, it is
sl S]
possible to directly derive ® =@, - O ;.

From the integrated form of Gauss's theorem and given that here that p =0, it
can be deduced that , from which it can be stated in more general terms for
a vacuum that . In effect, the flux entering by one side (®,) of the field tube
is the same as that leaving by the other (®y).

1.2.4.2. Poisson's equation

In the presence of a volume charge distribution (p # 0), carrying forward

E= —gr?lp V into the local Gauss theorem (diVPE= i) directly yields
€0

Ap V+ =0

€0
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1.3. The Current Density Vector: Conducting Media and Electric Currents
1.3.1. The current density vector

1.3.1.1. Current through a section

Figure 1.13a shows a conducting wire with an elementary section given by ds; p

and v denote the density of mobile charges contained therein and their average
velocity, respectively.

Figure 1.13. Current flowing through (a) a section and (b) through a closed surface.

During an interval of time (dt) between the time (t) and t + dt, the quantity of
mobile charge (dq,) that traverses the surface dS initially can be found in the

volume given by dt = dS.v dt . Therefore, dq, =pdt=pv dtds.
By definition, the current density vector (j ) is 3 = pv .

This relationship indicates that the quantity of charge traversing the surface ds
in the time dt = 1 second is (dq,,)gi=1 =]&§ The elementary intensity is thus

dq,
dt

dIZ].ﬁ = ,and I= J'ﬁcTS therefore represents the quantity of charge that
S
traverses S per unit time and is the intensity of electric current across the S.

This last equation shows that the intensity appears as a flux of ] through S.

1.3.1.2. Comment

The density p that is used above corresponds to the algebraic volume mobile charge
density (p,,) and is different from the total volume density (pr), which is generally
zero in a conductor. Thus, pt =p,, +pr, where p, is typically the (mobile)
electron volume density and py is the volume density of ions sitting at fixed nodes in
a lattice. As these ions only vibrate around their equilibrium positions due to
thermal energy (phonons), their average velocity (vy) is such that vy =0, and the

corresponding current (jg) is jg =0.
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1.3.1.3. Current traversing a closed surface

For a volume (V) delimited by a closed surface (§ ), and yet orientated toward the
exterior as shown in Figure 1.13(b), the total charge (Q) of V is not necessarily
constant and can a priori change with the flux traversing S .

Therefore, if dQ,, represents the quantity of mobile charges traversing S
toward the exterior during the period t to t + dt, then

1= 9m _ 4368 = g indS.

If dQ,, exits the volume V, the conservation of charge implies that the total charge in

d d
V varies as dQ=-dQ,,. Thus _d& = % =1, which can be rewritten as
t t
dQ . . . : :
I+ d—: 0, where dQ is the variation in internal charge during the given period of
t

time. This equation means that there is no accumulation of charge at certain points
in a circuit.

1.3.2. Equation for conservation of local charge
Thus 1= gf,f]ﬁ = mdivﬁ dt
S

dQ d d
=2 &l = [ Las

with Q = ﬂjp dt

. ap . ap
d + — | dt=0,sothat |d + — =0
m[ ivj atj T so that |div j at

This formula is called the continuity equation and also represents a conservation of
charge.

1.3.3. Stationary regimes
The title of this section indicates time-independent regimes, where the distribution

o 0 .. ©
of charge and current is time independent and P _ 0. The condition 22 = 0

implies that p =constant, so that the charge contained in V is renewed (and

maintained) by the passage of current (continuously produced by a generator) in a
circuit that maintains a constant charge.
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1.3.3.1. Current lines and tubes

Figure 1.14. Current lines and tube.

By definition, a current line is at a tangent at all points to the vector 3 shown in

Figure 1.14. For its part, a current tube is the surface generated by lines of current
applied to a closed contour.

1.3.3.2. Flux due to ] under stationary regimes
As a consequence of the stationary regime, the flux provided by j through the
lateral faces of a current tube is zero (Figure 1.14), and ®gj,er= 0.

In addition, the continuity equation can be reduced to div j: 0 and

Ostrogradsky's ~ theorem  permits @ =q':fj.ﬁds=0 . Thus, we find

D = Dot + Pg; + Pgy =0 with Dg; = [[j.dS; as the flux leaving S;, and
S1
likewise for S,. From this it is determined that - ®g; = ®g, and the flux entering S,

is equal to @, = ﬂ]( -dS, ): - @, ; therefore it can be concluded that the flux
S1

entering a section of a current tube is equal to that leaving by another section. In
other terms, under a stationary regime, the current intensity is the same throughout
all sections of the current tube.

1.3.3.3. Properties of 3 under a stationary state
At the interface between two media, there is conservation of the normal component
(n ) of 3 In effect, by denoting 31 and 32 as the vector 3 in media 1 and 2,

respectively, we have:

§fjnidS=0= [[j.f,dS + [[,dS+ [[ jdS , where
S1 S2 Slateral

ﬂ HK ~e~x0
Slateral
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[If the problem is considered simply in terms of the opposing sides of the interface
(Figure 1.15), then the extensions A; —A; and Sy —>€ are made].

We now arrive at jfjl.ﬁ2d8+ Iﬁz.ﬁlds =0. By making n =n; =-n,, and by
S1 S2
noting that for the two parts on either side of the interface, thatS; =S, =S, it can

be written that:

[[ia dS- [[jadS=[[(j4 - j.i)dS=0, so that
S S S

j]n :j2n

where the components of j and j, at the normal fi are continued at the interface

between the two materials.

medium 2 = n

f no=n =gy = <
S 2

A
Sy ¢ A
dium 1 7,

lateral surface Slyera

Figure 1.15. Vector _j at an interface.

If one of the materials is an insulators, take for example here medium 1, then
jl =0 and jy, is also zero. The continuity equation given above details that in the

second medium the value for j,, is also zero. From this can be deduced that in a
conductor in the neighborhood of an insulator, j, is zero. The current density vector

(]) can therefore only be at a tangent to the dividing surface. As a consequence,

inside the conductor, E1 = v # 0, where o is the conductivity to be recalled in the
c

definition given in Section 1.3.4 below. As there is continuity in the tangential
component (Er) at the interface between the conductor and the insulator, the external
field no longer is normal to the conductor as otherwise would be found at
equilibrium, i.e., when there is no current.
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1.3.3.4. Comments
Under a quasistationary regime, p varies with time but sufficiently little so that it

d . .
can be assumed that 6_p << divj. Hence, once again div j=0 (as found for
t

sinusoidal currents at low frequencies).

Under a rapidly varying regime, p varies rapidly with time, so that @ is
no longer negligible with respect to div j . Therefore, ] is no longer a conservative

-~ 0
flux but accords to divj + gp = 0, and the current lines do not fold in on

themselves. We find therefore that fﬁﬁ # constant, and after one cycle ]
S1

differs from that traversing S;.

1.3.4. Ohm's law and its limits

1.3.4.1. The model (Drude)

%j
g (a) E (b)

Figure 1.16. Trajectory of a carrier (a) in the absence and (b) in the presence
of an electric field.

In the absence of an applied field, free charges collide and the average (Brownian)
displacement is zero, so that (V) =0, and as there is no current, ] = 0. It is worth

noting that the instantaneous velocity is non-zero and that it corresponds to the
thermal velocity (vy,), that is very high.

In the presence of an electric field, the trajectories are deformed and an
average derivation occurs; thus charges are transported and a current appears.

1.3.4.2. Determination of conductivity (o)

In the presence of an electric field (E ), the applied dynamic fundamental formula
for a charge (q), which is typically an electron so that q = - e, is given by
dv -
m— =qE.
dt
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E
The differential equation, dv = q—dt , can be integrated from between the
m

initial instant when t; =0 and a time t. By assuming that E is uniform and

E
therefore constant between these two times, then V(t) = v(0) +q—(t -0) where
m

v(0) is the initial velocity of the carrier and V(t) is the carrier velocity at the later

time t. Between two successive collisions, the average value of the velocity is given

E . .
by: <v>=<v(0)>+ & <t> where <t>, denoted below more simply as T, is the
m
average time between two successive collisions. Given that the impacts are random,
the initial velocity of an electron is zero, although this average can be over a high
number of electrons and unless of course if the collisions are orientated, which can

result in a high average velocity under a strong field.

So, with <t>=1 (called the relaxation time) and <v(0)> =0, we finally have:

- E -
<V>= q—r =uE= Vd/ by convention, this velocity is denoted
m V4 and is termed “drift velocity”

with

T o .
pn= a as the charge mobility expressed in cm? V™' sec™.
m

In addition, by introducing the value of velocity into the formula for current
density, ] = p v=nqV, where n is the carrier density, we obtain:
ng3t - -
! E =oE , where ¢ =
m m

nq’t . L . -
a is the conductivity in units Q' m™.

j]:=

1.3.4.3. Order of scale
For copper, the conductivity 6 ~ 6 x 10" Q'm™ (6 x 10° Q'em™) and the carrier

. N . . . .
density n= L is approximately 8.5 x 10%® electrons m™ where N is Avogadro's
a
number and M, is the atomic mass. From this can be determined that
mo

TS = 2x10™s.  Given a value of j = 10 A/mm?, then
nq

vq =j/p = 03 mm/s and the mobility p=qt/m = 35 cm?*V.s.
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1.3.4.4. Limits to Ohm's law

E
For an intense field, the velocities <vy> =~ q—(r) are relatively high and alter the
m

character of impacts. It is no longer possible to state therefore that <vy>=0. For

fields that are extremely intense, the impacts are orientated in the sense of the field,
so that the trajectory is practically parallel to the field and the velocities approach
the thermal velocity (vy,) as indicated in Figure 1.17.

In addition, if E is very intense, then ionization phenomena can occur,
resulting in a non-Ohmic avalanche.

Vd
Vin

» £

Figure 1.17. Variation of velocity with electric field intensity.

If E varies too rapidly, then the integration of the differential equation in
Section 1.3.4.2 between two instants t, =0 (start of impact) and t=r1 (statistical

end of impact, equal to the average time between successive impacts) assumes that
E is constant during the interval t. The frequency of E therefore must be below

v=1/t ~ 5x10°% Hz,a frequency that corresponds to that of an electromagnetic
wave with wavelength given by A =ct ~ 6 um (infrared). As a consequence,

Ohm's law is valid in metals for electrotechnical and radioelectrical frequencies but

not optical frequencies where (v = 101 Hz).

1.3.4.5. Macroscopic form of Ohm's law

Figure 1.18. Cross section of a current tube.

Given a conductor with a cross section (dS) perpendicular to the current lines. The
intensity of the current traversing dS is given by dl=jdS=c EdS, so that
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1dl

E= _E . Between two points A and B along a current line, we thus have:
o

B B B1d

B
1 dl
_[dV = j— E.dl = —I——dl . By making r= I——, we find that (with dI
A A AC dS AOC ds

Bl d
being a constant between A and B under a stationary state): V4 - Vg =dI I—d— ,
AOC
V, =V,
so that dI= —A—B_
r
1 A Vo -V
Making R = - it is possible to state that I= Hdl = J] A B_"A B
S r R

I ;

r
Therefore V, - Vg =RI.

1.3.5. Relaxation of a conductor
On introducing the relation j: oFE into the general equation of charge

- 0 - 0
conservation, div j + X _ 0, we find o divE + P _ 0.

ot

Using the local form of Gauss's theorem gives @ + ip =0.
ot €o
By making 1 = fo , we obtain p=pg € v
c

In the volume charge density of a conductor, there are both interventions due to
free electron charges and charges associated with ions. Under a field effect, the
electronic charges and the ions are separated and a localized charge can appear,
given by the volume density p, which thus includes electron and ion charges
(p = p1)

Nevertheless, the integration of the differential equation shows that for periods
of the order of several 1, p tends toward zero. Physically, this result can be
understood if there is a localized excess of charge appearing in the conductor,
returning electric forces act between opposite charges and if the material is
sufficiently conducting, a return to electrical neutrality will occur quickly. With

o~ 107 Q! m'l, we have © ~ 10718 5. However, given the use of Ohm's law
here, the result is unacceptable for periods below 10™* s, and in practical terms,
inside a homogeneous conductor, the total volume charge density can be assumed to
be zero across all Hertzian frequency domains; that is to say from the stationary state
to the infrared.
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1.3.6. Comment: definition of surface current (current sheet)

\
(L (8
— —>
ds =7 dS . n

Figure 1.19. (a) volume and (b) surface current densities.

Q)
dt
traversing a section (dS) of a volume (dV), as in Figure 1.19, is given by
~ d’Q,,  pvdtdS
dt e
1.19b, dI is an intensity that no longer crosses dS but dl where dl is perpendicular to

It has been noted above that the elementary intensity (dI) of current (with I =

dl = pV.ES = Ed—S If we flatten the cylinder, as in Figure

the current lines ( j). Crosses J is therefore defined by j=o, v where o,

- - - d
represents the surface density of free charge. Thus, dI=j.n dl, so that j, = En

where n is normal to dl, and dI is the intensity traversing the segment dl

perpendicular to the current lines. Considering that the line AB perpendicular at all
B B

points to j;, the current across the flat sheet is defined by 1= I ki dl= j jsdl. As
A A

I
Js 1s uniform, we find that |j;| = —, which has units A m’.
AB

1.4. Magnetostatics

By definition, magnetostatics is the study of magnetic fields due to steady current
distributions, or in other terms, a spread of volume, surface, or wire currents
independent of time. The circuits through which the current circulates continuously
also are assumed to be fixed.

In fact, magnetostatics is not a study of statics in the strictest sense, as the
electrons, or holes, are mobile, but what is steady (or stationary and independent of
time) is the spread of charges. As a consequence, we always find p = constant with

. 0
respect to time, and therefore 5p =0.

The equation for the conservation of charge therefore can be reduced in
magnetostatics to divj =0. According to Ostrogradsky's theorem, it can be
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deduced that df j.dS = [[[div j dt = 0, indicating that the incoming flux is equal to

the outgoing flux, and that the intensity is constant across sections of the current
tube.

1.4.1. Magnetic field formed by a current

P - 4\1
dB\A Jan

©

Figure 1.20. Magnetic field produced by a circuit (C).

Figure 1.20 shows a circuit (C) through which runs a current (I). The charges
moving at a velocity (V) through the wire interact with other charges (q). The action

of I on q at a point P is given by Laplace's equation in the form F = qvx B. The
vector B thus generated by the circuit is called the magnetic field (or even the
magnetic induction). Historically, it is the vector H that is given by B = Hoﬁ ,
which was first called the magnetic field vector, even though it is simpler to say the

“B vector” or the “H vector” to denote them. po =4m 107 MKS is the magnetic

permeability of a vacuum, and B is expressed in Tesla or in Weber m2.

For the various types of current, whether in a wire, a surface, or a volume, the

expression for the element dB at a point P situated at MP = T with respect to the
point M which defines an element of the circuit, whether it be dl, dS, or dr, is given
by the Biot-Savart empirical law:

-for a current in a wire

dB = Z—O Idix % (elementary field produced by di ), and B= _[ dB;
T r C

- for a surface current dB = Z—O (jst)><i3 ,and B =_[d—B; and
1 T S

- for a volume current dB = 1O G dr)xi ,and B= [dB.
4n r \
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1.4.2. Vector potential
For a wire circuit, we have:

- I . — 7 I, — (1) =
B:M—OIdIXL:u—Ojgradp(—jxdl.
4TEC I‘3 4TEC r

. (dl) 11— — — (1 . — (1 -
As rotp (—] = —rotp dl + gradp [—J x dl = gradp (—j x dl, it is possible to
r r r r

state: =0as dl is fixed independently of P
= pl (— (di
g =t [rotp | —|.
4r C r
. " H()I El . —~ [ - .
By making A = 4— — |, we can write that (B = rotp A | The vector B is thus
T C r

derived from the vector potential A, as given above.

- j. dS
For a surface circuit, we obtain| A = o ﬂ Js O
41 S r
_ jd
For a volume surface A= Fo mu
ny ot

1.4.3. Local properties and the integral of B

Local property: as B = rotp A, we have divp B= divp rotp A =0, so that in
general terms:

divB=0

Integral property: as {B. dS = [[[div B dt =0, wehave | {fB.dS=0

1.4.4. Poisson's equation for the vector potential

Here we will use the same reasoning as that for electrostatic formulas. While this
does not constitute a very rigorous approach, it does at least limit the need for long-
winded procedures.

1

4me

First, compare the form of the electrostatic potential, V = m'Edr , with
r

- i d
that of the Ox component of the potential vector A, asin A, = L'l H’[JX—T .
4n r
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The forms of A (along with A, and A, too) and of V are the same, with the
exception of g, which corresponds to 1/gy and j to p. We can write then for A, a
Poisson's equation in the form AA, + g j, =0. The three equations for the three

components then can be condensed into a single equation, as in

KK'FM()]:O

1.4.5. Properties of the vector potential A

1.4.5.1. In magnetostatics, divp A=0
In magnetostatics, we have divy, j=0, where M is a point on a circuit through

which | moves. Recalling that at the surface separating a conductor and an

insulator, by conservation of jy (which is zero in an insulator), ] can only be at a

tangent to the interface.

- jd
In addition, with A = Z—O mg , and by calculating
T r

divp A = Ho [divp e , and using the fact that
4n r

—.

3) 1 = - — (1) = — [1
divp [—J =— divpj + j.gradp (—j = j.gradp (—] , and therefore:
r r r r
H_J
=0as j depends only on the coordinates of M points

on the circuit and not those of P (see Figure 1.20).

- - — (1 - — (1
divpA = £0 [, grad, (—jdt— - B0 15 grady, (—]dr :

4r \V4 T 4r \Y4 r

On again using the identity (but only for a point M):

i) 1 2 o2 — (1
divy [i] =— divyj + j.gradm [—j , and the fact that (magnetostatic)
r r r

- A . 1
divyyj =0, gives divy (lj = j.gradm (—j .
r r

By moving this result into the expression for divp A, finally:

divp *=-:‘—° [divyg {i] dr=- 20 flas .
Ty r n gr
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Given that the vector ] is at a tangent to the surface of the conductor it is normal to

ds , which means that

divpA = 0|.

1.4.5.2. Indeterminability of the vector potential

The vector potential A s defined simply by the relationship B = rotp A, which

only defines the derivatives of A so that in reality we can find an infinite number of
A" vectors each different from A and fitting into B= ﬁp A'.

Therefore rotp (A'-A)=0, which shows that (A'-A) is derived from a
scalar potential. It is possible therefore to take (A'-A) in the form
(A'-A) = gr?ip ¢, so that:

A = A+ gr?ip 0.
As divp A’ =0 (just as divp A =0), then divp gr?ip ¢ =Ap =0 must be
true where the ¢ potentials are such that A¢p =0 and are called the Newtonian

potentials. Finally, the A’ vectors are such that:

A" = A+gradp ¢, with Ajp=0].

1.4.6. The Maxwell-Ampere relation
1.4.6.1. Localized forms and the integral of Ampere's theorem

By using the following relationships

APA = gradp divp A-ﬁp ﬁp A:-ﬁp B

(as divp A =0 and B = rotp A)

AA = - poj

it is possible to deduce that in a vacuum rotp B = poj , so that in turn:

o the local form of Ampére's theorem is give by | rotp H :3 ; and

o the integral form of Ampere's theorem is
1= [[j.dS = [[rotp H.dS =|dH .ds =1|,
S S C

where ds is an element in the curve (C) as shown in Figure 1.21.
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1.4.6.2. Simple example of the use of Ampére's theorem

Consider a wire circuit perpendicular to the plane of Figure 1.21 through which runs
I. Here we shall calculate the H vector at a point P anywhere in space.

The sense and direction of H are given by Ampére's right-hand rule (which
results from the vectorial product dix 7 introduced into the Biot-Savart law with

f = MP;here dl is perpendicular to the plane of Figure 1.21 and runs across the
plane as the intensity (I) given by the symbol ®).

In order to calculate H, the integral form of Ampere's theorem may be used,
given also that H is a constant at a distance r from M. In the plane of Figure 1.21, the
length of the circle C, which has radius r = MP, we find that H = constant. In

additon, H is a tangent to all points on the circle and

U I
I= C§H ds = CfH.ds = HCf.ds =2nrH, from which Hpy = —.

C C C 2mr

Figure 1.21. H field due to C through which moves 1.

. = I _ - -
In terms of vectors, we can write that H = —1ig, where iy = U x Upp
2nr

(where 1y is the unit vector carried by the conducting wire in the same sense as the

intensity I, and Tiy;p is the unit vector of T = MP).
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1.4.6.3. Physical significance of rotation

tpA

Il
s}

va

I

Figure 1.22. Rotational sense of B lines for (a) a rectilinear current and
(b) a twisting current.

In the simple example treated above in Section 1.4.6.2, the potential vector
el dl . . = -
A=boo & is carried by the conducting wire (A//dl). As B//H and
4ncr
B =rotp A, we can see in Figures 1.21 and 1.22a that the vector rotp A turns
around the vector A .
For its part, the vector B(or H) exhibits a twisting character. The rotational

sense of the B (or H ) lines with respect to I is given by Stokes' integral, as shown in
Figure 1.22b.
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1.5 Problems
1.5.1. Calculations. A vector given by 1= MP has components:

Xy -1y

X1 =
P X5 P=r Xy - 1My
X3 X3 -1
my
M m,
mg3

This vector is such that:

P =(x) -my)? HXy -my)* H(x3 -m3)?

=u(X, X5, X3) if the calculation for the operator is for point P — =y
=u(m;, m,, m3) if the calculation for the operator is for point M
Verify the following results:
— — T
gradpr = —gradyr = — ,
r
— 1 — 1 T
gradp — = —grady; — = L ,
r r r
divpr=-divy; T=3 (3D space),
— - 1
rotMorp =0 , A(—] = 0,and
r
div(%) =0; what can be said about the flux of the vector % ?
r r
Answers
1.
(o
o or au1/2 1 .
- o _ (x1Xp%3) 1 2xg-my) = (x;-my)
or 6X1 6x1 2
gradp (g —— Similarly, 0 = %27M2) 4 OF _ (X5-m3)
2 6)(2 T ax3 T
or -
xe = gradpr = —
\ 03 L
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2.
(0o [1] 12
— — 6 1 au (X17X27X3) 1 3/ !
Wehave —| — |=————=" 22 = . —y~7u
XAt ox, [rj ox, 2 s
— 1 o (1 '
gradP(—)< —(—J with u, =2(x;-m;) and W=
r Oxy \ 1 !
or (1 i(lj:- lr'3 2(x; -my) =- Xi-m
P Oxy \r 2 r
\8)(3 T
-
6 (1)_ X1 -m]
6x1 r 1'3
— 1 o (1 Xy -m =
: rad —<——=- 2 2 orad l:_i
Finally g P(r) 0%, (rj 3 = gradp(r) 3
81‘ [lj_ X3 -m3
\Ox3 \ 1 =
And also
. 0 1 1 3/2 ! X| -1my '
—| —|=-—u"" " u, = ——=— asu,, = 2(x;-my)(-1
am][rj S = i, = 20¢-m)(-1)
— 1 o (1 Xy -m
s (1) 2 f
r | omp\r r = gradM(—)=—3
5r (I\J_ X3 -1’1’13 r
\ Om3 \ 1 r

0 0 0
din?—_(X] -m1)+—(X2 -m2)+—(X3 -m3):1+1+1:3
! X3 0x3

-3

0 0
=—q(xy -my)+ Xy -my)+——(x3 -mz)=-1-1-1
1 1 1 2 2 2 5 5 3 3

divy T
my

4. 10tMorp T = 0 as, for example, [rotpf}xl = ax—(x3 -mj3) —ax—(xz -my)=0.
2 3
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1 0% (1 0% (1 0* (1
5. Ap (—j = [—j + —(—j + —(—j so that following a rather long
r 6x12 r 6x% r 8x§ r

calculation, we find:

2
o (lj:_i+3(xl'ml) N
8x12 r r? r°
1 3 3 3 3r2
AP(_j:__3+_5|:(Xl'ml)2+(X2'm2)2+(x3'm3)2:|:__3+ = =0.
r T T T T

1 )
As gradp(—)= L , then divp L
r 1'3 3

— 1 1
=-divpgradp(—)=-Ap ( j = 0 meaning that
r r

T

is a stationary flux.

le |

1.5.2. Field and potential generated inside and outside of a charged sphere

For a sphere with a center denoted by O and of radius r, uniformly charged in its
volume (charge volume density denoted by p):

1. Show that the field at a point (P) outside the sphere (OP =r>R) is in the form
. R’
B p

ext™ ﬁ’OP .
380r2

2. Show that for a point P inside the sphere (OP <R ) we have Eim :;_rﬁop .
€0

3. Plot the curve E =f(r).

_pR’

4. Show that when r>R, the equation for the electric potential is Vg -
eor

o pI{z r2
Similarly, show that when r<R, we have V= —I|1- and
2¢ 3R?

plotV=A1{(1).

5. Show how the calculation for the potential can also be made using Poisson's
equation.
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Answers

1. Given that the charge is spread symmetrically, the resulting electric field also will
have the same symmetry, as at any point P in a given sphere with radius r = OP
(point P, or P; shown in Figure 1) and in space there is the same charge distribution.
Thus, for a sphere with a radius denoted by r, the modulus of the field (E) is
independent of P on the sphere; that is to say the angles 6 and ¢ given to define P in
terms of spherical coordinates (Figure 2). The E is therefore only dependent on 1, so
that it is possible to write in terms of modulus that E = E(r) . In terms of vectors,

and again due to symmetry, E is parallel to €, , a unit vector of the radial direction

under consideration, which corresponds to the normal (1) outside of the sphere (for
p>0).

A

o=2n

ds = j d2S = 272 sin OO

B
L
ol

Il
=1}

@) >
¢

Figure 1 Figure 2

Gaussian surface. For the calculation of the field E at P, which is at a
distance from O given by r= OP, the sphere with radius r around the center O is
called the Gaussian surface, for which E is independent of P or in other terms, E is a
constant for a given value of r.

The electric field flux (®) through a Gaussian surface is represented by a sphere
with a radius given by r, and thus is

® = JfE.d’S = Jf E.d*S
0.9 0.9

as E and d°S are with respect to the external normal, in that fi = &, .
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With d2S =12sin6 d6 do, we have:

0=n 2n
d):rzEcﬁsinGde(p:ﬁE j sin® do I dp=4nr*E
0,0 0=0 =0
The calculation of the field denoted Ey; at P, which is such that OP, =r>R
may be performed using Gauss's theorem, which gives here

r=R O0=n ¢=2n

[ ] ] pde

® = 4B =Y Qint _ r=0 0=0 =0 ’

ext
i €0 €0

so that with p =Cte anddt =r?sinf dr d® do , then

3

4 -
ext = Z 7R3 2 From this can be deduced that Eei = €
3

o 3r2g

b =4nr’E

T

4
With Q = p—TcR3 , we also can write that
3

- Q -
Eext = P
4megr
and the electric field corresponds to that of a charge (Q) placed at O at a distance
r=0P, from P.. In other words, the electric field generated at P. can be

considered due to a point charge at O.

2. For a point denoted P; inside a charged sphere, which is such thatOP, =r <R,

Gauss's theorem gives:
r=0P, 0=n ¢=2=n

[ ] [ pde

Qint _ =0 0=0 ¢=0

4
® =4mE; =) =—n OPi3£:—n r3£,
i 80 80 3 80 3 80
from which can be determined that

- pr _
Eint = S -
380

3. The plot of E =A{(r) is given in Figure 3.
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R
Figure 3 Figure 4

4. With the electric field being radial, it is possible to state that:
dv = —IE.Ir =—[Edr, and that outside the sphere, we have:
pR3 dr pR3

——+C. The integral constant (C) can be

Vext = = |Eexedr = —
ext '[ ext 3gg "r* 3ggr

determined using the limiting condition V., (r - ©) — 0, from which C=0 and

3
pR
Vext = :
3gor
. P pr? .
Inside, Vi, = —J'Eimdr =—— Ir dr = ———+ D . The constant denoted D is
380 680
determined using the continuous potential condition for r = R, so that
R? R> R>
Vo (R)= Vi (R) and 2=— = ~P= 1 D from which D = 2= . Finally,
380R 680 280
pR? r?
Vint = |:1 - .
280 3R?

The plot of V =g(r) is shown in Figure 4.

5. Poisson's equation, written in the form AV+£ =0, is written in spherical
€0
coordinates for a function, which is independent of the variables 6 and ¢; thus

1 0*(rV
- (V) = —i, so that:
r or? €
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102
e when r >R, withp=0: (rﬁr ext) =0 = 1V, = Ar+B, sothat
T 2

A,
Vext= A]+— the condition Vg (r — o) — 0 gives A; =0, from which

A,y
Vext = 5
r

1 ox(rV; mt) _i ox(rV; 1nt) —E so that:

e when r <R, with"p=p = 0",
or? €p or? €p

a 2
@V, t) —ﬂ+ B, . The result is that:

or? 280
3
B
Vi =~ +Bir+ By = Vi =~ + B, + -2 .
€0 6¢g r

In physical terms, the former potential retains a finite value and cannot diverge
from r=0, from which B, =0.

The determination of the two constants denoted A, and B; necessitates two
equations with two unknowns, which can be contained by writing the continuity, for
r =R, in terms of the potential (V), as in (Vey=Viy¢ )i=r > and in terms of the electric

field (E), asin E=-dV/dr.
From these can be determined that
R’ R?
AQ;:EL__ and B1::£L——,
680 280

from which the same forms as those of V., and V.



Chapter 2

Electrostatics of Dielectric Materials

2.1. Introduction: Dielectrics and Their Polarization
2.1.1. Definition of a dielectric and the nature of the charges

A dielectric is effectively an insulator, meaning that a priori it does not have free
and mobile charges. Nevertheless, different types of charges can be found, as shown
in Figure 2.1. They are:

1. Dipolar charges, which are attached to a molecule that makes up the dielectric;
examples are the dipoles attached to HCl molecules where the center of negative
electronic charge is displaced towards the Cl atom, while the H has an excess
positive charge, thus giving rise to the dipole H'CI". These charges are inseparable,
tied to the bonded H and Cl, and are called bound charges.

2. Charges due to discontinuities such as interfaces between aggregates. Where the
solid dielectrics exhibit defaults, charges can accumulate giving rise to particular
electronic phenomena, such as the Maxwell-Wagner-Sillars effect at low
frequencies.

3. Homocharges, which have the same sign as the electrodes to which they are
adjacent.

4. Heterocharges, which have the opposite sign to the electrode at which they are
near.

5. Space charges, which are charges localised within a region of space.

6. Free charges, in principle, are little or not present in dielectrics. They can appear,
however, when there is a breakdown caused the application of an electric field and a
sudden loss in the ability of the material to insulate. When the current is relatively
weak it is called a leak current and it can be due to a wide range of causes, such as
impurities in the dielectric and so forth.
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electrode charges, which

polarise the dielectric | space charges |
| Agy A dipolar
homocharges ! bound
(possibly free) e charges
heterocharges
(possibly free)
b _

compensation charges

\ T y . . .rs
(opposite facing bound charges) charges at discontinuities

(interface of aggregate shown
by dotted line)

Figure 2.1. Various types of charges in a dielectric.

2.1.2.  Characteristics of dipoles
2.1.2.1. Electric potential produced by an electric dipole
If two charges bound to an electric dipole, detailed in Figure 2.2a, are placed at

A (-q) and at B (+q) so that AB = di (in the sense going from the negative to the
positive charge), the dipolar moment is by definition

dp = qdi

To calculate the potential (dV) for a point (P) produced by the dipole that
has a center at M, the following equation can be directly obtained:

dv =

1 [q q]_q(rA—rB)qulcose

drgg \ 15 Tp 4megraTy 4mgyr?

Accordingly:

1 f—

dv =
4ne r
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A(- M  B(+q) dp = qdi
- _ (+tq) du=gq

di
(a)

Figure 2.2. (a) Electric dipole; and (b) force couple.

2.1.2.2. Energy of an electric dipole in a uniform electric field (E )
It is worth recalling here that an electric charge placed at a point N at an electric
potential (Vy) takes on a potential energy (E,) E;, =W(q)=q Vy. The energy

associated with a dipole placed as detailed in Figure 2.2, with —q at A and +q at B, is
therefore E, =-qV(A)+qV(B)=q(Vg -V,). In addition, it is possible to write

A A - .
that: Vg -V, = _[— dv = IE.dl , so that with E being uniform (over a spacedl ),
B B

—»A—» —_— e R — —_——
Vg -V =E [di =E[OA - OB |=-EAB.
B

Then with dTl = qu: q AB we obtain:
E,=q(Vp —VA):—qE.E = -@.E. For a dipole with a moment i = qT,
then

Ep:-ﬁ.E

2.1.2.3. Electric couple
This section refers to Figure 2.2(b). The moment of the couple of forces

(fA,fB :—fA) is by definition: C = ﬁxfB :Equ:quxE, so that
with [i= q AB,

C=fxE
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2.1.3. Dielectric in a condenser
2.1.3.1. Study of a condenser with a vacuum between the armatures

Figure 2.3 shows a condenser that has armatures carrying the charges +Q and —Q:
The potential gradient is therefore only between the armatures that have a known
surface area (S), outside of which the electric field can be considered zero. Gauss's
theorem, applied across the surface X, gives rise to

(O ij.f EdS = HE(TS: E S (assuming that E and dS are collinear)

2 S
Q oS . . .
=— =—— where o is the superficial charge density at the electrodes,
€ %
from which can be determined : |E = —
€0
id
0 -]

(=

Figure 2.3. Vacuum-based condenser.

2.1.3.2. The presence of a depolarizing field in the dielectric

- — E#0 —
E=0 + > |-
] ] ol [ S N N
X . [ S Aol S
- / + _
- - X + _
T / N
\ ’ +
N L L
' (a) L (b) | Dielectric surface Mutually cancelled

charges internal charges

Figure 2.4. Dipole orientation: (a) without field and (b) with an applied field.
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If a dielectric is inserted into an unpolarized condenser (zero field between the
armatures), as schematized in Figure 2.4a, then the dipoles associated with the
molecules of the dielectric are randomly distributed. Statistically, the opposite
charges cancel each other out and the material is electrically neutral overall.

If the dielectric is inserted into an electric field, as shown in Figure 2.4b,
then the positive charges are pulled in on direction and the negative charges in the
other. The dipoles dji are aligned in parallel in such a way that their potential
energy (E,) is minimized, as in Ep =- dii.E . As the bonded charges cannot move,

the result is a chain of dipoles in the volume; however, at the surface of the
dielectric, charges opposite to that of the armatures appear.

If an applied external field (Eext ) is in the sense indicated in Figure 2.4c,
given the presence of surface dielectric charges, then an opposing field appears
called the depolarizing field (Ed ). The result is an effective field, which can more
precisely be termed an external effective field, and is such that:

E, =Eq +Eq.
As Ey is antiparallel to Egy, , the field E, is less than the external applied field

E

ext *

- E4> +|-

_ Ed :Edepolarising
i

+ 4+ + + + + +]

Dielectric surface charges
caused by its polarization

Figure 2.4(c). The action of a depolarizing field.

2.1.4. The polarization vector

In a dielectric sits a small element with volume dr, length dl, and cross section dS,
such that it is parallel to the surface of the armatures, as shown in Figure 2.5. If the
volume of this element is equivalent to that of a dipole, with respect to the
armatures, then it is possible to consider that the elementary charges (q) of the
dipoles are such that q = opdS, where op represents the superficial charge density

compared with the armature and therefore the superficial polarization charge
density.
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The moment of dipoles compared to the armatures can be written as

— — d
dii = qdl = op dSdl, and as du =op dt, we can state that op = d—”
T

The magnitude of the dielectric polarization is used to define the

. = S = d
polarization vector (P ), which is such that ‘P‘ =0p = d—u, and has as apparent
T

modulus the dipolar moment of the unit volume. In terms of vectors

—~ du
p-¢
dr

As dji // Ey, or E,, we also have P/ Ey or E,. Accordingly, when we speak of

the electric field (E ) without any further precision, it is the effective field l:ja which
is the subject of discussion.

[+ + + + + + + ]

Figure 2.5. Dipolar polarization and orientation.

2.2. Polarization Equivalent Charges
2.2.1. Calculation for charges equivalent to the polarization

2.2.1.1. The potential generated at P by a finite volume of polarized dielectric

The above figures indicate that a polarized dielectric can be represented by a
vacuum, of permitivity &, in which is placed dipoles orientated by an applied field.
So, to calculate the potential generated at a point (P) by a volume (V) of a dielectric,
as shown in Figure 2.6, it suffices to calculate the potential generated in a vacuum
by the orientated dipoles (dfi) occupying a fraction (dt) of V and then to integrate

over the total volume V.
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N
\e~/
(S)
Figure 2.6. Calculation of charges equivalent to a polarization.

Thus, the element of volume dt taken from around a point M forms at P a potential

L@ (result obtained in Section 2.1.2.1) which also can be written as:

dv =
4ne r

I — (1) I — (1)
dv = grady, [—j du = grady, {—j Pdr.
4me r 4me r

The potential V(P) formed at P by the total volume V is therefore:

V(P) =
®) i

MgradM( j Bde.

TE) v

Now using the notable equation div (a - K) =adivA+A. gr71 a, for which here

a=1/r and A =P , we arrive at:

— (1) 5 P o1 =
grady, (—j P=divy— - — divyP.
r r or

Substituting this into V(P), we have

V(P) = 4—|:I”d1VM —dt - m divyP dr} , and by using the Ostrogradsky
ol v r
equation on the first trlple 1ntegral we obtain:

L b

V(P) =

TCSO S

If we make |op=P.ii = Py and pp=-divyP|, we finally arrive at:
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V(P) = %{cﬁc—PdS T mpTP dt} :

MEy| g T Vv

2.2.1.2. Polarization equivalent charges
We can conclude by stating that a volume V of polarized dielectric is equal to the
sum in V of a volume distribution of charge density pp=- divMﬁ along with a

surface charge density op = P.1i = Py over the total surface (S) of the dielectric,

with all charges distributed in a vacuum.

The volume (pp) and surface (op) densities thus appear as charges equivalent to
the polarization, with the condition that they are in a vacuum! There is nothing
imaginary about them and are in complete contrast to the term “imaginary charges”
which has been used to describe them. In other words, a polarized material which
takes up a space (E) can be represented as taking up the equivalent vacuum space
(E) in which are distributed volume and surface charge densities pp and op,
respectively, which represent the polarization effect of the dipoles making up the
material, evidently from an electrical point of view.

If additional (real) charges with a volume density p, and surface density

o, are added to the dielectric, the potential at a point P and that generated by the
polarized dielectric can be termed in the generality:

V)= —— s ¢ [P g

4Tl',80 S T Vv

2.2.2.  Physical characteristics of polarization and polarization charge
distribution

Up to now, the equivalence of polarization and polarization charge distributions has
been essentially mathematical because the determination of pp and op requires
particularly long and abstract calculations.

2.2.2.1. Preliminary comments: charge displacement and the corresponding charge
polarizations

Comment 1: How moving a charge q; over Si is the same as applying

(superimposing) a dipole moment dli; = q; 6;

To verify the proposition, a schematic verification can be used to show how the two
transformations are equivalent in that going from the same initial state (q; at O) both
arrive at the same final state (q; at O’, which is such that 00' = Si ).
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First transformation displacement of q; by Si :

o——» — o——»
0(q) & O ‘ o & O()
di ! 1* transformation: t of
initia] state: qi at O ransiorma 10n._’movemen [0) ﬁnal state:—qi at O: such that
qi by &; 00' = §;

Second transformation superposition on starting system of a dipole of moment

O = q; 9;: o4
2 2" transformation: superposition 0 & Ofq
. . ’ di )
0() &0 of starting system of a dipole of final ! .
initial state: q; at O - = inal state: g at
moment Og; = q; J; O’ such that
00' = &

Comment 2. Calculation of the polarization associated with a charge displacement
To arrive at a solution to this problem, it suffices to calculate the dipole moment per

unit volume which is apparent following the displacement of q; through Si. If the
number of q; per unit volume is n;, the polarization that would come about following
the displacement by Si of only the g; charges would be n; g; Si , which is the dipolar

moment per unit volume due to the charge displacement.
If in the dielectric there are several types of charge (q;) such as qi, q», qy
and so on, then the dipolar moment per unit volume that would appear following a

movement of all the charges, i.e. q; being moved by Sl, qv by SV and so on, is

> n; q; Si = P, which is the system polarization and is the dipole moment per unit
i

volume.

2.2.2.2. The corollary of charge movement: Number of charges entering and
leaving the dielectric volume following polarization and the volume charge
density equal to the polarization

—>
-q +q
(=) (=9

(a)

Figure 2.7. (a) Characteristics of the electric charges and (b) their displacement.
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A neutral zone (D) in a dielectric contains various type q; charges, where in reality
each charge (q. =-q, and q. = + q, with identical densities n. and n,) meets at each
dipole, as shown in Figure 2.7, with n. and n, so that D is definitely neutral.

In the absence of an electric field and also therefore a polarization, q; are

not moved (8; = 0) and the polarization P = ¥'n; q; &, is zero.
i

Under the effect of an applied electric field, q; are moved (by Si # 0), and

the polarization vector becomes P=3Yn,q & =( Y n,q;d) as the
i i=-, +

summation is performed over all charges q_ (= — q) and q. (= + q).
The algebraic flux for g; traversing a part (d—S) of the surface following the

algebraic displacements (Si) indicated in Figure 2.7(b) is equal to the number of
carriers contained in a cylinder with base dS and length 3, , and therefore a volume
= §;.dS . The number of carriers therefore is equal to dN; =n; -3; - dS, and the

corresponding amount of charge is dQ; =q; - n; - 3; - dS.

With respect to the various charges q;, which include both q. and g, the
total algebraic charge traversing the surface element dS thus s
dQ= Y n;q; 5 -dS=P-dS. The algebraic charge Q crossing the closed

i=-, +

surface S therefore is Q = gf,f dQ = Cf:} P.dS and the zone D, which initially was
S

neutral, now contains after the polarization a total charge (Qp) opposite to Q. In
order to calculate the number of charges gained by entering into D, the reentrant

surface -dS can be used.

The final result is that Qp = - fP.dS, so that Qp =- [[[div P dr.
S D

We thus have shown that on a macroscopic scale, polarization is equal to a
volume density of charge pp =- div P, which is indeed the same result as that

obtained from the calculation for a potential generated by a polarized dielectric.

2.2.2.3. Surface charges

Following a polarization there is an accumulation of charges at a surface, as detailed
in Section 2.1.4 and described in Figure 2.8.
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dp
dt

On calculating P-fi=——-fi with dii=q-dl =op dSdI, we find

pp = P-ii. Once again, this time for surface polarization charges, the result is

equivalent to that for the charge generated by a polarized dielectric.

[+] — 7 » [

+ IS

+ e

+ -

+ Y|

N F=p ;

——

* d |-
internal charges which surface charges with
cancel each other out density cp

Figure 2.8. Surface polarization charges.

2.2.2.4. Conclusion

The physical evidence for polarization charges shows that the densities op and pp are
not associated with imaginary charges or simple mathematical equivalent, but are
the result of localized excesses in bound charges, real excesses caused by
polarization.

pp = —divP < 0
(divP > 0)

Figure 2.9. Schematization of the divergence operator.

As shown in Figure 2.9, when a dielectric is not deliberately charged in its
volume (with real charges), the resultant for bound charges over the volume is zero
and pp = 0. So that pp becomes nonzero, the divergence polarization vector also is
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nonzero (as pp =-div P). In the presence of real charges in the volume, the charge
+Q indicated in Figure 2.9, which gives a physical representation of the divergence
operator, localized polarization charges appear, so that pp = - div P=0.

If the material is neutral prior to polarization it must remain neutral
following polarization as it is only the existing, bound charges which are displaced.
This property can be verified by considering a volume (V) of dielectric delimited by
a surface (S). Here, the total of polarized charges is given by:

[[[ep dV +dfop dS = [[[- divP dV + §fP.idS = —ffP. dS+ {fP. dS =0
v S v S S S

The equation shows how the algebraic sum of the charges equals zero. We also can
see in Figure 2.8, where pp =0 and the surface polarization negative charges of

density op facing the positive electrode are exactly compensated for by the surface
polarization, positive charges facing the negative electrode.

2.2.3. Important comment: Under dynamic regimes the polarization charges
are the origin of polarization currents

Even though this section deals with static states, it is worth making the occasional

sortie into dynamic systems.

In effect, for the results obtained from static systems to be acceptable for
their dynamic counterparts, with polarization values in particular, the variations in
magnitude should be negligible with respect to a given macroscopic domain. A
reasonable estimate for this is to assume, for example, that a polarization is constant
over a distance (d) of around 10 nm (the “atomic” dimensions being of an order of
less than 1 nm). So if the length of a polarization signal wave (A) is such that
A > 10d, we can assume that for a “macroscopic” domain of size d the signal
remains more or less constant and therefore definable. Figure 2.10 gives an example

. . . c
of this where the frequency (v) under consideration is v <—— = 3 x 10 Hz.

100 nm
olarization
P ~cte T aee
]

ﬂ » i ~_ 7 >

Figure 2.10. Distance d over which P remains more or less constant.

Above a frequency of this order, it is necessary to take into account the
variation with time for a polarization in the macroscopic domain. If the bound
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. . . oo d oo .
charge carriers (q;) are vibrated with an average velocity v, = d—(Si), there is a
t

corresponding current termed a “polarization current”, which has a density
j = n;qV;. The average resultant current density is given by

1

- ds; — .
Jp = >n;q; v; =>.n; q; d—l,so that with P =>'n; q; §;,
i t i

- oP
i, =&
P

This current density is of a macroscopic scale and represents an average
over the microscopic currents associated with the slight displacements of bound
charges. The current therefore is not imaginary and gives rise to the same magnetic
effects as conduction currents. Its specificity is that it cannot leave the dielectric
material since it is tied to bound charges and therefore cannot be measured or used
in an external circuit.

2.3. Vectors for an Electric field (E) and an Electric Displacement (D) :
Characteristics at Interfaces

Section 2.2.1.1 showed that the potential formed at a point (P) in space by a
polarized dielectric is given by an equation that brings in charge densities. The

electric field at P can be determined by the often used equation E = - gr?lp V.

The inconvenience though is that it is assumed that the polarization vector is known.

In a more classic method from the Anglo-Saxon school of thought, it is
interesting to reason in terms of an electric field in a vacuum on which is imposed a
limiting law in order to take into account the characteristics of bound charges
associated with a dielectric medium.

2.3.1 Vectors for an electric field ( E) and an electric displacement ( D):
electric potentials

2.3.1.1 Coulomb's law applied to dielectrics

In general terms, if q and q' are two electric charges placed in a linear, homogeneous

and isotropic (L.h.i.) dielectric at two points M and P, which are such that T = MP ,
the force that should appear between the two charges is given by Coulomb's law,

ie. P
- Al e q’

- _49 ~

drgy e M r

q
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where g, is the relative dielectric permittivity characteristic to each dielectric
material. The quantity given by & = gpg, is the absolute dielectric permittivity and
in the electrostatic system unity (e.s.u.), g = 1, so that € = ¢, and is the magnitude
generally called the dielectric constant.

2.3.1.2 Electric field

In simple terms an electric field can be defined over all points P, each defined in

respect to M, where there is a charge q by ¥ = MP, just as if there were a force
exerted on the charge unit (unit here is q' = 1), which is assumed here to be very
small, such that its dimensions tend toward zero in order to limit the singularity at P.
This gives:

Epy = —34 T
4meg g, r’
- 1 i
For a group of charges (q;), we have E(P) = ——>q; -
dmey e | @

2.3.1.3. Electrical potential
Just as for the system in a vacuum, detailed in Section 1.2.2.1, the potential (V) is
always such that E = —@V . Therefore, for a dielectric,

q

V= ——.
4mege, 1

2.3.1.4. Electric displacement vector
By definition, the vector, which is also termed electrical induction, is given by:

Dst:sOsE

T

and for a linear homogeneous and isotropic (lhi) is dielectric, as detailed in Section
2.4.3.1.

2.3.2.  Gauss's theorem
The calculation is identical as that carried out for a vacuum, with the exception that
here the absolute permittivity of the medium (e =¢j €,) is substituted in place of
that of a vacuum (g;). We therefore have:
1. for a discrete distribution of charges, where q; represents the internal real charges
at the surface S:

2. di

@zcﬁfﬁ.d_s.=l :
S €0€r
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2. for a continuous distribution of charges with a volume density (p,) of
deliberately added free charges

o1 1
® =qfE.dS=— [fp, dv == [[[p,d
S €08r v ¢ v

Use of Ostrogradsky's theory, ® = §fE . dS = [[[div E dr, gives rise to a
S

localized Gauss's theorem:

divE = PL - PL
€

€08y

With D = ¢ E, we also have:

leI_j = p(

For its part, the integral form of Gauss's theorem with respect to the flux from D
is written:

1. for a discrete distribution of charges,| ®p = Cﬁ]—).d—s =>q; and
S i

2. for a continuous distribution| ®p = ¢fD.dS = [[fp, dr|.
S

2.3.3.  Conditions under which E and D move between two dielectric materials

2.3.3.1. The continuity of potential

Alx

A

Figure 2.11. Potential at an interface.
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Figure 2.11 details two points (A; and A;) each situated in, respectively, medium 1
and medium 2 and both close to the interface. If these two points are sufficiently
close to one another so that E is a constant between them, then
A
VAI - VA2 = fEd_i ~ E A1A2
AI
At the immediate neighborhood of the interface, A; tends toward A, so that
AjAy ~ 0, and therefore V, =V, so that the potential can be known at the

interface.

2.3.3.2. Continuity of the tangential component of E

For two trajectories, A;B; (in medium 1) and A,B; (in medium 2), which are equal
neighbors around the interface surface (S) described in Figure 2.12a, given the
continuity of the potential at the interface, we have: V4 —Vp =V, —Vp so that
Ei(AB; = E5A,B, . From also knowing that A;B; = A,B, , we can determine
that:

Ej¢ = Ey|-

Ay é Bi  medium 1 medium 1: D,

— =

medium 2 —
A, &y B, medium 2: D, S
lateral
(a) (b)

1’11: n= ﬁ12

Figure 2.12. Setup to study continuity of (a) E, and (b) D,.

2.3.3.3. Continuity of the normal component of D
2.3.3.3.1. No real charges at the interface

The construction of a small parallelepipedal element around the interface with
infinitely small lateral sides makes it possible to study the properties of the
displacement vector Din the neighborhood of the interface where Sy — 0. For
this system shown in Figure 2.12, we have

op= §f D.dS=[[fp, .dr.

Spamlleleplped

As there are no real charges inside the parallelepiped, we have:
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Op= Jf D.dS=0
Spumllclcpipcd
- [ D.dS+ [ D.dS+ [[ D.dS.

Ssup erior Sinf erior S lateral

With the upper and lower faces being opposite one another and identical, we
have Ssuperior = Sinferior = Ssi - In addition, Saerat = 0.

By making 1 = 1; = -1,, and by stating that the displacement vectors are

such that Dy is in medium 1, and D, is in medium 2, we then have:

®p= |[[ D.dS+ |[[ D.ds

Ssup erior Sinf erior
= [[(D,#dS + Dy.(-1)dS) = [[(D,.i — D;i)dS=0
Sy S,

si si

where n; is normal to the exterior of medium 1 and n, is normal exterior to

medium 2. From this can be determined that D,.i — D;.i = 0, and thus

Dip =Dy,

2.3.3.3.2. Polarization charges and no real charges at the interface

There are not always real charges in the Gaussian volume (the parallelepiped),
which means that @ = 0 and that the preceding result, D, = D, , again is valid.

2.3.3.3.3. Distribution ( &, ) of real charges at the interface (surface layer of real

charges)

For Gauss's theorem applied in Figure 2.12, there now is a parallelepiped that
contains a total interior charge  [[ o,dS, which can be written as:

simerface

®p = [[(DyidS + DyipdS) = [[ odS .
S..

si Si nterface

Where S;

interface

[[(Dy5i - Dydi )dS = [[o,dS, which is to say
S, S,

si si

=S,; , and with the same notations as above,

Dy, -Djp =0y
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2.3.4. Refraction of field or induction lines

Dln:DZn

V4

i
|
n e

1E 2 i

, medium &,
|

|

i

E=E .
T mediume,

Figure 2.13. Field and induction lines refracted.

It is assumed here that there are no real charges at the interface, so that we can go on
to write the two equations of continuity (Figure 2.13):

Ey; = B¢, sothat E;sing; = E;sing, (1)

Dy, = D,, »so that D;cos@; = D, cosg, (2)

E E
Dividing Eq. (1) by Eq. (2) we obtain D—ltan 0 = D—ztan ¢, , which also gives:

1 2
tan (O] €]
—_— =,
tan (0)) €

and with g < ¢,, we find also that ¢; < ¢, .

2.4. Relations between Displacement and Polarization Vectors
2.4.1. Coulomb's theorem

The theorem concerns the conductor-dielectric interface. A condenser with an
armature of a known surface (S) carries a total charge (Qr) so that Q1 = oS

(Figure 2.14).

medium, Qr=o7 S

o
4——o7

medium 2, €

(dielectric)
_______________ - -OT
medium 1, -Qr=-o1 S

Figure 2.14. Configuration used to establish Coulomb's theorem.
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With the condenser in equilibrium, on the inside of its metallic electrodes, which as
such are equipotential, we have:

E; =0 and D =&, E =0.

At the interface between the two materials, we have D,, — Dy, = o1, so that here,

n
o= . . c
with D; =0, D,, = o which also can be written as E,,, = il B
€
The continuity of the tangential component of the electric field allows us to

see that E;; =0 (as Ej = 0), so that in the dielectric the field is normal to the

armature of the condenser. The field that acts between the armatures (effective field)
therefore is equal to

E,=— |. (3
€

2.4.2. Representation of the dielectric-armature system and P= (e— sO)Ea

As previously mentioned in this text, a material with a dielectric permittivity (¢) can
also be seen (on a microscopic scale) as a vacuum in which dipolar charges sit
(attached to atoms making up the material). Therefore, regarding the armatures, the
surface density of dipolar charges (F op), detailed in Section 2.1.4, annihilate an
equivalent number of charges (with an opposing sign * op) carried by the armature
surfaces, as shown in Figure 2.15a. Charges belonging to the upper armature not
canceled out by the dipolar charges thus have a density 6, such that

o1 = Op + O (4)

The resulting problem with respect to the charges shown in Figure 2.15b is that
of a condenser with arms carrying charges of density T o, while there is a vacuum
with a permittivity g, separating the armatures. The effective electric field between
the armatures therefore is:

%o
E,=— (5.
€0

From Egs. (3) and (4), we have o1 =op +0( =¢E,, as from Eq. (5),

a >’
oo = ggE, , we also find that

op :|13| =or -0y =¢E, —¢)E, =(e—¢¢)E,; .

In terms of vectors and for P // I:Za (detailed in Section 2.1.4) we arrive at

P= (e _SO)Ea
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Figure 2.15. Microscopic analysis of charges in (a) a polarized dielectric and
(b) a vacuum.

2.4.3. Linear, homogeneous, and isotropic dielectrics and the relation

D =g B, + P
2.4.3.1. Lhi dielectrics
A lhi dielectric is one that gives a response to either a displacement (D) or
polarization (P) vector in which the excitation of an effective electric field (E,)
can be described by a relation:
1. D = ¢E, where ¢ is a real number in a linear system and the dielectric can be
called perfect, which is to say it has no dielectric losses associated with leak currents
through the material (as detailed later on, when there are losses, € becomes a
complex number);

2. which is true at any point in the dielectric, i.e. it is homogeneous; and

3. which is verifiable in all directions throughout the dielectric (isotropic).
This restates the working hypothesis set out in Section 2.3.1.4 with the notation E=

E

a-
The relation between P and E, is P =(s—gj)E,, and this can be
rewritten as:

P = (¢ —¢)E, = ¢y(g, — )E, , which makes:

a»

Xd = (gr _1)
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where y4 is the dielectric susceptibility, and leads to:

P= SOXdEa

2.4.3.2. The relation D =gy E, + P
Starting from P = (¢ — g)E, , we can write P = ¢E, — goE, = D - g(E, , so that:

D=¢yE, +P .

2.4.4. Comments
Comment 1. As indicated in Section 2.1.4 and recalled in Section 2.4.3.1, when an

electric field (E) is denoted without any further precision, it is the effective field
which is under discussion.

In addition, we have D = ¢E , P = gyyqE,and D = gy E + P.

Comment 2. The latter relationship (D = €0 E + P) shows how the electric

induction comes from the polarization (P) of the dielectric, on which is
superimposed an effect (SOE) of the corresponding space vacuum, which would

mean that a vacuum can be seen as a dielectric with zero polarization.

Comment 3. Poisson's equation and dielectrics

On substituting E = —gr?i V into divE = Pe , we directly have AV + — =0. By
€ €

replacing g, by €, we have the same relation for a vacuum.

Comment 4. Gauss's equation and dielectric media without real volume charges
where p, =0

Gauss's theorem, which was written for a dielectric of permittivity € containing a
distribution of real charges (py) in the form

b = C_@E .dS = mdiv Edr = m%/ dt . This can be rewritten to take into account
S

the equivalence of a dielectric to a vacuum in which the volume densities of real
charges (p, ) with a polarization pp are found distributed so that

CD:?E.TS: ([[div E dr = [[[PLPP g ; mpr divP

The localized form can be written as
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_ _ divP
divE = P = IVP
€0

However, if the dielectric does not contain real polarization charges, then:

1. divE=PC =0t p, =0)
€

5 and divE = Pe = divP - divP

(if p, =0)
€0 €0

divP=0 ifp, =0.
Aspp = —divP , therefore pp = 0 when p, = 0, and we return to the result already

given in Section 2.2.2.4. The volume charges equivalent to the polarization are zero
when the dielectric contains no real volume charges, and so polarization charges
exist only at the surface of the dielectric (5, =P,).

2.4.5. Linear, inhomogeneous, and nonisotropic dielectrics

For this particular case, within a Cartesian framework, the Dx, Dy, and Dz
components of D, and the Ex, Ey, and Ez components of E are all related by the
relation:

DX €xx 8xy €xz Ex
Dy |=ley &y ey, || Ey
DZ 8ZX 8Zy 8ZZ EZ

The matrix for permittivities is symmetric in that &; = ¢&;;, so the matrix is

diagonal for a system with axes OX, OY and OZ, which are the electric axes for the
media, making it possible to state that:Dy =exxEx, Dy =e&yyEy and

DZ = SZZEZ .
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2.5. Problems: Lorentz field
2.5.1. Dielectric sphere

dielectric (g)

axt

vacuum: €

A uniform external field (Eext) is applied on a dielectric sphere with absolute
permittivity €. The sphere is assumed to be of small dimensions with respect to the
distance between the armatures producing E.y , so it is worth noting that the above

scheme is not to scale.
1. Determine the charges equivalent to the polarization.

- P
2. Show that at the center (O) of the sphere, the depolarizing fieldis Ey = - 3—
€o

3. Calculate the resultant field at O. Give the expression for the polarization vector.

1. The polarization vector (P ) is parallel to Eext, and the surface polarization

charge densities on the upper half of the sphere are o, = Pcos6 >0 as in this zone

0<6 <§.Onthelowerhalf, §<9 <m and 6,<0.

These signs are evidently in accordance with the orientation of the dipoles due to the
electric field.

2. The field produced by these polarization charges, placed in a vacuum, at O can
be calculated by considering an element of the surface (d?S’) giving rise to an
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' dss'
elementary field d>Ey = op , while an element of a symmetric surface d?S’’
47T80R2
. " Op dzs" .
results in a elementary field d’E4 = (see figure). Given the symmetry of
4meR?

the problem, the resultant contribution is directed along Oz. The effective
contribution (d?E4 ) of an elementary contribution such that dZELi is directed along

Oz is such that:
op cos 0 d°S'_ Pcos’0d’S" P cos®0sin0db do

d*E4=d’E} cosb = (with
4meR? 4meR? 4me
d*S'=R?sin 6 dO do ) so that
dEy - _:3,1 P cos? 0 sin 6 dO do = P cos? 0 sin 6 dO '
- 47'[80 280

Finally, we reach

- =z P cos? 0 sin 6 dO =0 P cos? 0 d(cos 0) P .
Eq = jg:ngd = :g— :ngn =——and given

280 280 380

the orientations indicated in the Figure (ﬁd and therefore also Ed antiparallel to

P ), we have:

B P
d 380'

3) The active field resulting locally at O is:

2.5.2. Empty spherical cavity
Into a dielectric of permittivity € is placed a spherical cavity that has a center O and
a radius R. The cavity is subject to a field (Ea ) which acts in the dielectric, which is

assumed to be uniformly polarized.
1. Calculate the field created at O by the polarization charges, which is the Lorentz

. P
field : EL = 3—
€0
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2. Determine the resulting field (Eal) at the center of the cavity which can be

expressed as a function of €, and E, .

A
Ea = &/
Eext + Ed
vacuum: o
dielectric (8)‘+ ‘+ op>0 |+ ‘+

+

1. Considering the sphere surrounded by dielectric material, the polarization charges
appear at the exterior of the sphere (and also near the armatures). As shown in the
scheme above, the sign of these polarization charges is inverted with respect to the
preceding problem and the normals being external to the dielectric are now directed
toward the interior of the sphere, which causes a variation in the values of
0= (f’,ﬁ). d?Eq4 and therefore also Eq are parallel P,and Ey = E| = +3i.

€0

2. The expression for the resulting field at O is therefore:
- - P . -1 = +2 -
By= B+, 420G D B 25

380 380 3

The problem above is repeated using a parallelepipedal cavity at the end of this
chapter.

2.6. Mechanism of Dielectric Polarization: Response to a Static Electric Field
2.6.1. Induced polarization and orientation
2.6.1.1. Induced polarization

When a field is applied to a dielectric, it acts on the charges attached to the atoms
making up the molecules of the material. The positive and negative electric charges
are then displaced so that the initially unpolarized molecules become polarized, and
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those that were polarized have their polarization modified. As shown in Figure 2.16,
different types of polarization are possible.

2.6.1.1.1. Electronic and atomic polarizations
Under the action of an electric field, the charges in an atom—electrons and
nucleus—can be moved. Initially their center of gravities coincide in a nonpolar
molecule, but following the application of an electric field, they are no longer the
same.

As a first approximation (linear regime), the dipole moment (}i;), which

appears once the electric field is applied, is proportional to the field (Eal) locally

acting on the molecules, so that fi; = o,,E, where [i; is the induced dipole moment
and a,, is the polarizability of the molecule that is particular to the molecule and
expresses its ability to deform to yield j;. In fact, o, can be considered a
composite of two essential terms, such that o, = o, + oy Where:

e 0, is the electronic polarizability expressing the capability of the electronic

cloud to deform when exposed to an electric field; and
e oy is the nucleus polarizability, which also is often inappropriately termed the

atomic polarizability, and translates the ability of a nucleus to move under the
effect of an electric field.

All atoms can undergo this type of polarization, which occurs in a very short
period, corresponding to high frequencies from around 10" Hz for nuclei
polarizations up to around 10" Hz for the electron polarizations, which also are
called optical polarizations as these frequencies are of the order of the optical
domain.

2.6.1.1.2. Ionic polarizability

Ionic polarizability (¢ionc), found in ionic crystals, results from the opposing
movements of opposite charges. With ions being relatively difficult to move, as they
are part of a lattice, this polarization occurs over longer time frames than those
mentioned above, compatible with frequencies from the hyperfrequencies to the
infra-red.

2.6.1.1.3. Interface polarizability (Qinerface)

Interface polarizability is the result of an applied field on residual charges found in
macroscopic domains in a dielectric, which can be found, for example, in
heterogeneous dielectrics, which have joints between aggregates, in domains
associated with dislocation defaults or even in particulates near interfaces. With the
charge carriers being rather slow, as dielectrics are poor conductors, the polarization
also is slow in being established—taking up to several minutes—so in general

v~107 Hz
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Polarization E =0 E#0
@—»—
Electronic and
atomic
s orbital
positive
a5) @ ion
Ionic
negative
GO @ [0 on
Interfacial
Charges
spread
randomly
Figure 2.16. Mechanisms for polarization by induction.
2.6.1.2. Orientation polarization

Generally speaking, a molecule formed from several different atoms has a
spontaneous dipole moment, also commonly called permanent (i), which exists

even in the absence of an applied electric field. Nevertheless, and as we have seen,
these particular moments generally are orientated in a random manner due to
thermal vibrations so that there is no observable macroscopic polarization. However,
in the presence of a field, these moments tend to orientate themselves in the
direction of the field. An equilibrium is then struck up between the concurrent
effects of thermal disorientation and field orientation. This phenomenon, termed
polarization by orientation, can be observed at frequencies typically between 1 kHz
and 1 MHz (for materials in the liquid state, these frequencies can be higher).
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2.6.1.3. Conclusion

Different types of polarization may be observed depending on what the dielectric is.
In addition, with a weak polar molecule exhibiting a permanent moment the induced
polarization is not necessarily negligible with respect to i,. In all cases, the

resulting moment is the sum of all the possible dipole moments, whatever their
origin.

2.6.2. Study of the polarization induced in a molecule
We have seen that for a molecule, which here will be assumed to be nonpolar, the
induced polarization is of the form: fi; = o, E,; . The local field that acts upon the

molecule denoted by E,is different from the applied external field from the

armatures. Using Debye's approximation, we can assume that each molecule can be
thought of as in a small spherical cavity of free space. The polarization charges
appear on the surface of this cavity and result in the so — called Lorentz local field
(Ev) at the center where it is assumed the molecule lies. From Section 2.4.6.2, we

- P
have E; = ——. This field is superimposed over the external applied field, an
380

effective field that as elsewhere is denoted E, , is the resultant of the external and the

depolarizing fields, and is the actual field measured coming from the charges
exhibited on the armatures of the condenser. We therefore have:

E+P
| = —
a a 380

esl]

For a certain number (n) of nonpolar molecules per unit volume, we have:

- - -~ P
P =nj; = noyEyy = noy (E; +—)
€0
]_::’ = (8 - So)Ea =
- -g]E -
no, (E, + %) = (¢ — g9)E, , from which can be determined that
€0
3eg +[e -
nam(m) = (e —¢gg) so that
380

3 -1
o = o[a L)
n g +2
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N
fn=—= NL where N is Avogadro's number, V' the molar volume, p the
V a

volume mass, and M, the atomic mass, then:

No, M, g -1

Py
3¢ p g +2

where Py, is the induced molar polarizability.

The above relation is called the Clausius-Mossotti equation and relates
the microscopic polarizability (o) of a molecule with the macroscopic

characteristic of permittivity (g;), which is measured via a capacitance ratio
C .. . .

g, =—, where C and C; are capacities of the dielectric and of a vacuum,
Co

respectively.

2.6.3.  Study of polarization by orientation

2.6.3.1. The principle and the result

For a polar molecule with a permanent dipole (Hp) placed in an electric field, the
whole molecule turns so that its dipole is in the same sense as the field. Thermal
vibrations though limit the effectiveness of the orientation. If the applied field is

constant, then the phenomenon is added to that of induced polarization and the
molar polarizability is then such that:

2
M -1 N N
P 8r+2 380 3kT 380
2
where O‘Or:;Tp-
T

A demonstration of the above equation is given below. If an alternating
field is applied, the dipoles oscillate and rub against each other, resulting in
dielectric losses. This phenomenon will be described in more detail in the second
volume under the subject of wave-dielectric interactions.
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2.6.3.2. The Langevin function

esl]

al

S

Figure 2.17. Relative position of an applied field and a solid angle in which
are distributed dipoles.

A collection of identical polar molecules, with moment [i, =q 1, prior to any

application of an electric field, are randomly distributed by thermal agitation so that
overall they give rise to a zero resultant moment. Once the field is applied, each

molecule is subject to a localized effective field (E,; ), which tends to orientate the
dipole associated with the molecule in the same direction and sense. For each

molecule to have a minimum energy (E,), then the following relation also must
reach a minimum:

Ep:'ﬁp "By = “Hp Ey cos 6,
where 6 = 0 (27) . The alignment of the dipoles along the sense of the applied field
nevertheless is limited by thermal agitation so that the orientation angle 6 described

in Figure 2.17 is nonzero. It is interesting therefore to determine the contribution of
each dipolar moment ( fi,, ) to the resultant polarization.

The number of molecules (dN) with moments belonging to a given solid angle
(dQ) is such that AN = A'dQ}, i.e., the greater dQ) is, the more molecules present.
With Boltzmann's distribution law, the coefficient A' is such that:

E
A'= Aexp(——P), so that
KT

u,E, cos 6
Tl 7 4o

kT

Given that the space dQ has Ox as an axis of symmetry, the resultant dipolar
moment for each molecule in that space with respect to Ox is p, cosf. The

contribution of dN molecules situated in dQ2 with respect to the same axis is
therefore:

dN = Aexp(+

dm = p, cosf dN.
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The resultant dipolar moment along Ox for the molecules thus can be written as:

0=m
M:_[dm: J' pp cosO dN.
6=0
As each dipole makes a contribution, we then have:
O=m O=m M
o cosOdN [ pjcosbAe KT dQ
—_ M e _ 0=0
H N 0=m - 1,E, cos0
J N [Ae ¥ 4o
0=0 0=0

With Q=2m (1 - cos 0), or rather dQ= 2= sin6 d6 , we have:

0er p,E, cos
po [ cos® e KT sin6do
_ 0=0
H oop MpEacos® Hp=COS 0>.

_[e kT sin@ do
0=0

. . ”pEM
By making x = cos0, so that dx=-sin0d0 and B = , we have:
x=+1
[ x ePXdx
- _ _ x=—1
W=pp<cos 0> =p, == 7. (D
[ ePrax

x=-1

The integration in parts of the numerator gives (making u = x and dv= ePXdx ):

x=+1 Bx *l +1
[ x Py = | 2€ - leBde =l(eB +e_B)—i(eB —e_B)
B ], =B p p

x=-1

The denominator directly gives:
x=+1

) PXdx = é(eB - e_ﬁ) ,

x=-1

from which can be determined that
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P +eP) —[13(6B —eP)

1
<cos 6> = (eB - e_ﬁ) = cothp — E =L@),

where L is Langevin's function.

1
If B islarge (B — «), E_) 0, then:

BB 26 41 2B
¢ re ¢ T ~e—:1.TheupshotisthatasB—>oo,

<cos 0> = cothp = = ~
PP Py P

LPB) —>1.
If B is small (B = 0), using the following relation obtained from Eq. (1):
x=+1
[ x ePXdx
<cos 0> = % , we can write that P sy Bx , so that
[ ePdx
x=—1

+1
x=+1 2 3
[ x (1 + Bx)dx [X+BX} 2p

<cos 0> ~ X=-1 = — _P

x=+1 +1 ’
2
[+ pxdx {HB’“} :
x=—1 2 —1
. B upEal
Accordingly, as B - 0, L(B) = <cos 0> ~ — = ——.
gly, as B B P
L
A B)
1
slope:
1/3
>
0 B

Figure 2.18. Representation of Langevin's function L([).
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2.6.3.3. Molar polarizability

In practical terms and under normal conditions, p < 107, This gives

2
E
H:p_p<cose> = “pﬁzup al-
3 3kT

The orientation polarization (dipolar moment per unit volume) is thus:

2
HpEal
3kT

P,=no,, E;, and the resultant polarization for a polar molecules is
2

Pr=n(a, + 3Tp)Eal (this equation also can be written in terms of vectors).
T

P,=np=n This is superimposed on the induced polarization,

The molar polarization therefore can be written as :

M, & -1 N Ik
PM:—— R

=— 0y, + (Debye's formula),
p g +2 3¢ " 3kT

and is the summation of the induced molar and orientation polarizations.

2.6.3.4. Application: determination of permanent moments and the polarizability «,

Pv A

380

Figure 2.19. Determination of u,and o, using the Clausius-Mossotti equation.

On knowing M, ,p, and ¢, (by capacitance measurements), it is possible to trace
1 - 1

Py = f(—) which gives a straight line, as it is of the formPy; = A(—)+ B, and
T T

then determine from the point where the ordinate crosses the y axis the value of
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N
B= 3am , and hence the value of a,, . From the slope, as indicated in Figure 2.19,
€0
02
which has the value A = 5 1p( , one can determine the value of Hp.
€0

The commonly used unit for the dipole moment is the Debye (equal to 3 x 10~
MKS) and is equivalent to a unit charge of 1 u.e.s and a distance of 0.1 nm (1 A)
apart. The dipole moment of HCI thus is 1.1 Debye.

2.7. Problems
2.7.1. Electric field in a small cubic cavity found within a dielectric

Using a large flat condenser, a uniform electric field (E ) is generated in a dielectric
with permittivity (¢) which is placed between its electrodes so that E || Oz . A small

empty cubic cavity is placed in the dielectric so that it presents both its upper and
lower surfaces, shown in the figure below, parallel to the electrodes.

€ ¢ vacim

1

(a) Indicate the direction and sense of the polarization vector.

(b) Algebraically calculate the charge densities equivalent to the polarization, and
schematically show the position in space of these charges.

2 The origin (O) of the trihedral is at the center of gravity of the cavity, and the

electric field ( EP ) due to the polarization charges may be calculated at that point.

(a) Given the symmetry of the problem, indicate the sense and direction of the
resultant field EP by considering in succession the effect of polarization charges at
the lower and then upper interfaces.

(b) For an element (dSp) of the flat surface of one of the interfaces, indicate the
expression of the electric field produced by dSp, specifying the useful component of

the electric field as a function of a solid angle from which the point O can be

observed dS,,.
(c) Give the value of the solid angle through which all the space is observed, and
then from this determine the value of the solid angle through which one may observe
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one and then two faces of the cube. Give the modulus of the electric field generated
by the charges equivalent to the polarization.

(d) Give the vectorial expression for the resultant Ep at O produced by charges

equivalent to the polarization.

Answers

Tlext upper face

i

+ + + Dextlower face

y M’; M;

X
M;

(a) The external electric field (E) is assumed to be uniform outside of the cavity,
which is supposed to be of negligible size with respect to the size of the armatures of

O

:

1

1
i1

1

1

scheme in the plane Oy’z

the condenser. Given the geometry of the exercise, we have E || Oz . For its part, the
electric field (Eg, ) inside the cavity is also assumed to be uniform. The
polarization vector in the dielectric (outside of the cavity) is defined by
P= (a - g )E , and therefore is directed in the same sense and direction as the field

E, with & > g,.
(b) The polarization charges can be of two types: volume ( pp ) or surface (Gp ). As

pp = —divP, so that pp = —(g-gg)div E, with E and the localized form of Gauss's

theorem, divE = 2%, we have op = _ (egg)

€
density of real charges in the dielectric (p, ) is zero.

py, so that pp =0, as the volume
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The surface charges, p = P.fi ., use external normals to the dielectric.

Given the directions they follow, which are Oy at the two lateral interfaces of the
cavity (parallel to the Oxz plane) and Ox at the two sides behind and in front
(parallel to the plane Oyz), only surface charge densities at the upper and lower
sides (parallel to the plane Oxy with normals along Oz, in the direction of the
polarization) are zero. Therefore:

« on the upper face, Gp = P.iigy upper face = P.(-§,)=-P<0;and

« on the lower side Gp = Pfigy; jower face = P-(§,) = P>0.

2
(a) Any point M on either the upper or lower side can be associated with a
symmetrically equivalent point M' through Oz. The components following Oy' for

an electric field (E ) generated by the polarization charges at these two points are

opposed so that the resultant component of the electric field is directed along Oz. In
addition, given the sign of the polarization charges, the sense of the electric field is

the same as Oz whether the points are respectively on upper or lower sides. As a

result, we have E I Oz.

1 ds
(b) Wehave dE, = —— opCop , for which the projection along Oz is:
4mey  r?
1 PcosBdS
dE, = dEp cos 0. With |op| =P, we also find: dE, = L)
4ne r?

As the solid angle through which a surface element dS of the sphere is
ds
dQ =— where dS and dSp are such that dS=dSpcos®, from which

r2
1 PdS dS dS 0
= dQ and dQ =—= op CO5Y represents the solid angle

dE, =
4ney 12 4rme r’ r’

z

through which the surface dS), is seen from O.
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Finally, we have E, =

IdQ where the integral must be taken over
47'580

the solid angles that cover the charge-carrying upper and lower sides of the cavity

seen from O.

(¢c) The solid angle through which the whole of the cube can be seen from the point

O, and therefore all of its six sides, and is a solid angle through all space is 4n

steradians. With the six sides all being equivalent, 1 side can be seen through the

4 4 4
solid angle ?n, and two sides thus are seen through ?TE x2 = ?n steradians. We

P 4n P

therefore find that E, = [dQ =

4nz, dney 3 3

(d) In terms of vectors, and given the answers in 2 (a) and (b), we can state that:
. P p
E

z = -
380

=—2¢,
380

2.7.2. Polarization of a dielectric strip

AZ

vacuum &

A thin dielectric strip with an absolute dielectric permittivity equal to € is placed
parallel to and in between condenser armatures which generate an uniform

“external” field denoted Eext , as shown in the figure above. It is assumed that the
dielectric, like the armatures, has infinite dimensions and a center of gravity called

O. Its thickness is such that the field external to the strip is not modified by
polarization charges, and that the field inside the strip is uniform.

1. Algebraically indicate the value of the polarization charges and indicate their
position on a figure. The value of the charges should be expressed as a function of
the dielectric polarization (P).

2. With the help of an equation for the continuity for the dielectric strip-vacuum

interface and as a function of Eextand &, directly find the expression for the
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resultant field in the strip (EL) and then that of the depolarising field and

polarization vector.

Answers

1. The polarization vector is in the same direction and sense as the electric field and
follows Oz. The external normal at the upper face of the strip goes along Oz, but at
the lower face goes along —Oz. The result is that the superficial charge density
equivalent to the polarization op = f’.ﬁext is positive on the upper side and negative
on the bottom. These polarities are realized simply by considering the orientation of
the permanent dipoles in the strip when subject to an external field.

With the strip not being charged in its volume, then pp = 0.

AZ
vacuum € ﬁ t =
47 B fie = op >0
~ATF S5 o= e mmpee —e o= e oo e os
P4 “dielectric sitipe—————p vy
U — —
b, *ﬁ PNfiex = 0p <0

++++

2. By taking the upper interface as an example, the continuity of the component
normal to the electric (displacement) induction can be used. As there is no real
charge surface density (o, =0), we have D, -D,y =0 where D, =¢E

The result
iseEp, —ggEexy =0, and given the same sense of the two fields,

(induction in the dielectric for a field denoted Ej ) and D,y = ggEo -

|
™
(=
|
es]

— _ “ext
EL - _Eext - -

€ &

The depolarizing field ( Ed) is such that EL =Eext +Ed, where

) 1. -1
Eq =- : Eexi - When g.> 1, we have [— & J< 0 and it is confirmed that

&y &y

Ed is antiparallel to Eext . In the dielectric strip, the polarization vector given by

= ~ ~ . = E
P =(c—¢y)E, is such that the effective field E, = Ey, so that E, = —%t and

&

SO(Sr _1)E
€

P

ext -
r
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2.7.3. Dielectric planes and charge distribution (electric images)

In a trihedral about Oxyz, the plane xOz separates a vacuum (permittivity &) in the
region y > 0 from a dielectric (permittivity €) which extends through the lower half
of the space where y < 0. At S, which has the coordinates (0, a, 0), there is a charge
(q)- An additional point of reference is S' which is symmetrical to S about O and
therefore has the coordinates (0, -a, 0); we also have r = SP and r’ = S’P. This
problem concerns the Oxy plane and a point P with coordinates (x, y, 0) from an
electrical point of view.

YA
S
€o \E (Xs yso)
z
0] X >
€
S

1. In order to deal with this problem, it is worth showing that at the point P (x, y, 0),
the scalar potential (V) is such that:

1
*wheny>0: V|(P) = {g+ﬂ}

4ney Lt 1

L g

*wheny<0: V,(P) =
4ne r

where q; and q; are constants.

1 1 1
(a) What do the potentials g @ - 42 represent? What actual

b b
4neg v 4mey r' 4me r

physical origin might they have?
(b) Calculate as a function of x and y the Cartesian components for the field
vectors E{(P) and E,(P) which are derived from V,(P) and V,(P), respectively.

(c) Determine the two constant q; and ;.

2.

(a) Show that the charges equivalent to the polarization are only at the surface.

(b) Determine the density of the surface charges and the total charge through the
plane xOz, noting that the distribution is around the axis Oy.
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Answers
1.

1
(a) v = 4—3 represents the potential generated at P by the charge q at S. The
TEY T
dielectric in the region y < 0 is polarized by q. The overall polarization of the
dielectric can be taken into account by using an intermediate charge (q;), which

remains to be determined, at S'. The potential vi= ;& is a representation of
4ney 1’

the problem using a reflected electric image for which q; must be determined. This
representation is more acceptable when seen as an analogy of an optical system,
where it is possible to imagine a mirror, for example, reflecting an image of an
object of a similar size and shape to q to give q;, much as a fisherman might see his
float (F) dangling in the air taking on the form F; as

an image in the water. The total potential in the A y

vacuum is therefore:
S _
1 1 gy
Vi) = VO v = —[ﬂ+ ﬂ} .
dngg [t 1 €o P
This equation also can be interpreted by imagining SP >
the fisherman sitting on the bank in the air € X
(permittivity equal to gy), and him being able to see
B + B,, both his float and its reflection. g
1 e
The potential v® = 4 represents the
4ne r

potential at point P (which is in the dielectric),

generated by a charge (q,) at S. Carrying on with the analogy, here it is as if the
charge q at S is being observed in the shape of q, by the fisherman who has dived
into the water to be at P (y < 0). Once again though, this representative is only valid
if q, can be determined.

(b) Bringing in the unit vectors Ugp and Ug in the directions SP and S°P gives:

x x
N I R ) (e
Usp ‘—‘ . an uw‘ﬁ K

0 0
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The result is that the fields El and Ez are from the same charges generating V,(P)
and V,(P) and are such that:

x {L&} 1 gyx
dneg L 1” 4me 13
g1 jab-a) aly+a) and gl L a(-2)
4ne r’ r 4me r
0 0

(c) There remain two constants to determine, namely q; and q,. To do this we need
two equations with two unknowns, and these can be derived from the limiting
conditions at the interface y = 0. At this plane there is the continuity of the tangential
component of the electric field, and in the absence of a real superficial charge a
continuity of the component normal to D. At the interface where r =1’, y = 0, and
'x = X', we thus have:

E|x =Ejy and gyE, =&E,y, which give, respectively:

x {i+ﬂ}_L@ and L{—qay}_i—qza

4me P 4me 1 4m| 3 r’ 4n o3

From which we also find:

9+q9 _ 92
——=—andq-q; =43
€p €
. €y — ¢ 2¢
From this can be deduced that q; = q,and that q, = q.
€+ €0 €+ €0
2
(a) There are no volume charges in a
dielectric, so p, =0 with the result that A y
pp = 0 (see course work). s L
Only surface charges equivalent to the 7i
polarization can be present. o\ o
&0 a T
(b) We have op =Pii where @i is the c " >x
normal outside of the dielectric as shown in \ -
P

the  figure. The result is  that
op =Pcos (m-0)=-P cosb .
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To calculate the polarization, P = (8 - SO)EZ wherein the term E, intervenes as

the field in the dielectric.

Deriving the potential, V,(P) = 42 , we have for the field Ez s
4ne r
& 1 T 1 1 T
2= — Q=54 =
4ne TP 2m e+ €0 r
from which
~ 1 g—g T
B _qs g T
2t e+¢g r?
. . e—¢gp 1 . a
From this can be derived op=-P cosb = —i—o—zcose, and with cos@ = —
2ne+¢gyr T
. 1 cos?0 . £-¢g
from which — = . By making A =q , we find that
r? a’ e+gg
3
op =— cos” 0
F 2ma?
Ay

dS=2nR dR

plane
Oxz

In the Oxz plane, the resultant of charges equivalent to the polarization is:
a

qp = _[ opdS, where dS=2n RdR ,and R=atan 6 and dR = do.
planOxz c0s20
n/2 e_¢g
This gives q, = -A _[ sinfdd=-A=—-q 0.
0=0 e+¢g

The angle 6 in the figure varies from 0 to /2 so as to cover the whole
surface when integrating over the whole surface of the Oxz plane.
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2.7.4. Atomic polarizability using J.J. Thomson's model

To represent an atom of hydrogen, J.J. Thomson used the following model. A fixed
sphere with a radius R, a center O contains a charge (+q) uniformly spread
throughout its volume. The electron charge (-q) is thought of as a point charge and
moves in the sphere, assuring the overall neutrality of the atom. All charges are
considered to be moving in a vacuum.

1. Calculate the internal electric field (Eim) generated by +q for a point M inside

the sphere and located by the vector OM =T =rg, .

2. Determine the attractive force between +q and the electron (-q) at M. Detail the
equilibrium position of minimum energy for the electron.

3. An external field (Eext) is now applied along €, to the system. Determine the

value of d which T must take so that the system is in equilibrium.
4. For the equilibrium position, derive the equation for the dipole moment induced
by Eext and then from this the polarizability of the atom.

Answers
1. Gauss's theorem applied to sphere with radius r (Gaussian
surface) gives:

R
D = ﬂ Ejp.dS = — Hﬁ/olume p dt, from which A

0 int érieur

4
4n 2 By =P 273, Then with p= % , We can
g 3 (4/3)7R
derive that E;; = — and as q > 0, in terms of vectors gives:
41 80 R
aim 4 Le where €, =L
3
47'[80 R r

2. The force exerted on an electron at M, such that OM =7 = ré,, is given by
2

= —qE;y _4q_ r3 ¢.. The energy of the electron (W(r)) is such that
€9 R

esl]

r ro_
F = —gradW, so that de =- _[ Fdr, from which can be deduced that

0 0
2.2

W(r) = + constant. Thus W(r) is at a minimum when r = 0, and therefore

87[80R

also the force F is canceled out at this position, which would make it an equilibrium
position for the electron.
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3. In the presence of Eext applied along €., the resultant force on the electron is

Fr = _Q(Eint + Eext) . The equilibrium position, the value of T equal to d, again

ext- From this can be

corresponds to when Fp =0 in that (Eim) 3 =-E

T=

47T80R3 -

determined that d = — E., and that d is antiparallel to E

ext ext -
4. Eg moves —q by d. This in return induces a dipole moment, which can be
defined by 1i; = —q d= 47580R31:Zext . The polarizability (a.), as given by the relation

h =a I:Zext , therefore has a value of o = 47:80R3 .

2.7.5. The field in a molecular- sized cavity
Preliminary comments
Debye's theory

The calculation for the effective localized field in a spherical cavity above was
carried out with the assumption that the field was the result of a superposition of the
applied external field and Lorentz's field, the latter being generated by polarization
charges at the surface of a dielectric. Assuming that inside the cavity the molecules
are distributed with a symmetry such that the local field they generate is zero, then
the resultant field in the cavity experienced by the molecules is the Debye field

- - - p
(En), givenby Ep = Eoyp +—.

€o
Onsager's theory
Onsager's theory was introduced to account for localised interactions between
molecules. The method used is to superimpose two steps to give the result,
respectively, given below in 1, 2, and 3.

1. Internal field ( G ) formed by external field in a small cavity (E # 0 and p=0)

An external field is applied to a small, molecule-sized cavity that does not contain
molecules. First the internal field (G) in the cavity is calculated assuming that it is of
the same form as the external field except modified by refraction at the dielectric
interface.

A molecular-sized spherical cavity, of radius a and a center that is taken as
the origin, filled with a dielectric of known absolute permittivity (g;), is placed in a

dielectric medium, with an absolute permittivity denoted by &,. If a field (E) is
applied such that it is parallel to the Oz axis and far from the cavity, as shown in the
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figure, the sphere distorts the field lines in its neighboring volume. As there is a
symmetry around the axis Oz, the problem is not reliant on an azimuthal angle o.
Given this symmetry, for a point P with spherical coordinates [r,0,¢], we can use the
Oxz plane where @ = 0 so that the potential can be written

as: AZ

* in the volume outside of the cavity ((r > a),

A cosb
cos - and

V, =-Ercosd +

r2
« in the cavity (r <a), V; =Brcosf, E
where A and B are constants.

(a) Give a physical justification for the form of the two
potentials.
(b) Determine the constants A and B. €

(¢) Give an expression for the internal electric field (G ),

which can be expressed as a function of E and &, = %2
€]
dv 1dv
N.B. It also is given that (gradV), = d_ and (gradV)g = _E
r r

2. Reaction field (R ) in the absence of an external field, due to polarization charges

induced by dipole in the cavity (E=0, dipole moment (1) is non zero)

A pinpoint dipole with an axis in the direction Oz is now at the point O. This dipole
causes a polarization of the spherical surface. It is supposed that the potentials are
similar to those found in Section 1 just above.

(a) Show how the potentials now can be described by:

C cos6
cos and

* outside the cavity (r>a), U, =

D'cos©
« in the cavity (r <a), Uy =Drcosf + cos

r2
where C, D and D' are constants to be determined.
(b) By using the limiting conditions of the interface, determine C and D as a
function of D'. Considering a limiting case, give D' as a function of the total moment
(w). Give the final form of U; and U,.

(¢) Given that the reaction field (R) is that which is induced by a dipole at the
surface of the cavity, find R in terms of the corresponding component of U .
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3. Onsager's field

(a) Show how the internal field acting on the molecule (Onsager's field) takes on

the form F = gl:i + % . Detail the constants g and r, as a function of g, and €; (often
a

assumed equal to g).
(b) Formulate the expression of the resulting dipole moment (i) for the molecule

located at the center of the cavity that exhibits a permanent moment (m) and a
polarizability (c) in the presence of the electric field E .

Answers

1. (a) Given the direction of E, it can be supposed that
the polarization charges at the interface of the two media
will give rise to dipoles with a resultant directed along
Oz. As the sphere is of molecular dimensions, the
distance between dipoles is around the same as that as the
dimension of a molecule—which well generates dipoles.
In effect, any given dipole (p;) will have a symmetrical
equivalent (,) so that combined their resultant (u,) will
follow Oz, as shown in the adjacent figure. The sense of €
direction of the dipoles will depend in the polarity of the
polarization charges, and hence also the respective values
of g, and &,. By consequence, for a point P outside of the

P

cavity, the potential due to E is such that Vp — V5 =~ jE.dl =-E.OP=-Ercos0,
(6]

so that Vp =-ErcosO (at potentials with respect to the origin O), to which must be

added the potential due to the resultant dipole p, which is of the form:
1 I @1 1 0

fi, gradp — = P - RS2 with

e, r 4me, r 4ne, ot

Vap = -

TN Acos6

A= :>VdP: 5
T

47'582

The resultant potential in the medium outside the cavity with permittivity &, is
therefore:

Acos0
Vy =Vp +Vgp =-Ercosd + ="~ (Q.ED.).
r
In the cavity the field E is modified by the refraction of field lines so that
form of the first term for V, is modified to become B rcos® where B is unknown

for the present moment. The second term will disappear inside the cavity: If it were
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kept, when r — 0 the term would diverge and so that this does not happen A has to
go to zero, thus removing the component. In the cavity (permittivity &), the
potential is thus in the form V| = Br cosf .

(b) The two equations of continuity for the electric field and induction can be used
to find the unknown constant A and B. For r = a, the equations are E;; = E,; and

Dy, =D,, . The “tangential” and “normal” directions following, respectively, &g
and &, , can be described by (E;g = Epg),—, and (Dy, = Dy;),_, , so that

LB Y]y (D) ()
a\l 00 J,_, a\ 00 /,_, Or Ji—a or Ji—a

From these can be determined that

A 2
B:—3—E and B:—g—zE——38—2A so that

a €1 a~ g

€1 -8 3 3¢,
A=—=2a’FE and B=- E.

g + 282 g + 282

Therefore, the potentials V| and V, are:

3e €y —¢; Ecos0
V) = ———2__FErcosf, and V, = —Ercos6 —#—2a3.
g + 282 g + 282 T

(¢) The field G in the cavity is such that G = —g—raavl, where V; =Brcosf, so

that with z=r cos® we have V| =B z. The result is that the only component of G
is:

oV, 3e . .
G, = -—L_-_B=—"2__E which in terms of vectors gives
0z g + 282
- 3. -
G= LE
2, +1

2. (a) In general terms, the potentials can be written as:
CcosH

s
r2

U, =-ErcosO +

Ccos6

so that with E = 0, we have U, = >
r
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D'cos6
And U; =Drcosb + cos
r

moment) so that r can no longer go towards zero.

where O is a singularity (a pinpoint dipole with zero

(b) The limiting conditions

1(6U1j 1(6U2j (6U1j (auzj .
i B = | —= and g — =gy —— give
al 00 J,_, a\ 00 J._, or Ji—y Oor Ji—a

3 2(e5 — &) D'
Co T g po 2D
282 + € 282 +€ a
The potentials are therefore:
2(e5 —g;) D'rcos® D'cos6 3ey D'cosb
U =- (83 —¢1) 3t 3 and U2:—1 -
282 +& a T 282 + & T

If it is proposed that the surface of the spherical surface can become quite
large, the potential (U;) will be that generated by an isolated dipole of total moment
1 in a medium of permittivity €;, with a value at a coordinate point (r,0) given by

0
Uy = hoosy so that when the surface increases, and 1/a> —0, we have
4mer
0 D'cos6
Heos® _ Uy = (Up), = C;S , from which by identification D' = i
47cglr a7—>0 T 47[381
2(gy) — 0 0
Finally, U = — n 2(ep —g) reos . ucos2 ’
4ne; 2e) + g a’ 4negr
and
3 cosO
U, = Re.

25 + & 4mr?

(¢) In the equation for U, the potential inside the sphere, the second term is simply
due to the dipole itself and the first term is the potential caused by charges at the
surface of the sphere induced by the dipole. The resulting field is the reaction field
(R).

With z=rcos®, R can be derived from the potential
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2(gy — 2(gy —

dng) 26, +€ a 0z 28, +¢g 4mga

2ey-2) R 2e, D) i
2e5 + & 41I8133 2e. +1 47tgla3

and in

terms of vectors, R =

3.
(a) The internal field acting on the molecule is given by F = G + R , and thus

3e, E+2(8r_1) il

F= :
2, 41 2 +1 4nga’
. . = . AT
This can be written then as F = gE + = where
a
3 1 2(e, -1
g= r and I, = 26 =D ).
2e, +1 4ne; 2e, +1

87

(b) The total moment (i) of the molecule is the sum of its permanent moment (m )

and its induced moment (oF ), so that fi = i + oF = m + agE + YOO;M , from which
i + ogE
we have [i = —g.
|- fo®
a3

This equation shows how the reaction field modifies the molecule's moment.



Chapter 3

Magnetic Properties of Materials

3.1. Magnetic Moment
3.1.1. Preliminary remarks on how a magnetic field cannot be derived from a
uniform scalar potential

Ampere's theorem written for a vacuum, rotp B = Ko 3 , shows how rotp B is
only zero at points (P) which are without current, and therefore is nonzero
elsewhere. The B therefore cannot be derived from a uniform scalar potential (V),
and in effect, if we could write for all P that B = gr?ip V, we will end up with

ﬁp B= 0, which is not true as we have just seen. Nevertheless, we can define a
pseudoscalar potential (V*) such that B = —gradp, V* where D represents points

without current, as at these points rotp B = 0 (a pseudoscalar is a scalar that is
defined by its being limited to certain points).

3.1.2. The vector potential and magnetic field at a long distance from a closed
circuit

3.1.2.1. Form of the vector potential

Here we will calculate the vector potential A and the induction B at a distance |fM|

far from a current in a closed coil that is considerably smaller than the distance

shown in Figure 3.1. For a point P in a vacuum, for which 5§ = MP , the vector A

given by the coil (C) in which a current of intensity i moves is given by:

5 _ Hoi pdl

4n "1y
This also is referred to in Section 1.4.2.
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di

Figure 3.1. Coiled current.

If for M we consider a unit vector ( Uy, ) such that liy; = constant= Ui whatever

" I Tuy — . .
the position used, the scalar tp.A = 4':—0—Mdl can correspond to the circulation
T Iy

Hol Uy

around C of the vector GM =
4n ny

Stokes theory written for the vector Gy, gives:
C S
where N is on the surface (S) through C.
Hol uN

Sonow withGy = —>—N and &y = NP, we find
4n 1y

— = 1 — — i
rotN Gy = 4”0 rotN Uy + gradN{fO j X Uy -
Ty TN

Yet with the vector iy (detailed in Figure 3.1), the components
(XN — XN), (Vv — YN), (Zne — 2v), which allow |ﬁN| =1, are such that rotn iy =0
a(ZNv - ZN) _

N

(as for example 0).

We therefore have:

iy A = [[{Fobn G 5 = ﬂ“_oi{gmN 1, ﬁN]ES
S S 47 I'N
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From ﬁM.A = ﬁN.A = A cos (Ui,A) it can be inferred that A can be written as:

A:”—Oiﬂ(cTs x gr?iNiJ. (1)

N
3.1.2.2. The approximation r >> C and the magnetic moment

3.1.2.2.1. The nature of the approximation

We can justify the approximation by recognizing that in real applications the coils
through which the current passes are extremely small with respect to the distances
over which the magnetic effects can be dealt with. More specifically, the

N — 1 . .
approximation states that grady, — is constant for each and every point (N) over
N
the surface S, which can be whatever size, although it depends directly on the size of
C, and that |fN| = |NP| ~ constant, with respect to the position of point N. In other

words, from a position P outside of the coil, we would see that any part of the coil
would be a distance r away, and indeed, the coil would seem miniscule from P. We
also can see that there is an analogy with the electric doublet considered in the
section on electrostatics, in which it is also supposed that r = constant.

3.1.2.2.2. Magnetic moment

©

i

Figure 3.2. The magnetic moment from a circular current.

The magnetic moment is introduced by definition as a vector:

M =i [[dS (2)
S
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thus giving it its name — spin angular magnetic moment — as schematized in Figure
3.2. Given that only C has been determined and that S is dependent on C, the
magnitude of Eq. (2) results from Eq. (1).

Taking into account Stokes relation, the magnetic moment therefore depends
only on the size of C. If C is a flat coil, then S can be simply that defined by the coil

C, and in which case M is normal to the plan of the circuit so that its modulus is iS.
The direction of M is defined by the corkscrew rule, which gives the rotational
direction of i through the coil. (Stokes theory states S that the direction is given by
that of the current i dl )
— 1
Carrying Eq. (2) into Eqg. (1), we can write (when grady, — ~ constant
N

— 1
= gradyy —) that
r

~ — 1
A=H0 gy & grady —

4n r
This expression can be turned around:

| |
':
o
X
g
=
o5
o
lav]
|
—~
(8]
SN

A

Given that the circuit is fixed in space, and that rotp M=0as M is independent of
P:

— (Ipyg o) 1 1 -
rotp (—H—OM] Fo 0 rotp M+ (”—grad ] (M) - _Ho ik grad
r4mn r4mn 47 r 4n r

we therefore arrive at:

3.1.2.2.3. Magnetic field

- L= . = — M
We know that B, for a point P, is given by B = rotp A = rotp rotp [“: ],
nr

M M
so (with rot rot = grad div - A) we have B = . {gradP divp — - AP( H
o T r
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However, with M fixed and independent from P, we find that:

T R
(F My + M, o+ KM, )APGJ,

1 - (M
so, with Ap [—] =0,then Ap [—J =0.

r r
This finally gives us:

L h— M
B ="0grad, divp —. (5)
Iy

4n
Therefore, at a large distance from a coil through which moves i, the vector B is
derived from a (pseudo) scalar potential (V* ) and that
% M
vi=-Bogiv, = (6)
4n r
The vector Bis such that
B = -grad, V. (7)

3.1.3. The analogy of the magnetic moment to the (dipolar) electric moment and
the justification of the term magnetic doublet for M = 1 [[dS
S

We can recall briefly that the scalar potential generated by an electric dipole of

moment i = qT is such that

V:_

. — 1
h.gradp —. (8)
4rme r

On comparing Egs. (3) and (8), we rapidly can see that the potentials take on the
same form, the scalar product (in the expression for the scalar potential) can be

substituted by the vectorial product (in the expression for the potential vector A ),
and the vector M = i IJTS can take the place of the electric dipolar moment (i ).
S

Therefore, by analogy, the term M is called the magnetic dipole moment.
At the level of the pseudoscalar potential given by Eq. (6), it also is possible to
write:
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" M 1 - ~— 1 _— 1

vV = —u—odivp P o e divp —H—OM. gradp — = —H—OM. gradp, — (6°),
4n r 4nr 4n r 47 r

because divp M =0 (M is independent of P). We can see in the expression for the

magnetic pseudoscalar a resemblance to the relationship for electric potential when

for the

exchanging M for fi. There also is the coefficient, Ho to change to
4n 4rme

. . . 1 o
electrostatic potential, and o which takes on the role of — (as detailed in Chapter 1
€o
in the formulation of Poisson's equation). This equivalence again justifies calling
M the magnetic dipole moment.
To conclude this section, we have seen that for a very small coil with respect to

the distance |¥| to where the magnetic effects are observed, the vector potential, the
pseudoscalar potential, and the magnetic field are given by expressions such as Egs.
(3), (6) or (6°), and (7). These relationships are analogous to those found in
dielectrics—which are supposed as vacuums in which “sit” electrostatic dipoles
(Section 2.2.1.1). Similarly, a small closed circuit can be associated with a magnetic
dipole, and outside of the volume defined by the circuit the magnetic effects can be
described by potentials expressed with the help of the magnetic moment

M = i [[dS. This study is carried over to Section 3.2.2.
S

Interestingly enough, in material, the same closed currents can be tied to
the movement of electrons in their orbitals.

3.1.4. Characteristics of magnetic moments M =i ﬂd—S
S

3.1.4.1. “The right hand rule”: magnetic moments are positive when the rotational
sense of the current corresponds to the north pole

For electrons in their orbitals, p = - ne, and as i = pv where p < 0, we find 1
antiparallel to v, so that from the “north face”, as defined in Figure 3.3(a), M//Oz,
while the kinetic moment I =rxmv is such that 1 is antiparallel to Oz, and

therefore M is antiparallel to 1.
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M- E
. S
i as
(0]
v
7 i
Y
[ = Txmv

Figure 3.3(a). Northern plan and the direction of the magnetic moment.

With respect to the “south face” shown in Figure 3.3(b), M is antiparallel to

62 , although M remains antiparallel tol .

M Y= i [[dS
N

Figure 3.3(b). South face and the direction of the magnetic moment.

3.1.4.2. The energy of a magnetic dipole in a magnetic field

B

i

Figure 3.4. Magnetic dipole in a magnetic field.

95
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If the dipole is very small, then it can be assumed that B is constant with
respect to the rest of the dipole, a supposition that indeed is correct if B is uniform.
If S is the surface of the dipole, the flux from B going through the dipole is:

o= [[BdS = BJ[dS.
S S

; . M
From M = i [[dS, we can carry forward [[dS =— into ® to obtain
S S 1

_ M
®=B—.
i
In addition, the potential energy of the closed loop circuit (magnetic dipole)
traversed by i and placed within the flux ® is Ej; =-i®, so that with the
preceding expression for @, we have
E,=- MB.

3.1.4.3. Forces and couples active on M placed in B
3.1.4.3.1. Forces

In general terms, we have F = - grad E,, so that more specifically

F = grad (M.B)

3.1.4.3.2. Couples
While moving through di, dQ of a dipole, if F and T" are the elements of reduction
around O for the torsor of forces acting upon the dipole, we have
dW = —dE, = MdB + BdM .
_ -~ _ (3B oB oB
Performing  the  calculation MdB =M|—dx + —dy +—dy |,
ox oy oy
recognizing that M is independent of the position of the dipole, means that

L o 8 /o - 0 /e - o
MdB:&(M.B)dx +5(M.B>dy +§( .B)dz{grad(M.B)J.dl .

It is also possible to derive the expression B.dM = B. dOxM = E}.(Mx B),
given that dQ is defined by dM = dOxM.
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Finally, from dW = ~dE, = MdB + BdM = [grad( v .1‘3)}51 + (Mx B).dQ

= FEdl+TdQ,
which by identity gives

F= grad(1\7l.l§)and ['=MxB

Comment: IfB is uniform, then F=0and I =MxB.In effect, the dipole is
subject to a single couple with moment I' = Mx B

3.1.5. Magnetic moments in materials
3.1.5.1. Introduction to the elementary terms

The kinetic moment (G ) of a particle with a known mass (m) is the moment of a
known movement such thatG =T xmv =1 xp.

The moment of a force is defined by: T' =T xF.

d dr dp -
The theory for kinetic moment states that d—G = d—r XP+TXx d—p =rxF=T,and
t t t

therefore if ', & is constant.
3.1.5.2. Atomic magnetic moments

For every kinetic moment there is an associated magnetic moment. Similarly, for
each orbital kinetic moment there is an orbital magnetic moment, and for a spin
kinetic moment a spin magnetic moment.

Concerning the orbital kinetic and magnetic moments, the orbital kinetic
moment is given by T = r x mv and the related magnetic moment is [i; = iS, as

schematized in Figure 3.4.

AT

{

Figure 3.5. Kinetic moment and the atomic orbital.
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The current intensity is given by i = -ne where » is the number or orbital
rotations (about a radius r) made by an electron of charge —e and speed v. This then

. \4 ~ \4 2 rv .
givesn= —, and }[ij=- —emnr =-e — , so that in terms of vectors,
2nr 2nr
_ TXmvVv e -
Hp=-¢ ——=-—1I
2m 2m
e .
If we make P = 2— = up, where y; is the Bohr magneton, we have:
m
= -pi.

Concerning the spin kinetic and magnetic moments, the same reasoning can be
repeated; however, the speed of the system is so much greater as the distance
involved is so considerably smaller that the calculation must be carried out using
relativity. So, in relativistic quantum mechanics, the resulting spin magnetic moment
(fs)is ig =-2 B s, where § is the spin kinetic moment.

For the atomic magnetic moment then, the resulting moment is

i = -B( + 23).

For an atom with more than one peripheral electron and within the spin-orbit

coupling approximation we have:

ip = -p@L +29).
3.1.6. Precession and magnetic moments

3.1.6.1. A magnetic field and the gyroscopic effect and the Larmor precession

electron
rotating in its
orbital

Figure 3.6. Magnetic field effect in a magnetic moment.
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A field B acting on the movement of an electron in its orbital can be schematized as
in Figure 3.6 as a moment couple due to B on by -

L i
SO r:MIXB:— -
dt dl - -
. L= = —=BBxl=0opx 1,
=—f1xB=pBx1 dt

. a = ¢ = o .
and then placing o =B = 2—B where @ is the rotational vector, here
m
collinear to B.
So the vector Tundergoes a rotation around Bwith an angular frequency, or
. eB
rather a Larmor frequency given by o, = BB = 2— .
m

The movement of an electron in the plane of its orbit is not altered by B (as m

remains constant during the rotation), but the plane of the orbit goes through a
rotation, with a rotational vector ®; , around B in what is called the Larmor
precession. The movement of precession resembles that of a gyroscope.

di -
Comment If we multiply the equation d_ = o x 1 by B, the direct result is
t

df; ~ ~ i -
% = ®p, X Hj.In effect, the moment }i; also goes through a rotation about B,
t
. . a = € =
characterized by the same rotational vector @y = BB = 2—B .
m

3.1.6.2. Precession and the coupling L,S : internal precession

Figure 3.7. Precession of the couple L,S.
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When there is a couple such as I:,§ , first the orbital kinetic moments are coupled,
then the spin moments; this gives rise to a resultant kinetic moment of J = L +S. In

~ ~ dJ -
the absence of an external field, ' =fixB=0 =d— and J is a constant of
t

movement, so that a fixed direction is retained in space, as shown in Figure 3.7. The
figure also shows the kinetic and magnetic moments as, by design, 3 = -1, so that

we also cansee up, = L.

However, ;TE and @ display an interaction of energy AE o« LS cos(L,S).
At a given energy, cos(L,S) must be constant and Land S can only conduct one
precession movement (their direction may change) about J, which retains a fixed

direction in the absence of an external field. The result of this is that

e - -
bt = —2—(L + 2S), which is invariably tied to the triangle (L,S,J), which also goes
m

through a precession about J .

In addition, [ipcan be broken down into a component [ij along J,and a

perpendicular component i | that turns around J at the precession rate of motion. If
we consider the average value of [i; over an interval of time much greater than the
time required for one rotation, it is actually zero and the effect of [iris the same as
that of [ij (the apparent magnetic moment).

It is possible then to write iy = —igj = —Bgl where g is the Landé
2m

e -
factor. We also can state that y = Z—g , where the factor vy, such that fiy = —yJ is
m

called, for its part, the gyromagnetic ratio.

The factor g can be calculated easily. For example, by calculating |ﬁJ| and |j| , We

obtain:
. JA+D)+S(S+1)—L(L+1)

=1
£ 2J(J +1)

3.2. Magnetic Fields in Materials

3.2.1. Magnetization intensity

Here we suppose that there is a bar of material of a volume dt that is equivalent to
having a volume of atoms and/or molecules sitting in a vacuum each having an
elementary magnetic moment associated with the movement of electrons in their
orbits. This setup is comparable to that used for dielectrics.
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A priori, the moments are randomly orientated by thermal agitation when there
is no external applied field. The dipoles, however, will tend to orientate themselves

along the lines of an applied field (B) so that they assume a minimum potential
energy. This will confer on each element in the volume of the material a nonzero

dipole moment equal to dM . In addition, this corresponds to the hypothesis given
by Ampere for molecular currents.
By analogy with dielectrics, where the polarization vector is defined

= d T . o
by P = d_u , we define the vector for the magnetization intensity at a point in the
T

magnetic medium such that:
- dM
[=—

dt
This is quite often termed a vector of “magnetic polarization”.

3.2.2. Potential vector due to a piece of magnetic material (magnetized and
characterized by 1) and Amperian currents

P

Figure 3.8. Calculation for a potential vector through P.

In physical terms, the potential vector is the sum of all the potential vectors
generated by the electronic atomic or molecular currents in a vacuum that give rise

to a magnetization intensity (1) from the points (M) in the volume (M). In other
words, the potential vector at a point P is the sum over all the elementary potentials

(d;\ ) due to the elementary magnetic moments (dM = Idr) carried by the elements
in the volume dt . Using Eq. (3) in Section 3.1.2. we can state that:

- - (1 dM — (1 . — (1
dA = “—Ode grady, [—j ~Ho OV, grady, (—] dr = “—OI x grady, [—J dr,
47 T 4n dr r 47 T

from which can be determined that expression for the resultant potential vector ( A):
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- 1
A=t J'ngradM[ ]dr.
47TV

Again using the relationship rot (aT) = a rot T + (gr?i a)x T where now a = 1/r

1
—roty I — Ix(gradM —) from which

= = — 1
and T = I, we can say that rotpm (—) =
r

[

can be derived:

A= MO_[ rotMI dt——OI rotM dt.
dmyr 4m v r

Taking into account the equation for a rotational in Section 1.1,

jﬁTdr = jd—SxT, the second integral of the equation giving A can be
\% S

transformed with T =

= | =

_ 1— - dSxT
, so that A = Ho j—rotMI d'c— _[ .
dnyr 4TCS r

, giving

A= Ho I—rotMI d‘C+ I
4Tch

Magnetized

Vacuum

material in which is a
characterized = volume
by I J, = rotm I

with surface

2 = Ixn

Figure 3.9. Equivalence of magnetized material to Amperian current densities
sitting in a vacuum.

To conclude, the preceding equation shows how the potential vector due to a
volume V of magnetized material, characterized by a magnetization intensity vector

I, is equal to the potential vector formed in a vacuum by so-called Amperian (or
molecular) currents distributed—as also shown in Figure 3.9—so that:

e there is one part characterized by the volume current density vector, such that

I
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o there is another paper at the surface (limited of course by V) characterized by the
superficial (or surface) current density vector, such that

ja = Ixii.

These calculations can be used to determine the internal or external vector
potential due to the magnetized material.

Example: Determine the Amperian currents equivalent to a uniformly magnetized
cylinder and then the magnetization intensity through its axis, as shown in Figure
3.10.

Figure 3.10. Cylinder magnetized along its axis.

We have ja =10t [=0 (as T is uniform throughout the volume).

e atthe ends, I and fi are parallel, and j, = [xfi=0;
Ja = e on the sides, T and i are perpendicular, and ja =Ixf= Iy, where

€ 1s at a tangent to the surface of the cylinder and normal to its axis.

3.2.3. Physical representation of the magnetization of material and the Amperian
currents

The Amperian currents, defined above, are sometimes simply called magnetization
currents. However, as they are the indirect result of a calculation, and therefore seem
to have little bearing in reality, they are also often called imaginary currents. In
effect, they cannot really be termed macroscopic and in addition are not associated
with the movement of charge through a material, as is the case for a current density
vector. Amperian currents are not then what one would call “your normal type of
current”.

Yet they are not fictional, as for example in orbital magnetism (spin magnetism
is even more complex) they are the charge carriers tied to their nuclei, which give
rise to localized, individual currents that generate the magnetic moments and result

. - dM
nl=——-1.
dt
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We can use two simple examples with geometrical representations to show how
Amperian currents can be seen as averages over space of individual current
densities, which also qualify as microscopic currents.

3.2.3.1. A uniformly magnetized material perpendicular to the plane |f| =1,

Y
Y

»
P

Y

X | \ | \ | \
- A A A A
®1 N

] <=
<l P o \.‘ <l Q
(a) =~ = - =~ §
o
z Y \ e A E
. = A A A S
uniform I ~d= g
- - - § 5
=
55
= >
Ie—p
Y7
- J o720
(b) A i, =0
(S)

Figure 3.11. Egquivalence of (a) a uniformly magnetized material and
(b) a material crossed by surface Amperian currents.

In a parallelepipedal volume uniformly magnetized along Oz and in a plane
perpendicular to the Oz axis, there are ring currents associated with the movement of
electron orbitals. In order to detail these currents in geometrical terms, the orbitals
are assimilated into rectangular trajectories as indicated in Figure 3.11 a. It can be
observed in the figure that, given the direction that the currents take, they cancel one
another out in the volume of the material but not on the surface, and hence the
representation of the overall current in Figure 3.11b. This result is in perfect
agreement with the calculation of the density of Amperian volume currents

(J, = rotm I=0as I is uniform and independent of the points M in the material).
For its part, the calculation ja = Ixii indicates the correct direction and sense of

the resultant current, already seen using the geometrical argument detailed above.
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3.2.3.2. A nonuniformly magnetized material with 1 along Oz and such that

oy
z X/ > > I
non-uniform 7 : 2L>0 \
oy

N

0.

>
O
\

Y
A4

(b)

A

Figure 3.12. Equivalence of (a) a nonuniformly magnetized material and
(b) a material crossed by surface and volume Amperian currents.

For a nonuniform I crossing toward positive values of y as shown in Figure 3.12(a),
the geometric resultant of the volume currents is along Ox as detailed in Figure
3.12 b. The calculations for the Amperian volume currents, however, give the same
result, as:

oL
5 5 8y>0 along Ox
ox 0Oy 0z
- — _J -9oL
J, = roil = = 8y>0 along Oy
0 0 I

0 along Oz

The geometric result of the Amperian surface currents also is reported in
Figure 3.12 b, where the nonuniform density, the direction, and the sense of ja are

all in agreement with the calculation ja =Txi.
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3.2.4. Definition of vectors Band H in materials
3.2.4.1. Definition of B

The vector B is defined by the relation B = rot A , as detailed in Section 3.1.2.2.3.
From this definition, the result is:

divB=0 |,

and therefore in a vacuum, as in the medium of a magnetic material, the flux vector
B retains the same value (through conservation of flux).

For its part, the vector A can be calculated as if in a vacuum and subject to
magnetic forces, with the proviso that all currents be brought into play, notably the

volume (ja =rot ) and surface (]a =1Ixi) density molecular currents.

Assuming that a certain volume of magnetic material is identical to the same
volume of Amperian currents (and real currents when present) distributed in a
vacuum, Ampere's theory can be written for the magnetic material as

rotB = HoJT,

under which classic form only the volume currents ( J ) appear, so that here

jT :jg'i‘ja 5
where jz is the volume density of real currents (that is to say free currents,

deliberately applied in the material).

3.2.4.2. Definition of the excitation vector H
The relation rot B = wodr =no(J,+17J,) equally can be written:

. — (B -) -
rot — = Jpr=1J,+J,=],+rot I, soalso, rot (— —I]: Iy.
Ko

_ B -
Finally, the introduction of the vector H = {— - Ij
Ko
gives
r—ot I_:I = jg .
This last equation shows us that the real current density (jz) (deliberately

applied) is the source current for the vector H, generally called the magnetic
excitation vector. For this vector, Ampere's theory is identical whether for a a

vacuum or a material, which is rot H = J,.
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In the material then, we have
(while in a vacuum, B = poﬁ ).

3.2.5. Conditions imposed on moving between two magnetic media

3.2.5.1. Continuity of the normal component of B

medium 1

n

Figure 3.13. Continuity of B, at the interface between two magnetic media.

107

In order to simplify the calculation, a cylindrical form is used of which the volume
(V) is made up of two halves called medium 1 and medium 2. The height of the
cylinder is infinitely small so that we can concentrate on the characteristics of the
region about the interface—the sides are negligible in size with respect to the base of

the volume.

With fi = fi;, = fi; = —fi,, Bcan be written as:
§fB.dS = [[[divB dr =0
S A%
- | BB+ [ BES+ [ BBS= [ (Bn+Bim)ds

Sbase S lower base Sside—0 Sbase
sup erior

B/n =B,n ,which is stated as

B, =Boyl-

This result indicates that there is a continuity of the normal component of B in the

region of separating surfaces between the two media.
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3.2.5.2. Relation between the tangential components of the vector H crossing a layer

of current traversed by a superficial current of surface density js

AZ
A B
medium 2 > Tﬁl , =i
= s £ >
medium 1 X
D < T

Figure 3.14. Study of the continuities across a layer of current ( _js ).

Figure 3.14 describes the outline of the form ABCDA drawn at the vicinity of an
interface that contains a superficial current js , which is perpendicular to the plane of
the figure (intersection between ABCDA and the layer of current gives EF then
traversed by the current j;).

Ampere's theory may be written as (}g Hdl=1= js.éyEF = j,EF,

because by construction 38 |l €. Therefore, with AD =BC ~ 0 and by designating
the component of H tangential to the current layer as H;, then
H,,.AB + H,, CD = j(EF.

If H; | is the component of H perpendicular to js and collinear with the
vector AB (itself perpendicular to js ), then with AB=-CD we have
(thj_ - Htu_)AB =jEF. As AB=EF, we can immediately see that

(Hiap —Hyp ) =Js -

In effect, this relation can be written in the very general vectorial form,
Hyp -Hy = jsxnp.

If j, =0, the formula simplifies to H;, = Hyy.

Comment: In the same way in which the current j(, which appears in Ampere's
theory (rot I?I=j[ ), is a real current (deliberately applied), the superficial current

(%), which is such thatI = j;EF and introduced above, also is a real current

(deliberately applied) and in no circumstances contains the Amperian current
component due to the Amperian surface current density ( j, ).
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3.2.6. Linear, homogeneous, and isotropic (L.h.i) magnetic media
3.2.6.1. Definition

These materials are such that at any point in the magnetic media (is therefore
homogeneous) and in whatever direction (therefore isotropic) there is a linear

relationship between the excitation ( H) and the response, which takes on the form

1= *mH
where y ,, is the magnetic susceptibility of the medium.

The upshot is that

B = po(l:l + l):p0(1+xm)ﬁ:pH

with p=pg(1+ 7y, ) and },Lr:i =1+, , where p, is relative permittivity and
Ko
u is the (magnetic) absolute permittivity.

3.2.6.2. Result 1
From Ampere's theorem, rotH = j/ , we can determine that with B = uH :

I“O-ié = Hj/ s
so that Hje = rotrotA = graddiV;\ _AA and, finally, as divA =0 :

KX"‘Mjé:O.

3.2.6.3. Result 2
If the deliberately applied current density T/ =0, the result is that the volume
density of the Amperian volumes jA=O. In effect, as rot IZI=L~, if ],4 =0,

— - . 1 — - - —
rot H=0, so that with I =, ,H wehave —rot I=0 = Jpo=r0t I=0.
Xm

3.2.7. Comment on the analogy between dielectric and magnetic media, terms for
Hand B, and magnetic masses defined as calculable equivalents

3.2.7.1. The well-used analogy based on the equations D = 80E +P and
B = uy(H + )= py H+ uyl
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The direct transposition from the above equations would seem to correspond D with
f%, E with ﬁ, and P with Hoi. AsD is called the electric induction vector, B is

generally called the magnetic induction vector. With E being the electric field
vector, in the same way, H is called the electric field vector.

3.2.7.2. Analogy based on the “source” equations of Gauss's and Ampere's theories

These equations are:

divD = p, and rotH = J,;and
PrtPP
R
In this case, it is the vector H that generally is termed the magnetic excitation

divE = and 1ot B = po(J, + I,).

(or induction) vector by analogy with the electric excitation (or induction) vector D,
as the two cases share the same type of real source (deliberately applied).

The vector B really should be called the magnetic field vector through an

analogy with the electric field vector (E ), as the sources in both cases are both real
and equivalent to the polarization/magnetization, all placed in a vacuum (of
permittivity gy or permeability o, which intervene in the Gaussian or Amperian
equations).

3.2.7.3. Conclusion

These two arguments driving toward two different sets of names cannot be anything
but admissible and it seems reasonable to accept both terms. In order to make the
problem easier, it seems nevertheless more simple to call the two magnitudes

“vector H” for H and “vector B” for B. In any case, in mathematical terms, H just

like B corresponds to a field of vectors each determined by their three components
in the trihedral reference grid.

3.2.7.4. Comment. Magnetic masses as intermediates in calculations for permanent
magnets

As B =rotA , divB = 0 = pydiv(H + I) , where divH = —divI .
By analogy with electrostatics, where the charge volume density for
polarization is p, = —divP, in magnetism the volume density of magnetic masses

. . . * .7 .
equivalent to the magnetization can expressed as p = —divl. Similarly, the surface

density of magnetic mass can be characterized through o = I, (by analogy
withe, = Py).
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So we have divH = —divI = p*. The result is that
Dy = JHdS = [[[div Hdt = [[[p*dr,

which is Gauss's theory for magnetism, and is a relation that is equivalent to Gauss's
theory for electrostatics:

p = JJES = é [[lpsde.

Placing m = m p*dt, we also find &y = C_f,f HdS=m" (the flux calculated over

all space, that is Q = 4mn), and for a solid angle dQ, the elementary flux is:
* k 1
T in-=" dSu _ H.dS, where by identification H = 1 m?
47 5 4n 12
the magnetic field due to a magnetic mass m*.

It is worth noting that the magnetic masses introduced here are only
equivalents used in calculations and as such are not physically real, in contrast to the
Amperian currents. Experience tells us that the negative and positive masses cannot
be separated; indeed, the two poles are “inseparable” and can be physically attached
only to two faces, north and south, of a closed current, as in Amperian currents.

ddy = u and is

3.3. Problems

3.3.1. Magnetic moment associated with a surface charged sphere turning around
its own axis

A sphere of radius R turns around its axis Oz at an angular velocity . The sphere is

uniformly charged at its surface with a charge density o, .

1. Directly obtain the expression for the charge carried by an elementary part of the

surface defined by dS = 2nR?sin 6d0 . Calculate the intensity equivalent to this

amount of charge rotating at the angular velocity ®.

2. Given that the closed loop of current of radius R sin 0 is traversed by the above
current dI, determine the magnetic moment of the rotating sphere.

Answers

1. The charge carried by the surface element dS =2nR?sin0d6 is
dq = 2no,R?sin0dO . The intensity dI can be thought of as the ratio of the quantity
of charge that goes through the section dS with each complete turn of the sphere
(i.e., dq) , over the time (dt) for the charge to pass through this section. This time is

2
that which the sphere takes to make one turn, which is dt =T = “ The result is
®
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2. The magnetic moment (dp) that corresponds current ring crossed by dI is by
definition such that dp = dI.S, where S is the surface limited by the closed circuit.

Given that the ring of current has a radius Rsin6, its surface S is therefore:
S = (R sinf)? , where dp = dIS = 6,R%0sin8d0 & (R sinf? = mo,0R*sin’0d6 .

Rsin6

=

(@)

The resultant magnetic moment over the whole sphere is obtained by
summing over all the elementary magnetic moments associated with the circuits of
radius Rsin6, where 0 varies from 0 to 7:

T T T
p= [ du= [ no,0R%in’0d0 = n6,0R* [ sin’6do

6=0 6=0 6=0
, where

T
=1 ,0R* | (1-cos?6)d (-cosb)
0=0

3 T
0 4
p= ncécoR4 [—cos@]g +[COS } = —T[(SZ(DR4 .
3 3
0

3.3.2 Magnetic field in a cavity deposited in
a magnetic medium

Rsin®

—

A magnetic medium with permeability ¢ and

uniform magnetic intensity 1 parallel to Oz
contains an empty spherical cavity of radius
R.

Z
A
NG
R
0

Ho

1. Determine the Amperian currents J, and U

Jja equivalent to the magnetization.
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2. Calculate the elementary induction dB at the center O of the cavity created by a
coil of size RdO carrying a current dI associated with a layer of surface current of
density jA.

3. From this, determine the total induction formed at O only by the magnetized

material. N.B. It is worth remembering that the field created by a coil of radius r
carrying an intensity i at a point on the axis that observes the coil from an angle 6 is

. .. 3

0

given by H = R .
2r

Answers
1. Wehave J, =rotl =0 as 1 is
uniform. In addition, we have

ja = I x1igy, where N, is the normal

external to the magnetic medium, as shown
in the figure on the right. Therefore jA is

perpendicular to the plane of the figure and
corresponds to a surface current tangential
to the sphere's surface, which can be seen as M
a layer of current. Its modulus is
ja =1Isin(m-0)=1sin0.

2. As noted in the question, for a coil with a radius r, the field 4
H formed at a point M at a distance z from the coil is directed z 1‘ i
along the axis of the coil and has a modulus of
ir? i sin’0
H= = .
2 (I'2+Z2 )3/2 or

A coil carrying a layer of current with current density
equal to j, is traversed by the intensity

di = j, xdl=j, xRdO =R xIsin6dd .
z

The result is the formation at O of an A
elementary induction dB of sense opposite to I Jdl =Rd6

- di
that of I and such that dB = M—OdI sin> 0. ~

2r R
With r=R sin 0, we have (0]
|
dB= M Risin*0do=""sin%0do. Ko
2Rsin6 2 m
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The total induction (B) is therefore:

I T
B= oo j sin>0do
0=0

=—_[ (1-cos?0)d(-cosB) = ———, that is to say:
2 2 3

B 2 I
:_”’ .
3 0

3.3.3. A cylinder carrying surface currents
A cylinder of radius a has a surface revolving around '

an axis Oz, a direction through which the cylinder is , A M
infinitely long. The surface is carrying superficial
currents that have a value for each current

point M(a,0,z) of the form k= kosin® ¢, .

1. Show that the distribution of the current is

equivalent to a uniformly magnetized cylinder with a
magnetization intensity vector 1 to be determined. K
2. Take the problem in the inverse direction and

show that its resolution is actually faster.
N.B. For a cylinder,

it [ e e [0 ] 104 10T
r

R Tt ==
<y

r 00 oz 0z or

Answers
1. Given the equivalence of “magnetized material with a magnetization intensity

17, and “material traversed by currents of surface density k and volume density

K ”, we can write that k = j, = [ xii and K = J, = rotl . As here, k = ko sin® €,

and K = 0 (as no volume current is indicated in the question), the vector I should

verify on one hand ksin® &, = Ix i, and on the other rotl = 0.

Given the symmetry of the problem, which would tend to invite the use of
I, 1 0 0

cylindrical coordinates, we have 1 Iy (x| 0|=]|1L, =k|0 , where, by

I 0 —Ie kO sin©

z
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In order to determine I, we are obliged to use the second equation, rotl =0 , for
which the three components give three equations (taking into account that I, =0)
oly ol 10 101,

__:O,—:O, ——(rlg)———=0.
% oz oz rﬁr(re) r 00

. . Lo ol
As Iy = -k sin 6 (= constant with respect to r), the last equation gives [y ——— =0,

ol
where — = Iy = —k sin0, or rather I,=k cosf.
00

Finally, I = \/If + I% = \/k% (cos26 +5sin%0) = kg ..
[to]

|

representation which details how 1//8, , where

T=kgé,.

As = tan 0, we have the geometrical

2. Turning question 1 on its head implies finding the Amperian currents equivalent
to a magnetic cylinder with a magnetization intensity of I = ko €. As this

magnetization intensity is uniform and has ki, = constant and an orientation at all
points following Ox, the volume Amperian currents are zero and all that remains to

determine are the surface Amperian currents ja =1 x1i . Taking into account that T

is orientated following Ox, we are more than obliged to use Cartesian coordinates,
and thus directly find:

ko n, = cos 0
h=Ixii=| 0 |x ny =sinf | = 0 ,
0 0 kg sin©

so that
b =kosin®&,.

The resolution of the first question is greatly facilitated by using Cartesian
coordinates, rather than the cylindrical coordinates that the symmetry of the problem

otherwise would suggest when I is unknown!
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3.3.4 Virtual current

Yy A
S
Mo \
P(x,7y,0)
O
z |0 x>
u
N

In the trihedral indicated by Oxyz, the plane xOz separates a vacuum (of
permeability ) corresponding to the region y > 0, from a magnetic medium (of
permeability p) that extends through the inferior part of the defined space where
y < 0. An infinitely long conducting wire, both rectilinear and parallel to Oz, is
placed at S, which has coordinates (0, a, 0). A current of intensity I goes through the
wire in sense U, a unit vector along the Oz axis. An additional point, S' which is
used in the problem, has coordinates (0, -a, 0).

It is possible to show that for any point P with coordinates (x, y, 0), the vector

B is in the form

~ I : '
e wheny >0, B0=uiﬁx(r—+KL ); and
2n r? 1

— ul- Lr
e wheny <0, B=Hx—=L ,
2n r?
noting that in both cases, r=SP and r'=SP. Also, K and L are two constant that are
given by K = E7H0 gnd L= , respectively.
KL+ Ho L+ Ho

1. Recall the method by which the constants K and L can be determined.
2. Directly calculate the expression for the magnetizing field H, (P) formed by the
current [.

3. Asa function of H,(P), give the expressions for:

(a) the field H(P) in the medium (y < 0);
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(b) the demagnetizing field Hy(P); and

(c) the magnetization intensity vector J(P).

4. Determine the Amperian currents equivalent to the magnetization.
5. Calculate for the point S the expression for B via two different routes:
(a) directly from the above derived equations for B expressed as a
function
of predetermined constants; and
(b) by bringing in to bear on the calculation all the currents, both real and
Amperian.

Answers
1. Ampere's theory states that H 2nir = I, so at point P,

L1 T
H= 2—ﬁX—2, and in the medium with permeability p :
Tor
~ I. 7
B=—itx—.
2n 1

At a point P in the medium with permeability o,
the field results from the current of intensity I (in the medium where the
permeability is o) and the current KI (K remains to be determined) at S' (where the
permeability is p). S' is symmetric to S about the origin and KI is the “reflected”
(virtual) current.

When P is in the medium with permeability p, the field to which it is subject is
of a “perturbed” current—by the presence of the two different media—in the form
LI where L has yet to be determined.

The problem therefore is to find two unknowns, K and L, which can be
determined by introducing two equations, namely for the continuity at the interface
(plane xOz) of the tangential component of H which gives [1 - K] =L, and for the

normal component of B which gives K[u+py] = p-p .

~ I _
2. The calculation was performed in (1), where H,(P) = Z—ﬁxiz, with 7= SP .
T

3. H=H, +Hy for a point inside the material and given that the fields are:

B LI_ T .
—=—1iix—=LH,
b 2n

(b) Hy=H-H, = (L-1) H,=-K H,

(a) in the material H=

(c) B= Lo (H + Ta )= wH where Ta is the magnetization intensity, we find
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- B-poH - 2up - TP .
[ =—HMom _HHo Mo g o_oB Hop _okp
Ko Ho HTHo [Tt

[§

(where Ta= )(I:I=(ur - 1)Lﬁ R Rat S H )
Hy +1

4. J,=rot I,=(p,-1) rot H, while rot H=j,=0 (no current source in the
material) = J,=0.

Ixn=—at
2mr? mr?

2KT _ KI
X

EAZ Tax n=

5. We have

pl_ Lrf 2 I 1
(a) Br=2a)= ogx—L= 0~ "5 .
2n r utpy 2w 2a

(b) B = B(produced by I in vacuum) + B(produced by EA in vacuum) .

I
B(produced in S' by I located in S in vacuum) = Hoo
4ma
jadx . . .
dBopérien = “O;A ; the relevant component, given its symmetry, is:
Tr

o = Mojadx

cosB (see Figure below).
2nr

(dBAmperian )useful = d'BAmperian cos

. a
Withx =a tan0 and cos® = —, we have:

r
— KI KI
BAmperian: ﬁ_ n//22 l‘lO—COSze doé = HO— 5
S 2ma? 4ma
from which comes the same result for B as found in part (a).
S A
0

dx’




Chapter 4

Dielectric and Magnetic Materials

4.1. Dielectrics

4.1.1. Definitions

Dielectrics are in effect electrical insulators. A scale of conductivity can be divided
into somewhat arbitrary but well recognized characteristics for each group of
materials.

10" 10" 10 ¢ 102 102 107 o (Q'em™)
>
< > +—>
< > < >

conductors
Metals
(copper)

Insulators
(dielectrics)
Doped semi-

Intrinsic
semi-
conductors

There are certain characteristics that are specific to dielectrics. These include:

e Dielectric withstand strength (Ec) (usually given in the units kV mm™). When the
electric field E > Ec, the dielectric is no longer an insulator and an electrical
discharge is generated.

e Breakdown potential (Uc). When the potential applied is such that U > Uc, the
dielectric is no longer an insulator.

o Electrical discharge, which is the current passing through the dielectric when it
breaks down. The discharge is due to the formation of a highly conductive
passage between two electrodes.
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4.1.2. Origins and types of breakdowns

4.1.2.1. Thermal breakdown

When a dielectric exhibits losses through dipolar absorptions or leak currents, a
Joule effect ensues that generates heat. If the heat produced is greater than the heat
given out by the insulator, the temperature rises and this can come about rapidly as
dielectrics are often both good electrical and thermal insulators. As the conductivity

EG
(o) is related to temperature by o = cpe kKT | where Eg is the band gap of the

insulator or semiconductor, the conductivity also increases with temperature to the
point where the material can no longer be termed an insulator.

4.1.2.2. Intrinsic breakdown

Such a breakdown is caused by a snowball effect rather than the Joule effect, which
no longer plays a role. Once the electric field is sufficiently high, a significant
number of electrons impact with and ionize the dielectric. Electron-hole pairs are
then separated by the electric field, and holes (poorly mobile) tend to accumulate
near the cathode. The resulting space-charge reinforces the local electric field and
contributes to an increase in the number of ionizations. Field effects also can give
rise to additional emissions.

4.1.2.3. Ageing and changes in Ec with time

If a dielectric contains inhomogeneities such as cavities or imperfections due to
foreign particles, partial discharges can develop around these defaults and an erosion
or even a localized melting of the dielectric can result. A network of more or less
conducting channels may then develop resembling so closely the branches on a tree
that the effect is indeed called treeing. An example is shown in Figure 4.1.

Just as mechanical strains can generate cracks, humidity and ionizing
radiation, present in our everyday environment, can provoke similar disruptions in
certain polymers. In addition, the shape of the electrodes (or contacts) can play a
central role, so that to limit localized breakdowns, bumps, and deformities are
avoided. An important example of a way in which such effects are limited is the use
of m-conjugated polymers in the insulation of high tension cables, where they are
used as an inner sheath around the copper core.

insulating /ﬁd /M :
sheath () & condl'lctmg
wire

cracks initiating treeing

Figure 4.1. Electric cable covered by an insulating sheath showing treeing.
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4.1.3 Insulators

4.1.3.1. Natural and inorganic insulators

Examples include:

e composites made from natural materials such as paper or cotton impregnated with
oil (paraffin) and wax;

e clectronegative gases, in particular those with halogen atoms, for example, SFq,
which have high electron affinities, and thus reduce discharges by reducing the
density of free charges; and

e inorganic materials such as ceramics prepared at high temperatures and pressures
(eliminating the need for binders) and engineering ceramics (containing titanium
resulting in a high permittivities) that are used in specific applications, for
example high value capacitors. Ceramics containing high amounts of aluminum
facilitate metal plating, a useful property when used as substrates for electrical
circuits.

4.1.3.2. Synthetic organic insulators
For the most part, these materials are based on polymers, which consist of a chain of

a high number of monomers (M). The principal types of polymers are:

linear homopolymer -M-M-M-M -

branched polymer
poy M—M—M<:

~M-M-M-M-M- M-M-M-M-

M-M-M-M-M-

M-M-M-M-M-

reticulated polymer | |

M M
| |
M-M-M-M-M-M-M-M-M -
alternating copolymer -M—-M,-M,;-M,—

volume of crystalline part

The degree of crystallinity is defined by = sample volume

The most common examples are:

1. Polyethylene (PE), which is based on the structure:
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Gy Wy
GG
H H H H

and is prepared from ethylene, which has the chemical structure H,C = CH,. High-
density polyethylene (often indicated as HDPE) has a high level of crystallinity.

2. Poly(vinyl chloride) (PVC), is based on the structure:

1o o
H H H H

and is prepared from vinyl chloride.

3. Polystyrene (PS)

comes from the polymerization of styrene, which unlike the above-noted systems,
carries aromatic phenyl rings.

4. Polypropylene (PP)

A

H-g—bg

H H C
u o Hu ] H

H H

as its name indicates results from the polymerization of propylene.

5. Polytetrafluoroethylene (PTFE) is also known under its commercial name of
Teflon, owned by DuPont. This is an amorphous polymer that, on carrying a
“thermal history”, and having undergone mechanical treatment, does not tend
toward a crystalline state.
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0
T
F F F

m—Q—

Dielectric characteristics of the polymers

PE PVC PS PP PTFE
g, (50 Hz) 2.3 4 2.4 23 2
Tand (1 MHz) | <5x10™ 10! 10 <5.10™ <5.10*
p=1/c (Q m) > 10" 10°-10* > 10" >10" > 10"
Ec (kV mm™) 17-28 11-32 16-28 20-26 17-24

4.1.4 Electrets

4.1.4.1. Definition and properties

Electrets are dielectric materials that carry a quasipermanent charge and are
analogous to magnets. They have a permanent polarization; however, the charges
involved are relatively small. Under normal ambient conditions, ions in the
atmosphere, resulting from natural ionizing radiation, can neutralize the deposited
charges. In Figure 4.2, an example of the evolution of surface charge on an electret
is given. Typically, after around 2 or 3 months, there is only 20 to 30 % of the initial
charge.

c charge density at time t

1 oo charge density at time 0

ca 2 months

Figure 4.2. Diminution of charge on an electret with time.

4.1.4.2. Operational details of the voltammeter (devices which measure charge
densities)

These devices operate on the principle of compensation. That is to say, that for a
charged dielectric placed on the lower electrode, the following equation can be
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written:
B - —
Vo=Vp-Vg= [Edl=Es+E"s )
A
where ¢ is the surface charge density of the dielectric, s is its thickness, and s' is the

distance from the upper electrode. E and E' are the electric fields at the dielectric and
between the electret and the upper electrode, respectively.

4. lectrodes B

S v S _ i =21
/ VO VA VB _r

charged ;

dielectric

Figure 4.3. Schematization of the operating principles of an electrostatic voltammeter.

Imposing the condition of continuity on the component, normal to the
displacing vector gives:

D, -D', =c, whichinturnyields eE-g)E'=c. (2)

Vo is adjusted until E'=0 (by using the compensation method), so that
(1) gives (1°): Vy =Es,
(2) gives (2°): oc=¢E

V,
Determining the ratio (2°)/(1°) directly gives © = 8—0.

S

4.1.4.3. Piezoelectrets

These dielectrics become polarized when subject to an applied force. Inversely,
when subject to a polarization and in the absence of any mechanical constraints, they
change their dimensions. The more common piezoelectrets are quartz (SiO,), barium
titanate (BaTiOj3), and aluminum phosphate (AIPO,).

There is a linear relationship between the causal applied force and the resulting
polarization, and elasticity theory can be used to describe the phenomenon.
Piezoelectricity is a property tied closely to the structure of a material. For it to exist,
the centers of gravity of positive and negative charges, which coincide in the
absence of any strain as shown in Figures 4.4a and 4.5a, are separated by
deformation. In Figure 4.4b, the dipolar moment remains at 0 because of symmetry,



Chapter 4. Dielectric and magnetic materials 125

so the material is not piezoelectric; however, in Figure 4.5b, the deformation in Oy
leads to a nonsymmetry and a dipolar moment in the direction Ox.

before deformation, 3 p; = 0 after deformation (through Oy),
T > p; = 0= not piezoelectric
i

Figure 4.4. Deformation yielding no piezoelectric effect.

0 (b)
(a)
@/®\G) Décalage G) /®\®
sous
I’effet
X
e la
‘dé,fomaﬁon _____________
gl & < y €]
2 § \\\ px///
< |
v&© %
—>
Before deformation, Y p: = 0 After deformation, (through Oy) :
i

>'P; =px # 0= piezoelectric (SiO,)
i

Figure 4.5. Deformation resulting in a piezoelectric effect (SiO,).
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4.1.5. Ferroelectrics

4.1.5.1. Definition

Ferroelectric materials possess domains, called ferroelectric, inside which dipolar
moments are coupled with each other, thus giving rise to spontaneous polarizations.
4.1.5.2. Properties

The dielectric permittivity (g,) of ferroelectric materials is very high and can reach
values of around 10° to 10*. It is for this reason that they are used in high-strength
capacitors. They are very sensitive to temperature: above the so-called Curie
ferroelectric temperature, the ferroelectricity disappears.

i P =
. " |52
- | |8 =
(a E : P 1 ﬁg
(b) I — 1 —
| |
— T —>
Random Orientation of the E. ! 0 E E
. . s “Lm | co m
orientation of the spontaneous polarisations | I
spontaneous by an external applied ' '
polarisation due field (E). When E=Em, all ! !
to ferroelectric domains are aligned, as (c)
domains shown here.

Ferroelectric hysteresis cycle

Figure 4.6. Ferroelectric domains and their (a) random orientation; (b) organization under
an external field; and (c) hysteresis plot.

A plot of polarization against the applied electric field resembles a normal cycle
of hysteresis:

o At the initial zero field strength, as in Figure 4.6a, the overall polarization of the
sample is zero even though each individual domain gives rise to a polarization.
This polarization is due to the gradual coupling of dipolar moments up to the
limits of the domain, which are structural dislocations of various origin. As the
orientation of all the domains is completely random, the initial overall polarization
is zero.

e When an electric field is applied, a coupling energy tends to orientate the
ferroelectric domains in the directional sense of the field. This coupling energy
(W) follows the equation

W=-p.EcosH
and is directly proportional to E. The disorientated polarized domains orientate
themselves to the field bit by bit with the increasing field, and this first
polarization gives the plot shown in Figure 4.6b. Once the value E,, is attained,
saturation occurs, i.e., P = Ps.
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The completed cycle is shown in Figure 4.6¢c, where E is varied from —-E; to +
E.. At E = 0, the permanent polarization (P,) remains, so to return to P = 0, the
coercive field (E,) needs to be applied.

4.1.5.3. Polarization with respect to temperature

4.1.5.3.1 Conditions for a spontaneous polarization (Ps #0)

At a temperature T <0., the ferroelectric material can exhibit a nonzero
spontaneous polarization (i.e., Ps # 0 without an external field). To understand how
this can be brought about, we shall look at a highly polar ferroelectric material in
which the orientated polarization (P,,) dominates the other polarized components;
that is to say that P,. = P.

For this system, and from Sections 2.5.3.2-3, we have:

P=n;_1: n p,<cos 0>=n p,L(B) (1),
E . . P
where B = Hpal and E, is such thatE,; = E, + —.
380
In the absence of an applied field, the presence of P is such that E, = 0 so that
P p 3eokT
E,=—, B= Hp , and accordingly P = %o B (2).
380 380kT Wwp
380

kT

—2B . This equation,
Hp

which contains the condition P # 0 when E, =0, is in fact the straight slope due to
380 kT

Given that Eq. (1) = Eq. (2), we find that L(B)=
n

5 -
nopo
To find the solution, which corresponds to P # 0 when E, =0, the line of
3eq kT
the equation i—zﬁ must intercept the Langevin function (L(f3)), which is a
n

Hp
tangent with a slope of 1/3 and has certain aspects detailed in Chapter 2. This means

. 3gg kT
that the slope of the equation &—2[3 must be less that the slope of the tangent to

n p,p
3gg kKT 1
the origin, i.e., ﬂ—2<— , which means that:
nopg
2
n
T< GC: “p

9801(
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where Oc is the Curie ferroelectric temperature, below which point a spontaneous
polarisation can appear without an applied field.

L(Bf tang.ent of L(8)
equation /3

line for
3eok TRy,

>

Figure 4.7. Condition to obey to obtain a ferroelectric material.

4.1.5.3.2. The Curie law

. - P
Given that E, =E, +——, and for a strongly polar ferroelectric material
380
2
p-pEal
3kT

3KTP P KT 1

E, +——. and thus P| —- - — |=E, . The last equation can be
2
np, 3¢ npy 38

rewritten as
0 C
p( __CJ =—E,
T T

2
n
and C= Lkp (C is the Curie constant). Again, the equation
3

P=n . This can be used to deduce that

P By n iy L(B) . with L ~

E

al

where 0~ =
© 9gk

can be rewritten the form:

P
E, T-6c|

This last equation is an expression of the Curie law and shows that as T — 0,

— —> o0 . As P has a finite maximum value—it cannot go above n p,—the
E

a
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. . P .
relationship T = 6, (and — — o0 ) can only be true when E, = 0; that is to say at
a
the point at which the spontanecous polarization occurs.

4.1.5.3.3. Conclusion
Ferroelectricity only occurs in small number of crystalline materials, an example of
which is perovskite. The property comes about when, at low temperatures (T <0,),

the localized dipole moments are sufficiently intense to induce a gradual alignment
of dipoles. As the temperature increases, thermal motions obliterate this established
order so that local polarizations are deformed, the dipolar moment is reduced to
nothing, and the ferroelectricity disappears.

4.2. Magnetic Materials
4.2.1. Introduction

4.2.1.1. Field inside a bar (with permeability u) placed in a magneticﬁeldﬁo
4.2.1.1.1. Field outside and parallel to the bar H,,
Given the conditions of continuity, it is possible to -

write: Hy >
Hy =Hq, =Hyy =

By = 0=By,. al

As B, = u Hy, , the last two equations indicate >
thatH;, =0.

The result, from the first equation, is that H,=H,, = H, , where the field (H, ) in
the bar is equal to the field outside the bar (H, ) and H, = H,.

In addition, it is possible to state that:
Bi=uwH; = pHy =u, po Hyp =p,Bg (if uy =1, By = By),
While the intensity of the magnet is be given by:
T:xmﬁl :Xmﬁo = (u, —l)ﬁo fp, =1, TzO;ifur — o0, I - very large).

4.2.1.1.2. Field exterior and perpendicular to the bar H,,
Continuity conditions make it possible to write that —
B
By=Bg, = By, that Hy=0=H;, = —*, and iy H,
u
with Blt =0 , WC find B1: Bll’l = BO . D ——




130  Basic electromagnetism and materials

B B H
As Hy;=0 ,wehave H; = Hy, =—In _ 20 where By = poHg, so H; =0

[ [ Ky
For the magnetic intensity,

- . - 1. -
T=yH = - D =2 " F, ,andifp, ~1, T~0,

My

whereas if p, — o, I ~ Ho.

In general terms
H -
o If ¥,>0, where n, >1, we haveH; = —0< Hy. On writing H; in the form
Mr
H, = Hy + h, the vector hneeds to be antiparallel to Hy . Here, h is said to be a
demagnetizing field.
H .
o If ¥, <O, where p, <1, we haveH; = —0> H; . Once again, writing H; in the
Hr
form H; = Hy +h, the vector his now parallel toH,, and h is now a
magnetizing field.

4.2.1.2. General properties
As we shall see, there are two main classes of magnetic materials.

4.2.1.2.1. Linear materials

These materials have an diamagnetic intensity (1) that is proportional to the
magnetic field (H), so that T = Xmﬁ . When y,,,<0, the material is diamagnetic,
and when y,,>0, it is paramagnetic. In fact, diamagnetism is a quite general

phenomenon and can be found in all materials, as it results from orbital magnetic
moments, while paramagnetism can be observed only in materials with a total,
resulting magnetic moment pp # 0. Apart from the sign ofy,, , its constancy or

variation with temperature also can be used to indicate the type of magnetism one is
dealing with: in the case of diamagnetism, y,, is independent of temperature,

1
whereas in paramagnetism, ., (T) o ? . This relationship is observed for dilute

systems, which is detailed below.

4.2.1.2.2. Nonlinear materials (essentially the ferromagnets)
In this class, the relationship T = xmﬁ is still appropriate; however, y,, is now a

function of H such that y,, = %, (H) . Similarly, p = u(H), so that B = p(H)-H.
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In addition, p and %, are now not only dependent on the strength of H at any

particular time t, but also on its anterior values: the system is now subject to
hysteresis.

4.2.2. Diamagnetism and Langevin's theory

The Larmor precession, associated with the orbital moment, can be found even in
atoms where the resultant magnetic movement is zero (such as noble gases). To
understand the effect of a resultant magnetic field on an intraatomic orbital, we
suppose that the field is applied as indicated by the Larmor precession (Section
3.1.6), shown in Figure 4.8.

~l

Rotational
direction of an
electron. The
current flows in
the opposite
direction.

\ T

e -
=1
! 2m

Figure 4.8. Effect of magnetic field on the orbital magnetic moment.

The frequency of the Larmor precession (v = (D—L) forms a current (ir)
2

which is such that i =-v| e, where v is the number of rotations per second. We
of, € e’B

also can write ij = ——=e. Witho; =B, where B = —, we find i = -
2n 2m 4nm

If <p2> is the average value of the square of the distance between the

electron and the axis Oz through which the magnetic field is applied, then
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=i S =ipn(p?) = —Z—m<f32> :

Note that p is in the opposite direction to B, just as y, is opposite to 1. In addition,
2 =x2 -i-y2 +722 = <r=<x®> +<y2> +<72> = 3<x>
p2 =x2 +y2 = <p2> = <xz> +<y2> =2<x2>
2
= <p2>=—<r2> .

For a number n of atoms per volume, each containing z electrons, the
magnetic moment per unit volume for the precession is nzu; . The magnetic

intensity (1 ) therefore is such that

2
T=nzjip = ———B(r) .
6m
Given that the magnetic material is represented as a vacuum through which currents
associated with orbiting electrons progress, and that the magnetic moments moving
in this vacuum are such that B = pyH, we can write that

ol ponze2<r2>

I
H B 6m

>

wherey,,, therefore is negative and temperature independent, and <r2> can be

calculated for atoms or ions using quantum mechanics.

Even when the orbital magnetic moments and the spin give a resultant
equal to zero, this susceptibility related only to the orbital magnetic moment is still
apparent. This is because it is tied to the single Larmor precession. When the
resultant is not equal to zero, then there is diamagnetism, however, its contribution
to the magnetic susceptibility is less intense than that of paramagnetism. Indeed, the
latter masks the former.

4.2.3. Paramagnetism
Paramagnetism appears for atoms that carry a permanent magnetic moment, such
thatpr # 0. The effect due to diamagnetism is less than that caused by

paramagnetism, and in atoms where pp # 0 paramagnetic effects dominate.

4.2.3.1. Langevin's theory

Langevin's theory can be thought of as an analogy of the theory developed for
dielectrics under an orientating polarization (which gives rise to Clausius Mossotti's
general formula). Here we consider in terms of magnetism the distribution of
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magnetic dipoles, rather than the dielectric effect due to a distribution of dielectric

dipoles. In the presence of an external field ( B) and at a certain temperature (T), the
dipoles are subject to:

e on one hand, an orientation due to B, for which the coupling energy in the stable
state is in the form (Ep)yi, =-pp -B=-pp.Bcos6=-pyp.B, so that 6 =0
(27) gives pp//B; and

e on the other hand, a disorientation with respect to the direction OO' of the applied

field B due to a thermal agitation of energy kT, where k is Boltzmann's constant.

Figure 4.9. Spatial distribution of magnetic moments subject to B.

The number of atoms (dN) with a moment within the solid angle (dQ )
shown in Figure 4.9 is given by dN = A'dQ. Given Boltzmann's distribution, we
can write that

purB cos 6

dN = A exp(+
kT

)dQ) .

Taking into account the symmetry of the calculation around the axis Ox, the
resultant of the magnetic moments is with respect to the axis. The contribution of dN
atoms is therefore

dM = pt cos OdN .

The resultant of the dipolar moment from all the atoms together with respect to Ox
is thus
0=m
M= [dM= [ py cosd dN.
06=0

As each “average” magnetic dipole makes a contribution, it is possible to state:

M — urB 1 .
=—= cosO= L where B =—— and L(B)=cothff- — . When B is
TEN N Bt ur L(B) B T ®) B 5 B
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small (or B is not too intense) we find that L(B) = g If we suppose that

B=1Wbm? T=300K,and pup ~ 102> MKS, we find B ~1/400.
We thus arrive at the definitive equation:

2
— prB . prB
fip=pp LB) = 2= B2
3 3k
For a given number (n) of atoms per unit volume, the magnetic moment per unit
volume is nﬁ =n py L(P) €, , where a is the unit vector in the direction Ox

through which the field B is applied. By definition, the magnetic intensity (1),
which is the magnetic moment per unit volume, is precisely I = nﬁ; , wWhere
np%ﬁ
3kT
bath magnetic atoms with magnetic moments equal to pr, we can write that

I = . As we have represented our magnetic material as a vacuum in which

B =y H, and therefore

2
Hol _ npo pt

I
Am = —
mH B 3kT

The relationship

_ Do M%
T 3kT

is in the form y,, = —, which is Curie's law, wherein C is Curie's constant that is
T

2
defined by C = M. This law shows 7y, to be positive and to vary inversely
with temperature.
4.2.3.2. Correction required by quantum theory

. . ~ c -
Quantum theory gives the magnetic moment as jip = ———gJ, so that
2m

2

u% = g2J? . Given the particular values for J?, <J>=#2J(J+ 1), and the

4m?

.. eh .
definition of Bohr magneton (ug), ug = 2— , the expression
m

2
(W)= e <r= = uf 10+ 1) gives
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2
o <”T> JJ+1) g 2
Am = ————, or rather Xm:nHO ( ) g HB.

3kT 3kT

4.2.3.3. Paramagnetism and molecular fields: the Curie-Weiss theory
In solid materials, molecules are not independent of one another and consequently
Boltzmann's law, so well adapted to gases, is no longer directly applicable.
Particularly when the applied magnetic field is weak and the temperature is low
enough to make thermal vibrations weak, the magnetic interactions of electrons and
thus neighboring atoms in condensed systems become nonnegligible. Then, atoms
subject to the action of an external field B and also subject to an additional effect
due to a so-called molecular field that results from neighboring molecules or atoms.
Weiss hypothesized that this additional effect can be expressed in the
formﬁm = Tand as such must be added to the external field (H). This
hypothesis, that the molecular field is proportional to each magnetic material, seems
reasonable as I depends on the magnetic moment (ur) of the very molecules or
atoms that determine the intensity of the magnetic interactions between neighbors.
Thus with a resultant field of the formH +nI, we have B= uo(ﬁ+nf).
2=

nutB

Taking the equation given in Section 4.2.3.1, namely, T = , we now find that

g s
npopr(H+nh _C

I= =
3kT T

(H+pl),

- H
from which it can be deduced that I(l - %) = CT, so that

C

—T— hence = ¢
mTH T MO Im =T
T

Given that the Curie temperature (® ) is such that ® = nC , we find that y, is

C
Xm = -
T - 0
This last equation, or law, accords well with experimental results and is a notable
characteristic of paramagnetism for condensed materials.
It is worth noting that in order thaty > 0, the temperature must be greater

than ® ; so that the temperature ® is real, it must be greater than zero, so that
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with® = nC, 7 is also greater than zero. As ﬁm =n I, ﬁm has the same sign

as 1, and therefore the molecular field is positive.

4.2.3.4. Comments

While the Curie-Weiss law is verifiable for most situations, there is a point at low
temperatures, notably for T < ®, where a spontaneous ferromagnetism appears. On
this and other related points three remarks can be made apparent:

. L 1 .
o First, at low temperatures, the approximation L(B)=cothp—— = g is no longer

valid, as B is no longer small. As detailed in Chapter 2, for higher values of j,
LB) =1,and I=npupr=npp L(B) = nuy =1, where I is termed a saturated

magnetization and is independent of the applied field. Qualitatively, this means
that at low temperatures, thermal agitation no longer limits dipole orientation or

the magnetism. More quantitatively, the approximation L(f3) z% is no longer

acceptable when ppB, > kT ; that is to say at a temperature equal to or less than
T., where T, is defined by the relationship kT, = urB, and is approximately
equal to ®. B, is the field local to a molecule or atom. However, when T > Tc,

LB) = E , then the paramagnetism described above returns due to the creation of
3

structural disorder by thermal agitation.

e Second, we have assumed that the molecular field ﬁm = n 1 appeared only in

the presence of the magnetism I originating itself from the effect of orientation

by an applied field B. Therefore, the above-established Curie law will no longer
apply to materials that already have a molecular field in the absence of an external
field. This molecular field also can orientate the magnetic moments parallel to one
another. There is in effect a premagnetism, or spontancous magnetism, that
corresponds to ferromagnetism.

The Curie law also is not observed by antiferromagnets, such as MnO and
Cr,0;. While there is still spontaneous magnetism, it is such that particles
compensate one another (compensated premagnetization).

e Third, paramagnetism also may be caused by electron spin and is in this case
called spin paramagnetism, or Pauli's paramagnetism. Free unpaired electrons, by
way of their spin and the resulting spin magnetic moment, can couple with a

. . . . c _ . .
magnetic field of intensity B. For a spin [ig = ——5 the coupling energy is
m
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E,=- fig.B. The orbital movement of the electron is not taken into account,

otherwise a factor of 2 would have to be introduced into the general theory
developed by Thomas who used a frame of reference appropriately tied to the
composite spin and orbital movements.

If Oz is the direction along which B is applied, then

|Ep| = iB <s,>, which gives |[Ep|= iB hmg. With mg = £ —, two different
m m

N | —

7/
values for energy are obtained, namely, Ep=+pg B, where g :26—. Two
m

calculations then can be carried out:
¢ One with a Boltzmann distribution of the different energy electrons, so that with

B
X = ML, we find I=(n. -n,)ug =npg thx where n. and n, are the number of

electrons per unit volume with spins parallel or antiparallel to the field B,

Bol _ npou
B

same type as Curie's law. It is worth noting though that this law is poorly verified for

the Pauli paramagnetism or nonferromagnetic metals due to the small susceptibilities

and temperature independence of such systems.

respectively. With thx ~ x, we arrive at y = , and this law is of the

e Two, with a Fermi-Dirac distribution, which is better adapted to electron
2

3 HokB
F

temperature defined by Ex =kTg . This result was established by Pauli in 1927 and

distributions. The calculation results in finding y = , where T is the Fermi

is applicable to free electrons in metals.

4.2.4. Ferromagnetism
4.2.4.1. The orientation of a ferromagnetic bar in a magnetic field

As we saw in Section 4.2.1.1, when a bar is placed in a magnetic field ( ﬁo ) and is:

e In a longitudinal position, parallel to the field, so that ﬁo = ﬁL, we have
H, = Hy = Hy_ . The result of this is that T = I = y,,H = (u, - 1) Hy, and if
the susceptibility (y,, ) is large, then TL is also large.

]:IO:F]L >

iL :ZmﬁL —
leﬁo :I:IL Hl
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¢ In a transverse position perpendicular to the field so that Ho = ﬁT , we have
Bl = BT = BO . From this

. B, - B, - - .,
Hl:——I:——I,SOHIZHO—I:HT—I.
Ko Ko —p
-~ - -1~ - I. ~ H _
In addition, T = Iy = 2= fi; ~ fir, Ir=Hr = 4,
o5 7 o =Hr
“l” H]—HO—I
if p,, and consequently 7, , are large. >

In general terms, a bar of any shape placed in an external field HO , within the

limiting values of ﬁl detailed above, then .
Hy
ﬁl = ﬁo - f T '

where f is a form factor that should take on in the above limiting situations the
values:

e =0 (where ﬁo = ﬁL );
o f=1 (where ﬁo = ﬁT ).
The value of f decreases as the ellipsoid flattens out.
In addition, if ﬁl is considered in the form ﬁl = ﬁo + Hd , then Hd =—f1;in
other words the field is demagnetizing.
With respect to the resultant magnetization intensity, we have:

Figure 4.10. Orientation of T with respect to the excitation ﬁo .
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From this we can go on to draw Figure 4.10, where the resultant magnetization

. . .= d Lo .
intensity (1 = d—u, where dji is the magnetic moment of a bar of any shape such as
T

an iron filing) does not have the same direction as the external field (H,). A
coupling appears that tends to orientate the filing in such a way that I // ﬁo . The
potential energy of the system, Ep oc —dﬁ.fBO = —T.Eodt , 1S at a minimum when

1// Boand T/ Hy.

4.2.4.2. Ferromagnets and magnetization plots
4.2.4.2.1. Plot of the primary magnetization

[
[
=
[
g
o]
=
S 9

Figure 4.11. Set up used to plot the first magnetization.

The device shown in Figure 4.11 shows how the first magnetization can be plotted.
There is a large torus that is cut at a cross section so that there is a small gap into
which a coil can be placed, which is in turn connected to a fluxmeter. The large iron
torus is covered with N turns per unit length, through which flows a current 1. For

this, 4 Hdl = 1, which gives H = NI, where H is the field in the torus iron.

Given that the component normal to B does not change throughout, the field inside
the torus is the same as that in the air gap, which can be measured using the
fluxmeter. Thus knowing both H and B, we can find out the magnetization intensity

B
in the torus from [ = — - H and then plot 1= f(H) .
Ko

For a sample that has been demagnetized, H is increased from zero and the first
magnetization plot shows three main zones, which can be divided as shown in
Figure 4.12 a:

e zone 1, which exhibits an essentially linear increase;
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e zone 2, in which there is a considerable increase in I with H; and
e zone 3, where the magnetization reaches its saturation point (I;). The latter is
specific to the material under study and is dependent on purity and temperature.

AI , zone 3 slope= B=Ho(H+I)
____________ /o B A Hmax.
I, 7
4 B, ol
7 o=Hols
a : P
t /'/ zone 2
/'/ /
/ Xi (a) H / /nl,
> Yy (b)
\ ol H
zone 1 >
Al
,J'ITIaX
Wi
(©)
Mo
H
>

Figure 4.12. The plots for (a) I(H); (b) B(H); and (c) u(H).

As B= Lo (H+1), the plot showing B(H) in Figure 4.12(b) is the result of
plotting pol =f(H) [from the plot in (a) with the homothetic ratio L] following an
insertion of the linear variation poH . At higher values of H, the plot tends toward
an oblique asymptote such that B = Lo (H+ Ts) and for which the coordinate of the
originat H=01is By = pgls .

Given the plot B(H) such that B=pgy).H, we can plot the line in Figure
4.12(c) which shows p = g(H) . Geometrically speaking, p is the slope of the line
OP in Figure 4.12(b). For hardened iron, (1, )ax = 100, and this value can reach
around 80000 for certain alloys such as Mumetal™,
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4.2.4.2.2. Magnetization at the point of saturation

_ paramagnetism,
ferromagnetism at where
AS low temperature 1 1= C/(T-®)

<&

X
|
>

15(0)

|
|
|
|
|
|
|
|
|
|
|
|
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\

T
>

T .
' T, ©
Figure 4.13. Plots of (a) I, = f(T) and (b) 1/y = f(T)
The I is temperature (T) dependent. As shown in Figure 4.13(a), as T rises from

absolute zero, I; diminishes quite regularly and then quite quickly before reaching
zero at a temperature Ty , which is called Curie's ferromagnetic temperature. Above

T; the material is not ferromagnetic but paramagnetic, as indicated in Figure

4.13(b). At temperatures considerably greater than Tp, the value ofy follows the

Curie-Weiss law where y =

C
o in which © is slightly above T . In the case of

iron, Ty = 1043 K and © =1101 K.

4.2.4.2.3. Hysteresis loop and magnetic state

A hysteresis loop can appear on having increased H from 0 to a maximum value
(Hmax) at saturation and then on decreasing H, finding that the current is below that

. B .

described by the first magnetization plot, shown in Figure 4.14(a). As I =——-H,
Ko

this phenomenon results in a delay in B, which is the effect called hysteresis.

By varying H between H,, and —H,,,, the current follows a closed loop, otherwise
known as the hysteresis loop. There are two notable points:
o the remanence magnetization (I,) remains when H = 0; and
o the coercive field (H,) is the value of the opposing field H which needs to be
applied to remove the magnetization.
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(b) \‘

TV

_.:
=

B et i ittt
>

Figure 4.14. (a) Hysteresis loop and (b) operation.

For a material with a well-defined hysteresis and a form factor f, its
magnetic state can be determined from both:
e its participation in the plot 1= f(H) , which is characteristic of the hysteresis of a

material; and
. . H Hj . .
e its part in the slope 1 = —? + T (equation I=D(H) directly deduced from
H=fiy-f1).
1
The line has a slope of T and is such that I = 0 if H=H [so that Hy, is at the

intersection of the line I=D(H) with the abscissas].

The hysteresis intervenes at two points in Figure 4.14(b) where at the
intersection, [ = f(H) for a hysteresis along the line 1= D(H) :

e at oo when H is increasing along with I;
e at 3 when H is decreasing, as is .

1
When the external field H changes, the line moves but retains its slope —g.

H
If Hy =0, the plot is simplified to I = —? and goes through the origin. The points

of intervention are now o’” and B**. Given that H = H, + hy and that here Hy =0,
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we now find that H = hy . The intensity of the magnetization, I, = I(# = hay» When

Hy =0, is the actual remanence magnetization.

If H=H,, I =0 and the point at which the hysteresis functions is o’ (the equation

H = H, + hy demonstrates that for this scenario, hy = 0).

4.2.4.2.4. Energy loss by hysteresis

For the experimental setup shown in Figure 4.15—which also may be used to
study hysteresis loops—Ohm's law also can be written as:

d
u+e=Ri, or rather, u—d—¢:Ri.
t

Figure 4.15. Experimental setup to study hysteresis.

Multiplying both sides by idt, we have:

uidt-ido=Ri*dt.
On integrating this differential equation between the points t=0 and t=T, i=0
and i=1,and ¢ = ¢, and ¢ = @, we find

T T T T T T
[uidt — [id$ = [Ri2dt, which also gives [uidt — [Ridt = [id¢.
0 0 0 0 0 0
—
@» @ 3)

T
Term (1) represents the energy Wg = Iuidt supplied by the generator of fem u, so

0

... dq T :
that with 1=d—, we have Wg = judquu, if =0 when t=0 and g=Q
t 0

when t=T.

Term (2) represents the energy lost through the Joule effect between t=0 and
t="T which is associated with the resistance of the solenoid.



144  Basic electromagnetism and materials

)
Term (3), which should be written in the form .[id(I), represents the energy lost

o
through hysteresis and it is this term that is detailed below.

If we suppose that the solenoid is infinitely long and has N turns each with a
surface area S over the solenoid length 1, then H=Ni and ¢ = BNIS. In turn,

@ @
excusing the pun, we have dp=N1S dB, so that [idp = [NISidB.
o o
With V=18, where V is the volume of the solenoid, and H= N1, we have:
[} B
[id =V [HdB,
o B'

where B' is the field at the initial instant t = 0 and while B is the field at the last
instant t =T.

In terms of the coordinates (B,H), the hysteresis takes on the form described in
Figure 4.16; H dB is indicated by the hatched surface dS where H is increasing in
the first quadrant. When H decreases, H dB is given by an area dS', associated with a
value H' < H and such that dS' < dS.

B
ds’
Falata
dS
N IIII‘/
A
H/ H

Figure 4.16. B(H) coordinates of the hysteresis loop.

Schematized in Figures 4.17(a) and 4.17(b), respectively, are the hatched
areas swept in the first quadrant when H increases and decrease. The difference
between j'dS and de‘ corresponds to the area (4) of the hysteresis loop. As H

increases, the system gains energy (if HT, dB>0 and HdB > 0), and when A
decreases, the system releases energy (if H{, dB <0 and HiB<0).
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As IdS' < j'dS, the released energy is less than that received, and the energy

absorbed through one complete cycle can be written as:

0] B
[idp=V [HIB=V[S-ST=V.A.
9 B'

The higher the value of 4, the greater the energy absorbed.

45 45

(@) (b)

E’, H ) H

Figure 4.17. Areas covered in the first quadrant when (a) H increases;
and (b) H decreases.

4.2.4.3. Soft and hard ferromagnets
4.2.4.3.1. Soft ferromagnets
Soft ferromagnets are characterized by their weak coercive field, where

H, <100 Am™. They magnetization therefore is relatively easy to change. Given

that with a low value of H, hysteresis is small, and energy losses are also small,
these materials often are used in transformers, electromagnets, relays, and telephone
loud speakers. Examples include Permalloy™ (Fe = 21.5 %, Ni= 78.5 %) and
Mumetal™ (Fe = 16%, Ni = 77%, Cu = 5%, Cr =2%).

4.2.4.3.2. Hard ferromagnets
These magnets exhibit values for H, > 10’ A.m™and their remanence is relatively

difficult to remove. They are generally used as permanent magnets. Examples
include steels with around 1% carbon, or even with Co, Mn, or W. More recently,
alloys have been prepared such as the Alnico™ series, which includes Alnico 5
based on Fe 51.5%, Al = 8%, Ni= 13.5%, Co = 24%, and Cu = 3%, or alloys with
titanium such as Ticonal™.

4.2.4.4. Aspects of the theory of ferromagnetism
4.2.4.4.1. Theoretical conditions required for spontaneous magnetisation to appear:
influence of temperature
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It is worth trying to find that conditions required at which a paramagnetic substance
remains magnetic (I # 0) simply by its molecular field (H,) and without any

external field.

—m

n

The relationship that defines H,, : ﬁm =1 1, or rather 1= , can be

. TH
multiplied by T above and below the line to give I = ——™_ In the absence of an
n T

H
applied field, H is due only to the molecular field. In the representationI = f (—] ,
T

o . . . . T
the magnetization state therefore is shown as a straight line (D) with slope —. As

detailed in Section 4.2.3.1, the magnetization in the presence of magnetic moments
(nr) can be given as:

_ prB _ pourH
I=n =n pur L(B) where f = —— = ———. Therefore
pr =np LB p T T
H
I=npg L[Mj )
kT

For a material to be spontaneously magnetized, simply by its own molecular field,
its magnetization state should be represented by the point A that is both on the line
D and on the curvel =n pt L(B), as presented in Figure 4.18.

A line}(slope T/m)

nuOuTsz ......................

curve npy

H/T

Figure 4.18. Plots of I = f(H/T) (labeled line D) and I = nuL(f).
Note: plots are for a given temperature.
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Given that at the origin [B — 0] L(B) tends toward a straight line with an

equation % , the function I tends [also when  — 0] toward a straight line written by

2 2
H H H
I=npr E — DHoliT — DHolit , for which I= f(—] has a slope equal to
3kT 3k T T
ngou
O—kT; for a point A to exist, the slope of D must be less than the slope of the
3
nopT
tangent to the origin of I, which is represented by a line of slope —OT _ This
o . . T n”o”%
condition is more concisely given by — < ———— or rather
ngLop

3k
In order to have T positive, the Curie temperature ( ® ) must also be positive. This in
turn requires that the molecular field must be positive (11 > 0 ).
The conclusion therefore is that a paramagnetic material with a positive
molecular field is susceptible to being spontancously magnetized—in the absence of
an external field—at a temperature below © .

Comment 1. It should be noted that low temperatures enable spontaneous order, and

B
therefore f = Lt el must be relatively high, even if the approximation made by

L(B) = % is not accurate under such conditions. In reality, it is sufficient that the

2
OHoHT

T
slope (—) of the line D is less than P < , that is to say that
n

2
ol
3k

noted elsewhere in this chapter, representative values given for iron are Tr and ®@
equal, respectively, 1043 and 1101 K.

T<nP=T; <n = ®, where T; is the ferromagnetic temperature. As

Comment 2. Ty separates the two temperature domains above which a disordered
phase reigns resulting in paramagnetism and below which the temperature is
sufficiently low for an ordered regime to result in ferromagnetism (see also
Comment 1 of Section 4.2.3.4).
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4.2.4.4.2. Weiss domains and the Barkhausen effect

Associated with the point A, which represented the ferromagnetic state, is a
magnetization intensity (I5). In the absence of an external field, the intensity is no
more than that which is found in small domains, called Weiss domains, which are
around a micron cubed in size (Figure 4.19). With respect to the larger macroscopic

volumes, the spontaneous magnetization is zero in the absence of an applied field
and because of the random domain orientation.

< <4— <4— <« Toverage # 0
REEIDCEERAL i
Livotree =0
—> —> > >
>
Hexterna=0 Hexternat Weak and increasing

Figure 4.19. Evolution of Weiss domains with a growing magnetic field.

Once an external field (H) is applied, and while H is relatively weak, the walls
between the Weiss domains deform to the point where domains facing in the same
or nearest direction as H become greater in number than their neighbors. While the
displacements (distortions) are relatively small in the weak field, they are also
reversible and give rise to the smooth change observed for I(H) in Figure 4.20.

Ia

zone 1

Figure 4.20. The Barkhausen effect.
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Under a strong field the changes in domain orientation become abrupt so
that the magnetization curve becomes discontinuous and resembles a stairway, each
step corresponding to the orientation of a single domain in what is known as the
Barkhausen effect (Figure 4.20).

The origin of hysteresis can be identified in the movement of these
domains. As the displacements required are nonnegligible, they are susceptible to
being stopped by obstacles such as impurities and defaults, and the phenomenon is
therefore irreversible and nonlinear. The effect of the field becomes delayed and the
domain orientation continues, for example, even when the field has disappeared,
hence hysteresis. When all the domains are orientated in the direction of the field H,
then the average magnetization for all domains tends toward the individual domain
value of spontaneous magnetization (I»).

What now remains in is an explanation of the physical origin of I, for each
domain in the absence of an external magnetic field, that is to say the reason for the
existence of an internal field in the absence of an external field. This is opposed to
the supposition expressed earlier on paramagnetism where the molecular field
appeared due to the generation of order by an external field.

4.2.4.4.3. Origin of the spontaneous magnetization of domains

Ferromagnetism only occurs with elements that have their internal electronic layers
incomplete, as is the case with iron which has an incomplete 3d orbital. The
unpaired electrons from these inner layers are coupled through spin, with interaction
or so-called “exchange” energies being of the form

\Ne :-2Je 51.52.

In this equation, Heisenberg's theory, J. is the exchange integral and varies with
the overlapping wavefunctions of the electrons. A positive J. favors an alignment of
same-sense spins and spin magnetic moments and little by little we can see that an
order can be imposed upon the material through the spin magnetic moments. While
for individual atoms J. is determined by the way in which the different orbitals are
filled which follow Hund's rules whereby spins are organized so that S is at a
maximum, in a metal Hund's rule is no longer applicable as the atoms contribute to
valence bonds. Indeed, the interactions of the 3d orbitals from the atoms placed
together result in the formation of the half bands 3d" and 3d", which correspond,
respectively, to the parallel or antiparallel alignment of spins. A small shift in the
energies of these two bands results in a considerable separation of the two
populations, in turn resulting in a large spontaneous magnetization. If the bands are
very different, for example, if 3d” is more populous than 3d, then there can be an
intense magnetization caused by a high proportion of parallel spins ordering the
magnetic moments.
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individual free atom metal
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Figure 4.21. Electronic structure of the transition elements iron (ferromagnetic) and
manganese (antiferromagnetic) in both free and metallic states.

4.2.5. Antiferromagnetism and ferrimagnetism

4.2.5.1. Antiferromagnetism

In the case of chromium or manganese, the 3d" and 3d” bands are pretty well equally
populated, so that the average spin magnetic moments are antiparallel and there is no
longer any spontaneous magnetization as the spin magnetic moments cancel each
other out. Above a certain temperature, the Néel temperature (Ty), this ordered state

C
disappears and y follows a law of the type x :—e. When T increases, Y
T+

decreases so that y goes through a maximum at T=TN , in a behavior
characteristic of antiferromagnets. For chromium, Ty =475K .

NN [N

Figure 4.22. (a) Organization of spin magnetic moments due to antiferromagnetism;
and (b) distribution of spin magnetic moments, of alternating value, in
ferrimagnetism.

(a) (b)

4.2.5.2. Ferrimagnetism

For materials based on a mixture of two types of atoms, exchange interactions can
orientate all similar atoms in one sense and all the other different atoms in another
sense. The overall effect is a nonzero spontaneous magnetization, which can be
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strong, but not as strong as ferromagnetism. Ferrites make up the main class of
ferrimagnets and are based on iron(IIl) oxides mixed with metals such as Ni, Al, Zn,
Mn, and Co in their secondary oxidation states (II). An example is that of Fe,Os,
MO.

There are soft ferrites, based on mixtures of manganese and zinc, which are
of considerable commercial interest. They are insulators (p < 1 Q m) and exhibit
limited losses through Foucault currents, hence their use in high-frequency
transformers. Hard ferrites containing barium, are normally prepared with high
temperatures and pressures, and are used as permanent magnets.

4.3. Problems

Dielectrics, electrets, magnets, and the gap in spherical armatures

1. A Ihi dielectric of absolute permittivity € is placed between the electrodes of a
spherical capacitor which is defined by spheres of radius a and b centered about O.
If +Q and —Q are the charges on the electrodes, where a < b, then:

(a) Determine the vectors E(M), D(M), P(M) for a point M situated at a distance r

from O (a<r<b) as well as the potential difference V, - V,, between the two

electrodes, where T = OM .

(b) Calculate the surface and volume densities equivalent to the polarizations o,, G,
and pp.

(c) Calculate the total quantity of these charges due to the polarizations in the
dielectric. What remarks can be made on the results?

2. After having discharged the capacitor used in the pervious problem, the dielectric
is changed for an electret, which has a permanent polarization expressed as

13:

(where a<r<band a is a constant). The spheres, of radius a and b, do
4nr

not carry real charges.
(a) Calculate the charge densities equivalent to the surface polarizations ¢’°,, and
G’y, and the volume polarization p’p.

(b) Use the preceding result to find the vectors E and D for when r>a .

3. Now the same capacitor has, in place of an electret, a magnet with a permanent

magnetization intensity I which is such that T =

(where a<r<b,andPisa
4nr

constant).
(a) Calculate the Ampere surface and volume current densities identical to the
magnetization.



152  Basic electromagnetism and materials

(b) (i) Calculate the imaginary surface (c*, and 6*,) and volume (p*) magnetic
mass densities.

(i1) From the preceding result, calculate the total magnetic mass carried by the
material with respect to an armature of radius a, and then of radius b. Conclude.
(¢) The notion of magnetic mass is used as an intermediate in calculations of the
magnetic field at point M located by the vector T (where a<r<b).

(1) Recalling that at a distance r from a magnetic mass m*, the field is given by:
H(r) = 4im * % . Give the form of Gauss's theory forH.
T r

(ii) Determine H(r) when a<r<b,and then find B.

Answers
1.
(a) When a<r<b, Gauss's theory states that:

® =4nr’E = ﬂ, so that as the field is radial,

€
- 1 T
E=—0QL.
4re 13
Therefore,
_ - 1 7
D=¢E=—Q—
4 o3
and
- (e—gg) . T
P=(s—g)E = -Q
4me r
- bd 11
V, -V = _[Edr:&_f—r:&{———}
a 4ne, 1> 4mela b

(b) As p,= 0, the localized form of Gauss's theory states that pp =0. Equally
valid, a direct calculation can be made when the polarization vector is known:

op (M) = - divy P = —F =0 giv,, -
4me r

- deiVM (gr?lM lj — (e —gg) QAy (lj =0.
4me r r
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e When M is at a point A such that Tt=a, we have

o, = }*)(A).ﬁa - (e- So)gﬁ.ﬁa . With a antiparallel at fi. so that
4re a3
a.f,=-a,wefind o, :_(8__80)2;
4re az

o, is indeed negative as can be discerned by inspection of the orientation of the
dipoles influenced by the polarization (due to the polarization charge +Q on the
electrode with radius a) and shown in the figure above.

e In the same way, when M is at the point B, so that T = b, we have:

o = BB, = E70) Qpa With b | fiy. so b, = b, and we find that
b b 3 00 b b
4ne b
= wg , where o, > 0 (again see the figure above).
4ne B>

(¢) If Q, and Q, designate the total polarization charges with respect to the
armatures with radii a and b, we have Q, =4na’c, et Q, =4nb’c, so that

Qp=Q, +Qp = _(8—80)Q+(8—80)

€ €

Q=0.

To conclude, the dielectric material is overall electrically neutral and the
polarization has the effect of simply displacing the charges to give localized charge
surpluses.

2.
(a) AsP =
4mr
e With A such that t=a and a antiparallel at 1., then
o o
o, =P(A)i, = an, = -
‘ oamd 47a’

. With B such that T=b, we  have b | fiy, , then

In addition, p'p (M) = - divM13 oc divyy == 0 where oc means proportional to,
r

and as elsewhere we can also state thatp,= 0, so that in the localized form of

Gauss's theory, p’p =0.
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(b) Writing Gauss's theory for charges sitting in a vacuum thus gives:

z Qint

ewhena<r<b , ®(M)= IIETS = 4qpp = Alchages Qs .
€o €o
. . = o T
With Q',=4na’c'a=-o , we have in terms of vectors E = — —
4mgy
0

e when r>b, we have Y Q;, = 4na’', +4nb?c", =-a+a =0, in which E=0.

With respect to induction,
- o o T aof
ewhena<r<b: D=¢gy)E+P=-——+——-=0;and
4n e’ 4mo

e for r>a as E and P are zero, D is also zero.

3.
(a) We havel = when a<r<b so we can state that the Ampere currents are
4mr
such that:
- — B — T B— — 1
e volume current: J, (M) = rotl = —rotm — = ———Totm grady; —=0; and
47 r 4n r
e surface current: on an electrode of radius a we have:
- = a . .
Ja)r=a =1Ixn, = P 3 X0, =0 as sin(a,n,) =sinnt =0.
4ma
N - pb o
Similarly, j,),—p, = Ix1 3 X0y = 0 as sin(a,ny,) =sin2n =0.

4ma
(b)(1) For the imaginary magnetic masses equivalent to the magnetization, we have:

- — 1 1
o for the volume densities: p*(M) =-divI(M) = £diVM grady; — = ﬁA(—j =0
4n r 4m \r

e for the surface densities:

-for A:6"(A) = T(A).ﬁa = pa 1, =- as a antiparallel at .,
4ma’ 4na?
- b -
-for B:c"(B) = I(B).ii,, = P Ay, __P as b || fi,.
b 4nb?

The upshot is that the total magnetic masses with respect to the armatures of radii a
and b are, respectively, m*, = 47a’c*, = - and m*, = 4za’c*, = 5.

We can conclude by verifying that the resulting magnetic mass from the two
faces of the magnet is m*y =m*, +m*, = 0. This result is analogous to that found
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in answer 1(b), in that localized excesses in the positive (m*,) and negative (m*y)
magnetic masses appear in the calculation so as to take into account the
magnetization.

(b)(i)
R 1 T 1 u .
With H(r) = —m* — = —m * — , we can write that
4 © 4n 12
L — m* . idS
Oy = |fFL.dS =IZ—¢§”
T

r? ’
i.dS

I.2

so that with dQ = and Cf:fdQ = 471 we arrive at @ = m", where m* is such

that m" = q'ﬁ p *dt and represents the sum of magnetic masses inside the Gaussian
surface in the form of Gauss's magnetic theory. If we then consider a point M such
that a < r < b, with a Gaussian surface being a sphere of radius a, then

L ) 1 F
@y = §JHdS = 4mr*H = m" = —B, where H = —EBF.

From this can be deduced B = py(H + T) = pg (—EL + Eij =0.

4n 4mp?
Comment: In nonlinear magnetic materials, the relationship between B and H is
nonlinear and B =p(H) H so that the only usable relationship is B = Lo (H+T1). To
be more explicit, it is worth remembering to not write B = H, from which can

arise B =0 and H = 0, which would be completely wrong, as we can see in this
example!



Chapter 5

Time-Varying Electromagnetic Fields
and Maxwell’s Equations

5.1. Variable Slow Rates and the Rate Approximation of Quasistatic States
(RAQSS)

5.1.1. Definition

In this region of frequencies, the applied field varies sufficiently slowly with time so

that it is possible to state that at a given instant the current intensity is the same

throughout all parts of a closed circuit. Given then that for any value of S,

I= ﬂ]d—s. = constant implies that the current density flux (j) across a current
S

“tube” (which delimits a closed surface) is zero, as in <ﬁ ]d—S =0 (see also Chapter

1). Following on from Ostrogradsky's theory, it would indicate that div j = 0, and

0
the conservation of charge therefore would give 6_p = 0. This hypothesis indeed
t

could be used as a starting point in defining quasistatic states.

5.1.2. Propagation

Concentrating on systems where the intensity is the same in all parts at a given time
means neglecting propagation phenomena that would appear if the intensity were to
vary rapidly with time. Once the intensity of the electrical configuration starts to
vary, its effects felt at a distance will be delayed related to the velocity of signal
propagation (which is the speed of light in a vacuum). When the phenomenon varies
periodically, at a frequency v, a pair of closest neighboring points undergoing the
same vibrational state are at a distance of one spatial period, that is to say one

wavelength, which is defined by A = 2 If the length (L) of the circuit is very small
v

with respect to A, i.e., L << that happens for large A (that is to say for low v:
variable slow rates), it is possible to make the first approximation that all points in
the circuit are in the same vibrational state, as schematized in Figure 5.1.
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Figure 5.1. Respective proportions of L and A, where L << A and I(x) ~ constant
over L.

5.1.3. Basics of electromagnetic induction

Mobil charges in a circuit gain energy if subject to a variable magnetic flux, thus
giving rise to an electromotive force (emf). If the variation in flux is not due to a
displacement by the circuit itself, then magnetostatics cannot explain the problem, as

in effect the magnetic force that operates on the charges, given by Fm =q VxB,

has a direction perpendicular to the velocity of the displacement, and therefore does
not participate. An electric induction field (E;) must be added to the electrostatic
field in order to account for the induced emf, and as the former acts as an

electromotive field, it is not derived from a potential. The relation E = —grad V,

where E is the total field is no longer useful, and by consequence, rot E=0
neither is of any value.

5.1.4. Electric circuit subject to a slowly varying rate
5.1.4.1. A conductor without interruption nor capacitance
As detailed in Section 1.3.5, even for very short periods (as little as 10™* sec),

p — 0 . For slowly varied systems, up to around v = 10t Hz, the relation
divj =0 holds true. It is only on reaching frequencies above 10'* Hz, nearing the

optical region, that the equation divj = 0 is no longer acceptable.

5.1.4.2. A conductor with a break, and the effect of capacitance
For the current intensity at the level of the surface S at the break (at the capacitor),
the superficial charge density (c ) carried by the surface, such that Q=c S, we
have
I= ﬂj.dS =Jn-S
= d_Q = do = =
dt dt



Chapter 5. Oscillating systems and Maxwell’s equations 159

By imposing the hypothesis of slowly varying frequencies, we suppose that

d_G ~ 0, so that j, =0, which again permits divj =0 (see Section 1.3.3.).
t

5.1.4.3. Conclusion: electrical characteristics of a circuit subject to low frequencies

In order to calculate the currents subject to RAQSS:

o the duration of the signal is not considered and the intensity of the current is
assumed to be the same for all parts of the circuit;

¢ an electromotive field is added to the applied field when the circuit is placed in a
varying flux; and

e it is assumed that the capacitance effects are localized at the surface of the
electrodes and that only the capacitance C which introduces the dpp V=Q/C at the
terminals of the capacitor is taken into account. Charge variations with time
(do/dt=0) are neglected and as detailed in the following Section 5.2 under a
regime of higher frequency fluxes, this effect corresponds to a current (called the
“displacement current”) which contributes to the magnetic field.

5.1.5. The Maxwell-Faraday relation

5.1.5.1. Lenz's law

For a circuit in a variable flux, either because the circuit is moving or the magnetic
field is changing, there is an induction fem due to the electromotive induction field

(E,) which is such that E; # —grad V. Lenz's law states that in such a case,

o = dD OB —
c= qudlz -E:- IEdS
S

5.1.5.2. Form of the resulting electric field
This results in:

e=c§]§ia= J.J.I"OIEI a§ L aB
S = rot Ei:—g.
:_d;‘):_ja_BdS
dt gt

By defining the vector potential A by the often encountered equation B =rot A,

. — = 0—- —[ OA -~ .
it becomes rot E; = ——rotA = ro{—a—J where E; = T In a space in
t

which there also is an electrostatic field, the electric field therefore is written as:

I oA
E=-grad V-—
ot
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5.1.5.3. Maxwell-Faraday's relation
From the preceding equation, we end up with:

— . —— o — - oB
rot E = -rot(grad V)——(ot A) =-— where
ot ot

N OB
rot E=—
ot

and it is this which is the Maxwell-Faraday relation.

5.1.5.4. Comment: Poisson's equation
Given the equation for E , we have:

- — o . -
div E= - div (gradV) - EdiVA .

Just as for a RAQSS, where div] =0, we have div A =0 (see Section 1.4.5.). The
result is that div E=- AV , and by using Gauss's theorem, which remains valid (see

Section 5.3.1.1 for a more explicit usage), then div E = p—Z, and we finally obtain

€
Poisson's equation:

AV + Pl
€

5.2. Systems under Frequencies (div] # 0) and the Maxwell - Ampere
Relation
5.2.1. The shortfall of rot H = jz (first form of Ampere's theorem for static

regimes)
As opposed to quasistatic regimes, the rapidly varying regimes are such that at a
given instant, the intensity differs in different sections of the current cylinder, which

0
also correspond to Ep # 0.

Such regimes therefore are characterized by the relation
divi=0 ().

If Ampere's theorem were to be still valid under its original form,
rot H = je , where je is the conduction current density due to a current deliberately
applied to the circuit, then by taking the divergence of the two parts the result would
be div 34: 0. This result is no longer acceptable for rapidly varying regimes, and
therefore Ampere's theorem should be modified.
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5.2.2. The Maxwell-Ampere relation

5.2.2.1. By intervention of vectors H and D

In order to take into account the reality of Eq. (1), Ampere's relation is written in the
form:

rot H = j+X, )
where X is a vector to be determined. Taking the divergence of the two parts in
Eq. (2), we have:
divj=-divX.  (3)

The introduction of the equation for the conservation of charge, coupled with the
localized form of Gauss's theorem divD = p , where p, is the volume density of

-~ 0
free charges deliberately contributed, gives first div j, + P _ 0 and then with

Gauss's theorem:

- oD
divj, = -div—. ()
' ot

- 0D
The comparison of Egs. (3) and (4) would indicate that a vector in X is X = g

Equation (2) is thus written:

-~ oD

otH = j,+— | (5
"a

It is important to note that the vectors H and D detailed above and also
described in Section 3.2.7.2. have the same origin with respect to their sources,
respectively, magnetic and electric, but both real.

5.2.2.2. The intervention of vectors B and E

5.2.2.2.1. The intervention of magnetic permeability (1) and dielectric permittivity
(¢) of the material.

On using H = — and D = ¢E, we obtain directly from Eq. (5):

= |

— - oE
rotB = p|j + e—|. (6)
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5.2.2.2.2. The intervention of absolute magnetic permeability () and absolute
dielectric permittivity (&) in a vacuum

. B - _ .
With H=—-1 and D = gE + P substituted into Eq. (5) we have
Ho

— B - - OE  oP
rot (—-I) = _]/+ &g — + —.
Ko ot ot

As T, = rot T, we finally have:

— - oE P -
rot B = pyljy+ € — + — + rotl
ot ot

(D

— . oE P
and equally, rot B = uol:j(+ €0 . + o + JA}. (™)
t t

By making

e )
a Yo ot

the displacement current in the medium under consideration, then we can also write:

H
o
—
os]}

= No De +Jp + jA] )

5.2.2.2.3. Conclusion

We have seen that Ampere's theorem for a vacuum, rot B = Lo 34, must be
fulfilled in the case of materials under a regime of high-frequency flux. The current
density that intervenes is the density of the total current, jT = ]g + jD + ] A

wherein all the currents in a vacuum intervene (with the permeability p, a factor),
i.e., the conduction (j, ), displacement (Jp), and Amperian (Jo) currents. We can

therefore also write that

otB = po |, (10

where TT = 34 + ‘TD + jA'

5.2.3. Physical interpretation of the displacement currents
5.2.3.1. Recalling the relation for an electric field in a condenser as a function of the
superficial charge densities carried by the armatures



Chapter 5. Oscillating systems and Maxwell’s equations 163

Two methodologies with respect to a condenser with electrodes carrying superficial
charges o =0 + op were detailed in Chapter 2.

5.2.3.1.1. Dielectric material and its equivalent

A dielectric material can be considered equivalent to a vacuum in which “sit”
polarized charges, as shown in Figure 5.2, and from which we can write:

E=-20 an
€0
This is possible because in the volume, the dipolar charges cancel each other out
while the surface charges zero out a certain density (op) of charge on the electrodes
such that only the density 6, contributes to the generation of an electric field in the

vacuum.
Qo Op €|_y/Go
h M B & 0¥
A A
@Eipolar chargeg zero each
ut in the volume

.

o> R =
ct:/\

Figure 5.2. Dielectric material considered as a vacuum in which sit polarization charges.

5.2.3.1.2. Dielectric material is characterized by a macroscopic absolute dielectric
permittivity €
Permittivity is indeed a macroscopic characteristic and an overall property of a
dielectric, as it can be measured through the use of capacitors with dielectrics (C)
and with a vacuum (C,), such that g, = C/C, where € = g.&,.
Gauss's theorem can be used here, as indicated in Figure 5.3, as in Eq. (12):

gp=291 _S0 * %p (12)

€ €

oy + op
D DDDDDD

¢ for a dielectric medium

Figure 5.3. Dielectric material characterized by its permittivity.
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5.2.3.2. Current density on a capacitor
At the level of the electrodes of a capacitor, the current intensity can be written as:

1= [[jdS=jS=1,5S, (13)

where S is the surface of the electrodes, and with j, being the current density along

the normal 1 to that of the electrode surface S .
d
We can equally write 1= d—Q, so that withQ=Qp =o1 S=(og +op).S we
t

obtain

d

[=S —(op +0p), (14)
dt

By identification of Egs. (13) and (14):

dog dop
jo=220 0 SO (g5
Toat dt

From Eq. (11), oq =¢¢ E and op =Py = P (as the polarization vector is parallel to
the electric field itself normal to the electrodes), we arrive at:

d d dE dP D=eE+P 5p
=00 O L et = E=y . (15)
dt dt dt t ot
with:
d dE
e Jpg = %: N m as the vacuum displacement current which is a product of
t t

the evolution with time of the charges of density o, carried by the electrodes and
are free charges located on the electrodes with a vacuum on the opposite facing
side (Figure 5.2);

do dp . . o
o Jp = —P =" s the displacement current of polarization charges (also more

dt dt
succinctly called polarization current) which is associated with the current
resulting from the cycling of dipolar charges distributed within the dielectric
created by the rapidly varying electric field. The displacement current, associated
with changes in time in the charge densities o, and op, is therefore very similar to

Eq. (8):

dE dp(3) d d
ST, =20 R (1)

Jh = ¢ —
PO dt  dt
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5.2.3.3. Comment: alternative methods to realizing the expression for displacement
currents

By using both Eq. (12), which makes it possible to state that (o) + op)=¢ E, and

d
Eq. (15°), Jp = d—(co + op), one can also deduce that:
t

dE
Ip=¢ —. (17)
dt

As ¢ E=D =g, E + P, therefore Eq. (8) is rediscovered:

8D 4
dt dt dt
An alternative route to Eq. (17) also can be find.
Starting with
I=jS = J,S
_dQ_ 4V _Sedv
dt dt e dt
(where e and S represent the thickness and the surface of the capacitor, respectively)

A%
and with E = — , one directly obtains Eq. (17) :
e

j *adE*J
n dt D

5.2.4. Conclusion

The displacement current is composed of two terms. They are:

dGO dE . . . . .
e Jpg = d_ =g d_ , which relates to empty space and is an imaginary current in
t t
the sense that it does not cycle between the electrodes of the condenser; and
do dp . .
e Jp = d—P = d_ , which corresponds to the movement of charges tied to the
t t

dp
polarization of the dielectric with time such that d_ = 0.
t
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The variable field (E(t)) results in a current of density jD in the dielectric, which

itself then forms a magnetic field in what is a phenomenon similar and
complementary to induction processes. The use of what is a displacement current
permits the application of Ampere's theorem, by which we must bring into play the

total current which is the sum of the conduction (j/) and displacement (TD)

currents.

Figure 5.4. Schematization of displacement current, which appears as an extension of an
external current.

The displacement current, as indicated in Figure 5.4, appears much like an
extension of the external current. The imaginary character, that is to say a
component that only makes an appearance in mathematical calculations, only comes

d dE
about in the component % =g d_ This corresponds to the displacement
t t

current in a vacuum, where there would be no material intervening between the
electrodes of the device and is due only to the variation in the surface density of free
charges (o) with time to a variation with time which are not dipolar charges at the
armatures resulting from capacitance.

dP oo . .
The part d—, for the polarization current, is due to the presence of charges in
t

the dielectric which follow the frequency of E(t), albeit out of phase which can
result in leak currents when under alternating systems.
In terms of vectors, the displacement current, being normal to the electrodes

[Eq. (13)], as was the case for D, E and P, permits us to write Eq. (8) as:
— dD dE dP

=, &8
Pa Y a ae
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5.3. Maxwell's Equations

5.3.1. Forms of divE and div B under varying regimes
5.3.1.1. The Gauss-Maxwell relation
The equation that ties volume density of polarized charges to the polarization vector,

pp =-div P, remains valid under varying regimes because it brings to bear with
respect to these two terms only spatial considerations, independent of time. It is
possible to write a localized form, div (¢yE)=p,+ pp, which with D = gyE + P,

we have divD = p ¢ - By going further and introducing D = ¢E , it is found that:

Pe _PrtPp
€0

divE =

5.3.1.2. Equation for div B

Just as for the variable regime, we can write B = rotA , and here again we have
divB=0.

5.3.2. Summary of Maxwell's equations.

Maxwell's equation are brought together below.

Py PrtPp

dv E=—L="L""F ()
€ €p
. —. OB
divB=0 (2) rotE+—=0 (3)
ot
— = -~ E - & P —-
rot B = p+ e—|= i+ € — + — + rotl 4)
M[Jz at} “O{Jf 0 5 o

Equations (1) and (4) rewritten for the vectors D and H, respectively, give:

dvD=p, (1)

oD

rotH = j, +—

ot

)
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Comment: As div(rotH) = 0, Eq. (4°) results in

1D
div j(+a— -0,
at

and this equation follows a conservation in flux of the vector jé D= ]/ +—.
’ ot

The same result can be found using div D = py, from which can be derived

D 0 , L , ,
div— = ﬂ, which substituted into the equation for the conservation of charge,

ot
6p/ =

= oD
divj, + — =0, gives div| j, +—|=0.
ot ot
Comment 2: In the absence of a conduction current we find that j, =0 and

— - oD .. . . =
rot H = E which is in a sense an equation for the production of the field H in

the absence of a conduction current.

5.3.3. The Maxwell equations and conditions at the interface of two media
5.3.3.1. Continuity of D, with 6,=0

Given that Eq. (1) is identical in form for static regimes, it therefore also can give:

D, -Dy, =0y

where o, is the surface density of real charges, deliberately contributed to the
interface. If o,=0, there is of course continuity in the normal component of D, so
that:

Dl = D2

n n

5.3.3.2. Continuity in B,
As Eq. (2) is identical to the equation used for static regimes, and as we have already

shown that

Bln :BZn >

the equation remains valid for a regime of variation.
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5.3.3.3. Continuity in E,
Under static condition, Eq. (3) can be reduced to rotE = 0, which brings

[[rotEdS = JE.dl = 0 from which can be deduced that Ej; = E, . However, under

I oB—
a varying regime, one must write that: [[rotEdS+ ”a—dS =0, so that
t

- OB
C_f Edl=- ”‘gds. The surface considered in the latter integral is in the form

[[dS=(A;B).(B;B;) and is such that, as shown in Figure 5.5, in the neighborhood
of the interface (B;B,) — 0. Assuming that this region is finite about the interface
B : OB — . , =

—, we can consider that Hgds ~ 0, and from which can be derived JEdI=0,

ot
so that
Ejy =Ey
Ay B,
interface
Al B,

Figure 5.5. Calculation for the circulation of E near the interface.

5.3.3.4. Continuity of H, with j,= 0

: . . @D :
When j,= 0, Eq. (4’) can be written as rot H = 8_ so that it has the same form as
t

Eq. (3). Permitting Hto take on the role of E, in the same way the following

equation is derived:

H;; = Hy (where j=0)

If j, # 0, the equation for real surface currents intervenes, as is also the

case for static regimes.
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5.4. Problem

Values for conduction and displacement currents in various media
Copper is a good example of a good conductor. As long as the frequency (v) is such
that v <100 GHz, it can be assumed that the conductivity (c) remains constant

with respect to its value under continuous current, that is 6, = 6.10" Q'm™ . The

dielectric permittivity can be treated as if in a vacuum, i.e., €.
Poor conductors, such as the rare earths or that otherwise known as

lanthanides, have conductivities of the order of ¢ ~ 10* Q'm” and permittivities
close to that of a vacuum.

Nonconductors, or rather good insulators, include the dielectric “plastic”
poly(vinyl chloride) (PVC) which is used in electrical goods and has

o ~ 4x107 O 'm" and e, ®4 . Another very good insulator is Teflon with

o ~2x10" 0 mt and e, ~2 .

(a) Give the expression for conduction (j,) and displacement (jp) currents for a

material with conductivity (o) and absolute dielectric permittivity (g). Also give the

value of the ratio R for the moduli of jp and j, , i.e., R = |J.l| , using the ratio in the
in
Ve, . . .
form R =N where N is a numerical value to be estimated.

c
(b) Show for copper that while the frequency v <100 GHz, the displacement
current is negligible with respect to the conduction current.
(c) For a weak conductor, estimate the frequency (1.) at which jp ~ j,. Write the

approximate form for the current density at v,

(d) For insulators, estimate for the two examples the value of the frequency (1) at
which the conduction current can be neglected.

(¢) Summarize the preceding results by writing the approximate form for the
Maxwell-Ampere equation for these materials for v = v, .

Answers

(a) For an alternating field E :Eoei“’t , on one hand we have j,=c E and on the

other jp = a—D = 88—E =iweE. Thus, R = M = |im8E| -0t M, and
ot ot |J4| |GE| c c

with €y =

(~ 885x 1072 F/m), we obtain R ~ 5.5 10'“(ﬁj.

0’ c

367l
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(b) For copper, ¢,/c ~ 1.7x 108 , where R = 108y whenv < 10'! Hz so that

R<107, a value well below unity, so that one can certainly state that for good
conductors around this frequency domain, the displacement currents are negligible;

it~ -

(c) For apoor conductor, with ¢ = 10% O 'm! and g, =1, we have:

R ~55x107v and jp = jp when R =1, so thatv, =~ 2 MHz.
Thus, jr = j;+jp =2j, =2 jp.
(When v>>v,, R>>1and jp >> j, . Forv<<v,, j, >> jp.)

(d) With PVC, 6 ~4107 Q'm™ and ¢, ~ 4, from which R = 5.5 x 10* v. In
order to neglect the conduction current, R must be such that R>>1, so
thatv >v; = 2 x 10°Hz =2 kHz .

For Teflon, we have o ~ 2 107'* Q'm™ and e, ~2,sothat R = 5.5x 10%y .

When v>v; = 2x 10 Hz , R>>1 . For this material, a high-quality insulator,

the conduction currents are a priori practically negligible with respect to
displacement currents throughout the electromagnetic spectrum.

(e) When v=v, =2 MHz, we have:
e conducting medium: jp <<j, and jr = j, = rotB = u()j/ = uOGE

e poorly conducting medium: jp = j,and jp =~ j,+ip
. .- . 0E
= r1otB = po(jy + jp) = Ko (cE + 85)

— - OE
e insulating medium jp>>j, and jp = jp= rotB=p,jp = uosoara—.
t

The following scheme can be presented as a summary of the results:

Jp >>J, Jo>>Jp
—_— «—
| Insulator Conductor |

10° 10" v (Hz)



Chapter 6

General Properties of Electromagnetic Waves
and Their Propagation through Vacuums

6.1. Introduction: Equations for Wave Propagation in Vacuums
6.1.1. Maxwell's equations for vacuums: p, =0 and j, =0

From the title, we can state that in this case

= — OB
div E=0 (1) rotE = _E 3)

. — oE
divB=0 (2) rot B = gyp g 4

6.1.2. Equations of wave propagation

We can eliminate for example B in Eqs. (3) and (4), by taking the rotation of
Eq. (3):

N 0 — ”E |
rot(rot E) = ——(rot B) = g [using Eq. (4)] =
ot ot el ’E
— - — — = AE= €olo >
= grad(divE) - AE = —AE [using Eq. (1)] ot
1 — 1 0°E
With gyuy = —, we can write that| AE — —- =0 1. &)
c? ¢ ot
Similarly, we can eliminate E by calculating the rotation of Eq. (4):
—= °B — 1 &B
AB = gg , from which is deduced that | AB ——- =0. (6)
ot? ¢ o2

Equation (5) and (6) give rise to six equations based on:
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AD-—"—=0|. (@

where @ = D(x,y,z,t) is equal to one of the six components E,, E, E,, B, By, B, such
that each depends on the same variables (x,y,zt), so that for example E, = E,
(X,¥,2,t).

6.1.3. Solutions for wave propagation equations such that E and Edepend on
one spatial coordinate (7) and time (1)

6.1.3.1. Forms of the solutions

In this particular case, we have @ = ®(z,t), and Eq. (7) results in

o*d 1 0?0
-— =0. (7))
0z ¢? ot?
In order in integrate Eq. (7'), the variable should be changed so that:
=t
¢ = d(z,t) = D(1,0).
o=t-2
c

The calculation based on partial derivatives, common enough in the first year but
nevertheless extremely tedious, yields:

FD(0) _

8
ot 00 ®)

s . . . oD .
An initial integration with respect to 6 gives 6_ = f(7), a second with respect
T

to t gives @(t,0) = F(t) + G(0) where F(t) is the primitive of f(t).
Returning to the initial parameters z and t, we have:

Dtz)=Ft+ 2 )+G(t-2 ).
c c
6.1.3.2. Physical significance of the solutions G (t - E) and F (t+ E)
c c

The function G (t- E) represents the propagation along points where z > 0 for a
c

velocity c. The phenomenon can be examined by studying the position in space of
the signal G at times t; and t,, as shown in Figure 6.1.
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G(t-2) t t (=t + At = t, +Az/c)
CA
G (t —2'1/c) P’ P’
I Ll
G(ti—z/c) [T = ____IX: _____________ T N
| L
, J I >
Z' 1 z’ 277, TAz
=27 + cAt

Figure 6.1. Signal displacement between the times t; and t,.

The signal represented by the function G (t; — z,/c) at a point (P) on the
abscissa (z;) and at time t;, will be such that at a following moment in time (t,)

. . Z .
where t, =t; +At, it can be represented by the function G (t, - —2) where z; is
c

the place on the abscissa where P has reached by the time t,. The signal is assumed
to be the same at t; and t,, and indeed for all the points P, so we have

Gt -2 )=G(ty-22 ), and if t--L=t,-22 we find that
C C C C

Zy -z =c (t5 - t;), which can also be written as Az = cAt.

As the result above is valid for all the points denoted P, it also can be
supposed that it is valid for all the points moving in the signal following the same
law, that is:

Az = cAt.
This indicates that the signal itself, given by the function G (t - z ), undergoes a

c
propagation along z > 0 at a velocity c.

. . z .
For its part, the function F(t+ — ) represents the propagation of the
c

signal following a law such that Az = - ¢ At, derived from the condition

z 4 . T . . . . .
t + A= ty + 2 | which indicates that the signal is still moving at a velocity c,
c c

but along a point where z < 0: the F function represents a retrograde wave.
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6.2. Different wave types

6.2.1. Transverse and longitudinal waves

6.2.1.1. Transverse signals

A transverse wave is one that has a movement (of its signal in the most general
terms) that is perpendicular to the direction of its propagation. An example is a
signal that moves perpendicularly along a stretched rope.

propagation

f -
A

Figure 6.2. Transverse signal.

displacement

6.2.1.2. Longitudinal signal
A longitudinal wave is one that has a displacement parallel to the direction of the
propagation. An example of this is a compression signal applied parallel to and
along the length of a spring.

propagation

Il

_><_

displacement

Figure 6.3. Longitudinal signal.

6.2.2. Planar waves
6.2.2.1. Definition

A vector (A) is said to be propagated by a planar wave if at a given moment A is
the same at all points in a plane n—called the wave plane—parallel to a given plane

(o) that is perpendicular to the propagation direction (Oz) of the signal. This is
schematized in Figure 6.4.
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.

A(zg, 1) @
Zy Zy Z
R S

«
\1
Ny
AN
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/l
I~
]

Figure 6.4. Planar wave at a given point in time (1).

6.2.2.2. The implication of a planar wave
The signal represented by the vector A depends only on z and t, so that
A= A(z,t). The solutions looked for in Section 6.1.3 for E and B also correspond

to planar waves, as their solution components were in the form ®(z,t) . In effect, E

and B propagate as planar waves, so it can be said that we have an electromagnetic
planar wave (EMPW).

6.2.2.3. Planar waves in practice
In strict terms, in order to have a system of planar waves, all points should be within

an infinite plane represented as an example by the vectors A(Zl) in an infinite plane
denoted ;. In practical terms that is not possible; nevertheless, at a sufficient

distance from a source, identical A vectors can be determined within a large enough
dimension to be considered a planar wave.

6.2.3. Spherical waves

While for a planar wave it is supposed that only one direction of propagation is used
(Oz in the above example), for a spherical wave the propagation is isotropic in
space. The field components (§) depend only on the distance (r) from the
observation point of the wave. Thus & = &(r,t), and the Laplacian is now reduced to

0? 1 02
AE = ———(1€) and the propagation equation becomes AE —— 5 =0, which in
r or? c? ot?
0? 1 62
turn gives —(r§) — — (t5) =0. The solutions for this are in the form
or? c* o2

rE= g (t— ) + £ (t+=) , so that
C C
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1 . r 1 . r
&= —g (t-— ) +—f (t+-).
r c r c

r
r is positive, with an attenuation of the wave as r increases.

1
The solution —g* (t-£ ) represents the propagation of a wave of speed ¢ for when
c

6.2.4. Progressive waves
6.2.4.1. Progressive planar waves (PPW)

. . z .
As an example, if the function G (t- — ) represents a signal that progresses toward
c

z > (0 at a speed c, then the sense and direction of the wave are perfectly defined and
we can say that it is a progressive wave (and is also called a “direct” wave given its

. .. z . .
propagation toward z > 0). Similarly, F(t+ — ) is a progressive wave that goes
c

toward the points z < 0 also at a speed c. When in addition these progressive waves
are one dimensional, and are only dependent on one component in space, such as the
waves given by G(z,t) or F(z_t), then they are progressive planar waves that have

wave planes defined by z = constant.

6.2.4.2. Monochromatic progressive planar waves (MPPW)
Additionally, if the waves have sinusoidal signals, then the following can be stated:

z z G and F waves have been
G- < )=acos {0) (t c ) } attributed with the same
, . amplitude and that F is out of
Ft+—) =a cos{m (t+—) +(p} phase with G by ¢.
c c
2
By introducing the period T = il , it is possible to say that:
®
t
Gt-2 )—G(z,t)—acoszn[——ij .
c T T

And then by introducing the wavelength A = cT, we have:

t
G(z,t)=acos2n (— - EJ .
T A

. . . ®
With the introduction of the wavenumber, defined by k = —, the wave can be
c

written in the form:
G(z,t) =acos (ot -kz) |.

For its part, the wave vector k is defined by the relation:
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- ®
k=ki=—1u]|,

c
where U is the unit vector of the direction of the propagation (here 4 =€, ).

As shown graphically in Figure 6.5, it is possible to see that this function
presents both temporal and spatial periodicities.

G(z.t) ! mG(Z t) !
. I

Figure 6.5. (a) Temporal and (b) spatial periodicity.

6.2.5. Stationary waves
A stationary wave would require that S(z,t)=G (t - z )+ F(t+ z ). Following a
c c

simple, direct calculation, we have for a monochromatic wave:
S(z,t)=2 a cos[mE + %] .cos [mt + g] =A(z).cos[mt + gj =A(z)C(t) .
c

in which the term C(t) is the same over all points at any given instant, so that the
signal [S(z,t)] is in the same phase at any point. Only the amplitude [A(z)] changes
with respect to the abscissa of the point in question, and there is no propagation
term. Signals with the form S(z,t)=A(z)C(t) are stationary waves and give rise to

nodes at the abscissa where z is such that Vt : A(z)=0 (and also S(z,t)=0).

Standing modes

S(z,t)

lan
v

Figure 6.6. 4 stationary wave exhibiting nodes at extremities O and L.
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In order to simplify the calculations, additionally we can assume that ¢ =n
so that: S(z,t) = 2a sin(w—)sin (ot) = 2a (sin 2% %) (sinot) .
c

It can be seen immediately that when z = 0, S(z,t)=0 and that S(zt)
represents a node at the origin that is repeated at points on the abscissa where

A o .
z=m— . For the moment the nodes (and likewise the antinodes) can occur at any
2

value of ®, and it can be stated that the number of normal vibrational modes is
infinite, a characteristic of continuous media.

If a second node is now imposed on the other end of the signal at z =L,
where the signal can be imagined as, for example, a cord now fixed at either
extremity or an electric field crossing between two conductors which are such that at
their interface Engeniial = 0, then as shown in Figure 6.6 we have two conditions:
condition (1), S(z=0, t)=0; and
condition (2), S(z=L, t)=0.

Given the form of S(z,t)= 2a (sin 2% %) (sinowt) , condition (1) is always
fulfilled; however, in order for condition (2) to be fulfilled, it is required that

L L 2L
sin 271; =0, so that 271; =nm, and that A must be such that A = — . The
n

frequency (v, ) is restricted now to v, = i(n) and that of the angular frequency
(w,) is:
Tc
0, = T(n).

These conditions define the standing (stationary) modes and limit their number, as
they give rise to discrete values for each of n whole number.

6.3. General Properties of Progressive Planar Electromagnetic Waves
(PPEMW) in Vacuums with p, =0andj, =0

With the electromagnetic waves being planar, E and B only depend on a single

spatial coordinate (z) and time (t) in that E = E(zt), B = B(zt). In this section we

consider a direct progressive wave that follows a propagation along z > 0 and as

. . - - z
solutions for its components has E and B in the form G (t -—).
c
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6.3.1. E and B perpendicular to the propagation: transverse electromagnetic waves

—. OB
Equation (3), rotE = —g , taken along Oz, yields

_0B,(zt) OEy(z1) OE(zt) 0
ot 0x oy
The result is that B, must be independent from t.

Equation (2), divB = 0 , makes it possible to state that:
OBy (z,1) . 0By (z,1) . oB,(z,t) 0B, (z1)

Q& oz

=0 =0

0,

with the result that B, should be independent of z. Therefore B, must be independent
of z and t and can be only constant. However, this solution does not represent a
propagation and cannot be acceptable, and we therefore must simply consider that
B, = 0. The same is true for E, (E, = 0), as Eqgs. (4) and (1) have the same structure
as Eqgs. (3) and (1).

The E and B therefore have the nonzero components E, Ey, By, and B,. The
fields E and B are definitely perpendicular to the direction of the propagation and
the electromagnetic wave, by consequence, is termed a transverse electromagnetic
(TEM) wave.

6.3.2. The relation between E and B
Z
Ex(z,t) = Gi(t——)
c

For example, E E,(z,0) = Gyt _E) ©)
c
E,(z,t)=0
B, (z,t)
while the following remain as yet unknown B By(z 1)

B,(zt)=0

, —- 0B
Equation (3), rotE = —g , gives:
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°E, 0B
¢ with respect to Ox, L -x (10); and
1574 ot
OE OB
e with respect to Oy, —% = —— . (11)
1674 ot
— 1 E
Similarly, Eq.(4), rot B = ——, gives:
c? ot
0B 1 6E
e in part St 1 (12)
1574 c? ot
0B, i 5Ey

e along with — = (13)

Nt
0z c* ot derived with respect to
So from : (t=2/c)

0B, OE 1
Eq. (10), 22X = Y = B, = ——G,(t-2)+[C' wrtt]
0z c c
oB 1 ¢E 1 1
Eq. (13), 2% = — Y = Gy(t-Z)= B, =——Gy(t—2)+[Cwrt z]
oz c? ot 2 c C c

1
= B, = ——G,(t-2).
c c
(Note: wrt means “with respect to”.) Similarly, from Egs. (11) and (12) we can

1
determine that By = —G;(t - E) .
c c

1 E
B, =——Gy(t—2) =2
c c
. . . (14)
Finally we have B such that B
1 z E
By =-——Gi(t-—) = —
c c c
The following minor sections give the conclusions to this part.
6.3.2.1.E and B are perpendicular to one another
. . E E
If the calculation E - B is made, we find that E-B = -E, L4 Ey —% =0, and as
c c

both E and B are perpendicular to the direction of propagation and in the plane Oxy,
the configuration shown in Figure 6.7 arises.
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by
i
|

N

v&l
\/

y B

Figure 6.7. Structure of a progressive planar electromagnetic wave.

6.3.2.2. Equation for E and B
In fact we have:

E
—_— C
B
2
E
where E = ,/E2 + E§ and B = —Z + —’2‘ , and hence the result.
¢ ¢

6.3.2.3. Involving the unit vector
Bringing in the unit vector U = 5 for the Oz axis gives rise to two properties that
can be condensed into the same equation:

E=cBxu |. (15

6.3.3. Breakdown of a planar progressive electromagnetic wave (PPEMW) to a
superposition of two planar progressive EM waves polarised rectilinearly

6.3.3.1. Preliminary definition: rectilinear polarized wave

A wave can be termed rectilinearly polarized when the vector E stays over all
points and instants parallel to a given direction in the plane of the wave. This
direction is the direction of polarization.

6.3.3.2. Breakdown of E and B

Equations (9) and (14) show that E and B can be considered as vectors in the form
E=E; +E, and B=B+B, in which the vectors E; ,E, , B, and B, are
necessarily such that:
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By =0
. Ex =G A
E, 1
1
Ely =0 By = ;G1
1 (16)
Exx =0 | Bx= —sz
E» B,
Ezy = G2 B _ O
2y —

wave 1 polarised // Ox wave 2 polarised // Oy

Figure 6.8. Breakdown of a direct PPEMW in to two rectilinearly polarized PPEMWs.
As schematized in Figure 6.8, the direct PPEMW (E,B) is such that
E = E(z,t) and B = B(z,t), can appear thus as a superposition of:

e “wave 17 polarized along Ox, as E; = G, (t — E)éx ; and
c

e “wave 2” polarized along Oy, as ]::2 =G,(t- E)Ey .
c

6.3.4. Representation and spectral breakdown of rectilinearly polarized PPEMWs
The first wave polarized along Ox can be studied in three-dimensional space and as
a function of time.

It is defined by the function

z
Eix =Gi(t-—).
C
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6.3.4.1. Spatial representation
To have a spatial representation, a given instant, t = 0, is chosen. The signal then

progresses at a speed c, so that E{, (z,t) = E{,(z,0) = G, (—E) . We then have the
c

spatial representation shown in Figure 6.9, where throughout E and B are normal
to each other and .

K B,
Figure 6.9. Spatial presence of a rectilinearly polarized PPEMW.

6.3.4.2. Representation with respect to time
At a given point, z = 0, E;,(z,t) = E{,(0,t) = Gy(t). The same signal can be

. . . L Az
observed at any point on the abscissa (z;) shifted in time by At = — . The observed

c
amplitude observed at z = 0 and t = 0 then will be seen after an interval of time at z,
A
and t, such that t, = At = —= = ZL (see Figure 6.10 a).
c c
AC1(D AGI(® h(w)
A
|
\
|
- ! ¥ =
t= =
(a) 1=zi/c by o
signal at z=0 signal at z =z,
(b)

Figure 6.10. Representations of a rectilinearly polarized PPEMW
(a) v.s. time ; and (b) a component centered about wy .
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6.3.4.3. Spectral breakdown

If the wave under study is not monochromatic, then it corresponds to a collection of
waves that can be seen as the superposition of an infinite number of waves with a
distribution of frequencies spread about an average value (w,) as shown in Figure
6.10 b. It thus is possible to express the function G(t) as a Fourier integral:

+00 .
Gi(H)= [h(w) edo,
—00
where h(w) represents a distribution of the amplitude as a function of ® and is such
+00 .
that the reciprocal Fourier transformation gives h(w) = e [ G()e™dt.
—00
In effect, it is possible that all progressive planar waves can be broken
down into an infinite number of monochromatic and rectilinearly polarized
progressive planar waves.

6.4. Properties of Monochromatic Planar Progressive Electromagnetic Waves
(MPPEMW)

6.4.1. The polarization

Given the above results, a MPPEMW can be seen as a superposition of two
monochromatic, rectilinearly polarized, planar progressive waves detailed by the
collection of equations denoted (16). The G, and G, functions can be written in a
more general form that takes into account any possible dephasing between G, and
G, in that:

Gy(t —E) =a cos{w(t —E)} , and
c c

Go(t —E) =a, cos{m(t —E) — (p}.
c c

Here the amplitudes can be denoted as a; =E;, = E_, and again, by denotation,
a, =By, = E. . Additionally, the signals are reproduced at each point in space

A
identical to themselves, with a delay of 22 , so that the study can be limited to the
c

point z = 0, the origin in space, where the resultant electric field (E) is such that
E=E +E, =E, + EZy . The evolution of the vector E as a function of time is

given for a point M(x,y,z) at the extremity of the vector OM = E such that:
x = Gy(t) = Ex cosot

W =E y = Ga(t) = By cos(ot — @) . a7
z=0
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6.4.1.1. When ¢ = 0 (waves “1” and “2” are in phase)

E
We have 2 = —™ — tgo. and this ratio, equal to that of the amplitudes, is constant

X mx

E
like the angle a. The M denotes a line in the 1¥ or 31 quadrants (tgo = (ﬂ) >0)

mx

and the resultant wave (E ) is rectilinearly polarized along a diagonal, schematized
in Figure 6.11 a.

y y
Emy A Emy A
M p
a > X A\
IEmx P X
(a) (b) Ennx
¢=0 ¢=n

Figure 6. 11. Rectilinearly polarized wave when (a) ¢ = 0; and (b) when ¢ = 7.

6.4.1.2. When ¢ = & (waves “1” and “2” are out of phase)

We have RAL tgP and this ratio is again constant just like the introduced

X mx

angle P.The M this time denotes a line through 2™ or 4™ quadrants

E —

(th:—(ﬂ) < 0), and E thus is rectilinearly polarized along the other
me

diagonal, as shown in Figure 6.11 b.

6.4.1.3. When ¢ = ig (waves “1” and “2” in quadrature): circular polarization
or elliptic lines (straight ellipse)
If o= ig’ - = :g and the components x, y, z are:
X = Gy(t) = B cosot
OM =E y = Go(t) = Epyy cos(ot F g) =B,y sinwt,
z=0

the calculation directly gives:
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X2 y2

2 2
Einx Emy

This is the equation for a straight ellipse (elliptical polarization) with a larger axis
denoted E,x and a smaller axis denoted E,,,. The ellipse becomes a circle when the
amplitudes are equal, i.e.,E, = Epny (see Figure 6.12 a for circular polarization).

y E
We also have = =+

 tanot =+ r tanot = tan o(t). The + in front of r is for
X E

mx

s .. T . Emy .
when ¢ = 5 and the — sign is for when ¢ = —5 n, while r = —=—>0 (ratio of real
mx

amplitudes) is constant.

We thus have:

—(tané) = ! @ =4r I dy =+r ®

dt cos2d dt cosZmt dt cos2mt

SN 7Y
o N N

O=+72,En= my (P:'W/Z,me:Emy
antlclockw1se circular clockwise circular
polarisation polarisation
A A
Emy Emy

AA-
VI

ON P >

(b) @ =+ w/2: elliptical (c) ¢ =-m/2: elliptical
anticlockwise polarisation clockwise polarisation

Figure 6.12. (a) Circular; (b) anticlockwise elliptical; and (c) clockwise elliptical
polarizations.
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For the first quadrant (Figure 6.12 b and c), 5(t) changes in the same sense as
3(t), it can be determined that when:

dé
>0, and also —> 0. The point M
cos?mt dt

describes an ellipse (or circle) in the trigonometric sense and we have an
anticlockwise polarization, as in Figure 6.12 b.
®

d
.« 9= + I we have —(tan8) = +r
2 dt

dé
5 <0 , and d_ <0 . The point M
cos2mt t

describes a ellipse (or circle) in the opposite direction to the trigonometric sense
and we have a clockwise polarization, as in Figure 6.12 c.

d
e = ~T we have —(tand) = —r
2 dt

6.4.1.4. When @ takes on any value
Wehave y = E,, cos(wt — ) = By [cos otcos P + sin ®tsin (p] , so that:

y . .
—— —cosmtcos = sinotsing .
E

my

With

X
cosot = ——
mx

1/2
.2 2 . . x?
sin” ot =1 — cos” wt, from which sinwt=|1- 3 s
me

and then by substitution of the values for coswt and sinmt into the previous relation :

R 1/2
vz cosp =sing| 11— x
E E 2 .

my mx

Squaring all round, we have:

x? y? 2xy

PR coscp:sin2(p,
me Emy meEmy

which is the equation for an ellipse.

The component of the wave denoted by x = Gy(t) =E,,cosot is at a
maximum when t = 0, and is such that x = E, . This is detailed by point A in

Figure 6.13 a. At the same time, and according to Eq. (17), the point A has
coordinates along Oy thatare y = E,, cos¢.



190 Basic electromagnetism and materials

For this instant when t = 0, we can state that:

dx .

o ~[@Epy sinot],_; =0

dy . .

d_ = —wE,, sin(ot - 9)]i_g = 0B, sing
t

dE -
= — = oE, singeéy.
de |,

The sense of direction in which the movement A = M is given by the sign of sin .
dE
e Ifp 0,7, sing>0 and d—y//éy , then the sense in which M moves is
t

the trigonometric sense and an anticlockwise elliptical polarization, as in
Figure 6.13 a, b, and c; and

dE,

o ifg e|n2n, sing<0 and is antiparallel to &, , then M moves in a

direction opposite to the trigonometric sense and undergoes a clockwise
elliptical polarization, as in Figure 6.13 d, e, and f.

It is worth noting that in Figure 6.13 (a), the point A" is such that y = E .,

is at a maximum. This gives ot = ¢ , while the coordinates for A' in terms of Ox
arex = B, cosot =E . coso.

Epycosey vy
A,
En |

\_

Anticlockwise
elliptical
polarization

1
I
I
v >

m2<p<m

Clockwise
elliptical
polarization

-m<@<- w2 ¢=-n/2 -n2<p<0

Figure 6.13. The various polarizations as a function of ¢.
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6.4.2. Mathematical expression for a monochromatic planar wave propagating in
a direction OH

6.4.2.1. Rectilinearly polarized wave

6.4.2.1.1. Classic system and derivation

If we denote the amplitude of a rectilinearly polarized wave as E, and that

I:ZO 1 OH so the planar monochromatic wave propagates through OH in the direct
sense as indicated in Figure 6.14, then it is possible to write that

- — h .
E(h,t) = Ej cos[o(t ——)], where ‘OH‘ =h.
c

ZA

N
N

>y

Figure 6.14. Waves propagating in any direction OH.

The field at a point M located in space by the vector T = OM can be found
using the following method. In Figure 6.14 we see that h = .U where U is the unit
vector in the direction of propagation. Given that M is in the same wave plane as H,
we thus have:

(notation) _ =5

E(t)=EFt) = E=E, cosfo(t——0)].
c
On introducing the wave vector:

— o _
k =—1|,
c

for the fields E and B we have:

E=E, cos[mt-l?f}

f’::ﬁocos[mt-ﬁﬂ . (18)
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6.4.2.1.2. Complex system and derivation

e Using the normal notation for electrokinetics and dielectrics, where @ is the unit
of reference for pulsation

The goal of this method is to arrive at an expression for E that contains the classic
electrokinetic term exp(+iwt) . As is the tradition, we will omit the symbol R for the
“real part” of the waves. A complex system can be given to the waves under
consideration, so that for example the direct wave can be written as

E= 1:20 cos[ot — k.f], and in turn:

E= EO expi[ot — E.f] = I:ZO exp(—ilz.F) exp(iot) = EO (t)exp(iot),
- (19)

where Eo (r) = 1:20 exp(—ilz.f) for the complex amplitude of the direct wave

Really it should be written that E = E exp(i[t - k.F]) =E (¥)exp(iot) , so that
a complex number is in both the left- and right-hand sides of the equation; however,
as only the real part (E) of E has a physical presence, by notational simplification
the waves are often written as presented.

For the retrograde wave, E = l:io cos[ot + k.f] and the corresponding complex

form is: E= EO expifot + kil = EO exp(iE.f) exp(iot) = EO (f)exp(imt) where

I:ZO (t) = I:ZO exp(+ik.F) is the complex amplitude of a retrograde wave.

e Using the normal notation for optics, where the unit of reference is the wave

vector ( k )
The goal now in the equations is to bring out the term exp(+i E.f) in the direct wave

and the term exp(- i k.F) in the retrograde wave. As cos (o) = cos (-ct), we can write
E= EO cos[mt — E.f] = EO cos[E.f —wt] for the direct wave, so that the complex

form also can be written:

E = By expi[k.F — ot] = Ey exp(ik.F) exp(—iot) = E( () exp(-iot) (197

where Eo (r) = Eo exp(+iE.f) is the complex amplitude of the direct wave.

For the wave in retrograde, we can write that:
E= 1:20 cos[ot + k.f] = EO cos(—[ot + k.f]), from which:
= E exp(—i[ot + k.F]) = Ej exp(-ik.F) exp(—iot) = E (F) exp(-imt) , where
)

(t) = Eo exp(—ik.f) is the complex amplitude of the retrograde wave.
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It is worth noting that for whatever notation used, in the two exponentials in the

equations for E, the sign that appears must be different for the direct wave, but is
the same sign that intervenes in the two exponentials for the retrograde wave.

6.4.2.2. Wave polarized in any sense

Figure 6.15. A polarized wave seen as the superposition of two rectilinear waves
polarized in €| and €, .

As we have already seen for a more general case, a wave can be considered to be the
resultant of two waves rectilinearly polarized in the directions € and ¢€,

perpendicular to the plan of the wave. This gives E = ]:Zl + Ez with (for a direct
wave):

E; = B8 cos(ot — k.f); and

E, = E»&, cos(ot — kT — ¢).
The complex form thus can be written:
E = E, + E, = E,, expli(ot — k)] = E,, exp[-ik.F)]exp[iot]
where E,, = (E & + Ejpexp[-ip]é,) is a complex vector for an elliptical
polarization. By again writing E in the form E = EO (t)exp(imt) , we have:

Eo(F) = Ejp exp[-ikF)]  (20),

where E,, = E,(0).

In this case, E,, # E, , while for a rectilinearly polarized wave

E,, = E; = E,, (actual magnitude).
In this general case, we therefore have in complex notation for the direct wave
E= Emexp[—ilz.f)]exp(icot) s

so that also:

in electrokinetic notation, E = Em expli(wt - k.F)], or

in optical notation, E= Em exp[i(E.f - ot)].
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6.4.3. The speed of wave propagation and spatial periodicity

0]

Figure 6.16. Propagation speed for the wave plane.

For a monochromatic rectilinear plane polarized electromagnetic wave
(MRPPEW) of the form E = Eo expifot — kt], the phase of the wave is given by

d=wt—kF. As time varies, the plane of the wave defined
byE = EO expifot — ki]=C, where C is a constant vector, moves in such a way
that ¢ = ot — k.f = ot- kh =K where K is a constant and as shown in Figure 6.16.
For this, d¢ must equal zero so that («wdt - k dh) =0, from which we find:

v w
P dt k|

The point H, and therefore the signal E = C, moves at a speed Vo = %, which is

the speed of the wave phase, and also therefore the speed of the propagation of the
wave plane.

In a vacuum, wherek = =c.

o |8

, we have Vo

Ata given instant t, E = C is repeated at intervals in space, equivalent to A,
along the plane of the wave such that cos(ot - E.f) = cos(wt - k.T- kL), and so that

2
kA = 2n, from which we rediscover the physical significance of A = “r as the

spatial period.
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6.5. Jones's Representation

6.5.1. Complex expression for a monochromatic planar wave propagating in the
direction Oz

A given monochromatic planar wave propagating in a given direction Oz can be

seen in the most general of cases, and as detailed in Section 6.3.3.2, as the resultant

of two waves rectilinearly polarized in two directions & and € (classically taken as

Ox and Oy) perpendicular to the plane of the wave, as shown in Figure 6.17.

Figure 6.17. Planar monochromatic EM wave propagating along Oz.

In general terms, and without considering the origin of the phases on the

wave EX otherwise @ = 0 as supposed in Section 6.4.1,

E=E, + Ey,where
Ey = E 8y cos(ot —kz—o,)
E, = Emyéy cos(wt —kz—@y).

The wave can be written under the form:
E(z) = Ey(z)exp(iot),
with EO (z) = Em exp[-ik.z)], where Em is a complex vector such that (relation
also noted in Section 6.4.2.2):
Eg(0) =E, Eq.(1).
In addition:
E(0) = Ey(0)exp(iot) = E (0) + E (0)

= (Egnxexp[-i9x J&x + Eqnyexp| oy |6 )explion),
so that:
E((0) = (Exexp|-i0x J&x + Emyexp| oy [8,)  Eq. (2).

By comparing Egs. (1) and (2), we can directly determine that:

Em: (meexp['j(Px ]éx + Emyexp['j(PyJéy) = meéx + Emyey .
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By making E, .= meexp[—j(px] and B =Emyexp[-j(pyJ , the complex vector
E
up then, the wave can be represented in the plane of the wave z = 0 by the vector
E(0) = E (by notation) such that

m appears as the vectors for the (complex) components E,, and E;; . To sum

E= Emexp(icot)
where Em = EO (0)is a complex vector with components:

me :me eXp ['jq)x ]

Em Emy:EmyeXp['j(pyJ .
0
The ratio defined by the complex number,
E E
r=—> = —exp- i[¢y — @], is such that its modulus is r = |£| = andits
El’l’lX me mx

argument is: ¢ = Arg r = (@5 —@y) .

It is worth noting that once again a common abuse of notation has

intervened, for example, E = Emexp(imt) would be, in a more rigorous notation,
E-= Emexp(imt) . The lapse in notation though is because we are simply looking for

the physical solution E=R(E).

6.5.2. Representation by way of Jones's matrix
The state of a wave at z = 0, given by E = Emexp(imt) , can be simply written using
a column matrix (Jones's notation):

[imx} _ [me exp(—i(px)] _ me exp(—i(px)(

=my Emy eXp(_i(Py )

1
rexp(ip)

By choosing the origin of the phases so that ¢, = 0, one can also write that:

Enx _ Enx _E 1
Emy - Emy exp(_i(Py) oo™ (rexp(i(p)]
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A E,

Figure 6.18. Definition of E,,. and E,,,.
By making E,, =Eqgcosa and E., = Ejsina, as in Figure 6.18, and still with

¢x =0, we have:

Enx =Enx =Egpcosa

lestl
B

Epny :Emyexp['j(Py :| =Ejsina exp[-jq)yJ
so that:
Enx ) E nx B Egcosa E cosa
E iy 0 sina. e ® )

Eny - my SXP(—i¢y) Epsino e

For a rectilinear polarization, we can take @, = 0, and the Jones's vector

representing the wave is, by notation

E(cosa cosa. . .
=E , and the normalized Jones's vector is such that:

B sino
Em _[cosa
Eg A\ sina )

A rectilinear polarization through Ox corresponds to o = 0, so that cosa =1

(-

Eysina

and sina = 0, from which
- 1 -
(Em)x =Eo| ;= FoCn)

where €, is represented by the column matrix (€,) = (Oj
Similarly, a rectilinear polarization along Oy corresponds to o = m/2 so that

cos oo = 0 and sin oo = 1, from which
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(Em )y = EO ((l)j = EO (Ev)

0
where €, is represented by the column matrix (¢€,) = (J .

For a clockwise polarized wave,

2

T 2 .
a = ,sothat E ;. = Ejcosa = EOT and E.,, = Egsina = Eg—

LT

T . Ly i S
Oy =——, from which, with e Py —e2 = i, we have:
2

+ Lny
E 2 |_ Egv2(1

m)d:EO J2 2 li
1—
2

. . . T T .
For an anticlockwise polarized wave, a. = — and 9y = +5 , from which:
4

| 3520

These waves can be represented by a linear combination of (€, ) and (€, ), so
for example,

- S5 () B e

Inversely, the wave obtained by a superposition of the clockwise (negative) and
anticlockwise (positive) waves is a rectilinear polarized wave because we have

(Em)d+(Em)g=E°ﬁ[lJ EO(U EofU Eov2Gn).

2

where the wave is polarized rectilinearly with respect to Ox.
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6.6. Problems

6.6.1. Breakdown in real notation of a rectilinear wave into two opposing circular
waves
A rectilinearly polarized, monochromatic plane electromagnetic wave propagates

along Oz in the form E = E( cos(ot —kz) and is such that E || Oxy makes an

angle o with the axis Ox. y

(04
A >

X

Show that this wave can be seen as a superposition of two planar waves circularly
polarized in the opposite sense.

Answers
The components E, and E, of E on Ox and Oy are, {with

1 1
cosacosb= E [cos(a+b)+ cos(a-b)]and cosasinb= E [sin(a + b) - sin(a - b)]}

E E
E, =E cos((ot - kz)cosot = —Ocos(cot -kz+a) +—Ocos((ot -kz—-a)
2 2

E E
E, = Eg cos(ot -~ kz)sina = =% sin(ot — kz + a) - —2sin(ot — kz — a).
2 2

This wave can be seen as the superposition of two following waves with the
components

E
EC = =0 cos(ot —kz + )
2

anticlockwise circularly polarized wave; and

E
EC = —Lgin(ot - kz + a)
y 2
E
EPL = =% cos(wt — kz — o)
x 2 . .
e clockwise polarized wave.
EP = - —Csin(ot —kz - )
y 2
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Comment: 1t is worth remembering that a wave with the components
Ey =E,, cosmt
Ey = E,, cos(ot —¢)

. . . L T .
is one that has an anticlockwise polarization when ¢ = +—, which means that the
2

components of this anticlockwise polarized wave are:

{ Ey, = E, cosot
E, = E,,cos(ot —¢) = E, cos[mt - gj = +E,, sinot

Similarly, a wave which is polarized clockwise corresponds to ¢ = I , and has
2

components

E; = E,, cosot
{Ey =Epcos(ot—9)=Ey cos((ot + g] =-E,, sinot

6.6.2. The particular case of an anisotropic medium and the example of a phase-
retarding strip

Neutral lines in an anisotropic strip are such that rectilinear polarized waves along
the two directions of these neutral lines, which are perpendicular to another, retain
their polarization during their propagation. It is supposed that €, and éy are the

vectors locating the directions of the neutral lines.

1. In a phase-retarding strip, the rectilinearly polarized waves along €, and &,
each propagate as if in an isotropic media but with different indices, which are n, for

€, and n, for ¢, , and we will suppose that ny > ny. The components of the incident

wave in the plane z = 0 are:
me e]ﬂ)t
E Emyej(@t—q))
0

Give the form of the wave emerging from the side plane where z = e, and
determine the additional difference in phase caused by the wave's propagation
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between the two components with respect to Ox and Oy through the strip of
thickness e. Express the result as a function of the additional differences in optical
pathways (8;) between the two components of the wave under consideration created
by the strip.

A
2. Under consideration is a half-wave strip such that &; = 5 . Study the effect of

such a strip on an incident rectilinear polarized wave (¢ = 0).

Answers

1. Phase delay. For the waves polarized rectilinearly with respect to the directions

~ L c c .

¢, and &, if we suppose that ny >n,, we have v, = —>v, = — The axis
n, ny

with respect to &, is termed the fast axis, while the axis along €, is the slow axis.

The two components E, and E,,, of the emerging wave from the strip do not have
the same dephasing to that which exists between the two same components of the
incident wave.

So the components of the incident wave in the side plane z = 0 are:

meej(ot
E Emyej(mt*q)) ,
0
and the emerging wave, from the side plane z = e, has the components:
meej(wt*kxe)
B Emyej(mtfkyef(p) '

0

The additional phase difference, due to the propagation of the wave through
a strip of thickness e, between two components with respect to Ox and Oy, is
therefore:

2
®= (kye - kye) = %(ny

2
-n,)e= TRSL where 6 represents the difference in the

additional optical pathway generated by the strip between the two components of the
wave under consideration.

>

When @ = g, we have 6, = — and the strip is called a quarter wave strip.

When @ =&, we have 6; = — and the strip is called a half wave strip. In fact, the

l\)|>’_|;

strip is not a true half wave strip unless A =2 §; =2 (ny -ny)e.
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2. Effect of a half wave strip on a rectilinearly polarized wave (¢ = 0). For the
incident rectilinearly polarized wave, we can take (at z = 0):

Ejcosa e

E< Egsina e/
0
Egcosa /(@K

The emergent wave is such that (withz=¢): E Eysina 017K

0

By changing the origin of times by taking for the temporal origin a value that
ensures a zero dephasing of k, e with respect to the x components, the emerging
wave can be written as:

- _
Ejcoso e Egcosa e/

Jot-ketke) oo that E Egsino ¢l@=®)

0 0

E< Egsina e

With @ = &t (for the half wave strip) and eI = 1 , we reach:

pcosa el

E \-Egsina &' .
0

The emergent wave remains rectilinearly polarized and is symmetric to the incident
wave with respect to the x axis.

Note: Effect of the quarter wave strip. Similarly, we can show that a quarter wave
strip can transform an elliptical vibration into a rectilinear vibration if the axes of the
ellipse coincide with the neutral axes of the strip. All circularly polarized waves are
transformed into rectilinearly polarized waves by a quarter wave strip.

6.6.3. Jones's matrix based representation of polarization

In the representation demonstrated by Jones, the effect of a polarizer can be given by
amatrix (P ) such that:
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- E E
(Em){gm"] =(£>[§“"J
MY Jexit —MY Jentrance
The representation directed along Ox is that of a projection type operator:

(10
(B o)

With respect to the action of a strip that introduces a delay equal to ¢, between the
components E,,, and E,,y of the field, it can be represented by a matrix such as:

Ly 1 0
(L)= 0 ¢ )

1. Indicate the form of the matrix ( Py ) that can be associated with a polarizer
directed along Oy so that the matrix is associated with a rotation y.

2. Use Jones's formalism to study the effect of a half wave strip on a rectilinearly
polarized wave.

3. Give the product matrix that can be associated with an effect of two crossed
polarizers between which sits at 45 ° a quartz strip on an incident light.

Answers

0 0
1. The action of a polarizer directed along Oy is represented by (Py )= ( J .

0 1
For its part, the rotation (y) of an element (strip, polarizer) is represented by the
. . cosy —siny
rotational matrix: R(y) =| .
siny  cosy

Finally, the state of polarization on leaving the system can be obtained by
bringing together the successive orientational effects subjected on the incident wave.
The resultant effect thus is written as a product of the matrices associated with the
transformations.

2 The effect of a half wave on a rectilinearly polarized wave.
Using Jones's notation and two dimensions, the incident wave is:

(Ew). = (E cosa)@ + (B sinoc)((l)j .

The transformation associated with a half wave strip is given by the matrix:
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L 1 0 1 0 1 0 q
(—)(P}PTF_ 0 eficpy - 0 eim “lo -1 > an

(Em)exit:(L)(py_n(]::m)]_nc:(Eocosa)((l) _OJ[:)]Jr(EOsina)((l) _(’J@

so that:

(En).. = (B cosa)@ + (B sina)(_olj = (E, cosa)((l)] (o sma)m .

We rediscover of course (see preceding problem) the conclusion that the emerging
wave is symmetrical to the incident wave with respect to the x axis.

3. The effect on a incident wave by two crossed polarizes between which is
inserted a strip of quartz at 45 ° is obtained directly from the product of the
following matrices:

[E"“] = (P, )R@5°)(L) ,(P )[E“‘Xj
Emy exit -~ - (p:E - Emy entrance .

2



Chapter 7

Electromagnetic Waves in Absorbent and
Dispersing Infinite Materials and the
Poynting Vector

7.1. Propagation of Electromagnetic Waves in an Unlimited and Uncharged
Material for Which p ,= 0 and j, = 0. Expression for the Dispersion of

Electromagnetic Waves
7.1.1. Aide mémoire: the Maxwell equation for a material where p, =0 and

=0

- — oB
These equations are: | divE =0 (1) rotE = _E 3)

= — E
divB=0 (2 roi B = gu% @

7.1.2. General equations for propagation

Just as in a vacuum, we can eliminate B between Egs. (3) and (4) by calculating the
rotational of Eq. (3):

I N C 2F
rot(rotE) = —%(rotB) = -gu 0

atZ

(using Eq. (4))

U

|

— grad(divE) - AE =— AE (using Eq. (1))

E O°E O*E
=&y = &perHolt
ot o°erHoMr ot
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: 1 .
With gpy = —- , we can then go on to write:
c

— O°E
AE - Bihe 8 _ )
cr ot?
And similarly:
— 0B
AB-EHTZ o1 ()
¢z ot?

7.1.3. A monochromatic electromagnetic wave in a linear, homogeneous, and
isotropic material

For a monochromatic electromagnetic (EM) wave in a linear, homogeneous, and

isotropic (lhi) material, E and D are directly related by D = ¢(w) E where g w),

dependent on ®, has for most materials (i.c., imperfect ones), a complex magnitude

given bye(w) = €.

Voeiwt

O

C=¢C, i d

Figure 7.1. 4 leak current (ij in a real dielectric.

The electrical behavior of an imperfect dielectric, otherwise called a real
dielectric, does not resemble that of a single capacitor as the presence of leak
currents (ig), caused for example by residual charges, gives rise to a component due
to resistance (Figure 7.1). Therefore, e(®) needs to be written in a complex form in

order to give a correct Fresnel diagram for the real dielectric. This means that the
current intensity (I) should simultaneously present a component due to a dephasing

T . . . .\
by — with respect to the applied tension (capacitive component) and a component
2

in phase with the tension due to the resistance associated—in this example—with
leak currents.
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With Q=CV = §rCOVOej°°t where g, is the complex relative dielectric permittivity
. . e C . .
(given by g.=¢.'-je" and g=-—=— , whereC\is the capacitance of a
g Co
capacitor in a vacuum), it is possible to directly obtain I in terms of two these two
components (capacitive and resistive components), as

d
1 =d—Q=w8r" CoV +j 06, CoV =TI + jl- .
t

It is just worth noting that, as detailed in Chapter 2 of the second volume
in this series, C is complex, and to be strictly correct we should write in the
preceding equations for g, that g, = C/C,.

Given that the waves are monochromatic, the fields E, D, and B

can be given by:

E(r,0) = Eo (Pexp(+jot)

D(r,t) = Do (Fexp(+jot)

B(r, 1) = Bo(F)exp(+jot)
Following simplification of the two members by exp(+jwot), and given that
derivation with respect to time is the same as multiplying by jo,i.c.,
0
5 < multiplication by jo, the Maxwell Egs. (1) to (4) take on the form:
divEg(F)=0 (") rotEy ()= - joBy () (3"
divBy()=0  (2) rotBy ()= josuEy () (4")

Similarly, Eq. (§') for propagation yields:

A () + o guBq(F) = 0 (M)

If the medium is simply a nonmagnetic one (p.=1), then

€
gL = €0§rMo:% and Eq. (7) then becomes:
c

MEg(®)+ L, Eg) =0 | (7)
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Alternatively, multiplying by exp[jmt] the equation can be given as:

MO+ e E®=0 ()
02

The relationship € = g(w) (org, = g, (m) ) accounts for the fact that in a

vacuum waves of different frequencies do not propagate at the same velocity due to
a dispersion phenomenon. Just as was justified above for a real dielectric, g(®) is

normally complex, resulting in absorption phenomena associated with its imaginary
component.

7.1.4. A case specific to monochromatic planar progressive electromagnetic waves
(or MPPEM wave for short)

The complex amplitude of a MPPEM wave is in the form [see Eq. (20) in Chapter

6], that is:

Eo(F) = Epexp(- k) (8)
In this case the material can absorb, so in the same way as we made ¢ =¢ , k is
used in its complex form: k =k .

7.1.4.1. Structure of a MPPEM wave
First, Eq. (1') gives us diVEO (r)=0

3.d . .3 IS SO
= z_.<mei exp[_.](lﬁxlxl +1£X2X2 +1Sx3x3): -] Zlﬁxi Emnxi © = = k_o(r)
i—1 dxi i=1
The result,

divEg(F)=-j kEo(7) ©)

is of a general form and concerns the action of the divergence operator on a wave
determined by Eq. (8). By using Eq. (1), we can determine that E.EO (r)=0, so that

simplification with exp(- jk.f) yields:

I~

Eup=0 (10)

Second, Eq. (2') similarly gains divB(t)= - j k.B((¥) = 0, from which we find:

kB,,=0 (11)
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Third, Eq. (3°), rot Eo ()=-jo Eo () , demands a calculation around rot Eo (7).
Therefore,

— = d _KT d kT .
(ot Bg (= - (B Jery ~—(Emye KTy= - Kk By

| S ik, Emy P o

from which yields:
[rot Eq(®))x=-i(kx Eo(P)) -
— — X

The general result of the action of the rotational of Eq. (8) finally ends up with

(rot Eg(®)=-i(kxEo®) | (12

With the help of Eq. (3”), we find that the relation (E x EO(?))=@ By (¥), which is

simplified on using exp(- jE.f) , gives

xE, = 0B, | (13)

—m

=

Fourth, Eq. (4°) is such that we also find:
rotBy () = —j(k x By(P))
=jogp Eo (r)
Therefore, as p, =1, e€=¢gj; g and simplification of the above equation

with exp(— jE.f) gives us

(O]

esf}

EXBm :'0‘)§”0Em:' N
— — C

e En | (19

Fifth, the MPPEM in a material has a planar progressive structure that is in direct
relationship with the trihedral (E,B,k).

7.1.4.2. General equation for dispersion
The calculation of the Laplacian vector for the wave's complex amplitude given in
Eq. (8) directly gives:

AEg(H)=-K2Eo() | (15)
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By identification with the value given by AEO(f) from Eq. (7), as in

2

AEq(F)= - &, Eq(F) and the additional division by exp(- Jk.) , the result is:
Eo = oo
? -
{1;2 ——g(w)}Em - 0.
c? -

With Em # 0, the general form of the so-called dispersion equation is:

E="¢© | 6
CZ

7.2. The Different Types of Media

7.2.1. No absorbing media and indices

For nonabsorbent materials with real values for g(w), Eq. (16) indicates that k is
also real, within the constraints of g(®) > 0, as otherwise &,(w) would correspond to
an evanescent wave for which k =k =-1ik" (see Chapter 9). According Eq. (16) can

k=2 /e (o). (16")
C

be written more simply as:

The velocity of the phase of a MPPEM wave with frequency o is now given by:

=2-_2 .an

T e

For its part, the group velocity of the wave is now:
d

vg= | (18)

dk

7.2.1.1. In a vacuum
Now ¢, =1 and therefore from Eq. (17) gives v,=c (the velocity of the phase is

constant with respect to ® and equal to c). As w=ck, Eq. (18) shows us that

= ¢, so that in a vacuum there is v,=v, =c.

v o~ Vg

g

7.2.1.2. In a nondispersing medium
Now g, is independent of the frequency and accordingly from Eq. (17):

Ve =A , where A is a constant. In addition, as indicated in the plot shown in
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d . .
Figure 7.2, o=Ak. Indeed, Vg:—m = A, so that for nondispersing media,

Slope A = < - Vo =V,
V gl"

» k
Figure 7.2. Plot of @ = f{k) for nondispersing media.

7.2.1.3. Normal dispersing media
Now we find that if « increases, then &(w) also increases. However, Eq. (17)

o do
indicates that v, decreases, so that Vo2 <Vl and the tangent (—) to the
dk

dispersion curve is above the curve, and therefore v, <v,, , as shown in Figure 7.3a.

AO P vy = do/dk AO
() V4 Z. A () ‘
Z _
o 7/t = doldk
V, Vop Vg2
®
— V(p 1 —V(p 1
(a)
4 (b)
> >
k] k2 k k1 k2 k

Normal dispersing medium Abnormally dispersing medium

Figure 7.3. Dispersion curves showing w=f(k) for (a) normal dispersion medium; and (b)
abnormal dispersion medium.

8.2.1.4. Abnormally dispersing media
Now as o increases, then e(w) decreases, and Eq. (17) indicates that v, also

) do . . .
increases so that vy, > vy and the tangent (E) is below the dispersion curve and

Vg >V, as shown in Figure 7.3b.
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7.2.1.5. Indices
An index (n) is defined by: n=-" (19)

and as Eq. (17) points out Vo = Vo (), it is also possible to state that n = n(®) .
Placing Eq. (17) into Eq. (19) gives:

no=e (@ (19

from which through Eq. (16') we gain

k=2n=kyn. (20)
C

® . . .
where kj = — and is the wavenumber in a vacuum. As the wavelength in a

c
2 2 2
medium can be determined by A = v, T = £om —n, if we introduce Ay = e
n o k ®
(wavelength in vacuo) we arrive at:
A
r=—0 @21
n(w)

7.2.1.6. Comment
It is possible also to use Eq. (13') by multiplying the two members by

expifot — k.F] so that k x E = @B which gives in terms of moduli kE = @B . With

® . .
k = —n, the equation yields:
c

197

E ¢
—=—=v, .
B P

n

7.2.2. Absorbent media and complex indices

7.2.2.1. Absorbent media (dielectric permittivity and wavevector both complex)
7.2.2.1.1. Equation for dielectric permittivity

As above detailed, absorbing materials means that &(w) is complex, and by

notation, g(®) =g . Dielectric losses caused by Joule effects from the resistive

component are absorbed by the dielectric—hence the name absorbent. More
precisely, and depending on notational convention, complex permittivity can be
defined in terms of:
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electrokinetics, where g(®) =& = ¢'— je" (22) or

wave optics, where g(0) =& = &'+ je" (22°)

Whether a minus or positive sign is chosen in the above equations (and as
detailed below in equations for k) is relative to the final expression used for the

wave, wherein its application to dielectric media signifies an absorption and not a
(spontaneous) amplification of the wave, the latter of which would be unrealistic.

dQ

Staying with dielectrics, in Section 7.1.3 the calculation of 1= d_ was
t

performed using an electrokinetic notation, i.e., V=V, exp(+jot) from which with
g =¢'— je" from Eq. (22') it can be determined that I=we".CyV +j we'.CyV .
The term due to resistance (Iz) which is such thatIg = +we".CyV is in phase with
the tension; however, if the term ¢ had been taken into Eq. (22'), then the result
would have been Ip=-e".CyV, indicating an unphysical dephasing of the

intensity and the tension by m at the resistance terminals. Inversely, if the optical
notation were used so that V =V, exp(-jot), then Eq. (22') must be used to obtain a
physically acceptable result, as in Iy =+we".CyV .

7.2.2.1.2. Equation for the wavenumber and the MPPEM wave

In optical terms, according to Eq. (16) for dispersion, the complex form of g
indicates that k also must be complex (k — k). As detailed below, the optical wave
can be absorbed during its propagation, and therefore k should be written in the
form:

k=k'-jk" (electrokinetic notation) (23) and

k=k'+jk" (optical notation) (23”)
Again following from Eq. (16), with a £ sign given for both possibilities,

2
we have: 1§=k'Z—k"Zizjk'k"=%(8'rijsr),
c
so that by identification of the real and imaginary parts,
2
kl2 _ kuz — (2) Srv
CZ

2
2 kV k" — (2) ar" .
CZ

Withe, "> 0 (dielectric absorption) and k'> 0 (propagation in the sense z > 0), the

second relation indicates that k"> 0 and is an optical absorption.
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The MPPEM wave along Oz therefore is such that:
E = E,, exp(jlot - kz])

_ (using electrokinetic notation)
= E,, exp(—k "2) exp(jlot - k'z])

E = E,, exp(jlkz — ot]) = E,, exp(~k"z)exp(jik 'z — ot])  (by optical notation).

The term exp(—k"z) represents the exponential absorption—also called
attenuation in optics—of the wave during its propagation. It is worth noting that the
wrong choice of sign in Egs. (23) and (23") would mean instead of representing an
attenuation of the signal as it propagates that the signal would be progressively
amplified, a physical impossibility.

7.2.2.2. Complex index
In turn, the index also must be complex given that the defining equation, as an
extension to Egs. (19') and (20) where k is complex, is:

n’=g (@) where k=—n  (24)
c
Wherein:
n=n'-jn" (electrokinetic notation) (25)
n=n'+jn" (optical notation) (25"

where the negative sign is correctly used to represent the absorption in electrokinetic
notation and the positive sign is correct in optical terms. Identification of the real
and imaginary parts gives:

nZ-nm= gr' K= n.ﬂ
C

2n' n"= gr" k"= nng
C

The progressive wave along Oz therefore can be represented by:
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E = E,, exp(jlot - kz]) = E,, exp(jlot - ~nz]) \
¢ (electrokinetic notation)

= B,y exp(-n"> ) exp(jlot — n' 2 2])
C C
6

L. . - L ®
E =E exp(jlkz — ot]) = E, exp(jl—nz — ot])
c . .
(optical notation)

= Epy exp(-n">2)exp(jin'—z ~ ot])
C C

J

. . . . ®
The term for absorption and attenuation is thus in the formexp(- n"—z) where the
c

component n" for the index is called the extinction index while n' is the refraction
index associated with the passage of the wave through an additional medium.

7.3. The Energy of an Electromagnetic Plane Wave and the Poynting Vector
7.3.1. Definition and physical significance for media of absolute permittivity (¢,
magnetic permeability (u), and subject to a conduction current (j ; )

7.3.1.1. Definition
The following two Maxwell equations are used for the titled material:

.. B B
rotE = —— (3) | [Eq. (3) multiplied by —]
ot p
— B - E -
ot —=j + a(; ) @ [ Eq. (4°") multiplied by [-E] ]
n t

Following multiplication of the two members of each equation, as above, the
addition of respective members yields:
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By definition then, the Poynting vector is:

S=Ex—. (27)

= |w

7.3.1.2. Physical significance
By introducing the Poynting vector into Eq. (27'), it is found that:

- E2 2} L L
mv&-é-&—+—-—yﬁ.
atl 2 2u) T

For a volume (V) with a surface limited to X , we can state that:

-Mm@m=im&E+EqM+myEaﬂmmmmwms
ot 2 2 “

a5 - = J.”{SE?Z + %J dr+ [l Ede

- /U J
YT

y
(1 )

7.3.1.2.1. Physical significance of term (1)
It is well known (at least in vacuum, where we have g, and |, instead of € and p)
that the volume density of electrical and magnetic energies are, respectively, equal

d E2 d B2 d d
Ve _ 82 gpg &m _ 2 all, the energy is equal to w = Ve  Vm
drt 2 drt 2u dt dt

to

d
Term (1) can be written in the form md—wdt and represents the power (for a total
t

volume of the material) in electrical and magnetic energies created by the
electromagnetic field in the

7.3.1.2.2. Physical significance of term (2)

Simplification using dt = dZ.df permits the equation

[[[,E dv = [[j, .= [Edf= LV = Py, which represents the electrical power given by
the charges in the system, which typically correspond to the power dissipated by the
Joule effect caused by j, .

To conclude, the Poynting vector flux (S ) through a surface (X ) is equal
to the power which gives rise to the electromagnetic field through ¥ of the material
under consideration.
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7.3.2. Propagation velocity of energy in a vacuum

For this calculation we suppose that j,= 0 and that the energy is being carried by a
plane progressive wave, for which the Poynting vector is directed in the same sense
as the propagation given by the vector denoted i (with the direct trihedral E,B, ).

In a vacuum, where the components for the vectors E and B are given by Egs. (13)
and (14) of Chapter 6, we have:

. B 1
S| =S, = (E x—j = —(E4By —E,By)

1
= —(G? +G3) = ggc (G? +G?).
HoC

With respect to a unit surface normal to the direction of the EM wave
propagation, it therefore can be written with the power (P) transmitted by the EM
field through a surface unit (X = 1) that:

P= [[S,d==S, =¢goc (G] + G3). (29)
¥=1
Additionally, with j, = 0, the volume density of the energy associated with the EM

wave (w) is equal to:

E* B 1
w=0" 4 2 = e (G + G+
2 2p 2pc?

(G} +Gi)=g (GT +G3).  (30).

From Egs. (28) and (30), we can determine that |S| = cw, which in terms of vectors

gives

S=cwi |. 31

Given P through X =1 and w, with the help of Egs. (29) and (30), we find the
relationship:

P=cw [. (32

=

4+—r
L=v,

Figure 7.4. Power transmitted through 2.
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As shown in Figure 7.4., P transmitted as energy per unit time through X =1
corresponds to the energy contained within the volume (V) given by V = (Z.L)Z:1
where L=v, (At)p=1=V, and V=v, in which v, is the energy propagation
velocity. As the energy density (w) represents the energy in the unit volume
(surface X =1 and length1=1), we therefore can state thatP =v, w .

As above noted, P =c w, we can directly find:

Ve =C

which indicates that the energy propagates at the velocity of light in a vacuum.

7.3.3. Complex notation
Calculations for the Poynting vector or the energy cannot be directly performed

using the complex values of the fields E or B as the real part of the resulting
product is not equal to the product of the real parts. Such a problem has been found

for S orw given by Egs. (27) and (30) which are not linear with respect to E or B.
However, it is possible to obtain the average values of S or w.
Given the following expressions for the fields E or B
E= EO exp(iot) ,
where a rigorous treatment would mean writing:
E=R(E, exp(int)) ,
where E=R(E) and E:EO exp(iot) .

z+z*

B

As z denotes a complex number, as in z =a+ ib, we find that R(z) =a=

where z* is the conjugated complex ofz .

Given the above, the Poynting vector can be calculated with p being real by:

S =

esl]

B 1. - 1__ .
x—=—ExB=—R(E)xR(B)
pou [
1 = . . = . = .
= 4—{ [Eq exp(iot) + E( exp(—imt) ] x [B exp(iot) + Bj exp(—imt) ]}
R =0 -0 =0
1 - — % — % — — — — % - .
=4—{[E0 x Byl +[Eg x By [H[Eg x By exp(2iot)[+[E x By exp(-2imt)]} .
w2 0720 20

The first two terms are conjugated complexes and their total value is twice their real
parts. The third and fourth terms vary as functions of 2 so that their average value
over a period is equal to zero. This leaves us with
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R I
<s>:—R(E0 xBy) . (33)
2 —
For a planar progressive wave along i, we have EOZEm exp[—iE.f)] , which yields:

<§>=21—“R(E_m>< Bm). (33)

In a vacuum, where = p, gopgc?=1,and B, = —":

In the more specific case of a rectilinear plane wave, where E, = E;, we have:

<§>:%E02 0.

- - B
This result can be obtained directly from S = E x — [Eq. (27) written for a vacuum
Ko
where p = po].

7.3.4. The Poynting vector and the average power for a MPPEM wave in a
nonabsorbent (k and n are real) and nonmagnetic (u, = 1, so that u = u,y)
medium

~ 1~ - ~
From Eq. (13), B=—kxE and k =2nﬁ , we have
o) c
- . B n - _ =
S=Ex—=—-Ex({xE).
Ho  CHo

By using the equation for a paired vector, @ x (bx ¢) = (a.5)b — (5.5)6 , we obtain
S=ncey[(E.E).i — (EG)E]=nceoE2u .

By taking an average value over a given period, for the power transmitted (P) by the

EM wave,

1
<P>=<§,>= —ncsoE02 .
2

7.3.5. Poynting vector for a MPPEM wave in an absorbent dielectric such that u
is real
Using the optical notation given in Section 7.2.2.1,
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E = E,, exp(-k "z)exp(jik 'z — ot])

- k. = _ga -
and B:g(uXE)—C(uxE).

According to Eq. (33), established for a real value of p , we find that

I - s - -
<§,>= Z_R(EO x By), where Ey = E,, exp(-k"z)exp(jk'z)
i

By = 2(ax

Therefore
* *

E, XB; :—_Ox{g(ﬁxEo)T :ix{%(ﬁxEo)*} :%ix(ﬁxﬁo)*

* *
n - = n |-

= O'EOu :—_|Em
C C

2exp(—2k"z) , from which

1 - o I n'|-
<§,>= —R(Ey xBy) = _n_‘gm 2exp(-2k"z) ,
2u — 2u ¢
so that for a nonmagnetic medium (p = )

cn
<S,>=

€0 |Em 2exp(—2k"z) .

2
The power transmitted by the electromagnetic field exponentially decreases with the

distance traversed. The extinction coefficient for this is given by 2k"=2n" — .
c

7.4. Problem

Poynting vector
It is worth recalling that the physical magnitude of flux represents an amount
associated with a physical magnitude which traverses a unit surface per unit time.

1. The analogy between the charge current density and the energy current
density vectors

(a) Here 3 denotes the charge current density vector and p the volume charge
density. The flux of the vector ] through a surface d¥ is dI =3 dS . What does j

alone represent? Give the equation for the conservation of charge for a rapidly
varying regime in an isolated system.
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(b) By analogy, the energy flux (which thus exhibits a power per unit surface)
through the surface dX is defined by a relationship of the type dP = S .dS in which
S represents the energy current density, otherwise termed the Poynting vector.
What does S alone represent? By introducing the magnitude wr , which represents
the volume density of the total energy, give an equation for the conservation of
energy analogous to that for the conservation of charge (S plays the role of ] and

wr that of p).

2. The total volume density of energy wr can be considered as the sum of two
terms, one being due to the density of kinetic energy (w, ) and the other due to the
energy density (W, ), which will be detailed below.

(a) The theorem for kinetic energy makes it possible to state that the variation in
kinetic energy is equal to the work of the applied forces. A variation in the kinetic

energy density (for a unit volume containing a charge p) is given by dw, = F.vdt

with F = q[E + VX EJ when charges with volume density p and velocity v are

placed in an electromagnetic field characterized by the fields E and B. Determine
from the equation for the conservation of energy the value of the expression
. dw
divS + E.j+—&1
dt
(b) Give the Maxwell-Faraday (M-F) relationship (M-F which gives rot E ) and the

— B
Maxwell-Ampere (M-A) relationship (M-A which gives rot —) for a non-
Ho

- B
magnetic medium traversed by a real current ( j ). By multiplying M-F by [— ] and
Ho

M-A by [-E ], calculate E.j .

(¢) Determine the expressions for S and w,,, by identification between the results
of 2a and 2b. Conclude.

3.

(a) It is worth recalling here that the real part of a product of two complex numbers
is different from the product of the real parts of two complex numbers. Show how,
in a similar way, the complex amplitude of the product of two complexes is different
from the complex amplitude of these two complexes. What is under consideration
when dealing with the vectorial products in place of the simple products?

(b) If Eo and Bo are the complex amplitudes of a complex field, then the complex
electric field and the complex magnetic field:
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_ R notation _ ~ a
E = Ep(Pexp(iot) = E; exp(iot) and B = B exp(iot), are such that:

E = Re(E) and B = Re(B).
~ 1 — ~ -
From the calculation for S = —[Re(E) x Re(B)], show that the average value of S
Ho

is of the form:
- — 3k
R 1 EnxB
(S) = —Re =0"=0 ,
where B*O is the complex conjugated with BO'
(¢) Calculate (S) for a monochromatic plane progressive wave propagating in the

direction of the unit vector ﬁZ in a medium where the wave vector k is real.

Answers

1.

(a) By definition, j represents the flux of electric L= EV Ab)at=1 :l \
charges, also termed the charge current density. This
flux therefore represents the amount of electrical
charges that traverse a unit surface per unit time.
Quantitatively, we can say that this quantity of
charges is localized within a cylinder (or
parallelepiped) with a cross-sectional unit area (Z = 1) and length (1) given by

l= (v At)p;=1 =V, where v is the velocity of the charges. If p =n q, is the volume

charge density where n is the charge density, i.e., the number of charges per unit
volume, then the quantity of charge found in the volume (V) given by
V=(2)y-; VAt - =V issuchthat j=nq(X)y—; (VA -1 =pV.
The vector ] is defined by ] = pv. For its part, the equation for the
conservation of charge is written
- 0
divi+®P-0. )
ot

(b) Similarly, if S represents the energy current density vector, S represents the
quantity of energy that traverses a unit surface in a unit time. S therefore can be seen
as the electrical power through a unit surface.

If wrrepresents the total energy, the equation for the conservation of

energy can be written by analogy to the equation for the conservation of charge as:
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WS+ T o @
ot

2.
d d d
(a) Therefore, w =w, + W, , and VT _ e, em (3
dt dt dt

In addition, the theorem for the kinetic energy allows the equation dw, = F.vdt so

that by taking into account the form of F, we have:

dw, - ) ) L
:C:F.v:p[EwXB]v:pEv:j.E. (4)
t

dwem

dt
introducing this equation into Eq. (2) for the conservation of energy, we arrive at

d ..
By moving this expression into Eq. (3), we find %: J-E+
t

. By

... d
divs + 5 B+ em _ g (5)

dt

(b) We have:

. . 0B B
(M-F)  rot E:—a— (equation multiplied by —)

ot n

— B - O(E .

M-A) rot —=j+ (; ) (equation multiplied by [-E]).
Ho t

Following multiplication of the two members of each equation as indicated, we find
by addition that:
B—- -—B BB -0cE) --
—rotE -E rot—=- —— -E (eE) - jE.
Ho Ho Mo O ot

Using the relation div(éi X B)=B rot @ -a rot b , the above equation becomes

- B o B> B ) -
div(E X —J— - —[8— + ] — j.E which can also be written as

Ho ol 2 2y
- B)-. o E2 B
diV(Ex—]+j.E+ —[a——i— J: 0. (6)
o al 2 2
o : . < = B
(¢) By identification with Eq. (5), it can be determined that S = E x — which is
Mo

the Poynting vector, and that
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2 2
Wem = aE—+ B is the density of electromagnetic energy in the form:
2 2
E? B?
Wenm = We + W, with w, =e—and w, = .
2ug

These two expressions are for the electrical and magnetic energy densities under a
stationary regime and they prove that they are still valid for variable regimes.

3.
(a) The use of complex numbers needs to take into account (with z,=a,+ib, ):

o if the real part of the sum of two complex numbers is actually equal to the sum of
the real parts of the two  complex  numbers, as in
R(z; +z5)=R(z;) + R(zy) =a; +a,; and

e or if the real part of the two complex numbers is not equal to the product of the
two real parts of the two  complex  numbers, as in
R(z1z;) =R([a; +ib;][a; +iby]) =R (ajb; -asb, +i[a;by +a,b;])

=a;b; -a,by # a;b;=R(z))R(zy).

Similarly, if the product (P) of the complexes is P = A.B , then its complex
amplitude is such that (with A = A ¢ and B=B, el ):
P=A, elot B, gt = Ay.By el2ot = P, ' from which

Py =A(By ™ 2 AgBy -

The complex amplitude of the product of two complexes appears different from the
product of the complex amplitude of two complexes. Similarly, the vectorial
product, which brings in the components of the products, differs from the simple
products, for example:

_ . . . - 1 .
R(E xB) # R(E) x R(B), so that here R(S) # —R(ExB) .
Ko
(b) However, if E = EO exp(iot) and B = Boexp(imt) , we have:
1 |EogxB"
- X
(S) = —Re =07"=0 |

DU T . B, 1 - -
In effect, S = —E x B= —{[R(E) x R(B)] # —R(E x B)] .
Mo Ho Mo

With E = EO exp(iot)= A + iB, we have:
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== = , from which

S = L {[& exp(iot) + % exp(—imt)] x [%exp(imt) + % exp(—iwt)]}

- {[i x By + [Eq x ByJ+[Eg x By exp(2iot) [+[Eq x By exp(—Zicot)]} :

The first two terms are conjugated complexes and their sum is equal to twice their
real parts [as z; +z;*=(a; +ib;)+(a; -ib;) =2 a;) ]. The third and fourth terms
each vary as a function of 2w so that they have average values over a half period,
and therefore also a full period, equal to zero. Therefore:
- 1 — ok
S)=—-R(Ey xBy).
< > o —

(c) If the plane wave progresses along Oz, then the electrical field can be supposed,
for example, to be moving with respect to Ox. Therefore,
_notation _

EO _ EO (r) = Eme—ik.f _ Eme—ik.fﬁx .

Similarly, for a magnetic field moving through Oy, we have
_,hotation _ _ o i
B, = By()= Bme—lk.r _ Bme—lk.rﬁy ]

Therefore:

- 1 *
m Ux X uy) :_R(Em-Bm uz)~
2pg Ho 2
Given that E,, = v, B, inamaterial (or E;, = ¢ B, if in a vacuum), we have:

(8) = ——R(E, x By) = %R(Em-ﬁ '

R 1 * = i
<S> - 2u9vy KL ) :%Ocmmf 2" %Onc|§m|2 2

If the MPPEM wave is polarized rectilinearly, so that E, = E is real, then

<§> = 870nc E02 u, .



Chapter 8

Waves in Plasmas and Dielectric, Metallic,
and Magnetic Materials

8.1. Interactions between Electromagnetic Wave and Materials

8.1.1. Parameters under consideration

So that geometrical considerations do not become a problem, this chapter will look
at the interactions of electromagnetic (EM) waves with materials that have infinite
dimensions. Materials with limited forms will be looked at, most notably, in
Chapters 11 and 12.
The propagation of EM waves can be studied by considering:
e a description of the EM wave in the material with Maxwell's equations; and
e a representation of the material as a collection of electronic and ionic charges that
interact with the electromagnetic field through the Lorentzian force, which can be
written as:

m—=qE+qvxB
dt
In terms of moduli, the ratio of magnetic and electronic contributions are given by
F, qvB B
FF, gE E
. Fm M
For a plane EM wave, the E = V(pB and the ratio F_ =—_.As v<< Vo ® C, the
e Vo

magnetic force (F,) is negligible with respect to the electrical force (F.). With the
magnetic force being weak, generally it is stated that the magnetization intensity (1)
is approximately equal to zero, so that B = poﬁ and rotl = J A=0.
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Different types of forces can be involved, depending on the response of the
material under the deformation caused by the incident EM wave.

8.1.2. The various forces involved in conventionally studied materials

8.1.2.1. Dielectric materials

The various movements and polarizations which can come about depends on
whether it is electrons, ions, or permanent dipoles that are submitted to F..

8.1.2.1.1. Electronic polarization
Much like a spring, valence electrons displaced by F, are returned to the equilibrium
position about their respective atoms by a force (f;) given by f,=-kr=-mwmg,>r.

In addition, if the electrons move within a very dense medium, they can be thought
of as being subject to a friction force (f; ) which gives rise to a Joule effect and has

. . . . . = m _ .
an intensity proportional to their velocity, so that f;, = —-—V where t is the
T

relaxation time of the system and has the dimension of time (so that the equation is
dimensionally correct).

8.1.2.1.2. Tonic polarization

The movement of ions under an electric field approximately resembles that of
electrons. Their returning force is f; = -Mycleus o T where, due to the greater mass
of ions and their relative inertia, their ionic pulsations (g; ) are much smaller than

the equivalent electronic movements (wo.). This is detailed further in Chapter 3 of
Volume 2.

8.1.2.1.3. Polarization and dipole orientation

It is assumed that dipoles subject to a varying electrical force are predominantly
subject to a friction force associated with their rotational movement. Given that they
are relatively large due to the chemical association of atoms, they present a high
degree of inertia toward excitation by an electric field. The dipoles can only
follow—with a dephasing—relatively low frequencies, but tend to contribute
considerably to dielectric absorption at such frequencies (see also Chapters 1 and 3
of Volume 2).

8.1.2.2. In plasma

In a plasma, which has a low density and is electrically neutral, it is assumed that
electrons make up an electronic gas. Any displacement of the electrons from their
equilibrium position by a perturbation resulting in a compression or dilation of the
electron gas can be considered the result of the application of a sinusoidal electric
field, which has an plasma oscillation pulse (w,) due to the returning force of ions in
the medium that are assumed to be immobile. Given the assumption that the
electrons move freely, we can ignore friction and mechanical returning forces so that
o, is automatically stabilized by the longitudinal electric field associated with the
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permanent returning force (thus directly related to this electric field). The

®
corresponding frequency is therefore v, = —L | and as detailed further in this
2n

chapter, can appear as a breaking or “drag” frequency for EM waves.

8.1.2.3. Metals

The electrons that interact most easily with EM waves are those external to atomic
or molecular orbitals, in other words conduction electrons. These electrons are in
effect free, or semifree, depending on the degree of approximation, and belong to no
specific atom, so that any returning mechanical forces are equal to zero. The
medium, however, is sufficiently dense to make friction forces nonzero and it is
these forces that result in Joule effects in metals, more specifically due to collisions
between electrons. The exact nature of these collisions generally is only considered
in solid physics along with collisions in a network (phonons) and with impurities.

8.2. Interactions of EM Waves with Linear, Homogeneous and Isotropic (lhi)
Dielectric Materials: Electronic Polarization, Dispersion and Resonance
Absorption

Electronic polarizations gives rise to resonance frequencies (., which is more

succinctly denoted ®, below) in an absorbing and dispersing material, and this
section is limited to studying the plots of these interactions. These interactions can
be understood using the question-based tutorial below, which has answers detailed
in Sections 8.2.1 through to 8.2.8.

The polarization of a linear, homogeneous, and isotropic (lhi) material is the
result of a total number (N) of electrons per unit volume (n.) (N = n,) each having a
charge (—q) being subject to the following forces:
¢ a Coulombic force induced by the alternating field which can be described in the

complex form by E = Eo exp(iot) ;

e areturning force given by 1:} = —mmozf , where me is the mass of a electron;

- dr dr
e frictional forces given by: F, = —-mI’ a_.na .
dt T dt

1. Under a forced regime, find the expression for the displacement of electrons
based on the complex form r = 1 exp(iot) . Determine 1.
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2. Give the complex expression for the electronic polarization. From this determine
the real and imaginary parts of the dielectric susceptibility (. andy,",

respectively) given in electrical notation by . =y, -iy." . The result should be
n.q?
e_).

expressed in terms of @?; = (
me

b}

3. Now the study turns to the functions y.” and 7.’ in terms of ® at two points:
when ® = o, and then when ® # ® . Parts a, b, and c of this question consider the

former ® = .
(a) give the sign associated with y.' when o < @y or when ® > g ;

(b) for which value of ®, y.’’ is a maximum,;
(c) the width at half-peak height of the function %.’’(®) corresponds to angular

frequencies ®; and ®,, which are such that y,"(®;) = %."(®,) = Xe% Determine

o, and ®, and show that for these values y.’(®) is at an extreme point. Determine
the values for x.’(®;) and for y.’(®,); and
(d) give the limiting values for y.” and y.”’ (0— 0, ). Plot y.’(®) et " (®).

4. This question concerns a regime far off the resonance position ® # ®y ; indeed, it
is now the hypothesis @2 <<(®?; - ®*)* that becomes relevant. Give the

corresponding representations for y.’(®) and .’ (®).

5. Staying with the hypothesis presented in question 4 [® # ®, and
0’2 << (0?) - ©?)? ], show that there is a value ®, (to be determined) for  which

is such that the real part of the relative dielectric permittivity (g,”) is zero at this
pulsation. Show that for the value of ® given by ®w = w, the magnetic field is zero

and that the electric field is longitudinal.

6. Plane, progressive, and traversing EM waves that can be written in the form
E-= Em expli(ot — k¥)] and angular frequencies between but not including ®, and
o, (outside of the resonance and ®,) are considered in this question. From the

general equation for the dispersion of waves, give the form (real, complex, or purely
imaginary) of the wave vector in this domain of angular frequencies while also
determining the type of wave involved.

7. Outside of the absorption and the interval [wy, ®,] :

(a) give the explicit relation between ® and j using the expression for the relative
permittivity (equation involving term expressed as o");
(b) from the real solutions to this equation, give the relations between ® and k; and
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(c¢) With respect to the limiting case, give the general shape of the curves
representing ® = f(k) for dispersion due to electronic polarization.

8. Find for o <<, the equation (for dispersion) that ties the optical index to the

2me
wavelength on a vacuum Ay= —.

(Q]

8.2.1. The Drude Lorent; model: a representation of a dielectric using an electron
gas and a study of the electron movement
8.2.1.1. The Drude-Lorentz model
In the Drude-Lorentz model, a dielectric material is represented by a group of atoms
(N,) per unit volume distributed in a vacuum. The atoms are surrounded by a field of
electrons that are themselves assumed to move in a vacuum around the atoms to
which they are attached. When subjected to a sinusoidal electric field, the electrons
move from their positions and then tend to return to their original position through
the influence of two forces :
_ . = dt  mdr . .
e a frictional force given by F, = -mI'—=-——, which takes into account the
dt T dt
viscosity of the medium and results in a dephasing between the excitation and the
electronic response. In this case, T is the relaxation time that represents the time
required to establish the electronic polarization following application of the field.
In the Drude-Lorentz model, which results in an expression for conductivity and
Ohm's law, T represents the average time in between two successive collisions;
and

¢ an elastic force, given by E = —mcoOZF , due to the recall of electrons to their
particular bonds. Physically, this force resembles that of a returning force exerted
by a spring tying together an electron and its nucleus. For each type of electron, be
they internal or external layer electrons, the elastic force varies along with the
corresponding value for .

It is worth noting that for metals, which have electronic properties determined by
free conduction electrons, the returning or recall force is not brought into account
because the energy required (thermal energy) to remove an electron from its original
atom is extremely small. As detailed in Section 8.1.2.3, only F; is assumed to be
exerted.

8.2.1.2. Equation for the movement of electrons
Here the charge of an electron is represented by —e. With respect to the direction T,

parallel to the applied field (E ), the fundamental equation for the dynamic of the
displacement of electrons is:
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d?r = = = 5. mdr -
m—=>»F_ . =F +F +F =—-mw,“T ———-¢E, so that:
dt? Z applied — *r t Coulomb 0 T dt
d’r 1dr e -
+——+oji=- —E. (1)
dtz2  t dt m

Given a cosinusoidal field of the form E = Eoei‘”t, the required solution for the

forced regime subject to an alternating field, particular to the equation with a second
term, is in the form r = 1, exp(iot) .

With T =iof and T =-w’r, the solution given in Eq. (1) gives, following
simplification of the two terms using el s

I I - e - .
- 0L + 1:;0 + co%{(): - ;EO (17), from which

—€
.
| (0F o)+
T

8.2.2. The form of the polarization, the susceptibility, and the dielectric
permittivity

8.2.2.1. Expression for electronic polarization

Moving a charge (q) by T is the same as applying a moment dipole pi=qr, and

Iy =

}Eo- (1)

likewise, moving an electronic charge (q=-¢) is the same as applying a dipole
moment [ =-erf(see Chapter 2, section 2.2.2). The polarization for
N=n, electrons per unit volume therefore is given by:

3 - - - n.e? -
P = n.ji=-en, =-en, rye'®'= = Eye'". )

' ACEIE

8.2.2.2. Expressions for susceptibility and dielectric permittivity (electronic
component)

Given that B =¢g x_ E =59 x_Ege'”'=¢g (5, - 1) Eg¢'™  (3),

from Egs. (2) and (3) it is possible to directly determine that:

2 1
Xe ™ e o] “)
&0 m{(m% —®2)+i}

T
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n.q? 1
Given that 0)12): cd ,theresultis y = (ng ) )
Le
gom {( ) 2) .oa}
0)0 - +1
T
From this can be determined that
.o
(03(2) - (n2) —i—
_ 2 T _ [ "
le—wpm e ~1Xe - )
((DO —® ) + —
TZ

By identification of the real and imaginary parts, and
X = (e, -1)=(g,'-1-ig."), itis possible to determine that:

( ((0% —0)2) ) ((o% —coz)

[ ' _ .2
Xe' = (&' - D=0 =0

W 2 T —
Yo' = €= O = @)
e r p ( ) ) )2 2 p ( 2 2) -
oy —0° ) +— oy -0 | +o’l
\ 2
(012, 1 n.qg?
Eq. (6) can be used to define that y,'(0) =—=——"-— (8).

(DO (,0% SOm
Following this, the introduction of y.’(0) into Eqs. (4), (6), and (7) yields:

2
0,
%, =1'(0) 0 : ©)
(-]
(DO - +1
T
In turn, this gives:
2 (w(z) - 0)2)
Xe' = %e'(0) @ > (6’) and
(030 - mz) + @2
ol
Xe" = 8" = Ao (0)) (7)

2
m% - 032) + o’

8.2.2.3. Limiting cases
8.2.2.2.1. Low frequencies where ® << ®; (® — 0)
According to Egs. (6) and (7),

233

with
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0 o
Ye = %e'(0) = — and ¢' > ¢/'(0)=1+ — (10), and
®p ®p

YXe' = %e'(0)=0 and &." = €,"(0)=0.
The upshot is that in this frequency domain, g, = £,'(0) . With Xe being real and

positive, according to Eq. (3), there is no dephasing between P and E .

8.2.2.2.2. At frequencies where ® =

Here,
Ye'(@g) =0, so that g/'(wg) =1
2
®
Le'(©) = —=
ol
2 T

0} —-i— —
P As-i=e 2, P and E arein quadrature.

0)0r

= %, (@) =-iye"(@g) =-i

8.2.2.2.3. High frequencies for which ® > o, (® — ©)
According to Eq. (6) and (7), .'(©) = 0 and y,"(cc) = 0. More precisely, with the

help of Eq. (9), by neglecting the ® term but not the ®* term (as® — ) from the
2

denominator, Xe < - xe‘(O)w—g (11). As -1=¢", P and E have opposing
- )

phases.

8.2.2.4. Comment concerning the Lorentz correction
The Lorentz correction replaces in Eq. (1) the field ( E ) by the locally effective field

- . P -
given by Ey=E+—. With P=-en, T Eq. (1) now becomes
380
Lo . n.Qq’ . e = . . . .
-0 Ty + 1—r0+c0%r0- e—qr(): - —Ej . This results in a change in the expressions
T 3mg m
n 2
for y. and ¢ of the term @3 to ®'3 = wj- d
3meg

8.2.3. Study of the curves y.’(@w) and y.’(@w) for @ =~ @y (of the order of the
absorption zone)
In this section, the approximations ®(? - @ = (wy- ®)(®y+ ®) = 2 ®y (©g- ®) and

I'o = 'wy are made.
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8.2.3.1. Expression for y.’
From Eq. (6), for y.’:

2w ((90 - )
Xe'(@~w0) = (of, 5 , so that dividing above and below by
4(0% (0)0 - ) + w(z)l“z
40)% gives:
2
. © 0y — O ®p e '(0) 0y —®

Plel 5] ()

It is noteworthy that y.’ changes sign with (®, - ®). %’ is out of step with respect to

((DO'CO) and Xe’(msz) =0.

Also, it is possible to state that the function .’ is:

e positive on the left hand side of w,. Here . = oy - € (where € >0), from which
0 -o.=€>0 andy,'(0.) >0 ; and

e negative on the right hand side of wyso that ®, =wy+e, from which
0y-0,=-€ <0,and y.'(wy)<0.

8.2.3.2. Expression for y.”’
Similarly to that in the previous section, from Eq. (7), ¢’ can be found in:

5 r
o’ Dp 2

405 (0 — )" + g2 200 (09 - ) + [FJZ

(13)

" 2
Le (oxe,) ¥ Op

For its part, x.’’ is at a maximum when the dominator is at a minimum, that is
to say when o - wy=0, so that ® = @, . Thus:
" — " — (02 1
Xe ((DO)_Xe max P

. (14)
®q I
By substituting this expression in Eq. (13):
2
2
2 " 1
5 Xe (o) 2

oo (5]t

(13%)

Xe"(mzwn) ~ Xe"((DO )
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Ye (® ~ o0y 18 @ function paired with (®(-m), and therefore is symmetrical with

respect to ® =, . This type of curve is termed a Lorentzian curve, and as o is

separated from m,, (o, -oa)2 increases and y.”’(®) — 0.

8.2.3.3. Evolution of y.’(w) and y.”’ (@) when ® =
The functions y.’(®) and %.’’(®) when ® ~ w; evolve as shown in Figures 8.1 and

8.2.

The halfpeak width (hpw) of the curve representing y.’’(®) gives the pulsations
o; and ®, such thaty,"(®)) = %."(®y) =%."(®¢)/2. From Eq. (13”), pulsations o;
(where i =1 or 2) should accord to:

1 1
=~ %e"(@)-

4 2 9
1+r72(600—0)i)

Xe"(0;) = %e"(@g)

From which the following equation can de determined:
F2
(® —w-)2 =—,sothat ®; =@y £ —.
0~ 4 1 0 2

These equations finally give:

0 =0 r
1 0 5
+ r
Wy =
2 0 5
The hpw thus isequalto Aw=w, -o; = =1/t (15).

In addition, it is possible to see that the angular frequencies ; (®; and ®,) give
rise to the extreme limiting values of y.’(®). To verify this, it suffices that

d '
{i} =0, a relatively simple calculation.
i

do
According to Eq. (12), the corresponding values for y.’(w;) are:
. r
\ pXe '(0) T2 Ooxe (0) _  wpT
2 (r j (rj 2r 2
— + —
2 2
Therefore:

) 0) 1 70) T 1
%e'(@r) zﬁxe (0)—70% (0)

(16)
(DO (,00'C
(@y) = ——2 5. '(0)= - ——5. (0).
Xe((DZ) 2FXe() 5 Xe()
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Figure 8.1. Plot of y.'= f(®w) when o~ @, .

29 2
Xe A 10}
1 (00) =—2= = wyz12(0)
a)OF
Ze(a)O)
2
Q) [O)) 105 (DV

> <« Ao =1/t

Figure 8.2. Plot of y,”’= f{w) when o~ ay .
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8.2.4. Study of the curves of y.’(®) and y.”’(@) when & # @, (well outside of an
absorption zone)

Far from an absorption zone, the oscillation can be assumed to undergo only a very

weak dragging force. This small force is such that it can be assumed that

M2 << (g2 - 0%) .

8.2.4.1. Form of y.’ (@)
2
Following Eq. (6"), %.'(®) = xe'(O)L . 17)
2 2
(0 -<")
The limiting values can be given accordingly:
e when o << @, ,

2
0, , '
Xe'(®) = 7'0) ) 20— > %(0); (18
(0)0—03 )(030+w) (wo—oo )“"’0
e when o > o :
2@®) o
O, _
1e(©®) = 40— = - — - 07 (19); and
® W 0—o®

1
%e'(0) = 07 (When ® — o, y'(®)  — — 07).

8.2.4.2. Form of y.” (w)
According to Eq. (7),

2
Ye'(0) =~ Op 5 = 0~eg'.
(06 -o")
A consequence of this equation is that there is no absorption in this zone, and y and
¢ are real such that, for example, P = Ry E or D=¢E . There is no dephasing
between the response and the excitation, and it is only the real parts, &(®) or y(®),

which vary with . The medium gives rise to dispersion and is nonabsorbent, which
in effect means that it is also transparent.

8.2.4.3. Graphical representation

Figure 8.3 gives a graphical representation of y.’(®) far from the resonance
frequency (o). This representation gives the electrical component, as at low
frequencies it is an ionic or dipolar relaxation contribution that appears.
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In  general terms, € (@)=1+y'(@). Asy.(@—>xo) = 0, then
€'(0 > ) =~ 1, and the curve representing &,’(®) takes on the shape shown in

Figure 8.4. The analytical form for €’ (w) at points far from the resonance value is
directly obtained from Eq. (17):
2

g =1+—2 a7

A’ (®)
X (0) =
- [25)
>
0 o o)
Figure 8.3. Curve of y'.(®) when @ # ay .
AE(©)
ef(0) =14y
1
0 o (o)) o »

Figure 8.4. Curve of &’,(®) when @ # ay .
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8.2.5. The (zero) pole of the dielectric function, and longitudinal electric waves
An angular frequency (®, ), which corresponds to the (zero) pole of a dielectric

function, is such that o, is different to @, , must be such that the following equation

is true:
o
eh(m)=1+ =0,

¢ 2 2
®p — 0y

the solution of which gives rise to:

2 2 2

(De = (Dp + (Do .

This also shows that w,> m, (see Figure 8.4), which by consequences means that
®; # O, and justifies the use of Eq. (17') to determine o, .

In order to show that the angular frequency ®, is due to a wave that has a
longitudinal structure, the following may be considered. As ® # o, theng," = 0,
and g is real (g = ¢ ). Gauss's equation, which is written div §0= e div Eo =0, has
in reality two solutions, which are either:

e div EO =0 giving for a progressive planar wave, iE.E(): 0, in other terms
k L E, so that the wave presents a transversal structure; or

e ¢ (w)=0 which corresponds to an angular frequency value such that
€ (wy)=0 and the solution corresponds to the (zero) pole of the dielectric

function, which is thus such that div E = 0.
In this case, it remains true that:

divB, =0
raB = uoaa—? = imuoaoer , so that ro_fBO= i%er(): 0 when o = o,
c
with Bo: Bme_iﬁ‘? (form given for a progressive sinusoidal wave), these two
equations give rise to, respectively:
ikBy, =0
ik x Bo =0 = By =0 and therefore the wave is completely electric.

The Maxwell-Faraday equation makes it possible to state that:
—. OB — - .
rotE +E_ =0, so that rotE; + joBy, =0. With B, =0 , then rotE, =0, and

ik x EO = 0. This in turn means that EO Ik .

The wave is said to have a longitudinal structure as E is directed along the wave
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vector k (while for the transversal wave, Eo Lk ).

8.2.6. Behavior of a transverse plane progressive EM wave which is sinusoidal
and has a pulsation between w, and w, sufficiently far from @, so that
8” ﬁo

A monochromatic planar progressive electromagnetic (MPPEM) wave that is

sinusoidal can be written as:

E = E,, expli(ot — k.F)].

When oy <o <w,, Figure 8.4 indicates how &,'(w) <0, while &."(w) =0 at points
far from o,. Therefore g, =¢,'(®)-j €,"(®) = €,'(®) which is a real negative, and
thusg. =¢'. <0.

The equation for the dispersion of transverse MPPEM waves is given by
o’ 2 ®
k?= & = —ze'r <0, which in turn imposes that k =-ik"=-1—n
c c c
a purely imaginary number.

The MPPEM  wave thus takes on the form given by

E= Em exp[—k"r] exp[iot]. In effect, there is no wave propagation; the wave is

where k is

simply attenuated without undergoing absorption (as® # ®,). There is no
propagation for the wave in the medium (because k'=0), and the wave is termed
evanescent.

When o e ](00, (og[ , the material can be considered a perfect reflector.

8.2.7. Study of an MPPEM wave both outside the absorption zone (® # @) and
the range [ay, @]

8.2.7.1. Relationship between @ and k

The sections above considered an MPPEM was within the range o € ]mo,oa g|: . This

section will look at a wave outside this range with ® << o, and o>, .
In these two domains, ¢."(0) =0, and ¢, =¢'. >0 (see Figure 8.4, noting that

when © <®g,&; >1 and when ® > w,,0 <ég', <1). Thus, the dispersion equation

o’ o’
takes on the form k2= — & = —Za'r >0, from which k =k'=k .

c c

With &’ (o) given when o # «, by Eq. (17”), then
2 2
o,
k=212 o)
c
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By developing this further, it is possible to obtain:

ot - ok + wy? +0,%) + kzczm% =0.

8.2.7.2. The relation @ = f(k)
The preceding equation is a “bi-squared” equation of the type x*+bxte= 0,

i ) . b b%—4c )
which has solutions in the form x?>=-—+ ——— so that it can be stated that:
2
1/2

5 2

k2c? + w% + o k*c? + w% + 0
+

+ P
2 2

ol = ko | 1)

8.2.7.3. Shape of the dispersion curve
When o << o, ando > ®, ,then

_ %
co% -0’

where €' (0)=1+

It is worth considering the two limiting values of k:

e k~0
according to the equation for dispersion, there are two possible solutions. These
are either:

o o = 0, which corresponds to the solution ® = @_, [which also can be directly
checked by introducing k = 0 into Eq. (21), giving a solution for w. as
o =0];or

2

p

solution for w, is w; = ®,, [which again can be found by direct substitution

of k=0 into Eq. (21)].

o € (®) = 0,in which case when ® =~ ®,, such that (o% =5 + oo% , the

e k — oo where once again two solutions are possible:

® ® . . L
o —— o and k = — for a solution to ®.. The introduction into Eq. (21) of
c c

k — oo so that k*c®>> wy? or k’c*>> cop2 , gives o, =ck; or
2
©p

cog - o’

o &' (®w) = o, from which (1 + ) = oo, and in other words means

that ® — o , hence the solution to o.
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A representation of ® = f(k) therefore shows two branched curves associated
with the transversal EM waves (T branches) corresponding to the two solutions o,
and o. The curves are separated by a zone, or band, into which propagation of the
EM waves cannot occur. The value at which ®=w®, shown in Figure 8.5

corresponds for its part to the longitudinal electric wave (L).

07y :
7/
T/~ 0= ck
7/
S
;/'
(D+ /./
;-
S
:/4
/
@y : : =L
zone unavailable to propagation: reflection zone
o 7
/'/ T
/s .
S
P
>
O k

Figure 8.5. Dispersion curves indicated by T.

The scheme presented below gives a résumé of the different behaviors of a
dielectric undergoing electric polarizations at different frequencies (and pulsations).

Absprption
g >1 g <0 0<g’ <1
! > 0
propagation with an a&
dispersion no propagation, propagation, and when ® — o, g, — 1,
evanescent wave : Behavior analogous to that in a vacuum,
 the ¢” cannot follow these high frequencies

8.2.8. Equation for dispersion n = f(A,) when & << ay
8.2.8.1. Maxwell's equation for the visible region
2
When o <o, then g =¢.'>1, and the relation for dispersion k*= %sr gives,
c

forareale, k=k= —, /¢, . This region is where ® < @, is in the visible range and
c

therefore is nonabsorbing and transparent. More precisely, the conditions on ® can
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be written ©; <o <®),, where ®; is the resonance pulsation related to the

displacement of ions, and in the near infrared, oo is the pulsation resonance noted
for the most part above as wy and related to the displacement of electrons and
therefore also the electric polarization.

Given the equation for the dispersion, the velocity of the y phase can be written

Vo = (0=L. As elsewhere, the index (n) is defined by n= < ; then it can be

" o v

written that n = m . This is the Maxwell equation valid for the visible region.
It can be simplified further by stating that with a real value for ¢, the index n
defined by n*>=¢, isalsoreal, so that n =n Z\/?r .

Ashere & >1 (region® <y ), n=/g(®w)>1,and v, =

C
_<c;
\/Sr

the result is that, with k, = o :
c
A= n_2n }‘_0< Lo
k kmn n

2me . . . .
where Ay = — and is the wavelength associated with o in a vacuum.
Q)

8.2.8.2. Dispersion equation for o < 0y, and Cauchy's formula
In the region ®<wgy,, & (w)=¢'(®w) is given by Eq. (17°), so that with
oy = ®g, the resulting equation is:

2 2

[ (V) 1 1
8r(0))=1+ > p 2=1+ 213 ®2:1+X6(0)—(Dz
®pe — @ ®oe 1 — 1— 5
®pe ®pe
0)2
=1+y.(0)| 1+ T
®pe
) 2me . . .
With n?=¢ (0) and ® = —— it is possible to say that:
0
0 0 1
=1 e 2 0 1 0+ e (0o
e e A
0 B
By making A= 1+y,(0)=¢,(0) = n(z) ,and B :(2nc)2 Xei ) ,then n?=A +—2.
e A
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1/2
B B
From this can be determined that n = AI/2 1+ — = AI/2 1+ R
AL 2AN,

so that by making C = it can be stated that

B
2A1/2’

C
n~=ng, +7L—2 . (22)
0

Equation (22), called Cauchy's equation, shows that the index varies with the
wavelength.

8.2.8.3. The Rayleigh relation and group and phase velocities
_do  dv 22 dv

The group velocity is given by . In addition,

Vg =—— =
dk  d(1/n) da

2nc ¢ A c c .
Ag =——=— and A =20 _ = 5o therefore v =— . The result is:
o Vv n nv n\

i @ :g_c;{_id_“],

ey -, 1(_Lj+_
A dA n n? dA

e a nl a2

With v, =L , it is possible to obtain:
n
A d
Vg = Vo (1 + ——nj (@)
n dA

8.2.8.4. Comment: normal and abnormal dispersions

In Sections 7.2.1.3 and 7.2.1.4 normal and abnormal dispersions were defined. In
dielectrics, as shown in Figure 8.4 and as a general rule, & ’(®) increases with .
However, as indicated in Figure 8.1, when ® = «,, the function &,’(®) decreases as

o increases, describing a behavior in the abnormal dispersion zone.

8.3. Propagation of a MPPEM Wave in a Plasma (or the Dielectric Response of
an Electronic Gas)

8.3.1. Plasma oscillations and pulsations

8.3.1.1. Definition of a plasma

Overall a plasma is neutral and is made up of ions, assumed to be in fixed positions
(due to their high mass which accords them considerable inertia), and by electrons,



246 Basic electromagnetism and materials

assumed to be highly mobile. All of this is in a vacuum. At equilibrium (rest state),
the ion volume densities (ng) and the electron volume densities (n.) are identical.
However, following a Coulombic interaction, if the perturbation obliges an electron
to move from its equilibrium position, then it will have a tendency to return to
original position due to a returning electrical force. Below, electron and ion charges
are denoted by —e and +e, respectively.

8.3.1.2. Study of the displacement of electrons in a plasma subject to a mechanical
perturbation

u(x,t) u(x+dx,t)

X X +dx X

Figure 8.6. Moving a “slice” of plasma.

Supposing that under the influence of a mechanical perturbation, for example,
an acoustic effect, the electrons shown in Figure 8.6 are moved together along the
Ox axis by a small distance u(x,t). The thermal agitation and weights involved are
negligible, much as the frictional or mechanical recall forces, as the electrons are not
tied to any specific atom as is the case for dielectrics.

To start there is a “slice” of electron “fluid” which has a cross-sectional area S
and is placed between x and x + dx at its rest state. The initial corresponding volume
of the sliceis Vy =S dx .

Under the effect of a perturbation, the deformed fluid moves in such a way that
its limits move to x +u(x,t) and x + dx +u(x + dx, t). Therefore its volume also

changes to :
Viess =S [dx + u(x +dx, t) - u(x, t)] .

ou ou
With  u(x +dx, t) = u(x) + dxg , then Vo =S[dx+ dxa—] , and the final
X
variation in volume can be considered as :
ou
ESV:Vpert -Vp=Sdx—.
ox

By denoting the concentration of the charge following perturbation by n. + dn,,
the conservation of charge in the occupied volume before and after the perturbation
can be described by:

n.Vo=(ng +3n;) Vper , 01 in other words,

ou
ne Sdx=(n,+dn,) S [dx +dx a_x] , from which comes
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ou ou ou
n,—+dn, [1 + —j— 0. With —<<1 , we obtain:
ox 19 0x

dne =-n,—.
€ ox
With the ions assumed to be fixed, their density (ng) is unchanged and the total
charge density therefore is given by

p =ngpe - (n, + on,)e.

ou
With ny=n,, then p=-06n, e=n, e —.
o0x
- OE ou
Poisson's equation (div E = i) makes it possible to write — = Be® — . With the
£ 0x gy Ox

limiting condition that E = 0 when 1 = 0, the equation yields

B, t) = 2%5(x, 1) .
€o
This relation ties together the displacement (i(x,t) ) of the electrons to the field (E)
generated by the same displacement. This field is a longitudinal one, as it is parallel
to the displacement x.
On applying the dynamic fundamental relation to the electrons (electrons
localized in the slice of the fluid) we have:

u - d*u  n.e?
m—=-¢ E(x,1), so that +——1=0.
dt? dt>  mgg
. . . n, e .
The introduction of a pulsation to the plasma, defined by o, = , gives
me(
u=Ac""

The latter relationship indicates that the electrons undergo an oscillatory movement
at the “plasma pulsation” ,.

Numerical application
en, = 10%cm™ =102 m? (ionosphere) = v, = 8.97 MHz (decimeter waves).
en, = 10 em>=10*' m? (dense gas discharge)
=v,=175x 10'* Hz (millimeter waves)
en, = 10% cm™ (metal) = vp = 10'6 Hz (UV visible)

To sum, in a plasma the mechanical perturbation that moves electrons forms a
longitudinal field (which has a direction depending on the induced displacement).
The electric field in turn produces an electronic returning force and therefore a
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displacement. This can be verified by studying the behavior of a plasma subject to
an electric field of a form given by E = E ¢'“".

8.3.2. The dielectric response of an electronic gas

As before, the medium is assumed to be neutral overall and consisting of fixed ions
and mobile electrons all in a vacuum. In the rest state the ion volume density (ng)
and the electron volume density (n.) are identical i.e. ny =n,. As above, electron

charges are denoted by —e.

An electric field, acting as the recalling force, (E = Eoei“’t) is applied to

the medium along Ox. It is assumed that there are no frictional forces involved.

Now, this study treats the problem by dealing with the following questions:
1. Looking for the abscissa x, which defines the position of an electron and is a
eiw

solution to the permanent regime of form x = x, ', gives X, with the help of a

fundamental dynamics equation.
2. Give the expression for the polarization due to the displacement of the electrons.

3. By determining the expression for the relative dielectric permittivity [e(®)], also
2

®
called the dielectric function, given in the form ¢, (0)=1 - —]2) , detail what o, is.
®

4. The electric field (E ) now under consideration is that of a plane sinusoidal EM
wave with pulsation denoted by ® and rectilinearly transverse polarized along Ox. It
propagates toward increasing values of z and is such that

E= Emei(mt—g,f) _ Emei(mt—g.f)ﬁx _ Emei(mt—k.z)ﬁxz Eoeimt .
(a) What is the dispersion equation for transversal plane EM waves? Give this
relation with the notations and results of the question.
(b) Wheno < o, , state the exact form and type of the corresponding waves.

(¢) When o > op detail the form (progressive or not) of the waves associated with

the angular frequency and plot the dispersion curve [ ® = f(ck) where k is the wave

vector module and c the speed of light] for these conditions.
(d) In the light of the results conclude about the plasma transparency.

2
5. The value of %, for alkali metals is around 300 nm (A, = adid ). If it can be
®
p
assumed that they can be represented by the electronic gas model, are they
transparent to UV light?

6. Study the (zero) pole of the dielectric function which corresponds to an angular
frequency given by «;, (which is such that g(w; ) =0). Is it possible to demonstrate

that the associated waves are longitudinal?
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Answers
2
1. According to the dynamic fundamental equation, m d_ = —eE, into which
t2
- ot . eEy
substituting x = x, e gives o’m x =-e¢ E, so that x = and x, = .
mo? me?

t

A field moving along Ox given by E = Eoeim results in an oscillating movement

eE,

givenby x = elt.

me?
2. The movement of a charge (-¢) by x is the same as generating a dipole moment
by p = -e x. The corresponding polarization (dipole moment per unit volume) is

2
nge

therefore P=n, p=-n, e x =- E.

me?
3. The dielectric function g() is such that D(w) = g( &,.(®) E(®)
=g E(w) + P(w)

P(w) ne? n,e?

g(w)=1+ so that g, (0) =1 - =g (0) . With o,*= , then:
ggE(w) €oma’ gom
2
®
g (@)=1- —‘2’
®
4.

(a) The equation for the dispersion of progressive plane EM waves with transverse
structures, as here with k following Oz, can be written as k*c* = w’¢,(®). In this

case, g is real. By taking the previous expression for g(m) into the equation for
dispersion, we find:

2
2 O
k2= —|1-—

which is the equation for the dispersion of EM transversal waves in a plasma.

Comment: The above relationship can be obtained more directly from the Maxwell
equations, detailed as Egs. (10), (11), and (13) in Chapter 7, as in:

kEy =0 (1) kBy=0 (2 kxEj=0By. 3)

The equations show by themselves that the EM wave is obligatorily transversal. For
its part, the Maxwell-Ampere equation is written in the form:

. - oE -
rot B =py(j, +¢g a—), with, in this case, j, = pv being the current associated
t

with the displacement of electrons influenced by the oscillating field. As p = -n.e



250 Basic electromagnetism and materials

dx . eEy iwt ... ) i :
and v =—, sowith x = —2¢'® it is possible to state that v = iEoelmt , from

dt mam? ~ mo

. . = . Ne€? - .
which can be obtained j, = —i E . We can remark also this same current can be
mo
- - P .
seen as the  polarization  current jp=—, and thus  with
ot
- n.e? - n.e? - L= .n.e>- -
P=-—C"E=-—"Ey ", we found again : jp = -i——E=j, .
mo? mo® — mo

—_— 2 -
Finally the Maxwell-Ampere relation gives rot B =p, [—i L€ isoij ,
mo

- . 2
from which can be determined that —i(k x Bj)=p, (—i fe®
mo

+ iaoijO .

By  substituting BO from Eq. (3) into the last equation:

2

k7o .nee* . = o, 5 nee
IEEO = po| -1 - +igyo |Eg, from which k* = pyego® - pygg , and then:

me(
2
e fo]
c? o?
o2
(b) When ®<e,, then in turn —g>l, and €,(®w) <0 just as k*<0. k is
®

therefore purely imaginary. Using the electrokinetic notation where k =k'-ik",
then k =-ik"; the wave can be written in the form E = Emei(“’t'lg) :Eme'knzei‘”t.

The upshot is that the wave is no longer propagating but is stationary with an
angular frequency (o). The wave resembles a evanescent wave that has an amplitude

that decrease exponentially with x.

2

®
(¢) Wheno > Op then 1 > —2  and €. (@) >0 andk?>> 0. k is therefore real, so

o>
k =K', and the wave has the form E=E /@) = E @2 = The wave thus is
progressive and does not exhibit a term for absorption (k"=0). The dispersion

equation thus can be written, with the more simple k'=k, as © =,/ 0)12) +c?k? .

The curve due to this equation is shown in Figure 8.7. The slope of the dispersion

curve, v

d . S . .
g = d_(kD , gives v, which is the group velocity. Note that the slope is less

than the slope of the plot ® = ck and therefore less than the speed of light.
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Figure 8.7. Dispersion curve for a plasma.

(d) To conclude, the plasma (or electron gas) acts much as a high band filter toward
incident waves. As indicated in Figure 8.8, the gas is only transparent when
&(®) > 0; that is to say when © > o, . However, when ® <®,,, a component due
&z

D>

to attenuation by e™ “ without a term for propagation, appears.

5.

el )

0
o

0 <0, T

vacuum

Figure 8.8. High band filtering characteristics of a plasma.
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Given that © > ©, corresponds to when A < Ap , waves with lengths less than 2,

can propagate with k"= 0, that is without attenuation or in other terms absorption,
through the medium under consideration. Thus the alkali metals should be
transparent to radiation with wavelengths below 300 nm, and this includes UV
radiation.

6. The condition &g, ) =0 makes it possible to determine w, which in turn

2

®
should be such that g(w; )=1- —;): 0 and that o, = @, . The (zeros) poles of the
oL

dielectric function therefore are equal to the plasma frequency, that is to say the
frequency at which the electron gas undergoes a longitudinal oscillation. The cutoff
frequency (o = m,) of the transversal EM waves corresponds to the longitudinal
oscillation mode of the electron gas. The electrons are subject to displacement
), that is to

say in the longitudinal direction of the field and along the line of electron
displacement.

pulsations, in a direction along that of the associated field (E =E, el

8.4. Propagation of an EM Wave in a Metallic Material (Frictional Forces)

A study of the complex conductivity and the dispersion of waves within a metal can
be carried out by resolving the following question, which considers the velocity (v)
of electrons subject to a Coulombic force generated by an applied alternating field

given by E = Eo exp(iot) .

The question given in Sections 8.2 and 8.3 is revived here except of course the
electrons are now considered to be in a metallic environment so that the volume
density for electron charge is given by p, =-n, e and the electrons are subject to a

frictional force which is in the form f; =- —v, where v and 1 are the conduction
T

velocity and relaxation time, respectively. It is assumed that these conduction
electrons are not subject to returning forces and that their movement can be studied
in one dimension.

1. Give the equation for the movement of each electron and from this determine that

the velocity when v = v, ¢t

2. The material is thought of as a vacuum in which the characteristic conduction
electrons are spread. In the following order, calculate:
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(a) the conduction current density j, =p, v=0, E and express G, as a function

2
n.e

of w,2=

b , and also as a function of the conductivity (o,) for a stationary

gom
regime, i.e., when ®=0;

(b) the current density associated with movement through vacuum (jp,); and

(¢) from (b) derive the total current density (jv) and the conductivity (o), which
appears in its complex form.

3. This question concerns ®t<<1. In copper, 7T= 1014 g , when
v <v, ~100 GHz , we find that ot <1072 <<1.

(a) What form does o, take on?

ivo

(b) Calculate the ratio EDOL for copper where oy = 6 107 0 'm™!. What
i

conclusion can be drawn from the result?

4. The metallic medium is now considered in its entirety, and therefore the
characteristic used is that of its complex relative dielectric permittivity (g,). Give the
form of the displacement current in this medium with g. By giving the equality
between two forms of complex conductivities, each obtained by the two
representations found in questions 2(c) and 4, determine g;, which is defined within
the terms of this question by the relation D =¢, ¢, E.

5. Here the field under consideration is that of a monochromatic planar progressive
electromagnetic (MPPEM) wave which propagates in the same sense as increasing
values of z.

(a) Give the relation for the dispersion of these waves.

(b) For ot >> 1, give the expression for g comparable to that obtained in question
3 above. From the result, draw a conclusion about the nature of the MPPEM wave.
(¢) Here, ot <« 1. Calculate g, and indicate the form of the associated wave.

Answers
1. The fundamental dynamic equation along the direction of the velocity is:
d
F= md—V =>f=—eE- oy , from which the complex terms derived are:
t T
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With £ in the form E = Eoeimt , a solution for v in the form v = \_foeiwt is required.

T . . . odvo . .
By substitution into the differential equation, and with d—_ =1imv, it is possible to
t

t

obtain: imov + —v =—eE, so that following division by el® , the equation

m

T
. m

becomes imoy, + TXO =—eE, .

From this can be derived:

eEjt

m(l +iot)

2.
(a) Ohm's law gives the conduction current associated with the volume density of
electrons (n,), as in:

. n.e*t i n.e*t
jy=pyv=-ngev=—"—E;' =—— E=0, E, so that

m(l +imT) m(l +imT)

_ Nt
m(l +imT)
. . nee’ | somf,t

By introducing  ®,*= into ¢, ,then ¢, =———.

gom ' - 1+iot

When =0 (i.e., under a stationary regime), G, = 0)= Op = 800)2‘[,' , so that it is

p
possible to also state that:
1

1 +iot

S¢ =50
(b) The displacement current associated with a vacuum, given that in a vacuum

D =gy E,e'" ,is

. oD .
Jpo = —=1wgy E
ot
(¢) The total current density is therefore:
sowf,t o2

—+iwgy)E =0 E, from which 6 =¢ I.)
1+iot I +imot

T

Jt = tipo = ( +i®
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3.

(a) With 5, =

— and withot << 1, we have G, = 5.
I+imt

‘JDO‘ _ogolE| g
‘jé‘ SolE| o

v <v, =100 GHz ), the calculation gives:

(b) We have , so that for copper and when ot <<1 (and for

; —11
0e € 10
Mz—or<<—0z—l4z 0'5
|]4| oot Gt 6.10'10”
As a consequence, as long as the frequencies are not too high, i.e.,
v <v, =100 GHz, the displacement current in a vacuum is negligible with respect

to the internal metal conduction current.
In this frequency range, we therefore find that
1

1+imt

8 =9, =50

(9 = Og-
4. WithD=¢gpe, E, it is possible to directly find jp =iwege, E, so here
o= 1imgyE, .

Equalizing the two expressions obtained for o (in 2(c) and just above in this
answer) gives:

2 2 2 :

®5T ®5T o;t(ot +1
ST %t et
io(l +ioT) o(ot —1) o(l + v?1?)

5.
(a) For a transverse MPPEM wave, the dispersion equation can be written with
permittivity in its complex form (g,) as
k*c? = o g, ().

(b) Whenwt >>1, the expression for g (obtained in answer 4) becomes

w2
g=1- (o_g: g, (in its real form). Once again we find the expression previously
given in answer 3 for a problem treated in Section 8.3.2 concerning a plasma
wherein the electrons are assumed to undergo negligible frictional forces. The
MPPEM waves therefore have the same form as those written above such that when
0>, they are progressive and when o < o, they are evanescent.
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() When @ t << 1, then from the answer to question 4, g is given by

2
w51
— P

g=1-i—.
®

The permittivity is complex and the dispersion equation, k?c? = ®” g, (®), which also
. 0} . . .

can be written as k*>= —g_(w), shows that k is complex in thatk =k'-ik" . The

C2

wave therefore can be given in the form:

v o el(wt—kz):e—k"zel(mt—k'z)

term for attenuation pIopagation term

8.5. Uncharged Magnetic Media

8.5.1. Dispersion equation in conducting magnetic media
For the medium under consideration, ¢ represents the dielectric permittivity, its

notation
magnetic permeability p # g , and its conductivity is such that 6, = o . With

the material being electrically neutral in its natural state, then p, =0 and Maxwell's
equations from Section 5.3 can be written as:

- —. 0B
dvE=0 (1) rotE + 6_ =0 3
ot
— . . E - E
divB=0 2) rot B = u{jé + 866—} :MIZGE + 5%} 4)
t

For MPPEM waves with the form E = Em exp[i(ot - ED] , Egs. (1), (2), and (3)
respectively give:
kE=0 (I  kB=0 ()  kxE=o0B (3.
These relationships were derived from calculations shown in Section 7.1.4 from

which the results were equally applicable to amplitudes (with index m) as complex
vectors, as all that was necessary was to multiply, or divide, the two terms by

expli(ot - k)] .
Once again, the structure of the MPPEM wave is the same as if in a vacuum
(transverse wave). Equation (4) details this more specifically, in that
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i8]

{—ikx

product given by @x(bx¢)= (ac)b- (ab) ¢, and with k L E, from eqn (1°), then:

- OE
pl:j( + SE_:| , so that with Eq. (3”), it is possible to state that

e |Im

X E} = ]J.|:(SE + icosEJ . Using the formula for the double vectorial

N SEa o = . . . . .
1—E = 1usco(1 + '—]E, from which comes the dispersion equation, as in:
® 10

k2= uam2(1 ; iij . (5)

we

8.5.2. Impedance characteristics (when k is real)
When the magnetic permeability (n) is real, B and H are in phase. Similarly, when

_ - - kxE
k is real, B and E are related by B= X and also are in phase. Thus

()]
E=2B=2"H sothat E=ZH with z= 2"
k k k

E
Therefore, Z= —, and as E is expressed in V m" and H in A m”, Z has the
H

dimensions V A™". The Z corresponds to an impedance that is characteristic of the
medium under study and is dependent on .
In addition, when k, p, and € are real, according to the preceding equation,

we find that k = o4/ € 1 , and therefore Z also is real and has a value

z=|=. (©6)
€

On setting Z; = ,“—0: 377 Q) (the characteristic impedance of a vacuum), the
€0

characteristic impedance of a medium is given by Z = \/E— Ho [Hr , so that
€ \/ €0 \, €

In general terms, the complex index is defined by k = 22 ,s0 k'-1k"= g(n' -in").
c c
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With a medium assumed to be nonabsorbent, then k" = 0. Therefore, k = k' is real

.. ® .
and n"=0, so that n=n'. Under these conditions, k=n— , and with
c

® . . .
k=o sp=(o\/eo po\/sr T, =—\/sr L, , it is possible to derive: n= /g, N, .
c

As Z=12, ,p—r: Zy s , the final calculation gives:
81‘ “’I‘ 81‘
z=-"7,. (8)
n

8.6. Problems
8.6.1. The complex forms for polarization and dielectric permittivity

This question concerns a dielectric that is linear, homogeneous, and isotropic (lhi)
and contains N identical molecules per unit volume. Each molecule exhibits in its
periphery a free electron with a charge denoted by —e. The dielectric is subject to an
electric field applied along the Ox axis, and the polarization of the medium also is
studied along that axis while considering that each peripheral electron is subject to a
Coulombic force. This force moves the electron from its equilibrium position, to
which it tends to return due to a returning force (f;) given by f. =-m wy?x, where

®, is homogeneous and of constant angular frequency, and also due to a frictional

d
force (f;) which tends to brake the movement and is given by f; = - mFd—X, where I"
t

is a homogenous constant that is inverse with respect to time. The movement of the
ions is assumed to be negligible given that their mass is considerably greater than
that of the electrons.

1. Calculations for real positions:

(a) With the electric field being given by E(t) = E( cos wt, write the fundamental
dynamic equation.

(b) From the above equation determine the differential equation that describes the
displacement in x of each electron.

(¢) Under a forced regime, which corresponds to the particular solution obtained
from the second term of the differential equation, the solution is of the form
x(t) =x( cos(mt - @) . Determine Xy and ¢. Note that in order to carry this out, it is
possible to associate complex numbers to x(t) and E(t) such that
X =Xq exp(-jp) exp(jot) = X, exp(jot), with X, =x; exp(-jp) as the complex
amplitude and E(t) = E; exp(jot).
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(d) Give the formula of the dipole moment induced in each individual molecule
(which are assumed to not have mutual interactions). From this derive the real
polarization given by P(t).

(e) Is this expression an equation of instantaneous proportionality between the
response of the system [P(t)] and its excitation [E(t)]? Give a conclusion concerning
the dephasing between the establishment of the polarization and the application of
the electric field.

2. Calculation of the complex polarization (P) and the complex induction (D):

(a) With the help of the results gained from question 1, give P along with its
complex amplitude P,,.

(b) Recall the defining relationship between the complex susceptibility from which
can be given the expression for y(®).

(¢) Give the relation that brings together the complex induction and the complex
electric field and which permits a definition of the complex permittivity (g;). From
this, derive the expression for g(®).

3. Calculation for the real electric induction (when & = gjg, ):

(a) Withe =¢'-je" give the expression for the real part of the electric induction.

(b) Show how the real electric induction gives rise to a dephasing with respect to
the real electric field. Express this dephasing as a function of ¢” and &”°.

Answers
1.

(a) The fundamental dynamic equation S E, ..,=m7 , makes it possible to state
applied
that through OX, Fcouomp + Fr + Fr=m d*x/dt’ so that

d d?
- ¢ E(t) - moy*x - ml"—x= m x .
dt?
(b) The differential equation that describes the movement, with E(t) = E cos ot,

d2x

L dx e
therefore is given by +T d—+ wy*x =-—E cos ot .
t m

dt?
(¢) In order to resolve a differential equation of the second order the solution can be
found by adding to a general solution a second term specific to the equation with the
second term.

Under a permanent regime, that is when there are forcing oscillations
(produced by a Coulombic force given by cos wt) applied over a long period of time,
the movement is dominated by a specific solution given by:

x(t) =x¢ cos(wt - @) .
By associating with x(t) and E(t) the complex numbers,
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X =X, exp(-jo) exp(jot) = X, exp(jot) , where x, =X exp(-j¢) is the complex
d?x

=-0’X .
2

d
amplitude, so E(t) = E; exp(jot)], and hence d—§ = jox, and
t

The differential equation then becomes - w?*x +jol'x + wy2x =- —E . By dividing
m
the two terms by ¢, the result is:
. e
- 0’xy Hjol'xy + my’x, =- ;Eo , so that

(S

X = - Ey=x, ¢1?.
20 . 0 0
m[(co(z) - 032) + joI]
e .
From z,=-%x4= , where c= —E;, a=(0p?-®?), and b=ol, it is
20 20 . 0 0
a+ib m
. . ac —ibc . i S
possible to derive z, = =u-iv=pe =|z9| ¢?® . Then
a?+b?
c e .
|Zg| = p = v uHv2= = E(, from which we find

Jaz+ b2 m[\/ (03 — 0?)? + 02?]

that:

€

_ m[\/ ((o% — P+ 0’?]

X Eg

(in which it can be algebraically verified if Eg moves according to positive values of
X, and thereby if the electrons move toward negative values of x, as detailed in the
figure below);

displacement _of —e _
toward x <0 + £ >
—

o » x
E—
D displacement _of —e
E towards x > 0
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and also that tanf = LI tan(-@) = - tan @, so that:
-v

u b
¢ = Arc tan—= Arc tan —= Arc tan .
v a (co(z) - coz)

To conclude, the movement of an oscillator is cosinusoidal and undergoes the
same pulsation (w) as the excitation force, given by F- =-¢ E cos ot, the same
amplitude (xo) and the same dephasing (¢) with respect to E. The resonance
pulsation is such that x, is at a maximum. IfI" = 0, then the oscillator is unrestricted
and X, is at a maximum when o = ) .

(d) Moving a charge (q) by a distance (x) is the same as applying to the system a
dipole moment given by p = gx (as detailed in Section 2.2.2.1.). Similarly, moving
an electronic charge (-¢) by x is the same as applying a dipole moment p = - ¢ X, so
that:

eZ

pL=-eXxq cos (ot - )= Eycos (ot - @) .

m[\/ ((o% — P+ o’?]
The polarization P = ) n;q;5; can be written as P=N p=-e¢ N x, and hence

1

Ne? 1
P =

Eg cos (ot-¢) .

m [\/ (03 — ) + 0T?]

(e) With the applied field being given by cos mt, there is no proportionality between
the instantaneous polarization, given by P(t) =P, cos (ot-¢) and the instantaneous
field, given by E(t) = E cos wt. The polarization is established with a phase delay
(o) with respect to the applied electric field.

2.
(a) The complex polarization is:
P=-Nex=-Nex; exp(jp) exp(jot) =- N e X, exp(jot) = Py exp(jot), from
which

Ne?

EO :_Nexo exp(_j(P):_Nezo = E0:P0 e_j(p ,Wlth

m[(0F — ®%) + joI]
Ne? 1

PO =
m [\/((o% —w2)2+m2F2]

Eq and ¢= Arc tan

ol’
(-]
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(b) The complex susceptibility is defined by P =¢, y E, which means that

Py exp(jot) = g x Egexp(jot) =&y x Egexp(jot) .
From this can be immediately derived that:

Py =¢ X Eg
Ne? _ Ne?
= 5 ez EO = Z - 2 2 .
m{(05 — o) + jol'] meg[(wy — ©7) + jol']
(¢) Here
D=¢gy E+P P .
= g=g, + ==¢g, + = +5)= )
—¢E €=¢g) E gy teo x =€ (1 +x)=¢g &
Ne? Ne?
Sog =1+y=1+ 3 ez , and by making w,*= © , we find
- meg[(0y —0”) + joI'] me
o)

that: ¢. =1+ .
B [(0f — ©%) + joI]

3.
(@) Witheg=¢'-je", D=¢E=(¢'-je") E and
E =E, exp(jot) = E; coswt +j E sinwt
= D =¢'(E( cosot +j E\ sinnt) - j &"E( cosot + &"E(, sinwt, and
D =R(D) = (¢'cos ot + &"sin wt) E , or:

D = Acos ot + Bsin ot , with A = ¢'Ej and B = ¢"E, .

(b) D therefore is given by D= A cos ot + B sin ot , which can be changed to
D =C cos (ot - @) . In effect, if we make:

A=Ccos o B
B=Csin g = C=JA*+B° andtg(p:X,then

D = A cos ot + B sin ot = C cos ¢ cos ot + C sin ¢ sin ot = C cos (ot - @) .

Consequently, the real induction is

D =C cos (ot - @), with C:\/A2+B2:E0«/a'2+a"2 ,tgo=

Finally, this can be written as:

"

D=Ccos(ot-¢9)=Egve'>+¢"? cos (ot - @) , with ¢ = Arc tang—.
8!
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8.6.2. A study of the electrical properties of a metal using the displacement law of
electrons by x and the form of the induced electronic polarization (based on
Section 8.4)

This exercise concerns the polarization, conductivity, and optical properties of a
metal assumed to consist of a collection of N fixed ions (per unit volume) with N (N
= n.) free electrons, there being one free electron for each atom, of mass and charge
denoted, respectively, by m and —e. All are assumed to be in a vacuum with a
permittivity denoted by €. The electronic gas is subjected to the following forces:

¢ a Coulombic force induced by an alternating field (applied along Ox) that is given

in its complex form as E = EO exp(iot) ; and

- dx
e a frictional force given by F; = _max

T dt
The metal of choice for this problem is copper, which has a relaxation time (7)
of 10 sec. Its conductivity is denoted by o(0) and is approximately equal to 6 x
10" Q' m™'. The plasma angular frequency (wp) is defined by the relationship

5 2
.

o and typically is of the order of 10" rad sec™.

meg

1. Under a forcing regime, we are looking for the expression for displacement in the
form X = X exp(iot) (complex expression). Determine X, .

2. Give the expression for the complex polarization (P ) as a function of

1+iot
. . . -~ - D

3. The complex conductivity (o) is defined in the general equation: j = oE = 6__
- t

(a) By giving D as a function notably of polarization, give the equation for o that

will then be used to give the static conductivity [c(0)] which describes the
conductivity when the frequency is zero and can be given as a function of N, q, T,
and m.

(b) Give the physical significance of the two terms that appear in the equation for c.

(c) Express o(0) and then €, as a function of o,

Answers

1. The dynamic fundamental solution given for zﬁapplied = my moving along Ox
md d?

gives _mex eE =m L so that

T dt dee’



264 Basic electromagnetism and materials

d*x N 1 dx e
dt2  t dt m
The solution for this differential equation, under a forcing regime where
E=E, exp(imt), is required in the form x = x, exp(iot). With X =iwx and

X = —®*x substituted into the differential equation, it is possible to obtain
o) € . oL .
- 07X +1:§0 =-—E,, following division of the two terms by exp(iwt), and

hence :

e —et
X = E\=
Xp 077 .
{ ) .(D} imo[l + iot]
ml@?—i—
T

2. The electronic polarization is such that for each individual electron (of charge —¢)
is displaced by x by the electric field and generates a dipole moment given by

u = - ex. Denoting the electron density by n., the corresponding polarization is given
nee’t 1

E,.

by P=-n,ex=

. ——Eoe/®". It is interesting to note that by
imo [1+ioT]
2

introducing ©,*= Be® , it is possible to write that:
meg
2
p-_ (DPS(.)’C Eoejm '
o[l + iwT]
3.
(a) With D=¢, E + P, it is possible to state that
oD OE oP 2 1
j=oE=-—=¢) —+—= io{sog+ ?ee : - E} . It is possible to
ot ot ot imo 1+iot
immediately derive the relationship
. n.e? 1
o =imgy + — T—.:Q(OJ) :
m [l+ioT]
) n.e’*t
From this, when ® =0, ¢ =c(0) = , and finally,
m
0
o =imgy + L').
[1+ioT]

. . O0E . .
(b) The first term given as iwg, corresponds to g 6__ This term can be considered
t

as being tied to the displacement current through a vacuum, as in 64, = i®gy. The
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o(0)
[1+iwt]
polarization of the material (that is to say inside the material). This conductivity is
an internal conductivity

oP .
second term, , corresponds to 5_ , meaning the current due to the volume

c(0)
c. = ——.
—internal [+ i(D’l:]
. . oD OE . .
(¢) With D=¢4 ¢, E, wehave j=cE = E_: €0, E_: iomege, E, from which
C =i0g) g, .
. . . . . c(0) ..
By equalizing the preceding expression for conductivity, ¢ =imgy +————, itis
[1+imT]
1 0 i 0
possible to obtain g, =1 +- G(. ) =1- L o .) .
10gg [1+107] e[l + 101]
2
(d) With o(0)= "
o2 = n.e’ =
P me
2 2 .
o T oL T[oT +1]
G(O):mpzsor,and g =1-i P =1--2

o[l + io7] o[l + w?1?]



Chapter 9
Electromagnetic Field Sources,
Dipolar Radiation, and Antennae

9.1. Introduction

Until now the properties of electromagnetic (EM) waves have been covered without
considering the mechanisms for their production or destruction. In fact, the laws of
electromagnetism and classic mechanics applied to quasipoint charges such as
electrons gives rise to a theory for wave emission, the principal result of which is
that when a particle undergoes an acceleration, an EM wave may be emitted. In this
chapter, it will be shown how the sinusoidal oscillation of an electric dipole can
yield an EM wave. Electric dipolar radiation can be obtained by either sinusoidally
oscillating the distance between dipolar charges or the actual dipolar charges

themselves, as long as the dipolar moment is in the formp =p e/, This

configuration is used in antennae, the principal types of which are detailed below
with particular attention being paid to the half-wave antenna.

A preliminary determination of V and A potentials, associated with the
dipoles, is required to calculate the EM radiation field. In addition, this calculation
requires the solutions to Poisson's equations, which guide the propagation of
potentials, generally called “retarded potentials”.

In this chapter we will limit ourselves to the study of radiation in a vacuum,
while in next chapters (Chapter 10 among others) we will look at interactions
between EM waves and materials.

Complex notation: It is worth noting that if a signal is in the form
g=G,, cos(ot-@), the complex notation isg=R(G,, ¢! ¢7?), and that by
convention we can write more simply g=G, el 39 1n this case, the complex

amplitude is G = G, o , which makes it possible to state that g= G et Strictly
speaking, and as mentioned in Chapter 6, it is best to write g with an underline so

that the equation becomes g = G el®t ; however, the simplified if criticized notation

also is used. If g and G, are the vectors g and Gm, G becomes a complex vector
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denoted by Q , which generally has the components Gy, Gy, and G,. We thus have

for the differentiation or integration operations of g = G ¢/ with respect to time, the
following:

d dG . dG ;
= d—g = d—_ e’®", so by identification d__ =joG (= jo G,, €7?); and
t t t

1 ; 1
[gdt=— G &' = —qg,
jo jo

2 [gdt=([Gdt)e!™ , and [Gdt= ,lg.
jo

9.2. The Lorentz Gauge and Retarded Potentials
9.2.1. Lorentz's gauge
9.2.1.1. Poisson's equations for potentials within an approximation of
quasistationary states
In a homogeneous dielectric media, and under a regime of an approximation of
quasistationary states (AQSS), we have:
E = —grad v—%A (1) B=rot A (2)

The V and A potentials are expressed as a function of the deliberately applied and
acting charge (p, ) and current (j,) densities, as in:

1 d - S.d
v=— (2= 3 A=E = @
4me r 4n r

. 0 . .
Under an AQSS regime, % = 0, and the equation for the conservation of charge

gives div EZ: 0 , from which can be deduced that div A =0 (see Section 1.4.5). In

addition, the potentials follow the Poisson equations, so that:

Aav+ P (5) AA +yj, =0 (6)
€
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9.2.1.2. Under rapidly changing regimes
For systems subject to rapid variations, the displacement current must be considered

L= oD ) - - _
by adding in jp = 6_ to the conduction current j, = oE, so that he current density
t

which now intervenes is:

J=h+-
The V and A potentials are instantaneous potentials calculated in Egs.
(3) and (4) for a time t at a certain point (r) from charges and currents at the same t.
Propagation does not intervene in these equations for the potentials. The

instantaneous potentials V and A thus appear as intermediates in the calculation of
E and B, having brought in a term for the displacement currents rather than the
propagation. In effect, in Eq. (4), where 3 = je + ED now takes the place of jz , A

, . . - D , , .
is bound to the derivative of D (in terms of jp = 6_) and is not an intermediate in
t

the simple calculation of E in Eq. (1) and D, because knowledge of A supposes

that the magnitude of D , or rather the derivative of D , 1s known.
In order to resolve the problem more simply, the displacement currents
are ignored and other potentials are used, such as those defined and denoted below

as V,and Ar , to represent the propagation.

9.2.1.3. Lorentz's gauge

In Maxwell's equations, div B =0 so that B is still derived from a potential vector
(;\r ), such that:

B=rotA,. (7)

—- 0B —(= 0A
The equation rotE = —g becomes rot[E + 5 L ] =0, which indicates that
t

- 0A
E + —L is derived from a scalar potential (V,) such that:

ot
. — A
E = —gradv, - —-. (8)
ot
In a homogeneous media, possibly charged, the Poisson equation, div E = &, can
€

be written as:
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0 .. =
AV, - Z@ivA) =L ()
ot €
iy : — (- OE] .
In addition, Ampere's theorem given by rotB = p| j, + eg , brings us to:
— e OE
rotB = rotrotA, = u(jl + 86—] (10)
t

With rot rot = gr?i div — A, and by bringing Eq. (8) into Eq. (10), we have:

i B - — vV, A
grad divA, —AA,=p| j, —¢ grad—L—-e—L|. (11)
) ot ot?

Equations (9) and (10) can be rewritten in the following form to give Poisson's
equations for a rapidly varying regime:

oV
AV, —gnd Yt PL
atz

= _%(divzir e avr) 9)

€ ot

. A, - oV,
AA,-ep L+ jy=grad(divA, + ep 6tr) (11°)

ot?

In addition, Eq. (7), B = rotA,,

ﬁz&r = ﬁ;“r when ;\r = A, + gradf .

can define only Ar to the closest gradient, as

. . ... of - —
For its part, V; can be determined only to within 5, as A=A, — gradf

substituted into Eq. (8) gives:

- R A, ——of
E =-grad V, - OAr + grada—
ot ot

— ) 0A,

= —grad [Vr _6_j - OAr

ot ot

— . 0A ! of
=—gradV, ——L, with V, =V, - —.
ot ot

The change of (V,, Ar) to (Vr', A'r) is called a gauge transformation, as in:

, of
Ve > Ve =V
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A, - A=A, +gradf .

The determination of the potentials is carried out by imposing a measuring
condition so as to find V, and Ar; f is an arbitrary function called a gauge

function or simply a gauge. The invariance of E and B is termed the EM field
gauge invariance.

The most convenient method to determine the potentials therefore is to
impose on ;\r and V, a condition that simplifies Eqs. (9) and (11) by removing in
both cases the terms in parentheses. This condition,

divA, + e a;f =0, (12

. . . .. 0OV .
is called Lorentz's gauge, noting when in addition 8_ = 0 it takes the place of the
t
condition div A = 0 for stationary regimes.
Equations (9’) and (10’) therefore yield:

oV
AV, enZr 1 PL_ o (13)
ot? €
— %A -
AAr-E]J, r+uJ/:0 (14)

ot?

In these equations, V, and Ar are decoupled, in contrast to Egs. (9”) and (11°), and

follow Egs. (13) and (14) if f satisfies the wave equations discussed in Comment 3
below. Equations (13) and (14) generalize Egs. (5) and (6) to rapidly varying
regimes.

1
Comment 1: We have epu=¢gj e U = —&r M where ¢, p, =n?
c

21
(withp, =1, we again find Maxwell's equation, &, =n?), so that ¢ p= r_ —.
¢z v?
Equations (13) and (14) can also be written as:
1 62Vr n Py

AV, -
Ty oo €

=0

— 2

T

g =0

r-—

vZ ot?
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Comment 2: In a vacuum without charge or current, Egs. (13) and (14) reduce
to:

1 02V, — 1 A
AV, - ——L =0 and AA;-— L=0
¢ ot? ¢ ot
By convention, the following operators are noted thus:
1 o2
A - ——=101, called the d'Alembertian, = [1V, =0
c? ot?
-1 0 . -
A-——= @5, called the d'Alembertian vector = @ A=0.
c? ot?

Comment 3: A Lorentz condition is imposed on the gauge function, in which case,

we still find that divA, + ep

vy _ 0
ot
S — , of
With A = A +gradf and V, =V, - = we also have:

div A, =div A, + divgradf (a); and

" av, " oV, o o°f
ot at o

(b).

By adding each successive member in (a) and (b), we obtain

o*f

atz

~ oV, - oV, -
0 = div A, +ep atr =div A, +ep 6tr +div gradf —ep

= 0 as the Lorentzian gauge

e o f
= divgradf —ep—=20
atZ
1 o
= Af - — =0
v ot?

Finally, Lorentz's gauge condition requires that f satisfies a wave
equation.

Comment 4: This additional remark concerns Coulomb's gauge. If there are no
charges or currents, then Eq. (9) becomes:

o, . =
AV; + —(divA;) =0
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If V, is chosen so that AV, =0 (Coulomb's gauge), we than have

div Ar =0 as in the stationary regime.

9.2.2. Equation for the propagation of potentials and retarded potentials

Figure 9.1. Potential generated by a charge [q(t)] throughout dr.

Equations (13) and (14) are the equations for propagation and they can be integrated
by hypothesizing that at a given instant (t), a charge [q(t)] is in an elementary
volume (dt), which is assumed to be spherical given the symmetry caused by the
isotopic propagation and is situated at a point (M) as described in Figure 9.1. The
action of the charge depends only on the distance (r) from which its effect is studied.
Within the spherical symmetry of the problem, the Laplacian of V. is in the form:
2
AV, = 1Y) ,
r or?

And Eq. (13) gives:

10°(rvVy) 1 &*(V;) L P

r or? vz ot? I3

=0 (13)

Outside of the element dt, the singularity of which can be considered to be a
quasipoint, we have p = 0, and therefore can write for the outside that:
12(rV;) 1.0%(Ve) 0 o (V) 1 (Vi)
r or2 v? ot? or? vz ot?
Equation (15) is for propagation, and the function rV, at t and r has a solution in
the form:

=0. (15

r r
Vi (r,t) = G(t-—) + F(t+—).
v v
As the source is at M and it is only waves emitted toward r > 0 that have physical

solutions which are in the form G(t - L) , we therefore find:
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In order to determine G, a limiting scenario might be used where r — 0 and in

1 , 10%(rV;)
Eq. (13) we find that — becomes very large, just as — o
r r or

lﬁz(rvr)»iaz(vr)_

r or? v:  ot?

. 1 az(rvr) Py
Equation (13") thus tends toward —T+—' =0, so that:
r or €

av, +PL=0 . (137
€
Equation (13') therefore tends toward the more usual Poisson equation, which

has a solution that is for r -0 (point charge at M):

, which is such that:

t t
Vo0 = 3 6o that also, [r V. (r0,_ o =32
4mer 4me
From this can be determined that
r q(t)
{G[t ——H =[r Vi (r,0] 50 " ame L G(t) = q(t)
v i =—.
r—0 4TCS
=G(t)
And therefore, from Eq. (16), we find:
r
qt——)
V, (1) = —. (17)
4mer

If in a volume (V) there is a distribution of charges q(t), then there is an
accumulation of potentials from the elementary charges such that q(t) = p(t) dr and

the general expression for the potential at t is:
\
V()= — _[j'_[—dr . (18)
4ne r

In addition, Eq. (14) yields potential vector components similar to those of Eq.
(13), with the condition that 1/¢ is replaced by pu. The components of the potential
vector thus have solutions of the type given by Eq. (18) in which 1/¢ must be
replaced by p. These solutions can be brought together in a single equation:

- r
i [+
A )= i[ﬂ%dr. (19)



Chapter 9. Sources, dipolar radiation, and antennae 275

For a distribution of rectilinear currents, we have:

A= [~ (19°)
47 r
To conclude, we thus obtain as a function of the active charges and currents at an

instant (t - 1) the potentials V, and Ar for t and r with a delay of L , which takes
v v

into account the duration of the propagation. The potentials V, and Ar are delayed

potentials and substituted into Egs. (7) and (8) yield E and B.

9.3. Dipole Field at a Great Distance

9.3.1. Expression for the potential vector A generated by a domain D
9.3.1.1. General formula

domain D

Figure 9.2. Distribution of charges (q;) placed around O by O_Mi = Si .

Given an element, with a volume (dt;) and an associated charge (q;) such that
q; = p dr; , which is within a domain (D) that has a distribution of q; charges placed
around O by OM;, we can associate with D a nonzero dipole moment given by
P =q; # 0 where 5, = OM; .
i
Of interest is the form of the potential vector A ata point (P) located with
respect to the origin (O) at the heart of D and the distribution of charges, by

OP =7 =rii . Given Eq. (19) and that the system is in a vacuum, with , = M;P , its

possible to write that:

15
A, () =A(P,) =Z—° [[[——Ldr;.
T

5

It is possible to state that if v;(t)is the velocity of q; associated with dt; in D,

with j = p¥;, we have jdt; = pv;dt; = V;pdt; = ¥;q;, and can then write:
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AP, :Z—OZ—C, (20)

where the summation is overall the charges within D.
In order to calculate the electromagnetic field that comes from this potential
vector, the space can be divided into three:
e a zone defined by r<<X\, inside which the field can be thought of as
quasistationary;
e an intermediate zone where r = A ; and
e an external zone for which r>> A and where the radiation is the concern of this
study.

9.3.1.2. The form of A in the radiation zone
In the outer zone, it can be assumed that r; = M;P ~ r, as all the points in D are, in
practical terms, a distance r from P. From this, Eq. (20) can be rewritten so that

APH=20yqu,-5). @)
4nr C

dOM; . .
With v, = i L, we have Y q;V;(t) = p(t), where p(t) is the derivative with
t i

respect to time of the resultant dipole moment due to all charges in D. This finally
gives:

KX T
B p(t——)
APn="0__ ¢ @)
4r r

It is interesting to note that the form of A therefore corresponds to a spherical wave,
which at a great distance from D would be considered to be a source generating a
plane wave (see Section 6.2.2.3). Indeed, at a great distance from the source, the
surface of such a sphere can be associated with a tangential plane wave. With

r dt .
t=t- —,and as — =1, it can also be noted that:

c dt

dp(r) d dt d
dt drt dt

The derivative therefore can be taken indifferently in respect of t or .
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9.3.2. Expression for the electromagnetic field in the radiation zone (r >>2)

With B =rotA, and placing by notation, P(t——)=p(t) =p, (which in effect
c

means placing into lower magnitudes with respect to the index 1):

- r

- o " p(t——) o — P
B(P,t) =rot A(P,t)=-Lrot| —< | =Crot—%
4n r 47 r

By using rot(aA) = arotA + grada x A , it is possible to write:

- — 1 - . . .
B= H—Oro‘cpT +-H0 orad grad—xp,, the second term of which brings in
4nr 4 r
— 1 T u . . 1 .
grad —=—-— =— — aterm that varies with respect to — and at a great distance
r r r? r?

1
becomes negligible with respect to the first term which only varies as — . Therefore:
r

B~ roip.. (22
4mr

.. . . — u = = 0 _
A quite involved calculation then gives rotp,=-—xp., where p = ;p(‘t). In
c T
order to get this result, one can verify that:

¢ on the one hand, we have

— :i op, (1) _i é’Py(f)
[rotpTl( dy{ ot } dz{ ot }

2 0? . 25
_op, 0t Py on {gmx 0 p(r)}

o> oy Ot Oz 2y

so that by reproducing the calculation in three dimensions, we find:
Eﬁf)r gradr x oP(v) ; and
or?
e on the other hand, gradt = L ~ 2 This result can be obtained by calculating,
cr c
_ 6‘[? 1 6 1/2 X .
for example, that [gradt], =— = ———(x*+y*+ 2% '~ = ——, from which we
O0x c Ox cr

have:

S 1 - - .
gradt = ——[xi + yj + zk] = ——
cr cr
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. s u o=
On taking the result rotp, = —— x p. into Eq. (22), we finally reach:
c

Mo ﬁ(t) x U
4nc r

B= (23)

In the plane wave approximation, for an electric field, E = cBx 1, so that :
= I I
E = ——[p(t)xu]xu. (24)

To conclude, if fﬂ(t)= 0, the Egs. (23) and (24) show that the radiated
magnetic field is zero. By consequence, only accelerated charges radiate, as

- dv;
PZZ% :
1

dt
wave”.

and the wave corresponding to fﬂi 0 is termed the “acceleration

9.3.3. Power radiated by a dipole
ExB
Ko

Staying with the planar wave approximation, so that E = ¢cBx i, S can be written
as:

In vacuum, the Poynting vector is defined as : S = (Chapter 7, Section 7.3.).

u.

g =
Ko
By taking Eq. (23) and substituting it into this equation, for an angle (0) between

fﬂ(t) and U as shown in Figure 9.3(a), we find:

=2
St POgg o 25

l6m?c 12

If 6 =0, then in other words if the radiation intensity is observed in the direction
of p it would be found to be zero.
T

However, the radiation maximum is found when 6 = —.
2
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0

I
[

v
NN

D
Il
1

Il

2 ®

Figure 9.3. Definition of 6 (a) and the variation of S with 6 (b).

The variation in S as a function of 0 is represented in Figure 9.3.b, and it

can be seen that |S| is at a maximum when 0 = + ,and S=0when 6=0.
2

dz

=3}

Figure 9.4. Calculation of the flux ( S ) through a sphere (2) with center O.

The power radiated through a surface can be calculated from the flux of S
through the total surface (see Section 7.3.1.2). For the spherical surface under
consideration, the total radiation is given by a calculation of the flux S across the
sphere (¥) around a center O of radius 1, as detailed in Figure 9.4.

As S//1d?L), we have P= (j‘:fS.dzﬁl . Withd*X =r%in0 dO d¢, so that also

)
dX =2m 2 sinb dO , we find that
6=m . O6=m
P= [S 2msin®do= ~0p2() [ sin>0do.
0=0 8nc 0=0
0=n cos 0=—1 4
With: _[ sin®0.do = — j sin® 0 d(cos0) = —, we obtain the Larmor equation:
0=0 cos =1 3

Lo = 1 2 .
P=—Lp(1)=——Sp (). (26)
6mc 4meg 3¢
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9.4. Antennas
9.4.1. Principle: a short antenna where ( << A

9.4.1.1. Oscillating charge (or current) and oscillating dipole equivalency: Hertz's

dipole
A - -
z .= 1
P
€
N T
0
0]
e >y
|
[}
X :M

Figure 9.5. Positions taken up by an oscillating charge.

A charge (Q,,) is moved from a point (M) toward N, as shown in Figure 9.5. This
movement also means that in going from its initial position, through the middle
point (O), there is a dipole moment represented by:

Bm=Qun MN = Q,, §,, (- Quat M and Q, at N).

If we now impose upon Q,, an oscillating elongation that is harmonic and linear
represented by S = 5§ cosmt = s exp(jot) (by convention the notation Re is omitted

in front of the complex term), then in a manner similar to the generation of a dipole
with an instantaneous moment, it can be considered that:

P(t) =Qu S=Q Spcosot=Q,, sexp(jot), 27
where p(t) = Q,, Spcosmt =P, cosot=p,, exp(jot) is the sinusoidal electric
dipole moment created by charge oscillation. This dipole is called Hertz's dipole,
and given Eq. (27) describing its moment, it can also be seen as a two oscillating

charges, placed at M and N such that MN = Sn > and with an instantaneous value
given by:
|Q| = |Qm cos Q)t| = |Qm exp(jcot)| .

It also is possible therefore to think that between the two charges at M and N
there is a alternating current, as shown in Figure 9.6, and of a value given by:

I= (ii—Q =joQexp(jot) =1, exp(jot), (28)
t

where I,,=jo Q,,, and with j = exp[jn/2] the dephasing of n/2 is brought in.
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Figure 9.6. Variations in charges and current with time (t).
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~

N
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Dividing Eq. (28) by (27), it is possible to form a relation between p(t) and I(t) ,
as in

p="m1n=-Lmypy . (29
j® ®

9.4.1.2. Practical elements of a Hertzian dipole antenna
The left-hand side of Figure 9.6 means that in practical terms an antenna can be

1
represented by two wires of length — = Sm connected by a coaxial cable, as in
2

Figure 9.7, so that the resultant current is always zero. The antenna is traversed by a
sinusoidal current given by I = I, exp(jot).

Q A
ITé 02 =18y/2
Oscillator
— 1
IT 02 =1sy/2
Q Y.

Figure 9.7. Hertzian dipole.
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9.4.1.3. Radiation field due to a Hertzian dipole

Given that the two charges are separated by a small distance ( /), seen from P in the
radiation zone, they can be assumed equivalent to a point charge. Evidently, Figure
9.5 is not to scale as in reality MN= ¢ is much greater than OP =r. The two charges
are in effect the same distance (r) from P and the wave is pretty much a plane wave
at P. These assumptions were used in Section 9.3 to perform the calculations,

leading in particular to an expression for E in Eq. (24).

From Figures 9.5 and 9.7, p(t) =Q, Spexp(jot) = Q,, ¢ exp(jot) €, , so we

have
p(t) =- (1) = - @’p(7) €, . (30)
. : . . . OP T :
In terms of spherical coordinates, and with U =¢€, = E = — (from Figure
r

9.5), the double vectorial product given in Eq. (24) is such that:

cos0 1 1 0 1 0
[6, x 8 ]|x€ =1| —sin® [x[0[¢x|0|=|0 |x|0|=]|sinB|=sin6 &,
0 0 0 sin© 0 0
From this can be deduced that:
E= ”—01[5(1) x| xi = - Ho®”  )sin6 &, (3D
4t 4mr
. .. . 2 27
so that in addition, with ®? = k?¢? = ,and k = —, we find:
Eoto A
- 2 T
E=- p(t)sin@ ég = — p(t)sinfeg. (32)
4megr goAr

It is possible to see that a field radiated by a Hertzian dipole has only one
component with respect to €y, is inversely proportional to r, but also depends on r

and t through the term p(t).

9.4.1.4. Radiation power of a Hertzian dipole when ( = s,, << 1

In supposing that /= s, << A, for any given moment the intensity (I) can be
assumed constant over the entire length (/) of the dipole, which is itself considered
in practical terms much as a single point from the external position (P) situated
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outside the radiation zone, so that r >> A. Larmor's formula given in Eq. (26),
obtained by removing p from the integral, therefore can be applied. Thus we find
d
that with Q = Q,, coswt, and that = d_Q =- o Q,, sinwt = I, sinwt, then
t
— T 2 : o2 g2 4 2
p= Qp ¢cosot, and p=-Q,,lw” coswt, from which p*=Q;,{“® cos” ot and

we now have:

2,2 4
/
<p>:“_0p'2 () = MOQm—(D<0052 (ot> ,
61c 61cC

By taking I, = ®*Q?, and given that <cos?wt>= ", we finally have:

2.2
Hol @ 1
(P) = 20— 1} = —Rpyy I (33)

127c 2

This relationship gives a definition of Ry, the so-called radiation resistance,
which has resistance as a dimension and is directly obtained from:

2 2
_ Boo” 5 2mpge( L
Rray = . 1= = 3 [Ij . (34)

1 f
With pgc = pg = o _ Zy= 378 Q, we can also write that:
€0

v €oMo

2 2
2
Ry = ?“z0 Gj ~ 780 GJ . (39)

9.4.2. General remarks on various antennae: half-wave and “whip” antennae
Antennae can be seen everywhere in modern day life. They can be found in portable
telephones, televisions, cars, and automatic doors, just to give a few examples.
According to Eq. (35), short antennae radiate poorly, and it is for this reason that
antennae with sizes of the order of the wavelength are preferred. The most basic
versions are still made up of a simple dipole, as shown in Figure 9.8a.

When the antenna is emitting, it is powered by an oscillator and parallel wire
cables as detailed above (Section 9.4.1.2). If the antenna has a length A/2 and
establishes a stationary current so that there are nodes at the two ends and an anti-

A
node at the origin in the middle (z = iz ), then the current has the form:

I(t) = I cos kz sin ot.
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Each part along z with a length dz thus radiates as if it were a small dipole. This
concept is used in a problem at the end of the chapter.

When the antenna is in the receptive mode, the electric field around it induces a
current (see more precisely Section 12.3.3.3), which propagates through the cable up
to the receiver.

A
(a) Q
A
A (b) 4
2
B P A S
A A Pt e R P R R
B P A S
B P c A S
v B P A S

Figure 9.8. (a) Half-wave antenna; and (b) quarter wave or “whip” antenna.

One of the more common types of antennae are the “whip” antennae often seen
on cars. They are electrical monopoles, as shown in Figure 7.8a, and form an
electrical image in the plane of the conductor so that a positive charge that moves
along the antenna toward the top produces a “reflected” image negative charge that
moves symmetrically toward the bottom. Typically, the length of an antenna is A/4,
but its actual length needs to be determined quite precisely before determining its
exact radiation diagram. When its length is equal to A/4, the quarter-wave length
antenna acts in effect as a half-wave antenna as it can generate its symmetrically
opposite image in the plane of the conductor.

There are many other types of antennae. To cite just a few:

o “disk” antennae formed from microstrips that are applied for example onto
airplane wings;

o frame antennae, also called a magnetic dipole antenna, based on a ferrite iron core,
which concentrates the magnetic field,

¢ horn antennae (used with wave guides); and

e parabolic antennae that concentrate waves at a focal point where a horn antenna is
placed.
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9.5. Problem
Radiation from a half-wave antenna

For a half-wave antenna, that is with a length (¢) such that / = A/2, and ignoring
any energy losses such as the radiation, it can be assumed that it carries a current (I)
which can be written as:

2
I =1, coskzexpjot =1, cos%zexpj(nt .

Assuming that the radiation is isotropic, it is independent of the angular
coordinate (). This problem concerns the radiation zone where the radius or
distance from the antenna (r) is such that r >> A.

1. Determine the expression for the electric field at a point (P), which is such that
P =P(1,0), i.e., has spherical coordinates (r,0) and ¢ = 0 in the plane of the paper.

2. Assuming that when r >> X, the vectors E and H are orthogonal as in a plane

E E /
wave and are related in a vacuum by — = c¢. Given that — = Po _ Zy =378 Q1,
B H €p

calculate H.
3. Calculate the average Poynting vector.

Answers
1.

B

It can be assumed that 6 = 0 at P in the radiation zone where r >> A = /. The actual
dipole can be considered to be a resultant of many small dipoles of a length dz
centered on a point M such that MP =1’ =r — z cos 0, as schematized in the diagram
above.
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An elementary Hertzian dipole with a moment denoted by dp radiates, as
detailed in Section 9.4.1.3, an elementary electric field dE that follows the form:

2
ZO(D dp(t) sinf &g , where r' = MP, [see Eq. (31)].
w1

dE =-

From Eq. (29), we can also write that:
Hojo I(7)
4t

I(t) = I{t—i] =1, coskz exp(jo{t - r—’D .
c c

As 1 >> A, and r >> /, the denominator 1' can be replaced by r. This cannot be
said to be true for the numerator as the exponential phase varies rapidly with r'. So,
integrating over the length of the antenna and using r’ =1 — z cos 0 to clean up, we

dE = dz sin €g, where s, = dz, so that in this problem,

end up with:
- +A/4 . 0
E= H_ijlm exp jco{t - 1} sinf | coskzexpmdz g
4mr c /4 c
ikz —ikz
2
By using coskz = e re and L_r_ k , we obtain:
2 c A
- iol
E= wexp j(D|:t —i} sin0
8mr c
+A/4
X .[ {exp(jkz[cosG + 1])+ exp(jkz[cos@ - 1])} dz &g
-A/4
The integral gives:
+A/4
| {exp(jkz[cose + 1])+exp(jkz[cos@ - 1])} dz
—A/4
. ejz)\—ﬂ%[cos 9+1] e—jz%%[cos 9+1] ejil%[cos 6—1] e—jzk—n%[cos 9—1]
= — — + —
jk cosB +1 cos0 +1 cos—1 cosB—1

2jsin{n[cos9 +1]} 2jsin{n[cose—l]}
1 2 N 2
jk cosf +1 cosf -1
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jol - 2 jol 1
with 20J%m = _ Hol®m € _ Jm , we obtain:
&r  k dnr ®  4megyer
. sin {n[cos 0+ 1]} sin {n[cose - 1]}
f-_dm sin@exp (jot) 2 + 2 €
4ngger cosO +1 cosf -1

sin {E[cos 0+ 1]} = Cos (Ecos GJ
2 2

sin {E[cos 0-— l]} = —cos(E cos Gj
2 2

cos (g cos Oj} €g so that finally:

I
we have E = —3-m sineexp(j(or){

4meger sin20

. cos [n cos Gj
E= ] 2

2mggcr sin ©

I, exp(jot)ey.
It is worth noting that this expression is indeterminate when sin 6 = 0, i.e., when
0=0o0r0=m.

2. Assuming that at great distance the wave still assumes a plane wave structure, the
vector H will be orthogonal to E . So with the trihedral E,H,&, where &, indicates

the direction and sense of propagation, H is collinear with Cp -

Therefore with H = E /gy /py we obtain

. cos (n cos GJ
J 2

H=——~= 77 exp(jot)e, -
2nr sin© m ( ) M

3. By applying Eq. (33) of Section 7.3.3, we can write that
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<§> = %Re(l:: X ﬁ*) where B = py H,

from which can be obtained

{ cos? (Z cos 6) 2
S) = Gy x€
cos? (ncosej 2
_ T 2 Letr o

4me mc sin” 0 r

cos? (cos 9] 2
=95 — 2 J2g (S, thatis in W/n2
sin” 6 r

Integration over the sphere of radius r gives the total radiated power, much
as the same method used to obtain the Larmor relation given in Section 9.3.3. The

result that can be obtained from the ensuing numerical calculation is P = 73 Igff and

gives a final radiation resistance for the half-wave antenna of the order of 73 Q.



Chapter 10

Interactions between Materials and
Electromagnetic Waves, and
Diffusion and Absorption Processes

10.1. Introduction

Having looked at the way in which electromagnetic (EM) waves are emitted by a

particle accelerating in a vacuum in Chapter 9, this chapter is concerned with how

EM waves interact with materials, and in particular:

e the form of wave emitted by a material subject to an incident EM wave (Rayleigh
diffusion);

e how EM waves are formed by charged particles interacting with a material as the
so-called Rutherford or Bremsstrahlung (German for “braking radiation”)
radiation; and

o the absorption and emission phenomena of EM waves interacting with excited
(more exactly “perturbed” as detailed below by the intervention of Hamiltonian
perturbation) materials. The description used will be semiclassical, or possibly
semiquantic, depending on whether the glass is half full or half empty with
regards to a knowledge of quantum mechanics! That is to say that EM radiation
can be written in a classic form while the material can be understood in quantic
terms generally known by readers. The quantic terms used however, generally are
for students following their first university degree course, and although Section
10.4 details in the simplest terms this semiquantic theory, it can be skipped over
during an initial read. The essential results have been set out in Section 10.5 and
these can be compared in a second read with the results given in chapter 3 of the
volume, “Applied Electromagnetism and Materials” (notably the last Figure of
that chapter).

10 .2. Diffusion Mechanisms
10.2.1. Rayleigh diffusion: radiation diffused by charged particles

An electron with a charge denoted by q is subject to a monochromatic planar
polarized electromagnetic (MPPEM) wave which is polarized along Ox (complex
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amplitude of the incident wave given by Einc//&) and propagates along Oz, as

shown in Figure 10.1. The electric wave can be described by E = Eincexp(jcot) .

Figure 10.1. MPPEM wave incident on an electron with charge denoted by q.

If the electron is within a dense material, following its displacement along Ox by
the electric field of the incident wave, it can be assumed that it will be subject to a
returning force in the direction of its equilibrium position and in the form f, =-k x

d
while simultaneously being subject to frictional forces of the form f; =-f y

dt
Rigorously speaking, the interactive force between the EM wave and the velocity
(V) of the electron is given by Fem = q(E + VxB)

. E E .
With B =—, we have vB=v—<<E assumingthat v<<c, so that the
c c

electromagnetic force can be reduced simply to Coulomb's force, as in :

Fem ZFC:qE~

The fundamental dynamic equation, ZF = my, given in terms of Ox thus gives:
el Kk x —fd—X:m ™

@Eine dt de

The solution for a steady state can be looked for in the form x = x, el , and

the placing of this into the preceding fundamental equation gives:
qE;

X = 1nc e]mt =X, e_]o)t )

- k - mo? + jof

The result is that q displaced by x generates a dipole moment:
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PO =gx()=q X, ¢/

and radiates according to the result of Section 9.3.2 concerning an EM field such
thatE and B are expressed as a function of f;(r): q ﬁ(r): q7, so that

p(1)=-0%q x = - w’q X, lot

The power radiated and given by Eq. (26) of Section 1.3.3 is proportional to
ﬁz (1), and thus p(1)=- 0’q X, el®T,

Two simple examples can now be considered.

10.2.1.1. Diffusion by bound electrons (valence electrons of the atmospheric
molecules O, and N;)
The electrons are well bound to the molecules, and at the level of the forces
involved, the constants introduced are such that k >> m®? and k >> of . The result
is that the dynamic fundamental equation, as in
E. .
X = 9Einc e jot ,
k —me? + jof

is reduced to x ~ J=ine e® so that Xq =q_i, where x, thus appears

independent of ® . With p(t)=- w?*q X, eI we have:

f)z(t) o ot

The radiated power is proportional to fﬁz (1) and is in the form P oc o’ , that is

the power radiates to the fourth power of the angular frequency ().

sun at zenith

average yellow (a) maximum

diffusion is blue

radiation
/ (b) radiation with

reduced blue

Figure 10.2. Observations made when the sun is at its zenith.
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Given that it is radiation with a high angular frequency that dominates:

e When we look at the sky, but not at the sun, the sky appears blue as shown in
Figure 10.2 a. The power radiated, or rather diffused, by electrons in the
molecules that make up the atmosphere is at a maximum for the highest angular
frequencies, i.e., those that correspond to the color blue in the incident optical
radiation from the sun.

e When we look at the sun when at its zenith (an observation worth avoiding due to
possible eye damage!) as shown in Figure 10.2 b, the sun appears on earth more
orange than the yellow observed by a satellite outside of earth's atmosphere. This
is because the transmitted light is equal to the incident light minus light lost to
diffusion during its passage through the atmosphere. In effect, the light we see has
an “impoverished” blue region, especially if the sky is cloudy, resulting in an
apparent color shift toward red.

e When we see the setting sun, as shown in Figure 10.3, the observed waves have
had to travel through a long distance in the atmosphere, much longer than that
when the sun is at its zenith, with the result that there is an greater
impoverishment of blue light diffused all along the light's pathway. This makes
the light look red as all other light has been diffused.

setting sun

long pathway resulting
in considerable
diffusion of blueNight

Qky radiation in red due to

loss of blue

Figure 10.3. Observation of the setting sun.

10.2.1.2. Diffusion by free electrons

This section looks at the study of free electrons using, for example, Laue type
diffusions in crystalline solids.

Free electrons, which are little or even not at all bound to atoms, are not subject
to returning forces toward a given atomic nucleus. Thus, k = 0 and the frictional
forces are also negligible, so that f=0.

qunc

The solution to the differential equation, x = eI thus is

k — m®? + jof
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qunc e jot |

reducedto x = — ; P(1)=- @q X el then gives
mo —

q* ]
p(r) = _Eincejwr .
m
In addition, according to Eq. (24) of Section 9.3.2, we have:

E-= “—Ol[ﬁ(r) x| x

and as in Figure 10.4, we have f) /e, .

Figure 10.4. Orientation of the vectors used in the text.

For a point (M) located by the direction of a vector (1), it can be written that

E = Egy, so that in terms of moduli, E=Eg .

As ‘[ﬁ(r) xii ] xil = ‘[f;(r) x ﬁ]sing - ‘[f;(‘c) x ﬁ] ~ psin®

2 .
we have Eg = 0 55in6 = “—Oq—EinC sin )",
4nr 4nr m
: — r — _ _ qunc
With t=t- —,and F=my =qE,,, so that y = —— finally we have
¢ - - m

. T
1 —]JO— . .
9y sin® e e ot — By .

Ee = ;
4ngpe® r
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The wave appears to be well proportional to the acceleration denoted by v ;

hence the term “accelerating wave”.

10.2.2. Radiation due to Rutherford diffusion

10.2.2.1. A general description of Rutherford diffusion

Here the incident particle is an electron denoted —e with a mass given by m that is a
great distance from a proton that is assumed to be fixed and at a reference origin
(O). The trajectory of the electron is considered rectilinear with a velocity v, . If
there are no forces acting on the incident electron, then it will have a trajectory given
by the straight line (D), as shown in Figure 10.5, which passes at a minimum
distance (b) from the target (b is called the impact parameter).

,/’
7
4 D
—a—d-—_—___ Oy >
0 — e — .
~\/ \
b R 0 4~ \
A">4O \\ \
e \ \
107 v N
/ NN
/ NN
/ A RN
A SN
\
\
\.\

Figure 10.5. Trajectory and the Rutherford diffusion.

In reality, when an electron nears a proton, the Coulombic interactive force is no
longer negligible. The electron is subject to a Coulombic force (f ) that is directed
along the line between the proton and electron distance (R). If & denotes the
electron's kinetic moment, the theory of kinetic moment is written (with f and R
being collinear) as

d—c =Rxf=0.
dt

The result is that 6 = R x mv is a first integral of the movement where:
e the direction of G is fixed and the movement is thus plane; and
e the modulus (o) of the vector G is a constant.
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With the electron being located in the plane of its movement by the polar angle
0, it is possible to state that:

o =mRv = mde—e s
dt
from which the surface law can be deduced, as in:

d
&0, 8o
dt dt n
By denoting the potential energy of an electron by E (R) and its total energy by

E, the application of the law of energy conservation results in the equation:

2
=+ - mRZ\/m[E “E R m?R>

dR 2 o? do c
mr2, [ —|E—-E_ (R) |-
\/ m |: p( ):| m2R?2

GZ
do c dR
- &S —

. dR . .
The derivative E changes sign and R abruptly changes from a decreasing to an

increasing region, or the inverse, when the numerator of the last equation cancels out
so that for a value p for R is such that:

Ep(p) =E-

2

2mp? .

In addition, by taking the origin of the potential energies at infinity, it also is
possible to write for the two constants for the movement that the kinetic moment (o)
and the energy (E) that

1

c=mbv, and E= Emvozo,
from which can be deduced for E(p) that
2

b2
Ep(p) = | 1-—|.
2 p?
Here the interaction potential [ E,(p) ] is negative and the equation shows that p <b.

It is equally feasible to introduce a parameter (8) that corresponds to a distance

between the two particles at which the Coulombic energy of the electron, given by
2 e2

, is equal to its mass energy as in mc’, so that & = .

4megR 4meyme
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10.2.2.2. Rutherford diffusion and radiation
During the deviation caused by electrostatic interactions, the electron — proton pair

constitutes a dipole that has a dipole moment given by p = e(—R), which varies

continuously, as R varies just as well in terms of direction as in terms of modulus.
The sign changes [in (—R) ] due to the fact that R is orientated with respect to the

origin (the proton) toward the electron, while the dipole moment goes from the
negative (the electron) to the positive (the proton) charge.

The consequence of this is that the dipole radiates, which is assumed, to a first
approximation, to not modify the movement. It thus is possible to calculate the
electromagnetic field radiated at a point (P), which is in the radiation zone. Also, OP
>> ), , where the origin of the dipole also is at O (by supposing that R/2 << OP =r).

The field ( B) thus is given simply by Eq. (23) in Chapter 9, as in

B - Mo p(t) xud ,
4nc ot

into which, here, p = e(—R), so that f) = e(—f{).

The field (E ) is given, for its part, by Eq. (24) in Chapter 9, by supposing that
at a great distance from the radiation zone the wave is plane and is such that:

_ I . OpP
E =cBx1u,where i = —.
r

Across a sphere with a given radius (r) the radiation power is given by Eq. (26)
in Chapter 9, i.e.,

1 2.
P(r,t) = —p (t——).
(r.t) 2 33p( )

With R given by the fundamental dynamic relationship:
3

. 2 . =
-mR =— © €gr , we have ﬁze(—R)z—e—zéR,
4megR2 4megmR
from which, it can deduced that:
2 4y r el 2m
Py = ——— P (t-—) = s
4ney 3¢ c (47tsoc) m> 3R

: r
so that with R = R(t ——), we have
c

2 me>s°
P(r,t) = =%
3 R*
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To conclude, the electron and the associated dipole radiate essentially when the
electron passes with the neighborhood of the nucleus, at which point R and thus p

vary the most both in terms of modulus and of direction. The expression for the
radiated power shows that as the electron distances itself from the proton (R
increases), the power of the radiation decreases very rapidly, as it is proportional to

R4

10.3. Radiation Produced by Accelerating Charges: Synchrotron Radiation and
Bremsstrahlung

10.3.1. Synchrotron radiation

Spectroscopy is an essential method in “divining” materials when the most precise
structural representations are required. Sensitivity in these methods therefore is of
primary importance and can be addressed properly by increasing the signal to noise
ratio. This can be done by increasing the power of the radiation source, which also
permits a reduction in sampling time. Synchrotron radiation displays exactly this
advantage. It was first observed at the end of the 1940s and exhibited the additional
benefit of being easily controlled. A considerable number of synchrotrons since have
been constructed, and they remain in heavy demand.

An electron synchrotron is made up of a large vacuum chamber, in the form of
an annular, into which are pulsed fast electrons that have undergone an acceleration
in an electric field. Magnetic fields, resulting from magnets placed around the ring,
oblige electrons to follow the ring's curve.

At speeds close to light, the accelerating electrons emit, at a tangent to their
trajectory, a fine beam of radiation. The modification of the acceleration field
permits a wide variation in this so-called synchrotron radiation. This controllability
and sensitivity of the source has allowed a large number of experimental difficulties
to be overcome. Experimental techniques such as extended X-ray absorption fine
structure (EXAFS) spectroscopy were developed using synchrotron sources.

10.3.2. Bremsstrahlung: electromagnetic stopping radiation

When electrons or ions penetrate a material, their movement is stopped by their
interaction with the constituent electrons or ions of the target material. The depth of
penetration is governed by electronic and nuclear-stopping strengths. The
deceleration of the particles results in an emission of radiation called
Bremsstrahlung radiation, given in German to mean “braking radiation” and
signifying stopping radiation.

The loss in kinetic energy occurs progressively and is fractionated by the order
of successive interactions. The resulting electromagnetic radiation is polychromatic.
With total energy being conserved, the highest frequency radiation corresponds to a
particle that has lost its energy in a single and unique interaction. An application of
this type of radiation is the production of polychromatic X-rays via X-ray tubes.
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10. 4. Process of Absorption or Emission of Electromagnetic Radiation by
Atoms or Molecules (to Approach as Part of a Second Reading)

10.4.1. The problem

The study here considers the interaction of an atom or a molecule, in terms of a
quantic description that takes on board the discreet energy levels associated with the
positions of electrons in their orbitals, with an incident wave (here a luminous wave)
assumed to be periodic and described in classical terms by a periodic vector
potential.

By using a Coulomb gauge (see comment 4 from Section 9.2.1.3), the vector

potential accords with the gauge condition, that is divAr: 0, and the associated

scalar potential (U(r,t)) can be taken as zero, as in U(r,t) = 0.

In order to deal with the problem, we will consider the effect of an incident wave
as a perturbation to the state of an atom or molecule. This perturbation can be
characterized by a Hamiltonian that must first be evaluated to then show that it
typically can be reduced to a electric dipole Hamiltonian. Finally, by applying the
theory of time-dependent perturbations, we will be brought to studying the electric
dipole transitions generated inside an atom that interact with the incident radiation.

10.4.2. Form of the interaction Hamiltonian

10.4.2.1. Hamiltonian in analytical mechanics: form for a particle interacting with a
wave

In analytical mechanics (see also, for example, “Elements of analytical mechanics”

by J. W. Leech, Dunod 1961), it is simple enough to show that the Lagrangian

associated with the movement of a particle, with a charge denoted by q and a mass

denoted by m placed in an electromagnetic field derived from a scalar potential (V)

where V is the only potential (V¢ ) generated by the atom, and the vector potential

( A) associated with the incident wave has the form:
1 -
=—mv?+q|V.A-V]|. €))
;v +a[7A-V]

The limiting conditions of the integral 1= j'L dt give the movement equation
obtained from Eq. (2):
F=q[E+vB]=mj. (2

This result can be obtained by using the fact that there is an equivalence between

Ol = 0 with Euler's equation:
d| oL L
LTl Lo,
dt\ oq; ) oq;
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which gives rise to, for example, for the variable q; = x [Eq. (4) identical to Eq. (2)
depending on values of x]:

8AX+6_V}_qd_y OAy A4 _%(6AX_6AZJ
ot ox dtl ox oy ) dl oz  ox )|

(4)

mX = —q{

oL
With p; = — (conjugate moment), we obtain with L given by Eq. (1) and in a

aq;
Cartesian frame p, = mX + qA, , so that in terms of vectors

p=mv+qA. 5)
Calculating then the Hamiltonian given by:
H=2>pg -L (6
1
where L is given by Eq. (1), an expression in which according to Eq. (5):
1 . 1 \2 1 . -\2
—mv?= —(mv) =—/|p-qA) .
2 2m ( ) 2m ( )

1 -
From this can be deduced that v :—(" - qA) , so that Eq. (1) can be written:
m

2m m
p-qA -
= ———(p-aA+24A) - q Veou
m
so that finally:
p-qA)(B+aA 2. A
L= ( zr(n ) -4 Veou = -4 Veoul (7
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which moved with Eq. (7) into Eq. (6) gives:
1./, -
H :—p(p - qA) -L
m
1

= (5-0A)(25 -5 -4A) + aVeou

so that:

H= L(*-q,&)ﬁqv (8)
m Coul *

10.4.2.2. Hamiltonian operator and the perturbation Hamiltonian

In terms of operators, p corresponds to the operator [:)E —jhV , so that on

development, we have as an operator associated with Eq. (8):

+qVcoul ©)]
To calculate the commutator [f),f (r)} by applying the function y(r) we have:

[5.£0) | v = [ V.£® Jw() = —j(VERWE) - F0V()
from which

(5,50 [w() = =in(VE@) . wm) + F OV - f0Vw()
= —jaVE(r) . y(r).

So definitely:
[5.£0) | =-inVem,  (10)
and by making A take on the role of f(r), we have:

[5.A]=-inV.A=—jn diva
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so that with Coulomb's gauge, for which div A=0:
[ﬁAJ:o. (11)

By using the result of Eq. (11) in Eq. (9), we have:

2

quz
2m

o

H= -—pA+ * qVeoul »
m

N

m

which we can write in the form:

~0 (1
H=H + H( )
with
~0 02
H = +qVeoul
2
~(1 n 2A2
TR T3 S (12)
m 2m

~0
The first term (H ) is the atomic Hamiltonian that describes the particle (the
electron undergoing an interaction with the wave) in the presence of a Coulombic
potential in the atom.

For its part, ﬁ(l) represents the interaction of the electron with the wave
characterized by the vector potential denoted as A .

In an approximation of the scale of the wavelengths (optical waves with
wavelengths of the order of 600 nm), we can assume that the wave is practically
uniform over all of the atom (which has a dimension of the order of Bohr's radius,
0.053 nm) or indeed of the molecule. Under such conditions, A depends only on the
position (L, ) of the atom or molecule and the second term of the Hamiltonian

perturbation (ﬁ(l) ) is a scalar, for which the atomic states between the two different
states of the atom are zero. The result of this is that the second term cannot undergo
a transition and consequently is ignored in the following calculations. The
perturbation Hamiltonian thus is reduced to (with q = -e as the charge of the
interacting electron)
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A =-35A=-SFA. 3
m

e
m

This Hamiltonian sometimes is called the “ A.f) Hamiltonian” in which the
vector potential of the Coulomb gauge intervenes, evaluated for the atom's position.

10.4.3. Transition rules

10.4.3.1. Preliminary introduction to quantum mechanics (see also, for example, C.
Cohen-Tannoudji, Quantum Mechanics, Chapter XIII, Hermann, Paris,
1973)

By looking at the course notes of most courses in quantum mechanics, we can see

the expression for the probability of obtaining a state (m) from a state (n) after an

instant (t), where At =t — t, and ty = 0, for a particle subject to a time-dependent

~(1
perturbation (H( ) ) . Thus found, the probability is in the form:

P =a m(Dan(t)  (14)

where
1 t
ap (1) = — [H{, (t)dt" (15)
g
and equation in which:
,EO ) 0
D 0 ni 1@ g0 0o TN A o T
H&£<t>=<\lfm(t)|H |wn(t)>= yhe n |H |yhe 7

10.4.3.2. Application to a wave perturbation
In the approximation of an electric dipole, the size of the atom is smaller than the

- 2
wavelength of the luminous perturbation (k.r = an is low, whereas the value of A

is high) and the vector potential, which has the general form
A(r, t) = Ao cos(mwt — E.f), can be reduced to ;\(t) = Ao cos ot .

~(1

H( ) given by Eq. (13) thus takes on the form

f)AO cos ot =—jhi A(ﬁcoswt. (16)
m
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By making
L€ - =
Q=—-jhi— AyV an
m
definitively, we find that:
~1 o) iot o) —iot
H() =Qcoswt=L. (18)
2
0 0 notation
By making Q. = <\|/m | Q| \Vn> = (m | Q| n) and by remarking that Q

is Hermitian and time independent, we have according to Eq. (15):

! i(E‘;]—Eg)t' jot' —jot
A (t) =~ [eh [eJ“’ +eio Jdt'. (19)
PALN
With:
EY - g
Wy =—2—m (20

and following integration, Eq. (19) gives:

0 —j(@,—o)t 1 —j(o,+o)t 1
a,(t)=—mn | .8 . @
2jh Wy — O Wy +

This result indicates that a,, (t) is large only when the denominator tends toward

zero, that is when © = +wy .

If ® = o, the first term is large with respect to the second, and Eq. (21) gives:

|3‘m(t)|2 =a, (Day(t) = |an|2 (eij[%im]t - 1)* (e’j[‘”o*‘*’]t _ 1)

n*(wy — o))z 4

so that in addition,
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|an| [l cos(mg — oa)t]
2n (o —@)2

lam (0] = (22)

The term shown in Eq. (22) represents the probability of finding a particle in the
state m at an instant t, and the probability of the transition P, _,,, is defined by the

variation as a function of time of the probability |am (t)|2 of finding the particle in

the final state m, as in:
2 sin((oo - (o)t 1

—|<m | Q| n>|2 .

=—la,(t)
o dt| (V) (0 —w) 272
If we suppose that the time t is large with respect to the period of the
electromagnetic field, which is f the order of 10" sec in the optical domain, and if
we make X = ® - ®, we obtain:

sin xt
m|Q|n) lim
hom = [(m] Q| ) tim "
Dirac's function is defined by
1 in xt
0x = — lim Smx
Tt X
and the probability of the transition thus is written as
T
Psm =——[(m| Q] n)| 8(wg - 0). (23)

2h?
This indicates that for the transition probability from one state n to another state
m is zero, then

S(wg—w) 20 = o=0.

Therefore, the angular frequency () of the incident electromagnetic wave must
be such that:

ho =hoy =EY -EY . (24)

This expression confirms in some way the principle of the conservation of energy
and can be considered as a “resonance condition”.
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With o = oy, we have Eg = E?n + Ao . There is an absorption of energy (7o)

by the atom.
If we had taken as the more important term in Eq. (21) that which corresponded

to ®=-w,, we would have obtained Eg = E?n - ho . Therefore, there is an

emission of an energy /o induced by the perturbation.

10.4.3.3. Determination of the transition rule, and dipole transition moment

The probability of transition between the state n and the state m is given by Eq. (23),
in which the resonance condition intervenes through the intermediary of Dirac's
function (8((00 - o)) ). With the resonance condition being fulfilled (® = ® ), the

2
transition probability thus brings in the term P, :%Km\fﬂn» , Wwhich

evaluated with the help of Eq. (17) is of the form:

T

P =
O o

2w (e E e P2
(m|Q|n)| =ﬁ(ﬁj AO‘<m|V|n>‘ . (25)

In order to evaluate the term <m |V | n> the following mathematical term

(described in the problems at the end of this Chapter) can be used:
n? — .
(v [V 1w ) = (i 11w ) (B =Em) . 26)

Under these condition, Eq. (25) which can be written as:

g o (e 0)

brings in the terms in the form (where [i = er , the dipole moment)

*

(h;ej<m 1 0) = (W | €F | W) (B ~ Emy) = finn (En ~ Enn).

To conclude, the probability of a transition is proportional to the transition dipole
moment defined by:

Mo = (Wi [0 Wg) = [ By, dt (27)
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Once the resonance condition is established, it is the result of the calculation for
this integral that finally indicates the permitted transitions between the various
possible m and n atomic states.

10.5. Conclusion: Introduction to Atomic and Molecular Spectroscopy

In this last part, which gives the most important results from Section 10.4 on the
semiclassic calculations for dipolar approximations, we will underline the
importance of dipolar radiation and apply it to the description of the possible
different internal transitions (for absorption or emission) in atoms and molecules.

10.5.1. Result concerning the dipole approximation

In very general terms, the dipolar approximation, which states that the
electromagnetic field is practically constant at the level of an atom or a molecule,
means assuming that there is only a weak coupling between an electromagnetic field
and an atom or a molecule. In effect, it is inefficient because its length is way below
that of the length of the electromagnetic waves.

We thus can treat the effect of an electromagnetic field as that of a perturbation.
By carrying out a development of the interaction energy of the electromagnetic field
in terms of various contributions in an order of decreasing importance (analogous to
that of a distribution of charges at multipoles, with successive terms due to total
charge, dipole moment, quadripolar moment, etc.) we find that the term for the
electric dipole interaction is greater than the term for the magnetic dipole
interaction, which in turn is greater than the term for the quadripolar electric
interaction and so on.

In physical terms, the luminous perturbation, characterized by its electric field

(E) moves electrons through a coupling energy in the form W = —i.E , where

. A : , .
E= —g = wAysinot in the Coulombic gauge, where the scalar potential
associated with the luminous wave field is zero (we can see that this coupling energy

intervenes in Eq. (25) taking Eq. (26) into account).

If the following electronic redistribution is symmetric, there is no overall
variation in the electric dipole and the transition is forbidden. Inversely, if the
redistribution is asymmetric, then the transition is possible even if the atom (or
molecule) showed no initial permanent dipole moment.

10.5.2. Different transitions possible in an electromagnetic spectrum

Various types of transitions (for emissions or absorptions) can be written, depending
on the wavelength of the electromagnetic field.
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10.5.2.1. Rotational transitions

A molecule with a permanent magnetic dipole can appear as a carrier of a variable
dipole moment when touring on its own axis (figure 10.6). Inversely, if the molecule
is symmetric (without a permanent moment), there is no apparent variation in the
dipole moment with rotation. Only molecules that possess a permanent electric
dipole can emit or absorb radiation (in the far infrared or microwave region) by
making a transition between rotational states.

Figure 10.6. Variation of the dipole moment of a rotating polar molecule.

Figure 10.7a shows a rotating dipolar molecule, such as HCI, being influenced
by an alternating electric field (E) along Ox at an initial time t = 0. Figure 10.7b
represents in the plane Oxy the rotation of the dipole at the various instant when t =
0, t;, t, t; etc., and Figure 10.7c shows the variation of a component of the dipole in
the direction Ox with respect to time.

As shown in Figure 10.7b, the dipole periodically changes position with the
electric field due to the variation of the orientation of E and the variation in the

coupling energy, which is of the form W = —iE and when t =0, W,;, = —uE as

E is directed along Ox at the initial time. As a consequence, the component of the
dipole in a given direction (shown for Ox in Figure 10.7¢) fluctuates regularly, and
thus the component p, exhibits a fluctuation with a form resembling that of the
electric field from the electromagnetic wave. (In emission, the radiation would be of
the same frequency as long as the rotation is not slowed by the interaction of the
dipole with neighboring molecules in the material.)
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EXA

@) / \

AR

Figure 10.7. Variation of (a) a component (E,) of a varying electric field; (b) the position of a

permanent dipole moment (1) in the plane Oxy; and (c) the value of u, with time.

10.2.2. Vibrational transitions

- @ - @

Figure 10.8. 4 vibration results in a stretching of the bond, and for (a) the nonpolar
molecule shows no variation in dipole moment, but (b) a polar molecule exhibits a change in
dipole moment due to the oscillation.
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These transitions appear when there is a vibration associated with, for example, a
stretching or a torsion of the bonds between the atoms of a molecule, resulting in a
variation in the dipole moment of the molecule. Only those vibrations that are
associated with a modification of the dipole moment of a molecule are accompanied
with an emission of absorption of electromagnetic radiation. Given the energies
brought into play, the mechanism is apparent in the infrared.

10.5.2.3. Electronic transitions

Electronic transitions are apparent if, following an electromagnetic excitation or
emission, the resulting redistribution of electrons changes the dipole moment of the
molecule. For this to happen, the redistribution must be asymmetric; if the
redistribution is symmetric, then the corresponding transition is forbidden. The
energies brought into play are in the optical region.

10.5.3. Conclusion

This chapter has described different phenomena of absorption and emission of EM
waves by materials. Absorption phenomena will be detailed further in Chapter 3 of
the second volume called “Applied Electromagnetism and Materials” using a more
phenomenological approach based simply on the interaction of electromagnetic
waves with molecules. The deformation that the molecules undergo will be
described as a function of the region in which the frequency of the EM wave falls
and as part of a more classic mechanical treatment, as detailed in the last figure of
Chapter 3 of Volume 2.

It is worth adding that if the energies are of the order of radio frequencies, then it
is the magnetic spin moment that interacts with the electromagnetic wave. The
reversing magnetic spin dipole thus is at the origin of electronic paramagnetic
resonance (EPR) that follows the reversing electron spin. If the effect involves the
proton spin, then phenomena associated with nuclear magnetic resonance (NMR)
are then observed.

10.5. Problems
10.5.1. Diffusion due to bound electrons

This problem concerns a bound electron with a charge denoted by —q, which is
initially situated at the origin of a trihedral defined by Oxyz of an atom or molecule
subject to:

¢ a monochromatic plane polarized (along Ox) electromagnetic wave incident along

Oz and with an electric field in the form E = E, exp(iot) U, ; and

¢ and a returning force toward its equilibrium position of the form f= -mmy? X Uy .

It is assumed that the angular frequency (®) of the incident wave is well below that
of ®,. The atom or molecule thus is an oscillating dipole.
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1. It is also assumed that the velocity acquired by the electron is negligible with
respect to that of the speed of light.

(a) Give the fundamental dynamic equation.

(b) From this deduce the solution for the permanent steady state along the x abscissa

of the electron.
(c) What is the value of the dipole moment (p(t)) of the system?

2. The equation for an electromagnetic field radiated at a great distance by a dipole
at a point (M) such that OM =T is:

~ 3 i - 1 .
oMo POALE z_o_@(r) Ati) Ay .

4t ¢ r mr
X u,
M —
[} u(p
| Ay
PRy
[]

B%
=y
N

v

What does T correspond to? Write the equation for p(t). Thus calculate B and E .

3. If EW and BW are the complex amplitudes of the electric field and the magnetic
field, respectively, given by E = EW exp(iot) and B = Bw exp(iot), in general
terms, the average value of the Poynting vector (S ) is of the form

= — 3%
- 1 E B % —
(S) = 2Re[_w/\_w] , where By is the conjugate complex of By, .

Ho

Determine the average Poynting vector for the problem.

4. Determine from this the total power radiated by the electron and from the result
makes a conclusion.
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Answers

1.

(a) The displacement with respect to Ox can be found by considering that for this
axis:

Fon + arappel = my, so that

—q(E +V x f}) + Froturn = My

E E
With B= —, we have vB = V—<<E if1<<1.
c c c

d2x
de

With respect to Ox, we therefore have —qEOeiUJt - mco%x =m

(b) Under a permanent steady state, we are looking for a solution of the form:

2

X = goeimt , that with = —w?x and by simplifying with ¢, then

dt?
2 > qEg .
—qE) —moyx) = -mw’x, =X, = 5, 5% that with @y >> © , we find
m|:(,00 —® :|
Xg=——>%> and finally
mam
E.
X = — q_(; elo)t
mao
In terms of vectors,
X = xiy = xoe' 'ty

where U, is the unit vector along Ox.

(c) Moving the charge —q is equivalent to applying a dipole moment of p = - q x, for
2R .
which p(t) = —gx = q—_gel“’t , so that in terms of vectors,
mao
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(t) — —0 lmtﬁ
m(DO

X -

p() AT r ) ) :
“—Op()—r, where T =t —— (change in variable associated

2. We have B(M) =
4w ¢ r c

_°°. 2R m)[t—f]
with the propagation) . With p(t) = —@?p(t) and p(r) = d _(2) e “/i, , we find
mawm

that for B(M)

. 202E l(x)[tffj - .
BoM) = -F 2 0 Gngg, e ¢/ =B, .
4mermayg

Similarly, with u, xu; =sinf u, and sin6 u, x U, =sinh ug, the equation for E

results in:

. r
- 22E lm[tffj ~ .
EM) =P 0Ginp g e | ¢/ =E,
4nrmaoy

3. The average Poynting vector thus is (Where ug x U, = U, ) given by

= 1 E\ A E* p0q4w2E% 2
(S) = —Re| =W"=W | = 7 sin” 0 U, .
2 32n°r’'m*mgc

4. The total power radiated is given by:
P=qf(S)as.
)

With d?% = r%sin d de i, , we have:

4 22 4 2n2
E E
Hod @ 20, I} sin®0d0de = q—402n j' sin® 0d0 .

P=———
32rPm*®pc g 32mPmPwge  p=o
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n 4
With j sin® 0d6 = E , we finally obtain:

0=0
42 ( 4
p_ModEy| o
12mm?2¢ mg

. 2me 2mc .
Comment: With © = ES and ®y = ——, we also can write that:
0

412 (4
p_MaEol Ao
127mm2c | 2%
As detailed in the course, the smaller A (0.4 um in the visible spectrum, that is

blue light), the greater the power radiated (hence the blue color diffused by electrons
in molecules present in the sky).

10.5.2. Demonstration of the relationship between matrix elements
[see Eq. (26) of Section 10.4.3.3 as in

n? ~ -
(W [V W) = (W | 7 19) (B =B )]
For this, we will establish the following equation:

A am)

which is a relative equation for the physical magnitude A, which is not explicitly
time dependent, so that the associated operator ( K) is Hermitian (proper real values)
and is such that <A> = <\V | A | \V>-

Answers
d(A d ~ dy -~ ~ d
Calculateﬁz—<\u|A\y>= YA ) (v A2
dt dt dt dt
. .y ~ ., dy Cody 1A
However, according to Schrodinger, Hy = Jhd— , for which d_ = _h .
t t
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d(a) ' i A )+ |/§|1ﬁ
—L={— v)+{y|A|—Hy
dt ih v ih

1/~ ~ 1 ~ ~
=-— (A |Aly)+—(v A | fy).
Jh Jh

We thus obtain:

H and A are Hermitian (being equal to their associated terms and are such that,
for example, <\|/ | H | (p) = <H\|/ | (p) ), so we also find that:

d(A)

o v A L)+ (v AT )]

- I[AR]v) = {am) = {[ma)

With A = m%, in terms of operators we also can write that (see also, for
example, E. Durand, Quantum Mechanics, Masson, p.69, 1970):

mg :%m[ﬁ,%].

A

dr

As md— corresponds to an operator of a quantity of movement, —jAV , we also
t
have:
jm . n - e
—jhV = [H r] from which —V = [r,H]
h m

Multiplication of the left side of the last expression by \u*m and the right side by
y,, , and then carrying out with a scalar product gives:

2

h = ans ~a
i 1V 1) = (W VP )= (i [T ).
m

H is Hermitian (just as is f ), so that:

~n ~ oA A ~ oA~
<\Vm |HI‘ | \Vn> = <\1Um |H | rWn> =<I‘\Un |H ‘ \Vm> = _[I'\UnH\llde'.
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Similarly, we obtain:

<\|/m | TH | \Vn> = <\Vm | T| H\Vn> = <H\Vn | F\|/m> = If\umHWndr .

The result is that:

h? - Ak A ~ %
;(\vm [V 1 Wn) = [Fwm Hyy =y Hyg Jdr
As ﬁ\ufn = Em\u*m and ﬁwn =E,y, , we have:
h? = * A * A
;<\Vm V| \Vn> =Eny J.\Vm ty,dr—E, ,[‘Vm fy,dr,
and hence, the looked-for equation:
2

" o 19 1) = (v 1 F 1 )(Eg —E).

m
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Chapter 11

Reflection and Refraction of
Electromagnetic Waves in
Absorbent Materials of Finite Dimensions

11.1. Introduction

In practical terms, electromagnetic (EM) waves in materials of limited dimensions
correspond to those in systems such as coaxial cables, optical fibers, and wave
guides. It is by this process that signals, and therefore information, are transmitted
with as low a degree of attenuation and parasitic phenomena as possible.

This chapter will look at the influence of discontinuity, at the interface between
two materials, on the propagation of EM waves. Typically, the two materials are:
e linear, homogeneous, and isotropic (lhi) dielectrics and not magnetic so that their

magnetization intensity can be written as 1=0, so that E=HOI:I+T=MI:I , W=
with 1=0;
¢ uncharged, as in p, = 0, and not traversed by real currents, as in 3,4 =0;and
e described by their complex dielectric permittivity as & =¢€'-je" (electrokinetic
notation), or as € =¢'+ je" (optical notation).

In this chapter, and then in Chapter 12, which mostly looks at applications using
the optical region, the notation used is that classically used elsewhere in optics as in

sinusoidal planar progressive EM waves are written in the form (see also Section
6.4.2):

E=Eexp(jlki-ot]). (1)
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11.2. Law of Reflection and Refraction at an Interface between Two Materials
11.2.1. Representation of the system

XX
~

medium (2) !\medium (1)

n\ Ve
i
%
n;,=n,
incident
plane z
A 4

Figure 11.1. Interface between media (1) and (2).

As a general system, the volume under consideration is made up of two media,
denoted (1) and (2) which have permittivities g, and g, , respectively, and are

separated by an interface on the plane Oxy. The incident wave has an angular

frequency denoted by ;, is written in the form Ei =Eimexp< j[lzif-wit]) , and thus by
notation for the incident wave E_=E, . In addition, by choosing the origin of

phases on this wave such that Eim:]:lioexp(j(pi):fi? when ¢; =0, then it is
possible to state:

E; =Blexp(jlkiF-opt]) . ()

The incident plan is defined by the plane that contains the incident wavevector (Ei )
as well as the normal to the interface (n;,=1n,). In order to simplify the
representations, the incident plane can be taken as Oxy in which consequently, is the
wavevector Ei. Also, we will assume that the first material, medium (1), is
nonabsorbent so that g, = nlz so that the modulus of Ei is ‘Ei‘: k; =kon;.

At the reflection on the plane of the interface Oxy, the incident wave will
observe a modification in one part of its amplitude (which now will be denoted
Ero ), while the other part will be subject to a dephasing by a quantity denoted as ¢,.

The reflected wave then can be written in a general form where ®, designates the
angular frequency following reflection:
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= = . - =0 -
E, =Elexp(io, Jexp [k, F-o,1]) = Erexp(jlk, Fo,tl). ()
Similarly, for the transmitted wave, self-evident notations are used:
= = . . =0 -
E =E{exp(o )exp(jlk F-o.t]) = Ejexp(jlk o). (4)
In these equations, k, and k, are the wavevector relating to the reflected and

transmitted wave, respectively. As detailed below, Et can be a complex magnitude
(thus denoted Et ).

11.2.2. Conservation of angular frequency on reflection or transmission in linear
media

Two different types of reasoning can be used in this case: the first is by a physical

analysis of the problem, and the second via an equation using the conditions of

continuity at an interface.

11.2.2.1. Physical reasoning
As shown in Chapter 10 dipoles associated with a displacement of charges inside a

dielectric that are subject to an incident wave (Ei ) with a given angular frequency
(ow; = ), and within an approximation of a linear oscillator (returning force

proportional to the induced displacement), emit in turn a wave with the same angular
frequency as the incident wave. The result is that little by little, in media (1) and (2),
the incident wave with angular frequency is reemitted with the same angular
frequency, so that

0 =0, =0; =0. %)

11.2.2.2. Reasoning with the help of equations of continuity
By denoting a;, a, and a, as the proper projections of E? , E? , and E? at the plane of

the interface Oxy, the continuity condition of the tangential component of the
electric field gives rise to:

a; exp( j[Eif-mit]) +a, exp( j[Erf—mrt]) =ay exp( j[Etf—mtt]) . By multiplying the two
members by exp (— j [Eif-mi t]) , we obtain:
a; +a, &Ko) _, Gilke-k)Ho-0)] (g

This equation must be true for all instants (t), and each term of the preceding
equation should have the same temporal dependence, so that 0 = o, - ®; = o - ®; .

The same result is found as that given by Eq. (5), thatis o; =0, =0; =0o.
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11.2.3. Form of the wavevectors with respect to the symmetry of the media
Once again, the same two types of reasoning may be applied.

11.2.3.1. Reasoning based on physics of the symmetry of a system
The EM field of the incident wavevector is given by:

kix =0
Ei kiy #0
kiZ =0
Taking into account the disposition of the interface, which is such that the
discontinuity only occurs in the direction Oz, the propagation in the directions x and
y is not perturbed at the interface. This results in perturbation being only in the

direction Oz, where the wavevector thus is modified on reflection and transmission.
Physically then we should have:

kix :er :ktx =0
kiy = kry = kty (7)
kiz # krz # ktz

11.2.3.2. Mathematically based reasoning and the use of the continuity equation

Again using the result given by Eq. (6) and also from the imposition of the condition

of continuity of the tangential component of the electric field, the equation is valid

only at the level of the interface where the vector (T ) has the components given by
x#0

ay#0
z =0

Figure 11.2. Representation of the projected vectors (& ) at the interface.
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By denoting Ei, Er, and Et , the projected vectors at the interface Oxy of the

vectors Ei, Er, Et , respectively, we can state that they have components given by:

kix er ktx
‘Ei kiy E.\r kry E:at kty
0 0 0

Eq. (6) for the vectors T located at the interface thus is in the form:
a;+a, llGEF@-0) _  GilE-E)H0 -0 (6"

This Eq. (6") should be true for all T vectors at the interface, and we should find for
each term in Eq. (6') the same spatial dependence, which can be written:
0=(&-&)7=(&-&)E sothat§; =& =§;.

With k; in the plane of the wave (kj, = 0), it can be determined that:
kix =k =ky =0 and kjy =k =k . )

Following reflection and transmission of the EM wave at the level of the
interface, there remains only k., and k, to be determined. This can be done only

through a use of the equations for the propagation in each of the media.
11.2.4. Symmetry and linear properties of the media and the form of the related

field
11.2.4.1. In medium (1)

medium (1)

medium (2)
Figure 11.3. Representation of a wave at point A in medium 1.

A wave at any point (A) in medium (1) is in fact a superposition of the incident and
reflected wave. Taking the results of Sections 11.2.2 and 11.2.3 into account which

made it possible to state that o, = o, that k, =k;, =0 and that k, =k;,, along

with that of the form of Eq. (2) for the incident wave, the resultant wave in medium
(1) therefore must be of the form:

E\0 = B @) expl j(kyy-ot)] . ®)
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The exponential term contains the well-determined (and unchanged) part of the
wave, where the temporal variation is ®, = ® and the spatial variation with respect

to x is given by k, =k, =0and with respect to y by ky =k;, .

=0 . . . . .
The term E; (z) contains the behavior with respect to Oz, which remains for

the moment unknown; the resolution of the propagation equation in medium (1) will

allow a determination of E? (z) and k., (as a function of k;,).

11.2.4.2. In the medium (2)

Once again, o; = o and k¢, =k;,, while only k,, remains unknown. In medium (2)

iy »
the wave thus is in the form:

E,(#0=Ey exp| j(kiyy-ot) | (©)

. . . =0 . .
The exponential contains the known terms, while E,(z) encloses that which is
unknown for the moment (behaviour with respect to Oz) and it is the resolution of
the propagation equation for medium (2) which will permit a determination of

EY(2) and k,, = ky,.

11.2.5. Snell-Descartes law for the simple scenario where media (1) and (2) are
nonabsorbent and k; and k, are real

11.2.5.1. The wavevectors associated with incident, reflected, and transmitted
waves are all in the same plane (incidence plane)

The result given in the subtitle can be determined immediately from the fact that we
have k;y, =k, =k =0 from the first expressions of Eq. (7). The result is that the

wavevectors Ei,Er, and Et are all in the plane Oyx, which is their hypothetical plane

of incidence.

11.2.5.2. Law of reflection: 0; = -0,

The first equivalence of the second expression of the equations given in (7) is that

which

ky =kjy.  With kizgnl and also kr=§nl, the relation k. =kjy,

C

represents the equality of the projection of vectors Ei and Er with respect to Oy,
L . . ® . ® . .
gives in moduli (see Figure 11.2) —n; sin 0; =—n,; sin 6., so that 6; = 6, and if
c c
we orientate the angles with respect to the normal, then 1,=1,, and

0, =6, (10)

1
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11.2.5.3. Law of refraction: n; sin 6; = n, sin 6;

Still with respect to the second of the expressions in Eq. (7), we also have

ki, =kjy . When the materials are nonabsorbing, the wavevectors are real just as

. o o ® )
the optical indices. We thus have k;=—n; and k;=—n, and the relation
c c

K¢y, =Kiy , which brings in a projection of the vectors Ei and f(t with respect to Oy,
. . . ® . ® .
gives rise to (Figure 11.2) —ny sin 6; =—n, sin 0, , so that:
c c

n; sin O; =n, sin 0, . an

11.2.6. Equation for the electric field in medium (1): the law of reflection
As above indicated, medium (1) is not magnetic or absorbent, n; and

k= 2n1: kon, are real, and the components of k; are (0, ki; # 0and k;, #0).
c

In medium (1), the monochromatic wave is in accordance with the wave equation

[Eq. (7") in Chapter 7]:

2

AE, + % nf =0 (12)
where El is the form given by Eq. (8), as in
E )= E? (2) exp[j(kiyy— cot)} )
By making f(y)=exp [ j(kiyy- cot)}, we have E,(ft)= E? (2) f(y) , with the result

that

AE, ~ TAE,, +] AB,, +E AE,,
- TA| B\ @ )|+ Ta| By @ 1) |+ K| L) )|
= y) %E? (z)} +| i (TEN T Bl K ED, )10 |
_ {%E? @)L By (z)} exp[i(kiyy-(otﬂ.

Following simplification of the two latter terms with the term
f(y)=exp |:_] (kiyy— cot)} , Eq. (12) becomes:
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=0
d’E 2 -
$E @ (ﬁnf -kfyj E@=0. (13)
dz? c?
I TR C A S -
By making ki, = —nj- kiy , then Eq. (13) can be written as
C
EE 2, =0
———+ki; E@=0. (13)
Z

It is notable that:
2_1,2 2 2 _1,2 2
ki - kix + kiy + kiz - kiy+ kiz )
297 2 12 2
0% = ki,= —nj-ki,=ki,.
kiz _ (ko n])Z _ _n]2 iz » 1~ ™My 1z
CZ
Where k;, =k;, >0 so that the incident propagation can occur for a positive value

of Oz, the general solution for E? (z) is given by

E) (2= Edexp(i ky, 2)+Evexp(-ik, 2). (14)
I\ J U J
Y Y
incident reflected

propagation  propagation

By substituting E? (z) into Eq. (8), we obtain:
= =0 .
EGH)=E|(2) exp[J(kiyy— mt)}
= E?exp [i(kiyy +kq,Z - wt)} +E?exp [i(kiyy -kqy,z- (ot)}

=E+E.. (15)

1 I

The first term details the incident wave for which the wavevector is given by:

kiX =0
k; { kiy
kiz - klz > 0.

The second term represents the reflected wave at the level of the interface and is the
monochromatic plane progressive wave for which the vector Er has the component:
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=-ki, =-kj; <0

17

From the relations k., =kj, =0 and k; =k;,, we find once again the laws of

iy >
reflection obtained in Section 11.2.5. The incident and reflected rays are in the
incident plane Oyz and 0; = —6, . It is worth noting that these laws do not depend
on the nature of medium (2), as no hypothesis has been formulated concerning it,
and it could be nonabsorbing or absorbent and even a perfect insulator or conductor.

11.2.7. The Snell-Descartes law for reflection a system where medium (2) can be
absorbent: n; and k, are complex
Here medium (1) is nonabsorbent and n; and k; are real.

11.2.7.1. Form of the field in medium (2)
Here medium (2) can be absorbent and is characterized by a complex dielectric

permittivity, so that g, = g% .

—— 2 -
The wave equation in medium (2) is AE, + % g% E,=0.
c

Into this the substitution of the form of EZ given by Eq. (9), ie,
E,(ft) = Eg (2) exp[j(kiyy- wt)} , gives

=0

@By (o .

e (—(” n2 -k?yj ES=0. (16)
VA

CZ

2
By making k2, = (m—zgﬁ ; kfyj , so that with kiy=ko ny sin 6; , then
C
k3,=kg (n3 -nfsin0;). (17)

Then the equation for the propagation of the wave takes on its more normal form
[see for example Eq. (15) in Chapter 7]:
=0
d’E -
=2 k2 EY-0. (16")
dz?

The general solution is thus of the form:

ES(2) = By exp(ik,,2) + E? exp(-ikp,7).  (I8)
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Physically, in medium (2) there is no source of light and the only wave that
actually can be found is a wave transmitted and distancing itself from the interface.
In this case, the second component of Eq. (18) must be equal to zero, as it represents

the effect due to a wave that nears the interface (the E'? also must be taken as equal

to zero in order that the condition is held). Only the first component of Eq. (18),
which clearly represents the effect of a wave leaving from the interface, can be
retained on a physical basis, so that finally we have

=0 -0 . ,
E,(2)=E; exp(ik,,2). (18%)

For its part, k,, defined by Eq. (17), generally has a complex form and can be
written using a notation in the form:
lﬁZ = lEtz= k‘tz+ ik:z : (19)

z

On substituting Eq. (18”) into Eq. (9), we obtain:
Ey (70 = Ex@ expi(kiyy-ot) | = E/ expli(kiyy + ky,-ot) [, 0)
so that with Eq. (19):
Ez (T,t) = E? exp( - k:ZZ) exp [i(kiyy + k'tZZ - o)t)_ . 2D

N J
R v

attenuation term propagation
term

11.2.7.2. Form of the wavevector in the medium (2)
Equation (21) for the wave in medium (2) can be rewritten in the form:

E, (0= B exp(-K/D) exp[i( P (ot)] @)

This relation defines the vectors 12; and 12: for which the components are given
from Eq. (21):

kytx =0 (=kiy) 22)

Ky kiy=kiy=ko n, sin 6;

, (19 a7 2’ 9 12
ki; = R(ky,) = kR (Bz 'nlsinzei)
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k=0 (23)
Ky kiy=0

, (19) an , 12
K, = Im(k,,) = kolm (gz -nlsinzei)

Finally, the wave can be written in the form:
E,#0=E () exp{i( kT - cotﬂ :

where Et is defined by Et = l?t + ﬂz:, such that:

. - 2 a2 ~ o
ki =kjy ey + koR (gz—nlsmei) ¢, =ky €, tk €

ty vy z
—n 2 2. 12 .
ki =kolm (gz -nlsmzei) €,.

z

|~

t

24

Consequences: inhomogeneous and homogeneous waves
Generally speaking, the wavevector for the transmitted wave can be written in
accord with Eq. (24) in the form:

1 "

ki =k &y + ki, €, Ti(ky, €,). (25)

According to Eq. (21), the propagation in medium (2), which is determined by
the real component of Et , is along Oy and Oz, while the attenuation associated with
the imaginary component of E; is only in Oz. The directions of propagation and
attenuation thus are different and the wave is termed inhomogeneous.

In the specific case where k'ty= 0, so that when k'ty= k, sin ©; we have 6; =0
(normal incidence), we have:

lﬁt = ktz éz+ i (ktz 62)
and the propagation and attenuation are in the same direction (Oz), and thus the
wave is termed homogeneous.
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11.2.7.3. First law of refraction
Here we have k'tx= 0 and k:x: 0, so that [Et} =0. The Et has no component

X
along Ox and the transmitted wave is propagated in the plane of incidence, i.e., Oyz.

11.2.7.4. Second law of refraction

When k'tZ # 0, the transmitted wave effectively propagates in medium (2);
supposing 0, =9t=(ﬁ12,lz;) , so that k'ty= k't sin 0, (see Figure 11.2). In addition, it

also is possible to state, from Eq. (22), that k'ty:k =ky n; sin 0; which can

iy
written with k; =kyn; and by making 6; = 6; by notation, that k'ty= ky sin 6; . As

a consequence, we have the equation:

k; sin 0, =k, sinf,, | (26)

which can be rewritten using the notations introduced, as

k;sin; =k, sin®, |. (26

11.2.7.4.1. Case where Et isreal 22 Et =0

Here, according to Eq. (23), the term (g% - nlzsinzei) must have a positive and real

magnitude: if it were negative, its square root would be purely imaginary and k;

would be nonzero. Looking at the following conditions:

o first condition, (g% - nlzsinzei) has a real magnitude, imposes that g% is real, so

that g% = n% = &, where &, has a real magnitude. Medium (2) thus is intrinsically
. . . . o’ o’
[that is to say by itself without medium (1)] nonabsorbent as k% = ;g% = ?‘rz

isreal if g, =€, isreal (and positive)
g%- nlzsin291= n%- n12sin291 ;

e second condition, the term n%- nlzsinzé)l has a positive magnitude if

n% > nlzsinzel . @D
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This is the supplementary condition to g% being real [medium (2) nonabsorbent and
€, real] so that Et can be real (&2 l?t' = (0) when medium (2) is in the presence of

medium (1).

When k: =0, we have k;= k't , which is such that according to Eq. (22):
2
k2=k?=k2+ k2 = (ko n, sin 0)>+(k3 [n3-n? sin? 0, ) =k3n3 = %n% ~12.

Also, when k; =0, Eq. (26) is written as k; sin 0; =k, sin 0,, so that in turn:

n;sin@; =n, sinB,[. (28)

The conditions required so that n% > nlz sin’0; (2 Et =0) are:
e by simple evidence, that n, >n; (see also Figure 11.4);

e or n, <ny and 6; <6, where 0, is defined by n; sin8,=n,. (29)

In effect, so that n, < n; we have 0, > 0, (Figure 11.5). The 6, cannot

exceed 6, :g and 0, also cannot exceed a limiting value given by 6; = 6, and

such that n; sinf, =n, sin g The limiting angle (0, ) above which there can be

no refracted radiation is associated with the total reflection and thus is defined by the
. . n
equation sinf, = i
ny

The condition ©; <0, yields sinf; <sinb, = —2 | which otherwise can be
|

stated as n; sinf; <n, and corresponds well to Eq. (27), for which Et is real

(= k =0).
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i nf?e> nlé,: 92/; 61. n2<n1,:>92>91.
nov=v,=mw2, . _ _ _
. 0,= 0", such that 0, if0,= 6y =7/2,0,= 0,
m P [sin®,=n/n, | & such that sin 6, =ny/n,
61 =7/2 n;
2L:VTC72 >
n, 1;
n, 0, _/9'2 t
| A
2
v v
n; >m n; <nmng
Figure 11.4. Refraction when ny > n; . Figure 11.5. Refraction when n; < nj.

11.2.7.4.2. When k, is complex: &2k, # 0

When k, is complex, then k:z # 0 must be true. The attenuation occurs in the Oz
direction. According to the third relation given in Eq. (23), the following must be
true:
o cither g%= €., is imaginary and medium (2) is absorbent; or
. g§= €= €p 18 real [medium (2) is not absorbent] and n, < n; and 6; > 6,
(which correspond to n; sin6; > n; sinB, =n,).

We thus have n%— nlzsinzel <0, so that n%- nlzsinzel =i%( nlzsinzel - n%)and,
according to Egs. (22) and (23), we can deduce that, respectively:

, . 512
ki, =ko R [ 1*(ny'sin®0; - nz)J =0
(30)

" D 5. V/2 5. \1/2
k¢, =k Im [12(n1 sin%0; —nz)J =tk (nl sin%0; —n2) #0.
So that the wave undergoes an exponential “braking”, Eq. (21) must have

ki,z>0. As z >0 in medium (2), the positive solution from Eq. (30) for ki, is

retained, and in terms of vectors, we have [from Eq. (24)]:
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k; =ki, & =k n, sin0; &,
. 5 2 (30%)
ki=k (nlstGl -nz) €,

= the wave is inhomogeneous. It is as shown in Figure 11.6.

0> 0,
NN &
n A K=k n sing,
>
Yy
ny
kt
zV
n, <n;

Figure 11.6. Inhomogeneous wave where k't' #0,n,<n;and 6,> 0,.

11.3. Coefficients for Reflection and Transmission of a Monochromatic Plane
Progressive EM Wave at the Interface between Two Nonabsorbent lhi
Dielectrics (n; and n, are real), and the Fresnel Equations

11.3.1. Hypothesis and aim of the study
We thus can suppose that 212: €.1= & are real, just as g%z €= £ . Once again it

is assumed that the wave source imposes an angular frequency (®) and that the state
of the polarization of the incident wave, which is always a combination of two
orthogonal polarization states, is either such that:

. I:Zio is perpendicular to the plane of incidence (E?L) in which case it is termed a

transverse electric (TE) polarization, as the electric field is orthogonal to the plane of
incidence (it can also be stated that the wave is in an orthogonal polarization as in
Figure 11.7 a); or

. E? is parallel to the plane of incidence (EiO” ) and in which case the term is one of

transverse magnetic (TM) polarization as the magnetic field thus is orthogonal to the
plane of incidence. Another term used is that of parallel polarization, as shown in
Figure 11.7b.
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=0
E:
i 0;
k;
n;
n
= >y
n, D2 >y
ny
t
et ¢ kl
7 z

Fig. 11.7(a). TE polarization. Fig. 11.7(b) TM polarization.

Given the incident wave, as in Ei= Eio exp(jlk; sin; y +k; cosb; z - wt]), it should

. . . =0 =0
be possible to determine either the vectors E, and E; for the reflected and

transmitted waves, respectively, or the coefficients for the amplitudes of reflection
(r) and transmission (t) defined by:

0 0

E E
r==t and ;:——5. (31)

Ej Ej
The 1 and t are a priori complex magnitudes that can take into account any possible
dephasing between the reflection and the transmission.

We thus have two unknowns to determine, which can be done with the help of
two equations established from the limiting conditions. With the media assumed to
be nonmagnetic, the following two relations for continuity at the interface are used:
Eiy =E, and By =B, (as By, =g Hyy = poHy = By in nonmagnetic media
where p = p ). The indices “1” and “2” denote the media with refractive indices n,
and n,, respectively. Given that the study concerns monochromatic planar
progressive electromagnetic (MPPEM) waves, between E and B there now is the

.~ kxE
well-used equation B = .

()
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11.3.2. Fresnel equations for perpendicular polarizations (TE)

11.3.2.1. When k,is real (ny > n; or ny>n; and9; <9,)

R0 R0
EQ B; B, k,
1 R Ll »eh-0
T e =t
n ki
—&x >y
p)
Yy EO
0 t
ny j RVt
=0
Et Et
z

Figure 11.8 In TE mode where ny, > n; or ny <n; and 6; <0,.

By symmetry, the reflection and transmission fields conserve the same polarization
directions as the incident wave. It is supposed that the fields thus are placed as
indicated in Figure 11.8. The eventual dephasing with respect to the reflection or the
transmission will be determined through an argument around the coefficients for
reflection or transmission.

For the configuration then it is possible to write equations for the continuity at
the interface:

o with respect to Ox: Ei0+ E? = E? , so that on dividing the two members by E? ,

we have:
I+, =t (32);

¢ with respect to Oy: B? cosb; - B? cosf;= B? cosf; , so that also
k; k k .
—LED cosh;- —~E” cost;=—L EYcosh, from which with
© ® ®
k; =k, =k n; and k; =k( n, and division of two members by E?:
(I-1)nj cos®; =t, ny cosO,. (33)
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By substituting r; =t, -1 from Eq. (32) into Eq. (33), and with
|Oi|=|9r|= 0, and 6,=0,, it can be immediately deduced that:

= 2n;cos6; _ nj cosf;-n, cosH,

21
n;cosb; tn,cosh,

and r

. 34)
n; cosf;+n, cosh,

With the help of Eq. (28) (n; sin 6; = n, sin 0, ), we can eliminate n, and n,
from Eq. (34), and then by multiplying the top and bottom of the preceding
in 92
m

equations by

yields:

g = 2sinbpcosy gy sin®a8) g
sin(0,+6,) sin(0;+6,)

The angles 6; and 0, vary at most between 0 and g, and sin®, and cos6,

are always positive just as is sin(0;+0,) as (8;+0,) also has a variation limited to

between 0 and w. The t, is in fact always real and positive here, and the transmitted
wave does not exhibit a dephasing with respect to the incident wave.

10.3.2.1.1. When n, >ny
With k; being real, in agreement with the relation n, sin 6; = n, sin 6,, we have

0, <0y, and r, is always real and negative as the maximum variation in (6, - 6;) is
given by -g <(0,-6;) <0. We can conclude therefore that a TE wave reflected by

the more refractive material undergoes at the reflection a dephasing (¢ ) such that
exp(jo ) =-1, so that:
¢, =m (as exp(jm)=cosm +jsinw=-1).
In the limiting case, Eq. (34) shows that:

. n-n . .
e for a normal incidence, where 6,=0, 1, = 172 0, so that in terms of moduli:
n1+r12
Ny
v |= (35)
nl +n2

e for a glancing incidence, where 0, = g then r;, =-1.

As 0, increases, the modulus of r; continuously increases from a value given

by Eq. (35) up to unity. Finally, we obtain the representation given in Figure 4.9 for
whenn, >n;y.
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n; P ny n, pn

r /e

-~

0 0, —> 90° 0 6, —-» 90°

Figure 11.9. Modulus and phase angle of the reflection coefficient as a function of the angle
of incidence (0)) for a TE wave with ny > nj .

11.3.2.1.2. When n, <n; and0; <6, (kreal)
According to Eq. (28), 6, >0, and 0< (0, -6)) < gso that sin(6, —6;) >0,

and according to Eq. (34'), 1 is real and positive, so that when medium (2) is less
refractive than medium (1) and when 0; < 0,, the reflected wave rests in phase with
the incident wave. According to Eq. (34), we can see that as 0 increases, the
n-ny
np+ny

modulus of 1, steadily increases from a value given by r| = > 0, obtained

for a normal incident wave (6;=0), up to the unit value given for the limit of

incidence (6;=0, ), as at this point 0, takes on the value g Figure 11.10 gives a

representation of this zone.
1

0
<M 1 n <J’|1

Il // P, \\\
N

—— N

P -

0 0 6,— 90° -7 0

v ) 0, —» 90°

Figure 11.10. Modulus and phase angle of the reflection coefficient as a function of the
angle of incidence (0, ) for a TE wave and with n, < nj.
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11.3.2.2. When k, is complex (n, <n; and®; > 0,), the wave is inhomogeneous

and is as shown in Figure 11.6
The relations for the continuity at the interface (Figure 11.8) give:
o with respect to Ox, we again find Eq. (32); and
e with respect to Oy, we have:

ki k L& B ([ ki), E
Ki 0 gos0,- K R0 cosei=—(ktXE?)éy :—({[kd +[ktJ }XE?jéy.
© © @ ? ' Z

As E? is directed along Ox (TE wave), the term on the right-hand side is reduced to

1(r- 7 = - " E!
g([kt]z xE?)éy. With [MZ - ik,,8, and by simplifying with :‘ the two
members of the continuity equation for Oy we have:

(I-1,)ky cosf, =ik;ztl,
" 1/2
with according Eq. (30°) : k,=k| (nlzsinzel - n%) . We thus obtain

_ 2kycosb;

_ ky cosBq-iky,
L= T T ———
k;cosb; +ik,

and 1| (36)

k; cosf;+ ik;Z
For r,, the numerator is the conjugate complex of the denominator, for which
|g L| =1. The angle for dephasing at the reflection thus is given by:
¢ =Arg(r)) telque r) =Ir,|exp(ip )= exp(i¢, ).

We  therefore have r, =exp(ip,)= E, and then by making
V4

z= k; cosf;+ ik;Z = pexp(i o), we also find that

r; =exp(ip, ) =z pexpio) exp(-1i2a), so that
z  pexp(io)
.
tan(-q)—lj =tano = —%—
2 k; cosf;

By using n, =n; sinf; (which makes it possible to replace n% in Eq. (30°) by
n12 sin? 0, ), we find that (in the shaded zone of Figure 11.10):

. . 1/2
sinZ0; - sin%0
2 cosb;

(37

If 6, =6,, ¢; =0,andif 6 :g,(p—l:—g,thus @, =-n (see the plot on the

shaded part of Figure 11.10).
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10.3.3. Fresnel's equations for parallel magnetic field polarizations

10.3.3.1. Whenk,isreal (n, >n;orn, <n;and0; <0,).

Figure 11.11. TM wave with ny> n; or n,<ny, and 6;<0,.

337

As detailed in Section 10.3.2, the fields retain the same polarization directions at
reflection or transmission through symmetry. We thus can assume that the fields,
once reflected and transmitted, are laid out as described in Figure 11.11. For this

configuration, the equations for continuity at the interface (still

16,/ =106,| =0, and 6, = 0,) give:
o with respect to Ox: B?+ E?: B? , so in addition,

0 0 0
kon Ef  kom Er _ komp Ey

® ® ®
n(l+ IH) =ny 4 (38); and

- with respect to Oy: - Eio cosfy + E? cosf =- E? cosf, , from which:
cosO; (1 - gH) =1 cosb,. (39)

From this can be deduced that:

n, cosd; -n; cosO, 2n; cosb,

0= and t = (40)

n, cosf; +n; cosb, n, cost; +n; cosd,

from which can be deduced that:

with

By again using Eq. (28), it is possible to eliminate n; and n, from the above

equations, so that they become:
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sinf; cosb; -sinb, cosh,  sin260; -sin20, 2 cos(0;+0,) sin(6;-0,)

- sinf; cosb; + sinf, cosb,  sin20; +sin20, 2 sin(6;+6,) cos(6;-6,) ’

tan(6,- 0, ) 40°)
tan(6;+ 6,)

]

from which I =

2 cosb; sind,

Similarly, we obtain t, = .
sin(0;+ 0,) cos(0,- 6;)

(407)

Using Eq. (40), it is immediately evident that g is always real and positive as

cos; and cosf, are both always positive (6, and 6, being between 0 and g).

Hence the dephasing between the incident wave and the transmitted wave is always
Zero.

With regard to the reflected wave, according to Eq. (40), it is possible to state
that =1 is a real magnitude and the dephasing of the reflected wave is dependent

on the sign of 1, which in turn is such that:
sgn 1 = {sgn[tan(6;- 6,)]}x {sgn[tan(6;+ 6,)]} .

11.3.3.1.1. Whenn, > n;: kyisreal and 6, < 6,

n, -n

For a normal incidence (8; = 0°), according to Eq. (40) I = —2 "1 50 so that
ny +n

I, =1 is a magnitude that is both real and positive, and the dephasing @ thus is

Zero.
In general terms though,
0,<0, and 0, € [0,11;/2], (0,-05) € [O,n/2], and sgn[tan(el— 62)] always is

positive. The result is such that {sgny } changes sign with {sgn[tan(@l-i- 62)]}

and 1 goes from being positive to negative when 6; = g so that:
n
(9}3+92):5~ (41)
The angle of incidence, 6; = 0p, is called Brewster's angle and is such that
tan(0g+ 0,) = tan— = oo , with 1 =0. The wave therefore is entirely
2

transmitted.
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When 6, = 0g, so that 6, = g -0 , we have

. . . T .
n; sin 8g =n, sin 6, =n, sin (—- Bg) =n, cosbp, from which:
2

tan 0 =2 | (42)
n

At an air/water interface, we have Og=Arctan 1.5 = 57°.

With 6;=90°, we have j;=-1 and || = 1 and @ =n.

So, to display the results, the plots of |n|=1(6;) and ¢ =g(8;) are shown in
Figure 11.12.

1 s

|y ol

/
N L
0 0 6 90° 0 0 6 90°

Figure 11.12. Modulus and phase angle for the reflection coefficient as a function of 0y for
a TM wave with ny > nj.

11.3.3.1.2. When n, <n; and 6; <0, (kis real), thus here with 6, > 6;

For a normal incident wave (8; =0°) according to Eq. (40)
= f2 <0 and r =y is a real and negative magnitude. The dephasing (¢))
n, + ng

thus is equal to 7.

When 6, > 0;,(0;-0,) € [0, -n/2] and sgn[tan(@l—ez)] is always negative;

the result is that r; goes from being negative to positive when [tan(61+ 62)]
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changes sign. This also happens when 0; =0p such that (0g+0,)= g

Simultaneously, ¢|| goes from = to 0.

We still have tan 6g = el though, and also can state that 6y <8, . In effect,
n

) n sin® .
sin 0,= -2 =tan Og = B > sinfp , so that 6, > 0p.
n cosOp

A representation of this is given in Figure 11.13.

It is worth noting that for the example of air and water, n; = 1.5 and n, =1.

1 1
We therefore have 0, = Arc sin [l_j ~42° and O = Arc tan [1—j ~34°.
5 5

T
A
1 ni<n. 2 <y
Ll i /
0 eB 0 91_> 90° 0 eB BL 91—> 90°

1

Figure 11.13. Modulus and phase angle for the reflection coefficient as a function of 6, for a
TMwave, with ny, < nj.

11.3.3.2. When k; is complex (n, <n; and 0; >0,)

In this situation it is not an easy task to reuse the reasoning given in Section
11.3.2.2; the projections made demand a symmetry around the angle 6, = 0,, which
has no real physical significance as the wave does not propagate only along the Oy
axis. Mathematically, we can check that 6, is not a real angle, as in effect,

. n . sin®
sin 0, = lsmelz - L
n, sin®,

, so that with 6; >0, we have sin 0, > 1.

In Fresnel's equations, in the place of the wusual equation,
cos0, =,/1-sin20, , now with sin’0, > 1 we must bring in for the term cos 0, a

purely imaginary value given by cos6, = —i,/sin?0, —1. The negative sign is
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required by the need to obtain at a later point an attenuation of the wave in medium

170
(2). We also can state that cos6, = —i S —1, and with o2 _ sin®, , Eq. (40)
sin?0, n;

gives:
sin?0, cosO; + j,/sin?0; —sin20,
(SO TR L @)
sin?0, cosf - j,/sin*0; —sin26,

Once again the numerator is the conjugate complex of the denominator, for which

o=

|1y =1. By writing 1, = exp(iq) = Z, and by making
Z

z=sin%0, cosh; +j,/sin?0; —sin20, = p exp(i p) , we obtain:

= exp(iq)) = i=m= exp(12pB), so that with tan L tan B :
z pexp(-if) 2

e e
tan[ﬂJ= N IR (44

2 cosf; sin®0,

If 6, = 0, , then tan (%J =0 and ¢ =0.1f 6 = g,then
cos ;=0, tan [%]z o,and @ =n (see also the plot on the shaded area of

Figure 11.13).

11.3.3.3. Comment

Figure 11.14. A Brewster angle incidence for a TM wave at an air/glass window.
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To ensure that a ray passes through a glass/air interface, as shown in Figure 11.14,
without loss by reflection, the wave should be TM polarized and undergo a Brewster

type incidence as [r”]e 0 = 0 (such as is used in Brewster lasers with a Brewster
1=

window).

11.3.4. Reflection coefficients and energy transmission

11.3.4.1. Aide mémoire: energy flux through a surface
The energy flux, associated with the propagation of an electromagnetic field in a

material, is equal to the flux traversing the surface given by the Poynting vector (S ).
Equation (33”) of Chapter 7, Section 7.3.3, shows that for a MPPEM wave in
nonmagnetic materials the average value for the Poynting vector is given by

- 1 — — % — e
<s> =5 —REnxBy). so that with 0By, =k<E,, [Eq. (13) of Chapter 7] we
o
2 . 1 .
, and with ——=—, we can write that

E
" Ho® Ko

have <§> = Zulom k

2

m| - With our notations, and for incident, reflected, and transmitted

- K |-
<S> = %_ E
2 ko
wave, the associated average value of the Poynting vector is, respectively:
s g0 Ki |20 /= goc k 2 .\ gck
)-SR, (5) -2 Eef -k
2 kg 2k 2 kg

EY

1

2
-0
Eq

EO

=r

The energy flux across the surface X is the energy transmitted per unit time through
the surface. In effect, it also represents the power transmitted by the wave under
consideration.

i
I
I
I
10,
Glf{L\ n,
U S0
XC = ih > y
; R
p)
S Y n;
0,
I
[}

Figure 11.15. Reflection and transmission of an incident flux traversing %'
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The radiated power of the wave traversing an interface with surface ()
from a medium with an index denoted by n; toward a medium with an index n,
(Figure 11.15) thus is given by:

- K 1=nl2 )
<Pi > = <Si>ﬁ122 = %—1 E? ﬁlzz = %nl i ECOSG] A
2 kg 2
k _
<P, >= < >n122—%— E, nlzz——ﬁnl EO  cosb, v (45)
2 ko
L €0C kt aOc of? k'tZ
<P >=(S¢)fijp2=——|E t nlzZ— I—.
et o

11.3.4.2. Equation for the reflection(R) and transmission (T) coefficients: total
energy
The titled coefficients are defined so as to give positive values, so that we have:

_ (B) _{P)
_E andT—ﬁ. (46)

From this can be determined with the equations in Eq. (45) that:

_o[? _0[?
E ) E; k' ) k'
R= = |£| and T= tz = |t tz ' (47)
B0 2 Eo 2 ko ny cos6; ko ny cosf;
1 1

It is notable that in the case of the transmitted power, T # |t > . This is due
to the fact that the way in which the power is transported depends on the different
cross sections, so that > ;=) cos6; for an incident wave and

> =2 cos 0, fora transmitted wave (while for incident and transmitted powers,

2 =X= 2 cosO).

With respect to the sum of the energy, we can calculate this by using a closed
surface, such as a parallelepiped of a given height (h) such that h — 0, and then
drawn around the level of the surface (Figure 11.15). In physical terms, for an
isolated system, the incoming radiation power must be equal to that leaving, so:

o the incoming radiation power is that of the incident wave, such that

fpp: <P>= <§i>ﬁ122 :

o the outgoing power radiated has two components:
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e power radiated by the reflected wave with respect to -1,
—<§r>ﬁ122 =-<Pr>
e the power radiated by the transmitted wave with respect to 1y,
<P>= <§t>ﬁ122
We thus should have <P;>= - <P. >+ <P, > . Dividing through term by term by
<P;> we obtain:

R+T=1|. (48

Comment: The transmission coefficient for a homogeneous transmitted wave
(ny <n, or n; >n, and 6; <0,).

In this case, Et is real and equal to Et . With k'tZ = kg n, cos 6, , we have

2 n, cosf,

T=t (49)

n; cosf;

11.3.4.3. Representation of the reflection coefficient as a function of the angle of

incidence

1 1

R n;|> n, R
| Ji
"
R |
[ nj-ny ]2 /Ri/ // [ n;-n, ]2 |§
ntny n+n I
— ), — =T |R!
A N |

0 0 6 90° 0 05 6, 0,—» 90°

Figure 11.16 b.
Factors in the reflection of energy:

R) =[r Pand R =y

Figure 11. 16 a.
Factors in the reflection of energy:

Ry = Pand Ry =11 > asafunction of
as a function of 9,
for ny <ny (withr andp,
from Figures 11.10 and 11.13).
Op =34 ° for an air/glass interface,

and 0, =42°.

O, forny > ny (with r| and 1

from Figures 11.9 and 11.12)
Op =357 ° for the air/glass interface.

. . 2. . . .
Taking the equation R = |g| into account, we can use the representations given in

Figure 11.15 for when n, > n;, or n; > n,.
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2
o n;-n
For normal incidence, 6; =6, =0, and R = e e
n1+n2

2
. 2n 2n n 4nyn
Atthesametlme,T:M =2 - =L L:]—22:1-R.
D n4ny ) onp (ng+ny)

It can be seen in the plots of Figure 11.16 that when n, > n; the reflection is
always partial and relatively weak, except in the neighborhood of the glancing angle

T o . . .
0, ~ 5). This is the reason why the air/water interface is always transparent
(n, = 1.33) except when there is a glancing angle, or under conditions of

reflection.

Under a Brewster angle, only a wave polarized perpendicularly to the plane of
incidence (TE waves) is partially reflected. At this incidence, the TM wave is
entirely transmitted (R =0 when 6; =6p).

Wave loss after 2™
reflection at Brewster

polarized TM AN

wave for 2™

* mirror

“~.incident natur
light

2" mirror with incidence
plane normal to that of the
1St

Figure 11.17. Malus's experiment.

Under natural light, the incident wave exhibits all polarization states, and for an
incidence with the Brewster angle it is only waves polarized perpendicularly to the
plane of incidence which is reflected (TE wave). It is this result that explains
physically Malus's law, which demonstrates the polarization of light with the help of
two mirrors set at a Brewster angle, so that the planes of incidence are orthogonal.
The two successive reflections are at Brewster angles so that after the first reflection
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of natural light there remains only a component that is polarized perpendicularly to
the plane of incidence of the first mirror (thus a TE wave for the first mirror). The
incidence plane of the second mirror is perpendicular to that of the first, and the
incoming wave is seen as a TM wave. Following a reflection at the Brewster angle
on the second mirror, there is a complete extinction of the wave.

11.3.5. Total and frustrated total reflection

ty Sy
propagation along Oz and only propagation along Oy persists.
As R=|r|*=1,wehave T=1-R=0, while at the same time with t = 0

(see Eq. (36), for example).

When n; >n, and 6; >0,, we have k'tz= 0 and l?t=k there no longer is a

\\91 > 95
— \\\
ki AN e[
\
\[‘ kt: ko 1’11 Sil’lel
ny
y
m ‘%L—_ >
n, <ng k
a4 evanescent wave:
- propagation along Oy
- attenuation for Oz
z

Figure 11.18. The evanescent wave and frustrated total reflection.

Therefore, even though there is a transmitted wave, as t # 0, the
transmission coefficient for energy is zero. This is because the propagation through
medium (2) can occur only at the interface (along ¢€,). The wave itself is
evanescent (Figure 11.18 being the “completed” Figure 11.6) with wavevector
components (Et) given by Eq. (30°). By substituting the value for the components
into Eq. (21), we find that the transmitted wave has the form:

- -0 " .
E,f)=E; exp(-k,2) exp[l(kiyy - (ot)} ,
" n2
with kg, = ko (nfsin®0;-n3)"? = kon, (i) - ) .
n3

~ 2
The intensity of the transmitted wave, proportional to ‘Et (f,t)‘ , is thus of the form:



Chapter 11. Reflection and refraction in absorbent finite materials 347

2 , 2 1 1 n?
1@=[E{] exp(2ki,)=1,0) exp(-=2) , with 8= —— = ——(“Lsireo; - 12
8 w kony n3

. 5 . o
where O represents the degree of attenuation (when z= —, the wave intensity is
2

divided by e).
. . . ¥
The wavelength in medium (2) is given by A, = 20 | 5o that also we have:
np
}\’ 2
5= 22 M ging, -1y 2. (50)
27 n%
n? n?
If O, increases, sin 0; also increases, as (—lzsinzel - 1), while (—lzsinzel - 1)'1/2
np np

decreases with d and the evanescent wave penetrates less medium (2).

Numerically, for the glass/air interface, and at what is practically a glancing

angle, (6, zg), we find that 6 = 0.14 %,.

glass (1) ()
interface 1
| h~o

| air(m)

nterface IIT
glass (2) (n))

Figure 11.19. Experimental demonstration of frustrated total reflection.

The presence of an electromagnetic wave in a thickness of the order of & of
the second medium (such that T = 0) can be demonstrated by using the setup shown
in Figure 11.19. At the level of the first interface (interface I) the wave penetrates to
a depth of the order of 6 and is then transmitted to the level of the second interface 11
that is such that its index [glass (2) with index n;] is higher than that of the first
medium (air with index ny). In other terms, following its passage from interface I,
the wave is attenuated over a depth of h =~ & and what “remains™ at this depth is
then transmitted to the level of the interface II, which in turn does not follow the
conditions of total reflection. The result is that of frustrated total reflection.
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In order to carry out such an experiment, a total reflection prism can be used
with angles equal to 45°, which is greater than the 42° required for the glass/air

interface (0; =45°> 0, ). By placing a second prism at a distance h ~ & from the

first, as described in Figure 11.20, a frustrated total reflection occurs exhibited by
the presence of part of the incident wave in the right-hand side.

However, as mentioned above, the two prisms must be placed a distance apart
givenby h =8 = 0.14 X, , which means that h = 0.1 um for waves in the optical

domain. This requires extremely delicate handling and can be made easier by the use
of waves with wavelengths of the order of centimeters thus requiring h = several
millimeters (which is easy with paraffin prisms).

The results obtained for electromagnetic waves can be extended to waves
associated with material particles. Frustrated total reflection can be considered that
of a tunneling effect, in this case applied to photons.

air
N

o wave after
incident - frustrated total
wave o 7 - i
D, > é/ reflection
P
7/

Figure 11.20. A4 total reflection prism used to demonstrate frustrated
total reflection.

11.4. Reflection and Absorption by an Absorbing Medium

11.4.1. Reflection coefficient for a wave at a normal incidence to an interface
between a nonabsorbent medium (1) (index of n;) and an absorbent
medium (2) (index of n,)

The index of medium (2) is complex and given by n, = n'2+ i n; . For its part, the
incident wave is assumed to be normal to the interface so that
6, =0°and sin 6; =0, and the wavevector of the transmitted wave thus can be

written, with k'ty= ko n; sinf; =0, as:
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, s o2 ,
- ' , ki,=ko R (gz— nj s1n261) =kon,
kt:(kt+ikt)éz , where

] y o 12
ki, =k Im(gz -1nj smzel) =kon,
so that k,=k, (n'2+ n;)éz =kyny¢,.
The EM field associated with the transmitted wave (Ev Bt) thus is given by:

Et :E?exp (-kon;z) exp (i[konéz - mt])

les1!
I
I
b
|
ol
X
e
LS

With the index n, being complex, Bt is no longer in phase with Et. Taking
into account the form of the fields, we can equally state that this MPPEM wave

. . . ® c )
propagates along Oz with a phase velocity given by O —= — and is
koﬂz n,
attenuated exponentially along Oz in the absorbent medium (2).
The condition of continuity at the interface of the tangential components for the

fields E and B results in the same values as those cited previously for reflection
and amplitude transmission coefficients, while nevertheless noting that n, is in a
complex form and that:

2]11 2n1
v and t= = O
nj+n, nytn,+in, n+n, nyt+n,t+ing

n-n, n-1n,-in,

r=

The arguments with respect to r and t, respectively, give the dephasing of the
reflected and the transmitted wave with respect to the incident wave.

For the reflection and transmission coefficients in terms of energy, we also
obtain:

2
' " ,
2 (nl'n2) +n2 4n1 n,
R=|r" = and T=1-R= >
(n1+ n2) +n22 (n1+n2) +n22

11.4.2. Optical properties of a metal: reflection and absorption at low and high
frequencies by a conductor

See Problem 1 of the present chapter.
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11.5. The Antiecho Condition: Reflection from a Magnetic Layer; a Study of
an Antiradar Structure; and a Dallenbach Layer

11.5.1. The antiecho condition: reflection from a nonconducting magnetic layer

11.5.1.1. Reflection from a magnetic layer
This follows on from the study in Section 11.3.2 on TE polarization by reflection at
an interface between media (1) and (2) with the difference that here the media have
a permeability different to that of a vacuum such that media (1) and (2),
respectively, exhibit permeabilities p, and p,.

It is assumed that the media are sufficiently insulating so that the density of free
charges is negligible so that o, =0and j, = 0.

Under such conditions, the continuity conditions for the interface mean that

— - — — . Blt th . N o

E,, =E,; and Hy;, = H,, and in turn = = == with in addition B;; =B,; as
W ¥)

specifically to this case p; # p, (see also the end of Section 11.3.1). Equation

(32) then becomes:

e along Ox: E? + E? = E? in an unchanged relation due to the conservation of the

continuity equation. By dividing the two terms by E? , we also find
l+r,=t,, (51)and

e along Oy: iE? cosb; - K E? cosei:k—t E?coset. (52)

(%] (] (%)
With the media being nonconducting, i.e., ¢ = 0, we can state that in each medium,
according to Eq. (5) of Section 8. 5 1,

k; =k, gy and ki=o 52 K, . The preceding equation with respect to

Oy becomes: , E0 cos0; - / E0 cos0;= /— E0 cos0; .
. . . 1 €1 1 %)
With Eq. (6) from Section 8.5.2,i.e., — = |— , and — = |[—, we have:
Z My Zy Ho

Z{IE,Q cosGi-Z{IE? cosei=Z'21 E?cos@t.
By dividing the two terms by E?, we obtain: Zilcosei- Zil r, cosf;= Z'21 t, cosO,

so that with the same notations as those used in Section 11.3.1,
(I-r)) Zilcoselz i Z'zl cos0, , (52%)
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From Eqs (51) and (52°), we can determine using a method analogous to that in
Section 11.3.2 (where Zil was substituted for n; and Z'zl for ny):

cosf;  cos,

Z Z
r L:#’ so that following multiplication of top and bottom with
- cos0; N cos0,

Z, Z,

Z,Z, we have:
_ Z, cosb;-Z; cosb,

= , from which according to Eq. (47) we have:
Z, cosf;+ Z; cosh,

:| Z, cosf-Z, cosf, |2

R |22 cosf,+Z; 00562|

(53)

As the incidence is normal (with directions f(i and €, being merged) the
notion of incidence plane loses its significance (otherwise defined by the vector
directions k; andfi;, = &,), and we can state for the energy reflection factor for
whatever polarization direction of the incident wave, that:

2, -7, ’
72, +272,

R = (54)

1.5.1.2. The antiecho condition
Here the reflected wave is annulled so that R = 0. For this to occur, taking Eq. (54)
into account being applicable for a great distance where the wave exhibits a normal

. . . & €
incidence on the target, it suffices that Z; = Z,, that is, hd - —2, and hence:
My M2

Bir _ Bor (55)

Hir Moy
So that this condition is true, a specific sort of coating must be applied to
medium (2). If medium (1) is air, then Eq. (55) means that between the dielectric
permittivity and magnetic permeability of the second medium, there is a simple
equation given by
g=p.  (55)

Comment: the antiecho condition for EM waves is just one part of the conditions
under research in optics in order to find a material that is completely anti-reflective.



352  Basic electromagnetism and materials

nj -np

In such a case, the condition R = 0 means that R = =0, so that

nl + n2
n; =n,. This condition has no sense in itself, as it would mean that the media (1)

and (2) would be identical and that therefore there would be no interface. One
method though is to insert between the two media a layer of a given thickness and
index n such that n; <n<n, and then find the conditions for which a destructive

interference is formed between the two reflected waves, one being at the interface of
the materials with indices n; andnand the other being at the interface of the

materials with interfaces n and n, .

11.5.2. The Dallenbach layer: an anti-radar structure
11.5.2.1. The stealth concept

E;
—> —air (&, po)
k; k,
;]
o| . 4+—
A J_—t:} > y
d dielectric (¢) and/or magnetic
v () medium which is slightly
.................................... conducting, although not equal
to zero
metal

z

Figure 11.21. Antiradar structure.

Assuming that a wave with a frequency denoted by ® has a normal incidence to a
metallic surface, the reflection is total. In order to make the metallic layer stealth-
like, it is covered with a dielectric and/or magnetic material adapted so as to satisfy
the antiecho condition for an air/coating interface. In addition, the wave transmitted
in the layer also must be totally attenuated in order to suppress the total reflection
that would be produced by the metallic layer. The attenuation is obtained with a
slightly conducting layer of sufficient thickness (d) as indicated in Figure 11.21.



Chapter 11. Reflection and refraction in absorbent finite materials 353

11.5.2.2. Condition (1): antiecho at the air/dielectric-magnetic interface

The classically used absorbent materials are generally composites based on carbon,
iron carbonyls, or ferrites (see also Chapter 4, Section 4.2.5.2). These materials do,
however, suffer from certain inconveniences such as their weight or their
mechanical rigidity due to the high number of charges necessary to reach the
required absorption. These composite materials are presently being replaced by
conducting polymers, which can be acquired through doping a conductivity
appropriate to the system.

11.5.2.2.1. Equation for the reflection coefficient
In the system under study, the conductivity (o) is such that ¢ # 0 and in the layer

k =k, so that from Eq. (5) of Chapter 8, Section 8.5.1, where “electrokinetic”

notation was used to establish the equation we have:

G |2
k; = o pe (1 - i—j . (56)
oE

Under normal incidences, the preceding Eq. (52) can be written for the air/layer

interface (where for air k;=k, =k, = @ ):

k—OE? - k—OE? :kt E? . By dividing the two terms by E? it is determined that:
Ko Ko p
k—o(l -1) kK t , from which with the help of Eq. (51) we determine that:
Ko u

kg k

= - =t kn - k My 9 - kt

r= Ho H , sothatalso r = Mo Mo __ ¢ 7
kio + lﬁit ”kO + p-Okt “rg + kt
Ko u ¢

11.5.2.2.2. Approximate calculation using v=35 GHz, ¢, =15,

c=5x10"Qm!=5x107 cm'l)

Figures 11.22a and b give a qualitative indication of the evolution of the
conductivity and dielectric permittivity of polyaniline films with varying levels of
doping as a function of frequency. On going from A to D the plots are for increasing
levels of doping. It can be seen that for sufficiently high levels of doping, quite high
values can be attained.
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Figure 11.22. Evolution of o and &’ as a function of frequency for
doped polyanilines.

Using the values given in Eq. (56) for k,;, the term

5x 107"
o X ~12x107"is very much less than 1. With a

we 2rx5x10° x 15x8.85x 1072

limited development, from Eq. (56) for k; we obtain k; = ./ pe (1 - izij.
e

. c .
By making f = 2— , we thus can write that:
0

k, = ope(l -iB)z%/urgr (1-iB). (56"

The reflection coefficient given by Eq. (57) then takes on the form:

€
- [SE-ip)
By - e (1= iB) L
et figer (1 i) I+ fa—iﬁ)
My

Numerically, as B = 10 << 1, we have (1 -iB) = 1, and r can be reduced to:

r= , so that finally r =
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2
[ [
ur oy l-'l'r . Sr _
r——mm (58) The condition R ~ | ——— =0 thus gives —= 1,
1+ |5 1+ B Hr
Hr Hr

sothat ¢, =p, =15.

We once again find the condition of Eq. (55'), which is quite normal as the
numerical calculation lead us to neglect the component due to conductivity, just as
was assumed hypothetically in order to arrive at Eq. (55").

11.5.2.3. Condition (2) to predict total reflection at a metal: attenuation and depth
of penetration of the wave into the coating

The transmitted wave is given by Et= t l:ii exp(i[ot - k,z]) using electrokinetic

. . . . . ®
notation. According to Eq. (56°) k; is of the form k; =a -iy, with a= —,/u &,
c

and y= 2[5,/ W €, , so that:
c

® Iy} Iy
Y= — U —= B . With the preceding condition (1), that is, &, =,
c 2we  2cgg \ &

. The wave is in the form:

we finally have y =
2cg

- - 1
E,= t E;exp(- yz)exp(i[ot - az]), so that by making & = — , we have

Y

E=tE exp[- g] exp(i[ot - az]).

The wave is attenuated little by little along its propagation through the coating.
When z=393, the wave amplitude is divided by e =2.7.
This attenuation is obtained at a penetration depth (8) such that:

1 2
5=— =80

Y c
which here in numerical terms means that d ~1.3 cm.

11.5.2.4. Conclusion
It is notable that the thickness calculated is for 6 measured at a given frequency,
while the law for the evolution of current as a function is frequency is typically of
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the form o(w) = o) + A®® (see also Figure 11.22 for a sufficiently doped material

such as curve C or D). The absorption thus is limited to a certain band width. In
order to absorb over a large enough band, a structure based on one single layer
(called the Dallenbach layer) has to be improved upon by using multi-layer
absorbing structures, in which each layer is optimized to obtain a minimum
reflection coefficient for a given band width. A final restriction is imposed by the
necessity of having thick enough layers to be practicable, to the extent that
absorbing paints might be used.

11.6 Problems
11.6.1. Reflection and absorption at low and high frequencies by a conductor

The optical properties of a metal are treated through a series of questions (and
answers!) as given below and follow on from the problem studied in Section 8.6.2,
concluding with a look at the optical properties of a metal as derived from the
relationships for dielectric permittivities as established in Section 8.6.2 from the
equation for electronic polarization.

Recalling Section 8.6.2, the equations for the complex dielectric permittivity of
a metal were:

i 0
e g =1- & [question 3(c)] Eq. (1);
wgg[l +imT]
o2t
e ¢ =1-i———— [question 3(d)] Eq. (2).
o[l +iwT]

The metal under consideration is copper, and in the equations for g,:

e 7 is the relaxation time, which is such that t = 107145 ;

e 5(0) is the conductivity for a steady (DC) state, which will be taken equal to
6x107 Q'm';and

) ) . 2 N¢?

is the plasma angular frequency, that is defined by the equation ®,"= ,

®
P me

p

and is typically ©, = 10'%rad s . It is worth noting that g; =8.85 x 102 MKS.

The incident wave at medium (1) is a MPPEM wave polarized in parallel with
Ox in the form E(): EO exp(-ikz) in electrokinetic notation as the applied field was

written in the form E = Eo exp(iot) from the beginning of the problem in Chapter

8, Section 8.6.2. The propagation of the wave thus is much as usual, along positive
values of z. The wave is considered to arrive at a normal incidence, so 6; =0 and

the reflection is detailed at the air/metal interface where each, respectively, have
indices n; such that n;= 1, or more simply n=n'-in".
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1. This part considers the optical properties of a metal at low frequencies.

1
(a) This domain is defined by o <<— . From Eq. (1) for ¢ , give the simplified
T

form which g, takes.
(b) By using orders of magnitude of different parameters, show that the expression
for . can be reduced to a single and explainable term.
(¢) Calculate the complex index for n=n'-in"
(d) Determine the reflection coefficient for the amplitude r (which is thus in the
n-n
n;+n

formr =

following the preceding Section 11.4.1). Equally, evaluate the

reflection factor in terms of energy.
(e) Give k as a function of n inside the metal. Study the form of penetration of the
electric wave in the metal by writing the form of the wave in there as

Et:EOt exp(icot):E? exp(i[ot-kz]) , where the complex amplitude EOt is

thus of the form EOt = E? exp(-ikz) . In order to do this, determine the depth

(9) of the penetration of the wave, which we will define here by using the term

. z
for attenuation in the form exp(—g) .

(f) Establish the form of the energy transmission factor (T). Give this as a function
of n' or n", and then as a function of & (the so-called Hagen-Rubens equation).
Give a numerical value for & and then also for T given that v = 1 GHz. From
this result, make a conclusion.

2. These questions now concern a zone of slightly higher frequencies which are

1
defined by o <<—.
T

(a) Using Eq. (1) for g, , give the simplified form of ¢, in this domain.
(b) When o << w,,, determine the form of g, as well as that of the MPPEM wave

in the metal. Calculate the reflection coefficient for a normal incidence at an
air/metal interface.
(c) When o > o, (high frequencies), give the range of variation possible for g, .

Give a value for g, when © >> @, as well as that of the reflection coefficient

for an incidence normal to the air/metal interface.

3. Give a recapitulative scheme of the reflection and transmission properties of a
metal in the EM spectrum.
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Answers
1. .

1 i
Low frequencies ®» <—

T

ic(0 <<1
(a) We use §r:1-L, ot
0gg[1 +imT] 1
and with
. . : . 0(0)
o 1<<1, iot =~ 0 (negligeable with respect to 1), we havee, =1 -1 .
[Q1°%)

(b)
c(0)=6x10" Q' m™,

1 -
o<<—=10"sT, = o &g <10’

T
{ﬂ} __ o G(g)=6x 104 >>1.
©gg imin [mgolmax 10
. a(0) . .
With always being greater than 1, in the low-frequency range we have:
we(
a(0)
g ~-1 .
(Ol
0 0) -iv
(c) Given g, = 32 ~ —i Q) = ﬂe 2, from which we deduce that
(Q1°N) [Q1°n)
0) —ie it |
n=n-in"= ﬂe 4 | so that with e 4 = cosZ-isinl = —(1-1) , we
0g( 4 4 2
obtain:
0 0
n=n'-in"= G()(l-i),fromwhich n'=n"= G().
2mg 2mg

0 0
(d) We have {G( )} >1 = ﬂ>> landn'>>1 justasn">>1.
WE( i min [
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. n-n l-n'+in" n'-in" i .
The result is that = ——= — ~-———=-1=¢"" and on reflection
n+n 1+n-in" n'-in"

there is a dephasing by © while the reflecting power is in the neighborhood of 1, i.e.,
R=r’|~1.

1 \2 w
||2 (l—n ) +n? n2+n"2
"= = 5 =1
r12-i-n2

The ability to reflect energy is given by R= 3
(1+ nv ) " nwz

where n'>>1.

(¢) With k =

o |e

n=k'-ik", we have k"zgn":9 c(©) :l ©o0) .
c c\ 2mgy c\ 2g

b= EVe K6l can be written for

A wave that propagates in the formE, = EOtei"’

el(o)t—k z)e—k z

this frequency range as E = E? . The equation carries a term for the

propagation as in el@t=k'z) , and a term for attenuation as in ¢ "% that also can be
z
. iy 1 280 . .
rewritten as € & where §=—=c¢ . With & representing the depth at
k" ® o(0)

. . . o1 .
which the electric wave is attenuated by the ratio —, for distances greater than
e

several o, the wave is practically zero.

Asd=c

, we can see that as o increases, 6 decreases. For the
® o(0)

1
highest frequencies in this region (o0 < — = 104 Hz ) the EM waves are localized at
T

the surface of the conductors, in an effect called the skin effect.

4 '
(f) The equation for T is deduced from that of R,asin T=1-R= % .
(n;+n)"+n

. . 2 . .
Withn"=n'=n>>n; =1, the resultis that T = —, so in addition T =0 (asn>>
n

1
3—, we have
(Dl'l"

208 2 2 4m &
=0 = 2kg d, so that with kozc—n: —n,wealsohave T:L,
C (O] kO 7\.0

. . 1
1). In more precise terms, when n'=n'=n, and with 6 = —

"

T

which is known as the Hagen-Rubens equation.
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The energy received by the metal is transmitted by carriers to the lattice that
dissipates the energy through the Joule effect. So, the factor T is often called the
absorption power of the metal.

In numerical terms, for copper,
6(0)= 6x 10" Q'm™! | © =210’ radss, gy =8.85 10"'% MKS so that

2
d=c 250 _ 06 um .
o 6(0)

As Ag 2320.3 m (region of centimeter wavelengths), the Hagen-Rubens
v

formula gives T = 8 x 10°° - 0 , to which R ~0.99990 — 1. Hence the use of
microwave frequency radars for police use in determining car speeds!

2.
(a) This part uses for g  the general formula (2) obtained from question 3(d) of

Section 8.6.2, for metals, as in:
2

5T
6 =12
o[l + imT]
) (DI%‘E O)f)
When ot>>1, we haveg, = 1-1i =1-—.
- i®*t? 2
% o .
(b) When <, SO that — > 1, we have g =¢,"———<0 . For the index then
®? ®?
2 2
_2_ Y 2% : o PP
g, =n" =—-——=1"—— must be true. The result is that n=n'-in"=+1i — so
®? ®? ®
©p

that n'=0 and n"=— (only the positive solution is physically acceptable and it
®

represented the only available absorption of the wave in the medium).
With k'=0, the wave defined by E, = Eoe'® = EVe K¢t takes on he

formE, = E?e_kﬂzei“’t, and as there is no longer a term for the propagation, in

effect the signal no longer propagates through the metal. The wave oscillates in a
standing position in the neighborhood of the interface, and in practical terms the
wave is reflected, as shown in the following calculation.

1 +in"

. (Dp . .
(= -1 with n'""=—>1), which is such

In effect, r=
1-in" )

that|r| =1, so R =|r? =1.



Chapter 11. Reflection and refraction in absorbent finite materials 361

2 2
® ®
(c) Ifo>a,, so that —L2 <1, and with —=>0, we can state more succinctly
o? o?
(02
that0 < —2 <1 and 0 < €, <1, and that ¢, is positive, real, and between 0 and 1.
(Dz
o2
When o > ©,, SO that — << 1, we have €. =g, # 1. Thus the metal behaves
0)2

as if it is a vacuum without charges simply because the latter cannot follow such a
high frequency.
As g =n?>,wehaven=n'=1; k'= @0 and n" =0 just as  k"™=0 (no
c
. n-n 1-1 .
absorption). So r= =——=0,andR=0and T=1, and the transmission
n+n 1+1

is perfect.

3. To sum up the characteristics of a metal:

Radio frequency  u-wave IR

® >> 1/1 in the region of higher frequeg:ies

visible yv >
1D =10'® rads
«———— s % >
Question 1. t
1 /7 <<ow << @, 2(c) o > @, THF region
@ <<— so0 is near low .
T 2 (b) &<0: (high energy)
frequency region n'=0and k'=0 & =1 and the metal acts as
=K" % 0 a stand'ing wave if a vacuum, with
For a good metal Osgiﬂatis R=0,T=1 and
withou .
>>
(0(0) >> wey) propagation. Tofal total transmission
dephases by 7 at reflection reflection and
andR = 1. Transmitted R=1

wave attenuated, and by

z~ O (skin thick)is é‘
practically zero (more so <
when o is high, as is - g
wave). A
. / — - _
A4 Y

Frictional forces non-
negligible. Absorption
and Joule effect transmits
energy through network.

same as plasma where friction is negligible
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11.6.2. Limited penetration of Hertzian waves in sea water

Here the system is based on medium (1) which is air (which in electromagnetic
terms is assumed to be the same as a vacuum) separated by a horizontal plane (Oxy)
from medium (2) which is sea water. For Hertzian frequencies (the maximum of
which is considered to be 100 MHz) we can take for the real parts of the dielectric
permittivity (g,) and the conductivity (o) values measured for a continuous stationary

regime, as in g =8l and o=40"'m?. In addition, medium (2) has a

permeability equal to p, and is assumed to be non-magnetic.

1. The Maxwell equations

(a) Give the equation for the total current in medium (2).

(b) Write the four “Maxwell equations” for medium (2).

(c) Using a rapid calculation (resembling that used for a vacuum), establish from the
Maxwell equations the equation for the propagation of an electric field (equation of
partial derivatives followed by the electric field).

(d) Toward which forms does this equation tend on going from a nonconducting
medium to a medium where conductivity predominates?

2. The question concerns the search for a solution to the electric field in the form of
a MPPEM wave where E = E° exp(i[ot - k 7]) and E is the vector of the complex
wave.

(a) With the help of the equation for propagation, establish the equation that brings

together kz , &, and .

T
(b) From the general equation that exists for wavenumber and index, give the

equation that ties 22 , &, and .

1

3. Numerically compare the value of two terms that intervene in gz. From this

determine the approximate and literal form for n (the imaginary number which is
1

such that n =n'-1in") that can be expressed as a function of (% 0gy)? .

4. This question concerns, within the approximation of the preceding question, the
propagation of a wave with an incidence normal to the air/sea interface.
(a) Give the theoretical form of the electric field that can be expressed as a function

1
2 —
of the parameter: 8= ( < )=( )2,
on’ Lo®O
(b) At which order of depth (when v=1MHz and v =100 MHz ) does the wave
penetrate the water. Give a conclusion from the result.
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(c) What is its phase velocity (literal expression given as a function of the frequency
v and then a numerical value for when v =100 MHz v =100 MHz).

Answers

1.

(a) Taking into account the data given for the problem, for the medium with a real
conductivity (o) and a real dielectric permittivity (g;), we can state that the total
current density in the medium is a sum of the conduction current and the

) . - JdD - E
displacement current, so Jp=1J, +Jp =cE+ = =oE +¢gj¢; a5
t

(b) Here, with p, =0,

divE=0 (1), divB=0 (3)
_ .. 0B aE
rotE=-— 2), rot B= uOJT uOGE + L —. 4)
ot c? ot
(c) The calculation of the rotational of Eq. (2) gives:
0 — OE O°E
rot(rotE)———rot B, so that AE LoS— + o . (5)
ot ot ¢ ot
(d) If the medium is a nonconductor, we immediately find (with ¢ = 0) the classic
— 82
d'Alembert equation, as in AE " P =0, where & =n> (see the relation
c* ot

obtained Section 7.2.1.5 for nonabsorbing materials)
If the term due to conductivity is dominant, i.e., the medium is well conducting,

. : — OE
the propagation equation takes on the form AE - uocg =0.

2.
(a) By looking for a solution to the general Eq. (5) of the form

E = E’ exp(i[E T - ot]), we end up with the following equation to verify

— - . 0B - o°E -
where =i’k E=-k“E, — =1inE, an =-0"E):
(where AE =k E =-k’E ioE , and ’E)

ot or
k? = Lo’-iopgo
02

Accordingly, afterward it can be verified that k, just as kz( # |k|2 =k k*) are

complex.
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(b) With the general equation introduced into that for absorbent media [Eq. (25) of

Chapter 7] as in k = gg , We obtain
c

3. Numerically, and for each of the two terms:
o for the first term, &, = 81;

e for the second term, the minimum value is obtained at a maximum value of ®
given in the Hertzian domain, which is ®,,,, =100 MHz = 108 Hz . Thus,

{L} 719,
g min

. o . . .
So numerically, —— > ¢, and the conducting component is largely dominant, so
€0

that in practical terms we can state that:
. © . . LT o . .
n? = -i ——, so that with —i = exp[- 1—j,then n’= —exp(- 1—) from which
€90 2 €90 2
can be deduced that

[ o (nj c( {n}{nD /6 .
R [——exp|-1—|= [——]|cos|-— |+1sm|-—||= 1-1).
€90 4 €90 4 4 2 gy

With n=n'-in" (using electrokinetic notations), we finally have:

I=]

o

2 o -
. .. o . .
Comment: The numerical condition, —— > €., is the same as neglecting the
€0
displacement current with respect to the conduction current. The complex index (n)
which is tied to the complex relative permittivity by the equation n’>=g  is

o . © .
therefore such that n?=g. =g -i——=~-i——. The complex relative

1Y Y
permittivity is practically purely imaginary as is the case for a conductor subject to

low frequencies for which exactly n'=n"= is found [see also the preceding

2 ggm

exercise, questions 1(b) and (c) with concerning the notation: ¢ = c(0) .
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4.
(a) For a normal incidence, (8;=0), with n; denoting the index of medium (1), we

have for the transmitted wave:
1

Kiy=ko 1y sind;=0, ki, = koR(n*n7sin’0;)2 = kon'
1
klz: kOI(gz—nlzsinzei)2 = kon"

By using electrokinetic notation, the wavevector for the wave transmitted in medium
(2) is thus k = Et:(k't- ik‘{)ézz ko (n'-in"E,=kon &,= k, &,.

1 1
By  making d0=—-= , so that with n'=n" = ° ,
kon'  kon" 29w

2 i
S = \/ = c\/ £ ,and k= 3 é; the form of the electric field in medium

il TGOV

(2) is therefore:
E = E’ exp(i[ot - E T])= E’ exp(i[ot - k,z ])= E° exp (—%) exp(i[wt - g D.

The depth of the penetration is of the order of & . The z noted above is equal to
several 0 and the transmitted wave is practically zero.

(b) In terms of actual numbers, when v =100MHz= 10 Hz  and
¢ 3.10° £
v 108 TGV

When v=1MHz, (A =300m), we find 6 =25.2 cm.

To conclude, we can see that for a depth z of the order of several J, being here
at most a meter or so, the wave signal is practically all absorbed, and it therefore is
not possible to communicate using Hertzian waves with a submarine. In effect,
underwater communications are established using sonar with acoustic waves.

=252102 m=2.52cm.

1
c e speed of the phase is given by v zi,and with n'= —, we have
(c) Th d of the ph by v, 3
n' 0

4 v . .
—— . Thus, if v decreases, v, decreases also, and we arrive at a

Ho ©
dispersion of waves.

Vo = o=

In numerical terms, when v = 100 MHz, we have Ve = 1.6X 107 ms.



Chapter 12

Total Reflection and Guided Propagation of
Electromagnetic Waves in
Materials of Finite Dimensions

12.1. Introduction
As described in Chapter 11, there are two forms of total reflection:

. . 1
e a reflection at a vacuum/perfect conductor interface where — < ® <o, and R=1,
T

with © <, and 6(0) >> g, so that R = 1; and

p
¢ a reflection between two dielectrics such that ny >n, and 6, >9,.

The superposition of the incident wave with its reflected wave can lead only to
propagation, on average, when parallel to the surface. The resulting wave is in effect
guided. By having a second interface, as shown in Figurel2.1a, the propagation can
be channeled between the two surfaces and the system constitutes a wave guide.

A A

(b)
@ >

¥

K K

Figure 12.1. Wave guides.

Wave-guides can be made with different geometrical configurations:
e with a rectangular cross section as shown in Figure 12.1b formed of two parallel
metallic planes and generally used for guiding waves with wavelengths of the
order of centimeters;
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o with a circular cross section so that the signal propagates in a central dielectric
core which is bound within a metal surface to give a coaxial cable;

o for the optical domain, the phenomenon of total internal reflection provided by two
dielectrics is used, so that the internal dielectric at the heart of the cable has an
index higher than that of the external dielectric which makes up the gain. When
the cross section is circular the result is an optical fiber, and when the cross
section is rectangular, the result is an optical guide. In the latter case, in order to
assure wave guiding, i.e., confinement of the optical wave, different geometries
are used such as the buried guide shown in Figure 12.2 a or the strip guide in
Figure 12.2 b.

(@) (b)

Figure 12.2. (a) a buried guide; and (b) a strip guide.

If the extremities of the guides are closed, then we end up with resonance cavities
that are used in oscillators and lasers.

This chapter will look first at the form of the electromagnetic (EM) wave
between two conductors in a coaxial cable. In a second part it will then describe the
metallic total reflection for a perfect conductor along with the generation of
stationary waves. Following this there will be a study of the propagation of a wave
between two plane conductors which will then yield a more general description of
the properties of a wave guide, most notably those termed buried optical guides.

Generally, metallic wave guides are hollow and have constant cross-sectional
widths and are used for the propagation of EM energy of relatively high frequency,
such as microwaves with attenuations being less than those for wires. It is worth
noting that attenuation in wave guides is due to small imperfections in the
conducting walls or imperfect characteristics of the conductor and dielectric losses
in the insulator in the case of coaxial cables. These losses will not be covered in any
detail, although losses due to material characteristics in an optical wave guide will
be discussed.
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12.2. A Coacxial Line

12.2.1. Form of transverse EM waves in a coaxial cable

Here the coaxial cable is assumed to have infinite length and has a structure, shown
in Figure 12.3 a, made up of two conducting surfaces (C;) and (C,) which are
cylindrical and around the same axis Oz. The C; has a radius denoted by a, and C, is
assumed to have walls thick enough so that its internal radius (b) and its external
radius (e) are a<b <e. It also is assumed that the two conductors are separated by
a dielectric that exhibits no losses and has an absolute permittivity denoted by ¢.

dielectric

Figure 12.3(a) Cross section of a coaxial cable.

Following the application of a sinusoidal current—which circles in one sense
with respect to Oz in the internal conductor (radius = a) and on passing to the
external conductor circles in the opposite sense—there is between the two
conductors a radial and symmetrical electric field that has a form given by

E (r,z,t) =E( (1) exp(i[mt - kz])ér .

It is supposed that the amplitude of the electric field at the surface of the
internal core is given by E, . Initially assuming that the two conductors are perfect
and for a point (M) with cylindrical coordinates r, 0, z, we will look for forms of E
and B, along with the intensity.

12.2.1.1. Form of E(1)

For a point M in a dielectric, where there is no real charge, the Maxwell-Gauss
equation is written as div E = 0 . Changing this to cylindrical coordinates, in that

diVE:la(rEr)+ 18(E9)+ o(E,)
r or r 00 oz

with E having componentsE, ,Eq = 0
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andE, =0, this equation can be reduced to — = 0, so that

r E((r) = constant = a E, (value of constant of ris r = a).
From this can be deduced that

Eo(r)= ok

- E
& and E (r,zt) = a
r

a

exp(i[ot - kz])E, . (1)
1
The amplitude of the electric field varies by — in the dielectric and passes,
r
between the core and the gain, from the value E,to %Ea. From this can be
deduced the graphical representation given in Figure 12.3 b for perfect conductors

which exhibit internally E=0.
Eo

r
a b e >

Figure 12.3(b). Field within a coaxial cable.

12.2.1.2. Formof B

Here the Maxwell-Faraday equation, as in rot E = - , is used but with the

oB

ot

cylindrical coordinates:

— - (10E, OE OE, ©E 10rEy OE

1y (e (108 ),
r 00 0z 0z or r or 00

As Eqg =E, =0, and E =E, is independent of 8, we have more simply:
OoE B B OB . . . .
. L8g=- . L é’r-?eée— £ ¢, . By identification according to the components
Z t

and following a simple integration, we obtain:

B, = constant , B, = constant .
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Solutions that do not represent propagation are rejected (see Section 6.3.1 of this
volume) and constants are assumed to be equal to zero, so that

E k
B=Bj = -_[aa—rdt =jk [Eq (r) expi(ot-kz) dt= — Eq(r) exp(i[ot - kz]) .
z o)

In terms of vectors, we thus obtain:

- k
B= E_Eaexp [i((Dt - kZ)]ée . )
ro

The B field thus is orthoradial. In addition the E and B fields are in phase

and orthogonal. The ratio of their amplitude is such that , but as a difference

= |e

B
. . . 1
of plane waves, their amplitude varies by — .

T

12.2.2. Form of the potential, the intensity, and the characteristic impedance of
the cable

12.2.2.1. Form of the vector potential

The vector potential, denoted by A(r,zt)and directed along Oz, is such that

= I O0A . . .

B =rot A, so that with respect to € it is given by By= -a— . By integrating with
r

respect to r, we have

A=- IBedr =- aEEaexp[i(wt-kZ)] j'g , from which
® r

- k
A(r,z,t) = [— a—E, Lnr+ Cte} exp[i(ot-kz)] €, .
)

By taking the origin of the vector potentials as r = a (on the core of the central

k
conductor), the constant can be fixed as: constant=a—E, Lna, so that finally,
®

- k
Ar,zt) = { a—E, In a }exp[i(cot-kz)] g,.
) r
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12.2.2.2. Form of the scalar potential

. —  0A vV oA
Along Oz the equation E=-gradV - — gives 0 =-—- —, so that with the
ot 0z t
oV 0A k
equation for A, we have—=-—=-jo{ a—E, In 2 }exp[i(wt-kz)]. By
0z ot ® r

integrating with respect to z and also by taking the origin of (scalar) potentials as r =
a, then it is possible to state that:

V(r,z,t) = { aE, Ln 2 }exp[i(mt—kz)]
r

12.2.2.3. Form of the intensity

Ampere's theorem applied to a circular cross section of the cable and passing
through a point M is written as

I - oE) - - o -
q B.dl= ”Z(HOJ + poggJ dz = .Uz(“Oj + impan) dX. With E being radial
©

and E L ¥ (section perpendicular to the plane of the circle), Ampére's theorem can
be written as

(©)

2nr B
The result is that I= T Given the expression for B, and with
Ko
®_° ¢ e obtain
Vo = —= —= , W
* k n €,
I=2macegy,g, Eaexp[i(cot—kz)]. 3)
Equation (3) also can be rewritten as I =1 exp(i[wt - kz]) , with
Ip=2macegy ¢ E;. (3)

12.2.2.4. Characteristic impedance (Z,)

V.-V, _ V, (a,z,t) -V (b,zt)
I I

a EaLn(bj
- \aJ

2nca gy & E,

We have Z.= . By using the expressions for V and

Ln [bj
,so that Z,= ——22_ (4)

2mc 80\/?r .

for I we can directly obtain Z,=
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1
With g, = SI,andc=3x 10® m/s, we have 2mc g = 0’ from which

7= Ln[hj. @)

C
NES a

367110°

12.2.3. Electrical power transported by an EM wave

From Ampére's theorem we obtained B = ;0 I, so that from Egs. (2) and (3"), it is
nr

possible to state that ]§=;—OIO {exp[i(wt - kz)]} &
r

=y _ =

C
[0} >
\/81'

E
Using an equation developed in Section 12.2.1.2, i.e., —=
B

~|e

we have E=B 1, so that in vectors:

\/?r 27[1‘\/7 2nrsoc\/7
o 2mr g c\/7

The Poynting vector therefore is in the form S=

, so that by taking the real
Ko

~ - ~ 1
solutions for E and B givesus S = —I% cos*(wt-kz) €, .

(27‘[1‘) ERNE

. 1
The average value of cos*(wt-kz) with respect to time is E , so that:

~ 1 -
S)=—F1Ij.¢

< > m’r? gpcy/ &, ‘

The average power transported by the EM wave is given by the flux of the average
Poynting vector through a ring composed of the circles with radii a and b.

_/a\ a5l b2mrdr I% E
? H<S>.d2 8% ¢ cfj 1 47t80c\/7Ln
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12.2.4. Conductor with an imperfect core that exhibits a resistance and the
attenuation length

Power dissipated along the length of an element (dz) of a cable with resistance given

1d
by dR :——Zz isdp = I*(z,t)dR , so that with Eq. (3”), we have

o ma
1d
dp= ——22102 cos?[ot - kz] . The average power loss with time for a length dz is
o ma
11713
thus dP = <dp>= —— Y4z,
c ma’ 2
The loss relative to the power is finally given by:
2
1114
dp G ma 2 2g)C A/ &;
-—= 3 dz= b dz .
P Ln b ca’ln—
4Am gpcy/ g, a a

By introducing Eq. (4) for the -characteristic impedance we also have:
dp 1

P ma*c Z,

P(z) =P(0) exp(- RG;Z J

This equation is in the form P(z)=P(0) exp(-%) , with L =mca’Z, where L is

dz. Integration with respect to z gives for the z abscissa

the attenuation length of the cable, i.c., the distance over which the power is divided
by e~ 2.7.

In numerical terms, with a=10 mmandb=40mm, c =5x 107 O 'm
g, =4, we have

1, and

V4

C

:?ln4z42Q,and L ~ 660 km.

12.3. Preliminary Study of the Normal Reflection of a Rectilinearly Polarized
MPPEM Wave on a Perfect Conductor, Stationary Waves, and Antennae

12.3.1. Properties of a perfect conductor and equations of continuity at the
surface

As shown in Chapter 11, problem 1, for relatively low frequencies, such that

o << —, and with the condition that the continuous conductivity is sufficiently
T
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large so that o(0) >> we;, and that within a range of frequencies that does not go
too high (o << oM ), the reflection at a conductor can be assumed to be total, as in
~ -1 , with as a consequence a dephasing equal to 7.
A medium is assumed to be a perfect conductor if its conductivity is quasi-
infinite. The result is that Ohm's law for a volume of the conductor, written 3 =oE,

shows how ] stays infinite as o — o« (perfect conductor), and the field in the

conductor, which is here denoted by EC , can be equal to zero.

With respect to the magnetic field, the Maxwell-Faraday relation, which is

. — - 0B . = . .
written rot E=- —, indicates that B =constant. A static magnetic field cannot
ot

exist without a distribution of permanent currents, and in the absence of their
application (as is assumed here) the field in the conductor denoted EC can be equal
only to zero. In other words, there is no magnetic field in a perfect conductor under a
varying regime. Finally, as EC =0 and BC: 0, the EM wave cannot penetrate into

a perfect conductor under a varying regime.

In addition, the volume of a perfect conductor can be assumed to be electrically
neutral. The charges are sufficiently mobile so that an excess in one given charge,
for example, positive, is immediately compensated for by the movement of opposing
charges. Further details can be found in Section 1.3.5. In very simple, and perhaps
too simple terms, the charges can be assumed to be infinitely mobile (as ¢ =qnpu ,
so if o — o, then the mobility u — ), so that there can be an instantaneous

return to neutrality. Finally, any charges can only appear at a discontinuity such as a
surface of the metal where from the point of view of a given charge, there cannot
materially exist opposite charges in a vacuum (an excess of charges of a given type
thus is possible at the surface). The contents of the envelope of the conductor are
electrically equivalent to a vacuum and the laws of continuity at the
vacuum/conductor interface only bring in the permittivity and permeability of a

vacuum, along with the possible surface charge (o) and surface current (js)

densities.
By denoting as 1n,; (=-€, as indicated in Figure 12.4) the normal that goes
from medium (2) (the metal) to medium (1) (the vacuum or air), we can apply to the

vacuum/metal interface the following classic conditions of continuity (generally
cited in the first years of university courses):

L . - o . o
{Elt_Ezt Eln'EZn: _Sn21 , SO with EC :Ez =0 E]n: _Srl21
- ~ 80 ~ B 80
By =B, = 5 - _  ,sowithBe =B, =0 . L
T Bu By po iy By = 1o J>My
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12.3.2. Equation for the stationary wave following reflection

The system under study is that of a vacuum/metal interface in the presence of a
monochromatic (with angular frequency denoted by o) EM wave undergoing a
plane incidence (with respect to the normal at the interface so that 6; =0 °) and

progressing along Oz as shown in Figure 12.5 a with the incident wavevector
ki=kg &,. The wave also is polarized rectilinearly along Ox and is assumed to be
of the form E,= E? (exp[i(koz - mt)]) e, .

The wave reflected into the vacuum will have the same angular frequency as
the incident wave (due to the properties of the media) and the wavevector of the
reflected wave (Er) will have the same modulus (k) as the incident wave.
Following a reflection under a normal incidence, the wavevector of the reflected
wave is according to the first Snell-Descartes law given by Er =- f(,: -kg¢,.In

addition, div Er= 0, from which 12r Er =0, showing that the reflected wave also is
transversal (parallel to Oxy). In the medium (1) (vacuum) the resultant wave thus is

E, = E;+ E, and is parallel to Oxy (in a tangential plane).

Eia A"
medium (1) k; medium (2)
vacuum B. / ’ metal
—1
_ 1)
k, €—— < >
B, ¥

Er \ 4

Figure 12.4. Vacuum/metal interface.

As mentioned above, with the conductor being perfect, the fields that have been
denoted Ec and Bo in the conductor are zero. At z=0 (where

E, (z=0)=Ec = 0), we can state that E;;=E,=0, so that
0= Elt(z =0)= Ei(z =0)+ Er(z =0), from which :
E,(z=0)=-Ez=0).
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The reflected wave is polarized parallel to the incident wave, that is to say that along

€, with an amplitude such that E? =- E? . Thus, the reflected wave has the form:

E =- E? (exp[i(— koz - mt)]) e, .

T 1

In medium (1) (vacuum), the resulting wave thus is given by:
E1 = Ei + Er

=E{ {(expli(koz - ot)]) -(exp[i(-koz - wt)])}7, .

= 2i EY sinkyz (exp[-iot]) &,

signal
ot > s
7 \EZ tl //7\ N >

&4 N\
‘ D% z _ >,
(a) progressive wave (b) stationary wave

Figure 12.5. (a) Progressive,; and (b) stationary waves.

The physical solution for the resultant wave in a vacuum thus is finally given by
E, = R(E1)= 2 E? sink(z sinwt &,

where the spatial and temporal dependences are now separated. The phase velocity
thus is zero, and the wave is stationary, as shown in Figure 12.5 b (see also Section
6.2.5).

12.3.3. Study of the form of the surface charge densities and the current at the
metal

12.3.3.1. The surface charge density of zero
The normal components of the electric field are zero in medium (1) (El //€4) as in

medium (2) (where EC =0), and the normal component of the electric field does

not give rise to any discontinuity, so E,,=E;,(=0) , where o, =0.
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12.3.3.2. Form of the surface current density

12.3.3.2.1. Equation for

As can be seen in Figure 12.4, which schematizes the results obtained for a reflected
wave, following reflection Bi and Br remain in phase. In medium (1) the resultant
magnetic field thus is given by:

U RS L
B~ B+ B~ —([KoE J+[ K, ),
so that with -k, = k;=k, &, and -E? EX:E? €, we have

koE{ (exp[ikoz Jtexp[ -ikoz ])exp[-ioat].

- e.xe
B —_ 7 X
21

. Q] . . .
Withk, = —, we obtain for the physical solution for a vacuum
c

0

B, =R(B)) = ﬁéy cos(kgz) cos(wt) .
c

The magnetic field thus is directed parallel to the interface.

As in a metal EC: 0 (and th: 0), the tangential component of the magnetic
field undergoes a discontinuity at the interface. Therefore, there must appear a
surface current density (]s) at the interface so that the equation for continuity (end
of preceding Section 11.3.1)

L . (Bu),, . -
(Blt)Z:() = HoJXNap = —Hok* €, s0 that ——=—==¢, x .
Ho

By multiplying by vectors the right-hand side by €, and on noting that €, L 35 , we
obtain:

- E]t 2E!

= ( )Z:() x¢,= —¢&, cos(ot).

Ko HoC

Of note then is that js //'E; (//8, ) and the current density is collinear to the incident

electric field. Physically, the current density is the result of the polarization of the
metal by the electric field.
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12.3.3.2.2. Comment
As Figure 12.4 illustrates, the magnetic field vectors of the incident and reflected
waves are parallel to the interface. Their resultant normal component in medium (1)

thus is zero, thus assuring the continuity of the normal component of B, as in
medium (2) the magnetic field is zero (EC: 0 implies that EZn =0).

12.3.3.3. Applications

This property is the basis of the use of metallic antennae for detecting EM waves.
With the antenna lines parallel to the direction of polarization of the incident wave,
the current density detected is at a maximum and directly proportional to the
intensity of the incident electric field. If the lines of the antenna are not parallel to
the incident wave, then the detected current density is no longer proportional to the
intensity of the component of the electric field at a parallel incidence to the antenna
lines, as shown in Figure 12.6.

E?x 0 detected current density
Ei proportional to E?X
>
0
Eiy

Figure 12.6. Relation between the disposition of the antenna lines and the detected current.

With a metal never being a perfect conductor, in effect the current circulates
over a thickness several times greater than the “skin” thickness (8 ). If the thickness

(d) of the metal is such that d <§, a part of the wave in fact can be transmitted.
However, if d >> 3, the metal becomes a real obstacle to the propagation of the EM
wave and will create an electromagnetic shield.
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12.4. Study of Propagation Guided between Two-Plane Conductors: Extension
to Propagation through a Guide with a Rectangular Cross Section

12.4.1. Wave form and equation for propagation between two conducting planes

Figure 12.7. Propagation between two-plane conductors.

This section considers a wave propagated along Oy in a vacuum without attenuation
between two-plane and perfect conductors separated by a given distance (a) and
assumed to be of great dimensions (with respect to a) in directions Oy and Ox.

With the system being invariant with respect to Ox, the field (E) does not

depend on x and it can be assumed that E is a monochromatic wave in the form

E= E, (@ explitkgy-o0], (1)

where k, is a positive constant.

Equation (1) is valid uniquely between the two-plane conductors. Above and
below these planes, the electric field is zero (metallic planes inside which E=0).
Additionally, in a plane normal to the direction of propagation, the wave is not
uniform and cannot be assumed to be planar.

Between the two plane conductors, dominated by a vacuum, the equation for

.. —= 10

propagation is AE - ———=
c? ot

account and by making a calculation resembling that in Section 11.2.6, we have

=0 [from Eq. (5) of Chapter 6]. Taking Eq. (1) into

PEL@)

®? -
— -k, % |E =0. 2
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The tangential component of the electric field, situated in a plane parallel to
Oxy, exhibits two components denoted E, and E, which are such that the limiting

conditions are [with E_(0)=0 and E _(a)=0]

E; (0)=E, (0)=0, and E,y (a) = Eyy () =0. 3)
For its part, the continuity of the normal component of B is
B, (0)=B,(@)=0. 4)

12.4.2. Study of transverse EM waves

Here the possibility of the transverse wave propagating at a velocity (c) along Oy

with, on the one side Vo =€ (nondispersion solution as v, = constant), and on the
® .

other v,= — [equation for v
g

We shall now determine the corresponding exact form of the electric and magnetic
fields.

in agreement with Eq. (1)], we have kg =

o |e

¢

12.4.2.1. Form of the electric field (given by Em (z))

: . . &*E,, (z .
Equation (2) for propagation thus is reduced to %()=0. Two successive
z
integrations with respect to z give Em (2= Ql z+ QZ ,
where Ql and Qz are two constant vectors. The conditions

E, .« (0)=0and Emy (0) =0, respectively, give:
Cyx =0and Gy, =0
and similarly, from E_ (a) = Eny (a) =0 we can deduce that
Cix =0and C;y =0.
Finally the vectors Ql and Qz only have components in the z direction, and are of
the form Ql =C,, €, and Qz =C,, €,. Eq. (5) can therefore be rewritten as
En(0=(C, 2+ Cy,) &=En(@ . (6)

dE,, (2) _

Gauss's equation gives then for its part div E=0, where q
Z

0,

dE, (2)
VA

while Eq. (6) gives = C,, . From this can be deduced that C,,= 0, such that

Em (Z) = QZZ éZ = Em éZ
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where E_  is a constant. For this type of wave, Em (z) is a constant vector parallel

to €,. The electric field, also parallel to €,, thus is in the form

E = E {expli(kyy - 0t)]} &, . ()

12.4.2.2. Form of the magnetic field

With the wave assumed to be monochromatic, the Maxwell-Faraday equation makes

. OB -
it possible to state that rotE=-—=- (- ioB), from which can be deduced directly

ot
that B = -—rolE .
®
From Eq. (7) for E, we can deduce that:
- 0
rotE = gﬂmexp[i(kgy—mt)] e, = ikg E, expli(kg y-ot)] ¢, , with the result that
- i2kg ) . ®
B =-—=Eexpli(kyy-ot)] &, , so with k, = — we have
® c
= E. . ~
B- T{epr(kgy-mt)]} & ®)

We can note that this result is identical to that which would be obtained had we
k,xE
g

used the equation for plane waves as in B = , which a priori cannot be used

®
here directly as the wave cannot be assumed to be completely planar. Nevertheless,
Egs. (7) and (8) demonstrate that here again E and B are transverse, and hence the
term “transverse electromagnetic wave” or TEM wave.

12.4.2.3. Comment: The rectangular cross-sectional wave guide

If we envisage that in a rectangular guide, as shown in Figure 12.1 b with an axis as
in Figure 12.7, there is a wave that propagates at a given speed (¢), then the limiting
conditions imposed on that wave are:

e in one part by the parallel metallic planes with sides z=0 and z=a , which result

in the electric field taking on a form given by the equation (see also results from
Section 12.4.2.1):

E = E,, {explitk,y - o0)]} &,

where E_ is a constant and E also is parallel to €, (at whatever value of x);
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e and in another part, fixed by the second system of metallic planes parallel at the
sides tox =0 and x =b with respect to Ox (0 being on the side of the plane Oyz
and b on the side of the plane to which it is parallel), impose that for x =0 and

x=b, E=0 so that E,,=0. This trivial solution is not a physical one, as the

possibility of propagation at the speed c along Oy is not available to a guide with a
rectangular cross section.

12.4.3. Study of transverse electric waves (TE waves)

Here we study the possibility of a wave propagating in the guide plane Oxy. The
wave is thus polarized in accord with the breakdown given by:

E-E&+Eg, (9

and has a form given by Eq. (1), as in E = Em (z) expli(kyy - ot)] = E(y,2).

12.4.3.1. Polarization direction of the electric field

Under these conditions, Gauss's equation gives:

div E=0
dE
:dEX+ _y+dEZ=ik E —~E =0
dx dy dz &7y =y
e
=0 =0

(asE,=E;(y2)) (asE,=0)

Equation (9) thus is reduced to E = E ¢, and the electric field is polarized

along Ox perpendicularly to the direction of propagation Oy. The wave is termed
“transverse electric” and denoted TE. The electric field can be written:

E =E,, (@) & explilkyy - ot)] = E, (@)expli(k,y - ot)]. (10)

12.4.3.2. Solutions for the propagation equation

Equation (2) for propagation becomes:

2E 2
(S o Jemo 0. 0
VA
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12.4.3.2.1. First case

c? c
Eq. (11) is:

2
If [& -kgzj—-a2<0 (where o is real), so that kg > 2, the solution to

E (@)= C; exp(az) + C, exp(-az) .
With E_ . (0)=0 and E,, (a) =0, we can deduce that, respectively,

G=-6

= 2C, shaa=0
C, exp(aa) + C, exp(-aa) =0 -

With shoa # 0, we deduce that C; =-C, =0, so thatE  (2)= 0, and there is no

possible physical solution in this case.

12.4.3.2.2. Second case

2
If (% -kg 2j= K2>0 (with K being real), then k, < @ and the solution to Eq.
c c

(11) is given by

E (@)= C, exp(iKz) + C, exp(-iKz) . (12)
The limiting conditions, E_ . (0)=0 and E_ (a)= 0, respectively, give:

G =-G

. . = 2iC sinka=0,
C, exp(ika) + C, exp(-ika) = 0 -

mr . .
so that K = — , with m being a whole nonzero number.
a

Substituting these results into Eq. (12), we gain:
E, (2=2iC, sin——z. (13)
a
The electric field, according to Eq. (10), is of the form E= meéxexp[i(kgy - ot)],

so that with Eq. (13), we find that E=2i C; sin ——z &, exp[i(kgy - 0)]
a

By choosing the origin of the phases as being at y=0 at a time t=0, then it is
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imposed that 2i C; isreal,asin 2i C; = E°, and we have

E=F° [sin ﬂzj & explitkgy -] . (14)
a

12.4.3.3. Proper vibrational modes

With K= m , we thus have:
a

_ 2,
—=kgt—, (15)
C a

. / U . . . .
from which @ =c¢ ké-i- m’— . The equation o = f(k, ) is not a linear relation and
aZ

the system undergoes dispersion.

When m=1 and kg -0, 0> 0, = e (Figure 12.8).
a

nc
For any value of mand andk, = 0, ® - o, =meo, =m—.

a

Figure 12.8. Dispersion plots for o = f(k).

For a given value of o, there are many possible values of k, : ki, ky, k3. They

are associated with whole values of m which are of a limited number as in the
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0)2 m21-[2 2.2 2
second case, — - = kg2 >0, so that < —, which is:
CZ a2 a2 CZ
®a )
m<—=—.
o

C
For each value of m, or of kg, there is associated a solution of the electric field
that assures a propagation of the field without modification of its intensity along the

guide (for given values of m and z, the intensity is given by E°sin —z=Cte,
a

Vy ). These are the guide modes, and the different values of k, (ki, ky, k3...) are

called the proper modes of spatial vibration of the guide.

Only signals with angular frequencies higher than o, = e (termed the cutoff
a

frequency) can propagate in the guide.
This angular frequency corresponds to a wavelength in the vacuum given by

2mc . .
Ag.= —— =2a. The condition ® > @, also can be written as Ay < Ay, =2a.

O

12.4.3.4. Form of B
The magnetic field can be taken from the electric field given in Eq. (14) with the

_.. OB -
help of the Maxwell-Faraday relation, rotE = -E_: i ®B, so that:

0
B =L rotE (1) ()= i) B feos () explikgy-on)] . (16)
® o) 0z am a
-, -OE, . mnz .
() 5o B fsin (7] explceyy - o)

The E=E, is in phase with B, and in the squared phase, or quadrature, of the
longitudinal componentBy # 0 B therefore is not transverse and the wave is

simply a transverse electric wave and not a TEM.
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12.4.3.5. Propagation of energy
With E = Emexp(i[kgy -ot]) and B= Bmexp(i[kgy-cot]), the average over time

for the Poynting vector is given by (see also Section 7.3.3) :

()= ﬁrz@mxg’;).
0

Taking the form of the electric and magnetic fields into account, the direct

— %k
calculation of E, B, shows that the vector has a purely imaginary component

m
with respect to Oz. The associated average value, which corresponds to the real part,

- o
is therefore zero. With respect to Oy, the component of E  xB,, , however is real so
that the propagation of the energy is through Oy, the direction of wave propagation.

12.4.3.6. Phase and group velocities
The phase of the wave is given by (k,y - ot) and its phase velocity is given by

) . ®? m’r? ) mic
Vq)=—.W1th k§=—- ,wehavev(p=—l/2,andas 0, = —,
kg ¢ a @ m a
c? ) a2
therefore
Vo =

. o d . _
For its part, the group velocity is v, = d—: By differentiating Eq. (15), we

g

obtain 2= do = 2k ,dk, , from which:
C

v = do :czk—g
& ik o

CZ
g Vo

With v,>c, thenv, <c¢ while noting that v, v, =c* also is verified.

g ¢
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v A

Vo TE wave

c TEM wave

o)

QX
Figure 12.9. Plots of v, = f(@) and v, = g(w).

Variations in v, and in v, as a function of o are indicated in Figure 12.9 for
m=1. When® >> o, so that alsoAy <<2a, we have o — ck, and v, just as v,
tends toward c. The wave guide is no longer dispersing. This is found in metallic
guides with “a” being of the order of a millimeter, the optical waves which are such
that Ay <<2a is true propagate with the same speed as if in a vacuum (TEM wave).

12.4.4. Generalization of the study of TE wave propagation to a guide with a
rectangular cross section, and the physical origin of the form of solutions
for the electric wave

12.4.4.1. Generalization of the study of TE wave propagation to a guide with a
rectangular cross section

Figure 12.10. Propagation in a guide with rectangular cross section.



Chapter 12. Total reflection and guided propagation 389

In place of studying the propagation of a TE wave, polarized with respect to
Ox, between only the metallic planes parallel to Oxy as noted above, here the
propagation is through a wave guide with a rectangular cross section so that it has
two supplementary metallic sides at 0 and b with respect to Ox and parallel to Oyz
(Figure 12.10).

The form of the preceding solutions (Section 12.4.3) is still, a priori, valid, as
the conditions required for the continuity of the tangential component of the electric
field in the planes parallel to Oxy and on the sides z = 0 and z = a still should be
true, so the solution given in Eq. (14), i.e.,

E=E° sin(*2) &, expli(k,y - o0)]
a

must still be a solution, and the procedure therefore is to simply find out the
consequences of the supplementary limiting conditions due to the presence of a
second system of metallic planes, as in:

E((0)=E(b) =0,
where E; represents the tangential composition of the electric field in the planes Oyz
of the sides x=0and x=b.

In effect, as the solution for the TE wave for E is parallel to ¢, , the tangential

component of the electric field in the planes parallel to Oyz is zero, which accords to
the new limiting conditions for whatever value of b. This latter dimension of the
guide therefore plays no role in the solutions for the electric field, which thus remain
unchanged.

Note: However, to state that the solutions for a system based on two parallel
planes also are solutions for a rectangular guide does not mean that in the latter
system there are not other solutions for transverse waves. To the contrary, we can
show that the general solutions for the transverse electric waves (TE waves and as a
consequence with [E]y =0 and By #0) give rise to components along Ox and

Oz. For this, it would be correct to look for solutions for E in the form:

E, =E (x.2) expli(kyy - o)]
E, =0

[est]

E, = En,(x.2) exp[i(kgy - ot)]

(and thus with E // Oxz, the solutions would again correspond to those for a TE
wave).
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For the equation of propagation, we therefore look for solutions to a variable
separated such that, for example E_ (x,z)=1(x).g(z) . This can be done by

proceeding as was the case for the parallelepiped potential box. The rather long
calculations show that in general terms E has the components:

E,=A, sin(mni) cos(mr%} expli(kgy-ot)], and
a

E,=A, cos (mnfj sin (nn%) expli(kg y-ot)],
a

where A, and A, are complex constants.

The corresponding wave is denoted TE,,, and Eq. (15) for the dispersion is replaced
by :

o 2 m’n’

c? &

(157)

a'2

In even more general terms, if the vacuum in the guide is replaced by a
dielectric ~ without loss in permittivity (g), then Eq. (15') would
m’n®  n*m?

a’ b?
Thus Eq. (15°) shows that when b > a, the mode associated with the lowest
angular frequency is the wave TEq (such that E, # 0 while E_ :Ey =0).

become w?ep= ké +

Whena >b, the low frequency mode, also called the dominant mode, corresponds
to the TE;o wave (m = 1, n =0 ), which is thus such that E, = Ey =0, and:

E, = A, sin(ﬁzj explikgy-ot)] .
a

The latter equation is the form of the TE wave studied thus far, which we will
continue to use in its general form (TE,,, wave polarized with respect to Ox) as an
example solution in order to interpret the physical origin.

12.4.4.2. Physical origin of the solution form of a TE wave: TE,,) wave given to
support argument for a wave polarized with respect to Ox

E= Enx (@) eexpli(kgy - ot)] = E® sin o, exexpli(kgy - t)] .
a
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Here we will study a monochromatic plane EM wave rectilinearly polarized with
respect to Ox in a guide that is alternately reflected against the planes sides z =0 and
z = a parallel to the plane Oxy and as shown in Figure 12.11.

A

Z
.-".-".-".-".-".-".-".-".-"M".-".-".-".-".-".-".-".-".-".-".-".-".-".-’.-’.-’.-’.-’.-’.-’.-’.-’.-’.-’.-’.-’a’.-’.-’.-’.-’a’a’a’a’a’.
a
=Y \
. | T
P k; K
| T
/ !
[}
O @ !

O y

R T I I ]

Figure 12.11. Propagation of a monochromatic plane EM wave with successive
reflections on plane sides z = a and z = 0.

At any point (Q), the wave is the result of incident and reflected waves that
have fields in the form:

Ei=E] [sin(kF- o) | & and E,=E{ [sin(k,F-ot)] &.

In a vacuum, we have:

ki|= [k, |= k0:9 , and Descartes first law gives 0; =0, =0, for which:
c
0 0
k; kg sin® k, 1 kg sin®
ko cosO -k cosb

The wavevector k; of the incident wave depends on the direction of the
incidence and belongs to a plane parallel to Oyz, and is by consequence normal to
the direction Ox of wave polarization. It is worth noting that in fact Ei = EO , and that
by denoting the wavevector of the oblique wave in the guide as EO , We can state
that:

ko=kq sind &,+k cos &,).

The dephasing by m of the reflection at the perfect conductor (due to the
limiting condition at the metallic plane, at z = 0 or z = a, where the resultant
tangential field must be equal to zero) gives:

EV=E? o™ = -E).
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At the point Q, the resulting wave is thus:

= Eio[sin(y ko sin® +zk cos - ot)]e, - E? [sin(y k¢ sin® - zk cosb - wt)]é,

pt q P'q

With sin p - sin q =2 cos—— , we obtain:

E=2 E? {sin([k( cosB] z)} {cos([k, sinB]y - wt)} &, . (17)

This form of the solution of the wave contains two parts:
e one part due to propagation and associated with the term cos([k, sinBly - ot),

which shows that the propagation is carried out with a wavevector given by
Eg= ko sin® €, (such that Eg T=ykg sin0 ) where Eg thus represents the
definitive wavevector which “pilots” the wave guided along ¢, ; and

e a part due to a stationary term given by sin([k, cos0]z ). This term corresponds to

a wavevector ky=k cos &, and as such must verify k.= [k, cosf] z .

The wavevector ky=kj sin eytko cosb €, therefore is such that

With respect to Oz, the presence of a node (E = 0) at z = a demands that
sin([kycosB]a) =0 so that ([kycosO]a)=mmn, from which with kycos® =k, we

have kg = — ™ From this can be deduced that k, =k cosO —2 cosd —ﬂ, so
a c a
e O
that in addition cosO = m —=m — . This occurs for values of 6,, of © such that:
wa o
(’OC
0, =Arccosm—. (18)

(o)

We also can state that following Pythagoras's law as shown in Figure 12.12,

. o’ m*m? L .
that ko k2+k2, which means that ——k2 , which is an equation
c? a?

identical to that of Eq. (15).
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A e P P P 8 8 8 8 P 8 8 8 8 8 P P 8 8,
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e > y
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Figure 12.12. Breakdown of the vector 120 such that k% = ké + kg .

Withk, =kg sinf, we can deduce that for varying values of m there are

corresponding different values of © which can be denoted by 0,,, and are such that:

0)2 P 2.2 (02
—=k{ sin®0, + , so that in addition, 1= sin*0 + mz—; , hence the
c? a? 0}

equation equivalent to Eq. (18), as in:

0, = Arc sin

In numerical terms, for a value of a of 3 cm, we can determine that
® c . . .
Ve = 2—C = 2—: 5GHz . When v =12 GHz (which verifies ® > o, ), we obtain
19 a

for when m=1 that 6; ~ 66 °and whenm =2, we have 8, = 37 °.

Finally, it is the angle of incidence (i") at the entrance of the guide that
determines the mode of propagation (detailed further on Section 12.5.2 and Figure
12.17).

12.4.4.3. Physical representations

z k

S ko= _’.
.-".-".-".-".-".-".-".-".-".-".-".-".-".-".-".-".-".-".-".-".-".-".-".-".-"a"a"a"fa"liao‘:a"a"kafa"fa"f'ff’a"a"a"a"a"f.

—————— kg//
N >

(R il it y
X

Figure 12.13. Geometrical representation of the X vectors.
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12.4.4.3.1. Wave breakdown

The superposition zones of the incident wave with the reflected wave on the metallic

planes give (see Figure 12.13):

o with respect to the Oy axis, a progressive wave with a doubled amplitude due to
the superposition of two progressive waves with the same amplitudes and both

with the same wavevectors given by k,, such that for the incident wave

g b
Eg: |k;| sinB €, and for the reflected wave Eg: k| sinb e, ; and

o with respect to the Oz axis, a stationary wave that by superposition of the two
progressive waves with the same amplitude but propagating in opposing senses
such that the wavevector of the incident wave is 125 and for the reflected wave

is - kq.
12.4.4.3.2. Different speeds
ZA

.-".-"N’.-".-".-".-".-;'-.-".-".-".-".-".-".-"M.-".-".-".-".-".-".-".-’.-"a’.-’.-’a’.-’.-’a’.-’.-’a’.-’.-’a’.-’.-’a’.-’.-’a’.-’.-’.

: ; \

Ay |
O C&''.-".-".-".-".-".-".-".-".-i.-\"I.-"'.-".-".-".-".-".-".-".-".-".-".-".-".-".-".-".-".-".-".-".-".-".-".-".-".-".-".-".-".-".-".-".-".-".-".-".-". > y

Figure 12.14. Definition of the points P, M, N, and H used to
illustrate the various speeds.

Figure 12.14 shows an incident ray along PM which is a progressive wave such that
PM =c t. We thus have:

PM k
. —=cos(§-9j=sin6=—g, so that with (see Section 12.4.3.6)

NM ko
ky, = ﬂ,and kg = 2 then:

) c
PM PM
——=1sin6 =L. From this can be deduced that NM = —= ct R
NM Vo sin® C/Vq)
which in turn means that NM =v_ 1.

¢
PH . . . .
e ——=3in0, from which PH =PM sin0 = NM sin?0 , so that
PM

2
c c?
PH=(v, 1)| — | = —1=v,T.
Vo Vo
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The three speeds, c, v,, and v,, respectively, correspond to the following:

o ¢ is the speed of point P on the zigzag trajectory of incident and reflected waves
®
(k; =k, =kg =—);
c

e v, is the displacement speed from P to H, in other words the displacement of P
along a trajectory globally parallel to Oy, such that v, <c(the resultant speed

given by v, of the point P on the resultant direction thus is inferior to the speed

along the instantaneous zigzag trajectory); and

* v, is the speed of a point N with respect to the direction Oy. The N has no material
reality and as it physically represents none of the characteristics of a wave it is not
subject to relativistic physical laws. To give an idea of what it represents, it can be
thought of as a “running shadow” on the line z = a of the point P following its
illumination from N'. This means that Vo> C simply states that the immaterial

shadow is faster than the material point that moves at the speed c.

12.4.4.3.3. Representation of the resultant amplitude for the resultant progressive

wave
According to Eq. (14), the resultant wave is given by:

E=E° sin(ﬂz ) & explikyy - o)] = E?( ¢, explikyy - t)],
a

where Eg =E° sin(ﬂz) .
a

A LA

(1™ case)

e
N d
\Ki“ casg)

i

a,

o
\9

m=1 m=2 m=3 m=4

Figure 12.15. Representation of the amplitudes Eg = {(2) for two axial systems where the

origin O can be taken on the lower metallic plane or as between the two metallic planes.
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Whatever the y point of the trajectory, the amplitude (Eg) of the wave only
depends on z and the excited m mode (which is fixed by the choice of the incidence
angle).

So, Figure 12.15 represents the form of the electric field amplitudes associated
with the various possible modes, and Eg= f(z) is represented in the plane Oxz on
the y = 0 side. It is notable that the wave is polarized with respect to Ox, so for the
representation that has to be in the 0xz plane, the Oy axis is directed toward the back
of the figure.

Comment: Role of the choice of the origins for the guide planes with respect to
stationary solutions

In general terms, the propagation is given by Eq. (11) so that with
g d?E . (2)

— -kg>=K* and E, =E,, (as E/Ox), then —2—
c? dz?
general solutions, which also can be written as E_ (z) = A cos(Kz) + B sin(Kz) , can
be placed into one of the two following forms, depending on the how the guide
planes parallel to Oxy are assumed to be placed:

+K2 E, (z)=0. The

ZA

%.-’.-'.-'.-'.-'.-'.-'.-'.-f.-f.-f.-f.-f.-f.-f.-ff.-ff.-f.-f.-f.-f.-f.-f.-f.-fffff. +a R )
alz
o® >

. X : y
o scenario 1 scenario 2
O .-".-".-".-".-".-"a’a’a’a’a’a’f}’a’f}’fﬁa’a’a’a’fﬁa’fﬁfﬁ - a/2 o Ll P s )
X
(a) (b)

Figure 12.15. bis. The origin (O) placed (a) on a plane; or (b) midway between planes.

1. At z=0and z=a as shown in Figure 12.15bis, scenario 1, which is the same as
the representation used up till now, so that the limiting conditions are thus:

¢E_(0)=0, for which A=0, so that E_(z) =B sin(Kz)=E’ sin(Kz) ,

with B=E (constant); and

eE _(@=0, for which E’ sin(Ka)=0, so that Ka=mn with

m=1,2,3...,s0 K= ﬂ, and finally E, = B’ sinﬂz (m=0 means
a a

that E,, =0, which is a nonphysical solution).
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The form of the wave is thus:
E = E,, explikyy - 0t)]= E” sin (ﬂzj expliCkgy - 00)]),
a

which is what has been used until now.

- +
2. At z= 7aand zZ= 721 (scenario 2 in Figure 12.15bis). The limiting conditions
thus are now:
a a : a a a . a)
E (—=)=Acos(K—)+Bsin(K—)=0=E_ (-—)=A cos(K—) - B sin(K—;
"2 2 2 ) 2 2
Two solutions are possible for A and B, either:
e B=0 and A # 0 (A= constant denoted EO) with cos(K%) =0, so that
a T . T Mn .
KEZ 5+ nn, for which K= —[1+2n]=— with odd M, and
a a

M
—g? cos—nz with odd whole M; or
a

E

m

e A=0andB # 0 (B = constant denoted EO) with cos(K%) =0, so that

M
K3= nr , for which K =2n 2. with an even value of M.
2

a a

The form of the wave E=E, exp[i(kyy - ot]) thus is given by either:

M
e E=E’ cos (_n z} exp[i(kgy - ot]) with a whole odd value for M; or
a

M
e E=E" sin (_n zj exp[i(kyy - ot]) with M being whole and even.
a

We can verify that the plots of E,(y) in scenario (1) where m=1,2, 3, 4...or
for scenario (2) with the two forms of solutions for even or odd values of M, where
M=1,2,3,4..(=m), are identical, which is reassuring as the problem is the
same! (This remark also can be made in terms of the quantum mechanics of wells
with symmetrical potentials, where the origin can be taken either as at an extremity
of the well where there is a potential wall, or at the center of the well.)
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12.4.4.4. Multimodal fields

It should be noted that it is not only the field corresponding to a given mode that can
be guided, meaning in other words those fields that have a transversal intensity (with
respect to Oz) independent of the axial position (with respect to Oy) as shown in
Figures 12.16 a and b corresponding, respectively, to the given modes (using
notation of scenario 1):
e complex amplitude, withm =1
E? =2 E? sin([k( cos 0;]z) exp(i[k, sinB;Jy), so that its intensity is
independent of y; and
o complex amplitude, withm =2
Eg =2 E? sin([k cos 0, ]z) exp(i[k, sinb, Jy), so that its intensity is
independent of y.

The fields simply have to verify the limiting conditions (E = 0 on metallic
planes) and thus can correspond to the superposition of several modes. Thus in the
case given in Figure 12.16 c, taking into account the analytical forms of the fields, it
is possible to see that the transversal intensity (with respect to Oz) of the wave is
dependent on the axial position (with respect to Oy) in which it is placed.

In effect, the complex amplitude of the wave E1,2a as a superposition of the
modes m=1 and m =2, is in the form
2 E? { sin([k, cos 6;]z) exp(i[k, sin6, Jy) + sin([k, cos 0, ]z) exp(i[k sinGz]y)} ,

and its intensity gives rise to a variation in its distribution with respect to Oy as

RITRNIA

A A A

Y

(a) m=1 (b)) m=2 (c) mode m = 1 and mode m = 2

Figure 12.16. (a and b) Guided waves corresponding to a mode,; and
(c) without a mode.

12.4.4.5. Comment: TM modes

TM modes occur when it is the magnetic field that is applied with respect to Ox.
They can be studied in the same way as TE modes and as such can be guided. The
electric thus has components with respect to Oy and Ox.
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12.5. Optical Guiding: General Principles and How Fibers Work

12.5.1. Principle

Optical fibers are used, by way of a support, to guide an incident luminous wave
from its point of injection at an entrance face to its exit point at the other. Typically,
there are two main types of fiber: fibers with a jump in indices and fibers with a
gradient in indices.
This text will limit itself to detailing the first type, which are constituted of
a core made from a material with a circular cross section and a given index (n)
surrounded by a gain with an index denoted n, such that n>n;. Generally, the
whole structure sits in air, which has an index given by n' = 1.
The luminous wave injected at the entrance face of the fiber is under an angle 1',
which is such that n'sini'=nsini. This wave meets the core/gain interface at an

angle of incidence given by 0; =0, such that i +0 = g . When 6 >0, where 0, is

a limiting angle above which the phenomenon of total reflection occurs when
n>n;, the wave makes no penetration of the gain material and is guided along the
fiber in a zigzag trajectory associated with successive total reflections at the
core/gain interface, and as illustrated in Figure 12.17.

The calculations carried out below in the plane of the longitudinal section of the
fiber are equally valid for the longitudinal plane section of a symmetrical rectangular
guide where the Or axis is simply replaced by a Oz axis.

AT /V lost ray

n

¥ 0 guided ray

AN ~

| n (> ny)

A
r-{
A

Figure 12.17. Trajectories when 8> 6y and 8’ < 6, .
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12.5.2. Guiding conditions

12.5.2.1. Condition on i

The limiting angle 0, is defined by n sin@, =n;, wherein at the entry face an angle

i has a value given by i, = P 0,. A condition for the total reflection 0 >0, is
therefore 1 <i, .In addition, by moving 6,= P i, into nsinB, =n; we directly

. . n
obtain cos i, =L,

n
This condition for wave guiding thus brings us to a condition for the incidence at the
. .. . . n .
entry face, which must be such that i <i, , so that cosi=> cosi, :—1, which
n
.. ny
means that i<1i, = Arc cos —.
n

All rays with i>1, have at the core/gain interface an incidence such that
0'<0,. A fraction of the wave is transmitted toward the gain, and following several

successive reflections, the remaining fraction of the wave in the core becomes
smaller and smaller so finally it is extinguished along its journey.
In numerical terms, with n=150 and n; =149, we obtain

i, = Arc cos —L =6.62° .
n

When n=1.60 and n; =1.50, we have i, = Arc cos M —2036°.
n

12.5.2.2. Condition on i’ (acceptance angle): numerical aperture

The condition © > 8, makes it possible to state that:

2
, n

cosb < cosB, = /1 —sin20, = ——12 .
n

We also have 1= — -0, from which with n'sini'=n sin 1
2

.. . T .. n . .
n'sini'=n sin(—- 0) =n cosb, so that sini'= —cosO and the preceding equation
2 n'

therefore leads to
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- n n n
sini'= —cosb < —cosf) = —,[1-— = 5 =-———"——, so that:
, /

n' n n' n? n' n n'

12
1/2 2 2
n? n(n2—n12J (n 'nl)

1/2
(n*-n7)

n

sini' <

To conclude, all rays introduced under an angle of incidence i' verify the
preceding inequality and therefore can propagate.
The quantity given by

12
NA = (n2 - n12)

is the numerical aperture of the system, which although here is an optical fiber, also
can be applied to a guide structure.
The acceptance angle is by definition:

12
(n?-n7)

i'y = Arc sin
/ o

In numerical terms
n=150 - n; =149 - n'=1,s0the NA=0.173, so that i', =9.96°.
When n=1.6 - ny=1.5 - n'=1, and the NA = 0.557, so that i', =33.83 °.

12.5.3. Increasing the signals

Once a luminous impulsion is injected into a fiber, various pathways can be

followed, as in:

o the shortest trajectory which is along the pathway Oy and corresponds exactly to
c

>

the length (L) of the fiber. With the speed of propagation being given by v, = —
n
L
the pathway time (t,) is ty=n— ;
c
e zigzag trajectories which each have a given value for the angle i and have a

pathway length (L;) given by L; =

-> L . With the pathway speed still being
cos i

Vo = —, the pathway times (t;) are now given by t; = >ty (tiis

5 |lo

Li nL
A%

¢ CCOos1

great when cos i is small, so that i is great).
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The difference in propagation times thus is given by:

PP 1 Y B UL B g L
i ity ; ~ 2 ~ :
¢ \cos i c -5 2¢
2

In numerical terms, when L=1km,n=1.5 and i=6°<i,, so that At; =28 ns.
Therefore, an impulsion emitted at y = 0 at a time t;, =0 over an interval of
time assumed to be ot =0 will be emitted at y=L starting from the moment

to +ty =ty (for the wave that takes the shortest pathway) up to the moment

to T () max = ) max Where (t;)max 1S the pathway time for the longest possible
trajectory. This latter value comes from the highest possible value of i, i.e., 1=1,.

o o o nl.
The corresponding interval in time therefore is given by At;, = —i% where At; /
il 2c 4 i/

is the duration time of the emission at the exit.
The interval in time (T) between two impulsions at the entrance which is
required so that they do not mix at the exit therefore must be such that T > At;,,

which is the same as stating that the frequency of the impulsions must be lower than

1
v;y = —— (we can state that we should have =—2>At;, so that
ti( v

1 . .

v<——=v;,. and in terms of actual numbers, this means that for the
Aty '

aforementioned values, v;, = 30 MHz).

12.6. Electromagnetic Characteristics of a Symmetrical Monomodal Guide

Here we look at a buried guide, which for technological reasons is simplified to the
symmetrical structure shown in Figure 12.18.

-a/2 +a/2
& = >
<
* E 1l
¥x

Figure 12.18. Buried guide.
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The propagation of an electromagnetic wave with an angular frequency given
by o is along Oy and is polarized with respect to Ox. The field is reflected at the
interface, between a medium with an index given by n and another medium with an
index denoted by n;, along planes parallel to Oxy with the EM wave alternating its

- +
reflection at the planes defined by z= A and z= —a. This configuration has the
2

same geometry as that given in Section 12.4, and as that presented in Figure 12.19a,
making direct comparisons possible between systems that only differ by virtue of
their planes of interface. The metallic planes, which are imposed as a limiting

condition where E=0, are now replaced by dielectric diopters with the
aforementioned index n; where n;<n (and as a consequence, with different

limiting conditions). In addition, the two dielectrics are assumed to be nonabsorbent.
In the zones (1), (2), and (3) the electric field can be written by notation as

E(l),E(z), and E(3) , respectively, and in a manner analogous to that of Section 12.4,

taking into account the symmetry of the problem, the solutions for the TE wave
polarized with respect to Ox are looked for in each of the three zones in the form:

EP)=EP) () &, explitk ypy - o)

where p=1, 2, 3 characterizes the zone under consideration.

AZ zone (3), index n; < n, and field E(S)
+a/2 0

zone (2), in n;, and field E(2)

(0)( >y

-al2
(1)

zone (1), index n; < n, and field E

Figure 12.19(a). Propagation in a symmetrical dielectric guide.

12.6.1. General form of the solutions
The equations for continuity of the tangential component for the different field

E(l),E(z), and E(3) directed exactly along Ox, true for all moments t and whatever

values of y, lead to ky; =k, =ky3 =k, [see also Section 11.2.3, concerning Eq.

(7) or (7°) with respect to Oy].
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With the media being nonabsorbent, ., =n,?, we then have:

o Tp
L aE(p) n2 aE(p)
rot B( = Moo ——— = P 2= . By taking the rotational of the two terms
ot ¢ ot

of the equation rot E - , and by using the preceding equation, we obtain

ot
an equation for propagation in a medium with an index denoted n, [see Chapter 7,
Eq. (5) this volume, and withp, =1]

With the wave being monochromatic, we also can state, using Eq. (7") again from
Chapter 7,
— 2 ZE(p)
AR+ & 22
- c? ot?
Taking into account the form of the required solution, this equation gives [using a
calculation analogous to that yielding Eq. (11) of Section 12.4.3.2]:

=0.

dzE(p) 2
_drr;x(z)+ gng _kyz ESI}:)Z(Z) =0.
2 CZ
2 2
Making a}% = w—znf, -ky?, and as (%ng —ky2j can be, a priori, positive or
c c

negative, and o, can be real or purely imaginary, under these conditions the

p
solutions are in the general form:

Eg) (2)= A exp(jo, 2) T B exp(jo, 2).

X

12.6.2. Solutions for zone (2) with an index denoted by n

Figure 12.19 (b) Geometrical component of k.
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. . no . .. .
In this zone, the wavenumber is given by k= — and its projection along the axis
c

of propagation Oy is k, =ksin =k cosi=f (by notation) which is a constant
bound to the propagation phase.

. o’ . . .
The result is that o,2= —n?- ky2=k*-k? cos’i = k(1 - cos®i) = k?sin’i, so
CZ

that oy =+ksini . The sign is not important with respect to the general solution

. 2 . . . . .
given by Egm)( (z) , which contains both signs as exponentials, so by notation we use
o, =ksini=k cos® =k, = a . This magnitude is finally tied to the amplitude of a

stationary wave due to reflections at the interfaces (see the metallic guide in
Sections 12.4.2 and 12.4.3).

Therefore, in the zone (2) we have, with o =k sin i,
2 . .
Egmz (z)=D; exp(jo z) + D, exp(-ja z)

where D and D, are the constants to be determined for the limiting conditions.
In fact, given the symmetry of the problem, we should have D; =+ D, , so that
D; =D and D, =¢D with €==1. In effect, given this symmetry of the guide,

with respect to the z axis and for two points symmetrical placed about O located by
z=2z, and z=-z,, the intensity of the wave should be the same (in quantum

mechanics, the probabilities of presence would be stated to be equal).
Thus,
| Dy exp(jo 23) + Dy exp(-ja zp)* = | Dy exp(-ja z3) + Dy exp(jou 25)P
so that
| Dy + Dy exp(-2ja z5)] = | Dy exp(-2ja z3) + D; P2,
for which |Dy|*=|D,|* ,and D; =+ D, . Finally,

E(z):[D exp(j 2. 2) + £ D exp( @ 2)] & expli(k, y-ot)].

12.6.3. Solutions for the zones (1) and (3)
n?a?
In the titled zones [zones (1) and (3)], we have o2 =032 = 1

- ky2 , where
CZ

2

n12m2 nlzn 2

n . .
=—L k2, so that ky =kecosi is always true. The result is that
c? nc? n?

0)2




406  Basic electromagnetism and materials

n2

o2 =032 =k? | —- — cos?i ,
1703 )
n

and as:
2
nj
e ontheonehand, n>n;, —<1,
n2

e and on the other, in order to guide the incident ray (i) to the entry face
shown in Figure 12.19a, we should havei <i, as a result of Section

12.5.2.1 which uses the same geometry, so that

. . ny
COS12cCcosly =—

n
n2

We have | —- — cos2i [< 0 , so that we can make:
n2

2
04 % = o3? =k? [“_12 —cos 2i]—j2 y? <0, for which o; = a3 =jy, where:

n
2
/ . n
vy=k cos?ti- —— >0.
n2

In zone (1) we thus find that Eg{ (z)=C,; exp(4 o z) + C5 exp(j 04 z), and in
this zone where z < 0, so that the wave is evanescent (corresponding to the guiding
condition as in® >0, or i<i,), we should find C; =0 [If not, the component

C; exp(j o z)yields for E(l)

Cs exp(i*y 2) = C3 exp(-y 2),
which will diverge when z — -0 to give the amplification term rather than the term
for attenuation as required].

a contribution of the form

In zone (1), the solution thus is in the form E:nx (2)=C, exp(j o4 z), so
that:

EY) @)=, exp(y 2).

In the zone (1), the final expression for the wave is:

EV= ¢, exply 2) & explitk, y-o0).

This wave is evanescent with respect to Oz and progressive with respect to Oy. It is
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in effect an inhomogeneous MPP wave that has an amplitude that is dissimilar at
different points along the plane of the wave defined by y = constant.

Similarly, in zone (3), we have:

3 . .
ED)(2)= Cy exp( o3 2)+ Cy exp(j a3 2)
and in this zone where z > 0, the physically acceptable solution (yielding an

attenuation and not an amplification) is Efnx (z)= C5 exp(j as z), so that:

EX) )= C; exp(-1 2) -

In zone (3) then, the final equation for the wave is given as

EC)= ¢y exp(ey 2) &explicky y-on)]

which also is an evanescent wave with respect to Oz and a progressive wave with
respect to Oy.

It is worth now looking at the relationship between C; and C; due to the
symmetry of the guide. With the problem being one of symmetry around O with
respect to the z axis, we should have the same wave intensity at two symmetrical
points, one located with z=2z; and in zone (1), and the other located with

z=123 =-z; and in zone (3). So,

ICy exp(y z))I?

= 2 - I nd Cl == C3

= 1G5 exp(-y 3)P"}, = o, =1C5 exp(y z;)|

By making C; =C and C; = €C with ¢ =% 1, then we will have as solutions for

zone (1):

E(l) (z)= C exp(y z), and E(l): C exp(y z) e exp[j(kyy-ot)] |.

—mx

On zone (3), the solutions will be the same:

E(ri))( (z)= € Cexp(-vy z), and E(3): & Cexp(- v z) écexp[j(ky y-ot)]
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12.6.4. Equations for the magnetic field

Zone (1)
| oM
From Maxwell-Faraday law, which states rot E(MV= -T we have :
0 (1) 0
— 0B — = 1
rot E(l): oBx"V /62 =y E(l) and -——=jo (1) = B(l):— 7Y E(l)
M/ aye. 1 D a ® 1)
- 0Bx* /0y=- jk E -kyE
Zone (3)
0 _3) 0
— . 0B — — 1
rot E(3)= oBx®) oz = Y E(l) and - __]O)B(3) = 5(3)=— Jy E(S)
® ) over itc D o © )
- OEx™ / 0y=- [k E -kyE
Zone (2)

0
rot E( )= oEx? /oz :—joc[D exp(j az)-eD exp(sja z)] exp[j(kyy-ot)] and

- 0Bx® / oy=- jk , E?

) 0
oB@ 1

- *Jmﬁ(z) = B(z):— o [D exp(j az)-&D exp(5j a z)] exp[j(ky y-ot)]
@
-kyE

ot o)

12.6.5. Use of the limiting conditions: determination of constants
Here we make o = exp [Y—;j and p= exp( j%j,

A . a .
The continuity of the tangential components of E at z= — are written:
2
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EOE) =@y,
2 2
from which
a . a . a
e Cexp(-y —)=Dexp(jo. —)+eDexp(Ha —),
2 2 2
so that

Copu+t). W
5 il

With the media being nonmagnetic, we can equally write that the continuity of

. a
the tangential components for B at z= — are such that we have
2

By(3)(3) = By(z) (i) , from which
2 2

jveC exp(-y a/2) = a[D exp(j o a/2) - £ D exp(-j @ a/2)] , so that:
jyeClo=a[n-¢/u]D. 2)

We thus obtain two linearly independent equations that allow a determination
of the unknowns C and D. The other equations of continuity give for their part
equations leading to the same relations as Egs. (1) or (2). If the reasoning permitted
by the effect of symmetry had not been possible, then there would have been four
constants, namely C;,C,, Dy, and D,, which these additional equations would have
permitted to determine.

For example, at z =- % , we have:
EOCE —g@ 2y,
2 2
for which

C exp(-y %) =D exp(-jo. %) +¢e D exp(jo %),

so that
CcC D
—=— +euD .
5

By multiplying by ¢ we find Eq. (1).
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12.6.6. Modal equation

12.6.6.1. Placing into equations
First, we write the Egs. (1) and (2) for € =+1, as in:

C/e=(p+1/u)D (1)

} = the ratio (2°)/(1’) gives
JyC=o[u-1/u]D )

Joa - _joa
2-1 le?2 - 2
jy:ocu , SO thatl:—iztan E,andtherefore
p2+1 a joiwa _Joa 2
e? +e 2
fan 22 =Y (3
a

Similarly, when € = -1, we obtain:

-CA=(p- /WD 1) } = the ratio (2”’)/(1”") gives
LjyCli=alu+l/u]D (27

joa - _joa
) 2+1 ) e2 +e 2 -1
jy=oa , for which L —]— — = , so that
2 _ joa Jjoa oa
1 a T tan —
e2 — e 2
aa a
tan — =-—. (4)
2y

. . aa )
Equation (3) gives T: Arctan (lj + 1, where 1 is a whole number > 0 as
a

aa
7>0. So, we have %=§-Arctan{2]+rn, by using the equation
Y

1
Arctan x + Arc‘[an—=E , (tan(ﬁ- y)=
x 2 2

1
gives I y = Arctan by
tany 2 tany

making x =tany ). We deduce that:

fa, Arctan[EJ— 2r+ 1)E [ris aninteger >0 ]. &)
2 v 2
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From Eq. (4) we pull out:

*a_. Arctan [EJ +sm, andwith sinteger >0 as 2a, 0 , we thus have
2 v 2
2s)n
ea, Arctan 2= ( ) . 6)
2 v 2

The solutions from Egs. (5) and (6) can be regrouped into a single expression,
as in:

sa, Arctan 2= ﬂ, (7
2 Y 2

where q is an integer and q >1 as r > 0 and s > 0.

12.6.6.2. General equation and solutions

2
.. .. . n . n .
In addition, we madea =k sini, and y = k,/cosﬁ e , with —L=cos i, . The
n? n

left-hand side of Eq. (7) is by consequence a function of the angle i, and Eq. (7) can
be rewritten:

f{i) = k—sin i + Arctan ————" = q = ®)
2 Jeosti-costi, 2

Equation (8) is a modal equation that permits a determination of q when i € [0,1,].
1

4/ cos?i - cos?i,

like the arc tangent function. Indeed, f(i) is also a strictly incremental function, so
that for given values of a and q, there is a single value of i as a solution to f(i). The
maximum value of the function f{i) is obtained for the maximum acceptable value of

For this interval, sin i and are strictly increasing functions of i, just

1, thatis i=1, . For this value, we therefore have:
. a . . a . . s T
[f(i)]nax =k—sini, + arc tanoo=k—sini, +—=q— .
2 2 2 2
The solution q=1 therefore is always obtained, even when a — 0, as it

suffices to take i — i, as the arc tangent function tends toward /2.
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12.6.6.3. Monomodal solution
To remain in a monomodal regime where q = 1, the solution q = 2 must remain
unattainable. For this to be true [f(i)],,x <7 must be imposed, so that

2
. With k= ~2=nky =n—

sin i, c Ao

a. . =m .
k—sini, <—, which means that a<a; =
5 /

2 k
n2

and sini, = /1 —-cos?,= 1-—L | we obtain:
n

M
2Jn2-n12

In numerical terms, withdA, =13 um (a typical telecommunications
wavelength),n=1.50 and n; =1.49. For the monomodal condition, where q = 1

uniquely, the guide must have a width less than a; =3.76 um.
When Ay =1.55um, n=1.50 and n; =1, we obtaina; =0.7 um.

1=

12.6.6.4. Multimodal solutions

Whena > ay, the modal Eq. (8) in effect permits several different values of q as
solutions. In order to find the general solution to Eq. (8), we can write that with

2n : - o
= — and \/00521 -cos’l, = \/smzlp - sin% , we have
N / /

sin 1

a . . T
n—sini+ Arctan ——————==q—,
A/ sini, - sini 2
. 1 s
so that on applying Arctan x + Arctan— = 5 , we find that
X

oL ./ sin?i, - sin?
)—: Arctan —— >
2

12 sini- (q-1
A sin i

By settingm=(q-1)and asq>1, m therefore is an integer such that
m=0,1,2,3...., and so on using the fact that x = Arctany, we have y=tanx,

and
ma b sin?i 12
tan(—sini—m—j=( L. l] . )
A 2 sin?i

The two terms in this equation are functions of the variable sin i, and the
solutions can be found at the intersection of the plots representing:
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e the function g(sin i) = tan [n_; sini - mgj ; and

sin?i 12
e the function h(sini)= [ L. 1] .
sin%

In reality, the function g(sin i) can be more simply seen as the function given
by:

1. gy(sini)= - cotan [n_; sin ij when m is odd (as

T T
tan{x - —}— - tan{— - x}— - cotan x ); and
2 2

.. ma . . .
2. go(sini)=tan (7 sin 1} when m is even (as tan[x + n]: tanx) .

The resolution of Eq. (9) thus leads to plotting, as a function of sin i, the two
systems given by:

o the plots for 2 defined for when 0 <n7asin i<§ whenm=0,

ma . . 3w
1 <—sin i<— whenm =2, etc..., so that
A 2

A A 3x
0<sini< — (m=0), —<sini< — (m=2), and so on; and
2a a 2a

e the plots for 1 defined for when §<%asin i<m (m=1),

3
_n<%sin i<2m (m=3),etc..., so that
2

A A 3A 2\
—<sini< — (m=1), —<sini<— (m=3), and so on.
2a a 2a a

The solutions for sin i in each interval precisely defined by the value of m

L A . .
(hence the notation sin i, = m— for the solution), thus can be found as shown in
2a

e
sin?i,

12
—— -1| ,whichisa
sin?i

Figure 12.20 at the intersection with the plot of h(sin i) = [

function that decreases monotonically with sin i. Wheni=1,, this function cancels
out so that h(sini, )=0.
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g1(sini ),z (sini), hisin i)

Figure 12.20. Graphical solutions for the modal equations obtained by the
intersection of the plots h(sin i) and g(sin i).

For given values of a, A, n, and nj, for each value of m there is a corresponding
value of I denoted I,, and between 0 and 1i,. Associated with I, is the wavevector
with a component nk, cos I, with respect to the axis of propagation along Oy.
Pm =ky =nkg cosiy, is the propagation constant. With respect to the axis Oz, the

component of the wavevector associated with I, is for its part given by

k, =nkg siniy, = o, .

Ilk()

niko
n kg sin ib

n kg sin i3 m=3(q=4)
m=2(q=3)
m=1(q=2)

m=0(q=1)
>
n ko cos i, = nko f nkg B=ky=nkocosi

n ko cos i3

Figure 12.21. Determination of I, angles corresponding to m modes.
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. . . n .
As cos iy, varies between 1 and cosi, = -4, B, varies between nk, and n;kg.
n

The i, angles corresponding to the m modes, as well as the corresponding
components given by ky =B, and k, = a,, are shown in Figure 12.21.

12.6.6.5. Number of nodes

From Figure 12.20, each interval associated with a mode has a width given by A/2a,
which means that for a width defined by L as a function of sin i such that L = sin i,,
the number of possible modes (M) is equal to the first integer immediately above the
number given by the ratio e . By convention, we can write that M = S 1 .
M2a M2a

12.6.6.6. Cutoff frequency
Returning to Eq. (8) and the reasoning used in Sections 12.6.6.2 and 12.6.6.3, for a

mode given by q(=m+ 1) to not be affected, then [f(i)],.x <9 §= (m+1) g

2
must be true, so that kisin ip<(m+1) E, and from which with k= )L—nn and
2 ' 2 0

[2 2
n . o - .. n —-n
—L =cos ip =4/1-sin*i, included we can deduce that sini, =" 1 and
n

n
_ c(m+1)

7"0m >)“0mc_ 5 5
2a4/n”-nj

12.6.7. Comments: alternative methodologies

12.6.7.1. Comment 1: by analogy to solutions for potential wells

The type of mode, whether even or odd, can be apprehended directly through Egs.
(3) and (4) which are identical to those found in a resolution of potential wells with
the given width as a.

Considering Eq. (3), and by making X = % and Y = Y—; ;

Eq. (3) can be written as Y =Xtan X

Similarly, Eq. (4) gives Y =- X cotan X . This then yields:
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2 2 2
XH+Y? = a—[a2 + yz] -2 sin% + k? cos? - el
4 4 n?

2
=k? o a—2=k(2) (nz-nlz)a—2.
4 4

n2

For a given guide, with indices n and n; and of dimension a, it is possible to
state that X2+Y?=R? is a constant characteristic of the guide. The solutions for X
and Y can be found at the intersection of the plots of the preceding Y = f(X) with a

circle of radius R. From these solutions a can be determined, thus i, and then, as will
be detailed in Section 12.6.8, the distribution of the field that varies with cos az (for
even modes corresponding to the solutions to the equation Y = X.tan X ) or with
sin az (for odd modes corresponding to solutions to the equation Y =- X cotan X ).

12.6.7.2. Comment 2: methodology from principles of optics

We have assumed up till now that for a wave to be guided that (1) it has to undergo
a reflection at an incidence such that 6 >0, at an interface between two dielectrics

that make up the guide; and (2) the equation for the propagation should be verified
using the limiting conditions of the problem. It is by this route that we have selected
solutions corresponding to the modes. For a given mode, the solutions are such that
the transversal intensity of the wave is independent of the position in Oy of the
resultant direction of propagation.

The second condition can be directly replaced due to the fact that for the wave
to propagate it must be part of the same system of plane waves, meaning that after
several reflections the planes of the waves orthogonal to the direction of propagation
are conserved. This is the same as saying that the dephasing between the wave that
propagates along AB (subject to dephasing of @, and @g on reflection at A and B)
and the wave that propagates directly from A to C is a multiple of 2w, as shown in
Figure 12.22. Thus:

S o — —
(KAB-KAC) +¢p +0p = TR[AB SACH+2¢, =2nm. (10)

In effect, the two interfaces are identical (the same dielectrics with indices n
and n;) and the wave is polarized perpendicularly to the plane of the figure so that
@A =09 = ¢, and therefore we either have ¢, +¢g =2¢,, or @, as

determined in Section 11.3.2.2 with Eq. (37).

This with (i+0)= g , gives:

. . 12 C e 1/2
tan(‘P_L)__(Slnze'smzee‘) —-(S‘“21”—1j . an

2 cos sin 2i
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dielectric with index=n; B

Figure 12.22. Conservation of wave planes in guided propagation.

With [E—E]:2asini (classic dephasing calculated, for example, in

establishing Braggs law, so that here AB= ; and AC=ABcos?2i, to give
sin i
AB - AC= —>—[1 cos 2i] = 2asin i), then Eq. (10) gives:
sin i

2
%2 asini+2 ¢, =2n m, which in turn yields:

(na R TEJ (pL
—Smi-m— |=-——.
A 2 2

By taking the tangent of this equation into which is also plugged in Eq. (11), we
obtain the preceding Eq. (9), as in:

- 12
m . . W sin’i,

tan —sml—m—j—( — -1 .
A 2 sin’i

12.6.8. Field distribution and solution parity

It is worth looking at the distribution of the electric field in each of the zones (1),
(2), and (3) for the possible values of q.
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+a/2 4 \?“10 \31:21 </2132 é/ .

= < > v
~al2 / ( >
a / \ \ 7

Figure 12.23. Distribution of the electric field for various m modes.

12.6.8.1. In zone (2)

The form of the field established from Section 12.6.2 is such that
Eﬁm (Z):|:D exp(jog 2) +& D exp(-jog Z):| )

12.6.8.1.1. Even solutions (as cosines)
When & =+1, we have:

E(niz (z)=[D exp(joq z) + D exp(-jog Z):| o COoS (aq z)= cos [(k sinig)z] .

In addition, € =+ 1 corresponds to Eq. (3) which leads to q = 2r+1 [Eq. (5)], with r
an integer > 0. Ther=0 gives q =1 sothat m=0; r=1 gives q=3 so that m =2,
while r =2 gives q =5 so that m = 4, and so on (see also Figure 12.21 and 12.23).

12.6.8.1.2. Odd solutions (as sins)
When ¢ = -1, we have:

E(z)(z) = [D exp(jaq z)- D exp(—juq z)} o sin ((x z): sin [(k sin iq)z] .

mx q

Here, € = - 1 corresponds to Eq. (4) which leads to q = 2s (Eq. (6)), with s being an
integer > 0, so that for s = 1, we have q =2 and m = 1, and when s = 2 we have
qg=4and m =3, and so on (see also Figures 12.21 and 12.23).
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12.6.8.2. In zone (1)
The form of the field established in Section 12.6.3 is such that whenz < -a/2 ,

EY) @)= C exp(y 2).

and with y as the extinction coefficient, we can state that:

2
.o n : :
vy =k, f cos?i - —-= kon4/ cos’i - cos?,
n? '
.| cos? cos?
=kpncos i, — -1=ko m — -1
cos?iy cos?iy

12.6.8.3. In zone (3)

The form of the ficld established in Section 12.6.3 is such that when z > a/2 ,

ER) (2= Cexp(yy 2)

and v takes on the same form as above.

12.6.8.4. The Goos—Hcdnchen effect

We can note that in the presence of a dielectric (with an index = n,) in place of the
plane conductors, the electric field no longer gives rise to nodes (E =0) at z=+a/2
(see Figure 12.23) and the penetration to a depth of the order of 6 ~ 1/y of the ray

undergoing a total reflection is called the Goos—Hénchen effect.

12.6.9. Guide characteristics

12.6.9.1. Form of the signal leaving the guide

If a>> ), numerous values are possible for q, which results in discreet but close
values for the injection angle (i;). The group of modes allows the guide to function
in multimode.

To each value of i, there is a different path length in the guide along with an
associated time (ty), and under multimodal regimes, there is a temporal increase of
an impulsion leaving a wave with respect to that at the entrance, in what is an effect
termed “intermodal dispersion” (Figure 12.24).
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I
A, A

all modes

mode 1
> /\\ >
> mode 2 / \ >
mode 3 /\
>t t

at entrance to guide at a given time (t) the exiting signal is
weaker than the starting signal

all modes

A

Figure 12.24. Comparing guide entrance and exit signals.

. .. now . .
In effect, for a given value of q, i is dependent on  [as k = — intervenes in
c

d
the modal Eq. (8)], and B =k cosi thus is dependent on ® just as is v, = @

g dB :
The pathway time also is dependent on ® (and hence also the wavelength), and
hence the slight increase in the impulsions with each mode. This is termed the
“intramodal effect”, which is superimposed on that of dispersion due to a variation
of the index with wavelength. The result is a chromatic dispersion.

12.6.9.2. Nature of losses in a guide

Losses in a guide have various origins and can be organized into two main classes.
They are, first, characterized by a attenuation coefficient, or second, an attenuation
factor.

12.6.9.2.1. Attenuation coefficient and the linear attenuation factor
The transmitted power (P) for a penetrated length (L) varies in accordance with the
equation

P(L)=P(0) exp(-2y L).

P(0) is the power introduced at the entrance point, and y here represents the linear
attenuation coefficient for the amplitude.
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For its part, the linear attenuation factor (o) is defined with the help of the
expression:

10 P,
P(L) = P(0)10°*10 5o that o = flOglo ?0

where o is expressed in decibels per meter (dB m™).
As an example, a fiber with 0.22 dB km™ transmits around 95 % of the energy
over 1 km.

12.6.9.2.2. Losses due to the physical configuration of the guide

These losses can include:

o losses due to a defective guiding (in principle, these losses do not count for guided
modes);

e losses due to curves (unnatural losses due to deformations of the fiber) for
example, when the radius of curvature is less than a centimeter, the higher modes
can be refracted within the gain;

o losses at joints, which in turn can be divided into two groups:

1. losses due to poor alignment of adjacent components;
2. Fresnel losses, associated with the reflection of the injection signal at the
entrance face (as in Figure 12.25). Under normal incidence, using classic

n-mn;

2
experimental conditions, we have R—{ }, so that with

n+mny
n=15and ny =1, wehave R = 0.04 =4 %. Thus the losses by Fresnel
reflections are given by Mgresnel = 10 logjo(1-R) = -0.18 dB.

injection
medium with index ag/
retlection

Figure 12.25. Fresnel losses.

guide with index =n

12.6.9.2.3. Losses due to the material making up the guide
Losses due to the properties of the guide material can be divided into two physical
phenomena, absorption and diffusion.

First, the losses due to absorption (which also are further detailed in Chapter 10
of this volume, or Chapter 3 of the second volume entitled Applied
Electromagnetism and Materials) which can come about:
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e in the visible domain (zone 3) due to electronic absorption;

e in the infrared domain (zone 4) due to network vibrations (vibrations of atoms or
ions depending on the nature of the guide and/or fiber). In polymer based materials,
the wavelength for the fundamental absorption by the C-H group is approximately
3.3 um and over distances of any consequence, the window of transparency is in fact
limited to 0.8 um due to absorptions associated with harmonics. This phenomenon
resembles absorptions due to hydroxyl bonds (-O-H) that exhibit a transparency
window up to 2 pm, which includes in particular two transmission windows at 1.3
and 1.55 pm used in optical telecommunications. The use of fluorinated polymers
permits an extension of this region of transparency;

e because of a wide number of impurities that present absorption characteristics, and
hence the necessity of using highly purified materials. For silicon-based systems,
absorptions due to impurities including hydroxyl groups are situated around the
above-mentioned windows at 1.3 and 1.55 um. The improvement of manufacturing
techniques has meant that the presence of water has been reduced to less than 1 part
per 107 and accordingly the performances of silicon-based fibers have increased
considerably to less than 0.2 dB km™ at 1.55 pm. The use of fluorinated glasses can
extend the transparency window to 5 um, and although the absorption bands are
always present, they are well shifted to longer wavelengths.

A

o (dB km™)
10 | peaks due to OH™ ions infrared
absorption
(network
vibrations)
1 |
;\‘ ~~~~
0.1
| | >
0.5 1 1.5 2 A(pm)

Figure 12.26. Plot of a = f{(1) showing the origin of losses in a silicon based fiber.
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Second, losses due to diffusion that can be further separated into two groups:

e extrinsic diffusion which itself can be due to two possible causes, the first being

A
tied to the possible inclusion of dust (of a size greater than %) and the second

being associated with the presence of microcrystallites. It is evident therefore that
there is an interest in using extremely clean and amorphous materials.

o intrinsic diffusion due to Rayleigh diffusion (see also Chapter 10) which is caused

by interactions of light with materials. It varies with respect to — so that the
A

effect becomes more important at shorter wavelengths. Thus, at very short
wavelengths, there is a deviation in the plot of o = f(A) due to an attenuation of
the system (see Figure 12.26 for silicon fiber optics).

12.7. Problems

Monomodal conditions

By way of recall, the total reflection at the interface between two dielectric media
brings into consideration two different and real indices denoted here as n and n; and
such that n>n; . We thus have nj =n-An.

Ny evanescent WiVe ..

z 8c

The figure shows the configuration of injection and propagation of light in a
medium with an index denoted as n. When 0 >0, , where 0, represents the limiting

angle (and i, is the corresponding angle on the inside of the injection surface),
electromagnetic theory tells us that the transmitted wave (Et) in the medium with

index n; and for the zone defined by z > a/2, is in the form:
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Et :E?exp(— vz) exp(i[ky y - ot]), avecy =k n; (cos’/cos’y) - l]]/ 2,

1. Show that the intensity of the wave in the medium with index = n; can be written

2
in the form I;(z) =1,(0) exp(—gzj . Give an equation for 8, which then can be used

to give an approximate value, assuming that 0 is sufficiently close to 7/2 to state
that sin’0 = 1.

2. Determine the condition for An that permits a weak penetration of a wave
(evanescent) into the medium with an index = n;. The condition for weak
penetration is fixed using the condition 6 <J, ~3 A; (wavelength in a medium
with an index = n;).

In numerical terms, determine the condition on An when n = n; = 1.5.

. . . A .
3. Monomodal condition. In this chapter it is shown that: a <a; = ——=2— . With
2,/n? —n12
An being very small, which can be verified later on, and with the same numerical
characteristics as given before in that Ay =13 pm and a=5pum, give the

numerical condition that An must verify so that the guide is monomodal. Conclude.

Answers

2 P 2
1. We have 1,(2) = [E| =‘g?‘ exp(- 2 72) = 1,(0) exp(—§] with

1 1 cos? 12
0= —= -1 .
v ko n{ cos?iy

s

Expressing as a function of 0, we have in one

>
cos?i,

part, cos i =cos (/2 - 0) = sin 6 , and in the other

. . n .
cos iy, =cos(n/2-6,)=sin0, ==L, with the result that
n

-1/2 -1/2
1 n? . 1 n?

0= —sin?%0 —1 ~ — - 1
ko ny | nj ko ny | nj
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. © . . .-
2. With kg ny = —ny, § <3 A; gives rise to the condition:
c

-1/2

)\‘ 2

d = 2—1[11—2 - IJ <3, and the condition for weak penetration therefore is
n| nj
1/2
1 [n? 1Y 02 (n+An) 2 An

—<|— -1 ,sothat| — | <——1= 3 -1~ .
67 ny 67 n; ng m

We therefore have as a condition, finally,

n
An > 7
2 n

In numerical terms withn; = 1.5, we have An>0.0021.

3. The monomodal condition can be written as

A A A
a<a = 0o _ 0 0

2\/n2 —n12 2\/(111 +An)2 - n12 2\/ 2n; An

, SO that:

2
An < )\’_Ol .
8111 a?

In numerical terms,a =5 pum, n; = 1.5, and Ay = 1.3 um, we have An <0.0056 .

To conclude, the two conditions brought together at An have a common
domain, namely 0.0021 < An < 0.0056 . In this region, the conditions of weak
penetration and monomodal guiding are simultaneously true.
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Coulomb (law) 8, 58

Coulomb (theorem) 56

cubic cavity 72

Curie (ferroelectric temperature) 128

Curie’s law 134

Curie-Weiss 135

curl 3

current density 16

current density at an interface 19

current sheet 24, 378

current (vitual) 116

cylindrical coordonates 3

cylinder (with surface currents) 114

d

Dallenbach layer 350
Debye (field) 82

Debye (formula) 71

decibel (dB attenuation) 421
depolarizing field 42
diamagnetism 131
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dielectric (materials) 42, 119, 228

dielectric characteristics 123

dielectric function 240, 248

dielectric withstand strength 119

diffusion (by bound electrons) 291,
309

diffusion (by free electrons) 292

diffusion mechanisms 289

dipolar charges 40

dipolar radiation 267

dipole transition moment 305

dispersion 210, 242,244,251, 255,
256, 385

dispersing media (abnormally,
normal) 211

displacement (electric, vector D) 51

displacement current 162, 163, 170

divergence 2, 49

dipole field 275

dipoles 40

divergence 2, 49

domain (ferroelectric) 126

drift velocity 21

Drude model 20

Drude-Lorentz 231

dynamic systems 50

e

effective field 43

electret 123, 151

electric displacement 52

electric field (vector E) 9, 51

electrical discharge 119

electronic polarization 65, 228, 260,
263

electronic transition 309

electrostatics and vacuums 8

electrostatics of diclectrics 39

elliptical polarization 188

emission 267, 298

energy (EMPW) 215

equation (of wave propagation) 173,
206, 380

equivalent charges 44

evanescent wave 346

excitation vector 106, 109
external field 43
extinction index 215
extrinsic diffusion 423

f

ferrimagnetism 150
ferroelectrics 126
ferromagnet (soft and hard) 145
ferromagnetism 137, 145
fibers 399

field distribution 395, 418
flux of current density 18
flux of the vector 6

Fresnel (equations) 331
Fresnel losses 421

frustrated total reflection 347

g
Gauss theorem 10, 52

gradient 1

guide 368, 380, 420
guide modes 386
guided propagation 417
guiding conditions 400

h

H (vector) 106

Hagen — Rubens (equation) 359
half-wave antenna 283, 285
heterocharge 40

Hertzian dipole 281
homocharge 40

hysteresis (loop) 126, 142

i

images (electric) 77

impedance characteristics 257
indices 212, 214

induction 158

insulator 121

integrated transformations 6
interaction (EMW-materials) 227
interfacial polarization 65
internal field 82



intrinsic diffusion 423
ionic polarization 65, 228

i
Jones (representation) 195

k
k (wave number) 178, 213
k (wave vector) 179, 191

1

Langevin (function, theory) 67, 131
Laplace (equation) 14
laplacian 2

laplacian vector 2
Larmor equation 279
Larmor (precession) 98
leak current 206

Lenz (law) 159

linear materials 130, 319
Lh.i. dielectrics 58, 229
Lorentz gauge 268
losses in a guide 420

m

magnet 151

magnetic doublet 93

magnetic field 25, 82, 92

magnetic (materials) 89, 119, 129,
256

magnetic mass 110

magnetic moment 89, 94, 97

magnetization (primary) 139

magnetization intensity 100

magnetostatics (vacuum) 24

Malus’s experiment 345

mass (magnetic) 110

Maxwell’s equation 167

Maxwell-Ampere 28, 161

Maxwell-Faraday 159

metals 229, 252, 263

modal equation 410, 414

mode of propagation 393, 414

modes (standing) 179, 386

molar polarizability 67, 71

Index 429

molecular field 135
monomodal 402, 412
MPPEMW 186
multimodal 398, 412

n
numerical aperture 400

0

Ohm’s law 20

Ohm’s law (limits) 22
Onsager (field) 82
operators 1

optical guiding 399
oscillating charge 280
Ostrogradsky theorem 7

p
paramagnetism 132

permittivity (dielectric) 52, 207, 213,
232,258

piezoelectret 124

plasma (medium) 228, 245

Poisson’s equation 26, 160

polarization (induced) 63, 66

polarization (orientation) 65, 67, 228

polarization (TE) 332

polarization (TM) 332

polarization (vector) 43, 57

polarization charge distribution 46

polarization current 50

polarizability 64

polarized dielectrics 44, 258

polymer 121

potential (scalar) 7, 40, 274

potential vector 8, 89, 101, 274

potential well 415

power 216, 373

Poynting (vector) 216, 220

PPEMW 180

propagation 173, 206, 273

propagation (guided) 367

pseudo scalar potential 93
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r tube (of electric field) 15

radiation power 219, 278, 282

radiation zone 277 \

RAQSS 157 vacuum-metal interface 376

Rayleigh diffusion 289, 423 variable slow rate 157

reaction field 83 vector circulation 3

reflection 317, 356 vector potential 8, 26, 27

reflection (coefficient) 331, 343 vectorial analysis 1

reflection (total) 329, 367 vectorial integration 3

refraction 56, 317 vibrational transition 308

refraction index 215 voltammeter (electrostatic) 123

resonance 229

retarded potentials 268, 273 w

rotational 2, 30 wave (direct) 175, 192

rotational transition 307 wave guide 367, 403, 423

Rutherford diffusion 294 wave (homogeneous) 327

wave (inhomogeneous) 327

s wave (longitudinal) 176, 240

scalar potential 7, 40 wave (monochromatic) 178, 191

slowly varying rate 158 wave number 178, 213

Snell-Descartes law 322, 325 wave penetration 355, 359, 362

solid angle 10 wave (planar) 176

solution parity 417 wave (planar progressive) 178

space charge 40 wave polarized 186, 193

speed (group) 210, 387 wave (progressive) 178, 395

speed (wave phase) 194, 210, 387, wave (rectilinear polarized) 183, 199
394 wave (retrograde) 175, 192

sphere (charged) 33, 111 wave (spherical) 177

sphere (dielectric) 61 wave (stationary) 179, 377

spherical cavity (empty) 62 wave (transverse) 176, 181, 241, 381,

spherical coordinates 3 383, 388

stationary regimes 17 wave TEM 193

Stokes’ theorem 7 wave vector 179, 191, 320

strip (dielectric) 75 Weiss (domains) 148

strip guide 368

surface charge 42, 48

surface current density 24, 378
susceptibility (dielectric) 58, 222
synchrotron radiation 297

t

Thomson model 81

transition rules 302

transmission (coefficient) 331, 343
treeing 120
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